]> git.ipfire.org Git - thirdparty/qemu.git/blame - exec.c
Merge remote-tracking branch 'remotes/mdroth/tags/qga-pull-2020-03-24-tag0' into...
[thirdparty/qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
14a48c1d 19
7b31bbc2 20#include "qemu/osdep.h"
a8d25326 21#include "qemu-common.h"
da34e65c 22#include "qapi/error.h"
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
51180423 27#include "exec/target_page.h"
dcb32f1d 28#include "tcg/tcg.h"
741da0d3 29#include "hw/qdev-core.h"
c7e002c5 30#include "hw/qdev-properties.h"
4485bd26 31#if !defined(CONFIG_USER_ONLY)
47c8ca53 32#include "hw/boards.h"
33c11879 33#include "hw/xen/xen.h"
4485bd26 34#endif
9c17d615 35#include "sysemu/kvm.h"
2ff3de68 36#include "sysemu/sysemu.h"
14a48c1d 37#include "sysemu/tcg.h"
a028edea 38#include "sysemu/qtest.h"
1de7afc9
PB
39#include "qemu/timer.h"
40#include "qemu/config-file.h"
75a34036 41#include "qemu/error-report.h"
b6b71cb5 42#include "qemu/qemu-print.h"
53a5960a 43#if defined(CONFIG_USER_ONLY)
a9c94277 44#include "qemu.h"
432d268c 45#else /* !CONFIG_USER_ONLY */
741da0d3 46#include "exec/memory.h"
df43d49c 47#include "exec/ioport.h"
741da0d3 48#include "sysemu/dma.h"
b58c5c2d 49#include "sysemu/hostmem.h"
79ca7a1b 50#include "sysemu/hw_accel.h"
741da0d3 51#include "exec/address-spaces.h"
9c17d615 52#include "sysemu/xen-mapcache.h"
0ab8ed18 53#include "trace-root.h"
d3a5038c 54
e2fa71f5 55#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
56#include <linux/falloc.h>
57#endif
58
53a5960a 59#endif
0dc3f44a 60#include "qemu/rcu_queue.h"
4840f10e 61#include "qemu/main-loop.h"
5b6dd868 62#include "translate-all.h"
7615936e 63#include "sysemu/replay.h"
0cac1b66 64
022c62cb 65#include "exec/memory-internal.h"
220c3ebd 66#include "exec/ram_addr.h"
508127e2 67#include "exec/log.h"
67d95c15 68
61c490e2
BM
69#include "qemu/pmem.h"
70
9dfeca7c
BR
71#include "migration/vmstate.h"
72
b35ba30f 73#include "qemu/range.h"
794e8f30
MT
74#ifndef _WIN32
75#include "qemu/mmap-alloc.h"
76#endif
b35ba30f 77
be9b23c4
PX
78#include "monitor/monitor.h"
79
db7b5426 80//#define DEBUG_SUBPAGE
1196be37 81
e2eef170 82#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
83/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
84 * are protected by the ramlist lock.
85 */
0d53d9fe 86RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
87
88static MemoryRegion *system_memory;
309cb471 89static MemoryRegion *system_io;
62152b8a 90
f6790af6
AK
91AddressSpace address_space_io;
92AddressSpace address_space_memory;
2673a5da 93
acc9d80b 94static MemoryRegion io_mem_unassigned;
e2eef170 95#endif
9fa3e853 96
f481ee2d
PB
97CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
98
6a00d601
FB
99/* current CPU in the current thread. It is only valid inside
100 cpu_exec() */
f240eb6f 101__thread CPUState *current_cpu;
6a00d601 102
a0be0c58
YZ
103uintptr_t qemu_host_page_size;
104intptr_t qemu_host_page_mask;
a0be0c58 105
e2eef170 106#if !defined(CONFIG_USER_ONLY)
fe3dada3
PB
107/* 0 = Do not count executed instructions.
108 1 = Precise instruction counting.
109 2 = Adaptive rate instruction counting. */
110int use_icount;
4346ae3e 111
1db8abb1
PB
112typedef struct PhysPageEntry PhysPageEntry;
113
114struct PhysPageEntry {
9736e55b 115 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 116 uint32_t skip : 6;
9736e55b 117 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 118 uint32_t ptr : 26;
1db8abb1
PB
119};
120
8b795765
MT
121#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
122
03f49957 123/* Size of the L2 (and L3, etc) page tables. */
57271d63 124#define ADDR_SPACE_BITS 64
03f49957 125
026736ce 126#define P_L2_BITS 9
03f49957
PB
127#define P_L2_SIZE (1 << P_L2_BITS)
128
129#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
130
131typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 132
53cb28cb 133typedef struct PhysPageMap {
79e2b9ae
PB
134 struct rcu_head rcu;
135
53cb28cb
MA
136 unsigned sections_nb;
137 unsigned sections_nb_alloc;
138 unsigned nodes_nb;
139 unsigned nodes_nb_alloc;
140 Node *nodes;
141 MemoryRegionSection *sections;
142} PhysPageMap;
143
1db8abb1 144struct AddressSpaceDispatch {
729633c2 145 MemoryRegionSection *mru_section;
1db8abb1
PB
146 /* This is a multi-level map on the physical address space.
147 * The bottom level has pointers to MemoryRegionSections.
148 */
149 PhysPageEntry phys_map;
53cb28cb 150 PhysPageMap map;
1db8abb1
PB
151};
152
90260c6c
JK
153#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
154typedef struct subpage_t {
155 MemoryRegion iomem;
16620684 156 FlatView *fv;
90260c6c 157 hwaddr base;
2615fabd 158 uint16_t sub_section[];
90260c6c
JK
159} subpage_t;
160
b41aac4f 161#define PHYS_SECTION_UNASSIGNED 0
5312bd8b 162
e2eef170 163static void io_mem_init(void);
62152b8a 164static void memory_map_init(void);
9458a9a1 165static void tcg_log_global_after_sync(MemoryListener *listener);
09daed84 166static void tcg_commit(MemoryListener *listener);
e2eef170 167
32857f4d
PM
168/**
169 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
170 * @cpu: the CPU whose AddressSpace this is
171 * @as: the AddressSpace itself
172 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
173 * @tcg_as_listener: listener for tracking changes to the AddressSpace
174 */
175struct CPUAddressSpace {
176 CPUState *cpu;
177 AddressSpace *as;
178 struct AddressSpaceDispatch *memory_dispatch;
179 MemoryListener tcg_as_listener;
180};
181
8deaf12c
GH
182struct DirtyBitmapSnapshot {
183 ram_addr_t start;
184 ram_addr_t end;
185 unsigned long dirty[];
186};
187
6658ffb8 188#endif
fd6ce8f6 189
6d9a1304 190#if !defined(CONFIG_USER_ONLY)
d6f2ea22 191
53cb28cb 192static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 193{
101420b8 194 static unsigned alloc_hint = 16;
53cb28cb 195 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
c95cfd04 196 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
53cb28cb 197 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 198 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 199 }
f7bf5461
AK
200}
201
db94604b 202static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
203{
204 unsigned i;
8b795765 205 uint32_t ret;
db94604b
PB
206 PhysPageEntry e;
207 PhysPageEntry *p;
f7bf5461 208
53cb28cb 209 ret = map->nodes_nb++;
db94604b 210 p = map->nodes[ret];
f7bf5461 211 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 212 assert(ret != map->nodes_nb_alloc);
db94604b
PB
213
214 e.skip = leaf ? 0 : 1;
215 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 216 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 217 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 218 }
f7bf5461 219 return ret;
d6f2ea22
AK
220}
221
53cb28cb 222static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
56b15076 223 hwaddr *index, uint64_t *nb, uint16_t leaf,
2999097b 224 int level)
f7bf5461
AK
225{
226 PhysPageEntry *p;
03f49957 227 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 228
9736e55b 229 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 230 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 231 }
db94604b 232 p = map->nodes[lp->ptr];
03f49957 233 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 234
03f49957 235 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 236 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 237 lp->skip = 0;
c19e8800 238 lp->ptr = leaf;
07f07b31
AK
239 *index += step;
240 *nb -= step;
2999097b 241 } else {
53cb28cb 242 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
243 }
244 ++lp;
f7bf5461
AK
245 }
246}
247
ac1970fb 248static void phys_page_set(AddressSpaceDispatch *d,
56b15076 249 hwaddr index, uint64_t nb,
2999097b 250 uint16_t leaf)
f7bf5461 251{
2999097b 252 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 253 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 254
53cb28cb 255 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
256}
257
b35ba30f
MT
258/* Compact a non leaf page entry. Simply detect that the entry has a single child,
259 * and update our entry so we can skip it and go directly to the destination.
260 */
efee678d 261static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
262{
263 unsigned valid_ptr = P_L2_SIZE;
264 int valid = 0;
265 PhysPageEntry *p;
266 int i;
267
268 if (lp->ptr == PHYS_MAP_NODE_NIL) {
269 return;
270 }
271
272 p = nodes[lp->ptr];
273 for (i = 0; i < P_L2_SIZE; i++) {
274 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
275 continue;
276 }
277
278 valid_ptr = i;
279 valid++;
280 if (p[i].skip) {
efee678d 281 phys_page_compact(&p[i], nodes);
b35ba30f
MT
282 }
283 }
284
285 /* We can only compress if there's only one child. */
286 if (valid != 1) {
287 return;
288 }
289
290 assert(valid_ptr < P_L2_SIZE);
291
292 /* Don't compress if it won't fit in the # of bits we have. */
526ca236
WY
293 if (P_L2_LEVELS >= (1 << 6) &&
294 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
b35ba30f
MT
295 return;
296 }
297
298 lp->ptr = p[valid_ptr].ptr;
299 if (!p[valid_ptr].skip) {
300 /* If our only child is a leaf, make this a leaf. */
301 /* By design, we should have made this node a leaf to begin with so we
302 * should never reach here.
303 * But since it's so simple to handle this, let's do it just in case we
304 * change this rule.
305 */
306 lp->skip = 0;
307 } else {
308 lp->skip += p[valid_ptr].skip;
309 }
310}
311
8629d3fc 312void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 313{
b35ba30f 314 if (d->phys_map.skip) {
efee678d 315 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
316 }
317}
318
29cb533d
FZ
319static inline bool section_covers_addr(const MemoryRegionSection *section,
320 hwaddr addr)
321{
322 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
323 * the section must cover the entire address space.
324 */
258dfaaa 325 return int128_gethi(section->size) ||
29cb533d 326 range_covers_byte(section->offset_within_address_space,
258dfaaa 327 int128_getlo(section->size), addr);
29cb533d
FZ
328}
329
003a0cf2 330static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 331{
003a0cf2
PX
332 PhysPageEntry lp = d->phys_map, *p;
333 Node *nodes = d->map.nodes;
334 MemoryRegionSection *sections = d->map.sections;
97115a8d 335 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 336 int i;
f1f6e3b8 337
9736e55b 338 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 339 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 340 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 341 }
9affd6fc 342 p = nodes[lp.ptr];
03f49957 343 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 344 }
b35ba30f 345
29cb533d 346 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
347 return &sections[lp.ptr];
348 } else {
349 return &sections[PHYS_SECTION_UNASSIGNED];
350 }
f3705d53
AK
351}
352
79e2b9ae 353/* Called from RCU critical section */
c7086b4a 354static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
355 hwaddr addr,
356 bool resolve_subpage)
9f029603 357{
729633c2 358 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c
JK
359 subpage_t *subpage;
360
07c114bb
PB
361 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
362 !section_covers_addr(section, addr)) {
003a0cf2 363 section = phys_page_find(d, addr);
07c114bb 364 atomic_set(&d->mru_section, section);
729633c2 365 }
90260c6c
JK
366 if (resolve_subpage && section->mr->subpage) {
367 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 368 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
369 }
370 return section;
9f029603
JK
371}
372
79e2b9ae 373/* Called from RCU critical section */
90260c6c 374static MemoryRegionSection *
c7086b4a 375address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 376 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
377{
378 MemoryRegionSection *section;
965eb2fc 379 MemoryRegion *mr;
a87f3954 380 Int128 diff;
149f54b5 381
c7086b4a 382 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
383 /* Compute offset within MemoryRegionSection */
384 addr -= section->offset_within_address_space;
385
386 /* Compute offset within MemoryRegion */
387 *xlat = addr + section->offset_within_region;
388
965eb2fc 389 mr = section->mr;
b242e0e0
PB
390
391 /* MMIO registers can be expected to perform full-width accesses based only
392 * on their address, without considering adjacent registers that could
393 * decode to completely different MemoryRegions. When such registers
394 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
395 * regions overlap wildly. For this reason we cannot clamp the accesses
396 * here.
397 *
398 * If the length is small (as is the case for address_space_ldl/stl),
399 * everything works fine. If the incoming length is large, however,
400 * the caller really has to do the clamping through memory_access_size.
401 */
965eb2fc 402 if (memory_region_is_ram(mr)) {
e4a511f8 403 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
404 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
405 }
149f54b5
PB
406 return section;
407}
90260c6c 408
a411c84b
PB
409/**
410 * address_space_translate_iommu - translate an address through an IOMMU
411 * memory region and then through the target address space.
412 *
413 * @iommu_mr: the IOMMU memory region that we start the translation from
414 * @addr: the address to be translated through the MMU
415 * @xlat: the translated address offset within the destination memory region.
416 * It cannot be %NULL.
417 * @plen_out: valid read/write length of the translated address. It
418 * cannot be %NULL.
419 * @page_mask_out: page mask for the translated address. This
420 * should only be meaningful for IOMMU translated
421 * addresses, since there may be huge pages that this bit
422 * would tell. It can be %NULL if we don't care about it.
423 * @is_write: whether the translation operation is for write
424 * @is_mmio: whether this can be MMIO, set true if it can
425 * @target_as: the address space targeted by the IOMMU
2f7b009c 426 * @attrs: transaction attributes
a411c84b
PB
427 *
428 * This function is called from RCU critical section. It is the common
429 * part of flatview_do_translate and address_space_translate_cached.
430 */
431static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
432 hwaddr *xlat,
433 hwaddr *plen_out,
434 hwaddr *page_mask_out,
435 bool is_write,
436 bool is_mmio,
2f7b009c
PM
437 AddressSpace **target_as,
438 MemTxAttrs attrs)
a411c84b
PB
439{
440 MemoryRegionSection *section;
441 hwaddr page_mask = (hwaddr)-1;
442
443 do {
444 hwaddr addr = *xlat;
445 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
2c91bcf2
PM
446 int iommu_idx = 0;
447 IOMMUTLBEntry iotlb;
448
449 if (imrc->attrs_to_index) {
450 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
451 }
452
453 iotlb = imrc->translate(iommu_mr, addr, is_write ?
454 IOMMU_WO : IOMMU_RO, iommu_idx);
a411c84b
PB
455
456 if (!(iotlb.perm & (1 << is_write))) {
457 goto unassigned;
458 }
459
460 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
461 | (addr & iotlb.addr_mask));
462 page_mask &= iotlb.addr_mask;
463 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
464 *target_as = iotlb.target_as;
465
466 section = address_space_translate_internal(
467 address_space_to_dispatch(iotlb.target_as), addr, xlat,
468 plen_out, is_mmio);
469
470 iommu_mr = memory_region_get_iommu(section->mr);
471 } while (unlikely(iommu_mr));
472
473 if (page_mask_out) {
474 *page_mask_out = page_mask;
475 }
476 return *section;
477
478unassigned:
479 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
480}
481
d5e5fafd
PX
482/**
483 * flatview_do_translate - translate an address in FlatView
484 *
485 * @fv: the flat view that we want to translate on
486 * @addr: the address to be translated in above address space
487 * @xlat: the translated address offset within memory region. It
488 * cannot be @NULL.
489 * @plen_out: valid read/write length of the translated address. It
490 * can be @NULL when we don't care about it.
491 * @page_mask_out: page mask for the translated address. This
492 * should only be meaningful for IOMMU translated
493 * addresses, since there may be huge pages that this bit
494 * would tell. It can be @NULL if we don't care about it.
495 * @is_write: whether the translation operation is for write
496 * @is_mmio: whether this can be MMIO, set true if it can
ad2804d9 497 * @target_as: the address space targeted by the IOMMU
49e14aa8 498 * @attrs: memory transaction attributes
d5e5fafd
PX
499 *
500 * This function is called from RCU critical section
501 */
16620684
AK
502static MemoryRegionSection flatview_do_translate(FlatView *fv,
503 hwaddr addr,
504 hwaddr *xlat,
d5e5fafd
PX
505 hwaddr *plen_out,
506 hwaddr *page_mask_out,
16620684
AK
507 bool is_write,
508 bool is_mmio,
49e14aa8
PM
509 AddressSpace **target_as,
510 MemTxAttrs attrs)
052c8fa9 511{
052c8fa9 512 MemoryRegionSection *section;
3df9d748 513 IOMMUMemoryRegion *iommu_mr;
d5e5fafd
PX
514 hwaddr plen = (hwaddr)(-1);
515
ad2804d9
PB
516 if (!plen_out) {
517 plen_out = &plen;
d5e5fafd 518 }
052c8fa9 519
a411c84b
PB
520 section = address_space_translate_internal(
521 flatview_to_dispatch(fv), addr, xlat,
522 plen_out, is_mmio);
052c8fa9 523
a411c84b
PB
524 iommu_mr = memory_region_get_iommu(section->mr);
525 if (unlikely(iommu_mr)) {
526 return address_space_translate_iommu(iommu_mr, xlat,
527 plen_out, page_mask_out,
528 is_write, is_mmio,
2f7b009c 529 target_as, attrs);
052c8fa9 530 }
d5e5fafd 531 if (page_mask_out) {
a411c84b
PB
532 /* Not behind an IOMMU, use default page size. */
533 *page_mask_out = ~TARGET_PAGE_MASK;
d5e5fafd
PX
534 }
535
a764040c 536 return *section;
052c8fa9
JW
537}
538
539/* Called from RCU critical section */
a764040c 540IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
7446eb07 541 bool is_write, MemTxAttrs attrs)
90260c6c 542{
a764040c 543 MemoryRegionSection section;
076a93d7 544 hwaddr xlat, page_mask;
30951157 545
076a93d7
PX
546 /*
547 * This can never be MMIO, and we don't really care about plen,
548 * but page mask.
549 */
550 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
49e14aa8
PM
551 NULL, &page_mask, is_write, false, &as,
552 attrs);
30951157 553
a764040c
PX
554 /* Illegal translation */
555 if (section.mr == &io_mem_unassigned) {
556 goto iotlb_fail;
557 }
30951157 558
a764040c
PX
559 /* Convert memory region offset into address space offset */
560 xlat += section.offset_within_address_space -
561 section.offset_within_region;
562
a764040c 563 return (IOMMUTLBEntry) {
e76bb18f 564 .target_as = as,
076a93d7
PX
565 .iova = addr & ~page_mask,
566 .translated_addr = xlat & ~page_mask,
567 .addr_mask = page_mask,
a764040c
PX
568 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
569 .perm = IOMMU_RW,
570 };
571
572iotlb_fail:
573 return (IOMMUTLBEntry) {0};
574}
575
576/* Called from RCU critical section */
16620684 577MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
efa99a2f
PM
578 hwaddr *plen, bool is_write,
579 MemTxAttrs attrs)
a764040c
PX
580{
581 MemoryRegion *mr;
582 MemoryRegionSection section;
16620684 583 AddressSpace *as = NULL;
a764040c
PX
584
585 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd 586 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
49e14aa8 587 is_write, true, &as, attrs);
a764040c
PX
588 mr = section.mr;
589
fe680d0d 590 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 591 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 592 *plen = MIN(page, *plen);
a87f3954
PB
593 }
594
30951157 595 return mr;
90260c6c
JK
596}
597
1f871c5e
PM
598typedef struct TCGIOMMUNotifier {
599 IOMMUNotifier n;
600 MemoryRegion *mr;
601 CPUState *cpu;
602 int iommu_idx;
603 bool active;
604} TCGIOMMUNotifier;
605
606static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
607{
608 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
609
610 if (!notifier->active) {
611 return;
612 }
613 tlb_flush(notifier->cpu);
614 notifier->active = false;
615 /* We leave the notifier struct on the list to avoid reallocating it later.
616 * Generally the number of IOMMUs a CPU deals with will be small.
617 * In any case we can't unregister the iommu notifier from a notify
618 * callback.
619 */
620}
621
622static void tcg_register_iommu_notifier(CPUState *cpu,
623 IOMMUMemoryRegion *iommu_mr,
624 int iommu_idx)
625{
626 /* Make sure this CPU has an IOMMU notifier registered for this
627 * IOMMU/IOMMU index combination, so that we can flush its TLB
628 * when the IOMMU tells us the mappings we've cached have changed.
629 */
630 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
631 TCGIOMMUNotifier *notifier;
549d4005
EA
632 Error *err = NULL;
633 int i, ret;
1f871c5e
PM
634
635 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 636 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e
PM
637 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
638 break;
639 }
640 }
641 if (i == cpu->iommu_notifiers->len) {
642 /* Not found, add a new entry at the end of the array */
643 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
5601be3b
PM
644 notifier = g_new0(TCGIOMMUNotifier, 1);
645 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
1f871c5e
PM
646
647 notifier->mr = mr;
648 notifier->iommu_idx = iommu_idx;
649 notifier->cpu = cpu;
650 /* Rather than trying to register interest in the specific part
651 * of the iommu's address space that we've accessed and then
652 * expand it later as subsequent accesses touch more of it, we
653 * just register interest in the whole thing, on the assumption
654 * that iommu reconfiguration will be rare.
655 */
656 iommu_notifier_init(&notifier->n,
657 tcg_iommu_unmap_notify,
658 IOMMU_NOTIFIER_UNMAP,
659 0,
660 HWADDR_MAX,
661 iommu_idx);
549d4005
EA
662 ret = memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
663 &err);
664 if (ret) {
665 error_report_err(err);
666 exit(1);
667 }
1f871c5e
PM
668 }
669
670 if (!notifier->active) {
671 notifier->active = true;
672 }
673}
674
675static void tcg_iommu_free_notifier_list(CPUState *cpu)
676{
677 /* Destroy the CPU's notifier list */
678 int i;
679 TCGIOMMUNotifier *notifier;
680
681 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 682 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e 683 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
5601be3b 684 g_free(notifier);
1f871c5e
PM
685 }
686 g_array_free(cpu->iommu_notifiers, true);
687}
688
79e2b9ae 689/* Called from RCU critical section */
90260c6c 690MemoryRegionSection *
d7898cda 691address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
1f871c5e
PM
692 hwaddr *xlat, hwaddr *plen,
693 MemTxAttrs attrs, int *prot)
90260c6c 694{
30951157 695 MemoryRegionSection *section;
1f871c5e
PM
696 IOMMUMemoryRegion *iommu_mr;
697 IOMMUMemoryRegionClass *imrc;
698 IOMMUTLBEntry iotlb;
699 int iommu_idx;
f35e44e7 700 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda 701
1f871c5e
PM
702 for (;;) {
703 section = address_space_translate_internal(d, addr, &addr, plen, false);
704
705 iommu_mr = memory_region_get_iommu(section->mr);
706 if (!iommu_mr) {
707 break;
708 }
709
710 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
711
712 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
713 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
714 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
715 * doesn't short-cut its translation table walk.
716 */
717 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
718 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
719 | (addr & iotlb.addr_mask));
720 /* Update the caller's prot bits to remove permissions the IOMMU
721 * is giving us a failure response for. If we get down to no
722 * permissions left at all we can give up now.
723 */
724 if (!(iotlb.perm & IOMMU_RO)) {
725 *prot &= ~(PAGE_READ | PAGE_EXEC);
726 }
727 if (!(iotlb.perm & IOMMU_WO)) {
728 *prot &= ~PAGE_WRITE;
729 }
730
731 if (!*prot) {
732 goto translate_fail;
733 }
734
735 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
736 }
30951157 737
3df9d748 738 assert(!memory_region_is_iommu(section->mr));
1f871c5e 739 *xlat = addr;
30951157 740 return section;
1f871c5e
PM
741
742translate_fail:
743 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
90260c6c 744}
5b6dd868 745#endif
fd6ce8f6 746
b170fce3 747#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
748
749static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 750{
259186a7 751 CPUState *cpu = opaque;
a513fe19 752
5b6dd868
BS
753 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
754 version_id is increased. */
259186a7 755 cpu->interrupt_request &= ~0x01;
d10eb08f 756 tlb_flush(cpu);
5b6dd868 757
15a356c4
PD
758 /* loadvm has just updated the content of RAM, bypassing the
759 * usual mechanisms that ensure we flush TBs for writes to
760 * memory we've translated code from. So we must flush all TBs,
761 * which will now be stale.
762 */
763 tb_flush(cpu);
764
5b6dd868 765 return 0;
a513fe19 766}
7501267e 767
6c3bff0e
PD
768static int cpu_common_pre_load(void *opaque)
769{
770 CPUState *cpu = opaque;
771
adee6424 772 cpu->exception_index = -1;
6c3bff0e
PD
773
774 return 0;
775}
776
777static bool cpu_common_exception_index_needed(void *opaque)
778{
779 CPUState *cpu = opaque;
780
adee6424 781 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
782}
783
784static const VMStateDescription vmstate_cpu_common_exception_index = {
785 .name = "cpu_common/exception_index",
786 .version_id = 1,
787 .minimum_version_id = 1,
5cd8cada 788 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
789 .fields = (VMStateField[]) {
790 VMSTATE_INT32(exception_index, CPUState),
791 VMSTATE_END_OF_LIST()
792 }
793};
794
bac05aa9
AS
795static bool cpu_common_crash_occurred_needed(void *opaque)
796{
797 CPUState *cpu = opaque;
798
799 return cpu->crash_occurred;
800}
801
802static const VMStateDescription vmstate_cpu_common_crash_occurred = {
803 .name = "cpu_common/crash_occurred",
804 .version_id = 1,
805 .minimum_version_id = 1,
806 .needed = cpu_common_crash_occurred_needed,
807 .fields = (VMStateField[]) {
808 VMSTATE_BOOL(crash_occurred, CPUState),
809 VMSTATE_END_OF_LIST()
810 }
811};
812
1a1562f5 813const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
814 .name = "cpu_common",
815 .version_id = 1,
816 .minimum_version_id = 1,
6c3bff0e 817 .pre_load = cpu_common_pre_load,
5b6dd868 818 .post_load = cpu_common_post_load,
35d08458 819 .fields = (VMStateField[]) {
259186a7
AF
820 VMSTATE_UINT32(halted, CPUState),
821 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 822 VMSTATE_END_OF_LIST()
6c3bff0e 823 },
5cd8cada
JQ
824 .subsections = (const VMStateDescription*[]) {
825 &vmstate_cpu_common_exception_index,
bac05aa9 826 &vmstate_cpu_common_crash_occurred,
5cd8cada 827 NULL
5b6dd868
BS
828 }
829};
1a1562f5 830
5b6dd868 831#endif
ea041c0e 832
38d8f5c8 833CPUState *qemu_get_cpu(int index)
ea041c0e 834{
bdc44640 835 CPUState *cpu;
ea041c0e 836
bdc44640 837 CPU_FOREACH(cpu) {
55e5c285 838 if (cpu->cpu_index == index) {
bdc44640 839 return cpu;
55e5c285 840 }
ea041c0e 841 }
5b6dd868 842
bdc44640 843 return NULL;
ea041c0e
FB
844}
845
09daed84 846#if !defined(CONFIG_USER_ONLY)
80ceb07a
PX
847void cpu_address_space_init(CPUState *cpu, int asidx,
848 const char *prefix, MemoryRegion *mr)
09daed84 849{
12ebc9a7 850 CPUAddressSpace *newas;
80ceb07a 851 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 852 char *as_name;
80ceb07a
PX
853
854 assert(mr);
87a621d8
PX
855 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
856 address_space_init(as, mr, as_name);
857 g_free(as_name);
12ebc9a7
PM
858
859 /* Target code should have set num_ases before calling us */
860 assert(asidx < cpu->num_ases);
861
56943e8c
PM
862 if (asidx == 0) {
863 /* address space 0 gets the convenience alias */
864 cpu->as = as;
865 }
866
12ebc9a7
PM
867 /* KVM cannot currently support multiple address spaces. */
868 assert(asidx == 0 || !kvm_enabled());
09daed84 869
12ebc9a7
PM
870 if (!cpu->cpu_ases) {
871 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 872 }
32857f4d 873
12ebc9a7
PM
874 newas = &cpu->cpu_ases[asidx];
875 newas->cpu = cpu;
876 newas->as = as;
56943e8c 877 if (tcg_enabled()) {
9458a9a1 878 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
12ebc9a7
PM
879 newas->tcg_as_listener.commit = tcg_commit;
880 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 881 }
09daed84 882}
651a5bc0
PM
883
884AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
885{
886 /* Return the AddressSpace corresponding to the specified index */
887 return cpu->cpu_ases[asidx].as;
888}
09daed84
EI
889#endif
890
7bbc124e 891void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 892{
9dfeca7c
BR
893 CPUClass *cc = CPU_GET_CLASS(cpu);
894
267f685b 895 cpu_list_remove(cpu);
9dfeca7c
BR
896
897 if (cc->vmsd != NULL) {
898 vmstate_unregister(NULL, cc->vmsd, cpu);
899 }
900 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
901 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
902 }
1f871c5e
PM
903#ifndef CONFIG_USER_ONLY
904 tcg_iommu_free_notifier_list(cpu);
905#endif
1c59eb39
BR
906}
907
c7e002c5
FZ
908Property cpu_common_props[] = {
909#ifndef CONFIG_USER_ONLY
910 /* Create a memory property for softmmu CPU object,
2e5b09fd 911 * so users can wire up its memory. (This can't go in hw/core/cpu.c
c7e002c5
FZ
912 * because that file is compiled only once for both user-mode
913 * and system builds.) The default if no link is set up is to use
914 * the system address space.
915 */
916 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
917 MemoryRegion *),
918#endif
919 DEFINE_PROP_END_OF_LIST(),
920};
921
39e329e3 922void cpu_exec_initfn(CPUState *cpu)
ea041c0e 923{
56943e8c 924 cpu->as = NULL;
12ebc9a7 925 cpu->num_ases = 0;
56943e8c 926
291135b5 927#ifndef CONFIG_USER_ONLY
291135b5 928 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
929 cpu->memory = system_memory;
930 object_ref(OBJECT(cpu->memory));
291135b5 931#endif
39e329e3
LV
932}
933
ce5b1bbf 934void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 935{
55c3ceef 936 CPUClass *cc = CPU_GET_CLASS(cpu);
2dda6354 937 static bool tcg_target_initialized;
291135b5 938
267f685b 939 cpu_list_add(cpu);
1bc7e522 940
2dda6354
EC
941 if (tcg_enabled() && !tcg_target_initialized) {
942 tcg_target_initialized = true;
55c3ceef
RH
943 cc->tcg_initialize();
944 }
5005e253 945 tlb_init(cpu);
55c3ceef 946
30865f31
EC
947 qemu_plugin_vcpu_init_hook(cpu);
948
1bc7e522 949#ifndef CONFIG_USER_ONLY
e0d47944 950 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 951 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 952 }
b170fce3 953 if (cc->vmsd != NULL) {
741da0d3 954 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 955 }
1f871c5e 956
5601be3b 957 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
741da0d3 958#endif
ea041c0e
FB
959}
960
c1c8cfe5 961const char *parse_cpu_option(const char *cpu_option)
2278b939
IM
962{
963 ObjectClass *oc;
964 CPUClass *cc;
965 gchar **model_pieces;
966 const char *cpu_type;
967
c1c8cfe5 968 model_pieces = g_strsplit(cpu_option, ",", 2);
5b863f3e
EH
969 if (!model_pieces[0]) {
970 error_report("-cpu option cannot be empty");
971 exit(1);
972 }
2278b939
IM
973
974 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
975 if (oc == NULL) {
976 error_report("unable to find CPU model '%s'", model_pieces[0]);
977 g_strfreev(model_pieces);
978 exit(EXIT_FAILURE);
979 }
980
981 cpu_type = object_class_get_name(oc);
982 cc = CPU_CLASS(oc);
983 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
984 g_strfreev(model_pieces);
985 return cpu_type;
986}
987
c40d4792 988#if defined(CONFIG_USER_ONLY)
8bca9a03 989void tb_invalidate_phys_addr(target_ulong addr)
1e7855a5 990{
406bc339 991 mmap_lock();
ce9f5e27 992 tb_invalidate_phys_page_range(addr, addr + 1);
406bc339
PK
993 mmap_unlock();
994}
8bca9a03
PB
995
996static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
997{
998 tb_invalidate_phys_addr(pc);
999}
406bc339 1000#else
8bca9a03
PB
1001void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1002{
1003 ram_addr_t ram_addr;
1004 MemoryRegion *mr;
1005 hwaddr l = 1;
1006
c40d4792
PB
1007 if (!tcg_enabled()) {
1008 return;
1009 }
1010
694ea274 1011 RCU_READ_LOCK_GUARD();
8bca9a03
PB
1012 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1013 if (!(memory_region_is_ram(mr)
1014 || memory_region_is_romd(mr))) {
8bca9a03
PB
1015 return;
1016 }
1017 ram_addr = memory_region_get_ram_addr(mr) + addr;
ce9f5e27 1018 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
8bca9a03
PB
1019}
1020
406bc339
PK
1021static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1022{
b55f54bc
MF
1023 /*
1024 * There may not be a virtual to physical translation for the pc
1025 * right now, but there may exist cached TB for this pc.
1026 * Flush the whole TB cache to force re-translation of such TBs.
1027 * This is heavyweight, but we're debugging anyway.
1028 */
1029 tb_flush(cpu);
1e7855a5 1030}
406bc339 1031#endif
d720b93d 1032
74841f04 1033#ifndef CONFIG_USER_ONLY
6658ffb8 1034/* Add a watchpoint. */
75a34036 1035int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1036 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1037{
c0ce998e 1038 CPUWatchpoint *wp;
6658ffb8 1039
05068c0d 1040 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 1041 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
1042 error_report("tried to set invalid watchpoint at %"
1043 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
1044 return -EINVAL;
1045 }
7267c094 1046 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1047
1048 wp->vaddr = addr;
05068c0d 1049 wp->len = len;
a1d1bb31
AL
1050 wp->flags = flags;
1051
2dc9f411 1052 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
1053 if (flags & BP_GDB) {
1054 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1055 } else {
1056 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1057 }
6658ffb8 1058
31b030d4 1059 tlb_flush_page(cpu, addr);
a1d1bb31
AL
1060
1061 if (watchpoint)
1062 *watchpoint = wp;
1063 return 0;
6658ffb8
PB
1064}
1065
a1d1bb31 1066/* Remove a specific watchpoint. */
75a34036 1067int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1068 int flags)
6658ffb8 1069{
a1d1bb31 1070 CPUWatchpoint *wp;
6658ffb8 1071
ff4700b0 1072 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1073 if (addr == wp->vaddr && len == wp->len
6e140f28 1074 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 1075 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
1076 return 0;
1077 }
1078 }
a1d1bb31 1079 return -ENOENT;
6658ffb8
PB
1080}
1081
a1d1bb31 1082/* Remove a specific watchpoint by reference. */
75a34036 1083void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 1084{
ff4700b0 1085 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 1086
31b030d4 1087 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 1088
7267c094 1089 g_free(watchpoint);
a1d1bb31
AL
1090}
1091
1092/* Remove all matching watchpoints. */
75a34036 1093void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1094{
c0ce998e 1095 CPUWatchpoint *wp, *next;
a1d1bb31 1096
ff4700b0 1097 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
1098 if (wp->flags & mask) {
1099 cpu_watchpoint_remove_by_ref(cpu, wp);
1100 }
c0ce998e 1101 }
7d03f82f 1102}
05068c0d
PM
1103
1104/* Return true if this watchpoint address matches the specified
1105 * access (ie the address range covered by the watchpoint overlaps
1106 * partially or completely with the address range covered by the
1107 * access).
1108 */
56ad8b00
RH
1109static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
1110 vaddr addr, vaddr len)
05068c0d
PM
1111{
1112 /* We know the lengths are non-zero, but a little caution is
1113 * required to avoid errors in the case where the range ends
1114 * exactly at the top of the address space and so addr + len
1115 * wraps round to zero.
1116 */
1117 vaddr wpend = wp->vaddr + wp->len - 1;
1118 vaddr addrend = addr + len - 1;
1119
1120 return !(addr > wpend || wp->vaddr > addrend);
1121}
1122
56ad8b00
RH
1123/* Return flags for watchpoints that match addr + prot. */
1124int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
1125{
1126 CPUWatchpoint *wp;
1127 int ret = 0;
1128
1129 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1130 if (watchpoint_address_matches(wp, addr, TARGET_PAGE_SIZE)) {
1131 ret |= wp->flags;
1132 }
1133 }
1134 return ret;
1135}
74841f04 1136#endif /* !CONFIG_USER_ONLY */
7d03f82f 1137
a1d1bb31 1138/* Add a breakpoint. */
b3310ab3 1139int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 1140 CPUBreakpoint **breakpoint)
4c3a88a2 1141{
c0ce998e 1142 CPUBreakpoint *bp;
3b46e624 1143
7267c094 1144 bp = g_malloc(sizeof(*bp));
4c3a88a2 1145
a1d1bb31
AL
1146 bp->pc = pc;
1147 bp->flags = flags;
1148
2dc9f411 1149 /* keep all GDB-injected breakpoints in front */
00b941e5 1150 if (flags & BP_GDB) {
f0c3c505 1151 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 1152 } else {
f0c3c505 1153 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 1154 }
3b46e624 1155
f0c3c505 1156 breakpoint_invalidate(cpu, pc);
a1d1bb31 1157
00b941e5 1158 if (breakpoint) {
a1d1bb31 1159 *breakpoint = bp;
00b941e5 1160 }
4c3a88a2 1161 return 0;
4c3a88a2
FB
1162}
1163
a1d1bb31 1164/* Remove a specific breakpoint. */
b3310ab3 1165int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 1166{
a1d1bb31
AL
1167 CPUBreakpoint *bp;
1168
f0c3c505 1169 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 1170 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 1171 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
1172 return 0;
1173 }
7d03f82f 1174 }
a1d1bb31 1175 return -ENOENT;
7d03f82f
EI
1176}
1177
a1d1bb31 1178/* Remove a specific breakpoint by reference. */
b3310ab3 1179void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 1180{
f0c3c505
AF
1181 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1182
1183 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 1184
7267c094 1185 g_free(breakpoint);
a1d1bb31
AL
1186}
1187
1188/* Remove all matching breakpoints. */
b3310ab3 1189void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1190{
c0ce998e 1191 CPUBreakpoint *bp, *next;
a1d1bb31 1192
f0c3c505 1193 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1194 if (bp->flags & mask) {
1195 cpu_breakpoint_remove_by_ref(cpu, bp);
1196 }
c0ce998e 1197 }
4c3a88a2
FB
1198}
1199
c33a346e
FB
1200/* enable or disable single step mode. EXCP_DEBUG is returned by the
1201 CPU loop after each instruction */
3825b28f 1202void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1203{
ed2803da
AF
1204 if (cpu->singlestep_enabled != enabled) {
1205 cpu->singlestep_enabled = enabled;
1206 if (kvm_enabled()) {
38e478ec 1207 kvm_update_guest_debug(cpu, 0);
ed2803da 1208 } else {
ccbb4d44 1209 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1210 /* XXX: only flush what is necessary */
bbd77c18 1211 tb_flush(cpu);
e22a25c9 1212 }
c33a346e 1213 }
c33a346e
FB
1214}
1215
a47dddd7 1216void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1217{
1218 va_list ap;
493ae1f0 1219 va_list ap2;
7501267e
FB
1220
1221 va_start(ap, fmt);
493ae1f0 1222 va_copy(ap2, ap);
7501267e
FB
1223 fprintf(stderr, "qemu: fatal: ");
1224 vfprintf(stderr, fmt, ap);
1225 fprintf(stderr, "\n");
90c84c56 1226 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1227 if (qemu_log_separate()) {
fc59d2d8 1228 FILE *logfile = qemu_log_lock();
93fcfe39
AL
1229 qemu_log("qemu: fatal: ");
1230 qemu_log_vprintf(fmt, ap2);
1231 qemu_log("\n");
a0762859 1232 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1233 qemu_log_flush();
fc59d2d8 1234 qemu_log_unlock(logfile);
93fcfe39 1235 qemu_log_close();
924edcae 1236 }
493ae1f0 1237 va_end(ap2);
f9373291 1238 va_end(ap);
7615936e 1239 replay_finish();
fd052bf6
RV
1240#if defined(CONFIG_USER_ONLY)
1241 {
1242 struct sigaction act;
1243 sigfillset(&act.sa_mask);
1244 act.sa_handler = SIG_DFL;
8347c185 1245 act.sa_flags = 0;
fd052bf6
RV
1246 sigaction(SIGABRT, &act, NULL);
1247 }
1248#endif
7501267e
FB
1249 abort();
1250}
1251
0124311e 1252#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1253/* Called from RCU critical section */
041603fe
PB
1254static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1255{
1256 RAMBlock *block;
1257
43771539 1258 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1259 if (block && addr - block->offset < block->max_length) {
68851b98 1260 return block;
041603fe 1261 }
99e15582 1262 RAMBLOCK_FOREACH(block) {
9b8424d5 1263 if (addr - block->offset < block->max_length) {
041603fe
PB
1264 goto found;
1265 }
1266 }
1267
1268 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1269 abort();
1270
1271found:
43771539
PB
1272 /* It is safe to write mru_block outside the iothread lock. This
1273 * is what happens:
1274 *
1275 * mru_block = xxx
1276 * rcu_read_unlock()
1277 * xxx removed from list
1278 * rcu_read_lock()
1279 * read mru_block
1280 * mru_block = NULL;
1281 * call_rcu(reclaim_ramblock, xxx);
1282 * rcu_read_unlock()
1283 *
1284 * atomic_rcu_set is not needed here. The block was already published
1285 * when it was placed into the list. Here we're just making an extra
1286 * copy of the pointer.
1287 */
041603fe
PB
1288 ram_list.mru_block = block;
1289 return block;
1290}
1291
a2f4d5be 1292static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1293{
9a13565d 1294 CPUState *cpu;
041603fe 1295 ram_addr_t start1;
a2f4d5be
JQ
1296 RAMBlock *block;
1297 ram_addr_t end;
1298
f28d0dfd 1299 assert(tcg_enabled());
a2f4d5be
JQ
1300 end = TARGET_PAGE_ALIGN(start + length);
1301 start &= TARGET_PAGE_MASK;
d24981d3 1302
694ea274 1303 RCU_READ_LOCK_GUARD();
041603fe
PB
1304 block = qemu_get_ram_block(start);
1305 assert(block == qemu_get_ram_block(end - 1));
1240be24 1306 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1307 CPU_FOREACH(cpu) {
1308 tlb_reset_dirty(cpu, start1, length);
1309 }
d24981d3
JQ
1310}
1311
5579c7f3 1312/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1313bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1314 ram_addr_t length,
1315 unsigned client)
1ccde1cb 1316{
5b82b703 1317 DirtyMemoryBlocks *blocks;
25aa6b37 1318 unsigned long end, page, start_page;
5b82b703 1319 bool dirty = false;
077874e0
PX
1320 RAMBlock *ramblock;
1321 uint64_t mr_offset, mr_size;
03eebc9e
SH
1322
1323 if (length == 0) {
1324 return false;
1325 }
f23db169 1326
03eebc9e 1327 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
25aa6b37
MB
1328 start_page = start >> TARGET_PAGE_BITS;
1329 page = start_page;
5b82b703 1330
694ea274
DDAG
1331 WITH_RCU_READ_LOCK_GUARD() {
1332 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1333 ramblock = qemu_get_ram_block(start);
1334 /* Range sanity check on the ramblock */
1335 assert(start >= ramblock->offset &&
1336 start + length <= ramblock->offset + ramblock->used_length);
5b82b703 1337
694ea274
DDAG
1338 while (page < end) {
1339 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1340 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1341 unsigned long num = MIN(end - page,
1342 DIRTY_MEMORY_BLOCK_SIZE - offset);
5b82b703 1343
694ea274
DDAG
1344 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1345 offset, num);
1346 page += num;
1347 }
5b82b703 1348
25aa6b37
MB
1349 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1350 mr_size = (end - start_page) << TARGET_PAGE_BITS;
694ea274 1351 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
5b82b703
SH
1352 }
1353
03eebc9e 1354 if (dirty && tcg_enabled()) {
a2f4d5be 1355 tlb_reset_dirty_range_all(start, length);
5579c7f3 1356 }
03eebc9e
SH
1357
1358 return dirty;
1ccde1cb
FB
1359}
1360
8deaf12c 1361DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
5dea4079 1362 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
8deaf12c
GH
1363{
1364 DirtyMemoryBlocks *blocks;
5dea4079 1365 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
8deaf12c
GH
1366 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1367 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1368 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1369 DirtyBitmapSnapshot *snap;
1370 unsigned long page, end, dest;
1371
1372 snap = g_malloc0(sizeof(*snap) +
1373 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1374 snap->start = first;
1375 snap->end = last;
1376
1377 page = first >> TARGET_PAGE_BITS;
1378 end = last >> TARGET_PAGE_BITS;
1379 dest = 0;
1380
694ea274
DDAG
1381 WITH_RCU_READ_LOCK_GUARD() {
1382 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
8deaf12c 1383
694ea274
DDAG
1384 while (page < end) {
1385 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1386 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1387 unsigned long num = MIN(end - page,
1388 DIRTY_MEMORY_BLOCK_SIZE - offset);
8deaf12c 1389
694ea274
DDAG
1390 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1391 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1392 offset >>= BITS_PER_LEVEL;
8deaf12c 1393
694ea274
DDAG
1394 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1395 blocks->blocks[idx] + offset,
1396 num);
1397 page += num;
1398 dest += num >> BITS_PER_LEVEL;
1399 }
8deaf12c
GH
1400 }
1401
8deaf12c
GH
1402 if (tcg_enabled()) {
1403 tlb_reset_dirty_range_all(start, length);
1404 }
1405
077874e0
PX
1406 memory_region_clear_dirty_bitmap(mr, offset, length);
1407
8deaf12c
GH
1408 return snap;
1409}
1410
1411bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1412 ram_addr_t start,
1413 ram_addr_t length)
1414{
1415 unsigned long page, end;
1416
1417 assert(start >= snap->start);
1418 assert(start + length <= snap->end);
1419
1420 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1421 page = (start - snap->start) >> TARGET_PAGE_BITS;
1422
1423 while (page < end) {
1424 if (test_bit(page, snap->dirty)) {
1425 return true;
1426 }
1427 page++;
1428 }
1429 return false;
1430}
1431
79e2b9ae 1432/* Called from RCU critical section */
bb0e627a 1433hwaddr memory_region_section_get_iotlb(CPUState *cpu,
8f5db641 1434 MemoryRegionSection *section)
e5548617 1435{
8f5db641
RH
1436 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1437 return section - d->map.sections;
e5548617 1438}
9fa3e853
FB
1439#endif /* defined(CONFIG_USER_ONLY) */
1440
e2eef170 1441#if !defined(CONFIG_USER_ONLY)
8da3ff18 1442
b797ab1a
WY
1443static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1444 uint16_t section);
16620684 1445static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1446
06329cce 1447static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
a2b257d6 1448 qemu_anon_ram_alloc;
91138037
MA
1449
1450/*
1451 * Set a custom physical guest memory alloator.
1452 * Accelerators with unusual needs may need this. Hopefully, we can
1453 * get rid of it eventually.
1454 */
06329cce 1455void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
91138037
MA
1456{
1457 phys_mem_alloc = alloc;
1458}
1459
53cb28cb
MA
1460static uint16_t phys_section_add(PhysPageMap *map,
1461 MemoryRegionSection *section)
5312bd8b 1462{
68f3f65b
PB
1463 /* The physical section number is ORed with a page-aligned
1464 * pointer to produce the iotlb entries. Thus it should
1465 * never overflow into the page-aligned value.
1466 */
53cb28cb 1467 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1468
53cb28cb
MA
1469 if (map->sections_nb == map->sections_nb_alloc) {
1470 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1471 map->sections = g_renew(MemoryRegionSection, map->sections,
1472 map->sections_nb_alloc);
5312bd8b 1473 }
53cb28cb 1474 map->sections[map->sections_nb] = *section;
dfde4e6e 1475 memory_region_ref(section->mr);
53cb28cb 1476 return map->sections_nb++;
5312bd8b
AK
1477}
1478
058bc4b5
PB
1479static void phys_section_destroy(MemoryRegion *mr)
1480{
55b4e80b
DS
1481 bool have_sub_page = mr->subpage;
1482
dfde4e6e
PB
1483 memory_region_unref(mr);
1484
55b4e80b 1485 if (have_sub_page) {
058bc4b5 1486 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1487 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1488 g_free(subpage);
1489 }
1490}
1491
6092666e 1492static void phys_sections_free(PhysPageMap *map)
5312bd8b 1493{
9affd6fc
PB
1494 while (map->sections_nb > 0) {
1495 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1496 phys_section_destroy(section->mr);
1497 }
9affd6fc
PB
1498 g_free(map->sections);
1499 g_free(map->nodes);
5312bd8b
AK
1500}
1501
9950322a 1502static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1503{
9950322a 1504 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1505 subpage_t *subpage;
a8170e5e 1506 hwaddr base = section->offset_within_address_space
0f0cb164 1507 & TARGET_PAGE_MASK;
003a0cf2 1508 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1509 MemoryRegionSection subsection = {
1510 .offset_within_address_space = base,
052e87b0 1511 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1512 };
a8170e5e 1513 hwaddr start, end;
0f0cb164 1514
f3705d53 1515 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1516
f3705d53 1517 if (!(existing->mr->subpage)) {
16620684
AK
1518 subpage = subpage_init(fv, base);
1519 subsection.fv = fv;
0f0cb164 1520 subsection.mr = &subpage->iomem;
ac1970fb 1521 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1522 phys_section_add(&d->map, &subsection));
0f0cb164 1523 } else {
f3705d53 1524 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1525 }
1526 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1527 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1528 subpage_register(subpage, start, end,
1529 phys_section_add(&d->map, section));
0f0cb164
AK
1530}
1531
1532
9950322a 1533static void register_multipage(FlatView *fv,
052e87b0 1534 MemoryRegionSection *section)
33417e70 1535{
9950322a 1536 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1537 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1538 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1539 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1540 TARGET_PAGE_BITS));
dd81124b 1541
733d5ef5
PB
1542 assert(num_pages);
1543 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1544}
1545
494d1997
WY
1546/*
1547 * The range in *section* may look like this:
1548 *
1549 * |s|PPPPPPP|s|
1550 *
1551 * where s stands for subpage and P for page.
1552 */
8629d3fc 1553void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1554{
494d1997 1555 MemoryRegionSection remain = *section;
052e87b0 1556 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1557
494d1997
WY
1558 /* register first subpage */
1559 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1560 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1561 - remain.offset_within_address_space;
733d5ef5 1562
494d1997 1563 MemoryRegionSection now = remain;
052e87b0 1564 now.size = int128_min(int128_make64(left), now.size);
9950322a 1565 register_subpage(fv, &now);
494d1997
WY
1566 if (int128_eq(remain.size, now.size)) {
1567 return;
1568 }
052e87b0
PB
1569 remain.size = int128_sub(remain.size, now.size);
1570 remain.offset_within_address_space += int128_get64(now.size);
1571 remain.offset_within_region += int128_get64(now.size);
494d1997
WY
1572 }
1573
1574 /* register whole pages */
1575 if (int128_ge(remain.size, page_size)) {
1576 MemoryRegionSection now = remain;
1577 now.size = int128_and(now.size, int128_neg(page_size));
1578 register_multipage(fv, &now);
1579 if (int128_eq(remain.size, now.size)) {
1580 return;
69b67646 1581 }
494d1997
WY
1582 remain.size = int128_sub(remain.size, now.size);
1583 remain.offset_within_address_space += int128_get64(now.size);
1584 remain.offset_within_region += int128_get64(now.size);
0f0cb164 1585 }
494d1997
WY
1586
1587 /* register last subpage */
1588 register_subpage(fv, &remain);
0f0cb164
AK
1589}
1590
62a2744c
SY
1591void qemu_flush_coalesced_mmio_buffer(void)
1592{
1593 if (kvm_enabled())
1594 kvm_flush_coalesced_mmio_buffer();
1595}
1596
b2a8658e
UD
1597void qemu_mutex_lock_ramlist(void)
1598{
1599 qemu_mutex_lock(&ram_list.mutex);
1600}
1601
1602void qemu_mutex_unlock_ramlist(void)
1603{
1604 qemu_mutex_unlock(&ram_list.mutex);
1605}
1606
be9b23c4
PX
1607void ram_block_dump(Monitor *mon)
1608{
1609 RAMBlock *block;
1610 char *psize;
1611
694ea274 1612 RCU_READ_LOCK_GUARD();
be9b23c4
PX
1613 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1614 "Block Name", "PSize", "Offset", "Used", "Total");
1615 RAMBLOCK_FOREACH(block) {
1616 psize = size_to_str(block->page_size);
1617 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1618 " 0x%016" PRIx64 "\n", block->idstr, psize,
1619 (uint64_t)block->offset,
1620 (uint64_t)block->used_length,
1621 (uint64_t)block->max_length);
1622 g_free(psize);
1623 }
be9b23c4
PX
1624}
1625
9c607668
AK
1626#ifdef __linux__
1627/*
1628 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1629 * may or may not name the same files / on the same filesystem now as
1630 * when we actually open and map them. Iterate over the file
1631 * descriptors instead, and use qemu_fd_getpagesize().
1632 */
905b7ee4 1633static int find_min_backend_pagesize(Object *obj, void *opaque)
9c607668 1634{
9c607668
AK
1635 long *hpsize_min = opaque;
1636
1637 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
7d5489e6
DG
1638 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1639 long hpsize = host_memory_backend_pagesize(backend);
2b108085 1640
7d5489e6 1641 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
0de6e2a3 1642 *hpsize_min = hpsize;
9c607668
AK
1643 }
1644 }
1645
1646 return 0;
1647}
1648
905b7ee4
DH
1649static int find_max_backend_pagesize(Object *obj, void *opaque)
1650{
1651 long *hpsize_max = opaque;
1652
1653 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1654 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1655 long hpsize = host_memory_backend_pagesize(backend);
1656
1657 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1658 *hpsize_max = hpsize;
1659 }
1660 }
1661
1662 return 0;
1663}
1664
1665/*
1666 * TODO: We assume right now that all mapped host memory backends are
1667 * used as RAM, however some might be used for different purposes.
1668 */
1669long qemu_minrampagesize(void)
9c607668
AK
1670{
1671 long hpsize = LONG_MAX;
ad1172d8 1672 Object *memdev_root = object_resolve_path("/objects", NULL);
9c607668 1673
ad1172d8 1674 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
9c607668
AK
1675 return hpsize;
1676}
905b7ee4
DH
1677
1678long qemu_maxrampagesize(void)
1679{
ad1172d8 1680 long pagesize = 0;
905b7ee4
DH
1681 Object *memdev_root = object_resolve_path("/objects", NULL);
1682
ad1172d8 1683 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
905b7ee4
DH
1684 return pagesize;
1685}
9c607668 1686#else
905b7ee4
DH
1687long qemu_minrampagesize(void)
1688{
038adc2f 1689 return qemu_real_host_page_size;
905b7ee4
DH
1690}
1691long qemu_maxrampagesize(void)
9c607668 1692{
038adc2f 1693 return qemu_real_host_page_size;
9c607668
AK
1694}
1695#endif
1696
d5dbde46 1697#ifdef CONFIG_POSIX
d6af99c9
HZ
1698static int64_t get_file_size(int fd)
1699{
72d41eb4
SH
1700 int64_t size;
1701#if defined(__linux__)
1702 struct stat st;
1703
1704 if (fstat(fd, &st) < 0) {
1705 return -errno;
1706 }
1707
1708 /* Special handling for devdax character devices */
1709 if (S_ISCHR(st.st_mode)) {
1710 g_autofree char *subsystem_path = NULL;
1711 g_autofree char *subsystem = NULL;
1712
1713 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1714 major(st.st_rdev), minor(st.st_rdev));
1715 subsystem = g_file_read_link(subsystem_path, NULL);
1716
1717 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1718 g_autofree char *size_path = NULL;
1719 g_autofree char *size_str = NULL;
1720
1721 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1722 major(st.st_rdev), minor(st.st_rdev));
1723
1724 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1725 return g_ascii_strtoll(size_str, NULL, 0);
1726 }
1727 }
1728 }
1729#endif /* defined(__linux__) */
1730
1731 /* st.st_size may be zero for special files yet lseek(2) works */
1732 size = lseek(fd, 0, SEEK_END);
d6af99c9
HZ
1733 if (size < 0) {
1734 return -errno;
1735 }
1736 return size;
1737}
1738
8d37b030
MAL
1739static int file_ram_open(const char *path,
1740 const char *region_name,
1741 bool *created,
1742 Error **errp)
c902760f
MT
1743{
1744 char *filename;
8ca761f6
PF
1745 char *sanitized_name;
1746 char *c;
5c3ece79 1747 int fd = -1;
c902760f 1748
8d37b030 1749 *created = false;
fd97fd44
MA
1750 for (;;) {
1751 fd = open(path, O_RDWR);
1752 if (fd >= 0) {
1753 /* @path names an existing file, use it */
1754 break;
8d31d6b6 1755 }
fd97fd44
MA
1756 if (errno == ENOENT) {
1757 /* @path names a file that doesn't exist, create it */
1758 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1759 if (fd >= 0) {
8d37b030 1760 *created = true;
fd97fd44
MA
1761 break;
1762 }
1763 } else if (errno == EISDIR) {
1764 /* @path names a directory, create a file there */
1765 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1766 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1767 for (c = sanitized_name; *c != '\0'; c++) {
1768 if (*c == '/') {
1769 *c = '_';
1770 }
1771 }
8ca761f6 1772
fd97fd44
MA
1773 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1774 sanitized_name);
1775 g_free(sanitized_name);
8d31d6b6 1776
fd97fd44
MA
1777 fd = mkstemp(filename);
1778 if (fd >= 0) {
1779 unlink(filename);
1780 g_free(filename);
1781 break;
1782 }
1783 g_free(filename);
8d31d6b6 1784 }
fd97fd44
MA
1785 if (errno != EEXIST && errno != EINTR) {
1786 error_setg_errno(errp, errno,
1787 "can't open backing store %s for guest RAM",
1788 path);
8d37b030 1789 return -1;
fd97fd44
MA
1790 }
1791 /*
1792 * Try again on EINTR and EEXIST. The latter happens when
1793 * something else creates the file between our two open().
1794 */
8d31d6b6 1795 }
c902760f 1796
8d37b030
MAL
1797 return fd;
1798}
1799
1800static void *file_ram_alloc(RAMBlock *block,
1801 ram_addr_t memory,
1802 int fd,
1803 bool truncate,
1804 Error **errp)
1805{
1806 void *area;
1807
863e9621 1808 block->page_size = qemu_fd_getpagesize(fd);
98376843
HZ
1809 if (block->mr->align % block->page_size) {
1810 error_setg(errp, "alignment 0x%" PRIx64
1811 " must be multiples of page size 0x%zx",
1812 block->mr->align, block->page_size);
1813 return NULL;
61362b71
DH
1814 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1815 error_setg(errp, "alignment 0x%" PRIx64
1816 " must be a power of two", block->mr->align);
1817 return NULL;
98376843
HZ
1818 }
1819 block->mr->align = MAX(block->page_size, block->mr->align);
8360668e
HZ
1820#if defined(__s390x__)
1821 if (kvm_enabled()) {
1822 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1823 }
1824#endif
fd97fd44 1825
863e9621 1826 if (memory < block->page_size) {
fd97fd44 1827 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1828 "or larger than page size 0x%zx",
1829 memory, block->page_size);
8d37b030 1830 return NULL;
1775f111
HZ
1831 }
1832
863e9621 1833 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1834
1835 /*
1836 * ftruncate is not supported by hugetlbfs in older
1837 * hosts, so don't bother bailing out on errors.
1838 * If anything goes wrong with it under other filesystems,
1839 * mmap will fail.
d6af99c9
HZ
1840 *
1841 * Do not truncate the non-empty backend file to avoid corrupting
1842 * the existing data in the file. Disabling shrinking is not
1843 * enough. For example, the current vNVDIMM implementation stores
1844 * the guest NVDIMM labels at the end of the backend file. If the
1845 * backend file is later extended, QEMU will not be able to find
1846 * those labels. Therefore, extending the non-empty backend file
1847 * is disabled as well.
c902760f 1848 */
8d37b030 1849 if (truncate && ftruncate(fd, memory)) {
9742bf26 1850 perror("ftruncate");
7f56e740 1851 }
c902760f 1852
d2f39add 1853 area = qemu_ram_mmap(fd, memory, block->mr->align,
2ac0f162 1854 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
c902760f 1855 if (area == MAP_FAILED) {
7f56e740 1856 error_setg_errno(errp, errno,
fd97fd44 1857 "unable to map backing store for guest RAM");
8d37b030 1858 return NULL;
c902760f 1859 }
ef36fa14 1860
04b16653 1861 block->fd = fd;
c902760f
MT
1862 return area;
1863}
1864#endif
1865
154cc9ea
DDAG
1866/* Allocate space within the ram_addr_t space that governs the
1867 * dirty bitmaps.
1868 * Called with the ramlist lock held.
1869 */
d17b5288 1870static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1871{
1872 RAMBlock *block, *next_block;
3e837b2c 1873 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1874
49cd9ac6
SH
1875 assert(size != 0); /* it would hand out same offset multiple times */
1876
0dc3f44a 1877 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1878 return 0;
0d53d9fe 1879 }
04b16653 1880
99e15582 1881 RAMBLOCK_FOREACH(block) {
154cc9ea 1882 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1883
801110ab
DDAG
1884 /* Align blocks to start on a 'long' in the bitmap
1885 * which makes the bitmap sync'ing take the fast path.
1886 */
154cc9ea 1887 candidate = block->offset + block->max_length;
801110ab 1888 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1889
154cc9ea
DDAG
1890 /* Search for the closest following block
1891 * and find the gap.
1892 */
99e15582 1893 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1894 if (next_block->offset >= candidate) {
04b16653
AW
1895 next = MIN(next, next_block->offset);
1896 }
1897 }
154cc9ea
DDAG
1898
1899 /* If it fits remember our place and remember the size
1900 * of gap, but keep going so that we might find a smaller
1901 * gap to fill so avoiding fragmentation.
1902 */
1903 if (next - candidate >= size && next - candidate < mingap) {
1904 offset = candidate;
1905 mingap = next - candidate;
04b16653 1906 }
154cc9ea
DDAG
1907
1908 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 1909 }
3e837b2c
AW
1910
1911 if (offset == RAM_ADDR_MAX) {
1912 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1913 (uint64_t)size);
1914 abort();
1915 }
1916
154cc9ea
DDAG
1917 trace_find_ram_offset(size, offset);
1918
04b16653
AW
1919 return offset;
1920}
1921
c136180c 1922static unsigned long last_ram_page(void)
d17b5288
AW
1923{
1924 RAMBlock *block;
1925 ram_addr_t last = 0;
1926
694ea274 1927 RCU_READ_LOCK_GUARD();
99e15582 1928 RAMBLOCK_FOREACH(block) {
62be4e3a 1929 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1930 }
b8c48993 1931 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1932}
1933
ddb97f1d
JB
1934static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1935{
1936 int ret;
ddb97f1d
JB
1937
1938 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1939 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1940 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1941 if (ret) {
1942 perror("qemu_madvise");
1943 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1944 "but dump_guest_core=off specified\n");
1945 }
1946 }
1947}
1948
422148d3
DDAG
1949const char *qemu_ram_get_idstr(RAMBlock *rb)
1950{
1951 return rb->idstr;
1952}
1953
754cb9c0
YK
1954void *qemu_ram_get_host_addr(RAMBlock *rb)
1955{
1956 return rb->host;
1957}
1958
1959ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1960{
1961 return rb->offset;
1962}
1963
1964ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1965{
1966 return rb->used_length;
1967}
1968
463a4ac2
DDAG
1969bool qemu_ram_is_shared(RAMBlock *rb)
1970{
1971 return rb->flags & RAM_SHARED;
1972}
1973
2ce16640
DDAG
1974/* Note: Only set at the start of postcopy */
1975bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1976{
1977 return rb->flags & RAM_UF_ZEROPAGE;
1978}
1979
1980void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1981{
1982 rb->flags |= RAM_UF_ZEROPAGE;
1983}
1984
b895de50
CLG
1985bool qemu_ram_is_migratable(RAMBlock *rb)
1986{
1987 return rb->flags & RAM_MIGRATABLE;
1988}
1989
1990void qemu_ram_set_migratable(RAMBlock *rb)
1991{
1992 rb->flags |= RAM_MIGRATABLE;
1993}
1994
1995void qemu_ram_unset_migratable(RAMBlock *rb)
1996{
1997 rb->flags &= ~RAM_MIGRATABLE;
1998}
1999
ae3a7047 2000/* Called with iothread lock held. */
fa53a0e5 2001void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 2002{
fa53a0e5 2003 RAMBlock *block;
20cfe881 2004
c5705a77
AK
2005 assert(new_block);
2006 assert(!new_block->idstr[0]);
84b89d78 2007
09e5ab63
AL
2008 if (dev) {
2009 char *id = qdev_get_dev_path(dev);
84b89d78
CM
2010 if (id) {
2011 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2012 g_free(id);
84b89d78
CM
2013 }
2014 }
2015 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2016
694ea274 2017 RCU_READ_LOCK_GUARD();
99e15582 2018 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
2019 if (block != new_block &&
2020 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
2021 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2022 new_block->idstr);
2023 abort();
2024 }
2025 }
c5705a77
AK
2026}
2027
ae3a7047 2028/* Called with iothread lock held. */
fa53a0e5 2029void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 2030{
ae3a7047
MD
2031 /* FIXME: arch_init.c assumes that this is not called throughout
2032 * migration. Ignore the problem since hot-unplug during migration
2033 * does not work anyway.
2034 */
20cfe881
HT
2035 if (block) {
2036 memset(block->idstr, 0, sizeof(block->idstr));
2037 }
2038}
2039
863e9621
DDAG
2040size_t qemu_ram_pagesize(RAMBlock *rb)
2041{
2042 return rb->page_size;
2043}
2044
67f11b5c
DDAG
2045/* Returns the largest size of page in use */
2046size_t qemu_ram_pagesize_largest(void)
2047{
2048 RAMBlock *block;
2049 size_t largest = 0;
2050
99e15582 2051 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
2052 largest = MAX(largest, qemu_ram_pagesize(block));
2053 }
2054
2055 return largest;
2056}
2057
8490fc78
LC
2058static int memory_try_enable_merging(void *addr, size_t len)
2059{
75cc7f01 2060 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
2061 /* disabled by the user */
2062 return 0;
2063 }
2064
2065 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2066}
2067
62be4e3a
MT
2068/* Only legal before guest might have detected the memory size: e.g. on
2069 * incoming migration, or right after reset.
2070 *
2071 * As memory core doesn't know how is memory accessed, it is up to
2072 * resize callback to update device state and/or add assertions to detect
2073 * misuse, if necessary.
2074 */
fa53a0e5 2075int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 2076{
62be4e3a
MT
2077 assert(block);
2078
4ed023ce 2079 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 2080
62be4e3a
MT
2081 if (block->used_length == newsize) {
2082 return 0;
2083 }
2084
2085 if (!(block->flags & RAM_RESIZEABLE)) {
2086 error_setg_errno(errp, EINVAL,
2087 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2088 " in != 0x" RAM_ADDR_FMT, block->idstr,
2089 newsize, block->used_length);
2090 return -EINVAL;
2091 }
2092
2093 if (block->max_length < newsize) {
2094 error_setg_errno(errp, EINVAL,
2095 "Length too large: %s: 0x" RAM_ADDR_FMT
2096 " > 0x" RAM_ADDR_FMT, block->idstr,
2097 newsize, block->max_length);
2098 return -EINVAL;
2099 }
2100
2101 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2102 block->used_length = newsize;
58d2707e
PB
2103 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2104 DIRTY_CLIENTS_ALL);
62be4e3a
MT
2105 memory_region_set_size(block->mr, newsize);
2106 if (block->resized) {
2107 block->resized(block->idstr, newsize, block->host);
2108 }
2109 return 0;
2110}
2111
61c490e2
BM
2112/*
2113 * Trigger sync on the given ram block for range [start, start + length]
2114 * with the backing store if one is available.
2115 * Otherwise no-op.
2116 * @Note: this is supposed to be a synchronous op.
2117 */
2118void qemu_ram_writeback(RAMBlock *block, ram_addr_t start, ram_addr_t length)
2119{
61c490e2
BM
2120 /* The requested range should fit in within the block range */
2121 g_assert((start + length) <= block->used_length);
2122
2123#ifdef CONFIG_LIBPMEM
2124 /* The lack of support for pmem should not block the sync */
2125 if (ramblock_is_pmem(block)) {
5d4c9549 2126 void *addr = ramblock_ptr(block, start);
61c490e2
BM
2127 pmem_persist(addr, length);
2128 return;
2129 }
2130#endif
2131 if (block->fd >= 0) {
2132 /**
2133 * Case there is no support for PMEM or the memory has not been
2134 * specified as persistent (or is not one) - use the msync.
2135 * Less optimal but still achieves the same goal
2136 */
5d4c9549 2137 void *addr = ramblock_ptr(block, start);
61c490e2
BM
2138 if (qemu_msync(addr, length, block->fd)) {
2139 warn_report("%s: failed to sync memory range: start: "
2140 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
2141 __func__, start, length);
2142 }
2143 }
2144}
2145
5b82b703
SH
2146/* Called with ram_list.mutex held */
2147static void dirty_memory_extend(ram_addr_t old_ram_size,
2148 ram_addr_t new_ram_size)
2149{
2150 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2151 DIRTY_MEMORY_BLOCK_SIZE);
2152 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2153 DIRTY_MEMORY_BLOCK_SIZE);
2154 int i;
2155
2156 /* Only need to extend if block count increased */
2157 if (new_num_blocks <= old_num_blocks) {
2158 return;
2159 }
2160
2161 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2162 DirtyMemoryBlocks *old_blocks;
2163 DirtyMemoryBlocks *new_blocks;
2164 int j;
2165
2166 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2167 new_blocks = g_malloc(sizeof(*new_blocks) +
2168 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2169
2170 if (old_num_blocks) {
2171 memcpy(new_blocks->blocks, old_blocks->blocks,
2172 old_num_blocks * sizeof(old_blocks->blocks[0]));
2173 }
2174
2175 for (j = old_num_blocks; j < new_num_blocks; j++) {
2176 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2177 }
2178
2179 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2180
2181 if (old_blocks) {
2182 g_free_rcu(old_blocks, rcu);
2183 }
2184 }
2185}
2186
06329cce 2187static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
c5705a77 2188{
e1c57ab8 2189 RAMBlock *block;
0d53d9fe 2190 RAMBlock *last_block = NULL;
2152f5ca 2191 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 2192 Error *err = NULL;
2152f5ca 2193
b8c48993 2194 old_ram_size = last_ram_page();
c5705a77 2195
b2a8658e 2196 qemu_mutex_lock_ramlist();
9b8424d5 2197 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
2198
2199 if (!new_block->host) {
2200 if (xen_enabled()) {
9b8424d5 2201 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
2202 new_block->mr, &err);
2203 if (err) {
2204 error_propagate(errp, err);
2205 qemu_mutex_unlock_ramlist();
39c350ee 2206 return;
37aa7a0e 2207 }
e1c57ab8 2208 } else {
9b8424d5 2209 new_block->host = phys_mem_alloc(new_block->max_length,
06329cce 2210 &new_block->mr->align, shared);
39228250 2211 if (!new_block->host) {
ef701d7b
HT
2212 error_setg_errno(errp, errno,
2213 "cannot set up guest memory '%s'",
2214 memory_region_name(new_block->mr));
2215 qemu_mutex_unlock_ramlist();
39c350ee 2216 return;
39228250 2217 }
9b8424d5 2218 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 2219 }
c902760f 2220 }
94a6b54f 2221
dd631697
LZ
2222 new_ram_size = MAX(old_ram_size,
2223 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2224 if (new_ram_size > old_ram_size) {
5b82b703 2225 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 2226 }
0d53d9fe
MD
2227 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2228 * QLIST (which has an RCU-friendly variant) does not have insertion at
2229 * tail, so save the last element in last_block.
2230 */
99e15582 2231 RAMBLOCK_FOREACH(block) {
0d53d9fe 2232 last_block = block;
9b8424d5 2233 if (block->max_length < new_block->max_length) {
abb26d63
PB
2234 break;
2235 }
2236 }
2237 if (block) {
0dc3f44a 2238 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 2239 } else if (last_block) {
0dc3f44a 2240 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 2241 } else { /* list is empty */
0dc3f44a 2242 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 2243 }
0d6d3c87 2244 ram_list.mru_block = NULL;
94a6b54f 2245
0dc3f44a
MD
2246 /* Write list before version */
2247 smp_wmb();
f798b07f 2248 ram_list.version++;
b2a8658e 2249 qemu_mutex_unlock_ramlist();
f798b07f 2250
9b8424d5 2251 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
2252 new_block->used_length,
2253 DIRTY_CLIENTS_ALL);
94a6b54f 2254
a904c911
PB
2255 if (new_block->host) {
2256 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2257 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
a028edea
AB
2258 /*
2259 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2260 * Configure it unless the machine is a qtest server, in which case
2261 * KVM is not used and it may be forked (eg for fuzzing purposes).
2262 */
2263 if (!qtest_enabled()) {
2264 qemu_madvise(new_block->host, new_block->max_length,
2265 QEMU_MADV_DONTFORK);
2266 }
0987d735 2267 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 2268 }
94a6b54f 2269}
e9a1ab19 2270
d5dbde46 2271#ifdef CONFIG_POSIX
38b3362d 2272RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2273 uint32_t ram_flags, int fd,
38b3362d 2274 Error **errp)
e1c57ab8
PB
2275{
2276 RAMBlock *new_block;
ef701d7b 2277 Error *local_err = NULL;
8d37b030 2278 int64_t file_size;
e1c57ab8 2279
a4de8552
JH
2280 /* Just support these ram flags by now. */
2281 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2282
e1c57ab8 2283 if (xen_enabled()) {
7f56e740 2284 error_setg(errp, "-mem-path not supported with Xen");
528f46af 2285 return NULL;
e1c57ab8
PB
2286 }
2287
e45e7ae2
MAL
2288 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2289 error_setg(errp,
2290 "host lacks kvm mmu notifiers, -mem-path unsupported");
2291 return NULL;
2292 }
2293
e1c57ab8
PB
2294 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2295 /*
2296 * file_ram_alloc() needs to allocate just like
2297 * phys_mem_alloc, but we haven't bothered to provide
2298 * a hook there.
2299 */
7f56e740
PB
2300 error_setg(errp,
2301 "-mem-path not supported with this accelerator");
528f46af 2302 return NULL;
e1c57ab8
PB
2303 }
2304
4ed023ce 2305 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2306 file_size = get_file_size(fd);
2307 if (file_size > 0 && file_size < size) {
c001c3b3 2308 error_setg(errp, "backing store size 0x%" PRIx64
8d37b030 2309 " does not match 'size' option 0x" RAM_ADDR_FMT,
c001c3b3 2310 file_size, size);
8d37b030
MAL
2311 return NULL;
2312 }
2313
e1c57ab8
PB
2314 new_block = g_malloc0(sizeof(*new_block));
2315 new_block->mr = mr;
9b8424d5
MT
2316 new_block->used_length = size;
2317 new_block->max_length = size;
cbfc0171 2318 new_block->flags = ram_flags;
8d37b030 2319 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2320 if (!new_block->host) {
2321 g_free(new_block);
528f46af 2322 return NULL;
7f56e740
PB
2323 }
2324
cbfc0171 2325 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
ef701d7b
HT
2326 if (local_err) {
2327 g_free(new_block);
2328 error_propagate(errp, local_err);
528f46af 2329 return NULL;
ef701d7b 2330 }
528f46af 2331 return new_block;
38b3362d
MAL
2332
2333}
2334
2335
2336RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2337 uint32_t ram_flags, const char *mem_path,
38b3362d
MAL
2338 Error **errp)
2339{
2340 int fd;
2341 bool created;
2342 RAMBlock *block;
2343
2344 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2345 if (fd < 0) {
2346 return NULL;
2347 }
2348
cbfc0171 2349 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
38b3362d
MAL
2350 if (!block) {
2351 if (created) {
2352 unlink(mem_path);
2353 }
2354 close(fd);
2355 return NULL;
2356 }
2357
2358 return block;
e1c57ab8 2359}
0b183fc8 2360#endif
e1c57ab8 2361
62be4e3a 2362static
528f46af
FZ
2363RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2364 void (*resized)(const char*,
2365 uint64_t length,
2366 void *host),
06329cce 2367 void *host, bool resizeable, bool share,
528f46af 2368 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2369{
2370 RAMBlock *new_block;
ef701d7b 2371 Error *local_err = NULL;
e1c57ab8 2372
4ed023ce
DDAG
2373 size = HOST_PAGE_ALIGN(size);
2374 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2375 new_block = g_malloc0(sizeof(*new_block));
2376 new_block->mr = mr;
62be4e3a 2377 new_block->resized = resized;
9b8424d5
MT
2378 new_block->used_length = size;
2379 new_block->max_length = max_size;
62be4e3a 2380 assert(max_size >= size);
e1c57ab8 2381 new_block->fd = -1;
038adc2f 2382 new_block->page_size = qemu_real_host_page_size;
e1c57ab8
PB
2383 new_block->host = host;
2384 if (host) {
7bd4f430 2385 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2386 }
62be4e3a
MT
2387 if (resizeable) {
2388 new_block->flags |= RAM_RESIZEABLE;
2389 }
06329cce 2390 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2391 if (local_err) {
2392 g_free(new_block);
2393 error_propagate(errp, local_err);
528f46af 2394 return NULL;
ef701d7b 2395 }
528f46af 2396 return new_block;
e1c57ab8
PB
2397}
2398
528f46af 2399RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2400 MemoryRegion *mr, Error **errp)
2401{
06329cce
MA
2402 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2403 false, mr, errp);
62be4e3a
MT
2404}
2405
06329cce
MA
2406RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2407 MemoryRegion *mr, Error **errp)
6977dfe6 2408{
06329cce
MA
2409 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2410 share, mr, errp);
62be4e3a
MT
2411}
2412
528f46af 2413RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2414 void (*resized)(const char*,
2415 uint64_t length,
2416 void *host),
2417 MemoryRegion *mr, Error **errp)
2418{
06329cce
MA
2419 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2420 false, mr, errp);
6977dfe6
YT
2421}
2422
43771539
PB
2423static void reclaim_ramblock(RAMBlock *block)
2424{
2425 if (block->flags & RAM_PREALLOC) {
2426 ;
2427 } else if (xen_enabled()) {
2428 xen_invalidate_map_cache_entry(block->host);
2429#ifndef _WIN32
2430 } else if (block->fd >= 0) {
53adb9d4 2431 qemu_ram_munmap(block->fd, block->host, block->max_length);
43771539
PB
2432 close(block->fd);
2433#endif
2434 } else {
2435 qemu_anon_ram_free(block->host, block->max_length);
2436 }
2437 g_free(block);
2438}
2439
f1060c55 2440void qemu_ram_free(RAMBlock *block)
e9a1ab19 2441{
85bc2a15
MAL
2442 if (!block) {
2443 return;
2444 }
2445
0987d735
PB
2446 if (block->host) {
2447 ram_block_notify_remove(block->host, block->max_length);
2448 }
2449
b2a8658e 2450 qemu_mutex_lock_ramlist();
f1060c55
FZ
2451 QLIST_REMOVE_RCU(block, next);
2452 ram_list.mru_block = NULL;
2453 /* Write list before version */
2454 smp_wmb();
2455 ram_list.version++;
2456 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2457 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2458}
2459
cd19cfa2
HY
2460#ifndef _WIN32
2461void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2462{
2463 RAMBlock *block;
2464 ram_addr_t offset;
2465 int flags;
2466 void *area, *vaddr;
2467
99e15582 2468 RAMBLOCK_FOREACH(block) {
cd19cfa2 2469 offset = addr - block->offset;
9b8424d5 2470 if (offset < block->max_length) {
1240be24 2471 vaddr = ramblock_ptr(block, offset);
7bd4f430 2472 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2473 ;
dfeaf2ab
MA
2474 } else if (xen_enabled()) {
2475 abort();
cd19cfa2
HY
2476 } else {
2477 flags = MAP_FIXED;
3435f395 2478 if (block->fd >= 0) {
dbcb8981
PB
2479 flags |= (block->flags & RAM_SHARED ?
2480 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2481 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2482 flags, block->fd, offset);
cd19cfa2 2483 } else {
2eb9fbaa
MA
2484 /*
2485 * Remap needs to match alloc. Accelerators that
2486 * set phys_mem_alloc never remap. If they did,
2487 * we'd need a remap hook here.
2488 */
2489 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2490
cd19cfa2
HY
2491 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2492 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2493 flags, -1, 0);
cd19cfa2
HY
2494 }
2495 if (area != vaddr) {
493d89bf
AF
2496 error_report("Could not remap addr: "
2497 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2498 length, addr);
cd19cfa2
HY
2499 exit(1);
2500 }
8490fc78 2501 memory_try_enable_merging(vaddr, length);
ddb97f1d 2502 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2503 }
cd19cfa2
HY
2504 }
2505 }
2506}
2507#endif /* !_WIN32 */
2508
1b5ec234 2509/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2510 * This should not be used for general purpose DMA. Use address_space_map
2511 * or address_space_rw instead. For local memory (e.g. video ram) that the
2512 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2513 *
49b24afc 2514 * Called within RCU critical section.
1b5ec234 2515 */
0878d0e1 2516void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2517{
3655cb9c
GA
2518 RAMBlock *block = ram_block;
2519
2520 if (block == NULL) {
2521 block = qemu_get_ram_block(addr);
0878d0e1 2522 addr -= block->offset;
3655cb9c 2523 }
ae3a7047
MD
2524
2525 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2526 /* We need to check if the requested address is in the RAM
2527 * because we don't want to map the entire memory in QEMU.
2528 * In that case just map until the end of the page.
2529 */
2530 if (block->offset == 0) {
1ff7c598 2531 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2532 }
ae3a7047 2533
1ff7c598 2534 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2535 }
0878d0e1 2536 return ramblock_ptr(block, addr);
dc828ca1
PB
2537}
2538
0878d0e1 2539/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2540 * but takes a size argument.
0dc3f44a 2541 *
e81bcda5 2542 * Called within RCU critical section.
ae3a7047 2543 */
3655cb9c 2544static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2545 hwaddr *size, bool lock)
38bee5dc 2546{
3655cb9c 2547 RAMBlock *block = ram_block;
8ab934f9
SS
2548 if (*size == 0) {
2549 return NULL;
2550 }
e81bcda5 2551
3655cb9c
GA
2552 if (block == NULL) {
2553 block = qemu_get_ram_block(addr);
0878d0e1 2554 addr -= block->offset;
3655cb9c 2555 }
0878d0e1 2556 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2557
2558 if (xen_enabled() && block->host == NULL) {
2559 /* We need to check if the requested address is in the RAM
2560 * because we don't want to map the entire memory in QEMU.
2561 * In that case just map the requested area.
2562 */
2563 if (block->offset == 0) {
f5aa69bd 2564 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2565 }
2566
f5aa69bd 2567 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2568 }
e81bcda5 2569
0878d0e1 2570 return ramblock_ptr(block, addr);
38bee5dc
SS
2571}
2572
f90bb71b
DDAG
2573/* Return the offset of a hostpointer within a ramblock */
2574ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2575{
2576 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2577 assert((uintptr_t)host >= (uintptr_t)rb->host);
2578 assert(res < rb->max_length);
2579
2580 return res;
2581}
2582
422148d3
DDAG
2583/*
2584 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2585 * in that RAMBlock.
2586 *
2587 * ptr: Host pointer to look up
2588 * round_offset: If true round the result offset down to a page boundary
2589 * *ram_addr: set to result ram_addr
2590 * *offset: set to result offset within the RAMBlock
2591 *
2592 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2593 *
2594 * By the time this function returns, the returned pointer is not protected
2595 * by RCU anymore. If the caller is not within an RCU critical section and
2596 * does not hold the iothread lock, it must have other means of protecting the
2597 * pointer, such as a reference to the region that includes the incoming
2598 * ram_addr_t.
2599 */
422148d3 2600RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2601 ram_addr_t *offset)
5579c7f3 2602{
94a6b54f
PB
2603 RAMBlock *block;
2604 uint8_t *host = ptr;
2605
868bb33f 2606 if (xen_enabled()) {
f615f396 2607 ram_addr_t ram_addr;
694ea274 2608 RCU_READ_LOCK_GUARD();
f615f396
PB
2609 ram_addr = xen_ram_addr_from_mapcache(ptr);
2610 block = qemu_get_ram_block(ram_addr);
422148d3 2611 if (block) {
d6b6aec4 2612 *offset = ram_addr - block->offset;
422148d3 2613 }
422148d3 2614 return block;
712c2b41
SS
2615 }
2616
694ea274 2617 RCU_READ_LOCK_GUARD();
0dc3f44a 2618 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2619 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2620 goto found;
2621 }
2622
99e15582 2623 RAMBLOCK_FOREACH(block) {
432d268c
JN
2624 /* This case append when the block is not mapped. */
2625 if (block->host == NULL) {
2626 continue;
2627 }
9b8424d5 2628 if (host - block->host < block->max_length) {
23887b79 2629 goto found;
f471a17e 2630 }
94a6b54f 2631 }
432d268c 2632
1b5ec234 2633 return NULL;
23887b79
PB
2634
2635found:
422148d3
DDAG
2636 *offset = (host - block->host);
2637 if (round_offset) {
2638 *offset &= TARGET_PAGE_MASK;
2639 }
422148d3
DDAG
2640 return block;
2641}
2642
e3dd7493
DDAG
2643/*
2644 * Finds the named RAMBlock
2645 *
2646 * name: The name of RAMBlock to find
2647 *
2648 * Returns: RAMBlock (or NULL if not found)
2649 */
2650RAMBlock *qemu_ram_block_by_name(const char *name)
2651{
2652 RAMBlock *block;
2653
99e15582 2654 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2655 if (!strcmp(name, block->idstr)) {
2656 return block;
2657 }
2658 }
2659
2660 return NULL;
2661}
2662
422148d3
DDAG
2663/* Some of the softmmu routines need to translate from a host pointer
2664 (typically a TLB entry) back to a ram offset. */
07bdaa41 2665ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2666{
2667 RAMBlock *block;
f615f396 2668 ram_addr_t offset;
422148d3 2669
f615f396 2670 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2671 if (!block) {
07bdaa41 2672 return RAM_ADDR_INVALID;
422148d3
DDAG
2673 }
2674
07bdaa41 2675 return block->offset + offset;
e890261f 2676}
f471a17e 2677
0f459d16 2678/* Generate a debug exception if a watchpoint has been hit. */
0026348b
DH
2679void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2680 MemTxAttrs attrs, int flags, uintptr_t ra)
0f459d16 2681{
568496c0 2682 CPUClass *cc = CPU_GET_CLASS(cpu);
a1d1bb31 2683 CPUWatchpoint *wp;
0f459d16 2684
5aa1ef71 2685 assert(tcg_enabled());
ff4700b0 2686 if (cpu->watchpoint_hit) {
50b107c5
RH
2687 /*
2688 * We re-entered the check after replacing the TB.
2689 * Now raise the debug interrupt so that it will
2690 * trigger after the current instruction.
2691 */
2692 qemu_mutex_lock_iothread();
93afeade 2693 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
50b107c5 2694 qemu_mutex_unlock_iothread();
06d55cc1
AL
2695 return;
2696 }
0026348b
DH
2697
2698 addr = cc->adjust_watchpoint_address(cpu, addr, len);
ff4700b0 2699 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
56ad8b00 2700 if (watchpoint_address_matches(wp, addr, len)
05068c0d 2701 && (wp->flags & flags)) {
08225676
PM
2702 if (flags == BP_MEM_READ) {
2703 wp->flags |= BP_WATCHPOINT_HIT_READ;
2704 } else {
2705 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2706 }
0026348b 2707 wp->hitaddr = MAX(addr, wp->vaddr);
66b9b43c 2708 wp->hitattrs = attrs;
ff4700b0 2709 if (!cpu->watchpoint_hit) {
568496c0
SF
2710 if (wp->flags & BP_CPU &&
2711 !cc->debug_check_watchpoint(cpu, wp)) {
2712 wp->flags &= ~BP_WATCHPOINT_HIT;
2713 continue;
2714 }
ff4700b0 2715 cpu->watchpoint_hit = wp;
a5e99826 2716
0ac20318 2717 mmap_lock();
ae57db63 2718 tb_check_watchpoint(cpu, ra);
6e140f28 2719 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2720 cpu->exception_index = EXCP_DEBUG;
0ac20318 2721 mmap_unlock();
0026348b 2722 cpu_loop_exit_restore(cpu, ra);
6e140f28 2723 } else {
9b990ee5
RH
2724 /* Force execution of one insn next time. */
2725 cpu->cflags_next_tb = 1 | curr_cflags();
0ac20318 2726 mmap_unlock();
0026348b
DH
2727 if (ra) {
2728 cpu_restore_state(cpu, ra, true);
2729 }
6886b980 2730 cpu_loop_exit_noexc(cpu);
6e140f28 2731 }
06d55cc1 2732 }
6e140f28
AL
2733 } else {
2734 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2735 }
2736 }
2737}
2738
b2a44fca 2739static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
a152be43 2740 MemTxAttrs attrs, void *buf, hwaddr len);
16620684 2741static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
a152be43 2742 const void *buf, hwaddr len);
0c249ff7 2743static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 2744 bool is_write, MemTxAttrs attrs);
16620684 2745
f25a49e0
PM
2746static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2747 unsigned len, MemTxAttrs attrs)
db7b5426 2748{
acc9d80b 2749 subpage_t *subpage = opaque;
ff6cff75 2750 uint8_t buf[8];
5c9eb028 2751 MemTxResult res;
791af8c8 2752
db7b5426 2753#if defined(DEBUG_SUBPAGE)
016e9d62 2754 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2755 subpage, len, addr);
db7b5426 2756#endif
16620684 2757 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2758 if (res) {
2759 return res;
f25a49e0 2760 }
6d3ede54
PM
2761 *data = ldn_p(buf, len);
2762 return MEMTX_OK;
db7b5426
BS
2763}
2764
f25a49e0
PM
2765static MemTxResult subpage_write(void *opaque, hwaddr addr,
2766 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2767{
acc9d80b 2768 subpage_t *subpage = opaque;
ff6cff75 2769 uint8_t buf[8];
acc9d80b 2770
db7b5426 2771#if defined(DEBUG_SUBPAGE)
016e9d62 2772 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2773 " value %"PRIx64"\n",
2774 __func__, subpage, len, addr, value);
db7b5426 2775#endif
6d3ede54 2776 stn_p(buf, len, value);
16620684 2777 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2778}
2779
c353e4cc 2780static bool subpage_accepts(void *opaque, hwaddr addr,
8372d383
PM
2781 unsigned len, bool is_write,
2782 MemTxAttrs attrs)
c353e4cc 2783{
acc9d80b 2784 subpage_t *subpage = opaque;
c353e4cc 2785#if defined(DEBUG_SUBPAGE)
016e9d62 2786 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2787 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2788#endif
2789
16620684 2790 return flatview_access_valid(subpage->fv, addr + subpage->base,
eace72b7 2791 len, is_write, attrs);
c353e4cc
PB
2792}
2793
70c68e44 2794static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2795 .read_with_attrs = subpage_read,
2796 .write_with_attrs = subpage_write,
ff6cff75
PB
2797 .impl.min_access_size = 1,
2798 .impl.max_access_size = 8,
2799 .valid.min_access_size = 1,
2800 .valid.max_access_size = 8,
c353e4cc 2801 .valid.accepts = subpage_accepts,
70c68e44 2802 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2803};
2804
b797ab1a
WY
2805static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2806 uint16_t section)
db7b5426
BS
2807{
2808 int idx, eidx;
2809
2810 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2811 return -1;
2812 idx = SUBPAGE_IDX(start);
2813 eidx = SUBPAGE_IDX(end);
2814#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2815 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2816 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2817#endif
db7b5426 2818 for (; idx <= eidx; idx++) {
5312bd8b 2819 mmio->sub_section[idx] = section;
db7b5426
BS
2820 }
2821
2822 return 0;
2823}
2824
16620684 2825static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 2826{
c227f099 2827 subpage_t *mmio;
db7b5426 2828
b797ab1a 2829 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2615fabd 2830 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 2831 mmio->fv = fv;
1eec614b 2832 mmio->base = base;
2c9b15ca 2833 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2834 NULL, TARGET_PAGE_SIZE);
b3b00c78 2835 mmio->iomem.subpage = true;
db7b5426 2836#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2837 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2838 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2839#endif
db7b5426
BS
2840
2841 return mmio;
2842}
2843
16620684 2844static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 2845{
16620684 2846 assert(fv);
5312bd8b 2847 MemoryRegionSection section = {
16620684 2848 .fv = fv,
5312bd8b
AK
2849 .mr = mr,
2850 .offset_within_address_space = 0,
2851 .offset_within_region = 0,
052e87b0 2852 .size = int128_2_64(),
5312bd8b
AK
2853 };
2854
53cb28cb 2855 return phys_section_add(map, &section);
5312bd8b
AK
2856}
2857
2d54f194
PM
2858MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2859 hwaddr index, MemTxAttrs attrs)
aa102231 2860{
a54c87b6
PM
2861 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2862 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2863 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2864 MemoryRegionSection *sections = d->map.sections;
9d82b5a7 2865
2d54f194 2866 return &sections[index & ~TARGET_PAGE_MASK];
aa102231
AK
2867}
2868
e9179ce1
AK
2869static void io_mem_init(void)
2870{
2c9b15ca 2871 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2872 NULL, UINT64_MAX);
e9179ce1
AK
2873}
2874
8629d3fc 2875AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 2876{
53cb28cb
MA
2877 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2878 uint16_t n;
2879
16620684 2880 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 2881 assert(n == PHYS_SECTION_UNASSIGNED);
00752703 2882
9736e55b 2883 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
2884
2885 return d;
00752703
PB
2886}
2887
66a6df1d 2888void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
2889{
2890 phys_sections_free(&d->map);
2891 g_free(d);
2892}
2893
9458a9a1
PB
2894static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2895{
2896}
2897
2898static void tcg_log_global_after_sync(MemoryListener *listener)
2899{
2900 CPUAddressSpace *cpuas;
2901
2902 /* Wait for the CPU to end the current TB. This avoids the following
2903 * incorrect race:
2904 *
2905 * vCPU migration
2906 * ---------------------- -------------------------
2907 * TLB check -> slow path
2908 * notdirty_mem_write
2909 * write to RAM
2910 * mark dirty
2911 * clear dirty flag
2912 * TLB check -> fast path
2913 * read memory
2914 * write to RAM
2915 *
2916 * by pushing the migration thread's memory read after the vCPU thread has
2917 * written the memory.
2918 */
86cf9e15
PD
2919 if (replay_mode == REPLAY_MODE_NONE) {
2920 /*
2921 * VGA can make calls to this function while updating the screen.
2922 * In record/replay mode this causes a deadlock, because
2923 * run_on_cpu waits for rr mutex. Therefore no races are possible
2924 * in this case and no need for making run_on_cpu when
2925 * record/replay is not enabled.
2926 */
2927 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2928 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2929 }
9458a9a1
PB
2930}
2931
1d71148e 2932static void tcg_commit(MemoryListener *listener)
50c1e149 2933{
32857f4d
PM
2934 CPUAddressSpace *cpuas;
2935 AddressSpaceDispatch *d;
117712c3 2936
f28d0dfd 2937 assert(tcg_enabled());
117712c3
AK
2938 /* since each CPU stores ram addresses in its TLB cache, we must
2939 reset the modified entries */
32857f4d
PM
2940 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2941 cpu_reloading_memory_map();
2942 /* The CPU and TLB are protected by the iothread lock.
2943 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2944 * may have split the RCU critical section.
2945 */
66a6df1d 2946 d = address_space_to_dispatch(cpuas->as);
f35e44e7 2947 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2948 tlb_flush(cpuas->cpu);
50c1e149
AK
2949}
2950
62152b8a
AK
2951static void memory_map_init(void)
2952{
7267c094 2953 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2954
57271d63 2955 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2956 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2957
7267c094 2958 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2959 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2960 65536);
7dca8043 2961 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2962}
2963
2964MemoryRegion *get_system_memory(void)
2965{
2966 return system_memory;
2967}
2968
309cb471
AK
2969MemoryRegion *get_system_io(void)
2970{
2971 return system_io;
2972}
2973
e2eef170
PB
2974#endif /* !defined(CONFIG_USER_ONLY) */
2975
13eb76e0
FB
2976/* physical memory access (slow version, mainly for debug) */
2977#if defined(CONFIG_USER_ONLY)
f17ec444 2978int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
28c80bfe 2979 void *ptr, target_ulong len, bool is_write)
13eb76e0 2980{
0c249ff7
LZ
2981 int flags;
2982 target_ulong l, page;
53a5960a 2983 void * p;
d7ef71ef 2984 uint8_t *buf = ptr;
13eb76e0
FB
2985
2986 while (len > 0) {
2987 page = addr & TARGET_PAGE_MASK;
2988 l = (page + TARGET_PAGE_SIZE) - addr;
2989 if (l > len)
2990 l = len;
2991 flags = page_get_flags(page);
2992 if (!(flags & PAGE_VALID))
a68fe89c 2993 return -1;
13eb76e0
FB
2994 if (is_write) {
2995 if (!(flags & PAGE_WRITE))
a68fe89c 2996 return -1;
579a97f7 2997 /* XXX: this code should not depend on lock_user */
72fb7daa 2998 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2999 return -1;
72fb7daa
AJ
3000 memcpy(p, buf, l);
3001 unlock_user(p, addr, l);
13eb76e0
FB
3002 } else {
3003 if (!(flags & PAGE_READ))
a68fe89c 3004 return -1;
579a97f7 3005 /* XXX: this code should not depend on lock_user */
72fb7daa 3006 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3007 return -1;
72fb7daa 3008 memcpy(buf, p, l);
5b257578 3009 unlock_user(p, addr, 0);
13eb76e0
FB
3010 }
3011 len -= l;
3012 buf += l;
3013 addr += l;
3014 }
a68fe89c 3015 return 0;
13eb76e0 3016}
8df1cd07 3017
13eb76e0 3018#else
51d7a9eb 3019
845b6214 3020static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 3021 hwaddr length)
51d7a9eb 3022{
e87f7778 3023 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
3024 addr += memory_region_get_ram_addr(mr);
3025
e87f7778
PB
3026 /* No early return if dirty_log_mask is or becomes 0, because
3027 * cpu_physical_memory_set_dirty_range will still call
3028 * xen_modified_memory.
3029 */
3030 if (dirty_log_mask) {
3031 dirty_log_mask =
3032 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3033 }
3034 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 3035 assert(tcg_enabled());
e87f7778
PB
3036 tb_invalidate_phys_range(addr, addr + length);
3037 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 3038 }
e87f7778 3039 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
3040}
3041
047be4ed
SH
3042void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3043{
3044 /*
3045 * In principle this function would work on other memory region types too,
3046 * but the ROM device use case is the only one where this operation is
3047 * necessary. Other memory regions should use the
3048 * address_space_read/write() APIs.
3049 */
3050 assert(memory_region_is_romd(mr));
3051
3052 invalidate_and_set_dirty(mr, addr, size);
3053}
3054
23326164 3055static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 3056{
e1622f4b 3057 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
3058
3059 /* Regions are assumed to support 1-4 byte accesses unless
3060 otherwise specified. */
23326164
RH
3061 if (access_size_max == 0) {
3062 access_size_max = 4;
3063 }
3064
3065 /* Bound the maximum access by the alignment of the address. */
3066 if (!mr->ops->impl.unaligned) {
3067 unsigned align_size_max = addr & -addr;
3068 if (align_size_max != 0 && align_size_max < access_size_max) {
3069 access_size_max = align_size_max;
3070 }
82f2563f 3071 }
23326164
RH
3072
3073 /* Don't attempt accesses larger than the maximum. */
3074 if (l > access_size_max) {
3075 l = access_size_max;
82f2563f 3076 }
6554f5c0 3077 l = pow2floor(l);
23326164
RH
3078
3079 return l;
82f2563f
PB
3080}
3081
4840f10e 3082static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 3083{
4840f10e
JK
3084 bool unlocked = !qemu_mutex_iothread_locked();
3085 bool release_lock = false;
3086
3087 if (unlocked && mr->global_locking) {
3088 qemu_mutex_lock_iothread();
3089 unlocked = false;
3090 release_lock = true;
3091 }
125b3806 3092 if (mr->flush_coalesced_mmio) {
4840f10e
JK
3093 if (unlocked) {
3094 qemu_mutex_lock_iothread();
3095 }
125b3806 3096 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
3097 if (unlocked) {
3098 qemu_mutex_unlock_iothread();
3099 }
125b3806 3100 }
4840f10e
JK
3101
3102 return release_lock;
125b3806
PB
3103}
3104
a203ac70 3105/* Called within RCU critical section. */
16620684
AK
3106static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3107 MemTxAttrs attrs,
a152be43 3108 const void *ptr,
0c249ff7 3109 hwaddr len, hwaddr addr1,
16620684 3110 hwaddr l, MemoryRegion *mr)
13eb76e0 3111{
20804676 3112 uint8_t *ram_ptr;
791af8c8 3113 uint64_t val;
3b643495 3114 MemTxResult result = MEMTX_OK;
4840f10e 3115 bool release_lock = false;
a152be43 3116 const uint8_t *buf = ptr;
3b46e624 3117
a203ac70 3118 for (;;) {
eb7eeb88
PB
3119 if (!memory_access_is_direct(mr, true)) {
3120 release_lock |= prepare_mmio_access(mr);
3121 l = memory_access_size(mr, l, addr1);
3122 /* XXX: could force current_cpu to NULL to avoid
3123 potential bugs */
9bf825bf 3124 val = ldn_he_p(buf, l);
3d9e7c3e 3125 result |= memory_region_dispatch_write(mr, addr1, val,
9bf825bf 3126 size_memop(l), attrs);
13eb76e0 3127 } else {
eb7eeb88 3128 /* RAM case */
20804676
PMD
3129 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3130 memcpy(ram_ptr, buf, l);
eb7eeb88 3131 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 3132 }
4840f10e
JK
3133
3134 if (release_lock) {
3135 qemu_mutex_unlock_iothread();
3136 release_lock = false;
3137 }
3138
13eb76e0
FB
3139 len -= l;
3140 buf += l;
3141 addr += l;
a203ac70
PB
3142
3143 if (!len) {
3144 break;
3145 }
3146
3147 l = len;
efa99a2f 3148 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
13eb76e0 3149 }
fd8aaa76 3150
3b643495 3151 return result;
13eb76e0 3152}
8df1cd07 3153
4c6ebbb3 3154/* Called from RCU critical section. */
16620684 3155static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
a152be43 3156 const void *buf, hwaddr len)
ac1970fb 3157{
eb7eeb88 3158 hwaddr l;
eb7eeb88
PB
3159 hwaddr addr1;
3160 MemoryRegion *mr;
3161 MemTxResult result = MEMTX_OK;
eb7eeb88 3162
4c6ebbb3 3163 l = len;
efa99a2f 3164 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
4c6ebbb3
PB
3165 result = flatview_write_continue(fv, addr, attrs, buf, len,
3166 addr1, l, mr);
a203ac70
PB
3167
3168 return result;
3169}
3170
3171/* Called within RCU critical section. */
16620684 3172MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
a152be43 3173 MemTxAttrs attrs, void *ptr,
0c249ff7 3174 hwaddr len, hwaddr addr1, hwaddr l,
16620684 3175 MemoryRegion *mr)
a203ac70 3176{
20804676 3177 uint8_t *ram_ptr;
a203ac70
PB
3178 uint64_t val;
3179 MemTxResult result = MEMTX_OK;
3180 bool release_lock = false;
a152be43 3181 uint8_t *buf = ptr;
eb7eeb88 3182
a203ac70 3183 for (;;) {
eb7eeb88
PB
3184 if (!memory_access_is_direct(mr, false)) {
3185 /* I/O case */
3186 release_lock |= prepare_mmio_access(mr);
3187 l = memory_access_size(mr, l, addr1);
3d9e7c3e 3188 result |= memory_region_dispatch_read(mr, addr1, &val,
9bf825bf
TN
3189 size_memop(l), attrs);
3190 stn_he_p(buf, l, val);
eb7eeb88
PB
3191 } else {
3192 /* RAM case */
20804676
PMD
3193 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3194 memcpy(buf, ram_ptr, l);
eb7eeb88
PB
3195 }
3196
3197 if (release_lock) {
3198 qemu_mutex_unlock_iothread();
3199 release_lock = false;
3200 }
3201
3202 len -= l;
3203 buf += l;
3204 addr += l;
a203ac70
PB
3205
3206 if (!len) {
3207 break;
3208 }
3209
3210 l = len;
efa99a2f 3211 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
a203ac70
PB
3212 }
3213
3214 return result;
3215}
3216
b2a44fca
PB
3217/* Called from RCU critical section. */
3218static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
a152be43 3219 MemTxAttrs attrs, void *buf, hwaddr len)
a203ac70
PB
3220{
3221 hwaddr l;
3222 hwaddr addr1;
3223 MemoryRegion *mr;
eb7eeb88 3224
b2a44fca 3225 l = len;
efa99a2f 3226 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
b2a44fca
PB
3227 return flatview_read_continue(fv, addr, attrs, buf, len,
3228 addr1, l, mr);
ac1970fb
AK
3229}
3230
b2a44fca 3231MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
daa3dda4 3232 MemTxAttrs attrs, void *buf, hwaddr len)
b2a44fca
PB
3233{
3234 MemTxResult result = MEMTX_OK;
3235 FlatView *fv;
3236
3237 if (len > 0) {
694ea274 3238 RCU_READ_LOCK_GUARD();
b2a44fca
PB
3239 fv = address_space_to_flatview(as);
3240 result = flatview_read(fv, addr, attrs, buf, len);
b2a44fca
PB
3241 }
3242
3243 return result;
3244}
3245
4c6ebbb3
PB
3246MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3247 MemTxAttrs attrs,
daa3dda4 3248 const void *buf, hwaddr len)
4c6ebbb3
PB
3249{
3250 MemTxResult result = MEMTX_OK;
3251 FlatView *fv;
3252
3253 if (len > 0) {
694ea274 3254 RCU_READ_LOCK_GUARD();
4c6ebbb3
PB
3255 fv = address_space_to_flatview(as);
3256 result = flatview_write(fv, addr, attrs, buf, len);
4c6ebbb3
PB
3257 }
3258
3259 return result;
3260}
3261
db84fd97 3262MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
daa3dda4 3263 void *buf, hwaddr len, bool is_write)
db84fd97
PB
3264{
3265 if (is_write) {
3266 return address_space_write(as, addr, attrs, buf, len);
3267 } else {
3268 return address_space_read_full(as, addr, attrs, buf, len);
3269 }
3270}
3271
d7ef71ef 3272void cpu_physical_memory_rw(hwaddr addr, void *buf,
28c80bfe 3273 hwaddr len, bool is_write)
ac1970fb 3274{
5c9eb028
PM
3275 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3276 buf, len, is_write);
ac1970fb
AK
3277}
3278
582b55a9
AG
3279enum write_rom_type {
3280 WRITE_DATA,
3281 FLUSH_CACHE,
3282};
3283
75693e14
PM
3284static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3285 hwaddr addr,
3286 MemTxAttrs attrs,
daa3dda4 3287 const void *ptr,
0c249ff7 3288 hwaddr len,
75693e14 3289 enum write_rom_type type)
d0ecd2aa 3290{
149f54b5 3291 hwaddr l;
20804676 3292 uint8_t *ram_ptr;
149f54b5 3293 hwaddr addr1;
5c8a00ce 3294 MemoryRegion *mr;
daa3dda4 3295 const uint8_t *buf = ptr;
3b46e624 3296
694ea274 3297 RCU_READ_LOCK_GUARD();
d0ecd2aa 3298 while (len > 0) {
149f54b5 3299 l = len;
75693e14 3300 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3b46e624 3301
5c8a00ce
PB
3302 if (!(memory_region_is_ram(mr) ||
3303 memory_region_is_romd(mr))) {
b242e0e0 3304 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3305 } else {
d0ecd2aa 3306 /* ROM/RAM case */
20804676 3307 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3308 switch (type) {
3309 case WRITE_DATA:
20804676 3310 memcpy(ram_ptr, buf, l);
845b6214 3311 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3312 break;
3313 case FLUSH_CACHE:
20804676 3314 flush_icache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr + l);
582b55a9
AG
3315 break;
3316 }
d0ecd2aa
FB
3317 }
3318 len -= l;
3319 buf += l;
3320 addr += l;
3321 }
75693e14 3322 return MEMTX_OK;
d0ecd2aa
FB
3323}
3324
582b55a9 3325/* used for ROM loading : can write in RAM and ROM */
3c8133f9
PM
3326MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3327 MemTxAttrs attrs,
daa3dda4 3328 const void *buf, hwaddr len)
582b55a9 3329{
3c8133f9
PM
3330 return address_space_write_rom_internal(as, addr, attrs,
3331 buf, len, WRITE_DATA);
582b55a9
AG
3332}
3333
0c249ff7 3334void cpu_flush_icache_range(hwaddr start, hwaddr len)
582b55a9
AG
3335{
3336 /*
3337 * This function should do the same thing as an icache flush that was
3338 * triggered from within the guest. For TCG we are always cache coherent,
3339 * so there is no need to flush anything. For KVM / Xen we need to flush
3340 * the host's instruction cache at least.
3341 */
3342 if (tcg_enabled()) {
3343 return;
3344 }
3345
75693e14
PM
3346 address_space_write_rom_internal(&address_space_memory,
3347 start, MEMTXATTRS_UNSPECIFIED,
3348 NULL, len, FLUSH_CACHE);
582b55a9
AG
3349}
3350
6d16c2f8 3351typedef struct {
d3e71559 3352 MemoryRegion *mr;
6d16c2f8 3353 void *buffer;
a8170e5e
AK
3354 hwaddr addr;
3355 hwaddr len;
c2cba0ff 3356 bool in_use;
6d16c2f8
AL
3357} BounceBuffer;
3358
3359static BounceBuffer bounce;
3360
ba223c29 3361typedef struct MapClient {
e95205e1 3362 QEMUBH *bh;
72cf2d4f 3363 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3364} MapClient;
3365
38e047b5 3366QemuMutex map_client_list_lock;
b58deb34 3367static QLIST_HEAD(, MapClient) map_client_list
72cf2d4f 3368 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3369
e95205e1
FZ
3370static void cpu_unregister_map_client_do(MapClient *client)
3371{
3372 QLIST_REMOVE(client, link);
3373 g_free(client);
3374}
3375
33b6c2ed
FZ
3376static void cpu_notify_map_clients_locked(void)
3377{
3378 MapClient *client;
3379
3380 while (!QLIST_EMPTY(&map_client_list)) {
3381 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3382 qemu_bh_schedule(client->bh);
3383 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3384 }
3385}
3386
e95205e1 3387void cpu_register_map_client(QEMUBH *bh)
ba223c29 3388{
7267c094 3389 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3390
38e047b5 3391 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3392 client->bh = bh;
72cf2d4f 3393 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3394 if (!atomic_read(&bounce.in_use)) {
3395 cpu_notify_map_clients_locked();
3396 }
38e047b5 3397 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3398}
3399
38e047b5 3400void cpu_exec_init_all(void)
ba223c29 3401{
38e047b5 3402 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3403 /* The data structures we set up here depend on knowing the page size,
3404 * so no more changes can be made after this point.
3405 * In an ideal world, nothing we did before we had finished the
3406 * machine setup would care about the target page size, and we could
3407 * do this much later, rather than requiring board models to state
3408 * up front what their requirements are.
3409 */
3410 finalize_target_page_bits();
38e047b5 3411 io_mem_init();
680a4783 3412 memory_map_init();
38e047b5 3413 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3414}
3415
e95205e1 3416void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3417{
3418 MapClient *client;
3419
e95205e1
FZ
3420 qemu_mutex_lock(&map_client_list_lock);
3421 QLIST_FOREACH(client, &map_client_list, link) {
3422 if (client->bh == bh) {
3423 cpu_unregister_map_client_do(client);
3424 break;
3425 }
ba223c29 3426 }
e95205e1 3427 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3428}
3429
3430static void cpu_notify_map_clients(void)
3431{
38e047b5 3432 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3433 cpu_notify_map_clients_locked();
38e047b5 3434 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3435}
3436
0c249ff7 3437static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 3438 bool is_write, MemTxAttrs attrs)
51644ab7 3439{
5c8a00ce 3440 MemoryRegion *mr;
51644ab7
PB
3441 hwaddr l, xlat;
3442
3443 while (len > 0) {
3444 l = len;
efa99a2f 3445 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
5c8a00ce
PB
3446 if (!memory_access_is_direct(mr, is_write)) {
3447 l = memory_access_size(mr, l, addr);
eace72b7 3448 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
51644ab7
PB
3449 return false;
3450 }
3451 }
3452
3453 len -= l;
3454 addr += l;
3455 }
3456 return true;
3457}
3458
16620684 3459bool address_space_access_valid(AddressSpace *as, hwaddr addr,
0c249ff7 3460 hwaddr len, bool is_write,
fddffa42 3461 MemTxAttrs attrs)
16620684 3462{
11e732a5
PB
3463 FlatView *fv;
3464 bool result;
3465
694ea274 3466 RCU_READ_LOCK_GUARD();
11e732a5 3467 fv = address_space_to_flatview(as);
eace72b7 3468 result = flatview_access_valid(fv, addr, len, is_write, attrs);
11e732a5 3469 return result;
16620684
AK
3470}
3471
715c31ec 3472static hwaddr
16620684 3473flatview_extend_translation(FlatView *fv, hwaddr addr,
53d0790d
PM
3474 hwaddr target_len,
3475 MemoryRegion *mr, hwaddr base, hwaddr len,
3476 bool is_write, MemTxAttrs attrs)
715c31ec
PB
3477{
3478 hwaddr done = 0;
3479 hwaddr xlat;
3480 MemoryRegion *this_mr;
3481
3482 for (;;) {
3483 target_len -= len;
3484 addr += len;
3485 done += len;
3486 if (target_len == 0) {
3487 return done;
3488 }
3489
3490 len = target_len;
16620684 3491 this_mr = flatview_translate(fv, addr, &xlat,
efa99a2f 3492 &len, is_write, attrs);
715c31ec
PB
3493 if (this_mr != mr || xlat != base + done) {
3494 return done;
3495 }
3496 }
3497}
3498
6d16c2f8
AL
3499/* Map a physical memory region into a host virtual address.
3500 * May map a subset of the requested range, given by and returned in *plen.
3501 * May return NULL if resources needed to perform the mapping are exhausted.
3502 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3503 * Use cpu_register_map_client() to know when retrying the map operation is
3504 * likely to succeed.
6d16c2f8 3505 */
ac1970fb 3506void *address_space_map(AddressSpace *as,
a8170e5e
AK
3507 hwaddr addr,
3508 hwaddr *plen,
f26404fb
PM
3509 bool is_write,
3510 MemTxAttrs attrs)
6d16c2f8 3511{
a8170e5e 3512 hwaddr len = *plen;
715c31ec
PB
3513 hwaddr l, xlat;
3514 MemoryRegion *mr;
e81bcda5 3515 void *ptr;
ad0c60fa 3516 FlatView *fv;
6d16c2f8 3517
e3127ae0
PB
3518 if (len == 0) {
3519 return NULL;
3520 }
38bee5dc 3521
e3127ae0 3522 l = len;
694ea274 3523 RCU_READ_LOCK_GUARD();
ad0c60fa 3524 fv = address_space_to_flatview(as);
efa99a2f 3525 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
41063e1e 3526
e3127ae0 3527 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3528 if (atomic_xchg(&bounce.in_use, true)) {
e3127ae0 3529 return NULL;
6d16c2f8 3530 }
e85d9db5
KW
3531 /* Avoid unbounded allocations */
3532 l = MIN(l, TARGET_PAGE_SIZE);
3533 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3534 bounce.addr = addr;
3535 bounce.len = l;
d3e71559
PB
3536
3537 memory_region_ref(mr);
3538 bounce.mr = mr;
e3127ae0 3539 if (!is_write) {
16620684 3540 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3541 bounce.buffer, l);
8ab934f9 3542 }
6d16c2f8 3543
e3127ae0
PB
3544 *plen = l;
3545 return bounce.buffer;
3546 }
3547
e3127ae0 3548
d3e71559 3549 memory_region_ref(mr);
16620684 3550 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
53d0790d 3551 l, is_write, attrs);
f5aa69bd 3552 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3553
3554 return ptr;
6d16c2f8
AL
3555}
3556
ac1970fb 3557/* Unmaps a memory region previously mapped by address_space_map().
ae5883ab 3558 * Will also mark the memory as dirty if is_write is true. access_len gives
6d16c2f8
AL
3559 * the amount of memory that was actually read or written by the caller.
3560 */
a8170e5e 3561void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
ae5883ab 3562 bool is_write, hwaddr access_len)
6d16c2f8
AL
3563{
3564 if (buffer != bounce.buffer) {
d3e71559
PB
3565 MemoryRegion *mr;
3566 ram_addr_t addr1;
3567
07bdaa41 3568 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3569 assert(mr != NULL);
6d16c2f8 3570 if (is_write) {
845b6214 3571 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3572 }
868bb33f 3573 if (xen_enabled()) {
e41d7c69 3574 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3575 }
d3e71559 3576 memory_region_unref(mr);
6d16c2f8
AL
3577 return;
3578 }
3579 if (is_write) {
5c9eb028
PM
3580 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3581 bounce.buffer, access_len);
6d16c2f8 3582 }
f8a83245 3583 qemu_vfree(bounce.buffer);
6d16c2f8 3584 bounce.buffer = NULL;
d3e71559 3585 memory_region_unref(bounce.mr);
c2cba0ff 3586 atomic_mb_set(&bounce.in_use, false);
ba223c29 3587 cpu_notify_map_clients();
6d16c2f8 3588}
d0ecd2aa 3589
a8170e5e
AK
3590void *cpu_physical_memory_map(hwaddr addr,
3591 hwaddr *plen,
28c80bfe 3592 bool is_write)
ac1970fb 3593{
f26404fb
PM
3594 return address_space_map(&address_space_memory, addr, plen, is_write,
3595 MEMTXATTRS_UNSPECIFIED);
ac1970fb
AK
3596}
3597
a8170e5e 3598void cpu_physical_memory_unmap(void *buffer, hwaddr len,
28c80bfe 3599 bool is_write, hwaddr access_len)
ac1970fb
AK
3600{
3601 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3602}
3603
0ce265ff
PB
3604#define ARG1_DECL AddressSpace *as
3605#define ARG1 as
3606#define SUFFIX
3607#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
0ce265ff
PB
3608#define RCU_READ_LOCK(...) rcu_read_lock()
3609#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3610#include "memory_ldst.inc.c"
1e78bcc1 3611
1f4e496e
PB
3612int64_t address_space_cache_init(MemoryRegionCache *cache,
3613 AddressSpace *as,
3614 hwaddr addr,
3615 hwaddr len,
3616 bool is_write)
3617{
48564041
PB
3618 AddressSpaceDispatch *d;
3619 hwaddr l;
3620 MemoryRegion *mr;
3621
3622 assert(len > 0);
3623
3624 l = len;
3625 cache->fv = address_space_get_flatview(as);
3626 d = flatview_to_dispatch(cache->fv);
3627 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3628
3629 mr = cache->mrs.mr;
3630 memory_region_ref(mr);
3631 if (memory_access_is_direct(mr, is_write)) {
53d0790d
PM
3632 /* We don't care about the memory attributes here as we're only
3633 * doing this if we found actual RAM, which behaves the same
3634 * regardless of attributes; so UNSPECIFIED is fine.
3635 */
48564041 3636 l = flatview_extend_translation(cache->fv, addr, len, mr,
53d0790d
PM
3637 cache->xlat, l, is_write,
3638 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3639 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3640 } else {
3641 cache->ptr = NULL;
3642 }
3643
3644 cache->len = l;
3645 cache->is_write = is_write;
3646 return l;
1f4e496e
PB
3647}
3648
3649void address_space_cache_invalidate(MemoryRegionCache *cache,
3650 hwaddr addr,
3651 hwaddr access_len)
3652{
48564041
PB
3653 assert(cache->is_write);
3654 if (likely(cache->ptr)) {
3655 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3656 }
1f4e496e
PB
3657}
3658
3659void address_space_cache_destroy(MemoryRegionCache *cache)
3660{
48564041
PB
3661 if (!cache->mrs.mr) {
3662 return;
3663 }
3664
3665 if (xen_enabled()) {
3666 xen_invalidate_map_cache_entry(cache->ptr);
3667 }
3668 memory_region_unref(cache->mrs.mr);
3669 flatview_unref(cache->fv);
3670 cache->mrs.mr = NULL;
3671 cache->fv = NULL;
3672}
3673
3674/* Called from RCU critical section. This function has the same
3675 * semantics as address_space_translate, but it only works on a
3676 * predefined range of a MemoryRegion that was mapped with
3677 * address_space_cache_init.
3678 */
3679static inline MemoryRegion *address_space_translate_cached(
3680 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
bc6b1cec 3681 hwaddr *plen, bool is_write, MemTxAttrs attrs)
48564041
PB
3682{
3683 MemoryRegionSection section;
3684 MemoryRegion *mr;
3685 IOMMUMemoryRegion *iommu_mr;
3686 AddressSpace *target_as;
3687
3688 assert(!cache->ptr);
3689 *xlat = addr + cache->xlat;
3690
3691 mr = cache->mrs.mr;
3692 iommu_mr = memory_region_get_iommu(mr);
3693 if (!iommu_mr) {
3694 /* MMIO region. */
3695 return mr;
3696 }
3697
3698 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3699 NULL, is_write, true,
2f7b009c 3700 &target_as, attrs);
48564041
PB
3701 return section.mr;
3702}
3703
3704/* Called from RCU critical section. address_space_read_cached uses this
3705 * out of line function when the target is an MMIO or IOMMU region.
3706 */
3707void
3708address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3709 void *buf, hwaddr len)
48564041
PB
3710{
3711 hwaddr addr1, l;
3712 MemoryRegion *mr;
3713
3714 l = len;
bc6b1cec
PM
3715 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3716 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3717 flatview_read_continue(cache->fv,
3718 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3719 addr1, l, mr);
3720}
3721
3722/* Called from RCU critical section. address_space_write_cached uses this
3723 * out of line function when the target is an MMIO or IOMMU region.
3724 */
3725void
3726address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3727 const void *buf, hwaddr len)
48564041
PB
3728{
3729 hwaddr addr1, l;
3730 MemoryRegion *mr;
3731
3732 l = len;
bc6b1cec
PM
3733 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3734 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3735 flatview_write_continue(cache->fv,
3736 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3737 addr1, l, mr);
1f4e496e
PB
3738}
3739
3740#define ARG1_DECL MemoryRegionCache *cache
3741#define ARG1 cache
48564041
PB
3742#define SUFFIX _cached_slow
3743#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
48564041
PB
3744#define RCU_READ_LOCK() ((void)0)
3745#define RCU_READ_UNLOCK() ((void)0)
1f4e496e
PB
3746#include "memory_ldst.inc.c"
3747
5e2972fd 3748/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3749int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
28c80bfe 3750 void *ptr, target_ulong len, bool is_write)
13eb76e0 3751{
a8170e5e 3752 hwaddr phys_addr;
0c249ff7 3753 target_ulong l, page;
d7ef71ef 3754 uint8_t *buf = ptr;
13eb76e0 3755
79ca7a1b 3756 cpu_synchronize_state(cpu);
13eb76e0 3757 while (len > 0) {
5232e4c7
PM
3758 int asidx;
3759 MemTxAttrs attrs;
3760
13eb76e0 3761 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3762 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3763 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3764 /* if no physical page mapped, return an error */
3765 if (phys_addr == -1)
3766 return -1;
3767 l = (page + TARGET_PAGE_SIZE) - addr;
3768 if (l > len)
3769 l = len;
5e2972fd 3770 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3771 if (is_write) {
3c8133f9 3772 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 3773 attrs, buf, l);
2e38847b 3774 } else {
19f70347
PM
3775 address_space_read(cpu->cpu_ases[asidx].as, phys_addr, attrs, buf,
3776 l);
2e38847b 3777 }
13eb76e0
FB
3778 len -= l;
3779 buf += l;
3780 addr += l;
3781 }
3782 return 0;
3783}
038629a6
DDAG
3784
3785/*
3786 * Allows code that needs to deal with migration bitmaps etc to still be built
3787 * target independent.
3788 */
20afaed9 3789size_t qemu_target_page_size(void)
038629a6 3790{
20afaed9 3791 return TARGET_PAGE_SIZE;
038629a6
DDAG
3792}
3793
46d702b1
JQ
3794int qemu_target_page_bits(void)
3795{
3796 return TARGET_PAGE_BITS;
3797}
3798
3799int qemu_target_page_bits_min(void)
3800{
3801 return TARGET_PAGE_BITS_MIN;
3802}
a68fe89c 3803#endif
13eb76e0 3804
98ed8ecf 3805bool target_words_bigendian(void)
8e4a424b
BS
3806{
3807#if defined(TARGET_WORDS_BIGENDIAN)
3808 return true;
3809#else
3810 return false;
3811#endif
3812}
3813
76f35538 3814#ifndef CONFIG_USER_ONLY
a8170e5e 3815bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3816{
5c8a00ce 3817 MemoryRegion*mr;
149f54b5 3818 hwaddr l = 1;
41063e1e 3819 bool res;
76f35538 3820
694ea274 3821 RCU_READ_LOCK_GUARD();
5c8a00ce 3822 mr = address_space_translate(&address_space_memory,
bc6b1cec
PM
3823 phys_addr, &phys_addr, &l, false,
3824 MEMTXATTRS_UNSPECIFIED);
76f35538 3825
41063e1e 3826 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
41063e1e 3827 return res;
76f35538 3828}
bd2fa51f 3829
e3807054 3830int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3831{
3832 RAMBlock *block;
e3807054 3833 int ret = 0;
bd2fa51f 3834
694ea274 3835 RCU_READ_LOCK_GUARD();
99e15582 3836 RAMBLOCK_FOREACH(block) {
754cb9c0 3837 ret = func(block, opaque);
e3807054
DDAG
3838 if (ret) {
3839 break;
3840 }
bd2fa51f 3841 }
e3807054 3842 return ret;
bd2fa51f 3843}
d3a5038c
DDAG
3844
3845/*
3846 * Unmap pages of memory from start to start+length such that
3847 * they a) read as 0, b) Trigger whatever fault mechanism
3848 * the OS provides for postcopy.
3849 * The pages must be unmapped by the end of the function.
3850 * Returns: 0 on success, none-0 on failure
3851 *
3852 */
3853int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3854{
3855 int ret = -1;
3856
3857 uint8_t *host_startaddr = rb->host + start;
3858
619bd31d 3859 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
d3a5038c
DDAG
3860 error_report("ram_block_discard_range: Unaligned start address: %p",
3861 host_startaddr);
3862 goto err;
3863 }
3864
3865 if ((start + length) <= rb->used_length) {
db144f70 3866 bool need_madvise, need_fallocate;
619bd31d 3867 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
72821d93
WY
3868 error_report("ram_block_discard_range: Unaligned length: %zx",
3869 length);
d3a5038c
DDAG
3870 goto err;
3871 }
3872
3873 errno = ENOTSUP; /* If we are missing MADVISE etc */
3874
db144f70
DDAG
3875 /* The logic here is messy;
3876 * madvise DONTNEED fails for hugepages
3877 * fallocate works on hugepages and shmem
3878 */
3879 need_madvise = (rb->page_size == qemu_host_page_size);
3880 need_fallocate = rb->fd != -1;
3881 if (need_fallocate) {
3882 /* For a file, this causes the area of the file to be zero'd
3883 * if read, and for hugetlbfs also causes it to be unmapped
3884 * so a userfault will trigger.
e2fa71f5
DDAG
3885 */
3886#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3887 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3888 start, length);
db144f70
DDAG
3889 if (ret) {
3890 ret = -errno;
3891 error_report("ram_block_discard_range: Failed to fallocate "
3892 "%s:%" PRIx64 " +%zx (%d)",
3893 rb->idstr, start, length, ret);
3894 goto err;
3895 }
3896#else
3897 ret = -ENOSYS;
3898 error_report("ram_block_discard_range: fallocate not available/file"
3899 "%s:%" PRIx64 " +%zx (%d)",
3900 rb->idstr, start, length, ret);
3901 goto err;
e2fa71f5
DDAG
3902#endif
3903 }
db144f70
DDAG
3904 if (need_madvise) {
3905 /* For normal RAM this causes it to be unmapped,
3906 * for shared memory it causes the local mapping to disappear
3907 * and to fall back on the file contents (which we just
3908 * fallocate'd away).
3909 */
3910#if defined(CONFIG_MADVISE)
3911 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3912 if (ret) {
3913 ret = -errno;
3914 error_report("ram_block_discard_range: Failed to discard range "
3915 "%s:%" PRIx64 " +%zx (%d)",
3916 rb->idstr, start, length, ret);
3917 goto err;
3918 }
3919#else
3920 ret = -ENOSYS;
3921 error_report("ram_block_discard_range: MADVISE not available"
d3a5038c
DDAG
3922 "%s:%" PRIx64 " +%zx (%d)",
3923 rb->idstr, start, length, ret);
db144f70
DDAG
3924 goto err;
3925#endif
d3a5038c 3926 }
db144f70
DDAG
3927 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3928 need_madvise, need_fallocate, ret);
d3a5038c
DDAG
3929 } else {
3930 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3931 "/%zx/" RAM_ADDR_FMT")",
3932 rb->idstr, start, length, rb->used_length);
3933 }
3934
3935err:
3936 return ret;
3937}
3938
a4de8552
JH
3939bool ramblock_is_pmem(RAMBlock *rb)
3940{
3941 return rb->flags & RAM_PMEM;
3942}
3943
ec3f8c99 3944#endif
a0be0c58
YZ
3945
3946void page_size_init(void)
3947{
3948 /* NOTE: we can always suppose that qemu_host_page_size >=
3949 TARGET_PAGE_SIZE */
a0be0c58
YZ
3950 if (qemu_host_page_size == 0) {
3951 qemu_host_page_size = qemu_real_host_page_size;
3952 }
3953 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3954 qemu_host_page_size = TARGET_PAGE_SIZE;
3955 }
3956 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3957}
5e8fd947
AK
3958
3959#if !defined(CONFIG_USER_ONLY)
3960
b6b71cb5 3961static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
5e8fd947
AK
3962{
3963 if (start == end - 1) {
b6b71cb5 3964 qemu_printf("\t%3d ", start);
5e8fd947 3965 } else {
b6b71cb5 3966 qemu_printf("\t%3d..%-3d ", start, end - 1);
5e8fd947 3967 }
b6b71cb5 3968 qemu_printf(" skip=%d ", skip);
5e8fd947 3969 if (ptr == PHYS_MAP_NODE_NIL) {
b6b71cb5 3970 qemu_printf(" ptr=NIL");
5e8fd947 3971 } else if (!skip) {
b6b71cb5 3972 qemu_printf(" ptr=#%d", ptr);
5e8fd947 3973 } else {
b6b71cb5 3974 qemu_printf(" ptr=[%d]", ptr);
5e8fd947 3975 }
b6b71cb5 3976 qemu_printf("\n");
5e8fd947
AK
3977}
3978
3979#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3980 int128_sub((size), int128_one())) : 0)
3981
b6b71cb5 3982void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
5e8fd947
AK
3983{
3984 int i;
3985
b6b71cb5
MA
3986 qemu_printf(" Dispatch\n");
3987 qemu_printf(" Physical sections\n");
5e8fd947
AK
3988
3989 for (i = 0; i < d->map.sections_nb; ++i) {
3990 MemoryRegionSection *s = d->map.sections + i;
3991 const char *names[] = { " [unassigned]", " [not dirty]",
3992 " [ROM]", " [watch]" };
3993
b6b71cb5
MA
3994 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
3995 " %s%s%s%s%s",
5e8fd947
AK
3996 i,
3997 s->offset_within_address_space,
3998 s->offset_within_address_space + MR_SIZE(s->mr->size),
3999 s->mr->name ? s->mr->name : "(noname)",
4000 i < ARRAY_SIZE(names) ? names[i] : "",
4001 s->mr == root ? " [ROOT]" : "",
4002 s == d->mru_section ? " [MRU]" : "",
4003 s->mr->is_iommu ? " [iommu]" : "");
4004
4005 if (s->mr->alias) {
b6b71cb5 4006 qemu_printf(" alias=%s", s->mr->alias->name ?
5e8fd947
AK
4007 s->mr->alias->name : "noname");
4008 }
b6b71cb5 4009 qemu_printf("\n");
5e8fd947
AK
4010 }
4011
b6b71cb5 4012 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
5e8fd947
AK
4013 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4014 for (i = 0; i < d->map.nodes_nb; ++i) {
4015 int j, jprev;
4016 PhysPageEntry prev;
4017 Node *n = d->map.nodes + i;
4018
b6b71cb5 4019 qemu_printf(" [%d]\n", i);
5e8fd947
AK
4020
4021 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4022 PhysPageEntry *pe = *n + j;
4023
4024 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4025 continue;
4026 }
4027
b6b71cb5 4028 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4029
4030 jprev = j;
4031 prev = *pe;
4032 }
4033
4034 if (jprev != ARRAY_SIZE(*n)) {
b6b71cb5 4035 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4036 }
4037 }
4038}
4039
4040#endif