]> git.ipfire.org Git - thirdparty/util-linux.git/blame - sys-utils/hwclock.c
hwclock: remove sysexits.h
[thirdparty/util-linux.git] / sys-utils / hwclock.c
CommitLineData
7eda085c
KZ
1/*
2 * hwclock.c
3 *
4 * clock.c was written by Charles Hedrick, hedrick@cs.rutgers.edu, Apr 1992
5 * Modified for clock adjustments - Rob Hooft <hooft@chem.ruu.nl>, Nov 1992
6 * Improvements by Harald Koenig <koenig@nova.tat.physik.uni-tuebingen.de>
7 * and Alan Modra <alan@spri.levels.unisa.edu.au>.
8 *
9 * Major rewrite by Bryan Henderson <bryanh@giraffe-data.com>, 96.09.19.
10 * The new program is called hwclock. New features:
ef71b8f1
SK
11 *
12 * - You can set the hardware clock without also modifying the system
13 * clock.
14 * - You can read and set the clock with finer than 1 second precision.
15 * - When you set the clock, hwclock automatically refigures the drift
16 * rate, based on how far off the clock was before you set it.
7eda085c
KZ
17 *
18 * Reshuffled things, added sparc code, and re-added alpha stuff
19 * by David Mosberger <davidm@azstarnet.com>
9abb2685 20 * and Jay Estabrook <jestabro@amt.tay1.dec.com>
7eda085c
KZ
21 * and Martin Ostermann <ost@coments.rwth-aachen.de>, aeb@cwi.nl, 990212.
22 *
ef71b8f1 23 * Fix for Award 2094 bug, Dave Coffin (dcoffin@shore.net) 11/12/98
22853e4a 24 * Change of local time handling, Stefan Ring <e9725446@stud3.tuwien.ac.at>
63cccae4 25 * Change of adjtime handling, James P. Rutledge <ao112@rgfn.epcc.edu>.
66ee8158
KZ
26 *
27 * Distributed under GPL
7eda085c 28 */
7eda085c
KZ
29/*
30 * Explanation of `adjusting' (Rob Hooft):
31 *
32 * The problem with my machine is that its CMOS clock is 10 seconds
33 * per day slow. With this version of clock.c, and my '/etc/rc.local'
34 * reading '/etc/clock -au' instead of '/etc/clock -u -s', this error
35 * is automatically corrected at every boot.
36 *
37 * To do this job, the program reads and writes the file '/etc/adjtime'
38 * to determine the correction, and to save its data. In this file are
39 * three numbers:
40 *
ef71b8f1
SK
41 * 1) the correction in seconds per day. (So if your clock runs 5
42 * seconds per day fast, the first number should read -5.0)
43 * 2) the number of seconds since 1/1/1970 the last time the program
44 * was used
45 * 3) the remaining part of a second which was leftover after the last
46 * adjustment
7eda085c
KZ
47 *
48 * Installation and use of this program:
49 *
ef71b8f1
SK
50 * a) create a file '/etc/adjtime' containing as the first and only
51 * line: '0.0 0 0.0'
52 * b) run 'clock -au' or 'clock -a', depending on whether your cmos is
53 * in universal or local time. This updates the second number.
54 * c) set your system time using the 'date' command.
55 * d) update your cmos time using 'clock -wu' or 'clock -w'
56 * e) replace the first number in /etc/adjtime by your correction.
57 * f) put the command 'clock -au' or 'clock -a' in your '/etc/rc.local'
7eda085c
KZ
58 */
59
7eda085c 60#include <errno.h>
63cccae4 61#include <getopt.h>
33ed2d02 62#include <limits.h>
83aa4ad7 63#include <math.h>
998f392a
SK
64#include <stdio.h>
65#include <stdlib.h>
66#include <string.h>
998f392a
SK
67#include <sys/stat.h>
68#include <sys/time.h>
69#include <time.h>
70#include <unistd.h>
7eda085c 71
998f392a 72#include "c.h"
db116df7 73#include "closestream.h"
7eda085c 74#include "nls.h"
e1f4706d 75#include "optutils.h"
9d413ecb 76#include "pathnames.h"
c7f75390 77#include "hwclock.h"
7c678f81 78#include "timeutils.h"
984a6096 79#include "env.h"
4aca5fe2 80#include "xalloc.h"
7eda085c 81
88058a71
KZ
82#ifdef HAVE_LIBAUDIT
83#include <libaudit.h>
84static int hwaudit_fd = -1;
88058a71
KZ
85#endif
86
7eda085c 87/* The struct that holds our hardware access routines */
2ba641e5 88static struct clock_ops *ur;
7eda085c 89
f196fd1a
SB
90/* Maximal clock adjustment in seconds per day.
91 (adjtime() glibc call has 2145 seconds limit on i386, so it is good enough for us as well,
92 43219 is a maximal safe value preventing exact_adjustment overflow.) */
93#define MAX_DRIFT 2145.0
94
7eda085c 95struct adjtime {
ef71b8f1
SK
96 /*
97 * This is information we keep in the adjtime file that tells us how
98 * to do drift corrections. Elements are all straight from the
99 * adjtime file, so see documentation of that file for details.
100 * Exception is <dirty>, which is an indication that what's in this
101 * structure is not what's in the disk file (because it has been
102 * updated since read from the disk file).
103 */
473ec359 104 int dirty;
ef71b8f1
SK
105 /* line 1 */
106 double drift_factor;
107 time_t last_adj_time;
108 double not_adjusted;
109 /* line 2 */
110 time_t last_calib_time;
111 /*
112 * The most recent time that we set the clock from an external
113 * authority (as opposed to just doing a drift adjustment)
114 */
115 /* line 3 */
a8775f4e 116 enum a_local_utc { UTC = 0, LOCAL, UNKNOWN } local_utc;
ef71b8f1
SK
117 /*
118 * To which time zone, local or UTC, we most recently set the
119 * hardware clock.
120 */
7eda085c
KZ
121};
122
2794995a
WP
123/*
124 * time_t to timeval conversion.
125 */
126static struct timeval t2tv(time_t timet)
127{
128 struct timeval rettimeval;
129
130 rettimeval.tv_sec = timet;
131 rettimeval.tv_usec = 0;
132 return rettimeval;
133}
134
ef71b8f1
SK
135/*
136 * The difference in seconds between two times in "timeval" format.
137 */
138double time_diff(struct timeval subtrahend, struct timeval subtractor)
139{
140 return (subtrahend.tv_sec - subtractor.tv_sec)
141 + (subtrahend.tv_usec - subtractor.tv_usec) / 1E6;
7eda085c
KZ
142}
143
ef71b8f1
SK
144/*
145 * The time, in "timeval" format, which is <increment> seconds after the
146 * time <addend>. Of course, <increment> may be negative.
147 */
148static struct timeval time_inc(struct timeval addend, double increment)
149{
150 struct timeval newtime;
151
152 newtime.tv_sec = addend.tv_sec + (int)increment;
153 newtime.tv_usec = addend.tv_usec + (increment - (int)increment) * 1E6;
154
155 /*
156 * Now adjust it so that the microsecond value is between 0 and 1
157 * million.
158 */
159 if (newtime.tv_usec < 0) {
160 newtime.tv_usec += 1E6;
161 newtime.tv_sec -= 1;
162 } else if (newtime.tv_usec >= 1E6) {
163 newtime.tv_usec -= 1E6;
164 newtime.tv_sec += 1;
165 }
166 return newtime;
7eda085c
KZ
167}
168
473ec359 169static int
336f7c5f 170hw_clock_is_utc(const struct hwclock_control *ctl,
ef71b8f1
SK
171 const struct adjtime adjtime)
172{
473ec359 173 int ret;
eb63b9b8 174
336f7c5f 175 if (ctl->utc)
473ec359 176 ret = 1; /* --utc explicitly given on command line */
336f7c5f 177 else if (ctl->local_opt)
473ec359 178 ret = 0; /* --localtime explicitly given */
eb63b9b8 179 else
ef71b8f1 180 /* get info from adjtime file - default is UTC */
7894bf0f 181 ret = (adjtime.local_utc != LOCAL);
336f7c5f 182 if (ctl->debug)
eb63b9b8
KZ
183 printf(_("Assuming hardware clock is kept in %s time.\n"),
184 ret ? _("UTC") : _("local"));
185 return ret;
186}
187
ef71b8f1
SK
188/*
189 * Read the adjustment parameters out of the /etc/adjtime file.
190 *
c47a8f2a
WP
191 * Return them as the adjtime structure <*adjtime_p>. Its defaults are
192 * initialized in main().
ef71b8f1 193 */
336f7c5f
SK
194static int read_adjtime(const struct hwclock_control *ctl,
195 struct adjtime *adjtime_p)
ef71b8f1
SK
196{
197 FILE *adjfile;
ef71b8f1
SK
198 char line1[81]; /* String: first line of adjtime file */
199 char line2[81]; /* String: second line of adjtime file */
200 char line3[81]; /* String: third line of adjtime file */
ef71b8f1 201
a8775f4e 202 if (access(ctl->adj_file_name, R_OK) != 0)
c47a8f2a 203 return EXIT_SUCCESS;
eb63b9b8 204
336f7c5f 205 adjfile = fopen(ctl->adj_file_name, "r"); /* open file for reading */
ef71b8f1 206 if (adjfile == NULL) {
336f7c5f 207 warn(_("cannot open %s"), ctl->adj_file_name);
c47a8f2a 208 return EXIT_FAILURE;
eb63b9b8 209 }
7eda085c 210
ef71b8f1
SK
211 if (!fgets(line1, sizeof(line1), adjfile))
212 line1[0] = '\0'; /* In case fgets fails */
213 if (!fgets(line2, sizeof(line2), adjfile))
214 line2[0] = '\0'; /* In case fgets fails */
215 if (!fgets(line3, sizeof(line3), adjfile))
216 line3[0] = '\0'; /* In case fgets fails */
217
218 fclose(adjfile);
219
ef71b8f1
SK
220 sscanf(line1, "%lf %ld %lf",
221 &adjtime_p->drift_factor,
a8775f4e
SK
222 &adjtime_p->last_adj_time,
223 &adjtime_p->not_adjusted);
ef71b8f1 224
a8775f4e 225 sscanf(line2, "%ld", &adjtime_p->last_calib_time);
ef71b8f1
SK
226
227 if (!strcmp(line3, "UTC\n")) {
228 adjtime_p->local_utc = UTC;
229 } else if (!strcmp(line3, "LOCAL\n")) {
230 adjtime_p->local_utc = LOCAL;
231 } else {
232 adjtime_p->local_utc = UNKNOWN;
233 if (line3[0]) {
111c05d3
SK
234 warnx(_("Warning: unrecognized third line in adjtime file\n"
235 "(Expected: `UTC' or `LOCAL' or nothing.)"));
ef71b8f1
SK
236 }
237 }
7eda085c 238
336f7c5f 239 if (ctl->debug) {
ef71b8f1
SK
240 printf(_
241 ("Last drift adjustment done at %ld seconds after 1969\n"),
242 (long)adjtime_p->last_adj_time);
243 printf(_("Last calibration done at %ld seconds after 1969\n"),
244 (long)adjtime_p->last_calib_time);
245 printf(_("Hardware clock is on %s time\n"),
246 (adjtime_p->local_utc ==
247 LOCAL) ? _("local") : (adjtime_p->local_utc ==
248 UTC) ? _("UTC") : _("unknown"));
249 }
250
c47a8f2a 251 return EXIT_SUCCESS;
ef71b8f1 252}
7eda085c 253
ef71b8f1
SK
254/*
255 * Wait until the falling edge of the Hardware Clock's update flag so that
256 * any time that is read from the clock immediately after we return will be
257 * exact.
258 *
259 * The clock only has 1 second precision, so it gives the exact time only
260 * once per second, right on the falling edge of the update flag.
261 *
262 * We wait (up to one second) either blocked waiting for an rtc device or in
263 * a CPU spin loop. The former is probably not very accurate.
264 *
265 * Return 0 if it worked, nonzero if it didn't.
266 */
336f7c5f 267static int synchronize_to_clock_tick(const struct hwclock_control *ctl)
ef71b8f1 268{
63cccae4 269 int rc;
7eda085c 270
336f7c5f 271 if (ctl->debug)
ef71b8f1 272 printf(_("Waiting for clock tick...\n"));
7eda085c 273
336f7c5f 274 rc = ur->synchronize_to_clock_tick(ctl);
63cccae4 275
336f7c5f 276 if (ctl->debug) {
3b96a7ac
KZ
277 if (rc)
278 printf(_("...synchronization failed\n"));
279 else
280 printf(_("...got clock tick\n"));
281 }
63cccae4
KZ
282
283 return rc;
7eda085c
KZ
284}
285
ef71b8f1
SK
286/*
287 * Convert a time in broken down format (hours, minutes, etc.) into standard
288 * unix time (seconds into epoch). Return it as *systime_p.
289 *
290 * The broken down time is argument <tm>. This broken down time is either
291 * in local time zone or UTC, depending on value of logical argument
292 * "universal". True means it is in UTC.
293 *
294 * If the argument contains values that do not constitute a valid time, and
295 * mktime() recognizes this, return *valid_p == false and *systime_p
296 * undefined. However, mktime() sometimes goes ahead and computes a
297 * fictional time "as if" the input values were valid, e.g. if they indicate
298 * the 31st day of April, mktime() may compute the time of May 1. In such a
299 * case, we return the same fictional value mktime() does as *systime_p and
300 * return *valid_p == true.
301 */
473ec359 302static int
336f7c5f 303mktime_tz(const struct hwclock_control *ctl, struct tm tm,
473ec359 304 time_t *systime_p)
ef71b8f1 305{
473ec359
SK
306 int valid;
307
336f7c5f 308 if (ctl->universal)
12f1cdda
SK
309 *systime_p = timegm(&tm);
310 else
311 *systime_p = mktime(&tm);
312 if (*systime_p == -1) {
ef71b8f1
SK
313 /*
314 * This apparently (not specified in mktime() documentation)
315 * means the 'tm' structure does not contain valid values
316 * (however, not containing valid values does _not_ imply
317 * mktime() returns -1).
318 */
473ec359 319 valid = 0;
336f7c5f 320 if (ctl->debug)
ef71b8f1
SK
321 printf(_("Invalid values in hardware clock: "
322 "%4d/%.2d/%.2d %.2d:%.2d:%.2d\n"),
323 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
324 tm.tm_hour, tm.tm_min, tm.tm_sec);
325 } else {
473ec359 326 valid = 1;
336f7c5f 327 if (ctl->debug)
ef71b8f1
SK
328 printf(_
329 ("Hw clock time : %4d/%.2d/%.2d %.2d:%.2d:%.2d = "
330 "%ld seconds since 1969\n"), tm.tm_year + 1900,
331 tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min,
332 tm.tm_sec, (long)*systime_p);
333 }
473ec359 334 return valid;
7eda085c
KZ
335}
336
ef71b8f1
SK
337/*
338 * Read the hardware clock and return the current time via <tm> argument.
339 *
340 * Use the method indicated by <method> argument to access the hardware
341 * clock.
342 */
cdedde03 343static int
336f7c5f 344read_hardware_clock(const struct hwclock_control *ctl,
473ec359 345 int *valid_p, time_t *systime_p)
ef71b8f1
SK
346{
347 struct tm tm;
348 int err;
7eda085c 349
336f7c5f 350 err = ur->read_hardware_clock(ctl, &tm);
ef71b8f1
SK
351 if (err)
352 return err;
7eda085c 353
336f7c5f 354 if (ctl->debug)
ef71b8f1
SK
355 printf(_
356 ("Time read from Hardware Clock: %4d/%.2d/%.2d %02d:%02d:%02d\n"),
357 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour,
358 tm.tm_min, tm.tm_sec);
473ec359 359 *valid_p = mktime_tz(ctl, tm, systime_p);
cdedde03 360
ef71b8f1 361 return 0;
7eda085c
KZ
362}
363
ef71b8f1
SK
364/*
365 * Set the Hardware Clock to the time <newtime>, in local time zone or UTC,
366 * according to <universal>.
367 */
7eda085c 368static void
336f7c5f 369set_hardware_clock(const struct hwclock_control *ctl, const time_t newtime)
ef71b8f1
SK
370{
371 struct tm new_broken_time;
372 /*
373 * Time to which we will set Hardware Clock, in broken down format,
374 * in the time zone of caller's choice
375 */
376
336f7c5f 377 if (ctl->universal)
ef71b8f1
SK
378 new_broken_time = *gmtime(&newtime);
379 else
380 new_broken_time = *localtime(&newtime);
7eda085c 381
336f7c5f 382 if (ctl->debug)
ef71b8f1
SK
383 printf(_("Setting Hardware Clock to %.2d:%.2d:%.2d "
384 "= %ld seconds since 1969\n"),
385 new_broken_time.tm_hour, new_broken_time.tm_min,
386 new_broken_time.tm_sec, (long)newtime);
7eda085c 387
336f7c5f 388 if (ctl->testing)
142efd24 389 printf(_("Test mode: clock was not changed\n"));
01909377 390 else
336f7c5f 391 ur->set_hardware_clock(ctl, &new_broken_time);
ef71b8f1 392}
7eda085c 393
ef71b8f1
SK
394/*
395 * Set the Hardware Clock to the time "sethwtime", in local time zone or
396 * UTC, according to "universal".
397 *
398 * Wait for a fraction of a second so that "sethwtime" is the value of the
399 * Hardware Clock as of system time "refsystime", which is in the past. For
400 * example, if "sethwtime" is 14:03:05 and "refsystime" is 12:10:04.5 and
401 * the current system time is 12:10:06.0: Wait .5 seconds (to make exactly 2
402 * seconds since "refsystime") and then set the Hardware Clock to 14:03:07,
403 * thus getting a precise and retroactive setting of the clock.
404 *
405 * (Don't be confused by the fact that the system clock and the Hardware
406 * Clock differ by two hours in the above example. That's just to remind you
407 * that there are two independent time scales here).
408 *
409 * This function ought to be able to accept set times as fractional times.
410 * Idea for future enhancement.
411 */
7eda085c 412static void
336f7c5f
SK
413set_hardware_clock_exact(const struct hwclock_control *ctl,
414 const time_t sethwtime,
415 const struct timeval refsystime)
ef71b8f1 416{
ef71b8f1 417 /*
4a44a54b
CM
418 * The Hardware Clock can only be set to any integer time plus one
419 * half second. The integer time is required because there is no
420 * interface to set or get a fractional second. The additional half
421 * second is because the Hardware Clock updates to the following
422 * second precisely 500 ms (not 1 second!) after you release the
423 * divider reset (after setting the new time) - see description of
424 * DV2, DV1, DV0 in Register A in the MC146818A data sheet (and note
425 * that although that document doesn't say so, real-world code seems
426 * to expect that the SET bit in Register B functions the same way).
427 * That means that, e.g., when you set the clock to 1:02:03, it
428 * effectively really sets it to 1:02:03.5, because it will update to
429 * 1:02:04 only half a second later. Our caller passes the desired
430 * integer Hardware Clock time in sethwtime, and the corresponding
431 * system time (which may have a fractional part, and which may or may
432 * not be the same!) in refsystime. In an ideal situation, we would
433 * then apply sethwtime to the Hardware Clock at refsystime+500ms, so
434 * that when the Hardware Clock ticks forward to sethwtime+1s half a
435 * second later at refsystime+1000ms, everything is in sync. So we
436 * spin, waiting for gettimeofday() to return a time at or after that
437 * time (refsystime+500ms) up to a tolerance value, initially 1ms. If
438 * we miss that time due to being preempted for some other process,
439 * then we increase the margin a little bit (initially 1ms, doubling
440 * each time), add 1 second (or more, if needed to get a time that is
441 * in the future) to both the time for which we are waiting and the
442 * time that we will apply to the Hardware Clock, and start waiting
443 * again.
444 *
445 * For example, the caller requests that we set the Hardware Clock to
446 * 1:02:03, with reference time (current system time) = 6:07:08.250.
447 * We want the Hardware Clock to update to 1:02:04 at 6:07:09.250 on
448 * the system clock, and the first such update will occur 0.500
449 * seconds after we write to the Hardware Clock, so we spin until the
450 * system clock reads 6:07:08.750. If we get there, great, but let's
451 * imagine the system is so heavily loaded that our process is
452 * preempted and by the time we get to run again, the system clock
453 * reads 6:07:11.990. We now want to wait until the next xx:xx:xx.750
454 * time, which is 6:07:12.750 (4.5 seconds after the reference time),
455 * at which point we will set the Hardware Clock to 1:02:07 (4 seconds
456 * after the originally requested time). If we do that successfully,
457 * then at 6:07:13.250 (5 seconds after the reference time), the
458 * Hardware Clock will update to 1:02:08 (5 seconds after the
459 * originally requested time), and all is well thereafter.
ef71b8f1 460 */
4a44a54b
CM
461
462 time_t newhwtime = sethwtime;
463 double target_time_tolerance_secs = 0.001; /* initial value */
464 double tolerance_incr_secs = 0.001; /* initial value */
465 const double RTC_SET_DELAY_SECS = 0.5; /* 500 ms */
466 const struct timeval RTC_SET_DELAY_TV = { 0, RTC_SET_DELAY_SECS * 1E6 };
467
468 struct timeval targetsystime;
469 struct timeval nowsystime;
470 struct timeval prevsystime = refsystime;
471 double deltavstarget;
472
473 timeradd(&refsystime, &RTC_SET_DELAY_TV, &targetsystime);
474
475 while (1) {
476 double ticksize;
477
478 /* FOR TESTING ONLY: inject random delays of up to 1000ms */
336f7c5f 479 if (ctl->debug >= 10) {
4a44a54b
CM
480 int usec = random() % 1000000;
481 printf(_("sleeping ~%d usec\n"), usec);
559a5b6c 482 xusleep(usec);
ea0804b0
SK
483 }
484
ef71b8f1 485 gettimeofday(&nowsystime, NULL);
4a44a54b
CM
486 deltavstarget = time_diff(nowsystime, targetsystime);
487 ticksize = time_diff(nowsystime, prevsystime);
488 prevsystime = nowsystime;
489
490 if (ticksize < 0) {
336f7c5f 491 if (ctl->debug)
4a44a54b 492 printf(_("time jumped backward %.6f seconds "
c2114018 493 "to %ld.%06ld - retargeting\n"),
b68e1f44
SK
494 ticksize, nowsystime.tv_sec,
495 nowsystime.tv_usec);
4a44a54b
CM
496 /* The retarget is handled at the end of the loop. */
497 } else if (deltavstarget < 0) {
498 /* deltavstarget < 0 if current time < target time */
336f7c5f 499 if (ctl->debug >= 2)
c2114018 500 printf(_("%ld.%06ld < %ld.%06ld (%.6f)\n"),
b68e1f44
SK
501 nowsystime.tv_sec,
502 nowsystime.tv_usec,
503 targetsystime.tv_sec,
504 targetsystime.tv_usec,
4a44a54b
CM
505 deltavstarget);
506 continue; /* not there yet - keep spinning */
507 } else if (deltavstarget <= target_time_tolerance_secs) {
508 /* Close enough to the target time; done waiting. */
509 break;
510 } else /* (deltavstarget > target_time_tolerance_secs) */ {
511 /*
512 * We missed our window. Increase the tolerance and
513 * aim for the next opportunity.
514 */
336f7c5f 515 if (ctl->debug)
c2114018
RM
516 printf(_("missed it - %ld.%06ld is too far "
517 "past %ld.%06ld (%.6f > %.6f)\n"),
b68e1f44
SK
518 nowsystime.tv_sec,
519 nowsystime.tv_usec,
520 targetsystime.tv_sec,
521 targetsystime.tv_usec,
4a44a54b
CM
522 deltavstarget,
523 target_time_tolerance_secs);
524 target_time_tolerance_secs += tolerance_incr_secs;
525 tolerance_incr_secs *= 2;
ea0804b0 526 }
4a44a54b
CM
527
528 /*
529 * Aim for the same offset (tv_usec) within the second in
530 * either the current second (if that offset hasn't arrived
531 * yet), or the next second.
532 */
533 if (nowsystime.tv_usec < targetsystime.tv_usec)
534 targetsystime.tv_sec = nowsystime.tv_sec;
535 else
536 targetsystime.tv_sec = nowsystime.tv_sec + 1;
537 }
538
539 newhwtime = sethwtime
540 + (int)(time_diff(nowsystime, refsystime)
541 - RTC_SET_DELAY_SECS /* don't count this */
542 + 0.5 /* for rounding */);
336f7c5f 543 if (ctl->debug)
c2114018
RM
544 printf(_("%ld.%06ld is close enough to %ld.%06ld (%.6f < %.6f)\n"
545 "Set RTC to %ld (%ld + %d; refsystime = %ld.%06ld)\n"),
b68e1f44
SK
546 nowsystime.tv_sec, nowsystime.tv_usec,
547 targetsystime.tv_sec, targetsystime.tv_usec,
4a44a54b 548 deltavstarget, target_time_tolerance_secs,
b68e1f44 549 newhwtime, sethwtime,
4a44a54b 550 (int)(newhwtime - sethwtime),
b68e1f44 551 refsystime.tv_sec, refsystime.tv_usec);
ef71b8f1 552
336f7c5f 553 set_hardware_clock(ctl, newhwtime);
7eda085c
KZ
554}
555
7eda085c 556static void
88d2a1a3 557display_time(struct timeval hwctime)
ef71b8f1 558{
88d2a1a3
WP
559 char buf[ISO_8601_BUFSIZ];
560
561 strtimeval_iso(&hwctime, ISO_8601_DATE|ISO_8601_TIME|ISO_8601_DOTUSEC|
562 ISO_8601_TIMEZONE|ISO_8601_SPACE,
563 buf, sizeof(buf));
564 printf("%s\n", buf);
ef71b8f1 565}
7eda085c 566
ef71b8f1 567/*
c8f64f94 568 * Adjusts System time, sets the kernel's timezone and RTC timescale.
ef71b8f1 569 *
c8f64f94
WP
570 * The kernel warp_clock function adjusts the System time according to the
571 * tz.tz_minuteswest argument and sets PCIL (see below). At boot settimeofday(2)
572 * has one-shot access to this function as shown in the table below.
ef71b8f1 573 *
c8f64f94
WP
574 * +-------------------------------------------------------------------+
575 * | settimeofday(tv, tz) |
576 * |-------------------------------------------------------------------|
577 * | Arguments | System Time | PCIL | | warp_clock |
578 * | tv | tz | set | warped | set | firsttime | locked |
579 * |---------|---------|---------------|------|-----------|------------|
580 * | pointer | NULL | yes | no | no | 1 | no |
581 * | pointer | pointer | yes | no | no | 0 | yes |
582 * | NULL | ptr2utc | no | no | no | 0 | yes |
583 * | NULL | pointer | no | yes | yes | 0 | yes |
584 * +-------------------------------------------------------------------+
585 * ptr2utc: tz.tz_minuteswest is zero (UTC).
586 * PCIL: persistent_clock_is_local, sets the "11 minute mode" timescale.
587 * firsttime: locks the warp_clock function (initialized to 1 at boot).
d17a12a3 588 *
c8f64f94
WP
589 * +---------------------------------------------------------------------------+
590 * | op | RTC scale | settimeofday calls |
591 * |---------|-----------|-----------------------------------------------------|
592 * | systz | Local | 1) warps system time*, sets PCIL* and kernel tz |
593 * | systz | UTC | 1st) locks warp_clock* 2nd) sets kernel tz |
594 * | hctosys | Local | 1st) sets PCIL* 2nd) sets system time and kernel tz |
595 * | hctosys | UTC | 1) sets system time and kernel tz |
596 * +---------------------------------------------------------------------------+
597 * * only on first call after boot
ef71b8f1 598 */
9abb2685 599static int
88d2a1a3 600set_system_clock(const struct hwclock_control *ctl,
336f7c5f 601 const struct timeval newtime)
ef71b8f1 602{
88d2a1a3
WP
603 struct tm *broken;
604 int minuteswest;
605 int rc = 0;
404fdd2c 606 const struct timezone tz_utc = { 0 };
ef71b8f1 607
88d2a1a3 608 broken = localtime(&newtime.tv_sec);
48d7b13a 609#ifdef HAVE_TM_GMTOFF
88d2a1a3 610 minuteswest = -broken->tm_gmtoff / 60; /* GNU extension */
22853e4a 611#else
88d2a1a3
WP
612 minuteswest = timezone / 60;
613 if (broken->tm_isdst)
614 minuteswest -= 60;
22853e4a 615#endif
9abb2685 616
88d2a1a3 617 if (ctl->debug) {
b44dd522
WP
618 if (ctl->hctosys && !ctl->universal)
619 printf(_("Calling settimeofday(NULL, %d) to set "
620 "persistent_clock_is_local.\n"), minuteswest);
621 if (ctl->systz && ctl->universal)
622 puts(_("Calling settimeofday(NULL, 0) "
623 "to lock the warp function."));
624 if (ctl->hctosys)
625 printf(_("Calling settimeofday(%ld.%06ld, %d)\n"),
626 newtime.tv_sec, newtime.tv_usec, minuteswest);
627 else {
628 printf(_("Calling settimeofday(NULL, %d) "), minuteswest);
629 if (ctl->universal)
630 puts(_("to set the kernel timezone."));
631 else
632 puts(_("to warp System time."));
633 }
88d2a1a3 634 }
b44dd522 635
88d2a1a3
WP
636 if (ctl->testing) {
637 printf(_
638 ("Test mode: clock was not changed\n"));
88d2a1a3 639 } else {
e5cb8d4d 640 const struct timezone tz = { minuteswest };
ef71b8f1 641
404fdd2c 642 if (ctl->hctosys && !ctl->universal) /* set PCIL */
e5cb8d4d 643 rc = settimeofday(NULL, &tz);
404fdd2c 644 if (ctl->systz && ctl->universal) /* lock warp_clock */
e5cb8d4d 645 rc = settimeofday(NULL, &tz_utc);
404fdd2c 646 if (!rc && ctl->hctosys)
88d2a1a3 647 rc = settimeofday(&newtime, &tz);
404fdd2c
WP
648 else if (!rc)
649 rc = settimeofday(NULL, &tz);
650
88d2a1a3
WP
651 if (rc) {
652 warn(_("settimeofday() failed"));
c47a8f2a 653 return EXIT_FAILURE;
e5cb8d4d 654 }
ef71b8f1 655 }
c47a8f2a 656 return EXIT_SUCCESS;
ef71b8f1
SK
657}
658
659/*
f276d71a
WP
660 * Refresh the last calibrated and last adjusted timestamps in <*adjtime_p>
661 * to facilitate future drift calculations based on this set point.
ef71b8f1 662 *
f276d71a
WP
663 * With the --update-drift option:
664 * Update the drift factor in <*adjtime_p> based on the fact that the
665 * Hardware Clock was just calibrated to <nowtime> and before that was
666 * set to the <hclocktime> time scale.
ef71b8f1 667 */
7eda085c 668static void
336f7c5f
SK
669adjust_drift_factor(const struct hwclock_control *ctl,
670 struct adjtime *adjtime_p,
2794995a 671 const struct timeval nowtime,
336f7c5f 672 const struct timeval hclocktime)
ef71b8f1 673{
336f7c5f
SK
674 if (!ctl->update) {
675 if (ctl->debug)
f276d71a
WP
676 printf(_("Not adjusting drift factor because the "
677 "--update-drift option was not used.\n"));
63cccae4 678 } else if (adjtime_p->last_calib_time == 0) {
336f7c5f 679 if (ctl->debug)
63cccae4
KZ
680 printf(_("Not adjusting drift factor because last "
681 "calibration time is zero,\n"
682 "so history is bad and calibration startover "
683 "is necessary.\n"));
bbb4c273 684 } else if ((hclocktime.tv_sec - adjtime_p->last_calib_time) < 4 * 60 * 60) {
336f7c5f 685 if (ctl->debug)
63cccae4 686 printf(_("Not adjusting drift factor because it has "
bbb4c273 687 "been less than four hours since the last "
63cccae4 688 "calibration.\n"));
c6ea9ef6 689 } else {
63cccae4 690 /*
f276d71a
WP
691 * At adjustment time we drift correct the hardware clock
692 * according to the contents of the adjtime file and refresh
693 * its last adjusted timestamp.
63cccae4 694 *
f276d71a
WP
695 * At calibration time we set the Hardware Clock and refresh
696 * both timestamps in <*adjtime_p>.
63cccae4 697 *
f276d71a
WP
698 * Here, with the --update-drift option, we also update the
699 * drift factor in <*adjtime_p>.
63cccae4
KZ
700 *
701 * Let us do computation in doubles. (Floats almost suffice,
702 * but 195 days + 1 second equals 195 days in floats.)
703 */
704 const double sec_per_day = 24.0 * 60.0 * 60.0;
63cccae4 705 double factor_adjust;
f196fd1a 706 double drift_factor;
2794995a 707 struct timeval last_calib;
63cccae4 708
2794995a 709 last_calib = t2tv(adjtime_p->last_calib_time);
ede32597
WP
710 /*
711 * Correction to apply to the current drift factor.
712 *
713 * Simplified: uncorrected_drift / days_since_calibration.
714 *
715 * hclocktime is fully corrected with the current drift factor.
716 * Its difference from nowtime is the missed drift correction.
717 */
2794995a
WP
718 factor_adjust = time_diff(nowtime, hclocktime) /
719 (time_diff(nowtime, last_calib) / sec_per_day);
63cccae4 720
f196fd1a 721 drift_factor = adjtime_p->drift_factor + factor_adjust;
83aa4ad7 722 if (fabs(drift_factor) > MAX_DRIFT) {
336f7c5f 723 if (ctl->debug)
f196fd1a
SB
724 printf(_("Clock drift factor was calculated as "
725 "%f seconds/day.\n"
726 "It is far too much. Resetting to zero.\n"),
727 drift_factor);
728 drift_factor = 0;
729 } else {
336f7c5f 730 if (ctl->debug)
a36a9026
WP
731 printf(_("Clock drifted %f seconds in the past "
732 "%f seconds\nin spite of a drift factor of "
f196fd1a
SB
733 "%f seconds/day.\n"
734 "Adjusting drift factor by %f seconds/day\n"),
2794995a
WP
735 time_diff(nowtime, hclocktime),
736 time_diff(nowtime, last_calib),
f196fd1a
SB
737 adjtime_p->drift_factor, factor_adjust);
738 }
739
740 adjtime_p->drift_factor = drift_factor;
63cccae4 741 }
2794995a 742 adjtime_p->last_calib_time = nowtime.tv_sec;
9abb2685 743
2794995a 744 adjtime_p->last_adj_time = nowtime.tv_sec;
9abb2685 745
63cccae4 746 adjtime_p->not_adjusted = 0;
9abb2685 747
473ec359 748 adjtime_p->dirty = 1;
7eda085c
KZ
749}
750
ef71b8f1 751/*
ede32597
WP
752 * Calculate the drift correction currently needed for the
753 * Hardware Clock based on the last time it was adjusted,
754 * and the current drift factor, as stored in the adjtime file.
ef71b8f1 755 *
ede32597 756 * The total drift adjustment needed is stored at tdrift_p.
ef71b8f1 757 *
ef71b8f1 758 */
7eda085c 759static void
336f7c5f
SK
760calculate_adjustment(const struct hwclock_control *ctl,
761 const double factor,
ef71b8f1
SK
762 const time_t last_time,
763 const double not_adjusted,
2794995a 764 const time_t systime, struct timeval *tdrift_p)
ef71b8f1
SK
765{
766 double exact_adjustment;
7eda085c 767
ef71b8f1
SK
768 exact_adjustment =
769 ((double)(systime - last_time)) * factor / (24 * 60 * 60)
770 + not_adjusted;
1030c325 771 tdrift_p->tv_sec = (time_t) floor(exact_adjustment);
2794995a
WP
772 tdrift_p->tv_usec = (exact_adjustment -
773 (double)tdrift_p->tv_sec) * 1E6;
336f7c5f 774 if (ctl->debug) {
b68e1f44
SK
775 printf(P_("Time since last adjustment is %ld second\n",
776 "Time since last adjustment is %ld seconds\n",
777 (systime - last_time)),
778 (systime - last_time));
c2114018 779 printf(_("Calculated Hardware Clock drift is %ld.%06ld seconds\n"),
b68e1f44 780 tdrift_p->tv_sec, tdrift_p->tv_usec);
ef71b8f1 781 }
7eda085c
KZ
782}
783
ef71b8f1
SK
784/*
785 * Write the contents of the <adjtime> structure to its disk file.
786 *
787 * But if the contents are clean (unchanged since read from disk), don't
788 * bother.
789 */
336f7c5f
SK
790static void save_adjtime(const struct hwclock_control *ctl,
791 const struct adjtime *adjtime)
ef71b8f1 792{
4aca5fe2
SK
793 char *content; /* Stuff to write to disk file */
794 FILE *fp;
795 int err = 0;
7eda085c 796
4aca5fe2
SK
797 if (!adjtime->dirty)
798 return;
ef71b8f1 799
4aca5fe2
SK
800 xasprintf(&content, "%f %ld %f\n%ld\n%s\n",
801 adjtime->drift_factor,
802 adjtime->last_adj_time,
803 adjtime->not_adjusted,
804 adjtime->last_calib_time,
805 (adjtime->local_utc == LOCAL) ? "LOCAL" : "UTC");
806
807 if (ctl->testing) {
66c83c1c
WP
808 if (ctl->debug){
809 printf(_("Test mode: %s was not updated with:\n%s"),
810 ctl->adj_file_name, content);
811 }
4aca5fe2
SK
812 free(content);
813 return;
814 }
815
816 fp = fopen(ctl->adj_file_name, "w");
817 if (fp == NULL) {
818 warn(_("Could not open file with the clock adjustment parameters "
819 "in it (%s) for writing"), ctl->adj_file_name);
820 err = 1;
821 } else if (fputs(content, fp) < 0 || close_stream(fp) != 0) {
822 warn(_("Could not update file with the clock adjustment "
823 "parameters (%s) in it"), ctl->adj_file_name);
824 err = 1;
ef71b8f1 825 }
4aca5fe2
SK
826 free(content);
827 if (err)
828 warnx(_("Drift adjustment parameters not updated."));
ef71b8f1 829}
7eda085c 830
ef71b8f1
SK
831/*
832 * Do the adjustment requested, by 1) setting the Hardware Clock (if
833 * necessary), and 2) updating the last-adjusted time in the adjtime
834 * structure.
835 *
836 * Do not update anything if the Hardware Clock does not currently present a
837 * valid time.
838 *
ede32597 839 * <hclocktime> is the drift corrected time read from the Hardware Clock.
ef71b8f1 840 *
ede32597
WP
841 * <read_time> was the system time when the <hclocktime> was read, which due
842 * to computational delay could be a short time ago. It is used to define a
843 * trigger point for setting the Hardware Clock. The fractional part of the
844 * Hardware clock set time is subtracted from read_time to 'refer back', or
845 * delay, the trigger point. Fractional parts must be accounted for in this
846 * way, because the Hardware Clock can only be set to a whole second.
ef71b8f1
SK
847 *
848 * <universal>: the Hardware Clock is kept in UTC.
849 *
850 * <testing>: We are running in test mode (no updating of clock).
851 *
ef71b8f1 852 */
7eda085c 853static void
336f7c5f 854do_adjustment(const struct hwclock_control *ctl, struct adjtime *adjtime_p,
88d2a1a3 855 const struct timeval hclocktime,
336f7c5f 856 const struct timeval read_time)
ef71b8f1 857{
88d2a1a3 858 if (adjtime_p->last_adj_time == 0) {
336f7c5f 859 if (ctl->debug)
f55b4b45
KZ
860 printf(_("Not setting clock because last adjustment time is zero, "
861 "so history is bad.\n"));
83aa4ad7 862 } else if (fabs(adjtime_p->drift_factor) > MAX_DRIFT) {
336f7c5f 863 if (ctl->debug)
f55b4b45
KZ
864 printf(_("Not setting clock because drift factor %f is far too high.\n"),
865 adjtime_p->drift_factor);
ef71b8f1 866 } else {
336f7c5f 867 set_hardware_clock_exact(ctl, hclocktime.tv_sec,
2794995a 868 time_inc(read_time,
336f7c5f 869 -(hclocktime.tv_usec / 1E6)));
2794995a
WP
870 adjtime_p->last_adj_time = hclocktime.tv_sec;
871 adjtime_p->not_adjusted = 0;
473ec359 872 adjtime_p->dirty = 1;
ef71b8f1 873 }
7eda085c
KZ
874}
875
336f7c5f 876static void determine_clock_access_method(const struct hwclock_control *ctl)
ef71b8f1
SK
877{
878 ur = NULL;
7eda085c 879
336f7c5f 880 if (ctl->directisa)
ef71b8f1 881 ur = probe_for_cmos_clock();
465e9973 882#ifdef __linux__
ef71b8f1 883 if (!ur)
336f7c5f 884 ur = probe_for_rtc_clock(ctl);
465e9973 885#endif
8f729d60
SK
886 if (ur) {
887 if (ctl->debug)
888 puts(ur->interface_name);
7eda085c 889
8f729d60
SK
890 } else {
891 if (ctl->debug)
ef71b8f1 892 printf(_("No usable clock interface found.\n"));
8f729d60
SK
893 warnx(_("Cannot access the Hardware Clock via "
894 "any known method."));
895 if (!ctl->debug)
896 warnx(_("Use the --debug option to see the "
897 "details of our search for an access "
898 "method."));
c47a8f2a 899 hwclock_exit(ctl, EXIT_FAILURE);
ef71b8f1 900 }
7eda085c
KZ
901}
902
c47a8f2a 903/* Do all the normal work of hwclock - read, set clock, etc. */
63cccae4 904static int
336f7c5f
SK
905manipulate_clock(const struct hwclock_control *ctl, const time_t set_time,
906 const struct timeval startup_time, struct adjtime *adjtime)
ef71b8f1 907{
ef71b8f1
SK
908 /* The time at which we read the Hardware Clock */
909 struct timeval read_time;
910 /*
911 * The Hardware Clock gives us a valid time, or at
912 * least something close enough to fool mktime().
913 */
473ec359 914 int hclock_valid = 0;
ef71b8f1 915 /*
ede32597 916 * Tick synchronized time read from the Hardware Clock and
1ef6feb5 917 * then drift corrected for all operations except --show.
ef71b8f1 918 */
1ef6feb5
WP
919 struct timeval hclocktime = { 0 };
920 /*
921 * hclocktime correlated to startup_time. That is, what drift
922 * corrected Hardware Clock time would have been at start up.
923 */
924 struct timeval startup_hclocktime = { 0 };
ede32597 925 /* Total Hardware Clock drift correction needed. */
2794995a 926 struct timeval tdrift;
ef71b8f1 927
336f7c5f
SK
928 if ((ctl->set || ctl->systohc || ctl->adjust) &&
929 (adjtime->local_utc == UTC) != ctl->universal) {
930 adjtime->local_utc = ctl->universal ? UTC : LOCAL;
473ec359 931 adjtime->dirty = 1;
ef71b8f1 932 }
a218e2a8
WP
933 /*
934 * Negate the drift correction, because we want to 'predict' a
935 * Hardware Clock time that includes drift.
936 */
937 if (ctl->predict) {
938 hclocktime = t2tv(set_time);
939 calculate_adjustment(ctl, adjtime->drift_factor,
940 adjtime->last_adj_time,
941 adjtime->not_adjusted,
942 hclocktime.tv_sec, &tdrift);
943 hclocktime = time_inc(hclocktime, (double)
944 -(tdrift.tv_sec + tdrift.tv_usec / 1E6));
945 if (ctl->debug) {
946 printf(_ ("Target date: %ld\n"), set_time);
947 printf(_ ("Predicted RTC: %ld\n"), hclocktime.tv_sec);
948 }
88d2a1a3 949 display_time(hclocktime);
c47a8f2a 950 return EXIT_SUCCESS;
a218e2a8 951 }
9abb2685 952
4ba19a2f 953 if (ctl->systz)
404fdd2c 954 return set_system_clock(ctl, startup_time);
4ba19a2f 955
a218e2a8 956 if (ur->get_permissions())
c47a8f2a 957 return EXIT_FAILURE;
551e7034 958
ee723d23
WP
959 /*
960 * Read and drift correct RTC time; except for RTC set functions
961 * without the --update-drift option because: 1) it's not needed;
962 * 2) it enables setting a corrupted RTC without reading it first;
963 * 3) it significantly reduces system shutdown time.
964 */
965 if ( ! ((ctl->set || ctl->systohc) && !ctl->update)) {
ef71b8f1 966 /*
ee723d23
WP
967 * Timing critical - do not change the order of, or put
968 * anything between the follow three statements.
969 * Synchronization failure MUST exit, because all drift
970 * operations are invalid without it.
ef71b8f1 971 */
ee723d23 972 if (synchronize_to_clock_tick(ctl))
c47a8f2a 973 return EXIT_FAILURE;
ee723d23 974 read_hardware_clock(ctl, &hclock_valid, &hclocktime.tv_sec);
ef71b8f1
SK
975 gettimeofday(&read_time, NULL);
976
88d2a1a3
WP
977 if (!hclock_valid) {
978 warnx(_("RTC read returned an invalid value."));
c47a8f2a 979 return EXIT_FAILURE;
88d2a1a3 980 }
a218e2a8
WP
981 /*
982 * Calculate and apply drift correction to the Hardware Clock
983 * time for everything except --show
984 */
985 calculate_adjustment(ctl, adjtime->drift_factor,
986 adjtime->last_adj_time,
987 adjtime->not_adjusted,
988 hclocktime.tv_sec, &tdrift);
989 if (!ctl->show)
990 hclocktime = time_inc(tdrift, hclocktime.tv_sec);
1ef6feb5
WP
991
992 startup_hclocktime =
993 time_inc(hclocktime, time_diff(startup_time, read_time));
cdedde03 994 }
336f7c5f 995 if (ctl->show || ctl->get) {
88d2a1a3 996 display_time(startup_hclocktime);
336f7c5f
SK
997 } else if (ctl->set) {
998 set_hardware_clock_exact(ctl, set_time, startup_time);
999 if (!ctl->noadjfile)
1ef6feb5 1000 adjust_drift_factor(ctl, adjtime, t2tv(set_time),
88d2a1a3 1001 startup_hclocktime);
336f7c5f 1002 } else if (ctl->adjust) {
2794995a 1003 if (tdrift.tv_sec > 0 || tdrift.tv_sec < -1)
88d2a1a3 1004 do_adjustment(ctl, adjtime, hclocktime, read_time);
2794995a
WP
1005 else
1006 printf(_("Needed adjustment is less than one second, "
1007 "so not setting clock.\n"));
336f7c5f 1008 } else if (ctl->systohc) {
ef71b8f1
SK
1009 struct timeval nowtime, reftime;
1010 /*
1011 * We can only set_hardware_clock_exact to a
1012 * whole seconds time, so we set it with
1013 * reference to the most recent whole
1014 * seconds time.
1015 */
1016 gettimeofday(&nowtime, NULL);
1017 reftime.tv_sec = nowtime.tv_sec;
1018 reftime.tv_usec = 0;
336f7c5f
SK
1019 set_hardware_clock_exact(ctl, (time_t) reftime.tv_sec, reftime);
1020 if (!ctl->noadjfile)
1021 adjust_drift_factor(ctl, adjtime, nowtime,
88d2a1a3 1022 hclocktime);
336f7c5f 1023 } else if (ctl->hctosys) {
88d2a1a3 1024 return set_system_clock(ctl, hclocktime);
ef71b8f1 1025 }
336f7c5f
SK
1026 if (!ctl->noadjfile)
1027 save_adjtime(ctl, adjtime);
c47a8f2a 1028 return EXIT_SUCCESS;
7eda085c
KZ
1029}
1030
039a0cec
WP
1031/**
1032 * Get or set the kernel RTC driver's epoch on Alpha machines.
1033 * ISA machines are hard coded for 1900.
390c72eb 1034 */
039a0cec 1035#if defined(__linux__) && defined(__alpha__)
390c72eb 1036static void
336f7c5f 1037manipulate_epoch(const struct hwclock_control *ctl)
390c72eb 1038{
336f7c5f 1039 if (ctl->getepoch) {
ef71b8f1
SK
1040 unsigned long epoch;
1041
af68bd01 1042 if (get_epoch_rtc(ctl, &epoch))
c26ddc56 1043 warnx(_("unable to read the RTC epoch."));
ef71b8f1 1044 else
c26ddc56 1045 printf(_("The RTC epoch is set to %lu.\n"), epoch);
336f7c5f 1046 } else if (ctl->setepoch) {
f7599b4f 1047 if (!ctl->epoch_option)
c26ddc56 1048 warnx(_("--epoch is required for --setepoch."));
336f7c5f 1049 else if (ctl->testing)
c26ddc56 1050 printf(_("Test mode: epoch was not set to %s.\n"),
336f7c5f
SK
1051 ctl->epoch_option);
1052 else if (set_epoch_rtc(ctl))
c26ddc56 1053 warnx(_("unable to set the RTC epoch."));
ef71b8f1 1054 }
7eda085c 1055}
039a0cec 1056#endif /* __linux__ __alpha__ */
7eda085c 1057
ef71b8f1
SK
1058static void out_version(void)
1059{
f6277500 1060 printf(UTIL_LINUX_VERSION);
63cccae4
KZ
1061}
1062
b1557fe9 1063static void __attribute__((__noreturn__))
86be6a32 1064usage(const struct hwclock_control *ctl)
ef71b8f1 1065{
02777914 1066 fputs(USAGE_HEADER, stdout);
57c45481 1067 printf(_(" %s [function] [option...]\n"), program_invocation_short_name);
02777914
WP
1068
1069 fputs(USAGE_SEPARATOR, stdout);
2b1aa087 1070 puts(_("Time clocks utility."));
02777914
WP
1071
1072 fputs(USAGE_FUNCTIONS, stdout);
1073 puts(_(" -r, --show display the RTC time"));
1074 puts(_(" --get display drift corrected RTC time"));
1075 puts(_(" --set set the RTC according to --date"));
1076 puts(_(" -s, --hctosys set the system time from the RTC"));
1077 puts(_(" -w, --systohc set the RTC from the system time"));
1078 puts(_(" --systz send timescale configurations to the kernel"));
1079 puts(_(" --adjust adjust the RTC to account for systematic drift"));
039a0cec 1080#if defined(__linux__) && defined(__alpha__)
02777914
WP
1081 puts(_(" --getepoch display the RTC epoch"));
1082 puts(_(" --setepoch set the RTC epoch according to --epoch"));
465e9973 1083#endif
02777914
WP
1084 puts(_(" --predict predict the drifted RTC time according to --date"));
1085 fputs(USAGE_OPTIONS, stdout);
57c45481
WP
1086 puts(_(" -u, --utc the RTC timescale is UTC"));
1087 puts(_(" -l, --localtime the RTC timescale is Local"));
465e9973 1088#ifdef __linux__
3eeaef99 1089 printf(_(
02777914 1090 " -f, --rtc <file> use an alternate file to %1$s\n"), _PATH_RTC_DEV);
465e9973 1091#endif
3eeaef99 1092 printf(_(
02777914
WP
1093 " --directisa use the ISA bus instead of %1$s access\n"), _PATH_RTC_DEV);
1094 puts(_(" --date <time> date/time input for --set and --predict"));
039a0cec 1095#if defined(__linux__) && defined(__alpha__)
02777914 1096 puts(_(" --epoch <year> epoch input for --setepoch"));
039a0cec 1097#endif
02777914
WP
1098 puts(_(" --update-drift update the RTC drift factor"));
1099 printf(_(
cb8e26cc
WP
1100 " --noadjfile do not use %1$s\n"), _PATH_ADJTIME);
1101 printf(_(
02777914
WP
1102 " --adjfile <file> use an alternate file to %1$s\n"), _PATH_ADJTIME);
1103 puts(_(" --test dry run; use -D to view what would have happened"));
1104 puts(_(" -D, --debug use debug mode"));
1105 fputs(USAGE_SEPARATOR, stdout);
f45f3ec3
RM
1106 printf(USAGE_HELP_OPTIONS(22));
1107 printf(USAGE_MAN_TAIL("hwclock(8)"));
ea298feb 1108 hwclock_exit(ctl, EXIT_SUCCESS);
eb63b9b8
KZ
1109}
1110
ef71b8f1
SK
1111int main(int argc, char **argv)
1112{
8b73ff96 1113 struct hwclock_control ctl = { .show = 1 }; /* default op is show */
63cccae4 1114 struct timeval startup_time;
336f7c5f 1115 struct adjtime adjtime = { 0 };
7a3000f7 1116 struct timespec when = { 0 };
ef71b8f1
SK
1117 /*
1118 * The time we started up, in seconds into the epoch, including
1119 * fractions.
1120 */
1121 time_t set_time = 0; /* Time to which user said to set Hardware Clock */
63cccae4 1122 int rc, c;
7eda085c 1123
dade002a
KZ
1124 /* Long only options. */
1125 enum {
1126 OPT_ADJFILE = CHAR_MAX + 1,
dade002a
KZ
1127 OPT_DATE,
1128 OPT_DIRECTISA,
1129 OPT_EPOCH,
2794995a 1130 OPT_GET,
dade002a 1131 OPT_GETEPOCH,
dade002a 1132 OPT_NOADJFILE,
57415653 1133 OPT_PREDICT,
dade002a
KZ
1134 OPT_SET,
1135 OPT_SETEPOCH,
1136 OPT_SYSTZ,
f276d71a
WP
1137 OPT_TEST,
1138 OPT_UPDATE
dade002a 1139 };
33ed2d02
SK
1140
1141 static const struct option longopts[] = {
87918040
SK
1142 { "adjust", no_argument, NULL, 'a' },
1143 { "help", no_argument, NULL, 'h' },
37526942 1144 { "localtime", no_argument, NULL, 'l' },
87918040
SK
1145 { "show", no_argument, NULL, 'r' },
1146 { "hctosys", no_argument, NULL, 's' },
1147 { "utc", no_argument, NULL, 'u' },
1148 { "version", no_argument, NULL, 'v' },
1149 { "systohc", no_argument, NULL, 'w' },
1150 { "debug", no_argument, NULL, 'D' },
87918040 1151 { "set", no_argument, NULL, OPT_SET },
039a0cec 1152#if defined(__linux__) && defined(__alpha__)
87918040
SK
1153 { "getepoch", no_argument, NULL, OPT_GETEPOCH },
1154 { "setepoch", no_argument, NULL, OPT_SETEPOCH },
039a0cec 1155 { "epoch", required_argument, NULL, OPT_EPOCH },
33ed2d02 1156#endif
87918040 1157 { "noadjfile", no_argument, NULL, OPT_NOADJFILE },
87918040
SK
1158 { "directisa", no_argument, NULL, OPT_DIRECTISA },
1159 { "test", no_argument, NULL, OPT_TEST },
1160 { "date", required_argument, NULL, OPT_DATE },
33ed2d02 1161#ifdef __linux__
87918040 1162 { "rtc", required_argument, NULL, 'f' },
33ed2d02 1163#endif
87918040
SK
1164 { "adjfile", required_argument, NULL, OPT_ADJFILE },
1165 { "systz", no_argument, NULL, OPT_SYSTZ },
57415653 1166 { "predict", no_argument, NULL, OPT_PREDICT },
87918040
SK
1167 { "get", no_argument, NULL, OPT_GET },
1168 { "update-drift", no_argument, NULL, OPT_UPDATE },
1169 { NULL, 0, NULL, 0 }
33ed2d02
SK
1170 };
1171
a7349ee3 1172 static const ul_excl_t excl[] = { /* rows and cols in ASCII order */
dade002a 1173 { 'a','r','s','w',
57415653 1174 OPT_GET, OPT_GETEPOCH, OPT_PREDICT,
2794995a 1175 OPT_SET, OPT_SETEPOCH, OPT_SYSTZ },
37526942 1176 { 'l', 'u' },
dade002a 1177 { OPT_ADJFILE, OPT_NOADJFILE },
f276d71a 1178 { OPT_NOADJFILE, OPT_UPDATE },
dade002a
KZ
1179 { 0 }
1180 };
1181 int excl_st[ARRAY_SIZE(excl)] = UL_EXCL_STATUS_INIT;
1182
63cccae4
KZ
1183 /* Remember what time we were invoked */
1184 gettimeofday(&startup_time, NULL);
7eda085c 1185
88058a71
KZ
1186#ifdef HAVE_LIBAUDIT
1187 hwaudit_fd = audit_open();
1188 if (hwaudit_fd < 0 && !(errno == EINVAL || errno == EPROTONOSUPPORT ||
1189 errno == EAFNOSUPPORT)) {
ef71b8f1
SK
1190 /*
1191 * You get these error codes only when the kernel doesn't
1192 * have audit compiled in.
1193 */
111c05d3 1194 warnx(_("Unable to connect to audit system"));
c47a8f2a 1195 return EXIT_FAILURE;
88058a71
KZ
1196 }
1197#endif
63cccae4 1198 setlocale(LC_ALL, "");
66ee8158 1199#ifdef LC_NUMERIC
ef71b8f1
SK
1200 /*
1201 * We need LC_CTYPE and LC_TIME and LC_MESSAGES, but must avoid
1202 * LC_NUMERIC since it gives problems when we write to /etc/adjtime.
1203 * - gqueri@mail.dotcom.fr
1204 */
63cccae4 1205 setlocale(LC_NUMERIC, "C");
66ee8158 1206#endif
63cccae4
KZ
1207 bindtextdomain(PACKAGE, LOCALEDIR);
1208 textdomain(PACKAGE);
db116df7 1209 atexit(close_stdout);
63cccae4 1210
dade002a 1211 while ((c = getopt_long(argc, argv,
32adac4c 1212 "hvVDalrsuwf:", longopts, NULL)) != -1) {
dade002a
KZ
1213
1214 err_exclusive_options(c, longopts, excl, excl_st);
1215
63cccae4
KZ
1216 switch (c) {
1217 case 'D':
336f7c5f 1218 ctl.debug++;
63cccae4
KZ
1219 break;
1220 case 'a':
336f7c5f 1221 ctl.adjust = 1;
8b73ff96 1222 ctl.show = 0;
d8949aca 1223 ctl.hwaudit_on = 1;
63cccae4 1224 break;
37526942
RV
1225 case 'l':
1226 ctl.local_opt = 1; /* --localtime */
1227 break;
63cccae4 1228 case 'r':
336f7c5f 1229 ctl.show = 1;
63cccae4
KZ
1230 break;
1231 case 's':
336f7c5f 1232 ctl.hctosys = 1;
8b73ff96 1233 ctl.show = 0;
d8949aca 1234 ctl.hwaudit_on = 1;
63cccae4
KZ
1235 break;
1236 case 'u':
336f7c5f 1237 ctl.utc = 1;
63cccae4
KZ
1238 break;
1239 case 'w':
336f7c5f 1240 ctl.systohc = 1;
8b73ff96 1241 ctl.show = 0;
d8949aca 1242 ctl.hwaudit_on = 1;
63cccae4 1243 break;
33ed2d02 1244 case OPT_SET:
336f7c5f 1245 ctl.set = 1;
8b73ff96 1246 ctl.show = 0;
d8949aca 1247 ctl.hwaudit_on = 1;
63cccae4 1248 break;
039a0cec 1249#if defined(__linux__) && defined(__alpha__)
33ed2d02 1250 case OPT_GETEPOCH:
336f7c5f 1251 ctl.getepoch = 1;
8b73ff96 1252 ctl.show = 0;
63cccae4 1253 break;
33ed2d02 1254 case OPT_SETEPOCH:
336f7c5f 1255 ctl.setepoch = 1;
8b73ff96 1256 ctl.show = 0;
d8949aca 1257 ctl.hwaudit_on = 1;
63cccae4 1258 break;
039a0cec 1259 case OPT_EPOCH:
f7599b4f 1260 ctl.epoch_option = optarg; /* --epoch */
039a0cec 1261 break;
465e9973 1262#endif
33ed2d02 1263 case OPT_NOADJFILE:
336f7c5f 1264 ctl.noadjfile = 1;
63cccae4 1265 break;
33ed2d02 1266 case OPT_DIRECTISA:
336f7c5f 1267 ctl.directisa = 1;
63cccae4 1268 break;
33ed2d02 1269 case OPT_TEST:
336f7c5f 1270 ctl.testing = 1; /* --test */
63cccae4 1271 break;
33ed2d02 1272 case OPT_DATE:
336f7c5f 1273 ctl.date_opt = optarg; /* --date */
63cccae4 1274 break;
33ed2d02 1275 case OPT_ADJFILE:
336f7c5f 1276 ctl.adj_file_name = optarg; /* --adjfile */
da82f6fe 1277 break;
33ed2d02 1278 case OPT_SYSTZ:
336f7c5f 1279 ctl.systz = 1; /* --systz */
8b73ff96 1280 ctl.show = 0;
2cb89055 1281 ctl.hwaudit_on = 1;
88a3372e 1282 break;
57415653
WP
1283 case OPT_PREDICT:
1284 ctl.predict = 1; /* --predict */
8b73ff96 1285 ctl.show = 0;
2e5627fa 1286 break;
2794995a 1287 case OPT_GET:
336f7c5f 1288 ctl.get = 1; /* --get */
8b73ff96 1289 ctl.show = 0;
2794995a 1290 break;
f276d71a 1291 case OPT_UPDATE:
336f7c5f 1292 ctl.update = 1; /* --update-drift */
f276d71a 1293 break;
465e9973 1294#ifdef __linux__
88681c5f 1295 case 'f':
336f7c5f 1296 ctl.rtc_dev_name = optarg; /* --rtc */
88681c5f 1297 break;
465e9973 1298#endif
ef71b8f1 1299 case 'v': /* --version */
63cccae4
KZ
1300 case 'V':
1301 out_version();
1302 return 0;
ef71b8f1 1303 case 'h': /* --help */
86be6a32 1304 usage(&ctl);
657a5568 1305 default:
c47a8f2a 1306 errtryhelp(EXIT_FAILURE);
63cccae4
KZ
1307 }
1308 }
7eda085c 1309
fa5b4d45 1310 if (argc -= optind) {
657a5568 1311 warnx(_("%d too many arguments given"), argc);
c47a8f2a 1312 errtryhelp(EXIT_FAILURE);
63cccae4 1313 }
7eda085c 1314
336f7c5f
SK
1315 if (!ctl.adj_file_name)
1316 ctl.adj_file_name = _PATH_ADJTIME;
da82f6fe 1317
891b4343
WP
1318 if (ctl.update && !ctl.set && !ctl.systohc) {
1319 warnx(_("--update-drift requires --set or --systohc"));
c47a8f2a 1320 hwclock_exit(&ctl, EXIT_FAILURE);
891b4343
WP
1321 }
1322
336f7c5f 1323 if (ctl.noadjfile && !ctl.utc && !ctl.local_opt) {
111c05d3
SK
1324 warnx(_("With --noadjfile, you must specify "
1325 "either --utc or --localtime"));
c47a8f2a 1326 hwclock_exit(&ctl, EXIT_FAILURE);
63cccae4 1327 }
7eda085c 1328
336f7c5f 1329 if (ctl.set || ctl.predict) {
62f22d91 1330 if (!ctl.date_opt) {
969bffb7 1331 warnx(_("--date is required for --set or --predict"));
c47a8f2a 1332 hwclock_exit(&ctl, EXIT_FAILURE);
969bffb7 1333 }
7a3000f7
WP
1334 if (parse_date(&when, ctl.date_opt, NULL))
1335 set_time = when.tv_sec;
1336 else {
1337 warnx(_("invalid date '%s'"), ctl.date_opt);
c47a8f2a 1338 hwclock_exit(&ctl, EXIT_FAILURE);
63cccae4
KZ
1339 }
1340 }
7eda085c 1341
039a0cec 1342#if defined(__linux__) && defined(__alpha__)
336f7c5f
SK
1343 if (ctl.getepoch || ctl.setepoch) {
1344 manipulate_epoch(&ctl);
c47a8f2a 1345 hwclock_exit(&ctl, EXIT_SUCCESS);
63cccae4 1346 }
465e9973 1347#endif
63cccae4 1348
e406be01 1349 if (ctl.debug) {
63cccae4 1350 out_version();
e406be01
WP
1351 printf(_("System Time: %ld.%06ld\n"),
1352 startup_time.tv_sec, startup_time.tv_usec);
1353 }
111c05d3 1354
8f729d60 1355 if (!ctl.systz && !ctl.predict)
336f7c5f 1356 determine_clock_access_method(&ctl);
63cccae4 1357
336f7c5f
SK
1358 if (!ctl.noadjfile && !(ctl.systz && (ctl.utc || ctl.local_opt))) {
1359 if ((rc = read_adjtime(&ctl, &adjtime)) != 0)
1360 hwclock_exit(&ctl, rc);
1361 } else
1362 /* Avoid writing adjtime file if we don't have to. */
473ec359 1363 adjtime.dirty = 0;
336f7c5f 1364 ctl.universal = hw_clock_is_utc(&ctl, adjtime);
92931ab2 1365 rc = manipulate_clock(&ctl, set_time, startup_time, &adjtime);
336f7c5f 1366 hwclock_exit(&ctl, rc);
ef71b8f1 1367 return rc; /* Not reached */
7eda085c
KZ
1368}
1369
39ff5b34 1370void
336f7c5f
SK
1371hwclock_exit(const struct hwclock_control *ctl
1372#ifndef HAVE_LIBAUDIT
1373 __attribute__((__unused__))
1374#endif
1375 , int status)
88058a71 1376{
48e7ed5e 1377#ifdef HAVE_LIBAUDIT
d8949aca 1378 if (ctl->hwaudit_on && !ctl->testing) {
88058a71 1379 audit_log_user_message(hwaudit_fd, AUDIT_USYS_CONFIG,
fbed7e09 1380 "op=change-system-time", NULL, NULL, NULL,
c47a8f2a 1381 status);
88058a71
KZ
1382 close(hwaudit_fd);
1383 }
48e7ed5e 1384#endif
88058a71
KZ
1385 exit(status);
1386}
88058a71 1387
ef71b8f1
SK
1388/*
1389 * History of this program:
1390 *
1391 * 98.08.12 BJH Version 2.4
1392 *
1393 * Don't use century byte from Hardware Clock. Add comments telling why.
1394 *
1395 * 98.06.20 BJH Version 2.3.
1396 *
1397 * Make --hctosys set the kernel timezone from TZ environment variable
1398 * and/or /usr/lib/zoneinfo. From Klaus Ripke (klaus@ripke.com).
1399 *
1400 * 98.03.05 BJH. Version 2.2.
1401 *
1402 * Add --getepoch and --setepoch.
1403 *
1404 * Fix some word length things so it works on Alpha.
1405 *
1406 * Make it work when /dev/rtc doesn't have the interrupt functions. In this
1407 * case, busywait for the top of a second instead of blocking and waiting
1408 * for the update complete interrupt.
1409 *
1410 * Fix a bunch of bugs too numerous to mention.
1411 *
1412 * 97.06.01: BJH. Version 2.1. Read and write the century byte (Byte 50) of
1413 * the ISA Hardware Clock when using direct ISA I/O. Problem discovered by
1414 * job (jei@iclnl.icl.nl).
1415 *
1416 * Use the rtc clock access method in preference to the KDGHWCLK method.
1417 * Problem discovered by Andreas Schwab <schwab@LS5.informatik.uni-dortmund.de>.
1418 *
1419 * November 1996: Version 2.0.1. Modifications by Nicolai Langfeldt
1420 * (janl@math.uio.no) to make it compile on linux 1.2 machines as well as
1421 * more recent versions of the kernel. Introduced the NO_CLOCK access method
455fe9a0 1422 * and wrote feature test code to detect absence of rtc headers.
ef71b8f1
SK
1423 *
1424 ***************************************************************************
1425 * Maintenance notes
1426 *
1427 * To compile this, you must use GNU compiler optimization (-O option) in
1428 * order to make the "extern inline" functions from asm/io.h (inb(), etc.)
1429 * compile. If you don't optimize, which means the compiler will generate no
1430 * inline functions, the references to these functions in this program will
1431 * be compiled as external references. Since you probably won't be linking
1432 * with any functions by these names, you will have unresolved external
1433 * references when you link.
1434 *
ef71b8f1
SK
1435 * Here's some info on how we must deal with the time that elapses while
1436 * this program runs: There are two major delays as we run:
1437 *
1438 * 1) Waiting up to 1 second for a transition of the Hardware Clock so
1439 * we are synchronized to the Hardware Clock.
1440 * 2) Running the "date" program to interpret the value of our --date
1441 * option.
1442 *
1443 * Reading the /etc/adjtime file is the next biggest source of delay and
1444 * uncertainty.
1445 *
1446 * The user wants to know what time it was at the moment he invoked us, not
1447 * some arbitrary time later. And in setting the clock, he is giving us the
1448 * time at the moment we are invoked, so if we set the clock some time
1449 * later, we have to add some time to that.
1450 *
1451 * So we check the system time as soon as we start up, then run "date" and
1452 * do file I/O if necessary, then wait to synchronize with a Hardware Clock
1453 * edge, then check the system time again to see how much time we spent. We
1454 * immediately read the clock then and (if appropriate) report that time,
1455 * and additionally, the delay we measured.
1456 *
1457 * If we're setting the clock to a time given by the user, we wait some more
1458 * so that the total delay is an integral number of seconds, then set the
1459 * Hardware Clock to the time the user requested plus that integral number
1460 * of seconds. N.B. The Hardware Clock can only be set in integral seconds.
1461 *
1462 * If we're setting the clock to the system clock value, we wait for the
1463 * system clock to reach the top of a second, and then set the Hardware
1464 * Clock to the system clock's value.
1465 *
1466 * Here's an interesting point about setting the Hardware Clock: On my
1467 * machine, when you set it, it sets to that precise time. But one can
1468 * imagine another clock whose update oscillator marches on a steady one
1469 * second period, so updating the clock between any two oscillator ticks is
1470 * the same as updating it right at the earlier tick. To avoid any
1471 * complications that might cause, we set the clock as soon as possible
1472 * after an oscillator tick.
1473 *
1474 * About synchronizing to the Hardware Clock when reading the time: The
1475 * precision of the Hardware Clock counters themselves is one second. You
1476 * can't read the counters and find out that is 12:01:02.5. But if you
1477 * consider the location in time of the counter's ticks as part of its
1478 * value, then its precision is as infinite as time is continuous! What I'm
1479 * saying is this: To find out the _exact_ time in the hardware clock, we
1480 * wait until the next clock tick (the next time the second counter changes)
1481 * and measure how long we had to wait. We then read the value of the clock
1482 * counters and subtract the wait time and we know precisely what time it
1483 * was when we set out to query the time.
1484 *
1485 * hwclock uses this method, and considers the Hardware Clock to have
1486 * infinite precision.
ef71b8f1 1487 */