]> git.ipfire.org Git - thirdparty/xfsprogs-dev.git/blob - libxfs/xfs_btree.c
xfs: mark xfs_btree_check_lblock and xfs_btree_check_ptr static
[thirdparty/xfsprogs-dev.git] / libxfs / xfs_btree.c
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "libxfs_priv.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_mount.h"
26 #include "xfs_defer.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_btree.h"
30 #include "xfs_errortag.h"
31 #include "xfs_trace.h"
32 #include "xfs_cksum.h"
33 #include "xfs_alloc.h"
34
35 /*
36 * Cursor allocation zone.
37 */
38 kmem_zone_t *xfs_btree_cur_zone;
39
40 /*
41 * Btree magic numbers.
42 */
43 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
44 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
45 XFS_FIBT_MAGIC, 0 },
46 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
47 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
48 XFS_REFC_CRC_MAGIC }
49 };
50
51 uint32_t
52 xfs_btree_magic(
53 int crc,
54 xfs_btnum_t btnum)
55 {
56 uint32_t magic = xfs_magics[crc][btnum];
57
58 /* Ensure we asked for crc for crc-only magics. */
59 ASSERT(magic != 0);
60 return magic;
61 }
62
63 /*
64 * Check a long btree block header. Return the address of the failing check,
65 * or NULL if everything is ok.
66 */
67 xfs_failaddr_t
68 __xfs_btree_check_lblock(
69 struct xfs_btree_cur *cur,
70 struct xfs_btree_block *block,
71 int level,
72 struct xfs_buf *bp)
73 {
74 struct xfs_mount *mp = cur->bc_mp;
75 xfs_btnum_t btnum = cur->bc_btnum;
76 int crc = xfs_sb_version_hascrc(&mp->m_sb);
77
78 if (crc) {
79 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
80 return __this_address;
81 if (block->bb_u.l.bb_blkno !=
82 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
83 return __this_address;
84 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
85 return __this_address;
86 }
87
88 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
89 return __this_address;
90 if (be16_to_cpu(block->bb_level) != level)
91 return __this_address;
92 if (be16_to_cpu(block->bb_numrecs) >
93 cur->bc_ops->get_maxrecs(cur, level))
94 return __this_address;
95 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
96 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
97 level + 1))
98 return __this_address;
99 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
100 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
101 level + 1))
102 return __this_address;
103
104 return NULL;
105 }
106
107 /* Check a long btree block header. */
108 static int
109 xfs_btree_check_lblock(
110 struct xfs_btree_cur *cur,
111 struct xfs_btree_block *block,
112 int level,
113 struct xfs_buf *bp)
114 {
115 struct xfs_mount *mp = cur->bc_mp;
116 xfs_failaddr_t fa;
117
118 fa = __xfs_btree_check_lblock(cur, block, level, bp);
119 if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
120 XFS_ERRTAG_BTREE_CHECK_LBLOCK))) {
121 if (bp)
122 trace_xfs_btree_corrupt(bp, _RET_IP_);
123 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
124 return -EFSCORRUPTED;
125 }
126 return 0;
127 }
128
129 /*
130 * Check a short btree block header. Return the address of the failing check,
131 * or NULL if everything is ok.
132 */
133 xfs_failaddr_t
134 __xfs_btree_check_sblock(
135 struct xfs_btree_cur *cur,
136 struct xfs_btree_block *block,
137 int level,
138 struct xfs_buf *bp)
139 {
140 struct xfs_mount *mp = cur->bc_mp;
141 xfs_btnum_t btnum = cur->bc_btnum;
142 int crc = xfs_sb_version_hascrc(&mp->m_sb);
143
144 if (crc) {
145 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
146 return __this_address;
147 if (block->bb_u.s.bb_blkno !=
148 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
149 return __this_address;
150 }
151
152 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
153 return __this_address;
154 if (be16_to_cpu(block->bb_level) != level)
155 return __this_address;
156 if (be16_to_cpu(block->bb_numrecs) >
157 cur->bc_ops->get_maxrecs(cur, level))
158 return __this_address;
159 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
160 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
161 level + 1))
162 return __this_address;
163 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
164 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
165 level + 1))
166 return __this_address;
167
168 return NULL;
169 }
170
171 /* Check a short btree block header. */
172 STATIC int
173 xfs_btree_check_sblock(
174 struct xfs_btree_cur *cur,
175 struct xfs_btree_block *block,
176 int level,
177 struct xfs_buf *bp)
178 {
179 struct xfs_mount *mp = cur->bc_mp;
180 xfs_failaddr_t fa;
181
182 fa = __xfs_btree_check_sblock(cur, block, level, bp);
183 if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
184 XFS_ERRTAG_BTREE_CHECK_SBLOCK))) {
185 if (bp)
186 trace_xfs_btree_corrupt(bp, _RET_IP_);
187 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
188 return -EFSCORRUPTED;
189 }
190 return 0;
191 }
192
193 /*
194 * Debug routine: check that block header is ok.
195 */
196 int
197 xfs_btree_check_block(
198 struct xfs_btree_cur *cur, /* btree cursor */
199 struct xfs_btree_block *block, /* generic btree block pointer */
200 int level, /* level of the btree block */
201 struct xfs_buf *bp) /* buffer containing block, if any */
202 {
203 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
204 return xfs_btree_check_lblock(cur, block, level, bp);
205 else
206 return xfs_btree_check_sblock(cur, block, level, bp);
207 }
208
209 /* Check that this long pointer is valid and points within the fs. */
210 bool
211 xfs_btree_check_lptr(
212 struct xfs_btree_cur *cur,
213 xfs_fsblock_t fsbno,
214 int level)
215 {
216 if (level <= 0)
217 return false;
218 return xfs_verify_fsbno(cur->bc_mp, fsbno);
219 }
220
221 /* Check that this short pointer is valid and points within the AG. */
222 bool
223 xfs_btree_check_sptr(
224 struct xfs_btree_cur *cur,
225 xfs_agblock_t agbno,
226 int level)
227 {
228 if (level <= 0)
229 return false;
230 return xfs_verify_agbno(cur->bc_mp, cur->bc_private.a.agno, agbno);
231 }
232
233 #ifdef DEBUG
234 /*
235 * Check that a given (indexed) btree pointer at a certain level of a
236 * btree is valid and doesn't point past where it should.
237 */
238 static int
239 xfs_btree_check_ptr(
240 struct xfs_btree_cur *cur,
241 union xfs_btree_ptr *ptr,
242 int index,
243 int level)
244 {
245 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
246 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
247 xfs_btree_check_lptr(cur,
248 be64_to_cpu((&ptr->l)[index]), level));
249 } else {
250 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
251 xfs_btree_check_sptr(cur,
252 be32_to_cpu((&ptr->s)[index]), level));
253 }
254
255 return 0;
256 }
257 #endif
258
259 /*
260 * Calculate CRC on the whole btree block and stuff it into the
261 * long-form btree header.
262 *
263 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
264 * it into the buffer so recovery knows what the last modification was that made
265 * it to disk.
266 */
267 void
268 xfs_btree_lblock_calc_crc(
269 struct xfs_buf *bp)
270 {
271 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
272 struct xfs_buf_log_item *bip = bp->b_fspriv;
273
274 if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
275 return;
276 if (bip)
277 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
278 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
279 }
280
281 bool
282 xfs_btree_lblock_verify_crc(
283 struct xfs_buf *bp)
284 {
285 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
286 struct xfs_mount *mp = bp->b_target->bt_mount;
287
288 if (xfs_sb_version_hascrc(&mp->m_sb)) {
289 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
290 return false;
291 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
292 }
293
294 return true;
295 }
296
297 /*
298 * Calculate CRC on the whole btree block and stuff it into the
299 * short-form btree header.
300 *
301 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
302 * it into the buffer so recovery knows what the last modification was that made
303 * it to disk.
304 */
305 void
306 xfs_btree_sblock_calc_crc(
307 struct xfs_buf *bp)
308 {
309 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
310 struct xfs_buf_log_item *bip = bp->b_fspriv;
311
312 if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
313 return;
314 if (bip)
315 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
316 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
317 }
318
319 bool
320 xfs_btree_sblock_verify_crc(
321 struct xfs_buf *bp)
322 {
323 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
324 struct xfs_mount *mp = bp->b_target->bt_mount;
325
326 if (xfs_sb_version_hascrc(&mp->m_sb)) {
327 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
328 return false;
329 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
330 }
331
332 return true;
333 }
334
335 static int
336 xfs_btree_free_block(
337 struct xfs_btree_cur *cur,
338 struct xfs_buf *bp)
339 {
340 int error;
341
342 error = cur->bc_ops->free_block(cur, bp);
343 if (!error) {
344 xfs_trans_binval(cur->bc_tp, bp);
345 XFS_BTREE_STATS_INC(cur, free);
346 }
347 return error;
348 }
349
350 /*
351 * Delete the btree cursor.
352 */
353 void
354 xfs_btree_del_cursor(
355 xfs_btree_cur_t *cur, /* btree cursor */
356 int error) /* del because of error */
357 {
358 int i; /* btree level */
359
360 /*
361 * Clear the buffer pointers, and release the buffers.
362 * If we're doing this in the face of an error, we
363 * need to make sure to inspect all of the entries
364 * in the bc_bufs array for buffers to be unlocked.
365 * This is because some of the btree code works from
366 * level n down to 0, and if we get an error along
367 * the way we won't have initialized all the entries
368 * down to 0.
369 */
370 for (i = 0; i < cur->bc_nlevels; i++) {
371 if (cur->bc_bufs[i])
372 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
373 else if (!error)
374 break;
375 }
376 /*
377 * Can't free a bmap cursor without having dealt with the
378 * allocated indirect blocks' accounting.
379 */
380 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
381 cur->bc_private.b.allocated == 0);
382 /*
383 * Free the cursor.
384 */
385 kmem_zone_free(xfs_btree_cur_zone, cur);
386 }
387
388 /*
389 * Duplicate the btree cursor.
390 * Allocate a new one, copy the record, re-get the buffers.
391 */
392 int /* error */
393 xfs_btree_dup_cursor(
394 xfs_btree_cur_t *cur, /* input cursor */
395 xfs_btree_cur_t **ncur) /* output cursor */
396 {
397 xfs_buf_t *bp; /* btree block's buffer pointer */
398 int error; /* error return value */
399 int i; /* level number of btree block */
400 xfs_mount_t *mp; /* mount structure for filesystem */
401 xfs_btree_cur_t *new; /* new cursor value */
402 xfs_trans_t *tp; /* transaction pointer, can be NULL */
403
404 tp = cur->bc_tp;
405 mp = cur->bc_mp;
406
407 /*
408 * Allocate a new cursor like the old one.
409 */
410 new = cur->bc_ops->dup_cursor(cur);
411
412 /*
413 * Copy the record currently in the cursor.
414 */
415 new->bc_rec = cur->bc_rec;
416
417 /*
418 * For each level current, re-get the buffer and copy the ptr value.
419 */
420 for (i = 0; i < new->bc_nlevels; i++) {
421 new->bc_ptrs[i] = cur->bc_ptrs[i];
422 new->bc_ra[i] = cur->bc_ra[i];
423 bp = cur->bc_bufs[i];
424 if (bp) {
425 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
426 XFS_BUF_ADDR(bp), mp->m_bsize,
427 0, &bp,
428 cur->bc_ops->buf_ops);
429 if (error) {
430 xfs_btree_del_cursor(new, error);
431 *ncur = NULL;
432 return error;
433 }
434 }
435 new->bc_bufs[i] = bp;
436 }
437 *ncur = new;
438 return 0;
439 }
440
441 /*
442 * XFS btree block layout and addressing:
443 *
444 * There are two types of blocks in the btree: leaf and non-leaf blocks.
445 *
446 * The leaf record start with a header then followed by records containing
447 * the values. A non-leaf block also starts with the same header, and
448 * then first contains lookup keys followed by an equal number of pointers
449 * to the btree blocks at the previous level.
450 *
451 * +--------+-------+-------+-------+-------+-------+-------+
452 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
453 * +--------+-------+-------+-------+-------+-------+-------+
454 *
455 * +--------+-------+-------+-------+-------+-------+-------+
456 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
457 * +--------+-------+-------+-------+-------+-------+-------+
458 *
459 * The header is called struct xfs_btree_block for reasons better left unknown
460 * and comes in different versions for short (32bit) and long (64bit) block
461 * pointers. The record and key structures are defined by the btree instances
462 * and opaque to the btree core. The block pointers are simple disk endian
463 * integers, available in a short (32bit) and long (64bit) variant.
464 *
465 * The helpers below calculate the offset of a given record, key or pointer
466 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
467 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
468 * inside the btree block is done using indices starting at one, not zero!
469 *
470 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
471 * overlapping intervals. In such a tree, records are still sorted lowest to
472 * highest and indexed by the smallest key value that refers to the record.
473 * However, nodes are different: each pointer has two associated keys -- one
474 * indexing the lowest key available in the block(s) below (the same behavior
475 * as the key in a regular btree) and another indexing the highest key
476 * available in the block(s) below. Because records are /not/ sorted by the
477 * highest key, all leaf block updates require us to compute the highest key
478 * that matches any record in the leaf and to recursively update the high keys
479 * in the nodes going further up in the tree, if necessary. Nodes look like
480 * this:
481 *
482 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
483 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
484 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
485 *
486 * To perform an interval query on an overlapped tree, perform the usual
487 * depth-first search and use the low and high keys to decide if we can skip
488 * that particular node. If a leaf node is reached, return the records that
489 * intersect the interval. Note that an interval query may return numerous
490 * entries. For a non-overlapped tree, simply search for the record associated
491 * with the lowest key and iterate forward until a non-matching record is
492 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
493 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
494 * more detail.
495 *
496 * Why do we care about overlapping intervals? Let's say you have a bunch of
497 * reverse mapping records on a reflink filesystem:
498 *
499 * 1: +- file A startblock B offset C length D -----------+
500 * 2: +- file E startblock F offset G length H --------------+
501 * 3: +- file I startblock F offset J length K --+
502 * 4: +- file L... --+
503 *
504 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
505 * we'd simply increment the length of record 1. But how do we find the record
506 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
507 * record 3 because the keys are ordered first by startblock. An interval
508 * query would return records 1 and 2 because they both overlap (B+D-1), and
509 * from that we can pick out record 1 as the appropriate left neighbor.
510 *
511 * In the non-overlapped case you can do a LE lookup and decrement the cursor
512 * because a record's interval must end before the next record.
513 */
514
515 /*
516 * Return size of the btree block header for this btree instance.
517 */
518 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
519 {
520 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
521 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
522 return XFS_BTREE_LBLOCK_CRC_LEN;
523 return XFS_BTREE_LBLOCK_LEN;
524 }
525 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
526 return XFS_BTREE_SBLOCK_CRC_LEN;
527 return XFS_BTREE_SBLOCK_LEN;
528 }
529
530 /*
531 * Return size of btree block pointers for this btree instance.
532 */
533 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
534 {
535 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
536 sizeof(__be64) : sizeof(__be32);
537 }
538
539 /*
540 * Calculate offset of the n-th record in a btree block.
541 */
542 STATIC size_t
543 xfs_btree_rec_offset(
544 struct xfs_btree_cur *cur,
545 int n)
546 {
547 return xfs_btree_block_len(cur) +
548 (n - 1) * cur->bc_ops->rec_len;
549 }
550
551 /*
552 * Calculate offset of the n-th key in a btree block.
553 */
554 STATIC size_t
555 xfs_btree_key_offset(
556 struct xfs_btree_cur *cur,
557 int n)
558 {
559 return xfs_btree_block_len(cur) +
560 (n - 1) * cur->bc_ops->key_len;
561 }
562
563 /*
564 * Calculate offset of the n-th high key in a btree block.
565 */
566 STATIC size_t
567 xfs_btree_high_key_offset(
568 struct xfs_btree_cur *cur,
569 int n)
570 {
571 return xfs_btree_block_len(cur) +
572 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
573 }
574
575 /*
576 * Calculate offset of the n-th block pointer in a btree block.
577 */
578 STATIC size_t
579 xfs_btree_ptr_offset(
580 struct xfs_btree_cur *cur,
581 int n,
582 int level)
583 {
584 return xfs_btree_block_len(cur) +
585 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
586 (n - 1) * xfs_btree_ptr_len(cur);
587 }
588
589 /*
590 * Return a pointer to the n-th record in the btree block.
591 */
592 union xfs_btree_rec *
593 xfs_btree_rec_addr(
594 struct xfs_btree_cur *cur,
595 int n,
596 struct xfs_btree_block *block)
597 {
598 return (union xfs_btree_rec *)
599 ((char *)block + xfs_btree_rec_offset(cur, n));
600 }
601
602 /*
603 * Return a pointer to the n-th key in the btree block.
604 */
605 union xfs_btree_key *
606 xfs_btree_key_addr(
607 struct xfs_btree_cur *cur,
608 int n,
609 struct xfs_btree_block *block)
610 {
611 return (union xfs_btree_key *)
612 ((char *)block + xfs_btree_key_offset(cur, n));
613 }
614
615 /*
616 * Return a pointer to the n-th high key in the btree block.
617 */
618 union xfs_btree_key *
619 xfs_btree_high_key_addr(
620 struct xfs_btree_cur *cur,
621 int n,
622 struct xfs_btree_block *block)
623 {
624 return (union xfs_btree_key *)
625 ((char *)block + xfs_btree_high_key_offset(cur, n));
626 }
627
628 /*
629 * Return a pointer to the n-th block pointer in the btree block.
630 */
631 union xfs_btree_ptr *
632 xfs_btree_ptr_addr(
633 struct xfs_btree_cur *cur,
634 int n,
635 struct xfs_btree_block *block)
636 {
637 int level = xfs_btree_get_level(block);
638
639 ASSERT(block->bb_level != 0);
640
641 return (union xfs_btree_ptr *)
642 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
643 }
644
645 /*
646 * Get the root block which is stored in the inode.
647 *
648 * For now this btree implementation assumes the btree root is always
649 * stored in the if_broot field of an inode fork.
650 */
651 STATIC struct xfs_btree_block *
652 xfs_btree_get_iroot(
653 struct xfs_btree_cur *cur)
654 {
655 struct xfs_ifork *ifp;
656
657 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
658 return (struct xfs_btree_block *)ifp->if_broot;
659 }
660
661 /*
662 * Retrieve the block pointer from the cursor at the given level.
663 * This may be an inode btree root or from a buffer.
664 */
665 struct xfs_btree_block * /* generic btree block pointer */
666 xfs_btree_get_block(
667 struct xfs_btree_cur *cur, /* btree cursor */
668 int level, /* level in btree */
669 struct xfs_buf **bpp) /* buffer containing the block */
670 {
671 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
672 (level == cur->bc_nlevels - 1)) {
673 *bpp = NULL;
674 return xfs_btree_get_iroot(cur);
675 }
676
677 *bpp = cur->bc_bufs[level];
678 return XFS_BUF_TO_BLOCK(*bpp);
679 }
680
681 /*
682 * Get a buffer for the block, return it with no data read.
683 * Long-form addressing.
684 */
685 xfs_buf_t * /* buffer for fsbno */
686 xfs_btree_get_bufl(
687 xfs_mount_t *mp, /* file system mount point */
688 xfs_trans_t *tp, /* transaction pointer */
689 xfs_fsblock_t fsbno, /* file system block number */
690 uint lock) /* lock flags for get_buf */
691 {
692 xfs_daddr_t d; /* real disk block address */
693
694 ASSERT(fsbno != NULLFSBLOCK);
695 d = XFS_FSB_TO_DADDR(mp, fsbno);
696 return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
697 }
698
699 /*
700 * Get a buffer for the block, return it with no data read.
701 * Short-form addressing.
702 */
703 xfs_buf_t * /* buffer for agno/agbno */
704 xfs_btree_get_bufs(
705 xfs_mount_t *mp, /* file system mount point */
706 xfs_trans_t *tp, /* transaction pointer */
707 xfs_agnumber_t agno, /* allocation group number */
708 xfs_agblock_t agbno, /* allocation group block number */
709 uint lock) /* lock flags for get_buf */
710 {
711 xfs_daddr_t d; /* real disk block address */
712
713 ASSERT(agno != NULLAGNUMBER);
714 ASSERT(agbno != NULLAGBLOCK);
715 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
716 return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
717 }
718
719 /*
720 * Check for the cursor referring to the last block at the given level.
721 */
722 int /* 1=is last block, 0=not last block */
723 xfs_btree_islastblock(
724 xfs_btree_cur_t *cur, /* btree cursor */
725 int level) /* level to check */
726 {
727 struct xfs_btree_block *block; /* generic btree block pointer */
728 xfs_buf_t *bp; /* buffer containing block */
729
730 block = xfs_btree_get_block(cur, level, &bp);
731 xfs_btree_check_block(cur, block, level, bp);
732 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
733 return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
734 else
735 return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
736 }
737
738 /*
739 * Change the cursor to point to the first record at the given level.
740 * Other levels are unaffected.
741 */
742 STATIC int /* success=1, failure=0 */
743 xfs_btree_firstrec(
744 xfs_btree_cur_t *cur, /* btree cursor */
745 int level) /* level to change */
746 {
747 struct xfs_btree_block *block; /* generic btree block pointer */
748 xfs_buf_t *bp; /* buffer containing block */
749
750 /*
751 * Get the block pointer for this level.
752 */
753 block = xfs_btree_get_block(cur, level, &bp);
754 if (xfs_btree_check_block(cur, block, level, bp))
755 return 0;
756 /*
757 * It's empty, there is no such record.
758 */
759 if (!block->bb_numrecs)
760 return 0;
761 /*
762 * Set the ptr value to 1, that's the first record/key.
763 */
764 cur->bc_ptrs[level] = 1;
765 return 1;
766 }
767
768 /*
769 * Change the cursor to point to the last record in the current block
770 * at the given level. Other levels are unaffected.
771 */
772 STATIC int /* success=1, failure=0 */
773 xfs_btree_lastrec(
774 xfs_btree_cur_t *cur, /* btree cursor */
775 int level) /* level to change */
776 {
777 struct xfs_btree_block *block; /* generic btree block pointer */
778 xfs_buf_t *bp; /* buffer containing block */
779
780 /*
781 * Get the block pointer for this level.
782 */
783 block = xfs_btree_get_block(cur, level, &bp);
784 if (xfs_btree_check_block(cur, block, level, bp))
785 return 0;
786 /*
787 * It's empty, there is no such record.
788 */
789 if (!block->bb_numrecs)
790 return 0;
791 /*
792 * Set the ptr value to numrecs, that's the last record/key.
793 */
794 cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
795 return 1;
796 }
797
798 /*
799 * Compute first and last byte offsets for the fields given.
800 * Interprets the offsets table, which contains struct field offsets.
801 */
802 void
803 xfs_btree_offsets(
804 int64_t fields, /* bitmask of fields */
805 const short *offsets, /* table of field offsets */
806 int nbits, /* number of bits to inspect */
807 int *first, /* output: first byte offset */
808 int *last) /* output: last byte offset */
809 {
810 int i; /* current bit number */
811 int64_t imask; /* mask for current bit number */
812
813 ASSERT(fields != 0);
814 /*
815 * Find the lowest bit, so the first byte offset.
816 */
817 for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
818 if (imask & fields) {
819 *first = offsets[i];
820 break;
821 }
822 }
823 /*
824 * Find the highest bit, so the last byte offset.
825 */
826 for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
827 if (imask & fields) {
828 *last = offsets[i + 1] - 1;
829 break;
830 }
831 }
832 }
833
834 /*
835 * Get a buffer for the block, return it read in.
836 * Long-form addressing.
837 */
838 int
839 xfs_btree_read_bufl(
840 struct xfs_mount *mp, /* file system mount point */
841 struct xfs_trans *tp, /* transaction pointer */
842 xfs_fsblock_t fsbno, /* file system block number */
843 uint lock, /* lock flags for read_buf */
844 struct xfs_buf **bpp, /* buffer for fsbno */
845 int refval, /* ref count value for buffer */
846 const struct xfs_buf_ops *ops)
847 {
848 struct xfs_buf *bp; /* return value */
849 xfs_daddr_t d; /* real disk block address */
850 int error;
851
852 if (!XFS_FSB_SANITY_CHECK(mp, fsbno))
853 return -EFSCORRUPTED;
854 d = XFS_FSB_TO_DADDR(mp, fsbno);
855 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
856 mp->m_bsize, lock, &bp, ops);
857 if (error)
858 return error;
859 if (bp)
860 xfs_buf_set_ref(bp, refval);
861 *bpp = bp;
862 return 0;
863 }
864
865 /*
866 * Read-ahead the block, don't wait for it, don't return a buffer.
867 * Long-form addressing.
868 */
869 /* ARGSUSED */
870 void
871 xfs_btree_reada_bufl(
872 struct xfs_mount *mp, /* file system mount point */
873 xfs_fsblock_t fsbno, /* file system block number */
874 xfs_extlen_t count, /* count of filesystem blocks */
875 const struct xfs_buf_ops *ops)
876 {
877 xfs_daddr_t d;
878
879 ASSERT(fsbno != NULLFSBLOCK);
880 d = XFS_FSB_TO_DADDR(mp, fsbno);
881 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
882 }
883
884 /*
885 * Read-ahead the block, don't wait for it, don't return a buffer.
886 * Short-form addressing.
887 */
888 /* ARGSUSED */
889 void
890 xfs_btree_reada_bufs(
891 struct xfs_mount *mp, /* file system mount point */
892 xfs_agnumber_t agno, /* allocation group number */
893 xfs_agblock_t agbno, /* allocation group block number */
894 xfs_extlen_t count, /* count of filesystem blocks */
895 const struct xfs_buf_ops *ops)
896 {
897 xfs_daddr_t d;
898
899 ASSERT(agno != NULLAGNUMBER);
900 ASSERT(agbno != NULLAGBLOCK);
901 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
902 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
903 }
904
905 STATIC int
906 xfs_btree_readahead_lblock(
907 struct xfs_btree_cur *cur,
908 int lr,
909 struct xfs_btree_block *block)
910 {
911 int rval = 0;
912 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
913 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
914
915 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
916 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
917 cur->bc_ops->buf_ops);
918 rval++;
919 }
920
921 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
922 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
923 cur->bc_ops->buf_ops);
924 rval++;
925 }
926
927 return rval;
928 }
929
930 STATIC int
931 xfs_btree_readahead_sblock(
932 struct xfs_btree_cur *cur,
933 int lr,
934 struct xfs_btree_block *block)
935 {
936 int rval = 0;
937 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
938 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
939
940
941 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
942 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
943 left, 1, cur->bc_ops->buf_ops);
944 rval++;
945 }
946
947 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
948 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
949 right, 1, cur->bc_ops->buf_ops);
950 rval++;
951 }
952
953 return rval;
954 }
955
956 /*
957 * Read-ahead btree blocks, at the given level.
958 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
959 */
960 STATIC int
961 xfs_btree_readahead(
962 struct xfs_btree_cur *cur, /* btree cursor */
963 int lev, /* level in btree */
964 int lr) /* left/right bits */
965 {
966 struct xfs_btree_block *block;
967
968 /*
969 * No readahead needed if we are at the root level and the
970 * btree root is stored in the inode.
971 */
972 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
973 (lev == cur->bc_nlevels - 1))
974 return 0;
975
976 if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
977 return 0;
978
979 cur->bc_ra[lev] |= lr;
980 block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
981
982 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
983 return xfs_btree_readahead_lblock(cur, lr, block);
984 return xfs_btree_readahead_sblock(cur, lr, block);
985 }
986
987 STATIC xfs_daddr_t
988 xfs_btree_ptr_to_daddr(
989 struct xfs_btree_cur *cur,
990 union xfs_btree_ptr *ptr)
991 {
992 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
993 ASSERT(ptr->l != cpu_to_be64(NULLFSBLOCK));
994
995 return XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
996 } else {
997 ASSERT(cur->bc_private.a.agno != NULLAGNUMBER);
998 ASSERT(ptr->s != cpu_to_be32(NULLAGBLOCK));
999
1000 return XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
1001 be32_to_cpu(ptr->s));
1002 }
1003 }
1004
1005 /*
1006 * Readahead @count btree blocks at the given @ptr location.
1007 *
1008 * We don't need to care about long or short form btrees here as we have a
1009 * method of converting the ptr directly to a daddr available to us.
1010 */
1011 STATIC void
1012 xfs_btree_readahead_ptr(
1013 struct xfs_btree_cur *cur,
1014 union xfs_btree_ptr *ptr,
1015 xfs_extlen_t count)
1016 {
1017 xfs_buf_readahead(cur->bc_mp->m_ddev_targp,
1018 xfs_btree_ptr_to_daddr(cur, ptr),
1019 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
1020 }
1021
1022 /*
1023 * Set the buffer for level "lev" in the cursor to bp, releasing
1024 * any previous buffer.
1025 */
1026 STATIC void
1027 xfs_btree_setbuf(
1028 xfs_btree_cur_t *cur, /* btree cursor */
1029 int lev, /* level in btree */
1030 xfs_buf_t *bp) /* new buffer to set */
1031 {
1032 struct xfs_btree_block *b; /* btree block */
1033
1034 if (cur->bc_bufs[lev])
1035 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
1036 cur->bc_bufs[lev] = bp;
1037 cur->bc_ra[lev] = 0;
1038
1039 b = XFS_BUF_TO_BLOCK(bp);
1040 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1041 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1042 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1043 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1044 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1045 } else {
1046 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1047 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1048 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1049 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1050 }
1051 }
1052
1053 bool
1054 xfs_btree_ptr_is_null(
1055 struct xfs_btree_cur *cur,
1056 union xfs_btree_ptr *ptr)
1057 {
1058 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1059 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1060 else
1061 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1062 }
1063
1064 STATIC void
1065 xfs_btree_set_ptr_null(
1066 struct xfs_btree_cur *cur,
1067 union xfs_btree_ptr *ptr)
1068 {
1069 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1070 ptr->l = cpu_to_be64(NULLFSBLOCK);
1071 else
1072 ptr->s = cpu_to_be32(NULLAGBLOCK);
1073 }
1074
1075 /*
1076 * Get/set/init sibling pointers
1077 */
1078 void
1079 xfs_btree_get_sibling(
1080 struct xfs_btree_cur *cur,
1081 struct xfs_btree_block *block,
1082 union xfs_btree_ptr *ptr,
1083 int lr)
1084 {
1085 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1086
1087 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1088 if (lr == XFS_BB_RIGHTSIB)
1089 ptr->l = block->bb_u.l.bb_rightsib;
1090 else
1091 ptr->l = block->bb_u.l.bb_leftsib;
1092 } else {
1093 if (lr == XFS_BB_RIGHTSIB)
1094 ptr->s = block->bb_u.s.bb_rightsib;
1095 else
1096 ptr->s = block->bb_u.s.bb_leftsib;
1097 }
1098 }
1099
1100 STATIC void
1101 xfs_btree_set_sibling(
1102 struct xfs_btree_cur *cur,
1103 struct xfs_btree_block *block,
1104 union xfs_btree_ptr *ptr,
1105 int lr)
1106 {
1107 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1108
1109 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1110 if (lr == XFS_BB_RIGHTSIB)
1111 block->bb_u.l.bb_rightsib = ptr->l;
1112 else
1113 block->bb_u.l.bb_leftsib = ptr->l;
1114 } else {
1115 if (lr == XFS_BB_RIGHTSIB)
1116 block->bb_u.s.bb_rightsib = ptr->s;
1117 else
1118 block->bb_u.s.bb_leftsib = ptr->s;
1119 }
1120 }
1121
1122 void
1123 xfs_btree_init_block_int(
1124 struct xfs_mount *mp,
1125 struct xfs_btree_block *buf,
1126 xfs_daddr_t blkno,
1127 xfs_btnum_t btnum,
1128 __u16 level,
1129 __u16 numrecs,
1130 __u64 owner,
1131 unsigned int flags)
1132 {
1133 int crc = xfs_sb_version_hascrc(&mp->m_sb);
1134 __u32 magic = xfs_btree_magic(crc, btnum);
1135
1136 buf->bb_magic = cpu_to_be32(magic);
1137 buf->bb_level = cpu_to_be16(level);
1138 buf->bb_numrecs = cpu_to_be16(numrecs);
1139
1140 if (flags & XFS_BTREE_LONG_PTRS) {
1141 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1142 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1143 if (crc) {
1144 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1145 buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1146 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1147 buf->bb_u.l.bb_pad = 0;
1148 buf->bb_u.l.bb_lsn = 0;
1149 }
1150 } else {
1151 /* owner is a 32 bit value on short blocks */
1152 __u32 __owner = (__u32)owner;
1153
1154 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1155 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1156 if (crc) {
1157 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1158 buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1159 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1160 buf->bb_u.s.bb_lsn = 0;
1161 }
1162 }
1163 }
1164
1165 void
1166 xfs_btree_init_block(
1167 struct xfs_mount *mp,
1168 struct xfs_buf *bp,
1169 xfs_btnum_t btnum,
1170 __u16 level,
1171 __u16 numrecs,
1172 __u64 owner,
1173 unsigned int flags)
1174 {
1175 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1176 btnum, level, numrecs, owner, flags);
1177 }
1178
1179 STATIC void
1180 xfs_btree_init_block_cur(
1181 struct xfs_btree_cur *cur,
1182 struct xfs_buf *bp,
1183 int level,
1184 int numrecs)
1185 {
1186 __u64 owner;
1187
1188 /*
1189 * we can pull the owner from the cursor right now as the different
1190 * owners align directly with the pointer size of the btree. This may
1191 * change in future, but is safe for current users of the generic btree
1192 * code.
1193 */
1194 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1195 owner = cur->bc_private.b.ip->i_ino;
1196 else
1197 owner = cur->bc_private.a.agno;
1198
1199 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1200 cur->bc_btnum, level, numrecs,
1201 owner, cur->bc_flags);
1202 }
1203
1204 /*
1205 * Return true if ptr is the last record in the btree and
1206 * we need to track updates to this record. The decision
1207 * will be further refined in the update_lastrec method.
1208 */
1209 STATIC int
1210 xfs_btree_is_lastrec(
1211 struct xfs_btree_cur *cur,
1212 struct xfs_btree_block *block,
1213 int level)
1214 {
1215 union xfs_btree_ptr ptr;
1216
1217 if (level > 0)
1218 return 0;
1219 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1220 return 0;
1221
1222 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1223 if (!xfs_btree_ptr_is_null(cur, &ptr))
1224 return 0;
1225 return 1;
1226 }
1227
1228 STATIC void
1229 xfs_btree_buf_to_ptr(
1230 struct xfs_btree_cur *cur,
1231 struct xfs_buf *bp,
1232 union xfs_btree_ptr *ptr)
1233 {
1234 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1235 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1236 XFS_BUF_ADDR(bp)));
1237 else {
1238 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1239 XFS_BUF_ADDR(bp)));
1240 }
1241 }
1242
1243 STATIC void
1244 xfs_btree_set_refs(
1245 struct xfs_btree_cur *cur,
1246 struct xfs_buf *bp)
1247 {
1248 switch (cur->bc_btnum) {
1249 case XFS_BTNUM_BNO:
1250 case XFS_BTNUM_CNT:
1251 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1252 break;
1253 case XFS_BTNUM_INO:
1254 case XFS_BTNUM_FINO:
1255 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1256 break;
1257 case XFS_BTNUM_BMAP:
1258 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1259 break;
1260 case XFS_BTNUM_RMAP:
1261 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1262 break;
1263 case XFS_BTNUM_REFC:
1264 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1265 break;
1266 default:
1267 ASSERT(0);
1268 }
1269 }
1270
1271 STATIC int
1272 xfs_btree_get_buf_block(
1273 struct xfs_btree_cur *cur,
1274 union xfs_btree_ptr *ptr,
1275 int flags,
1276 struct xfs_btree_block **block,
1277 struct xfs_buf **bpp)
1278 {
1279 struct xfs_mount *mp = cur->bc_mp;
1280 xfs_daddr_t d;
1281
1282 /* need to sort out how callers deal with failures first */
1283 ASSERT(!(flags & XBF_TRYLOCK));
1284
1285 d = xfs_btree_ptr_to_daddr(cur, ptr);
1286 *bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1287 mp->m_bsize, flags);
1288
1289 if (!*bpp)
1290 return -ENOMEM;
1291
1292 (*bpp)->b_ops = cur->bc_ops->buf_ops;
1293 *block = XFS_BUF_TO_BLOCK(*bpp);
1294 return 0;
1295 }
1296
1297 /*
1298 * Read in the buffer at the given ptr and return the buffer and
1299 * the block pointer within the buffer.
1300 */
1301 STATIC int
1302 xfs_btree_read_buf_block(
1303 struct xfs_btree_cur *cur,
1304 union xfs_btree_ptr *ptr,
1305 int flags,
1306 struct xfs_btree_block **block,
1307 struct xfs_buf **bpp)
1308 {
1309 struct xfs_mount *mp = cur->bc_mp;
1310 xfs_daddr_t d;
1311 int error;
1312
1313 /* need to sort out how callers deal with failures first */
1314 ASSERT(!(flags & XBF_TRYLOCK));
1315
1316 d = xfs_btree_ptr_to_daddr(cur, ptr);
1317 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1318 mp->m_bsize, flags, bpp,
1319 cur->bc_ops->buf_ops);
1320 if (error)
1321 return error;
1322
1323 xfs_btree_set_refs(cur, *bpp);
1324 *block = XFS_BUF_TO_BLOCK(*bpp);
1325 return 0;
1326 }
1327
1328 /*
1329 * Copy keys from one btree block to another.
1330 */
1331 STATIC void
1332 xfs_btree_copy_keys(
1333 struct xfs_btree_cur *cur,
1334 union xfs_btree_key *dst_key,
1335 union xfs_btree_key *src_key,
1336 int numkeys)
1337 {
1338 ASSERT(numkeys >= 0);
1339 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1340 }
1341
1342 /*
1343 * Copy records from one btree block to another.
1344 */
1345 STATIC void
1346 xfs_btree_copy_recs(
1347 struct xfs_btree_cur *cur,
1348 union xfs_btree_rec *dst_rec,
1349 union xfs_btree_rec *src_rec,
1350 int numrecs)
1351 {
1352 ASSERT(numrecs >= 0);
1353 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1354 }
1355
1356 /*
1357 * Copy block pointers from one btree block to another.
1358 */
1359 STATIC void
1360 xfs_btree_copy_ptrs(
1361 struct xfs_btree_cur *cur,
1362 union xfs_btree_ptr *dst_ptr,
1363 union xfs_btree_ptr *src_ptr,
1364 int numptrs)
1365 {
1366 ASSERT(numptrs >= 0);
1367 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1368 }
1369
1370 /*
1371 * Shift keys one index left/right inside a single btree block.
1372 */
1373 STATIC void
1374 xfs_btree_shift_keys(
1375 struct xfs_btree_cur *cur,
1376 union xfs_btree_key *key,
1377 int dir,
1378 int numkeys)
1379 {
1380 char *dst_key;
1381
1382 ASSERT(numkeys >= 0);
1383 ASSERT(dir == 1 || dir == -1);
1384
1385 dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1386 memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1387 }
1388
1389 /*
1390 * Shift records one index left/right inside a single btree block.
1391 */
1392 STATIC void
1393 xfs_btree_shift_recs(
1394 struct xfs_btree_cur *cur,
1395 union xfs_btree_rec *rec,
1396 int dir,
1397 int numrecs)
1398 {
1399 char *dst_rec;
1400
1401 ASSERT(numrecs >= 0);
1402 ASSERT(dir == 1 || dir == -1);
1403
1404 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1405 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1406 }
1407
1408 /*
1409 * Shift block pointers one index left/right inside a single btree block.
1410 */
1411 STATIC void
1412 xfs_btree_shift_ptrs(
1413 struct xfs_btree_cur *cur,
1414 union xfs_btree_ptr *ptr,
1415 int dir,
1416 int numptrs)
1417 {
1418 char *dst_ptr;
1419
1420 ASSERT(numptrs >= 0);
1421 ASSERT(dir == 1 || dir == -1);
1422
1423 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1424 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1425 }
1426
1427 /*
1428 * Log key values from the btree block.
1429 */
1430 STATIC void
1431 xfs_btree_log_keys(
1432 struct xfs_btree_cur *cur,
1433 struct xfs_buf *bp,
1434 int first,
1435 int last)
1436 {
1437 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1438 XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1439
1440 if (bp) {
1441 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1442 xfs_trans_log_buf(cur->bc_tp, bp,
1443 xfs_btree_key_offset(cur, first),
1444 xfs_btree_key_offset(cur, last + 1) - 1);
1445 } else {
1446 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1447 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1448 }
1449
1450 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1451 }
1452
1453 /*
1454 * Log record values from the btree block.
1455 */
1456 void
1457 xfs_btree_log_recs(
1458 struct xfs_btree_cur *cur,
1459 struct xfs_buf *bp,
1460 int first,
1461 int last)
1462 {
1463 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1464 XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1465
1466 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1467 xfs_trans_log_buf(cur->bc_tp, bp,
1468 xfs_btree_rec_offset(cur, first),
1469 xfs_btree_rec_offset(cur, last + 1) - 1);
1470
1471 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1472 }
1473
1474 /*
1475 * Log block pointer fields from a btree block (nonleaf).
1476 */
1477 STATIC void
1478 xfs_btree_log_ptrs(
1479 struct xfs_btree_cur *cur, /* btree cursor */
1480 struct xfs_buf *bp, /* buffer containing btree block */
1481 int first, /* index of first pointer to log */
1482 int last) /* index of last pointer to log */
1483 {
1484 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1485 XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1486
1487 if (bp) {
1488 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
1489 int level = xfs_btree_get_level(block);
1490
1491 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1492 xfs_trans_log_buf(cur->bc_tp, bp,
1493 xfs_btree_ptr_offset(cur, first, level),
1494 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1495 } else {
1496 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1497 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1498 }
1499
1500 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1501 }
1502
1503 /*
1504 * Log fields from a btree block header.
1505 */
1506 void
1507 xfs_btree_log_block(
1508 struct xfs_btree_cur *cur, /* btree cursor */
1509 struct xfs_buf *bp, /* buffer containing btree block */
1510 int fields) /* mask of fields: XFS_BB_... */
1511 {
1512 int first; /* first byte offset logged */
1513 int last; /* last byte offset logged */
1514 static const short soffsets[] = { /* table of offsets (short) */
1515 offsetof(struct xfs_btree_block, bb_magic),
1516 offsetof(struct xfs_btree_block, bb_level),
1517 offsetof(struct xfs_btree_block, bb_numrecs),
1518 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1519 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1520 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1521 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1522 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1523 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1524 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1525 XFS_BTREE_SBLOCK_CRC_LEN
1526 };
1527 static const short loffsets[] = { /* table of offsets (long) */
1528 offsetof(struct xfs_btree_block, bb_magic),
1529 offsetof(struct xfs_btree_block, bb_level),
1530 offsetof(struct xfs_btree_block, bb_numrecs),
1531 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1532 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1533 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1534 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1535 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1536 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1537 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1538 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1539 XFS_BTREE_LBLOCK_CRC_LEN
1540 };
1541
1542 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1543 XFS_BTREE_TRACE_ARGBI(cur, bp, fields);
1544
1545 if (bp) {
1546 int nbits;
1547
1548 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1549 /*
1550 * We don't log the CRC when updating a btree
1551 * block but instead recreate it during log
1552 * recovery. As the log buffers have checksums
1553 * of their own this is safe and avoids logging a crc
1554 * update in a lot of places.
1555 */
1556 if (fields == XFS_BB_ALL_BITS)
1557 fields = XFS_BB_ALL_BITS_CRC;
1558 nbits = XFS_BB_NUM_BITS_CRC;
1559 } else {
1560 nbits = XFS_BB_NUM_BITS;
1561 }
1562 xfs_btree_offsets(fields,
1563 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1564 loffsets : soffsets,
1565 nbits, &first, &last);
1566 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1567 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1568 } else {
1569 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1570 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1571 }
1572
1573 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1574 }
1575
1576 /*
1577 * Increment cursor by one record at the level.
1578 * For nonzero levels the leaf-ward information is untouched.
1579 */
1580 int /* error */
1581 xfs_btree_increment(
1582 struct xfs_btree_cur *cur,
1583 int level,
1584 int *stat) /* success/failure */
1585 {
1586 struct xfs_btree_block *block;
1587 union xfs_btree_ptr ptr;
1588 struct xfs_buf *bp;
1589 int error; /* error return value */
1590 int lev;
1591
1592 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1593 XFS_BTREE_TRACE_ARGI(cur, level);
1594
1595 ASSERT(level < cur->bc_nlevels);
1596
1597 /* Read-ahead to the right at this level. */
1598 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1599
1600 /* Get a pointer to the btree block. */
1601 block = xfs_btree_get_block(cur, level, &bp);
1602
1603 #ifdef DEBUG
1604 error = xfs_btree_check_block(cur, block, level, bp);
1605 if (error)
1606 goto error0;
1607 #endif
1608
1609 /* We're done if we remain in the block after the increment. */
1610 if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1611 goto out1;
1612
1613 /* Fail if we just went off the right edge of the tree. */
1614 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1615 if (xfs_btree_ptr_is_null(cur, &ptr))
1616 goto out0;
1617
1618 XFS_BTREE_STATS_INC(cur, increment);
1619
1620 /*
1621 * March up the tree incrementing pointers.
1622 * Stop when we don't go off the right edge of a block.
1623 */
1624 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1625 block = xfs_btree_get_block(cur, lev, &bp);
1626
1627 #ifdef DEBUG
1628 error = xfs_btree_check_block(cur, block, lev, bp);
1629 if (error)
1630 goto error0;
1631 #endif
1632
1633 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1634 break;
1635
1636 /* Read-ahead the right block for the next loop. */
1637 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1638 }
1639
1640 /*
1641 * If we went off the root then we are either seriously
1642 * confused or have the tree root in an inode.
1643 */
1644 if (lev == cur->bc_nlevels) {
1645 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1646 goto out0;
1647 ASSERT(0);
1648 error = -EFSCORRUPTED;
1649 goto error0;
1650 }
1651 ASSERT(lev < cur->bc_nlevels);
1652
1653 /*
1654 * Now walk back down the tree, fixing up the cursor's buffer
1655 * pointers and key numbers.
1656 */
1657 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1658 union xfs_btree_ptr *ptrp;
1659
1660 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1661 --lev;
1662 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1663 if (error)
1664 goto error0;
1665
1666 xfs_btree_setbuf(cur, lev, bp);
1667 cur->bc_ptrs[lev] = 1;
1668 }
1669 out1:
1670 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1671 *stat = 1;
1672 return 0;
1673
1674 out0:
1675 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1676 *stat = 0;
1677 return 0;
1678
1679 error0:
1680 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1681 return error;
1682 }
1683
1684 /*
1685 * Decrement cursor by one record at the level.
1686 * For nonzero levels the leaf-ward information is untouched.
1687 */
1688 int /* error */
1689 xfs_btree_decrement(
1690 struct xfs_btree_cur *cur,
1691 int level,
1692 int *stat) /* success/failure */
1693 {
1694 struct xfs_btree_block *block;
1695 xfs_buf_t *bp;
1696 int error; /* error return value */
1697 int lev;
1698 union xfs_btree_ptr ptr;
1699
1700 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1701 XFS_BTREE_TRACE_ARGI(cur, level);
1702
1703 ASSERT(level < cur->bc_nlevels);
1704
1705 /* Read-ahead to the left at this level. */
1706 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1707
1708 /* We're done if we remain in the block after the decrement. */
1709 if (--cur->bc_ptrs[level] > 0)
1710 goto out1;
1711
1712 /* Get a pointer to the btree block. */
1713 block = xfs_btree_get_block(cur, level, &bp);
1714
1715 #ifdef DEBUG
1716 error = xfs_btree_check_block(cur, block, level, bp);
1717 if (error)
1718 goto error0;
1719 #endif
1720
1721 /* Fail if we just went off the left edge of the tree. */
1722 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1723 if (xfs_btree_ptr_is_null(cur, &ptr))
1724 goto out0;
1725
1726 XFS_BTREE_STATS_INC(cur, decrement);
1727
1728 /*
1729 * March up the tree decrementing pointers.
1730 * Stop when we don't go off the left edge of a block.
1731 */
1732 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1733 if (--cur->bc_ptrs[lev] > 0)
1734 break;
1735 /* Read-ahead the left block for the next loop. */
1736 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1737 }
1738
1739 /*
1740 * If we went off the root then we are seriously confused.
1741 * or the root of the tree is in an inode.
1742 */
1743 if (lev == cur->bc_nlevels) {
1744 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1745 goto out0;
1746 ASSERT(0);
1747 error = -EFSCORRUPTED;
1748 goto error0;
1749 }
1750 ASSERT(lev < cur->bc_nlevels);
1751
1752 /*
1753 * Now walk back down the tree, fixing up the cursor's buffer
1754 * pointers and key numbers.
1755 */
1756 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1757 union xfs_btree_ptr *ptrp;
1758
1759 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1760 --lev;
1761 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1762 if (error)
1763 goto error0;
1764 xfs_btree_setbuf(cur, lev, bp);
1765 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1766 }
1767 out1:
1768 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1769 *stat = 1;
1770 return 0;
1771
1772 out0:
1773 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1774 *stat = 0;
1775 return 0;
1776
1777 error0:
1778 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1779 return error;
1780 }
1781
1782 int
1783 xfs_btree_lookup_get_block(
1784 struct xfs_btree_cur *cur, /* btree cursor */
1785 int level, /* level in the btree */
1786 union xfs_btree_ptr *pp, /* ptr to btree block */
1787 struct xfs_btree_block **blkp) /* return btree block */
1788 {
1789 struct xfs_buf *bp; /* buffer pointer for btree block */
1790 int error = 0;
1791
1792 /* special case the root block if in an inode */
1793 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1794 (level == cur->bc_nlevels - 1)) {
1795 *blkp = xfs_btree_get_iroot(cur);
1796 return 0;
1797 }
1798
1799 /*
1800 * If the old buffer at this level for the disk address we are
1801 * looking for re-use it.
1802 *
1803 * Otherwise throw it away and get a new one.
1804 */
1805 bp = cur->bc_bufs[level];
1806 if (bp && XFS_BUF_ADDR(bp) == xfs_btree_ptr_to_daddr(cur, pp)) {
1807 *blkp = XFS_BUF_TO_BLOCK(bp);
1808 return 0;
1809 }
1810
1811 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1812 if (error)
1813 return error;
1814
1815 /* Check the inode owner since the verifiers don't. */
1816 if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1817 !(cur->bc_private.b.flags & XFS_BTCUR_BPRV_INVALID_OWNER) &&
1818 (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1819 be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1820 cur->bc_private.b.ip->i_ino)
1821 goto out_bad;
1822
1823 /* Did we get the level we were looking for? */
1824 if (be16_to_cpu((*blkp)->bb_level) != level)
1825 goto out_bad;
1826
1827 /* Check that internal nodes have at least one record. */
1828 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1829 goto out_bad;
1830
1831 xfs_btree_setbuf(cur, level, bp);
1832 return 0;
1833
1834 out_bad:
1835 *blkp = NULL;
1836 xfs_trans_brelse(cur->bc_tp, bp);
1837 return -EFSCORRUPTED;
1838 }
1839
1840 /*
1841 * Get current search key. For level 0 we don't actually have a key
1842 * structure so we make one up from the record. For all other levels
1843 * we just return the right key.
1844 */
1845 STATIC union xfs_btree_key *
1846 xfs_lookup_get_search_key(
1847 struct xfs_btree_cur *cur,
1848 int level,
1849 int keyno,
1850 struct xfs_btree_block *block,
1851 union xfs_btree_key *kp)
1852 {
1853 if (level == 0) {
1854 cur->bc_ops->init_key_from_rec(kp,
1855 xfs_btree_rec_addr(cur, keyno, block));
1856 return kp;
1857 }
1858
1859 return xfs_btree_key_addr(cur, keyno, block);
1860 }
1861
1862 /*
1863 * Lookup the record. The cursor is made to point to it, based on dir.
1864 * stat is set to 0 if can't find any such record, 1 for success.
1865 */
1866 int /* error */
1867 xfs_btree_lookup(
1868 struct xfs_btree_cur *cur, /* btree cursor */
1869 xfs_lookup_t dir, /* <=, ==, or >= */
1870 int *stat) /* success/failure */
1871 {
1872 struct xfs_btree_block *block; /* current btree block */
1873 int64_t diff; /* difference for the current key */
1874 int error; /* error return value */
1875 int keyno; /* current key number */
1876 int level; /* level in the btree */
1877 union xfs_btree_ptr *pp; /* ptr to btree block */
1878 union xfs_btree_ptr ptr; /* ptr to btree block */
1879
1880 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1881 XFS_BTREE_TRACE_ARGI(cur, dir);
1882
1883 XFS_BTREE_STATS_INC(cur, lookup);
1884
1885 /* No such thing as a zero-level tree. */
1886 if (cur->bc_nlevels == 0)
1887 return -EFSCORRUPTED;
1888
1889 block = NULL;
1890 keyno = 0;
1891
1892 /* initialise start pointer from cursor */
1893 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1894 pp = &ptr;
1895
1896 /*
1897 * Iterate over each level in the btree, starting at the root.
1898 * For each level above the leaves, find the key we need, based
1899 * on the lookup record, then follow the corresponding block
1900 * pointer down to the next level.
1901 */
1902 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1903 /* Get the block we need to do the lookup on. */
1904 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1905 if (error)
1906 goto error0;
1907
1908 if (diff == 0) {
1909 /*
1910 * If we already had a key match at a higher level, we
1911 * know we need to use the first entry in this block.
1912 */
1913 keyno = 1;
1914 } else {
1915 /* Otherwise search this block. Do a binary search. */
1916
1917 int high; /* high entry number */
1918 int low; /* low entry number */
1919
1920 /* Set low and high entry numbers, 1-based. */
1921 low = 1;
1922 high = xfs_btree_get_numrecs(block);
1923 if (!high) {
1924 /* Block is empty, must be an empty leaf. */
1925 ASSERT(level == 0 && cur->bc_nlevels == 1);
1926
1927 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1928 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1929 *stat = 0;
1930 return 0;
1931 }
1932
1933 /* Binary search the block. */
1934 while (low <= high) {
1935 union xfs_btree_key key;
1936 union xfs_btree_key *kp;
1937
1938 XFS_BTREE_STATS_INC(cur, compare);
1939
1940 /* keyno is average of low and high. */
1941 keyno = (low + high) >> 1;
1942
1943 /* Get current search key */
1944 kp = xfs_lookup_get_search_key(cur, level,
1945 keyno, block, &key);
1946
1947 /*
1948 * Compute difference to get next direction:
1949 * - less than, move right
1950 * - greater than, move left
1951 * - equal, we're done
1952 */
1953 diff = cur->bc_ops->key_diff(cur, kp);
1954 if (diff < 0)
1955 low = keyno + 1;
1956 else if (diff > 0)
1957 high = keyno - 1;
1958 else
1959 break;
1960 }
1961 }
1962
1963 /*
1964 * If there are more levels, set up for the next level
1965 * by getting the block number and filling in the cursor.
1966 */
1967 if (level > 0) {
1968 /*
1969 * If we moved left, need the previous key number,
1970 * unless there isn't one.
1971 */
1972 if (diff > 0 && --keyno < 1)
1973 keyno = 1;
1974 pp = xfs_btree_ptr_addr(cur, keyno, block);
1975
1976 #ifdef DEBUG
1977 error = xfs_btree_check_ptr(cur, pp, 0, level);
1978 if (error)
1979 goto error0;
1980 #endif
1981 cur->bc_ptrs[level] = keyno;
1982 }
1983 }
1984
1985 /* Done with the search. See if we need to adjust the results. */
1986 if (dir != XFS_LOOKUP_LE && diff < 0) {
1987 keyno++;
1988 /*
1989 * If ge search and we went off the end of the block, but it's
1990 * not the last block, we're in the wrong block.
1991 */
1992 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1993 if (dir == XFS_LOOKUP_GE &&
1994 keyno > xfs_btree_get_numrecs(block) &&
1995 !xfs_btree_ptr_is_null(cur, &ptr)) {
1996 int i;
1997
1998 cur->bc_ptrs[0] = keyno;
1999 error = xfs_btree_increment(cur, 0, &i);
2000 if (error)
2001 goto error0;
2002 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
2003 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2004 *stat = 1;
2005 return 0;
2006 }
2007 } else if (dir == XFS_LOOKUP_LE && diff > 0)
2008 keyno--;
2009 cur->bc_ptrs[0] = keyno;
2010
2011 /* Return if we succeeded or not. */
2012 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2013 *stat = 0;
2014 else if (dir != XFS_LOOKUP_EQ || diff == 0)
2015 *stat = 1;
2016 else
2017 *stat = 0;
2018 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2019 return 0;
2020
2021 error0:
2022 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2023 return error;
2024 }
2025
2026 /* Find the high key storage area from a regular key. */
2027 union xfs_btree_key *
2028 xfs_btree_high_key_from_key(
2029 struct xfs_btree_cur *cur,
2030 union xfs_btree_key *key)
2031 {
2032 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2033 return (union xfs_btree_key *)((char *)key +
2034 (cur->bc_ops->key_len / 2));
2035 }
2036
2037 /* Determine the low (and high if overlapped) keys of a leaf block */
2038 STATIC void
2039 xfs_btree_get_leaf_keys(
2040 struct xfs_btree_cur *cur,
2041 struct xfs_btree_block *block,
2042 union xfs_btree_key *key)
2043 {
2044 union xfs_btree_key max_hkey;
2045 union xfs_btree_key hkey;
2046 union xfs_btree_rec *rec;
2047 union xfs_btree_key *high;
2048 int n;
2049
2050 rec = xfs_btree_rec_addr(cur, 1, block);
2051 cur->bc_ops->init_key_from_rec(key, rec);
2052
2053 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2054
2055 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2056 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2057 rec = xfs_btree_rec_addr(cur, n, block);
2058 cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2059 if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2060 > 0)
2061 max_hkey = hkey;
2062 }
2063
2064 high = xfs_btree_high_key_from_key(cur, key);
2065 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2066 }
2067 }
2068
2069 /* Determine the low (and high if overlapped) keys of a node block */
2070 STATIC void
2071 xfs_btree_get_node_keys(
2072 struct xfs_btree_cur *cur,
2073 struct xfs_btree_block *block,
2074 union xfs_btree_key *key)
2075 {
2076 union xfs_btree_key *hkey;
2077 union xfs_btree_key *max_hkey;
2078 union xfs_btree_key *high;
2079 int n;
2080
2081 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2082 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2083 cur->bc_ops->key_len / 2);
2084
2085 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2086 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2087 hkey = xfs_btree_high_key_addr(cur, n, block);
2088 if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2089 max_hkey = hkey;
2090 }
2091
2092 high = xfs_btree_high_key_from_key(cur, key);
2093 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2094 } else {
2095 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2096 cur->bc_ops->key_len);
2097 }
2098 }
2099
2100 /* Derive the keys for any btree block. */
2101 void
2102 xfs_btree_get_keys(
2103 struct xfs_btree_cur *cur,
2104 struct xfs_btree_block *block,
2105 union xfs_btree_key *key)
2106 {
2107 if (be16_to_cpu(block->bb_level) == 0)
2108 xfs_btree_get_leaf_keys(cur, block, key);
2109 else
2110 xfs_btree_get_node_keys(cur, block, key);
2111 }
2112
2113 /*
2114 * Decide if we need to update the parent keys of a btree block. For
2115 * a standard btree this is only necessary if we're updating the first
2116 * record/key. For an overlapping btree, we must always update the
2117 * keys because the highest key can be in any of the records or keys
2118 * in the block.
2119 */
2120 static inline bool
2121 xfs_btree_needs_key_update(
2122 struct xfs_btree_cur *cur,
2123 int ptr)
2124 {
2125 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2126 }
2127
2128 /*
2129 * Update the low and high parent keys of the given level, progressing
2130 * towards the root. If force_all is false, stop if the keys for a given
2131 * level do not need updating.
2132 */
2133 STATIC int
2134 __xfs_btree_updkeys(
2135 struct xfs_btree_cur *cur,
2136 int level,
2137 struct xfs_btree_block *block,
2138 struct xfs_buf *bp0,
2139 bool force_all)
2140 {
2141 union xfs_btree_key key; /* keys from current level */
2142 union xfs_btree_key *lkey; /* keys from the next level up */
2143 union xfs_btree_key *hkey;
2144 union xfs_btree_key *nlkey; /* keys from the next level up */
2145 union xfs_btree_key *nhkey;
2146 struct xfs_buf *bp;
2147 int ptr;
2148
2149 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2150
2151 /* Exit if there aren't any parent levels to update. */
2152 if (level + 1 >= cur->bc_nlevels)
2153 return 0;
2154
2155 trace_xfs_btree_updkeys(cur, level, bp0);
2156
2157 lkey = &key;
2158 hkey = xfs_btree_high_key_from_key(cur, lkey);
2159 xfs_btree_get_keys(cur, block, lkey);
2160 for (level++; level < cur->bc_nlevels; level++) {
2161 #ifdef DEBUG
2162 int error;
2163 #endif
2164 block = xfs_btree_get_block(cur, level, &bp);
2165 trace_xfs_btree_updkeys(cur, level, bp);
2166 #ifdef DEBUG
2167 error = xfs_btree_check_block(cur, block, level, bp);
2168 if (error) {
2169 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2170 return error;
2171 }
2172 #endif
2173 ptr = cur->bc_ptrs[level];
2174 nlkey = xfs_btree_key_addr(cur, ptr, block);
2175 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2176 if (!force_all &&
2177 !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2178 cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2179 break;
2180 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2181 xfs_btree_log_keys(cur, bp, ptr, ptr);
2182 if (level + 1 >= cur->bc_nlevels)
2183 break;
2184 xfs_btree_get_node_keys(cur, block, lkey);
2185 }
2186
2187 return 0;
2188 }
2189
2190 /* Update all the keys from some level in cursor back to the root. */
2191 STATIC int
2192 xfs_btree_updkeys_force(
2193 struct xfs_btree_cur *cur,
2194 int level)
2195 {
2196 struct xfs_buf *bp;
2197 struct xfs_btree_block *block;
2198
2199 block = xfs_btree_get_block(cur, level, &bp);
2200 return __xfs_btree_updkeys(cur, level, block, bp, true);
2201 }
2202
2203 /*
2204 * Update the parent keys of the given level, progressing towards the root.
2205 */
2206 STATIC int
2207 xfs_btree_update_keys(
2208 struct xfs_btree_cur *cur,
2209 int level)
2210 {
2211 struct xfs_btree_block *block;
2212 struct xfs_buf *bp;
2213 union xfs_btree_key *kp;
2214 union xfs_btree_key key;
2215 int ptr;
2216
2217 ASSERT(level >= 0);
2218
2219 block = xfs_btree_get_block(cur, level, &bp);
2220 if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2221 return __xfs_btree_updkeys(cur, level, block, bp, false);
2222
2223 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2224 XFS_BTREE_TRACE_ARGIK(cur, level, keyp);
2225
2226 /*
2227 * Go up the tree from this level toward the root.
2228 * At each level, update the key value to the value input.
2229 * Stop when we reach a level where the cursor isn't pointing
2230 * at the first entry in the block.
2231 */
2232 xfs_btree_get_keys(cur, block, &key);
2233 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2234 #ifdef DEBUG
2235 int error;
2236 #endif
2237 block = xfs_btree_get_block(cur, level, &bp);
2238 #ifdef DEBUG
2239 error = xfs_btree_check_block(cur, block, level, bp);
2240 if (error) {
2241 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2242 return error;
2243 }
2244 #endif
2245 ptr = cur->bc_ptrs[level];
2246 kp = xfs_btree_key_addr(cur, ptr, block);
2247 xfs_btree_copy_keys(cur, kp, &key, 1);
2248 xfs_btree_log_keys(cur, bp, ptr, ptr);
2249 }
2250
2251 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2252 return 0;
2253 }
2254
2255 /*
2256 * Update the record referred to by cur to the value in the
2257 * given record. This either works (return 0) or gets an
2258 * EFSCORRUPTED error.
2259 */
2260 int
2261 xfs_btree_update(
2262 struct xfs_btree_cur *cur,
2263 union xfs_btree_rec *rec)
2264 {
2265 struct xfs_btree_block *block;
2266 struct xfs_buf *bp;
2267 int error;
2268 int ptr;
2269 union xfs_btree_rec *rp;
2270
2271 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2272 XFS_BTREE_TRACE_ARGR(cur, rec);
2273
2274 /* Pick up the current block. */
2275 block = xfs_btree_get_block(cur, 0, &bp);
2276
2277 #ifdef DEBUG
2278 error = xfs_btree_check_block(cur, block, 0, bp);
2279 if (error)
2280 goto error0;
2281 #endif
2282 /* Get the address of the rec to be updated. */
2283 ptr = cur->bc_ptrs[0];
2284 rp = xfs_btree_rec_addr(cur, ptr, block);
2285
2286 /* Fill in the new contents and log them. */
2287 xfs_btree_copy_recs(cur, rp, rec, 1);
2288 xfs_btree_log_recs(cur, bp, ptr, ptr);
2289
2290 /*
2291 * If we are tracking the last record in the tree and
2292 * we are at the far right edge of the tree, update it.
2293 */
2294 if (xfs_btree_is_lastrec(cur, block, 0)) {
2295 cur->bc_ops->update_lastrec(cur, block, rec,
2296 ptr, LASTREC_UPDATE);
2297 }
2298
2299 /* Pass new key value up to our parent. */
2300 if (xfs_btree_needs_key_update(cur, ptr)) {
2301 error = xfs_btree_update_keys(cur, 0);
2302 if (error)
2303 goto error0;
2304 }
2305
2306 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2307 return 0;
2308
2309 error0:
2310 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2311 return error;
2312 }
2313
2314 /*
2315 * Move 1 record left from cur/level if possible.
2316 * Update cur to reflect the new path.
2317 */
2318 STATIC int /* error */
2319 xfs_btree_lshift(
2320 struct xfs_btree_cur *cur,
2321 int level,
2322 int *stat) /* success/failure */
2323 {
2324 struct xfs_buf *lbp; /* left buffer pointer */
2325 struct xfs_btree_block *left; /* left btree block */
2326 int lrecs; /* left record count */
2327 struct xfs_buf *rbp; /* right buffer pointer */
2328 struct xfs_btree_block *right; /* right btree block */
2329 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2330 int rrecs; /* right record count */
2331 union xfs_btree_ptr lptr; /* left btree pointer */
2332 union xfs_btree_key *rkp = NULL; /* right btree key */
2333 union xfs_btree_ptr *rpp = NULL; /* right address pointer */
2334 union xfs_btree_rec *rrp = NULL; /* right record pointer */
2335 int error; /* error return value */
2336 int i;
2337
2338 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2339 XFS_BTREE_TRACE_ARGI(cur, level);
2340
2341 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2342 level == cur->bc_nlevels - 1)
2343 goto out0;
2344
2345 /* Set up variables for this block as "right". */
2346 right = xfs_btree_get_block(cur, level, &rbp);
2347
2348 #ifdef DEBUG
2349 error = xfs_btree_check_block(cur, right, level, rbp);
2350 if (error)
2351 goto error0;
2352 #endif
2353
2354 /* If we've got no left sibling then we can't shift an entry left. */
2355 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2356 if (xfs_btree_ptr_is_null(cur, &lptr))
2357 goto out0;
2358
2359 /*
2360 * If the cursor entry is the one that would be moved, don't
2361 * do it... it's too complicated.
2362 */
2363 if (cur->bc_ptrs[level] <= 1)
2364 goto out0;
2365
2366 /* Set up the left neighbor as "left". */
2367 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2368 if (error)
2369 goto error0;
2370
2371 /* If it's full, it can't take another entry. */
2372 lrecs = xfs_btree_get_numrecs(left);
2373 if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2374 goto out0;
2375
2376 rrecs = xfs_btree_get_numrecs(right);
2377
2378 /*
2379 * We add one entry to the left side and remove one for the right side.
2380 * Account for it here, the changes will be updated on disk and logged
2381 * later.
2382 */
2383 lrecs++;
2384 rrecs--;
2385
2386 XFS_BTREE_STATS_INC(cur, lshift);
2387 XFS_BTREE_STATS_ADD(cur, moves, 1);
2388
2389 /*
2390 * If non-leaf, copy a key and a ptr to the left block.
2391 * Log the changes to the left block.
2392 */
2393 if (level > 0) {
2394 /* It's a non-leaf. Move keys and pointers. */
2395 union xfs_btree_key *lkp; /* left btree key */
2396 union xfs_btree_ptr *lpp; /* left address pointer */
2397
2398 lkp = xfs_btree_key_addr(cur, lrecs, left);
2399 rkp = xfs_btree_key_addr(cur, 1, right);
2400
2401 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2402 rpp = xfs_btree_ptr_addr(cur, 1, right);
2403 #ifdef DEBUG
2404 error = xfs_btree_check_ptr(cur, rpp, 0, level);
2405 if (error)
2406 goto error0;
2407 #endif
2408 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2409 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2410
2411 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2412 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2413
2414 ASSERT(cur->bc_ops->keys_inorder(cur,
2415 xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2416 } else {
2417 /* It's a leaf. Move records. */
2418 union xfs_btree_rec *lrp; /* left record pointer */
2419
2420 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2421 rrp = xfs_btree_rec_addr(cur, 1, right);
2422
2423 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2424 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2425
2426 ASSERT(cur->bc_ops->recs_inorder(cur,
2427 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2428 }
2429
2430 xfs_btree_set_numrecs(left, lrecs);
2431 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2432
2433 xfs_btree_set_numrecs(right, rrecs);
2434 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2435
2436 /*
2437 * Slide the contents of right down one entry.
2438 */
2439 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2440 if (level > 0) {
2441 /* It's a nonleaf. operate on keys and ptrs */
2442 #ifdef DEBUG
2443 int i; /* loop index */
2444
2445 for (i = 0; i < rrecs; i++) {
2446 error = xfs_btree_check_ptr(cur, rpp, i + 1, level);
2447 if (error)
2448 goto error0;
2449 }
2450 #endif
2451 xfs_btree_shift_keys(cur,
2452 xfs_btree_key_addr(cur, 2, right),
2453 -1, rrecs);
2454 xfs_btree_shift_ptrs(cur,
2455 xfs_btree_ptr_addr(cur, 2, right),
2456 -1, rrecs);
2457
2458 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2459 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2460 } else {
2461 /* It's a leaf. operate on records */
2462 xfs_btree_shift_recs(cur,
2463 xfs_btree_rec_addr(cur, 2, right),
2464 -1, rrecs);
2465 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2466 }
2467
2468 /*
2469 * Using a temporary cursor, update the parent key values of the
2470 * block on the left.
2471 */
2472 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2473 error = xfs_btree_dup_cursor(cur, &tcur);
2474 if (error)
2475 goto error0;
2476 i = xfs_btree_firstrec(tcur, level);
2477 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2478
2479 error = xfs_btree_decrement(tcur, level, &i);
2480 if (error)
2481 goto error1;
2482
2483 /* Update the parent high keys of the left block, if needed. */
2484 error = xfs_btree_update_keys(tcur, level);
2485 if (error)
2486 goto error1;
2487
2488 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2489 }
2490
2491 /* Update the parent keys of the right block. */
2492 error = xfs_btree_update_keys(cur, level);
2493 if (error)
2494 goto error0;
2495
2496 /* Slide the cursor value left one. */
2497 cur->bc_ptrs[level]--;
2498
2499 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2500 *stat = 1;
2501 return 0;
2502
2503 out0:
2504 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2505 *stat = 0;
2506 return 0;
2507
2508 error0:
2509 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2510 return error;
2511
2512 error1:
2513 XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2514 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2515 return error;
2516 }
2517
2518 /*
2519 * Move 1 record right from cur/level if possible.
2520 * Update cur to reflect the new path.
2521 */
2522 STATIC int /* error */
2523 xfs_btree_rshift(
2524 struct xfs_btree_cur *cur,
2525 int level,
2526 int *stat) /* success/failure */
2527 {
2528 struct xfs_buf *lbp; /* left buffer pointer */
2529 struct xfs_btree_block *left; /* left btree block */
2530 struct xfs_buf *rbp; /* right buffer pointer */
2531 struct xfs_btree_block *right; /* right btree block */
2532 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2533 union xfs_btree_ptr rptr; /* right block pointer */
2534 union xfs_btree_key *rkp; /* right btree key */
2535 int rrecs; /* right record count */
2536 int lrecs; /* left record count */
2537 int error; /* error return value */
2538 int i; /* loop counter */
2539
2540 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2541 XFS_BTREE_TRACE_ARGI(cur, level);
2542
2543 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2544 (level == cur->bc_nlevels - 1))
2545 goto out0;
2546
2547 /* Set up variables for this block as "left". */
2548 left = xfs_btree_get_block(cur, level, &lbp);
2549
2550 #ifdef DEBUG
2551 error = xfs_btree_check_block(cur, left, level, lbp);
2552 if (error)
2553 goto error0;
2554 #endif
2555
2556 /* If we've got no right sibling then we can't shift an entry right. */
2557 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2558 if (xfs_btree_ptr_is_null(cur, &rptr))
2559 goto out0;
2560
2561 /*
2562 * If the cursor entry is the one that would be moved, don't
2563 * do it... it's too complicated.
2564 */
2565 lrecs = xfs_btree_get_numrecs(left);
2566 if (cur->bc_ptrs[level] >= lrecs)
2567 goto out0;
2568
2569 /* Set up the right neighbor as "right". */
2570 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2571 if (error)
2572 goto error0;
2573
2574 /* If it's full, it can't take another entry. */
2575 rrecs = xfs_btree_get_numrecs(right);
2576 if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2577 goto out0;
2578
2579 XFS_BTREE_STATS_INC(cur, rshift);
2580 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2581
2582 /*
2583 * Make a hole at the start of the right neighbor block, then
2584 * copy the last left block entry to the hole.
2585 */
2586 if (level > 0) {
2587 /* It's a nonleaf. make a hole in the keys and ptrs */
2588 union xfs_btree_key *lkp;
2589 union xfs_btree_ptr *lpp;
2590 union xfs_btree_ptr *rpp;
2591
2592 lkp = xfs_btree_key_addr(cur, lrecs, left);
2593 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2594 rkp = xfs_btree_key_addr(cur, 1, right);
2595 rpp = xfs_btree_ptr_addr(cur, 1, right);
2596
2597 #ifdef DEBUG
2598 for (i = rrecs - 1; i >= 0; i--) {
2599 error = xfs_btree_check_ptr(cur, rpp, i, level);
2600 if (error)
2601 goto error0;
2602 }
2603 #endif
2604
2605 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2606 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2607
2608 #ifdef DEBUG
2609 error = xfs_btree_check_ptr(cur, lpp, 0, level);
2610 if (error)
2611 goto error0;
2612 #endif
2613
2614 /* Now put the new data in, and log it. */
2615 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2616 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2617
2618 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2619 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2620
2621 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2622 xfs_btree_key_addr(cur, 2, right)));
2623 } else {
2624 /* It's a leaf. make a hole in the records */
2625 union xfs_btree_rec *lrp;
2626 union xfs_btree_rec *rrp;
2627
2628 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2629 rrp = xfs_btree_rec_addr(cur, 1, right);
2630
2631 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2632
2633 /* Now put the new data in, and log it. */
2634 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2635 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2636 }
2637
2638 /*
2639 * Decrement and log left's numrecs, bump and log right's numrecs.
2640 */
2641 xfs_btree_set_numrecs(left, --lrecs);
2642 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2643
2644 xfs_btree_set_numrecs(right, ++rrecs);
2645 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2646
2647 /*
2648 * Using a temporary cursor, update the parent key values of the
2649 * block on the right.
2650 */
2651 error = xfs_btree_dup_cursor(cur, &tcur);
2652 if (error)
2653 goto error0;
2654 i = xfs_btree_lastrec(tcur, level);
2655 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2656
2657 error = xfs_btree_increment(tcur, level, &i);
2658 if (error)
2659 goto error1;
2660
2661 /* Update the parent high keys of the left block, if needed. */
2662 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2663 error = xfs_btree_update_keys(cur, level);
2664 if (error)
2665 goto error1;
2666 }
2667
2668 /* Update the parent keys of the right block. */
2669 error = xfs_btree_update_keys(tcur, level);
2670 if (error)
2671 goto error1;
2672
2673 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2674
2675 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2676 *stat = 1;
2677 return 0;
2678
2679 out0:
2680 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2681 *stat = 0;
2682 return 0;
2683
2684 error0:
2685 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2686 return error;
2687
2688 error1:
2689 XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2690 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2691 return error;
2692 }
2693
2694 /*
2695 * Split cur/level block in half.
2696 * Return new block number and the key to its first
2697 * record (to be inserted into parent).
2698 */
2699 STATIC int /* error */
2700 __xfs_btree_split(
2701 struct xfs_btree_cur *cur,
2702 int level,
2703 union xfs_btree_ptr *ptrp,
2704 union xfs_btree_key *key,
2705 struct xfs_btree_cur **curp,
2706 int *stat) /* success/failure */
2707 {
2708 union xfs_btree_ptr lptr; /* left sibling block ptr */
2709 struct xfs_buf *lbp; /* left buffer pointer */
2710 struct xfs_btree_block *left; /* left btree block */
2711 union xfs_btree_ptr rptr; /* right sibling block ptr */
2712 struct xfs_buf *rbp; /* right buffer pointer */
2713 struct xfs_btree_block *right; /* right btree block */
2714 union xfs_btree_ptr rrptr; /* right-right sibling ptr */
2715 struct xfs_buf *rrbp; /* right-right buffer pointer */
2716 struct xfs_btree_block *rrblock; /* right-right btree block */
2717 int lrecs;
2718 int rrecs;
2719 int src_index;
2720 int error; /* error return value */
2721 #ifdef DEBUG
2722 int i;
2723 #endif
2724
2725 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2726 XFS_BTREE_TRACE_ARGIPK(cur, level, *ptrp, key);
2727
2728 XFS_BTREE_STATS_INC(cur, split);
2729
2730 /* Set up left block (current one). */
2731 left = xfs_btree_get_block(cur, level, &lbp);
2732
2733 #ifdef DEBUG
2734 error = xfs_btree_check_block(cur, left, level, lbp);
2735 if (error)
2736 goto error0;
2737 #endif
2738
2739 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2740
2741 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2742 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2743 if (error)
2744 goto error0;
2745 if (*stat == 0)
2746 goto out0;
2747 XFS_BTREE_STATS_INC(cur, alloc);
2748
2749 /* Set up the new block as "right". */
2750 error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
2751 if (error)
2752 goto error0;
2753
2754 /* Fill in the btree header for the new right block. */
2755 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2756
2757 /*
2758 * Split the entries between the old and the new block evenly.
2759 * Make sure that if there's an odd number of entries now, that
2760 * each new block will have the same number of entries.
2761 */
2762 lrecs = xfs_btree_get_numrecs(left);
2763 rrecs = lrecs / 2;
2764 if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2765 rrecs++;
2766 src_index = (lrecs - rrecs + 1);
2767
2768 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2769
2770 /* Adjust numrecs for the later get_*_keys() calls. */
2771 lrecs -= rrecs;
2772 xfs_btree_set_numrecs(left, lrecs);
2773 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2774
2775 /*
2776 * Copy btree block entries from the left block over to the
2777 * new block, the right. Update the right block and log the
2778 * changes.
2779 */
2780 if (level > 0) {
2781 /* It's a non-leaf. Move keys and pointers. */
2782 union xfs_btree_key *lkp; /* left btree key */
2783 union xfs_btree_ptr *lpp; /* left address pointer */
2784 union xfs_btree_key *rkp; /* right btree key */
2785 union xfs_btree_ptr *rpp; /* right address pointer */
2786
2787 lkp = xfs_btree_key_addr(cur, src_index, left);
2788 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2789 rkp = xfs_btree_key_addr(cur, 1, right);
2790 rpp = xfs_btree_ptr_addr(cur, 1, right);
2791
2792 #ifdef DEBUG
2793 for (i = src_index; i < rrecs; i++) {
2794 error = xfs_btree_check_ptr(cur, lpp, i, level);
2795 if (error)
2796 goto error0;
2797 }
2798 #endif
2799
2800 /* Copy the keys & pointers to the new block. */
2801 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2802 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2803
2804 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2805 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2806
2807 /* Stash the keys of the new block for later insertion. */
2808 xfs_btree_get_node_keys(cur, right, key);
2809 } else {
2810 /* It's a leaf. Move records. */
2811 union xfs_btree_rec *lrp; /* left record pointer */
2812 union xfs_btree_rec *rrp; /* right record pointer */
2813
2814 lrp = xfs_btree_rec_addr(cur, src_index, left);
2815 rrp = xfs_btree_rec_addr(cur, 1, right);
2816
2817 /* Copy records to the new block. */
2818 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2819 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2820
2821 /* Stash the keys of the new block for later insertion. */
2822 xfs_btree_get_leaf_keys(cur, right, key);
2823 }
2824
2825 /*
2826 * Find the left block number by looking in the buffer.
2827 * Adjust sibling pointers.
2828 */
2829 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2830 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2831 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2832 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2833
2834 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2835 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2836
2837 /*
2838 * If there's a block to the new block's right, make that block
2839 * point back to right instead of to left.
2840 */
2841 if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2842 error = xfs_btree_read_buf_block(cur, &rrptr,
2843 0, &rrblock, &rrbp);
2844 if (error)
2845 goto error0;
2846 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2847 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2848 }
2849
2850 /* Update the parent high keys of the left block, if needed. */
2851 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2852 error = xfs_btree_update_keys(cur, level);
2853 if (error)
2854 goto error0;
2855 }
2856
2857 /*
2858 * If the cursor is really in the right block, move it there.
2859 * If it's just pointing past the last entry in left, then we'll
2860 * insert there, so don't change anything in that case.
2861 */
2862 if (cur->bc_ptrs[level] > lrecs + 1) {
2863 xfs_btree_setbuf(cur, level, rbp);
2864 cur->bc_ptrs[level] -= lrecs;
2865 }
2866 /*
2867 * If there are more levels, we'll need another cursor which refers
2868 * the right block, no matter where this cursor was.
2869 */
2870 if (level + 1 < cur->bc_nlevels) {
2871 error = xfs_btree_dup_cursor(cur, curp);
2872 if (error)
2873 goto error0;
2874 (*curp)->bc_ptrs[level + 1]++;
2875 }
2876 *ptrp = rptr;
2877 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2878 *stat = 1;
2879 return 0;
2880 out0:
2881 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2882 *stat = 0;
2883 return 0;
2884
2885 error0:
2886 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2887 return error;
2888 }
2889
2890 #ifdef __KERNEL__
2891 struct xfs_btree_split_args {
2892 struct xfs_btree_cur *cur;
2893 int level;
2894 union xfs_btree_ptr *ptrp;
2895 union xfs_btree_key *key;
2896 struct xfs_btree_cur **curp;
2897 int *stat; /* success/failure */
2898 int result;
2899 bool kswapd; /* allocation in kswapd context */
2900 struct completion *done;
2901 struct work_struct work;
2902 };
2903
2904 /*
2905 * Stack switching interfaces for allocation
2906 */
2907 static void
2908 xfs_btree_split_worker(
2909 struct work_struct *work)
2910 {
2911 struct xfs_btree_split_args *args = container_of(work,
2912 struct xfs_btree_split_args, work);
2913 unsigned long pflags;
2914 unsigned long new_pflags = PF_MEMALLOC_NOFS;
2915
2916 /*
2917 * we are in a transaction context here, but may also be doing work
2918 * in kswapd context, and hence we may need to inherit that state
2919 * temporarily to ensure that we don't block waiting for memory reclaim
2920 * in any way.
2921 */
2922 if (args->kswapd)
2923 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2924
2925 current_set_flags_nested(&pflags, new_pflags);
2926
2927 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2928 args->key, args->curp, args->stat);
2929 complete(args->done);
2930
2931 current_restore_flags_nested(&pflags, new_pflags);
2932 }
2933
2934 /*
2935 * BMBT split requests often come in with little stack to work on. Push
2936 * them off to a worker thread so there is lots of stack to use. For the other
2937 * btree types, just call directly to avoid the context switch overhead here.
2938 */
2939 STATIC int /* error */
2940 xfs_btree_split(
2941 struct xfs_btree_cur *cur,
2942 int level,
2943 union xfs_btree_ptr *ptrp,
2944 union xfs_btree_key *key,
2945 struct xfs_btree_cur **curp,
2946 int *stat) /* success/failure */
2947 {
2948 struct xfs_btree_split_args args;
2949 DECLARE_COMPLETION_ONSTACK(done);
2950
2951 if (cur->bc_btnum != XFS_BTNUM_BMAP)
2952 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2953
2954 args.cur = cur;
2955 args.level = level;
2956 args.ptrp = ptrp;
2957 args.key = key;
2958 args.curp = curp;
2959 args.stat = stat;
2960 args.done = &done;
2961 args.kswapd = current_is_kswapd();
2962 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2963 queue_work(xfs_alloc_wq, &args.work);
2964 wait_for_completion(&done);
2965 destroy_work_on_stack(&args.work);
2966 return args.result;
2967 }
2968 #else /* !KERNEL */
2969 #define xfs_btree_split __xfs_btree_split
2970 #endif
2971
2972
2973 /*
2974 * Copy the old inode root contents into a real block and make the
2975 * broot point to it.
2976 */
2977 int /* error */
2978 xfs_btree_new_iroot(
2979 struct xfs_btree_cur *cur, /* btree cursor */
2980 int *logflags, /* logging flags for inode */
2981 int *stat) /* return status - 0 fail */
2982 {
2983 struct xfs_buf *cbp; /* buffer for cblock */
2984 struct xfs_btree_block *block; /* btree block */
2985 struct xfs_btree_block *cblock; /* child btree block */
2986 union xfs_btree_key *ckp; /* child key pointer */
2987 union xfs_btree_ptr *cpp; /* child ptr pointer */
2988 union xfs_btree_key *kp; /* pointer to btree key */
2989 union xfs_btree_ptr *pp; /* pointer to block addr */
2990 union xfs_btree_ptr nptr; /* new block addr */
2991 int level; /* btree level */
2992 int error; /* error return code */
2993 #ifdef DEBUG
2994 int i; /* loop counter */
2995 #endif
2996
2997 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2998 XFS_BTREE_STATS_INC(cur, newroot);
2999
3000 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3001
3002 level = cur->bc_nlevels - 1;
3003
3004 block = xfs_btree_get_iroot(cur);
3005 pp = xfs_btree_ptr_addr(cur, 1, block);
3006
3007 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3008 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
3009 if (error)
3010 goto error0;
3011 if (*stat == 0) {
3012 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3013 return 0;
3014 }
3015 XFS_BTREE_STATS_INC(cur, alloc);
3016
3017 /* Copy the root into a real block. */
3018 error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
3019 if (error)
3020 goto error0;
3021
3022 /*
3023 * we can't just memcpy() the root in for CRC enabled btree blocks.
3024 * In that case have to also ensure the blkno remains correct
3025 */
3026 memcpy(cblock, block, xfs_btree_block_len(cur));
3027 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
3028 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
3029 cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
3030 else
3031 cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
3032 }
3033
3034 be16_add_cpu(&block->bb_level, 1);
3035 xfs_btree_set_numrecs(block, 1);
3036 cur->bc_nlevels++;
3037 cur->bc_ptrs[level + 1] = 1;
3038
3039 kp = xfs_btree_key_addr(cur, 1, block);
3040 ckp = xfs_btree_key_addr(cur, 1, cblock);
3041 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3042
3043 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3044 #ifdef DEBUG
3045 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3046 error = xfs_btree_check_ptr(cur, pp, i, level);
3047 if (error)
3048 goto error0;
3049 }
3050 #endif
3051 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3052
3053 #ifdef DEBUG
3054 error = xfs_btree_check_ptr(cur, &nptr, 0, level);
3055 if (error)
3056 goto error0;
3057 #endif
3058 xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3059
3060 xfs_iroot_realloc(cur->bc_private.b.ip,
3061 1 - xfs_btree_get_numrecs(cblock),
3062 cur->bc_private.b.whichfork);
3063
3064 xfs_btree_setbuf(cur, level, cbp);
3065
3066 /*
3067 * Do all this logging at the end so that
3068 * the root is at the right level.
3069 */
3070 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3071 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3072 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3073
3074 *logflags |=
3075 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3076 *stat = 1;
3077 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3078 return 0;
3079 error0:
3080 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3081 return error;
3082 }
3083
3084 /*
3085 * Allocate a new root block, fill it in.
3086 */
3087 STATIC int /* error */
3088 xfs_btree_new_root(
3089 struct xfs_btree_cur *cur, /* btree cursor */
3090 int *stat) /* success/failure */
3091 {
3092 struct xfs_btree_block *block; /* one half of the old root block */
3093 struct xfs_buf *bp; /* buffer containing block */
3094 int error; /* error return value */
3095 struct xfs_buf *lbp; /* left buffer pointer */
3096 struct xfs_btree_block *left; /* left btree block */
3097 struct xfs_buf *nbp; /* new (root) buffer */
3098 struct xfs_btree_block *new; /* new (root) btree block */
3099 int nptr; /* new value for key index, 1 or 2 */
3100 struct xfs_buf *rbp; /* right buffer pointer */
3101 struct xfs_btree_block *right; /* right btree block */
3102 union xfs_btree_ptr rptr;
3103 union xfs_btree_ptr lptr;
3104
3105 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3106 XFS_BTREE_STATS_INC(cur, newroot);
3107
3108 /* initialise our start point from the cursor */
3109 cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3110
3111 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3112 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3113 if (error)
3114 goto error0;
3115 if (*stat == 0)
3116 goto out0;
3117 XFS_BTREE_STATS_INC(cur, alloc);
3118
3119 /* Set up the new block. */
3120 error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
3121 if (error)
3122 goto error0;
3123
3124 /* Set the root in the holding structure increasing the level by 1. */
3125 cur->bc_ops->set_root(cur, &lptr, 1);
3126
3127 /*
3128 * At the previous root level there are now two blocks: the old root,
3129 * and the new block generated when it was split. We don't know which
3130 * one the cursor is pointing at, so we set up variables "left" and
3131 * "right" for each case.
3132 */
3133 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3134
3135 #ifdef DEBUG
3136 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3137 if (error)
3138 goto error0;
3139 #endif
3140
3141 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3142 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3143 /* Our block is left, pick up the right block. */
3144 lbp = bp;
3145 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3146 left = block;
3147 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3148 if (error)
3149 goto error0;
3150 bp = rbp;
3151 nptr = 1;
3152 } else {
3153 /* Our block is right, pick up the left block. */
3154 rbp = bp;
3155 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3156 right = block;
3157 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3158 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3159 if (error)
3160 goto error0;
3161 bp = lbp;
3162 nptr = 2;
3163 }
3164
3165 /* Fill in the new block's btree header and log it. */
3166 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3167 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3168 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3169 !xfs_btree_ptr_is_null(cur, &rptr));
3170
3171 /* Fill in the key data in the new root. */
3172 if (xfs_btree_get_level(left) > 0) {
3173 /*
3174 * Get the keys for the left block's keys and put them directly
3175 * in the parent block. Do the same for the right block.
3176 */
3177 xfs_btree_get_node_keys(cur, left,
3178 xfs_btree_key_addr(cur, 1, new));
3179 xfs_btree_get_node_keys(cur, right,
3180 xfs_btree_key_addr(cur, 2, new));
3181 } else {
3182 /*
3183 * Get the keys for the left block's records and put them
3184 * directly in the parent block. Do the same for the right
3185 * block.
3186 */
3187 xfs_btree_get_leaf_keys(cur, left,
3188 xfs_btree_key_addr(cur, 1, new));
3189 xfs_btree_get_leaf_keys(cur, right,
3190 xfs_btree_key_addr(cur, 2, new));
3191 }
3192 xfs_btree_log_keys(cur, nbp, 1, 2);
3193
3194 /* Fill in the pointer data in the new root. */
3195 xfs_btree_copy_ptrs(cur,
3196 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3197 xfs_btree_copy_ptrs(cur,
3198 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3199 xfs_btree_log_ptrs(cur, nbp, 1, 2);
3200
3201 /* Fix up the cursor. */
3202 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3203 cur->bc_ptrs[cur->bc_nlevels] = nptr;
3204 cur->bc_nlevels++;
3205 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3206 *stat = 1;
3207 return 0;
3208 error0:
3209 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3210 return error;
3211 out0:
3212 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3213 *stat = 0;
3214 return 0;
3215 }
3216
3217 STATIC int
3218 xfs_btree_make_block_unfull(
3219 struct xfs_btree_cur *cur, /* btree cursor */
3220 int level, /* btree level */
3221 int numrecs,/* # of recs in block */
3222 int *oindex,/* old tree index */
3223 int *index, /* new tree index */
3224 union xfs_btree_ptr *nptr, /* new btree ptr */
3225 struct xfs_btree_cur **ncur, /* new btree cursor */
3226 union xfs_btree_key *key, /* key of new block */
3227 int *stat)
3228 {
3229 int error = 0;
3230
3231 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3232 level == cur->bc_nlevels - 1) {
3233 struct xfs_inode *ip = cur->bc_private.b.ip;
3234
3235 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3236 /* A root block that can be made bigger. */
3237 xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3238 *stat = 1;
3239 } else {
3240 /* A root block that needs replacing */
3241 int logflags = 0;
3242
3243 error = xfs_btree_new_iroot(cur, &logflags, stat);
3244 if (error || *stat == 0)
3245 return error;
3246
3247 xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3248 }
3249
3250 return 0;
3251 }
3252
3253 /* First, try shifting an entry to the right neighbor. */
3254 error = xfs_btree_rshift(cur, level, stat);
3255 if (error || *stat)
3256 return error;
3257
3258 /* Next, try shifting an entry to the left neighbor. */
3259 error = xfs_btree_lshift(cur, level, stat);
3260 if (error)
3261 return error;
3262
3263 if (*stat) {
3264 *oindex = *index = cur->bc_ptrs[level];
3265 return 0;
3266 }
3267
3268 /*
3269 * Next, try splitting the current block in half.
3270 *
3271 * If this works we have to re-set our variables because we
3272 * could be in a different block now.
3273 */
3274 error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3275 if (error || *stat == 0)
3276 return error;
3277
3278
3279 *index = cur->bc_ptrs[level];
3280 return 0;
3281 }
3282
3283 /*
3284 * Insert one record/level. Return information to the caller
3285 * allowing the next level up to proceed if necessary.
3286 */
3287 STATIC int
3288 xfs_btree_insrec(
3289 struct xfs_btree_cur *cur, /* btree cursor */
3290 int level, /* level to insert record at */
3291 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
3292 union xfs_btree_rec *rec, /* record to insert */
3293 union xfs_btree_key *key, /* i/o: block key for ptrp */
3294 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
3295 int *stat) /* success/failure */
3296 {
3297 struct xfs_btree_block *block; /* btree block */
3298 struct xfs_buf *bp; /* buffer for block */
3299 union xfs_btree_ptr nptr; /* new block ptr */
3300 struct xfs_btree_cur *ncur; /* new btree cursor */
3301 union xfs_btree_key nkey; /* new block key */
3302 union xfs_btree_key *lkey;
3303 int optr; /* old key/record index */
3304 int ptr; /* key/record index */
3305 int numrecs;/* number of records */
3306 int error; /* error return value */
3307 #ifdef DEBUG
3308 int i;
3309 #endif
3310 xfs_daddr_t old_bn;
3311
3312 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3313 XFS_BTREE_TRACE_ARGIPR(cur, level, *ptrp, &rec);
3314
3315 ncur = NULL;
3316 lkey = &nkey;
3317
3318 /*
3319 * If we have an external root pointer, and we've made it to the
3320 * root level, allocate a new root block and we're done.
3321 */
3322 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3323 (level >= cur->bc_nlevels)) {
3324 error = xfs_btree_new_root(cur, stat);
3325 xfs_btree_set_ptr_null(cur, ptrp);
3326
3327 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3328 return error;
3329 }
3330
3331 /* If we're off the left edge, return failure. */
3332 ptr = cur->bc_ptrs[level];
3333 if (ptr == 0) {
3334 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3335 *stat = 0;
3336 return 0;
3337 }
3338
3339 optr = ptr;
3340
3341 XFS_BTREE_STATS_INC(cur, insrec);
3342
3343 /* Get pointers to the btree buffer and block. */
3344 block = xfs_btree_get_block(cur, level, &bp);
3345 old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3346 numrecs = xfs_btree_get_numrecs(block);
3347
3348 #ifdef DEBUG
3349 error = xfs_btree_check_block(cur, block, level, bp);
3350 if (error)
3351 goto error0;
3352
3353 /* Check that the new entry is being inserted in the right place. */
3354 if (ptr <= numrecs) {
3355 if (level == 0) {
3356 ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3357 xfs_btree_rec_addr(cur, ptr, block)));
3358 } else {
3359 ASSERT(cur->bc_ops->keys_inorder(cur, key,
3360 xfs_btree_key_addr(cur, ptr, block)));
3361 }
3362 }
3363 #endif
3364
3365 /*
3366 * If the block is full, we can't insert the new entry until we
3367 * make the block un-full.
3368 */
3369 xfs_btree_set_ptr_null(cur, &nptr);
3370 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3371 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3372 &optr, &ptr, &nptr, &ncur, lkey, stat);
3373 if (error || *stat == 0)
3374 goto error0;
3375 }
3376
3377 /*
3378 * The current block may have changed if the block was
3379 * previously full and we have just made space in it.
3380 */
3381 block = xfs_btree_get_block(cur, level, &bp);
3382 numrecs = xfs_btree_get_numrecs(block);
3383
3384 #ifdef DEBUG
3385 error = xfs_btree_check_block(cur, block, level, bp);
3386 if (error)
3387 return error;
3388 #endif
3389
3390 /*
3391 * At this point we know there's room for our new entry in the block
3392 * we're pointing at.
3393 */
3394 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3395
3396 if (level > 0) {
3397 /* It's a nonleaf. make a hole in the keys and ptrs */
3398 union xfs_btree_key *kp;
3399 union xfs_btree_ptr *pp;
3400
3401 kp = xfs_btree_key_addr(cur, ptr, block);
3402 pp = xfs_btree_ptr_addr(cur, ptr, block);
3403
3404 #ifdef DEBUG
3405 for (i = numrecs - ptr; i >= 0; i--) {
3406 error = xfs_btree_check_ptr(cur, pp, i, level);
3407 if (error)
3408 return error;
3409 }
3410 #endif
3411
3412 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3413 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3414
3415 #ifdef DEBUG
3416 error = xfs_btree_check_ptr(cur, ptrp, 0, level);
3417 if (error)
3418 goto error0;
3419 #endif
3420
3421 /* Now put the new data in, bump numrecs and log it. */
3422 xfs_btree_copy_keys(cur, kp, key, 1);
3423 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3424 numrecs++;
3425 xfs_btree_set_numrecs(block, numrecs);
3426 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3427 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3428 #ifdef DEBUG
3429 if (ptr < numrecs) {
3430 ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3431 xfs_btree_key_addr(cur, ptr + 1, block)));
3432 }
3433 #endif
3434 } else {
3435 /* It's a leaf. make a hole in the records */
3436 union xfs_btree_rec *rp;
3437
3438 rp = xfs_btree_rec_addr(cur, ptr, block);
3439
3440 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3441
3442 /* Now put the new data in, bump numrecs and log it. */
3443 xfs_btree_copy_recs(cur, rp, rec, 1);
3444 xfs_btree_set_numrecs(block, ++numrecs);
3445 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3446 #ifdef DEBUG
3447 if (ptr < numrecs) {
3448 ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3449 xfs_btree_rec_addr(cur, ptr + 1, block)));
3450 }
3451 #endif
3452 }
3453
3454 /* Log the new number of records in the btree header. */
3455 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3456
3457 /*
3458 * If we just inserted into a new tree block, we have to
3459 * recalculate nkey here because nkey is out of date.
3460 *
3461 * Otherwise we're just updating an existing block (having shoved
3462 * some records into the new tree block), so use the regular key
3463 * update mechanism.
3464 */
3465 if (bp && bp->b_bn != old_bn) {
3466 xfs_btree_get_keys(cur, block, lkey);
3467 } else if (xfs_btree_needs_key_update(cur, optr)) {
3468 error = xfs_btree_update_keys(cur, level);
3469 if (error)
3470 goto error0;
3471 }
3472
3473 /*
3474 * If we are tracking the last record in the tree and
3475 * we are at the far right edge of the tree, update it.
3476 */
3477 if (xfs_btree_is_lastrec(cur, block, level)) {
3478 cur->bc_ops->update_lastrec(cur, block, rec,
3479 ptr, LASTREC_INSREC);
3480 }
3481
3482 /*
3483 * Return the new block number, if any.
3484 * If there is one, give back a record value and a cursor too.
3485 */
3486 *ptrp = nptr;
3487 if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3488 xfs_btree_copy_keys(cur, key, lkey, 1);
3489 *curp = ncur;
3490 }
3491
3492 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3493 *stat = 1;
3494 return 0;
3495
3496 error0:
3497 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3498 return error;
3499 }
3500
3501 /*
3502 * Insert the record at the point referenced by cur.
3503 *
3504 * A multi-level split of the tree on insert will invalidate the original
3505 * cursor. All callers of this function should assume that the cursor is
3506 * no longer valid and revalidate it.
3507 */
3508 int
3509 xfs_btree_insert(
3510 struct xfs_btree_cur *cur,
3511 int *stat)
3512 {
3513 int error; /* error return value */
3514 int i; /* result value, 0 for failure */
3515 int level; /* current level number in btree */
3516 union xfs_btree_ptr nptr; /* new block number (split result) */
3517 struct xfs_btree_cur *ncur; /* new cursor (split result) */
3518 struct xfs_btree_cur *pcur; /* previous level's cursor */
3519 union xfs_btree_key bkey; /* key of block to insert */
3520 union xfs_btree_key *key;
3521 union xfs_btree_rec rec; /* record to insert */
3522
3523 level = 0;
3524 ncur = NULL;
3525 pcur = cur;
3526 key = &bkey;
3527
3528 xfs_btree_set_ptr_null(cur, &nptr);
3529
3530 /* Make a key out of the record data to be inserted, and save it. */
3531 cur->bc_ops->init_rec_from_cur(cur, &rec);
3532 cur->bc_ops->init_key_from_rec(key, &rec);
3533
3534 /*
3535 * Loop going up the tree, starting at the leaf level.
3536 * Stop when we don't get a split block, that must mean that
3537 * the insert is finished with this level.
3538 */
3539 do {
3540 /*
3541 * Insert nrec/nptr into this level of the tree.
3542 * Note if we fail, nptr will be null.
3543 */
3544 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3545 &ncur, &i);
3546 if (error) {
3547 if (pcur != cur)
3548 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3549 goto error0;
3550 }
3551
3552 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3553 level++;
3554
3555 /*
3556 * See if the cursor we just used is trash.
3557 * Can't trash the caller's cursor, but otherwise we should
3558 * if ncur is a new cursor or we're about to be done.
3559 */
3560 if (pcur != cur &&
3561 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3562 /* Save the state from the cursor before we trash it */
3563 if (cur->bc_ops->update_cursor)
3564 cur->bc_ops->update_cursor(pcur, cur);
3565 cur->bc_nlevels = pcur->bc_nlevels;
3566 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3567 }
3568 /* If we got a new cursor, switch to it. */
3569 if (ncur) {
3570 pcur = ncur;
3571 ncur = NULL;
3572 }
3573 } while (!xfs_btree_ptr_is_null(cur, &nptr));
3574
3575 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3576 *stat = i;
3577 return 0;
3578 error0:
3579 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3580 return error;
3581 }
3582
3583 /*
3584 * Try to merge a non-leaf block back into the inode root.
3585 *
3586 * Note: the killroot names comes from the fact that we're effectively
3587 * killing the old root block. But because we can't just delete the
3588 * inode we have to copy the single block it was pointing to into the
3589 * inode.
3590 */
3591 STATIC int
3592 xfs_btree_kill_iroot(
3593 struct xfs_btree_cur *cur)
3594 {
3595 int whichfork = cur->bc_private.b.whichfork;
3596 struct xfs_inode *ip = cur->bc_private.b.ip;
3597 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
3598 struct xfs_btree_block *block;
3599 struct xfs_btree_block *cblock;
3600 union xfs_btree_key *kp;
3601 union xfs_btree_key *ckp;
3602 union xfs_btree_ptr *pp;
3603 union xfs_btree_ptr *cpp;
3604 struct xfs_buf *cbp;
3605 int level;
3606 int index;
3607 int numrecs;
3608 int error;
3609 #ifdef DEBUG
3610 union xfs_btree_ptr ptr;
3611 int i;
3612 #endif
3613
3614 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3615
3616 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3617 ASSERT(cur->bc_nlevels > 1);
3618
3619 /*
3620 * Don't deal with the root block needs to be a leaf case.
3621 * We're just going to turn the thing back into extents anyway.
3622 */
3623 level = cur->bc_nlevels - 1;
3624 if (level == 1)
3625 goto out0;
3626
3627 /*
3628 * Give up if the root has multiple children.
3629 */
3630 block = xfs_btree_get_iroot(cur);
3631 if (xfs_btree_get_numrecs(block) != 1)
3632 goto out0;
3633
3634 cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3635 numrecs = xfs_btree_get_numrecs(cblock);
3636
3637 /*
3638 * Only do this if the next level will fit.
3639 * Then the data must be copied up to the inode,
3640 * instead of freeing the root you free the next level.
3641 */
3642 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3643 goto out0;
3644
3645 XFS_BTREE_STATS_INC(cur, killroot);
3646
3647 #ifdef DEBUG
3648 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3649 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3650 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3651 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3652 #endif
3653
3654 index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3655 if (index) {
3656 xfs_iroot_realloc(cur->bc_private.b.ip, index,
3657 cur->bc_private.b.whichfork);
3658 block = ifp->if_broot;
3659 }
3660
3661 be16_add_cpu(&block->bb_numrecs, index);
3662 ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3663
3664 kp = xfs_btree_key_addr(cur, 1, block);
3665 ckp = xfs_btree_key_addr(cur, 1, cblock);
3666 xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3667
3668 pp = xfs_btree_ptr_addr(cur, 1, block);
3669 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3670 #ifdef DEBUG
3671 for (i = 0; i < numrecs; i++) {
3672 error = xfs_btree_check_ptr(cur, cpp, i, level - 1);
3673 if (error) {
3674 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3675 return error;
3676 }
3677 }
3678 #endif
3679 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3680
3681 error = xfs_btree_free_block(cur, cbp);
3682 if (error) {
3683 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3684 return error;
3685 }
3686
3687 cur->bc_bufs[level - 1] = NULL;
3688 be16_add_cpu(&block->bb_level, -1);
3689 xfs_trans_log_inode(cur->bc_tp, ip,
3690 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3691 cur->bc_nlevels--;
3692 out0:
3693 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3694 return 0;
3695 }
3696
3697 /*
3698 * Kill the current root node, and replace it with it's only child node.
3699 */
3700 STATIC int
3701 xfs_btree_kill_root(
3702 struct xfs_btree_cur *cur,
3703 struct xfs_buf *bp,
3704 int level,
3705 union xfs_btree_ptr *newroot)
3706 {
3707 int error;
3708
3709 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3710 XFS_BTREE_STATS_INC(cur, killroot);
3711
3712 /*
3713 * Update the root pointer, decreasing the level by 1 and then
3714 * free the old root.
3715 */
3716 cur->bc_ops->set_root(cur, newroot, -1);
3717
3718 error = xfs_btree_free_block(cur, bp);
3719 if (error) {
3720 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3721 return error;
3722 }
3723
3724 cur->bc_bufs[level] = NULL;
3725 cur->bc_ra[level] = 0;
3726 cur->bc_nlevels--;
3727
3728 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3729 return 0;
3730 }
3731
3732 STATIC int
3733 xfs_btree_dec_cursor(
3734 struct xfs_btree_cur *cur,
3735 int level,
3736 int *stat)
3737 {
3738 int error;
3739 int i;
3740
3741 if (level > 0) {
3742 error = xfs_btree_decrement(cur, level, &i);
3743 if (error)
3744 return error;
3745 }
3746
3747 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3748 *stat = 1;
3749 return 0;
3750 }
3751
3752 /*
3753 * Single level of the btree record deletion routine.
3754 * Delete record pointed to by cur/level.
3755 * Remove the record from its block then rebalance the tree.
3756 * Return 0 for error, 1 for done, 2 to go on to the next level.
3757 */
3758 STATIC int /* error */
3759 xfs_btree_delrec(
3760 struct xfs_btree_cur *cur, /* btree cursor */
3761 int level, /* level removing record from */
3762 int *stat) /* fail/done/go-on */
3763 {
3764 struct xfs_btree_block *block; /* btree block */
3765 union xfs_btree_ptr cptr; /* current block ptr */
3766 struct xfs_buf *bp; /* buffer for block */
3767 int error; /* error return value */
3768 int i; /* loop counter */
3769 union xfs_btree_ptr lptr; /* left sibling block ptr */
3770 struct xfs_buf *lbp; /* left buffer pointer */
3771 struct xfs_btree_block *left; /* left btree block */
3772 int lrecs = 0; /* left record count */
3773 int ptr; /* key/record index */
3774 union xfs_btree_ptr rptr; /* right sibling block ptr */
3775 struct xfs_buf *rbp; /* right buffer pointer */
3776 struct xfs_btree_block *right; /* right btree block */
3777 struct xfs_btree_block *rrblock; /* right-right btree block */
3778 struct xfs_buf *rrbp; /* right-right buffer pointer */
3779 int rrecs = 0; /* right record count */
3780 struct xfs_btree_cur *tcur; /* temporary btree cursor */
3781 int numrecs; /* temporary numrec count */
3782
3783 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3784 XFS_BTREE_TRACE_ARGI(cur, level);
3785
3786 tcur = NULL;
3787
3788 /* Get the index of the entry being deleted, check for nothing there. */
3789 ptr = cur->bc_ptrs[level];
3790 if (ptr == 0) {
3791 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3792 *stat = 0;
3793 return 0;
3794 }
3795
3796 /* Get the buffer & block containing the record or key/ptr. */
3797 block = xfs_btree_get_block(cur, level, &bp);
3798 numrecs = xfs_btree_get_numrecs(block);
3799
3800 #ifdef DEBUG
3801 error = xfs_btree_check_block(cur, block, level, bp);
3802 if (error)
3803 goto error0;
3804 #endif
3805
3806 /* Fail if we're off the end of the block. */
3807 if (ptr > numrecs) {
3808 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3809 *stat = 0;
3810 return 0;
3811 }
3812
3813 XFS_BTREE_STATS_INC(cur, delrec);
3814 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3815
3816 /* Excise the entries being deleted. */
3817 if (level > 0) {
3818 /* It's a nonleaf. operate on keys and ptrs */
3819 union xfs_btree_key *lkp;
3820 union xfs_btree_ptr *lpp;
3821
3822 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3823 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3824
3825 #ifdef DEBUG
3826 for (i = 0; i < numrecs - ptr; i++) {
3827 error = xfs_btree_check_ptr(cur, lpp, i, level);
3828 if (error)
3829 goto error0;
3830 }
3831 #endif
3832
3833 if (ptr < numrecs) {
3834 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3835 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3836 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3837 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3838 }
3839 } else {
3840 /* It's a leaf. operate on records */
3841 if (ptr < numrecs) {
3842 xfs_btree_shift_recs(cur,
3843 xfs_btree_rec_addr(cur, ptr + 1, block),
3844 -1, numrecs - ptr);
3845 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3846 }
3847 }
3848
3849 /*
3850 * Decrement and log the number of entries in the block.
3851 */
3852 xfs_btree_set_numrecs(block, --numrecs);
3853 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3854
3855 /*
3856 * If we are tracking the last record in the tree and
3857 * we are at the far right edge of the tree, update it.
3858 */
3859 if (xfs_btree_is_lastrec(cur, block, level)) {
3860 cur->bc_ops->update_lastrec(cur, block, NULL,
3861 ptr, LASTREC_DELREC);
3862 }
3863
3864 /*
3865 * We're at the root level. First, shrink the root block in-memory.
3866 * Try to get rid of the next level down. If we can't then there's
3867 * nothing left to do.
3868 */
3869 if (level == cur->bc_nlevels - 1) {
3870 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3871 xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3872 cur->bc_private.b.whichfork);
3873
3874 error = xfs_btree_kill_iroot(cur);
3875 if (error)
3876 goto error0;
3877
3878 error = xfs_btree_dec_cursor(cur, level, stat);
3879 if (error)
3880 goto error0;
3881 *stat = 1;
3882 return 0;
3883 }
3884
3885 /*
3886 * If this is the root level, and there's only one entry left,
3887 * and it's NOT the leaf level, then we can get rid of this
3888 * level.
3889 */
3890 if (numrecs == 1 && level > 0) {
3891 union xfs_btree_ptr *pp;
3892 /*
3893 * pp is still set to the first pointer in the block.
3894 * Make it the new root of the btree.
3895 */
3896 pp = xfs_btree_ptr_addr(cur, 1, block);
3897 error = xfs_btree_kill_root(cur, bp, level, pp);
3898 if (error)
3899 goto error0;
3900 } else if (level > 0) {
3901 error = xfs_btree_dec_cursor(cur, level, stat);
3902 if (error)
3903 goto error0;
3904 }
3905 *stat = 1;
3906 return 0;
3907 }
3908
3909 /*
3910 * If we deleted the leftmost entry in the block, update the
3911 * key values above us in the tree.
3912 */
3913 if (xfs_btree_needs_key_update(cur, ptr)) {
3914 error = xfs_btree_update_keys(cur, level);
3915 if (error)
3916 goto error0;
3917 }
3918
3919 /*
3920 * If the number of records remaining in the block is at least
3921 * the minimum, we're done.
3922 */
3923 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3924 error = xfs_btree_dec_cursor(cur, level, stat);
3925 if (error)
3926 goto error0;
3927 return 0;
3928 }
3929
3930 /*
3931 * Otherwise, we have to move some records around to keep the
3932 * tree balanced. Look at the left and right sibling blocks to
3933 * see if we can re-balance by moving only one record.
3934 */
3935 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3936 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3937
3938 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3939 /*
3940 * One child of root, need to get a chance to copy its contents
3941 * into the root and delete it. Can't go up to next level,
3942 * there's nothing to delete there.
3943 */
3944 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3945 xfs_btree_ptr_is_null(cur, &lptr) &&
3946 level == cur->bc_nlevels - 2) {
3947 error = xfs_btree_kill_iroot(cur);
3948 if (!error)
3949 error = xfs_btree_dec_cursor(cur, level, stat);
3950 if (error)
3951 goto error0;
3952 return 0;
3953 }
3954 }
3955
3956 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3957 !xfs_btree_ptr_is_null(cur, &lptr));
3958
3959 /*
3960 * Duplicate the cursor so our btree manipulations here won't
3961 * disrupt the next level up.
3962 */
3963 error = xfs_btree_dup_cursor(cur, &tcur);
3964 if (error)
3965 goto error0;
3966
3967 /*
3968 * If there's a right sibling, see if it's ok to shift an entry
3969 * out of it.
3970 */
3971 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3972 /*
3973 * Move the temp cursor to the last entry in the next block.
3974 * Actually any entry but the first would suffice.
3975 */
3976 i = xfs_btree_lastrec(tcur, level);
3977 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3978
3979 error = xfs_btree_increment(tcur, level, &i);
3980 if (error)
3981 goto error0;
3982 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3983
3984 i = xfs_btree_lastrec(tcur, level);
3985 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3986
3987 /* Grab a pointer to the block. */
3988 right = xfs_btree_get_block(tcur, level, &rbp);
3989 #ifdef DEBUG
3990 error = xfs_btree_check_block(tcur, right, level, rbp);
3991 if (error)
3992 goto error0;
3993 #endif
3994 /* Grab the current block number, for future use. */
3995 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3996
3997 /*
3998 * If right block is full enough so that removing one entry
3999 * won't make it too empty, and left-shifting an entry out
4000 * of right to us works, we're done.
4001 */
4002 if (xfs_btree_get_numrecs(right) - 1 >=
4003 cur->bc_ops->get_minrecs(tcur, level)) {
4004 error = xfs_btree_lshift(tcur, level, &i);
4005 if (error)
4006 goto error0;
4007 if (i) {
4008 ASSERT(xfs_btree_get_numrecs(block) >=
4009 cur->bc_ops->get_minrecs(tcur, level));
4010
4011 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4012 tcur = NULL;
4013
4014 error = xfs_btree_dec_cursor(cur, level, stat);
4015 if (error)
4016 goto error0;
4017 return 0;
4018 }
4019 }
4020
4021 /*
4022 * Otherwise, grab the number of records in right for
4023 * future reference, and fix up the temp cursor to point
4024 * to our block again (last record).
4025 */
4026 rrecs = xfs_btree_get_numrecs(right);
4027 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4028 i = xfs_btree_firstrec(tcur, level);
4029 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4030
4031 error = xfs_btree_decrement(tcur, level, &i);
4032 if (error)
4033 goto error0;
4034 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4035 }
4036 }
4037
4038 /*
4039 * If there's a left sibling, see if it's ok to shift an entry
4040 * out of it.
4041 */
4042 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4043 /*
4044 * Move the temp cursor to the first entry in the
4045 * previous block.
4046 */
4047 i = xfs_btree_firstrec(tcur, level);
4048 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4049
4050 error = xfs_btree_decrement(tcur, level, &i);
4051 if (error)
4052 goto error0;
4053 i = xfs_btree_firstrec(tcur, level);
4054 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4055
4056 /* Grab a pointer to the block. */
4057 left = xfs_btree_get_block(tcur, level, &lbp);
4058 #ifdef DEBUG
4059 error = xfs_btree_check_block(cur, left, level, lbp);
4060 if (error)
4061 goto error0;
4062 #endif
4063 /* Grab the current block number, for future use. */
4064 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4065
4066 /*
4067 * If left block is full enough so that removing one entry
4068 * won't make it too empty, and right-shifting an entry out
4069 * of left to us works, we're done.
4070 */
4071 if (xfs_btree_get_numrecs(left) - 1 >=
4072 cur->bc_ops->get_minrecs(tcur, level)) {
4073 error = xfs_btree_rshift(tcur, level, &i);
4074 if (error)
4075 goto error0;
4076 if (i) {
4077 ASSERT(xfs_btree_get_numrecs(block) >=
4078 cur->bc_ops->get_minrecs(tcur, level));
4079 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4080 tcur = NULL;
4081 if (level == 0)
4082 cur->bc_ptrs[0]++;
4083 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4084 *stat = 1;
4085 return 0;
4086 }
4087 }
4088
4089 /*
4090 * Otherwise, grab the number of records in right for
4091 * future reference.
4092 */
4093 lrecs = xfs_btree_get_numrecs(left);
4094 }
4095
4096 /* Delete the temp cursor, we're done with it. */
4097 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4098 tcur = NULL;
4099
4100 /* If here, we need to do a join to keep the tree balanced. */
4101 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4102
4103 if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4104 lrecs + xfs_btree_get_numrecs(block) <=
4105 cur->bc_ops->get_maxrecs(cur, level)) {
4106 /*
4107 * Set "right" to be the starting block,
4108 * "left" to be the left neighbor.
4109 */
4110 rptr = cptr;
4111 right = block;
4112 rbp = bp;
4113 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4114 if (error)
4115 goto error0;
4116
4117 /*
4118 * If that won't work, see if we can join with the right neighbor block.
4119 */
4120 } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4121 rrecs + xfs_btree_get_numrecs(block) <=
4122 cur->bc_ops->get_maxrecs(cur, level)) {
4123 /*
4124 * Set "left" to be the starting block,
4125 * "right" to be the right neighbor.
4126 */
4127 lptr = cptr;
4128 left = block;
4129 lbp = bp;
4130 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4131 if (error)
4132 goto error0;
4133
4134 /*
4135 * Otherwise, we can't fix the imbalance.
4136 * Just return. This is probably a logic error, but it's not fatal.
4137 */
4138 } else {
4139 error = xfs_btree_dec_cursor(cur, level, stat);
4140 if (error)
4141 goto error0;
4142 return 0;
4143 }
4144
4145 rrecs = xfs_btree_get_numrecs(right);
4146 lrecs = xfs_btree_get_numrecs(left);
4147
4148 /*
4149 * We're now going to join "left" and "right" by moving all the stuff
4150 * in "right" to "left" and deleting "right".
4151 */
4152 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4153 if (level > 0) {
4154 /* It's a non-leaf. Move keys and pointers. */
4155 union xfs_btree_key *lkp; /* left btree key */
4156 union xfs_btree_ptr *lpp; /* left address pointer */
4157 union xfs_btree_key *rkp; /* right btree key */
4158 union xfs_btree_ptr *rpp; /* right address pointer */
4159
4160 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4161 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4162 rkp = xfs_btree_key_addr(cur, 1, right);
4163 rpp = xfs_btree_ptr_addr(cur, 1, right);
4164 #ifdef DEBUG
4165 for (i = 1; i < rrecs; i++) {
4166 error = xfs_btree_check_ptr(cur, rpp, i, level);
4167 if (error)
4168 goto error0;
4169 }
4170 #endif
4171 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4172 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4173
4174 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4175 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4176 } else {
4177 /* It's a leaf. Move records. */
4178 union xfs_btree_rec *lrp; /* left record pointer */
4179 union xfs_btree_rec *rrp; /* right record pointer */
4180
4181 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4182 rrp = xfs_btree_rec_addr(cur, 1, right);
4183
4184 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4185 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4186 }
4187
4188 XFS_BTREE_STATS_INC(cur, join);
4189
4190 /*
4191 * Fix up the number of records and right block pointer in the
4192 * surviving block, and log it.
4193 */
4194 xfs_btree_set_numrecs(left, lrecs + rrecs);
4195 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4196 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4197 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4198
4199 /* If there is a right sibling, point it to the remaining block. */
4200 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4201 if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4202 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4203 if (error)
4204 goto error0;
4205 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4206 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4207 }
4208
4209 /* Free the deleted block. */
4210 error = xfs_btree_free_block(cur, rbp);
4211 if (error)
4212 goto error0;
4213
4214 /*
4215 * If we joined with the left neighbor, set the buffer in the
4216 * cursor to the left block, and fix up the index.
4217 */
4218 if (bp != lbp) {
4219 cur->bc_bufs[level] = lbp;
4220 cur->bc_ptrs[level] += lrecs;
4221 cur->bc_ra[level] = 0;
4222 }
4223 /*
4224 * If we joined with the right neighbor and there's a level above
4225 * us, increment the cursor at that level.
4226 */
4227 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4228 (level + 1 < cur->bc_nlevels)) {
4229 error = xfs_btree_increment(cur, level + 1, &i);
4230 if (error)
4231 goto error0;
4232 }
4233
4234 /*
4235 * Readjust the ptr at this level if it's not a leaf, since it's
4236 * still pointing at the deletion point, which makes the cursor
4237 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4238 * We can't use decrement because it would change the next level up.
4239 */
4240 if (level > 0)
4241 cur->bc_ptrs[level]--;
4242
4243 /*
4244 * We combined blocks, so we have to update the parent keys if the
4245 * btree supports overlapped intervals. However, bc_ptrs[level + 1]
4246 * points to the old block so that the caller knows which record to
4247 * delete. Therefore, the caller must be savvy enough to call updkeys
4248 * for us if we return stat == 2. The other exit points from this
4249 * function don't require deletions further up the tree, so they can
4250 * call updkeys directly.
4251 */
4252
4253 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4254 /* Return value means the next level up has something to do. */
4255 *stat = 2;
4256 return 0;
4257
4258 error0:
4259 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4260 if (tcur)
4261 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4262 return error;
4263 }
4264
4265 /*
4266 * Delete the record pointed to by cur.
4267 * The cursor refers to the place where the record was (could be inserted)
4268 * when the operation returns.
4269 */
4270 int /* error */
4271 xfs_btree_delete(
4272 struct xfs_btree_cur *cur,
4273 int *stat) /* success/failure */
4274 {
4275 int error; /* error return value */
4276 int level;
4277 int i;
4278 bool joined = false;
4279
4280 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
4281
4282 /*
4283 * Go up the tree, starting at leaf level.
4284 *
4285 * If 2 is returned then a join was done; go to the next level.
4286 * Otherwise we are done.
4287 */
4288 for (level = 0, i = 2; i == 2; level++) {
4289 error = xfs_btree_delrec(cur, level, &i);
4290 if (error)
4291 goto error0;
4292 if (i == 2)
4293 joined = true;
4294 }
4295
4296 /*
4297 * If we combined blocks as part of deleting the record, delrec won't
4298 * have updated the parent high keys so we have to do that here.
4299 */
4300 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4301 error = xfs_btree_updkeys_force(cur, 0);
4302 if (error)
4303 goto error0;
4304 }
4305
4306 if (i == 0) {
4307 for (level = 1; level < cur->bc_nlevels; level++) {
4308 if (cur->bc_ptrs[level] == 0) {
4309 error = xfs_btree_decrement(cur, level, &i);
4310 if (error)
4311 goto error0;
4312 break;
4313 }
4314 }
4315 }
4316
4317 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4318 *stat = i;
4319 return 0;
4320 error0:
4321 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4322 return error;
4323 }
4324
4325 /*
4326 * Get the data from the pointed-to record.
4327 */
4328 int /* error */
4329 xfs_btree_get_rec(
4330 struct xfs_btree_cur *cur, /* btree cursor */
4331 union xfs_btree_rec **recp, /* output: btree record */
4332 int *stat) /* output: success/failure */
4333 {
4334 struct xfs_btree_block *block; /* btree block */
4335 struct xfs_buf *bp; /* buffer pointer */
4336 int ptr; /* record number */
4337 #ifdef DEBUG
4338 int error; /* error return value */
4339 #endif
4340
4341 ptr = cur->bc_ptrs[0];
4342 block = xfs_btree_get_block(cur, 0, &bp);
4343
4344 #ifdef DEBUG
4345 error = xfs_btree_check_block(cur, block, 0, bp);
4346 if (error)
4347 return error;
4348 #endif
4349
4350 /*
4351 * Off the right end or left end, return failure.
4352 */
4353 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4354 *stat = 0;
4355 return 0;
4356 }
4357
4358 /*
4359 * Point to the record and extract its data.
4360 */
4361 *recp = xfs_btree_rec_addr(cur, ptr, block);
4362 *stat = 1;
4363 return 0;
4364 }
4365
4366 /* Visit a block in a btree. */
4367 STATIC int
4368 xfs_btree_visit_block(
4369 struct xfs_btree_cur *cur,
4370 int level,
4371 xfs_btree_visit_blocks_fn fn,
4372 void *data)
4373 {
4374 struct xfs_btree_block *block;
4375 struct xfs_buf *bp;
4376 union xfs_btree_ptr rptr;
4377 int error;
4378
4379 /* do right sibling readahead */
4380 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4381 block = xfs_btree_get_block(cur, level, &bp);
4382
4383 /* process the block */
4384 error = fn(cur, level, data);
4385 if (error)
4386 return error;
4387
4388 /* now read rh sibling block for next iteration */
4389 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4390 if (xfs_btree_ptr_is_null(cur, &rptr))
4391 return -ENOENT;
4392
4393 return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4394 }
4395
4396
4397 /* Visit every block in a btree. */
4398 int
4399 xfs_btree_visit_blocks(
4400 struct xfs_btree_cur *cur,
4401 xfs_btree_visit_blocks_fn fn,
4402 void *data)
4403 {
4404 union xfs_btree_ptr lptr;
4405 int level;
4406 struct xfs_btree_block *block = NULL;
4407 int error = 0;
4408
4409 cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4410
4411 /* for each level */
4412 for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4413 /* grab the left hand block */
4414 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4415 if (error)
4416 return error;
4417
4418 /* readahead the left most block for the next level down */
4419 if (level > 0) {
4420 union xfs_btree_ptr *ptr;
4421
4422 ptr = xfs_btree_ptr_addr(cur, 1, block);
4423 xfs_btree_readahead_ptr(cur, ptr, 1);
4424
4425 /* save for the next iteration of the loop */
4426 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4427 }
4428
4429 /* for each buffer in the level */
4430 do {
4431 error = xfs_btree_visit_block(cur, level, fn, data);
4432 } while (!error);
4433
4434 if (error != -ENOENT)
4435 return error;
4436 }
4437
4438 return 0;
4439 }
4440
4441 /*
4442 * Change the owner of a btree.
4443 *
4444 * The mechanism we use here is ordered buffer logging. Because we don't know
4445 * how many buffers were are going to need to modify, we don't really want to
4446 * have to make transaction reservations for the worst case of every buffer in a
4447 * full size btree as that may be more space that we can fit in the log....
4448 *
4449 * We do the btree walk in the most optimal manner possible - we have sibling
4450 * pointers so we can just walk all the blocks on each level from left to right
4451 * in a single pass, and then move to the next level and do the same. We can
4452 * also do readahead on the sibling pointers to get IO moving more quickly,
4453 * though for slow disks this is unlikely to make much difference to performance
4454 * as the amount of CPU work we have to do before moving to the next block is
4455 * relatively small.
4456 *
4457 * For each btree block that we load, modify the owner appropriately, set the
4458 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4459 * we mark the region we change dirty so that if the buffer is relogged in
4460 * a subsequent transaction the changes we make here as an ordered buffer are
4461 * correctly relogged in that transaction. If we are in recovery context, then
4462 * just queue the modified buffer as delayed write buffer so the transaction
4463 * recovery completion writes the changes to disk.
4464 */
4465 struct xfs_btree_block_change_owner_info {
4466 uint64_t new_owner;
4467 struct list_head *buffer_list;
4468 };
4469
4470 static int
4471 xfs_btree_block_change_owner(
4472 struct xfs_btree_cur *cur,
4473 int level,
4474 void *data)
4475 {
4476 struct xfs_btree_block_change_owner_info *bbcoi = data;
4477 struct xfs_btree_block *block;
4478 struct xfs_buf *bp;
4479
4480 /* modify the owner */
4481 block = xfs_btree_get_block(cur, level, &bp);
4482 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4483 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4484 return 0;
4485 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4486 } else {
4487 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4488 return 0;
4489 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4490 }
4491
4492 /*
4493 * If the block is a root block hosted in an inode, we might not have a
4494 * buffer pointer here and we shouldn't attempt to log the change as the
4495 * information is already held in the inode and discarded when the root
4496 * block is formatted into the on-disk inode fork. We still change it,
4497 * though, so everything is consistent in memory.
4498 */
4499 if (!bp) {
4500 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4501 ASSERT(level == cur->bc_nlevels - 1);
4502 return 0;
4503 }
4504
4505 if (cur->bc_tp) {
4506 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4507 xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4508 return -EAGAIN;
4509 }
4510 } else {
4511 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4512 }
4513
4514 return 0;
4515 }
4516
4517 int
4518 xfs_btree_change_owner(
4519 struct xfs_btree_cur *cur,
4520 uint64_t new_owner,
4521 struct list_head *buffer_list)
4522 {
4523 struct xfs_btree_block_change_owner_info bbcoi;
4524
4525 bbcoi.new_owner = new_owner;
4526 bbcoi.buffer_list = buffer_list;
4527
4528 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4529 &bbcoi);
4530 }
4531
4532 /**
4533 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4534 * btree block
4535 *
4536 * @bp: buffer containing the btree block
4537 * @max_recs: pointer to the m_*_mxr max records field in the xfs mount
4538 * @pag_max_level: pointer to the per-ag max level field
4539 */
4540 bool
4541 xfs_btree_sblock_v5hdr_verify(
4542 struct xfs_buf *bp)
4543 {
4544 struct xfs_mount *mp = bp->b_target->bt_mount;
4545 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4546 struct xfs_perag *pag = bp->b_pag;
4547
4548 if (!xfs_sb_version_hascrc(&mp->m_sb))
4549 return false;
4550 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4551 return false;
4552 if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4553 return false;
4554 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4555 return false;
4556 return true;
4557 }
4558
4559 /**
4560 * xfs_btree_sblock_verify() -- verify a short-format btree block
4561 *
4562 * @bp: buffer containing the btree block
4563 * @max_recs: maximum records allowed in this btree node
4564 */
4565 bool
4566 xfs_btree_sblock_verify(
4567 struct xfs_buf *bp,
4568 unsigned int max_recs)
4569 {
4570 struct xfs_mount *mp = bp->b_target->bt_mount;
4571 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4572
4573 /* numrecs verification */
4574 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4575 return false;
4576
4577 /* sibling pointer verification */
4578 if (!block->bb_u.s.bb_leftsib ||
4579 (be32_to_cpu(block->bb_u.s.bb_leftsib) >= mp->m_sb.sb_agblocks &&
4580 block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK)))
4581 return false;
4582 if (!block->bb_u.s.bb_rightsib ||
4583 (be32_to_cpu(block->bb_u.s.bb_rightsib) >= mp->m_sb.sb_agblocks &&
4584 block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK)))
4585 return false;
4586
4587 return true;
4588 }
4589
4590 /*
4591 * Calculate the number of btree levels needed to store a given number of
4592 * records in a short-format btree.
4593 */
4594 uint
4595 xfs_btree_compute_maxlevels(
4596 struct xfs_mount *mp,
4597 uint *limits,
4598 unsigned long len)
4599 {
4600 uint level;
4601 unsigned long maxblocks;
4602
4603 maxblocks = (len + limits[0] - 1) / limits[0];
4604 for (level = 1; maxblocks > 1; level++)
4605 maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4606 return level;
4607 }
4608
4609 /*
4610 * Query a regular btree for all records overlapping a given interval.
4611 * Start with a LE lookup of the key of low_rec and return all records
4612 * until we find a record with a key greater than the key of high_rec.
4613 */
4614 STATIC int
4615 xfs_btree_simple_query_range(
4616 struct xfs_btree_cur *cur,
4617 union xfs_btree_key *low_key,
4618 union xfs_btree_key *high_key,
4619 xfs_btree_query_range_fn fn,
4620 void *priv)
4621 {
4622 union xfs_btree_rec *recp;
4623 union xfs_btree_key rec_key;
4624 int64_t diff;
4625 int stat;
4626 bool firstrec = true;
4627 int error;
4628
4629 ASSERT(cur->bc_ops->init_high_key_from_rec);
4630 ASSERT(cur->bc_ops->diff_two_keys);
4631
4632 /*
4633 * Find the leftmost record. The btree cursor must be set
4634 * to the low record used to generate low_key.
4635 */
4636 stat = 0;
4637 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4638 if (error)
4639 goto out;
4640
4641 /* Nothing? See if there's anything to the right. */
4642 if (!stat) {
4643 error = xfs_btree_increment(cur, 0, &stat);
4644 if (error)
4645 goto out;
4646 }
4647
4648 while (stat) {
4649 /* Find the record. */
4650 error = xfs_btree_get_rec(cur, &recp, &stat);
4651 if (error || !stat)
4652 break;
4653
4654 /* Skip if high_key(rec) < low_key. */
4655 if (firstrec) {
4656 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4657 firstrec = false;
4658 diff = cur->bc_ops->diff_two_keys(cur, low_key,
4659 &rec_key);
4660 if (diff > 0)
4661 goto advloop;
4662 }
4663
4664 /* Stop if high_key < low_key(rec). */
4665 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4666 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4667 if (diff > 0)
4668 break;
4669
4670 /* Callback */
4671 error = fn(cur, recp, priv);
4672 if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
4673 break;
4674
4675 advloop:
4676 /* Move on to the next record. */
4677 error = xfs_btree_increment(cur, 0, &stat);
4678 if (error)
4679 break;
4680 }
4681
4682 out:
4683 return error;
4684 }
4685
4686 /*
4687 * Query an overlapped interval btree for all records overlapping a given
4688 * interval. This function roughly follows the algorithm given in
4689 * "Interval Trees" of _Introduction to Algorithms_, which is section
4690 * 14.3 in the 2nd and 3rd editions.
4691 *
4692 * First, generate keys for the low and high records passed in.
4693 *
4694 * For any leaf node, generate the high and low keys for the record.
4695 * If the record keys overlap with the query low/high keys, pass the
4696 * record to the function iterator.
4697 *
4698 * For any internal node, compare the low and high keys of each
4699 * pointer against the query low/high keys. If there's an overlap,
4700 * follow the pointer.
4701 *
4702 * As an optimization, we stop scanning a block when we find a low key
4703 * that is greater than the query's high key.
4704 */
4705 STATIC int
4706 xfs_btree_overlapped_query_range(
4707 struct xfs_btree_cur *cur,
4708 union xfs_btree_key *low_key,
4709 union xfs_btree_key *high_key,
4710 xfs_btree_query_range_fn fn,
4711 void *priv)
4712 {
4713 union xfs_btree_ptr ptr;
4714 union xfs_btree_ptr *pp;
4715 union xfs_btree_key rec_key;
4716 union xfs_btree_key rec_hkey;
4717 union xfs_btree_key *lkp;
4718 union xfs_btree_key *hkp;
4719 union xfs_btree_rec *recp;
4720 struct xfs_btree_block *block;
4721 int64_t ldiff;
4722 int64_t hdiff;
4723 int level;
4724 struct xfs_buf *bp;
4725 int i;
4726 int error;
4727
4728 /* Load the root of the btree. */
4729 level = cur->bc_nlevels - 1;
4730 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4731 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4732 if (error)
4733 return error;
4734 xfs_btree_get_block(cur, level, &bp);
4735 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4736 #ifdef DEBUG
4737 error = xfs_btree_check_block(cur, block, level, bp);
4738 if (error)
4739 goto out;
4740 #endif
4741 cur->bc_ptrs[level] = 1;
4742
4743 while (level < cur->bc_nlevels) {
4744 block = xfs_btree_get_block(cur, level, &bp);
4745
4746 /* End of node, pop back towards the root. */
4747 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4748 pop_up:
4749 if (level < cur->bc_nlevels - 1)
4750 cur->bc_ptrs[level + 1]++;
4751 level++;
4752 continue;
4753 }
4754
4755 if (level == 0) {
4756 /* Handle a leaf node. */
4757 recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4758
4759 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4760 ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4761 low_key);
4762
4763 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4764 hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4765 &rec_key);
4766
4767 /*
4768 * If (record's high key >= query's low key) and
4769 * (query's high key >= record's low key), then
4770 * this record overlaps the query range; callback.
4771 */
4772 if (ldiff >= 0 && hdiff >= 0) {
4773 error = fn(cur, recp, priv);
4774 if (error < 0 ||
4775 error == XFS_BTREE_QUERY_RANGE_ABORT)
4776 break;
4777 } else if (hdiff < 0) {
4778 /* Record is larger than high key; pop. */
4779 goto pop_up;
4780 }
4781 cur->bc_ptrs[level]++;
4782 continue;
4783 }
4784
4785 /* Handle an internal node. */
4786 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4787 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4788 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4789
4790 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4791 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4792
4793 /*
4794 * If (pointer's high key >= query's low key) and
4795 * (query's high key >= pointer's low key), then
4796 * this record overlaps the query range; follow pointer.
4797 */
4798 if (ldiff >= 0 && hdiff >= 0) {
4799 level--;
4800 error = xfs_btree_lookup_get_block(cur, level, pp,
4801 &block);
4802 if (error)
4803 goto out;
4804 xfs_btree_get_block(cur, level, &bp);
4805 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4806 #ifdef DEBUG
4807 error = xfs_btree_check_block(cur, block, level, bp);
4808 if (error)
4809 goto out;
4810 #endif
4811 cur->bc_ptrs[level] = 1;
4812 continue;
4813 } else if (hdiff < 0) {
4814 /* The low key is larger than the upper range; pop. */
4815 goto pop_up;
4816 }
4817 cur->bc_ptrs[level]++;
4818 }
4819
4820 out:
4821 /*
4822 * If we don't end this function with the cursor pointing at a record
4823 * block, a subsequent non-error cursor deletion will not release
4824 * node-level buffers, causing a buffer leak. This is quite possible
4825 * with a zero-results range query, so release the buffers if we
4826 * failed to return any results.
4827 */
4828 if (cur->bc_bufs[0] == NULL) {
4829 for (i = 0; i < cur->bc_nlevels; i++) {
4830 if (cur->bc_bufs[i]) {
4831 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4832 cur->bc_bufs[i] = NULL;
4833 cur->bc_ptrs[i] = 0;
4834 cur->bc_ra[i] = 0;
4835 }
4836 }
4837 }
4838
4839 return error;
4840 }
4841
4842 /*
4843 * Query a btree for all records overlapping a given interval of keys. The
4844 * supplied function will be called with each record found; return one of the
4845 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4846 * code. This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
4847 * negative error code.
4848 */
4849 int
4850 xfs_btree_query_range(
4851 struct xfs_btree_cur *cur,
4852 union xfs_btree_irec *low_rec,
4853 union xfs_btree_irec *high_rec,
4854 xfs_btree_query_range_fn fn,
4855 void *priv)
4856 {
4857 union xfs_btree_rec rec;
4858 union xfs_btree_key low_key;
4859 union xfs_btree_key high_key;
4860
4861 /* Find the keys of both ends of the interval. */
4862 cur->bc_rec = *high_rec;
4863 cur->bc_ops->init_rec_from_cur(cur, &rec);
4864 cur->bc_ops->init_key_from_rec(&high_key, &rec);
4865
4866 cur->bc_rec = *low_rec;
4867 cur->bc_ops->init_rec_from_cur(cur, &rec);
4868 cur->bc_ops->init_key_from_rec(&low_key, &rec);
4869
4870 /* Enforce low key < high key. */
4871 if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4872 return -EINVAL;
4873
4874 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4875 return xfs_btree_simple_query_range(cur, &low_key,
4876 &high_key, fn, priv);
4877 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4878 fn, priv);
4879 }
4880
4881 /* Query a btree for all records. */
4882 int
4883 xfs_btree_query_all(
4884 struct xfs_btree_cur *cur,
4885 xfs_btree_query_range_fn fn,
4886 void *priv)
4887 {
4888 union xfs_btree_key low_key;
4889 union xfs_btree_key high_key;
4890
4891 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4892 memset(&low_key, 0, sizeof(low_key));
4893 memset(&high_key, 0xFF, sizeof(high_key));
4894
4895 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4896 }
4897
4898 /*
4899 * Calculate the number of blocks needed to store a given number of records
4900 * in a short-format (per-AG metadata) btree.
4901 */
4902 xfs_extlen_t
4903 xfs_btree_calc_size(
4904 struct xfs_mount *mp,
4905 uint *limits,
4906 unsigned long long len)
4907 {
4908 int level;
4909 int maxrecs;
4910 xfs_extlen_t rval;
4911
4912 maxrecs = limits[0];
4913 for (level = 0, rval = 0; len > 1; level++) {
4914 len += maxrecs - 1;
4915 do_div(len, maxrecs);
4916 maxrecs = limits[1];
4917 rval += len;
4918 }
4919 return rval;
4920 }
4921
4922 static int
4923 xfs_btree_count_blocks_helper(
4924 struct xfs_btree_cur *cur,
4925 int level,
4926 void *data)
4927 {
4928 xfs_extlen_t *blocks = data;
4929 (*blocks)++;
4930
4931 return 0;
4932 }
4933
4934 /* Count the blocks in a btree and return the result in *blocks. */
4935 int
4936 xfs_btree_count_blocks(
4937 struct xfs_btree_cur *cur,
4938 xfs_extlen_t *blocks)
4939 {
4940 *blocks = 0;
4941 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4942 blocks);
4943 }
4944
4945 /* Compare two btree pointers. */
4946 int64_t
4947 xfs_btree_diff_two_ptrs(
4948 struct xfs_btree_cur *cur,
4949 const union xfs_btree_ptr *a,
4950 const union xfs_btree_ptr *b)
4951 {
4952 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4953 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4954 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4955 }