]> git.ipfire.org Git - thirdparty/xfsprogs-dev.git/blob - libxfs/xfs_da_btree.c
libxfs: refactor manage_zones()
[thirdparty/xfsprogs-dev.git] / libxfs / xfs_da_btree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * Copyright (c) 2013 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7 #include "libxfs_priv.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_bit.h"
14 #include "xfs_mount.h"
15 #include "xfs_da_format.h"
16 #include "xfs_da_btree.h"
17 #include "xfs_dir2.h"
18 #include "xfs_dir2_priv.h"
19 #include "xfs_inode.h"
20 #include "xfs_trans.h"
21 #include "xfs_alloc.h"
22 #include "xfs_bmap.h"
23 #include "xfs_attr_leaf.h"
24 #include "xfs_trace.h"
25 #include "xfs_cksum.h"
26
27 /*
28 * xfs_da_btree.c
29 *
30 * Routines to implement directories as Btrees of hashed names.
31 */
32
33 /*========================================================================
34 * Function prototypes for the kernel.
35 *========================================================================*/
36
37 /*
38 * Routines used for growing the Btree.
39 */
40 STATIC int xfs_da3_root_split(xfs_da_state_t *state,
41 xfs_da_state_blk_t *existing_root,
42 xfs_da_state_blk_t *new_child);
43 STATIC int xfs_da3_node_split(xfs_da_state_t *state,
44 xfs_da_state_blk_t *existing_blk,
45 xfs_da_state_blk_t *split_blk,
46 xfs_da_state_blk_t *blk_to_add,
47 int treelevel,
48 int *result);
49 STATIC void xfs_da3_node_rebalance(xfs_da_state_t *state,
50 xfs_da_state_blk_t *node_blk_1,
51 xfs_da_state_blk_t *node_blk_2);
52 STATIC void xfs_da3_node_add(xfs_da_state_t *state,
53 xfs_da_state_blk_t *old_node_blk,
54 xfs_da_state_blk_t *new_node_blk);
55
56 /*
57 * Routines used for shrinking the Btree.
58 */
59 STATIC int xfs_da3_root_join(xfs_da_state_t *state,
60 xfs_da_state_blk_t *root_blk);
61 STATIC int xfs_da3_node_toosmall(xfs_da_state_t *state, int *retval);
62 STATIC void xfs_da3_node_remove(xfs_da_state_t *state,
63 xfs_da_state_blk_t *drop_blk);
64 STATIC void xfs_da3_node_unbalance(xfs_da_state_t *state,
65 xfs_da_state_blk_t *src_node_blk,
66 xfs_da_state_blk_t *dst_node_blk);
67
68 /*
69 * Utility routines.
70 */
71 STATIC int xfs_da3_blk_unlink(xfs_da_state_t *state,
72 xfs_da_state_blk_t *drop_blk,
73 xfs_da_state_blk_t *save_blk);
74
75
76 kmem_zone_t *xfs_da_state_zone; /* anchor for state struct zone */
77
78 /*
79 * Allocate a dir-state structure.
80 * We don't put them on the stack since they're large.
81 */
82 xfs_da_state_t *
83 xfs_da_state_alloc(void)
84 {
85 return kmem_zone_zalloc(xfs_da_state_zone, KM_NOFS);
86 }
87
88 /*
89 * Kill the altpath contents of a da-state structure.
90 */
91 STATIC void
92 xfs_da_state_kill_altpath(xfs_da_state_t *state)
93 {
94 int i;
95
96 for (i = 0; i < state->altpath.active; i++)
97 state->altpath.blk[i].bp = NULL;
98 state->altpath.active = 0;
99 }
100
101 /*
102 * Free a da-state structure.
103 */
104 void
105 xfs_da_state_free(xfs_da_state_t *state)
106 {
107 xfs_da_state_kill_altpath(state);
108 #ifdef DEBUG
109 memset((char *)state, 0, sizeof(*state));
110 #endif /* DEBUG */
111 kmem_zone_free(xfs_da_state_zone, state);
112 }
113
114 static xfs_failaddr_t
115 xfs_da3_node_verify(
116 struct xfs_buf *bp)
117 {
118 struct xfs_mount *mp = bp->b_target->bt_mount;
119 struct xfs_da_intnode *hdr = bp->b_addr;
120 struct xfs_da3_icnode_hdr ichdr;
121 const struct xfs_dir_ops *ops;
122
123 ops = xfs_dir_get_ops(mp, NULL);
124
125 ops->node_hdr_from_disk(&ichdr, hdr);
126
127 if (xfs_sb_version_hascrc(&mp->m_sb)) {
128 struct xfs_da3_node_hdr *hdr3 = bp->b_addr;
129
130 if (ichdr.magic != XFS_DA3_NODE_MAGIC)
131 return __this_address;
132
133 if (!uuid_equal(&hdr3->info.uuid, &mp->m_sb.sb_meta_uuid))
134 return __this_address;
135 if (be64_to_cpu(hdr3->info.blkno) != bp->b_bn)
136 return __this_address;
137 if (!xfs_log_check_lsn(mp, be64_to_cpu(hdr3->info.lsn)))
138 return __this_address;
139 } else {
140 if (ichdr.magic != XFS_DA_NODE_MAGIC)
141 return __this_address;
142 }
143 if (ichdr.level == 0)
144 return __this_address;
145 if (ichdr.level > XFS_DA_NODE_MAXDEPTH)
146 return __this_address;
147 if (ichdr.count == 0)
148 return __this_address;
149
150 /*
151 * we don't know if the node is for and attribute or directory tree,
152 * so only fail if the count is outside both bounds
153 */
154 if (ichdr.count > mp->m_dir_geo->node_ents &&
155 ichdr.count > mp->m_attr_geo->node_ents)
156 return __this_address;
157
158 /* XXX: hash order check? */
159
160 return NULL;
161 }
162
163 static void
164 xfs_da3_node_write_verify(
165 struct xfs_buf *bp)
166 {
167 struct xfs_mount *mp = bp->b_target->bt_mount;
168 struct xfs_buf_log_item *bip = bp->b_log_item;
169 struct xfs_da3_node_hdr *hdr3 = bp->b_addr;
170 xfs_failaddr_t fa;
171
172 fa = xfs_da3_node_verify(bp);
173 if (fa) {
174 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
175 return;
176 }
177
178 if (!xfs_sb_version_hascrc(&mp->m_sb))
179 return;
180
181 if (bip)
182 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn);
183
184 xfs_buf_update_cksum(bp, XFS_DA3_NODE_CRC_OFF);
185 }
186
187 /*
188 * leaf/node format detection on trees is sketchy, so a node read can be done on
189 * leaf level blocks when detection identifies the tree as a node format tree
190 * incorrectly. In this case, we need to swap the verifier to match the correct
191 * format of the block being read.
192 */
193 static void
194 xfs_da3_node_read_verify(
195 struct xfs_buf *bp)
196 {
197 struct xfs_da_blkinfo *info = bp->b_addr;
198 xfs_failaddr_t fa;
199
200 switch (be16_to_cpu(info->magic)) {
201 case XFS_DA3_NODE_MAGIC:
202 if (!xfs_buf_verify_cksum(bp, XFS_DA3_NODE_CRC_OFF)) {
203 xfs_verifier_error(bp, -EFSBADCRC,
204 __this_address);
205 break;
206 }
207 /* fall through */
208 case XFS_DA_NODE_MAGIC:
209 fa = xfs_da3_node_verify(bp);
210 if (fa)
211 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
212 return;
213 case XFS_ATTR_LEAF_MAGIC:
214 case XFS_ATTR3_LEAF_MAGIC:
215 bp->b_ops = &xfs_attr3_leaf_buf_ops;
216 bp->b_ops->verify_read(bp);
217 return;
218 case XFS_DIR2_LEAFN_MAGIC:
219 case XFS_DIR3_LEAFN_MAGIC:
220 bp->b_ops = &xfs_dir3_leafn_buf_ops;
221 bp->b_ops->verify_read(bp);
222 return;
223 default:
224 xfs_verifier_error(bp, -EFSCORRUPTED, __this_address);
225 break;
226 }
227 }
228
229 /* Verify the structure of a da3 block. */
230 static xfs_failaddr_t
231 xfs_da3_node_verify_struct(
232 struct xfs_buf *bp)
233 {
234 struct xfs_da_blkinfo *info = bp->b_addr;
235
236 switch (be16_to_cpu(info->magic)) {
237 case XFS_DA3_NODE_MAGIC:
238 case XFS_DA_NODE_MAGIC:
239 return xfs_da3_node_verify(bp);
240 case XFS_ATTR_LEAF_MAGIC:
241 case XFS_ATTR3_LEAF_MAGIC:
242 bp->b_ops = &xfs_attr3_leaf_buf_ops;
243 return bp->b_ops->verify_struct(bp);
244 case XFS_DIR2_LEAFN_MAGIC:
245 case XFS_DIR3_LEAFN_MAGIC:
246 bp->b_ops = &xfs_dir3_leafn_buf_ops;
247 return bp->b_ops->verify_struct(bp);
248 default:
249 return __this_address;
250 }
251 }
252
253 const struct xfs_buf_ops xfs_da3_node_buf_ops = {
254 .name = "xfs_da3_node",
255 .verify_read = xfs_da3_node_read_verify,
256 .verify_write = xfs_da3_node_write_verify,
257 .verify_struct = xfs_da3_node_verify_struct,
258 };
259
260 int
261 xfs_da3_node_read(
262 struct xfs_trans *tp,
263 struct xfs_inode *dp,
264 xfs_dablk_t bno,
265 xfs_daddr_t mappedbno,
266 struct xfs_buf **bpp,
267 int which_fork)
268 {
269 int err;
270
271 err = xfs_da_read_buf(tp, dp, bno, mappedbno, bpp,
272 which_fork, &xfs_da3_node_buf_ops);
273 if (!err && tp && *bpp) {
274 struct xfs_da_blkinfo *info = (*bpp)->b_addr;
275 int type;
276
277 switch (be16_to_cpu(info->magic)) {
278 case XFS_DA_NODE_MAGIC:
279 case XFS_DA3_NODE_MAGIC:
280 type = XFS_BLFT_DA_NODE_BUF;
281 break;
282 case XFS_ATTR_LEAF_MAGIC:
283 case XFS_ATTR3_LEAF_MAGIC:
284 type = XFS_BLFT_ATTR_LEAF_BUF;
285 break;
286 case XFS_DIR2_LEAFN_MAGIC:
287 case XFS_DIR3_LEAFN_MAGIC:
288 type = XFS_BLFT_DIR_LEAFN_BUF;
289 break;
290 default:
291 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW,
292 tp->t_mountp, info, sizeof(*info));
293 xfs_trans_brelse(tp, *bpp);
294 *bpp = NULL;
295 return -EFSCORRUPTED;
296 }
297 xfs_trans_buf_set_type(tp, *bpp, type);
298 }
299 return err;
300 }
301
302 /*========================================================================
303 * Routines used for growing the Btree.
304 *========================================================================*/
305
306 /*
307 * Create the initial contents of an intermediate node.
308 */
309 int
310 xfs_da3_node_create(
311 struct xfs_da_args *args,
312 xfs_dablk_t blkno,
313 int level,
314 struct xfs_buf **bpp,
315 int whichfork)
316 {
317 struct xfs_da_intnode *node;
318 struct xfs_trans *tp = args->trans;
319 struct xfs_mount *mp = tp->t_mountp;
320 struct xfs_da3_icnode_hdr ichdr = {0};
321 struct xfs_buf *bp;
322 int error;
323 struct xfs_inode *dp = args->dp;
324
325 trace_xfs_da_node_create(args);
326 ASSERT(level <= XFS_DA_NODE_MAXDEPTH);
327
328 error = xfs_da_get_buf(tp, dp, blkno, -1, &bp, whichfork);
329 if (error)
330 return error;
331 bp->b_ops = &xfs_da3_node_buf_ops;
332 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DA_NODE_BUF);
333 node = bp->b_addr;
334
335 if (xfs_sb_version_hascrc(&mp->m_sb)) {
336 struct xfs_da3_node_hdr *hdr3 = bp->b_addr;
337
338 memset(hdr3, 0, sizeof(struct xfs_da3_node_hdr));
339 ichdr.magic = XFS_DA3_NODE_MAGIC;
340 hdr3->info.blkno = cpu_to_be64(bp->b_bn);
341 hdr3->info.owner = cpu_to_be64(args->dp->i_ino);
342 uuid_copy(&hdr3->info.uuid, &mp->m_sb.sb_meta_uuid);
343 } else {
344 ichdr.magic = XFS_DA_NODE_MAGIC;
345 }
346 ichdr.level = level;
347
348 dp->d_ops->node_hdr_to_disk(node, &ichdr);
349 xfs_trans_log_buf(tp, bp,
350 XFS_DA_LOGRANGE(node, &node->hdr, dp->d_ops->node_hdr_size));
351
352 *bpp = bp;
353 return 0;
354 }
355
356 /*
357 * Split a leaf node, rebalance, then possibly split
358 * intermediate nodes, rebalance, etc.
359 */
360 int /* error */
361 xfs_da3_split(
362 struct xfs_da_state *state)
363 {
364 struct xfs_da_state_blk *oldblk;
365 struct xfs_da_state_blk *newblk;
366 struct xfs_da_state_blk *addblk;
367 struct xfs_da_intnode *node;
368 int max;
369 int action = 0;
370 int error;
371 int i;
372
373 trace_xfs_da_split(state->args);
374
375 /*
376 * Walk back up the tree splitting/inserting/adjusting as necessary.
377 * If we need to insert and there isn't room, split the node, then
378 * decide which fragment to insert the new block from below into.
379 * Note that we may split the root this way, but we need more fixup.
380 */
381 max = state->path.active - 1;
382 ASSERT((max >= 0) && (max < XFS_DA_NODE_MAXDEPTH));
383 ASSERT(state->path.blk[max].magic == XFS_ATTR_LEAF_MAGIC ||
384 state->path.blk[max].magic == XFS_DIR2_LEAFN_MAGIC);
385
386 addblk = &state->path.blk[max]; /* initial dummy value */
387 for (i = max; (i >= 0) && addblk; state->path.active--, i--) {
388 oldblk = &state->path.blk[i];
389 newblk = &state->altpath.blk[i];
390
391 /*
392 * If a leaf node then
393 * Allocate a new leaf node, then rebalance across them.
394 * else if an intermediate node then
395 * We split on the last layer, must we split the node?
396 */
397 switch (oldblk->magic) {
398 case XFS_ATTR_LEAF_MAGIC:
399 error = xfs_attr3_leaf_split(state, oldblk, newblk);
400 if ((error != 0) && (error != -ENOSPC)) {
401 return error; /* GROT: attr is inconsistent */
402 }
403 if (!error) {
404 addblk = newblk;
405 break;
406 }
407 /*
408 * Entry wouldn't fit, split the leaf again. The new
409 * extrablk will be consumed by xfs_da3_node_split if
410 * the node is split.
411 */
412 state->extravalid = 1;
413 if (state->inleaf) {
414 state->extraafter = 0; /* before newblk */
415 trace_xfs_attr_leaf_split_before(state->args);
416 error = xfs_attr3_leaf_split(state, oldblk,
417 &state->extrablk);
418 } else {
419 state->extraafter = 1; /* after newblk */
420 trace_xfs_attr_leaf_split_after(state->args);
421 error = xfs_attr3_leaf_split(state, newblk,
422 &state->extrablk);
423 }
424 if (error)
425 return error; /* GROT: attr inconsistent */
426 addblk = newblk;
427 break;
428 case XFS_DIR2_LEAFN_MAGIC:
429 error = xfs_dir2_leafn_split(state, oldblk, newblk);
430 if (error)
431 return error;
432 addblk = newblk;
433 break;
434 case XFS_DA_NODE_MAGIC:
435 error = xfs_da3_node_split(state, oldblk, newblk, addblk,
436 max - i, &action);
437 addblk->bp = NULL;
438 if (error)
439 return error; /* GROT: dir is inconsistent */
440 /*
441 * Record the newly split block for the next time thru?
442 */
443 if (action)
444 addblk = newblk;
445 else
446 addblk = NULL;
447 break;
448 }
449
450 /*
451 * Update the btree to show the new hashval for this child.
452 */
453 xfs_da3_fixhashpath(state, &state->path);
454 }
455 if (!addblk)
456 return 0;
457
458 /*
459 * xfs_da3_node_split() should have consumed any extra blocks we added
460 * during a double leaf split in the attr fork. This is guaranteed as
461 * we can't be here if the attr fork only has a single leaf block.
462 */
463 ASSERT(state->extravalid == 0 ||
464 state->path.blk[max].magic == XFS_DIR2_LEAFN_MAGIC);
465
466 /*
467 * Split the root node.
468 */
469 ASSERT(state->path.active == 0);
470 oldblk = &state->path.blk[0];
471 error = xfs_da3_root_split(state, oldblk, addblk);
472 if (error) {
473 addblk->bp = NULL;
474 return error; /* GROT: dir is inconsistent */
475 }
476
477 /*
478 * Update pointers to the node which used to be block 0 and just got
479 * bumped because of the addition of a new root node. Note that the
480 * original block 0 could be at any position in the list of blocks in
481 * the tree.
482 *
483 * Note: the magic numbers and sibling pointers are in the same physical
484 * place for both v2 and v3 headers (by design). Hence it doesn't matter
485 * which version of the xfs_da_intnode structure we use here as the
486 * result will be the same using either structure.
487 */
488 node = oldblk->bp->b_addr;
489 if (node->hdr.info.forw) {
490 ASSERT(be32_to_cpu(node->hdr.info.forw) == addblk->blkno);
491 node = addblk->bp->b_addr;
492 node->hdr.info.back = cpu_to_be32(oldblk->blkno);
493 xfs_trans_log_buf(state->args->trans, addblk->bp,
494 XFS_DA_LOGRANGE(node, &node->hdr.info,
495 sizeof(node->hdr.info)));
496 }
497 node = oldblk->bp->b_addr;
498 if (node->hdr.info.back) {
499 ASSERT(be32_to_cpu(node->hdr.info.back) == addblk->blkno);
500 node = addblk->bp->b_addr;
501 node->hdr.info.forw = cpu_to_be32(oldblk->blkno);
502 xfs_trans_log_buf(state->args->trans, addblk->bp,
503 XFS_DA_LOGRANGE(node, &node->hdr.info,
504 sizeof(node->hdr.info)));
505 }
506 addblk->bp = NULL;
507 return 0;
508 }
509
510 /*
511 * Split the root. We have to create a new root and point to the two
512 * parts (the split old root) that we just created. Copy block zero to
513 * the EOF, extending the inode in process.
514 */
515 STATIC int /* error */
516 xfs_da3_root_split(
517 struct xfs_da_state *state,
518 struct xfs_da_state_blk *blk1,
519 struct xfs_da_state_blk *blk2)
520 {
521 struct xfs_da_intnode *node;
522 struct xfs_da_intnode *oldroot;
523 struct xfs_da_node_entry *btree;
524 struct xfs_da3_icnode_hdr nodehdr;
525 struct xfs_da_args *args;
526 struct xfs_buf *bp;
527 struct xfs_inode *dp;
528 struct xfs_trans *tp;
529 struct xfs_dir2_leaf *leaf;
530 xfs_dablk_t blkno;
531 int level;
532 int error;
533 int size;
534
535 trace_xfs_da_root_split(state->args);
536
537 /*
538 * Copy the existing (incorrect) block from the root node position
539 * to a free space somewhere.
540 */
541 args = state->args;
542 error = xfs_da_grow_inode(args, &blkno);
543 if (error)
544 return error;
545
546 dp = args->dp;
547 tp = args->trans;
548 error = xfs_da_get_buf(tp, dp, blkno, -1, &bp, args->whichfork);
549 if (error)
550 return error;
551 node = bp->b_addr;
552 oldroot = blk1->bp->b_addr;
553 if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC) ||
554 oldroot->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC)) {
555 struct xfs_da3_icnode_hdr icnodehdr;
556
557 dp->d_ops->node_hdr_from_disk(&icnodehdr, oldroot);
558 btree = dp->d_ops->node_tree_p(oldroot);
559 size = (int)((char *)&btree[icnodehdr.count] - (char *)oldroot);
560 level = icnodehdr.level;
561
562 /*
563 * we are about to copy oldroot to bp, so set up the type
564 * of bp while we know exactly what it will be.
565 */
566 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DA_NODE_BUF);
567 } else {
568 struct xfs_dir3_icleaf_hdr leafhdr;
569 struct xfs_dir2_leaf_entry *ents;
570
571 leaf = (xfs_dir2_leaf_t *)oldroot;
572 dp->d_ops->leaf_hdr_from_disk(&leafhdr, leaf);
573 ents = dp->d_ops->leaf_ents_p(leaf);
574
575 ASSERT(leafhdr.magic == XFS_DIR2_LEAFN_MAGIC ||
576 leafhdr.magic == XFS_DIR3_LEAFN_MAGIC);
577 size = (int)((char *)&ents[leafhdr.count] - (char *)leaf);
578 level = 0;
579
580 /*
581 * we are about to copy oldroot to bp, so set up the type
582 * of bp while we know exactly what it will be.
583 */
584 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DIR_LEAFN_BUF);
585 }
586
587 /*
588 * we can copy most of the information in the node from one block to
589 * another, but for CRC enabled headers we have to make sure that the
590 * block specific identifiers are kept intact. We update the buffer
591 * directly for this.
592 */
593 memcpy(node, oldroot, size);
594 if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC) ||
595 oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) {
596 struct xfs_da3_intnode *node3 = (struct xfs_da3_intnode *)node;
597
598 node3->hdr.info.blkno = cpu_to_be64(bp->b_bn);
599 }
600 xfs_trans_log_buf(tp, bp, 0, size - 1);
601
602 bp->b_ops = blk1->bp->b_ops;
603 xfs_trans_buf_copy_type(bp, blk1->bp);
604 blk1->bp = bp;
605 blk1->blkno = blkno;
606
607 /*
608 * Set up the new root node.
609 */
610 error = xfs_da3_node_create(args,
611 (args->whichfork == XFS_DATA_FORK) ? args->geo->leafblk : 0,
612 level + 1, &bp, args->whichfork);
613 if (error)
614 return error;
615
616 node = bp->b_addr;
617 dp->d_ops->node_hdr_from_disk(&nodehdr, node);
618 btree = dp->d_ops->node_tree_p(node);
619 btree[0].hashval = cpu_to_be32(blk1->hashval);
620 btree[0].before = cpu_to_be32(blk1->blkno);
621 btree[1].hashval = cpu_to_be32(blk2->hashval);
622 btree[1].before = cpu_to_be32(blk2->blkno);
623 nodehdr.count = 2;
624 dp->d_ops->node_hdr_to_disk(node, &nodehdr);
625
626 #ifdef DEBUG
627 if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
628 oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) {
629 ASSERT(blk1->blkno >= args->geo->leafblk &&
630 blk1->blkno < args->geo->freeblk);
631 ASSERT(blk2->blkno >= args->geo->leafblk &&
632 blk2->blkno < args->geo->freeblk);
633 }
634 #endif
635
636 /* Header is already logged by xfs_da_node_create */
637 xfs_trans_log_buf(tp, bp,
638 XFS_DA_LOGRANGE(node, btree, sizeof(xfs_da_node_entry_t) * 2));
639
640 return 0;
641 }
642
643 /*
644 * Split the node, rebalance, then add the new entry.
645 */
646 STATIC int /* error */
647 xfs_da3_node_split(
648 struct xfs_da_state *state,
649 struct xfs_da_state_blk *oldblk,
650 struct xfs_da_state_blk *newblk,
651 struct xfs_da_state_blk *addblk,
652 int treelevel,
653 int *result)
654 {
655 struct xfs_da_intnode *node;
656 struct xfs_da3_icnode_hdr nodehdr;
657 xfs_dablk_t blkno;
658 int newcount;
659 int error;
660 int useextra;
661 struct xfs_inode *dp = state->args->dp;
662
663 trace_xfs_da_node_split(state->args);
664
665 node = oldblk->bp->b_addr;
666 dp->d_ops->node_hdr_from_disk(&nodehdr, node);
667
668 /*
669 * With V2 dirs the extra block is data or freespace.
670 */
671 useextra = state->extravalid && state->args->whichfork == XFS_ATTR_FORK;
672 newcount = 1 + useextra;
673 /*
674 * Do we have to split the node?
675 */
676 if (nodehdr.count + newcount > state->args->geo->node_ents) {
677 /*
678 * Allocate a new node, add to the doubly linked chain of
679 * nodes, then move some of our excess entries into it.
680 */
681 error = xfs_da_grow_inode(state->args, &blkno);
682 if (error)
683 return error; /* GROT: dir is inconsistent */
684
685 error = xfs_da3_node_create(state->args, blkno, treelevel,
686 &newblk->bp, state->args->whichfork);
687 if (error)
688 return error; /* GROT: dir is inconsistent */
689 newblk->blkno = blkno;
690 newblk->magic = XFS_DA_NODE_MAGIC;
691 xfs_da3_node_rebalance(state, oldblk, newblk);
692 error = xfs_da3_blk_link(state, oldblk, newblk);
693 if (error)
694 return error;
695 *result = 1;
696 } else {
697 *result = 0;
698 }
699
700 /*
701 * Insert the new entry(s) into the correct block
702 * (updating last hashval in the process).
703 *
704 * xfs_da3_node_add() inserts BEFORE the given index,
705 * and as a result of using node_lookup_int() we always
706 * point to a valid entry (not after one), but a split
707 * operation always results in a new block whose hashvals
708 * FOLLOW the current block.
709 *
710 * If we had double-split op below us, then add the extra block too.
711 */
712 node = oldblk->bp->b_addr;
713 dp->d_ops->node_hdr_from_disk(&nodehdr, node);
714 if (oldblk->index <= nodehdr.count) {
715 oldblk->index++;
716 xfs_da3_node_add(state, oldblk, addblk);
717 if (useextra) {
718 if (state->extraafter)
719 oldblk->index++;
720 xfs_da3_node_add(state, oldblk, &state->extrablk);
721 state->extravalid = 0;
722 }
723 } else {
724 newblk->index++;
725 xfs_da3_node_add(state, newblk, addblk);
726 if (useextra) {
727 if (state->extraafter)
728 newblk->index++;
729 xfs_da3_node_add(state, newblk, &state->extrablk);
730 state->extravalid = 0;
731 }
732 }
733
734 return 0;
735 }
736
737 /*
738 * Balance the btree elements between two intermediate nodes,
739 * usually one full and one empty.
740 *
741 * NOTE: if blk2 is empty, then it will get the upper half of blk1.
742 */
743 STATIC void
744 xfs_da3_node_rebalance(
745 struct xfs_da_state *state,
746 struct xfs_da_state_blk *blk1,
747 struct xfs_da_state_blk *blk2)
748 {
749 struct xfs_da_intnode *node1;
750 struct xfs_da_intnode *node2;
751 struct xfs_da_intnode *tmpnode;
752 struct xfs_da_node_entry *btree1;
753 struct xfs_da_node_entry *btree2;
754 struct xfs_da_node_entry *btree_s;
755 struct xfs_da_node_entry *btree_d;
756 struct xfs_da3_icnode_hdr nodehdr1;
757 struct xfs_da3_icnode_hdr nodehdr2;
758 struct xfs_trans *tp;
759 int count;
760 int tmp;
761 int swap = 0;
762 struct xfs_inode *dp = state->args->dp;
763
764 trace_xfs_da_node_rebalance(state->args);
765
766 node1 = blk1->bp->b_addr;
767 node2 = blk2->bp->b_addr;
768 dp->d_ops->node_hdr_from_disk(&nodehdr1, node1);
769 dp->d_ops->node_hdr_from_disk(&nodehdr2, node2);
770 btree1 = dp->d_ops->node_tree_p(node1);
771 btree2 = dp->d_ops->node_tree_p(node2);
772
773 /*
774 * Figure out how many entries need to move, and in which direction.
775 * Swap the nodes around if that makes it simpler.
776 */
777 if (nodehdr1.count > 0 && nodehdr2.count > 0 &&
778 ((be32_to_cpu(btree2[0].hashval) < be32_to_cpu(btree1[0].hashval)) ||
779 (be32_to_cpu(btree2[nodehdr2.count - 1].hashval) <
780 be32_to_cpu(btree1[nodehdr1.count - 1].hashval)))) {
781 tmpnode = node1;
782 node1 = node2;
783 node2 = tmpnode;
784 dp->d_ops->node_hdr_from_disk(&nodehdr1, node1);
785 dp->d_ops->node_hdr_from_disk(&nodehdr2, node2);
786 btree1 = dp->d_ops->node_tree_p(node1);
787 btree2 = dp->d_ops->node_tree_p(node2);
788 swap = 1;
789 }
790
791 count = (nodehdr1.count - nodehdr2.count) / 2;
792 if (count == 0)
793 return;
794 tp = state->args->trans;
795 /*
796 * Two cases: high-to-low and low-to-high.
797 */
798 if (count > 0) {
799 /*
800 * Move elements in node2 up to make a hole.
801 */
802 tmp = nodehdr2.count;
803 if (tmp > 0) {
804 tmp *= (uint)sizeof(xfs_da_node_entry_t);
805 btree_s = &btree2[0];
806 btree_d = &btree2[count];
807 memmove(btree_d, btree_s, tmp);
808 }
809
810 /*
811 * Move the req'd B-tree elements from high in node1 to
812 * low in node2.
813 */
814 nodehdr2.count += count;
815 tmp = count * (uint)sizeof(xfs_da_node_entry_t);
816 btree_s = &btree1[nodehdr1.count - count];
817 btree_d = &btree2[0];
818 memcpy(btree_d, btree_s, tmp);
819 nodehdr1.count -= count;
820 } else {
821 /*
822 * Move the req'd B-tree elements from low in node2 to
823 * high in node1.
824 */
825 count = -count;
826 tmp = count * (uint)sizeof(xfs_da_node_entry_t);
827 btree_s = &btree2[0];
828 btree_d = &btree1[nodehdr1.count];
829 memcpy(btree_d, btree_s, tmp);
830 nodehdr1.count += count;
831
832 xfs_trans_log_buf(tp, blk1->bp,
833 XFS_DA_LOGRANGE(node1, btree_d, tmp));
834
835 /*
836 * Move elements in node2 down to fill the hole.
837 */
838 tmp = nodehdr2.count - count;
839 tmp *= (uint)sizeof(xfs_da_node_entry_t);
840 btree_s = &btree2[count];
841 btree_d = &btree2[0];
842 memmove(btree_d, btree_s, tmp);
843 nodehdr2.count -= count;
844 }
845
846 /*
847 * Log header of node 1 and all current bits of node 2.
848 */
849 dp->d_ops->node_hdr_to_disk(node1, &nodehdr1);
850 xfs_trans_log_buf(tp, blk1->bp,
851 XFS_DA_LOGRANGE(node1, &node1->hdr, dp->d_ops->node_hdr_size));
852
853 dp->d_ops->node_hdr_to_disk(node2, &nodehdr2);
854 xfs_trans_log_buf(tp, blk2->bp,
855 XFS_DA_LOGRANGE(node2, &node2->hdr,
856 dp->d_ops->node_hdr_size +
857 (sizeof(btree2[0]) * nodehdr2.count)));
858
859 /*
860 * Record the last hashval from each block for upward propagation.
861 * (note: don't use the swapped node pointers)
862 */
863 if (swap) {
864 node1 = blk1->bp->b_addr;
865 node2 = blk2->bp->b_addr;
866 dp->d_ops->node_hdr_from_disk(&nodehdr1, node1);
867 dp->d_ops->node_hdr_from_disk(&nodehdr2, node2);
868 btree1 = dp->d_ops->node_tree_p(node1);
869 btree2 = dp->d_ops->node_tree_p(node2);
870 }
871 blk1->hashval = be32_to_cpu(btree1[nodehdr1.count - 1].hashval);
872 blk2->hashval = be32_to_cpu(btree2[nodehdr2.count - 1].hashval);
873
874 /*
875 * Adjust the expected index for insertion.
876 */
877 if (blk1->index >= nodehdr1.count) {
878 blk2->index = blk1->index - nodehdr1.count;
879 blk1->index = nodehdr1.count + 1; /* make it invalid */
880 }
881 }
882
883 /*
884 * Add a new entry to an intermediate node.
885 */
886 STATIC void
887 xfs_da3_node_add(
888 struct xfs_da_state *state,
889 struct xfs_da_state_blk *oldblk,
890 struct xfs_da_state_blk *newblk)
891 {
892 struct xfs_da_intnode *node;
893 struct xfs_da3_icnode_hdr nodehdr;
894 struct xfs_da_node_entry *btree;
895 int tmp;
896 struct xfs_inode *dp = state->args->dp;
897
898 trace_xfs_da_node_add(state->args);
899
900 node = oldblk->bp->b_addr;
901 dp->d_ops->node_hdr_from_disk(&nodehdr, node);
902 btree = dp->d_ops->node_tree_p(node);
903
904 ASSERT(oldblk->index >= 0 && oldblk->index <= nodehdr.count);
905 ASSERT(newblk->blkno != 0);
906 if (state->args->whichfork == XFS_DATA_FORK)
907 ASSERT(newblk->blkno >= state->args->geo->leafblk &&
908 newblk->blkno < state->args->geo->freeblk);
909
910 /*
911 * We may need to make some room before we insert the new node.
912 */
913 tmp = 0;
914 if (oldblk->index < nodehdr.count) {
915 tmp = (nodehdr.count - oldblk->index) * (uint)sizeof(*btree);
916 memmove(&btree[oldblk->index + 1], &btree[oldblk->index], tmp);
917 }
918 btree[oldblk->index].hashval = cpu_to_be32(newblk->hashval);
919 btree[oldblk->index].before = cpu_to_be32(newblk->blkno);
920 xfs_trans_log_buf(state->args->trans, oldblk->bp,
921 XFS_DA_LOGRANGE(node, &btree[oldblk->index],
922 tmp + sizeof(*btree)));
923
924 nodehdr.count += 1;
925 dp->d_ops->node_hdr_to_disk(node, &nodehdr);
926 xfs_trans_log_buf(state->args->trans, oldblk->bp,
927 XFS_DA_LOGRANGE(node, &node->hdr, dp->d_ops->node_hdr_size));
928
929 /*
930 * Copy the last hash value from the oldblk to propagate upwards.
931 */
932 oldblk->hashval = be32_to_cpu(btree[nodehdr.count - 1].hashval);
933 }
934
935 /*========================================================================
936 * Routines used for shrinking the Btree.
937 *========================================================================*/
938
939 /*
940 * Deallocate an empty leaf node, remove it from its parent,
941 * possibly deallocating that block, etc...
942 */
943 int
944 xfs_da3_join(
945 struct xfs_da_state *state)
946 {
947 struct xfs_da_state_blk *drop_blk;
948 struct xfs_da_state_blk *save_blk;
949 int action = 0;
950 int error;
951
952 trace_xfs_da_join(state->args);
953
954 drop_blk = &state->path.blk[ state->path.active-1 ];
955 save_blk = &state->altpath.blk[ state->path.active-1 ];
956 ASSERT(state->path.blk[0].magic == XFS_DA_NODE_MAGIC);
957 ASSERT(drop_blk->magic == XFS_ATTR_LEAF_MAGIC ||
958 drop_blk->magic == XFS_DIR2_LEAFN_MAGIC);
959
960 /*
961 * Walk back up the tree joining/deallocating as necessary.
962 * When we stop dropping blocks, break out.
963 */
964 for ( ; state->path.active >= 2; drop_blk--, save_blk--,
965 state->path.active--) {
966 /*
967 * See if we can combine the block with a neighbor.
968 * (action == 0) => no options, just leave
969 * (action == 1) => coalesce, then unlink
970 * (action == 2) => block empty, unlink it
971 */
972 switch (drop_blk->magic) {
973 case XFS_ATTR_LEAF_MAGIC:
974 error = xfs_attr3_leaf_toosmall(state, &action);
975 if (error)
976 return error;
977 if (action == 0)
978 return 0;
979 xfs_attr3_leaf_unbalance(state, drop_blk, save_blk);
980 break;
981 case XFS_DIR2_LEAFN_MAGIC:
982 error = xfs_dir2_leafn_toosmall(state, &action);
983 if (error)
984 return error;
985 if (action == 0)
986 return 0;
987 xfs_dir2_leafn_unbalance(state, drop_blk, save_blk);
988 break;
989 case XFS_DA_NODE_MAGIC:
990 /*
991 * Remove the offending node, fixup hashvals,
992 * check for a toosmall neighbor.
993 */
994 xfs_da3_node_remove(state, drop_blk);
995 xfs_da3_fixhashpath(state, &state->path);
996 error = xfs_da3_node_toosmall(state, &action);
997 if (error)
998 return error;
999 if (action == 0)
1000 return 0;
1001 xfs_da3_node_unbalance(state, drop_blk, save_blk);
1002 break;
1003 }
1004 xfs_da3_fixhashpath(state, &state->altpath);
1005 error = xfs_da3_blk_unlink(state, drop_blk, save_blk);
1006 xfs_da_state_kill_altpath(state);
1007 if (error)
1008 return error;
1009 error = xfs_da_shrink_inode(state->args, drop_blk->blkno,
1010 drop_blk->bp);
1011 drop_blk->bp = NULL;
1012 if (error)
1013 return error;
1014 }
1015 /*
1016 * We joined all the way to the top. If it turns out that
1017 * we only have one entry in the root, make the child block
1018 * the new root.
1019 */
1020 xfs_da3_node_remove(state, drop_blk);
1021 xfs_da3_fixhashpath(state, &state->path);
1022 error = xfs_da3_root_join(state, &state->path.blk[0]);
1023 return error;
1024 }
1025
1026 #ifdef DEBUG
1027 static void
1028 xfs_da_blkinfo_onlychild_validate(struct xfs_da_blkinfo *blkinfo, __u16 level)
1029 {
1030 __be16 magic = blkinfo->magic;
1031
1032 if (level == 1) {
1033 ASSERT(magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
1034 magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC) ||
1035 magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
1036 magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
1037 } else {
1038 ASSERT(magic == cpu_to_be16(XFS_DA_NODE_MAGIC) ||
1039 magic == cpu_to_be16(XFS_DA3_NODE_MAGIC));
1040 }
1041 ASSERT(!blkinfo->forw);
1042 ASSERT(!blkinfo->back);
1043 }
1044 #else /* !DEBUG */
1045 #define xfs_da_blkinfo_onlychild_validate(blkinfo, level)
1046 #endif /* !DEBUG */
1047
1048 /*
1049 * We have only one entry in the root. Copy the only remaining child of
1050 * the old root to block 0 as the new root node.
1051 */
1052 STATIC int
1053 xfs_da3_root_join(
1054 struct xfs_da_state *state,
1055 struct xfs_da_state_blk *root_blk)
1056 {
1057 struct xfs_da_intnode *oldroot;
1058 struct xfs_da_args *args;
1059 xfs_dablk_t child;
1060 struct xfs_buf *bp;
1061 struct xfs_da3_icnode_hdr oldroothdr;
1062 struct xfs_da_node_entry *btree;
1063 int error;
1064 struct xfs_inode *dp = state->args->dp;
1065
1066 trace_xfs_da_root_join(state->args);
1067
1068 ASSERT(root_blk->magic == XFS_DA_NODE_MAGIC);
1069
1070 args = state->args;
1071 oldroot = root_blk->bp->b_addr;
1072 dp->d_ops->node_hdr_from_disk(&oldroothdr, oldroot);
1073 ASSERT(oldroothdr.forw == 0);
1074 ASSERT(oldroothdr.back == 0);
1075
1076 /*
1077 * If the root has more than one child, then don't do anything.
1078 */
1079 if (oldroothdr.count > 1)
1080 return 0;
1081
1082 /*
1083 * Read in the (only) child block, then copy those bytes into
1084 * the root block's buffer and free the original child block.
1085 */
1086 btree = dp->d_ops->node_tree_p(oldroot);
1087 child = be32_to_cpu(btree[0].before);
1088 ASSERT(child != 0);
1089 error = xfs_da3_node_read(args->trans, dp, child, -1, &bp,
1090 args->whichfork);
1091 if (error)
1092 return error;
1093 xfs_da_blkinfo_onlychild_validate(bp->b_addr, oldroothdr.level);
1094
1095 /*
1096 * This could be copying a leaf back into the root block in the case of
1097 * there only being a single leaf block left in the tree. Hence we have
1098 * to update the b_ops pointer as well to match the buffer type change
1099 * that could occur. For dir3 blocks we also need to update the block
1100 * number in the buffer header.
1101 */
1102 memcpy(root_blk->bp->b_addr, bp->b_addr, args->geo->blksize);
1103 root_blk->bp->b_ops = bp->b_ops;
1104 xfs_trans_buf_copy_type(root_blk->bp, bp);
1105 if (oldroothdr.magic == XFS_DA3_NODE_MAGIC) {
1106 struct xfs_da3_blkinfo *da3 = root_blk->bp->b_addr;
1107 da3->blkno = cpu_to_be64(root_blk->bp->b_bn);
1108 }
1109 xfs_trans_log_buf(args->trans, root_blk->bp, 0,
1110 args->geo->blksize - 1);
1111 error = xfs_da_shrink_inode(args, child, bp);
1112 return error;
1113 }
1114
1115 /*
1116 * Check a node block and its neighbors to see if the block should be
1117 * collapsed into one or the other neighbor. Always keep the block
1118 * with the smaller block number.
1119 * If the current block is over 50% full, don't try to join it, return 0.
1120 * If the block is empty, fill in the state structure and return 2.
1121 * If it can be collapsed, fill in the state structure and return 1.
1122 * If nothing can be done, return 0.
1123 */
1124 STATIC int
1125 xfs_da3_node_toosmall(
1126 struct xfs_da_state *state,
1127 int *action)
1128 {
1129 struct xfs_da_intnode *node;
1130 struct xfs_da_state_blk *blk;
1131 struct xfs_da_blkinfo *info;
1132 xfs_dablk_t blkno;
1133 struct xfs_buf *bp;
1134 struct xfs_da3_icnode_hdr nodehdr;
1135 int count;
1136 int forward;
1137 int error;
1138 int retval;
1139 int i;
1140 struct xfs_inode *dp = state->args->dp;
1141
1142 trace_xfs_da_node_toosmall(state->args);
1143
1144 /*
1145 * Check for the degenerate case of the block being over 50% full.
1146 * If so, it's not worth even looking to see if we might be able
1147 * to coalesce with a sibling.
1148 */
1149 blk = &state->path.blk[ state->path.active-1 ];
1150 info = blk->bp->b_addr;
1151 node = (xfs_da_intnode_t *)info;
1152 dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1153 if (nodehdr.count > (state->args->geo->node_ents >> 1)) {
1154 *action = 0; /* blk over 50%, don't try to join */
1155 return 0; /* blk over 50%, don't try to join */
1156 }
1157
1158 /*
1159 * Check for the degenerate case of the block being empty.
1160 * If the block is empty, we'll simply delete it, no need to
1161 * coalesce it with a sibling block. We choose (arbitrarily)
1162 * to merge with the forward block unless it is NULL.
1163 */
1164 if (nodehdr.count == 0) {
1165 /*
1166 * Make altpath point to the block we want to keep and
1167 * path point to the block we want to drop (this one).
1168 */
1169 forward = (info->forw != 0);
1170 memcpy(&state->altpath, &state->path, sizeof(state->path));
1171 error = xfs_da3_path_shift(state, &state->altpath, forward,
1172 0, &retval);
1173 if (error)
1174 return error;
1175 if (retval) {
1176 *action = 0;
1177 } else {
1178 *action = 2;
1179 }
1180 return 0;
1181 }
1182
1183 /*
1184 * Examine each sibling block to see if we can coalesce with
1185 * at least 25% free space to spare. We need to figure out
1186 * whether to merge with the forward or the backward block.
1187 * We prefer coalescing with the lower numbered sibling so as
1188 * to shrink a directory over time.
1189 */
1190 count = state->args->geo->node_ents;
1191 count -= state->args->geo->node_ents >> 2;
1192 count -= nodehdr.count;
1193
1194 /* start with smaller blk num */
1195 forward = nodehdr.forw < nodehdr.back;
1196 for (i = 0; i < 2; forward = !forward, i++) {
1197 struct xfs_da3_icnode_hdr thdr;
1198 if (forward)
1199 blkno = nodehdr.forw;
1200 else
1201 blkno = nodehdr.back;
1202 if (blkno == 0)
1203 continue;
1204 error = xfs_da3_node_read(state->args->trans, dp,
1205 blkno, -1, &bp, state->args->whichfork);
1206 if (error)
1207 return error;
1208
1209 node = bp->b_addr;
1210 dp->d_ops->node_hdr_from_disk(&thdr, node);
1211 xfs_trans_brelse(state->args->trans, bp);
1212
1213 if (count - thdr.count >= 0)
1214 break; /* fits with at least 25% to spare */
1215 }
1216 if (i >= 2) {
1217 *action = 0;
1218 return 0;
1219 }
1220
1221 /*
1222 * Make altpath point to the block we want to keep (the lower
1223 * numbered block) and path point to the block we want to drop.
1224 */
1225 memcpy(&state->altpath, &state->path, sizeof(state->path));
1226 if (blkno < blk->blkno) {
1227 error = xfs_da3_path_shift(state, &state->altpath, forward,
1228 0, &retval);
1229 } else {
1230 error = xfs_da3_path_shift(state, &state->path, forward,
1231 0, &retval);
1232 }
1233 if (error)
1234 return error;
1235 if (retval) {
1236 *action = 0;
1237 return 0;
1238 }
1239 *action = 1;
1240 return 0;
1241 }
1242
1243 /*
1244 * Pick up the last hashvalue from an intermediate node.
1245 */
1246 STATIC uint
1247 xfs_da3_node_lasthash(
1248 struct xfs_inode *dp,
1249 struct xfs_buf *bp,
1250 int *count)
1251 {
1252 struct xfs_da_intnode *node;
1253 struct xfs_da_node_entry *btree;
1254 struct xfs_da3_icnode_hdr nodehdr;
1255
1256 node = bp->b_addr;
1257 dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1258 if (count)
1259 *count = nodehdr.count;
1260 if (!nodehdr.count)
1261 return 0;
1262 btree = dp->d_ops->node_tree_p(node);
1263 return be32_to_cpu(btree[nodehdr.count - 1].hashval);
1264 }
1265
1266 /*
1267 * Walk back up the tree adjusting hash values as necessary,
1268 * when we stop making changes, return.
1269 */
1270 void
1271 xfs_da3_fixhashpath(
1272 struct xfs_da_state *state,
1273 struct xfs_da_state_path *path)
1274 {
1275 struct xfs_da_state_blk *blk;
1276 struct xfs_da_intnode *node;
1277 struct xfs_da_node_entry *btree;
1278 xfs_dahash_t lasthash=0;
1279 int level;
1280 int count;
1281 struct xfs_inode *dp = state->args->dp;
1282
1283 trace_xfs_da_fixhashpath(state->args);
1284
1285 level = path->active-1;
1286 blk = &path->blk[ level ];
1287 switch (blk->magic) {
1288 case XFS_ATTR_LEAF_MAGIC:
1289 lasthash = xfs_attr_leaf_lasthash(blk->bp, &count);
1290 if (count == 0)
1291 return;
1292 break;
1293 case XFS_DIR2_LEAFN_MAGIC:
1294 lasthash = xfs_dir2_leaf_lasthash(dp, blk->bp, &count);
1295 if (count == 0)
1296 return;
1297 break;
1298 case XFS_DA_NODE_MAGIC:
1299 lasthash = xfs_da3_node_lasthash(dp, blk->bp, &count);
1300 if (count == 0)
1301 return;
1302 break;
1303 }
1304 for (blk--, level--; level >= 0; blk--, level--) {
1305 struct xfs_da3_icnode_hdr nodehdr;
1306
1307 node = blk->bp->b_addr;
1308 dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1309 btree = dp->d_ops->node_tree_p(node);
1310 if (be32_to_cpu(btree[blk->index].hashval) == lasthash)
1311 break;
1312 blk->hashval = lasthash;
1313 btree[blk->index].hashval = cpu_to_be32(lasthash);
1314 xfs_trans_log_buf(state->args->trans, blk->bp,
1315 XFS_DA_LOGRANGE(node, &btree[blk->index],
1316 sizeof(*btree)));
1317
1318 lasthash = be32_to_cpu(btree[nodehdr.count - 1].hashval);
1319 }
1320 }
1321
1322 /*
1323 * Remove an entry from an intermediate node.
1324 */
1325 STATIC void
1326 xfs_da3_node_remove(
1327 struct xfs_da_state *state,
1328 struct xfs_da_state_blk *drop_blk)
1329 {
1330 struct xfs_da_intnode *node;
1331 struct xfs_da3_icnode_hdr nodehdr;
1332 struct xfs_da_node_entry *btree;
1333 int index;
1334 int tmp;
1335 struct xfs_inode *dp = state->args->dp;
1336
1337 trace_xfs_da_node_remove(state->args);
1338
1339 node = drop_blk->bp->b_addr;
1340 dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1341 ASSERT(drop_blk->index < nodehdr.count);
1342 ASSERT(drop_blk->index >= 0);
1343
1344 /*
1345 * Copy over the offending entry, or just zero it out.
1346 */
1347 index = drop_blk->index;
1348 btree = dp->d_ops->node_tree_p(node);
1349 if (index < nodehdr.count - 1) {
1350 tmp = nodehdr.count - index - 1;
1351 tmp *= (uint)sizeof(xfs_da_node_entry_t);
1352 memmove(&btree[index], &btree[index + 1], tmp);
1353 xfs_trans_log_buf(state->args->trans, drop_blk->bp,
1354 XFS_DA_LOGRANGE(node, &btree[index], tmp));
1355 index = nodehdr.count - 1;
1356 }
1357 memset(&btree[index], 0, sizeof(xfs_da_node_entry_t));
1358 xfs_trans_log_buf(state->args->trans, drop_blk->bp,
1359 XFS_DA_LOGRANGE(node, &btree[index], sizeof(btree[index])));
1360 nodehdr.count -= 1;
1361 dp->d_ops->node_hdr_to_disk(node, &nodehdr);
1362 xfs_trans_log_buf(state->args->trans, drop_blk->bp,
1363 XFS_DA_LOGRANGE(node, &node->hdr, dp->d_ops->node_hdr_size));
1364
1365 /*
1366 * Copy the last hash value from the block to propagate upwards.
1367 */
1368 drop_blk->hashval = be32_to_cpu(btree[index - 1].hashval);
1369 }
1370
1371 /*
1372 * Unbalance the elements between two intermediate nodes,
1373 * move all Btree elements from one node into another.
1374 */
1375 STATIC void
1376 xfs_da3_node_unbalance(
1377 struct xfs_da_state *state,
1378 struct xfs_da_state_blk *drop_blk,
1379 struct xfs_da_state_blk *save_blk)
1380 {
1381 struct xfs_da_intnode *drop_node;
1382 struct xfs_da_intnode *save_node;
1383 struct xfs_da_node_entry *drop_btree;
1384 struct xfs_da_node_entry *save_btree;
1385 struct xfs_da3_icnode_hdr drop_hdr;
1386 struct xfs_da3_icnode_hdr save_hdr;
1387 struct xfs_trans *tp;
1388 int sindex;
1389 int tmp;
1390 struct xfs_inode *dp = state->args->dp;
1391
1392 trace_xfs_da_node_unbalance(state->args);
1393
1394 drop_node = drop_blk->bp->b_addr;
1395 save_node = save_blk->bp->b_addr;
1396 dp->d_ops->node_hdr_from_disk(&drop_hdr, drop_node);
1397 dp->d_ops->node_hdr_from_disk(&save_hdr, save_node);
1398 drop_btree = dp->d_ops->node_tree_p(drop_node);
1399 save_btree = dp->d_ops->node_tree_p(save_node);
1400 tp = state->args->trans;
1401
1402 /*
1403 * If the dying block has lower hashvals, then move all the
1404 * elements in the remaining block up to make a hole.
1405 */
1406 if ((be32_to_cpu(drop_btree[0].hashval) <
1407 be32_to_cpu(save_btree[0].hashval)) ||
1408 (be32_to_cpu(drop_btree[drop_hdr.count - 1].hashval) <
1409 be32_to_cpu(save_btree[save_hdr.count - 1].hashval))) {
1410 /* XXX: check this - is memmove dst correct? */
1411 tmp = save_hdr.count * sizeof(xfs_da_node_entry_t);
1412 memmove(&save_btree[drop_hdr.count], &save_btree[0], tmp);
1413
1414 sindex = 0;
1415 xfs_trans_log_buf(tp, save_blk->bp,
1416 XFS_DA_LOGRANGE(save_node, &save_btree[0],
1417 (save_hdr.count + drop_hdr.count) *
1418 sizeof(xfs_da_node_entry_t)));
1419 } else {
1420 sindex = save_hdr.count;
1421 xfs_trans_log_buf(tp, save_blk->bp,
1422 XFS_DA_LOGRANGE(save_node, &save_btree[sindex],
1423 drop_hdr.count * sizeof(xfs_da_node_entry_t)));
1424 }
1425
1426 /*
1427 * Move all the B-tree elements from drop_blk to save_blk.
1428 */
1429 tmp = drop_hdr.count * (uint)sizeof(xfs_da_node_entry_t);
1430 memcpy(&save_btree[sindex], &drop_btree[0], tmp);
1431 save_hdr.count += drop_hdr.count;
1432
1433 dp->d_ops->node_hdr_to_disk(save_node, &save_hdr);
1434 xfs_trans_log_buf(tp, save_blk->bp,
1435 XFS_DA_LOGRANGE(save_node, &save_node->hdr,
1436 dp->d_ops->node_hdr_size));
1437
1438 /*
1439 * Save the last hashval in the remaining block for upward propagation.
1440 */
1441 save_blk->hashval = be32_to_cpu(save_btree[save_hdr.count - 1].hashval);
1442 }
1443
1444 /*========================================================================
1445 * Routines used for finding things in the Btree.
1446 *========================================================================*/
1447
1448 /*
1449 * Walk down the Btree looking for a particular filename, filling
1450 * in the state structure as we go.
1451 *
1452 * We will set the state structure to point to each of the elements
1453 * in each of the nodes where either the hashval is or should be.
1454 *
1455 * We support duplicate hashval's so for each entry in the current
1456 * node that could contain the desired hashval, descend. This is a
1457 * pruned depth-first tree search.
1458 */
1459 int /* error */
1460 xfs_da3_node_lookup_int(
1461 struct xfs_da_state *state,
1462 int *result)
1463 {
1464 struct xfs_da_state_blk *blk;
1465 struct xfs_da_blkinfo *curr;
1466 struct xfs_da_intnode *node;
1467 struct xfs_da_node_entry *btree;
1468 struct xfs_da3_icnode_hdr nodehdr;
1469 struct xfs_da_args *args;
1470 xfs_dablk_t blkno;
1471 xfs_dahash_t hashval;
1472 xfs_dahash_t btreehashval;
1473 int probe;
1474 int span;
1475 int max;
1476 int error;
1477 int retval;
1478 unsigned int expected_level = 0;
1479 uint16_t magic;
1480 struct xfs_inode *dp = state->args->dp;
1481
1482 args = state->args;
1483
1484 /*
1485 * Descend thru the B-tree searching each level for the right
1486 * node to use, until the right hashval is found.
1487 */
1488 blkno = args->geo->leafblk;
1489 for (blk = &state->path.blk[0], state->path.active = 1;
1490 state->path.active <= XFS_DA_NODE_MAXDEPTH;
1491 blk++, state->path.active++) {
1492 /*
1493 * Read the next node down in the tree.
1494 */
1495 blk->blkno = blkno;
1496 error = xfs_da3_node_read(args->trans, args->dp, blkno,
1497 -1, &blk->bp, args->whichfork);
1498 if (error) {
1499 blk->blkno = 0;
1500 state->path.active--;
1501 return error;
1502 }
1503 curr = blk->bp->b_addr;
1504 magic = be16_to_cpu(curr->magic);
1505
1506 if (magic == XFS_ATTR_LEAF_MAGIC ||
1507 magic == XFS_ATTR3_LEAF_MAGIC) {
1508 blk->magic = XFS_ATTR_LEAF_MAGIC;
1509 blk->hashval = xfs_attr_leaf_lasthash(blk->bp, NULL);
1510 break;
1511 }
1512
1513 if (magic == XFS_DIR2_LEAFN_MAGIC ||
1514 magic == XFS_DIR3_LEAFN_MAGIC) {
1515 blk->magic = XFS_DIR2_LEAFN_MAGIC;
1516 blk->hashval = xfs_dir2_leaf_lasthash(args->dp,
1517 blk->bp, NULL);
1518 break;
1519 }
1520
1521 if (magic != XFS_DA_NODE_MAGIC && magic != XFS_DA3_NODE_MAGIC)
1522 return -EFSCORRUPTED;
1523
1524 blk->magic = XFS_DA_NODE_MAGIC;
1525
1526 /*
1527 * Search an intermediate node for a match.
1528 */
1529 node = blk->bp->b_addr;
1530 dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1531 btree = dp->d_ops->node_tree_p(node);
1532
1533 /* Tree taller than we can handle; bail out! */
1534 if (nodehdr.level >= XFS_DA_NODE_MAXDEPTH)
1535 return -EFSCORRUPTED;
1536
1537 /* Check the level from the root. */
1538 if (blkno == args->geo->leafblk)
1539 expected_level = nodehdr.level - 1;
1540 else if (expected_level != nodehdr.level)
1541 return -EFSCORRUPTED;
1542 else
1543 expected_level--;
1544
1545 max = nodehdr.count;
1546 blk->hashval = be32_to_cpu(btree[max - 1].hashval);
1547
1548 /*
1549 * Binary search. (note: small blocks will skip loop)
1550 */
1551 probe = span = max / 2;
1552 hashval = args->hashval;
1553 while (span > 4) {
1554 span /= 2;
1555 btreehashval = be32_to_cpu(btree[probe].hashval);
1556 if (btreehashval < hashval)
1557 probe += span;
1558 else if (btreehashval > hashval)
1559 probe -= span;
1560 else
1561 break;
1562 }
1563 ASSERT((probe >= 0) && (probe < max));
1564 ASSERT((span <= 4) ||
1565 (be32_to_cpu(btree[probe].hashval) == hashval));
1566
1567 /*
1568 * Since we may have duplicate hashval's, find the first
1569 * matching hashval in the node.
1570 */
1571 while (probe > 0 &&
1572 be32_to_cpu(btree[probe].hashval) >= hashval) {
1573 probe--;
1574 }
1575 while (probe < max &&
1576 be32_to_cpu(btree[probe].hashval) < hashval) {
1577 probe++;
1578 }
1579
1580 /*
1581 * Pick the right block to descend on.
1582 */
1583 if (probe == max) {
1584 blk->index = max - 1;
1585 blkno = be32_to_cpu(btree[max - 1].before);
1586 } else {
1587 blk->index = probe;
1588 blkno = be32_to_cpu(btree[probe].before);
1589 }
1590
1591 /* We can't point back to the root. */
1592 if (blkno == args->geo->leafblk)
1593 return -EFSCORRUPTED;
1594 }
1595
1596 if (expected_level != 0)
1597 return -EFSCORRUPTED;
1598
1599 /*
1600 * A leaf block that ends in the hashval that we are interested in
1601 * (final hashval == search hashval) means that the next block may
1602 * contain more entries with the same hashval, shift upward to the
1603 * next leaf and keep searching.
1604 */
1605 for (;;) {
1606 if (blk->magic == XFS_DIR2_LEAFN_MAGIC) {
1607 retval = xfs_dir2_leafn_lookup_int(blk->bp, args,
1608 &blk->index, state);
1609 } else if (blk->magic == XFS_ATTR_LEAF_MAGIC) {
1610 retval = xfs_attr3_leaf_lookup_int(blk->bp, args);
1611 blk->index = args->index;
1612 args->blkno = blk->blkno;
1613 } else {
1614 ASSERT(0);
1615 return -EFSCORRUPTED;
1616 }
1617 if (((retval == -ENOENT) || (retval == -ENOATTR)) &&
1618 (blk->hashval == args->hashval)) {
1619 error = xfs_da3_path_shift(state, &state->path, 1, 1,
1620 &retval);
1621 if (error)
1622 return error;
1623 if (retval == 0) {
1624 continue;
1625 } else if (blk->magic == XFS_ATTR_LEAF_MAGIC) {
1626 /* path_shift() gives ENOENT */
1627 retval = -ENOATTR;
1628 }
1629 }
1630 break;
1631 }
1632 *result = retval;
1633 return 0;
1634 }
1635
1636 /*========================================================================
1637 * Utility routines.
1638 *========================================================================*/
1639
1640 /*
1641 * Compare two intermediate nodes for "order".
1642 */
1643 STATIC int
1644 xfs_da3_node_order(
1645 struct xfs_inode *dp,
1646 struct xfs_buf *node1_bp,
1647 struct xfs_buf *node2_bp)
1648 {
1649 struct xfs_da_intnode *node1;
1650 struct xfs_da_intnode *node2;
1651 struct xfs_da_node_entry *btree1;
1652 struct xfs_da_node_entry *btree2;
1653 struct xfs_da3_icnode_hdr node1hdr;
1654 struct xfs_da3_icnode_hdr node2hdr;
1655
1656 node1 = node1_bp->b_addr;
1657 node2 = node2_bp->b_addr;
1658 dp->d_ops->node_hdr_from_disk(&node1hdr, node1);
1659 dp->d_ops->node_hdr_from_disk(&node2hdr, node2);
1660 btree1 = dp->d_ops->node_tree_p(node1);
1661 btree2 = dp->d_ops->node_tree_p(node2);
1662
1663 if (node1hdr.count > 0 && node2hdr.count > 0 &&
1664 ((be32_to_cpu(btree2[0].hashval) < be32_to_cpu(btree1[0].hashval)) ||
1665 (be32_to_cpu(btree2[node2hdr.count - 1].hashval) <
1666 be32_to_cpu(btree1[node1hdr.count - 1].hashval)))) {
1667 return 1;
1668 }
1669 return 0;
1670 }
1671
1672 /*
1673 * Link a new block into a doubly linked list of blocks (of whatever type).
1674 */
1675 int /* error */
1676 xfs_da3_blk_link(
1677 struct xfs_da_state *state,
1678 struct xfs_da_state_blk *old_blk,
1679 struct xfs_da_state_blk *new_blk)
1680 {
1681 struct xfs_da_blkinfo *old_info;
1682 struct xfs_da_blkinfo *new_info;
1683 struct xfs_da_blkinfo *tmp_info;
1684 struct xfs_da_args *args;
1685 struct xfs_buf *bp;
1686 int before = 0;
1687 int error;
1688 struct xfs_inode *dp = state->args->dp;
1689
1690 /*
1691 * Set up environment.
1692 */
1693 args = state->args;
1694 ASSERT(args != NULL);
1695 old_info = old_blk->bp->b_addr;
1696 new_info = new_blk->bp->b_addr;
1697 ASSERT(old_blk->magic == XFS_DA_NODE_MAGIC ||
1698 old_blk->magic == XFS_DIR2_LEAFN_MAGIC ||
1699 old_blk->magic == XFS_ATTR_LEAF_MAGIC);
1700
1701 switch (old_blk->magic) {
1702 case XFS_ATTR_LEAF_MAGIC:
1703 before = xfs_attr_leaf_order(old_blk->bp, new_blk->bp);
1704 break;
1705 case XFS_DIR2_LEAFN_MAGIC:
1706 before = xfs_dir2_leafn_order(dp, old_blk->bp, new_blk->bp);
1707 break;
1708 case XFS_DA_NODE_MAGIC:
1709 before = xfs_da3_node_order(dp, old_blk->bp, new_blk->bp);
1710 break;
1711 }
1712
1713 /*
1714 * Link blocks in appropriate order.
1715 */
1716 if (before) {
1717 /*
1718 * Link new block in before existing block.
1719 */
1720 trace_xfs_da_link_before(args);
1721 new_info->forw = cpu_to_be32(old_blk->blkno);
1722 new_info->back = old_info->back;
1723 if (old_info->back) {
1724 error = xfs_da3_node_read(args->trans, dp,
1725 be32_to_cpu(old_info->back),
1726 -1, &bp, args->whichfork);
1727 if (error)
1728 return error;
1729 ASSERT(bp != NULL);
1730 tmp_info = bp->b_addr;
1731 ASSERT(tmp_info->magic == old_info->magic);
1732 ASSERT(be32_to_cpu(tmp_info->forw) == old_blk->blkno);
1733 tmp_info->forw = cpu_to_be32(new_blk->blkno);
1734 xfs_trans_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1);
1735 }
1736 old_info->back = cpu_to_be32(new_blk->blkno);
1737 } else {
1738 /*
1739 * Link new block in after existing block.
1740 */
1741 trace_xfs_da_link_after(args);
1742 new_info->forw = old_info->forw;
1743 new_info->back = cpu_to_be32(old_blk->blkno);
1744 if (old_info->forw) {
1745 error = xfs_da3_node_read(args->trans, dp,
1746 be32_to_cpu(old_info->forw),
1747 -1, &bp, args->whichfork);
1748 if (error)
1749 return error;
1750 ASSERT(bp != NULL);
1751 tmp_info = bp->b_addr;
1752 ASSERT(tmp_info->magic == old_info->magic);
1753 ASSERT(be32_to_cpu(tmp_info->back) == old_blk->blkno);
1754 tmp_info->back = cpu_to_be32(new_blk->blkno);
1755 xfs_trans_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1);
1756 }
1757 old_info->forw = cpu_to_be32(new_blk->blkno);
1758 }
1759
1760 xfs_trans_log_buf(args->trans, old_blk->bp, 0, sizeof(*tmp_info) - 1);
1761 xfs_trans_log_buf(args->trans, new_blk->bp, 0, sizeof(*tmp_info) - 1);
1762 return 0;
1763 }
1764
1765 /*
1766 * Unlink a block from a doubly linked list of blocks.
1767 */
1768 STATIC int /* error */
1769 xfs_da3_blk_unlink(
1770 struct xfs_da_state *state,
1771 struct xfs_da_state_blk *drop_blk,
1772 struct xfs_da_state_blk *save_blk)
1773 {
1774 struct xfs_da_blkinfo *drop_info;
1775 struct xfs_da_blkinfo *save_info;
1776 struct xfs_da_blkinfo *tmp_info;
1777 struct xfs_da_args *args;
1778 struct xfs_buf *bp;
1779 int error;
1780
1781 /*
1782 * Set up environment.
1783 */
1784 args = state->args;
1785 ASSERT(args != NULL);
1786 save_info = save_blk->bp->b_addr;
1787 drop_info = drop_blk->bp->b_addr;
1788 ASSERT(save_blk->magic == XFS_DA_NODE_MAGIC ||
1789 save_blk->magic == XFS_DIR2_LEAFN_MAGIC ||
1790 save_blk->magic == XFS_ATTR_LEAF_MAGIC);
1791 ASSERT(save_blk->magic == drop_blk->magic);
1792 ASSERT((be32_to_cpu(save_info->forw) == drop_blk->blkno) ||
1793 (be32_to_cpu(save_info->back) == drop_blk->blkno));
1794 ASSERT((be32_to_cpu(drop_info->forw) == save_blk->blkno) ||
1795 (be32_to_cpu(drop_info->back) == save_blk->blkno));
1796
1797 /*
1798 * Unlink the leaf block from the doubly linked chain of leaves.
1799 */
1800 if (be32_to_cpu(save_info->back) == drop_blk->blkno) {
1801 trace_xfs_da_unlink_back(args);
1802 save_info->back = drop_info->back;
1803 if (drop_info->back) {
1804 error = xfs_da3_node_read(args->trans, args->dp,
1805 be32_to_cpu(drop_info->back),
1806 -1, &bp, args->whichfork);
1807 if (error)
1808 return error;
1809 ASSERT(bp != NULL);
1810 tmp_info = bp->b_addr;
1811 ASSERT(tmp_info->magic == save_info->magic);
1812 ASSERT(be32_to_cpu(tmp_info->forw) == drop_blk->blkno);
1813 tmp_info->forw = cpu_to_be32(save_blk->blkno);
1814 xfs_trans_log_buf(args->trans, bp, 0,
1815 sizeof(*tmp_info) - 1);
1816 }
1817 } else {
1818 trace_xfs_da_unlink_forward(args);
1819 save_info->forw = drop_info->forw;
1820 if (drop_info->forw) {
1821 error = xfs_da3_node_read(args->trans, args->dp,
1822 be32_to_cpu(drop_info->forw),
1823 -1, &bp, args->whichfork);
1824 if (error)
1825 return error;
1826 ASSERT(bp != NULL);
1827 tmp_info = bp->b_addr;
1828 ASSERT(tmp_info->magic == save_info->magic);
1829 ASSERT(be32_to_cpu(tmp_info->back) == drop_blk->blkno);
1830 tmp_info->back = cpu_to_be32(save_blk->blkno);
1831 xfs_trans_log_buf(args->trans, bp, 0,
1832 sizeof(*tmp_info) - 1);
1833 }
1834 }
1835
1836 xfs_trans_log_buf(args->trans, save_blk->bp, 0, sizeof(*save_info) - 1);
1837 return 0;
1838 }
1839
1840 /*
1841 * Move a path "forward" or "!forward" one block at the current level.
1842 *
1843 * This routine will adjust a "path" to point to the next block
1844 * "forward" (higher hashvalues) or "!forward" (lower hashvals) in the
1845 * Btree, including updating pointers to the intermediate nodes between
1846 * the new bottom and the root.
1847 */
1848 int /* error */
1849 xfs_da3_path_shift(
1850 struct xfs_da_state *state,
1851 struct xfs_da_state_path *path,
1852 int forward,
1853 int release,
1854 int *result)
1855 {
1856 struct xfs_da_state_blk *blk;
1857 struct xfs_da_blkinfo *info;
1858 struct xfs_da_intnode *node;
1859 struct xfs_da_args *args;
1860 struct xfs_da_node_entry *btree;
1861 struct xfs_da3_icnode_hdr nodehdr;
1862 struct xfs_buf *bp;
1863 xfs_dablk_t blkno = 0;
1864 int level;
1865 int error;
1866 struct xfs_inode *dp = state->args->dp;
1867
1868 trace_xfs_da_path_shift(state->args);
1869
1870 /*
1871 * Roll up the Btree looking for the first block where our
1872 * current index is not at the edge of the block. Note that
1873 * we skip the bottom layer because we want the sibling block.
1874 */
1875 args = state->args;
1876 ASSERT(args != NULL);
1877 ASSERT(path != NULL);
1878 ASSERT((path->active > 0) && (path->active < XFS_DA_NODE_MAXDEPTH));
1879 level = (path->active-1) - 1; /* skip bottom layer in path */
1880 for (blk = &path->blk[level]; level >= 0; blk--, level--) {
1881 node = blk->bp->b_addr;
1882 dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1883 btree = dp->d_ops->node_tree_p(node);
1884
1885 if (forward && (blk->index < nodehdr.count - 1)) {
1886 blk->index++;
1887 blkno = be32_to_cpu(btree[blk->index].before);
1888 break;
1889 } else if (!forward && (blk->index > 0)) {
1890 blk->index--;
1891 blkno = be32_to_cpu(btree[blk->index].before);
1892 break;
1893 }
1894 }
1895 if (level < 0) {
1896 *result = -ENOENT; /* we're out of our tree */
1897 ASSERT(args->op_flags & XFS_DA_OP_OKNOENT);
1898 return 0;
1899 }
1900
1901 /*
1902 * Roll down the edge of the subtree until we reach the
1903 * same depth we were at originally.
1904 */
1905 for (blk++, level++; level < path->active; blk++, level++) {
1906 /*
1907 * Read the next child block into a local buffer.
1908 */
1909 error = xfs_da3_node_read(args->trans, dp, blkno, -1, &bp,
1910 args->whichfork);
1911 if (error)
1912 return error;
1913
1914 /*
1915 * Release the old block (if it's dirty, the trans doesn't
1916 * actually let go) and swap the local buffer into the path
1917 * structure. This ensures failure of the above read doesn't set
1918 * a NULL buffer in an active slot in the path.
1919 */
1920 if (release)
1921 xfs_trans_brelse(args->trans, blk->bp);
1922 blk->blkno = blkno;
1923 blk->bp = bp;
1924
1925 info = blk->bp->b_addr;
1926 ASSERT(info->magic == cpu_to_be16(XFS_DA_NODE_MAGIC) ||
1927 info->magic == cpu_to_be16(XFS_DA3_NODE_MAGIC) ||
1928 info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
1929 info->magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC) ||
1930 info->magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
1931 info->magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
1932
1933
1934 /*
1935 * Note: we flatten the magic number to a single type so we
1936 * don't have to compare against crc/non-crc types elsewhere.
1937 */
1938 switch (be16_to_cpu(info->magic)) {
1939 case XFS_DA_NODE_MAGIC:
1940 case XFS_DA3_NODE_MAGIC:
1941 blk->magic = XFS_DA_NODE_MAGIC;
1942 node = (xfs_da_intnode_t *)info;
1943 dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1944 btree = dp->d_ops->node_tree_p(node);
1945 blk->hashval = be32_to_cpu(btree[nodehdr.count - 1].hashval);
1946 if (forward)
1947 blk->index = 0;
1948 else
1949 blk->index = nodehdr.count - 1;
1950 blkno = be32_to_cpu(btree[blk->index].before);
1951 break;
1952 case XFS_ATTR_LEAF_MAGIC:
1953 case XFS_ATTR3_LEAF_MAGIC:
1954 blk->magic = XFS_ATTR_LEAF_MAGIC;
1955 ASSERT(level == path->active-1);
1956 blk->index = 0;
1957 blk->hashval = xfs_attr_leaf_lasthash(blk->bp, NULL);
1958 break;
1959 case XFS_DIR2_LEAFN_MAGIC:
1960 case XFS_DIR3_LEAFN_MAGIC:
1961 blk->magic = XFS_DIR2_LEAFN_MAGIC;
1962 ASSERT(level == path->active-1);
1963 blk->index = 0;
1964 blk->hashval = xfs_dir2_leaf_lasthash(args->dp,
1965 blk->bp, NULL);
1966 break;
1967 default:
1968 ASSERT(0);
1969 break;
1970 }
1971 }
1972 *result = 0;
1973 return 0;
1974 }
1975
1976
1977 /*========================================================================
1978 * Utility routines.
1979 *========================================================================*/
1980
1981 /*
1982 * Implement a simple hash on a character string.
1983 * Rotate the hash value by 7 bits, then XOR each character in.
1984 * This is implemented with some source-level loop unrolling.
1985 */
1986 xfs_dahash_t
1987 xfs_da_hashname(const uint8_t *name, int namelen)
1988 {
1989 xfs_dahash_t hash;
1990
1991 /*
1992 * Do four characters at a time as long as we can.
1993 */
1994 for (hash = 0; namelen >= 4; namelen -= 4, name += 4)
1995 hash = (name[0] << 21) ^ (name[1] << 14) ^ (name[2] << 7) ^
1996 (name[3] << 0) ^ rol32(hash, 7 * 4);
1997
1998 /*
1999 * Now do the rest of the characters.
2000 */
2001 switch (namelen) {
2002 case 3:
2003 return (name[0] << 14) ^ (name[1] << 7) ^ (name[2] << 0) ^
2004 rol32(hash, 7 * 3);
2005 case 2:
2006 return (name[0] << 7) ^ (name[1] << 0) ^ rol32(hash, 7 * 2);
2007 case 1:
2008 return (name[0] << 0) ^ rol32(hash, 7 * 1);
2009 default: /* case 0: */
2010 return hash;
2011 }
2012 }
2013
2014 enum xfs_dacmp
2015 xfs_da_compname(
2016 struct xfs_da_args *args,
2017 const unsigned char *name,
2018 int len)
2019 {
2020 return (args->namelen == len && memcmp(args->name, name, len) == 0) ?
2021 XFS_CMP_EXACT : XFS_CMP_DIFFERENT;
2022 }
2023
2024 static xfs_dahash_t
2025 xfs_default_hashname(
2026 struct xfs_name *name)
2027 {
2028 return xfs_da_hashname(name->name, name->len);
2029 }
2030
2031 const struct xfs_nameops xfs_default_nameops = {
2032 .hashname = xfs_default_hashname,
2033 .compname = xfs_da_compname
2034 };
2035
2036 int
2037 xfs_da_grow_inode_int(
2038 struct xfs_da_args *args,
2039 xfs_fileoff_t *bno,
2040 int count)
2041 {
2042 struct xfs_trans *tp = args->trans;
2043 struct xfs_inode *dp = args->dp;
2044 int w = args->whichfork;
2045 xfs_rfsblock_t nblks = dp->i_d.di_nblocks;
2046 struct xfs_bmbt_irec map, *mapp;
2047 int nmap, error, got, i, mapi;
2048
2049 /*
2050 * Find a spot in the file space to put the new block.
2051 */
2052 error = xfs_bmap_first_unused(tp, dp, count, bno, w);
2053 if (error)
2054 return error;
2055
2056 /*
2057 * Try mapping it in one filesystem block.
2058 */
2059 nmap = 1;
2060 error = xfs_bmapi_write(tp, dp, *bno, count,
2061 xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA|XFS_BMAPI_CONTIG,
2062 args->total, &map, &nmap);
2063 if (error)
2064 return error;
2065
2066 ASSERT(nmap <= 1);
2067 if (nmap == 1) {
2068 mapp = &map;
2069 mapi = 1;
2070 } else if (nmap == 0 && count > 1) {
2071 xfs_fileoff_t b;
2072 int c;
2073
2074 /*
2075 * If we didn't get it and the block might work if fragmented,
2076 * try without the CONTIG flag. Loop until we get it all.
2077 */
2078 mapp = kmem_alloc(sizeof(*mapp) * count, KM_SLEEP);
2079 for (b = *bno, mapi = 0; b < *bno + count; ) {
2080 nmap = min(XFS_BMAP_MAX_NMAP, count);
2081 c = (int)(*bno + count - b);
2082 error = xfs_bmapi_write(tp, dp, b, c,
2083 xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA,
2084 args->total, &mapp[mapi], &nmap);
2085 if (error)
2086 goto out_free_map;
2087 if (nmap < 1)
2088 break;
2089 mapi += nmap;
2090 b = mapp[mapi - 1].br_startoff +
2091 mapp[mapi - 1].br_blockcount;
2092 }
2093 } else {
2094 mapi = 0;
2095 mapp = NULL;
2096 }
2097
2098 /*
2099 * Count the blocks we got, make sure it matches the total.
2100 */
2101 for (i = 0, got = 0; i < mapi; i++)
2102 got += mapp[i].br_blockcount;
2103 if (got != count || mapp[0].br_startoff != *bno ||
2104 mapp[mapi - 1].br_startoff + mapp[mapi - 1].br_blockcount !=
2105 *bno + count) {
2106 error = -ENOSPC;
2107 goto out_free_map;
2108 }
2109
2110 /* account for newly allocated blocks in reserved blocks total */
2111 args->total -= dp->i_d.di_nblocks - nblks;
2112
2113 out_free_map:
2114 if (mapp != &map)
2115 kmem_free(mapp);
2116 return error;
2117 }
2118
2119 /*
2120 * Add a block to the btree ahead of the file.
2121 * Return the new block number to the caller.
2122 */
2123 int
2124 xfs_da_grow_inode(
2125 struct xfs_da_args *args,
2126 xfs_dablk_t *new_blkno)
2127 {
2128 xfs_fileoff_t bno;
2129 int error;
2130
2131 trace_xfs_da_grow_inode(args);
2132
2133 bno = args->geo->leafblk;
2134 error = xfs_da_grow_inode_int(args, &bno, args->geo->fsbcount);
2135 if (!error)
2136 *new_blkno = (xfs_dablk_t)bno;
2137 return error;
2138 }
2139
2140 /*
2141 * Ick. We need to always be able to remove a btree block, even
2142 * if there's no space reservation because the filesystem is full.
2143 * This is called if xfs_bunmapi on a btree block fails due to ENOSPC.
2144 * It swaps the target block with the last block in the file. The
2145 * last block in the file can always be removed since it can't cause
2146 * a bmap btree split to do that.
2147 */
2148 STATIC int
2149 xfs_da3_swap_lastblock(
2150 struct xfs_da_args *args,
2151 xfs_dablk_t *dead_blknop,
2152 struct xfs_buf **dead_bufp)
2153 {
2154 struct xfs_da_blkinfo *dead_info;
2155 struct xfs_da_blkinfo *sib_info;
2156 struct xfs_da_intnode *par_node;
2157 struct xfs_da_intnode *dead_node;
2158 struct xfs_dir2_leaf *dead_leaf2;
2159 struct xfs_da_node_entry *btree;
2160 struct xfs_da3_icnode_hdr par_hdr;
2161 struct xfs_inode *dp;
2162 struct xfs_trans *tp;
2163 struct xfs_mount *mp;
2164 struct xfs_buf *dead_buf;
2165 struct xfs_buf *last_buf;
2166 struct xfs_buf *sib_buf;
2167 struct xfs_buf *par_buf;
2168 xfs_dahash_t dead_hash;
2169 xfs_fileoff_t lastoff;
2170 xfs_dablk_t dead_blkno;
2171 xfs_dablk_t last_blkno;
2172 xfs_dablk_t sib_blkno;
2173 xfs_dablk_t par_blkno;
2174 int error;
2175 int w;
2176 int entno;
2177 int level;
2178 int dead_level;
2179
2180 trace_xfs_da_swap_lastblock(args);
2181
2182 dead_buf = *dead_bufp;
2183 dead_blkno = *dead_blknop;
2184 tp = args->trans;
2185 dp = args->dp;
2186 w = args->whichfork;
2187 ASSERT(w == XFS_DATA_FORK);
2188 mp = dp->i_mount;
2189 lastoff = args->geo->freeblk;
2190 error = xfs_bmap_last_before(tp, dp, &lastoff, w);
2191 if (error)
2192 return error;
2193 if (unlikely(lastoff == 0)) {
2194 XFS_ERROR_REPORT("xfs_da_swap_lastblock(1)", XFS_ERRLEVEL_LOW,
2195 mp);
2196 return -EFSCORRUPTED;
2197 }
2198 /*
2199 * Read the last block in the btree space.
2200 */
2201 last_blkno = (xfs_dablk_t)lastoff - args->geo->fsbcount;
2202 error = xfs_da3_node_read(tp, dp, last_blkno, -1, &last_buf, w);
2203 if (error)
2204 return error;
2205 /*
2206 * Copy the last block into the dead buffer and log it.
2207 */
2208 memcpy(dead_buf->b_addr, last_buf->b_addr, args->geo->blksize);
2209 xfs_trans_log_buf(tp, dead_buf, 0, args->geo->blksize - 1);
2210 dead_info = dead_buf->b_addr;
2211 /*
2212 * Get values from the moved block.
2213 */
2214 if (dead_info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
2215 dead_info->magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) {
2216 struct xfs_dir3_icleaf_hdr leafhdr;
2217 struct xfs_dir2_leaf_entry *ents;
2218
2219 dead_leaf2 = (xfs_dir2_leaf_t *)dead_info;
2220 dp->d_ops->leaf_hdr_from_disk(&leafhdr, dead_leaf2);
2221 ents = dp->d_ops->leaf_ents_p(dead_leaf2);
2222 dead_level = 0;
2223 dead_hash = be32_to_cpu(ents[leafhdr.count - 1].hashval);
2224 } else {
2225 struct xfs_da3_icnode_hdr deadhdr;
2226
2227 dead_node = (xfs_da_intnode_t *)dead_info;
2228 dp->d_ops->node_hdr_from_disk(&deadhdr, dead_node);
2229 btree = dp->d_ops->node_tree_p(dead_node);
2230 dead_level = deadhdr.level;
2231 dead_hash = be32_to_cpu(btree[deadhdr.count - 1].hashval);
2232 }
2233 sib_buf = par_buf = NULL;
2234 /*
2235 * If the moved block has a left sibling, fix up the pointers.
2236 */
2237 if ((sib_blkno = be32_to_cpu(dead_info->back))) {
2238 error = xfs_da3_node_read(tp, dp, sib_blkno, -1, &sib_buf, w);
2239 if (error)
2240 goto done;
2241 sib_info = sib_buf->b_addr;
2242 if (unlikely(
2243 be32_to_cpu(sib_info->forw) != last_blkno ||
2244 sib_info->magic != dead_info->magic)) {
2245 XFS_ERROR_REPORT("xfs_da_swap_lastblock(2)",
2246 XFS_ERRLEVEL_LOW, mp);
2247 error = -EFSCORRUPTED;
2248 goto done;
2249 }
2250 sib_info->forw = cpu_to_be32(dead_blkno);
2251 xfs_trans_log_buf(tp, sib_buf,
2252 XFS_DA_LOGRANGE(sib_info, &sib_info->forw,
2253 sizeof(sib_info->forw)));
2254 sib_buf = NULL;
2255 }
2256 /*
2257 * If the moved block has a right sibling, fix up the pointers.
2258 */
2259 if ((sib_blkno = be32_to_cpu(dead_info->forw))) {
2260 error = xfs_da3_node_read(tp, dp, sib_blkno, -1, &sib_buf, w);
2261 if (error)
2262 goto done;
2263 sib_info = sib_buf->b_addr;
2264 if (unlikely(
2265 be32_to_cpu(sib_info->back) != last_blkno ||
2266 sib_info->magic != dead_info->magic)) {
2267 XFS_ERROR_REPORT("xfs_da_swap_lastblock(3)",
2268 XFS_ERRLEVEL_LOW, mp);
2269 error = -EFSCORRUPTED;
2270 goto done;
2271 }
2272 sib_info->back = cpu_to_be32(dead_blkno);
2273 xfs_trans_log_buf(tp, sib_buf,
2274 XFS_DA_LOGRANGE(sib_info, &sib_info->back,
2275 sizeof(sib_info->back)));
2276 sib_buf = NULL;
2277 }
2278 par_blkno = args->geo->leafblk;
2279 level = -1;
2280 /*
2281 * Walk down the tree looking for the parent of the moved block.
2282 */
2283 for (;;) {
2284 error = xfs_da3_node_read(tp, dp, par_blkno, -1, &par_buf, w);
2285 if (error)
2286 goto done;
2287 par_node = par_buf->b_addr;
2288 dp->d_ops->node_hdr_from_disk(&par_hdr, par_node);
2289 if (level >= 0 && level != par_hdr.level + 1) {
2290 XFS_ERROR_REPORT("xfs_da_swap_lastblock(4)",
2291 XFS_ERRLEVEL_LOW, mp);
2292 error = -EFSCORRUPTED;
2293 goto done;
2294 }
2295 level = par_hdr.level;
2296 btree = dp->d_ops->node_tree_p(par_node);
2297 for (entno = 0;
2298 entno < par_hdr.count &&
2299 be32_to_cpu(btree[entno].hashval) < dead_hash;
2300 entno++)
2301 continue;
2302 if (entno == par_hdr.count) {
2303 XFS_ERROR_REPORT("xfs_da_swap_lastblock(5)",
2304 XFS_ERRLEVEL_LOW, mp);
2305 error = -EFSCORRUPTED;
2306 goto done;
2307 }
2308 par_blkno = be32_to_cpu(btree[entno].before);
2309 if (level == dead_level + 1)
2310 break;
2311 xfs_trans_brelse(tp, par_buf);
2312 par_buf = NULL;
2313 }
2314 /*
2315 * We're in the right parent block.
2316 * Look for the right entry.
2317 */
2318 for (;;) {
2319 for (;
2320 entno < par_hdr.count &&
2321 be32_to_cpu(btree[entno].before) != last_blkno;
2322 entno++)
2323 continue;
2324 if (entno < par_hdr.count)
2325 break;
2326 par_blkno = par_hdr.forw;
2327 xfs_trans_brelse(tp, par_buf);
2328 par_buf = NULL;
2329 if (unlikely(par_blkno == 0)) {
2330 XFS_ERROR_REPORT("xfs_da_swap_lastblock(6)",
2331 XFS_ERRLEVEL_LOW, mp);
2332 error = -EFSCORRUPTED;
2333 goto done;
2334 }
2335 error = xfs_da3_node_read(tp, dp, par_blkno, -1, &par_buf, w);
2336 if (error)
2337 goto done;
2338 par_node = par_buf->b_addr;
2339 dp->d_ops->node_hdr_from_disk(&par_hdr, par_node);
2340 if (par_hdr.level != level) {
2341 XFS_ERROR_REPORT("xfs_da_swap_lastblock(7)",
2342 XFS_ERRLEVEL_LOW, mp);
2343 error = -EFSCORRUPTED;
2344 goto done;
2345 }
2346 btree = dp->d_ops->node_tree_p(par_node);
2347 entno = 0;
2348 }
2349 /*
2350 * Update the parent entry pointing to the moved block.
2351 */
2352 btree[entno].before = cpu_to_be32(dead_blkno);
2353 xfs_trans_log_buf(tp, par_buf,
2354 XFS_DA_LOGRANGE(par_node, &btree[entno].before,
2355 sizeof(btree[entno].before)));
2356 *dead_blknop = last_blkno;
2357 *dead_bufp = last_buf;
2358 return 0;
2359 done:
2360 if (par_buf)
2361 xfs_trans_brelse(tp, par_buf);
2362 if (sib_buf)
2363 xfs_trans_brelse(tp, sib_buf);
2364 xfs_trans_brelse(tp, last_buf);
2365 return error;
2366 }
2367
2368 /*
2369 * Remove a btree block from a directory or attribute.
2370 */
2371 int
2372 xfs_da_shrink_inode(
2373 struct xfs_da_args *args,
2374 xfs_dablk_t dead_blkno,
2375 struct xfs_buf *dead_buf)
2376 {
2377 struct xfs_inode *dp;
2378 int done, error, w, count;
2379 struct xfs_trans *tp;
2380
2381 trace_xfs_da_shrink_inode(args);
2382
2383 dp = args->dp;
2384 w = args->whichfork;
2385 tp = args->trans;
2386 count = args->geo->fsbcount;
2387 for (;;) {
2388 /*
2389 * Remove extents. If we get ENOSPC for a dir we have to move
2390 * the last block to the place we want to kill.
2391 */
2392 error = xfs_bunmapi(tp, dp, dead_blkno, count,
2393 xfs_bmapi_aflag(w), 0, &done);
2394 if (error == -ENOSPC) {
2395 if (w != XFS_DATA_FORK)
2396 break;
2397 error = xfs_da3_swap_lastblock(args, &dead_blkno,
2398 &dead_buf);
2399 if (error)
2400 break;
2401 } else {
2402 break;
2403 }
2404 }
2405 xfs_trans_binval(tp, dead_buf);
2406 return error;
2407 }
2408
2409 /*
2410 * See if the mapping(s) for this btree block are valid, i.e.
2411 * don't contain holes, are logically contiguous, and cover the whole range.
2412 */
2413 STATIC int
2414 xfs_da_map_covers_blocks(
2415 int nmap,
2416 xfs_bmbt_irec_t *mapp,
2417 xfs_dablk_t bno,
2418 int count)
2419 {
2420 int i;
2421 xfs_fileoff_t off;
2422
2423 for (i = 0, off = bno; i < nmap; i++) {
2424 if (mapp[i].br_startblock == HOLESTARTBLOCK ||
2425 mapp[i].br_startblock == DELAYSTARTBLOCK) {
2426 return 0;
2427 }
2428 if (off != mapp[i].br_startoff) {
2429 return 0;
2430 }
2431 off += mapp[i].br_blockcount;
2432 }
2433 return off == bno + count;
2434 }
2435
2436 /*
2437 * Convert a struct xfs_bmbt_irec to a struct xfs_buf_map.
2438 *
2439 * For the single map case, it is assumed that the caller has provided a pointer
2440 * to a valid xfs_buf_map. For the multiple map case, this function will
2441 * allocate the xfs_buf_map to hold all the maps and replace the caller's single
2442 * map pointer with the allocated map.
2443 */
2444 static int
2445 xfs_buf_map_from_irec(
2446 struct xfs_mount *mp,
2447 struct xfs_buf_map **mapp,
2448 int *nmaps,
2449 struct xfs_bmbt_irec *irecs,
2450 int nirecs)
2451 {
2452 struct xfs_buf_map *map;
2453 int i;
2454
2455 ASSERT(*nmaps == 1);
2456 ASSERT(nirecs >= 1);
2457
2458 if (nirecs > 1) {
2459 map = kmem_zalloc(nirecs * sizeof(struct xfs_buf_map),
2460 KM_SLEEP | KM_NOFS);
2461 if (!map)
2462 return -ENOMEM;
2463 *mapp = map;
2464 }
2465
2466 *nmaps = nirecs;
2467 map = *mapp;
2468 for (i = 0; i < *nmaps; i++) {
2469 ASSERT(irecs[i].br_startblock != DELAYSTARTBLOCK &&
2470 irecs[i].br_startblock != HOLESTARTBLOCK);
2471 map[i].bm_bn = XFS_FSB_TO_DADDR(mp, irecs[i].br_startblock);
2472 map[i].bm_len = XFS_FSB_TO_BB(mp, irecs[i].br_blockcount);
2473 }
2474 return 0;
2475 }
2476
2477 /*
2478 * Map the block we are given ready for reading. There are three possible return
2479 * values:
2480 * -1 - will be returned if we land in a hole and mappedbno == -2 so the
2481 * caller knows not to execute a subsequent read.
2482 * 0 - if we mapped the block successfully
2483 * >0 - positive error number if there was an error.
2484 */
2485 static int
2486 xfs_dabuf_map(
2487 struct xfs_inode *dp,
2488 xfs_dablk_t bno,
2489 xfs_daddr_t mappedbno,
2490 int whichfork,
2491 struct xfs_buf_map **map,
2492 int *nmaps)
2493 {
2494 struct xfs_mount *mp = dp->i_mount;
2495 int nfsb;
2496 int error = 0;
2497 struct xfs_bmbt_irec irec;
2498 struct xfs_bmbt_irec *irecs = &irec;
2499 int nirecs;
2500
2501 ASSERT(map && *map);
2502 ASSERT(*nmaps == 1);
2503
2504 if (whichfork == XFS_DATA_FORK)
2505 nfsb = mp->m_dir_geo->fsbcount;
2506 else
2507 nfsb = mp->m_attr_geo->fsbcount;
2508
2509 /*
2510 * Caller doesn't have a mapping. -2 means don't complain
2511 * if we land in a hole.
2512 */
2513 if (mappedbno == -1 || mappedbno == -2) {
2514 /*
2515 * Optimize the one-block case.
2516 */
2517 if (nfsb != 1)
2518 irecs = kmem_zalloc(sizeof(irec) * nfsb,
2519 KM_SLEEP | KM_NOFS);
2520
2521 nirecs = nfsb;
2522 error = xfs_bmapi_read(dp, (xfs_fileoff_t)bno, nfsb, irecs,
2523 &nirecs, xfs_bmapi_aflag(whichfork));
2524 if (error)
2525 goto out;
2526 } else {
2527 irecs->br_startblock = XFS_DADDR_TO_FSB(mp, mappedbno);
2528 irecs->br_startoff = (xfs_fileoff_t)bno;
2529 irecs->br_blockcount = nfsb;
2530 irecs->br_state = 0;
2531 nirecs = 1;
2532 }
2533
2534 if (!xfs_da_map_covers_blocks(nirecs, irecs, bno, nfsb)) {
2535 error = mappedbno == -2 ? -1 : -EFSCORRUPTED;
2536 if (unlikely(error == -EFSCORRUPTED)) {
2537 if (xfs_error_level >= XFS_ERRLEVEL_LOW) {
2538 int i;
2539 xfs_alert(mp, "%s: bno %lld dir: inode %lld",
2540 __func__, (long long)bno,
2541 (long long)dp->i_ino);
2542 for (i = 0; i < *nmaps; i++) {
2543 xfs_alert(mp,
2544 "[%02d] br_startoff %lld br_startblock %lld br_blockcount %lld br_state %d",
2545 i,
2546 (long long)irecs[i].br_startoff,
2547 (long long)irecs[i].br_startblock,
2548 (long long)irecs[i].br_blockcount,
2549 irecs[i].br_state);
2550 }
2551 }
2552 XFS_ERROR_REPORT("xfs_da_do_buf(1)",
2553 XFS_ERRLEVEL_LOW, mp);
2554 }
2555 goto out;
2556 }
2557 error = xfs_buf_map_from_irec(mp, map, nmaps, irecs, nirecs);
2558 out:
2559 if (irecs != &irec)
2560 kmem_free(irecs);
2561 return error;
2562 }
2563
2564 /*
2565 * Get a buffer for the dir/attr block.
2566 */
2567 int
2568 xfs_da_get_buf(
2569 struct xfs_trans *trans,
2570 struct xfs_inode *dp,
2571 xfs_dablk_t bno,
2572 xfs_daddr_t mappedbno,
2573 struct xfs_buf **bpp,
2574 int whichfork)
2575 {
2576 struct xfs_buf *bp;
2577 struct xfs_buf_map map;
2578 struct xfs_buf_map *mapp;
2579 int nmap;
2580 int error;
2581
2582 *bpp = NULL;
2583 mapp = &map;
2584 nmap = 1;
2585 error = xfs_dabuf_map(dp, bno, mappedbno, whichfork,
2586 &mapp, &nmap);
2587 if (error) {
2588 /* mapping a hole is not an error, but we don't continue */
2589 if (error == -1)
2590 error = 0;
2591 goto out_free;
2592 }
2593
2594 bp = xfs_trans_get_buf_map(trans, dp->i_mount->m_ddev_targp,
2595 mapp, nmap, 0);
2596 error = bp ? bp->b_error : -EIO;
2597 if (error) {
2598 if (bp)
2599 xfs_trans_brelse(trans, bp);
2600 goto out_free;
2601 }
2602
2603 *bpp = bp;
2604
2605 out_free:
2606 if (mapp != &map)
2607 kmem_free(mapp);
2608
2609 return error;
2610 }
2611
2612 /*
2613 * Get a buffer for the dir/attr block, fill in the contents.
2614 */
2615 int
2616 xfs_da_read_buf(
2617 struct xfs_trans *trans,
2618 struct xfs_inode *dp,
2619 xfs_dablk_t bno,
2620 xfs_daddr_t mappedbno,
2621 struct xfs_buf **bpp,
2622 int whichfork,
2623 const struct xfs_buf_ops *ops)
2624 {
2625 struct xfs_buf *bp;
2626 struct xfs_buf_map map;
2627 struct xfs_buf_map *mapp;
2628 int nmap;
2629 int error;
2630
2631 *bpp = NULL;
2632 mapp = &map;
2633 nmap = 1;
2634 error = xfs_dabuf_map(dp, bno, mappedbno, whichfork,
2635 &mapp, &nmap);
2636 if (error) {
2637 /* mapping a hole is not an error, but we don't continue */
2638 if (error == -1)
2639 error = 0;
2640 goto out_free;
2641 }
2642
2643 error = xfs_trans_read_buf_map(dp->i_mount, trans,
2644 dp->i_mount->m_ddev_targp,
2645 mapp, nmap, 0, &bp, ops);
2646 if (error)
2647 goto out_free;
2648
2649 if (whichfork == XFS_ATTR_FORK)
2650 xfs_buf_set_ref(bp, XFS_ATTR_BTREE_REF);
2651 else
2652 xfs_buf_set_ref(bp, XFS_DIR_BTREE_REF);
2653 *bpp = bp;
2654 out_free:
2655 if (mapp != &map)
2656 kmem_free(mapp);
2657
2658 return error;
2659 }
2660
2661 /*
2662 * Readahead the dir/attr block.
2663 */
2664 int
2665 xfs_da_reada_buf(
2666 struct xfs_inode *dp,
2667 xfs_dablk_t bno,
2668 xfs_daddr_t mappedbno,
2669 int whichfork,
2670 const struct xfs_buf_ops *ops)
2671 {
2672 struct xfs_buf_map map;
2673 struct xfs_buf_map *mapp;
2674 int nmap;
2675 int error;
2676
2677 mapp = &map;
2678 nmap = 1;
2679 error = xfs_dabuf_map(dp, bno, mappedbno, whichfork,
2680 &mapp, &nmap);
2681 if (error) {
2682 /* mapping a hole is not an error, but we don't continue */
2683 if (error == -1)
2684 error = 0;
2685 goto out_free;
2686 }
2687
2688 mappedbno = mapp[0].bm_bn;
2689 xfs_buf_readahead_map(dp->i_mount->m_ddev_targp, mapp, nmap, ops);
2690
2691 out_free:
2692 if (mapp != &map)
2693 kmem_free(mapp);
2694
2695 return error;
2696 }