]> git.ipfire.org Git - thirdparty/xfsprogs-dev.git/blob - libxfs/xfs_ialloc.c
xfs: trivial xfs_btree_del_cursor cleanups
[thirdparty/xfsprogs-dev.git] / libxfs / xfs_ialloc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "libxfs_priv.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_btree.h"
18 #include "xfs_ialloc.h"
19 #include "xfs_ialloc_btree.h"
20 #include "xfs_alloc.h"
21 #include "xfs_errortag.h"
22 #include "xfs_bmap.h"
23 #include "xfs_cksum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trace.h"
26 #include "xfs_rmap.h"
27
28
29 /*
30 * Allocation group level functions.
31 */
32 int
33 xfs_ialloc_cluster_alignment(
34 struct xfs_mount *mp)
35 {
36 if (xfs_sb_version_hasalign(&mp->m_sb) &&
37 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
38 return mp->m_sb.sb_inoalignmt;
39 return 1;
40 }
41
42 /*
43 * Lookup a record by ino in the btree given by cur.
44 */
45 int /* error */
46 xfs_inobt_lookup(
47 struct xfs_btree_cur *cur, /* btree cursor */
48 xfs_agino_t ino, /* starting inode of chunk */
49 xfs_lookup_t dir, /* <=, >=, == */
50 int *stat) /* success/failure */
51 {
52 cur->bc_rec.i.ir_startino = ino;
53 cur->bc_rec.i.ir_holemask = 0;
54 cur->bc_rec.i.ir_count = 0;
55 cur->bc_rec.i.ir_freecount = 0;
56 cur->bc_rec.i.ir_free = 0;
57 return xfs_btree_lookup(cur, dir, stat);
58 }
59
60 /*
61 * Update the record referred to by cur to the value given.
62 * This either works (return 0) or gets an EFSCORRUPTED error.
63 */
64 STATIC int /* error */
65 xfs_inobt_update(
66 struct xfs_btree_cur *cur, /* btree cursor */
67 xfs_inobt_rec_incore_t *irec) /* btree record */
68 {
69 union xfs_btree_rec rec;
70
71 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
72 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
73 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
74 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
75 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
76 } else {
77 /* ir_holemask/ir_count not supported on-disk */
78 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
79 }
80 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
81 return xfs_btree_update(cur, &rec);
82 }
83
84 /* Convert on-disk btree record to incore inobt record. */
85 void
86 xfs_inobt_btrec_to_irec(
87 struct xfs_mount *mp,
88 union xfs_btree_rec *rec,
89 struct xfs_inobt_rec_incore *irec)
90 {
91 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
92 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
93 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
94 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
95 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
96 } else {
97 /*
98 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
99 * values for full inode chunks.
100 */
101 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
102 irec->ir_count = XFS_INODES_PER_CHUNK;
103 irec->ir_freecount =
104 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
105 }
106 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
107 }
108
109 /*
110 * Get the data from the pointed-to record.
111 */
112 int
113 xfs_inobt_get_rec(
114 struct xfs_btree_cur *cur,
115 struct xfs_inobt_rec_incore *irec,
116 int *stat)
117 {
118 struct xfs_mount *mp = cur->bc_mp;
119 xfs_agnumber_t agno = cur->bc_private.a.agno;
120 union xfs_btree_rec *rec;
121 int error;
122 uint64_t realfree;
123
124 error = xfs_btree_get_rec(cur, &rec, stat);
125 if (error || *stat == 0)
126 return error;
127
128 xfs_inobt_btrec_to_irec(mp, rec, irec);
129
130 if (!xfs_verify_agino(mp, agno, irec->ir_startino))
131 goto out_bad_rec;
132 if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
133 irec->ir_count > XFS_INODES_PER_CHUNK)
134 goto out_bad_rec;
135 if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
136 goto out_bad_rec;
137
138 /* if there are no holes, return the first available offset */
139 if (!xfs_inobt_issparse(irec->ir_holemask))
140 realfree = irec->ir_free;
141 else
142 realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
143 if (hweight64(realfree) != irec->ir_freecount)
144 goto out_bad_rec;
145
146 return 0;
147
148 out_bad_rec:
149 xfs_warn(mp,
150 "%s Inode BTree record corruption in AG %d detected!",
151 cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", agno);
152 xfs_warn(mp,
153 "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
154 irec->ir_startino, irec->ir_count, irec->ir_freecount,
155 irec->ir_free, irec->ir_holemask);
156 return -EFSCORRUPTED;
157 }
158
159 /*
160 * Insert a single inobt record. Cursor must already point to desired location.
161 */
162 int
163 xfs_inobt_insert_rec(
164 struct xfs_btree_cur *cur,
165 uint16_t holemask,
166 uint8_t count,
167 int32_t freecount,
168 xfs_inofree_t free,
169 int *stat)
170 {
171 cur->bc_rec.i.ir_holemask = holemask;
172 cur->bc_rec.i.ir_count = count;
173 cur->bc_rec.i.ir_freecount = freecount;
174 cur->bc_rec.i.ir_free = free;
175 return xfs_btree_insert(cur, stat);
176 }
177
178 /*
179 * Insert records describing a newly allocated inode chunk into the inobt.
180 */
181 STATIC int
182 xfs_inobt_insert(
183 struct xfs_mount *mp,
184 struct xfs_trans *tp,
185 struct xfs_buf *agbp,
186 xfs_agino_t newino,
187 xfs_agino_t newlen,
188 xfs_btnum_t btnum)
189 {
190 struct xfs_btree_cur *cur;
191 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
192 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
193 xfs_agino_t thisino;
194 int i;
195 int error;
196
197 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
198
199 for (thisino = newino;
200 thisino < newino + newlen;
201 thisino += XFS_INODES_PER_CHUNK) {
202 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
203 if (error) {
204 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
205 return error;
206 }
207 ASSERT(i == 0);
208
209 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
210 XFS_INODES_PER_CHUNK,
211 XFS_INODES_PER_CHUNK,
212 XFS_INOBT_ALL_FREE, &i);
213 if (error) {
214 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
215 return error;
216 }
217 ASSERT(i == 1);
218 }
219
220 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
221
222 return 0;
223 }
224
225 /*
226 * Verify that the number of free inodes in the AGI is correct.
227 */
228 #ifdef DEBUG
229 STATIC int
230 xfs_check_agi_freecount(
231 struct xfs_btree_cur *cur,
232 struct xfs_agi *agi)
233 {
234 if (cur->bc_nlevels == 1) {
235 xfs_inobt_rec_incore_t rec;
236 int freecount = 0;
237 int error;
238 int i;
239
240 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
241 if (error)
242 return error;
243
244 do {
245 error = xfs_inobt_get_rec(cur, &rec, &i);
246 if (error)
247 return error;
248
249 if (i) {
250 freecount += rec.ir_freecount;
251 error = xfs_btree_increment(cur, 0, &i);
252 if (error)
253 return error;
254 }
255 } while (i == 1);
256
257 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
258 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
259 }
260 return 0;
261 }
262 #else
263 #define xfs_check_agi_freecount(cur, agi) 0
264 #endif
265
266 /*
267 * Initialise a new set of inodes. When called without a transaction context
268 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
269 * than logging them (which in a transaction context puts them into the AIL
270 * for writeback rather than the xfsbufd queue).
271 */
272 int
273 xfs_ialloc_inode_init(
274 struct xfs_mount *mp,
275 struct xfs_trans *tp,
276 struct list_head *buffer_list,
277 int icount,
278 xfs_agnumber_t agno,
279 xfs_agblock_t agbno,
280 xfs_agblock_t length,
281 unsigned int gen)
282 {
283 struct xfs_buf *fbuf;
284 struct xfs_dinode *free;
285 int nbufs, blks_per_cluster, inodes_per_cluster;
286 int version;
287 int i, j;
288 xfs_daddr_t d;
289 xfs_ino_t ino = 0;
290
291 /*
292 * Loop over the new block(s), filling in the inodes. For small block
293 * sizes, manipulate the inodes in buffers which are multiples of the
294 * blocks size.
295 */
296 blks_per_cluster = xfs_icluster_size_fsb(mp);
297 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
298 nbufs = length / blks_per_cluster;
299
300 /*
301 * Figure out what version number to use in the inodes we create. If
302 * the superblock version has caught up to the one that supports the new
303 * inode format, then use the new inode version. Otherwise use the old
304 * version so that old kernels will continue to be able to use the file
305 * system.
306 *
307 * For v3 inodes, we also need to write the inode number into the inode,
308 * so calculate the first inode number of the chunk here as
309 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
310 * across multiple filesystem blocks (such as a cluster) and so cannot
311 * be used in the cluster buffer loop below.
312 *
313 * Further, because we are writing the inode directly into the buffer
314 * and calculating a CRC on the entire inode, we have ot log the entire
315 * inode so that the entire range the CRC covers is present in the log.
316 * That means for v3 inode we log the entire buffer rather than just the
317 * inode cores.
318 */
319 if (xfs_sb_version_hascrc(&mp->m_sb)) {
320 version = 3;
321 ino = XFS_AGINO_TO_INO(mp, agno,
322 XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
323
324 /*
325 * log the initialisation that is about to take place as an
326 * logical operation. This means the transaction does not
327 * need to log the physical changes to the inode buffers as log
328 * recovery will know what initialisation is actually needed.
329 * Hence we only need to log the buffers as "ordered" buffers so
330 * they track in the AIL as if they were physically logged.
331 */
332 if (tp)
333 xfs_icreate_log(tp, agno, agbno, icount,
334 mp->m_sb.sb_inodesize, length, gen);
335 } else
336 version = 2;
337
338 for (j = 0; j < nbufs; j++) {
339 /*
340 * Get the block.
341 */
342 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
343 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
344 mp->m_bsize * blks_per_cluster,
345 XBF_UNMAPPED);
346 if (!fbuf)
347 return -ENOMEM;
348
349 /* Initialize the inode buffers and log them appropriately. */
350 fbuf->b_ops = &xfs_inode_buf_ops;
351 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
352 for (i = 0; i < inodes_per_cluster; i++) {
353 int ioffset = i << mp->m_sb.sb_inodelog;
354 uint isize = xfs_dinode_size(version);
355
356 free = xfs_make_iptr(mp, fbuf, i);
357 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
358 free->di_version = version;
359 free->di_gen = cpu_to_be32(gen);
360 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
361
362 if (version == 3) {
363 free->di_ino = cpu_to_be64(ino);
364 ino++;
365 uuid_copy(&free->di_uuid,
366 &mp->m_sb.sb_meta_uuid);
367 xfs_dinode_calc_crc(mp, free);
368 } else if (tp) {
369 /* just log the inode core */
370 xfs_trans_log_buf(tp, fbuf, ioffset,
371 ioffset + isize - 1);
372 }
373 }
374
375 if (tp) {
376 /*
377 * Mark the buffer as an inode allocation buffer so it
378 * sticks in AIL at the point of this allocation
379 * transaction. This ensures the they are on disk before
380 * the tail of the log can be moved past this
381 * transaction (i.e. by preventing relogging from moving
382 * it forward in the log).
383 */
384 xfs_trans_inode_alloc_buf(tp, fbuf);
385 if (version == 3) {
386 /*
387 * Mark the buffer as ordered so that they are
388 * not physically logged in the transaction but
389 * still tracked in the AIL as part of the
390 * transaction and pin the log appropriately.
391 */
392 xfs_trans_ordered_buf(tp, fbuf);
393 }
394 } else {
395 fbuf->b_flags |= XBF_DONE;
396 xfs_buf_delwri_queue(fbuf, buffer_list);
397 xfs_buf_relse(fbuf);
398 }
399 }
400 return 0;
401 }
402
403 /*
404 * Align startino and allocmask for a recently allocated sparse chunk such that
405 * they are fit for insertion (or merge) into the on-disk inode btrees.
406 *
407 * Background:
408 *
409 * When enabled, sparse inode support increases the inode alignment from cluster
410 * size to inode chunk size. This means that the minimum range between two
411 * non-adjacent inode records in the inobt is large enough for a full inode
412 * record. This allows for cluster sized, cluster aligned block allocation
413 * without need to worry about whether the resulting inode record overlaps with
414 * another record in the tree. Without this basic rule, we would have to deal
415 * with the consequences of overlap by potentially undoing recent allocations in
416 * the inode allocation codepath.
417 *
418 * Because of this alignment rule (which is enforced on mount), there are two
419 * inobt possibilities for newly allocated sparse chunks. One is that the
420 * aligned inode record for the chunk covers a range of inodes not already
421 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
422 * other is that a record already exists at the aligned startino that considers
423 * the newly allocated range as sparse. In the latter case, record content is
424 * merged in hope that sparse inode chunks fill to full chunks over time.
425 */
426 STATIC void
427 xfs_align_sparse_ino(
428 struct xfs_mount *mp,
429 xfs_agino_t *startino,
430 uint16_t *allocmask)
431 {
432 xfs_agblock_t agbno;
433 xfs_agblock_t mod;
434 int offset;
435
436 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
437 mod = agbno % mp->m_sb.sb_inoalignmt;
438 if (!mod)
439 return;
440
441 /* calculate the inode offset and align startino */
442 offset = mod << mp->m_sb.sb_inopblog;
443 *startino -= offset;
444
445 /*
446 * Since startino has been aligned down, left shift allocmask such that
447 * it continues to represent the same physical inodes relative to the
448 * new startino.
449 */
450 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
451 }
452
453 /*
454 * Determine whether the source inode record can merge into the target. Both
455 * records must be sparse, the inode ranges must match and there must be no
456 * allocation overlap between the records.
457 */
458 STATIC bool
459 __xfs_inobt_can_merge(
460 struct xfs_inobt_rec_incore *trec, /* tgt record */
461 struct xfs_inobt_rec_incore *srec) /* src record */
462 {
463 uint64_t talloc;
464 uint64_t salloc;
465
466 /* records must cover the same inode range */
467 if (trec->ir_startino != srec->ir_startino)
468 return false;
469
470 /* both records must be sparse */
471 if (!xfs_inobt_issparse(trec->ir_holemask) ||
472 !xfs_inobt_issparse(srec->ir_holemask))
473 return false;
474
475 /* both records must track some inodes */
476 if (!trec->ir_count || !srec->ir_count)
477 return false;
478
479 /* can't exceed capacity of a full record */
480 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
481 return false;
482
483 /* verify there is no allocation overlap */
484 talloc = xfs_inobt_irec_to_allocmask(trec);
485 salloc = xfs_inobt_irec_to_allocmask(srec);
486 if (talloc & salloc)
487 return false;
488
489 return true;
490 }
491
492 /*
493 * Merge the source inode record into the target. The caller must call
494 * __xfs_inobt_can_merge() to ensure the merge is valid.
495 */
496 STATIC void
497 __xfs_inobt_rec_merge(
498 struct xfs_inobt_rec_incore *trec, /* target */
499 struct xfs_inobt_rec_incore *srec) /* src */
500 {
501 ASSERT(trec->ir_startino == srec->ir_startino);
502
503 /* combine the counts */
504 trec->ir_count += srec->ir_count;
505 trec->ir_freecount += srec->ir_freecount;
506
507 /*
508 * Merge the holemask and free mask. For both fields, 0 bits refer to
509 * allocated inodes. We combine the allocated ranges with bitwise AND.
510 */
511 trec->ir_holemask &= srec->ir_holemask;
512 trec->ir_free &= srec->ir_free;
513 }
514
515 /*
516 * Insert a new sparse inode chunk into the associated inode btree. The inode
517 * record for the sparse chunk is pre-aligned to a startino that should match
518 * any pre-existing sparse inode record in the tree. This allows sparse chunks
519 * to fill over time.
520 *
521 * This function supports two modes of handling preexisting records depending on
522 * the merge flag. If merge is true, the provided record is merged with the
523 * existing record and updated in place. The merged record is returned in nrec.
524 * If merge is false, an existing record is replaced with the provided record.
525 * If no preexisting record exists, the provided record is always inserted.
526 *
527 * It is considered corruption if a merge is requested and not possible. Given
528 * the sparse inode alignment constraints, this should never happen.
529 */
530 STATIC int
531 xfs_inobt_insert_sprec(
532 struct xfs_mount *mp,
533 struct xfs_trans *tp,
534 struct xfs_buf *agbp,
535 int btnum,
536 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
537 bool merge) /* merge or replace */
538 {
539 struct xfs_btree_cur *cur;
540 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
541 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
542 int error;
543 int i;
544 struct xfs_inobt_rec_incore rec;
545
546 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
547
548 /* the new record is pre-aligned so we know where to look */
549 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
550 if (error)
551 goto error;
552 /* if nothing there, insert a new record and return */
553 if (i == 0) {
554 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
555 nrec->ir_count, nrec->ir_freecount,
556 nrec->ir_free, &i);
557 if (error)
558 goto error;
559 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
560
561 goto out;
562 }
563
564 /*
565 * A record exists at this startino. Merge or replace the record
566 * depending on what we've been asked to do.
567 */
568 if (merge) {
569 error = xfs_inobt_get_rec(cur, &rec, &i);
570 if (error)
571 goto error;
572 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
573 XFS_WANT_CORRUPTED_GOTO(mp,
574 rec.ir_startino == nrec->ir_startino,
575 error);
576
577 /*
578 * This should never fail. If we have coexisting records that
579 * cannot merge, something is seriously wrong.
580 */
581 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
582 error);
583
584 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
585 rec.ir_holemask, nrec->ir_startino,
586 nrec->ir_holemask);
587
588 /* merge to nrec to output the updated record */
589 __xfs_inobt_rec_merge(nrec, &rec);
590
591 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
592 nrec->ir_holemask);
593
594 error = xfs_inobt_rec_check_count(mp, nrec);
595 if (error)
596 goto error;
597 }
598
599 error = xfs_inobt_update(cur, nrec);
600 if (error)
601 goto error;
602
603 out:
604 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
605 return 0;
606 error:
607 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
608 return error;
609 }
610
611 /*
612 * Allocate new inodes in the allocation group specified by agbp.
613 * Return 0 for success, else error code.
614 */
615 STATIC int /* error code or 0 */
616 xfs_ialloc_ag_alloc(
617 xfs_trans_t *tp, /* transaction pointer */
618 xfs_buf_t *agbp, /* alloc group buffer */
619 int *alloc)
620 {
621 xfs_agi_t *agi; /* allocation group header */
622 xfs_alloc_arg_t args; /* allocation argument structure */
623 xfs_agnumber_t agno;
624 int error;
625 xfs_agino_t newino; /* new first inode's number */
626 xfs_agino_t newlen; /* new number of inodes */
627 int isaligned = 0; /* inode allocation at stripe unit */
628 /* boundary */
629 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */
630 struct xfs_inobt_rec_incore rec;
631 struct xfs_perag *pag;
632 int do_sparse = 0;
633
634 memset(&args, 0, sizeof(args));
635 args.tp = tp;
636 args.mp = tp->t_mountp;
637 args.fsbno = NULLFSBLOCK;
638 xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES);
639
640 #ifdef DEBUG
641 /* randomly do sparse inode allocations */
642 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
643 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
644 do_sparse = prandom_u32() & 1;
645 #endif
646
647 /*
648 * Locking will ensure that we don't have two callers in here
649 * at one time.
650 */
651 newlen = args.mp->m_ialloc_inos;
652 if (args.mp->m_maxicount &&
653 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
654 args.mp->m_maxicount)
655 return -ENOSPC;
656 args.minlen = args.maxlen = args.mp->m_ialloc_blks;
657 /*
658 * First try to allocate inodes contiguous with the last-allocated
659 * chunk of inodes. If the filesystem is striped, this will fill
660 * an entire stripe unit with inodes.
661 */
662 agi = XFS_BUF_TO_AGI(agbp);
663 newino = be32_to_cpu(agi->agi_newino);
664 agno = be32_to_cpu(agi->agi_seqno);
665 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
666 args.mp->m_ialloc_blks;
667 if (do_sparse)
668 goto sparse_alloc;
669 if (likely(newino != NULLAGINO &&
670 (args.agbno < be32_to_cpu(agi->agi_length)))) {
671 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
672 args.type = XFS_ALLOCTYPE_THIS_BNO;
673 args.prod = 1;
674
675 /*
676 * We need to take into account alignment here to ensure that
677 * we don't modify the free list if we fail to have an exact
678 * block. If we don't have an exact match, and every oher
679 * attempt allocation attempt fails, we'll end up cancelling
680 * a dirty transaction and shutting down.
681 *
682 * For an exact allocation, alignment must be 1,
683 * however we need to take cluster alignment into account when
684 * fixing up the freelist. Use the minalignslop field to
685 * indicate that extra blocks might be required for alignment,
686 * but not to use them in the actual exact allocation.
687 */
688 args.alignment = 1;
689 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
690
691 /* Allow space for the inode btree to split. */
692 args.minleft = args.mp->m_in_maxlevels - 1;
693 if ((error = xfs_alloc_vextent(&args)))
694 return error;
695
696 /*
697 * This request might have dirtied the transaction if the AG can
698 * satisfy the request, but the exact block was not available.
699 * If the allocation did fail, subsequent requests will relax
700 * the exact agbno requirement and increase the alignment
701 * instead. It is critical that the total size of the request
702 * (len + alignment + slop) does not increase from this point
703 * on, so reset minalignslop to ensure it is not included in
704 * subsequent requests.
705 */
706 args.minalignslop = 0;
707 }
708
709 if (unlikely(args.fsbno == NULLFSBLOCK)) {
710 /*
711 * Set the alignment for the allocation.
712 * If stripe alignment is turned on then align at stripe unit
713 * boundary.
714 * If the cluster size is smaller than a filesystem block
715 * then we're doing I/O for inodes in filesystem block size
716 * pieces, so don't need alignment anyway.
717 */
718 isaligned = 0;
719 if (args.mp->m_sinoalign) {
720 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
721 args.alignment = args.mp->m_dalign;
722 isaligned = 1;
723 } else
724 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
725 /*
726 * Need to figure out where to allocate the inode blocks.
727 * Ideally they should be spaced out through the a.g.
728 * For now, just allocate blocks up front.
729 */
730 args.agbno = be32_to_cpu(agi->agi_root);
731 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
732 /*
733 * Allocate a fixed-size extent of inodes.
734 */
735 args.type = XFS_ALLOCTYPE_NEAR_BNO;
736 args.prod = 1;
737 /*
738 * Allow space for the inode btree to split.
739 */
740 args.minleft = args.mp->m_in_maxlevels - 1;
741 if ((error = xfs_alloc_vextent(&args)))
742 return error;
743 }
744
745 /*
746 * If stripe alignment is turned on, then try again with cluster
747 * alignment.
748 */
749 if (isaligned && args.fsbno == NULLFSBLOCK) {
750 args.type = XFS_ALLOCTYPE_NEAR_BNO;
751 args.agbno = be32_to_cpu(agi->agi_root);
752 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
753 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
754 if ((error = xfs_alloc_vextent(&args)))
755 return error;
756 }
757
758 /*
759 * Finally, try a sparse allocation if the filesystem supports it and
760 * the sparse allocation length is smaller than a full chunk.
761 */
762 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
763 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
764 args.fsbno == NULLFSBLOCK) {
765 sparse_alloc:
766 args.type = XFS_ALLOCTYPE_NEAR_BNO;
767 args.agbno = be32_to_cpu(agi->agi_root);
768 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
769 args.alignment = args.mp->m_sb.sb_spino_align;
770 args.prod = 1;
771
772 args.minlen = args.mp->m_ialloc_min_blks;
773 args.maxlen = args.minlen;
774
775 /*
776 * The inode record will be aligned to full chunk size. We must
777 * prevent sparse allocation from AG boundaries that result in
778 * invalid inode records, such as records that start at agbno 0
779 * or extend beyond the AG.
780 *
781 * Set min agbno to the first aligned, non-zero agbno and max to
782 * the last aligned agbno that is at least one full chunk from
783 * the end of the AG.
784 */
785 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
786 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
787 args.mp->m_sb.sb_inoalignmt) -
788 args.mp->m_ialloc_blks;
789
790 error = xfs_alloc_vextent(&args);
791 if (error)
792 return error;
793
794 newlen = args.len << args.mp->m_sb.sb_inopblog;
795 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
796 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
797 }
798
799 if (args.fsbno == NULLFSBLOCK) {
800 *alloc = 0;
801 return 0;
802 }
803 ASSERT(args.len == args.minlen);
804
805 /*
806 * Stamp and write the inode buffers.
807 *
808 * Seed the new inode cluster with a random generation number. This
809 * prevents short-term reuse of generation numbers if a chunk is
810 * freed and then immediately reallocated. We use random numbers
811 * rather than a linear progression to prevent the next generation
812 * number from being easily guessable.
813 */
814 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
815 args.agbno, args.len, prandom_u32());
816
817 if (error)
818 return error;
819 /*
820 * Convert the results.
821 */
822 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
823
824 if (xfs_inobt_issparse(~allocmask)) {
825 /*
826 * We've allocated a sparse chunk. Align the startino and mask.
827 */
828 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
829
830 rec.ir_startino = newino;
831 rec.ir_holemask = ~allocmask;
832 rec.ir_count = newlen;
833 rec.ir_freecount = newlen;
834 rec.ir_free = XFS_INOBT_ALL_FREE;
835
836 /*
837 * Insert the sparse record into the inobt and allow for a merge
838 * if necessary. If a merge does occur, rec is updated to the
839 * merged record.
840 */
841 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
842 &rec, true);
843 if (error == -EFSCORRUPTED) {
844 xfs_alert(args.mp,
845 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
846 XFS_AGINO_TO_INO(args.mp, agno,
847 rec.ir_startino),
848 rec.ir_holemask, rec.ir_count);
849 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
850 }
851 if (error)
852 return error;
853
854 /*
855 * We can't merge the part we've just allocated as for the inobt
856 * due to finobt semantics. The original record may or may not
857 * exist independent of whether physical inodes exist in this
858 * sparse chunk.
859 *
860 * We must update the finobt record based on the inobt record.
861 * rec contains the fully merged and up to date inobt record
862 * from the previous call. Set merge false to replace any
863 * existing record with this one.
864 */
865 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
866 error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
867 XFS_BTNUM_FINO, &rec,
868 false);
869 if (error)
870 return error;
871 }
872 } else {
873 /* full chunk - insert new records to both btrees */
874 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
875 XFS_BTNUM_INO);
876 if (error)
877 return error;
878
879 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
880 error = xfs_inobt_insert(args.mp, tp, agbp, newino,
881 newlen, XFS_BTNUM_FINO);
882 if (error)
883 return error;
884 }
885 }
886
887 /*
888 * Update AGI counts and newino.
889 */
890 be32_add_cpu(&agi->agi_count, newlen);
891 be32_add_cpu(&agi->agi_freecount, newlen);
892 pag = xfs_perag_get(args.mp, agno);
893 pag->pagi_freecount += newlen;
894 pag->pagi_count += newlen;
895 xfs_perag_put(pag);
896 agi->agi_newino = cpu_to_be32(newino);
897
898 /*
899 * Log allocation group header fields
900 */
901 xfs_ialloc_log_agi(tp, agbp,
902 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
903 /*
904 * Modify/log superblock values for inode count and inode free count.
905 */
906 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
907 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
908 *alloc = 1;
909 return 0;
910 }
911
912 STATIC xfs_agnumber_t
913 xfs_ialloc_next_ag(
914 xfs_mount_t *mp)
915 {
916 xfs_agnumber_t agno;
917
918 spin_lock(&mp->m_agirotor_lock);
919 agno = mp->m_agirotor;
920 if (++mp->m_agirotor >= mp->m_maxagi)
921 mp->m_agirotor = 0;
922 spin_unlock(&mp->m_agirotor_lock);
923
924 return agno;
925 }
926
927 /*
928 * Select an allocation group to look for a free inode in, based on the parent
929 * inode and the mode. Return the allocation group buffer.
930 */
931 STATIC xfs_agnumber_t
932 xfs_ialloc_ag_select(
933 xfs_trans_t *tp, /* transaction pointer */
934 xfs_ino_t parent, /* parent directory inode number */
935 umode_t mode) /* bits set to indicate file type */
936 {
937 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
938 xfs_agnumber_t agno; /* current ag number */
939 int flags; /* alloc buffer locking flags */
940 xfs_extlen_t ineed; /* blocks needed for inode allocation */
941 xfs_extlen_t longest = 0; /* longest extent available */
942 xfs_mount_t *mp; /* mount point structure */
943 int needspace; /* file mode implies space allocated */
944 xfs_perag_t *pag; /* per allocation group data */
945 xfs_agnumber_t pagno; /* parent (starting) ag number */
946 int error;
947
948 /*
949 * Files of these types need at least one block if length > 0
950 * (and they won't fit in the inode, but that's hard to figure out).
951 */
952 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
953 mp = tp->t_mountp;
954 agcount = mp->m_maxagi;
955 if (S_ISDIR(mode))
956 pagno = xfs_ialloc_next_ag(mp);
957 else {
958 pagno = XFS_INO_TO_AGNO(mp, parent);
959 if (pagno >= agcount)
960 pagno = 0;
961 }
962
963 ASSERT(pagno < agcount);
964
965 /*
966 * Loop through allocation groups, looking for one with a little
967 * free space in it. Note we don't look for free inodes, exactly.
968 * Instead, we include whether there is a need to allocate inodes
969 * to mean that blocks must be allocated for them,
970 * if none are currently free.
971 */
972 agno = pagno;
973 flags = XFS_ALLOC_FLAG_TRYLOCK;
974 for (;;) {
975 pag = xfs_perag_get(mp, agno);
976 if (!pag->pagi_inodeok) {
977 xfs_ialloc_next_ag(mp);
978 goto nextag;
979 }
980
981 if (!pag->pagi_init) {
982 error = xfs_ialloc_pagi_init(mp, tp, agno);
983 if (error)
984 goto nextag;
985 }
986
987 if (pag->pagi_freecount) {
988 xfs_perag_put(pag);
989 return agno;
990 }
991
992 if (!pag->pagf_init) {
993 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
994 if (error)
995 goto nextag;
996 }
997
998 /*
999 * Check that there is enough free space for the file plus a
1000 * chunk of inodes if we need to allocate some. If this is the
1001 * first pass across the AGs, take into account the potential
1002 * space needed for alignment of inode chunks when checking the
1003 * longest contiguous free space in the AG - this prevents us
1004 * from getting ENOSPC because we have free space larger than
1005 * m_ialloc_blks but alignment constraints prevent us from using
1006 * it.
1007 *
1008 * If we can't find an AG with space for full alignment slack to
1009 * be taken into account, we must be near ENOSPC in all AGs.
1010 * Hence we don't include alignment for the second pass and so
1011 * if we fail allocation due to alignment issues then it is most
1012 * likely a real ENOSPC condition.
1013 */
1014 ineed = mp->m_ialloc_min_blks;
1015 if (flags && ineed > 1)
1016 ineed += xfs_ialloc_cluster_alignment(mp);
1017 longest = pag->pagf_longest;
1018 if (!longest)
1019 longest = pag->pagf_flcount > 0;
1020
1021 if (pag->pagf_freeblks >= needspace + ineed &&
1022 longest >= ineed) {
1023 xfs_perag_put(pag);
1024 return agno;
1025 }
1026 nextag:
1027 xfs_perag_put(pag);
1028 /*
1029 * No point in iterating over the rest, if we're shutting
1030 * down.
1031 */
1032 if (XFS_FORCED_SHUTDOWN(mp))
1033 return NULLAGNUMBER;
1034 agno++;
1035 if (agno >= agcount)
1036 agno = 0;
1037 if (agno == pagno) {
1038 if (flags == 0)
1039 return NULLAGNUMBER;
1040 flags = 0;
1041 }
1042 }
1043 }
1044
1045 /*
1046 * Try to retrieve the next record to the left/right from the current one.
1047 */
1048 STATIC int
1049 xfs_ialloc_next_rec(
1050 struct xfs_btree_cur *cur,
1051 xfs_inobt_rec_incore_t *rec,
1052 int *done,
1053 int left)
1054 {
1055 int error;
1056 int i;
1057
1058 if (left)
1059 error = xfs_btree_decrement(cur, 0, &i);
1060 else
1061 error = xfs_btree_increment(cur, 0, &i);
1062
1063 if (error)
1064 return error;
1065 *done = !i;
1066 if (i) {
1067 error = xfs_inobt_get_rec(cur, rec, &i);
1068 if (error)
1069 return error;
1070 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1071 }
1072
1073 return 0;
1074 }
1075
1076 STATIC int
1077 xfs_ialloc_get_rec(
1078 struct xfs_btree_cur *cur,
1079 xfs_agino_t agino,
1080 xfs_inobt_rec_incore_t *rec,
1081 int *done)
1082 {
1083 int error;
1084 int i;
1085
1086 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1087 if (error)
1088 return error;
1089 *done = !i;
1090 if (i) {
1091 error = xfs_inobt_get_rec(cur, rec, &i);
1092 if (error)
1093 return error;
1094 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1095 }
1096
1097 return 0;
1098 }
1099
1100 /*
1101 * Return the offset of the first free inode in the record. If the inode chunk
1102 * is sparsely allocated, we convert the record holemask to inode granularity
1103 * and mask off the unallocated regions from the inode free mask.
1104 */
1105 STATIC int
1106 xfs_inobt_first_free_inode(
1107 struct xfs_inobt_rec_incore *rec)
1108 {
1109 xfs_inofree_t realfree;
1110
1111 /* if there are no holes, return the first available offset */
1112 if (!xfs_inobt_issparse(rec->ir_holemask))
1113 return xfs_lowbit64(rec->ir_free);
1114
1115 realfree = xfs_inobt_irec_to_allocmask(rec);
1116 realfree &= rec->ir_free;
1117
1118 return xfs_lowbit64(realfree);
1119 }
1120
1121 /*
1122 * Allocate an inode using the inobt-only algorithm.
1123 */
1124 STATIC int
1125 xfs_dialloc_ag_inobt(
1126 struct xfs_trans *tp,
1127 struct xfs_buf *agbp,
1128 xfs_ino_t parent,
1129 xfs_ino_t *inop)
1130 {
1131 struct xfs_mount *mp = tp->t_mountp;
1132 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1133 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1134 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1135 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1136 struct xfs_perag *pag;
1137 struct xfs_btree_cur *cur, *tcur;
1138 struct xfs_inobt_rec_incore rec, trec;
1139 xfs_ino_t ino;
1140 int error;
1141 int offset;
1142 int i, j;
1143 int searchdistance = 10;
1144
1145 pag = xfs_perag_get(mp, agno);
1146
1147 ASSERT(pag->pagi_init);
1148 ASSERT(pag->pagi_inodeok);
1149 ASSERT(pag->pagi_freecount > 0);
1150
1151 restart_pagno:
1152 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1153 /*
1154 * If pagino is 0 (this is the root inode allocation) use newino.
1155 * This must work because we've just allocated some.
1156 */
1157 if (!pagino)
1158 pagino = be32_to_cpu(agi->agi_newino);
1159
1160 error = xfs_check_agi_freecount(cur, agi);
1161 if (error)
1162 goto error0;
1163
1164 /*
1165 * If in the same AG as the parent, try to get near the parent.
1166 */
1167 if (pagno == agno) {
1168 int doneleft; /* done, to the left */
1169 int doneright; /* done, to the right */
1170
1171 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1172 if (error)
1173 goto error0;
1174 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1175
1176 error = xfs_inobt_get_rec(cur, &rec, &j);
1177 if (error)
1178 goto error0;
1179 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1180
1181 if (rec.ir_freecount > 0) {
1182 /*
1183 * Found a free inode in the same chunk
1184 * as the parent, done.
1185 */
1186 goto alloc_inode;
1187 }
1188
1189
1190 /*
1191 * In the same AG as parent, but parent's chunk is full.
1192 */
1193
1194 /* duplicate the cursor, search left & right simultaneously */
1195 error = xfs_btree_dup_cursor(cur, &tcur);
1196 if (error)
1197 goto error0;
1198
1199 /*
1200 * Skip to last blocks looked up if same parent inode.
1201 */
1202 if (pagino != NULLAGINO &&
1203 pag->pagl_pagino == pagino &&
1204 pag->pagl_leftrec != NULLAGINO &&
1205 pag->pagl_rightrec != NULLAGINO) {
1206 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1207 &trec, &doneleft);
1208 if (error)
1209 goto error1;
1210
1211 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1212 &rec, &doneright);
1213 if (error)
1214 goto error1;
1215 } else {
1216 /* search left with tcur, back up 1 record */
1217 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1218 if (error)
1219 goto error1;
1220
1221 /* search right with cur, go forward 1 record. */
1222 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1223 if (error)
1224 goto error1;
1225 }
1226
1227 /*
1228 * Loop until we find an inode chunk with a free inode.
1229 */
1230 while (--searchdistance > 0 && (!doneleft || !doneright)) {
1231 int useleft; /* using left inode chunk this time */
1232
1233 /* figure out the closer block if both are valid. */
1234 if (!doneleft && !doneright) {
1235 useleft = pagino -
1236 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1237 rec.ir_startino - pagino;
1238 } else {
1239 useleft = !doneleft;
1240 }
1241
1242 /* free inodes to the left? */
1243 if (useleft && trec.ir_freecount) {
1244 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1245 cur = tcur;
1246
1247 pag->pagl_leftrec = trec.ir_startino;
1248 pag->pagl_rightrec = rec.ir_startino;
1249 pag->pagl_pagino = pagino;
1250 rec = trec;
1251 goto alloc_inode;
1252 }
1253
1254 /* free inodes to the right? */
1255 if (!useleft && rec.ir_freecount) {
1256 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1257
1258 pag->pagl_leftrec = trec.ir_startino;
1259 pag->pagl_rightrec = rec.ir_startino;
1260 pag->pagl_pagino = pagino;
1261 goto alloc_inode;
1262 }
1263
1264 /* get next record to check */
1265 if (useleft) {
1266 error = xfs_ialloc_next_rec(tcur, &trec,
1267 &doneleft, 1);
1268 } else {
1269 error = xfs_ialloc_next_rec(cur, &rec,
1270 &doneright, 0);
1271 }
1272 if (error)
1273 goto error1;
1274 }
1275
1276 if (searchdistance <= 0) {
1277 /*
1278 * Not in range - save last search
1279 * location and allocate a new inode
1280 */
1281 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1282 pag->pagl_leftrec = trec.ir_startino;
1283 pag->pagl_rightrec = rec.ir_startino;
1284 pag->pagl_pagino = pagino;
1285
1286 } else {
1287 /*
1288 * We've reached the end of the btree. because
1289 * we are only searching a small chunk of the
1290 * btree each search, there is obviously free
1291 * inodes closer to the parent inode than we
1292 * are now. restart the search again.
1293 */
1294 pag->pagl_pagino = NULLAGINO;
1295 pag->pagl_leftrec = NULLAGINO;
1296 pag->pagl_rightrec = NULLAGINO;
1297 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1298 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1299 goto restart_pagno;
1300 }
1301 }
1302
1303 /*
1304 * In a different AG from the parent.
1305 * See if the most recently allocated block has any free.
1306 */
1307 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1308 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1309 XFS_LOOKUP_EQ, &i);
1310 if (error)
1311 goto error0;
1312
1313 if (i == 1) {
1314 error = xfs_inobt_get_rec(cur, &rec, &j);
1315 if (error)
1316 goto error0;
1317
1318 if (j == 1 && rec.ir_freecount > 0) {
1319 /*
1320 * The last chunk allocated in the group
1321 * still has a free inode.
1322 */
1323 goto alloc_inode;
1324 }
1325 }
1326 }
1327
1328 /*
1329 * None left in the last group, search the whole AG
1330 */
1331 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1332 if (error)
1333 goto error0;
1334 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1335
1336 for (;;) {
1337 error = xfs_inobt_get_rec(cur, &rec, &i);
1338 if (error)
1339 goto error0;
1340 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1341 if (rec.ir_freecount > 0)
1342 break;
1343 error = xfs_btree_increment(cur, 0, &i);
1344 if (error)
1345 goto error0;
1346 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1347 }
1348
1349 alloc_inode:
1350 offset = xfs_inobt_first_free_inode(&rec);
1351 ASSERT(offset >= 0);
1352 ASSERT(offset < XFS_INODES_PER_CHUNK);
1353 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1354 XFS_INODES_PER_CHUNK) == 0);
1355 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1356 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1357 rec.ir_freecount--;
1358 error = xfs_inobt_update(cur, &rec);
1359 if (error)
1360 goto error0;
1361 be32_add_cpu(&agi->agi_freecount, -1);
1362 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1363 pag->pagi_freecount--;
1364
1365 error = xfs_check_agi_freecount(cur, agi);
1366 if (error)
1367 goto error0;
1368
1369 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1370 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1371 xfs_perag_put(pag);
1372 *inop = ino;
1373 return 0;
1374 error1:
1375 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1376 error0:
1377 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1378 xfs_perag_put(pag);
1379 return error;
1380 }
1381
1382 /*
1383 * Use the free inode btree to allocate an inode based on distance from the
1384 * parent. Note that the provided cursor may be deleted and replaced.
1385 */
1386 STATIC int
1387 xfs_dialloc_ag_finobt_near(
1388 xfs_agino_t pagino,
1389 struct xfs_btree_cur **ocur,
1390 struct xfs_inobt_rec_incore *rec)
1391 {
1392 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1393 struct xfs_btree_cur *rcur; /* right search cursor */
1394 struct xfs_inobt_rec_incore rrec;
1395 int error;
1396 int i, j;
1397
1398 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1399 if (error)
1400 return error;
1401
1402 if (i == 1) {
1403 error = xfs_inobt_get_rec(lcur, rec, &i);
1404 if (error)
1405 return error;
1406 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1407
1408 /*
1409 * See if we've landed in the parent inode record. The finobt
1410 * only tracks chunks with at least one free inode, so record
1411 * existence is enough.
1412 */
1413 if (pagino >= rec->ir_startino &&
1414 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1415 return 0;
1416 }
1417
1418 error = xfs_btree_dup_cursor(lcur, &rcur);
1419 if (error)
1420 return error;
1421
1422 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1423 if (error)
1424 goto error_rcur;
1425 if (j == 1) {
1426 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1427 if (error)
1428 goto error_rcur;
1429 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1430 }
1431
1432 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1433 if (i == 1 && j == 1) {
1434 /*
1435 * Both the left and right records are valid. Choose the closer
1436 * inode chunk to the target.
1437 */
1438 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1439 (rrec.ir_startino - pagino)) {
1440 *rec = rrec;
1441 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1442 *ocur = rcur;
1443 } else {
1444 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1445 }
1446 } else if (j == 1) {
1447 /* only the right record is valid */
1448 *rec = rrec;
1449 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1450 *ocur = rcur;
1451 } else if (i == 1) {
1452 /* only the left record is valid */
1453 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1454 }
1455
1456 return 0;
1457
1458 error_rcur:
1459 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1460 return error;
1461 }
1462
1463 /*
1464 * Use the free inode btree to find a free inode based on a newino hint. If
1465 * the hint is NULL, find the first free inode in the AG.
1466 */
1467 STATIC int
1468 xfs_dialloc_ag_finobt_newino(
1469 struct xfs_agi *agi,
1470 struct xfs_btree_cur *cur,
1471 struct xfs_inobt_rec_incore *rec)
1472 {
1473 int error;
1474 int i;
1475
1476 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1477 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1478 XFS_LOOKUP_EQ, &i);
1479 if (error)
1480 return error;
1481 if (i == 1) {
1482 error = xfs_inobt_get_rec(cur, rec, &i);
1483 if (error)
1484 return error;
1485 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1486 return 0;
1487 }
1488 }
1489
1490 /*
1491 * Find the first inode available in the AG.
1492 */
1493 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1494 if (error)
1495 return error;
1496 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1497
1498 error = xfs_inobt_get_rec(cur, rec, &i);
1499 if (error)
1500 return error;
1501 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1502
1503 return 0;
1504 }
1505
1506 /*
1507 * Update the inobt based on a modification made to the finobt. Also ensure that
1508 * the records from both trees are equivalent post-modification.
1509 */
1510 STATIC int
1511 xfs_dialloc_ag_update_inobt(
1512 struct xfs_btree_cur *cur, /* inobt cursor */
1513 struct xfs_inobt_rec_incore *frec, /* finobt record */
1514 int offset) /* inode offset */
1515 {
1516 struct xfs_inobt_rec_incore rec;
1517 int error;
1518 int i;
1519
1520 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1521 if (error)
1522 return error;
1523 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1524
1525 error = xfs_inobt_get_rec(cur, &rec, &i);
1526 if (error)
1527 return error;
1528 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1529 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1530 XFS_INODES_PER_CHUNK) == 0);
1531
1532 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1533 rec.ir_freecount--;
1534
1535 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1536 (rec.ir_freecount == frec->ir_freecount));
1537
1538 return xfs_inobt_update(cur, &rec);
1539 }
1540
1541 /*
1542 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1543 * back to the inobt search algorithm.
1544 *
1545 * The caller selected an AG for us, and made sure that free inodes are
1546 * available.
1547 */
1548 STATIC int
1549 xfs_dialloc_ag(
1550 struct xfs_trans *tp,
1551 struct xfs_buf *agbp,
1552 xfs_ino_t parent,
1553 xfs_ino_t *inop)
1554 {
1555 struct xfs_mount *mp = tp->t_mountp;
1556 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1557 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1558 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1559 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1560 struct xfs_perag *pag;
1561 struct xfs_btree_cur *cur; /* finobt cursor */
1562 struct xfs_btree_cur *icur; /* inobt cursor */
1563 struct xfs_inobt_rec_incore rec;
1564 xfs_ino_t ino;
1565 int error;
1566 int offset;
1567 int i;
1568
1569 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1570 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1571
1572 pag = xfs_perag_get(mp, agno);
1573
1574 /*
1575 * If pagino is 0 (this is the root inode allocation) use newino.
1576 * This must work because we've just allocated some.
1577 */
1578 if (!pagino)
1579 pagino = be32_to_cpu(agi->agi_newino);
1580
1581 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1582
1583 error = xfs_check_agi_freecount(cur, agi);
1584 if (error)
1585 goto error_cur;
1586
1587 /*
1588 * The search algorithm depends on whether we're in the same AG as the
1589 * parent. If so, find the closest available inode to the parent. If
1590 * not, consider the agi hint or find the first free inode in the AG.
1591 */
1592 if (agno == pagno)
1593 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1594 else
1595 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1596 if (error)
1597 goto error_cur;
1598
1599 offset = xfs_inobt_first_free_inode(&rec);
1600 ASSERT(offset >= 0);
1601 ASSERT(offset < XFS_INODES_PER_CHUNK);
1602 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1603 XFS_INODES_PER_CHUNK) == 0);
1604 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1605
1606 /*
1607 * Modify or remove the finobt record.
1608 */
1609 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1610 rec.ir_freecount--;
1611 if (rec.ir_freecount)
1612 error = xfs_inobt_update(cur, &rec);
1613 else
1614 error = xfs_btree_delete(cur, &i);
1615 if (error)
1616 goto error_cur;
1617
1618 /*
1619 * The finobt has now been updated appropriately. We haven't updated the
1620 * agi and superblock yet, so we can create an inobt cursor and validate
1621 * the original freecount. If all is well, make the equivalent update to
1622 * the inobt using the finobt record and offset information.
1623 */
1624 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1625
1626 error = xfs_check_agi_freecount(icur, agi);
1627 if (error)
1628 goto error_icur;
1629
1630 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1631 if (error)
1632 goto error_icur;
1633
1634 /*
1635 * Both trees have now been updated. We must update the perag and
1636 * superblock before we can check the freecount for each btree.
1637 */
1638 be32_add_cpu(&agi->agi_freecount, -1);
1639 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1640 pag->pagi_freecount--;
1641
1642 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1643
1644 error = xfs_check_agi_freecount(icur, agi);
1645 if (error)
1646 goto error_icur;
1647 error = xfs_check_agi_freecount(cur, agi);
1648 if (error)
1649 goto error_icur;
1650
1651 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1652 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1653 xfs_perag_put(pag);
1654 *inop = ino;
1655 return 0;
1656
1657 error_icur:
1658 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1659 error_cur:
1660 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1661 xfs_perag_put(pag);
1662 return error;
1663 }
1664
1665 /*
1666 * Allocate an inode on disk.
1667 *
1668 * Mode is used to tell whether the new inode will need space, and whether it
1669 * is a directory.
1670 *
1671 * This function is designed to be called twice if it has to do an allocation
1672 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1673 * If an inode is available without having to performn an allocation, an inode
1674 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1675 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1676 * The caller should then commit the current transaction, allocate a
1677 * new transaction, and call xfs_dialloc() again, passing in the previous value
1678 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1679 * buffer is locked across the two calls, the second call is guaranteed to have
1680 * a free inode available.
1681 *
1682 * Once we successfully pick an inode its number is returned and the on-disk
1683 * data structures are updated. The inode itself is not read in, since doing so
1684 * would break ordering constraints with xfs_reclaim.
1685 */
1686 int
1687 xfs_dialloc(
1688 struct xfs_trans *tp,
1689 xfs_ino_t parent,
1690 umode_t mode,
1691 struct xfs_buf **IO_agbp,
1692 xfs_ino_t *inop)
1693 {
1694 struct xfs_mount *mp = tp->t_mountp;
1695 struct xfs_buf *agbp;
1696 xfs_agnumber_t agno;
1697 int error;
1698 int ialloced;
1699 int noroom = 0;
1700 xfs_agnumber_t start_agno;
1701 struct xfs_perag *pag;
1702 int okalloc = 1;
1703
1704 if (*IO_agbp) {
1705 /*
1706 * If the caller passes in a pointer to the AGI buffer,
1707 * continue where we left off before. In this case, we
1708 * know that the allocation group has free inodes.
1709 */
1710 agbp = *IO_agbp;
1711 goto out_alloc;
1712 }
1713
1714 /*
1715 * We do not have an agbp, so select an initial allocation
1716 * group for inode allocation.
1717 */
1718 start_agno = xfs_ialloc_ag_select(tp, parent, mode);
1719 if (start_agno == NULLAGNUMBER) {
1720 *inop = NULLFSINO;
1721 return 0;
1722 }
1723
1724 /*
1725 * If we have already hit the ceiling of inode blocks then clear
1726 * okalloc so we scan all available agi structures for a free
1727 * inode.
1728 *
1729 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1730 * which will sacrifice the preciseness but improve the performance.
1731 */
1732 if (mp->m_maxicount &&
1733 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1734 > mp->m_maxicount) {
1735 noroom = 1;
1736 okalloc = 0;
1737 }
1738
1739 /*
1740 * Loop until we find an allocation group that either has free inodes
1741 * or in which we can allocate some inodes. Iterate through the
1742 * allocation groups upward, wrapping at the end.
1743 */
1744 agno = start_agno;
1745 for (;;) {
1746 pag = xfs_perag_get(mp, agno);
1747 if (!pag->pagi_inodeok) {
1748 xfs_ialloc_next_ag(mp);
1749 goto nextag;
1750 }
1751
1752 if (!pag->pagi_init) {
1753 error = xfs_ialloc_pagi_init(mp, tp, agno);
1754 if (error)
1755 goto out_error;
1756 }
1757
1758 /*
1759 * Do a first racy fast path check if this AG is usable.
1760 */
1761 if (!pag->pagi_freecount && !okalloc)
1762 goto nextag;
1763
1764 /*
1765 * Then read in the AGI buffer and recheck with the AGI buffer
1766 * lock held.
1767 */
1768 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1769 if (error)
1770 goto out_error;
1771
1772 if (pag->pagi_freecount) {
1773 xfs_perag_put(pag);
1774 goto out_alloc;
1775 }
1776
1777 if (!okalloc)
1778 goto nextag_relse_buffer;
1779
1780
1781 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1782 if (error) {
1783 xfs_trans_brelse(tp, agbp);
1784
1785 if (error != -ENOSPC)
1786 goto out_error;
1787
1788 xfs_perag_put(pag);
1789 *inop = NULLFSINO;
1790 return 0;
1791 }
1792
1793 if (ialloced) {
1794 /*
1795 * We successfully allocated some inodes, return
1796 * the current context to the caller so that it
1797 * can commit the current transaction and call
1798 * us again where we left off.
1799 */
1800 ASSERT(pag->pagi_freecount > 0);
1801 xfs_perag_put(pag);
1802
1803 *IO_agbp = agbp;
1804 *inop = NULLFSINO;
1805 return 0;
1806 }
1807
1808 nextag_relse_buffer:
1809 xfs_trans_brelse(tp, agbp);
1810 nextag:
1811 xfs_perag_put(pag);
1812 if (++agno == mp->m_sb.sb_agcount)
1813 agno = 0;
1814 if (agno == start_agno) {
1815 *inop = NULLFSINO;
1816 return noroom ? -ENOSPC : 0;
1817 }
1818 }
1819
1820 out_alloc:
1821 *IO_agbp = NULL;
1822 return xfs_dialloc_ag(tp, agbp, parent, inop);
1823 out_error:
1824 xfs_perag_put(pag);
1825 return error;
1826 }
1827
1828 /*
1829 * Free the blocks of an inode chunk. We must consider that the inode chunk
1830 * might be sparse and only free the regions that are allocated as part of the
1831 * chunk.
1832 */
1833 STATIC void
1834 xfs_difree_inode_chunk(
1835 struct xfs_mount *mp,
1836 xfs_agnumber_t agno,
1837 struct xfs_inobt_rec_incore *rec,
1838 struct xfs_defer_ops *dfops)
1839 {
1840 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1841 int startidx, endidx;
1842 int nextbit;
1843 xfs_agblock_t agbno;
1844 int contigblk;
1845 struct xfs_owner_info oinfo;
1846 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1847 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES);
1848
1849 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1850 /* not sparse, calculate extent info directly */
1851 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno),
1852 mp->m_ialloc_blks, &oinfo);
1853 return;
1854 }
1855
1856 /* holemask is only 16-bits (fits in an unsigned long) */
1857 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1858 holemask[0] = rec->ir_holemask;
1859
1860 /*
1861 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1862 * holemask and convert the start/end index of each range to an extent.
1863 * We start with the start and end index both pointing at the first 0 in
1864 * the mask.
1865 */
1866 startidx = endidx = find_first_zero_bit(holemask,
1867 XFS_INOBT_HOLEMASK_BITS);
1868 nextbit = startidx + 1;
1869 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1870 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1871 nextbit);
1872 /*
1873 * If the next zero bit is contiguous, update the end index of
1874 * the current range and continue.
1875 */
1876 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1877 nextbit == endidx + 1) {
1878 endidx = nextbit;
1879 goto next;
1880 }
1881
1882 /*
1883 * nextbit is not contiguous with the current end index. Convert
1884 * the current start/end to an extent and add it to the free
1885 * list.
1886 */
1887 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1888 mp->m_sb.sb_inopblock;
1889 contigblk = ((endidx - startidx + 1) *
1890 XFS_INODES_PER_HOLEMASK_BIT) /
1891 mp->m_sb.sb_inopblock;
1892
1893 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1894 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1895 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno),
1896 contigblk, &oinfo);
1897
1898 /* reset range to current bit and carry on... */
1899 startidx = endidx = nextbit;
1900
1901 next:
1902 nextbit++;
1903 }
1904 }
1905
1906 STATIC int
1907 xfs_difree_inobt(
1908 struct xfs_mount *mp,
1909 struct xfs_trans *tp,
1910 struct xfs_buf *agbp,
1911 xfs_agino_t agino,
1912 struct xfs_icluster *xic,
1913 struct xfs_inobt_rec_incore *orec)
1914 {
1915 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1916 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1917 struct xfs_perag *pag;
1918 struct xfs_btree_cur *cur;
1919 struct xfs_inobt_rec_incore rec;
1920 int ilen;
1921 int error;
1922 int i;
1923 int off;
1924
1925 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1926 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1927
1928 /*
1929 * Initialize the cursor.
1930 */
1931 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1932
1933 error = xfs_check_agi_freecount(cur, agi);
1934 if (error)
1935 goto error0;
1936
1937 /*
1938 * Look for the entry describing this inode.
1939 */
1940 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1941 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1942 __func__, error);
1943 goto error0;
1944 }
1945 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1946 error = xfs_inobt_get_rec(cur, &rec, &i);
1947 if (error) {
1948 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1949 __func__, error);
1950 goto error0;
1951 }
1952 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1953 /*
1954 * Get the offset in the inode chunk.
1955 */
1956 off = agino - rec.ir_startino;
1957 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1958 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1959 /*
1960 * Mark the inode free & increment the count.
1961 */
1962 rec.ir_free |= XFS_INOBT_MASK(off);
1963 rec.ir_freecount++;
1964
1965 /*
1966 * When an inode chunk is free, it becomes eligible for removal. Don't
1967 * remove the chunk if the block size is large enough for multiple inode
1968 * chunks (that might not be free).
1969 */
1970 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1971 rec.ir_free == XFS_INOBT_ALL_FREE &&
1972 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1973 xic->deleted = true;
1974 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1975 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1976
1977 /*
1978 * Remove the inode cluster from the AGI B+Tree, adjust the
1979 * AGI and Superblock inode counts, and mark the disk space
1980 * to be freed when the transaction is committed.
1981 */
1982 ilen = rec.ir_freecount;
1983 be32_add_cpu(&agi->agi_count, -ilen);
1984 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1985 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1986 pag = xfs_perag_get(mp, agno);
1987 pag->pagi_freecount -= ilen - 1;
1988 pag->pagi_count -= ilen;
1989 xfs_perag_put(pag);
1990 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1991 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1992
1993 if ((error = xfs_btree_delete(cur, &i))) {
1994 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1995 __func__, error);
1996 goto error0;
1997 }
1998
1999 xfs_difree_inode_chunk(mp, agno, &rec, tp->t_dfops);
2000 } else {
2001 xic->deleted = false;
2002
2003 error = xfs_inobt_update(cur, &rec);
2004 if (error) {
2005 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2006 __func__, error);
2007 goto error0;
2008 }
2009
2010 /*
2011 * Change the inode free counts and log the ag/sb changes.
2012 */
2013 be32_add_cpu(&agi->agi_freecount, 1);
2014 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2015 pag = xfs_perag_get(mp, agno);
2016 pag->pagi_freecount++;
2017 xfs_perag_put(pag);
2018 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2019 }
2020
2021 error = xfs_check_agi_freecount(cur, agi);
2022 if (error)
2023 goto error0;
2024
2025 *orec = rec;
2026 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2027 return 0;
2028
2029 error0:
2030 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2031 return error;
2032 }
2033
2034 /*
2035 * Free an inode in the free inode btree.
2036 */
2037 STATIC int
2038 xfs_difree_finobt(
2039 struct xfs_mount *mp,
2040 struct xfs_trans *tp,
2041 struct xfs_buf *agbp,
2042 xfs_agino_t agino,
2043 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2044 {
2045 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
2046 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
2047 struct xfs_btree_cur *cur;
2048 struct xfs_inobt_rec_incore rec;
2049 int offset = agino - ibtrec->ir_startino;
2050 int error;
2051 int i;
2052
2053 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2054
2055 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2056 if (error)
2057 goto error;
2058 if (i == 0) {
2059 /*
2060 * If the record does not exist in the finobt, we must have just
2061 * freed an inode in a previously fully allocated chunk. If not,
2062 * something is out of sync.
2063 */
2064 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2065
2066 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2067 ibtrec->ir_count,
2068 ibtrec->ir_freecount,
2069 ibtrec->ir_free, &i);
2070 if (error)
2071 goto error;
2072 ASSERT(i == 1);
2073
2074 goto out;
2075 }
2076
2077 /*
2078 * Read and update the existing record. We could just copy the ibtrec
2079 * across here, but that would defeat the purpose of having redundant
2080 * metadata. By making the modifications independently, we can catch
2081 * corruptions that we wouldn't see if we just copied from one record
2082 * to another.
2083 */
2084 error = xfs_inobt_get_rec(cur, &rec, &i);
2085 if (error)
2086 goto error;
2087 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2088
2089 rec.ir_free |= XFS_INOBT_MASK(offset);
2090 rec.ir_freecount++;
2091
2092 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2093 (rec.ir_freecount == ibtrec->ir_freecount),
2094 error);
2095
2096 /*
2097 * The content of inobt records should always match between the inobt
2098 * and finobt. The lifecycle of records in the finobt is different from
2099 * the inobt in that the finobt only tracks records with at least one
2100 * free inode. Hence, if all of the inodes are free and we aren't
2101 * keeping inode chunks permanently on disk, remove the record.
2102 * Otherwise, update the record with the new information.
2103 *
2104 * Note that we currently can't free chunks when the block size is large
2105 * enough for multiple chunks. Leave the finobt record to remain in sync
2106 * with the inobt.
2107 */
2108 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2109 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2110 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2111 error = xfs_btree_delete(cur, &i);
2112 if (error)
2113 goto error;
2114 ASSERT(i == 1);
2115 } else {
2116 error = xfs_inobt_update(cur, &rec);
2117 if (error)
2118 goto error;
2119 }
2120
2121 out:
2122 error = xfs_check_agi_freecount(cur, agi);
2123 if (error)
2124 goto error;
2125
2126 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2127 return 0;
2128
2129 error:
2130 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2131 return error;
2132 }
2133
2134 /*
2135 * Free disk inode. Carefully avoids touching the incore inode, all
2136 * manipulations incore are the caller's responsibility.
2137 * The on-disk inode is not changed by this operation, only the
2138 * btree (free inode mask) is changed.
2139 */
2140 int
2141 xfs_difree(
2142 struct xfs_trans *tp, /* transaction pointer */
2143 xfs_ino_t inode, /* inode to be freed */
2144 struct xfs_icluster *xic) /* cluster info if deleted */
2145 {
2146 /* REFERENCED */
2147 xfs_agblock_t agbno; /* block number containing inode */
2148 struct xfs_buf *agbp; /* buffer for allocation group header */
2149 xfs_agino_t agino; /* allocation group inode number */
2150 xfs_agnumber_t agno; /* allocation group number */
2151 int error; /* error return value */
2152 struct xfs_mount *mp; /* mount structure for filesystem */
2153 struct xfs_inobt_rec_incore rec;/* btree record */
2154
2155 mp = tp->t_mountp;
2156
2157 /*
2158 * Break up inode number into its components.
2159 */
2160 agno = XFS_INO_TO_AGNO(mp, inode);
2161 if (agno >= mp->m_sb.sb_agcount) {
2162 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2163 __func__, agno, mp->m_sb.sb_agcount);
2164 ASSERT(0);
2165 return -EINVAL;
2166 }
2167 agino = XFS_INO_TO_AGINO(mp, inode);
2168 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
2169 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2170 __func__, (unsigned long long)inode,
2171 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2172 ASSERT(0);
2173 return -EINVAL;
2174 }
2175 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2176 if (agbno >= mp->m_sb.sb_agblocks) {
2177 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2178 __func__, agbno, mp->m_sb.sb_agblocks);
2179 ASSERT(0);
2180 return -EINVAL;
2181 }
2182 /*
2183 * Get the allocation group header.
2184 */
2185 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2186 if (error) {
2187 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2188 __func__, error);
2189 return error;
2190 }
2191
2192 /*
2193 * Fix up the inode allocation btree.
2194 */
2195 error = xfs_difree_inobt(mp, tp, agbp, agino, xic, &rec);
2196 if (error)
2197 goto error0;
2198
2199 /*
2200 * Fix up the free inode btree.
2201 */
2202 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2203 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2204 if (error)
2205 goto error0;
2206 }
2207
2208 return 0;
2209
2210 error0:
2211 return error;
2212 }
2213
2214 STATIC int
2215 xfs_imap_lookup(
2216 struct xfs_mount *mp,
2217 struct xfs_trans *tp,
2218 xfs_agnumber_t agno,
2219 xfs_agino_t agino,
2220 xfs_agblock_t agbno,
2221 xfs_agblock_t *chunk_agbno,
2222 xfs_agblock_t *offset_agbno,
2223 int flags)
2224 {
2225 struct xfs_inobt_rec_incore rec;
2226 struct xfs_btree_cur *cur;
2227 struct xfs_buf *agbp;
2228 int error;
2229 int i;
2230
2231 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2232 if (error) {
2233 xfs_alert(mp,
2234 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2235 __func__, error, agno);
2236 return error;
2237 }
2238
2239 /*
2240 * Lookup the inode record for the given agino. If the record cannot be
2241 * found, then it's an invalid inode number and we should abort. Once
2242 * we have a record, we need to ensure it contains the inode number
2243 * we are looking up.
2244 */
2245 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2246 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2247 if (!error) {
2248 if (i)
2249 error = xfs_inobt_get_rec(cur, &rec, &i);
2250 if (!error && i == 0)
2251 error = -EINVAL;
2252 }
2253
2254 xfs_trans_brelse(tp, agbp);
2255 xfs_btree_del_cursor(cur, error);
2256 if (error)
2257 return error;
2258
2259 /* check that the returned record contains the required inode */
2260 if (rec.ir_startino > agino ||
2261 rec.ir_startino + mp->m_ialloc_inos <= agino)
2262 return -EINVAL;
2263
2264 /* for untrusted inodes check it is allocated first */
2265 if ((flags & XFS_IGET_UNTRUSTED) &&
2266 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2267 return -EINVAL;
2268
2269 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2270 *offset_agbno = agbno - *chunk_agbno;
2271 return 0;
2272 }
2273
2274 /*
2275 * Return the location of the inode in imap, for mapping it into a buffer.
2276 */
2277 int
2278 xfs_imap(
2279 xfs_mount_t *mp, /* file system mount structure */
2280 xfs_trans_t *tp, /* transaction pointer */
2281 xfs_ino_t ino, /* inode to locate */
2282 struct xfs_imap *imap, /* location map structure */
2283 uint flags) /* flags for inode btree lookup */
2284 {
2285 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2286 xfs_agino_t agino; /* inode number within alloc group */
2287 xfs_agnumber_t agno; /* allocation group number */
2288 int blks_per_cluster; /* num blocks per inode cluster */
2289 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2290 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2291 int error; /* error code */
2292 int offset; /* index of inode in its buffer */
2293 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2294
2295 ASSERT(ino != NULLFSINO);
2296
2297 /*
2298 * Split up the inode number into its parts.
2299 */
2300 agno = XFS_INO_TO_AGNO(mp, ino);
2301 agino = XFS_INO_TO_AGINO(mp, ino);
2302 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2303 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2304 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2305 #ifdef DEBUG
2306 /*
2307 * Don't output diagnostic information for untrusted inodes
2308 * as they can be invalid without implying corruption.
2309 */
2310 if (flags & XFS_IGET_UNTRUSTED)
2311 return -EINVAL;
2312 if (agno >= mp->m_sb.sb_agcount) {
2313 xfs_alert(mp,
2314 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2315 __func__, agno, mp->m_sb.sb_agcount);
2316 }
2317 if (agbno >= mp->m_sb.sb_agblocks) {
2318 xfs_alert(mp,
2319 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2320 __func__, (unsigned long long)agbno,
2321 (unsigned long)mp->m_sb.sb_agblocks);
2322 }
2323 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2324 xfs_alert(mp,
2325 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2326 __func__, ino,
2327 XFS_AGINO_TO_INO(mp, agno, agino));
2328 }
2329 xfs_stack_trace();
2330 #endif /* DEBUG */
2331 return -EINVAL;
2332 }
2333
2334 blks_per_cluster = xfs_icluster_size_fsb(mp);
2335
2336 /*
2337 * For bulkstat and handle lookups, we have an untrusted inode number
2338 * that we have to verify is valid. We cannot do this just by reading
2339 * the inode buffer as it may have been unlinked and removed leaving
2340 * inodes in stale state on disk. Hence we have to do a btree lookup
2341 * in all cases where an untrusted inode number is passed.
2342 */
2343 if (flags & XFS_IGET_UNTRUSTED) {
2344 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2345 &chunk_agbno, &offset_agbno, flags);
2346 if (error)
2347 return error;
2348 goto out_map;
2349 }
2350
2351 /*
2352 * If the inode cluster size is the same as the blocksize or
2353 * smaller we get to the buffer by simple arithmetics.
2354 */
2355 if (blks_per_cluster == 1) {
2356 offset = XFS_INO_TO_OFFSET(mp, ino);
2357 ASSERT(offset < mp->m_sb.sb_inopblock);
2358
2359 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2360 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2361 imap->im_boffset = (unsigned short)(offset <<
2362 mp->m_sb.sb_inodelog);
2363 return 0;
2364 }
2365
2366 /*
2367 * If the inode chunks are aligned then use simple maths to
2368 * find the location. Otherwise we have to do a btree
2369 * lookup to find the location.
2370 */
2371 if (mp->m_inoalign_mask) {
2372 offset_agbno = agbno & mp->m_inoalign_mask;
2373 chunk_agbno = agbno - offset_agbno;
2374 } else {
2375 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2376 &chunk_agbno, &offset_agbno, flags);
2377 if (error)
2378 return error;
2379 }
2380
2381 out_map:
2382 ASSERT(agbno >= chunk_agbno);
2383 cluster_agbno = chunk_agbno +
2384 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
2385 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2386 XFS_INO_TO_OFFSET(mp, ino);
2387
2388 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2389 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2390 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2391
2392 /*
2393 * If the inode number maps to a block outside the bounds
2394 * of the file system then return NULL rather than calling
2395 * read_buf and panicing when we get an error from the
2396 * driver.
2397 */
2398 if ((imap->im_blkno + imap->im_len) >
2399 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2400 xfs_alert(mp,
2401 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2402 __func__, (unsigned long long) imap->im_blkno,
2403 (unsigned long long) imap->im_len,
2404 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2405 return -EINVAL;
2406 }
2407 return 0;
2408 }
2409
2410 /*
2411 * Compute and fill in value of m_in_maxlevels.
2412 */
2413 void
2414 xfs_ialloc_compute_maxlevels(
2415 xfs_mount_t *mp) /* file system mount structure */
2416 {
2417 uint inodes;
2418
2419 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2420 mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp->m_inobt_mnr,
2421 inodes);
2422 }
2423
2424 /*
2425 * Log specified fields for the ag hdr (inode section). The growth of the agi
2426 * structure over time requires that we interpret the buffer as two logical
2427 * regions delineated by the end of the unlinked list. This is due to the size
2428 * of the hash table and its location in the middle of the agi.
2429 *
2430 * For example, a request to log a field before agi_unlinked and a field after
2431 * agi_unlinked could cause us to log the entire hash table and use an excessive
2432 * amount of log space. To avoid this behavior, log the region up through
2433 * agi_unlinked in one call and the region after agi_unlinked through the end of
2434 * the structure in another.
2435 */
2436 void
2437 xfs_ialloc_log_agi(
2438 xfs_trans_t *tp, /* transaction pointer */
2439 xfs_buf_t *bp, /* allocation group header buffer */
2440 int fields) /* bitmask of fields to log */
2441 {
2442 int first; /* first byte number */
2443 int last; /* last byte number */
2444 static const short offsets[] = { /* field starting offsets */
2445 /* keep in sync with bit definitions */
2446 offsetof(xfs_agi_t, agi_magicnum),
2447 offsetof(xfs_agi_t, agi_versionnum),
2448 offsetof(xfs_agi_t, agi_seqno),
2449 offsetof(xfs_agi_t, agi_length),
2450 offsetof(xfs_agi_t, agi_count),
2451 offsetof(xfs_agi_t, agi_root),
2452 offsetof(xfs_agi_t, agi_level),
2453 offsetof(xfs_agi_t, agi_freecount),
2454 offsetof(xfs_agi_t, agi_newino),
2455 offsetof(xfs_agi_t, agi_dirino),
2456 offsetof(xfs_agi_t, agi_unlinked),
2457 offsetof(xfs_agi_t, agi_free_root),
2458 offsetof(xfs_agi_t, agi_free_level),
2459 sizeof(xfs_agi_t)
2460 };
2461 #ifdef DEBUG
2462 xfs_agi_t *agi; /* allocation group header */
2463
2464 agi = XFS_BUF_TO_AGI(bp);
2465 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2466 #endif
2467
2468 /*
2469 * Compute byte offsets for the first and last fields in the first
2470 * region and log the agi buffer. This only logs up through
2471 * agi_unlinked.
2472 */
2473 if (fields & XFS_AGI_ALL_BITS_R1) {
2474 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2475 &first, &last);
2476 xfs_trans_log_buf(tp, bp, first, last);
2477 }
2478
2479 /*
2480 * Mask off the bits in the first region and calculate the first and
2481 * last field offsets for any bits in the second region.
2482 */
2483 fields &= ~XFS_AGI_ALL_BITS_R1;
2484 if (fields) {
2485 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2486 &first, &last);
2487 xfs_trans_log_buf(tp, bp, first, last);
2488 }
2489 }
2490
2491 static xfs_failaddr_t
2492 xfs_agi_verify(
2493 struct xfs_buf *bp)
2494 {
2495 struct xfs_mount *mp = bp->b_target->bt_mount;
2496 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
2497 int i;
2498
2499 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2500 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2501 return __this_address;
2502 if (!xfs_log_check_lsn(mp,
2503 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2504 return __this_address;
2505 }
2506
2507 /*
2508 * Validate the magic number of the agi block.
2509 */
2510 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2511 return __this_address;
2512 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2513 return __this_address;
2514
2515 if (be32_to_cpu(agi->agi_level) < 1 ||
2516 be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2517 return __this_address;
2518
2519 if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2520 (be32_to_cpu(agi->agi_free_level) < 1 ||
2521 be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2522 return __this_address;
2523
2524 /*
2525 * during growfs operations, the perag is not fully initialised,
2526 * so we can't use it for any useful checking. growfs ensures we can't
2527 * use it by using uncached buffers that don't have the perag attached
2528 * so we can detect and avoid this problem.
2529 */
2530 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2531 return __this_address;
2532
2533 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2534 if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2535 continue;
2536 if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2537 return __this_address;
2538 }
2539
2540 return NULL;
2541 }
2542
2543 static void
2544 xfs_agi_read_verify(
2545 struct xfs_buf *bp)
2546 {
2547 struct xfs_mount *mp = bp->b_target->bt_mount;
2548 xfs_failaddr_t fa;
2549
2550 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2551 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2552 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2553 else {
2554 fa = xfs_agi_verify(bp);
2555 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2556 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2557 }
2558 }
2559
2560 static void
2561 xfs_agi_write_verify(
2562 struct xfs_buf *bp)
2563 {
2564 struct xfs_mount *mp = bp->b_target->bt_mount;
2565 struct xfs_buf_log_item *bip = bp->b_log_item;
2566 xfs_failaddr_t fa;
2567
2568 fa = xfs_agi_verify(bp);
2569 if (fa) {
2570 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2571 return;
2572 }
2573
2574 if (!xfs_sb_version_hascrc(&mp->m_sb))
2575 return;
2576
2577 if (bip)
2578 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2579 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2580 }
2581
2582 const struct xfs_buf_ops xfs_agi_buf_ops = {
2583 .name = "xfs_agi",
2584 .verify_read = xfs_agi_read_verify,
2585 .verify_write = xfs_agi_write_verify,
2586 .verify_struct = xfs_agi_verify,
2587 };
2588
2589 /*
2590 * Read in the allocation group header (inode allocation section)
2591 */
2592 int
2593 xfs_read_agi(
2594 struct xfs_mount *mp, /* file system mount structure */
2595 struct xfs_trans *tp, /* transaction pointer */
2596 xfs_agnumber_t agno, /* allocation group number */
2597 struct xfs_buf **bpp) /* allocation group hdr buf */
2598 {
2599 int error;
2600
2601 trace_xfs_read_agi(mp, agno);
2602
2603 ASSERT(agno != NULLAGNUMBER);
2604 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2605 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2606 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2607 if (error)
2608 return error;
2609 if (tp)
2610 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2611
2612 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2613 return 0;
2614 }
2615
2616 int
2617 xfs_ialloc_read_agi(
2618 struct xfs_mount *mp, /* file system mount structure */
2619 struct xfs_trans *tp, /* transaction pointer */
2620 xfs_agnumber_t agno, /* allocation group number */
2621 struct xfs_buf **bpp) /* allocation group hdr buf */
2622 {
2623 struct xfs_agi *agi; /* allocation group header */
2624 struct xfs_perag *pag; /* per allocation group data */
2625 int error;
2626
2627 trace_xfs_ialloc_read_agi(mp, agno);
2628
2629 error = xfs_read_agi(mp, tp, agno, bpp);
2630 if (error)
2631 return error;
2632
2633 agi = XFS_BUF_TO_AGI(*bpp);
2634 pag = xfs_perag_get(mp, agno);
2635 if (!pag->pagi_init) {
2636 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2637 pag->pagi_count = be32_to_cpu(agi->agi_count);
2638 pag->pagi_init = 1;
2639 }
2640
2641 /*
2642 * It's possible for these to be out of sync if
2643 * we are in the middle of a forced shutdown.
2644 */
2645 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2646 XFS_FORCED_SHUTDOWN(mp));
2647 xfs_perag_put(pag);
2648 return 0;
2649 }
2650
2651 /*
2652 * Read in the agi to initialise the per-ag data in the mount structure
2653 */
2654 int
2655 xfs_ialloc_pagi_init(
2656 xfs_mount_t *mp, /* file system mount structure */
2657 xfs_trans_t *tp, /* transaction pointer */
2658 xfs_agnumber_t agno) /* allocation group number */
2659 {
2660 xfs_buf_t *bp = NULL;
2661 int error;
2662
2663 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2664 if (error)
2665 return error;
2666 if (bp)
2667 xfs_trans_brelse(tp, bp);
2668 return 0;
2669 }
2670
2671 /* Is there an inode record covering a given range of inode numbers? */
2672 int
2673 xfs_ialloc_has_inode_record(
2674 struct xfs_btree_cur *cur,
2675 xfs_agino_t low,
2676 xfs_agino_t high,
2677 bool *exists)
2678 {
2679 struct xfs_inobt_rec_incore irec;
2680 xfs_agino_t agino;
2681 uint16_t holemask;
2682 int has_record;
2683 int i;
2684 int error;
2685
2686 *exists = false;
2687 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2688 while (error == 0 && has_record) {
2689 error = xfs_inobt_get_rec(cur, &irec, &has_record);
2690 if (error || irec.ir_startino > high)
2691 break;
2692
2693 agino = irec.ir_startino;
2694 holemask = irec.ir_holemask;
2695 for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2696 i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2697 if (holemask & 1)
2698 continue;
2699 if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2700 agino <= high) {
2701 *exists = true;
2702 return 0;
2703 }
2704 }
2705
2706 error = xfs_btree_increment(cur, 0, &has_record);
2707 }
2708 return error;
2709 }
2710
2711 /* Is there an inode record covering a given extent? */
2712 int
2713 xfs_ialloc_has_inodes_at_extent(
2714 struct xfs_btree_cur *cur,
2715 xfs_agblock_t bno,
2716 xfs_extlen_t len,
2717 bool *exists)
2718 {
2719 xfs_agino_t low;
2720 xfs_agino_t high;
2721
2722 low = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno, 0);
2723 high = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno + len, 0) - 1;
2724
2725 return xfs_ialloc_has_inode_record(cur, low, high, exists);
2726 }
2727
2728 struct xfs_ialloc_count_inodes {
2729 xfs_agino_t count;
2730 xfs_agino_t freecount;
2731 };
2732
2733 /* Record inode counts across all inobt records. */
2734 STATIC int
2735 xfs_ialloc_count_inodes_rec(
2736 struct xfs_btree_cur *cur,
2737 union xfs_btree_rec *rec,
2738 void *priv)
2739 {
2740 struct xfs_inobt_rec_incore irec;
2741 struct xfs_ialloc_count_inodes *ci = priv;
2742
2743 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2744 ci->count += irec.ir_count;
2745 ci->freecount += irec.ir_freecount;
2746
2747 return 0;
2748 }
2749
2750 /* Count allocated and free inodes under an inobt. */
2751 int
2752 xfs_ialloc_count_inodes(
2753 struct xfs_btree_cur *cur,
2754 xfs_agino_t *count,
2755 xfs_agino_t *freecount)
2756 {
2757 struct xfs_ialloc_count_inodes ci = {0};
2758 int error;
2759
2760 ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2761 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2762 if (error)
2763 return error;
2764
2765 *count = ci.count;
2766 *freecount = ci.freecount;
2767 return 0;
2768 }