]> git.ipfire.org Git - thirdparty/xfsprogs-dev.git/blob - libxfs/xfs_iext_tree.c
libxfs: refactor manage_zones()
[thirdparty/xfsprogs-dev.git] / libxfs / xfs_iext_tree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2017 Christoph Hellwig.
4 */
5
6 // #include <linux/cache.h>
7 // #include <linux/kernel.h>
8 // #include <linux/slab.h>
9 #include "libxfs_priv.h"
10 #include "xfs_format.h"
11 #include "xfs_bit.h"
12 #include "xfs_log_format.h"
13 #include "xfs_inode.h"
14 #include "xfs_inode_fork.h"
15 #include "xfs_trans_resv.h"
16 #include "xfs_mount.h"
17 #include "xfs_bmap.h"
18 #include "xfs_trace.h"
19
20 /*
21 * In-core extent record layout:
22 *
23 * +-------+----------------------------+
24 * | 00:53 | all 54 bits of startoff |
25 * | 54:63 | low 10 bits of startblock |
26 * +-------+----------------------------+
27 * | 00:20 | all 21 bits of length |
28 * | 21 | unwritten extent bit |
29 * | 22:63 | high 42 bits of startblock |
30 * +-------+----------------------------+
31 */
32 #define XFS_IEXT_STARTOFF_MASK xfs_mask64lo(BMBT_STARTOFF_BITLEN)
33 #define XFS_IEXT_LENGTH_MASK xfs_mask64lo(BMBT_BLOCKCOUNT_BITLEN)
34 #define XFS_IEXT_STARTBLOCK_MASK xfs_mask64lo(BMBT_STARTBLOCK_BITLEN)
35
36 struct xfs_iext_rec {
37 uint64_t lo;
38 uint64_t hi;
39 };
40
41 /*
42 * Given that the length can't be a zero, only an empty hi value indicates an
43 * unused record.
44 */
45 static bool xfs_iext_rec_is_empty(struct xfs_iext_rec *rec)
46 {
47 return rec->hi == 0;
48 }
49
50 static inline void xfs_iext_rec_clear(struct xfs_iext_rec *rec)
51 {
52 rec->lo = 0;
53 rec->hi = 0;
54 }
55
56 static void
57 xfs_iext_set(
58 struct xfs_iext_rec *rec,
59 struct xfs_bmbt_irec *irec)
60 {
61 ASSERT((irec->br_startoff & ~XFS_IEXT_STARTOFF_MASK) == 0);
62 ASSERT((irec->br_blockcount & ~XFS_IEXT_LENGTH_MASK) == 0);
63 ASSERT((irec->br_startblock & ~XFS_IEXT_STARTBLOCK_MASK) == 0);
64
65 rec->lo = irec->br_startoff & XFS_IEXT_STARTOFF_MASK;
66 rec->hi = irec->br_blockcount & XFS_IEXT_LENGTH_MASK;
67
68 rec->lo |= (irec->br_startblock << 54);
69 rec->hi |= ((irec->br_startblock & ~xfs_mask64lo(10)) << (22 - 10));
70
71 if (irec->br_state == XFS_EXT_UNWRITTEN)
72 rec->hi |= (1 << 21);
73 }
74
75 static void
76 xfs_iext_get(
77 struct xfs_bmbt_irec *irec,
78 struct xfs_iext_rec *rec)
79 {
80 irec->br_startoff = rec->lo & XFS_IEXT_STARTOFF_MASK;
81 irec->br_blockcount = rec->hi & XFS_IEXT_LENGTH_MASK;
82
83 irec->br_startblock = rec->lo >> 54;
84 irec->br_startblock |= (rec->hi & xfs_mask64hi(42)) >> (22 - 10);
85
86 if (rec->hi & (1 << 21))
87 irec->br_state = XFS_EXT_UNWRITTEN;
88 else
89 irec->br_state = XFS_EXT_NORM;
90 }
91
92 enum {
93 NODE_SIZE = 256,
94 KEYS_PER_NODE = NODE_SIZE / (sizeof(uint64_t) + sizeof(void *)),
95 RECS_PER_LEAF = (NODE_SIZE - (2 * sizeof(struct xfs_iext_leaf *))) /
96 sizeof(struct xfs_iext_rec),
97 };
98
99 /*
100 * In-core extent btree block layout:
101 *
102 * There are two types of blocks in the btree: leaf and inner (non-leaf) blocks.
103 *
104 * The leaf blocks are made up by %KEYS_PER_NODE extent records, which each
105 * contain the startoffset, blockcount, startblock and unwritten extent flag.
106 * See above for the exact format, followed by pointers to the previous and next
107 * leaf blocks (if there are any).
108 *
109 * The inner (non-leaf) blocks first contain KEYS_PER_NODE lookup keys, followed
110 * by an equal number of pointers to the btree blocks at the next lower level.
111 *
112 * +-------+-------+-------+-------+-------+----------+----------+
113 * Leaf: | rec 1 | rec 2 | rec 3 | rec 4 | rec N | prev-ptr | next-ptr |
114 * +-------+-------+-------+-------+-------+----------+----------+
115 *
116 * +-------+-------+-------+-------+-------+-------+------+-------+
117 * Inner: | key 1 | key 2 | key 3 | key N | ptr 1 | ptr 2 | ptr3 | ptr N |
118 * +-------+-------+-------+-------+-------+-------+------+-------+
119 */
120 struct xfs_iext_node {
121 uint64_t keys[KEYS_PER_NODE];
122 #define XFS_IEXT_KEY_INVALID (1ULL << 63)
123 void *ptrs[KEYS_PER_NODE];
124 };
125
126 struct xfs_iext_leaf {
127 struct xfs_iext_rec recs[RECS_PER_LEAF];
128 struct xfs_iext_leaf *prev;
129 struct xfs_iext_leaf *next;
130 };
131
132 inline xfs_extnum_t xfs_iext_count(struct xfs_ifork *ifp)
133 {
134 return ifp->if_bytes / sizeof(struct xfs_iext_rec);
135 }
136
137 static inline int xfs_iext_max_recs(struct xfs_ifork *ifp)
138 {
139 if (ifp->if_height == 1)
140 return xfs_iext_count(ifp);
141 return RECS_PER_LEAF;
142 }
143
144 static inline struct xfs_iext_rec *cur_rec(struct xfs_iext_cursor *cur)
145 {
146 return &cur->leaf->recs[cur->pos];
147 }
148
149 static inline bool xfs_iext_valid(struct xfs_ifork *ifp,
150 struct xfs_iext_cursor *cur)
151 {
152 if (!cur->leaf)
153 return false;
154 if (cur->pos < 0 || cur->pos >= xfs_iext_max_recs(ifp))
155 return false;
156 if (xfs_iext_rec_is_empty(cur_rec(cur)))
157 return false;
158 return true;
159 }
160
161 static void *
162 xfs_iext_find_first_leaf(
163 struct xfs_ifork *ifp)
164 {
165 struct xfs_iext_node *node = ifp->if_u1.if_root;
166 int height;
167
168 if (!ifp->if_height)
169 return NULL;
170
171 for (height = ifp->if_height; height > 1; height--) {
172 node = node->ptrs[0];
173 ASSERT(node);
174 }
175
176 return node;
177 }
178
179 static void *
180 xfs_iext_find_last_leaf(
181 struct xfs_ifork *ifp)
182 {
183 struct xfs_iext_node *node = ifp->if_u1.if_root;
184 int height, i;
185
186 if (!ifp->if_height)
187 return NULL;
188
189 for (height = ifp->if_height; height > 1; height--) {
190 for (i = 1; i < KEYS_PER_NODE; i++)
191 if (!node->ptrs[i])
192 break;
193 node = node->ptrs[i - 1];
194 ASSERT(node);
195 }
196
197 return node;
198 }
199
200 void
201 xfs_iext_first(
202 struct xfs_ifork *ifp,
203 struct xfs_iext_cursor *cur)
204 {
205 cur->pos = 0;
206 cur->leaf = xfs_iext_find_first_leaf(ifp);
207 }
208
209 void
210 xfs_iext_last(
211 struct xfs_ifork *ifp,
212 struct xfs_iext_cursor *cur)
213 {
214 int i;
215
216 cur->leaf = xfs_iext_find_last_leaf(ifp);
217 if (!cur->leaf) {
218 cur->pos = 0;
219 return;
220 }
221
222 for (i = 1; i < xfs_iext_max_recs(ifp); i++) {
223 if (xfs_iext_rec_is_empty(&cur->leaf->recs[i]))
224 break;
225 }
226 cur->pos = i - 1;
227 }
228
229 void
230 xfs_iext_next(
231 struct xfs_ifork *ifp,
232 struct xfs_iext_cursor *cur)
233 {
234 if (!cur->leaf) {
235 ASSERT(cur->pos <= 0 || cur->pos >= RECS_PER_LEAF);
236 xfs_iext_first(ifp, cur);
237 return;
238 }
239
240 ASSERT(cur->pos >= 0);
241 ASSERT(cur->pos < xfs_iext_max_recs(ifp));
242
243 cur->pos++;
244 if (ifp->if_height > 1 && !xfs_iext_valid(ifp, cur) &&
245 cur->leaf->next) {
246 cur->leaf = cur->leaf->next;
247 cur->pos = 0;
248 }
249 }
250
251 void
252 xfs_iext_prev(
253 struct xfs_ifork *ifp,
254 struct xfs_iext_cursor *cur)
255 {
256 if (!cur->leaf) {
257 ASSERT(cur->pos <= 0 || cur->pos >= RECS_PER_LEAF);
258 xfs_iext_last(ifp, cur);
259 return;
260 }
261
262 ASSERT(cur->pos >= 0);
263 ASSERT(cur->pos <= RECS_PER_LEAF);
264
265 recurse:
266 do {
267 cur->pos--;
268 if (xfs_iext_valid(ifp, cur))
269 return;
270 } while (cur->pos > 0);
271
272 if (ifp->if_height > 1 && cur->leaf->prev) {
273 cur->leaf = cur->leaf->prev;
274 cur->pos = RECS_PER_LEAF;
275 goto recurse;
276 }
277 }
278
279 static inline int
280 xfs_iext_key_cmp(
281 struct xfs_iext_node *node,
282 int n,
283 xfs_fileoff_t offset)
284 {
285 if (node->keys[n] > offset)
286 return 1;
287 if (node->keys[n] < offset)
288 return -1;
289 return 0;
290 }
291
292 static inline int
293 xfs_iext_rec_cmp(
294 struct xfs_iext_rec *rec,
295 xfs_fileoff_t offset)
296 {
297 uint64_t rec_offset = rec->lo & XFS_IEXT_STARTOFF_MASK;
298 uint32_t rec_len = rec->hi & XFS_IEXT_LENGTH_MASK;
299
300 if (rec_offset > offset)
301 return 1;
302 if (rec_offset + rec_len <= offset)
303 return -1;
304 return 0;
305 }
306
307 static void *
308 xfs_iext_find_level(
309 struct xfs_ifork *ifp,
310 xfs_fileoff_t offset,
311 int level)
312 {
313 struct xfs_iext_node *node = ifp->if_u1.if_root;
314 int height, i;
315
316 if (!ifp->if_height)
317 return NULL;
318
319 for (height = ifp->if_height; height > level; height--) {
320 for (i = 1; i < KEYS_PER_NODE; i++)
321 if (xfs_iext_key_cmp(node, i, offset) > 0)
322 break;
323
324 node = node->ptrs[i - 1];
325 if (!node)
326 break;
327 }
328
329 return node;
330 }
331
332 static int
333 xfs_iext_node_pos(
334 struct xfs_iext_node *node,
335 xfs_fileoff_t offset)
336 {
337 int i;
338
339 for (i = 1; i < KEYS_PER_NODE; i++) {
340 if (xfs_iext_key_cmp(node, i, offset) > 0)
341 break;
342 }
343
344 return i - 1;
345 }
346
347 static int
348 xfs_iext_node_insert_pos(
349 struct xfs_iext_node *node,
350 xfs_fileoff_t offset)
351 {
352 int i;
353
354 for (i = 0; i < KEYS_PER_NODE; i++) {
355 if (xfs_iext_key_cmp(node, i, offset) > 0)
356 return i;
357 }
358
359 return KEYS_PER_NODE;
360 }
361
362 static int
363 xfs_iext_node_nr_entries(
364 struct xfs_iext_node *node,
365 int start)
366 {
367 int i;
368
369 for (i = start; i < KEYS_PER_NODE; i++) {
370 if (node->keys[i] == XFS_IEXT_KEY_INVALID)
371 break;
372 }
373
374 return i;
375 }
376
377 static int
378 xfs_iext_leaf_nr_entries(
379 struct xfs_ifork *ifp,
380 struct xfs_iext_leaf *leaf,
381 int start)
382 {
383 int i;
384
385 for (i = start; i < xfs_iext_max_recs(ifp); i++) {
386 if (xfs_iext_rec_is_empty(&leaf->recs[i]))
387 break;
388 }
389
390 return i;
391 }
392
393 static inline uint64_t
394 xfs_iext_leaf_key(
395 struct xfs_iext_leaf *leaf,
396 int n)
397 {
398 return leaf->recs[n].lo & XFS_IEXT_STARTOFF_MASK;
399 }
400
401 static void
402 xfs_iext_grow(
403 struct xfs_ifork *ifp)
404 {
405 struct xfs_iext_node *node = kmem_zalloc(NODE_SIZE, KM_NOFS);
406 int i;
407
408 if (ifp->if_height == 1) {
409 struct xfs_iext_leaf *prev = ifp->if_u1.if_root;
410
411 node->keys[0] = xfs_iext_leaf_key(prev, 0);
412 node->ptrs[0] = prev;
413 } else {
414 struct xfs_iext_node *prev = ifp->if_u1.if_root;
415
416 ASSERT(ifp->if_height > 1);
417
418 node->keys[0] = prev->keys[0];
419 node->ptrs[0] = prev;
420 }
421
422 for (i = 1; i < KEYS_PER_NODE; i++)
423 node->keys[i] = XFS_IEXT_KEY_INVALID;
424
425 ifp->if_u1.if_root = node;
426 ifp->if_height++;
427 }
428
429 static void
430 xfs_iext_update_node(
431 struct xfs_ifork *ifp,
432 xfs_fileoff_t old_offset,
433 xfs_fileoff_t new_offset,
434 int level,
435 void *ptr)
436 {
437 struct xfs_iext_node *node = ifp->if_u1.if_root;
438 int height, i;
439
440 for (height = ifp->if_height; height > level; height--) {
441 for (i = 0; i < KEYS_PER_NODE; i++) {
442 if (i > 0 && xfs_iext_key_cmp(node, i, old_offset) > 0)
443 break;
444 if (node->keys[i] == old_offset)
445 node->keys[i] = new_offset;
446 }
447 node = node->ptrs[i - 1];
448 ASSERT(node);
449 }
450
451 ASSERT(node == ptr);
452 }
453
454 static struct xfs_iext_node *
455 xfs_iext_split_node(
456 struct xfs_iext_node **nodep,
457 int *pos,
458 int *nr_entries)
459 {
460 struct xfs_iext_node *node = *nodep;
461 struct xfs_iext_node *new = kmem_zalloc(NODE_SIZE, KM_NOFS);
462 const int nr_move = KEYS_PER_NODE / 2;
463 int nr_keep = nr_move + (KEYS_PER_NODE & 1);
464 int i = 0;
465
466 /* for sequential append operations just spill over into the new node */
467 if (*pos == KEYS_PER_NODE) {
468 *nodep = new;
469 *pos = 0;
470 *nr_entries = 0;
471 goto done;
472 }
473
474
475 for (i = 0; i < nr_move; i++) {
476 new->keys[i] = node->keys[nr_keep + i];
477 new->ptrs[i] = node->ptrs[nr_keep + i];
478
479 node->keys[nr_keep + i] = XFS_IEXT_KEY_INVALID;
480 node->ptrs[nr_keep + i] = NULL;
481 }
482
483 if (*pos >= nr_keep) {
484 *nodep = new;
485 *pos -= nr_keep;
486 *nr_entries = nr_move;
487 } else {
488 *nr_entries = nr_keep;
489 }
490 done:
491 for (; i < KEYS_PER_NODE; i++)
492 new->keys[i] = XFS_IEXT_KEY_INVALID;
493 return new;
494 }
495
496 static void
497 xfs_iext_insert_node(
498 struct xfs_ifork *ifp,
499 uint64_t offset,
500 void *ptr,
501 int level)
502 {
503 struct xfs_iext_node *node, *new;
504 int i, pos, nr_entries;
505
506 again:
507 if (ifp->if_height < level)
508 xfs_iext_grow(ifp);
509
510 new = NULL;
511 node = xfs_iext_find_level(ifp, offset, level);
512 pos = xfs_iext_node_insert_pos(node, offset);
513 nr_entries = xfs_iext_node_nr_entries(node, pos);
514
515 ASSERT(pos >= nr_entries || xfs_iext_key_cmp(node, pos, offset) != 0);
516 ASSERT(nr_entries <= KEYS_PER_NODE);
517
518 if (nr_entries == KEYS_PER_NODE)
519 new = xfs_iext_split_node(&node, &pos, &nr_entries);
520
521 /*
522 * Update the pointers in higher levels if the first entry changes
523 * in an existing node.
524 */
525 if (node != new && pos == 0 && nr_entries > 0)
526 xfs_iext_update_node(ifp, node->keys[0], offset, level, node);
527
528 for (i = nr_entries; i > pos; i--) {
529 node->keys[i] = node->keys[i - 1];
530 node->ptrs[i] = node->ptrs[i - 1];
531 }
532 node->keys[pos] = offset;
533 node->ptrs[pos] = ptr;
534
535 if (new) {
536 offset = new->keys[0];
537 ptr = new;
538 level++;
539 goto again;
540 }
541 }
542
543 static struct xfs_iext_leaf *
544 xfs_iext_split_leaf(
545 struct xfs_iext_cursor *cur,
546 int *nr_entries)
547 {
548 struct xfs_iext_leaf *leaf = cur->leaf;
549 struct xfs_iext_leaf *new = kmem_zalloc(NODE_SIZE, KM_NOFS);
550 const int nr_move = RECS_PER_LEAF / 2;
551 int nr_keep = nr_move + (RECS_PER_LEAF & 1);
552 int i;
553
554 /* for sequential append operations just spill over into the new node */
555 if (cur->pos == RECS_PER_LEAF) {
556 cur->leaf = new;
557 cur->pos = 0;
558 *nr_entries = 0;
559 goto done;
560 }
561
562 for (i = 0; i < nr_move; i++) {
563 new->recs[i] = leaf->recs[nr_keep + i];
564 xfs_iext_rec_clear(&leaf->recs[nr_keep + i]);
565 }
566
567 if (cur->pos >= nr_keep) {
568 cur->leaf = new;
569 cur->pos -= nr_keep;
570 *nr_entries = nr_move;
571 } else {
572 *nr_entries = nr_keep;
573 }
574 done:
575 if (leaf->next)
576 leaf->next->prev = new;
577 new->next = leaf->next;
578 new->prev = leaf;
579 leaf->next = new;
580 return new;
581 }
582
583 static void
584 xfs_iext_alloc_root(
585 struct xfs_ifork *ifp,
586 struct xfs_iext_cursor *cur)
587 {
588 ASSERT(ifp->if_bytes == 0);
589
590 ifp->if_u1.if_root = kmem_zalloc(sizeof(struct xfs_iext_rec), KM_NOFS);
591 ifp->if_height = 1;
592
593 /* now that we have a node step into it */
594 cur->leaf = ifp->if_u1.if_root;
595 cur->pos = 0;
596 }
597
598 static void
599 xfs_iext_realloc_root(
600 struct xfs_ifork *ifp,
601 struct xfs_iext_cursor *cur)
602 {
603 size_t new_size = ifp->if_bytes + sizeof(struct xfs_iext_rec);
604 void *new;
605
606 /* account for the prev/next pointers */
607 if (new_size / sizeof(struct xfs_iext_rec) == RECS_PER_LEAF)
608 new_size = NODE_SIZE;
609
610 new = kmem_realloc(ifp->if_u1.if_root, new_size, KM_NOFS);
611 memset(new + ifp->if_bytes, 0, new_size - ifp->if_bytes);
612 ifp->if_u1.if_root = new;
613 cur->leaf = new;
614 }
615
616 /*
617 * Increment the sequence counter if we are on a COW fork. This allows
618 * the writeback code to skip looking for a COW extent if the COW fork
619 * hasn't changed. We use WRITE_ONCE here to ensure the update to the
620 * sequence counter is seen before the modifications to the extent
621 * tree itself take effect.
622 */
623 static inline void xfs_iext_inc_seq(struct xfs_ifork *ifp, int state)
624 {
625 if (state & BMAP_COWFORK)
626 WRITE_ONCE(ifp->if_seq, READ_ONCE(ifp->if_seq) + 1);
627 }
628
629 void
630 xfs_iext_insert(
631 struct xfs_inode *ip,
632 struct xfs_iext_cursor *cur,
633 struct xfs_bmbt_irec *irec,
634 int state)
635 {
636 struct xfs_ifork *ifp = xfs_iext_state_to_fork(ip, state);
637 xfs_fileoff_t offset = irec->br_startoff;
638 struct xfs_iext_leaf *new = NULL;
639 int nr_entries, i;
640
641 xfs_iext_inc_seq(ifp, state);
642
643 if (ifp->if_height == 0)
644 xfs_iext_alloc_root(ifp, cur);
645 else if (ifp->if_height == 1)
646 xfs_iext_realloc_root(ifp, cur);
647
648 nr_entries = xfs_iext_leaf_nr_entries(ifp, cur->leaf, cur->pos);
649 ASSERT(nr_entries <= RECS_PER_LEAF);
650 ASSERT(cur->pos >= nr_entries ||
651 xfs_iext_rec_cmp(cur_rec(cur), irec->br_startoff) != 0);
652
653 if (nr_entries == RECS_PER_LEAF)
654 new = xfs_iext_split_leaf(cur, &nr_entries);
655
656 /*
657 * Update the pointers in higher levels if the first entry changes
658 * in an existing node.
659 */
660 if (cur->leaf != new && cur->pos == 0 && nr_entries > 0) {
661 xfs_iext_update_node(ifp, xfs_iext_leaf_key(cur->leaf, 0),
662 offset, 1, cur->leaf);
663 }
664
665 for (i = nr_entries; i > cur->pos; i--)
666 cur->leaf->recs[i] = cur->leaf->recs[i - 1];
667 xfs_iext_set(cur_rec(cur), irec);
668 ifp->if_bytes += sizeof(struct xfs_iext_rec);
669
670 trace_xfs_iext_insert(ip, cur, state, _RET_IP_);
671
672 if (new)
673 xfs_iext_insert_node(ifp, xfs_iext_leaf_key(new, 0), new, 2);
674 }
675
676 static struct xfs_iext_node *
677 xfs_iext_rebalance_node(
678 struct xfs_iext_node *parent,
679 int *pos,
680 struct xfs_iext_node *node,
681 int nr_entries)
682 {
683 /*
684 * If the neighbouring nodes are completely full, or have different
685 * parents, we might never be able to merge our node, and will only
686 * delete it once the number of entries hits zero.
687 */
688 if (nr_entries == 0)
689 return node;
690
691 if (*pos > 0) {
692 struct xfs_iext_node *prev = parent->ptrs[*pos - 1];
693 int nr_prev = xfs_iext_node_nr_entries(prev, 0), i;
694
695 if (nr_prev + nr_entries <= KEYS_PER_NODE) {
696 for (i = 0; i < nr_entries; i++) {
697 prev->keys[nr_prev + i] = node->keys[i];
698 prev->ptrs[nr_prev + i] = node->ptrs[i];
699 }
700 return node;
701 }
702 }
703
704 if (*pos + 1 < xfs_iext_node_nr_entries(parent, *pos)) {
705 struct xfs_iext_node *next = parent->ptrs[*pos + 1];
706 int nr_next = xfs_iext_node_nr_entries(next, 0), i;
707
708 if (nr_entries + nr_next <= KEYS_PER_NODE) {
709 /*
710 * Merge the next node into this node so that we don't
711 * have to do an additional update of the keys in the
712 * higher levels.
713 */
714 for (i = 0; i < nr_next; i++) {
715 node->keys[nr_entries + i] = next->keys[i];
716 node->ptrs[nr_entries + i] = next->ptrs[i];
717 }
718
719 ++*pos;
720 return next;
721 }
722 }
723
724 return NULL;
725 }
726
727 static void
728 xfs_iext_remove_node(
729 struct xfs_ifork *ifp,
730 xfs_fileoff_t offset,
731 void *victim)
732 {
733 struct xfs_iext_node *node, *parent;
734 int level = 2, pos, nr_entries, i;
735
736 ASSERT(level <= ifp->if_height);
737 node = xfs_iext_find_level(ifp, offset, level);
738 pos = xfs_iext_node_pos(node, offset);
739 again:
740 ASSERT(node->ptrs[pos]);
741 ASSERT(node->ptrs[pos] == victim);
742 kmem_free(victim);
743
744 nr_entries = xfs_iext_node_nr_entries(node, pos) - 1;
745 offset = node->keys[0];
746 for (i = pos; i < nr_entries; i++) {
747 node->keys[i] = node->keys[i + 1];
748 node->ptrs[i] = node->ptrs[i + 1];
749 }
750 node->keys[nr_entries] = XFS_IEXT_KEY_INVALID;
751 node->ptrs[nr_entries] = NULL;
752
753 if (pos == 0 && nr_entries > 0) {
754 xfs_iext_update_node(ifp, offset, node->keys[0], level, node);
755 offset = node->keys[0];
756 }
757
758 if (nr_entries >= KEYS_PER_NODE / 2)
759 return;
760
761 if (level < ifp->if_height) {
762 /*
763 * If we aren't at the root yet try to find a neighbour node to
764 * merge with (or delete the node if it is empty), and then
765 * recurse up to the next level.
766 */
767 level++;
768 parent = xfs_iext_find_level(ifp, offset, level);
769 pos = xfs_iext_node_pos(parent, offset);
770
771 ASSERT(pos != KEYS_PER_NODE);
772 ASSERT(parent->ptrs[pos] == node);
773
774 node = xfs_iext_rebalance_node(parent, &pos, node, nr_entries);
775 if (node) {
776 victim = node;
777 node = parent;
778 goto again;
779 }
780 } else if (nr_entries == 1) {
781 /*
782 * If we are at the root and only one entry is left we can just
783 * free this node and update the root pointer.
784 */
785 ASSERT(node == ifp->if_u1.if_root);
786 ifp->if_u1.if_root = node->ptrs[0];
787 ifp->if_height--;
788 kmem_free(node);
789 }
790 }
791
792 static void
793 xfs_iext_rebalance_leaf(
794 struct xfs_ifork *ifp,
795 struct xfs_iext_cursor *cur,
796 struct xfs_iext_leaf *leaf,
797 xfs_fileoff_t offset,
798 int nr_entries)
799 {
800 /*
801 * If the neighbouring nodes are completely full we might never be able
802 * to merge our node, and will only delete it once the number of
803 * entries hits zero.
804 */
805 if (nr_entries == 0)
806 goto remove_node;
807
808 if (leaf->prev) {
809 int nr_prev = xfs_iext_leaf_nr_entries(ifp, leaf->prev, 0), i;
810
811 if (nr_prev + nr_entries <= RECS_PER_LEAF) {
812 for (i = 0; i < nr_entries; i++)
813 leaf->prev->recs[nr_prev + i] = leaf->recs[i];
814
815 if (cur->leaf == leaf) {
816 cur->leaf = leaf->prev;
817 cur->pos += nr_prev;
818 }
819 goto remove_node;
820 }
821 }
822
823 if (leaf->next) {
824 int nr_next = xfs_iext_leaf_nr_entries(ifp, leaf->next, 0), i;
825
826 if (nr_entries + nr_next <= RECS_PER_LEAF) {
827 /*
828 * Merge the next node into this node so that we don't
829 * have to do an additional update of the keys in the
830 * higher levels.
831 */
832 for (i = 0; i < nr_next; i++) {
833 leaf->recs[nr_entries + i] =
834 leaf->next->recs[i];
835 }
836
837 if (cur->leaf == leaf->next) {
838 cur->leaf = leaf;
839 cur->pos += nr_entries;
840 }
841
842 offset = xfs_iext_leaf_key(leaf->next, 0);
843 leaf = leaf->next;
844 goto remove_node;
845 }
846 }
847
848 return;
849 remove_node:
850 if (leaf->prev)
851 leaf->prev->next = leaf->next;
852 if (leaf->next)
853 leaf->next->prev = leaf->prev;
854 xfs_iext_remove_node(ifp, offset, leaf);
855 }
856
857 static void
858 xfs_iext_free_last_leaf(
859 struct xfs_ifork *ifp)
860 {
861 ifp->if_height--;
862 kmem_free(ifp->if_u1.if_root);
863 ifp->if_u1.if_root = NULL;
864 }
865
866 void
867 xfs_iext_remove(
868 struct xfs_inode *ip,
869 struct xfs_iext_cursor *cur,
870 int state)
871 {
872 struct xfs_ifork *ifp = xfs_iext_state_to_fork(ip, state);
873 struct xfs_iext_leaf *leaf = cur->leaf;
874 xfs_fileoff_t offset = xfs_iext_leaf_key(leaf, 0);
875 int i, nr_entries;
876
877 trace_xfs_iext_remove(ip, cur, state, _RET_IP_);
878
879 ASSERT(ifp->if_height > 0);
880 ASSERT(ifp->if_u1.if_root != NULL);
881 ASSERT(xfs_iext_valid(ifp, cur));
882
883 xfs_iext_inc_seq(ifp, state);
884
885 nr_entries = xfs_iext_leaf_nr_entries(ifp, leaf, cur->pos) - 1;
886 for (i = cur->pos; i < nr_entries; i++)
887 leaf->recs[i] = leaf->recs[i + 1];
888 xfs_iext_rec_clear(&leaf->recs[nr_entries]);
889 ifp->if_bytes -= sizeof(struct xfs_iext_rec);
890
891 if (cur->pos == 0 && nr_entries > 0) {
892 xfs_iext_update_node(ifp, offset, xfs_iext_leaf_key(leaf, 0), 1,
893 leaf);
894 offset = xfs_iext_leaf_key(leaf, 0);
895 } else if (cur->pos == nr_entries) {
896 if (ifp->if_height > 1 && leaf->next)
897 cur->leaf = leaf->next;
898 else
899 cur->leaf = NULL;
900 cur->pos = 0;
901 }
902
903 if (nr_entries >= RECS_PER_LEAF / 2)
904 return;
905
906 if (ifp->if_height > 1)
907 xfs_iext_rebalance_leaf(ifp, cur, leaf, offset, nr_entries);
908 else if (nr_entries == 0)
909 xfs_iext_free_last_leaf(ifp);
910 }
911
912 /*
913 * Lookup the extent covering bno.
914 *
915 * If there is an extent covering bno return the extent index, and store the
916 * expanded extent structure in *gotp, and the extent cursor in *cur.
917 * If there is no extent covering bno, but there is an extent after it (e.g.
918 * it lies in a hole) return that extent in *gotp and its cursor in *cur
919 * instead.
920 * If bno is beyond the last extent return false, and return an invalid
921 * cursor value.
922 */
923 bool
924 xfs_iext_lookup_extent(
925 struct xfs_inode *ip,
926 struct xfs_ifork *ifp,
927 xfs_fileoff_t offset,
928 struct xfs_iext_cursor *cur,
929 struct xfs_bmbt_irec *gotp)
930 {
931 XFS_STATS_INC(ip->i_mount, xs_look_exlist);
932
933 cur->leaf = xfs_iext_find_level(ifp, offset, 1);
934 if (!cur->leaf) {
935 cur->pos = 0;
936 return false;
937 }
938
939 for (cur->pos = 0; cur->pos < xfs_iext_max_recs(ifp); cur->pos++) {
940 struct xfs_iext_rec *rec = cur_rec(cur);
941
942 if (xfs_iext_rec_is_empty(rec))
943 break;
944 if (xfs_iext_rec_cmp(rec, offset) >= 0)
945 goto found;
946 }
947
948 /* Try looking in the next node for an entry > offset */
949 if (ifp->if_height == 1 || !cur->leaf->next)
950 return false;
951 cur->leaf = cur->leaf->next;
952 cur->pos = 0;
953 if (!xfs_iext_valid(ifp, cur))
954 return false;
955 found:
956 xfs_iext_get(gotp, cur_rec(cur));
957 return true;
958 }
959
960 /*
961 * Returns the last extent before end, and if this extent doesn't cover
962 * end, update end to the end of the extent.
963 */
964 bool
965 xfs_iext_lookup_extent_before(
966 struct xfs_inode *ip,
967 struct xfs_ifork *ifp,
968 xfs_fileoff_t *end,
969 struct xfs_iext_cursor *cur,
970 struct xfs_bmbt_irec *gotp)
971 {
972 /* could be optimized to not even look up the next on a match.. */
973 if (xfs_iext_lookup_extent(ip, ifp, *end - 1, cur, gotp) &&
974 gotp->br_startoff <= *end - 1)
975 return true;
976 if (!xfs_iext_prev_extent(ifp, cur, gotp))
977 return false;
978 *end = gotp->br_startoff + gotp->br_blockcount;
979 return true;
980 }
981
982 void
983 xfs_iext_update_extent(
984 struct xfs_inode *ip,
985 int state,
986 struct xfs_iext_cursor *cur,
987 struct xfs_bmbt_irec *new)
988 {
989 struct xfs_ifork *ifp = xfs_iext_state_to_fork(ip, state);
990
991 xfs_iext_inc_seq(ifp, state);
992
993 if (cur->pos == 0) {
994 struct xfs_bmbt_irec old;
995
996 xfs_iext_get(&old, cur_rec(cur));
997 if (new->br_startoff != old.br_startoff) {
998 xfs_iext_update_node(ifp, old.br_startoff,
999 new->br_startoff, 1, cur->leaf);
1000 }
1001 }
1002
1003 trace_xfs_bmap_pre_update(ip, cur, state, _RET_IP_);
1004 xfs_iext_set(cur_rec(cur), new);
1005 trace_xfs_bmap_post_update(ip, cur, state, _RET_IP_);
1006 }
1007
1008 /*
1009 * Return true if the cursor points at an extent and return the extent structure
1010 * in gotp. Else return false.
1011 */
1012 bool
1013 xfs_iext_get_extent(
1014 struct xfs_ifork *ifp,
1015 struct xfs_iext_cursor *cur,
1016 struct xfs_bmbt_irec *gotp)
1017 {
1018 if (!xfs_iext_valid(ifp, cur))
1019 return false;
1020 xfs_iext_get(gotp, cur_rec(cur));
1021 return true;
1022 }
1023
1024 /*
1025 * This is a recursive function, because of that we need to be extremely
1026 * careful with stack usage.
1027 */
1028 static void
1029 xfs_iext_destroy_node(
1030 struct xfs_iext_node *node,
1031 int level)
1032 {
1033 int i;
1034
1035 if (level > 1) {
1036 for (i = 0; i < KEYS_PER_NODE; i++) {
1037 if (node->keys[i] == XFS_IEXT_KEY_INVALID)
1038 break;
1039 xfs_iext_destroy_node(node->ptrs[i], level - 1);
1040 }
1041 }
1042
1043 kmem_free(node);
1044 }
1045
1046 void
1047 xfs_iext_destroy(
1048 struct xfs_ifork *ifp)
1049 {
1050 xfs_iext_destroy_node(ifp->if_u1.if_root, ifp->if_height);
1051
1052 ifp->if_bytes = 0;
1053 ifp->if_height = 0;
1054 ifp->if_u1.if_root = NULL;
1055 }