]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/arm-tdep.c
[gdb/tdep] Fix use-after-free in arm_exidx_fill_cache
[thirdparty/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
0fd88904 2
1d506c26 3 Copyright (C) 1988-2024 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 19
0baeab03
PA
20#include "defs.h"
21
ef0f16cc 22#include <ctype.h>
34e8f22d 23
4de283e4 24#include "frame.h"
83b6e1f1 25#include "language.h"
4de283e4
TT
26#include "inferior.h"
27#include "infrun.h"
28#include "gdbcmd.h"
29#include "gdbcore.h"
ef0f16cc 30#include "dis-asm.h"
4de283e4
TT
31#include "disasm.h"
32#include "regcache.h"
33#include "reggroups.h"
34#include "target-float.h"
35#include "value.h"
d55e5aa6 36#include "arch-utils.h"
4de283e4
TT
37#include "osabi.h"
38#include "frame-unwind.h"
39#include "frame-base.h"
40#include "trad-frame.h"
41#include "objfiles.h"
a01567f4 42#include "dwarf2.h"
82ca8957 43#include "dwarf2/frame.h"
4de283e4
TT
44#include "gdbtypes.h"
45#include "prologue-value.h"
46#include "remote.h"
47#include "target-descriptions.h"
48#include "user-regs.h"
49#include "observable.h"
5f661e03 50#include "count-one-bits.h"
4de283e4 51
d55e5aa6 52#include "arch/arm.h"
4de283e4 53#include "arch/arm-get-next-pcs.h"
34e8f22d 54#include "arm-tdep.h"
d026e67e 55#include "sim/sim-arm.h"
4de283e4 56
d55e5aa6 57#include "elf-bfd.h"
4de283e4 58#include "coff/internal.h"
d55e5aa6 59#include "elf/arm.h"
4de283e4 60
4de283e4
TT
61#include "record.h"
62#include "record-full.h"
63#include <algorithm>
64
c2fd7fae
AKS
65#include "producer.h"
66
b121eeb9 67#if GDB_SELF_TEST
268a13a5 68#include "gdbsupport/selftest.h"
b121eeb9
YQ
69#endif
70
491144b5 71static bool arm_debug;
6529d2dd 72
7cb6d92a
SM
73/* Print an "arm" debug statement. */
74
75#define arm_debug_printf(fmt, ...) \
76 debug_prefixed_printf_cond (arm_debug, "arm", fmt, ##__VA_ARGS__)
77
082fc60d
RE
78/* Macros for setting and testing a bit in a minimal symbol that marks
79 it as Thumb function. The MSB of the minimal symbol's "info" field
f594e5e9 80 is used for this purpose.
082fc60d
RE
81
82 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
f594e5e9 83 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
082fc60d 84
0963b4bd 85#define MSYMBOL_SET_SPECIAL(msym) \
e165fcef 86 (msym)->set_target_flag_1 (true)
082fc60d
RE
87
88#define MSYMBOL_IS_SPECIAL(msym) \
e165fcef 89 (msym)->target_flag_1 ()
082fc60d 90
60c5725c
DJ
91struct arm_mapping_symbol
92{
227031b2 93 CORE_ADDR value;
60c5725c 94 char type;
54cc7474
SM
95
96 bool operator< (const arm_mapping_symbol &other) const
97 { return this->value < other.value; }
60c5725c 98};
54cc7474
SM
99
100typedef std::vector<arm_mapping_symbol> arm_mapping_symbol_vec;
60c5725c 101
bd5766ec 102struct arm_per_bfd
60c5725c 103{
bd5766ec 104 explicit arm_per_bfd (size_t num_sections)
4838e44c
SM
105 : section_maps (new arm_mapping_symbol_vec[num_sections]),
106 section_maps_sorted (new bool[num_sections] ())
54cc7474
SM
107 {}
108
bd5766ec 109 DISABLE_COPY_AND_ASSIGN (arm_per_bfd);
54cc7474
SM
110
111 /* Information about mapping symbols ($a, $d, $t) in the objfile.
112
113 The format is an array of vectors of arm_mapping_symbols, there is one
114 vector for each section of the objfile (the array is index by BFD section
115 index).
116
117 For each section, the vector of arm_mapping_symbol is sorted by
118 symbol value (address). */
119 std::unique_ptr<arm_mapping_symbol_vec[]> section_maps;
4838e44c
SM
120
121 /* For each corresponding element of section_maps above, is this vector
122 sorted. */
123 std::unique_ptr<bool[]> section_maps_sorted;
60c5725c
DJ
124};
125
bd5766ec 126/* Per-bfd data used for mapping symbols. */
08b8a139 127static const registry<bfd>::key<arm_per_bfd> arm_bfd_data_key;
1b7f24cd 128
afd7eef0
RE
129/* The list of available "set arm ..." and "show arm ..." commands. */
130static struct cmd_list_element *setarmcmdlist = NULL;
131static struct cmd_list_element *showarmcmdlist = NULL;
132
fd50bc42
RE
133/* The type of floating-point to use. Keep this in sync with enum
134 arm_float_model, and the help string in _initialize_arm_tdep. */
40478521 135static const char *const fp_model_strings[] =
fd50bc42
RE
136{
137 "auto",
138 "softfpa",
139 "fpa",
140 "softvfp",
28e97307
DJ
141 "vfp",
142 NULL
fd50bc42
RE
143};
144
145/* A variable that can be configured by the user. */
146static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
147static const char *current_fp_model = "auto";
148
28e97307 149/* The ABI to use. Keep this in sync with arm_abi_kind. */
40478521 150static const char *const arm_abi_strings[] =
28e97307
DJ
151{
152 "auto",
153 "APCS",
154 "AAPCS",
155 NULL
156};
157
158/* A variable that can be configured by the user. */
159static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
160static const char *arm_abi_string = "auto";
161
0428b8f5 162/* The execution mode to assume. */
40478521 163static const char *const arm_mode_strings[] =
0428b8f5
DJ
164 {
165 "auto",
166 "arm",
68770265
MGD
167 "thumb",
168 NULL
0428b8f5
DJ
169 };
170
171static const char *arm_fallback_mode_string = "auto";
172static const char *arm_force_mode_string = "auto";
173
f32bf4a4
YQ
174/* The standard register names, and all the valid aliases for them. Note
175 that `fp', `sp' and `pc' are not added in this alias list, because they
176 have been added as builtin user registers in
177 std-regs.c:_initialize_frame_reg. */
123dc839
DJ
178static const struct
179{
180 const char *name;
181 int regnum;
182} arm_register_aliases[] = {
183 /* Basic register numbers. */
184 { "r0", 0 },
185 { "r1", 1 },
186 { "r2", 2 },
187 { "r3", 3 },
188 { "r4", 4 },
189 { "r5", 5 },
190 { "r6", 6 },
191 { "r7", 7 },
192 { "r8", 8 },
193 { "r9", 9 },
194 { "r10", 10 },
195 { "r11", 11 },
196 { "r12", 12 },
197 { "r13", 13 },
198 { "r14", 14 },
199 { "r15", 15 },
200 /* Synonyms (argument and variable registers). */
201 { "a1", 0 },
202 { "a2", 1 },
203 { "a3", 2 },
204 { "a4", 3 },
205 { "v1", 4 },
206 { "v2", 5 },
207 { "v3", 6 },
208 { "v4", 7 },
209 { "v5", 8 },
210 { "v6", 9 },
211 { "v7", 10 },
212 { "v8", 11 },
213 /* Other platform-specific names for r9. */
214 { "sb", 9 },
215 { "tr", 9 },
216 /* Special names. */
217 { "ip", 12 },
123dc839 218 { "lr", 14 },
123dc839
DJ
219 /* Names used by GCC (not listed in the ARM EABI). */
220 { "sl", 10 },
123dc839
DJ
221 /* A special name from the older ATPCS. */
222 { "wr", 7 },
223};
bc90b915 224
123dc839 225static const char *const arm_register_names[] =
da59e081
JM
226{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
227 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
228 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
229 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
230 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
231 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 232 "fps", "cpsr" }; /* 24 25 */
ed9a39eb 233
65b48a81
PB
234/* Holds the current set of options to be passed to the disassembler. */
235static char *arm_disassembler_options;
236
afd7eef0
RE
237/* Valid register name styles. */
238static const char **valid_disassembly_styles;
ed9a39eb 239
afd7eef0
RE
240/* Disassembly style to use. Default to "std" register names. */
241static const char *disassembly_style;
96baa820 242
d105cce5 243/* All possible arm target descriptors. */
92d48a1e 244static struct target_desc *tdesc_arm_list[ARM_FP_TYPE_INVALID][2];
d105cce5
AH
245static struct target_desc *tdesc_arm_mprofile_list[ARM_M_TYPE_INVALID];
246
ed9a39eb 247/* This is used to keep the bfd arch_info in sync with the disassembly
afd7eef0 248 style. */
eb4c3f4a 249static void set_disassembly_style_sfunc (const char *, int,
ed9a39eb 250 struct cmd_list_element *);
65b48a81
PB
251static void show_disassembly_style_sfunc (struct ui_file *, int,
252 struct cmd_list_element *,
253 const char *);
ed9a39eb 254
05d1431c 255static enum register_status arm_neon_quad_read (struct gdbarch *gdbarch,
849d0ba8 256 readable_regcache *regcache,
05d1431c 257 int regnum, gdb_byte *buf);
58d6951d
DJ
258static void arm_neon_quad_write (struct gdbarch *gdbarch,
259 struct regcache *regcache,
260 int regnum, const gdb_byte *buf);
261
e7cf25a8 262static CORE_ADDR
553cb527 263 arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self);
e7cf25a8
YQ
264
265
d9311bfa
AT
266/* get_next_pcs operations. */
267static struct arm_get_next_pcs_ops arm_get_next_pcs_ops = {
268 arm_get_next_pcs_read_memory_unsigned_integer,
269 arm_get_next_pcs_syscall_next_pc,
270 arm_get_next_pcs_addr_bits_remove,
ed443b61
YQ
271 arm_get_next_pcs_is_thumb,
272 NULL,
d9311bfa
AT
273};
274
9b8d791a 275struct arm_prologue_cache
c3b4394c 276{
eb5492fa
DJ
277 /* The stack pointer at the time this frame was created; i.e. the
278 caller's stack pointer when this function was called. It is used
279 to identify this frame. */
ae7e2f45
CL
280 CORE_ADDR sp;
281
282 /* Additional stack pointers used by M-profile with Security extension. */
283 /* Use msp_s / psp_s to hold the values of msp / psp when there is
284 no Security extension. */
285 CORE_ADDR msp_s;
286 CORE_ADDR msp_ns;
287 CORE_ADDR psp_s;
288 CORE_ADDR psp_ns;
289
290 /* Active stack pointer. */
291 int active_sp_regnum;
0d12d61b
YR
292 int active_msp_regnum;
293 int active_psp_regnum;
eb5492fa 294
4be43953
DJ
295 /* The frame base for this frame is just prev_sp - frame size.
296 FRAMESIZE is the distance from the frame pointer to the
297 initial stack pointer. */
eb5492fa 298
c3b4394c 299 int framesize;
eb5492fa
DJ
300
301 /* The register used to hold the frame pointer for this frame. */
c3b4394c 302 int framereg;
eb5492fa 303
a01567f4 304 /* True if the return address is signed, false otherwise. */
6b09f134 305 std::optional<bool> ra_signed_state;
a01567f4 306
eb5492fa 307 /* Saved register offsets. */
098caef4 308 trad_frame_saved_reg *saved_regs;
0824193f
CL
309
310 arm_prologue_cache() = default;
c3b4394c 311};
ed9a39eb 312
8c9ae6df
YR
313
314/* Reconstruct T bit in program status register from LR value. */
315
316static inline ULONGEST
317reconstruct_t_bit(struct gdbarch *gdbarch, CORE_ADDR lr, ULONGEST psr)
318{
319 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
320 if (IS_THUMB_ADDR (lr))
321 psr |= t_bit;
322 else
323 psr &= ~t_bit;
324
325 return psr;
326}
327
0824193f
CL
328/* Initialize CACHE fields for which zero is not adequate (CACHE is
329 expected to have been ZALLOC'ed before calling this function). */
330
331static void
332arm_cache_init (struct arm_prologue_cache *cache, struct gdbarch *gdbarch)
333{
ae7e2f45
CL
334 cache->active_sp_regnum = ARM_SP_REGNUM;
335
0824193f
CL
336 cache->saved_regs = trad_frame_alloc_saved_regs (gdbarch);
337}
338
339/* Similar to the previous function, but extracts GDBARCH from FRAME. */
340
341static void
bd2b40ac 342arm_cache_init (struct arm_prologue_cache *cache, frame_info_ptr frame)
0824193f
CL
343{
344 struct gdbarch *gdbarch = get_frame_arch (frame);
08106042 345 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
0824193f
CL
346
347 arm_cache_init (cache, gdbarch);
fe642a5b 348 cache->sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM);
ae7e2f45
CL
349
350 if (tdep->have_sec_ext)
351 {
b0b23e06
TS
352 const CORE_ADDR msp_val
353 = get_frame_register_unsigned (frame, tdep->m_profile_msp_regnum);
354 const CORE_ADDR psp_val
355 = get_frame_register_unsigned (frame, tdep->m_profile_psp_regnum);
356
357 cache->msp_s
358 = get_frame_register_unsigned (frame, tdep->m_profile_msp_s_regnum);
359 cache->msp_ns
360 = get_frame_register_unsigned (frame, tdep->m_profile_msp_ns_regnum);
361 cache->psp_s
362 = get_frame_register_unsigned (frame, tdep->m_profile_psp_s_regnum);
363 cache->psp_ns
364 = get_frame_register_unsigned (frame, tdep->m_profile_psp_ns_regnum);
365
366 /* Identify what msp is alias for (msp_s or msp_ns). */
0d12d61b
YR
367 if (msp_val == cache->msp_s)
368 cache->active_msp_regnum = tdep->m_profile_msp_s_regnum;
369 else if (msp_val == cache->msp_ns)
370 cache->active_msp_regnum = tdep->m_profile_msp_ns_regnum;
b0b23e06
TS
371 else
372 {
373 warning (_("Invalid state, unable to determine msp alias, assuming "
374 "msp_s."));
375 cache->active_msp_regnum = tdep->m_profile_msp_s_regnum;
376 }
377
378 /* Identify what psp is alias for (psp_s or psp_ns). */
0d12d61b
YR
379 if (psp_val == cache->psp_s)
380 cache->active_psp_regnum = tdep->m_profile_psp_s_regnum;
381 else if (psp_val == cache->psp_ns)
382 cache->active_psp_regnum = tdep->m_profile_psp_ns_regnum;
b0b23e06
TS
383 else
384 {
385 warning (_("Invalid state, unable to determine psp alias, assuming "
386 "psp_s."));
387 cache->active_psp_regnum = tdep->m_profile_psp_s_regnum;
388 }
389
390 /* Identify what sp is alias for (msp_s, msp_ns, psp_s or psp_ns). */
391 if (msp_val == cache->sp)
392 cache->active_sp_regnum = cache->active_msp_regnum;
393 else if (psp_val == cache->sp)
394 cache->active_sp_regnum = cache->active_psp_regnum;
395 else
396 {
397 warning (_("Invalid state, unable to determine sp alias, assuming "
398 "msp."));
399 cache->active_sp_regnum = cache->active_msp_regnum;
400 }
ae7e2f45
CL
401 }
402 else if (tdep->is_m)
403 {
b0b23e06 404 cache->msp_s
f3f7ecc9 405 = get_frame_register_unsigned (frame, tdep->m_profile_msp_regnum);
b0b23e06 406 cache->psp_s
f3f7ecc9 407 = get_frame_register_unsigned (frame, tdep->m_profile_psp_regnum);
b0b23e06
TS
408
409 /* Identify what sp is alias for (msp or psp). */
410 if (cache->msp_s == cache->sp)
411 cache->active_sp_regnum = tdep->m_profile_msp_regnum;
412 else if (cache->psp_s == cache->sp)
413 cache->active_sp_regnum = tdep->m_profile_psp_regnum;
414 else
415 {
416 warning (_("Invalid state, unable to determine sp alias, assuming "
417 "msp."));
418 cache->active_sp_regnum = tdep->m_profile_msp_regnum;
419 }
ae7e2f45
CL
420 }
421 else
b0b23e06
TS
422 {
423 cache->msp_s
424 = get_frame_register_unsigned (frame, ARM_SP_REGNUM);
425
426 cache->active_sp_regnum = ARM_SP_REGNUM;
427 }
ae7e2f45
CL
428}
429
430/* Return the requested stack pointer value (in REGNUM), taking into
431 account whether we have a Security extension or an M-profile
432 CPU. */
433
434static CORE_ADDR
435arm_cache_get_sp_register (struct arm_prologue_cache *cache,
436 arm_gdbarch_tdep *tdep, int regnum)
437{
ae7e2f45
CL
438 if (tdep->have_sec_ext)
439 {
440 if (regnum == tdep->m_profile_msp_s_regnum)
441 return cache->msp_s;
442 if (regnum == tdep->m_profile_msp_ns_regnum)
443 return cache->msp_ns;
444 if (regnum == tdep->m_profile_psp_s_regnum)
445 return cache->psp_s;
446 if (regnum == tdep->m_profile_psp_ns_regnum)
447 return cache->psp_ns;
0d12d61b
YR
448 if (regnum == tdep->m_profile_msp_regnum)
449 return arm_cache_get_sp_register (cache, tdep, cache->active_msp_regnum);
450 if (regnum == tdep->m_profile_psp_regnum)
451 return arm_cache_get_sp_register (cache, tdep, cache->active_psp_regnum);
b9b66a3a
YR
452 if (regnum == ARM_SP_REGNUM)
453 return arm_cache_get_sp_register (cache, tdep, cache->active_sp_regnum);
ae7e2f45
CL
454 }
455 else if (tdep->is_m)
456 {
457 if (regnum == tdep->m_profile_msp_regnum)
458 return cache->msp_s;
459 if (regnum == tdep->m_profile_psp_regnum)
460 return cache->psp_s;
b9b66a3a
YR
461 if (regnum == ARM_SP_REGNUM)
462 return arm_cache_get_sp_register (cache, tdep, cache->active_sp_regnum);
ae7e2f45 463 }
b9b66a3a
YR
464 else if (regnum == ARM_SP_REGNUM)
465 return cache->sp;
ae7e2f45
CL
466
467 gdb_assert_not_reached ("Invalid SP selection");
468}
469
470/* Return the previous stack address, depending on which SP register
471 is active. */
472
473static CORE_ADDR
474arm_cache_get_prev_sp_value (struct arm_prologue_cache *cache, arm_gdbarch_tdep *tdep)
475{
476 CORE_ADDR val = arm_cache_get_sp_register (cache, tdep, cache->active_sp_regnum);
477 return val;
478}
479
480/* Set the active stack pointer to VAL. */
481
482static void
483arm_cache_set_active_sp_value (struct arm_prologue_cache *cache,
484 arm_gdbarch_tdep *tdep, CORE_ADDR val)
485{
ae7e2f45
CL
486 if (tdep->have_sec_ext)
487 {
488 if (cache->active_sp_regnum == tdep->m_profile_msp_s_regnum)
489 cache->msp_s = val;
490 else if (cache->active_sp_regnum == tdep->m_profile_msp_ns_regnum)
491 cache->msp_ns = val;
492 else if (cache->active_sp_regnum == tdep->m_profile_psp_s_regnum)
493 cache->psp_s = val;
494 else if (cache->active_sp_regnum == tdep->m_profile_psp_ns_regnum)
495 cache->psp_ns = val;
496
497 return;
498 }
499 else if (tdep->is_m)
500 {
501 if (cache->active_sp_regnum == tdep->m_profile_msp_regnum)
502 cache->msp_s = val;
503 else if (cache->active_sp_regnum == tdep->m_profile_psp_regnum)
504 cache->psp_s = val;
505
506 return;
507 }
b9b66a3a
YR
508 else if (cache->active_sp_regnum == ARM_SP_REGNUM)
509 {
510 cache->sp = val;
511 return;
512 }
ae7e2f45
CL
513
514 gdb_assert_not_reached ("Invalid SP selection");
0824193f
CL
515}
516
d65edaa0 517/* Return true if REGNUM is one of the alternative stack pointers. */
ef273377
CL
518
519static bool
d65edaa0 520arm_is_alternative_sp_register (arm_gdbarch_tdep *tdep, int regnum)
ef273377 521{
d65edaa0 522 if ((regnum == tdep->m_profile_msp_regnum)
ef273377
CL
523 || (regnum == tdep->m_profile_msp_s_regnum)
524 || (regnum == tdep->m_profile_msp_ns_regnum)
525 || (regnum == tdep->m_profile_psp_regnum)
526 || (regnum == tdep->m_profile_psp_s_regnum)
527 || (regnum == tdep->m_profile_psp_ns_regnum))
528 return true;
529 else
530 return false;
531}
532
533/* Set the active stack pointer to SP_REGNUM. */
534
535static void
536arm_cache_switch_prev_sp (struct arm_prologue_cache *cache,
537 arm_gdbarch_tdep *tdep, int sp_regnum)
538{
d65edaa0 539 gdb_assert (arm_is_alternative_sp_register (tdep, sp_regnum));
ef273377
CL
540
541 if (tdep->have_sec_ext)
4d9fd868
TS
542 {
543 gdb_assert (sp_regnum != tdep->m_profile_msp_regnum
544 && sp_regnum != tdep->m_profile_psp_regnum);
545
546 if (sp_regnum == tdep->m_profile_msp_s_regnum
547 || sp_regnum == tdep->m_profile_psp_s_regnum)
548 {
549 cache->active_msp_regnum = tdep->m_profile_msp_s_regnum;
550 cache->active_psp_regnum = tdep->m_profile_psp_s_regnum;
551 }
552 else if (sp_regnum == tdep->m_profile_msp_ns_regnum
553 || sp_regnum == tdep->m_profile_psp_ns_regnum)
554 {
555 cache->active_msp_regnum = tdep->m_profile_msp_ns_regnum;
556 cache->active_psp_regnum = tdep->m_profile_psp_ns_regnum;
557 }
558 }
ef273377
CL
559
560 cache->active_sp_regnum = sp_regnum;
561}
562
9ecab40c
SM
563namespace {
564
565/* Abstract class to read ARM instructions from memory. */
566
567class arm_instruction_reader
568{
569public:
2c5b1849 570 /* Read a 4 bytes instruction from memory using the BYTE_ORDER endianness. */
9ecab40c
SM
571 virtual uint32_t read (CORE_ADDR memaddr, bfd_endian byte_order) const = 0;
572};
573
574/* Read instructions from target memory. */
575
576class target_arm_instruction_reader : public arm_instruction_reader
577{
578public:
579 uint32_t read (CORE_ADDR memaddr, bfd_endian byte_order) const override
580 {
581 return read_code_unsigned_integer (memaddr, 4, byte_order);
582 }
583};
584
585} /* namespace */
586
587static CORE_ADDR arm_analyze_prologue
588 (struct gdbarch *gdbarch, CORE_ADDR prologue_start, CORE_ADDR prologue_end,
589 struct arm_prologue_cache *cache, const arm_instruction_reader &insn_reader);
0d39a070 590
cca44b1b
JB
591/* Architecture version for displaced stepping. This effects the behaviour of
592 certain instructions, and really should not be hard-wired. */
593
594#define DISPLACED_STEPPING_ARCH_VERSION 5
595
c7ae7675 596/* See arm-tdep.h. */
c906108c 597
491144b5 598bool arm_apcs_32 = true;
ef273377 599bool arm_unwind_secure_frames = true;
c906108c 600
9779414d
DJ
601/* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode. */
602
478fd957 603int
9779414d
DJ
604arm_psr_thumb_bit (struct gdbarch *gdbarch)
605{
08106042 606 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
345bd07c
SM
607
608 if (tdep->is_m)
9779414d
DJ
609 return XPSR_T;
610 else
611 return CPSR_T;
612}
613
d0e59a68
AT
614/* Determine if the processor is currently executing in Thumb mode. */
615
616int
617arm_is_thumb (struct regcache *regcache)
618{
619 ULONGEST cpsr;
ac7936df 620 ULONGEST t_bit = arm_psr_thumb_bit (regcache->arch ());
d0e59a68
AT
621
622 cpsr = regcache_raw_get_unsigned (regcache, ARM_PS_REGNUM);
623
624 return (cpsr & t_bit) != 0;
625}
626
60270718
AB
627/* Determine if FRAME is executing in Thumb mode. FRAME must be an ARM
628 frame. */
b39cc962 629
25b41d01 630int
bd2b40ac 631arm_frame_is_thumb (frame_info_ptr frame)
b39cc962 632{
60270718
AB
633 /* Check the architecture of FRAME. */
634 struct gdbarch *gdbarch = get_frame_arch (frame);
635 gdb_assert (gdbarch_bfd_arch_info (gdbarch)->arch == bfd_arch_arm);
b39cc962
DJ
636
637 /* Every ARM frame unwinder can unwind the T bit of the CPSR, either
638 directly (from a signal frame or dummy frame) or by interpreting
639 the saved LR (from a prologue or DWARF frame). So consult it and
640 trust the unwinders. */
60270718 641 CORE_ADDR cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
b39cc962 642
60270718
AB
643 /* Find and extract the thumb bit. */
644 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
9779414d 645 return (cpsr & t_bit) != 0;
b39cc962
DJ
646}
647
f9d67f43
DJ
648/* Search for the mapping symbol covering MEMADDR. If one is found,
649 return its type. Otherwise, return 0. If START is non-NULL,
650 set *START to the location of the mapping symbol. */
c906108c 651
f9d67f43
DJ
652static char
653arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start)
c906108c 654{
60c5725c 655 struct obj_section *sec;
0428b8f5 656
60c5725c
DJ
657 /* If there are mapping symbols, consult them. */
658 sec = find_pc_section (memaddr);
659 if (sec != NULL)
660 {
98badbfd 661 arm_per_bfd *data = arm_bfd_data_key.get (sec->objfile->obfd.get ());
60c5725c
DJ
662 if (data != NULL)
663 {
4838e44c
SM
664 unsigned int section_idx = sec->the_bfd_section->index;
665 arm_mapping_symbol_vec &map
666 = data->section_maps[section_idx];
667
668 /* Sort the vector on first use. */
669 if (!data->section_maps_sorted[section_idx])
670 {
671 std::sort (map.begin (), map.end ());
672 data->section_maps_sorted[section_idx] = true;
673 }
674
0c1bcd23 675 arm_mapping_symbol map_key = { memaddr - sec->addr (), 0 };
54cc7474
SM
676 arm_mapping_symbol_vec::const_iterator it
677 = std::lower_bound (map.begin (), map.end (), map_key);
678
679 /* std::lower_bound finds the earliest ordered insertion
680 point. If the symbol at this position starts at this exact
681 address, we use that; otherwise, the preceding
682 mapping symbol covers this address. */
683 if (it < map.end ())
60c5725c 684 {
54cc7474 685 if (it->value == map_key.value)
60c5725c 686 {
f9d67f43 687 if (start)
0c1bcd23 688 *start = it->value + sec->addr ();
54cc7474 689 return it->type;
60c5725c
DJ
690 }
691 }
54cc7474
SM
692
693 if (it > map.begin ())
694 {
695 arm_mapping_symbol_vec::const_iterator prev_it
696 = it - 1;
697
698 if (start)
0c1bcd23 699 *start = prev_it->value + sec->addr ();
54cc7474
SM
700 return prev_it->type;
701 }
60c5725c
DJ
702 }
703 }
704
f9d67f43
DJ
705 return 0;
706}
707
708/* Determine if the program counter specified in MEMADDR is in a Thumb
709 function. This function should be called for addresses unrelated to
710 any executing frame; otherwise, prefer arm_frame_is_thumb. */
711
e3039479 712int
9779414d 713arm_pc_is_thumb (struct gdbarch *gdbarch, CORE_ADDR memaddr)
f9d67f43 714{
7cbd4a93 715 struct bound_minimal_symbol sym;
f9d67f43 716 char type;
187b041e 717 arm_displaced_step_copy_insn_closure *dsc = nullptr;
08106042 718 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
187b041e
SM
719
720 if (gdbarch_displaced_step_copy_insn_closure_by_addr_p (gdbarch))
721 dsc = ((arm_displaced_step_copy_insn_closure * )
722 gdbarch_displaced_step_copy_insn_closure_by_addr
723 (gdbarch, current_inferior (), memaddr));
a42244db
YQ
724
725 /* If checking the mode of displaced instruction in copy area, the mode
726 should be determined by instruction on the original address. */
727 if (dsc)
728 {
136821d9
SM
729 displaced_debug_printf ("check mode of %.8lx instead of %.8lx",
730 (unsigned long) dsc->insn_addr,
731 (unsigned long) memaddr);
a42244db
YQ
732 memaddr = dsc->insn_addr;
733 }
f9d67f43
DJ
734
735 /* If bit 0 of the address is set, assume this is a Thumb address. */
736 if (IS_THUMB_ADDR (memaddr))
737 return 1;
738
739 /* If the user wants to override the symbol table, let him. */
740 if (strcmp (arm_force_mode_string, "arm") == 0)
741 return 0;
742 if (strcmp (arm_force_mode_string, "thumb") == 0)
743 return 1;
744
9779414d 745 /* ARM v6-M and v7-M are always in Thumb mode. */
345bd07c 746 if (tdep->is_m)
9779414d
DJ
747 return 1;
748
f9d67f43
DJ
749 /* If there are mapping symbols, consult them. */
750 type = arm_find_mapping_symbol (memaddr, NULL);
751 if (type)
752 return type == 't';
753
ed9a39eb 754 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c 755 sym = lookup_minimal_symbol_by_pc (memaddr);
7cbd4a93
TT
756 if (sym.minsym)
757 return (MSYMBOL_IS_SPECIAL (sym.minsym));
0428b8f5
DJ
758
759 /* If the user wants to override the fallback mode, let them. */
760 if (strcmp (arm_fallback_mode_string, "arm") == 0)
761 return 0;
762 if (strcmp (arm_fallback_mode_string, "thumb") == 0)
763 return 1;
764
765 /* If we couldn't find any symbol, but we're talking to a running
766 target, then trust the current value of $cpsr. This lets
767 "display/i $pc" always show the correct mode (though if there is
768 a symbol table we will not reach here, so it still may not be
18819fa6 769 displayed in the mode it will be executed). */
9dccd06e 770 if (target_has_registers ())
18819fa6 771 return arm_frame_is_thumb (get_current_frame ());
0428b8f5
DJ
772
773 /* Otherwise we're out of luck; we assume ARM. */
774 return 0;
c906108c
SS
775}
776
8b73ee20
LM
777static inline bool
778arm_m_addr_is_lockup (CORE_ADDR addr)
779{
780 switch (addr)
781 {
782 /* Values for lockup state.
783 For more details see "B1.5.15 Unrecoverable exception cases" in
784 both ARMv6-M and ARMv7-M Architecture Reference Manuals, or
785 see "B4.32 Lockup" in ARMv8-M Architecture Reference Manual. */
786 case 0xeffffffe:
787 case 0xfffffffe:
788 case 0xffffffff:
789 return true;
790
791 default:
792 /* Address is not lockup. */
793 return false;
794 }
795}
796
ca90e760 797/* Determine if the address specified equals any of these magic return
55ea94da 798 values, called EXC_RETURN, defined by the ARM v6-M, v7-M and v8-M
8b73ee20
LM
799 architectures. Also include lockup magic PC value.
800 Check also for FNC_RETURN if we have the v8-M security extension.
ca90e760
FH
801
802 From ARMv6-M Reference Manual B1.5.8
803 Table B1-5 Exception return behavior
804
805 EXC_RETURN Return To Return Stack
806 0xFFFFFFF1 Handler mode Main
807 0xFFFFFFF9 Thread mode Main
808 0xFFFFFFFD Thread mode Process
809
810 From ARMv7-M Reference Manual B1.5.8
811 Table B1-8 EXC_RETURN definition of exception return behavior, no FP
812
813 EXC_RETURN Return To Return Stack
814 0xFFFFFFF1 Handler mode Main
815 0xFFFFFFF9 Thread mode Main
816 0xFFFFFFFD Thread mode Process
817
818 Table B1-9 EXC_RETURN definition of exception return behavior, with
819 FP
820
821 EXC_RETURN Return To Return Stack Frame Type
822 0xFFFFFFE1 Handler mode Main Extended
823 0xFFFFFFE9 Thread mode Main Extended
824 0xFFFFFFED Thread mode Process Extended
825 0xFFFFFFF1 Handler mode Main Basic
826 0xFFFFFFF9 Thread mode Main Basic
827 0xFFFFFFFD Thread mode Process Basic
828
829 For more details see "B1.5.8 Exception return behavior"
55ea94da
FH
830 in both ARMv6-M and ARMv7-M Architecture Reference Manuals.
831
8db533e7
TS
832 From ARMv8-M Architecture Technical Reference, D1.2.95
833 FType, Mode and SPSEL bits are to be considered when the Security
834 Extension is not implemented.
55ea94da 835
8db533e7
TS
836 EXC_RETURN Return To Return Stack Frame Type
837 0xFFFFFFA0 Handler mode Main Extended
838 0xFFFFFFA8 Thread mode Main Extended
839 0xFFFFFFAC Thread mode Process Extended
840 0xFFFFFFB0 Handler mode Main Standard
841 0xFFFFFFB8 Thread mode Main Standard
842 0xFFFFFFBC Thread mode Process Standard */
ca90e760
FH
843
844static int
ef273377
CL
845arm_m_addr_is_magic (struct gdbarch *gdbarch, CORE_ADDR addr)
846{
8b73ee20
LM
847 if (arm_m_addr_is_lockup (addr))
848 return 1;
849
08106042 850 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
ef273377
CL
851 if (tdep->have_sec_ext)
852 {
853 switch ((addr & 0xff000000))
854 {
855 case 0xff000000: /* EXC_RETURN pattern. */
856 case 0xfe000000: /* FNC_RETURN pattern. */
857 return 1;
858 default:
859 return 0;
860 }
861 }
862 else
863 {
864 switch (addr)
865 {
866 /* Values from ARMv8-M Architecture Technical Reference. */
8db533e7
TS
867 case 0xffffffa0:
868 case 0xffffffa8:
869 case 0xffffffac:
ef273377
CL
870 case 0xffffffb0:
871 case 0xffffffb8:
872 case 0xffffffbc:
873 /* Values from Tables in B1.5.8 the EXC_RETURN definitions of
874 the exception return behavior. */
875 case 0xffffffe1:
876 case 0xffffffe9:
877 case 0xffffffed:
878 case 0xfffffff1:
879 case 0xfffffff9:
880 case 0xfffffffd:
881 /* Address is magic. */
882 return 1;
ca90e760 883
ef273377
CL
884 default:
885 /* Address is not magic. */
886 return 0;
887 }
ca90e760
FH
888 }
889}
890
181c1381 891/* Remove useless bits from addresses in a running program. */
34e8f22d 892static CORE_ADDR
24568a2c 893arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val)
c906108c 894{
08106042 895 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
345bd07c 896
2ae28aa9
YQ
897 /* On M-profile devices, do not strip the low bit from EXC_RETURN
898 (the magic exception return address). */
ef273377 899 if (tdep->is_m && arm_m_addr_is_magic (gdbarch, val))
2ae28aa9
YQ
900 return val;
901
a3a2ee65 902 if (arm_apcs_32)
dd6be234 903 return UNMAKE_THUMB_ADDR (val);
c906108c 904 else
a3a2ee65 905 return (val & 0x03fffffc);
c906108c
SS
906}
907
0d39a070 908/* Return 1 if PC is the start of a compiler helper function which
e0634ccf
UW
909 can be safely ignored during prologue skipping. IS_THUMB is true
910 if the function is known to be a Thumb function due to the way it
911 is being called. */
0d39a070 912static int
e0634ccf 913skip_prologue_function (struct gdbarch *gdbarch, CORE_ADDR pc, int is_thumb)
0d39a070 914{
e0634ccf 915 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7cbd4a93 916 struct bound_minimal_symbol msym;
0d39a070
DJ
917
918 msym = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 919 if (msym.minsym != NULL
4aeddc50 920 && msym.value_address () == pc
c9d95fa3 921 && msym.minsym->linkage_name () != NULL)
e0634ccf 922 {
c9d95fa3 923 const char *name = msym.minsym->linkage_name ();
0d39a070 924
e0634ccf
UW
925 /* The GNU linker's Thumb call stub to foo is named
926 __foo_from_thumb. */
927 if (strstr (name, "_from_thumb") != NULL)
928 name += 2;
0d39a070 929
e0634ccf
UW
930 /* On soft-float targets, __truncdfsf2 is called to convert promoted
931 arguments to their argument types in non-prototyped
932 functions. */
61012eef 933 if (startswith (name, "__truncdfsf2"))
e0634ccf 934 return 1;
61012eef 935 if (startswith (name, "__aeabi_d2f"))
e0634ccf 936 return 1;
0d39a070 937
e0634ccf 938 /* Internal functions related to thread-local storage. */
61012eef 939 if (startswith (name, "__tls_get_addr"))
e0634ccf 940 return 1;
61012eef 941 if (startswith (name, "__aeabi_read_tp"))
e0634ccf
UW
942 return 1;
943 }
944 else
945 {
946 /* If we run against a stripped glibc, we may be unable to identify
947 special functions by name. Check for one important case,
948 __aeabi_read_tp, by comparing the *code* against the default
949 implementation (this is hand-written ARM assembler in glibc). */
950
951 if (!is_thumb
198cd59d 952 && read_code_unsigned_integer (pc, 4, byte_order_for_code)
e0634ccf 953 == 0xe3e00a0f /* mov r0, #0xffff0fff */
198cd59d 954 && read_code_unsigned_integer (pc + 4, 4, byte_order_for_code)
e0634ccf
UW
955 == 0xe240f01f) /* sub pc, r0, #31 */
956 return 1;
957 }
ec3d575a 958
0d39a070
DJ
959 return 0;
960}
961
621c6d5b
YQ
962/* Extract the immediate from instruction movw/movt of encoding T. INSN1 is
963 the first 16-bit of instruction, and INSN2 is the second 16-bit of
964 instruction. */
965#define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \
966 ((bits ((insn1), 0, 3) << 12) \
967 | (bits ((insn1), 10, 10) << 11) \
968 | (bits ((insn2), 12, 14) << 8) \
969 | bits ((insn2), 0, 7))
970
971/* Extract the immediate from instruction movw/movt of encoding A. INSN is
972 the 32-bit instruction. */
973#define EXTRACT_MOVW_MOVT_IMM_A(insn) \
974 ((bits ((insn), 16, 19) << 12) \
975 | bits ((insn), 0, 11))
976
ec3d575a
UW
977/* Decode immediate value; implements ThumbExpandImmediate pseudo-op. */
978
979static unsigned int
980thumb_expand_immediate (unsigned int imm)
981{
982 unsigned int count = imm >> 7;
983
984 if (count < 8)
985 switch (count / 2)
986 {
987 case 0:
988 return imm & 0xff;
989 case 1:
990 return (imm & 0xff) | ((imm & 0xff) << 16);
991 case 2:
992 return ((imm & 0xff) << 8) | ((imm & 0xff) << 24);
993 case 3:
994 return (imm & 0xff) | ((imm & 0xff) << 8)
995 | ((imm & 0xff) << 16) | ((imm & 0xff) << 24);
996 }
997
998 return (0x80 | (imm & 0x7f)) << (32 - count);
999}
1000
540314bd
YQ
1001/* Return 1 if the 16-bit Thumb instruction INSN restores SP in
1002 epilogue, 0 otherwise. */
1003
1004static int
1005thumb_instruction_restores_sp (unsigned short insn)
1006{
1007 return (insn == 0x46bd /* mov sp, r7 */
1008 || (insn & 0xff80) == 0xb000 /* add sp, imm */
1009 || (insn & 0xfe00) == 0xbc00); /* pop <registers> */
1010}
1011
29d73ae4
DJ
1012/* Analyze a Thumb prologue, looking for a recognizable stack frame
1013 and frame pointer. Scan until we encounter a store that could
0d39a070
DJ
1014 clobber the stack frame unexpectedly, or an unknown instruction.
1015 Return the last address which is definitely safe to skip for an
1016 initial breakpoint. */
c906108c
SS
1017
1018static CORE_ADDR
29d73ae4
DJ
1019thumb_analyze_prologue (struct gdbarch *gdbarch,
1020 CORE_ADDR start, CORE_ADDR limit,
1021 struct arm_prologue_cache *cache)
c906108c 1022{
08106042 1023 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
0d39a070 1024 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e17a4113 1025 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
29d73ae4
DJ
1026 int i;
1027 pv_t regs[16];
29d73ae4 1028 CORE_ADDR offset;
ec3d575a 1029 CORE_ADDR unrecognized_pc = 0;
da3c6d4a 1030
29d73ae4
DJ
1031 for (i = 0; i < 16; i++)
1032 regs[i] = pv_register (i, 0);
f7b7ed97 1033 pv_area stack (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
29d73ae4 1034
29d73ae4 1035 while (start < limit)
c906108c 1036 {
29d73ae4 1037 unsigned short insn;
6b09f134 1038 std::optional<bool> ra_signed_state;
29d73ae4 1039
198cd59d 1040 insn = read_code_unsigned_integer (start, 2, byte_order_for_code);
9d4fde75 1041
94c30b78 1042 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 1043 {
29d73ae4
DJ
1044 int regno;
1045 int mask;
4be43953 1046
f7b7ed97 1047 if (stack.store_would_trash (regs[ARM_SP_REGNUM]))
4be43953 1048 break;
29d73ae4
DJ
1049
1050 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
1051 whether to save LR (R14). */
1052 mask = (insn & 0xff) | ((insn & 0x100) << 6);
1053
1054 /* Calculate offsets of saved R0-R7 and LR. */
1055 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
1056 if (mask & (1 << regno))
1057 {
29d73ae4
DJ
1058 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
1059 -4);
f7b7ed97 1060 stack.store (regs[ARM_SP_REGNUM], 4, regs[regno]);
29d73ae4 1061 }
da59e081 1062 }
1db01f22 1063 else if ((insn & 0xff80) == 0xb080) /* sub sp, #imm */
da59e081 1064 {
29d73ae4 1065 offset = (insn & 0x7f) << 2; /* get scaled offset */
1db01f22
YQ
1066 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
1067 -offset);
da59e081 1068 }
808f7ab1
YQ
1069 else if (thumb_instruction_restores_sp (insn))
1070 {
1071 /* Don't scan past the epilogue. */
1072 break;
1073 }
0d39a070
DJ
1074 else if ((insn & 0xf800) == 0xa800) /* add Rd, sp, #imm */
1075 regs[bits (insn, 8, 10)] = pv_add_constant (regs[ARM_SP_REGNUM],
1076 (insn & 0xff) << 2);
1077 else if ((insn & 0xfe00) == 0x1c00 /* add Rd, Rn, #imm */
1078 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
1079 regs[bits (insn, 0, 2)] = pv_add_constant (regs[bits (insn, 3, 5)],
1080 bits (insn, 6, 8));
1081 else if ((insn & 0xf800) == 0x3000 /* add Rd, #imm */
1082 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
1083 regs[bits (insn, 8, 10)] = pv_add_constant (regs[bits (insn, 8, 10)],
1084 bits (insn, 0, 7));
1085 else if ((insn & 0xfe00) == 0x1800 /* add Rd, Rn, Rm */
1086 && pv_is_register (regs[bits (insn, 6, 8)], ARM_SP_REGNUM)
1087 && pv_is_constant (regs[bits (insn, 3, 5)]))
1088 regs[bits (insn, 0, 2)] = pv_add (regs[bits (insn, 3, 5)],
1089 regs[bits (insn, 6, 8)]);
1090 else if ((insn & 0xff00) == 0x4400 /* add Rd, Rm */
1091 && pv_is_constant (regs[bits (insn, 3, 6)]))
1092 {
1093 int rd = (bit (insn, 7) << 3) + bits (insn, 0, 2);
1094 int rm = bits (insn, 3, 6);
1095 regs[rd] = pv_add (regs[rd], regs[rm]);
1096 }
29d73ae4 1097 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
da59e081 1098 {
29d73ae4
DJ
1099 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
1100 int src_reg = (insn & 0x78) >> 3;
1101 regs[dst_reg] = regs[src_reg];
da59e081 1102 }
29d73ae4 1103 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
da59e081 1104 {
29d73ae4
DJ
1105 /* Handle stores to the stack. Normally pushes are used,
1106 but with GCC -mtpcs-frame, there may be other stores
1107 in the prologue to create the frame. */
1108 int regno = (insn >> 8) & 0x7;
1109 pv_t addr;
1110
1111 offset = (insn & 0xff) << 2;
1112 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
1113
f7b7ed97 1114 if (stack.store_would_trash (addr))
29d73ae4
DJ
1115 break;
1116
f7b7ed97 1117 stack.store (addr, 4, regs[regno]);
da59e081 1118 }
0d39a070
DJ
1119 else if ((insn & 0xf800) == 0x6000) /* str rd, [rn, #off] */
1120 {
1121 int rd = bits (insn, 0, 2);
1122 int rn = bits (insn, 3, 5);
1123 pv_t addr;
1124
1125 offset = bits (insn, 6, 10) << 2;
1126 addr = pv_add_constant (regs[rn], offset);
1127
f7b7ed97 1128 if (stack.store_would_trash (addr))
0d39a070
DJ
1129 break;
1130
f7b7ed97 1131 stack.store (addr, 4, regs[rd]);
0d39a070
DJ
1132 }
1133 else if (((insn & 0xf800) == 0x7000 /* strb Rd, [Rn, #off] */
1134 || (insn & 0xf800) == 0x8000) /* strh Rd, [Rn, #off] */
1135 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
1136 /* Ignore stores of argument registers to the stack. */
1137 ;
1138 else if ((insn & 0xf800) == 0xc800 /* ldmia Rn!, { registers } */
1139 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
1140 /* Ignore block loads from the stack, potentially copying
1141 parameters from memory. */
1142 ;
1143 else if ((insn & 0xf800) == 0x9800 /* ldr Rd, [Rn, #immed] */
1144 || ((insn & 0xf800) == 0x6800 /* ldr Rd, [sp, #immed] */
1145 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)))
1146 /* Similarly ignore single loads from the stack. */
1147 ;
1148 else if ((insn & 0xffc0) == 0x0000 /* lsls Rd, Rm, #0 */
1149 || (insn & 0xffc0) == 0x1c00) /* add Rd, Rn, #0 */
1150 /* Skip register copies, i.e. saves to another register
1151 instead of the stack. */
1152 ;
1153 else if ((insn & 0xf800) == 0x2000) /* movs Rd, #imm */
1154 /* Recognize constant loads; even with small stacks these are necessary
1155 on Thumb. */
1156 regs[bits (insn, 8, 10)] = pv_constant (bits (insn, 0, 7));
1157 else if ((insn & 0xf800) == 0x4800) /* ldr Rd, [pc, #imm] */
1158 {
1159 /* Constant pool loads, for the same reason. */
1160 unsigned int constant;
1161 CORE_ADDR loc;
1162
1163 loc = start + 4 + bits (insn, 0, 7) * 4;
1164 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1165 regs[bits (insn, 8, 10)] = pv_constant (constant);
1166 }
db24da6d 1167 else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instructions. */
0d39a070 1168 {
0d39a070
DJ
1169 unsigned short inst2;
1170
198cd59d
YQ
1171 inst2 = read_code_unsigned_integer (start + 2, 2,
1172 byte_order_for_code);
a01567f4 1173 uint32_t whole_insn = (insn << 16) | inst2;
0d39a070
DJ
1174
1175 if ((insn & 0xf800) == 0xf000 && (inst2 & 0xe800) == 0xe800)
1176 {
1177 /* BL, BLX. Allow some special function calls when
1178 skipping the prologue; GCC generates these before
1179 storing arguments to the stack. */
1180 CORE_ADDR nextpc;
1181 int j1, j2, imm1, imm2;
1182
1183 imm1 = sbits (insn, 0, 10);
1184 imm2 = bits (inst2, 0, 10);
1185 j1 = bit (inst2, 13);
1186 j2 = bit (inst2, 11);
1187
1188 offset = ((imm1 << 12) + (imm2 << 1));
1189 offset ^= ((!j2) << 22) | ((!j1) << 23);
1190
1191 nextpc = start + 4 + offset;
1192 /* For BLX make sure to clear the low bits. */
1193 if (bit (inst2, 12) == 0)
1194 nextpc = nextpc & 0xfffffffc;
1195
e0634ccf
UW
1196 if (!skip_prologue_function (gdbarch, nextpc,
1197 bit (inst2, 12) != 0))
0d39a070
DJ
1198 break;
1199 }
ec3d575a 1200
0963b4bd
MS
1201 else if ((insn & 0xffd0) == 0xe900 /* stmdb Rn{!},
1202 { registers } */
ec3d575a
UW
1203 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
1204 {
1205 pv_t addr = regs[bits (insn, 0, 3)];
1206 int regno;
1207
f7b7ed97 1208 if (stack.store_would_trash (addr))
ec3d575a
UW
1209 break;
1210
1211 /* Calculate offsets of saved registers. */
1212 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
1213 if (inst2 & (1 << regno))
1214 {
1215 addr = pv_add_constant (addr, -4);
f7b7ed97 1216 stack.store (addr, 4, regs[regno]);
ec3d575a
UW
1217 }
1218
1219 if (insn & 0x0020)
1220 regs[bits (insn, 0, 3)] = addr;
1221 }
1222
fcaa1071
CL
1223 /* vstmdb Rn{!}, { D-registers } (aka vpush). */
1224 else if ((insn & 0xff20) == 0xed20
1225 && (inst2 & 0x0f00) == 0x0b00
1226 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
1227 {
1228 /* Address SP points to. */
1229 pv_t addr = regs[bits (insn, 0, 3)];
1230
1231 /* Number of registers saved. */
1232 unsigned int number = bits (inst2, 0, 7) >> 1;
1233
1234 /* First register to save. */
1235 int vd = bits (inst2, 12, 15) | (bits (insn, 6, 6) << 4);
1236
1237 if (stack.store_would_trash (addr))
1238 break;
1239
1240 /* Calculate offsets of saved registers. */
1241 for (; number > 0; number--)
1242 {
1243 addr = pv_add_constant (addr, -8);
1244 stack.store (addr, 8, pv_register (ARM_D0_REGNUM
1245 + vd + number, 0));
1246 }
1247
1248 /* Writeback SP to account for the saved registers. */
1249 regs[bits (insn, 0, 3)] = addr;
1250 }
1251
0963b4bd
MS
1252 else if ((insn & 0xff50) == 0xe940 /* strd Rt, Rt2,
1253 [Rn, #+/-imm]{!} */
ec3d575a
UW
1254 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
1255 {
1256 int regno1 = bits (inst2, 12, 15);
1257 int regno2 = bits (inst2, 8, 11);
1258 pv_t addr = regs[bits (insn, 0, 3)];
1259
1260 offset = inst2 & 0xff;
1261 if (insn & 0x0080)
1262 addr = pv_add_constant (addr, offset);
1263 else
1264 addr = pv_add_constant (addr, -offset);
1265
f7b7ed97 1266 if (stack.store_would_trash (addr))
ec3d575a
UW
1267 break;
1268
f7b7ed97
TT
1269 stack.store (addr, 4, regs[regno1]);
1270 stack.store (pv_add_constant (addr, 4),
1271 4, regs[regno2]);
ec3d575a
UW
1272
1273 if (insn & 0x0020)
1274 regs[bits (insn, 0, 3)] = addr;
1275 }
1276
1277 else if ((insn & 0xfff0) == 0xf8c0 /* str Rt,[Rn,+/-#imm]{!} */
1278 && (inst2 & 0x0c00) == 0x0c00
1279 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
1280 {
1281 int regno = bits (inst2, 12, 15);
1282 pv_t addr = regs[bits (insn, 0, 3)];
1283
1284 offset = inst2 & 0xff;
1285 if (inst2 & 0x0200)
1286 addr = pv_add_constant (addr, offset);
1287 else
1288 addr = pv_add_constant (addr, -offset);
1289
f7b7ed97 1290 if (stack.store_would_trash (addr))
ec3d575a
UW
1291 break;
1292
f7b7ed97 1293 stack.store (addr, 4, regs[regno]);
ec3d575a
UW
1294
1295 if (inst2 & 0x0100)
1296 regs[bits (insn, 0, 3)] = addr;
1297 }
1298
1299 else if ((insn & 0xfff0) == 0xf8c0 /* str.w Rt,[Rn,#imm] */
1300 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
1301 {
1302 int regno = bits (inst2, 12, 15);
1303 pv_t addr;
1304
1305 offset = inst2 & 0xfff;
1306 addr = pv_add_constant (regs[bits (insn, 0, 3)], offset);
1307
f7b7ed97 1308 if (stack.store_would_trash (addr))
ec3d575a
UW
1309 break;
1310
f7b7ed97 1311 stack.store (addr, 4, regs[regno]);
ec3d575a
UW
1312 }
1313
1314 else if ((insn & 0xffd0) == 0xf880 /* str{bh}.w Rt,[Rn,#imm] */
0d39a070 1315 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 1316 /* Ignore stores of argument registers to the stack. */
0d39a070 1317 ;
ec3d575a
UW
1318
1319 else if ((insn & 0xffd0) == 0xf800 /* str{bh} Rt,[Rn,#+/-imm] */
1320 && (inst2 & 0x0d00) == 0x0c00
0d39a070 1321 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 1322 /* Ignore stores of argument registers to the stack. */
0d39a070 1323 ;
ec3d575a 1324
0963b4bd
MS
1325 else if ((insn & 0xffd0) == 0xe890 /* ldmia Rn[!],
1326 { registers } */
ec3d575a
UW
1327 && (inst2 & 0x8000) == 0x0000
1328 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
1329 /* Ignore block loads from the stack, potentially copying
1330 parameters from memory. */
0d39a070 1331 ;
ec3d575a 1332
f8c6d152 1333 else if ((insn & 0xff70) == 0xe950 /* ldrd Rt, Rt2,
0963b4bd 1334 [Rn, #+/-imm] */
0d39a070 1335 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 1336 /* Similarly ignore dual loads from the stack. */
0d39a070 1337 ;
ec3d575a
UW
1338
1339 else if ((insn & 0xfff0) == 0xf850 /* ldr Rt,[Rn,#+/-imm] */
1340 && (inst2 & 0x0d00) == 0x0c00
0d39a070 1341 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 1342 /* Similarly ignore single loads from the stack. */
0d39a070 1343 ;
ec3d575a
UW
1344
1345 else if ((insn & 0xfff0) == 0xf8d0 /* ldr.w Rt,[Rn,#imm] */
0d39a070 1346 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 1347 /* Similarly ignore single loads from the stack. */
0d39a070 1348 ;
ec3d575a
UW
1349
1350 else if ((insn & 0xfbf0) == 0xf100 /* add.w Rd, Rn, #imm */
1351 && (inst2 & 0x8000) == 0x0000)
1352 {
1353 unsigned int imm = ((bits (insn, 10, 10) << 11)
1354 | (bits (inst2, 12, 14) << 8)
1355 | bits (inst2, 0, 7));
1356
1357 regs[bits (inst2, 8, 11)]
1358 = pv_add_constant (regs[bits (insn, 0, 3)],
1359 thumb_expand_immediate (imm));
1360 }
1361
1362 else if ((insn & 0xfbf0) == 0xf200 /* addw Rd, Rn, #imm */
1363 && (inst2 & 0x8000) == 0x0000)
0d39a070 1364 {
ec3d575a
UW
1365 unsigned int imm = ((bits (insn, 10, 10) << 11)
1366 | (bits (inst2, 12, 14) << 8)
1367 | bits (inst2, 0, 7));
1368
1369 regs[bits (inst2, 8, 11)]
1370 = pv_add_constant (regs[bits (insn, 0, 3)], imm);
1371 }
1372
1373 else if ((insn & 0xfbf0) == 0xf1a0 /* sub.w Rd, Rn, #imm */
1374 && (inst2 & 0x8000) == 0x0000)
1375 {
1376 unsigned int imm = ((bits (insn, 10, 10) << 11)
1377 | (bits (inst2, 12, 14) << 8)
1378 | bits (inst2, 0, 7));
1379
1380 regs[bits (inst2, 8, 11)]
1381 = pv_add_constant (regs[bits (insn, 0, 3)],
1382 - (CORE_ADDR) thumb_expand_immediate (imm));
1383 }
1384
1385 else if ((insn & 0xfbf0) == 0xf2a0 /* subw Rd, Rn, #imm */
1386 && (inst2 & 0x8000) == 0x0000)
1387 {
1388 unsigned int imm = ((bits (insn, 10, 10) << 11)
1389 | (bits (inst2, 12, 14) << 8)
1390 | bits (inst2, 0, 7));
1391
1392 regs[bits (inst2, 8, 11)]
1393 = pv_add_constant (regs[bits (insn, 0, 3)], - (CORE_ADDR) imm);
1394 }
1395
1396 else if ((insn & 0xfbff) == 0xf04f) /* mov.w Rd, #const */
1397 {
1398 unsigned int imm = ((bits (insn, 10, 10) << 11)
1399 | (bits (inst2, 12, 14) << 8)
1400 | bits (inst2, 0, 7));
1401
1402 regs[bits (inst2, 8, 11)]
1403 = pv_constant (thumb_expand_immediate (imm));
1404 }
1405
1406 else if ((insn & 0xfbf0) == 0xf240) /* movw Rd, #const */
1407 {
621c6d5b
YQ
1408 unsigned int imm
1409 = EXTRACT_MOVW_MOVT_IMM_T (insn, inst2);
ec3d575a
UW
1410
1411 regs[bits (inst2, 8, 11)] = pv_constant (imm);
1412 }
1413
1414 else if (insn == 0xea5f /* mov.w Rd,Rm */
1415 && (inst2 & 0xf0f0) == 0)
1416 {
1417 int dst_reg = (inst2 & 0x0f00) >> 8;
1418 int src_reg = inst2 & 0xf;
1419 regs[dst_reg] = regs[src_reg];
1420 }
1421
1422 else if ((insn & 0xff7f) == 0xf85f) /* ldr.w Rt,<label> */
1423 {
1424 /* Constant pool loads. */
1425 unsigned int constant;
1426 CORE_ADDR loc;
1427
cac395ea 1428 offset = bits (inst2, 0, 11);
ec3d575a
UW
1429 if (insn & 0x0080)
1430 loc = start + 4 + offset;
1431 else
1432 loc = start + 4 - offset;
1433
1434 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1435 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1436 }
1437
1438 else if ((insn & 0xff7f) == 0xe95f) /* ldrd Rt,Rt2,<label> */
1439 {
1440 /* Constant pool loads. */
1441 unsigned int constant;
1442 CORE_ADDR loc;
1443
cac395ea 1444 offset = bits (inst2, 0, 7) << 2;
ec3d575a
UW
1445 if (insn & 0x0080)
1446 loc = start + 4 + offset;
1447 else
1448 loc = start + 4 - offset;
1449
1450 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1451 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1452
1453 constant = read_memory_unsigned_integer (loc + 4, 4, byte_order);
1454 regs[bits (inst2, 8, 11)] = pv_constant (constant);
1455 }
a01567f4
LM
1456 /* Start of ARMv8.1-m PACBTI extension instructions. */
1457 else if (IS_PAC (whole_insn))
1458 {
1459 /* LR and SP are input registers. PAC is in R12. LR is
1460 signed from this point onwards. NOP space. */
1461 ra_signed_state = true;
1462 }
1463 else if (IS_PACBTI (whole_insn))
1464 {
1465 /* LR and SP are input registers. PAC is in R12 and PC is a
1466 valid BTI landing pad. LR is signed from this point onwards.
1467 NOP space. */
1468 ra_signed_state = true;
1469 }
1470 else if (IS_BTI (whole_insn))
1471 {
1472 /* Valid BTI landing pad. NOP space. */
1473 }
1474 else if (IS_PACG (whole_insn))
1475 {
1476 /* Sign Rn using Rm and store the PAC in Rd. Rd is signed from
1477 this point onwards. */
1478 ra_signed_state = true;
1479 }
1480 else if (IS_AUT (whole_insn) || IS_AUTG (whole_insn))
1481 {
1482 /* These instructions appear close to the epilogue, when signed
1483 pointers are getting authenticated. */
1484 ra_signed_state = false;
1485 }
1486 /* End of ARMv8.1-m PACBTI extension instructions */
ec3d575a
UW
1487 else if (thumb2_instruction_changes_pc (insn, inst2))
1488 {
1489 /* Don't scan past anything that might change control flow. */
0d39a070
DJ
1490 break;
1491 }
ec3d575a
UW
1492 else
1493 {
1494 /* The optimizer might shove anything into the prologue,
1495 so we just skip what we don't recognize. */
1496 unrecognized_pc = start;
1497 }
0d39a070 1498
a01567f4
LM
1499 /* Make sure we are dealing with a target that supports ARMv8.1-m
1500 PACBTI. */
1501 if (cache != nullptr && tdep->have_pacbti
1502 && ra_signed_state.has_value ())
1503 {
1504 arm_debug_printf ("Found pacbti instruction at %s",
1505 paddress (gdbarch, start));
1506 arm_debug_printf ("RA is %s",
05d63baf 1507 *ra_signed_state ? "signed" : "not signed");
a01567f4
LM
1508 cache->ra_signed_state = ra_signed_state;
1509 }
1510
0d39a070
DJ
1511 start += 2;
1512 }
ec3d575a 1513 else if (thumb_instruction_changes_pc (insn))
3d74b771 1514 {
ec3d575a 1515 /* Don't scan past anything that might change control flow. */
da3c6d4a 1516 break;
3d74b771 1517 }
ec3d575a
UW
1518 else
1519 {
1520 /* The optimizer might shove anything into the prologue,
1521 so we just skip what we don't recognize. */
1522 unrecognized_pc = start;
1523 }
29d73ae4
DJ
1524
1525 start += 2;
c906108c
SS
1526 }
1527
7cb6d92a
SM
1528 arm_debug_printf ("Prologue scan stopped at %s",
1529 paddress (gdbarch, start));
0d39a070 1530
ec3d575a
UW
1531 if (unrecognized_pc == 0)
1532 unrecognized_pc = start;
1533
29d73ae4 1534 if (cache == NULL)
f7b7ed97 1535 return unrecognized_pc;
29d73ae4 1536
29d73ae4
DJ
1537 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1538 {
1539 /* Frame pointer is fp. Frame size is constant. */
1540 cache->framereg = ARM_FP_REGNUM;
1541 cache->framesize = -regs[ARM_FP_REGNUM].k;
1542 }
1543 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
1544 {
1545 /* Frame pointer is r7. Frame size is constant. */
1546 cache->framereg = THUMB_FP_REGNUM;
1547 cache->framesize = -regs[THUMB_FP_REGNUM].k;
1548 }
72a2e3dc 1549 else
29d73ae4
DJ
1550 {
1551 /* Try the stack pointer... this is a bit desperate. */
1552 cache->framereg = ARM_SP_REGNUM;
1553 cache->framesize = -regs[ARM_SP_REGNUM].k;
1554 }
29d73ae4 1555
de76473c 1556 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
f7b7ed97 1557 if (stack.find_reg (gdbarch, i, &offset))
10245fe8
YR
1558 {
1559 cache->saved_regs[i].set_addr (offset);
1560 if (i == ARM_SP_REGNUM)
1561 arm_cache_set_active_sp_value(cache, tdep, offset);
1562 }
29d73ae4 1563
ec3d575a 1564 return unrecognized_pc;
c906108c
SS
1565}
1566
621c6d5b
YQ
1567
1568/* Try to analyze the instructions starting from PC, which load symbol
1569 __stack_chk_guard. Return the address of instruction after loading this
1570 symbol, set the dest register number to *BASEREG, and set the size of
1571 instructions for loading symbol in OFFSET. Return 0 if instructions are
1572 not recognized. */
1573
1574static CORE_ADDR
1575arm_analyze_load_stack_chk_guard(CORE_ADDR pc, struct gdbarch *gdbarch,
1576 unsigned int *destreg, int *offset)
1577{
1578 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1579 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1580 unsigned int low, high, address;
1581
1582 address = 0;
1583 if (is_thumb)
1584 {
1585 unsigned short insn1
198cd59d 1586 = read_code_unsigned_integer (pc, 2, byte_order_for_code);
621c6d5b
YQ
1587
1588 if ((insn1 & 0xf800) == 0x4800) /* ldr Rd, #immed */
1589 {
1590 *destreg = bits (insn1, 8, 10);
1591 *offset = 2;
6ae274b7
YQ
1592 address = (pc & 0xfffffffc) + 4 + (bits (insn1, 0, 7) << 2);
1593 address = read_memory_unsigned_integer (address, 4,
1594 byte_order_for_code);
621c6d5b
YQ
1595 }
1596 else if ((insn1 & 0xfbf0) == 0xf240) /* movw Rd, #const */
1597 {
1598 unsigned short insn2
198cd59d 1599 = read_code_unsigned_integer (pc + 2, 2, byte_order_for_code);
621c6d5b
YQ
1600
1601 low = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1602
1603 insn1
198cd59d 1604 = read_code_unsigned_integer (pc + 4, 2, byte_order_for_code);
621c6d5b 1605 insn2
198cd59d 1606 = read_code_unsigned_integer (pc + 6, 2, byte_order_for_code);
621c6d5b
YQ
1607
1608 /* movt Rd, #const */
1609 if ((insn1 & 0xfbc0) == 0xf2c0)
1610 {
1611 high = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1612 *destreg = bits (insn2, 8, 11);
1613 *offset = 8;
1614 address = (high << 16 | low);
1615 }
1616 }
1617 }
1618 else
1619 {
2e9e421f 1620 unsigned int insn
198cd59d 1621 = read_code_unsigned_integer (pc, 4, byte_order_for_code);
2e9e421f 1622
6ae274b7 1623 if ((insn & 0x0e5f0000) == 0x041f0000) /* ldr Rd, [PC, #immed] */
2e9e421f 1624 {
6ae274b7
YQ
1625 address = bits (insn, 0, 11) + pc + 8;
1626 address = read_memory_unsigned_integer (address, 4,
1627 byte_order_for_code);
1628
2e9e421f
UW
1629 *destreg = bits (insn, 12, 15);
1630 *offset = 4;
1631 }
1632 else if ((insn & 0x0ff00000) == 0x03000000) /* movw Rd, #const */
1633 {
1634 low = EXTRACT_MOVW_MOVT_IMM_A (insn);
1635
1636 insn
198cd59d 1637 = read_code_unsigned_integer (pc + 4, 4, byte_order_for_code);
2e9e421f
UW
1638
1639 if ((insn & 0x0ff00000) == 0x03400000) /* movt Rd, #const */
1640 {
1641 high = EXTRACT_MOVW_MOVT_IMM_A (insn);
1642 *destreg = bits (insn, 12, 15);
1643 *offset = 8;
1644 address = (high << 16 | low);
1645 }
1646 }
621c6d5b
YQ
1647 }
1648
1649 return address;
1650}
1651
1652/* Try to skip a sequence of instructions used for stack protector. If PC
0963b4bd
MS
1653 points to the first instruction of this sequence, return the address of
1654 first instruction after this sequence, otherwise, return original PC.
621c6d5b
YQ
1655
1656 On arm, this sequence of instructions is composed of mainly three steps,
1657 Step 1: load symbol __stack_chk_guard,
1658 Step 2: load from address of __stack_chk_guard,
1659 Step 3: store it to somewhere else.
1660
1661 Usually, instructions on step 2 and step 3 are the same on various ARM
1662 architectures. On step 2, it is one instruction 'ldr Rx, [Rn, #0]', and
1663 on step 3, it is also one instruction 'str Rx, [r7, #immd]'. However,
1664 instructions in step 1 vary from different ARM architectures. On ARMv7,
1665 they are,
1666
1667 movw Rn, #:lower16:__stack_chk_guard
1668 movt Rn, #:upper16:__stack_chk_guard
1669
1670 On ARMv5t, it is,
1671
1672 ldr Rn, .Label
1673 ....
1674 .Lable:
1675 .word __stack_chk_guard
1676
1677 Since ldr/str is a very popular instruction, we can't use them as
1678 'fingerprint' or 'signature' of stack protector sequence. Here we choose
1679 sequence {movw/movt, ldr}/ldr/str plus symbol __stack_chk_guard, if not
1680 stripped, as the 'fingerprint' of a stack protector cdoe sequence. */
1681
1682static CORE_ADDR
1683arm_skip_stack_protector(CORE_ADDR pc, struct gdbarch *gdbarch)
1684{
1685 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
22e048c9 1686 unsigned int basereg;
7cbd4a93 1687 struct bound_minimal_symbol stack_chk_guard;
621c6d5b
YQ
1688 int offset;
1689 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1690 CORE_ADDR addr;
1691
1692 /* Try to parse the instructions in Step 1. */
1693 addr = arm_analyze_load_stack_chk_guard (pc, gdbarch,
1694 &basereg, &offset);
1695 if (!addr)
1696 return pc;
1697
1698 stack_chk_guard = lookup_minimal_symbol_by_pc (addr);
6041179a
JB
1699 /* ADDR must correspond to a symbol whose name is __stack_chk_guard.
1700 Otherwise, this sequence cannot be for stack protector. */
1701 if (stack_chk_guard.minsym == NULL
c9d95fa3 1702 || !startswith (stack_chk_guard.minsym->linkage_name (), "__stack_chk_guard"))
621c6d5b
YQ
1703 return pc;
1704
1705 if (is_thumb)
1706 {
1707 unsigned int destreg;
1708 unsigned short insn
198cd59d 1709 = read_code_unsigned_integer (pc + offset, 2, byte_order_for_code);
621c6d5b
YQ
1710
1711 /* Step 2: ldr Rd, [Rn, #immed], encoding T1. */
1712 if ((insn & 0xf800) != 0x6800)
1713 return pc;
1714 if (bits (insn, 3, 5) != basereg)
1715 return pc;
1716 destreg = bits (insn, 0, 2);
1717
198cd59d
YQ
1718 insn = read_code_unsigned_integer (pc + offset + 2, 2,
1719 byte_order_for_code);
621c6d5b
YQ
1720 /* Step 3: str Rd, [Rn, #immed], encoding T1. */
1721 if ((insn & 0xf800) != 0x6000)
1722 return pc;
1723 if (destreg != bits (insn, 0, 2))
1724 return pc;
1725 }
1726 else
1727 {
1728 unsigned int destreg;
1729 unsigned int insn
198cd59d 1730 = read_code_unsigned_integer (pc + offset, 4, byte_order_for_code);
621c6d5b
YQ
1731
1732 /* Step 2: ldr Rd, [Rn, #immed], encoding A1. */
1733 if ((insn & 0x0e500000) != 0x04100000)
1734 return pc;
1735 if (bits (insn, 16, 19) != basereg)
1736 return pc;
1737 destreg = bits (insn, 12, 15);
1738 /* Step 3: str Rd, [Rn, #immed], encoding A1. */
198cd59d 1739 insn = read_code_unsigned_integer (pc + offset + 4,
621c6d5b
YQ
1740 4, byte_order_for_code);
1741 if ((insn & 0x0e500000) != 0x04000000)
1742 return pc;
1743 if (bits (insn, 12, 15) != destreg)
1744 return pc;
1745 }
1746 /* The size of total two instructions ldr/str is 4 on Thumb-2, while 8
1747 on arm. */
1748 if (is_thumb)
1749 return pc + offset + 4;
1750 else
1751 return pc + offset + 8;
1752}
1753
da3c6d4a
MS
1754/* Advance the PC across any function entry prologue instructions to
1755 reach some "real" code.
34e8f22d
RE
1756
1757 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 1758 prologue:
c906108c 1759
c5aa993b
JM
1760 mov ip, sp
1761 [stmfd sp!, {a1,a2,a3,a4}]
1762 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
1763 [stfe f7, [sp, #-12]!]
1764 [stfe f6, [sp, #-12]!]
1765 [stfe f5, [sp, #-12]!]
1766 [stfe f4, [sp, #-12]!]
0963b4bd 1767 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn. */
c906108c 1768
34e8f22d 1769static CORE_ADDR
6093d2eb 1770arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 1771{
22f2cf64 1772 CORE_ADDR func_addr, func_end_addr, limit_pc;
c906108c 1773
a89fea3c
JL
1774 /* See if we can determine the end of the prologue via the symbol table.
1775 If so, then return either PC, or the PC after the prologue, whichever
1776 is greater. */
22f2cf64
TV
1777 bool func_addr_found
1778 = find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr);
1779
1780 /* Whether the function is thumb mode or not. */
1781 bool func_is_thumb = false;
1782
1783 if (func_addr_found)
c906108c 1784 {
d80b854b
UW
1785 CORE_ADDR post_prologue_pc
1786 = skip_prologue_using_sal (gdbarch, func_addr);
43f3e411 1787 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
0d39a070 1788
621c6d5b
YQ
1789 if (post_prologue_pc)
1790 post_prologue_pc
1791 = arm_skip_stack_protector (post_prologue_pc, gdbarch);
1792
1793
0d39a070
DJ
1794 /* GCC always emits a line note before the prologue and another
1795 one after, even if the two are at the same address or on the
1796 same line. Take advantage of this so that we do not need to
1797 know every instruction that might appear in the prologue. We
1798 will have producer information for most binaries; if it is
1799 missing (e.g. for -gstabs), assuming the GNU tools. */
1800 if (post_prologue_pc
43f3e411 1801 && (cust == NULL
ab5f850e
SM
1802 || cust->producer () == NULL
1803 || startswith (cust->producer (), "GNU ")
1804 || producer_is_llvm (cust->producer ())))
0d39a070
DJ
1805 return post_prologue_pc;
1806
a89fea3c 1807 if (post_prologue_pc != 0)
0d39a070
DJ
1808 {
1809 CORE_ADDR analyzed_limit;
1810
1811 /* For non-GCC compilers, make sure the entire line is an
1812 acceptable prologue; GDB will round this function's
1813 return value up to the end of the following line so we
1814 can not skip just part of a line (and we do not want to).
1815
1816 RealView does not treat the prologue specially, but does
1817 associate prologue code with the opening brace; so this
1818 lets us skip the first line if we think it is the opening
1819 brace. */
22f2cf64
TV
1820 func_is_thumb = arm_pc_is_thumb (gdbarch, func_addr);
1821 if (func_is_thumb)
0d39a070
DJ
1822 analyzed_limit = thumb_analyze_prologue (gdbarch, func_addr,
1823 post_prologue_pc, NULL);
1824 else
9ecab40c
SM
1825 analyzed_limit
1826 = arm_analyze_prologue (gdbarch, func_addr, post_prologue_pc,
1827 NULL, target_arm_instruction_reader ());
0d39a070
DJ
1828
1829 if (analyzed_limit != post_prologue_pc)
1830 return func_addr;
1831
1832 return post_prologue_pc;
1833 }
c906108c
SS
1834 }
1835
a89fea3c
JL
1836 /* Can't determine prologue from the symbol table, need to examine
1837 instructions. */
c906108c 1838
a89fea3c
JL
1839 /* Find an upper limit on the function prologue using the debug
1840 information. If the debug information could not be used to provide
1841 that bound, then use an arbitrary large number as the upper bound. */
0963b4bd 1842 /* Like arm_scan_prologue, stop no later than pc + 64. */
d80b854b 1843 limit_pc = skip_prologue_using_sal (gdbarch, pc);
a89fea3c
JL
1844 if (limit_pc == 0)
1845 limit_pc = pc + 64; /* Magic. */
1846
22f2cf64
TV
1847 /* Set the correct adjustment based on whether the function is thumb mode or
1848 not. We use it to get the address of the last instruction in the
1849 function (as opposed to the first address of the next function). */
05d63baf 1850 CORE_ADDR adjustment = func_is_thumb ? 2 : 4;
22f2cf64
TV
1851
1852 limit_pc
05d63baf
LM
1853 = func_end_addr == 0 ? limit_pc : std::min (limit_pc,
1854 func_end_addr - adjustment);
c906108c 1855
29d73ae4 1856 /* Check if this is Thumb code. */
9779414d 1857 if (arm_pc_is_thumb (gdbarch, pc))
a89fea3c 1858 return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL);
21daaaaf 1859 else
9ecab40c
SM
1860 return arm_analyze_prologue (gdbarch, pc, limit_pc, NULL,
1861 target_arm_instruction_reader ());
c906108c 1862}
94c30b78 1863
c906108c
SS
1864/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
1865 This function decodes a Thumb function prologue to determine:
1866 1) the size of the stack frame
1867 2) which registers are saved on it
1868 3) the offsets of saved regs
1869 4) the offset from the stack pointer to the frame pointer
c906108c 1870
da59e081
JM
1871 A typical Thumb function prologue would create this stack frame
1872 (offsets relative to FP)
c906108c
SS
1873 old SP -> 24 stack parameters
1874 20 LR
1875 16 R7
1876 R7 -> 0 local variables (16 bytes)
1877 SP -> -12 additional stack space (12 bytes)
1878 The frame size would thus be 36 bytes, and the frame offset would be
0963b4bd 1879 12 bytes. The frame register is R7.
da59e081 1880
da3c6d4a
MS
1881 The comments for thumb_skip_prolog() describe the algorithm we use
1882 to detect the end of the prolog. */
c5aa993b 1883
c906108c 1884static void
be8626e0 1885thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc,
b39cc962 1886 CORE_ADDR block_addr, struct arm_prologue_cache *cache)
c906108c
SS
1887{
1888 CORE_ADDR prologue_start;
1889 CORE_ADDR prologue_end;
c906108c 1890
b39cc962
DJ
1891 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1892 &prologue_end))
c906108c 1893 {
ec3d575a
UW
1894 /* See comment in arm_scan_prologue for an explanation of
1895 this heuristics. */
1896 if (prologue_end > prologue_start + 64)
1897 {
1898 prologue_end = prologue_start + 64;
1899 }
c906108c
SS
1900 }
1901 else
f7060f85
DJ
1902 /* We're in the boondocks: we have no idea where the start of the
1903 function is. */
1904 return;
c906108c 1905
325fac50 1906 prologue_end = std::min (prologue_end, prev_pc);
c906108c 1907
be8626e0 1908 thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
c906108c
SS
1909}
1910
f303bc3e
YQ
1911/* Return 1 if the ARM instruction INSN restores SP in epilogue, 0
1912 otherwise. */
1913
1914static int
1915arm_instruction_restores_sp (unsigned int insn)
1916{
1917 if (bits (insn, 28, 31) != INST_NV)
1918 {
1919 if ((insn & 0x0df0f000) == 0x0080d000
1920 /* ADD SP (register or immediate). */
1921 || (insn & 0x0df0f000) == 0x0040d000
1922 /* SUB SP (register or immediate). */
1923 || (insn & 0x0ffffff0) == 0x01a0d000
1924 /* MOV SP. */
1925 || (insn & 0x0fff0000) == 0x08bd0000
1926 /* POP (LDMIA). */
1927 || (insn & 0x0fff0000) == 0x049d0000)
1928 /* POP of a single register. */
1929 return 1;
1930 }
1931
1932 return 0;
1933}
1934
9ecab40c
SM
1935/* Implement immediate value decoding, as described in section A5.2.4
1936 (Modified immediate constants in ARM instructions) of the ARM Architecture
1937 Reference Manual (ARMv7-A and ARMv7-R edition). */
1938
1939static uint32_t
1940arm_expand_immediate (uint32_t imm)
1941{
1942 /* Immediate values are 12 bits long. */
1943 gdb_assert ((imm & 0xfffff000) == 0);
1944
1945 uint32_t unrotated_value = imm & 0xff;
1946 uint32_t rotate_amount = (imm & 0xf00) >> 7;
1947
1948 if (rotate_amount == 0)
1949 return unrotated_value;
1950
1951 return ((unrotated_value >> rotate_amount)
1952 | (unrotated_value << (32 - rotate_amount)));
1953}
1954
0d39a070
DJ
1955/* Analyze an ARM mode prologue starting at PROLOGUE_START and
1956 continuing no further than PROLOGUE_END. If CACHE is non-NULL,
1957 fill it in. Return the first address not recognized as a prologue
1958 instruction.
eb5492fa 1959
0d39a070
DJ
1960 We recognize all the instructions typically found in ARM prologues,
1961 plus harmless instructions which can be skipped (either for analysis
1962 purposes, or a more restrictive set that can be skipped when finding
1963 the end of the prologue). */
1964
1965static CORE_ADDR
1966arm_analyze_prologue (struct gdbarch *gdbarch,
1967 CORE_ADDR prologue_start, CORE_ADDR prologue_end,
9ecab40c
SM
1968 struct arm_prologue_cache *cache,
1969 const arm_instruction_reader &insn_reader)
0d39a070 1970{
0d39a070
DJ
1971 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1972 int regno;
1973 CORE_ADDR offset, current_pc;
1974 pv_t regs[ARM_FPS_REGNUM];
0d39a070 1975 CORE_ADDR unrecognized_pc = 0;
08106042 1976 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
0d39a070
DJ
1977
1978 /* Search the prologue looking for instructions that set up the
96baa820 1979 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 1980
96baa820
JM
1981 Be careful, however, and if it doesn't look like a prologue,
1982 don't try to scan it. If, for instance, a frameless function
1983 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 1984 a frame, which will confuse stack traceback, as well as "finish"
96baa820 1985 and other operations that rely on a knowledge of the stack
0d39a070 1986 traceback. */
d4473757 1987
4be43953
DJ
1988 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1989 regs[regno] = pv_register (regno, 0);
f7b7ed97 1990 pv_area stack (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
4be43953 1991
94c30b78
MS
1992 for (current_pc = prologue_start;
1993 current_pc < prologue_end;
f43845b3 1994 current_pc += 4)
96baa820 1995 {
9ecab40c 1996 uint32_t insn = insn_reader.read (current_pc, byte_order_for_code);
9d4fde75 1997
94c30b78 1998 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3 1999 {
4be43953 2000 regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM];
28cd8767
JG
2001 continue;
2002 }
0d39a070
DJ
2003 else if ((insn & 0xfff00000) == 0xe2800000 /* add Rd, Rn, #n */
2004 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
28cd8767 2005 {
9ecab40c 2006 uint32_t imm = arm_expand_immediate (insn & 0xfff);
0d39a070 2007 int rd = bits (insn, 12, 15);
0d39a070 2008 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], imm);
28cd8767
JG
2009 continue;
2010 }
0d39a070
DJ
2011 else if ((insn & 0xfff00000) == 0xe2400000 /* sub Rd, Rn, #n */
2012 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
28cd8767 2013 {
9ecab40c 2014 uint32_t imm = arm_expand_immediate (insn & 0xfff);
0d39a070 2015 int rd = bits (insn, 12, 15);
0d39a070 2016 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], -imm);
f43845b3
MS
2017 continue;
2018 }
0963b4bd
MS
2019 else if ((insn & 0xffff0fff) == 0xe52d0004) /* str Rd,
2020 [sp, #-4]! */
f43845b3 2021 {
f7b7ed97 2022 if (stack.store_would_trash (regs[ARM_SP_REGNUM]))
4be43953
DJ
2023 break;
2024 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
f7b7ed97
TT
2025 stack.store (regs[ARM_SP_REGNUM], 4,
2026 regs[bits (insn, 12, 15)]);
f43845b3
MS
2027 continue;
2028 }
2029 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
2030 /* stmfd sp!, {..., fp, ip, lr, pc}
2031 or
2032 stmfd sp!, {a1, a2, a3, a4} */
c906108c 2033 {
d4473757 2034 int mask = insn & 0xffff;
ed9a39eb 2035
f7b7ed97 2036 if (stack.store_would_trash (regs[ARM_SP_REGNUM]))
4be43953
DJ
2037 break;
2038
94c30b78 2039 /* Calculate offsets of saved registers. */
34e8f22d 2040 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
2041 if (mask & (1 << regno))
2042 {
0963b4bd
MS
2043 regs[ARM_SP_REGNUM]
2044 = pv_add_constant (regs[ARM_SP_REGNUM], -4);
f7b7ed97 2045 stack.store (regs[ARM_SP_REGNUM], 4, regs[regno]);
d4473757
KB
2046 }
2047 }
0d39a070
DJ
2048 else if ((insn & 0xffff0000) == 0xe54b0000 /* strb rx,[r11,#-n] */
2049 || (insn & 0xffff00f0) == 0xe14b00b0 /* strh rx,[r11,#-n] */
f8bf5763 2050 || (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
b8d5e71d
MS
2051 {
2052 /* No need to add this to saved_regs -- it's just an arg reg. */
2053 continue;
2054 }
0d39a070
DJ
2055 else if ((insn & 0xffff0000) == 0xe5cd0000 /* strb rx,[sp,#n] */
2056 || (insn & 0xffff00f0) == 0xe1cd00b0 /* strh rx,[sp,#n] */
f8bf5763 2057 || (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
2058 {
2059 /* No need to add this to saved_regs -- it's just an arg reg. */
2060 continue;
2061 }
0963b4bd
MS
2062 else if ((insn & 0xfff00000) == 0xe8800000 /* stm Rn,
2063 { registers } */
0d39a070
DJ
2064 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
2065 {
2066 /* No need to add this to saved_regs -- it's just arg regs. */
2067 continue;
2068 }
d4473757
KB
2069 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
2070 {
9ecab40c 2071 uint32_t imm = arm_expand_immediate (insn & 0xfff);
4be43953 2072 regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm);
d4473757
KB
2073 }
2074 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
2075 {
9ecab40c 2076 uint32_t imm = arm_expand_immediate(insn & 0xfff);
4be43953 2077 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
d4473757 2078 }
0963b4bd
MS
2079 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?,
2080 [sp, -#c]! */
345bd07c 2081 && tdep->have_fpa_registers)
d4473757 2082 {
f7b7ed97 2083 if (stack.store_would_trash (regs[ARM_SP_REGNUM]))
4be43953
DJ
2084 break;
2085
2086 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
34e8f22d 2087 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
f7b7ed97 2088 stack.store (regs[ARM_SP_REGNUM], 12, regs[regno]);
d4473757 2089 }
0963b4bd
MS
2090 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4,
2091 [sp!] */
345bd07c 2092 && tdep->have_fpa_registers)
d4473757
KB
2093 {
2094 int n_saved_fp_regs;
2095 unsigned int fp_start_reg, fp_bound_reg;
2096
f7b7ed97 2097 if (stack.store_would_trash (regs[ARM_SP_REGNUM]))
4be43953
DJ
2098 break;
2099
94c30b78 2100 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 2101 {
d4473757
KB
2102 if ((insn & 0x40000) == 0x40000) /* N1 is set */
2103 n_saved_fp_regs = 3;
2104 else
2105 n_saved_fp_regs = 1;
96baa820 2106 }
d4473757 2107 else
96baa820 2108 {
d4473757
KB
2109 if ((insn & 0x40000) == 0x40000) /* N1 is set */
2110 n_saved_fp_regs = 2;
2111 else
2112 n_saved_fp_regs = 4;
96baa820 2113 }
d4473757 2114
34e8f22d 2115 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
2116 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
2117 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820 2118 {
4be43953 2119 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
f7b7ed97
TT
2120 stack.store (regs[ARM_SP_REGNUM], 12,
2121 regs[fp_start_reg++]);
96baa820 2122 }
c906108c 2123 }
0d39a070
DJ
2124 else if ((insn & 0xff000000) == 0xeb000000 && cache == NULL) /* bl */
2125 {
2126 /* Allow some special function calls when skipping the
2127 prologue; GCC generates these before storing arguments to
2128 the stack. */
2129 CORE_ADDR dest = BranchDest (current_pc, insn);
2130
e0634ccf 2131 if (skip_prologue_function (gdbarch, dest, 0))
0d39a070
DJ
2132 continue;
2133 else
2134 break;
2135 }
d4473757 2136 else if ((insn & 0xf0000000) != 0xe0000000)
0963b4bd 2137 break; /* Condition not true, exit early. */
0d39a070
DJ
2138 else if (arm_instruction_changes_pc (insn))
2139 /* Don't scan past anything that might change control flow. */
2140 break;
f303bc3e
YQ
2141 else if (arm_instruction_restores_sp (insn))
2142 {
2143 /* Don't scan past the epilogue. */
2144 break;
2145 }
d19f7eee
UW
2146 else if ((insn & 0xfe500000) == 0xe8100000 /* ldm */
2147 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
2148 /* Ignore block loads from the stack, potentially copying
2149 parameters from memory. */
2150 continue;
2151 else if ((insn & 0xfc500000) == 0xe4100000
2152 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
2153 /* Similarly ignore single loads from the stack. */
2154 continue;
0d39a070
DJ
2155 else if ((insn & 0xffff0ff0) == 0xe1a00000)
2156 /* MOV Rd, Rm. Skip register copies, i.e. saves to another
2157 register instead of the stack. */
d4473757 2158 continue;
0d39a070
DJ
2159 else
2160 {
21daaaaf
YQ
2161 /* The optimizer might shove anything into the prologue, if
2162 we build up cache (cache != NULL) from scanning prologue,
2163 we just skip what we don't recognize and scan further to
2164 make cache as complete as possible. However, if we skip
2165 prologue, we'll stop immediately on unrecognized
2166 instruction. */
0d39a070 2167 unrecognized_pc = current_pc;
21daaaaf
YQ
2168 if (cache != NULL)
2169 continue;
2170 else
2171 break;
0d39a070 2172 }
c906108c
SS
2173 }
2174
0d39a070
DJ
2175 if (unrecognized_pc == 0)
2176 unrecognized_pc = current_pc;
2177
0d39a070
DJ
2178 if (cache)
2179 {
4072f920
YQ
2180 int framereg, framesize;
2181
2182 /* The frame size is just the distance from the frame register
2183 to the original stack pointer. */
2184 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
2185 {
2186 /* Frame pointer is fp. */
2187 framereg = ARM_FP_REGNUM;
2188 framesize = -regs[ARM_FP_REGNUM].k;
2189 }
2190 else
2191 {
2192 /* Try the stack pointer... this is a bit desperate. */
2193 framereg = ARM_SP_REGNUM;
2194 framesize = -regs[ARM_SP_REGNUM].k;
2195 }
2196
0d39a070
DJ
2197 cache->framereg = framereg;
2198 cache->framesize = framesize;
2199
2200 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
f7b7ed97 2201 if (stack.find_reg (gdbarch, regno, &offset))
10245fe8
YR
2202 {
2203 cache->saved_regs[regno].set_addr (offset);
2204 if (regno == ARM_SP_REGNUM)
2205 arm_cache_set_active_sp_value(cache, tdep, offset);
2206 }
0d39a070
DJ
2207 }
2208
7cb6d92a
SM
2209 arm_debug_printf ("Prologue scan stopped at %s",
2210 paddress (gdbarch, unrecognized_pc));
4be43953 2211
0d39a070
DJ
2212 return unrecognized_pc;
2213}
2214
2215static void
bd2b40ac 2216arm_scan_prologue (frame_info_ptr this_frame,
0d39a070
DJ
2217 struct arm_prologue_cache *cache)
2218{
2219 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2220 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
bec2ab5a 2221 CORE_ADDR prologue_start, prologue_end;
0d39a070
DJ
2222 CORE_ADDR prev_pc = get_frame_pc (this_frame);
2223 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
08106042 2224 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
0d39a070
DJ
2225
2226 /* Assume there is no frame until proven otherwise. */
2227 cache->framereg = ARM_SP_REGNUM;
2228 cache->framesize = 0;
2229
2230 /* Check for Thumb prologue. */
2231 if (arm_frame_is_thumb (this_frame))
2232 {
2233 thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache);
2234 return;
2235 }
2236
2237 /* Find the function prologue. If we can't find the function in
2238 the symbol table, peek in the stack frame to find the PC. */
2239 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
2240 &prologue_end))
2241 {
2242 /* One way to find the end of the prologue (which works well
dda83cd7 2243 for unoptimized code) is to do the following:
0d39a070
DJ
2244
2245 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
2246
2247 if (sal.line == 0)
2248 prologue_end = prev_pc;
2249 else if (sal.end < prologue_end)
2250 prologue_end = sal.end;
2251
2252 This mechanism is very accurate so long as the optimizer
2253 doesn't move any instructions from the function body into the
2254 prologue. If this happens, sal.end will be the last
2255 instruction in the first hunk of prologue code just before
2256 the first instruction that the scheduler has moved from
2257 the body to the prologue.
2258
2259 In order to make sure that we scan all of the prologue
2260 instructions, we use a slightly less accurate mechanism which
2261 may scan more than necessary. To help compensate for this
2262 lack of accuracy, the prologue scanning loop below contains
2263 several clauses which'll cause the loop to terminate early if
2264 an implausible prologue instruction is encountered.
2265
2266 The expression
2267
2268 prologue_start + 64
2269
2270 is a suitable endpoint since it accounts for the largest
2271 possible prologue plus up to five instructions inserted by
2272 the scheduler. */
2273
2274 if (prologue_end > prologue_start + 64)
2275 {
2276 prologue_end = prologue_start + 64; /* See above. */
2277 }
2278 }
2279 else
2280 {
2281 /* We have no symbol information. Our only option is to assume this
2282 function has a standard stack frame and the normal frame register.
2283 Then, we can find the value of our frame pointer on entrance to
2284 the callee (or at the present moment if this is the innermost frame).
2285 The value stored there should be the address of the stmfd + 8. */
2286 CORE_ADDR frame_loc;
7913a64c 2287 ULONGEST return_value;
0d39a070 2288
9e237747 2289 /* AAPCS does not use a frame register, so we can abort here. */
345bd07c 2290 if (tdep->arm_abi == ARM_ABI_AAPCS)
dda83cd7 2291 return;
9e237747 2292
0d39a070 2293 frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM);
7913a64c
YQ
2294 if (!safe_read_memory_unsigned_integer (frame_loc, 4, byte_order,
2295 &return_value))
dda83cd7 2296 return;
0d39a070 2297 else
dda83cd7
SM
2298 {
2299 prologue_start = gdbarch_addr_bits_remove
0d39a070 2300 (gdbarch, return_value) - 8;
dda83cd7
SM
2301 prologue_end = prologue_start + 64; /* See above. */
2302 }
0d39a070
DJ
2303 }
2304
2305 if (prev_pc < prologue_end)
2306 prologue_end = prev_pc;
2307
9ecab40c
SM
2308 arm_analyze_prologue (gdbarch, prologue_start, prologue_end, cache,
2309 target_arm_instruction_reader ());
c906108c
SS
2310}
2311
eb5492fa 2312static struct arm_prologue_cache *
bd2b40ac 2313arm_make_prologue_cache (frame_info_ptr this_frame)
c906108c 2314{
eb5492fa
DJ
2315 int reg;
2316 struct arm_prologue_cache *cache;
1ef3351b 2317 CORE_ADDR unwound_fp, prev_sp;
c5aa993b 2318
35d5d4ee 2319 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
0824193f 2320 arm_cache_init (cache, this_frame);
c906108c 2321
a262aec2 2322 arm_scan_prologue (this_frame, cache);
848cfffb 2323
a262aec2 2324 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
eb5492fa
DJ
2325 if (unwound_fp == 0)
2326 return cache;
c906108c 2327
ae7e2f45 2328 arm_gdbarch_tdep *tdep =
08106042 2329 gdbarch_tdep<arm_gdbarch_tdep> (get_frame_arch (this_frame));
ae7e2f45 2330
1ef3351b
YR
2331 prev_sp = unwound_fp + cache->framesize;
2332 arm_cache_set_active_sp_value (cache, tdep, prev_sp);
c906108c 2333
eb5492fa
DJ
2334 /* Calculate actual addresses of saved registers using offsets
2335 determined by arm_scan_prologue. */
a262aec2 2336 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
a9a87d35 2337 if (cache->saved_regs[reg].is_addr ())
1ef3351b
YR
2338 cache->saved_regs[reg].set_addr (cache->saved_regs[reg].addr () +
2339 prev_sp);
eb5492fa
DJ
2340
2341 return cache;
c906108c
SS
2342}
2343
c1ee9414
LM
2344/* Implementation of the stop_reason hook for arm_prologue frames. */
2345
2346static enum unwind_stop_reason
bd2b40ac 2347arm_prologue_unwind_stop_reason (frame_info_ptr this_frame,
c1ee9414
LM
2348 void **this_cache)
2349{
2350 struct arm_prologue_cache *cache;
2351 CORE_ADDR pc;
2352
2353 if (*this_cache == NULL)
2354 *this_cache = arm_make_prologue_cache (this_frame);
9a3c8263 2355 cache = (struct arm_prologue_cache *) *this_cache;
c1ee9414
LM
2356
2357 /* This is meant to halt the backtrace at "_start". */
2358 pc = get_frame_pc (this_frame);
345bd07c 2359 gdbarch *arch = get_frame_arch (this_frame);
08106042 2360 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (arch);
345bd07c 2361 if (pc <= tdep->lowest_pc)
c1ee9414
LM
2362 return UNWIND_OUTERMOST;
2363
2364 /* If we've hit a wall, stop. */
ae7e2f45 2365 if (arm_cache_get_prev_sp_value (cache, tdep) == 0)
c1ee9414
LM
2366 return UNWIND_OUTERMOST;
2367
2368 return UNWIND_NO_REASON;
2369}
2370
eb5492fa
DJ
2371/* Our frame ID for a normal frame is the current function's starting PC
2372 and the caller's SP when we were called. */
c906108c 2373
148754e5 2374static void
bd2b40ac 2375arm_prologue_this_id (frame_info_ptr this_frame,
eb5492fa
DJ
2376 void **this_cache,
2377 struct frame_id *this_id)
c906108c 2378{
eb5492fa
DJ
2379 struct arm_prologue_cache *cache;
2380 struct frame_id id;
2c404490 2381 CORE_ADDR pc, func;
f079148d 2382
eb5492fa 2383 if (*this_cache == NULL)
a262aec2 2384 *this_cache = arm_make_prologue_cache (this_frame);
9a3c8263 2385 cache = (struct arm_prologue_cache *) *this_cache;
2a451106 2386
ae7e2f45 2387 arm_gdbarch_tdep *tdep
08106042 2388 = gdbarch_tdep<arm_gdbarch_tdep> (get_frame_arch (this_frame));
ae7e2f45 2389
0e9e9abd
UW
2390 /* Use function start address as part of the frame ID. If we cannot
2391 identify the start address (due to missing symbol information),
2392 fall back to just using the current PC. */
c1ee9414 2393 pc = get_frame_pc (this_frame);
2c404490 2394 func = get_frame_func (this_frame);
0e9e9abd
UW
2395 if (!func)
2396 func = pc;
2397
ae7e2f45 2398 id = frame_id_build (arm_cache_get_prev_sp_value (cache, tdep), func);
eb5492fa 2399 *this_id = id;
c906108c
SS
2400}
2401
a262aec2 2402static struct value *
bd2b40ac 2403arm_prologue_prev_register (frame_info_ptr this_frame,
eb5492fa 2404 void **this_cache,
a262aec2 2405 int prev_regnum)
24de872b 2406{
24568a2c 2407 struct gdbarch *gdbarch = get_frame_arch (this_frame);
24de872b 2408 struct arm_prologue_cache *cache;
ef273377 2409 CORE_ADDR sp_value;
24de872b 2410
eb5492fa 2411 if (*this_cache == NULL)
a262aec2 2412 *this_cache = arm_make_prologue_cache (this_frame);
9a3c8263 2413 cache = (struct arm_prologue_cache *) *this_cache;
24de872b 2414
08106042 2415 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
a01567f4
LM
2416
2417 /* If this frame has signed the return address, mark it as so. */
2418 if (tdep->have_pacbti && cache->ra_signed_state.has_value ()
2419 && *cache->ra_signed_state)
2420 set_frame_previous_pc_masked (this_frame);
2421
eb5492fa 2422 /* If we are asked to unwind the PC, then we need to return the LR
b39cc962
DJ
2423 instead. The prologue may save PC, but it will point into this
2424 frame's prologue, not the next frame's resume location. Also
2425 strip the saved T bit. A valid LR may have the low bit set, but
2426 a valid PC never does. */
eb5492fa 2427 if (prev_regnum == ARM_PC_REGNUM)
b39cc962
DJ
2428 {
2429 CORE_ADDR lr;
2430
2431 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
2432 return frame_unwind_got_constant (this_frame, prev_regnum,
24568a2c 2433 arm_addr_bits_remove (gdbarch, lr));
b39cc962 2434 }
24de872b 2435
eb5492fa 2436 /* SP is generally not saved to the stack, but this frame is
a262aec2 2437 identified by the next frame's stack pointer at the time of the call.
eb5492fa
DJ
2438 The value was already reconstructed into PREV_SP. */
2439 if (prev_regnum == ARM_SP_REGNUM)
ae7e2f45
CL
2440 return frame_unwind_got_constant (this_frame, prev_regnum,
2441 arm_cache_get_prev_sp_value (cache, tdep));
eb5492fa 2442
ef273377
CL
2443 /* The value might be one of the alternative SP, if so, use the
2444 value already constructed. */
d65edaa0 2445 if (arm_is_alternative_sp_register (tdep, prev_regnum))
ef273377
CL
2446 {
2447 sp_value = arm_cache_get_sp_register (cache, tdep, prev_regnum);
2448 return frame_unwind_got_constant (this_frame, prev_regnum, sp_value);
2449 }
2450
b39cc962
DJ
2451 /* The CPSR may have been changed by the call instruction and by the
2452 called function. The only bit we can reconstruct is the T bit,
2453 by checking the low bit of LR as of the call. This is a reliable
2454 indicator of Thumb-ness except for some ARM v4T pre-interworking
2455 Thumb code, which could get away with a clear low bit as long as
2456 the called function did not use bx. Guess that all other
2457 bits are unchanged; the condition flags are presumably lost,
2458 but the processor status is likely valid. */
2459 if (prev_regnum == ARM_PS_REGNUM)
2460 {
8c9ae6df
YR
2461 ULONGEST cpsr = get_frame_register_unsigned (this_frame, prev_regnum);
2462 CORE_ADDR lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
b39cc962 2463
8c9ae6df 2464 cpsr = reconstruct_t_bit (gdbarch, lr, cpsr);
b39cc962
DJ
2465 return frame_unwind_got_constant (this_frame, prev_regnum, cpsr);
2466 }
2467
a262aec2
DJ
2468 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
2469 prev_regnum);
eb5492fa
DJ
2470}
2471
6bd434d6 2472static frame_unwind arm_prologue_unwind = {
a154d838 2473 "arm prologue",
eb5492fa 2474 NORMAL_FRAME,
c1ee9414 2475 arm_prologue_unwind_stop_reason,
eb5492fa 2476 arm_prologue_this_id,
a262aec2
DJ
2477 arm_prologue_prev_register,
2478 NULL,
2479 default_frame_sniffer
eb5492fa
DJ
2480};
2481
0e9e9abd
UW
2482/* Maintain a list of ARM exception table entries per objfile, similar to the
2483 list of mapping symbols. We only cache entries for standard ARM-defined
2484 personality routines; the cache will contain only the frame unwinding
2485 instructions associated with the entry (not the descriptors). */
2486
0e9e9abd
UW
2487struct arm_exidx_entry
2488{
227031b2 2489 CORE_ADDR addr;
0e9e9abd 2490 gdb_byte *entry;
7a5d944b
TT
2491
2492 bool operator< (const arm_exidx_entry &other) const
2493 {
2494 return addr < other.addr;
2495 }
0e9e9abd 2496};
0e9e9abd
UW
2497
2498struct arm_exidx_data
2499{
7a5d944b 2500 std::vector<std::vector<arm_exidx_entry>> section_maps;
0e9e9abd
UW
2501};
2502
a2726d4f 2503/* Per-BFD key to store exception handling information. */
08b8a139 2504static const registry<bfd>::key<arm_exidx_data> arm_exidx_data_key;
0e9e9abd
UW
2505
2506static struct obj_section *
2507arm_obj_section_from_vma (struct objfile *objfile, bfd_vma vma)
2508{
5250cbc8 2509 for (obj_section *osect : objfile->sections ())
fd361982 2510 if (bfd_section_flags (osect->the_bfd_section) & SEC_ALLOC)
0e9e9abd
UW
2511 {
2512 bfd_vma start, size;
fd361982
AM
2513 start = bfd_section_vma (osect->the_bfd_section);
2514 size = bfd_section_size (osect->the_bfd_section);
0e9e9abd
UW
2515
2516 if (start <= vma && vma < start + size)
2517 return osect;
2518 }
2519
2520 return NULL;
2521}
2522
2523/* Parse contents of exception table and exception index sections
2524 of OBJFILE, and fill in the exception table entry cache.
2525
2526 For each entry that refers to a standard ARM-defined personality
2527 routine, extract the frame unwinding instructions (from either
2528 the index or the table section). The unwinding instructions
2529 are normalized by:
2530 - extracting them from the rest of the table data
2531 - converting to host endianness
2532 - appending the implicit 0xb0 ("Finish") code
2533
2534 The extracted and normalized instructions are stored for later
2535 retrieval by the arm_find_exidx_entry routine. */
2536
2537static void
2538arm_exidx_new_objfile (struct objfile *objfile)
2539{
0e9e9abd
UW
2540 struct arm_exidx_data *data;
2541 asection *exidx, *extab;
2542 bfd_vma exidx_vma = 0, extab_vma = 0;
0e9e9abd
UW
2543 LONGEST i;
2544
2545 /* If we've already touched this file, do nothing. */
74daa597 2546 if (arm_exidx_data_key.get (objfile->obfd.get ()) != nullptr)
0e9e9abd
UW
2547 return;
2548
2549 /* Read contents of exception table and index. */
98badbfd
TT
2550 exidx = bfd_get_section_by_name (objfile->obfd.get (),
2551 ELF_STRING_ARM_unwind);
984c7238 2552 gdb::byte_vector exidx_data;
0e9e9abd
UW
2553 if (exidx)
2554 {
fd361982
AM
2555 exidx_vma = bfd_section_vma (exidx);
2556 exidx_data.resize (bfd_section_size (exidx));
0e9e9abd 2557
98badbfd 2558 if (!bfd_get_section_contents (objfile->obfd.get (), exidx,
984c7238
TT
2559 exidx_data.data (), 0,
2560 exidx_data.size ()))
2561 return;
0e9e9abd
UW
2562 }
2563
98badbfd 2564 extab = bfd_get_section_by_name (objfile->obfd.get (), ".ARM.extab");
984c7238 2565 gdb::byte_vector extab_data;
0e9e9abd
UW
2566 if (extab)
2567 {
fd361982
AM
2568 extab_vma = bfd_section_vma (extab);
2569 extab_data.resize (bfd_section_size (extab));
0e9e9abd 2570
98badbfd 2571 if (!bfd_get_section_contents (objfile->obfd.get (), extab,
984c7238
TT
2572 extab_data.data (), 0,
2573 extab_data.size ()))
2574 return;
0e9e9abd
UW
2575 }
2576
2577 /* Allocate exception table data structure. */
98badbfd 2578 data = arm_exidx_data_key.emplace (objfile->obfd.get ());
7a5d944b 2579 data->section_maps.resize (objfile->obfd->section_count);
0e9e9abd
UW
2580
2581 /* Fill in exception table. */
984c7238 2582 for (i = 0; i < exidx_data.size () / 8; i++)
0e9e9abd
UW
2583 {
2584 struct arm_exidx_entry new_exidx_entry;
984c7238
TT
2585 bfd_vma idx = bfd_h_get_32 (objfile->obfd, exidx_data.data () + i * 8);
2586 bfd_vma val = bfd_h_get_32 (objfile->obfd,
2587 exidx_data.data () + i * 8 + 4);
0e9e9abd
UW
2588 bfd_vma addr = 0, word = 0;
2589 int n_bytes = 0, n_words = 0;
2590 struct obj_section *sec;
2591 gdb_byte *entry = NULL;
2592
2593 /* Extract address of start of function. */
2594 idx = ((idx & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2595 idx += exidx_vma + i * 8;
2596
2597 /* Find section containing function and compute section offset. */
2598 sec = arm_obj_section_from_vma (objfile, idx);
2599 if (sec == NULL)
2600 continue;
fd361982 2601 idx -= bfd_section_vma (sec->the_bfd_section);
0e9e9abd
UW
2602
2603 /* Determine address of exception table entry. */
2604 if (val == 1)
2605 {
2606 /* EXIDX_CANTUNWIND -- no exception table entry present. */
2607 }
2608 else if ((val & 0xff000000) == 0x80000000)
2609 {
2610 /* Exception table entry embedded in .ARM.exidx
2611 -- must be short form. */
2612 word = val;
2613 n_bytes = 3;
2614 }
2615 else if (!(val & 0x80000000))
2616 {
2617 /* Exception table entry in .ARM.extab. */
2618 addr = ((val & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2619 addr += exidx_vma + i * 8 + 4;
2620
984c7238 2621 if (addr >= extab_vma && addr + 4 <= extab_vma + extab_data.size ())
0e9e9abd
UW
2622 {
2623 word = bfd_h_get_32 (objfile->obfd,
984c7238 2624 extab_data.data () + addr - extab_vma);
0e9e9abd
UW
2625 addr += 4;
2626
2627 if ((word & 0xff000000) == 0x80000000)
2628 {
2629 /* Short form. */
2630 n_bytes = 3;
2631 }
2632 else if ((word & 0xff000000) == 0x81000000
2633 || (word & 0xff000000) == 0x82000000)
2634 {
2635 /* Long form. */
2636 n_bytes = 2;
2637 n_words = ((word >> 16) & 0xff);
2638 }
2639 else if (!(word & 0x80000000))
2640 {
2641 bfd_vma pers;
2642 struct obj_section *pers_sec;
2643 int gnu_personality = 0;
2644
2645 /* Custom personality routine. */
2646 pers = ((word & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2647 pers = UNMAKE_THUMB_ADDR (pers + addr - 4);
2648
2649 /* Check whether we've got one of the variants of the
2650 GNU personality routines. */
2651 pers_sec = arm_obj_section_from_vma (objfile, pers);
2652 if (pers_sec)
2653 {
2654 static const char *personality[] =
2655 {
2656 "__gcc_personality_v0",
2657 "__gxx_personality_v0",
2658 "__gcj_personality_v0",
2659 "__gnu_objc_personality_v0",
2660 NULL
2661 };
2662
0c1bcd23 2663 CORE_ADDR pc = pers + pers_sec->offset ();
0e9e9abd
UW
2664 int k;
2665
2666 for (k = 0; personality[k]; k++)
2667 if (lookup_minimal_symbol_by_pc_name
2668 (pc, personality[k], objfile))
2669 {
2670 gnu_personality = 1;
2671 break;
2672 }
2673 }
2674
2675 /* If so, the next word contains a word count in the high
2676 byte, followed by the same unwind instructions as the
2677 pre-defined forms. */
2678 if (gnu_personality
984c7238 2679 && addr + 4 <= extab_vma + extab_data.size ())
0e9e9abd
UW
2680 {
2681 word = bfd_h_get_32 (objfile->obfd,
984c7238
TT
2682 (extab_data.data ()
2683 + addr - extab_vma));
0e9e9abd
UW
2684 addr += 4;
2685 n_bytes = 3;
2686 n_words = ((word >> 24) & 0xff);
2687 }
2688 }
2689 }
2690 }
2691
2692 /* Sanity check address. */
2693 if (n_words)
984c7238
TT
2694 if (addr < extab_vma
2695 || addr + 4 * n_words > extab_vma + extab_data.size ())
0e9e9abd
UW
2696 n_words = n_bytes = 0;
2697
2698 /* The unwind instructions reside in WORD (only the N_BYTES least
2699 significant bytes are valid), followed by N_WORDS words in the
2700 extab section starting at ADDR. */
2701 if (n_bytes || n_words)
2702 {
224c3ddb 2703 gdb_byte *p = entry
bae2a57f 2704 = (gdb_byte *) obstack_alloc (&objfile->per_bfd->storage_obstack,
224c3ddb 2705 n_bytes + n_words * 4 + 1);
0e9e9abd
UW
2706
2707 while (n_bytes--)
2708 *p++ = (gdb_byte) ((word >> (8 * n_bytes)) & 0xff);
2709
2710 while (n_words--)
2711 {
2712 word = bfd_h_get_32 (objfile->obfd,
984c7238 2713 extab_data.data () + addr - extab_vma);
0e9e9abd
UW
2714 addr += 4;
2715
2716 *p++ = (gdb_byte) ((word >> 24) & 0xff);
2717 *p++ = (gdb_byte) ((word >> 16) & 0xff);
2718 *p++ = (gdb_byte) ((word >> 8) & 0xff);
2719 *p++ = (gdb_byte) (word & 0xff);
2720 }
2721
2722 /* Implied "Finish" to terminate the list. */
2723 *p++ = 0xb0;
2724 }
2725
2726 /* Push entry onto vector. They are guaranteed to always
2727 appear in order of increasing addresses. */
2728 new_exidx_entry.addr = idx;
2729 new_exidx_entry.entry = entry;
7a5d944b
TT
2730 data->section_maps[sec->the_bfd_section->index].push_back
2731 (new_exidx_entry);
0e9e9abd 2732 }
0e9e9abd
UW
2733}
2734
2735/* Search for the exception table entry covering MEMADDR. If one is found,
2736 return a pointer to its data. Otherwise, return 0. If START is non-NULL,
2737 set *START to the start of the region covered by this entry. */
2738
2739static gdb_byte *
2740arm_find_exidx_entry (CORE_ADDR memaddr, CORE_ADDR *start)
2741{
2742 struct obj_section *sec;
2743
2744 sec = find_pc_section (memaddr);
2745 if (sec != NULL)
2746 {
2747 struct arm_exidx_data *data;
0c1bcd23 2748 struct arm_exidx_entry map_key = { memaddr - sec->addr (), 0 };
0e9e9abd 2749
98badbfd 2750 data = arm_exidx_data_key.get (sec->objfile->obfd.get ());
0e9e9abd
UW
2751 if (data != NULL)
2752 {
7a5d944b
TT
2753 std::vector<arm_exidx_entry> &map
2754 = data->section_maps[sec->the_bfd_section->index];
2755 if (!map.empty ())
0e9e9abd 2756 {
7a5d944b 2757 auto idx = std::lower_bound (map.begin (), map.end (), map_key);
0e9e9abd 2758
7a5d944b 2759 /* std::lower_bound finds the earliest ordered insertion
0e9e9abd
UW
2760 point. If the following symbol starts at this exact
2761 address, we use that; otherwise, the preceding
2762 exception table entry covers this address. */
7a5d944b 2763 if (idx < map.end ())
0e9e9abd 2764 {
7a5d944b 2765 if (idx->addr == map_key.addr)
0e9e9abd
UW
2766 {
2767 if (start)
0c1bcd23 2768 *start = idx->addr + sec->addr ();
7a5d944b 2769 return idx->entry;
0e9e9abd
UW
2770 }
2771 }
2772
7a5d944b 2773 if (idx > map.begin ())
0e9e9abd 2774 {
7a5d944b 2775 idx = idx - 1;
0e9e9abd 2776 if (start)
0c1bcd23 2777 *start = idx->addr + sec->addr ();
7a5d944b 2778 return idx->entry;
0e9e9abd
UW
2779 }
2780 }
2781 }
2782 }
2783
2784 return NULL;
2785}
2786
2787/* Given the current frame THIS_FRAME, and its associated frame unwinding
2788 instruction list from the ARM exception table entry ENTRY, allocate and
2789 return a prologue cache structure describing how to unwind this frame.
2790
2791 Return NULL if the unwinding instruction list contains a "spare",
2792 "reserved" or "refuse to unwind" instruction as defined in section
2793 "9.3 Frame unwinding instructions" of the "Exception Handling ABI
2794 for the ARM Architecture" document. */
2795
2796static struct arm_prologue_cache *
bd2b40ac 2797arm_exidx_fill_cache (frame_info_ptr this_frame, gdb_byte *entry)
0e9e9abd
UW
2798{
2799 CORE_ADDR vsp = 0;
2800 int vsp_valid = 0;
2801
2802 struct arm_prologue_cache *cache;
2803 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
0824193f 2804 arm_cache_init (cache, this_frame);
0e9e9abd
UW
2805
2806 for (;;)
2807 {
2808 gdb_byte insn;
2809
2810 /* Whenever we reload SP, we actually have to retrieve its
2811 actual value in the current frame. */
2812 if (!vsp_valid)
2813 {
a9a87d35 2814 if (cache->saved_regs[ARM_SP_REGNUM].is_realreg ())
0e9e9abd 2815 {
098caef4 2816 int reg = cache->saved_regs[ARM_SP_REGNUM].realreg ();
0e9e9abd
UW
2817 vsp = get_frame_register_unsigned (this_frame, reg);
2818 }
2819 else
2820 {
098caef4 2821 CORE_ADDR addr = cache->saved_regs[ARM_SP_REGNUM].addr ();
0e9e9abd
UW
2822 vsp = get_frame_memory_unsigned (this_frame, addr, 4);
2823 }
2824
2825 vsp_valid = 1;
2826 }
2827
2828 /* Decode next unwind instruction. */
2829 insn = *entry++;
2830
2831 if ((insn & 0xc0) == 0)
2832 {
2833 int offset = insn & 0x3f;
2834 vsp += (offset << 2) + 4;
2835 }
2836 else if ((insn & 0xc0) == 0x40)
2837 {
2838 int offset = insn & 0x3f;
2839 vsp -= (offset << 2) + 4;
2840 }
2841 else if ((insn & 0xf0) == 0x80)
2842 {
2843 int mask = ((insn & 0xf) << 8) | *entry++;
2844 int i;
2845
2846 /* The special case of an all-zero mask identifies
2847 "Refuse to unwind". We return NULL to fall back
2848 to the prologue analyzer. */
2849 if (mask == 0)
2850 return NULL;
2851
2852 /* Pop registers r4..r15 under mask. */
2853 for (i = 0; i < 12; i++)
2854 if (mask & (1 << i))
2855 {
098caef4 2856 cache->saved_regs[4 + i].set_addr (vsp);
0e9e9abd
UW
2857 vsp += 4;
2858 }
2859
2860 /* Special-case popping SP -- we need to reload vsp. */
2861 if (mask & (1 << (ARM_SP_REGNUM - 4)))
2862 vsp_valid = 0;
2863 }
2864 else if ((insn & 0xf0) == 0x90)
2865 {
2866 int reg = insn & 0xf;
2867
2868 /* Reserved cases. */
2869 if (reg == ARM_SP_REGNUM || reg == ARM_PC_REGNUM)
2870 return NULL;
2871
2872 /* Set SP from another register and mark VSP for reload. */
2873 cache->saved_regs[ARM_SP_REGNUM] = cache->saved_regs[reg];
2874 vsp_valid = 0;
2875 }
2876 else if ((insn & 0xf0) == 0xa0)
2877 {
2878 int count = insn & 0x7;
2879 int pop_lr = (insn & 0x8) != 0;
2880 int i;
2881
2882 /* Pop r4..r[4+count]. */
2883 for (i = 0; i <= count; i++)
2884 {
098caef4 2885 cache->saved_regs[4 + i].set_addr (vsp);
0e9e9abd
UW
2886 vsp += 4;
2887 }
2888
2889 /* If indicated by flag, pop LR as well. */
2890 if (pop_lr)
2891 {
098caef4 2892 cache->saved_regs[ARM_LR_REGNUM].set_addr (vsp);
0e9e9abd
UW
2893 vsp += 4;
2894 }
2895 }
2896 else if (insn == 0xb0)
2897 {
2898 /* We could only have updated PC by popping into it; if so, it
2899 will show up as address. Otherwise, copy LR into PC. */
a9a87d35 2900 if (!cache->saved_regs[ARM_PC_REGNUM].is_addr ())
0e9e9abd
UW
2901 cache->saved_regs[ARM_PC_REGNUM]
2902 = cache->saved_regs[ARM_LR_REGNUM];
2903
2904 /* We're done. */
2905 break;
2906 }
2907 else if (insn == 0xb1)
2908 {
2909 int mask = *entry++;
2910 int i;
2911
2912 /* All-zero mask and mask >= 16 is "spare". */
2913 if (mask == 0 || mask >= 16)
2914 return NULL;
2915
2916 /* Pop r0..r3 under mask. */
2917 for (i = 0; i < 4; i++)
2918 if (mask & (1 << i))
2919 {
098caef4 2920 cache->saved_regs[i].set_addr (vsp);
0e9e9abd
UW
2921 vsp += 4;
2922 }
2923 }
2924 else if (insn == 0xb2)
2925 {
2926 ULONGEST offset = 0;
2927 unsigned shift = 0;
2928
2929 do
2930 {
2931 offset |= (*entry & 0x7f) << shift;
2932 shift += 7;
2933 }
2934 while (*entry++ & 0x80);
2935
2936 vsp += 0x204 + (offset << 2);
2937 }
2938 else if (insn == 0xb3)
2939 {
2940 int start = *entry >> 4;
2941 int count = (*entry++) & 0xf;
2942 int i;
2943
2944 /* Only registers D0..D15 are valid here. */
2945 if (start + count >= 16)
2946 return NULL;
2947
2948 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2949 for (i = 0; i <= count; i++)
2950 {
098caef4 2951 cache->saved_regs[ARM_D0_REGNUM + start + i].set_addr (vsp);
0e9e9abd
UW
2952 vsp += 8;
2953 }
2954
2955 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2956 vsp += 4;
2957 }
2958 else if ((insn & 0xf8) == 0xb8)
2959 {
2960 int count = insn & 0x7;
2961 int i;
2962
2963 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2964 for (i = 0; i <= count; i++)
2965 {
098caef4 2966 cache->saved_regs[ARM_D0_REGNUM + 8 + i].set_addr (vsp);
0e9e9abd
UW
2967 vsp += 8;
2968 }
2969
2970 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2971 vsp += 4;
2972 }
2973 else if (insn == 0xc6)
2974 {
2975 int start = *entry >> 4;
2976 int count = (*entry++) & 0xf;
2977 int i;
2978
2979 /* Only registers WR0..WR15 are valid. */
2980 if (start + count >= 16)
2981 return NULL;
2982
2983 /* Pop iwmmx registers WR[start]..WR[start+count]. */
2984 for (i = 0; i <= count; i++)
2985 {
098caef4 2986 cache->saved_regs[ARM_WR0_REGNUM + start + i].set_addr (vsp);
0e9e9abd
UW
2987 vsp += 8;
2988 }
2989 }
2990 else if (insn == 0xc7)
2991 {
2992 int mask = *entry++;
2993 int i;
2994
2995 /* All-zero mask and mask >= 16 is "spare". */
2996 if (mask == 0 || mask >= 16)
2997 return NULL;
2998
2999 /* Pop iwmmx general-purpose registers WCGR0..WCGR3 under mask. */
3000 for (i = 0; i < 4; i++)
3001 if (mask & (1 << i))
3002 {
098caef4 3003 cache->saved_regs[ARM_WCGR0_REGNUM + i].set_addr (vsp);
0e9e9abd
UW
3004 vsp += 4;
3005 }
3006 }
3007 else if ((insn & 0xf8) == 0xc0)
3008 {
3009 int count = insn & 0x7;
3010 int i;
3011
3012 /* Pop iwmmx registers WR[10]..WR[10+count]. */
3013 for (i = 0; i <= count; i++)
3014 {
098caef4 3015 cache->saved_regs[ARM_WR0_REGNUM + 10 + i].set_addr (vsp);
0e9e9abd
UW
3016 vsp += 8;
3017 }
3018 }
3019 else if (insn == 0xc8)
3020 {
3021 int start = *entry >> 4;
3022 int count = (*entry++) & 0xf;
3023 int i;
3024
3025 /* Only registers D0..D31 are valid. */
3026 if (start + count >= 16)
3027 return NULL;
3028
3029 /* Pop VFP double-precision registers
3030 D[16+start]..D[16+start+count]. */
3031 for (i = 0; i <= count; i++)
3032 {
098caef4 3033 cache->saved_regs[ARM_D0_REGNUM + 16 + start + i].set_addr (vsp);
0e9e9abd
UW
3034 vsp += 8;
3035 }
3036 }
3037 else if (insn == 0xc9)
3038 {
3039 int start = *entry >> 4;
3040 int count = (*entry++) & 0xf;
3041 int i;
3042
3043 /* Pop VFP double-precision registers D[start]..D[start+count]. */
3044 for (i = 0; i <= count; i++)
3045 {
098caef4 3046 cache->saved_regs[ARM_D0_REGNUM + start + i].set_addr (vsp);
0e9e9abd
UW
3047 vsp += 8;
3048 }
3049 }
3050 else if ((insn & 0xf8) == 0xd0)
3051 {
3052 int count = insn & 0x7;
3053 int i;
3054
3055 /* Pop VFP double-precision registers D[8]..D[8+count]. */
3056 for (i = 0; i <= count; i++)
3057 {
098caef4 3058 cache->saved_regs[ARM_D0_REGNUM + 8 + i].set_addr (vsp);
0e9e9abd
UW
3059 vsp += 8;
3060 }
3061 }
3062 else
3063 {
3064 /* Everything else is "spare". */
3065 return NULL;
3066 }
3067 }
3068
3069 /* If we restore SP from a register, assume this was the frame register.
3070 Otherwise just fall back to SP as frame register. */
a9a87d35 3071 if (cache->saved_regs[ARM_SP_REGNUM].is_realreg ())
098caef4 3072 cache->framereg = cache->saved_regs[ARM_SP_REGNUM].realreg ();
0e9e9abd
UW
3073 else
3074 cache->framereg = ARM_SP_REGNUM;
3075
3076 /* Determine offset to previous frame. */
3077 cache->framesize
3078 = vsp - get_frame_register_unsigned (this_frame, cache->framereg);
3079
3080 /* We already got the previous SP. */
ae7e2f45 3081 arm_gdbarch_tdep *tdep
08106042 3082 = gdbarch_tdep<arm_gdbarch_tdep> (get_frame_arch (this_frame));
ae7e2f45 3083 arm_cache_set_active_sp_value (cache, tdep, vsp);
0e9e9abd
UW
3084
3085 return cache;
3086}
3087
3088/* Unwinding via ARM exception table entries. Note that the sniffer
3089 already computes a filled-in prologue cache, which is then used
3090 with the same arm_prologue_this_id and arm_prologue_prev_register
3091 routines also used for prologue-parsing based unwinding. */
3092
3093static int
3094arm_exidx_unwind_sniffer (const struct frame_unwind *self,
bd2b40ac 3095 frame_info_ptr this_frame,
0e9e9abd
UW
3096 void **this_prologue_cache)
3097{
3098 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3099 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3100 CORE_ADDR addr_in_block, exidx_region, func_start;
3101 struct arm_prologue_cache *cache;
3102 gdb_byte *entry;
3103
3104 /* See if we have an ARM exception table entry covering this address. */
3105 addr_in_block = get_frame_address_in_block (this_frame);
3106 entry = arm_find_exidx_entry (addr_in_block, &exidx_region);
3107 if (!entry)
3108 return 0;
3109
3110 /* The ARM exception table does not describe unwind information
3111 for arbitrary PC values, but is guaranteed to be correct only
3112 at call sites. We have to decide here whether we want to use
3113 ARM exception table information for this frame, or fall back
3114 to using prologue parsing. (Note that if we have DWARF CFI,
3115 this sniffer isn't even called -- CFI is always preferred.)
3116
3117 Before we make this decision, however, we check whether we
3118 actually have *symbol* information for the current frame.
3119 If not, prologue parsing would not work anyway, so we might
3120 as well use the exception table and hope for the best. */
3121 if (find_pc_partial_function (addr_in_block, NULL, &func_start, NULL))
3122 {
3123 int exc_valid = 0;
3124
3125 /* If the next frame is "normal", we are at a call site in this
3126 frame, so exception information is guaranteed to be valid. */
3127 if (get_next_frame (this_frame)
3128 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
3129 exc_valid = 1;
3130
3026cdbd
JK
3131 /* Some syscalls keep PC pointing to the SVC instruction itself. */
3132 for (int shift = 0; shift <= 1 && !exc_valid; ++shift)
0e9e9abd 3133 {
3026cdbd
JK
3134 /* We also assume exception information is valid if we're currently
3135 blocked in a system call. The system library is supposed to
3136 ensure this, so that e.g. pthread cancellation works. */
3137 if (arm_frame_is_thumb (this_frame))
3138 {
3139 ULONGEST insn;
3140
3141 if (safe_read_memory_unsigned_integer ((get_frame_pc (this_frame)
3142 - (shift ? 2 : 0)),
3143 2, byte_order_for_code,
3144 &insn)
3145 && (insn & 0xff00) == 0xdf00 /* svc */)
3146 exc_valid = 1;
3147 }
3148 else
3149 {
3150 ULONGEST insn;
3151
3152 if (safe_read_memory_unsigned_integer ((get_frame_pc (this_frame)
3153 - (shift ? 4 : 0)),
3154 4, byte_order_for_code,
3155 &insn)
3156 && (insn & 0x0f000000) == 0x0f000000 /* svc */)
3157 exc_valid = 1;
3158 }
d9311bfa
AT
3159 }
3160
0e9e9abd
UW
3161 /* Bail out if we don't know that exception information is valid. */
3162 if (!exc_valid)
3163 return 0;
3164
3165 /* The ARM exception index does not mark the *end* of the region
3166 covered by the entry, and some functions will not have any entry.
3167 To correctly recognize the end of the covered region, the linker
3168 should have inserted dummy records with a CANTUNWIND marker.
3169
3170 Unfortunately, current versions of GNU ld do not reliably do
3171 this, and thus we may have found an incorrect entry above.
3172 As a (temporary) sanity check, we only use the entry if it
3173 lies *within* the bounds of the function. Note that this check
3174 might reject perfectly valid entries that just happen to cover
3175 multiple functions; therefore this check ought to be removed
3176 once the linker is fixed. */
3177 if (func_start > exidx_region)
3178 return 0;
3179 }
3180
3181 /* Decode the list of unwinding instructions into a prologue cache.
3182 Note that this may fail due to e.g. a "refuse to unwind" code. */
3183 cache = arm_exidx_fill_cache (this_frame, entry);
3184 if (!cache)
3185 return 0;
3186
3187 *this_prologue_cache = cache;
3188 return 1;
3189}
3190
3191struct frame_unwind arm_exidx_unwind = {
a154d838 3192 "arm exidx",
0e9e9abd 3193 NORMAL_FRAME,
8fbca658 3194 default_frame_unwind_stop_reason,
0e9e9abd
UW
3195 arm_prologue_this_id,
3196 arm_prologue_prev_register,
3197 NULL,
3198 arm_exidx_unwind_sniffer
3199};
3200
779aa56f 3201static struct arm_prologue_cache *
bd2b40ac 3202arm_make_epilogue_frame_cache (frame_info_ptr this_frame)
779aa56f
YQ
3203{
3204 struct arm_prologue_cache *cache;
779aa56f
YQ
3205 int reg;
3206
3207 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
0824193f 3208 arm_cache_init (cache, this_frame);
779aa56f
YQ
3209
3210 /* Still rely on the offset calculated from prologue. */
3211 arm_scan_prologue (this_frame, cache);
3212
3213 /* Since we are in epilogue, the SP has been restored. */
ae7e2f45 3214 arm_gdbarch_tdep *tdep
08106042 3215 = gdbarch_tdep<arm_gdbarch_tdep> (get_frame_arch (this_frame));
ae7e2f45
CL
3216 arm_cache_set_active_sp_value (cache, tdep,
3217 get_frame_register_unsigned (this_frame,
3218 ARM_SP_REGNUM));
779aa56f
YQ
3219
3220 /* Calculate actual addresses of saved registers using offsets
3221 determined by arm_scan_prologue. */
3222 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
a9a87d35 3223 if (cache->saved_regs[reg].is_addr ())
098caef4 3224 cache->saved_regs[reg].set_addr (cache->saved_regs[reg].addr ()
ae7e2f45 3225 + arm_cache_get_prev_sp_value (cache, tdep));
779aa56f
YQ
3226
3227 return cache;
3228}
3229
3230/* Implementation of function hook 'this_id' in
3231 'struct frame_uwnind' for epilogue unwinder. */
3232
3233static void
bd2b40ac 3234arm_epilogue_frame_this_id (frame_info_ptr this_frame,
779aa56f
YQ
3235 void **this_cache,
3236 struct frame_id *this_id)
3237{
3238 struct arm_prologue_cache *cache;
3239 CORE_ADDR pc, func;
3240
3241 if (*this_cache == NULL)
3242 *this_cache = arm_make_epilogue_frame_cache (this_frame);
3243 cache = (struct arm_prologue_cache *) *this_cache;
3244
3245 /* Use function start address as part of the frame ID. If we cannot
3246 identify the start address (due to missing symbol information),
3247 fall back to just using the current PC. */
3248 pc = get_frame_pc (this_frame);
3249 func = get_frame_func (this_frame);
fb3f3d25 3250 if (func == 0)
779aa56f
YQ
3251 func = pc;
3252
ae7e2f45 3253 arm_gdbarch_tdep *tdep
08106042 3254 = gdbarch_tdep<arm_gdbarch_tdep> (get_frame_arch (this_frame));
44acb017 3255 *this_id = frame_id_build (arm_cache_get_prev_sp_value (cache, tdep), func);
779aa56f
YQ
3256}
3257
3258/* Implementation of function hook 'prev_register' in
3259 'struct frame_uwnind' for epilogue unwinder. */
3260
3261static struct value *
bd2b40ac 3262arm_epilogue_frame_prev_register (frame_info_ptr this_frame,
779aa56f
YQ
3263 void **this_cache, int regnum)
3264{
779aa56f
YQ
3265 if (*this_cache == NULL)
3266 *this_cache = arm_make_epilogue_frame_cache (this_frame);
779aa56f
YQ
3267
3268 return arm_prologue_prev_register (this_frame, this_cache, regnum);
3269}
3270
3271static int arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch,
3272 CORE_ADDR pc);
3273static int thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch,
3274 CORE_ADDR pc);
3275
3276/* Implementation of function hook 'sniffer' in
3277 'struct frame_uwnind' for epilogue unwinder. */
3278
3279static int
3280arm_epilogue_frame_sniffer (const struct frame_unwind *self,
bd2b40ac 3281 frame_info_ptr this_frame,
779aa56f
YQ
3282 void **this_prologue_cache)
3283{
3284 if (frame_relative_level (this_frame) == 0)
3285 {
3286 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3287 CORE_ADDR pc = get_frame_pc (this_frame);
3288
3289 if (arm_frame_is_thumb (this_frame))
3290 return thumb_stack_frame_destroyed_p (gdbarch, pc);
3291 else
3292 return arm_stack_frame_destroyed_p_1 (gdbarch, pc);
3293 }
3294 else
3295 return 0;
3296}
3297
3298/* Frame unwinder from epilogue. */
3299
3300static const struct frame_unwind arm_epilogue_frame_unwind =
3301{
a154d838 3302 "arm epilogue",
779aa56f
YQ
3303 NORMAL_FRAME,
3304 default_frame_unwind_stop_reason,
3305 arm_epilogue_frame_this_id,
3306 arm_epilogue_frame_prev_register,
3307 NULL,
3308 arm_epilogue_frame_sniffer,
3309};
3310
80d8d390
YQ
3311/* Recognize GCC's trampoline for thumb call-indirect. If we are in a
3312 trampoline, return the target PC. Otherwise return 0.
3313
3314 void call0a (char c, short s, int i, long l) {}
3315
3316 int main (void)
3317 {
3318 (*pointer_to_call0a) (c, s, i, l);
3319 }
3320
3321 Instead of calling a stub library function _call_via_xx (xx is
3322 the register name), GCC may inline the trampoline in the object
3323 file as below (register r2 has the address of call0a).
3324
3325 .global main
3326 .type main, %function
3327 ...
3328 bl .L1
3329 ...
3330 .size main, .-main
3331
3332 .L1:
3333 bx r2
3334
3335 The trampoline 'bx r2' doesn't belong to main. */
3336
3337static CORE_ADDR
bd2b40ac 3338arm_skip_bx_reg (frame_info_ptr frame, CORE_ADDR pc)
80d8d390
YQ
3339{
3340 /* The heuristics of recognizing such trampoline is that FRAME is
3341 executing in Thumb mode and the instruction on PC is 'bx Rm'. */
3342 if (arm_frame_is_thumb (frame))
3343 {
3344 gdb_byte buf[2];
3345
3346 if (target_read_memory (pc, buf, 2) == 0)
3347 {
3348 struct gdbarch *gdbarch = get_frame_arch (frame);
3349 enum bfd_endian byte_order_for_code
3350 = gdbarch_byte_order_for_code (gdbarch);
3351 uint16_t insn
3352 = extract_unsigned_integer (buf, 2, byte_order_for_code);
3353
3354 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
3355 {
3356 CORE_ADDR dest
3357 = get_frame_register_unsigned (frame, bits (insn, 3, 6));
3358
3359 /* Clear the LSB so that gdb core sets step-resume
3360 breakpoint at the right address. */
3361 return UNMAKE_THUMB_ADDR (dest);
3362 }
3363 }
3364 }
3365
3366 return 0;
3367}
3368
909cf6ea 3369static struct arm_prologue_cache *
bd2b40ac 3370arm_make_stub_cache (frame_info_ptr this_frame)
909cf6ea 3371{
909cf6ea 3372 struct arm_prologue_cache *cache;
909cf6ea 3373
35d5d4ee 3374 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
0824193f 3375 arm_cache_init (cache, this_frame);
909cf6ea 3376
ae7e2f45 3377 arm_gdbarch_tdep *tdep
08106042 3378 = gdbarch_tdep<arm_gdbarch_tdep> (get_frame_arch (this_frame));
ae7e2f45
CL
3379 arm_cache_set_active_sp_value (cache, tdep,
3380 get_frame_register_unsigned (this_frame,
3381 ARM_SP_REGNUM));
909cf6ea
DJ
3382
3383 return cache;
3384}
3385
3386/* Our frame ID for a stub frame is the current SP and LR. */
3387
3388static void
bd2b40ac 3389arm_stub_this_id (frame_info_ptr this_frame,
909cf6ea
DJ
3390 void **this_cache,
3391 struct frame_id *this_id)
3392{
3393 struct arm_prologue_cache *cache;
3394
3395 if (*this_cache == NULL)
a262aec2 3396 *this_cache = arm_make_stub_cache (this_frame);
9a3c8263 3397 cache = (struct arm_prologue_cache *) *this_cache;
909cf6ea 3398
ae7e2f45 3399 arm_gdbarch_tdep *tdep
08106042 3400 = gdbarch_tdep<arm_gdbarch_tdep> (get_frame_arch (this_frame));
ae7e2f45
CL
3401 *this_id = frame_id_build (arm_cache_get_prev_sp_value (cache, tdep),
3402 get_frame_pc (this_frame));
909cf6ea
DJ
3403}
3404
a262aec2
DJ
3405static int
3406arm_stub_unwind_sniffer (const struct frame_unwind *self,
bd2b40ac 3407 frame_info_ptr this_frame,
a262aec2 3408 void **this_prologue_cache)
909cf6ea 3409{
93d42b30 3410 CORE_ADDR addr_in_block;
948f8e3d 3411 gdb_byte dummy[4];
18d18ac8
YQ
3412 CORE_ADDR pc, start_addr;
3413 const char *name;
909cf6ea 3414
a262aec2 3415 addr_in_block = get_frame_address_in_block (this_frame);
18d18ac8 3416 pc = get_frame_pc (this_frame);
3e5d3a5a 3417 if (in_plt_section (addr_in_block)
fc36e839
DE
3418 /* We also use the stub winder if the target memory is unreadable
3419 to avoid having the prologue unwinder trying to read it. */
18d18ac8
YQ
3420 || target_read_memory (pc, dummy, 4) != 0)
3421 return 1;
3422
3423 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0
3424 && arm_skip_bx_reg (this_frame, pc) != 0)
a262aec2 3425 return 1;
909cf6ea 3426
a262aec2 3427 return 0;
909cf6ea
DJ
3428}
3429
a262aec2 3430struct frame_unwind arm_stub_unwind = {
a154d838 3431 "arm stub",
a262aec2 3432 NORMAL_FRAME,
8fbca658 3433 default_frame_unwind_stop_reason,
a262aec2
DJ
3434 arm_stub_this_id,
3435 arm_prologue_prev_register,
3436 NULL,
3437 arm_stub_unwind_sniffer
3438};
3439
2ae28aa9
YQ
3440/* Put here the code to store, into CACHE->saved_regs, the addresses
3441 of the saved registers of frame described by THIS_FRAME. CACHE is
3442 returned. */
3443
3444static struct arm_prologue_cache *
bd2b40ac 3445arm_m_exception_cache (frame_info_ptr this_frame)
2ae28aa9
YQ
3446{
3447 struct gdbarch *gdbarch = get_frame_arch (this_frame);
08106042 3448 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
2ae28aa9 3449 struct arm_prologue_cache *cache;
2ae28aa9
YQ
3450
3451 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
0824193f 3452 arm_cache_init (cache, this_frame);
2ae28aa9 3453
55ea94da
FH
3454 /* ARMv7-M Architecture Reference "B1.5.6 Exception entry behavior"
3455 describes which bits in LR that define which stack was used prior
3456 to the exception and if FPU is used (causing extended stack frame). */
3457
8b73ee20
LM
3458 /* In the lockup state PC contains a lockup magic value.
3459 The PC value of the the next outer frame is irreversibly
3460 lost. The other registers are intact so LR likely contains
3461 PC of some frame next to the outer one, but we cannot analyze
3462 the next outer frame without knowing its PC
3463 therefore we do not know SP fixup for this frame.
3464 Some heuristics to resynchronize SP might be possible.
3465 For simplicity, just terminate the unwinding to prevent it going
3466 astray and attempting to read data/addresses it shouldn't,
3467 which may cause further issues due to side-effects. */
3468 CORE_ADDR pc = get_frame_pc (this_frame);
3469 if (arm_m_addr_is_lockup (pc))
3470 {
3471 /* The lockup can be real just in the innermost frame
3472 as the CPU is stopped and cannot create more frames.
3473 If we hit lockup magic PC in the other frame, it is
3474 just a sentinel at the top of stack: do not warn then. */
3475 if (frame_relative_level (this_frame) == 0)
3476 warning (_("ARM M in lockup state, stack unwinding terminated."));
3477
3478 /* Terminate any further stack unwinding. */
3479 arm_cache_set_active_sp_value (cache, tdep, 0);
3480 return cache;
3481 }
3482
df4860da 3483 CORE_ADDR lr = get_frame_register_unsigned (this_frame, ARM_LR_REGNUM);
ef273377 3484
148ca9dd
YR
3485 /* ARMv7-M Architecture Reference "A2.3.1 Arm core registers"
3486 states that LR is set to 0xffffffff on reset. ARMv8-M Architecture
3487 Reference "B3.3 Registers" states that LR is set to 0xffffffff on warm
3488 reset if Main Extension is implemented, otherwise the value is unknown. */
3489 if (lr == 0xffffffff)
3490 {
619cce4c
TS
3491 /* Terminate any further stack unwinding. */
3492 arm_cache_set_active_sp_value (cache, tdep, 0);
148ca9dd
YR
3493 return cache;
3494 }
3495
df4860da
TS
3496 /* Check FNC_RETURN indicator bits (24-31). */
3497 bool fnc_return = (((lr >> 24) & 0xff) == 0xfe);
3498 if (fnc_return)
ef273377 3499 {
df4860da
TS
3500 /* FNC_RETURN is only valid for targets with Security Extension. */
3501 if (!tdep->have_sec_ext)
3502 {
3503 error (_("While unwinding an exception frame, found unexpected Link "
3504 "Register value %s that requires the security extension, "
3505 "but the extension was not found or is disabled. This "
3506 "should not happen and may be caused by corrupt data or a "
3507 "bug in GDB."), phex (lr, ARM_INT_REGISTER_SIZE));
3508 }
3509
8c9ae6df
YR
3510 if (!arm_unwind_secure_frames)
3511 {
3512 warning (_("Non-secure to secure stack unwinding disabled."));
ef273377 3513
619cce4c
TS
3514 /* Terminate any further stack unwinding. */
3515 arm_cache_set_active_sp_value (cache, tdep, 0);
8c9ae6df
YR
3516 return cache;
3517 }
3518
df4860da 3519 ULONGEST xpsr = get_frame_register_unsigned (this_frame, ARM_PS_REGNUM);
b2e9e754 3520 if ((xpsr & 0x1ff) != 0)
8c9ae6df
YR
3521 /* Handler mode: This is the mode that exceptions are handled in. */
3522 arm_cache_switch_prev_sp (cache, tdep, tdep->m_profile_msp_s_regnum);
ef273377 3523 else
8c9ae6df
YR
3524 /* Thread mode: This is the normal mode that programs run in. */
3525 arm_cache_switch_prev_sp (cache, tdep, tdep->m_profile_psp_s_regnum);
ef273377 3526
df4860da 3527 CORE_ADDR unwound_sp = arm_cache_get_prev_sp_value (cache, tdep);
55ea94da 3528
8c9ae6df
YR
3529 /* Stack layout for a function call from Secure to Non-Secure state
3530 (ARMv8-M section B3.16):
55ea94da 3531
8c9ae6df
YR
3532 SP Offset
3533
3534 +-------------------+
3535 0x08 | |
3536 +-------------------+ <-- Original SP
3537 0x04 | Partial xPSR |
3538 +-------------------+
3539 0x00 | Return Address |
3540 +===================+ <-- New SP */
3541
3542 cache->saved_regs[ARM_PC_REGNUM].set_addr (unwound_sp + 0x00);
3543 cache->saved_regs[ARM_LR_REGNUM].set_addr (unwound_sp + 0x00);
3544 cache->saved_regs[ARM_PS_REGNUM].set_addr (unwound_sp + 0x04);
3545
3546 arm_cache_set_active_sp_value (cache, tdep, unwound_sp + 0x08);
ef273377
CL
3547
3548 return cache;
3549 }
3550
3551 /* Check EXC_RETURN indicator bits (24-31). */
df4860da 3552 bool exc_return = (((lr >> 24) & 0xff) == 0xff);
ef273377 3553 if (exc_return)
55ea94da 3554 {
df4860da
TS
3555 int sp_regnum;
3556 bool secure_stack_used = false;
3557 bool default_callee_register_stacking = false;
3558 bool exception_domain_is_secure = false;
3559 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3560
ef273377 3561 /* Check EXC_RETURN bit SPSEL if Main or Thread (process) stack used. */
df4860da 3562 bool process_stack_used = (bit (lr, 2) != 0);
ef273377
CL
3563
3564 if (tdep->have_sec_ext)
3565 {
df4860da
TS
3566 secure_stack_used = (bit (lr, 6) != 0);
3567 default_callee_register_stacking = (bit (lr, 5) != 0);
23295de1 3568 exception_domain_is_secure = (bit (lr, 0) != 0);
ef273377
CL
3569
3570 /* Unwinding from non-secure to secure can trip security
3571 measures. In order to avoid the debugger being
3572 intrusive, rely on the user to configure the requested
3573 mode. */
3574 if (secure_stack_used && !exception_domain_is_secure
3575 && !arm_unwind_secure_frames)
3576 {
3577 warning (_("Non-secure to secure stack unwinding disabled."));
3578
619cce4c
TS
3579 /* Terminate any further stack unwinding. */
3580 arm_cache_set_active_sp_value (cache, tdep, 0);
ef273377
CL
3581 return cache;
3582 }
3583
3584 if (process_stack_used)
3585 {
3586 if (secure_stack_used)
3587 /* Secure thread (process) stack used, use PSP_S as SP. */
df4860da 3588 sp_regnum = tdep->m_profile_psp_s_regnum;
ef273377
CL
3589 else
3590 /* Non-secure thread (process) stack used, use PSP_NS as SP. */
df4860da 3591 sp_regnum = tdep->m_profile_psp_ns_regnum;
ef273377
CL
3592 }
3593 else
3594 {
3595 if (secure_stack_used)
3596 /* Secure main stack used, use MSP_S as SP. */
df4860da 3597 sp_regnum = tdep->m_profile_msp_s_regnum;
ef273377
CL
3598 else
3599 /* Non-secure main stack used, use MSP_NS as SP. */
df4860da 3600 sp_regnum = tdep->m_profile_msp_ns_regnum;
ef273377
CL
3601 }
3602 }
3603 else
3604 {
3605 if (process_stack_used)
3606 /* Thread (process) stack used, use PSP as SP. */
df4860da 3607 sp_regnum = tdep->m_profile_psp_regnum;
ef273377
CL
3608 else
3609 /* Main stack used, use MSP as SP. */
df4860da
TS
3610 sp_regnum = tdep->m_profile_msp_regnum;
3611 }
3612
3613 /* Set the active SP regnum. */
3614 arm_cache_switch_prev_sp (cache, tdep, sp_regnum);
3615
3616 /* Fetch the SP to use for this frame. */
3617 CORE_ADDR unwound_sp = arm_cache_get_prev_sp_value (cache, tdep);
3618
3619 /* Exception entry context stacking are described in ARMv8-M (section
3620 B3.19) and ARMv7-M (sections B1.5.6 and B1.5.7) Architecture Reference
3621 Manuals.
3622
3623 The following figure shows the structure of the stack frame when
3624 Security and Floating-point extensions are present.
3625
3626 SP Offsets
3627 Without With
3628 Callee Regs Callee Regs
3629 (Secure -> Non-Secure)
3630 +-------------------+
3631 0xA8 | | 0xD0
3632 +===================+ --+ <-- Original SP
3633 0xA4 | S31 | 0xCC |
3634 +-------------------+ |
3635 ... | Additional FP context
3636 +-------------------+ |
3637 0x68 | S16 | 0x90 |
3638 +===================+ --+
3639 0x64 | Reserved | 0x8C |
3640 +-------------------+ |
3641 0x60 | FPSCR | 0x88 |
3642 +-------------------+ |
3643 0x5C | S15 | 0x84 | FP context
3644 +-------------------+ |
3645 ... |
3646 +-------------------+ |
3647 0x20 | S0 | 0x48 |
3648 +===================+ --+
3649 0x1C | xPSR | 0x44 |
3650 +-------------------+ |
3651 0x18 | Return address | 0x40 |
3652 +-------------------+ |
3653 0x14 | LR(R14) | 0x3C |
3654 +-------------------+ |
3655 0x10 | R12 | 0x38 | State context
3656 +-------------------+ |
3657 0x0C | R3 | 0x34 |
3658 +-------------------+ |
3659 ... |
3660 +-------------------+ |
3661 0x00 | R0 | 0x28 |
3662 +===================+ --+
3663 | R11 | 0x24 |
3664 +-------------------+ |
3665 ... |
3666 +-------------------+ | Additional state
3667 | R4 | 0x08 | context when
3668 +-------------------+ | transitioning from
3669 | Reserved | 0x04 | Secure to Non-Secure
3670 +-------------------+ |
3671 | Magic signature | 0x00 |
3672 +===================+ --+ <-- New SP */
3673
3674 uint32_t sp_r0_offset = 0;
3675
3676 /* With the Security extension, the hardware saves R4..R11 too. */
3677 if (tdep->have_sec_ext && secure_stack_used
23295de1 3678 && (!default_callee_register_stacking || !exception_domain_is_secure))
df4860da
TS
3679 {
3680 /* Read R4..R11 from the integer callee registers. */
3681 cache->saved_regs[4].set_addr (unwound_sp + 0x08);
3682 cache->saved_regs[5].set_addr (unwound_sp + 0x0C);
3683 cache->saved_regs[6].set_addr (unwound_sp + 0x10);
3684 cache->saved_regs[7].set_addr (unwound_sp + 0x14);
3685 cache->saved_regs[8].set_addr (unwound_sp + 0x18);
3686 cache->saved_regs[9].set_addr (unwound_sp + 0x1C);
3687 cache->saved_regs[10].set_addr (unwound_sp + 0x20);
3688 cache->saved_regs[11].set_addr (unwound_sp + 0x24);
3689 sp_r0_offset = 0x28;
3690 }
3691
3692 /* The hardware saves eight 32-bit words, comprising xPSR,
3693 ReturnAddress, LR (R14), R12, R3, R2, R1, R0. See details in
3694 "B1.5.6 Exception entry behavior" in
3695 "ARMv7-M Architecture Reference Manual". */
3696 cache->saved_regs[0].set_addr (unwound_sp + sp_r0_offset);
3697 cache->saved_regs[1].set_addr (unwound_sp + sp_r0_offset + 0x04);
3698 cache->saved_regs[2].set_addr (unwound_sp + sp_r0_offset + 0x08);
3699 cache->saved_regs[3].set_addr (unwound_sp + sp_r0_offset + 0x0C);
3700 cache->saved_regs[ARM_IP_REGNUM].set_addr (unwound_sp + sp_r0_offset
3701 + 0x10);
3702 cache->saved_regs[ARM_LR_REGNUM].set_addr (unwound_sp + sp_r0_offset
3703 + 0x14);
3704 cache->saved_regs[ARM_PC_REGNUM].set_addr (unwound_sp + sp_r0_offset
3705 + 0x18);
3706 cache->saved_regs[ARM_PS_REGNUM].set_addr (unwound_sp + sp_r0_offset
3707 + 0x1C);
3708
3709 /* Check EXC_RETURN bit FTYPE if extended stack frame (FPU regs stored)
3710 type used. */
3711 bool extended_frame_used = (bit (lr, 4) == 0);
3712 if (extended_frame_used)
3713 {
3714 ULONGEST fpccr;
60c90d8c 3715 ULONGEST fpcar;
df4860da
TS
3716
3717 /* Read FPCCR register. */
ce6c3d25
TS
3718 if (!safe_read_memory_unsigned_integer (FPCCR, ARM_INT_REGISTER_SIZE,
3719 byte_order, &fpccr))
3720 {
3721 warning (_("Could not fetch required FPCCR content. Further "
3722 "unwinding is impossible."));
3723 arm_cache_set_active_sp_value (cache, tdep, 0);
3724 return cache;
3725 }
df4860da 3726
60c90d8c
TS
3727 /* Read FPCAR register. */
3728 if (!safe_read_memory_unsigned_integer (FPCAR, ARM_INT_REGISTER_SIZE,
3729 byte_order, &fpcar))
3730 {
3731 warning (_("Could not fetch FPCAR content. Further unwinding of "
3732 "FP register values will be unreliable."));
3733 fpcar = 0;
3734 }
3735
3736 bool fpccr_aspen = bit (fpccr, 31);
3737 bool fpccr_lspen = bit (fpccr, 30);
3738 bool fpccr_ts = bit (fpccr, 26);
3739 bool fpccr_lspact = bit (fpccr, 0);
3740
3741 /* The LSPEN and ASPEN bits indicate if the lazy state preservation
3742 for FP registers is enabled or disabled. The LSPACT bit indicate,
3743 together with FPCAR, if the lazy state preservation feature is
3744 active for the current frame or for another frame.
3745 See "Lazy context save of FP state", in B1.5.7, also ARM AN298,
3746 supported by Cortex-M4F architecture for details. */
3747 bool fpcar_points_to_this_frame = ((unwound_sp + sp_r0_offset + 0x20)
3748 == (fpcar & ~0x7));
3749 bool read_fp_regs_from_stack = (!(fpccr_aspen && fpccr_lspen
3750 && fpccr_lspact
3751 && fpcar_points_to_this_frame));
df4860da
TS
3752
3753 /* Extended stack frame type used. */
60c90d8c 3754 if (read_fp_regs_from_stack)
df4860da 3755 {
60c90d8c
TS
3756 CORE_ADDR addr = unwound_sp + sp_r0_offset + 0x20;
3757 for (int i = 0; i < 8; i++)
3758 {
3759 cache->saved_regs[ARM_D0_REGNUM + i].set_addr (addr);
3760 addr += 8;
3761 }
df4860da
TS
3762 }
3763 cache->saved_regs[ARM_FPSCR_REGNUM].set_addr (unwound_sp
3764 + sp_r0_offset + 0x60);
ef273377 3765
df4860da
TS
3766 if (tdep->have_sec_ext && !default_callee_register_stacking
3767 && fpccr_ts)
3768 {
3769 /* Handle floating-point callee saved registers. */
60c90d8c 3770 if (read_fp_regs_from_stack)
df4860da 3771 {
60c90d8c
TS
3772 CORE_ADDR addr = unwound_sp + sp_r0_offset + 0x68;
3773 for (int i = 8; i < 16; i++)
3774 {
3775 cache->saved_regs[ARM_D0_REGNUM + i].set_addr (addr);
3776 addr += 8;
3777 }
df4860da 3778 }
2ae28aa9 3779
df4860da
TS
3780 arm_cache_set_active_sp_value (cache, tdep,
3781 unwound_sp + sp_r0_offset + 0xA8);
3782 }
3783 else
ef273377 3784 {
df4860da
TS
3785 /* Offset 0x64 is reserved. */
3786 arm_cache_set_active_sp_value (cache, tdep,
3787 unwound_sp + sp_r0_offset + 0x68);
ef273377 3788 }
ef273377
CL
3789 }
3790 else
3791 {
df4860da 3792 /* Standard stack frame type used. */
2d9cf99d 3793 arm_cache_set_active_sp_value (cache, tdep,
df4860da 3794 unwound_sp + sp_r0_offset + 0x20);
ef273377 3795 }
55ea94da 3796
df4860da
TS
3797 /* If bit 9 of the saved xPSR is set, then there is a four-byte
3798 aligner between the top of the 32-byte stack frame and the
3799 previous context's stack pointer. */
3800 ULONGEST xpsr;
ce6c3d25
TS
3801 if (!safe_read_memory_unsigned_integer (cache->saved_regs[ARM_PS_REGNUM]
3802 .addr (), ARM_INT_REGISTER_SIZE,
3803 byte_order, &xpsr))
3804 {
3805 warning (_("Could not fetch required XPSR content. Further "
3806 "unwinding is impossible."));
3807 arm_cache_set_active_sp_value (cache, tdep, 0);
3808 return cache;
3809 }
3810
df4860da
TS
3811 if (bit (xpsr, 9) != 0)
3812 {
3813 CORE_ADDR new_sp = arm_cache_get_prev_sp_value (cache, tdep) + 4;
3814 arm_cache_set_active_sp_value (cache, tdep, new_sp);
3815 }
2ae28aa9 3816
df4860da
TS
3817 return cache;
3818 }
3819
f34652de
PA
3820 internal_error (_("While unwinding an exception frame, "
3821 "found unexpected Link Register value "
3822 "%s. This should not happen and may "
3823 "be caused by corrupt data or a bug in"
3824 " GDB."),
df4860da 3825 phex (lr, ARM_INT_REGISTER_SIZE));
2ae28aa9
YQ
3826}
3827
ce6c3d25
TS
3828/* Implementation of the stop_reason hook for arm_m_exception frames. */
3829
3830static enum unwind_stop_reason
3831arm_m_exception_frame_unwind_stop_reason (frame_info_ptr this_frame,
3832 void **this_cache)
3833{
3834 struct arm_prologue_cache *cache;
3835 arm_gdbarch_tdep *tdep
3836 = gdbarch_tdep<arm_gdbarch_tdep> (get_frame_arch (this_frame));
3837
3838 if (*this_cache == NULL)
3839 *this_cache = arm_m_exception_cache (this_frame);
3840 cache = (struct arm_prologue_cache *) *this_cache;
3841
3842 /* If we've hit a wall, stop. */
3843 if (arm_cache_get_prev_sp_value (cache, tdep) == 0)
3844 return UNWIND_OUTERMOST;
3845
3846 return UNWIND_NO_REASON;
3847}
3848
2ae28aa9
YQ
3849/* Implementation of function hook 'this_id' in
3850 'struct frame_uwnind'. */
3851
3852static void
bd2b40ac 3853arm_m_exception_this_id (frame_info_ptr this_frame,
2ae28aa9
YQ
3854 void **this_cache,
3855 struct frame_id *this_id)
3856{
3857 struct arm_prologue_cache *cache;
3858
3859 if (*this_cache == NULL)
3860 *this_cache = arm_m_exception_cache (this_frame);
9a3c8263 3861 cache = (struct arm_prologue_cache *) *this_cache;
2ae28aa9
YQ
3862
3863 /* Our frame ID for a stub frame is the current SP and LR. */
ae7e2f45 3864 arm_gdbarch_tdep *tdep
08106042 3865 = gdbarch_tdep<arm_gdbarch_tdep> (get_frame_arch (this_frame));
ae7e2f45 3866 *this_id = frame_id_build (arm_cache_get_prev_sp_value (cache, tdep),
2ae28aa9
YQ
3867 get_frame_pc (this_frame));
3868}
3869
3870/* Implementation of function hook 'prev_register' in
3871 'struct frame_uwnind'. */
3872
3873static struct value *
bd2b40ac 3874arm_m_exception_prev_register (frame_info_ptr this_frame,
2ae28aa9
YQ
3875 void **this_cache,
3876 int prev_regnum)
3877{
2ae28aa9 3878 struct arm_prologue_cache *cache;
ef273377 3879 CORE_ADDR sp_value;
2ae28aa9
YQ
3880
3881 if (*this_cache == NULL)
3882 *this_cache = arm_m_exception_cache (this_frame);
9a3c8263 3883 cache = (struct arm_prologue_cache *) *this_cache;
2ae28aa9
YQ
3884
3885 /* The value was already reconstructed into PREV_SP. */
ae7e2f45 3886 arm_gdbarch_tdep *tdep
08106042 3887 = gdbarch_tdep<arm_gdbarch_tdep> (get_frame_arch (this_frame));
2ae28aa9
YQ
3888 if (prev_regnum == ARM_SP_REGNUM)
3889 return frame_unwind_got_constant (this_frame, prev_regnum,
ae7e2f45 3890 arm_cache_get_prev_sp_value (cache, tdep));
2ae28aa9 3891
8c9ae6df
YR
3892 /* If we are asked to unwind the PC, strip the saved T bit. */
3893 if (prev_regnum == ARM_PC_REGNUM)
3894 {
3895 struct value *value = trad_frame_get_prev_register (this_frame,
3896 cache->saved_regs,
3897 prev_regnum);
3898 CORE_ADDR pc = value_as_address (value);
3899 return frame_unwind_got_constant (this_frame, prev_regnum,
287de656 3900 UNMAKE_THUMB_ADDR (pc));
8c9ae6df
YR
3901 }
3902
ef273377
CL
3903 /* The value might be one of the alternative SP, if so, use the
3904 value already constructed. */
d65edaa0 3905 if (arm_is_alternative_sp_register (tdep, prev_regnum))
ef273377
CL
3906 {
3907 sp_value = arm_cache_get_sp_register (cache, tdep, prev_regnum);
3908 return frame_unwind_got_constant (this_frame, prev_regnum, sp_value);
3909 }
3910
8c9ae6df
YR
3911 /* If we are asked to unwind the xPSR, set T bit if PC is in thumb mode.
3912 LR register is unreliable as it contains FNC_RETURN or EXC_RETURN
3913 pattern. */
3914 if (prev_regnum == ARM_PS_REGNUM)
3915 {
3916 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3917 struct value *value = trad_frame_get_prev_register (this_frame,
3918 cache->saved_regs,
3919 ARM_PC_REGNUM);
3920 CORE_ADDR pc = value_as_address (value);
3921 value = trad_frame_get_prev_register (this_frame, cache->saved_regs,
3922 ARM_PS_REGNUM);
3923 ULONGEST xpsr = value_as_long (value);
3924
3925 /* Reconstruct the T bit; see arm_prologue_prev_register for details. */
3926 xpsr = reconstruct_t_bit (gdbarch, pc, xpsr);
3927 return frame_unwind_got_constant (this_frame, ARM_PS_REGNUM, xpsr);
3928 }
3929
2ae28aa9
YQ
3930 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
3931 prev_regnum);
3932}
3933
3934/* Implementation of function hook 'sniffer' in
3935 'struct frame_uwnind'. */
3936
3937static int
3938arm_m_exception_unwind_sniffer (const struct frame_unwind *self,
bd2b40ac 3939 frame_info_ptr this_frame,
2ae28aa9
YQ
3940 void **this_prologue_cache)
3941{
ef273377 3942 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2ae28aa9
YQ
3943 CORE_ADDR this_pc = get_frame_pc (this_frame);
3944
3945 /* No need to check is_m; this sniffer is only registered for
3946 M-profile architectures. */
3947
ca90e760 3948 /* Check if exception frame returns to a magic PC value. */
ef273377 3949 return arm_m_addr_is_magic (gdbarch, this_pc);
2ae28aa9
YQ
3950}
3951
8b73ee20
LM
3952/* Frame unwinder for M-profile exceptions (EXC_RETURN on stack),
3953 lockup and secure/nonsecure interstate function calls (FNC_RETURN). */
2ae28aa9
YQ
3954
3955struct frame_unwind arm_m_exception_unwind =
3956{
8b73ee20 3957 "arm m exception lockup sec_fnc",
2ae28aa9 3958 SIGTRAMP_FRAME,
ce6c3d25 3959 arm_m_exception_frame_unwind_stop_reason,
2ae28aa9
YQ
3960 arm_m_exception_this_id,
3961 arm_m_exception_prev_register,
3962 NULL,
3963 arm_m_exception_unwind_sniffer
3964};
3965
24de872b 3966static CORE_ADDR
bd2b40ac 3967arm_normal_frame_base (frame_info_ptr this_frame, void **this_cache)
24de872b
DJ
3968{
3969 struct arm_prologue_cache *cache;
3970
eb5492fa 3971 if (*this_cache == NULL)
a262aec2 3972 *this_cache = arm_make_prologue_cache (this_frame);
9a3c8263 3973 cache = (struct arm_prologue_cache *) *this_cache;
eb5492fa 3974
ae7e2f45 3975 arm_gdbarch_tdep *tdep
08106042 3976 = gdbarch_tdep<arm_gdbarch_tdep> (get_frame_arch (this_frame));
ae7e2f45 3977 return arm_cache_get_prev_sp_value (cache, tdep) - cache->framesize;
24de872b
DJ
3978}
3979
eb5492fa
DJ
3980struct frame_base arm_normal_base = {
3981 &arm_prologue_unwind,
3982 arm_normal_frame_base,
3983 arm_normal_frame_base,
3984 arm_normal_frame_base
3985};
3986
5cf11483
TS
3987struct arm_dwarf2_prev_register_cache
3988{
3bfdcabb 3989 /* Cached value of the corresponding stack pointer for the inner frame. */
5cf11483
TS
3990 CORE_ADDR sp;
3991 CORE_ADDR msp;
3992 CORE_ADDR msp_s;
3993 CORE_ADDR msp_ns;
3994 CORE_ADDR psp;
3995 CORE_ADDR psp_s;
3996 CORE_ADDR psp_ns;
3997};
3998
b39cc962 3999static struct value *
bd2b40ac 4000arm_dwarf2_prev_register (frame_info_ptr this_frame, void **this_cache,
b39cc962
DJ
4001 int regnum)
4002{
24568a2c 4003 struct gdbarch * gdbarch = get_frame_arch (this_frame);
08106042 4004 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
8c9ae6df
YR
4005 CORE_ADDR lr;
4006 ULONGEST cpsr;
5cf11483
TS
4007 arm_dwarf2_prev_register_cache *cache
4008 = ((arm_dwarf2_prev_register_cache *)
4009 dwarf2_frame_get_fn_data (this_frame, this_cache,
4010 arm_dwarf2_prev_register));
4011
4012 if (!cache)
4013 {
4014 const unsigned int size = sizeof (struct arm_dwarf2_prev_register_cache);
4015 cache = ((arm_dwarf2_prev_register_cache *)
4016 dwarf2_frame_allocate_fn_data (this_frame, this_cache,
4017 arm_dwarf2_prev_register, size));
4018
4019 if (tdep->have_sec_ext)
4020 {
4021 cache->sp
4022 = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
4023
4024 cache->msp_s
4025 = get_frame_register_unsigned (this_frame,
4026 tdep->m_profile_msp_s_regnum);
4027 cache->msp_ns
4028 = get_frame_register_unsigned (this_frame,
4029 tdep->m_profile_msp_ns_regnum);
4030 cache->psp_s
4031 = get_frame_register_unsigned (this_frame,
4032 tdep->m_profile_psp_s_regnum);
4033 cache->psp_ns
4034 = get_frame_register_unsigned (this_frame,
4035 tdep->m_profile_psp_ns_regnum);
4036 }
4037 else if (tdep->is_m)
4038 {
4039 cache->sp
4040 = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
4041
4042 cache->msp
4043 = get_frame_register_unsigned (this_frame,
4044 tdep->m_profile_msp_regnum);
4045 cache->psp
4046 = get_frame_register_unsigned (this_frame,
4047 tdep->m_profile_psp_regnum);
4048 }
4049 }
b39cc962 4050
42e11f36 4051 if (regnum == ARM_PC_REGNUM)
b39cc962 4052 {
b39cc962
DJ
4053 /* The PC is normally copied from the return column, which
4054 describes saves of LR. However, that version may have an
4055 extra bit set to indicate Thumb state. The bit is not
4056 part of the PC. */
a01567f4
LM
4057
4058 /* Record in the frame whether the return address was signed. */
4059 if (tdep->have_pacbti)
4060 {
4061 CORE_ADDR ra_auth_code
4062 = frame_unwind_register_unsigned (this_frame,
4063 tdep->pacbti_pseudo_base);
4064
4065 if (ra_auth_code != 0)
4066 set_frame_previous_pc_masked (this_frame);
4067 }
4068
b39cc962
DJ
4069 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
4070 return frame_unwind_got_constant (this_frame, regnum,
24568a2c 4071 arm_addr_bits_remove (gdbarch, lr));
42e11f36
TS
4072 }
4073 else if (regnum == ARM_PS_REGNUM)
4074 {
b39cc962 4075 /* Reconstruct the T bit; see arm_prologue_prev_register for details. */
ca38c58e 4076 cpsr = get_frame_register_unsigned (this_frame, regnum);
b39cc962 4077 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
8c9ae6df 4078 cpsr = reconstruct_t_bit (gdbarch, lr, cpsr);
ca38c58e 4079 return frame_unwind_got_constant (this_frame, regnum, cpsr);
b39cc962 4080 }
a6e4a48c
YR
4081 else if (arm_is_alternative_sp_register (tdep, regnum))
4082 {
4083 /* Handle the alternative SP registers on Cortex-M. */
4084 bool override_with_sp_value = false;
4085 CORE_ADDR val;
4086
4087 if (tdep->have_sec_ext)
4088 {
a6e4a48c 4089 bool is_msp = (regnum == tdep->m_profile_msp_regnum)
5cf11483 4090 && (cache->msp_s == cache->sp || cache->msp_ns == cache->sp);
a6e4a48c 4091 bool is_msp_s = (regnum == tdep->m_profile_msp_s_regnum)
5cf11483 4092 && (cache->msp_s == cache->sp);
a6e4a48c 4093 bool is_msp_ns = (regnum == tdep->m_profile_msp_ns_regnum)
5cf11483 4094 && (cache->msp_ns == cache->sp);
a6e4a48c 4095 bool is_psp = (regnum == tdep->m_profile_psp_regnum)
5cf11483 4096 && (cache->psp_s == cache->sp || cache->psp_ns == cache->sp);
a6e4a48c 4097 bool is_psp_s = (regnum == tdep->m_profile_psp_s_regnum)
5cf11483 4098 && (cache->psp_s == cache->sp);
a6e4a48c 4099 bool is_psp_ns = (regnum == tdep->m_profile_psp_ns_regnum)
5cf11483 4100 && (cache->psp_ns == cache->sp);
a6e4a48c
YR
4101
4102 override_with_sp_value = is_msp || is_msp_s || is_msp_ns
4103 || is_psp || is_psp_s || is_psp_ns;
4104
4105 }
4106 else if (tdep->is_m)
4107 {
5cf11483
TS
4108 bool is_msp = (regnum == tdep->m_profile_msp_regnum)
4109 && (cache->sp == cache->msp);
4110 bool is_psp = (regnum == tdep->m_profile_psp_regnum)
4111 && (cache->sp == cache->psp);
a6e4a48c
YR
4112
4113 override_with_sp_value = is_msp || is_psp;
4114 }
4115
4116 if (override_with_sp_value)
4117 {
4118 /* Use value of SP from previous frame. */
bd2b40ac 4119 frame_info_ptr prev_frame = get_prev_frame (this_frame);
a6e4a48c
YR
4120 if (prev_frame)
4121 val = get_frame_register_unsigned (prev_frame, ARM_SP_REGNUM);
4122 else
4123 val = get_frame_base (this_frame);
4124 }
4125 else
4126 /* Use value for the register from previous frame. */
4127 val = get_frame_register_unsigned (this_frame, regnum);
4128
4129 return frame_unwind_got_constant (this_frame, regnum, val);
4130 }
42e11f36 4131
f34652de 4132 internal_error (_("Unexpected register %d"), regnum);
b39cc962
DJ
4133}
4134
c9cf6e20 4135/* Implement the stack_frame_destroyed_p gdbarch method. */
4024ca99
UW
4136
4137static int
c9cf6e20 4138thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4024ca99
UW
4139{
4140 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
4141 unsigned int insn, insn2;
4142 int found_return = 0, found_stack_adjust = 0;
4143 CORE_ADDR func_start, func_end;
4144 CORE_ADDR scan_pc;
4145 gdb_byte buf[4];
4146
4147 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
4148 return 0;
4149
4150 /* The epilogue is a sequence of instructions along the following lines:
4151
4152 - add stack frame size to SP or FP
4153 - [if frame pointer used] restore SP from FP
4154 - restore registers from SP [may include PC]
4155 - a return-type instruction [if PC wasn't already restored]
4156
4157 In a first pass, we scan forward from the current PC and verify the
4158 instructions we find as compatible with this sequence, ending in a
4159 return instruction.
4160
4161 However, this is not sufficient to distinguish indirect function calls
4162 within a function from indirect tail calls in the epilogue in some cases.
4163 Therefore, if we didn't already find any SP-changing instruction during
4164 forward scan, we add a backward scanning heuristic to ensure we actually
4165 are in the epilogue. */
4166
4167 scan_pc = pc;
4168 while (scan_pc < func_end && !found_return)
4169 {
4170 if (target_read_memory (scan_pc, buf, 2))
4171 break;
4172
4173 scan_pc += 2;
4174 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
4175
4176 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
4177 found_return = 1;
4178 else if (insn == 0x46f7) /* mov pc, lr */
4179 found_return = 1;
540314bd 4180 else if (thumb_instruction_restores_sp (insn))
4024ca99 4181 {
b7576e5c 4182 if ((insn & 0xff00) == 0xbd00) /* pop <registers, PC> */
4024ca99
UW
4183 found_return = 1;
4184 }
db24da6d 4185 else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instruction */
4024ca99
UW
4186 {
4187 if (target_read_memory (scan_pc, buf, 2))
4188 break;
4189
4190 scan_pc += 2;
4191 insn2 = extract_unsigned_integer (buf, 2, byte_order_for_code);
4192
4193 if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
4194 {
4024ca99
UW
4195 if (insn2 & 0x8000) /* <registers> include PC. */
4196 found_return = 1;
4197 }
4198 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
4199 && (insn2 & 0x0fff) == 0x0b04)
4200 {
4024ca99
UW
4201 if ((insn2 & 0xf000) == 0xf000) /* <Rt> is PC. */
4202 found_return = 1;
4203 }
4204 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
4205 && (insn2 & 0x0e00) == 0x0a00)
6b65d1b6 4206 ;
4024ca99
UW
4207 else
4208 break;
4209 }
4210 else
4211 break;
4212 }
4213
4214 if (!found_return)
4215 return 0;
4216
4217 /* Since any instruction in the epilogue sequence, with the possible
4218 exception of return itself, updates the stack pointer, we need to
4219 scan backwards for at most one instruction. Try either a 16-bit or
4220 a 32-bit instruction. This is just a heuristic, so we do not worry
0963b4bd 4221 too much about false positives. */
4024ca99 4222
6b65d1b6
YQ
4223 if (pc - 4 < func_start)
4224 return 0;
4225 if (target_read_memory (pc - 4, buf, 4))
4226 return 0;
4024ca99 4227
6b65d1b6
YQ
4228 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
4229 insn2 = extract_unsigned_integer (buf + 2, 2, byte_order_for_code);
4230
4231 if (thumb_instruction_restores_sp (insn2))
4232 found_stack_adjust = 1;
4233 else if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
4234 found_stack_adjust = 1;
4235 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
4236 && (insn2 & 0x0fff) == 0x0b04)
4237 found_stack_adjust = 1;
4238 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
4239 && (insn2 & 0x0e00) == 0x0a00)
4240 found_stack_adjust = 1;
4024ca99
UW
4241
4242 return found_stack_adjust;
4243}
4244
4024ca99 4245static int
c58b006a 4246arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch, CORE_ADDR pc)
4024ca99
UW
4247{
4248 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
4249 unsigned int insn;
f303bc3e 4250 int found_return;
4024ca99
UW
4251 CORE_ADDR func_start, func_end;
4252
4024ca99
UW
4253 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
4254 return 0;
4255
4256 /* We are in the epilogue if the previous instruction was a stack
4257 adjustment and the next instruction is a possible return (bx, mov
4258 pc, or pop). We could have to scan backwards to find the stack
4259 adjustment, or forwards to find the return, but this is a decent
4260 approximation. First scan forwards. */
4261
4262 found_return = 0;
4263 insn = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
4264 if (bits (insn, 28, 31) != INST_NV)
4265 {
4266 if ((insn & 0x0ffffff0) == 0x012fff10)
4267 /* BX. */
4268 found_return = 1;
4269 else if ((insn & 0x0ffffff0) == 0x01a0f000)
4270 /* MOV PC. */
4271 found_return = 1;
4272 else if ((insn & 0x0fff0000) == 0x08bd0000
4273 && (insn & 0x0000c000) != 0)
4274 /* POP (LDMIA), including PC or LR. */
4275 found_return = 1;
4276 }
4277
4278 if (!found_return)
4279 return 0;
4280
4281 /* Scan backwards. This is just a heuristic, so do not worry about
4282 false positives from mode changes. */
4283
4284 if (pc < func_start + 4)
4285 return 0;
4286
4287 insn = read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
f303bc3e 4288 if (arm_instruction_restores_sp (insn))
4024ca99
UW
4289 return 1;
4290
4291 return 0;
4292}
4293
c58b006a
YQ
4294/* Implement the stack_frame_destroyed_p gdbarch method. */
4295
4296static int
4297arm_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4298{
4299 if (arm_pc_is_thumb (gdbarch, pc))
4300 return thumb_stack_frame_destroyed_p (gdbarch, pc);
4301 else
4302 return arm_stack_frame_destroyed_p_1 (gdbarch, pc);
4303}
4024ca99 4304
2dd604e7
RE
4305/* When arguments must be pushed onto the stack, they go on in reverse
4306 order. The code below implements a FILO (stack) to do this. */
4307
0fecb1a7 4308struct arm_stack_item
2dd604e7
RE
4309{
4310 int len;
0fecb1a7 4311 struct arm_stack_item *prev;
7c543f7b 4312 gdb_byte *data;
2dd604e7
RE
4313};
4314
0fecb1a7
TT
4315static struct arm_stack_item *
4316push_stack_item (struct arm_stack_item *prev, const gdb_byte *contents,
4317 int len)
2dd604e7 4318{
0fecb1a7
TT
4319 struct arm_stack_item *si;
4320 si = XNEW (struct arm_stack_item);
7c543f7b 4321 si->data = (gdb_byte *) xmalloc (len);
2dd604e7
RE
4322 si->len = len;
4323 si->prev = prev;
4324 memcpy (si->data, contents, len);
4325 return si;
4326}
4327
0fecb1a7
TT
4328static struct arm_stack_item *
4329pop_stack_item (struct arm_stack_item *si)
2dd604e7 4330{
0fecb1a7 4331 struct arm_stack_item *dead = si;
2dd604e7
RE
4332 si = si->prev;
4333 xfree (dead->data);
4334 xfree (dead);
4335 return si;
4336}
4337
030197b4
AB
4338/* Implement the gdbarch type alignment method, overrides the generic
4339 alignment algorithm for anything that is arm specific. */
2af48f68 4340
030197b4
AB
4341static ULONGEST
4342arm_type_align (gdbarch *gdbarch, struct type *t)
2af48f68 4343{
2af48f68 4344 t = check_typedef (t);
bd63c870 4345 if (t->code () == TYPE_CODE_ARRAY && t->is_vector ())
2af48f68 4346 {
030197b4
AB
4347 /* Use the natural alignment for vector types (the same for
4348 scalar type), but the maximum alignment is 64-bit. */
df86565b 4349 if (t->length () > 8)
030197b4 4350 return 8;
c4312b19 4351 else
df86565b 4352 return t->length ();
2af48f68 4353 }
030197b4
AB
4354
4355 /* Allow the common code to calculate the alignment. */
4356 return 0;
2af48f68
PB
4357}
4358
90445bd3
DJ
4359/* Possible base types for a candidate for passing and returning in
4360 VFP registers. */
4361
4362enum arm_vfp_cprc_base_type
4363{
4364 VFP_CPRC_UNKNOWN,
4365 VFP_CPRC_SINGLE,
4366 VFP_CPRC_DOUBLE,
4367 VFP_CPRC_VEC64,
4368 VFP_CPRC_VEC128
4369};
4370
4371/* The length of one element of base type B. */
4372
4373static unsigned
4374arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b)
4375{
4376 switch (b)
4377 {
4378 case VFP_CPRC_SINGLE:
4379 return 4;
4380 case VFP_CPRC_DOUBLE:
4381 return 8;
4382 case VFP_CPRC_VEC64:
4383 return 8;
4384 case VFP_CPRC_VEC128:
4385 return 16;
4386 default:
f34652de 4387 internal_error (_("Invalid VFP CPRC type: %d."),
90445bd3
DJ
4388 (int) b);
4389 }
4390}
4391
4392/* The character ('s', 'd' or 'q') for the type of VFP register used
4393 for passing base type B. */
4394
4395static int
4396arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b)
4397{
4398 switch (b)
4399 {
4400 case VFP_CPRC_SINGLE:
4401 return 's';
4402 case VFP_CPRC_DOUBLE:
4403 return 'd';
4404 case VFP_CPRC_VEC64:
4405 return 'd';
4406 case VFP_CPRC_VEC128:
4407 return 'q';
4408 default:
f34652de 4409 internal_error (_("Invalid VFP CPRC type: %d."),
90445bd3
DJ
4410 (int) b);
4411 }
4412}
4413
4414/* Determine whether T may be part of a candidate for passing and
4415 returning in VFP registers, ignoring the limit on the total number
4416 of components. If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the
4417 classification of the first valid component found; if it is not
4418 VFP_CPRC_UNKNOWN, all components must have the same classification
4419 as *BASE_TYPE. If it is found that T contains a type not permitted
4420 for passing and returning in VFP registers, a type differently
4421 classified from *BASE_TYPE, or two types differently classified
4422 from each other, return -1, otherwise return the total number of
4423 base-type elements found (possibly 0 in an empty structure or
817e0957
YQ
4424 array). Vector types are not currently supported, matching the
4425 generic AAPCS support. */
90445bd3
DJ
4426
4427static int
4428arm_vfp_cprc_sub_candidate (struct type *t,
4429 enum arm_vfp_cprc_base_type *base_type)
4430{
4431 t = check_typedef (t);
78134374 4432 switch (t->code ())
90445bd3
DJ
4433 {
4434 case TYPE_CODE_FLT:
df86565b 4435 switch (t->length ())
90445bd3
DJ
4436 {
4437 case 4:
4438 if (*base_type == VFP_CPRC_UNKNOWN)
4439 *base_type = VFP_CPRC_SINGLE;
4440 else if (*base_type != VFP_CPRC_SINGLE)
4441 return -1;
4442 return 1;
4443
4444 case 8:
4445 if (*base_type == VFP_CPRC_UNKNOWN)
4446 *base_type = VFP_CPRC_DOUBLE;
4447 else if (*base_type != VFP_CPRC_DOUBLE)
4448 return -1;
4449 return 1;
4450
4451 default:
4452 return -1;
4453 }
4454 break;
4455
817e0957
YQ
4456 case TYPE_CODE_COMPLEX:
4457 /* Arguments of complex T where T is one of the types float or
4458 double get treated as if they are implemented as:
4459
4460 struct complexT
4461 {
4462 T real;
4463 T imag;
5f52445b
YQ
4464 };
4465
4466 */
df86565b 4467 switch (t->length ())
817e0957
YQ
4468 {
4469 case 8:
4470 if (*base_type == VFP_CPRC_UNKNOWN)
4471 *base_type = VFP_CPRC_SINGLE;
4472 else if (*base_type != VFP_CPRC_SINGLE)
4473 return -1;
4474 return 2;
4475
4476 case 16:
4477 if (*base_type == VFP_CPRC_UNKNOWN)
4478 *base_type = VFP_CPRC_DOUBLE;
4479 else if (*base_type != VFP_CPRC_DOUBLE)
4480 return -1;
4481 return 2;
4482
4483 default:
4484 return -1;
4485 }
4486 break;
4487
90445bd3
DJ
4488 case TYPE_CODE_ARRAY:
4489 {
bd63c870 4490 if (t->is_vector ())
90445bd3 4491 {
c4312b19
YQ
4492 /* A 64-bit or 128-bit containerized vector type are VFP
4493 CPRCs. */
df86565b 4494 switch (t->length ())
c4312b19
YQ
4495 {
4496 case 8:
4497 if (*base_type == VFP_CPRC_UNKNOWN)
4498 *base_type = VFP_CPRC_VEC64;
4499 return 1;
4500 case 16:
4501 if (*base_type == VFP_CPRC_UNKNOWN)
4502 *base_type = VFP_CPRC_VEC128;
4503 return 1;
4504 default:
4505 return -1;
4506 }
4507 }
4508 else
4509 {
4510 int count;
4511 unsigned unitlen;
4512
27710edb 4513 count = arm_vfp_cprc_sub_candidate (t->target_type (),
c4312b19
YQ
4514 base_type);
4515 if (count == -1)
4516 return -1;
df86565b 4517 if (t->length () == 0)
c4312b19
YQ
4518 {
4519 gdb_assert (count == 0);
4520 return 0;
4521 }
4522 else if (count == 0)
4523 return -1;
4524 unitlen = arm_vfp_cprc_unit_length (*base_type);
df86565b
SM
4525 gdb_assert ((t->length () % unitlen) == 0);
4526 return t->length () / unitlen;
90445bd3 4527 }
90445bd3
DJ
4528 }
4529 break;
4530
4531 case TYPE_CODE_STRUCT:
4532 {
4533 int count = 0;
4534 unsigned unitlen;
4535 int i;
1f704f76 4536 for (i = 0; i < t->num_fields (); i++)
90445bd3 4537 {
1040b979
YQ
4538 int sub_count = 0;
4539
c819a338 4540 if (!t->field (i).is_static ())
940da03e 4541 sub_count = arm_vfp_cprc_sub_candidate (t->field (i).type (),
1040b979 4542 base_type);
90445bd3
DJ
4543 if (sub_count == -1)
4544 return -1;
4545 count += sub_count;
4546 }
df86565b 4547 if (t->length () == 0)
90445bd3
DJ
4548 {
4549 gdb_assert (count == 0);
4550 return 0;
4551 }
4552 else if (count == 0)
4553 return -1;
4554 unitlen = arm_vfp_cprc_unit_length (*base_type);
df86565b 4555 if (t->length () != unitlen * count)
90445bd3
DJ
4556 return -1;
4557 return count;
4558 }
4559
4560 case TYPE_CODE_UNION:
4561 {
4562 int count = 0;
4563 unsigned unitlen;
4564 int i;
1f704f76 4565 for (i = 0; i < t->num_fields (); i++)
90445bd3 4566 {
940da03e 4567 int sub_count = arm_vfp_cprc_sub_candidate (t->field (i).type (),
90445bd3
DJ
4568 base_type);
4569 if (sub_count == -1)
4570 return -1;
4571 count = (count > sub_count ? count : sub_count);
4572 }
df86565b 4573 if (t->length () == 0)
90445bd3
DJ
4574 {
4575 gdb_assert (count == 0);
4576 return 0;
4577 }
4578 else if (count == 0)
4579 return -1;
4580 unitlen = arm_vfp_cprc_unit_length (*base_type);
df86565b 4581 if (t->length () != unitlen * count)
90445bd3
DJ
4582 return -1;
4583 return count;
4584 }
4585
4586 default:
4587 break;
4588 }
4589
4590 return -1;
4591}
4592
4593/* Determine whether T is a VFP co-processor register candidate (CPRC)
4594 if passed to or returned from a non-variadic function with the VFP
4595 ABI in effect. Return 1 if it is, 0 otherwise. If it is, set
4596 *BASE_TYPE to the base type for T and *COUNT to the number of
4597 elements of that base type before returning. */
4598
4599static int
4600arm_vfp_call_candidate (struct type *t, enum arm_vfp_cprc_base_type *base_type,
4601 int *count)
4602{
4603 enum arm_vfp_cprc_base_type b = VFP_CPRC_UNKNOWN;
4604 int c = arm_vfp_cprc_sub_candidate (t, &b);
4605 if (c <= 0 || c > 4)
4606 return 0;
4607 *base_type = b;
4608 *count = c;
4609 return 1;
4610}
4611
4612/* Return 1 if the VFP ABI should be used for passing arguments to and
4613 returning values from a function of type FUNC_TYPE, 0
4614 otherwise. */
4615
4616static int
4617arm_vfp_abi_for_function (struct gdbarch *gdbarch, struct type *func_type)
4618{
08106042 4619 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
345bd07c 4620
90445bd3
DJ
4621 /* Variadic functions always use the base ABI. Assume that functions
4622 without debug info are not variadic. */
a409645d 4623 if (func_type && check_typedef (func_type)->has_varargs ())
90445bd3 4624 return 0;
345bd07c 4625
90445bd3
DJ
4626 /* The VFP ABI is only supported as a variant of AAPCS. */
4627 if (tdep->arm_abi != ARM_ABI_AAPCS)
4628 return 0;
345bd07c
SM
4629
4630 return tdep->fp_model == ARM_FLOAT_VFP;
90445bd3
DJ
4631}
4632
4633/* We currently only support passing parameters in integer registers, which
4634 conforms with GCC's default model, and VFP argument passing following
4635 the VFP variant of AAPCS. Several other variants exist and
2dd604e7
RE
4636 we should probably support some of them based on the selected ABI. */
4637
4638static CORE_ADDR
7d9b040b 4639arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a 4640 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
cf84fa6b
AH
4641 struct value **args, CORE_ADDR sp,
4642 function_call_return_method return_method,
6a65450a 4643 CORE_ADDR struct_addr)
2dd604e7 4644{
e17a4113 4645 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2dd604e7
RE
4646 int argnum;
4647 int argreg;
4648 int nstack;
0fecb1a7 4649 struct arm_stack_item *si = NULL;
90445bd3
DJ
4650 int use_vfp_abi;
4651 struct type *ftype;
4652 unsigned vfp_regs_free = (1 << 16) - 1;
08106042 4653 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
90445bd3
DJ
4654
4655 /* Determine the type of this function and whether the VFP ABI
4656 applies. */
d0c97917 4657 ftype = check_typedef (function->type ());
78134374 4658 if (ftype->code () == TYPE_CODE_PTR)
27710edb 4659 ftype = check_typedef (ftype->target_type ());
90445bd3 4660 use_vfp_abi = arm_vfp_abi_for_function (gdbarch, ftype);
2dd604e7 4661
6a65450a
AC
4662 /* Set the return address. For the ARM, the return breakpoint is
4663 always at BP_ADDR. */
9779414d 4664 if (arm_pc_is_thumb (gdbarch, bp_addr))
9dca5578 4665 bp_addr |= 1;
6a65450a 4666 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
2dd604e7
RE
4667
4668 /* Walk through the list of args and determine how large a temporary
4669 stack is required. Need to take care here as structs may be
7a9dd1b2 4670 passed on the stack, and we have to push them. */
2dd604e7
RE
4671 nstack = 0;
4672
4673 argreg = ARM_A1_REGNUM;
4674 nstack = 0;
4675
2dd604e7
RE
4676 /* The struct_return pointer occupies the first parameter
4677 passing register. */
cf84fa6b 4678 if (return_method == return_method_struct)
2dd604e7 4679 {
7cb6d92a
SM
4680 arm_debug_printf ("struct return in %s = %s",
4681 gdbarch_register_name (gdbarch, argreg),
4682 paddress (gdbarch, struct_addr));
4683
2dd604e7
RE
4684 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
4685 argreg++;
4686 }
4687
4688 for (argnum = 0; argnum < nargs; argnum++)
4689 {
4690 int len;
4691 struct type *arg_type;
4692 struct type *target_type;
4693 enum type_code typecode;
8c6363cf 4694 const bfd_byte *val;
2af48f68 4695 int align;
90445bd3
DJ
4696 enum arm_vfp_cprc_base_type vfp_base_type;
4697 int vfp_base_count;
4698 int may_use_core_reg = 1;
2dd604e7 4699
d0c97917 4700 arg_type = check_typedef (args[argnum]->type ());
df86565b 4701 len = arg_type->length ();
27710edb 4702 target_type = arg_type->target_type ();
78134374 4703 typecode = arg_type->code ();
efaf1ae0 4704 val = args[argnum]->contents ().data ();
2dd604e7 4705
030197b4 4706 align = type_align (arg_type);
2af48f68 4707 /* Round alignment up to a whole number of words. */
f0452268
AH
4708 align = (align + ARM_INT_REGISTER_SIZE - 1)
4709 & ~(ARM_INT_REGISTER_SIZE - 1);
2af48f68 4710 /* Different ABIs have different maximum alignments. */
345bd07c 4711 if (tdep->arm_abi == ARM_ABI_APCS)
2af48f68
PB
4712 {
4713 /* The APCS ABI only requires word alignment. */
f0452268 4714 align = ARM_INT_REGISTER_SIZE;
2af48f68
PB
4715 }
4716 else
4717 {
4718 /* The AAPCS requires at most doubleword alignment. */
f0452268
AH
4719 if (align > ARM_INT_REGISTER_SIZE * 2)
4720 align = ARM_INT_REGISTER_SIZE * 2;
2af48f68
PB
4721 }
4722
90445bd3
DJ
4723 if (use_vfp_abi
4724 && arm_vfp_call_candidate (arg_type, &vfp_base_type,
4725 &vfp_base_count))
4726 {
4727 int regno;
4728 int unit_length;
4729 int shift;
4730 unsigned mask;
4731
4732 /* Because this is a CPRC it cannot go in a core register or
4733 cause a core register to be skipped for alignment.
4734 Either it goes in VFP registers and the rest of this loop
4735 iteration is skipped for this argument, or it goes on the
4736 stack (and the stack alignment code is correct for this
4737 case). */
4738 may_use_core_reg = 0;
4739
4740 unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
4741 shift = unit_length / 4;
4742 mask = (1 << (shift * vfp_base_count)) - 1;
4743 for (regno = 0; regno < 16; regno += shift)
4744 if (((vfp_regs_free >> regno) & mask) == mask)
4745 break;
4746
4747 if (regno < 16)
4748 {
4749 int reg_char;
4750 int reg_scaled;
4751 int i;
4752
4753 vfp_regs_free &= ~(mask << regno);
4754 reg_scaled = regno / shift;
4755 reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
4756 for (i = 0; i < vfp_base_count; i++)
4757 {
4758 char name_buf[4];
4759 int regnum;
58d6951d
DJ
4760 if (reg_char == 'q')
4761 arm_neon_quad_write (gdbarch, regcache, reg_scaled + i,
90445bd3 4762 val + i * unit_length);
58d6951d
DJ
4763 else
4764 {
8c042590
PM
4765 xsnprintf (name_buf, sizeof (name_buf), "%c%d",
4766 reg_char, reg_scaled + i);
58d6951d
DJ
4767 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
4768 strlen (name_buf));
b66f5587 4769 regcache->cooked_write (regnum, val + i * unit_length);
58d6951d 4770 }
90445bd3
DJ
4771 }
4772 continue;
4773 }
4774 else
4775 {
4776 /* This CPRC could not go in VFP registers, so all VFP
4777 registers are now marked as used. */
4778 vfp_regs_free = 0;
4779 }
4780 }
4781
85102364 4782 /* Push stack padding for doubleword alignment. */
2af48f68
PB
4783 if (nstack & (align - 1))
4784 {
f0452268
AH
4785 si = push_stack_item (si, val, ARM_INT_REGISTER_SIZE);
4786 nstack += ARM_INT_REGISTER_SIZE;
2af48f68
PB
4787 }
4788
4789 /* Doubleword aligned quantities must go in even register pairs. */
90445bd3
DJ
4790 if (may_use_core_reg
4791 && argreg <= ARM_LAST_ARG_REGNUM
f0452268 4792 && align > ARM_INT_REGISTER_SIZE
2af48f68
PB
4793 && argreg & 1)
4794 argreg++;
4795
2dd604e7
RE
4796 /* If the argument is a pointer to a function, and it is a
4797 Thumb function, create a LOCAL copy of the value and set
4798 the THUMB bit in it. */
4799 if (TYPE_CODE_PTR == typecode
4800 && target_type != NULL
78134374 4801 && TYPE_CODE_FUNC == check_typedef (target_type)->code ())
2dd604e7 4802 {
e17a4113 4803 CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order);
9779414d 4804 if (arm_pc_is_thumb (gdbarch, regval))
2dd604e7 4805 {
224c3ddb 4806 bfd_byte *copy = (bfd_byte *) alloca (len);
8c6363cf 4807 store_unsigned_integer (copy, len, byte_order,
e17a4113 4808 MAKE_THUMB_ADDR (regval));
8c6363cf 4809 val = copy;
2dd604e7
RE
4810 }
4811 }
4812
4813 /* Copy the argument to general registers or the stack in
4814 register-sized pieces. Large arguments are split between
4815 registers and stack. */
4816 while (len > 0)
4817 {
f0452268
AH
4818 int partial_len = len < ARM_INT_REGISTER_SIZE
4819 ? len : ARM_INT_REGISTER_SIZE;
ef9bd0b8
YQ
4820 CORE_ADDR regval
4821 = extract_unsigned_integer (val, partial_len, byte_order);
2dd604e7 4822
90445bd3 4823 if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM)
2dd604e7
RE
4824 {
4825 /* The argument is being passed in a general purpose
4826 register. */
7cb6d92a
SM
4827 arm_debug_printf ("arg %d in %s = 0x%s", argnum,
4828 gdbarch_register_name (gdbarch, argreg),
4829 phex (regval, ARM_INT_REGISTER_SIZE));
4830
2dd604e7
RE
4831 regcache_cooked_write_unsigned (regcache, argreg, regval);
4832 argreg++;
4833 }
4834 else
4835 {
f0452268 4836 gdb_byte buf[ARM_INT_REGISTER_SIZE];
ef9bd0b8
YQ
4837
4838 memset (buf, 0, sizeof (buf));
4839 store_unsigned_integer (buf, partial_len, byte_order, regval);
4840
2dd604e7 4841 /* Push the arguments onto the stack. */
7cb6d92a 4842 arm_debug_printf ("arg %d @ sp + %d", argnum, nstack);
f0452268
AH
4843 si = push_stack_item (si, buf, ARM_INT_REGISTER_SIZE);
4844 nstack += ARM_INT_REGISTER_SIZE;
2dd604e7
RE
4845 }
4846
4847 len -= partial_len;
4848 val += partial_len;
4849 }
4850 }
4851 /* If we have an odd number of words to push, then decrement the stack
4852 by one word now, so first stack argument will be dword aligned. */
4853 if (nstack & 4)
4854 sp -= 4;
4855
4856 while (si)
4857 {
4858 sp -= si->len;
4859 write_memory (sp, si->data, si->len);
4860 si = pop_stack_item (si);
4861 }
4862
4863 /* Finally, update teh SP register. */
4864 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
4865
4866 return sp;
4867}
4868
f53f0d0b
PB
4869
4870/* Always align the frame to an 8-byte boundary. This is required on
4871 some platforms and harmless on the rest. */
4872
4873static CORE_ADDR
4874arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
4875{
4876 /* Align the stack to eight bytes. */
4877 return sp & ~ (CORE_ADDR) 7;
4878}
4879
c906108c 4880static void
12b27276 4881print_fpu_flags (struct ui_file *file, int flags)
c906108c 4882{
c5aa993b 4883 if (flags & (1 << 0))
0426ad51 4884 gdb_puts ("IVO ", file);
c5aa993b 4885 if (flags & (1 << 1))
0426ad51 4886 gdb_puts ("DVZ ", file);
c5aa993b 4887 if (flags & (1 << 2))
0426ad51 4888 gdb_puts ("OFL ", file);
c5aa993b 4889 if (flags & (1 << 3))
0426ad51 4890 gdb_puts ("UFL ", file);
c5aa993b 4891 if (flags & (1 << 4))
0426ad51 4892 gdb_puts ("INX ", file);
a11ac3b3 4893 gdb_putc ('\n', file);
c906108c
SS
4894}
4895
5e74b15c
RE
4896/* Print interesting information about the floating point processor
4897 (if present) or emulator. */
34e8f22d 4898static void
d855c300 4899arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
bd2b40ac 4900 frame_info_ptr frame, const char *args)
c906108c 4901{
9c9acae0 4902 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
c5aa993b
JM
4903 int type;
4904
4905 type = (status >> 24) & 127;
edefbb7c 4906 if (status & (1 << 31))
6cb06a8c 4907 gdb_printf (file, _("Hardware FPU type %d\n"), type);
edefbb7c 4908 else
6cb06a8c 4909 gdb_printf (file, _("Software FPU type %d\n"), type);
edefbb7c 4910 /* i18n: [floating point unit] mask */
0426ad51 4911 gdb_puts (_("mask: "), file);
12b27276 4912 print_fpu_flags (file, status >> 16);
edefbb7c 4913 /* i18n: [floating point unit] flags */
0426ad51 4914 gdb_puts (_("flags: "), file);
12b27276 4915 print_fpu_flags (file, status);
c906108c
SS
4916}
4917
27067745
UW
4918/* Construct the ARM extended floating point type. */
4919static struct type *
4920arm_ext_type (struct gdbarch *gdbarch)
4921{
08106042 4922 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
27067745
UW
4923
4924 if (!tdep->arm_ext_type)
77c5f496
TT
4925 {
4926 type_allocator alloc (gdbarch);
4927 tdep->arm_ext_type
4928 = init_float_type (alloc, -1, "builtin_type_arm_ext",
4929 floatformats_arm_ext);
4930 }
27067745
UW
4931
4932 return tdep->arm_ext_type;
4933}
4934
58d6951d
DJ
4935static struct type *
4936arm_neon_double_type (struct gdbarch *gdbarch)
4937{
08106042 4938 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
58d6951d
DJ
4939
4940 if (tdep->neon_double_type == NULL)
4941 {
4942 struct type *t, *elem;
4943
4944 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_d",
4945 TYPE_CODE_UNION);
4946 elem = builtin_type (gdbarch)->builtin_uint8;
4947 append_composite_type_field (t, "u8", init_vector_type (elem, 8));
4948 elem = builtin_type (gdbarch)->builtin_uint16;
4949 append_composite_type_field (t, "u16", init_vector_type (elem, 4));
4950 elem = builtin_type (gdbarch)->builtin_uint32;
4951 append_composite_type_field (t, "u32", init_vector_type (elem, 2));
4952 elem = builtin_type (gdbarch)->builtin_uint64;
4953 append_composite_type_field (t, "u64", elem);
4954 elem = builtin_type (gdbarch)->builtin_float;
4955 append_composite_type_field (t, "f32", init_vector_type (elem, 2));
4956 elem = builtin_type (gdbarch)->builtin_double;
4957 append_composite_type_field (t, "f64", elem);
4958
2062087b 4959 t->set_is_vector (true);
d0e39ea2 4960 t->set_name ("neon_d");
58d6951d
DJ
4961 tdep->neon_double_type = t;
4962 }
4963
4964 return tdep->neon_double_type;
4965}
4966
4967/* FIXME: The vector types are not correctly ordered on big-endian
4968 targets. Just as s0 is the low bits of d0, d0[0] is also the low
4969 bits of d0 - regardless of what unit size is being held in d0. So
4970 the offset of the first uint8 in d0 is 7, but the offset of the
4971 first float is 4. This code works as-is for little-endian
4972 targets. */
4973
4974static struct type *
4975arm_neon_quad_type (struct gdbarch *gdbarch)
4976{
08106042 4977 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
58d6951d
DJ
4978
4979 if (tdep->neon_quad_type == NULL)
4980 {
4981 struct type *t, *elem;
4982
4983 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_q",
4984 TYPE_CODE_UNION);
4985 elem = builtin_type (gdbarch)->builtin_uint8;
4986 append_composite_type_field (t, "u8", init_vector_type (elem, 16));
4987 elem = builtin_type (gdbarch)->builtin_uint16;
4988 append_composite_type_field (t, "u16", init_vector_type (elem, 8));
4989 elem = builtin_type (gdbarch)->builtin_uint32;
4990 append_composite_type_field (t, "u32", init_vector_type (elem, 4));
4991 elem = builtin_type (gdbarch)->builtin_uint64;
4992 append_composite_type_field (t, "u64", init_vector_type (elem, 2));
4993 elem = builtin_type (gdbarch)->builtin_float;
4994 append_composite_type_field (t, "f32", init_vector_type (elem, 4));
4995 elem = builtin_type (gdbarch)->builtin_double;
4996 append_composite_type_field (t, "f64", init_vector_type (elem, 2));
4997
2062087b 4998 t->set_is_vector (true);
d0e39ea2 4999 t->set_name ("neon_q");
58d6951d
DJ
5000 tdep->neon_quad_type = t;
5001 }
5002
5003 return tdep->neon_quad_type;
5004}
5005
ecbf5d4f
LM
5006/* Return true if REGNUM is a Q pseudo register. Return false
5007 otherwise.
5008
5009 REGNUM is the raw register number and not a pseudo-relative register
5010 number. */
5011
5012static bool
5013is_q_pseudo (struct gdbarch *gdbarch, int regnum)
5014{
08106042 5015 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
ecbf5d4f 5016
ae66a8f1
SP
5017 /* Q pseudo registers are available for both NEON (Q0~Q15) and
5018 MVE (Q0~Q7) features. */
ecbf5d4f
LM
5019 if (tdep->have_q_pseudos
5020 && regnum >= tdep->q_pseudo_base
5021 && regnum < (tdep->q_pseudo_base + tdep->q_pseudo_count))
5022 return true;
5023
5024 return false;
5025}
5026
5027/* Return true if REGNUM is a VFP S pseudo register. Return false
5028 otherwise.
5029
5030 REGNUM is the raw register number and not a pseudo-relative register
5031 number. */
5032
5033static bool
5034is_s_pseudo (struct gdbarch *gdbarch, int regnum)
5035{
08106042 5036 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
ecbf5d4f
LM
5037
5038 if (tdep->have_s_pseudos
5039 && regnum >= tdep->s_pseudo_base
5040 && regnum < (tdep->s_pseudo_base + tdep->s_pseudo_count))
5041 return true;
5042
5043 return false;
5044}
5045
ae66a8f1
SP
5046/* Return true if REGNUM is a MVE pseudo register (P0). Return false
5047 otherwise.
5048
5049 REGNUM is the raw register number and not a pseudo-relative register
5050 number. */
5051
5052static bool
5053is_mve_pseudo (struct gdbarch *gdbarch, int regnum)
5054{
08106042 5055 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
ae66a8f1
SP
5056
5057 if (tdep->have_mve
5058 && regnum >= tdep->mve_pseudo_base
5059 && regnum < tdep->mve_pseudo_base + tdep->mve_pseudo_count)
5060 return true;
5061
5062 return false;
5063}
5064
a01567f4
LM
5065/* Return true if REGNUM is a PACBTI pseudo register (ra_auth_code). Return
5066 false otherwise.
5067
5068 REGNUM is the raw register number and not a pseudo-relative register
5069 number. */
5070
5071static bool
5072is_pacbti_pseudo (struct gdbarch *gdbarch, int regnum)
5073{
08106042 5074 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
a01567f4
LM
5075
5076 if (tdep->have_pacbti
5077 && regnum >= tdep->pacbti_pseudo_base
5078 && regnum < tdep->pacbti_pseudo_base + tdep->pacbti_pseudo_count)
5079 return true;
5080
5081 return false;
5082}
5083
34e8f22d
RE
5084/* Return the GDB type object for the "standard" data type of data in
5085 register N. */
5086
5087static struct type *
7a5ea0d4 5088arm_register_type (struct gdbarch *gdbarch, int regnum)
032758dc 5089{
08106042 5090 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
58d6951d 5091
ecbf5d4f 5092 if (is_s_pseudo (gdbarch, regnum))
58d6951d
DJ
5093 return builtin_type (gdbarch)->builtin_float;
5094
ecbf5d4f 5095 if (is_q_pseudo (gdbarch, regnum))
58d6951d
DJ
5096 return arm_neon_quad_type (gdbarch);
5097
ae66a8f1
SP
5098 if (is_mve_pseudo (gdbarch, regnum))
5099 return builtin_type (gdbarch)->builtin_int16;
5100
a01567f4
LM
5101 if (is_pacbti_pseudo (gdbarch, regnum))
5102 return builtin_type (gdbarch)->builtin_uint32;
5103
58d6951d
DJ
5104 /* If the target description has register information, we are only
5105 in this function so that we can override the types of
5106 double-precision registers for NEON. */
5107 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
5108 {
5109 struct type *t = tdesc_register_type (gdbarch, regnum);
5110
5111 if (regnum >= ARM_D0_REGNUM && regnum < ARM_D0_REGNUM + 32
78134374 5112 && t->code () == TYPE_CODE_FLT
ecbf5d4f 5113 && tdep->have_neon)
58d6951d
DJ
5114 return arm_neon_double_type (gdbarch);
5115 else
5116 return t;
5117 }
5118
34e8f22d 5119 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
58d6951d 5120 {
ecbf5d4f 5121 if (!tdep->have_fpa_registers)
58d6951d
DJ
5122 return builtin_type (gdbarch)->builtin_void;
5123
5124 return arm_ext_type (gdbarch);
5125 }
e4c16157 5126 else if (regnum == ARM_SP_REGNUM)
0dfff4cb 5127 return builtin_type (gdbarch)->builtin_data_ptr;
e4c16157 5128 else if (regnum == ARM_PC_REGNUM)
0dfff4cb 5129 return builtin_type (gdbarch)->builtin_func_ptr;
ff6f572f
DJ
5130 else if (regnum >= ARRAY_SIZE (arm_register_names))
5131 /* These registers are only supported on targets which supply
5132 an XML description. */
df4df182 5133 return builtin_type (gdbarch)->builtin_int0;
032758dc 5134 else
df4df182 5135 return builtin_type (gdbarch)->builtin_uint32;
032758dc
AC
5136}
5137
ff6f572f
DJ
5138/* Map a DWARF register REGNUM onto the appropriate GDB register
5139 number. */
5140
5141static int
d3f73121 5142arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
ff6f572f
DJ
5143{
5144 /* Core integer regs. */
5145 if (reg >= 0 && reg <= 15)
5146 return reg;
5147
5148 /* Legacy FPA encoding. These were once used in a way which
5149 overlapped with VFP register numbering, so their use is
5150 discouraged, but GDB doesn't support the ARM toolchain
5151 which used them for VFP. */
5152 if (reg >= 16 && reg <= 23)
5153 return ARM_F0_REGNUM + reg - 16;
5154
5155 /* New assignments for the FPA registers. */
5156 if (reg >= 96 && reg <= 103)
5157 return ARM_F0_REGNUM + reg - 96;
5158
5159 /* WMMX register assignments. */
5160 if (reg >= 104 && reg <= 111)
5161 return ARM_WCGR0_REGNUM + reg - 104;
5162
5163 if (reg >= 112 && reg <= 127)
5164 return ARM_WR0_REGNUM + reg - 112;
5165
a01567f4
LM
5166 /* PACBTI register containing the Pointer Authentication Code. */
5167 if (reg == ARM_DWARF_RA_AUTH_CODE)
5168 {
08106042 5169 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
a01567f4
LM
5170
5171 if (tdep->have_pacbti)
5172 return tdep->pacbti_pseudo_base;
5173
5174 return -1;
5175 }
5176
ff6f572f
DJ
5177 if (reg >= 192 && reg <= 199)
5178 return ARM_WC0_REGNUM + reg - 192;
5179
58d6951d
DJ
5180 /* VFP v2 registers. A double precision value is actually
5181 in d1 rather than s2, but the ABI only defines numbering
5182 for the single precision registers. This will "just work"
5183 in GDB for little endian targets (we'll read eight bytes,
5184 starting in s0 and then progressing to s1), but will be
5185 reversed on big endian targets with VFP. This won't
5186 be a problem for the new Neon quad registers; you're supposed
5187 to use DW_OP_piece for those. */
5188 if (reg >= 64 && reg <= 95)
5189 {
5190 char name_buf[4];
5191
8c042590 5192 xsnprintf (name_buf, sizeof (name_buf), "s%d", reg - 64);
58d6951d
DJ
5193 return user_reg_map_name_to_regnum (gdbarch, name_buf,
5194 strlen (name_buf));
5195 }
5196
5197 /* VFP v3 / Neon registers. This range is also used for VFP v2
5198 registers, except that it now describes d0 instead of s0. */
5199 if (reg >= 256 && reg <= 287)
5200 {
5201 char name_buf[4];
5202
8c042590 5203 xsnprintf (name_buf, sizeof (name_buf), "d%d", reg - 256);
58d6951d
DJ
5204 return user_reg_map_name_to_regnum (gdbarch, name_buf,
5205 strlen (name_buf));
5206 }
5207
ff6f572f
DJ
5208 return -1;
5209}
5210
26216b98
AC
5211/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
5212static int
e7faf938 5213arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
26216b98
AC
5214{
5215 int reg = regnum;
e7faf938 5216 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
26216b98 5217
ff6f572f
DJ
5218 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
5219 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
5220
5221 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
5222 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
5223
5224 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
5225 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
5226
26216b98
AC
5227 if (reg < NUM_GREGS)
5228 return SIM_ARM_R0_REGNUM + reg;
5229 reg -= NUM_GREGS;
5230
5231 if (reg < NUM_FREGS)
5232 return SIM_ARM_FP0_REGNUM + reg;
5233 reg -= NUM_FREGS;
5234
5235 if (reg < NUM_SREGS)
5236 return SIM_ARM_FPS_REGNUM + reg;
5237 reg -= NUM_SREGS;
5238
f34652de 5239 internal_error (_("Bad REGNUM %d"), regnum);
26216b98 5240}
34e8f22d 5241
a01567f4
LM
5242static const unsigned char op_lit0 = DW_OP_lit0;
5243
5244static void
5245arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
5246 struct dwarf2_frame_state_reg *reg,
bd2b40ac 5247 frame_info_ptr this_frame)
a01567f4 5248{
a6e4a48c
YR
5249 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
5250
a01567f4
LM
5251 if (is_pacbti_pseudo (gdbarch, regnum))
5252 {
5253 /* Initialize RA_AUTH_CODE to zero. */
5254 reg->how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
5255 reg->loc.exp.start = &op_lit0;
5256 reg->loc.exp.len = 1;
5257 return;
5258 }
5259
42e11f36 5260 if (regnum == ARM_PC_REGNUM || regnum == ARM_PS_REGNUM)
a01567f4 5261 {
a01567f4
LM
5262 reg->how = DWARF2_FRAME_REG_FN;
5263 reg->loc.fn = arm_dwarf2_prev_register;
a01567f4 5264 }
42e11f36
TS
5265 else if (regnum == ARM_SP_REGNUM)
5266 reg->how = DWARF2_FRAME_REG_CFA;
a6e4a48c
YR
5267 else if (arm_is_alternative_sp_register (tdep, regnum))
5268 {
5269 /* Handle the alternative SP registers on Cortex-M. */
5270 reg->how = DWARF2_FRAME_REG_FN;
5271 reg->loc.fn = arm_dwarf2_prev_register;
5272 }
a01567f4
LM
5273}
5274
d9311bfa
AT
5275/* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand
5276 the buffer to be NEW_LEN bytes ending at ENDADDR. Return
5277 NULL if an error occurs. BUF is freed. */
c906108c 5278
d9311bfa
AT
5279static gdb_byte *
5280extend_buffer_earlier (gdb_byte *buf, CORE_ADDR endaddr,
5281 int old_len, int new_len)
5282{
5283 gdb_byte *new_buf;
5284 int bytes_to_read = new_len - old_len;
c906108c 5285
d9311bfa
AT
5286 new_buf = (gdb_byte *) xmalloc (new_len);
5287 memcpy (new_buf + bytes_to_read, buf, old_len);
5288 xfree (buf);
198cd59d 5289 if (target_read_code (endaddr - new_len, new_buf, bytes_to_read) != 0)
d9311bfa
AT
5290 {
5291 xfree (new_buf);
5292 return NULL;
c906108c 5293 }
d9311bfa 5294 return new_buf;
c906108c
SS
5295}
5296
d9311bfa
AT
5297/* An IT block is at most the 2-byte IT instruction followed by
5298 four 4-byte instructions. The furthest back we must search to
5299 find an IT block that affects the current instruction is thus
5300 2 + 3 * 4 == 14 bytes. */
5301#define MAX_IT_BLOCK_PREFIX 14
177321bd 5302
d9311bfa
AT
5303/* Use a quick scan if there are more than this many bytes of
5304 code. */
5305#define IT_SCAN_THRESHOLD 32
177321bd 5306
d9311bfa
AT
5307/* Adjust a breakpoint's address to move breakpoints out of IT blocks.
5308 A breakpoint in an IT block may not be hit, depending on the
5309 condition flags. */
ad527d2e 5310static CORE_ADDR
d9311bfa 5311arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
c906108c 5312{
d9311bfa
AT
5313 gdb_byte *buf;
5314 char map_type;
5315 CORE_ADDR boundary, func_start;
5316 int buf_len;
5317 enum bfd_endian order = gdbarch_byte_order_for_code (gdbarch);
5318 int i, any, last_it, last_it_count;
08106042 5319 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
177321bd 5320
d9311bfa 5321 /* If we are using BKPT breakpoints, none of this is necessary. */
345bd07c 5322 if (tdep->thumb2_breakpoint == NULL)
d9311bfa 5323 return bpaddr;
177321bd 5324
d9311bfa
AT
5325 /* ARM mode does not have this problem. */
5326 if (!arm_pc_is_thumb (gdbarch, bpaddr))
5327 return bpaddr;
177321bd 5328
d9311bfa
AT
5329 /* We are setting a breakpoint in Thumb code that could potentially
5330 contain an IT block. The first step is to find how much Thumb
5331 code there is; we do not need to read outside of known Thumb
5332 sequences. */
5333 map_type = arm_find_mapping_symbol (bpaddr, &boundary);
5334 if (map_type == 0)
5335 /* Thumb-2 code must have mapping symbols to have a chance. */
5336 return bpaddr;
9dca5578 5337
d9311bfa 5338 bpaddr = gdbarch_addr_bits_remove (gdbarch, bpaddr);
177321bd 5339
8c3273ee
SM
5340 if (find_pc_partial_function (bpaddr, NULL, &func_start, NULL))
5341 {
5342 func_start = gdbarch_addr_bits_remove (gdbarch, func_start);
5343 if (func_start > boundary)
5344 boundary = func_start;
5345 }
9dca5578 5346
d9311bfa
AT
5347 /* Search for a candidate IT instruction. We have to do some fancy
5348 footwork to distinguish a real IT instruction from the second
5349 half of a 32-bit instruction, but there is no need for that if
5350 there's no candidate. */
325fac50 5351 buf_len = std::min (bpaddr - boundary, (CORE_ADDR) MAX_IT_BLOCK_PREFIX);
d9311bfa
AT
5352 if (buf_len == 0)
5353 /* No room for an IT instruction. */
5354 return bpaddr;
c906108c 5355
d9311bfa 5356 buf = (gdb_byte *) xmalloc (buf_len);
198cd59d 5357 if (target_read_code (bpaddr - buf_len, buf, buf_len) != 0)
d9311bfa
AT
5358 return bpaddr;
5359 any = 0;
5360 for (i = 0; i < buf_len; i += 2)
c906108c 5361 {
d9311bfa
AT
5362 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
5363 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
25b41d01 5364 {
d9311bfa
AT
5365 any = 1;
5366 break;
25b41d01 5367 }
c906108c 5368 }
d9311bfa
AT
5369
5370 if (any == 0)
c906108c 5371 {
d9311bfa
AT
5372 xfree (buf);
5373 return bpaddr;
f9d67f43
DJ
5374 }
5375
5376 /* OK, the code bytes before this instruction contain at least one
5377 halfword which resembles an IT instruction. We know that it's
5378 Thumb code, but there are still two possibilities. Either the
5379 halfword really is an IT instruction, or it is the second half of
5380 a 32-bit Thumb instruction. The only way we can tell is to
5381 scan forwards from a known instruction boundary. */
5382 if (bpaddr - boundary > IT_SCAN_THRESHOLD)
5383 {
5384 int definite;
5385
5386 /* There's a lot of code before this instruction. Start with an
5387 optimistic search; it's easy to recognize halfwords that can
5388 not be the start of a 32-bit instruction, and use that to
5389 lock on to the instruction boundaries. */
5390 buf = extend_buffer_earlier (buf, bpaddr, buf_len, IT_SCAN_THRESHOLD);
5391 if (buf == NULL)
5392 return bpaddr;
5393 buf_len = IT_SCAN_THRESHOLD;
5394
5395 definite = 0;
5396 for (i = 0; i < buf_len - sizeof (buf) && ! definite; i += 2)
5397 {
5398 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
5399 if (thumb_insn_size (inst1) == 2)
5400 {
5401 definite = 1;
5402 break;
5403 }
5404 }
5405
5406 /* At this point, if DEFINITE, BUF[I] is the first place we
5407 are sure that we know the instruction boundaries, and it is far
5408 enough from BPADDR that we could not miss an IT instruction
5409 affecting BPADDR. If ! DEFINITE, give up - start from a
5410 known boundary. */
5411 if (! definite)
5412 {
0963b4bd
MS
5413 buf = extend_buffer_earlier (buf, bpaddr, buf_len,
5414 bpaddr - boundary);
f9d67f43
DJ
5415 if (buf == NULL)
5416 return bpaddr;
5417 buf_len = bpaddr - boundary;
5418 i = 0;
5419 }
5420 }
5421 else
5422 {
5423 buf = extend_buffer_earlier (buf, bpaddr, buf_len, bpaddr - boundary);
5424 if (buf == NULL)
5425 return bpaddr;
5426 buf_len = bpaddr - boundary;
5427 i = 0;
5428 }
5429
5430 /* Scan forwards. Find the last IT instruction before BPADDR. */
5431 last_it = -1;
5432 last_it_count = 0;
5433 while (i < buf_len)
5434 {
5435 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
5436 last_it_count--;
5437 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
5438 {
5439 last_it = i;
5440 if (inst1 & 0x0001)
5441 last_it_count = 4;
5442 else if (inst1 & 0x0002)
5443 last_it_count = 3;
5444 else if (inst1 & 0x0004)
5445 last_it_count = 2;
5446 else
5447 last_it_count = 1;
5448 }
5449 i += thumb_insn_size (inst1);
5450 }
5451
5452 xfree (buf);
5453
5454 if (last_it == -1)
5455 /* There wasn't really an IT instruction after all. */
5456 return bpaddr;
5457
5458 if (last_it_count < 1)
5459 /* It was too far away. */
5460 return bpaddr;
5461
5462 /* This really is a trouble spot. Move the breakpoint to the IT
5463 instruction. */
5464 return bpaddr - buf_len + last_it;
5465}
5466
cca44b1b 5467/* ARM displaced stepping support.
c906108c 5468
cca44b1b 5469 Generally ARM displaced stepping works as follows:
c906108c 5470
cca44b1b 5471 1. When an instruction is to be single-stepped, it is first decoded by
2ba163c8
SM
5472 arm_process_displaced_insn. Depending on the type of instruction, it is
5473 then copied to a scratch location, possibly in a modified form. The
5474 copy_* set of functions performs such modification, as necessary. A
5475 breakpoint is placed after the modified instruction in the scratch space
5476 to return control to GDB. Note in particular that instructions which
5477 modify the PC will no longer do so after modification.
c5aa993b 5478
cca44b1b
JB
5479 2. The instruction is single-stepped, by setting the PC to the scratch
5480 location address, and resuming. Control returns to GDB when the
5481 breakpoint is hit.
c5aa993b 5482
cca44b1b
JB
5483 3. A cleanup function (cleanup_*) is called corresponding to the copy_*
5484 function used for the current instruction. This function's job is to
5485 put the CPU/memory state back to what it would have been if the
5486 instruction had been executed unmodified in its original location. */
c5aa993b 5487
cca44b1b
JB
5488/* NOP instruction (mov r0, r0). */
5489#define ARM_NOP 0xe1a00000
34518530 5490#define THUMB_NOP 0x4600
cca44b1b
JB
5491
5492/* Helper for register reads for displaced stepping. In particular, this
5493 returns the PC as it would be seen by the instruction at its original
5494 location. */
5495
5496ULONGEST
1152d984 5497displaced_read_reg (regcache *regs, arm_displaced_step_copy_insn_closure *dsc,
36073a92 5498 int regno)
cca44b1b
JB
5499{
5500 ULONGEST ret;
36073a92 5501 CORE_ADDR from = dsc->insn_addr;
cca44b1b 5502
bf9f652a 5503 if (regno == ARM_PC_REGNUM)
cca44b1b 5504 {
4db71c0b
YQ
5505 /* Compute pipeline offset:
5506 - When executing an ARM instruction, PC reads as the address of the
5507 current instruction plus 8.
5508 - When executing a Thumb instruction, PC reads as the address of the
5509 current instruction plus 4. */
5510
36073a92 5511 if (!dsc->is_thumb)
4db71c0b
YQ
5512 from += 8;
5513 else
5514 from += 4;
5515
136821d9
SM
5516 displaced_debug_printf ("read pc value %.8lx",
5517 (unsigned long) from);
4db71c0b 5518 return (ULONGEST) from;
cca44b1b 5519 }
c906108c 5520 else
cca44b1b
JB
5521 {
5522 regcache_cooked_read_unsigned (regs, regno, &ret);
136821d9
SM
5523
5524 displaced_debug_printf ("read r%d value %.8lx",
5525 regno, (unsigned long) ret);
5526
cca44b1b
JB
5527 return ret;
5528 }
c906108c
SS
5529}
5530
cca44b1b
JB
5531static int
5532displaced_in_arm_mode (struct regcache *regs)
5533{
5534 ULONGEST ps;
ac7936df 5535 ULONGEST t_bit = arm_psr_thumb_bit (regs->arch ());
66e810cd 5536
cca44b1b 5537 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
66e810cd 5538
9779414d 5539 return (ps & t_bit) == 0;
cca44b1b 5540}
66e810cd 5541
cca44b1b 5542/* Write to the PC as from a branch instruction. */
c906108c 5543
cca44b1b 5544static void
1152d984 5545branch_write_pc (regcache *regs, arm_displaced_step_copy_insn_closure *dsc,
36073a92 5546 ULONGEST val)
c906108c 5547{
36073a92 5548 if (!dsc->is_thumb)
cca44b1b
JB
5549 /* Note: If bits 0/1 are set, this branch would be unpredictable for
5550 architecture versions < 6. */
0963b4bd
MS
5551 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
5552 val & ~(ULONGEST) 0x3);
cca44b1b 5553 else
0963b4bd
MS
5554 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
5555 val & ~(ULONGEST) 0x1);
cca44b1b 5556}
66e810cd 5557
cca44b1b
JB
5558/* Write to the PC as from a branch-exchange instruction. */
5559
5560static void
5561bx_write_pc (struct regcache *regs, ULONGEST val)
5562{
5563 ULONGEST ps;
ac7936df 5564 ULONGEST t_bit = arm_psr_thumb_bit (regs->arch ());
cca44b1b
JB
5565
5566 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
5567
5568 if ((val & 1) == 1)
c906108c 5569 {
9779414d 5570 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps | t_bit);
cca44b1b
JB
5571 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffe);
5572 }
5573 else if ((val & 2) == 0)
5574 {
9779414d 5575 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
cca44b1b 5576 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val);
c906108c
SS
5577 }
5578 else
5579 {
cca44b1b
JB
5580 /* Unpredictable behaviour. Try to do something sensible (switch to ARM
5581 mode, align dest to 4 bytes). */
5582 warning (_("Single-stepping BX to non-word-aligned ARM instruction."));
9779414d 5583 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
cca44b1b 5584 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffc);
c906108c
SS
5585 }
5586}
ed9a39eb 5587
cca44b1b 5588/* Write to the PC as if from a load instruction. */
ed9a39eb 5589
34e8f22d 5590static void
1152d984 5591load_write_pc (regcache *regs, arm_displaced_step_copy_insn_closure *dsc,
36073a92 5592 ULONGEST val)
ed9a39eb 5593{
cca44b1b
JB
5594 if (DISPLACED_STEPPING_ARCH_VERSION >= 5)
5595 bx_write_pc (regs, val);
5596 else
36073a92 5597 branch_write_pc (regs, dsc, val);
cca44b1b 5598}
be8626e0 5599
cca44b1b
JB
5600/* Write to the PC as if from an ALU instruction. */
5601
5602static void
1152d984 5603alu_write_pc (regcache *regs, arm_displaced_step_copy_insn_closure *dsc,
36073a92 5604 ULONGEST val)
cca44b1b 5605{
36073a92 5606 if (DISPLACED_STEPPING_ARCH_VERSION >= 7 && !dsc->is_thumb)
cca44b1b
JB
5607 bx_write_pc (regs, val);
5608 else
36073a92 5609 branch_write_pc (regs, dsc, val);
cca44b1b
JB
5610}
5611
5612/* Helper for writing to registers for displaced stepping. Writing to the PC
5613 has a varying effects depending on the instruction which does the write:
5614 this is controlled by the WRITE_PC argument. */
5615
5616void
1152d984 5617displaced_write_reg (regcache *regs, arm_displaced_step_copy_insn_closure *dsc,
cca44b1b
JB
5618 int regno, ULONGEST val, enum pc_write_style write_pc)
5619{
bf9f652a 5620 if (regno == ARM_PC_REGNUM)
08216dd7 5621 {
136821d9
SM
5622 displaced_debug_printf ("writing pc %.8lx", (unsigned long) val);
5623
cca44b1b 5624 switch (write_pc)
08216dd7 5625 {
cca44b1b 5626 case BRANCH_WRITE_PC:
36073a92 5627 branch_write_pc (regs, dsc, val);
08216dd7
RE
5628 break;
5629
cca44b1b
JB
5630 case BX_WRITE_PC:
5631 bx_write_pc (regs, val);
24b21115 5632 break;
cca44b1b
JB
5633
5634 case LOAD_WRITE_PC:
36073a92 5635 load_write_pc (regs, dsc, val);
24b21115 5636 break;
cca44b1b
JB
5637
5638 case ALU_WRITE_PC:
36073a92 5639 alu_write_pc (regs, dsc, val);
24b21115 5640 break;
cca44b1b
JB
5641
5642 case CANNOT_WRITE_PC:
5643 warning (_("Instruction wrote to PC in an unexpected way when "
5644 "single-stepping"));
08216dd7
RE
5645 break;
5646
5647 default:
f34652de 5648 internal_error (_("Invalid argument to displaced_write_reg"));
08216dd7 5649 }
b508a996 5650
cca44b1b 5651 dsc->wrote_to_pc = 1;
b508a996 5652 }
ed9a39eb 5653 else
b508a996 5654 {
136821d9
SM
5655 displaced_debug_printf ("writing r%d value %.8lx",
5656 regno, (unsigned long) val);
cca44b1b 5657 regcache_cooked_write_unsigned (regs, regno, val);
b508a996 5658 }
34e8f22d
RE
5659}
5660
cca44b1b
JB
5661/* This function is used to concisely determine if an instruction INSN
5662 references PC. Register fields of interest in INSN should have the
0963b4bd
MS
5663 corresponding fields of BITMASK set to 0b1111. The function
5664 returns return 1 if any of these fields in INSN reference the PC
5665 (also 0b1111, r15), else it returns 0. */
67255d04
RE
5666
5667static int
cca44b1b 5668insn_references_pc (uint32_t insn, uint32_t bitmask)
67255d04 5669{
cca44b1b 5670 uint32_t lowbit = 1;
67255d04 5671
cca44b1b
JB
5672 while (bitmask != 0)
5673 {
5674 uint32_t mask;
44e1a9eb 5675
cca44b1b
JB
5676 for (; lowbit && (bitmask & lowbit) == 0; lowbit <<= 1)
5677 ;
67255d04 5678
cca44b1b
JB
5679 if (!lowbit)
5680 break;
67255d04 5681
cca44b1b 5682 mask = lowbit * 0xf;
67255d04 5683
cca44b1b
JB
5684 if ((insn & mask) == mask)
5685 return 1;
5686
5687 bitmask &= ~mask;
67255d04
RE
5688 }
5689
cca44b1b
JB
5690 return 0;
5691}
2af48f68 5692
cca44b1b
JB
5693/* The simplest copy function. Many instructions have the same effect no
5694 matter what address they are executed at: in those cases, use this. */
67255d04 5695
cca44b1b 5696static int
1152d984
SM
5697arm_copy_unmodified (struct gdbarch *gdbarch, uint32_t insn, const char *iname,
5698 arm_displaced_step_copy_insn_closure *dsc)
cca44b1b 5699{
136821d9
SM
5700 displaced_debug_printf ("copying insn %.8lx, opcode/class '%s' unmodified",
5701 (unsigned long) insn, iname);
67255d04 5702
cca44b1b 5703 dsc->modinsn[0] = insn;
67255d04 5704
cca44b1b
JB
5705 return 0;
5706}
5707
34518530
YQ
5708static int
5709thumb_copy_unmodified_32bit (struct gdbarch *gdbarch, uint16_t insn1,
5710 uint16_t insn2, const char *iname,
1152d984 5711 arm_displaced_step_copy_insn_closure *dsc)
34518530 5712{
136821d9
SM
5713 displaced_debug_printf ("copying insn %.4x %.4x, opcode/class '%s' "
5714 "unmodified", insn1, insn2, iname);
34518530
YQ
5715
5716 dsc->modinsn[0] = insn1;
5717 dsc->modinsn[1] = insn2;
5718 dsc->numinsns = 2;
5719
5720 return 0;
5721}
5722
5723/* Copy 16-bit Thumb(Thumb and 16-bit Thumb-2) instruction without any
5724 modification. */
5725static int
615234c1 5726thumb_copy_unmodified_16bit (struct gdbarch *gdbarch, uint16_t insn,
34518530 5727 const char *iname,
1152d984 5728 arm_displaced_step_copy_insn_closure *dsc)
34518530 5729{
136821d9
SM
5730 displaced_debug_printf ("copying insn %.4x, opcode/class '%s' unmodified",
5731 insn, iname);
34518530
YQ
5732
5733 dsc->modinsn[0] = insn;
5734
5735 return 0;
5736}
5737
cca44b1b
JB
5738/* Preload instructions with immediate offset. */
5739
5740static void
1152d984
SM
5741cleanup_preload (struct gdbarch *gdbarch, regcache *regs,
5742 arm_displaced_step_copy_insn_closure *dsc)
cca44b1b
JB
5743{
5744 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5745 if (!dsc->u.preload.immed)
5746 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5747}
5748
7ff120b4
YQ
5749static void
5750install_preload (struct gdbarch *gdbarch, struct regcache *regs,
1152d984 5751 arm_displaced_step_copy_insn_closure *dsc, unsigned int rn)
cca44b1b 5752{
cca44b1b 5753 ULONGEST rn_val;
cca44b1b
JB
5754 /* Preload instructions:
5755
5756 {pli/pld} [rn, #+/-imm]
5757 ->
5758 {pli/pld} [r0, #+/-imm]. */
5759
36073a92
YQ
5760 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5761 rn_val = displaced_read_reg (regs, dsc, rn);
cca44b1b 5762 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
cca44b1b
JB
5763 dsc->u.preload.immed = 1;
5764
cca44b1b 5765 dsc->cleanup = &cleanup_preload;
cca44b1b
JB
5766}
5767
cca44b1b 5768static int
7ff120b4 5769arm_copy_preload (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
1152d984 5770 arm_displaced_step_copy_insn_closure *dsc)
cca44b1b
JB
5771{
5772 unsigned int rn = bits (insn, 16, 19);
cca44b1b 5773
7ff120b4
YQ
5774 if (!insn_references_pc (insn, 0x000f0000ul))
5775 return arm_copy_unmodified (gdbarch, insn, "preload", dsc);
cca44b1b 5776
136821d9 5777 displaced_debug_printf ("copying preload insn %.8lx", (unsigned long) insn);
cca44b1b 5778
7ff120b4
YQ
5779 dsc->modinsn[0] = insn & 0xfff0ffff;
5780
5781 install_preload (gdbarch, regs, dsc, rn);
5782
5783 return 0;
5784}
5785
34518530
YQ
5786static int
5787thumb2_copy_preload (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
1152d984 5788 regcache *regs, arm_displaced_step_copy_insn_closure *dsc)
34518530
YQ
5789{
5790 unsigned int rn = bits (insn1, 0, 3);
5791 unsigned int u_bit = bit (insn1, 7);
5792 int imm12 = bits (insn2, 0, 11);
5793 ULONGEST pc_val;
5794
5795 if (rn != ARM_PC_REGNUM)
5796 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "preload", dsc);
5797
5798 /* PC is only allowed to use in PLI (immediate,literal) Encoding T3, and
5799 PLD (literal) Encoding T1. */
136821d9
SM
5800 displaced_debug_printf ("copying pld/pli pc (0x%x) %c imm12 %.4x",
5801 (unsigned int) dsc->insn_addr, u_bit ? '+' : '-',
5802 imm12);
34518530
YQ
5803
5804 if (!u_bit)
5805 imm12 = -1 * imm12;
5806
5807 /* Rewrite instruction {pli/pld} PC imm12 into:
5808 Prepare: tmp[0] <- r0, tmp[1] <- r1, r0 <- pc, r1 <- imm12
5809
5810 {pli/pld} [r0, r1]
5811
5812 Cleanup: r0 <- tmp[0], r1 <- tmp[1]. */
5813
5814 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5815 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5816
5817 pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
5818
5819 displaced_write_reg (regs, dsc, 0, pc_val, CANNOT_WRITE_PC);
5820 displaced_write_reg (regs, dsc, 1, imm12, CANNOT_WRITE_PC);
5821 dsc->u.preload.immed = 0;
5822
5823 /* {pli/pld} [r0, r1] */
5824 dsc->modinsn[0] = insn1 & 0xfff0;
5825 dsc->modinsn[1] = 0xf001;
5826 dsc->numinsns = 2;
5827
5828 dsc->cleanup = &cleanup_preload;
5829 return 0;
5830}
5831
7ff120b4
YQ
5832/* Preload instructions with register offset. */
5833
5834static void
5835install_preload_reg(struct gdbarch *gdbarch, struct regcache *regs,
1152d984 5836 arm_displaced_step_copy_insn_closure *dsc, unsigned int rn,
7ff120b4
YQ
5837 unsigned int rm)
5838{
5839 ULONGEST rn_val, rm_val;
5840
cca44b1b
JB
5841 /* Preload register-offset instructions:
5842
5843 {pli/pld} [rn, rm {, shift}]
5844 ->
5845 {pli/pld} [r0, r1 {, shift}]. */
5846
36073a92
YQ
5847 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5848 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5849 rn_val = displaced_read_reg (regs, dsc, rn);
5850 rm_val = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
5851 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
5852 displaced_write_reg (regs, dsc, 1, rm_val, CANNOT_WRITE_PC);
cca44b1b
JB
5853 dsc->u.preload.immed = 0;
5854
cca44b1b 5855 dsc->cleanup = &cleanup_preload;
7ff120b4
YQ
5856}
5857
5858static int
5859arm_copy_preload_reg (struct gdbarch *gdbarch, uint32_t insn,
5860 struct regcache *regs,
1152d984 5861 arm_displaced_step_copy_insn_closure *dsc)
7ff120b4
YQ
5862{
5863 unsigned int rn = bits (insn, 16, 19);
5864 unsigned int rm = bits (insn, 0, 3);
5865
5866
5867 if (!insn_references_pc (insn, 0x000f000ful))
5868 return arm_copy_unmodified (gdbarch, insn, "preload reg", dsc);
5869
136821d9
SM
5870 displaced_debug_printf ("copying preload insn %.8lx",
5871 (unsigned long) insn);
7ff120b4
YQ
5872
5873 dsc->modinsn[0] = (insn & 0xfff0fff0) | 0x1;
cca44b1b 5874
7ff120b4 5875 install_preload_reg (gdbarch, regs, dsc, rn, rm);
cca44b1b
JB
5876 return 0;
5877}
5878
5879/* Copy/cleanup coprocessor load and store instructions. */
5880
5881static void
6e39997a 5882cleanup_copro_load_store (struct gdbarch *gdbarch,
cca44b1b 5883 struct regcache *regs,
1152d984 5884 arm_displaced_step_copy_insn_closure *dsc)
cca44b1b 5885{
36073a92 5886 ULONGEST rn_val = displaced_read_reg (regs, dsc, 0);
cca44b1b
JB
5887
5888 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5889
5890 if (dsc->u.ldst.writeback)
5891 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, LOAD_WRITE_PC);
5892}
5893
7ff120b4
YQ
5894static void
5895install_copro_load_store (struct gdbarch *gdbarch, struct regcache *regs,
1152d984 5896 arm_displaced_step_copy_insn_closure *dsc,
7ff120b4 5897 int writeback, unsigned int rn)
cca44b1b 5898{
cca44b1b 5899 ULONGEST rn_val;
cca44b1b 5900
cca44b1b
JB
5901 /* Coprocessor load/store instructions:
5902
5903 {stc/stc2} [<Rn>, #+/-imm] (and other immediate addressing modes)
5904 ->
5905 {stc/stc2} [r0, #+/-imm].
5906
5907 ldc/ldc2 are handled identically. */
5908
36073a92
YQ
5909 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5910 rn_val = displaced_read_reg (regs, dsc, rn);
2b16b2e3
YQ
5911 /* PC should be 4-byte aligned. */
5912 rn_val = rn_val & 0xfffffffc;
cca44b1b
JB
5913 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
5914
7ff120b4 5915 dsc->u.ldst.writeback = writeback;
cca44b1b
JB
5916 dsc->u.ldst.rn = rn;
5917
7ff120b4
YQ
5918 dsc->cleanup = &cleanup_copro_load_store;
5919}
5920
5921static int
5922arm_copy_copro_load_store (struct gdbarch *gdbarch, uint32_t insn,
5923 struct regcache *regs,
1152d984 5924 arm_displaced_step_copy_insn_closure *dsc)
7ff120b4
YQ
5925{
5926 unsigned int rn = bits (insn, 16, 19);
5927
5928 if (!insn_references_pc (insn, 0x000f0000ul))
5929 return arm_copy_unmodified (gdbarch, insn, "copro load/store", dsc);
5930
136821d9
SM
5931 displaced_debug_printf ("copying coprocessor load/store insn %.8lx",
5932 (unsigned long) insn);
7ff120b4 5933
cca44b1b
JB
5934 dsc->modinsn[0] = insn & 0xfff0ffff;
5935
7ff120b4 5936 install_copro_load_store (gdbarch, regs, dsc, bit (insn, 25), rn);
cca44b1b
JB
5937
5938 return 0;
5939}
5940
34518530
YQ
5941static int
5942thumb2_copy_copro_load_store (struct gdbarch *gdbarch, uint16_t insn1,
5943 uint16_t insn2, struct regcache *regs,
1152d984 5944 arm_displaced_step_copy_insn_closure *dsc)
34518530
YQ
5945{
5946 unsigned int rn = bits (insn1, 0, 3);
5947
5948 if (rn != ARM_PC_REGNUM)
5949 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
5950 "copro load/store", dsc);
5951
136821d9
SM
5952 displaced_debug_printf ("copying coprocessor load/store insn %.4x%.4x",
5953 insn1, insn2);
34518530
YQ
5954
5955 dsc->modinsn[0] = insn1 & 0xfff0;
5956 dsc->modinsn[1] = insn2;
5957 dsc->numinsns = 2;
5958
5959 /* This function is called for copying instruction LDC/LDC2/VLDR, which
5960 doesn't support writeback, so pass 0. */
5961 install_copro_load_store (gdbarch, regs, dsc, 0, rn);
5962
5963 return 0;
5964}
5965
cca44b1b
JB
5966/* Clean up branch instructions (actually perform the branch, by setting
5967 PC). */
5968
5969static void
6e39997a 5970cleanup_branch (struct gdbarch *gdbarch, struct regcache *regs,
1152d984 5971 arm_displaced_step_copy_insn_closure *dsc)
cca44b1b 5972{
36073a92 5973 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
cca44b1b
JB
5974 int branch_taken = condition_true (dsc->u.branch.cond, status);
5975 enum pc_write_style write_pc = dsc->u.branch.exchange
5976 ? BX_WRITE_PC : BRANCH_WRITE_PC;
5977
5978 if (!branch_taken)
5979 return;
5980
5981 if (dsc->u.branch.link)
5982 {
8c8dba6d 5983 /* The value of LR should be the next insn of current one. In order
85102364 5984 not to confuse logic handling later insn `bx lr', if current insn mode
8c8dba6d
YQ
5985 is Thumb, the bit 0 of LR value should be set to 1. */
5986 ULONGEST next_insn_addr = dsc->insn_addr + dsc->insn_size;
5987
5988 if (dsc->is_thumb)
5989 next_insn_addr |= 0x1;
5990
5991 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, next_insn_addr,
5992 CANNOT_WRITE_PC);
cca44b1b
JB
5993 }
5994
bf9f652a 5995 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->u.branch.dest, write_pc);
cca44b1b
JB
5996}
5997
5998/* Copy B/BL/BLX instructions with immediate destinations. */
5999
7ff120b4
YQ
6000static void
6001install_b_bl_blx (struct gdbarch *gdbarch, struct regcache *regs,
1152d984 6002 arm_displaced_step_copy_insn_closure *dsc,
7ff120b4
YQ
6003 unsigned int cond, int exchange, int link, long offset)
6004{
6005 /* Implement "BL<cond> <label>" as:
6006
6007 Preparation: cond <- instruction condition
6008 Insn: mov r0, r0 (nop)
6009 Cleanup: if (condition true) { r14 <- pc; pc <- label }.
6010
6011 B<cond> similar, but don't set r14 in cleanup. */
6012
6013 dsc->u.branch.cond = cond;
6014 dsc->u.branch.link = link;
6015 dsc->u.branch.exchange = exchange;
6016
2b16b2e3
YQ
6017 dsc->u.branch.dest = dsc->insn_addr;
6018 if (link && exchange)
6019 /* For BLX, offset is computed from the Align (PC, 4). */
6020 dsc->u.branch.dest = dsc->u.branch.dest & 0xfffffffc;
6021
7ff120b4 6022 if (dsc->is_thumb)
2b16b2e3 6023 dsc->u.branch.dest += 4 + offset;
7ff120b4 6024 else
2b16b2e3 6025 dsc->u.branch.dest += 8 + offset;
7ff120b4
YQ
6026
6027 dsc->cleanup = &cleanup_branch;
6028}
cca44b1b 6029static int
7ff120b4 6030arm_copy_b_bl_blx (struct gdbarch *gdbarch, uint32_t insn,
1152d984 6031 regcache *regs, arm_displaced_step_copy_insn_closure *dsc)
cca44b1b
JB
6032{
6033 unsigned int cond = bits (insn, 28, 31);
6034 int exchange = (cond == 0xf);
6035 int link = exchange || bit (insn, 24);
cca44b1b
JB
6036 long offset;
6037
136821d9
SM
6038 displaced_debug_printf ("copying %s immediate insn %.8lx",
6039 (exchange) ? "blx" : (link) ? "bl" : "b",
6040 (unsigned long) insn);
cca44b1b
JB
6041 if (exchange)
6042 /* For BLX, set bit 0 of the destination. The cleanup_branch function will
6043 then arrange the switch into Thumb mode. */
6044 offset = (bits (insn, 0, 23) << 2) | (bit (insn, 24) << 1) | 1;
6045 else
6046 offset = bits (insn, 0, 23) << 2;
6047
6048 if (bit (offset, 25))
6049 offset = offset | ~0x3ffffff;
6050
cca44b1b
JB
6051 dsc->modinsn[0] = ARM_NOP;
6052
7ff120b4 6053 install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
cca44b1b
JB
6054 return 0;
6055}
6056
34518530
YQ
6057static int
6058thumb2_copy_b_bl_blx (struct gdbarch *gdbarch, uint16_t insn1,
6059 uint16_t insn2, struct regcache *regs,
1152d984 6060 arm_displaced_step_copy_insn_closure *dsc)
34518530
YQ
6061{
6062 int link = bit (insn2, 14);
6063 int exchange = link && !bit (insn2, 12);
6064 int cond = INST_AL;
6065 long offset = 0;
6066 int j1 = bit (insn2, 13);
6067 int j2 = bit (insn2, 11);
6068 int s = sbits (insn1, 10, 10);
6069 int i1 = !(j1 ^ bit (insn1, 10));
6070 int i2 = !(j2 ^ bit (insn1, 10));
6071
6072 if (!link && !exchange) /* B */
6073 {
6074 offset = (bits (insn2, 0, 10) << 1);
6075 if (bit (insn2, 12)) /* Encoding T4 */
6076 {
6077 offset |= (bits (insn1, 0, 9) << 12)
6078 | (i2 << 22)
6079 | (i1 << 23)
6080 | (s << 24);
6081 cond = INST_AL;
6082 }
6083 else /* Encoding T3 */
6084 {
6085 offset |= (bits (insn1, 0, 5) << 12)
6086 | (j1 << 18)
6087 | (j2 << 19)
6088 | (s << 20);
6089 cond = bits (insn1, 6, 9);
6090 }
6091 }
6092 else
6093 {
6094 offset = (bits (insn1, 0, 9) << 12);
6095 offset |= ((i2 << 22) | (i1 << 23) | (s << 24));
6096 offset |= exchange ?
6097 (bits (insn2, 1, 10) << 2) : (bits (insn2, 0, 10) << 1);
6098 }
6099
136821d9
SM
6100 displaced_debug_printf ("copying %s insn %.4x %.4x with offset %.8lx",
6101 link ? (exchange) ? "blx" : "bl" : "b",
6102 insn1, insn2, offset);
34518530
YQ
6103
6104 dsc->modinsn[0] = THUMB_NOP;
6105
6106 install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
6107 return 0;
6108}
6109
6110/* Copy B Thumb instructions. */
6111static int
615234c1 6112thumb_copy_b (struct gdbarch *gdbarch, uint16_t insn,
1152d984 6113 arm_displaced_step_copy_insn_closure *dsc)
34518530
YQ
6114{
6115 unsigned int cond = 0;
6116 int offset = 0;
6117 unsigned short bit_12_15 = bits (insn, 12, 15);
6118 CORE_ADDR from = dsc->insn_addr;
6119
6120 if (bit_12_15 == 0xd)
6121 {
6122 /* offset = SignExtend (imm8:0, 32) */
6123 offset = sbits ((insn << 1), 0, 8);
6124 cond = bits (insn, 8, 11);
6125 }
6126 else if (bit_12_15 == 0xe) /* Encoding T2 */
6127 {
6128 offset = sbits ((insn << 1), 0, 11);
6129 cond = INST_AL;
6130 }
6131
136821d9
SM
6132 displaced_debug_printf ("copying b immediate insn %.4x with offset %d",
6133 insn, offset);
34518530
YQ
6134
6135 dsc->u.branch.cond = cond;
6136 dsc->u.branch.link = 0;
6137 dsc->u.branch.exchange = 0;
6138 dsc->u.branch.dest = from + 4 + offset;
6139
6140 dsc->modinsn[0] = THUMB_NOP;
6141
6142 dsc->cleanup = &cleanup_branch;
6143
6144 return 0;
6145}
6146
cca44b1b
JB
6147/* Copy BX/BLX with register-specified destinations. */
6148
7ff120b4
YQ
6149static void
6150install_bx_blx_reg (struct gdbarch *gdbarch, struct regcache *regs,
1152d984 6151 arm_displaced_step_copy_insn_closure *dsc, int link,
7ff120b4 6152 unsigned int cond, unsigned int rm)
cca44b1b 6153{
cca44b1b
JB
6154 /* Implement {BX,BLX}<cond> <reg>" as:
6155
6156 Preparation: cond <- instruction condition
6157 Insn: mov r0, r0 (nop)
6158 Cleanup: if (condition true) { r14 <- pc; pc <- dest; }.
6159
6160 Don't set r14 in cleanup for BX. */
6161
36073a92 6162 dsc->u.branch.dest = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
6163
6164 dsc->u.branch.cond = cond;
6165 dsc->u.branch.link = link;
cca44b1b 6166
7ff120b4 6167 dsc->u.branch.exchange = 1;
cca44b1b
JB
6168
6169 dsc->cleanup = &cleanup_branch;
7ff120b4 6170}
cca44b1b 6171
7ff120b4
YQ
6172static int
6173arm_copy_bx_blx_reg (struct gdbarch *gdbarch, uint32_t insn,
1152d984 6174 regcache *regs, arm_displaced_step_copy_insn_closure *dsc)
7ff120b4
YQ
6175{
6176 unsigned int cond = bits (insn, 28, 31);
6177 /* BX: x12xxx1x
6178 BLX: x12xxx3x. */
6179 int link = bit (insn, 5);
6180 unsigned int rm = bits (insn, 0, 3);
6181
136821d9 6182 displaced_debug_printf ("copying insn %.8lx", (unsigned long) insn);
7ff120b4
YQ
6183
6184 dsc->modinsn[0] = ARM_NOP;
6185
6186 install_bx_blx_reg (gdbarch, regs, dsc, link, cond, rm);
cca44b1b
JB
6187 return 0;
6188}
6189
34518530
YQ
6190static int
6191thumb_copy_bx_blx_reg (struct gdbarch *gdbarch, uint16_t insn,
6192 struct regcache *regs,
1152d984 6193 arm_displaced_step_copy_insn_closure *dsc)
34518530
YQ
6194{
6195 int link = bit (insn, 7);
6196 unsigned int rm = bits (insn, 3, 6);
6197
136821d9 6198 displaced_debug_printf ("copying insn %.4x", (unsigned short) insn);
34518530
YQ
6199
6200 dsc->modinsn[0] = THUMB_NOP;
6201
6202 install_bx_blx_reg (gdbarch, regs, dsc, link, INST_AL, rm);
6203
6204 return 0;
6205}
6206
6207
0963b4bd 6208/* Copy/cleanup arithmetic/logic instruction with immediate RHS. */
cca44b1b
JB
6209
6210static void
6e39997a 6211cleanup_alu_imm (struct gdbarch *gdbarch,
1152d984 6212 regcache *regs, arm_displaced_step_copy_insn_closure *dsc)
cca44b1b 6213{
36073a92 6214 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
cca44b1b
JB
6215 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
6216 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
6217 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
6218}
6219
6220static int
7ff120b4 6221arm_copy_alu_imm (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
1152d984 6222 arm_displaced_step_copy_insn_closure *dsc)
cca44b1b
JB
6223{
6224 unsigned int rn = bits (insn, 16, 19);
6225 unsigned int rd = bits (insn, 12, 15);
6226 unsigned int op = bits (insn, 21, 24);
6227 int is_mov = (op == 0xd);
6228 ULONGEST rd_val, rn_val;
cca44b1b
JB
6229
6230 if (!insn_references_pc (insn, 0x000ff000ul))
7ff120b4 6231 return arm_copy_unmodified (gdbarch, insn, "ALU immediate", dsc);
cca44b1b 6232
136821d9
SM
6233 displaced_debug_printf ("copying immediate %s insn %.8lx",
6234 is_mov ? "move" : "ALU",
6235 (unsigned long) insn);
cca44b1b
JB
6236
6237 /* Instruction is of form:
6238
6239 <op><cond> rd, [rn,] #imm
6240
6241 Rewrite as:
6242
6243 Preparation: tmp1, tmp2 <- r0, r1;
6244 r0, r1 <- rd, rn
6245 Insn: <op><cond> r0, r1, #imm
6246 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
6247 */
6248
36073a92
YQ
6249 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
6250 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
6251 rn_val = displaced_read_reg (regs, dsc, rn);
6252 rd_val = displaced_read_reg (regs, dsc, rd);
cca44b1b
JB
6253 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
6254 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
6255 dsc->rd = rd;
6256
6257 if (is_mov)
6258 dsc->modinsn[0] = insn & 0xfff00fff;
6259 else
6260 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x10000;
6261
6262 dsc->cleanup = &cleanup_alu_imm;
6263
6264 return 0;
6265}
6266
34518530
YQ
6267static int
6268thumb2_copy_alu_imm (struct gdbarch *gdbarch, uint16_t insn1,
6269 uint16_t insn2, struct regcache *regs,
1152d984 6270 arm_displaced_step_copy_insn_closure *dsc)
34518530
YQ
6271{
6272 unsigned int op = bits (insn1, 5, 8);
6273 unsigned int rn, rm, rd;
6274 ULONGEST rd_val, rn_val;
6275
6276 rn = bits (insn1, 0, 3); /* Rn */
6277 rm = bits (insn2, 0, 3); /* Rm */
6278 rd = bits (insn2, 8, 11); /* Rd */
6279
6280 /* This routine is only called for instruction MOV. */
6281 gdb_assert (op == 0x2 && rn == 0xf);
6282
6283 if (rm != ARM_PC_REGNUM && rd != ARM_PC_REGNUM)
6284 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ALU imm", dsc);
6285
136821d9 6286 displaced_debug_printf ("copying reg %s insn %.4x%.4x", "ALU", insn1, insn2);
34518530
YQ
6287
6288 /* Instruction is of form:
6289
6290 <op><cond> rd, [rn,] #imm
6291
6292 Rewrite as:
6293
6294 Preparation: tmp1, tmp2 <- r0, r1;
6295 r0, r1 <- rd, rn
6296 Insn: <op><cond> r0, r1, #imm
6297 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
6298 */
6299
6300 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
6301 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
6302 rn_val = displaced_read_reg (regs, dsc, rn);
6303 rd_val = displaced_read_reg (regs, dsc, rd);
6304 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
6305 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
6306 dsc->rd = rd;
6307
6308 dsc->modinsn[0] = insn1;
6309 dsc->modinsn[1] = ((insn2 & 0xf0f0) | 0x1);
6310 dsc->numinsns = 2;
6311
6312 dsc->cleanup = &cleanup_alu_imm;
6313
6314 return 0;
6315}
6316
cca44b1b
JB
6317/* Copy/cleanup arithmetic/logic insns with register RHS. */
6318
6319static void
6e39997a 6320cleanup_alu_reg (struct gdbarch *gdbarch,
1152d984 6321 regcache *regs, arm_displaced_step_copy_insn_closure *dsc)
cca44b1b
JB
6322{
6323 ULONGEST rd_val;
6324 int i;
6325
36073a92 6326 rd_val = displaced_read_reg (regs, dsc, 0);
cca44b1b
JB
6327
6328 for (i = 0; i < 3; i++)
6329 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
6330
6331 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
6332}
6333
7ff120b4
YQ
6334static void
6335install_alu_reg (struct gdbarch *gdbarch, struct regcache *regs,
1152d984 6336 arm_displaced_step_copy_insn_closure *dsc,
7ff120b4 6337 unsigned int rd, unsigned int rn, unsigned int rm)
cca44b1b 6338{
cca44b1b 6339 ULONGEST rd_val, rn_val, rm_val;
cca44b1b 6340
cca44b1b
JB
6341 /* Instruction is of form:
6342
6343 <op><cond> rd, [rn,] rm [, <shift>]
6344
6345 Rewrite as:
6346
6347 Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2;
6348 r0, r1, r2 <- rd, rn, rm
ef713951 6349 Insn: <op><cond> r0, [r1,] r2 [, <shift>]
cca44b1b
JB
6350 Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3
6351 */
6352
36073a92
YQ
6353 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
6354 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
6355 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
6356 rd_val = displaced_read_reg (regs, dsc, rd);
6357 rn_val = displaced_read_reg (regs, dsc, rn);
6358 rm_val = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
6359 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
6360 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
6361 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
6362 dsc->rd = rd;
6363
7ff120b4
YQ
6364 dsc->cleanup = &cleanup_alu_reg;
6365}
6366
6367static int
6368arm_copy_alu_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
1152d984 6369 arm_displaced_step_copy_insn_closure *dsc)
7ff120b4
YQ
6370{
6371 unsigned int op = bits (insn, 21, 24);
6372 int is_mov = (op == 0xd);
6373
6374 if (!insn_references_pc (insn, 0x000ff00ful))
6375 return arm_copy_unmodified (gdbarch, insn, "ALU reg", dsc);
6376
136821d9
SM
6377 displaced_debug_printf ("copying reg %s insn %.8lx",
6378 is_mov ? "move" : "ALU", (unsigned long) insn);
7ff120b4 6379
cca44b1b
JB
6380 if (is_mov)
6381 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x2;
6382 else
6383 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x10002;
6384
7ff120b4
YQ
6385 install_alu_reg (gdbarch, regs, dsc, bits (insn, 12, 15), bits (insn, 16, 19),
6386 bits (insn, 0, 3));
cca44b1b
JB
6387 return 0;
6388}
6389
34518530
YQ
6390static int
6391thumb_copy_alu_reg (struct gdbarch *gdbarch, uint16_t insn,
6392 struct regcache *regs,
1152d984 6393 arm_displaced_step_copy_insn_closure *dsc)
34518530 6394{
ef713951 6395 unsigned rm, rd;
34518530 6396
ef713951
YQ
6397 rm = bits (insn, 3, 6);
6398 rd = (bit (insn, 7) << 3) | bits (insn, 0, 2);
34518530 6399
ef713951 6400 if (rd != ARM_PC_REGNUM && rm != ARM_PC_REGNUM)
34518530
YQ
6401 return thumb_copy_unmodified_16bit (gdbarch, insn, "ALU reg", dsc);
6402
136821d9 6403 displaced_debug_printf ("copying ALU reg insn %.4x", (unsigned short) insn);
34518530 6404
ef713951 6405 dsc->modinsn[0] = ((insn & 0xff00) | 0x10);
34518530 6406
ef713951 6407 install_alu_reg (gdbarch, regs, dsc, rd, rd, rm);
34518530
YQ
6408
6409 return 0;
6410}
6411
cca44b1b
JB
6412/* Cleanup/copy arithmetic/logic insns with shifted register RHS. */
6413
6414static void
6e39997a 6415cleanup_alu_shifted_reg (struct gdbarch *gdbarch,
cca44b1b 6416 struct regcache *regs,
1152d984 6417 arm_displaced_step_copy_insn_closure *dsc)
cca44b1b 6418{
36073a92 6419 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
cca44b1b
JB
6420 int i;
6421
6422 for (i = 0; i < 4; i++)
6423 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
6424
6425 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
6426}
6427
7ff120b4
YQ
6428static void
6429install_alu_shifted_reg (struct gdbarch *gdbarch, struct regcache *regs,
1152d984 6430 arm_displaced_step_copy_insn_closure *dsc,
7ff120b4
YQ
6431 unsigned int rd, unsigned int rn, unsigned int rm,
6432 unsigned rs)
cca44b1b 6433{
7ff120b4 6434 int i;
cca44b1b 6435 ULONGEST rd_val, rn_val, rm_val, rs_val;
cca44b1b 6436
cca44b1b
JB
6437 /* Instruction is of form:
6438
6439 <op><cond> rd, [rn,] rm, <shift> rs
6440
6441 Rewrite as:
6442
6443 Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3
6444 r0, r1, r2, r3 <- rd, rn, rm, rs
6445 Insn: <op><cond> r0, r1, r2, <shift> r3
6446 Cleanup: tmp5 <- r0
6447 r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4
6448 rd <- tmp5
6449 */
6450
6451 for (i = 0; i < 4; i++)
36073a92 6452 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
cca44b1b 6453
36073a92
YQ
6454 rd_val = displaced_read_reg (regs, dsc, rd);
6455 rn_val = displaced_read_reg (regs, dsc, rn);
6456 rm_val = displaced_read_reg (regs, dsc, rm);
6457 rs_val = displaced_read_reg (regs, dsc, rs);
cca44b1b
JB
6458 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
6459 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
6460 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
6461 displaced_write_reg (regs, dsc, 3, rs_val, CANNOT_WRITE_PC);
6462 dsc->rd = rd;
7ff120b4
YQ
6463 dsc->cleanup = &cleanup_alu_shifted_reg;
6464}
6465
6466static int
6467arm_copy_alu_shifted_reg (struct gdbarch *gdbarch, uint32_t insn,
6468 struct regcache *regs,
1152d984 6469 arm_displaced_step_copy_insn_closure *dsc)
7ff120b4
YQ
6470{
6471 unsigned int op = bits (insn, 21, 24);
6472 int is_mov = (op == 0xd);
6473 unsigned int rd, rn, rm, rs;
6474
6475 if (!insn_references_pc (insn, 0x000fff0ful))
6476 return arm_copy_unmodified (gdbarch, insn, "ALU shifted reg", dsc);
6477
136821d9
SM
6478 displaced_debug_printf ("copying shifted reg %s insn %.8lx",
6479 is_mov ? "move" : "ALU",
6480 (unsigned long) insn);
7ff120b4
YQ
6481
6482 rn = bits (insn, 16, 19);
6483 rm = bits (insn, 0, 3);
6484 rs = bits (insn, 8, 11);
6485 rd = bits (insn, 12, 15);
cca44b1b
JB
6486
6487 if (is_mov)
6488 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x302;
6489 else
6490 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x10302;
6491
7ff120b4 6492 install_alu_shifted_reg (gdbarch, regs, dsc, rd, rn, rm, rs);
cca44b1b
JB
6493
6494 return 0;
6495}
6496
6497/* Clean up load instructions. */
6498
6499static void
6e39997a 6500cleanup_load (struct gdbarch *gdbarch, struct regcache *regs,
1152d984 6501 arm_displaced_step_copy_insn_closure *dsc)
cca44b1b
JB
6502{
6503 ULONGEST rt_val, rt_val2 = 0, rn_val;
cca44b1b 6504
36073a92 6505 rt_val = displaced_read_reg (regs, dsc, 0);
cca44b1b 6506 if (dsc->u.ldst.xfersize == 8)
36073a92
YQ
6507 rt_val2 = displaced_read_reg (regs, dsc, 1);
6508 rn_val = displaced_read_reg (regs, dsc, 2);
cca44b1b
JB
6509
6510 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
6511 if (dsc->u.ldst.xfersize > 4)
6512 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
6513 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
6514 if (!dsc->u.ldst.immed)
6515 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
6516
6517 /* Handle register writeback. */
6518 if (dsc->u.ldst.writeback)
6519 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
6520 /* Put result in right place. */
6521 displaced_write_reg (regs, dsc, dsc->rd, rt_val, LOAD_WRITE_PC);
6522 if (dsc->u.ldst.xfersize == 8)
6523 displaced_write_reg (regs, dsc, dsc->rd + 1, rt_val2, LOAD_WRITE_PC);
6524}
6525
6526/* Clean up store instructions. */
6527
6528static void
6e39997a 6529cleanup_store (struct gdbarch *gdbarch, struct regcache *regs,
1152d984 6530 arm_displaced_step_copy_insn_closure *dsc)
cca44b1b 6531{
36073a92 6532 ULONGEST rn_val = displaced_read_reg (regs, dsc, 2);
cca44b1b
JB
6533
6534 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
6535 if (dsc->u.ldst.xfersize > 4)
6536 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
6537 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
6538 if (!dsc->u.ldst.immed)
6539 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
6540 if (!dsc->u.ldst.restore_r4)
6541 displaced_write_reg (regs, dsc, 4, dsc->tmp[4], CANNOT_WRITE_PC);
6542
6543 /* Writeback. */
6544 if (dsc->u.ldst.writeback)
6545 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
6546}
6547
6548/* Copy "extra" load/store instructions. These are halfword/doubleword
6549 transfers, which have a different encoding to byte/word transfers. */
6550
6551static int
550dc4e2 6552arm_copy_extra_ld_st (struct gdbarch *gdbarch, uint32_t insn, int unprivileged,
1152d984 6553 regcache *regs, arm_displaced_step_copy_insn_closure *dsc)
cca44b1b
JB
6554{
6555 unsigned int op1 = bits (insn, 20, 24);
6556 unsigned int op2 = bits (insn, 5, 6);
6557 unsigned int rt = bits (insn, 12, 15);
6558 unsigned int rn = bits (insn, 16, 19);
6559 unsigned int rm = bits (insn, 0, 3);
6560 char load[12] = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1};
6561 char bytesize[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2};
6562 int immed = (op1 & 0x4) != 0;
6563 int opcode;
6564 ULONGEST rt_val, rt_val2 = 0, rn_val, rm_val = 0;
cca44b1b
JB
6565
6566 if (!insn_references_pc (insn, 0x000ff00ful))
7ff120b4 6567 return arm_copy_unmodified (gdbarch, insn, "extra load/store", dsc);
cca44b1b 6568
136821d9
SM
6569 displaced_debug_printf ("copying %sextra load/store insn %.8lx",
6570 unprivileged ? "unprivileged " : "",
6571 (unsigned long) insn);
cca44b1b
JB
6572
6573 opcode = ((op2 << 2) | (op1 & 0x1) | ((op1 & 0x4) >> 1)) - 4;
6574
6575 if (opcode < 0)
f34652de 6576 internal_error (_("copy_extra_ld_st: instruction decode error"));
cca44b1b 6577
36073a92
YQ
6578 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
6579 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
6580 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
cca44b1b 6581 if (!immed)
36073a92 6582 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
cca44b1b 6583
36073a92 6584 rt_val = displaced_read_reg (regs, dsc, rt);
cca44b1b 6585 if (bytesize[opcode] == 8)
36073a92
YQ
6586 rt_val2 = displaced_read_reg (regs, dsc, rt + 1);
6587 rn_val = displaced_read_reg (regs, dsc, rn);
cca44b1b 6588 if (!immed)
36073a92 6589 rm_val = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
6590
6591 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
6592 if (bytesize[opcode] == 8)
6593 displaced_write_reg (regs, dsc, 1, rt_val2, CANNOT_WRITE_PC);
6594 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
6595 if (!immed)
6596 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
6597
6598 dsc->rd = rt;
6599 dsc->u.ldst.xfersize = bytesize[opcode];
6600 dsc->u.ldst.rn = rn;
6601 dsc->u.ldst.immed = immed;
6602 dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0;
6603 dsc->u.ldst.restore_r4 = 0;
6604
6605 if (immed)
6606 /* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm]
6607 ->
6608 {ldr,str}<width><cond> r0, [r1,] [r2, #imm]. */
6609 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
6610 else
6611 /* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm]
6612 ->
6613 {ldr,str}<width><cond> r0, [r1,] [r2, +/-r3]. */
6614 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
6615
6616 dsc->cleanup = load[opcode] ? &cleanup_load : &cleanup_store;
6617
6618 return 0;
6619}
6620
0f6f04ba 6621/* Copy byte/half word/word loads and stores. */
cca44b1b 6622
7ff120b4 6623static void
0f6f04ba 6624install_load_store (struct gdbarch *gdbarch, struct regcache *regs,
1152d984 6625 arm_displaced_step_copy_insn_closure *dsc, int load,
0f6f04ba
YQ
6626 int immed, int writeback, int size, int usermode,
6627 int rt, int rm, int rn)
cca44b1b 6628{
cca44b1b 6629 ULONGEST rt_val, rn_val, rm_val = 0;
cca44b1b 6630
36073a92
YQ
6631 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
6632 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
cca44b1b 6633 if (!immed)
36073a92 6634 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
cca44b1b 6635 if (!load)
36073a92 6636 dsc->tmp[4] = displaced_read_reg (regs, dsc, 4);
cca44b1b 6637
36073a92
YQ
6638 rt_val = displaced_read_reg (regs, dsc, rt);
6639 rn_val = displaced_read_reg (regs, dsc, rn);
cca44b1b 6640 if (!immed)
36073a92 6641 rm_val = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
6642
6643 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
6644 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
6645 if (!immed)
6646 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
cca44b1b 6647 dsc->rd = rt;
0f6f04ba 6648 dsc->u.ldst.xfersize = size;
cca44b1b
JB
6649 dsc->u.ldst.rn = rn;
6650 dsc->u.ldst.immed = immed;
7ff120b4 6651 dsc->u.ldst.writeback = writeback;
cca44b1b
JB
6652
6653 /* To write PC we can do:
6654
494e194e
YQ
6655 Before this sequence of instructions:
6656 r0 is the PC value got from displaced_read_reg, so r0 = from + 8;
85102364 6657 r2 is the Rn value got from displaced_read_reg.
494e194e
YQ
6658
6659 Insn1: push {pc} Write address of STR instruction + offset on stack
6660 Insn2: pop {r4} Read it back from stack, r4 = addr(Insn1) + offset
6661 Insn3: sub r4, r4, pc r4 = addr(Insn1) + offset - pc
dda83cd7
SM
6662 = addr(Insn1) + offset - addr(Insn3) - 8
6663 = offset - 16
494e194e
YQ
6664 Insn4: add r4, r4, #8 r4 = offset - 8
6665 Insn5: add r0, r0, r4 r0 = from + 8 + offset - 8
dda83cd7 6666 = from + offset
494e194e 6667 Insn6: str r0, [r2, #imm] (or str r0, [r2, r3])
cca44b1b
JB
6668
6669 Otherwise we don't know what value to write for PC, since the offset is
494e194e
YQ
6670 architecture-dependent (sometimes PC+8, sometimes PC+12). More details
6671 of this can be found in Section "Saving from r15" in
6672 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204g/Cihbjifh.html */
cca44b1b 6673
7ff120b4
YQ
6674 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
6675}
6676
34518530
YQ
6677
6678static int
6679thumb2_copy_load_literal (struct gdbarch *gdbarch, uint16_t insn1,
6680 uint16_t insn2, struct regcache *regs,
1152d984 6681 arm_displaced_step_copy_insn_closure *dsc, int size)
34518530
YQ
6682{
6683 unsigned int u_bit = bit (insn1, 7);
6684 unsigned int rt = bits (insn2, 12, 15);
6685 int imm12 = bits (insn2, 0, 11);
6686 ULONGEST pc_val;
6687
136821d9
SM
6688 displaced_debug_printf ("copying ldr pc (0x%x) R%d %c imm12 %.4x",
6689 (unsigned int) dsc->insn_addr, rt, u_bit ? '+' : '-',
6690 imm12);
34518530
YQ
6691
6692 if (!u_bit)
6693 imm12 = -1 * imm12;
6694
6695 /* Rewrite instruction LDR Rt imm12 into:
6696
6697 Prepare: tmp[0] <- r0, tmp[1] <- r2, tmp[2] <- r3, r2 <- pc, r3 <- imm12
6698
6699 LDR R0, R2, R3,
6700
6701 Cleanup: rt <- r0, r0 <- tmp[0], r2 <- tmp[1], r3 <- tmp[2]. */
6702
6703
6704 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
6705 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
6706 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
6707
6708 pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
6709
6710 pc_val = pc_val & 0xfffffffc;
6711
6712 displaced_write_reg (regs, dsc, 2, pc_val, CANNOT_WRITE_PC);
6713 displaced_write_reg (regs, dsc, 3, imm12, CANNOT_WRITE_PC);
6714
6715 dsc->rd = rt;
6716
6717 dsc->u.ldst.xfersize = size;
6718 dsc->u.ldst.immed = 0;
6719 dsc->u.ldst.writeback = 0;
6720 dsc->u.ldst.restore_r4 = 0;
6721
6722 /* LDR R0, R2, R3 */
6723 dsc->modinsn[0] = 0xf852;
6724 dsc->modinsn[1] = 0x3;
6725 dsc->numinsns = 2;
6726
6727 dsc->cleanup = &cleanup_load;
6728
6729 return 0;
6730}
6731
6732static int
6733thumb2_copy_load_reg_imm (struct gdbarch *gdbarch, uint16_t insn1,
6734 uint16_t insn2, struct regcache *regs,
1152d984 6735 arm_displaced_step_copy_insn_closure *dsc,
34518530
YQ
6736 int writeback, int immed)
6737{
6738 unsigned int rt = bits (insn2, 12, 15);
6739 unsigned int rn = bits (insn1, 0, 3);
6740 unsigned int rm = bits (insn2, 0, 3); /* Only valid if !immed. */
6741 /* In LDR (register), there is also a register Rm, which is not allowed to
6742 be PC, so we don't have to check it. */
6743
6744 if (rt != ARM_PC_REGNUM && rn != ARM_PC_REGNUM)
6745 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "load",
6746 dsc);
6747
136821d9
SM
6748 displaced_debug_printf ("copying ldr r%d [r%d] insn %.4x%.4x",
6749 rt, rn, insn1, insn2);
34518530
YQ
6750
6751 install_load_store (gdbarch, regs, dsc, 1, immed, writeback, 4,
6752 0, rt, rm, rn);
6753
6754 dsc->u.ldst.restore_r4 = 0;
6755
6756 if (immed)
6757 /* ldr[b]<cond> rt, [rn, #imm], etc.
6758 ->
6759 ldr[b]<cond> r0, [r2, #imm]. */
6760 {
6761 dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
6762 dsc->modinsn[1] = insn2 & 0x0fff;
6763 }
6764 else
6765 /* ldr[b]<cond> rt, [rn, rm], etc.
6766 ->
6767 ldr[b]<cond> r0, [r2, r3]. */
6768 {
6769 dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
6770 dsc->modinsn[1] = (insn2 & 0x0ff0) | 0x3;
6771 }
6772
6773 dsc->numinsns = 2;
6774
6775 return 0;
6776}
6777
6778
7ff120b4
YQ
6779static int
6780arm_copy_ldr_str_ldrb_strb (struct gdbarch *gdbarch, uint32_t insn,
6781 struct regcache *regs,
1152d984 6782 arm_displaced_step_copy_insn_closure *dsc,
0f6f04ba 6783 int load, int size, int usermode)
7ff120b4
YQ
6784{
6785 int immed = !bit (insn, 25);
6786 int writeback = (bit (insn, 24) == 0 || bit (insn, 21) != 0);
6787 unsigned int rt = bits (insn, 12, 15);
6788 unsigned int rn = bits (insn, 16, 19);
6789 unsigned int rm = bits (insn, 0, 3); /* Only valid if !immed. */
6790
6791 if (!insn_references_pc (insn, 0x000ff00ful))
6792 return arm_copy_unmodified (gdbarch, insn, "load/store", dsc);
6793
136821d9
SM
6794 displaced_debug_printf ("copying %s%s r%d [r%d] insn %.8lx",
6795 load ? (size == 1 ? "ldrb" : "ldr")
6796 : (size == 1 ? "strb" : "str"),
6797 usermode ? "t" : "",
6798 rt, rn,
6799 (unsigned long) insn);
7ff120b4 6800
0f6f04ba
YQ
6801 install_load_store (gdbarch, regs, dsc, load, immed, writeback, size,
6802 usermode, rt, rm, rn);
7ff120b4 6803
bf9f652a 6804 if (load || rt != ARM_PC_REGNUM)
cca44b1b
JB
6805 {
6806 dsc->u.ldst.restore_r4 = 0;
6807
6808 if (immed)
6809 /* {ldr,str}[b]<cond> rt, [rn, #imm], etc.
6810 ->
6811 {ldr,str}[b]<cond> r0, [r2, #imm]. */
6812 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
6813 else
6814 /* {ldr,str}[b]<cond> rt, [rn, rm], etc.
6815 ->
6816 {ldr,str}[b]<cond> r0, [r2, r3]. */
6817 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
6818 }
6819 else
6820 {
6821 /* We need to use r4 as scratch. Make sure it's restored afterwards. */
6822 dsc->u.ldst.restore_r4 = 1;
494e194e
YQ
6823 dsc->modinsn[0] = 0xe92d8000; /* push {pc} */
6824 dsc->modinsn[1] = 0xe8bd0010; /* pop {r4} */
cca44b1b
JB
6825 dsc->modinsn[2] = 0xe044400f; /* sub r4, r4, pc. */
6826 dsc->modinsn[3] = 0xe2844008; /* add r4, r4, #8. */
6827 dsc->modinsn[4] = 0xe0800004; /* add r0, r0, r4. */
6828
6829 /* As above. */
6830 if (immed)
6831 dsc->modinsn[5] = (insn & 0xfff00fff) | 0x20000;
6832 else
6833 dsc->modinsn[5] = (insn & 0xfff00ff0) | 0x20003;
6834
cca44b1b
JB
6835 dsc->numinsns = 6;
6836 }
6837
6838 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
6839
6840 return 0;
6841}
6842
6843/* Cleanup LDM instructions with fully-populated register list. This is an
6844 unfortunate corner case: it's impossible to implement correctly by modifying
6845 the instruction. The issue is as follows: we have an instruction,
6846
6847 ldm rN, {r0-r15}
6848
6849 which we must rewrite to avoid loading PC. A possible solution would be to
6850 do the load in two halves, something like (with suitable cleanup
6851 afterwards):
6852
6853 mov r8, rN
6854 ldm[id][ab] r8!, {r0-r7}
6855 str r7, <temp>
6856 ldm[id][ab] r8, {r7-r14}
6857 <bkpt>
6858
6859 but at present there's no suitable place for <temp>, since the scratch space
6860 is overwritten before the cleanup routine is called. For now, we simply
6861 emulate the instruction. */
6862
6863static void
6864cleanup_block_load_all (struct gdbarch *gdbarch, struct regcache *regs,
1152d984 6865 arm_displaced_step_copy_insn_closure *dsc)
cca44b1b 6866{
cca44b1b
JB
6867 int inc = dsc->u.block.increment;
6868 int bump_before = dsc->u.block.before ? (inc ? 4 : -4) : 0;
6869 int bump_after = dsc->u.block.before ? 0 : (inc ? 4 : -4);
6870 uint32_t regmask = dsc->u.block.regmask;
6871 int regno = inc ? 0 : 15;
6872 CORE_ADDR xfer_addr = dsc->u.block.xfer_addr;
6873 int exception_return = dsc->u.block.load && dsc->u.block.user
6874 && (regmask & 0x8000) != 0;
36073a92 6875 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
cca44b1b
JB
6876 int do_transfer = condition_true (dsc->u.block.cond, status);
6877 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6878
6879 if (!do_transfer)
6880 return;
6881
6882 /* If the instruction is ldm rN, {...pc}^, I don't think there's anything
6883 sensible we can do here. Complain loudly. */
6884 if (exception_return)
6885 error (_("Cannot single-step exception return"));
6886
6887 /* We don't handle any stores here for now. */
6888 gdb_assert (dsc->u.block.load != 0);
6889
136821d9
SM
6890 displaced_debug_printf ("emulating block transfer: %s %s %s",
6891 dsc->u.block.load ? "ldm" : "stm",
6892 dsc->u.block.increment ? "inc" : "dec",
6893 dsc->u.block.before ? "before" : "after");
cca44b1b
JB
6894
6895 while (regmask)
6896 {
6897 uint32_t memword;
6898
6899 if (inc)
bf9f652a 6900 while (regno <= ARM_PC_REGNUM && (regmask & (1 << regno)) == 0)
cca44b1b
JB
6901 regno++;
6902 else
6903 while (regno >= 0 && (regmask & (1 << regno)) == 0)
6904 regno--;
6905
6906 xfer_addr += bump_before;
6907
6908 memword = read_memory_unsigned_integer (xfer_addr, 4, byte_order);
6909 displaced_write_reg (regs, dsc, regno, memword, LOAD_WRITE_PC);
6910
6911 xfer_addr += bump_after;
6912
6913 regmask &= ~(1 << regno);
6914 }
6915
6916 if (dsc->u.block.writeback)
6917 displaced_write_reg (regs, dsc, dsc->u.block.rn, xfer_addr,
6918 CANNOT_WRITE_PC);
6919}
6920
6921/* Clean up an STM which included the PC in the register list. */
6922
6923static void
6924cleanup_block_store_pc (struct gdbarch *gdbarch, struct regcache *regs,
1152d984 6925 arm_displaced_step_copy_insn_closure *dsc)
cca44b1b 6926{
36073a92 6927 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
cca44b1b 6928 int store_executed = condition_true (dsc->u.block.cond, status);
5f661e03
SM
6929 CORE_ADDR pc_stored_at, transferred_regs
6930 = count_one_bits (dsc->u.block.regmask);
cca44b1b
JB
6931 CORE_ADDR stm_insn_addr;
6932 uint32_t pc_val;
6933 long offset;
6934 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6935
6936 /* If condition code fails, there's nothing else to do. */
6937 if (!store_executed)
6938 return;
6939
6940 if (dsc->u.block.increment)
6941 {
6942 pc_stored_at = dsc->u.block.xfer_addr + 4 * transferred_regs;
6943
6944 if (dsc->u.block.before)
6945 pc_stored_at += 4;
6946 }
6947 else
6948 {
6949 pc_stored_at = dsc->u.block.xfer_addr;
6950
6951 if (dsc->u.block.before)
6952 pc_stored_at -= 4;
6953 }
6954
6955 pc_val = read_memory_unsigned_integer (pc_stored_at, 4, byte_order);
6956 stm_insn_addr = dsc->scratch_base;
6957 offset = pc_val - stm_insn_addr;
6958
136821d9
SM
6959 displaced_debug_printf ("detected PC offset %.8lx for STM instruction",
6960 offset);
cca44b1b
JB
6961
6962 /* Rewrite the stored PC to the proper value for the non-displaced original
6963 instruction. */
6964 write_memory_unsigned_integer (pc_stored_at, 4, byte_order,
6965 dsc->insn_addr + offset);
6966}
6967
6968/* Clean up an LDM which includes the PC in the register list. We clumped all
6969 the registers in the transferred list into a contiguous range r0...rX (to
6970 avoid loading PC directly and losing control of the debugged program), so we
6971 must undo that here. */
6972
6973static void
6e39997a 6974cleanup_block_load_pc (struct gdbarch *gdbarch,
cca44b1b 6975 struct regcache *regs,
1152d984 6976 arm_displaced_step_copy_insn_closure *dsc)
cca44b1b 6977{
36073a92 6978 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
22e048c9 6979 int load_executed = condition_true (dsc->u.block.cond, status);
bf9f652a 6980 unsigned int mask = dsc->u.block.regmask, write_reg = ARM_PC_REGNUM;
5f661e03 6981 unsigned int regs_loaded = count_one_bits (mask);
cca44b1b
JB
6982 unsigned int num_to_shuffle = regs_loaded, clobbered;
6983
6984 /* The method employed here will fail if the register list is fully populated
6985 (we need to avoid loading PC directly). */
6986 gdb_assert (num_to_shuffle < 16);
6987
6988 if (!load_executed)
6989 return;
6990
6991 clobbered = (1 << num_to_shuffle) - 1;
6992
6993 while (num_to_shuffle > 0)
6994 {
6995 if ((mask & (1 << write_reg)) != 0)
6996 {
6997 unsigned int read_reg = num_to_shuffle - 1;
6998
6999 if (read_reg != write_reg)
7000 {
36073a92 7001 ULONGEST rval = displaced_read_reg (regs, dsc, read_reg);
cca44b1b 7002 displaced_write_reg (regs, dsc, write_reg, rval, LOAD_WRITE_PC);
136821d9
SM
7003 displaced_debug_printf ("LDM: move loaded register r%d to r%d",
7004 read_reg, write_reg);
cca44b1b 7005 }
136821d9
SM
7006 else
7007 displaced_debug_printf ("LDM: register r%d already in the right "
7008 "place", write_reg);
cca44b1b
JB
7009
7010 clobbered &= ~(1 << write_reg);
7011
7012 num_to_shuffle--;
7013 }
7014
7015 write_reg--;
7016 }
7017
7018 /* Restore any registers we scribbled over. */
7019 for (write_reg = 0; clobbered != 0; write_reg++)
7020 {
7021 if ((clobbered & (1 << write_reg)) != 0)
7022 {
7023 displaced_write_reg (regs, dsc, write_reg, dsc->tmp[write_reg],
7024 CANNOT_WRITE_PC);
136821d9
SM
7025 displaced_debug_printf ("LDM: restored clobbered register r%d",
7026 write_reg);
cca44b1b
JB
7027 clobbered &= ~(1 << write_reg);
7028 }
7029 }
7030
7031 /* Perform register writeback manually. */
7032 if (dsc->u.block.writeback)
7033 {
7034 ULONGEST new_rn_val = dsc->u.block.xfer_addr;
7035
7036 if (dsc->u.block.increment)
7037 new_rn_val += regs_loaded * 4;
7038 else
7039 new_rn_val -= regs_loaded * 4;
7040
7041 displaced_write_reg (regs, dsc, dsc->u.block.rn, new_rn_val,
7042 CANNOT_WRITE_PC);
7043 }
7044}
7045
7046/* Handle ldm/stm, apart from some tricky cases which are unlikely to occur
7047 in user-level code (in particular exception return, ldm rn, {...pc}^). */
7048
7049static int
7ff120b4
YQ
7050arm_copy_block_xfer (struct gdbarch *gdbarch, uint32_t insn,
7051 struct regcache *regs,
1152d984 7052 arm_displaced_step_copy_insn_closure *dsc)
cca44b1b
JB
7053{
7054 int load = bit (insn, 20);
7055 int user = bit (insn, 22);
7056 int increment = bit (insn, 23);
7057 int before = bit (insn, 24);
7058 int writeback = bit (insn, 21);
7059 int rn = bits (insn, 16, 19);
cca44b1b 7060
0963b4bd
MS
7061 /* Block transfers which don't mention PC can be run directly
7062 out-of-line. */
bf9f652a 7063 if (rn != ARM_PC_REGNUM && (insn & 0x8000) == 0)
7ff120b4 7064 return arm_copy_unmodified (gdbarch, insn, "ldm/stm", dsc);
cca44b1b 7065
bf9f652a 7066 if (rn == ARM_PC_REGNUM)
cca44b1b 7067 {
0963b4bd
MS
7068 warning (_("displaced: Unpredictable LDM or STM with "
7069 "base register r15"));
7ff120b4 7070 return arm_copy_unmodified (gdbarch, insn, "unpredictable ldm/stm", dsc);
cca44b1b
JB
7071 }
7072
136821d9
SM
7073 displaced_debug_printf ("copying block transfer insn %.8lx",
7074 (unsigned long) insn);
cca44b1b 7075
36073a92 7076 dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
cca44b1b
JB
7077 dsc->u.block.rn = rn;
7078
7079 dsc->u.block.load = load;
7080 dsc->u.block.user = user;
7081 dsc->u.block.increment = increment;
7082 dsc->u.block.before = before;
7083 dsc->u.block.writeback = writeback;
7084 dsc->u.block.cond = bits (insn, 28, 31);
7085
7086 dsc->u.block.regmask = insn & 0xffff;
7087
7088 if (load)
7089 {
7090 if ((insn & 0xffff) == 0xffff)
7091 {
7092 /* LDM with a fully-populated register list. This case is
7093 particularly tricky. Implement for now by fully emulating the
7094 instruction (which might not behave perfectly in all cases, but
7095 these instructions should be rare enough for that not to matter
7096 too much). */
7097 dsc->modinsn[0] = ARM_NOP;
7098
7099 dsc->cleanup = &cleanup_block_load_all;
7100 }
7101 else
7102 {
7103 /* LDM of a list of registers which includes PC. Implement by
7104 rewriting the list of registers to be transferred into a
7105 contiguous chunk r0...rX before doing the transfer, then shuffling
7106 registers into the correct places in the cleanup routine. */
7107 unsigned int regmask = insn & 0xffff;
5f661e03 7108 unsigned int num_in_list = count_one_bits (regmask), new_regmask;
bec2ab5a 7109 unsigned int i;
cca44b1b
JB
7110
7111 for (i = 0; i < num_in_list; i++)
36073a92 7112 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
cca44b1b
JB
7113
7114 /* Writeback makes things complicated. We need to avoid clobbering
7115 the base register with one of the registers in our modified
7116 register list, but just using a different register can't work in
7117 all cases, e.g.:
7118
7119 ldm r14!, {r0-r13,pc}
7120
7121 which would need to be rewritten as:
7122
7123 ldm rN!, {r0-r14}
7124
7125 but that can't work, because there's no free register for N.
7126
7127 Solve this by turning off the writeback bit, and emulating
7128 writeback manually in the cleanup routine. */
7129
7130 if (writeback)
7131 insn &= ~(1 << 21);
7132
7133 new_regmask = (1 << num_in_list) - 1;
7134
136821d9
SM
7135 displaced_debug_printf ("LDM r%d%s, {..., pc}: original reg list "
7136 "%.4x, modified list %.4x",
7137 rn, writeback ? "!" : "",
7138 (int) insn & 0xffff, new_regmask);
cca44b1b
JB
7139
7140 dsc->modinsn[0] = (insn & ~0xffff) | (new_regmask & 0xffff);
7141
7142 dsc->cleanup = &cleanup_block_load_pc;
7143 }
7144 }
7145 else
7146 {
7147 /* STM of a list of registers which includes PC. Run the instruction
7148 as-is, but out of line: this will store the wrong value for the PC,
7149 so we must manually fix up the memory in the cleanup routine.
7150 Doing things this way has the advantage that we can auto-detect
7151 the offset of the PC write (which is architecture-dependent) in
7152 the cleanup routine. */
7153 dsc->modinsn[0] = insn;
7154
7155 dsc->cleanup = &cleanup_block_store_pc;
7156 }
7157
7158 return 0;
7159}
7160
34518530
YQ
7161static int
7162thumb2_copy_block_xfer (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
7163 struct regcache *regs,
1152d984 7164 arm_displaced_step_copy_insn_closure *dsc)
cca44b1b 7165{
34518530
YQ
7166 int rn = bits (insn1, 0, 3);
7167 int load = bit (insn1, 4);
7168 int writeback = bit (insn1, 5);
cca44b1b 7169
34518530
YQ
7170 /* Block transfers which don't mention PC can be run directly
7171 out-of-line. */
7172 if (rn != ARM_PC_REGNUM && (insn2 & 0x8000) == 0)
7173 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ldm/stm", dsc);
7ff120b4 7174
34518530
YQ
7175 if (rn == ARM_PC_REGNUM)
7176 {
7177 warning (_("displaced: Unpredictable LDM or STM with "
7178 "base register r15"));
7179 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7180 "unpredictable ldm/stm", dsc);
7181 }
cca44b1b 7182
136821d9
SM
7183 displaced_debug_printf ("copying block transfer insn %.4x%.4x",
7184 insn1, insn2);
cca44b1b 7185
34518530
YQ
7186 /* Clear bit 13, since it should be always zero. */
7187 dsc->u.block.regmask = (insn2 & 0xdfff);
7188 dsc->u.block.rn = rn;
cca44b1b 7189
34518530
YQ
7190 dsc->u.block.load = load;
7191 dsc->u.block.user = 0;
7192 dsc->u.block.increment = bit (insn1, 7);
7193 dsc->u.block.before = bit (insn1, 8);
7194 dsc->u.block.writeback = writeback;
7195 dsc->u.block.cond = INST_AL;
7196 dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
cca44b1b 7197
34518530
YQ
7198 if (load)
7199 {
7200 if (dsc->u.block.regmask == 0xffff)
7201 {
7202 /* This branch is impossible to happen. */
7203 gdb_assert (0);
7204 }
7205 else
7206 {
7207 unsigned int regmask = dsc->u.block.regmask;
5f661e03 7208 unsigned int num_in_list = count_one_bits (regmask), new_regmask;
bec2ab5a 7209 unsigned int i;
34518530
YQ
7210
7211 for (i = 0; i < num_in_list; i++)
7212 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
7213
7214 if (writeback)
7215 insn1 &= ~(1 << 5);
7216
7217 new_regmask = (1 << num_in_list) - 1;
7218
136821d9
SM
7219 displaced_debug_printf ("LDM r%d%s, {..., pc}: original reg list "
7220 "%.4x, modified list %.4x",
7221 rn, writeback ? "!" : "",
7222 (int) dsc->u.block.regmask, new_regmask);
34518530
YQ
7223
7224 dsc->modinsn[0] = insn1;
7225 dsc->modinsn[1] = (new_regmask & 0xffff);
7226 dsc->numinsns = 2;
7227
7228 dsc->cleanup = &cleanup_block_load_pc;
7229 }
7230 }
7231 else
7232 {
7233 dsc->modinsn[0] = insn1;
7234 dsc->modinsn[1] = insn2;
7235 dsc->numinsns = 2;
7236 dsc->cleanup = &cleanup_block_store_pc;
7237 }
7238 return 0;
7239}
7240
d9311bfa
AT
7241/* Wrapper over read_memory_unsigned_integer for use in arm_get_next_pcs.
7242 This is used to avoid a dependency on BFD's bfd_endian enum. */
7243
7244ULONGEST
7245arm_get_next_pcs_read_memory_unsigned_integer (CORE_ADDR memaddr, int len,
7246 int byte_order)
7247{
5f2dfcfd
AT
7248 return read_memory_unsigned_integer (memaddr, len,
7249 (enum bfd_endian) byte_order);
d9311bfa
AT
7250}
7251
7252/* Wrapper over gdbarch_addr_bits_remove for use in arm_get_next_pcs. */
7253
7254CORE_ADDR
7255arm_get_next_pcs_addr_bits_remove (struct arm_get_next_pcs *self,
7256 CORE_ADDR val)
7257{
e4e20d45
SM
7258 return gdbarch_addr_bits_remove
7259 (gdb::checked_static_cast<regcache *> (self->regcache)->arch (), val);
d9311bfa
AT
7260}
7261
7262/* Wrapper over syscall_next_pc for use in get_next_pcs. */
7263
e7cf25a8 7264static CORE_ADDR
553cb527 7265arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self)
d9311bfa 7266{
d9311bfa
AT
7267 return 0;
7268}
7269
7270/* Wrapper over arm_is_thumb for use in arm_get_next_pcs. */
7271
7272int
7273arm_get_next_pcs_is_thumb (struct arm_get_next_pcs *self)
7274{
e4e20d45 7275 return arm_is_thumb (gdb::checked_static_cast<regcache *> (self->regcache));
d9311bfa
AT
7276}
7277
7278/* single_step() is called just before we want to resume the inferior,
7279 if we want to single-step it but there is no hardware or kernel
7280 single-step support. We find the target of the coming instructions
7281 and breakpoint them. */
7282
a0ff9e1a 7283std::vector<CORE_ADDR>
f5ea389a 7284arm_software_single_step (struct regcache *regcache)
d9311bfa 7285{
ac7936df 7286 struct gdbarch *gdbarch = regcache->arch ();
d9311bfa 7287 struct arm_get_next_pcs next_pcs_ctx;
d9311bfa
AT
7288
7289 arm_get_next_pcs_ctor (&next_pcs_ctx,
7290 &arm_get_next_pcs_ops,
7291 gdbarch_byte_order (gdbarch),
7292 gdbarch_byte_order_for_code (gdbarch),
1b451dda 7293 0,
d9311bfa
AT
7294 regcache);
7295
a0ff9e1a 7296 std::vector<CORE_ADDR> next_pcs = arm_get_next_pcs (&next_pcs_ctx);
d9311bfa 7297
a0ff9e1a
SM
7298 for (CORE_ADDR &pc_ref : next_pcs)
7299 pc_ref = gdbarch_addr_bits_remove (gdbarch, pc_ref);
d9311bfa 7300
93f9a11f 7301 return next_pcs;
d9311bfa
AT
7302}
7303
34518530
YQ
7304/* Cleanup/copy SVC (SWI) instructions. These two functions are overridden
7305 for Linux, where some SVC instructions must be treated specially. */
7306
7307static void
7308cleanup_svc (struct gdbarch *gdbarch, struct regcache *regs,
1152d984 7309 arm_displaced_step_copy_insn_closure *dsc)
34518530
YQ
7310{
7311 CORE_ADDR resume_addr = dsc->insn_addr + dsc->insn_size;
7312
136821d9
SM
7313 displaced_debug_printf ("cleanup for svc, resume at %.8lx",
7314 (unsigned long) resume_addr);
34518530
YQ
7315
7316 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, resume_addr, BRANCH_WRITE_PC);
7317}
7318
7319
85102364 7320/* Common copy routine for svc instruction. */
34518530
YQ
7321
7322static int
7323install_svc (struct gdbarch *gdbarch, struct regcache *regs,
1152d984 7324 arm_displaced_step_copy_insn_closure *dsc)
34518530
YQ
7325{
7326 /* Preparation: none.
7327 Insn: unmodified svc.
7328 Cleanup: pc <- insn_addr + insn_size. */
7329
7330 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
7331 instruction. */
7332 dsc->wrote_to_pc = 1;
7333
7334 /* Allow OS-specific code to override SVC handling. */
bd18283a
YQ
7335 if (dsc->u.svc.copy_svc_os)
7336 return dsc->u.svc.copy_svc_os (gdbarch, regs, dsc);
7337 else
7338 {
7339 dsc->cleanup = &cleanup_svc;
7340 return 0;
7341 }
34518530
YQ
7342}
7343
7344static int
7345arm_copy_svc (struct gdbarch *gdbarch, uint32_t insn,
1152d984 7346 regcache *regs, arm_displaced_step_copy_insn_closure *dsc)
34518530
YQ
7347{
7348
136821d9
SM
7349 displaced_debug_printf ("copying svc insn %.8lx",
7350 (unsigned long) insn);
34518530
YQ
7351
7352 dsc->modinsn[0] = insn;
7353
7354 return install_svc (gdbarch, regs, dsc);
7355}
7356
7357static int
7358thumb_copy_svc (struct gdbarch *gdbarch, uint16_t insn,
1152d984 7359 regcache *regs, arm_displaced_step_copy_insn_closure *dsc)
34518530
YQ
7360{
7361
136821d9 7362 displaced_debug_printf ("copying svc insn %.4x", insn);
bd18283a 7363
34518530
YQ
7364 dsc->modinsn[0] = insn;
7365
7366 return install_svc (gdbarch, regs, dsc);
cca44b1b
JB
7367}
7368
7369/* Copy undefined instructions. */
7370
7371static int
7ff120b4 7372arm_copy_undef (struct gdbarch *gdbarch, uint32_t insn,
1152d984 7373 arm_displaced_step_copy_insn_closure *dsc)
cca44b1b 7374{
136821d9
SM
7375 displaced_debug_printf ("copying undefined insn %.8lx",
7376 (unsigned long) insn);
cca44b1b
JB
7377
7378 dsc->modinsn[0] = insn;
7379
7380 return 0;
7381}
7382
34518530
YQ
7383static int
7384thumb_32bit_copy_undef (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
1152d984 7385 arm_displaced_step_copy_insn_closure *dsc)
34518530
YQ
7386{
7387
136821d9
SM
7388 displaced_debug_printf ("copying undefined insn %.4x %.4x",
7389 (unsigned short) insn1, (unsigned short) insn2);
34518530
YQ
7390
7391 dsc->modinsn[0] = insn1;
7392 dsc->modinsn[1] = insn2;
7393 dsc->numinsns = 2;
7394
7395 return 0;
7396}
7397
cca44b1b
JB
7398/* Copy unpredictable instructions. */
7399
7400static int
7ff120b4 7401arm_copy_unpred (struct gdbarch *gdbarch, uint32_t insn,
1152d984 7402 arm_displaced_step_copy_insn_closure *dsc)
cca44b1b 7403{
136821d9
SM
7404 displaced_debug_printf ("copying unpredictable insn %.8lx",
7405 (unsigned long) insn);
cca44b1b
JB
7406
7407 dsc->modinsn[0] = insn;
7408
7409 return 0;
7410}
7411
7412/* The decode_* functions are instruction decoding helpers. They mostly follow
7413 the presentation in the ARM ARM. */
7414
7415static int
7ff120b4
YQ
7416arm_decode_misc_memhint_neon (struct gdbarch *gdbarch, uint32_t insn,
7417 struct regcache *regs,
1152d984 7418 arm_displaced_step_copy_insn_closure *dsc)
cca44b1b
JB
7419{
7420 unsigned int op1 = bits (insn, 20, 26), op2 = bits (insn, 4, 7);
7421 unsigned int rn = bits (insn, 16, 19);
7422
2f924de6 7423 if (op1 == 0x10 && (op2 & 0x2) == 0x0 && (rn & 0x1) == 0x0)
7ff120b4 7424 return arm_copy_unmodified (gdbarch, insn, "cps", dsc);
2f924de6 7425 else if (op1 == 0x10 && op2 == 0x0 && (rn & 0x1) == 0x1)
7ff120b4 7426 return arm_copy_unmodified (gdbarch, insn, "setend", dsc);
cca44b1b 7427 else if ((op1 & 0x60) == 0x20)
7ff120b4 7428 return arm_copy_unmodified (gdbarch, insn, "neon dataproc", dsc);
cca44b1b 7429 else if ((op1 & 0x71) == 0x40)
7ff120b4
YQ
7430 return arm_copy_unmodified (gdbarch, insn, "neon elt/struct load/store",
7431 dsc);
cca44b1b 7432 else if ((op1 & 0x77) == 0x41)
7ff120b4 7433 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
cca44b1b 7434 else if ((op1 & 0x77) == 0x45)
7ff120b4 7435 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pli. */
cca44b1b
JB
7436 else if ((op1 & 0x77) == 0x51)
7437 {
7438 if (rn != 0xf)
7ff120b4 7439 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
cca44b1b 7440 else
7ff120b4 7441 return arm_copy_unpred (gdbarch, insn, dsc);
cca44b1b
JB
7442 }
7443 else if ((op1 & 0x77) == 0x55)
7ff120b4 7444 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
cca44b1b
JB
7445 else if (op1 == 0x57)
7446 switch (op2)
7447 {
7ff120b4
YQ
7448 case 0x1: return arm_copy_unmodified (gdbarch, insn, "clrex", dsc);
7449 case 0x4: return arm_copy_unmodified (gdbarch, insn, "dsb", dsc);
7450 case 0x5: return arm_copy_unmodified (gdbarch, insn, "dmb", dsc);
7451 case 0x6: return arm_copy_unmodified (gdbarch, insn, "isb", dsc);
7452 default: return arm_copy_unpred (gdbarch, insn, dsc);
cca44b1b
JB
7453 }
7454 else if ((op1 & 0x63) == 0x43)
7ff120b4 7455 return arm_copy_unpred (gdbarch, insn, dsc);
cca44b1b
JB
7456 else if ((op2 & 0x1) == 0x0)
7457 switch (op1 & ~0x80)
7458 {
7459 case 0x61:
7ff120b4 7460 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
cca44b1b 7461 case 0x65:
7ff120b4 7462 return arm_copy_preload_reg (gdbarch, insn, regs, dsc); /* pli reg. */
cca44b1b 7463 case 0x71: case 0x75:
dda83cd7 7464 /* pld/pldw reg. */
7ff120b4 7465 return arm_copy_preload_reg (gdbarch, insn, regs, dsc);
cca44b1b 7466 case 0x63: case 0x67: case 0x73: case 0x77:
7ff120b4 7467 return arm_copy_unpred (gdbarch, insn, dsc);
cca44b1b 7468 default:
7ff120b4 7469 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7470 }
7471 else
7ff120b4 7472 return arm_copy_undef (gdbarch, insn, dsc); /* Probably unreachable. */
cca44b1b
JB
7473}
7474
7475static int
7ff120b4
YQ
7476arm_decode_unconditional (struct gdbarch *gdbarch, uint32_t insn,
7477 struct regcache *regs,
1152d984 7478 arm_displaced_step_copy_insn_closure *dsc)
cca44b1b
JB
7479{
7480 if (bit (insn, 27) == 0)
7ff120b4 7481 return arm_decode_misc_memhint_neon (gdbarch, insn, regs, dsc);
cca44b1b
JB
7482 /* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx. */
7483 else switch (((insn & 0x7000000) >> 23) | ((insn & 0x100000) >> 20))
7484 {
7485 case 0x0: case 0x2:
7ff120b4 7486 return arm_copy_unmodified (gdbarch, insn, "srs", dsc);
cca44b1b
JB
7487
7488 case 0x1: case 0x3:
7ff120b4 7489 return arm_copy_unmodified (gdbarch, insn, "rfe", dsc);
cca44b1b
JB
7490
7491 case 0x4: case 0x5: case 0x6: case 0x7:
7ff120b4 7492 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
cca44b1b
JB
7493
7494 case 0x8:
7495 switch ((insn & 0xe00000) >> 21)
7496 {
7497 case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7:
7498 /* stc/stc2. */
7ff120b4 7499 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b
JB
7500
7501 case 0x2:
7ff120b4 7502 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
cca44b1b
JB
7503
7504 default:
7ff120b4 7505 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7506 }
7507
7508 case 0x9:
7509 {
7510 int rn_f = (bits (insn, 16, 19) == 0xf);
7511 switch ((insn & 0xe00000) >> 21)
7512 {
7513 case 0x1: case 0x3:
7514 /* ldc/ldc2 imm (undefined for rn == pc). */
7ff120b4
YQ
7515 return rn_f ? arm_copy_undef (gdbarch, insn, dsc)
7516 : arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b
JB
7517
7518 case 0x2:
7ff120b4 7519 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
cca44b1b
JB
7520
7521 case 0x4: case 0x5: case 0x6: case 0x7:
7522 /* ldc/ldc2 lit (undefined for rn != pc). */
7ff120b4
YQ
7523 return rn_f ? arm_copy_copro_load_store (gdbarch, insn, regs, dsc)
7524 : arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7525
7526 default:
7ff120b4 7527 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7528 }
7529 }
7530
7531 case 0xa:
7ff120b4 7532 return arm_copy_unmodified (gdbarch, insn, "stc/stc2", dsc);
cca44b1b
JB
7533
7534 case 0xb:
7535 if (bits (insn, 16, 19) == 0xf)
dda83cd7 7536 /* ldc/ldc2 lit. */
7ff120b4 7537 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b 7538 else
7ff120b4 7539 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7540
7541 case 0xc:
7542 if (bit (insn, 4))
7ff120b4 7543 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
cca44b1b 7544 else
7ff120b4 7545 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
cca44b1b
JB
7546
7547 case 0xd:
7548 if (bit (insn, 4))
7ff120b4 7549 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
cca44b1b 7550 else
7ff120b4 7551 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
cca44b1b
JB
7552
7553 default:
7ff120b4 7554 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7555 }
7556}
7557
7558/* Decode miscellaneous instructions in dp/misc encoding space. */
7559
7560static int
7ff120b4
YQ
7561arm_decode_miscellaneous (struct gdbarch *gdbarch, uint32_t insn,
7562 struct regcache *regs,
1152d984 7563 arm_displaced_step_copy_insn_closure *dsc)
cca44b1b
JB
7564{
7565 unsigned int op2 = bits (insn, 4, 6);
7566 unsigned int op = bits (insn, 21, 22);
cca44b1b
JB
7567
7568 switch (op2)
7569 {
7570 case 0x0:
7ff120b4 7571 return arm_copy_unmodified (gdbarch, insn, "mrs/msr", dsc);
cca44b1b
JB
7572
7573 case 0x1:
7574 if (op == 0x1) /* bx. */
7ff120b4 7575 return arm_copy_bx_blx_reg (gdbarch, insn, regs, dsc);
cca44b1b 7576 else if (op == 0x3)
7ff120b4 7577 return arm_copy_unmodified (gdbarch, insn, "clz", dsc);
cca44b1b 7578 else
7ff120b4 7579 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7580
7581 case 0x2:
7582 if (op == 0x1)
dda83cd7 7583 /* Not really supported. */
7ff120b4 7584 return arm_copy_unmodified (gdbarch, insn, "bxj", dsc);
cca44b1b 7585 else
7ff120b4 7586 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7587
7588 case 0x3:
7589 if (op == 0x1)
7ff120b4 7590 return arm_copy_bx_blx_reg (gdbarch, insn,
0963b4bd 7591 regs, dsc); /* blx register. */
cca44b1b 7592 else
7ff120b4 7593 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7594
7595 case 0x5:
7ff120b4 7596 return arm_copy_unmodified (gdbarch, insn, "saturating add/sub", dsc);
cca44b1b
JB
7597
7598 case 0x7:
7599 if (op == 0x1)
7ff120b4 7600 return arm_copy_unmodified (gdbarch, insn, "bkpt", dsc);
cca44b1b 7601 else if (op == 0x3)
dda83cd7 7602 /* Not really supported. */
7ff120b4 7603 return arm_copy_unmodified (gdbarch, insn, "smc", dsc);
d182e398 7604 [[fallthrough]];
cca44b1b
JB
7605
7606 default:
7ff120b4 7607 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7608 }
7609}
7610
7611static int
7ff120b4
YQ
7612arm_decode_dp_misc (struct gdbarch *gdbarch, uint32_t insn,
7613 struct regcache *regs,
1152d984 7614 arm_displaced_step_copy_insn_closure *dsc)
cca44b1b
JB
7615{
7616 if (bit (insn, 25))
7617 switch (bits (insn, 20, 24))
7618 {
7619 case 0x10:
7ff120b4 7620 return arm_copy_unmodified (gdbarch, insn, "movw", dsc);
cca44b1b
JB
7621
7622 case 0x14:
7ff120b4 7623 return arm_copy_unmodified (gdbarch, insn, "movt", dsc);
cca44b1b
JB
7624
7625 case 0x12: case 0x16:
7ff120b4 7626 return arm_copy_unmodified (gdbarch, insn, "msr imm", dsc);
cca44b1b
JB
7627
7628 default:
7ff120b4 7629 return arm_copy_alu_imm (gdbarch, insn, regs, dsc);
cca44b1b
JB
7630 }
7631 else
7632 {
7633 uint32_t op1 = bits (insn, 20, 24), op2 = bits (insn, 4, 7);
7634
7635 if ((op1 & 0x19) != 0x10 && (op2 & 0x1) == 0x0)
7ff120b4 7636 return arm_copy_alu_reg (gdbarch, insn, regs, dsc);
cca44b1b 7637 else if ((op1 & 0x19) != 0x10 && (op2 & 0x9) == 0x1)
7ff120b4 7638 return arm_copy_alu_shifted_reg (gdbarch, insn, regs, dsc);
cca44b1b 7639 else if ((op1 & 0x19) == 0x10 && (op2 & 0x8) == 0x0)
7ff120b4 7640 return arm_decode_miscellaneous (gdbarch, insn, regs, dsc);
cca44b1b 7641 else if ((op1 & 0x19) == 0x10 && (op2 & 0x9) == 0x8)
7ff120b4 7642 return arm_copy_unmodified (gdbarch, insn, "halfword mul/mla", dsc);
cca44b1b 7643 else if ((op1 & 0x10) == 0x00 && op2 == 0x9)
7ff120b4 7644 return arm_copy_unmodified (gdbarch, insn, "mul/mla", dsc);
cca44b1b 7645 else if ((op1 & 0x10) == 0x10 && op2 == 0x9)
7ff120b4 7646 return arm_copy_unmodified (gdbarch, insn, "synch", dsc);
cca44b1b 7647 else if (op2 == 0xb || (op2 & 0xd) == 0xd)
550dc4e2 7648 /* 2nd arg means "unprivileged". */
7ff120b4
YQ
7649 return arm_copy_extra_ld_st (gdbarch, insn, (op1 & 0x12) == 0x02, regs,
7650 dsc);
cca44b1b
JB
7651 }
7652
7653 /* Should be unreachable. */
7654 return 1;
7655}
7656
7657static int
7ff120b4
YQ
7658arm_decode_ld_st_word_ubyte (struct gdbarch *gdbarch, uint32_t insn,
7659 struct regcache *regs,
1152d984 7660 arm_displaced_step_copy_insn_closure *dsc)
cca44b1b
JB
7661{
7662 int a = bit (insn, 25), b = bit (insn, 4);
7663 uint32_t op1 = bits (insn, 20, 24);
cca44b1b
JB
7664
7665 if ((!a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02)
7666 || (a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02 && !b))
0f6f04ba 7667 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 0);
cca44b1b
JB
7668 else if ((!a && (op1 & 0x17) == 0x02)
7669 || (a && (op1 & 0x17) == 0x02 && !b))
0f6f04ba 7670 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 1);
cca44b1b
JB
7671 else if ((!a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03)
7672 || (a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03 && !b))
0f6f04ba 7673 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 0);
cca44b1b
JB
7674 else if ((!a && (op1 & 0x17) == 0x03)
7675 || (a && (op1 & 0x17) == 0x03 && !b))
0f6f04ba 7676 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 1);
cca44b1b
JB
7677 else if ((!a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06)
7678 || (a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06 && !b))
7ff120b4 7679 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 0);
cca44b1b
JB
7680 else if ((!a && (op1 & 0x17) == 0x06)
7681 || (a && (op1 & 0x17) == 0x06 && !b))
7ff120b4 7682 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 1);
cca44b1b
JB
7683 else if ((!a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07)
7684 || (a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07 && !b))
7ff120b4 7685 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 0);
cca44b1b
JB
7686 else if ((!a && (op1 & 0x17) == 0x07)
7687 || (a && (op1 & 0x17) == 0x07 && !b))
7ff120b4 7688 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 1);
cca44b1b
JB
7689
7690 /* Should be unreachable. */
7691 return 1;
7692}
7693
7694static int
7ff120b4 7695arm_decode_media (struct gdbarch *gdbarch, uint32_t insn,
1152d984 7696 arm_displaced_step_copy_insn_closure *dsc)
cca44b1b
JB
7697{
7698 switch (bits (insn, 20, 24))
7699 {
7700 case 0x00: case 0x01: case 0x02: case 0x03:
7ff120b4 7701 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub signed", dsc);
cca44b1b
JB
7702
7703 case 0x04: case 0x05: case 0x06: case 0x07:
7ff120b4 7704 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub unsigned", dsc);
cca44b1b
JB
7705
7706 case 0x08: case 0x09: case 0x0a: case 0x0b:
7707 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
7ff120b4 7708 return arm_copy_unmodified (gdbarch, insn,
cca44b1b
JB
7709 "decode/pack/unpack/saturate/reverse", dsc);
7710
7711 case 0x18:
7712 if (bits (insn, 5, 7) == 0) /* op2. */
7713 {
7714 if (bits (insn, 12, 15) == 0xf)
7ff120b4 7715 return arm_copy_unmodified (gdbarch, insn, "usad8", dsc);
cca44b1b 7716 else
7ff120b4 7717 return arm_copy_unmodified (gdbarch, insn, "usada8", dsc);
cca44b1b
JB
7718 }
7719 else
7ff120b4 7720 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7721
7722 case 0x1a: case 0x1b:
7723 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
7ff120b4 7724 return arm_copy_unmodified (gdbarch, insn, "sbfx", dsc);
cca44b1b 7725 else
7ff120b4 7726 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7727
7728 case 0x1c: case 0x1d:
7729 if (bits (insn, 5, 6) == 0x0) /* op2[1:0]. */
7730 {
7731 if (bits (insn, 0, 3) == 0xf)
7ff120b4 7732 return arm_copy_unmodified (gdbarch, insn, "bfc", dsc);
cca44b1b 7733 else
7ff120b4 7734 return arm_copy_unmodified (gdbarch, insn, "bfi", dsc);
cca44b1b
JB
7735 }
7736 else
7ff120b4 7737 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7738
7739 case 0x1e: case 0x1f:
7740 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
7ff120b4 7741 return arm_copy_unmodified (gdbarch, insn, "ubfx", dsc);
cca44b1b 7742 else
7ff120b4 7743 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
7744 }
7745
7746 /* Should be unreachable. */
7747 return 1;
7748}
7749
7750static int
615234c1 7751arm_decode_b_bl_ldmstm (struct gdbarch *gdbarch, uint32_t insn,
7ff120b4 7752 struct regcache *regs,
1152d984 7753 arm_displaced_step_copy_insn_closure *dsc)
cca44b1b
JB
7754{
7755 if (bit (insn, 25))
7ff120b4 7756 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
cca44b1b 7757 else
7ff120b4 7758 return arm_copy_block_xfer (gdbarch, insn, regs, dsc);
cca44b1b
JB
7759}
7760
7761static int
7ff120b4
YQ
7762arm_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint32_t insn,
7763 struct regcache *regs,
1152d984 7764 arm_displaced_step_copy_insn_closure *dsc)
cca44b1b
JB
7765{
7766 unsigned int opcode = bits (insn, 20, 24);
7767
7768 switch (opcode)
7769 {
7770 case 0x04: case 0x05: /* VFP/Neon mrrc/mcrr. */
7ff120b4 7771 return arm_copy_unmodified (gdbarch, insn, "vfp/neon mrrc/mcrr", dsc);
cca44b1b
JB
7772
7773 case 0x08: case 0x0a: case 0x0c: case 0x0e:
7774 case 0x12: case 0x16:
7ff120b4 7775 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vstm/vpush", dsc);
cca44b1b
JB
7776
7777 case 0x09: case 0x0b: case 0x0d: case 0x0f:
7778 case 0x13: case 0x17:
7ff120b4 7779 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vldm/vpop", dsc);
cca44b1b
JB
7780
7781 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
7782 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
7783 /* Note: no writeback for these instructions. Bit 25 will always be
7784 zero though (via caller), so the following works OK. */
7ff120b4 7785 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b
JB
7786 }
7787
7788 /* Should be unreachable. */
7789 return 1;
7790}
7791
34518530
YQ
7792/* Decode shifted register instructions. */
7793
7794static int
7795thumb2_decode_dp_shift_reg (struct gdbarch *gdbarch, uint16_t insn1,
7796 uint16_t insn2, struct regcache *regs,
1152d984 7797 arm_displaced_step_copy_insn_closure *dsc)
34518530
YQ
7798{
7799 /* PC is only allowed to be used in instruction MOV. */
7800
7801 unsigned int op = bits (insn1, 5, 8);
7802 unsigned int rn = bits (insn1, 0, 3);
7803
7804 if (op == 0x2 && rn == 0xf) /* MOV */
7805 return thumb2_copy_alu_imm (gdbarch, insn1, insn2, regs, dsc);
7806 else
7807 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7808 "dp (shift reg)", dsc);
7809}
7810
7811
7812/* Decode extension register load/store. Exactly the same as
7813 arm_decode_ext_reg_ld_st. */
7814
7815static int
7816thumb2_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint16_t insn1,
7817 uint16_t insn2, struct regcache *regs,
1152d984 7818 arm_displaced_step_copy_insn_closure *dsc)
34518530
YQ
7819{
7820 unsigned int opcode = bits (insn1, 4, 8);
7821
7822 switch (opcode)
7823 {
7824 case 0x04: case 0x05:
7825 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7826 "vfp/neon vmov", dsc);
7827
7828 case 0x08: case 0x0c: /* 01x00 */
7829 case 0x0a: case 0x0e: /* 01x10 */
7830 case 0x12: case 0x16: /* 10x10 */
7831 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7832 "vfp/neon vstm/vpush", dsc);
7833
7834 case 0x09: case 0x0d: /* 01x01 */
7835 case 0x0b: case 0x0f: /* 01x11 */
7836 case 0x13: case 0x17: /* 10x11 */
7837 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7838 "vfp/neon vldm/vpop", dsc);
7839
7840 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
7841 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7842 "vstr", dsc);
7843 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
7844 return thumb2_copy_copro_load_store (gdbarch, insn1, insn2, regs, dsc);
7845 }
7846
7847 /* Should be unreachable. */
7848 return 1;
7849}
7850
cca44b1b 7851static int
12545665 7852arm_decode_svc_copro (struct gdbarch *gdbarch, uint32_t insn,
1152d984 7853 regcache *regs, arm_displaced_step_copy_insn_closure *dsc)
cca44b1b
JB
7854{
7855 unsigned int op1 = bits (insn, 20, 25);
7856 int op = bit (insn, 4);
7857 unsigned int coproc = bits (insn, 8, 11);
cca44b1b
JB
7858
7859 if ((op1 & 0x20) == 0x00 && (op1 & 0x3a) != 0x00 && (coproc & 0xe) == 0xa)
7ff120b4 7860 return arm_decode_ext_reg_ld_st (gdbarch, insn, regs, dsc);
cca44b1b
JB
7861 else if ((op1 & 0x21) == 0x00 && (op1 & 0x3a) != 0x00
7862 && (coproc & 0xe) != 0xa)
7863 /* stc/stc2. */
7ff120b4 7864 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b
JB
7865 else if ((op1 & 0x21) == 0x01 && (op1 & 0x3a) != 0x00
7866 && (coproc & 0xe) != 0xa)
7867 /* ldc/ldc2 imm/lit. */
7ff120b4 7868 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b 7869 else if ((op1 & 0x3e) == 0x00)
7ff120b4 7870 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b 7871 else if ((op1 & 0x3e) == 0x04 && (coproc & 0xe) == 0xa)
7ff120b4 7872 return arm_copy_unmodified (gdbarch, insn, "neon 64bit xfer", dsc);
cca44b1b 7873 else if (op1 == 0x04 && (coproc & 0xe) != 0xa)
7ff120b4 7874 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
cca44b1b 7875 else if (op1 == 0x05 && (coproc & 0xe) != 0xa)
7ff120b4 7876 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
cca44b1b
JB
7877 else if ((op1 & 0x30) == 0x20 && !op)
7878 {
7879 if ((coproc & 0xe) == 0xa)
7ff120b4 7880 return arm_copy_unmodified (gdbarch, insn, "vfp dataproc", dsc);
cca44b1b 7881 else
7ff120b4 7882 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
cca44b1b
JB
7883 }
7884 else if ((op1 & 0x30) == 0x20 && op)
7ff120b4 7885 return arm_copy_unmodified (gdbarch, insn, "neon 8/16/32 bit xfer", dsc);
cca44b1b 7886 else if ((op1 & 0x31) == 0x20 && op && (coproc & 0xe) != 0xa)
7ff120b4 7887 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
cca44b1b 7888 else if ((op1 & 0x31) == 0x21 && op && (coproc & 0xe) != 0xa)
7ff120b4 7889 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
cca44b1b 7890 else if ((op1 & 0x30) == 0x30)
7ff120b4 7891 return arm_copy_svc (gdbarch, insn, regs, dsc);
cca44b1b 7892 else
7ff120b4 7893 return arm_copy_undef (gdbarch, insn, dsc); /* Possibly unreachable. */
cca44b1b
JB
7894}
7895
34518530
YQ
7896static int
7897thumb2_decode_svc_copro (struct gdbarch *gdbarch, uint16_t insn1,
7898 uint16_t insn2, struct regcache *regs,
1152d984 7899 arm_displaced_step_copy_insn_closure *dsc)
34518530
YQ
7900{
7901 unsigned int coproc = bits (insn2, 8, 11);
34518530
YQ
7902 unsigned int bit_5_8 = bits (insn1, 5, 8);
7903 unsigned int bit_9 = bit (insn1, 9);
7904 unsigned int bit_4 = bit (insn1, 4);
34518530
YQ
7905
7906 if (bit_9 == 0)
7907 {
7908 if (bit_5_8 == 2)
7909 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7910 "neon 64bit xfer/mrrc/mrrc2/mcrr/mcrr2",
7911 dsc);
7912 else if (bit_5_8 == 0) /* UNDEFINED. */
7913 return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
7914 else
7915 {
7916 /*coproc is 101x. SIMD/VFP, ext registers load/store. */
7917 if ((coproc & 0xe) == 0xa)
7918 return thumb2_decode_ext_reg_ld_st (gdbarch, insn1, insn2, regs,
7919 dsc);
7920 else /* coproc is not 101x. */
7921 {
7922 if (bit_4 == 0) /* STC/STC2. */
7923 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7924 "stc/stc2", dsc);
405feb71 7925 else /* LDC/LDC2 {literal, immediate}. */
34518530
YQ
7926 return thumb2_copy_copro_load_store (gdbarch, insn1, insn2,
7927 regs, dsc);
7928 }
7929 }
7930 }
7931 else
7932 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "coproc", dsc);
7933
7934 return 0;
7935}
7936
7937static void
7938install_pc_relative (struct gdbarch *gdbarch, struct regcache *regs,
1152d984 7939 arm_displaced_step_copy_insn_closure *dsc, int rd)
34518530
YQ
7940{
7941 /* ADR Rd, #imm
7942
7943 Rewrite as:
7944
7945 Preparation: Rd <- PC
7946 Insn: ADD Rd, #imm
7947 Cleanup: Null.
7948 */
7949
7950 /* Rd <- PC */
7951 int val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
7952 displaced_write_reg (regs, dsc, rd, val, CANNOT_WRITE_PC);
7953}
7954
7955static int
7956thumb_copy_pc_relative_16bit (struct gdbarch *gdbarch, struct regcache *regs,
1152d984 7957 arm_displaced_step_copy_insn_closure *dsc,
34518530
YQ
7958 int rd, unsigned int imm)
7959{
7960
7961 /* Encoding T2: ADDS Rd, #imm */
7962 dsc->modinsn[0] = (0x3000 | (rd << 8) | imm);
7963
7964 install_pc_relative (gdbarch, regs, dsc, rd);
7965
7966 return 0;
7967}
7968
7969static int
7970thumb_decode_pc_relative_16bit (struct gdbarch *gdbarch, uint16_t insn,
7971 struct regcache *regs,
1152d984 7972 arm_displaced_step_copy_insn_closure *dsc)
34518530
YQ
7973{
7974 unsigned int rd = bits (insn, 8, 10);
7975 unsigned int imm8 = bits (insn, 0, 7);
7976
136821d9
SM
7977 displaced_debug_printf ("copying thumb adr r%d, #%d insn %.4x",
7978 rd, imm8, insn);
34518530
YQ
7979
7980 return thumb_copy_pc_relative_16bit (gdbarch, regs, dsc, rd, imm8);
7981}
7982
7983static int
7984thumb_copy_pc_relative_32bit (struct gdbarch *gdbarch, uint16_t insn1,
7985 uint16_t insn2, struct regcache *regs,
1152d984 7986 arm_displaced_step_copy_insn_closure *dsc)
34518530
YQ
7987{
7988 unsigned int rd = bits (insn2, 8, 11);
7989 /* Since immediate has the same encoding in ADR ADD and SUB, so we simply
7990 extract raw immediate encoding rather than computing immediate. When
7991 generating ADD or SUB instruction, we can simply perform OR operation to
7992 set immediate into ADD. */
7993 unsigned int imm_3_8 = insn2 & 0x70ff;
7994 unsigned int imm_i = insn1 & 0x0400; /* Clear all bits except bit 10. */
7995
136821d9
SM
7996 displaced_debug_printf ("copying thumb adr r%d, #%d:%d insn %.4x%.4x",
7997 rd, imm_i, imm_3_8, insn1, insn2);
34518530
YQ
7998
7999 if (bit (insn1, 7)) /* Encoding T2 */
8000 {
8001 /* Encoding T3: SUB Rd, Rd, #imm */
8002 dsc->modinsn[0] = (0xf1a0 | rd | imm_i);
8003 dsc->modinsn[1] = ((rd << 8) | imm_3_8);
8004 }
8005 else /* Encoding T3 */
8006 {
8007 /* Encoding T3: ADD Rd, Rd, #imm */
8008 dsc->modinsn[0] = (0xf100 | rd | imm_i);
8009 dsc->modinsn[1] = ((rd << 8) | imm_3_8);
8010 }
8011 dsc->numinsns = 2;
8012
8013 install_pc_relative (gdbarch, regs, dsc, rd);
8014
8015 return 0;
8016}
8017
8018static int
615234c1 8019thumb_copy_16bit_ldr_literal (struct gdbarch *gdbarch, uint16_t insn1,
34518530 8020 struct regcache *regs,
1152d984 8021 arm_displaced_step_copy_insn_closure *dsc)
34518530
YQ
8022{
8023 unsigned int rt = bits (insn1, 8, 10);
8024 unsigned int pc;
8025 int imm8 = (bits (insn1, 0, 7) << 2);
34518530
YQ
8026
8027 /* LDR Rd, #imm8
8028
8029 Rwrite as:
8030
8031 Preparation: tmp0 <- R0, tmp2 <- R2, tmp3 <- R3, R2 <- PC, R3 <- #imm8;
8032
8033 Insn: LDR R0, [R2, R3];
8034 Cleanup: R2 <- tmp2, R3 <- tmp3, Rd <- R0, R0 <- tmp0 */
8035
136821d9 8036 displaced_debug_printf ("copying thumb ldr r%d [pc #%d]", rt, imm8);
34518530
YQ
8037
8038 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
8039 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
8040 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
8041 pc = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
8042 /* The assembler calculates the required value of the offset from the
8043 Align(PC,4) value of this instruction to the label. */
8044 pc = pc & 0xfffffffc;
8045
8046 displaced_write_reg (regs, dsc, 2, pc, CANNOT_WRITE_PC);
8047 displaced_write_reg (regs, dsc, 3, imm8, CANNOT_WRITE_PC);
8048
8049 dsc->rd = rt;
8050 dsc->u.ldst.xfersize = 4;
8051 dsc->u.ldst.rn = 0;
8052 dsc->u.ldst.immed = 0;
8053 dsc->u.ldst.writeback = 0;
8054 dsc->u.ldst.restore_r4 = 0;
8055
8056 dsc->modinsn[0] = 0x58d0; /* ldr r0, [r2, r3]*/
8057
8058 dsc->cleanup = &cleanup_load;
8059
8060 return 0;
8061}
8062
405feb71 8063/* Copy Thumb cbnz/cbz instruction. */
34518530
YQ
8064
8065static int
8066thumb_copy_cbnz_cbz (struct gdbarch *gdbarch, uint16_t insn1,
8067 struct regcache *regs,
1152d984 8068 arm_displaced_step_copy_insn_closure *dsc)
34518530
YQ
8069{
8070 int non_zero = bit (insn1, 11);
8071 unsigned int imm5 = (bit (insn1, 9) << 6) | (bits (insn1, 3, 7) << 1);
8072 CORE_ADDR from = dsc->insn_addr;
8073 int rn = bits (insn1, 0, 2);
8074 int rn_val = displaced_read_reg (regs, dsc, rn);
8075
8076 dsc->u.branch.cond = (rn_val && non_zero) || (!rn_val && !non_zero);
8077 /* CBNZ and CBZ do not affect the condition flags. If condition is true,
8078 set it INST_AL, so cleanup_branch will know branch is taken, otherwise,
8079 condition is false, let it be, cleanup_branch will do nothing. */
8080 if (dsc->u.branch.cond)
8081 {
8082 dsc->u.branch.cond = INST_AL;
8083 dsc->u.branch.dest = from + 4 + imm5;
8084 }
8085 else
8086 dsc->u.branch.dest = from + 2;
8087
8088 dsc->u.branch.link = 0;
8089 dsc->u.branch.exchange = 0;
8090
136821d9
SM
8091 displaced_debug_printf ("copying %s [r%d = 0x%x] insn %.4x to %.8lx",
8092 non_zero ? "cbnz" : "cbz",
8093 rn, rn_val, insn1, dsc->u.branch.dest);
34518530
YQ
8094
8095 dsc->modinsn[0] = THUMB_NOP;
8096
8097 dsc->cleanup = &cleanup_branch;
8098 return 0;
8099}
8100
8101/* Copy Table Branch Byte/Halfword */
8102static int
8103thumb2_copy_table_branch (struct gdbarch *gdbarch, uint16_t insn1,
8104 uint16_t insn2, struct regcache *regs,
1152d984 8105 arm_displaced_step_copy_insn_closure *dsc)
34518530
YQ
8106{
8107 ULONGEST rn_val, rm_val;
8108 int is_tbh = bit (insn2, 4);
8109 CORE_ADDR halfwords = 0;
8110 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8111
8112 rn_val = displaced_read_reg (regs, dsc, bits (insn1, 0, 3));
8113 rm_val = displaced_read_reg (regs, dsc, bits (insn2, 0, 3));
8114
8115 if (is_tbh)
8116 {
8117 gdb_byte buf[2];
8118
8119 target_read_memory (rn_val + 2 * rm_val, buf, 2);
8120 halfwords = extract_unsigned_integer (buf, 2, byte_order);
8121 }
8122 else
8123 {
8124 gdb_byte buf[1];
8125
8126 target_read_memory (rn_val + rm_val, buf, 1);
8127 halfwords = extract_unsigned_integer (buf, 1, byte_order);
8128 }
8129
136821d9
SM
8130 displaced_debug_printf ("%s base 0x%x offset 0x%x offset 0x%x",
8131 is_tbh ? "tbh" : "tbb",
8132 (unsigned int) rn_val, (unsigned int) rm_val,
8133 (unsigned int) halfwords);
34518530
YQ
8134
8135 dsc->u.branch.cond = INST_AL;
8136 dsc->u.branch.link = 0;
8137 dsc->u.branch.exchange = 0;
8138 dsc->u.branch.dest = dsc->insn_addr + 4 + 2 * halfwords;
8139
8140 dsc->cleanup = &cleanup_branch;
8141
8142 return 0;
8143}
8144
8145static void
8146cleanup_pop_pc_16bit_all (struct gdbarch *gdbarch, struct regcache *regs,
1152d984 8147 arm_displaced_step_copy_insn_closure *dsc)
34518530
YQ
8148{
8149 /* PC <- r7 */
8150 int val = displaced_read_reg (regs, dsc, 7);
8151 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, val, BX_WRITE_PC);
8152
8153 /* r7 <- r8 */
8154 val = displaced_read_reg (regs, dsc, 8);
8155 displaced_write_reg (regs, dsc, 7, val, CANNOT_WRITE_PC);
8156
8157 /* r8 <- tmp[0] */
8158 displaced_write_reg (regs, dsc, 8, dsc->tmp[0], CANNOT_WRITE_PC);
8159
8160}
8161
8162static int
615234c1 8163thumb_copy_pop_pc_16bit (struct gdbarch *gdbarch, uint16_t insn1,
34518530 8164 struct regcache *regs,
1152d984 8165 arm_displaced_step_copy_insn_closure *dsc)
34518530
YQ
8166{
8167 dsc->u.block.regmask = insn1 & 0x00ff;
8168
8169 /* Rewrite instruction: POP {rX, rY, ...,rZ, PC}
8170 to :
8171
8172 (1) register list is full, that is, r0-r7 are used.
8173 Prepare: tmp[0] <- r8
8174
8175 POP {r0, r1, ...., r6, r7}; remove PC from reglist
8176 MOV r8, r7; Move value of r7 to r8;
8177 POP {r7}; Store PC value into r7.
8178
8179 Cleanup: PC <- r7, r7 <- r8, r8 <-tmp[0]
8180
8181 (2) register list is not full, supposing there are N registers in
8182 register list (except PC, 0 <= N <= 7).
8183 Prepare: for each i, 0 - N, tmp[i] <- ri.
8184
8185 POP {r0, r1, ...., rN};
8186
8187 Cleanup: Set registers in original reglist from r0 - rN. Restore r0 - rN
8188 from tmp[] properly.
8189 */
136821d9
SM
8190 displaced_debug_printf ("copying thumb pop {%.8x, pc} insn %.4x",
8191 dsc->u.block.regmask, insn1);
34518530
YQ
8192
8193 if (dsc->u.block.regmask == 0xff)
8194 {
8195 dsc->tmp[0] = displaced_read_reg (regs, dsc, 8);
8196
8197 dsc->modinsn[0] = (insn1 & 0xfeff); /* POP {r0,r1,...,r6, r7} */
8198 dsc->modinsn[1] = 0x46b8; /* MOV r8, r7 */
8199 dsc->modinsn[2] = 0xbc80; /* POP {r7} */
8200
8201 dsc->numinsns = 3;
8202 dsc->cleanup = &cleanup_pop_pc_16bit_all;
8203 }
8204 else
8205 {
5f661e03 8206 unsigned int num_in_list = count_one_bits (dsc->u.block.regmask);
bec2ab5a
SM
8207 unsigned int i;
8208 unsigned int new_regmask;
34518530
YQ
8209
8210 for (i = 0; i < num_in_list + 1; i++)
8211 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
8212
8213 new_regmask = (1 << (num_in_list + 1)) - 1;
8214
136821d9
SM
8215 displaced_debug_printf ("POP {..., pc}: original reg list %.4x, "
8216 "modified list %.4x",
8217 (int) dsc->u.block.regmask, new_regmask);
34518530
YQ
8218
8219 dsc->u.block.regmask |= 0x8000;
8220 dsc->u.block.writeback = 0;
8221 dsc->u.block.cond = INST_AL;
8222
8223 dsc->modinsn[0] = (insn1 & ~0x1ff) | (new_regmask & 0xff);
8224
8225 dsc->cleanup = &cleanup_block_load_pc;
8226 }
8227
8228 return 0;
8229}
8230
8231static void
8232thumb_process_displaced_16bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
8233 struct regcache *regs,
1152d984 8234 arm_displaced_step_copy_insn_closure *dsc)
34518530
YQ
8235{
8236 unsigned short op_bit_12_15 = bits (insn1, 12, 15);
8237 unsigned short op_bit_10_11 = bits (insn1, 10, 11);
8238 int err = 0;
8239
8240 /* 16-bit thumb instructions. */
8241 switch (op_bit_12_15)
8242 {
8243 /* Shift (imme), add, subtract, move and compare. */
8244 case 0: case 1: case 2: case 3:
8245 err = thumb_copy_unmodified_16bit (gdbarch, insn1,
8246 "shift/add/sub/mov/cmp",
8247 dsc);
8248 break;
8249 case 4:
8250 switch (op_bit_10_11)
8251 {
8252 case 0: /* Data-processing */
8253 err = thumb_copy_unmodified_16bit (gdbarch, insn1,
8254 "data-processing",
8255 dsc);
8256 break;
8257 case 1: /* Special data instructions and branch and exchange. */
8258 {
8259 unsigned short op = bits (insn1, 7, 9);
8260 if (op == 6 || op == 7) /* BX or BLX */
8261 err = thumb_copy_bx_blx_reg (gdbarch, insn1, regs, dsc);
8262 else if (bits (insn1, 6, 7) != 0) /* ADD/MOV/CMP high registers. */
8263 err = thumb_copy_alu_reg (gdbarch, insn1, regs, dsc);
8264 else
8265 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "special data",
8266 dsc);
8267 }
8268 break;
8269 default: /* LDR (literal) */
8270 err = thumb_copy_16bit_ldr_literal (gdbarch, insn1, regs, dsc);
8271 }
8272 break;
8273 case 5: case 6: case 7: case 8: case 9: /* Load/Store single data item */
8274 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldr/str", dsc);
8275 break;
8276 case 10:
8277 if (op_bit_10_11 < 2) /* Generate PC-relative address */
8278 err = thumb_decode_pc_relative_16bit (gdbarch, insn1, regs, dsc);
8279 else /* Generate SP-relative address */
8280 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "sp-relative", dsc);
8281 break;
8282 case 11: /* Misc 16-bit instructions */
8283 {
8284 switch (bits (insn1, 8, 11))
8285 {
8286 case 1: case 3: case 9: case 11: /* CBNZ, CBZ */
8287 err = thumb_copy_cbnz_cbz (gdbarch, insn1, regs, dsc);
8288 break;
8289 case 12: case 13: /* POP */
8290 if (bit (insn1, 8)) /* PC is in register list. */
8291 err = thumb_copy_pop_pc_16bit (gdbarch, insn1, regs, dsc);
8292 else
8293 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "pop", dsc);
8294 break;
8295 case 15: /* If-Then, and hints */
8296 if (bits (insn1, 0, 3))
8297 /* If-Then makes up to four following instructions conditional.
8298 IT instruction itself is not conditional, so handle it as a
8299 common unmodified instruction. */
8300 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "If-Then",
8301 dsc);
8302 else
8303 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "hints", dsc);
8304 break;
8305 default:
8306 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "misc", dsc);
8307 }
8308 }
8309 break;
8310 case 12:
8311 if (op_bit_10_11 < 2) /* Store multiple registers */
8312 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "stm", dsc);
8313 else /* Load multiple registers */
8314 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldm", dsc);
8315 break;
8316 case 13: /* Conditional branch and supervisor call */
8317 if (bits (insn1, 9, 11) != 7) /* conditional branch */
8318 err = thumb_copy_b (gdbarch, insn1, dsc);
8319 else
8320 err = thumb_copy_svc (gdbarch, insn1, regs, dsc);
8321 break;
8322 case 14: /* Unconditional branch */
8323 err = thumb_copy_b (gdbarch, insn1, dsc);
8324 break;
8325 default:
8326 err = 1;
8327 }
8328
8329 if (err)
f34652de 8330 internal_error (_("thumb_process_displaced_16bit_insn: Instruction decode error"));
34518530
YQ
8331}
8332
8333static int
8334decode_thumb_32bit_ld_mem_hints (struct gdbarch *gdbarch,
8335 uint16_t insn1, uint16_t insn2,
8336 struct regcache *regs,
1152d984 8337 arm_displaced_step_copy_insn_closure *dsc)
34518530
YQ
8338{
8339 int rt = bits (insn2, 12, 15);
8340 int rn = bits (insn1, 0, 3);
8341 int op1 = bits (insn1, 7, 8);
34518530
YQ
8342
8343 switch (bits (insn1, 5, 6))
8344 {
8345 case 0: /* Load byte and memory hints */
8346 if (rt == 0xf) /* PLD/PLI */
8347 {
8348 if (rn == 0xf)
8349 /* PLD literal or Encoding T3 of PLI(immediate, literal). */
8350 return thumb2_copy_preload (gdbarch, insn1, insn2, regs, dsc);
8351 else
8352 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8353 "pli/pld", dsc);
8354 }
8355 else
8356 {
8357 if (rn == 0xf) /* LDRB/LDRSB (literal) */
8358 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
8359 1);
8360 else
8361 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8362 "ldrb{reg, immediate}/ldrbt",
8363 dsc);
8364 }
8365
8366 break;
8367 case 1: /* Load halfword and memory hints. */
8368 if (rt == 0xf) /* PLD{W} and Unalloc memory hint. */
8369 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8370 "pld/unalloc memhint", dsc);
8371 else
8372 {
8373 if (rn == 0xf)
8374 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
8375 2);
8376 else
8377 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8378 "ldrh/ldrht", dsc);
8379 }
8380 break;
8381 case 2: /* Load word */
8382 {
8383 int insn2_bit_8_11 = bits (insn2, 8, 11);
8384
8385 if (rn == 0xf)
8386 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, 4);
8387 else if (op1 == 0x1) /* Encoding T3 */
8388 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, dsc,
8389 0, 1);
8390 else /* op1 == 0x0 */
8391 {
8392 if (insn2_bit_8_11 == 0xc || (insn2_bit_8_11 & 0x9) == 0x9)
8393 /* LDR (immediate) */
8394 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
8395 dsc, bit (insn2, 8), 1);
8396 else if (insn2_bit_8_11 == 0xe) /* LDRT */
8397 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8398 "ldrt", dsc);
8399 else
8400 /* LDR (register) */
8401 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
8402 dsc, 0, 0);
8403 }
8404 break;
8405 }
8406 default:
8407 return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
8408 break;
8409 }
8410 return 0;
8411}
8412
8413static void
8414thumb_process_displaced_32bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
8415 uint16_t insn2, struct regcache *regs,
1152d984 8416 arm_displaced_step_copy_insn_closure *dsc)
34518530
YQ
8417{
8418 int err = 0;
8419 unsigned short op = bit (insn2, 15);
8420 unsigned int op1 = bits (insn1, 11, 12);
8421
8422 switch (op1)
8423 {
8424 case 1:
8425 {
8426 switch (bits (insn1, 9, 10))
8427 {
8428 case 0:
8429 if (bit (insn1, 6))
8430 {
405feb71 8431 /* Load/store {dual, exclusive}, table branch. */
34518530
YQ
8432 if (bits (insn1, 7, 8) == 1 && bits (insn1, 4, 5) == 1
8433 && bits (insn2, 5, 7) == 0)
8434 err = thumb2_copy_table_branch (gdbarch, insn1, insn2, regs,
8435 dsc);
8436 else
8437 /* PC is not allowed to use in load/store {dual, exclusive}
8438 instructions. */
8439 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8440 "load/store dual/ex", dsc);
8441 }
8442 else /* load/store multiple */
8443 {
8444 switch (bits (insn1, 7, 8))
8445 {
8446 case 0: case 3: /* SRS, RFE */
8447 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8448 "srs/rfe", dsc);
8449 break;
8450 case 1: case 2: /* LDM/STM/PUSH/POP */
8451 err = thumb2_copy_block_xfer (gdbarch, insn1, insn2, regs, dsc);
8452 break;
8453 }
8454 }
8455 break;
8456
8457 case 1:
8458 /* Data-processing (shift register). */
8459 err = thumb2_decode_dp_shift_reg (gdbarch, insn1, insn2, regs,
8460 dsc);
8461 break;
8462 default: /* Coprocessor instructions. */
8463 err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
8464 break;
8465 }
8466 break;
8467 }
8468 case 2: /* op1 = 2 */
8469 if (op) /* Branch and misc control. */
8470 {
8471 if (bit (insn2, 14) /* BLX/BL */
8472 || bit (insn2, 12) /* Unconditional branch */
8473 || (bits (insn1, 7, 9) != 0x7)) /* Conditional branch */
8474 err = thumb2_copy_b_bl_blx (gdbarch, insn1, insn2, regs, dsc);
8475 else
8476 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8477 "misc ctrl", dsc);
8478 }
8479 else
8480 {
8481 if (bit (insn1, 9)) /* Data processing (plain binary imm). */
8482 {
b926417a 8483 int dp_op = bits (insn1, 4, 8);
34518530 8484 int rn = bits (insn1, 0, 3);
b926417a 8485 if ((dp_op == 0 || dp_op == 0xa) && rn == 0xf)
34518530
YQ
8486 err = thumb_copy_pc_relative_32bit (gdbarch, insn1, insn2,
8487 regs, dsc);
8488 else
8489 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8490 "dp/pb", dsc);
8491 }
405feb71 8492 else /* Data processing (modified immediate) */
34518530
YQ
8493 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8494 "dp/mi", dsc);
8495 }
8496 break;
8497 case 3: /* op1 = 3 */
8498 switch (bits (insn1, 9, 10))
8499 {
8500 case 0:
8501 if (bit (insn1, 4))
8502 err = decode_thumb_32bit_ld_mem_hints (gdbarch, insn1, insn2,
8503 regs, dsc);
8504 else /* NEON Load/Store and Store single data item */
8505 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8506 "neon elt/struct load/store",
8507 dsc);
8508 break;
8509 case 1: /* op1 = 3, bits (9, 10) == 1 */
8510 switch (bits (insn1, 7, 8))
8511 {
8512 case 0: case 1: /* Data processing (register) */
8513 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8514 "dp(reg)", dsc);
8515 break;
8516 case 2: /* Multiply and absolute difference */
8517 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8518 "mul/mua/diff", dsc);
8519 break;
8520 case 3: /* Long multiply and divide */
8521 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
8522 "lmul/lmua", dsc);
8523 break;
8524 }
8525 break;
8526 default: /* Coprocessor instructions */
8527 err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
8528 break;
8529 }
8530 break;
8531 default:
8532 err = 1;
8533 }
8534
8535 if (err)
f34652de 8536 internal_error (_("thumb_process_displaced_32bit_insn: Instruction decode error"));
34518530
YQ
8537
8538}
8539
b434a28f
YQ
8540static void
8541thumb_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
12545665 8542 struct regcache *regs,
1152d984 8543 arm_displaced_step_copy_insn_closure *dsc)
b434a28f 8544{
34518530
YQ
8545 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
8546 uint16_t insn1
8547 = read_memory_unsigned_integer (from, 2, byte_order_for_code);
8548
136821d9
SM
8549 displaced_debug_printf ("process thumb insn %.4x at %.8lx",
8550 insn1, (unsigned long) from);
34518530
YQ
8551
8552 dsc->is_thumb = 1;
8553 dsc->insn_size = thumb_insn_size (insn1);
8554 if (thumb_insn_size (insn1) == 4)
8555 {
8556 uint16_t insn2
8557 = read_memory_unsigned_integer (from + 2, 2, byte_order_for_code);
8558 thumb_process_displaced_32bit_insn (gdbarch, insn1, insn2, regs, dsc);
8559 }
8560 else
8561 thumb_process_displaced_16bit_insn (gdbarch, insn1, regs, dsc);
b434a28f
YQ
8562}
8563
cca44b1b 8564void
b434a28f
YQ
8565arm_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
8566 CORE_ADDR to, struct regcache *regs,
1152d984 8567 arm_displaced_step_copy_insn_closure *dsc)
cca44b1b
JB
8568{
8569 int err = 0;
b434a28f
YQ
8570 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
8571 uint32_t insn;
cca44b1b
JB
8572
8573 /* Most displaced instructions use a 1-instruction scratch space, so set this
8574 here and override below if/when necessary. */
8575 dsc->numinsns = 1;
8576 dsc->insn_addr = from;
8577 dsc->scratch_base = to;
8578 dsc->cleanup = NULL;
8579 dsc->wrote_to_pc = 0;
8580
b434a28f 8581 if (!displaced_in_arm_mode (regs))
12545665 8582 return thumb_process_displaced_insn (gdbarch, from, regs, dsc);
b434a28f 8583
4db71c0b
YQ
8584 dsc->is_thumb = 0;
8585 dsc->insn_size = 4;
b434a28f 8586 insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
136821d9
SM
8587 displaced_debug_printf ("stepping insn %.8lx at %.8lx",
8588 (unsigned long) insn, (unsigned long) from);
b434a28f 8589
cca44b1b 8590 if ((insn & 0xf0000000) == 0xf0000000)
7ff120b4 8591 err = arm_decode_unconditional (gdbarch, insn, regs, dsc);
cca44b1b
JB
8592 else switch (((insn & 0x10) >> 4) | ((insn & 0xe000000) >> 24))
8593 {
8594 case 0x0: case 0x1: case 0x2: case 0x3:
7ff120b4 8595 err = arm_decode_dp_misc (gdbarch, insn, regs, dsc);
cca44b1b
JB
8596 break;
8597
8598 case 0x4: case 0x5: case 0x6:
7ff120b4 8599 err = arm_decode_ld_st_word_ubyte (gdbarch, insn, regs, dsc);
cca44b1b
JB
8600 break;
8601
8602 case 0x7:
7ff120b4 8603 err = arm_decode_media (gdbarch, insn, dsc);
cca44b1b
JB
8604 break;
8605
8606 case 0x8: case 0x9: case 0xa: case 0xb:
7ff120b4 8607 err = arm_decode_b_bl_ldmstm (gdbarch, insn, regs, dsc);
cca44b1b
JB
8608 break;
8609
8610 case 0xc: case 0xd: case 0xe: case 0xf:
12545665 8611 err = arm_decode_svc_copro (gdbarch, insn, regs, dsc);
cca44b1b
JB
8612 break;
8613 }
8614
8615 if (err)
f34652de 8616 internal_error (_("arm_process_displaced_insn: Instruction decode error"));
cca44b1b
JB
8617}
8618
8619/* Actually set up the scratch space for a displaced instruction. */
8620
8621void
8622arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from,
1152d984
SM
8623 CORE_ADDR to,
8624 arm_displaced_step_copy_insn_closure *dsc)
cca44b1b 8625{
08106042 8626 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
4db71c0b 8627 unsigned int i, len, offset;
cca44b1b 8628 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
05d63baf 8629 int size = dsc->is_thumb ? 2 : 4;
948f8e3d 8630 const gdb_byte *bkp_insn;
cca44b1b 8631
4db71c0b 8632 offset = 0;
cca44b1b
JB
8633 /* Poke modified instruction(s). */
8634 for (i = 0; i < dsc->numinsns; i++)
8635 {
136821d9
SM
8636 if (size == 4)
8637 displaced_debug_printf ("writing insn %.8lx at %.8lx",
8638 dsc->modinsn[i], (unsigned long) to + offset);
8639 else if (size == 2)
8640 displaced_debug_printf ("writing insn %.4x at %.8lx",
8641 (unsigned short) dsc->modinsn[i],
8642 (unsigned long) to + offset);
4db71c0b 8643
4db71c0b
YQ
8644 write_memory_unsigned_integer (to + offset, size,
8645 byte_order_for_code,
cca44b1b 8646 dsc->modinsn[i]);
4db71c0b
YQ
8647 offset += size;
8648 }
8649
8650 /* Choose the correct breakpoint instruction. */
8651 if (dsc->is_thumb)
8652 {
8653 bkp_insn = tdep->thumb_breakpoint;
8654 len = tdep->thumb_breakpoint_size;
8655 }
8656 else
8657 {
8658 bkp_insn = tdep->arm_breakpoint;
8659 len = tdep->arm_breakpoint_size;
cca44b1b
JB
8660 }
8661
8662 /* Put breakpoint afterwards. */
4db71c0b 8663 write_memory (to + offset, bkp_insn, len);
cca44b1b 8664
136821d9
SM
8665 displaced_debug_printf ("copy %s->%s", paddress (gdbarch, from),
8666 paddress (gdbarch, to));
cca44b1b
JB
8667}
8668
cca44b1b
JB
8669/* Entry point for cleaning things up after a displaced instruction has been
8670 single-stepped. */
8671
8672void
8673arm_displaced_step_fixup (struct gdbarch *gdbarch,
1152d984 8674 struct displaced_step_copy_insn_closure *dsc_,
cca44b1b 8675 CORE_ADDR from, CORE_ADDR to,
cf141dd8 8676 struct regcache *regs, bool completed_p)
cca44b1b 8677{
cf141dd8
AB
8678 /* The following block exists as a temporary measure while displaced
8679 stepping is fixed architecture at a time within GDB.
8680
8681 In an earlier implementation of displaced stepping, if GDB thought the
8682 displaced instruction had not been executed then this fix up function
8683 was never called. As a consequence, things that should be fixed by
8684 this function were left in an unfixed state.
8685
8686 However, it's not as simple as always calling this function; this
8687 function needs to be updated to decide what should be fixed up based
8688 on whether the displaced step executed or not, which requires each
8689 architecture to be considered individually.
8690
8691 Until this architecture is updated, this block replicates the old
8692 behaviour; we just restore the program counter register, and leave
8693 everything else unfixed. */
8694 if (!completed_p)
8695 {
8696 CORE_ADDR pc = regcache_read_pc (regs);
8697 pc = from + (pc - to);
8698 regcache_write_pc (regs, pc);
8699 return;
8700 }
8701
1152d984
SM
8702 arm_displaced_step_copy_insn_closure *dsc
8703 = (arm_displaced_step_copy_insn_closure *) dsc_;
cfba9872 8704
cca44b1b
JB
8705 if (dsc->cleanup)
8706 dsc->cleanup (gdbarch, regs, dsc);
8707
8708 if (!dsc->wrote_to_pc)
4db71c0b
YQ
8709 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
8710 dsc->insn_addr + dsc->insn_size);
8711
cca44b1b
JB
8712}
8713
8714#include "bfd-in2.h"
8715#include "libcoff.h"
8716
8717static int
8718gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
8719{
f0c2e3e0
AB
8720 gdb_disassemble_info *di
8721 = static_cast<gdb_disassemble_info *> (info->application_data);
e47ad6c0 8722 struct gdbarch *gdbarch = di->arch ();
9779414d
DJ
8723
8724 if (arm_pc_is_thumb (gdbarch, memaddr))
cca44b1b
JB
8725 {
8726 static asymbol *asym;
8727 static combined_entry_type ce;
8728 static struct coff_symbol_struct csym;
8729 static struct bfd fake_bfd;
8730 static bfd_target fake_target;
8731
8732 if (csym.native == NULL)
8733 {
8734 /* Create a fake symbol vector containing a Thumb symbol.
8735 This is solely so that the code in print_insn_little_arm()
8736 and print_insn_big_arm() in opcodes/arm-dis.c will detect
8737 the presence of a Thumb symbol and switch to decoding
8738 Thumb instructions. */
8739
8740 fake_target.flavour = bfd_target_coff_flavour;
8741 fake_bfd.xvec = &fake_target;
8742 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
8743 csym.native = &ce;
8744 csym.symbol.the_bfd = &fake_bfd;
8745 csym.symbol.name = "fake";
8746 asym = (asymbol *) & csym;
8747 }
8748
8749 memaddr = UNMAKE_THUMB_ADDR (memaddr);
8750 info->symbols = &asym;
8751 }
8752 else
8753 info->symbols = NULL;
8754
e60eb288
YQ
8755 /* GDB is able to get bfd_mach from the exe_bfd, info->mach is
8756 accurate, so mark USER_SPECIFIED_MACHINE_TYPE bit. Otherwise,
8757 opcodes/arm-dis.c:print_insn reset info->mach, and it will trigger
7e10abd1
TT
8758 the assert on the mismatch of info->mach and
8759 bfd_get_mach (current_program_space->exec_bfd ()) in
8760 default_print_insn. */
3047c786
TV
8761 if (current_program_space->exec_bfd () != NULL
8762 && (current_program_space->exec_bfd ()->arch_info
8763 == gdbarch_bfd_arch_info (gdbarch)))
e60eb288
YQ
8764 info->flags |= USER_SPECIFIED_MACHINE_TYPE;
8765
6394c606 8766 return default_print_insn (memaddr, info);
cca44b1b
JB
8767}
8768
8769/* The following define instruction sequences that will cause ARM
8770 cpu's to take an undefined instruction trap. These are used to
8771 signal a breakpoint to GDB.
8772
8773 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
8774 modes. A different instruction is required for each mode. The ARM
8775 cpu's can also be big or little endian. Thus four different
8776 instructions are needed to support all cases.
8777
8778 Note: ARMv4 defines several new instructions that will take the
8779 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
8780 not in fact add the new instructions. The new undefined
8781 instructions in ARMv4 are all instructions that had no defined
8782 behaviour in earlier chips. There is no guarantee that they will
8783 raise an exception, but may be treated as NOP's. In practice, it
8784 may only safe to rely on instructions matching:
8785
8786 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
8787 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
8788 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
8789
0963b4bd 8790 Even this may only true if the condition predicate is true. The
cca44b1b
JB
8791 following use a condition predicate of ALWAYS so it is always TRUE.
8792
8793 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
8794 and NetBSD all use a software interrupt rather than an undefined
8795 instruction to force a trap. This can be handled by by the
8796 abi-specific code during establishment of the gdbarch vector. */
8797
8798#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
8799#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
8800#define THUMB_LE_BREAKPOINT {0xbe,0xbe}
8801#define THUMB_BE_BREAKPOINT {0xbe,0xbe}
8802
948f8e3d
PA
8803static const gdb_byte arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
8804static const gdb_byte arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
8805static const gdb_byte arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
8806static const gdb_byte arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
cca44b1b 8807
cd6c3b4f
YQ
8808/* Implement the breakpoint_kind_from_pc gdbarch method. */
8809
d19280ad
YQ
8810static int
8811arm_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
cca44b1b 8812{
08106042 8813 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
177321bd 8814 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
cca44b1b 8815
9779414d 8816 if (arm_pc_is_thumb (gdbarch, *pcptr))
cca44b1b
JB
8817 {
8818 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
177321bd
DJ
8819
8820 /* If we have a separate 32-bit breakpoint instruction for Thumb-2,
8821 check whether we are replacing a 32-bit instruction. */
8822 if (tdep->thumb2_breakpoint != NULL)
8823 {
8824 gdb_byte buf[2];
d19280ad 8825
177321bd
DJ
8826 if (target_read_memory (*pcptr, buf, 2) == 0)
8827 {
8828 unsigned short inst1;
d19280ad 8829
177321bd 8830 inst1 = extract_unsigned_integer (buf, 2, byte_order_for_code);
db24da6d 8831 if (thumb_insn_size (inst1) == 4)
d19280ad 8832 return ARM_BP_KIND_THUMB2;
177321bd
DJ
8833 }
8834 }
8835
d19280ad 8836 return ARM_BP_KIND_THUMB;
cca44b1b
JB
8837 }
8838 else
d19280ad
YQ
8839 return ARM_BP_KIND_ARM;
8840
8841}
8842
cd6c3b4f
YQ
8843/* Implement the sw_breakpoint_from_kind gdbarch method. */
8844
d19280ad
YQ
8845static const gdb_byte *
8846arm_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
8847{
08106042 8848 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
d19280ad
YQ
8849
8850 switch (kind)
cca44b1b 8851 {
d19280ad
YQ
8852 case ARM_BP_KIND_ARM:
8853 *size = tdep->arm_breakpoint_size;
cca44b1b 8854 return tdep->arm_breakpoint;
d19280ad
YQ
8855 case ARM_BP_KIND_THUMB:
8856 *size = tdep->thumb_breakpoint_size;
8857 return tdep->thumb_breakpoint;
8858 case ARM_BP_KIND_THUMB2:
8859 *size = tdep->thumb2_breakpoint_size;
8860 return tdep->thumb2_breakpoint;
8861 default:
8862 gdb_assert_not_reached ("unexpected arm breakpoint kind");
cca44b1b
JB
8863 }
8864}
8865
833b7ab5
YQ
8866/* Implement the breakpoint_kind_from_current_state gdbarch method. */
8867
8868static int
8869arm_breakpoint_kind_from_current_state (struct gdbarch *gdbarch,
8870 struct regcache *regcache,
8871 CORE_ADDR *pcptr)
8872{
8873 gdb_byte buf[4];
8874
8875 /* Check the memory pointed by PC is readable. */
8876 if (target_read_memory (regcache_read_pc (regcache), buf, 4) == 0)
8877 {
8878 struct arm_get_next_pcs next_pcs_ctx;
833b7ab5
YQ
8879
8880 arm_get_next_pcs_ctor (&next_pcs_ctx,
8881 &arm_get_next_pcs_ops,
8882 gdbarch_byte_order (gdbarch),
8883 gdbarch_byte_order_for_code (gdbarch),
8884 0,
8885 regcache);
8886
a0ff9e1a 8887 std::vector<CORE_ADDR> next_pcs = arm_get_next_pcs (&next_pcs_ctx);
833b7ab5
YQ
8888
8889 /* If MEMADDR is the next instruction of current pc, do the
8890 software single step computation, and get the thumb mode by
8891 the destination address. */
a0ff9e1a 8892 for (CORE_ADDR pc : next_pcs)
833b7ab5
YQ
8893 {
8894 if (UNMAKE_THUMB_ADDR (pc) == *pcptr)
8895 {
833b7ab5
YQ
8896 if (IS_THUMB_ADDR (pc))
8897 {
8898 *pcptr = MAKE_THUMB_ADDR (*pcptr);
8899 return arm_breakpoint_kind_from_pc (gdbarch, pcptr);
8900 }
8901 else
8902 return ARM_BP_KIND_ARM;
8903 }
8904 }
833b7ab5
YQ
8905 }
8906
8907 return arm_breakpoint_kind_from_pc (gdbarch, pcptr);
8908}
8909
cca44b1b
JB
8910/* Extract from an array REGBUF containing the (raw) register state a
8911 function return value of type TYPE, and copy that, in virtual
8912 format, into VALBUF. */
8913
8914static void
8915arm_extract_return_value (struct type *type, struct regcache *regs,
8916 gdb_byte *valbuf)
8917{
ac7936df 8918 struct gdbarch *gdbarch = regs->arch ();
cca44b1b 8919 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
08106042 8920 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
b4b9074d
TT
8921
8922 while (type->code () == TYPE_CODE_RANGE)
8923 type = check_typedef (type->target_type ());
cca44b1b 8924
78134374 8925 if (TYPE_CODE_FLT == type->code ())
cca44b1b 8926 {
345bd07c 8927 switch (tdep->fp_model)
cca44b1b
JB
8928 {
8929 case ARM_FLOAT_FPA:
8930 {
8931 /* The value is in register F0 in internal format. We need to
8932 extract the raw value and then convert it to the desired
8933 internal type. */
f0452268 8934 bfd_byte tmpbuf[ARM_FP_REGISTER_SIZE];
cca44b1b 8935
dca08e1f 8936 regs->cooked_read (ARM_F0_REGNUM, tmpbuf);
3b2ca824
UW
8937 target_float_convert (tmpbuf, arm_ext_type (gdbarch),
8938 valbuf, type);
cca44b1b
JB
8939 }
8940 break;
8941
8942 case ARM_FLOAT_SOFT_FPA:
8943 case ARM_FLOAT_SOFT_VFP:
8944 /* ARM_FLOAT_VFP can arise if this is a variadic function so
8945 not using the VFP ABI code. */
8946 case ARM_FLOAT_VFP:
dca08e1f 8947 regs->cooked_read (ARM_A1_REGNUM, valbuf);
df86565b 8948 if (type->length () > 4)
f0452268
AH
8949 regs->cooked_read (ARM_A1_REGNUM + 1,
8950 valbuf + ARM_INT_REGISTER_SIZE);
cca44b1b
JB
8951 break;
8952
8953 default:
f34652de 8954 internal_error (_("arm_extract_return_value: "
0963b4bd 8955 "Floating point model not supported"));
cca44b1b
JB
8956 break;
8957 }
8958 }
78134374
SM
8959 else if (type->code () == TYPE_CODE_INT
8960 || type->code () == TYPE_CODE_CHAR
8961 || type->code () == TYPE_CODE_BOOL
8962 || type->code () == TYPE_CODE_PTR
aa006118 8963 || TYPE_IS_REFERENCE (type)
a6617193
JB
8964 || type->code () == TYPE_CODE_ENUM
8965 || is_fixed_point_type (type))
cca44b1b 8966 {
b021a221
MS
8967 /* If the type is a plain integer, then the access is
8968 straight-forward. Otherwise we have to play around a bit
8969 more. */
df86565b 8970 int len = type->length ();
cca44b1b
JB
8971 int regno = ARM_A1_REGNUM;
8972 ULONGEST tmp;
8973
8974 while (len > 0)
8975 {
8976 /* By using store_unsigned_integer we avoid having to do
8977 anything special for small big-endian values. */
8978 regcache_cooked_read_unsigned (regs, regno++, &tmp);
8979 store_unsigned_integer (valbuf,
f0452268
AH
8980 (len > ARM_INT_REGISTER_SIZE
8981 ? ARM_INT_REGISTER_SIZE : len),
cca44b1b 8982 byte_order, tmp);
f0452268
AH
8983 len -= ARM_INT_REGISTER_SIZE;
8984 valbuf += ARM_INT_REGISTER_SIZE;
cca44b1b
JB
8985 }
8986 }
8987 else
8988 {
8989 /* For a structure or union the behaviour is as if the value had
dda83cd7
SM
8990 been stored to word-aligned memory and then loaded into
8991 registers with 32-bit load instruction(s). */
df86565b 8992 int len = type->length ();
cca44b1b 8993 int regno = ARM_A1_REGNUM;
f0452268 8994 bfd_byte tmpbuf[ARM_INT_REGISTER_SIZE];
cca44b1b
JB
8995
8996 while (len > 0)
8997 {
dca08e1f 8998 regs->cooked_read (regno++, tmpbuf);
cca44b1b 8999 memcpy (valbuf, tmpbuf,
f0452268
AH
9000 len > ARM_INT_REGISTER_SIZE ? ARM_INT_REGISTER_SIZE : len);
9001 len -= ARM_INT_REGISTER_SIZE;
9002 valbuf += ARM_INT_REGISTER_SIZE;
cca44b1b
JB
9003 }
9004 }
9005}
9006
9007
9008/* Will a function return an aggregate type in memory or in a
9009 register? Return 0 if an aggregate type can be returned in a
9010 register, 1 if it must be returned in memory. */
9011
9012static int
9013arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
9014{
cca44b1b
JB
9015 enum type_code code;
9016
f168693b 9017 type = check_typedef (type);
cca44b1b 9018
b13c8ab2
YQ
9019 /* Simple, non-aggregate types (ie not including vectors and
9020 complex) are always returned in a register (or registers). */
78134374 9021 code = type->code ();
b13c8ab2
YQ
9022 if (TYPE_CODE_STRUCT != code && TYPE_CODE_UNION != code
9023 && TYPE_CODE_ARRAY != code && TYPE_CODE_COMPLEX != code)
9024 return 0;
cca44b1b 9025
911627e7
TT
9026 if (TYPE_HAS_DYNAMIC_LENGTH (type))
9027 return 1;
9028
bd63c870 9029 if (TYPE_CODE_ARRAY == code && type->is_vector ())
c4312b19
YQ
9030 {
9031 /* Vector values should be returned using ARM registers if they
9032 are not over 16 bytes. */
df86565b 9033 return (type->length () > 16);
c4312b19
YQ
9034 }
9035
08106042 9036 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
345bd07c 9037 if (tdep->arm_abi != ARM_ABI_APCS)
cca44b1b 9038 {
b13c8ab2
YQ
9039 /* The AAPCS says all aggregates not larger than a word are returned
9040 in a register. */
df86565b 9041 if (type->length () <= ARM_INT_REGISTER_SIZE
bab22d06 9042 && language_pass_by_reference (type).trivially_copyable)
b13c8ab2
YQ
9043 return 0;
9044
cca44b1b
JB
9045 return 1;
9046 }
b13c8ab2
YQ
9047 else
9048 {
9049 int nRc;
cca44b1b 9050
b13c8ab2
YQ
9051 /* All aggregate types that won't fit in a register must be returned
9052 in memory. */
df86565b 9053 if (type->length () > ARM_INT_REGISTER_SIZE
bab22d06 9054 || !language_pass_by_reference (type).trivially_copyable)
b13c8ab2 9055 return 1;
cca44b1b 9056
b13c8ab2
YQ
9057 /* In the ARM ABI, "integer" like aggregate types are returned in
9058 registers. For an aggregate type to be integer like, its size
f0452268 9059 must be less than or equal to ARM_INT_REGISTER_SIZE and the
b13c8ab2
YQ
9060 offset of each addressable subfield must be zero. Note that bit
9061 fields are not addressable, and all addressable subfields of
9062 unions always start at offset zero.
cca44b1b 9063
b13c8ab2
YQ
9064 This function is based on the behaviour of GCC 2.95.1.
9065 See: gcc/arm.c: arm_return_in_memory() for details.
cca44b1b 9066
b13c8ab2
YQ
9067 Note: All versions of GCC before GCC 2.95.2 do not set up the
9068 parameters correctly for a function returning the following
9069 structure: struct { float f;}; This should be returned in memory,
9070 not a register. Richard Earnshaw sent me a patch, but I do not
9071 know of any way to detect if a function like the above has been
9072 compiled with the correct calling convention. */
9073
9074 /* Assume all other aggregate types can be returned in a register.
9075 Run a check for structures, unions and arrays. */
9076 nRc = 0;
67255d04 9077
b13c8ab2
YQ
9078 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
9079 {
9080 int i;
9081 /* Need to check if this struct/union is "integer" like. For
9082 this to be true, its size must be less than or equal to
f0452268 9083 ARM_INT_REGISTER_SIZE and the offset of each addressable
b13c8ab2
YQ
9084 subfield must be zero. Note that bit fields are not
9085 addressable, and unions always start at offset zero. If any
9086 of the subfields is a floating point type, the struct/union
9087 cannot be an integer type. */
9088
9089 /* For each field in the object, check:
9090 1) Is it FP? --> yes, nRc = 1;
9091 2) Is it addressable (bitpos != 0) and
9092 not packed (bitsize == 0)?
9093 --> yes, nRc = 1
9094 */
9095
1f704f76 9096 for (i = 0; i < type->num_fields (); i++)
67255d04 9097 {
b13c8ab2
YQ
9098 enum type_code field_type_code;
9099
9100 field_type_code
940da03e 9101 = check_typedef (type->field (i).type ())->code ();
b13c8ab2
YQ
9102
9103 /* Is it a floating point type field? */
9104 if (field_type_code == TYPE_CODE_FLT)
67255d04
RE
9105 {
9106 nRc = 1;
9107 break;
9108 }
b13c8ab2
YQ
9109
9110 /* If bitpos != 0, then we have to care about it. */
b610c045 9111 if (type->field (i).loc_bitpos () != 0)
b13c8ab2
YQ
9112 {
9113 /* Bitfields are not addressable. If the field bitsize is
9114 zero, then the field is not packed. Hence it cannot be
9115 a bitfield or any other packed type. */
3757d2d4 9116 if (type->field (i).bitsize () == 0)
b13c8ab2
YQ
9117 {
9118 nRc = 1;
9119 break;
9120 }
9121 }
67255d04
RE
9122 }
9123 }
67255d04 9124
b13c8ab2
YQ
9125 return nRc;
9126 }
67255d04
RE
9127}
9128
34e8f22d
RE
9129/* Write into appropriate registers a function return value of type
9130 TYPE, given in virtual format. */
9131
9132static void
b508a996 9133arm_store_return_value (struct type *type, struct regcache *regs,
5238cf52 9134 const gdb_byte *valbuf)
34e8f22d 9135{
ac7936df 9136 struct gdbarch *gdbarch = regs->arch ();
e17a4113 9137 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
be8626e0 9138
47231c30
TT
9139 while (type->code () == TYPE_CODE_RANGE)
9140 type = check_typedef (type->target_type ());
9141
78134374 9142 if (type->code () == TYPE_CODE_FLT)
34e8f22d 9143 {
f0452268 9144 gdb_byte buf[ARM_FP_REGISTER_SIZE];
08106042 9145 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
34e8f22d 9146
345bd07c 9147 switch (tdep->fp_model)
08216dd7
RE
9148 {
9149 case ARM_FLOAT_FPA:
9150
3b2ca824 9151 target_float_convert (valbuf, type, buf, arm_ext_type (gdbarch));
b66f5587 9152 regs->cooked_write (ARM_F0_REGNUM, buf);
08216dd7
RE
9153 break;
9154
fd50bc42 9155 case ARM_FLOAT_SOFT_FPA:
08216dd7 9156 case ARM_FLOAT_SOFT_VFP:
90445bd3
DJ
9157 /* ARM_FLOAT_VFP can arise if this is a variadic function so
9158 not using the VFP ABI code. */
9159 case ARM_FLOAT_VFP:
b66f5587 9160 regs->cooked_write (ARM_A1_REGNUM, valbuf);
df86565b 9161 if (type->length () > 4)
f0452268
AH
9162 regs->cooked_write (ARM_A1_REGNUM + 1,
9163 valbuf + ARM_INT_REGISTER_SIZE);
08216dd7
RE
9164 break;
9165
9166 default:
f34652de 9167 internal_error (_("arm_store_return_value: Floating "
9b20d036 9168 "point model not supported"));
08216dd7
RE
9169 break;
9170 }
34e8f22d 9171 }
78134374
SM
9172 else if (type->code () == TYPE_CODE_INT
9173 || type->code () == TYPE_CODE_CHAR
9174 || type->code () == TYPE_CODE_BOOL
9175 || type->code () == TYPE_CODE_PTR
aa006118 9176 || TYPE_IS_REFERENCE (type)
a23cf0c2
TT
9177 || type->code () == TYPE_CODE_ENUM
9178 || is_fixed_point_type (type))
b508a996 9179 {
df86565b 9180 if (type->length () <= 4)
b508a996
RE
9181 {
9182 /* Values of one word or less are zero/sign-extended and
9183 returned in r0. */
f0452268 9184 bfd_byte tmpbuf[ARM_INT_REGISTER_SIZE];
b508a996 9185
a23cf0c2
TT
9186 if (is_fixed_point_type (type))
9187 {
9188 gdb_mpz unscaled;
9189 unscaled.read (gdb::make_array_view (valbuf, type->length ()),
9190 byte_order, type->is_unsigned ());
9191 unscaled.write (gdb::make_array_view (tmpbuf, sizeof (tmpbuf)),
9192 byte_order, type->is_unsigned ());
9193 }
9194 else
9195 {
9196 LONGEST val = unpack_long (type, valbuf);
9197 store_signed_integer (tmpbuf, ARM_INT_REGISTER_SIZE, byte_order, val);
9198 }
b66f5587 9199 regs->cooked_write (ARM_A1_REGNUM, tmpbuf);
b508a996
RE
9200 }
9201 else
9202 {
9203 /* Integral values greater than one word are stored in consecutive
9204 registers starting with r0. This will always be a multiple of
9205 the regiser size. */
df86565b 9206 int len = type->length ();
b508a996
RE
9207 int regno = ARM_A1_REGNUM;
9208
9209 while (len > 0)
9210 {
b66f5587 9211 regs->cooked_write (regno++, valbuf);
f0452268
AH
9212 len -= ARM_INT_REGISTER_SIZE;
9213 valbuf += ARM_INT_REGISTER_SIZE;
b508a996
RE
9214 }
9215 }
9216 }
34e8f22d 9217 else
b508a996
RE
9218 {
9219 /* For a structure or union the behaviour is as if the value had
dda83cd7
SM
9220 been stored to word-aligned memory and then loaded into
9221 registers with 32-bit load instruction(s). */
df86565b 9222 int len = type->length ();
b508a996 9223 int regno = ARM_A1_REGNUM;
f0452268 9224 bfd_byte tmpbuf[ARM_INT_REGISTER_SIZE];
b508a996
RE
9225
9226 while (len > 0)
9227 {
9228 memcpy (tmpbuf, valbuf,
f0452268 9229 len > ARM_INT_REGISTER_SIZE ? ARM_INT_REGISTER_SIZE : len);
b66f5587 9230 regs->cooked_write (regno++, tmpbuf);
f0452268
AH
9231 len -= ARM_INT_REGISTER_SIZE;
9232 valbuf += ARM_INT_REGISTER_SIZE;
b508a996
RE
9233 }
9234 }
34e8f22d
RE
9235}
9236
2af48f68
PB
9237
9238/* Handle function return values. */
9239
9240static enum return_value_convention
6a3a010b 9241arm_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 9242 struct type *valtype, struct regcache *regcache,
5cb0f2d5 9243 struct value **read_value, const gdb_byte *writebuf)
2af48f68 9244{
08106042 9245 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
d0c97917 9246 struct type *func_type = function ? function->type () : NULL;
90445bd3
DJ
9247 enum arm_vfp_cprc_base_type vfp_base_type;
9248 int vfp_base_count;
9249
9250 if (arm_vfp_abi_for_function (gdbarch, func_type)
9251 && arm_vfp_call_candidate (valtype, &vfp_base_type, &vfp_base_count))
9252 {
9253 int reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
9254 int unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
9255 int i;
911627e7
TT
9256
9257 gdb_byte *readbuf = nullptr;
9258 if (read_value != nullptr)
9259 {
317c3ed9 9260 *read_value = value::allocate (valtype);
bbe912ba 9261 readbuf = (*read_value)->contents_raw ().data ();
911627e7
TT
9262 }
9263
90445bd3
DJ
9264 for (i = 0; i < vfp_base_count; i++)
9265 {
58d6951d
DJ
9266 if (reg_char == 'q')
9267 {
9268 if (writebuf)
9269 arm_neon_quad_write (gdbarch, regcache, i,
9270 writebuf + i * unit_length);
9271
9272 if (readbuf)
9273 arm_neon_quad_read (gdbarch, regcache, i,
9274 readbuf + i * unit_length);
9275 }
9276 else
9277 {
9278 char name_buf[4];
9279 int regnum;
9280
8c042590 9281 xsnprintf (name_buf, sizeof (name_buf), "%c%d", reg_char, i);
58d6951d
DJ
9282 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
9283 strlen (name_buf));
9284 if (writebuf)
b66f5587 9285 regcache->cooked_write (regnum, writebuf + i * unit_length);
58d6951d 9286 if (readbuf)
dca08e1f 9287 regcache->cooked_read (regnum, readbuf + i * unit_length);
58d6951d 9288 }
90445bd3
DJ
9289 }
9290 return RETURN_VALUE_REGISTER_CONVENTION;
9291 }
7c00367c 9292
78134374
SM
9293 if (valtype->code () == TYPE_CODE_STRUCT
9294 || valtype->code () == TYPE_CODE_UNION
9295 || valtype->code () == TYPE_CODE_ARRAY)
2af48f68 9296 {
bab22d06
LM
9297 /* From the AAPCS document:
9298
9299 Result return:
9300
9301 A Composite Type larger than 4 bytes, or whose size cannot be
9302 determined statically by both caller and callee, is stored in memory
9303 at an address passed as an extra argument when the function was
9304 called (Parameter Passing, rule A.4). The memory to be used for the
9305 result may be modified at any point during the function call.
9306
9307 Parameter Passing:
9308
9309 A.4: If the subroutine is a function that returns a result in memory,
9310 then the address for the result is placed in r0 and the NCRN is set
9311 to r1. */
7c00367c
MK
9312 if (tdep->struct_return == pcc_struct_return
9313 || arm_return_in_memory (gdbarch, valtype))
bab22d06 9314 {
911627e7 9315 if (read_value != nullptr)
bab22d06
LM
9316 {
9317 CORE_ADDR addr;
9318
9319 regcache->cooked_read (ARM_A1_REGNUM, &addr);
911627e7 9320 *read_value = value_at_non_lval (valtype, addr);
bab22d06
LM
9321 }
9322 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
9323 }
2af48f68 9324 }
78134374 9325 else if (valtype->code () == TYPE_CODE_COMPLEX)
b13c8ab2
YQ
9326 {
9327 if (arm_return_in_memory (gdbarch, valtype))
9328 return RETURN_VALUE_STRUCT_CONVENTION;
9329 }
7052e42c 9330
2af48f68
PB
9331 if (writebuf)
9332 arm_store_return_value (valtype, regcache, writebuf);
9333
911627e7
TT
9334 if (read_value != nullptr)
9335 {
317c3ed9 9336 *read_value = value::allocate (valtype);
bbe912ba 9337 gdb_byte *readbuf = (*read_value)->contents_raw ().data ();
911627e7
TT
9338 arm_extract_return_value (valtype, regcache, readbuf);
9339 }
2af48f68
PB
9340
9341 return RETURN_VALUE_REGISTER_CONVENTION;
9342}
9343
9344
9df628e0 9345static int
bd2b40ac 9346arm_get_longjmp_target (frame_info_ptr frame, CORE_ADDR *pc)
9df628e0 9347{
e17a4113 9348 struct gdbarch *gdbarch = get_frame_arch (frame);
08106042 9349 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
e17a4113 9350 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9df628e0 9351 CORE_ADDR jb_addr;
f0452268 9352 gdb_byte buf[ARM_INT_REGISTER_SIZE];
9df628e0 9353
60ade65d 9354 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
9df628e0
RE
9355
9356 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
f0452268 9357 ARM_INT_REGISTER_SIZE))
9df628e0
RE
9358 return 0;
9359
f0452268 9360 *pc = extract_unsigned_integer (buf, ARM_INT_REGISTER_SIZE, byte_order);
9df628e0
RE
9361 return 1;
9362}
40eadf04
SP
9363/* A call to cmse secure entry function "foo" at "a" is modified by
9364 GNU ld as "b".
9365 a) bl xxxx <foo>
9366
9367 <foo>
9368 xxxx:
9369
9370 b) bl yyyy <__acle_se_foo>
9371
9372 section .gnu.sgstubs:
9373 <foo>
9374 yyyy: sg // secure gateway
9375 b.w xxxx <__acle_se_foo> // original_branch_dest
9376
9377 <__acle_se_foo>
9378 xxxx:
9379
9380 When the control at "b", the pc contains "yyyy" (sg address) which is a
9381 trampoline and does not exist in source code. This function returns the
9382 target pc "xxxx". For more details please refer to section 5.4
9383 (Entry functions) and section 3.4.4 (C level development flow of secure code)
9384 of "armv8-m-security-extensions-requirements-on-development-tools-engineering-specification"
9385 document on www.developer.arm.com. */
9386
9387static CORE_ADDR
9388arm_skip_cmse_entry (CORE_ADDR pc, const char *name, struct objfile *objfile)
9389{
9390 int target_len = strlen (name) + strlen ("__acle_se_") + 1;
9391 char *target_name = (char *) alloca (target_len);
9392 xsnprintf (target_name, target_len, "%s%s", "__acle_se_", name);
9393
9394 struct bound_minimal_symbol minsym
9395 = lookup_minimal_symbol (target_name, NULL, objfile);
9396
9397 if (minsym.minsym != nullptr)
4aeddc50 9398 return minsym.value_address ();
40eadf04
SP
9399
9400 return 0;
9401}
9402
9403/* Return true when SEC points to ".gnu.sgstubs" section. */
9404
9405static bool
9406arm_is_sgstubs_section (struct obj_section *sec)
9407{
9408 return (sec != nullptr
9409 && sec->the_bfd_section != nullptr
9410 && sec->the_bfd_section->name != nullptr
9411 && streq (sec->the_bfd_section->name, ".gnu.sgstubs"));
9412}
9df628e0 9413
faa95490
DJ
9414/* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
9415 return the target PC. Otherwise return 0. */
c906108c
SS
9416
9417CORE_ADDR
bd2b40ac 9418arm_skip_stub (frame_info_ptr frame, CORE_ADDR pc)
c906108c 9419{
2c02bd72 9420 const char *name;
faa95490 9421 int namelen;
c906108c
SS
9422 CORE_ADDR start_addr;
9423
9424 /* Find the starting address and name of the function containing the PC. */
9425 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
80d8d390
YQ
9426 {
9427 /* Trampoline 'bx reg' doesn't belong to any functions. Do the
9428 check here. */
9429 start_addr = arm_skip_bx_reg (frame, pc);
9430 if (start_addr != 0)
9431 return start_addr;
9432
9433 return 0;
9434 }
c906108c 9435
faa95490
DJ
9436 /* If PC is in a Thumb call or return stub, return the address of the
9437 target PC, which is in a register. The thunk functions are called
9438 _call_via_xx, where x is the register name. The possible names
3d8d5e79
DJ
9439 are r0-r9, sl, fp, ip, sp, and lr. ARM RealView has similar
9440 functions, named __ARM_call_via_r[0-7]. */
61012eef
GB
9441 if (startswith (name, "_call_via_")
9442 || startswith (name, "__ARM_call_via_"))
c906108c 9443 {
ed9a39eb 9444 /* Use the name suffix to determine which register contains the
dda83cd7 9445 target PC. */
a121b7c1 9446 static const char *table[15] =
c5aa993b
JM
9447 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
9448 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
9449 };
c906108c 9450 int regno;
faa95490 9451 int offset = strlen (name) - 2;
c906108c
SS
9452
9453 for (regno = 0; regno <= 14; regno++)
faa95490 9454 if (strcmp (&name[offset], table[regno]) == 0)
52f729a7 9455 return get_frame_register_unsigned (frame, regno);
c906108c 9456 }
ed9a39eb 9457
faa95490
DJ
9458 /* GNU ld generates __foo_from_arm or __foo_from_thumb for
9459 non-interworking calls to foo. We could decode the stubs
9460 to find the target but it's easier to use the symbol table. */
9461 namelen = strlen (name);
9462 if (name[0] == '_' && name[1] == '_'
9463 && ((namelen > 2 + strlen ("_from_thumb")
61012eef 9464 && startswith (name + namelen - strlen ("_from_thumb"), "_from_thumb"))
faa95490 9465 || (namelen > 2 + strlen ("_from_arm")
61012eef 9466 && startswith (name + namelen - strlen ("_from_arm"), "_from_arm"))))
faa95490
DJ
9467 {
9468 char *target_name;
9469 int target_len = namelen - 2;
3b7344d5 9470 struct bound_minimal_symbol minsym;
faa95490
DJ
9471 struct objfile *objfile;
9472 struct obj_section *sec;
9473
9474 if (name[namelen - 1] == 'b')
9475 target_len -= strlen ("_from_thumb");
9476 else
9477 target_len -= strlen ("_from_arm");
9478
224c3ddb 9479 target_name = (char *) alloca (target_len + 1);
faa95490
DJ
9480 memcpy (target_name, name + 2, target_len);
9481 target_name[target_len] = '\0';
9482
9483 sec = find_pc_section (pc);
9484 objfile = (sec == NULL) ? NULL : sec->objfile;
9485 minsym = lookup_minimal_symbol (target_name, NULL, objfile);
3b7344d5 9486 if (minsym.minsym != NULL)
4aeddc50 9487 return minsym.value_address ();
faa95490
DJ
9488 else
9489 return 0;
9490 }
9491
40eadf04
SP
9492 struct obj_section *section = find_pc_section (pc);
9493
9494 /* Check whether SECTION points to the ".gnu.sgstubs" section. */
9495 if (arm_is_sgstubs_section (section))
9496 return arm_skip_cmse_entry (pc, name, section->objfile);
9497
c5aa993b 9498 return 0; /* not a stub */
c906108c
SS
9499}
9500
28e97307
DJ
9501static void
9502arm_update_current_architecture (void)
fd50bc42 9503{
28e97307 9504 /* If the current architecture is not ARM, we have nothing to do. */
99d9c3b9
SM
9505 gdbarch *arch = current_inferior ()->arch ();
9506 if (gdbarch_bfd_arch_info (arch)->arch != bfd_arch_arm)
28e97307 9507 return;
fd50bc42 9508
28e97307 9509 /* Update the architecture. */
b447dd03 9510 gdbarch_info info;
28e97307 9511 if (!gdbarch_update_p (info))
f34652de 9512 internal_error (_("could not update architecture"));
fd50bc42
RE
9513}
9514
9515static void
eb4c3f4a 9516set_fp_model_sfunc (const char *args, int from_tty,
fd50bc42
RE
9517 struct cmd_list_element *c)
9518{
570dc176 9519 int fp_model;
fd50bc42
RE
9520
9521 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
9522 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
9523 {
aead7601 9524 arm_fp_model = (enum arm_float_model) fp_model;
fd50bc42
RE
9525 break;
9526 }
9527
9528 if (fp_model == ARM_FLOAT_LAST)
f34652de 9529 internal_error (_("Invalid fp model accepted: %s."),
fd50bc42
RE
9530 current_fp_model);
9531
28e97307 9532 arm_update_current_architecture ();
fd50bc42
RE
9533}
9534
9535static void
08546159
AC
9536show_fp_model (struct ui_file *file, int from_tty,
9537 struct cmd_list_element *c, const char *value)
fd50bc42 9538{
99d9c3b9 9539 gdbarch *arch = current_inferior ()->arch ();
28e97307 9540 if (arm_fp_model == ARM_FLOAT_AUTO
99d9c3b9 9541 && gdbarch_bfd_arch_info (arch)->arch == bfd_arch_arm)
6dff2a6f 9542 {
99d9c3b9 9543 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (arch);
6dff2a6f
AB
9544
9545 gdb_printf (file, _("\
28e97307 9546The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
6dff2a6f
AB
9547 fp_model_strings[tdep->fp_model]);
9548 }
28e97307 9549 else
6cb06a8c 9550 gdb_printf (file, _("\
28e97307 9551The current ARM floating point model is \"%s\".\n"),
6cb06a8c 9552 fp_model_strings[arm_fp_model]);
28e97307
DJ
9553}
9554
9555static void
eb4c3f4a 9556arm_set_abi (const char *args, int from_tty,
28e97307
DJ
9557 struct cmd_list_element *c)
9558{
570dc176 9559 int arm_abi;
28e97307
DJ
9560
9561 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
9562 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
9563 {
aead7601 9564 arm_abi_global = (enum arm_abi_kind) arm_abi;
28e97307
DJ
9565 break;
9566 }
9567
9568 if (arm_abi == ARM_ABI_LAST)
f34652de 9569 internal_error (_("Invalid ABI accepted: %s."),
28e97307
DJ
9570 arm_abi_string);
9571
9572 arm_update_current_architecture ();
9573}
9574
9575static void
9576arm_show_abi (struct ui_file *file, int from_tty,
9577 struct cmd_list_element *c, const char *value)
9578{
99d9c3b9 9579 gdbarch *arch = current_inferior ()->arch ();
28e97307 9580 if (arm_abi_global == ARM_ABI_AUTO
99d9c3b9 9581 && gdbarch_bfd_arch_info (arch)->arch == bfd_arch_arm)
6dff2a6f 9582 {
99d9c3b9 9583 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (arch);
6dff2a6f
AB
9584
9585 gdb_printf (file, _("\
28e97307 9586The current ARM ABI is \"auto\" (currently \"%s\").\n"),
6dff2a6f
AB
9587 arm_abi_strings[tdep->arm_abi]);
9588 }
28e97307 9589 else
6cb06a8c
TT
9590 gdb_printf (file, _("The current ARM ABI is \"%s\".\n"),
9591 arm_abi_string);
fd50bc42
RE
9592}
9593
0428b8f5
DJ
9594static void
9595arm_show_fallback_mode (struct ui_file *file, int from_tty,
9596 struct cmd_list_element *c, const char *value)
9597{
6cb06a8c
TT
9598 gdb_printf (file,
9599 _("The current execution mode assumed "
9600 "(when symbols are unavailable) is \"%s\".\n"),
9601 arm_fallback_mode_string);
0428b8f5
DJ
9602}
9603
9604static void
9605arm_show_force_mode (struct ui_file *file, int from_tty,
9606 struct cmd_list_element *c, const char *value)
9607{
6cb06a8c
TT
9608 gdb_printf (file,
9609 _("The current execution mode assumed "
9610 "(even when symbols are available) is \"%s\".\n"),
9611 arm_force_mode_string);
0428b8f5
DJ
9612}
9613
ef273377
CL
9614static void
9615arm_show_unwind_secure_frames (struct ui_file *file, int from_tty,
9616 struct cmd_list_element *c, const char *value)
9617{
9618 gdb_printf (file,
9619 _("Usage of non-secure to secure exception stack unwinding is %s.\n"),
9620 arm_unwind_secure_frames ? "on" : "off");
9621}
9622
afd7eef0
RE
9623/* If the user changes the register disassembly style used for info
9624 register and other commands, we have to also switch the style used
9625 in opcodes for disassembly output. This function is run in the "set
9626 arm disassembly" command, and does that. */
bc90b915
FN
9627
9628static void
eb4c3f4a 9629set_disassembly_style_sfunc (const char *args, int from_tty,
65b48a81 9630 struct cmd_list_element *c)
bc90b915 9631{
65b48a81
PB
9632 /* Convert the short style name into the long style name (eg, reg-names-*)
9633 before calling the generic set_disassembler_options() function. */
9634 std::string long_name = std::string ("reg-names-") + disassembly_style;
9635 set_disassembler_options (&long_name[0]);
9636}
9637
9638static void
9639show_disassembly_style_sfunc (struct ui_file *file, int from_tty,
9640 struct cmd_list_element *c, const char *value)
9641{
9642 struct gdbarch *gdbarch = get_current_arch ();
9643 char *options = get_disassembler_options (gdbarch);
9644 const char *style = "";
9645 int len = 0;
f995bbe8 9646 const char *opt;
65b48a81
PB
9647
9648 FOR_EACH_DISASSEMBLER_OPTION (opt, options)
08dedd66 9649 if (startswith (opt, "reg-names-"))
65b48a81
PB
9650 {
9651 style = &opt[strlen ("reg-names-")];
9652 len = strcspn (style, ",");
9653 }
9654
6cb06a8c 9655 gdb_printf (file, "The disassembly style is \"%.*s\".\n", len, style);
bc90b915
FN
9656}
9657\f
966fbf70 9658/* Return the ARM register name corresponding to register I. */
a208b0cb 9659static const char *
d93859e2 9660arm_register_name (struct gdbarch *gdbarch, int i)
966fbf70 9661{
08106042 9662 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
58d6951d 9663
ecbf5d4f 9664 if (is_s_pseudo (gdbarch, i))
58d6951d 9665 {
ecbf5d4f 9666 static const char *const s_pseudo_names[] = {
58d6951d
DJ
9667 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
9668 "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
9669 "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
9670 "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
9671 };
9672
ecbf5d4f 9673 return s_pseudo_names[i - tdep->s_pseudo_base];
58d6951d
DJ
9674 }
9675
ecbf5d4f 9676 if (is_q_pseudo (gdbarch, i))
58d6951d 9677 {
ecbf5d4f 9678 static const char *const q_pseudo_names[] = {
58d6951d
DJ
9679 "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
9680 "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15",
9681 };
9682
ecbf5d4f 9683 return q_pseudo_names[i - tdep->q_pseudo_base];
58d6951d
DJ
9684 }
9685
ae66a8f1
SP
9686 if (is_mve_pseudo (gdbarch, i))
9687 return "p0";
9688
a01567f4
LM
9689 /* RA_AUTH_CODE is used for unwinding only. Do not assign it a name. */
9690 if (is_pacbti_pseudo (gdbarch, i))
9691 return "";
9692
ff6f572f
DJ
9693 if (i >= ARRAY_SIZE (arm_register_names))
9694 /* These registers are only supported on targets which supply
9695 an XML description. */
9696 return "";
9697
ecbf5d4f 9698 /* Non-pseudo registers. */
966fbf70
RE
9699 return arm_register_names[i];
9700}
9701
082fc60d
RE
9702/* Test whether the coff symbol specific value corresponds to a Thumb
9703 function. */
9704
9705static int
9706coff_sym_is_thumb (int val)
9707{
f8bf5763
PM
9708 return (val == C_THUMBEXT
9709 || val == C_THUMBSTAT
9710 || val == C_THUMBEXTFUNC
9711 || val == C_THUMBSTATFUNC
9712 || val == C_THUMBLABEL);
082fc60d
RE
9713}
9714
9715/* arm_coff_make_msymbol_special()
9716 arm_elf_make_msymbol_special()
9717
9718 These functions test whether the COFF or ELF symbol corresponds to
9719 an address in thumb code, and set a "special" bit in a minimal
9720 symbol to indicate that it does. */
9721
34e8f22d 9722static void
082fc60d
RE
9723arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
9724{
39d911fc
TP
9725 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
9726
9727 if (ARM_GET_SYM_BRANCH_TYPE (elfsym->internal_elf_sym.st_target_internal)
467d42c4 9728 == ST_BRANCH_TO_THUMB)
082fc60d
RE
9729 MSYMBOL_SET_SPECIAL (msym);
9730}
9731
34e8f22d 9732static void
082fc60d
RE
9733arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
9734{
9735 if (coff_sym_is_thumb (val))
9736 MSYMBOL_SET_SPECIAL (msym);
9737}
9738
60c5725c
DJ
9739static void
9740arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile,
9741 asymbol *sym)
9742{
9743 const char *name = bfd_asymbol_name (sym);
bd5766ec 9744 struct arm_per_bfd *data;
60c5725c
DJ
9745 struct arm_mapping_symbol new_map_sym;
9746
9747 gdb_assert (name[0] == '$');
9748 if (name[1] != 'a' && name[1] != 't' && name[1] != 'd')
9749 return;
9750
98badbfd 9751 data = arm_bfd_data_key.get (objfile->obfd.get ());
60c5725c 9752 if (data == NULL)
98badbfd 9753 data = arm_bfd_data_key.emplace (objfile->obfd.get (),
bd5766ec 9754 objfile->obfd->section_count);
54cc7474 9755 arm_mapping_symbol_vec &map
e6f7f6d1 9756 = data->section_maps[bfd_asymbol_section (sym)->index];
60c5725c
DJ
9757
9758 new_map_sym.value = sym->value;
9759 new_map_sym.type = name[1];
9760
4838e44c
SM
9761 /* Insert at the end, the vector will be sorted on first use. */
9762 map.push_back (new_map_sym);
60c5725c
DJ
9763}
9764
756fe439 9765static void
61a1198a 9766arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
756fe439 9767{
ac7936df 9768 struct gdbarch *gdbarch = regcache->arch ();
61a1198a 9769 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
756fe439
DJ
9770
9771 /* If necessary, set the T bit. */
9772 if (arm_apcs_32)
9773 {
9779414d 9774 ULONGEST val, t_bit;
61a1198a 9775 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
9779414d
DJ
9776 t_bit = arm_psr_thumb_bit (gdbarch);
9777 if (arm_pc_is_thumb (gdbarch, pc))
9778 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
9779 val | t_bit);
756fe439 9780 else
61a1198a 9781 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
9779414d 9782 val & ~t_bit);
756fe439
DJ
9783 }
9784}
123dc839 9785
58d6951d
DJ
9786/* Read the contents of a NEON quad register, by reading from two
9787 double registers. This is used to implement the quad pseudo
9788 registers, and for argument passing in case the quad registers are
9789 missing; vectors are passed in quad registers when using the VFP
9790 ABI, even if a NEON unit is not present. REGNUM is the index of
9791 the quad register, in [0, 15]. */
9792
05d1431c 9793static enum register_status
849d0ba8 9794arm_neon_quad_read (struct gdbarch *gdbarch, readable_regcache *regcache,
58d6951d
DJ
9795 int regnum, gdb_byte *buf)
9796{
9797 char name_buf[4];
9798 gdb_byte reg_buf[8];
a0bfd1bf 9799 int double_regnum;
05d1431c 9800 enum register_status status;
58d6951d 9801
8c042590 9802 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
58d6951d
DJ
9803 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
9804 strlen (name_buf));
9805
03f50fc8 9806 status = regcache->raw_read (double_regnum, reg_buf);
05d1431c
PA
9807 if (status != REG_VALID)
9808 return status;
a0bfd1bf 9809 memcpy (buf, reg_buf, 8);
58d6951d 9810
03f50fc8 9811 status = regcache->raw_read (double_regnum + 1, reg_buf);
05d1431c
PA
9812 if (status != REG_VALID)
9813 return status;
a0bfd1bf 9814 memcpy (buf + 8, reg_buf, 8);
05d1431c
PA
9815
9816 return REG_VALID;
58d6951d
DJ
9817}
9818
f8a311f0
SM
9819/* Read the contents of a NEON quad register, by reading from two double
9820 registers, and return it as a value. QUAD_REG_INDEX is the index of the quad
9821 register, in [0, 15]. */
ae66a8f1 9822
f8a311f0
SM
9823static value *
9824arm_neon_quad_read_value (gdbarch *gdbarch, frame_info_ptr next_frame,
9825 int pseudo_reg_num, int quad_reg_index)
9826{
9827 std::string raw_reg_name = string_printf ("d%d", quad_reg_index << 1);
9828 int double_regnum
9829 = user_reg_map_name_to_regnum (gdbarch, raw_reg_name.c_str (),
9830 raw_reg_name.length ());
9831
9832 return pseudo_from_concat_raw (next_frame, pseudo_reg_num, double_regnum,
9833 double_regnum + 1);
9834}
9835
9836/* Read the contents of the MVE pseudo register REGNUM and return it as a
9837 value. */
9838static value *
9839arm_mve_pseudo_read_value (gdbarch *gdbarch, frame_info_ptr next_frame,
9840 int pseudo_reg_num)
ae66a8f1 9841{
08106042 9842 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
ae66a8f1
SP
9843
9844 /* P0 is the first 16 bits of VPR. */
f8a311f0
SM
9845 return pseudo_from_raw_part (next_frame, pseudo_reg_num,
9846 tdep->mve_vpr_regnum, 0);
ae66a8f1
SP
9847}
9848
f8a311f0
SM
9849static value *
9850arm_pseudo_read_value (gdbarch *gdbarch, frame_info_ptr next_frame,
9851 const int pseudo_reg_num)
58d6951d 9852{
08106042 9853 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
58d6951d 9854
f8a311f0 9855 gdb_assert (pseudo_reg_num >= gdbarch_num_regs (gdbarch));
58d6951d 9856
f8a311f0 9857 if (is_q_pseudo (gdbarch, pseudo_reg_num))
ecbf5d4f
LM
9858 {
9859 /* Quad-precision register. */
f8a311f0
SM
9860 return arm_neon_quad_read_value (gdbarch, next_frame, pseudo_reg_num,
9861 pseudo_reg_num - tdep->q_pseudo_base);
ecbf5d4f 9862 }
f8a311f0
SM
9863 else if (is_mve_pseudo (gdbarch, pseudo_reg_num))
9864 return arm_mve_pseudo_read_value (gdbarch, next_frame, pseudo_reg_num);
58d6951d
DJ
9865 else
9866 {
f8a311f0 9867 int s_reg_index = pseudo_reg_num - tdep->s_pseudo_base;
05d1431c 9868
58d6951d 9869 /* Single-precision register. */
f8a311f0 9870 gdb_assert (s_reg_index < 32);
58d6951d
DJ
9871
9872 /* s0 is always the least significant half of d0. */
f8a311f0 9873 int offset;
58d6951d 9874 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
f8a311f0 9875 offset = (s_reg_index & 1) ? 0 : 4;
58d6951d 9876 else
f8a311f0 9877 offset = (s_reg_index & 1) ? 4 : 0;
58d6951d 9878
f8a311f0
SM
9879 std::string raw_reg_name = string_printf ("d%d", s_reg_index >> 1);
9880 int double_regnum
9881 = user_reg_map_name_to_regnum (gdbarch, raw_reg_name.c_str (),
9882 raw_reg_name.length ());
58d6951d 9883
f8a311f0
SM
9884 return pseudo_from_raw_part (next_frame, pseudo_reg_num, double_regnum,
9885 offset);
58d6951d
DJ
9886 }
9887}
9888
9889/* Store the contents of BUF to a NEON quad register, by writing to
9890 two double registers. This is used to implement the quad pseudo
9891 registers, and for argument passing in case the quad registers are
9892 missing; vectors are passed in quad registers when using the VFP
9893 ABI, even if a NEON unit is not present. REGNUM is the index
9894 of the quad register, in [0, 15]. */
9895
9896static void
9897arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache,
9898 int regnum, const gdb_byte *buf)
9899{
9900 char name_buf[4];
a0bfd1bf 9901 int double_regnum;
58d6951d 9902
8c042590 9903 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
58d6951d
DJ
9904 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
9905 strlen (name_buf));
9906
a0bfd1bf
TT
9907 regcache->raw_write (double_regnum, buf);
9908 regcache->raw_write (double_regnum + 1, buf + 8);
58d6951d
DJ
9909}
9910
fa751379
SM
9911static void
9912arm_neon_quad_write (gdbarch *gdbarch, frame_info_ptr next_frame,
9913 int quad_reg_index, gdb::array_view<const gdb_byte> buf)
9914{
9915 std::string raw_reg_name = string_printf ("d%d", quad_reg_index << 1);
9916 int double_regnum
9917 = user_reg_map_name_to_regnum (gdbarch, raw_reg_name.data (),
9918 raw_reg_name.length ());
9919
9920 pseudo_to_concat_raw (next_frame, buf, double_regnum, double_regnum + 1);
9921}
9922
ae66a8f1
SP
9923/* Store the contents of BUF to the MVE pseudo register REGNUM. */
9924
9925static void
fa751379
SM
9926arm_mve_pseudo_write (gdbarch *gdbarch, frame_info_ptr next_frame,
9927 int pseudo_reg_num, gdb::array_view<const gdb_byte> buf)
ae66a8f1 9928{
08106042 9929 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
ae66a8f1
SP
9930
9931 /* P0 is the first 16 bits of VPR. */
fa751379 9932 pseudo_to_raw_part(next_frame, buf, tdep->mve_vpr_regnum, 0);
ae66a8f1
SP
9933}
9934
58d6951d 9935static void
fa751379
SM
9936arm_pseudo_write (gdbarch *gdbarch, frame_info_ptr next_frame,
9937 const int pseudo_reg_num,
9938 gdb::array_view<const gdb_byte> buf)
58d6951d 9939{
08106042 9940 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
58d6951d 9941
fa751379 9942 gdb_assert (pseudo_reg_num >= gdbarch_num_regs (gdbarch));
58d6951d 9943
fa751379 9944 if (is_q_pseudo (gdbarch, pseudo_reg_num))
ecbf5d4f
LM
9945 {
9946 /* Quad-precision register. */
fa751379
SM
9947 arm_neon_quad_write (gdbarch, next_frame,
9948 pseudo_reg_num - tdep->q_pseudo_base, buf);
ecbf5d4f 9949 }
fa751379
SM
9950 else if (is_mve_pseudo (gdbarch, pseudo_reg_num))
9951 arm_mve_pseudo_write (gdbarch, next_frame, pseudo_reg_num, buf);
58d6951d
DJ
9952 else
9953 {
fa751379
SM
9954 int s_reg_index = pseudo_reg_num - tdep->s_pseudo_base;
9955
58d6951d 9956 /* Single-precision register. */
fa751379 9957 gdb_assert (s_reg_index < 32);
58d6951d
DJ
9958
9959 /* s0 is always the least significant half of d0. */
fa751379 9960 int offset;
58d6951d 9961 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
fa751379 9962 offset = (s_reg_index & 1) ? 0 : 4;
58d6951d 9963 else
fa751379 9964 offset = (s_reg_index & 1) ? 4 : 0;
58d6951d 9965
fa751379
SM
9966 std::string raw_reg_name = string_printf ("d%d", s_reg_index >> 1);
9967 int double_regnum
9968 = user_reg_map_name_to_regnum (gdbarch, raw_reg_name.c_str (),
9969 raw_reg_name.length ());
58d6951d 9970
fa751379 9971 pseudo_to_raw_part (next_frame, buf, double_regnum, offset);
58d6951d
DJ
9972 }
9973}
9974
123dc839 9975static struct value *
bd2b40ac 9976value_of_arm_user_reg (frame_info_ptr frame, const void *baton)
123dc839 9977{
9a3c8263 9978 const int *reg_p = (const int *) baton;
a7952927 9979 return value_of_register (*reg_p, get_next_frame_sentinel_okay (frame));
123dc839 9980}
a7952927 9981
70f80edf
JT
9982static enum gdb_osabi
9983arm_elf_osabi_sniffer (bfd *abfd)
97e03143 9984{
2af48f68 9985 unsigned int elfosabi;
70f80edf 9986 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 9987
70f80edf 9988 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 9989
28e97307
DJ
9990 if (elfosabi == ELFOSABI_ARM)
9991 /* GNU tools use this value. Check note sections in this case,
9992 as well. */
b35c1d1c
TT
9993 {
9994 for (asection *sect : gdb_bfd_sections (abfd))
9995 generic_elf_osabi_sniff_abi_tag_sections (abfd, sect, &osabi);
9996 }
97e03143 9997
28e97307 9998 /* Anything else will be handled by the generic ELF sniffer. */
70f80edf 9999 return osabi;
97e03143
RE
10000}
10001
54483882
YQ
10002static int
10003arm_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
dbf5d61b 10004 const struct reggroup *group)
54483882 10005{
2c291032
YQ
10006 /* FPS register's type is INT, but belongs to float_reggroup. Beside
10007 this, FPS register belongs to save_regroup, restore_reggroup, and
10008 all_reggroup, of course. */
54483882 10009 if (regnum == ARM_FPS_REGNUM)
2c291032
YQ
10010 return (group == float_reggroup
10011 || group == save_reggroup
10012 || group == restore_reggroup
10013 || group == all_reggroup);
54483882
YQ
10014 else
10015 return default_register_reggroup_p (gdbarch, regnum, group);
10016}
10017
25f8c692
JL
10018/* For backward-compatibility we allow two 'g' packet lengths with
10019 the remote protocol depending on whether FPA registers are
10020 supplied. M-profile targets do not have FPA registers, but some
10021 stubs already exist in the wild which use a 'g' packet which
10022 supplies them albeit with dummy values. The packet format which
10023 includes FPA registers should be considered deprecated for
10024 M-profile targets. */
10025
10026static void
10027arm_register_g_packet_guesses (struct gdbarch *gdbarch)
10028{
08106042 10029 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
345bd07c
SM
10030
10031 if (tdep->is_m)
25f8c692 10032 {
d105cce5
AH
10033 const target_desc *tdesc;
10034
25f8c692
JL
10035 /* If we know from the executable this is an M-profile target,
10036 cater for remote targets whose register set layout is the
10037 same as the FPA layout. */
d105cce5 10038 tdesc = arm_read_mprofile_description (ARM_M_TYPE_WITH_FPA);
25f8c692 10039 register_remote_g_packet_guess (gdbarch,
350fab54 10040 ARM_CORE_REGS_SIZE + ARM_FP_REGS_SIZE,
d105cce5 10041 tdesc);
25f8c692
JL
10042
10043 /* The regular M-profile layout. */
d105cce5 10044 tdesc = arm_read_mprofile_description (ARM_M_TYPE_M_PROFILE);
350fab54 10045 register_remote_g_packet_guess (gdbarch, ARM_CORE_REGS_SIZE,
d105cce5 10046 tdesc);
3184d3f9
JL
10047
10048 /* M-profile plus M4F VFP. */
d105cce5 10049 tdesc = arm_read_mprofile_description (ARM_M_TYPE_VFP_D16);
3184d3f9 10050 register_remote_g_packet_guess (gdbarch,
350fab54 10051 ARM_CORE_REGS_SIZE + ARM_VFP2_REGS_SIZE,
d105cce5 10052 tdesc);
ae66a8f1
SP
10053 /* M-profile plus MVE. */
10054 tdesc = arm_read_mprofile_description (ARM_M_TYPE_MVE);
10055 register_remote_g_packet_guess (gdbarch, ARM_CORE_REGS_SIZE
10056 + ARM_VFP2_REGS_SIZE
10057 + ARM_INT_REGISTER_SIZE, tdesc);
9074667a
CL
10058
10059 /* M-profile system (stack pointers). */
10060 tdesc = arm_read_mprofile_description (ARM_M_TYPE_SYSTEM);
10061 register_remote_g_packet_guess (gdbarch, 2 * ARM_INT_REGISTER_SIZE, tdesc);
25f8c692
JL
10062 }
10063
10064 /* Otherwise we don't have a useful guess. */
10065}
10066
7eb89530
YQ
10067/* Implement the code_of_frame_writable gdbarch method. */
10068
10069static int
bd2b40ac 10070arm_code_of_frame_writable (struct gdbarch *gdbarch, frame_info_ptr frame)
7eb89530 10071{
08106042 10072 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
345bd07c
SM
10073
10074 if (tdep->is_m && get_frame_type (frame) == SIGTRAMP_FRAME)
7eb89530
YQ
10075 {
10076 /* M-profile exception frames return to some magic PCs, where
10077 isn't writable at all. */
10078 return 0;
10079 }
10080 else
10081 return 1;
10082}
10083
3426ae57
AH
10084/* Implement gdbarch_gnu_triplet_regexp. If the arch name is arm then allow it
10085 to be postfixed by a version (eg armv7hl). */
10086
10087static const char *
10088arm_gnu_triplet_regexp (struct gdbarch *gdbarch)
10089{
10090 if (strcmp (gdbarch_bfd_arch_info (gdbarch)->arch_name, "arm") == 0)
10091 return "arm(v[^- ]*)?";
10092 return gdbarch_bfd_arch_info (gdbarch)->arch_name;
10093}
10094
a01567f4
LM
10095/* Implement the "get_pc_address_flags" gdbarch method. */
10096
10097static std::string
bd2b40ac 10098arm_get_pc_address_flags (frame_info_ptr frame, CORE_ADDR pc)
a01567f4
LM
10099{
10100 if (get_frame_pc_masked (frame))
10101 return "PAC";
10102
10103 return "";
10104}
10105
da3c6d4a
MS
10106/* Initialize the current architecture based on INFO. If possible,
10107 re-use an architecture from ARCHES, which is a list of
10108 architectures already created during this debugging session.
97e03143 10109
da3c6d4a
MS
10110 Called e.g. at program startup, when reading a core file, and when
10111 reading a binary file. */
97e03143 10112
39bbf761
RE
10113static struct gdbarch *
10114arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
10115{
28e97307
DJ
10116 struct gdbarch_list *best_arch;
10117 enum arm_abi_kind arm_abi = arm_abi_global;
10118 enum arm_float_model fp_model = arm_fp_model;
c1e1314d 10119 tdesc_arch_data_up tdesc_data;
7559c217
CB
10120 int i;
10121 bool is_m = false;
ae7e2f45 10122 bool have_sec_ext = false;
7559c217 10123 int vfp_register_count = 0;
ecbf5d4f 10124 bool have_s_pseudos = false, have_q_pseudos = false;
7559c217
CB
10125 bool have_wmmx_registers = false;
10126 bool have_neon = false;
10127 bool have_fpa_registers = true;
9779414d 10128 const struct target_desc *tdesc = info.target_desc;
ae66a8f1
SP
10129 bool have_vfp = false;
10130 bool have_mve = false;
a01567f4 10131 bool have_pacbti = false;
ae66a8f1 10132 int mve_vpr_regnum = -1;
ecbf5d4f 10133 int register_count = ARM_NUM_REGS;
9074667a
CL
10134 bool have_m_profile_msp = false;
10135 int m_profile_msp_regnum = -1;
10136 int m_profile_psp_regnum = -1;
ae7e2f45
CL
10137 int m_profile_msp_ns_regnum = -1;
10138 int m_profile_psp_ns_regnum = -1;
10139 int m_profile_msp_s_regnum = -1;
10140 int m_profile_psp_s_regnum = -1;
92d48a1e 10141 int tls_regnum = 0;
9779414d
DJ
10142
10143 /* If we have an object to base this architecture on, try to determine
10144 its ABI. */
10145
10146 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
10147 {
10148 int ei_osabi, e_flags;
10149
10150 switch (bfd_get_flavour (info.abfd))
10151 {
9779414d
DJ
10152 case bfd_target_coff_flavour:
10153 /* Assume it's an old APCS-style ABI. */
10154 /* XXX WinCE? */
10155 arm_abi = ARM_ABI_APCS;
10156 break;
10157
10158 case bfd_target_elf_flavour:
10159 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
10160 e_flags = elf_elfheader (info.abfd)->e_flags;
10161
10162 if (ei_osabi == ELFOSABI_ARM)
10163 {
10164 /* GNU tools used to use this value, but do not for EABI
10165 objects. There's nowhere to tag an EABI version
10166 anyway, so assume APCS. */
10167 arm_abi = ARM_ABI_APCS;
10168 }
d403db27 10169 else if (ei_osabi == ELFOSABI_NONE || ei_osabi == ELFOSABI_GNU)
9779414d
DJ
10170 {
10171 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
9779414d
DJ
10172
10173 switch (eabi_ver)
10174 {
10175 case EF_ARM_EABI_UNKNOWN:
10176 /* Assume GNU tools. */
10177 arm_abi = ARM_ABI_APCS;
10178 break;
10179
10180 case EF_ARM_EABI_VER4:
10181 case EF_ARM_EABI_VER5:
10182 arm_abi = ARM_ABI_AAPCS;
10183 /* EABI binaries default to VFP float ordering.
10184 They may also contain build attributes that can
10185 be used to identify if the VFP argument-passing
10186 ABI is in use. */
10187 if (fp_model == ARM_FLOAT_AUTO)
10188 {
10189#ifdef HAVE_ELF
10190 switch (bfd_elf_get_obj_attr_int (info.abfd,
10191 OBJ_ATTR_PROC,
10192 Tag_ABI_VFP_args))
10193 {
b35b0298 10194 case AEABI_VFP_args_base:
9779414d
DJ
10195 /* "The user intended FP parameter/result
10196 passing to conform to AAPCS, base
10197 variant". */
10198 fp_model = ARM_FLOAT_SOFT_VFP;
10199 break;
b35b0298 10200 case AEABI_VFP_args_vfp:
9779414d
DJ
10201 /* "The user intended FP parameter/result
10202 passing to conform to AAPCS, VFP
10203 variant". */
10204 fp_model = ARM_FLOAT_VFP;
10205 break;
b35b0298 10206 case AEABI_VFP_args_toolchain:
9779414d
DJ
10207 /* "The user intended FP parameter/result
10208 passing to conform to tool chain-specific
10209 conventions" - we don't know any such
10210 conventions, so leave it as "auto". */
10211 break;
b35b0298 10212 case AEABI_VFP_args_compatible:
5c294fee
TG
10213 /* "Code is compatible with both the base
10214 and VFP variants; the user did not permit
10215 non-variadic functions to pass FP
10216 parameters/results" - leave it as
10217 "auto". */
10218 break;
9779414d
DJ
10219 default:
10220 /* Attribute value not mentioned in the
5c294fee 10221 November 2012 ABI, so leave it as
9779414d
DJ
10222 "auto". */
10223 break;
10224 }
10225#else
10226 fp_model = ARM_FLOAT_SOFT_VFP;
10227#endif
10228 }
10229 break;
10230
10231 default:
10232 /* Leave it as "auto". */
10233 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
10234 break;
10235 }
10236
10237#ifdef HAVE_ELF
10238 /* Detect M-profile programs. This only works if the
10239 executable file includes build attributes; GCC does
10240 copy them to the executable, but e.g. RealView does
10241 not. */
17cbafdb
SM
10242 int attr_arch
10243 = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
10244 Tag_CPU_arch);
10245 int attr_profile
10246 = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
10247 Tag_CPU_arch_profile);
10248
9779414d
DJ
10249 /* GCC specifies the profile for v6-M; RealView only
10250 specifies the profile for architectures starting with
10251 V7 (as opposed to architectures with a tag
10252 numerically greater than TAG_CPU_ARCH_V7). */
10253 if (!tdesc_has_registers (tdesc)
10254 && (attr_arch == TAG_CPU_ARCH_V6_M
10255 || attr_arch == TAG_CPU_ARCH_V6S_M
131a355f
LM
10256 || attr_arch == TAG_CPU_ARCH_V7E_M
10257 || attr_arch == TAG_CPU_ARCH_V8M_BASE
10258 || attr_arch == TAG_CPU_ARCH_V8M_MAIN
ae66a8f1 10259 || attr_arch == TAG_CPU_ARCH_V8_1M_MAIN
9779414d 10260 || attr_profile == 'M'))
7559c217 10261 is_m = true;
a01567f4
LM
10262
10263 /* Look for attributes that indicate support for ARMv8.1-m
10264 PACBTI. */
10265 if (!tdesc_has_registers (tdesc) && is_m)
10266 {
10267 int attr_pac_extension
10268 = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
10269 Tag_PAC_extension);
10270
10271 int attr_bti_extension
10272 = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
10273 Tag_BTI_extension);
10274
10275 int attr_pacret_use
10276 = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
10277 Tag_PACRET_use);
10278
10279 int attr_bti_use
10280 = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
10281 Tag_BTI_use);
10282
10283 if (attr_pac_extension != 0 || attr_bti_extension != 0
10284 || attr_pacret_use != 0 || attr_bti_use != 0)
10285 have_pacbti = true;
10286 }
9779414d
DJ
10287#endif
10288 }
10289
10290 if (fp_model == ARM_FLOAT_AUTO)
10291 {
9779414d
DJ
10292 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
10293 {
10294 case 0:
10295 /* Leave it as "auto". Strictly speaking this case
10296 means FPA, but almost nobody uses that now, and
10297 many toolchains fail to set the appropriate bits
10298 for the floating-point model they use. */
10299 break;
10300 case EF_ARM_SOFT_FLOAT:
10301 fp_model = ARM_FLOAT_SOFT_FPA;
10302 break;
10303 case EF_ARM_VFP_FLOAT:
10304 fp_model = ARM_FLOAT_VFP;
10305 break;
10306 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
10307 fp_model = ARM_FLOAT_SOFT_VFP;
10308 break;
10309 }
10310 }
10311
10312 if (e_flags & EF_ARM_BE8)
10313 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
10314
10315 break;
10316
10317 default:
10318 /* Leave it as "auto". */
10319 break;
10320 }
10321 }
123dc839
DJ
10322
10323 /* Check any target description for validity. */
9779414d 10324 if (tdesc_has_registers (tdesc))
123dc839
DJ
10325 {
10326 /* For most registers we require GDB's default names; but also allow
10327 the numeric names for sp / lr / pc, as a convenience. */
10328 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
10329 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
10330 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
10331
10332 const struct tdesc_feature *feature;
58d6951d 10333 int valid_p;
123dc839 10334
9779414d 10335 feature = tdesc_find_feature (tdesc,
123dc839
DJ
10336 "org.gnu.gdb.arm.core");
10337 if (feature == NULL)
9779414d
DJ
10338 {
10339 feature = tdesc_find_feature (tdesc,
10340 "org.gnu.gdb.arm.m-profile");
10341 if (feature == NULL)
10342 return NULL;
10343 else
7559c217 10344 is_m = true;
9779414d 10345 }
123dc839
DJ
10346
10347 tdesc_data = tdesc_data_alloc ();
10348
10349 valid_p = 1;
10350 for (i = 0; i < ARM_SP_REGNUM; i++)
c1e1314d 10351 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), i,
123dc839 10352 arm_register_names[i]);
c1e1314d 10353 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
123dc839
DJ
10354 ARM_SP_REGNUM,
10355 arm_sp_names);
c1e1314d 10356 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
123dc839
DJ
10357 ARM_LR_REGNUM,
10358 arm_lr_names);
c1e1314d 10359 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
123dc839
DJ
10360 ARM_PC_REGNUM,
10361 arm_pc_names);
9779414d 10362 if (is_m)
c1e1314d 10363 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
9779414d
DJ
10364 ARM_PS_REGNUM, "xpsr");
10365 else
c1e1314d 10366 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
9779414d 10367 ARM_PS_REGNUM, "cpsr");
123dc839
DJ
10368
10369 if (!valid_p)
c1e1314d 10370 return NULL;
123dc839 10371
9074667a
CL
10372 if (is_m)
10373 {
10374 feature = tdesc_find_feature (tdesc,
10375 "org.gnu.gdb.arm.m-system");
10376 if (feature != nullptr)
10377 {
10378 /* MSP */
10379 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
10380 register_count, "msp");
10381 if (!valid_p)
10382 {
10383 warning (_("M-profile m-system feature is missing required register msp."));
10384 return nullptr;
10385 }
10386 have_m_profile_msp = true;
10387 m_profile_msp_regnum = register_count++;
10388
10389 /* PSP */
10390 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
10391 register_count, "psp");
10392 if (!valid_p)
10393 {
10394 warning (_("M-profile m-system feature is missing required register psp."));
10395 return nullptr;
10396 }
10397 m_profile_psp_regnum = register_count++;
10398 }
10399 }
10400
9779414d 10401 feature = tdesc_find_feature (tdesc,
123dc839
DJ
10402 "org.gnu.gdb.arm.fpa");
10403 if (feature != NULL)
10404 {
10405 valid_p = 1;
10406 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
c1e1314d 10407 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), i,
123dc839
DJ
10408 arm_register_names[i]);
10409 if (!valid_p)
c1e1314d 10410 return NULL;
123dc839 10411 }
ff6f572f 10412 else
7559c217 10413 have_fpa_registers = false;
ff6f572f 10414
9779414d 10415 feature = tdesc_find_feature (tdesc,
ff6f572f
DJ
10416 "org.gnu.gdb.xscale.iwmmxt");
10417 if (feature != NULL)
10418 {
10419 static const char *const iwmmxt_names[] = {
10420 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
10421 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
10422 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
10423 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
10424 };
10425
10426 valid_p = 1;
10427 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
10428 valid_p
c1e1314d 10429 &= tdesc_numbered_register (feature, tdesc_data.get (), i,
ff6f572f
DJ
10430 iwmmxt_names[i - ARM_WR0_REGNUM]);
10431
10432 /* Check for the control registers, but do not fail if they
10433 are missing. */
10434 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
c1e1314d 10435 tdesc_numbered_register (feature, tdesc_data.get (), i,
ff6f572f
DJ
10436 iwmmxt_names[i - ARM_WR0_REGNUM]);
10437
10438 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
10439 valid_p
c1e1314d 10440 &= tdesc_numbered_register (feature, tdesc_data.get (), i,
ff6f572f
DJ
10441 iwmmxt_names[i - ARM_WR0_REGNUM]);
10442
10443 if (!valid_p)
c1e1314d 10444 return NULL;
a56cc1ce 10445
7559c217 10446 have_wmmx_registers = true;
ff6f572f 10447 }
58d6951d
DJ
10448
10449 /* If we have a VFP unit, check whether the single precision registers
10450 are present. If not, then we will synthesize them as pseudo
10451 registers. */
9779414d 10452 feature = tdesc_find_feature (tdesc,
58d6951d
DJ
10453 "org.gnu.gdb.arm.vfp");
10454 if (feature != NULL)
10455 {
10456 static const char *const vfp_double_names[] = {
10457 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
10458 "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
10459 "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
10460 "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
10461 };
10462
10463 /* Require the double precision registers. There must be either
10464 16 or 32. */
10465 valid_p = 1;
10466 for (i = 0; i < 32; i++)
10467 {
c1e1314d 10468 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
58d6951d
DJ
10469 ARM_D0_REGNUM + i,
10470 vfp_double_names[i]);
10471 if (!valid_p)
10472 break;
10473 }
2b9e5ea6
UW
10474 if (!valid_p && i == 16)
10475 valid_p = 1;
58d6951d 10476
2b9e5ea6 10477 /* Also require FPSCR. */
c1e1314d 10478 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
2b9e5ea6
UW
10479 ARM_FPSCR_REGNUM, "fpscr");
10480 if (!valid_p)
c1e1314d 10481 return NULL;
58d6951d 10482
ae66a8f1
SP
10483 have_vfp = true;
10484
58d6951d 10485 if (tdesc_unnumbered_register (feature, "s0") == 0)
ecbf5d4f 10486 have_s_pseudos = true;
58d6951d 10487
330c6ca9 10488 vfp_register_count = i;
58d6951d
DJ
10489
10490 /* If we have VFP, also check for NEON. The architecture allows
10491 NEON without VFP (integer vector operations only), but GDB
10492 does not support that. */
9779414d 10493 feature = tdesc_find_feature (tdesc,
58d6951d
DJ
10494 "org.gnu.gdb.arm.neon");
10495 if (feature != NULL)
10496 {
10497 /* NEON requires 32 double-precision registers. */
10498 if (i != 32)
c1e1314d 10499 return NULL;
58d6951d
DJ
10500
10501 /* If there are quad registers defined by the stub, use
10502 their type; otherwise (normally) provide them with
10503 the default type. */
10504 if (tdesc_unnumbered_register (feature, "q0") == 0)
ecbf5d4f 10505 have_q_pseudos = true;
ae66a8f1
SP
10506 }
10507 }
10508
92d48a1e
JB
10509 /* Check for the TLS register feature. */
10510 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.arm.tls");
10511 if (feature != nullptr)
10512 {
10513 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
10514 register_count, "tpidruro");
10515 if (!valid_p)
10516 return nullptr;
10517
10518 tls_regnum = register_count;
10519 register_count++;
10520 }
10521
ae66a8f1
SP
10522 /* Check for MVE after all the checks for GPR's, VFP and Neon.
10523 MVE (Helium) is an M-profile extension. */
10524 if (is_m)
10525 {
10526 /* Do we have the MVE feature? */
10527 feature = tdesc_find_feature (tdesc,"org.gnu.gdb.arm.m-profile-mve");
10528
10529 if (feature != nullptr)
10530 {
10531 /* If we have MVE, we must always have the VPR register. */
10532 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
10533 register_count, "vpr");
10534 if (!valid_p)
10535 {
10536 warning (_("MVE feature is missing required register vpr."));
10537 return nullptr;
10538 }
58d6951d 10539
ae66a8f1
SP
10540 have_mve = true;
10541 mve_vpr_regnum = register_count;
10542 register_count++;
10543
10544 /* We can't have Q pseudo registers available here, as that
10545 would mean we have NEON features, and that is only available
10546 on A and R profiles. */
10547 gdb_assert (!have_q_pseudos);
10548
10549 /* Given we have a M-profile target description, if MVE is
10550 enabled and there are VFP registers, we should have Q
10551 pseudo registers (Q0 ~ Q7). */
10552 if (have_vfp)
10553 have_q_pseudos = true;
58d6951d 10554 }
a01567f4
LM
10555
10556 /* Do we have the ARMv8.1-m PACBTI feature? */
10557 feature = tdesc_find_feature (tdesc,
10558 "org.gnu.gdb.arm.m-profile-pacbti");
10559 if (feature != nullptr)
10560 {
10561 /* By advertising this feature, the target acknowledges the
10562 presence of the ARMv8.1-m PACBTI extensions.
10563
10564 We don't care for any particular registers in this group, so
10565 the target is free to include whatever it deems appropriate.
10566
10567 The expectation is for this feature to include the PAC
10568 keys. */
10569 have_pacbti = true;
10570 }
ae7e2f45
CL
10571
10572 /* Do we have the Security extension? */
10573 feature = tdesc_find_feature (tdesc,
10574 "org.gnu.gdb.arm.secext");
10575 if (feature != nullptr)
10576 {
10577 /* Secure/Non-secure stack pointers. */
10578 /* MSP_NS */
10579 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
10580 register_count, "msp_ns");
10581 if (!valid_p)
10582 {
10583 warning (_("M-profile secext feature is missing required register msp_ns."));
10584 return nullptr;
10585 }
10586 m_profile_msp_ns_regnum = register_count++;
10587
10588 /* PSP_NS */
10589 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
10590 register_count, "psp_ns");
10591 if (!valid_p)
10592 {
10593 warning (_("M-profile secext feature is missing required register psp_ns."));
10594 return nullptr;
10595 }
10596 m_profile_psp_ns_regnum = register_count++;
10597
10598 /* MSP_S */
10599 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
10600 register_count, "msp_s");
10601 if (!valid_p)
10602 {
10603 warning (_("M-profile secext feature is missing required register msp_s."));
10604 return nullptr;
10605 }
10606 m_profile_msp_s_regnum = register_count++;
10607
10608 /* PSP_S */
10609 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
10610 register_count, "psp_s");
10611 if (!valid_p)
10612 {
10613 warning (_("M-profile secext feature is missing required register psp_s."));
10614 return nullptr;
10615 }
10616 m_profile_psp_s_regnum = register_count++;
10617
10618 have_sec_ext = true;
10619 }
10620
58d6951d 10621 }
123dc839 10622 }
39bbf761 10623
28e97307
DJ
10624 /* If there is already a candidate, use it. */
10625 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
10626 best_arch != NULL;
10627 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
10628 {
345bd07c 10629 arm_gdbarch_tdep *tdep
08106042 10630 = gdbarch_tdep<arm_gdbarch_tdep> (best_arch->gdbarch);
345bd07c
SM
10631
10632 if (arm_abi != ARM_ABI_AUTO && arm_abi != tdep->arm_abi)
28e97307
DJ
10633 continue;
10634
345bd07c 10635 if (fp_model != ARM_FLOAT_AUTO && fp_model != tdep->fp_model)
28e97307
DJ
10636 continue;
10637
58d6951d
DJ
10638 /* There are various other properties in tdep that we do not
10639 need to check here: those derived from a target description,
10640 since gdbarches with a different target description are
10641 automatically disqualified. */
10642
9779414d 10643 /* Do check is_m, though, since it might come from the binary. */
345bd07c 10644 if (is_m != tdep->is_m)
9779414d
DJ
10645 continue;
10646
a01567f4
LM
10647 /* Also check for ARMv8.1-m PACBTI support, since it might come from
10648 the binary. */
10649 if (have_pacbti != tdep->have_pacbti)
10650 continue;
10651
28e97307
DJ
10652 /* Found a match. */
10653 break;
10654 }
97e03143 10655
28e97307 10656 if (best_arch != NULL)
c1e1314d 10657 return best_arch->gdbarch;
28e97307 10658
2b16913c
SM
10659 gdbarch *gdbarch
10660 = gdbarch_alloc (&info, gdbarch_tdep_up (new arm_gdbarch_tdep));
10661 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
97e03143 10662
28e97307
DJ
10663 /* Record additional information about the architecture we are defining.
10664 These are gdbarch discriminators, like the OSABI. */
10665 tdep->arm_abi = arm_abi;
10666 tdep->fp_model = fp_model;
9779414d 10667 tdep->is_m = is_m;
ae7e2f45 10668 tdep->have_sec_ext = have_sec_ext;
ff6f572f 10669 tdep->have_fpa_registers = have_fpa_registers;
a56cc1ce 10670 tdep->have_wmmx_registers = have_wmmx_registers;
330c6ca9
YQ
10671 gdb_assert (vfp_register_count == 0
10672 || vfp_register_count == 16
10673 || vfp_register_count == 32);
10674 tdep->vfp_register_count = vfp_register_count;
ecbf5d4f
LM
10675 tdep->have_s_pseudos = have_s_pseudos;
10676 tdep->have_q_pseudos = have_q_pseudos;
58d6951d 10677 tdep->have_neon = have_neon;
92d48a1e 10678 tdep->tls_regnum = tls_regnum;
08216dd7 10679
ae66a8f1
SP
10680 /* Adjust the MVE feature settings. */
10681 if (have_mve)
10682 {
10683 tdep->have_mve = true;
10684 tdep->mve_vpr_regnum = mve_vpr_regnum;
10685 }
10686
a01567f4
LM
10687 /* Adjust the PACBTI feature settings. */
10688 tdep->have_pacbti = have_pacbti;
10689
9074667a
CL
10690 /* Adjust the M-profile stack pointers settings. */
10691 if (have_m_profile_msp)
10692 {
10693 tdep->m_profile_msp_regnum = m_profile_msp_regnum;
10694 tdep->m_profile_psp_regnum = m_profile_psp_regnum;
ae7e2f45
CL
10695 tdep->m_profile_msp_ns_regnum = m_profile_msp_ns_regnum;
10696 tdep->m_profile_psp_ns_regnum = m_profile_psp_ns_regnum;
10697 tdep->m_profile_msp_s_regnum = m_profile_msp_s_regnum;
10698 tdep->m_profile_psp_s_regnum = m_profile_psp_s_regnum;
9074667a
CL
10699 }
10700
25f8c692
JL
10701 arm_register_g_packet_guesses (gdbarch);
10702
08216dd7 10703 /* Breakpoints. */
9d4fde75 10704 switch (info.byte_order_for_code)
67255d04
RE
10705 {
10706 case BFD_ENDIAN_BIG:
66e810cd
RE
10707 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
10708 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
10709 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
10710 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
10711
67255d04
RE
10712 break;
10713
10714 case BFD_ENDIAN_LITTLE:
66e810cd
RE
10715 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
10716 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
10717 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
10718 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
10719
67255d04
RE
10720 break;
10721
10722 default:
f34652de 10723 internal_error (_("arm_gdbarch_init: bad byte order for float format"));
67255d04
RE
10724 }
10725
d7b486e7
RE
10726 /* On ARM targets char defaults to unsigned. */
10727 set_gdbarch_char_signed (gdbarch, 0);
10728
53375380
PA
10729 /* wchar_t is unsigned under the AAPCS. */
10730 if (tdep->arm_abi == ARM_ABI_AAPCS)
10731 set_gdbarch_wchar_signed (gdbarch, 0);
10732 else
10733 set_gdbarch_wchar_signed (gdbarch, 1);
53375380 10734
030197b4
AB
10735 /* Compute type alignment. */
10736 set_gdbarch_type_align (gdbarch, arm_type_align);
10737
cca44b1b
JB
10738 /* Note: for displaced stepping, this includes the breakpoint, and one word
10739 of additional scratch space. This setting isn't used for anything beside
10740 displaced stepping at present. */
deb65a3c
AB
10741 set_gdbarch_displaced_step_buffer_length
10742 (gdbarch, 4 * ARM_DISPLACED_MODIFIED_INSNS);
10743 set_gdbarch_max_insn_length (gdbarch, 4);
cca44b1b 10744
9df628e0 10745 /* This should be low enough for everything. */
97e03143 10746 tdep->lowest_pc = 0x20;
94c30b78 10747 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 10748
7c00367c
MK
10749 /* The default, for both APCS and AAPCS, is to return small
10750 structures in registers. */
10751 tdep->struct_return = reg_struct_return;
10752
2dd604e7 10753 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
f53f0d0b 10754 set_gdbarch_frame_align (gdbarch, arm_frame_align);
39bbf761 10755
7eb89530
YQ
10756 if (is_m)
10757 set_gdbarch_code_of_frame_writable (gdbarch, arm_code_of_frame_writable);
10758
756fe439
DJ
10759 set_gdbarch_write_pc (gdbarch, arm_write_pc);
10760
eb5492fa 10761 frame_base_set_default (gdbarch, &arm_normal_base);
148754e5 10762
34e8f22d 10763 /* Address manipulation. */
34e8f22d
RE
10764 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
10765
34e8f22d
RE
10766 /* Advance PC across function entry code. */
10767 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
10768
c9cf6e20
MG
10769 /* Detect whether PC is at a point where the stack has been destroyed. */
10770 set_gdbarch_stack_frame_destroyed_p (gdbarch, arm_stack_frame_destroyed_p);
4024ca99 10771
190dce09
UW
10772 /* Skip trampolines. */
10773 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
10774
34e8f22d
RE
10775 /* The stack grows downward. */
10776 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
10777
10778 /* Breakpoint manipulation. */
04180708
YQ
10779 set_gdbarch_breakpoint_kind_from_pc (gdbarch, arm_breakpoint_kind_from_pc);
10780 set_gdbarch_sw_breakpoint_from_kind (gdbarch, arm_sw_breakpoint_from_kind);
833b7ab5
YQ
10781 set_gdbarch_breakpoint_kind_from_current_state (gdbarch,
10782 arm_breakpoint_kind_from_current_state);
34e8f22d
RE
10783
10784 /* Information about registers, etc. */
34e8f22d
RE
10785 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
10786 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
ecbf5d4f 10787 set_gdbarch_num_regs (gdbarch, register_count);
7a5ea0d4 10788 set_gdbarch_register_type (gdbarch, arm_register_type);
54483882 10789 set_gdbarch_register_reggroup_p (gdbarch, arm_register_reggroup_p);
34e8f22d 10790
ff6f572f
DJ
10791 /* This "info float" is FPA-specific. Use the generic version if we
10792 do not have FPA. */
345bd07c 10793 if (tdep->have_fpa_registers)
ff6f572f
DJ
10794 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
10795
26216b98 10796 /* Internal <-> external register number maps. */
ff6f572f 10797 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
26216b98
AC
10798 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
10799
34e8f22d
RE
10800 set_gdbarch_register_name (gdbarch, arm_register_name);
10801
10802 /* Returning results. */
5cb0f2d5 10803 set_gdbarch_return_value_as_value (gdbarch, arm_return_value);
34e8f22d 10804
03d48a7d
RE
10805 /* Disassembly. */
10806 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
10807
34e8f22d
RE
10808 /* Minsymbol frobbing. */
10809 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
10810 set_gdbarch_coff_make_msymbol_special (gdbarch,
10811 arm_coff_make_msymbol_special);
60c5725c 10812 set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol);
34e8f22d 10813
f9d67f43
DJ
10814 /* Thumb-2 IT block support. */
10815 set_gdbarch_adjust_breakpoint_address (gdbarch,
10816 arm_adjust_breakpoint_address);
10817
0d5de010
DJ
10818 /* Virtual tables. */
10819 set_gdbarch_vbit_in_delta (gdbarch, 1);
10820
97e03143 10821 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 10822 gdbarch_init_osabi (info, gdbarch);
97e03143 10823
b39cc962
DJ
10824 dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg);
10825
eb5492fa 10826 /* Add some default predicates. */
2ae28aa9
YQ
10827 if (is_m)
10828 frame_unwind_append_unwinder (gdbarch, &arm_m_exception_unwind);
a262aec2
DJ
10829 frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind);
10830 dwarf2_append_unwinders (gdbarch);
0e9e9abd 10831 frame_unwind_append_unwinder (gdbarch, &arm_exidx_unwind);
779aa56f 10832 frame_unwind_append_unwinder (gdbarch, &arm_epilogue_frame_unwind);
a262aec2 10833 frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind);
eb5492fa 10834
97e03143
RE
10835 /* Now we have tuned the configuration, set a few final things,
10836 based on what the OS ABI has told us. */
10837
b8926edc
DJ
10838 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
10839 binaries are always marked. */
10840 if (tdep->arm_abi == ARM_ABI_AUTO)
10841 tdep->arm_abi = ARM_ABI_APCS;
10842
e3039479
UW
10843 /* Watchpoints are not steppable. */
10844 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
10845
b8926edc
DJ
10846 /* We used to default to FPA for generic ARM, but almost nobody
10847 uses that now, and we now provide a way for the user to force
10848 the model. So default to the most useful variant. */
10849 if (tdep->fp_model == ARM_FLOAT_AUTO)
10850 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
10851
9df628e0
RE
10852 if (tdep->jb_pc >= 0)
10853 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
10854
08216dd7 10855 /* Floating point sizes and format. */
8da61cc4 10856 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
b8926edc 10857 if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
08216dd7 10858 {
8da61cc4
DJ
10859 set_gdbarch_double_format
10860 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
10861 set_gdbarch_long_double_format
10862 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
10863 }
10864 else
10865 {
10866 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
10867 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
08216dd7
RE
10868 }
10869
a01567f4
LM
10870 /* Hook used to decorate frames with signed return addresses, only available
10871 for ARMv8.1-m PACBTI. */
10872 if (is_m && have_pacbti)
10873 set_gdbarch_get_pc_address_flags (gdbarch, arm_get_pc_address_flags);
10874
dc22c61a
LM
10875 if (tdesc_data != nullptr)
10876 {
10877 set_tdesc_pseudo_register_name (gdbarch, arm_register_name);
10878
10879 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
ecbf5d4f 10880 register_count = gdbarch_num_regs (gdbarch);
dc22c61a
LM
10881
10882 /* Override tdesc_register_type to adjust the types of VFP
10883 registers for NEON. */
10884 set_gdbarch_register_type (gdbarch, arm_register_type);
10885 }
10886
ecbf5d4f 10887 /* Initialize the pseudo register data. */
ae66a8f1 10888 int num_pseudos = 0;
ecbf5d4f 10889 if (tdep->have_s_pseudos)
58d6951d 10890 {
ecbf5d4f
LM
10891 /* VFP single precision pseudo registers (S0~S31). */
10892 tdep->s_pseudo_base = register_count;
10893 tdep->s_pseudo_count = 32;
ae66a8f1 10894 num_pseudos += tdep->s_pseudo_count;
ecbf5d4f
LM
10895
10896 if (tdep->have_q_pseudos)
10897 {
10898 /* NEON quad precision pseudo registers (Q0~Q15). */
10899 tdep->q_pseudo_base = register_count + num_pseudos;
ae66a8f1
SP
10900
10901 if (have_neon)
10902 tdep->q_pseudo_count = 16;
10903 else if (have_mve)
10904 tdep->q_pseudo_count = ARM_MVE_NUM_Q_REGS;
10905
ecbf5d4f
LM
10906 num_pseudos += tdep->q_pseudo_count;
10907 }
ae66a8f1
SP
10908 }
10909
10910 /* Do we have any MVE pseudo registers? */
10911 if (have_mve)
10912 {
10913 tdep->mve_pseudo_base = register_count + num_pseudos;
10914 tdep->mve_pseudo_count = 1;
10915 num_pseudos += tdep->mve_pseudo_count;
10916 }
58d6951d 10917
a01567f4
LM
10918 /* Do we have any ARMv8.1-m PACBTI pseudo registers. */
10919 if (have_pacbti)
10920 {
10921 tdep->pacbti_pseudo_base = register_count + num_pseudos;
10922 tdep->pacbti_pseudo_count = 1;
10923 num_pseudos += tdep->pacbti_pseudo_count;
10924 }
10925
ae66a8f1 10926 /* Set some pseudo register hooks, if we have pseudo registers. */
a01567f4 10927 if (tdep->have_s_pseudos || have_mve || have_pacbti)
ae66a8f1 10928 {
58d6951d 10929 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudos);
f8a311f0 10930 set_gdbarch_pseudo_register_read_value (gdbarch, arm_pseudo_read_value);
fa751379 10931 set_gdbarch_pseudo_register_write (gdbarch, arm_pseudo_write);
58d6951d
DJ
10932 }
10933
123dc839 10934 /* Add standard register aliases. We add aliases even for those
85102364 10935 names which are used by the current architecture - it's simpler,
123dc839
DJ
10936 and does no harm, since nothing ever lists user registers. */
10937 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
10938 user_reg_add (gdbarch, arm_register_aliases[i].name,
10939 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
10940
65b48a81
PB
10941 set_gdbarch_disassembler_options (gdbarch, &arm_disassembler_options);
10942 set_gdbarch_valid_disassembler_options (gdbarch, disassembler_options_arm ());
10943
3426ae57
AH
10944 set_gdbarch_gnu_triplet_regexp (gdbarch, arm_gnu_triplet_regexp);
10945
39bbf761
RE
10946 return gdbarch;
10947}
10948
97e03143 10949static void
2af46ca0 10950arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
97e03143 10951{
08106042 10952 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
97e03143
RE
10953
10954 if (tdep == NULL)
10955 return;
10956
6cb06a8c
TT
10957 gdb_printf (file, _("arm_dump_tdep: fp_model = %i\n"),
10958 (int) tdep->fp_model);
10959 gdb_printf (file, _("arm_dump_tdep: have_fpa_registers = %i\n"),
10960 (int) tdep->have_fpa_registers);
10961 gdb_printf (file, _("arm_dump_tdep: have_wmmx_registers = %i\n"),
10962 (int) tdep->have_wmmx_registers);
10963 gdb_printf (file, _("arm_dump_tdep: vfp_register_count = %i\n"),
10964 (int) tdep->vfp_register_count);
10965 gdb_printf (file, _("arm_dump_tdep: have_s_pseudos = %s\n"),
05d63baf 10966 tdep->have_s_pseudos ? "true" : "false");
6cb06a8c
TT
10967 gdb_printf (file, _("arm_dump_tdep: s_pseudo_base = %i\n"),
10968 (int) tdep->s_pseudo_base);
10969 gdb_printf (file, _("arm_dump_tdep: s_pseudo_count = %i\n"),
10970 (int) tdep->s_pseudo_count);
10971 gdb_printf (file, _("arm_dump_tdep: have_q_pseudos = %s\n"),
05d63baf 10972 tdep->have_q_pseudos ? "true" : "false");
6cb06a8c
TT
10973 gdb_printf (file, _("arm_dump_tdep: q_pseudo_base = %i\n"),
10974 (int) tdep->q_pseudo_base);
10975 gdb_printf (file, _("arm_dump_tdep: q_pseudo_count = %i\n"),
10976 (int) tdep->q_pseudo_count);
10977 gdb_printf (file, _("arm_dump_tdep: have_neon = %i\n"),
10978 (int) tdep->have_neon);
10979 gdb_printf (file, _("arm_dump_tdep: have_mve = %s\n"),
05d63baf 10980 tdep->have_mve ? "yes" : "no");
6cb06a8c
TT
10981 gdb_printf (file, _("arm_dump_tdep: mve_vpr_regnum = %i\n"),
10982 tdep->mve_vpr_regnum);
10983 gdb_printf (file, _("arm_dump_tdep: mve_pseudo_base = %i\n"),
10984 tdep->mve_pseudo_base);
10985 gdb_printf (file, _("arm_dump_tdep: mve_pseudo_count = %i\n"),
10986 tdep->mve_pseudo_count);
9074667a
CL
10987 gdb_printf (file, _("arm_dump_tdep: m_profile_msp_regnum = %i\n"),
10988 tdep->m_profile_msp_regnum);
10989 gdb_printf (file, _("arm_dump_tdep: m_profile_psp_regnum = %i\n"),
10990 tdep->m_profile_psp_regnum);
ae7e2f45
CL
10991 gdb_printf (file, _("arm_dump_tdep: m_profile_msp_ns_regnum = %i\n"),
10992 tdep->m_profile_msp_ns_regnum);
10993 gdb_printf (file, _("arm_dump_tdep: m_profile_psp_ns_regnum = %i\n"),
10994 tdep->m_profile_psp_ns_regnum);
10995 gdb_printf (file, _("arm_dump_tdep: m_profile_msp_s_regnum = %i\n"),
10996 tdep->m_profile_msp_s_regnum);
10997 gdb_printf (file, _("arm_dump_tdep: m_profile_psp_s_regnum = %i\n"),
10998 tdep->m_profile_psp_s_regnum);
6cb06a8c
TT
10999 gdb_printf (file, _("arm_dump_tdep: Lowest pc = 0x%lx\n"),
11000 (unsigned long) tdep->lowest_pc);
a01567f4 11001 gdb_printf (file, _("arm_dump_tdep: have_pacbti = %s\n"),
05d63baf 11002 tdep->have_pacbti ? "yes" : "no");
a01567f4
LM
11003 gdb_printf (file, _("arm_dump_tdep: pacbti_pseudo_base = %i\n"),
11004 tdep->pacbti_pseudo_base);
11005 gdb_printf (file, _("arm_dump_tdep: pacbti_pseudo_count = %i\n"),
11006 tdep->pacbti_pseudo_count);
11007 gdb_printf (file, _("arm_dump_tdep: is_m = %s\n"),
05d63baf 11008 tdep->is_m ? "yes" : "no");
97e03143
RE
11009}
11010
0d4c07af 11011#if GDB_SELF_TEST
b121eeb9
YQ
11012namespace selftests
11013{
11014static void arm_record_test (void);
9ecab40c 11015static void arm_analyze_prologue_test ();
b121eeb9 11016}
0d4c07af 11017#endif
b121eeb9 11018
6c265988 11019void _initialize_arm_tdep ();
c906108c 11020void
6c265988 11021_initialize_arm_tdep ()
c906108c 11022{
bc90b915 11023 long length;
65b48a81 11024 int i, j;
edefbb7c
AC
11025 char regdesc[1024], *rdptr = regdesc;
11026 size_t rest = sizeof (regdesc);
085dd6e6 11027
42cf1509 11028 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
97e03143 11029
0e9e9abd 11030 /* Add ourselves to objfile event chain. */
c90e7d63 11031 gdb::observers::new_objfile.attach (arm_exidx_new_objfile, "arm-tdep");
0e9e9abd 11032
70f80edf
JT
11033 /* Register an ELF OS ABI sniffer for ARM binaries. */
11034 gdbarch_register_osabi_sniffer (bfd_arch_arm,
11035 bfd_target_elf_flavour,
11036 arm_elf_osabi_sniffer);
11037
afd7eef0 11038 /* Add root prefix command for all "set arm"/"show arm" commands. */
f54bdb6d
SM
11039 add_setshow_prefix_cmd ("arm", no_class,
11040 _("Various ARM-specific commands."),
11041 _("Various ARM-specific commands."),
11042 &setarmcmdlist, &showarmcmdlist,
11043 &setlist, &showlist);
c5aa993b 11044
65b48a81 11045 arm_disassembler_options = xstrdup ("reg-names-std");
471b9d15
MR
11046 const disasm_options_t *disasm_options
11047 = &disassembler_options_arm ()->options;
65b48a81
PB
11048 int num_disassembly_styles = 0;
11049 for (i = 0; disasm_options->name[i] != NULL; i++)
08dedd66 11050 if (startswith (disasm_options->name[i], "reg-names-"))
65b48a81
PB
11051 num_disassembly_styles++;
11052
11053 /* Initialize the array that will be passed to add_setshow_enum_cmd(). */
8d749320 11054 valid_disassembly_styles = XNEWVEC (const char *,
65b48a81
PB
11055 num_disassembly_styles + 1);
11056 for (i = j = 0; disasm_options->name[i] != NULL; i++)
08dedd66 11057 if (startswith (disasm_options->name[i], "reg-names-"))
65b48a81
PB
11058 {
11059 size_t offset = strlen ("reg-names-");
11060 const char *style = disasm_options->name[i];
11061 valid_disassembly_styles[j++] = &style[offset];
dedb7102
TT
11062 if (strcmp (&style[offset], "std") == 0)
11063 disassembly_style = &style[offset];
65b48a81
PB
11064 length = snprintf (rdptr, rest, "%s - %s\n", &style[offset],
11065 disasm_options->description[i]);
11066 rdptr += length;
11067 rest -= length;
11068 }
94c30b78 11069 /* Mark the end of valid options. */
65b48a81 11070 valid_disassembly_styles[num_disassembly_styles] = NULL;
c906108c 11071
edefbb7c 11072 /* Create the help text. */
d7e74731
PA
11073 std::string helptext = string_printf ("%s%s%s",
11074 _("The valid values are:\n"),
11075 regdesc,
11076 _("The default is \"std\"."));
ed9a39eb 11077
edefbb7c
AC
11078 add_setshow_enum_cmd("disassembler", no_class,
11079 valid_disassembly_styles, &disassembly_style,
11080 _("Set the disassembly style."),
11081 _("Show the disassembly style."),
09b0e4b0 11082 helptext.c_str (),
2c5b56ce 11083 set_disassembly_style_sfunc,
65b48a81 11084 show_disassembly_style_sfunc,
7376b4c2 11085 &setarmcmdlist, &showarmcmdlist);
edefbb7c
AC
11086
11087 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
11088 _("Set usage of ARM 32-bit mode."),
11089 _("Show usage of ARM 32-bit mode."),
11090 _("When off, a 26-bit PC will be used."),
2c5b56ce 11091 NULL,
0963b4bd
MS
11092 NULL, /* FIXME: i18n: Usage of ARM 32-bit
11093 mode is %s. */
26304000 11094 &setarmcmdlist, &showarmcmdlist);
c906108c 11095
fd50bc42 11096 /* Add a command to allow the user to force the FPU model. */
edefbb7c
AC
11097 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
11098 _("Set the floating point type."),
11099 _("Show the floating point type."),
11100 _("auto - Determine the FP typefrom the OS-ABI.\n\
11101softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
11102fpa - FPA co-processor (GCC compiled).\n\
11103softvfp - Software FP with pure-endian doubles.\n\
11104vfp - VFP co-processor."),
edefbb7c 11105 set_fp_model_sfunc, show_fp_model,
7376b4c2 11106 &setarmcmdlist, &showarmcmdlist);
fd50bc42 11107
28e97307
DJ
11108 /* Add a command to allow the user to force the ABI. */
11109 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
11110 _("Set the ABI."),
11111 _("Show the ABI."),
11112 NULL, arm_set_abi, arm_show_abi,
11113 &setarmcmdlist, &showarmcmdlist);
11114
0428b8f5
DJ
11115 /* Add two commands to allow the user to force the assumed
11116 execution mode. */
11117 add_setshow_enum_cmd ("fallback-mode", class_support,
11118 arm_mode_strings, &arm_fallback_mode_string,
11119 _("Set the mode assumed when symbols are unavailable."),
11120 _("Show the mode assumed when symbols are unavailable."),
11121 NULL, NULL, arm_show_fallback_mode,
11122 &setarmcmdlist, &showarmcmdlist);
11123 add_setshow_enum_cmd ("force-mode", class_support,
11124 arm_mode_strings, &arm_force_mode_string,
11125 _("Set the mode assumed even when symbols are available."),
11126 _("Show the mode assumed even when symbols are available."),
11127 NULL, NULL, arm_show_force_mode,
11128 &setarmcmdlist, &showarmcmdlist);
11129
ef273377
CL
11130 /* Add a command to stop triggering security exceptions when
11131 unwinding exception stacks. */
11132 add_setshow_boolean_cmd ("unwind-secure-frames", no_class, &arm_unwind_secure_frames,
11133 _("Set usage of non-secure to secure exception stack unwinding."),
11134 _("Show usage of non-secure to secure exception stack unwinding."),
11135 _("When on, the debugger can trigger memory access traps."),
11136 NULL, arm_show_unwind_secure_frames,
11137 &setarmcmdlist, &showarmcmdlist);
11138
6529d2dd 11139 /* Debugging flag. */
edefbb7c
AC
11140 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
11141 _("Set ARM debugging."),
11142 _("Show ARM debugging."),
11143 _("When on, arm-specific debugging is enabled."),
2c5b56ce 11144 NULL,
7915a72c 11145 NULL, /* FIXME: i18n: "ARM debugging is %s. */
26304000 11146 &setdebuglist, &showdebuglist);
b121eeb9
YQ
11147
11148#if GDB_SELF_TEST
1526853e 11149 selftests::register_test ("arm-record", selftests::arm_record_test);
9ecab40c 11150 selftests::register_test ("arm_analyze_prologue", selftests::arm_analyze_prologue_test);
b121eeb9
YQ
11151#endif
11152
c906108c 11153}
72508ac0
PO
11154
11155/* ARM-reversible process record data structures. */
11156
11157#define ARM_INSN_SIZE_BYTES 4
11158#define THUMB_INSN_SIZE_BYTES 2
11159#define THUMB2_INSN_SIZE_BYTES 4
11160
11161
71e396f9
LM
11162/* Position of the bit within a 32-bit ARM instruction
11163 that defines whether the instruction is a load or store. */
72508ac0
PO
11164#define INSN_S_L_BIT_NUM 20
11165
11166#define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \
dda83cd7
SM
11167 do \
11168 { \
11169 unsigned int reg_len = LENGTH; \
11170 if (reg_len) \
11171 { \
11172 REGS = XNEWVEC (uint32_t, reg_len); \
11173 memcpy(&REGS[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \
11174 } \
11175 } \
11176 while (0)
72508ac0
PO
11177
11178#define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \
dda83cd7
SM
11179 do \
11180 { \
11181 unsigned int mem_len = LENGTH; \
11182 if (mem_len) \
01add95b
SM
11183 { \
11184 MEMS = XNEWVEC (struct arm_mem_r, mem_len); \
11185 memcpy(&MEMS->len, &RECORD_BUF[0], \
11186 sizeof(struct arm_mem_r) * LENGTH); \
11187 } \
dda83cd7
SM
11188 } \
11189 while (0)
72508ac0
PO
11190
11191/* Checks whether insn is already recorded or yet to be decoded. (boolean expression). */
11192#define INSN_RECORDED(ARM_RECORD) \
dda83cd7 11193 (0 != (ARM_RECORD)->reg_rec_count || 0 != (ARM_RECORD)->mem_rec_count)
72508ac0
PO
11194
11195/* ARM memory record structure. */
11196struct arm_mem_r
11197{
11198 uint32_t len; /* Record length. */
bfbbec00 11199 uint32_t addr; /* Memory address. */
72508ac0
PO
11200};
11201
11202/* ARM instruction record contains opcode of current insn
11203 and execution state (before entry to decode_insn()),
11204 contains list of to-be-modified registers and
11205 memory blocks (on return from decode_insn()). */
11206
4748a9be 11207struct arm_insn_decode_record
72508ac0
PO
11208{
11209 struct gdbarch *gdbarch;
11210 struct regcache *regcache;
11211 CORE_ADDR this_addr; /* Address of the insn being decoded. */
11212 uint32_t arm_insn; /* Should accommodate thumb. */
11213 uint32_t cond; /* Condition code. */
11214 uint32_t opcode; /* Insn opcode. */
11215 uint32_t decode; /* Insn decode bits. */
11216 uint32_t mem_rec_count; /* No of mem records. */
11217 uint32_t reg_rec_count; /* No of reg records. */
11218 uint32_t *arm_regs; /* Registers to be saved for this record. */
11219 struct arm_mem_r *arm_mems; /* Memory to be saved for this record. */
4748a9be 11220};
72508ac0
PO
11221
11222
11223/* Checks ARM SBZ and SBO mandatory fields. */
11224
11225static int
11226sbo_sbz (uint32_t insn, uint32_t bit_num, uint32_t len, uint32_t sbo)
11227{
11228 uint32_t ones = bits (insn, bit_num - 1, (bit_num -1) + (len - 1));
11229
11230 if (!len)
11231 return 1;
11232
11233 if (!sbo)
11234 ones = ~ones;
11235
11236 while (ones)
11237 {
11238 if (!(ones & sbo))
dda83cd7
SM
11239 {
11240 return 0;
11241 }
72508ac0
PO
11242 ones = ones >> 1;
11243 }
11244 return 1;
11245}
11246
c6ec2b30
OJ
11247enum arm_record_result
11248{
11249 ARM_RECORD_SUCCESS = 0,
11250 ARM_RECORD_FAILURE = 1
11251};
11252
0d1703b8 11253enum arm_record_strx_t
72508ac0
PO
11254{
11255 ARM_RECORD_STRH=1,
11256 ARM_RECORD_STRD
0d1703b8 11257};
72508ac0 11258
0d1703b8 11259enum record_type_t
72508ac0
PO
11260{
11261 ARM_RECORD=1,
11262 THUMB_RECORD,
11263 THUMB2_RECORD
0d1703b8 11264};
72508ac0
PO
11265
11266
11267static int
4748a9be 11268arm_record_strx (arm_insn_decode_record *arm_insn_r, uint32_t *record_buf,
dda83cd7 11269 uint32_t *record_buf_mem, arm_record_strx_t str_type)
72508ac0
PO
11270{
11271
11272 struct regcache *reg_cache = arm_insn_r->regcache;
11273 ULONGEST u_regval[2]= {0};
11274
11275 uint32_t reg_src1 = 0, reg_src2 = 0;
11276 uint32_t immed_high = 0, immed_low = 0,offset_8 = 0, tgt_mem_addr = 0;
72508ac0
PO
11277
11278 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
11279 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
72508ac0
PO
11280
11281 if (14 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
11282 {
11283 /* 1) Handle misc store, immediate offset. */
11284 immed_low = bits (arm_insn_r->arm_insn, 0, 3);
11285 immed_high = bits (arm_insn_r->arm_insn, 8, 11);
11286 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
11287 regcache_raw_read_unsigned (reg_cache, reg_src1,
dda83cd7 11288 &u_regval[0]);
72508ac0 11289 if (ARM_PC_REGNUM == reg_src1)
dda83cd7
SM
11290 {
11291 /* If R15 was used as Rn, hence current PC+8. */
11292 u_regval[0] = u_regval[0] + 8;
11293 }
72508ac0
PO
11294 offset_8 = (immed_high << 4) | immed_low;
11295 /* Calculate target store address. */
11296 if (14 == arm_insn_r->opcode)
dda83cd7
SM
11297 {
11298 tgt_mem_addr = u_regval[0] + offset_8;
11299 }
72508ac0 11300 else
dda83cd7
SM
11301 {
11302 tgt_mem_addr = u_regval[0] - offset_8;
11303 }
72508ac0 11304 if (ARM_RECORD_STRH == str_type)
dda83cd7
SM
11305 {
11306 record_buf_mem[0] = 2;
11307 record_buf_mem[1] = tgt_mem_addr;
11308 arm_insn_r->mem_rec_count = 1;
11309 }
72508ac0 11310 else if (ARM_RECORD_STRD == str_type)
dda83cd7
SM
11311 {
11312 record_buf_mem[0] = 4;
11313 record_buf_mem[1] = tgt_mem_addr;
11314 record_buf_mem[2] = 4;
11315 record_buf_mem[3] = tgt_mem_addr + 4;
11316 arm_insn_r->mem_rec_count = 2;
11317 }
72508ac0
PO
11318 }
11319 else if (12 == arm_insn_r->opcode || 8 == arm_insn_r->opcode)
11320 {
11321 /* 2) Store, register offset. */
11322 /* Get Rm. */
11323 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
11324 /* Get Rn. */
11325 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
11326 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
11327 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
11328 if (15 == reg_src2)
dda83cd7
SM
11329 {
11330 /* If R15 was used as Rn, hence current PC+8. */
11331 u_regval[0] = u_regval[0] + 8;
11332 }
72508ac0
PO
11333 /* Calculate target store address, Rn +/- Rm, register offset. */
11334 if (12 == arm_insn_r->opcode)
dda83cd7
SM
11335 {
11336 tgt_mem_addr = u_regval[0] + u_regval[1];
11337 }
72508ac0 11338 else
dda83cd7
SM
11339 {
11340 tgt_mem_addr = u_regval[1] - u_regval[0];
11341 }
72508ac0 11342 if (ARM_RECORD_STRH == str_type)
dda83cd7
SM
11343 {
11344 record_buf_mem[0] = 2;
11345 record_buf_mem[1] = tgt_mem_addr;
11346 arm_insn_r->mem_rec_count = 1;
11347 }
72508ac0 11348 else if (ARM_RECORD_STRD == str_type)
dda83cd7
SM
11349 {
11350 record_buf_mem[0] = 4;
11351 record_buf_mem[1] = tgt_mem_addr;
11352 record_buf_mem[2] = 4;
11353 record_buf_mem[3] = tgt_mem_addr + 4;
11354 arm_insn_r->mem_rec_count = 2;
11355 }
72508ac0
PO
11356 }
11357 else if (11 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
dda83cd7 11358 || 2 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
72508ac0
PO
11359 {
11360 /* 3) Store, immediate pre-indexed. */
11361 /* 5) Store, immediate post-indexed. */
11362 immed_low = bits (arm_insn_r->arm_insn, 0, 3);
11363 immed_high = bits (arm_insn_r->arm_insn, 8, 11);
11364 offset_8 = (immed_high << 4) | immed_low;
11365 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
11366 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
11367 /* Calculate target store address, Rn +/- Rm, register offset. */
11368 if (15 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
dda83cd7
SM
11369 {
11370 tgt_mem_addr = u_regval[0] + offset_8;
11371 }
72508ac0 11372 else
dda83cd7
SM
11373 {
11374 tgt_mem_addr = u_regval[0] - offset_8;
11375 }
72508ac0 11376 if (ARM_RECORD_STRH == str_type)
dda83cd7
SM
11377 {
11378 record_buf_mem[0] = 2;
11379 record_buf_mem[1] = tgt_mem_addr;
11380 arm_insn_r->mem_rec_count = 1;
11381 }
72508ac0 11382 else if (ARM_RECORD_STRD == str_type)
dda83cd7
SM
11383 {
11384 record_buf_mem[0] = 4;
11385 record_buf_mem[1] = tgt_mem_addr;
11386 record_buf_mem[2] = 4;
11387 record_buf_mem[3] = tgt_mem_addr + 4;
11388 arm_insn_r->mem_rec_count = 2;
11389 }
72508ac0
PO
11390 /* Record Rn also as it changes. */
11391 *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
11392 arm_insn_r->reg_rec_count = 1;
11393 }
11394 else if (9 == arm_insn_r->opcode || 13 == arm_insn_r->opcode
dda83cd7 11395 || 0 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
72508ac0
PO
11396 {
11397 /* 4) Store, register pre-indexed. */
11398 /* 6) Store, register post -indexed. */
11399 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
11400 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
11401 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
11402 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
11403 /* Calculate target store address, Rn +/- Rm, register offset. */
11404 if (13 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
dda83cd7
SM
11405 {
11406 tgt_mem_addr = u_regval[0] + u_regval[1];
11407 }
72508ac0 11408 else
dda83cd7
SM
11409 {
11410 tgt_mem_addr = u_regval[1] - u_regval[0];
11411 }
72508ac0 11412 if (ARM_RECORD_STRH == str_type)
dda83cd7
SM
11413 {
11414 record_buf_mem[0] = 2;
11415 record_buf_mem[1] = tgt_mem_addr;
11416 arm_insn_r->mem_rec_count = 1;
11417 }
72508ac0 11418 else if (ARM_RECORD_STRD == str_type)
dda83cd7
SM
11419 {
11420 record_buf_mem[0] = 4;
11421 record_buf_mem[1] = tgt_mem_addr;
11422 record_buf_mem[2] = 4;
11423 record_buf_mem[3] = tgt_mem_addr + 4;
11424 arm_insn_r->mem_rec_count = 2;
11425 }
72508ac0
PO
11426 /* Record Rn also as it changes. */
11427 *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
11428 arm_insn_r->reg_rec_count = 1;
11429 }
11430 return 0;
11431}
11432
11433/* Handling ARM extension space insns. */
11434
11435static int
4748a9be 11436arm_record_extension_space (arm_insn_decode_record *arm_insn_r)
72508ac0 11437{
df95a9cf 11438 int ret = 0; /* Return value: -1:record failure ; 0:success */
72508ac0
PO
11439 uint32_t opcode1 = 0, opcode2 = 0, insn_op1 = 0;
11440 uint32_t record_buf[8], record_buf_mem[8];
11441 uint32_t reg_src1 = 0;
72508ac0
PO
11442 struct regcache *reg_cache = arm_insn_r->regcache;
11443 ULONGEST u_regval = 0;
11444
11445 gdb_assert (!INSN_RECORDED(arm_insn_r));
11446 /* Handle unconditional insn extension space. */
11447
11448 opcode1 = bits (arm_insn_r->arm_insn, 20, 27);
11449 opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
11450 if (arm_insn_r->cond)
11451 {
11452 /* PLD has no affect on architectural state, it just affects
dda83cd7 11453 the caches. */
72508ac0 11454 if (5 == ((opcode1 & 0xE0) >> 5))
dda83cd7
SM
11455 {
11456 /* BLX(1) */
11457 record_buf[0] = ARM_PS_REGNUM;
11458 record_buf[1] = ARM_LR_REGNUM;
11459 arm_insn_r->reg_rec_count = 2;
11460 }
72508ac0
PO
11461 /* STC2, LDC2, MCR2, MRC2, CDP2: <TBD>, co-processor insn. */
11462 }
11463
11464
11465 opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
11466 if (3 == opcode1 && bit (arm_insn_r->arm_insn, 4))
11467 {
11468 ret = -1;
11469 /* Undefined instruction on ARM V5; need to handle if later
dda83cd7 11470 versions define it. */
72508ac0
PO
11471 }
11472
11473 opcode1 = bits (arm_insn_r->arm_insn, 24, 27);
11474 opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
11475 insn_op1 = bits (arm_insn_r->arm_insn, 20, 23);
11476
11477 /* Handle arithmetic insn extension space. */
11478 if (!opcode1 && 9 == opcode2 && 1 != arm_insn_r->cond
11479 && !INSN_RECORDED(arm_insn_r))
11480 {
11481 /* Handle MLA(S) and MUL(S). */
b020ff80 11482 if (in_inclusive_range (insn_op1, 0U, 3U))
01add95b
SM
11483 {
11484 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11485 record_buf[1] = ARM_PS_REGNUM;
11486 arm_insn_r->reg_rec_count = 2;
11487 }
b020ff80 11488 else if (in_inclusive_range (insn_op1, 4U, 15U))
01add95b
SM
11489 {
11490 /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
11491 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
11492 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
11493 record_buf[2] = ARM_PS_REGNUM;
11494 arm_insn_r->reg_rec_count = 3;
11495 }
72508ac0
PO
11496 }
11497
11498 opcode1 = bits (arm_insn_r->arm_insn, 26, 27);
11499 opcode2 = bits (arm_insn_r->arm_insn, 23, 24);
11500 insn_op1 = bits (arm_insn_r->arm_insn, 21, 22);
11501
11502 /* Handle control insn extension space. */
11503
11504 if (!opcode1 && 2 == opcode2 && !bit (arm_insn_r->arm_insn, 20)
11505 && 1 != arm_insn_r->cond && !INSN_RECORDED(arm_insn_r))
11506 {
11507 if (!bit (arm_insn_r->arm_insn,25))
dda83cd7
SM
11508 {
11509 if (!bits (arm_insn_r->arm_insn, 4, 7))
11510 {
11511 if ((0 == insn_op1) || (2 == insn_op1))
11512 {
11513 /* MRS. */
11514 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11515 arm_insn_r->reg_rec_count = 1;
11516 }
11517 else if (1 == insn_op1)
11518 {
11519 /* CSPR is going to be changed. */
11520 record_buf[0] = ARM_PS_REGNUM;
11521 arm_insn_r->reg_rec_count = 1;
11522 }
11523 else if (3 == insn_op1)
11524 {
11525 /* SPSR is going to be changed. */
11526 /* We need to get SPSR value, which is yet to be done. */
11527 return -1;
11528 }
11529 }
11530 else if (1 == bits (arm_insn_r->arm_insn, 4, 7))
11531 {
11532 if (1 == insn_op1)
11533 {
11534 /* BX. */
11535 record_buf[0] = ARM_PS_REGNUM;
11536 arm_insn_r->reg_rec_count = 1;
11537 }
11538 else if (3 == insn_op1)
11539 {
11540 /* CLZ. */
11541 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11542 arm_insn_r->reg_rec_count = 1;
11543 }
11544 }
11545 else if (3 == bits (arm_insn_r->arm_insn, 4, 7))
11546 {
11547 /* BLX. */
11548 record_buf[0] = ARM_PS_REGNUM;
11549 record_buf[1] = ARM_LR_REGNUM;
11550 arm_insn_r->reg_rec_count = 2;
11551 }
11552 else if (5 == bits (arm_insn_r->arm_insn, 4, 7))
11553 {
11554 /* QADD, QSUB, QDADD, QDSUB */
11555 record_buf[0] = ARM_PS_REGNUM;
11556 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
11557 arm_insn_r->reg_rec_count = 2;
11558 }
11559 else if (7 == bits (arm_insn_r->arm_insn, 4, 7))
11560 {
11561 /* BKPT. */
11562 record_buf[0] = ARM_PS_REGNUM;
11563 record_buf[1] = ARM_LR_REGNUM;
11564 arm_insn_r->reg_rec_count = 2;
11565
11566 /* Save SPSR also;how? */
11567 return -1;
11568 }
11569 else if(8 == bits (arm_insn_r->arm_insn, 4, 7)
11570 || 10 == bits (arm_insn_r->arm_insn, 4, 7)
11571 || 12 == bits (arm_insn_r->arm_insn, 4, 7)
11572 || 14 == bits (arm_insn_r->arm_insn, 4, 7)
11573 )
11574 {
11575 if (0 == insn_op1 || 1 == insn_op1)
11576 {
11577 /* SMLA<x><y>, SMLAW<y>, SMULW<y>. */
11578 /* We dont do optimization for SMULW<y> where we
11579 need only Rd. */
11580 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11581 record_buf[1] = ARM_PS_REGNUM;
11582 arm_insn_r->reg_rec_count = 2;
11583 }
11584 else if (2 == insn_op1)
11585 {
11586 /* SMLAL<x><y>. */
11587 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11588 record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
11589 arm_insn_r->reg_rec_count = 2;
11590 }
11591 else if (3 == insn_op1)
11592 {
11593 /* SMUL<x><y>. */
11594 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11595 arm_insn_r->reg_rec_count = 1;
11596 }
11597 }
11598 }
72508ac0 11599 else
dda83cd7
SM
11600 {
11601 /* MSR : immediate form. */
11602 if (1 == insn_op1)
11603 {
11604 /* CSPR is going to be changed. */
11605 record_buf[0] = ARM_PS_REGNUM;
11606 arm_insn_r->reg_rec_count = 1;
11607 }
11608 else if (3 == insn_op1)
11609 {
11610 /* SPSR is going to be changed. */
11611 /* we need to get SPSR value, which is yet to be done */
11612 return -1;
11613 }
11614 }
72508ac0
PO
11615 }
11616
11617 opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
11618 opcode2 = bits (arm_insn_r->arm_insn, 20, 24);
11619 insn_op1 = bits (arm_insn_r->arm_insn, 5, 6);
11620
11621 /* Handle load/store insn extension space. */
11622
11623 if (!opcode1 && bit (arm_insn_r->arm_insn, 7)
11624 && bit (arm_insn_r->arm_insn, 4) && 1 != arm_insn_r->cond
11625 && !INSN_RECORDED(arm_insn_r))
11626 {
11627 /* SWP/SWPB. */
11628 if (0 == insn_op1)
dda83cd7
SM
11629 {
11630 /* These insn, changes register and memory as well. */
11631 /* SWP or SWPB insn. */
11632 /* Get memory address given by Rn. */
11633 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
11634 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
11635 /* SWP insn ?, swaps word. */
11636 if (8 == arm_insn_r->opcode)
11637 {
11638 record_buf_mem[0] = 4;
11639 }
11640 else
11641 {
11642 /* SWPB insn, swaps only byte. */
11643 record_buf_mem[0] = 1;
11644 }
11645 record_buf_mem[1] = u_regval;
11646 arm_insn_r->mem_rec_count = 1;
11647 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11648 arm_insn_r->reg_rec_count = 1;
11649 }
72508ac0 11650 else if (1 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
dda83cd7
SM
11651 {
11652 /* STRH. */
11653 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
11654 ARM_RECORD_STRH);
11655 }
72508ac0 11656 else if (2 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
dda83cd7
SM
11657 {
11658 /* LDRD. */
11659 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11660 record_buf[1] = record_buf[0] + 1;
11661 arm_insn_r->reg_rec_count = 2;
11662 }
72508ac0 11663 else if (3 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
dda83cd7
SM
11664 {
11665 /* STRD. */
11666 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
11667 ARM_RECORD_STRD);
11668 }
72508ac0 11669 else if (bit (arm_insn_r->arm_insn, 20) && insn_op1 <= 3)
dda83cd7
SM
11670 {
11671 /* LDRH, LDRSB, LDRSH. */
11672 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11673 arm_insn_r->reg_rec_count = 1;
11674 }
72508ac0
PO
11675
11676 }
11677
11678 opcode1 = bits (arm_insn_r->arm_insn, 23, 27);
11679 if (24 == opcode1 && bit (arm_insn_r->arm_insn, 21)
11680 && !INSN_RECORDED(arm_insn_r))
11681 {
11682 ret = -1;
11683 /* Handle coprocessor insn extension space. */
11684 }
11685
11686 /* To be done for ARMv5 and later; as of now we return -1. */
11687 if (-1 == ret)
ca92db2d 11688 return ret;
72508ac0
PO
11689
11690 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11691 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11692
11693 return ret;
11694}
11695
11696/* Handling opcode 000 insns. */
11697
11698static int
4748a9be 11699arm_record_data_proc_misc_ld_str (arm_insn_decode_record *arm_insn_r)
72508ac0
PO
11700{
11701 struct regcache *reg_cache = arm_insn_r->regcache;
11702 uint32_t record_buf[8], record_buf_mem[8];
11703 ULONGEST u_regval[2] = {0};
11704
8d49165d 11705 uint32_t reg_src1 = 0;
72508ac0
PO
11706 uint32_t opcode1 = 0;
11707
11708 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
11709 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
11710 opcode1 = bits (arm_insn_r->arm_insn, 20, 24);
11711
2d9e6acb 11712 if (!((opcode1 & 0x19) == 0x10))
72508ac0 11713 {
2d9e6acb
YQ
11714 /* Data-processing (register) and Data-processing (register-shifted
11715 register */
11716 /* Out of 11 shifter operands mode, all the insn modifies destination
11717 register, which is specified by 13-16 decode. */
11718 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11719 record_buf[1] = ARM_PS_REGNUM;
11720 arm_insn_r->reg_rec_count = 2;
72508ac0 11721 }
2d9e6acb 11722 else if ((arm_insn_r->decode < 8) && ((opcode1 & 0x19) == 0x10))
72508ac0 11723 {
2d9e6acb
YQ
11724 /* Miscellaneous instructions */
11725
11726 if (3 == arm_insn_r->decode && 0x12 == opcode1
11727 && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
11728 {
11729 /* Handle BLX, branch and link/exchange. */
11730 if (9 == arm_insn_r->opcode)
11731 {
11732 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm,
11733 and R14 stores the return address. */
11734 record_buf[0] = ARM_PS_REGNUM;
11735 record_buf[1] = ARM_LR_REGNUM;
11736 arm_insn_r->reg_rec_count = 2;
11737 }
11738 }
11739 else if (7 == arm_insn_r->decode && 0x12 == opcode1)
11740 {
11741 /* Handle enhanced software breakpoint insn, BKPT. */
11742 /* CPSR is changed to be executed in ARM state, disabling normal
11743 interrupts, entering abort mode. */
11744 /* According to high vector configuration PC is set. */
11745 /* user hit breakpoint and type reverse, in
11746 that case, we need to go back with previous CPSR and
11747 Program Counter. */
11748 record_buf[0] = ARM_PS_REGNUM;
11749 record_buf[1] = ARM_LR_REGNUM;
11750 arm_insn_r->reg_rec_count = 2;
11751
11752 /* Save SPSR also; how? */
11753 return -1;
11754 }
11755 else if (1 == arm_insn_r->decode && 0x12 == opcode1
11756 && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
11757 {
11758 /* Handle BX, branch and link/exchange. */
11759 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm. */
11760 record_buf[0] = ARM_PS_REGNUM;
11761 arm_insn_r->reg_rec_count = 1;
11762 }
11763 else if (1 == arm_insn_r->decode && 0x16 == opcode1
11764 && sbo_sbz (arm_insn_r->arm_insn, 9, 4, 1)
11765 && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1))
11766 {
11767 /* Count leading zeros: CLZ. */
11768 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11769 arm_insn_r->reg_rec_count = 1;
11770 }
11771 else if (!bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)
11772 && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
11773 && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1)
11774 && sbo_sbz (arm_insn_r->arm_insn, 1, 12, 0))
11775 {
11776 /* Handle MRS insn. */
11777 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11778 arm_insn_r->reg_rec_count = 1;
11779 }
72508ac0 11780 }
2d9e6acb 11781 else if (9 == arm_insn_r->decode && opcode1 < 0x10)
72508ac0 11782 {
2d9e6acb
YQ
11783 /* Multiply and multiply-accumulate */
11784
11785 /* Handle multiply instructions. */
11786 /* MLA, MUL, SMLAL, SMULL, UMLAL, UMULL. */
11787 if (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode)
f2a883a8
SM
11788 {
11789 /* Handle MLA and MUL. */
11790 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
11791 record_buf[1] = ARM_PS_REGNUM;
11792 arm_insn_r->reg_rec_count = 2;
11793 }
11794 else if (4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode)
11795 {
11796 /* Handle SMLAL, SMULL, UMLAL, UMULL. */
11797 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
11798 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
11799 record_buf[2] = ARM_PS_REGNUM;
11800 arm_insn_r->reg_rec_count = 3;
11801 }
2d9e6acb
YQ
11802 }
11803 else if (9 == arm_insn_r->decode && opcode1 > 0x10)
11804 {
11805 /* Synchronization primitives */
11806
72508ac0
PO
11807 /* Handling SWP, SWPB. */
11808 /* These insn, changes register and memory as well. */
11809 /* SWP or SWPB insn. */
11810
11811 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
11812 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
11813 /* SWP insn ?, swaps word. */
11814 if (8 == arm_insn_r->opcode)
2d9e6acb
YQ
11815 {
11816 record_buf_mem[0] = 4;
11817 }
11818 else
11819 {
11820 /* SWPB insn, swaps only byte. */
11821 record_buf_mem[0] = 1;
11822 }
72508ac0
PO
11823 record_buf_mem[1] = u_regval[0];
11824 arm_insn_r->mem_rec_count = 1;
11825 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11826 arm_insn_r->reg_rec_count = 1;
11827 }
2d9e6acb
YQ
11828 else if (11 == arm_insn_r->decode || 13 == arm_insn_r->decode
11829 || 15 == arm_insn_r->decode)
72508ac0 11830 {
2d9e6acb
YQ
11831 if ((opcode1 & 0x12) == 2)
11832 {
11833 /* Extra load/store (unprivileged) */
11834 return -1;
11835 }
11836 else
11837 {
11838 /* Extra load/store */
11839 switch (bits (arm_insn_r->arm_insn, 5, 6))
11840 {
11841 case 1:
11842 if ((opcode1 & 0x05) == 0x0 || (opcode1 & 0x05) == 0x4)
11843 {
11844 /* STRH (register), STRH (immediate) */
11845 arm_record_strx (arm_insn_r, &record_buf[0],
11846 &record_buf_mem[0], ARM_RECORD_STRH);
11847 }
11848 else if ((opcode1 & 0x05) == 0x1)
11849 {
11850 /* LDRH (register) */
11851 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11852 arm_insn_r->reg_rec_count = 1;
72508ac0 11853
2d9e6acb
YQ
11854 if (bit (arm_insn_r->arm_insn, 21))
11855 {
11856 /* Write back to Rn. */
11857 record_buf[arm_insn_r->reg_rec_count++]
11858 = bits (arm_insn_r->arm_insn, 16, 19);
11859 }
11860 }
11861 else if ((opcode1 & 0x05) == 0x5)
11862 {
11863 /* LDRH (immediate), LDRH (literal) */
11864 int rn = bits (arm_insn_r->arm_insn, 16, 19);
72508ac0 11865
2d9e6acb
YQ
11866 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11867 arm_insn_r->reg_rec_count = 1;
11868
11869 if (rn != 15)
11870 {
11871 /*LDRH (immediate) */
11872 if (bit (arm_insn_r->arm_insn, 21))
11873 {
11874 /* Write back to Rn. */
11875 record_buf[arm_insn_r->reg_rec_count++] = rn;
11876 }
11877 }
11878 }
11879 else
11880 return -1;
11881 break;
11882 case 2:
11883 if ((opcode1 & 0x05) == 0x0)
11884 {
11885 /* LDRD (register) */
11886 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11887 record_buf[1] = record_buf[0] + 1;
11888 arm_insn_r->reg_rec_count = 2;
11889
11890 if (bit (arm_insn_r->arm_insn, 21))
11891 {
11892 /* Write back to Rn. */
11893 record_buf[arm_insn_r->reg_rec_count++]
11894 = bits (arm_insn_r->arm_insn, 16, 19);
11895 }
11896 }
11897 else if ((opcode1 & 0x05) == 0x1)
11898 {
11899 /* LDRSB (register) */
11900 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11901 arm_insn_r->reg_rec_count = 1;
11902
11903 if (bit (arm_insn_r->arm_insn, 21))
11904 {
11905 /* Write back to Rn. */
11906 record_buf[arm_insn_r->reg_rec_count++]
11907 = bits (arm_insn_r->arm_insn, 16, 19);
11908 }
11909 }
11910 else if ((opcode1 & 0x05) == 0x4 || (opcode1 & 0x05) == 0x5)
11911 {
11912 /* LDRD (immediate), LDRD (literal), LDRSB (immediate),
11913 LDRSB (literal) */
11914 int rn = bits (arm_insn_r->arm_insn, 16, 19);
11915
11916 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11917 arm_insn_r->reg_rec_count = 1;
11918
11919 if (rn != 15)
11920 {
11921 /*LDRD (immediate), LDRSB (immediate) */
11922 if (bit (arm_insn_r->arm_insn, 21))
11923 {
11924 /* Write back to Rn. */
11925 record_buf[arm_insn_r->reg_rec_count++] = rn;
11926 }
11927 }
11928 }
11929 else
11930 return -1;
11931 break;
11932 case 3:
11933 if ((opcode1 & 0x05) == 0x0)
11934 {
11935 /* STRD (register) */
11936 arm_record_strx (arm_insn_r, &record_buf[0],
11937 &record_buf_mem[0], ARM_RECORD_STRD);
11938 }
11939 else if ((opcode1 & 0x05) == 0x1)
11940 {
11941 /* LDRSH (register) */
11942 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11943 arm_insn_r->reg_rec_count = 1;
11944
11945 if (bit (arm_insn_r->arm_insn, 21))
11946 {
11947 /* Write back to Rn. */
11948 record_buf[arm_insn_r->reg_rec_count++]
11949 = bits (arm_insn_r->arm_insn, 16, 19);
11950 }
11951 }
11952 else if ((opcode1 & 0x05) == 0x4)
11953 {
11954 /* STRD (immediate) */
11955 arm_record_strx (arm_insn_r, &record_buf[0],
11956 &record_buf_mem[0], ARM_RECORD_STRD);
11957 }
11958 else if ((opcode1 & 0x05) == 0x5)
11959 {
11960 /* LDRSH (immediate), LDRSH (literal) */
11961 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11962 arm_insn_r->reg_rec_count = 1;
11963
11964 if (bit (arm_insn_r->arm_insn, 21))
11965 {
11966 /* Write back to Rn. */
11967 record_buf[arm_insn_r->reg_rec_count++]
11968 = bits (arm_insn_r->arm_insn, 16, 19);
11969 }
11970 }
11971 else
11972 return -1;
11973 break;
11974 default:
11975 return -1;
11976 }
11977 }
72508ac0
PO
11978 }
11979 else
11980 {
11981 return -1;
11982 }
11983
11984 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11985 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11986 return 0;
11987}
11988
11989/* Handling opcode 001 insns. */
11990
11991static int
4748a9be 11992arm_record_data_proc_imm (arm_insn_decode_record *arm_insn_r)
72508ac0
PO
11993{
11994 uint32_t record_buf[8], record_buf_mem[8];
11995
11996 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
11997 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
11998
11999 if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode)
12000 && 2 == bits (arm_insn_r->arm_insn, 20, 21)
12001 && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1)
12002 )
12003 {
12004 /* Handle MSR insn. */
12005 if (9 == arm_insn_r->opcode)
dda83cd7
SM
12006 {
12007 /* CSPR is going to be changed. */
12008 record_buf[0] = ARM_PS_REGNUM;
12009 arm_insn_r->reg_rec_count = 1;
12010 }
72508ac0 12011 else
dda83cd7
SM
12012 {
12013 /* SPSR is going to be changed. */
12014 }
72508ac0
PO
12015 }
12016 else if (arm_insn_r->opcode <= 15)
12017 {
12018 /* Normal data processing insns. */
12019 /* Out of 11 shifter operands mode, all the insn modifies destination
dda83cd7 12020 register, which is specified by 13-16 decode. */
72508ac0
PO
12021 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
12022 record_buf[1] = ARM_PS_REGNUM;
12023 arm_insn_r->reg_rec_count = 2;
12024 }
12025 else
12026 {
12027 return -1;
12028 }
12029
12030 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
12031 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
12032 return 0;
12033}
12034
c55978a6 12035static int
4748a9be 12036arm_record_media (arm_insn_decode_record *arm_insn_r)
c55978a6
YQ
12037{
12038 uint32_t record_buf[8];
12039
12040 switch (bits (arm_insn_r->arm_insn, 22, 24))
12041 {
12042 case 0:
12043 /* Parallel addition and subtraction, signed */
12044 case 1:
12045 /* Parallel addition and subtraction, unsigned */
12046 case 2:
12047 case 3:
12048 /* Packing, unpacking, saturation and reversal */
12049 {
12050 int rd = bits (arm_insn_r->arm_insn, 12, 15);
12051
12052 record_buf[arm_insn_r->reg_rec_count++] = rd;
12053 }
12054 break;
12055
12056 case 4:
12057 case 5:
12058 /* Signed multiplies */
12059 {
12060 int rd = bits (arm_insn_r->arm_insn, 16, 19);
12061 unsigned int op1 = bits (arm_insn_r->arm_insn, 20, 22);
12062
12063 record_buf[arm_insn_r->reg_rec_count++] = rd;
12064 if (op1 == 0x0)
12065 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
12066 else if (op1 == 0x4)
12067 record_buf[arm_insn_r->reg_rec_count++]
12068 = bits (arm_insn_r->arm_insn, 12, 15);
12069 }
12070 break;
12071
12072 case 6:
12073 {
12074 if (bit (arm_insn_r->arm_insn, 21)
12075 && bits (arm_insn_r->arm_insn, 5, 6) == 0x2)
12076 {
12077 /* SBFX */
12078 record_buf[arm_insn_r->reg_rec_count++]
12079 = bits (arm_insn_r->arm_insn, 12, 15);
12080 }
12081 else if (bits (arm_insn_r->arm_insn, 20, 21) == 0x0
12082 && bits (arm_insn_r->arm_insn, 5, 7) == 0x0)
12083 {
12084 /* USAD8 and USADA8 */
12085 record_buf[arm_insn_r->reg_rec_count++]
12086 = bits (arm_insn_r->arm_insn, 16, 19);
12087 }
12088 }
12089 break;
12090
12091 case 7:
12092 {
12093 if (bits (arm_insn_r->arm_insn, 20, 21) == 0x3
12094 && bits (arm_insn_r->arm_insn, 5, 7) == 0x7)
12095 {
12096 /* Permanently UNDEFINED */
12097 return -1;
12098 }
12099 else
12100 {
12101 /* BFC, BFI and UBFX */
12102 record_buf[arm_insn_r->reg_rec_count++]
12103 = bits (arm_insn_r->arm_insn, 12, 15);
12104 }
12105 }
12106 break;
12107
12108 default:
12109 return -1;
12110 }
12111
12112 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
12113
12114 return 0;
12115}
12116
71e396f9 12117/* Handle ARM mode instructions with opcode 010. */
72508ac0
PO
12118
12119static int
4748a9be 12120arm_record_ld_st_imm_offset (arm_insn_decode_record *arm_insn_r)
72508ac0
PO
12121{
12122 struct regcache *reg_cache = arm_insn_r->regcache;
12123
71e396f9
LM
12124 uint32_t reg_base , reg_dest;
12125 uint32_t offset_12, tgt_mem_addr;
72508ac0 12126 uint32_t record_buf[8], record_buf_mem[8];
71e396f9
LM
12127 unsigned char wback;
12128 ULONGEST u_regval;
72508ac0 12129
71e396f9
LM
12130 /* Calculate wback. */
12131 wback = (bit (arm_insn_r->arm_insn, 24) == 0)
12132 || (bit (arm_insn_r->arm_insn, 21) == 1);
72508ac0 12133
71e396f9
LM
12134 arm_insn_r->reg_rec_count = 0;
12135 reg_base = bits (arm_insn_r->arm_insn, 16, 19);
72508ac0
PO
12136
12137 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12138 {
71e396f9
LM
12139 /* LDR (immediate), LDR (literal), LDRB (immediate), LDRB (literal), LDRBT
12140 and LDRT. */
12141
72508ac0 12142 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
71e396f9
LM
12143 record_buf[arm_insn_r->reg_rec_count++] = reg_dest;
12144
12145 /* The LDR instruction is capable of doing branching. If MOV LR, PC
12146 preceeds a LDR instruction having R15 as reg_base, it
12147 emulates a branch and link instruction, and hence we need to save
12148 CPSR and PC as well. */
12149 if (ARM_PC_REGNUM == reg_dest)
12150 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
12151
12152 /* If wback is true, also save the base register, which is going to be
12153 written to. */
12154 if (wback)
12155 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
72508ac0
PO
12156 }
12157 else
12158 {
71e396f9
LM
12159 /* STR (immediate), STRB (immediate), STRBT and STRT. */
12160
72508ac0 12161 offset_12 = bits (arm_insn_r->arm_insn, 0, 11);
71e396f9
LM
12162 regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval);
12163
12164 /* Handle bit U. */
72508ac0 12165 if (bit (arm_insn_r->arm_insn, 23))
71e396f9
LM
12166 {
12167 /* U == 1: Add the offset. */
12168 tgt_mem_addr = (uint32_t) u_regval + offset_12;
12169 }
72508ac0 12170 else
71e396f9
LM
12171 {
12172 /* U == 0: subtract the offset. */
12173 tgt_mem_addr = (uint32_t) u_regval - offset_12;
12174 }
12175
12176 /* Bit 22 tells us whether the store instruction writes 1 byte or 4
12177 bytes. */
12178 if (bit (arm_insn_r->arm_insn, 22))
12179 {
12180 /* STRB and STRBT: 1 byte. */
12181 record_buf_mem[0] = 1;
12182 }
12183 else
12184 {
12185 /* STR and STRT: 4 bytes. */
12186 record_buf_mem[0] = 4;
12187 }
12188
12189 /* Handle bit P. */
12190 if (bit (arm_insn_r->arm_insn, 24))
12191 record_buf_mem[1] = tgt_mem_addr;
12192 else
12193 record_buf_mem[1] = (uint32_t) u_regval;
72508ac0 12194
72508ac0
PO
12195 arm_insn_r->mem_rec_count = 1;
12196
71e396f9
LM
12197 /* If wback is true, also save the base register, which is going to be
12198 written to. */
12199 if (wback)
12200 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
72508ac0
PO
12201 }
12202
12203 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
12204 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
12205 return 0;
12206}
12207
12208/* Handling opcode 011 insns. */
12209
12210static int
4748a9be 12211arm_record_ld_st_reg_offset (arm_insn_decode_record *arm_insn_r)
72508ac0
PO
12212{
12213 struct regcache *reg_cache = arm_insn_r->regcache;
12214
12215 uint32_t shift_imm = 0;
12216 uint32_t reg_src1 = 0, reg_src2 = 0, reg_dest = 0;
12217 uint32_t offset_12 = 0, tgt_mem_addr = 0;
12218 uint32_t record_buf[8], record_buf_mem[8];
12219
12220 LONGEST s_word;
12221 ULONGEST u_regval[2];
12222
c55978a6
YQ
12223 if (bit (arm_insn_r->arm_insn, 4))
12224 return arm_record_media (arm_insn_r);
12225
72508ac0
PO
12226 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
12227 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
12228
12229 /* Handle enhanced store insns and LDRD DSP insn,
12230 order begins according to addressing modes for store insns
12231 STRH insn. */
12232
12233 /* LDR or STR? */
12234 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12235 {
12236 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
12237 /* LDR insn has a capability to do branching, if
dda83cd7
SM
12238 MOV LR, PC is preceded by LDR insn having Rn as R15
12239 in that case, it emulates branch and link insn, and hence we
12240 need to save CSPR and PC as well. */
72508ac0 12241 if (15 != reg_dest)
dda83cd7
SM
12242 {
12243 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
12244 arm_insn_r->reg_rec_count = 1;
12245 }
72508ac0 12246 else
dda83cd7
SM
12247 {
12248 record_buf[0] = reg_dest;
12249 record_buf[1] = ARM_PS_REGNUM;
12250 arm_insn_r->reg_rec_count = 2;
12251 }
72508ac0
PO
12252 }
12253 else
12254 {
12255 if (! bits (arm_insn_r->arm_insn, 4, 11))
dda83cd7
SM
12256 {
12257 /* Store insn, register offset and register pre-indexed,
12258 register post-indexed. */
12259 /* Get Rm. */
12260 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
12261 /* Get Rn. */
12262 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
12263 regcache_raw_read_unsigned (reg_cache, reg_src1
12264 , &u_regval[0]);
12265 regcache_raw_read_unsigned (reg_cache, reg_src2
12266 , &u_regval[1]);
12267 if (15 == reg_src2)
12268 {
12269 /* If R15 was used as Rn, hence current PC+8. */
12270 /* Pre-indexed mode doesnt reach here ; illegal insn. */
12271 u_regval[0] = u_regval[0] + 8;
12272 }
12273 /* Calculate target store address, Rn +/- Rm, register offset. */
12274 /* U == 1. */
12275 if (bit (arm_insn_r->arm_insn, 23))
12276 {
12277 tgt_mem_addr = u_regval[0] + u_regval[1];
12278 }
12279 else
12280 {
12281 tgt_mem_addr = u_regval[1] - u_regval[0];
12282 }
12283
12284 switch (arm_insn_r->opcode)
12285 {
12286 /* STR. */
12287 case 8:
12288 case 12:
12289 /* STR. */
12290 case 9:
12291 case 13:
12292 /* STRT. */
12293 case 1:
12294 case 5:
12295 /* STR. */
12296 case 0:
12297 case 4:
12298 record_buf_mem[0] = 4;
12299 break;
12300
12301 /* STRB. */
12302 case 10:
12303 case 14:
12304 /* STRB. */
12305 case 11:
12306 case 15:
12307 /* STRBT. */
12308 case 3:
12309 case 7:
12310 /* STRB. */
12311 case 2:
12312 case 6:
12313 record_buf_mem[0] = 1;
12314 break;
12315
12316 default:
12317 gdb_assert_not_reached ("no decoding pattern found");
12318 break;
12319 }
12320 record_buf_mem[1] = tgt_mem_addr;
12321 arm_insn_r->mem_rec_count = 1;
12322
12323 if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
12324 || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
12325 || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
12326 || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
12327 || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
12328 || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
12329 )
12330 {
12331 /* Rn is going to be changed in pre-indexed mode and
12332 post-indexed mode as well. */
12333 record_buf[0] = reg_src2;
12334 arm_insn_r->reg_rec_count = 1;
12335 }
12336 }
72508ac0 12337 else
dda83cd7
SM
12338 {
12339 /* Store insn, scaled register offset; scaled pre-indexed. */
12340 offset_12 = bits (arm_insn_r->arm_insn, 5, 6);
12341 /* Get Rm. */
12342 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
12343 /* Get Rn. */
12344 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
12345 /* Get shift_imm. */
12346 shift_imm = bits (arm_insn_r->arm_insn, 7, 11);
12347 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
12348 regcache_raw_read_signed (reg_cache, reg_src1, &s_word);
12349 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
12350 /* Offset_12 used as shift. */
12351 switch (offset_12)
12352 {
12353 case 0:
12354 /* Offset_12 used as index. */
12355 offset_12 = u_regval[0] << shift_imm;
12356 break;
12357
12358 case 1:
05d63baf 12359 offset_12 = (!shift_imm) ? 0 : u_regval[0] >> shift_imm;
dda83cd7
SM
12360 break;
12361
12362 case 2:
12363 if (!shift_imm)
12364 {
12365 if (bit (u_regval[0], 31))
12366 {
12367 offset_12 = 0xFFFFFFFF;
12368 }
12369 else
12370 {
12371 offset_12 = 0;
12372 }
12373 }
12374 else
12375 {
12376 /* This is arithmetic shift. */
12377 offset_12 = s_word >> shift_imm;
12378 }
12379 break;
12380
12381 case 3:
12382 if (!shift_imm)
12383 {
12384 regcache_raw_read_unsigned (reg_cache, ARM_PS_REGNUM,
12385 &u_regval[1]);
12386 /* Get C flag value and shift it by 31. */
12387 offset_12 = (((bit (u_regval[1], 29)) << 31) \
12388 | (u_regval[0]) >> 1);
12389 }
12390 else
12391 {
12392 offset_12 = (u_regval[0] >> shift_imm) \
12393 | (u_regval[0] <<
12394 (sizeof(uint32_t) - shift_imm));
12395 }
12396 break;
12397
12398 default:
12399 gdb_assert_not_reached ("no decoding pattern found");
12400 break;
12401 }
12402
12403 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
12404 /* bit U set. */
12405 if (bit (arm_insn_r->arm_insn, 23))
12406 {
12407 tgt_mem_addr = u_regval[1] + offset_12;
12408 }
12409 else
12410 {
12411 tgt_mem_addr = u_regval[1] - offset_12;
12412 }
12413
12414 switch (arm_insn_r->opcode)
12415 {
12416 /* STR. */
12417 case 8:
12418 case 12:
12419 /* STR. */
12420 case 9:
12421 case 13:
12422 /* STRT. */
12423 case 1:
12424 case 5:
12425 /* STR. */
12426 case 0:
12427 case 4:
12428 record_buf_mem[0] = 4;
12429 break;
12430
12431 /* STRB. */
12432 case 10:
12433 case 14:
12434 /* STRB. */
12435 case 11:
12436 case 15:
12437 /* STRBT. */
12438 case 3:
12439 case 7:
12440 /* STRB. */
12441 case 2:
12442 case 6:
12443 record_buf_mem[0] = 1;
12444 break;
12445
12446 default:
12447 gdb_assert_not_reached ("no decoding pattern found");
12448 break;
12449 }
12450 record_buf_mem[1] = tgt_mem_addr;
12451 arm_insn_r->mem_rec_count = 1;
12452
12453 if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
12454 || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
12455 || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
12456 || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
12457 || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
12458 || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
12459 )
12460 {
12461 /* Rn is going to be changed in register scaled pre-indexed
12462 mode,and scaled post indexed mode. */
12463 record_buf[0] = reg_src2;
12464 arm_insn_r->reg_rec_count = 1;
12465 }
12466 }
72508ac0
PO
12467 }
12468
12469 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
12470 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
12471 return 0;
12472}
12473
71e396f9 12474/* Handle ARM mode instructions with opcode 100. */
72508ac0
PO
12475
12476static int
4748a9be 12477arm_record_ld_st_multiple (arm_insn_decode_record *arm_insn_r)
72508ac0
PO
12478{
12479 struct regcache *reg_cache = arm_insn_r->regcache;
71e396f9
LM
12480 uint32_t register_count = 0, register_bits;
12481 uint32_t reg_base, addr_mode;
72508ac0 12482 uint32_t record_buf[24], record_buf_mem[48];
71e396f9
LM
12483 uint32_t wback;
12484 ULONGEST u_regval;
72508ac0 12485
71e396f9
LM
12486 /* Fetch the list of registers. */
12487 register_bits = bits (arm_insn_r->arm_insn, 0, 15);
12488 arm_insn_r->reg_rec_count = 0;
12489
12490 /* Fetch the base register that contains the address we are loading data
12491 to. */
12492 reg_base = bits (arm_insn_r->arm_insn, 16, 19);
72508ac0 12493
71e396f9
LM
12494 /* Calculate wback. */
12495 wback = (bit (arm_insn_r->arm_insn, 21) == 1);
72508ac0
PO
12496
12497 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12498 {
71e396f9 12499 /* LDM/LDMIA/LDMFD, LDMDA/LDMFA, LDMDB and LDMIB. */
72508ac0 12500
71e396f9 12501 /* Find out which registers are going to be loaded from memory. */
72508ac0 12502 while (register_bits)
71e396f9
LM
12503 {
12504 if (register_bits & 0x00000001)
12505 record_buf[arm_insn_r->reg_rec_count++] = register_count;
12506 register_bits = register_bits >> 1;
12507 register_count++;
12508 }
72508ac0 12509
71e396f9
LM
12510
12511 /* If wback is true, also save the base register, which is going to be
12512 written to. */
12513 if (wback)
12514 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
12515
12516 /* Save the CPSR register. */
12517 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
72508ac0
PO
12518 }
12519 else
12520 {
71e396f9 12521 /* STM (STMIA, STMEA), STMDA (STMED), STMDB (STMFD) and STMIB (STMFA). */
72508ac0 12522
71e396f9
LM
12523 addr_mode = bits (arm_insn_r->arm_insn, 23, 24);
12524
12525 regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval);
12526
12527 /* Find out how many registers are going to be stored to memory. */
72508ac0 12528 while (register_bits)
71e396f9
LM
12529 {
12530 if (register_bits & 0x00000001)
12531 register_count++;
12532 register_bits = register_bits >> 1;
12533 }
72508ac0
PO
12534
12535 switch (addr_mode)
71e396f9
LM
12536 {
12537 /* STMDA (STMED): Decrement after. */
12538 case 0:
12539 record_buf_mem[1] = (uint32_t) u_regval
f0452268 12540 - register_count * ARM_INT_REGISTER_SIZE + 4;
71e396f9
LM
12541 break;
12542 /* STM (STMIA, STMEA): Increment after. */
12543 case 1:
12544 record_buf_mem[1] = (uint32_t) u_regval;
12545 break;
12546 /* STMDB (STMFD): Decrement before. */
12547 case 2:
12548 record_buf_mem[1] = (uint32_t) u_regval
f0452268 12549 - register_count * ARM_INT_REGISTER_SIZE;
71e396f9
LM
12550 break;
12551 /* STMIB (STMFA): Increment before. */
12552 case 3:
f0452268 12553 record_buf_mem[1] = (uint32_t) u_regval + ARM_INT_REGISTER_SIZE;
71e396f9
LM
12554 break;
12555 default:
12556 gdb_assert_not_reached ("no decoding pattern found");
12557 break;
12558 }
72508ac0 12559
f0452268 12560 record_buf_mem[0] = register_count * ARM_INT_REGISTER_SIZE;
71e396f9
LM
12561 arm_insn_r->mem_rec_count = 1;
12562
12563 /* If wback is true, also save the base register, which is going to be
12564 written to. */
12565 if (wback)
12566 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
72508ac0
PO
12567 }
12568
12569 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
12570 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
12571 return 0;
12572}
12573
12574/* Handling opcode 101 insns. */
12575
12576static int
4748a9be 12577arm_record_b_bl (arm_insn_decode_record *arm_insn_r)
72508ac0
PO
12578{
12579 uint32_t record_buf[8];
12580
12581 /* Handle B, BL, BLX(1) insns. */
12582 /* B simply branches so we do nothing here. */
12583 /* Note: BLX(1) doesnt fall here but instead it falls into
12584 extension space. */
12585 if (bit (arm_insn_r->arm_insn, 24))
01add95b
SM
12586 {
12587 record_buf[0] = ARM_LR_REGNUM;
12588 arm_insn_r->reg_rec_count = 1;
12589 }
72508ac0
PO
12590
12591 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
12592
12593 return 0;
12594}
12595
72508ac0 12596static int
4748a9be 12597arm_record_unsupported_insn (arm_insn_decode_record *arm_insn_r)
72508ac0 12598{
6cb06a8c
TT
12599 gdb_printf (gdb_stderr,
12600 _("Process record does not support instruction "
12601 "0x%0x at address %s.\n"),arm_insn_r->arm_insn,
12602 paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr));
72508ac0
PO
12603
12604 return -1;
12605}
12606
5a578da5
OJ
12607/* Record handler for vector data transfer instructions. */
12608
12609static int
4748a9be 12610arm_record_vdata_transfer_insn (arm_insn_decode_record *arm_insn_r)
5a578da5
OJ
12611{
12612 uint32_t bits_a, bit_c, bit_l, reg_t, reg_v;
12613 uint32_t record_buf[4];
12614
5a578da5
OJ
12615 reg_t = bits (arm_insn_r->arm_insn, 12, 15);
12616 reg_v = bits (arm_insn_r->arm_insn, 21, 23);
12617 bits_a = bits (arm_insn_r->arm_insn, 21, 23);
12618 bit_l = bit (arm_insn_r->arm_insn, 20);
12619 bit_c = bit (arm_insn_r->arm_insn, 8);
12620
12621 /* Handle VMOV instruction. */
12622 if (bit_l && bit_c)
12623 {
12624 record_buf[0] = reg_t;
12625 arm_insn_r->reg_rec_count = 1;
12626 }
12627 else if (bit_l && !bit_c)
12628 {
12629 /* Handle VMOV instruction. */
12630 if (bits_a == 0x00)
dda83cd7 12631 {
f1771dce 12632 record_buf[0] = reg_t;
dda83cd7
SM
12633 arm_insn_r->reg_rec_count = 1;
12634 }
5a578da5
OJ
12635 /* Handle VMRS instruction. */
12636 else if (bits_a == 0x07)
dda83cd7
SM
12637 {
12638 if (reg_t == 15)
12639 reg_t = ARM_PS_REGNUM;
5a578da5 12640
dda83cd7
SM
12641 record_buf[0] = reg_t;
12642 arm_insn_r->reg_rec_count = 1;
12643 }
5a578da5
OJ
12644 }
12645 else if (!bit_l && !bit_c)
12646 {
12647 /* Handle VMOV instruction. */
12648 if (bits_a == 0x00)
dda83cd7 12649 {
f1771dce 12650 record_buf[0] = ARM_D0_REGNUM + reg_v;
5a578da5 12651
dda83cd7
SM
12652 arm_insn_r->reg_rec_count = 1;
12653 }
5a578da5
OJ
12654 /* Handle VMSR instruction. */
12655 else if (bits_a == 0x07)
dda83cd7
SM
12656 {
12657 record_buf[0] = ARM_FPSCR_REGNUM;
12658 arm_insn_r->reg_rec_count = 1;
12659 }
5a578da5
OJ
12660 }
12661 else if (!bit_l && bit_c)
12662 {
12663 /* Handle VMOV instruction. */
12664 if (!(bits_a & 0x04))
dda83cd7
SM
12665 {
12666 record_buf[0] = (reg_v | (bit (arm_insn_r->arm_insn, 7) << 4))
12667 + ARM_D0_REGNUM;
12668 arm_insn_r->reg_rec_count = 1;
12669 }
5a578da5
OJ
12670 /* Handle VDUP instruction. */
12671 else
dda83cd7
SM
12672 {
12673 if (bit (arm_insn_r->arm_insn, 21))
12674 {
12675 reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4);
12676 record_buf[0] = reg_v + ARM_D0_REGNUM;
12677 record_buf[1] = reg_v + ARM_D0_REGNUM + 1;
12678 arm_insn_r->reg_rec_count = 2;
12679 }
12680 else
12681 {
12682 reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4);
12683 record_buf[0] = reg_v + ARM_D0_REGNUM;
12684 arm_insn_r->reg_rec_count = 1;
12685 }
12686 }
12687 }
12688
12689 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
12690 return 0;
12691}
12692
f20f80dd
OJ
12693/* Record handler for extension register load/store instructions. */
12694
12695static int
4748a9be 12696arm_record_exreg_ld_st_insn (arm_insn_decode_record *arm_insn_r)
f20f80dd
OJ
12697{
12698 uint32_t opcode, single_reg;
12699 uint8_t op_vldm_vstm;
12700 uint32_t record_buf[8], record_buf_mem[128];
12701 ULONGEST u_regval = 0;
12702
12703 struct regcache *reg_cache = arm_insn_r->regcache;
f20f80dd
OJ
12704
12705 opcode = bits (arm_insn_r->arm_insn, 20, 24);
9fde51ed 12706 single_reg = !bit (arm_insn_r->arm_insn, 8);
f20f80dd
OJ
12707 op_vldm_vstm = opcode & 0x1b;
12708
12709 /* Handle VMOV instructions. */
12710 if ((opcode & 0x1e) == 0x04)
12711 {
9fde51ed 12712 if (bit (arm_insn_r->arm_insn, 20)) /* to_arm_registers bit 20? */
01e57735
YQ
12713 {
12714 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
12715 record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
12716 arm_insn_r->reg_rec_count = 2;
12717 }
f20f80dd 12718 else
01e57735 12719 {
9fde51ed
YQ
12720 uint8_t reg_m = bits (arm_insn_r->arm_insn, 0, 3);
12721 uint8_t bit_m = bit (arm_insn_r->arm_insn, 5);
f20f80dd 12722
9fde51ed 12723 if (single_reg)
01e57735 12724 {
9fde51ed
YQ
12725 /* The first S register number m is REG_M:M (M is bit 5),
12726 the corresponding D register number is REG_M:M / 2, which
12727 is REG_M. */
12728 record_buf[arm_insn_r->reg_rec_count++] = ARM_D0_REGNUM + reg_m;
12729 /* The second S register number is REG_M:M + 1, the
12730 corresponding D register number is (REG_M:M + 1) / 2.
12731 IOW, if bit M is 1, the first and second S registers
12732 are mapped to different D registers, otherwise, they are
12733 in the same D register. */
12734 if (bit_m)
12735 {
12736 record_buf[arm_insn_r->reg_rec_count++]
12737 = ARM_D0_REGNUM + reg_m + 1;
12738 }
01e57735
YQ
12739 }
12740 else
12741 {
9fde51ed 12742 record_buf[0] = ((bit_m << 4) + reg_m + ARM_D0_REGNUM);
01e57735
YQ
12743 arm_insn_r->reg_rec_count = 1;
12744 }
12745 }
f20f80dd
OJ
12746 }
12747 /* Handle VSTM and VPUSH instructions. */
12748 else if (op_vldm_vstm == 0x08 || op_vldm_vstm == 0x0a
01e57735 12749 || op_vldm_vstm == 0x12)
f20f80dd
OJ
12750 {
12751 uint32_t start_address, reg_rn, imm_off32, imm_off8, memory_count;
12752 uint32_t memory_index = 0;
12753
12754 reg_rn = bits (arm_insn_r->arm_insn, 16, 19);
12755 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
12756 imm_off8 = bits (arm_insn_r->arm_insn, 0, 7);
9fde51ed 12757 imm_off32 = imm_off8 << 2;
f20f80dd
OJ
12758 memory_count = imm_off8;
12759
12760 if (bit (arm_insn_r->arm_insn, 23))
01e57735 12761 start_address = u_regval;
f20f80dd 12762 else
01e57735 12763 start_address = u_regval - imm_off32;
f20f80dd
OJ
12764
12765 if (bit (arm_insn_r->arm_insn, 21))
01e57735
YQ
12766 {
12767 record_buf[0] = reg_rn;
12768 arm_insn_r->reg_rec_count = 1;
12769 }
f20f80dd
OJ
12770
12771 while (memory_count > 0)
01e57735 12772 {
9fde51ed 12773 if (single_reg)
01e57735 12774 {
9fde51ed
YQ
12775 record_buf_mem[memory_index] = 4;
12776 record_buf_mem[memory_index + 1] = start_address;
01e57735
YQ
12777 start_address = start_address + 4;
12778 memory_index = memory_index + 2;
12779 }
12780 else
12781 {
9fde51ed
YQ
12782 record_buf_mem[memory_index] = 4;
12783 record_buf_mem[memory_index + 1] = start_address;
12784 record_buf_mem[memory_index + 2] = 4;
12785 record_buf_mem[memory_index + 3] = start_address + 4;
01e57735
YQ
12786 start_address = start_address + 8;
12787 memory_index = memory_index + 4;
12788 }
12789 memory_count--;
12790 }
f20f80dd
OJ
12791 arm_insn_r->mem_rec_count = (memory_index >> 1);
12792 }
12793 /* Handle VLDM instructions. */
12794 else if (op_vldm_vstm == 0x09 || op_vldm_vstm == 0x0b
01e57735 12795 || op_vldm_vstm == 0x13)
f20f80dd
OJ
12796 {
12797 uint32_t reg_count, reg_vd;
12798 uint32_t reg_index = 0;
9fde51ed 12799 uint32_t bit_d = bit (arm_insn_r->arm_insn, 22);
f20f80dd
OJ
12800
12801 reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
12802 reg_count = bits (arm_insn_r->arm_insn, 0, 7);
12803
9fde51ed
YQ
12804 /* REG_VD is the first D register number. If the instruction
12805 loads memory to S registers (SINGLE_REG is TRUE), the register
12806 number is (REG_VD << 1 | bit D), so the corresponding D
12807 register number is (REG_VD << 1 | bit D) / 2 = REG_VD. */
12808 if (!single_reg)
12809 reg_vd = reg_vd | (bit_d << 4);
f20f80dd 12810
9fde51ed 12811 if (bit (arm_insn_r->arm_insn, 21) /* write back */)
01e57735 12812 record_buf[reg_index++] = bits (arm_insn_r->arm_insn, 16, 19);
f20f80dd 12813
9fde51ed
YQ
12814 /* If the instruction loads memory to D register, REG_COUNT should
12815 be divided by 2, according to the ARM Architecture Reference
12816 Manual. If the instruction loads memory to S register, divide by
12817 2 as well because two S registers are mapped to D register. */
12818 reg_count = reg_count / 2;
12819 if (single_reg && bit_d)
01e57735 12820 {
9fde51ed
YQ
12821 /* Increase the register count if S register list starts from
12822 an odd number (bit d is one). */
12823 reg_count++;
12824 }
f20f80dd 12825
9fde51ed
YQ
12826 while (reg_count > 0)
12827 {
12828 record_buf[reg_index++] = ARM_D0_REGNUM + reg_vd + reg_count - 1;
01e57735
YQ
12829 reg_count--;
12830 }
f20f80dd
OJ
12831 arm_insn_r->reg_rec_count = reg_index;
12832 }
12833 /* VSTR Vector store register. */
12834 else if ((opcode & 0x13) == 0x10)
12835 {
bec2ab5a 12836 uint32_t start_address, reg_rn, imm_off32, imm_off8;
f20f80dd
OJ
12837 uint32_t memory_index = 0;
12838
12839 reg_rn = bits (arm_insn_r->arm_insn, 16, 19);
12840 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
12841 imm_off8 = bits (arm_insn_r->arm_insn, 0, 7);
9fde51ed 12842 imm_off32 = imm_off8 << 2;
f20f80dd
OJ
12843
12844 if (bit (arm_insn_r->arm_insn, 23))
01e57735 12845 start_address = u_regval + imm_off32;
f20f80dd 12846 else
01e57735 12847 start_address = u_regval - imm_off32;
f20f80dd
OJ
12848
12849 if (single_reg)
01e57735 12850 {
9fde51ed
YQ
12851 record_buf_mem[memory_index] = 4;
12852 record_buf_mem[memory_index + 1] = start_address;
01e57735
YQ
12853 arm_insn_r->mem_rec_count = 1;
12854 }
f20f80dd 12855 else
01e57735 12856 {
9fde51ed
YQ
12857 record_buf_mem[memory_index] = 4;
12858 record_buf_mem[memory_index + 1] = start_address;
12859 record_buf_mem[memory_index + 2] = 4;
12860 record_buf_mem[memory_index + 3] = start_address + 4;
01e57735
YQ
12861 arm_insn_r->mem_rec_count = 2;
12862 }
f20f80dd
OJ
12863 }
12864 /* VLDR Vector load register. */
12865 else if ((opcode & 0x13) == 0x11)
12866 {
12867 uint32_t reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
12868
12869 if (!single_reg)
01e57735
YQ
12870 {
12871 reg_vd = reg_vd | (bit (arm_insn_r->arm_insn, 22) << 4);
12872 record_buf[0] = ARM_D0_REGNUM + reg_vd;
12873 }
f20f80dd 12874 else
01e57735
YQ
12875 {
12876 reg_vd = (reg_vd << 1) | bit (arm_insn_r->arm_insn, 22);
9fde51ed
YQ
12877 /* Record register D rather than pseudo register S. */
12878 record_buf[0] = ARM_D0_REGNUM + reg_vd / 2;
01e57735 12879 }
f20f80dd
OJ
12880 arm_insn_r->reg_rec_count = 1;
12881 }
12882
12883 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
12884 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
12885 return 0;
12886}
12887
851f26ae
OJ
12888/* Record handler for arm/thumb mode VFP data processing instructions. */
12889
12890static int
4748a9be 12891arm_record_vfp_data_proc_insn (arm_insn_decode_record *arm_insn_r)
851f26ae
OJ
12892{
12893 uint32_t opc1, opc2, opc3, dp_op_sz, bit_d, reg_vd;
12894 uint32_t record_buf[4];
12895 enum insn_types {INSN_T0, INSN_T1, INSN_T2, INSN_T3, INSN_INV};
12896 enum insn_types curr_insn_type = INSN_INV;
12897
12898 reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
12899 opc1 = bits (arm_insn_r->arm_insn, 20, 23);
12900 opc2 = bits (arm_insn_r->arm_insn, 16, 19);
12901 opc3 = bits (arm_insn_r->arm_insn, 6, 7);
12902 dp_op_sz = bit (arm_insn_r->arm_insn, 8);
12903 bit_d = bit (arm_insn_r->arm_insn, 22);
ce887586
TT
12904 /* Mask off the "D" bit. */
12905 opc1 = opc1 & ~0x04;
851f26ae
OJ
12906
12907 /* Handle VMLA, VMLS. */
12908 if (opc1 == 0x00)
12909 {
12910 if (bit (arm_insn_r->arm_insn, 10))
dda83cd7
SM
12911 {
12912 if (bit (arm_insn_r->arm_insn, 6))
12913 curr_insn_type = INSN_T0;
12914 else
12915 curr_insn_type = INSN_T1;
12916 }
851f26ae 12917 else
dda83cd7
SM
12918 {
12919 if (dp_op_sz)
12920 curr_insn_type = INSN_T1;
12921 else
12922 curr_insn_type = INSN_T2;
12923 }
851f26ae
OJ
12924 }
12925 /* Handle VNMLA, VNMLS, VNMUL. */
12926 else if (opc1 == 0x01)
12927 {
12928 if (dp_op_sz)
dda83cd7 12929 curr_insn_type = INSN_T1;
851f26ae 12930 else
dda83cd7 12931 curr_insn_type = INSN_T2;
851f26ae
OJ
12932 }
12933 /* Handle VMUL. */
12934 else if (opc1 == 0x02 && !(opc3 & 0x01))
12935 {
12936 if (bit (arm_insn_r->arm_insn, 10))
dda83cd7
SM
12937 {
12938 if (bit (arm_insn_r->arm_insn, 6))
12939 curr_insn_type = INSN_T0;
12940 else
12941 curr_insn_type = INSN_T1;
12942 }
851f26ae 12943 else
dda83cd7
SM
12944 {
12945 if (dp_op_sz)
12946 curr_insn_type = INSN_T1;
12947 else
12948 curr_insn_type = INSN_T2;
12949 }
851f26ae
OJ
12950 }
12951 /* Handle VADD, VSUB. */
12952 else if (opc1 == 0x03)
12953 {
12954 if (!bit (arm_insn_r->arm_insn, 9))
dda83cd7
SM
12955 {
12956 if (bit (arm_insn_r->arm_insn, 6))
12957 curr_insn_type = INSN_T0;
12958 else
12959 curr_insn_type = INSN_T1;
12960 }
851f26ae 12961 else
dda83cd7
SM
12962 {
12963 if (dp_op_sz)
12964 curr_insn_type = INSN_T1;
12965 else
12966 curr_insn_type = INSN_T2;
12967 }
851f26ae
OJ
12968 }
12969 /* Handle VDIV. */
ce887586 12970 else if (opc1 == 0x08)
851f26ae
OJ
12971 {
12972 if (dp_op_sz)
dda83cd7 12973 curr_insn_type = INSN_T1;
851f26ae 12974 else
dda83cd7 12975 curr_insn_type = INSN_T2;
851f26ae
OJ
12976 }
12977 /* Handle all other vfp data processing instructions. */
12978 else if (opc1 == 0x0b)
12979 {
12980 /* Handle VMOV. */
12981 if (!(opc3 & 0x01) || (opc2 == 0x00 && opc3 == 0x01))
dda83cd7
SM
12982 {
12983 if (bit (arm_insn_r->arm_insn, 4))
12984 {
12985 if (bit (arm_insn_r->arm_insn, 6))
12986 curr_insn_type = INSN_T0;
12987 else
12988 curr_insn_type = INSN_T1;
12989 }
12990 else
12991 {
12992 if (dp_op_sz)
12993 curr_insn_type = INSN_T1;
12994 else
12995 curr_insn_type = INSN_T2;
12996 }
12997 }
851f26ae
OJ
12998 /* Handle VNEG and VABS. */
12999 else if ((opc2 == 0x01 && opc3 == 0x01)
dda83cd7
SM
13000 || (opc2 == 0x00 && opc3 == 0x03))
13001 {
13002 if (!bit (arm_insn_r->arm_insn, 11))
13003 {
13004 if (bit (arm_insn_r->arm_insn, 6))
13005 curr_insn_type = INSN_T0;
13006 else
13007 curr_insn_type = INSN_T1;
13008 }
13009 else
13010 {
13011 if (dp_op_sz)
13012 curr_insn_type = INSN_T1;
13013 else
13014 curr_insn_type = INSN_T2;
13015 }
13016 }
851f26ae
OJ
13017 /* Handle VSQRT. */
13018 else if (opc2 == 0x01 && opc3 == 0x03)
dda83cd7
SM
13019 {
13020 if (dp_op_sz)
13021 curr_insn_type = INSN_T1;
13022 else
13023 curr_insn_type = INSN_T2;
13024 }
851f26ae
OJ
13025 /* Handle VCVT. */
13026 else if (opc2 == 0x07 && opc3 == 0x03)
dda83cd7
SM
13027 {
13028 if (!dp_op_sz)
13029 curr_insn_type = INSN_T1;
13030 else
13031 curr_insn_type = INSN_T2;
13032 }
851f26ae 13033 else if (opc3 & 0x01)
dda83cd7
SM
13034 {
13035 /* Handle VCVT. */
13036 if ((opc2 == 0x08) || (opc2 & 0x0e) == 0x0c)
13037 {
13038 if (!bit (arm_insn_r->arm_insn, 18))
13039 curr_insn_type = INSN_T2;
13040 else
13041 {
13042 if (dp_op_sz)
13043 curr_insn_type = INSN_T1;
13044 else
13045 curr_insn_type = INSN_T2;
13046 }
13047 }
13048 /* Handle VCVT. */
13049 else if ((opc2 & 0x0e) == 0x0a || (opc2 & 0x0e) == 0x0e)
13050 {
13051 if (dp_op_sz)
13052 curr_insn_type = INSN_T1;
13053 else
13054 curr_insn_type = INSN_T2;
13055 }
13056 /* Handle VCVTB, VCVTT. */
13057 else if ((opc2 & 0x0e) == 0x02)
13058 curr_insn_type = INSN_T2;
13059 /* Handle VCMP, VCMPE. */
13060 else if ((opc2 & 0x0e) == 0x04)
13061 curr_insn_type = INSN_T3;
13062 }
851f26ae
OJ
13063 }
13064
13065 switch (curr_insn_type)
13066 {
13067 case INSN_T0:
dda83cd7
SM
13068 reg_vd = reg_vd | (bit_d << 4);
13069 record_buf[0] = reg_vd + ARM_D0_REGNUM;
13070 record_buf[1] = reg_vd + ARM_D0_REGNUM + 1;
13071 arm_insn_r->reg_rec_count = 2;
13072 break;
851f26ae
OJ
13073
13074 case INSN_T1:
dda83cd7
SM
13075 reg_vd = reg_vd | (bit_d << 4);
13076 record_buf[0] = reg_vd + ARM_D0_REGNUM;
13077 arm_insn_r->reg_rec_count = 1;
13078 break;
851f26ae
OJ
13079
13080 case INSN_T2:
dda83cd7
SM
13081 reg_vd = (reg_vd << 1) | bit_d;
13082 record_buf[0] = reg_vd + ARM_D0_REGNUM;
13083 arm_insn_r->reg_rec_count = 1;
13084 break;
851f26ae
OJ
13085
13086 case INSN_T3:
dda83cd7
SM
13087 record_buf[0] = ARM_FPSCR_REGNUM;
13088 arm_insn_r->reg_rec_count = 1;
13089 break;
851f26ae
OJ
13090
13091 default:
dda83cd7
SM
13092 gdb_assert_not_reached ("no decoding pattern found");
13093 break;
851f26ae
OJ
13094 }
13095
13096 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
13097 return 0;
13098}
13099
60cc5e93
OJ
13100/* Handling opcode 110 insns. */
13101
13102static int
4748a9be 13103arm_record_asimd_vfp_coproc (arm_insn_decode_record *arm_insn_r)
60cc5e93 13104{
bec2ab5a 13105 uint32_t op1, op1_ebit, coproc;
60cc5e93
OJ
13106
13107 coproc = bits (arm_insn_r->arm_insn, 8, 11);
13108 op1 = bits (arm_insn_r->arm_insn, 20, 25);
13109 op1_ebit = bit (arm_insn_r->arm_insn, 20);
13110
13111 if ((coproc & 0x0e) == 0x0a)
13112 {
13113 /* Handle extension register ld/st instructions. */
13114 if (!(op1 & 0x20))
dda83cd7 13115 return arm_record_exreg_ld_st_insn (arm_insn_r);
60cc5e93
OJ
13116
13117 /* 64-bit transfers between arm core and extension registers. */
13118 if ((op1 & 0x3e) == 0x04)
dda83cd7 13119 return arm_record_exreg_ld_st_insn (arm_insn_r);
60cc5e93
OJ
13120 }
13121 else
13122 {
13123 /* Handle coprocessor ld/st instructions. */
13124 if (!(op1 & 0x3a))
dda83cd7
SM
13125 {
13126 /* Store. */
13127 if (!op1_ebit)
13128 return arm_record_unsupported_insn (arm_insn_r);
13129 else
13130 /* Load. */
13131 return arm_record_unsupported_insn (arm_insn_r);
13132 }
60cc5e93
OJ
13133
13134 /* Move to coprocessor from two arm core registers. */
13135 if (op1 == 0x4)
dda83cd7 13136 return arm_record_unsupported_insn (arm_insn_r);
60cc5e93
OJ
13137
13138 /* Move to two arm core registers from coprocessor. */
13139 if (op1 == 0x5)
dda83cd7
SM
13140 {
13141 uint32_t reg_t[2];
60cc5e93 13142
dda83cd7
SM
13143 reg_t[0] = bits (arm_insn_r->arm_insn, 12, 15);
13144 reg_t[1] = bits (arm_insn_r->arm_insn, 16, 19);
13145 arm_insn_r->reg_rec_count = 2;
60cc5e93 13146
dda83cd7
SM
13147 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, reg_t);
13148 return 0;
60cc5e93
OJ
13149 }
13150 }
13151 return arm_record_unsupported_insn (arm_insn_r);
13152}
13153
72508ac0
PO
13154/* Handling opcode 111 insns. */
13155
13156static int
4748a9be 13157arm_record_coproc_data_proc (arm_insn_decode_record *arm_insn_r)
72508ac0 13158{
2d9e6acb 13159 uint32_t op, op1_ebit, coproc, bits_24_25;
345bd07c 13160 arm_gdbarch_tdep *tdep
08106042 13161 = gdbarch_tdep<arm_gdbarch_tdep> (arm_insn_r->gdbarch);
72508ac0 13162 struct regcache *reg_cache = arm_insn_r->regcache;
72508ac0
PO
13163
13164 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 24, 27);
60cc5e93 13165 coproc = bits (arm_insn_r->arm_insn, 8, 11);
60cc5e93
OJ
13166 op1_ebit = bit (arm_insn_r->arm_insn, 20);
13167 op = bit (arm_insn_r->arm_insn, 4);
2d9e6acb 13168 bits_24_25 = bits (arm_insn_r->arm_insn, 24, 25);
97dfe206
OJ
13169
13170 /* Handle arm SWI/SVC system call instructions. */
2d9e6acb 13171 if (bits_24_25 == 0x3)
97dfe206
OJ
13172 {
13173 if (tdep->arm_syscall_record != NULL)
dda83cd7
SM
13174 {
13175 ULONGEST svc_operand, svc_number;
97dfe206 13176
dda83cd7 13177 svc_operand = (0x00ffffff & arm_insn_r->arm_insn);
97dfe206 13178
dda83cd7
SM
13179 if (svc_operand) /* OABI. */
13180 svc_number = svc_operand - 0x900000;
13181 else /* EABI. */
13182 regcache_raw_read_unsigned (reg_cache, 7, &svc_number);
97dfe206 13183
dda83cd7
SM
13184 return tdep->arm_syscall_record (reg_cache, svc_number);
13185 }
97dfe206 13186 else
dda83cd7 13187 {
6cb06a8c 13188 gdb_printf (gdb_stderr, _("no syscall record support\n"));
dda83cd7
SM
13189 return -1;
13190 }
97dfe206 13191 }
2d9e6acb 13192 else if (bits_24_25 == 0x02)
60cc5e93 13193 {
2d9e6acb
YQ
13194 if (op)
13195 {
13196 if ((coproc & 0x0e) == 0x0a)
13197 {
13198 /* 8, 16, and 32-bit transfer */
13199 return arm_record_vdata_transfer_insn (arm_insn_r);
13200 }
13201 else
13202 {
13203 if (op1_ebit)
13204 {
13205 /* MRC, MRC2 */
13206 uint32_t record_buf[1];
13207
13208 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
13209 if (record_buf[0] == 15)
13210 record_buf[0] = ARM_PS_REGNUM;
60cc5e93 13211
2d9e6acb
YQ
13212 arm_insn_r->reg_rec_count = 1;
13213 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count,
13214 record_buf);
13215 return 0;
13216 }
13217 else
13218 {
13219 /* MCR, MCR2 */
13220 return -1;
13221 }
13222 }
13223 }
13224 else
13225 {
13226 if ((coproc & 0x0e) == 0x0a)
13227 {
13228 /* VFP data-processing instructions. */
13229 return arm_record_vfp_data_proc_insn (arm_insn_r);
13230 }
13231 else
13232 {
13233 /* CDP, CDP2 */
13234 return -1;
13235 }
13236 }
60cc5e93 13237 }
97dfe206
OJ
13238 else
13239 {
2d9e6acb 13240 unsigned int op1 = bits (arm_insn_r->arm_insn, 20, 25);
60cc5e93 13241
2d9e6acb
YQ
13242 if (op1 == 5)
13243 {
13244 if ((coproc & 0x0e) != 0x0a)
13245 {
13246 /* MRRC, MRRC2 */
13247 return -1;
13248 }
13249 }
13250 else if (op1 == 4 || op1 == 5)
13251 {
13252 if ((coproc & 0x0e) == 0x0a)
13253 {
13254 /* 64-bit transfers between ARM core and extension */
13255 return -1;
13256 }
13257 else if (op1 == 4)
13258 {
13259 /* MCRR, MCRR2 */
13260 return -1;
13261 }
13262 }
13263 else if (op1 == 0 || op1 == 1)
13264 {
13265 /* UNDEFINED */
13266 return -1;
13267 }
13268 else
13269 {
13270 if ((coproc & 0x0e) == 0x0a)
13271 {
13272 /* Extension register load/store */
13273 }
13274 else
13275 {
13276 /* STC, STC2, LDC, LDC2 */
13277 }
13278 return -1;
13279 }
97dfe206 13280 }
72508ac0 13281
2d9e6acb 13282 return -1;
72508ac0
PO
13283}
13284
13285/* Handling opcode 000 insns. */
13286
13287static int
4748a9be 13288thumb_record_shift_add_sub (arm_insn_decode_record *thumb_insn_r)
72508ac0
PO
13289{
13290 uint32_t record_buf[8];
13291 uint32_t reg_src1 = 0;
13292
13293 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
13294
13295 record_buf[0] = ARM_PS_REGNUM;
13296 record_buf[1] = reg_src1;
13297 thumb_insn_r->reg_rec_count = 2;
13298
13299 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
13300
13301 return 0;
13302}
13303
13304
13305/* Handling opcode 001 insns. */
13306
13307static int
4748a9be 13308thumb_record_add_sub_cmp_mov (arm_insn_decode_record *thumb_insn_r)
72508ac0
PO
13309{
13310 uint32_t record_buf[8];
13311 uint32_t reg_src1 = 0;
13312
13313 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
13314
13315 record_buf[0] = ARM_PS_REGNUM;
13316 record_buf[1] = reg_src1;
13317 thumb_insn_r->reg_rec_count = 2;
13318
13319 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
13320
13321 return 0;
13322}
13323
13324/* Handling opcode 010 insns. */
13325
13326static int
4748a9be 13327thumb_record_ld_st_reg_offset (arm_insn_decode_record *thumb_insn_r)
72508ac0
PO
13328{
13329 struct regcache *reg_cache = thumb_insn_r->regcache;
13330 uint32_t record_buf[8], record_buf_mem[8];
13331
13332 uint32_t reg_src1 = 0, reg_src2 = 0;
13333 uint32_t opcode1 = 0, opcode2 = 0, opcode3 = 0;
13334
13335 ULONGEST u_regval[2] = {0};
13336
13337 opcode1 = bits (thumb_insn_r->arm_insn, 10, 12);
13338
13339 if (bit (thumb_insn_r->arm_insn, 12))
13340 {
13341 /* Handle load/store register offset. */
b121eeb9
YQ
13342 uint32_t opB = bits (thumb_insn_r->arm_insn, 9, 11);
13343
b020ff80 13344 if (in_inclusive_range (opB, 4U, 7U))
dda83cd7
SM
13345 {
13346 /* LDR(2), LDRB(2) , LDRH(2), LDRSB, LDRSH. */
13347 reg_src1 = bits (thumb_insn_r->arm_insn,0, 2);
13348 record_buf[0] = reg_src1;
13349 thumb_insn_r->reg_rec_count = 1;
13350 }
b020ff80 13351 else if (in_inclusive_range (opB, 0U, 2U))
dda83cd7
SM
13352 {
13353 /* STR(2), STRB(2), STRH(2) . */
13354 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
13355 reg_src2 = bits (thumb_insn_r->arm_insn, 6, 8);
13356 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
13357 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
13358 if (0 == opB)
13359 record_buf_mem[0] = 4; /* STR (2). */
13360 else if (2 == opB)
13361 record_buf_mem[0] = 1; /* STRB (2). */
13362 else if (1 == opB)
13363 record_buf_mem[0] = 2; /* STRH (2). */
13364 record_buf_mem[1] = u_regval[0] + u_regval[1];
13365 thumb_insn_r->mem_rec_count = 1;
13366 }
72508ac0
PO
13367 }
13368 else if (bit (thumb_insn_r->arm_insn, 11))
13369 {
13370 /* Handle load from literal pool. */
13371 /* LDR(3). */
13372 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
13373 record_buf[0] = reg_src1;
13374 thumb_insn_r->reg_rec_count = 1;
13375 }
13376 else if (opcode1)
13377 {
b121eeb9 13378 /* Special data instructions and branch and exchange */
72508ac0
PO
13379 opcode2 = bits (thumb_insn_r->arm_insn, 8, 9);
13380 opcode3 = bits (thumb_insn_r->arm_insn, 0, 2);
13381 if ((3 == opcode2) && (!opcode3))
dda83cd7
SM
13382 {
13383 /* Branch with exchange. */
13384 record_buf[0] = ARM_PS_REGNUM;
13385 thumb_insn_r->reg_rec_count = 1;
13386 }
72508ac0 13387 else
dda83cd7 13388 {
1f33efec
YQ
13389 /* Format 8; special data processing insns. */
13390 record_buf[0] = ARM_PS_REGNUM;
13391 record_buf[1] = (bit (thumb_insn_r->arm_insn, 7) << 3
13392 | bits (thumb_insn_r->arm_insn, 0, 2));
dda83cd7
SM
13393 thumb_insn_r->reg_rec_count = 2;
13394 }
72508ac0
PO
13395 }
13396 else
13397 {
13398 /* Format 5; data processing insns. */
13399 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
13400 if (bit (thumb_insn_r->arm_insn, 7))
dda83cd7
SM
13401 {
13402 reg_src1 = reg_src1 + 8;
13403 }
72508ac0
PO
13404 record_buf[0] = ARM_PS_REGNUM;
13405 record_buf[1] = reg_src1;
13406 thumb_insn_r->reg_rec_count = 2;
13407 }
13408
13409 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
13410 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
dda83cd7 13411 record_buf_mem);
72508ac0
PO
13412
13413 return 0;
13414}
13415
13416/* Handling opcode 001 insns. */
13417
13418static int
4748a9be 13419thumb_record_ld_st_imm_offset (arm_insn_decode_record *thumb_insn_r)
72508ac0
PO
13420{
13421 struct regcache *reg_cache = thumb_insn_r->regcache;
13422 uint32_t record_buf[8], record_buf_mem[8];
13423
13424 uint32_t reg_src1 = 0;
13425 uint32_t opcode = 0, immed_5 = 0;
13426
13427 ULONGEST u_regval = 0;
13428
13429 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
13430
13431 if (opcode)
13432 {
13433 /* LDR(1). */
13434 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
13435 record_buf[0] = reg_src1;
13436 thumb_insn_r->reg_rec_count = 1;
13437 }
13438 else
13439 {
13440 /* STR(1). */
13441 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
13442 immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
13443 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
13444 record_buf_mem[0] = 4;
13445 record_buf_mem[1] = u_regval + (immed_5 * 4);
13446 thumb_insn_r->mem_rec_count = 1;
13447 }
13448
13449 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
13450 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
dda83cd7 13451 record_buf_mem);
72508ac0
PO
13452
13453 return 0;
13454}
13455
13456/* Handling opcode 100 insns. */
13457
13458static int
4748a9be 13459thumb_record_ld_st_stack (arm_insn_decode_record *thumb_insn_r)
72508ac0
PO
13460{
13461 struct regcache *reg_cache = thumb_insn_r->regcache;
13462 uint32_t record_buf[8], record_buf_mem[8];
13463
13464 uint32_t reg_src1 = 0;
13465 uint32_t opcode = 0, immed_8 = 0, immed_5 = 0;
13466
13467 ULONGEST u_regval = 0;
13468
13469 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
13470
13471 if (3 == opcode)
13472 {
13473 /* LDR(4). */
13474 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
13475 record_buf[0] = reg_src1;
13476 thumb_insn_r->reg_rec_count = 1;
13477 }
13478 else if (1 == opcode)
13479 {
13480 /* LDRH(1). */
13481 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
13482 record_buf[0] = reg_src1;
13483 thumb_insn_r->reg_rec_count = 1;
13484 }
13485 else if (2 == opcode)
13486 {
13487 /* STR(3). */
13488 immed_8 = bits (thumb_insn_r->arm_insn, 0, 7);
13489 regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
13490 record_buf_mem[0] = 4;
13491 record_buf_mem[1] = u_regval + (immed_8 * 4);
13492 thumb_insn_r->mem_rec_count = 1;
13493 }
13494 else if (0 == opcode)
13495 {
13496 /* STRH(1). */
13497 immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
13498 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
13499 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
13500 record_buf_mem[0] = 2;
13501 record_buf_mem[1] = u_regval + (immed_5 * 2);
13502 thumb_insn_r->mem_rec_count = 1;
13503 }
13504
13505 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
13506 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
dda83cd7 13507 record_buf_mem);
72508ac0
PO
13508
13509 return 0;
13510}
13511
13512/* Handling opcode 101 insns. */
13513
13514static int
4748a9be 13515thumb_record_misc (arm_insn_decode_record *thumb_insn_r)
72508ac0
PO
13516{
13517 struct regcache *reg_cache = thumb_insn_r->regcache;
13518
b121eeb9 13519 uint32_t opcode = 0;
72508ac0 13520 uint32_t register_bits = 0, register_count = 0;
bec2ab5a 13521 uint32_t index = 0, start_address = 0;
72508ac0
PO
13522 uint32_t record_buf[24], record_buf_mem[48];
13523 uint32_t reg_src1;
13524
13525 ULONGEST u_regval = 0;
13526
13527 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
72508ac0 13528
b121eeb9 13529 if (opcode == 0 || opcode == 1)
72508ac0 13530 {
b121eeb9
YQ
13531 /* ADR and ADD (SP plus immediate) */
13532
72508ac0
PO
13533 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
13534 record_buf[0] = reg_src1;
13535 thumb_insn_r->reg_rec_count = 1;
13536 }
b121eeb9 13537 else
72508ac0 13538 {
b121eeb9
YQ
13539 /* Miscellaneous 16-bit instructions */
13540 uint32_t opcode2 = bits (thumb_insn_r->arm_insn, 8, 11);
13541
13542 switch (opcode2)
13543 {
13544 case 6:
13545 /* SETEND and CPS */
13546 break;
13547 case 0:
13548 /* ADD/SUB (SP plus immediate) */
13549 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
13550 record_buf[0] = ARM_SP_REGNUM;
13551 thumb_insn_r->reg_rec_count = 1;
13552 break;
13553 case 1: /* fall through */
13554 case 3: /* fall through */
13555 case 9: /* fall through */
13556 case 11:
13557 /* CBNZ, CBZ */
b121eeb9
YQ
13558 break;
13559 case 2:
13560 /* SXTH, SXTB, UXTH, UXTB */
13561 record_buf[0] = bits (thumb_insn_r->arm_insn, 0, 2);
13562 thumb_insn_r->reg_rec_count = 1;
13563 break;
13564 case 4: /* fall through */
13565 case 5:
13566 /* PUSH. */
13567 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
13568 regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
13569 while (register_bits)
13570 {
13571 if (register_bits & 0x00000001)
13572 register_count++;
13573 register_bits = register_bits >> 1;
13574 }
13575 start_address = u_regval - \
13576 (4 * (bit (thumb_insn_r->arm_insn, 8) + register_count));
13577 thumb_insn_r->mem_rec_count = register_count;
13578 while (register_count)
13579 {
13580 record_buf_mem[(register_count * 2) - 1] = start_address;
13581 record_buf_mem[(register_count * 2) - 2] = 4;
13582 start_address = start_address + 4;
13583 register_count--;
13584 }
13585 record_buf[0] = ARM_SP_REGNUM;
13586 thumb_insn_r->reg_rec_count = 1;
13587 break;
13588 case 10:
13589 /* REV, REV16, REVSH */
ba14f379
YQ
13590 record_buf[0] = bits (thumb_insn_r->arm_insn, 0, 2);
13591 thumb_insn_r->reg_rec_count = 1;
b121eeb9
YQ
13592 break;
13593 case 12: /* fall through */
13594 case 13:
13595 /* POP. */
13596 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
13597 while (register_bits)
13598 {
13599 if (register_bits & 0x00000001)
13600 record_buf[index++] = register_count;
13601 register_bits = register_bits >> 1;
13602 register_count++;
13603 }
13604 record_buf[index++] = ARM_PS_REGNUM;
13605 record_buf[index++] = ARM_SP_REGNUM;
13606 thumb_insn_r->reg_rec_count = index;
13607 break;
13608 case 0xe:
13609 /* BKPT insn. */
13610 /* Handle enhanced software breakpoint insn, BKPT. */
13611 /* CPSR is changed to be executed in ARM state, disabling normal
13612 interrupts, entering abort mode. */
13613 /* According to high vector configuration PC is set. */
13614 /* User hits breakpoint and type reverse, in that case, we need to go back with
13615 previous CPSR and Program Counter. */
13616 record_buf[0] = ARM_PS_REGNUM;
13617 record_buf[1] = ARM_LR_REGNUM;
13618 thumb_insn_r->reg_rec_count = 2;
13619 /* We need to save SPSR value, which is not yet done. */
6cb06a8c
TT
13620 gdb_printf (gdb_stderr,
13621 _("Process record does not support instruction "
13622 "0x%0x at address %s.\n"),
13623 thumb_insn_r->arm_insn,
13624 paddress (thumb_insn_r->gdbarch,
13625 thumb_insn_r->this_addr));
b121eeb9
YQ
13626 return -1;
13627
13628 case 0xf:
13629 /* If-Then, and hints */
13630 break;
13631 default:
13632 return -1;
13633 };
72508ac0
PO
13634 }
13635
13636 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
13637 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
dda83cd7 13638 record_buf_mem);
72508ac0
PO
13639
13640 return 0;
13641}
13642
13643/* Handling opcode 110 insns. */
13644
13645static int
4748a9be 13646thumb_record_ldm_stm_swi (arm_insn_decode_record *thumb_insn_r)
72508ac0 13647{
345bd07c 13648 arm_gdbarch_tdep *tdep
08106042 13649 = gdbarch_tdep<arm_gdbarch_tdep> (thumb_insn_r->gdbarch);
72508ac0
PO
13650 struct regcache *reg_cache = thumb_insn_r->regcache;
13651
13652 uint32_t ret = 0; /* function return value: -1:record failure ; 0:success */
13653 uint32_t reg_src1 = 0;
13654 uint32_t opcode1 = 0, opcode2 = 0, register_bits = 0, register_count = 0;
bec2ab5a 13655 uint32_t index = 0, start_address = 0;
72508ac0
PO
13656 uint32_t record_buf[24], record_buf_mem[48];
13657
13658 ULONGEST u_regval = 0;
13659
13660 opcode1 = bits (thumb_insn_r->arm_insn, 8, 12);
13661 opcode2 = bits (thumb_insn_r->arm_insn, 11, 12);
13662
13663 if (1 == opcode2)
13664 {
13665
13666 /* LDMIA. */
13667 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
13668 /* Get Rn. */
13669 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
13670 while (register_bits)
dda83cd7
SM
13671 {
13672 if (register_bits & 0x00000001)
13673 record_buf[index++] = register_count;
13674 register_bits = register_bits >> 1;
13675 register_count++;
13676 }
f969241e
OJ
13677 record_buf[index++] = reg_src1;
13678 thumb_insn_r->reg_rec_count = index;
72508ac0
PO
13679 }
13680 else if (0 == opcode2)
13681 {
13682 /* It handles both STMIA. */
13683 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
13684 /* Get Rn. */
13685 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
13686 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
13687 while (register_bits)
dda83cd7
SM
13688 {
13689 if (register_bits & 0x00000001)
13690 register_count++;
13691 register_bits = register_bits >> 1;
13692 }
72508ac0
PO
13693 start_address = u_regval;
13694 thumb_insn_r->mem_rec_count = register_count;
13695 while (register_count)
dda83cd7
SM
13696 {
13697 record_buf_mem[(register_count * 2) - 1] = start_address;
13698 record_buf_mem[(register_count * 2) - 2] = 4;
13699 start_address = start_address + 4;
13700 register_count--;
13701 }
72508ac0
PO
13702 }
13703 else if (0x1F == opcode1)
13704 {
dda83cd7
SM
13705 /* Handle arm syscall insn. */
13706 if (tdep->arm_syscall_record != NULL)
13707 {
13708 regcache_raw_read_unsigned (reg_cache, 7, &u_regval);
13709 ret = tdep->arm_syscall_record (reg_cache, u_regval);
13710 }
13711 else
13712 {
6cb06a8c 13713 gdb_printf (gdb_stderr, _("no syscall record support\n"));
dda83cd7
SM
13714 return -1;
13715 }
72508ac0
PO
13716 }
13717
13718 /* B (1), conditional branch is automatically taken care in process_record,
13719 as PC is saved there. */
13720
13721 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
13722 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
dda83cd7 13723 record_buf_mem);
72508ac0
PO
13724
13725 return ret;
13726}
13727
13728/* Handling opcode 111 insns. */
13729
13730static int
4748a9be 13731thumb_record_branch (arm_insn_decode_record *thumb_insn_r)
72508ac0
PO
13732{
13733 uint32_t record_buf[8];
13734 uint32_t bits_h = 0;
13735
13736 bits_h = bits (thumb_insn_r->arm_insn, 11, 12);
13737
13738 if (2 == bits_h || 3 == bits_h)
13739 {
13740 /* BL */
13741 record_buf[0] = ARM_LR_REGNUM;
13742 thumb_insn_r->reg_rec_count = 1;
13743 }
13744 else if (1 == bits_h)
13745 {
13746 /* BLX(1). */
13747 record_buf[0] = ARM_PS_REGNUM;
13748 record_buf[1] = ARM_LR_REGNUM;
13749 thumb_insn_r->reg_rec_count = 2;
13750 }
13751
13752 /* B(2) is automatically taken care in process_record, as PC is
13753 saved there. */
13754
13755 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
13756
13757 return 0;
13758}
13759
c6ec2b30
OJ
13760/* Handler for thumb2 load/store multiple instructions. */
13761
13762static int
4748a9be 13763thumb2_record_ld_st_multiple (arm_insn_decode_record *thumb2_insn_r)
c6ec2b30
OJ
13764{
13765 struct regcache *reg_cache = thumb2_insn_r->regcache;
13766
13767 uint32_t reg_rn, op;
13768 uint32_t register_bits = 0, register_count = 0;
13769 uint32_t index = 0, start_address = 0;
13770 uint32_t record_buf[24], record_buf_mem[48];
13771
13772 ULONGEST u_regval = 0;
13773
13774 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
13775 op = bits (thumb2_insn_r->arm_insn, 23, 24);
13776
13777 if (0 == op || 3 == op)
13778 {
13779 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
dda83cd7
SM
13780 {
13781 /* Handle RFE instruction. */
13782 record_buf[0] = ARM_PS_REGNUM;
13783 thumb2_insn_r->reg_rec_count = 1;
13784 }
c6ec2b30 13785 else
dda83cd7
SM
13786 {
13787 /* Handle SRS instruction after reading banked SP. */
13788 return arm_record_unsupported_insn (thumb2_insn_r);
13789 }
c6ec2b30
OJ
13790 }
13791 else if (1 == op || 2 == op)
13792 {
13793 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
dda83cd7
SM
13794 {
13795 /* Handle LDM/LDMIA/LDMFD and LDMDB/LDMEA instructions. */
13796 register_bits = bits (thumb2_insn_r->arm_insn, 0, 15);
13797 while (register_bits)
13798 {
13799 if (register_bits & 0x00000001)
13800 record_buf[index++] = register_count;
13801
13802 register_count++;
13803 register_bits = register_bits >> 1;
13804 }
13805 record_buf[index++] = reg_rn;
13806 record_buf[index++] = ARM_PS_REGNUM;
13807 thumb2_insn_r->reg_rec_count = index;
13808 }
c6ec2b30 13809 else
dda83cd7
SM
13810 {
13811 /* Handle STM/STMIA/STMEA and STMDB/STMFD. */
13812 register_bits = bits (thumb2_insn_r->arm_insn, 0, 15);
13813 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
13814 while (register_bits)
13815 {
13816 if (register_bits & 0x00000001)
13817 register_count++;
13818
13819 register_bits = register_bits >> 1;
13820 }
13821
13822 if (1 == op)
13823 {
13824 /* Start address calculation for LDMDB/LDMEA. */
13825 start_address = u_regval;
13826 }
13827 else if (2 == op)
13828 {
13829 /* Start address calculation for LDMDB/LDMEA. */
13830 start_address = u_regval - register_count * 4;
13831 }
13832
13833 thumb2_insn_r->mem_rec_count = register_count;
13834 while (register_count)
13835 {
13836 record_buf_mem[register_count * 2 - 1] = start_address;
13837 record_buf_mem[register_count * 2 - 2] = 4;
13838 start_address = start_address + 4;
13839 register_count--;
13840 }
13841 record_buf[0] = reg_rn;
13842 record_buf[1] = ARM_PS_REGNUM;
13843 thumb2_insn_r->reg_rec_count = 2;
13844 }
c6ec2b30
OJ
13845 }
13846
13847 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
dda83cd7 13848 record_buf_mem);
c6ec2b30 13849 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
dda83cd7 13850 record_buf);
c6ec2b30
OJ
13851 return ARM_RECORD_SUCCESS;
13852}
13853
13854/* Handler for thumb2 load/store (dual/exclusive) and table branch
13855 instructions. */
13856
13857static int
4748a9be 13858thumb2_record_ld_st_dual_ex_tbb (arm_insn_decode_record *thumb2_insn_r)
c6ec2b30
OJ
13859{
13860 struct regcache *reg_cache = thumb2_insn_r->regcache;
13861
13862 uint32_t reg_rd, reg_rn, offset_imm;
13863 uint32_t reg_dest1, reg_dest2;
13864 uint32_t address, offset_addr;
13865 uint32_t record_buf[8], record_buf_mem[8];
13866 uint32_t op1, op2, op3;
c6ec2b30
OJ
13867
13868 ULONGEST u_regval[2];
13869
13870 op1 = bits (thumb2_insn_r->arm_insn, 23, 24);
13871 op2 = bits (thumb2_insn_r->arm_insn, 20, 21);
13872 op3 = bits (thumb2_insn_r->arm_insn, 4, 7);
13873
13874 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
13875 {
13876 if(!(1 == op1 && 1 == op2 && (0 == op3 || 1 == op3)))
dda83cd7
SM
13877 {
13878 reg_dest1 = bits (thumb2_insn_r->arm_insn, 12, 15);
13879 record_buf[0] = reg_dest1;
13880 record_buf[1] = ARM_PS_REGNUM;
13881 thumb2_insn_r->reg_rec_count = 2;
13882 }
c6ec2b30
OJ
13883
13884 if (3 == op2 || (op1 & 2) || (1 == op1 && 1 == op2 && 7 == op3))
dda83cd7
SM
13885 {
13886 reg_dest2 = bits (thumb2_insn_r->arm_insn, 8, 11);
13887 record_buf[2] = reg_dest2;
13888 thumb2_insn_r->reg_rec_count = 3;
13889 }
c6ec2b30
OJ
13890 }
13891 else
13892 {
13893 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
13894 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]);
13895
13896 if (0 == op1 && 0 == op2)
dda83cd7
SM
13897 {
13898 /* Handle STREX. */
13899 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
13900 address = u_regval[0] + (offset_imm * 4);
13901 record_buf_mem[0] = 4;
13902 record_buf_mem[1] = address;
13903 thumb2_insn_r->mem_rec_count = 1;
13904 reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3);
13905 record_buf[0] = reg_rd;
13906 thumb2_insn_r->reg_rec_count = 1;
13907 }
c6ec2b30 13908 else if (1 == op1 && 0 == op2)
dda83cd7
SM
13909 {
13910 reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3);
13911 record_buf[0] = reg_rd;
13912 thumb2_insn_r->reg_rec_count = 1;
13913 address = u_regval[0];
13914 record_buf_mem[1] = address;
13915
13916 if (4 == op3)
13917 {
13918 /* Handle STREXB. */
13919 record_buf_mem[0] = 1;
13920 thumb2_insn_r->mem_rec_count = 1;
13921 }
13922 else if (5 == op3)
13923 {
13924 /* Handle STREXH. */
13925 record_buf_mem[0] = 2 ;
13926 thumb2_insn_r->mem_rec_count = 1;
13927 }
13928 else if (7 == op3)
13929 {
13930 /* Handle STREXD. */
13931 address = u_regval[0];
13932 record_buf_mem[0] = 4;
13933 record_buf_mem[2] = 4;
13934 record_buf_mem[3] = address + 4;
13935 thumb2_insn_r->mem_rec_count = 2;
13936 }
13937 }
c6ec2b30 13938 else
dda83cd7
SM
13939 {
13940 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
13941
13942 if (bit (thumb2_insn_r->arm_insn, 24))
13943 {
13944 if (bit (thumb2_insn_r->arm_insn, 23))
13945 offset_addr = u_regval[0] + (offset_imm * 4);
13946 else
13947 offset_addr = u_regval[0] - (offset_imm * 4);
13948
13949 address = offset_addr;
13950 }
13951 else
13952 address = u_regval[0];
13953
13954 record_buf_mem[0] = 4;
13955 record_buf_mem[1] = address;
13956 record_buf_mem[2] = 4;
13957 record_buf_mem[3] = address + 4;
13958 thumb2_insn_r->mem_rec_count = 2;
13959 record_buf[0] = reg_rn;
13960 thumb2_insn_r->reg_rec_count = 1;
13961 }
c6ec2b30
OJ
13962 }
13963
13964 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
dda83cd7 13965 record_buf);
c6ec2b30 13966 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
dda83cd7 13967 record_buf_mem);
c6ec2b30
OJ
13968 return ARM_RECORD_SUCCESS;
13969}
13970
13971/* Handler for thumb2 data processing (shift register and modified immediate)
13972 instructions. */
13973
13974static int
4748a9be 13975thumb2_record_data_proc_sreg_mimm (arm_insn_decode_record *thumb2_insn_r)
c6ec2b30
OJ
13976{
13977 uint32_t reg_rd, op;
13978 uint32_t record_buf[8];
13979
13980 op = bits (thumb2_insn_r->arm_insn, 21, 24);
13981 reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11);
13982
13983 if ((0 == op || 4 == op || 8 == op || 13 == op) && 15 == reg_rd)
13984 {
13985 record_buf[0] = ARM_PS_REGNUM;
13986 thumb2_insn_r->reg_rec_count = 1;
13987 }
13988 else
13989 {
13990 record_buf[0] = reg_rd;
13991 record_buf[1] = ARM_PS_REGNUM;
13992 thumb2_insn_r->reg_rec_count = 2;
13993 }
13994
13995 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
dda83cd7 13996 record_buf);
c6ec2b30
OJ
13997 return ARM_RECORD_SUCCESS;
13998}
13999
14000/* Generic handler for thumb2 instructions which effect destination and PS
14001 registers. */
14002
14003static int
4748a9be 14004thumb2_record_ps_dest_generic (arm_insn_decode_record *thumb2_insn_r)
c6ec2b30
OJ
14005{
14006 uint32_t reg_rd;
14007 uint32_t record_buf[8];
14008
14009 reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11);
14010
14011 record_buf[0] = reg_rd;
14012 record_buf[1] = ARM_PS_REGNUM;
14013 thumb2_insn_r->reg_rec_count = 2;
14014
14015 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
dda83cd7 14016 record_buf);
c6ec2b30
OJ
14017 return ARM_RECORD_SUCCESS;
14018}
14019
14020/* Handler for thumb2 branch and miscellaneous control instructions. */
14021
14022static int
4748a9be 14023thumb2_record_branch_misc_cntrl (arm_insn_decode_record *thumb2_insn_r)
c6ec2b30
OJ
14024{
14025 uint32_t op, op1, op2;
14026 uint32_t record_buf[8];
14027
14028 op = bits (thumb2_insn_r->arm_insn, 20, 26);
14029 op1 = bits (thumb2_insn_r->arm_insn, 12, 14);
14030 op2 = bits (thumb2_insn_r->arm_insn, 8, 11);
14031
14032 /* Handle MSR insn. */
14033 if (!(op1 & 0x2) && 0x38 == op)
14034 {
14035 if (!(op2 & 0x3))
dda83cd7
SM
14036 {
14037 /* CPSR is going to be changed. */
14038 record_buf[0] = ARM_PS_REGNUM;
14039 thumb2_insn_r->reg_rec_count = 1;
14040 }
c6ec2b30 14041 else
dda83cd7
SM
14042 {
14043 arm_record_unsupported_insn(thumb2_insn_r);
14044 return -1;
14045 }
c6ec2b30
OJ
14046 }
14047 else if (4 == (op1 & 0x5) || 5 == (op1 & 0x5))
14048 {
14049 /* BLX. */
14050 record_buf[0] = ARM_PS_REGNUM;
14051 record_buf[1] = ARM_LR_REGNUM;
14052 thumb2_insn_r->reg_rec_count = 2;
14053 }
14054
14055 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
dda83cd7 14056 record_buf);
c6ec2b30
OJ
14057 return ARM_RECORD_SUCCESS;
14058}
14059
14060/* Handler for thumb2 store single data item instructions. */
14061
14062static int
4748a9be 14063thumb2_record_str_single_data (arm_insn_decode_record *thumb2_insn_r)
c6ec2b30
OJ
14064{
14065 struct regcache *reg_cache = thumb2_insn_r->regcache;
14066
14067 uint32_t reg_rn, reg_rm, offset_imm, shift_imm;
14068 uint32_t address, offset_addr;
14069 uint32_t record_buf[8], record_buf_mem[8];
14070 uint32_t op1, op2;
14071
14072 ULONGEST u_regval[2];
14073
14074 op1 = bits (thumb2_insn_r->arm_insn, 21, 23);
14075 op2 = bits (thumb2_insn_r->arm_insn, 6, 11);
14076 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
14077 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]);
14078
14079 if (bit (thumb2_insn_r->arm_insn, 23))
14080 {
14081 /* T2 encoding. */
14082 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 11);
14083 offset_addr = u_regval[0] + offset_imm;
14084 address = offset_addr;
14085 }
14086 else
14087 {
14088 /* T3 encoding. */
14089 if ((0 == op1 || 1 == op1 || 2 == op1) && !(op2 & 0x20))
dda83cd7
SM
14090 {
14091 /* Handle STRB (register). */
14092 reg_rm = bits (thumb2_insn_r->arm_insn, 0, 3);
14093 regcache_raw_read_unsigned (reg_cache, reg_rm, &u_regval[1]);
14094 shift_imm = bits (thumb2_insn_r->arm_insn, 4, 5);
14095 offset_addr = u_regval[1] << shift_imm;
14096 address = u_regval[0] + offset_addr;
14097 }
c6ec2b30 14098 else
dda83cd7
SM
14099 {
14100 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
14101 if (bit (thumb2_insn_r->arm_insn, 10))
14102 {
14103 if (bit (thumb2_insn_r->arm_insn, 9))
14104 offset_addr = u_regval[0] + offset_imm;
14105 else
14106 offset_addr = u_regval[0] - offset_imm;
14107
14108 address = offset_addr;
14109 }
14110 else
14111 address = u_regval[0];
14112 }
c6ec2b30
OJ
14113 }
14114
14115 switch (op1)
14116 {
14117 /* Store byte instructions. */
14118 case 4:
14119 case 0:
dda83cd7
SM
14120 record_buf_mem[0] = 1;
14121 break;
c6ec2b30
OJ
14122 /* Store half word instructions. */
14123 case 1:
14124 case 5:
dda83cd7
SM
14125 record_buf_mem[0] = 2;
14126 break;
c6ec2b30
OJ
14127 /* Store word instructions. */
14128 case 2:
14129 case 6:
dda83cd7
SM
14130 record_buf_mem[0] = 4;
14131 break;
c6ec2b30
OJ
14132
14133 default:
dda83cd7
SM
14134 gdb_assert_not_reached ("no decoding pattern found");
14135 break;
c6ec2b30
OJ
14136 }
14137
14138 record_buf_mem[1] = address;
14139 thumb2_insn_r->mem_rec_count = 1;
14140 record_buf[0] = reg_rn;
14141 thumb2_insn_r->reg_rec_count = 1;
14142
14143 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
dda83cd7 14144 record_buf);
c6ec2b30 14145 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
dda83cd7 14146 record_buf_mem);
c6ec2b30
OJ
14147 return ARM_RECORD_SUCCESS;
14148}
14149
14150/* Handler for thumb2 load memory hints instructions. */
14151
14152static int
4748a9be 14153thumb2_record_ld_mem_hints (arm_insn_decode_record *thumb2_insn_r)
c6ec2b30
OJ
14154{
14155 uint32_t record_buf[8];
14156 uint32_t reg_rt, reg_rn;
14157
14158 reg_rt = bits (thumb2_insn_r->arm_insn, 12, 15);
14159 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
14160
14161 if (ARM_PC_REGNUM != reg_rt)
14162 {
14163 record_buf[0] = reg_rt;
14164 record_buf[1] = reg_rn;
14165 record_buf[2] = ARM_PS_REGNUM;
14166 thumb2_insn_r->reg_rec_count = 3;
14167
14168 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
dda83cd7 14169 record_buf);
c6ec2b30
OJ
14170 return ARM_RECORD_SUCCESS;
14171 }
14172
14173 return ARM_RECORD_FAILURE;
14174}
14175
14176/* Handler for thumb2 load word instructions. */
14177
14178static int
4748a9be 14179thumb2_record_ld_word (arm_insn_decode_record *thumb2_insn_r)
c6ec2b30 14180{
c6ec2b30
OJ
14181 uint32_t record_buf[8];
14182
14183 record_buf[0] = bits (thumb2_insn_r->arm_insn, 12, 15);
14184 record_buf[1] = ARM_PS_REGNUM;
14185 thumb2_insn_r->reg_rec_count = 2;
14186
14187 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
dda83cd7 14188 record_buf);
c6ec2b30
OJ
14189 return ARM_RECORD_SUCCESS;
14190}
14191
14192/* Handler for thumb2 long multiply, long multiply accumulate, and
14193 divide instructions. */
14194
14195static int
4748a9be 14196thumb2_record_lmul_lmla_div (arm_insn_decode_record *thumb2_insn_r)
c6ec2b30
OJ
14197{
14198 uint32_t opcode1 = 0, opcode2 = 0;
14199 uint32_t record_buf[8];
c6ec2b30
OJ
14200
14201 opcode1 = bits (thumb2_insn_r->arm_insn, 20, 22);
14202 opcode2 = bits (thumb2_insn_r->arm_insn, 4, 7);
14203
14204 if (0 == opcode1 || 2 == opcode1 || (opcode1 >= 4 && opcode1 <= 6))
14205 {
14206 /* Handle SMULL, UMULL, SMULAL. */
14207 /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
14208 record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19);
14209 record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15);
14210 record_buf[2] = ARM_PS_REGNUM;
14211 thumb2_insn_r->reg_rec_count = 3;
14212 }
14213 else if (1 == opcode1 || 3 == opcode2)
14214 {
14215 /* Handle SDIV and UDIV. */
14216 record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19);
14217 record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15);
14218 record_buf[2] = ARM_PS_REGNUM;
14219 thumb2_insn_r->reg_rec_count = 3;
14220 }
14221 else
14222 return ARM_RECORD_FAILURE;
14223
14224 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
dda83cd7 14225 record_buf);
c6ec2b30
OJ
14226 return ARM_RECORD_SUCCESS;
14227}
14228
60cc5e93
OJ
14229/* Record handler for thumb32 coprocessor instructions. */
14230
14231static int
4748a9be 14232thumb2_record_coproc_insn (arm_insn_decode_record *thumb2_insn_r)
60cc5e93
OJ
14233{
14234 if (bit (thumb2_insn_r->arm_insn, 25))
14235 return arm_record_coproc_data_proc (thumb2_insn_r);
14236 else
14237 return arm_record_asimd_vfp_coproc (thumb2_insn_r);
14238}
14239
1e1b6563
OJ
14240/* Record handler for advance SIMD structure load/store instructions. */
14241
14242static int
4748a9be 14243thumb2_record_asimd_struct_ld_st (arm_insn_decode_record *thumb2_insn_r)
1e1b6563
OJ
14244{
14245 struct regcache *reg_cache = thumb2_insn_r->regcache;
14246 uint32_t l_bit, a_bit, b_bits;
14247 uint32_t record_buf[128], record_buf_mem[128];
bec2ab5a 14248 uint32_t reg_rn, reg_vd, address, f_elem;
1e1b6563
OJ
14249 uint32_t index_r = 0, index_e = 0, bf_regs = 0, index_m = 0, loop_t = 0;
14250 uint8_t f_ebytes;
14251
14252 l_bit = bit (thumb2_insn_r->arm_insn, 21);
14253 a_bit = bit (thumb2_insn_r->arm_insn, 23);
14254 b_bits = bits (thumb2_insn_r->arm_insn, 8, 11);
14255 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
14256 reg_vd = bits (thumb2_insn_r->arm_insn, 12, 15);
14257 reg_vd = (bit (thumb2_insn_r->arm_insn, 22) << 4) | reg_vd;
14258 f_ebytes = (1 << bits (thumb2_insn_r->arm_insn, 6, 7));
1e1b6563
OJ
14259 f_elem = 8 / f_ebytes;
14260
14261 if (!l_bit)
14262 {
14263 ULONGEST u_regval = 0;
14264 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
14265 address = u_regval;
14266
14267 if (!a_bit)
dda83cd7
SM
14268 {
14269 /* Handle VST1. */
14270 if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06)
14271 {
14272 if (b_bits == 0x07)
14273 bf_regs = 1;
14274 else if (b_bits == 0x0a)
14275 bf_regs = 2;
14276 else if (b_bits == 0x06)
14277 bf_regs = 3;
14278 else if (b_bits == 0x02)
14279 bf_regs = 4;
14280 else
14281 bf_regs = 0;
14282
14283 for (index_r = 0; index_r < bf_regs; index_r++)
14284 {
14285 for (index_e = 0; index_e < f_elem; index_e++)
14286 {
14287 record_buf_mem[index_m++] = f_ebytes;
14288 record_buf_mem[index_m++] = address;
14289 address = address + f_ebytes;
14290 thumb2_insn_r->mem_rec_count += 1;
14291 }
14292 }
14293 }
14294 /* Handle VST2. */
14295 else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08)
14296 {
14297 if (b_bits == 0x09 || b_bits == 0x08)
14298 bf_regs = 1;
14299 else if (b_bits == 0x03)
14300 bf_regs = 2;
14301 else
14302 bf_regs = 0;
14303
14304 for (index_r = 0; index_r < bf_regs; index_r++)
14305 for (index_e = 0; index_e < f_elem; index_e++)
14306 {
14307 for (loop_t = 0; loop_t < 2; loop_t++)
14308 {
14309 record_buf_mem[index_m++] = f_ebytes;
14310 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
14311 thumb2_insn_r->mem_rec_count += 1;
14312 }
14313 address = address + (2 * f_ebytes);
14314 }
14315 }
14316 /* Handle VST3. */
14317 else if ((b_bits & 0x0e) == 0x04)
14318 {
14319 for (index_e = 0; index_e < f_elem; index_e++)
14320 {
14321 for (loop_t = 0; loop_t < 3; loop_t++)
14322 {
14323 record_buf_mem[index_m++] = f_ebytes;
14324 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
14325 thumb2_insn_r->mem_rec_count += 1;
14326 }
14327 address = address + (3 * f_ebytes);
14328 }
14329 }
14330 /* Handle VST4. */
14331 else if (!(b_bits & 0x0e))
14332 {
14333 for (index_e = 0; index_e < f_elem; index_e++)
14334 {
14335 for (loop_t = 0; loop_t < 4; loop_t++)
14336 {
14337 record_buf_mem[index_m++] = f_ebytes;
14338 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
14339 thumb2_insn_r->mem_rec_count += 1;
14340 }
14341 address = address + (4 * f_ebytes);
14342 }
14343 }
14344 }
1e1b6563 14345 else
dda83cd7
SM
14346 {
14347 uint8_t bft_size = bits (thumb2_insn_r->arm_insn, 10, 11);
14348
14349 if (bft_size == 0x00)
14350 f_ebytes = 1;
14351 else if (bft_size == 0x01)
14352 f_ebytes = 2;
14353 else if (bft_size == 0x02)
14354 f_ebytes = 4;
14355 else
14356 f_ebytes = 0;
14357
14358 /* Handle VST1. */
14359 if (!(b_bits & 0x0b) || b_bits == 0x08)
14360 thumb2_insn_r->mem_rec_count = 1;
14361 /* Handle VST2. */
14362 else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09)
14363 thumb2_insn_r->mem_rec_count = 2;
14364 /* Handle VST3. */
14365 else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a)
14366 thumb2_insn_r->mem_rec_count = 3;
14367 /* Handle VST4. */
14368 else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b)
14369 thumb2_insn_r->mem_rec_count = 4;
14370
14371 for (index_m = 0; index_m < thumb2_insn_r->mem_rec_count; index_m++)
14372 {
14373 record_buf_mem[index_m] = f_ebytes;
14374 record_buf_mem[index_m] = address + (index_m * f_ebytes);
14375 }
14376 }
1e1b6563
OJ
14377 }
14378 else
14379 {
14380 if (!a_bit)
dda83cd7
SM
14381 {
14382 /* Handle VLD1. */
14383 if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06)
14384 thumb2_insn_r->reg_rec_count = 1;
14385 /* Handle VLD2. */
14386 else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08)
14387 thumb2_insn_r->reg_rec_count = 2;
14388 /* Handle VLD3. */
14389 else if ((b_bits & 0x0e) == 0x04)
14390 thumb2_insn_r->reg_rec_count = 3;
14391 /* Handle VLD4. */
14392 else if (!(b_bits & 0x0e))
14393 thumb2_insn_r->reg_rec_count = 4;
14394 }
1e1b6563 14395 else
dda83cd7
SM
14396 {
14397 /* Handle VLD1. */
14398 if (!(b_bits & 0x0b) || b_bits == 0x08 || b_bits == 0x0c)
14399 thumb2_insn_r->reg_rec_count = 1;
14400 /* Handle VLD2. */
14401 else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09 || b_bits == 0x0d)
14402 thumb2_insn_r->reg_rec_count = 2;
14403 /* Handle VLD3. */
14404 else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a || b_bits == 0x0e)
14405 thumb2_insn_r->reg_rec_count = 3;
14406 /* Handle VLD4. */
14407 else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b || b_bits == 0x0f)
14408 thumb2_insn_r->reg_rec_count = 4;
14409
14410 for (index_r = 0; index_r < thumb2_insn_r->reg_rec_count; index_r++)
14411 record_buf[index_r] = reg_vd + ARM_D0_REGNUM + index_r;
14412 }
1e1b6563
OJ
14413 }
14414
14415 if (bits (thumb2_insn_r->arm_insn, 0, 3) != 15)
14416 {
14417 record_buf[index_r] = reg_rn;
14418 thumb2_insn_r->reg_rec_count += 1;
14419 }
14420
14421 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
dda83cd7 14422 record_buf);
1e1b6563 14423 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
dda83cd7 14424 record_buf_mem);
1e1b6563
OJ
14425 return 0;
14426}
14427
c6ec2b30
OJ
14428/* Decodes thumb2 instruction type and invokes its record handler. */
14429
14430static unsigned int
4748a9be 14431thumb2_record_decode_insn_handler (arm_insn_decode_record *thumb2_insn_r)
c6ec2b30
OJ
14432{
14433 uint32_t op, op1, op2;
14434
14435 op = bit (thumb2_insn_r->arm_insn, 15);
14436 op1 = bits (thumb2_insn_r->arm_insn, 27, 28);
14437 op2 = bits (thumb2_insn_r->arm_insn, 20, 26);
14438
14439 if (op1 == 0x01)
14440 {
14441 if (!(op2 & 0x64 ))
dda83cd7
SM
14442 {
14443 /* Load/store multiple instruction. */
14444 return thumb2_record_ld_st_multiple (thumb2_insn_r);
14445 }
b121eeb9 14446 else if ((op2 & 0x64) == 0x4)
dda83cd7
SM
14447 {
14448 /* Load/store (dual/exclusive) and table branch instruction. */
14449 return thumb2_record_ld_st_dual_ex_tbb (thumb2_insn_r);
14450 }
b121eeb9 14451 else if ((op2 & 0x60) == 0x20)
dda83cd7
SM
14452 {
14453 /* Data-processing (shifted register). */
14454 return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r);
14455 }
c6ec2b30 14456 else if (op2 & 0x40)
dda83cd7
SM
14457 {
14458 /* Co-processor instructions. */
14459 return thumb2_record_coproc_insn (thumb2_insn_r);
14460 }
c6ec2b30
OJ
14461 }
14462 else if (op1 == 0x02)
14463 {
14464 if (op)
dda83cd7
SM
14465 {
14466 /* Branches and miscellaneous control instructions. */
14467 return thumb2_record_branch_misc_cntrl (thumb2_insn_r);
14468 }
c6ec2b30 14469 else if (op2 & 0x20)
dda83cd7
SM
14470 {
14471 /* Data-processing (plain binary immediate) instruction. */
14472 return thumb2_record_ps_dest_generic (thumb2_insn_r);
14473 }
c6ec2b30 14474 else
dda83cd7
SM
14475 {
14476 /* Data-processing (modified immediate). */
14477 return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r);
14478 }
c6ec2b30
OJ
14479 }
14480 else if (op1 == 0x03)
14481 {
14482 if (!(op2 & 0x71 ))
dda83cd7
SM
14483 {
14484 /* Store single data item. */
14485 return thumb2_record_str_single_data (thumb2_insn_r);
14486 }
c6ec2b30 14487 else if (!((op2 & 0x71) ^ 0x10))
dda83cd7
SM
14488 {
14489 /* Advanced SIMD or structure load/store instructions. */
14490 return thumb2_record_asimd_struct_ld_st (thumb2_insn_r);
14491 }
c6ec2b30 14492 else if (!((op2 & 0x67) ^ 0x01))
dda83cd7
SM
14493 {
14494 /* Load byte, memory hints instruction. */
14495 return thumb2_record_ld_mem_hints (thumb2_insn_r);
14496 }
c6ec2b30 14497 else if (!((op2 & 0x67) ^ 0x03))
dda83cd7
SM
14498 {
14499 /* Load halfword, memory hints instruction. */
14500 return thumb2_record_ld_mem_hints (thumb2_insn_r);
14501 }
c6ec2b30 14502 else if (!((op2 & 0x67) ^ 0x05))
dda83cd7
SM
14503 {
14504 /* Load word instruction. */
14505 return thumb2_record_ld_word (thumb2_insn_r);
14506 }
c6ec2b30 14507 else if (!((op2 & 0x70) ^ 0x20))
dda83cd7
SM
14508 {
14509 /* Data-processing (register) instruction. */
14510 return thumb2_record_ps_dest_generic (thumb2_insn_r);
14511 }
c6ec2b30 14512 else if (!((op2 & 0x78) ^ 0x30))
dda83cd7
SM
14513 {
14514 /* Multiply, multiply accumulate, abs diff instruction. */
14515 return thumb2_record_ps_dest_generic (thumb2_insn_r);
14516 }
c6ec2b30 14517 else if (!((op2 & 0x78) ^ 0x38))
dda83cd7
SM
14518 {
14519 /* Long multiply, long multiply accumulate, and divide. */
14520 return thumb2_record_lmul_lmla_div (thumb2_insn_r);
14521 }
c6ec2b30 14522 else if (op2 & 0x40)
dda83cd7
SM
14523 {
14524 /* Co-processor instructions. */
14525 return thumb2_record_coproc_insn (thumb2_insn_r);
14526 }
c6ec2b30
OJ
14527 }
14528
14529 return -1;
14530}
72508ac0 14531
ffdbe864 14532namespace {
0833fb8f 14533/* Abstract instruction reader. */
728a7913 14534
0833fb8f 14535class abstract_instruction_reader
728a7913
YQ
14536{
14537public:
0833fb8f
LM
14538 /* Read one instruction of size LEN from address MEMADDR and using
14539 BYTE_ORDER endianness. */
728a7913 14540
0833fb8f
LM
14541 virtual ULONGEST read (CORE_ADDR memaddr, const size_t len,
14542 enum bfd_endian byte_order) = 0;
728a7913
YQ
14543};
14544
14545/* Instruction reader from real target. */
14546
0833fb8f 14547class instruction_reader : public abstract_instruction_reader
728a7913
YQ
14548{
14549 public:
0833fb8f
LM
14550 ULONGEST read (CORE_ADDR memaddr, const size_t len,
14551 enum bfd_endian byte_order) override
728a7913 14552 {
0833fb8f 14553 return read_code_unsigned_integer (memaddr, len, byte_order);
728a7913
YQ
14554 }
14555};
14556
ffdbe864
YQ
14557} // namespace
14558
4748a9be 14559typedef int (*sti_arm_hdl_fp_t) (arm_insn_decode_record*);
72508ac0
PO
14560
14561/* Decode arm/thumb insn depending on condition cods and opcodes; and
14562 dispatch it. */
14563
14564static int
0833fb8f 14565decode_insn (abstract_instruction_reader &reader,
4748a9be 14566 arm_insn_decode_record *arm_record,
728a7913 14567 record_type_t record_type, uint32_t insn_size)
72508ac0
PO
14568{
14569
01e57735
YQ
14570 /* (Starting from numerical 0); bits 25, 26, 27 decodes type of arm
14571 instruction. */
0fa9c223 14572 static const sti_arm_hdl_fp_t arm_handle_insn[8] =
72508ac0
PO
14573 {
14574 arm_record_data_proc_misc_ld_str, /* 000. */
14575 arm_record_data_proc_imm, /* 001. */
14576 arm_record_ld_st_imm_offset, /* 010. */
14577 arm_record_ld_st_reg_offset, /* 011. */
14578 arm_record_ld_st_multiple, /* 100. */
14579 arm_record_b_bl, /* 101. */
60cc5e93 14580 arm_record_asimd_vfp_coproc, /* 110. */
72508ac0
PO
14581 arm_record_coproc_data_proc /* 111. */
14582 };
14583
01e57735
YQ
14584 /* (Starting from numerical 0); bits 13,14,15 decodes type of thumb
14585 instruction. */
0fa9c223 14586 static const sti_arm_hdl_fp_t thumb_handle_insn[8] =
72508ac0
PO
14587 { \
14588 thumb_record_shift_add_sub, /* 000. */
14589 thumb_record_add_sub_cmp_mov, /* 001. */
14590 thumb_record_ld_st_reg_offset, /* 010. */
14591 thumb_record_ld_st_imm_offset, /* 011. */
14592 thumb_record_ld_st_stack, /* 100. */
14593 thumb_record_misc, /* 101. */
14594 thumb_record_ldm_stm_swi, /* 110. */
14595 thumb_record_branch /* 111. */
14596 };
14597
14598 uint32_t ret = 0; /* return value: negative:failure 0:success. */
14599 uint32_t insn_id = 0;
0833fb8f
LM
14600 enum bfd_endian code_endian
14601 = gdbarch_byte_order_for_code (arm_record->gdbarch);
14602 arm_record->arm_insn
14603 = reader.read (arm_record->this_addr, insn_size, code_endian);
72508ac0 14604
0833fb8f 14605 if (ARM_RECORD == record_type)
72508ac0
PO
14606 {
14607 arm_record->cond = bits (arm_record->arm_insn, 28, 31);
14608 insn_id = bits (arm_record->arm_insn, 25, 27);
ca92db2d
YQ
14609
14610 if (arm_record->cond == 0xf)
14611 ret = arm_record_extension_space (arm_record);
14612 else
01e57735 14613 {
ca92db2d
YQ
14614 /* If this insn has fallen into extension space
14615 then we need not decode it anymore. */
01e57735
YQ
14616 ret = arm_handle_insn[insn_id] (arm_record);
14617 }
ca92db2d
YQ
14618 if (ret != ARM_RECORD_SUCCESS)
14619 {
14620 arm_record_unsupported_insn (arm_record);
14621 ret = -1;
14622 }
72508ac0
PO
14623 }
14624 else if (THUMB_RECORD == record_type)
14625 {
14626 /* As thumb does not have condition codes, we set negative. */
14627 arm_record->cond = -1;
14628 insn_id = bits (arm_record->arm_insn, 13, 15);
14629 ret = thumb_handle_insn[insn_id] (arm_record);
ca92db2d
YQ
14630 if (ret != ARM_RECORD_SUCCESS)
14631 {
14632 arm_record_unsupported_insn (arm_record);
14633 ret = -1;
14634 }
72508ac0
PO
14635 }
14636 else if (THUMB2_RECORD == record_type)
14637 {
c6ec2b30
OJ
14638 /* As thumb does not have condition codes, we set negative. */
14639 arm_record->cond = -1;
14640
14641 /* Swap first half of 32bit thumb instruction with second half. */
14642 arm_record->arm_insn
01e57735 14643 = (arm_record->arm_insn >> 16) | (arm_record->arm_insn << 16);
c6ec2b30 14644
ca92db2d 14645 ret = thumb2_record_decode_insn_handler (arm_record);
c6ec2b30 14646
ca92db2d 14647 if (ret != ARM_RECORD_SUCCESS)
01e57735
YQ
14648 {
14649 arm_record_unsupported_insn (arm_record);
14650 ret = -1;
14651 }
72508ac0
PO
14652 }
14653 else
14654 {
14655 /* Throw assertion. */
14656 gdb_assert_not_reached ("not a valid instruction, could not decode");
14657 }
14658
14659 return ret;
14660}
14661
b121eeb9
YQ
14662#if GDB_SELF_TEST
14663namespace selftests {
14664
0833fb8f
LM
14665/* Instruction reader class for selftests.
14666
14667 For 16-bit Thumb instructions, an array of uint16_t should be used.
b121eeb9 14668
0833fb8f
LM
14669 For 32-bit Thumb instructions and regular 32-bit Arm instructions, an array
14670 of uint32_t should be used. */
14671
14672template<typename T>
14673class instruction_reader_selftest : public abstract_instruction_reader
b121eeb9
YQ
14674{
14675public:
14676 template<size_t SIZE>
0833fb8f
LM
14677 instruction_reader_selftest (const T (&insns)[SIZE])
14678 : m_insns (insns), m_insns_size (SIZE)
b121eeb9
YQ
14679 {}
14680
0833fb8f
LM
14681 ULONGEST read (CORE_ADDR memaddr, const size_t length,
14682 enum bfd_endian byte_order) override
b121eeb9 14683 {
0833fb8f
LM
14684 SELF_CHECK (length == sizeof (T));
14685 SELF_CHECK (memaddr % sizeof (T) == 0);
14686 SELF_CHECK ((memaddr / sizeof (T)) < m_insns_size);
b121eeb9 14687
0833fb8f 14688 return m_insns[memaddr / sizeof (T)];
b121eeb9
YQ
14689 }
14690
14691private:
0833fb8f
LM
14692 const T *m_insns;
14693 const size_t m_insns_size;
b121eeb9
YQ
14694};
14695
14696static void
14697arm_record_test (void)
14698{
14699 struct gdbarch_info info;
b121eeb9
YQ
14700 info.bfd_arch_info = bfd_scan_arch ("arm");
14701
14702 struct gdbarch *gdbarch = gdbarch_find_by_info (info);
14703
14704 SELF_CHECK (gdbarch != NULL);
14705
14706 /* 16-bit Thumb instructions. */
14707 {
4748a9be 14708 arm_insn_decode_record arm_record;
b121eeb9 14709
4748a9be 14710 memset (&arm_record, 0, sizeof (arm_insn_decode_record));
b121eeb9
YQ
14711 arm_record.gdbarch = gdbarch;
14712
0833fb8f
LM
14713 /* Use the endian-free representation of the instructions here. The test
14714 will handle endianness conversions. */
b121eeb9
YQ
14715 static const uint16_t insns[] = {
14716 /* db b2 uxtb r3, r3 */
14717 0xb2db,
14718 /* cd 58 ldr r5, [r1, r3] */
14719 0x58cd,
14720 };
14721
0833fb8f 14722 instruction_reader_selftest<uint16_t> reader (insns);
b121eeb9
YQ
14723 int ret = decode_insn (reader, &arm_record, THUMB_RECORD,
14724 THUMB_INSN_SIZE_BYTES);
14725
14726 SELF_CHECK (ret == 0);
14727 SELF_CHECK (arm_record.mem_rec_count == 0);
14728 SELF_CHECK (arm_record.reg_rec_count == 1);
14729 SELF_CHECK (arm_record.arm_regs[0] == 3);
14730
14731 arm_record.this_addr += 2;
14732 ret = decode_insn (reader, &arm_record, THUMB_RECORD,
14733 THUMB_INSN_SIZE_BYTES);
14734
14735 SELF_CHECK (ret == 0);
14736 SELF_CHECK (arm_record.mem_rec_count == 0);
14737 SELF_CHECK (arm_record.reg_rec_count == 1);
14738 SELF_CHECK (arm_record.arm_regs[0] == 5);
14739 }
14740
14741 /* 32-bit Thumb-2 instructions. */
14742 {
4748a9be 14743 arm_insn_decode_record arm_record;
b121eeb9 14744
4748a9be 14745 memset (&arm_record, 0, sizeof (arm_insn_decode_record));
b121eeb9
YQ
14746 arm_record.gdbarch = gdbarch;
14747
0833fb8f
LM
14748 /* Use the endian-free representation of the instruction here. The test
14749 will handle endianness conversions. */
14750 static const uint32_t insns[] = {
14751 /* mrc 15, 0, r7, cr13, cr0, {3} */
14752 0x7f70ee1d,
b121eeb9
YQ
14753 };
14754
0833fb8f 14755 instruction_reader_selftest<uint32_t> reader (insns);
b121eeb9
YQ
14756 int ret = decode_insn (reader, &arm_record, THUMB2_RECORD,
14757 THUMB2_INSN_SIZE_BYTES);
14758
14759 SELF_CHECK (ret == 0);
14760 SELF_CHECK (arm_record.mem_rec_count == 0);
14761 SELF_CHECK (arm_record.reg_rec_count == 1);
14762 SELF_CHECK (arm_record.arm_regs[0] == 7);
14763 }
0833fb8f
LM
14764
14765 /* 32-bit instructions. */
14766 {
14767 arm_insn_decode_record arm_record;
14768
14769 memset (&arm_record, 0, sizeof (arm_insn_decode_record));
14770 arm_record.gdbarch = gdbarch;
14771
14772 /* Use the endian-free representation of the instruction here. The test
14773 will handle endianness conversions. */
14774 static const uint32_t insns[] = {
14775 /* mov r5, r0 */
14776 0xe1a05000,
14777 };
14778
14779 instruction_reader_selftest<uint32_t> reader (insns);
14780 int ret = decode_insn (reader, &arm_record, ARM_RECORD,
14781 ARM_INSN_SIZE_BYTES);
14782
14783 SELF_CHECK (ret == 0);
14784 }
b121eeb9 14785}
9ecab40c
SM
14786
14787/* Instruction reader from manually cooked instruction sequences. */
14788
14789class test_arm_instruction_reader : public arm_instruction_reader
14790{
14791public:
14792 explicit test_arm_instruction_reader (gdb::array_view<const uint32_t> insns)
14793 : m_insns (insns)
14794 {}
14795
14796 uint32_t read (CORE_ADDR memaddr, enum bfd_endian byte_order) const override
14797 {
14798 SELF_CHECK (memaddr % 4 == 0);
14799 SELF_CHECK (memaddr / 4 < m_insns.size ());
14800
14801 return m_insns[memaddr / 4];
14802 }
14803
14804private:
14805 const gdb::array_view<const uint32_t> m_insns;
14806};
14807
14808static void
14809arm_analyze_prologue_test ()
14810{
14811 for (bfd_endian endianness : {BFD_ENDIAN_LITTLE, BFD_ENDIAN_BIG})
14812 {
14813 struct gdbarch_info info;
9ecab40c
SM
14814 info.byte_order = endianness;
14815 info.byte_order_for_code = endianness;
14816 info.bfd_arch_info = bfd_scan_arch ("arm");
14817
14818 struct gdbarch *gdbarch = gdbarch_find_by_info (info);
14819
14820 SELF_CHECK (gdbarch != NULL);
14821
14822 /* The "sub" instruction contains an immediate value rotate count of 0,
14823 which resulted in a 32-bit shift of a 32-bit value, caught by
14824 UBSan. */
14825 const uint32_t insns[] = {
14826 0xe92d4ff0, /* push {r4, r5, r6, r7, r8, r9, sl, fp, lr} */
14827 0xe1a05000, /* mov r5, r0 */
14828 0xe5903020, /* ldr r3, [r0, #32] */
14829 0xe24dd044, /* sub sp, sp, #68 ; 0x44 */
14830 };
14831
14832 test_arm_instruction_reader mem_reader (insns);
14833 arm_prologue_cache cache;
0824193f 14834 arm_cache_init (&cache, gdbarch);
9ecab40c
SM
14835
14836 arm_analyze_prologue (gdbarch, 0, sizeof (insns) - 1, &cache, mem_reader);
14837 }
14838}
14839
b121eeb9
YQ
14840} // namespace selftests
14841#endif /* GDB_SELF_TEST */
72508ac0
PO
14842
14843/* Cleans up local record registers and memory allocations. */
14844
14845static void
4748a9be 14846deallocate_reg_mem (arm_insn_decode_record *record)
72508ac0
PO
14847{
14848 xfree (record->arm_regs);
14849 xfree (record->arm_mems);
14850}
14851
14852
01e57735 14853/* Parse the current instruction and record the values of the registers and
72508ac0
PO
14854 memory that will be changed in current instruction to record_arch_list".
14855 Return -1 if something is wrong. */
14856
14857int
01e57735
YQ
14858arm_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
14859 CORE_ADDR insn_addr)
72508ac0
PO
14860{
14861
72508ac0
PO
14862 uint32_t no_of_rec = 0;
14863 uint32_t ret = 0; /* return value: -1:record failure ; 0:success */
14864 ULONGEST t_bit = 0, insn_id = 0;
14865
14866 ULONGEST u_regval = 0;
14867
4748a9be 14868 arm_insn_decode_record arm_record;
72508ac0 14869
4748a9be 14870 memset (&arm_record, 0, sizeof (arm_insn_decode_record));
72508ac0
PO
14871 arm_record.regcache = regcache;
14872 arm_record.this_addr = insn_addr;
14873 arm_record.gdbarch = gdbarch;
14874
14875
14876 if (record_debug > 1)
14877 {
6cb06a8c
TT
14878 gdb_printf (gdb_stdlog, "Process record: arm_process_record "
14879 "addr = %s\n",
14880 paddress (gdbarch, arm_record.this_addr));
72508ac0
PO
14881 }
14882
728a7913 14883 instruction_reader reader;
0833fb8f
LM
14884 enum bfd_endian code_endian
14885 = gdbarch_byte_order_for_code (arm_record.gdbarch);
14886 arm_record.arm_insn
14887 = reader.read (arm_record.this_addr, 2, code_endian);
72508ac0
PO
14888
14889 /* Check the insn, whether it is thumb or arm one. */
14890
14891 t_bit = arm_psr_thumb_bit (arm_record.gdbarch);
14892 regcache_raw_read_unsigned (arm_record.regcache, ARM_PS_REGNUM, &u_regval);
14893
14894
14895 if (!(u_regval & t_bit))
14896 {
14897 /* We are decoding arm insn. */
728a7913 14898 ret = decode_insn (reader, &arm_record, ARM_RECORD, ARM_INSN_SIZE_BYTES);
72508ac0
PO
14899 }
14900 else
14901 {
14902 insn_id = bits (arm_record.arm_insn, 11, 15);
14903 /* is it thumb2 insn? */
14904 if ((0x1D == insn_id) || (0x1E == insn_id) || (0x1F == insn_id))
01e57735 14905 {
728a7913 14906 ret = decode_insn (reader, &arm_record, THUMB2_RECORD,
01e57735
YQ
14907 THUMB2_INSN_SIZE_BYTES);
14908 }
72508ac0 14909 else
01e57735
YQ
14910 {
14911 /* We are decoding thumb insn. */
728a7913
YQ
14912 ret = decode_insn (reader, &arm_record, THUMB_RECORD,
14913 THUMB_INSN_SIZE_BYTES);
01e57735 14914 }
72508ac0
PO
14915 }
14916
14917 if (0 == ret)
14918 {
14919 /* Record registers. */
25ea693b 14920 record_full_arch_list_add_reg (arm_record.regcache, ARM_PC_REGNUM);
72508ac0 14921 if (arm_record.arm_regs)
01e57735
YQ
14922 {
14923 for (no_of_rec = 0; no_of_rec < arm_record.reg_rec_count; no_of_rec++)
14924 {
14925 if (record_full_arch_list_add_reg
25ea693b 14926 (arm_record.regcache , arm_record.arm_regs[no_of_rec]))
01e57735
YQ
14927 ret = -1;
14928 }
14929 }
72508ac0
PO
14930 /* Record memories. */
14931 if (arm_record.arm_mems)
01e57735
YQ
14932 {
14933 for (no_of_rec = 0; no_of_rec < arm_record.mem_rec_count; no_of_rec++)
14934 {
14935 if (record_full_arch_list_add_mem
14936 ((CORE_ADDR)arm_record.arm_mems[no_of_rec].addr,
25ea693b 14937 arm_record.arm_mems[no_of_rec].len))
01e57735
YQ
14938 ret = -1;
14939 }
14940 }
72508ac0 14941
25ea693b 14942 if (record_full_arch_list_add_end ())
01e57735 14943 ret = -1;
72508ac0
PO
14944 }
14945
14946
14947 deallocate_reg_mem (&arm_record);
14948
14949 return ret;
14950}
d105cce5
AH
14951
14952/* See arm-tdep.h. */
14953
14954const target_desc *
92d48a1e 14955arm_read_description (arm_fp_type fp_type, bool tls)
d105cce5 14956{
92d48a1e 14957 struct target_desc *tdesc = tdesc_arm_list[fp_type][tls];
d105cce5
AH
14958
14959 if (tdesc == nullptr)
14960 {
92d48a1e
JB
14961 tdesc = arm_create_target_description (fp_type, tls);
14962 tdesc_arm_list[fp_type][tls] = tdesc;
d105cce5
AH
14963 }
14964
14965 return tdesc;
14966}
14967
14968/* See arm-tdep.h. */
14969
14970const target_desc *
14971arm_read_mprofile_description (arm_m_profile_type m_type)
14972{
14973 struct target_desc *tdesc = tdesc_arm_mprofile_list[m_type];
14974
14975 if (tdesc == nullptr)
14976 {
14977 tdesc = arm_create_mprofile_target_description (m_type);
14978 tdesc_arm_mprofile_list[m_type] = tdesc;
14979 }
14980
14981 return tdesc;
14982}