]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/arm-tdep.c
*** empty log message ***
[thirdparty/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
0fd88904 2
6aba47ca 3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
7b6bb8da 4 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
9b254dd1 5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 21
0963b4bd 22#include <ctype.h> /* XXX for isupper (). */
34e8f22d 23
c906108c
SS
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcmd.h"
28#include "gdbcore.h"
c906108c 29#include "gdb_string.h"
0963b4bd 30#include "dis-asm.h" /* For register styles. */
4e052eda 31#include "regcache.h"
54483882 32#include "reggroups.h"
d16aafd8 33#include "doublest.h"
fd0407d6 34#include "value.h"
34e8f22d 35#include "arch-utils.h"
4be87837 36#include "osabi.h"
eb5492fa
DJ
37#include "frame-unwind.h"
38#include "frame-base.h"
39#include "trad-frame.h"
842e1f1e
DJ
40#include "objfiles.h"
41#include "dwarf2-frame.h"
e4c16157 42#include "gdbtypes.h"
29d73ae4 43#include "prologue-value.h"
123dc839
DJ
44#include "target-descriptions.h"
45#include "user-regs.h"
0e9e9abd 46#include "observer.h"
34e8f22d
RE
47
48#include "arm-tdep.h"
26216b98 49#include "gdb/sim-arm.h"
34e8f22d 50
082fc60d
RE
51#include "elf-bfd.h"
52#include "coff/internal.h"
97e03143 53#include "elf/arm.h"
c906108c 54
26216b98 55#include "gdb_assert.h"
60c5725c 56#include "vec.h"
26216b98 57
9779414d
DJ
58#include "features/arm-with-m.c"
59
6529d2dd
AC
60static int arm_debug;
61
082fc60d
RE
62/* Macros for setting and testing a bit in a minimal symbol that marks
63 it as Thumb function. The MSB of the minimal symbol's "info" field
f594e5e9 64 is used for this purpose.
082fc60d
RE
65
66 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
f594e5e9 67 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
082fc60d 68
0963b4bd 69#define MSYMBOL_SET_SPECIAL(msym) \
b887350f 70 MSYMBOL_TARGET_FLAG_1 (msym) = 1
082fc60d
RE
71
72#define MSYMBOL_IS_SPECIAL(msym) \
b887350f 73 MSYMBOL_TARGET_FLAG_1 (msym)
082fc60d 74
60c5725c
DJ
75/* Per-objfile data used for mapping symbols. */
76static const struct objfile_data *arm_objfile_data_key;
77
78struct arm_mapping_symbol
79{
80 bfd_vma value;
81 char type;
82};
83typedef struct arm_mapping_symbol arm_mapping_symbol_s;
84DEF_VEC_O(arm_mapping_symbol_s);
85
86struct arm_per_objfile
87{
88 VEC(arm_mapping_symbol_s) **section_maps;
89};
90
afd7eef0
RE
91/* The list of available "set arm ..." and "show arm ..." commands. */
92static struct cmd_list_element *setarmcmdlist = NULL;
93static struct cmd_list_element *showarmcmdlist = NULL;
94
fd50bc42
RE
95/* The type of floating-point to use. Keep this in sync with enum
96 arm_float_model, and the help string in _initialize_arm_tdep. */
97static const char *fp_model_strings[] =
98{
99 "auto",
100 "softfpa",
101 "fpa",
102 "softvfp",
28e97307
DJ
103 "vfp",
104 NULL
fd50bc42
RE
105};
106
107/* A variable that can be configured by the user. */
108static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
109static const char *current_fp_model = "auto";
110
28e97307
DJ
111/* The ABI to use. Keep this in sync with arm_abi_kind. */
112static const char *arm_abi_strings[] =
113{
114 "auto",
115 "APCS",
116 "AAPCS",
117 NULL
118};
119
120/* A variable that can be configured by the user. */
121static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
122static const char *arm_abi_string = "auto";
123
0428b8f5
DJ
124/* The execution mode to assume. */
125static const char *arm_mode_strings[] =
126 {
127 "auto",
128 "arm",
68770265
MGD
129 "thumb",
130 NULL
0428b8f5
DJ
131 };
132
133static const char *arm_fallback_mode_string = "auto";
134static const char *arm_force_mode_string = "auto";
135
94c30b78 136/* Number of different reg name sets (options). */
afd7eef0 137static int num_disassembly_options;
bc90b915 138
f32bf4a4
YQ
139/* The standard register names, and all the valid aliases for them. Note
140 that `fp', `sp' and `pc' are not added in this alias list, because they
141 have been added as builtin user registers in
142 std-regs.c:_initialize_frame_reg. */
123dc839
DJ
143static const struct
144{
145 const char *name;
146 int regnum;
147} arm_register_aliases[] = {
148 /* Basic register numbers. */
149 { "r0", 0 },
150 { "r1", 1 },
151 { "r2", 2 },
152 { "r3", 3 },
153 { "r4", 4 },
154 { "r5", 5 },
155 { "r6", 6 },
156 { "r7", 7 },
157 { "r8", 8 },
158 { "r9", 9 },
159 { "r10", 10 },
160 { "r11", 11 },
161 { "r12", 12 },
162 { "r13", 13 },
163 { "r14", 14 },
164 { "r15", 15 },
165 /* Synonyms (argument and variable registers). */
166 { "a1", 0 },
167 { "a2", 1 },
168 { "a3", 2 },
169 { "a4", 3 },
170 { "v1", 4 },
171 { "v2", 5 },
172 { "v3", 6 },
173 { "v4", 7 },
174 { "v5", 8 },
175 { "v6", 9 },
176 { "v7", 10 },
177 { "v8", 11 },
178 /* Other platform-specific names for r9. */
179 { "sb", 9 },
180 { "tr", 9 },
181 /* Special names. */
182 { "ip", 12 },
123dc839 183 { "lr", 14 },
123dc839
DJ
184 /* Names used by GCC (not listed in the ARM EABI). */
185 { "sl", 10 },
123dc839
DJ
186 /* A special name from the older ATPCS. */
187 { "wr", 7 },
188};
bc90b915 189
123dc839 190static const char *const arm_register_names[] =
da59e081
JM
191{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
192 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
193 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
194 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
195 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
196 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 197 "fps", "cpsr" }; /* 24 25 */
ed9a39eb 198
afd7eef0
RE
199/* Valid register name styles. */
200static const char **valid_disassembly_styles;
ed9a39eb 201
afd7eef0
RE
202/* Disassembly style to use. Default to "std" register names. */
203static const char *disassembly_style;
96baa820 204
ed9a39eb 205/* This is used to keep the bfd arch_info in sync with the disassembly
afd7eef0
RE
206 style. */
207static void set_disassembly_style_sfunc(char *, int,
ed9a39eb 208 struct cmd_list_element *);
afd7eef0 209static void set_disassembly_style (void);
ed9a39eb 210
b508a996 211static void convert_from_extended (const struct floatformat *, const void *,
be8626e0 212 void *, int);
b508a996 213static void convert_to_extended (const struct floatformat *, void *,
be8626e0 214 const void *, int);
ed9a39eb 215
58d6951d
DJ
216static void arm_neon_quad_read (struct gdbarch *gdbarch,
217 struct regcache *regcache,
218 int regnum, gdb_byte *buf);
219static void arm_neon_quad_write (struct gdbarch *gdbarch,
220 struct regcache *regcache,
221 int regnum, const gdb_byte *buf);
222
9b8d791a 223struct arm_prologue_cache
c3b4394c 224{
eb5492fa
DJ
225 /* The stack pointer at the time this frame was created; i.e. the
226 caller's stack pointer when this function was called. It is used
227 to identify this frame. */
228 CORE_ADDR prev_sp;
229
4be43953
DJ
230 /* The frame base for this frame is just prev_sp - frame size.
231 FRAMESIZE is the distance from the frame pointer to the
232 initial stack pointer. */
eb5492fa 233
c3b4394c 234 int framesize;
eb5492fa
DJ
235
236 /* The register used to hold the frame pointer for this frame. */
c3b4394c 237 int framereg;
eb5492fa
DJ
238
239 /* Saved register offsets. */
240 struct trad_frame_saved_reg *saved_regs;
c3b4394c 241};
ed9a39eb 242
0d39a070
DJ
243static CORE_ADDR arm_analyze_prologue (struct gdbarch *gdbarch,
244 CORE_ADDR prologue_start,
245 CORE_ADDR prologue_end,
246 struct arm_prologue_cache *cache);
247
cca44b1b
JB
248/* Architecture version for displaced stepping. This effects the behaviour of
249 certain instructions, and really should not be hard-wired. */
250
251#define DISPLACED_STEPPING_ARCH_VERSION 5
252
bc90b915
FN
253/* Addresses for calling Thumb functions have the bit 0 set.
254 Here are some macros to test, set, or clear bit 0 of addresses. */
255#define IS_THUMB_ADDR(addr) ((addr) & 1)
256#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
257#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
258
94c30b78 259/* Set to true if the 32-bit mode is in use. */
c906108c
SS
260
261int arm_apcs_32 = 1;
262
9779414d
DJ
263/* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode. */
264
478fd957 265int
9779414d
DJ
266arm_psr_thumb_bit (struct gdbarch *gdbarch)
267{
268 if (gdbarch_tdep (gdbarch)->is_m)
269 return XPSR_T;
270 else
271 return CPSR_T;
272}
273
b39cc962
DJ
274/* Determine if FRAME is executing in Thumb mode. */
275
25b41d01 276int
b39cc962
DJ
277arm_frame_is_thumb (struct frame_info *frame)
278{
279 CORE_ADDR cpsr;
9779414d 280 ULONGEST t_bit = arm_psr_thumb_bit (get_frame_arch (frame));
b39cc962
DJ
281
282 /* Every ARM frame unwinder can unwind the T bit of the CPSR, either
283 directly (from a signal frame or dummy frame) or by interpreting
284 the saved LR (from a prologue or DWARF frame). So consult it and
285 trust the unwinders. */
286 cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
287
9779414d 288 return (cpsr & t_bit) != 0;
b39cc962
DJ
289}
290
60c5725c
DJ
291/* Callback for VEC_lower_bound. */
292
293static inline int
294arm_compare_mapping_symbols (const struct arm_mapping_symbol *lhs,
295 const struct arm_mapping_symbol *rhs)
296{
297 return lhs->value < rhs->value;
298}
299
f9d67f43
DJ
300/* Search for the mapping symbol covering MEMADDR. If one is found,
301 return its type. Otherwise, return 0. If START is non-NULL,
302 set *START to the location of the mapping symbol. */
c906108c 303
f9d67f43
DJ
304static char
305arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start)
c906108c 306{
60c5725c 307 struct obj_section *sec;
0428b8f5 308
60c5725c
DJ
309 /* If there are mapping symbols, consult them. */
310 sec = find_pc_section (memaddr);
311 if (sec != NULL)
312 {
313 struct arm_per_objfile *data;
314 VEC(arm_mapping_symbol_s) *map;
aded6f54
PA
315 struct arm_mapping_symbol map_key = { memaddr - obj_section_addr (sec),
316 0 };
60c5725c
DJ
317 unsigned int idx;
318
319 data = objfile_data (sec->objfile, arm_objfile_data_key);
320 if (data != NULL)
321 {
322 map = data->section_maps[sec->the_bfd_section->index];
323 if (!VEC_empty (arm_mapping_symbol_s, map))
324 {
325 struct arm_mapping_symbol *map_sym;
326
327 idx = VEC_lower_bound (arm_mapping_symbol_s, map, &map_key,
328 arm_compare_mapping_symbols);
329
330 /* VEC_lower_bound finds the earliest ordered insertion
331 point. If the following symbol starts at this exact
332 address, we use that; otherwise, the preceding
333 mapping symbol covers this address. */
334 if (idx < VEC_length (arm_mapping_symbol_s, map))
335 {
336 map_sym = VEC_index (arm_mapping_symbol_s, map, idx);
337 if (map_sym->value == map_key.value)
f9d67f43
DJ
338 {
339 if (start)
340 *start = map_sym->value + obj_section_addr (sec);
341 return map_sym->type;
342 }
60c5725c
DJ
343 }
344
345 if (idx > 0)
346 {
347 map_sym = VEC_index (arm_mapping_symbol_s, map, idx - 1);
f9d67f43
DJ
348 if (start)
349 *start = map_sym->value + obj_section_addr (sec);
350 return map_sym->type;
60c5725c
DJ
351 }
352 }
353 }
354 }
355
f9d67f43
DJ
356 return 0;
357}
358
50e98be4
DJ
359static CORE_ADDR arm_get_next_pc_raw (struct frame_info *frame,
360 CORE_ADDR pc, int insert_bkpt);
361
f9d67f43
DJ
362/* Determine if the program counter specified in MEMADDR is in a Thumb
363 function. This function should be called for addresses unrelated to
364 any executing frame; otherwise, prefer arm_frame_is_thumb. */
365
e3039479 366int
9779414d 367arm_pc_is_thumb (struct gdbarch *gdbarch, CORE_ADDR memaddr)
f9d67f43
DJ
368{
369 struct obj_section *sec;
370 struct minimal_symbol *sym;
371 char type;
a42244db
YQ
372 struct displaced_step_closure* dsc
373 = get_displaced_step_closure_by_addr(memaddr);
374
375 /* If checking the mode of displaced instruction in copy area, the mode
376 should be determined by instruction on the original address. */
377 if (dsc)
378 {
379 if (debug_displaced)
380 fprintf_unfiltered (gdb_stdlog,
381 "displaced: check mode of %.8lx instead of %.8lx\n",
382 (unsigned long) dsc->insn_addr,
383 (unsigned long) memaddr);
384 memaddr = dsc->insn_addr;
385 }
f9d67f43
DJ
386
387 /* If bit 0 of the address is set, assume this is a Thumb address. */
388 if (IS_THUMB_ADDR (memaddr))
389 return 1;
390
391 /* If the user wants to override the symbol table, let him. */
392 if (strcmp (arm_force_mode_string, "arm") == 0)
393 return 0;
394 if (strcmp (arm_force_mode_string, "thumb") == 0)
395 return 1;
396
9779414d
DJ
397 /* ARM v6-M and v7-M are always in Thumb mode. */
398 if (gdbarch_tdep (gdbarch)->is_m)
399 return 1;
400
f9d67f43
DJ
401 /* If there are mapping symbols, consult them. */
402 type = arm_find_mapping_symbol (memaddr, NULL);
403 if (type)
404 return type == 't';
405
ed9a39eb 406 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c
SS
407 sym = lookup_minimal_symbol_by_pc (memaddr);
408 if (sym)
0428b8f5
DJ
409 return (MSYMBOL_IS_SPECIAL (sym));
410
411 /* If the user wants to override the fallback mode, let them. */
412 if (strcmp (arm_fallback_mode_string, "arm") == 0)
413 return 0;
414 if (strcmp (arm_fallback_mode_string, "thumb") == 0)
415 return 1;
416
417 /* If we couldn't find any symbol, but we're talking to a running
418 target, then trust the current value of $cpsr. This lets
419 "display/i $pc" always show the correct mode (though if there is
420 a symbol table we will not reach here, so it still may not be
50e98be4
DJ
421 displayed in the mode it will be executed).
422
423 As a further heuristic if we detect that we are doing a single-step we
424 see what state executing the current instruction ends up with us being
425 in. */
0428b8f5 426 if (target_has_registers)
50e98be4
DJ
427 {
428 struct frame_info *current_frame = get_current_frame ();
429 CORE_ADDR current_pc = get_frame_pc (current_frame);
430 int is_thumb = arm_frame_is_thumb (current_frame);
431 CORE_ADDR next_pc;
432 if (memaddr == current_pc)
433 return is_thumb;
434 else
435 {
436 struct gdbarch *gdbarch = get_frame_arch (current_frame);
437 next_pc = arm_get_next_pc_raw (current_frame, current_pc, FALSE);
438 if (memaddr == gdbarch_addr_bits_remove (gdbarch, next_pc))
439 return IS_THUMB_ADDR (next_pc);
440 else
441 return is_thumb;
442 }
443 }
0428b8f5
DJ
444
445 /* Otherwise we're out of luck; we assume ARM. */
446 return 0;
c906108c
SS
447}
448
181c1381 449/* Remove useless bits from addresses in a running program. */
34e8f22d 450static CORE_ADDR
24568a2c 451arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val)
c906108c 452{
a3a2ee65 453 if (arm_apcs_32)
dd6be234 454 return UNMAKE_THUMB_ADDR (val);
c906108c 455 else
a3a2ee65 456 return (val & 0x03fffffc);
c906108c
SS
457}
458
181c1381
RE
459/* When reading symbols, we need to zap the low bit of the address,
460 which may be set to 1 for Thumb functions. */
34e8f22d 461static CORE_ADDR
24568a2c 462arm_smash_text_address (struct gdbarch *gdbarch, CORE_ADDR val)
181c1381
RE
463{
464 return val & ~1;
465}
466
0d39a070 467/* Return 1 if PC is the start of a compiler helper function which
e0634ccf
UW
468 can be safely ignored during prologue skipping. IS_THUMB is true
469 if the function is known to be a Thumb function due to the way it
470 is being called. */
0d39a070 471static int
e0634ccf 472skip_prologue_function (struct gdbarch *gdbarch, CORE_ADDR pc, int is_thumb)
0d39a070 473{
e0634ccf 474 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
0d39a070 475 struct minimal_symbol *msym;
0d39a070
DJ
476
477 msym = lookup_minimal_symbol_by_pc (pc);
e0634ccf
UW
478 if (msym != NULL
479 && SYMBOL_VALUE_ADDRESS (msym) == pc
480 && SYMBOL_LINKAGE_NAME (msym) != NULL)
481 {
482 const char *name = SYMBOL_LINKAGE_NAME (msym);
0d39a070 483
e0634ccf
UW
484 /* The GNU linker's Thumb call stub to foo is named
485 __foo_from_thumb. */
486 if (strstr (name, "_from_thumb") != NULL)
487 name += 2;
0d39a070 488
e0634ccf
UW
489 /* On soft-float targets, __truncdfsf2 is called to convert promoted
490 arguments to their argument types in non-prototyped
491 functions. */
492 if (strncmp (name, "__truncdfsf2", strlen ("__truncdfsf2")) == 0)
493 return 1;
494 if (strncmp (name, "__aeabi_d2f", strlen ("__aeabi_d2f")) == 0)
495 return 1;
0d39a070 496
e0634ccf
UW
497 /* Internal functions related to thread-local storage. */
498 if (strncmp (name, "__tls_get_addr", strlen ("__tls_get_addr")) == 0)
499 return 1;
500 if (strncmp (name, "__aeabi_read_tp", strlen ("__aeabi_read_tp")) == 0)
501 return 1;
502 }
503 else
504 {
505 /* If we run against a stripped glibc, we may be unable to identify
506 special functions by name. Check for one important case,
507 __aeabi_read_tp, by comparing the *code* against the default
508 implementation (this is hand-written ARM assembler in glibc). */
509
510 if (!is_thumb
511 && read_memory_unsigned_integer (pc, 4, byte_order_for_code)
512 == 0xe3e00a0f /* mov r0, #0xffff0fff */
513 && read_memory_unsigned_integer (pc + 4, 4, byte_order_for_code)
514 == 0xe240f01f) /* sub pc, r0, #31 */
515 return 1;
516 }
ec3d575a 517
0d39a070
DJ
518 return 0;
519}
520
521/* Support routines for instruction parsing. */
522#define submask(x) ((1L << ((x) + 1)) - 1)
523#define bit(obj,st) (((obj) >> (st)) & 1)
524#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
525#define sbits(obj,st,fn) \
526 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
527#define BranchDest(addr,instr) \
528 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
529
621c6d5b
YQ
530/* Extract the immediate from instruction movw/movt of encoding T. INSN1 is
531 the first 16-bit of instruction, and INSN2 is the second 16-bit of
532 instruction. */
533#define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \
534 ((bits ((insn1), 0, 3) << 12) \
535 | (bits ((insn1), 10, 10) << 11) \
536 | (bits ((insn2), 12, 14) << 8) \
537 | bits ((insn2), 0, 7))
538
539/* Extract the immediate from instruction movw/movt of encoding A. INSN is
540 the 32-bit instruction. */
541#define EXTRACT_MOVW_MOVT_IMM_A(insn) \
542 ((bits ((insn), 16, 19) << 12) \
543 | bits ((insn), 0, 11))
544
ec3d575a
UW
545/* Decode immediate value; implements ThumbExpandImmediate pseudo-op. */
546
547static unsigned int
548thumb_expand_immediate (unsigned int imm)
549{
550 unsigned int count = imm >> 7;
551
552 if (count < 8)
553 switch (count / 2)
554 {
555 case 0:
556 return imm & 0xff;
557 case 1:
558 return (imm & 0xff) | ((imm & 0xff) << 16);
559 case 2:
560 return ((imm & 0xff) << 8) | ((imm & 0xff) << 24);
561 case 3:
562 return (imm & 0xff) | ((imm & 0xff) << 8)
563 | ((imm & 0xff) << 16) | ((imm & 0xff) << 24);
564 }
565
566 return (0x80 | (imm & 0x7f)) << (32 - count);
567}
568
569/* Return 1 if the 16-bit Thumb instruction INST might change
570 control flow, 0 otherwise. */
571
572static int
573thumb_instruction_changes_pc (unsigned short inst)
574{
575 if ((inst & 0xff00) == 0xbd00) /* pop {rlist, pc} */
576 return 1;
577
578 if ((inst & 0xf000) == 0xd000) /* conditional branch */
579 return 1;
580
581 if ((inst & 0xf800) == 0xe000) /* unconditional branch */
582 return 1;
583
584 if ((inst & 0xff00) == 0x4700) /* bx REG, blx REG */
585 return 1;
586
ad8b5167
UW
587 if ((inst & 0xff87) == 0x4687) /* mov pc, REG */
588 return 1;
589
ec3d575a
UW
590 if ((inst & 0xf500) == 0xb100) /* CBNZ or CBZ. */
591 return 1;
592
593 return 0;
594}
595
596/* Return 1 if the 32-bit Thumb instruction in INST1 and INST2
597 might change control flow, 0 otherwise. */
598
599static int
600thumb2_instruction_changes_pc (unsigned short inst1, unsigned short inst2)
601{
602 if ((inst1 & 0xf800) == 0xf000 && (inst2 & 0x8000) == 0x8000)
603 {
604 /* Branches and miscellaneous control instructions. */
605
606 if ((inst2 & 0x1000) != 0 || (inst2 & 0xd001) == 0xc000)
607 {
608 /* B, BL, BLX. */
609 return 1;
610 }
611 else if (inst1 == 0xf3de && (inst2 & 0xff00) == 0x3f00)
612 {
613 /* SUBS PC, LR, #imm8. */
614 return 1;
615 }
616 else if ((inst2 & 0xd000) == 0x8000 && (inst1 & 0x0380) != 0x0380)
617 {
618 /* Conditional branch. */
619 return 1;
620 }
621
622 return 0;
623 }
624
625 if ((inst1 & 0xfe50) == 0xe810)
626 {
627 /* Load multiple or RFE. */
628
629 if (bit (inst1, 7) && !bit (inst1, 8))
630 {
631 /* LDMIA or POP */
632 if (bit (inst2, 15))
633 return 1;
634 }
635 else if (!bit (inst1, 7) && bit (inst1, 8))
636 {
637 /* LDMDB */
638 if (bit (inst2, 15))
639 return 1;
640 }
641 else if (bit (inst1, 7) && bit (inst1, 8))
642 {
643 /* RFEIA */
644 return 1;
645 }
646 else if (!bit (inst1, 7) && !bit (inst1, 8))
647 {
648 /* RFEDB */
649 return 1;
650 }
651
652 return 0;
653 }
654
655 if ((inst1 & 0xffef) == 0xea4f && (inst2 & 0xfff0) == 0x0f00)
656 {
657 /* MOV PC or MOVS PC. */
658 return 1;
659 }
660
661 if ((inst1 & 0xff70) == 0xf850 && (inst2 & 0xf000) == 0xf000)
662 {
663 /* LDR PC. */
664 if (bits (inst1, 0, 3) == 15)
665 return 1;
666 if (bit (inst1, 7))
667 return 1;
668 if (bit (inst2, 11))
669 return 1;
670 if ((inst2 & 0x0fc0) == 0x0000)
671 return 1;
672
673 return 0;
674 }
675
676 if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf000)
677 {
678 /* TBB. */
679 return 1;
680 }
681
682 if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf010)
683 {
684 /* TBH. */
685 return 1;
686 }
687
688 return 0;
689}
690
29d73ae4
DJ
691/* Analyze a Thumb prologue, looking for a recognizable stack frame
692 and frame pointer. Scan until we encounter a store that could
0d39a070
DJ
693 clobber the stack frame unexpectedly, or an unknown instruction.
694 Return the last address which is definitely safe to skip for an
695 initial breakpoint. */
c906108c
SS
696
697static CORE_ADDR
29d73ae4
DJ
698thumb_analyze_prologue (struct gdbarch *gdbarch,
699 CORE_ADDR start, CORE_ADDR limit,
700 struct arm_prologue_cache *cache)
c906108c 701{
0d39a070 702 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e17a4113 703 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
29d73ae4
DJ
704 int i;
705 pv_t regs[16];
706 struct pv_area *stack;
707 struct cleanup *back_to;
708 CORE_ADDR offset;
ec3d575a 709 CORE_ADDR unrecognized_pc = 0;
da3c6d4a 710
29d73ae4
DJ
711 for (i = 0; i < 16; i++)
712 regs[i] = pv_register (i, 0);
55f960e1 713 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
29d73ae4
DJ
714 back_to = make_cleanup_free_pv_area (stack);
715
29d73ae4 716 while (start < limit)
c906108c 717 {
29d73ae4
DJ
718 unsigned short insn;
719
e17a4113 720 insn = read_memory_unsigned_integer (start, 2, byte_order_for_code);
9d4fde75 721
94c30b78 722 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 723 {
29d73ae4
DJ
724 int regno;
725 int mask;
4be43953
DJ
726
727 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
728 break;
29d73ae4
DJ
729
730 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
731 whether to save LR (R14). */
732 mask = (insn & 0xff) | ((insn & 0x100) << 6);
733
734 /* Calculate offsets of saved R0-R7 and LR. */
735 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
736 if (mask & (1 << regno))
737 {
29d73ae4
DJ
738 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
739 -4);
740 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
741 }
da59e081 742 }
da3c6d4a
MS
743 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
744 sub sp, #simm */
da59e081 745 {
29d73ae4
DJ
746 offset = (insn & 0x7f) << 2; /* get scaled offset */
747 if (insn & 0x80) /* Check for SUB. */
748 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
749 -offset);
da59e081 750 else
29d73ae4
DJ
751 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
752 offset);
da59e081 753 }
0d39a070
DJ
754 else if ((insn & 0xf800) == 0xa800) /* add Rd, sp, #imm */
755 regs[bits (insn, 8, 10)] = pv_add_constant (regs[ARM_SP_REGNUM],
756 (insn & 0xff) << 2);
757 else if ((insn & 0xfe00) == 0x1c00 /* add Rd, Rn, #imm */
758 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
759 regs[bits (insn, 0, 2)] = pv_add_constant (regs[bits (insn, 3, 5)],
760 bits (insn, 6, 8));
761 else if ((insn & 0xf800) == 0x3000 /* add Rd, #imm */
762 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
763 regs[bits (insn, 8, 10)] = pv_add_constant (regs[bits (insn, 8, 10)],
764 bits (insn, 0, 7));
765 else if ((insn & 0xfe00) == 0x1800 /* add Rd, Rn, Rm */
766 && pv_is_register (regs[bits (insn, 6, 8)], ARM_SP_REGNUM)
767 && pv_is_constant (regs[bits (insn, 3, 5)]))
768 regs[bits (insn, 0, 2)] = pv_add (regs[bits (insn, 3, 5)],
769 regs[bits (insn, 6, 8)]);
770 else if ((insn & 0xff00) == 0x4400 /* add Rd, Rm */
771 && pv_is_constant (regs[bits (insn, 3, 6)]))
772 {
773 int rd = (bit (insn, 7) << 3) + bits (insn, 0, 2);
774 int rm = bits (insn, 3, 6);
775 regs[rd] = pv_add (regs[rd], regs[rm]);
776 }
29d73ae4 777 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
da59e081 778 {
29d73ae4
DJ
779 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
780 int src_reg = (insn & 0x78) >> 3;
781 regs[dst_reg] = regs[src_reg];
da59e081 782 }
29d73ae4 783 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
da59e081 784 {
29d73ae4
DJ
785 /* Handle stores to the stack. Normally pushes are used,
786 but with GCC -mtpcs-frame, there may be other stores
787 in the prologue to create the frame. */
788 int regno = (insn >> 8) & 0x7;
789 pv_t addr;
790
791 offset = (insn & 0xff) << 2;
792 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
793
794 if (pv_area_store_would_trash (stack, addr))
795 break;
796
797 pv_area_store (stack, addr, 4, regs[regno]);
da59e081 798 }
0d39a070
DJ
799 else if ((insn & 0xf800) == 0x6000) /* str rd, [rn, #off] */
800 {
801 int rd = bits (insn, 0, 2);
802 int rn = bits (insn, 3, 5);
803 pv_t addr;
804
805 offset = bits (insn, 6, 10) << 2;
806 addr = pv_add_constant (regs[rn], offset);
807
808 if (pv_area_store_would_trash (stack, addr))
809 break;
810
811 pv_area_store (stack, addr, 4, regs[rd]);
812 }
813 else if (((insn & 0xf800) == 0x7000 /* strb Rd, [Rn, #off] */
814 || (insn & 0xf800) == 0x8000) /* strh Rd, [Rn, #off] */
815 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
816 /* Ignore stores of argument registers to the stack. */
817 ;
818 else if ((insn & 0xf800) == 0xc800 /* ldmia Rn!, { registers } */
819 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
820 /* Ignore block loads from the stack, potentially copying
821 parameters from memory. */
822 ;
823 else if ((insn & 0xf800) == 0x9800 /* ldr Rd, [Rn, #immed] */
824 || ((insn & 0xf800) == 0x6800 /* ldr Rd, [sp, #immed] */
825 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)))
826 /* Similarly ignore single loads from the stack. */
827 ;
828 else if ((insn & 0xffc0) == 0x0000 /* lsls Rd, Rm, #0 */
829 || (insn & 0xffc0) == 0x1c00) /* add Rd, Rn, #0 */
830 /* Skip register copies, i.e. saves to another register
831 instead of the stack. */
832 ;
833 else if ((insn & 0xf800) == 0x2000) /* movs Rd, #imm */
834 /* Recognize constant loads; even with small stacks these are necessary
835 on Thumb. */
836 regs[bits (insn, 8, 10)] = pv_constant (bits (insn, 0, 7));
837 else if ((insn & 0xf800) == 0x4800) /* ldr Rd, [pc, #imm] */
838 {
839 /* Constant pool loads, for the same reason. */
840 unsigned int constant;
841 CORE_ADDR loc;
842
843 loc = start + 4 + bits (insn, 0, 7) * 4;
844 constant = read_memory_unsigned_integer (loc, 4, byte_order);
845 regs[bits (insn, 8, 10)] = pv_constant (constant);
846 }
ec3d575a 847 else if ((insn & 0xe000) == 0xe000)
0d39a070 848 {
0d39a070
DJ
849 unsigned short inst2;
850
851 inst2 = read_memory_unsigned_integer (start + 2, 2,
852 byte_order_for_code);
853
854 if ((insn & 0xf800) == 0xf000 && (inst2 & 0xe800) == 0xe800)
855 {
856 /* BL, BLX. Allow some special function calls when
857 skipping the prologue; GCC generates these before
858 storing arguments to the stack. */
859 CORE_ADDR nextpc;
860 int j1, j2, imm1, imm2;
861
862 imm1 = sbits (insn, 0, 10);
863 imm2 = bits (inst2, 0, 10);
864 j1 = bit (inst2, 13);
865 j2 = bit (inst2, 11);
866
867 offset = ((imm1 << 12) + (imm2 << 1));
868 offset ^= ((!j2) << 22) | ((!j1) << 23);
869
870 nextpc = start + 4 + offset;
871 /* For BLX make sure to clear the low bits. */
872 if (bit (inst2, 12) == 0)
873 nextpc = nextpc & 0xfffffffc;
874
e0634ccf
UW
875 if (!skip_prologue_function (gdbarch, nextpc,
876 bit (inst2, 12) != 0))
0d39a070
DJ
877 break;
878 }
ec3d575a 879
0963b4bd
MS
880 else if ((insn & 0xffd0) == 0xe900 /* stmdb Rn{!},
881 { registers } */
ec3d575a
UW
882 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
883 {
884 pv_t addr = regs[bits (insn, 0, 3)];
885 int regno;
886
887 if (pv_area_store_would_trash (stack, addr))
888 break;
889
890 /* Calculate offsets of saved registers. */
891 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
892 if (inst2 & (1 << regno))
893 {
894 addr = pv_add_constant (addr, -4);
895 pv_area_store (stack, addr, 4, regs[regno]);
896 }
897
898 if (insn & 0x0020)
899 regs[bits (insn, 0, 3)] = addr;
900 }
901
0963b4bd
MS
902 else if ((insn & 0xff50) == 0xe940 /* strd Rt, Rt2,
903 [Rn, #+/-imm]{!} */
ec3d575a
UW
904 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
905 {
906 int regno1 = bits (inst2, 12, 15);
907 int regno2 = bits (inst2, 8, 11);
908 pv_t addr = regs[bits (insn, 0, 3)];
909
910 offset = inst2 & 0xff;
911 if (insn & 0x0080)
912 addr = pv_add_constant (addr, offset);
913 else
914 addr = pv_add_constant (addr, -offset);
915
916 if (pv_area_store_would_trash (stack, addr))
917 break;
918
919 pv_area_store (stack, addr, 4, regs[regno1]);
920 pv_area_store (stack, pv_add_constant (addr, 4),
921 4, regs[regno2]);
922
923 if (insn & 0x0020)
924 regs[bits (insn, 0, 3)] = addr;
925 }
926
927 else if ((insn & 0xfff0) == 0xf8c0 /* str Rt,[Rn,+/-#imm]{!} */
928 && (inst2 & 0x0c00) == 0x0c00
929 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
930 {
931 int regno = bits (inst2, 12, 15);
932 pv_t addr = regs[bits (insn, 0, 3)];
933
934 offset = inst2 & 0xff;
935 if (inst2 & 0x0200)
936 addr = pv_add_constant (addr, offset);
937 else
938 addr = pv_add_constant (addr, -offset);
939
940 if (pv_area_store_would_trash (stack, addr))
941 break;
942
943 pv_area_store (stack, addr, 4, regs[regno]);
944
945 if (inst2 & 0x0100)
946 regs[bits (insn, 0, 3)] = addr;
947 }
948
949 else if ((insn & 0xfff0) == 0xf8c0 /* str.w Rt,[Rn,#imm] */
950 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
951 {
952 int regno = bits (inst2, 12, 15);
953 pv_t addr;
954
955 offset = inst2 & 0xfff;
956 addr = pv_add_constant (regs[bits (insn, 0, 3)], offset);
957
958 if (pv_area_store_would_trash (stack, addr))
959 break;
960
961 pv_area_store (stack, addr, 4, regs[regno]);
962 }
963
964 else if ((insn & 0xffd0) == 0xf880 /* str{bh}.w Rt,[Rn,#imm] */
0d39a070 965 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 966 /* Ignore stores of argument registers to the stack. */
0d39a070 967 ;
ec3d575a
UW
968
969 else if ((insn & 0xffd0) == 0xf800 /* str{bh} Rt,[Rn,#+/-imm] */
970 && (inst2 & 0x0d00) == 0x0c00
0d39a070 971 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 972 /* Ignore stores of argument registers to the stack. */
0d39a070 973 ;
ec3d575a 974
0963b4bd
MS
975 else if ((insn & 0xffd0) == 0xe890 /* ldmia Rn[!],
976 { registers } */
ec3d575a
UW
977 && (inst2 & 0x8000) == 0x0000
978 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
979 /* Ignore block loads from the stack, potentially copying
980 parameters from memory. */
0d39a070 981 ;
ec3d575a 982
0963b4bd
MS
983 else if ((insn & 0xffb0) == 0xe950 /* ldrd Rt, Rt2,
984 [Rn, #+/-imm] */
0d39a070 985 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 986 /* Similarly ignore dual loads from the stack. */
0d39a070 987 ;
ec3d575a
UW
988
989 else if ((insn & 0xfff0) == 0xf850 /* ldr Rt,[Rn,#+/-imm] */
990 && (inst2 & 0x0d00) == 0x0c00
0d39a070 991 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 992 /* Similarly ignore single loads from the stack. */
0d39a070 993 ;
ec3d575a
UW
994
995 else if ((insn & 0xfff0) == 0xf8d0 /* ldr.w Rt,[Rn,#imm] */
0d39a070 996 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 997 /* Similarly ignore single loads from the stack. */
0d39a070 998 ;
ec3d575a
UW
999
1000 else if ((insn & 0xfbf0) == 0xf100 /* add.w Rd, Rn, #imm */
1001 && (inst2 & 0x8000) == 0x0000)
1002 {
1003 unsigned int imm = ((bits (insn, 10, 10) << 11)
1004 | (bits (inst2, 12, 14) << 8)
1005 | bits (inst2, 0, 7));
1006
1007 regs[bits (inst2, 8, 11)]
1008 = pv_add_constant (regs[bits (insn, 0, 3)],
1009 thumb_expand_immediate (imm));
1010 }
1011
1012 else if ((insn & 0xfbf0) == 0xf200 /* addw Rd, Rn, #imm */
1013 && (inst2 & 0x8000) == 0x0000)
0d39a070 1014 {
ec3d575a
UW
1015 unsigned int imm = ((bits (insn, 10, 10) << 11)
1016 | (bits (inst2, 12, 14) << 8)
1017 | bits (inst2, 0, 7));
1018
1019 regs[bits (inst2, 8, 11)]
1020 = pv_add_constant (regs[bits (insn, 0, 3)], imm);
1021 }
1022
1023 else if ((insn & 0xfbf0) == 0xf1a0 /* sub.w Rd, Rn, #imm */
1024 && (inst2 & 0x8000) == 0x0000)
1025 {
1026 unsigned int imm = ((bits (insn, 10, 10) << 11)
1027 | (bits (inst2, 12, 14) << 8)
1028 | bits (inst2, 0, 7));
1029
1030 regs[bits (inst2, 8, 11)]
1031 = pv_add_constant (regs[bits (insn, 0, 3)],
1032 - (CORE_ADDR) thumb_expand_immediate (imm));
1033 }
1034
1035 else if ((insn & 0xfbf0) == 0xf2a0 /* subw Rd, Rn, #imm */
1036 && (inst2 & 0x8000) == 0x0000)
1037 {
1038 unsigned int imm = ((bits (insn, 10, 10) << 11)
1039 | (bits (inst2, 12, 14) << 8)
1040 | bits (inst2, 0, 7));
1041
1042 regs[bits (inst2, 8, 11)]
1043 = pv_add_constant (regs[bits (insn, 0, 3)], - (CORE_ADDR) imm);
1044 }
1045
1046 else if ((insn & 0xfbff) == 0xf04f) /* mov.w Rd, #const */
1047 {
1048 unsigned int imm = ((bits (insn, 10, 10) << 11)
1049 | (bits (inst2, 12, 14) << 8)
1050 | bits (inst2, 0, 7));
1051
1052 regs[bits (inst2, 8, 11)]
1053 = pv_constant (thumb_expand_immediate (imm));
1054 }
1055
1056 else if ((insn & 0xfbf0) == 0xf240) /* movw Rd, #const */
1057 {
621c6d5b
YQ
1058 unsigned int imm
1059 = EXTRACT_MOVW_MOVT_IMM_T (insn, inst2);
ec3d575a
UW
1060
1061 regs[bits (inst2, 8, 11)] = pv_constant (imm);
1062 }
1063
1064 else if (insn == 0xea5f /* mov.w Rd,Rm */
1065 && (inst2 & 0xf0f0) == 0)
1066 {
1067 int dst_reg = (inst2 & 0x0f00) >> 8;
1068 int src_reg = inst2 & 0xf;
1069 regs[dst_reg] = regs[src_reg];
1070 }
1071
1072 else if ((insn & 0xff7f) == 0xf85f) /* ldr.w Rt,<label> */
1073 {
1074 /* Constant pool loads. */
1075 unsigned int constant;
1076 CORE_ADDR loc;
1077
1078 offset = bits (insn, 0, 11);
1079 if (insn & 0x0080)
1080 loc = start + 4 + offset;
1081 else
1082 loc = start + 4 - offset;
1083
1084 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1085 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1086 }
1087
1088 else if ((insn & 0xff7f) == 0xe95f) /* ldrd Rt,Rt2,<label> */
1089 {
1090 /* Constant pool loads. */
1091 unsigned int constant;
1092 CORE_ADDR loc;
1093
1094 offset = bits (insn, 0, 7) << 2;
1095 if (insn & 0x0080)
1096 loc = start + 4 + offset;
1097 else
1098 loc = start + 4 - offset;
1099
1100 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1101 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1102
1103 constant = read_memory_unsigned_integer (loc + 4, 4, byte_order);
1104 regs[bits (inst2, 8, 11)] = pv_constant (constant);
1105 }
1106
1107 else if (thumb2_instruction_changes_pc (insn, inst2))
1108 {
1109 /* Don't scan past anything that might change control flow. */
0d39a070
DJ
1110 break;
1111 }
ec3d575a
UW
1112 else
1113 {
1114 /* The optimizer might shove anything into the prologue,
1115 so we just skip what we don't recognize. */
1116 unrecognized_pc = start;
1117 }
0d39a070
DJ
1118
1119 start += 2;
1120 }
ec3d575a 1121 else if (thumb_instruction_changes_pc (insn))
3d74b771 1122 {
ec3d575a 1123 /* Don't scan past anything that might change control flow. */
da3c6d4a 1124 break;
3d74b771 1125 }
ec3d575a
UW
1126 else
1127 {
1128 /* The optimizer might shove anything into the prologue,
1129 so we just skip what we don't recognize. */
1130 unrecognized_pc = start;
1131 }
29d73ae4
DJ
1132
1133 start += 2;
c906108c
SS
1134 }
1135
0d39a070
DJ
1136 if (arm_debug)
1137 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1138 paddress (gdbarch, start));
1139
ec3d575a
UW
1140 if (unrecognized_pc == 0)
1141 unrecognized_pc = start;
1142
29d73ae4
DJ
1143 if (cache == NULL)
1144 {
1145 do_cleanups (back_to);
ec3d575a 1146 return unrecognized_pc;
29d73ae4
DJ
1147 }
1148
29d73ae4
DJ
1149 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1150 {
1151 /* Frame pointer is fp. Frame size is constant. */
1152 cache->framereg = ARM_FP_REGNUM;
1153 cache->framesize = -regs[ARM_FP_REGNUM].k;
1154 }
1155 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
1156 {
1157 /* Frame pointer is r7. Frame size is constant. */
1158 cache->framereg = THUMB_FP_REGNUM;
1159 cache->framesize = -regs[THUMB_FP_REGNUM].k;
1160 }
1161 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
1162 {
1163 /* Try the stack pointer... this is a bit desperate. */
1164 cache->framereg = ARM_SP_REGNUM;
1165 cache->framesize = -regs[ARM_SP_REGNUM].k;
1166 }
1167 else
1168 {
1169 /* We're just out of luck. We don't know where the frame is. */
1170 cache->framereg = -1;
1171 cache->framesize = 0;
1172 }
1173
1174 for (i = 0; i < 16; i++)
1175 if (pv_area_find_reg (stack, gdbarch, i, &offset))
1176 cache->saved_regs[i].addr = offset;
1177
1178 do_cleanups (back_to);
ec3d575a 1179 return unrecognized_pc;
c906108c
SS
1180}
1181
621c6d5b
YQ
1182
1183/* Try to analyze the instructions starting from PC, which load symbol
1184 __stack_chk_guard. Return the address of instruction after loading this
1185 symbol, set the dest register number to *BASEREG, and set the size of
1186 instructions for loading symbol in OFFSET. Return 0 if instructions are
1187 not recognized. */
1188
1189static CORE_ADDR
1190arm_analyze_load_stack_chk_guard(CORE_ADDR pc, struct gdbarch *gdbarch,
1191 unsigned int *destreg, int *offset)
1192{
1193 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1194 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1195 unsigned int low, high, address;
1196
1197 address = 0;
1198 if (is_thumb)
1199 {
1200 unsigned short insn1
1201 = read_memory_unsigned_integer (pc, 2, byte_order_for_code);
1202
1203 if ((insn1 & 0xf800) == 0x4800) /* ldr Rd, #immed */
1204 {
1205 *destreg = bits (insn1, 8, 10);
1206 *offset = 2;
1207 address = bits (insn1, 0, 7);
1208 }
1209 else if ((insn1 & 0xfbf0) == 0xf240) /* movw Rd, #const */
1210 {
1211 unsigned short insn2
1212 = read_memory_unsigned_integer (pc + 2, 2, byte_order_for_code);
1213
1214 low = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1215
1216 insn1
1217 = read_memory_unsigned_integer (pc + 4, 2, byte_order_for_code);
1218 insn2
1219 = read_memory_unsigned_integer (pc + 6, 2, byte_order_for_code);
1220
1221 /* movt Rd, #const */
1222 if ((insn1 & 0xfbc0) == 0xf2c0)
1223 {
1224 high = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1225 *destreg = bits (insn2, 8, 11);
1226 *offset = 8;
1227 address = (high << 16 | low);
1228 }
1229 }
1230 }
1231 else
1232 {
2e9e421f
UW
1233 unsigned int insn
1234 = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
1235
1236 if ((insn & 0x0e5f0000) == 0x041f0000) /* ldr Rd, #immed */
1237 {
1238 address = bits (insn, 0, 11);
1239 *destreg = bits (insn, 12, 15);
1240 *offset = 4;
1241 }
1242 else if ((insn & 0x0ff00000) == 0x03000000) /* movw Rd, #const */
1243 {
1244 low = EXTRACT_MOVW_MOVT_IMM_A (insn);
1245
1246 insn
1247 = read_memory_unsigned_integer (pc + 4, 4, byte_order_for_code);
1248
1249 if ((insn & 0x0ff00000) == 0x03400000) /* movt Rd, #const */
1250 {
1251 high = EXTRACT_MOVW_MOVT_IMM_A (insn);
1252 *destreg = bits (insn, 12, 15);
1253 *offset = 8;
1254 address = (high << 16 | low);
1255 }
1256 }
621c6d5b
YQ
1257 }
1258
1259 return address;
1260}
1261
1262/* Try to skip a sequence of instructions used for stack protector. If PC
0963b4bd
MS
1263 points to the first instruction of this sequence, return the address of
1264 first instruction after this sequence, otherwise, return original PC.
621c6d5b
YQ
1265
1266 On arm, this sequence of instructions is composed of mainly three steps,
1267 Step 1: load symbol __stack_chk_guard,
1268 Step 2: load from address of __stack_chk_guard,
1269 Step 3: store it to somewhere else.
1270
1271 Usually, instructions on step 2 and step 3 are the same on various ARM
1272 architectures. On step 2, it is one instruction 'ldr Rx, [Rn, #0]', and
1273 on step 3, it is also one instruction 'str Rx, [r7, #immd]'. However,
1274 instructions in step 1 vary from different ARM architectures. On ARMv7,
1275 they are,
1276
1277 movw Rn, #:lower16:__stack_chk_guard
1278 movt Rn, #:upper16:__stack_chk_guard
1279
1280 On ARMv5t, it is,
1281
1282 ldr Rn, .Label
1283 ....
1284 .Lable:
1285 .word __stack_chk_guard
1286
1287 Since ldr/str is a very popular instruction, we can't use them as
1288 'fingerprint' or 'signature' of stack protector sequence. Here we choose
1289 sequence {movw/movt, ldr}/ldr/str plus symbol __stack_chk_guard, if not
1290 stripped, as the 'fingerprint' of a stack protector cdoe sequence. */
1291
1292static CORE_ADDR
1293arm_skip_stack_protector(CORE_ADDR pc, struct gdbarch *gdbarch)
1294{
1295 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1296 unsigned int address, basereg;
1297 struct minimal_symbol *stack_chk_guard;
1298 int offset;
1299 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1300 CORE_ADDR addr;
1301
1302 /* Try to parse the instructions in Step 1. */
1303 addr = arm_analyze_load_stack_chk_guard (pc, gdbarch,
1304 &basereg, &offset);
1305 if (!addr)
1306 return pc;
1307
1308 stack_chk_guard = lookup_minimal_symbol_by_pc (addr);
1309 /* If name of symbol doesn't start with '__stack_chk_guard', this
1310 instruction sequence is not for stack protector. If symbol is
1311 removed, we conservatively think this sequence is for stack protector. */
1312 if (stack_chk_guard
c1c2ab58
UW
1313 && strncmp (SYMBOL_LINKAGE_NAME (stack_chk_guard), "__stack_chk_guard",
1314 strlen ("__stack_chk_guard")) != 0)
621c6d5b
YQ
1315 return pc;
1316
1317 if (is_thumb)
1318 {
1319 unsigned int destreg;
1320 unsigned short insn
1321 = read_memory_unsigned_integer (pc + offset, 2, byte_order_for_code);
1322
1323 /* Step 2: ldr Rd, [Rn, #immed], encoding T1. */
1324 if ((insn & 0xf800) != 0x6800)
1325 return pc;
1326 if (bits (insn, 3, 5) != basereg)
1327 return pc;
1328 destreg = bits (insn, 0, 2);
1329
1330 insn = read_memory_unsigned_integer (pc + offset + 2, 2,
1331 byte_order_for_code);
1332 /* Step 3: str Rd, [Rn, #immed], encoding T1. */
1333 if ((insn & 0xf800) != 0x6000)
1334 return pc;
1335 if (destreg != bits (insn, 0, 2))
1336 return pc;
1337 }
1338 else
1339 {
1340 unsigned int destreg;
1341 unsigned int insn
1342 = read_memory_unsigned_integer (pc + offset, 4, byte_order_for_code);
1343
1344 /* Step 2: ldr Rd, [Rn, #immed], encoding A1. */
1345 if ((insn & 0x0e500000) != 0x04100000)
1346 return pc;
1347 if (bits (insn, 16, 19) != basereg)
1348 return pc;
1349 destreg = bits (insn, 12, 15);
1350 /* Step 3: str Rd, [Rn, #immed], encoding A1. */
1351 insn = read_memory_unsigned_integer (pc + offset + 4,
1352 4, byte_order_for_code);
1353 if ((insn & 0x0e500000) != 0x04000000)
1354 return pc;
1355 if (bits (insn, 12, 15) != destreg)
1356 return pc;
1357 }
1358 /* The size of total two instructions ldr/str is 4 on Thumb-2, while 8
1359 on arm. */
1360 if (is_thumb)
1361 return pc + offset + 4;
1362 else
1363 return pc + offset + 8;
1364}
1365
da3c6d4a
MS
1366/* Advance the PC across any function entry prologue instructions to
1367 reach some "real" code.
34e8f22d
RE
1368
1369 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 1370 prologue:
c906108c 1371
c5aa993b
JM
1372 mov ip, sp
1373 [stmfd sp!, {a1,a2,a3,a4}]
1374 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
1375 [stfe f7, [sp, #-12]!]
1376 [stfe f6, [sp, #-12]!]
1377 [stfe f5, [sp, #-12]!]
1378 [stfe f4, [sp, #-12]!]
0963b4bd 1379 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn. */
c906108c 1380
34e8f22d 1381static CORE_ADDR
6093d2eb 1382arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 1383{
e17a4113 1384 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
c906108c
SS
1385 unsigned long inst;
1386 CORE_ADDR skip_pc;
a89fea3c 1387 CORE_ADDR func_addr, limit_pc;
c906108c
SS
1388 struct symtab_and_line sal;
1389
a89fea3c
JL
1390 /* See if we can determine the end of the prologue via the symbol table.
1391 If so, then return either PC, or the PC after the prologue, whichever
1392 is greater. */
1393 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
c906108c 1394 {
d80b854b
UW
1395 CORE_ADDR post_prologue_pc
1396 = skip_prologue_using_sal (gdbarch, func_addr);
0d39a070
DJ
1397 struct symtab *s = find_pc_symtab (func_addr);
1398
621c6d5b
YQ
1399 if (post_prologue_pc)
1400 post_prologue_pc
1401 = arm_skip_stack_protector (post_prologue_pc, gdbarch);
1402
1403
0d39a070
DJ
1404 /* GCC always emits a line note before the prologue and another
1405 one after, even if the two are at the same address or on the
1406 same line. Take advantage of this so that we do not need to
1407 know every instruction that might appear in the prologue. We
1408 will have producer information for most binaries; if it is
1409 missing (e.g. for -gstabs), assuming the GNU tools. */
1410 if (post_prologue_pc
1411 && (s == NULL
1412 || s->producer == NULL
1413 || strncmp (s->producer, "GNU ", sizeof ("GNU ") - 1) == 0))
1414 return post_prologue_pc;
1415
a89fea3c 1416 if (post_prologue_pc != 0)
0d39a070
DJ
1417 {
1418 CORE_ADDR analyzed_limit;
1419
1420 /* For non-GCC compilers, make sure the entire line is an
1421 acceptable prologue; GDB will round this function's
1422 return value up to the end of the following line so we
1423 can not skip just part of a line (and we do not want to).
1424
1425 RealView does not treat the prologue specially, but does
1426 associate prologue code with the opening brace; so this
1427 lets us skip the first line if we think it is the opening
1428 brace. */
9779414d 1429 if (arm_pc_is_thumb (gdbarch, func_addr))
0d39a070
DJ
1430 analyzed_limit = thumb_analyze_prologue (gdbarch, func_addr,
1431 post_prologue_pc, NULL);
1432 else
1433 analyzed_limit = arm_analyze_prologue (gdbarch, func_addr,
1434 post_prologue_pc, NULL);
1435
1436 if (analyzed_limit != post_prologue_pc)
1437 return func_addr;
1438
1439 return post_prologue_pc;
1440 }
c906108c
SS
1441 }
1442
a89fea3c
JL
1443 /* Can't determine prologue from the symbol table, need to examine
1444 instructions. */
c906108c 1445
a89fea3c
JL
1446 /* Find an upper limit on the function prologue using the debug
1447 information. If the debug information could not be used to provide
1448 that bound, then use an arbitrary large number as the upper bound. */
0963b4bd 1449 /* Like arm_scan_prologue, stop no later than pc + 64. */
d80b854b 1450 limit_pc = skip_prologue_using_sal (gdbarch, pc);
a89fea3c
JL
1451 if (limit_pc == 0)
1452 limit_pc = pc + 64; /* Magic. */
1453
c906108c 1454
29d73ae4 1455 /* Check if this is Thumb code. */
9779414d 1456 if (arm_pc_is_thumb (gdbarch, pc))
a89fea3c 1457 return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL);
29d73ae4 1458
a89fea3c 1459 for (skip_pc = pc; skip_pc < limit_pc; skip_pc += 4)
f43845b3 1460 {
e17a4113 1461 inst = read_memory_unsigned_integer (skip_pc, 4, byte_order_for_code);
9d4fde75 1462
b8d5e71d
MS
1463 /* "mov ip, sp" is no longer a required part of the prologue. */
1464 if (inst == 0xe1a0c00d) /* mov ip, sp */
1465 continue;
c906108c 1466
28cd8767
JG
1467 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
1468 continue;
1469
1470 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
1471 continue;
1472
b8d5e71d
MS
1473 /* Some prologues begin with "str lr, [sp, #-4]!". */
1474 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
1475 continue;
c906108c 1476
b8d5e71d
MS
1477 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
1478 continue;
c906108c 1479
b8d5e71d
MS
1480 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
1481 continue;
11d3b27d 1482
b8d5e71d
MS
1483 /* Any insns after this point may float into the code, if it makes
1484 for better instruction scheduling, so we skip them only if we
1485 find them, but still consider the function to be frame-ful. */
f43845b3 1486
b8d5e71d
MS
1487 /* We may have either one sfmfd instruction here, or several stfe
1488 insns, depending on the version of floating point code we
1489 support. */
1490 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
1491 continue;
1492
1493 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
1494 continue;
1495
1496 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
1497 continue;
1498
1499 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
1500 continue;
1501
f8bf5763
PM
1502 if ((inst & 0xffffc000) == 0xe54b0000 /* strb r(0123),[r11,#-nn] */
1503 || (inst & 0xffffc0f0) == 0xe14b00b0 /* strh r(0123),[r11,#-nn] */
1504 || (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
b8d5e71d
MS
1505 continue;
1506
f8bf5763
PM
1507 if ((inst & 0xffffc000) == 0xe5cd0000 /* strb r(0123),[sp,#nn] */
1508 || (inst & 0xffffc0f0) == 0xe1cd00b0 /* strh r(0123),[sp,#nn] */
1509 || (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
b8d5e71d
MS
1510 continue;
1511
1512 /* Un-recognized instruction; stop scanning. */
1513 break;
f43845b3 1514 }
c906108c 1515
0963b4bd 1516 return skip_pc; /* End of prologue. */
c906108c 1517}
94c30b78 1518
c5aa993b 1519/* *INDENT-OFF* */
c906108c
SS
1520/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
1521 This function decodes a Thumb function prologue to determine:
1522 1) the size of the stack frame
1523 2) which registers are saved on it
1524 3) the offsets of saved regs
1525 4) the offset from the stack pointer to the frame pointer
c906108c 1526
da59e081
JM
1527 A typical Thumb function prologue would create this stack frame
1528 (offsets relative to FP)
c906108c
SS
1529 old SP -> 24 stack parameters
1530 20 LR
1531 16 R7
1532 R7 -> 0 local variables (16 bytes)
1533 SP -> -12 additional stack space (12 bytes)
1534 The frame size would thus be 36 bytes, and the frame offset would be
0963b4bd 1535 12 bytes. The frame register is R7.
da59e081 1536
da3c6d4a
MS
1537 The comments for thumb_skip_prolog() describe the algorithm we use
1538 to detect the end of the prolog. */
c5aa993b
JM
1539/* *INDENT-ON* */
1540
c906108c 1541static void
be8626e0 1542thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc,
b39cc962 1543 CORE_ADDR block_addr, struct arm_prologue_cache *cache)
c906108c
SS
1544{
1545 CORE_ADDR prologue_start;
1546 CORE_ADDR prologue_end;
1547 CORE_ADDR current_pc;
c906108c 1548
b39cc962
DJ
1549 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1550 &prologue_end))
c906108c 1551 {
ec3d575a
UW
1552 /* See comment in arm_scan_prologue for an explanation of
1553 this heuristics. */
1554 if (prologue_end > prologue_start + 64)
1555 {
1556 prologue_end = prologue_start + 64;
1557 }
c906108c
SS
1558 }
1559 else
f7060f85
DJ
1560 /* We're in the boondocks: we have no idea where the start of the
1561 function is. */
1562 return;
c906108c 1563
eb5492fa 1564 prologue_end = min (prologue_end, prev_pc);
c906108c 1565
be8626e0 1566 thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
c906108c
SS
1567}
1568
0d39a070 1569/* Return 1 if THIS_INSTR might change control flow, 0 otherwise. */
c906108c 1570
0d39a070
DJ
1571static int
1572arm_instruction_changes_pc (uint32_t this_instr)
c906108c 1573{
0d39a070
DJ
1574 if (bits (this_instr, 28, 31) == INST_NV)
1575 /* Unconditional instructions. */
1576 switch (bits (this_instr, 24, 27))
1577 {
1578 case 0xa:
1579 case 0xb:
1580 /* Branch with Link and change to Thumb. */
1581 return 1;
1582 case 0xc:
1583 case 0xd:
1584 case 0xe:
1585 /* Coprocessor register transfer. */
1586 if (bits (this_instr, 12, 15) == 15)
1587 error (_("Invalid update to pc in instruction"));
1588 return 0;
1589 default:
1590 return 0;
1591 }
1592 else
1593 switch (bits (this_instr, 25, 27))
1594 {
1595 case 0x0:
1596 if (bits (this_instr, 23, 24) == 2 && bit (this_instr, 20) == 0)
1597 {
1598 /* Multiplies and extra load/stores. */
1599 if (bit (this_instr, 4) == 1 && bit (this_instr, 7) == 1)
1600 /* Neither multiplies nor extension load/stores are allowed
1601 to modify PC. */
1602 return 0;
1603
1604 /* Otherwise, miscellaneous instructions. */
1605
1606 /* BX <reg>, BXJ <reg>, BLX <reg> */
1607 if (bits (this_instr, 4, 27) == 0x12fff1
1608 || bits (this_instr, 4, 27) == 0x12fff2
1609 || bits (this_instr, 4, 27) == 0x12fff3)
1610 return 1;
1611
1612 /* Other miscellaneous instructions are unpredictable if they
1613 modify PC. */
1614 return 0;
1615 }
1616 /* Data processing instruction. Fall through. */
c906108c 1617
0d39a070
DJ
1618 case 0x1:
1619 if (bits (this_instr, 12, 15) == 15)
1620 return 1;
1621 else
1622 return 0;
c906108c 1623
0d39a070
DJ
1624 case 0x2:
1625 case 0x3:
1626 /* Media instructions and architecturally undefined instructions. */
1627 if (bits (this_instr, 25, 27) == 3 && bit (this_instr, 4) == 1)
1628 return 0;
c906108c 1629
0d39a070
DJ
1630 /* Stores. */
1631 if (bit (this_instr, 20) == 0)
1632 return 0;
2a451106 1633
0d39a070
DJ
1634 /* Loads. */
1635 if (bits (this_instr, 12, 15) == ARM_PC_REGNUM)
1636 return 1;
1637 else
1638 return 0;
2a451106 1639
0d39a070
DJ
1640 case 0x4:
1641 /* Load/store multiple. */
1642 if (bit (this_instr, 20) == 1 && bit (this_instr, 15) == 1)
1643 return 1;
1644 else
1645 return 0;
2a451106 1646
0d39a070
DJ
1647 case 0x5:
1648 /* Branch and branch with link. */
1649 return 1;
2a451106 1650
0d39a070
DJ
1651 case 0x6:
1652 case 0x7:
1653 /* Coprocessor transfers or SWIs can not affect PC. */
1654 return 0;
eb5492fa 1655
0d39a070 1656 default:
9b20d036 1657 internal_error (__FILE__, __LINE__, _("bad value in switch"));
0d39a070
DJ
1658 }
1659}
c906108c 1660
0d39a070
DJ
1661/* Analyze an ARM mode prologue starting at PROLOGUE_START and
1662 continuing no further than PROLOGUE_END. If CACHE is non-NULL,
1663 fill it in. Return the first address not recognized as a prologue
1664 instruction.
eb5492fa 1665
0d39a070
DJ
1666 We recognize all the instructions typically found in ARM prologues,
1667 plus harmless instructions which can be skipped (either for analysis
1668 purposes, or a more restrictive set that can be skipped when finding
1669 the end of the prologue). */
1670
1671static CORE_ADDR
1672arm_analyze_prologue (struct gdbarch *gdbarch,
1673 CORE_ADDR prologue_start, CORE_ADDR prologue_end,
1674 struct arm_prologue_cache *cache)
1675{
1676 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1677 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1678 int regno;
1679 CORE_ADDR offset, current_pc;
1680 pv_t regs[ARM_FPS_REGNUM];
1681 struct pv_area *stack;
1682 struct cleanup *back_to;
1683 int framereg, framesize;
1684 CORE_ADDR unrecognized_pc = 0;
1685
1686 /* Search the prologue looking for instructions that set up the
96baa820 1687 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 1688
96baa820
JM
1689 Be careful, however, and if it doesn't look like a prologue,
1690 don't try to scan it. If, for instance, a frameless function
1691 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 1692 a frame, which will confuse stack traceback, as well as "finish"
96baa820 1693 and other operations that rely on a knowledge of the stack
0d39a070 1694 traceback. */
d4473757 1695
4be43953
DJ
1696 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1697 regs[regno] = pv_register (regno, 0);
55f960e1 1698 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
4be43953
DJ
1699 back_to = make_cleanup_free_pv_area (stack);
1700
94c30b78
MS
1701 for (current_pc = prologue_start;
1702 current_pc < prologue_end;
f43845b3 1703 current_pc += 4)
96baa820 1704 {
e17a4113
UW
1705 unsigned int insn
1706 = read_memory_unsigned_integer (current_pc, 4, byte_order_for_code);
9d4fde75 1707
94c30b78 1708 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3 1709 {
4be43953 1710 regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM];
28cd8767
JG
1711 continue;
1712 }
0d39a070
DJ
1713 else if ((insn & 0xfff00000) == 0xe2800000 /* add Rd, Rn, #n */
1714 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
28cd8767
JG
1715 {
1716 unsigned imm = insn & 0xff; /* immediate value */
1717 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
0d39a070 1718 int rd = bits (insn, 12, 15);
28cd8767 1719 imm = (imm >> rot) | (imm << (32 - rot));
0d39a070 1720 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], imm);
28cd8767
JG
1721 continue;
1722 }
0d39a070
DJ
1723 else if ((insn & 0xfff00000) == 0xe2400000 /* sub Rd, Rn, #n */
1724 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
28cd8767
JG
1725 {
1726 unsigned imm = insn & 0xff; /* immediate value */
1727 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
0d39a070 1728 int rd = bits (insn, 12, 15);
28cd8767 1729 imm = (imm >> rot) | (imm << (32 - rot));
0d39a070 1730 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], -imm);
f43845b3
MS
1731 continue;
1732 }
0963b4bd
MS
1733 else if ((insn & 0xffff0fff) == 0xe52d0004) /* str Rd,
1734 [sp, #-4]! */
f43845b3 1735 {
4be43953
DJ
1736 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1737 break;
1738 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
0d39a070
DJ
1739 pv_area_store (stack, regs[ARM_SP_REGNUM], 4,
1740 regs[bits (insn, 12, 15)]);
f43845b3
MS
1741 continue;
1742 }
1743 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
1744 /* stmfd sp!, {..., fp, ip, lr, pc}
1745 or
1746 stmfd sp!, {a1, a2, a3, a4} */
c906108c 1747 {
d4473757 1748 int mask = insn & 0xffff;
ed9a39eb 1749
4be43953
DJ
1750 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1751 break;
1752
94c30b78 1753 /* Calculate offsets of saved registers. */
34e8f22d 1754 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
1755 if (mask & (1 << regno))
1756 {
0963b4bd
MS
1757 regs[ARM_SP_REGNUM]
1758 = pv_add_constant (regs[ARM_SP_REGNUM], -4);
4be43953 1759 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
d4473757
KB
1760 }
1761 }
0d39a070
DJ
1762 else if ((insn & 0xffff0000) == 0xe54b0000 /* strb rx,[r11,#-n] */
1763 || (insn & 0xffff00f0) == 0xe14b00b0 /* strh rx,[r11,#-n] */
f8bf5763 1764 || (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
b8d5e71d
MS
1765 {
1766 /* No need to add this to saved_regs -- it's just an arg reg. */
1767 continue;
1768 }
0d39a070
DJ
1769 else if ((insn & 0xffff0000) == 0xe5cd0000 /* strb rx,[sp,#n] */
1770 || (insn & 0xffff00f0) == 0xe1cd00b0 /* strh rx,[sp,#n] */
f8bf5763 1771 || (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
1772 {
1773 /* No need to add this to saved_regs -- it's just an arg reg. */
1774 continue;
1775 }
0963b4bd
MS
1776 else if ((insn & 0xfff00000) == 0xe8800000 /* stm Rn,
1777 { registers } */
0d39a070
DJ
1778 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1779 {
1780 /* No need to add this to saved_regs -- it's just arg regs. */
1781 continue;
1782 }
d4473757
KB
1783 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
1784 {
94c30b78
MS
1785 unsigned imm = insn & 0xff; /* immediate value */
1786 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 1787 imm = (imm >> rot) | (imm << (32 - rot));
4be43953 1788 regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm);
d4473757
KB
1789 }
1790 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
1791 {
94c30b78
MS
1792 unsigned imm = insn & 0xff; /* immediate value */
1793 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 1794 imm = (imm >> rot) | (imm << (32 - rot));
4be43953 1795 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
d4473757 1796 }
0963b4bd
MS
1797 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?,
1798 [sp, -#c]! */
2af46ca0 1799 && gdbarch_tdep (gdbarch)->have_fpa_registers)
d4473757 1800 {
4be43953
DJ
1801 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1802 break;
1803
1804 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
34e8f22d 1805 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
4be43953 1806 pv_area_store (stack, regs[ARM_SP_REGNUM], 12, regs[regno]);
d4473757 1807 }
0963b4bd
MS
1808 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4,
1809 [sp!] */
2af46ca0 1810 && gdbarch_tdep (gdbarch)->have_fpa_registers)
d4473757
KB
1811 {
1812 int n_saved_fp_regs;
1813 unsigned int fp_start_reg, fp_bound_reg;
1814
4be43953
DJ
1815 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1816 break;
1817
94c30b78 1818 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 1819 {
d4473757
KB
1820 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1821 n_saved_fp_regs = 3;
1822 else
1823 n_saved_fp_regs = 1;
96baa820 1824 }
d4473757 1825 else
96baa820 1826 {
d4473757
KB
1827 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1828 n_saved_fp_regs = 2;
1829 else
1830 n_saved_fp_regs = 4;
96baa820 1831 }
d4473757 1832
34e8f22d 1833 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
1834 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
1835 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820 1836 {
4be43953
DJ
1837 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
1838 pv_area_store (stack, regs[ARM_SP_REGNUM], 12,
1839 regs[fp_start_reg++]);
96baa820 1840 }
c906108c 1841 }
0d39a070
DJ
1842 else if ((insn & 0xff000000) == 0xeb000000 && cache == NULL) /* bl */
1843 {
1844 /* Allow some special function calls when skipping the
1845 prologue; GCC generates these before storing arguments to
1846 the stack. */
1847 CORE_ADDR dest = BranchDest (current_pc, insn);
1848
e0634ccf 1849 if (skip_prologue_function (gdbarch, dest, 0))
0d39a070
DJ
1850 continue;
1851 else
1852 break;
1853 }
d4473757 1854 else if ((insn & 0xf0000000) != 0xe0000000)
0963b4bd 1855 break; /* Condition not true, exit early. */
0d39a070
DJ
1856 else if (arm_instruction_changes_pc (insn))
1857 /* Don't scan past anything that might change control flow. */
1858 break;
1859 else if ((insn & 0xfe500000) == 0xe8100000) /* ldm */
1860 {
1861 /* Ignore block loads from the stack, potentially copying
1862 parameters from memory. */
1863 if (pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1864 continue;
1865 else
1866 break;
1867 }
1868 else if ((insn & 0xfc500000) == 0xe4100000)
1869 {
1870 /* Similarly ignore single loads from the stack. */
1871 if (pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1872 continue;
1873 else
1874 break;
1875 }
1876 else if ((insn & 0xffff0ff0) == 0xe1a00000)
1877 /* MOV Rd, Rm. Skip register copies, i.e. saves to another
1878 register instead of the stack. */
d4473757 1879 continue;
0d39a070
DJ
1880 else
1881 {
1882 /* The optimizer might shove anything into the prologue,
1883 so we just skip what we don't recognize. */
1884 unrecognized_pc = current_pc;
1885 continue;
1886 }
c906108c
SS
1887 }
1888
0d39a070
DJ
1889 if (unrecognized_pc == 0)
1890 unrecognized_pc = current_pc;
1891
4be43953
DJ
1892 /* The frame size is just the distance from the frame register
1893 to the original stack pointer. */
1894 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1895 {
1896 /* Frame pointer is fp. */
0d39a070
DJ
1897 framereg = ARM_FP_REGNUM;
1898 framesize = -regs[ARM_FP_REGNUM].k;
4be43953
DJ
1899 }
1900 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
1901 {
1902 /* Try the stack pointer... this is a bit desperate. */
0d39a070
DJ
1903 framereg = ARM_SP_REGNUM;
1904 framesize = -regs[ARM_SP_REGNUM].k;
4be43953 1905 }
d4473757 1906 else
4be43953
DJ
1907 {
1908 /* We're just out of luck. We don't know where the frame is. */
0d39a070
DJ
1909 framereg = -1;
1910 framesize = 0;
4be43953
DJ
1911 }
1912
0d39a070
DJ
1913 if (cache)
1914 {
1915 cache->framereg = framereg;
1916 cache->framesize = framesize;
1917
1918 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1919 if (pv_area_find_reg (stack, gdbarch, regno, &offset))
1920 cache->saved_regs[regno].addr = offset;
1921 }
1922
1923 if (arm_debug)
1924 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1925 paddress (gdbarch, unrecognized_pc));
4be43953
DJ
1926
1927 do_cleanups (back_to);
0d39a070
DJ
1928 return unrecognized_pc;
1929}
1930
1931static void
1932arm_scan_prologue (struct frame_info *this_frame,
1933 struct arm_prologue_cache *cache)
1934{
1935 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1936 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1937 int regno;
1938 CORE_ADDR prologue_start, prologue_end, current_pc;
1939 CORE_ADDR prev_pc = get_frame_pc (this_frame);
1940 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1941 pv_t regs[ARM_FPS_REGNUM];
1942 struct pv_area *stack;
1943 struct cleanup *back_to;
1944 CORE_ADDR offset;
1945
1946 /* Assume there is no frame until proven otherwise. */
1947 cache->framereg = ARM_SP_REGNUM;
1948 cache->framesize = 0;
1949
1950 /* Check for Thumb prologue. */
1951 if (arm_frame_is_thumb (this_frame))
1952 {
1953 thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache);
1954 return;
1955 }
1956
1957 /* Find the function prologue. If we can't find the function in
1958 the symbol table, peek in the stack frame to find the PC. */
1959 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1960 &prologue_end))
1961 {
1962 /* One way to find the end of the prologue (which works well
1963 for unoptimized code) is to do the following:
1964
1965 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
1966
1967 if (sal.line == 0)
1968 prologue_end = prev_pc;
1969 else if (sal.end < prologue_end)
1970 prologue_end = sal.end;
1971
1972 This mechanism is very accurate so long as the optimizer
1973 doesn't move any instructions from the function body into the
1974 prologue. If this happens, sal.end will be the last
1975 instruction in the first hunk of prologue code just before
1976 the first instruction that the scheduler has moved from
1977 the body to the prologue.
1978
1979 In order to make sure that we scan all of the prologue
1980 instructions, we use a slightly less accurate mechanism which
1981 may scan more than necessary. To help compensate for this
1982 lack of accuracy, the prologue scanning loop below contains
1983 several clauses which'll cause the loop to terminate early if
1984 an implausible prologue instruction is encountered.
1985
1986 The expression
1987
1988 prologue_start + 64
1989
1990 is a suitable endpoint since it accounts for the largest
1991 possible prologue plus up to five instructions inserted by
1992 the scheduler. */
1993
1994 if (prologue_end > prologue_start + 64)
1995 {
1996 prologue_end = prologue_start + 64; /* See above. */
1997 }
1998 }
1999 else
2000 {
2001 /* We have no symbol information. Our only option is to assume this
2002 function has a standard stack frame and the normal frame register.
2003 Then, we can find the value of our frame pointer on entrance to
2004 the callee (or at the present moment if this is the innermost frame).
2005 The value stored there should be the address of the stmfd + 8. */
2006 CORE_ADDR frame_loc;
2007 LONGEST return_value;
2008
2009 frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM);
2010 if (!safe_read_memory_integer (frame_loc, 4, byte_order, &return_value))
2011 return;
2012 else
2013 {
2014 prologue_start = gdbarch_addr_bits_remove
2015 (gdbarch, return_value) - 8;
2016 prologue_end = prologue_start + 64; /* See above. */
2017 }
2018 }
2019
2020 if (prev_pc < prologue_end)
2021 prologue_end = prev_pc;
2022
2023 arm_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
c906108c
SS
2024}
2025
eb5492fa 2026static struct arm_prologue_cache *
a262aec2 2027arm_make_prologue_cache (struct frame_info *this_frame)
c906108c 2028{
eb5492fa
DJ
2029 int reg;
2030 struct arm_prologue_cache *cache;
2031 CORE_ADDR unwound_fp;
c5aa993b 2032
35d5d4ee 2033 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
a262aec2 2034 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c906108c 2035
a262aec2 2036 arm_scan_prologue (this_frame, cache);
848cfffb 2037
a262aec2 2038 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
eb5492fa
DJ
2039 if (unwound_fp == 0)
2040 return cache;
c906108c 2041
4be43953 2042 cache->prev_sp = unwound_fp + cache->framesize;
c906108c 2043
eb5492fa
DJ
2044 /* Calculate actual addresses of saved registers using offsets
2045 determined by arm_scan_prologue. */
a262aec2 2046 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
e28a332c 2047 if (trad_frame_addr_p (cache->saved_regs, reg))
eb5492fa
DJ
2048 cache->saved_regs[reg].addr += cache->prev_sp;
2049
2050 return cache;
c906108c
SS
2051}
2052
eb5492fa
DJ
2053/* Our frame ID for a normal frame is the current function's starting PC
2054 and the caller's SP when we were called. */
c906108c 2055
148754e5 2056static void
a262aec2 2057arm_prologue_this_id (struct frame_info *this_frame,
eb5492fa
DJ
2058 void **this_cache,
2059 struct frame_id *this_id)
c906108c 2060{
eb5492fa
DJ
2061 struct arm_prologue_cache *cache;
2062 struct frame_id id;
2c404490 2063 CORE_ADDR pc, func;
f079148d 2064
eb5492fa 2065 if (*this_cache == NULL)
a262aec2 2066 *this_cache = arm_make_prologue_cache (this_frame);
eb5492fa 2067 cache = *this_cache;
2a451106 2068
2c404490
DJ
2069 /* This is meant to halt the backtrace at "_start". */
2070 pc = get_frame_pc (this_frame);
2071 if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
eb5492fa 2072 return;
5a203e44 2073
eb5492fa
DJ
2074 /* If we've hit a wall, stop. */
2075 if (cache->prev_sp == 0)
2076 return;
24de872b 2077
0e9e9abd
UW
2078 /* Use function start address as part of the frame ID. If we cannot
2079 identify the start address (due to missing symbol information),
2080 fall back to just using the current PC. */
2c404490 2081 func = get_frame_func (this_frame);
0e9e9abd
UW
2082 if (!func)
2083 func = pc;
2084
eb5492fa 2085 id = frame_id_build (cache->prev_sp, func);
eb5492fa 2086 *this_id = id;
c906108c
SS
2087}
2088
a262aec2
DJ
2089static struct value *
2090arm_prologue_prev_register (struct frame_info *this_frame,
eb5492fa 2091 void **this_cache,
a262aec2 2092 int prev_regnum)
24de872b 2093{
24568a2c 2094 struct gdbarch *gdbarch = get_frame_arch (this_frame);
24de872b
DJ
2095 struct arm_prologue_cache *cache;
2096
eb5492fa 2097 if (*this_cache == NULL)
a262aec2 2098 *this_cache = arm_make_prologue_cache (this_frame);
eb5492fa 2099 cache = *this_cache;
24de872b 2100
eb5492fa 2101 /* If we are asked to unwind the PC, then we need to return the LR
b39cc962
DJ
2102 instead. The prologue may save PC, but it will point into this
2103 frame's prologue, not the next frame's resume location. Also
2104 strip the saved T bit. A valid LR may have the low bit set, but
2105 a valid PC never does. */
eb5492fa 2106 if (prev_regnum == ARM_PC_REGNUM)
b39cc962
DJ
2107 {
2108 CORE_ADDR lr;
2109
2110 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
2111 return frame_unwind_got_constant (this_frame, prev_regnum,
24568a2c 2112 arm_addr_bits_remove (gdbarch, lr));
b39cc962 2113 }
24de872b 2114
eb5492fa 2115 /* SP is generally not saved to the stack, but this frame is
a262aec2 2116 identified by the next frame's stack pointer at the time of the call.
eb5492fa
DJ
2117 The value was already reconstructed into PREV_SP. */
2118 if (prev_regnum == ARM_SP_REGNUM)
a262aec2 2119 return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp);
eb5492fa 2120
b39cc962
DJ
2121 /* The CPSR may have been changed by the call instruction and by the
2122 called function. The only bit we can reconstruct is the T bit,
2123 by checking the low bit of LR as of the call. This is a reliable
2124 indicator of Thumb-ness except for some ARM v4T pre-interworking
2125 Thumb code, which could get away with a clear low bit as long as
2126 the called function did not use bx. Guess that all other
2127 bits are unchanged; the condition flags are presumably lost,
2128 but the processor status is likely valid. */
2129 if (prev_regnum == ARM_PS_REGNUM)
2130 {
2131 CORE_ADDR lr, cpsr;
9779414d 2132 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
b39cc962
DJ
2133
2134 cpsr = get_frame_register_unsigned (this_frame, prev_regnum);
2135 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
2136 if (IS_THUMB_ADDR (lr))
9779414d 2137 cpsr |= t_bit;
b39cc962 2138 else
9779414d 2139 cpsr &= ~t_bit;
b39cc962
DJ
2140 return frame_unwind_got_constant (this_frame, prev_regnum, cpsr);
2141 }
2142
a262aec2
DJ
2143 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
2144 prev_regnum);
eb5492fa
DJ
2145}
2146
2147struct frame_unwind arm_prologue_unwind = {
2148 NORMAL_FRAME,
2149 arm_prologue_this_id,
a262aec2
DJ
2150 arm_prologue_prev_register,
2151 NULL,
2152 default_frame_sniffer
eb5492fa
DJ
2153};
2154
0e9e9abd
UW
2155/* Maintain a list of ARM exception table entries per objfile, similar to the
2156 list of mapping symbols. We only cache entries for standard ARM-defined
2157 personality routines; the cache will contain only the frame unwinding
2158 instructions associated with the entry (not the descriptors). */
2159
2160static const struct objfile_data *arm_exidx_data_key;
2161
2162struct arm_exidx_entry
2163{
2164 bfd_vma addr;
2165 gdb_byte *entry;
2166};
2167typedef struct arm_exidx_entry arm_exidx_entry_s;
2168DEF_VEC_O(arm_exidx_entry_s);
2169
2170struct arm_exidx_data
2171{
2172 VEC(arm_exidx_entry_s) **section_maps;
2173};
2174
2175static void
2176arm_exidx_data_free (struct objfile *objfile, void *arg)
2177{
2178 struct arm_exidx_data *data = arg;
2179 unsigned int i;
2180
2181 for (i = 0; i < objfile->obfd->section_count; i++)
2182 VEC_free (arm_exidx_entry_s, data->section_maps[i]);
2183}
2184
2185static inline int
2186arm_compare_exidx_entries (const struct arm_exidx_entry *lhs,
2187 const struct arm_exidx_entry *rhs)
2188{
2189 return lhs->addr < rhs->addr;
2190}
2191
2192static struct obj_section *
2193arm_obj_section_from_vma (struct objfile *objfile, bfd_vma vma)
2194{
2195 struct obj_section *osect;
2196
2197 ALL_OBJFILE_OSECTIONS (objfile, osect)
2198 if (bfd_get_section_flags (objfile->obfd,
2199 osect->the_bfd_section) & SEC_ALLOC)
2200 {
2201 bfd_vma start, size;
2202 start = bfd_get_section_vma (objfile->obfd, osect->the_bfd_section);
2203 size = bfd_get_section_size (osect->the_bfd_section);
2204
2205 if (start <= vma && vma < start + size)
2206 return osect;
2207 }
2208
2209 return NULL;
2210}
2211
2212/* Parse contents of exception table and exception index sections
2213 of OBJFILE, and fill in the exception table entry cache.
2214
2215 For each entry that refers to a standard ARM-defined personality
2216 routine, extract the frame unwinding instructions (from either
2217 the index or the table section). The unwinding instructions
2218 are normalized by:
2219 - extracting them from the rest of the table data
2220 - converting to host endianness
2221 - appending the implicit 0xb0 ("Finish") code
2222
2223 The extracted and normalized instructions are stored for later
2224 retrieval by the arm_find_exidx_entry routine. */
2225
2226static void
2227arm_exidx_new_objfile (struct objfile *objfile)
2228{
2229 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
2230 struct arm_exidx_data *data;
2231 asection *exidx, *extab;
2232 bfd_vma exidx_vma = 0, extab_vma = 0;
2233 bfd_size_type exidx_size = 0, extab_size = 0;
2234 gdb_byte *exidx_data = NULL, *extab_data = NULL;
2235 LONGEST i;
2236
2237 /* If we've already touched this file, do nothing. */
2238 if (!objfile || objfile_data (objfile, arm_exidx_data_key) != NULL)
2239 return;
2240
2241 /* Read contents of exception table and index. */
2242 exidx = bfd_get_section_by_name (objfile->obfd, ".ARM.exidx");
2243 if (exidx)
2244 {
2245 exidx_vma = bfd_section_vma (objfile->obfd, exidx);
2246 exidx_size = bfd_get_section_size (exidx);
2247 exidx_data = xmalloc (exidx_size);
2248 make_cleanup (xfree, exidx_data);
2249
2250 if (!bfd_get_section_contents (objfile->obfd, exidx,
2251 exidx_data, 0, exidx_size))
2252 {
2253 do_cleanups (cleanups);
2254 return;
2255 }
2256 }
2257
2258 extab = bfd_get_section_by_name (objfile->obfd, ".ARM.extab");
2259 if (extab)
2260 {
2261 extab_vma = bfd_section_vma (objfile->obfd, extab);
2262 extab_size = bfd_get_section_size (extab);
2263 extab_data = xmalloc (extab_size);
2264 make_cleanup (xfree, extab_data);
2265
2266 if (!bfd_get_section_contents (objfile->obfd, extab,
2267 extab_data, 0, extab_size))
2268 {
2269 do_cleanups (cleanups);
2270 return;
2271 }
2272 }
2273
2274 /* Allocate exception table data structure. */
2275 data = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct arm_exidx_data);
2276 set_objfile_data (objfile, arm_exidx_data_key, data);
2277 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
2278 objfile->obfd->section_count,
2279 VEC(arm_exidx_entry_s) *);
2280
2281 /* Fill in exception table. */
2282 for (i = 0; i < exidx_size / 8; i++)
2283 {
2284 struct arm_exidx_entry new_exidx_entry;
2285 bfd_vma idx = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8);
2286 bfd_vma val = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8 + 4);
2287 bfd_vma addr = 0, word = 0;
2288 int n_bytes = 0, n_words = 0;
2289 struct obj_section *sec;
2290 gdb_byte *entry = NULL;
2291
2292 /* Extract address of start of function. */
2293 idx = ((idx & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2294 idx += exidx_vma + i * 8;
2295
2296 /* Find section containing function and compute section offset. */
2297 sec = arm_obj_section_from_vma (objfile, idx);
2298 if (sec == NULL)
2299 continue;
2300 idx -= bfd_get_section_vma (objfile->obfd, sec->the_bfd_section);
2301
2302 /* Determine address of exception table entry. */
2303 if (val == 1)
2304 {
2305 /* EXIDX_CANTUNWIND -- no exception table entry present. */
2306 }
2307 else if ((val & 0xff000000) == 0x80000000)
2308 {
2309 /* Exception table entry embedded in .ARM.exidx
2310 -- must be short form. */
2311 word = val;
2312 n_bytes = 3;
2313 }
2314 else if (!(val & 0x80000000))
2315 {
2316 /* Exception table entry in .ARM.extab. */
2317 addr = ((val & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2318 addr += exidx_vma + i * 8 + 4;
2319
2320 if (addr >= extab_vma && addr + 4 <= extab_vma + extab_size)
2321 {
2322 word = bfd_h_get_32 (objfile->obfd,
2323 extab_data + addr - extab_vma);
2324 addr += 4;
2325
2326 if ((word & 0xff000000) == 0x80000000)
2327 {
2328 /* Short form. */
2329 n_bytes = 3;
2330 }
2331 else if ((word & 0xff000000) == 0x81000000
2332 || (word & 0xff000000) == 0x82000000)
2333 {
2334 /* Long form. */
2335 n_bytes = 2;
2336 n_words = ((word >> 16) & 0xff);
2337 }
2338 else if (!(word & 0x80000000))
2339 {
2340 bfd_vma pers;
2341 struct obj_section *pers_sec;
2342 int gnu_personality = 0;
2343
2344 /* Custom personality routine. */
2345 pers = ((word & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2346 pers = UNMAKE_THUMB_ADDR (pers + addr - 4);
2347
2348 /* Check whether we've got one of the variants of the
2349 GNU personality routines. */
2350 pers_sec = arm_obj_section_from_vma (objfile, pers);
2351 if (pers_sec)
2352 {
2353 static const char *personality[] =
2354 {
2355 "__gcc_personality_v0",
2356 "__gxx_personality_v0",
2357 "__gcj_personality_v0",
2358 "__gnu_objc_personality_v0",
2359 NULL
2360 };
2361
2362 CORE_ADDR pc = pers + obj_section_offset (pers_sec);
2363 int k;
2364
2365 for (k = 0; personality[k]; k++)
2366 if (lookup_minimal_symbol_by_pc_name
2367 (pc, personality[k], objfile))
2368 {
2369 gnu_personality = 1;
2370 break;
2371 }
2372 }
2373
2374 /* If so, the next word contains a word count in the high
2375 byte, followed by the same unwind instructions as the
2376 pre-defined forms. */
2377 if (gnu_personality
2378 && addr + 4 <= extab_vma + extab_size)
2379 {
2380 word = bfd_h_get_32 (objfile->obfd,
2381 extab_data + addr - extab_vma);
2382 addr += 4;
2383 n_bytes = 3;
2384 n_words = ((word >> 24) & 0xff);
2385 }
2386 }
2387 }
2388 }
2389
2390 /* Sanity check address. */
2391 if (n_words)
2392 if (addr < extab_vma || addr + 4 * n_words > extab_vma + extab_size)
2393 n_words = n_bytes = 0;
2394
2395 /* The unwind instructions reside in WORD (only the N_BYTES least
2396 significant bytes are valid), followed by N_WORDS words in the
2397 extab section starting at ADDR. */
2398 if (n_bytes || n_words)
2399 {
2400 gdb_byte *p = entry = obstack_alloc (&objfile->objfile_obstack,
2401 n_bytes + n_words * 4 + 1);
2402
2403 while (n_bytes--)
2404 *p++ = (gdb_byte) ((word >> (8 * n_bytes)) & 0xff);
2405
2406 while (n_words--)
2407 {
2408 word = bfd_h_get_32 (objfile->obfd,
2409 extab_data + addr - extab_vma);
2410 addr += 4;
2411
2412 *p++ = (gdb_byte) ((word >> 24) & 0xff);
2413 *p++ = (gdb_byte) ((word >> 16) & 0xff);
2414 *p++ = (gdb_byte) ((word >> 8) & 0xff);
2415 *p++ = (gdb_byte) (word & 0xff);
2416 }
2417
2418 /* Implied "Finish" to terminate the list. */
2419 *p++ = 0xb0;
2420 }
2421
2422 /* Push entry onto vector. They are guaranteed to always
2423 appear in order of increasing addresses. */
2424 new_exidx_entry.addr = idx;
2425 new_exidx_entry.entry = entry;
2426 VEC_safe_push (arm_exidx_entry_s,
2427 data->section_maps[sec->the_bfd_section->index],
2428 &new_exidx_entry);
2429 }
2430
2431 do_cleanups (cleanups);
2432}
2433
2434/* Search for the exception table entry covering MEMADDR. If one is found,
2435 return a pointer to its data. Otherwise, return 0. If START is non-NULL,
2436 set *START to the start of the region covered by this entry. */
2437
2438static gdb_byte *
2439arm_find_exidx_entry (CORE_ADDR memaddr, CORE_ADDR *start)
2440{
2441 struct obj_section *sec;
2442
2443 sec = find_pc_section (memaddr);
2444 if (sec != NULL)
2445 {
2446 struct arm_exidx_data *data;
2447 VEC(arm_exidx_entry_s) *map;
2448 struct arm_exidx_entry map_key = { memaddr - obj_section_addr (sec), 0 };
2449 unsigned int idx;
2450
2451 data = objfile_data (sec->objfile, arm_exidx_data_key);
2452 if (data != NULL)
2453 {
2454 map = data->section_maps[sec->the_bfd_section->index];
2455 if (!VEC_empty (arm_exidx_entry_s, map))
2456 {
2457 struct arm_exidx_entry *map_sym;
2458
2459 idx = VEC_lower_bound (arm_exidx_entry_s, map, &map_key,
2460 arm_compare_exidx_entries);
2461
2462 /* VEC_lower_bound finds the earliest ordered insertion
2463 point. If the following symbol starts at this exact
2464 address, we use that; otherwise, the preceding
2465 exception table entry covers this address. */
2466 if (idx < VEC_length (arm_exidx_entry_s, map))
2467 {
2468 map_sym = VEC_index (arm_exidx_entry_s, map, idx);
2469 if (map_sym->addr == map_key.addr)
2470 {
2471 if (start)
2472 *start = map_sym->addr + obj_section_addr (sec);
2473 return map_sym->entry;
2474 }
2475 }
2476
2477 if (idx > 0)
2478 {
2479 map_sym = VEC_index (arm_exidx_entry_s, map, idx - 1);
2480 if (start)
2481 *start = map_sym->addr + obj_section_addr (sec);
2482 return map_sym->entry;
2483 }
2484 }
2485 }
2486 }
2487
2488 return NULL;
2489}
2490
2491/* Given the current frame THIS_FRAME, and its associated frame unwinding
2492 instruction list from the ARM exception table entry ENTRY, allocate and
2493 return a prologue cache structure describing how to unwind this frame.
2494
2495 Return NULL if the unwinding instruction list contains a "spare",
2496 "reserved" or "refuse to unwind" instruction as defined in section
2497 "9.3 Frame unwinding instructions" of the "Exception Handling ABI
2498 for the ARM Architecture" document. */
2499
2500static struct arm_prologue_cache *
2501arm_exidx_fill_cache (struct frame_info *this_frame, gdb_byte *entry)
2502{
2503 CORE_ADDR vsp = 0;
2504 int vsp_valid = 0;
2505
2506 struct arm_prologue_cache *cache;
2507 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2508 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2509
2510 for (;;)
2511 {
2512 gdb_byte insn;
2513
2514 /* Whenever we reload SP, we actually have to retrieve its
2515 actual value in the current frame. */
2516 if (!vsp_valid)
2517 {
2518 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2519 {
2520 int reg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2521 vsp = get_frame_register_unsigned (this_frame, reg);
2522 }
2523 else
2524 {
2525 CORE_ADDR addr = cache->saved_regs[ARM_SP_REGNUM].addr;
2526 vsp = get_frame_memory_unsigned (this_frame, addr, 4);
2527 }
2528
2529 vsp_valid = 1;
2530 }
2531
2532 /* Decode next unwind instruction. */
2533 insn = *entry++;
2534
2535 if ((insn & 0xc0) == 0)
2536 {
2537 int offset = insn & 0x3f;
2538 vsp += (offset << 2) + 4;
2539 }
2540 else if ((insn & 0xc0) == 0x40)
2541 {
2542 int offset = insn & 0x3f;
2543 vsp -= (offset << 2) + 4;
2544 }
2545 else if ((insn & 0xf0) == 0x80)
2546 {
2547 int mask = ((insn & 0xf) << 8) | *entry++;
2548 int i;
2549
2550 /* The special case of an all-zero mask identifies
2551 "Refuse to unwind". We return NULL to fall back
2552 to the prologue analyzer. */
2553 if (mask == 0)
2554 return NULL;
2555
2556 /* Pop registers r4..r15 under mask. */
2557 for (i = 0; i < 12; i++)
2558 if (mask & (1 << i))
2559 {
2560 cache->saved_regs[4 + i].addr = vsp;
2561 vsp += 4;
2562 }
2563
2564 /* Special-case popping SP -- we need to reload vsp. */
2565 if (mask & (1 << (ARM_SP_REGNUM - 4)))
2566 vsp_valid = 0;
2567 }
2568 else if ((insn & 0xf0) == 0x90)
2569 {
2570 int reg = insn & 0xf;
2571
2572 /* Reserved cases. */
2573 if (reg == ARM_SP_REGNUM || reg == ARM_PC_REGNUM)
2574 return NULL;
2575
2576 /* Set SP from another register and mark VSP for reload. */
2577 cache->saved_regs[ARM_SP_REGNUM] = cache->saved_regs[reg];
2578 vsp_valid = 0;
2579 }
2580 else if ((insn & 0xf0) == 0xa0)
2581 {
2582 int count = insn & 0x7;
2583 int pop_lr = (insn & 0x8) != 0;
2584 int i;
2585
2586 /* Pop r4..r[4+count]. */
2587 for (i = 0; i <= count; i++)
2588 {
2589 cache->saved_regs[4 + i].addr = vsp;
2590 vsp += 4;
2591 }
2592
2593 /* If indicated by flag, pop LR as well. */
2594 if (pop_lr)
2595 {
2596 cache->saved_regs[ARM_LR_REGNUM].addr = vsp;
2597 vsp += 4;
2598 }
2599 }
2600 else if (insn == 0xb0)
2601 {
2602 /* We could only have updated PC by popping into it; if so, it
2603 will show up as address. Otherwise, copy LR into PC. */
2604 if (!trad_frame_addr_p (cache->saved_regs, ARM_PC_REGNUM))
2605 cache->saved_regs[ARM_PC_REGNUM]
2606 = cache->saved_regs[ARM_LR_REGNUM];
2607
2608 /* We're done. */
2609 break;
2610 }
2611 else if (insn == 0xb1)
2612 {
2613 int mask = *entry++;
2614 int i;
2615
2616 /* All-zero mask and mask >= 16 is "spare". */
2617 if (mask == 0 || mask >= 16)
2618 return NULL;
2619
2620 /* Pop r0..r3 under mask. */
2621 for (i = 0; i < 4; i++)
2622 if (mask & (1 << i))
2623 {
2624 cache->saved_regs[i].addr = vsp;
2625 vsp += 4;
2626 }
2627 }
2628 else if (insn == 0xb2)
2629 {
2630 ULONGEST offset = 0;
2631 unsigned shift = 0;
2632
2633 do
2634 {
2635 offset |= (*entry & 0x7f) << shift;
2636 shift += 7;
2637 }
2638 while (*entry++ & 0x80);
2639
2640 vsp += 0x204 + (offset << 2);
2641 }
2642 else if (insn == 0xb3)
2643 {
2644 int start = *entry >> 4;
2645 int count = (*entry++) & 0xf;
2646 int i;
2647
2648 /* Only registers D0..D15 are valid here. */
2649 if (start + count >= 16)
2650 return NULL;
2651
2652 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2653 for (i = 0; i <= count; i++)
2654 {
2655 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2656 vsp += 8;
2657 }
2658
2659 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2660 vsp += 4;
2661 }
2662 else if ((insn & 0xf8) == 0xb8)
2663 {
2664 int count = insn & 0x7;
2665 int i;
2666
2667 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2668 for (i = 0; i <= count; i++)
2669 {
2670 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2671 vsp += 8;
2672 }
2673
2674 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2675 vsp += 4;
2676 }
2677 else if (insn == 0xc6)
2678 {
2679 int start = *entry >> 4;
2680 int count = (*entry++) & 0xf;
2681 int i;
2682
2683 /* Only registers WR0..WR15 are valid. */
2684 if (start + count >= 16)
2685 return NULL;
2686
2687 /* Pop iwmmx registers WR[start]..WR[start+count]. */
2688 for (i = 0; i <= count; i++)
2689 {
2690 cache->saved_regs[ARM_WR0_REGNUM + start + i].addr = vsp;
2691 vsp += 8;
2692 }
2693 }
2694 else if (insn == 0xc7)
2695 {
2696 int mask = *entry++;
2697 int i;
2698
2699 /* All-zero mask and mask >= 16 is "spare". */
2700 if (mask == 0 || mask >= 16)
2701 return NULL;
2702
2703 /* Pop iwmmx general-purpose registers WCGR0..WCGR3 under mask. */
2704 for (i = 0; i < 4; i++)
2705 if (mask & (1 << i))
2706 {
2707 cache->saved_regs[ARM_WCGR0_REGNUM + i].addr = vsp;
2708 vsp += 4;
2709 }
2710 }
2711 else if ((insn & 0xf8) == 0xc0)
2712 {
2713 int count = insn & 0x7;
2714 int i;
2715
2716 /* Pop iwmmx registers WR[10]..WR[10+count]. */
2717 for (i = 0; i <= count; i++)
2718 {
2719 cache->saved_regs[ARM_WR0_REGNUM + 10 + i].addr = vsp;
2720 vsp += 8;
2721 }
2722 }
2723 else if (insn == 0xc8)
2724 {
2725 int start = *entry >> 4;
2726 int count = (*entry++) & 0xf;
2727 int i;
2728
2729 /* Only registers D0..D31 are valid. */
2730 if (start + count >= 16)
2731 return NULL;
2732
2733 /* Pop VFP double-precision registers
2734 D[16+start]..D[16+start+count]. */
2735 for (i = 0; i <= count; i++)
2736 {
2737 cache->saved_regs[ARM_D0_REGNUM + 16 + start + i].addr = vsp;
2738 vsp += 8;
2739 }
2740 }
2741 else if (insn == 0xc9)
2742 {
2743 int start = *entry >> 4;
2744 int count = (*entry++) & 0xf;
2745 int i;
2746
2747 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2748 for (i = 0; i <= count; i++)
2749 {
2750 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2751 vsp += 8;
2752 }
2753 }
2754 else if ((insn & 0xf8) == 0xd0)
2755 {
2756 int count = insn & 0x7;
2757 int i;
2758
2759 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2760 for (i = 0; i <= count; i++)
2761 {
2762 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2763 vsp += 8;
2764 }
2765 }
2766 else
2767 {
2768 /* Everything else is "spare". */
2769 return NULL;
2770 }
2771 }
2772
2773 /* If we restore SP from a register, assume this was the frame register.
2774 Otherwise just fall back to SP as frame register. */
2775 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2776 cache->framereg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2777 else
2778 cache->framereg = ARM_SP_REGNUM;
2779
2780 /* Determine offset to previous frame. */
2781 cache->framesize
2782 = vsp - get_frame_register_unsigned (this_frame, cache->framereg);
2783
2784 /* We already got the previous SP. */
2785 cache->prev_sp = vsp;
2786
2787 return cache;
2788}
2789
2790/* Unwinding via ARM exception table entries. Note that the sniffer
2791 already computes a filled-in prologue cache, which is then used
2792 with the same arm_prologue_this_id and arm_prologue_prev_register
2793 routines also used for prologue-parsing based unwinding. */
2794
2795static int
2796arm_exidx_unwind_sniffer (const struct frame_unwind *self,
2797 struct frame_info *this_frame,
2798 void **this_prologue_cache)
2799{
2800 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2801 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2802 CORE_ADDR addr_in_block, exidx_region, func_start;
2803 struct arm_prologue_cache *cache;
2804 gdb_byte *entry;
2805
2806 /* See if we have an ARM exception table entry covering this address. */
2807 addr_in_block = get_frame_address_in_block (this_frame);
2808 entry = arm_find_exidx_entry (addr_in_block, &exidx_region);
2809 if (!entry)
2810 return 0;
2811
2812 /* The ARM exception table does not describe unwind information
2813 for arbitrary PC values, but is guaranteed to be correct only
2814 at call sites. We have to decide here whether we want to use
2815 ARM exception table information for this frame, or fall back
2816 to using prologue parsing. (Note that if we have DWARF CFI,
2817 this sniffer isn't even called -- CFI is always preferred.)
2818
2819 Before we make this decision, however, we check whether we
2820 actually have *symbol* information for the current frame.
2821 If not, prologue parsing would not work anyway, so we might
2822 as well use the exception table and hope for the best. */
2823 if (find_pc_partial_function (addr_in_block, NULL, &func_start, NULL))
2824 {
2825 int exc_valid = 0;
2826
2827 /* If the next frame is "normal", we are at a call site in this
2828 frame, so exception information is guaranteed to be valid. */
2829 if (get_next_frame (this_frame)
2830 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
2831 exc_valid = 1;
2832
2833 /* We also assume exception information is valid if we're currently
2834 blocked in a system call. The system library is supposed to
2835 ensure this, so that e.g. pthread cancellation works. */
2836 if (arm_frame_is_thumb (this_frame))
2837 {
2838 LONGEST insn;
2839
2840 if (safe_read_memory_integer (get_frame_pc (this_frame) - 2, 2,
2841 byte_order_for_code, &insn)
2842 && (insn & 0xff00) == 0xdf00 /* svc */)
2843 exc_valid = 1;
2844 }
2845 else
2846 {
2847 LONGEST insn;
2848
2849 if (safe_read_memory_integer (get_frame_pc (this_frame) - 4, 4,
2850 byte_order_for_code, &insn)
2851 && (insn & 0x0f000000) == 0x0f000000 /* svc */)
2852 exc_valid = 1;
2853 }
2854
2855 /* Bail out if we don't know that exception information is valid. */
2856 if (!exc_valid)
2857 return 0;
2858
2859 /* The ARM exception index does not mark the *end* of the region
2860 covered by the entry, and some functions will not have any entry.
2861 To correctly recognize the end of the covered region, the linker
2862 should have inserted dummy records with a CANTUNWIND marker.
2863
2864 Unfortunately, current versions of GNU ld do not reliably do
2865 this, and thus we may have found an incorrect entry above.
2866 As a (temporary) sanity check, we only use the entry if it
2867 lies *within* the bounds of the function. Note that this check
2868 might reject perfectly valid entries that just happen to cover
2869 multiple functions; therefore this check ought to be removed
2870 once the linker is fixed. */
2871 if (func_start > exidx_region)
2872 return 0;
2873 }
2874
2875 /* Decode the list of unwinding instructions into a prologue cache.
2876 Note that this may fail due to e.g. a "refuse to unwind" code. */
2877 cache = arm_exidx_fill_cache (this_frame, entry);
2878 if (!cache)
2879 return 0;
2880
2881 *this_prologue_cache = cache;
2882 return 1;
2883}
2884
2885struct frame_unwind arm_exidx_unwind = {
2886 NORMAL_FRAME,
2887 arm_prologue_this_id,
2888 arm_prologue_prev_register,
2889 NULL,
2890 arm_exidx_unwind_sniffer
2891};
2892
909cf6ea 2893static struct arm_prologue_cache *
a262aec2 2894arm_make_stub_cache (struct frame_info *this_frame)
909cf6ea 2895{
909cf6ea 2896 struct arm_prologue_cache *cache;
909cf6ea 2897
35d5d4ee 2898 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
a262aec2 2899 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
909cf6ea 2900
a262aec2 2901 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
909cf6ea
DJ
2902
2903 return cache;
2904}
2905
2906/* Our frame ID for a stub frame is the current SP and LR. */
2907
2908static void
a262aec2 2909arm_stub_this_id (struct frame_info *this_frame,
909cf6ea
DJ
2910 void **this_cache,
2911 struct frame_id *this_id)
2912{
2913 struct arm_prologue_cache *cache;
2914
2915 if (*this_cache == NULL)
a262aec2 2916 *this_cache = arm_make_stub_cache (this_frame);
909cf6ea
DJ
2917 cache = *this_cache;
2918
a262aec2 2919 *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
909cf6ea
DJ
2920}
2921
a262aec2
DJ
2922static int
2923arm_stub_unwind_sniffer (const struct frame_unwind *self,
2924 struct frame_info *this_frame,
2925 void **this_prologue_cache)
909cf6ea 2926{
93d42b30 2927 CORE_ADDR addr_in_block;
909cf6ea
DJ
2928 char dummy[4];
2929
a262aec2 2930 addr_in_block = get_frame_address_in_block (this_frame);
93d42b30 2931 if (in_plt_section (addr_in_block, NULL)
fc36e839
DE
2932 /* We also use the stub winder if the target memory is unreadable
2933 to avoid having the prologue unwinder trying to read it. */
a262aec2
DJ
2934 || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
2935 return 1;
909cf6ea 2936
a262aec2 2937 return 0;
909cf6ea
DJ
2938}
2939
a262aec2
DJ
2940struct frame_unwind arm_stub_unwind = {
2941 NORMAL_FRAME,
2942 arm_stub_this_id,
2943 arm_prologue_prev_register,
2944 NULL,
2945 arm_stub_unwind_sniffer
2946};
2947
24de872b 2948static CORE_ADDR
a262aec2 2949arm_normal_frame_base (struct frame_info *this_frame, void **this_cache)
24de872b
DJ
2950{
2951 struct arm_prologue_cache *cache;
2952
eb5492fa 2953 if (*this_cache == NULL)
a262aec2 2954 *this_cache = arm_make_prologue_cache (this_frame);
eb5492fa
DJ
2955 cache = *this_cache;
2956
4be43953 2957 return cache->prev_sp - cache->framesize;
24de872b
DJ
2958}
2959
eb5492fa
DJ
2960struct frame_base arm_normal_base = {
2961 &arm_prologue_unwind,
2962 arm_normal_frame_base,
2963 arm_normal_frame_base,
2964 arm_normal_frame_base
2965};
2966
a262aec2 2967/* Assuming THIS_FRAME is a dummy, return the frame ID of that
eb5492fa
DJ
2968 dummy frame. The frame ID's base needs to match the TOS value
2969 saved by save_dummy_frame_tos() and returned from
2970 arm_push_dummy_call, and the PC needs to match the dummy frame's
2971 breakpoint. */
c906108c 2972
eb5492fa 2973static struct frame_id
a262aec2 2974arm_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
c906108c 2975{
0963b4bd
MS
2976 return frame_id_build (get_frame_register_unsigned (this_frame,
2977 ARM_SP_REGNUM),
a262aec2 2978 get_frame_pc (this_frame));
eb5492fa 2979}
c3b4394c 2980
eb5492fa
DJ
2981/* Given THIS_FRAME, find the previous frame's resume PC (which will
2982 be used to construct the previous frame's ID, after looking up the
2983 containing function). */
c3b4394c 2984
eb5492fa
DJ
2985static CORE_ADDR
2986arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
2987{
2988 CORE_ADDR pc;
2989 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
24568a2c 2990 return arm_addr_bits_remove (gdbarch, pc);
eb5492fa
DJ
2991}
2992
2993static CORE_ADDR
2994arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
2995{
2996 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
c906108c
SS
2997}
2998
b39cc962
DJ
2999static struct value *
3000arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
3001 int regnum)
3002{
24568a2c 3003 struct gdbarch * gdbarch = get_frame_arch (this_frame);
b39cc962 3004 CORE_ADDR lr, cpsr;
9779414d 3005 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
b39cc962
DJ
3006
3007 switch (regnum)
3008 {
3009 case ARM_PC_REGNUM:
3010 /* The PC is normally copied from the return column, which
3011 describes saves of LR. However, that version may have an
3012 extra bit set to indicate Thumb state. The bit is not
3013 part of the PC. */
3014 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3015 return frame_unwind_got_constant (this_frame, regnum,
24568a2c 3016 arm_addr_bits_remove (gdbarch, lr));
b39cc962
DJ
3017
3018 case ARM_PS_REGNUM:
3019 /* Reconstruct the T bit; see arm_prologue_prev_register for details. */
ca38c58e 3020 cpsr = get_frame_register_unsigned (this_frame, regnum);
b39cc962
DJ
3021 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3022 if (IS_THUMB_ADDR (lr))
9779414d 3023 cpsr |= t_bit;
b39cc962 3024 else
9779414d 3025 cpsr &= ~t_bit;
ca38c58e 3026 return frame_unwind_got_constant (this_frame, regnum, cpsr);
b39cc962
DJ
3027
3028 default:
3029 internal_error (__FILE__, __LINE__,
3030 _("Unexpected register %d"), regnum);
3031 }
3032}
3033
3034static void
3035arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3036 struct dwarf2_frame_state_reg *reg,
3037 struct frame_info *this_frame)
3038{
3039 switch (regnum)
3040 {
3041 case ARM_PC_REGNUM:
3042 case ARM_PS_REGNUM:
3043 reg->how = DWARF2_FRAME_REG_FN;
3044 reg->loc.fn = arm_dwarf2_prev_register;
3045 break;
3046 case ARM_SP_REGNUM:
3047 reg->how = DWARF2_FRAME_REG_CFA;
3048 break;
3049 }
3050}
3051
4024ca99
UW
3052/* Return true if we are in the function's epilogue, i.e. after the
3053 instruction that destroyed the function's stack frame. */
3054
3055static int
3056thumb_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
3057{
3058 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3059 unsigned int insn, insn2;
3060 int found_return = 0, found_stack_adjust = 0;
3061 CORE_ADDR func_start, func_end;
3062 CORE_ADDR scan_pc;
3063 gdb_byte buf[4];
3064
3065 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3066 return 0;
3067
3068 /* The epilogue is a sequence of instructions along the following lines:
3069
3070 - add stack frame size to SP or FP
3071 - [if frame pointer used] restore SP from FP
3072 - restore registers from SP [may include PC]
3073 - a return-type instruction [if PC wasn't already restored]
3074
3075 In a first pass, we scan forward from the current PC and verify the
3076 instructions we find as compatible with this sequence, ending in a
3077 return instruction.
3078
3079 However, this is not sufficient to distinguish indirect function calls
3080 within a function from indirect tail calls in the epilogue in some cases.
3081 Therefore, if we didn't already find any SP-changing instruction during
3082 forward scan, we add a backward scanning heuristic to ensure we actually
3083 are in the epilogue. */
3084
3085 scan_pc = pc;
3086 while (scan_pc < func_end && !found_return)
3087 {
3088 if (target_read_memory (scan_pc, buf, 2))
3089 break;
3090
3091 scan_pc += 2;
3092 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3093
3094 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
3095 found_return = 1;
3096 else if (insn == 0x46f7) /* mov pc, lr */
3097 found_return = 1;
3098 else if (insn == 0x46bd) /* mov sp, r7 */
3099 found_stack_adjust = 1;
3100 else if ((insn & 0xff00) == 0xb000) /* add sp, imm or sub sp, imm */
3101 found_stack_adjust = 1;
3102 else if ((insn & 0xfe00) == 0xbc00) /* pop <registers> */
3103 {
3104 found_stack_adjust = 1;
3105 if (insn & 0x0100) /* <registers> include PC. */
3106 found_return = 1;
3107 }
3108 else if ((insn & 0xe000) == 0xe000) /* 32-bit Thumb-2 instruction */
3109 {
3110 if (target_read_memory (scan_pc, buf, 2))
3111 break;
3112
3113 scan_pc += 2;
3114 insn2 = extract_unsigned_integer (buf, 2, byte_order_for_code);
3115
3116 if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3117 {
3118 found_stack_adjust = 1;
3119 if (insn2 & 0x8000) /* <registers> include PC. */
3120 found_return = 1;
3121 }
3122 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3123 && (insn2 & 0x0fff) == 0x0b04)
3124 {
3125 found_stack_adjust = 1;
3126 if ((insn2 & 0xf000) == 0xf000) /* <Rt> is PC. */
3127 found_return = 1;
3128 }
3129 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3130 && (insn2 & 0x0e00) == 0x0a00)
3131 found_stack_adjust = 1;
3132 else
3133 break;
3134 }
3135 else
3136 break;
3137 }
3138
3139 if (!found_return)
3140 return 0;
3141
3142 /* Since any instruction in the epilogue sequence, with the possible
3143 exception of return itself, updates the stack pointer, we need to
3144 scan backwards for at most one instruction. Try either a 16-bit or
3145 a 32-bit instruction. This is just a heuristic, so we do not worry
0963b4bd 3146 too much about false positives. */
4024ca99
UW
3147
3148 if (!found_stack_adjust)
3149 {
3150 if (pc - 4 < func_start)
3151 return 0;
3152 if (target_read_memory (pc - 4, buf, 4))
3153 return 0;
3154
3155 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3156 insn2 = extract_unsigned_integer (buf + 2, 2, byte_order_for_code);
3157
3158 if (insn2 == 0x46bd) /* mov sp, r7 */
3159 found_stack_adjust = 1;
3160 else if ((insn2 & 0xff00) == 0xb000) /* add sp, imm or sub sp, imm */
3161 found_stack_adjust = 1;
3162 else if ((insn2 & 0xff00) == 0xbc00) /* pop <registers> without PC */
3163 found_stack_adjust = 1;
3164 else if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3165 found_stack_adjust = 1;
3166 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3167 && (insn2 & 0x0fff) == 0x0b04)
3168 found_stack_adjust = 1;
3169 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3170 && (insn2 & 0x0e00) == 0x0a00)
3171 found_stack_adjust = 1;
3172 }
3173
3174 return found_stack_adjust;
3175}
3176
3177/* Return true if we are in the function's epilogue, i.e. after the
3178 instruction that destroyed the function's stack frame. */
3179
3180static int
3181arm_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
3182{
3183 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3184 unsigned int insn;
3185 int found_return, found_stack_adjust;
3186 CORE_ADDR func_start, func_end;
3187
3188 if (arm_pc_is_thumb (gdbarch, pc))
3189 return thumb_in_function_epilogue_p (gdbarch, pc);
3190
3191 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3192 return 0;
3193
3194 /* We are in the epilogue if the previous instruction was a stack
3195 adjustment and the next instruction is a possible return (bx, mov
3196 pc, or pop). We could have to scan backwards to find the stack
3197 adjustment, or forwards to find the return, but this is a decent
3198 approximation. First scan forwards. */
3199
3200 found_return = 0;
3201 insn = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
3202 if (bits (insn, 28, 31) != INST_NV)
3203 {
3204 if ((insn & 0x0ffffff0) == 0x012fff10)
3205 /* BX. */
3206 found_return = 1;
3207 else if ((insn & 0x0ffffff0) == 0x01a0f000)
3208 /* MOV PC. */
3209 found_return = 1;
3210 else if ((insn & 0x0fff0000) == 0x08bd0000
3211 && (insn & 0x0000c000) != 0)
3212 /* POP (LDMIA), including PC or LR. */
3213 found_return = 1;
3214 }
3215
3216 if (!found_return)
3217 return 0;
3218
3219 /* Scan backwards. This is just a heuristic, so do not worry about
3220 false positives from mode changes. */
3221
3222 if (pc < func_start + 4)
3223 return 0;
3224
73c964d6 3225 found_stack_adjust = 0;
4024ca99
UW
3226 insn = read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
3227 if (bits (insn, 28, 31) != INST_NV)
3228 {
3229 if ((insn & 0x0df0f000) == 0x0080d000)
3230 /* ADD SP (register or immediate). */
3231 found_stack_adjust = 1;
3232 else if ((insn & 0x0df0f000) == 0x0040d000)
3233 /* SUB SP (register or immediate). */
3234 found_stack_adjust = 1;
3235 else if ((insn & 0x0ffffff0) == 0x01a0d000)
3236 /* MOV SP. */
77bc0675 3237 found_stack_adjust = 1;
4024ca99
UW
3238 else if ((insn & 0x0fff0000) == 0x08bd0000)
3239 /* POP (LDMIA). */
3240 found_stack_adjust = 1;
3241 }
3242
3243 if (found_stack_adjust)
3244 return 1;
3245
3246 return 0;
3247}
3248
3249
2dd604e7
RE
3250/* When arguments must be pushed onto the stack, they go on in reverse
3251 order. The code below implements a FILO (stack) to do this. */
3252
3253struct stack_item
3254{
3255 int len;
3256 struct stack_item *prev;
3257 void *data;
3258};
3259
3260static struct stack_item *
8c6363cf 3261push_stack_item (struct stack_item *prev, const void *contents, int len)
2dd604e7
RE
3262{
3263 struct stack_item *si;
3264 si = xmalloc (sizeof (struct stack_item));
226c7fbc 3265 si->data = xmalloc (len);
2dd604e7
RE
3266 si->len = len;
3267 si->prev = prev;
3268 memcpy (si->data, contents, len);
3269 return si;
3270}
3271
3272static struct stack_item *
3273pop_stack_item (struct stack_item *si)
3274{
3275 struct stack_item *dead = si;
3276 si = si->prev;
3277 xfree (dead->data);
3278 xfree (dead);
3279 return si;
3280}
3281
2af48f68
PB
3282
3283/* Return the alignment (in bytes) of the given type. */
3284
3285static int
3286arm_type_align (struct type *t)
3287{
3288 int n;
3289 int align;
3290 int falign;
3291
3292 t = check_typedef (t);
3293 switch (TYPE_CODE (t))
3294 {
3295 default:
3296 /* Should never happen. */
3297 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
3298 return 4;
3299
3300 case TYPE_CODE_PTR:
3301 case TYPE_CODE_ENUM:
3302 case TYPE_CODE_INT:
3303 case TYPE_CODE_FLT:
3304 case TYPE_CODE_SET:
3305 case TYPE_CODE_RANGE:
3306 case TYPE_CODE_BITSTRING:
3307 case TYPE_CODE_REF:
3308 case TYPE_CODE_CHAR:
3309 case TYPE_CODE_BOOL:
3310 return TYPE_LENGTH (t);
3311
3312 case TYPE_CODE_ARRAY:
3313 case TYPE_CODE_COMPLEX:
3314 /* TODO: What about vector types? */
3315 return arm_type_align (TYPE_TARGET_TYPE (t));
3316
3317 case TYPE_CODE_STRUCT:
3318 case TYPE_CODE_UNION:
3319 align = 1;
3320 for (n = 0; n < TYPE_NFIELDS (t); n++)
3321 {
3322 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
3323 if (falign > align)
3324 align = falign;
3325 }
3326 return align;
3327 }
3328}
3329
90445bd3
DJ
3330/* Possible base types for a candidate for passing and returning in
3331 VFP registers. */
3332
3333enum arm_vfp_cprc_base_type
3334{
3335 VFP_CPRC_UNKNOWN,
3336 VFP_CPRC_SINGLE,
3337 VFP_CPRC_DOUBLE,
3338 VFP_CPRC_VEC64,
3339 VFP_CPRC_VEC128
3340};
3341
3342/* The length of one element of base type B. */
3343
3344static unsigned
3345arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b)
3346{
3347 switch (b)
3348 {
3349 case VFP_CPRC_SINGLE:
3350 return 4;
3351 case VFP_CPRC_DOUBLE:
3352 return 8;
3353 case VFP_CPRC_VEC64:
3354 return 8;
3355 case VFP_CPRC_VEC128:
3356 return 16;
3357 default:
3358 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3359 (int) b);
3360 }
3361}
3362
3363/* The character ('s', 'd' or 'q') for the type of VFP register used
3364 for passing base type B. */
3365
3366static int
3367arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b)
3368{
3369 switch (b)
3370 {
3371 case VFP_CPRC_SINGLE:
3372 return 's';
3373 case VFP_CPRC_DOUBLE:
3374 return 'd';
3375 case VFP_CPRC_VEC64:
3376 return 'd';
3377 case VFP_CPRC_VEC128:
3378 return 'q';
3379 default:
3380 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3381 (int) b);
3382 }
3383}
3384
3385/* Determine whether T may be part of a candidate for passing and
3386 returning in VFP registers, ignoring the limit on the total number
3387 of components. If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the
3388 classification of the first valid component found; if it is not
3389 VFP_CPRC_UNKNOWN, all components must have the same classification
3390 as *BASE_TYPE. If it is found that T contains a type not permitted
3391 for passing and returning in VFP registers, a type differently
3392 classified from *BASE_TYPE, or two types differently classified
3393 from each other, return -1, otherwise return the total number of
3394 base-type elements found (possibly 0 in an empty structure or
3395 array). Vectors and complex types are not currently supported,
3396 matching the generic AAPCS support. */
3397
3398static int
3399arm_vfp_cprc_sub_candidate (struct type *t,
3400 enum arm_vfp_cprc_base_type *base_type)
3401{
3402 t = check_typedef (t);
3403 switch (TYPE_CODE (t))
3404 {
3405 case TYPE_CODE_FLT:
3406 switch (TYPE_LENGTH (t))
3407 {
3408 case 4:
3409 if (*base_type == VFP_CPRC_UNKNOWN)
3410 *base_type = VFP_CPRC_SINGLE;
3411 else if (*base_type != VFP_CPRC_SINGLE)
3412 return -1;
3413 return 1;
3414
3415 case 8:
3416 if (*base_type == VFP_CPRC_UNKNOWN)
3417 *base_type = VFP_CPRC_DOUBLE;
3418 else if (*base_type != VFP_CPRC_DOUBLE)
3419 return -1;
3420 return 1;
3421
3422 default:
3423 return -1;
3424 }
3425 break;
3426
3427 case TYPE_CODE_ARRAY:
3428 {
3429 int count;
3430 unsigned unitlen;
3431 count = arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t), base_type);
3432 if (count == -1)
3433 return -1;
3434 if (TYPE_LENGTH (t) == 0)
3435 {
3436 gdb_assert (count == 0);
3437 return 0;
3438 }
3439 else if (count == 0)
3440 return -1;
3441 unitlen = arm_vfp_cprc_unit_length (*base_type);
3442 gdb_assert ((TYPE_LENGTH (t) % unitlen) == 0);
3443 return TYPE_LENGTH (t) / unitlen;
3444 }
3445 break;
3446
3447 case TYPE_CODE_STRUCT:
3448 {
3449 int count = 0;
3450 unsigned unitlen;
3451 int i;
3452 for (i = 0; i < TYPE_NFIELDS (t); i++)
3453 {
3454 int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3455 base_type);
3456 if (sub_count == -1)
3457 return -1;
3458 count += sub_count;
3459 }
3460 if (TYPE_LENGTH (t) == 0)
3461 {
3462 gdb_assert (count == 0);
3463 return 0;
3464 }
3465 else if (count == 0)
3466 return -1;
3467 unitlen = arm_vfp_cprc_unit_length (*base_type);
3468 if (TYPE_LENGTH (t) != unitlen * count)
3469 return -1;
3470 return count;
3471 }
3472
3473 case TYPE_CODE_UNION:
3474 {
3475 int count = 0;
3476 unsigned unitlen;
3477 int i;
3478 for (i = 0; i < TYPE_NFIELDS (t); i++)
3479 {
3480 int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3481 base_type);
3482 if (sub_count == -1)
3483 return -1;
3484 count = (count > sub_count ? count : sub_count);
3485 }
3486 if (TYPE_LENGTH (t) == 0)
3487 {
3488 gdb_assert (count == 0);
3489 return 0;
3490 }
3491 else if (count == 0)
3492 return -1;
3493 unitlen = arm_vfp_cprc_unit_length (*base_type);
3494 if (TYPE_LENGTH (t) != unitlen * count)
3495 return -1;
3496 return count;
3497 }
3498
3499 default:
3500 break;
3501 }
3502
3503 return -1;
3504}
3505
3506/* Determine whether T is a VFP co-processor register candidate (CPRC)
3507 if passed to or returned from a non-variadic function with the VFP
3508 ABI in effect. Return 1 if it is, 0 otherwise. If it is, set
3509 *BASE_TYPE to the base type for T and *COUNT to the number of
3510 elements of that base type before returning. */
3511
3512static int
3513arm_vfp_call_candidate (struct type *t, enum arm_vfp_cprc_base_type *base_type,
3514 int *count)
3515{
3516 enum arm_vfp_cprc_base_type b = VFP_CPRC_UNKNOWN;
3517 int c = arm_vfp_cprc_sub_candidate (t, &b);
3518 if (c <= 0 || c > 4)
3519 return 0;
3520 *base_type = b;
3521 *count = c;
3522 return 1;
3523}
3524
3525/* Return 1 if the VFP ABI should be used for passing arguments to and
3526 returning values from a function of type FUNC_TYPE, 0
3527 otherwise. */
3528
3529static int
3530arm_vfp_abi_for_function (struct gdbarch *gdbarch, struct type *func_type)
3531{
3532 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3533 /* Variadic functions always use the base ABI. Assume that functions
3534 without debug info are not variadic. */
3535 if (func_type && TYPE_VARARGS (check_typedef (func_type)))
3536 return 0;
3537 /* The VFP ABI is only supported as a variant of AAPCS. */
3538 if (tdep->arm_abi != ARM_ABI_AAPCS)
3539 return 0;
3540 return gdbarch_tdep (gdbarch)->fp_model == ARM_FLOAT_VFP;
3541}
3542
3543/* We currently only support passing parameters in integer registers, which
3544 conforms with GCC's default model, and VFP argument passing following
3545 the VFP variant of AAPCS. Several other variants exist and
2dd604e7
RE
3546 we should probably support some of them based on the selected ABI. */
3547
3548static CORE_ADDR
7d9b040b 3549arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
3550 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3551 struct value **args, CORE_ADDR sp, int struct_return,
3552 CORE_ADDR struct_addr)
2dd604e7 3553{
e17a4113 3554 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2dd604e7
RE
3555 int argnum;
3556 int argreg;
3557 int nstack;
3558 struct stack_item *si = NULL;
90445bd3
DJ
3559 int use_vfp_abi;
3560 struct type *ftype;
3561 unsigned vfp_regs_free = (1 << 16) - 1;
3562
3563 /* Determine the type of this function and whether the VFP ABI
3564 applies. */
3565 ftype = check_typedef (value_type (function));
3566 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
3567 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
3568 use_vfp_abi = arm_vfp_abi_for_function (gdbarch, ftype);
2dd604e7 3569
6a65450a
AC
3570 /* Set the return address. For the ARM, the return breakpoint is
3571 always at BP_ADDR. */
9779414d 3572 if (arm_pc_is_thumb (gdbarch, bp_addr))
9dca5578 3573 bp_addr |= 1;
6a65450a 3574 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
2dd604e7
RE
3575
3576 /* Walk through the list of args and determine how large a temporary
3577 stack is required. Need to take care here as structs may be
3578 passed on the stack, and we have to to push them. */
3579 nstack = 0;
3580
3581 argreg = ARM_A1_REGNUM;
3582 nstack = 0;
3583
2dd604e7
RE
3584 /* The struct_return pointer occupies the first parameter
3585 passing register. */
3586 if (struct_return)
3587 {
3588 if (arm_debug)
5af949e3 3589 fprintf_unfiltered (gdb_stdlog, "struct return in %s = %s\n",
2af46ca0 3590 gdbarch_register_name (gdbarch, argreg),
5af949e3 3591 paddress (gdbarch, struct_addr));
2dd604e7
RE
3592 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
3593 argreg++;
3594 }
3595
3596 for (argnum = 0; argnum < nargs; argnum++)
3597 {
3598 int len;
3599 struct type *arg_type;
3600 struct type *target_type;
3601 enum type_code typecode;
8c6363cf 3602 const bfd_byte *val;
2af48f68 3603 int align;
90445bd3
DJ
3604 enum arm_vfp_cprc_base_type vfp_base_type;
3605 int vfp_base_count;
3606 int may_use_core_reg = 1;
2dd604e7 3607
df407dfe 3608 arg_type = check_typedef (value_type (args[argnum]));
2dd604e7
RE
3609 len = TYPE_LENGTH (arg_type);
3610 target_type = TYPE_TARGET_TYPE (arg_type);
3611 typecode = TYPE_CODE (arg_type);
8c6363cf 3612 val = value_contents (args[argnum]);
2dd604e7 3613
2af48f68
PB
3614 align = arm_type_align (arg_type);
3615 /* Round alignment up to a whole number of words. */
3616 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
3617 /* Different ABIs have different maximum alignments. */
3618 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
3619 {
3620 /* The APCS ABI only requires word alignment. */
3621 align = INT_REGISTER_SIZE;
3622 }
3623 else
3624 {
3625 /* The AAPCS requires at most doubleword alignment. */
3626 if (align > INT_REGISTER_SIZE * 2)
3627 align = INT_REGISTER_SIZE * 2;
3628 }
3629
90445bd3
DJ
3630 if (use_vfp_abi
3631 && arm_vfp_call_candidate (arg_type, &vfp_base_type,
3632 &vfp_base_count))
3633 {
3634 int regno;
3635 int unit_length;
3636 int shift;
3637 unsigned mask;
3638
3639 /* Because this is a CPRC it cannot go in a core register or
3640 cause a core register to be skipped for alignment.
3641 Either it goes in VFP registers and the rest of this loop
3642 iteration is skipped for this argument, or it goes on the
3643 stack (and the stack alignment code is correct for this
3644 case). */
3645 may_use_core_reg = 0;
3646
3647 unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
3648 shift = unit_length / 4;
3649 mask = (1 << (shift * vfp_base_count)) - 1;
3650 for (regno = 0; regno < 16; regno += shift)
3651 if (((vfp_regs_free >> regno) & mask) == mask)
3652 break;
3653
3654 if (regno < 16)
3655 {
3656 int reg_char;
3657 int reg_scaled;
3658 int i;
3659
3660 vfp_regs_free &= ~(mask << regno);
3661 reg_scaled = regno / shift;
3662 reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
3663 for (i = 0; i < vfp_base_count; i++)
3664 {
3665 char name_buf[4];
3666 int regnum;
58d6951d
DJ
3667 if (reg_char == 'q')
3668 arm_neon_quad_write (gdbarch, regcache, reg_scaled + i,
90445bd3 3669 val + i * unit_length);
58d6951d
DJ
3670 else
3671 {
3672 sprintf (name_buf, "%c%d", reg_char, reg_scaled + i);
3673 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
3674 strlen (name_buf));
3675 regcache_cooked_write (regcache, regnum,
3676 val + i * unit_length);
3677 }
90445bd3
DJ
3678 }
3679 continue;
3680 }
3681 else
3682 {
3683 /* This CPRC could not go in VFP registers, so all VFP
3684 registers are now marked as used. */
3685 vfp_regs_free = 0;
3686 }
3687 }
3688
2af48f68
PB
3689 /* Push stack padding for dowubleword alignment. */
3690 if (nstack & (align - 1))
3691 {
3692 si = push_stack_item (si, val, INT_REGISTER_SIZE);
3693 nstack += INT_REGISTER_SIZE;
3694 }
3695
3696 /* Doubleword aligned quantities must go in even register pairs. */
90445bd3
DJ
3697 if (may_use_core_reg
3698 && argreg <= ARM_LAST_ARG_REGNUM
2af48f68
PB
3699 && align > INT_REGISTER_SIZE
3700 && argreg & 1)
3701 argreg++;
3702
2dd604e7
RE
3703 /* If the argument is a pointer to a function, and it is a
3704 Thumb function, create a LOCAL copy of the value and set
3705 the THUMB bit in it. */
3706 if (TYPE_CODE_PTR == typecode
3707 && target_type != NULL
f96b8fa0 3708 && TYPE_CODE_FUNC == TYPE_CODE (check_typedef (target_type)))
2dd604e7 3709 {
e17a4113 3710 CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order);
9779414d 3711 if (arm_pc_is_thumb (gdbarch, regval))
2dd604e7 3712 {
8c6363cf
TT
3713 bfd_byte *copy = alloca (len);
3714 store_unsigned_integer (copy, len, byte_order,
e17a4113 3715 MAKE_THUMB_ADDR (regval));
8c6363cf 3716 val = copy;
2dd604e7
RE
3717 }
3718 }
3719
3720 /* Copy the argument to general registers or the stack in
3721 register-sized pieces. Large arguments are split between
3722 registers and stack. */
3723 while (len > 0)
3724 {
f0c9063c 3725 int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
2dd604e7 3726
90445bd3 3727 if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM)
2dd604e7
RE
3728 {
3729 /* The argument is being passed in a general purpose
3730 register. */
e17a4113
UW
3731 CORE_ADDR regval
3732 = extract_unsigned_integer (val, partial_len, byte_order);
3733 if (byte_order == BFD_ENDIAN_BIG)
8bf8793c 3734 regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
2dd604e7
RE
3735 if (arm_debug)
3736 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
c9f4d572
UW
3737 argnum,
3738 gdbarch_register_name
2af46ca0 3739 (gdbarch, argreg),
f0c9063c 3740 phex (regval, INT_REGISTER_SIZE));
2dd604e7
RE
3741 regcache_cooked_write_unsigned (regcache, argreg, regval);
3742 argreg++;
3743 }
3744 else
3745 {
3746 /* Push the arguments onto the stack. */
3747 if (arm_debug)
3748 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
3749 argnum, nstack);
f0c9063c
UW
3750 si = push_stack_item (si, val, INT_REGISTER_SIZE);
3751 nstack += INT_REGISTER_SIZE;
2dd604e7
RE
3752 }
3753
3754 len -= partial_len;
3755 val += partial_len;
3756 }
3757 }
3758 /* If we have an odd number of words to push, then decrement the stack
3759 by one word now, so first stack argument will be dword aligned. */
3760 if (nstack & 4)
3761 sp -= 4;
3762
3763 while (si)
3764 {
3765 sp -= si->len;
3766 write_memory (sp, si->data, si->len);
3767 si = pop_stack_item (si);
3768 }
3769
3770 /* Finally, update teh SP register. */
3771 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
3772
3773 return sp;
3774}
3775
f53f0d0b
PB
3776
3777/* Always align the frame to an 8-byte boundary. This is required on
3778 some platforms and harmless on the rest. */
3779
3780static CORE_ADDR
3781arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3782{
3783 /* Align the stack to eight bytes. */
3784 return sp & ~ (CORE_ADDR) 7;
3785}
3786
c906108c 3787static void
ed9a39eb 3788print_fpu_flags (int flags)
c906108c 3789{
c5aa993b
JM
3790 if (flags & (1 << 0))
3791 fputs ("IVO ", stdout);
3792 if (flags & (1 << 1))
3793 fputs ("DVZ ", stdout);
3794 if (flags & (1 << 2))
3795 fputs ("OFL ", stdout);
3796 if (flags & (1 << 3))
3797 fputs ("UFL ", stdout);
3798 if (flags & (1 << 4))
3799 fputs ("INX ", stdout);
3800 putchar ('\n');
c906108c
SS
3801}
3802
5e74b15c
RE
3803/* Print interesting information about the floating point processor
3804 (if present) or emulator. */
34e8f22d 3805static void
d855c300 3806arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 3807 struct frame_info *frame, const char *args)
c906108c 3808{
9c9acae0 3809 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
c5aa993b
JM
3810 int type;
3811
3812 type = (status >> 24) & 127;
edefbb7c
AC
3813 if (status & (1 << 31))
3814 printf (_("Hardware FPU type %d\n"), type);
3815 else
3816 printf (_("Software FPU type %d\n"), type);
3817 /* i18n: [floating point unit] mask */
3818 fputs (_("mask: "), stdout);
c5aa993b 3819 print_fpu_flags (status >> 16);
edefbb7c
AC
3820 /* i18n: [floating point unit] flags */
3821 fputs (_("flags: "), stdout);
c5aa993b 3822 print_fpu_flags (status);
c906108c
SS
3823}
3824
27067745
UW
3825/* Construct the ARM extended floating point type. */
3826static struct type *
3827arm_ext_type (struct gdbarch *gdbarch)
3828{
3829 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3830
3831 if (!tdep->arm_ext_type)
3832 tdep->arm_ext_type
e9bb382b 3833 = arch_float_type (gdbarch, -1, "builtin_type_arm_ext",
27067745
UW
3834 floatformats_arm_ext);
3835
3836 return tdep->arm_ext_type;
3837}
3838
58d6951d
DJ
3839static struct type *
3840arm_neon_double_type (struct gdbarch *gdbarch)
3841{
3842 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3843
3844 if (tdep->neon_double_type == NULL)
3845 {
3846 struct type *t, *elem;
3847
3848 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_d",
3849 TYPE_CODE_UNION);
3850 elem = builtin_type (gdbarch)->builtin_uint8;
3851 append_composite_type_field (t, "u8", init_vector_type (elem, 8));
3852 elem = builtin_type (gdbarch)->builtin_uint16;
3853 append_composite_type_field (t, "u16", init_vector_type (elem, 4));
3854 elem = builtin_type (gdbarch)->builtin_uint32;
3855 append_composite_type_field (t, "u32", init_vector_type (elem, 2));
3856 elem = builtin_type (gdbarch)->builtin_uint64;
3857 append_composite_type_field (t, "u64", elem);
3858 elem = builtin_type (gdbarch)->builtin_float;
3859 append_composite_type_field (t, "f32", init_vector_type (elem, 2));
3860 elem = builtin_type (gdbarch)->builtin_double;
3861 append_composite_type_field (t, "f64", elem);
3862
3863 TYPE_VECTOR (t) = 1;
3864 TYPE_NAME (t) = "neon_d";
3865 tdep->neon_double_type = t;
3866 }
3867
3868 return tdep->neon_double_type;
3869}
3870
3871/* FIXME: The vector types are not correctly ordered on big-endian
3872 targets. Just as s0 is the low bits of d0, d0[0] is also the low
3873 bits of d0 - regardless of what unit size is being held in d0. So
3874 the offset of the first uint8 in d0 is 7, but the offset of the
3875 first float is 4. This code works as-is for little-endian
3876 targets. */
3877
3878static struct type *
3879arm_neon_quad_type (struct gdbarch *gdbarch)
3880{
3881 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3882
3883 if (tdep->neon_quad_type == NULL)
3884 {
3885 struct type *t, *elem;
3886
3887 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_q",
3888 TYPE_CODE_UNION);
3889 elem = builtin_type (gdbarch)->builtin_uint8;
3890 append_composite_type_field (t, "u8", init_vector_type (elem, 16));
3891 elem = builtin_type (gdbarch)->builtin_uint16;
3892 append_composite_type_field (t, "u16", init_vector_type (elem, 8));
3893 elem = builtin_type (gdbarch)->builtin_uint32;
3894 append_composite_type_field (t, "u32", init_vector_type (elem, 4));
3895 elem = builtin_type (gdbarch)->builtin_uint64;
3896 append_composite_type_field (t, "u64", init_vector_type (elem, 2));
3897 elem = builtin_type (gdbarch)->builtin_float;
3898 append_composite_type_field (t, "f32", init_vector_type (elem, 4));
3899 elem = builtin_type (gdbarch)->builtin_double;
3900 append_composite_type_field (t, "f64", init_vector_type (elem, 2));
3901
3902 TYPE_VECTOR (t) = 1;
3903 TYPE_NAME (t) = "neon_q";
3904 tdep->neon_quad_type = t;
3905 }
3906
3907 return tdep->neon_quad_type;
3908}
3909
34e8f22d
RE
3910/* Return the GDB type object for the "standard" data type of data in
3911 register N. */
3912
3913static struct type *
7a5ea0d4 3914arm_register_type (struct gdbarch *gdbarch, int regnum)
032758dc 3915{
58d6951d
DJ
3916 int num_regs = gdbarch_num_regs (gdbarch);
3917
3918 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
3919 && regnum >= num_regs && regnum < num_regs + 32)
3920 return builtin_type (gdbarch)->builtin_float;
3921
3922 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
3923 && regnum >= num_regs + 32 && regnum < num_regs + 32 + 16)
3924 return arm_neon_quad_type (gdbarch);
3925
3926 /* If the target description has register information, we are only
3927 in this function so that we can override the types of
3928 double-precision registers for NEON. */
3929 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
3930 {
3931 struct type *t = tdesc_register_type (gdbarch, regnum);
3932
3933 if (regnum >= ARM_D0_REGNUM && regnum < ARM_D0_REGNUM + 32
3934 && TYPE_CODE (t) == TYPE_CODE_FLT
3935 && gdbarch_tdep (gdbarch)->have_neon)
3936 return arm_neon_double_type (gdbarch);
3937 else
3938 return t;
3939 }
3940
34e8f22d 3941 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
58d6951d
DJ
3942 {
3943 if (!gdbarch_tdep (gdbarch)->have_fpa_registers)
3944 return builtin_type (gdbarch)->builtin_void;
3945
3946 return arm_ext_type (gdbarch);
3947 }
e4c16157 3948 else if (regnum == ARM_SP_REGNUM)
0dfff4cb 3949 return builtin_type (gdbarch)->builtin_data_ptr;
e4c16157 3950 else if (regnum == ARM_PC_REGNUM)
0dfff4cb 3951 return builtin_type (gdbarch)->builtin_func_ptr;
ff6f572f
DJ
3952 else if (regnum >= ARRAY_SIZE (arm_register_names))
3953 /* These registers are only supported on targets which supply
3954 an XML description. */
df4df182 3955 return builtin_type (gdbarch)->builtin_int0;
032758dc 3956 else
df4df182 3957 return builtin_type (gdbarch)->builtin_uint32;
032758dc
AC
3958}
3959
ff6f572f
DJ
3960/* Map a DWARF register REGNUM onto the appropriate GDB register
3961 number. */
3962
3963static int
d3f73121 3964arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
ff6f572f
DJ
3965{
3966 /* Core integer regs. */
3967 if (reg >= 0 && reg <= 15)
3968 return reg;
3969
3970 /* Legacy FPA encoding. These were once used in a way which
3971 overlapped with VFP register numbering, so their use is
3972 discouraged, but GDB doesn't support the ARM toolchain
3973 which used them for VFP. */
3974 if (reg >= 16 && reg <= 23)
3975 return ARM_F0_REGNUM + reg - 16;
3976
3977 /* New assignments for the FPA registers. */
3978 if (reg >= 96 && reg <= 103)
3979 return ARM_F0_REGNUM + reg - 96;
3980
3981 /* WMMX register assignments. */
3982 if (reg >= 104 && reg <= 111)
3983 return ARM_WCGR0_REGNUM + reg - 104;
3984
3985 if (reg >= 112 && reg <= 127)
3986 return ARM_WR0_REGNUM + reg - 112;
3987
3988 if (reg >= 192 && reg <= 199)
3989 return ARM_WC0_REGNUM + reg - 192;
3990
58d6951d
DJ
3991 /* VFP v2 registers. A double precision value is actually
3992 in d1 rather than s2, but the ABI only defines numbering
3993 for the single precision registers. This will "just work"
3994 in GDB for little endian targets (we'll read eight bytes,
3995 starting in s0 and then progressing to s1), but will be
3996 reversed on big endian targets with VFP. This won't
3997 be a problem for the new Neon quad registers; you're supposed
3998 to use DW_OP_piece for those. */
3999 if (reg >= 64 && reg <= 95)
4000 {
4001 char name_buf[4];
4002
4003 sprintf (name_buf, "s%d", reg - 64);
4004 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4005 strlen (name_buf));
4006 }
4007
4008 /* VFP v3 / Neon registers. This range is also used for VFP v2
4009 registers, except that it now describes d0 instead of s0. */
4010 if (reg >= 256 && reg <= 287)
4011 {
4012 char name_buf[4];
4013
4014 sprintf (name_buf, "d%d", reg - 256);
4015 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4016 strlen (name_buf));
4017 }
4018
ff6f572f
DJ
4019 return -1;
4020}
4021
26216b98
AC
4022/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
4023static int
e7faf938 4024arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
26216b98
AC
4025{
4026 int reg = regnum;
e7faf938 4027 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
26216b98 4028
ff6f572f
DJ
4029 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
4030 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
4031
4032 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
4033 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
4034
4035 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
4036 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
4037
26216b98
AC
4038 if (reg < NUM_GREGS)
4039 return SIM_ARM_R0_REGNUM + reg;
4040 reg -= NUM_GREGS;
4041
4042 if (reg < NUM_FREGS)
4043 return SIM_ARM_FP0_REGNUM + reg;
4044 reg -= NUM_FREGS;
4045
4046 if (reg < NUM_SREGS)
4047 return SIM_ARM_FPS_REGNUM + reg;
4048 reg -= NUM_SREGS;
4049
edefbb7c 4050 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
26216b98 4051}
34e8f22d 4052
a37b3cc0
AC
4053/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
4054 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
4055 It is thought that this is is the floating-point register format on
4056 little-endian systems. */
c906108c 4057
ed9a39eb 4058static void
b508a996 4059convert_from_extended (const struct floatformat *fmt, const void *ptr,
be8626e0 4060 void *dbl, int endianess)
c906108c 4061{
a37b3cc0 4062 DOUBLEST d;
be8626e0
MD
4063
4064 if (endianess == BFD_ENDIAN_BIG)
a37b3cc0
AC
4065 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
4066 else
4067 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
4068 ptr, &d);
b508a996 4069 floatformat_from_doublest (fmt, &d, dbl);
c906108c
SS
4070}
4071
34e8f22d 4072static void
be8626e0
MD
4073convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr,
4074 int endianess)
c906108c 4075{
a37b3cc0 4076 DOUBLEST d;
be8626e0 4077
b508a996 4078 floatformat_to_doublest (fmt, ptr, &d);
be8626e0 4079 if (endianess == BFD_ENDIAN_BIG)
a37b3cc0
AC
4080 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
4081 else
4082 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
4083 &d, dbl);
c906108c 4084}
ed9a39eb 4085
c906108c 4086static int
ed9a39eb 4087condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
4088{
4089 if (cond == INST_AL || cond == INST_NV)
4090 return 1;
4091
4092 switch (cond)
4093 {
4094 case INST_EQ:
4095 return ((status_reg & FLAG_Z) != 0);
4096 case INST_NE:
4097 return ((status_reg & FLAG_Z) == 0);
4098 case INST_CS:
4099 return ((status_reg & FLAG_C) != 0);
4100 case INST_CC:
4101 return ((status_reg & FLAG_C) == 0);
4102 case INST_MI:
4103 return ((status_reg & FLAG_N) != 0);
4104 case INST_PL:
4105 return ((status_reg & FLAG_N) == 0);
4106 case INST_VS:
4107 return ((status_reg & FLAG_V) != 0);
4108 case INST_VC:
4109 return ((status_reg & FLAG_V) == 0);
4110 case INST_HI:
4111 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
4112 case INST_LS:
4113 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
4114 case INST_GE:
4115 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
4116 case INST_LT:
4117 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
4118 case INST_GT:
f8bf5763
PM
4119 return (((status_reg & FLAG_Z) == 0)
4120 && (((status_reg & FLAG_N) == 0)
4121 == ((status_reg & FLAG_V) == 0)));
c906108c 4122 case INST_LE:
f8bf5763
PM
4123 return (((status_reg & FLAG_Z) != 0)
4124 || (((status_reg & FLAG_N) == 0)
4125 != ((status_reg & FLAG_V) == 0)));
c906108c
SS
4126 }
4127 return 1;
4128}
4129
c906108c 4130static unsigned long
0b1b3e42
UW
4131shifted_reg_val (struct frame_info *frame, unsigned long inst, int carry,
4132 unsigned long pc_val, unsigned long status_reg)
c906108c
SS
4133{
4134 unsigned long res, shift;
4135 int rm = bits (inst, 0, 3);
4136 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
4137
4138 if (bit (inst, 4))
c906108c
SS
4139 {
4140 int rs = bits (inst, 8, 11);
0b1b3e42
UW
4141 shift = (rs == 15 ? pc_val + 8
4142 : get_frame_register_unsigned (frame, rs)) & 0xFF;
c906108c
SS
4143 }
4144 else
4145 shift = bits (inst, 7, 11);
c5aa993b 4146
bf9f652a 4147 res = (rm == ARM_PC_REGNUM
0d39a070 4148 ? (pc_val + (bit (inst, 4) ? 12 : 8))
0b1b3e42 4149 : get_frame_register_unsigned (frame, rm));
c906108c
SS
4150
4151 switch (shifttype)
4152 {
c5aa993b 4153 case 0: /* LSL */
c906108c
SS
4154 res = shift >= 32 ? 0 : res << shift;
4155 break;
c5aa993b
JM
4156
4157 case 1: /* LSR */
c906108c
SS
4158 res = shift >= 32 ? 0 : res >> shift;
4159 break;
4160
c5aa993b
JM
4161 case 2: /* ASR */
4162 if (shift >= 32)
4163 shift = 31;
c906108c
SS
4164 res = ((res & 0x80000000L)
4165 ? ~((~res) >> shift) : res >> shift);
4166 break;
4167
c5aa993b 4168 case 3: /* ROR/RRX */
c906108c
SS
4169 shift &= 31;
4170 if (shift == 0)
4171 res = (res >> 1) | (carry ? 0x80000000L : 0);
4172 else
c5aa993b 4173 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
4174 break;
4175 }
4176
4177 return res & 0xffffffff;
4178}
4179
c906108c
SS
4180/* Return number of 1-bits in VAL. */
4181
4182static int
ed9a39eb 4183bitcount (unsigned long val)
c906108c
SS
4184{
4185 int nbits;
4186 for (nbits = 0; val != 0; nbits++)
0963b4bd 4187 val &= val - 1; /* Delete rightmost 1-bit in val. */
c906108c
SS
4188 return nbits;
4189}
4190
177321bd
DJ
4191/* Return the size in bytes of the complete Thumb instruction whose
4192 first halfword is INST1. */
4193
4194static int
4195thumb_insn_size (unsigned short inst1)
4196{
4197 if ((inst1 & 0xe000) == 0xe000 && (inst1 & 0x1800) != 0)
4198 return 4;
4199 else
4200 return 2;
4201}
4202
4203static int
4204thumb_advance_itstate (unsigned int itstate)
4205{
4206 /* Preserve IT[7:5], the first three bits of the condition. Shift
4207 the upcoming condition flags left by one bit. */
4208 itstate = (itstate & 0xe0) | ((itstate << 1) & 0x1f);
4209
4210 /* If we have finished the IT block, clear the state. */
4211 if ((itstate & 0x0f) == 0)
4212 itstate = 0;
4213
4214 return itstate;
4215}
4216
4217/* Find the next PC after the current instruction executes. In some
4218 cases we can not statically determine the answer (see the IT state
4219 handling in this function); in that case, a breakpoint may be
4220 inserted in addition to the returned PC, which will be used to set
4221 another breakpoint by our caller. */
4222
ad527d2e 4223static CORE_ADDR
50e98be4 4224thumb_get_next_pc_raw (struct frame_info *frame, CORE_ADDR pc, int insert_bkpt)
c906108c 4225{
2af46ca0 4226 struct gdbarch *gdbarch = get_frame_arch (frame);
177321bd 4227 struct address_space *aspace = get_frame_address_space (frame);
e17a4113
UW
4228 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4229 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
c5aa993b 4230 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
e17a4113 4231 unsigned short inst1;
0963b4bd 4232 CORE_ADDR nextpc = pc + 2; /* Default is next instruction. */
c906108c 4233 unsigned long offset;
177321bd 4234 ULONGEST status, itstate;
c906108c 4235
50e98be4
DJ
4236 nextpc = MAKE_THUMB_ADDR (nextpc);
4237 pc_val = MAKE_THUMB_ADDR (pc_val);
4238
e17a4113 4239 inst1 = read_memory_unsigned_integer (pc, 2, byte_order_for_code);
9d4fde75 4240
9dca5578
DJ
4241 /* Thumb-2 conditional execution support. There are eight bits in
4242 the CPSR which describe conditional execution state. Once
4243 reconstructed (they're in a funny order), the low five bits
4244 describe the low bit of the condition for each instruction and
4245 how many instructions remain. The high three bits describe the
4246 base condition. One of the low four bits will be set if an IT
4247 block is active. These bits read as zero on earlier
4248 processors. */
4249 status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
177321bd 4250 itstate = ((status >> 8) & 0xfc) | ((status >> 25) & 0x3);
9dca5578 4251
177321bd
DJ
4252 /* If-Then handling. On GNU/Linux, where this routine is used, we
4253 use an undefined instruction as a breakpoint. Unlike BKPT, IT
4254 can disable execution of the undefined instruction. So we might
4255 miss the breakpoint if we set it on a skipped conditional
4256 instruction. Because conditional instructions can change the
4257 flags, affecting the execution of further instructions, we may
4258 need to set two breakpoints. */
9dca5578 4259
177321bd
DJ
4260 if (gdbarch_tdep (gdbarch)->thumb2_breakpoint != NULL)
4261 {
4262 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
4263 {
4264 /* An IT instruction. Because this instruction does not
4265 modify the flags, we can accurately predict the next
4266 executed instruction. */
4267 itstate = inst1 & 0x00ff;
4268 pc += thumb_insn_size (inst1);
4269
4270 while (itstate != 0 && ! condition_true (itstate >> 4, status))
4271 {
0963b4bd
MS
4272 inst1 = read_memory_unsigned_integer (pc, 2,
4273 byte_order_for_code);
177321bd
DJ
4274 pc += thumb_insn_size (inst1);
4275 itstate = thumb_advance_itstate (itstate);
4276 }
4277
50e98be4 4278 return MAKE_THUMB_ADDR (pc);
177321bd
DJ
4279 }
4280 else if (itstate != 0)
4281 {
4282 /* We are in a conditional block. Check the condition. */
4283 if (! condition_true (itstate >> 4, status))
4284 {
4285 /* Advance to the next executed instruction. */
4286 pc += thumb_insn_size (inst1);
4287 itstate = thumb_advance_itstate (itstate);
4288
4289 while (itstate != 0 && ! condition_true (itstate >> 4, status))
4290 {
0963b4bd
MS
4291 inst1 = read_memory_unsigned_integer (pc, 2,
4292 byte_order_for_code);
177321bd
DJ
4293 pc += thumb_insn_size (inst1);
4294 itstate = thumb_advance_itstate (itstate);
4295 }
4296
50e98be4 4297 return MAKE_THUMB_ADDR (pc);
177321bd
DJ
4298 }
4299 else if ((itstate & 0x0f) == 0x08)
4300 {
4301 /* This is the last instruction of the conditional
4302 block, and it is executed. We can handle it normally
4303 because the following instruction is not conditional,
4304 and we must handle it normally because it is
4305 permitted to branch. Fall through. */
4306 }
4307 else
4308 {
4309 int cond_negated;
4310
4311 /* There are conditional instructions after this one.
4312 If this instruction modifies the flags, then we can
4313 not predict what the next executed instruction will
4314 be. Fortunately, this instruction is architecturally
4315 forbidden to branch; we know it will fall through.
4316 Start by skipping past it. */
4317 pc += thumb_insn_size (inst1);
4318 itstate = thumb_advance_itstate (itstate);
4319
4320 /* Set a breakpoint on the following instruction. */
4321 gdb_assert ((itstate & 0x0f) != 0);
50e98be4
DJ
4322 if (insert_bkpt)
4323 insert_single_step_breakpoint (gdbarch, aspace, pc);
177321bd
DJ
4324 cond_negated = (itstate >> 4) & 1;
4325
4326 /* Skip all following instructions with the same
4327 condition. If there is a later instruction in the IT
4328 block with the opposite condition, set the other
4329 breakpoint there. If not, then set a breakpoint on
4330 the instruction after the IT block. */
4331 do
4332 {
0963b4bd
MS
4333 inst1 = read_memory_unsigned_integer (pc, 2,
4334 byte_order_for_code);
177321bd
DJ
4335 pc += thumb_insn_size (inst1);
4336 itstate = thumb_advance_itstate (itstate);
4337 }
4338 while (itstate != 0 && ((itstate >> 4) & 1) == cond_negated);
4339
50e98be4 4340 return MAKE_THUMB_ADDR (pc);
177321bd
DJ
4341 }
4342 }
4343 }
4344 else if (itstate & 0x0f)
9dca5578
DJ
4345 {
4346 /* We are in a conditional block. Check the condition. */
177321bd 4347 int cond = itstate >> 4;
9dca5578
DJ
4348
4349 if (! condition_true (cond, status))
4350 {
4351 /* Advance to the next instruction. All the 32-bit
4352 instructions share a common prefix. */
4353 if ((inst1 & 0xe000) == 0xe000 && (inst1 & 0x1800) != 0)
50e98be4 4354 return MAKE_THUMB_ADDR (pc + 4);
9dca5578 4355 else
50e98be4 4356 return MAKE_THUMB_ADDR (pc + 2);
9dca5578 4357 }
177321bd
DJ
4358
4359 /* Otherwise, handle the instruction normally. */
9dca5578
DJ
4360 }
4361
c906108c
SS
4362 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
4363 {
4364 CORE_ADDR sp;
4365
4366 /* Fetch the saved PC from the stack. It's stored above
4367 all of the other registers. */
f0c9063c 4368 offset = bitcount (bits (inst1, 0, 7)) * INT_REGISTER_SIZE;
0b1b3e42 4369 sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM);
e17a4113 4370 nextpc = read_memory_unsigned_integer (sp + offset, 4, byte_order);
c906108c
SS
4371 }
4372 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
4373 {
c5aa993b 4374 unsigned long cond = bits (inst1, 8, 11);
25b41d01
YQ
4375 if (cond == 0x0f) /* 0x0f = SWI */
4376 {
4377 struct gdbarch_tdep *tdep;
4378 tdep = gdbarch_tdep (gdbarch);
4379
4380 if (tdep->syscall_next_pc != NULL)
4381 nextpc = tdep->syscall_next_pc (frame);
4382
4383 }
4384 else if (cond != 0x0f && condition_true (cond, status))
c906108c
SS
4385 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
4386 }
4387 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
4388 {
4389 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
4390 }
9dca5578 4391 else if ((inst1 & 0xe000) == 0xe000) /* 32-bit instruction */
c906108c 4392 {
e17a4113
UW
4393 unsigned short inst2;
4394 inst2 = read_memory_unsigned_integer (pc + 2, 2, byte_order_for_code);
9dca5578
DJ
4395
4396 /* Default to the next instruction. */
4397 nextpc = pc + 4;
50e98be4 4398 nextpc = MAKE_THUMB_ADDR (nextpc);
9dca5578
DJ
4399
4400 if ((inst1 & 0xf800) == 0xf000 && (inst2 & 0x8000) == 0x8000)
4401 {
4402 /* Branches and miscellaneous control instructions. */
4403
4404 if ((inst2 & 0x1000) != 0 || (inst2 & 0xd001) == 0xc000)
4405 {
4406 /* B, BL, BLX. */
4407 int j1, j2, imm1, imm2;
4408
4409 imm1 = sbits (inst1, 0, 10);
4410 imm2 = bits (inst2, 0, 10);
4411 j1 = bit (inst2, 13);
4412 j2 = bit (inst2, 11);
4413
4414 offset = ((imm1 << 12) + (imm2 << 1));
4415 offset ^= ((!j2) << 22) | ((!j1) << 23);
4416
4417 nextpc = pc_val + offset;
4418 /* For BLX make sure to clear the low bits. */
4419 if (bit (inst2, 12) == 0)
4420 nextpc = nextpc & 0xfffffffc;
4421 }
4422 else if (inst1 == 0xf3de && (inst2 & 0xff00) == 0x3f00)
4423 {
4424 /* SUBS PC, LR, #imm8. */
4425 nextpc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
4426 nextpc -= inst2 & 0x00ff;
4427 }
4069ebbe 4428 else if ((inst2 & 0xd000) == 0x8000 && (inst1 & 0x0380) != 0x0380)
9dca5578
DJ
4429 {
4430 /* Conditional branch. */
4431 if (condition_true (bits (inst1, 6, 9), status))
4432 {
4433 int sign, j1, j2, imm1, imm2;
4434
4435 sign = sbits (inst1, 10, 10);
4436 imm1 = bits (inst1, 0, 5);
4437 imm2 = bits (inst2, 0, 10);
4438 j1 = bit (inst2, 13);
4439 j2 = bit (inst2, 11);
4440
4441 offset = (sign << 20) + (j2 << 19) + (j1 << 18);
4442 offset += (imm1 << 12) + (imm2 << 1);
4443
4444 nextpc = pc_val + offset;
4445 }
4446 }
4447 }
4448 else if ((inst1 & 0xfe50) == 0xe810)
4449 {
4450 /* Load multiple or RFE. */
4451 int rn, offset, load_pc = 1;
4452
4453 rn = bits (inst1, 0, 3);
4454 if (bit (inst1, 7) && !bit (inst1, 8))
4455 {
4456 /* LDMIA or POP */
4457 if (!bit (inst2, 15))
4458 load_pc = 0;
4459 offset = bitcount (inst2) * 4 - 4;
4460 }
4461 else if (!bit (inst1, 7) && bit (inst1, 8))
4462 {
4463 /* LDMDB */
4464 if (!bit (inst2, 15))
4465 load_pc = 0;
4466 offset = -4;
4467 }
4468 else if (bit (inst1, 7) && bit (inst1, 8))
4469 {
4470 /* RFEIA */
4471 offset = 0;
4472 }
4473 else if (!bit (inst1, 7) && !bit (inst1, 8))
4474 {
4475 /* RFEDB */
4476 offset = -8;
4477 }
4478 else
4479 load_pc = 0;
4480
4481 if (load_pc)
4482 {
4483 CORE_ADDR addr = get_frame_register_unsigned (frame, rn);
4484 nextpc = get_frame_memory_unsigned (frame, addr + offset, 4);
4485 }
4486 }
4487 else if ((inst1 & 0xffef) == 0xea4f && (inst2 & 0xfff0) == 0x0f00)
4488 {
4489 /* MOV PC or MOVS PC. */
4490 nextpc = get_frame_register_unsigned (frame, bits (inst2, 0, 3));
50e98be4 4491 nextpc = MAKE_THUMB_ADDR (nextpc);
9dca5578
DJ
4492 }
4493 else if ((inst1 & 0xff70) == 0xf850 && (inst2 & 0xf000) == 0xf000)
4494 {
4495 /* LDR PC. */
4496 CORE_ADDR base;
4497 int rn, load_pc = 1;
4498
4499 rn = bits (inst1, 0, 3);
4500 base = get_frame_register_unsigned (frame, rn);
bf9f652a 4501 if (rn == ARM_PC_REGNUM)
9dca5578
DJ
4502 {
4503 base = (base + 4) & ~(CORE_ADDR) 0x3;
4504 if (bit (inst1, 7))
4505 base += bits (inst2, 0, 11);
4506 else
4507 base -= bits (inst2, 0, 11);
4508 }
4509 else if (bit (inst1, 7))
4510 base += bits (inst2, 0, 11);
4511 else if (bit (inst2, 11))
4512 {
4513 if (bit (inst2, 10))
4514 {
4515 if (bit (inst2, 9))
4516 base += bits (inst2, 0, 7);
4517 else
4518 base -= bits (inst2, 0, 7);
4519 }
4520 }
4521 else if ((inst2 & 0x0fc0) == 0x0000)
4522 {
4523 int shift = bits (inst2, 4, 5), rm = bits (inst2, 0, 3);
4524 base += get_frame_register_unsigned (frame, rm) << shift;
4525 }
4526 else
4527 /* Reserved. */
4528 load_pc = 0;
4529
4530 if (load_pc)
4531 nextpc = get_frame_memory_unsigned (frame, base, 4);
4532 }
4533 else if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf000)
4534 {
4535 /* TBB. */
d476da0e
RE
4536 CORE_ADDR tbl_reg, table, offset, length;
4537
4538 tbl_reg = bits (inst1, 0, 3);
4539 if (tbl_reg == 0x0f)
4540 table = pc + 4; /* Regcache copy of PC isn't right yet. */
4541 else
4542 table = get_frame_register_unsigned (frame, tbl_reg);
9dca5578 4543
9dca5578
DJ
4544 offset = get_frame_register_unsigned (frame, bits (inst2, 0, 3));
4545 length = 2 * get_frame_memory_unsigned (frame, table + offset, 1);
4546 nextpc = pc_val + length;
4547 }
d476da0e 4548 else if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf010)
9dca5578
DJ
4549 {
4550 /* TBH. */
d476da0e
RE
4551 CORE_ADDR tbl_reg, table, offset, length;
4552
4553 tbl_reg = bits (inst1, 0, 3);
4554 if (tbl_reg == 0x0f)
4555 table = pc + 4; /* Regcache copy of PC isn't right yet. */
4556 else
4557 table = get_frame_register_unsigned (frame, tbl_reg);
9dca5578 4558
9dca5578
DJ
4559 offset = 2 * get_frame_register_unsigned (frame, bits (inst2, 0, 3));
4560 length = 2 * get_frame_memory_unsigned (frame, table + offset, 2);
4561 nextpc = pc_val + length;
4562 }
c906108c 4563 }
aa17d93e 4564 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
9498281f
DJ
4565 {
4566 if (bits (inst1, 3, 6) == 0x0f)
4567 nextpc = pc_val;
4568 else
0b1b3e42 4569 nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
9498281f 4570 }
ad8b5167
UW
4571 else if ((inst1 & 0xff87) == 0x4687) /* mov pc, REG */
4572 {
4573 if (bits (inst1, 3, 6) == 0x0f)
4574 nextpc = pc_val;
4575 else
4576 nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
4577
4578 nextpc = MAKE_THUMB_ADDR (nextpc);
4579 }
9dca5578
DJ
4580 else if ((inst1 & 0xf500) == 0xb100)
4581 {
4582 /* CBNZ or CBZ. */
4583 int imm = (bit (inst1, 9) << 6) + (bits (inst1, 3, 7) << 1);
4584 ULONGEST reg = get_frame_register_unsigned (frame, bits (inst1, 0, 2));
4585
4586 if (bit (inst1, 11) && reg != 0)
4587 nextpc = pc_val + imm;
4588 else if (!bit (inst1, 11) && reg == 0)
4589 nextpc = pc_val + imm;
4590 }
c906108c
SS
4591 return nextpc;
4592}
4593
50e98be4
DJ
4594/* Get the raw next address. PC is the current program counter, in
4595 FRAME. INSERT_BKPT should be TRUE if we want a breakpoint set on
4596 the alternative next instruction if there are two options.
4597
4598 The value returned has the execution state of the next instruction
4599 encoded in it. Use IS_THUMB_ADDR () to see whether the instruction is
4600 in Thumb-State, and gdbarch_addr_bits_remove () to get the plain memory
0963b4bd
MS
4601 address. */
4602
50e98be4
DJ
4603static CORE_ADDR
4604arm_get_next_pc_raw (struct frame_info *frame, CORE_ADDR pc, int insert_bkpt)
c906108c 4605{
2af46ca0 4606 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113
UW
4607 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4608 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
c906108c
SS
4609 unsigned long pc_val;
4610 unsigned long this_instr;
4611 unsigned long status;
4612 CORE_ADDR nextpc;
4613
b39cc962 4614 if (arm_frame_is_thumb (frame))
50e98be4 4615 return thumb_get_next_pc_raw (frame, pc, insert_bkpt);
c906108c
SS
4616
4617 pc_val = (unsigned long) pc;
e17a4113 4618 this_instr = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
9d4fde75 4619
0b1b3e42 4620 status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
c5aa993b 4621 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c 4622
daddc3c1
DJ
4623 if (bits (this_instr, 28, 31) == INST_NV)
4624 switch (bits (this_instr, 24, 27))
4625 {
4626 case 0xa:
4627 case 0xb:
4628 {
4629 /* Branch with Link and change to Thumb. */
4630 nextpc = BranchDest (pc, this_instr);
4631 nextpc |= bit (this_instr, 24) << 1;
50e98be4 4632 nextpc = MAKE_THUMB_ADDR (nextpc);
daddc3c1
DJ
4633 break;
4634 }
4635 case 0xc:
4636 case 0xd:
4637 case 0xe:
4638 /* Coprocessor register transfer. */
4639 if (bits (this_instr, 12, 15) == 15)
4640 error (_("Invalid update to pc in instruction"));
4641 break;
4642 }
4643 else if (condition_true (bits (this_instr, 28, 31), status))
c906108c
SS
4644 {
4645 switch (bits (this_instr, 24, 27))
4646 {
c5aa993b 4647 case 0x0:
94c30b78 4648 case 0x1: /* data processing */
c5aa993b
JM
4649 case 0x2:
4650 case 0x3:
c906108c
SS
4651 {
4652 unsigned long operand1, operand2, result = 0;
4653 unsigned long rn;
4654 int c;
c5aa993b 4655
c906108c
SS
4656 if (bits (this_instr, 12, 15) != 15)
4657 break;
4658
4659 if (bits (this_instr, 22, 25) == 0
c5aa993b 4660 && bits (this_instr, 4, 7) == 9) /* multiply */
edefbb7c 4661 error (_("Invalid update to pc in instruction"));
c906108c 4662
9498281f 4663 /* BX <reg>, BLX <reg> */
e150acc7
PB
4664 if (bits (this_instr, 4, 27) == 0x12fff1
4665 || bits (this_instr, 4, 27) == 0x12fff3)
9498281f
DJ
4666 {
4667 rn = bits (this_instr, 0, 3);
bf9f652a
YQ
4668 nextpc = ((rn == ARM_PC_REGNUM)
4669 ? (pc_val + 8)
4670 : get_frame_register_unsigned (frame, rn));
4671
9498281f
DJ
4672 return nextpc;
4673 }
4674
0963b4bd 4675 /* Multiply into PC. */
c906108c
SS
4676 c = (status & FLAG_C) ? 1 : 0;
4677 rn = bits (this_instr, 16, 19);
bf9f652a
YQ
4678 operand1 = ((rn == ARM_PC_REGNUM)
4679 ? (pc_val + 8)
4680 : get_frame_register_unsigned (frame, rn));
c5aa993b 4681
c906108c
SS
4682 if (bit (this_instr, 25))
4683 {
4684 unsigned long immval = bits (this_instr, 0, 7);
4685 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
4686 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
4687 & 0xffffffff;
c906108c 4688 }
0963b4bd
MS
4689 else /* operand 2 is a shifted register. */
4690 operand2 = shifted_reg_val (frame, this_instr, c,
4691 pc_val, status);
c5aa993b 4692
c906108c
SS
4693 switch (bits (this_instr, 21, 24))
4694 {
c5aa993b 4695 case 0x0: /*and */
c906108c
SS
4696 result = operand1 & operand2;
4697 break;
4698
c5aa993b 4699 case 0x1: /*eor */
c906108c
SS
4700 result = operand1 ^ operand2;
4701 break;
4702
c5aa993b 4703 case 0x2: /*sub */
c906108c
SS
4704 result = operand1 - operand2;
4705 break;
4706
c5aa993b 4707 case 0x3: /*rsb */
c906108c
SS
4708 result = operand2 - operand1;
4709 break;
4710
c5aa993b 4711 case 0x4: /*add */
c906108c
SS
4712 result = operand1 + operand2;
4713 break;
4714
c5aa993b 4715 case 0x5: /*adc */
c906108c
SS
4716 result = operand1 + operand2 + c;
4717 break;
4718
c5aa993b 4719 case 0x6: /*sbc */
c906108c
SS
4720 result = operand1 - operand2 + c;
4721 break;
4722
c5aa993b 4723 case 0x7: /*rsc */
c906108c
SS
4724 result = operand2 - operand1 + c;
4725 break;
4726
c5aa993b
JM
4727 case 0x8:
4728 case 0x9:
4729 case 0xa:
4730 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
4731 result = (unsigned long) nextpc;
4732 break;
4733
c5aa993b 4734 case 0xc: /*orr */
c906108c
SS
4735 result = operand1 | operand2;
4736 break;
4737
c5aa993b 4738 case 0xd: /*mov */
c906108c
SS
4739 /* Always step into a function. */
4740 result = operand2;
c5aa993b 4741 break;
c906108c 4742
c5aa993b 4743 case 0xe: /*bic */
c906108c
SS
4744 result = operand1 & ~operand2;
4745 break;
4746
c5aa993b 4747 case 0xf: /*mvn */
c906108c
SS
4748 result = ~operand2;
4749 break;
4750 }
c906108c 4751
50e98be4
DJ
4752 /* In 26-bit APCS the bottom two bits of the result are
4753 ignored, and we always end up in ARM state. */
4754 if (!arm_apcs_32)
4755 nextpc = arm_addr_bits_remove (gdbarch, result);
4756 else
4757 nextpc = result;
4758
c906108c
SS
4759 break;
4760 }
c5aa993b
JM
4761
4762 case 0x4:
4763 case 0x5: /* data transfer */
4764 case 0x6:
4765 case 0x7:
c906108c
SS
4766 if (bit (this_instr, 20))
4767 {
4768 /* load */
4769 if (bits (this_instr, 12, 15) == 15)
4770 {
4771 /* rd == pc */
c5aa993b 4772 unsigned long rn;
c906108c 4773 unsigned long base;
c5aa993b 4774
c906108c 4775 if (bit (this_instr, 22))
edefbb7c 4776 error (_("Invalid update to pc in instruction"));
c906108c
SS
4777
4778 /* byte write to PC */
4779 rn = bits (this_instr, 16, 19);
bf9f652a
YQ
4780 base = ((rn == ARM_PC_REGNUM)
4781 ? (pc_val + 8)
4782 : get_frame_register_unsigned (frame, rn));
4783
c906108c
SS
4784 if (bit (this_instr, 24))
4785 {
4786 /* pre-indexed */
4787 int c = (status & FLAG_C) ? 1 : 0;
4788 unsigned long offset =
c5aa993b 4789 (bit (this_instr, 25)
0b1b3e42 4790 ? shifted_reg_val (frame, this_instr, c, pc_val, status)
c5aa993b 4791 : bits (this_instr, 0, 11));
c906108c
SS
4792
4793 if (bit (this_instr, 23))
4794 base += offset;
4795 else
4796 base -= offset;
4797 }
c5aa993b 4798 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
e17a4113 4799 4, byte_order);
c906108c
SS
4800 }
4801 }
4802 break;
c5aa993b
JM
4803
4804 case 0x8:
4805 case 0x9: /* block transfer */
c906108c
SS
4806 if (bit (this_instr, 20))
4807 {
4808 /* LDM */
4809 if (bit (this_instr, 15))
4810 {
4811 /* loading pc */
4812 int offset = 0;
4813
4814 if (bit (this_instr, 23))
4815 {
4816 /* up */
4817 unsigned long reglist = bits (this_instr, 0, 14);
4818 offset = bitcount (reglist) * 4;
c5aa993b 4819 if (bit (this_instr, 24)) /* pre */
c906108c
SS
4820 offset += 4;
4821 }
4822 else if (bit (this_instr, 24))
4823 offset = -4;
c5aa993b 4824
c906108c 4825 {
c5aa993b 4826 unsigned long rn_val =
0b1b3e42
UW
4827 get_frame_register_unsigned (frame,
4828 bits (this_instr, 16, 19));
c906108c
SS
4829 nextpc =
4830 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
c5aa993b 4831 + offset),
e17a4113 4832 4, byte_order);
c906108c 4833 }
c906108c
SS
4834 }
4835 }
4836 break;
c5aa993b
JM
4837
4838 case 0xb: /* branch & link */
4839 case 0xa: /* branch */
c906108c
SS
4840 {
4841 nextpc = BranchDest (pc, this_instr);
c906108c
SS
4842 break;
4843 }
c5aa993b
JM
4844
4845 case 0xc:
4846 case 0xd:
4847 case 0xe: /* coproc ops */
25b41d01 4848 break;
c5aa993b 4849 case 0xf: /* SWI */
25b41d01
YQ
4850 {
4851 struct gdbarch_tdep *tdep;
4852 tdep = gdbarch_tdep (gdbarch);
4853
4854 if (tdep->syscall_next_pc != NULL)
4855 nextpc = tdep->syscall_next_pc (frame);
4856
4857 }
c906108c
SS
4858 break;
4859
4860 default:
edefbb7c 4861 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
c906108c
SS
4862 return (pc);
4863 }
4864 }
4865
4866 return nextpc;
4867}
4868
50e98be4
DJ
4869CORE_ADDR
4870arm_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
4871{
4872 struct gdbarch *gdbarch = get_frame_arch (frame);
4873 CORE_ADDR nextpc =
4874 gdbarch_addr_bits_remove (gdbarch,
4875 arm_get_next_pc_raw (frame, pc, TRUE));
4876 if (nextpc == pc)
4877 error (_("Infinite loop detected"));
4878 return nextpc;
4879}
4880
9512d7fd
FN
4881/* single_step() is called just before we want to resume the inferior,
4882 if we want to single-step it but there is no hardware or kernel
4883 single-step support. We find the target of the coming instruction
e0cd558a 4884 and breakpoint it. */
9512d7fd 4885
190dce09 4886int
0b1b3e42 4887arm_software_single_step (struct frame_info *frame)
9512d7fd 4888{
a6d9a66e 4889 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 4890 struct address_space *aspace = get_frame_address_space (frame);
a6d9a66e 4891
8181d85f
DJ
4892 /* NOTE: This may insert the wrong breakpoint instruction when
4893 single-stepping over a mode-changing instruction, if the
4894 CPSR heuristics are used. */
9512d7fd 4895
0b1b3e42 4896 CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
6c95b8df 4897 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
e6590a1b
UW
4898
4899 return 1;
9512d7fd 4900}
9512d7fd 4901
f9d67f43
DJ
4902/* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand
4903 the buffer to be NEW_LEN bytes ending at ENDADDR. Return
4904 NULL if an error occurs. BUF is freed. */
4905
4906static gdb_byte *
4907extend_buffer_earlier (gdb_byte *buf, CORE_ADDR endaddr,
4908 int old_len, int new_len)
4909{
4910 gdb_byte *new_buf, *middle;
4911 int bytes_to_read = new_len - old_len;
4912
4913 new_buf = xmalloc (new_len);
4914 memcpy (new_buf + bytes_to_read, buf, old_len);
4915 xfree (buf);
4916 if (target_read_memory (endaddr - new_len, new_buf, bytes_to_read) != 0)
4917 {
4918 xfree (new_buf);
4919 return NULL;
4920 }
4921 return new_buf;
4922}
4923
4924/* An IT block is at most the 2-byte IT instruction followed by
4925 four 4-byte instructions. The furthest back we must search to
4926 find an IT block that affects the current instruction is thus
4927 2 + 3 * 4 == 14 bytes. */
4928#define MAX_IT_BLOCK_PREFIX 14
4929
4930/* Use a quick scan if there are more than this many bytes of
4931 code. */
4932#define IT_SCAN_THRESHOLD 32
4933
4934/* Adjust a breakpoint's address to move breakpoints out of IT blocks.
4935 A breakpoint in an IT block may not be hit, depending on the
4936 condition flags. */
4937static CORE_ADDR
4938arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
4939{
4940 gdb_byte *buf;
4941 char map_type;
4942 CORE_ADDR boundary, func_start;
4943 int buf_len, buf2_len;
4944 enum bfd_endian order = gdbarch_byte_order_for_code (gdbarch);
4945 int i, any, last_it, last_it_count;
4946
4947 /* If we are using BKPT breakpoints, none of this is necessary. */
4948 if (gdbarch_tdep (gdbarch)->thumb2_breakpoint == NULL)
4949 return bpaddr;
4950
4951 /* ARM mode does not have this problem. */
9779414d 4952 if (!arm_pc_is_thumb (gdbarch, bpaddr))
f9d67f43
DJ
4953 return bpaddr;
4954
4955 /* We are setting a breakpoint in Thumb code that could potentially
4956 contain an IT block. The first step is to find how much Thumb
4957 code there is; we do not need to read outside of known Thumb
4958 sequences. */
4959 map_type = arm_find_mapping_symbol (bpaddr, &boundary);
4960 if (map_type == 0)
4961 /* Thumb-2 code must have mapping symbols to have a chance. */
4962 return bpaddr;
4963
4964 bpaddr = gdbarch_addr_bits_remove (gdbarch, bpaddr);
4965
4966 if (find_pc_partial_function (bpaddr, NULL, &func_start, NULL)
4967 && func_start > boundary)
4968 boundary = func_start;
4969
4970 /* Search for a candidate IT instruction. We have to do some fancy
4971 footwork to distinguish a real IT instruction from the second
4972 half of a 32-bit instruction, but there is no need for that if
4973 there's no candidate. */
4974 buf_len = min (bpaddr - boundary, MAX_IT_BLOCK_PREFIX);
4975 if (buf_len == 0)
4976 /* No room for an IT instruction. */
4977 return bpaddr;
4978
4979 buf = xmalloc (buf_len);
4980 if (target_read_memory (bpaddr - buf_len, buf, buf_len) != 0)
4981 return bpaddr;
4982 any = 0;
4983 for (i = 0; i < buf_len; i += 2)
4984 {
4985 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4986 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
4987 {
4988 any = 1;
4989 break;
4990 }
4991 }
4992 if (any == 0)
4993 {
4994 xfree (buf);
4995 return bpaddr;
4996 }
4997
4998 /* OK, the code bytes before this instruction contain at least one
4999 halfword which resembles an IT instruction. We know that it's
5000 Thumb code, but there are still two possibilities. Either the
5001 halfword really is an IT instruction, or it is the second half of
5002 a 32-bit Thumb instruction. The only way we can tell is to
5003 scan forwards from a known instruction boundary. */
5004 if (bpaddr - boundary > IT_SCAN_THRESHOLD)
5005 {
5006 int definite;
5007
5008 /* There's a lot of code before this instruction. Start with an
5009 optimistic search; it's easy to recognize halfwords that can
5010 not be the start of a 32-bit instruction, and use that to
5011 lock on to the instruction boundaries. */
5012 buf = extend_buffer_earlier (buf, bpaddr, buf_len, IT_SCAN_THRESHOLD);
5013 if (buf == NULL)
5014 return bpaddr;
5015 buf_len = IT_SCAN_THRESHOLD;
5016
5017 definite = 0;
5018 for (i = 0; i < buf_len - sizeof (buf) && ! definite; i += 2)
5019 {
5020 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
5021 if (thumb_insn_size (inst1) == 2)
5022 {
5023 definite = 1;
5024 break;
5025 }
5026 }
5027
5028 /* At this point, if DEFINITE, BUF[I] is the first place we
5029 are sure that we know the instruction boundaries, and it is far
5030 enough from BPADDR that we could not miss an IT instruction
5031 affecting BPADDR. If ! DEFINITE, give up - start from a
5032 known boundary. */
5033 if (! definite)
5034 {
0963b4bd
MS
5035 buf = extend_buffer_earlier (buf, bpaddr, buf_len,
5036 bpaddr - boundary);
f9d67f43
DJ
5037 if (buf == NULL)
5038 return bpaddr;
5039 buf_len = bpaddr - boundary;
5040 i = 0;
5041 }
5042 }
5043 else
5044 {
5045 buf = extend_buffer_earlier (buf, bpaddr, buf_len, bpaddr - boundary);
5046 if (buf == NULL)
5047 return bpaddr;
5048 buf_len = bpaddr - boundary;
5049 i = 0;
5050 }
5051
5052 /* Scan forwards. Find the last IT instruction before BPADDR. */
5053 last_it = -1;
5054 last_it_count = 0;
5055 while (i < buf_len)
5056 {
5057 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
5058 last_it_count--;
5059 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
5060 {
5061 last_it = i;
5062 if (inst1 & 0x0001)
5063 last_it_count = 4;
5064 else if (inst1 & 0x0002)
5065 last_it_count = 3;
5066 else if (inst1 & 0x0004)
5067 last_it_count = 2;
5068 else
5069 last_it_count = 1;
5070 }
5071 i += thumb_insn_size (inst1);
5072 }
5073
5074 xfree (buf);
5075
5076 if (last_it == -1)
5077 /* There wasn't really an IT instruction after all. */
5078 return bpaddr;
5079
5080 if (last_it_count < 1)
5081 /* It was too far away. */
5082 return bpaddr;
5083
5084 /* This really is a trouble spot. Move the breakpoint to the IT
5085 instruction. */
5086 return bpaddr - buf_len + last_it;
5087}
5088
cca44b1b 5089/* ARM displaced stepping support.
c906108c 5090
cca44b1b 5091 Generally ARM displaced stepping works as follows:
c906108c 5092
cca44b1b
JB
5093 1. When an instruction is to be single-stepped, it is first decoded by
5094 arm_process_displaced_insn (called from arm_displaced_step_copy_insn).
5095 Depending on the type of instruction, it is then copied to a scratch
5096 location, possibly in a modified form. The copy_* set of functions
0963b4bd 5097 performs such modification, as necessary. A breakpoint is placed after
cca44b1b
JB
5098 the modified instruction in the scratch space to return control to GDB.
5099 Note in particular that instructions which modify the PC will no longer
5100 do so after modification.
c5aa993b 5101
cca44b1b
JB
5102 2. The instruction is single-stepped, by setting the PC to the scratch
5103 location address, and resuming. Control returns to GDB when the
5104 breakpoint is hit.
c5aa993b 5105
cca44b1b
JB
5106 3. A cleanup function (cleanup_*) is called corresponding to the copy_*
5107 function used for the current instruction. This function's job is to
5108 put the CPU/memory state back to what it would have been if the
5109 instruction had been executed unmodified in its original location. */
c5aa993b 5110
cca44b1b
JB
5111/* NOP instruction (mov r0, r0). */
5112#define ARM_NOP 0xe1a00000
5113
4db71c0b
YQ
5114static int displaced_in_arm_mode (struct regcache *regs);
5115
cca44b1b
JB
5116/* Helper for register reads for displaced stepping. In particular, this
5117 returns the PC as it would be seen by the instruction at its original
5118 location. */
5119
5120ULONGEST
5121displaced_read_reg (struct regcache *regs, CORE_ADDR from, int regno)
5122{
5123 ULONGEST ret;
5124
bf9f652a 5125 if (regno == ARM_PC_REGNUM)
cca44b1b 5126 {
4db71c0b
YQ
5127 /* Compute pipeline offset:
5128 - When executing an ARM instruction, PC reads as the address of the
5129 current instruction plus 8.
5130 - When executing a Thumb instruction, PC reads as the address of the
5131 current instruction plus 4. */
5132
5133 if (displaced_in_arm_mode (regs))
5134 from += 8;
5135 else
5136 from += 4;
5137
cca44b1b
JB
5138 if (debug_displaced)
5139 fprintf_unfiltered (gdb_stdlog, "displaced: read pc value %.8lx\n",
4db71c0b
YQ
5140 (unsigned long) from);
5141 return (ULONGEST) from;
cca44b1b 5142 }
c906108c 5143 else
cca44b1b
JB
5144 {
5145 regcache_cooked_read_unsigned (regs, regno, &ret);
5146 if (debug_displaced)
5147 fprintf_unfiltered (gdb_stdlog, "displaced: read r%d value %.8lx\n",
5148 regno, (unsigned long) ret);
5149 return ret;
5150 }
c906108c
SS
5151}
5152
cca44b1b
JB
5153static int
5154displaced_in_arm_mode (struct regcache *regs)
5155{
5156 ULONGEST ps;
9779414d 5157 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
66e810cd 5158
cca44b1b 5159 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
66e810cd 5160
9779414d 5161 return (ps & t_bit) == 0;
cca44b1b 5162}
66e810cd 5163
cca44b1b 5164/* Write to the PC as from a branch instruction. */
c906108c 5165
cca44b1b
JB
5166static void
5167branch_write_pc (struct regcache *regs, ULONGEST val)
c906108c 5168{
cca44b1b
JB
5169 if (displaced_in_arm_mode (regs))
5170 /* Note: If bits 0/1 are set, this branch would be unpredictable for
5171 architecture versions < 6. */
0963b4bd
MS
5172 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
5173 val & ~(ULONGEST) 0x3);
cca44b1b 5174 else
0963b4bd
MS
5175 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
5176 val & ~(ULONGEST) 0x1);
cca44b1b 5177}
66e810cd 5178
cca44b1b
JB
5179/* Write to the PC as from a branch-exchange instruction. */
5180
5181static void
5182bx_write_pc (struct regcache *regs, ULONGEST val)
5183{
5184 ULONGEST ps;
9779414d 5185 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
cca44b1b
JB
5186
5187 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
5188
5189 if ((val & 1) == 1)
c906108c 5190 {
9779414d 5191 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps | t_bit);
cca44b1b
JB
5192 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffe);
5193 }
5194 else if ((val & 2) == 0)
5195 {
9779414d 5196 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
cca44b1b 5197 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val);
c906108c
SS
5198 }
5199 else
5200 {
cca44b1b
JB
5201 /* Unpredictable behaviour. Try to do something sensible (switch to ARM
5202 mode, align dest to 4 bytes). */
5203 warning (_("Single-stepping BX to non-word-aligned ARM instruction."));
9779414d 5204 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
cca44b1b 5205 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffc);
c906108c
SS
5206 }
5207}
ed9a39eb 5208
cca44b1b 5209/* Write to the PC as if from a load instruction. */
ed9a39eb 5210
34e8f22d 5211static void
cca44b1b 5212load_write_pc (struct regcache *regs, ULONGEST val)
ed9a39eb 5213{
cca44b1b
JB
5214 if (DISPLACED_STEPPING_ARCH_VERSION >= 5)
5215 bx_write_pc (regs, val);
5216 else
5217 branch_write_pc (regs, val);
5218}
be8626e0 5219
cca44b1b
JB
5220/* Write to the PC as if from an ALU instruction. */
5221
5222static void
5223alu_write_pc (struct regcache *regs, ULONGEST val)
5224{
5225 if (DISPLACED_STEPPING_ARCH_VERSION >= 7 && displaced_in_arm_mode (regs))
5226 bx_write_pc (regs, val);
5227 else
5228 branch_write_pc (regs, val);
5229}
5230
5231/* Helper for writing to registers for displaced stepping. Writing to the PC
5232 has a varying effects depending on the instruction which does the write:
5233 this is controlled by the WRITE_PC argument. */
5234
5235void
5236displaced_write_reg (struct regcache *regs, struct displaced_step_closure *dsc,
5237 int regno, ULONGEST val, enum pc_write_style write_pc)
5238{
bf9f652a 5239 if (regno == ARM_PC_REGNUM)
08216dd7 5240 {
cca44b1b
JB
5241 if (debug_displaced)
5242 fprintf_unfiltered (gdb_stdlog, "displaced: writing pc %.8lx\n",
5243 (unsigned long) val);
5244 switch (write_pc)
08216dd7 5245 {
cca44b1b
JB
5246 case BRANCH_WRITE_PC:
5247 branch_write_pc (regs, val);
08216dd7
RE
5248 break;
5249
cca44b1b
JB
5250 case BX_WRITE_PC:
5251 bx_write_pc (regs, val);
5252 break;
5253
5254 case LOAD_WRITE_PC:
5255 load_write_pc (regs, val);
5256 break;
5257
5258 case ALU_WRITE_PC:
5259 alu_write_pc (regs, val);
5260 break;
5261
5262 case CANNOT_WRITE_PC:
5263 warning (_("Instruction wrote to PC in an unexpected way when "
5264 "single-stepping"));
08216dd7
RE
5265 break;
5266
5267 default:
97b9747c
JB
5268 internal_error (__FILE__, __LINE__,
5269 _("Invalid argument to displaced_write_reg"));
08216dd7 5270 }
b508a996 5271
cca44b1b 5272 dsc->wrote_to_pc = 1;
b508a996 5273 }
ed9a39eb 5274 else
b508a996 5275 {
cca44b1b
JB
5276 if (debug_displaced)
5277 fprintf_unfiltered (gdb_stdlog, "displaced: writing r%d value %.8lx\n",
5278 regno, (unsigned long) val);
5279 regcache_cooked_write_unsigned (regs, regno, val);
b508a996 5280 }
34e8f22d
RE
5281}
5282
cca44b1b
JB
5283/* This function is used to concisely determine if an instruction INSN
5284 references PC. Register fields of interest in INSN should have the
0963b4bd
MS
5285 corresponding fields of BITMASK set to 0b1111. The function
5286 returns return 1 if any of these fields in INSN reference the PC
5287 (also 0b1111, r15), else it returns 0. */
67255d04
RE
5288
5289static int
cca44b1b 5290insn_references_pc (uint32_t insn, uint32_t bitmask)
67255d04 5291{
cca44b1b 5292 uint32_t lowbit = 1;
67255d04 5293
cca44b1b
JB
5294 while (bitmask != 0)
5295 {
5296 uint32_t mask;
44e1a9eb 5297
cca44b1b
JB
5298 for (; lowbit && (bitmask & lowbit) == 0; lowbit <<= 1)
5299 ;
67255d04 5300
cca44b1b
JB
5301 if (!lowbit)
5302 break;
67255d04 5303
cca44b1b 5304 mask = lowbit * 0xf;
67255d04 5305
cca44b1b
JB
5306 if ((insn & mask) == mask)
5307 return 1;
5308
5309 bitmask &= ~mask;
67255d04
RE
5310 }
5311
cca44b1b
JB
5312 return 0;
5313}
2af48f68 5314
cca44b1b
JB
5315/* The simplest copy function. Many instructions have the same effect no
5316 matter what address they are executed at: in those cases, use this. */
67255d04 5317
cca44b1b 5318static int
6e39997a 5319copy_unmodified (struct gdbarch *gdbarch, uint32_t insn,
cca44b1b
JB
5320 const char *iname, struct displaced_step_closure *dsc)
5321{
5322 if (debug_displaced)
5323 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx, "
5324 "opcode/class '%s' unmodified\n", (unsigned long) insn,
5325 iname);
67255d04 5326
cca44b1b 5327 dsc->modinsn[0] = insn;
67255d04 5328
cca44b1b
JB
5329 return 0;
5330}
5331
5332/* Preload instructions with immediate offset. */
5333
5334static void
6e39997a 5335cleanup_preload (struct gdbarch *gdbarch,
cca44b1b
JB
5336 struct regcache *regs, struct displaced_step_closure *dsc)
5337{
5338 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5339 if (!dsc->u.preload.immed)
5340 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5341}
5342
5343static int
5344copy_preload (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5345 struct displaced_step_closure *dsc)
5346{
5347 unsigned int rn = bits (insn, 16, 19);
5348 ULONGEST rn_val;
5349 CORE_ADDR from = dsc->insn_addr;
5350
5351 if (!insn_references_pc (insn, 0x000f0000ul))
5352 return copy_unmodified (gdbarch, insn, "preload", dsc);
5353
5354 if (debug_displaced)
5355 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
5356 (unsigned long) insn);
5357
5358 /* Preload instructions:
5359
5360 {pli/pld} [rn, #+/-imm]
5361 ->
5362 {pli/pld} [r0, #+/-imm]. */
5363
5364 dsc->tmp[0] = displaced_read_reg (regs, from, 0);
5365 rn_val = displaced_read_reg (regs, from, rn);
5366 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
5367
5368 dsc->u.preload.immed = 1;
5369
5370 dsc->modinsn[0] = insn & 0xfff0ffff;
5371
5372 dsc->cleanup = &cleanup_preload;
5373
5374 return 0;
5375}
5376
5377/* Preload instructions with register offset. */
5378
5379static int
0963b4bd
MS
5380copy_preload_reg (struct gdbarch *gdbarch, uint32_t insn,
5381 struct regcache *regs,
cca44b1b
JB
5382 struct displaced_step_closure *dsc)
5383{
5384 unsigned int rn = bits (insn, 16, 19);
5385 unsigned int rm = bits (insn, 0, 3);
5386 ULONGEST rn_val, rm_val;
5387 CORE_ADDR from = dsc->insn_addr;
5388
5389 if (!insn_references_pc (insn, 0x000f000ful))
5390 return copy_unmodified (gdbarch, insn, "preload reg", dsc);
5391
5392 if (debug_displaced)
5393 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
5394 (unsigned long) insn);
5395
5396 /* Preload register-offset instructions:
5397
5398 {pli/pld} [rn, rm {, shift}]
5399 ->
5400 {pli/pld} [r0, r1 {, shift}]. */
5401
5402 dsc->tmp[0] = displaced_read_reg (regs, from, 0);
5403 dsc->tmp[1] = displaced_read_reg (regs, from, 1);
5404 rn_val = displaced_read_reg (regs, from, rn);
5405 rm_val = displaced_read_reg (regs, from, rm);
5406 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
5407 displaced_write_reg (regs, dsc, 1, rm_val, CANNOT_WRITE_PC);
5408
5409 dsc->u.preload.immed = 0;
5410
5411 dsc->modinsn[0] = (insn & 0xfff0fff0) | 0x1;
5412
5413 dsc->cleanup = &cleanup_preload;
5414
5415 return 0;
5416}
5417
5418/* Copy/cleanup coprocessor load and store instructions. */
5419
5420static void
6e39997a 5421cleanup_copro_load_store (struct gdbarch *gdbarch,
cca44b1b
JB
5422 struct regcache *regs,
5423 struct displaced_step_closure *dsc)
5424{
5425 ULONGEST rn_val = displaced_read_reg (regs, dsc->insn_addr, 0);
5426
5427 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5428
5429 if (dsc->u.ldst.writeback)
5430 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, LOAD_WRITE_PC);
5431}
5432
5433static int
5434copy_copro_load_store (struct gdbarch *gdbarch, uint32_t insn,
5435 struct regcache *regs,
5436 struct displaced_step_closure *dsc)
5437{
5438 unsigned int rn = bits (insn, 16, 19);
5439 ULONGEST rn_val;
5440 CORE_ADDR from = dsc->insn_addr;
5441
5442 if (!insn_references_pc (insn, 0x000f0000ul))
5443 return copy_unmodified (gdbarch, insn, "copro load/store", dsc);
5444
5445 if (debug_displaced)
5446 fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
5447 "load/store insn %.8lx\n", (unsigned long) insn);
5448
5449 /* Coprocessor load/store instructions:
5450
5451 {stc/stc2} [<Rn>, #+/-imm] (and other immediate addressing modes)
5452 ->
5453 {stc/stc2} [r0, #+/-imm].
5454
5455 ldc/ldc2 are handled identically. */
5456
5457 dsc->tmp[0] = displaced_read_reg (regs, from, 0);
5458 rn_val = displaced_read_reg (regs, from, rn);
5459 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
5460
5461 dsc->u.ldst.writeback = bit (insn, 25);
5462 dsc->u.ldst.rn = rn;
5463
5464 dsc->modinsn[0] = insn & 0xfff0ffff;
5465
5466 dsc->cleanup = &cleanup_copro_load_store;
5467
5468 return 0;
5469}
5470
5471/* Clean up branch instructions (actually perform the branch, by setting
5472 PC). */
5473
5474static void
6e39997a 5475cleanup_branch (struct gdbarch *gdbarch, struct regcache *regs,
cca44b1b
JB
5476 struct displaced_step_closure *dsc)
5477{
5478 ULONGEST from = dsc->insn_addr;
5479 uint32_t status = displaced_read_reg (regs, from, ARM_PS_REGNUM);
5480 int branch_taken = condition_true (dsc->u.branch.cond, status);
5481 enum pc_write_style write_pc = dsc->u.branch.exchange
5482 ? BX_WRITE_PC : BRANCH_WRITE_PC;
5483
5484 if (!branch_taken)
5485 return;
5486
5487 if (dsc->u.branch.link)
5488 {
bf9f652a
YQ
5489 ULONGEST pc = displaced_read_reg (regs, from, ARM_PC_REGNUM);
5490 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, pc - 4, CANNOT_WRITE_PC);
cca44b1b
JB
5491 }
5492
bf9f652a 5493 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->u.branch.dest, write_pc);
cca44b1b
JB
5494}
5495
5496/* Copy B/BL/BLX instructions with immediate destinations. */
5497
5498static int
6e39997a 5499copy_b_bl_blx (struct gdbarch *gdbarch, uint32_t insn,
cca44b1b
JB
5500 struct regcache *regs, struct displaced_step_closure *dsc)
5501{
5502 unsigned int cond = bits (insn, 28, 31);
5503 int exchange = (cond == 0xf);
5504 int link = exchange || bit (insn, 24);
5505 CORE_ADDR from = dsc->insn_addr;
5506 long offset;
5507
5508 if (debug_displaced)
5509 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s immediate insn "
5510 "%.8lx\n", (exchange) ? "blx" : (link) ? "bl" : "b",
5511 (unsigned long) insn);
5512
5513 /* Implement "BL<cond> <label>" as:
5514
5515 Preparation: cond <- instruction condition
5516 Insn: mov r0, r0 (nop)
5517 Cleanup: if (condition true) { r14 <- pc; pc <- label }.
5518
5519 B<cond> similar, but don't set r14 in cleanup. */
5520
5521 if (exchange)
5522 /* For BLX, set bit 0 of the destination. The cleanup_branch function will
5523 then arrange the switch into Thumb mode. */
5524 offset = (bits (insn, 0, 23) << 2) | (bit (insn, 24) << 1) | 1;
5525 else
5526 offset = bits (insn, 0, 23) << 2;
5527
5528 if (bit (offset, 25))
5529 offset = offset | ~0x3ffffff;
5530
5531 dsc->u.branch.cond = cond;
5532 dsc->u.branch.link = link;
5533 dsc->u.branch.exchange = exchange;
5534 dsc->u.branch.dest = from + 8 + offset;
5535
5536 dsc->modinsn[0] = ARM_NOP;
5537
5538 dsc->cleanup = &cleanup_branch;
5539
5540 return 0;
5541}
5542
5543/* Copy BX/BLX with register-specified destinations. */
5544
5545static int
6e39997a 5546copy_bx_blx_reg (struct gdbarch *gdbarch, uint32_t insn,
cca44b1b
JB
5547 struct regcache *regs, struct displaced_step_closure *dsc)
5548{
5549 unsigned int cond = bits (insn, 28, 31);
5550 /* BX: x12xxx1x
5551 BLX: x12xxx3x. */
5552 int link = bit (insn, 5);
5553 unsigned int rm = bits (insn, 0, 3);
5554 CORE_ADDR from = dsc->insn_addr;
5555
5556 if (debug_displaced)
5557 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s register insn "
0963b4bd
MS
5558 "%.8lx\n", (link) ? "blx" : "bx",
5559 (unsigned long) insn);
cca44b1b
JB
5560
5561 /* Implement {BX,BLX}<cond> <reg>" as:
5562
5563 Preparation: cond <- instruction condition
5564 Insn: mov r0, r0 (nop)
5565 Cleanup: if (condition true) { r14 <- pc; pc <- dest; }.
5566
5567 Don't set r14 in cleanup for BX. */
5568
5569 dsc->u.branch.dest = displaced_read_reg (regs, from, rm);
5570
5571 dsc->u.branch.cond = cond;
5572 dsc->u.branch.link = link;
5573 dsc->u.branch.exchange = 1;
5574
5575 dsc->modinsn[0] = ARM_NOP;
5576
5577 dsc->cleanup = &cleanup_branch;
5578
5579 return 0;
5580}
5581
0963b4bd 5582/* Copy/cleanup arithmetic/logic instruction with immediate RHS. */
cca44b1b
JB
5583
5584static void
6e39997a 5585cleanup_alu_imm (struct gdbarch *gdbarch,
cca44b1b
JB
5586 struct regcache *regs, struct displaced_step_closure *dsc)
5587{
5588 ULONGEST rd_val = displaced_read_reg (regs, dsc->insn_addr, 0);
5589 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5590 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5591 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5592}
5593
5594static int
5595copy_alu_imm (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5596 struct displaced_step_closure *dsc)
5597{
5598 unsigned int rn = bits (insn, 16, 19);
5599 unsigned int rd = bits (insn, 12, 15);
5600 unsigned int op = bits (insn, 21, 24);
5601 int is_mov = (op == 0xd);
5602 ULONGEST rd_val, rn_val;
5603 CORE_ADDR from = dsc->insn_addr;
5604
5605 if (!insn_references_pc (insn, 0x000ff000ul))
5606 return copy_unmodified (gdbarch, insn, "ALU immediate", dsc);
5607
5608 if (debug_displaced)
5609 fprintf_unfiltered (gdb_stdlog, "displaced: copying immediate %s insn "
5610 "%.8lx\n", is_mov ? "move" : "ALU",
5611 (unsigned long) insn);
5612
5613 /* Instruction is of form:
5614
5615 <op><cond> rd, [rn,] #imm
5616
5617 Rewrite as:
5618
5619 Preparation: tmp1, tmp2 <- r0, r1;
5620 r0, r1 <- rd, rn
5621 Insn: <op><cond> r0, r1, #imm
5622 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
5623 */
5624
5625 dsc->tmp[0] = displaced_read_reg (regs, from, 0);
5626 dsc->tmp[1] = displaced_read_reg (regs, from, 1);
5627 rn_val = displaced_read_reg (regs, from, rn);
5628 rd_val = displaced_read_reg (regs, from, rd);
5629 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5630 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5631 dsc->rd = rd;
5632
5633 if (is_mov)
5634 dsc->modinsn[0] = insn & 0xfff00fff;
5635 else
5636 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x10000;
5637
5638 dsc->cleanup = &cleanup_alu_imm;
5639
5640 return 0;
5641}
5642
5643/* Copy/cleanup arithmetic/logic insns with register RHS. */
5644
5645static void
6e39997a 5646cleanup_alu_reg (struct gdbarch *gdbarch,
cca44b1b
JB
5647 struct regcache *regs, struct displaced_step_closure *dsc)
5648{
5649 ULONGEST rd_val;
5650 int i;
5651
5652 rd_val = displaced_read_reg (regs, dsc->insn_addr, 0);
5653
5654 for (i = 0; i < 3; i++)
5655 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5656
5657 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5658}
5659
5660static int
5661copy_alu_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5662 struct displaced_step_closure *dsc)
5663{
5664 unsigned int rn = bits (insn, 16, 19);
5665 unsigned int rm = bits (insn, 0, 3);
5666 unsigned int rd = bits (insn, 12, 15);
5667 unsigned int op = bits (insn, 21, 24);
5668 int is_mov = (op == 0xd);
5669 ULONGEST rd_val, rn_val, rm_val;
5670 CORE_ADDR from = dsc->insn_addr;
5671
5672 if (!insn_references_pc (insn, 0x000ff00ful))
5673 return copy_unmodified (gdbarch, insn, "ALU reg", dsc);
5674
5675 if (debug_displaced)
5676 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.8lx\n",
5677 is_mov ? "move" : "ALU", (unsigned long) insn);
5678
5679 /* Instruction is of form:
5680
5681 <op><cond> rd, [rn,] rm [, <shift>]
5682
5683 Rewrite as:
5684
5685 Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2;
5686 r0, r1, r2 <- rd, rn, rm
5687 Insn: <op><cond> r0, r1, r2 [, <shift>]
5688 Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3
5689 */
5690
5691 dsc->tmp[0] = displaced_read_reg (regs, from, 0);
5692 dsc->tmp[1] = displaced_read_reg (regs, from, 1);
5693 dsc->tmp[2] = displaced_read_reg (regs, from, 2);
5694 rd_val = displaced_read_reg (regs, from, rd);
5695 rn_val = displaced_read_reg (regs, from, rn);
5696 rm_val = displaced_read_reg (regs, from, rm);
5697 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5698 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5699 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5700 dsc->rd = rd;
5701
5702 if (is_mov)
5703 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x2;
5704 else
5705 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x10002;
5706
5707 dsc->cleanup = &cleanup_alu_reg;
5708
5709 return 0;
5710}
5711
5712/* Cleanup/copy arithmetic/logic insns with shifted register RHS. */
5713
5714static void
6e39997a 5715cleanup_alu_shifted_reg (struct gdbarch *gdbarch,
cca44b1b
JB
5716 struct regcache *regs,
5717 struct displaced_step_closure *dsc)
5718{
5719 ULONGEST rd_val = displaced_read_reg (regs, dsc->insn_addr, 0);
5720 int i;
5721
5722 for (i = 0; i < 4; i++)
5723 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5724
5725 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5726}
5727
5728static int
5729copy_alu_shifted_reg (struct gdbarch *gdbarch, uint32_t insn,
0963b4bd
MS
5730 struct regcache *regs,
5731 struct displaced_step_closure *dsc)
cca44b1b
JB
5732{
5733 unsigned int rn = bits (insn, 16, 19);
5734 unsigned int rm = bits (insn, 0, 3);
5735 unsigned int rd = bits (insn, 12, 15);
5736 unsigned int rs = bits (insn, 8, 11);
5737 unsigned int op = bits (insn, 21, 24);
5738 int is_mov = (op == 0xd), i;
5739 ULONGEST rd_val, rn_val, rm_val, rs_val;
5740 CORE_ADDR from = dsc->insn_addr;
5741
5742 if (!insn_references_pc (insn, 0x000fff0ful))
5743 return copy_unmodified (gdbarch, insn, "ALU shifted reg", dsc);
5744
5745 if (debug_displaced)
5746 fprintf_unfiltered (gdb_stdlog, "displaced: copying shifted reg %s insn "
5747 "%.8lx\n", is_mov ? "move" : "ALU",
5748 (unsigned long) insn);
5749
5750 /* Instruction is of form:
5751
5752 <op><cond> rd, [rn,] rm, <shift> rs
5753
5754 Rewrite as:
5755
5756 Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3
5757 r0, r1, r2, r3 <- rd, rn, rm, rs
5758 Insn: <op><cond> r0, r1, r2, <shift> r3
5759 Cleanup: tmp5 <- r0
5760 r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4
5761 rd <- tmp5
5762 */
5763
5764 for (i = 0; i < 4; i++)
5765 dsc->tmp[i] = displaced_read_reg (regs, from, i);
5766
5767 rd_val = displaced_read_reg (regs, from, rd);
5768 rn_val = displaced_read_reg (regs, from, rn);
5769 rm_val = displaced_read_reg (regs, from, rm);
5770 rs_val = displaced_read_reg (regs, from, rs);
5771 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5772 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5773 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5774 displaced_write_reg (regs, dsc, 3, rs_val, CANNOT_WRITE_PC);
5775 dsc->rd = rd;
5776
5777 if (is_mov)
5778 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x302;
5779 else
5780 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x10302;
5781
5782 dsc->cleanup = &cleanup_alu_shifted_reg;
5783
5784 return 0;
5785}
5786
5787/* Clean up load instructions. */
5788
5789static void
6e39997a 5790cleanup_load (struct gdbarch *gdbarch, struct regcache *regs,
cca44b1b
JB
5791 struct displaced_step_closure *dsc)
5792{
5793 ULONGEST rt_val, rt_val2 = 0, rn_val;
5794 CORE_ADDR from = dsc->insn_addr;
5795
5796 rt_val = displaced_read_reg (regs, from, 0);
5797 if (dsc->u.ldst.xfersize == 8)
5798 rt_val2 = displaced_read_reg (regs, from, 1);
5799 rn_val = displaced_read_reg (regs, from, 2);
5800
5801 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5802 if (dsc->u.ldst.xfersize > 4)
5803 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5804 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5805 if (!dsc->u.ldst.immed)
5806 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5807
5808 /* Handle register writeback. */
5809 if (dsc->u.ldst.writeback)
5810 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5811 /* Put result in right place. */
5812 displaced_write_reg (regs, dsc, dsc->rd, rt_val, LOAD_WRITE_PC);
5813 if (dsc->u.ldst.xfersize == 8)
5814 displaced_write_reg (regs, dsc, dsc->rd + 1, rt_val2, LOAD_WRITE_PC);
5815}
5816
5817/* Clean up store instructions. */
5818
5819static void
6e39997a 5820cleanup_store (struct gdbarch *gdbarch, struct regcache *regs,
cca44b1b
JB
5821 struct displaced_step_closure *dsc)
5822{
5823 CORE_ADDR from = dsc->insn_addr;
5824 ULONGEST rn_val = displaced_read_reg (regs, from, 2);
5825
5826 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5827 if (dsc->u.ldst.xfersize > 4)
5828 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5829 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5830 if (!dsc->u.ldst.immed)
5831 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5832 if (!dsc->u.ldst.restore_r4)
5833 displaced_write_reg (regs, dsc, 4, dsc->tmp[4], CANNOT_WRITE_PC);
5834
5835 /* Writeback. */
5836 if (dsc->u.ldst.writeback)
5837 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5838}
5839
5840/* Copy "extra" load/store instructions. These are halfword/doubleword
5841 transfers, which have a different encoding to byte/word transfers. */
5842
5843static int
5844copy_extra_ld_st (struct gdbarch *gdbarch, uint32_t insn, int unpriveleged,
5845 struct regcache *regs, struct displaced_step_closure *dsc)
5846{
5847 unsigned int op1 = bits (insn, 20, 24);
5848 unsigned int op2 = bits (insn, 5, 6);
5849 unsigned int rt = bits (insn, 12, 15);
5850 unsigned int rn = bits (insn, 16, 19);
5851 unsigned int rm = bits (insn, 0, 3);
5852 char load[12] = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1};
5853 char bytesize[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2};
5854 int immed = (op1 & 0x4) != 0;
5855 int opcode;
5856 ULONGEST rt_val, rt_val2 = 0, rn_val, rm_val = 0;
5857 CORE_ADDR from = dsc->insn_addr;
5858
5859 if (!insn_references_pc (insn, 0x000ff00ful))
5860 return copy_unmodified (gdbarch, insn, "extra load/store", dsc);
5861
5862 if (debug_displaced)
5863 fprintf_unfiltered (gdb_stdlog, "displaced: copying %sextra load/store "
5864 "insn %.8lx\n", unpriveleged ? "unpriveleged " : "",
5865 (unsigned long) insn);
5866
5867 opcode = ((op2 << 2) | (op1 & 0x1) | ((op1 & 0x4) >> 1)) - 4;
5868
5869 if (opcode < 0)
5870 internal_error (__FILE__, __LINE__,
5871 _("copy_extra_ld_st: instruction decode error"));
5872
5873 dsc->tmp[0] = displaced_read_reg (regs, from, 0);
5874 dsc->tmp[1] = displaced_read_reg (regs, from, 1);
5875 dsc->tmp[2] = displaced_read_reg (regs, from, 2);
5876 if (!immed)
5877 dsc->tmp[3] = displaced_read_reg (regs, from, 3);
5878
5879 rt_val = displaced_read_reg (regs, from, rt);
5880 if (bytesize[opcode] == 8)
5881 rt_val2 = displaced_read_reg (regs, from, rt + 1);
5882 rn_val = displaced_read_reg (regs, from, rn);
5883 if (!immed)
5884 rm_val = displaced_read_reg (regs, from, rm);
5885
5886 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
5887 if (bytesize[opcode] == 8)
5888 displaced_write_reg (regs, dsc, 1, rt_val2, CANNOT_WRITE_PC);
5889 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
5890 if (!immed)
5891 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
5892
5893 dsc->rd = rt;
5894 dsc->u.ldst.xfersize = bytesize[opcode];
5895 dsc->u.ldst.rn = rn;
5896 dsc->u.ldst.immed = immed;
5897 dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0;
5898 dsc->u.ldst.restore_r4 = 0;
5899
5900 if (immed)
5901 /* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm]
5902 ->
5903 {ldr,str}<width><cond> r0, [r1,] [r2, #imm]. */
5904 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
5905 else
5906 /* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm]
5907 ->
5908 {ldr,str}<width><cond> r0, [r1,] [r2, +/-r3]. */
5909 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
5910
5911 dsc->cleanup = load[opcode] ? &cleanup_load : &cleanup_store;
5912
5913 return 0;
5914}
5915
5916/* Copy byte/word loads and stores. */
5917
5918static int
5919copy_ldr_str_ldrb_strb (struct gdbarch *gdbarch, uint32_t insn,
5920 struct regcache *regs,
5921 struct displaced_step_closure *dsc, int load, int byte,
5922 int usermode)
5923{
5924 int immed = !bit (insn, 25);
5925 unsigned int rt = bits (insn, 12, 15);
5926 unsigned int rn = bits (insn, 16, 19);
5927 unsigned int rm = bits (insn, 0, 3); /* Only valid if !immed. */
5928 ULONGEST rt_val, rn_val, rm_val = 0;
5929 CORE_ADDR from = dsc->insn_addr;
5930
5931 if (!insn_references_pc (insn, 0x000ff00ful))
5932 return copy_unmodified (gdbarch, insn, "load/store", dsc);
5933
5934 if (debug_displaced)
5935 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s%s insn %.8lx\n",
5936 load ? (byte ? "ldrb" : "ldr")
5937 : (byte ? "strb" : "str"), usermode ? "t" : "",
5938 (unsigned long) insn);
5939
5940 dsc->tmp[0] = displaced_read_reg (regs, from, 0);
5941 dsc->tmp[2] = displaced_read_reg (regs, from, 2);
5942 if (!immed)
5943 dsc->tmp[3] = displaced_read_reg (regs, from, 3);
5944 if (!load)
5945 dsc->tmp[4] = displaced_read_reg (regs, from, 4);
5946
5947 rt_val = displaced_read_reg (regs, from, rt);
5948 rn_val = displaced_read_reg (regs, from, rn);
5949 if (!immed)
5950 rm_val = displaced_read_reg (regs, from, rm);
5951
5952 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
5953 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
5954 if (!immed)
5955 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
5956
5957 dsc->rd = rt;
5958 dsc->u.ldst.xfersize = byte ? 1 : 4;
5959 dsc->u.ldst.rn = rn;
5960 dsc->u.ldst.immed = immed;
5961 dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0;
5962
5963 /* To write PC we can do:
5964
494e194e
YQ
5965 Before this sequence of instructions:
5966 r0 is the PC value got from displaced_read_reg, so r0 = from + 8;
5967 r2 is the Rn value got from dispalced_read_reg.
5968
5969 Insn1: push {pc} Write address of STR instruction + offset on stack
5970 Insn2: pop {r4} Read it back from stack, r4 = addr(Insn1) + offset
5971 Insn3: sub r4, r4, pc r4 = addr(Insn1) + offset - pc
5972 = addr(Insn1) + offset - addr(Insn3) - 8
5973 = offset - 16
5974 Insn4: add r4, r4, #8 r4 = offset - 8
5975 Insn5: add r0, r0, r4 r0 = from + 8 + offset - 8
5976 = from + offset
5977 Insn6: str r0, [r2, #imm] (or str r0, [r2, r3])
cca44b1b
JB
5978
5979 Otherwise we don't know what value to write for PC, since the offset is
494e194e
YQ
5980 architecture-dependent (sometimes PC+8, sometimes PC+12). More details
5981 of this can be found in Section "Saving from r15" in
5982 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204g/Cihbjifh.html */
cca44b1b 5983
bf9f652a 5984 if (load || rt != ARM_PC_REGNUM)
cca44b1b
JB
5985 {
5986 dsc->u.ldst.restore_r4 = 0;
5987
5988 if (immed)
5989 /* {ldr,str}[b]<cond> rt, [rn, #imm], etc.
5990 ->
5991 {ldr,str}[b]<cond> r0, [r2, #imm]. */
5992 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
5993 else
5994 /* {ldr,str}[b]<cond> rt, [rn, rm], etc.
5995 ->
5996 {ldr,str}[b]<cond> r0, [r2, r3]. */
5997 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
5998 }
5999 else
6000 {
6001 /* We need to use r4 as scratch. Make sure it's restored afterwards. */
6002 dsc->u.ldst.restore_r4 = 1;
494e194e
YQ
6003 dsc->modinsn[0] = 0xe92d8000; /* push {pc} */
6004 dsc->modinsn[1] = 0xe8bd0010; /* pop {r4} */
cca44b1b
JB
6005 dsc->modinsn[2] = 0xe044400f; /* sub r4, r4, pc. */
6006 dsc->modinsn[3] = 0xe2844008; /* add r4, r4, #8. */
6007 dsc->modinsn[4] = 0xe0800004; /* add r0, r0, r4. */
6008
6009 /* As above. */
6010 if (immed)
6011 dsc->modinsn[5] = (insn & 0xfff00fff) | 0x20000;
6012 else
6013 dsc->modinsn[5] = (insn & 0xfff00ff0) | 0x20003;
6014
6015 dsc->modinsn[6] = 0x0; /* breakpoint location. */
6016 dsc->modinsn[7] = 0x0; /* scratch space. */
6017
6018 dsc->numinsns = 6;
6019 }
6020
6021 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
6022
6023 return 0;
6024}
6025
6026/* Cleanup LDM instructions with fully-populated register list. This is an
6027 unfortunate corner case: it's impossible to implement correctly by modifying
6028 the instruction. The issue is as follows: we have an instruction,
6029
6030 ldm rN, {r0-r15}
6031
6032 which we must rewrite to avoid loading PC. A possible solution would be to
6033 do the load in two halves, something like (with suitable cleanup
6034 afterwards):
6035
6036 mov r8, rN
6037 ldm[id][ab] r8!, {r0-r7}
6038 str r7, <temp>
6039 ldm[id][ab] r8, {r7-r14}
6040 <bkpt>
6041
6042 but at present there's no suitable place for <temp>, since the scratch space
6043 is overwritten before the cleanup routine is called. For now, we simply
6044 emulate the instruction. */
6045
6046static void
6047cleanup_block_load_all (struct gdbarch *gdbarch, struct regcache *regs,
6048 struct displaced_step_closure *dsc)
6049{
6050 ULONGEST from = dsc->insn_addr;
6051 int inc = dsc->u.block.increment;
6052 int bump_before = dsc->u.block.before ? (inc ? 4 : -4) : 0;
6053 int bump_after = dsc->u.block.before ? 0 : (inc ? 4 : -4);
6054 uint32_t regmask = dsc->u.block.regmask;
6055 int regno = inc ? 0 : 15;
6056 CORE_ADDR xfer_addr = dsc->u.block.xfer_addr;
6057 int exception_return = dsc->u.block.load && dsc->u.block.user
6058 && (regmask & 0x8000) != 0;
6059 uint32_t status = displaced_read_reg (regs, from, ARM_PS_REGNUM);
6060 int do_transfer = condition_true (dsc->u.block.cond, status);
6061 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6062
6063 if (!do_transfer)
6064 return;
6065
6066 /* If the instruction is ldm rN, {...pc}^, I don't think there's anything
6067 sensible we can do here. Complain loudly. */
6068 if (exception_return)
6069 error (_("Cannot single-step exception return"));
6070
6071 /* We don't handle any stores here for now. */
6072 gdb_assert (dsc->u.block.load != 0);
6073
6074 if (debug_displaced)
6075 fprintf_unfiltered (gdb_stdlog, "displaced: emulating block transfer: "
6076 "%s %s %s\n", dsc->u.block.load ? "ldm" : "stm",
6077 dsc->u.block.increment ? "inc" : "dec",
6078 dsc->u.block.before ? "before" : "after");
6079
6080 while (regmask)
6081 {
6082 uint32_t memword;
6083
6084 if (inc)
bf9f652a 6085 while (regno <= ARM_PC_REGNUM && (regmask & (1 << regno)) == 0)
cca44b1b
JB
6086 regno++;
6087 else
6088 while (regno >= 0 && (regmask & (1 << regno)) == 0)
6089 regno--;
6090
6091 xfer_addr += bump_before;
6092
6093 memword = read_memory_unsigned_integer (xfer_addr, 4, byte_order);
6094 displaced_write_reg (regs, dsc, regno, memword, LOAD_WRITE_PC);
6095
6096 xfer_addr += bump_after;
6097
6098 regmask &= ~(1 << regno);
6099 }
6100
6101 if (dsc->u.block.writeback)
6102 displaced_write_reg (regs, dsc, dsc->u.block.rn, xfer_addr,
6103 CANNOT_WRITE_PC);
6104}
6105
6106/* Clean up an STM which included the PC in the register list. */
6107
6108static void
6109cleanup_block_store_pc (struct gdbarch *gdbarch, struct regcache *regs,
6110 struct displaced_step_closure *dsc)
6111{
6112 ULONGEST from = dsc->insn_addr;
6113 uint32_t status = displaced_read_reg (regs, from, ARM_PS_REGNUM);
6114 int store_executed = condition_true (dsc->u.block.cond, status);
6115 CORE_ADDR pc_stored_at, transferred_regs = bitcount (dsc->u.block.regmask);
6116 CORE_ADDR stm_insn_addr;
6117 uint32_t pc_val;
6118 long offset;
6119 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6120
6121 /* If condition code fails, there's nothing else to do. */
6122 if (!store_executed)
6123 return;
6124
6125 if (dsc->u.block.increment)
6126 {
6127 pc_stored_at = dsc->u.block.xfer_addr + 4 * transferred_regs;
6128
6129 if (dsc->u.block.before)
6130 pc_stored_at += 4;
6131 }
6132 else
6133 {
6134 pc_stored_at = dsc->u.block.xfer_addr;
6135
6136 if (dsc->u.block.before)
6137 pc_stored_at -= 4;
6138 }
6139
6140 pc_val = read_memory_unsigned_integer (pc_stored_at, 4, byte_order);
6141 stm_insn_addr = dsc->scratch_base;
6142 offset = pc_val - stm_insn_addr;
6143
6144 if (debug_displaced)
6145 fprintf_unfiltered (gdb_stdlog, "displaced: detected PC offset %.8lx for "
6146 "STM instruction\n", offset);
6147
6148 /* Rewrite the stored PC to the proper value for the non-displaced original
6149 instruction. */
6150 write_memory_unsigned_integer (pc_stored_at, 4, byte_order,
6151 dsc->insn_addr + offset);
6152}
6153
6154/* Clean up an LDM which includes the PC in the register list. We clumped all
6155 the registers in the transferred list into a contiguous range r0...rX (to
6156 avoid loading PC directly and losing control of the debugged program), so we
6157 must undo that here. */
6158
6159static void
6e39997a 6160cleanup_block_load_pc (struct gdbarch *gdbarch,
cca44b1b
JB
6161 struct regcache *regs,
6162 struct displaced_step_closure *dsc)
6163{
6164 ULONGEST from = dsc->insn_addr;
6165 uint32_t status = displaced_read_reg (regs, from, ARM_PS_REGNUM);
6166 int load_executed = condition_true (dsc->u.block.cond, status), i;
bf9f652a 6167 unsigned int mask = dsc->u.block.regmask, write_reg = ARM_PC_REGNUM;
cca44b1b
JB
6168 unsigned int regs_loaded = bitcount (mask);
6169 unsigned int num_to_shuffle = regs_loaded, clobbered;
6170
6171 /* The method employed here will fail if the register list is fully populated
6172 (we need to avoid loading PC directly). */
6173 gdb_assert (num_to_shuffle < 16);
6174
6175 if (!load_executed)
6176 return;
6177
6178 clobbered = (1 << num_to_shuffle) - 1;
6179
6180 while (num_to_shuffle > 0)
6181 {
6182 if ((mask & (1 << write_reg)) != 0)
6183 {
6184 unsigned int read_reg = num_to_shuffle - 1;
6185
6186 if (read_reg != write_reg)
6187 {
6188 ULONGEST rval = displaced_read_reg (regs, from, read_reg);
6189 displaced_write_reg (regs, dsc, write_reg, rval, LOAD_WRITE_PC);
6190 if (debug_displaced)
6191 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: move "
6192 "loaded register r%d to r%d\n"), read_reg,
6193 write_reg);
6194 }
6195 else if (debug_displaced)
6196 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: register "
6197 "r%d already in the right place\n"),
6198 write_reg);
6199
6200 clobbered &= ~(1 << write_reg);
6201
6202 num_to_shuffle--;
6203 }
6204
6205 write_reg--;
6206 }
6207
6208 /* Restore any registers we scribbled over. */
6209 for (write_reg = 0; clobbered != 0; write_reg++)
6210 {
6211 if ((clobbered & (1 << write_reg)) != 0)
6212 {
6213 displaced_write_reg (regs, dsc, write_reg, dsc->tmp[write_reg],
6214 CANNOT_WRITE_PC);
6215 if (debug_displaced)
6216 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: restored "
6217 "clobbered register r%d\n"), write_reg);
6218 clobbered &= ~(1 << write_reg);
6219 }
6220 }
6221
6222 /* Perform register writeback manually. */
6223 if (dsc->u.block.writeback)
6224 {
6225 ULONGEST new_rn_val = dsc->u.block.xfer_addr;
6226
6227 if (dsc->u.block.increment)
6228 new_rn_val += regs_loaded * 4;
6229 else
6230 new_rn_val -= regs_loaded * 4;
6231
6232 displaced_write_reg (regs, dsc, dsc->u.block.rn, new_rn_val,
6233 CANNOT_WRITE_PC);
6234 }
6235}
6236
6237/* Handle ldm/stm, apart from some tricky cases which are unlikely to occur
6238 in user-level code (in particular exception return, ldm rn, {...pc}^). */
6239
6240static int
6241copy_block_xfer (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
6242 struct displaced_step_closure *dsc)
6243{
6244 int load = bit (insn, 20);
6245 int user = bit (insn, 22);
6246 int increment = bit (insn, 23);
6247 int before = bit (insn, 24);
6248 int writeback = bit (insn, 21);
6249 int rn = bits (insn, 16, 19);
6250 CORE_ADDR from = dsc->insn_addr;
6251
0963b4bd
MS
6252 /* Block transfers which don't mention PC can be run directly
6253 out-of-line. */
bf9f652a 6254 if (rn != ARM_PC_REGNUM && (insn & 0x8000) == 0)
cca44b1b
JB
6255 return copy_unmodified (gdbarch, insn, "ldm/stm", dsc);
6256
bf9f652a 6257 if (rn == ARM_PC_REGNUM)
cca44b1b 6258 {
0963b4bd
MS
6259 warning (_("displaced: Unpredictable LDM or STM with "
6260 "base register r15"));
cca44b1b
JB
6261 return copy_unmodified (gdbarch, insn, "unpredictable ldm/stm", dsc);
6262 }
6263
6264 if (debug_displaced)
6265 fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
6266 "%.8lx\n", (unsigned long) insn);
6267
6268 dsc->u.block.xfer_addr = displaced_read_reg (regs, from, rn);
6269 dsc->u.block.rn = rn;
6270
6271 dsc->u.block.load = load;
6272 dsc->u.block.user = user;
6273 dsc->u.block.increment = increment;
6274 dsc->u.block.before = before;
6275 dsc->u.block.writeback = writeback;
6276 dsc->u.block.cond = bits (insn, 28, 31);
6277
6278 dsc->u.block.regmask = insn & 0xffff;
6279
6280 if (load)
6281 {
6282 if ((insn & 0xffff) == 0xffff)
6283 {
6284 /* LDM with a fully-populated register list. This case is
6285 particularly tricky. Implement for now by fully emulating the
6286 instruction (which might not behave perfectly in all cases, but
6287 these instructions should be rare enough for that not to matter
6288 too much). */
6289 dsc->modinsn[0] = ARM_NOP;
6290
6291 dsc->cleanup = &cleanup_block_load_all;
6292 }
6293 else
6294 {
6295 /* LDM of a list of registers which includes PC. Implement by
6296 rewriting the list of registers to be transferred into a
6297 contiguous chunk r0...rX before doing the transfer, then shuffling
6298 registers into the correct places in the cleanup routine. */
6299 unsigned int regmask = insn & 0xffff;
6300 unsigned int num_in_list = bitcount (regmask), new_regmask, bit = 1;
6301 unsigned int to = 0, from = 0, i, new_rn;
6302
6303 for (i = 0; i < num_in_list; i++)
6304 dsc->tmp[i] = displaced_read_reg (regs, from, i);
6305
6306 /* Writeback makes things complicated. We need to avoid clobbering
6307 the base register with one of the registers in our modified
6308 register list, but just using a different register can't work in
6309 all cases, e.g.:
6310
6311 ldm r14!, {r0-r13,pc}
6312
6313 which would need to be rewritten as:
6314
6315 ldm rN!, {r0-r14}
6316
6317 but that can't work, because there's no free register for N.
6318
6319 Solve this by turning off the writeback bit, and emulating
6320 writeback manually in the cleanup routine. */
6321
6322 if (writeback)
6323 insn &= ~(1 << 21);
6324
6325 new_regmask = (1 << num_in_list) - 1;
6326
6327 if (debug_displaced)
6328 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
6329 "{..., pc}: original reg list %.4x, modified "
6330 "list %.4x\n"), rn, writeback ? "!" : "",
6331 (int) insn & 0xffff, new_regmask);
6332
6333 dsc->modinsn[0] = (insn & ~0xffff) | (new_regmask & 0xffff);
6334
6335 dsc->cleanup = &cleanup_block_load_pc;
6336 }
6337 }
6338 else
6339 {
6340 /* STM of a list of registers which includes PC. Run the instruction
6341 as-is, but out of line: this will store the wrong value for the PC,
6342 so we must manually fix up the memory in the cleanup routine.
6343 Doing things this way has the advantage that we can auto-detect
6344 the offset of the PC write (which is architecture-dependent) in
6345 the cleanup routine. */
6346 dsc->modinsn[0] = insn;
6347
6348 dsc->cleanup = &cleanup_block_store_pc;
6349 }
6350
6351 return 0;
6352}
6353
6354/* Cleanup/copy SVC (SWI) instructions. These two functions are overridden
6355 for Linux, where some SVC instructions must be treated specially. */
6356
6357static void
6e39997a 6358cleanup_svc (struct gdbarch *gdbarch, struct regcache *regs,
cca44b1b
JB
6359 struct displaced_step_closure *dsc)
6360{
6361 CORE_ADDR from = dsc->insn_addr;
6362 CORE_ADDR resume_addr = from + 4;
6363
6364 if (debug_displaced)
6365 fprintf_unfiltered (gdb_stdlog, "displaced: cleanup for svc, resume at "
6366 "%.8lx\n", (unsigned long) resume_addr);
6367
6368 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, resume_addr, BRANCH_WRITE_PC);
6369}
6370
6371static int
6372copy_svc (struct gdbarch *gdbarch, uint32_t insn, CORE_ADDR to,
6373 struct regcache *regs, struct displaced_step_closure *dsc)
6374{
6375 CORE_ADDR from = dsc->insn_addr;
6376
6377 /* Allow OS-specific code to override SVC handling. */
6378 if (dsc->u.svc.copy_svc_os)
6379 return dsc->u.svc.copy_svc_os (gdbarch, insn, to, regs, dsc);
6380
6381 if (debug_displaced)
6382 fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.8lx\n",
6383 (unsigned long) insn);
6384
6385 /* Preparation: none.
6386 Insn: unmodified svc.
6387 Cleanup: pc <- insn_addr + 4. */
6388
6389 dsc->modinsn[0] = insn;
6390
6391 dsc->cleanup = &cleanup_svc;
6392 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
6393 instruction. */
6394 dsc->wrote_to_pc = 1;
6395
6396 return 0;
6397}
6398
6399/* Copy undefined instructions. */
6400
6401static int
6e39997a 6402copy_undef (struct gdbarch *gdbarch, uint32_t insn,
cca44b1b
JB
6403 struct displaced_step_closure *dsc)
6404{
6405 if (debug_displaced)
0963b4bd
MS
6406 fprintf_unfiltered (gdb_stdlog,
6407 "displaced: copying undefined insn %.8lx\n",
cca44b1b
JB
6408 (unsigned long) insn);
6409
6410 dsc->modinsn[0] = insn;
6411
6412 return 0;
6413}
6414
6415/* Copy unpredictable instructions. */
6416
6417static int
6e39997a 6418copy_unpred (struct gdbarch *gdbarch, uint32_t insn,
cca44b1b
JB
6419 struct displaced_step_closure *dsc)
6420{
6421 if (debug_displaced)
6422 fprintf_unfiltered (gdb_stdlog, "displaced: copying unpredictable insn "
6423 "%.8lx\n", (unsigned long) insn);
6424
6425 dsc->modinsn[0] = insn;
6426
6427 return 0;
6428}
6429
6430/* The decode_* functions are instruction decoding helpers. They mostly follow
6431 the presentation in the ARM ARM. */
6432
6433static int
6434decode_misc_memhint_neon (struct gdbarch *gdbarch, uint32_t insn,
6435 struct regcache *regs,
6436 struct displaced_step_closure *dsc)
6437{
6438 unsigned int op1 = bits (insn, 20, 26), op2 = bits (insn, 4, 7);
6439 unsigned int rn = bits (insn, 16, 19);
6440
6441 if (op1 == 0x10 && (op2 & 0x2) == 0x0 && (rn & 0xe) == 0x0)
6442 return copy_unmodified (gdbarch, insn, "cps", dsc);
6443 else if (op1 == 0x10 && op2 == 0x0 && (rn & 0xe) == 0x1)
6444 return copy_unmodified (gdbarch, insn, "setend", dsc);
6445 else if ((op1 & 0x60) == 0x20)
6446 return copy_unmodified (gdbarch, insn, "neon dataproc", dsc);
6447 else if ((op1 & 0x71) == 0x40)
6448 return copy_unmodified (gdbarch, insn, "neon elt/struct load/store", dsc);
6449 else if ((op1 & 0x77) == 0x41)
6450 return copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
6451 else if ((op1 & 0x77) == 0x45)
6452 return copy_preload (gdbarch, insn, regs, dsc); /* pli. */
6453 else if ((op1 & 0x77) == 0x51)
6454 {
6455 if (rn != 0xf)
6456 return copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
6457 else
6458 return copy_unpred (gdbarch, insn, dsc);
6459 }
6460 else if ((op1 & 0x77) == 0x55)
6461 return copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
6462 else if (op1 == 0x57)
6463 switch (op2)
6464 {
6465 case 0x1: return copy_unmodified (gdbarch, insn, "clrex", dsc);
6466 case 0x4: return copy_unmodified (gdbarch, insn, "dsb", dsc);
6467 case 0x5: return copy_unmodified (gdbarch, insn, "dmb", dsc);
6468 case 0x6: return copy_unmodified (gdbarch, insn, "isb", dsc);
6469 default: return copy_unpred (gdbarch, insn, dsc);
6470 }
6471 else if ((op1 & 0x63) == 0x43)
6472 return copy_unpred (gdbarch, insn, dsc);
6473 else if ((op2 & 0x1) == 0x0)
6474 switch (op1 & ~0x80)
6475 {
6476 case 0x61:
6477 return copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
6478 case 0x65:
6479 return copy_preload_reg (gdbarch, insn, regs, dsc); /* pli reg. */
6480 case 0x71: case 0x75:
6481 /* pld/pldw reg. */
6482 return copy_preload_reg (gdbarch, insn, regs, dsc);
6483 case 0x63: case 0x67: case 0x73: case 0x77:
6484 return copy_unpred (gdbarch, insn, dsc);
6485 default:
6486 return copy_undef (gdbarch, insn, dsc);
6487 }
6488 else
6489 return copy_undef (gdbarch, insn, dsc); /* Probably unreachable. */
6490}
6491
6492static int
6493decode_unconditional (struct gdbarch *gdbarch, uint32_t insn,
0963b4bd
MS
6494 struct regcache *regs,
6495 struct displaced_step_closure *dsc)
cca44b1b
JB
6496{
6497 if (bit (insn, 27) == 0)
6498 return decode_misc_memhint_neon (gdbarch, insn, regs, dsc);
6499 /* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx. */
6500 else switch (((insn & 0x7000000) >> 23) | ((insn & 0x100000) >> 20))
6501 {
6502 case 0x0: case 0x2:
6503 return copy_unmodified (gdbarch, insn, "srs", dsc);
6504
6505 case 0x1: case 0x3:
6506 return copy_unmodified (gdbarch, insn, "rfe", dsc);
6507
6508 case 0x4: case 0x5: case 0x6: case 0x7:
6509 return copy_b_bl_blx (gdbarch, insn, regs, dsc);
6510
6511 case 0x8:
6512 switch ((insn & 0xe00000) >> 21)
6513 {
6514 case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7:
6515 /* stc/stc2. */
6516 return copy_copro_load_store (gdbarch, insn, regs, dsc);
6517
6518 case 0x2:
6519 return copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
6520
6521 default:
6522 return copy_undef (gdbarch, insn, dsc);
6523 }
6524
6525 case 0x9:
6526 {
6527 int rn_f = (bits (insn, 16, 19) == 0xf);
6528 switch ((insn & 0xe00000) >> 21)
6529 {
6530 case 0x1: case 0x3:
6531 /* ldc/ldc2 imm (undefined for rn == pc). */
6532 return rn_f ? copy_undef (gdbarch, insn, dsc)
6533 : copy_copro_load_store (gdbarch, insn, regs, dsc);
6534
6535 case 0x2:
6536 return copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
6537
6538 case 0x4: case 0x5: case 0x6: case 0x7:
6539 /* ldc/ldc2 lit (undefined for rn != pc). */
6540 return rn_f ? copy_copro_load_store (gdbarch, insn, regs, dsc)
6541 : copy_undef (gdbarch, insn, dsc);
6542
6543 default:
6544 return copy_undef (gdbarch, insn, dsc);
6545 }
6546 }
6547
6548 case 0xa:
6549 return copy_unmodified (gdbarch, insn, "stc/stc2", dsc);
6550
6551 case 0xb:
6552 if (bits (insn, 16, 19) == 0xf)
6553 /* ldc/ldc2 lit. */
6554 return copy_copro_load_store (gdbarch, insn, regs, dsc);
6555 else
6556 return copy_undef (gdbarch, insn, dsc);
6557
6558 case 0xc:
6559 if (bit (insn, 4))
6560 return copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
6561 else
6562 return copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6563
6564 case 0xd:
6565 if (bit (insn, 4))
6566 return copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
6567 else
6568 return copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6569
6570 default:
6571 return copy_undef (gdbarch, insn, dsc);
6572 }
6573}
6574
6575/* Decode miscellaneous instructions in dp/misc encoding space. */
6576
6577static int
6578decode_miscellaneous (struct gdbarch *gdbarch, uint32_t insn,
0963b4bd
MS
6579 struct regcache *regs,
6580 struct displaced_step_closure *dsc)
cca44b1b
JB
6581{
6582 unsigned int op2 = bits (insn, 4, 6);
6583 unsigned int op = bits (insn, 21, 22);
6584 unsigned int op1 = bits (insn, 16, 19);
6585
6586 switch (op2)
6587 {
6588 case 0x0:
6589 return copy_unmodified (gdbarch, insn, "mrs/msr", dsc);
6590
6591 case 0x1:
6592 if (op == 0x1) /* bx. */
6593 return copy_bx_blx_reg (gdbarch, insn, regs, dsc);
6594 else if (op == 0x3)
6595 return copy_unmodified (gdbarch, insn, "clz", dsc);
6596 else
6597 return copy_undef (gdbarch, insn, dsc);
6598
6599 case 0x2:
6600 if (op == 0x1)
6601 /* Not really supported. */
6602 return copy_unmodified (gdbarch, insn, "bxj", dsc);
6603 else
6604 return copy_undef (gdbarch, insn, dsc);
6605
6606 case 0x3:
6607 if (op == 0x1)
0963b4bd
MS
6608 return copy_bx_blx_reg (gdbarch, insn,
6609 regs, dsc); /* blx register. */
cca44b1b
JB
6610 else
6611 return copy_undef (gdbarch, insn, dsc);
6612
6613 case 0x5:
6614 return copy_unmodified (gdbarch, insn, "saturating add/sub", dsc);
6615
6616 case 0x7:
6617 if (op == 0x1)
6618 return copy_unmodified (gdbarch, insn, "bkpt", dsc);
6619 else if (op == 0x3)
6620 /* Not really supported. */
6621 return copy_unmodified (gdbarch, insn, "smc", dsc);
6622
6623 default:
6624 return copy_undef (gdbarch, insn, dsc);
6625 }
6626}
6627
6628static int
6629decode_dp_misc (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
6630 struct displaced_step_closure *dsc)
6631{
6632 if (bit (insn, 25))
6633 switch (bits (insn, 20, 24))
6634 {
6635 case 0x10:
6636 return copy_unmodified (gdbarch, insn, "movw", dsc);
6637
6638 case 0x14:
6639 return copy_unmodified (gdbarch, insn, "movt", dsc);
6640
6641 case 0x12: case 0x16:
6642 return copy_unmodified (gdbarch, insn, "msr imm", dsc);
6643
6644 default:
6645 return copy_alu_imm (gdbarch, insn, regs, dsc);
6646 }
6647 else
6648 {
6649 uint32_t op1 = bits (insn, 20, 24), op2 = bits (insn, 4, 7);
6650
6651 if ((op1 & 0x19) != 0x10 && (op2 & 0x1) == 0x0)
6652 return copy_alu_reg (gdbarch, insn, regs, dsc);
6653 else if ((op1 & 0x19) != 0x10 && (op2 & 0x9) == 0x1)
6654 return copy_alu_shifted_reg (gdbarch, insn, regs, dsc);
6655 else if ((op1 & 0x19) == 0x10 && (op2 & 0x8) == 0x0)
6656 return decode_miscellaneous (gdbarch, insn, regs, dsc);
6657 else if ((op1 & 0x19) == 0x10 && (op2 & 0x9) == 0x8)
6658 return copy_unmodified (gdbarch, insn, "halfword mul/mla", dsc);
6659 else if ((op1 & 0x10) == 0x00 && op2 == 0x9)
6660 return copy_unmodified (gdbarch, insn, "mul/mla", dsc);
6661 else if ((op1 & 0x10) == 0x10 && op2 == 0x9)
6662 return copy_unmodified (gdbarch, insn, "synch", dsc);
6663 else if (op2 == 0xb || (op2 & 0xd) == 0xd)
6664 /* 2nd arg means "unpriveleged". */
6665 return copy_extra_ld_st (gdbarch, insn, (op1 & 0x12) == 0x02, regs,
6666 dsc);
6667 }
6668
6669 /* Should be unreachable. */
6670 return 1;
6671}
6672
6673static int
6674decode_ld_st_word_ubyte (struct gdbarch *gdbarch, uint32_t insn,
6675 struct regcache *regs,
6676 struct displaced_step_closure *dsc)
6677{
6678 int a = bit (insn, 25), b = bit (insn, 4);
6679 uint32_t op1 = bits (insn, 20, 24);
6680 int rn_f = bits (insn, 16, 19) == 0xf;
6681
6682 if ((!a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02)
6683 || (a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02 && !b))
6684 return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 0, 0);
6685 else if ((!a && (op1 & 0x17) == 0x02)
6686 || (a && (op1 & 0x17) == 0x02 && !b))
6687 return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 0, 1);
6688 else if ((!a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03)
6689 || (a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03 && !b))
6690 return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 0, 0);
6691 else if ((!a && (op1 & 0x17) == 0x03)
6692 || (a && (op1 & 0x17) == 0x03 && !b))
6693 return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 0, 1);
6694 else if ((!a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06)
6695 || (a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06 && !b))
6696 return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 0);
6697 else if ((!a && (op1 & 0x17) == 0x06)
6698 || (a && (op1 & 0x17) == 0x06 && !b))
6699 return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 1);
6700 else if ((!a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07)
6701 || (a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07 && !b))
6702 return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 0);
6703 else if ((!a && (op1 & 0x17) == 0x07)
6704 || (a && (op1 & 0x17) == 0x07 && !b))
6705 return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 1);
6706
6707 /* Should be unreachable. */
6708 return 1;
6709}
6710
6711static int
6712decode_media (struct gdbarch *gdbarch, uint32_t insn,
6713 struct displaced_step_closure *dsc)
6714{
6715 switch (bits (insn, 20, 24))
6716 {
6717 case 0x00: case 0x01: case 0x02: case 0x03:
6718 return copy_unmodified (gdbarch, insn, "parallel add/sub signed", dsc);
6719
6720 case 0x04: case 0x05: case 0x06: case 0x07:
6721 return copy_unmodified (gdbarch, insn, "parallel add/sub unsigned", dsc);
6722
6723 case 0x08: case 0x09: case 0x0a: case 0x0b:
6724 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
6725 return copy_unmodified (gdbarch, insn,
6726 "decode/pack/unpack/saturate/reverse", dsc);
6727
6728 case 0x18:
6729 if (bits (insn, 5, 7) == 0) /* op2. */
6730 {
6731 if (bits (insn, 12, 15) == 0xf)
6732 return copy_unmodified (gdbarch, insn, "usad8", dsc);
6733 else
6734 return copy_unmodified (gdbarch, insn, "usada8", dsc);
6735 }
6736 else
6737 return copy_undef (gdbarch, insn, dsc);
6738
6739 case 0x1a: case 0x1b:
6740 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
6741 return copy_unmodified (gdbarch, insn, "sbfx", dsc);
6742 else
6743 return copy_undef (gdbarch, insn, dsc);
6744
6745 case 0x1c: case 0x1d:
6746 if (bits (insn, 5, 6) == 0x0) /* op2[1:0]. */
6747 {
6748 if (bits (insn, 0, 3) == 0xf)
6749 return copy_unmodified (gdbarch, insn, "bfc", dsc);
6750 else
6751 return copy_unmodified (gdbarch, insn, "bfi", dsc);
6752 }
6753 else
6754 return copy_undef (gdbarch, insn, dsc);
6755
6756 case 0x1e: case 0x1f:
6757 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
6758 return copy_unmodified (gdbarch, insn, "ubfx", dsc);
6759 else
6760 return copy_undef (gdbarch, insn, dsc);
6761 }
6762
6763 /* Should be unreachable. */
6764 return 1;
6765}
6766
6767static int
6768decode_b_bl_ldmstm (struct gdbarch *gdbarch, int32_t insn,
6769 struct regcache *regs, struct displaced_step_closure *dsc)
6770{
6771 if (bit (insn, 25))
6772 return copy_b_bl_blx (gdbarch, insn, regs, dsc);
6773 else
6774 return copy_block_xfer (gdbarch, insn, regs, dsc);
6775}
6776
6777static int
6778decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint32_t insn,
0963b4bd
MS
6779 struct regcache *regs,
6780 struct displaced_step_closure *dsc)
cca44b1b
JB
6781{
6782 unsigned int opcode = bits (insn, 20, 24);
6783
6784 switch (opcode)
6785 {
6786 case 0x04: case 0x05: /* VFP/Neon mrrc/mcrr. */
6787 return copy_unmodified (gdbarch, insn, "vfp/neon mrrc/mcrr", dsc);
6788
6789 case 0x08: case 0x0a: case 0x0c: case 0x0e:
6790 case 0x12: case 0x16:
6791 return copy_unmodified (gdbarch, insn, "vfp/neon vstm/vpush", dsc);
6792
6793 case 0x09: case 0x0b: case 0x0d: case 0x0f:
6794 case 0x13: case 0x17:
6795 return copy_unmodified (gdbarch, insn, "vfp/neon vldm/vpop", dsc);
6796
6797 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
6798 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
6799 /* Note: no writeback for these instructions. Bit 25 will always be
6800 zero though (via caller), so the following works OK. */
6801 return copy_copro_load_store (gdbarch, insn, regs, dsc);
6802 }
6803
6804 /* Should be unreachable. */
6805 return 1;
6806}
6807
6808static int
6809decode_svc_copro (struct gdbarch *gdbarch, uint32_t insn, CORE_ADDR to,
6810 struct regcache *regs, struct displaced_step_closure *dsc)
6811{
6812 unsigned int op1 = bits (insn, 20, 25);
6813 int op = bit (insn, 4);
6814 unsigned int coproc = bits (insn, 8, 11);
6815 unsigned int rn = bits (insn, 16, 19);
6816
6817 if ((op1 & 0x20) == 0x00 && (op1 & 0x3a) != 0x00 && (coproc & 0xe) == 0xa)
6818 return decode_ext_reg_ld_st (gdbarch, insn, regs, dsc);
6819 else if ((op1 & 0x21) == 0x00 && (op1 & 0x3a) != 0x00
6820 && (coproc & 0xe) != 0xa)
6821 /* stc/stc2. */
6822 return copy_copro_load_store (gdbarch, insn, regs, dsc);
6823 else if ((op1 & 0x21) == 0x01 && (op1 & 0x3a) != 0x00
6824 && (coproc & 0xe) != 0xa)
6825 /* ldc/ldc2 imm/lit. */
6826 return copy_copro_load_store (gdbarch, insn, regs, dsc);
6827 else if ((op1 & 0x3e) == 0x00)
6828 return copy_undef (gdbarch, insn, dsc);
6829 else if ((op1 & 0x3e) == 0x04 && (coproc & 0xe) == 0xa)
6830 return copy_unmodified (gdbarch, insn, "neon 64bit xfer", dsc);
6831 else if (op1 == 0x04 && (coproc & 0xe) != 0xa)
6832 return copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
6833 else if (op1 == 0x05 && (coproc & 0xe) != 0xa)
6834 return copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
6835 else if ((op1 & 0x30) == 0x20 && !op)
6836 {
6837 if ((coproc & 0xe) == 0xa)
6838 return copy_unmodified (gdbarch, insn, "vfp dataproc", dsc);
6839 else
6840 return copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6841 }
6842 else if ((op1 & 0x30) == 0x20 && op)
6843 return copy_unmodified (gdbarch, insn, "neon 8/16/32 bit xfer", dsc);
6844 else if ((op1 & 0x31) == 0x20 && op && (coproc & 0xe) != 0xa)
6845 return copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
6846 else if ((op1 & 0x31) == 0x21 && op && (coproc & 0xe) != 0xa)
6847 return copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
6848 else if ((op1 & 0x30) == 0x30)
6849 return copy_svc (gdbarch, insn, to, regs, dsc);
6850 else
6851 return copy_undef (gdbarch, insn, dsc); /* Possibly unreachable. */
6852}
6853
b434a28f
YQ
6854static void
6855thumb_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
6856 CORE_ADDR to, struct regcache *regs,
6857 struct displaced_step_closure *dsc)
6858{
6859 error (_("Displaced stepping is only supported in ARM mode"));
6860}
6861
cca44b1b 6862void
b434a28f
YQ
6863arm_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
6864 CORE_ADDR to, struct regcache *regs,
cca44b1b
JB
6865 struct displaced_step_closure *dsc)
6866{
6867 int err = 0;
b434a28f
YQ
6868 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
6869 uint32_t insn;
cca44b1b
JB
6870
6871 /* Most displaced instructions use a 1-instruction scratch space, so set this
6872 here and override below if/when necessary. */
6873 dsc->numinsns = 1;
6874 dsc->insn_addr = from;
6875 dsc->scratch_base = to;
6876 dsc->cleanup = NULL;
6877 dsc->wrote_to_pc = 0;
6878
b434a28f
YQ
6879 if (!displaced_in_arm_mode (regs))
6880 return thumb_process_displaced_insn (gdbarch, from, to, regs, dsc);
6881
4db71c0b
YQ
6882 dsc->is_thumb = 0;
6883 dsc->insn_size = 4;
b434a28f
YQ
6884 insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
6885 if (debug_displaced)
6886 fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx "
6887 "at %.8lx\n", (unsigned long) insn,
6888 (unsigned long) from);
6889
cca44b1b
JB
6890 if ((insn & 0xf0000000) == 0xf0000000)
6891 err = decode_unconditional (gdbarch, insn, regs, dsc);
6892 else switch (((insn & 0x10) >> 4) | ((insn & 0xe000000) >> 24))
6893 {
6894 case 0x0: case 0x1: case 0x2: case 0x3:
6895 err = decode_dp_misc (gdbarch, insn, regs, dsc);
6896 break;
6897
6898 case 0x4: case 0x5: case 0x6:
6899 err = decode_ld_st_word_ubyte (gdbarch, insn, regs, dsc);
6900 break;
6901
6902 case 0x7:
6903 err = decode_media (gdbarch, insn, dsc);
6904 break;
6905
6906 case 0x8: case 0x9: case 0xa: case 0xb:
6907 err = decode_b_bl_ldmstm (gdbarch, insn, regs, dsc);
6908 break;
6909
6910 case 0xc: case 0xd: case 0xe: case 0xf:
6911 err = decode_svc_copro (gdbarch, insn, to, regs, dsc);
6912 break;
6913 }
6914
6915 if (err)
6916 internal_error (__FILE__, __LINE__,
6917 _("arm_process_displaced_insn: Instruction decode error"));
6918}
6919
6920/* Actually set up the scratch space for a displaced instruction. */
6921
6922void
6923arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from,
6924 CORE_ADDR to, struct displaced_step_closure *dsc)
6925{
6926 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4db71c0b 6927 unsigned int i, len, offset;
cca44b1b 6928 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
4db71c0b
YQ
6929 int size = dsc->is_thumb? 2 : 4;
6930 const unsigned char *bkp_insn;
cca44b1b 6931
4db71c0b 6932 offset = 0;
cca44b1b
JB
6933 /* Poke modified instruction(s). */
6934 for (i = 0; i < dsc->numinsns; i++)
6935 {
6936 if (debug_displaced)
4db71c0b
YQ
6937 {
6938 fprintf_unfiltered (gdb_stdlog, "displaced: writing insn ");
6939 if (size == 4)
6940 fprintf_unfiltered (gdb_stdlog, "%.8lx",
6941 dsc->modinsn[i]);
6942 else if (size == 2)
6943 fprintf_unfiltered (gdb_stdlog, "%.4x",
6944 (unsigned short)dsc->modinsn[i]);
6945
6946 fprintf_unfiltered (gdb_stdlog, " at %.8lx\n",
6947 (unsigned long) to + offset);
6948
6949 }
6950 write_memory_unsigned_integer (to + offset, size,
6951 byte_order_for_code,
cca44b1b 6952 dsc->modinsn[i]);
4db71c0b
YQ
6953 offset += size;
6954 }
6955
6956 /* Choose the correct breakpoint instruction. */
6957 if (dsc->is_thumb)
6958 {
6959 bkp_insn = tdep->thumb_breakpoint;
6960 len = tdep->thumb_breakpoint_size;
6961 }
6962 else
6963 {
6964 bkp_insn = tdep->arm_breakpoint;
6965 len = tdep->arm_breakpoint_size;
cca44b1b
JB
6966 }
6967
6968 /* Put breakpoint afterwards. */
4db71c0b 6969 write_memory (to + offset, bkp_insn, len);
cca44b1b
JB
6970
6971 if (debug_displaced)
6972 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
6973 paddress (gdbarch, from), paddress (gdbarch, to));
6974}
6975
6976/* Entry point for copying an instruction into scratch space for displaced
6977 stepping. */
6978
6979struct displaced_step_closure *
6980arm_displaced_step_copy_insn (struct gdbarch *gdbarch,
6981 CORE_ADDR from, CORE_ADDR to,
6982 struct regcache *regs)
6983{
6984 struct displaced_step_closure *dsc
6985 = xmalloc (sizeof (struct displaced_step_closure));
b434a28f 6986 arm_process_displaced_insn (gdbarch, from, to, regs, dsc);
cca44b1b
JB
6987 arm_displaced_init_closure (gdbarch, from, to, dsc);
6988
6989 return dsc;
6990}
6991
6992/* Entry point for cleaning things up after a displaced instruction has been
6993 single-stepped. */
6994
6995void
6996arm_displaced_step_fixup (struct gdbarch *gdbarch,
6997 struct displaced_step_closure *dsc,
6998 CORE_ADDR from, CORE_ADDR to,
6999 struct regcache *regs)
7000{
7001 if (dsc->cleanup)
7002 dsc->cleanup (gdbarch, regs, dsc);
7003
7004 if (!dsc->wrote_to_pc)
4db71c0b
YQ
7005 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
7006 dsc->insn_addr + dsc->insn_size);
7007
cca44b1b
JB
7008}
7009
7010#include "bfd-in2.h"
7011#include "libcoff.h"
7012
7013static int
7014gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
7015{
9779414d
DJ
7016 struct gdbarch *gdbarch = info->application_data;
7017
7018 if (arm_pc_is_thumb (gdbarch, memaddr))
cca44b1b
JB
7019 {
7020 static asymbol *asym;
7021 static combined_entry_type ce;
7022 static struct coff_symbol_struct csym;
7023 static struct bfd fake_bfd;
7024 static bfd_target fake_target;
7025
7026 if (csym.native == NULL)
7027 {
7028 /* Create a fake symbol vector containing a Thumb symbol.
7029 This is solely so that the code in print_insn_little_arm()
7030 and print_insn_big_arm() in opcodes/arm-dis.c will detect
7031 the presence of a Thumb symbol and switch to decoding
7032 Thumb instructions. */
7033
7034 fake_target.flavour = bfd_target_coff_flavour;
7035 fake_bfd.xvec = &fake_target;
7036 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
7037 csym.native = &ce;
7038 csym.symbol.the_bfd = &fake_bfd;
7039 csym.symbol.name = "fake";
7040 asym = (asymbol *) & csym;
7041 }
7042
7043 memaddr = UNMAKE_THUMB_ADDR (memaddr);
7044 info->symbols = &asym;
7045 }
7046 else
7047 info->symbols = NULL;
7048
7049 if (info->endian == BFD_ENDIAN_BIG)
7050 return print_insn_big_arm (memaddr, info);
7051 else
7052 return print_insn_little_arm (memaddr, info);
7053}
7054
7055/* The following define instruction sequences that will cause ARM
7056 cpu's to take an undefined instruction trap. These are used to
7057 signal a breakpoint to GDB.
7058
7059 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
7060 modes. A different instruction is required for each mode. The ARM
7061 cpu's can also be big or little endian. Thus four different
7062 instructions are needed to support all cases.
7063
7064 Note: ARMv4 defines several new instructions that will take the
7065 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
7066 not in fact add the new instructions. The new undefined
7067 instructions in ARMv4 are all instructions that had no defined
7068 behaviour in earlier chips. There is no guarantee that they will
7069 raise an exception, but may be treated as NOP's. In practice, it
7070 may only safe to rely on instructions matching:
7071
7072 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
7073 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
7074 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
7075
0963b4bd 7076 Even this may only true if the condition predicate is true. The
cca44b1b
JB
7077 following use a condition predicate of ALWAYS so it is always TRUE.
7078
7079 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
7080 and NetBSD all use a software interrupt rather than an undefined
7081 instruction to force a trap. This can be handled by by the
7082 abi-specific code during establishment of the gdbarch vector. */
7083
7084#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
7085#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
7086#define THUMB_LE_BREAKPOINT {0xbe,0xbe}
7087#define THUMB_BE_BREAKPOINT {0xbe,0xbe}
7088
7089static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
7090static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
7091static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
7092static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
7093
7094/* Determine the type and size of breakpoint to insert at PCPTR. Uses
7095 the program counter value to determine whether a 16-bit or 32-bit
7096 breakpoint should be used. It returns a pointer to a string of
7097 bytes that encode a breakpoint instruction, stores the length of
7098 the string to *lenptr, and adjusts the program counter (if
7099 necessary) to point to the actual memory location where the
7100 breakpoint should be inserted. */
7101
7102static const unsigned char *
7103arm_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
7104{
7105 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
177321bd 7106 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
cca44b1b 7107
9779414d 7108 if (arm_pc_is_thumb (gdbarch, *pcptr))
cca44b1b
JB
7109 {
7110 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
177321bd
DJ
7111
7112 /* If we have a separate 32-bit breakpoint instruction for Thumb-2,
7113 check whether we are replacing a 32-bit instruction. */
7114 if (tdep->thumb2_breakpoint != NULL)
7115 {
7116 gdb_byte buf[2];
7117 if (target_read_memory (*pcptr, buf, 2) == 0)
7118 {
7119 unsigned short inst1;
7120 inst1 = extract_unsigned_integer (buf, 2, byte_order_for_code);
7121 if ((inst1 & 0xe000) == 0xe000 && (inst1 & 0x1800) != 0)
7122 {
7123 *lenptr = tdep->thumb2_breakpoint_size;
7124 return tdep->thumb2_breakpoint;
7125 }
7126 }
7127 }
7128
cca44b1b
JB
7129 *lenptr = tdep->thumb_breakpoint_size;
7130 return tdep->thumb_breakpoint;
7131 }
7132 else
7133 {
7134 *lenptr = tdep->arm_breakpoint_size;
7135 return tdep->arm_breakpoint;
7136 }
7137}
7138
177321bd
DJ
7139static void
7140arm_remote_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
7141 int *kindptr)
7142{
7143 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7144
7145 arm_breakpoint_from_pc (gdbarch, pcptr, kindptr);
7146
9779414d 7147 if (arm_pc_is_thumb (gdbarch, *pcptr) && *kindptr == 4)
177321bd
DJ
7148 /* The documented magic value for a 32-bit Thumb-2 breakpoint, so
7149 that this is not confused with a 32-bit ARM breakpoint. */
7150 *kindptr = 3;
7151}
7152
cca44b1b
JB
7153/* Extract from an array REGBUF containing the (raw) register state a
7154 function return value of type TYPE, and copy that, in virtual
7155 format, into VALBUF. */
7156
7157static void
7158arm_extract_return_value (struct type *type, struct regcache *regs,
7159 gdb_byte *valbuf)
7160{
7161 struct gdbarch *gdbarch = get_regcache_arch (regs);
7162 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7163
7164 if (TYPE_CODE_FLT == TYPE_CODE (type))
7165 {
7166 switch (gdbarch_tdep (gdbarch)->fp_model)
7167 {
7168 case ARM_FLOAT_FPA:
7169 {
7170 /* The value is in register F0 in internal format. We need to
7171 extract the raw value and then convert it to the desired
7172 internal type. */
7173 bfd_byte tmpbuf[FP_REGISTER_SIZE];
7174
7175 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
7176 convert_from_extended (floatformat_from_type (type), tmpbuf,
7177 valbuf, gdbarch_byte_order (gdbarch));
7178 }
7179 break;
7180
7181 case ARM_FLOAT_SOFT_FPA:
7182 case ARM_FLOAT_SOFT_VFP:
7183 /* ARM_FLOAT_VFP can arise if this is a variadic function so
7184 not using the VFP ABI code. */
7185 case ARM_FLOAT_VFP:
7186 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
7187 if (TYPE_LENGTH (type) > 4)
7188 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7189 valbuf + INT_REGISTER_SIZE);
7190 break;
7191
7192 default:
0963b4bd
MS
7193 internal_error (__FILE__, __LINE__,
7194 _("arm_extract_return_value: "
7195 "Floating point model not supported"));
cca44b1b
JB
7196 break;
7197 }
7198 }
7199 else if (TYPE_CODE (type) == TYPE_CODE_INT
7200 || TYPE_CODE (type) == TYPE_CODE_CHAR
7201 || TYPE_CODE (type) == TYPE_CODE_BOOL
7202 || TYPE_CODE (type) == TYPE_CODE_PTR
7203 || TYPE_CODE (type) == TYPE_CODE_REF
7204 || TYPE_CODE (type) == TYPE_CODE_ENUM)
7205 {
b021a221
MS
7206 /* If the type is a plain integer, then the access is
7207 straight-forward. Otherwise we have to play around a bit
7208 more. */
cca44b1b
JB
7209 int len = TYPE_LENGTH (type);
7210 int regno = ARM_A1_REGNUM;
7211 ULONGEST tmp;
7212
7213 while (len > 0)
7214 {
7215 /* By using store_unsigned_integer we avoid having to do
7216 anything special for small big-endian values. */
7217 regcache_cooked_read_unsigned (regs, regno++, &tmp);
7218 store_unsigned_integer (valbuf,
7219 (len > INT_REGISTER_SIZE
7220 ? INT_REGISTER_SIZE : len),
7221 byte_order, tmp);
7222 len -= INT_REGISTER_SIZE;
7223 valbuf += INT_REGISTER_SIZE;
7224 }
7225 }
7226 else
7227 {
7228 /* For a structure or union the behaviour is as if the value had
7229 been stored to word-aligned memory and then loaded into
7230 registers with 32-bit load instruction(s). */
7231 int len = TYPE_LENGTH (type);
7232 int regno = ARM_A1_REGNUM;
7233 bfd_byte tmpbuf[INT_REGISTER_SIZE];
7234
7235 while (len > 0)
7236 {
7237 regcache_cooked_read (regs, regno++, tmpbuf);
7238 memcpy (valbuf, tmpbuf,
7239 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
7240 len -= INT_REGISTER_SIZE;
7241 valbuf += INT_REGISTER_SIZE;
7242 }
7243 }
7244}
7245
7246
7247/* Will a function return an aggregate type in memory or in a
7248 register? Return 0 if an aggregate type can be returned in a
7249 register, 1 if it must be returned in memory. */
7250
7251static int
7252arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
7253{
7254 int nRc;
7255 enum type_code code;
7256
7257 CHECK_TYPEDEF (type);
7258
7259 /* In the ARM ABI, "integer" like aggregate types are returned in
7260 registers. For an aggregate type to be integer like, its size
7261 must be less than or equal to INT_REGISTER_SIZE and the
7262 offset of each addressable subfield must be zero. Note that bit
7263 fields are not addressable, and all addressable subfields of
7264 unions always start at offset zero.
7265
7266 This function is based on the behaviour of GCC 2.95.1.
7267 See: gcc/arm.c: arm_return_in_memory() for details.
7268
7269 Note: All versions of GCC before GCC 2.95.2 do not set up the
7270 parameters correctly for a function returning the following
7271 structure: struct { float f;}; This should be returned in memory,
7272 not a register. Richard Earnshaw sent me a patch, but I do not
7273 know of any way to detect if a function like the above has been
7274 compiled with the correct calling convention. */
7275
7276 /* All aggregate types that won't fit in a register must be returned
7277 in memory. */
7278 if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
7279 {
7280 return 1;
7281 }
7282
7283 /* The AAPCS says all aggregates not larger than a word are returned
7284 in a register. */
7285 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
7286 return 0;
7287
7288 /* The only aggregate types that can be returned in a register are
7289 structs and unions. Arrays must be returned in memory. */
7290 code = TYPE_CODE (type);
7291 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
7292 {
7293 return 1;
7294 }
7295
7296 /* Assume all other aggregate types can be returned in a register.
7297 Run a check for structures, unions and arrays. */
7298 nRc = 0;
7299
7300 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
7301 {
7302 int i;
7303 /* Need to check if this struct/union is "integer" like. For
7304 this to be true, its size must be less than or equal to
7305 INT_REGISTER_SIZE and the offset of each addressable
7306 subfield must be zero. Note that bit fields are not
7307 addressable, and unions always start at offset zero. If any
7308 of the subfields is a floating point type, the struct/union
7309 cannot be an integer type. */
7310
7311 /* For each field in the object, check:
7312 1) Is it FP? --> yes, nRc = 1;
67255d04
RE
7313 2) Is it addressable (bitpos != 0) and
7314 not packed (bitsize == 0)?
7315 --> yes, nRc = 1
7316 */
7317
7318 for (i = 0; i < TYPE_NFIELDS (type); i++)
7319 {
7320 enum type_code field_type_code;
0963b4bd
MS
7321 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type,
7322 i)));
67255d04
RE
7323
7324 /* Is it a floating point type field? */
7325 if (field_type_code == TYPE_CODE_FLT)
7326 {
7327 nRc = 1;
7328 break;
7329 }
7330
7331 /* If bitpos != 0, then we have to care about it. */
7332 if (TYPE_FIELD_BITPOS (type, i) != 0)
7333 {
7334 /* Bitfields are not addressable. If the field bitsize is
7335 zero, then the field is not packed. Hence it cannot be
7336 a bitfield or any other packed type. */
7337 if (TYPE_FIELD_BITSIZE (type, i) == 0)
7338 {
7339 nRc = 1;
7340 break;
7341 }
7342 }
7343 }
7344 }
7345
7346 return nRc;
7347}
7348
34e8f22d
RE
7349/* Write into appropriate registers a function return value of type
7350 TYPE, given in virtual format. */
7351
7352static void
b508a996 7353arm_store_return_value (struct type *type, struct regcache *regs,
5238cf52 7354 const gdb_byte *valbuf)
34e8f22d 7355{
be8626e0 7356 struct gdbarch *gdbarch = get_regcache_arch (regs);
e17a4113 7357 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
be8626e0 7358
34e8f22d
RE
7359 if (TYPE_CODE (type) == TYPE_CODE_FLT)
7360 {
7a5ea0d4 7361 char buf[MAX_REGISTER_SIZE];
34e8f22d 7362
be8626e0 7363 switch (gdbarch_tdep (gdbarch)->fp_model)
08216dd7
RE
7364 {
7365 case ARM_FLOAT_FPA:
7366
be8626e0
MD
7367 convert_to_extended (floatformat_from_type (type), buf, valbuf,
7368 gdbarch_byte_order (gdbarch));
b508a996 7369 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
08216dd7
RE
7370 break;
7371
fd50bc42 7372 case ARM_FLOAT_SOFT_FPA:
08216dd7 7373 case ARM_FLOAT_SOFT_VFP:
90445bd3
DJ
7374 /* ARM_FLOAT_VFP can arise if this is a variadic function so
7375 not using the VFP ABI code. */
7376 case ARM_FLOAT_VFP:
b508a996
RE
7377 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
7378 if (TYPE_LENGTH (type) > 4)
7379 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 7380 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
7381 break;
7382
7383 default:
9b20d036
MS
7384 internal_error (__FILE__, __LINE__,
7385 _("arm_store_return_value: Floating "
7386 "point model not supported"));
08216dd7
RE
7387 break;
7388 }
34e8f22d 7389 }
b508a996
RE
7390 else if (TYPE_CODE (type) == TYPE_CODE_INT
7391 || TYPE_CODE (type) == TYPE_CODE_CHAR
7392 || TYPE_CODE (type) == TYPE_CODE_BOOL
7393 || TYPE_CODE (type) == TYPE_CODE_PTR
7394 || TYPE_CODE (type) == TYPE_CODE_REF
7395 || TYPE_CODE (type) == TYPE_CODE_ENUM)
7396 {
7397 if (TYPE_LENGTH (type) <= 4)
7398 {
7399 /* Values of one word or less are zero/sign-extended and
7400 returned in r0. */
7a5ea0d4 7401 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
7402 LONGEST val = unpack_long (type, valbuf);
7403
e17a4113 7404 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, byte_order, val);
b508a996
RE
7405 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
7406 }
7407 else
7408 {
7409 /* Integral values greater than one word are stored in consecutive
7410 registers starting with r0. This will always be a multiple of
7411 the regiser size. */
7412 int len = TYPE_LENGTH (type);
7413 int regno = ARM_A1_REGNUM;
7414
7415 while (len > 0)
7416 {
7417 regcache_cooked_write (regs, regno++, valbuf);
7a5ea0d4
DJ
7418 len -= INT_REGISTER_SIZE;
7419 valbuf += INT_REGISTER_SIZE;
b508a996
RE
7420 }
7421 }
7422 }
34e8f22d 7423 else
b508a996
RE
7424 {
7425 /* For a structure or union the behaviour is as if the value had
7426 been stored to word-aligned memory and then loaded into
7427 registers with 32-bit load instruction(s). */
7428 int len = TYPE_LENGTH (type);
7429 int regno = ARM_A1_REGNUM;
7a5ea0d4 7430 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
7431
7432 while (len > 0)
7433 {
7434 memcpy (tmpbuf, valbuf,
7a5ea0d4 7435 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
b508a996 7436 regcache_cooked_write (regs, regno++, tmpbuf);
7a5ea0d4
DJ
7437 len -= INT_REGISTER_SIZE;
7438 valbuf += INT_REGISTER_SIZE;
b508a996
RE
7439 }
7440 }
34e8f22d
RE
7441}
7442
2af48f68
PB
7443
7444/* Handle function return values. */
7445
7446static enum return_value_convention
c055b101
CV
7447arm_return_value (struct gdbarch *gdbarch, struct type *func_type,
7448 struct type *valtype, struct regcache *regcache,
7449 gdb_byte *readbuf, const gdb_byte *writebuf)
2af48f68 7450{
7c00367c 7451 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
90445bd3
DJ
7452 enum arm_vfp_cprc_base_type vfp_base_type;
7453 int vfp_base_count;
7454
7455 if (arm_vfp_abi_for_function (gdbarch, func_type)
7456 && arm_vfp_call_candidate (valtype, &vfp_base_type, &vfp_base_count))
7457 {
7458 int reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
7459 int unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
7460 int i;
7461 for (i = 0; i < vfp_base_count; i++)
7462 {
58d6951d
DJ
7463 if (reg_char == 'q')
7464 {
7465 if (writebuf)
7466 arm_neon_quad_write (gdbarch, regcache, i,
7467 writebuf + i * unit_length);
7468
7469 if (readbuf)
7470 arm_neon_quad_read (gdbarch, regcache, i,
7471 readbuf + i * unit_length);
7472 }
7473 else
7474 {
7475 char name_buf[4];
7476 int regnum;
7477
7478 sprintf (name_buf, "%c%d", reg_char, i);
7479 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
7480 strlen (name_buf));
7481 if (writebuf)
7482 regcache_cooked_write (regcache, regnum,
7483 writebuf + i * unit_length);
7484 if (readbuf)
7485 regcache_cooked_read (regcache, regnum,
7486 readbuf + i * unit_length);
7487 }
90445bd3
DJ
7488 }
7489 return RETURN_VALUE_REGISTER_CONVENTION;
7490 }
7c00367c 7491
2af48f68
PB
7492 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
7493 || TYPE_CODE (valtype) == TYPE_CODE_UNION
7494 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
7495 {
7c00367c
MK
7496 if (tdep->struct_return == pcc_struct_return
7497 || arm_return_in_memory (gdbarch, valtype))
2af48f68
PB
7498 return RETURN_VALUE_STRUCT_CONVENTION;
7499 }
7500
7501 if (writebuf)
7502 arm_store_return_value (valtype, regcache, writebuf);
7503
7504 if (readbuf)
7505 arm_extract_return_value (valtype, regcache, readbuf);
7506
7507 return RETURN_VALUE_REGISTER_CONVENTION;
7508}
7509
7510
9df628e0 7511static int
60ade65d 7512arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
9df628e0 7513{
e17a4113
UW
7514 struct gdbarch *gdbarch = get_frame_arch (frame);
7515 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7516 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9df628e0 7517 CORE_ADDR jb_addr;
7a5ea0d4 7518 char buf[INT_REGISTER_SIZE];
9df628e0 7519
60ade65d 7520 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
9df628e0
RE
7521
7522 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
7a5ea0d4 7523 INT_REGISTER_SIZE))
9df628e0
RE
7524 return 0;
7525
e17a4113 7526 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE, byte_order);
9df628e0
RE
7527 return 1;
7528}
7529
faa95490
DJ
7530/* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
7531 return the target PC. Otherwise return 0. */
c906108c
SS
7532
7533CORE_ADDR
52f729a7 7534arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
c906108c 7535{
c5aa993b 7536 char *name;
faa95490 7537 int namelen;
c906108c
SS
7538 CORE_ADDR start_addr;
7539
7540 /* Find the starting address and name of the function containing the PC. */
7541 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7542 return 0;
7543
faa95490
DJ
7544 /* If PC is in a Thumb call or return stub, return the address of the
7545 target PC, which is in a register. The thunk functions are called
7546 _call_via_xx, where x is the register name. The possible names
3d8d5e79
DJ
7547 are r0-r9, sl, fp, ip, sp, and lr. ARM RealView has similar
7548 functions, named __ARM_call_via_r[0-7]. */
7549 if (strncmp (name, "_call_via_", 10) == 0
7550 || strncmp (name, "__ARM_call_via_", strlen ("__ARM_call_via_")) == 0)
c906108c 7551 {
ed9a39eb
JM
7552 /* Use the name suffix to determine which register contains the
7553 target PC. */
c5aa993b
JM
7554 static char *table[15] =
7555 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
7556 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
7557 };
c906108c 7558 int regno;
faa95490 7559 int offset = strlen (name) - 2;
c906108c
SS
7560
7561 for (regno = 0; regno <= 14; regno++)
faa95490 7562 if (strcmp (&name[offset], table[regno]) == 0)
52f729a7 7563 return get_frame_register_unsigned (frame, regno);
c906108c 7564 }
ed9a39eb 7565
faa95490
DJ
7566 /* GNU ld generates __foo_from_arm or __foo_from_thumb for
7567 non-interworking calls to foo. We could decode the stubs
7568 to find the target but it's easier to use the symbol table. */
7569 namelen = strlen (name);
7570 if (name[0] == '_' && name[1] == '_'
7571 && ((namelen > 2 + strlen ("_from_thumb")
7572 && strncmp (name + namelen - strlen ("_from_thumb"), "_from_thumb",
7573 strlen ("_from_thumb")) == 0)
7574 || (namelen > 2 + strlen ("_from_arm")
7575 && strncmp (name + namelen - strlen ("_from_arm"), "_from_arm",
7576 strlen ("_from_arm")) == 0)))
7577 {
7578 char *target_name;
7579 int target_len = namelen - 2;
7580 struct minimal_symbol *minsym;
7581 struct objfile *objfile;
7582 struct obj_section *sec;
7583
7584 if (name[namelen - 1] == 'b')
7585 target_len -= strlen ("_from_thumb");
7586 else
7587 target_len -= strlen ("_from_arm");
7588
7589 target_name = alloca (target_len + 1);
7590 memcpy (target_name, name + 2, target_len);
7591 target_name[target_len] = '\0';
7592
7593 sec = find_pc_section (pc);
7594 objfile = (sec == NULL) ? NULL : sec->objfile;
7595 minsym = lookup_minimal_symbol (target_name, NULL, objfile);
7596 if (minsym != NULL)
7597 return SYMBOL_VALUE_ADDRESS (minsym);
7598 else
7599 return 0;
7600 }
7601
c5aa993b 7602 return 0; /* not a stub */
c906108c
SS
7603}
7604
afd7eef0
RE
7605static void
7606set_arm_command (char *args, int from_tty)
7607{
edefbb7c
AC
7608 printf_unfiltered (_("\
7609\"set arm\" must be followed by an apporpriate subcommand.\n"));
afd7eef0
RE
7610 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
7611}
7612
7613static void
7614show_arm_command (char *args, int from_tty)
7615{
26304000 7616 cmd_show_list (showarmcmdlist, from_tty, "");
afd7eef0
RE
7617}
7618
28e97307
DJ
7619static void
7620arm_update_current_architecture (void)
fd50bc42 7621{
28e97307 7622 struct gdbarch_info info;
fd50bc42 7623
28e97307 7624 /* If the current architecture is not ARM, we have nothing to do. */
1cf3db46 7625 if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_arm)
28e97307 7626 return;
fd50bc42 7627
28e97307
DJ
7628 /* Update the architecture. */
7629 gdbarch_info_init (&info);
fd50bc42 7630
28e97307 7631 if (!gdbarch_update_p (info))
9b20d036 7632 internal_error (__FILE__, __LINE__, _("could not update architecture"));
fd50bc42
RE
7633}
7634
7635static void
7636set_fp_model_sfunc (char *args, int from_tty,
7637 struct cmd_list_element *c)
7638{
7639 enum arm_float_model fp_model;
7640
7641 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
7642 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
7643 {
7644 arm_fp_model = fp_model;
7645 break;
7646 }
7647
7648 if (fp_model == ARM_FLOAT_LAST)
edefbb7c 7649 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
fd50bc42
RE
7650 current_fp_model);
7651
28e97307 7652 arm_update_current_architecture ();
fd50bc42
RE
7653}
7654
7655static void
08546159
AC
7656show_fp_model (struct ui_file *file, int from_tty,
7657 struct cmd_list_element *c, const char *value)
fd50bc42 7658{
1cf3db46 7659 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
fd50bc42 7660
28e97307 7661 if (arm_fp_model == ARM_FLOAT_AUTO
1cf3db46 7662 && gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_arm)
28e97307
DJ
7663 fprintf_filtered (file, _("\
7664The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
7665 fp_model_strings[tdep->fp_model]);
7666 else
7667 fprintf_filtered (file, _("\
7668The current ARM floating point model is \"%s\".\n"),
7669 fp_model_strings[arm_fp_model]);
7670}
7671
7672static void
7673arm_set_abi (char *args, int from_tty,
7674 struct cmd_list_element *c)
7675{
7676 enum arm_abi_kind arm_abi;
7677
7678 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
7679 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
7680 {
7681 arm_abi_global = arm_abi;
7682 break;
7683 }
7684
7685 if (arm_abi == ARM_ABI_LAST)
7686 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
7687 arm_abi_string);
7688
7689 arm_update_current_architecture ();
7690}
7691
7692static void
7693arm_show_abi (struct ui_file *file, int from_tty,
7694 struct cmd_list_element *c, const char *value)
7695{
1cf3db46 7696 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
28e97307
DJ
7697
7698 if (arm_abi_global == ARM_ABI_AUTO
1cf3db46 7699 && gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_arm)
28e97307
DJ
7700 fprintf_filtered (file, _("\
7701The current ARM ABI is \"auto\" (currently \"%s\").\n"),
7702 arm_abi_strings[tdep->arm_abi]);
7703 else
7704 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
7705 arm_abi_string);
fd50bc42
RE
7706}
7707
0428b8f5
DJ
7708static void
7709arm_show_fallback_mode (struct ui_file *file, int from_tty,
7710 struct cmd_list_element *c, const char *value)
7711{
1cf3db46 7712 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
0428b8f5 7713
0963b4bd
MS
7714 fprintf_filtered (file,
7715 _("The current execution mode assumed "
7716 "(when symbols are unavailable) is \"%s\".\n"),
0428b8f5
DJ
7717 arm_fallback_mode_string);
7718}
7719
7720static void
7721arm_show_force_mode (struct ui_file *file, int from_tty,
7722 struct cmd_list_element *c, const char *value)
7723{
1cf3db46 7724 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
0428b8f5 7725
0963b4bd
MS
7726 fprintf_filtered (file,
7727 _("The current execution mode assumed "
7728 "(even when symbols are available) is \"%s\".\n"),
0428b8f5
DJ
7729 arm_force_mode_string);
7730}
7731
afd7eef0
RE
7732/* If the user changes the register disassembly style used for info
7733 register and other commands, we have to also switch the style used
7734 in opcodes for disassembly output. This function is run in the "set
7735 arm disassembly" command, and does that. */
bc90b915
FN
7736
7737static void
afd7eef0 7738set_disassembly_style_sfunc (char *args, int from_tty,
bc90b915
FN
7739 struct cmd_list_element *c)
7740{
afd7eef0 7741 set_disassembly_style ();
bc90b915
FN
7742}
7743\f
966fbf70 7744/* Return the ARM register name corresponding to register I. */
a208b0cb 7745static const char *
d93859e2 7746arm_register_name (struct gdbarch *gdbarch, int i)
966fbf70 7747{
58d6951d
DJ
7748 const int num_regs = gdbarch_num_regs (gdbarch);
7749
7750 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
7751 && i >= num_regs && i < num_regs + 32)
7752 {
7753 static const char *const vfp_pseudo_names[] = {
7754 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
7755 "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
7756 "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
7757 "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
7758 };
7759
7760 return vfp_pseudo_names[i - num_regs];
7761 }
7762
7763 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
7764 && i >= num_regs + 32 && i < num_regs + 32 + 16)
7765 {
7766 static const char *const neon_pseudo_names[] = {
7767 "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
7768 "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15",
7769 };
7770
7771 return neon_pseudo_names[i - num_regs - 32];
7772 }
7773
ff6f572f
DJ
7774 if (i >= ARRAY_SIZE (arm_register_names))
7775 /* These registers are only supported on targets which supply
7776 an XML description. */
7777 return "";
7778
966fbf70
RE
7779 return arm_register_names[i];
7780}
7781
bc90b915 7782static void
afd7eef0 7783set_disassembly_style (void)
bc90b915 7784{
123dc839 7785 int current;
bc90b915 7786
123dc839
DJ
7787 /* Find the style that the user wants. */
7788 for (current = 0; current < num_disassembly_options; current++)
7789 if (disassembly_style == valid_disassembly_styles[current])
7790 break;
7791 gdb_assert (current < num_disassembly_options);
bc90b915 7792
94c30b78 7793 /* Synchronize the disassembler. */
bc90b915
FN
7794 set_arm_regname_option (current);
7795}
7796
082fc60d
RE
7797/* Test whether the coff symbol specific value corresponds to a Thumb
7798 function. */
7799
7800static int
7801coff_sym_is_thumb (int val)
7802{
f8bf5763
PM
7803 return (val == C_THUMBEXT
7804 || val == C_THUMBSTAT
7805 || val == C_THUMBEXTFUNC
7806 || val == C_THUMBSTATFUNC
7807 || val == C_THUMBLABEL);
082fc60d
RE
7808}
7809
7810/* arm_coff_make_msymbol_special()
7811 arm_elf_make_msymbol_special()
7812
7813 These functions test whether the COFF or ELF symbol corresponds to
7814 an address in thumb code, and set a "special" bit in a minimal
7815 symbol to indicate that it does. */
7816
34e8f22d 7817static void
082fc60d
RE
7818arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
7819{
7820 /* Thumb symbols are of type STT_LOPROC, (synonymous with
7821 STT_ARM_TFUNC). */
7822 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
7823 == STT_LOPROC)
7824 MSYMBOL_SET_SPECIAL (msym);
7825}
7826
34e8f22d 7827static void
082fc60d
RE
7828arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
7829{
7830 if (coff_sym_is_thumb (val))
7831 MSYMBOL_SET_SPECIAL (msym);
7832}
7833
60c5725c 7834static void
c1bd65d0 7835arm_objfile_data_free (struct objfile *objfile, void *arg)
60c5725c
DJ
7836{
7837 struct arm_per_objfile *data = arg;
7838 unsigned int i;
7839
7840 for (i = 0; i < objfile->obfd->section_count; i++)
7841 VEC_free (arm_mapping_symbol_s, data->section_maps[i]);
7842}
7843
7844static void
7845arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile,
7846 asymbol *sym)
7847{
7848 const char *name = bfd_asymbol_name (sym);
7849 struct arm_per_objfile *data;
7850 VEC(arm_mapping_symbol_s) **map_p;
7851 struct arm_mapping_symbol new_map_sym;
7852
7853 gdb_assert (name[0] == '$');
7854 if (name[1] != 'a' && name[1] != 't' && name[1] != 'd')
7855 return;
7856
7857 data = objfile_data (objfile, arm_objfile_data_key);
7858 if (data == NULL)
7859 {
7860 data = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7861 struct arm_per_objfile);
7862 set_objfile_data (objfile, arm_objfile_data_key, data);
7863 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
7864 objfile->obfd->section_count,
7865 VEC(arm_mapping_symbol_s) *);
7866 }
7867 map_p = &data->section_maps[bfd_get_section (sym)->index];
7868
7869 new_map_sym.value = sym->value;
7870 new_map_sym.type = name[1];
7871
7872 /* Assume that most mapping symbols appear in order of increasing
7873 value. If they were randomly distributed, it would be faster to
7874 always push here and then sort at first use. */
7875 if (!VEC_empty (arm_mapping_symbol_s, *map_p))
7876 {
7877 struct arm_mapping_symbol *prev_map_sym;
7878
7879 prev_map_sym = VEC_last (arm_mapping_symbol_s, *map_p);
7880 if (prev_map_sym->value >= sym->value)
7881 {
7882 unsigned int idx;
7883 idx = VEC_lower_bound (arm_mapping_symbol_s, *map_p, &new_map_sym,
7884 arm_compare_mapping_symbols);
7885 VEC_safe_insert (arm_mapping_symbol_s, *map_p, idx, &new_map_sym);
7886 return;
7887 }
7888 }
7889
7890 VEC_safe_push (arm_mapping_symbol_s, *map_p, &new_map_sym);
7891}
7892
756fe439 7893static void
61a1198a 7894arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
756fe439 7895{
9779414d 7896 struct gdbarch *gdbarch = get_regcache_arch (regcache);
61a1198a 7897 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
756fe439
DJ
7898
7899 /* If necessary, set the T bit. */
7900 if (arm_apcs_32)
7901 {
9779414d 7902 ULONGEST val, t_bit;
61a1198a 7903 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
9779414d
DJ
7904 t_bit = arm_psr_thumb_bit (gdbarch);
7905 if (arm_pc_is_thumb (gdbarch, pc))
7906 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
7907 val | t_bit);
756fe439 7908 else
61a1198a 7909 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
9779414d 7910 val & ~t_bit);
756fe439
DJ
7911 }
7912}
123dc839 7913
58d6951d
DJ
7914/* Read the contents of a NEON quad register, by reading from two
7915 double registers. This is used to implement the quad pseudo
7916 registers, and for argument passing in case the quad registers are
7917 missing; vectors are passed in quad registers when using the VFP
7918 ABI, even if a NEON unit is not present. REGNUM is the index of
7919 the quad register, in [0, 15]. */
7920
7921static void
7922arm_neon_quad_read (struct gdbarch *gdbarch, struct regcache *regcache,
7923 int regnum, gdb_byte *buf)
7924{
7925 char name_buf[4];
7926 gdb_byte reg_buf[8];
7927 int offset, double_regnum;
7928
7929 sprintf (name_buf, "d%d", regnum << 1);
7930 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
7931 strlen (name_buf));
7932
7933 /* d0 is always the least significant half of q0. */
7934 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
7935 offset = 8;
7936 else
7937 offset = 0;
7938
7939 regcache_raw_read (regcache, double_regnum, reg_buf);
7940 memcpy (buf + offset, reg_buf, 8);
7941
7942 offset = 8 - offset;
7943 regcache_raw_read (regcache, double_regnum + 1, reg_buf);
7944 memcpy (buf + offset, reg_buf, 8);
7945}
7946
7947static void
7948arm_pseudo_read (struct gdbarch *gdbarch, struct regcache *regcache,
7949 int regnum, gdb_byte *buf)
7950{
7951 const int num_regs = gdbarch_num_regs (gdbarch);
7952 char name_buf[4];
7953 gdb_byte reg_buf[8];
7954 int offset, double_regnum;
7955
7956 gdb_assert (regnum >= num_regs);
7957 regnum -= num_regs;
7958
7959 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
7960 /* Quad-precision register. */
7961 arm_neon_quad_read (gdbarch, regcache, regnum - 32, buf);
7962 else
7963 {
7964 /* Single-precision register. */
7965 gdb_assert (regnum < 32);
7966
7967 /* s0 is always the least significant half of d0. */
7968 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
7969 offset = (regnum & 1) ? 0 : 4;
7970 else
7971 offset = (regnum & 1) ? 4 : 0;
7972
7973 sprintf (name_buf, "d%d", regnum >> 1);
7974 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
7975 strlen (name_buf));
7976
7977 regcache_raw_read (regcache, double_regnum, reg_buf);
7978 memcpy (buf, reg_buf + offset, 4);
7979 }
7980}
7981
7982/* Store the contents of BUF to a NEON quad register, by writing to
7983 two double registers. This is used to implement the quad pseudo
7984 registers, and for argument passing in case the quad registers are
7985 missing; vectors are passed in quad registers when using the VFP
7986 ABI, even if a NEON unit is not present. REGNUM is the index
7987 of the quad register, in [0, 15]. */
7988
7989static void
7990arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache,
7991 int regnum, const gdb_byte *buf)
7992{
7993 char name_buf[4];
7994 gdb_byte reg_buf[8];
7995 int offset, double_regnum;
7996
7997 sprintf (name_buf, "d%d", regnum << 1);
7998 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
7999 strlen (name_buf));
8000
8001 /* d0 is always the least significant half of q0. */
8002 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8003 offset = 8;
8004 else
8005 offset = 0;
8006
8007 regcache_raw_write (regcache, double_regnum, buf + offset);
8008 offset = 8 - offset;
8009 regcache_raw_write (regcache, double_regnum + 1, buf + offset);
8010}
8011
8012static void
8013arm_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
8014 int regnum, const gdb_byte *buf)
8015{
8016 const int num_regs = gdbarch_num_regs (gdbarch);
8017 char name_buf[4];
8018 gdb_byte reg_buf[8];
8019 int offset, double_regnum;
8020
8021 gdb_assert (regnum >= num_regs);
8022 regnum -= num_regs;
8023
8024 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
8025 /* Quad-precision register. */
8026 arm_neon_quad_write (gdbarch, regcache, regnum - 32, buf);
8027 else
8028 {
8029 /* Single-precision register. */
8030 gdb_assert (regnum < 32);
8031
8032 /* s0 is always the least significant half of d0. */
8033 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8034 offset = (regnum & 1) ? 0 : 4;
8035 else
8036 offset = (regnum & 1) ? 4 : 0;
8037
8038 sprintf (name_buf, "d%d", regnum >> 1);
8039 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8040 strlen (name_buf));
8041
8042 regcache_raw_read (regcache, double_regnum, reg_buf);
8043 memcpy (reg_buf + offset, buf, 4);
8044 regcache_raw_write (regcache, double_regnum, reg_buf);
8045 }
8046}
8047
123dc839
DJ
8048static struct value *
8049value_of_arm_user_reg (struct frame_info *frame, const void *baton)
8050{
8051 const int *reg_p = baton;
8052 return value_of_register (*reg_p, frame);
8053}
97e03143 8054\f
70f80edf
JT
8055static enum gdb_osabi
8056arm_elf_osabi_sniffer (bfd *abfd)
97e03143 8057{
2af48f68 8058 unsigned int elfosabi;
70f80edf 8059 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 8060
70f80edf 8061 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 8062
28e97307
DJ
8063 if (elfosabi == ELFOSABI_ARM)
8064 /* GNU tools use this value. Check note sections in this case,
8065 as well. */
8066 bfd_map_over_sections (abfd,
8067 generic_elf_osabi_sniff_abi_tag_sections,
8068 &osabi);
97e03143 8069
28e97307 8070 /* Anything else will be handled by the generic ELF sniffer. */
70f80edf 8071 return osabi;
97e03143
RE
8072}
8073
54483882
YQ
8074static int
8075arm_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
8076 struct reggroup *group)
8077{
2c291032
YQ
8078 /* FPS register's type is INT, but belongs to float_reggroup. Beside
8079 this, FPS register belongs to save_regroup, restore_reggroup, and
8080 all_reggroup, of course. */
54483882 8081 if (regnum == ARM_FPS_REGNUM)
2c291032
YQ
8082 return (group == float_reggroup
8083 || group == save_reggroup
8084 || group == restore_reggroup
8085 || group == all_reggroup);
54483882
YQ
8086 else
8087 return default_register_reggroup_p (gdbarch, regnum, group);
8088}
8089
70f80edf 8090\f
da3c6d4a
MS
8091/* Initialize the current architecture based on INFO. If possible,
8092 re-use an architecture from ARCHES, which is a list of
8093 architectures already created during this debugging session.
97e03143 8094
da3c6d4a
MS
8095 Called e.g. at program startup, when reading a core file, and when
8096 reading a binary file. */
97e03143 8097
39bbf761
RE
8098static struct gdbarch *
8099arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8100{
97e03143 8101 struct gdbarch_tdep *tdep;
39bbf761 8102 struct gdbarch *gdbarch;
28e97307
DJ
8103 struct gdbarch_list *best_arch;
8104 enum arm_abi_kind arm_abi = arm_abi_global;
8105 enum arm_float_model fp_model = arm_fp_model;
123dc839 8106 struct tdesc_arch_data *tdesc_data = NULL;
9779414d 8107 int i, is_m = 0;
58d6951d
DJ
8108 int have_vfp_registers = 0, have_vfp_pseudos = 0, have_neon_pseudos = 0;
8109 int have_neon = 0;
ff6f572f 8110 int have_fpa_registers = 1;
9779414d
DJ
8111 const struct target_desc *tdesc = info.target_desc;
8112
8113 /* If we have an object to base this architecture on, try to determine
8114 its ABI. */
8115
8116 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
8117 {
8118 int ei_osabi, e_flags;
8119
8120 switch (bfd_get_flavour (info.abfd))
8121 {
8122 case bfd_target_aout_flavour:
8123 /* Assume it's an old APCS-style ABI. */
8124 arm_abi = ARM_ABI_APCS;
8125 break;
8126
8127 case bfd_target_coff_flavour:
8128 /* Assume it's an old APCS-style ABI. */
8129 /* XXX WinCE? */
8130 arm_abi = ARM_ABI_APCS;
8131 break;
8132
8133 case bfd_target_elf_flavour:
8134 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
8135 e_flags = elf_elfheader (info.abfd)->e_flags;
8136
8137 if (ei_osabi == ELFOSABI_ARM)
8138 {
8139 /* GNU tools used to use this value, but do not for EABI
8140 objects. There's nowhere to tag an EABI version
8141 anyway, so assume APCS. */
8142 arm_abi = ARM_ABI_APCS;
8143 }
8144 else if (ei_osabi == ELFOSABI_NONE)
8145 {
8146 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
8147 int attr_arch, attr_profile;
8148
8149 switch (eabi_ver)
8150 {
8151 case EF_ARM_EABI_UNKNOWN:
8152 /* Assume GNU tools. */
8153 arm_abi = ARM_ABI_APCS;
8154 break;
8155
8156 case EF_ARM_EABI_VER4:
8157 case EF_ARM_EABI_VER5:
8158 arm_abi = ARM_ABI_AAPCS;
8159 /* EABI binaries default to VFP float ordering.
8160 They may also contain build attributes that can
8161 be used to identify if the VFP argument-passing
8162 ABI is in use. */
8163 if (fp_model == ARM_FLOAT_AUTO)
8164 {
8165#ifdef HAVE_ELF
8166 switch (bfd_elf_get_obj_attr_int (info.abfd,
8167 OBJ_ATTR_PROC,
8168 Tag_ABI_VFP_args))
8169 {
8170 case 0:
8171 /* "The user intended FP parameter/result
8172 passing to conform to AAPCS, base
8173 variant". */
8174 fp_model = ARM_FLOAT_SOFT_VFP;
8175 break;
8176 case 1:
8177 /* "The user intended FP parameter/result
8178 passing to conform to AAPCS, VFP
8179 variant". */
8180 fp_model = ARM_FLOAT_VFP;
8181 break;
8182 case 2:
8183 /* "The user intended FP parameter/result
8184 passing to conform to tool chain-specific
8185 conventions" - we don't know any such
8186 conventions, so leave it as "auto". */
8187 break;
8188 default:
8189 /* Attribute value not mentioned in the
8190 October 2008 ABI, so leave it as
8191 "auto". */
8192 break;
8193 }
8194#else
8195 fp_model = ARM_FLOAT_SOFT_VFP;
8196#endif
8197 }
8198 break;
8199
8200 default:
8201 /* Leave it as "auto". */
8202 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
8203 break;
8204 }
8205
8206#ifdef HAVE_ELF
8207 /* Detect M-profile programs. This only works if the
8208 executable file includes build attributes; GCC does
8209 copy them to the executable, but e.g. RealView does
8210 not. */
8211 attr_arch = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
8212 Tag_CPU_arch);
0963b4bd
MS
8213 attr_profile = bfd_elf_get_obj_attr_int (info.abfd,
8214 OBJ_ATTR_PROC,
9779414d
DJ
8215 Tag_CPU_arch_profile);
8216 /* GCC specifies the profile for v6-M; RealView only
8217 specifies the profile for architectures starting with
8218 V7 (as opposed to architectures with a tag
8219 numerically greater than TAG_CPU_ARCH_V7). */
8220 if (!tdesc_has_registers (tdesc)
8221 && (attr_arch == TAG_CPU_ARCH_V6_M
8222 || attr_arch == TAG_CPU_ARCH_V6S_M
8223 || attr_profile == 'M'))
8224 tdesc = tdesc_arm_with_m;
8225#endif
8226 }
8227
8228 if (fp_model == ARM_FLOAT_AUTO)
8229 {
8230 int e_flags = elf_elfheader (info.abfd)->e_flags;
8231
8232 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
8233 {
8234 case 0:
8235 /* Leave it as "auto". Strictly speaking this case
8236 means FPA, but almost nobody uses that now, and
8237 many toolchains fail to set the appropriate bits
8238 for the floating-point model they use. */
8239 break;
8240 case EF_ARM_SOFT_FLOAT:
8241 fp_model = ARM_FLOAT_SOFT_FPA;
8242 break;
8243 case EF_ARM_VFP_FLOAT:
8244 fp_model = ARM_FLOAT_VFP;
8245 break;
8246 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
8247 fp_model = ARM_FLOAT_SOFT_VFP;
8248 break;
8249 }
8250 }
8251
8252 if (e_flags & EF_ARM_BE8)
8253 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
8254
8255 break;
8256
8257 default:
8258 /* Leave it as "auto". */
8259 break;
8260 }
8261 }
123dc839
DJ
8262
8263 /* Check any target description for validity. */
9779414d 8264 if (tdesc_has_registers (tdesc))
123dc839
DJ
8265 {
8266 /* For most registers we require GDB's default names; but also allow
8267 the numeric names for sp / lr / pc, as a convenience. */
8268 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
8269 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
8270 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
8271
8272 const struct tdesc_feature *feature;
58d6951d 8273 int valid_p;
123dc839 8274
9779414d 8275 feature = tdesc_find_feature (tdesc,
123dc839
DJ
8276 "org.gnu.gdb.arm.core");
8277 if (feature == NULL)
9779414d
DJ
8278 {
8279 feature = tdesc_find_feature (tdesc,
8280 "org.gnu.gdb.arm.m-profile");
8281 if (feature == NULL)
8282 return NULL;
8283 else
8284 is_m = 1;
8285 }
123dc839
DJ
8286
8287 tdesc_data = tdesc_data_alloc ();
8288
8289 valid_p = 1;
8290 for (i = 0; i < ARM_SP_REGNUM; i++)
8291 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8292 arm_register_names[i]);
8293 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
8294 ARM_SP_REGNUM,
8295 arm_sp_names);
8296 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
8297 ARM_LR_REGNUM,
8298 arm_lr_names);
8299 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
8300 ARM_PC_REGNUM,
8301 arm_pc_names);
9779414d
DJ
8302 if (is_m)
8303 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8304 ARM_PS_REGNUM, "xpsr");
8305 else
8306 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8307 ARM_PS_REGNUM, "cpsr");
123dc839
DJ
8308
8309 if (!valid_p)
8310 {
8311 tdesc_data_cleanup (tdesc_data);
8312 return NULL;
8313 }
8314
9779414d 8315 feature = tdesc_find_feature (tdesc,
123dc839
DJ
8316 "org.gnu.gdb.arm.fpa");
8317 if (feature != NULL)
8318 {
8319 valid_p = 1;
8320 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
8321 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8322 arm_register_names[i]);
8323 if (!valid_p)
8324 {
8325 tdesc_data_cleanup (tdesc_data);
8326 return NULL;
8327 }
8328 }
ff6f572f
DJ
8329 else
8330 have_fpa_registers = 0;
8331
9779414d 8332 feature = tdesc_find_feature (tdesc,
ff6f572f
DJ
8333 "org.gnu.gdb.xscale.iwmmxt");
8334 if (feature != NULL)
8335 {
8336 static const char *const iwmmxt_names[] = {
8337 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
8338 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
8339 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
8340 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
8341 };
8342
8343 valid_p = 1;
8344 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
8345 valid_p
8346 &= tdesc_numbered_register (feature, tdesc_data, i,
8347 iwmmxt_names[i - ARM_WR0_REGNUM]);
8348
8349 /* Check for the control registers, but do not fail if they
8350 are missing. */
8351 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
8352 tdesc_numbered_register (feature, tdesc_data, i,
8353 iwmmxt_names[i - ARM_WR0_REGNUM]);
8354
8355 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
8356 valid_p
8357 &= tdesc_numbered_register (feature, tdesc_data, i,
8358 iwmmxt_names[i - ARM_WR0_REGNUM]);
8359
8360 if (!valid_p)
8361 {
8362 tdesc_data_cleanup (tdesc_data);
8363 return NULL;
8364 }
8365 }
58d6951d
DJ
8366
8367 /* If we have a VFP unit, check whether the single precision registers
8368 are present. If not, then we will synthesize them as pseudo
8369 registers. */
9779414d 8370 feature = tdesc_find_feature (tdesc,
58d6951d
DJ
8371 "org.gnu.gdb.arm.vfp");
8372 if (feature != NULL)
8373 {
8374 static const char *const vfp_double_names[] = {
8375 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
8376 "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
8377 "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
8378 "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
8379 };
8380
8381 /* Require the double precision registers. There must be either
8382 16 or 32. */
8383 valid_p = 1;
8384 for (i = 0; i < 32; i++)
8385 {
8386 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8387 ARM_D0_REGNUM + i,
8388 vfp_double_names[i]);
8389 if (!valid_p)
8390 break;
8391 }
8392
8393 if (!valid_p && i != 16)
8394 {
8395 tdesc_data_cleanup (tdesc_data);
8396 return NULL;
8397 }
8398
8399 if (tdesc_unnumbered_register (feature, "s0") == 0)
8400 have_vfp_pseudos = 1;
8401
8402 have_vfp_registers = 1;
8403
8404 /* If we have VFP, also check for NEON. The architecture allows
8405 NEON without VFP (integer vector operations only), but GDB
8406 does not support that. */
9779414d 8407 feature = tdesc_find_feature (tdesc,
58d6951d
DJ
8408 "org.gnu.gdb.arm.neon");
8409 if (feature != NULL)
8410 {
8411 /* NEON requires 32 double-precision registers. */
8412 if (i != 32)
8413 {
8414 tdesc_data_cleanup (tdesc_data);
8415 return NULL;
8416 }
8417
8418 /* If there are quad registers defined by the stub, use
8419 their type; otherwise (normally) provide them with
8420 the default type. */
8421 if (tdesc_unnumbered_register (feature, "q0") == 0)
8422 have_neon_pseudos = 1;
8423
8424 have_neon = 1;
8425 }
8426 }
123dc839 8427 }
39bbf761 8428
28e97307
DJ
8429 /* If there is already a candidate, use it. */
8430 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
8431 best_arch != NULL;
8432 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
8433 {
b8926edc
DJ
8434 if (arm_abi != ARM_ABI_AUTO
8435 && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
28e97307
DJ
8436 continue;
8437
b8926edc
DJ
8438 if (fp_model != ARM_FLOAT_AUTO
8439 && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
28e97307
DJ
8440 continue;
8441
58d6951d
DJ
8442 /* There are various other properties in tdep that we do not
8443 need to check here: those derived from a target description,
8444 since gdbarches with a different target description are
8445 automatically disqualified. */
8446
9779414d
DJ
8447 /* Do check is_m, though, since it might come from the binary. */
8448 if (is_m != gdbarch_tdep (best_arch->gdbarch)->is_m)
8449 continue;
8450
28e97307
DJ
8451 /* Found a match. */
8452 break;
8453 }
97e03143 8454
28e97307 8455 if (best_arch != NULL)
123dc839
DJ
8456 {
8457 if (tdesc_data != NULL)
8458 tdesc_data_cleanup (tdesc_data);
8459 return best_arch->gdbarch;
8460 }
28e97307
DJ
8461
8462 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
97e03143
RE
8463 gdbarch = gdbarch_alloc (&info, tdep);
8464
28e97307
DJ
8465 /* Record additional information about the architecture we are defining.
8466 These are gdbarch discriminators, like the OSABI. */
8467 tdep->arm_abi = arm_abi;
8468 tdep->fp_model = fp_model;
9779414d 8469 tdep->is_m = is_m;
ff6f572f 8470 tdep->have_fpa_registers = have_fpa_registers;
58d6951d
DJ
8471 tdep->have_vfp_registers = have_vfp_registers;
8472 tdep->have_vfp_pseudos = have_vfp_pseudos;
8473 tdep->have_neon_pseudos = have_neon_pseudos;
8474 tdep->have_neon = have_neon;
08216dd7
RE
8475
8476 /* Breakpoints. */
9d4fde75 8477 switch (info.byte_order_for_code)
67255d04
RE
8478 {
8479 case BFD_ENDIAN_BIG:
66e810cd
RE
8480 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
8481 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
8482 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
8483 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
8484
67255d04
RE
8485 break;
8486
8487 case BFD_ENDIAN_LITTLE:
66e810cd
RE
8488 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
8489 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
8490 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
8491 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
8492
67255d04
RE
8493 break;
8494
8495 default:
8496 internal_error (__FILE__, __LINE__,
edefbb7c 8497 _("arm_gdbarch_init: bad byte order for float format"));
67255d04
RE
8498 }
8499
d7b486e7
RE
8500 /* On ARM targets char defaults to unsigned. */
8501 set_gdbarch_char_signed (gdbarch, 0);
8502
cca44b1b
JB
8503 /* Note: for displaced stepping, this includes the breakpoint, and one word
8504 of additional scratch space. This setting isn't used for anything beside
8505 displaced stepping at present. */
8506 set_gdbarch_max_insn_length (gdbarch, 4 * DISPLACED_MODIFIED_INSNS);
8507
9df628e0 8508 /* This should be low enough for everything. */
97e03143 8509 tdep->lowest_pc = 0x20;
94c30b78 8510 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 8511
7c00367c
MK
8512 /* The default, for both APCS and AAPCS, is to return small
8513 structures in registers. */
8514 tdep->struct_return = reg_struct_return;
8515
2dd604e7 8516 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
f53f0d0b 8517 set_gdbarch_frame_align (gdbarch, arm_frame_align);
39bbf761 8518
756fe439
DJ
8519 set_gdbarch_write_pc (gdbarch, arm_write_pc);
8520
148754e5 8521 /* Frame handling. */
a262aec2 8522 set_gdbarch_dummy_id (gdbarch, arm_dummy_id);
eb5492fa
DJ
8523 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
8524 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
8525
eb5492fa 8526 frame_base_set_default (gdbarch, &arm_normal_base);
148754e5 8527
34e8f22d
RE
8528 /* Address manipulation. */
8529 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
8530 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
8531
34e8f22d
RE
8532 /* Advance PC across function entry code. */
8533 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
8534
4024ca99
UW
8535 /* Detect whether PC is in function epilogue. */
8536 set_gdbarch_in_function_epilogue_p (gdbarch, arm_in_function_epilogue_p);
8537
190dce09
UW
8538 /* Skip trampolines. */
8539 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
8540
34e8f22d
RE
8541 /* The stack grows downward. */
8542 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8543
8544 /* Breakpoint manipulation. */
8545 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
177321bd
DJ
8546 set_gdbarch_remote_breakpoint_from_pc (gdbarch,
8547 arm_remote_breakpoint_from_pc);
34e8f22d
RE
8548
8549 /* Information about registers, etc. */
34e8f22d
RE
8550 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
8551 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
ff6f572f 8552 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
7a5ea0d4 8553 set_gdbarch_register_type (gdbarch, arm_register_type);
54483882 8554 set_gdbarch_register_reggroup_p (gdbarch, arm_register_reggroup_p);
34e8f22d 8555
ff6f572f
DJ
8556 /* This "info float" is FPA-specific. Use the generic version if we
8557 do not have FPA. */
8558 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
8559 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
8560
26216b98 8561 /* Internal <-> external register number maps. */
ff6f572f 8562 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
26216b98
AC
8563 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
8564
34e8f22d
RE
8565 set_gdbarch_register_name (gdbarch, arm_register_name);
8566
8567 /* Returning results. */
2af48f68 8568 set_gdbarch_return_value (gdbarch, arm_return_value);
34e8f22d 8569
03d48a7d
RE
8570 /* Disassembly. */
8571 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
8572
34e8f22d
RE
8573 /* Minsymbol frobbing. */
8574 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
8575 set_gdbarch_coff_make_msymbol_special (gdbarch,
8576 arm_coff_make_msymbol_special);
60c5725c 8577 set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol);
34e8f22d 8578
f9d67f43
DJ
8579 /* Thumb-2 IT block support. */
8580 set_gdbarch_adjust_breakpoint_address (gdbarch,
8581 arm_adjust_breakpoint_address);
8582
0d5de010
DJ
8583 /* Virtual tables. */
8584 set_gdbarch_vbit_in_delta (gdbarch, 1);
8585
97e03143 8586 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 8587 gdbarch_init_osabi (info, gdbarch);
97e03143 8588
b39cc962
DJ
8589 dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg);
8590
eb5492fa 8591 /* Add some default predicates. */
a262aec2
DJ
8592 frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind);
8593 dwarf2_append_unwinders (gdbarch);
0e9e9abd 8594 frame_unwind_append_unwinder (gdbarch, &arm_exidx_unwind);
a262aec2 8595 frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind);
eb5492fa 8596
97e03143
RE
8597 /* Now we have tuned the configuration, set a few final things,
8598 based on what the OS ABI has told us. */
8599
b8926edc
DJ
8600 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
8601 binaries are always marked. */
8602 if (tdep->arm_abi == ARM_ABI_AUTO)
8603 tdep->arm_abi = ARM_ABI_APCS;
8604
e3039479
UW
8605 /* Watchpoints are not steppable. */
8606 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8607
b8926edc
DJ
8608 /* We used to default to FPA for generic ARM, but almost nobody
8609 uses that now, and we now provide a way for the user to force
8610 the model. So default to the most useful variant. */
8611 if (tdep->fp_model == ARM_FLOAT_AUTO)
8612 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
8613
9df628e0
RE
8614 if (tdep->jb_pc >= 0)
8615 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
8616
08216dd7 8617 /* Floating point sizes and format. */
8da61cc4 8618 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
b8926edc 8619 if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
08216dd7 8620 {
8da61cc4
DJ
8621 set_gdbarch_double_format
8622 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
8623 set_gdbarch_long_double_format
8624 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
8625 }
8626 else
8627 {
8628 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
8629 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
08216dd7
RE
8630 }
8631
58d6951d
DJ
8632 if (have_vfp_pseudos)
8633 {
8634 /* NOTE: These are the only pseudo registers used by
8635 the ARM target at the moment. If more are added, a
8636 little more care in numbering will be needed. */
8637
8638 int num_pseudos = 32;
8639 if (have_neon_pseudos)
8640 num_pseudos += 16;
8641 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudos);
8642 set_gdbarch_pseudo_register_read (gdbarch, arm_pseudo_read);
8643 set_gdbarch_pseudo_register_write (gdbarch, arm_pseudo_write);
8644 }
8645
123dc839 8646 if (tdesc_data)
58d6951d
DJ
8647 {
8648 set_tdesc_pseudo_register_name (gdbarch, arm_register_name);
8649
9779414d 8650 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
58d6951d
DJ
8651
8652 /* Override tdesc_register_type to adjust the types of VFP
8653 registers for NEON. */
8654 set_gdbarch_register_type (gdbarch, arm_register_type);
8655 }
123dc839
DJ
8656
8657 /* Add standard register aliases. We add aliases even for those
8658 nanes which are used by the current architecture - it's simpler,
8659 and does no harm, since nothing ever lists user registers. */
8660 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
8661 user_reg_add (gdbarch, arm_register_aliases[i].name,
8662 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
8663
39bbf761
RE
8664 return gdbarch;
8665}
8666
97e03143 8667static void
2af46ca0 8668arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
97e03143 8669{
2af46ca0 8670 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
97e03143
RE
8671
8672 if (tdep == NULL)
8673 return;
8674
edefbb7c 8675 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
97e03143
RE
8676 (unsigned long) tdep->lowest_pc);
8677}
8678
a78f21af
AC
8679extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
8680
c906108c 8681void
ed9a39eb 8682_initialize_arm_tdep (void)
c906108c 8683{
bc90b915
FN
8684 struct ui_file *stb;
8685 long length;
26304000 8686 struct cmd_list_element *new_set, *new_show;
53904c9e
AC
8687 const char *setname;
8688 const char *setdesc;
4bd7b427 8689 const char *const *regnames;
bc90b915
FN
8690 int numregs, i, j;
8691 static char *helptext;
edefbb7c
AC
8692 char regdesc[1024], *rdptr = regdesc;
8693 size_t rest = sizeof (regdesc);
085dd6e6 8694
42cf1509 8695 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
97e03143 8696
60c5725c 8697 arm_objfile_data_key
c1bd65d0 8698 = register_objfile_data_with_cleanup (NULL, arm_objfile_data_free);
60c5725c 8699
0e9e9abd
UW
8700 /* Add ourselves to objfile event chain. */
8701 observer_attach_new_objfile (arm_exidx_new_objfile);
8702 arm_exidx_data_key
8703 = register_objfile_data_with_cleanup (NULL, arm_exidx_data_free);
8704
70f80edf
JT
8705 /* Register an ELF OS ABI sniffer for ARM binaries. */
8706 gdbarch_register_osabi_sniffer (bfd_arch_arm,
8707 bfd_target_elf_flavour,
8708 arm_elf_osabi_sniffer);
8709
9779414d
DJ
8710 /* Initialize the standard target descriptions. */
8711 initialize_tdesc_arm_with_m ();
8712
94c30b78 8713 /* Get the number of possible sets of register names defined in opcodes. */
afd7eef0
RE
8714 num_disassembly_options = get_arm_regname_num_options ();
8715
8716 /* Add root prefix command for all "set arm"/"show arm" commands. */
8717 add_prefix_cmd ("arm", no_class, set_arm_command,
edefbb7c 8718 _("Various ARM-specific commands."),
afd7eef0
RE
8719 &setarmcmdlist, "set arm ", 0, &setlist);
8720
8721 add_prefix_cmd ("arm", no_class, show_arm_command,
edefbb7c 8722 _("Various ARM-specific commands."),
afd7eef0 8723 &showarmcmdlist, "show arm ", 0, &showlist);
bc90b915 8724
94c30b78 8725 /* Sync the opcode insn printer with our register viewer. */
bc90b915 8726 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 8727
eefe576e
AC
8728 /* Initialize the array that will be passed to
8729 add_setshow_enum_cmd(). */
afd7eef0
RE
8730 valid_disassembly_styles
8731 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
8732 for (i = 0; i < num_disassembly_options; i++)
bc90b915
FN
8733 {
8734 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
afd7eef0 8735 valid_disassembly_styles[i] = setname;
edefbb7c
AC
8736 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
8737 rdptr += length;
8738 rest -= length;
123dc839
DJ
8739 /* When we find the default names, tell the disassembler to use
8740 them. */
bc90b915
FN
8741 if (!strcmp (setname, "std"))
8742 {
afd7eef0 8743 disassembly_style = setname;
bc90b915
FN
8744 set_arm_regname_option (i);
8745 }
8746 }
94c30b78 8747 /* Mark the end of valid options. */
afd7eef0 8748 valid_disassembly_styles[num_disassembly_options] = NULL;
c906108c 8749
edefbb7c
AC
8750 /* Create the help text. */
8751 stb = mem_fileopen ();
8752 fprintf_unfiltered (stb, "%s%s%s",
8753 _("The valid values are:\n"),
8754 regdesc,
8755 _("The default is \"std\"."));
759ef836 8756 helptext = ui_file_xstrdup (stb, NULL);
bc90b915 8757 ui_file_delete (stb);
ed9a39eb 8758
edefbb7c
AC
8759 add_setshow_enum_cmd("disassembler", no_class,
8760 valid_disassembly_styles, &disassembly_style,
8761 _("Set the disassembly style."),
8762 _("Show the disassembly style."),
8763 helptext,
2c5b56ce 8764 set_disassembly_style_sfunc,
0963b4bd
MS
8765 NULL, /* FIXME: i18n: The disassembly style is
8766 \"%s\". */
7376b4c2 8767 &setarmcmdlist, &showarmcmdlist);
edefbb7c
AC
8768
8769 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
8770 _("Set usage of ARM 32-bit mode."),
8771 _("Show usage of ARM 32-bit mode."),
8772 _("When off, a 26-bit PC will be used."),
2c5b56ce 8773 NULL,
0963b4bd
MS
8774 NULL, /* FIXME: i18n: Usage of ARM 32-bit
8775 mode is %s. */
26304000 8776 &setarmcmdlist, &showarmcmdlist);
c906108c 8777
fd50bc42 8778 /* Add a command to allow the user to force the FPU model. */
edefbb7c
AC
8779 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
8780 _("Set the floating point type."),
8781 _("Show the floating point type."),
8782 _("auto - Determine the FP typefrom the OS-ABI.\n\
8783softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
8784fpa - FPA co-processor (GCC compiled).\n\
8785softvfp - Software FP with pure-endian doubles.\n\
8786vfp - VFP co-processor."),
edefbb7c 8787 set_fp_model_sfunc, show_fp_model,
7376b4c2 8788 &setarmcmdlist, &showarmcmdlist);
fd50bc42 8789
28e97307
DJ
8790 /* Add a command to allow the user to force the ABI. */
8791 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
8792 _("Set the ABI."),
8793 _("Show the ABI."),
8794 NULL, arm_set_abi, arm_show_abi,
8795 &setarmcmdlist, &showarmcmdlist);
8796
0428b8f5
DJ
8797 /* Add two commands to allow the user to force the assumed
8798 execution mode. */
8799 add_setshow_enum_cmd ("fallback-mode", class_support,
8800 arm_mode_strings, &arm_fallback_mode_string,
8801 _("Set the mode assumed when symbols are unavailable."),
8802 _("Show the mode assumed when symbols are unavailable."),
8803 NULL, NULL, arm_show_fallback_mode,
8804 &setarmcmdlist, &showarmcmdlist);
8805 add_setshow_enum_cmd ("force-mode", class_support,
8806 arm_mode_strings, &arm_force_mode_string,
8807 _("Set the mode assumed even when symbols are available."),
8808 _("Show the mode assumed even when symbols are available."),
8809 NULL, NULL, arm_show_force_mode,
8810 &setarmcmdlist, &showarmcmdlist);
8811
6529d2dd 8812 /* Debugging flag. */
edefbb7c
AC
8813 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
8814 _("Set ARM debugging."),
8815 _("Show ARM debugging."),
8816 _("When on, arm-specific debugging is enabled."),
2c5b56ce 8817 NULL,
7915a72c 8818 NULL, /* FIXME: i18n: "ARM debugging is %s. */
26304000 8819 &setdebuglist, &showdebuglist);
c906108c 8820}