]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/i386-tdep.c
Add new subtargets: msp430x1610, msp430x1611, msp430x1612, msp430x415,
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f
AC
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
931aecf5
AC
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
c906108c
SS
23
24#include "defs.h"
acd5c798
MK
25#include "arch-utils.h"
26#include "command.h"
27#include "dummy-frame.h"
6405b0a6 28#include "dwarf2-frame.h"
acd5c798
MK
29#include "doublest.h"
30#include "floatformat.h"
c906108c 31#include "frame.h"
acd5c798
MK
32#include "frame-base.h"
33#include "frame-unwind.h"
c906108c 34#include "inferior.h"
acd5c798 35#include "gdbcmd.h"
c906108c 36#include "gdbcore.h"
dfe01d39 37#include "objfiles.h"
acd5c798
MK
38#include "osabi.h"
39#include "regcache.h"
40#include "reggroups.h"
473f17b0 41#include "regset.h"
c0d1d883 42#include "symfile.h"
c906108c 43#include "symtab.h"
acd5c798 44#include "target.h"
fd0407d6 45#include "value.h"
a89aa300 46#include "dis-asm.h"
acd5c798 47
3d261580 48#include "gdb_assert.h"
acd5c798 49#include "gdb_string.h"
3d261580 50
d2a7c97a 51#include "i386-tdep.h"
61113f8b 52#include "i387-tdep.h"
d2a7c97a 53
c4fc7f1b 54/* Register names. */
c40e1eab 55
fc633446
MK
56static char *i386_register_names[] =
57{
58 "eax", "ecx", "edx", "ebx",
59 "esp", "ebp", "esi", "edi",
60 "eip", "eflags", "cs", "ss",
61 "ds", "es", "fs", "gs",
62 "st0", "st1", "st2", "st3",
63 "st4", "st5", "st6", "st7",
64 "fctrl", "fstat", "ftag", "fiseg",
65 "fioff", "foseg", "fooff", "fop",
66 "xmm0", "xmm1", "xmm2", "xmm3",
67 "xmm4", "xmm5", "xmm6", "xmm7",
68 "mxcsr"
69};
70
1cb97e17 71static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
c40e1eab 72
c4fc7f1b 73/* Register names for MMX pseudo-registers. */
28fc6740
AC
74
75static char *i386_mmx_names[] =
76{
77 "mm0", "mm1", "mm2", "mm3",
78 "mm4", "mm5", "mm6", "mm7"
79};
c40e1eab 80
1cb97e17 81static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
c40e1eab 82
28fc6740 83static int
5716833c 84i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 85{
5716833c
MK
86 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
87
88 if (mm0_regnum < 0)
89 return 0;
90
91 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
28fc6740
AC
92}
93
5716833c 94/* SSE register? */
23a34459 95
5716833c
MK
96static int
97i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 98{
5716833c
MK
99 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
100
101#define I387_ST0_REGNUM tdep->st0_regnum
102#define I387_NUM_XMM_REGS tdep->num_xmm_regs
103
104 if (I387_NUM_XMM_REGS == 0)
105 return 0;
106
107 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
108
109#undef I387_ST0_REGNUM
110#undef I387_NUM_XMM_REGS
23a34459
AC
111}
112
5716833c
MK
113static int
114i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 115{
5716833c
MK
116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
117
118#define I387_ST0_REGNUM tdep->st0_regnum
119#define I387_NUM_XMM_REGS tdep->num_xmm_regs
120
121 if (I387_NUM_XMM_REGS == 0)
122 return 0;
123
124 return (regnum == I387_MXCSR_REGNUM);
125
126#undef I387_ST0_REGNUM
127#undef I387_NUM_XMM_REGS
23a34459
AC
128}
129
5716833c
MK
130#define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
131#define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
132#define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
133
134/* FP register? */
23a34459
AC
135
136int
5716833c 137i386_fp_regnum_p (int regnum)
23a34459 138{
5716833c
MK
139 if (I387_ST0_REGNUM < 0)
140 return 0;
141
142 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
23a34459
AC
143}
144
145int
5716833c 146i386_fpc_regnum_p (int regnum)
23a34459 147{
5716833c
MK
148 if (I387_ST0_REGNUM < 0)
149 return 0;
150
151 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
23a34459
AC
152}
153
fc633446
MK
154/* Return the name of register REG. */
155
fa88f677 156const char *
fc633446
MK
157i386_register_name (int reg)
158{
5716833c
MK
159 if (i386_mmx_regnum_p (current_gdbarch, reg))
160 return i386_mmx_names[reg - I387_MM0_REGNUM];
fc633446 161
70913449
MK
162 if (reg >= 0 && reg < i386_num_register_names)
163 return i386_register_names[reg];
164
c40e1eab 165 return NULL;
fc633446
MK
166}
167
c4fc7f1b 168/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
169 number used by GDB. */
170
8201327c 171static int
c4fc7f1b 172i386_dbx_reg_to_regnum (int reg)
85540d8c 173{
c4fc7f1b
MK
174 /* This implements what GCC calls the "default" register map
175 (dbx_register_map[]). */
176
85540d8c
MK
177 if (reg >= 0 && reg <= 7)
178 {
9872ad24
JB
179 /* General-purpose registers. The debug info calls %ebp
180 register 4, and %esp register 5. */
181 if (reg == 4)
182 return 5;
183 else if (reg == 5)
184 return 4;
185 else return reg;
85540d8c
MK
186 }
187 else if (reg >= 12 && reg <= 19)
188 {
189 /* Floating-point registers. */
5716833c 190 return reg - 12 + I387_ST0_REGNUM;
85540d8c
MK
191 }
192 else if (reg >= 21 && reg <= 28)
193 {
194 /* SSE registers. */
5716833c 195 return reg - 21 + I387_XMM0_REGNUM;
85540d8c
MK
196 }
197 else if (reg >= 29 && reg <= 36)
198 {
199 /* MMX registers. */
5716833c 200 return reg - 29 + I387_MM0_REGNUM;
85540d8c
MK
201 }
202
203 /* This will hopefully provoke a warning. */
204 return NUM_REGS + NUM_PSEUDO_REGS;
205}
206
c4fc7f1b
MK
207/* Convert SVR4 register number REG to the appropriate register number
208 used by GDB. */
85540d8c 209
8201327c 210static int
c4fc7f1b 211i386_svr4_reg_to_regnum (int reg)
85540d8c 212{
c4fc7f1b
MK
213 /* This implements the GCC register map that tries to be compatible
214 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
215
216 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
217 numbers the floating point registers differently. */
218 if (reg >= 0 && reg <= 9)
219 {
acd5c798 220 /* General-purpose registers. */
85540d8c
MK
221 return reg;
222 }
223 else if (reg >= 11 && reg <= 18)
224 {
225 /* Floating-point registers. */
5716833c 226 return reg - 11 + I387_ST0_REGNUM;
85540d8c
MK
227 }
228 else if (reg >= 21)
229 {
c4fc7f1b
MK
230 /* The SSE and MMX registers have the same numbers as with dbx. */
231 return i386_dbx_reg_to_regnum (reg);
85540d8c
MK
232 }
233
234 /* This will hopefully provoke a warning. */
235 return NUM_REGS + NUM_PSEUDO_REGS;
236}
5716833c
MK
237
238#undef I387_ST0_REGNUM
239#undef I387_MM0_REGNUM
240#undef I387_NUM_XMM_REGS
fc338970 241\f
917317f4 242
fc338970
MK
243/* This is the variable that is set with "set disassembly-flavor", and
244 its legitimate values. */
53904c9e
AC
245static const char att_flavor[] = "att";
246static const char intel_flavor[] = "intel";
247static const char *valid_flavors[] =
c5aa993b 248{
c906108c
SS
249 att_flavor,
250 intel_flavor,
251 NULL
252};
53904c9e 253static const char *disassembly_flavor = att_flavor;
acd5c798 254\f
c906108c 255
acd5c798
MK
256/* Use the program counter to determine the contents and size of a
257 breakpoint instruction. Return a pointer to a string of bytes that
258 encode a breakpoint instruction, store the length of the string in
259 *LEN and optionally adjust *PC to point to the correct memory
260 location for inserting the breakpoint.
c906108c 261
acd5c798
MK
262 On the i386 we have a single breakpoint that fits in a single byte
263 and can be inserted anywhere.
c906108c 264
acd5c798
MK
265 This function is 64-bit safe. */
266
267static const unsigned char *
268i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
c906108c 269{
acd5c798
MK
270 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
271
272 *len = sizeof (break_insn);
273 return break_insn;
c906108c 274}
fc338970 275\f
acd5c798
MK
276#ifdef I386_REGNO_TO_SYMMETRY
277#error "The Sequent Symmetry is no longer supported."
278#endif
c906108c 279
acd5c798
MK
280/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
281 and %esp "belong" to the calling function. Therefore these
282 registers should be saved if they're going to be modified. */
c906108c 283
acd5c798
MK
284/* The maximum number of saved registers. This should include all
285 registers mentioned above, and %eip. */
a3386186 286#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
287
288struct i386_frame_cache
c906108c 289{
acd5c798
MK
290 /* Base address. */
291 CORE_ADDR base;
292 CORE_ADDR sp_offset;
293 CORE_ADDR pc;
294
fd13a04a
AC
295 /* Saved registers. */
296 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798
MK
297 CORE_ADDR saved_sp;
298 int pc_in_eax;
299
300 /* Stack space reserved for local variables. */
301 long locals;
302};
303
304/* Allocate and initialize a frame cache. */
305
306static struct i386_frame_cache *
fd13a04a 307i386_alloc_frame_cache (void)
acd5c798
MK
308{
309 struct i386_frame_cache *cache;
310 int i;
311
312 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
313
314 /* Base address. */
315 cache->base = 0;
316 cache->sp_offset = -4;
317 cache->pc = 0;
318
fd13a04a
AC
319 /* Saved registers. We initialize these to -1 since zero is a valid
320 offset (that's where %ebp is supposed to be stored). */
321 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
322 cache->saved_regs[i] = -1;
acd5c798
MK
323 cache->saved_sp = 0;
324 cache->pc_in_eax = 0;
325
326 /* Frameless until proven otherwise. */
327 cache->locals = -1;
328
329 return cache;
330}
c906108c 331
acd5c798
MK
332/* If the instruction at PC is a jump, return the address of its
333 target. Otherwise, return PC. */
c906108c 334
acd5c798
MK
335static CORE_ADDR
336i386_follow_jump (CORE_ADDR pc)
337{
338 unsigned char op;
339 long delta = 0;
340 int data16 = 0;
c906108c 341
acd5c798
MK
342 op = read_memory_unsigned_integer (pc, 1);
343 if (op == 0x66)
c906108c 344 {
c906108c 345 data16 = 1;
acd5c798 346 op = read_memory_unsigned_integer (pc + 1, 1);
c906108c
SS
347 }
348
acd5c798 349 switch (op)
c906108c
SS
350 {
351 case 0xe9:
fc338970 352 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
353 if (data16)
354 {
acd5c798 355 delta = read_memory_integer (pc + 2, 2);
c906108c 356
fc338970
MK
357 /* Include the size of the jmp instruction (including the
358 0x66 prefix). */
acd5c798 359 delta += 4;
c906108c
SS
360 }
361 else
362 {
acd5c798 363 delta = read_memory_integer (pc + 1, 4);
c906108c 364
acd5c798
MK
365 /* Include the size of the jmp instruction. */
366 delta += 5;
c906108c
SS
367 }
368 break;
369 case 0xeb:
fc338970 370 /* Relative jump, disp8 (ignore data16). */
acd5c798 371 delta = read_memory_integer (pc + data16 + 1, 1);
c906108c 372
acd5c798 373 delta += data16 + 2;
c906108c
SS
374 break;
375 }
c906108c 376
acd5c798
MK
377 return pc + delta;
378}
fc338970 379
acd5c798
MK
380/* Check whether PC points at a prologue for a function returning a
381 structure or union. If so, it updates CACHE and returns the
382 address of the first instruction after the code sequence that
383 removes the "hidden" argument from the stack or CURRENT_PC,
384 whichever is smaller. Otherwise, return PC. */
c906108c 385
acd5c798
MK
386static CORE_ADDR
387i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
388 struct i386_frame_cache *cache)
c906108c 389{
acd5c798
MK
390 /* Functions that return a structure or union start with:
391
392 popl %eax 0x58
393 xchgl %eax, (%esp) 0x87 0x04 0x24
394 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
395
396 (the System V compiler puts out the second `xchg' instruction,
397 and the assembler doesn't try to optimize it, so the 'sib' form
398 gets generated). This sequence is used to get the address of the
399 return buffer for a function that returns a structure. */
400 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
401 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
402 unsigned char buf[4];
c906108c
SS
403 unsigned char op;
404
acd5c798
MK
405 if (current_pc <= pc)
406 return pc;
407
408 op = read_memory_unsigned_integer (pc, 1);
c906108c 409
acd5c798
MK
410 if (op != 0x58) /* popl %eax */
411 return pc;
c906108c 412
acd5c798
MK
413 read_memory (pc + 1, buf, 4);
414 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
415 return pc;
c906108c 416
acd5c798 417 if (current_pc == pc)
c906108c 418 {
acd5c798
MK
419 cache->sp_offset += 4;
420 return current_pc;
c906108c
SS
421 }
422
acd5c798 423 if (current_pc == pc + 1)
c906108c 424 {
acd5c798
MK
425 cache->pc_in_eax = 1;
426 return current_pc;
427 }
428
429 if (buf[1] == proto1[1])
430 return pc + 4;
431 else
432 return pc + 5;
433}
434
435static CORE_ADDR
436i386_skip_probe (CORE_ADDR pc)
437{
438 /* A function may start with
fc338970 439
acd5c798
MK
440 pushl constant
441 call _probe
442 addl $4, %esp
fc338970 443
acd5c798
MK
444 followed by
445
446 pushl %ebp
fc338970 447
acd5c798
MK
448 etc. */
449 unsigned char buf[8];
450 unsigned char op;
fc338970 451
acd5c798
MK
452 op = read_memory_unsigned_integer (pc, 1);
453
454 if (op == 0x68 || op == 0x6a)
455 {
456 int delta;
c906108c 457
acd5c798
MK
458 /* Skip past the `pushl' instruction; it has either a one-byte or a
459 four-byte operand, depending on the opcode. */
c906108c 460 if (op == 0x68)
acd5c798 461 delta = 5;
c906108c 462 else
acd5c798 463 delta = 2;
c906108c 464
acd5c798
MK
465 /* Read the following 8 bytes, which should be `call _probe' (6
466 bytes) followed by `addl $4,%esp' (2 bytes). */
467 read_memory (pc + delta, buf, sizeof (buf));
c906108c 468 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 469 pc += delta + sizeof (buf);
c906108c
SS
470 }
471
acd5c798
MK
472 return pc;
473}
474
475/* Check whether PC points at a code that sets up a new stack frame.
476 If so, it updates CACHE and returns the address of the first
477 instruction after the sequence that sets removes the "hidden"
478 argument from the stack or CURRENT_PC, whichever is smaller.
479 Otherwise, return PC. */
480
481static CORE_ADDR
482i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
483 struct i386_frame_cache *cache)
484{
485 unsigned char op;
26604a34 486 int skip = 0;
acd5c798
MK
487
488 if (current_pc <= pc)
489 return current_pc;
490
491 op = read_memory_unsigned_integer (pc, 1);
492
c906108c 493 if (op == 0x55) /* pushl %ebp */
c5aa993b 494 {
acd5c798
MK
495 /* Take into account that we've executed the `pushl %ebp' that
496 starts this instruction sequence. */
fd13a04a 497 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
498 cache->sp_offset += 4;
499
500 /* If that's all, return now. */
501 if (current_pc <= pc + 1)
502 return current_pc;
503
acd5c798 504 op = read_memory_unsigned_integer (pc + 1, 1);
26604a34 505
b4632131
MK
506 /* Check for some special instructions that might be migrated by
507 GCC into the prologue. At this point in the prologue, code
508 should only touch the scratch registers %eax, %ecx and %edx,
509 so we check for
26604a34 510
b4632131
MK
511 movl $XXX, %eax
512 movl $XXX, %ecx
513 movl $XXX, %edx
514
515 These instructions have opcodes 0xb8, 0xb9 and 0xba.
516
517 We also check for
518
519 xorl %eax, %eax
26604a34
MK
520 xorl %ecx, %ecx
521 xorl %edx, %edx
522
523 and the equivalent
524
b4632131 525 subl %eax, %eax
26604a34
MK
526 subl %ecx, %ecx
527 subl %edx, %edx
528
5daa5b4e
MK
529 Because of the symmetry, there are actually two ways to
530 encode these instructions; with opcode bytes 0x29 and 0x2b
531 for `subl' and opcode bytes 0x31 and 0x33 for `xorl'.
532
26604a34
MK
533 Make sure we only skip these instructions if we later see the
534 `movl %esp, %ebp' that actually sets up the frame. */
b4632131
MK
535 while ((op >= 0xb8 && op <= 0xba)
536 || op == 0x29 || op == 0x2b
537 || op == 0x31 || op == 0x33)
26604a34 538 {
b4632131 539 if (op >= 0xb8 && op <= 0xba)
26604a34 540 {
b4632131
MK
541 /* Skip the `movl' instructions cited above. */
542 skip += 5;
26604a34 543 }
b4632131
MK
544 else
545 {
546 /* Skip the `subl' and `xorl' instructions cited above. */
547 op = read_memory_unsigned_integer (pc + skip + 2, 1);
548 switch (op)
549 {
550 case 0xc0: /* %eax */
551 case 0xc9: /* %ecx */
552 case 0xd2: /* %edx */
553 skip += 2;
554 break;
555 default:
556 return pc + 1;
557 }
558 }
559
560 /* If that's all, return now. */
561 if (current_pc <= pc + skip + 1)
562 return current_pc;
26604a34
MK
563
564 op = read_memory_unsigned_integer (pc + skip + 1, 1);
565 }
566
567 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 568 switch (op)
c906108c
SS
569 {
570 case 0x8b:
26604a34 571 if (read_memory_unsigned_integer (pc + skip + 2, 1) != 0xec)
acd5c798 572 return pc + 1;
c906108c
SS
573 break;
574 case 0x89:
26604a34 575 if (read_memory_unsigned_integer (pc + skip + 2, 1) != 0xe5)
acd5c798 576 return pc + 1;
c906108c
SS
577 break;
578 default:
acd5c798 579 return pc + 1;
c906108c 580 }
acd5c798 581
26604a34
MK
582 /* OK, we actually have a frame. We just don't know how large
583 it is yet. Set its size to zero. We'll adjust it if
584 necessary. We also now commit to skipping the special
585 instructions mentioned before. */
acd5c798 586 cache->locals = 0;
26604a34 587 pc += skip;
acd5c798
MK
588
589 /* If that's all, return now. */
590 if (current_pc <= pc + 3)
591 return current_pc;
592
fc338970
MK
593 /* Check for stack adjustment
594
acd5c798 595 subl $XXX, %esp
fc338970 596
fd35795f 597 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 598 reg, so we don't have to worry about a data16 prefix. */
acd5c798 599 op = read_memory_unsigned_integer (pc + 3, 1);
c906108c
SS
600 if (op == 0x83)
601 {
fd35795f 602 /* `subl' with 8-bit immediate. */
acd5c798 603 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
fc338970 604 /* Some instruction starting with 0x83 other than `subl'. */
acd5c798
MK
605 return pc + 3;
606
607 /* `subl' with signed byte immediate (though it wouldn't make
608 sense to be negative). */
609 cache->locals = read_memory_integer (pc + 5, 1);
610 return pc + 6;
c906108c
SS
611 }
612 else if (op == 0x81)
613 {
fd35795f 614 /* Maybe it is `subl' with a 32-bit immediate. */
acd5c798 615 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
fc338970 616 /* Some instruction starting with 0x81 other than `subl'. */
acd5c798
MK
617 return pc + 3;
618
fd35795f 619 /* It is `subl' with a 32-bit immediate. */
acd5c798
MK
620 cache->locals = read_memory_integer (pc + 5, 4);
621 return pc + 9;
c906108c
SS
622 }
623 else
624 {
acd5c798
MK
625 /* Some instruction other than `subl'. */
626 return pc + 3;
c906108c
SS
627 }
628 }
acd5c798 629 else if (op == 0xc8) /* enter $XXX */
c906108c 630 {
acd5c798
MK
631 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
632 return pc + 4;
c906108c 633 }
21d0e8a4 634
acd5c798 635 return pc;
21d0e8a4
MK
636}
637
acd5c798
MK
638/* Check whether PC points at code that saves registers on the stack.
639 If so, it updates CACHE and returns the address of the first
640 instruction after the register saves or CURRENT_PC, whichever is
641 smaller. Otherwise, return PC. */
6bff26de
MK
642
643static CORE_ADDR
acd5c798
MK
644i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
645 struct i386_frame_cache *cache)
6bff26de 646{
99ab4326
MK
647 CORE_ADDR offset = 0;
648 unsigned char op;
649 int i;
c0d1d883 650
99ab4326
MK
651 if (cache->locals > 0)
652 offset -= cache->locals;
653 for (i = 0; i < 8 && pc < current_pc; i++)
654 {
655 op = read_memory_unsigned_integer (pc, 1);
656 if (op < 0x50 || op > 0x57)
657 break;
0d17c81d 658
99ab4326
MK
659 offset -= 4;
660 cache->saved_regs[op - 0x50] = offset;
661 cache->sp_offset += 4;
662 pc++;
6bff26de
MK
663 }
664
acd5c798 665 return pc;
22797942
AC
666}
667
acd5c798
MK
668/* Do a full analysis of the prologue at PC and update CACHE
669 accordingly. Bail out early if CURRENT_PC is reached. Return the
670 address where the analysis stopped.
ed84f6c1 671
fc338970
MK
672 We handle these cases:
673
674 The startup sequence can be at the start of the function, or the
675 function can start with a branch to startup code at the end.
676
677 %ebp can be set up with either the 'enter' instruction, or "pushl
678 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
679 once used in the System V compiler).
680
681 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
682 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
683 16-bit unsigned argument for space to allocate, and the 'addl'
684 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
685
686 Next, the registers used by this function are pushed. With the
687 System V compiler they will always be in the order: %edi, %esi,
688 %ebx (and sometimes a harmless bug causes it to also save but not
689 restore %eax); however, the code below is willing to see the pushes
690 in any order, and will handle up to 8 of them.
691
692 If the setup sequence is at the end of the function, then the next
693 instruction will be a branch back to the start. */
c906108c 694
acd5c798
MK
695static CORE_ADDR
696i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
697 struct i386_frame_cache *cache)
c906108c 698{
acd5c798
MK
699 pc = i386_follow_jump (pc);
700 pc = i386_analyze_struct_return (pc, current_pc, cache);
701 pc = i386_skip_probe (pc);
702 pc = i386_analyze_frame_setup (pc, current_pc, cache);
703 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
704}
705
fc338970 706/* Return PC of first real instruction. */
c906108c 707
3a1e71e3 708static CORE_ADDR
acd5c798 709i386_skip_prologue (CORE_ADDR start_pc)
c906108c 710{
c5aa993b 711 static unsigned char pic_pat[6] =
acd5c798
MK
712 {
713 0xe8, 0, 0, 0, 0, /* call 0x0 */
714 0x5b, /* popl %ebx */
c5aa993b 715 };
acd5c798
MK
716 struct i386_frame_cache cache;
717 CORE_ADDR pc;
718 unsigned char op;
719 int i;
c5aa993b 720
acd5c798
MK
721 cache.locals = -1;
722 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
723 if (cache.locals < 0)
724 return start_pc;
c5aa993b 725
acd5c798 726 /* Found valid frame setup. */
c906108c 727
fc338970
MK
728 /* The native cc on SVR4 in -K PIC mode inserts the following code
729 to get the address of the global offset table (GOT) into register
acd5c798
MK
730 %ebx:
731
fc338970
MK
732 call 0x0
733 popl %ebx
734 movl %ebx,x(%ebp) (optional)
735 addl y,%ebx
736
c906108c
SS
737 This code is with the rest of the prologue (at the end of the
738 function), so we have to skip it to get to the first real
739 instruction at the start of the function. */
c5aa993b 740
c906108c
SS
741 for (i = 0; i < 6; i++)
742 {
acd5c798 743 op = read_memory_unsigned_integer (pc + i, 1);
c5aa993b 744 if (pic_pat[i] != op)
c906108c
SS
745 break;
746 }
747 if (i == 6)
748 {
acd5c798
MK
749 int delta = 6;
750
751 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 752
c5aa993b 753 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 754 {
acd5c798
MK
755 op = read_memory_unsigned_integer (pc + delta + 1, 1);
756
fc338970 757 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 758 delta += 3;
fc338970 759 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 760 delta += 6;
fc338970 761 else /* Unexpected instruction. */
acd5c798
MK
762 delta = 0;
763
764 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 765 }
acd5c798 766
c5aa993b 767 /* addl y,%ebx */
acd5c798
MK
768 if (delta > 0 && op == 0x81
769 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
c906108c 770 {
acd5c798 771 pc += delta + 6;
c906108c
SS
772 }
773 }
c5aa993b 774
e63bbc88
MK
775 /* If the function starts with a branch (to startup code at the end)
776 the last instruction should bring us back to the first
777 instruction of the real code. */
778 if (i386_follow_jump (start_pc) != start_pc)
779 pc = i386_follow_jump (pc);
780
781 return pc;
c906108c
SS
782}
783
acd5c798 784/* This function is 64-bit safe. */
93924b6b 785
acd5c798
MK
786static CORE_ADDR
787i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 788{
acd5c798
MK
789 char buf[8];
790
791 frame_unwind_register (next_frame, PC_REGNUM, buf);
792 return extract_typed_address (buf, builtin_type_void_func_ptr);
93924b6b 793}
acd5c798 794\f
93924b6b 795
acd5c798 796/* Normal frames. */
c5aa993b 797
acd5c798
MK
798static struct i386_frame_cache *
799i386_frame_cache (struct frame_info *next_frame, void **this_cache)
a7769679 800{
acd5c798 801 struct i386_frame_cache *cache;
c0d1d883 802 char buf[4];
acd5c798
MK
803 int i;
804
805 if (*this_cache)
806 return *this_cache;
807
fd13a04a 808 cache = i386_alloc_frame_cache ();
acd5c798
MK
809 *this_cache = cache;
810
811 /* In principle, for normal frames, %ebp holds the frame pointer,
812 which holds the base address for the current stack frame.
813 However, for functions that don't need it, the frame pointer is
814 optional. For these "frameless" functions the frame pointer is
815 actually the frame pointer of the calling frame. Signal
816 trampolines are just a special case of a "frameless" function.
817 They (usually) share their frame pointer with the frame that was
818 in progress when the signal occurred. */
819
820 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
821 cache->base = extract_unsigned_integer (buf, 4);
822 if (cache->base == 0)
823 return cache;
824
825 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 826 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798
MK
827
828 cache->pc = frame_func_unwind (next_frame);
829 if (cache->pc != 0)
830 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
831
832 if (cache->locals < 0)
833 {
834 /* We didn't find a valid frame, which means that CACHE->base
835 currently holds the frame pointer for our calling frame. If
836 we're at the start of a function, or somewhere half-way its
837 prologue, the function's frame probably hasn't been fully
838 setup yet. Try to reconstruct the base address for the stack
839 frame by looking at the stack pointer. For truly "frameless"
840 functions this might work too. */
841
842 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
843 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
844 }
845
846 /* Now that we have the base address for the stack frame we can
847 calculate the value of %esp in the calling frame. */
848 cache->saved_sp = cache->base + 8;
a7769679 849
acd5c798
MK
850 /* Adjust all the saved registers such that they contain addresses
851 instead of offsets. */
852 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
853 if (cache->saved_regs[i] != -1)
854 cache->saved_regs[i] += cache->base;
acd5c798
MK
855
856 return cache;
a7769679
MK
857}
858
3a1e71e3 859static void
acd5c798
MK
860i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
861 struct frame_id *this_id)
c906108c 862{
acd5c798
MK
863 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
864
865 /* This marks the outermost frame. */
866 if (cache->base == 0)
867 return;
868
3e210248 869 /* See the end of i386_push_dummy_call. */
acd5c798
MK
870 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
871}
872
873static void
874i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
875 int regnum, int *optimizedp,
876 enum lval_type *lvalp, CORE_ADDR *addrp,
877 int *realnump, void *valuep)
878{
879 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
880
881 gdb_assert (regnum >= 0);
882
883 /* The System V ABI says that:
884
885 "The flags register contains the system flags, such as the
886 direction flag and the carry flag. The direction flag must be
887 set to the forward (that is, zero) direction before entry and
888 upon exit from a function. Other user flags have no specified
889 role in the standard calling sequence and are not preserved."
890
891 To guarantee the "upon exit" part of that statement we fake a
892 saved flags register that has its direction flag cleared.
893
894 Note that GCC doesn't seem to rely on the fact that the direction
895 flag is cleared after a function return; it always explicitly
896 clears the flag before operations where it matters.
897
898 FIXME: kettenis/20030316: I'm not quite sure whether this is the
899 right thing to do. The way we fake the flags register here makes
900 it impossible to change it. */
901
902 if (regnum == I386_EFLAGS_REGNUM)
903 {
904 *optimizedp = 0;
905 *lvalp = not_lval;
906 *addrp = 0;
907 *realnump = -1;
908 if (valuep)
909 {
910 ULONGEST val;
c5aa993b 911
acd5c798 912 /* Clear the direction flag. */
f837910f
MK
913 val = frame_unwind_register_unsigned (next_frame,
914 I386_EFLAGS_REGNUM);
acd5c798
MK
915 val &= ~(1 << 10);
916 store_unsigned_integer (valuep, 4, val);
917 }
918
919 return;
920 }
1211c4e4 921
acd5c798 922 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
c906108c 923 {
acd5c798
MK
924 frame_register_unwind (next_frame, I386_EAX_REGNUM,
925 optimizedp, lvalp, addrp, realnump, valuep);
926 return;
927 }
928
929 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
930 {
931 *optimizedp = 0;
932 *lvalp = not_lval;
933 *addrp = 0;
934 *realnump = -1;
935 if (valuep)
c906108c 936 {
acd5c798
MK
937 /* Store the value. */
938 store_unsigned_integer (valuep, 4, cache->saved_sp);
c906108c 939 }
acd5c798 940 return;
c906108c 941 }
acd5c798 942
fd13a04a
AC
943 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
944 {
945 *optimizedp = 0;
946 *lvalp = lval_memory;
947 *addrp = cache->saved_regs[regnum];
948 *realnump = -1;
949 if (valuep)
950 {
951 /* Read the value in from memory. */
952 read_memory (*addrp, valuep,
953 register_size (current_gdbarch, regnum));
954 }
955 return;
956 }
957
958 frame_register_unwind (next_frame, regnum,
959 optimizedp, lvalp, addrp, realnump, valuep);
acd5c798
MK
960}
961
962static const struct frame_unwind i386_frame_unwind =
963{
964 NORMAL_FRAME,
965 i386_frame_this_id,
966 i386_frame_prev_register
967};
968
969static const struct frame_unwind *
336d1bba 970i386_frame_sniffer (struct frame_info *next_frame)
acd5c798
MK
971{
972 return &i386_frame_unwind;
973}
974\f
975
976/* Signal trampolines. */
977
978static struct i386_frame_cache *
979i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
980{
981 struct i386_frame_cache *cache;
982 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
983 CORE_ADDR addr;
984 char buf[4];
985
986 if (*this_cache)
987 return *this_cache;
988
fd13a04a 989 cache = i386_alloc_frame_cache ();
acd5c798
MK
990
991 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
992 cache->base = extract_unsigned_integer (buf, 4) - 4;
993
994 addr = tdep->sigcontext_addr (next_frame);
a3386186
MK
995 if (tdep->sc_reg_offset)
996 {
997 int i;
998
999 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1000
1001 for (i = 0; i < tdep->sc_num_regs; i++)
1002 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 1003 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
1004 }
1005 else
1006 {
fd13a04a
AC
1007 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1008 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 1009 }
acd5c798
MK
1010
1011 *this_cache = cache;
1012 return cache;
1013}
1014
1015static void
1016i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1017 struct frame_id *this_id)
1018{
1019 struct i386_frame_cache *cache =
1020 i386_sigtramp_frame_cache (next_frame, this_cache);
1021
3e210248 1022 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1023 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1024}
1025
1026static void
1027i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1028 void **this_cache,
1029 int regnum, int *optimizedp,
1030 enum lval_type *lvalp, CORE_ADDR *addrp,
1031 int *realnump, void *valuep)
1032{
1033 /* Make sure we've initialized the cache. */
1034 i386_sigtramp_frame_cache (next_frame, this_cache);
1035
1036 i386_frame_prev_register (next_frame, this_cache, regnum,
1037 optimizedp, lvalp, addrp, realnump, valuep);
c906108c 1038}
c0d1d883 1039
acd5c798
MK
1040static const struct frame_unwind i386_sigtramp_frame_unwind =
1041{
1042 SIGTRAMP_FRAME,
1043 i386_sigtramp_frame_this_id,
1044 i386_sigtramp_frame_prev_register
1045};
1046
1047static const struct frame_unwind *
336d1bba 1048i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
acd5c798 1049{
911bc6ee 1050 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
acd5c798 1051
911bc6ee
MK
1052 /* We shouldn't even bother if we don't have a sigcontext_addr
1053 handler. */
1054 if (tdep->sigcontext_addr == NULL)
1c3545ae
MK
1055 return NULL;
1056
911bc6ee
MK
1057 if (tdep->sigtramp_p != NULL)
1058 {
1059 if (tdep->sigtramp_p (next_frame))
1060 return &i386_sigtramp_frame_unwind;
1061 }
1062
1063 if (tdep->sigtramp_start != 0)
1064 {
1065 CORE_ADDR pc = frame_pc_unwind (next_frame);
1066
1067 gdb_assert (tdep->sigtramp_end != 0);
1068 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1069 return &i386_sigtramp_frame_unwind;
1070 }
acd5c798
MK
1071
1072 return NULL;
1073}
1074\f
1075
1076static CORE_ADDR
1077i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1078{
1079 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1080
1081 return cache->base;
1082}
1083
1084static const struct frame_base i386_frame_base =
1085{
1086 &i386_frame_unwind,
1087 i386_frame_base_address,
1088 i386_frame_base_address,
1089 i386_frame_base_address
1090};
1091
acd5c798
MK
1092static struct frame_id
1093i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1094{
1095 char buf[4];
1096 CORE_ADDR fp;
1097
1098 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1099 fp = extract_unsigned_integer (buf, 4);
1100
3e210248 1101 /* See the end of i386_push_dummy_call. */
acd5c798 1102 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
c0d1d883 1103}
fc338970 1104\f
c906108c 1105
fc338970
MK
1106/* Figure out where the longjmp will land. Slurp the args out of the
1107 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1108 structure from which we extract the address that we will land at.
28bcfd30 1109 This address is copied into PC. This routine returns non-zero on
acd5c798
MK
1110 success.
1111
1112 This function is 64-bit safe. */
c906108c 1113
8201327c
MK
1114static int
1115i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 1116{
28bcfd30 1117 char buf[8];
c906108c 1118 CORE_ADDR sp, jb_addr;
8201327c 1119 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
f9d3c2a8 1120 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
c906108c 1121
8201327c
MK
1122 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1123 longjmp will land. */
1124 if (jb_pc_offset == -1)
c906108c
SS
1125 return 0;
1126
f837910f
MK
1127 /* Don't use I386_ESP_REGNUM here, since this function is also used
1128 for AMD64. */
1129 regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1130 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1131 if (target_read_memory (sp + len, buf, len))
c906108c
SS
1132 return 0;
1133
f837910f 1134 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1135 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
8201327c 1136 return 0;
c906108c 1137
f9d3c2a8 1138 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
c906108c
SS
1139 return 1;
1140}
fc338970 1141\f
c906108c 1142
3a1e71e3 1143static CORE_ADDR
7d9b040b 1144i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1145 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1146 struct value **args, CORE_ADDR sp, int struct_return,
1147 CORE_ADDR struct_addr)
22f8ba57 1148{
acd5c798
MK
1149 char buf[4];
1150 int i;
1151
1152 /* Push arguments in reverse order. */
1153 for (i = nargs - 1; i >= 0; i--)
22f8ba57 1154 {
acd5c798
MK
1155 int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1156
1157 /* The System V ABI says that:
1158
1159 "An argument's size is increased, if necessary, to make it a
1160 multiple of [32-bit] words. This may require tail padding,
1161 depending on the size of the argument."
1162
1163 This makes sure the stack says word-aligned. */
1164 sp -= (len + 3) & ~3;
1165 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1166 }
22f8ba57 1167
acd5c798
MK
1168 /* Push value address. */
1169 if (struct_return)
1170 {
22f8ba57 1171 sp -= 4;
fbd9dcd3 1172 store_unsigned_integer (buf, 4, struct_addr);
22f8ba57
MK
1173 write_memory (sp, buf, 4);
1174 }
1175
acd5c798
MK
1176 /* Store return address. */
1177 sp -= 4;
6a65450a 1178 store_unsigned_integer (buf, 4, bp_addr);
acd5c798
MK
1179 write_memory (sp, buf, 4);
1180
1181 /* Finally, update the stack pointer... */
1182 store_unsigned_integer (buf, 4, sp);
1183 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1184
1185 /* ...and fake a frame pointer. */
1186 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1187
3e210248
AC
1188 /* MarkK wrote: This "+ 8" is all over the place:
1189 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1190 i386_unwind_dummy_id). It's there, since all frame unwinders for
1191 a given target have to agree (within a certain margin) on the
fd35795f 1192 definition of the stack address of a frame. Otherwise
3e210248
AC
1193 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1194 stack address *before* the function call as a frame's CFA. On
1195 the i386, when %ebp is used as a frame pointer, the offset
1196 between the contents %ebp and the CFA as defined by GCC. */
1197 return sp + 8;
22f8ba57
MK
1198}
1199
1a309862
MK
1200/* These registers are used for returning integers (and on some
1201 targets also for returning `struct' and `union' values when their
ef9dff19 1202 size and alignment match an integer type). */
acd5c798
MK
1203#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1204#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 1205
c5e656c1
MK
1206/* Read, for architecture GDBARCH, a function return value of TYPE
1207 from REGCACHE, and copy that into VALBUF. */
1a309862 1208
3a1e71e3 1209static void
c5e656c1
MK
1210i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1211 struct regcache *regcache, void *valbuf)
c906108c 1212{
c5e656c1 1213 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 1214 int len = TYPE_LENGTH (type);
00f8375e 1215 char buf[I386_MAX_REGISTER_SIZE];
1a309862 1216
1e8d0a7b 1217 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1218 {
5716833c 1219 if (tdep->st0_regnum < 0)
1a309862
MK
1220 {
1221 warning ("Cannot find floating-point return value.");
1222 memset (valbuf, 0, len);
ef9dff19 1223 return;
1a309862
MK
1224 }
1225
c6ba6f0d
MK
1226 /* Floating-point return values can be found in %st(0). Convert
1227 its contents to the desired type. This is probably not
1228 exactly how it would happen on the target itself, but it is
1229 the best we can do. */
acd5c798 1230 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
00f8375e 1231 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
1232 }
1233 else
c5aa993b 1234 {
f837910f
MK
1235 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1236 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
1237
1238 if (len <= low_size)
00f8375e 1239 {
0818c12a 1240 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1241 memcpy (valbuf, buf, len);
1242 }
d4f3574e
SS
1243 else if (len <= (low_size + high_size))
1244 {
0818c12a 1245 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1246 memcpy (valbuf, buf, low_size);
0818c12a 1247 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
c8048956 1248 memcpy ((char *) valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1249 }
1250 else
8e65ff28
AC
1251 internal_error (__FILE__, __LINE__,
1252 "Cannot extract return value of %d bytes long.", len);
c906108c
SS
1253 }
1254}
1255
c5e656c1
MK
1256/* Write, for architecture GDBARCH, a function return value of TYPE
1257 from VALBUF into REGCACHE. */
ef9dff19 1258
3a1e71e3 1259static void
c5e656c1
MK
1260i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1261 struct regcache *regcache, const void *valbuf)
ef9dff19 1262{
c5e656c1 1263 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
1264 int len = TYPE_LENGTH (type);
1265
5716833c
MK
1266 /* Define I387_ST0_REGNUM such that we use the proper definitions
1267 for the architecture. */
1268#define I387_ST0_REGNUM I386_ST0_REGNUM
1269
1e8d0a7b 1270 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1271 {
3d7f4f49 1272 ULONGEST fstat;
5716833c 1273 char buf[I386_MAX_REGISTER_SIZE];
ccb945b8 1274
5716833c 1275 if (tdep->st0_regnum < 0)
ef9dff19
MK
1276 {
1277 warning ("Cannot set floating-point return value.");
1278 return;
1279 }
1280
635b0cc1
MK
1281 /* Returning floating-point values is a bit tricky. Apart from
1282 storing the return value in %st(0), we have to simulate the
1283 state of the FPU at function return point. */
1284
c6ba6f0d
MK
1285 /* Convert the value found in VALBUF to the extended
1286 floating-point format used by the FPU. This is probably
1287 not exactly how it would happen on the target itself, but
1288 it is the best we can do. */
1289 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
acd5c798 1290 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 1291
635b0cc1
MK
1292 /* Set the top of the floating-point register stack to 7. The
1293 actual value doesn't really matter, but 7 is what a normal
1294 function return would end up with if the program started out
1295 with a freshly initialized FPU. */
5716833c 1296 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
ccb945b8 1297 fstat |= (7 << 11);
5716833c 1298 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
ccb945b8 1299
635b0cc1
MK
1300 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1301 the floating-point register stack to 7, the appropriate value
1302 for the tag word is 0x3fff. */
5716833c 1303 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1304 }
1305 else
1306 {
f837910f
MK
1307 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1308 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
1309
1310 if (len <= low_size)
3d7f4f49 1311 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1312 else if (len <= (low_size + high_size))
1313 {
3d7f4f49
MK
1314 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1315 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1316 len - low_size, (char *) valbuf + low_size);
ef9dff19
MK
1317 }
1318 else
8e65ff28
AC
1319 internal_error (__FILE__, __LINE__,
1320 "Cannot store return value of %d bytes long.", len);
ef9dff19 1321 }
5716833c
MK
1322
1323#undef I387_ST0_REGNUM
ef9dff19 1324}
fc338970 1325\f
ef9dff19 1326
8201327c
MK
1327/* This is the variable that is set with "set struct-convention", and
1328 its legitimate values. */
1329static const char default_struct_convention[] = "default";
1330static const char pcc_struct_convention[] = "pcc";
1331static const char reg_struct_convention[] = "reg";
1332static const char *valid_conventions[] =
1333{
1334 default_struct_convention,
1335 pcc_struct_convention,
1336 reg_struct_convention,
1337 NULL
1338};
1339static const char *struct_convention = default_struct_convention;
1340
c5e656c1
MK
1341/* Return non-zero if TYPE, which is assumed to be a structure or
1342 union type, should be returned in registers for architecture
1343 GDBARCH. */
1344
8201327c 1345static int
c5e656c1 1346i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 1347{
c5e656c1
MK
1348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1349 enum type_code code = TYPE_CODE (type);
1350 int len = TYPE_LENGTH (type);
8201327c 1351
c5e656c1
MK
1352 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
1353
1354 if (struct_convention == pcc_struct_convention
1355 || (struct_convention == default_struct_convention
1356 && tdep->struct_return == pcc_struct_return))
1357 return 0;
1358
1359 return (len == 1 || len == 2 || len == 4 || len == 8);
1360}
1361
1362/* Determine, for architecture GDBARCH, how a return value of TYPE
1363 should be returned. If it is supposed to be returned in registers,
1364 and READBUF is non-zero, read the appropriate value from REGCACHE,
1365 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1366 from WRITEBUF into REGCACHE. */
1367
1368static enum return_value_convention
1369i386_return_value (struct gdbarch *gdbarch, struct type *type,
1370 struct regcache *regcache, void *readbuf,
1371 const void *writebuf)
1372{
1373 enum type_code code = TYPE_CODE (type);
1374
1375 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
1376 && !i386_reg_struct_return_p (gdbarch, type))
31db7b6c
MK
1377 {
1378 /* The System V ABI says that:
1379
1380 "A function that returns a structure or union also sets %eax
1381 to the value of the original address of the caller's area
1382 before it returns. Thus when the caller receives control
1383 again, the address of the returned object resides in register
1384 %eax and can be used to access the object."
1385
1386 So the ABI guarantees that we can always find the return
1387 value just after the function has returned. */
1388
1389 if (readbuf)
1390 {
1391 ULONGEST addr;
1392
1393 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1394 read_memory (addr, readbuf, TYPE_LENGTH (type));
1395 }
1396
1397 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1398 }
c5e656c1
MK
1399
1400 /* This special case is for structures consisting of a single
1401 `float' or `double' member. These structures are returned in
1402 %st(0). For these structures, we call ourselves recursively,
1403 changing TYPE into the type of the first member of the structure.
1404 Since that should work for all structures that have only one
1405 member, we don't bother to check the member's type here. */
1406 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1407 {
1408 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1409 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1410 }
1411
1412 if (readbuf)
1413 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1414 if (writebuf)
1415 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 1416
c5e656c1 1417 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
1418}
1419\f
1420
d7a0d72c
MK
1421/* Return the GDB type object for the "standard" data type of data in
1422 register REGNUM. Perhaps %esi and %edi should go here, but
1423 potentially they could be used for things other than address. */
1424
3a1e71e3 1425static struct type *
4e259f09 1426i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 1427{
acd5c798
MK
1428 if (regnum == I386_EIP_REGNUM
1429 || regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
d7a0d72c
MK
1430 return lookup_pointer_type (builtin_type_void);
1431
23a34459 1432 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1433 return builtin_type_i387_ext;
d7a0d72c 1434
5716833c 1435 if (i386_sse_regnum_p (gdbarch, regnum))
3139facc 1436 return builtin_type_vec128i;
d7a0d72c 1437
5716833c 1438 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740
AC
1439 return builtin_type_vec64i;
1440
d7a0d72c
MK
1441 return builtin_type_int;
1442}
1443
28fc6740 1444/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 1445 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
1446
1447static int
c86c27af 1448i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 1449{
5716833c
MK
1450 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1451 int mmxreg, fpreg;
28fc6740
AC
1452 ULONGEST fstat;
1453 int tos;
c86c27af 1454
5716833c
MK
1455 /* Define I387_ST0_REGNUM such that we use the proper definitions
1456 for REGCACHE's architecture. */
1457#define I387_ST0_REGNUM tdep->st0_regnum
1458
1459 mmxreg = regnum - tdep->mm0_regnum;
1460 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
28fc6740 1461 tos = (fstat >> 11) & 0x7;
5716833c
MK
1462 fpreg = (mmxreg + tos) % 8;
1463
1464 return (I387_ST0_REGNUM + fpreg);
c86c27af 1465
5716833c 1466#undef I387_ST0_REGNUM
28fc6740
AC
1467}
1468
1469static void
1470i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1471 int regnum, void *buf)
1472{
5716833c 1473 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1474 {
d9d9c31f 1475 char mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1476 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1477
28fc6740 1478 /* Extract (always little endian). */
c86c27af 1479 regcache_raw_read (regcache, fpnum, mmx_buf);
f837910f 1480 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
28fc6740
AC
1481 }
1482 else
1483 regcache_raw_read (regcache, regnum, buf);
1484}
1485
1486static void
1487i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1488 int regnum, const void *buf)
1489{
5716833c 1490 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1491 {
d9d9c31f 1492 char mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1493 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1494
28fc6740
AC
1495 /* Read ... */
1496 regcache_raw_read (regcache, fpnum, mmx_buf);
1497 /* ... Modify ... (always little endian). */
f837910f 1498 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
28fc6740
AC
1499 /* ... Write. */
1500 regcache_raw_write (regcache, fpnum, mmx_buf);
1501 }
1502 else
1503 regcache_raw_write (regcache, regnum, buf);
1504}
ff2e87ac
AC
1505\f
1506
ff2e87ac
AC
1507/* Return the register number of the register allocated by GCC after
1508 REGNUM, or -1 if there is no such register. */
1509
1510static int
1511i386_next_regnum (int regnum)
1512{
1513 /* GCC allocates the registers in the order:
1514
1515 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1516
1517 Since storing a variable in %esp doesn't make any sense we return
1518 -1 for %ebp and for %esp itself. */
1519 static int next_regnum[] =
1520 {
1521 I386_EDX_REGNUM, /* Slot for %eax. */
1522 I386_EBX_REGNUM, /* Slot for %ecx. */
1523 I386_ECX_REGNUM, /* Slot for %edx. */
1524 I386_ESI_REGNUM, /* Slot for %ebx. */
1525 -1, -1, /* Slots for %esp and %ebp. */
1526 I386_EDI_REGNUM, /* Slot for %esi. */
1527 I386_EBP_REGNUM /* Slot for %edi. */
1528 };
1529
de5b9bb9 1530 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 1531 return next_regnum[regnum];
28fc6740 1532
ff2e87ac
AC
1533 return -1;
1534}
1535
1536/* Return nonzero if a value of type TYPE stored in register REGNUM
1537 needs any special handling. */
d7a0d72c 1538
3a1e71e3 1539static int
ff2e87ac 1540i386_convert_register_p (int regnum, struct type *type)
d7a0d72c 1541{
de5b9bb9
MK
1542 int len = TYPE_LENGTH (type);
1543
ff2e87ac
AC
1544 /* Values may be spread across multiple registers. Most debugging
1545 formats aren't expressive enough to specify the locations, so
1546 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
1547 have a length that is a multiple of the word size, since GCC
1548 doesn't seem to put any other types into registers. */
1549 if (len > 4 && len % 4 == 0)
1550 {
1551 int last_regnum = regnum;
1552
1553 while (len > 4)
1554 {
1555 last_regnum = i386_next_regnum (last_regnum);
1556 len -= 4;
1557 }
1558
1559 if (last_regnum != -1)
1560 return 1;
1561 }
ff2e87ac 1562
23a34459 1563 return i386_fp_regnum_p (regnum);
d7a0d72c
MK
1564}
1565
ff2e87ac
AC
1566/* Read a value of type TYPE from register REGNUM in frame FRAME, and
1567 return its contents in TO. */
ac27f131 1568
3a1e71e3 1569static void
ff2e87ac
AC
1570i386_register_to_value (struct frame_info *frame, int regnum,
1571 struct type *type, void *to)
ac27f131 1572{
de5b9bb9
MK
1573 int len = TYPE_LENGTH (type);
1574 char *buf = to;
1575
ff2e87ac
AC
1576 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1577 available in FRAME (i.e. if it wasn't saved)? */
3d261580 1578
ff2e87ac 1579 if (i386_fp_regnum_p (regnum))
8d7f6b4a 1580 {
d532c08f
MK
1581 i387_register_to_value (frame, regnum, type, to);
1582 return;
8d7f6b4a 1583 }
ff2e87ac 1584
fd35795f 1585 /* Read a value spread across multiple registers. */
de5b9bb9
MK
1586
1587 gdb_assert (len > 4 && len % 4 == 0);
3d261580 1588
de5b9bb9
MK
1589 while (len > 0)
1590 {
1591 gdb_assert (regnum != -1);
1592 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1593
f837910f 1594 get_frame_register (frame, regnum, buf);
de5b9bb9
MK
1595 regnum = i386_next_regnum (regnum);
1596 len -= 4;
1597 buf += 4;
1598 }
ac27f131
MK
1599}
1600
ff2e87ac
AC
1601/* Write the contents FROM of a value of type TYPE into register
1602 REGNUM in frame FRAME. */
ac27f131 1603
3a1e71e3 1604static void
ff2e87ac
AC
1605i386_value_to_register (struct frame_info *frame, int regnum,
1606 struct type *type, const void *from)
ac27f131 1607{
de5b9bb9
MK
1608 int len = TYPE_LENGTH (type);
1609 const char *buf = from;
1610
ff2e87ac 1611 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1612 {
d532c08f
MK
1613 i387_value_to_register (frame, regnum, type, from);
1614 return;
1615 }
3d261580 1616
fd35795f 1617 /* Write a value spread across multiple registers. */
de5b9bb9
MK
1618
1619 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 1620
de5b9bb9
MK
1621 while (len > 0)
1622 {
1623 gdb_assert (regnum != -1);
1624 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1625
de5b9bb9
MK
1626 put_frame_register (frame, regnum, buf);
1627 regnum = i386_next_regnum (regnum);
1628 len -= 4;
1629 buf += 4;
1630 }
ac27f131 1631}
ff2e87ac 1632\f
7fdafb5a
MK
1633/* Supply register REGNUM from the buffer specified by GREGS and LEN
1634 in the general-purpose register set REGSET to register cache
1635 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 1636
20187ed5 1637void
473f17b0
MK
1638i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1639 int regnum, const void *gregs, size_t len)
1640{
9ea75c57 1641 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0
MK
1642 const char *regs = gregs;
1643 int i;
1644
1645 gdb_assert (len == tdep->sizeof_gregset);
1646
1647 for (i = 0; i < tdep->gregset_num_regs; i++)
1648 {
1649 if ((regnum == i || regnum == -1)
1650 && tdep->gregset_reg_offset[i] != -1)
1651 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1652 }
1653}
1654
7fdafb5a
MK
1655/* Collect register REGNUM from the register cache REGCACHE and store
1656 it in the buffer specified by GREGS and LEN as described by the
1657 general-purpose register set REGSET. If REGNUM is -1, do this for
1658 all registers in REGSET. */
1659
1660void
1661i386_collect_gregset (const struct regset *regset,
1662 const struct regcache *regcache,
1663 int regnum, void *gregs, size_t len)
1664{
1665 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1666 char *regs = gregs;
1667 int i;
1668
1669 gdb_assert (len == tdep->sizeof_gregset);
1670
1671 for (i = 0; i < tdep->gregset_num_regs; i++)
1672 {
1673 if ((regnum == i || regnum == -1)
1674 && tdep->gregset_reg_offset[i] != -1)
1675 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1676 }
1677}
1678
1679/* Supply register REGNUM from the buffer specified by FPREGS and LEN
1680 in the floating-point register set REGSET to register cache
1681 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
1682
1683static void
1684i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1685 int regnum, const void *fpregs, size_t len)
1686{
9ea75c57 1687 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 1688
66a72d25
MK
1689 if (len == I387_SIZEOF_FXSAVE)
1690 {
1691 i387_supply_fxsave (regcache, regnum, fpregs);
1692 return;
1693 }
1694
473f17b0
MK
1695 gdb_assert (len == tdep->sizeof_fpregset);
1696 i387_supply_fsave (regcache, regnum, fpregs);
1697}
8446b36a 1698
2f305df1
MK
1699/* Collect register REGNUM from the register cache REGCACHE and store
1700 it in the buffer specified by FPREGS and LEN as described by the
1701 floating-point register set REGSET. If REGNUM is -1, do this for
1702 all registers in REGSET. */
7fdafb5a
MK
1703
1704static void
1705i386_collect_fpregset (const struct regset *regset,
1706 const struct regcache *regcache,
1707 int regnum, void *fpregs, size_t len)
1708{
1709 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1710
1711 if (len == I387_SIZEOF_FXSAVE)
1712 {
1713 i387_collect_fxsave (regcache, regnum, fpregs);
1714 return;
1715 }
1716
1717 gdb_assert (len == tdep->sizeof_fpregset);
1718 i387_collect_fsave (regcache, regnum, fpregs);
1719}
1720
8446b36a
MK
1721/* Return the appropriate register set for the core section identified
1722 by SECT_NAME and SECT_SIZE. */
1723
1724const struct regset *
1725i386_regset_from_core_section (struct gdbarch *gdbarch,
1726 const char *sect_name, size_t sect_size)
1727{
1728 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1729
1730 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
1731 {
1732 if (tdep->gregset == NULL)
7fdafb5a
MK
1733 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
1734 i386_collect_gregset);
8446b36a
MK
1735 return tdep->gregset;
1736 }
1737
66a72d25
MK
1738 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1739 || (strcmp (sect_name, ".reg-xfp") == 0
1740 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
1741 {
1742 if (tdep->fpregset == NULL)
7fdafb5a
MK
1743 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
1744 i386_collect_fpregset);
8446b36a
MK
1745 return tdep->fpregset;
1746 }
1747
1748 return NULL;
1749}
473f17b0 1750\f
fc338970 1751
c906108c 1752#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1753/* SunPRO encodes the static variables. This is not related to C++
1754 mangling, it is done for C too. */
c906108c
SS
1755
1756char *
fba45db2 1757sunpro_static_transform_name (char *name)
c906108c
SS
1758{
1759 char *p;
1760 if (IS_STATIC_TRANSFORM_NAME (name))
1761 {
fc338970
MK
1762 /* For file-local statics there will be a period, a bunch of
1763 junk (the contents of which match a string given in the
c5aa993b
JM
1764 N_OPT), a period and the name. For function-local statics
1765 there will be a bunch of junk (which seems to change the
1766 second character from 'A' to 'B'), a period, the name of the
1767 function, and the name. So just skip everything before the
1768 last period. */
c906108c
SS
1769 p = strrchr (name, '.');
1770 if (p != NULL)
1771 name = p + 1;
1772 }
1773 return name;
1774}
1775#endif /* STATIC_TRANSFORM_NAME */
fc338970 1776\f
c906108c 1777
fc338970 1778/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1779
1780CORE_ADDR
1cce71eb 1781i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1782{
fc338970 1783 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 1784 {
c5aa993b 1785 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 1786 struct minimal_symbol *indsym =
fc338970 1787 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 1788 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 1789
c5aa993b 1790 if (symname)
c906108c 1791 {
c5aa993b
JM
1792 if (strncmp (symname, "__imp_", 6) == 0
1793 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
1794 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1795 }
1796 }
fc338970 1797 return 0; /* Not a trampoline. */
c906108c 1798}
fc338970
MK
1799\f
1800
377d9ebd 1801/* Return whether the frame preceding NEXT_FRAME corresponds to a
911bc6ee 1802 sigtramp routine. */
8201327c
MK
1803
1804static int
911bc6ee 1805i386_sigtramp_p (struct frame_info *next_frame)
8201327c 1806{
911bc6ee
MK
1807 CORE_ADDR pc = frame_pc_unwind (next_frame);
1808 char *name;
1809
1810 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
1811 return (name && strcmp ("_sigtramp", name) == 0);
1812}
1813\f
1814
fc338970
MK
1815/* We have two flavours of disassembly. The machinery on this page
1816 deals with switching between those. */
c906108c
SS
1817
1818static int
a89aa300 1819i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 1820{
5e3397bb
MK
1821 gdb_assert (disassembly_flavor == att_flavor
1822 || disassembly_flavor == intel_flavor);
1823
1824 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1825 constified, cast to prevent a compiler warning. */
1826 info->disassembler_options = (char *) disassembly_flavor;
1827 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1828
1829 return print_insn_i386 (pc, info);
7a292a7a 1830}
fc338970 1831\f
3ce1502b 1832
8201327c
MK
1833/* There are a few i386 architecture variants that differ only
1834 slightly from the generic i386 target. For now, we don't give them
1835 their own source file, but include them here. As a consequence,
1836 they'll always be included. */
3ce1502b 1837
8201327c 1838/* System V Release 4 (SVR4). */
3ce1502b 1839
377d9ebd 1840/* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
911bc6ee
MK
1841 sigtramp routine. */
1842
8201327c 1843static int
911bc6ee 1844i386_svr4_sigtramp_p (struct frame_info *next_frame)
d2a7c97a 1845{
911bc6ee
MK
1846 CORE_ADDR pc = frame_pc_unwind (next_frame);
1847 char *name;
1848
acd5c798
MK
1849 /* UnixWare uses _sigacthandler. The origin of the other symbols is
1850 currently unknown. */
911bc6ee 1851 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
1852 return (name && (strcmp ("_sigreturn", name) == 0
1853 || strcmp ("_sigacthandler", name) == 0
1854 || strcmp ("sigvechandler", name) == 0));
1855}
d2a7c97a 1856
acd5c798
MK
1857/* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
1858 routine, return the address of the associated sigcontext (ucontext)
1859 structure. */
3ce1502b 1860
3a1e71e3 1861static CORE_ADDR
acd5c798 1862i386_svr4_sigcontext_addr (struct frame_info *next_frame)
8201327c 1863{
acd5c798
MK
1864 char buf[4];
1865 CORE_ADDR sp;
3ce1502b 1866
acd5c798
MK
1867 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1868 sp = extract_unsigned_integer (buf, 4);
21d0e8a4 1869
acd5c798 1870 return read_memory_unsigned_integer (sp + 8, 4);
8201327c
MK
1871}
1872\f
3ce1502b 1873
8201327c 1874/* Generic ELF. */
d2a7c97a 1875
8201327c
MK
1876void
1877i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1878{
c4fc7f1b
MK
1879 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
1880 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 1881}
3ce1502b 1882
8201327c 1883/* System V Release 4 (SVR4). */
3ce1502b 1884
8201327c
MK
1885void
1886i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1887{
1888 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1889
8201327c
MK
1890 /* System V Release 4 uses ELF. */
1891 i386_elf_init_abi (info, gdbarch);
3ce1502b 1892
dfe01d39
MK
1893 /* System V Release 4 has shared libraries. */
1894 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1895 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1896
911bc6ee 1897 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 1898 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
1899 tdep->sc_pc_offset = 36 + 14 * 4;
1900 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 1901
8201327c 1902 tdep->jb_pc_offset = 20;
3ce1502b
MK
1903}
1904
8201327c 1905/* DJGPP. */
3ce1502b 1906
3a1e71e3 1907static void
8201327c 1908i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1909{
8201327c 1910 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1911
911bc6ee
MK
1912 /* DJGPP doesn't have any special frames for signal handlers. */
1913 tdep->sigtramp_p = NULL;
3ce1502b 1914
8201327c 1915 tdep->jb_pc_offset = 36;
3ce1502b
MK
1916}
1917
8201327c 1918/* NetWare. */
3ce1502b 1919
3a1e71e3 1920static void
8201327c 1921i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1922{
8201327c 1923 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1924
8201327c 1925 tdep->jb_pc_offset = 24;
d2a7c97a 1926}
8201327c 1927\f
2acceee2 1928
38c968cf
AC
1929/* i386 register groups. In addition to the normal groups, add "mmx"
1930 and "sse". */
1931
1932static struct reggroup *i386_sse_reggroup;
1933static struct reggroup *i386_mmx_reggroup;
1934
1935static void
1936i386_init_reggroups (void)
1937{
1938 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
1939 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
1940}
1941
1942static void
1943i386_add_reggroups (struct gdbarch *gdbarch)
1944{
1945 reggroup_add (gdbarch, i386_sse_reggroup);
1946 reggroup_add (gdbarch, i386_mmx_reggroup);
1947 reggroup_add (gdbarch, general_reggroup);
1948 reggroup_add (gdbarch, float_reggroup);
1949 reggroup_add (gdbarch, all_reggroup);
1950 reggroup_add (gdbarch, save_reggroup);
1951 reggroup_add (gdbarch, restore_reggroup);
1952 reggroup_add (gdbarch, vector_reggroup);
1953 reggroup_add (gdbarch, system_reggroup);
1954}
1955
1956int
1957i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1958 struct reggroup *group)
1959{
5716833c
MK
1960 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
1961 || i386_mxcsr_regnum_p (gdbarch, regnum));
38c968cf
AC
1962 int fp_regnum_p = (i386_fp_regnum_p (regnum)
1963 || i386_fpc_regnum_p (regnum));
5716833c 1964 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
acd5c798 1965
38c968cf
AC
1966 if (group == i386_mmx_reggroup)
1967 return mmx_regnum_p;
1968 if (group == i386_sse_reggroup)
1969 return sse_regnum_p;
1970 if (group == vector_reggroup)
1971 return (mmx_regnum_p || sse_regnum_p);
1972 if (group == float_reggroup)
1973 return fp_regnum_p;
1974 if (group == general_reggroup)
1975 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
acd5c798 1976
38c968cf
AC
1977 return default_register_reggroup_p (gdbarch, regnum, group);
1978}
38c968cf 1979\f
acd5c798 1980
f837910f
MK
1981/* Get the ARGIth function argument for the current function. */
1982
42c466d7 1983static CORE_ADDR
143985b7
AF
1984i386_fetch_pointer_argument (struct frame_info *frame, int argi,
1985 struct type *type)
1986{
f837910f
MK
1987 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
1988 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
143985b7
AF
1989}
1990
1991\f
3a1e71e3 1992static struct gdbarch *
a62cc96e
AC
1993i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1994{
cd3c07fc 1995 struct gdbarch_tdep *tdep;
a62cc96e
AC
1996 struct gdbarch *gdbarch;
1997
4be87837
DJ
1998 /* If there is already a candidate, use it. */
1999 arches = gdbarch_list_lookup_by_info (arches, &info);
2000 if (arches != NULL)
2001 return arches->gdbarch;
a62cc96e
AC
2002
2003 /* Allocate space for the new architecture. */
2004 tdep = XMALLOC (struct gdbarch_tdep);
2005 gdbarch = gdbarch_alloc (&info, tdep);
2006
473f17b0
MK
2007 /* General-purpose registers. */
2008 tdep->gregset = NULL;
2009 tdep->gregset_reg_offset = NULL;
2010 tdep->gregset_num_regs = I386_NUM_GREGS;
2011 tdep->sizeof_gregset = 0;
2012
2013 /* Floating-point registers. */
2014 tdep->fpregset = NULL;
2015 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2016
5716833c 2017 /* The default settings include the FPU registers, the MMX registers
fd35795f 2018 and the SSE registers. This can be overridden for a specific ABI
5716833c
MK
2019 by adjusting the members `st0_regnum', `mm0_regnum' and
2020 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2021 will show up in the output of "info all-registers". Ideally we
2022 should try to autodetect whether they are available, such that we
2023 can prevent "info all-registers" from displaying registers that
2024 aren't available.
2025
2026 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2027 [the SSE registers] always (even when they don't exist) or never
2028 showing them to the user (even when they do exist), I prefer the
2029 former over the latter. */
2030
2031 tdep->st0_regnum = I386_ST0_REGNUM;
2032
2033 /* The MMX registers are implemented as pseudo-registers. Put off
fd35795f 2034 calculating the register number for %mm0 until we know the number
5716833c
MK
2035 of raw registers. */
2036 tdep->mm0_regnum = 0;
2037
2038 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
49ed40de 2039 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
d2a7c97a 2040
8201327c
MK
2041 tdep->jb_pc_offset = -1;
2042 tdep->struct_return = pcc_struct_return;
8201327c
MK
2043 tdep->sigtramp_start = 0;
2044 tdep->sigtramp_end = 0;
911bc6ee 2045 tdep->sigtramp_p = i386_sigtramp_p;
21d0e8a4 2046 tdep->sigcontext_addr = NULL;
a3386186 2047 tdep->sc_reg_offset = NULL;
8201327c 2048 tdep->sc_pc_offset = -1;
21d0e8a4 2049 tdep->sc_sp_offset = -1;
8201327c 2050
896fb97d
MK
2051 /* The format used for `long double' on almost all i386 targets is
2052 the i387 extended floating-point format. In fact, of all targets
2053 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2054 on having a `long double' that's not `long' at all. */
2055 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
21d0e8a4 2056
66da5fd8 2057 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
2058 bits, a `long double' actually takes up 96, probably to enforce
2059 alignment. */
2060 set_gdbarch_long_double_bit (gdbarch, 96);
2061
49ed40de
KB
2062 /* The default ABI includes general-purpose registers,
2063 floating-point registers, and the SSE registers. */
2064 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
acd5c798
MK
2065 set_gdbarch_register_name (gdbarch, i386_register_name);
2066 set_gdbarch_register_type (gdbarch, i386_register_type);
21d0e8a4 2067
acd5c798
MK
2068 /* Register numbers of various important registers. */
2069 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2070 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2071 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2072 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
356a6b3e 2073
c4fc7f1b
MK
2074 /* NOTE: kettenis/20040418: GCC does have two possible register
2075 numbering schemes on the i386: dbx and SVR4. These schemes
2076 differ in how they number %ebp, %esp, %eflags, and the
fd35795f 2077 floating-point registers, and are implemented by the arrays
c4fc7f1b
MK
2078 dbx_register_map[] and svr4_dbx_register_map in
2079 gcc/config/i386.c. GCC also defines a third numbering scheme in
2080 gcc/config/i386.c, which it designates as the "default" register
2081 map used in 64bit mode. This last register numbering scheme is
d4dc1a91 2082 implemented in dbx64_register_map, and is used for AMD64; see
c4fc7f1b
MK
2083 amd64-tdep.c.
2084
2085 Currently, each GCC i386 target always uses the same register
2086 numbering scheme across all its supported debugging formats
2087 i.e. SDB (COFF), stabs and DWARF 2. This is because
2088 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2089 DBX_REGISTER_NUMBER macro which is defined by each target's
2090 respective config header in a manner independent of the requested
2091 output debugging format.
2092
2093 This does not match the arrangement below, which presumes that
2094 the SDB and stabs numbering schemes differ from the DWARF and
2095 DWARF 2 ones. The reason for this arrangement is that it is
2096 likely to get the numbering scheme for the target's
2097 default/native debug format right. For targets where GCC is the
2098 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2099 targets where the native toolchain uses a different numbering
2100 scheme for a particular debug format (stabs-in-ELF on Solaris)
d4dc1a91
BF
2101 the defaults below will have to be overridden, like
2102 i386_elf_init_abi() does. */
c4fc7f1b
MK
2103
2104 /* Use the dbx register numbering scheme for stabs and COFF. */
2105 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2106 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2107
2108 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2109 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2110 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
356a6b3e
MK
2111
2112 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
2113 be in use on any of the supported i386 targets. */
2114
61113f8b
MK
2115 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2116
8201327c 2117 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 2118
a62cc96e 2119 /* Call dummy code. */
acd5c798 2120 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
a62cc96e 2121
ff2e87ac
AC
2122 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2123 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2124 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
b6197528 2125
c5e656c1 2126 set_gdbarch_return_value (gdbarch, i386_return_value);
8201327c 2127
93924b6b
MK
2128 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2129
2130 /* Stack grows downward. */
2131 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2132
2133 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2134 set_gdbarch_decr_pc_after_break (gdbarch, 1);
42fdc8df 2135
42fdc8df 2136 set_gdbarch_frame_args_skip (gdbarch, 8);
8201327c 2137
28fc6740 2138 /* Wire in the MMX registers. */
0f751ff2 2139 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
28fc6740
AC
2140 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2141 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2142
5e3397bb
MK
2143 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2144
acd5c798 2145 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
acd5c798
MK
2146
2147 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2148
38c968cf
AC
2149 /* Add the i386 register groups. */
2150 i386_add_reggroups (gdbarch);
2151 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2152
143985b7
AF
2153 /* Helper for function argument information. */
2154 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2155
6405b0a6 2156 /* Hook in the DWARF CFI frame unwinder. */
336d1bba 2157 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
6405b0a6 2158
acd5c798 2159 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 2160
3ce1502b 2161 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2162 gdbarch_init_osabi (info, gdbarch);
3ce1502b 2163
336d1bba
AC
2164 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2165 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
acd5c798 2166
8446b36a
MK
2167 /* If we have a register mapping, enable the generic core file
2168 support, unless it has already been enabled. */
2169 if (tdep->gregset_reg_offset
2170 && !gdbarch_regset_from_core_section_p (gdbarch))
2171 set_gdbarch_regset_from_core_section (gdbarch,
2172 i386_regset_from_core_section);
2173
5716833c
MK
2174 /* Unless support for MMX has been disabled, make %mm0 the first
2175 pseudo-register. */
2176 if (tdep->mm0_regnum == 0)
2177 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2178
a62cc96e
AC
2179 return gdbarch;
2180}
2181
8201327c
MK
2182static enum gdb_osabi
2183i386_coff_osabi_sniffer (bfd *abfd)
2184{
762c5349
MK
2185 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2186 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
2187 return GDB_OSABI_GO32;
2188
2189 return GDB_OSABI_UNKNOWN;
2190}
2191
2192static enum gdb_osabi
2193i386_nlm_osabi_sniffer (bfd *abfd)
2194{
2195 return GDB_OSABI_NETWARE;
2196}
2197\f
2198
28e9e0f0
MK
2199/* Provide a prototype to silence -Wmissing-prototypes. */
2200void _initialize_i386_tdep (void);
2201
c906108c 2202void
fba45db2 2203_initialize_i386_tdep (void)
c906108c 2204{
a62cc96e
AC
2205 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2206
fc338970 2207 /* Add the variable that controls the disassembly flavor. */
917317f4
JM
2208 {
2209 struct cmd_list_element *new_cmd;
7a292a7a 2210
917317f4
JM
2211 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
2212 valid_flavors,
1ed2a135 2213 &disassembly_flavor,
fc338970
MK
2214 "\
2215Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
c906108c 2216and the default value is \"att\".",
917317f4 2217 &setlist);
917317f4
JM
2218 add_show_from_set (new_cmd, &showlist);
2219 }
8201327c
MK
2220
2221 /* Add the variable that controls the convention for returning
2222 structs. */
2223 {
2224 struct cmd_list_element *new_cmd;
2225
2226 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
5e3397bb 2227 valid_conventions,
8201327c
MK
2228 &struct_convention, "\
2229Set the convention for returning small structs, valid values \
2230are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
2231 &setlist);
2232 add_show_from_set (new_cmd, &showlist);
2233 }
2234
2235 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2236 i386_coff_osabi_sniffer);
2237 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
2238 i386_nlm_osabi_sniffer);
2239
05816f70 2240 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 2241 i386_svr4_init_abi);
05816f70 2242 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 2243 i386_go32_init_abi);
05816f70 2244 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
8201327c 2245 i386_nw_init_abi);
38c968cf
AC
2246
2247 /* Initialize the i386 specific register groups. */
2248 i386_init_reggroups ();
c906108c 2249}