]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-arm.c
2007-04-04 Paul Brook <paul@codesourcery.com>
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
ebd1c875 3 2004, 2005, 2006
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
5287ad62 28#include <limits.h>
037e8744 29#include <stdarg.h>
c19d1205 30#define NO_RELOC 0
b99bd4ef 31#include "as.h"
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
b99bd4ef 35
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
a394c00f 40#include "dw2gencfi.h"
b99bd4ef
NC
41#endif
42
f0927246
NC
43#include "dwarf2dbg.h"
44
720abc60 45#define WARN_DEPRECATED 1
03b1477f 46
7ed4c4c5
NC
47#ifdef OBJ_ELF
48/* Must be at least the size of the largest unwind opcode (currently two). */
49#define ARM_OPCODE_CHUNK_SIZE 8
50
51/* This structure holds the unwinding state. */
52
53static struct
54{
c19d1205
ZW
55 symbolS * proc_start;
56 symbolS * table_entry;
57 symbolS * personality_routine;
58 int personality_index;
7ed4c4c5 59 /* The segment containing the function. */
c19d1205
ZW
60 segT saved_seg;
61 subsegT saved_subseg;
7ed4c4c5
NC
62 /* Opcodes generated from this function. */
63 unsigned char * opcodes;
c19d1205
ZW
64 int opcode_count;
65 int opcode_alloc;
7ed4c4c5 66 /* The number of bytes pushed to the stack. */
c19d1205 67 offsetT frame_size;
7ed4c4c5
NC
68 /* We don't add stack adjustment opcodes immediately so that we can merge
69 multiple adjustments. We can also omit the final adjustment
70 when using a frame pointer. */
c19d1205 71 offsetT pending_offset;
7ed4c4c5 72 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
73 hold the reg+offset to use when restoring sp from a frame pointer. */
74 offsetT fp_offset;
75 int fp_reg;
7ed4c4c5 76 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 77 unsigned fp_used:1;
7ed4c4c5 78 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 79 unsigned sp_restored:1;
7ed4c4c5
NC
80} unwind;
81
8b1ad454
NC
82/* Bit N indicates that an R_ARM_NONE relocation has been output for
83 __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
84 emitted only once per section, to save unnecessary bloat. */
85static unsigned int marked_pr_dependency = 0;
86
87#endif /* OBJ_ELF */
88
4962c51a
MS
89/* Results from operand parsing worker functions. */
90
91typedef enum
92{
93 PARSE_OPERAND_SUCCESS,
94 PARSE_OPERAND_FAIL,
95 PARSE_OPERAND_FAIL_NO_BACKTRACK
96} parse_operand_result;
97
33a392fb
PB
98enum arm_float_abi
99{
100 ARM_FLOAT_ABI_HARD,
101 ARM_FLOAT_ABI_SOFTFP,
102 ARM_FLOAT_ABI_SOFT
103};
104
c19d1205 105/* Types of processor to assemble for. */
b99bd4ef
NC
106#ifndef CPU_DEFAULT
107#if defined __XSCALE__
e74cfd16 108#define CPU_DEFAULT ARM_ARCH_XSCALE
b99bd4ef
NC
109#else
110#if defined __thumb__
e74cfd16 111#define CPU_DEFAULT ARM_ARCH_V5T
b99bd4ef
NC
112#endif
113#endif
114#endif
115
116#ifndef FPU_DEFAULT
c820d418
MM
117# ifdef TE_LINUX
118# define FPU_DEFAULT FPU_ARCH_FPA
119# elif defined (TE_NetBSD)
120# ifdef OBJ_ELF
121# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
122# else
123 /* Legacy a.out format. */
124# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
125# endif
4e7fd91e
PB
126# elif defined (TE_VXWORKS)
127# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
128# else
129 /* For backwards compatibility, default to FPA. */
130# define FPU_DEFAULT FPU_ARCH_FPA
131# endif
132#endif /* ifndef FPU_DEFAULT */
b99bd4ef 133
c19d1205 134#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 135
e74cfd16
PB
136static arm_feature_set cpu_variant;
137static arm_feature_set arm_arch_used;
138static arm_feature_set thumb_arch_used;
b99bd4ef 139
b99bd4ef 140/* Flags stored in private area of BFD structure. */
c19d1205
ZW
141static int uses_apcs_26 = FALSE;
142static int atpcs = FALSE;
b34976b6
AM
143static int support_interwork = FALSE;
144static int uses_apcs_float = FALSE;
c19d1205 145static int pic_code = FALSE;
03b1477f
RE
146
147/* Variables that we set while parsing command-line options. Once all
148 options have been read we re-process these values to set the real
149 assembly flags. */
e74cfd16
PB
150static const arm_feature_set *legacy_cpu = NULL;
151static const arm_feature_set *legacy_fpu = NULL;
152
153static const arm_feature_set *mcpu_cpu_opt = NULL;
154static const arm_feature_set *mcpu_fpu_opt = NULL;
155static const arm_feature_set *march_cpu_opt = NULL;
156static const arm_feature_set *march_fpu_opt = NULL;
157static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 158static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
159
160/* Constants for known architecture features. */
161static const arm_feature_set fpu_default = FPU_DEFAULT;
162static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
163static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
164static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
165static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
166static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
167static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
168static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
169static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
170
171#ifdef CPU_DEFAULT
172static const arm_feature_set cpu_default = CPU_DEFAULT;
173#endif
174
175static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
176static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
177static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
178static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
179static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
180static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
181static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
182static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
183static const arm_feature_set arm_ext_v4t_5 =
184 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
185static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
186static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
187static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
188static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
189static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
190static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
191static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
192static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
62b3e311
PB
193static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
194static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
195static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
196static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
197static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
198static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
e74cfd16
PB
199
200static const arm_feature_set arm_arch_any = ARM_ANY;
201static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
202static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
203static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
204
2d447fca
JM
205static const arm_feature_set arm_cext_iwmmxt2 =
206 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
e74cfd16
PB
207static const arm_feature_set arm_cext_iwmmxt =
208 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
209static const arm_feature_set arm_cext_xscale =
210 ARM_FEATURE (0, ARM_CEXT_XSCALE);
211static const arm_feature_set arm_cext_maverick =
212 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
213static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
214static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
215static const arm_feature_set fpu_vfp_ext_v1xd =
216 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
217static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
218static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
5287ad62
JB
219static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
220static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
221static const arm_feature_set fpu_vfp_v3_or_neon_ext =
222 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
e74cfd16 223
33a392fb 224static int mfloat_abi_opt = -1;
e74cfd16
PB
225/* Record user cpu selection for object attributes. */
226static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
227/* Must be long enough to hold any of the names in arm_cpus. */
228static char selected_cpu_name[16];
7cc69913 229#ifdef OBJ_ELF
deeaaff8
DJ
230# ifdef EABI_DEFAULT
231static int meabi_flags = EABI_DEFAULT;
232# else
d507cf36 233static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 234# endif
e1da3f5b
PB
235
236bfd_boolean
237arm_is_eabi(void)
238{
239 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
240}
7cc69913 241#endif
b99bd4ef 242
b99bd4ef 243#ifdef OBJ_ELF
c19d1205 244/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
245symbolS * GOT_symbol;
246#endif
247
b99bd4ef
NC
248/* 0: assemble for ARM,
249 1: assemble for Thumb,
250 2: assemble for Thumb even though target CPU does not support thumb
251 instructions. */
252static int thumb_mode = 0;
253
c19d1205
ZW
254/* If unified_syntax is true, we are processing the new unified
255 ARM/Thumb syntax. Important differences from the old ARM mode:
256
257 - Immediate operands do not require a # prefix.
258 - Conditional affixes always appear at the end of the
259 instruction. (For backward compatibility, those instructions
260 that formerly had them in the middle, continue to accept them
261 there.)
262 - The IT instruction may appear, and if it does is validated
263 against subsequent conditional affixes. It does not generate
264 machine code.
265
266 Important differences from the old Thumb mode:
267
268 - Immediate operands do not require a # prefix.
269 - Most of the V6T2 instructions are only available in unified mode.
270 - The .N and .W suffixes are recognized and honored (it is an error
271 if they cannot be honored).
272 - All instructions set the flags if and only if they have an 's' affix.
273 - Conditional affixes may be used. They are validated against
274 preceding IT instructions. Unlike ARM mode, you cannot use a
275 conditional affix except in the scope of an IT instruction. */
276
277static bfd_boolean unified_syntax = FALSE;
b99bd4ef 278
5287ad62
JB
279enum neon_el_type
280{
dcbf9037 281 NT_invtype,
5287ad62
JB
282 NT_untyped,
283 NT_integer,
284 NT_float,
285 NT_poly,
286 NT_signed,
dcbf9037 287 NT_unsigned
5287ad62
JB
288};
289
290struct neon_type_el
291{
292 enum neon_el_type type;
293 unsigned size;
294};
295
296#define NEON_MAX_TYPE_ELS 4
297
298struct neon_type
299{
300 struct neon_type_el el[NEON_MAX_TYPE_ELS];
301 unsigned elems;
302};
303
b99bd4ef
NC
304struct arm_it
305{
c19d1205 306 const char * error;
b99bd4ef 307 unsigned long instruction;
c19d1205
ZW
308 int size;
309 int size_req;
310 int cond;
037e8744
JB
311 /* "uncond_value" is set to the value in place of the conditional field in
312 unconditional versions of the instruction, or -1 if nothing is
313 appropriate. */
314 int uncond_value;
5287ad62 315 struct neon_type vectype;
0110f2b8
PB
316 /* Set to the opcode if the instruction needs relaxation.
317 Zero if the instruction is not relaxed. */
318 unsigned long relax;
b99bd4ef
NC
319 struct
320 {
321 bfd_reloc_code_real_type type;
c19d1205
ZW
322 expressionS exp;
323 int pc_rel;
b99bd4ef 324 } reloc;
b99bd4ef 325
c19d1205
ZW
326 struct
327 {
328 unsigned reg;
ca3f61f7 329 signed int imm;
dcbf9037 330 struct neon_type_el vectype;
ca3f61f7
NC
331 unsigned present : 1; /* Operand present. */
332 unsigned isreg : 1; /* Operand was a register. */
333 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
334 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
335 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 336 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
337 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
338 instructions. This allows us to disambiguate ARM <-> vector insns. */
339 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 340 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 341 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 342 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
343 unsigned hasreloc : 1; /* Operand has relocation suffix. */
344 unsigned writeback : 1; /* Operand has trailing ! */
345 unsigned preind : 1; /* Preindexed address. */
346 unsigned postind : 1; /* Postindexed address. */
347 unsigned negative : 1; /* Index register was negated. */
348 unsigned shifted : 1; /* Shift applied to operation. */
349 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
c19d1205 350 } operands[6];
b99bd4ef
NC
351};
352
c19d1205 353static struct arm_it inst;
b99bd4ef
NC
354
355#define NUM_FLOAT_VALS 8
356
05d2d07e 357const char * fp_const[] =
b99bd4ef
NC
358{
359 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
360};
361
c19d1205 362/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
363#define MAX_LITTLENUMS 6
364
365LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
366
367#define FAIL (-1)
368#define SUCCESS (0)
369
370#define SUFF_S 1
371#define SUFF_D 2
372#define SUFF_E 3
373#define SUFF_P 4
374
c19d1205
ZW
375#define CP_T_X 0x00008000
376#define CP_T_Y 0x00400000
b99bd4ef 377
c19d1205
ZW
378#define CONDS_BIT 0x00100000
379#define LOAD_BIT 0x00100000
b99bd4ef
NC
380
381#define DOUBLE_LOAD_FLAG 0x00000001
382
383struct asm_cond
384{
c19d1205 385 const char * template;
b99bd4ef
NC
386 unsigned long value;
387};
388
c19d1205 389#define COND_ALWAYS 0xE
b99bd4ef 390
b99bd4ef
NC
391struct asm_psr
392{
b34976b6 393 const char *template;
b99bd4ef
NC
394 unsigned long field;
395};
396
62b3e311
PB
397struct asm_barrier_opt
398{
399 const char *template;
400 unsigned long value;
401};
402
2d2255b5 403/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
404#define SPSR_BIT (1 << 22)
405
c19d1205
ZW
406/* The individual PSR flag bits. */
407#define PSR_c (1 << 16)
408#define PSR_x (1 << 17)
409#define PSR_s (1 << 18)
410#define PSR_f (1 << 19)
b99bd4ef 411
c19d1205 412struct reloc_entry
bfae80f2 413{
c19d1205
ZW
414 char *name;
415 bfd_reloc_code_real_type reloc;
bfae80f2
RE
416};
417
5287ad62 418enum vfp_reg_pos
bfae80f2 419{
5287ad62
JB
420 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
421 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
422};
423
424enum vfp_ldstm_type
425{
426 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
427};
428
dcbf9037
JB
429/* Bits for DEFINED field in neon_typed_alias. */
430#define NTA_HASTYPE 1
431#define NTA_HASINDEX 2
432
433struct neon_typed_alias
434{
435 unsigned char defined;
436 unsigned char index;
437 struct neon_type_el eltype;
438};
439
c19d1205
ZW
440/* ARM register categories. This includes coprocessor numbers and various
441 architecture extensions' registers. */
442enum arm_reg_type
bfae80f2 443{
c19d1205
ZW
444 REG_TYPE_RN,
445 REG_TYPE_CP,
446 REG_TYPE_CN,
447 REG_TYPE_FN,
448 REG_TYPE_VFS,
449 REG_TYPE_VFD,
5287ad62 450 REG_TYPE_NQ,
037e8744 451 REG_TYPE_VFSD,
5287ad62 452 REG_TYPE_NDQ,
037e8744 453 REG_TYPE_NSDQ,
c19d1205
ZW
454 REG_TYPE_VFC,
455 REG_TYPE_MVF,
456 REG_TYPE_MVD,
457 REG_TYPE_MVFX,
458 REG_TYPE_MVDX,
459 REG_TYPE_MVAX,
460 REG_TYPE_DSPSC,
461 REG_TYPE_MMXWR,
462 REG_TYPE_MMXWC,
463 REG_TYPE_MMXWCG,
464 REG_TYPE_XSCALE,
bfae80f2
RE
465};
466
dcbf9037
JB
467/* Structure for a hash table entry for a register.
468 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
469 information which states whether a vector type or index is specified (for a
470 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
471struct reg_entry
472{
dcbf9037
JB
473 const char *name;
474 unsigned char number;
475 unsigned char type;
476 unsigned char builtin;
477 struct neon_typed_alias *neon;
6c43fab6
RE
478};
479
c19d1205
ZW
480/* Diagnostics used when we don't get a register of the expected type. */
481const char *const reg_expected_msgs[] =
482{
483 N_("ARM register expected"),
484 N_("bad or missing co-processor number"),
485 N_("co-processor register expected"),
486 N_("FPA register expected"),
487 N_("VFP single precision register expected"),
5287ad62
JB
488 N_("VFP/Neon double precision register expected"),
489 N_("Neon quad precision register expected"),
037e8744 490 N_("VFP single or double precision register expected"),
5287ad62 491 N_("Neon double or quad precision register expected"),
037e8744 492 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
493 N_("VFP system register expected"),
494 N_("Maverick MVF register expected"),
495 N_("Maverick MVD register expected"),
496 N_("Maverick MVFX register expected"),
497 N_("Maverick MVDX register expected"),
498 N_("Maverick MVAX register expected"),
499 N_("Maverick DSPSC register expected"),
500 N_("iWMMXt data register expected"),
501 N_("iWMMXt control register expected"),
502 N_("iWMMXt scalar register expected"),
503 N_("XScale accumulator register expected"),
6c43fab6
RE
504};
505
c19d1205
ZW
506/* Some well known registers that we refer to directly elsewhere. */
507#define REG_SP 13
508#define REG_LR 14
509#define REG_PC 15
404ff6b5 510
b99bd4ef
NC
511/* ARM instructions take 4bytes in the object file, Thumb instructions
512 take 2: */
c19d1205 513#define INSN_SIZE 4
b99bd4ef
NC
514
515struct asm_opcode
516{
517 /* Basic string to match. */
c19d1205
ZW
518 const char *template;
519
520 /* Parameters to instruction. */
521 unsigned char operands[8];
522
523 /* Conditional tag - see opcode_lookup. */
524 unsigned int tag : 4;
b99bd4ef
NC
525
526 /* Basic instruction code. */
c19d1205 527 unsigned int avalue : 28;
b99bd4ef 528
c19d1205
ZW
529 /* Thumb-format instruction code. */
530 unsigned int tvalue;
b99bd4ef 531
90e4755a 532 /* Which architecture variant provides this instruction. */
e74cfd16
PB
533 const arm_feature_set *avariant;
534 const arm_feature_set *tvariant;
c19d1205
ZW
535
536 /* Function to call to encode instruction in ARM format. */
537 void (* aencode) (void);
b99bd4ef 538
c19d1205
ZW
539 /* Function to call to encode instruction in Thumb format. */
540 void (* tencode) (void);
b99bd4ef
NC
541};
542
a737bd4d
NC
543/* Defines for various bits that we will want to toggle. */
544#define INST_IMMEDIATE 0x02000000
545#define OFFSET_REG 0x02000000
c19d1205 546#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
547#define SHIFT_BY_REG 0x00000010
548#define PRE_INDEX 0x01000000
549#define INDEX_UP 0x00800000
550#define WRITE_BACK 0x00200000
551#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 552#define CPSI_MMOD 0x00020000
90e4755a 553
a737bd4d
NC
554#define LITERAL_MASK 0xf000f000
555#define OPCODE_MASK 0xfe1fffff
556#define V4_STR_BIT 0x00000020
90e4755a 557
a737bd4d 558#define DATA_OP_SHIFT 21
90e4755a 559
ef8d22e6
PB
560#define T2_OPCODE_MASK 0xfe1fffff
561#define T2_DATA_OP_SHIFT 21
562
a737bd4d
NC
563/* Codes to distinguish the arithmetic instructions. */
564#define OPCODE_AND 0
565#define OPCODE_EOR 1
566#define OPCODE_SUB 2
567#define OPCODE_RSB 3
568#define OPCODE_ADD 4
569#define OPCODE_ADC 5
570#define OPCODE_SBC 6
571#define OPCODE_RSC 7
572#define OPCODE_TST 8
573#define OPCODE_TEQ 9
574#define OPCODE_CMP 10
575#define OPCODE_CMN 11
576#define OPCODE_ORR 12
577#define OPCODE_MOV 13
578#define OPCODE_BIC 14
579#define OPCODE_MVN 15
90e4755a 580
ef8d22e6
PB
581#define T2_OPCODE_AND 0
582#define T2_OPCODE_BIC 1
583#define T2_OPCODE_ORR 2
584#define T2_OPCODE_ORN 3
585#define T2_OPCODE_EOR 4
586#define T2_OPCODE_ADD 8
587#define T2_OPCODE_ADC 10
588#define T2_OPCODE_SBC 11
589#define T2_OPCODE_SUB 13
590#define T2_OPCODE_RSB 14
591
a737bd4d
NC
592#define T_OPCODE_MUL 0x4340
593#define T_OPCODE_TST 0x4200
594#define T_OPCODE_CMN 0x42c0
595#define T_OPCODE_NEG 0x4240
596#define T_OPCODE_MVN 0x43c0
90e4755a 597
a737bd4d
NC
598#define T_OPCODE_ADD_R3 0x1800
599#define T_OPCODE_SUB_R3 0x1a00
600#define T_OPCODE_ADD_HI 0x4400
601#define T_OPCODE_ADD_ST 0xb000
602#define T_OPCODE_SUB_ST 0xb080
603#define T_OPCODE_ADD_SP 0xa800
604#define T_OPCODE_ADD_PC 0xa000
605#define T_OPCODE_ADD_I8 0x3000
606#define T_OPCODE_SUB_I8 0x3800
607#define T_OPCODE_ADD_I3 0x1c00
608#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 609
a737bd4d
NC
610#define T_OPCODE_ASR_R 0x4100
611#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
612#define T_OPCODE_LSR_R 0x40c0
613#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
614#define T_OPCODE_ASR_I 0x1000
615#define T_OPCODE_LSL_I 0x0000
616#define T_OPCODE_LSR_I 0x0800
b99bd4ef 617
a737bd4d
NC
618#define T_OPCODE_MOV_I8 0x2000
619#define T_OPCODE_CMP_I8 0x2800
620#define T_OPCODE_CMP_LR 0x4280
621#define T_OPCODE_MOV_HR 0x4600
622#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 623
a737bd4d
NC
624#define T_OPCODE_LDR_PC 0x4800
625#define T_OPCODE_LDR_SP 0x9800
626#define T_OPCODE_STR_SP 0x9000
627#define T_OPCODE_LDR_IW 0x6800
628#define T_OPCODE_STR_IW 0x6000
629#define T_OPCODE_LDR_IH 0x8800
630#define T_OPCODE_STR_IH 0x8000
631#define T_OPCODE_LDR_IB 0x7800
632#define T_OPCODE_STR_IB 0x7000
633#define T_OPCODE_LDR_RW 0x5800
634#define T_OPCODE_STR_RW 0x5000
635#define T_OPCODE_LDR_RH 0x5a00
636#define T_OPCODE_STR_RH 0x5200
637#define T_OPCODE_LDR_RB 0x5c00
638#define T_OPCODE_STR_RB 0x5400
c9b604bd 639
a737bd4d
NC
640#define T_OPCODE_PUSH 0xb400
641#define T_OPCODE_POP 0xbc00
b99bd4ef 642
2fc8bdac 643#define T_OPCODE_BRANCH 0xe000
b99bd4ef 644
a737bd4d 645#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 646#define THUMB_PP_PC_LR 0x0100
c19d1205 647#define THUMB_LOAD_BIT 0x0800
53365c0d 648#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
649
650#define BAD_ARGS _("bad arguments to instruction")
651#define BAD_PC _("r15 not allowed here")
652#define BAD_COND _("instruction cannot be conditional")
653#define BAD_OVERLAP _("registers may not be the same")
654#define BAD_HIREG _("lo register required")
655#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 656#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
657#define BAD_BRANCH _("branch must be last instruction in IT block")
658#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 659#define BAD_FPU _("selected FPU does not support instruction")
c19d1205
ZW
660
661static struct hash_control *arm_ops_hsh;
662static struct hash_control *arm_cond_hsh;
663static struct hash_control *arm_shift_hsh;
664static struct hash_control *arm_psr_hsh;
62b3e311 665static struct hash_control *arm_v7m_psr_hsh;
c19d1205
ZW
666static struct hash_control *arm_reg_hsh;
667static struct hash_control *arm_reloc_hsh;
62b3e311 668static struct hash_control *arm_barrier_opt_hsh;
b99bd4ef 669
b99bd4ef
NC
670/* Stuff needed to resolve the label ambiguity
671 As:
672 ...
673 label: <insn>
674 may differ from:
675 ...
676 label:
c19d1205 677 <insn>
b99bd4ef
NC
678*/
679
680symbolS * last_label_seen;
b34976b6 681static int label_is_thumb_function_name = FALSE;
a737bd4d 682\f
3d0c9500
NC
683/* Literal pool structure. Held on a per-section
684 and per-sub-section basis. */
a737bd4d 685
c19d1205 686#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 687typedef struct literal_pool
b99bd4ef 688{
c19d1205
ZW
689 expressionS literals [MAX_LITERAL_POOL_SIZE];
690 unsigned int next_free_entry;
691 unsigned int id;
692 symbolS * symbol;
693 segT section;
694 subsegT sub_section;
61b5f74b 695 struct literal_pool * next;
3d0c9500 696} literal_pool;
b99bd4ef 697
3d0c9500
NC
698/* Pointer to a linked list of literal pools. */
699literal_pool * list_of_pools = NULL;
e27ec89e
PB
700
701/* State variables for IT block handling. */
702static bfd_boolean current_it_mask = 0;
703static int current_cc;
704
c19d1205
ZW
705\f
706/* Pure syntax. */
b99bd4ef 707
c19d1205
ZW
708/* This array holds the chars that always start a comment. If the
709 pre-processor is disabled, these aren't very useful. */
710const char comment_chars[] = "@";
3d0c9500 711
c19d1205
ZW
712/* This array holds the chars that only start a comment at the beginning of
713 a line. If the line seems to have the form '# 123 filename'
714 .line and .file directives will appear in the pre-processed output. */
715/* Note that input_file.c hand checks for '#' at the beginning of the
716 first line of the input file. This is because the compiler outputs
717 #NO_APP at the beginning of its output. */
718/* Also note that comments like this one will always work. */
719const char line_comment_chars[] = "#";
3d0c9500 720
c19d1205 721const char line_separator_chars[] = ";";
b99bd4ef 722
c19d1205
ZW
723/* Chars that can be used to separate mant
724 from exp in floating point numbers. */
725const char EXP_CHARS[] = "eE";
3d0c9500 726
c19d1205
ZW
727/* Chars that mean this number is a floating point constant. */
728/* As in 0f12.456 */
729/* or 0d1.2345e12 */
b99bd4ef 730
c19d1205 731const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 732
c19d1205
ZW
733/* Prefix characters that indicate the start of an immediate
734 value. */
735#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 736
c19d1205
ZW
737/* Separator character handling. */
738
739#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
740
741static inline int
742skip_past_char (char ** str, char c)
743{
744 if (**str == c)
745 {
746 (*str)++;
747 return SUCCESS;
3d0c9500 748 }
c19d1205
ZW
749 else
750 return FAIL;
751}
752#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 753
c19d1205
ZW
754/* Arithmetic expressions (possibly involving symbols). */
755
756/* Return TRUE if anything in the expression is a bignum. */
757
758static int
759walk_no_bignums (symbolS * sp)
760{
761 if (symbol_get_value_expression (sp)->X_op == O_big)
762 return 1;
763
764 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 765 {
c19d1205
ZW
766 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
767 || (symbol_get_value_expression (sp)->X_op_symbol
768 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
769 }
770
c19d1205 771 return 0;
3d0c9500
NC
772}
773
c19d1205
ZW
774static int in_my_get_expression = 0;
775
776/* Third argument to my_get_expression. */
777#define GE_NO_PREFIX 0
778#define GE_IMM_PREFIX 1
779#define GE_OPT_PREFIX 2
5287ad62
JB
780/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
781 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
782#define GE_OPT_PREFIX_BIG 3
a737bd4d 783
b99bd4ef 784static int
c19d1205 785my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 786{
c19d1205
ZW
787 char * save_in;
788 segT seg;
b99bd4ef 789
c19d1205
ZW
790 /* In unified syntax, all prefixes are optional. */
791 if (unified_syntax)
5287ad62
JB
792 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
793 : GE_OPT_PREFIX;
b99bd4ef 794
c19d1205 795 switch (prefix_mode)
b99bd4ef 796 {
c19d1205
ZW
797 case GE_NO_PREFIX: break;
798 case GE_IMM_PREFIX:
799 if (!is_immediate_prefix (**str))
800 {
801 inst.error = _("immediate expression requires a # prefix");
802 return FAIL;
803 }
804 (*str)++;
805 break;
806 case GE_OPT_PREFIX:
5287ad62 807 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
808 if (is_immediate_prefix (**str))
809 (*str)++;
810 break;
811 default: abort ();
812 }
b99bd4ef 813
c19d1205 814 memset (ep, 0, sizeof (expressionS));
b99bd4ef 815
c19d1205
ZW
816 save_in = input_line_pointer;
817 input_line_pointer = *str;
818 in_my_get_expression = 1;
819 seg = expression (ep);
820 in_my_get_expression = 0;
821
822 if (ep->X_op == O_illegal)
b99bd4ef 823 {
c19d1205
ZW
824 /* We found a bad expression in md_operand(). */
825 *str = input_line_pointer;
826 input_line_pointer = save_in;
827 if (inst.error == NULL)
828 inst.error = _("bad expression");
829 return 1;
830 }
b99bd4ef 831
c19d1205
ZW
832#ifdef OBJ_AOUT
833 if (seg != absolute_section
834 && seg != text_section
835 && seg != data_section
836 && seg != bss_section
837 && seg != undefined_section)
838 {
839 inst.error = _("bad segment");
840 *str = input_line_pointer;
841 input_line_pointer = save_in;
842 return 1;
b99bd4ef 843 }
c19d1205 844#endif
b99bd4ef 845
c19d1205
ZW
846 /* Get rid of any bignums now, so that we don't generate an error for which
847 we can't establish a line number later on. Big numbers are never valid
848 in instructions, which is where this routine is always called. */
5287ad62
JB
849 if (prefix_mode != GE_OPT_PREFIX_BIG
850 && (ep->X_op == O_big
851 || (ep->X_add_symbol
852 && (walk_no_bignums (ep->X_add_symbol)
853 || (ep->X_op_symbol
854 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
855 {
856 inst.error = _("invalid constant");
857 *str = input_line_pointer;
858 input_line_pointer = save_in;
859 return 1;
860 }
b99bd4ef 861
c19d1205
ZW
862 *str = input_line_pointer;
863 input_line_pointer = save_in;
864 return 0;
b99bd4ef
NC
865}
866
c19d1205
ZW
867/* Turn a string in input_line_pointer into a floating point constant
868 of type TYPE, and store the appropriate bytes in *LITP. The number
869 of LITTLENUMS emitted is stored in *SIZEP. An error message is
870 returned, or NULL on OK.
b99bd4ef 871
c19d1205
ZW
872 Note that fp constants aren't represent in the normal way on the ARM.
873 In big endian mode, things are as expected. However, in little endian
874 mode fp constants are big-endian word-wise, and little-endian byte-wise
875 within the words. For example, (double) 1.1 in big endian mode is
876 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
877 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 878
c19d1205 879 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 880
c19d1205
ZW
881char *
882md_atof (int type, char * litP, int * sizeP)
883{
884 int prec;
885 LITTLENUM_TYPE words[MAX_LITTLENUMS];
886 char *t;
887 int i;
b99bd4ef 888
c19d1205
ZW
889 switch (type)
890 {
891 case 'f':
892 case 'F':
893 case 's':
894 case 'S':
895 prec = 2;
896 break;
b99bd4ef 897
c19d1205
ZW
898 case 'd':
899 case 'D':
900 case 'r':
901 case 'R':
902 prec = 4;
903 break;
b99bd4ef 904
c19d1205
ZW
905 case 'x':
906 case 'X':
907 prec = 6;
908 break;
b99bd4ef 909
c19d1205
ZW
910 case 'p':
911 case 'P':
912 prec = 6;
913 break;
a737bd4d 914
c19d1205
ZW
915 default:
916 *sizeP = 0;
917 return _("bad call to MD_ATOF()");
918 }
b99bd4ef 919
c19d1205
ZW
920 t = atof_ieee (input_line_pointer, type, words);
921 if (t)
922 input_line_pointer = t;
923 *sizeP = prec * 2;
b99bd4ef 924
c19d1205
ZW
925 if (target_big_endian)
926 {
927 for (i = 0; i < prec; i++)
928 {
929 md_number_to_chars (litP, (valueT) words[i], 2);
930 litP += 2;
931 }
932 }
933 else
934 {
e74cfd16 935 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
936 for (i = prec - 1; i >= 0; i--)
937 {
938 md_number_to_chars (litP, (valueT) words[i], 2);
939 litP += 2;
940 }
941 else
942 /* For a 4 byte float the order of elements in `words' is 1 0.
943 For an 8 byte float the order is 1 0 3 2. */
944 for (i = 0; i < prec; i += 2)
945 {
946 md_number_to_chars (litP, (valueT) words[i + 1], 2);
947 md_number_to_chars (litP + 2, (valueT) words[i], 2);
948 litP += 4;
949 }
950 }
b99bd4ef 951
c19d1205
ZW
952 return 0;
953}
b99bd4ef 954
c19d1205
ZW
955/* We handle all bad expressions here, so that we can report the faulty
956 instruction in the error message. */
957void
958md_operand (expressionS * expr)
959{
960 if (in_my_get_expression)
961 expr->X_op = O_illegal;
b99bd4ef
NC
962}
963
c19d1205 964/* Immediate values. */
b99bd4ef 965
c19d1205
ZW
966/* Generic immediate-value read function for use in directives.
967 Accepts anything that 'expression' can fold to a constant.
968 *val receives the number. */
969#ifdef OBJ_ELF
970static int
971immediate_for_directive (int *val)
b99bd4ef 972{
c19d1205
ZW
973 expressionS exp;
974 exp.X_op = O_illegal;
b99bd4ef 975
c19d1205
ZW
976 if (is_immediate_prefix (*input_line_pointer))
977 {
978 input_line_pointer++;
979 expression (&exp);
980 }
b99bd4ef 981
c19d1205
ZW
982 if (exp.X_op != O_constant)
983 {
984 as_bad (_("expected #constant"));
985 ignore_rest_of_line ();
986 return FAIL;
987 }
988 *val = exp.X_add_number;
989 return SUCCESS;
b99bd4ef 990}
c19d1205 991#endif
b99bd4ef 992
c19d1205 993/* Register parsing. */
b99bd4ef 994
c19d1205
ZW
995/* Generic register parser. CCP points to what should be the
996 beginning of a register name. If it is indeed a valid register
997 name, advance CCP over it and return the reg_entry structure;
998 otherwise return NULL. Does not issue diagnostics. */
999
1000static struct reg_entry *
1001arm_reg_parse_multi (char **ccp)
b99bd4ef 1002{
c19d1205
ZW
1003 char *start = *ccp;
1004 char *p;
1005 struct reg_entry *reg;
b99bd4ef 1006
c19d1205
ZW
1007#ifdef REGISTER_PREFIX
1008 if (*start != REGISTER_PREFIX)
01cfc07f 1009 return NULL;
c19d1205
ZW
1010 start++;
1011#endif
1012#ifdef OPTIONAL_REGISTER_PREFIX
1013 if (*start == OPTIONAL_REGISTER_PREFIX)
1014 start++;
1015#endif
b99bd4ef 1016
c19d1205
ZW
1017 p = start;
1018 if (!ISALPHA (*p) || !is_name_beginner (*p))
1019 return NULL;
b99bd4ef 1020
c19d1205
ZW
1021 do
1022 p++;
1023 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1024
1025 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1026
1027 if (!reg)
1028 return NULL;
1029
1030 *ccp = p;
1031 return reg;
b99bd4ef
NC
1032}
1033
1034static int
dcbf9037
JB
1035arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1036 enum arm_reg_type type)
b99bd4ef 1037{
c19d1205
ZW
1038 /* Alternative syntaxes are accepted for a few register classes. */
1039 switch (type)
1040 {
1041 case REG_TYPE_MVF:
1042 case REG_TYPE_MVD:
1043 case REG_TYPE_MVFX:
1044 case REG_TYPE_MVDX:
1045 /* Generic coprocessor register names are allowed for these. */
79134647 1046 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1047 return reg->number;
1048 break;
69b97547 1049
c19d1205
ZW
1050 case REG_TYPE_CP:
1051 /* For backward compatibility, a bare number is valid here. */
1052 {
1053 unsigned long processor = strtoul (start, ccp, 10);
1054 if (*ccp != start && processor <= 15)
1055 return processor;
1056 }
6057a28f 1057
c19d1205
ZW
1058 case REG_TYPE_MMXWC:
1059 /* WC includes WCG. ??? I'm not sure this is true for all
1060 instructions that take WC registers. */
79134647 1061 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1062 return reg->number;
6057a28f 1063 break;
c19d1205 1064
6057a28f 1065 default:
c19d1205 1066 break;
6057a28f
NC
1067 }
1068
dcbf9037
JB
1069 return FAIL;
1070}
1071
1072/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1073 return value is the register number or FAIL. */
1074
1075static int
1076arm_reg_parse (char **ccp, enum arm_reg_type type)
1077{
1078 char *start = *ccp;
1079 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1080 int ret;
1081
1082 /* Do not allow a scalar (reg+index) to parse as a register. */
1083 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1084 return FAIL;
1085
1086 if (reg && reg->type == type)
1087 return reg->number;
1088
1089 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1090 return ret;
1091
c19d1205
ZW
1092 *ccp = start;
1093 return FAIL;
1094}
69b97547 1095
dcbf9037
JB
1096/* Parse a Neon type specifier. *STR should point at the leading '.'
1097 character. Does no verification at this stage that the type fits the opcode
1098 properly. E.g.,
1099
1100 .i32.i32.s16
1101 .s32.f32
1102 .u16
1103
1104 Can all be legally parsed by this function.
1105
1106 Fills in neon_type struct pointer with parsed information, and updates STR
1107 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1108 type, FAIL if not. */
1109
1110static int
1111parse_neon_type (struct neon_type *type, char **str)
1112{
1113 char *ptr = *str;
1114
1115 if (type)
1116 type->elems = 0;
1117
1118 while (type->elems < NEON_MAX_TYPE_ELS)
1119 {
1120 enum neon_el_type thistype = NT_untyped;
1121 unsigned thissize = -1u;
1122
1123 if (*ptr != '.')
1124 break;
1125
1126 ptr++;
1127
1128 /* Just a size without an explicit type. */
1129 if (ISDIGIT (*ptr))
1130 goto parsesize;
1131
1132 switch (TOLOWER (*ptr))
1133 {
1134 case 'i': thistype = NT_integer; break;
1135 case 'f': thistype = NT_float; break;
1136 case 'p': thistype = NT_poly; break;
1137 case 's': thistype = NT_signed; break;
1138 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1139 case 'd':
1140 thistype = NT_float;
1141 thissize = 64;
1142 ptr++;
1143 goto done;
dcbf9037
JB
1144 default:
1145 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1146 return FAIL;
1147 }
1148
1149 ptr++;
1150
1151 /* .f is an abbreviation for .f32. */
1152 if (thistype == NT_float && !ISDIGIT (*ptr))
1153 thissize = 32;
1154 else
1155 {
1156 parsesize:
1157 thissize = strtoul (ptr, &ptr, 10);
1158
1159 if (thissize != 8 && thissize != 16 && thissize != 32
1160 && thissize != 64)
1161 {
1162 as_bad (_("bad size %d in type specifier"), thissize);
1163 return FAIL;
1164 }
1165 }
1166
037e8744 1167 done:
dcbf9037
JB
1168 if (type)
1169 {
1170 type->el[type->elems].type = thistype;
1171 type->el[type->elems].size = thissize;
1172 type->elems++;
1173 }
1174 }
1175
1176 /* Empty/missing type is not a successful parse. */
1177 if (type->elems == 0)
1178 return FAIL;
1179
1180 *str = ptr;
1181
1182 return SUCCESS;
1183}
1184
1185/* Errors may be set multiple times during parsing or bit encoding
1186 (particularly in the Neon bits), but usually the earliest error which is set
1187 will be the most meaningful. Avoid overwriting it with later (cascading)
1188 errors by calling this function. */
1189
1190static void
1191first_error (const char *err)
1192{
1193 if (!inst.error)
1194 inst.error = err;
1195}
1196
1197/* Parse a single type, e.g. ".s32", leading period included. */
1198static int
1199parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1200{
1201 char *str = *ccp;
1202 struct neon_type optype;
1203
1204 if (*str == '.')
1205 {
1206 if (parse_neon_type (&optype, &str) == SUCCESS)
1207 {
1208 if (optype.elems == 1)
1209 *vectype = optype.el[0];
1210 else
1211 {
1212 first_error (_("only one type should be specified for operand"));
1213 return FAIL;
1214 }
1215 }
1216 else
1217 {
1218 first_error (_("vector type expected"));
1219 return FAIL;
1220 }
1221 }
1222 else
1223 return FAIL;
1224
1225 *ccp = str;
1226
1227 return SUCCESS;
1228}
1229
1230/* Special meanings for indices (which have a range of 0-7), which will fit into
1231 a 4-bit integer. */
1232
1233#define NEON_ALL_LANES 15
1234#define NEON_INTERLEAVE_LANES 14
1235
1236/* Parse either a register or a scalar, with an optional type. Return the
1237 register number, and optionally fill in the actual type of the register
1238 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1239 type/index information in *TYPEINFO. */
1240
1241static int
1242parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1243 enum arm_reg_type *rtype,
1244 struct neon_typed_alias *typeinfo)
1245{
1246 char *str = *ccp;
1247 struct reg_entry *reg = arm_reg_parse_multi (&str);
1248 struct neon_typed_alias atype;
1249 struct neon_type_el parsetype;
1250
1251 atype.defined = 0;
1252 atype.index = -1;
1253 atype.eltype.type = NT_invtype;
1254 atype.eltype.size = -1;
1255
1256 /* Try alternate syntax for some types of register. Note these are mutually
1257 exclusive with the Neon syntax extensions. */
1258 if (reg == NULL)
1259 {
1260 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1261 if (altreg != FAIL)
1262 *ccp = str;
1263 if (typeinfo)
1264 *typeinfo = atype;
1265 return altreg;
1266 }
1267
037e8744
JB
1268 /* Undo polymorphism when a set of register types may be accepted. */
1269 if ((type == REG_TYPE_NDQ
1270 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1271 || (type == REG_TYPE_VFSD
1272 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1273 || (type == REG_TYPE_NSDQ
1274 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
f512f76f
NC
1275 || reg->type == REG_TYPE_NQ))
1276 || (type == REG_TYPE_MMXWC
1277 && (reg->type == REG_TYPE_MMXWCG)))
dcbf9037
JB
1278 type = reg->type;
1279
1280 if (type != reg->type)
1281 return FAIL;
1282
1283 if (reg->neon)
1284 atype = *reg->neon;
1285
1286 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1287 {
1288 if ((atype.defined & NTA_HASTYPE) != 0)
1289 {
1290 first_error (_("can't redefine type for operand"));
1291 return FAIL;
1292 }
1293 atype.defined |= NTA_HASTYPE;
1294 atype.eltype = parsetype;
1295 }
1296
1297 if (skip_past_char (&str, '[') == SUCCESS)
1298 {
1299 if (type != REG_TYPE_VFD)
1300 {
1301 first_error (_("only D registers may be indexed"));
1302 return FAIL;
1303 }
1304
1305 if ((atype.defined & NTA_HASINDEX) != 0)
1306 {
1307 first_error (_("can't change index for operand"));
1308 return FAIL;
1309 }
1310
1311 atype.defined |= NTA_HASINDEX;
1312
1313 if (skip_past_char (&str, ']') == SUCCESS)
1314 atype.index = NEON_ALL_LANES;
1315 else
1316 {
1317 expressionS exp;
1318
1319 my_get_expression (&exp, &str, GE_NO_PREFIX);
1320
1321 if (exp.X_op != O_constant)
1322 {
1323 first_error (_("constant expression required"));
1324 return FAIL;
1325 }
1326
1327 if (skip_past_char (&str, ']') == FAIL)
1328 return FAIL;
1329
1330 atype.index = exp.X_add_number;
1331 }
1332 }
1333
1334 if (typeinfo)
1335 *typeinfo = atype;
1336
1337 if (rtype)
1338 *rtype = type;
1339
1340 *ccp = str;
1341
1342 return reg->number;
1343}
1344
1345/* Like arm_reg_parse, but allow allow the following extra features:
1346 - If RTYPE is non-zero, return the (possibly restricted) type of the
1347 register (e.g. Neon double or quad reg when either has been requested).
1348 - If this is a Neon vector type with additional type information, fill
1349 in the struct pointed to by VECTYPE (if non-NULL).
1350 This function will fault on encountering a scalar.
1351*/
1352
1353static int
1354arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1355 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1356{
1357 struct neon_typed_alias atype;
1358 char *str = *ccp;
1359 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1360
1361 if (reg == FAIL)
1362 return FAIL;
1363
1364 /* Do not allow a scalar (reg+index) to parse as a register. */
1365 if ((atype.defined & NTA_HASINDEX) != 0)
1366 {
1367 first_error (_("register operand expected, but got scalar"));
1368 return FAIL;
1369 }
1370
1371 if (vectype)
1372 *vectype = atype.eltype;
1373
1374 *ccp = str;
1375
1376 return reg;
1377}
1378
1379#define NEON_SCALAR_REG(X) ((X) >> 4)
1380#define NEON_SCALAR_INDEX(X) ((X) & 15)
1381
5287ad62
JB
1382/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1383 have enough information to be able to do a good job bounds-checking. So, we
1384 just do easy checks here, and do further checks later. */
1385
1386static int
dcbf9037 1387parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1388{
dcbf9037 1389 int reg;
5287ad62 1390 char *str = *ccp;
dcbf9037 1391 struct neon_typed_alias atype;
5287ad62 1392
dcbf9037 1393 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5287ad62 1394
dcbf9037 1395 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62
JB
1396 return FAIL;
1397
dcbf9037 1398 if (atype.index == NEON_ALL_LANES)
5287ad62 1399 {
dcbf9037 1400 first_error (_("scalar must have an index"));
5287ad62
JB
1401 return FAIL;
1402 }
dcbf9037 1403 else if (atype.index >= 64 / elsize)
5287ad62 1404 {
dcbf9037 1405 first_error (_("scalar index out of range"));
5287ad62
JB
1406 return FAIL;
1407 }
1408
dcbf9037
JB
1409 if (type)
1410 *type = atype.eltype;
5287ad62 1411
5287ad62
JB
1412 *ccp = str;
1413
dcbf9037 1414 return reg * 16 + atype.index;
5287ad62
JB
1415}
1416
c19d1205
ZW
1417/* Parse an ARM register list. Returns the bitmask, or FAIL. */
1418static long
1419parse_reg_list (char ** strp)
1420{
1421 char * str = * strp;
1422 long range = 0;
1423 int another_range;
a737bd4d 1424
c19d1205
ZW
1425 /* We come back here if we get ranges concatenated by '+' or '|'. */
1426 do
6057a28f 1427 {
c19d1205 1428 another_range = 0;
a737bd4d 1429
c19d1205
ZW
1430 if (*str == '{')
1431 {
1432 int in_range = 0;
1433 int cur_reg = -1;
a737bd4d 1434
c19d1205
ZW
1435 str++;
1436 do
1437 {
1438 int reg;
6057a28f 1439
dcbf9037 1440 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1441 {
dcbf9037 1442 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1443 return FAIL;
1444 }
a737bd4d 1445
c19d1205
ZW
1446 if (in_range)
1447 {
1448 int i;
a737bd4d 1449
c19d1205
ZW
1450 if (reg <= cur_reg)
1451 {
dcbf9037 1452 first_error (_("bad range in register list"));
c19d1205
ZW
1453 return FAIL;
1454 }
40a18ebd 1455
c19d1205
ZW
1456 for (i = cur_reg + 1; i < reg; i++)
1457 {
1458 if (range & (1 << i))
1459 as_tsktsk
1460 (_("Warning: duplicated register (r%d) in register list"),
1461 i);
1462 else
1463 range |= 1 << i;
1464 }
1465 in_range = 0;
1466 }
a737bd4d 1467
c19d1205
ZW
1468 if (range & (1 << reg))
1469 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1470 reg);
1471 else if (reg <= cur_reg)
1472 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1473
c19d1205
ZW
1474 range |= 1 << reg;
1475 cur_reg = reg;
1476 }
1477 while (skip_past_comma (&str) != FAIL
1478 || (in_range = 1, *str++ == '-'));
1479 str--;
a737bd4d 1480
c19d1205
ZW
1481 if (*str++ != '}')
1482 {
dcbf9037 1483 first_error (_("missing `}'"));
c19d1205
ZW
1484 return FAIL;
1485 }
1486 }
1487 else
1488 {
1489 expressionS expr;
40a18ebd 1490
c19d1205
ZW
1491 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
1492 return FAIL;
40a18ebd 1493
c19d1205
ZW
1494 if (expr.X_op == O_constant)
1495 {
1496 if (expr.X_add_number
1497 != (expr.X_add_number & 0x0000ffff))
1498 {
1499 inst.error = _("invalid register mask");
1500 return FAIL;
1501 }
a737bd4d 1502
c19d1205
ZW
1503 if ((range & expr.X_add_number) != 0)
1504 {
1505 int regno = range & expr.X_add_number;
a737bd4d 1506
c19d1205
ZW
1507 regno &= -regno;
1508 regno = (1 << regno) - 1;
1509 as_tsktsk
1510 (_("Warning: duplicated register (r%d) in register list"),
1511 regno);
1512 }
a737bd4d 1513
c19d1205
ZW
1514 range |= expr.X_add_number;
1515 }
1516 else
1517 {
1518 if (inst.reloc.type != 0)
1519 {
1520 inst.error = _("expression too complex");
1521 return FAIL;
1522 }
a737bd4d 1523
c19d1205
ZW
1524 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1525 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1526 inst.reloc.pc_rel = 0;
1527 }
1528 }
a737bd4d 1529
c19d1205
ZW
1530 if (*str == '|' || *str == '+')
1531 {
1532 str++;
1533 another_range = 1;
1534 }
a737bd4d 1535 }
c19d1205 1536 while (another_range);
a737bd4d 1537
c19d1205
ZW
1538 *strp = str;
1539 return range;
a737bd4d
NC
1540}
1541
5287ad62
JB
1542/* Types of registers in a list. */
1543
1544enum reg_list_els
1545{
1546 REGLIST_VFP_S,
1547 REGLIST_VFP_D,
1548 REGLIST_NEON_D
1549};
1550
c19d1205
ZW
1551/* Parse a VFP register list. If the string is invalid return FAIL.
1552 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1553 register. Parses registers of type ETYPE.
1554 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1555 - Q registers can be used to specify pairs of D registers
1556 - { } can be omitted from around a singleton register list
1557 FIXME: This is not implemented, as it would require backtracking in
1558 some cases, e.g.:
1559 vtbl.8 d3,d4,d5
1560 This could be done (the meaning isn't really ambiguous), but doesn't
1561 fit in well with the current parsing framework.
dcbf9037
JB
1562 - 32 D registers may be used (also true for VFPv3).
1563 FIXME: Types are ignored in these register lists, which is probably a
1564 bug. */
6057a28f 1565
c19d1205 1566static int
037e8744 1567parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1568{
037e8744 1569 char *str = *ccp;
c19d1205
ZW
1570 int base_reg;
1571 int new_base;
5287ad62
JB
1572 enum arm_reg_type regtype = 0;
1573 int max_regs = 0;
c19d1205
ZW
1574 int count = 0;
1575 int warned = 0;
1576 unsigned long mask = 0;
a737bd4d 1577 int i;
6057a28f 1578
037e8744 1579 if (*str != '{')
5287ad62
JB
1580 {
1581 inst.error = _("expecting {");
1582 return FAIL;
1583 }
6057a28f 1584
037e8744 1585 str++;
6057a28f 1586
5287ad62 1587 switch (etype)
c19d1205 1588 {
5287ad62 1589 case REGLIST_VFP_S:
c19d1205
ZW
1590 regtype = REG_TYPE_VFS;
1591 max_regs = 32;
5287ad62
JB
1592 break;
1593
1594 case REGLIST_VFP_D:
1595 regtype = REG_TYPE_VFD;
b7fc2769
JB
1596 break;
1597
1598 case REGLIST_NEON_D:
1599 regtype = REG_TYPE_NDQ;
1600 break;
1601 }
1602
1603 if (etype != REGLIST_VFP_S)
1604 {
5287ad62
JB
1605 /* VFPv3 allows 32 D registers. */
1606 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
1607 {
1608 max_regs = 32;
1609 if (thumb_mode)
1610 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1611 fpu_vfp_ext_v3);
1612 else
1613 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1614 fpu_vfp_ext_v3);
1615 }
1616 else
1617 max_regs = 16;
c19d1205 1618 }
6057a28f 1619
c19d1205 1620 base_reg = max_regs;
a737bd4d 1621
c19d1205
ZW
1622 do
1623 {
5287ad62 1624 int setmask = 1, addregs = 1;
dcbf9037 1625
037e8744 1626 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1627
c19d1205 1628 if (new_base == FAIL)
a737bd4d 1629 {
dcbf9037 1630 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1631 return FAIL;
1632 }
dcbf9037 1633
b7fc2769
JB
1634 if (new_base >= max_regs)
1635 {
1636 first_error (_("register out of range in list"));
1637 return FAIL;
1638 }
1639
5287ad62
JB
1640 /* Note: a value of 2 * n is returned for the register Q<n>. */
1641 if (regtype == REG_TYPE_NQ)
1642 {
1643 setmask = 3;
1644 addregs = 2;
1645 }
1646
c19d1205
ZW
1647 if (new_base < base_reg)
1648 base_reg = new_base;
a737bd4d 1649
5287ad62 1650 if (mask & (setmask << new_base))
c19d1205 1651 {
dcbf9037 1652 first_error (_("invalid register list"));
c19d1205 1653 return FAIL;
a737bd4d 1654 }
a737bd4d 1655
c19d1205
ZW
1656 if ((mask >> new_base) != 0 && ! warned)
1657 {
1658 as_tsktsk (_("register list not in ascending order"));
1659 warned = 1;
1660 }
0bbf2aa4 1661
5287ad62
JB
1662 mask |= setmask << new_base;
1663 count += addregs;
0bbf2aa4 1664
037e8744 1665 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1666 {
1667 int high_range;
0bbf2aa4 1668
037e8744 1669 str++;
0bbf2aa4 1670
037e8744 1671 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1672 == FAIL)
c19d1205
ZW
1673 {
1674 inst.error = gettext (reg_expected_msgs[regtype]);
1675 return FAIL;
1676 }
0bbf2aa4 1677
b7fc2769
JB
1678 if (high_range >= max_regs)
1679 {
1680 first_error (_("register out of range in list"));
1681 return FAIL;
1682 }
1683
5287ad62
JB
1684 if (regtype == REG_TYPE_NQ)
1685 high_range = high_range + 1;
1686
c19d1205
ZW
1687 if (high_range <= new_base)
1688 {
1689 inst.error = _("register range not in ascending order");
1690 return FAIL;
1691 }
0bbf2aa4 1692
5287ad62 1693 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1694 {
5287ad62 1695 if (mask & (setmask << new_base))
0bbf2aa4 1696 {
c19d1205
ZW
1697 inst.error = _("invalid register list");
1698 return FAIL;
0bbf2aa4 1699 }
c19d1205 1700
5287ad62
JB
1701 mask |= setmask << new_base;
1702 count += addregs;
0bbf2aa4 1703 }
0bbf2aa4 1704 }
0bbf2aa4 1705 }
037e8744 1706 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1707
037e8744 1708 str++;
0bbf2aa4 1709
c19d1205
ZW
1710 /* Sanity check -- should have raised a parse error above. */
1711 if (count == 0 || count > max_regs)
1712 abort ();
1713
1714 *pbase = base_reg;
1715
1716 /* Final test -- the registers must be consecutive. */
1717 mask >>= base_reg;
1718 for (i = 0; i < count; i++)
1719 {
1720 if ((mask & (1u << i)) == 0)
1721 {
1722 inst.error = _("non-contiguous register range");
1723 return FAIL;
1724 }
1725 }
1726
037e8744
JB
1727 *ccp = str;
1728
c19d1205 1729 return count;
b99bd4ef
NC
1730}
1731
dcbf9037
JB
1732/* True if two alias types are the same. */
1733
1734static int
1735neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1736{
1737 if (!a && !b)
1738 return 1;
1739
1740 if (!a || !b)
1741 return 0;
1742
1743 if (a->defined != b->defined)
1744 return 0;
1745
1746 if ((a->defined & NTA_HASTYPE) != 0
1747 && (a->eltype.type != b->eltype.type
1748 || a->eltype.size != b->eltype.size))
1749 return 0;
1750
1751 if ((a->defined & NTA_HASINDEX) != 0
1752 && (a->index != b->index))
1753 return 0;
1754
1755 return 1;
1756}
1757
5287ad62
JB
1758/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1759 The base register is put in *PBASE.
dcbf9037 1760 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1761 the return value.
1762 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1763 Bits [6:5] encode the list length (minus one).
1764 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1765
5287ad62 1766#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1767#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1768#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1769
1770static int
dcbf9037
JB
1771parse_neon_el_struct_list (char **str, unsigned *pbase,
1772 struct neon_type_el *eltype)
5287ad62
JB
1773{
1774 char *ptr = *str;
1775 int base_reg = -1;
1776 int reg_incr = -1;
1777 int count = 0;
1778 int lane = -1;
1779 int leading_brace = 0;
1780 enum arm_reg_type rtype = REG_TYPE_NDQ;
1781 int addregs = 1;
1782 const char *const incr_error = "register stride must be 1 or 2";
1783 const char *const type_error = "mismatched element/structure types in list";
dcbf9037 1784 struct neon_typed_alias firsttype;
5287ad62
JB
1785
1786 if (skip_past_char (&ptr, '{') == SUCCESS)
1787 leading_brace = 1;
1788
1789 do
1790 {
dcbf9037
JB
1791 struct neon_typed_alias atype;
1792 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1793
5287ad62
JB
1794 if (getreg == FAIL)
1795 {
dcbf9037 1796 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1797 return FAIL;
1798 }
1799
1800 if (base_reg == -1)
1801 {
1802 base_reg = getreg;
1803 if (rtype == REG_TYPE_NQ)
1804 {
1805 reg_incr = 1;
1806 addregs = 2;
1807 }
dcbf9037 1808 firsttype = atype;
5287ad62
JB
1809 }
1810 else if (reg_incr == -1)
1811 {
1812 reg_incr = getreg - base_reg;
1813 if (reg_incr < 1 || reg_incr > 2)
1814 {
dcbf9037 1815 first_error (_(incr_error));
5287ad62
JB
1816 return FAIL;
1817 }
1818 }
1819 else if (getreg != base_reg + reg_incr * count)
1820 {
dcbf9037
JB
1821 first_error (_(incr_error));
1822 return FAIL;
1823 }
1824
1825 if (!neon_alias_types_same (&atype, &firsttype))
1826 {
1827 first_error (_(type_error));
5287ad62
JB
1828 return FAIL;
1829 }
1830
1831 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1832 modes. */
1833 if (ptr[0] == '-')
1834 {
dcbf9037 1835 struct neon_typed_alias htype;
5287ad62
JB
1836 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1837 if (lane == -1)
1838 lane = NEON_INTERLEAVE_LANES;
1839 else if (lane != NEON_INTERLEAVE_LANES)
1840 {
dcbf9037 1841 first_error (_(type_error));
5287ad62
JB
1842 return FAIL;
1843 }
1844 if (reg_incr == -1)
1845 reg_incr = 1;
1846 else if (reg_incr != 1)
1847 {
dcbf9037 1848 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1849 return FAIL;
1850 }
1851 ptr++;
dcbf9037 1852 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
1853 if (hireg == FAIL)
1854 {
dcbf9037
JB
1855 first_error (_(reg_expected_msgs[rtype]));
1856 return FAIL;
1857 }
1858 if (!neon_alias_types_same (&htype, &firsttype))
1859 {
1860 first_error (_(type_error));
5287ad62
JB
1861 return FAIL;
1862 }
1863 count += hireg + dregs - getreg;
1864 continue;
1865 }
1866
1867 /* If we're using Q registers, we can't use [] or [n] syntax. */
1868 if (rtype == REG_TYPE_NQ)
1869 {
1870 count += 2;
1871 continue;
1872 }
1873
dcbf9037 1874 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 1875 {
dcbf9037
JB
1876 if (lane == -1)
1877 lane = atype.index;
1878 else if (lane != atype.index)
5287ad62 1879 {
dcbf9037
JB
1880 first_error (_(type_error));
1881 return FAIL;
5287ad62
JB
1882 }
1883 }
1884 else if (lane == -1)
1885 lane = NEON_INTERLEAVE_LANES;
1886 else if (lane != NEON_INTERLEAVE_LANES)
1887 {
dcbf9037 1888 first_error (_(type_error));
5287ad62
JB
1889 return FAIL;
1890 }
1891 count++;
1892 }
1893 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
1894
1895 /* No lane set by [x]. We must be interleaving structures. */
1896 if (lane == -1)
1897 lane = NEON_INTERLEAVE_LANES;
1898
1899 /* Sanity check. */
1900 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
1901 || (count > 1 && reg_incr == -1))
1902 {
dcbf9037 1903 first_error (_("error parsing element/structure list"));
5287ad62
JB
1904 return FAIL;
1905 }
1906
1907 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
1908 {
dcbf9037 1909 first_error (_("expected }"));
5287ad62
JB
1910 return FAIL;
1911 }
1912
1913 if (reg_incr == -1)
1914 reg_incr = 1;
1915
dcbf9037
JB
1916 if (eltype)
1917 *eltype = firsttype.eltype;
1918
5287ad62
JB
1919 *pbase = base_reg;
1920 *str = ptr;
1921
1922 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
1923}
1924
c19d1205
ZW
1925/* Parse an explicit relocation suffix on an expression. This is
1926 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
1927 arm_reloc_hsh contains no entries, so this function can only
1928 succeed if there is no () after the word. Returns -1 on error,
1929 BFD_RELOC_UNUSED if there wasn't any suffix. */
1930static int
1931parse_reloc (char **str)
b99bd4ef 1932{
c19d1205
ZW
1933 struct reloc_entry *r;
1934 char *p, *q;
b99bd4ef 1935
c19d1205
ZW
1936 if (**str != '(')
1937 return BFD_RELOC_UNUSED;
b99bd4ef 1938
c19d1205
ZW
1939 p = *str + 1;
1940 q = p;
1941
1942 while (*q && *q != ')' && *q != ',')
1943 q++;
1944 if (*q != ')')
1945 return -1;
1946
1947 if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
1948 return -1;
1949
1950 *str = q + 1;
1951 return r->reloc;
b99bd4ef
NC
1952}
1953
c19d1205
ZW
1954/* Directives: register aliases. */
1955
dcbf9037 1956static struct reg_entry *
c19d1205 1957insert_reg_alias (char *str, int number, int type)
b99bd4ef 1958{
c19d1205
ZW
1959 struct reg_entry *new;
1960 const char *name;
b99bd4ef 1961
c19d1205
ZW
1962 if ((new = hash_find (arm_reg_hsh, str)) != 0)
1963 {
1964 if (new->builtin)
1965 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 1966
c19d1205
ZW
1967 /* Only warn about a redefinition if it's not defined as the
1968 same register. */
1969 else if (new->number != number || new->type != type)
1970 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 1971
dcbf9037 1972 return 0;
c19d1205 1973 }
b99bd4ef 1974
c19d1205
ZW
1975 name = xstrdup (str);
1976 new = xmalloc (sizeof (struct reg_entry));
b99bd4ef 1977
c19d1205
ZW
1978 new->name = name;
1979 new->number = number;
1980 new->type = type;
1981 new->builtin = FALSE;
dcbf9037 1982 new->neon = NULL;
b99bd4ef 1983
c19d1205
ZW
1984 if (hash_insert (arm_reg_hsh, name, (PTR) new))
1985 abort ();
dcbf9037
JB
1986
1987 return new;
1988}
1989
1990static void
1991insert_neon_reg_alias (char *str, int number, int type,
1992 struct neon_typed_alias *atype)
1993{
1994 struct reg_entry *reg = insert_reg_alias (str, number, type);
1995
1996 if (!reg)
1997 {
1998 first_error (_("attempt to redefine typed alias"));
1999 return;
2000 }
2001
2002 if (atype)
2003 {
2004 reg->neon = xmalloc (sizeof (struct neon_typed_alias));
2005 *reg->neon = *atype;
2006 }
c19d1205 2007}
b99bd4ef 2008
c19d1205 2009/* Look for the .req directive. This is of the form:
b99bd4ef 2010
c19d1205 2011 new_register_name .req existing_register_name
b99bd4ef 2012
c19d1205
ZW
2013 If we find one, or if it looks sufficiently like one that we want to
2014 handle any error here, return non-zero. Otherwise return zero. */
b99bd4ef 2015
c19d1205
ZW
2016static int
2017create_register_alias (char * newname, char *p)
2018{
2019 struct reg_entry *old;
2020 char *oldname, *nbuf;
2021 size_t nlen;
b99bd4ef 2022
c19d1205
ZW
2023 /* The input scrubber ensures that whitespace after the mnemonic is
2024 collapsed to single spaces. */
2025 oldname = p;
2026 if (strncmp (oldname, " .req ", 6) != 0)
2027 return 0;
b99bd4ef 2028
c19d1205
ZW
2029 oldname += 6;
2030 if (*oldname == '\0')
2031 return 0;
b99bd4ef 2032
c19d1205
ZW
2033 old = hash_find (arm_reg_hsh, oldname);
2034 if (!old)
b99bd4ef 2035 {
c19d1205
ZW
2036 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2037 return 1;
b99bd4ef
NC
2038 }
2039
c19d1205
ZW
2040 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2041 the desired alias name, and p points to its end. If not, then
2042 the desired alias name is in the global original_case_string. */
2043#ifdef TC_CASE_SENSITIVE
2044 nlen = p - newname;
2045#else
2046 newname = original_case_string;
2047 nlen = strlen (newname);
2048#endif
b99bd4ef 2049
c19d1205
ZW
2050 nbuf = alloca (nlen + 1);
2051 memcpy (nbuf, newname, nlen);
2052 nbuf[nlen] = '\0';
b99bd4ef 2053
c19d1205
ZW
2054 /* Create aliases under the new name as stated; an all-lowercase
2055 version of the new name; and an all-uppercase version of the new
2056 name. */
2057 insert_reg_alias (nbuf, old->number, old->type);
b99bd4ef 2058
c19d1205
ZW
2059 for (p = nbuf; *p; p++)
2060 *p = TOUPPER (*p);
2061
2062 if (strncmp (nbuf, newname, nlen))
2063 insert_reg_alias (nbuf, old->number, old->type);
2064
2065 for (p = nbuf; *p; p++)
2066 *p = TOLOWER (*p);
2067
2068 if (strncmp (nbuf, newname, nlen))
2069 insert_reg_alias (nbuf, old->number, old->type);
2070
2071 return 1;
b99bd4ef
NC
2072}
2073
dcbf9037
JB
2074/* Create a Neon typed/indexed register alias using directives, e.g.:
2075 X .dn d5.s32[1]
2076 Y .qn 6.s16
2077 Z .dn d7
2078 T .dn Z[0]
2079 These typed registers can be used instead of the types specified after the
2080 Neon mnemonic, so long as all operands given have types. Types can also be
2081 specified directly, e.g.:
2082 vadd d0.s32, d1.s32, d2.s32
2083*/
2084
2085static int
2086create_neon_reg_alias (char *newname, char *p)
2087{
2088 enum arm_reg_type basetype;
2089 struct reg_entry *basereg;
2090 struct reg_entry mybasereg;
2091 struct neon_type ntype;
2092 struct neon_typed_alias typeinfo;
2093 char *namebuf, *nameend;
2094 int namelen;
2095
2096 typeinfo.defined = 0;
2097 typeinfo.eltype.type = NT_invtype;
2098 typeinfo.eltype.size = -1;
2099 typeinfo.index = -1;
2100
2101 nameend = p;
2102
2103 if (strncmp (p, " .dn ", 5) == 0)
2104 basetype = REG_TYPE_VFD;
2105 else if (strncmp (p, " .qn ", 5) == 0)
2106 basetype = REG_TYPE_NQ;
2107 else
2108 return 0;
2109
2110 p += 5;
2111
2112 if (*p == '\0')
2113 return 0;
2114
2115 basereg = arm_reg_parse_multi (&p);
2116
2117 if (basereg && basereg->type != basetype)
2118 {
2119 as_bad (_("bad type for register"));
2120 return 0;
2121 }
2122
2123 if (basereg == NULL)
2124 {
2125 expressionS exp;
2126 /* Try parsing as an integer. */
2127 my_get_expression (&exp, &p, GE_NO_PREFIX);
2128 if (exp.X_op != O_constant)
2129 {
2130 as_bad (_("expression must be constant"));
2131 return 0;
2132 }
2133 basereg = &mybasereg;
2134 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2135 : exp.X_add_number;
2136 basereg->neon = 0;
2137 }
2138
2139 if (basereg->neon)
2140 typeinfo = *basereg->neon;
2141
2142 if (parse_neon_type (&ntype, &p) == SUCCESS)
2143 {
2144 /* We got a type. */
2145 if (typeinfo.defined & NTA_HASTYPE)
2146 {
2147 as_bad (_("can't redefine the type of a register alias"));
2148 return 0;
2149 }
2150
2151 typeinfo.defined |= NTA_HASTYPE;
2152 if (ntype.elems != 1)
2153 {
2154 as_bad (_("you must specify a single type only"));
2155 return 0;
2156 }
2157 typeinfo.eltype = ntype.el[0];
2158 }
2159
2160 if (skip_past_char (&p, '[') == SUCCESS)
2161 {
2162 expressionS exp;
2163 /* We got a scalar index. */
2164
2165 if (typeinfo.defined & NTA_HASINDEX)
2166 {
2167 as_bad (_("can't redefine the index of a scalar alias"));
2168 return 0;
2169 }
2170
2171 my_get_expression (&exp, &p, GE_NO_PREFIX);
2172
2173 if (exp.X_op != O_constant)
2174 {
2175 as_bad (_("scalar index must be constant"));
2176 return 0;
2177 }
2178
2179 typeinfo.defined |= NTA_HASINDEX;
2180 typeinfo.index = exp.X_add_number;
2181
2182 if (skip_past_char (&p, ']') == FAIL)
2183 {
2184 as_bad (_("expecting ]"));
2185 return 0;
2186 }
2187 }
2188
2189 namelen = nameend - newname;
2190 namebuf = alloca (namelen + 1);
2191 strncpy (namebuf, newname, namelen);
2192 namebuf[namelen] = '\0';
2193
2194 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2195 typeinfo.defined != 0 ? &typeinfo : NULL);
2196
2197 /* Insert name in all uppercase. */
2198 for (p = namebuf; *p; p++)
2199 *p = TOUPPER (*p);
2200
2201 if (strncmp (namebuf, newname, namelen))
2202 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2203 typeinfo.defined != 0 ? &typeinfo : NULL);
2204
2205 /* Insert name in all lowercase. */
2206 for (p = namebuf; *p; p++)
2207 *p = TOLOWER (*p);
2208
2209 if (strncmp (namebuf, newname, namelen))
2210 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2211 typeinfo.defined != 0 ? &typeinfo : NULL);
2212
2213 return 1;
2214}
2215
c19d1205
ZW
2216/* Should never be called, as .req goes between the alias and the
2217 register name, not at the beginning of the line. */
b99bd4ef 2218static void
c19d1205 2219s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2220{
c19d1205
ZW
2221 as_bad (_("invalid syntax for .req directive"));
2222}
b99bd4ef 2223
dcbf9037
JB
2224static void
2225s_dn (int a ATTRIBUTE_UNUSED)
2226{
2227 as_bad (_("invalid syntax for .dn directive"));
2228}
2229
2230static void
2231s_qn (int a ATTRIBUTE_UNUSED)
2232{
2233 as_bad (_("invalid syntax for .qn directive"));
2234}
2235
c19d1205
ZW
2236/* The .unreq directive deletes an alias which was previously defined
2237 by .req. For example:
b99bd4ef 2238
c19d1205
ZW
2239 my_alias .req r11
2240 .unreq my_alias */
b99bd4ef
NC
2241
2242static void
c19d1205 2243s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2244{
c19d1205
ZW
2245 char * name;
2246 char saved_char;
b99bd4ef 2247
c19d1205
ZW
2248 name = input_line_pointer;
2249
2250 while (*input_line_pointer != 0
2251 && *input_line_pointer != ' '
2252 && *input_line_pointer != '\n')
2253 ++input_line_pointer;
2254
2255 saved_char = *input_line_pointer;
2256 *input_line_pointer = 0;
2257
2258 if (!*name)
2259 as_bad (_("invalid syntax for .unreq directive"));
2260 else
2261 {
2262 struct reg_entry *reg = hash_find (arm_reg_hsh, name);
2263
2264 if (!reg)
2265 as_bad (_("unknown register alias '%s'"), name);
2266 else if (reg->builtin)
2267 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2268 name);
2269 else
2270 {
2271 hash_delete (arm_reg_hsh, name);
2272 free ((char *) reg->name);
dcbf9037
JB
2273 if (reg->neon)
2274 free (reg->neon);
c19d1205
ZW
2275 free (reg);
2276 }
2277 }
b99bd4ef 2278
c19d1205 2279 *input_line_pointer = saved_char;
b99bd4ef
NC
2280 demand_empty_rest_of_line ();
2281}
2282
c19d1205
ZW
2283/* Directives: Instruction set selection. */
2284
2285#ifdef OBJ_ELF
2286/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2287 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2288 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2289 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2290
2291static enum mstate mapstate = MAP_UNDEFINED;
b99bd4ef 2292
e821645d 2293void
c19d1205 2294mapping_state (enum mstate state)
b99bd4ef 2295{
a737bd4d 2296 symbolS * symbolP;
c19d1205
ZW
2297 const char * symname;
2298 int type;
b99bd4ef 2299
c19d1205
ZW
2300 if (mapstate == state)
2301 /* The mapping symbol has already been emitted.
2302 There is nothing else to do. */
2303 return;
b99bd4ef 2304
c19d1205 2305 mapstate = state;
b99bd4ef 2306
c19d1205 2307 switch (state)
b99bd4ef 2308 {
c19d1205
ZW
2309 case MAP_DATA:
2310 symname = "$d";
2311 type = BSF_NO_FLAGS;
2312 break;
2313 case MAP_ARM:
2314 symname = "$a";
2315 type = BSF_NO_FLAGS;
2316 break;
2317 case MAP_THUMB:
2318 symname = "$t";
2319 type = BSF_NO_FLAGS;
2320 break;
2321 case MAP_UNDEFINED:
2322 return;
2323 default:
2324 abort ();
2325 }
2326
2327 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2328
2329 symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
2330 symbol_table_insert (symbolP);
2331 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2332
2333 switch (state)
2334 {
2335 case MAP_ARM:
2336 THUMB_SET_FUNC (symbolP, 0);
2337 ARM_SET_THUMB (symbolP, 0);
2338 ARM_SET_INTERWORK (symbolP, support_interwork);
2339 break;
2340
2341 case MAP_THUMB:
2342 THUMB_SET_FUNC (symbolP, 1);
2343 ARM_SET_THUMB (symbolP, 1);
2344 ARM_SET_INTERWORK (symbolP, support_interwork);
2345 break;
2346
2347 case MAP_DATA:
2348 default:
2349 return;
2350 }
2351}
2352#else
2353#define mapping_state(x) /* nothing */
2354#endif
2355
2356/* Find the real, Thumb encoded start of a Thumb function. */
2357
2358static symbolS *
2359find_real_start (symbolS * symbolP)
2360{
2361 char * real_start;
2362 const char * name = S_GET_NAME (symbolP);
2363 symbolS * new_target;
2364
2365 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2366#define STUB_NAME ".real_start_of"
2367
2368 if (name == NULL)
2369 abort ();
2370
37f6032b
ZW
2371 /* The compiler may generate BL instructions to local labels because
2372 it needs to perform a branch to a far away location. These labels
2373 do not have a corresponding ".real_start_of" label. We check
2374 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2375 the ".real_start_of" convention for nonlocal branches. */
2376 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2377 return symbolP;
2378
37f6032b 2379 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2380 new_target = symbol_find (real_start);
2381
2382 if (new_target == NULL)
2383 {
2384 as_warn ("Failed to find real start of function: %s\n", name);
2385 new_target = symbolP;
2386 }
2387
c19d1205
ZW
2388 return new_target;
2389}
2390
2391static void
2392opcode_select (int width)
2393{
2394 switch (width)
2395 {
2396 case 16:
2397 if (! thumb_mode)
2398 {
e74cfd16 2399 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2400 as_bad (_("selected processor does not support THUMB opcodes"));
2401
2402 thumb_mode = 1;
2403 /* No need to force the alignment, since we will have been
2404 coming from ARM mode, which is word-aligned. */
2405 record_alignment (now_seg, 1);
2406 }
2407 mapping_state (MAP_THUMB);
2408 break;
2409
2410 case 32:
2411 if (thumb_mode)
2412 {
e74cfd16 2413 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2414 as_bad (_("selected processor does not support ARM opcodes"));
2415
2416 thumb_mode = 0;
2417
2418 if (!need_pass_2)
2419 frag_align (2, 0, 0);
2420
2421 record_alignment (now_seg, 1);
2422 }
2423 mapping_state (MAP_ARM);
2424 break;
2425
2426 default:
2427 as_bad (_("invalid instruction size selected (%d)"), width);
2428 }
2429}
2430
2431static void
2432s_arm (int ignore ATTRIBUTE_UNUSED)
2433{
2434 opcode_select (32);
2435 demand_empty_rest_of_line ();
2436}
2437
2438static void
2439s_thumb (int ignore ATTRIBUTE_UNUSED)
2440{
2441 opcode_select (16);
2442 demand_empty_rest_of_line ();
2443}
2444
2445static void
2446s_code (int unused ATTRIBUTE_UNUSED)
2447{
2448 int temp;
2449
2450 temp = get_absolute_expression ();
2451 switch (temp)
2452 {
2453 case 16:
2454 case 32:
2455 opcode_select (temp);
2456 break;
2457
2458 default:
2459 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2460 }
2461}
2462
2463static void
2464s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2465{
2466 /* If we are not already in thumb mode go into it, EVEN if
2467 the target processor does not support thumb instructions.
2468 This is used by gcc/config/arm/lib1funcs.asm for example
2469 to compile interworking support functions even if the
2470 target processor should not support interworking. */
2471 if (! thumb_mode)
2472 {
2473 thumb_mode = 2;
2474 record_alignment (now_seg, 1);
2475 }
2476
2477 demand_empty_rest_of_line ();
2478}
2479
2480static void
2481s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2482{
2483 s_thumb (0);
2484
2485 /* The following label is the name/address of the start of a Thumb function.
2486 We need to know this for the interworking support. */
2487 label_is_thumb_function_name = TRUE;
2488}
2489
2490/* Perform a .set directive, but also mark the alias as
2491 being a thumb function. */
2492
2493static void
2494s_thumb_set (int equiv)
2495{
2496 /* XXX the following is a duplicate of the code for s_set() in read.c
2497 We cannot just call that code as we need to get at the symbol that
2498 is created. */
2499 char * name;
2500 char delim;
2501 char * end_name;
2502 symbolS * symbolP;
2503
2504 /* Especial apologies for the random logic:
2505 This just grew, and could be parsed much more simply!
2506 Dean - in haste. */
2507 name = input_line_pointer;
2508 delim = get_symbol_end ();
2509 end_name = input_line_pointer;
2510 *end_name = delim;
2511
2512 if (*input_line_pointer != ',')
2513 {
2514 *end_name = 0;
2515 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2516 *end_name = delim;
2517 ignore_rest_of_line ();
2518 return;
2519 }
2520
2521 input_line_pointer++;
2522 *end_name = 0;
2523
2524 if (name[0] == '.' && name[1] == '\0')
2525 {
2526 /* XXX - this should not happen to .thumb_set. */
2527 abort ();
2528 }
2529
2530 if ((symbolP = symbol_find (name)) == NULL
2531 && (symbolP = md_undefined_symbol (name)) == NULL)
2532 {
2533#ifndef NO_LISTING
2534 /* When doing symbol listings, play games with dummy fragments living
2535 outside the normal fragment chain to record the file and line info
c19d1205 2536 for this symbol. */
b99bd4ef
NC
2537 if (listing & LISTING_SYMBOLS)
2538 {
2539 extern struct list_info_struct * listing_tail;
a737bd4d 2540 fragS * dummy_frag = xmalloc (sizeof (fragS));
b99bd4ef
NC
2541
2542 memset (dummy_frag, 0, sizeof (fragS));
2543 dummy_frag->fr_type = rs_fill;
2544 dummy_frag->line = listing_tail;
2545 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2546 dummy_frag->fr_symbol = symbolP;
2547 }
2548 else
2549#endif
2550 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2551
2552#ifdef OBJ_COFF
2553 /* "set" symbols are local unless otherwise specified. */
2554 SF_SET_LOCAL (symbolP);
2555#endif /* OBJ_COFF */
2556 } /* Make a new symbol. */
2557
2558 symbol_table_insert (symbolP);
2559
2560 * end_name = delim;
2561
2562 if (equiv
2563 && S_IS_DEFINED (symbolP)
2564 && S_GET_SEGMENT (symbolP) != reg_section)
2565 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2566
2567 pseudo_set (symbolP);
2568
2569 demand_empty_rest_of_line ();
2570
c19d1205 2571 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2572
2573 THUMB_SET_FUNC (symbolP, 1);
2574 ARM_SET_THUMB (symbolP, 1);
2575#if defined OBJ_ELF || defined OBJ_COFF
2576 ARM_SET_INTERWORK (symbolP, support_interwork);
2577#endif
2578}
2579
c19d1205 2580/* Directives: Mode selection. */
b99bd4ef 2581
c19d1205
ZW
2582/* .syntax [unified|divided] - choose the new unified syntax
2583 (same for Arm and Thumb encoding, modulo slight differences in what
2584 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2585static void
c19d1205 2586s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2587{
c19d1205
ZW
2588 char *name, delim;
2589
2590 name = input_line_pointer;
2591 delim = get_symbol_end ();
2592
2593 if (!strcasecmp (name, "unified"))
2594 unified_syntax = TRUE;
2595 else if (!strcasecmp (name, "divided"))
2596 unified_syntax = FALSE;
2597 else
2598 {
2599 as_bad (_("unrecognized syntax mode \"%s\""), name);
2600 return;
2601 }
2602 *input_line_pointer = delim;
b99bd4ef
NC
2603 demand_empty_rest_of_line ();
2604}
2605
c19d1205
ZW
2606/* Directives: sectioning and alignment. */
2607
2608/* Same as s_align_ptwo but align 0 => align 2. */
2609
b99bd4ef 2610static void
c19d1205 2611s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2612{
a737bd4d 2613 int temp;
c19d1205
ZW
2614 long temp_fill;
2615 long max_alignment = 15;
b99bd4ef
NC
2616
2617 temp = get_absolute_expression ();
c19d1205
ZW
2618 if (temp > max_alignment)
2619 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2620 else if (temp < 0)
b99bd4ef 2621 {
c19d1205
ZW
2622 as_bad (_("alignment negative. 0 assumed."));
2623 temp = 0;
2624 }
b99bd4ef 2625
c19d1205
ZW
2626 if (*input_line_pointer == ',')
2627 {
2628 input_line_pointer++;
2629 temp_fill = get_absolute_expression ();
b99bd4ef 2630 }
c19d1205
ZW
2631 else
2632 temp_fill = 0;
b99bd4ef 2633
c19d1205
ZW
2634 if (!temp)
2635 temp = 2;
b99bd4ef 2636
c19d1205
ZW
2637 /* Only make a frag if we HAVE to. */
2638 if (temp && !need_pass_2)
2639 frag_align (temp, (int) temp_fill, 0);
2640 demand_empty_rest_of_line ();
2641
2642 record_alignment (now_seg, temp);
b99bd4ef
NC
2643}
2644
c19d1205
ZW
2645static void
2646s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2647{
c19d1205
ZW
2648 /* We don't support putting frags in the BSS segment, we fake it by
2649 marking in_bss, then looking at s_skip for clues. */
2650 subseg_set (bss_section, 0);
2651 demand_empty_rest_of_line ();
2652 mapping_state (MAP_DATA);
2653}
b99bd4ef 2654
c19d1205
ZW
2655static void
2656s_even (int ignore ATTRIBUTE_UNUSED)
2657{
2658 /* Never make frag if expect extra pass. */
2659 if (!need_pass_2)
2660 frag_align (1, 0, 0);
b99bd4ef 2661
c19d1205 2662 record_alignment (now_seg, 1);
b99bd4ef 2663
c19d1205 2664 demand_empty_rest_of_line ();
b99bd4ef
NC
2665}
2666
c19d1205 2667/* Directives: Literal pools. */
a737bd4d 2668
c19d1205
ZW
2669static literal_pool *
2670find_literal_pool (void)
a737bd4d 2671{
c19d1205 2672 literal_pool * pool;
a737bd4d 2673
c19d1205 2674 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 2675 {
c19d1205
ZW
2676 if (pool->section == now_seg
2677 && pool->sub_section == now_subseg)
2678 break;
a737bd4d
NC
2679 }
2680
c19d1205 2681 return pool;
a737bd4d
NC
2682}
2683
c19d1205
ZW
2684static literal_pool *
2685find_or_make_literal_pool (void)
a737bd4d 2686{
c19d1205
ZW
2687 /* Next literal pool ID number. */
2688 static unsigned int latest_pool_num = 1;
2689 literal_pool * pool;
a737bd4d 2690
c19d1205 2691 pool = find_literal_pool ();
a737bd4d 2692
c19d1205 2693 if (pool == NULL)
a737bd4d 2694 {
c19d1205
ZW
2695 /* Create a new pool. */
2696 pool = xmalloc (sizeof (* pool));
2697 if (! pool)
2698 return NULL;
a737bd4d 2699
c19d1205
ZW
2700 pool->next_free_entry = 0;
2701 pool->section = now_seg;
2702 pool->sub_section = now_subseg;
2703 pool->next = list_of_pools;
2704 pool->symbol = NULL;
2705
2706 /* Add it to the list. */
2707 list_of_pools = pool;
a737bd4d 2708 }
a737bd4d 2709
c19d1205
ZW
2710 /* New pools, and emptied pools, will have a NULL symbol. */
2711 if (pool->symbol == NULL)
a737bd4d 2712 {
c19d1205
ZW
2713 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2714 (valueT) 0, &zero_address_frag);
2715 pool->id = latest_pool_num ++;
a737bd4d
NC
2716 }
2717
c19d1205
ZW
2718 /* Done. */
2719 return pool;
a737bd4d
NC
2720}
2721
c19d1205
ZW
2722/* Add the literal in the global 'inst'
2723 structure to the relevent literal pool. */
b99bd4ef
NC
2724
2725static int
c19d1205 2726add_to_lit_pool (void)
b99bd4ef 2727{
c19d1205
ZW
2728 literal_pool * pool;
2729 unsigned int entry;
b99bd4ef 2730
c19d1205
ZW
2731 pool = find_or_make_literal_pool ();
2732
2733 /* Check if this literal value is already in the pool. */
2734 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 2735 {
c19d1205
ZW
2736 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2737 && (inst.reloc.exp.X_op == O_constant)
2738 && (pool->literals[entry].X_add_number
2739 == inst.reloc.exp.X_add_number)
2740 && (pool->literals[entry].X_unsigned
2741 == inst.reloc.exp.X_unsigned))
2742 break;
2743
2744 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2745 && (inst.reloc.exp.X_op == O_symbol)
2746 && (pool->literals[entry].X_add_number
2747 == inst.reloc.exp.X_add_number)
2748 && (pool->literals[entry].X_add_symbol
2749 == inst.reloc.exp.X_add_symbol)
2750 && (pool->literals[entry].X_op_symbol
2751 == inst.reloc.exp.X_op_symbol))
2752 break;
b99bd4ef
NC
2753 }
2754
c19d1205
ZW
2755 /* Do we need to create a new entry? */
2756 if (entry == pool->next_free_entry)
2757 {
2758 if (entry >= MAX_LITERAL_POOL_SIZE)
2759 {
2760 inst.error = _("literal pool overflow");
2761 return FAIL;
2762 }
2763
2764 pool->literals[entry] = inst.reloc.exp;
2765 pool->next_free_entry += 1;
2766 }
b99bd4ef 2767
c19d1205
ZW
2768 inst.reloc.exp.X_op = O_symbol;
2769 inst.reloc.exp.X_add_number = ((int) entry) * 4;
2770 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 2771
c19d1205 2772 return SUCCESS;
b99bd4ef
NC
2773}
2774
c19d1205
ZW
2775/* Can't use symbol_new here, so have to create a symbol and then at
2776 a later date assign it a value. Thats what these functions do. */
e16bb312 2777
c19d1205
ZW
2778static void
2779symbol_locate (symbolS * symbolP,
2780 const char * name, /* It is copied, the caller can modify. */
2781 segT segment, /* Segment identifier (SEG_<something>). */
2782 valueT valu, /* Symbol value. */
2783 fragS * frag) /* Associated fragment. */
2784{
2785 unsigned int name_length;
2786 char * preserved_copy_of_name;
e16bb312 2787
c19d1205
ZW
2788 name_length = strlen (name) + 1; /* +1 for \0. */
2789 obstack_grow (&notes, name, name_length);
2790 preserved_copy_of_name = obstack_finish (&notes);
e16bb312 2791
c19d1205
ZW
2792#ifdef tc_canonicalize_symbol_name
2793 preserved_copy_of_name =
2794 tc_canonicalize_symbol_name (preserved_copy_of_name);
2795#endif
b99bd4ef 2796
c19d1205 2797 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 2798
c19d1205
ZW
2799 S_SET_SEGMENT (symbolP, segment);
2800 S_SET_VALUE (symbolP, valu);
2801 symbol_clear_list_pointers (symbolP);
b99bd4ef 2802
c19d1205 2803 symbol_set_frag (symbolP, frag);
b99bd4ef 2804
c19d1205
ZW
2805 /* Link to end of symbol chain. */
2806 {
2807 extern int symbol_table_frozen;
b99bd4ef 2808
c19d1205
ZW
2809 if (symbol_table_frozen)
2810 abort ();
2811 }
b99bd4ef 2812
c19d1205 2813 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 2814
c19d1205 2815 obj_symbol_new_hook (symbolP);
b99bd4ef 2816
c19d1205
ZW
2817#ifdef tc_symbol_new_hook
2818 tc_symbol_new_hook (symbolP);
2819#endif
2820
2821#ifdef DEBUG_SYMS
2822 verify_symbol_chain (symbol_rootP, symbol_lastP);
2823#endif /* DEBUG_SYMS */
b99bd4ef
NC
2824}
2825
b99bd4ef 2826
c19d1205
ZW
2827static void
2828s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 2829{
c19d1205
ZW
2830 unsigned int entry;
2831 literal_pool * pool;
2832 char sym_name[20];
b99bd4ef 2833
c19d1205
ZW
2834 pool = find_literal_pool ();
2835 if (pool == NULL
2836 || pool->symbol == NULL
2837 || pool->next_free_entry == 0)
2838 return;
b99bd4ef 2839
c19d1205 2840 mapping_state (MAP_DATA);
b99bd4ef 2841
c19d1205
ZW
2842 /* Align pool as you have word accesses.
2843 Only make a frag if we have to. */
2844 if (!need_pass_2)
2845 frag_align (2, 0, 0);
b99bd4ef 2846
c19d1205 2847 record_alignment (now_seg, 2);
b99bd4ef 2848
c19d1205 2849 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 2850
c19d1205
ZW
2851 symbol_locate (pool->symbol, sym_name, now_seg,
2852 (valueT) frag_now_fix (), frag_now);
2853 symbol_table_insert (pool->symbol);
b99bd4ef 2854
c19d1205 2855 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 2856
c19d1205
ZW
2857#if defined OBJ_COFF || defined OBJ_ELF
2858 ARM_SET_INTERWORK (pool->symbol, support_interwork);
2859#endif
6c43fab6 2860
c19d1205
ZW
2861 for (entry = 0; entry < pool->next_free_entry; entry ++)
2862 /* First output the expression in the instruction to the pool. */
2863 emit_expr (&(pool->literals[entry]), 4); /* .word */
b99bd4ef 2864
c19d1205
ZW
2865 /* Mark the pool as empty. */
2866 pool->next_free_entry = 0;
2867 pool->symbol = NULL;
b99bd4ef
NC
2868}
2869
c19d1205
ZW
2870#ifdef OBJ_ELF
2871/* Forward declarations for functions below, in the MD interface
2872 section. */
2873static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
2874static valueT create_unwind_entry (int);
2875static void start_unwind_section (const segT, int);
2876static void add_unwind_opcode (valueT, int);
2877static void flush_pending_unwind (void);
b99bd4ef 2878
c19d1205 2879/* Directives: Data. */
b99bd4ef 2880
c19d1205
ZW
2881static void
2882s_arm_elf_cons (int nbytes)
2883{
2884 expressionS exp;
b99bd4ef 2885
c19d1205
ZW
2886#ifdef md_flush_pending_output
2887 md_flush_pending_output ();
2888#endif
b99bd4ef 2889
c19d1205 2890 if (is_it_end_of_statement ())
b99bd4ef 2891 {
c19d1205
ZW
2892 demand_empty_rest_of_line ();
2893 return;
b99bd4ef
NC
2894 }
2895
c19d1205
ZW
2896#ifdef md_cons_align
2897 md_cons_align (nbytes);
2898#endif
b99bd4ef 2899
c19d1205
ZW
2900 mapping_state (MAP_DATA);
2901 do
b99bd4ef 2902 {
c19d1205
ZW
2903 int reloc;
2904 char *base = input_line_pointer;
b99bd4ef 2905
c19d1205 2906 expression (& exp);
b99bd4ef 2907
c19d1205
ZW
2908 if (exp.X_op != O_symbol)
2909 emit_expr (&exp, (unsigned int) nbytes);
2910 else
2911 {
2912 char *before_reloc = input_line_pointer;
2913 reloc = parse_reloc (&input_line_pointer);
2914 if (reloc == -1)
2915 {
2916 as_bad (_("unrecognized relocation suffix"));
2917 ignore_rest_of_line ();
2918 return;
2919 }
2920 else if (reloc == BFD_RELOC_UNUSED)
2921 emit_expr (&exp, (unsigned int) nbytes);
2922 else
2923 {
2924 reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
2925 int size = bfd_get_reloc_size (howto);
b99bd4ef 2926
2fc8bdac
ZW
2927 if (reloc == BFD_RELOC_ARM_PLT32)
2928 {
2929 as_bad (_("(plt) is only valid on branch targets"));
2930 reloc = BFD_RELOC_UNUSED;
2931 size = 0;
2932 }
2933
c19d1205 2934 if (size > nbytes)
2fc8bdac 2935 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
2936 howto->name, nbytes);
2937 else
2938 {
2939 /* We've parsed an expression stopping at O_symbol.
2940 But there may be more expression left now that we
2941 have parsed the relocation marker. Parse it again.
2942 XXX Surely there is a cleaner way to do this. */
2943 char *p = input_line_pointer;
2944 int offset;
2945 char *save_buf = alloca (input_line_pointer - base);
2946 memcpy (save_buf, base, input_line_pointer - base);
2947 memmove (base + (input_line_pointer - before_reloc),
2948 base, before_reloc - base);
2949
2950 input_line_pointer = base + (input_line_pointer-before_reloc);
2951 expression (&exp);
2952 memcpy (base, save_buf, p - base);
2953
2954 offset = nbytes - size;
2955 p = frag_more ((int) nbytes);
2956 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
2957 size, &exp, 0, reloc);
2958 }
2959 }
2960 }
b99bd4ef 2961 }
c19d1205 2962 while (*input_line_pointer++ == ',');
b99bd4ef 2963
c19d1205
ZW
2964 /* Put terminator back into stream. */
2965 input_line_pointer --;
2966 demand_empty_rest_of_line ();
b99bd4ef
NC
2967}
2968
b99bd4ef 2969
c19d1205 2970/* Parse a .rel31 directive. */
b99bd4ef 2971
c19d1205
ZW
2972static void
2973s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
2974{
2975 expressionS exp;
2976 char *p;
2977 valueT highbit;
b99bd4ef 2978
c19d1205
ZW
2979 highbit = 0;
2980 if (*input_line_pointer == '1')
2981 highbit = 0x80000000;
2982 else if (*input_line_pointer != '0')
2983 as_bad (_("expected 0 or 1"));
b99bd4ef 2984
c19d1205
ZW
2985 input_line_pointer++;
2986 if (*input_line_pointer != ',')
2987 as_bad (_("missing comma"));
2988 input_line_pointer++;
b99bd4ef 2989
c19d1205
ZW
2990#ifdef md_flush_pending_output
2991 md_flush_pending_output ();
2992#endif
b99bd4ef 2993
c19d1205
ZW
2994#ifdef md_cons_align
2995 md_cons_align (4);
2996#endif
b99bd4ef 2997
c19d1205 2998 mapping_state (MAP_DATA);
b99bd4ef 2999
c19d1205 3000 expression (&exp);
b99bd4ef 3001
c19d1205
ZW
3002 p = frag_more (4);
3003 md_number_to_chars (p, highbit, 4);
3004 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3005 BFD_RELOC_ARM_PREL31);
b99bd4ef 3006
c19d1205 3007 demand_empty_rest_of_line ();
b99bd4ef
NC
3008}
3009
c19d1205 3010/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3011
c19d1205 3012/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3013
c19d1205
ZW
3014static void
3015s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3016{
3017 demand_empty_rest_of_line ();
3018 /* Mark the start of the function. */
3019 unwind.proc_start = expr_build_dot ();
b99bd4ef 3020
c19d1205
ZW
3021 /* Reset the rest of the unwind info. */
3022 unwind.opcode_count = 0;
3023 unwind.table_entry = NULL;
3024 unwind.personality_routine = NULL;
3025 unwind.personality_index = -1;
3026 unwind.frame_size = 0;
3027 unwind.fp_offset = 0;
3028 unwind.fp_reg = 13;
3029 unwind.fp_used = 0;
3030 unwind.sp_restored = 0;
3031}
b99bd4ef 3032
b99bd4ef 3033
c19d1205
ZW
3034/* Parse a handlerdata directive. Creates the exception handling table entry
3035 for the function. */
b99bd4ef 3036
c19d1205
ZW
3037static void
3038s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3039{
3040 demand_empty_rest_of_line ();
3041 if (unwind.table_entry)
3042 as_bad (_("dupicate .handlerdata directive"));
f02232aa 3043
c19d1205
ZW
3044 create_unwind_entry (1);
3045}
a737bd4d 3046
c19d1205 3047/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3048
c19d1205
ZW
3049static void
3050s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3051{
3052 long where;
3053 char *ptr;
3054 valueT val;
f02232aa 3055
c19d1205 3056 demand_empty_rest_of_line ();
f02232aa 3057
c19d1205
ZW
3058 /* Add eh table entry. */
3059 if (unwind.table_entry == NULL)
3060 val = create_unwind_entry (0);
3061 else
3062 val = 0;
f02232aa 3063
c19d1205
ZW
3064 /* Add index table entry. This is two words. */
3065 start_unwind_section (unwind.saved_seg, 1);
3066 frag_align (2, 0, 0);
3067 record_alignment (now_seg, 2);
b99bd4ef 3068
c19d1205
ZW
3069 ptr = frag_more (8);
3070 where = frag_now_fix () - 8;
f02232aa 3071
c19d1205
ZW
3072 /* Self relative offset of the function start. */
3073 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3074 BFD_RELOC_ARM_PREL31);
f02232aa 3075
c19d1205
ZW
3076 /* Indicate dependency on EHABI-defined personality routines to the
3077 linker, if it hasn't been done already. */
3078 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3079 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3080 {
3081 static const char *const name[] = {
3082 "__aeabi_unwind_cpp_pr0",
3083 "__aeabi_unwind_cpp_pr1",
3084 "__aeabi_unwind_cpp_pr2"
3085 };
3086 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3087 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3088 marked_pr_dependency |= 1 << unwind.personality_index;
3089 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3090 = marked_pr_dependency;
3091 }
f02232aa 3092
c19d1205
ZW
3093 if (val)
3094 /* Inline exception table entry. */
3095 md_number_to_chars (ptr + 4, val, 4);
3096 else
3097 /* Self relative offset of the table entry. */
3098 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3099 BFD_RELOC_ARM_PREL31);
f02232aa 3100
c19d1205
ZW
3101 /* Restore the original section. */
3102 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3103}
f02232aa 3104
f02232aa 3105
c19d1205 3106/* Parse an unwind_cantunwind directive. */
b99bd4ef 3107
c19d1205
ZW
3108static void
3109s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3110{
3111 demand_empty_rest_of_line ();
3112 if (unwind.personality_routine || unwind.personality_index != -1)
3113 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3114
c19d1205
ZW
3115 unwind.personality_index = -2;
3116}
b99bd4ef 3117
b99bd4ef 3118
c19d1205 3119/* Parse a personalityindex directive. */
b99bd4ef 3120
c19d1205
ZW
3121static void
3122s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3123{
3124 expressionS exp;
b99bd4ef 3125
c19d1205
ZW
3126 if (unwind.personality_routine || unwind.personality_index != -1)
3127 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3128
c19d1205 3129 expression (&exp);
b99bd4ef 3130
c19d1205
ZW
3131 if (exp.X_op != O_constant
3132 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3133 {
c19d1205
ZW
3134 as_bad (_("bad personality routine number"));
3135 ignore_rest_of_line ();
3136 return;
b99bd4ef
NC
3137 }
3138
c19d1205 3139 unwind.personality_index = exp.X_add_number;
b99bd4ef 3140
c19d1205
ZW
3141 demand_empty_rest_of_line ();
3142}
e16bb312 3143
e16bb312 3144
c19d1205 3145/* Parse a personality directive. */
e16bb312 3146
c19d1205
ZW
3147static void
3148s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3149{
3150 char *name, *p, c;
a737bd4d 3151
c19d1205
ZW
3152 if (unwind.personality_routine || unwind.personality_index != -1)
3153 as_bad (_("duplicate .personality directive"));
a737bd4d 3154
c19d1205
ZW
3155 name = input_line_pointer;
3156 c = get_symbol_end ();
3157 p = input_line_pointer;
3158 unwind.personality_routine = symbol_find_or_make (name);
3159 *p = c;
3160 demand_empty_rest_of_line ();
3161}
e16bb312 3162
e16bb312 3163
c19d1205 3164/* Parse a directive saving core registers. */
e16bb312 3165
c19d1205
ZW
3166static void
3167s_arm_unwind_save_core (void)
e16bb312 3168{
c19d1205
ZW
3169 valueT op;
3170 long range;
3171 int n;
e16bb312 3172
c19d1205
ZW
3173 range = parse_reg_list (&input_line_pointer);
3174 if (range == FAIL)
e16bb312 3175 {
c19d1205
ZW
3176 as_bad (_("expected register list"));
3177 ignore_rest_of_line ();
3178 return;
3179 }
e16bb312 3180
c19d1205 3181 demand_empty_rest_of_line ();
e16bb312 3182
c19d1205
ZW
3183 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3184 into .unwind_save {..., sp...}. We aren't bothered about the value of
3185 ip because it is clobbered by calls. */
3186 if (unwind.sp_restored && unwind.fp_reg == 12
3187 && (range & 0x3000) == 0x1000)
3188 {
3189 unwind.opcode_count--;
3190 unwind.sp_restored = 0;
3191 range = (range | 0x2000) & ~0x1000;
3192 unwind.pending_offset = 0;
3193 }
e16bb312 3194
01ae4198
DJ
3195 /* Pop r4-r15. */
3196 if (range & 0xfff0)
c19d1205 3197 {
01ae4198
DJ
3198 /* See if we can use the short opcodes. These pop a block of up to 8
3199 registers starting with r4, plus maybe r14. */
3200 for (n = 0; n < 8; n++)
3201 {
3202 /* Break at the first non-saved register. */
3203 if ((range & (1 << (n + 4))) == 0)
3204 break;
3205 }
3206 /* See if there are any other bits set. */
3207 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3208 {
3209 /* Use the long form. */
3210 op = 0x8000 | ((range >> 4) & 0xfff);
3211 add_unwind_opcode (op, 2);
3212 }
0dd132b6 3213 else
01ae4198
DJ
3214 {
3215 /* Use the short form. */
3216 if (range & 0x4000)
3217 op = 0xa8; /* Pop r14. */
3218 else
3219 op = 0xa0; /* Do not pop r14. */
3220 op |= (n - 1);
3221 add_unwind_opcode (op, 1);
3222 }
c19d1205 3223 }
0dd132b6 3224
c19d1205
ZW
3225 /* Pop r0-r3. */
3226 if (range & 0xf)
3227 {
3228 op = 0xb100 | (range & 0xf);
3229 add_unwind_opcode (op, 2);
0dd132b6
NC
3230 }
3231
c19d1205
ZW
3232 /* Record the number of bytes pushed. */
3233 for (n = 0; n < 16; n++)
3234 {
3235 if (range & (1 << n))
3236 unwind.frame_size += 4;
3237 }
0dd132b6
NC
3238}
3239
c19d1205
ZW
3240
3241/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3242
3243static void
c19d1205 3244s_arm_unwind_save_fpa (int reg)
b99bd4ef 3245{
c19d1205
ZW
3246 expressionS exp;
3247 int num_regs;
3248 valueT op;
b99bd4ef 3249
c19d1205
ZW
3250 /* Get Number of registers to transfer. */
3251 if (skip_past_comma (&input_line_pointer) != FAIL)
3252 expression (&exp);
3253 else
3254 exp.X_op = O_illegal;
b99bd4ef 3255
c19d1205 3256 if (exp.X_op != O_constant)
b99bd4ef 3257 {
c19d1205
ZW
3258 as_bad (_("expected , <constant>"));
3259 ignore_rest_of_line ();
b99bd4ef
NC
3260 return;
3261 }
3262
c19d1205
ZW
3263 num_regs = exp.X_add_number;
3264
3265 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3266 {
c19d1205
ZW
3267 as_bad (_("number of registers must be in the range [1:4]"));
3268 ignore_rest_of_line ();
b99bd4ef
NC
3269 return;
3270 }
3271
c19d1205 3272 demand_empty_rest_of_line ();
b99bd4ef 3273
c19d1205
ZW
3274 if (reg == 4)
3275 {
3276 /* Short form. */
3277 op = 0xb4 | (num_regs - 1);
3278 add_unwind_opcode (op, 1);
3279 }
b99bd4ef
NC
3280 else
3281 {
c19d1205
ZW
3282 /* Long form. */
3283 op = 0xc800 | (reg << 4) | (num_regs - 1);
3284 add_unwind_opcode (op, 2);
b99bd4ef 3285 }
c19d1205 3286 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3287}
3288
c19d1205 3289
fa073d69
MS
3290/* Parse a directive saving VFP registers for ARMv6 and above. */
3291
3292static void
3293s_arm_unwind_save_vfp_armv6 (void)
3294{
3295 int count;
3296 unsigned int start;
3297 valueT op;
3298 int num_vfpv3_regs = 0;
3299 int num_regs_below_16;
3300
3301 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3302 if (count == FAIL)
3303 {
3304 as_bad (_("expected register list"));
3305 ignore_rest_of_line ();
3306 return;
3307 }
3308
3309 demand_empty_rest_of_line ();
3310
3311 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3312 than FSTMX/FLDMX-style ones). */
3313
3314 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3315 if (start >= 16)
3316 num_vfpv3_regs = count;
3317 else if (start + count > 16)
3318 num_vfpv3_regs = start + count - 16;
3319
3320 if (num_vfpv3_regs > 0)
3321 {
3322 int start_offset = start > 16 ? start - 16 : 0;
3323 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3324 add_unwind_opcode (op, 2);
3325 }
3326
3327 /* Generate opcode for registers numbered in the range 0 .. 15. */
3328 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3329 assert (num_regs_below_16 + num_vfpv3_regs == count);
3330 if (num_regs_below_16 > 0)
3331 {
3332 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3333 add_unwind_opcode (op, 2);
3334 }
3335
3336 unwind.frame_size += count * 8;
3337}
3338
3339
3340/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3341
3342static void
c19d1205 3343s_arm_unwind_save_vfp (void)
b99bd4ef 3344{
c19d1205 3345 int count;
ca3f61f7 3346 unsigned int reg;
c19d1205 3347 valueT op;
b99bd4ef 3348
5287ad62 3349 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3350 if (count == FAIL)
b99bd4ef 3351 {
c19d1205
ZW
3352 as_bad (_("expected register list"));
3353 ignore_rest_of_line ();
b99bd4ef
NC
3354 return;
3355 }
3356
c19d1205 3357 demand_empty_rest_of_line ();
b99bd4ef 3358
c19d1205 3359 if (reg == 8)
b99bd4ef 3360 {
c19d1205
ZW
3361 /* Short form. */
3362 op = 0xb8 | (count - 1);
3363 add_unwind_opcode (op, 1);
b99bd4ef 3364 }
c19d1205 3365 else
b99bd4ef 3366 {
c19d1205
ZW
3367 /* Long form. */
3368 op = 0xb300 | (reg << 4) | (count - 1);
3369 add_unwind_opcode (op, 2);
b99bd4ef 3370 }
c19d1205
ZW
3371 unwind.frame_size += count * 8 + 4;
3372}
b99bd4ef 3373
b99bd4ef 3374
c19d1205
ZW
3375/* Parse a directive saving iWMMXt data registers. */
3376
3377static void
3378s_arm_unwind_save_mmxwr (void)
3379{
3380 int reg;
3381 int hi_reg;
3382 int i;
3383 unsigned mask = 0;
3384 valueT op;
b99bd4ef 3385
c19d1205
ZW
3386 if (*input_line_pointer == '{')
3387 input_line_pointer++;
b99bd4ef 3388
c19d1205 3389 do
b99bd4ef 3390 {
dcbf9037 3391 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3392
c19d1205 3393 if (reg == FAIL)
b99bd4ef 3394 {
c19d1205
ZW
3395 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3396 goto error;
b99bd4ef
NC
3397 }
3398
c19d1205
ZW
3399 if (mask >> reg)
3400 as_tsktsk (_("register list not in ascending order"));
3401 mask |= 1 << reg;
b99bd4ef 3402
c19d1205
ZW
3403 if (*input_line_pointer == '-')
3404 {
3405 input_line_pointer++;
dcbf9037 3406 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3407 if (hi_reg == FAIL)
3408 {
3409 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3410 goto error;
3411 }
3412 else if (reg >= hi_reg)
3413 {
3414 as_bad (_("bad register range"));
3415 goto error;
3416 }
3417 for (; reg < hi_reg; reg++)
3418 mask |= 1 << reg;
3419 }
3420 }
3421 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3422
c19d1205
ZW
3423 if (*input_line_pointer == '}')
3424 input_line_pointer++;
b99bd4ef 3425
c19d1205 3426 demand_empty_rest_of_line ();
b99bd4ef 3427
708587a4 3428 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3429 the list. */
3430 flush_pending_unwind ();
b99bd4ef 3431
c19d1205 3432 for (i = 0; i < 16; i++)
b99bd4ef 3433 {
c19d1205
ZW
3434 if (mask & (1 << i))
3435 unwind.frame_size += 8;
b99bd4ef
NC
3436 }
3437
c19d1205
ZW
3438 /* Attempt to combine with a previous opcode. We do this because gcc
3439 likes to output separate unwind directives for a single block of
3440 registers. */
3441 if (unwind.opcode_count > 0)
b99bd4ef 3442 {
c19d1205
ZW
3443 i = unwind.opcodes[unwind.opcode_count - 1];
3444 if ((i & 0xf8) == 0xc0)
3445 {
3446 i &= 7;
3447 /* Only merge if the blocks are contiguous. */
3448 if (i < 6)
3449 {
3450 if ((mask & 0xfe00) == (1 << 9))
3451 {
3452 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3453 unwind.opcode_count--;
3454 }
3455 }
3456 else if (i == 6 && unwind.opcode_count >= 2)
3457 {
3458 i = unwind.opcodes[unwind.opcode_count - 2];
3459 reg = i >> 4;
3460 i &= 0xf;
b99bd4ef 3461
c19d1205
ZW
3462 op = 0xffff << (reg - 1);
3463 if (reg > 0
87a1fd79 3464 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
3465 {
3466 op = (1 << (reg + i + 1)) - 1;
3467 op &= ~((1 << reg) - 1);
3468 mask |= op;
3469 unwind.opcode_count -= 2;
3470 }
3471 }
3472 }
b99bd4ef
NC
3473 }
3474
c19d1205
ZW
3475 hi_reg = 15;
3476 /* We want to generate opcodes in the order the registers have been
3477 saved, ie. descending order. */
3478 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3479 {
c19d1205
ZW
3480 /* Save registers in blocks. */
3481 if (reg < 0
3482 || !(mask & (1 << reg)))
3483 {
3484 /* We found an unsaved reg. Generate opcodes to save the
3485 preceeding block. */
3486 if (reg != hi_reg)
3487 {
3488 if (reg == 9)
3489 {
3490 /* Short form. */
3491 op = 0xc0 | (hi_reg - 10);
3492 add_unwind_opcode (op, 1);
3493 }
3494 else
3495 {
3496 /* Long form. */
3497 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3498 add_unwind_opcode (op, 2);
3499 }
3500 }
3501 hi_reg = reg - 1;
3502 }
b99bd4ef
NC
3503 }
3504
c19d1205
ZW
3505 return;
3506error:
3507 ignore_rest_of_line ();
b99bd4ef
NC
3508}
3509
3510static void
c19d1205 3511s_arm_unwind_save_mmxwcg (void)
b99bd4ef 3512{
c19d1205
ZW
3513 int reg;
3514 int hi_reg;
3515 unsigned mask = 0;
3516 valueT op;
b99bd4ef 3517
c19d1205
ZW
3518 if (*input_line_pointer == '{')
3519 input_line_pointer++;
b99bd4ef 3520
c19d1205 3521 do
b99bd4ef 3522 {
dcbf9037 3523 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 3524
c19d1205
ZW
3525 if (reg == FAIL)
3526 {
3527 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3528 goto error;
3529 }
b99bd4ef 3530
c19d1205
ZW
3531 reg -= 8;
3532 if (mask >> reg)
3533 as_tsktsk (_("register list not in ascending order"));
3534 mask |= 1 << reg;
b99bd4ef 3535
c19d1205
ZW
3536 if (*input_line_pointer == '-')
3537 {
3538 input_line_pointer++;
dcbf9037 3539 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
3540 if (hi_reg == FAIL)
3541 {
3542 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3543 goto error;
3544 }
3545 else if (reg >= hi_reg)
3546 {
3547 as_bad (_("bad register range"));
3548 goto error;
3549 }
3550 for (; reg < hi_reg; reg++)
3551 mask |= 1 << reg;
3552 }
b99bd4ef 3553 }
c19d1205 3554 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3555
c19d1205
ZW
3556 if (*input_line_pointer == '}')
3557 input_line_pointer++;
b99bd4ef 3558
c19d1205
ZW
3559 demand_empty_rest_of_line ();
3560
708587a4 3561 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3562 the list. */
3563 flush_pending_unwind ();
b99bd4ef 3564
c19d1205 3565 for (reg = 0; reg < 16; reg++)
b99bd4ef 3566 {
c19d1205
ZW
3567 if (mask & (1 << reg))
3568 unwind.frame_size += 4;
b99bd4ef 3569 }
c19d1205
ZW
3570 op = 0xc700 | mask;
3571 add_unwind_opcode (op, 2);
3572 return;
3573error:
3574 ignore_rest_of_line ();
b99bd4ef
NC
3575}
3576
c19d1205 3577
fa073d69
MS
3578/* Parse an unwind_save directive.
3579 If the argument is non-zero, this is a .vsave directive. */
c19d1205 3580
b99bd4ef 3581static void
fa073d69 3582s_arm_unwind_save (int arch_v6)
b99bd4ef 3583{
c19d1205
ZW
3584 char *peek;
3585 struct reg_entry *reg;
3586 bfd_boolean had_brace = FALSE;
b99bd4ef 3587
c19d1205
ZW
3588 /* Figure out what sort of save we have. */
3589 peek = input_line_pointer;
b99bd4ef 3590
c19d1205 3591 if (*peek == '{')
b99bd4ef 3592 {
c19d1205
ZW
3593 had_brace = TRUE;
3594 peek++;
b99bd4ef
NC
3595 }
3596
c19d1205 3597 reg = arm_reg_parse_multi (&peek);
b99bd4ef 3598
c19d1205 3599 if (!reg)
b99bd4ef 3600 {
c19d1205
ZW
3601 as_bad (_("register expected"));
3602 ignore_rest_of_line ();
b99bd4ef
NC
3603 return;
3604 }
3605
c19d1205 3606 switch (reg->type)
b99bd4ef 3607 {
c19d1205
ZW
3608 case REG_TYPE_FN:
3609 if (had_brace)
3610 {
3611 as_bad (_("FPA .unwind_save does not take a register list"));
3612 ignore_rest_of_line ();
3613 return;
3614 }
3615 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 3616 return;
c19d1205
ZW
3617
3618 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
3619 case REG_TYPE_VFD:
3620 if (arch_v6)
3621 s_arm_unwind_save_vfp_armv6 ();
3622 else
3623 s_arm_unwind_save_vfp ();
3624 return;
c19d1205
ZW
3625 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
3626 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
3627
3628 default:
3629 as_bad (_(".unwind_save does not support this kind of register"));
3630 ignore_rest_of_line ();
b99bd4ef 3631 }
c19d1205 3632}
b99bd4ef 3633
b99bd4ef 3634
c19d1205
ZW
3635/* Parse an unwind_movsp directive. */
3636
3637static void
3638s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
3639{
3640 int reg;
3641 valueT op;
4fa3602b 3642 int offset;
c19d1205 3643
dcbf9037 3644 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 3645 if (reg == FAIL)
b99bd4ef 3646 {
c19d1205
ZW
3647 as_bad (_(reg_expected_msgs[REG_TYPE_RN]));
3648 ignore_rest_of_line ();
b99bd4ef
NC
3649 return;
3650 }
4fa3602b
PB
3651
3652 /* Optional constant. */
3653 if (skip_past_comma (&input_line_pointer) != FAIL)
3654 {
3655 if (immediate_for_directive (&offset) == FAIL)
3656 return;
3657 }
3658 else
3659 offset = 0;
3660
c19d1205 3661 demand_empty_rest_of_line ();
b99bd4ef 3662
c19d1205 3663 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 3664 {
c19d1205 3665 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
3666 return;
3667 }
3668
c19d1205
ZW
3669 if (unwind.fp_reg != REG_SP)
3670 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 3671
c19d1205
ZW
3672 /* Generate opcode to restore the value. */
3673 op = 0x90 | reg;
3674 add_unwind_opcode (op, 1);
3675
3676 /* Record the information for later. */
3677 unwind.fp_reg = reg;
4fa3602b 3678 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 3679 unwind.sp_restored = 1;
b05fe5cf
ZW
3680}
3681
c19d1205
ZW
3682/* Parse an unwind_pad directive. */
3683
b05fe5cf 3684static void
c19d1205 3685s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 3686{
c19d1205 3687 int offset;
b05fe5cf 3688
c19d1205
ZW
3689 if (immediate_for_directive (&offset) == FAIL)
3690 return;
b99bd4ef 3691
c19d1205
ZW
3692 if (offset & 3)
3693 {
3694 as_bad (_("stack increment must be multiple of 4"));
3695 ignore_rest_of_line ();
3696 return;
3697 }
b99bd4ef 3698
c19d1205
ZW
3699 /* Don't generate any opcodes, just record the details for later. */
3700 unwind.frame_size += offset;
3701 unwind.pending_offset += offset;
3702
3703 demand_empty_rest_of_line ();
3704}
3705
3706/* Parse an unwind_setfp directive. */
3707
3708static void
3709s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3710{
c19d1205
ZW
3711 int sp_reg;
3712 int fp_reg;
3713 int offset;
3714
dcbf9037 3715 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
3716 if (skip_past_comma (&input_line_pointer) == FAIL)
3717 sp_reg = FAIL;
3718 else
dcbf9037 3719 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 3720
c19d1205
ZW
3721 if (fp_reg == FAIL || sp_reg == FAIL)
3722 {
3723 as_bad (_("expected <reg>, <reg>"));
3724 ignore_rest_of_line ();
3725 return;
3726 }
b99bd4ef 3727
c19d1205
ZW
3728 /* Optional constant. */
3729 if (skip_past_comma (&input_line_pointer) != FAIL)
3730 {
3731 if (immediate_for_directive (&offset) == FAIL)
3732 return;
3733 }
3734 else
3735 offset = 0;
a737bd4d 3736
c19d1205 3737 demand_empty_rest_of_line ();
a737bd4d 3738
c19d1205 3739 if (sp_reg != 13 && sp_reg != unwind.fp_reg)
a737bd4d 3740 {
c19d1205
ZW
3741 as_bad (_("register must be either sp or set by a previous"
3742 "unwind_movsp directive"));
3743 return;
a737bd4d
NC
3744 }
3745
c19d1205
ZW
3746 /* Don't generate any opcodes, just record the information for later. */
3747 unwind.fp_reg = fp_reg;
3748 unwind.fp_used = 1;
3749 if (sp_reg == 13)
3750 unwind.fp_offset = unwind.frame_size - offset;
3751 else
3752 unwind.fp_offset -= offset;
a737bd4d
NC
3753}
3754
c19d1205
ZW
3755/* Parse an unwind_raw directive. */
3756
3757static void
3758s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 3759{
c19d1205 3760 expressionS exp;
708587a4 3761 /* This is an arbitrary limit. */
c19d1205
ZW
3762 unsigned char op[16];
3763 int count;
a737bd4d 3764
c19d1205
ZW
3765 expression (&exp);
3766 if (exp.X_op == O_constant
3767 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 3768 {
c19d1205
ZW
3769 unwind.frame_size += exp.X_add_number;
3770 expression (&exp);
3771 }
3772 else
3773 exp.X_op = O_illegal;
a737bd4d 3774
c19d1205
ZW
3775 if (exp.X_op != O_constant)
3776 {
3777 as_bad (_("expected <offset>, <opcode>"));
3778 ignore_rest_of_line ();
3779 return;
3780 }
a737bd4d 3781
c19d1205 3782 count = 0;
a737bd4d 3783
c19d1205
ZW
3784 /* Parse the opcode. */
3785 for (;;)
3786 {
3787 if (count >= 16)
3788 {
3789 as_bad (_("unwind opcode too long"));
3790 ignore_rest_of_line ();
a737bd4d 3791 }
c19d1205 3792 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 3793 {
c19d1205
ZW
3794 as_bad (_("invalid unwind opcode"));
3795 ignore_rest_of_line ();
3796 return;
a737bd4d 3797 }
c19d1205 3798 op[count++] = exp.X_add_number;
a737bd4d 3799
c19d1205
ZW
3800 /* Parse the next byte. */
3801 if (skip_past_comma (&input_line_pointer) == FAIL)
3802 break;
a737bd4d 3803
c19d1205
ZW
3804 expression (&exp);
3805 }
b99bd4ef 3806
c19d1205
ZW
3807 /* Add the opcode bytes in reverse order. */
3808 while (count--)
3809 add_unwind_opcode (op[count], 1);
b99bd4ef 3810
c19d1205 3811 demand_empty_rest_of_line ();
b99bd4ef 3812}
ee065d83
PB
3813
3814
3815/* Parse a .eabi_attribute directive. */
3816
3817static void
3818s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
3819{
3820 expressionS exp;
3821 bfd_boolean is_string;
3822 int tag;
3823 unsigned int i = 0;
3824 char *s = NULL;
3825 char saved_char;
3826
3827 expression (& exp);
3828 if (exp.X_op != O_constant)
3829 goto bad;
3830
3831 tag = exp.X_add_number;
3832 if (tag == 4 || tag == 5 || tag == 32 || (tag > 32 && (tag & 1) != 0))
3833 is_string = 1;
3834 else
3835 is_string = 0;
3836
3837 if (skip_past_comma (&input_line_pointer) == FAIL)
3838 goto bad;
3839 if (tag == 32 || !is_string)
3840 {
3841 expression (& exp);
3842 if (exp.X_op != O_constant)
3843 {
3844 as_bad (_("expected numeric constant"));
3845 ignore_rest_of_line ();
3846 return;
3847 }
3848 i = exp.X_add_number;
3849 }
3850 if (tag == Tag_compatibility
3851 && skip_past_comma (&input_line_pointer) == FAIL)
3852 {
3853 as_bad (_("expected comma"));
3854 ignore_rest_of_line ();
3855 return;
3856 }
3857 if (is_string)
3858 {
3859 skip_whitespace(input_line_pointer);
3860 if (*input_line_pointer != '"')
3861 goto bad_string;
3862 input_line_pointer++;
3863 s = input_line_pointer;
3864 while (*input_line_pointer && *input_line_pointer != '"')
3865 input_line_pointer++;
3866 if (*input_line_pointer != '"')
3867 goto bad_string;
3868 saved_char = *input_line_pointer;
3869 *input_line_pointer = 0;
3870 }
3871 else
3872 {
3873 s = NULL;
3874 saved_char = 0;
3875 }
3876
3877 if (tag == Tag_compatibility)
3878 elf32_arm_add_eabi_attr_compat (stdoutput, i, s);
3879 else if (is_string)
3880 elf32_arm_add_eabi_attr_string (stdoutput, tag, s);
3881 else
3882 elf32_arm_add_eabi_attr_int (stdoutput, tag, i);
3883
3884 if (s)
3885 {
3886 *input_line_pointer = saved_char;
3887 input_line_pointer++;
3888 }
3889 demand_empty_rest_of_line ();
3890 return;
3891bad_string:
3892 as_bad (_("bad string constant"));
3893 ignore_rest_of_line ();
3894 return;
3895bad:
3896 as_bad (_("expected <tag> , <value>"));
3897 ignore_rest_of_line ();
3898}
8463be01 3899#endif /* OBJ_ELF */
ee065d83
PB
3900
3901static void s_arm_arch (int);
7a1d4c38 3902static void s_arm_object_arch (int);
ee065d83
PB
3903static void s_arm_cpu (int);
3904static void s_arm_fpu (int);
b99bd4ef 3905
f0927246
NC
3906#ifdef TE_PE
3907
3908static void
3909pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
3910{
3911 expressionS exp;
3912
3913 do
3914 {
3915 expression (&exp);
3916 if (exp.X_op == O_symbol)
3917 exp.X_op = O_secrel;
3918
3919 emit_expr (&exp, 4);
3920 }
3921 while (*input_line_pointer++ == ',');
3922
3923 input_line_pointer--;
3924 demand_empty_rest_of_line ();
3925}
3926#endif /* TE_PE */
3927
c19d1205
ZW
3928/* This table describes all the machine specific pseudo-ops the assembler
3929 has to support. The fields are:
3930 pseudo-op name without dot
3931 function to call to execute this pseudo-op
3932 Integer arg to pass to the function. */
b99bd4ef 3933
c19d1205 3934const pseudo_typeS md_pseudo_table[] =
b99bd4ef 3935{
c19d1205
ZW
3936 /* Never called because '.req' does not start a line. */
3937 { "req", s_req, 0 },
dcbf9037
JB
3938 /* Following two are likewise never called. */
3939 { "dn", s_dn, 0 },
3940 { "qn", s_qn, 0 },
c19d1205
ZW
3941 { "unreq", s_unreq, 0 },
3942 { "bss", s_bss, 0 },
3943 { "align", s_align, 0 },
3944 { "arm", s_arm, 0 },
3945 { "thumb", s_thumb, 0 },
3946 { "code", s_code, 0 },
3947 { "force_thumb", s_force_thumb, 0 },
3948 { "thumb_func", s_thumb_func, 0 },
3949 { "thumb_set", s_thumb_set, 0 },
3950 { "even", s_even, 0 },
3951 { "ltorg", s_ltorg, 0 },
3952 { "pool", s_ltorg, 0 },
3953 { "syntax", s_syntax, 0 },
8463be01
PB
3954 { "cpu", s_arm_cpu, 0 },
3955 { "arch", s_arm_arch, 0 },
7a1d4c38 3956 { "object_arch", s_arm_object_arch, 0 },
8463be01 3957 { "fpu", s_arm_fpu, 0 },
c19d1205
ZW
3958#ifdef OBJ_ELF
3959 { "word", s_arm_elf_cons, 4 },
3960 { "long", s_arm_elf_cons, 4 },
3961 { "rel31", s_arm_rel31, 0 },
3962 { "fnstart", s_arm_unwind_fnstart, 0 },
3963 { "fnend", s_arm_unwind_fnend, 0 },
3964 { "cantunwind", s_arm_unwind_cantunwind, 0 },
3965 { "personality", s_arm_unwind_personality, 0 },
3966 { "personalityindex", s_arm_unwind_personalityindex, 0 },
3967 { "handlerdata", s_arm_unwind_handlerdata, 0 },
3968 { "save", s_arm_unwind_save, 0 },
fa073d69 3969 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
3970 { "movsp", s_arm_unwind_movsp, 0 },
3971 { "pad", s_arm_unwind_pad, 0 },
3972 { "setfp", s_arm_unwind_setfp, 0 },
3973 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 3974 { "eabi_attribute", s_arm_eabi_attribute, 0 },
c19d1205
ZW
3975#else
3976 { "word", cons, 4},
f0927246
NC
3977
3978 /* These are used for dwarf. */
3979 {"2byte", cons, 2},
3980 {"4byte", cons, 4},
3981 {"8byte", cons, 8},
3982 /* These are used for dwarf2. */
3983 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
3984 { "loc", dwarf2_directive_loc, 0 },
3985 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
3986#endif
3987 { "extend", float_cons, 'x' },
3988 { "ldouble", float_cons, 'x' },
3989 { "packed", float_cons, 'p' },
f0927246
NC
3990#ifdef TE_PE
3991 {"secrel32", pe_directive_secrel, 0},
3992#endif
c19d1205
ZW
3993 { 0, 0, 0 }
3994};
3995\f
3996/* Parser functions used exclusively in instruction operands. */
b99bd4ef 3997
c19d1205
ZW
3998/* Generic immediate-value read function for use in insn parsing.
3999 STR points to the beginning of the immediate (the leading #);
4000 VAL receives the value; if the value is outside [MIN, MAX]
4001 issue an error. PREFIX_OPT is true if the immediate prefix is
4002 optional. */
b99bd4ef 4003
c19d1205
ZW
4004static int
4005parse_immediate (char **str, int *val, int min, int max,
4006 bfd_boolean prefix_opt)
4007{
4008 expressionS exp;
4009 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4010 if (exp.X_op != O_constant)
b99bd4ef 4011 {
c19d1205
ZW
4012 inst.error = _("constant expression required");
4013 return FAIL;
4014 }
b99bd4ef 4015
c19d1205
ZW
4016 if (exp.X_add_number < min || exp.X_add_number > max)
4017 {
4018 inst.error = _("immediate value out of range");
4019 return FAIL;
4020 }
b99bd4ef 4021
c19d1205
ZW
4022 *val = exp.X_add_number;
4023 return SUCCESS;
4024}
b99bd4ef 4025
5287ad62 4026/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4027 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4028 instructions. Puts the result directly in inst.operands[i]. */
4029
4030static int
4031parse_big_immediate (char **str, int i)
4032{
4033 expressionS exp;
4034 char *ptr = *str;
4035
4036 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4037
4038 if (exp.X_op == O_constant)
036dc3f7
PB
4039 {
4040 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4041 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4042 O_constant. We have to be careful not to break compilation for
4043 32-bit X_add_number, though. */
4044 if ((exp.X_add_number & ~0xffffffffl) != 0)
4045 {
4046 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4047 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4048 inst.operands[i].regisimm = 1;
4049 }
4050 }
5287ad62
JB
4051 else if (exp.X_op == O_big
4052 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4053 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4054 {
4055 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4056 /* Bignums have their least significant bits in
4057 generic_bignum[0]. Make sure we put 32 bits in imm and
4058 32 bits in reg, in a (hopefully) portable way. */
4059 assert (parts != 0);
4060 inst.operands[i].imm = 0;
4061 for (j = 0; j < parts; j++, idx++)
4062 inst.operands[i].imm |= generic_bignum[idx]
4063 << (LITTLENUM_NUMBER_OF_BITS * j);
4064 inst.operands[i].reg = 0;
4065 for (j = 0; j < parts; j++, idx++)
4066 inst.operands[i].reg |= generic_bignum[idx]
4067 << (LITTLENUM_NUMBER_OF_BITS * j);
4068 inst.operands[i].regisimm = 1;
4069 }
4070 else
4071 return FAIL;
4072
4073 *str = ptr;
4074
4075 return SUCCESS;
4076}
4077
c19d1205
ZW
4078/* Returns the pseudo-register number of an FPA immediate constant,
4079 or FAIL if there isn't a valid constant here. */
b99bd4ef 4080
c19d1205
ZW
4081static int
4082parse_fpa_immediate (char ** str)
4083{
4084 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4085 char * save_in;
4086 expressionS exp;
4087 int i;
4088 int j;
b99bd4ef 4089
c19d1205
ZW
4090 /* First try and match exact strings, this is to guarantee
4091 that some formats will work even for cross assembly. */
b99bd4ef 4092
c19d1205
ZW
4093 for (i = 0; fp_const[i]; i++)
4094 {
4095 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4096 {
c19d1205 4097 char *start = *str;
b99bd4ef 4098
c19d1205
ZW
4099 *str += strlen (fp_const[i]);
4100 if (is_end_of_line[(unsigned char) **str])
4101 return i + 8;
4102 *str = start;
4103 }
4104 }
b99bd4ef 4105
c19d1205
ZW
4106 /* Just because we didn't get a match doesn't mean that the constant
4107 isn't valid, just that it is in a format that we don't
4108 automatically recognize. Try parsing it with the standard
4109 expression routines. */
b99bd4ef 4110
c19d1205 4111 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4112
c19d1205
ZW
4113 /* Look for a raw floating point number. */
4114 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4115 && is_end_of_line[(unsigned char) *save_in])
4116 {
4117 for (i = 0; i < NUM_FLOAT_VALS; i++)
4118 {
4119 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4120 {
c19d1205
ZW
4121 if (words[j] != fp_values[i][j])
4122 break;
b99bd4ef
NC
4123 }
4124
c19d1205 4125 if (j == MAX_LITTLENUMS)
b99bd4ef 4126 {
c19d1205
ZW
4127 *str = save_in;
4128 return i + 8;
b99bd4ef
NC
4129 }
4130 }
4131 }
b99bd4ef 4132
c19d1205
ZW
4133 /* Try and parse a more complex expression, this will probably fail
4134 unless the code uses a floating point prefix (eg "0f"). */
4135 save_in = input_line_pointer;
4136 input_line_pointer = *str;
4137 if (expression (&exp) == absolute_section
4138 && exp.X_op == O_big
4139 && exp.X_add_number < 0)
4140 {
4141 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4142 Ditto for 15. */
4143 if (gen_to_words (words, 5, (long) 15) == 0)
4144 {
4145 for (i = 0; i < NUM_FLOAT_VALS; i++)
4146 {
4147 for (j = 0; j < MAX_LITTLENUMS; j++)
4148 {
4149 if (words[j] != fp_values[i][j])
4150 break;
4151 }
b99bd4ef 4152
c19d1205
ZW
4153 if (j == MAX_LITTLENUMS)
4154 {
4155 *str = input_line_pointer;
4156 input_line_pointer = save_in;
4157 return i + 8;
4158 }
4159 }
4160 }
b99bd4ef
NC
4161 }
4162
c19d1205
ZW
4163 *str = input_line_pointer;
4164 input_line_pointer = save_in;
4165 inst.error = _("invalid FPA immediate expression");
4166 return FAIL;
b99bd4ef
NC
4167}
4168
136da414
JB
4169/* Returns 1 if a number has "quarter-precision" float format
4170 0baBbbbbbc defgh000 00000000 00000000. */
4171
4172static int
4173is_quarter_float (unsigned imm)
4174{
4175 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4176 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4177}
4178
4179/* Parse an 8-bit "quarter-precision" floating point number of the form:
4180 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
4181 The zero and minus-zero cases need special handling, since they can't be
4182 encoded in the "quarter-precision" float format, but can nonetheless be
4183 loaded as integer constants. */
136da414
JB
4184
4185static unsigned
4186parse_qfloat_immediate (char **ccp, int *immed)
4187{
4188 char *str = *ccp;
c96612cc 4189 char *fpnum;
136da414 4190 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 4191 int found_fpchar = 0;
136da414
JB
4192
4193 skip_past_char (&str, '#');
4194
c96612cc
JB
4195 /* We must not accidentally parse an integer as a floating-point number. Make
4196 sure that the value we parse is not an integer by checking for special
4197 characters '.' or 'e'.
4198 FIXME: This is a horrible hack, but doing better is tricky because type
4199 information isn't in a very usable state at parse time. */
4200 fpnum = str;
4201 skip_whitespace (fpnum);
4202
4203 if (strncmp (fpnum, "0x", 2) == 0)
4204 return FAIL;
4205 else
4206 {
4207 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4208 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4209 {
4210 found_fpchar = 1;
4211 break;
4212 }
4213
4214 if (!found_fpchar)
4215 return FAIL;
4216 }
4217
136da414
JB
4218 if ((str = atof_ieee (str, 's', words)) != NULL)
4219 {
4220 unsigned fpword = 0;
4221 int i;
4222
4223 /* Our FP word must be 32 bits (single-precision FP). */
4224 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4225 {
4226 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4227 fpword |= words[i];
4228 }
4229
c96612cc 4230 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
136da414
JB
4231 *immed = fpword;
4232 else
4233 return FAIL;
4234
4235 *ccp = str;
4236
4237 return SUCCESS;
4238 }
4239
4240 return FAIL;
4241}
4242
c19d1205
ZW
4243/* Shift operands. */
4244enum shift_kind
b99bd4ef 4245{
c19d1205
ZW
4246 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4247};
b99bd4ef 4248
c19d1205
ZW
4249struct asm_shift_name
4250{
4251 const char *name;
4252 enum shift_kind kind;
4253};
b99bd4ef 4254
c19d1205
ZW
4255/* Third argument to parse_shift. */
4256enum parse_shift_mode
4257{
4258 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4259 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4260 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4261 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4262 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4263};
b99bd4ef 4264
c19d1205
ZW
4265/* Parse a <shift> specifier on an ARM data processing instruction.
4266 This has three forms:
b99bd4ef 4267
c19d1205
ZW
4268 (LSL|LSR|ASL|ASR|ROR) Rs
4269 (LSL|LSR|ASL|ASR|ROR) #imm
4270 RRX
b99bd4ef 4271
c19d1205
ZW
4272 Note that ASL is assimilated to LSL in the instruction encoding, and
4273 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4274
c19d1205
ZW
4275static int
4276parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4277{
c19d1205
ZW
4278 const struct asm_shift_name *shift_name;
4279 enum shift_kind shift;
4280 char *s = *str;
4281 char *p = s;
4282 int reg;
b99bd4ef 4283
c19d1205
ZW
4284 for (p = *str; ISALPHA (*p); p++)
4285 ;
b99bd4ef 4286
c19d1205 4287 if (p == *str)
b99bd4ef 4288 {
c19d1205
ZW
4289 inst.error = _("shift expression expected");
4290 return FAIL;
b99bd4ef
NC
4291 }
4292
c19d1205
ZW
4293 shift_name = hash_find_n (arm_shift_hsh, *str, p - *str);
4294
4295 if (shift_name == NULL)
b99bd4ef 4296 {
c19d1205
ZW
4297 inst.error = _("shift expression expected");
4298 return FAIL;
b99bd4ef
NC
4299 }
4300
c19d1205 4301 shift = shift_name->kind;
b99bd4ef 4302
c19d1205
ZW
4303 switch (mode)
4304 {
4305 case NO_SHIFT_RESTRICT:
4306 case SHIFT_IMMEDIATE: break;
b99bd4ef 4307
c19d1205
ZW
4308 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4309 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4310 {
4311 inst.error = _("'LSL' or 'ASR' required");
4312 return FAIL;
4313 }
4314 break;
b99bd4ef 4315
c19d1205
ZW
4316 case SHIFT_LSL_IMMEDIATE:
4317 if (shift != SHIFT_LSL)
4318 {
4319 inst.error = _("'LSL' required");
4320 return FAIL;
4321 }
4322 break;
b99bd4ef 4323
c19d1205
ZW
4324 case SHIFT_ASR_IMMEDIATE:
4325 if (shift != SHIFT_ASR)
4326 {
4327 inst.error = _("'ASR' required");
4328 return FAIL;
4329 }
4330 break;
b99bd4ef 4331
c19d1205
ZW
4332 default: abort ();
4333 }
b99bd4ef 4334
c19d1205
ZW
4335 if (shift != SHIFT_RRX)
4336 {
4337 /* Whitespace can appear here if the next thing is a bare digit. */
4338 skip_whitespace (p);
b99bd4ef 4339
c19d1205 4340 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4341 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4342 {
4343 inst.operands[i].imm = reg;
4344 inst.operands[i].immisreg = 1;
4345 }
4346 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4347 return FAIL;
4348 }
4349 inst.operands[i].shift_kind = shift;
4350 inst.operands[i].shifted = 1;
4351 *str = p;
4352 return SUCCESS;
b99bd4ef
NC
4353}
4354
c19d1205 4355/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4356
c19d1205
ZW
4357 #<immediate>
4358 #<immediate>, <rotate>
4359 <Rm>
4360 <Rm>, <shift>
b99bd4ef 4361
c19d1205
ZW
4362 where <shift> is defined by parse_shift above, and <rotate> is a
4363 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4364 is deferred to md_apply_fix. */
b99bd4ef 4365
c19d1205
ZW
4366static int
4367parse_shifter_operand (char **str, int i)
4368{
4369 int value;
4370 expressionS expr;
b99bd4ef 4371
dcbf9037 4372 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4373 {
4374 inst.operands[i].reg = value;
4375 inst.operands[i].isreg = 1;
b99bd4ef 4376
c19d1205
ZW
4377 /* parse_shift will override this if appropriate */
4378 inst.reloc.exp.X_op = O_constant;
4379 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4380
c19d1205
ZW
4381 if (skip_past_comma (str) == FAIL)
4382 return SUCCESS;
b99bd4ef 4383
c19d1205
ZW
4384 /* Shift operation on register. */
4385 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4386 }
4387
c19d1205
ZW
4388 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4389 return FAIL;
b99bd4ef 4390
c19d1205 4391 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4392 {
c19d1205
ZW
4393 /* #x, y -- ie explicit rotation by Y. */
4394 if (my_get_expression (&expr, str, GE_NO_PREFIX))
4395 return FAIL;
b99bd4ef 4396
c19d1205
ZW
4397 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4398 {
4399 inst.error = _("constant expression expected");
4400 return FAIL;
4401 }
b99bd4ef 4402
c19d1205
ZW
4403 value = expr.X_add_number;
4404 if (value < 0 || value > 30 || value % 2 != 0)
4405 {
4406 inst.error = _("invalid rotation");
4407 return FAIL;
4408 }
4409 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4410 {
4411 inst.error = _("invalid constant");
4412 return FAIL;
4413 }
09d92015 4414
55cf6793 4415 /* Convert to decoded value. md_apply_fix will put it back. */
c19d1205
ZW
4416 inst.reloc.exp.X_add_number
4417 = (((inst.reloc.exp.X_add_number << (32 - value))
4418 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
09d92015
MM
4419 }
4420
c19d1205
ZW
4421 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4422 inst.reloc.pc_rel = 0;
4423 return SUCCESS;
09d92015
MM
4424}
4425
4962c51a
MS
4426/* Group relocation information. Each entry in the table contains the
4427 textual name of the relocation as may appear in assembler source
4428 and must end with a colon.
4429 Along with this textual name are the relocation codes to be used if
4430 the corresponding instruction is an ALU instruction (ADD or SUB only),
4431 an LDR, an LDRS, or an LDC. */
4432
4433struct group_reloc_table_entry
4434{
4435 const char *name;
4436 int alu_code;
4437 int ldr_code;
4438 int ldrs_code;
4439 int ldc_code;
4440};
4441
4442typedef enum
4443{
4444 /* Varieties of non-ALU group relocation. */
4445
4446 GROUP_LDR,
4447 GROUP_LDRS,
4448 GROUP_LDC
4449} group_reloc_type;
4450
4451static struct group_reloc_table_entry group_reloc_table[] =
4452 { /* Program counter relative: */
4453 { "pc_g0_nc",
4454 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4455 0, /* LDR */
4456 0, /* LDRS */
4457 0 }, /* LDC */
4458 { "pc_g0",
4459 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4460 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4461 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4462 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4463 { "pc_g1_nc",
4464 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4465 0, /* LDR */
4466 0, /* LDRS */
4467 0 }, /* LDC */
4468 { "pc_g1",
4469 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4470 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4471 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4472 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4473 { "pc_g2",
4474 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4475 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4476 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4477 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4478 /* Section base relative */
4479 { "sb_g0_nc",
4480 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4481 0, /* LDR */
4482 0, /* LDRS */
4483 0 }, /* LDC */
4484 { "sb_g0",
4485 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4486 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4487 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4488 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4489 { "sb_g1_nc",
4490 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4491 0, /* LDR */
4492 0, /* LDRS */
4493 0 }, /* LDC */
4494 { "sb_g1",
4495 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4496 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4497 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4498 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4499 { "sb_g2",
4500 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4501 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4502 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4503 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4504
4505/* Given the address of a pointer pointing to the textual name of a group
4506 relocation as may appear in assembler source, attempt to find its details
4507 in group_reloc_table. The pointer will be updated to the character after
4508 the trailing colon. On failure, FAIL will be returned; SUCCESS
4509 otherwise. On success, *entry will be updated to point at the relevant
4510 group_reloc_table entry. */
4511
4512static int
4513find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4514{
4515 unsigned int i;
4516 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4517 {
4518 int length = strlen (group_reloc_table[i].name);
4519
4520 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0 &&
4521 (*str)[length] == ':')
4522 {
4523 *out = &group_reloc_table[i];
4524 *str += (length + 1);
4525 return SUCCESS;
4526 }
4527 }
4528
4529 return FAIL;
4530}
4531
4532/* Parse a <shifter_operand> for an ARM data processing instruction
4533 (as for parse_shifter_operand) where group relocations are allowed:
4534
4535 #<immediate>
4536 #<immediate>, <rotate>
4537 #:<group_reloc>:<expression>
4538 <Rm>
4539 <Rm>, <shift>
4540
4541 where <group_reloc> is one of the strings defined in group_reloc_table.
4542 The hashes are optional.
4543
4544 Everything else is as for parse_shifter_operand. */
4545
4546static parse_operand_result
4547parse_shifter_operand_group_reloc (char **str, int i)
4548{
4549 /* Determine if we have the sequence of characters #: or just :
4550 coming next. If we do, then we check for a group relocation.
4551 If we don't, punt the whole lot to parse_shifter_operand. */
4552
4553 if (((*str)[0] == '#' && (*str)[1] == ':')
4554 || (*str)[0] == ':')
4555 {
4556 struct group_reloc_table_entry *entry;
4557
4558 if ((*str)[0] == '#')
4559 (*str) += 2;
4560 else
4561 (*str)++;
4562
4563 /* Try to parse a group relocation. Anything else is an error. */
4564 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4565 {
4566 inst.error = _("unknown group relocation");
4567 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4568 }
4569
4570 /* We now have the group relocation table entry corresponding to
4571 the name in the assembler source. Next, we parse the expression. */
4572 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4573 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4574
4575 /* Record the relocation type (always the ALU variant here). */
4576 inst.reloc.type = entry->alu_code;
4577 assert (inst.reloc.type != 0);
4578
4579 return PARSE_OPERAND_SUCCESS;
4580 }
4581 else
4582 return parse_shifter_operand (str, i) == SUCCESS
4583 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4584
4585 /* Never reached. */
4586}
4587
c19d1205
ZW
4588/* Parse all forms of an ARM address expression. Information is written
4589 to inst.operands[i] and/or inst.reloc.
09d92015 4590
c19d1205 4591 Preindexed addressing (.preind=1):
09d92015 4592
c19d1205
ZW
4593 [Rn, #offset] .reg=Rn .reloc.exp=offset
4594 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4595 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4596 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4597
c19d1205 4598 These three may have a trailing ! which causes .writeback to be set also.
09d92015 4599
c19d1205 4600 Postindexed addressing (.postind=1, .writeback=1):
09d92015 4601
c19d1205
ZW
4602 [Rn], #offset .reg=Rn .reloc.exp=offset
4603 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4604 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4605 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4606
c19d1205 4607 Unindexed addressing (.preind=0, .postind=0):
09d92015 4608
c19d1205 4609 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 4610
c19d1205 4611 Other:
09d92015 4612
c19d1205
ZW
4613 [Rn]{!} shorthand for [Rn,#0]{!}
4614 =immediate .isreg=0 .reloc.exp=immediate
4615 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 4616
c19d1205
ZW
4617 It is the caller's responsibility to check for addressing modes not
4618 supported by the instruction, and to set inst.reloc.type. */
4619
4962c51a
MS
4620static parse_operand_result
4621parse_address_main (char **str, int i, int group_relocations,
4622 group_reloc_type group_type)
09d92015 4623{
c19d1205
ZW
4624 char *p = *str;
4625 int reg;
09d92015 4626
c19d1205 4627 if (skip_past_char (&p, '[') == FAIL)
09d92015 4628 {
c19d1205
ZW
4629 if (skip_past_char (&p, '=') == FAIL)
4630 {
4631 /* bare address - translate to PC-relative offset */
4632 inst.reloc.pc_rel = 1;
4633 inst.operands[i].reg = REG_PC;
4634 inst.operands[i].isreg = 1;
4635 inst.operands[i].preind = 1;
4636 }
4637 /* else a load-constant pseudo op, no special treatment needed here */
09d92015 4638
c19d1205 4639 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 4640 return PARSE_OPERAND_FAIL;
09d92015 4641
c19d1205 4642 *str = p;
4962c51a 4643 return PARSE_OPERAND_SUCCESS;
09d92015
MM
4644 }
4645
dcbf9037 4646 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 4647 {
c19d1205 4648 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 4649 return PARSE_OPERAND_FAIL;
09d92015 4650 }
c19d1205
ZW
4651 inst.operands[i].reg = reg;
4652 inst.operands[i].isreg = 1;
09d92015 4653
c19d1205 4654 if (skip_past_comma (&p) == SUCCESS)
09d92015 4655 {
c19d1205 4656 inst.operands[i].preind = 1;
09d92015 4657
c19d1205
ZW
4658 if (*p == '+') p++;
4659 else if (*p == '-') p++, inst.operands[i].negative = 1;
4660
dcbf9037 4661 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 4662 {
c19d1205
ZW
4663 inst.operands[i].imm = reg;
4664 inst.operands[i].immisreg = 1;
4665
4666 if (skip_past_comma (&p) == SUCCESS)
4667 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 4668 return PARSE_OPERAND_FAIL;
c19d1205 4669 }
5287ad62
JB
4670 else if (skip_past_char (&p, ':') == SUCCESS)
4671 {
4672 /* FIXME: '@' should be used here, but it's filtered out by generic
4673 code before we get to see it here. This may be subject to
4674 change. */
4675 expressionS exp;
4676 my_get_expression (&exp, &p, GE_NO_PREFIX);
4677 if (exp.X_op != O_constant)
4678 {
4679 inst.error = _("alignment must be constant");
4962c51a 4680 return PARSE_OPERAND_FAIL;
5287ad62
JB
4681 }
4682 inst.operands[i].imm = exp.X_add_number << 8;
4683 inst.operands[i].immisalign = 1;
4684 /* Alignments are not pre-indexes. */
4685 inst.operands[i].preind = 0;
4686 }
c19d1205
ZW
4687 else
4688 {
4689 if (inst.operands[i].negative)
4690 {
4691 inst.operands[i].negative = 0;
4692 p--;
4693 }
4962c51a
MS
4694
4695 if (group_relocations &&
4696 ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4697
4698 {
4699 struct group_reloc_table_entry *entry;
4700
4701 /* Skip over the #: or : sequence. */
4702 if (*p == '#')
4703 p += 2;
4704 else
4705 p++;
4706
4707 /* Try to parse a group relocation. Anything else is an
4708 error. */
4709 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
4710 {
4711 inst.error = _("unknown group relocation");
4712 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4713 }
4714
4715 /* We now have the group relocation table entry corresponding to
4716 the name in the assembler source. Next, we parse the
4717 expression. */
4718 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4719 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4720
4721 /* Record the relocation type. */
4722 switch (group_type)
4723 {
4724 case GROUP_LDR:
4725 inst.reloc.type = entry->ldr_code;
4726 break;
4727
4728 case GROUP_LDRS:
4729 inst.reloc.type = entry->ldrs_code;
4730 break;
4731
4732 case GROUP_LDC:
4733 inst.reloc.type = entry->ldc_code;
4734 break;
4735
4736 default:
4737 assert (0);
4738 }
4739
4740 if (inst.reloc.type == 0)
4741 {
4742 inst.error = _("this group relocation is not allowed on this instruction");
4743 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4744 }
4745 }
4746 else
4747 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4748 return PARSE_OPERAND_FAIL;
09d92015
MM
4749 }
4750 }
4751
c19d1205 4752 if (skip_past_char (&p, ']') == FAIL)
09d92015 4753 {
c19d1205 4754 inst.error = _("']' expected");
4962c51a 4755 return PARSE_OPERAND_FAIL;
09d92015
MM
4756 }
4757
c19d1205
ZW
4758 if (skip_past_char (&p, '!') == SUCCESS)
4759 inst.operands[i].writeback = 1;
09d92015 4760
c19d1205 4761 else if (skip_past_comma (&p) == SUCCESS)
09d92015 4762 {
c19d1205
ZW
4763 if (skip_past_char (&p, '{') == SUCCESS)
4764 {
4765 /* [Rn], {expr} - unindexed, with option */
4766 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 4767 0, 255, TRUE) == FAIL)
4962c51a 4768 return PARSE_OPERAND_FAIL;
09d92015 4769
c19d1205
ZW
4770 if (skip_past_char (&p, '}') == FAIL)
4771 {
4772 inst.error = _("'}' expected at end of 'option' field");
4962c51a 4773 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4774 }
4775 if (inst.operands[i].preind)
4776 {
4777 inst.error = _("cannot combine index with option");
4962c51a 4778 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4779 }
4780 *str = p;
4962c51a 4781 return PARSE_OPERAND_SUCCESS;
09d92015 4782 }
c19d1205
ZW
4783 else
4784 {
4785 inst.operands[i].postind = 1;
4786 inst.operands[i].writeback = 1;
09d92015 4787
c19d1205
ZW
4788 if (inst.operands[i].preind)
4789 {
4790 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 4791 return PARSE_OPERAND_FAIL;
c19d1205 4792 }
09d92015 4793
c19d1205
ZW
4794 if (*p == '+') p++;
4795 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 4796
dcbf9037 4797 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 4798 {
5287ad62
JB
4799 /* We might be using the immediate for alignment already. If we
4800 are, OR the register number into the low-order bits. */
4801 if (inst.operands[i].immisalign)
4802 inst.operands[i].imm |= reg;
4803 else
4804 inst.operands[i].imm = reg;
c19d1205 4805 inst.operands[i].immisreg = 1;
a737bd4d 4806
c19d1205
ZW
4807 if (skip_past_comma (&p) == SUCCESS)
4808 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 4809 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4810 }
4811 else
4812 {
4813 if (inst.operands[i].negative)
4814 {
4815 inst.operands[i].negative = 0;
4816 p--;
4817 }
4818 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 4819 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4820 }
4821 }
a737bd4d
NC
4822 }
4823
c19d1205
ZW
4824 /* If at this point neither .preind nor .postind is set, we have a
4825 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
4826 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
4827 {
4828 inst.operands[i].preind = 1;
4829 inst.reloc.exp.X_op = O_constant;
4830 inst.reloc.exp.X_add_number = 0;
4831 }
4832 *str = p;
4962c51a
MS
4833 return PARSE_OPERAND_SUCCESS;
4834}
4835
4836static int
4837parse_address (char **str, int i)
4838{
4839 return parse_address_main (str, i, 0, 0) == PARSE_OPERAND_SUCCESS
4840 ? SUCCESS : FAIL;
4841}
4842
4843static parse_operand_result
4844parse_address_group_reloc (char **str, int i, group_reloc_type type)
4845{
4846 return parse_address_main (str, i, 1, type);
a737bd4d
NC
4847}
4848
b6895b4f
PB
4849/* Parse an operand for a MOVW or MOVT instruction. */
4850static int
4851parse_half (char **str)
4852{
4853 char * p;
4854
4855 p = *str;
4856 skip_past_char (&p, '#');
4857 if (strncasecmp (p, ":lower16:", 9) == 0)
4858 inst.reloc.type = BFD_RELOC_ARM_MOVW;
4859 else if (strncasecmp (p, ":upper16:", 9) == 0)
4860 inst.reloc.type = BFD_RELOC_ARM_MOVT;
4861
4862 if (inst.reloc.type != BFD_RELOC_UNUSED)
4863 {
4864 p += 9;
4865 skip_whitespace(p);
4866 }
4867
4868 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4869 return FAIL;
4870
4871 if (inst.reloc.type == BFD_RELOC_UNUSED)
4872 {
4873 if (inst.reloc.exp.X_op != O_constant)
4874 {
4875 inst.error = _("constant expression expected");
4876 return FAIL;
4877 }
4878 if (inst.reloc.exp.X_add_number < 0
4879 || inst.reloc.exp.X_add_number > 0xffff)
4880 {
4881 inst.error = _("immediate value out of range");
4882 return FAIL;
4883 }
4884 }
4885 *str = p;
4886 return SUCCESS;
4887}
4888
c19d1205 4889/* Miscellaneous. */
a737bd4d 4890
c19d1205
ZW
4891/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
4892 or a bitmask suitable to be or-ed into the ARM msr instruction. */
4893static int
4894parse_psr (char **str)
09d92015 4895{
c19d1205
ZW
4896 char *p;
4897 unsigned long psr_field;
62b3e311
PB
4898 const struct asm_psr *psr;
4899 char *start;
09d92015 4900
c19d1205
ZW
4901 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
4902 feature for ease of use and backwards compatibility. */
4903 p = *str;
62b3e311 4904 if (strncasecmp (p, "SPSR", 4) == 0)
c19d1205 4905 psr_field = SPSR_BIT;
62b3e311 4906 else if (strncasecmp (p, "CPSR", 4) == 0)
c19d1205
ZW
4907 psr_field = 0;
4908 else
62b3e311
PB
4909 {
4910 start = p;
4911 do
4912 p++;
4913 while (ISALNUM (*p) || *p == '_');
4914
4915 psr = hash_find_n (arm_v7m_psr_hsh, start, p - start);
4916 if (!psr)
4917 return FAIL;
09d92015 4918
62b3e311
PB
4919 *str = p;
4920 return psr->field;
4921 }
09d92015 4922
62b3e311 4923 p += 4;
c19d1205
ZW
4924 if (*p == '_')
4925 {
4926 /* A suffix follows. */
c19d1205
ZW
4927 p++;
4928 start = p;
a737bd4d 4929
c19d1205
ZW
4930 do
4931 p++;
4932 while (ISALNUM (*p) || *p == '_');
a737bd4d 4933
c19d1205
ZW
4934 psr = hash_find_n (arm_psr_hsh, start, p - start);
4935 if (!psr)
4936 goto error;
a737bd4d 4937
c19d1205 4938 psr_field |= psr->field;
a737bd4d 4939 }
c19d1205 4940 else
a737bd4d 4941 {
c19d1205
ZW
4942 if (ISALNUM (*p))
4943 goto error; /* Garbage after "[CS]PSR". */
4944
4945 psr_field |= (PSR_c | PSR_f);
a737bd4d 4946 }
c19d1205
ZW
4947 *str = p;
4948 return psr_field;
a737bd4d 4949
c19d1205
ZW
4950 error:
4951 inst.error = _("flag for {c}psr instruction expected");
4952 return FAIL;
a737bd4d
NC
4953}
4954
c19d1205
ZW
4955/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
4956 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 4957
c19d1205
ZW
4958static int
4959parse_cps_flags (char **str)
a737bd4d 4960{
c19d1205
ZW
4961 int val = 0;
4962 int saw_a_flag = 0;
4963 char *s = *str;
a737bd4d 4964
c19d1205
ZW
4965 for (;;)
4966 switch (*s++)
4967 {
4968 case '\0': case ',':
4969 goto done;
a737bd4d 4970
c19d1205
ZW
4971 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
4972 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
4973 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 4974
c19d1205
ZW
4975 default:
4976 inst.error = _("unrecognized CPS flag");
4977 return FAIL;
4978 }
a737bd4d 4979
c19d1205
ZW
4980 done:
4981 if (saw_a_flag == 0)
a737bd4d 4982 {
c19d1205
ZW
4983 inst.error = _("missing CPS flags");
4984 return FAIL;
a737bd4d 4985 }
a737bd4d 4986
c19d1205
ZW
4987 *str = s - 1;
4988 return val;
a737bd4d
NC
4989}
4990
c19d1205
ZW
4991/* Parse an endian specifier ("BE" or "LE", case insensitive);
4992 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
4993
4994static int
c19d1205 4995parse_endian_specifier (char **str)
a737bd4d 4996{
c19d1205
ZW
4997 int little_endian;
4998 char *s = *str;
a737bd4d 4999
c19d1205
ZW
5000 if (strncasecmp (s, "BE", 2))
5001 little_endian = 0;
5002 else if (strncasecmp (s, "LE", 2))
5003 little_endian = 1;
5004 else
a737bd4d 5005 {
c19d1205 5006 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5007 return FAIL;
5008 }
5009
c19d1205 5010 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 5011 {
c19d1205 5012 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5013 return FAIL;
5014 }
5015
c19d1205
ZW
5016 *str = s + 2;
5017 return little_endian;
5018}
a737bd4d 5019
c19d1205
ZW
5020/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5021 value suitable for poking into the rotate field of an sxt or sxta
5022 instruction, or FAIL on error. */
5023
5024static int
5025parse_ror (char **str)
5026{
5027 int rot;
5028 char *s = *str;
5029
5030 if (strncasecmp (s, "ROR", 3) == 0)
5031 s += 3;
5032 else
a737bd4d 5033 {
c19d1205 5034 inst.error = _("missing rotation field after comma");
a737bd4d
NC
5035 return FAIL;
5036 }
c19d1205
ZW
5037
5038 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5039 return FAIL;
5040
5041 switch (rot)
a737bd4d 5042 {
c19d1205
ZW
5043 case 0: *str = s; return 0x0;
5044 case 8: *str = s; return 0x1;
5045 case 16: *str = s; return 0x2;
5046 case 24: *str = s; return 0x3;
5047
5048 default:
5049 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
5050 return FAIL;
5051 }
c19d1205 5052}
a737bd4d 5053
c19d1205
ZW
5054/* Parse a conditional code (from conds[] below). The value returned is in the
5055 range 0 .. 14, or FAIL. */
5056static int
5057parse_cond (char **str)
5058{
5059 char *p, *q;
5060 const struct asm_cond *c;
a737bd4d 5061
c19d1205
ZW
5062 p = q = *str;
5063 while (ISALPHA (*q))
5064 q++;
a737bd4d 5065
c19d1205
ZW
5066 c = hash_find_n (arm_cond_hsh, p, q - p);
5067 if (!c)
a737bd4d 5068 {
c19d1205 5069 inst.error = _("condition required");
a737bd4d
NC
5070 return FAIL;
5071 }
5072
c19d1205
ZW
5073 *str = q;
5074 return c->value;
5075}
5076
62b3e311
PB
5077/* Parse an option for a barrier instruction. Returns the encoding for the
5078 option, or FAIL. */
5079static int
5080parse_barrier (char **str)
5081{
5082 char *p, *q;
5083 const struct asm_barrier_opt *o;
5084
5085 p = q = *str;
5086 while (ISALPHA (*q))
5087 q++;
5088
5089 o = hash_find_n (arm_barrier_opt_hsh, p, q - p);
5090 if (!o)
5091 return FAIL;
5092
5093 *str = q;
5094 return o->value;
5095}
5096
92e90b6e
PB
5097/* Parse the operands of a table branch instruction. Similar to a memory
5098 operand. */
5099static int
5100parse_tb (char **str)
5101{
5102 char * p = *str;
5103 int reg;
5104
5105 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5106 {
5107 inst.error = _("'[' expected");
5108 return FAIL;
5109 }
92e90b6e 5110
dcbf9037 5111 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5112 {
5113 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5114 return FAIL;
5115 }
5116 inst.operands[0].reg = reg;
5117
5118 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5119 {
5120 inst.error = _("',' expected");
5121 return FAIL;
5122 }
92e90b6e 5123
dcbf9037 5124 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5125 {
5126 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5127 return FAIL;
5128 }
5129 inst.operands[0].imm = reg;
5130
5131 if (skip_past_comma (&p) == SUCCESS)
5132 {
5133 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5134 return FAIL;
5135 if (inst.reloc.exp.X_add_number != 1)
5136 {
5137 inst.error = _("invalid shift");
5138 return FAIL;
5139 }
5140 inst.operands[0].shifted = 1;
5141 }
5142
5143 if (skip_past_char (&p, ']') == FAIL)
5144 {
5145 inst.error = _("']' expected");
5146 return FAIL;
5147 }
5148 *str = p;
5149 return SUCCESS;
5150}
5151
5287ad62
JB
5152/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5153 information on the types the operands can take and how they are encoded.
037e8744
JB
5154 Up to four operands may be read; this function handles setting the
5155 ".present" field for each read operand itself.
5287ad62
JB
5156 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5157 else returns FAIL. */
5158
5159static int
5160parse_neon_mov (char **str, int *which_operand)
5161{
5162 int i = *which_operand, val;
5163 enum arm_reg_type rtype;
5164 char *ptr = *str;
dcbf9037 5165 struct neon_type_el optype;
5287ad62 5166
dcbf9037 5167 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5168 {
5169 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5170 inst.operands[i].reg = val;
5171 inst.operands[i].isscalar = 1;
dcbf9037 5172 inst.operands[i].vectype = optype;
5287ad62
JB
5173 inst.operands[i++].present = 1;
5174
5175 if (skip_past_comma (&ptr) == FAIL)
5176 goto wanted_comma;
5177
dcbf9037 5178 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62
JB
5179 goto wanted_arm;
5180
5181 inst.operands[i].reg = val;
5182 inst.operands[i].isreg = 1;
5183 inst.operands[i].present = 1;
5184 }
037e8744 5185 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5186 != FAIL)
5287ad62
JB
5187 {
5188 /* Cases 0, 1, 2, 3, 5 (D only). */
5189 if (skip_past_comma (&ptr) == FAIL)
5190 goto wanted_comma;
5191
5192 inst.operands[i].reg = val;
5193 inst.operands[i].isreg = 1;
5194 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5195 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5196 inst.operands[i].isvec = 1;
dcbf9037 5197 inst.operands[i].vectype = optype;
5287ad62
JB
5198 inst.operands[i++].present = 1;
5199
dcbf9037 5200 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5201 {
037e8744
JB
5202 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5203 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5204 inst.operands[i].reg = val;
5205 inst.operands[i].isreg = 1;
037e8744 5206 inst.operands[i].present = 1;
5287ad62
JB
5207
5208 if (rtype == REG_TYPE_NQ)
5209 {
dcbf9037 5210 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5211 return FAIL;
5212 }
037e8744
JB
5213 else if (rtype != REG_TYPE_VFS)
5214 {
5215 i++;
5216 if (skip_past_comma (&ptr) == FAIL)
5217 goto wanted_comma;
5218 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5219 goto wanted_arm;
5220 inst.operands[i].reg = val;
5221 inst.operands[i].isreg = 1;
5222 inst.operands[i].present = 1;
5223 }
5287ad62 5224 }
136da414 5225 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
136da414 5226 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
037e8744
JB
5227 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5228 Case 10: VMOV.F32 <Sd>, #<imm>
5229 Case 11: VMOV.F64 <Dd>, #<imm> */
c96612cc 5230 inst.operands[i].immisfloat = 1;
5287ad62 5231 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5287ad62
JB
5232 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5233 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
037e8744
JB
5234 ;
5235 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5236 &optype)) != FAIL)
5287ad62
JB
5237 {
5238 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5239 Case 1: VMOV<c><q> <Dd>, <Dm>
5240 Case 8: VMOV.F32 <Sd>, <Sm>
5241 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5242
5243 inst.operands[i].reg = val;
5244 inst.operands[i].isreg = 1;
5245 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5246 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5247 inst.operands[i].isvec = 1;
dcbf9037 5248 inst.operands[i].vectype = optype;
5287ad62 5249 inst.operands[i].present = 1;
037e8744
JB
5250
5251 if (skip_past_comma (&ptr) == SUCCESS)
5252 {
5253 /* Case 15. */
5254 i++;
5255
5256 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5257 goto wanted_arm;
5258
5259 inst.operands[i].reg = val;
5260 inst.operands[i].isreg = 1;
5261 inst.operands[i++].present = 1;
5262
5263 if (skip_past_comma (&ptr) == FAIL)
5264 goto wanted_comma;
5265
5266 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5267 goto wanted_arm;
5268
5269 inst.operands[i].reg = val;
5270 inst.operands[i].isreg = 1;
5271 inst.operands[i++].present = 1;
5272 }
5287ad62
JB
5273 }
5274 else
5275 {
dcbf9037 5276 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5277 return FAIL;
5278 }
5279 }
dcbf9037 5280 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5281 {
5282 /* Cases 6, 7. */
5283 inst.operands[i].reg = val;
5284 inst.operands[i].isreg = 1;
5285 inst.operands[i++].present = 1;
5286
5287 if (skip_past_comma (&ptr) == FAIL)
5288 goto wanted_comma;
5289
dcbf9037 5290 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5291 {
5292 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5293 inst.operands[i].reg = val;
5294 inst.operands[i].isscalar = 1;
5295 inst.operands[i].present = 1;
dcbf9037 5296 inst.operands[i].vectype = optype;
5287ad62 5297 }
dcbf9037 5298 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5299 {
5300 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5301 inst.operands[i].reg = val;
5302 inst.operands[i].isreg = 1;
5303 inst.operands[i++].present = 1;
5304
5305 if (skip_past_comma (&ptr) == FAIL)
5306 goto wanted_comma;
5307
037e8744 5308 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 5309 == FAIL)
5287ad62 5310 {
037e8744 5311 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
5312 return FAIL;
5313 }
5314
5315 inst.operands[i].reg = val;
5316 inst.operands[i].isreg = 1;
037e8744
JB
5317 inst.operands[i].isvec = 1;
5318 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 5319 inst.operands[i].vectype = optype;
5287ad62 5320 inst.operands[i].present = 1;
037e8744
JB
5321
5322 if (rtype == REG_TYPE_VFS)
5323 {
5324 /* Case 14. */
5325 i++;
5326 if (skip_past_comma (&ptr) == FAIL)
5327 goto wanted_comma;
5328 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5329 &optype)) == FAIL)
5330 {
5331 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5332 return FAIL;
5333 }
5334 inst.operands[i].reg = val;
5335 inst.operands[i].isreg = 1;
5336 inst.operands[i].isvec = 1;
5337 inst.operands[i].issingle = 1;
5338 inst.operands[i].vectype = optype;
5339 inst.operands[i].present = 1;
5340 }
5341 }
5342 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5343 != FAIL)
5344 {
5345 /* Case 13. */
5346 inst.operands[i].reg = val;
5347 inst.operands[i].isreg = 1;
5348 inst.operands[i].isvec = 1;
5349 inst.operands[i].issingle = 1;
5350 inst.operands[i].vectype = optype;
5351 inst.operands[i++].present = 1;
5287ad62
JB
5352 }
5353 }
5354 else
5355 {
dcbf9037 5356 first_error (_("parse error"));
5287ad62
JB
5357 return FAIL;
5358 }
5359
5360 /* Successfully parsed the operands. Update args. */
5361 *which_operand = i;
5362 *str = ptr;
5363 return SUCCESS;
5364
5365 wanted_comma:
dcbf9037 5366 first_error (_("expected comma"));
5287ad62
JB
5367 return FAIL;
5368
5369 wanted_arm:
dcbf9037 5370 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 5371 return FAIL;
5287ad62
JB
5372}
5373
c19d1205
ZW
5374/* Matcher codes for parse_operands. */
5375enum operand_parse_code
5376{
5377 OP_stop, /* end of line */
5378
5379 OP_RR, /* ARM register */
5380 OP_RRnpc, /* ARM register, not r15 */
5381 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5382 OP_RRw, /* ARM register, not r15, optional trailing ! */
5383 OP_RCP, /* Coprocessor number */
5384 OP_RCN, /* Coprocessor register */
5385 OP_RF, /* FPA register */
5386 OP_RVS, /* VFP single precision register */
5287ad62
JB
5387 OP_RVD, /* VFP double precision register (0..15) */
5388 OP_RND, /* Neon double precision register (0..31) */
5389 OP_RNQ, /* Neon quad precision register */
037e8744 5390 OP_RVSD, /* VFP single or double precision register */
5287ad62 5391 OP_RNDQ, /* Neon double or quad precision register */
037e8744 5392 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 5393 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
5394 OP_RVC, /* VFP control register */
5395 OP_RMF, /* Maverick F register */
5396 OP_RMD, /* Maverick D register */
5397 OP_RMFX, /* Maverick FX register */
5398 OP_RMDX, /* Maverick DX register */
5399 OP_RMAX, /* Maverick AX register */
5400 OP_RMDS, /* Maverick DSPSC register */
5401 OP_RIWR, /* iWMMXt wR register */
5402 OP_RIWC, /* iWMMXt wC register */
5403 OP_RIWG, /* iWMMXt wCG register */
5404 OP_RXA, /* XScale accumulator register */
5405
5406 OP_REGLST, /* ARM register list */
5407 OP_VRSLST, /* VFP single-precision register list */
5408 OP_VRDLST, /* VFP double-precision register list */
037e8744 5409 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
5410 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5411 OP_NSTRLST, /* Neon element/structure list */
5412
5413 OP_NILO, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
5414 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 5415 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 5416 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 5417 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
5418 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5419 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5420 OP_VMOV, /* Neon VMOV operands. */
5421 OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN. */
5422 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 5423 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
5424
5425 OP_I0, /* immediate zero */
c19d1205
ZW
5426 OP_I7, /* immediate value 0 .. 7 */
5427 OP_I15, /* 0 .. 15 */
5428 OP_I16, /* 1 .. 16 */
5287ad62 5429 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
5430 OP_I31, /* 0 .. 31 */
5431 OP_I31w, /* 0 .. 31, optional trailing ! */
5432 OP_I32, /* 1 .. 32 */
5287ad62
JB
5433 OP_I32z, /* 0 .. 32 */
5434 OP_I63, /* 0 .. 63 */
c19d1205 5435 OP_I63s, /* -64 .. 63 */
5287ad62
JB
5436 OP_I64, /* 1 .. 64 */
5437 OP_I64z, /* 0 .. 64 */
c19d1205 5438 OP_I255, /* 0 .. 255 */
c19d1205
ZW
5439
5440 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5441 OP_I7b, /* 0 .. 7 */
5442 OP_I15b, /* 0 .. 15 */
5443 OP_I31b, /* 0 .. 31 */
5444
5445 OP_SH, /* shifter operand */
4962c51a 5446 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 5447 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
5448 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5449 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5450 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
5451 OP_EXP, /* arbitrary expression */
5452 OP_EXPi, /* same, with optional immediate prefix */
5453 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 5454 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
5455
5456 OP_CPSF, /* CPS flags */
5457 OP_ENDI, /* Endianness specifier */
5458 OP_PSR, /* CPSR/SPSR mask for msr */
5459 OP_COND, /* conditional code */
92e90b6e 5460 OP_TB, /* Table branch. */
c19d1205 5461
037e8744
JB
5462 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5463 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5464
c19d1205
ZW
5465 OP_RRnpc_I0, /* ARM register or literal 0 */
5466 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5467 OP_RR_EXi, /* ARM register or expression with imm prefix */
5468 OP_RF_IF, /* FPA register or immediate */
5469 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 5470 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
5471
5472 /* Optional operands. */
5473 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5474 OP_oI31b, /* 0 .. 31 */
5287ad62 5475 OP_oI32b, /* 1 .. 32 */
c19d1205
ZW
5476 OP_oIffffb, /* 0 .. 65535 */
5477 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5478
5479 OP_oRR, /* ARM register */
5480 OP_oRRnpc, /* ARM register, not the PC */
b6702015 5481 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
5482 OP_oRND, /* Optional Neon double precision register */
5483 OP_oRNQ, /* Optional Neon quad precision register */
5484 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 5485 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
5486 OP_oSHll, /* LSL immediate */
5487 OP_oSHar, /* ASR immediate */
5488 OP_oSHllar, /* LSL or ASR immediate */
5489 OP_oROR, /* ROR 0/8/16/24 */
62b3e311 5490 OP_oBARRIER, /* Option argument for a barrier instruction. */
c19d1205
ZW
5491
5492 OP_FIRST_OPTIONAL = OP_oI7b
5493};
a737bd4d 5494
c19d1205
ZW
5495/* Generic instruction operand parser. This does no encoding and no
5496 semantic validation; it merely squirrels values away in the inst
5497 structure. Returns SUCCESS or FAIL depending on whether the
5498 specified grammar matched. */
5499static int
ca3f61f7 5500parse_operands (char *str, const unsigned char *pattern)
c19d1205
ZW
5501{
5502 unsigned const char *upat = pattern;
5503 char *backtrack_pos = 0;
5504 const char *backtrack_error = 0;
5505 int i, val, backtrack_index = 0;
5287ad62 5506 enum arm_reg_type rtype;
4962c51a 5507 parse_operand_result result;
c19d1205
ZW
5508
5509#define po_char_or_fail(chr) do { \
5510 if (skip_past_char (&str, chr) == FAIL) \
5511 goto bad_args; \
5512} while (0)
5513
dcbf9037
JB
5514#define po_reg_or_fail(regtype) do { \
5515 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5516 &inst.operands[i].vectype); \
5517 if (val == FAIL) \
5518 { \
5519 first_error (_(reg_expected_msgs[regtype])); \
5520 goto failure; \
5521 } \
5522 inst.operands[i].reg = val; \
5523 inst.operands[i].isreg = 1; \
5524 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
037e8744
JB
5525 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5526 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5527 || rtype == REG_TYPE_VFD \
5528 || rtype == REG_TYPE_NQ); \
c19d1205
ZW
5529} while (0)
5530
dcbf9037
JB
5531#define po_reg_or_goto(regtype, label) do { \
5532 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5533 &inst.operands[i].vectype); \
5534 if (val == FAIL) \
5535 goto label; \
5536 \
5537 inst.operands[i].reg = val; \
5538 inst.operands[i].isreg = 1; \
5539 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
037e8744
JB
5540 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5541 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5542 || rtype == REG_TYPE_VFD \
5543 || rtype == REG_TYPE_NQ); \
c19d1205
ZW
5544} while (0)
5545
5546#define po_imm_or_fail(min, max, popt) do { \
5547 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5548 goto failure; \
5549 inst.operands[i].imm = val; \
5550} while (0)
5551
dcbf9037
JB
5552#define po_scalar_or_goto(elsz, label) do { \
5553 val = parse_scalar (&str, elsz, &inst.operands[i].vectype); \
5554 if (val == FAIL) \
5555 goto label; \
5556 inst.operands[i].reg = val; \
5557 inst.operands[i].isscalar = 1; \
5287ad62
JB
5558} while (0)
5559
c19d1205
ZW
5560#define po_misc_or_fail(expr) do { \
5561 if (expr) \
5562 goto failure; \
5563} while (0)
5564
4962c51a
MS
5565#define po_misc_or_fail_no_backtrack(expr) do { \
5566 result = expr; \
5567 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK)\
5568 backtrack_pos = 0; \
5569 if (result != PARSE_OPERAND_SUCCESS) \
5570 goto failure; \
5571} while (0)
5572
c19d1205
ZW
5573 skip_whitespace (str);
5574
5575 for (i = 0; upat[i] != OP_stop; i++)
5576 {
5577 if (upat[i] >= OP_FIRST_OPTIONAL)
5578 {
5579 /* Remember where we are in case we need to backtrack. */
5580 assert (!backtrack_pos);
5581 backtrack_pos = str;
5582 backtrack_error = inst.error;
5583 backtrack_index = i;
5584 }
5585
b6702015 5586 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
5587 po_char_or_fail (',');
5588
5589 switch (upat[i])
5590 {
5591 /* Registers */
5592 case OP_oRRnpc:
5593 case OP_RRnpc:
5594 case OP_oRR:
5595 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5596 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5597 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5598 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
5599 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
5600 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
5601 case OP_oRND:
5602 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
c19d1205
ZW
5603 case OP_RVC: po_reg_or_fail (REG_TYPE_VFC); break;
5604 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
5605 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
5606 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
5607 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
5608 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
5609 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
5610 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
5611 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
5612 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
5613 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
5614 case OP_oRNQ:
5615 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
5616 case OP_oRNDQ:
5617 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
5618 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
5619 case OP_oRNSDQ:
5620 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
5621
5622 /* Neon scalar. Using an element size of 8 means that some invalid
5623 scalars are accepted here, so deal with those in later code. */
5624 case OP_RNSC: po_scalar_or_goto (8, failure); break;
5625
5626 /* WARNING: We can expand to two operands here. This has the potential
5627 to totally confuse the backtracking mechanism! It will be OK at
5628 least as long as we don't try to use optional args as well,
5629 though. */
5630 case OP_NILO:
5631 {
5632 po_reg_or_goto (REG_TYPE_NDQ, try_imm);
466bbf93 5633 inst.operands[i].present = 1;
5287ad62
JB
5634 i++;
5635 skip_past_comma (&str);
5636 po_reg_or_goto (REG_TYPE_NDQ, one_reg_only);
5637 break;
5638 one_reg_only:
5639 /* Optional register operand was omitted. Unfortunately, it's in
5640 operands[i-1] and we need it to be in inst.operands[i]. Fix that
5641 here (this is a bit grotty). */
5642 inst.operands[i] = inst.operands[i-1];
5643 inst.operands[i-1].present = 0;
5644 break;
5645 try_imm:
036dc3f7
PB
5646 /* There's a possibility of getting a 64-bit immediate here, so
5647 we need special handling. */
5648 if (parse_big_immediate (&str, i) == FAIL)
5649 {
5650 inst.error = _("immediate value is out of range");
5651 goto failure;
5652 }
5287ad62
JB
5653 }
5654 break;
5655
5656 case OP_RNDQ_I0:
5657 {
5658 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
5659 break;
5660 try_imm0:
5661 po_imm_or_fail (0, 0, TRUE);
5662 }
5663 break;
5664
037e8744
JB
5665 case OP_RVSD_I0:
5666 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
5667 break;
5668
5287ad62
JB
5669 case OP_RR_RNSC:
5670 {
5671 po_scalar_or_goto (8, try_rr);
5672 break;
5673 try_rr:
5674 po_reg_or_fail (REG_TYPE_RN);
5675 }
5676 break;
5677
037e8744
JB
5678 case OP_RNSDQ_RNSC:
5679 {
5680 po_scalar_or_goto (8, try_nsdq);
5681 break;
5682 try_nsdq:
5683 po_reg_or_fail (REG_TYPE_NSDQ);
5684 }
5685 break;
5686
5287ad62
JB
5687 case OP_RNDQ_RNSC:
5688 {
5689 po_scalar_or_goto (8, try_ndq);
5690 break;
5691 try_ndq:
5692 po_reg_or_fail (REG_TYPE_NDQ);
5693 }
5694 break;
5695
5696 case OP_RND_RNSC:
5697 {
5698 po_scalar_or_goto (8, try_vfd);
5699 break;
5700 try_vfd:
5701 po_reg_or_fail (REG_TYPE_VFD);
5702 }
5703 break;
5704
5705 case OP_VMOV:
5706 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
5707 not careful then bad things might happen. */
5708 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
5709 break;
5710
5711 case OP_RNDQ_IMVNb:
5712 {
5713 po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm);
5714 break;
5715 try_mvnimm:
5716 /* There's a possibility of getting a 64-bit immediate here, so
5717 we need special handling. */
5718 if (parse_big_immediate (&str, i) == FAIL)
5719 {
5720 inst.error = _("immediate value is out of range");
5721 goto failure;
5722 }
5723 }
5724 break;
5725
5726 case OP_RNDQ_I63b:
5727 {
5728 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
5729 break;
5730 try_shimm:
5731 po_imm_or_fail (0, 63, TRUE);
5732 }
5733 break;
c19d1205
ZW
5734
5735 case OP_RRnpcb:
5736 po_char_or_fail ('[');
5737 po_reg_or_fail (REG_TYPE_RN);
5738 po_char_or_fail (']');
5739 break;
a737bd4d 5740
c19d1205 5741 case OP_RRw:
b6702015 5742 case OP_oRRw:
c19d1205
ZW
5743 po_reg_or_fail (REG_TYPE_RN);
5744 if (skip_past_char (&str, '!') == SUCCESS)
5745 inst.operands[i].writeback = 1;
5746 break;
5747
5748 /* Immediates */
5749 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
5750 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
5751 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 5752 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
5753 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
5754 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 5755 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 5756 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
5757 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
5758 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
5759 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 5760 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
5761
5762 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
5763 case OP_oI7b:
5764 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
5765 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
5766 case OP_oI31b:
5767 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 5768 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
c19d1205
ZW
5769 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
5770
5771 /* Immediate variants */
5772 case OP_oI255c:
5773 po_char_or_fail ('{');
5774 po_imm_or_fail (0, 255, TRUE);
5775 po_char_or_fail ('}');
5776 break;
5777
5778 case OP_I31w:
5779 /* The expression parser chokes on a trailing !, so we have
5780 to find it first and zap it. */
5781 {
5782 char *s = str;
5783 while (*s && *s != ',')
5784 s++;
5785 if (s[-1] == '!')
5786 {
5787 s[-1] = '\0';
5788 inst.operands[i].writeback = 1;
5789 }
5790 po_imm_or_fail (0, 31, TRUE);
5791 if (str == s - 1)
5792 str = s;
5793 }
5794 break;
5795
5796 /* Expressions */
5797 case OP_EXPi: EXPi:
5798 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5799 GE_OPT_PREFIX));
5800 break;
5801
5802 case OP_EXP:
5803 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5804 GE_NO_PREFIX));
5805 break;
5806
5807 case OP_EXPr: EXPr:
5808 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5809 GE_NO_PREFIX));
5810 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 5811 {
c19d1205
ZW
5812 val = parse_reloc (&str);
5813 if (val == -1)
5814 {
5815 inst.error = _("unrecognized relocation suffix");
5816 goto failure;
5817 }
5818 else if (val != BFD_RELOC_UNUSED)
5819 {
5820 inst.operands[i].imm = val;
5821 inst.operands[i].hasreloc = 1;
5822 }
a737bd4d 5823 }
c19d1205 5824 break;
a737bd4d 5825
b6895b4f
PB
5826 /* Operand for MOVW or MOVT. */
5827 case OP_HALF:
5828 po_misc_or_fail (parse_half (&str));
5829 break;
5830
c19d1205
ZW
5831 /* Register or expression */
5832 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
5833 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 5834
c19d1205
ZW
5835 /* Register or immediate */
5836 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
5837 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 5838
c19d1205
ZW
5839 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
5840 IF:
5841 if (!is_immediate_prefix (*str))
5842 goto bad_args;
5843 str++;
5844 val = parse_fpa_immediate (&str);
5845 if (val == FAIL)
5846 goto failure;
5847 /* FPA immediates are encoded as registers 8-15.
5848 parse_fpa_immediate has already applied the offset. */
5849 inst.operands[i].reg = val;
5850 inst.operands[i].isreg = 1;
5851 break;
09d92015 5852
2d447fca
JM
5853 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
5854 I32z: po_imm_or_fail (0, 32, FALSE); break;
5855
c19d1205
ZW
5856 /* Two kinds of register */
5857 case OP_RIWR_RIWC:
5858 {
5859 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
5860 if (!rege
5861 || (rege->type != REG_TYPE_MMXWR
5862 && rege->type != REG_TYPE_MMXWC
5863 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
5864 {
5865 inst.error = _("iWMMXt data or control register expected");
5866 goto failure;
5867 }
5868 inst.operands[i].reg = rege->number;
5869 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
5870 }
5871 break;
09d92015 5872
41adaa5c
JM
5873 case OP_RIWC_RIWG:
5874 {
5875 struct reg_entry *rege = arm_reg_parse_multi (&str);
5876 if (!rege
5877 || (rege->type != REG_TYPE_MMXWC
5878 && rege->type != REG_TYPE_MMXWCG))
5879 {
5880 inst.error = _("iWMMXt control register expected");
5881 goto failure;
5882 }
5883 inst.operands[i].reg = rege->number;
5884 inst.operands[i].isreg = 1;
5885 }
5886 break;
5887
c19d1205
ZW
5888 /* Misc */
5889 case OP_CPSF: val = parse_cps_flags (&str); break;
5890 case OP_ENDI: val = parse_endian_specifier (&str); break;
5891 case OP_oROR: val = parse_ror (&str); break;
5892 case OP_PSR: val = parse_psr (&str); break;
5893 case OP_COND: val = parse_cond (&str); break;
62b3e311 5894 case OP_oBARRIER:val = parse_barrier (&str); break;
c19d1205 5895
037e8744
JB
5896 case OP_RVC_PSR:
5897 po_reg_or_goto (REG_TYPE_VFC, try_psr);
5898 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
5899 break;
5900 try_psr:
5901 val = parse_psr (&str);
5902 break;
5903
5904 case OP_APSR_RR:
5905 po_reg_or_goto (REG_TYPE_RN, try_apsr);
5906 break;
5907 try_apsr:
5908 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
5909 instruction). */
5910 if (strncasecmp (str, "APSR_", 5) == 0)
5911 {
5912 unsigned found = 0;
5913 str += 5;
5914 while (found < 15)
5915 switch (*str++)
5916 {
5917 case 'c': found = (found & 1) ? 16 : found | 1; break;
5918 case 'n': found = (found & 2) ? 16 : found | 2; break;
5919 case 'z': found = (found & 4) ? 16 : found | 4; break;
5920 case 'v': found = (found & 8) ? 16 : found | 8; break;
5921 default: found = 16;
5922 }
5923 if (found != 15)
5924 goto failure;
5925 inst.operands[i].isvec = 1;
5926 }
5927 else
5928 goto failure;
5929 break;
5930
92e90b6e
PB
5931 case OP_TB:
5932 po_misc_or_fail (parse_tb (&str));
5933 break;
5934
c19d1205
ZW
5935 /* Register lists */
5936 case OP_REGLST:
5937 val = parse_reg_list (&str);
5938 if (*str == '^')
5939 {
5940 inst.operands[1].writeback = 1;
5941 str++;
5942 }
5943 break;
09d92015 5944
c19d1205 5945 case OP_VRSLST:
5287ad62 5946 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 5947 break;
09d92015 5948
c19d1205 5949 case OP_VRDLST:
5287ad62 5950 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 5951 break;
a737bd4d 5952
037e8744
JB
5953 case OP_VRSDLST:
5954 /* Allow Q registers too. */
5955 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5956 REGLIST_NEON_D);
5957 if (val == FAIL)
5958 {
5959 inst.error = NULL;
5960 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5961 REGLIST_VFP_S);
5962 inst.operands[i].issingle = 1;
5963 }
5964 break;
5965
5287ad62
JB
5966 case OP_NRDLST:
5967 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5968 REGLIST_NEON_D);
5969 break;
5970
5971 case OP_NSTRLST:
dcbf9037
JB
5972 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
5973 &inst.operands[i].vectype);
5287ad62
JB
5974 break;
5975
c19d1205
ZW
5976 /* Addressing modes */
5977 case OP_ADDR:
5978 po_misc_or_fail (parse_address (&str, i));
5979 break;
09d92015 5980
4962c51a
MS
5981 case OP_ADDRGLDR:
5982 po_misc_or_fail_no_backtrack (
5983 parse_address_group_reloc (&str, i, GROUP_LDR));
5984 break;
5985
5986 case OP_ADDRGLDRS:
5987 po_misc_or_fail_no_backtrack (
5988 parse_address_group_reloc (&str, i, GROUP_LDRS));
5989 break;
5990
5991 case OP_ADDRGLDC:
5992 po_misc_or_fail_no_backtrack (
5993 parse_address_group_reloc (&str, i, GROUP_LDC));
5994 break;
5995
c19d1205
ZW
5996 case OP_SH:
5997 po_misc_or_fail (parse_shifter_operand (&str, i));
5998 break;
09d92015 5999
4962c51a
MS
6000 case OP_SHG:
6001 po_misc_or_fail_no_backtrack (
6002 parse_shifter_operand_group_reloc (&str, i));
6003 break;
6004
c19d1205
ZW
6005 case OP_oSHll:
6006 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6007 break;
09d92015 6008
c19d1205
ZW
6009 case OP_oSHar:
6010 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6011 break;
09d92015 6012
c19d1205
ZW
6013 case OP_oSHllar:
6014 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6015 break;
09d92015 6016
c19d1205
ZW
6017 default:
6018 as_fatal ("unhandled operand code %d", upat[i]);
6019 }
09d92015 6020
c19d1205
ZW
6021 /* Various value-based sanity checks and shared operations. We
6022 do not signal immediate failures for the register constraints;
6023 this allows a syntax error to take precedence. */
6024 switch (upat[i])
6025 {
6026 case OP_oRRnpc:
6027 case OP_RRnpc:
6028 case OP_RRnpcb:
6029 case OP_RRw:
b6702015 6030 case OP_oRRw:
c19d1205
ZW
6031 case OP_RRnpc_I0:
6032 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6033 inst.error = BAD_PC;
6034 break;
09d92015 6035
c19d1205
ZW
6036 case OP_CPSF:
6037 case OP_ENDI:
6038 case OP_oROR:
6039 case OP_PSR:
037e8744 6040 case OP_RVC_PSR:
c19d1205 6041 case OP_COND:
62b3e311 6042 case OP_oBARRIER:
c19d1205
ZW
6043 case OP_REGLST:
6044 case OP_VRSLST:
6045 case OP_VRDLST:
037e8744 6046 case OP_VRSDLST:
5287ad62
JB
6047 case OP_NRDLST:
6048 case OP_NSTRLST:
c19d1205
ZW
6049 if (val == FAIL)
6050 goto failure;
6051 inst.operands[i].imm = val;
6052 break;
a737bd4d 6053
c19d1205
ZW
6054 default:
6055 break;
6056 }
09d92015 6057
c19d1205
ZW
6058 /* If we get here, this operand was successfully parsed. */
6059 inst.operands[i].present = 1;
6060 continue;
09d92015 6061
c19d1205 6062 bad_args:
09d92015 6063 inst.error = BAD_ARGS;
c19d1205
ZW
6064
6065 failure:
6066 if (!backtrack_pos)
d252fdde
PB
6067 {
6068 /* The parse routine should already have set inst.error, but set a
6069 defaut here just in case. */
6070 if (!inst.error)
6071 inst.error = _("syntax error");
6072 return FAIL;
6073 }
c19d1205
ZW
6074
6075 /* Do not backtrack over a trailing optional argument that
6076 absorbed some text. We will only fail again, with the
6077 'garbage following instruction' error message, which is
6078 probably less helpful than the current one. */
6079 if (backtrack_index == i && backtrack_pos != str
6080 && upat[i+1] == OP_stop)
d252fdde
PB
6081 {
6082 if (!inst.error)
6083 inst.error = _("syntax error");
6084 return FAIL;
6085 }
c19d1205
ZW
6086
6087 /* Try again, skipping the optional argument at backtrack_pos. */
6088 str = backtrack_pos;
6089 inst.error = backtrack_error;
6090 inst.operands[backtrack_index].present = 0;
6091 i = backtrack_index;
6092 backtrack_pos = 0;
09d92015 6093 }
09d92015 6094
c19d1205
ZW
6095 /* Check that we have parsed all the arguments. */
6096 if (*str != '\0' && !inst.error)
6097 inst.error = _("garbage following instruction");
09d92015 6098
c19d1205 6099 return inst.error ? FAIL : SUCCESS;
09d92015
MM
6100}
6101
c19d1205
ZW
6102#undef po_char_or_fail
6103#undef po_reg_or_fail
6104#undef po_reg_or_goto
6105#undef po_imm_or_fail
5287ad62 6106#undef po_scalar_or_fail
c19d1205
ZW
6107\f
6108/* Shorthand macro for instruction encoding functions issuing errors. */
6109#define constraint(expr, err) do { \
6110 if (expr) \
6111 { \
6112 inst.error = err; \
6113 return; \
6114 } \
6115} while (0)
6116
6117/* Functions for operand encoding. ARM, then Thumb. */
6118
6119#define rotate_left(v, n) (v << n | v >> (32 - n))
6120
6121/* If VAL can be encoded in the immediate field of an ARM instruction,
6122 return the encoded form. Otherwise, return FAIL. */
6123
6124static unsigned int
6125encode_arm_immediate (unsigned int val)
09d92015 6126{
c19d1205
ZW
6127 unsigned int a, i;
6128
6129 for (i = 0; i < 32; i += 2)
6130 if ((a = rotate_left (val, i)) <= 0xff)
6131 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6132
6133 return FAIL;
09d92015
MM
6134}
6135
c19d1205
ZW
6136/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6137 return the encoded form. Otherwise, return FAIL. */
6138static unsigned int
6139encode_thumb32_immediate (unsigned int val)
09d92015 6140{
c19d1205 6141 unsigned int a, i;
09d92015 6142
9c3c69f2 6143 if (val <= 0xff)
c19d1205 6144 return val;
a737bd4d 6145
9c3c69f2 6146 for (i = 1; i <= 24; i++)
09d92015 6147 {
9c3c69f2
PB
6148 a = val >> i;
6149 if ((val & ~(0xff << i)) == 0)
6150 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6151 }
a737bd4d 6152
c19d1205
ZW
6153 a = val & 0xff;
6154 if (val == ((a << 16) | a))
6155 return 0x100 | a;
6156 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6157 return 0x300 | a;
09d92015 6158
c19d1205
ZW
6159 a = val & 0xff00;
6160 if (val == ((a << 16) | a))
6161 return 0x200 | (a >> 8);
a737bd4d 6162
c19d1205 6163 return FAIL;
09d92015 6164}
5287ad62 6165/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6166
6167static void
5287ad62
JB
6168encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6169{
6170 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6171 && reg > 15)
6172 {
6173 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
6174 {
6175 if (thumb_mode)
6176 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6177 fpu_vfp_ext_v3);
6178 else
6179 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6180 fpu_vfp_ext_v3);
6181 }
6182 else
6183 {
dcbf9037 6184 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
6185 return;
6186 }
6187 }
6188
c19d1205 6189 switch (pos)
09d92015 6190 {
c19d1205
ZW
6191 case VFP_REG_Sd:
6192 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6193 break;
6194
6195 case VFP_REG_Sn:
6196 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6197 break;
6198
6199 case VFP_REG_Sm:
6200 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6201 break;
6202
5287ad62
JB
6203 case VFP_REG_Dd:
6204 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6205 break;
6206
6207 case VFP_REG_Dn:
6208 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6209 break;
6210
6211 case VFP_REG_Dm:
6212 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6213 break;
6214
c19d1205
ZW
6215 default:
6216 abort ();
09d92015 6217 }
09d92015
MM
6218}
6219
c19d1205 6220/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 6221 if any, is handled by md_apply_fix. */
09d92015 6222static void
c19d1205 6223encode_arm_shift (int i)
09d92015 6224{
c19d1205
ZW
6225 if (inst.operands[i].shift_kind == SHIFT_RRX)
6226 inst.instruction |= SHIFT_ROR << 5;
6227 else
09d92015 6228 {
c19d1205
ZW
6229 inst.instruction |= inst.operands[i].shift_kind << 5;
6230 if (inst.operands[i].immisreg)
6231 {
6232 inst.instruction |= SHIFT_BY_REG;
6233 inst.instruction |= inst.operands[i].imm << 8;
6234 }
6235 else
6236 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 6237 }
c19d1205 6238}
09d92015 6239
c19d1205
ZW
6240static void
6241encode_arm_shifter_operand (int i)
6242{
6243 if (inst.operands[i].isreg)
09d92015 6244 {
c19d1205
ZW
6245 inst.instruction |= inst.operands[i].reg;
6246 encode_arm_shift (i);
09d92015 6247 }
c19d1205
ZW
6248 else
6249 inst.instruction |= INST_IMMEDIATE;
09d92015
MM
6250}
6251
c19d1205 6252/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 6253static void
c19d1205 6254encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 6255{
c19d1205
ZW
6256 assert (inst.operands[i].isreg);
6257 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6258
c19d1205 6259 if (inst.operands[i].preind)
09d92015 6260 {
c19d1205
ZW
6261 if (is_t)
6262 {
6263 inst.error = _("instruction does not accept preindexed addressing");
6264 return;
6265 }
6266 inst.instruction |= PRE_INDEX;
6267 if (inst.operands[i].writeback)
6268 inst.instruction |= WRITE_BACK;
09d92015 6269
c19d1205
ZW
6270 }
6271 else if (inst.operands[i].postind)
6272 {
6273 assert (inst.operands[i].writeback);
6274 if (is_t)
6275 inst.instruction |= WRITE_BACK;
6276 }
6277 else /* unindexed - only for coprocessor */
09d92015 6278 {
c19d1205 6279 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
6280 return;
6281 }
6282
c19d1205
ZW
6283 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6284 && (((inst.instruction & 0x000f0000) >> 16)
6285 == ((inst.instruction & 0x0000f000) >> 12)))
6286 as_warn ((inst.instruction & LOAD_BIT)
6287 ? _("destination register same as write-back base")
6288 : _("source register same as write-back base"));
09d92015
MM
6289}
6290
c19d1205
ZW
6291/* inst.operands[i] was set up by parse_address. Encode it into an
6292 ARM-format mode 2 load or store instruction. If is_t is true,
6293 reject forms that cannot be used with a T instruction (i.e. not
6294 post-indexed). */
a737bd4d 6295static void
c19d1205 6296encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 6297{
c19d1205 6298 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6299
c19d1205 6300 if (inst.operands[i].immisreg)
09d92015 6301 {
c19d1205
ZW
6302 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6303 inst.instruction |= inst.operands[i].imm;
6304 if (!inst.operands[i].negative)
6305 inst.instruction |= INDEX_UP;
6306 if (inst.operands[i].shifted)
6307 {
6308 if (inst.operands[i].shift_kind == SHIFT_RRX)
6309 inst.instruction |= SHIFT_ROR << 5;
6310 else
6311 {
6312 inst.instruction |= inst.operands[i].shift_kind << 5;
6313 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6314 }
6315 }
09d92015 6316 }
c19d1205 6317 else /* immediate offset in inst.reloc */
09d92015 6318 {
c19d1205
ZW
6319 if (inst.reloc.type == BFD_RELOC_UNUSED)
6320 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
09d92015 6321 }
09d92015
MM
6322}
6323
c19d1205
ZW
6324/* inst.operands[i] was set up by parse_address. Encode it into an
6325 ARM-format mode 3 load or store instruction. Reject forms that
6326 cannot be used with such instructions. If is_t is true, reject
6327 forms that cannot be used with a T instruction (i.e. not
6328 post-indexed). */
6329static void
6330encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 6331{
c19d1205 6332 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 6333 {
c19d1205
ZW
6334 inst.error = _("instruction does not accept scaled register index");
6335 return;
09d92015 6336 }
a737bd4d 6337
c19d1205 6338 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6339
c19d1205
ZW
6340 if (inst.operands[i].immisreg)
6341 {
6342 inst.instruction |= inst.operands[i].imm;
6343 if (!inst.operands[i].negative)
6344 inst.instruction |= INDEX_UP;
6345 }
6346 else /* immediate offset in inst.reloc */
6347 {
6348 inst.instruction |= HWOFFSET_IMM;
6349 if (inst.reloc.type == BFD_RELOC_UNUSED)
6350 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
c19d1205 6351 }
a737bd4d
NC
6352}
6353
c19d1205
ZW
6354/* inst.operands[i] was set up by parse_address. Encode it into an
6355 ARM-format instruction. Reject all forms which cannot be encoded
6356 into a coprocessor load/store instruction. If wb_ok is false,
6357 reject use of writeback; if unind_ok is false, reject use of
6358 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
6359 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6360 (in which case it is preserved). */
09d92015 6361
c19d1205
ZW
6362static int
6363encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 6364{
c19d1205 6365 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6366
c19d1205 6367 assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 6368
c19d1205 6369 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 6370 {
c19d1205
ZW
6371 assert (!inst.operands[i].writeback);
6372 if (!unind_ok)
6373 {
6374 inst.error = _("instruction does not support unindexed addressing");
6375 return FAIL;
6376 }
6377 inst.instruction |= inst.operands[i].imm;
6378 inst.instruction |= INDEX_UP;
6379 return SUCCESS;
09d92015 6380 }
a737bd4d 6381
c19d1205
ZW
6382 if (inst.operands[i].preind)
6383 inst.instruction |= PRE_INDEX;
a737bd4d 6384
c19d1205 6385 if (inst.operands[i].writeback)
09d92015 6386 {
c19d1205
ZW
6387 if (inst.operands[i].reg == REG_PC)
6388 {
6389 inst.error = _("pc may not be used with write-back");
6390 return FAIL;
6391 }
6392 if (!wb_ok)
6393 {
6394 inst.error = _("instruction does not support writeback");
6395 return FAIL;
6396 }
6397 inst.instruction |= WRITE_BACK;
09d92015 6398 }
a737bd4d 6399
c19d1205
ZW
6400 if (reloc_override)
6401 inst.reloc.type = reloc_override;
4962c51a
MS
6402 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6403 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6404 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6405 {
6406 if (thumb_mode)
6407 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6408 else
6409 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6410 }
6411
c19d1205
ZW
6412 return SUCCESS;
6413}
a737bd4d 6414
c19d1205
ZW
6415/* inst.reloc.exp describes an "=expr" load pseudo-operation.
6416 Determine whether it can be performed with a move instruction; if
6417 it can, convert inst.instruction to that move instruction and
6418 return 1; if it can't, convert inst.instruction to a literal-pool
6419 load and return 0. If this is not a valid thing to do in the
6420 current context, set inst.error and return 1.
a737bd4d 6421
c19d1205
ZW
6422 inst.operands[i] describes the destination register. */
6423
6424static int
6425move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6426{
53365c0d
PB
6427 unsigned long tbit;
6428
6429 if (thumb_p)
6430 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6431 else
6432 tbit = LOAD_BIT;
6433
6434 if ((inst.instruction & tbit) == 0)
09d92015 6435 {
c19d1205
ZW
6436 inst.error = _("invalid pseudo operation");
6437 return 1;
09d92015 6438 }
c19d1205 6439 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
6440 {
6441 inst.error = _("constant expression expected");
c19d1205 6442 return 1;
09d92015 6443 }
c19d1205 6444 if (inst.reloc.exp.X_op == O_constant)
09d92015 6445 {
c19d1205
ZW
6446 if (thumb_p)
6447 {
53365c0d 6448 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
6449 {
6450 /* This can be done with a mov(1) instruction. */
6451 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6452 inst.instruction |= inst.reloc.exp.X_add_number;
6453 return 1;
6454 }
6455 }
6456 else
6457 {
6458 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6459 if (value != FAIL)
6460 {
6461 /* This can be done with a mov instruction. */
6462 inst.instruction &= LITERAL_MASK;
6463 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6464 inst.instruction |= value & 0xfff;
6465 return 1;
6466 }
09d92015 6467
c19d1205
ZW
6468 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6469 if (value != FAIL)
6470 {
6471 /* This can be done with a mvn instruction. */
6472 inst.instruction &= LITERAL_MASK;
6473 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6474 inst.instruction |= value & 0xfff;
6475 return 1;
6476 }
6477 }
09d92015
MM
6478 }
6479
c19d1205
ZW
6480 if (add_to_lit_pool () == FAIL)
6481 {
6482 inst.error = _("literal pool insertion failed");
6483 return 1;
6484 }
6485 inst.operands[1].reg = REG_PC;
6486 inst.operands[1].isreg = 1;
6487 inst.operands[1].preind = 1;
6488 inst.reloc.pc_rel = 1;
6489 inst.reloc.type = (thumb_p
6490 ? BFD_RELOC_ARM_THUMB_OFFSET
6491 : (mode_3
6492 ? BFD_RELOC_ARM_HWLITERAL
6493 : BFD_RELOC_ARM_LITERAL));
6494 return 0;
09d92015
MM
6495}
6496
c19d1205
ZW
6497/* Functions for instruction encoding, sorted by subarchitecture.
6498 First some generics; their names are taken from the conventional
6499 bit positions for register arguments in ARM format instructions. */
09d92015 6500
a737bd4d 6501static void
c19d1205 6502do_noargs (void)
09d92015 6503{
c19d1205 6504}
a737bd4d 6505
c19d1205
ZW
6506static void
6507do_rd (void)
6508{
6509 inst.instruction |= inst.operands[0].reg << 12;
6510}
a737bd4d 6511
c19d1205
ZW
6512static void
6513do_rd_rm (void)
6514{
6515 inst.instruction |= inst.operands[0].reg << 12;
6516 inst.instruction |= inst.operands[1].reg;
6517}
09d92015 6518
c19d1205
ZW
6519static void
6520do_rd_rn (void)
6521{
6522 inst.instruction |= inst.operands[0].reg << 12;
6523 inst.instruction |= inst.operands[1].reg << 16;
6524}
a737bd4d 6525
c19d1205
ZW
6526static void
6527do_rn_rd (void)
6528{
6529 inst.instruction |= inst.operands[0].reg << 16;
6530 inst.instruction |= inst.operands[1].reg << 12;
6531}
09d92015 6532
c19d1205
ZW
6533static void
6534do_rd_rm_rn (void)
6535{
9a64e435 6536 unsigned Rn = inst.operands[2].reg;
708587a4 6537 /* Enforce restrictions on SWP instruction. */
9a64e435
PB
6538 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6539 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6540 _("Rn must not overlap other operands"));
c19d1205
ZW
6541 inst.instruction |= inst.operands[0].reg << 12;
6542 inst.instruction |= inst.operands[1].reg;
9a64e435 6543 inst.instruction |= Rn << 16;
c19d1205 6544}
09d92015 6545
c19d1205
ZW
6546static void
6547do_rd_rn_rm (void)
6548{
6549 inst.instruction |= inst.operands[0].reg << 12;
6550 inst.instruction |= inst.operands[1].reg << 16;
6551 inst.instruction |= inst.operands[2].reg;
6552}
a737bd4d 6553
c19d1205
ZW
6554static void
6555do_rm_rd_rn (void)
6556{
6557 inst.instruction |= inst.operands[0].reg;
6558 inst.instruction |= inst.operands[1].reg << 12;
6559 inst.instruction |= inst.operands[2].reg << 16;
6560}
09d92015 6561
c19d1205
ZW
6562static void
6563do_imm0 (void)
6564{
6565 inst.instruction |= inst.operands[0].imm;
6566}
09d92015 6567
c19d1205
ZW
6568static void
6569do_rd_cpaddr (void)
6570{
6571 inst.instruction |= inst.operands[0].reg << 12;
6572 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 6573}
a737bd4d 6574
c19d1205
ZW
6575/* ARM instructions, in alphabetical order by function name (except
6576 that wrapper functions appear immediately after the function they
6577 wrap). */
09d92015 6578
c19d1205
ZW
6579/* This is a pseudo-op of the form "adr rd, label" to be converted
6580 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
6581
6582static void
c19d1205 6583do_adr (void)
09d92015 6584{
c19d1205 6585 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 6586
c19d1205
ZW
6587 /* Frag hacking will turn this into a sub instruction if the offset turns
6588 out to be negative. */
6589 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 6590 inst.reloc.pc_rel = 1;
2fc8bdac 6591 inst.reloc.exp.X_add_number -= 8;
c19d1205 6592}
b99bd4ef 6593
c19d1205
ZW
6594/* This is a pseudo-op of the form "adrl rd, label" to be converted
6595 into a relative address of the form:
6596 add rd, pc, #low(label-.-8)"
6597 add rd, rd, #high(label-.-8)" */
b99bd4ef 6598
c19d1205
ZW
6599static void
6600do_adrl (void)
6601{
6602 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 6603
c19d1205
ZW
6604 /* Frag hacking will turn this into a sub instruction if the offset turns
6605 out to be negative. */
6606 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
6607 inst.reloc.pc_rel = 1;
6608 inst.size = INSN_SIZE * 2;
2fc8bdac 6609 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
6610}
6611
b99bd4ef 6612static void
c19d1205 6613do_arit (void)
b99bd4ef 6614{
c19d1205
ZW
6615 if (!inst.operands[1].present)
6616 inst.operands[1].reg = inst.operands[0].reg;
6617 inst.instruction |= inst.operands[0].reg << 12;
6618 inst.instruction |= inst.operands[1].reg << 16;
6619 encode_arm_shifter_operand (2);
6620}
b99bd4ef 6621
62b3e311
PB
6622static void
6623do_barrier (void)
6624{
6625 if (inst.operands[0].present)
6626 {
6627 constraint ((inst.instruction & 0xf0) != 0x40
6628 && inst.operands[0].imm != 0xf,
6629 "bad barrier type");
6630 inst.instruction |= inst.operands[0].imm;
6631 }
6632 else
6633 inst.instruction |= 0xf;
6634}
6635
c19d1205
ZW
6636static void
6637do_bfc (void)
6638{
6639 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
6640 constraint (msb > 32, _("bit-field extends past end of register"));
6641 /* The instruction encoding stores the LSB and MSB,
6642 not the LSB and width. */
6643 inst.instruction |= inst.operands[0].reg << 12;
6644 inst.instruction |= inst.operands[1].imm << 7;
6645 inst.instruction |= (msb - 1) << 16;
6646}
b99bd4ef 6647
c19d1205
ZW
6648static void
6649do_bfi (void)
6650{
6651 unsigned int msb;
b99bd4ef 6652
c19d1205
ZW
6653 /* #0 in second position is alternative syntax for bfc, which is
6654 the same instruction but with REG_PC in the Rm field. */
6655 if (!inst.operands[1].isreg)
6656 inst.operands[1].reg = REG_PC;
b99bd4ef 6657
c19d1205
ZW
6658 msb = inst.operands[2].imm + inst.operands[3].imm;
6659 constraint (msb > 32, _("bit-field extends past end of register"));
6660 /* The instruction encoding stores the LSB and MSB,
6661 not the LSB and width. */
6662 inst.instruction |= inst.operands[0].reg << 12;
6663 inst.instruction |= inst.operands[1].reg;
6664 inst.instruction |= inst.operands[2].imm << 7;
6665 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
6666}
6667
b99bd4ef 6668static void
c19d1205 6669do_bfx (void)
b99bd4ef 6670{
c19d1205
ZW
6671 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
6672 _("bit-field extends past end of register"));
6673 inst.instruction |= inst.operands[0].reg << 12;
6674 inst.instruction |= inst.operands[1].reg;
6675 inst.instruction |= inst.operands[2].imm << 7;
6676 inst.instruction |= (inst.operands[3].imm - 1) << 16;
6677}
09d92015 6678
c19d1205
ZW
6679/* ARM V5 breakpoint instruction (argument parse)
6680 BKPT <16 bit unsigned immediate>
6681 Instruction is not conditional.
6682 The bit pattern given in insns[] has the COND_ALWAYS condition,
6683 and it is an error if the caller tried to override that. */
b99bd4ef 6684
c19d1205
ZW
6685static void
6686do_bkpt (void)
6687{
6688 /* Top 12 of 16 bits to bits 19:8. */
6689 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 6690
c19d1205
ZW
6691 /* Bottom 4 of 16 bits to bits 3:0. */
6692 inst.instruction |= inst.operands[0].imm & 0xf;
6693}
09d92015 6694
c19d1205
ZW
6695static void
6696encode_branch (int default_reloc)
6697{
6698 if (inst.operands[0].hasreloc)
6699 {
6700 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
6701 _("the only suffix valid here is '(plt)'"));
6702 inst.reloc.type = BFD_RELOC_ARM_PLT32;
c19d1205 6703 }
b99bd4ef 6704 else
c19d1205
ZW
6705 {
6706 inst.reloc.type = default_reloc;
c19d1205 6707 }
2fc8bdac 6708 inst.reloc.pc_rel = 1;
b99bd4ef
NC
6709}
6710
b99bd4ef 6711static void
c19d1205 6712do_branch (void)
b99bd4ef 6713{
39b41c9c
PB
6714#ifdef OBJ_ELF
6715 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6716 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6717 else
6718#endif
6719 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6720}
6721
6722static void
6723do_bl (void)
6724{
6725#ifdef OBJ_ELF
6726 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6727 {
6728 if (inst.cond == COND_ALWAYS)
6729 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6730 else
6731 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6732 }
6733 else
6734#endif
6735 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 6736}
b99bd4ef 6737
c19d1205
ZW
6738/* ARM V5 branch-link-exchange instruction (argument parse)
6739 BLX <target_addr> ie BLX(1)
6740 BLX{<condition>} <Rm> ie BLX(2)
6741 Unfortunately, there are two different opcodes for this mnemonic.
6742 So, the insns[].value is not used, and the code here zaps values
6743 into inst.instruction.
6744 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 6745
c19d1205
ZW
6746static void
6747do_blx (void)
6748{
6749 if (inst.operands[0].isreg)
b99bd4ef 6750 {
c19d1205
ZW
6751 /* Arg is a register; the opcode provided by insns[] is correct.
6752 It is not illegal to do "blx pc", just useless. */
6753 if (inst.operands[0].reg == REG_PC)
6754 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 6755
c19d1205
ZW
6756 inst.instruction |= inst.operands[0].reg;
6757 }
6758 else
b99bd4ef 6759 {
c19d1205
ZW
6760 /* Arg is an address; this instruction cannot be executed
6761 conditionally, and the opcode must be adjusted. */
6762 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 6763 inst.instruction = 0xfa000000;
39b41c9c
PB
6764#ifdef OBJ_ELF
6765 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6766 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6767 else
6768#endif
6769 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 6770 }
c19d1205
ZW
6771}
6772
6773static void
6774do_bx (void)
6775{
6776 if (inst.operands[0].reg == REG_PC)
6777 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 6778
c19d1205 6779 inst.instruction |= inst.operands[0].reg;
09d92015
MM
6780}
6781
c19d1205
ZW
6782
6783/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
6784
6785static void
c19d1205 6786do_bxj (void)
a737bd4d 6787{
c19d1205
ZW
6788 if (inst.operands[0].reg == REG_PC)
6789 as_tsktsk (_("use of r15 in bxj is not really useful"));
6790
6791 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
6792}
6793
c19d1205
ZW
6794/* Co-processor data operation:
6795 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
6796 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
6797static void
6798do_cdp (void)
6799{
6800 inst.instruction |= inst.operands[0].reg << 8;
6801 inst.instruction |= inst.operands[1].imm << 20;
6802 inst.instruction |= inst.operands[2].reg << 12;
6803 inst.instruction |= inst.operands[3].reg << 16;
6804 inst.instruction |= inst.operands[4].reg;
6805 inst.instruction |= inst.operands[5].imm << 5;
6806}
a737bd4d
NC
6807
6808static void
c19d1205 6809do_cmp (void)
a737bd4d 6810{
c19d1205
ZW
6811 inst.instruction |= inst.operands[0].reg << 16;
6812 encode_arm_shifter_operand (1);
a737bd4d
NC
6813}
6814
c19d1205
ZW
6815/* Transfer between coprocessor and ARM registers.
6816 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
6817 MRC2
6818 MCR{cond}
6819 MCR2
6820
6821 No special properties. */
09d92015
MM
6822
6823static void
c19d1205 6824do_co_reg (void)
09d92015 6825{
c19d1205
ZW
6826 inst.instruction |= inst.operands[0].reg << 8;
6827 inst.instruction |= inst.operands[1].imm << 21;
6828 inst.instruction |= inst.operands[2].reg << 12;
6829 inst.instruction |= inst.operands[3].reg << 16;
6830 inst.instruction |= inst.operands[4].reg;
6831 inst.instruction |= inst.operands[5].imm << 5;
6832}
09d92015 6833
c19d1205
ZW
6834/* Transfer between coprocessor register and pair of ARM registers.
6835 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
6836 MCRR2
6837 MRRC{cond}
6838 MRRC2
b99bd4ef 6839
c19d1205 6840 Two XScale instructions are special cases of these:
09d92015 6841
c19d1205
ZW
6842 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
6843 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 6844
c19d1205 6845 Result unpredicatable if Rd or Rn is R15. */
a737bd4d 6846
c19d1205
ZW
6847static void
6848do_co_reg2c (void)
6849{
6850 inst.instruction |= inst.operands[0].reg << 8;
6851 inst.instruction |= inst.operands[1].imm << 4;
6852 inst.instruction |= inst.operands[2].reg << 12;
6853 inst.instruction |= inst.operands[3].reg << 16;
6854 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
6855}
6856
c19d1205
ZW
6857static void
6858do_cpsi (void)
6859{
6860 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
6861 if (inst.operands[1].present)
6862 {
6863 inst.instruction |= CPSI_MMOD;
6864 inst.instruction |= inst.operands[1].imm;
6865 }
c19d1205 6866}
b99bd4ef 6867
62b3e311
PB
6868static void
6869do_dbg (void)
6870{
6871 inst.instruction |= inst.operands[0].imm;
6872}
6873
b99bd4ef 6874static void
c19d1205 6875do_it (void)
b99bd4ef 6876{
c19d1205
ZW
6877 /* There is no IT instruction in ARM mode. We
6878 process it but do not generate code for it. */
6879 inst.size = 0;
09d92015 6880}
b99bd4ef 6881
09d92015 6882static void
c19d1205 6883do_ldmstm (void)
ea6ef066 6884{
c19d1205
ZW
6885 int base_reg = inst.operands[0].reg;
6886 int range = inst.operands[1].imm;
ea6ef066 6887
c19d1205
ZW
6888 inst.instruction |= base_reg << 16;
6889 inst.instruction |= range;
ea6ef066 6890
c19d1205
ZW
6891 if (inst.operands[1].writeback)
6892 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 6893
c19d1205 6894 if (inst.operands[0].writeback)
ea6ef066 6895 {
c19d1205
ZW
6896 inst.instruction |= WRITE_BACK;
6897 /* Check for unpredictable uses of writeback. */
6898 if (inst.instruction & LOAD_BIT)
09d92015 6899 {
c19d1205
ZW
6900 /* Not allowed in LDM type 2. */
6901 if ((inst.instruction & LDM_TYPE_2_OR_3)
6902 && ((range & (1 << REG_PC)) == 0))
6903 as_warn (_("writeback of base register is UNPREDICTABLE"));
6904 /* Only allowed if base reg not in list for other types. */
6905 else if (range & (1 << base_reg))
6906 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
6907 }
6908 else /* STM. */
6909 {
6910 /* Not allowed for type 2. */
6911 if (inst.instruction & LDM_TYPE_2_OR_3)
6912 as_warn (_("writeback of base register is UNPREDICTABLE"));
6913 /* Only allowed if base reg not in list, or first in list. */
6914 else if ((range & (1 << base_reg))
6915 && (range & ((1 << base_reg) - 1)))
6916 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 6917 }
ea6ef066 6918 }
a737bd4d
NC
6919}
6920
c19d1205
ZW
6921/* ARMv5TE load-consecutive (argument parse)
6922 Mode is like LDRH.
6923
6924 LDRccD R, mode
6925 STRccD R, mode. */
6926
a737bd4d 6927static void
c19d1205 6928do_ldrd (void)
a737bd4d 6929{
c19d1205
ZW
6930 constraint (inst.operands[0].reg % 2 != 0,
6931 _("first destination register must be even"));
6932 constraint (inst.operands[1].present
6933 && inst.operands[1].reg != inst.operands[0].reg + 1,
6934 _("can only load two consecutive registers"));
6935 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
6936 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 6937
c19d1205
ZW
6938 if (!inst.operands[1].present)
6939 inst.operands[1].reg = inst.operands[0].reg + 1;
6940
6941 if (inst.instruction & LOAD_BIT)
a737bd4d 6942 {
c19d1205
ZW
6943 /* encode_arm_addr_mode_3 will diagnose overlap between the base
6944 register and the first register written; we have to diagnose
6945 overlap between the base and the second register written here. */
ea6ef066 6946
c19d1205
ZW
6947 if (inst.operands[2].reg == inst.operands[1].reg
6948 && (inst.operands[2].writeback || inst.operands[2].postind))
6949 as_warn (_("base register written back, and overlaps "
6950 "second destination register"));
b05fe5cf 6951
c19d1205
ZW
6952 /* For an index-register load, the index register must not overlap the
6953 destination (even if not write-back). */
6954 else if (inst.operands[2].immisreg
ca3f61f7
NC
6955 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
6956 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
c19d1205 6957 as_warn (_("index register overlaps destination register"));
b05fe5cf 6958 }
c19d1205
ZW
6959
6960 inst.instruction |= inst.operands[0].reg << 12;
6961 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
6962}
6963
6964static void
c19d1205 6965do_ldrex (void)
b05fe5cf 6966{
c19d1205
ZW
6967 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
6968 || inst.operands[1].postind || inst.operands[1].writeback
6969 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
6970 || inst.operands[1].negative
6971 /* This can arise if the programmer has written
6972 strex rN, rM, foo
6973 or if they have mistakenly used a register name as the last
6974 operand, eg:
6975 strex rN, rM, rX
6976 It is very difficult to distinguish between these two cases
6977 because "rX" might actually be a label. ie the register
6978 name has been occluded by a symbol of the same name. So we
6979 just generate a general 'bad addressing mode' type error
6980 message and leave it up to the programmer to discover the
6981 true cause and fix their mistake. */
6982 || (inst.operands[1].reg == REG_PC),
6983 BAD_ADDR_MODE);
b05fe5cf 6984
c19d1205
ZW
6985 constraint (inst.reloc.exp.X_op != O_constant
6986 || inst.reloc.exp.X_add_number != 0,
6987 _("offset must be zero in ARM encoding"));
b05fe5cf 6988
c19d1205
ZW
6989 inst.instruction |= inst.operands[0].reg << 12;
6990 inst.instruction |= inst.operands[1].reg << 16;
6991 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
6992}
6993
6994static void
c19d1205 6995do_ldrexd (void)
b05fe5cf 6996{
c19d1205
ZW
6997 constraint (inst.operands[0].reg % 2 != 0,
6998 _("even register required"));
6999 constraint (inst.operands[1].present
7000 && inst.operands[1].reg != inst.operands[0].reg + 1,
7001 _("can only load two consecutive registers"));
7002 /* If op 1 were present and equal to PC, this function wouldn't
7003 have been called in the first place. */
7004 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 7005
c19d1205
ZW
7006 inst.instruction |= inst.operands[0].reg << 12;
7007 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
7008}
7009
7010static void
c19d1205 7011do_ldst (void)
b05fe5cf 7012{
c19d1205
ZW
7013 inst.instruction |= inst.operands[0].reg << 12;
7014 if (!inst.operands[1].isreg)
7015 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 7016 return;
c19d1205 7017 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7018}
7019
7020static void
c19d1205 7021do_ldstt (void)
b05fe5cf 7022{
c19d1205
ZW
7023 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7024 reject [Rn,...]. */
7025 if (inst.operands[1].preind)
b05fe5cf 7026 {
c19d1205
ZW
7027 constraint (inst.reloc.exp.X_op != O_constant ||
7028 inst.reloc.exp.X_add_number != 0,
7029 _("this instruction requires a post-indexed address"));
b05fe5cf 7030
c19d1205
ZW
7031 inst.operands[1].preind = 0;
7032 inst.operands[1].postind = 1;
7033 inst.operands[1].writeback = 1;
b05fe5cf 7034 }
c19d1205
ZW
7035 inst.instruction |= inst.operands[0].reg << 12;
7036 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7037}
b05fe5cf 7038
c19d1205 7039/* Halfword and signed-byte load/store operations. */
b05fe5cf 7040
c19d1205
ZW
7041static void
7042do_ldstv4 (void)
7043{
7044 inst.instruction |= inst.operands[0].reg << 12;
7045 if (!inst.operands[1].isreg)
7046 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 7047 return;
c19d1205 7048 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7049}
7050
7051static void
c19d1205 7052do_ldsttv4 (void)
b05fe5cf 7053{
c19d1205
ZW
7054 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7055 reject [Rn,...]. */
7056 if (inst.operands[1].preind)
b05fe5cf 7057 {
c19d1205
ZW
7058 constraint (inst.reloc.exp.X_op != O_constant ||
7059 inst.reloc.exp.X_add_number != 0,
7060 _("this instruction requires a post-indexed address"));
b05fe5cf 7061
c19d1205
ZW
7062 inst.operands[1].preind = 0;
7063 inst.operands[1].postind = 1;
7064 inst.operands[1].writeback = 1;
b05fe5cf 7065 }
c19d1205
ZW
7066 inst.instruction |= inst.operands[0].reg << 12;
7067 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7068}
b05fe5cf 7069
c19d1205
ZW
7070/* Co-processor register load/store.
7071 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7072static void
7073do_lstc (void)
7074{
7075 inst.instruction |= inst.operands[0].reg << 8;
7076 inst.instruction |= inst.operands[1].reg << 12;
7077 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
7078}
7079
b05fe5cf 7080static void
c19d1205 7081do_mlas (void)
b05fe5cf 7082{
8fb9d7b9 7083 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 7084 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 7085 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 7086 && !(inst.instruction & 0x00400000))
8fb9d7b9 7087 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 7088
c19d1205
ZW
7089 inst.instruction |= inst.operands[0].reg << 16;
7090 inst.instruction |= inst.operands[1].reg;
7091 inst.instruction |= inst.operands[2].reg << 8;
7092 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 7093}
b05fe5cf 7094
c19d1205
ZW
7095static void
7096do_mov (void)
7097{
7098 inst.instruction |= inst.operands[0].reg << 12;
7099 encode_arm_shifter_operand (1);
7100}
b05fe5cf 7101
c19d1205
ZW
7102/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7103static void
7104do_mov16 (void)
7105{
b6895b4f
PB
7106 bfd_vma imm;
7107 bfd_boolean top;
7108
7109 top = (inst.instruction & 0x00400000) != 0;
7110 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7111 _(":lower16: not allowed this instruction"));
7112 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7113 _(":upper16: not allowed instruction"));
c19d1205 7114 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
7115 if (inst.reloc.type == BFD_RELOC_UNUSED)
7116 {
7117 imm = inst.reloc.exp.X_add_number;
7118 /* The value is in two pieces: 0:11, 16:19. */
7119 inst.instruction |= (imm & 0x00000fff);
7120 inst.instruction |= (imm & 0x0000f000) << 4;
7121 }
b05fe5cf 7122}
b99bd4ef 7123
037e8744
JB
7124static void do_vfp_nsyn_opcode (const char *);
7125
7126static int
7127do_vfp_nsyn_mrs (void)
7128{
7129 if (inst.operands[0].isvec)
7130 {
7131 if (inst.operands[1].reg != 1)
7132 first_error (_("operand 1 must be FPSCR"));
7133 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7134 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7135 do_vfp_nsyn_opcode ("fmstat");
7136 }
7137 else if (inst.operands[1].isvec)
7138 do_vfp_nsyn_opcode ("fmrx");
7139 else
7140 return FAIL;
7141
7142 return SUCCESS;
7143}
7144
7145static int
7146do_vfp_nsyn_msr (void)
7147{
7148 if (inst.operands[0].isvec)
7149 do_vfp_nsyn_opcode ("fmxr");
7150 else
7151 return FAIL;
7152
7153 return SUCCESS;
7154}
7155
b99bd4ef 7156static void
c19d1205 7157do_mrs (void)
b99bd4ef 7158{
037e8744
JB
7159 if (do_vfp_nsyn_mrs () == SUCCESS)
7160 return;
7161
c19d1205
ZW
7162 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7163 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7164 != (PSR_c|PSR_f),
7165 _("'CPSR' or 'SPSR' expected"));
7166 inst.instruction |= inst.operands[0].reg << 12;
7167 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7168}
b99bd4ef 7169
c19d1205
ZW
7170/* Two possible forms:
7171 "{C|S}PSR_<field>, Rm",
7172 "{C|S}PSR_f, #expression". */
b99bd4ef 7173
c19d1205
ZW
7174static void
7175do_msr (void)
7176{
037e8744
JB
7177 if (do_vfp_nsyn_msr () == SUCCESS)
7178 return;
7179
c19d1205
ZW
7180 inst.instruction |= inst.operands[0].imm;
7181 if (inst.operands[1].isreg)
7182 inst.instruction |= inst.operands[1].reg;
7183 else
b99bd4ef 7184 {
c19d1205
ZW
7185 inst.instruction |= INST_IMMEDIATE;
7186 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7187 inst.reloc.pc_rel = 0;
b99bd4ef 7188 }
b99bd4ef
NC
7189}
7190
c19d1205
ZW
7191static void
7192do_mul (void)
a737bd4d 7193{
c19d1205
ZW
7194 if (!inst.operands[2].present)
7195 inst.operands[2].reg = inst.operands[0].reg;
7196 inst.instruction |= inst.operands[0].reg << 16;
7197 inst.instruction |= inst.operands[1].reg;
7198 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 7199
8fb9d7b9
MS
7200 if (inst.operands[0].reg == inst.operands[1].reg
7201 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7202 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
7203}
7204
c19d1205
ZW
7205/* Long Multiply Parser
7206 UMULL RdLo, RdHi, Rm, Rs
7207 SMULL RdLo, RdHi, Rm, Rs
7208 UMLAL RdLo, RdHi, Rm, Rs
7209 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
7210
7211static void
c19d1205 7212do_mull (void)
b99bd4ef 7213{
c19d1205
ZW
7214 inst.instruction |= inst.operands[0].reg << 12;
7215 inst.instruction |= inst.operands[1].reg << 16;
7216 inst.instruction |= inst.operands[2].reg;
7217 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 7218
c19d1205
ZW
7219 /* rdhi, rdlo and rm must all be different. */
7220 if (inst.operands[0].reg == inst.operands[1].reg
7221 || inst.operands[0].reg == inst.operands[2].reg
7222 || inst.operands[1].reg == inst.operands[2].reg)
7223 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7224}
b99bd4ef 7225
c19d1205
ZW
7226static void
7227do_nop (void)
7228{
7229 if (inst.operands[0].present)
7230 {
7231 /* Architectural NOP hints are CPSR sets with no bits selected. */
7232 inst.instruction &= 0xf0000000;
7233 inst.instruction |= 0x0320f000 + inst.operands[0].imm;
7234 }
b99bd4ef
NC
7235}
7236
c19d1205
ZW
7237/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7238 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7239 Condition defaults to COND_ALWAYS.
7240 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
7241
7242static void
c19d1205 7243do_pkhbt (void)
b99bd4ef 7244{
c19d1205
ZW
7245 inst.instruction |= inst.operands[0].reg << 12;
7246 inst.instruction |= inst.operands[1].reg << 16;
7247 inst.instruction |= inst.operands[2].reg;
7248 if (inst.operands[3].present)
7249 encode_arm_shift (3);
7250}
b99bd4ef 7251
c19d1205 7252/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 7253
c19d1205
ZW
7254static void
7255do_pkhtb (void)
7256{
7257 if (!inst.operands[3].present)
b99bd4ef 7258 {
c19d1205
ZW
7259 /* If the shift specifier is omitted, turn the instruction
7260 into pkhbt rd, rm, rn. */
7261 inst.instruction &= 0xfff00010;
7262 inst.instruction |= inst.operands[0].reg << 12;
7263 inst.instruction |= inst.operands[1].reg;
7264 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
7265 }
7266 else
7267 {
c19d1205
ZW
7268 inst.instruction |= inst.operands[0].reg << 12;
7269 inst.instruction |= inst.operands[1].reg << 16;
7270 inst.instruction |= inst.operands[2].reg;
7271 encode_arm_shift (3);
b99bd4ef
NC
7272 }
7273}
7274
c19d1205
ZW
7275/* ARMv5TE: Preload-Cache
7276
7277 PLD <addr_mode>
7278
7279 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
7280
7281static void
c19d1205 7282do_pld (void)
b99bd4ef 7283{
c19d1205
ZW
7284 constraint (!inst.operands[0].isreg,
7285 _("'[' expected after PLD mnemonic"));
7286 constraint (inst.operands[0].postind,
7287 _("post-indexed expression used in preload instruction"));
7288 constraint (inst.operands[0].writeback,
7289 _("writeback used in preload instruction"));
7290 constraint (!inst.operands[0].preind,
7291 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
7292 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7293}
b99bd4ef 7294
62b3e311
PB
7295/* ARMv7: PLI <addr_mode> */
7296static void
7297do_pli (void)
7298{
7299 constraint (!inst.operands[0].isreg,
7300 _("'[' expected after PLI mnemonic"));
7301 constraint (inst.operands[0].postind,
7302 _("post-indexed expression used in preload instruction"));
7303 constraint (inst.operands[0].writeback,
7304 _("writeback used in preload instruction"));
7305 constraint (!inst.operands[0].preind,
7306 _("unindexed addressing used in preload instruction"));
7307 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7308 inst.instruction &= ~PRE_INDEX;
7309}
7310
c19d1205
ZW
7311static void
7312do_push_pop (void)
7313{
7314 inst.operands[1] = inst.operands[0];
7315 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7316 inst.operands[0].isreg = 1;
7317 inst.operands[0].writeback = 1;
7318 inst.operands[0].reg = REG_SP;
7319 do_ldmstm ();
7320}
b99bd4ef 7321
c19d1205
ZW
7322/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7323 word at the specified address and the following word
7324 respectively.
7325 Unconditionally executed.
7326 Error if Rn is R15. */
b99bd4ef 7327
c19d1205
ZW
7328static void
7329do_rfe (void)
7330{
7331 inst.instruction |= inst.operands[0].reg << 16;
7332 if (inst.operands[0].writeback)
7333 inst.instruction |= WRITE_BACK;
7334}
b99bd4ef 7335
c19d1205 7336/* ARM V6 ssat (argument parse). */
b99bd4ef 7337
c19d1205
ZW
7338static void
7339do_ssat (void)
7340{
7341 inst.instruction |= inst.operands[0].reg << 12;
7342 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7343 inst.instruction |= inst.operands[2].reg;
b99bd4ef 7344
c19d1205
ZW
7345 if (inst.operands[3].present)
7346 encode_arm_shift (3);
b99bd4ef
NC
7347}
7348
c19d1205 7349/* ARM V6 usat (argument parse). */
b99bd4ef
NC
7350
7351static void
c19d1205 7352do_usat (void)
b99bd4ef 7353{
c19d1205
ZW
7354 inst.instruction |= inst.operands[0].reg << 12;
7355 inst.instruction |= inst.operands[1].imm << 16;
7356 inst.instruction |= inst.operands[2].reg;
b99bd4ef 7357
c19d1205
ZW
7358 if (inst.operands[3].present)
7359 encode_arm_shift (3);
b99bd4ef
NC
7360}
7361
c19d1205 7362/* ARM V6 ssat16 (argument parse). */
09d92015
MM
7363
7364static void
c19d1205 7365do_ssat16 (void)
09d92015 7366{
c19d1205
ZW
7367 inst.instruction |= inst.operands[0].reg << 12;
7368 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7369 inst.instruction |= inst.operands[2].reg;
09d92015
MM
7370}
7371
c19d1205
ZW
7372static void
7373do_usat16 (void)
a737bd4d 7374{
c19d1205
ZW
7375 inst.instruction |= inst.operands[0].reg << 12;
7376 inst.instruction |= inst.operands[1].imm << 16;
7377 inst.instruction |= inst.operands[2].reg;
7378}
a737bd4d 7379
c19d1205
ZW
7380/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7381 preserving the other bits.
a737bd4d 7382
c19d1205
ZW
7383 setend <endian_specifier>, where <endian_specifier> is either
7384 BE or LE. */
a737bd4d 7385
c19d1205
ZW
7386static void
7387do_setend (void)
7388{
7389 if (inst.operands[0].imm)
7390 inst.instruction |= 0x200;
a737bd4d
NC
7391}
7392
7393static void
c19d1205 7394do_shift (void)
a737bd4d 7395{
c19d1205
ZW
7396 unsigned int Rm = (inst.operands[1].present
7397 ? inst.operands[1].reg
7398 : inst.operands[0].reg);
a737bd4d 7399
c19d1205
ZW
7400 inst.instruction |= inst.operands[0].reg << 12;
7401 inst.instruction |= Rm;
7402 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 7403 {
c19d1205
ZW
7404 inst.instruction |= inst.operands[2].reg << 8;
7405 inst.instruction |= SHIFT_BY_REG;
a737bd4d
NC
7406 }
7407 else
c19d1205 7408 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
7409}
7410
09d92015 7411static void
3eb17e6b 7412do_smc (void)
09d92015 7413{
3eb17e6b 7414 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 7415 inst.reloc.pc_rel = 0;
09d92015
MM
7416}
7417
09d92015 7418static void
c19d1205 7419do_swi (void)
09d92015 7420{
c19d1205
ZW
7421 inst.reloc.type = BFD_RELOC_ARM_SWI;
7422 inst.reloc.pc_rel = 0;
09d92015
MM
7423}
7424
c19d1205
ZW
7425/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7426 SMLAxy{cond} Rd,Rm,Rs,Rn
7427 SMLAWy{cond} Rd,Rm,Rs,Rn
7428 Error if any register is R15. */
e16bb312 7429
c19d1205
ZW
7430static void
7431do_smla (void)
e16bb312 7432{
c19d1205
ZW
7433 inst.instruction |= inst.operands[0].reg << 16;
7434 inst.instruction |= inst.operands[1].reg;
7435 inst.instruction |= inst.operands[2].reg << 8;
7436 inst.instruction |= inst.operands[3].reg << 12;
7437}
a737bd4d 7438
c19d1205
ZW
7439/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7440 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7441 Error if any register is R15.
7442 Warning if Rdlo == Rdhi. */
a737bd4d 7443
c19d1205
ZW
7444static void
7445do_smlal (void)
7446{
7447 inst.instruction |= inst.operands[0].reg << 12;
7448 inst.instruction |= inst.operands[1].reg << 16;
7449 inst.instruction |= inst.operands[2].reg;
7450 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 7451
c19d1205
ZW
7452 if (inst.operands[0].reg == inst.operands[1].reg)
7453 as_tsktsk (_("rdhi and rdlo must be different"));
7454}
a737bd4d 7455
c19d1205
ZW
7456/* ARM V5E (El Segundo) signed-multiply (argument parse)
7457 SMULxy{cond} Rd,Rm,Rs
7458 Error if any register is R15. */
a737bd4d 7459
c19d1205
ZW
7460static void
7461do_smul (void)
7462{
7463 inst.instruction |= inst.operands[0].reg << 16;
7464 inst.instruction |= inst.operands[1].reg;
7465 inst.instruction |= inst.operands[2].reg << 8;
7466}
a737bd4d 7467
b6702015
PB
7468/* ARM V6 srs (argument parse). The variable fields in the encoding are
7469 the same for both ARM and Thumb-2. */
a737bd4d 7470
c19d1205
ZW
7471static void
7472do_srs (void)
7473{
b6702015
PB
7474 int reg;
7475
7476 if (inst.operands[0].present)
7477 {
7478 reg = inst.operands[0].reg;
7479 constraint (reg != 13, _("SRS base register must be r13"));
7480 }
7481 else
7482 reg = 13;
7483
7484 inst.instruction |= reg << 16;
7485 inst.instruction |= inst.operands[1].imm;
7486 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
7487 inst.instruction |= WRITE_BACK;
7488}
a737bd4d 7489
c19d1205 7490/* ARM V6 strex (argument parse). */
a737bd4d 7491
c19d1205
ZW
7492static void
7493do_strex (void)
7494{
7495 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7496 || inst.operands[2].postind || inst.operands[2].writeback
7497 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
7498 || inst.operands[2].negative
7499 /* See comment in do_ldrex(). */
7500 || (inst.operands[2].reg == REG_PC),
7501 BAD_ADDR_MODE);
a737bd4d 7502
c19d1205
ZW
7503 constraint (inst.operands[0].reg == inst.operands[1].reg
7504 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 7505
c19d1205
ZW
7506 constraint (inst.reloc.exp.X_op != O_constant
7507 || inst.reloc.exp.X_add_number != 0,
7508 _("offset must be zero in ARM encoding"));
a737bd4d 7509
c19d1205
ZW
7510 inst.instruction |= inst.operands[0].reg << 12;
7511 inst.instruction |= inst.operands[1].reg;
7512 inst.instruction |= inst.operands[2].reg << 16;
7513 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
7514}
7515
7516static void
c19d1205 7517do_strexd (void)
e16bb312 7518{
c19d1205
ZW
7519 constraint (inst.operands[1].reg % 2 != 0,
7520 _("even register required"));
7521 constraint (inst.operands[2].present
7522 && inst.operands[2].reg != inst.operands[1].reg + 1,
7523 _("can only store two consecutive registers"));
7524 /* If op 2 were present and equal to PC, this function wouldn't
7525 have been called in the first place. */
7526 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 7527
c19d1205
ZW
7528 constraint (inst.operands[0].reg == inst.operands[1].reg
7529 || inst.operands[0].reg == inst.operands[1].reg + 1
7530 || inst.operands[0].reg == inst.operands[3].reg,
7531 BAD_OVERLAP);
e16bb312 7532
c19d1205
ZW
7533 inst.instruction |= inst.operands[0].reg << 12;
7534 inst.instruction |= inst.operands[1].reg;
7535 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
7536}
7537
c19d1205
ZW
7538/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
7539 extends it to 32-bits, and adds the result to a value in another
7540 register. You can specify a rotation by 0, 8, 16, or 24 bits
7541 before extracting the 16-bit value.
7542 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
7543 Condition defaults to COND_ALWAYS.
7544 Error if any register uses R15. */
7545
e16bb312 7546static void
c19d1205 7547do_sxtah (void)
e16bb312 7548{
c19d1205
ZW
7549 inst.instruction |= inst.operands[0].reg << 12;
7550 inst.instruction |= inst.operands[1].reg << 16;
7551 inst.instruction |= inst.operands[2].reg;
7552 inst.instruction |= inst.operands[3].imm << 10;
7553}
e16bb312 7554
c19d1205 7555/* ARM V6 SXTH.
e16bb312 7556
c19d1205
ZW
7557 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
7558 Condition defaults to COND_ALWAYS.
7559 Error if any register uses R15. */
e16bb312
NC
7560
7561static void
c19d1205 7562do_sxth (void)
e16bb312 7563{
c19d1205
ZW
7564 inst.instruction |= inst.operands[0].reg << 12;
7565 inst.instruction |= inst.operands[1].reg;
7566 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 7567}
c19d1205
ZW
7568\f
7569/* VFP instructions. In a logical order: SP variant first, monad
7570 before dyad, arithmetic then move then load/store. */
e16bb312
NC
7571
7572static void
c19d1205 7573do_vfp_sp_monadic (void)
e16bb312 7574{
5287ad62
JB
7575 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7576 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
7577}
7578
7579static void
c19d1205 7580do_vfp_sp_dyadic (void)
e16bb312 7581{
5287ad62
JB
7582 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7583 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7584 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
7585}
7586
7587static void
c19d1205 7588do_vfp_sp_compare_z (void)
e16bb312 7589{
5287ad62 7590 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
7591}
7592
7593static void
c19d1205 7594do_vfp_dp_sp_cvt (void)
e16bb312 7595{
5287ad62
JB
7596 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7597 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
7598}
7599
7600static void
c19d1205 7601do_vfp_sp_dp_cvt (void)
e16bb312 7602{
5287ad62
JB
7603 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7604 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
7605}
7606
7607static void
c19d1205 7608do_vfp_reg_from_sp (void)
e16bb312 7609{
c19d1205 7610 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 7611 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
7612}
7613
7614static void
c19d1205 7615do_vfp_reg2_from_sp2 (void)
e16bb312 7616{
c19d1205
ZW
7617 constraint (inst.operands[2].imm != 2,
7618 _("only two consecutive VFP SP registers allowed here"));
7619 inst.instruction |= inst.operands[0].reg << 12;
7620 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 7621 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
7622}
7623
7624static void
c19d1205 7625do_vfp_sp_from_reg (void)
e16bb312 7626{
5287ad62 7627 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 7628 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
7629}
7630
7631static void
c19d1205 7632do_vfp_sp2_from_reg2 (void)
e16bb312 7633{
c19d1205
ZW
7634 constraint (inst.operands[0].imm != 2,
7635 _("only two consecutive VFP SP registers allowed here"));
5287ad62 7636 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
7637 inst.instruction |= inst.operands[1].reg << 12;
7638 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
7639}
7640
7641static void
c19d1205 7642do_vfp_sp_ldst (void)
e16bb312 7643{
5287ad62 7644 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 7645 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
7646}
7647
7648static void
c19d1205 7649do_vfp_dp_ldst (void)
e16bb312 7650{
5287ad62 7651 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 7652 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
7653}
7654
c19d1205 7655
e16bb312 7656static void
c19d1205 7657vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 7658{
c19d1205
ZW
7659 if (inst.operands[0].writeback)
7660 inst.instruction |= WRITE_BACK;
7661 else
7662 constraint (ldstm_type != VFP_LDSTMIA,
7663 _("this addressing mode requires base-register writeback"));
7664 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 7665 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 7666 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
7667}
7668
7669static void
c19d1205 7670vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 7671{
c19d1205 7672 int count;
e16bb312 7673
c19d1205
ZW
7674 if (inst.operands[0].writeback)
7675 inst.instruction |= WRITE_BACK;
7676 else
7677 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
7678 _("this addressing mode requires base-register writeback"));
e16bb312 7679
c19d1205 7680 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 7681 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 7682
c19d1205
ZW
7683 count = inst.operands[1].imm << 1;
7684 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
7685 count += 1;
e16bb312 7686
c19d1205 7687 inst.instruction |= count;
e16bb312
NC
7688}
7689
7690static void
c19d1205 7691do_vfp_sp_ldstmia (void)
e16bb312 7692{
c19d1205 7693 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
7694}
7695
7696static void
c19d1205 7697do_vfp_sp_ldstmdb (void)
e16bb312 7698{
c19d1205 7699 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
7700}
7701
7702static void
c19d1205 7703do_vfp_dp_ldstmia (void)
e16bb312 7704{
c19d1205 7705 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
7706}
7707
7708static void
c19d1205 7709do_vfp_dp_ldstmdb (void)
e16bb312 7710{
c19d1205 7711 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
7712}
7713
7714static void
c19d1205 7715do_vfp_xp_ldstmia (void)
e16bb312 7716{
c19d1205
ZW
7717 vfp_dp_ldstm (VFP_LDSTMIAX);
7718}
e16bb312 7719
c19d1205
ZW
7720static void
7721do_vfp_xp_ldstmdb (void)
7722{
7723 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 7724}
5287ad62
JB
7725
7726static void
7727do_vfp_dp_rd_rm (void)
7728{
7729 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7730 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7731}
7732
7733static void
7734do_vfp_dp_rn_rd (void)
7735{
7736 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
7737 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7738}
7739
7740static void
7741do_vfp_dp_rd_rn (void)
7742{
7743 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7744 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7745}
7746
7747static void
7748do_vfp_dp_rd_rn_rm (void)
7749{
7750 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7751 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7752 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
7753}
7754
7755static void
7756do_vfp_dp_rd (void)
7757{
7758 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7759}
7760
7761static void
7762do_vfp_dp_rm_rd_rn (void)
7763{
7764 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
7765 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7766 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
7767}
7768
7769/* VFPv3 instructions. */
7770static void
7771do_vfp_sp_const (void)
7772{
7773 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
7774 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7775 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
7776}
7777
7778static void
7779do_vfp_dp_const (void)
7780{
7781 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
7782 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7783 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
7784}
7785
7786static void
7787vfp_conv (int srcsize)
7788{
7789 unsigned immbits = srcsize - inst.operands[1].imm;
7790 inst.instruction |= (immbits & 1) << 5;
7791 inst.instruction |= (immbits >> 1);
7792}
7793
7794static void
7795do_vfp_sp_conv_16 (void)
7796{
7797 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7798 vfp_conv (16);
7799}
7800
7801static void
7802do_vfp_dp_conv_16 (void)
7803{
7804 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7805 vfp_conv (16);
7806}
7807
7808static void
7809do_vfp_sp_conv_32 (void)
7810{
7811 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7812 vfp_conv (32);
7813}
7814
7815static void
7816do_vfp_dp_conv_32 (void)
7817{
7818 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7819 vfp_conv (32);
7820}
7821
c19d1205
ZW
7822\f
7823/* FPA instructions. Also in a logical order. */
e16bb312 7824
c19d1205
ZW
7825static void
7826do_fpa_cmp (void)
7827{
7828 inst.instruction |= inst.operands[0].reg << 16;
7829 inst.instruction |= inst.operands[1].reg;
7830}
b99bd4ef
NC
7831
7832static void
c19d1205 7833do_fpa_ldmstm (void)
b99bd4ef 7834{
c19d1205
ZW
7835 inst.instruction |= inst.operands[0].reg << 12;
7836 switch (inst.operands[1].imm)
7837 {
7838 case 1: inst.instruction |= CP_T_X; break;
7839 case 2: inst.instruction |= CP_T_Y; break;
7840 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
7841 case 4: break;
7842 default: abort ();
7843 }
b99bd4ef 7844
c19d1205
ZW
7845 if (inst.instruction & (PRE_INDEX | INDEX_UP))
7846 {
7847 /* The instruction specified "ea" or "fd", so we can only accept
7848 [Rn]{!}. The instruction does not really support stacking or
7849 unstacking, so we have to emulate these by setting appropriate
7850 bits and offsets. */
7851 constraint (inst.reloc.exp.X_op != O_constant
7852 || inst.reloc.exp.X_add_number != 0,
7853 _("this instruction does not support indexing"));
b99bd4ef 7854
c19d1205
ZW
7855 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
7856 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 7857
c19d1205
ZW
7858 if (!(inst.instruction & INDEX_UP))
7859 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 7860
c19d1205
ZW
7861 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
7862 {
7863 inst.operands[2].preind = 0;
7864 inst.operands[2].postind = 1;
7865 }
7866 }
b99bd4ef 7867
c19d1205 7868 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 7869}
037e8744 7870
c19d1205
ZW
7871\f
7872/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 7873
c19d1205
ZW
7874static void
7875do_iwmmxt_tandorc (void)
7876{
7877 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
7878}
b99bd4ef 7879
c19d1205
ZW
7880static void
7881do_iwmmxt_textrc (void)
7882{
7883 inst.instruction |= inst.operands[0].reg << 12;
7884 inst.instruction |= inst.operands[1].imm;
7885}
b99bd4ef
NC
7886
7887static void
c19d1205 7888do_iwmmxt_textrm (void)
b99bd4ef 7889{
c19d1205
ZW
7890 inst.instruction |= inst.operands[0].reg << 12;
7891 inst.instruction |= inst.operands[1].reg << 16;
7892 inst.instruction |= inst.operands[2].imm;
7893}
b99bd4ef 7894
c19d1205
ZW
7895static void
7896do_iwmmxt_tinsr (void)
7897{
7898 inst.instruction |= inst.operands[0].reg << 16;
7899 inst.instruction |= inst.operands[1].reg << 12;
7900 inst.instruction |= inst.operands[2].imm;
7901}
b99bd4ef 7902
c19d1205
ZW
7903static void
7904do_iwmmxt_tmia (void)
7905{
7906 inst.instruction |= inst.operands[0].reg << 5;
7907 inst.instruction |= inst.operands[1].reg;
7908 inst.instruction |= inst.operands[2].reg << 12;
7909}
b99bd4ef 7910
c19d1205
ZW
7911static void
7912do_iwmmxt_waligni (void)
7913{
7914 inst.instruction |= inst.operands[0].reg << 12;
7915 inst.instruction |= inst.operands[1].reg << 16;
7916 inst.instruction |= inst.operands[2].reg;
7917 inst.instruction |= inst.operands[3].imm << 20;
7918}
b99bd4ef 7919
2d447fca
JM
7920static void
7921do_iwmmxt_wmerge (void)
7922{
7923 inst.instruction |= inst.operands[0].reg << 12;
7924 inst.instruction |= inst.operands[1].reg << 16;
7925 inst.instruction |= inst.operands[2].reg;
7926 inst.instruction |= inst.operands[3].imm << 21;
7927}
7928
c19d1205
ZW
7929static void
7930do_iwmmxt_wmov (void)
7931{
7932 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
7933 inst.instruction |= inst.operands[0].reg << 12;
7934 inst.instruction |= inst.operands[1].reg << 16;
7935 inst.instruction |= inst.operands[1].reg;
7936}
b99bd4ef 7937
c19d1205
ZW
7938static void
7939do_iwmmxt_wldstbh (void)
7940{
8f06b2d8 7941 int reloc;
c19d1205 7942 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
7943 if (thumb_mode)
7944 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
7945 else
7946 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
7947 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
7948}
7949
c19d1205
ZW
7950static void
7951do_iwmmxt_wldstw (void)
7952{
7953 /* RIWR_RIWC clears .isreg for a control register. */
7954 if (!inst.operands[0].isreg)
7955 {
7956 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7957 inst.instruction |= 0xf0000000;
7958 }
b99bd4ef 7959
c19d1205
ZW
7960 inst.instruction |= inst.operands[0].reg << 12;
7961 encode_arm_cp_address (1, TRUE, TRUE, 0);
7962}
b99bd4ef
NC
7963
7964static void
c19d1205 7965do_iwmmxt_wldstd (void)
b99bd4ef 7966{
c19d1205 7967 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
7968 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
7969 && inst.operands[1].immisreg)
7970 {
7971 inst.instruction &= ~0x1a000ff;
7972 inst.instruction |= (0xf << 28);
7973 if (inst.operands[1].preind)
7974 inst.instruction |= PRE_INDEX;
7975 if (!inst.operands[1].negative)
7976 inst.instruction |= INDEX_UP;
7977 if (inst.operands[1].writeback)
7978 inst.instruction |= WRITE_BACK;
7979 inst.instruction |= inst.operands[1].reg << 16;
7980 inst.instruction |= inst.reloc.exp.X_add_number << 4;
7981 inst.instruction |= inst.operands[1].imm;
7982 }
7983 else
7984 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 7985}
b99bd4ef 7986
c19d1205
ZW
7987static void
7988do_iwmmxt_wshufh (void)
7989{
7990 inst.instruction |= inst.operands[0].reg << 12;
7991 inst.instruction |= inst.operands[1].reg << 16;
7992 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
7993 inst.instruction |= (inst.operands[2].imm & 0x0f);
7994}
b99bd4ef 7995
c19d1205
ZW
7996static void
7997do_iwmmxt_wzero (void)
7998{
7999 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8000 inst.instruction |= inst.operands[0].reg;
8001 inst.instruction |= inst.operands[0].reg << 12;
8002 inst.instruction |= inst.operands[0].reg << 16;
8003}
2d447fca
JM
8004
8005static void
8006do_iwmmxt_wrwrwr_or_imm5 (void)
8007{
8008 if (inst.operands[2].isreg)
8009 do_rd_rn_rm ();
8010 else {
8011 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8012 _("immediate operand requires iWMMXt2"));
8013 do_rd_rn ();
8014 if (inst.operands[2].imm == 0)
8015 {
8016 switch ((inst.instruction >> 20) & 0xf)
8017 {
8018 case 4:
8019 case 5:
8020 case 6:
8021 case 7:
8022 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8023 inst.operands[2].imm = 16;
8024 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8025 break;
8026 case 8:
8027 case 9:
8028 case 10:
8029 case 11:
8030 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8031 inst.operands[2].imm = 32;
8032 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8033 break;
8034 case 12:
8035 case 13:
8036 case 14:
8037 case 15:
8038 {
8039 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8040 unsigned long wrn;
8041 wrn = (inst.instruction >> 16) & 0xf;
8042 inst.instruction &= 0xff0fff0f;
8043 inst.instruction |= wrn;
8044 /* Bail out here; the instruction is now assembled. */
8045 return;
8046 }
8047 }
8048 }
8049 /* Map 32 -> 0, etc. */
8050 inst.operands[2].imm &= 0x1f;
8051 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8052 }
8053}
c19d1205
ZW
8054\f
8055/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8056 operations first, then control, shift, and load/store. */
b99bd4ef 8057
c19d1205 8058/* Insns like "foo X,Y,Z". */
b99bd4ef 8059
c19d1205
ZW
8060static void
8061do_mav_triple (void)
8062{
8063 inst.instruction |= inst.operands[0].reg << 16;
8064 inst.instruction |= inst.operands[1].reg;
8065 inst.instruction |= inst.operands[2].reg << 12;
8066}
b99bd4ef 8067
c19d1205
ZW
8068/* Insns like "foo W,X,Y,Z".
8069 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 8070
c19d1205
ZW
8071static void
8072do_mav_quad (void)
8073{
8074 inst.instruction |= inst.operands[0].reg << 5;
8075 inst.instruction |= inst.operands[1].reg << 12;
8076 inst.instruction |= inst.operands[2].reg << 16;
8077 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
8078}
8079
c19d1205
ZW
8080/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8081static void
8082do_mav_dspsc (void)
a737bd4d 8083{
c19d1205
ZW
8084 inst.instruction |= inst.operands[1].reg << 12;
8085}
a737bd4d 8086
c19d1205
ZW
8087/* Maverick shift immediate instructions.
8088 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8089 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 8090
c19d1205
ZW
8091static void
8092do_mav_shift (void)
8093{
8094 int imm = inst.operands[2].imm;
a737bd4d 8095
c19d1205
ZW
8096 inst.instruction |= inst.operands[0].reg << 12;
8097 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 8098
c19d1205
ZW
8099 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8100 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8101 Bit 4 should be 0. */
8102 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 8103
c19d1205
ZW
8104 inst.instruction |= imm;
8105}
8106\f
8107/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 8108
c19d1205
ZW
8109/* Xscale multiply-accumulate (argument parse)
8110 MIAcc acc0,Rm,Rs
8111 MIAPHcc acc0,Rm,Rs
8112 MIAxycc acc0,Rm,Rs. */
a737bd4d 8113
c19d1205
ZW
8114static void
8115do_xsc_mia (void)
8116{
8117 inst.instruction |= inst.operands[1].reg;
8118 inst.instruction |= inst.operands[2].reg << 12;
8119}
a737bd4d 8120
c19d1205 8121/* Xscale move-accumulator-register (argument parse)
a737bd4d 8122
c19d1205 8123 MARcc acc0,RdLo,RdHi. */
b99bd4ef 8124
c19d1205
ZW
8125static void
8126do_xsc_mar (void)
8127{
8128 inst.instruction |= inst.operands[1].reg << 12;
8129 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8130}
8131
c19d1205 8132/* Xscale move-register-accumulator (argument parse)
b99bd4ef 8133
c19d1205 8134 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
8135
8136static void
c19d1205 8137do_xsc_mra (void)
b99bd4ef 8138{
c19d1205
ZW
8139 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8140 inst.instruction |= inst.operands[0].reg << 12;
8141 inst.instruction |= inst.operands[1].reg << 16;
8142}
8143\f
8144/* Encoding functions relevant only to Thumb. */
b99bd4ef 8145
c19d1205
ZW
8146/* inst.operands[i] is a shifted-register operand; encode
8147 it into inst.instruction in the format used by Thumb32. */
8148
8149static void
8150encode_thumb32_shifted_operand (int i)
8151{
8152 unsigned int value = inst.reloc.exp.X_add_number;
8153 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 8154
9c3c69f2
PB
8155 constraint (inst.operands[i].immisreg,
8156 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
8157 inst.instruction |= inst.operands[i].reg;
8158 if (shift == SHIFT_RRX)
8159 inst.instruction |= SHIFT_ROR << 4;
8160 else
b99bd4ef 8161 {
c19d1205
ZW
8162 constraint (inst.reloc.exp.X_op != O_constant,
8163 _("expression too complex"));
8164
8165 constraint (value > 32
8166 || (value == 32 && (shift == SHIFT_LSL
8167 || shift == SHIFT_ROR)),
8168 _("shift expression is too large"));
8169
8170 if (value == 0)
8171 shift = SHIFT_LSL;
8172 else if (value == 32)
8173 value = 0;
8174
8175 inst.instruction |= shift << 4;
8176 inst.instruction |= (value & 0x1c) << 10;
8177 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 8178 }
c19d1205 8179}
b99bd4ef 8180
b99bd4ef 8181
c19d1205
ZW
8182/* inst.operands[i] was set up by parse_address. Encode it into a
8183 Thumb32 format load or store instruction. Reject forms that cannot
8184 be used with such instructions. If is_t is true, reject forms that
8185 cannot be used with a T instruction; if is_d is true, reject forms
8186 that cannot be used with a D instruction. */
b99bd4ef 8187
c19d1205
ZW
8188static void
8189encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8190{
8191 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8192
8193 constraint (!inst.operands[i].isreg,
53365c0d 8194 _("Instruction does not support =N addresses"));
b99bd4ef 8195
c19d1205
ZW
8196 inst.instruction |= inst.operands[i].reg << 16;
8197 if (inst.operands[i].immisreg)
b99bd4ef 8198 {
c19d1205
ZW
8199 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
8200 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8201 constraint (inst.operands[i].negative,
8202 _("Thumb does not support negative register indexing"));
8203 constraint (inst.operands[i].postind,
8204 _("Thumb does not support register post-indexing"));
8205 constraint (inst.operands[i].writeback,
8206 _("Thumb does not support register indexing with writeback"));
8207 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8208 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 8209
f40d1643 8210 inst.instruction |= inst.operands[i].imm;
c19d1205 8211 if (inst.operands[i].shifted)
b99bd4ef 8212 {
c19d1205
ZW
8213 constraint (inst.reloc.exp.X_op != O_constant,
8214 _("expression too complex"));
9c3c69f2
PB
8215 constraint (inst.reloc.exp.X_add_number < 0
8216 || inst.reloc.exp.X_add_number > 3,
c19d1205 8217 _("shift out of range"));
9c3c69f2 8218 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
8219 }
8220 inst.reloc.type = BFD_RELOC_UNUSED;
8221 }
8222 else if (inst.operands[i].preind)
8223 {
8224 constraint (is_pc && inst.operands[i].writeback,
8225 _("cannot use writeback with PC-relative addressing"));
f40d1643 8226 constraint (is_t && inst.operands[i].writeback,
c19d1205
ZW
8227 _("cannot use writeback with this instruction"));
8228
8229 if (is_d)
8230 {
8231 inst.instruction |= 0x01000000;
8232 if (inst.operands[i].writeback)
8233 inst.instruction |= 0x00200000;
b99bd4ef 8234 }
c19d1205 8235 else
b99bd4ef 8236 {
c19d1205
ZW
8237 inst.instruction |= 0x00000c00;
8238 if (inst.operands[i].writeback)
8239 inst.instruction |= 0x00000100;
b99bd4ef 8240 }
c19d1205 8241 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 8242 }
c19d1205 8243 else if (inst.operands[i].postind)
b99bd4ef 8244 {
c19d1205
ZW
8245 assert (inst.operands[i].writeback);
8246 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8247 constraint (is_t, _("cannot use post-indexing with this instruction"));
8248
8249 if (is_d)
8250 inst.instruction |= 0x00200000;
8251 else
8252 inst.instruction |= 0x00000900;
8253 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8254 }
8255 else /* unindexed - only for coprocessor */
8256 inst.error = _("instruction does not accept unindexed addressing");
8257}
8258
8259/* Table of Thumb instructions which exist in both 16- and 32-bit
8260 encodings (the latter only in post-V6T2 cores). The index is the
8261 value used in the insns table below. When there is more than one
8262 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
8263 holds variant (1).
8264 Also contains several pseudo-instructions used during relaxation. */
c19d1205
ZW
8265#define T16_32_TAB \
8266 X(adc, 4140, eb400000), \
8267 X(adcs, 4140, eb500000), \
8268 X(add, 1c00, eb000000), \
8269 X(adds, 1c00, eb100000), \
0110f2b8
PB
8270 X(addi, 0000, f1000000), \
8271 X(addis, 0000, f1100000), \
8272 X(add_pc,000f, f20f0000), \
8273 X(add_sp,000d, f10d0000), \
e9f89963 8274 X(adr, 000f, f20f0000), \
c19d1205
ZW
8275 X(and, 4000, ea000000), \
8276 X(ands, 4000, ea100000), \
8277 X(asr, 1000, fa40f000), \
8278 X(asrs, 1000, fa50f000), \
0110f2b8
PB
8279 X(b, e000, f000b000), \
8280 X(bcond, d000, f0008000), \
c19d1205
ZW
8281 X(bic, 4380, ea200000), \
8282 X(bics, 4380, ea300000), \
8283 X(cmn, 42c0, eb100f00), \
8284 X(cmp, 2800, ebb00f00), \
8285 X(cpsie, b660, f3af8400), \
8286 X(cpsid, b670, f3af8600), \
8287 X(cpy, 4600, ea4f0000), \
155257ea 8288 X(dec_sp,80dd, f1ad0d00), \
c19d1205
ZW
8289 X(eor, 4040, ea800000), \
8290 X(eors, 4040, ea900000), \
0110f2b8 8291 X(inc_sp,00dd, f10d0d00), \
c19d1205
ZW
8292 X(ldmia, c800, e8900000), \
8293 X(ldr, 6800, f8500000), \
8294 X(ldrb, 7800, f8100000), \
8295 X(ldrh, 8800, f8300000), \
8296 X(ldrsb, 5600, f9100000), \
8297 X(ldrsh, 5e00, f9300000), \
0110f2b8
PB
8298 X(ldr_pc,4800, f85f0000), \
8299 X(ldr_pc2,4800, f85f0000), \
8300 X(ldr_sp,9800, f85d0000), \
c19d1205
ZW
8301 X(lsl, 0000, fa00f000), \
8302 X(lsls, 0000, fa10f000), \
8303 X(lsr, 0800, fa20f000), \
8304 X(lsrs, 0800, fa30f000), \
8305 X(mov, 2000, ea4f0000), \
8306 X(movs, 2000, ea5f0000), \
8307 X(mul, 4340, fb00f000), \
8308 X(muls, 4340, ffffffff), /* no 32b muls */ \
8309 X(mvn, 43c0, ea6f0000), \
8310 X(mvns, 43c0, ea7f0000), \
8311 X(neg, 4240, f1c00000), /* rsb #0 */ \
8312 X(negs, 4240, f1d00000), /* rsbs #0 */ \
8313 X(orr, 4300, ea400000), \
8314 X(orrs, 4300, ea500000), \
e9f89963
PB
8315 X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8316 X(push, b400, e92d0000), /* stmdb sp!,... */ \
c19d1205
ZW
8317 X(rev, ba00, fa90f080), \
8318 X(rev16, ba40, fa90f090), \
8319 X(revsh, bac0, fa90f0b0), \
8320 X(ror, 41c0, fa60f000), \
8321 X(rors, 41c0, fa70f000), \
8322 X(sbc, 4180, eb600000), \
8323 X(sbcs, 4180, eb700000), \
8324 X(stmia, c000, e8800000), \
8325 X(str, 6000, f8400000), \
8326 X(strb, 7000, f8000000), \
8327 X(strh, 8000, f8200000), \
0110f2b8 8328 X(str_sp,9000, f84d0000), \
c19d1205
ZW
8329 X(sub, 1e00, eba00000), \
8330 X(subs, 1e00, ebb00000), \
0110f2b8
PB
8331 X(subi, 8000, f1a00000), \
8332 X(subis, 8000, f1b00000), \
c19d1205
ZW
8333 X(sxtb, b240, fa4ff080), \
8334 X(sxth, b200, fa0ff080), \
8335 X(tst, 4200, ea100f00), \
8336 X(uxtb, b2c0, fa5ff080), \
8337 X(uxth, b280, fa1ff080), \
8338 X(nop, bf00, f3af8000), \
8339 X(yield, bf10, f3af8001), \
8340 X(wfe, bf20, f3af8002), \
8341 X(wfi, bf30, f3af8003), \
8342 X(sev, bf40, f3af9004), /* typo, 8004? */
8343
8344/* To catch errors in encoding functions, the codes are all offset by
8345 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8346 as 16-bit instructions. */
8347#define X(a,b,c) T_MNEM_##a
8348enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8349#undef X
8350
8351#define X(a,b,c) 0x##b
8352static const unsigned short thumb_op16[] = { T16_32_TAB };
8353#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8354#undef X
8355
8356#define X(a,b,c) 0x##c
8357static const unsigned int thumb_op32[] = { T16_32_TAB };
8358#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8359#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8360#undef X
8361#undef T16_32_TAB
8362
8363/* Thumb instruction encoders, in alphabetical order. */
8364
92e90b6e
PB
8365/* ADDW or SUBW. */
8366static void
8367do_t_add_sub_w (void)
8368{
8369 int Rd, Rn;
8370
8371 Rd = inst.operands[0].reg;
8372 Rn = inst.operands[1].reg;
8373
8374 constraint (Rd == 15, _("PC not allowed as destination"));
8375 inst.instruction |= (Rn << 16) | (Rd << 8);
8376 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8377}
8378
c19d1205
ZW
8379/* Parse an add or subtract instruction. We get here with inst.instruction
8380 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8381
8382static void
8383do_t_add_sub (void)
8384{
8385 int Rd, Rs, Rn;
8386
8387 Rd = inst.operands[0].reg;
8388 Rs = (inst.operands[1].present
8389 ? inst.operands[1].reg /* Rd, Rs, foo */
8390 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8391
8392 if (unified_syntax)
8393 {
0110f2b8
PB
8394 bfd_boolean flags;
8395 bfd_boolean narrow;
8396 int opcode;
8397
8398 flags = (inst.instruction == T_MNEM_adds
8399 || inst.instruction == T_MNEM_subs);
8400 if (flags)
8401 narrow = (current_it_mask == 0);
8402 else
8403 narrow = (current_it_mask != 0);
c19d1205 8404 if (!inst.operands[2].isreg)
b99bd4ef 8405 {
16805f35
PB
8406 int add;
8407
8408 add = (inst.instruction == T_MNEM_add
8409 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
8410 opcode = 0;
8411 if (inst.size_req != 4)
8412 {
0110f2b8
PB
8413 /* Attempt to use a narrow opcode, with relaxation if
8414 appropriate. */
8415 if (Rd == REG_SP && Rs == REG_SP && !flags)
8416 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8417 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8418 opcode = T_MNEM_add_sp;
8419 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8420 opcode = T_MNEM_add_pc;
8421 else if (Rd <= 7 && Rs <= 7 && narrow)
8422 {
8423 if (flags)
8424 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8425 else
8426 opcode = add ? T_MNEM_addi : T_MNEM_subi;
8427 }
8428 if (opcode)
8429 {
8430 inst.instruction = THUMB_OP16(opcode);
8431 inst.instruction |= (Rd << 4) | Rs;
8432 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8433 if (inst.size_req != 2)
8434 inst.relax = opcode;
8435 }
8436 else
8437 constraint (inst.size_req == 2, BAD_HIREG);
8438 }
8439 if (inst.size_req == 4
8440 || (inst.size_req != 2 && !opcode))
8441 {
16805f35
PB
8442 if (Rs == REG_PC)
8443 {
8444 /* Always use addw/subw. */
8445 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
8446 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8447 }
8448 else
8449 {
8450 inst.instruction = THUMB_OP32 (inst.instruction);
8451 inst.instruction = (inst.instruction & 0xe1ffffff)
8452 | 0x10000000;
8453 if (flags)
8454 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8455 else
8456 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
8457 }
dc4503c6
PB
8458 inst.instruction |= Rd << 8;
8459 inst.instruction |= Rs << 16;
0110f2b8 8460 }
b99bd4ef 8461 }
c19d1205
ZW
8462 else
8463 {
8464 Rn = inst.operands[2].reg;
8465 /* See if we can do this with a 16-bit instruction. */
8466 if (!inst.operands[2].shifted && inst.size_req != 4)
8467 {
e27ec89e
PB
8468 if (Rd > 7 || Rs > 7 || Rn > 7)
8469 narrow = FALSE;
8470
8471 if (narrow)
c19d1205 8472 {
e27ec89e
PB
8473 inst.instruction = ((inst.instruction == T_MNEM_adds
8474 || inst.instruction == T_MNEM_add)
c19d1205
ZW
8475 ? T_OPCODE_ADD_R3
8476 : T_OPCODE_SUB_R3);
8477 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8478 return;
8479 }
b99bd4ef 8480
c19d1205
ZW
8481 if (inst.instruction == T_MNEM_add)
8482 {
8483 if (Rd == Rs)
8484 {
8485 inst.instruction = T_OPCODE_ADD_HI;
8486 inst.instruction |= (Rd & 8) << 4;
8487 inst.instruction |= (Rd & 7);
8488 inst.instruction |= Rn << 3;
8489 return;
8490 }
8491 /* ... because addition is commutative! */
8492 else if (Rd == Rn)
8493 {
8494 inst.instruction = T_OPCODE_ADD_HI;
8495 inst.instruction |= (Rd & 8) << 4;
8496 inst.instruction |= (Rd & 7);
8497 inst.instruction |= Rs << 3;
8498 return;
8499 }
8500 }
8501 }
8502 /* If we get here, it can't be done in 16 bits. */
8503 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
8504 _("shift must be constant"));
8505 inst.instruction = THUMB_OP32 (inst.instruction);
8506 inst.instruction |= Rd << 8;
8507 inst.instruction |= Rs << 16;
8508 encode_thumb32_shifted_operand (2);
8509 }
8510 }
8511 else
8512 {
8513 constraint (inst.instruction == T_MNEM_adds
8514 || inst.instruction == T_MNEM_subs,
8515 BAD_THUMB32);
b99bd4ef 8516
c19d1205 8517 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 8518 {
c19d1205
ZW
8519 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
8520 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
8521 BAD_HIREG);
8522
8523 inst.instruction = (inst.instruction == T_MNEM_add
8524 ? 0x0000 : 0x8000);
8525 inst.instruction |= (Rd << 4) | Rs;
8526 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
8527 return;
8528 }
8529
c19d1205
ZW
8530 Rn = inst.operands[2].reg;
8531 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 8532
c19d1205
ZW
8533 /* We now have Rd, Rs, and Rn set to registers. */
8534 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 8535 {
c19d1205
ZW
8536 /* Can't do this for SUB. */
8537 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
8538 inst.instruction = T_OPCODE_ADD_HI;
8539 inst.instruction |= (Rd & 8) << 4;
8540 inst.instruction |= (Rd & 7);
8541 if (Rs == Rd)
8542 inst.instruction |= Rn << 3;
8543 else if (Rn == Rd)
8544 inst.instruction |= Rs << 3;
8545 else
8546 constraint (1, _("dest must overlap one source register"));
8547 }
8548 else
8549 {
8550 inst.instruction = (inst.instruction == T_MNEM_add
8551 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
8552 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 8553 }
b99bd4ef 8554 }
b99bd4ef
NC
8555}
8556
c19d1205
ZW
8557static void
8558do_t_adr (void)
8559{
0110f2b8
PB
8560 if (unified_syntax && inst.size_req == 0 && inst.operands[0].reg <= 7)
8561 {
8562 /* Defer to section relaxation. */
8563 inst.relax = inst.instruction;
8564 inst.instruction = THUMB_OP16 (inst.instruction);
8565 inst.instruction |= inst.operands[0].reg << 4;
8566 }
8567 else if (unified_syntax && inst.size_req != 2)
e9f89963 8568 {
0110f2b8 8569 /* Generate a 32-bit opcode. */
e9f89963
PB
8570 inst.instruction = THUMB_OP32 (inst.instruction);
8571 inst.instruction |= inst.operands[0].reg << 8;
8572 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
8573 inst.reloc.pc_rel = 1;
8574 }
8575 else
8576 {
0110f2b8 8577 /* Generate a 16-bit opcode. */
e9f89963
PB
8578 inst.instruction = THUMB_OP16 (inst.instruction);
8579 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8580 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
8581 inst.reloc.pc_rel = 1;
b99bd4ef 8582
e9f89963
PB
8583 inst.instruction |= inst.operands[0].reg << 4;
8584 }
c19d1205 8585}
b99bd4ef 8586
c19d1205
ZW
8587/* Arithmetic instructions for which there is just one 16-bit
8588 instruction encoding, and it allows only two low registers.
8589 For maximal compatibility with ARM syntax, we allow three register
8590 operands even when Thumb-32 instructions are not available, as long
8591 as the first two are identical. For instance, both "sbc r0,r1" and
8592 "sbc r0,r0,r1" are allowed. */
b99bd4ef 8593static void
c19d1205 8594do_t_arit3 (void)
b99bd4ef 8595{
c19d1205 8596 int Rd, Rs, Rn;
b99bd4ef 8597
c19d1205
ZW
8598 Rd = inst.operands[0].reg;
8599 Rs = (inst.operands[1].present
8600 ? inst.operands[1].reg /* Rd, Rs, foo */
8601 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8602 Rn = inst.operands[2].reg;
b99bd4ef 8603
c19d1205 8604 if (unified_syntax)
b99bd4ef 8605 {
c19d1205
ZW
8606 if (!inst.operands[2].isreg)
8607 {
8608 /* For an immediate, we always generate a 32-bit opcode;
8609 section relaxation will shrink it later if possible. */
8610 inst.instruction = THUMB_OP32 (inst.instruction);
8611 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8612 inst.instruction |= Rd << 8;
8613 inst.instruction |= Rs << 16;
8614 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8615 }
8616 else
8617 {
e27ec89e
PB
8618 bfd_boolean narrow;
8619
c19d1205 8620 /* See if we can do this with a 16-bit instruction. */
e27ec89e
PB
8621 if (THUMB_SETS_FLAGS (inst.instruction))
8622 narrow = current_it_mask == 0;
8623 else
8624 narrow = current_it_mask != 0;
8625
8626 if (Rd > 7 || Rn > 7 || Rs > 7)
8627 narrow = FALSE;
8628 if (inst.operands[2].shifted)
8629 narrow = FALSE;
8630 if (inst.size_req == 4)
8631 narrow = FALSE;
8632
8633 if (narrow
c19d1205
ZW
8634 && Rd == Rs)
8635 {
8636 inst.instruction = THUMB_OP16 (inst.instruction);
8637 inst.instruction |= Rd;
8638 inst.instruction |= Rn << 3;
8639 return;
8640 }
b99bd4ef 8641
c19d1205
ZW
8642 /* If we get here, it can't be done in 16 bits. */
8643 constraint (inst.operands[2].shifted
8644 && inst.operands[2].immisreg,
8645 _("shift must be constant"));
8646 inst.instruction = THUMB_OP32 (inst.instruction);
8647 inst.instruction |= Rd << 8;
8648 inst.instruction |= Rs << 16;
8649 encode_thumb32_shifted_operand (2);
8650 }
a737bd4d 8651 }
c19d1205 8652 else
b99bd4ef 8653 {
c19d1205
ZW
8654 /* On its face this is a lie - the instruction does set the
8655 flags. However, the only supported mnemonic in this mode
8656 says it doesn't. */
8657 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 8658
c19d1205
ZW
8659 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8660 _("unshifted register required"));
8661 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8662 constraint (Rd != Rs,
8663 _("dest and source1 must be the same register"));
a737bd4d 8664
c19d1205
ZW
8665 inst.instruction = THUMB_OP16 (inst.instruction);
8666 inst.instruction |= Rd;
8667 inst.instruction |= Rn << 3;
b99bd4ef 8668 }
a737bd4d 8669}
b99bd4ef 8670
c19d1205
ZW
8671/* Similarly, but for instructions where the arithmetic operation is
8672 commutative, so we can allow either of them to be different from
8673 the destination operand in a 16-bit instruction. For instance, all
8674 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
8675 accepted. */
8676static void
8677do_t_arit3c (void)
a737bd4d 8678{
c19d1205 8679 int Rd, Rs, Rn;
b99bd4ef 8680
c19d1205
ZW
8681 Rd = inst.operands[0].reg;
8682 Rs = (inst.operands[1].present
8683 ? inst.operands[1].reg /* Rd, Rs, foo */
8684 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8685 Rn = inst.operands[2].reg;
a737bd4d 8686
c19d1205 8687 if (unified_syntax)
a737bd4d 8688 {
c19d1205 8689 if (!inst.operands[2].isreg)
b99bd4ef 8690 {
c19d1205
ZW
8691 /* For an immediate, we always generate a 32-bit opcode;
8692 section relaxation will shrink it later if possible. */
8693 inst.instruction = THUMB_OP32 (inst.instruction);
8694 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8695 inst.instruction |= Rd << 8;
8696 inst.instruction |= Rs << 16;
8697 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 8698 }
c19d1205 8699 else
a737bd4d 8700 {
e27ec89e
PB
8701 bfd_boolean narrow;
8702
c19d1205 8703 /* See if we can do this with a 16-bit instruction. */
e27ec89e
PB
8704 if (THUMB_SETS_FLAGS (inst.instruction))
8705 narrow = current_it_mask == 0;
8706 else
8707 narrow = current_it_mask != 0;
8708
8709 if (Rd > 7 || Rn > 7 || Rs > 7)
8710 narrow = FALSE;
8711 if (inst.operands[2].shifted)
8712 narrow = FALSE;
8713 if (inst.size_req == 4)
8714 narrow = FALSE;
8715
8716 if (narrow)
a737bd4d 8717 {
c19d1205 8718 if (Rd == Rs)
a737bd4d 8719 {
c19d1205
ZW
8720 inst.instruction = THUMB_OP16 (inst.instruction);
8721 inst.instruction |= Rd;
8722 inst.instruction |= Rn << 3;
8723 return;
a737bd4d 8724 }
c19d1205 8725 if (Rd == Rn)
a737bd4d 8726 {
c19d1205
ZW
8727 inst.instruction = THUMB_OP16 (inst.instruction);
8728 inst.instruction |= Rd;
8729 inst.instruction |= Rs << 3;
8730 return;
a737bd4d
NC
8731 }
8732 }
c19d1205
ZW
8733
8734 /* If we get here, it can't be done in 16 bits. */
8735 constraint (inst.operands[2].shifted
8736 && inst.operands[2].immisreg,
8737 _("shift must be constant"));
8738 inst.instruction = THUMB_OP32 (inst.instruction);
8739 inst.instruction |= Rd << 8;
8740 inst.instruction |= Rs << 16;
8741 encode_thumb32_shifted_operand (2);
a737bd4d 8742 }
b99bd4ef 8743 }
c19d1205
ZW
8744 else
8745 {
8746 /* On its face this is a lie - the instruction does set the
8747 flags. However, the only supported mnemonic in this mode
8748 says it doesn't. */
8749 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 8750
c19d1205
ZW
8751 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8752 _("unshifted register required"));
8753 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8754
8755 inst.instruction = THUMB_OP16 (inst.instruction);
8756 inst.instruction |= Rd;
8757
8758 if (Rd == Rs)
8759 inst.instruction |= Rn << 3;
8760 else if (Rd == Rn)
8761 inst.instruction |= Rs << 3;
8762 else
8763 constraint (1, _("dest must overlap one source register"));
8764 }
a737bd4d
NC
8765}
8766
62b3e311
PB
8767static void
8768do_t_barrier (void)
8769{
8770 if (inst.operands[0].present)
8771 {
8772 constraint ((inst.instruction & 0xf0) != 0x40
8773 && inst.operands[0].imm != 0xf,
8774 "bad barrier type");
8775 inst.instruction |= inst.operands[0].imm;
8776 }
8777 else
8778 inst.instruction |= 0xf;
8779}
8780
c19d1205
ZW
8781static void
8782do_t_bfc (void)
a737bd4d 8783{
c19d1205
ZW
8784 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8785 constraint (msb > 32, _("bit-field extends past end of register"));
8786 /* The instruction encoding stores the LSB and MSB,
8787 not the LSB and width. */
8788 inst.instruction |= inst.operands[0].reg << 8;
8789 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
8790 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
8791 inst.instruction |= msb - 1;
b99bd4ef
NC
8792}
8793
c19d1205
ZW
8794static void
8795do_t_bfi (void)
b99bd4ef 8796{
c19d1205 8797 unsigned int msb;
b99bd4ef 8798
c19d1205
ZW
8799 /* #0 in second position is alternative syntax for bfc, which is
8800 the same instruction but with REG_PC in the Rm field. */
8801 if (!inst.operands[1].isreg)
8802 inst.operands[1].reg = REG_PC;
b99bd4ef 8803
c19d1205
ZW
8804 msb = inst.operands[2].imm + inst.operands[3].imm;
8805 constraint (msb > 32, _("bit-field extends past end of register"));
8806 /* The instruction encoding stores the LSB and MSB,
8807 not the LSB and width. */
8808 inst.instruction |= inst.operands[0].reg << 8;
8809 inst.instruction |= inst.operands[1].reg << 16;
8810 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8811 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8812 inst.instruction |= msb - 1;
b99bd4ef
NC
8813}
8814
c19d1205
ZW
8815static void
8816do_t_bfx (void)
b99bd4ef 8817{
c19d1205
ZW
8818 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8819 _("bit-field extends past end of register"));
8820 inst.instruction |= inst.operands[0].reg << 8;
8821 inst.instruction |= inst.operands[1].reg << 16;
8822 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8823 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8824 inst.instruction |= inst.operands[3].imm - 1;
8825}
b99bd4ef 8826
c19d1205
ZW
8827/* ARM V5 Thumb BLX (argument parse)
8828 BLX <target_addr> which is BLX(1)
8829 BLX <Rm> which is BLX(2)
8830 Unfortunately, there are two different opcodes for this mnemonic.
8831 So, the insns[].value is not used, and the code here zaps values
8832 into inst.instruction.
b99bd4ef 8833
c19d1205
ZW
8834 ??? How to take advantage of the additional two bits of displacement
8835 available in Thumb32 mode? Need new relocation? */
b99bd4ef 8836
c19d1205
ZW
8837static void
8838do_t_blx (void)
8839{
dfa9f0d5 8840 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205
ZW
8841 if (inst.operands[0].isreg)
8842 /* We have a register, so this is BLX(2). */
8843 inst.instruction |= inst.operands[0].reg << 3;
b99bd4ef
NC
8844 else
8845 {
c19d1205 8846 /* No register. This must be BLX(1). */
2fc8bdac 8847 inst.instruction = 0xf000e800;
39b41c9c
PB
8848#ifdef OBJ_ELF
8849 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8850 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
8851 else
8852#endif
8853 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
c19d1205 8854 inst.reloc.pc_rel = 1;
b99bd4ef
NC
8855 }
8856}
8857
c19d1205
ZW
8858static void
8859do_t_branch (void)
b99bd4ef 8860{
0110f2b8 8861 int opcode;
dfa9f0d5
PB
8862 int cond;
8863
8864 if (current_it_mask)
8865 {
8866 /* Conditional branches inside IT blocks are encoded as unconditional
8867 branches. */
8868 cond = COND_ALWAYS;
8869 /* A branch must be the last instruction in an IT block. */
8870 constraint (current_it_mask != 0x10, BAD_BRANCH);
8871 }
8872 else
8873 cond = inst.cond;
8874
8875 if (cond != COND_ALWAYS)
0110f2b8
PB
8876 opcode = T_MNEM_bcond;
8877 else
8878 opcode = inst.instruction;
8879
8880 if (unified_syntax && inst.size_req == 4)
c19d1205 8881 {
0110f2b8 8882 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 8883 if (cond == COND_ALWAYS)
0110f2b8 8884 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
8885 else
8886 {
dfa9f0d5
PB
8887 assert (cond != 0xF);
8888 inst.instruction |= cond << 22;
c19d1205
ZW
8889 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
8890 }
8891 }
b99bd4ef
NC
8892 else
8893 {
0110f2b8 8894 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 8895 if (cond == COND_ALWAYS)
c19d1205
ZW
8896 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
8897 else
b99bd4ef 8898 {
dfa9f0d5 8899 inst.instruction |= cond << 8;
c19d1205 8900 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 8901 }
0110f2b8
PB
8902 /* Allow section relaxation. */
8903 if (unified_syntax && inst.size_req != 2)
8904 inst.relax = opcode;
b99bd4ef 8905 }
c19d1205
ZW
8906
8907 inst.reloc.pc_rel = 1;
b99bd4ef
NC
8908}
8909
8910static void
c19d1205 8911do_t_bkpt (void)
b99bd4ef 8912{
dfa9f0d5
PB
8913 constraint (inst.cond != COND_ALWAYS,
8914 _("instruction is always unconditional"));
c19d1205 8915 if (inst.operands[0].present)
b99bd4ef 8916 {
c19d1205
ZW
8917 constraint (inst.operands[0].imm > 255,
8918 _("immediate value out of range"));
8919 inst.instruction |= inst.operands[0].imm;
b99bd4ef 8920 }
b99bd4ef
NC
8921}
8922
8923static void
c19d1205 8924do_t_branch23 (void)
b99bd4ef 8925{
dfa9f0d5 8926 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205 8927 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a
RE
8928 inst.reloc.pc_rel = 1;
8929
c19d1205
ZW
8930 /* If the destination of the branch is a defined symbol which does not have
8931 the THUMB_FUNC attribute, then we must be calling a function which has
8932 the (interfacearm) attribute. We look for the Thumb entry point to that
8933 function and change the branch to refer to that function instead. */
8934 if ( inst.reloc.exp.X_op == O_symbol
8935 && inst.reloc.exp.X_add_symbol != NULL
8936 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8937 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
8938 inst.reloc.exp.X_add_symbol =
8939 find_real_start (inst.reloc.exp.X_add_symbol);
90e4755a
RE
8940}
8941
8942static void
c19d1205 8943do_t_bx (void)
90e4755a 8944{
dfa9f0d5 8945 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205
ZW
8946 inst.instruction |= inst.operands[0].reg << 3;
8947 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
8948 should cause the alignment to be checked once it is known. This is
8949 because BX PC only works if the instruction is word aligned. */
8950}
90e4755a 8951
c19d1205
ZW
8952static void
8953do_t_bxj (void)
8954{
dfa9f0d5 8955 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205
ZW
8956 if (inst.operands[0].reg == REG_PC)
8957 as_tsktsk (_("use of r15 in bxj is not really useful"));
90e4755a 8958
c19d1205 8959 inst.instruction |= inst.operands[0].reg << 16;
90e4755a
RE
8960}
8961
8962static void
c19d1205 8963do_t_clz (void)
90e4755a 8964{
c19d1205
ZW
8965 inst.instruction |= inst.operands[0].reg << 8;
8966 inst.instruction |= inst.operands[1].reg << 16;
8967 inst.instruction |= inst.operands[1].reg;
8968}
90e4755a 8969
dfa9f0d5
PB
8970static void
8971do_t_cps (void)
8972{
8973 constraint (current_it_mask, BAD_NOT_IT);
8974 inst.instruction |= inst.operands[0].imm;
8975}
8976
c19d1205
ZW
8977static void
8978do_t_cpsi (void)
8979{
dfa9f0d5 8980 constraint (current_it_mask, BAD_NOT_IT);
c19d1205 8981 if (unified_syntax
62b3e311
PB
8982 && (inst.operands[1].present || inst.size_req == 4)
8983 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 8984 {
c19d1205
ZW
8985 unsigned int imod = (inst.instruction & 0x0030) >> 4;
8986 inst.instruction = 0xf3af8000;
8987 inst.instruction |= imod << 9;
8988 inst.instruction |= inst.operands[0].imm << 5;
8989 if (inst.operands[1].present)
8990 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 8991 }
c19d1205 8992 else
90e4755a 8993 {
62b3e311
PB
8994 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
8995 && (inst.operands[0].imm & 4),
8996 _("selected processor does not support 'A' form "
8997 "of this instruction"));
8998 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
8999 _("Thumb does not support the 2-argument "
9000 "form of this instruction"));
9001 inst.instruction |= inst.operands[0].imm;
90e4755a 9002 }
90e4755a
RE
9003}
9004
c19d1205
ZW
9005/* THUMB CPY instruction (argument parse). */
9006
90e4755a 9007static void
c19d1205 9008do_t_cpy (void)
90e4755a 9009{
c19d1205 9010 if (inst.size_req == 4)
90e4755a 9011 {
c19d1205
ZW
9012 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9013 inst.instruction |= inst.operands[0].reg << 8;
9014 inst.instruction |= inst.operands[1].reg;
90e4755a 9015 }
c19d1205 9016 else
90e4755a 9017 {
c19d1205
ZW
9018 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9019 inst.instruction |= (inst.operands[0].reg & 0x7);
9020 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 9021 }
90e4755a
RE
9022}
9023
90e4755a 9024static void
25fe350b 9025do_t_cbz (void)
90e4755a 9026{
dfa9f0d5 9027 constraint (current_it_mask, BAD_NOT_IT);
c19d1205
ZW
9028 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9029 inst.instruction |= inst.operands[0].reg;
9030 inst.reloc.pc_rel = 1;
9031 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9032}
90e4755a 9033
62b3e311
PB
9034static void
9035do_t_dbg (void)
9036{
9037 inst.instruction |= inst.operands[0].imm;
9038}
9039
9040static void
9041do_t_div (void)
9042{
9043 if (!inst.operands[1].present)
9044 inst.operands[1].reg = inst.operands[0].reg;
9045 inst.instruction |= inst.operands[0].reg << 8;
9046 inst.instruction |= inst.operands[1].reg << 16;
9047 inst.instruction |= inst.operands[2].reg;
9048}
9049
c19d1205
ZW
9050static void
9051do_t_hint (void)
9052{
9053 if (unified_syntax && inst.size_req == 4)
9054 inst.instruction = THUMB_OP32 (inst.instruction);
9055 else
9056 inst.instruction = THUMB_OP16 (inst.instruction);
9057}
90e4755a 9058
c19d1205
ZW
9059static void
9060do_t_it (void)
9061{
9062 unsigned int cond = inst.operands[0].imm;
e27ec89e 9063
dfa9f0d5 9064 constraint (current_it_mask, BAD_NOT_IT);
e27ec89e
PB
9065 current_it_mask = (inst.instruction & 0xf) | 0x10;
9066 current_cc = cond;
9067
9068 /* If the condition is a negative condition, invert the mask. */
c19d1205 9069 if ((cond & 0x1) == 0x0)
90e4755a 9070 {
c19d1205 9071 unsigned int mask = inst.instruction & 0x000f;
90e4755a 9072
c19d1205
ZW
9073 if ((mask & 0x7) == 0)
9074 /* no conversion needed */;
9075 else if ((mask & 0x3) == 0)
e27ec89e
PB
9076 mask ^= 0x8;
9077 else if ((mask & 0x1) == 0)
9078 mask ^= 0xC;
c19d1205 9079 else
e27ec89e 9080 mask ^= 0xE;
90e4755a 9081
e27ec89e
PB
9082 inst.instruction &= 0xfff0;
9083 inst.instruction |= mask;
c19d1205 9084 }
90e4755a 9085
c19d1205
ZW
9086 inst.instruction |= cond << 4;
9087}
90e4755a 9088
3c707909
PB
9089/* Helper function used for both push/pop and ldm/stm. */
9090static void
9091encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9092{
9093 bfd_boolean load;
9094
9095 load = (inst.instruction & (1 << 20)) != 0;
9096
9097 if (mask & (1 << 13))
9098 inst.error = _("SP not allowed in register list");
9099 if (load)
9100 {
9101 if (mask & (1 << 14)
9102 && mask & (1 << 15))
9103 inst.error = _("LR and PC should not both be in register list");
9104
9105 if ((mask & (1 << base)) != 0
9106 && writeback)
9107 as_warn (_("base register should not be in register list "
9108 "when written back"));
9109 }
9110 else
9111 {
9112 if (mask & (1 << 15))
9113 inst.error = _("PC not allowed in register list");
9114
9115 if (mask & (1 << base))
9116 as_warn (_("value stored for r%d is UNPREDICTABLE"), base);
9117 }
9118
9119 if ((mask & (mask - 1)) == 0)
9120 {
9121 /* Single register transfers implemented as str/ldr. */
9122 if (writeback)
9123 {
9124 if (inst.instruction & (1 << 23))
9125 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9126 else
9127 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9128 }
9129 else
9130 {
9131 if (inst.instruction & (1 << 23))
9132 inst.instruction = 0x00800000; /* ia -> [base] */
9133 else
9134 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9135 }
9136
9137 inst.instruction |= 0xf8400000;
9138 if (load)
9139 inst.instruction |= 0x00100000;
9140
9141 mask = ffs(mask) - 1;
9142 mask <<= 12;
9143 }
9144 else if (writeback)
9145 inst.instruction |= WRITE_BACK;
9146
9147 inst.instruction |= mask;
9148 inst.instruction |= base << 16;
9149}
9150
c19d1205
ZW
9151static void
9152do_t_ldmstm (void)
9153{
9154 /* This really doesn't seem worth it. */
9155 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9156 _("expression too complex"));
9157 constraint (inst.operands[1].writeback,
9158 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 9159
c19d1205
ZW
9160 if (unified_syntax)
9161 {
3c707909
PB
9162 bfd_boolean narrow;
9163 unsigned mask;
9164
9165 narrow = FALSE;
c19d1205
ZW
9166 /* See if we can use a 16-bit instruction. */
9167 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9168 && inst.size_req != 4
3c707909 9169 && !(inst.operands[1].imm & ~0xff))
90e4755a 9170 {
3c707909 9171 mask = 1 << inst.operands[0].reg;
90e4755a 9172
3c707909
PB
9173 if (inst.operands[0].reg <= 7
9174 && (inst.instruction == T_MNEM_stmia
9175 ? inst.operands[0].writeback
9176 : (inst.operands[0].writeback
9177 == !(inst.operands[1].imm & mask))))
90e4755a 9178 {
3c707909
PB
9179 if (inst.instruction == T_MNEM_stmia
9180 && (inst.operands[1].imm & mask)
9181 && (inst.operands[1].imm & (mask - 1)))
c19d1205
ZW
9182 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9183 inst.operands[0].reg);
3c707909
PB
9184
9185 inst.instruction = THUMB_OP16 (inst.instruction);
9186 inst.instruction |= inst.operands[0].reg << 8;
9187 inst.instruction |= inst.operands[1].imm;
9188 narrow = TRUE;
90e4755a 9189 }
3c707909
PB
9190 else if (inst.operands[0] .reg == REG_SP
9191 && inst.operands[0].writeback)
90e4755a 9192 {
3c707909
PB
9193 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9194 ? T_MNEM_push : T_MNEM_pop);
9195 inst.instruction |= inst.operands[1].imm;
9196 narrow = TRUE;
90e4755a 9197 }
3c707909
PB
9198 }
9199
9200 if (!narrow)
9201 {
c19d1205
ZW
9202 if (inst.instruction < 0xffff)
9203 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909
PB
9204
9205 encode_thumb2_ldmstm(inst.operands[0].reg, inst.operands[1].imm,
9206 inst.operands[0].writeback);
90e4755a
RE
9207 }
9208 }
c19d1205 9209 else
90e4755a 9210 {
c19d1205
ZW
9211 constraint (inst.operands[0].reg > 7
9212 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
9213 constraint (inst.instruction != T_MNEM_ldmia
9214 && inst.instruction != T_MNEM_stmia,
9215 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 9216 if (inst.instruction == T_MNEM_stmia)
f03698e6 9217 {
c19d1205
ZW
9218 if (!inst.operands[0].writeback)
9219 as_warn (_("this instruction will write back the base register"));
9220 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9221 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9222 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9223 inst.operands[0].reg);
f03698e6 9224 }
c19d1205 9225 else
90e4755a 9226 {
c19d1205
ZW
9227 if (!inst.operands[0].writeback
9228 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9229 as_warn (_("this instruction will write back the base register"));
9230 else if (inst.operands[0].writeback
9231 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9232 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
9233 }
9234
c19d1205
ZW
9235 inst.instruction = THUMB_OP16 (inst.instruction);
9236 inst.instruction |= inst.operands[0].reg << 8;
9237 inst.instruction |= inst.operands[1].imm;
9238 }
9239}
e28cd48c 9240
c19d1205
ZW
9241static void
9242do_t_ldrex (void)
9243{
9244 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9245 || inst.operands[1].postind || inst.operands[1].writeback
9246 || inst.operands[1].immisreg || inst.operands[1].shifted
9247 || inst.operands[1].negative,
01cfc07f 9248 BAD_ADDR_MODE);
e28cd48c 9249
c19d1205
ZW
9250 inst.instruction |= inst.operands[0].reg << 12;
9251 inst.instruction |= inst.operands[1].reg << 16;
9252 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9253}
e28cd48c 9254
c19d1205
ZW
9255static void
9256do_t_ldrexd (void)
9257{
9258 if (!inst.operands[1].present)
1cac9012 9259 {
c19d1205
ZW
9260 constraint (inst.operands[0].reg == REG_LR,
9261 _("r14 not allowed as first register "
9262 "when second register is omitted"));
9263 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 9264 }
c19d1205
ZW
9265 constraint (inst.operands[0].reg == inst.operands[1].reg,
9266 BAD_OVERLAP);
b99bd4ef 9267
c19d1205
ZW
9268 inst.instruction |= inst.operands[0].reg << 12;
9269 inst.instruction |= inst.operands[1].reg << 8;
9270 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9271}
9272
9273static void
c19d1205 9274do_t_ldst (void)
b99bd4ef 9275{
0110f2b8
PB
9276 unsigned long opcode;
9277 int Rn;
9278
9279 opcode = inst.instruction;
c19d1205 9280 if (unified_syntax)
b99bd4ef 9281 {
53365c0d
PB
9282 if (!inst.operands[1].isreg)
9283 {
9284 if (opcode <= 0xffff)
9285 inst.instruction = THUMB_OP32 (opcode);
9286 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9287 return;
9288 }
0110f2b8
PB
9289 if (inst.operands[1].isreg
9290 && !inst.operands[1].writeback
c19d1205
ZW
9291 && !inst.operands[1].shifted && !inst.operands[1].postind
9292 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
9293 && opcode <= 0xffff
9294 && inst.size_req != 4)
c19d1205 9295 {
0110f2b8
PB
9296 /* Insn may have a 16-bit form. */
9297 Rn = inst.operands[1].reg;
9298 if (inst.operands[1].immisreg)
9299 {
9300 inst.instruction = THUMB_OP16 (opcode);
9301 /* [Rn, Ri] */
9302 if (Rn <= 7 && inst.operands[1].imm <= 7)
9303 goto op16;
9304 }
9305 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9306 && opcode != T_MNEM_ldrsb)
9307 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9308 || (Rn == REG_SP && opcode == T_MNEM_str))
9309 {
9310 /* [Rn, #const] */
9311 if (Rn > 7)
9312 {
9313 if (Rn == REG_PC)
9314 {
9315 if (inst.reloc.pc_rel)
9316 opcode = T_MNEM_ldr_pc2;
9317 else
9318 opcode = T_MNEM_ldr_pc;
9319 }
9320 else
9321 {
9322 if (opcode == T_MNEM_ldr)
9323 opcode = T_MNEM_ldr_sp;
9324 else
9325 opcode = T_MNEM_str_sp;
9326 }
9327 inst.instruction = inst.operands[0].reg << 8;
9328 }
9329 else
9330 {
9331 inst.instruction = inst.operands[0].reg;
9332 inst.instruction |= inst.operands[1].reg << 3;
9333 }
9334 inst.instruction |= THUMB_OP16 (opcode);
9335 if (inst.size_req == 2)
9336 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9337 else
9338 inst.relax = opcode;
9339 return;
9340 }
c19d1205 9341 }
0110f2b8
PB
9342 /* Definitely a 32-bit variant. */
9343 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
9344 inst.instruction |= inst.operands[0].reg << 12;
9345 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
b99bd4ef
NC
9346 return;
9347 }
9348
c19d1205
ZW
9349 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9350
9351 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 9352 {
c19d1205
ZW
9353 /* Only [Rn,Rm] is acceptable. */
9354 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
9355 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
9356 || inst.operands[1].postind || inst.operands[1].shifted
9357 || inst.operands[1].negative,
9358 _("Thumb does not support this addressing mode"));
9359 inst.instruction = THUMB_OP16 (inst.instruction);
9360 goto op16;
b99bd4ef 9361 }
c19d1205
ZW
9362
9363 inst.instruction = THUMB_OP16 (inst.instruction);
9364 if (!inst.operands[1].isreg)
9365 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9366 return;
b99bd4ef 9367
c19d1205
ZW
9368 constraint (!inst.operands[1].preind
9369 || inst.operands[1].shifted
9370 || inst.operands[1].writeback,
9371 _("Thumb does not support this addressing mode"));
9372 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 9373 {
c19d1205
ZW
9374 constraint (inst.instruction & 0x0600,
9375 _("byte or halfword not valid for base register"));
9376 constraint (inst.operands[1].reg == REG_PC
9377 && !(inst.instruction & THUMB_LOAD_BIT),
9378 _("r15 based store not allowed"));
9379 constraint (inst.operands[1].immisreg,
9380 _("invalid base register for register offset"));
b99bd4ef 9381
c19d1205
ZW
9382 if (inst.operands[1].reg == REG_PC)
9383 inst.instruction = T_OPCODE_LDR_PC;
9384 else if (inst.instruction & THUMB_LOAD_BIT)
9385 inst.instruction = T_OPCODE_LDR_SP;
9386 else
9387 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 9388
c19d1205
ZW
9389 inst.instruction |= inst.operands[0].reg << 8;
9390 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9391 return;
9392 }
90e4755a 9393
c19d1205
ZW
9394 constraint (inst.operands[1].reg > 7, BAD_HIREG);
9395 if (!inst.operands[1].immisreg)
9396 {
9397 /* Immediate offset. */
9398 inst.instruction |= inst.operands[0].reg;
9399 inst.instruction |= inst.operands[1].reg << 3;
9400 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9401 return;
9402 }
90e4755a 9403
c19d1205
ZW
9404 /* Register offset. */
9405 constraint (inst.operands[1].imm > 7, BAD_HIREG);
9406 constraint (inst.operands[1].negative,
9407 _("Thumb does not support this addressing mode"));
90e4755a 9408
c19d1205
ZW
9409 op16:
9410 switch (inst.instruction)
9411 {
9412 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
9413 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
9414 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
9415 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
9416 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
9417 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
9418 case 0x5600 /* ldrsb */:
9419 case 0x5e00 /* ldrsh */: break;
9420 default: abort ();
9421 }
90e4755a 9422
c19d1205
ZW
9423 inst.instruction |= inst.operands[0].reg;
9424 inst.instruction |= inst.operands[1].reg << 3;
9425 inst.instruction |= inst.operands[1].imm << 6;
9426}
90e4755a 9427
c19d1205
ZW
9428static void
9429do_t_ldstd (void)
9430{
9431 if (!inst.operands[1].present)
b99bd4ef 9432 {
c19d1205
ZW
9433 inst.operands[1].reg = inst.operands[0].reg + 1;
9434 constraint (inst.operands[0].reg == REG_LR,
9435 _("r14 not allowed here"));
b99bd4ef 9436 }
c19d1205
ZW
9437 inst.instruction |= inst.operands[0].reg << 12;
9438 inst.instruction |= inst.operands[1].reg << 8;
9439 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
9440
b99bd4ef
NC
9441}
9442
c19d1205
ZW
9443static void
9444do_t_ldstt (void)
9445{
9446 inst.instruction |= inst.operands[0].reg << 12;
9447 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
9448}
a737bd4d 9449
b99bd4ef 9450static void
c19d1205 9451do_t_mla (void)
b99bd4ef 9452{
c19d1205
ZW
9453 inst.instruction |= inst.operands[0].reg << 8;
9454 inst.instruction |= inst.operands[1].reg << 16;
9455 inst.instruction |= inst.operands[2].reg;
9456 inst.instruction |= inst.operands[3].reg << 12;
9457}
b99bd4ef 9458
c19d1205
ZW
9459static void
9460do_t_mlal (void)
9461{
9462 inst.instruction |= inst.operands[0].reg << 12;
9463 inst.instruction |= inst.operands[1].reg << 8;
9464 inst.instruction |= inst.operands[2].reg << 16;
9465 inst.instruction |= inst.operands[3].reg;
9466}
b99bd4ef 9467
c19d1205
ZW
9468static void
9469do_t_mov_cmp (void)
9470{
9471 if (unified_syntax)
b99bd4ef 9472 {
c19d1205
ZW
9473 int r0off = (inst.instruction == T_MNEM_mov
9474 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 9475 unsigned long opcode;
3d388997
PB
9476 bfd_boolean narrow;
9477 bfd_boolean low_regs;
9478
9479 low_regs = (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7);
0110f2b8 9480 opcode = inst.instruction;
3d388997 9481 if (current_it_mask)
0110f2b8 9482 narrow = opcode != T_MNEM_movs;
3d388997 9483 else
0110f2b8 9484 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
9485 if (inst.size_req == 4
9486 || inst.operands[1].shifted)
9487 narrow = FALSE;
9488
c19d1205
ZW
9489 if (!inst.operands[1].isreg)
9490 {
0110f2b8
PB
9491 /* Immediate operand. */
9492 if (current_it_mask == 0 && opcode == T_MNEM_mov)
9493 narrow = 0;
9494 if (low_regs && narrow)
9495 {
9496 inst.instruction = THUMB_OP16 (opcode);
9497 inst.instruction |= inst.operands[0].reg << 8;
9498 if (inst.size_req == 2)
9499 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9500 else
9501 inst.relax = opcode;
9502 }
9503 else
9504 {
9505 inst.instruction = THUMB_OP32 (inst.instruction);
9506 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9507 inst.instruction |= inst.operands[0].reg << r0off;
9508 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9509 }
c19d1205 9510 }
3d388997 9511 else if (!narrow)
c19d1205
ZW
9512 {
9513 inst.instruction = THUMB_OP32 (inst.instruction);
9514 inst.instruction |= inst.operands[0].reg << r0off;
9515 encode_thumb32_shifted_operand (1);
9516 }
9517 else
9518 switch (inst.instruction)
9519 {
9520 case T_MNEM_mov:
9521 inst.instruction = T_OPCODE_MOV_HR;
9522 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9523 inst.instruction |= (inst.operands[0].reg & 0x7);
9524 inst.instruction |= inst.operands[1].reg << 3;
9525 break;
b99bd4ef 9526
c19d1205
ZW
9527 case T_MNEM_movs:
9528 /* We know we have low registers at this point.
9529 Generate ADD Rd, Rs, #0. */
9530 inst.instruction = T_OPCODE_ADD_I3;
9531 inst.instruction |= inst.operands[0].reg;
9532 inst.instruction |= inst.operands[1].reg << 3;
9533 break;
9534
9535 case T_MNEM_cmp:
3d388997 9536 if (low_regs)
c19d1205
ZW
9537 {
9538 inst.instruction = T_OPCODE_CMP_LR;
9539 inst.instruction |= inst.operands[0].reg;
9540 inst.instruction |= inst.operands[1].reg << 3;
9541 }
9542 else
9543 {
9544 inst.instruction = T_OPCODE_CMP_HR;
9545 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9546 inst.instruction |= (inst.operands[0].reg & 0x7);
9547 inst.instruction |= inst.operands[1].reg << 3;
9548 }
9549 break;
9550 }
b99bd4ef
NC
9551 return;
9552 }
9553
c19d1205
ZW
9554 inst.instruction = THUMB_OP16 (inst.instruction);
9555 if (inst.operands[1].isreg)
b99bd4ef 9556 {
c19d1205 9557 if (inst.operands[0].reg < 8 && inst.operands[1].reg < 8)
b99bd4ef 9558 {
c19d1205
ZW
9559 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
9560 since a MOV instruction produces unpredictable results. */
9561 if (inst.instruction == T_OPCODE_MOV_I8)
9562 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 9563 else
c19d1205 9564 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 9565
c19d1205
ZW
9566 inst.instruction |= inst.operands[0].reg;
9567 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
9568 }
9569 else
9570 {
c19d1205
ZW
9571 if (inst.instruction == T_OPCODE_MOV_I8)
9572 inst.instruction = T_OPCODE_MOV_HR;
9573 else
9574 inst.instruction = T_OPCODE_CMP_HR;
9575 do_t_cpy ();
b99bd4ef
NC
9576 }
9577 }
c19d1205 9578 else
b99bd4ef 9579 {
c19d1205
ZW
9580 constraint (inst.operands[0].reg > 7,
9581 _("only lo regs allowed with immediate"));
9582 inst.instruction |= inst.operands[0].reg << 8;
9583 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9584 }
9585}
b99bd4ef 9586
c19d1205
ZW
9587static void
9588do_t_mov16 (void)
9589{
b6895b4f
PB
9590 bfd_vma imm;
9591 bfd_boolean top;
9592
9593 top = (inst.instruction & 0x00800000) != 0;
9594 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
9595 {
9596 constraint (top, _(":lower16: not allowed this instruction"));
9597 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
9598 }
9599 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
9600 {
9601 constraint (!top, _(":upper16: not allowed this instruction"));
9602 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
9603 }
9604
c19d1205 9605 inst.instruction |= inst.operands[0].reg << 8;
b6895b4f
PB
9606 if (inst.reloc.type == BFD_RELOC_UNUSED)
9607 {
9608 imm = inst.reloc.exp.X_add_number;
9609 inst.instruction |= (imm & 0xf000) << 4;
9610 inst.instruction |= (imm & 0x0800) << 15;
9611 inst.instruction |= (imm & 0x0700) << 4;
9612 inst.instruction |= (imm & 0x00ff);
9613 }
c19d1205 9614}
b99bd4ef 9615
c19d1205
ZW
9616static void
9617do_t_mvn_tst (void)
9618{
9619 if (unified_syntax)
9620 {
9621 int r0off = (inst.instruction == T_MNEM_mvn
9622 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
9623 bfd_boolean narrow;
9624
9625 if (inst.size_req == 4
9626 || inst.instruction > 0xffff
9627 || inst.operands[1].shifted
9628 || inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9629 narrow = FALSE;
9630 else if (inst.instruction == T_MNEM_cmn)
9631 narrow = TRUE;
9632 else if (THUMB_SETS_FLAGS (inst.instruction))
9633 narrow = (current_it_mask == 0);
9634 else
9635 narrow = (current_it_mask != 0);
9636
c19d1205 9637 if (!inst.operands[1].isreg)
b99bd4ef 9638 {
c19d1205
ZW
9639 /* For an immediate, we always generate a 32-bit opcode;
9640 section relaxation will shrink it later if possible. */
9641 if (inst.instruction < 0xffff)
9642 inst.instruction = THUMB_OP32 (inst.instruction);
9643 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9644 inst.instruction |= inst.operands[0].reg << r0off;
9645 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9646 }
c19d1205 9647 else
b99bd4ef 9648 {
c19d1205 9649 /* See if we can do this with a 16-bit instruction. */
3d388997 9650 if (narrow)
b99bd4ef 9651 {
c19d1205
ZW
9652 inst.instruction = THUMB_OP16 (inst.instruction);
9653 inst.instruction |= inst.operands[0].reg;
9654 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 9655 }
c19d1205 9656 else
b99bd4ef 9657 {
c19d1205
ZW
9658 constraint (inst.operands[1].shifted
9659 && inst.operands[1].immisreg,
9660 _("shift must be constant"));
9661 if (inst.instruction < 0xffff)
9662 inst.instruction = THUMB_OP32 (inst.instruction);
9663 inst.instruction |= inst.operands[0].reg << r0off;
9664 encode_thumb32_shifted_operand (1);
b99bd4ef 9665 }
b99bd4ef
NC
9666 }
9667 }
9668 else
9669 {
c19d1205
ZW
9670 constraint (inst.instruction > 0xffff
9671 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
9672 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
9673 _("unshifted register required"));
9674 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9675 BAD_HIREG);
b99bd4ef 9676
c19d1205
ZW
9677 inst.instruction = THUMB_OP16 (inst.instruction);
9678 inst.instruction |= inst.operands[0].reg;
9679 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 9680 }
b99bd4ef
NC
9681}
9682
b05fe5cf 9683static void
c19d1205 9684do_t_mrs (void)
b05fe5cf 9685{
62b3e311 9686 int flags;
037e8744
JB
9687
9688 if (do_vfp_nsyn_mrs () == SUCCESS)
9689 return;
9690
62b3e311
PB
9691 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
9692 if (flags == 0)
9693 {
9694 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
9695 _("selected processor does not support "
9696 "requested special purpose register"));
9697 }
9698 else
9699 {
9700 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9701 _("selected processor does not support "
9702 "requested special purpose register %x"));
9703 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9704 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
9705 _("'CPSR' or 'SPSR' expected"));
9706 }
9707
c19d1205 9708 inst.instruction |= inst.operands[0].reg << 8;
62b3e311
PB
9709 inst.instruction |= (flags & SPSR_BIT) >> 2;
9710 inst.instruction |= inst.operands[1].imm & 0xff;
c19d1205 9711}
b05fe5cf 9712
c19d1205
ZW
9713static void
9714do_t_msr (void)
9715{
62b3e311
PB
9716 int flags;
9717
037e8744
JB
9718 if (do_vfp_nsyn_msr () == SUCCESS)
9719 return;
9720
c19d1205
ZW
9721 constraint (!inst.operands[1].isreg,
9722 _("Thumb encoding does not support an immediate here"));
62b3e311
PB
9723 flags = inst.operands[0].imm;
9724 if (flags & ~0xff)
9725 {
9726 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9727 _("selected processor does not support "
9728 "requested special purpose register"));
9729 }
9730 else
9731 {
9732 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
9733 _("selected processor does not support "
9734 "requested special purpose register"));
9735 flags |= PSR_f;
9736 }
9737 inst.instruction |= (flags & SPSR_BIT) >> 2;
9738 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
9739 inst.instruction |= (flags & 0xff);
c19d1205
ZW
9740 inst.instruction |= inst.operands[1].reg << 16;
9741}
b05fe5cf 9742
c19d1205
ZW
9743static void
9744do_t_mul (void)
9745{
9746 if (!inst.operands[2].present)
9747 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 9748
c19d1205
ZW
9749 /* There is no 32-bit MULS and no 16-bit MUL. */
9750 if (unified_syntax && inst.instruction == T_MNEM_mul)
b05fe5cf 9751 {
c19d1205
ZW
9752 inst.instruction = THUMB_OP32 (inst.instruction);
9753 inst.instruction |= inst.operands[0].reg << 8;
9754 inst.instruction |= inst.operands[1].reg << 16;
9755 inst.instruction |= inst.operands[2].reg << 0;
b05fe5cf 9756 }
c19d1205 9757 else
b05fe5cf 9758 {
c19d1205
ZW
9759 constraint (!unified_syntax
9760 && inst.instruction == T_MNEM_muls, BAD_THUMB32);
9761 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9762 BAD_HIREG);
b05fe5cf 9763
c19d1205
ZW
9764 inst.instruction = THUMB_OP16 (inst.instruction);
9765 inst.instruction |= inst.operands[0].reg;
b05fe5cf 9766
c19d1205
ZW
9767 if (inst.operands[0].reg == inst.operands[1].reg)
9768 inst.instruction |= inst.operands[2].reg << 3;
9769 else if (inst.operands[0].reg == inst.operands[2].reg)
9770 inst.instruction |= inst.operands[1].reg << 3;
9771 else
9772 constraint (1, _("dest must overlap one source register"));
9773 }
9774}
b05fe5cf 9775
c19d1205
ZW
9776static void
9777do_t_mull (void)
9778{
9779 inst.instruction |= inst.operands[0].reg << 12;
9780 inst.instruction |= inst.operands[1].reg << 8;
9781 inst.instruction |= inst.operands[2].reg << 16;
9782 inst.instruction |= inst.operands[3].reg;
b05fe5cf 9783
c19d1205
ZW
9784 if (inst.operands[0].reg == inst.operands[1].reg)
9785 as_tsktsk (_("rdhi and rdlo must be different"));
9786}
b05fe5cf 9787
c19d1205
ZW
9788static void
9789do_t_nop (void)
9790{
9791 if (unified_syntax)
9792 {
9793 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 9794 {
c19d1205
ZW
9795 inst.instruction = THUMB_OP32 (inst.instruction);
9796 inst.instruction |= inst.operands[0].imm;
9797 }
9798 else
9799 {
9800 inst.instruction = THUMB_OP16 (inst.instruction);
9801 inst.instruction |= inst.operands[0].imm << 4;
9802 }
9803 }
9804 else
9805 {
9806 constraint (inst.operands[0].present,
9807 _("Thumb does not support NOP with hints"));
9808 inst.instruction = 0x46c0;
9809 }
9810}
b05fe5cf 9811
c19d1205
ZW
9812static void
9813do_t_neg (void)
9814{
9815 if (unified_syntax)
9816 {
3d388997
PB
9817 bfd_boolean narrow;
9818
9819 if (THUMB_SETS_FLAGS (inst.instruction))
9820 narrow = (current_it_mask == 0);
9821 else
9822 narrow = (current_it_mask != 0);
9823 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9824 narrow = FALSE;
9825 if (inst.size_req == 4)
9826 narrow = FALSE;
9827
9828 if (!narrow)
c19d1205
ZW
9829 {
9830 inst.instruction = THUMB_OP32 (inst.instruction);
9831 inst.instruction |= inst.operands[0].reg << 8;
9832 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
9833 }
9834 else
9835 {
c19d1205
ZW
9836 inst.instruction = THUMB_OP16 (inst.instruction);
9837 inst.instruction |= inst.operands[0].reg;
9838 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
9839 }
9840 }
9841 else
9842 {
c19d1205
ZW
9843 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9844 BAD_HIREG);
9845 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9846
9847 inst.instruction = THUMB_OP16 (inst.instruction);
9848 inst.instruction |= inst.operands[0].reg;
9849 inst.instruction |= inst.operands[1].reg << 3;
9850 }
9851}
9852
9853static void
9854do_t_pkhbt (void)
9855{
9856 inst.instruction |= inst.operands[0].reg << 8;
9857 inst.instruction |= inst.operands[1].reg << 16;
9858 inst.instruction |= inst.operands[2].reg;
9859 if (inst.operands[3].present)
9860 {
9861 unsigned int val = inst.reloc.exp.X_add_number;
9862 constraint (inst.reloc.exp.X_op != O_constant,
9863 _("expression too complex"));
9864 inst.instruction |= (val & 0x1c) << 10;
9865 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 9866 }
c19d1205 9867}
b05fe5cf 9868
c19d1205
ZW
9869static void
9870do_t_pkhtb (void)
9871{
9872 if (!inst.operands[3].present)
9873 inst.instruction &= ~0x00000020;
9874 do_t_pkhbt ();
b05fe5cf
ZW
9875}
9876
c19d1205
ZW
9877static void
9878do_t_pld (void)
9879{
9880 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
9881}
b05fe5cf 9882
c19d1205
ZW
9883static void
9884do_t_push_pop (void)
b99bd4ef 9885{
e9f89963
PB
9886 unsigned mask;
9887
c19d1205
ZW
9888 constraint (inst.operands[0].writeback,
9889 _("push/pop do not support {reglist}^"));
9890 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9891 _("expression too complex"));
b99bd4ef 9892
e9f89963
PB
9893 mask = inst.operands[0].imm;
9894 if ((mask & ~0xff) == 0)
3c707909 9895 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
c19d1205 9896 else if ((inst.instruction == T_MNEM_push
e9f89963 9897 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 9898 || (inst.instruction == T_MNEM_pop
e9f89963 9899 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 9900 {
c19d1205
ZW
9901 inst.instruction = THUMB_OP16 (inst.instruction);
9902 inst.instruction |= THUMB_PP_PC_LR;
3c707909 9903 inst.instruction |= mask & 0xff;
c19d1205
ZW
9904 }
9905 else if (unified_syntax)
9906 {
3c707909
PB
9907 inst.instruction = THUMB_OP32 (inst.instruction);
9908 encode_thumb2_ldmstm(13, mask, TRUE);
c19d1205
ZW
9909 }
9910 else
9911 {
9912 inst.error = _("invalid register list to push/pop instruction");
9913 return;
9914 }
c19d1205 9915}
b99bd4ef 9916
c19d1205
ZW
9917static void
9918do_t_rbit (void)
9919{
9920 inst.instruction |= inst.operands[0].reg << 8;
9921 inst.instruction |= inst.operands[1].reg << 16;
9922}
b99bd4ef 9923
c19d1205
ZW
9924static void
9925do_t_rev (void)
9926{
9927 if (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
9928 && inst.size_req != 4)
9929 {
9930 inst.instruction = THUMB_OP16 (inst.instruction);
9931 inst.instruction |= inst.operands[0].reg;
9932 inst.instruction |= inst.operands[1].reg << 3;
9933 }
9934 else if (unified_syntax)
9935 {
9936 inst.instruction = THUMB_OP32 (inst.instruction);
9937 inst.instruction |= inst.operands[0].reg << 8;
9938 inst.instruction |= inst.operands[1].reg << 16;
9939 inst.instruction |= inst.operands[1].reg;
9940 }
9941 else
9942 inst.error = BAD_HIREG;
9943}
b99bd4ef 9944
c19d1205
ZW
9945static void
9946do_t_rsb (void)
9947{
9948 int Rd, Rs;
b99bd4ef 9949
c19d1205
ZW
9950 Rd = inst.operands[0].reg;
9951 Rs = (inst.operands[1].present
9952 ? inst.operands[1].reg /* Rd, Rs, foo */
9953 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 9954
c19d1205
ZW
9955 inst.instruction |= Rd << 8;
9956 inst.instruction |= Rs << 16;
9957 if (!inst.operands[2].isreg)
9958 {
9959 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9960 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9961 }
9962 else
9963 encode_thumb32_shifted_operand (2);
9964}
b99bd4ef 9965
c19d1205
ZW
9966static void
9967do_t_setend (void)
9968{
dfa9f0d5 9969 constraint (current_it_mask, BAD_NOT_IT);
c19d1205
ZW
9970 if (inst.operands[0].imm)
9971 inst.instruction |= 0x8;
9972}
b99bd4ef 9973
c19d1205
ZW
9974static void
9975do_t_shift (void)
9976{
9977 if (!inst.operands[1].present)
9978 inst.operands[1].reg = inst.operands[0].reg;
9979
9980 if (unified_syntax)
9981 {
3d388997
PB
9982 bfd_boolean narrow;
9983 int shift_kind;
9984
9985 switch (inst.instruction)
9986 {
9987 case T_MNEM_asr:
9988 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
9989 case T_MNEM_lsl:
9990 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
9991 case T_MNEM_lsr:
9992 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
9993 case T_MNEM_ror:
9994 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
9995 default: abort ();
9996 }
9997
9998 if (THUMB_SETS_FLAGS (inst.instruction))
9999 narrow = (current_it_mask == 0);
10000 else
10001 narrow = (current_it_mask != 0);
10002 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10003 narrow = FALSE;
10004 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
10005 narrow = FALSE;
10006 if (inst.operands[2].isreg
10007 && (inst.operands[1].reg != inst.operands[0].reg
10008 || inst.operands[2].reg > 7))
10009 narrow = FALSE;
10010 if (inst.size_req == 4)
10011 narrow = FALSE;
10012
10013 if (!narrow)
c19d1205
ZW
10014 {
10015 if (inst.operands[2].isreg)
b99bd4ef 10016 {
c19d1205
ZW
10017 inst.instruction = THUMB_OP32 (inst.instruction);
10018 inst.instruction |= inst.operands[0].reg << 8;
10019 inst.instruction |= inst.operands[1].reg << 16;
10020 inst.instruction |= inst.operands[2].reg;
10021 }
10022 else
10023 {
10024 inst.operands[1].shifted = 1;
3d388997 10025 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
10026 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
10027 ? T_MNEM_movs : T_MNEM_mov);
10028 inst.instruction |= inst.operands[0].reg << 8;
10029 encode_thumb32_shifted_operand (1);
10030 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
10031 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
10032 }
10033 }
10034 else
10035 {
c19d1205 10036 if (inst.operands[2].isreg)
b99bd4ef 10037 {
3d388997 10038 switch (shift_kind)
b99bd4ef 10039 {
3d388997
PB
10040 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
10041 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
10042 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
10043 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 10044 default: abort ();
b99bd4ef 10045 }
c19d1205
ZW
10046
10047 inst.instruction |= inst.operands[0].reg;
10048 inst.instruction |= inst.operands[2].reg << 3;
b99bd4ef
NC
10049 }
10050 else
10051 {
3d388997 10052 switch (shift_kind)
b99bd4ef 10053 {
3d388997
PB
10054 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10055 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10056 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 10057 default: abort ();
b99bd4ef 10058 }
c19d1205
ZW
10059 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10060 inst.instruction |= inst.operands[0].reg;
10061 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
10062 }
10063 }
c19d1205
ZW
10064 }
10065 else
10066 {
10067 constraint (inst.operands[0].reg > 7
10068 || inst.operands[1].reg > 7, BAD_HIREG);
10069 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 10070
c19d1205
ZW
10071 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
10072 {
10073 constraint (inst.operands[2].reg > 7, BAD_HIREG);
10074 constraint (inst.operands[0].reg != inst.operands[1].reg,
10075 _("source1 and dest must be same register"));
b99bd4ef 10076
c19d1205
ZW
10077 switch (inst.instruction)
10078 {
10079 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
10080 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
10081 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
10082 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
10083 default: abort ();
10084 }
10085
10086 inst.instruction |= inst.operands[0].reg;
10087 inst.instruction |= inst.operands[2].reg << 3;
10088 }
10089 else
b99bd4ef 10090 {
c19d1205
ZW
10091 switch (inst.instruction)
10092 {
10093 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
10094 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
10095 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
10096 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
10097 default: abort ();
10098 }
10099 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10100 inst.instruction |= inst.operands[0].reg;
10101 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
10102 }
10103 }
b99bd4ef
NC
10104}
10105
10106static void
c19d1205 10107do_t_simd (void)
b99bd4ef 10108{
c19d1205
ZW
10109 inst.instruction |= inst.operands[0].reg << 8;
10110 inst.instruction |= inst.operands[1].reg << 16;
10111 inst.instruction |= inst.operands[2].reg;
10112}
b99bd4ef 10113
c19d1205 10114static void
3eb17e6b 10115do_t_smc (void)
c19d1205
ZW
10116{
10117 unsigned int value = inst.reloc.exp.X_add_number;
10118 constraint (inst.reloc.exp.X_op != O_constant,
10119 _("expression too complex"));
10120 inst.reloc.type = BFD_RELOC_UNUSED;
10121 inst.instruction |= (value & 0xf000) >> 12;
10122 inst.instruction |= (value & 0x0ff0);
10123 inst.instruction |= (value & 0x000f) << 16;
10124}
b99bd4ef 10125
c19d1205
ZW
10126static void
10127do_t_ssat (void)
10128{
10129 inst.instruction |= inst.operands[0].reg << 8;
10130 inst.instruction |= inst.operands[1].imm - 1;
10131 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 10132
c19d1205 10133 if (inst.operands[3].present)
b99bd4ef 10134 {
c19d1205
ZW
10135 constraint (inst.reloc.exp.X_op != O_constant,
10136 _("expression too complex"));
b99bd4ef 10137
c19d1205 10138 if (inst.reloc.exp.X_add_number != 0)
6189168b 10139 {
c19d1205
ZW
10140 if (inst.operands[3].shift_kind == SHIFT_ASR)
10141 inst.instruction |= 0x00200000; /* sh bit */
10142 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10143 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
6189168b 10144 }
c19d1205 10145 inst.reloc.type = BFD_RELOC_UNUSED;
6189168b 10146 }
b99bd4ef
NC
10147}
10148
0dd132b6 10149static void
c19d1205 10150do_t_ssat16 (void)
0dd132b6 10151{
c19d1205
ZW
10152 inst.instruction |= inst.operands[0].reg << 8;
10153 inst.instruction |= inst.operands[1].imm - 1;
10154 inst.instruction |= inst.operands[2].reg << 16;
10155}
0dd132b6 10156
c19d1205
ZW
10157static void
10158do_t_strex (void)
10159{
10160 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10161 || inst.operands[2].postind || inst.operands[2].writeback
10162 || inst.operands[2].immisreg || inst.operands[2].shifted
10163 || inst.operands[2].negative,
01cfc07f 10164 BAD_ADDR_MODE);
0dd132b6 10165
c19d1205
ZW
10166 inst.instruction |= inst.operands[0].reg << 8;
10167 inst.instruction |= inst.operands[1].reg << 12;
10168 inst.instruction |= inst.operands[2].reg << 16;
10169 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
10170}
10171
b99bd4ef 10172static void
c19d1205 10173do_t_strexd (void)
b99bd4ef 10174{
c19d1205
ZW
10175 if (!inst.operands[2].present)
10176 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 10177
c19d1205
ZW
10178 constraint (inst.operands[0].reg == inst.operands[1].reg
10179 || inst.operands[0].reg == inst.operands[2].reg
10180 || inst.operands[0].reg == inst.operands[3].reg
10181 || inst.operands[1].reg == inst.operands[2].reg,
10182 BAD_OVERLAP);
b99bd4ef 10183
c19d1205
ZW
10184 inst.instruction |= inst.operands[0].reg;
10185 inst.instruction |= inst.operands[1].reg << 12;
10186 inst.instruction |= inst.operands[2].reg << 8;
10187 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
10188}
10189
10190static void
c19d1205 10191do_t_sxtah (void)
b99bd4ef 10192{
c19d1205
ZW
10193 inst.instruction |= inst.operands[0].reg << 8;
10194 inst.instruction |= inst.operands[1].reg << 16;
10195 inst.instruction |= inst.operands[2].reg;
10196 inst.instruction |= inst.operands[3].imm << 4;
10197}
b99bd4ef 10198
c19d1205
ZW
10199static void
10200do_t_sxth (void)
10201{
10202 if (inst.instruction <= 0xffff && inst.size_req != 4
10203 && inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
10204 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 10205 {
c19d1205
ZW
10206 inst.instruction = THUMB_OP16 (inst.instruction);
10207 inst.instruction |= inst.operands[0].reg;
10208 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 10209 }
c19d1205 10210 else if (unified_syntax)
b99bd4ef 10211 {
c19d1205
ZW
10212 if (inst.instruction <= 0xffff)
10213 inst.instruction = THUMB_OP32 (inst.instruction);
10214 inst.instruction |= inst.operands[0].reg << 8;
10215 inst.instruction |= inst.operands[1].reg;
10216 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 10217 }
c19d1205 10218 else
b99bd4ef 10219 {
c19d1205
ZW
10220 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
10221 _("Thumb encoding does not support rotation"));
10222 constraint (1, BAD_HIREG);
b99bd4ef 10223 }
c19d1205 10224}
b99bd4ef 10225
c19d1205
ZW
10226static void
10227do_t_swi (void)
10228{
10229 inst.reloc.type = BFD_RELOC_ARM_SWI;
10230}
b99bd4ef 10231
92e90b6e
PB
10232static void
10233do_t_tb (void)
10234{
10235 int half;
10236
10237 half = (inst.instruction & 0x10) != 0;
dfa9f0d5
PB
10238 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
10239 constraint (inst.operands[0].immisreg,
10240 _("instruction requires register index"));
92e90b6e
PB
10241 constraint (inst.operands[0].imm == 15,
10242 _("PC is not a valid index register"));
10243 constraint (!half && inst.operands[0].shifted,
10244 _("instruction does not allow shifted index"));
92e90b6e
PB
10245 inst.instruction |= (inst.operands[0].reg << 16) | inst.operands[0].imm;
10246}
10247
c19d1205
ZW
10248static void
10249do_t_usat (void)
10250{
10251 inst.instruction |= inst.operands[0].reg << 8;
10252 inst.instruction |= inst.operands[1].imm;
10253 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 10254
c19d1205 10255 if (inst.operands[3].present)
b99bd4ef 10256 {
c19d1205
ZW
10257 constraint (inst.reloc.exp.X_op != O_constant,
10258 _("expression too complex"));
10259 if (inst.reloc.exp.X_add_number != 0)
10260 {
10261 if (inst.operands[3].shift_kind == SHIFT_ASR)
10262 inst.instruction |= 0x00200000; /* sh bit */
b99bd4ef 10263
c19d1205
ZW
10264 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10265 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
10266 }
10267 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 10268 }
b99bd4ef
NC
10269}
10270
10271static void
c19d1205 10272do_t_usat16 (void)
b99bd4ef 10273{
c19d1205
ZW
10274 inst.instruction |= inst.operands[0].reg << 8;
10275 inst.instruction |= inst.operands[1].imm;
10276 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 10277}
c19d1205 10278
5287ad62
JB
10279/* Neon instruction encoder helpers. */
10280
10281/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 10282
5287ad62
JB
10283/* An "invalid" code for the following tables. */
10284#define N_INV -1u
10285
10286struct neon_tab_entry
b99bd4ef 10287{
5287ad62
JB
10288 unsigned integer;
10289 unsigned float_or_poly;
10290 unsigned scalar_or_imm;
10291};
10292
10293/* Map overloaded Neon opcodes to their respective encodings. */
10294#define NEON_ENC_TAB \
10295 X(vabd, 0x0000700, 0x1200d00, N_INV), \
10296 X(vmax, 0x0000600, 0x0000f00, N_INV), \
10297 X(vmin, 0x0000610, 0x0200f00, N_INV), \
10298 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
10299 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
10300 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
10301 X(vadd, 0x0000800, 0x0000d00, N_INV), \
10302 X(vsub, 0x1000800, 0x0200d00, N_INV), \
10303 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
10304 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
10305 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
10306 /* Register variants of the following two instructions are encoded as
10307 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
10308 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
10309 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
5287ad62
JB
10310 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
10311 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
10312 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
10313 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
10314 X(vmlal, 0x0800800, N_INV, 0x0800240), \
10315 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
10316 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
10317 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
10318 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
10319 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
10320 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
10321 X(vshl, 0x0000400, N_INV, 0x0800510), \
10322 X(vqshl, 0x0000410, N_INV, 0x0800710), \
10323 X(vand, 0x0000110, N_INV, 0x0800030), \
10324 X(vbic, 0x0100110, N_INV, 0x0800030), \
10325 X(veor, 0x1000110, N_INV, N_INV), \
10326 X(vorn, 0x0300110, N_INV, 0x0800010), \
10327 X(vorr, 0x0200110, N_INV, 0x0800010), \
10328 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
10329 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
10330 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
10331 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
10332 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
10333 X(vst1, 0x0000000, 0x0800000, N_INV), \
10334 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
10335 X(vst2, 0x0000100, 0x0800100, N_INV), \
10336 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
10337 X(vst3, 0x0000200, 0x0800200, N_INV), \
10338 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
10339 X(vst4, 0x0000300, 0x0800300, N_INV), \
10340 X(vmovn, 0x1b20200, N_INV, N_INV), \
10341 X(vtrn, 0x1b20080, N_INV, N_INV), \
10342 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
10343 X(vqmovun, 0x1b20240, N_INV, N_INV), \
10344 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
10345 X(vnmla, 0xe000a40, 0xe000b40, N_INV), \
10346 X(vnmls, 0xe100a40, 0xe100b40, N_INV), \
10347 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
10348 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
10349 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
10350 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
5287ad62
JB
10351
10352enum neon_opc
10353{
10354#define X(OPC,I,F,S) N_MNEM_##OPC
10355NEON_ENC_TAB
10356#undef X
10357};
b99bd4ef 10358
5287ad62
JB
10359static const struct neon_tab_entry neon_enc_tab[] =
10360{
10361#define X(OPC,I,F,S) { (I), (F), (S) }
10362NEON_ENC_TAB
10363#undef X
10364};
b99bd4ef 10365
5287ad62
JB
10366#define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10367#define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10368#define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10369#define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10370#define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10371#define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10372#define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10373#define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10374#define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
037e8744
JB
10375#define NEON_ENC_SINGLE(X) \
10376 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
10377#define NEON_ENC_DOUBLE(X) \
10378 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
5287ad62 10379
037e8744
JB
10380/* Define shapes for instruction operands. The following mnemonic characters
10381 are used in this table:
5287ad62 10382
037e8744 10383 F - VFP S<n> register
5287ad62
JB
10384 D - Neon D<n> register
10385 Q - Neon Q<n> register
10386 I - Immediate
10387 S - Scalar
10388 R - ARM register
10389 L - D<n> register list
037e8744
JB
10390
10391 This table is used to generate various data:
10392 - enumerations of the form NS_DDR to be used as arguments to
10393 neon_select_shape.
10394 - a table classifying shapes into single, double, quad, mixed.
10395 - a table used to drive neon_select_shape.
5287ad62 10396*/
b99bd4ef 10397
037e8744
JB
10398#define NEON_SHAPE_DEF \
10399 X(3, (D, D, D), DOUBLE), \
10400 X(3, (Q, Q, Q), QUAD), \
10401 X(3, (D, D, I), DOUBLE), \
10402 X(3, (Q, Q, I), QUAD), \
10403 X(3, (D, D, S), DOUBLE), \
10404 X(3, (Q, Q, S), QUAD), \
10405 X(2, (D, D), DOUBLE), \
10406 X(2, (Q, Q), QUAD), \
10407 X(2, (D, S), DOUBLE), \
10408 X(2, (Q, S), QUAD), \
10409 X(2, (D, R), DOUBLE), \
10410 X(2, (Q, R), QUAD), \
10411 X(2, (D, I), DOUBLE), \
10412 X(2, (Q, I), QUAD), \
10413 X(3, (D, L, D), DOUBLE), \
10414 X(2, (D, Q), MIXED), \
10415 X(2, (Q, D), MIXED), \
10416 X(3, (D, Q, I), MIXED), \
10417 X(3, (Q, D, I), MIXED), \
10418 X(3, (Q, D, D), MIXED), \
10419 X(3, (D, Q, Q), MIXED), \
10420 X(3, (Q, Q, D), MIXED), \
10421 X(3, (Q, D, S), MIXED), \
10422 X(3, (D, Q, S), MIXED), \
10423 X(4, (D, D, D, I), DOUBLE), \
10424 X(4, (Q, Q, Q, I), QUAD), \
10425 X(2, (F, F), SINGLE), \
10426 X(3, (F, F, F), SINGLE), \
10427 X(2, (F, I), SINGLE), \
10428 X(2, (F, D), MIXED), \
10429 X(2, (D, F), MIXED), \
10430 X(3, (F, F, I), MIXED), \
10431 X(4, (R, R, F, F), SINGLE), \
10432 X(4, (F, F, R, R), SINGLE), \
10433 X(3, (D, R, R), DOUBLE), \
10434 X(3, (R, R, D), DOUBLE), \
10435 X(2, (S, R), SINGLE), \
10436 X(2, (R, S), SINGLE), \
10437 X(2, (F, R), SINGLE), \
10438 X(2, (R, F), SINGLE)
10439
10440#define S2(A,B) NS_##A##B
10441#define S3(A,B,C) NS_##A##B##C
10442#define S4(A,B,C,D) NS_##A##B##C##D
10443
10444#define X(N, L, C) S##N L
10445
5287ad62
JB
10446enum neon_shape
10447{
037e8744
JB
10448 NEON_SHAPE_DEF,
10449 NS_NULL
5287ad62 10450};
b99bd4ef 10451
037e8744
JB
10452#undef X
10453#undef S2
10454#undef S3
10455#undef S4
10456
10457enum neon_shape_class
10458{
10459 SC_SINGLE,
10460 SC_DOUBLE,
10461 SC_QUAD,
10462 SC_MIXED
10463};
10464
10465#define X(N, L, C) SC_##C
10466
10467static enum neon_shape_class neon_shape_class[] =
10468{
10469 NEON_SHAPE_DEF
10470};
10471
10472#undef X
10473
10474enum neon_shape_el
10475{
10476 SE_F,
10477 SE_D,
10478 SE_Q,
10479 SE_I,
10480 SE_S,
10481 SE_R,
10482 SE_L
10483};
10484
10485/* Register widths of above. */
10486static unsigned neon_shape_el_size[] =
10487{
10488 32,
10489 64,
10490 128,
10491 0,
10492 32,
10493 32,
10494 0
10495};
10496
10497struct neon_shape_info
10498{
10499 unsigned els;
10500 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
10501};
10502
10503#define S2(A,B) { SE_##A, SE_##B }
10504#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
10505#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
10506
10507#define X(N, L, C) { N, S##N L }
10508
10509static struct neon_shape_info neon_shape_tab[] =
10510{
10511 NEON_SHAPE_DEF
10512};
10513
10514#undef X
10515#undef S2
10516#undef S3
10517#undef S4
10518
5287ad62
JB
10519/* Bit masks used in type checking given instructions.
10520 'N_EQK' means the type must be the same as (or based on in some way) the key
10521 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
10522 set, various other bits can be set as well in order to modify the meaning of
10523 the type constraint. */
10524
10525enum neon_type_mask
10526{
10527 N_S8 = 0x000001,
10528 N_S16 = 0x000002,
10529 N_S32 = 0x000004,
10530 N_S64 = 0x000008,
10531 N_U8 = 0x000010,
10532 N_U16 = 0x000020,
10533 N_U32 = 0x000040,
10534 N_U64 = 0x000080,
10535 N_I8 = 0x000100,
10536 N_I16 = 0x000200,
10537 N_I32 = 0x000400,
10538 N_I64 = 0x000800,
10539 N_8 = 0x001000,
10540 N_16 = 0x002000,
10541 N_32 = 0x004000,
10542 N_64 = 0x008000,
10543 N_P8 = 0x010000,
10544 N_P16 = 0x020000,
10545 N_F32 = 0x040000,
037e8744
JB
10546 N_F64 = 0x080000,
10547 N_KEY = 0x100000, /* key element (main type specifier). */
10548 N_EQK = 0x200000, /* given operand has the same type & size as the key. */
10549 N_VFP = 0x400000, /* VFP mode: operand size must match register width. */
5287ad62
JB
10550 N_DBL = 0x000001, /* if N_EQK, this operand is twice the size. */
10551 N_HLF = 0x000002, /* if N_EQK, this operand is half the size. */
10552 N_SGN = 0x000004, /* if N_EQK, this operand is forced to be signed. */
10553 N_UNS = 0x000008, /* if N_EQK, this operand is forced to be unsigned. */
10554 N_INT = 0x000010, /* if N_EQK, this operand is forced to be integer. */
10555 N_FLT = 0x000020, /* if N_EQK, this operand is forced to be float. */
dcbf9037 10556 N_SIZ = 0x000040, /* if N_EQK, this operand is forced to be size-only. */
5287ad62 10557 N_UTYP = 0,
037e8744 10558 N_MAX_NONSPECIAL = N_F64
5287ad62
JB
10559};
10560
dcbf9037
JB
10561#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
10562
5287ad62
JB
10563#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
10564#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
10565#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
10566#define N_SUF_32 (N_SU_32 | N_F32)
10567#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
10568#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
10569
10570/* Pass this as the first type argument to neon_check_type to ignore types
10571 altogether. */
10572#define N_IGNORE_TYPE (N_KEY | N_EQK)
10573
037e8744
JB
10574/* Select a "shape" for the current instruction (describing register types or
10575 sizes) from a list of alternatives. Return NS_NULL if the current instruction
10576 doesn't fit. For non-polymorphic shapes, checking is usually done as a
10577 function of operand parsing, so this function doesn't need to be called.
10578 Shapes should be listed in order of decreasing length. */
5287ad62
JB
10579
10580static enum neon_shape
037e8744 10581neon_select_shape (enum neon_shape shape, ...)
5287ad62 10582{
037e8744
JB
10583 va_list ap;
10584 enum neon_shape first_shape = shape;
5287ad62
JB
10585
10586 /* Fix missing optional operands. FIXME: we don't know at this point how
10587 many arguments we should have, so this makes the assumption that we have
10588 > 1. This is true of all current Neon opcodes, I think, but may not be
10589 true in the future. */
10590 if (!inst.operands[1].present)
10591 inst.operands[1] = inst.operands[0];
10592
037e8744 10593 va_start (ap, shape);
5287ad62 10594
037e8744
JB
10595 for (; shape != NS_NULL; shape = va_arg (ap, int))
10596 {
10597 unsigned j;
10598 int matches = 1;
10599
10600 for (j = 0; j < neon_shape_tab[shape].els; j++)
10601 {
10602 if (!inst.operands[j].present)
10603 {
10604 matches = 0;
10605 break;
10606 }
10607
10608 switch (neon_shape_tab[shape].el[j])
10609 {
10610 case SE_F:
10611 if (!(inst.operands[j].isreg
10612 && inst.operands[j].isvec
10613 && inst.operands[j].issingle
10614 && !inst.operands[j].isquad))
10615 matches = 0;
10616 break;
10617
10618 case SE_D:
10619 if (!(inst.operands[j].isreg
10620 && inst.operands[j].isvec
10621 && !inst.operands[j].isquad
10622 && !inst.operands[j].issingle))
10623 matches = 0;
10624 break;
10625
10626 case SE_R:
10627 if (!(inst.operands[j].isreg
10628 && !inst.operands[j].isvec))
10629 matches = 0;
10630 break;
10631
10632 case SE_Q:
10633 if (!(inst.operands[j].isreg
10634 && inst.operands[j].isvec
10635 && inst.operands[j].isquad
10636 && !inst.operands[j].issingle))
10637 matches = 0;
10638 break;
10639
10640 case SE_I:
10641 if (!(!inst.operands[j].isreg
10642 && !inst.operands[j].isscalar))
10643 matches = 0;
10644 break;
10645
10646 case SE_S:
10647 if (!(!inst.operands[j].isreg
10648 && inst.operands[j].isscalar))
10649 matches = 0;
10650 break;
10651
10652 case SE_L:
10653 break;
10654 }
10655 }
10656 if (matches)
5287ad62 10657 break;
037e8744 10658 }
5287ad62 10659
037e8744 10660 va_end (ap);
5287ad62 10661
037e8744
JB
10662 if (shape == NS_NULL && first_shape != NS_NULL)
10663 first_error (_("invalid instruction shape"));
5287ad62 10664
037e8744
JB
10665 return shape;
10666}
5287ad62 10667
037e8744
JB
10668/* True if SHAPE is predominantly a quadword operation (most of the time, this
10669 means the Q bit should be set). */
10670
10671static int
10672neon_quad (enum neon_shape shape)
10673{
10674 return neon_shape_class[shape] == SC_QUAD;
5287ad62 10675}
037e8744 10676
5287ad62
JB
10677static void
10678neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
10679 unsigned *g_size)
10680{
10681 /* Allow modification to be made to types which are constrained to be
10682 based on the key element, based on bits set alongside N_EQK. */
10683 if ((typebits & N_EQK) != 0)
10684 {
10685 if ((typebits & N_HLF) != 0)
10686 *g_size /= 2;
10687 else if ((typebits & N_DBL) != 0)
10688 *g_size *= 2;
10689 if ((typebits & N_SGN) != 0)
10690 *g_type = NT_signed;
10691 else if ((typebits & N_UNS) != 0)
10692 *g_type = NT_unsigned;
10693 else if ((typebits & N_INT) != 0)
10694 *g_type = NT_integer;
10695 else if ((typebits & N_FLT) != 0)
10696 *g_type = NT_float;
dcbf9037
JB
10697 else if ((typebits & N_SIZ) != 0)
10698 *g_type = NT_untyped;
5287ad62
JB
10699 }
10700}
10701
10702/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
10703 operand type, i.e. the single type specified in a Neon instruction when it
10704 is the only one given. */
10705
10706static struct neon_type_el
10707neon_type_promote (struct neon_type_el *key, unsigned thisarg)
10708{
10709 struct neon_type_el dest = *key;
10710
10711 assert ((thisarg & N_EQK) != 0);
10712
10713 neon_modify_type_size (thisarg, &dest.type, &dest.size);
10714
10715 return dest;
10716}
10717
10718/* Convert Neon type and size into compact bitmask representation. */
10719
10720static enum neon_type_mask
10721type_chk_of_el_type (enum neon_el_type type, unsigned size)
10722{
10723 switch (type)
10724 {
10725 case NT_untyped:
10726 switch (size)
10727 {
10728 case 8: return N_8;
10729 case 16: return N_16;
10730 case 32: return N_32;
10731 case 64: return N_64;
10732 default: ;
10733 }
10734 break;
10735
10736 case NT_integer:
10737 switch (size)
10738 {
10739 case 8: return N_I8;
10740 case 16: return N_I16;
10741 case 32: return N_I32;
10742 case 64: return N_I64;
10743 default: ;
10744 }
10745 break;
10746
10747 case NT_float:
037e8744
JB
10748 switch (size)
10749 {
10750 case 32: return N_F32;
10751 case 64: return N_F64;
10752 default: ;
10753 }
5287ad62
JB
10754 break;
10755
10756 case NT_poly:
10757 switch (size)
10758 {
10759 case 8: return N_P8;
10760 case 16: return N_P16;
10761 default: ;
10762 }
10763 break;
10764
10765 case NT_signed:
10766 switch (size)
10767 {
10768 case 8: return N_S8;
10769 case 16: return N_S16;
10770 case 32: return N_S32;
10771 case 64: return N_S64;
10772 default: ;
10773 }
10774 break;
10775
10776 case NT_unsigned:
10777 switch (size)
10778 {
10779 case 8: return N_U8;
10780 case 16: return N_U16;
10781 case 32: return N_U32;
10782 case 64: return N_U64;
10783 default: ;
10784 }
10785 break;
10786
10787 default: ;
10788 }
10789
10790 return N_UTYP;
10791}
10792
10793/* Convert compact Neon bitmask type representation to a type and size. Only
10794 handles the case where a single bit is set in the mask. */
10795
dcbf9037 10796static int
5287ad62
JB
10797el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
10798 enum neon_type_mask mask)
10799{
dcbf9037
JB
10800 if ((mask & N_EQK) != 0)
10801 return FAIL;
10802
5287ad62
JB
10803 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
10804 *size = 8;
dcbf9037 10805 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
5287ad62 10806 *size = 16;
dcbf9037 10807 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 10808 *size = 32;
037e8744 10809 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
5287ad62 10810 *size = 64;
dcbf9037
JB
10811 else
10812 return FAIL;
10813
5287ad62
JB
10814 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
10815 *type = NT_signed;
dcbf9037 10816 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 10817 *type = NT_unsigned;
dcbf9037 10818 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 10819 *type = NT_integer;
dcbf9037 10820 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 10821 *type = NT_untyped;
dcbf9037 10822 else if ((mask & (N_P8 | N_P16)) != 0)
5287ad62 10823 *type = NT_poly;
037e8744 10824 else if ((mask & (N_F32 | N_F64)) != 0)
5287ad62 10825 *type = NT_float;
dcbf9037
JB
10826 else
10827 return FAIL;
10828
10829 return SUCCESS;
5287ad62
JB
10830}
10831
10832/* Modify a bitmask of allowed types. This is only needed for type
10833 relaxation. */
10834
10835static unsigned
10836modify_types_allowed (unsigned allowed, unsigned mods)
10837{
10838 unsigned size;
10839 enum neon_el_type type;
10840 unsigned destmask;
10841 int i;
10842
10843 destmask = 0;
10844
10845 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
10846 {
dcbf9037
JB
10847 if (el_type_of_type_chk (&type, &size, allowed & i) == SUCCESS)
10848 {
10849 neon_modify_type_size (mods, &type, &size);
10850 destmask |= type_chk_of_el_type (type, size);
10851 }
5287ad62
JB
10852 }
10853
10854 return destmask;
10855}
10856
10857/* Check type and return type classification.
10858 The manual states (paraphrase): If one datatype is given, it indicates the
10859 type given in:
10860 - the second operand, if there is one
10861 - the operand, if there is no second operand
10862 - the result, if there are no operands.
10863 This isn't quite good enough though, so we use a concept of a "key" datatype
10864 which is set on a per-instruction basis, which is the one which matters when
10865 only one data type is written.
10866 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 10867 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
10868
10869static struct neon_type_el
10870neon_check_type (unsigned els, enum neon_shape ns, ...)
10871{
10872 va_list ap;
10873 unsigned i, pass, key_el = 0;
10874 unsigned types[NEON_MAX_TYPE_ELS];
10875 enum neon_el_type k_type = NT_invtype;
10876 unsigned k_size = -1u;
10877 struct neon_type_el badtype = {NT_invtype, -1};
10878 unsigned key_allowed = 0;
10879
10880 /* Optional registers in Neon instructions are always (not) in operand 1.
10881 Fill in the missing operand here, if it was omitted. */
10882 if (els > 1 && !inst.operands[1].present)
10883 inst.operands[1] = inst.operands[0];
10884
10885 /* Suck up all the varargs. */
10886 va_start (ap, ns);
10887 for (i = 0; i < els; i++)
10888 {
10889 unsigned thisarg = va_arg (ap, unsigned);
10890 if (thisarg == N_IGNORE_TYPE)
10891 {
10892 va_end (ap);
10893 return badtype;
10894 }
10895 types[i] = thisarg;
10896 if ((thisarg & N_KEY) != 0)
10897 key_el = i;
10898 }
10899 va_end (ap);
10900
dcbf9037
JB
10901 if (inst.vectype.elems > 0)
10902 for (i = 0; i < els; i++)
10903 if (inst.operands[i].vectype.type != NT_invtype)
10904 {
10905 first_error (_("types specified in both the mnemonic and operands"));
10906 return badtype;
10907 }
10908
5287ad62
JB
10909 /* Duplicate inst.vectype elements here as necessary.
10910 FIXME: No idea if this is exactly the same as the ARM assembler,
10911 particularly when an insn takes one register and one non-register
10912 operand. */
10913 if (inst.vectype.elems == 1 && els > 1)
10914 {
10915 unsigned j;
10916 inst.vectype.elems = els;
10917 inst.vectype.el[key_el] = inst.vectype.el[0];
10918 for (j = 0; j < els; j++)
dcbf9037
JB
10919 if (j != key_el)
10920 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
10921 types[j]);
10922 }
10923 else if (inst.vectype.elems == 0 && els > 0)
10924 {
10925 unsigned j;
10926 /* No types were given after the mnemonic, so look for types specified
10927 after each operand. We allow some flexibility here; as long as the
10928 "key" operand has a type, we can infer the others. */
10929 for (j = 0; j < els; j++)
10930 if (inst.operands[j].vectype.type != NT_invtype)
10931 inst.vectype.el[j] = inst.operands[j].vectype;
10932
10933 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 10934 {
dcbf9037
JB
10935 for (j = 0; j < els; j++)
10936 if (inst.operands[j].vectype.type == NT_invtype)
10937 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
10938 types[j]);
10939 }
10940 else
10941 {
10942 first_error (_("operand types can't be inferred"));
10943 return badtype;
5287ad62
JB
10944 }
10945 }
10946 else if (inst.vectype.elems != els)
10947 {
dcbf9037 10948 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
10949 return badtype;
10950 }
10951
10952 for (pass = 0; pass < 2; pass++)
10953 {
10954 for (i = 0; i < els; i++)
10955 {
10956 unsigned thisarg = types[i];
10957 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
10958 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
10959 enum neon_el_type g_type = inst.vectype.el[i].type;
10960 unsigned g_size = inst.vectype.el[i].size;
10961
10962 /* Decay more-specific signed & unsigned types to sign-insensitive
10963 integer types if sign-specific variants are unavailable. */
10964 if ((g_type == NT_signed || g_type == NT_unsigned)
10965 && (types_allowed & N_SU_ALL) == 0)
10966 g_type = NT_integer;
10967
10968 /* If only untyped args are allowed, decay any more specific types to
10969 them. Some instructions only care about signs for some element
10970 sizes, so handle that properly. */
10971 if ((g_size == 8 && (types_allowed & N_8) != 0)
10972 || (g_size == 16 && (types_allowed & N_16) != 0)
10973 || (g_size == 32 && (types_allowed & N_32) != 0)
10974 || (g_size == 64 && (types_allowed & N_64) != 0))
10975 g_type = NT_untyped;
10976
10977 if (pass == 0)
10978 {
10979 if ((thisarg & N_KEY) != 0)
10980 {
10981 k_type = g_type;
10982 k_size = g_size;
10983 key_allowed = thisarg & ~N_KEY;
10984 }
10985 }
10986 else
10987 {
037e8744
JB
10988 if ((thisarg & N_VFP) != 0)
10989 {
10990 enum neon_shape_el regshape = neon_shape_tab[ns].el[i];
10991 unsigned regwidth = neon_shape_el_size[regshape], match;
10992
10993 /* In VFP mode, operands must match register widths. If we
10994 have a key operand, use its width, else use the width of
10995 the current operand. */
10996 if (k_size != -1u)
10997 match = k_size;
10998 else
10999 match = g_size;
11000
11001 if (regwidth != match)
11002 {
11003 first_error (_("operand size must match register width"));
11004 return badtype;
11005 }
11006 }
11007
5287ad62
JB
11008 if ((thisarg & N_EQK) == 0)
11009 {
11010 unsigned given_type = type_chk_of_el_type (g_type, g_size);
11011
11012 if ((given_type & types_allowed) == 0)
11013 {
dcbf9037 11014 first_error (_("bad type in Neon instruction"));
5287ad62
JB
11015 return badtype;
11016 }
11017 }
11018 else
11019 {
11020 enum neon_el_type mod_k_type = k_type;
11021 unsigned mod_k_size = k_size;
11022 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
11023 if (g_type != mod_k_type || g_size != mod_k_size)
11024 {
dcbf9037 11025 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
11026 return badtype;
11027 }
11028 }
11029 }
11030 }
11031 }
11032
11033 return inst.vectype.el[key_el];
11034}
11035
037e8744 11036/* Neon-style VFP instruction forwarding. */
5287ad62 11037
037e8744
JB
11038/* Thumb VFP instructions have 0xE in the condition field. */
11039
11040static void
11041do_vfp_cond_or_thumb (void)
5287ad62
JB
11042{
11043 if (thumb_mode)
037e8744 11044 inst.instruction |= 0xe0000000;
5287ad62 11045 else
037e8744 11046 inst.instruction |= inst.cond << 28;
5287ad62
JB
11047}
11048
037e8744
JB
11049/* Look up and encode a simple mnemonic, for use as a helper function for the
11050 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
11051 etc. It is assumed that operand parsing has already been done, and that the
11052 operands are in the form expected by the given opcode (this isn't necessarily
11053 the same as the form in which they were parsed, hence some massaging must
11054 take place before this function is called).
11055 Checks current arch version against that in the looked-up opcode. */
5287ad62 11056
037e8744
JB
11057static void
11058do_vfp_nsyn_opcode (const char *opname)
5287ad62 11059{
037e8744
JB
11060 const struct asm_opcode *opcode;
11061
11062 opcode = hash_find (arm_ops_hsh, opname);
5287ad62 11063
037e8744
JB
11064 if (!opcode)
11065 abort ();
5287ad62 11066
037e8744
JB
11067 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
11068 thumb_mode ? *opcode->tvariant : *opcode->avariant),
11069 _(BAD_FPU));
5287ad62 11070
037e8744
JB
11071 if (thumb_mode)
11072 {
11073 inst.instruction = opcode->tvalue;
11074 opcode->tencode ();
11075 }
11076 else
11077 {
11078 inst.instruction = (inst.cond << 28) | opcode->avalue;
11079 opcode->aencode ();
11080 }
11081}
5287ad62
JB
11082
11083static void
037e8744 11084do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 11085{
037e8744
JB
11086 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
11087
11088 if (rs == NS_FFF)
11089 {
11090 if (is_add)
11091 do_vfp_nsyn_opcode ("fadds");
11092 else
11093 do_vfp_nsyn_opcode ("fsubs");
11094 }
11095 else
11096 {
11097 if (is_add)
11098 do_vfp_nsyn_opcode ("faddd");
11099 else
11100 do_vfp_nsyn_opcode ("fsubd");
11101 }
11102}
11103
11104/* Check operand types to see if this is a VFP instruction, and if so call
11105 PFN (). */
11106
11107static int
11108try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
11109{
11110 enum neon_shape rs;
11111 struct neon_type_el et;
11112
11113 switch (args)
11114 {
11115 case 2:
11116 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11117 et = neon_check_type (2, rs,
11118 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11119 break;
11120
11121 case 3:
11122 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11123 et = neon_check_type (3, rs,
11124 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11125 break;
11126
11127 default:
11128 abort ();
11129 }
11130
11131 if (et.type != NT_invtype)
11132 {
11133 pfn (rs);
11134 return SUCCESS;
11135 }
11136 else
11137 inst.error = NULL;
11138
11139 return FAIL;
11140}
11141
11142static void
11143do_vfp_nsyn_mla_mls (enum neon_shape rs)
11144{
11145 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
11146
11147 if (rs == NS_FFF)
11148 {
11149 if (is_mla)
11150 do_vfp_nsyn_opcode ("fmacs");
11151 else
11152 do_vfp_nsyn_opcode ("fmscs");
11153 }
11154 else
11155 {
11156 if (is_mla)
11157 do_vfp_nsyn_opcode ("fmacd");
11158 else
11159 do_vfp_nsyn_opcode ("fmscd");
11160 }
11161}
11162
11163static void
11164do_vfp_nsyn_mul (enum neon_shape rs)
11165{
11166 if (rs == NS_FFF)
11167 do_vfp_nsyn_opcode ("fmuls");
11168 else
11169 do_vfp_nsyn_opcode ("fmuld");
11170}
11171
11172static void
11173do_vfp_nsyn_abs_neg (enum neon_shape rs)
11174{
11175 int is_neg = (inst.instruction & 0x80) != 0;
11176 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
11177
11178 if (rs == NS_FF)
11179 {
11180 if (is_neg)
11181 do_vfp_nsyn_opcode ("fnegs");
11182 else
11183 do_vfp_nsyn_opcode ("fabss");
11184 }
11185 else
11186 {
11187 if (is_neg)
11188 do_vfp_nsyn_opcode ("fnegd");
11189 else
11190 do_vfp_nsyn_opcode ("fabsd");
11191 }
11192}
11193
11194/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
11195 insns belong to Neon, and are handled elsewhere. */
11196
11197static void
11198do_vfp_nsyn_ldm_stm (int is_dbmode)
11199{
11200 int is_ldm = (inst.instruction & (1 << 20)) != 0;
11201 if (is_ldm)
11202 {
11203 if (is_dbmode)
11204 do_vfp_nsyn_opcode ("fldmdbs");
11205 else
11206 do_vfp_nsyn_opcode ("fldmias");
11207 }
11208 else
11209 {
11210 if (is_dbmode)
11211 do_vfp_nsyn_opcode ("fstmdbs");
11212 else
11213 do_vfp_nsyn_opcode ("fstmias");
11214 }
11215}
11216
037e8744
JB
11217static void
11218do_vfp_nsyn_sqrt (void)
11219{
11220 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11221 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11222
11223 if (rs == NS_FF)
11224 do_vfp_nsyn_opcode ("fsqrts");
11225 else
11226 do_vfp_nsyn_opcode ("fsqrtd");
11227}
11228
11229static void
11230do_vfp_nsyn_div (void)
11231{
11232 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11233 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11234 N_F32 | N_F64 | N_KEY | N_VFP);
11235
11236 if (rs == NS_FFF)
11237 do_vfp_nsyn_opcode ("fdivs");
11238 else
11239 do_vfp_nsyn_opcode ("fdivd");
11240}
11241
11242static void
11243do_vfp_nsyn_nmul (void)
11244{
11245 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11246 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11247 N_F32 | N_F64 | N_KEY | N_VFP);
11248
11249 if (rs == NS_FFF)
11250 {
11251 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11252 do_vfp_sp_dyadic ();
11253 }
11254 else
11255 {
11256 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11257 do_vfp_dp_rd_rn_rm ();
11258 }
11259 do_vfp_cond_or_thumb ();
11260}
11261
11262static void
11263do_vfp_nsyn_cmp (void)
11264{
11265 if (inst.operands[1].isreg)
11266 {
11267 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11268 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11269
11270 if (rs == NS_FF)
11271 {
11272 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11273 do_vfp_sp_monadic ();
11274 }
11275 else
11276 {
11277 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11278 do_vfp_dp_rd_rm ();
11279 }
11280 }
11281 else
11282 {
11283 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
11284 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
11285
11286 switch (inst.instruction & 0x0fffffff)
11287 {
11288 case N_MNEM_vcmp:
11289 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
11290 break;
11291 case N_MNEM_vcmpe:
11292 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
11293 break;
11294 default:
11295 abort ();
11296 }
11297
11298 if (rs == NS_FI)
11299 {
11300 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11301 do_vfp_sp_compare_z ();
11302 }
11303 else
11304 {
11305 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11306 do_vfp_dp_rd ();
11307 }
11308 }
11309 do_vfp_cond_or_thumb ();
11310}
11311
11312static void
11313nsyn_insert_sp (void)
11314{
11315 inst.operands[1] = inst.operands[0];
11316 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
11317 inst.operands[0].reg = 13;
11318 inst.operands[0].isreg = 1;
11319 inst.operands[0].writeback = 1;
11320 inst.operands[0].present = 1;
11321}
11322
11323static void
11324do_vfp_nsyn_push (void)
11325{
11326 nsyn_insert_sp ();
11327 if (inst.operands[1].issingle)
11328 do_vfp_nsyn_opcode ("fstmdbs");
11329 else
11330 do_vfp_nsyn_opcode ("fstmdbd");
11331}
11332
11333static void
11334do_vfp_nsyn_pop (void)
11335{
11336 nsyn_insert_sp ();
11337 if (inst.operands[1].issingle)
22b5b651 11338 do_vfp_nsyn_opcode ("fldmias");
037e8744 11339 else
22b5b651 11340 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
11341}
11342
11343/* Fix up Neon data-processing instructions, ORing in the correct bits for
11344 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
11345
11346static unsigned
11347neon_dp_fixup (unsigned i)
11348{
11349 if (thumb_mode)
11350 {
11351 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
11352 if (i & (1 << 24))
11353 i |= 1 << 28;
11354
11355 i &= ~(1 << 24);
11356
11357 i |= 0xef000000;
11358 }
11359 else
11360 i |= 0xf2000000;
11361
11362 return i;
11363}
11364
11365/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
11366 (0, 1, 2, 3). */
11367
11368static unsigned
11369neon_logbits (unsigned x)
11370{
11371 return ffs (x) - 4;
11372}
11373
11374#define LOW4(R) ((R) & 0xf)
11375#define HI1(R) (((R) >> 4) & 1)
11376
11377/* Encode insns with bit pattern:
11378
11379 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
11380 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
11381
11382 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
11383 different meaning for some instruction. */
11384
11385static void
11386neon_three_same (int isquad, int ubit, int size)
11387{
11388 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11389 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11390 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11391 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11392 inst.instruction |= LOW4 (inst.operands[2].reg);
11393 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
11394 inst.instruction |= (isquad != 0) << 6;
11395 inst.instruction |= (ubit != 0) << 24;
11396 if (size != -1)
11397 inst.instruction |= neon_logbits (size) << 20;
11398
11399 inst.instruction = neon_dp_fixup (inst.instruction);
11400}
11401
11402/* Encode instructions of the form:
11403
11404 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
11405 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
11406
11407 Don't write size if SIZE == -1. */
11408
11409static void
11410neon_two_same (int qbit, int ubit, int size)
11411{
11412 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11413 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11414 inst.instruction |= LOW4 (inst.operands[1].reg);
11415 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11416 inst.instruction |= (qbit != 0) << 6;
11417 inst.instruction |= (ubit != 0) << 24;
11418
11419 if (size != -1)
11420 inst.instruction |= neon_logbits (size) << 18;
11421
11422 inst.instruction = neon_dp_fixup (inst.instruction);
11423}
11424
11425/* Neon instruction encoders, in approximate order of appearance. */
11426
11427static void
11428do_neon_dyadic_i_su (void)
11429{
037e8744 11430 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11431 struct neon_type_el et = neon_check_type (3, rs,
11432 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 11433 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11434}
11435
11436static void
11437do_neon_dyadic_i64_su (void)
11438{
037e8744 11439 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11440 struct neon_type_el et = neon_check_type (3, rs,
11441 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 11442 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11443}
11444
11445static void
11446neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
11447 unsigned immbits)
11448{
11449 unsigned size = et.size >> 3;
11450 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11451 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11452 inst.instruction |= LOW4 (inst.operands[1].reg);
11453 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11454 inst.instruction |= (isquad != 0) << 6;
11455 inst.instruction |= immbits << 16;
11456 inst.instruction |= (size >> 3) << 7;
11457 inst.instruction |= (size & 0x7) << 19;
11458 if (write_ubit)
11459 inst.instruction |= (uval != 0) << 24;
11460
11461 inst.instruction = neon_dp_fixup (inst.instruction);
11462}
11463
11464static void
11465do_neon_shl_imm (void)
11466{
11467 if (!inst.operands[2].isreg)
11468 {
037e8744 11469 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
11470 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
11471 inst.instruction = NEON_ENC_IMMED (inst.instruction);
037e8744 11472 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
11473 }
11474 else
11475 {
037e8744 11476 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11477 struct neon_type_el et = neon_check_type (3, rs,
11478 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
11479 unsigned int tmp;
11480
11481 /* VSHL/VQSHL 3-register variants have syntax such as:
11482 vshl.xx Dd, Dm, Dn
11483 whereas other 3-register operations encoded by neon_three_same have
11484 syntax like:
11485 vadd.xx Dd, Dn, Dm
11486 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
11487 here. */
11488 tmp = inst.operands[2].reg;
11489 inst.operands[2].reg = inst.operands[1].reg;
11490 inst.operands[1].reg = tmp;
5287ad62 11491 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 11492 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11493 }
11494}
11495
11496static void
11497do_neon_qshl_imm (void)
11498{
11499 if (!inst.operands[2].isreg)
11500 {
037e8744 11501 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 11502 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
627907b7 11503
5287ad62 11504 inst.instruction = NEON_ENC_IMMED (inst.instruction);
037e8744 11505 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
11506 inst.operands[2].imm);
11507 }
11508 else
11509 {
037e8744 11510 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11511 struct neon_type_el et = neon_check_type (3, rs,
11512 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
11513 unsigned int tmp;
11514
11515 /* See note in do_neon_shl_imm. */
11516 tmp = inst.operands[2].reg;
11517 inst.operands[2].reg = inst.operands[1].reg;
11518 inst.operands[1].reg = tmp;
5287ad62 11519 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 11520 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11521 }
11522}
11523
627907b7
JB
11524static void
11525do_neon_rshl (void)
11526{
11527 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11528 struct neon_type_el et = neon_check_type (3, rs,
11529 N_EQK, N_EQK, N_SU_ALL | N_KEY);
11530 unsigned int tmp;
11531
11532 tmp = inst.operands[2].reg;
11533 inst.operands[2].reg = inst.operands[1].reg;
11534 inst.operands[1].reg = tmp;
11535 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11536}
11537
5287ad62
JB
11538static int
11539neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
11540{
036dc3f7
PB
11541 /* Handle .I8 pseudo-instructions. */
11542 if (size == 8)
5287ad62 11543 {
5287ad62
JB
11544 /* Unfortunately, this will make everything apart from zero out-of-range.
11545 FIXME is this the intended semantics? There doesn't seem much point in
11546 accepting .I8 if so. */
11547 immediate |= immediate << 8;
11548 size = 16;
036dc3f7
PB
11549 }
11550
11551 if (size >= 32)
11552 {
11553 if (immediate == (immediate & 0x000000ff))
11554 {
11555 *immbits = immediate;
11556 return 0x1;
11557 }
11558 else if (immediate == (immediate & 0x0000ff00))
11559 {
11560 *immbits = immediate >> 8;
11561 return 0x3;
11562 }
11563 else if (immediate == (immediate & 0x00ff0000))
11564 {
11565 *immbits = immediate >> 16;
11566 return 0x5;
11567 }
11568 else if (immediate == (immediate & 0xff000000))
11569 {
11570 *immbits = immediate >> 24;
11571 return 0x7;
11572 }
11573 if ((immediate & 0xffff) != (immediate >> 16))
11574 goto bad_immediate;
11575 immediate &= 0xffff;
5287ad62
JB
11576 }
11577
11578 if (immediate == (immediate & 0x000000ff))
11579 {
11580 *immbits = immediate;
036dc3f7 11581 return 0x9;
5287ad62
JB
11582 }
11583 else if (immediate == (immediate & 0x0000ff00))
11584 {
11585 *immbits = immediate >> 8;
036dc3f7 11586 return 0xb;
5287ad62
JB
11587 }
11588
11589 bad_immediate:
dcbf9037 11590 first_error (_("immediate value out of range"));
5287ad62
JB
11591 return FAIL;
11592}
11593
11594/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
11595 A, B, C, D. */
11596
11597static int
11598neon_bits_same_in_bytes (unsigned imm)
11599{
11600 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
11601 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
11602 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
11603 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
11604}
11605
11606/* For immediate of above form, return 0bABCD. */
11607
11608static unsigned
11609neon_squash_bits (unsigned imm)
11610{
11611 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
11612 | ((imm & 0x01000000) >> 21);
11613}
11614
136da414 11615/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
11616
11617static unsigned
11618neon_qfloat_bits (unsigned imm)
11619{
136da414 11620 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
11621}
11622
11623/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
11624 the instruction. *OP is passed as the initial value of the op field, and
11625 may be set to a different value depending on the constant (i.e.
11626 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
036dc3f7
PB
11627 MVN). If the immediate looks like a repeated parttern then also
11628 try smaller element sizes. */
5287ad62
JB
11629
11630static int
c96612cc
JB
11631neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
11632 unsigned *immbits, int *op, int size,
11633 enum neon_el_type type)
5287ad62 11634{
c96612cc
JB
11635 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
11636 float. */
11637 if (type == NT_float && !float_p)
11638 return FAIL;
11639
136da414
JB
11640 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
11641 {
11642 if (size != 32 || *op == 1)
11643 return FAIL;
11644 *immbits = neon_qfloat_bits (immlo);
11645 return 0xf;
11646 }
036dc3f7
PB
11647
11648 if (size == 64)
5287ad62 11649 {
036dc3f7
PB
11650 if (neon_bits_same_in_bytes (immhi)
11651 && neon_bits_same_in_bytes (immlo))
11652 {
11653 if (*op == 1)
11654 return FAIL;
11655 *immbits = (neon_squash_bits (immhi) << 4)
11656 | neon_squash_bits (immlo);
11657 *op = 1;
11658 return 0xe;
11659 }
11660
11661 if (immhi != immlo)
11662 return FAIL;
5287ad62 11663 }
036dc3f7
PB
11664
11665 if (size >= 32)
5287ad62 11666 {
036dc3f7
PB
11667 if (immlo == (immlo & 0x000000ff))
11668 {
11669 *immbits = immlo;
11670 return 0x0;
11671 }
11672 else if (immlo == (immlo & 0x0000ff00))
11673 {
11674 *immbits = immlo >> 8;
11675 return 0x2;
11676 }
11677 else if (immlo == (immlo & 0x00ff0000))
11678 {
11679 *immbits = immlo >> 16;
11680 return 0x4;
11681 }
11682 else if (immlo == (immlo & 0xff000000))
11683 {
11684 *immbits = immlo >> 24;
11685 return 0x6;
11686 }
11687 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
11688 {
11689 *immbits = (immlo >> 8) & 0xff;
11690 return 0xc;
11691 }
11692 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
11693 {
11694 *immbits = (immlo >> 16) & 0xff;
11695 return 0xd;
11696 }
11697
11698 if ((immlo & 0xffff) != (immlo >> 16))
11699 return FAIL;
11700 immlo &= 0xffff;
5287ad62 11701 }
036dc3f7
PB
11702
11703 if (size >= 16)
5287ad62 11704 {
036dc3f7
PB
11705 if (immlo == (immlo & 0x000000ff))
11706 {
11707 *immbits = immlo;
11708 return 0x8;
11709 }
11710 else if (immlo == (immlo & 0x0000ff00))
11711 {
11712 *immbits = immlo >> 8;
11713 return 0xa;
11714 }
11715
11716 if ((immlo & 0xff) != (immlo >> 8))
11717 return FAIL;
11718 immlo &= 0xff;
5287ad62 11719 }
036dc3f7
PB
11720
11721 if (immlo == (immlo & 0x000000ff))
5287ad62 11722 {
036dc3f7
PB
11723 /* Don't allow MVN with 8-bit immediate. */
11724 if (*op == 1)
11725 return FAIL;
11726 *immbits = immlo;
11727 return 0xe;
5287ad62 11728 }
5287ad62
JB
11729
11730 return FAIL;
11731}
11732
11733/* Write immediate bits [7:0] to the following locations:
11734
11735 |28/24|23 19|18 16|15 4|3 0|
11736 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
11737
11738 This function is used by VMOV/VMVN/VORR/VBIC. */
11739
11740static void
11741neon_write_immbits (unsigned immbits)
11742{
11743 inst.instruction |= immbits & 0xf;
11744 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
11745 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
11746}
11747
11748/* Invert low-order SIZE bits of XHI:XLO. */
11749
11750static void
11751neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
11752{
11753 unsigned immlo = xlo ? *xlo : 0;
11754 unsigned immhi = xhi ? *xhi : 0;
11755
11756 switch (size)
11757 {
11758 case 8:
11759 immlo = (~immlo) & 0xff;
11760 break;
11761
11762 case 16:
11763 immlo = (~immlo) & 0xffff;
11764 break;
11765
11766 case 64:
11767 immhi = (~immhi) & 0xffffffff;
11768 /* fall through. */
11769
11770 case 32:
11771 immlo = (~immlo) & 0xffffffff;
11772 break;
11773
11774 default:
11775 abort ();
11776 }
11777
11778 if (xlo)
11779 *xlo = immlo;
11780
11781 if (xhi)
11782 *xhi = immhi;
11783}
11784
11785static void
11786do_neon_logic (void)
11787{
11788 if (inst.operands[2].present && inst.operands[2].isreg)
11789 {
037e8744 11790 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11791 neon_check_type (3, rs, N_IGNORE_TYPE);
11792 /* U bit and size field were set as part of the bitmask. */
11793 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 11794 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
11795 }
11796 else
11797 {
037e8744
JB
11798 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
11799 struct neon_type_el et = neon_check_type (2, rs,
11800 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62
JB
11801 enum neon_opc opcode = inst.instruction & 0x0fffffff;
11802 unsigned immbits;
11803 int cmode;
11804
11805 if (et.type == NT_invtype)
11806 return;
11807
11808 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11809
036dc3f7
PB
11810 immbits = inst.operands[1].imm;
11811 if (et.size == 64)
11812 {
11813 /* .i64 is a pseudo-op, so the immediate must be a repeating
11814 pattern. */
11815 if (immbits != (inst.operands[1].regisimm ?
11816 inst.operands[1].reg : 0))
11817 {
11818 /* Set immbits to an invalid constant. */
11819 immbits = 0xdeadbeef;
11820 }
11821 }
11822
5287ad62
JB
11823 switch (opcode)
11824 {
11825 case N_MNEM_vbic:
036dc3f7 11826 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62
JB
11827 break;
11828
11829 case N_MNEM_vorr:
036dc3f7 11830 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62
JB
11831 break;
11832
11833 case N_MNEM_vand:
11834 /* Pseudo-instruction for VBIC. */
5287ad62
JB
11835 neon_invert_size (&immbits, 0, et.size);
11836 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11837 break;
11838
11839 case N_MNEM_vorn:
11840 /* Pseudo-instruction for VORR. */
5287ad62
JB
11841 neon_invert_size (&immbits, 0, et.size);
11842 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11843 break;
11844
11845 default:
11846 abort ();
11847 }
11848
11849 if (cmode == FAIL)
11850 return;
11851
037e8744 11852 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
11853 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11854 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11855 inst.instruction |= cmode << 8;
11856 neon_write_immbits (immbits);
11857
11858 inst.instruction = neon_dp_fixup (inst.instruction);
11859 }
11860}
11861
11862static void
11863do_neon_bitfield (void)
11864{
037e8744 11865 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 11866 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 11867 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
11868}
11869
11870static void
dcbf9037
JB
11871neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
11872 unsigned destbits)
5287ad62 11873{
037e8744 11874 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
11875 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
11876 types | N_KEY);
5287ad62
JB
11877 if (et.type == NT_float)
11878 {
11879 inst.instruction = NEON_ENC_FLOAT (inst.instruction);
037e8744 11880 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
11881 }
11882 else
11883 {
11884 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 11885 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
11886 }
11887}
11888
11889static void
11890do_neon_dyadic_if_su (void)
11891{
dcbf9037 11892 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
11893}
11894
11895static void
11896do_neon_dyadic_if_su_d (void)
11897{
11898 /* This version only allow D registers, but that constraint is enforced during
11899 operand parsing so we don't need to do anything extra here. */
dcbf9037 11900 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
11901}
11902
5287ad62
JB
11903static void
11904do_neon_dyadic_if_i_d (void)
11905{
428e3f1f
PB
11906 /* The "untyped" case can't happen. Do this to stop the "U" bit being
11907 affected if we specify unsigned args. */
11908 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
11909}
11910
037e8744
JB
11911enum vfp_or_neon_is_neon_bits
11912{
11913 NEON_CHECK_CC = 1,
11914 NEON_CHECK_ARCH = 2
11915};
11916
11917/* Call this function if an instruction which may have belonged to the VFP or
11918 Neon instruction sets, but turned out to be a Neon instruction (due to the
11919 operand types involved, etc.). We have to check and/or fix-up a couple of
11920 things:
11921
11922 - Make sure the user hasn't attempted to make a Neon instruction
11923 conditional.
11924 - Alter the value in the condition code field if necessary.
11925 - Make sure that the arch supports Neon instructions.
11926
11927 Which of these operations take place depends on bits from enum
11928 vfp_or_neon_is_neon_bits.
11929
11930 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
11931 current instruction's condition is COND_ALWAYS, the condition field is
11932 changed to inst.uncond_value. This is necessary because instructions shared
11933 between VFP and Neon may be conditional for the VFP variants only, and the
11934 unconditional Neon version must have, e.g., 0xF in the condition field. */
11935
11936static int
11937vfp_or_neon_is_neon (unsigned check)
11938{
11939 /* Conditions are always legal in Thumb mode (IT blocks). */
11940 if (!thumb_mode && (check & NEON_CHECK_CC))
11941 {
11942 if (inst.cond != COND_ALWAYS)
11943 {
11944 first_error (_(BAD_COND));
11945 return FAIL;
11946 }
11947 if (inst.uncond_value != -1)
11948 inst.instruction |= inst.uncond_value << 28;
11949 }
11950
11951 if ((check & NEON_CHECK_ARCH)
11952 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
11953 {
11954 first_error (_(BAD_FPU));
11955 return FAIL;
11956 }
11957
11958 return SUCCESS;
11959}
11960
5287ad62
JB
11961static void
11962do_neon_addsub_if_i (void)
11963{
037e8744
JB
11964 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
11965 return;
11966
11967 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
11968 return;
11969
5287ad62
JB
11970 /* The "untyped" case can't happen. Do this to stop the "U" bit being
11971 affected if we specify unsigned args. */
dcbf9037 11972 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
11973}
11974
11975/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
11976 result to be:
11977 V<op> A,B (A is operand 0, B is operand 2)
11978 to mean:
11979 V<op> A,B,A
11980 not:
11981 V<op> A,B,B
11982 so handle that case specially. */
11983
11984static void
11985neon_exchange_operands (void)
11986{
11987 void *scratch = alloca (sizeof (inst.operands[0]));
11988 if (inst.operands[1].present)
11989 {
11990 /* Swap operands[1] and operands[2]. */
11991 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
11992 inst.operands[1] = inst.operands[2];
11993 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
11994 }
11995 else
11996 {
11997 inst.operands[1] = inst.operands[2];
11998 inst.operands[2] = inst.operands[0];
11999 }
12000}
12001
12002static void
12003neon_compare (unsigned regtypes, unsigned immtypes, int invert)
12004{
12005 if (inst.operands[2].isreg)
12006 {
12007 if (invert)
12008 neon_exchange_operands ();
dcbf9037 12009 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
12010 }
12011 else
12012 {
037e8744 12013 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
12014 struct neon_type_el et = neon_check_type (2, rs,
12015 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62
JB
12016
12017 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12018 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12019 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12020 inst.instruction |= LOW4 (inst.operands[1].reg);
12021 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 12022 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12023 inst.instruction |= (et.type == NT_float) << 10;
12024 inst.instruction |= neon_logbits (et.size) << 18;
12025
12026 inst.instruction = neon_dp_fixup (inst.instruction);
12027 }
12028}
12029
12030static void
12031do_neon_cmp (void)
12032{
12033 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
12034}
12035
12036static void
12037do_neon_cmp_inv (void)
12038{
12039 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
12040}
12041
12042static void
12043do_neon_ceq (void)
12044{
12045 neon_compare (N_IF_32, N_IF_32, FALSE);
12046}
12047
12048/* For multiply instructions, we have the possibility of 16-bit or 32-bit
12049 scalars, which are encoded in 5 bits, M : Rm.
12050 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
12051 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
12052 index in M. */
12053
12054static unsigned
12055neon_scalar_for_mul (unsigned scalar, unsigned elsize)
12056{
dcbf9037
JB
12057 unsigned regno = NEON_SCALAR_REG (scalar);
12058 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
12059
12060 switch (elsize)
12061 {
12062 case 16:
12063 if (regno > 7 || elno > 3)
12064 goto bad_scalar;
12065 return regno | (elno << 3);
12066
12067 case 32:
12068 if (regno > 15 || elno > 1)
12069 goto bad_scalar;
12070 return regno | (elno << 4);
12071
12072 default:
12073 bad_scalar:
dcbf9037 12074 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
12075 }
12076
12077 return 0;
12078}
12079
12080/* Encode multiply / multiply-accumulate scalar instructions. */
12081
12082static void
12083neon_mul_mac (struct neon_type_el et, int ubit)
12084{
dcbf9037
JB
12085 unsigned scalar;
12086
12087 /* Give a more helpful error message if we have an invalid type. */
12088 if (et.type == NT_invtype)
12089 return;
12090
12091 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
12092 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12093 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12094 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12095 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12096 inst.instruction |= LOW4 (scalar);
12097 inst.instruction |= HI1 (scalar) << 5;
12098 inst.instruction |= (et.type == NT_float) << 8;
12099 inst.instruction |= neon_logbits (et.size) << 20;
12100 inst.instruction |= (ubit != 0) << 24;
12101
12102 inst.instruction = neon_dp_fixup (inst.instruction);
12103}
12104
12105static void
12106do_neon_mac_maybe_scalar (void)
12107{
037e8744
JB
12108 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
12109 return;
12110
12111 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12112 return;
12113
5287ad62
JB
12114 if (inst.operands[2].isscalar)
12115 {
037e8744 12116 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
12117 struct neon_type_el et = neon_check_type (3, rs,
12118 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
12119 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
037e8744 12120 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
12121 }
12122 else
428e3f1f
PB
12123 {
12124 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12125 affected if we specify unsigned args. */
12126 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
12127 }
5287ad62
JB
12128}
12129
12130static void
12131do_neon_tst (void)
12132{
037e8744 12133 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12134 struct neon_type_el et = neon_check_type (3, rs,
12135 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 12136 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
12137}
12138
12139/* VMUL with 3 registers allows the P8 type. The scalar version supports the
12140 same types as the MAC equivalents. The polynomial type for this instruction
12141 is encoded the same as the integer type. */
12142
12143static void
12144do_neon_mul (void)
12145{
037e8744
JB
12146 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
12147 return;
12148
12149 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12150 return;
12151
5287ad62
JB
12152 if (inst.operands[2].isscalar)
12153 do_neon_mac_maybe_scalar ();
12154 else
dcbf9037 12155 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
12156}
12157
12158static void
12159do_neon_qdmulh (void)
12160{
12161 if (inst.operands[2].isscalar)
12162 {
037e8744 12163 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
12164 struct neon_type_el et = neon_check_type (3, rs,
12165 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12166 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
037e8744 12167 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
12168 }
12169 else
12170 {
037e8744 12171 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12172 struct neon_type_el et = neon_check_type (3, rs,
12173 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12174 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12175 /* The U bit (rounding) comes from bit mask. */
037e8744 12176 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
12177 }
12178}
12179
12180static void
12181do_neon_fcmp_absolute (void)
12182{
037e8744 12183 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12184 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
12185 /* Size field comes from bit mask. */
037e8744 12186 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
12187}
12188
12189static void
12190do_neon_fcmp_absolute_inv (void)
12191{
12192 neon_exchange_operands ();
12193 do_neon_fcmp_absolute ();
12194}
12195
12196static void
12197do_neon_step (void)
12198{
037e8744 12199 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 12200 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 12201 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12202}
12203
12204static void
12205do_neon_abs_neg (void)
12206{
037e8744
JB
12207 enum neon_shape rs;
12208 struct neon_type_el et;
12209
12210 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
12211 return;
12212
12213 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12214 return;
12215
12216 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12217 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
12218
5287ad62
JB
12219 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12220 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12221 inst.instruction |= LOW4 (inst.operands[1].reg);
12222 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 12223 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12224 inst.instruction |= (et.type == NT_float) << 10;
12225 inst.instruction |= neon_logbits (et.size) << 18;
12226
12227 inst.instruction = neon_dp_fixup (inst.instruction);
12228}
12229
12230static void
12231do_neon_sli (void)
12232{
037e8744 12233 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12234 struct neon_type_el et = neon_check_type (2, rs,
12235 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12236 int imm = inst.operands[2].imm;
12237 constraint (imm < 0 || (unsigned)imm >= et.size,
12238 _("immediate out of range for insert"));
037e8744 12239 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
12240}
12241
12242static void
12243do_neon_sri (void)
12244{
037e8744 12245 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12246 struct neon_type_el et = neon_check_type (2, rs,
12247 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12248 int imm = inst.operands[2].imm;
12249 constraint (imm < 1 || (unsigned)imm > et.size,
12250 _("immediate out of range for insert"));
037e8744 12251 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
12252}
12253
12254static void
12255do_neon_qshlu_imm (void)
12256{
037e8744 12257 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12258 struct neon_type_el et = neon_check_type (2, rs,
12259 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
12260 int imm = inst.operands[2].imm;
12261 constraint (imm < 0 || (unsigned)imm >= et.size,
12262 _("immediate out of range for shift"));
12263 /* Only encodes the 'U present' variant of the instruction.
12264 In this case, signed types have OP (bit 8) set to 0.
12265 Unsigned types have OP set to 1. */
12266 inst.instruction |= (et.type == NT_unsigned) << 8;
12267 /* The rest of the bits are the same as other immediate shifts. */
037e8744 12268 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
12269}
12270
12271static void
12272do_neon_qmovn (void)
12273{
12274 struct neon_type_el et = neon_check_type (2, NS_DQ,
12275 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12276 /* Saturating move where operands can be signed or unsigned, and the
12277 destination has the same signedness. */
12278 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12279 if (et.type == NT_unsigned)
12280 inst.instruction |= 0xc0;
12281 else
12282 inst.instruction |= 0x80;
12283 neon_two_same (0, 1, et.size / 2);
12284}
12285
12286static void
12287do_neon_qmovun (void)
12288{
12289 struct neon_type_el et = neon_check_type (2, NS_DQ,
12290 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12291 /* Saturating move with unsigned results. Operands must be signed. */
12292 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12293 neon_two_same (0, 1, et.size / 2);
12294}
12295
12296static void
12297do_neon_rshift_sat_narrow (void)
12298{
12299 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12300 or unsigned. If operands are unsigned, results must also be unsigned. */
12301 struct neon_type_el et = neon_check_type (2, NS_DQI,
12302 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12303 int imm = inst.operands[2].imm;
12304 /* This gets the bounds check, size encoding and immediate bits calculation
12305 right. */
12306 et.size /= 2;
12307
12308 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
12309 VQMOVN.I<size> <Dd>, <Qm>. */
12310 if (imm == 0)
12311 {
12312 inst.operands[2].present = 0;
12313 inst.instruction = N_MNEM_vqmovn;
12314 do_neon_qmovn ();
12315 return;
12316 }
12317
12318 constraint (imm < 1 || (unsigned)imm > et.size,
12319 _("immediate out of range"));
12320 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
12321}
12322
12323static void
12324do_neon_rshift_sat_narrow_u (void)
12325{
12326 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12327 or unsigned. If operands are unsigned, results must also be unsigned. */
12328 struct neon_type_el et = neon_check_type (2, NS_DQI,
12329 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12330 int imm = inst.operands[2].imm;
12331 /* This gets the bounds check, size encoding and immediate bits calculation
12332 right. */
12333 et.size /= 2;
12334
12335 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
12336 VQMOVUN.I<size> <Dd>, <Qm>. */
12337 if (imm == 0)
12338 {
12339 inst.operands[2].present = 0;
12340 inst.instruction = N_MNEM_vqmovun;
12341 do_neon_qmovun ();
12342 return;
12343 }
12344
12345 constraint (imm < 1 || (unsigned)imm > et.size,
12346 _("immediate out of range"));
12347 /* FIXME: The manual is kind of unclear about what value U should have in
12348 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
12349 must be 1. */
12350 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
12351}
12352
12353static void
12354do_neon_movn (void)
12355{
12356 struct neon_type_el et = neon_check_type (2, NS_DQ,
12357 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12358 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12359 neon_two_same (0, 1, et.size / 2);
12360}
12361
12362static void
12363do_neon_rshift_narrow (void)
12364{
12365 struct neon_type_el et = neon_check_type (2, NS_DQI,
12366 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12367 int imm = inst.operands[2].imm;
12368 /* This gets the bounds check, size encoding and immediate bits calculation
12369 right. */
12370 et.size /= 2;
12371
12372 /* If immediate is zero then we are a pseudo-instruction for
12373 VMOVN.I<size> <Dd>, <Qm> */
12374 if (imm == 0)
12375 {
12376 inst.operands[2].present = 0;
12377 inst.instruction = N_MNEM_vmovn;
12378 do_neon_movn ();
12379 return;
12380 }
12381
12382 constraint (imm < 1 || (unsigned)imm > et.size,
12383 _("immediate out of range for narrowing operation"));
12384 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
12385}
12386
12387static void
12388do_neon_shll (void)
12389{
12390 /* FIXME: Type checking when lengthening. */
12391 struct neon_type_el et = neon_check_type (2, NS_QDI,
12392 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
12393 unsigned imm = inst.operands[2].imm;
12394
12395 if (imm == et.size)
12396 {
12397 /* Maximum shift variant. */
12398 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12399 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12400 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12401 inst.instruction |= LOW4 (inst.operands[1].reg);
12402 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12403 inst.instruction |= neon_logbits (et.size) << 18;
12404
12405 inst.instruction = neon_dp_fixup (inst.instruction);
12406 }
12407 else
12408 {
12409 /* A more-specific type check for non-max versions. */
12410 et = neon_check_type (2, NS_QDI,
12411 N_EQK | N_DBL, N_SU_32 | N_KEY);
12412 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12413 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
12414 }
12415}
12416
037e8744 12417/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
12418 the current instruction is. */
12419
12420static int
12421neon_cvt_flavour (enum neon_shape rs)
12422{
037e8744
JB
12423#define CVT_VAR(C,X,Y) \
12424 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
12425 if (et.type != NT_invtype) \
12426 { \
12427 inst.error = NULL; \
12428 return (C); \
5287ad62
JB
12429 }
12430 struct neon_type_el et;
037e8744
JB
12431 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
12432 || rs == NS_FF) ? N_VFP : 0;
12433 /* The instruction versions which take an immediate take one register
12434 argument, which is extended to the width of the full register. Thus the
12435 "source" and "destination" registers must have the same width. Hack that
12436 here by making the size equal to the key (wider, in this case) operand. */
12437 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5287ad62
JB
12438
12439 CVT_VAR (0, N_S32, N_F32);
12440 CVT_VAR (1, N_U32, N_F32);
12441 CVT_VAR (2, N_F32, N_S32);
12442 CVT_VAR (3, N_F32, N_U32);
12443
037e8744
JB
12444 whole_reg = N_VFP;
12445
12446 /* VFP instructions. */
12447 CVT_VAR (4, N_F32, N_F64);
12448 CVT_VAR (5, N_F64, N_F32);
12449 CVT_VAR (6, N_S32, N_F64 | key);
12450 CVT_VAR (7, N_U32, N_F64 | key);
12451 CVT_VAR (8, N_F64 | key, N_S32);
12452 CVT_VAR (9, N_F64 | key, N_U32);
12453 /* VFP instructions with bitshift. */
12454 CVT_VAR (10, N_F32 | key, N_S16);
12455 CVT_VAR (11, N_F32 | key, N_U16);
12456 CVT_VAR (12, N_F64 | key, N_S16);
12457 CVT_VAR (13, N_F64 | key, N_U16);
12458 CVT_VAR (14, N_S16, N_F32 | key);
12459 CVT_VAR (15, N_U16, N_F32 | key);
12460 CVT_VAR (16, N_S16, N_F64 | key);
12461 CVT_VAR (17, N_U16, N_F64 | key);
12462
5287ad62
JB
12463 return -1;
12464#undef CVT_VAR
12465}
12466
037e8744
JB
12467/* Neon-syntax VFP conversions. */
12468
5287ad62 12469static void
037e8744 12470do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
5287ad62 12471{
037e8744
JB
12472 const char *opname = 0;
12473
12474 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 12475 {
037e8744
JB
12476 /* Conversions with immediate bitshift. */
12477 const char *enc[] =
12478 {
12479 "ftosls",
12480 "ftouls",
12481 "fsltos",
12482 "fultos",
12483 NULL,
12484 NULL,
12485 "ftosld",
12486 "ftould",
12487 "fsltod",
12488 "fultod",
12489 "fshtos",
12490 "fuhtos",
12491 "fshtod",
12492 "fuhtod",
12493 "ftoshs",
12494 "ftouhs",
12495 "ftoshd",
12496 "ftouhd"
12497 };
12498
12499 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12500 {
12501 opname = enc[flavour];
12502 constraint (inst.operands[0].reg != inst.operands[1].reg,
12503 _("operands 0 and 1 must be the same register"));
12504 inst.operands[1] = inst.operands[2];
12505 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
12506 }
5287ad62
JB
12507 }
12508 else
12509 {
037e8744
JB
12510 /* Conversions without bitshift. */
12511 const char *enc[] =
12512 {
12513 "ftosis",
12514 "ftouis",
12515 "fsitos",
12516 "fuitos",
12517 "fcvtsd",
12518 "fcvtds",
12519 "ftosid",
12520 "ftouid",
12521 "fsitod",
12522 "fuitod"
12523 };
12524
12525 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12526 opname = enc[flavour];
12527 }
12528
12529 if (opname)
12530 do_vfp_nsyn_opcode (opname);
12531}
12532
12533static void
12534do_vfp_nsyn_cvtz (void)
12535{
12536 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
12537 int flavour = neon_cvt_flavour (rs);
12538 const char *enc[] =
12539 {
12540 "ftosizs",
12541 "ftouizs",
12542 NULL,
12543 NULL,
12544 NULL,
12545 NULL,
12546 "ftosizd",
12547 "ftouizd"
12548 };
12549
12550 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
12551 do_vfp_nsyn_opcode (enc[flavour]);
12552}
12553
12554static void
12555do_neon_cvt (void)
12556{
12557 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
12558 NS_FD, NS_DF, NS_FF, NS_NULL);
12559 int flavour = neon_cvt_flavour (rs);
12560
12561 /* VFP rather than Neon conversions. */
12562 if (flavour >= 4)
12563 {
12564 do_vfp_nsyn_cvt (rs, flavour);
12565 return;
12566 }
12567
12568 switch (rs)
12569 {
12570 case NS_DDI:
12571 case NS_QQI:
12572 {
12573 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12574 return;
12575
12576 /* Fixed-point conversion with #0 immediate is encoded as an
12577 integer conversion. */
12578 if (inst.operands[2].present && inst.operands[2].imm == 0)
12579 goto int_encode;
12580 unsigned immbits = 32 - inst.operands[2].imm;
12581 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
12582 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12583 if (flavour != -1)
12584 inst.instruction |= enctab[flavour];
12585 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12586 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12587 inst.instruction |= LOW4 (inst.operands[1].reg);
12588 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12589 inst.instruction |= neon_quad (rs) << 6;
12590 inst.instruction |= 1 << 21;
12591 inst.instruction |= immbits << 16;
12592
12593 inst.instruction = neon_dp_fixup (inst.instruction);
12594 }
12595 break;
12596
12597 case NS_DD:
12598 case NS_QQ:
12599 int_encode:
12600 {
12601 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
12602
12603 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12604
12605 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12606 return;
12607
12608 if (flavour != -1)
12609 inst.instruction |= enctab[flavour];
12610
12611 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12612 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12613 inst.instruction |= LOW4 (inst.operands[1].reg);
12614 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12615 inst.instruction |= neon_quad (rs) << 6;
12616 inst.instruction |= 2 << 18;
12617
12618 inst.instruction = neon_dp_fixup (inst.instruction);
12619 }
12620 break;
12621
12622 default:
12623 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
12624 do_vfp_nsyn_cvt (rs, flavour);
5287ad62 12625 }
5287ad62
JB
12626}
12627
12628static void
12629neon_move_immediate (void)
12630{
037e8744
JB
12631 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
12632 struct neon_type_el et = neon_check_type (2, rs,
12633 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 12634 unsigned immlo, immhi = 0, immbits;
c96612cc 12635 int op, cmode, float_p;
5287ad62 12636
037e8744
JB
12637 constraint (et.type == NT_invtype,
12638 _("operand size must be specified for immediate VMOV"));
12639
5287ad62
JB
12640 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
12641 op = (inst.instruction & (1 << 5)) != 0;
12642
12643 immlo = inst.operands[1].imm;
12644 if (inst.operands[1].regisimm)
12645 immhi = inst.operands[1].reg;
12646
12647 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
12648 _("immediate has bits set outside the operand size"));
12649
c96612cc
JB
12650 float_p = inst.operands[1].immisfloat;
12651
12652 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
136da414 12653 et.size, et.type)) == FAIL)
5287ad62
JB
12654 {
12655 /* Invert relevant bits only. */
12656 neon_invert_size (&immlo, &immhi, et.size);
12657 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
12658 with one or the other; those cases are caught by
12659 neon_cmode_for_move_imm. */
12660 op = !op;
c96612cc
JB
12661 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
12662 &op, et.size, et.type)) == FAIL)
5287ad62 12663 {
dcbf9037 12664 first_error (_("immediate out of range"));
5287ad62
JB
12665 return;
12666 }
12667 }
12668
12669 inst.instruction &= ~(1 << 5);
12670 inst.instruction |= op << 5;
12671
12672 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12673 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 12674 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12675 inst.instruction |= cmode << 8;
12676
12677 neon_write_immbits (immbits);
12678}
12679
12680static void
12681do_neon_mvn (void)
12682{
12683 if (inst.operands[1].isreg)
12684 {
037e8744 12685 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
12686
12687 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12688 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12689 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12690 inst.instruction |= LOW4 (inst.operands[1].reg);
12691 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 12692 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12693 }
12694 else
12695 {
12696 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12697 neon_move_immediate ();
12698 }
12699
12700 inst.instruction = neon_dp_fixup (inst.instruction);
12701}
12702
12703/* Encode instructions of form:
12704
12705 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12706 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm |
12707
12708*/
12709
12710static void
12711neon_mixed_length (struct neon_type_el et, unsigned size)
12712{
12713 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12714 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12715 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12716 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12717 inst.instruction |= LOW4 (inst.operands[2].reg);
12718 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12719 inst.instruction |= (et.type == NT_unsigned) << 24;
12720 inst.instruction |= neon_logbits (size) << 20;
12721
12722 inst.instruction = neon_dp_fixup (inst.instruction);
12723}
12724
12725static void
12726do_neon_dyadic_long (void)
12727{
12728 /* FIXME: Type checking for lengthening op. */
12729 struct neon_type_el et = neon_check_type (3, NS_QDD,
12730 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
12731 neon_mixed_length (et, et.size);
12732}
12733
12734static void
12735do_neon_abal (void)
12736{
12737 struct neon_type_el et = neon_check_type (3, NS_QDD,
12738 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
12739 neon_mixed_length (et, et.size);
12740}
12741
12742static void
12743neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
12744{
12745 if (inst.operands[2].isscalar)
12746 {
dcbf9037
JB
12747 struct neon_type_el et = neon_check_type (3, NS_QDS,
12748 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
5287ad62
JB
12749 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12750 neon_mul_mac (et, et.type == NT_unsigned);
12751 }
12752 else
12753 {
12754 struct neon_type_el et = neon_check_type (3, NS_QDD,
12755 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
12756 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12757 neon_mixed_length (et, et.size);
12758 }
12759}
12760
12761static void
12762do_neon_mac_maybe_scalar_long (void)
12763{
12764 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
12765}
12766
12767static void
12768do_neon_dyadic_wide (void)
12769{
12770 struct neon_type_el et = neon_check_type (3, NS_QQD,
12771 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
12772 neon_mixed_length (et, et.size);
12773}
12774
12775static void
12776do_neon_dyadic_narrow (void)
12777{
12778 struct neon_type_el et = neon_check_type (3, NS_QDD,
12779 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
12780 /* Operand sign is unimportant, and the U bit is part of the opcode,
12781 so force the operand type to integer. */
12782 et.type = NT_integer;
5287ad62
JB
12783 neon_mixed_length (et, et.size / 2);
12784}
12785
12786static void
12787do_neon_mul_sat_scalar_long (void)
12788{
12789 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
12790}
12791
12792static void
12793do_neon_vmull (void)
12794{
12795 if (inst.operands[2].isscalar)
12796 do_neon_mac_maybe_scalar_long ();
12797 else
12798 {
12799 struct neon_type_el et = neon_check_type (3, NS_QDD,
12800 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
12801 if (et.type == NT_poly)
12802 inst.instruction = NEON_ENC_POLY (inst.instruction);
12803 else
12804 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12805 /* For polynomial encoding, size field must be 0b00 and the U bit must be
12806 zero. Should be OK as-is. */
12807 neon_mixed_length (et, et.size);
12808 }
12809}
12810
12811static void
12812do_neon_ext (void)
12813{
037e8744 12814 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
12815 struct neon_type_el et = neon_check_type (3, rs,
12816 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12817 unsigned imm = (inst.operands[3].imm * et.size) / 8;
12818 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12819 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12820 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12821 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12822 inst.instruction |= LOW4 (inst.operands[2].reg);
12823 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 12824 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12825 inst.instruction |= imm << 8;
12826
12827 inst.instruction = neon_dp_fixup (inst.instruction);
12828}
12829
12830static void
12831do_neon_rev (void)
12832{
037e8744 12833 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
12834 struct neon_type_el et = neon_check_type (2, rs,
12835 N_EQK, N_8 | N_16 | N_32 | N_KEY);
12836 unsigned op = (inst.instruction >> 7) & 3;
12837 /* N (width of reversed regions) is encoded as part of the bitmask. We
12838 extract it here to check the elements to be reversed are smaller.
12839 Otherwise we'd get a reserved instruction. */
12840 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
12841 assert (elsize != 0);
12842 constraint (et.size >= elsize,
12843 _("elements must be smaller than reversal region"));
037e8744 12844 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
12845}
12846
12847static void
12848do_neon_dup (void)
12849{
12850 if (inst.operands[1].isscalar)
12851 {
037e8744 12852 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
12853 struct neon_type_el et = neon_check_type (2, rs,
12854 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 12855 unsigned sizebits = et.size >> 3;
dcbf9037 12856 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 12857 int logsize = neon_logbits (et.size);
dcbf9037 12858 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
12859
12860 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
12861 return;
12862
5287ad62
JB
12863 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12864 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12865 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12866 inst.instruction |= LOW4 (dm);
12867 inst.instruction |= HI1 (dm) << 5;
037e8744 12868 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12869 inst.instruction |= x << 17;
12870 inst.instruction |= sizebits << 16;
12871
12872 inst.instruction = neon_dp_fixup (inst.instruction);
12873 }
12874 else
12875 {
037e8744
JB
12876 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
12877 struct neon_type_el et = neon_check_type (2, rs,
12878 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62
JB
12879 /* Duplicate ARM register to lanes of vector. */
12880 inst.instruction = NEON_ENC_ARMREG (inst.instruction);
12881 switch (et.size)
12882 {
12883 case 8: inst.instruction |= 0x400000; break;
12884 case 16: inst.instruction |= 0x000020; break;
12885 case 32: inst.instruction |= 0x000000; break;
12886 default: break;
12887 }
12888 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
12889 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
12890 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 12891 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
12892 /* The encoding for this instruction is identical for the ARM and Thumb
12893 variants, except for the condition field. */
037e8744 12894 do_vfp_cond_or_thumb ();
5287ad62
JB
12895 }
12896}
12897
12898/* VMOV has particularly many variations. It can be one of:
12899 0. VMOV<c><q> <Qd>, <Qm>
12900 1. VMOV<c><q> <Dd>, <Dm>
12901 (Register operations, which are VORR with Rm = Rn.)
12902 2. VMOV<c><q>.<dt> <Qd>, #<imm>
12903 3. VMOV<c><q>.<dt> <Dd>, #<imm>
12904 (Immediate loads.)
12905 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
12906 (ARM register to scalar.)
12907 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
12908 (Two ARM registers to vector.)
12909 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
12910 (Scalar to ARM register.)
12911 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
12912 (Vector to two ARM registers.)
037e8744
JB
12913 8. VMOV.F32 <Sd>, <Sm>
12914 9. VMOV.F64 <Dd>, <Dm>
12915 (VFP register moves.)
12916 10. VMOV.F32 <Sd>, #imm
12917 11. VMOV.F64 <Dd>, #imm
12918 (VFP float immediate load.)
12919 12. VMOV <Rd>, <Sm>
12920 (VFP single to ARM reg.)
12921 13. VMOV <Sd>, <Rm>
12922 (ARM reg to VFP single.)
12923 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
12924 (Two ARM regs to two VFP singles.)
12925 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
12926 (Two VFP singles to two ARM regs.)
5287ad62 12927
037e8744
JB
12928 These cases can be disambiguated using neon_select_shape, except cases 1/9
12929 and 3/11 which depend on the operand type too.
5287ad62
JB
12930
12931 All the encoded bits are hardcoded by this function.
12932
b7fc2769
JB
12933 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
12934 Cases 5, 7 may be used with VFPv2 and above.
12935
5287ad62
JB
12936 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
12937 can specify a type where it doesn't make sense to, and is ignored).
12938*/
12939
12940static void
12941do_neon_mov (void)
12942{
037e8744
JB
12943 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
12944 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
12945 NS_NULL);
12946 struct neon_type_el et;
12947 const char *ldconst = 0;
5287ad62 12948
037e8744 12949 switch (rs)
5287ad62 12950 {
037e8744
JB
12951 case NS_DD: /* case 1/9. */
12952 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
12953 /* It is not an error here if no type is given. */
12954 inst.error = NULL;
12955 if (et.type == NT_float && et.size == 64)
5287ad62 12956 {
037e8744
JB
12957 do_vfp_nsyn_opcode ("fcpyd");
12958 break;
5287ad62 12959 }
037e8744 12960 /* fall through. */
5287ad62 12961
037e8744
JB
12962 case NS_QQ: /* case 0/1. */
12963 {
12964 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12965 return;
12966 /* The architecture manual I have doesn't explicitly state which
12967 value the U bit should have for register->register moves, but
12968 the equivalent VORR instruction has U = 0, so do that. */
12969 inst.instruction = 0x0200110;
12970 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12971 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12972 inst.instruction |= LOW4 (inst.operands[1].reg);
12973 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12974 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12975 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12976 inst.instruction |= neon_quad (rs) << 6;
12977
12978 inst.instruction = neon_dp_fixup (inst.instruction);
12979 }
12980 break;
12981
12982 case NS_DI: /* case 3/11. */
12983 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
12984 inst.error = NULL;
12985 if (et.type == NT_float && et.size == 64)
5287ad62 12986 {
037e8744
JB
12987 /* case 11 (fconstd). */
12988 ldconst = "fconstd";
12989 goto encode_fconstd;
5287ad62 12990 }
037e8744
JB
12991 /* fall through. */
12992
12993 case NS_QI: /* case 2/3. */
12994 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12995 return;
12996 inst.instruction = 0x0800010;
12997 neon_move_immediate ();
12998 inst.instruction = neon_dp_fixup (inst.instruction);
5287ad62
JB
12999 break;
13000
037e8744
JB
13001 case NS_SR: /* case 4. */
13002 {
13003 unsigned bcdebits = 0;
13004 struct neon_type_el et = neon_check_type (2, NS_NULL,
13005 N_8 | N_16 | N_32 | N_KEY, N_EQK);
13006 int logsize = neon_logbits (et.size);
13007 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
13008 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
13009
13010 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13011 _(BAD_FPU));
13012 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13013 && et.size != 32, _(BAD_FPU));
13014 constraint (et.type == NT_invtype, _("bad type for scalar"));
13015 constraint (x >= 64 / et.size, _("scalar index out of range"));
13016
13017 switch (et.size)
13018 {
13019 case 8: bcdebits = 0x8; break;
13020 case 16: bcdebits = 0x1; break;
13021 case 32: bcdebits = 0x0; break;
13022 default: ;
13023 }
13024
13025 bcdebits |= x << logsize;
13026
13027 inst.instruction = 0xe000b10;
13028 do_vfp_cond_or_thumb ();
13029 inst.instruction |= LOW4 (dn) << 16;
13030 inst.instruction |= HI1 (dn) << 7;
13031 inst.instruction |= inst.operands[1].reg << 12;
13032 inst.instruction |= (bcdebits & 3) << 5;
13033 inst.instruction |= (bcdebits >> 2) << 21;
13034 }
13035 break;
13036
13037 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 13038 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 13039 _(BAD_FPU));
b7fc2769 13040
037e8744
JB
13041 inst.instruction = 0xc400b10;
13042 do_vfp_cond_or_thumb ();
13043 inst.instruction |= LOW4 (inst.operands[0].reg);
13044 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
13045 inst.instruction |= inst.operands[1].reg << 12;
13046 inst.instruction |= inst.operands[2].reg << 16;
13047 break;
13048
13049 case NS_RS: /* case 6. */
13050 {
13051 struct neon_type_el et = neon_check_type (2, NS_NULL,
13052 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
13053 unsigned logsize = neon_logbits (et.size);
13054 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
13055 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
13056 unsigned abcdebits = 0;
13057
13058 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13059 _(BAD_FPU));
13060 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13061 && et.size != 32, _(BAD_FPU));
13062 constraint (et.type == NT_invtype, _("bad type for scalar"));
13063 constraint (x >= 64 / et.size, _("scalar index out of range"));
13064
13065 switch (et.size)
13066 {
13067 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
13068 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
13069 case 32: abcdebits = 0x00; break;
13070 default: ;
13071 }
13072
13073 abcdebits |= x << logsize;
13074 inst.instruction = 0xe100b10;
13075 do_vfp_cond_or_thumb ();
13076 inst.instruction |= LOW4 (dn) << 16;
13077 inst.instruction |= HI1 (dn) << 7;
13078 inst.instruction |= inst.operands[0].reg << 12;
13079 inst.instruction |= (abcdebits & 3) << 5;
13080 inst.instruction |= (abcdebits >> 2) << 21;
13081 }
13082 break;
13083
13084 case NS_RRD: /* case 7 (fmrrd). */
13085 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
13086 _(BAD_FPU));
13087
13088 inst.instruction = 0xc500b10;
13089 do_vfp_cond_or_thumb ();
13090 inst.instruction |= inst.operands[0].reg << 12;
13091 inst.instruction |= inst.operands[1].reg << 16;
13092 inst.instruction |= LOW4 (inst.operands[2].reg);
13093 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13094 break;
13095
13096 case NS_FF: /* case 8 (fcpys). */
13097 do_vfp_nsyn_opcode ("fcpys");
13098 break;
13099
13100 case NS_FI: /* case 10 (fconsts). */
13101 ldconst = "fconsts";
13102 encode_fconstd:
13103 if (is_quarter_float (inst.operands[1].imm))
5287ad62 13104 {
037e8744
JB
13105 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
13106 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
13107 }
13108 else
037e8744
JB
13109 first_error (_("immediate out of range"));
13110 break;
13111
13112 case NS_RF: /* case 12 (fmrs). */
13113 do_vfp_nsyn_opcode ("fmrs");
13114 break;
13115
13116 case NS_FR: /* case 13 (fmsr). */
13117 do_vfp_nsyn_opcode ("fmsr");
13118 break;
13119
13120 /* The encoders for the fmrrs and fmsrr instructions expect three operands
13121 (one of which is a list), but we have parsed four. Do some fiddling to
13122 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
13123 expect. */
13124 case NS_RRFF: /* case 14 (fmrrs). */
13125 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
13126 _("VFP registers must be adjacent"));
13127 inst.operands[2].imm = 2;
13128 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13129 do_vfp_nsyn_opcode ("fmrrs");
13130 break;
13131
13132 case NS_FFRR: /* case 15 (fmsrr). */
13133 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
13134 _("VFP registers must be adjacent"));
13135 inst.operands[1] = inst.operands[2];
13136 inst.operands[2] = inst.operands[3];
13137 inst.operands[0].imm = 2;
13138 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13139 do_vfp_nsyn_opcode ("fmsrr");
5287ad62
JB
13140 break;
13141
13142 default:
13143 abort ();
13144 }
13145}
13146
13147static void
13148do_neon_rshift_round_imm (void)
13149{
037e8744 13150 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13151 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13152 int imm = inst.operands[2].imm;
13153
13154 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
13155 if (imm == 0)
13156 {
13157 inst.operands[2].present = 0;
13158 do_neon_mov ();
13159 return;
13160 }
13161
13162 constraint (imm < 1 || (unsigned)imm > et.size,
13163 _("immediate out of range for shift"));
037e8744 13164 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
13165 et.size - imm);
13166}
13167
13168static void
13169do_neon_movl (void)
13170{
13171 struct neon_type_el et = neon_check_type (2, NS_QD,
13172 N_EQK | N_DBL, N_SU_32 | N_KEY);
13173 unsigned sizebits = et.size >> 3;
13174 inst.instruction |= sizebits << 19;
13175 neon_two_same (0, et.type == NT_unsigned, -1);
13176}
13177
13178static void
13179do_neon_trn (void)
13180{
037e8744 13181 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13182 struct neon_type_el et = neon_check_type (2, rs,
13183 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13184 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 13185 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13186}
13187
13188static void
13189do_neon_zip_uzp (void)
13190{
037e8744 13191 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13192 struct neon_type_el et = neon_check_type (2, rs,
13193 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13194 if (rs == NS_DD && et.size == 32)
13195 {
13196 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
13197 inst.instruction = N_MNEM_vtrn;
13198 do_neon_trn ();
13199 return;
13200 }
037e8744 13201 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13202}
13203
13204static void
13205do_neon_sat_abs_neg (void)
13206{
037e8744 13207 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13208 struct neon_type_el et = neon_check_type (2, rs,
13209 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 13210 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13211}
13212
13213static void
13214do_neon_pair_long (void)
13215{
037e8744 13216 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13217 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
13218 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
13219 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 13220 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13221}
13222
13223static void
13224do_neon_recip_est (void)
13225{
037e8744 13226 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13227 struct neon_type_el et = neon_check_type (2, rs,
13228 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
13229 inst.instruction |= (et.type == NT_float) << 8;
037e8744 13230 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13231}
13232
13233static void
13234do_neon_cls (void)
13235{
037e8744 13236 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13237 struct neon_type_el et = neon_check_type (2, rs,
13238 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 13239 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13240}
13241
13242static void
13243do_neon_clz (void)
13244{
037e8744 13245 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13246 struct neon_type_el et = neon_check_type (2, rs,
13247 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 13248 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13249}
13250
13251static void
13252do_neon_cnt (void)
13253{
037e8744 13254 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13255 struct neon_type_el et = neon_check_type (2, rs,
13256 N_EQK | N_INT, N_8 | N_KEY);
037e8744 13257 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13258}
13259
13260static void
13261do_neon_swp (void)
13262{
037e8744
JB
13263 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13264 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
13265}
13266
13267static void
13268do_neon_tbl_tbx (void)
13269{
13270 unsigned listlenbits;
dcbf9037 13271 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5287ad62
JB
13272
13273 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
13274 {
dcbf9037 13275 first_error (_("bad list length for table lookup"));
5287ad62
JB
13276 return;
13277 }
13278
13279 listlenbits = inst.operands[1].imm - 1;
13280 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13281 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13282 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13283 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13284 inst.instruction |= LOW4 (inst.operands[2].reg);
13285 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13286 inst.instruction |= listlenbits << 8;
13287
13288 inst.instruction = neon_dp_fixup (inst.instruction);
13289}
13290
13291static void
13292do_neon_ldm_stm (void)
13293{
13294 /* P, U and L bits are part of bitmask. */
13295 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
13296 unsigned offsetbits = inst.operands[1].imm * 2;
13297
037e8744
JB
13298 if (inst.operands[1].issingle)
13299 {
13300 do_vfp_nsyn_ldm_stm (is_dbmode);
13301 return;
13302 }
13303
5287ad62
JB
13304 constraint (is_dbmode && !inst.operands[0].writeback,
13305 _("writeback (!) must be used for VLDMDB and VSTMDB"));
13306
13307 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
13308 _("register list must contain at least 1 and at most 16 "
13309 "registers"));
13310
13311 inst.instruction |= inst.operands[0].reg << 16;
13312 inst.instruction |= inst.operands[0].writeback << 21;
13313 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13314 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
13315
13316 inst.instruction |= offsetbits;
13317
037e8744 13318 do_vfp_cond_or_thumb ();
5287ad62
JB
13319}
13320
13321static void
13322do_neon_ldr_str (void)
13323{
5287ad62
JB
13324 int is_ldr = (inst.instruction & (1 << 20)) != 0;
13325
037e8744
JB
13326 if (inst.operands[0].issingle)
13327 {
cd2f129f
JB
13328 if (is_ldr)
13329 do_vfp_nsyn_opcode ("flds");
13330 else
13331 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
13332 }
13333 else
5287ad62 13334 {
cd2f129f
JB
13335 if (is_ldr)
13336 do_vfp_nsyn_opcode ("fldd");
5287ad62 13337 else
cd2f129f 13338 do_vfp_nsyn_opcode ("fstd");
5287ad62 13339 }
5287ad62
JB
13340}
13341
13342/* "interleave" version also handles non-interleaving register VLD1/VST1
13343 instructions. */
13344
13345static void
13346do_neon_ld_st_interleave (void)
13347{
037e8744 13348 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
13349 N_8 | N_16 | N_32 | N_64);
13350 unsigned alignbits = 0;
13351 unsigned idx;
13352 /* The bits in this table go:
13353 0: register stride of one (0) or two (1)
13354 1,2: register list length, minus one (1, 2, 3, 4).
13355 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
13356 We use -1 for invalid entries. */
13357 const int typetable[] =
13358 {
13359 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
13360 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
13361 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
13362 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
13363 };
13364 int typebits;
13365
dcbf9037
JB
13366 if (et.type == NT_invtype)
13367 return;
13368
5287ad62
JB
13369 if (inst.operands[1].immisalign)
13370 switch (inst.operands[1].imm >> 8)
13371 {
13372 case 64: alignbits = 1; break;
13373 case 128:
13374 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13375 goto bad_alignment;
13376 alignbits = 2;
13377 break;
13378 case 256:
13379 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13380 goto bad_alignment;
13381 alignbits = 3;
13382 break;
13383 default:
13384 bad_alignment:
dcbf9037 13385 first_error (_("bad alignment"));
5287ad62
JB
13386 return;
13387 }
13388
13389 inst.instruction |= alignbits << 4;
13390 inst.instruction |= neon_logbits (et.size) << 6;
13391
13392 /* Bits [4:6] of the immediate in a list specifier encode register stride
13393 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
13394 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
13395 up the right value for "type" in a table based on this value and the given
13396 list style, then stick it back. */
13397 idx = ((inst.operands[0].imm >> 4) & 7)
13398 | (((inst.instruction >> 8) & 3) << 3);
13399
13400 typebits = typetable[idx];
13401
13402 constraint (typebits == -1, _("bad list type for instruction"));
13403
13404 inst.instruction &= ~0xf00;
13405 inst.instruction |= typebits << 8;
13406}
13407
13408/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
13409 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
13410 otherwise. The variable arguments are a list of pairs of legal (size, align)
13411 values, terminated with -1. */
13412
13413static int
13414neon_alignment_bit (int size, int align, int *do_align, ...)
13415{
13416 va_list ap;
13417 int result = FAIL, thissize, thisalign;
13418
13419 if (!inst.operands[1].immisalign)
13420 {
13421 *do_align = 0;
13422 return SUCCESS;
13423 }
13424
13425 va_start (ap, do_align);
13426
13427 do
13428 {
13429 thissize = va_arg (ap, int);
13430 if (thissize == -1)
13431 break;
13432 thisalign = va_arg (ap, int);
13433
13434 if (size == thissize && align == thisalign)
13435 result = SUCCESS;
13436 }
13437 while (result != SUCCESS);
13438
13439 va_end (ap);
13440
13441 if (result == SUCCESS)
13442 *do_align = 1;
13443 else
dcbf9037 13444 first_error (_("unsupported alignment for instruction"));
5287ad62
JB
13445
13446 return result;
13447}
13448
13449static void
13450do_neon_ld_st_lane (void)
13451{
037e8744 13452 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
13453 int align_good, do_align = 0;
13454 int logsize = neon_logbits (et.size);
13455 int align = inst.operands[1].imm >> 8;
13456 int n = (inst.instruction >> 8) & 3;
13457 int max_el = 64 / et.size;
13458
dcbf9037
JB
13459 if (et.type == NT_invtype)
13460 return;
13461
5287ad62
JB
13462 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
13463 _("bad list length"));
13464 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
13465 _("scalar index out of range"));
13466 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
13467 && et.size == 8,
13468 _("stride of 2 unavailable when element size is 8"));
13469
13470 switch (n)
13471 {
13472 case 0: /* VLD1 / VST1. */
13473 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
13474 32, 32, -1);
13475 if (align_good == FAIL)
13476 return;
13477 if (do_align)
13478 {
13479 unsigned alignbits = 0;
13480 switch (et.size)
13481 {
13482 case 16: alignbits = 0x1; break;
13483 case 32: alignbits = 0x3; break;
13484 default: ;
13485 }
13486 inst.instruction |= alignbits << 4;
13487 }
13488 break;
13489
13490 case 1: /* VLD2 / VST2. */
13491 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
13492 32, 64, -1);
13493 if (align_good == FAIL)
13494 return;
13495 if (do_align)
13496 inst.instruction |= 1 << 4;
13497 break;
13498
13499 case 2: /* VLD3 / VST3. */
13500 constraint (inst.operands[1].immisalign,
13501 _("can't use alignment with this instruction"));
13502 break;
13503
13504 case 3: /* VLD4 / VST4. */
13505 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13506 16, 64, 32, 64, 32, 128, -1);
13507 if (align_good == FAIL)
13508 return;
13509 if (do_align)
13510 {
13511 unsigned alignbits = 0;
13512 switch (et.size)
13513 {
13514 case 8: alignbits = 0x1; break;
13515 case 16: alignbits = 0x1; break;
13516 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
13517 default: ;
13518 }
13519 inst.instruction |= alignbits << 4;
13520 }
13521 break;
13522
13523 default: ;
13524 }
13525
13526 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
13527 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13528 inst.instruction |= 1 << (4 + logsize);
13529
13530 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
13531 inst.instruction |= logsize << 10;
13532}
13533
13534/* Encode single n-element structure to all lanes VLD<n> instructions. */
13535
13536static void
13537do_neon_ld_dup (void)
13538{
037e8744 13539 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
13540 int align_good, do_align = 0;
13541
dcbf9037
JB
13542 if (et.type == NT_invtype)
13543 return;
13544
5287ad62
JB
13545 switch ((inst.instruction >> 8) & 3)
13546 {
13547 case 0: /* VLD1. */
13548 assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
13549 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13550 &do_align, 16, 16, 32, 32, -1);
13551 if (align_good == FAIL)
13552 return;
13553 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
13554 {
13555 case 1: break;
13556 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 13557 default: first_error (_("bad list length")); return;
5287ad62
JB
13558 }
13559 inst.instruction |= neon_logbits (et.size) << 6;
13560 break;
13561
13562 case 1: /* VLD2. */
13563 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13564 &do_align, 8, 16, 16, 32, 32, 64, -1);
13565 if (align_good == FAIL)
13566 return;
13567 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
13568 _("bad list length"));
13569 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13570 inst.instruction |= 1 << 5;
13571 inst.instruction |= neon_logbits (et.size) << 6;
13572 break;
13573
13574 case 2: /* VLD3. */
13575 constraint (inst.operands[1].immisalign,
13576 _("can't use alignment with this instruction"));
13577 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
13578 _("bad list length"));
13579 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13580 inst.instruction |= 1 << 5;
13581 inst.instruction |= neon_logbits (et.size) << 6;
13582 break;
13583
13584 case 3: /* VLD4. */
13585 {
13586 int align = inst.operands[1].imm >> 8;
13587 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13588 16, 64, 32, 64, 32, 128, -1);
13589 if (align_good == FAIL)
13590 return;
13591 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
13592 _("bad list length"));
13593 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13594 inst.instruction |= 1 << 5;
13595 if (et.size == 32 && align == 128)
13596 inst.instruction |= 0x3 << 6;
13597 else
13598 inst.instruction |= neon_logbits (et.size) << 6;
13599 }
13600 break;
13601
13602 default: ;
13603 }
13604
13605 inst.instruction |= do_align << 4;
13606}
13607
13608/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
13609 apart from bits [11:4]. */
13610
13611static void
13612do_neon_ldx_stx (void)
13613{
13614 switch (NEON_LANE (inst.operands[0].imm))
13615 {
13616 case NEON_INTERLEAVE_LANES:
13617 inst.instruction = NEON_ENC_INTERLV (inst.instruction);
13618 do_neon_ld_st_interleave ();
13619 break;
13620
13621 case NEON_ALL_LANES:
13622 inst.instruction = NEON_ENC_DUP (inst.instruction);
13623 do_neon_ld_dup ();
13624 break;
13625
13626 default:
13627 inst.instruction = NEON_ENC_LANE (inst.instruction);
13628 do_neon_ld_st_lane ();
13629 }
13630
13631 /* L bit comes from bit mask. */
13632 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13633 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13634 inst.instruction |= inst.operands[1].reg << 16;
13635
13636 if (inst.operands[1].postind)
13637 {
13638 int postreg = inst.operands[1].imm & 0xf;
13639 constraint (!inst.operands[1].immisreg,
13640 _("post-index must be a register"));
13641 constraint (postreg == 0xd || postreg == 0xf,
13642 _("bad register for post-index"));
13643 inst.instruction |= postreg;
13644 }
13645 else if (inst.operands[1].writeback)
13646 {
13647 inst.instruction |= 0xd;
13648 }
13649 else
13650 inst.instruction |= 0xf;
13651
13652 if (thumb_mode)
13653 inst.instruction |= 0xf9000000;
13654 else
13655 inst.instruction |= 0xf4000000;
13656}
13657
13658\f
13659/* Overall per-instruction processing. */
13660
13661/* We need to be able to fix up arbitrary expressions in some statements.
13662 This is so that we can handle symbols that are an arbitrary distance from
13663 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
13664 which returns part of an address in a form which will be valid for
13665 a data instruction. We do this by pushing the expression into a symbol
13666 in the expr_section, and creating a fix for that. */
13667
13668static void
13669fix_new_arm (fragS * frag,
13670 int where,
13671 short int size,
13672 expressionS * exp,
13673 int pc_rel,
13674 int reloc)
13675{
13676 fixS * new_fix;
13677
13678 switch (exp->X_op)
13679 {
13680 case O_constant:
13681 case O_symbol:
13682 case O_add:
13683 case O_subtract:
13684 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
13685 break;
13686
13687 default:
13688 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
13689 pc_rel, reloc);
13690 break;
13691 }
13692
13693 /* Mark whether the fix is to a THUMB instruction, or an ARM
13694 instruction. */
13695 new_fix->tc_fix_data = thumb_mode;
13696}
13697
13698/* Create a frg for an instruction requiring relaxation. */
13699static void
13700output_relax_insn (void)
13701{
13702 char * to;
13703 symbolS *sym;
0110f2b8
PB
13704 int offset;
13705
6e1cb1a6
PB
13706 /* The size of the instruction is unknown, so tie the debug info to the
13707 start of the instruction. */
13708 dwarf2_emit_insn (0);
6e1cb1a6 13709
0110f2b8
PB
13710 switch (inst.reloc.exp.X_op)
13711 {
13712 case O_symbol:
13713 sym = inst.reloc.exp.X_add_symbol;
13714 offset = inst.reloc.exp.X_add_number;
13715 break;
13716 case O_constant:
13717 sym = NULL;
13718 offset = inst.reloc.exp.X_add_number;
13719 break;
13720 default:
13721 sym = make_expr_symbol (&inst.reloc.exp);
13722 offset = 0;
13723 break;
13724 }
13725 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
13726 inst.relax, sym, offset, NULL/*offset, opcode*/);
13727 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
13728}
13729
13730/* Write a 32-bit thumb instruction to buf. */
13731static void
13732put_thumb32_insn (char * buf, unsigned long insn)
13733{
13734 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
13735 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
13736}
13737
b99bd4ef 13738static void
c19d1205 13739output_inst (const char * str)
b99bd4ef 13740{
c19d1205 13741 char * to = NULL;
b99bd4ef 13742
c19d1205 13743 if (inst.error)
b99bd4ef 13744 {
c19d1205 13745 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
13746 return;
13747 }
0110f2b8
PB
13748 if (inst.relax) {
13749 output_relax_insn();
13750 return;
13751 }
c19d1205
ZW
13752 if (inst.size == 0)
13753 return;
b99bd4ef 13754
c19d1205
ZW
13755 to = frag_more (inst.size);
13756
13757 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 13758 {
c19d1205 13759 assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 13760 put_thumb32_insn (to, inst.instruction);
b99bd4ef 13761 }
c19d1205 13762 else if (inst.size > INSN_SIZE)
b99bd4ef 13763 {
c19d1205
ZW
13764 assert (inst.size == (2 * INSN_SIZE));
13765 md_number_to_chars (to, inst.instruction, INSN_SIZE);
13766 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 13767 }
c19d1205
ZW
13768 else
13769 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 13770
c19d1205
ZW
13771 if (inst.reloc.type != BFD_RELOC_UNUSED)
13772 fix_new_arm (frag_now, to - frag_now->fr_literal,
13773 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
13774 inst.reloc.type);
b99bd4ef 13775
c19d1205 13776 dwarf2_emit_insn (inst.size);
c19d1205 13777}
b99bd4ef 13778
c19d1205
ZW
13779/* Tag values used in struct asm_opcode's tag field. */
13780enum opcode_tag
13781{
13782 OT_unconditional, /* Instruction cannot be conditionalized.
13783 The ARM condition field is still 0xE. */
13784 OT_unconditionalF, /* Instruction cannot be conditionalized
13785 and carries 0xF in its ARM condition field. */
13786 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
13787 OT_csuffixF, /* Some forms of the instruction take a conditional
13788 suffix, others place 0xF where the condition field
13789 would be. */
c19d1205
ZW
13790 OT_cinfix3, /* Instruction takes a conditional infix,
13791 beginning at character index 3. (In
13792 unified mode, it becomes a suffix.) */
088fa78e
KH
13793 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
13794 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
13795 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
13796 character index 3, even in unified mode. Used for
13797 legacy instructions where suffix and infix forms
13798 may be ambiguous. */
c19d1205 13799 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 13800 suffix or an infix at character index 3. */
c19d1205
ZW
13801 OT_odd_infix_unc, /* This is the unconditional variant of an
13802 instruction that takes a conditional infix
13803 at an unusual position. In unified mode,
13804 this variant will accept a suffix. */
13805 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
13806 are the conditional variants of instructions that
13807 take conditional infixes in unusual positions.
13808 The infix appears at character index
13809 (tag - OT_odd_infix_0). These are not accepted
13810 in unified mode. */
13811};
b99bd4ef 13812
c19d1205
ZW
13813/* Subroutine of md_assemble, responsible for looking up the primary
13814 opcode from the mnemonic the user wrote. STR points to the
13815 beginning of the mnemonic.
13816
13817 This is not simply a hash table lookup, because of conditional
13818 variants. Most instructions have conditional variants, which are
13819 expressed with a _conditional affix_ to the mnemonic. If we were
13820 to encode each conditional variant as a literal string in the opcode
13821 table, it would have approximately 20,000 entries.
13822
13823 Most mnemonics take this affix as a suffix, and in unified syntax,
13824 'most' is upgraded to 'all'. However, in the divided syntax, some
13825 instructions take the affix as an infix, notably the s-variants of
13826 the arithmetic instructions. Of those instructions, all but six
13827 have the infix appear after the third character of the mnemonic.
13828
13829 Accordingly, the algorithm for looking up primary opcodes given
13830 an identifier is:
13831
13832 1. Look up the identifier in the opcode table.
13833 If we find a match, go to step U.
13834
13835 2. Look up the last two characters of the identifier in the
13836 conditions table. If we find a match, look up the first N-2
13837 characters of the identifier in the opcode table. If we
13838 find a match, go to step CE.
13839
13840 3. Look up the fourth and fifth characters of the identifier in
13841 the conditions table. If we find a match, extract those
13842 characters from the identifier, and look up the remaining
13843 characters in the opcode table. If we find a match, go
13844 to step CM.
13845
13846 4. Fail.
13847
13848 U. Examine the tag field of the opcode structure, in case this is
13849 one of the six instructions with its conditional infix in an
13850 unusual place. If it is, the tag tells us where to find the
13851 infix; look it up in the conditions table and set inst.cond
13852 accordingly. Otherwise, this is an unconditional instruction.
13853 Again set inst.cond accordingly. Return the opcode structure.
13854
13855 CE. Examine the tag field to make sure this is an instruction that
13856 should receive a conditional suffix. If it is not, fail.
13857 Otherwise, set inst.cond from the suffix we already looked up,
13858 and return the opcode structure.
13859
13860 CM. Examine the tag field to make sure this is an instruction that
13861 should receive a conditional infix after the third character.
13862 If it is not, fail. Otherwise, undo the edits to the current
13863 line of input and proceed as for case CE. */
13864
13865static const struct asm_opcode *
13866opcode_lookup (char **str)
13867{
13868 char *end, *base;
13869 char *affix;
13870 const struct asm_opcode *opcode;
13871 const struct asm_cond *cond;
e3cb604e 13872 char save[2];
267d2029
JB
13873 bfd_boolean neon_supported;
13874
13875 neon_supported = ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1);
c19d1205
ZW
13876
13877 /* Scan up to the end of the mnemonic, which must end in white space,
267d2029 13878 '.' (in unified mode, or for Neon instructions), or end of string. */
c19d1205 13879 for (base = end = *str; *end != '\0'; end++)
267d2029 13880 if (*end == ' ' || ((unified_syntax || neon_supported) && *end == '.'))
c19d1205 13881 break;
b99bd4ef 13882
c19d1205
ZW
13883 if (end == base)
13884 return 0;
b99bd4ef 13885
5287ad62 13886 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 13887 if (end[0] == '.')
b99bd4ef 13888 {
5287ad62
JB
13889 int offset = 2;
13890
267d2029
JB
13891 /* The .w and .n suffixes are only valid if the unified syntax is in
13892 use. */
13893 if (unified_syntax && end[1] == 'w')
c19d1205 13894 inst.size_req = 4;
267d2029 13895 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
13896 inst.size_req = 2;
13897 else
5287ad62
JB
13898 offset = 0;
13899
13900 inst.vectype.elems = 0;
13901
13902 *str = end + offset;
b99bd4ef 13903
5287ad62
JB
13904 if (end[offset] == '.')
13905 {
267d2029
JB
13906 /* See if we have a Neon type suffix (possible in either unified or
13907 non-unified ARM syntax mode). */
dcbf9037 13908 if (parse_neon_type (&inst.vectype, str) == FAIL)
5287ad62
JB
13909 return 0;
13910 }
13911 else if (end[offset] != '\0' && end[offset] != ' ')
13912 return 0;
b99bd4ef 13913 }
c19d1205
ZW
13914 else
13915 *str = end;
b99bd4ef 13916
c19d1205
ZW
13917 /* Look for unaffixed or special-case affixed mnemonic. */
13918 opcode = hash_find_n (arm_ops_hsh, base, end - base);
13919 if (opcode)
b99bd4ef 13920 {
c19d1205
ZW
13921 /* step U */
13922 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 13923 {
c19d1205
ZW
13924 inst.cond = COND_ALWAYS;
13925 return opcode;
b99bd4ef 13926 }
b99bd4ef 13927
c19d1205
ZW
13928 if (unified_syntax)
13929 as_warn (_("conditional infixes are deprecated in unified syntax"));
13930 affix = base + (opcode->tag - OT_odd_infix_0);
13931 cond = hash_find_n (arm_cond_hsh, affix, 2);
13932 assert (cond);
b99bd4ef 13933
c19d1205
ZW
13934 inst.cond = cond->value;
13935 return opcode;
13936 }
b99bd4ef 13937
c19d1205
ZW
13938 /* Cannot have a conditional suffix on a mnemonic of less than two
13939 characters. */
13940 if (end - base < 3)
13941 return 0;
b99bd4ef 13942
c19d1205
ZW
13943 /* Look for suffixed mnemonic. */
13944 affix = end - 2;
13945 cond = hash_find_n (arm_cond_hsh, affix, 2);
13946 opcode = hash_find_n (arm_ops_hsh, base, affix - base);
13947 if (opcode && cond)
13948 {
13949 /* step CE */
13950 switch (opcode->tag)
13951 {
e3cb604e
PB
13952 case OT_cinfix3_legacy:
13953 /* Ignore conditional suffixes matched on infix only mnemonics. */
13954 break;
13955
c19d1205 13956 case OT_cinfix3:
088fa78e 13957 case OT_cinfix3_deprecated:
c19d1205
ZW
13958 case OT_odd_infix_unc:
13959 if (!unified_syntax)
e3cb604e 13960 return 0;
c19d1205
ZW
13961 /* else fall through */
13962
13963 case OT_csuffix:
037e8744 13964 case OT_csuffixF:
c19d1205
ZW
13965 case OT_csuf_or_in3:
13966 inst.cond = cond->value;
13967 return opcode;
13968
13969 case OT_unconditional:
13970 case OT_unconditionalF:
dfa9f0d5
PB
13971 if (thumb_mode)
13972 {
13973 inst.cond = cond->value;
13974 }
13975 else
13976 {
13977 /* delayed diagnostic */
13978 inst.error = BAD_COND;
13979 inst.cond = COND_ALWAYS;
13980 }
c19d1205 13981 return opcode;
b99bd4ef 13982
c19d1205
ZW
13983 default:
13984 return 0;
13985 }
13986 }
b99bd4ef 13987
c19d1205
ZW
13988 /* Cannot have a usual-position infix on a mnemonic of less than
13989 six characters (five would be a suffix). */
13990 if (end - base < 6)
13991 return 0;
b99bd4ef 13992
c19d1205
ZW
13993 /* Look for infixed mnemonic in the usual position. */
13994 affix = base + 3;
13995 cond = hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e
PB
13996 if (!cond)
13997 return 0;
13998
13999 memcpy (save, affix, 2);
14000 memmove (affix, affix + 2, (end - affix) - 2);
14001 opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2);
14002 memmove (affix + 2, affix, (end - affix) - 2);
14003 memcpy (affix, save, 2);
14004
088fa78e
KH
14005 if (opcode
14006 && (opcode->tag == OT_cinfix3
14007 || opcode->tag == OT_cinfix3_deprecated
14008 || opcode->tag == OT_csuf_or_in3
14009 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 14010 {
c19d1205 14011 /* step CM */
088fa78e
KH
14012 if (unified_syntax
14013 && (opcode->tag == OT_cinfix3
14014 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
14015 as_warn (_("conditional infixes are deprecated in unified syntax"));
14016
14017 inst.cond = cond->value;
14018 return opcode;
b99bd4ef
NC
14019 }
14020
c19d1205 14021 return 0;
b99bd4ef
NC
14022}
14023
c19d1205
ZW
14024void
14025md_assemble (char *str)
b99bd4ef 14026{
c19d1205
ZW
14027 char *p = str;
14028 const struct asm_opcode * opcode;
b99bd4ef 14029
c19d1205
ZW
14030 /* Align the previous label if needed. */
14031 if (last_label_seen != NULL)
b99bd4ef 14032 {
c19d1205
ZW
14033 symbol_set_frag (last_label_seen, frag_now);
14034 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
14035 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
14036 }
14037
c19d1205
ZW
14038 memset (&inst, '\0', sizeof (inst));
14039 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 14040
c19d1205
ZW
14041 opcode = opcode_lookup (&p);
14042 if (!opcode)
b99bd4ef 14043 {
c19d1205 14044 /* It wasn't an instruction, but it might be a register alias of
dcbf9037
JB
14045 the form alias .req reg, or a Neon .dn/.qn directive. */
14046 if (!create_register_alias (str, p)
14047 && !create_neon_reg_alias (str, p))
c19d1205 14048 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 14049
b99bd4ef
NC
14050 return;
14051 }
14052
088fa78e
KH
14053 if (opcode->tag == OT_cinfix3_deprecated)
14054 as_warn (_("s suffix on comparison instruction is deprecated"));
14055
037e8744
JB
14056 /* The value which unconditional instructions should have in place of the
14057 condition field. */
14058 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
14059
c19d1205 14060 if (thumb_mode)
b99bd4ef 14061 {
e74cfd16 14062 arm_feature_set variant;
8f06b2d8
PB
14063
14064 variant = cpu_variant;
14065 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
14066 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
14067 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 14068 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
14069 if (!opcode->tvariant
14070 || (thumb_mode == 1
14071 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 14072 {
c19d1205 14073 as_bad (_("selected processor does not support `%s'"), str);
b99bd4ef
NC
14074 return;
14075 }
c19d1205
ZW
14076 if (inst.cond != COND_ALWAYS && !unified_syntax
14077 && opcode->tencode != do_t_branch)
b99bd4ef 14078 {
c19d1205 14079 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
14080 return;
14081 }
14082
e27ec89e
PB
14083 /* Check conditional suffixes. */
14084 if (current_it_mask)
14085 {
14086 int cond;
14087 cond = current_cc ^ ((current_it_mask >> 4) & 1) ^ 1;
dfa9f0d5
PB
14088 current_it_mask <<= 1;
14089 current_it_mask &= 0x1f;
14090 /* The BKPT instruction is unconditional even in an IT block. */
14091 if (!inst.error
14092 && cond != inst.cond && opcode->tencode != do_t_bkpt)
e27ec89e
PB
14093 {
14094 as_bad (_("incorrect condition in IT block"));
14095 return;
14096 }
e27ec89e
PB
14097 }
14098 else if (inst.cond != COND_ALWAYS && opcode->tencode != do_t_branch)
14099 {
14100 as_bad (_("thumb conditional instrunction not in IT block"));
14101 return;
14102 }
14103
c19d1205
ZW
14104 mapping_state (MAP_THUMB);
14105 inst.instruction = opcode->tvalue;
14106
14107 if (!parse_operands (p, opcode->operands))
14108 opcode->tencode ();
14109
e27ec89e
PB
14110 /* Clear current_it_mask at the end of an IT block. */
14111 if (current_it_mask == 0x10)
14112 current_it_mask = 0;
14113
0110f2b8 14114 if (!(inst.error || inst.relax))
b99bd4ef 14115 {
c19d1205
ZW
14116 assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
14117 inst.size = (inst.instruction > 0xffff ? 4 : 2);
14118 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 14119 {
c19d1205 14120 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
14121 return;
14122 }
14123 }
e74cfd16
PB
14124 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14125 *opcode->tvariant);
ee065d83 14126 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 14127 set those bits when Thumb-2 32-bit instructions are seen. ie.
ee065d83
PB
14128 anything other than bl/blx.
14129 This is overly pessimistic for relaxable instructions. */
14130 if ((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
14131 || inst.relax)
e74cfd16
PB
14132 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14133 arm_ext_v6t2);
c19d1205 14134 }
3e9e4fcf 14135 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
14136 {
14137 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
14138 if (!opcode->avariant ||
14139 !ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
b99bd4ef 14140 {
c19d1205
ZW
14141 as_bad (_("selected processor does not support `%s'"), str);
14142 return;
b99bd4ef 14143 }
c19d1205 14144 if (inst.size_req)
b99bd4ef 14145 {
c19d1205
ZW
14146 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
14147 return;
b99bd4ef
NC
14148 }
14149
c19d1205
ZW
14150 mapping_state (MAP_ARM);
14151 inst.instruction = opcode->avalue;
14152 if (opcode->tag == OT_unconditionalF)
14153 inst.instruction |= 0xF << 28;
14154 else
14155 inst.instruction |= inst.cond << 28;
14156 inst.size = INSN_SIZE;
14157 if (!parse_operands (p, opcode->operands))
14158 opcode->aencode ();
ee065d83
PB
14159 /* Arm mode bx is marked as both v4T and v5 because it's still required
14160 on a hypothetical non-thumb v5 core. */
e74cfd16
PB
14161 if (ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v4t)
14162 || ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v5))
14163 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 14164 else
e74cfd16
PB
14165 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
14166 *opcode->avariant);
b99bd4ef 14167 }
3e9e4fcf
JB
14168 else
14169 {
14170 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
14171 "-- `%s'"), str);
14172 return;
14173 }
c19d1205
ZW
14174 output_inst (str);
14175}
b99bd4ef 14176
c19d1205
ZW
14177/* Various frobbings of labels and their addresses. */
14178
14179void
14180arm_start_line_hook (void)
14181{
14182 last_label_seen = NULL;
b99bd4ef
NC
14183}
14184
c19d1205
ZW
14185void
14186arm_frob_label (symbolS * sym)
b99bd4ef 14187{
c19d1205 14188 last_label_seen = sym;
b99bd4ef 14189
c19d1205 14190 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 14191
c19d1205
ZW
14192#if defined OBJ_COFF || defined OBJ_ELF
14193 ARM_SET_INTERWORK (sym, support_interwork);
14194#endif
b99bd4ef 14195
c19d1205
ZW
14196 /* Note - do not allow local symbols (.Lxxx) to be labeled
14197 as Thumb functions. This is because these labels, whilst
14198 they exist inside Thumb code, are not the entry points for
14199 possible ARM->Thumb calls. Also, these labels can be used
14200 as part of a computed goto or switch statement. eg gcc
14201 can generate code that looks like this:
b99bd4ef 14202
c19d1205
ZW
14203 ldr r2, [pc, .Laaa]
14204 lsl r3, r3, #2
14205 ldr r2, [r3, r2]
14206 mov pc, r2
b99bd4ef 14207
c19d1205
ZW
14208 .Lbbb: .word .Lxxx
14209 .Lccc: .word .Lyyy
14210 ..etc...
14211 .Laaa: .word Lbbb
b99bd4ef 14212
c19d1205
ZW
14213 The first instruction loads the address of the jump table.
14214 The second instruction converts a table index into a byte offset.
14215 The third instruction gets the jump address out of the table.
14216 The fourth instruction performs the jump.
b99bd4ef 14217
c19d1205
ZW
14218 If the address stored at .Laaa is that of a symbol which has the
14219 Thumb_Func bit set, then the linker will arrange for this address
14220 to have the bottom bit set, which in turn would mean that the
14221 address computation performed by the third instruction would end
14222 up with the bottom bit set. Since the ARM is capable of unaligned
14223 word loads, the instruction would then load the incorrect address
14224 out of the jump table, and chaos would ensue. */
14225 if (label_is_thumb_function_name
14226 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
14227 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 14228 {
c19d1205
ZW
14229 /* When the address of a Thumb function is taken the bottom
14230 bit of that address should be set. This will allow
14231 interworking between Arm and Thumb functions to work
14232 correctly. */
b99bd4ef 14233
c19d1205 14234 THUMB_SET_FUNC (sym, 1);
b99bd4ef 14235
c19d1205 14236 label_is_thumb_function_name = FALSE;
b99bd4ef 14237 }
07a53e5c 14238
07a53e5c 14239 dwarf2_emit_label (sym);
b99bd4ef
NC
14240}
14241
c19d1205
ZW
14242int
14243arm_data_in_code (void)
b99bd4ef 14244{
c19d1205 14245 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 14246 {
c19d1205
ZW
14247 *input_line_pointer = '/';
14248 input_line_pointer += 5;
14249 *input_line_pointer = 0;
14250 return 1;
b99bd4ef
NC
14251 }
14252
c19d1205 14253 return 0;
b99bd4ef
NC
14254}
14255
c19d1205
ZW
14256char *
14257arm_canonicalize_symbol_name (char * name)
b99bd4ef 14258{
c19d1205 14259 int len;
b99bd4ef 14260
c19d1205
ZW
14261 if (thumb_mode && (len = strlen (name)) > 5
14262 && streq (name + len - 5, "/data"))
14263 *(name + len - 5) = 0;
b99bd4ef 14264
c19d1205 14265 return name;
b99bd4ef 14266}
c19d1205
ZW
14267\f
14268/* Table of all register names defined by default. The user can
14269 define additional names with .req. Note that all register names
14270 should appear in both upper and lowercase variants. Some registers
14271 also have mixed-case names. */
b99bd4ef 14272
dcbf9037 14273#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 14274#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 14275#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
14276#define REGSET(p,t) \
14277 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
14278 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
14279 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
14280 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
14281#define REGSETH(p,t) \
14282 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
14283 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
14284 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
14285 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
14286#define REGSET2(p,t) \
14287 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
14288 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
14289 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
14290 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
7ed4c4c5 14291
c19d1205 14292static const struct reg_entry reg_names[] =
7ed4c4c5 14293{
c19d1205
ZW
14294 /* ARM integer registers. */
14295 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 14296
c19d1205
ZW
14297 /* ATPCS synonyms. */
14298 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
14299 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
14300 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 14301
c19d1205
ZW
14302 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
14303 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
14304 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 14305
c19d1205
ZW
14306 /* Well-known aliases. */
14307 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
14308 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
14309
14310 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
14311 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
14312
14313 /* Coprocessor numbers. */
14314 REGSET(p, CP), REGSET(P, CP),
14315
14316 /* Coprocessor register numbers. The "cr" variants are for backward
14317 compatibility. */
14318 REGSET(c, CN), REGSET(C, CN),
14319 REGSET(cr, CN), REGSET(CR, CN),
14320
14321 /* FPA registers. */
14322 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
14323 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
14324
14325 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
14326 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
14327
14328 /* VFP SP registers. */
5287ad62
JB
14329 REGSET(s,VFS), REGSET(S,VFS),
14330 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
14331
14332 /* VFP DP Registers. */
5287ad62
JB
14333 REGSET(d,VFD), REGSET(D,VFD),
14334 /* Extra Neon DP registers. */
14335 REGSETH(d,VFD), REGSETH(D,VFD),
14336
14337 /* Neon QP registers. */
14338 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
14339
14340 /* VFP control registers. */
14341 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
14342 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
14343
14344 /* Maverick DSP coprocessor registers. */
14345 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
14346 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
14347
14348 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
14349 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
14350 REGDEF(dspsc,0,DSPSC),
14351
14352 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
14353 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
14354 REGDEF(DSPSC,0,DSPSC),
14355
14356 /* iWMMXt data registers - p0, c0-15. */
14357 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
14358
14359 /* iWMMXt control registers - p1, c0-3. */
14360 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
14361 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
14362 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
14363 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
14364
14365 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
14366 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
14367 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
14368 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
14369 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
14370
14371 /* XScale accumulator registers. */
14372 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
14373};
14374#undef REGDEF
14375#undef REGNUM
14376#undef REGSET
7ed4c4c5 14377
c19d1205
ZW
14378/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
14379 within psr_required_here. */
14380static const struct asm_psr psrs[] =
14381{
14382 /* Backward compatibility notation. Note that "all" is no longer
14383 truly all possible PSR bits. */
14384 {"all", PSR_c | PSR_f},
14385 {"flg", PSR_f},
14386 {"ctl", PSR_c},
14387
14388 /* Individual flags. */
14389 {"f", PSR_f},
14390 {"c", PSR_c},
14391 {"x", PSR_x},
14392 {"s", PSR_s},
14393 /* Combinations of flags. */
14394 {"fs", PSR_f | PSR_s},
14395 {"fx", PSR_f | PSR_x},
14396 {"fc", PSR_f | PSR_c},
14397 {"sf", PSR_s | PSR_f},
14398 {"sx", PSR_s | PSR_x},
14399 {"sc", PSR_s | PSR_c},
14400 {"xf", PSR_x | PSR_f},
14401 {"xs", PSR_x | PSR_s},
14402 {"xc", PSR_x | PSR_c},
14403 {"cf", PSR_c | PSR_f},
14404 {"cs", PSR_c | PSR_s},
14405 {"cx", PSR_c | PSR_x},
14406 {"fsx", PSR_f | PSR_s | PSR_x},
14407 {"fsc", PSR_f | PSR_s | PSR_c},
14408 {"fxs", PSR_f | PSR_x | PSR_s},
14409 {"fxc", PSR_f | PSR_x | PSR_c},
14410 {"fcs", PSR_f | PSR_c | PSR_s},
14411 {"fcx", PSR_f | PSR_c | PSR_x},
14412 {"sfx", PSR_s | PSR_f | PSR_x},
14413 {"sfc", PSR_s | PSR_f | PSR_c},
14414 {"sxf", PSR_s | PSR_x | PSR_f},
14415 {"sxc", PSR_s | PSR_x | PSR_c},
14416 {"scf", PSR_s | PSR_c | PSR_f},
14417 {"scx", PSR_s | PSR_c | PSR_x},
14418 {"xfs", PSR_x | PSR_f | PSR_s},
14419 {"xfc", PSR_x | PSR_f | PSR_c},
14420 {"xsf", PSR_x | PSR_s | PSR_f},
14421 {"xsc", PSR_x | PSR_s | PSR_c},
14422 {"xcf", PSR_x | PSR_c | PSR_f},
14423 {"xcs", PSR_x | PSR_c | PSR_s},
14424 {"cfs", PSR_c | PSR_f | PSR_s},
14425 {"cfx", PSR_c | PSR_f | PSR_x},
14426 {"csf", PSR_c | PSR_s | PSR_f},
14427 {"csx", PSR_c | PSR_s | PSR_x},
14428 {"cxf", PSR_c | PSR_x | PSR_f},
14429 {"cxs", PSR_c | PSR_x | PSR_s},
14430 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
14431 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
14432 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
14433 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
14434 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
14435 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
14436 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
14437 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
14438 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
14439 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
14440 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
14441 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
14442 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
14443 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
14444 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
14445 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
14446 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
14447 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
14448 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
14449 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
14450 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
14451 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
14452 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
14453 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
14454};
14455
62b3e311
PB
14456/* Table of V7M psr names. */
14457static const struct asm_psr v7m_psrs[] =
14458{
14459 {"apsr", 0 },
14460 {"iapsr", 1 },
14461 {"eapsr", 2 },
14462 {"psr", 3 },
14463 {"ipsr", 5 },
14464 {"epsr", 6 },
14465 {"iepsr", 7 },
14466 {"msp", 8 },
14467 {"psp", 9 },
14468 {"primask", 16},
14469 {"basepri", 17},
14470 {"basepri_max", 18},
14471 {"faultmask", 19},
14472 {"control", 20}
14473};
14474
c19d1205
ZW
14475/* Table of all shift-in-operand names. */
14476static const struct asm_shift_name shift_names [] =
b99bd4ef 14477{
c19d1205
ZW
14478 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
14479 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
14480 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
14481 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
14482 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
14483 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
14484};
b99bd4ef 14485
c19d1205
ZW
14486/* Table of all explicit relocation names. */
14487#ifdef OBJ_ELF
14488static struct reloc_entry reloc_names[] =
14489{
14490 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
14491 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
14492 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
14493 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
14494 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
14495 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
14496 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
14497 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
14498 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
14499 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
14500 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
14501};
14502#endif
b99bd4ef 14503
c19d1205
ZW
14504/* Table of all conditional affixes. 0xF is not defined as a condition code. */
14505static const struct asm_cond conds[] =
14506{
14507 {"eq", 0x0},
14508 {"ne", 0x1},
14509 {"cs", 0x2}, {"hs", 0x2},
14510 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
14511 {"mi", 0x4},
14512 {"pl", 0x5},
14513 {"vs", 0x6},
14514 {"vc", 0x7},
14515 {"hi", 0x8},
14516 {"ls", 0x9},
14517 {"ge", 0xa},
14518 {"lt", 0xb},
14519 {"gt", 0xc},
14520 {"le", 0xd},
14521 {"al", 0xe}
14522};
bfae80f2 14523
62b3e311
PB
14524static struct asm_barrier_opt barrier_opt_names[] =
14525{
14526 { "sy", 0xf },
14527 { "un", 0x7 },
14528 { "st", 0xe },
14529 { "unst", 0x6 }
14530};
14531
c19d1205
ZW
14532/* Table of ARM-format instructions. */
14533
14534/* Macros for gluing together operand strings. N.B. In all cases
14535 other than OPS0, the trailing OP_stop comes from default
14536 zero-initialization of the unspecified elements of the array. */
14537#define OPS0() { OP_stop, }
14538#define OPS1(a) { OP_##a, }
14539#define OPS2(a,b) { OP_##a,OP_##b, }
14540#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
14541#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
14542#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
14543#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
14544
14545/* These macros abstract out the exact format of the mnemonic table and
14546 save some repeated characters. */
14547
14548/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
14549#define TxCE(mnem, op, top, nops, ops, ae, te) \
14550 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 14551 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14552
14553/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
14554 a T_MNEM_xyz enumerator. */
14555#define TCE(mnem, aop, top, nops, ops, ae, te) \
14556 TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
14557#define tCE(mnem, aop, top, nops, ops, ae, te) \
14558 TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14559
14560/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
14561 infix after the third character. */
14562#define TxC3(mnem, op, top, nops, ops, ae, te) \
14563 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 14564 THUMB_VARIANT, do_##ae, do_##te }
088fa78e
KH
14565#define TxC3w(mnem, op, top, nops, ops, ae, te) \
14566 { #mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
14567 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14568#define TC3(mnem, aop, top, nops, ops, ae, te) \
14569 TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e
KH
14570#define TC3w(mnem, aop, top, nops, ops, ae, te) \
14571 TxC3w(mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205
ZW
14572#define tC3(mnem, aop, top, nops, ops, ae, te) \
14573 TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
088fa78e
KH
14574#define tC3w(mnem, aop, top, nops, ops, ae, te) \
14575 TxC3w(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
c19d1205
ZW
14576
14577/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
14578 appear in the condition table. */
14579#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
14580 { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
1887dd22 14581 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14582
14583#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
14584 TxCM_(m1, , m2, op, top, nops, ops, ae, te), \
14585 TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \
14586 TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \
14587 TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \
14588 TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \
14589 TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \
14590 TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \
14591 TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \
14592 TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \
14593 TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \
14594 TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \
14595 TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \
14596 TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \
14597 TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \
14598 TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \
14599 TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \
14600 TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \
14601 TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \
14602 TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
14603
14604#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
14605 TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
14606#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
14607 TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
14608
14609/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
14610 field is still 0xE. Many of the Thumb variants can be executed
14611 conditionally, so this is checked separately. */
c19d1205
ZW
14612#define TUE(mnem, op, top, nops, ops, ae, te) \
14613 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 14614 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14615
14616/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
14617 condition code field. */
14618#define TUF(mnem, op, top, nops, ops, ae, te) \
14619 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 14620 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14621
14622/* ARM-only variants of all the above. */
6a86118a
NC
14623#define CE(mnem, op, nops, ops, ae) \
14624 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14625
14626#define C3(mnem, op, nops, ops, ae) \
14627 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14628
e3cb604e
PB
14629/* Legacy mnemonics that always have conditional infix after the third
14630 character. */
14631#define CL(mnem, op, nops, ops, ae) \
14632 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14633 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14634
8f06b2d8
PB
14635/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
14636#define cCE(mnem, op, nops, ops, ae) \
14637 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14638
e3cb604e
PB
14639/* Legacy coprocessor instructions where conditional infix and conditional
14640 suffix are ambiguous. For consistency this includes all FPA instructions,
14641 not just the potentially ambiguous ones. */
14642#define cCL(mnem, op, nops, ops, ae) \
14643 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14644 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14645
14646/* Coprocessor, takes either a suffix or a position-3 infix
14647 (for an FPA corner case). */
14648#define C3E(mnem, op, nops, ops, ae) \
14649 { #mnem, OPS##nops ops, OT_csuf_or_in3, \
14650 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 14651
6a86118a
NC
14652#define xCM_(m1, m2, m3, op, nops, ops, ae) \
14653 { #m1 #m2 #m3, OPS##nops ops, \
14654 sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14655 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14656
14657#define CM(m1, m2, op, nops, ops, ae) \
14658 xCM_(m1, , m2, op, nops, ops, ae), \
14659 xCM_(m1, eq, m2, op, nops, ops, ae), \
14660 xCM_(m1, ne, m2, op, nops, ops, ae), \
14661 xCM_(m1, cs, m2, op, nops, ops, ae), \
14662 xCM_(m1, hs, m2, op, nops, ops, ae), \
14663 xCM_(m1, cc, m2, op, nops, ops, ae), \
14664 xCM_(m1, ul, m2, op, nops, ops, ae), \
14665 xCM_(m1, lo, m2, op, nops, ops, ae), \
14666 xCM_(m1, mi, m2, op, nops, ops, ae), \
14667 xCM_(m1, pl, m2, op, nops, ops, ae), \
14668 xCM_(m1, vs, m2, op, nops, ops, ae), \
14669 xCM_(m1, vc, m2, op, nops, ops, ae), \
14670 xCM_(m1, hi, m2, op, nops, ops, ae), \
14671 xCM_(m1, ls, m2, op, nops, ops, ae), \
14672 xCM_(m1, ge, m2, op, nops, ops, ae), \
14673 xCM_(m1, lt, m2, op, nops, ops, ae), \
14674 xCM_(m1, gt, m2, op, nops, ops, ae), \
14675 xCM_(m1, le, m2, op, nops, ops, ae), \
14676 xCM_(m1, al, m2, op, nops, ops, ae)
14677
14678#define UE(mnem, op, nops, ops, ae) \
14679 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14680
14681#define UF(mnem, op, nops, ops, ae) \
14682 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14683
5287ad62
JB
14684/* Neon data-processing. ARM versions are unconditional with cond=0xf.
14685 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
14686 use the same encoding function for each. */
14687#define NUF(mnem, op, nops, ops, enc) \
14688 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
14689 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14690
14691/* Neon data processing, version which indirects through neon_enc_tab for
14692 the various overloaded versions of opcodes. */
14693#define nUF(mnem, op, nops, ops, enc) \
14694 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM_##op, N_MNEM_##op, \
14695 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14696
14697/* Neon insn with conditional suffix for the ARM version, non-overloaded
14698 version. */
037e8744
JB
14699#define NCE_tag(mnem, op, nops, ops, enc, tag) \
14700 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
14701 THUMB_VARIANT, do_##enc, do_##enc }
14702
037e8744
JB
14703#define NCE(mnem, op, nops, ops, enc) \
14704 NCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14705
14706#define NCEF(mnem, op, nops, ops, enc) \
14707 NCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14708
5287ad62 14709/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744
JB
14710#define nCE_tag(mnem, op, nops, ops, enc, tag) \
14711 { #mnem, OPS##nops ops, tag, N_MNEM_##op, N_MNEM_##op, \
5287ad62
JB
14712 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14713
037e8744
JB
14714#define nCE(mnem, op, nops, ops, enc) \
14715 nCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14716
14717#define nCEF(mnem, op, nops, ops, enc) \
14718 nCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14719
c19d1205
ZW
14720#define do_0 0
14721
14722/* Thumb-only, unconditional. */
14723#define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te)
14724
c19d1205 14725static const struct asm_opcode insns[] =
bfae80f2 14726{
e74cfd16
PB
14727#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
14728#define THUMB_VARIANT &arm_ext_v4t
c19d1205
ZW
14729 tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c),
14730 tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c),
14731 tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c),
14732 tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c),
14733 tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub),
14734 tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub),
4962c51a
MS
14735 tCE(add, 0800000, add, 3, (RR, oRR, SHG), arit, t_add_sub),
14736 tC3(adds, 0900000, adds, 3, (RR, oRR, SHG), arit, t_add_sub),
c19d1205
ZW
14737 tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c),
14738 tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c),
14739 tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3),
14740 tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3),
14741 tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c),
14742 tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c),
14743 tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3),
14744 tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3),
14745
14746 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
14747 for setting PSR flag bits. They are obsolete in V6 and do not
14748 have Thumb equivalents. */
14749 tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
088fa78e 14750 tC3w(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 14751 CL(tstp, 110f000, 2, (RR, SH), cmp),
c19d1205 14752 tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
088fa78e 14753 tC3w(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
e3cb604e 14754 CL(cmpp, 150f000, 2, (RR, SH), cmp),
c19d1205 14755 tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
088fa78e 14756 tC3w(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 14757 CL(cmnp, 170f000, 2, (RR, SH), cmp),
c19d1205
ZW
14758
14759 tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp),
14760 tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp),
14761 tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst),
14762 tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst),
14763
4962c51a
MS
14764 tCE(ldr, 4100000, ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
14765 tC3(ldrb, 4500000, ldrb, 2, (RR, ADDRGLDR),ldst, t_ldst),
14766 tCE(str, 4000000, str, 2, (RR, ADDRGLDR),ldst, t_ldst),
14767 tC3(strb, 4400000, strb, 2, (RR, ADDRGLDR),ldst, t_ldst),
c19d1205 14768
f5208ef2 14769 tCE(stm, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
14770 tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14771 tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
f5208ef2 14772 tCE(ldm, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
14773 tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14774 tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14775
14776 TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi),
c16d2bf0 14777 TCE(svc, f000000, df00, 1, (EXPi), swi, t_swi),
0110f2b8 14778 tCE(b, a000000, b, 1, (EXPr), branch, t_branch),
39b41c9c 14779 TCE(bl, b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 14780
c19d1205 14781 /* Pseudo ops. */
e9f89963 14782 tCE(adr, 28f0000, adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac
ZW
14783 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
14784 tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
14785
14786 /* Thumb-compatibility pseudo ops. */
14787 tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift),
14788 tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift),
14789 tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift),
14790 tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift),
14791 tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift),
2fc8bdac 14792 tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift),
c19d1205
ZW
14793 tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift),
14794 tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift),
14795 tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg),
14796 tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg),
14797 tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop),
14798 tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop),
14799
14800#undef THUMB_VARIANT
e74cfd16 14801#define THUMB_VARIANT &arm_ext_v6
2fc8bdac 14802 TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
14803
14804 /* V1 instructions with no Thumb analogue prior to V6T2. */
14805#undef THUMB_VARIANT
e74cfd16 14806#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
14807 TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
14808 TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
14809 TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
088fa78e 14810 TC3w(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 14811 CL(teqp, 130f000, 2, (RR, SH), cmp),
c19d1205
ZW
14812
14813 TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
3e94bf1a 14814 TC3(ldrbt, 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
c19d1205 14815 TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
3e94bf1a 14816 TC3(strbt, 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
c19d1205 14817
9c3c69f2
PB
14818 TC3(stmdb, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14819 TC3(stmfd, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 14820
9c3c69f2
PB
14821 TC3(ldmdb, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14822 TC3(ldmea, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
14823
14824 /* V1 instructions with no Thumb analogue at all. */
14825 CE(rsc, 0e00000, 3, (RR, oRR, SH), arit),
14826 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
14827
14828 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
14829 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
14830 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
14831 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
14832 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
14833 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
14834 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
14835 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
14836
14837#undef ARM_VARIANT
e74cfd16 14838#define ARM_VARIANT &arm_ext_v2 /* ARM 2 - multiplies. */
c19d1205 14839#undef THUMB_VARIANT
e74cfd16 14840#define THUMB_VARIANT &arm_ext_v4t
c19d1205
ZW
14841 tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
14842 tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
14843
14844#undef THUMB_VARIANT
e74cfd16 14845#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
14846 TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
14847 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
14848
14849 /* Generic coprocessor instructions. */
14850 TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
4962c51a
MS
14851 TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14852 TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14853 TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14854 TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
c19d1205
ZW
14855 TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
14856 TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
14857
14858#undef ARM_VARIANT
e74cfd16 14859#define ARM_VARIANT &arm_ext_v2s /* ARM 3 - swp instructions. */
c19d1205
ZW
14860 CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
14861 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
14862
14863#undef ARM_VARIANT
e74cfd16 14864#define ARM_VARIANT &arm_ext_v3 /* ARM 6 Status register instructions. */
037e8744
JB
14865 TCE(mrs, 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
14866 TCE(msr, 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
c19d1205
ZW
14867
14868#undef ARM_VARIANT
e74cfd16 14869#define ARM_VARIANT &arm_ext_v3m /* ARM 7M long multiplies. */
c19d1205
ZW
14870 TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14871 CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14872 TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14873 CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14874 TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14875 CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14876 TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14877 CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14878
14879#undef ARM_VARIANT
e74cfd16 14880#define ARM_VARIANT &arm_ext_v4 /* ARM Architecture 4. */
c19d1205 14881#undef THUMB_VARIANT
e74cfd16 14882#define THUMB_VARIANT &arm_ext_v4t
4962c51a
MS
14883 tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14884 tC3(strh, 00000b0, strh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14885 tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14886 tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14887 tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14888 tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
c19d1205
ZW
14889
14890#undef ARM_VARIANT
e74cfd16 14891#define ARM_VARIANT &arm_ext_v4t_5
c19d1205
ZW
14892 /* ARM Architecture 4T. */
14893 /* Note: bx (and blx) are required on V5, even if the processor does
14894 not support Thumb. */
14895 TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx),
14896
14897#undef ARM_VARIANT
e74cfd16 14898#define ARM_VARIANT &arm_ext_v5 /* ARM Architecture 5T. */
c19d1205 14899#undef THUMB_VARIANT
e74cfd16 14900#define THUMB_VARIANT &arm_ext_v5t
c19d1205
ZW
14901 /* Note: blx has 2 variants; the .value coded here is for
14902 BLX(2). Only this variant has conditional execution. */
14903 TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
14904 TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
14905
14906#undef THUMB_VARIANT
e74cfd16 14907#define THUMB_VARIANT &arm_ext_v6t2
c19d1205 14908 TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
4962c51a
MS
14909 TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14910 TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14911 TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14912 TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
c19d1205
ZW
14913 TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
14914 TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
14915 TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
14916
14917#undef ARM_VARIANT
e74cfd16 14918#define ARM_VARIANT &arm_ext_v5exp /* ARM Architecture 5TExP. */
c19d1205
ZW
14919 TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14920 TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14921 TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14922 TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14923
14924 TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14925 TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14926
14927 TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
14928 TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
14929 TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
14930 TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
14931
14932 TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14933 TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14934 TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14935 TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14936
14937 TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14938 TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14939
14940 TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
14941 TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
14942 TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
14943 TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
14944
14945#undef ARM_VARIANT
e74cfd16 14946#define ARM_VARIANT &arm_ext_v5e /* ARM Architecture 5TE. */
c19d1205 14947 TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld),
4962c51a
MS
14948 TC3(ldrd, 00000d0, e9500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
14949 TC3(strd, 00000f0, e9400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
c19d1205
ZW
14950
14951 TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
14952 TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
14953
14954#undef ARM_VARIANT
e74cfd16 14955#define ARM_VARIANT &arm_ext_v5j /* ARM Architecture 5TEJ. */
c19d1205
ZW
14956 TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
14957
14958#undef ARM_VARIANT
e74cfd16 14959#define ARM_VARIANT &arm_ext_v6 /* ARM V6. */
c19d1205 14960#undef THUMB_VARIANT
e74cfd16 14961#define THUMB_VARIANT &arm_ext_v6
c19d1205
ZW
14962 TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
14963 TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
14964 tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
14965 tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
14966 tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
14967 tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14968 tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14969 tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14970 tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14971 TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend),
14972
14973#undef THUMB_VARIANT
e74cfd16 14974#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
14975 TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
14976 TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
14977 TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311
PB
14978
14979 TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
14980 TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
14981
14982/* ARM V6 not included in V7M (eg. integer SIMD). */
14983#undef THUMB_VARIANT
14984#define THUMB_VARIANT &arm_ext_v6_notm
dfa9f0d5 14985 TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c19d1205
ZW
14986 TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
14987 TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
14988 TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14989 TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14990 TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14991 TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14992 TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14993 TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14994 TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14995 TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14996 TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14997 TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14998 TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14999 TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15000 TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15001 TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15002 TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15003 TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15004 TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15005 TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15006 TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15007 TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15008 TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15009 TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15010 TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15011 TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15012 TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15013 TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15014 TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15015 TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15016 TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15017 TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15018 TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15019 TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15020 TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15021 TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15022 TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15023 TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15024 TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15025 UF(rfeib, 9900a00, 1, (RRw), rfe),
15026 UF(rfeda, 8100a00, 1, (RRw), rfe),
15027 TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15028 TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15029 UF(rfefa, 9900a00, 1, (RRw), rfe),
15030 UF(rfeea, 8100a00, 1, (RRw), rfe),
15031 TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15032 TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15033 TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15034 TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15035 TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15036 TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15037 TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15038 TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15039 TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
f1022c90 15040 TCE(sel, 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
15041 TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15042 TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15043 TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15044 TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15045 TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15046 TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15047 TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15048 TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15049 TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15050 TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15051 TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15052 TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15053 TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15054 TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15055 TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15056 TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15057 TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15058 TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
b6702015
PB
15059 TUF(srsia, 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
15060 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
15061 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
15062 TUF(srsdb, 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
c19d1205
ZW
15063 TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
15064 TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
15065 TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
15066 TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15067 TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
c19d1205
ZW
15068 TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
15069
15070#undef ARM_VARIANT
e74cfd16 15071#define ARM_VARIANT &arm_ext_v6k
c19d1205 15072#undef THUMB_VARIANT
e74cfd16 15073#define THUMB_VARIANT &arm_ext_v6k
c19d1205
ZW
15074 tCE(yield, 320f001, yield, 0, (), noargs, t_hint),
15075 tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint),
15076 tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint),
15077 tCE(sev, 320f004, sev, 0, (), noargs, t_hint),
15078
ebdca51a
PB
15079#undef THUMB_VARIANT
15080#define THUMB_VARIANT &arm_ext_v6_notm
15081 TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
15082 TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
15083
c19d1205 15084#undef THUMB_VARIANT
e74cfd16 15085#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
15086 TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
15087 TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
c19d1205
ZW
15088 TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
15089 TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
c19d1205
ZW
15090 TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
15091
15092#undef ARM_VARIANT
e74cfd16 15093#define ARM_VARIANT &arm_ext_v6z
3eb17e6b 15094 TCE(smc, 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205
ZW
15095
15096#undef ARM_VARIANT
e74cfd16 15097#define ARM_VARIANT &arm_ext_v6t2
c19d1205
ZW
15098 TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
15099 TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
15100 TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15101 TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15102
15103 TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
b6895b4f
PB
15104 TCE(movw, 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
15105 TCE(movt, 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
401a54cf 15106 TCE(rbit, 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205
ZW
15107
15108 TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15109 TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15110 TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15111 TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15112
25fe350b
MS
15113 UT(cbnz, b900, 2, (RR, EXP), t_cbz),
15114 UT(cbz, b100, 2, (RR, EXP), t_cbz),
f91e006c
PB
15115 /* ARM does not really have an IT instruction, so always allow it. */
15116#undef ARM_VARIANT
15117#define ARM_VARIANT &arm_ext_v1
c19d1205
ZW
15118 TUE(it, 0, bf08, 1, (COND), it, t_it),
15119 TUE(itt, 0, bf0c, 1, (COND), it, t_it),
15120 TUE(ite, 0, bf04, 1, (COND), it, t_it),
15121 TUE(ittt, 0, bf0e, 1, (COND), it, t_it),
15122 TUE(itet, 0, bf06, 1, (COND), it, t_it),
15123 TUE(itte, 0, bf0a, 1, (COND), it, t_it),
15124 TUE(itee, 0, bf02, 1, (COND), it, t_it),
15125 TUE(itttt, 0, bf0f, 1, (COND), it, t_it),
15126 TUE(itett, 0, bf07, 1, (COND), it, t_it),
15127 TUE(ittet, 0, bf0b, 1, (COND), it, t_it),
15128 TUE(iteet, 0, bf03, 1, (COND), it, t_it),
15129 TUE(ittte, 0, bf0d, 1, (COND), it, t_it),
15130 TUE(itete, 0, bf05, 1, (COND), it, t_it),
15131 TUE(ittee, 0, bf09, 1, (COND), it, t_it),
15132 TUE(iteee, 0, bf01, 1, (COND), it, t_it),
15133
92e90b6e
PB
15134 /* Thumb2 only instructions. */
15135#undef ARM_VARIANT
e74cfd16 15136#define ARM_VARIANT NULL
92e90b6e
PB
15137
15138 TCE(addw, 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15139 TCE(subw, 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15140 TCE(tbb, 0, e8d0f000, 1, (TB), 0, t_tb),
15141 TCE(tbh, 0, e8d0f010, 1, (TB), 0, t_tb),
15142
62b3e311
PB
15143 /* Thumb-2 hardware division instructions (R and M profiles only). */
15144#undef THUMB_VARIANT
15145#define THUMB_VARIANT &arm_ext_div
15146 TCE(sdiv, 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
15147 TCE(udiv, 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
15148
15149 /* ARM V7 instructions. */
15150#undef ARM_VARIANT
15151#define ARM_VARIANT &arm_ext_v7
15152#undef THUMB_VARIANT
15153#define THUMB_VARIANT &arm_ext_v7
15154 TUF(pli, 450f000, f910f000, 1, (ADDR), pli, t_pld),
15155 TCE(dbg, 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
15156 TUF(dmb, 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
15157 TUF(dsb, 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
15158 TUF(isb, 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
15159
c19d1205 15160#undef ARM_VARIANT
e74cfd16 15161#define ARM_VARIANT &fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
8f06b2d8
PB
15162 cCE(wfs, e200110, 1, (RR), rd),
15163 cCE(rfs, e300110, 1, (RR), rd),
15164 cCE(wfc, e400110, 1, (RR), rd),
15165 cCE(rfc, e500110, 1, (RR), rd),
15166
4962c51a
MS
15167 cCL(ldfs, c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
15168 cCL(ldfd, c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
15169 cCL(ldfe, c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
15170 cCL(ldfp, c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
e3cb604e 15171
4962c51a
MS
15172 cCL(stfs, c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
15173 cCL(stfd, c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
15174 cCL(stfe, c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
15175 cCL(stfp, c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
e3cb604e
PB
15176
15177 cCL(mvfs, e008100, 2, (RF, RF_IF), rd_rm),
15178 cCL(mvfsp, e008120, 2, (RF, RF_IF), rd_rm),
15179 cCL(mvfsm, e008140, 2, (RF, RF_IF), rd_rm),
15180 cCL(mvfsz, e008160, 2, (RF, RF_IF), rd_rm),
15181 cCL(mvfd, e008180, 2, (RF, RF_IF), rd_rm),
15182 cCL(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm),
15183 cCL(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm),
15184 cCL(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm),
15185 cCL(mvfe, e088100, 2, (RF, RF_IF), rd_rm),
15186 cCL(mvfep, e088120, 2, (RF, RF_IF), rd_rm),
15187 cCL(mvfem, e088140, 2, (RF, RF_IF), rd_rm),
15188 cCL(mvfez, e088160, 2, (RF, RF_IF), rd_rm),
15189
15190 cCL(mnfs, e108100, 2, (RF, RF_IF), rd_rm),
15191 cCL(mnfsp, e108120, 2, (RF, RF_IF), rd_rm),
15192 cCL(mnfsm, e108140, 2, (RF, RF_IF), rd_rm),
15193 cCL(mnfsz, e108160, 2, (RF, RF_IF), rd_rm),
15194 cCL(mnfd, e108180, 2, (RF, RF_IF), rd_rm),
15195 cCL(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm),
15196 cCL(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm),
15197 cCL(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm),
15198 cCL(mnfe, e188100, 2, (RF, RF_IF), rd_rm),
15199 cCL(mnfep, e188120, 2, (RF, RF_IF), rd_rm),
15200 cCL(mnfem, e188140, 2, (RF, RF_IF), rd_rm),
15201 cCL(mnfez, e188160, 2, (RF, RF_IF), rd_rm),
15202
15203 cCL(abss, e208100, 2, (RF, RF_IF), rd_rm),
15204 cCL(abssp, e208120, 2, (RF, RF_IF), rd_rm),
15205 cCL(abssm, e208140, 2, (RF, RF_IF), rd_rm),
15206 cCL(abssz, e208160, 2, (RF, RF_IF), rd_rm),
15207 cCL(absd, e208180, 2, (RF, RF_IF), rd_rm),
15208 cCL(absdp, e2081a0, 2, (RF, RF_IF), rd_rm),
15209 cCL(absdm, e2081c0, 2, (RF, RF_IF), rd_rm),
15210 cCL(absdz, e2081e0, 2, (RF, RF_IF), rd_rm),
15211 cCL(abse, e288100, 2, (RF, RF_IF), rd_rm),
15212 cCL(absep, e288120, 2, (RF, RF_IF), rd_rm),
15213 cCL(absem, e288140, 2, (RF, RF_IF), rd_rm),
15214 cCL(absez, e288160, 2, (RF, RF_IF), rd_rm),
15215
15216 cCL(rnds, e308100, 2, (RF, RF_IF), rd_rm),
15217 cCL(rndsp, e308120, 2, (RF, RF_IF), rd_rm),
15218 cCL(rndsm, e308140, 2, (RF, RF_IF), rd_rm),
15219 cCL(rndsz, e308160, 2, (RF, RF_IF), rd_rm),
15220 cCL(rndd, e308180, 2, (RF, RF_IF), rd_rm),
15221 cCL(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm),
15222 cCL(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm),
15223 cCL(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm),
15224 cCL(rnde, e388100, 2, (RF, RF_IF), rd_rm),
15225 cCL(rndep, e388120, 2, (RF, RF_IF), rd_rm),
15226 cCL(rndem, e388140, 2, (RF, RF_IF), rd_rm),
15227 cCL(rndez, e388160, 2, (RF, RF_IF), rd_rm),
15228
15229 cCL(sqts, e408100, 2, (RF, RF_IF), rd_rm),
15230 cCL(sqtsp, e408120, 2, (RF, RF_IF), rd_rm),
15231 cCL(sqtsm, e408140, 2, (RF, RF_IF), rd_rm),
15232 cCL(sqtsz, e408160, 2, (RF, RF_IF), rd_rm),
15233 cCL(sqtd, e408180, 2, (RF, RF_IF), rd_rm),
15234 cCL(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm),
15235 cCL(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm),
15236 cCL(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm),
15237 cCL(sqte, e488100, 2, (RF, RF_IF), rd_rm),
15238 cCL(sqtep, e488120, 2, (RF, RF_IF), rd_rm),
15239 cCL(sqtem, e488140, 2, (RF, RF_IF), rd_rm),
15240 cCL(sqtez, e488160, 2, (RF, RF_IF), rd_rm),
15241
15242 cCL(logs, e508100, 2, (RF, RF_IF), rd_rm),
15243 cCL(logsp, e508120, 2, (RF, RF_IF), rd_rm),
15244 cCL(logsm, e508140, 2, (RF, RF_IF), rd_rm),
15245 cCL(logsz, e508160, 2, (RF, RF_IF), rd_rm),
15246 cCL(logd, e508180, 2, (RF, RF_IF), rd_rm),
15247 cCL(logdp, e5081a0, 2, (RF, RF_IF), rd_rm),
15248 cCL(logdm, e5081c0, 2, (RF, RF_IF), rd_rm),
15249 cCL(logdz, e5081e0, 2, (RF, RF_IF), rd_rm),
15250 cCL(loge, e588100, 2, (RF, RF_IF), rd_rm),
15251 cCL(logep, e588120, 2, (RF, RF_IF), rd_rm),
15252 cCL(logem, e588140, 2, (RF, RF_IF), rd_rm),
15253 cCL(logez, e588160, 2, (RF, RF_IF), rd_rm),
15254
15255 cCL(lgns, e608100, 2, (RF, RF_IF), rd_rm),
15256 cCL(lgnsp, e608120, 2, (RF, RF_IF), rd_rm),
15257 cCL(lgnsm, e608140, 2, (RF, RF_IF), rd_rm),
15258 cCL(lgnsz, e608160, 2, (RF, RF_IF), rd_rm),
15259 cCL(lgnd, e608180, 2, (RF, RF_IF), rd_rm),
15260 cCL(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm),
15261 cCL(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm),
15262 cCL(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm),
15263 cCL(lgne, e688100, 2, (RF, RF_IF), rd_rm),
15264 cCL(lgnep, e688120, 2, (RF, RF_IF), rd_rm),
15265 cCL(lgnem, e688140, 2, (RF, RF_IF), rd_rm),
15266 cCL(lgnez, e688160, 2, (RF, RF_IF), rd_rm),
15267
15268 cCL(exps, e708100, 2, (RF, RF_IF), rd_rm),
15269 cCL(expsp, e708120, 2, (RF, RF_IF), rd_rm),
15270 cCL(expsm, e708140, 2, (RF, RF_IF), rd_rm),
15271 cCL(expsz, e708160, 2, (RF, RF_IF), rd_rm),
15272 cCL(expd, e708180, 2, (RF, RF_IF), rd_rm),
15273 cCL(expdp, e7081a0, 2, (RF, RF_IF), rd_rm),
15274 cCL(expdm, e7081c0, 2, (RF, RF_IF), rd_rm),
15275 cCL(expdz, e7081e0, 2, (RF, RF_IF), rd_rm),
15276 cCL(expe, e788100, 2, (RF, RF_IF), rd_rm),
15277 cCL(expep, e788120, 2, (RF, RF_IF), rd_rm),
15278 cCL(expem, e788140, 2, (RF, RF_IF), rd_rm),
15279 cCL(expdz, e788160, 2, (RF, RF_IF), rd_rm),
15280
15281 cCL(sins, e808100, 2, (RF, RF_IF), rd_rm),
15282 cCL(sinsp, e808120, 2, (RF, RF_IF), rd_rm),
15283 cCL(sinsm, e808140, 2, (RF, RF_IF), rd_rm),
15284 cCL(sinsz, e808160, 2, (RF, RF_IF), rd_rm),
15285 cCL(sind, e808180, 2, (RF, RF_IF), rd_rm),
15286 cCL(sindp, e8081a0, 2, (RF, RF_IF), rd_rm),
15287 cCL(sindm, e8081c0, 2, (RF, RF_IF), rd_rm),
15288 cCL(sindz, e8081e0, 2, (RF, RF_IF), rd_rm),
15289 cCL(sine, e888100, 2, (RF, RF_IF), rd_rm),
15290 cCL(sinep, e888120, 2, (RF, RF_IF), rd_rm),
15291 cCL(sinem, e888140, 2, (RF, RF_IF), rd_rm),
15292 cCL(sinez, e888160, 2, (RF, RF_IF), rd_rm),
15293
15294 cCL(coss, e908100, 2, (RF, RF_IF), rd_rm),
15295 cCL(cossp, e908120, 2, (RF, RF_IF), rd_rm),
15296 cCL(cossm, e908140, 2, (RF, RF_IF), rd_rm),
15297 cCL(cossz, e908160, 2, (RF, RF_IF), rd_rm),
15298 cCL(cosd, e908180, 2, (RF, RF_IF), rd_rm),
15299 cCL(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm),
15300 cCL(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm),
15301 cCL(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm),
15302 cCL(cose, e988100, 2, (RF, RF_IF), rd_rm),
15303 cCL(cosep, e988120, 2, (RF, RF_IF), rd_rm),
15304 cCL(cosem, e988140, 2, (RF, RF_IF), rd_rm),
15305 cCL(cosez, e988160, 2, (RF, RF_IF), rd_rm),
15306
15307 cCL(tans, ea08100, 2, (RF, RF_IF), rd_rm),
15308 cCL(tansp, ea08120, 2, (RF, RF_IF), rd_rm),
15309 cCL(tansm, ea08140, 2, (RF, RF_IF), rd_rm),
15310 cCL(tansz, ea08160, 2, (RF, RF_IF), rd_rm),
15311 cCL(tand, ea08180, 2, (RF, RF_IF), rd_rm),
15312 cCL(tandp, ea081a0, 2, (RF, RF_IF), rd_rm),
15313 cCL(tandm, ea081c0, 2, (RF, RF_IF), rd_rm),
15314 cCL(tandz, ea081e0, 2, (RF, RF_IF), rd_rm),
15315 cCL(tane, ea88100, 2, (RF, RF_IF), rd_rm),
15316 cCL(tanep, ea88120, 2, (RF, RF_IF), rd_rm),
15317 cCL(tanem, ea88140, 2, (RF, RF_IF), rd_rm),
15318 cCL(tanez, ea88160, 2, (RF, RF_IF), rd_rm),
15319
15320 cCL(asns, eb08100, 2, (RF, RF_IF), rd_rm),
15321 cCL(asnsp, eb08120, 2, (RF, RF_IF), rd_rm),
15322 cCL(asnsm, eb08140, 2, (RF, RF_IF), rd_rm),
15323 cCL(asnsz, eb08160, 2, (RF, RF_IF), rd_rm),
15324 cCL(asnd, eb08180, 2, (RF, RF_IF), rd_rm),
15325 cCL(asndp, eb081a0, 2, (RF, RF_IF), rd_rm),
15326 cCL(asndm, eb081c0, 2, (RF, RF_IF), rd_rm),
15327 cCL(asndz, eb081e0, 2, (RF, RF_IF), rd_rm),
15328 cCL(asne, eb88100, 2, (RF, RF_IF), rd_rm),
15329 cCL(asnep, eb88120, 2, (RF, RF_IF), rd_rm),
15330 cCL(asnem, eb88140, 2, (RF, RF_IF), rd_rm),
15331 cCL(asnez, eb88160, 2, (RF, RF_IF), rd_rm),
15332
15333 cCL(acss, ec08100, 2, (RF, RF_IF), rd_rm),
15334 cCL(acssp, ec08120, 2, (RF, RF_IF), rd_rm),
15335 cCL(acssm, ec08140, 2, (RF, RF_IF), rd_rm),
15336 cCL(acssz, ec08160, 2, (RF, RF_IF), rd_rm),
15337 cCL(acsd, ec08180, 2, (RF, RF_IF), rd_rm),
15338 cCL(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm),
15339 cCL(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm),
15340 cCL(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm),
15341 cCL(acse, ec88100, 2, (RF, RF_IF), rd_rm),
15342 cCL(acsep, ec88120, 2, (RF, RF_IF), rd_rm),
15343 cCL(acsem, ec88140, 2, (RF, RF_IF), rd_rm),
15344 cCL(acsez, ec88160, 2, (RF, RF_IF), rd_rm),
15345
15346 cCL(atns, ed08100, 2, (RF, RF_IF), rd_rm),
15347 cCL(atnsp, ed08120, 2, (RF, RF_IF), rd_rm),
15348 cCL(atnsm, ed08140, 2, (RF, RF_IF), rd_rm),
15349 cCL(atnsz, ed08160, 2, (RF, RF_IF), rd_rm),
15350 cCL(atnd, ed08180, 2, (RF, RF_IF), rd_rm),
15351 cCL(atndp, ed081a0, 2, (RF, RF_IF), rd_rm),
15352 cCL(atndm, ed081c0, 2, (RF, RF_IF), rd_rm),
15353 cCL(atndz, ed081e0, 2, (RF, RF_IF), rd_rm),
15354 cCL(atne, ed88100, 2, (RF, RF_IF), rd_rm),
15355 cCL(atnep, ed88120, 2, (RF, RF_IF), rd_rm),
15356 cCL(atnem, ed88140, 2, (RF, RF_IF), rd_rm),
15357 cCL(atnez, ed88160, 2, (RF, RF_IF), rd_rm),
15358
15359 cCL(urds, ee08100, 2, (RF, RF_IF), rd_rm),
15360 cCL(urdsp, ee08120, 2, (RF, RF_IF), rd_rm),
15361 cCL(urdsm, ee08140, 2, (RF, RF_IF), rd_rm),
15362 cCL(urdsz, ee08160, 2, (RF, RF_IF), rd_rm),
15363 cCL(urdd, ee08180, 2, (RF, RF_IF), rd_rm),
15364 cCL(urddp, ee081a0, 2, (RF, RF_IF), rd_rm),
15365 cCL(urddm, ee081c0, 2, (RF, RF_IF), rd_rm),
15366 cCL(urddz, ee081e0, 2, (RF, RF_IF), rd_rm),
15367 cCL(urde, ee88100, 2, (RF, RF_IF), rd_rm),
15368 cCL(urdep, ee88120, 2, (RF, RF_IF), rd_rm),
15369 cCL(urdem, ee88140, 2, (RF, RF_IF), rd_rm),
15370 cCL(urdez, ee88160, 2, (RF, RF_IF), rd_rm),
15371
15372 cCL(nrms, ef08100, 2, (RF, RF_IF), rd_rm),
15373 cCL(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm),
15374 cCL(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm),
15375 cCL(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm),
15376 cCL(nrmd, ef08180, 2, (RF, RF_IF), rd_rm),
15377 cCL(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm),
15378 cCL(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm),
15379 cCL(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm),
15380 cCL(nrme, ef88100, 2, (RF, RF_IF), rd_rm),
15381 cCL(nrmep, ef88120, 2, (RF, RF_IF), rd_rm),
15382 cCL(nrmem, ef88140, 2, (RF, RF_IF), rd_rm),
15383 cCL(nrmez, ef88160, 2, (RF, RF_IF), rd_rm),
15384
15385 cCL(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
15386 cCL(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
15387 cCL(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
15388 cCL(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
15389 cCL(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
15390 cCL(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15391 cCL(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15392 cCL(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15393 cCL(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
15394 cCL(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
15395 cCL(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
15396 cCL(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
15397
15398 cCL(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
15399 cCL(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
15400 cCL(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
15401 cCL(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
15402 cCL(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
15403 cCL(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15404 cCL(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15405 cCL(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15406 cCL(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
15407 cCL(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
15408 cCL(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
15409 cCL(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
15410
15411 cCL(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
15412 cCL(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
15413 cCL(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
15414 cCL(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
15415 cCL(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
15416 cCL(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15417 cCL(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15418 cCL(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15419 cCL(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
15420 cCL(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
15421 cCL(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
15422 cCL(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
15423
15424 cCL(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
15425 cCL(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
15426 cCL(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
15427 cCL(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
15428 cCL(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
15429 cCL(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15430 cCL(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15431 cCL(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15432 cCL(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
15433 cCL(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
15434 cCL(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
15435 cCL(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
15436
15437 cCL(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
15438 cCL(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
15439 cCL(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
15440 cCL(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
15441 cCL(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
15442 cCL(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15443 cCL(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15444 cCL(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15445 cCL(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
15446 cCL(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
15447 cCL(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
15448 cCL(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
15449
15450 cCL(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
15451 cCL(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
15452 cCL(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
15453 cCL(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
15454 cCL(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
15455 cCL(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15456 cCL(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15457 cCL(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15458 cCL(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
15459 cCL(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
15460 cCL(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
15461 cCL(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
15462
15463 cCL(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
15464 cCL(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
15465 cCL(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
15466 cCL(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
15467 cCL(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
15468 cCL(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15469 cCL(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15470 cCL(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15471 cCL(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
15472 cCL(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
15473 cCL(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
15474 cCL(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
15475
15476 cCL(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
15477 cCL(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
15478 cCL(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
15479 cCL(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
15480 cCL(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
15481 cCL(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15482 cCL(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15483 cCL(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15484 cCL(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
15485 cCL(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
15486 cCL(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
15487 cCL(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
15488
15489 cCL(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
15490 cCL(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
15491 cCL(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
15492 cCL(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
15493 cCL(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
15494 cCL(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15495 cCL(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15496 cCL(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15497 cCL(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
15498 cCL(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
15499 cCL(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
15500 cCL(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
15501
15502 cCL(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
15503 cCL(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
15504 cCL(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
15505 cCL(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
15506 cCL(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
15507 cCL(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15508 cCL(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15509 cCL(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15510 cCL(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
15511 cCL(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
15512 cCL(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
15513 cCL(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
15514
15515 cCL(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15516 cCL(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15517 cCL(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15518 cCL(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15519 cCL(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15520 cCL(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15521 cCL(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15522 cCL(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15523 cCL(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15524 cCL(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15525 cCL(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15526 cCL(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15527
15528 cCL(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15529 cCL(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15530 cCL(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15531 cCL(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15532 cCL(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15533 cCL(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15534 cCL(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15535 cCL(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15536 cCL(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15537 cCL(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15538 cCL(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15539 cCL(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15540
15541 cCL(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15542 cCL(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15543 cCL(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15544 cCL(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15545 cCL(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15546 cCL(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15547 cCL(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15548 cCL(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15549 cCL(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15550 cCL(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15551 cCL(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15552 cCL(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
8f06b2d8
PB
15553
15554 cCE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp),
c19d1205 15555 C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp),
8f06b2d8 15556 cCE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp),
c19d1205
ZW
15557 C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp),
15558
e3cb604e
PB
15559 cCL(flts, e000110, 2, (RF, RR), rn_rd),
15560 cCL(fltsp, e000130, 2, (RF, RR), rn_rd),
15561 cCL(fltsm, e000150, 2, (RF, RR), rn_rd),
15562 cCL(fltsz, e000170, 2, (RF, RR), rn_rd),
15563 cCL(fltd, e000190, 2, (RF, RR), rn_rd),
15564 cCL(fltdp, e0001b0, 2, (RF, RR), rn_rd),
15565 cCL(fltdm, e0001d0, 2, (RF, RR), rn_rd),
15566 cCL(fltdz, e0001f0, 2, (RF, RR), rn_rd),
15567 cCL(flte, e080110, 2, (RF, RR), rn_rd),
15568 cCL(fltep, e080130, 2, (RF, RR), rn_rd),
15569 cCL(fltem, e080150, 2, (RF, RR), rn_rd),
15570 cCL(fltez, e080170, 2, (RF, RR), rn_rd),
b99bd4ef 15571
c19d1205
ZW
15572 /* The implementation of the FIX instruction is broken on some
15573 assemblers, in that it accepts a precision specifier as well as a
15574 rounding specifier, despite the fact that this is meaningless.
15575 To be more compatible, we accept it as well, though of course it
15576 does not set any bits. */
8f06b2d8 15577 cCE(fix, e100110, 2, (RR, RF), rd_rm),
e3cb604e
PB
15578 cCL(fixp, e100130, 2, (RR, RF), rd_rm),
15579 cCL(fixm, e100150, 2, (RR, RF), rd_rm),
15580 cCL(fixz, e100170, 2, (RR, RF), rd_rm),
15581 cCL(fixsp, e100130, 2, (RR, RF), rd_rm),
15582 cCL(fixsm, e100150, 2, (RR, RF), rd_rm),
15583 cCL(fixsz, e100170, 2, (RR, RF), rd_rm),
15584 cCL(fixdp, e100130, 2, (RR, RF), rd_rm),
15585 cCL(fixdm, e100150, 2, (RR, RF), rd_rm),
15586 cCL(fixdz, e100170, 2, (RR, RF), rd_rm),
15587 cCL(fixep, e100130, 2, (RR, RF), rd_rm),
15588 cCL(fixem, e100150, 2, (RR, RF), rd_rm),
15589 cCL(fixez, e100170, 2, (RR, RF), rd_rm),
bfae80f2 15590
c19d1205
ZW
15591 /* Instructions that were new with the real FPA, call them V2. */
15592#undef ARM_VARIANT
e74cfd16 15593#define ARM_VARIANT &fpu_fpa_ext_v2
8f06b2d8 15594 cCE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
e3cb604e
PB
15595 cCL(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15596 cCL(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
8f06b2d8 15597 cCE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
e3cb604e
PB
15598 cCL(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15599 cCL(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205
ZW
15600
15601#undef ARM_VARIANT
e74cfd16 15602#define ARM_VARIANT &fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
c19d1205 15603 /* Moves and type conversions. */
8f06b2d8
PB
15604 cCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
15605 cCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
15606 cCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
15607 cCE(fmstat, ef1fa10, 0, (), noargs),
15608 cCE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
15609 cCE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
15610 cCE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
15611 cCE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15612 cCE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
15613 cCE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15614 cCE(fmrx, ef00a10, 2, (RR, RVC), rd_rn),
15615 cCE(fmxr, ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
15616
15617 /* Memory operations. */
4962c51a
MS
15618 cCE(flds, d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
15619 cCE(fsts, d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
8f06b2d8
PB
15620 cCE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15621 cCE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15622 cCE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15623 cCE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15624 cCE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15625 cCE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15626 cCE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15627 cCE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15628 cCE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15629 cCE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15630 cCE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15631 cCE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15632 cCE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15633 cCE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15634 cCE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15635 cCE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 15636
c19d1205 15637 /* Monadic operations. */
8f06b2d8
PB
15638 cCE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
15639 cCE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
15640 cCE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
15641
15642 /* Dyadic operations. */
8f06b2d8
PB
15643 cCE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15644 cCE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15645 cCE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15646 cCE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15647 cCE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15648 cCE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15649 cCE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15650 cCE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15651 cCE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 15652
c19d1205 15653 /* Comparisons. */
8f06b2d8
PB
15654 cCE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
15655 cCE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z),
15656 cCE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
15657 cCE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 15658
c19d1205 15659#undef ARM_VARIANT
e74cfd16 15660#define ARM_VARIANT &fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
c19d1205 15661 /* Moves and type conversions. */
5287ad62 15662 cCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
8f06b2d8
PB
15663 cCE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15664 cCE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
5287ad62
JB
15665 cCE(fmdhr, e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
15666 cCE(fmdlr, e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
15667 cCE(fmrdh, e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
15668 cCE(fmrdl, e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
8f06b2d8
PB
15669 cCE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15670 cCE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
15671 cCE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15672 cCE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15673 cCE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15674 cCE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205
ZW
15675
15676 /* Memory operations. */
4962c51a
MS
15677 cCE(fldd, d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
15678 cCE(fstd, d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
8f06b2d8
PB
15679 cCE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15680 cCE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15681 cCE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15682 cCE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15683 cCE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15684 cCE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15685 cCE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15686 cCE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
b99bd4ef 15687
c19d1205 15688 /* Monadic operations. */
5287ad62
JB
15689 cCE(fabsd, eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15690 cCE(fnegd, eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15691 cCE(fsqrtd, eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
15692
15693 /* Dyadic operations. */
5287ad62
JB
15694 cCE(faddd, e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15695 cCE(fsubd, e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15696 cCE(fmuld, e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15697 cCE(fdivd, e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15698 cCE(fmacd, e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15699 cCE(fmscd, e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15700 cCE(fnmuld, e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15701 cCE(fnmacd, e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15702 cCE(fnmscd, e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 15703
c19d1205 15704 /* Comparisons. */
5287ad62
JB
15705 cCE(fcmpd, eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15706 cCE(fcmpzd, eb50b40, 1, (RVD), vfp_dp_rd),
15707 cCE(fcmped, eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15708 cCE(fcmpezd, eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205
ZW
15709
15710#undef ARM_VARIANT
e74cfd16 15711#define ARM_VARIANT &fpu_vfp_ext_v2
8f06b2d8
PB
15712 cCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
15713 cCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
5287ad62
JB
15714 cCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
15715 cCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
15716
037e8744
JB
15717/* Instructions which may belong to either the Neon or VFP instruction sets.
15718 Individual encoder functions perform additional architecture checks. */
15719#undef ARM_VARIANT
15720#define ARM_VARIANT &fpu_vfp_ext_v1xd
15721#undef THUMB_VARIANT
15722#define THUMB_VARIANT &fpu_vfp_ext_v1xd
15723 /* These mnemonics are unique to VFP. */
15724 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
15725 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
15726 nCE(vnmul, vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15727 nCE(vnmla, vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15728 nCE(vnmls, vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15729 nCE(vcmp, vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
15730 nCE(vcmpe, vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
15731 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
15732 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
15733 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
15734
15735 /* Mnemonics shared by Neon and VFP. */
15736 nCEF(vmul, vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
15737 nCEF(vmla, vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
15738 nCEF(vmls, vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
15739
15740 nCEF(vadd, vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
15741 nCEF(vsub, vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
15742
15743 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
15744 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
15745
15746 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15747 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15748 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15749 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15750 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15751 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
4962c51a
MS
15752 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
15753 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744
JB
15754
15755 nCEF(vcvt, vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
15756
15757 /* NOTE: All VMOV encoding is special-cased! */
15758 NCE(vmov, 0, 1, (VMOV), neon_mov),
15759 NCE(vmovq, 0, 1, (VMOV), neon_mov),
15760
5287ad62
JB
15761#undef THUMB_VARIANT
15762#define THUMB_VARIANT &fpu_neon_ext_v1
15763#undef ARM_VARIANT
15764#define ARM_VARIANT &fpu_neon_ext_v1
15765 /* Data processing with three registers of the same length. */
15766 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
15767 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
15768 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
15769 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15770 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15771 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15772 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15773 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15774 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15775 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
15776 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15777 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
15778 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15779 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
15780 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
15781 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
15782 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
15783 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
15784 /* If not immediate, fall back to neon_dyadic_i64_su.
15785 shl_imm should accept I8 I16 I32 I64,
15786 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
15787 nUF(vshl, vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
15788 nUF(vshlq, vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
15789 nUF(vqshl, vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
15790 nUF(vqshlq, vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
15791 /* Logic ops, types optional & ignored. */
15792 nUF(vand, vand, 2, (RNDQ, NILO), neon_logic),
15793 nUF(vandq, vand, 2, (RNQ, NILO), neon_logic),
15794 nUF(vbic, vbic, 2, (RNDQ, NILO), neon_logic),
15795 nUF(vbicq, vbic, 2, (RNQ, NILO), neon_logic),
15796 nUF(vorr, vorr, 2, (RNDQ, NILO), neon_logic),
15797 nUF(vorrq, vorr, 2, (RNQ, NILO), neon_logic),
15798 nUF(vorn, vorn, 2, (RNDQ, NILO), neon_logic),
15799 nUF(vornq, vorn, 2, (RNQ, NILO), neon_logic),
15800 nUF(veor, veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
15801 nUF(veorq, veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
15802 /* Bitfield ops, untyped. */
15803 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15804 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15805 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15806 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15807 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15808 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15809 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
15810 nUF(vabd, vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15811 nUF(vabdq, vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15812 nUF(vmax, vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15813 nUF(vmaxq, vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15814 nUF(vmin, vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15815 nUF(vminq, vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15816 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
15817 back to neon_dyadic_if_su. */
15818 nUF(vcge, vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
15819 nUF(vcgeq, vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
15820 nUF(vcgt, vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
15821 nUF(vcgtq, vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
15822 nUF(vclt, vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
15823 nUF(vcltq, vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
15824 nUF(vcle, vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
15825 nUF(vcleq, vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 15826 /* Comparison. Type I8 I16 I32 F32. */
5287ad62
JB
15827 nUF(vceq, vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
15828 nUF(vceqq, vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
15829 /* As above, D registers only. */
15830 nUF(vpmax, vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
15831 nUF(vpmin, vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
15832 /* Int and float variants, signedness unimportant. */
5287ad62 15833 nUF(vmlaq, vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
5287ad62
JB
15834 nUF(vmlsq, vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
15835 nUF(vpadd, vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
15836 /* Add/sub take types I8 I16 I32 I64 F32. */
5287ad62 15837 nUF(vaddq, vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
15838 nUF(vsubq, vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
15839 /* vtst takes sizes 8, 16, 32. */
15840 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
15841 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
15842 /* VMUL takes I8 I16 I32 F32 P8. */
037e8744 15843 nUF(vmulq, vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62
JB
15844 /* VQD{R}MULH takes S16 S32. */
15845 nUF(vqdmulh, vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
15846 nUF(vqdmulhq, vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
15847 nUF(vqrdmulh, vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
15848 nUF(vqrdmulhq, vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
15849 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
15850 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
15851 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
15852 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
15853 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
15854 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
15855 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
15856 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
15857 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
15858 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
15859 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
15860 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
15861
15862 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 15863 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
15864 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
15865
15866 /* Data processing with two registers and a shift amount. */
15867 /* Right shifts, and variants with rounding.
15868 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
15869 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
15870 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
15871 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
15872 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
15873 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
15874 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
15875 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
15876 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
15877 /* Shift and insert. Sizes accepted 8 16 32 64. */
15878 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
15879 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
15880 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
15881 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
15882 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
15883 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
15884 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
15885 /* Right shift immediate, saturating & narrowing, with rounding variants.
15886 Types accepted S16 S32 S64 U16 U32 U64. */
15887 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
15888 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
15889 /* As above, unsigned. Types accepted S16 S32 S64. */
15890 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
15891 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
15892 /* Right shift narrowing. Types accepted I16 I32 I64. */
15893 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
15894 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
15895 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
15896 nUF(vshll, vshll, 3, (RNQ, RND, I32), neon_shll),
15897 /* CVT with optional immediate for fixed-point variant. */
037e8744 15898 nUF(vcvtq, vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 15899
5287ad62
JB
15900 nUF(vmvn, vmvn, 2, (RNDQ, RNDQ_IMVNb), neon_mvn),
15901 nUF(vmvnq, vmvn, 2, (RNQ, RNDQ_IMVNb), neon_mvn),
15902
15903 /* Data processing, three registers of different lengths. */
15904 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
15905 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
15906 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
15907 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
15908 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
15909 /* If not scalar, fall back to neon_dyadic_long.
15910 Vector types as above, scalar types S16 S32 U16 U32. */
15911 nUF(vmlal, vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
15912 nUF(vmlsl, vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
15913 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
15914 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
15915 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
15916 /* Dyadic, narrowing insns. Types I16 I32 I64. */
15917 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
15918 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
15919 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
15920 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
15921 /* Saturating doubling multiplies. Types S16 S32. */
15922 nUF(vqdmlal, vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
15923 nUF(vqdmlsl, vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
15924 nUF(vqdmull, vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
15925 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
15926 S16 S32 U16 U32. */
15927 nUF(vmull, vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
15928
15929 /* Extract. Size 8. */
15930 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I7), neon_ext),
15931 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I7), neon_ext),
15932
15933 /* Two registers, miscellaneous. */
15934 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
15935 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
15936 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
15937 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
15938 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
15939 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
15940 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
15941 /* Vector replicate. Sizes 8 16 32. */
15942 nCE(vdup, vdup, 2, (RNDQ, RR_RNSC), neon_dup),
15943 nCE(vdupq, vdup, 2, (RNQ, RR_RNSC), neon_dup),
15944 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
15945 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
15946 /* VMOVN. Types I16 I32 I64. */
15947 nUF(vmovn, vmovn, 2, (RND, RNQ), neon_movn),
15948 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
15949 nUF(vqmovn, vqmovn, 2, (RND, RNQ), neon_qmovn),
15950 /* VQMOVUN. Types S16 S32 S64. */
15951 nUF(vqmovun, vqmovun, 2, (RND, RNQ), neon_qmovun),
15952 /* VZIP / VUZP. Sizes 8 16 32. */
15953 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
15954 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
15955 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
15956 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
15957 /* VQABS / VQNEG. Types S8 S16 S32. */
15958 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
15959 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
15960 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
15961 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
15962 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
15963 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
15964 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
15965 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
15966 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
15967 /* Reciprocal estimates. Types U32 F32. */
15968 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
15969 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
15970 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
15971 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
15972 /* VCLS. Types S8 S16 S32. */
15973 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
15974 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
15975 /* VCLZ. Types I8 I16 I32. */
15976 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
15977 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
15978 /* VCNT. Size 8. */
15979 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
15980 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
15981 /* Two address, untyped. */
15982 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
15983 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
15984 /* VTRN. Sizes 8 16 32. */
15985 nUF(vtrn, vtrn, 2, (RNDQ, RNDQ), neon_trn),
15986 nUF(vtrnq, vtrn, 2, (RNQ, RNQ), neon_trn),
15987
15988 /* Table lookup. Size 8. */
15989 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
15990 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
15991
b7fc2769
JB
15992#undef THUMB_VARIANT
15993#define THUMB_VARIANT &fpu_vfp_v3_or_neon_ext
15994#undef ARM_VARIANT
15995#define ARM_VARIANT &fpu_vfp_v3_or_neon_ext
5287ad62
JB
15996 /* Neon element/structure load/store. */
15997 nUF(vld1, vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
15998 nUF(vst1, vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
15999 nUF(vld2, vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16000 nUF(vst2, vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16001 nUF(vld3, vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16002 nUF(vst3, vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16003 nUF(vld4, vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16004 nUF(vst4, vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16005
16006#undef THUMB_VARIANT
16007#define THUMB_VARIANT &fpu_vfp_ext_v3
16008#undef ARM_VARIANT
16009#define ARM_VARIANT &fpu_vfp_ext_v3
5287ad62
JB
16010 cCE(fconsts, eb00a00, 2, (RVS, I255), vfp_sp_const),
16011 cCE(fconstd, eb00b00, 2, (RVD, I255), vfp_dp_const),
16012 cCE(fshtos, eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16013 cCE(fshtod, eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16014 cCE(fsltos, eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16015 cCE(fsltod, eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16016 cCE(fuhtos, ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16017 cCE(fuhtod, ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16018 cCE(fultos, ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16019 cCE(fultod, ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16020 cCE(ftoshs, ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16021 cCE(ftoshd, ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16022 cCE(ftosls, ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16023 cCE(ftosld, ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16024 cCE(ftouhs, ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16025 cCE(ftouhd, ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16026 cCE(ftouls, ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16027 cCE(ftould, ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 16028
5287ad62 16029#undef THUMB_VARIANT
c19d1205 16030#undef ARM_VARIANT
e74cfd16 16031#define ARM_VARIANT &arm_cext_xscale /* Intel XScale extensions. */
8f06b2d8
PB
16032 cCE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16033 cCE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16034 cCE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16035 cCE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16036 cCE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16037 cCE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16038 cCE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
16039 cCE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205
ZW
16040
16041#undef ARM_VARIANT
e74cfd16 16042#define ARM_VARIANT &arm_cext_iwmmxt /* Intel Wireless MMX technology. */
8f06b2d8
PB
16043 cCE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc),
16044 cCE(tandch, e53f130, 1, (RR), iwmmxt_tandorc),
16045 cCE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc),
16046 cCE(tbcstb, e400010, 2, (RIWR, RR), rn_rd),
16047 cCE(tbcsth, e400050, 2, (RIWR, RR), rn_rd),
16048 cCE(tbcstw, e400090, 2, (RIWR, RR), rn_rd),
16049 cCE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc),
16050 cCE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc),
16051 cCE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc),
16052 cCE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16053 cCE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16054 cCE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16055 cCE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16056 cCE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16057 cCE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16058 cCE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16059 cCE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16060 cCE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
41adaa5c 16061 cCE(tmcr, e000110, 2, (RIWC_RIWG, RR), rn_rd),
8f06b2d8
PB
16062 cCE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn),
16063 cCE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16064 cCE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16065 cCE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16066 cCE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16067 cCE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16068 cCE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16069 cCE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn),
16070 cCE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn),
16071 cCE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn),
41adaa5c 16072 cCE(tmrc, e100110, 2, (RR, RIWC_RIWG), rd_rn),
8f06b2d8
PB
16073 cCE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm),
16074 cCE(torcb, e13f150, 1, (RR), iwmmxt_tandorc),
16075 cCE(torch, e53f150, 1, (RR), iwmmxt_tandorc),
16076 cCE(torcw, e93f150, 1, (RR), iwmmxt_tandorc),
16077 cCE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn),
16078 cCE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn),
16079 cCE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn),
16080 cCE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16081 cCE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16082 cCE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16083 cCE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16084 cCE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16085 cCE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16086 cCE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16087 cCE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16088 cCE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16089 cCE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
16090 cCE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16091 cCE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16092 cCE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16093 cCE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16094 cCE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16095 cCE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16096 cCE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16097 cCE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16098 cCE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16099 cCE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16100 cCE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16101 cCE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16102 cCE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16103 cCE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16104 cCE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16105 cCE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16106 cCE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16107 cCE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16108 cCE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16109 cCE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16110 cCE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16111 cCE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16112 cCE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16113 cCE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16114 cCE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16115 cCE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16116 cCE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16117 cCE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16118 cCE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16119 cCE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16120 cCE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16121 cCE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16122 cCE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16123 cCE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16124 cCE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16125 cCE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16126 cCE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16127 cCE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16128 cCE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16129 cCE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16130 cCE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16131 cCE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
16132 cCE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16133 cCE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16134 cCE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16135 cCE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16136 cCE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16137 cCE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16138 cCE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16139 cCE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16140 cCE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16141 cCE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16142 cCE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 16143 cCE(wrorh, e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16144 cCE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16145 cCE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16146 cCE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16147 cCE(wrord, ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8
PB
16148 cCE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16149 cCE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16150 cCE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16151 cCE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16152 cCE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16153 cCE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
2d447fca 16154 cCE(wsllh, e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16155 cCE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16156 cCE(wsllw, e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16157 cCE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16158 cCE(wslld, ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16159 cCE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16160 cCE(wsrah, e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16161 cCE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16162 cCE(wsraw, e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16163 cCE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16164 cCE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16165 cCE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16166 cCE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16167 cCE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16168 cCE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16169 cCE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16170 cCE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8
PB
16171 cCE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16172 cCE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16173 cCE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16174 cCE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16175 cCE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16176 cCE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16177 cCE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16178 cCE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16179 cCE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16180 cCE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16181 cCE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16182 cCE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16183 cCE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16184 cCE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16185 cCE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn),
16186 cCE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn),
16187 cCE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn),
16188 cCE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn),
16189 cCE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn),
16190 cCE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn),
16191 cCE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16192 cCE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16193 cCE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16194 cCE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn),
16195 cCE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn),
16196 cCE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn),
16197 cCE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn),
16198 cCE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn),
16199 cCE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn),
16200 cCE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16201 cCE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16202 cCE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16203 cCE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16204 cCE(wzero, e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 16205
2d447fca
JM
16206#undef ARM_VARIANT
16207#define ARM_VARIANT &arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
16208 cCE(torvscb, e13f190, 1, (RR), iwmmxt_tandorc),
16209 cCE(torvsch, e53f190, 1, (RR), iwmmxt_tandorc),
16210 cCE(torvscw, e93f190, 1, (RR), iwmmxt_tandorc),
16211 cCE(wabsb, e2001c0, 2, (RIWR, RIWR), rd_rn),
16212 cCE(wabsh, e6001c0, 2, (RIWR, RIWR), rd_rn),
16213 cCE(wabsw, ea001c0, 2, (RIWR, RIWR), rd_rn),
16214 cCE(wabsdiffb, e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16215 cCE(wabsdiffh, e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16216 cCE(wabsdiffw, e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16217 cCE(waddbhusl, e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16218 cCE(waddbhusm, e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16219 cCE(waddhc, e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16220 cCE(waddwc, ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16221 cCE(waddsubhx, ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16222 cCE(wavg4, e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16223 cCE(wavg4r, e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16224 cCE(wmaddsn, ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16225 cCE(wmaddsx, eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16226 cCE(wmaddun, ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16227 cCE(wmaddux, e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16228 cCE(wmerge, e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
16229 cCE(wmiabb, e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16230 cCE(wmiabt, e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16231 cCE(wmiatb, e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16232 cCE(wmiatt, e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16233 cCE(wmiabbn, e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16234 cCE(wmiabtn, e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16235 cCE(wmiatbn, e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16236 cCE(wmiattn, e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16237 cCE(wmiawbb, e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16238 cCE(wmiawbt, e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16239 cCE(wmiawtb, ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16240 cCE(wmiawtt, eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16241 cCE(wmiawbbn, ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16242 cCE(wmiawbtn, ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16243 cCE(wmiawtbn, ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16244 cCE(wmiawttn, ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16245 cCE(wmulsmr, ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16246 cCE(wmulumr, ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16247 cCE(wmulwumr, ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16248 cCE(wmulwsmr, ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16249 cCE(wmulwum, ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16250 cCE(wmulwsm, ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16251 cCE(wmulwl, eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16252 cCE(wqmiabb, e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16253 cCE(wqmiabt, e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16254 cCE(wqmiatb, ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16255 cCE(wqmiatt, eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16256 cCE(wqmiabbn, ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16257 cCE(wqmiabtn, ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16258 cCE(wqmiatbn, ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16259 cCE(wqmiattn, ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16260 cCE(wqmulm, e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16261 cCE(wqmulmr, e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16262 cCE(wqmulwm, ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16263 cCE(wqmulwmr, ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16264 cCE(wsubaddhx, ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16265
c19d1205 16266#undef ARM_VARIANT
e74cfd16 16267#define ARM_VARIANT &arm_cext_maverick /* Cirrus Maverick instructions. */
4962c51a
MS
16268 cCE(cfldrs, c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
16269 cCE(cfldrd, c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
16270 cCE(cfldr32, c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
16271 cCE(cfldr64, c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
16272 cCE(cfstrs, c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
16273 cCE(cfstrd, c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
16274 cCE(cfstr32, c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
16275 cCE(cfstr64, c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
8f06b2d8
PB
16276 cCE(cfmvsr, e000450, 2, (RMF, RR), rn_rd),
16277 cCE(cfmvrs, e100450, 2, (RR, RMF), rd_rn),
16278 cCE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd),
16279 cCE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn),
16280 cCE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd),
16281 cCE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn),
16282 cCE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd),
16283 cCE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn),
16284 cCE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd),
16285 cCE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn),
16286 cCE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn),
16287 cCE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn),
16288 cCE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn),
16289 cCE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn),
16290 cCE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn),
16291 cCE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn),
16292 cCE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn),
16293 cCE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn),
16294 cCE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn),
16295 cCE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn),
16296 cCE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc),
16297 cCE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd),
16298 cCE(cfcpys, e000400, 2, (RMF, RMF), rd_rn),
16299 cCE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn),
16300 cCE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn),
16301 cCE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn),
16302 cCE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn),
16303 cCE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn),
16304 cCE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn),
16305 cCE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn),
16306 cCE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn),
16307 cCE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn),
16308 cCE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn),
16309 cCE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn),
16310 cCE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple),
16311 cCE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple),
16312 cCE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift),
16313 cCE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift),
16314 cCE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm),
16315 cCE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
16316 cCE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
16317 cCE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
16318 cCE(cfabss, e300400, 2, (RMF, RMF), rd_rn),
16319 cCE(cfabsd, e300420, 2, (RMD, RMD), rd_rn),
16320 cCE(cfnegs, e300440, 2, (RMF, RMF), rd_rn),
16321 cCE(cfnegd, e300460, 2, (RMD, RMD), rd_rn),
16322 cCE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
16323 cCE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
16324 cCE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
16325 cCE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
16326 cCE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
16327 cCE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
16328 cCE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn),
16329 cCE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn),
16330 cCE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn),
16331 cCE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn),
16332 cCE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16333 cCE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16334 cCE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16335 cCE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16336 cCE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16337 cCE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16338 cCE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16339 cCE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16340 cCE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
16341 cCE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
16342 cCE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
16343 cCE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
16344};
16345#undef ARM_VARIANT
16346#undef THUMB_VARIANT
16347#undef TCE
16348#undef TCM
16349#undef TUE
16350#undef TUF
16351#undef TCC
8f06b2d8 16352#undef cCE
e3cb604e
PB
16353#undef cCL
16354#undef C3E
c19d1205
ZW
16355#undef CE
16356#undef CM
16357#undef UE
16358#undef UF
16359#undef UT
5287ad62
JB
16360#undef NUF
16361#undef nUF
16362#undef NCE
16363#undef nCE
c19d1205
ZW
16364#undef OPS0
16365#undef OPS1
16366#undef OPS2
16367#undef OPS3
16368#undef OPS4
16369#undef OPS5
16370#undef OPS6
16371#undef do_0
16372\f
16373/* MD interface: bits in the object file. */
bfae80f2 16374
c19d1205
ZW
16375/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
16376 for use in the a.out file, and stores them in the array pointed to by buf.
16377 This knows about the endian-ness of the target machine and does
16378 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
16379 2 (short) and 4 (long) Floating numbers are put out as a series of
16380 LITTLENUMS (shorts, here at least). */
b99bd4ef 16381
c19d1205
ZW
16382void
16383md_number_to_chars (char * buf, valueT val, int n)
16384{
16385 if (target_big_endian)
16386 number_to_chars_bigendian (buf, val, n);
16387 else
16388 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
16389}
16390
c19d1205
ZW
16391static valueT
16392md_chars_to_number (char * buf, int n)
bfae80f2 16393{
c19d1205
ZW
16394 valueT result = 0;
16395 unsigned char * where = (unsigned char *) buf;
bfae80f2 16396
c19d1205 16397 if (target_big_endian)
b99bd4ef 16398 {
c19d1205
ZW
16399 while (n--)
16400 {
16401 result <<= 8;
16402 result |= (*where++ & 255);
16403 }
b99bd4ef 16404 }
c19d1205 16405 else
b99bd4ef 16406 {
c19d1205
ZW
16407 while (n--)
16408 {
16409 result <<= 8;
16410 result |= (where[n] & 255);
16411 }
bfae80f2 16412 }
b99bd4ef 16413
c19d1205 16414 return result;
bfae80f2 16415}
b99bd4ef 16416
c19d1205 16417/* MD interface: Sections. */
b99bd4ef 16418
0110f2b8
PB
16419/* Estimate the size of a frag before relaxing. Assume everything fits in
16420 2 bytes. */
16421
c19d1205 16422int
0110f2b8 16423md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
16424 segT segtype ATTRIBUTE_UNUSED)
16425{
0110f2b8
PB
16426 fragp->fr_var = 2;
16427 return 2;
16428}
16429
16430/* Convert a machine dependent frag. */
16431
16432void
16433md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
16434{
16435 unsigned long insn;
16436 unsigned long old_op;
16437 char *buf;
16438 expressionS exp;
16439 fixS *fixp;
16440 int reloc_type;
16441 int pc_rel;
16442 int opcode;
16443
16444 buf = fragp->fr_literal + fragp->fr_fix;
16445
16446 old_op = bfd_get_16(abfd, buf);
16447 if (fragp->fr_symbol) {
16448 exp.X_op = O_symbol;
16449 exp.X_add_symbol = fragp->fr_symbol;
16450 } else {
16451 exp.X_op = O_constant;
16452 }
16453 exp.X_add_number = fragp->fr_offset;
16454 opcode = fragp->fr_subtype;
16455 switch (opcode)
16456 {
16457 case T_MNEM_ldr_pc:
16458 case T_MNEM_ldr_pc2:
16459 case T_MNEM_ldr_sp:
16460 case T_MNEM_str_sp:
16461 case T_MNEM_ldr:
16462 case T_MNEM_ldrb:
16463 case T_MNEM_ldrh:
16464 case T_MNEM_str:
16465 case T_MNEM_strb:
16466 case T_MNEM_strh:
16467 if (fragp->fr_var == 4)
16468 {
16469 insn = THUMB_OP32(opcode);
16470 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
16471 {
16472 insn |= (old_op & 0x700) << 4;
16473 }
16474 else
16475 {
16476 insn |= (old_op & 7) << 12;
16477 insn |= (old_op & 0x38) << 13;
16478 }
16479 insn |= 0x00000c00;
16480 put_thumb32_insn (buf, insn);
16481 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
16482 }
16483 else
16484 {
16485 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
16486 }
16487 pc_rel = (opcode == T_MNEM_ldr_pc2);
16488 break;
16489 case T_MNEM_adr:
16490 if (fragp->fr_var == 4)
16491 {
16492 insn = THUMB_OP32 (opcode);
16493 insn |= (old_op & 0xf0) << 4;
16494 put_thumb32_insn (buf, insn);
16495 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
16496 }
16497 else
16498 {
16499 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16500 exp.X_add_number -= 4;
16501 }
16502 pc_rel = 1;
16503 break;
16504 case T_MNEM_mov:
16505 case T_MNEM_movs:
16506 case T_MNEM_cmp:
16507 case T_MNEM_cmn:
16508 if (fragp->fr_var == 4)
16509 {
16510 int r0off = (opcode == T_MNEM_mov
16511 || opcode == T_MNEM_movs) ? 0 : 8;
16512 insn = THUMB_OP32 (opcode);
16513 insn = (insn & 0xe1ffffff) | 0x10000000;
16514 insn |= (old_op & 0x700) << r0off;
16515 put_thumb32_insn (buf, insn);
16516 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
16517 }
16518 else
16519 {
16520 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
16521 }
16522 pc_rel = 0;
16523 break;
16524 case T_MNEM_b:
16525 if (fragp->fr_var == 4)
16526 {
16527 insn = THUMB_OP32(opcode);
16528 put_thumb32_insn (buf, insn);
16529 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
16530 }
16531 else
16532 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
16533 pc_rel = 1;
16534 break;
16535 case T_MNEM_bcond:
16536 if (fragp->fr_var == 4)
16537 {
16538 insn = THUMB_OP32(opcode);
16539 insn |= (old_op & 0xf00) << 14;
16540 put_thumb32_insn (buf, insn);
16541 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
16542 }
16543 else
16544 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
16545 pc_rel = 1;
16546 break;
16547 case T_MNEM_add_sp:
16548 case T_MNEM_add_pc:
16549 case T_MNEM_inc_sp:
16550 case T_MNEM_dec_sp:
16551 if (fragp->fr_var == 4)
16552 {
16553 /* ??? Choose between add and addw. */
16554 insn = THUMB_OP32 (opcode);
16555 insn |= (old_op & 0xf0) << 4;
16556 put_thumb32_insn (buf, insn);
16805f35
PB
16557 if (opcode == T_MNEM_add_pc)
16558 reloc_type = BFD_RELOC_ARM_T32_IMM12;
16559 else
16560 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
16561 }
16562 else
16563 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16564 pc_rel = 0;
16565 break;
16566
16567 case T_MNEM_addi:
16568 case T_MNEM_addis:
16569 case T_MNEM_subi:
16570 case T_MNEM_subis:
16571 if (fragp->fr_var == 4)
16572 {
16573 insn = THUMB_OP32 (opcode);
16574 insn |= (old_op & 0xf0) << 4;
16575 insn |= (old_op & 0xf) << 16;
16576 put_thumb32_insn (buf, insn);
16805f35
PB
16577 if (insn & (1 << 20))
16578 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
16579 else
16580 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
16581 }
16582 else
16583 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16584 pc_rel = 0;
16585 break;
16586 default:
16587 abort();
16588 }
16589 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
16590 reloc_type);
16591 fixp->fx_file = fragp->fr_file;
16592 fixp->fx_line = fragp->fr_line;
16593 fragp->fr_fix += fragp->fr_var;
16594}
16595
16596/* Return the size of a relaxable immediate operand instruction.
16597 SHIFT and SIZE specify the form of the allowable immediate. */
16598static int
16599relax_immediate (fragS *fragp, int size, int shift)
16600{
16601 offsetT offset;
16602 offsetT mask;
16603 offsetT low;
16604
16605 /* ??? Should be able to do better than this. */
16606 if (fragp->fr_symbol)
16607 return 4;
16608
16609 low = (1 << shift) - 1;
16610 mask = (1 << (shift + size)) - (1 << shift);
16611 offset = fragp->fr_offset;
16612 /* Force misaligned offsets to 32-bit variant. */
16613 if (offset & low)
5e77afaa 16614 return 4;
0110f2b8
PB
16615 if (offset & ~mask)
16616 return 4;
16617 return 2;
16618}
16619
5e77afaa
PB
16620/* Get the address of a symbol during relaxation. */
16621static addressT
16622relaxed_symbol_addr(fragS *fragp, long stretch)
16623{
16624 fragS *sym_frag;
16625 addressT addr;
16626 symbolS *sym;
16627
16628 sym = fragp->fr_symbol;
16629 sym_frag = symbol_get_frag (sym);
16630 know (S_GET_SEGMENT (sym) != absolute_section
16631 || sym_frag == &zero_address_frag);
16632 addr = S_GET_VALUE (sym) + fragp->fr_offset;
16633
16634 /* If frag has yet to be reached on this pass, assume it will
16635 move by STRETCH just as we did. If this is not so, it will
16636 be because some frag between grows, and that will force
16637 another pass. */
16638
16639 if (stretch != 0
16640 && sym_frag->relax_marker != fragp->relax_marker)
16641 addr += stretch;
16642
16643 return addr;
16644}
16645
0110f2b8
PB
16646/* Return the size of a relaxable adr pseudo-instruction or PC-relative
16647 load. */
16648static int
5e77afaa 16649relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
16650{
16651 addressT addr;
16652 offsetT val;
16653
16654 /* Assume worst case for symbols not known to be in the same section. */
16655 if (!S_IS_DEFINED(fragp->fr_symbol)
16656 || sec != S_GET_SEGMENT (fragp->fr_symbol))
16657 return 4;
16658
5e77afaa 16659 val = relaxed_symbol_addr(fragp, stretch);
0110f2b8
PB
16660 addr = fragp->fr_address + fragp->fr_fix;
16661 addr = (addr + 4) & ~3;
5e77afaa 16662 /* Force misaligned targets to 32-bit variant. */
0110f2b8 16663 if (val & 3)
5e77afaa 16664 return 4;
0110f2b8
PB
16665 val -= addr;
16666 if (val < 0 || val > 1020)
16667 return 4;
16668 return 2;
16669}
16670
16671/* Return the size of a relaxable add/sub immediate instruction. */
16672static int
16673relax_addsub (fragS *fragp, asection *sec)
16674{
16675 char *buf;
16676 int op;
16677
16678 buf = fragp->fr_literal + fragp->fr_fix;
16679 op = bfd_get_16(sec->owner, buf);
16680 if ((op & 0xf) == ((op >> 4) & 0xf))
16681 return relax_immediate (fragp, 8, 0);
16682 else
16683 return relax_immediate (fragp, 3, 0);
16684}
16685
16686
16687/* Return the size of a relaxable branch instruction. BITS is the
16688 size of the offset field in the narrow instruction. */
16689
16690static int
5e77afaa 16691relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
16692{
16693 addressT addr;
16694 offsetT val;
16695 offsetT limit;
16696
16697 /* Assume worst case for symbols not known to be in the same section. */
16698 if (!S_IS_DEFINED(fragp->fr_symbol)
16699 || sec != S_GET_SEGMENT (fragp->fr_symbol))
16700 return 4;
16701
5e77afaa 16702 val = relaxed_symbol_addr(fragp, stretch);
0110f2b8
PB
16703 addr = fragp->fr_address + fragp->fr_fix + 4;
16704 val -= addr;
16705
16706 /* Offset is a signed value *2 */
16707 limit = 1 << bits;
16708 if (val >= limit || val < -limit)
16709 return 4;
16710 return 2;
16711}
16712
16713
16714/* Relax a machine dependent frag. This returns the amount by which
16715 the current size of the frag should change. */
16716
16717int
5e77afaa 16718arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
16719{
16720 int oldsize;
16721 int newsize;
16722
16723 oldsize = fragp->fr_var;
16724 switch (fragp->fr_subtype)
16725 {
16726 case T_MNEM_ldr_pc2:
5e77afaa 16727 newsize = relax_adr(fragp, sec, stretch);
0110f2b8
PB
16728 break;
16729 case T_MNEM_ldr_pc:
16730 case T_MNEM_ldr_sp:
16731 case T_MNEM_str_sp:
16732 newsize = relax_immediate(fragp, 8, 2);
16733 break;
16734 case T_MNEM_ldr:
16735 case T_MNEM_str:
16736 newsize = relax_immediate(fragp, 5, 2);
16737 break;
16738 case T_MNEM_ldrh:
16739 case T_MNEM_strh:
16740 newsize = relax_immediate(fragp, 5, 1);
16741 break;
16742 case T_MNEM_ldrb:
16743 case T_MNEM_strb:
16744 newsize = relax_immediate(fragp, 5, 0);
16745 break;
16746 case T_MNEM_adr:
5e77afaa 16747 newsize = relax_adr(fragp, sec, stretch);
0110f2b8
PB
16748 break;
16749 case T_MNEM_mov:
16750 case T_MNEM_movs:
16751 case T_MNEM_cmp:
16752 case T_MNEM_cmn:
16753 newsize = relax_immediate(fragp, 8, 0);
16754 break;
16755 case T_MNEM_b:
5e77afaa 16756 newsize = relax_branch(fragp, sec, 11, stretch);
0110f2b8
PB
16757 break;
16758 case T_MNEM_bcond:
5e77afaa 16759 newsize = relax_branch(fragp, sec, 8, stretch);
0110f2b8
PB
16760 break;
16761 case T_MNEM_add_sp:
16762 case T_MNEM_add_pc:
16763 newsize = relax_immediate (fragp, 8, 2);
16764 break;
16765 case T_MNEM_inc_sp:
16766 case T_MNEM_dec_sp:
16767 newsize = relax_immediate (fragp, 7, 2);
16768 break;
16769 case T_MNEM_addi:
16770 case T_MNEM_addis:
16771 case T_MNEM_subi:
16772 case T_MNEM_subis:
16773 newsize = relax_addsub (fragp, sec);
16774 break;
16775 default:
16776 abort();
16777 }
5e77afaa
PB
16778
16779 fragp->fr_var = newsize;
16780 /* Freeze wide instructions that are at or before the same location as
16781 in the previous pass. This avoids infinite loops.
16782 Don't freeze them unconditionally because targets may be artificialy
16783 misaligned by the expansion of preceeding frags. */
16784 if (stretch <= 0 && newsize > 2)
0110f2b8 16785 {
0110f2b8
PB
16786 md_convert_frag (sec->owner, sec, fragp);
16787 frag_wane(fragp);
0110f2b8 16788 }
5e77afaa 16789
0110f2b8 16790 return newsize - oldsize;
c19d1205 16791}
b99bd4ef 16792
c19d1205 16793/* Round up a section size to the appropriate boundary. */
b99bd4ef 16794
c19d1205
ZW
16795valueT
16796md_section_align (segT segment ATTRIBUTE_UNUSED,
16797 valueT size)
16798{
f0927246
NC
16799#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
16800 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
16801 {
16802 /* For a.out, force the section size to be aligned. If we don't do
16803 this, BFD will align it for us, but it will not write out the
16804 final bytes of the section. This may be a bug in BFD, but it is
16805 easier to fix it here since that is how the other a.out targets
16806 work. */
16807 int align;
16808
16809 align = bfd_get_section_alignment (stdoutput, segment);
16810 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
16811 }
c19d1205 16812#endif
f0927246
NC
16813
16814 return size;
bfae80f2 16815}
b99bd4ef 16816
c19d1205
ZW
16817/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
16818 of an rs_align_code fragment. */
16819
16820void
16821arm_handle_align (fragS * fragP)
bfae80f2 16822{
c19d1205
ZW
16823 static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 };
16824 static char const thumb_noop[2] = { 0xc0, 0x46 };
16825 static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 };
16826 static char const thumb_bigend_noop[2] = { 0x46, 0xc0 };
16827
16828 int bytes, fix, noop_size;
16829 char * p;
16830 const char * noop;
bfae80f2 16831
c19d1205 16832 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
16833 return;
16834
c19d1205
ZW
16835 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
16836 p = fragP->fr_literal + fragP->fr_fix;
16837 fix = 0;
bfae80f2 16838
c19d1205
ZW
16839 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
16840 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 16841
c19d1205 16842 if (fragP->tc_frag_data)
a737bd4d 16843 {
c19d1205
ZW
16844 if (target_big_endian)
16845 noop = thumb_bigend_noop;
16846 else
16847 noop = thumb_noop;
16848 noop_size = sizeof (thumb_noop);
7ed4c4c5
NC
16849 }
16850 else
16851 {
c19d1205
ZW
16852 if (target_big_endian)
16853 noop = arm_bigend_noop;
16854 else
16855 noop = arm_noop;
16856 noop_size = sizeof (arm_noop);
7ed4c4c5 16857 }
a737bd4d 16858
c19d1205 16859 if (bytes & (noop_size - 1))
7ed4c4c5 16860 {
c19d1205
ZW
16861 fix = bytes & (noop_size - 1);
16862 memset (p, 0, fix);
16863 p += fix;
16864 bytes -= fix;
a737bd4d 16865 }
a737bd4d 16866
c19d1205 16867 while (bytes >= noop_size)
a737bd4d 16868 {
c19d1205
ZW
16869 memcpy (p, noop, noop_size);
16870 p += noop_size;
16871 bytes -= noop_size;
16872 fix += noop_size;
a737bd4d
NC
16873 }
16874
c19d1205
ZW
16875 fragP->fr_fix += fix;
16876 fragP->fr_var = noop_size;
a737bd4d
NC
16877}
16878
c19d1205
ZW
16879/* Called from md_do_align. Used to create an alignment
16880 frag in a code section. */
16881
16882void
16883arm_frag_align_code (int n, int max)
bfae80f2 16884{
c19d1205 16885 char * p;
7ed4c4c5 16886
c19d1205
ZW
16887 /* We assume that there will never be a requirement
16888 to support alignments greater than 32 bytes. */
16889 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
16890 as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
bfae80f2 16891
c19d1205
ZW
16892 p = frag_var (rs_align_code,
16893 MAX_MEM_FOR_RS_ALIGN_CODE,
16894 1,
16895 (relax_substateT) max,
16896 (symbolS *) NULL,
16897 (offsetT) n,
16898 (char *) NULL);
16899 *p = 0;
16900}
bfae80f2 16901
c19d1205 16902/* Perform target specific initialisation of a frag. */
bfae80f2 16903
c19d1205
ZW
16904void
16905arm_init_frag (fragS * fragP)
16906{
16907 /* Record whether this frag is in an ARM or a THUMB area. */
16908 fragP->tc_frag_data = thumb_mode;
bfae80f2
RE
16909}
16910
c19d1205
ZW
16911#ifdef OBJ_ELF
16912/* When we change sections we need to issue a new mapping symbol. */
16913
16914void
16915arm_elf_change_section (void)
bfae80f2 16916{
c19d1205
ZW
16917 flagword flags;
16918 segment_info_type *seginfo;
bfae80f2 16919
c19d1205
ZW
16920 /* Link an unlinked unwind index table section to the .text section. */
16921 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
16922 && elf_linked_to_section (now_seg) == NULL)
16923 elf_linked_to_section (now_seg) = text_section;
16924
16925 if (!SEG_NORMAL (now_seg))
bfae80f2
RE
16926 return;
16927
c19d1205
ZW
16928 flags = bfd_get_section_flags (stdoutput, now_seg);
16929
16930 /* We can ignore sections that only contain debug info. */
16931 if ((flags & SEC_ALLOC) == 0)
16932 return;
bfae80f2 16933
c19d1205
ZW
16934 seginfo = seg_info (now_seg);
16935 mapstate = seginfo->tc_segment_info_data.mapstate;
16936 marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency;
bfae80f2
RE
16937}
16938
c19d1205
ZW
16939int
16940arm_elf_section_type (const char * str, size_t len)
e45d0630 16941{
c19d1205
ZW
16942 if (len == 5 && strncmp (str, "exidx", 5) == 0)
16943 return SHT_ARM_EXIDX;
e45d0630 16944
c19d1205
ZW
16945 return -1;
16946}
16947\f
16948/* Code to deal with unwinding tables. */
e45d0630 16949
c19d1205 16950static void add_unwind_adjustsp (offsetT);
e45d0630 16951
c19d1205 16952/* Cenerate and deferred unwind frame offset. */
e45d0630 16953
bfae80f2 16954static void
c19d1205 16955flush_pending_unwind (void)
bfae80f2 16956{
c19d1205 16957 offsetT offset;
bfae80f2 16958
c19d1205
ZW
16959 offset = unwind.pending_offset;
16960 unwind.pending_offset = 0;
16961 if (offset != 0)
16962 add_unwind_adjustsp (offset);
bfae80f2
RE
16963}
16964
c19d1205
ZW
16965/* Add an opcode to this list for this function. Two-byte opcodes should
16966 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
16967 order. */
16968
bfae80f2 16969static void
c19d1205 16970add_unwind_opcode (valueT op, int length)
bfae80f2 16971{
c19d1205
ZW
16972 /* Add any deferred stack adjustment. */
16973 if (unwind.pending_offset)
16974 flush_pending_unwind ();
bfae80f2 16975
c19d1205 16976 unwind.sp_restored = 0;
bfae80f2 16977
c19d1205 16978 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 16979 {
c19d1205
ZW
16980 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
16981 if (unwind.opcodes)
16982 unwind.opcodes = xrealloc (unwind.opcodes,
16983 unwind.opcode_alloc);
16984 else
16985 unwind.opcodes = xmalloc (unwind.opcode_alloc);
bfae80f2 16986 }
c19d1205 16987 while (length > 0)
bfae80f2 16988 {
c19d1205
ZW
16989 length--;
16990 unwind.opcodes[unwind.opcode_count] = op & 0xff;
16991 op >>= 8;
16992 unwind.opcode_count++;
bfae80f2 16993 }
bfae80f2
RE
16994}
16995
c19d1205
ZW
16996/* Add unwind opcodes to adjust the stack pointer. */
16997
bfae80f2 16998static void
c19d1205 16999add_unwind_adjustsp (offsetT offset)
bfae80f2 17000{
c19d1205 17001 valueT op;
bfae80f2 17002
c19d1205 17003 if (offset > 0x200)
bfae80f2 17004 {
c19d1205
ZW
17005 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
17006 char bytes[5];
17007 int n;
17008 valueT o;
bfae80f2 17009
c19d1205
ZW
17010 /* Long form: 0xb2, uleb128. */
17011 /* This might not fit in a word so add the individual bytes,
17012 remembering the list is built in reverse order. */
17013 o = (valueT) ((offset - 0x204) >> 2);
17014 if (o == 0)
17015 add_unwind_opcode (0, 1);
bfae80f2 17016
c19d1205
ZW
17017 /* Calculate the uleb128 encoding of the offset. */
17018 n = 0;
17019 while (o)
17020 {
17021 bytes[n] = o & 0x7f;
17022 o >>= 7;
17023 if (o)
17024 bytes[n] |= 0x80;
17025 n++;
17026 }
17027 /* Add the insn. */
17028 for (; n; n--)
17029 add_unwind_opcode (bytes[n - 1], 1);
17030 add_unwind_opcode (0xb2, 1);
17031 }
17032 else if (offset > 0x100)
bfae80f2 17033 {
c19d1205
ZW
17034 /* Two short opcodes. */
17035 add_unwind_opcode (0x3f, 1);
17036 op = (offset - 0x104) >> 2;
17037 add_unwind_opcode (op, 1);
bfae80f2 17038 }
c19d1205
ZW
17039 else if (offset > 0)
17040 {
17041 /* Short opcode. */
17042 op = (offset - 4) >> 2;
17043 add_unwind_opcode (op, 1);
17044 }
17045 else if (offset < 0)
bfae80f2 17046 {
c19d1205
ZW
17047 offset = -offset;
17048 while (offset > 0x100)
bfae80f2 17049 {
c19d1205
ZW
17050 add_unwind_opcode (0x7f, 1);
17051 offset -= 0x100;
bfae80f2 17052 }
c19d1205
ZW
17053 op = ((offset - 4) >> 2) | 0x40;
17054 add_unwind_opcode (op, 1);
bfae80f2 17055 }
bfae80f2
RE
17056}
17057
c19d1205
ZW
17058/* Finish the list of unwind opcodes for this function. */
17059static void
17060finish_unwind_opcodes (void)
bfae80f2 17061{
c19d1205 17062 valueT op;
bfae80f2 17063
c19d1205 17064 if (unwind.fp_used)
bfae80f2 17065 {
708587a4 17066 /* Adjust sp as necessary. */
c19d1205
ZW
17067 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
17068 flush_pending_unwind ();
bfae80f2 17069
c19d1205
ZW
17070 /* After restoring sp from the frame pointer. */
17071 op = 0x90 | unwind.fp_reg;
17072 add_unwind_opcode (op, 1);
17073 }
17074 else
17075 flush_pending_unwind ();
bfae80f2
RE
17076}
17077
bfae80f2 17078
c19d1205
ZW
17079/* Start an exception table entry. If idx is nonzero this is an index table
17080 entry. */
bfae80f2
RE
17081
17082static void
c19d1205 17083start_unwind_section (const segT text_seg, int idx)
bfae80f2 17084{
c19d1205
ZW
17085 const char * text_name;
17086 const char * prefix;
17087 const char * prefix_once;
17088 const char * group_name;
17089 size_t prefix_len;
17090 size_t text_len;
17091 char * sec_name;
17092 size_t sec_name_len;
17093 int type;
17094 int flags;
17095 int linkonce;
bfae80f2 17096
c19d1205 17097 if (idx)
bfae80f2 17098 {
c19d1205
ZW
17099 prefix = ELF_STRING_ARM_unwind;
17100 prefix_once = ELF_STRING_ARM_unwind_once;
17101 type = SHT_ARM_EXIDX;
bfae80f2 17102 }
c19d1205 17103 else
bfae80f2 17104 {
c19d1205
ZW
17105 prefix = ELF_STRING_ARM_unwind_info;
17106 prefix_once = ELF_STRING_ARM_unwind_info_once;
17107 type = SHT_PROGBITS;
bfae80f2
RE
17108 }
17109
c19d1205
ZW
17110 text_name = segment_name (text_seg);
17111 if (streq (text_name, ".text"))
17112 text_name = "";
17113
17114 if (strncmp (text_name, ".gnu.linkonce.t.",
17115 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 17116 {
c19d1205
ZW
17117 prefix = prefix_once;
17118 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
17119 }
17120
c19d1205
ZW
17121 prefix_len = strlen (prefix);
17122 text_len = strlen (text_name);
17123 sec_name_len = prefix_len + text_len;
17124 sec_name = xmalloc (sec_name_len + 1);
17125 memcpy (sec_name, prefix, prefix_len);
17126 memcpy (sec_name + prefix_len, text_name, text_len);
17127 sec_name[prefix_len + text_len] = '\0';
bfae80f2 17128
c19d1205
ZW
17129 flags = SHF_ALLOC;
17130 linkonce = 0;
17131 group_name = 0;
bfae80f2 17132
c19d1205
ZW
17133 /* Handle COMDAT group. */
17134 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 17135 {
c19d1205
ZW
17136 group_name = elf_group_name (text_seg);
17137 if (group_name == NULL)
17138 {
17139 as_bad ("Group section `%s' has no group signature",
17140 segment_name (text_seg));
17141 ignore_rest_of_line ();
17142 return;
17143 }
17144 flags |= SHF_GROUP;
17145 linkonce = 1;
bfae80f2
RE
17146 }
17147
c19d1205 17148 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 17149
c19d1205
ZW
17150 /* Set the setion link for index tables. */
17151 if (idx)
17152 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
17153}
17154
bfae80f2 17155
c19d1205
ZW
17156/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
17157 personality routine data. Returns zero, or the index table value for
17158 and inline entry. */
17159
17160static valueT
17161create_unwind_entry (int have_data)
bfae80f2 17162{
c19d1205
ZW
17163 int size;
17164 addressT where;
17165 char *ptr;
17166 /* The current word of data. */
17167 valueT data;
17168 /* The number of bytes left in this word. */
17169 int n;
bfae80f2 17170
c19d1205 17171 finish_unwind_opcodes ();
bfae80f2 17172
c19d1205
ZW
17173 /* Remember the current text section. */
17174 unwind.saved_seg = now_seg;
17175 unwind.saved_subseg = now_subseg;
bfae80f2 17176
c19d1205 17177 start_unwind_section (now_seg, 0);
bfae80f2 17178
c19d1205 17179 if (unwind.personality_routine == NULL)
bfae80f2 17180 {
c19d1205
ZW
17181 if (unwind.personality_index == -2)
17182 {
17183 if (have_data)
17184 as_bad (_("handerdata in cantunwind frame"));
17185 return 1; /* EXIDX_CANTUNWIND. */
17186 }
bfae80f2 17187
c19d1205
ZW
17188 /* Use a default personality routine if none is specified. */
17189 if (unwind.personality_index == -1)
17190 {
17191 if (unwind.opcode_count > 3)
17192 unwind.personality_index = 1;
17193 else
17194 unwind.personality_index = 0;
17195 }
bfae80f2 17196
c19d1205
ZW
17197 /* Space for the personality routine entry. */
17198 if (unwind.personality_index == 0)
17199 {
17200 if (unwind.opcode_count > 3)
17201 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 17202
c19d1205
ZW
17203 if (!have_data)
17204 {
17205 /* All the data is inline in the index table. */
17206 data = 0x80;
17207 n = 3;
17208 while (unwind.opcode_count > 0)
17209 {
17210 unwind.opcode_count--;
17211 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
17212 n--;
17213 }
bfae80f2 17214
c19d1205
ZW
17215 /* Pad with "finish" opcodes. */
17216 while (n--)
17217 data = (data << 8) | 0xb0;
bfae80f2 17218
c19d1205
ZW
17219 return data;
17220 }
17221 size = 0;
17222 }
17223 else
17224 /* We get two opcodes "free" in the first word. */
17225 size = unwind.opcode_count - 2;
17226 }
17227 else
17228 /* An extra byte is required for the opcode count. */
17229 size = unwind.opcode_count + 1;
bfae80f2 17230
c19d1205
ZW
17231 size = (size + 3) >> 2;
17232 if (size > 0xff)
17233 as_bad (_("too many unwind opcodes"));
bfae80f2 17234
c19d1205
ZW
17235 frag_align (2, 0, 0);
17236 record_alignment (now_seg, 2);
17237 unwind.table_entry = expr_build_dot ();
17238
17239 /* Allocate the table entry. */
17240 ptr = frag_more ((size << 2) + 4);
17241 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 17242
c19d1205 17243 switch (unwind.personality_index)
bfae80f2 17244 {
c19d1205
ZW
17245 case -1:
17246 /* ??? Should this be a PLT generating relocation? */
17247 /* Custom personality routine. */
17248 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
17249 BFD_RELOC_ARM_PREL31);
bfae80f2 17250
c19d1205
ZW
17251 where += 4;
17252 ptr += 4;
bfae80f2 17253
c19d1205
ZW
17254 /* Set the first byte to the number of additional words. */
17255 data = size - 1;
17256 n = 3;
17257 break;
bfae80f2 17258
c19d1205
ZW
17259 /* ABI defined personality routines. */
17260 case 0:
17261 /* Three opcodes bytes are packed into the first word. */
17262 data = 0x80;
17263 n = 3;
17264 break;
bfae80f2 17265
c19d1205
ZW
17266 case 1:
17267 case 2:
17268 /* The size and first two opcode bytes go in the first word. */
17269 data = ((0x80 + unwind.personality_index) << 8) | size;
17270 n = 2;
17271 break;
bfae80f2 17272
c19d1205
ZW
17273 default:
17274 /* Should never happen. */
17275 abort ();
17276 }
bfae80f2 17277
c19d1205
ZW
17278 /* Pack the opcodes into words (MSB first), reversing the list at the same
17279 time. */
17280 while (unwind.opcode_count > 0)
17281 {
17282 if (n == 0)
17283 {
17284 md_number_to_chars (ptr, data, 4);
17285 ptr += 4;
17286 n = 4;
17287 data = 0;
17288 }
17289 unwind.opcode_count--;
17290 n--;
17291 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
17292 }
17293
17294 /* Finish off the last word. */
17295 if (n < 4)
17296 {
17297 /* Pad with "finish" opcodes. */
17298 while (n--)
17299 data = (data << 8) | 0xb0;
17300
17301 md_number_to_chars (ptr, data, 4);
17302 }
17303
17304 if (!have_data)
17305 {
17306 /* Add an empty descriptor if there is no user-specified data. */
17307 ptr = frag_more (4);
17308 md_number_to_chars (ptr, 0, 4);
17309 }
17310
17311 return 0;
bfae80f2
RE
17312}
17313
f0927246
NC
17314
17315/* Initialize the DWARF-2 unwind information for this procedure. */
17316
17317void
17318tc_arm_frame_initial_instructions (void)
17319{
17320 cfi_add_CFA_def_cfa (REG_SP, 0);
17321}
17322#endif /* OBJ_ELF */
17323
c19d1205
ZW
17324/* Convert REGNAME to a DWARF-2 register number. */
17325
17326int
1df69f4f 17327tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 17328{
1df69f4f 17329 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
17330
17331 if (reg == FAIL)
17332 return -1;
17333
17334 return reg;
bfae80f2
RE
17335}
17336
f0927246 17337#ifdef TE_PE
c19d1205 17338void
f0927246 17339tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 17340{
f0927246 17341 expressionS expr;
bfae80f2 17342
f0927246
NC
17343 expr.X_op = O_secrel;
17344 expr.X_add_symbol = symbol;
17345 expr.X_add_number = 0;
17346 emit_expr (&expr, size);
17347}
17348#endif
bfae80f2 17349
c19d1205 17350/* MD interface: Symbol and relocation handling. */
bfae80f2 17351
2fc8bdac
ZW
17352/* Return the address within the segment that a PC-relative fixup is
17353 relative to. For ARM, PC-relative fixups applied to instructions
17354 are generally relative to the location of the fixup plus 8 bytes.
17355 Thumb branches are offset by 4, and Thumb loads relative to PC
17356 require special handling. */
bfae80f2 17357
c19d1205 17358long
2fc8bdac 17359md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 17360{
2fc8bdac
ZW
17361 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
17362
17363 /* If this is pc-relative and we are going to emit a relocation
17364 then we just want to put out any pipeline compensation that the linker
53baae48
NC
17365 will need. Otherwise we want to use the calculated base.
17366 For WinCE we skip the bias for externals as well, since this
17367 is how the MS ARM-CE assembler behaves and we want to be compatible. */
2fc8bdac
ZW
17368 if (fixP->fx_pcrel
17369 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
17370 || (arm_force_relocation (fixP)
17371#ifdef TE_WINCE
17372 && !S_IS_EXTERNAL (fixP->fx_addsy)
17373#endif
17374 )))
2fc8bdac 17375 base = 0;
bfae80f2 17376
c19d1205 17377 switch (fixP->fx_r_type)
bfae80f2 17378 {
2fc8bdac
ZW
17379 /* PC relative addressing on the Thumb is slightly odd as the
17380 bottom two bits of the PC are forced to zero for the
17381 calculation. This happens *after* application of the
17382 pipeline offset. However, Thumb adrl already adjusts for
17383 this, so we need not do it again. */
c19d1205 17384 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 17385 return base & ~3;
c19d1205
ZW
17386
17387 case BFD_RELOC_ARM_THUMB_OFFSET:
17388 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 17389 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 17390 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 17391 return (base + 4) & ~3;
c19d1205 17392
2fc8bdac
ZW
17393 /* Thumb branches are simply offset by +4. */
17394 case BFD_RELOC_THUMB_PCREL_BRANCH7:
17395 case BFD_RELOC_THUMB_PCREL_BRANCH9:
17396 case BFD_RELOC_THUMB_PCREL_BRANCH12:
17397 case BFD_RELOC_THUMB_PCREL_BRANCH20:
17398 case BFD_RELOC_THUMB_PCREL_BRANCH23:
17399 case BFD_RELOC_THUMB_PCREL_BRANCH25:
17400 case BFD_RELOC_THUMB_PCREL_BLX:
17401 return base + 4;
bfae80f2 17402
2fc8bdac
ZW
17403 /* ARM mode branches are offset by +8. However, the Windows CE
17404 loader expects the relocation not to take this into account. */
17405 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c
PB
17406 case BFD_RELOC_ARM_PCREL_CALL:
17407 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac
ZW
17408 case BFD_RELOC_ARM_PCREL_BLX:
17409 case BFD_RELOC_ARM_PLT32:
c19d1205 17410#ifdef TE_WINCE
53baae48
NC
17411 /* When handling fixups immediately, because we have already
17412 discovered the value of a symbol, or the address of the frag involved
17413 we must account for the offset by +8, as the OS loader will never see the reloc.
17414 see fixup_segment() in write.c
17415 The S_IS_EXTERNAL test handles the case of global symbols.
17416 Those need the calculated base, not just the pipe compensation the linker will need. */
17417 if (fixP->fx_pcrel
17418 && fixP->fx_addsy != NULL
17419 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
17420 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
17421 return base + 8;
2fc8bdac 17422 return base;
c19d1205 17423#else
2fc8bdac 17424 return base + 8;
c19d1205 17425#endif
2fc8bdac
ZW
17426
17427 /* ARM mode loads relative to PC are also offset by +8. Unlike
17428 branches, the Windows CE loader *does* expect the relocation
17429 to take this into account. */
17430 case BFD_RELOC_ARM_OFFSET_IMM:
17431 case BFD_RELOC_ARM_OFFSET_IMM8:
17432 case BFD_RELOC_ARM_HWLITERAL:
17433 case BFD_RELOC_ARM_LITERAL:
17434 case BFD_RELOC_ARM_CP_OFF_IMM:
17435 return base + 8;
17436
17437
17438 /* Other PC-relative relocations are un-offset. */
17439 default:
17440 return base;
17441 }
bfae80f2
RE
17442}
17443
c19d1205
ZW
17444/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
17445 Otherwise we have no need to default values of symbols. */
17446
17447symbolS *
17448md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 17449{
c19d1205
ZW
17450#ifdef OBJ_ELF
17451 if (name[0] == '_' && name[1] == 'G'
17452 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
17453 {
17454 if (!GOT_symbol)
17455 {
17456 if (symbol_find (name))
17457 as_bad ("GOT already in the symbol table");
bfae80f2 17458
c19d1205
ZW
17459 GOT_symbol = symbol_new (name, undefined_section,
17460 (valueT) 0, & zero_address_frag);
17461 }
bfae80f2 17462
c19d1205 17463 return GOT_symbol;
bfae80f2 17464 }
c19d1205 17465#endif
bfae80f2 17466
c19d1205 17467 return 0;
bfae80f2
RE
17468}
17469
55cf6793 17470/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
17471 computed as two separate immediate values, added together. We
17472 already know that this value cannot be computed by just one ARM
17473 instruction. */
17474
17475static unsigned int
17476validate_immediate_twopart (unsigned int val,
17477 unsigned int * highpart)
bfae80f2 17478{
c19d1205
ZW
17479 unsigned int a;
17480 unsigned int i;
bfae80f2 17481
c19d1205
ZW
17482 for (i = 0; i < 32; i += 2)
17483 if (((a = rotate_left (val, i)) & 0xff) != 0)
17484 {
17485 if (a & 0xff00)
17486 {
17487 if (a & ~ 0xffff)
17488 continue;
17489 * highpart = (a >> 8) | ((i + 24) << 7);
17490 }
17491 else if (a & 0xff0000)
17492 {
17493 if (a & 0xff000000)
17494 continue;
17495 * highpart = (a >> 16) | ((i + 16) << 7);
17496 }
17497 else
17498 {
17499 assert (a & 0xff000000);
17500 * highpart = (a >> 24) | ((i + 8) << 7);
17501 }
bfae80f2 17502
c19d1205
ZW
17503 return (a & 0xff) | (i << 7);
17504 }
bfae80f2 17505
c19d1205 17506 return FAIL;
bfae80f2
RE
17507}
17508
c19d1205
ZW
17509static int
17510validate_offset_imm (unsigned int val, int hwse)
17511{
17512 if ((hwse && val > 255) || val > 4095)
17513 return FAIL;
17514 return val;
17515}
bfae80f2 17516
55cf6793 17517/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
17518 negative immediate constant by altering the instruction. A bit of
17519 a hack really.
17520 MOV <-> MVN
17521 AND <-> BIC
17522 ADC <-> SBC
17523 by inverting the second operand, and
17524 ADD <-> SUB
17525 CMP <-> CMN
17526 by negating the second operand. */
bfae80f2 17527
c19d1205
ZW
17528static int
17529negate_data_op (unsigned long * instruction,
17530 unsigned long value)
bfae80f2 17531{
c19d1205
ZW
17532 int op, new_inst;
17533 unsigned long negated, inverted;
bfae80f2 17534
c19d1205
ZW
17535 negated = encode_arm_immediate (-value);
17536 inverted = encode_arm_immediate (~value);
bfae80f2 17537
c19d1205
ZW
17538 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
17539 switch (op)
bfae80f2 17540 {
c19d1205
ZW
17541 /* First negates. */
17542 case OPCODE_SUB: /* ADD <-> SUB */
17543 new_inst = OPCODE_ADD;
17544 value = negated;
17545 break;
bfae80f2 17546
c19d1205
ZW
17547 case OPCODE_ADD:
17548 new_inst = OPCODE_SUB;
17549 value = negated;
17550 break;
bfae80f2 17551
c19d1205
ZW
17552 case OPCODE_CMP: /* CMP <-> CMN */
17553 new_inst = OPCODE_CMN;
17554 value = negated;
17555 break;
bfae80f2 17556
c19d1205
ZW
17557 case OPCODE_CMN:
17558 new_inst = OPCODE_CMP;
17559 value = negated;
17560 break;
bfae80f2 17561
c19d1205
ZW
17562 /* Now Inverted ops. */
17563 case OPCODE_MOV: /* MOV <-> MVN */
17564 new_inst = OPCODE_MVN;
17565 value = inverted;
17566 break;
bfae80f2 17567
c19d1205
ZW
17568 case OPCODE_MVN:
17569 new_inst = OPCODE_MOV;
17570 value = inverted;
17571 break;
bfae80f2 17572
c19d1205
ZW
17573 case OPCODE_AND: /* AND <-> BIC */
17574 new_inst = OPCODE_BIC;
17575 value = inverted;
17576 break;
bfae80f2 17577
c19d1205
ZW
17578 case OPCODE_BIC:
17579 new_inst = OPCODE_AND;
17580 value = inverted;
17581 break;
bfae80f2 17582
c19d1205
ZW
17583 case OPCODE_ADC: /* ADC <-> SBC */
17584 new_inst = OPCODE_SBC;
17585 value = inverted;
17586 break;
bfae80f2 17587
c19d1205
ZW
17588 case OPCODE_SBC:
17589 new_inst = OPCODE_ADC;
17590 value = inverted;
17591 break;
bfae80f2 17592
c19d1205
ZW
17593 /* We cannot do anything. */
17594 default:
17595 return FAIL;
b99bd4ef
NC
17596 }
17597
c19d1205
ZW
17598 if (value == (unsigned) FAIL)
17599 return FAIL;
17600
17601 *instruction &= OPCODE_MASK;
17602 *instruction |= new_inst << DATA_OP_SHIFT;
17603 return value;
b99bd4ef
NC
17604}
17605
ef8d22e6
PB
17606/* Like negate_data_op, but for Thumb-2. */
17607
17608static unsigned int
16dd5e42 17609thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
17610{
17611 int op, new_inst;
17612 int rd;
16dd5e42 17613 unsigned int negated, inverted;
ef8d22e6
PB
17614
17615 negated = encode_thumb32_immediate (-value);
17616 inverted = encode_thumb32_immediate (~value);
17617
17618 rd = (*instruction >> 8) & 0xf;
17619 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
17620 switch (op)
17621 {
17622 /* ADD <-> SUB. Includes CMP <-> CMN. */
17623 case T2_OPCODE_SUB:
17624 new_inst = T2_OPCODE_ADD;
17625 value = negated;
17626 break;
17627
17628 case T2_OPCODE_ADD:
17629 new_inst = T2_OPCODE_SUB;
17630 value = negated;
17631 break;
17632
17633 /* ORR <-> ORN. Includes MOV <-> MVN. */
17634 case T2_OPCODE_ORR:
17635 new_inst = T2_OPCODE_ORN;
17636 value = inverted;
17637 break;
17638
17639 case T2_OPCODE_ORN:
17640 new_inst = T2_OPCODE_ORR;
17641 value = inverted;
17642 break;
17643
17644 /* AND <-> BIC. TST has no inverted equivalent. */
17645 case T2_OPCODE_AND:
17646 new_inst = T2_OPCODE_BIC;
17647 if (rd == 15)
17648 value = FAIL;
17649 else
17650 value = inverted;
17651 break;
17652
17653 case T2_OPCODE_BIC:
17654 new_inst = T2_OPCODE_AND;
17655 value = inverted;
17656 break;
17657
17658 /* ADC <-> SBC */
17659 case T2_OPCODE_ADC:
17660 new_inst = T2_OPCODE_SBC;
17661 value = inverted;
17662 break;
17663
17664 case T2_OPCODE_SBC:
17665 new_inst = T2_OPCODE_ADC;
17666 value = inverted;
17667 break;
17668
17669 /* We cannot do anything. */
17670 default:
17671 return FAIL;
17672 }
17673
16dd5e42 17674 if (value == (unsigned int)FAIL)
ef8d22e6
PB
17675 return FAIL;
17676
17677 *instruction &= T2_OPCODE_MASK;
17678 *instruction |= new_inst << T2_DATA_OP_SHIFT;
17679 return value;
17680}
17681
8f06b2d8
PB
17682/* Read a 32-bit thumb instruction from buf. */
17683static unsigned long
17684get_thumb32_insn (char * buf)
17685{
17686 unsigned long insn;
17687 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
17688 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
17689
17690 return insn;
17691}
17692
a8bc6c78
PB
17693
17694/* We usually want to set the low bit on the address of thumb function
17695 symbols. In particular .word foo - . should have the low bit set.
17696 Generic code tries to fold the difference of two symbols to
17697 a constant. Prevent this and force a relocation when the first symbols
17698 is a thumb function. */
17699int
17700arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
17701{
17702 if (op == O_subtract
17703 && l->X_op == O_symbol
17704 && r->X_op == O_symbol
17705 && THUMB_IS_FUNC (l->X_add_symbol))
17706 {
17707 l->X_op = O_subtract;
17708 l->X_op_symbol = r->X_add_symbol;
17709 l->X_add_number -= r->X_add_number;
17710 return 1;
17711 }
17712 /* Process as normal. */
17713 return 0;
17714}
17715
c19d1205 17716void
55cf6793 17717md_apply_fix (fixS * fixP,
c19d1205
ZW
17718 valueT * valP,
17719 segT seg)
17720{
17721 offsetT value = * valP;
17722 offsetT newval;
17723 unsigned int newimm;
17724 unsigned long temp;
17725 int sign;
17726 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 17727
c19d1205 17728 assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 17729
c19d1205 17730 /* Note whether this will delete the relocation. */
4962c51a 17731
c19d1205
ZW
17732 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
17733 fixP->fx_done = 1;
b99bd4ef 17734
adbaf948
ZW
17735 /* On a 64-bit host, silently truncate 'value' to 32 bits for
17736 consistency with the behavior on 32-bit hosts. Remember value
17737 for emit_reloc. */
17738 value &= 0xffffffff;
17739 value ^= 0x80000000;
17740 value -= 0x80000000;
17741
17742 *valP = value;
c19d1205 17743 fixP->fx_addnumber = value;
b99bd4ef 17744
adbaf948
ZW
17745 /* Same treatment for fixP->fx_offset. */
17746 fixP->fx_offset &= 0xffffffff;
17747 fixP->fx_offset ^= 0x80000000;
17748 fixP->fx_offset -= 0x80000000;
17749
c19d1205 17750 switch (fixP->fx_r_type)
b99bd4ef 17751 {
c19d1205
ZW
17752 case BFD_RELOC_NONE:
17753 /* This will need to go in the object file. */
17754 fixP->fx_done = 0;
17755 break;
b99bd4ef 17756
c19d1205
ZW
17757 case BFD_RELOC_ARM_IMMEDIATE:
17758 /* We claim that this fixup has been processed here,
17759 even if in fact we generate an error because we do
17760 not have a reloc for it, so tc_gen_reloc will reject it. */
17761 fixP->fx_done = 1;
b99bd4ef 17762
c19d1205
ZW
17763 if (fixP->fx_addsy
17764 && ! S_IS_DEFINED (fixP->fx_addsy))
b99bd4ef 17765 {
c19d1205
ZW
17766 as_bad_where (fixP->fx_file, fixP->fx_line,
17767 _("undefined symbol %s used as an immediate value"),
17768 S_GET_NAME (fixP->fx_addsy));
17769 break;
b99bd4ef
NC
17770 }
17771
c19d1205
ZW
17772 newimm = encode_arm_immediate (value);
17773 temp = md_chars_to_number (buf, INSN_SIZE);
17774
17775 /* If the instruction will fail, see if we can fix things up by
17776 changing the opcode. */
17777 if (newimm == (unsigned int) FAIL
17778 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
b99bd4ef 17779 {
c19d1205
ZW
17780 as_bad_where (fixP->fx_file, fixP->fx_line,
17781 _("invalid constant (%lx) after fixup"),
17782 (unsigned long) value);
17783 break;
b99bd4ef 17784 }
b99bd4ef 17785
c19d1205
ZW
17786 newimm |= (temp & 0xfffff000);
17787 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
17788 break;
b99bd4ef 17789
c19d1205
ZW
17790 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
17791 {
17792 unsigned int highpart = 0;
17793 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 17794
c19d1205
ZW
17795 newimm = encode_arm_immediate (value);
17796 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 17797
c19d1205
ZW
17798 /* If the instruction will fail, see if we can fix things up by
17799 changing the opcode. */
17800 if (newimm == (unsigned int) FAIL
17801 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
17802 {
17803 /* No ? OK - try using two ADD instructions to generate
17804 the value. */
17805 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 17806
c19d1205
ZW
17807 /* Yes - then make sure that the second instruction is
17808 also an add. */
17809 if (newimm != (unsigned int) FAIL)
17810 newinsn = temp;
17811 /* Still No ? Try using a negated value. */
17812 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
17813 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
17814 /* Otherwise - give up. */
17815 else
17816 {
17817 as_bad_where (fixP->fx_file, fixP->fx_line,
17818 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
17819 (long) value);
17820 break;
17821 }
b99bd4ef 17822
c19d1205
ZW
17823 /* Replace the first operand in the 2nd instruction (which
17824 is the PC) with the destination register. We have
17825 already added in the PC in the first instruction and we
17826 do not want to do it again. */
17827 newinsn &= ~ 0xf0000;
17828 newinsn |= ((newinsn & 0x0f000) << 4);
17829 }
b99bd4ef 17830
c19d1205
ZW
17831 newimm |= (temp & 0xfffff000);
17832 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 17833
c19d1205
ZW
17834 highpart |= (newinsn & 0xfffff000);
17835 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
17836 }
17837 break;
b99bd4ef 17838
c19d1205 17839 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
17840 if (!fixP->fx_done && seg->use_rela_p)
17841 value = 0;
17842
c19d1205
ZW
17843 case BFD_RELOC_ARM_LITERAL:
17844 sign = value >= 0;
b99bd4ef 17845
c19d1205
ZW
17846 if (value < 0)
17847 value = - value;
b99bd4ef 17848
c19d1205 17849 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 17850 {
c19d1205
ZW
17851 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
17852 as_bad_where (fixP->fx_file, fixP->fx_line,
17853 _("invalid literal constant: pool needs to be closer"));
17854 else
17855 as_bad_where (fixP->fx_file, fixP->fx_line,
17856 _("bad immediate value for offset (%ld)"),
17857 (long) value);
17858 break;
f03698e6
RE
17859 }
17860
c19d1205
ZW
17861 newval = md_chars_to_number (buf, INSN_SIZE);
17862 newval &= 0xff7ff000;
17863 newval |= value | (sign ? INDEX_UP : 0);
17864 md_number_to_chars (buf, newval, INSN_SIZE);
17865 break;
b99bd4ef 17866
c19d1205
ZW
17867 case BFD_RELOC_ARM_OFFSET_IMM8:
17868 case BFD_RELOC_ARM_HWLITERAL:
17869 sign = value >= 0;
b99bd4ef 17870
c19d1205
ZW
17871 if (value < 0)
17872 value = - value;
b99bd4ef 17873
c19d1205 17874 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 17875 {
c19d1205
ZW
17876 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
17877 as_bad_where (fixP->fx_file, fixP->fx_line,
17878 _("invalid literal constant: pool needs to be closer"));
17879 else
17880 as_bad (_("bad immediate value for half-word offset (%ld)"),
17881 (long) value);
17882 break;
b99bd4ef
NC
17883 }
17884
c19d1205
ZW
17885 newval = md_chars_to_number (buf, INSN_SIZE);
17886 newval &= 0xff7ff0f0;
17887 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
17888 md_number_to_chars (buf, newval, INSN_SIZE);
17889 break;
b99bd4ef 17890
c19d1205
ZW
17891 case BFD_RELOC_ARM_T32_OFFSET_U8:
17892 if (value < 0 || value > 1020 || value % 4 != 0)
17893 as_bad_where (fixP->fx_file, fixP->fx_line,
17894 _("bad immediate value for offset (%ld)"), (long) value);
17895 value /= 4;
b99bd4ef 17896
c19d1205 17897 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
17898 newval |= value;
17899 md_number_to_chars (buf+2, newval, THUMB_SIZE);
17900 break;
b99bd4ef 17901
c19d1205
ZW
17902 case BFD_RELOC_ARM_T32_OFFSET_IMM:
17903 /* This is a complicated relocation used for all varieties of Thumb32
17904 load/store instruction with immediate offset:
17905
17906 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
17907 *4, optional writeback(W)
17908 (doubleword load/store)
17909
17910 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
17911 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
17912 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
17913 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
17914 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
17915
17916 Uppercase letters indicate bits that are already encoded at
17917 this point. Lowercase letters are our problem. For the
17918 second block of instructions, the secondary opcode nybble
17919 (bits 8..11) is present, and bit 23 is zero, even if this is
17920 a PC-relative operation. */
17921 newval = md_chars_to_number (buf, THUMB_SIZE);
17922 newval <<= 16;
17923 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 17924
c19d1205 17925 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 17926 {
c19d1205
ZW
17927 /* Doubleword load/store: 8-bit offset, scaled by 4. */
17928 if (value >= 0)
17929 newval |= (1 << 23);
17930 else
17931 value = -value;
17932 if (value % 4 != 0)
17933 {
17934 as_bad_where (fixP->fx_file, fixP->fx_line,
17935 _("offset not a multiple of 4"));
17936 break;
17937 }
17938 value /= 4;
216d22bc 17939 if (value > 0xff)
c19d1205
ZW
17940 {
17941 as_bad_where (fixP->fx_file, fixP->fx_line,
17942 _("offset out of range"));
17943 break;
17944 }
17945 newval &= ~0xff;
b99bd4ef 17946 }
c19d1205 17947 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 17948 {
c19d1205
ZW
17949 /* PC-relative, 12-bit offset. */
17950 if (value >= 0)
17951 newval |= (1 << 23);
17952 else
17953 value = -value;
216d22bc 17954 if (value > 0xfff)
c19d1205
ZW
17955 {
17956 as_bad_where (fixP->fx_file, fixP->fx_line,
17957 _("offset out of range"));
17958 break;
17959 }
17960 newval &= ~0xfff;
b99bd4ef 17961 }
c19d1205 17962 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 17963 {
c19d1205
ZW
17964 /* Writeback: 8-bit, +/- offset. */
17965 if (value >= 0)
17966 newval |= (1 << 9);
17967 else
17968 value = -value;
216d22bc 17969 if (value > 0xff)
c19d1205
ZW
17970 {
17971 as_bad_where (fixP->fx_file, fixP->fx_line,
17972 _("offset out of range"));
17973 break;
17974 }
17975 newval &= ~0xff;
b99bd4ef 17976 }
c19d1205 17977 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 17978 {
c19d1205 17979 /* T-instruction: positive 8-bit offset. */
216d22bc 17980 if (value < 0 || value > 0xff)
b99bd4ef 17981 {
c19d1205
ZW
17982 as_bad_where (fixP->fx_file, fixP->fx_line,
17983 _("offset out of range"));
17984 break;
b99bd4ef 17985 }
c19d1205
ZW
17986 newval &= ~0xff;
17987 newval |= value;
b99bd4ef
NC
17988 }
17989 else
b99bd4ef 17990 {
c19d1205
ZW
17991 /* Positive 12-bit or negative 8-bit offset. */
17992 int limit;
17993 if (value >= 0)
b99bd4ef 17994 {
c19d1205
ZW
17995 newval |= (1 << 23);
17996 limit = 0xfff;
17997 }
17998 else
17999 {
18000 value = -value;
18001 limit = 0xff;
18002 }
18003 if (value > limit)
18004 {
18005 as_bad_where (fixP->fx_file, fixP->fx_line,
18006 _("offset out of range"));
18007 break;
b99bd4ef 18008 }
c19d1205 18009 newval &= ~limit;
b99bd4ef 18010 }
b99bd4ef 18011
c19d1205
ZW
18012 newval |= value;
18013 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
18014 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
18015 break;
404ff6b5 18016
c19d1205
ZW
18017 case BFD_RELOC_ARM_SHIFT_IMM:
18018 newval = md_chars_to_number (buf, INSN_SIZE);
18019 if (((unsigned long) value) > 32
18020 || (value == 32
18021 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
18022 {
18023 as_bad_where (fixP->fx_file, fixP->fx_line,
18024 _("shift expression is too large"));
18025 break;
18026 }
404ff6b5 18027
c19d1205
ZW
18028 if (value == 0)
18029 /* Shifts of zero must be done as lsl. */
18030 newval &= ~0x60;
18031 else if (value == 32)
18032 value = 0;
18033 newval &= 0xfffff07f;
18034 newval |= (value & 0x1f) << 7;
18035 md_number_to_chars (buf, newval, INSN_SIZE);
18036 break;
404ff6b5 18037
c19d1205 18038 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 18039 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 18040 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 18041 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
18042 /* We claim that this fixup has been processed here,
18043 even if in fact we generate an error because we do
18044 not have a reloc for it, so tc_gen_reloc will reject it. */
18045 fixP->fx_done = 1;
404ff6b5 18046
c19d1205
ZW
18047 if (fixP->fx_addsy
18048 && ! S_IS_DEFINED (fixP->fx_addsy))
18049 {
18050 as_bad_where (fixP->fx_file, fixP->fx_line,
18051 _("undefined symbol %s used as an immediate value"),
18052 S_GET_NAME (fixP->fx_addsy));
18053 break;
18054 }
404ff6b5 18055
c19d1205
ZW
18056 newval = md_chars_to_number (buf, THUMB_SIZE);
18057 newval <<= 16;
18058 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 18059
16805f35
PB
18060 newimm = FAIL;
18061 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
18062 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
18063 {
18064 newimm = encode_thumb32_immediate (value);
18065 if (newimm == (unsigned int) FAIL)
18066 newimm = thumb32_negate_data_op (&newval, value);
18067 }
16805f35
PB
18068 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
18069 && newimm == (unsigned int) FAIL)
92e90b6e 18070 {
16805f35
PB
18071 /* Turn add/sum into addw/subw. */
18072 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
18073 newval = (newval & 0xfeffffff) | 0x02000000;
18074
e9f89963
PB
18075 /* 12 bit immediate for addw/subw. */
18076 if (value < 0)
18077 {
18078 value = -value;
18079 newval ^= 0x00a00000;
18080 }
92e90b6e
PB
18081 if (value > 0xfff)
18082 newimm = (unsigned int) FAIL;
18083 else
18084 newimm = value;
18085 }
cc8a6dd0 18086
c19d1205 18087 if (newimm == (unsigned int)FAIL)
3631a3c8 18088 {
c19d1205
ZW
18089 as_bad_where (fixP->fx_file, fixP->fx_line,
18090 _("invalid constant (%lx) after fixup"),
18091 (unsigned long) value);
18092 break;
3631a3c8
NC
18093 }
18094
c19d1205
ZW
18095 newval |= (newimm & 0x800) << 15;
18096 newval |= (newimm & 0x700) << 4;
18097 newval |= (newimm & 0x0ff);
cc8a6dd0 18098
c19d1205
ZW
18099 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
18100 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
18101 break;
a737bd4d 18102
3eb17e6b 18103 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
18104 if (((unsigned long) value) > 0xffff)
18105 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 18106 _("invalid smc expression"));
2fc8bdac 18107 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
18108 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
18109 md_number_to_chars (buf, newval, INSN_SIZE);
18110 break;
a737bd4d 18111
c19d1205 18112 case BFD_RELOC_ARM_SWI:
adbaf948 18113 if (fixP->tc_fix_data != 0)
c19d1205
ZW
18114 {
18115 if (((unsigned long) value) > 0xff)
18116 as_bad_where (fixP->fx_file, fixP->fx_line,
18117 _("invalid swi expression"));
2fc8bdac 18118 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
18119 newval |= value;
18120 md_number_to_chars (buf, newval, THUMB_SIZE);
18121 }
18122 else
18123 {
18124 if (((unsigned long) value) > 0x00ffffff)
18125 as_bad_where (fixP->fx_file, fixP->fx_line,
18126 _("invalid swi expression"));
2fc8bdac 18127 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
18128 newval |= value;
18129 md_number_to_chars (buf, newval, INSN_SIZE);
18130 }
18131 break;
a737bd4d 18132
c19d1205
ZW
18133 case BFD_RELOC_ARM_MULTI:
18134 if (((unsigned long) value) > 0xffff)
18135 as_bad_where (fixP->fx_file, fixP->fx_line,
18136 _("invalid expression in load/store multiple"));
18137 newval = value | md_chars_to_number (buf, INSN_SIZE);
18138 md_number_to_chars (buf, newval, INSN_SIZE);
18139 break;
a737bd4d 18140
c19d1205 18141#ifdef OBJ_ELF
39b41c9c
PB
18142 case BFD_RELOC_ARM_PCREL_CALL:
18143 newval = md_chars_to_number (buf, INSN_SIZE);
18144 if ((newval & 0xf0000000) == 0xf0000000)
18145 temp = 1;
18146 else
18147 temp = 3;
18148 goto arm_branch_common;
18149
18150 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 18151 case BFD_RELOC_ARM_PLT32:
c19d1205 18152#endif
39b41c9c
PB
18153 case BFD_RELOC_ARM_PCREL_BRANCH:
18154 temp = 3;
18155 goto arm_branch_common;
a737bd4d 18156
39b41c9c
PB
18157 case BFD_RELOC_ARM_PCREL_BLX:
18158 temp = 1;
18159 arm_branch_common:
c19d1205 18160 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
18161 instruction, in a 24 bit, signed field. Bits 26 through 32 either
18162 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
18163 also be be clear. */
18164 if (value & temp)
c19d1205 18165 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
18166 _("misaligned branch destination"));
18167 if ((value & (offsetT)0xfe000000) != (offsetT)0
18168 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
18169 as_bad_where (fixP->fx_file, fixP->fx_line,
18170 _("branch out of range"));
a737bd4d 18171
2fc8bdac 18172 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 18173 {
2fc8bdac
ZW
18174 newval = md_chars_to_number (buf, INSN_SIZE);
18175 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
18176 /* Set the H bit on BLX instructions. */
18177 if (temp == 1)
18178 {
18179 if (value & 2)
18180 newval |= 0x01000000;
18181 else
18182 newval &= ~0x01000000;
18183 }
2fc8bdac 18184 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 18185 }
c19d1205 18186 break;
a737bd4d 18187
25fe350b
MS
18188 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
18189 /* CBZ can only branch forward. */
a737bd4d 18190
738755b0
MS
18191 /* Attempts to use CBZ to branch to the next instruction
18192 (which, strictly speaking, are prohibited) will be turned into
18193 no-ops.
18194
18195 FIXME: It may be better to remove the instruction completely and
18196 perform relaxation. */
18197 if (value == -2)
2fc8bdac
ZW
18198 {
18199 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 18200 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
18201 md_number_to_chars (buf, newval, THUMB_SIZE);
18202 }
738755b0
MS
18203 else
18204 {
18205 if (value & ~0x7e)
18206 as_bad_where (fixP->fx_file, fixP->fx_line,
18207 _("branch out of range"));
18208
18209 if (fixP->fx_done || !seg->use_rela_p)
18210 {
18211 newval = md_chars_to_number (buf, THUMB_SIZE);
18212 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
18213 md_number_to_chars (buf, newval, THUMB_SIZE);
18214 }
18215 }
c19d1205 18216 break;
a737bd4d 18217
c19d1205 18218 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac
ZW
18219 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
18220 as_bad_where (fixP->fx_file, fixP->fx_line,
18221 _("branch out of range"));
a737bd4d 18222
2fc8bdac
ZW
18223 if (fixP->fx_done || !seg->use_rela_p)
18224 {
18225 newval = md_chars_to_number (buf, THUMB_SIZE);
18226 newval |= (value & 0x1ff) >> 1;
18227 md_number_to_chars (buf, newval, THUMB_SIZE);
18228 }
c19d1205 18229 break;
a737bd4d 18230
c19d1205 18231 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac
ZW
18232 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
18233 as_bad_where (fixP->fx_file, fixP->fx_line,
18234 _("branch out of range"));
a737bd4d 18235
2fc8bdac
ZW
18236 if (fixP->fx_done || !seg->use_rela_p)
18237 {
18238 newval = md_chars_to_number (buf, THUMB_SIZE);
18239 newval |= (value & 0xfff) >> 1;
18240 md_number_to_chars (buf, newval, THUMB_SIZE);
18241 }
c19d1205 18242 break;
a737bd4d 18243
c19d1205 18244 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac
ZW
18245 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
18246 as_bad_where (fixP->fx_file, fixP->fx_line,
18247 _("conditional branch out of range"));
404ff6b5 18248
2fc8bdac
ZW
18249 if (fixP->fx_done || !seg->use_rela_p)
18250 {
18251 offsetT newval2;
18252 addressT S, J1, J2, lo, hi;
404ff6b5 18253
2fc8bdac
ZW
18254 S = (value & 0x00100000) >> 20;
18255 J2 = (value & 0x00080000) >> 19;
18256 J1 = (value & 0x00040000) >> 18;
18257 hi = (value & 0x0003f000) >> 12;
18258 lo = (value & 0x00000ffe) >> 1;
6c43fab6 18259
2fc8bdac
ZW
18260 newval = md_chars_to_number (buf, THUMB_SIZE);
18261 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18262 newval |= (S << 10) | hi;
18263 newval2 |= (J1 << 13) | (J2 << 11) | lo;
18264 md_number_to_chars (buf, newval, THUMB_SIZE);
18265 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18266 }
c19d1205 18267 break;
6c43fab6 18268
c19d1205
ZW
18269 case BFD_RELOC_THUMB_PCREL_BLX:
18270 case BFD_RELOC_THUMB_PCREL_BRANCH23:
2fc8bdac
ZW
18271 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
18272 as_bad_where (fixP->fx_file, fixP->fx_line,
18273 _("branch out of range"));
404ff6b5 18274
2fc8bdac
ZW
18275 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
18276 /* For a BLX instruction, make sure that the relocation is rounded up
18277 to a word boundary. This follows the semantics of the instruction
18278 which specifies that bit 1 of the target address will come from bit
18279 1 of the base address. */
18280 value = (value + 1) & ~ 1;
404ff6b5 18281
2fc8bdac 18282 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 18283 {
2fc8bdac
ZW
18284 offsetT newval2;
18285
18286 newval = md_chars_to_number (buf, THUMB_SIZE);
18287 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18288 newval |= (value & 0x7fffff) >> 12;
18289 newval2 |= (value & 0xfff) >> 1;
18290 md_number_to_chars (buf, newval, THUMB_SIZE);
18291 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
c19d1205 18292 }
c19d1205 18293 break;
404ff6b5 18294
c19d1205 18295 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac
ZW
18296 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
18297 as_bad_where (fixP->fx_file, fixP->fx_line,
18298 _("branch out of range"));
6c43fab6 18299
2fc8bdac
ZW
18300 if (fixP->fx_done || !seg->use_rela_p)
18301 {
18302 offsetT newval2;
18303 addressT S, I1, I2, lo, hi;
6c43fab6 18304
2fc8bdac
ZW
18305 S = (value & 0x01000000) >> 24;
18306 I1 = (value & 0x00800000) >> 23;
18307 I2 = (value & 0x00400000) >> 22;
18308 hi = (value & 0x003ff000) >> 12;
18309 lo = (value & 0x00000ffe) >> 1;
6c43fab6 18310
2fc8bdac
ZW
18311 I1 = !(I1 ^ S);
18312 I2 = !(I2 ^ S);
a737bd4d 18313
2fc8bdac
ZW
18314 newval = md_chars_to_number (buf, THUMB_SIZE);
18315 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18316 newval |= (S << 10) | hi;
18317 newval2 |= (I1 << 13) | (I2 << 11) | lo;
18318 md_number_to_chars (buf, newval, THUMB_SIZE);
18319 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18320 }
18321 break;
a737bd4d 18322
2fc8bdac
ZW
18323 case BFD_RELOC_8:
18324 if (fixP->fx_done || !seg->use_rela_p)
18325 md_number_to_chars (buf, value, 1);
c19d1205 18326 break;
a737bd4d 18327
c19d1205 18328 case BFD_RELOC_16:
2fc8bdac 18329 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 18330 md_number_to_chars (buf, value, 2);
c19d1205 18331 break;
a737bd4d 18332
c19d1205
ZW
18333#ifdef OBJ_ELF
18334 case BFD_RELOC_ARM_TLS_GD32:
18335 case BFD_RELOC_ARM_TLS_LE32:
18336 case BFD_RELOC_ARM_TLS_IE32:
18337 case BFD_RELOC_ARM_TLS_LDM32:
18338 case BFD_RELOC_ARM_TLS_LDO32:
18339 S_SET_THREAD_LOCAL (fixP->fx_addsy);
18340 /* fall through */
6c43fab6 18341
c19d1205
ZW
18342 case BFD_RELOC_ARM_GOT32:
18343 case BFD_RELOC_ARM_GOTOFF:
18344 case BFD_RELOC_ARM_TARGET2:
2fc8bdac
ZW
18345 if (fixP->fx_done || !seg->use_rela_p)
18346 md_number_to_chars (buf, 0, 4);
c19d1205
ZW
18347 break;
18348#endif
6c43fab6 18349
c19d1205
ZW
18350 case BFD_RELOC_RVA:
18351 case BFD_RELOC_32:
18352 case BFD_RELOC_ARM_TARGET1:
18353 case BFD_RELOC_ARM_ROSEGREL32:
18354 case BFD_RELOC_ARM_SBREL32:
18355 case BFD_RELOC_32_PCREL:
f0927246
NC
18356#ifdef TE_PE
18357 case BFD_RELOC_32_SECREL:
18358#endif
2fc8bdac 18359 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
18360#ifdef TE_WINCE
18361 /* For WinCE we only do this for pcrel fixups. */
18362 if (fixP->fx_done || fixP->fx_pcrel)
18363#endif
18364 md_number_to_chars (buf, value, 4);
c19d1205 18365 break;
6c43fab6 18366
c19d1205
ZW
18367#ifdef OBJ_ELF
18368 case BFD_RELOC_ARM_PREL31:
2fc8bdac 18369 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
18370 {
18371 newval = md_chars_to_number (buf, 4) & 0x80000000;
18372 if ((value ^ (value >> 1)) & 0x40000000)
18373 {
18374 as_bad_where (fixP->fx_file, fixP->fx_line,
18375 _("rel31 relocation overflow"));
18376 }
18377 newval |= value & 0x7fffffff;
18378 md_number_to_chars (buf, newval, 4);
18379 }
18380 break;
c19d1205 18381#endif
a737bd4d 18382
c19d1205 18383 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 18384 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
18385 if (value < -1023 || value > 1023 || (value & 3))
18386 as_bad_where (fixP->fx_file, fixP->fx_line,
18387 _("co-processor offset out of range"));
18388 cp_off_common:
18389 sign = value >= 0;
18390 if (value < 0)
18391 value = -value;
8f06b2d8
PB
18392 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
18393 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
18394 newval = md_chars_to_number (buf, INSN_SIZE);
18395 else
18396 newval = get_thumb32_insn (buf);
18397 newval &= 0xff7fff00;
c19d1205 18398 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
8f06b2d8
PB
18399 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
18400 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
18401 md_number_to_chars (buf, newval, INSN_SIZE);
18402 else
18403 put_thumb32_insn (buf, newval);
c19d1205 18404 break;
a737bd4d 18405
c19d1205 18406 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 18407 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
18408 if (value < -255 || value > 255)
18409 as_bad_where (fixP->fx_file, fixP->fx_line,
18410 _("co-processor offset out of range"));
df7849c5 18411 value *= 4;
c19d1205 18412 goto cp_off_common;
6c43fab6 18413
c19d1205
ZW
18414 case BFD_RELOC_ARM_THUMB_OFFSET:
18415 newval = md_chars_to_number (buf, THUMB_SIZE);
18416 /* Exactly what ranges, and where the offset is inserted depends
18417 on the type of instruction, we can establish this from the
18418 top 4 bits. */
18419 switch (newval >> 12)
18420 {
18421 case 4: /* PC load. */
18422 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
18423 forced to zero for these loads; md_pcrel_from has already
18424 compensated for this. */
18425 if (value & 3)
18426 as_bad_where (fixP->fx_file, fixP->fx_line,
18427 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
18428 (((unsigned long) fixP->fx_frag->fr_address
18429 + (unsigned long) fixP->fx_where) & ~3)
18430 + (unsigned long) value);
a737bd4d 18431
c19d1205
ZW
18432 if (value & ~0x3fc)
18433 as_bad_where (fixP->fx_file, fixP->fx_line,
18434 _("invalid offset, value too big (0x%08lX)"),
18435 (long) value);
a737bd4d 18436
c19d1205
ZW
18437 newval |= value >> 2;
18438 break;
a737bd4d 18439
c19d1205
ZW
18440 case 9: /* SP load/store. */
18441 if (value & ~0x3fc)
18442 as_bad_where (fixP->fx_file, fixP->fx_line,
18443 _("invalid offset, value too big (0x%08lX)"),
18444 (long) value);
18445 newval |= value >> 2;
18446 break;
6c43fab6 18447
c19d1205
ZW
18448 case 6: /* Word load/store. */
18449 if (value & ~0x7c)
18450 as_bad_where (fixP->fx_file, fixP->fx_line,
18451 _("invalid offset, value too big (0x%08lX)"),
18452 (long) value);
18453 newval |= value << 4; /* 6 - 2. */
18454 break;
a737bd4d 18455
c19d1205
ZW
18456 case 7: /* Byte load/store. */
18457 if (value & ~0x1f)
18458 as_bad_where (fixP->fx_file, fixP->fx_line,
18459 _("invalid offset, value too big (0x%08lX)"),
18460 (long) value);
18461 newval |= value << 6;
18462 break;
a737bd4d 18463
c19d1205
ZW
18464 case 8: /* Halfword load/store. */
18465 if (value & ~0x3e)
18466 as_bad_where (fixP->fx_file, fixP->fx_line,
18467 _("invalid offset, value too big (0x%08lX)"),
18468 (long) value);
18469 newval |= value << 5; /* 6 - 1. */
18470 break;
a737bd4d 18471
c19d1205
ZW
18472 default:
18473 as_bad_where (fixP->fx_file, fixP->fx_line,
18474 "Unable to process relocation for thumb opcode: %lx",
18475 (unsigned long) newval);
18476 break;
18477 }
18478 md_number_to_chars (buf, newval, THUMB_SIZE);
18479 break;
a737bd4d 18480
c19d1205
ZW
18481 case BFD_RELOC_ARM_THUMB_ADD:
18482 /* This is a complicated relocation, since we use it for all of
18483 the following immediate relocations:
a737bd4d 18484
c19d1205
ZW
18485 3bit ADD/SUB
18486 8bit ADD/SUB
18487 9bit ADD/SUB SP word-aligned
18488 10bit ADD PC/SP word-aligned
a737bd4d 18489
c19d1205
ZW
18490 The type of instruction being processed is encoded in the
18491 instruction field:
a737bd4d 18492
c19d1205
ZW
18493 0x8000 SUB
18494 0x00F0 Rd
18495 0x000F Rs
18496 */
18497 newval = md_chars_to_number (buf, THUMB_SIZE);
18498 {
18499 int rd = (newval >> 4) & 0xf;
18500 int rs = newval & 0xf;
18501 int subtract = !!(newval & 0x8000);
a737bd4d 18502
c19d1205
ZW
18503 /* Check for HI regs, only very restricted cases allowed:
18504 Adjusting SP, and using PC or SP to get an address. */
18505 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
18506 || (rs > 7 && rs != REG_SP && rs != REG_PC))
18507 as_bad_where (fixP->fx_file, fixP->fx_line,
18508 _("invalid Hi register with immediate"));
a737bd4d 18509
c19d1205
ZW
18510 /* If value is negative, choose the opposite instruction. */
18511 if (value < 0)
18512 {
18513 value = -value;
18514 subtract = !subtract;
18515 if (value < 0)
18516 as_bad_where (fixP->fx_file, fixP->fx_line,
18517 _("immediate value out of range"));
18518 }
a737bd4d 18519
c19d1205
ZW
18520 if (rd == REG_SP)
18521 {
18522 if (value & ~0x1fc)
18523 as_bad_where (fixP->fx_file, fixP->fx_line,
18524 _("invalid immediate for stack address calculation"));
18525 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
18526 newval |= value >> 2;
18527 }
18528 else if (rs == REG_PC || rs == REG_SP)
18529 {
18530 if (subtract || value & ~0x3fc)
18531 as_bad_where (fixP->fx_file, fixP->fx_line,
18532 _("invalid immediate for address calculation (value = 0x%08lX)"),
18533 (unsigned long) value);
18534 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
18535 newval |= rd << 8;
18536 newval |= value >> 2;
18537 }
18538 else if (rs == rd)
18539 {
18540 if (value & ~0xff)
18541 as_bad_where (fixP->fx_file, fixP->fx_line,
18542 _("immediate value out of range"));
18543 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
18544 newval |= (rd << 8) | value;
18545 }
18546 else
18547 {
18548 if (value & ~0x7)
18549 as_bad_where (fixP->fx_file, fixP->fx_line,
18550 _("immediate value out of range"));
18551 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
18552 newval |= rd | (rs << 3) | (value << 6);
18553 }
18554 }
18555 md_number_to_chars (buf, newval, THUMB_SIZE);
18556 break;
a737bd4d 18557
c19d1205
ZW
18558 case BFD_RELOC_ARM_THUMB_IMM:
18559 newval = md_chars_to_number (buf, THUMB_SIZE);
18560 if (value < 0 || value > 255)
18561 as_bad_where (fixP->fx_file, fixP->fx_line,
18562 _("invalid immediate: %ld is too large"),
18563 (long) value);
18564 newval |= value;
18565 md_number_to_chars (buf, newval, THUMB_SIZE);
18566 break;
a737bd4d 18567
c19d1205
ZW
18568 case BFD_RELOC_ARM_THUMB_SHIFT:
18569 /* 5bit shift value (0..32). LSL cannot take 32. */
18570 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
18571 temp = newval & 0xf800;
18572 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
18573 as_bad_where (fixP->fx_file, fixP->fx_line,
18574 _("invalid shift value: %ld"), (long) value);
18575 /* Shifts of zero must be encoded as LSL. */
18576 if (value == 0)
18577 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
18578 /* Shifts of 32 are encoded as zero. */
18579 else if (value == 32)
18580 value = 0;
18581 newval |= value << 6;
18582 md_number_to_chars (buf, newval, THUMB_SIZE);
18583 break;
a737bd4d 18584
c19d1205
ZW
18585 case BFD_RELOC_VTABLE_INHERIT:
18586 case BFD_RELOC_VTABLE_ENTRY:
18587 fixP->fx_done = 0;
18588 return;
6c43fab6 18589
b6895b4f
PB
18590 case BFD_RELOC_ARM_MOVW:
18591 case BFD_RELOC_ARM_MOVT:
18592 case BFD_RELOC_ARM_THUMB_MOVW:
18593 case BFD_RELOC_ARM_THUMB_MOVT:
18594 if (fixP->fx_done || !seg->use_rela_p)
18595 {
18596 /* REL format relocations are limited to a 16-bit addend. */
18597 if (!fixP->fx_done)
18598 {
18599 if (value < -0x1000 || value > 0xffff)
18600 as_bad_where (fixP->fx_file, fixP->fx_line,
18601 _("offset too big"));
18602 }
18603 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
18604 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18605 {
18606 value >>= 16;
18607 }
18608
18609 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
18610 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18611 {
18612 newval = get_thumb32_insn (buf);
18613 newval &= 0xfbf08f00;
18614 newval |= (value & 0xf000) << 4;
18615 newval |= (value & 0x0800) << 15;
18616 newval |= (value & 0x0700) << 4;
18617 newval |= (value & 0x00ff);
18618 put_thumb32_insn (buf, newval);
18619 }
18620 else
18621 {
18622 newval = md_chars_to_number (buf, 4);
18623 newval &= 0xfff0f000;
18624 newval |= value & 0x0fff;
18625 newval |= (value & 0xf000) << 4;
18626 md_number_to_chars (buf, newval, 4);
18627 }
18628 }
18629 return;
18630
4962c51a
MS
18631 case BFD_RELOC_ARM_ALU_PC_G0_NC:
18632 case BFD_RELOC_ARM_ALU_PC_G0:
18633 case BFD_RELOC_ARM_ALU_PC_G1_NC:
18634 case BFD_RELOC_ARM_ALU_PC_G1:
18635 case BFD_RELOC_ARM_ALU_PC_G2:
18636 case BFD_RELOC_ARM_ALU_SB_G0_NC:
18637 case BFD_RELOC_ARM_ALU_SB_G0:
18638 case BFD_RELOC_ARM_ALU_SB_G1_NC:
18639 case BFD_RELOC_ARM_ALU_SB_G1:
18640 case BFD_RELOC_ARM_ALU_SB_G2:
18641 assert (!fixP->fx_done);
18642 if (!seg->use_rela_p)
18643 {
18644 bfd_vma insn;
18645 bfd_vma encoded_addend;
18646 bfd_vma addend_abs = abs (value);
18647
18648 /* Check that the absolute value of the addend can be
18649 expressed as an 8-bit constant plus a rotation. */
18650 encoded_addend = encode_arm_immediate (addend_abs);
18651 if (encoded_addend == (unsigned int) FAIL)
18652 as_bad_where (fixP->fx_file, fixP->fx_line,
18653 _("the offset 0x%08lX is not representable"),
18654 addend_abs);
18655
18656 /* Extract the instruction. */
18657 insn = md_chars_to_number (buf, INSN_SIZE);
18658
18659 /* If the addend is positive, use an ADD instruction.
18660 Otherwise use a SUB. Take care not to destroy the S bit. */
18661 insn &= 0xff1fffff;
18662 if (value < 0)
18663 insn |= 1 << 22;
18664 else
18665 insn |= 1 << 23;
18666
18667 /* Place the encoded addend into the first 12 bits of the
18668 instruction. */
18669 insn &= 0xfffff000;
18670 insn |= encoded_addend;
18671
18672 /* Update the instruction. */
18673 md_number_to_chars (buf, insn, INSN_SIZE);
18674 }
18675 break;
18676
18677 case BFD_RELOC_ARM_LDR_PC_G0:
18678 case BFD_RELOC_ARM_LDR_PC_G1:
18679 case BFD_RELOC_ARM_LDR_PC_G2:
18680 case BFD_RELOC_ARM_LDR_SB_G0:
18681 case BFD_RELOC_ARM_LDR_SB_G1:
18682 case BFD_RELOC_ARM_LDR_SB_G2:
18683 assert (!fixP->fx_done);
18684 if (!seg->use_rela_p)
18685 {
18686 bfd_vma insn;
18687 bfd_vma addend_abs = abs (value);
18688
18689 /* Check that the absolute value of the addend can be
18690 encoded in 12 bits. */
18691 if (addend_abs >= 0x1000)
18692 as_bad_where (fixP->fx_file, fixP->fx_line,
18693 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
18694 addend_abs);
18695
18696 /* Extract the instruction. */
18697 insn = md_chars_to_number (buf, INSN_SIZE);
18698
18699 /* If the addend is negative, clear bit 23 of the instruction.
18700 Otherwise set it. */
18701 if (value < 0)
18702 insn &= ~(1 << 23);
18703 else
18704 insn |= 1 << 23;
18705
18706 /* Place the absolute value of the addend into the first 12 bits
18707 of the instruction. */
18708 insn &= 0xfffff000;
18709 insn |= addend_abs;
18710
18711 /* Update the instruction. */
18712 md_number_to_chars (buf, insn, INSN_SIZE);
18713 }
18714 break;
18715
18716 case BFD_RELOC_ARM_LDRS_PC_G0:
18717 case BFD_RELOC_ARM_LDRS_PC_G1:
18718 case BFD_RELOC_ARM_LDRS_PC_G2:
18719 case BFD_RELOC_ARM_LDRS_SB_G0:
18720 case BFD_RELOC_ARM_LDRS_SB_G1:
18721 case BFD_RELOC_ARM_LDRS_SB_G2:
18722 assert (!fixP->fx_done);
18723 if (!seg->use_rela_p)
18724 {
18725 bfd_vma insn;
18726 bfd_vma addend_abs = abs (value);
18727
18728 /* Check that the absolute value of the addend can be
18729 encoded in 8 bits. */
18730 if (addend_abs >= 0x100)
18731 as_bad_where (fixP->fx_file, fixP->fx_line,
18732 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
18733 addend_abs);
18734
18735 /* Extract the instruction. */
18736 insn = md_chars_to_number (buf, INSN_SIZE);
18737
18738 /* If the addend is negative, clear bit 23 of the instruction.
18739 Otherwise set it. */
18740 if (value < 0)
18741 insn &= ~(1 << 23);
18742 else
18743 insn |= 1 << 23;
18744
18745 /* Place the first four bits of the absolute value of the addend
18746 into the first 4 bits of the instruction, and the remaining
18747 four into bits 8 .. 11. */
18748 insn &= 0xfffff0f0;
18749 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
18750
18751 /* Update the instruction. */
18752 md_number_to_chars (buf, insn, INSN_SIZE);
18753 }
18754 break;
18755
18756 case BFD_RELOC_ARM_LDC_PC_G0:
18757 case BFD_RELOC_ARM_LDC_PC_G1:
18758 case BFD_RELOC_ARM_LDC_PC_G2:
18759 case BFD_RELOC_ARM_LDC_SB_G0:
18760 case BFD_RELOC_ARM_LDC_SB_G1:
18761 case BFD_RELOC_ARM_LDC_SB_G2:
18762 assert (!fixP->fx_done);
18763 if (!seg->use_rela_p)
18764 {
18765 bfd_vma insn;
18766 bfd_vma addend_abs = abs (value);
18767
18768 /* Check that the absolute value of the addend is a multiple of
18769 four and, when divided by four, fits in 8 bits. */
18770 if (addend_abs & 0x3)
18771 as_bad_where (fixP->fx_file, fixP->fx_line,
18772 _("bad offset 0x%08lX (must be word-aligned)"),
18773 addend_abs);
18774
18775 if ((addend_abs >> 2) > 0xff)
18776 as_bad_where (fixP->fx_file, fixP->fx_line,
18777 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
18778 addend_abs);
18779
18780 /* Extract the instruction. */
18781 insn = md_chars_to_number (buf, INSN_SIZE);
18782
18783 /* If the addend is negative, clear bit 23 of the instruction.
18784 Otherwise set it. */
18785 if (value < 0)
18786 insn &= ~(1 << 23);
18787 else
18788 insn |= 1 << 23;
18789
18790 /* Place the addend (divided by four) into the first eight
18791 bits of the instruction. */
18792 insn &= 0xfffffff0;
18793 insn |= addend_abs >> 2;
18794
18795 /* Update the instruction. */
18796 md_number_to_chars (buf, insn, INSN_SIZE);
18797 }
18798 break;
18799
c19d1205
ZW
18800 case BFD_RELOC_UNUSED:
18801 default:
18802 as_bad_where (fixP->fx_file, fixP->fx_line,
18803 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
18804 }
6c43fab6
RE
18805}
18806
c19d1205
ZW
18807/* Translate internal representation of relocation info to BFD target
18808 format. */
a737bd4d 18809
c19d1205 18810arelent *
00a97672 18811tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 18812{
c19d1205
ZW
18813 arelent * reloc;
18814 bfd_reloc_code_real_type code;
a737bd4d 18815
c19d1205 18816 reloc = xmalloc (sizeof (arelent));
a737bd4d 18817
c19d1205
ZW
18818 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
18819 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
18820 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 18821
2fc8bdac 18822 if (fixp->fx_pcrel)
00a97672
RS
18823 {
18824 if (section->use_rela_p)
18825 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
18826 else
18827 fixp->fx_offset = reloc->address;
18828 }
c19d1205 18829 reloc->addend = fixp->fx_offset;
a737bd4d 18830
c19d1205 18831 switch (fixp->fx_r_type)
a737bd4d 18832 {
c19d1205
ZW
18833 case BFD_RELOC_8:
18834 if (fixp->fx_pcrel)
18835 {
18836 code = BFD_RELOC_8_PCREL;
18837 break;
18838 }
a737bd4d 18839
c19d1205
ZW
18840 case BFD_RELOC_16:
18841 if (fixp->fx_pcrel)
18842 {
18843 code = BFD_RELOC_16_PCREL;
18844 break;
18845 }
6c43fab6 18846
c19d1205
ZW
18847 case BFD_RELOC_32:
18848 if (fixp->fx_pcrel)
18849 {
18850 code = BFD_RELOC_32_PCREL;
18851 break;
18852 }
a737bd4d 18853
b6895b4f
PB
18854 case BFD_RELOC_ARM_MOVW:
18855 if (fixp->fx_pcrel)
18856 {
18857 code = BFD_RELOC_ARM_MOVW_PCREL;
18858 break;
18859 }
18860
18861 case BFD_RELOC_ARM_MOVT:
18862 if (fixp->fx_pcrel)
18863 {
18864 code = BFD_RELOC_ARM_MOVT_PCREL;
18865 break;
18866 }
18867
18868 case BFD_RELOC_ARM_THUMB_MOVW:
18869 if (fixp->fx_pcrel)
18870 {
18871 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
18872 break;
18873 }
18874
18875 case BFD_RELOC_ARM_THUMB_MOVT:
18876 if (fixp->fx_pcrel)
18877 {
18878 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
18879 break;
18880 }
18881
c19d1205
ZW
18882 case BFD_RELOC_NONE:
18883 case BFD_RELOC_ARM_PCREL_BRANCH:
18884 case BFD_RELOC_ARM_PCREL_BLX:
18885 case BFD_RELOC_RVA:
18886 case BFD_RELOC_THUMB_PCREL_BRANCH7:
18887 case BFD_RELOC_THUMB_PCREL_BRANCH9:
18888 case BFD_RELOC_THUMB_PCREL_BRANCH12:
18889 case BFD_RELOC_THUMB_PCREL_BRANCH20:
18890 case BFD_RELOC_THUMB_PCREL_BRANCH23:
18891 case BFD_RELOC_THUMB_PCREL_BRANCH25:
18892 case BFD_RELOC_THUMB_PCREL_BLX:
18893 case BFD_RELOC_VTABLE_ENTRY:
18894 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
18895#ifdef TE_PE
18896 case BFD_RELOC_32_SECREL:
18897#endif
c19d1205
ZW
18898 code = fixp->fx_r_type;
18899 break;
a737bd4d 18900
c19d1205
ZW
18901 case BFD_RELOC_ARM_LITERAL:
18902 case BFD_RELOC_ARM_HWLITERAL:
18903 /* If this is called then the a literal has
18904 been referenced across a section boundary. */
18905 as_bad_where (fixp->fx_file, fixp->fx_line,
18906 _("literal referenced across section boundary"));
18907 return NULL;
a737bd4d 18908
c19d1205
ZW
18909#ifdef OBJ_ELF
18910 case BFD_RELOC_ARM_GOT32:
18911 case BFD_RELOC_ARM_GOTOFF:
18912 case BFD_RELOC_ARM_PLT32:
18913 case BFD_RELOC_ARM_TARGET1:
18914 case BFD_RELOC_ARM_ROSEGREL32:
18915 case BFD_RELOC_ARM_SBREL32:
18916 case BFD_RELOC_ARM_PREL31:
18917 case BFD_RELOC_ARM_TARGET2:
18918 case BFD_RELOC_ARM_TLS_LE32:
18919 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
18920 case BFD_RELOC_ARM_PCREL_CALL:
18921 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
18922 case BFD_RELOC_ARM_ALU_PC_G0_NC:
18923 case BFD_RELOC_ARM_ALU_PC_G0:
18924 case BFD_RELOC_ARM_ALU_PC_G1_NC:
18925 case BFD_RELOC_ARM_ALU_PC_G1:
18926 case BFD_RELOC_ARM_ALU_PC_G2:
18927 case BFD_RELOC_ARM_LDR_PC_G0:
18928 case BFD_RELOC_ARM_LDR_PC_G1:
18929 case BFD_RELOC_ARM_LDR_PC_G2:
18930 case BFD_RELOC_ARM_LDRS_PC_G0:
18931 case BFD_RELOC_ARM_LDRS_PC_G1:
18932 case BFD_RELOC_ARM_LDRS_PC_G2:
18933 case BFD_RELOC_ARM_LDC_PC_G0:
18934 case BFD_RELOC_ARM_LDC_PC_G1:
18935 case BFD_RELOC_ARM_LDC_PC_G2:
18936 case BFD_RELOC_ARM_ALU_SB_G0_NC:
18937 case BFD_RELOC_ARM_ALU_SB_G0:
18938 case BFD_RELOC_ARM_ALU_SB_G1_NC:
18939 case BFD_RELOC_ARM_ALU_SB_G1:
18940 case BFD_RELOC_ARM_ALU_SB_G2:
18941 case BFD_RELOC_ARM_LDR_SB_G0:
18942 case BFD_RELOC_ARM_LDR_SB_G1:
18943 case BFD_RELOC_ARM_LDR_SB_G2:
18944 case BFD_RELOC_ARM_LDRS_SB_G0:
18945 case BFD_RELOC_ARM_LDRS_SB_G1:
18946 case BFD_RELOC_ARM_LDRS_SB_G2:
18947 case BFD_RELOC_ARM_LDC_SB_G0:
18948 case BFD_RELOC_ARM_LDC_SB_G1:
18949 case BFD_RELOC_ARM_LDC_SB_G2:
c19d1205
ZW
18950 code = fixp->fx_r_type;
18951 break;
a737bd4d 18952
c19d1205
ZW
18953 case BFD_RELOC_ARM_TLS_GD32:
18954 case BFD_RELOC_ARM_TLS_IE32:
18955 case BFD_RELOC_ARM_TLS_LDM32:
18956 /* BFD will include the symbol's address in the addend.
18957 But we don't want that, so subtract it out again here. */
18958 if (!S_IS_COMMON (fixp->fx_addsy))
18959 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
18960 code = fixp->fx_r_type;
18961 break;
18962#endif
a737bd4d 18963
c19d1205
ZW
18964 case BFD_RELOC_ARM_IMMEDIATE:
18965 as_bad_where (fixp->fx_file, fixp->fx_line,
18966 _("internal relocation (type: IMMEDIATE) not fixed up"));
18967 return NULL;
a737bd4d 18968
c19d1205
ZW
18969 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
18970 as_bad_where (fixp->fx_file, fixp->fx_line,
18971 _("ADRL used for a symbol not defined in the same file"));
18972 return NULL;
a737bd4d 18973
c19d1205 18974 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
18975 if (section->use_rela_p)
18976 {
18977 code = fixp->fx_r_type;
18978 break;
18979 }
18980
c19d1205
ZW
18981 if (fixp->fx_addsy != NULL
18982 && !S_IS_DEFINED (fixp->fx_addsy)
18983 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 18984 {
c19d1205
ZW
18985 as_bad_where (fixp->fx_file, fixp->fx_line,
18986 _("undefined local label `%s'"),
18987 S_GET_NAME (fixp->fx_addsy));
18988 return NULL;
a737bd4d
NC
18989 }
18990
c19d1205
ZW
18991 as_bad_where (fixp->fx_file, fixp->fx_line,
18992 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
18993 return NULL;
a737bd4d 18994
c19d1205
ZW
18995 default:
18996 {
18997 char * type;
6c43fab6 18998
c19d1205
ZW
18999 switch (fixp->fx_r_type)
19000 {
19001 case BFD_RELOC_NONE: type = "NONE"; break;
19002 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
19003 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 19004 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
19005 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
19006 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
19007 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
8f06b2d8 19008 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
19009 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
19010 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
19011 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
19012 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
19013 default: type = _("<unknown>"); break;
19014 }
19015 as_bad_where (fixp->fx_file, fixp->fx_line,
19016 _("cannot represent %s relocation in this object file format"),
19017 type);
19018 return NULL;
19019 }
a737bd4d 19020 }
6c43fab6 19021
c19d1205
ZW
19022#ifdef OBJ_ELF
19023 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
19024 && GOT_symbol
19025 && fixp->fx_addsy == GOT_symbol)
19026 {
19027 code = BFD_RELOC_ARM_GOTPC;
19028 reloc->addend = fixp->fx_offset = reloc->address;
19029 }
19030#endif
6c43fab6 19031
c19d1205 19032 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 19033
c19d1205
ZW
19034 if (reloc->howto == NULL)
19035 {
19036 as_bad_where (fixp->fx_file, fixp->fx_line,
19037 _("cannot represent %s relocation in this object file format"),
19038 bfd_get_reloc_code_name (code));
19039 return NULL;
19040 }
6c43fab6 19041
c19d1205
ZW
19042 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
19043 vtable entry to be used in the relocation's section offset. */
19044 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19045 reloc->address = fixp->fx_offset;
6c43fab6 19046
c19d1205 19047 return reloc;
6c43fab6
RE
19048}
19049
c19d1205 19050/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 19051
c19d1205
ZW
19052void
19053cons_fix_new_arm (fragS * frag,
19054 int where,
19055 int size,
19056 expressionS * exp)
6c43fab6 19057{
c19d1205
ZW
19058 bfd_reloc_code_real_type type;
19059 int pcrel = 0;
6c43fab6 19060
c19d1205
ZW
19061 /* Pick a reloc.
19062 FIXME: @@ Should look at CPU word size. */
19063 switch (size)
19064 {
19065 case 1:
19066 type = BFD_RELOC_8;
19067 break;
19068 case 2:
19069 type = BFD_RELOC_16;
19070 break;
19071 case 4:
19072 default:
19073 type = BFD_RELOC_32;
19074 break;
19075 case 8:
19076 type = BFD_RELOC_64;
19077 break;
19078 }
6c43fab6 19079
f0927246
NC
19080#ifdef TE_PE
19081 if (exp->X_op == O_secrel)
19082 {
19083 exp->X_op = O_symbol;
19084 type = BFD_RELOC_32_SECREL;
19085 }
19086#endif
19087
c19d1205
ZW
19088 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
19089}
6c43fab6 19090
c19d1205
ZW
19091#if defined OBJ_COFF || defined OBJ_ELF
19092void
19093arm_validate_fix (fixS * fixP)
6c43fab6 19094{
c19d1205
ZW
19095 /* If the destination of the branch is a defined symbol which does not have
19096 the THUMB_FUNC attribute, then we must be calling a function which has
19097 the (interfacearm) attribute. We look for the Thumb entry point to that
19098 function and change the branch to refer to that function instead. */
19099 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
19100 && fixP->fx_addsy != NULL
19101 && S_IS_DEFINED (fixP->fx_addsy)
19102 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 19103 {
c19d1205 19104 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 19105 }
c19d1205
ZW
19106}
19107#endif
6c43fab6 19108
c19d1205
ZW
19109int
19110arm_force_relocation (struct fix * fixp)
19111{
19112#if defined (OBJ_COFF) && defined (TE_PE)
19113 if (fixp->fx_r_type == BFD_RELOC_RVA)
19114 return 1;
19115#endif
6c43fab6 19116
c19d1205
ZW
19117 /* Resolve these relocations even if the symbol is extern or weak. */
19118 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
19119 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
0110f2b8 19120 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
16805f35 19121 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
19122 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
19123 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
19124 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
c19d1205 19125 return 0;
a737bd4d 19126
4962c51a
MS
19127 /* Always leave these relocations for the linker. */
19128 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19129 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19130 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19131 return 1;
19132
f0291e4c
PB
19133 /* Always generate relocations against function symbols. */
19134 if (fixp->fx_r_type == BFD_RELOC_32
19135 && fixp->fx_addsy
19136 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
19137 return 1;
19138
c19d1205 19139 return generic_force_reloc (fixp);
404ff6b5
AH
19140}
19141
0ffdc86c 19142#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
19143/* Relocations against function names must be left unadjusted,
19144 so that the linker can use this information to generate interworking
19145 stubs. The MIPS version of this function
c19d1205
ZW
19146 also prevents relocations that are mips-16 specific, but I do not
19147 know why it does this.
404ff6b5 19148
c19d1205
ZW
19149 FIXME:
19150 There is one other problem that ought to be addressed here, but
19151 which currently is not: Taking the address of a label (rather
19152 than a function) and then later jumping to that address. Such
19153 addresses also ought to have their bottom bit set (assuming that
19154 they reside in Thumb code), but at the moment they will not. */
404ff6b5 19155
c19d1205
ZW
19156bfd_boolean
19157arm_fix_adjustable (fixS * fixP)
404ff6b5 19158{
c19d1205
ZW
19159 if (fixP->fx_addsy == NULL)
19160 return 1;
404ff6b5 19161
e28387c3
PB
19162 /* Preserve relocations against symbols with function type. */
19163 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
19164 return 0;
19165
c19d1205
ZW
19166 if (THUMB_IS_FUNC (fixP->fx_addsy)
19167 && fixP->fx_subsy == NULL)
19168 return 0;
a737bd4d 19169
c19d1205
ZW
19170 /* We need the symbol name for the VTABLE entries. */
19171 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
19172 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19173 return 0;
404ff6b5 19174
c19d1205
ZW
19175 /* Don't allow symbols to be discarded on GOT related relocs. */
19176 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
19177 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
19178 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
19179 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
19180 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
19181 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
19182 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
19183 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
19184 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
19185 return 0;
a737bd4d 19186
4962c51a
MS
19187 /* Similarly for group relocations. */
19188 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19189 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19190 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19191 return 0;
19192
c19d1205 19193 return 1;
a737bd4d 19194}
0ffdc86c
NC
19195#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
19196
19197#ifdef OBJ_ELF
404ff6b5 19198
c19d1205
ZW
19199const char *
19200elf32_arm_target_format (void)
404ff6b5 19201{
c19d1205
ZW
19202#ifdef TE_SYMBIAN
19203 return (target_big_endian
19204 ? "elf32-bigarm-symbian"
19205 : "elf32-littlearm-symbian");
19206#elif defined (TE_VXWORKS)
19207 return (target_big_endian
19208 ? "elf32-bigarm-vxworks"
19209 : "elf32-littlearm-vxworks");
19210#else
19211 if (target_big_endian)
19212 return "elf32-bigarm";
19213 else
19214 return "elf32-littlearm";
19215#endif
404ff6b5
AH
19216}
19217
c19d1205
ZW
19218void
19219armelf_frob_symbol (symbolS * symp,
19220 int * puntp)
404ff6b5 19221{
c19d1205
ZW
19222 elf_frob_symbol (symp, puntp);
19223}
19224#endif
404ff6b5 19225
c19d1205 19226/* MD interface: Finalization. */
a737bd4d 19227
c19d1205
ZW
19228/* A good place to do this, although this was probably not intended
19229 for this kind of use. We need to dump the literal pool before
19230 references are made to a null symbol pointer. */
a737bd4d 19231
c19d1205
ZW
19232void
19233arm_cleanup (void)
19234{
19235 literal_pool * pool;
a737bd4d 19236
c19d1205
ZW
19237 for (pool = list_of_pools; pool; pool = pool->next)
19238 {
19239 /* Put it at the end of the relevent section. */
19240 subseg_set (pool->section, pool->sub_section);
19241#ifdef OBJ_ELF
19242 arm_elf_change_section ();
19243#endif
19244 s_ltorg (0);
19245 }
404ff6b5
AH
19246}
19247
c19d1205
ZW
19248/* Adjust the symbol table. This marks Thumb symbols as distinct from
19249 ARM ones. */
404ff6b5 19250
c19d1205
ZW
19251void
19252arm_adjust_symtab (void)
404ff6b5 19253{
c19d1205
ZW
19254#ifdef OBJ_COFF
19255 symbolS * sym;
404ff6b5 19256
c19d1205
ZW
19257 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
19258 {
19259 if (ARM_IS_THUMB (sym))
19260 {
19261 if (THUMB_IS_FUNC (sym))
19262 {
19263 /* Mark the symbol as a Thumb function. */
19264 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
19265 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
19266 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 19267
c19d1205
ZW
19268 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
19269 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
19270 else
19271 as_bad (_("%s: unexpected function type: %d"),
19272 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
19273 }
19274 else switch (S_GET_STORAGE_CLASS (sym))
19275 {
19276 case C_EXT:
19277 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
19278 break;
19279 case C_STAT:
19280 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
19281 break;
19282 case C_LABEL:
19283 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
19284 break;
19285 default:
19286 /* Do nothing. */
19287 break;
19288 }
19289 }
a737bd4d 19290
c19d1205
ZW
19291 if (ARM_IS_INTERWORK (sym))
19292 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 19293 }
c19d1205
ZW
19294#endif
19295#ifdef OBJ_ELF
19296 symbolS * sym;
19297 char bind;
404ff6b5 19298
c19d1205 19299 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 19300 {
c19d1205
ZW
19301 if (ARM_IS_THUMB (sym))
19302 {
19303 elf_symbol_type * elf_sym;
404ff6b5 19304
c19d1205
ZW
19305 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
19306 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 19307
b0796911
PB
19308 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
19309 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
19310 {
19311 /* If it's a .thumb_func, declare it as so,
19312 otherwise tag label as .code 16. */
19313 if (THUMB_IS_FUNC (sym))
19314 elf_sym->internal_elf_sym.st_info =
19315 ELF_ST_INFO (bind, STT_ARM_TFUNC);
3ba67470 19316 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
19317 elf_sym->internal_elf_sym.st_info =
19318 ELF_ST_INFO (bind, STT_ARM_16BIT);
19319 }
19320 }
19321 }
19322#endif
404ff6b5
AH
19323}
19324
c19d1205 19325/* MD interface: Initialization. */
404ff6b5 19326
a737bd4d 19327static void
c19d1205 19328set_constant_flonums (void)
a737bd4d 19329{
c19d1205 19330 int i;
404ff6b5 19331
c19d1205
ZW
19332 for (i = 0; i < NUM_FLOAT_VALS; i++)
19333 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
19334 abort ();
a737bd4d 19335}
404ff6b5 19336
3e9e4fcf
JB
19337/* Auto-select Thumb mode if it's the only available instruction set for the
19338 given architecture. */
19339
19340static void
19341autoselect_thumb_from_cpu_variant (void)
19342{
19343 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
19344 opcode_select (16);
19345}
19346
c19d1205
ZW
19347void
19348md_begin (void)
a737bd4d 19349{
c19d1205
ZW
19350 unsigned mach;
19351 unsigned int i;
404ff6b5 19352
c19d1205
ZW
19353 if ( (arm_ops_hsh = hash_new ()) == NULL
19354 || (arm_cond_hsh = hash_new ()) == NULL
19355 || (arm_shift_hsh = hash_new ()) == NULL
19356 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 19357 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 19358 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
19359 || (arm_reloc_hsh = hash_new ()) == NULL
19360 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
19361 as_fatal (_("virtual memory exhausted"));
19362
19363 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
19364 hash_insert (arm_ops_hsh, insns[i].template, (PTR) (insns + i));
19365 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
19366 hash_insert (arm_cond_hsh, conds[i].template, (PTR) (conds + i));
19367 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
19368 hash_insert (arm_shift_hsh, shift_names[i].name, (PTR) (shift_names + i));
19369 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
19370 hash_insert (arm_psr_hsh, psrs[i].template, (PTR) (psrs + i));
62b3e311
PB
19371 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
19372 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template, (PTR) (v7m_psrs + i));
c19d1205
ZW
19373 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
19374 hash_insert (arm_reg_hsh, reg_names[i].name, (PTR) (reg_names + i));
62b3e311
PB
19375 for (i = 0;
19376 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
19377 i++)
19378 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template,
19379 (PTR) (barrier_opt_names + i));
c19d1205
ZW
19380#ifdef OBJ_ELF
19381 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
19382 hash_insert (arm_reloc_hsh, reloc_names[i].name, (PTR) (reloc_names + i));
19383#endif
19384
19385 set_constant_flonums ();
404ff6b5 19386
c19d1205
ZW
19387 /* Set the cpu variant based on the command-line options. We prefer
19388 -mcpu= over -march= if both are set (as for GCC); and we prefer
19389 -mfpu= over any other way of setting the floating point unit.
19390 Use of legacy options with new options are faulted. */
e74cfd16 19391 if (legacy_cpu)
404ff6b5 19392 {
e74cfd16 19393 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
19394 as_bad (_("use of old and new-style options to set CPU type"));
19395
19396 mcpu_cpu_opt = legacy_cpu;
404ff6b5 19397 }
e74cfd16 19398 else if (!mcpu_cpu_opt)
c19d1205 19399 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 19400
e74cfd16 19401 if (legacy_fpu)
c19d1205 19402 {
e74cfd16 19403 if (mfpu_opt)
c19d1205 19404 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
19405
19406 mfpu_opt = legacy_fpu;
19407 }
e74cfd16 19408 else if (!mfpu_opt)
03b1477f 19409 {
c19d1205 19410#if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
19411 /* Some environments specify a default FPU. If they don't, infer it
19412 from the processor. */
e74cfd16 19413 if (mcpu_fpu_opt)
03b1477f
RE
19414 mfpu_opt = mcpu_fpu_opt;
19415 else
19416 mfpu_opt = march_fpu_opt;
39c2da32 19417#else
e74cfd16 19418 mfpu_opt = &fpu_default;
39c2da32 19419#endif
03b1477f
RE
19420 }
19421
e74cfd16 19422 if (!mfpu_opt)
03b1477f 19423 {
493cb6ef 19424 if (mcpu_cpu_opt != NULL)
e74cfd16 19425 mfpu_opt = &fpu_default;
493cb6ef 19426 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 19427 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 19428 else
e74cfd16 19429 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
19430 }
19431
ee065d83 19432#ifdef CPU_DEFAULT
e74cfd16 19433 if (!mcpu_cpu_opt)
ee065d83 19434 {
e74cfd16
PB
19435 mcpu_cpu_opt = &cpu_default;
19436 selected_cpu = cpu_default;
ee065d83 19437 }
e74cfd16
PB
19438#else
19439 if (mcpu_cpu_opt)
19440 selected_cpu = *mcpu_cpu_opt;
ee065d83 19441 else
e74cfd16 19442 mcpu_cpu_opt = &arm_arch_any;
ee065d83 19443#endif
03b1477f 19444
e74cfd16 19445 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 19446
3e9e4fcf
JB
19447 autoselect_thumb_from_cpu_variant ();
19448
e74cfd16 19449 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 19450
f17c130b 19451#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 19452 {
7cc69913
NC
19453 unsigned int flags = 0;
19454
19455#if defined OBJ_ELF
19456 flags = meabi_flags;
d507cf36
PB
19457
19458 switch (meabi_flags)
33a392fb 19459 {
d507cf36 19460 case EF_ARM_EABI_UNKNOWN:
7cc69913 19461#endif
d507cf36
PB
19462 /* Set the flags in the private structure. */
19463 if (uses_apcs_26) flags |= F_APCS26;
19464 if (support_interwork) flags |= F_INTERWORK;
19465 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 19466 if (pic_code) flags |= F_PIC;
e74cfd16 19467 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
19468 flags |= F_SOFT_FLOAT;
19469
d507cf36
PB
19470 switch (mfloat_abi_opt)
19471 {
19472 case ARM_FLOAT_ABI_SOFT:
19473 case ARM_FLOAT_ABI_SOFTFP:
19474 flags |= F_SOFT_FLOAT;
19475 break;
33a392fb 19476
d507cf36
PB
19477 case ARM_FLOAT_ABI_HARD:
19478 if (flags & F_SOFT_FLOAT)
19479 as_bad (_("hard-float conflicts with specified fpu"));
19480 break;
19481 }
03b1477f 19482
e74cfd16
PB
19483 /* Using pure-endian doubles (even if soft-float). */
19484 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 19485 flags |= F_VFP_FLOAT;
f17c130b 19486
fde78edd 19487#if defined OBJ_ELF
e74cfd16 19488 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 19489 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
19490 break;
19491
8cb51566 19492 case EF_ARM_EABI_VER4:
3a4a14e9 19493 case EF_ARM_EABI_VER5:
c19d1205 19494 /* No additional flags to set. */
d507cf36
PB
19495 break;
19496
19497 default:
19498 abort ();
19499 }
7cc69913 19500#endif
b99bd4ef
NC
19501 bfd_set_private_flags (stdoutput, flags);
19502
19503 /* We have run out flags in the COFF header to encode the
19504 status of ATPCS support, so instead we create a dummy,
c19d1205 19505 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
19506 if (atpcs)
19507 {
19508 asection * sec;
19509
19510 sec = bfd_make_section (stdoutput, ".arm.atpcs");
19511
19512 if (sec != NULL)
19513 {
19514 bfd_set_section_flags
19515 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
19516 bfd_set_section_size (stdoutput, sec, 0);
19517 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
19518 }
19519 }
7cc69913 19520 }
f17c130b 19521#endif
b99bd4ef
NC
19522
19523 /* Record the CPU type as well. */
2d447fca
JM
19524 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
19525 mach = bfd_mach_arm_iWMMXt2;
19526 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 19527 mach = bfd_mach_arm_iWMMXt;
e74cfd16 19528 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 19529 mach = bfd_mach_arm_XScale;
e74cfd16 19530 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 19531 mach = bfd_mach_arm_ep9312;
e74cfd16 19532 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 19533 mach = bfd_mach_arm_5TE;
e74cfd16 19534 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 19535 {
e74cfd16 19536 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
19537 mach = bfd_mach_arm_5T;
19538 else
19539 mach = bfd_mach_arm_5;
19540 }
e74cfd16 19541 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 19542 {
e74cfd16 19543 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
19544 mach = bfd_mach_arm_4T;
19545 else
19546 mach = bfd_mach_arm_4;
19547 }
e74cfd16 19548 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 19549 mach = bfd_mach_arm_3M;
e74cfd16
PB
19550 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
19551 mach = bfd_mach_arm_3;
19552 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
19553 mach = bfd_mach_arm_2a;
19554 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
19555 mach = bfd_mach_arm_2;
19556 else
19557 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
19558
19559 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
19560}
19561
c19d1205 19562/* Command line processing. */
b99bd4ef 19563
c19d1205
ZW
19564/* md_parse_option
19565 Invocation line includes a switch not recognized by the base assembler.
19566 See if it's a processor-specific option.
b99bd4ef 19567
c19d1205
ZW
19568 This routine is somewhat complicated by the need for backwards
19569 compatibility (since older releases of gcc can't be changed).
19570 The new options try to make the interface as compatible as
19571 possible with GCC.
b99bd4ef 19572
c19d1205 19573 New options (supported) are:
b99bd4ef 19574
c19d1205
ZW
19575 -mcpu=<cpu name> Assemble for selected processor
19576 -march=<architecture name> Assemble for selected architecture
19577 -mfpu=<fpu architecture> Assemble for selected FPU.
19578 -EB/-mbig-endian Big-endian
19579 -EL/-mlittle-endian Little-endian
19580 -k Generate PIC code
19581 -mthumb Start in Thumb mode
19582 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 19583
c19d1205 19584 For now we will also provide support for:
b99bd4ef 19585
c19d1205
ZW
19586 -mapcs-32 32-bit Program counter
19587 -mapcs-26 26-bit Program counter
19588 -macps-float Floats passed in FP registers
19589 -mapcs-reentrant Reentrant code
19590 -matpcs
19591 (sometime these will probably be replaced with -mapcs=<list of options>
19592 and -matpcs=<list of options>)
b99bd4ef 19593
c19d1205
ZW
19594 The remaining options are only supported for back-wards compatibility.
19595 Cpu variants, the arm part is optional:
19596 -m[arm]1 Currently not supported.
19597 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
19598 -m[arm]3 Arm 3 processor
19599 -m[arm]6[xx], Arm 6 processors
19600 -m[arm]7[xx][t][[d]m] Arm 7 processors
19601 -m[arm]8[10] Arm 8 processors
19602 -m[arm]9[20][tdmi] Arm 9 processors
19603 -mstrongarm[110[0]] StrongARM processors
19604 -mxscale XScale processors
19605 -m[arm]v[2345[t[e]]] Arm architectures
19606 -mall All (except the ARM1)
19607 FP variants:
19608 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
19609 -mfpe-old (No float load/store multiples)
19610 -mvfpxd VFP Single precision
19611 -mvfp All VFP
19612 -mno-fpu Disable all floating point instructions
b99bd4ef 19613
c19d1205
ZW
19614 The following CPU names are recognized:
19615 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
19616 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
19617 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
19618 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
19619 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
19620 arm10t arm10e, arm1020t, arm1020e, arm10200e,
19621 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 19622
c19d1205 19623 */
b99bd4ef 19624
c19d1205 19625const char * md_shortopts = "m:k";
b99bd4ef 19626
c19d1205
ZW
19627#ifdef ARM_BI_ENDIAN
19628#define OPTION_EB (OPTION_MD_BASE + 0)
19629#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 19630#else
c19d1205
ZW
19631#if TARGET_BYTES_BIG_ENDIAN
19632#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 19633#else
c19d1205
ZW
19634#define OPTION_EL (OPTION_MD_BASE + 1)
19635#endif
b99bd4ef 19636#endif
b99bd4ef 19637
c19d1205 19638struct option md_longopts[] =
b99bd4ef 19639{
c19d1205
ZW
19640#ifdef OPTION_EB
19641 {"EB", no_argument, NULL, OPTION_EB},
19642#endif
19643#ifdef OPTION_EL
19644 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 19645#endif
c19d1205
ZW
19646 {NULL, no_argument, NULL, 0}
19647};
b99bd4ef 19648
c19d1205 19649size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 19650
c19d1205 19651struct arm_option_table
b99bd4ef 19652{
c19d1205
ZW
19653 char *option; /* Option name to match. */
19654 char *help; /* Help information. */
19655 int *var; /* Variable to change. */
19656 int value; /* What to change it to. */
19657 char *deprecated; /* If non-null, print this message. */
19658};
b99bd4ef 19659
c19d1205
ZW
19660struct arm_option_table arm_opts[] =
19661{
19662 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
19663 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
19664 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
19665 &support_interwork, 1, NULL},
19666 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
19667 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
19668 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
19669 1, NULL},
19670 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
19671 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
19672 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
19673 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
19674 NULL},
b99bd4ef 19675
c19d1205
ZW
19676 /* These are recognized by the assembler, but have no affect on code. */
19677 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
19678 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
e74cfd16
PB
19679 {NULL, NULL, NULL, 0, NULL}
19680};
19681
19682struct arm_legacy_option_table
19683{
19684 char *option; /* Option name to match. */
19685 const arm_feature_set **var; /* Variable to change. */
19686 const arm_feature_set value; /* What to change it to. */
19687 char *deprecated; /* If non-null, print this message. */
19688};
b99bd4ef 19689
e74cfd16
PB
19690const struct arm_legacy_option_table arm_legacy_opts[] =
19691{
c19d1205
ZW
19692 /* DON'T add any new processors to this list -- we want the whole list
19693 to go away... Add them to the processors table instead. */
e74cfd16
PB
19694 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
19695 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
19696 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
19697 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
19698 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
19699 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
19700 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
19701 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
19702 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
19703 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
19704 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
19705 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
19706 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
19707 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
19708 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
19709 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
19710 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
19711 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
19712 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
19713 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
19714 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
19715 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
19716 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
19717 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
19718 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
19719 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
19720 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
19721 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
19722 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
19723 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
19724 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
19725 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
19726 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
19727 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
19728 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
19729 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
19730 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
19731 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
19732 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
19733 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
19734 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
19735 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
19736 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
19737 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
19738 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
19739 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
19740 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19741 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19742 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19743 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19744 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
19745 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
19746 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
19747 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
19748 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
19749 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
19750 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
19751 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
19752 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
19753 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
19754 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
19755 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
19756 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
19757 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
19758 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
19759 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
19760 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
19761 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
19762 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
19763 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 19764 N_("use -mcpu=strongarm110")},
e74cfd16 19765 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 19766 N_("use -mcpu=strongarm1100")},
e74cfd16 19767 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 19768 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
19769 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
19770 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
19771 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 19772
c19d1205 19773 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
19774 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
19775 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
19776 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
19777 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
19778 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
19779 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
19780 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
19781 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
19782 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
19783 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
19784 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
19785 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
19786 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
19787 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
19788 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
19789 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
19790 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
19791 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 19792
c19d1205 19793 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
19794 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
19795 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
19796 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
19797 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 19798 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 19799
e74cfd16 19800 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 19801};
7ed4c4c5 19802
c19d1205 19803struct arm_cpu_option_table
7ed4c4c5 19804{
c19d1205 19805 char *name;
e74cfd16 19806 const arm_feature_set value;
c19d1205
ZW
19807 /* For some CPUs we assume an FPU unless the user explicitly sets
19808 -mfpu=... */
e74cfd16 19809 const arm_feature_set default_fpu;
ee065d83
PB
19810 /* The canonical name of the CPU, or NULL to use NAME converted to upper
19811 case. */
19812 const char *canonical_name;
c19d1205 19813};
7ed4c4c5 19814
c19d1205
ZW
19815/* This list should, at a minimum, contain all the cpu names
19816 recognized by GCC. */
e74cfd16 19817static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 19818{
ee065d83
PB
19819 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
19820 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
19821 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
19822 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
19823 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
19824 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19825 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19826 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19827 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19828 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19829 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19830 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
19831 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19832 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
19833 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19834 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
19835 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19836 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19837 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19838 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19839 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19840 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19841 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19842 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19843 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19844 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19845 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19846 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19847 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19848 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19849 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19850 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19851 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19852 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19853 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19854 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19855 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19856 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19857 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19858 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
19859 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19860 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19861 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19862 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
c19d1205
ZW
19863 /* For V5 or later processors we default to using VFP; but the user
19864 should really set the FPU type explicitly. */
ee065d83
PB
19865 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
19866 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19867 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
19868 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
19869 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
19870 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
19871 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
19872 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19873 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
19874 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
19875 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19876 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19877 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
19878 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
19879 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19880 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
19881 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
19882 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19883 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19884 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
19885 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
19886 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
19887 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
19888 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
19889 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
19890 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
19891 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
19892 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
19893 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
19894 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
19895 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
5287ad62
JB
19896 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
19897 | FPU_NEON_EXT_V1),
19898 NULL},
62b3e311
PB
19899 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
19900 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
c19d1205 19901 /* ??? XSCALE is really an architecture. */
ee065d83 19902 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 19903 /* ??? iwmmxt is not a processor. */
ee065d83 19904 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
2d447fca 19905 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
ee065d83 19906 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 19907 /* Maverick */
e74cfd16
PB
19908 {"ep9312", ARM_FEATURE(ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
19909 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
c19d1205 19910};
7ed4c4c5 19911
c19d1205 19912struct arm_arch_option_table
7ed4c4c5 19913{
c19d1205 19914 char *name;
e74cfd16
PB
19915 const arm_feature_set value;
19916 const arm_feature_set default_fpu;
c19d1205 19917};
7ed4c4c5 19918
c19d1205
ZW
19919/* This list should, at a minimum, contain all the architecture names
19920 recognized by GCC. */
e74cfd16 19921static const struct arm_arch_option_table arm_archs[] =
c19d1205
ZW
19922{
19923 {"all", ARM_ANY, FPU_ARCH_FPA},
19924 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
19925 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
19926 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
19927 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
19928 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
19929 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
19930 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
19931 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
19932 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
19933 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
19934 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
19935 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
19936 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
19937 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
19938 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
19939 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
19940 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
19941 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
19942 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
19943 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
19944 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
19945 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
19946 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
19947 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
19948 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
62b3e311 19949 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
c450d570
PB
19950 /* The official spelling of the ARMv7 profile variants is the dashed form.
19951 Accept the non-dashed form for compatibility with old toolchains. */
62b3e311
PB
19952 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
19953 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
19954 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c450d570
PB
19955 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
19956 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
19957 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c19d1205
ZW
19958 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
19959 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
2d447fca 19960 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
e74cfd16 19961 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
c19d1205 19962};
7ed4c4c5 19963
c19d1205 19964/* ISA extensions in the co-processor space. */
e74cfd16 19965struct arm_option_cpu_value_table
c19d1205
ZW
19966{
19967 char *name;
e74cfd16 19968 const arm_feature_set value;
c19d1205 19969};
7ed4c4c5 19970
e74cfd16 19971static const struct arm_option_cpu_value_table arm_extensions[] =
c19d1205 19972{
e74cfd16
PB
19973 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
19974 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
19975 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
2d447fca 19976 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
e74cfd16 19977 {NULL, ARM_ARCH_NONE}
c19d1205 19978};
7ed4c4c5 19979
c19d1205
ZW
19980/* This list should, at a minimum, contain all the fpu names
19981 recognized by GCC. */
e74cfd16 19982static const struct arm_option_cpu_value_table arm_fpus[] =
c19d1205
ZW
19983{
19984 {"softfpa", FPU_NONE},
19985 {"fpe", FPU_ARCH_FPE},
19986 {"fpe2", FPU_ARCH_FPE},
19987 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
19988 {"fpa", FPU_ARCH_FPA},
19989 {"fpa10", FPU_ARCH_FPA},
19990 {"fpa11", FPU_ARCH_FPA},
19991 {"arm7500fe", FPU_ARCH_FPA},
19992 {"softvfp", FPU_ARCH_VFP},
19993 {"softvfp+vfp", FPU_ARCH_VFP_V2},
19994 {"vfp", FPU_ARCH_VFP_V2},
19995 {"vfp9", FPU_ARCH_VFP_V2},
5287ad62 19996 {"vfp3", FPU_ARCH_VFP_V3},
c19d1205
ZW
19997 {"vfp10", FPU_ARCH_VFP_V2},
19998 {"vfp10-r0", FPU_ARCH_VFP_V1},
19999 {"vfpxd", FPU_ARCH_VFP_V1xD},
20000 {"arm1020t", FPU_ARCH_VFP_V1},
20001 {"arm1020e", FPU_ARCH_VFP_V2},
20002 {"arm1136jfs", FPU_ARCH_VFP_V2},
20003 {"arm1136jf-s", FPU_ARCH_VFP_V2},
20004 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 20005 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
e74cfd16
PB
20006 {NULL, ARM_ARCH_NONE}
20007};
20008
20009struct arm_option_value_table
20010{
20011 char *name;
20012 long value;
c19d1205 20013};
7ed4c4c5 20014
e74cfd16 20015static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
20016{
20017 {"hard", ARM_FLOAT_ABI_HARD},
20018 {"softfp", ARM_FLOAT_ABI_SOFTFP},
20019 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 20020 {NULL, 0}
c19d1205 20021};
7ed4c4c5 20022
c19d1205 20023#ifdef OBJ_ELF
3a4a14e9 20024/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 20025static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
20026{
20027 {"gnu", EF_ARM_EABI_UNKNOWN},
20028 {"4", EF_ARM_EABI_VER4},
3a4a14e9 20029 {"5", EF_ARM_EABI_VER5},
e74cfd16 20030 {NULL, 0}
c19d1205
ZW
20031};
20032#endif
7ed4c4c5 20033
c19d1205
ZW
20034struct arm_long_option_table
20035{
20036 char * option; /* Substring to match. */
20037 char * help; /* Help information. */
20038 int (* func) (char * subopt); /* Function to decode sub-option. */
20039 char * deprecated; /* If non-null, print this message. */
20040};
7ed4c4c5
NC
20041
20042static int
e74cfd16 20043arm_parse_extension (char * str, const arm_feature_set **opt_p)
7ed4c4c5 20044{
e74cfd16
PB
20045 arm_feature_set *ext_set = xmalloc (sizeof (arm_feature_set));
20046
20047 /* Copy the feature set, so that we can modify it. */
20048 *ext_set = **opt_p;
20049 *opt_p = ext_set;
20050
c19d1205 20051 while (str != NULL && *str != 0)
7ed4c4c5 20052 {
e74cfd16 20053 const struct arm_option_cpu_value_table * opt;
c19d1205
ZW
20054 char * ext;
20055 int optlen;
7ed4c4c5 20056
c19d1205
ZW
20057 if (*str != '+')
20058 {
20059 as_bad (_("invalid architectural extension"));
20060 return 0;
20061 }
7ed4c4c5 20062
c19d1205
ZW
20063 str++;
20064 ext = strchr (str, '+');
7ed4c4c5 20065
c19d1205
ZW
20066 if (ext != NULL)
20067 optlen = ext - str;
20068 else
20069 optlen = strlen (str);
7ed4c4c5 20070
c19d1205
ZW
20071 if (optlen == 0)
20072 {
20073 as_bad (_("missing architectural extension"));
20074 return 0;
20075 }
7ed4c4c5 20076
c19d1205
ZW
20077 for (opt = arm_extensions; opt->name != NULL; opt++)
20078 if (strncmp (opt->name, str, optlen) == 0)
20079 {
e74cfd16 20080 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
c19d1205
ZW
20081 break;
20082 }
7ed4c4c5 20083
c19d1205
ZW
20084 if (opt->name == NULL)
20085 {
20086 as_bad (_("unknown architectural extnsion `%s'"), str);
20087 return 0;
20088 }
7ed4c4c5 20089
c19d1205
ZW
20090 str = ext;
20091 };
7ed4c4c5 20092
c19d1205
ZW
20093 return 1;
20094}
7ed4c4c5 20095
c19d1205
ZW
20096static int
20097arm_parse_cpu (char * str)
7ed4c4c5 20098{
e74cfd16 20099 const struct arm_cpu_option_table * opt;
c19d1205
ZW
20100 char * ext = strchr (str, '+');
20101 int optlen;
7ed4c4c5 20102
c19d1205
ZW
20103 if (ext != NULL)
20104 optlen = ext - str;
7ed4c4c5 20105 else
c19d1205 20106 optlen = strlen (str);
7ed4c4c5 20107
c19d1205 20108 if (optlen == 0)
7ed4c4c5 20109 {
c19d1205
ZW
20110 as_bad (_("missing cpu name `%s'"), str);
20111 return 0;
7ed4c4c5
NC
20112 }
20113
c19d1205
ZW
20114 for (opt = arm_cpus; opt->name != NULL; opt++)
20115 if (strncmp (opt->name, str, optlen) == 0)
20116 {
e74cfd16
PB
20117 mcpu_cpu_opt = &opt->value;
20118 mcpu_fpu_opt = &opt->default_fpu;
ee065d83
PB
20119 if (opt->canonical_name)
20120 strcpy(selected_cpu_name, opt->canonical_name);
20121 else
20122 {
20123 int i;
20124 for (i = 0; i < optlen; i++)
20125 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20126 selected_cpu_name[i] = 0;
20127 }
7ed4c4c5 20128
c19d1205
ZW
20129 if (ext != NULL)
20130 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 20131
c19d1205
ZW
20132 return 1;
20133 }
7ed4c4c5 20134
c19d1205
ZW
20135 as_bad (_("unknown cpu `%s'"), str);
20136 return 0;
7ed4c4c5
NC
20137}
20138
c19d1205
ZW
20139static int
20140arm_parse_arch (char * str)
7ed4c4c5 20141{
e74cfd16 20142 const struct arm_arch_option_table *opt;
c19d1205
ZW
20143 char *ext = strchr (str, '+');
20144 int optlen;
7ed4c4c5 20145
c19d1205
ZW
20146 if (ext != NULL)
20147 optlen = ext - str;
7ed4c4c5 20148 else
c19d1205 20149 optlen = strlen (str);
7ed4c4c5 20150
c19d1205 20151 if (optlen == 0)
7ed4c4c5 20152 {
c19d1205
ZW
20153 as_bad (_("missing architecture name `%s'"), str);
20154 return 0;
7ed4c4c5
NC
20155 }
20156
c19d1205
ZW
20157 for (opt = arm_archs; opt->name != NULL; opt++)
20158 if (streq (opt->name, str))
20159 {
e74cfd16
PB
20160 march_cpu_opt = &opt->value;
20161 march_fpu_opt = &opt->default_fpu;
ee065d83 20162 strcpy(selected_cpu_name, opt->name);
7ed4c4c5 20163
c19d1205
ZW
20164 if (ext != NULL)
20165 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 20166
c19d1205
ZW
20167 return 1;
20168 }
20169
20170 as_bad (_("unknown architecture `%s'\n"), str);
20171 return 0;
7ed4c4c5 20172}
eb043451 20173
c19d1205
ZW
20174static int
20175arm_parse_fpu (char * str)
20176{
e74cfd16 20177 const struct arm_option_cpu_value_table * opt;
b99bd4ef 20178
c19d1205
ZW
20179 for (opt = arm_fpus; opt->name != NULL; opt++)
20180 if (streq (opt->name, str))
20181 {
e74cfd16 20182 mfpu_opt = &opt->value;
c19d1205
ZW
20183 return 1;
20184 }
b99bd4ef 20185
c19d1205
ZW
20186 as_bad (_("unknown floating point format `%s'\n"), str);
20187 return 0;
20188}
20189
20190static int
20191arm_parse_float_abi (char * str)
b99bd4ef 20192{
e74cfd16 20193 const struct arm_option_value_table * opt;
b99bd4ef 20194
c19d1205
ZW
20195 for (opt = arm_float_abis; opt->name != NULL; opt++)
20196 if (streq (opt->name, str))
20197 {
20198 mfloat_abi_opt = opt->value;
20199 return 1;
20200 }
cc8a6dd0 20201
c19d1205
ZW
20202 as_bad (_("unknown floating point abi `%s'\n"), str);
20203 return 0;
20204}
b99bd4ef 20205
c19d1205
ZW
20206#ifdef OBJ_ELF
20207static int
20208arm_parse_eabi (char * str)
20209{
e74cfd16 20210 const struct arm_option_value_table *opt;
cc8a6dd0 20211
c19d1205
ZW
20212 for (opt = arm_eabis; opt->name != NULL; opt++)
20213 if (streq (opt->name, str))
20214 {
20215 meabi_flags = opt->value;
20216 return 1;
20217 }
20218 as_bad (_("unknown EABI `%s'\n"), str);
20219 return 0;
20220}
20221#endif
cc8a6dd0 20222
c19d1205
ZW
20223struct arm_long_option_table arm_long_opts[] =
20224{
20225 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
20226 arm_parse_cpu, NULL},
20227 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
20228 arm_parse_arch, NULL},
20229 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
20230 arm_parse_fpu, NULL},
20231 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
20232 arm_parse_float_abi, NULL},
20233#ifdef OBJ_ELF
20234 {"meabi=", N_("<ver>\t assemble for eabi version <ver>"),
20235 arm_parse_eabi, NULL},
20236#endif
20237 {NULL, NULL, 0, NULL}
20238};
cc8a6dd0 20239
c19d1205
ZW
20240int
20241md_parse_option (int c, char * arg)
20242{
20243 struct arm_option_table *opt;
e74cfd16 20244 const struct arm_legacy_option_table *fopt;
c19d1205 20245 struct arm_long_option_table *lopt;
b99bd4ef 20246
c19d1205 20247 switch (c)
b99bd4ef 20248 {
c19d1205
ZW
20249#ifdef OPTION_EB
20250 case OPTION_EB:
20251 target_big_endian = 1;
20252 break;
20253#endif
cc8a6dd0 20254
c19d1205
ZW
20255#ifdef OPTION_EL
20256 case OPTION_EL:
20257 target_big_endian = 0;
20258 break;
20259#endif
b99bd4ef 20260
c19d1205
ZW
20261 case 'a':
20262 /* Listing option. Just ignore these, we don't support additional
20263 ones. */
20264 return 0;
b99bd4ef 20265
c19d1205
ZW
20266 default:
20267 for (opt = arm_opts; opt->option != NULL; opt++)
20268 {
20269 if (c == opt->option[0]
20270 && ((arg == NULL && opt->option[1] == 0)
20271 || streq (arg, opt->option + 1)))
20272 {
20273#if WARN_DEPRECATED
20274 /* If the option is deprecated, tell the user. */
20275 if (opt->deprecated != NULL)
20276 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
20277 arg ? arg : "", _(opt->deprecated));
20278#endif
b99bd4ef 20279
c19d1205
ZW
20280 if (opt->var != NULL)
20281 *opt->var = opt->value;
cc8a6dd0 20282
c19d1205
ZW
20283 return 1;
20284 }
20285 }
b99bd4ef 20286
e74cfd16
PB
20287 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
20288 {
20289 if (c == fopt->option[0]
20290 && ((arg == NULL && fopt->option[1] == 0)
20291 || streq (arg, fopt->option + 1)))
20292 {
20293#if WARN_DEPRECATED
20294 /* If the option is deprecated, tell the user. */
20295 if (fopt->deprecated != NULL)
20296 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
20297 arg ? arg : "", _(fopt->deprecated));
20298#endif
20299
20300 if (fopt->var != NULL)
20301 *fopt->var = &fopt->value;
20302
20303 return 1;
20304 }
20305 }
20306
c19d1205
ZW
20307 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
20308 {
20309 /* These options are expected to have an argument. */
20310 if (c == lopt->option[0]
20311 && arg != NULL
20312 && strncmp (arg, lopt->option + 1,
20313 strlen (lopt->option + 1)) == 0)
20314 {
20315#if WARN_DEPRECATED
20316 /* If the option is deprecated, tell the user. */
20317 if (lopt->deprecated != NULL)
20318 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
20319 _(lopt->deprecated));
20320#endif
b99bd4ef 20321
c19d1205
ZW
20322 /* Call the sup-option parser. */
20323 return lopt->func (arg + strlen (lopt->option) - 1);
20324 }
20325 }
a737bd4d 20326
c19d1205
ZW
20327 return 0;
20328 }
a394c00f 20329
c19d1205
ZW
20330 return 1;
20331}
a394c00f 20332
c19d1205
ZW
20333void
20334md_show_usage (FILE * fp)
a394c00f 20335{
c19d1205
ZW
20336 struct arm_option_table *opt;
20337 struct arm_long_option_table *lopt;
a394c00f 20338
c19d1205 20339 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 20340
c19d1205
ZW
20341 for (opt = arm_opts; opt->option != NULL; opt++)
20342 if (opt->help != NULL)
20343 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 20344
c19d1205
ZW
20345 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
20346 if (lopt->help != NULL)
20347 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 20348
c19d1205
ZW
20349#ifdef OPTION_EB
20350 fprintf (fp, _("\
20351 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
20352#endif
20353
c19d1205
ZW
20354#ifdef OPTION_EL
20355 fprintf (fp, _("\
20356 -EL assemble code for a little-endian cpu\n"));
a737bd4d 20357#endif
c19d1205 20358}
ee065d83
PB
20359
20360
20361#ifdef OBJ_ELF
62b3e311
PB
20362typedef struct
20363{
20364 int val;
20365 arm_feature_set flags;
20366} cpu_arch_ver_table;
20367
20368/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
20369 least features first. */
20370static const cpu_arch_ver_table cpu_arch_ver[] =
20371{
20372 {1, ARM_ARCH_V4},
20373 {2, ARM_ARCH_V4T},
20374 {3, ARM_ARCH_V5},
20375 {4, ARM_ARCH_V5TE},
20376 {5, ARM_ARCH_V5TEJ},
20377 {6, ARM_ARCH_V6},
20378 {7, ARM_ARCH_V6Z},
20379 {8, ARM_ARCH_V6K},
20380 {9, ARM_ARCH_V6T2},
20381 {10, ARM_ARCH_V7A},
20382 {10, ARM_ARCH_V7R},
20383 {10, ARM_ARCH_V7M},
20384 {0, ARM_ARCH_NONE}
20385};
20386
ee065d83
PB
20387/* Set the public EABI object attributes. */
20388static void
20389aeabi_set_public_attributes (void)
20390{
20391 int arch;
e74cfd16 20392 arm_feature_set flags;
62b3e311
PB
20393 arm_feature_set tmp;
20394 const cpu_arch_ver_table *p;
ee065d83
PB
20395
20396 /* Choose the architecture based on the capabilities of the requested cpu
20397 (if any) and/or the instructions actually used. */
e74cfd16
PB
20398 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
20399 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
20400 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
7a1d4c38
PB
20401 /*Allow the user to override the reported architecture. */
20402 if (object_arch)
20403 {
20404 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
20405 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
20406 }
20407
62b3e311
PB
20408 tmp = flags;
20409 arch = 0;
20410 for (p = cpu_arch_ver; p->val; p++)
20411 {
20412 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
20413 {
20414 arch = p->val;
20415 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
20416 }
20417 }
ee065d83
PB
20418
20419 /* Tag_CPU_name. */
20420 if (selected_cpu_name[0])
20421 {
20422 char *p;
20423
20424 p = selected_cpu_name;
20425 if (strncmp(p, "armv", 4) == 0)
20426 {
20427 int i;
20428
20429 p += 4;
20430 for (i = 0; p[i]; i++)
20431 p[i] = TOUPPER (p[i]);
20432 }
20433 elf32_arm_add_eabi_attr_string (stdoutput, 5, p);
20434 }
20435 /* Tag_CPU_arch. */
20436 elf32_arm_add_eabi_attr_int (stdoutput, 6, arch);
62b3e311
PB
20437 /* Tag_CPU_arch_profile. */
20438 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
20439 elf32_arm_add_eabi_attr_int (stdoutput, 7, 'A');
20440 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
20441 elf32_arm_add_eabi_attr_int (stdoutput, 7, 'R');
20442 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m))
20443 elf32_arm_add_eabi_attr_int (stdoutput, 7, 'M');
ee065d83 20444 /* Tag_ARM_ISA_use. */
e74cfd16 20445 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_full))
ee065d83
PB
20446 elf32_arm_add_eabi_attr_int (stdoutput, 8, 1);
20447 /* Tag_THUMB_ISA_use. */
e74cfd16 20448 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_full))
ee065d83 20449 elf32_arm_add_eabi_attr_int (stdoutput, 9,
e74cfd16 20450 ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2) ? 2 : 1);
ee065d83 20451 /* Tag_VFP_arch. */
5287ad62
JB
20452 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v3)
20453 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v3))
20454 elf32_arm_add_eabi_attr_int (stdoutput, 10, 3);
20455 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v2)
20456 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v2))
ee065d83 20457 elf32_arm_add_eabi_attr_int (stdoutput, 10, 2);
5287ad62
JB
20458 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1)
20459 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1)
20460 || ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1xd)
20461 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1xd))
ee065d83
PB
20462 elf32_arm_add_eabi_attr_int (stdoutput, 10, 1);
20463 /* Tag_WMMX_arch. */
e74cfd16
PB
20464 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_cext_iwmmxt)
20465 || ARM_CPU_HAS_FEATURE (arm_arch_used, arm_cext_iwmmxt))
ee065d83 20466 elf32_arm_add_eabi_attr_int (stdoutput, 11, 1);
5287ad62
JB
20467 /* Tag_NEON_arch. */
20468 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_neon_ext_v1)
20469 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_neon_ext_v1))
20470 elf32_arm_add_eabi_attr_int (stdoutput, 12, 1);
ee065d83
PB
20471}
20472
20473/* Add the .ARM.attributes section. */
20474void
20475arm_md_end (void)
20476{
20477 segT s;
20478 char *p;
20479 addressT addr;
20480 offsetT size;
20481
20482 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
20483 return;
20484
20485 aeabi_set_public_attributes ();
20486 size = elf32_arm_eabi_attr_size (stdoutput);
20487 s = subseg_new (".ARM.attributes", 0);
20488 bfd_set_section_flags (stdoutput, s, SEC_READONLY | SEC_DATA);
20489 addr = frag_now_fix ();
20490 p = frag_more (size);
20491 elf32_arm_set_eabi_attr_contents (stdoutput, (bfd_byte *)p, size);
20492}
8463be01 20493#endif /* OBJ_ELF */
ee065d83
PB
20494
20495
20496/* Parse a .cpu directive. */
20497
20498static void
20499s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
20500{
e74cfd16 20501 const struct arm_cpu_option_table *opt;
ee065d83
PB
20502 char *name;
20503 char saved_char;
20504
20505 name = input_line_pointer;
20506 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20507 input_line_pointer++;
20508 saved_char = *input_line_pointer;
20509 *input_line_pointer = 0;
20510
20511 /* Skip the first "all" entry. */
20512 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
20513 if (streq (opt->name, name))
20514 {
e74cfd16
PB
20515 mcpu_cpu_opt = &opt->value;
20516 selected_cpu = opt->value;
ee065d83
PB
20517 if (opt->canonical_name)
20518 strcpy(selected_cpu_name, opt->canonical_name);
20519 else
20520 {
20521 int i;
20522 for (i = 0; opt->name[i]; i++)
20523 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20524 selected_cpu_name[i] = 0;
20525 }
e74cfd16 20526 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
20527 *input_line_pointer = saved_char;
20528 demand_empty_rest_of_line ();
20529 return;
20530 }
20531 as_bad (_("unknown cpu `%s'"), name);
20532 *input_line_pointer = saved_char;
20533 ignore_rest_of_line ();
20534}
20535
20536
20537/* Parse a .arch directive. */
20538
20539static void
20540s_arm_arch (int ignored ATTRIBUTE_UNUSED)
20541{
e74cfd16 20542 const struct arm_arch_option_table *opt;
ee065d83
PB
20543 char saved_char;
20544 char *name;
20545
20546 name = input_line_pointer;
20547 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20548 input_line_pointer++;
20549 saved_char = *input_line_pointer;
20550 *input_line_pointer = 0;
20551
20552 /* Skip the first "all" entry. */
20553 for (opt = arm_archs + 1; opt->name != NULL; opt++)
20554 if (streq (opt->name, name))
20555 {
e74cfd16
PB
20556 mcpu_cpu_opt = &opt->value;
20557 selected_cpu = opt->value;
ee065d83 20558 strcpy(selected_cpu_name, opt->name);
e74cfd16 20559 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
20560 *input_line_pointer = saved_char;
20561 demand_empty_rest_of_line ();
20562 return;
20563 }
20564
20565 as_bad (_("unknown architecture `%s'\n"), name);
20566 *input_line_pointer = saved_char;
20567 ignore_rest_of_line ();
20568}
20569
20570
7a1d4c38
PB
20571/* Parse a .object_arch directive. */
20572
20573static void
20574s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
20575{
20576 const struct arm_arch_option_table *opt;
20577 char saved_char;
20578 char *name;
20579
20580 name = input_line_pointer;
20581 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20582 input_line_pointer++;
20583 saved_char = *input_line_pointer;
20584 *input_line_pointer = 0;
20585
20586 /* Skip the first "all" entry. */
20587 for (opt = arm_archs + 1; opt->name != NULL; opt++)
20588 if (streq (opt->name, name))
20589 {
20590 object_arch = &opt->value;
20591 *input_line_pointer = saved_char;
20592 demand_empty_rest_of_line ();
20593 return;
20594 }
20595
20596 as_bad (_("unknown architecture `%s'\n"), name);
20597 *input_line_pointer = saved_char;
20598 ignore_rest_of_line ();
20599}
20600
20601
ee065d83
PB
20602/* Parse a .fpu directive. */
20603
20604static void
20605s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
20606{
e74cfd16 20607 const struct arm_option_cpu_value_table *opt;
ee065d83
PB
20608 char saved_char;
20609 char *name;
20610
20611 name = input_line_pointer;
20612 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20613 input_line_pointer++;
20614 saved_char = *input_line_pointer;
20615 *input_line_pointer = 0;
20616
20617 for (opt = arm_fpus; opt->name != NULL; opt++)
20618 if (streq (opt->name, name))
20619 {
e74cfd16
PB
20620 mfpu_opt = &opt->value;
20621 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
20622 *input_line_pointer = saved_char;
20623 demand_empty_rest_of_line ();
20624 return;
20625 }
20626
20627 as_bad (_("unknown floating point format `%s'\n"), name);
20628 *input_line_pointer = saved_char;
20629 ignore_rest_of_line ();
20630}
ee065d83 20631
794ba86a
DJ
20632/* Copy symbol information. */
20633void
20634arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
20635{
20636 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
20637}