]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/i386-tdep.c
* gdb.dwarf2/dw2-basic.exp, gdb.dwarf2/dw2-intercu.exp: Run tests
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f
AC
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4754a64e 4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software
931aecf5 5 Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
c906108c
SS
23
24#include "defs.h"
acd5c798
MK
25#include "arch-utils.h"
26#include "command.h"
27#include "dummy-frame.h"
6405b0a6 28#include "dwarf2-frame.h"
acd5c798
MK
29#include "doublest.h"
30#include "floatformat.h"
c906108c 31#include "frame.h"
acd5c798
MK
32#include "frame-base.h"
33#include "frame-unwind.h"
c906108c 34#include "inferior.h"
acd5c798 35#include "gdbcmd.h"
c906108c 36#include "gdbcore.h"
dfe01d39 37#include "objfiles.h"
acd5c798
MK
38#include "osabi.h"
39#include "regcache.h"
40#include "reggroups.h"
473f17b0 41#include "regset.h"
c0d1d883 42#include "symfile.h"
c906108c 43#include "symtab.h"
acd5c798 44#include "target.h"
fd0407d6 45#include "value.h"
a89aa300 46#include "dis-asm.h"
acd5c798 47
3d261580 48#include "gdb_assert.h"
acd5c798 49#include "gdb_string.h"
3d261580 50
d2a7c97a 51#include "i386-tdep.h"
61113f8b 52#include "i387-tdep.h"
d2a7c97a 53
c4fc7f1b 54/* Register names. */
c40e1eab 55
fc633446
MK
56static char *i386_register_names[] =
57{
58 "eax", "ecx", "edx", "ebx",
59 "esp", "ebp", "esi", "edi",
60 "eip", "eflags", "cs", "ss",
61 "ds", "es", "fs", "gs",
62 "st0", "st1", "st2", "st3",
63 "st4", "st5", "st6", "st7",
64 "fctrl", "fstat", "ftag", "fiseg",
65 "fioff", "foseg", "fooff", "fop",
66 "xmm0", "xmm1", "xmm2", "xmm3",
67 "xmm4", "xmm5", "xmm6", "xmm7",
68 "mxcsr"
69};
70
1cb97e17 71static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
c40e1eab 72
c4fc7f1b 73/* Register names for MMX pseudo-registers. */
28fc6740
AC
74
75static char *i386_mmx_names[] =
76{
77 "mm0", "mm1", "mm2", "mm3",
78 "mm4", "mm5", "mm6", "mm7"
79};
c40e1eab 80
1cb97e17 81static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
c40e1eab 82
28fc6740 83static int
5716833c 84i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 85{
5716833c
MK
86 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
87
88 if (mm0_regnum < 0)
89 return 0;
90
91 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
28fc6740
AC
92}
93
5716833c 94/* SSE register? */
23a34459 95
5716833c
MK
96static int
97i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 98{
5716833c
MK
99 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
100
101#define I387_ST0_REGNUM tdep->st0_regnum
102#define I387_NUM_XMM_REGS tdep->num_xmm_regs
103
104 if (I387_NUM_XMM_REGS == 0)
105 return 0;
106
107 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
108
109#undef I387_ST0_REGNUM
110#undef I387_NUM_XMM_REGS
23a34459
AC
111}
112
5716833c
MK
113static int
114i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 115{
5716833c
MK
116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
117
118#define I387_ST0_REGNUM tdep->st0_regnum
119#define I387_NUM_XMM_REGS tdep->num_xmm_regs
120
121 if (I387_NUM_XMM_REGS == 0)
122 return 0;
123
124 return (regnum == I387_MXCSR_REGNUM);
125
126#undef I387_ST0_REGNUM
127#undef I387_NUM_XMM_REGS
23a34459
AC
128}
129
5716833c
MK
130#define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
131#define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
132#define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
133
134/* FP register? */
23a34459
AC
135
136int
5716833c 137i386_fp_regnum_p (int regnum)
23a34459 138{
5716833c
MK
139 if (I387_ST0_REGNUM < 0)
140 return 0;
141
142 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
23a34459
AC
143}
144
145int
5716833c 146i386_fpc_regnum_p (int regnum)
23a34459 147{
5716833c
MK
148 if (I387_ST0_REGNUM < 0)
149 return 0;
150
151 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
23a34459
AC
152}
153
30b0e2d8 154/* Return the name of register REGNUM. */
fc633446 155
fa88f677 156const char *
30b0e2d8 157i386_register_name (int regnum)
fc633446 158{
30b0e2d8
MK
159 if (i386_mmx_regnum_p (current_gdbarch, regnum))
160 return i386_mmx_names[regnum - I387_MM0_REGNUM];
fc633446 161
30b0e2d8
MK
162 if (regnum >= 0 && regnum < i386_num_register_names)
163 return i386_register_names[regnum];
70913449 164
c40e1eab 165 return NULL;
fc633446
MK
166}
167
c4fc7f1b 168/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
169 number used by GDB. */
170
8201327c 171static int
c4fc7f1b 172i386_dbx_reg_to_regnum (int reg)
85540d8c 173{
c4fc7f1b
MK
174 /* This implements what GCC calls the "default" register map
175 (dbx_register_map[]). */
176
85540d8c
MK
177 if (reg >= 0 && reg <= 7)
178 {
9872ad24
JB
179 /* General-purpose registers. The debug info calls %ebp
180 register 4, and %esp register 5. */
181 if (reg == 4)
182 return 5;
183 else if (reg == 5)
184 return 4;
185 else return reg;
85540d8c
MK
186 }
187 else if (reg >= 12 && reg <= 19)
188 {
189 /* Floating-point registers. */
5716833c 190 return reg - 12 + I387_ST0_REGNUM;
85540d8c
MK
191 }
192 else if (reg >= 21 && reg <= 28)
193 {
194 /* SSE registers. */
5716833c 195 return reg - 21 + I387_XMM0_REGNUM;
85540d8c
MK
196 }
197 else if (reg >= 29 && reg <= 36)
198 {
199 /* MMX registers. */
5716833c 200 return reg - 29 + I387_MM0_REGNUM;
85540d8c
MK
201 }
202
203 /* This will hopefully provoke a warning. */
204 return NUM_REGS + NUM_PSEUDO_REGS;
205}
206
c4fc7f1b
MK
207/* Convert SVR4 register number REG to the appropriate register number
208 used by GDB. */
85540d8c 209
8201327c 210static int
c4fc7f1b 211i386_svr4_reg_to_regnum (int reg)
85540d8c 212{
c4fc7f1b
MK
213 /* This implements the GCC register map that tries to be compatible
214 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
215
216 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
217 numbers the floating point registers differently. */
218 if (reg >= 0 && reg <= 9)
219 {
acd5c798 220 /* General-purpose registers. */
85540d8c
MK
221 return reg;
222 }
223 else if (reg >= 11 && reg <= 18)
224 {
225 /* Floating-point registers. */
5716833c 226 return reg - 11 + I387_ST0_REGNUM;
85540d8c
MK
227 }
228 else if (reg >= 21)
229 {
c4fc7f1b
MK
230 /* The SSE and MMX registers have the same numbers as with dbx. */
231 return i386_dbx_reg_to_regnum (reg);
85540d8c
MK
232 }
233
234 /* This will hopefully provoke a warning. */
235 return NUM_REGS + NUM_PSEUDO_REGS;
236}
5716833c
MK
237
238#undef I387_ST0_REGNUM
239#undef I387_MM0_REGNUM
240#undef I387_NUM_XMM_REGS
fc338970 241\f
917317f4 242
fc338970
MK
243/* This is the variable that is set with "set disassembly-flavor", and
244 its legitimate values. */
53904c9e
AC
245static const char att_flavor[] = "att";
246static const char intel_flavor[] = "intel";
247static const char *valid_flavors[] =
c5aa993b 248{
c906108c
SS
249 att_flavor,
250 intel_flavor,
251 NULL
252};
53904c9e 253static const char *disassembly_flavor = att_flavor;
acd5c798 254\f
c906108c 255
acd5c798
MK
256/* Use the program counter to determine the contents and size of a
257 breakpoint instruction. Return a pointer to a string of bytes that
258 encode a breakpoint instruction, store the length of the string in
259 *LEN and optionally adjust *PC to point to the correct memory
260 location for inserting the breakpoint.
c906108c 261
acd5c798
MK
262 On the i386 we have a single breakpoint that fits in a single byte
263 and can be inserted anywhere.
c906108c 264
acd5c798
MK
265 This function is 64-bit safe. */
266
267static const unsigned char *
268i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
c906108c 269{
acd5c798
MK
270 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
271
272 *len = sizeof (break_insn);
273 return break_insn;
c906108c 274}
fc338970 275\f
acd5c798
MK
276#ifdef I386_REGNO_TO_SYMMETRY
277#error "The Sequent Symmetry is no longer supported."
278#endif
c906108c 279
acd5c798
MK
280/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
281 and %esp "belong" to the calling function. Therefore these
282 registers should be saved if they're going to be modified. */
c906108c 283
acd5c798
MK
284/* The maximum number of saved registers. This should include all
285 registers mentioned above, and %eip. */
a3386186 286#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
287
288struct i386_frame_cache
c906108c 289{
acd5c798
MK
290 /* Base address. */
291 CORE_ADDR base;
292 CORE_ADDR sp_offset;
293 CORE_ADDR pc;
294
fd13a04a
AC
295 /* Saved registers. */
296 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798
MK
297 CORE_ADDR saved_sp;
298 int pc_in_eax;
299
300 /* Stack space reserved for local variables. */
301 long locals;
302};
303
304/* Allocate and initialize a frame cache. */
305
306static struct i386_frame_cache *
fd13a04a 307i386_alloc_frame_cache (void)
acd5c798
MK
308{
309 struct i386_frame_cache *cache;
310 int i;
311
312 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
313
314 /* Base address. */
315 cache->base = 0;
316 cache->sp_offset = -4;
317 cache->pc = 0;
318
fd13a04a
AC
319 /* Saved registers. We initialize these to -1 since zero is a valid
320 offset (that's where %ebp is supposed to be stored). */
321 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
322 cache->saved_regs[i] = -1;
acd5c798
MK
323 cache->saved_sp = 0;
324 cache->pc_in_eax = 0;
325
326 /* Frameless until proven otherwise. */
327 cache->locals = -1;
328
329 return cache;
330}
c906108c 331
acd5c798
MK
332/* If the instruction at PC is a jump, return the address of its
333 target. Otherwise, return PC. */
c906108c 334
acd5c798
MK
335static CORE_ADDR
336i386_follow_jump (CORE_ADDR pc)
337{
338 unsigned char op;
339 long delta = 0;
340 int data16 = 0;
c906108c 341
acd5c798
MK
342 op = read_memory_unsigned_integer (pc, 1);
343 if (op == 0x66)
c906108c 344 {
c906108c 345 data16 = 1;
acd5c798 346 op = read_memory_unsigned_integer (pc + 1, 1);
c906108c
SS
347 }
348
acd5c798 349 switch (op)
c906108c
SS
350 {
351 case 0xe9:
fc338970 352 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
353 if (data16)
354 {
acd5c798 355 delta = read_memory_integer (pc + 2, 2);
c906108c 356
fc338970
MK
357 /* Include the size of the jmp instruction (including the
358 0x66 prefix). */
acd5c798 359 delta += 4;
c906108c
SS
360 }
361 else
362 {
acd5c798 363 delta = read_memory_integer (pc + 1, 4);
c906108c 364
acd5c798
MK
365 /* Include the size of the jmp instruction. */
366 delta += 5;
c906108c
SS
367 }
368 break;
369 case 0xeb:
fc338970 370 /* Relative jump, disp8 (ignore data16). */
acd5c798 371 delta = read_memory_integer (pc + data16 + 1, 1);
c906108c 372
acd5c798 373 delta += data16 + 2;
c906108c
SS
374 break;
375 }
c906108c 376
acd5c798
MK
377 return pc + delta;
378}
fc338970 379
acd5c798
MK
380/* Check whether PC points at a prologue for a function returning a
381 structure or union. If so, it updates CACHE and returns the
382 address of the first instruction after the code sequence that
383 removes the "hidden" argument from the stack or CURRENT_PC,
384 whichever is smaller. Otherwise, return PC. */
c906108c 385
acd5c798
MK
386static CORE_ADDR
387i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
388 struct i386_frame_cache *cache)
c906108c 389{
acd5c798
MK
390 /* Functions that return a structure or union start with:
391
392 popl %eax 0x58
393 xchgl %eax, (%esp) 0x87 0x04 0x24
394 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
395
396 (the System V compiler puts out the second `xchg' instruction,
397 and the assembler doesn't try to optimize it, so the 'sib' form
398 gets generated). This sequence is used to get the address of the
399 return buffer for a function that returns a structure. */
400 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
401 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
402 unsigned char buf[4];
c906108c
SS
403 unsigned char op;
404
acd5c798
MK
405 if (current_pc <= pc)
406 return pc;
407
408 op = read_memory_unsigned_integer (pc, 1);
c906108c 409
acd5c798
MK
410 if (op != 0x58) /* popl %eax */
411 return pc;
c906108c 412
acd5c798
MK
413 read_memory (pc + 1, buf, 4);
414 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
415 return pc;
c906108c 416
acd5c798 417 if (current_pc == pc)
c906108c 418 {
acd5c798
MK
419 cache->sp_offset += 4;
420 return current_pc;
c906108c
SS
421 }
422
acd5c798 423 if (current_pc == pc + 1)
c906108c 424 {
acd5c798
MK
425 cache->pc_in_eax = 1;
426 return current_pc;
427 }
428
429 if (buf[1] == proto1[1])
430 return pc + 4;
431 else
432 return pc + 5;
433}
434
435static CORE_ADDR
436i386_skip_probe (CORE_ADDR pc)
437{
438 /* A function may start with
fc338970 439
acd5c798
MK
440 pushl constant
441 call _probe
442 addl $4, %esp
fc338970 443
acd5c798
MK
444 followed by
445
446 pushl %ebp
fc338970 447
acd5c798
MK
448 etc. */
449 unsigned char buf[8];
450 unsigned char op;
fc338970 451
acd5c798
MK
452 op = read_memory_unsigned_integer (pc, 1);
453
454 if (op == 0x68 || op == 0x6a)
455 {
456 int delta;
c906108c 457
acd5c798
MK
458 /* Skip past the `pushl' instruction; it has either a one-byte or a
459 four-byte operand, depending on the opcode. */
c906108c 460 if (op == 0x68)
acd5c798 461 delta = 5;
c906108c 462 else
acd5c798 463 delta = 2;
c906108c 464
acd5c798
MK
465 /* Read the following 8 bytes, which should be `call _probe' (6
466 bytes) followed by `addl $4,%esp' (2 bytes). */
467 read_memory (pc + delta, buf, sizeof (buf));
c906108c 468 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 469 pc += delta + sizeof (buf);
c906108c
SS
470 }
471
acd5c798
MK
472 return pc;
473}
474
37bdc87e
MK
475/* Maximum instruction length we need to handle. */
476#define I386_MAX_INSN_LEN 6
477
478/* Instruction description. */
479struct i386_insn
480{
481 size_t len;
482 unsigned char insn[I386_MAX_INSN_LEN];
483 unsigned char mask[I386_MAX_INSN_LEN];
484};
485
486/* Search for the instruction at PC in the list SKIP_INSNS. Return
487 the first instruction description that matches. Otherwise, return
488 NULL. */
489
490static struct i386_insn *
491i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
492{
493 struct i386_insn *insn;
494 unsigned char op;
495
496 op = read_memory_unsigned_integer (pc, 1);
497
498 for (insn = skip_insns; insn->len > 0; insn++)
499 {
500 if ((op & insn->mask[0]) == insn->insn[0])
501 {
502 unsigned char buf[I386_MAX_INSN_LEN - 1];
503 size_t i;
504
505 gdb_assert (insn->len > 1);
506 gdb_assert (insn->len <= I386_MAX_INSN_LEN);
507
508 read_memory (pc + 1, buf, insn->len - 1);
509 for (i = 1; i < insn->len; i++)
510 {
511 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
512 break;
513
514 return insn;
515 }
516 }
517 }
518
519 return NULL;
520}
521
522/* Some special instructions that might be migrated by GCC into the
523 part of the prologue that sets up the new stack frame. Because the
524 stack frame hasn't been setup yet, no registers have been saved
525 yet, and only the scratch registers %eax, %ecx and %edx can be
526 touched. */
527
528struct i386_insn i386_frame_setup_skip_insns[] =
529{
530 /* Check for `movb imm8, r' and `movl imm32, r'.
531
532 ??? Should we handle 16-bit operand-sizes here? */
533
534 /* `movb imm8, %al' and `movb imm8, %ah' */
535 /* `movb imm8, %cl' and `movb imm8, %ch' */
536 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
537 /* `movb imm8, %dl' and `movb imm8, %dh' */
538 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
539 /* `movl imm32, %eax' and `movl imm32, %ecx' */
540 { 5, { 0xb8 }, { 0xfe } },
541 /* `movl imm32, %edx' */
542 { 5, { 0xba }, { 0xff } },
543
544 /* Check for `mov imm32, r32'. Note that there is an alternative
545 encoding for `mov m32, %eax'.
546
547 ??? Should we handle SIB adressing here?
548 ??? Should we handle 16-bit operand-sizes here? */
549
550 /* `movl m32, %eax' */
551 { 5, { 0xa1 }, { 0xff } },
552 /* `movl m32, %eax' and `mov; m32, %ecx' */
553 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
554 /* `movl m32, %edx' */
555 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
556
557 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
558 Because of the symmetry, there are actually two ways to encode
559 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
560 opcode bytes 0x31 and 0x33 for `xorl'. */
561
562 /* `subl %eax, %eax' */
563 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
564 /* `subl %ecx, %ecx' */
565 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
566 /* `subl %edx, %edx' */
567 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
568 /* `xorl %eax, %eax' */
569 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
570 /* `xorl %ecx, %ecx' */
571 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
572 /* `xorl %edx, %edx' */
573 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
574 { 0 }
575};
576
acd5c798
MK
577/* Check whether PC points at a code that sets up a new stack frame.
578 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
579 instruction after the sequence that sets up the frame or LIMIT,
580 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
581
582static CORE_ADDR
37bdc87e 583i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
584 struct i386_frame_cache *cache)
585{
37bdc87e 586 struct i386_insn *insn;
acd5c798 587 unsigned char op;
26604a34 588 int skip = 0;
acd5c798 589
37bdc87e
MK
590 if (limit <= pc)
591 return limit;
acd5c798
MK
592
593 op = read_memory_unsigned_integer (pc, 1);
594
c906108c 595 if (op == 0x55) /* pushl %ebp */
c5aa993b 596 {
acd5c798
MK
597 /* Take into account that we've executed the `pushl %ebp' that
598 starts this instruction sequence. */
fd13a04a 599 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 600 cache->sp_offset += 4;
37bdc87e 601 pc++;
acd5c798
MK
602
603 /* If that's all, return now. */
37bdc87e
MK
604 if (limit <= pc)
605 return limit;
26604a34 606
b4632131 607 /* Check for some special instructions that might be migrated by
37bdc87e
MK
608 GCC into the prologue and skip them. At this point in the
609 prologue, code should only touch the scratch registers %eax,
610 %ecx and %edx, so while the number of posibilities is sheer,
611 it is limited.
5daa5b4e 612
26604a34
MK
613 Make sure we only skip these instructions if we later see the
614 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 615 while (pc + skip < limit)
26604a34 616 {
37bdc87e
MK
617 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
618 if (insn == NULL)
619 break;
b4632131 620
37bdc87e 621 skip += insn->len;
26604a34
MK
622 }
623
37bdc87e
MK
624 /* If that's all, return now. */
625 if (limit <= pc + skip)
626 return limit;
627
628 op = read_memory_unsigned_integer (pc + skip, 1);
629
26604a34 630 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 631 switch (op)
c906108c
SS
632 {
633 case 0x8b:
37bdc87e
MK
634 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
635 return pc;
c906108c
SS
636 break;
637 case 0x89:
37bdc87e
MK
638 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
639 return pc;
c906108c
SS
640 break;
641 default:
37bdc87e 642 return pc;
c906108c 643 }
acd5c798 644
26604a34
MK
645 /* OK, we actually have a frame. We just don't know how large
646 it is yet. Set its size to zero. We'll adjust it if
647 necessary. We also now commit to skipping the special
648 instructions mentioned before. */
acd5c798 649 cache->locals = 0;
37bdc87e 650 pc += (skip + 2);
acd5c798
MK
651
652 /* If that's all, return now. */
37bdc87e
MK
653 if (limit <= pc)
654 return limit;
acd5c798 655
fc338970
MK
656 /* Check for stack adjustment
657
acd5c798 658 subl $XXX, %esp
fc338970 659
fd35795f 660 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 661 reg, so we don't have to worry about a data16 prefix. */
37bdc87e 662 op = read_memory_unsigned_integer (pc, 1);
c906108c
SS
663 if (op == 0x83)
664 {
fd35795f 665 /* `subl' with 8-bit immediate. */
37bdc87e 666 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 667 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 668 return pc;
acd5c798 669
37bdc87e
MK
670 /* `subl' with signed 8-bit immediate (though it wouldn't
671 make sense to be negative). */
672 cache->locals = read_memory_integer (pc + 2, 1);
673 return pc + 3;
c906108c
SS
674 }
675 else if (op == 0x81)
676 {
fd35795f 677 /* Maybe it is `subl' with a 32-bit immediate. */
37bdc87e 678 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 679 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 680 return pc;
acd5c798 681
fd35795f 682 /* It is `subl' with a 32-bit immediate. */
37bdc87e
MK
683 cache->locals = read_memory_integer (pc + 2, 4);
684 return pc + 6;
c906108c
SS
685 }
686 else
687 {
acd5c798 688 /* Some instruction other than `subl'. */
37bdc87e 689 return pc;
c906108c
SS
690 }
691 }
37bdc87e 692 else if (op == 0xc8) /* enter */
c906108c 693 {
acd5c798
MK
694 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
695 return pc + 4;
c906108c 696 }
21d0e8a4 697
acd5c798 698 return pc;
21d0e8a4
MK
699}
700
acd5c798
MK
701/* Check whether PC points at code that saves registers on the stack.
702 If so, it updates CACHE and returns the address of the first
703 instruction after the register saves or CURRENT_PC, whichever is
704 smaller. Otherwise, return PC. */
6bff26de
MK
705
706static CORE_ADDR
acd5c798
MK
707i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
708 struct i386_frame_cache *cache)
6bff26de 709{
99ab4326
MK
710 CORE_ADDR offset = 0;
711 unsigned char op;
712 int i;
c0d1d883 713
99ab4326
MK
714 if (cache->locals > 0)
715 offset -= cache->locals;
716 for (i = 0; i < 8 && pc < current_pc; i++)
717 {
718 op = read_memory_unsigned_integer (pc, 1);
719 if (op < 0x50 || op > 0x57)
720 break;
0d17c81d 721
99ab4326
MK
722 offset -= 4;
723 cache->saved_regs[op - 0x50] = offset;
724 cache->sp_offset += 4;
725 pc++;
6bff26de
MK
726 }
727
acd5c798 728 return pc;
22797942
AC
729}
730
acd5c798
MK
731/* Do a full analysis of the prologue at PC and update CACHE
732 accordingly. Bail out early if CURRENT_PC is reached. Return the
733 address where the analysis stopped.
ed84f6c1 734
fc338970
MK
735 We handle these cases:
736
737 The startup sequence can be at the start of the function, or the
738 function can start with a branch to startup code at the end.
739
740 %ebp can be set up with either the 'enter' instruction, or "pushl
741 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
742 once used in the System V compiler).
743
744 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
745 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
746 16-bit unsigned argument for space to allocate, and the 'addl'
747 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
748
749 Next, the registers used by this function are pushed. With the
750 System V compiler they will always be in the order: %edi, %esi,
751 %ebx (and sometimes a harmless bug causes it to also save but not
752 restore %eax); however, the code below is willing to see the pushes
753 in any order, and will handle up to 8 of them.
754
755 If the setup sequence is at the end of the function, then the next
756 instruction will be a branch back to the start. */
c906108c 757
acd5c798
MK
758static CORE_ADDR
759i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
760 struct i386_frame_cache *cache)
c906108c 761{
acd5c798
MK
762 pc = i386_follow_jump (pc);
763 pc = i386_analyze_struct_return (pc, current_pc, cache);
764 pc = i386_skip_probe (pc);
765 pc = i386_analyze_frame_setup (pc, current_pc, cache);
766 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
767}
768
fc338970 769/* Return PC of first real instruction. */
c906108c 770
3a1e71e3 771static CORE_ADDR
acd5c798 772i386_skip_prologue (CORE_ADDR start_pc)
c906108c 773{
c5aa993b 774 static unsigned char pic_pat[6] =
acd5c798
MK
775 {
776 0xe8, 0, 0, 0, 0, /* call 0x0 */
777 0x5b, /* popl %ebx */
c5aa993b 778 };
acd5c798
MK
779 struct i386_frame_cache cache;
780 CORE_ADDR pc;
781 unsigned char op;
782 int i;
c5aa993b 783
acd5c798
MK
784 cache.locals = -1;
785 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
786 if (cache.locals < 0)
787 return start_pc;
c5aa993b 788
acd5c798 789 /* Found valid frame setup. */
c906108c 790
fc338970
MK
791 /* The native cc on SVR4 in -K PIC mode inserts the following code
792 to get the address of the global offset table (GOT) into register
acd5c798
MK
793 %ebx:
794
fc338970
MK
795 call 0x0
796 popl %ebx
797 movl %ebx,x(%ebp) (optional)
798 addl y,%ebx
799
c906108c
SS
800 This code is with the rest of the prologue (at the end of the
801 function), so we have to skip it to get to the first real
802 instruction at the start of the function. */
c5aa993b 803
c906108c
SS
804 for (i = 0; i < 6; i++)
805 {
acd5c798 806 op = read_memory_unsigned_integer (pc + i, 1);
c5aa993b 807 if (pic_pat[i] != op)
c906108c
SS
808 break;
809 }
810 if (i == 6)
811 {
acd5c798
MK
812 int delta = 6;
813
814 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 815
c5aa993b 816 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 817 {
acd5c798
MK
818 op = read_memory_unsigned_integer (pc + delta + 1, 1);
819
fc338970 820 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 821 delta += 3;
fc338970 822 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 823 delta += 6;
fc338970 824 else /* Unexpected instruction. */
acd5c798
MK
825 delta = 0;
826
827 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 828 }
acd5c798 829
c5aa993b 830 /* addl y,%ebx */
acd5c798
MK
831 if (delta > 0 && op == 0x81
832 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
c906108c 833 {
acd5c798 834 pc += delta + 6;
c906108c
SS
835 }
836 }
c5aa993b 837
e63bbc88
MK
838 /* If the function starts with a branch (to startup code at the end)
839 the last instruction should bring us back to the first
840 instruction of the real code. */
841 if (i386_follow_jump (start_pc) != start_pc)
842 pc = i386_follow_jump (pc);
843
844 return pc;
c906108c
SS
845}
846
acd5c798 847/* This function is 64-bit safe. */
93924b6b 848
acd5c798
MK
849static CORE_ADDR
850i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 851{
acd5c798
MK
852 char buf[8];
853
854 frame_unwind_register (next_frame, PC_REGNUM, buf);
855 return extract_typed_address (buf, builtin_type_void_func_ptr);
93924b6b 856}
acd5c798 857\f
93924b6b 858
acd5c798 859/* Normal frames. */
c5aa993b 860
acd5c798
MK
861static struct i386_frame_cache *
862i386_frame_cache (struct frame_info *next_frame, void **this_cache)
a7769679 863{
acd5c798 864 struct i386_frame_cache *cache;
c0d1d883 865 char buf[4];
acd5c798
MK
866 int i;
867
868 if (*this_cache)
869 return *this_cache;
870
fd13a04a 871 cache = i386_alloc_frame_cache ();
acd5c798
MK
872 *this_cache = cache;
873
874 /* In principle, for normal frames, %ebp holds the frame pointer,
875 which holds the base address for the current stack frame.
876 However, for functions that don't need it, the frame pointer is
877 optional. For these "frameless" functions the frame pointer is
878 actually the frame pointer of the calling frame. Signal
879 trampolines are just a special case of a "frameless" function.
880 They (usually) share their frame pointer with the frame that was
881 in progress when the signal occurred. */
882
883 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
884 cache->base = extract_unsigned_integer (buf, 4);
885 if (cache->base == 0)
886 return cache;
887
888 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 889 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798
MK
890
891 cache->pc = frame_func_unwind (next_frame);
892 if (cache->pc != 0)
893 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
894
895 if (cache->locals < 0)
896 {
897 /* We didn't find a valid frame, which means that CACHE->base
898 currently holds the frame pointer for our calling frame. If
899 we're at the start of a function, or somewhere half-way its
900 prologue, the function's frame probably hasn't been fully
901 setup yet. Try to reconstruct the base address for the stack
902 frame by looking at the stack pointer. For truly "frameless"
903 functions this might work too. */
904
905 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
906 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
907 }
908
909 /* Now that we have the base address for the stack frame we can
910 calculate the value of %esp in the calling frame. */
911 cache->saved_sp = cache->base + 8;
a7769679 912
acd5c798
MK
913 /* Adjust all the saved registers such that they contain addresses
914 instead of offsets. */
915 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
916 if (cache->saved_regs[i] != -1)
917 cache->saved_regs[i] += cache->base;
acd5c798
MK
918
919 return cache;
a7769679
MK
920}
921
3a1e71e3 922static void
acd5c798
MK
923i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
924 struct frame_id *this_id)
c906108c 925{
acd5c798
MK
926 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
927
928 /* This marks the outermost frame. */
929 if (cache->base == 0)
930 return;
931
3e210248 932 /* See the end of i386_push_dummy_call. */
acd5c798
MK
933 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
934}
935
936static void
937i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
938 int regnum, int *optimizedp,
939 enum lval_type *lvalp, CORE_ADDR *addrp,
940 int *realnump, void *valuep)
941{
942 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
943
944 gdb_assert (regnum >= 0);
945
946 /* The System V ABI says that:
947
948 "The flags register contains the system flags, such as the
949 direction flag and the carry flag. The direction flag must be
950 set to the forward (that is, zero) direction before entry and
951 upon exit from a function. Other user flags have no specified
952 role in the standard calling sequence and are not preserved."
953
954 To guarantee the "upon exit" part of that statement we fake a
955 saved flags register that has its direction flag cleared.
956
957 Note that GCC doesn't seem to rely on the fact that the direction
958 flag is cleared after a function return; it always explicitly
959 clears the flag before operations where it matters.
960
961 FIXME: kettenis/20030316: I'm not quite sure whether this is the
962 right thing to do. The way we fake the flags register here makes
963 it impossible to change it. */
964
965 if (regnum == I386_EFLAGS_REGNUM)
966 {
967 *optimizedp = 0;
968 *lvalp = not_lval;
969 *addrp = 0;
970 *realnump = -1;
971 if (valuep)
972 {
973 ULONGEST val;
c5aa993b 974
acd5c798 975 /* Clear the direction flag. */
f837910f
MK
976 val = frame_unwind_register_unsigned (next_frame,
977 I386_EFLAGS_REGNUM);
acd5c798
MK
978 val &= ~(1 << 10);
979 store_unsigned_integer (valuep, 4, val);
980 }
981
982 return;
983 }
1211c4e4 984
acd5c798 985 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
c906108c 986 {
00b25ff3
AC
987 *optimizedp = 0;
988 *lvalp = lval_register;
989 *addrp = 0;
990 *realnump = I386_EAX_REGNUM;
991 if (valuep)
992 frame_unwind_register (next_frame, (*realnump), valuep);
acd5c798
MK
993 return;
994 }
995
996 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
997 {
998 *optimizedp = 0;
999 *lvalp = not_lval;
1000 *addrp = 0;
1001 *realnump = -1;
1002 if (valuep)
c906108c 1003 {
acd5c798
MK
1004 /* Store the value. */
1005 store_unsigned_integer (valuep, 4, cache->saved_sp);
c906108c 1006 }
acd5c798 1007 return;
c906108c 1008 }
acd5c798 1009
fd13a04a
AC
1010 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1011 {
1012 *optimizedp = 0;
1013 *lvalp = lval_memory;
1014 *addrp = cache->saved_regs[regnum];
1015 *realnump = -1;
1016 if (valuep)
1017 {
1018 /* Read the value in from memory. */
1019 read_memory (*addrp, valuep,
1020 register_size (current_gdbarch, regnum));
1021 }
1022 return;
1023 }
1024
00b25ff3
AC
1025 *optimizedp = 0;
1026 *lvalp = lval_register;
1027 *addrp = 0;
1028 *realnump = regnum;
1029 if (valuep)
1030 frame_unwind_register (next_frame, (*realnump), valuep);
acd5c798
MK
1031}
1032
1033static const struct frame_unwind i386_frame_unwind =
1034{
1035 NORMAL_FRAME,
1036 i386_frame_this_id,
1037 i386_frame_prev_register
1038};
1039
1040static const struct frame_unwind *
336d1bba 1041i386_frame_sniffer (struct frame_info *next_frame)
acd5c798
MK
1042{
1043 return &i386_frame_unwind;
1044}
1045\f
1046
1047/* Signal trampolines. */
1048
1049static struct i386_frame_cache *
1050i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1051{
1052 struct i386_frame_cache *cache;
1053 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1054 CORE_ADDR addr;
1055 char buf[4];
1056
1057 if (*this_cache)
1058 return *this_cache;
1059
fd13a04a 1060 cache = i386_alloc_frame_cache ();
acd5c798
MK
1061
1062 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1063 cache->base = extract_unsigned_integer (buf, 4) - 4;
1064
1065 addr = tdep->sigcontext_addr (next_frame);
a3386186
MK
1066 if (tdep->sc_reg_offset)
1067 {
1068 int i;
1069
1070 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1071
1072 for (i = 0; i < tdep->sc_num_regs; i++)
1073 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 1074 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
1075 }
1076 else
1077 {
fd13a04a
AC
1078 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1079 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 1080 }
acd5c798
MK
1081
1082 *this_cache = cache;
1083 return cache;
1084}
1085
1086static void
1087i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1088 struct frame_id *this_id)
1089{
1090 struct i386_frame_cache *cache =
1091 i386_sigtramp_frame_cache (next_frame, this_cache);
1092
3e210248 1093 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1094 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1095}
1096
1097static void
1098i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1099 void **this_cache,
1100 int regnum, int *optimizedp,
1101 enum lval_type *lvalp, CORE_ADDR *addrp,
1102 int *realnump, void *valuep)
1103{
1104 /* Make sure we've initialized the cache. */
1105 i386_sigtramp_frame_cache (next_frame, this_cache);
1106
1107 i386_frame_prev_register (next_frame, this_cache, regnum,
1108 optimizedp, lvalp, addrp, realnump, valuep);
c906108c 1109}
c0d1d883 1110
acd5c798
MK
1111static const struct frame_unwind i386_sigtramp_frame_unwind =
1112{
1113 SIGTRAMP_FRAME,
1114 i386_sigtramp_frame_this_id,
1115 i386_sigtramp_frame_prev_register
1116};
1117
1118static const struct frame_unwind *
336d1bba 1119i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
acd5c798 1120{
911bc6ee 1121 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
acd5c798 1122
911bc6ee
MK
1123 /* We shouldn't even bother if we don't have a sigcontext_addr
1124 handler. */
1125 if (tdep->sigcontext_addr == NULL)
1c3545ae
MK
1126 return NULL;
1127
911bc6ee
MK
1128 if (tdep->sigtramp_p != NULL)
1129 {
1130 if (tdep->sigtramp_p (next_frame))
1131 return &i386_sigtramp_frame_unwind;
1132 }
1133
1134 if (tdep->sigtramp_start != 0)
1135 {
1136 CORE_ADDR pc = frame_pc_unwind (next_frame);
1137
1138 gdb_assert (tdep->sigtramp_end != 0);
1139 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1140 return &i386_sigtramp_frame_unwind;
1141 }
acd5c798
MK
1142
1143 return NULL;
1144}
1145\f
1146
1147static CORE_ADDR
1148i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1149{
1150 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1151
1152 return cache->base;
1153}
1154
1155static const struct frame_base i386_frame_base =
1156{
1157 &i386_frame_unwind,
1158 i386_frame_base_address,
1159 i386_frame_base_address,
1160 i386_frame_base_address
1161};
1162
acd5c798
MK
1163static struct frame_id
1164i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1165{
1166 char buf[4];
1167 CORE_ADDR fp;
1168
1169 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1170 fp = extract_unsigned_integer (buf, 4);
1171
3e210248 1172 /* See the end of i386_push_dummy_call. */
acd5c798 1173 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
c0d1d883 1174}
fc338970 1175\f
c906108c 1176
fc338970
MK
1177/* Figure out where the longjmp will land. Slurp the args out of the
1178 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1179 structure from which we extract the address that we will land at.
28bcfd30 1180 This address is copied into PC. This routine returns non-zero on
acd5c798
MK
1181 success.
1182
1183 This function is 64-bit safe. */
c906108c 1184
8201327c
MK
1185static int
1186i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 1187{
28bcfd30 1188 char buf[8];
c906108c 1189 CORE_ADDR sp, jb_addr;
8201327c 1190 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
f9d3c2a8 1191 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
c906108c 1192
8201327c
MK
1193 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1194 longjmp will land. */
1195 if (jb_pc_offset == -1)
c906108c
SS
1196 return 0;
1197
f837910f
MK
1198 /* Don't use I386_ESP_REGNUM here, since this function is also used
1199 for AMD64. */
1200 regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1201 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1202 if (target_read_memory (sp + len, buf, len))
c906108c
SS
1203 return 0;
1204
f837910f 1205 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1206 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
8201327c 1207 return 0;
c906108c 1208
f9d3c2a8 1209 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
c906108c
SS
1210 return 1;
1211}
fc338970 1212\f
c906108c 1213
3a1e71e3 1214static CORE_ADDR
7d9b040b 1215i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1216 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1217 struct value **args, CORE_ADDR sp, int struct_return,
1218 CORE_ADDR struct_addr)
22f8ba57 1219{
acd5c798
MK
1220 char buf[4];
1221 int i;
1222
1223 /* Push arguments in reverse order. */
1224 for (i = nargs - 1; i >= 0; i--)
22f8ba57 1225 {
4754a64e 1226 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798
MK
1227
1228 /* The System V ABI says that:
1229
1230 "An argument's size is increased, if necessary, to make it a
1231 multiple of [32-bit] words. This may require tail padding,
1232 depending on the size of the argument."
1233
1234 This makes sure the stack says word-aligned. */
1235 sp -= (len + 3) & ~3;
46615f07 1236 write_memory (sp, value_contents_all (args[i]), len);
acd5c798 1237 }
22f8ba57 1238
acd5c798
MK
1239 /* Push value address. */
1240 if (struct_return)
1241 {
22f8ba57 1242 sp -= 4;
fbd9dcd3 1243 store_unsigned_integer (buf, 4, struct_addr);
22f8ba57
MK
1244 write_memory (sp, buf, 4);
1245 }
1246
acd5c798
MK
1247 /* Store return address. */
1248 sp -= 4;
6a65450a 1249 store_unsigned_integer (buf, 4, bp_addr);
acd5c798
MK
1250 write_memory (sp, buf, 4);
1251
1252 /* Finally, update the stack pointer... */
1253 store_unsigned_integer (buf, 4, sp);
1254 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1255
1256 /* ...and fake a frame pointer. */
1257 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1258
3e210248
AC
1259 /* MarkK wrote: This "+ 8" is all over the place:
1260 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1261 i386_unwind_dummy_id). It's there, since all frame unwinders for
1262 a given target have to agree (within a certain margin) on the
fd35795f 1263 definition of the stack address of a frame. Otherwise
3e210248
AC
1264 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1265 stack address *before* the function call as a frame's CFA. On
1266 the i386, when %ebp is used as a frame pointer, the offset
1267 between the contents %ebp and the CFA as defined by GCC. */
1268 return sp + 8;
22f8ba57
MK
1269}
1270
1a309862
MK
1271/* These registers are used for returning integers (and on some
1272 targets also for returning `struct' and `union' values when their
ef9dff19 1273 size and alignment match an integer type). */
acd5c798
MK
1274#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1275#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 1276
c5e656c1
MK
1277/* Read, for architecture GDBARCH, a function return value of TYPE
1278 from REGCACHE, and copy that into VALBUF. */
1a309862 1279
3a1e71e3 1280static void
c5e656c1
MK
1281i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1282 struct regcache *regcache, void *valbuf)
c906108c 1283{
c5e656c1 1284 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 1285 int len = TYPE_LENGTH (type);
00f8375e 1286 char buf[I386_MAX_REGISTER_SIZE];
1a309862 1287
1e8d0a7b 1288 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1289 {
5716833c 1290 if (tdep->st0_regnum < 0)
1a309862
MK
1291 {
1292 warning ("Cannot find floating-point return value.");
1293 memset (valbuf, 0, len);
ef9dff19 1294 return;
1a309862
MK
1295 }
1296
c6ba6f0d
MK
1297 /* Floating-point return values can be found in %st(0). Convert
1298 its contents to the desired type. This is probably not
1299 exactly how it would happen on the target itself, but it is
1300 the best we can do. */
acd5c798 1301 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
00f8375e 1302 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
1303 }
1304 else
c5aa993b 1305 {
f837910f
MK
1306 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1307 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
1308
1309 if (len <= low_size)
00f8375e 1310 {
0818c12a 1311 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1312 memcpy (valbuf, buf, len);
1313 }
d4f3574e
SS
1314 else if (len <= (low_size + high_size))
1315 {
0818c12a 1316 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1317 memcpy (valbuf, buf, low_size);
0818c12a 1318 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
c8048956 1319 memcpy ((char *) valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1320 }
1321 else
8e65ff28
AC
1322 internal_error (__FILE__, __LINE__,
1323 "Cannot extract return value of %d bytes long.", len);
c906108c
SS
1324 }
1325}
1326
c5e656c1
MK
1327/* Write, for architecture GDBARCH, a function return value of TYPE
1328 from VALBUF into REGCACHE. */
ef9dff19 1329
3a1e71e3 1330static void
c5e656c1
MK
1331i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1332 struct regcache *regcache, const void *valbuf)
ef9dff19 1333{
c5e656c1 1334 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
1335 int len = TYPE_LENGTH (type);
1336
5716833c
MK
1337 /* Define I387_ST0_REGNUM such that we use the proper definitions
1338 for the architecture. */
1339#define I387_ST0_REGNUM I386_ST0_REGNUM
1340
1e8d0a7b 1341 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1342 {
3d7f4f49 1343 ULONGEST fstat;
5716833c 1344 char buf[I386_MAX_REGISTER_SIZE];
ccb945b8 1345
5716833c 1346 if (tdep->st0_regnum < 0)
ef9dff19
MK
1347 {
1348 warning ("Cannot set floating-point return value.");
1349 return;
1350 }
1351
635b0cc1
MK
1352 /* Returning floating-point values is a bit tricky. Apart from
1353 storing the return value in %st(0), we have to simulate the
1354 state of the FPU at function return point. */
1355
c6ba6f0d
MK
1356 /* Convert the value found in VALBUF to the extended
1357 floating-point format used by the FPU. This is probably
1358 not exactly how it would happen on the target itself, but
1359 it is the best we can do. */
1360 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
acd5c798 1361 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 1362
635b0cc1
MK
1363 /* Set the top of the floating-point register stack to 7. The
1364 actual value doesn't really matter, but 7 is what a normal
1365 function return would end up with if the program started out
1366 with a freshly initialized FPU. */
5716833c 1367 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
ccb945b8 1368 fstat |= (7 << 11);
5716833c 1369 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
ccb945b8 1370
635b0cc1
MK
1371 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1372 the floating-point register stack to 7, the appropriate value
1373 for the tag word is 0x3fff. */
5716833c 1374 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1375 }
1376 else
1377 {
f837910f
MK
1378 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1379 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
1380
1381 if (len <= low_size)
3d7f4f49 1382 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1383 else if (len <= (low_size + high_size))
1384 {
3d7f4f49
MK
1385 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1386 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1387 len - low_size, (char *) valbuf + low_size);
ef9dff19
MK
1388 }
1389 else
8e65ff28
AC
1390 internal_error (__FILE__, __LINE__,
1391 "Cannot store return value of %d bytes long.", len);
ef9dff19 1392 }
5716833c
MK
1393
1394#undef I387_ST0_REGNUM
ef9dff19 1395}
fc338970 1396\f
ef9dff19 1397
8201327c
MK
1398/* This is the variable that is set with "set struct-convention", and
1399 its legitimate values. */
1400static const char default_struct_convention[] = "default";
1401static const char pcc_struct_convention[] = "pcc";
1402static const char reg_struct_convention[] = "reg";
1403static const char *valid_conventions[] =
1404{
1405 default_struct_convention,
1406 pcc_struct_convention,
1407 reg_struct_convention,
1408 NULL
1409};
1410static const char *struct_convention = default_struct_convention;
1411
c5e656c1
MK
1412/* Return non-zero if TYPE, which is assumed to be a structure or
1413 union type, should be returned in registers for architecture
1414 GDBARCH. */
1415
8201327c 1416static int
c5e656c1 1417i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 1418{
c5e656c1
MK
1419 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1420 enum type_code code = TYPE_CODE (type);
1421 int len = TYPE_LENGTH (type);
8201327c 1422
c5e656c1
MK
1423 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
1424
1425 if (struct_convention == pcc_struct_convention
1426 || (struct_convention == default_struct_convention
1427 && tdep->struct_return == pcc_struct_return))
1428 return 0;
1429
1430 return (len == 1 || len == 2 || len == 4 || len == 8);
1431}
1432
1433/* Determine, for architecture GDBARCH, how a return value of TYPE
1434 should be returned. If it is supposed to be returned in registers,
1435 and READBUF is non-zero, read the appropriate value from REGCACHE,
1436 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1437 from WRITEBUF into REGCACHE. */
1438
1439static enum return_value_convention
1440i386_return_value (struct gdbarch *gdbarch, struct type *type,
1441 struct regcache *regcache, void *readbuf,
1442 const void *writebuf)
1443{
1444 enum type_code code = TYPE_CODE (type);
1445
1446 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
1447 && !i386_reg_struct_return_p (gdbarch, type))
31db7b6c
MK
1448 {
1449 /* The System V ABI says that:
1450
1451 "A function that returns a structure or union also sets %eax
1452 to the value of the original address of the caller's area
1453 before it returns. Thus when the caller receives control
1454 again, the address of the returned object resides in register
1455 %eax and can be used to access the object."
1456
1457 So the ABI guarantees that we can always find the return
1458 value just after the function has returned. */
1459
1460 if (readbuf)
1461 {
1462 ULONGEST addr;
1463
1464 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1465 read_memory (addr, readbuf, TYPE_LENGTH (type));
1466 }
1467
1468 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1469 }
c5e656c1
MK
1470
1471 /* This special case is for structures consisting of a single
1472 `float' or `double' member. These structures are returned in
1473 %st(0). For these structures, we call ourselves recursively,
1474 changing TYPE into the type of the first member of the structure.
1475 Since that should work for all structures that have only one
1476 member, we don't bother to check the member's type here. */
1477 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1478 {
1479 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1480 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1481 }
1482
1483 if (readbuf)
1484 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1485 if (writebuf)
1486 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 1487
c5e656c1 1488 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
1489}
1490\f
1491
d7a0d72c
MK
1492/* Return the GDB type object for the "standard" data type of data in
1493 register REGNUM. Perhaps %esi and %edi should go here, but
1494 potentially they could be used for things other than address. */
1495
3a1e71e3 1496static struct type *
4e259f09 1497i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 1498{
acd5c798
MK
1499 if (regnum == I386_EIP_REGNUM
1500 || regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
d7a0d72c
MK
1501 return lookup_pointer_type (builtin_type_void);
1502
23a34459 1503 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1504 return builtin_type_i387_ext;
d7a0d72c 1505
5716833c 1506 if (i386_sse_regnum_p (gdbarch, regnum))
3139facc 1507 return builtin_type_vec128i;
d7a0d72c 1508
5716833c 1509 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740
AC
1510 return builtin_type_vec64i;
1511
d7a0d72c
MK
1512 return builtin_type_int;
1513}
1514
28fc6740 1515/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 1516 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
1517
1518static int
c86c27af 1519i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 1520{
5716833c
MK
1521 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1522 int mmxreg, fpreg;
28fc6740
AC
1523 ULONGEST fstat;
1524 int tos;
c86c27af 1525
5716833c
MK
1526 /* Define I387_ST0_REGNUM such that we use the proper definitions
1527 for REGCACHE's architecture. */
1528#define I387_ST0_REGNUM tdep->st0_regnum
1529
1530 mmxreg = regnum - tdep->mm0_regnum;
1531 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
28fc6740 1532 tos = (fstat >> 11) & 0x7;
5716833c
MK
1533 fpreg = (mmxreg + tos) % 8;
1534
1535 return (I387_ST0_REGNUM + fpreg);
c86c27af 1536
5716833c 1537#undef I387_ST0_REGNUM
28fc6740
AC
1538}
1539
1540static void
1541i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1542 int regnum, void *buf)
1543{
5716833c 1544 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1545 {
d9d9c31f 1546 char mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1547 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1548
28fc6740 1549 /* Extract (always little endian). */
c86c27af 1550 regcache_raw_read (regcache, fpnum, mmx_buf);
f837910f 1551 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
28fc6740
AC
1552 }
1553 else
1554 regcache_raw_read (regcache, regnum, buf);
1555}
1556
1557static void
1558i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1559 int regnum, const void *buf)
1560{
5716833c 1561 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1562 {
d9d9c31f 1563 char mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1564 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1565
28fc6740
AC
1566 /* Read ... */
1567 regcache_raw_read (regcache, fpnum, mmx_buf);
1568 /* ... Modify ... (always little endian). */
f837910f 1569 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
28fc6740
AC
1570 /* ... Write. */
1571 regcache_raw_write (regcache, fpnum, mmx_buf);
1572 }
1573 else
1574 regcache_raw_write (regcache, regnum, buf);
1575}
ff2e87ac
AC
1576\f
1577
ff2e87ac
AC
1578/* Return the register number of the register allocated by GCC after
1579 REGNUM, or -1 if there is no such register. */
1580
1581static int
1582i386_next_regnum (int regnum)
1583{
1584 /* GCC allocates the registers in the order:
1585
1586 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1587
1588 Since storing a variable in %esp doesn't make any sense we return
1589 -1 for %ebp and for %esp itself. */
1590 static int next_regnum[] =
1591 {
1592 I386_EDX_REGNUM, /* Slot for %eax. */
1593 I386_EBX_REGNUM, /* Slot for %ecx. */
1594 I386_ECX_REGNUM, /* Slot for %edx. */
1595 I386_ESI_REGNUM, /* Slot for %ebx. */
1596 -1, -1, /* Slots for %esp and %ebp. */
1597 I386_EDI_REGNUM, /* Slot for %esi. */
1598 I386_EBP_REGNUM /* Slot for %edi. */
1599 };
1600
de5b9bb9 1601 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 1602 return next_regnum[regnum];
28fc6740 1603
ff2e87ac
AC
1604 return -1;
1605}
1606
1607/* Return nonzero if a value of type TYPE stored in register REGNUM
1608 needs any special handling. */
d7a0d72c 1609
3a1e71e3 1610static int
ff2e87ac 1611i386_convert_register_p (int regnum, struct type *type)
d7a0d72c 1612{
de5b9bb9
MK
1613 int len = TYPE_LENGTH (type);
1614
ff2e87ac
AC
1615 /* Values may be spread across multiple registers. Most debugging
1616 formats aren't expressive enough to specify the locations, so
1617 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
1618 have a length that is a multiple of the word size, since GCC
1619 doesn't seem to put any other types into registers. */
1620 if (len > 4 && len % 4 == 0)
1621 {
1622 int last_regnum = regnum;
1623
1624 while (len > 4)
1625 {
1626 last_regnum = i386_next_regnum (last_regnum);
1627 len -= 4;
1628 }
1629
1630 if (last_regnum != -1)
1631 return 1;
1632 }
ff2e87ac 1633
23a34459 1634 return i386_fp_regnum_p (regnum);
d7a0d72c
MK
1635}
1636
ff2e87ac
AC
1637/* Read a value of type TYPE from register REGNUM in frame FRAME, and
1638 return its contents in TO. */
ac27f131 1639
3a1e71e3 1640static void
ff2e87ac
AC
1641i386_register_to_value (struct frame_info *frame, int regnum,
1642 struct type *type, void *to)
ac27f131 1643{
de5b9bb9
MK
1644 int len = TYPE_LENGTH (type);
1645 char *buf = to;
1646
ff2e87ac
AC
1647 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1648 available in FRAME (i.e. if it wasn't saved)? */
3d261580 1649
ff2e87ac 1650 if (i386_fp_regnum_p (regnum))
8d7f6b4a 1651 {
d532c08f
MK
1652 i387_register_to_value (frame, regnum, type, to);
1653 return;
8d7f6b4a 1654 }
ff2e87ac 1655
fd35795f 1656 /* Read a value spread across multiple registers. */
de5b9bb9
MK
1657
1658 gdb_assert (len > 4 && len % 4 == 0);
3d261580 1659
de5b9bb9
MK
1660 while (len > 0)
1661 {
1662 gdb_assert (regnum != -1);
1663 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1664
f837910f 1665 get_frame_register (frame, regnum, buf);
de5b9bb9
MK
1666 regnum = i386_next_regnum (regnum);
1667 len -= 4;
1668 buf += 4;
1669 }
ac27f131
MK
1670}
1671
ff2e87ac
AC
1672/* Write the contents FROM of a value of type TYPE into register
1673 REGNUM in frame FRAME. */
ac27f131 1674
3a1e71e3 1675static void
ff2e87ac
AC
1676i386_value_to_register (struct frame_info *frame, int regnum,
1677 struct type *type, const void *from)
ac27f131 1678{
de5b9bb9
MK
1679 int len = TYPE_LENGTH (type);
1680 const char *buf = from;
1681
ff2e87ac 1682 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1683 {
d532c08f
MK
1684 i387_value_to_register (frame, regnum, type, from);
1685 return;
1686 }
3d261580 1687
fd35795f 1688 /* Write a value spread across multiple registers. */
de5b9bb9
MK
1689
1690 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 1691
de5b9bb9
MK
1692 while (len > 0)
1693 {
1694 gdb_assert (regnum != -1);
1695 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1696
de5b9bb9
MK
1697 put_frame_register (frame, regnum, buf);
1698 regnum = i386_next_regnum (regnum);
1699 len -= 4;
1700 buf += 4;
1701 }
ac27f131 1702}
ff2e87ac 1703\f
7fdafb5a
MK
1704/* Supply register REGNUM from the buffer specified by GREGS and LEN
1705 in the general-purpose register set REGSET to register cache
1706 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 1707
20187ed5 1708void
473f17b0
MK
1709i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1710 int regnum, const void *gregs, size_t len)
1711{
9ea75c57 1712 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0
MK
1713 const char *regs = gregs;
1714 int i;
1715
1716 gdb_assert (len == tdep->sizeof_gregset);
1717
1718 for (i = 0; i < tdep->gregset_num_regs; i++)
1719 {
1720 if ((regnum == i || regnum == -1)
1721 && tdep->gregset_reg_offset[i] != -1)
1722 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1723 }
1724}
1725
7fdafb5a
MK
1726/* Collect register REGNUM from the register cache REGCACHE and store
1727 it in the buffer specified by GREGS and LEN as described by the
1728 general-purpose register set REGSET. If REGNUM is -1, do this for
1729 all registers in REGSET. */
1730
1731void
1732i386_collect_gregset (const struct regset *regset,
1733 const struct regcache *regcache,
1734 int regnum, void *gregs, size_t len)
1735{
1736 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1737 char *regs = gregs;
1738 int i;
1739
1740 gdb_assert (len == tdep->sizeof_gregset);
1741
1742 for (i = 0; i < tdep->gregset_num_regs; i++)
1743 {
1744 if ((regnum == i || regnum == -1)
1745 && tdep->gregset_reg_offset[i] != -1)
1746 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1747 }
1748}
1749
1750/* Supply register REGNUM from the buffer specified by FPREGS and LEN
1751 in the floating-point register set REGSET to register cache
1752 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
1753
1754static void
1755i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1756 int regnum, const void *fpregs, size_t len)
1757{
9ea75c57 1758 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 1759
66a72d25
MK
1760 if (len == I387_SIZEOF_FXSAVE)
1761 {
1762 i387_supply_fxsave (regcache, regnum, fpregs);
1763 return;
1764 }
1765
473f17b0
MK
1766 gdb_assert (len == tdep->sizeof_fpregset);
1767 i387_supply_fsave (regcache, regnum, fpregs);
1768}
8446b36a 1769
2f305df1
MK
1770/* Collect register REGNUM from the register cache REGCACHE and store
1771 it in the buffer specified by FPREGS and LEN as described by the
1772 floating-point register set REGSET. If REGNUM is -1, do this for
1773 all registers in REGSET. */
7fdafb5a
MK
1774
1775static void
1776i386_collect_fpregset (const struct regset *regset,
1777 const struct regcache *regcache,
1778 int regnum, void *fpregs, size_t len)
1779{
1780 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1781
1782 if (len == I387_SIZEOF_FXSAVE)
1783 {
1784 i387_collect_fxsave (regcache, regnum, fpregs);
1785 return;
1786 }
1787
1788 gdb_assert (len == tdep->sizeof_fpregset);
1789 i387_collect_fsave (regcache, regnum, fpregs);
1790}
1791
8446b36a
MK
1792/* Return the appropriate register set for the core section identified
1793 by SECT_NAME and SECT_SIZE. */
1794
1795const struct regset *
1796i386_regset_from_core_section (struct gdbarch *gdbarch,
1797 const char *sect_name, size_t sect_size)
1798{
1799 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1800
1801 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
1802 {
1803 if (tdep->gregset == NULL)
7fdafb5a
MK
1804 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
1805 i386_collect_gregset);
8446b36a
MK
1806 return tdep->gregset;
1807 }
1808
66a72d25
MK
1809 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1810 || (strcmp (sect_name, ".reg-xfp") == 0
1811 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
1812 {
1813 if (tdep->fpregset == NULL)
7fdafb5a
MK
1814 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
1815 i386_collect_fpregset);
8446b36a
MK
1816 return tdep->fpregset;
1817 }
1818
1819 return NULL;
1820}
473f17b0 1821\f
fc338970 1822
c906108c 1823#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1824/* SunPRO encodes the static variables. This is not related to C++
1825 mangling, it is done for C too. */
c906108c
SS
1826
1827char *
fba45db2 1828sunpro_static_transform_name (char *name)
c906108c
SS
1829{
1830 char *p;
1831 if (IS_STATIC_TRANSFORM_NAME (name))
1832 {
fc338970
MK
1833 /* For file-local statics there will be a period, a bunch of
1834 junk (the contents of which match a string given in the
c5aa993b
JM
1835 N_OPT), a period and the name. For function-local statics
1836 there will be a bunch of junk (which seems to change the
1837 second character from 'A' to 'B'), a period, the name of the
1838 function, and the name. So just skip everything before the
1839 last period. */
c906108c
SS
1840 p = strrchr (name, '.');
1841 if (p != NULL)
1842 name = p + 1;
1843 }
1844 return name;
1845}
1846#endif /* STATIC_TRANSFORM_NAME */
fc338970 1847\f
c906108c 1848
fc338970 1849/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1850
1851CORE_ADDR
1cce71eb 1852i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1853{
fc338970 1854 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 1855 {
c5aa993b 1856 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 1857 struct minimal_symbol *indsym =
fc338970 1858 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 1859 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 1860
c5aa993b 1861 if (symname)
c906108c 1862 {
c5aa993b
JM
1863 if (strncmp (symname, "__imp_", 6) == 0
1864 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
1865 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1866 }
1867 }
fc338970 1868 return 0; /* Not a trampoline. */
c906108c 1869}
fc338970
MK
1870\f
1871
377d9ebd 1872/* Return whether the frame preceding NEXT_FRAME corresponds to a
911bc6ee 1873 sigtramp routine. */
8201327c
MK
1874
1875static int
911bc6ee 1876i386_sigtramp_p (struct frame_info *next_frame)
8201327c 1877{
911bc6ee
MK
1878 CORE_ADDR pc = frame_pc_unwind (next_frame);
1879 char *name;
1880
1881 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
1882 return (name && strcmp ("_sigtramp", name) == 0);
1883}
1884\f
1885
fc338970
MK
1886/* We have two flavours of disassembly. The machinery on this page
1887 deals with switching between those. */
c906108c
SS
1888
1889static int
a89aa300 1890i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 1891{
5e3397bb
MK
1892 gdb_assert (disassembly_flavor == att_flavor
1893 || disassembly_flavor == intel_flavor);
1894
1895 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1896 constified, cast to prevent a compiler warning. */
1897 info->disassembler_options = (char *) disassembly_flavor;
1898 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1899
1900 return print_insn_i386 (pc, info);
7a292a7a 1901}
fc338970 1902\f
3ce1502b 1903
8201327c
MK
1904/* There are a few i386 architecture variants that differ only
1905 slightly from the generic i386 target. For now, we don't give them
1906 their own source file, but include them here. As a consequence,
1907 they'll always be included. */
3ce1502b 1908
8201327c 1909/* System V Release 4 (SVR4). */
3ce1502b 1910
377d9ebd 1911/* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
911bc6ee
MK
1912 sigtramp routine. */
1913
8201327c 1914static int
911bc6ee 1915i386_svr4_sigtramp_p (struct frame_info *next_frame)
d2a7c97a 1916{
911bc6ee
MK
1917 CORE_ADDR pc = frame_pc_unwind (next_frame);
1918 char *name;
1919
acd5c798
MK
1920 /* UnixWare uses _sigacthandler. The origin of the other symbols is
1921 currently unknown. */
911bc6ee 1922 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
1923 return (name && (strcmp ("_sigreturn", name) == 0
1924 || strcmp ("_sigacthandler", name) == 0
1925 || strcmp ("sigvechandler", name) == 0));
1926}
d2a7c97a 1927
acd5c798
MK
1928/* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
1929 routine, return the address of the associated sigcontext (ucontext)
1930 structure. */
3ce1502b 1931
3a1e71e3 1932static CORE_ADDR
acd5c798 1933i386_svr4_sigcontext_addr (struct frame_info *next_frame)
8201327c 1934{
acd5c798
MK
1935 char buf[4];
1936 CORE_ADDR sp;
3ce1502b 1937
acd5c798
MK
1938 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1939 sp = extract_unsigned_integer (buf, 4);
21d0e8a4 1940
acd5c798 1941 return read_memory_unsigned_integer (sp + 8, 4);
8201327c
MK
1942}
1943\f
3ce1502b 1944
8201327c 1945/* Generic ELF. */
d2a7c97a 1946
8201327c
MK
1947void
1948i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1949{
c4fc7f1b
MK
1950 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
1951 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 1952}
3ce1502b 1953
8201327c 1954/* System V Release 4 (SVR4). */
3ce1502b 1955
8201327c
MK
1956void
1957i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1958{
1959 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1960
8201327c
MK
1961 /* System V Release 4 uses ELF. */
1962 i386_elf_init_abi (info, gdbarch);
3ce1502b 1963
dfe01d39 1964 /* System V Release 4 has shared libraries. */
dfe01d39
MK
1965 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1966
911bc6ee 1967 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 1968 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
1969 tdep->sc_pc_offset = 36 + 14 * 4;
1970 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 1971
8201327c 1972 tdep->jb_pc_offset = 20;
3ce1502b
MK
1973}
1974
8201327c 1975/* DJGPP. */
3ce1502b 1976
3a1e71e3 1977static void
8201327c 1978i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1979{
8201327c 1980 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1981
911bc6ee
MK
1982 /* DJGPP doesn't have any special frames for signal handlers. */
1983 tdep->sigtramp_p = NULL;
3ce1502b 1984
8201327c 1985 tdep->jb_pc_offset = 36;
3ce1502b
MK
1986}
1987
8201327c 1988/* NetWare. */
3ce1502b 1989
3a1e71e3 1990static void
8201327c 1991i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1992{
8201327c 1993 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1994
8201327c 1995 tdep->jb_pc_offset = 24;
d2a7c97a 1996}
8201327c 1997\f
2acceee2 1998
38c968cf
AC
1999/* i386 register groups. In addition to the normal groups, add "mmx"
2000 and "sse". */
2001
2002static struct reggroup *i386_sse_reggroup;
2003static struct reggroup *i386_mmx_reggroup;
2004
2005static void
2006i386_init_reggroups (void)
2007{
2008 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2009 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2010}
2011
2012static void
2013i386_add_reggroups (struct gdbarch *gdbarch)
2014{
2015 reggroup_add (gdbarch, i386_sse_reggroup);
2016 reggroup_add (gdbarch, i386_mmx_reggroup);
2017 reggroup_add (gdbarch, general_reggroup);
2018 reggroup_add (gdbarch, float_reggroup);
2019 reggroup_add (gdbarch, all_reggroup);
2020 reggroup_add (gdbarch, save_reggroup);
2021 reggroup_add (gdbarch, restore_reggroup);
2022 reggroup_add (gdbarch, vector_reggroup);
2023 reggroup_add (gdbarch, system_reggroup);
2024}
2025
2026int
2027i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2028 struct reggroup *group)
2029{
5716833c
MK
2030 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2031 || i386_mxcsr_regnum_p (gdbarch, regnum));
38c968cf
AC
2032 int fp_regnum_p = (i386_fp_regnum_p (regnum)
2033 || i386_fpc_regnum_p (regnum));
5716833c 2034 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
acd5c798 2035
38c968cf
AC
2036 if (group == i386_mmx_reggroup)
2037 return mmx_regnum_p;
2038 if (group == i386_sse_reggroup)
2039 return sse_regnum_p;
2040 if (group == vector_reggroup)
2041 return (mmx_regnum_p || sse_regnum_p);
2042 if (group == float_reggroup)
2043 return fp_regnum_p;
2044 if (group == general_reggroup)
2045 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
acd5c798 2046
38c968cf
AC
2047 return default_register_reggroup_p (gdbarch, regnum, group);
2048}
38c968cf 2049\f
acd5c798 2050
f837910f
MK
2051/* Get the ARGIth function argument for the current function. */
2052
42c466d7 2053static CORE_ADDR
143985b7
AF
2054i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2055 struct type *type)
2056{
f837910f
MK
2057 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2058 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
143985b7
AF
2059}
2060
2061\f
3a1e71e3 2062static struct gdbarch *
a62cc96e
AC
2063i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2064{
cd3c07fc 2065 struct gdbarch_tdep *tdep;
a62cc96e
AC
2066 struct gdbarch *gdbarch;
2067
4be87837
DJ
2068 /* If there is already a candidate, use it. */
2069 arches = gdbarch_list_lookup_by_info (arches, &info);
2070 if (arches != NULL)
2071 return arches->gdbarch;
a62cc96e
AC
2072
2073 /* Allocate space for the new architecture. */
2074 tdep = XMALLOC (struct gdbarch_tdep);
2075 gdbarch = gdbarch_alloc (&info, tdep);
2076
473f17b0
MK
2077 /* General-purpose registers. */
2078 tdep->gregset = NULL;
2079 tdep->gregset_reg_offset = NULL;
2080 tdep->gregset_num_regs = I386_NUM_GREGS;
2081 tdep->sizeof_gregset = 0;
2082
2083 /* Floating-point registers. */
2084 tdep->fpregset = NULL;
2085 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2086
5716833c 2087 /* The default settings include the FPU registers, the MMX registers
fd35795f 2088 and the SSE registers. This can be overridden for a specific ABI
5716833c
MK
2089 by adjusting the members `st0_regnum', `mm0_regnum' and
2090 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2091 will show up in the output of "info all-registers". Ideally we
2092 should try to autodetect whether they are available, such that we
2093 can prevent "info all-registers" from displaying registers that
2094 aren't available.
2095
2096 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2097 [the SSE registers] always (even when they don't exist) or never
2098 showing them to the user (even when they do exist), I prefer the
2099 former over the latter. */
2100
2101 tdep->st0_regnum = I386_ST0_REGNUM;
2102
2103 /* The MMX registers are implemented as pseudo-registers. Put off
fd35795f 2104 calculating the register number for %mm0 until we know the number
5716833c
MK
2105 of raw registers. */
2106 tdep->mm0_regnum = 0;
2107
2108 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
49ed40de 2109 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
d2a7c97a 2110
8201327c
MK
2111 tdep->jb_pc_offset = -1;
2112 tdep->struct_return = pcc_struct_return;
8201327c
MK
2113 tdep->sigtramp_start = 0;
2114 tdep->sigtramp_end = 0;
911bc6ee 2115 tdep->sigtramp_p = i386_sigtramp_p;
21d0e8a4 2116 tdep->sigcontext_addr = NULL;
a3386186 2117 tdep->sc_reg_offset = NULL;
8201327c 2118 tdep->sc_pc_offset = -1;
21d0e8a4 2119 tdep->sc_sp_offset = -1;
8201327c 2120
896fb97d
MK
2121 /* The format used for `long double' on almost all i386 targets is
2122 the i387 extended floating-point format. In fact, of all targets
2123 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2124 on having a `long double' that's not `long' at all. */
2125 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
21d0e8a4 2126
66da5fd8 2127 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
2128 bits, a `long double' actually takes up 96, probably to enforce
2129 alignment. */
2130 set_gdbarch_long_double_bit (gdbarch, 96);
2131
49ed40de
KB
2132 /* The default ABI includes general-purpose registers,
2133 floating-point registers, and the SSE registers. */
2134 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
acd5c798
MK
2135 set_gdbarch_register_name (gdbarch, i386_register_name);
2136 set_gdbarch_register_type (gdbarch, i386_register_type);
21d0e8a4 2137
acd5c798
MK
2138 /* Register numbers of various important registers. */
2139 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2140 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2141 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2142 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
356a6b3e 2143
c4fc7f1b
MK
2144 /* NOTE: kettenis/20040418: GCC does have two possible register
2145 numbering schemes on the i386: dbx and SVR4. These schemes
2146 differ in how they number %ebp, %esp, %eflags, and the
fd35795f 2147 floating-point registers, and are implemented by the arrays
c4fc7f1b
MK
2148 dbx_register_map[] and svr4_dbx_register_map in
2149 gcc/config/i386.c. GCC also defines a third numbering scheme in
2150 gcc/config/i386.c, which it designates as the "default" register
2151 map used in 64bit mode. This last register numbering scheme is
d4dc1a91 2152 implemented in dbx64_register_map, and is used for AMD64; see
c4fc7f1b
MK
2153 amd64-tdep.c.
2154
2155 Currently, each GCC i386 target always uses the same register
2156 numbering scheme across all its supported debugging formats
2157 i.e. SDB (COFF), stabs and DWARF 2. This is because
2158 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2159 DBX_REGISTER_NUMBER macro which is defined by each target's
2160 respective config header in a manner independent of the requested
2161 output debugging format.
2162
2163 This does not match the arrangement below, which presumes that
2164 the SDB and stabs numbering schemes differ from the DWARF and
2165 DWARF 2 ones. The reason for this arrangement is that it is
2166 likely to get the numbering scheme for the target's
2167 default/native debug format right. For targets where GCC is the
2168 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2169 targets where the native toolchain uses a different numbering
2170 scheme for a particular debug format (stabs-in-ELF on Solaris)
d4dc1a91
BF
2171 the defaults below will have to be overridden, like
2172 i386_elf_init_abi() does. */
c4fc7f1b
MK
2173
2174 /* Use the dbx register numbering scheme for stabs and COFF. */
2175 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2176 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2177
2178 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2179 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2180 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
356a6b3e
MK
2181
2182 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
2183 be in use on any of the supported i386 targets. */
2184
61113f8b
MK
2185 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2186
8201327c 2187 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 2188
a62cc96e 2189 /* Call dummy code. */
acd5c798 2190 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
a62cc96e 2191
ff2e87ac
AC
2192 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2193 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2194 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
b6197528 2195
c5e656c1 2196 set_gdbarch_return_value (gdbarch, i386_return_value);
8201327c 2197
93924b6b
MK
2198 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2199
2200 /* Stack grows downward. */
2201 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2202
2203 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2204 set_gdbarch_decr_pc_after_break (gdbarch, 1);
42fdc8df 2205
42fdc8df 2206 set_gdbarch_frame_args_skip (gdbarch, 8);
8201327c 2207
28fc6740 2208 /* Wire in the MMX registers. */
0f751ff2 2209 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
28fc6740
AC
2210 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2211 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2212
5e3397bb
MK
2213 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2214
acd5c798 2215 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
acd5c798
MK
2216
2217 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2218
38c968cf
AC
2219 /* Add the i386 register groups. */
2220 i386_add_reggroups (gdbarch);
2221 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2222
143985b7
AF
2223 /* Helper for function argument information. */
2224 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2225
6405b0a6 2226 /* Hook in the DWARF CFI frame unwinder. */
336d1bba 2227 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
6405b0a6 2228
acd5c798 2229 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 2230
3ce1502b 2231 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2232 gdbarch_init_osabi (info, gdbarch);
3ce1502b 2233
336d1bba
AC
2234 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2235 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
acd5c798 2236
8446b36a
MK
2237 /* If we have a register mapping, enable the generic core file
2238 support, unless it has already been enabled. */
2239 if (tdep->gregset_reg_offset
2240 && !gdbarch_regset_from_core_section_p (gdbarch))
2241 set_gdbarch_regset_from_core_section (gdbarch,
2242 i386_regset_from_core_section);
2243
5716833c
MK
2244 /* Unless support for MMX has been disabled, make %mm0 the first
2245 pseudo-register. */
2246 if (tdep->mm0_regnum == 0)
2247 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2248
a62cc96e
AC
2249 return gdbarch;
2250}
2251
8201327c
MK
2252static enum gdb_osabi
2253i386_coff_osabi_sniffer (bfd *abfd)
2254{
762c5349
MK
2255 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2256 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
2257 return GDB_OSABI_GO32;
2258
2259 return GDB_OSABI_UNKNOWN;
2260}
2261
2262static enum gdb_osabi
2263i386_nlm_osabi_sniffer (bfd *abfd)
2264{
2265 return GDB_OSABI_NETWARE;
2266}
2267\f
2268
28e9e0f0
MK
2269/* Provide a prototype to silence -Wmissing-prototypes. */
2270void _initialize_i386_tdep (void);
2271
c906108c 2272void
fba45db2 2273_initialize_i386_tdep (void)
c906108c 2274{
a62cc96e
AC
2275 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2276
fc338970 2277 /* Add the variable that controls the disassembly flavor. */
917317f4
JM
2278 {
2279 struct cmd_list_element *new_cmd;
7a292a7a 2280
917317f4
JM
2281 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
2282 valid_flavors,
1ed2a135 2283 &disassembly_flavor,
fc338970
MK
2284 "\
2285Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
c906108c 2286and the default value is \"att\".",
917317f4 2287 &setlist);
cb1a6d5f 2288 deprecated_add_show_from_set (new_cmd, &showlist);
917317f4 2289 }
8201327c
MK
2290
2291 /* Add the variable that controls the convention for returning
2292 structs. */
2293 {
2294 struct cmd_list_element *new_cmd;
2295
2296 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
5e3397bb 2297 valid_conventions,
8201327c
MK
2298 &struct_convention, "\
2299Set the convention for returning small structs, valid values \
2300are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
2301 &setlist);
cb1a6d5f 2302 deprecated_add_show_from_set (new_cmd, &showlist);
8201327c
MK
2303 }
2304
2305 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2306 i386_coff_osabi_sniffer);
2307 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
2308 i386_nlm_osabi_sniffer);
2309
05816f70 2310 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 2311 i386_svr4_init_abi);
05816f70 2312 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 2313 i386_go32_init_abi);
05816f70 2314 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
8201327c 2315 i386_nw_init_abi);
38c968cf
AC
2316
2317 /* Initialize the i386 specific register groups. */
2318 i386_init_reggroups ();
c906108c 2319}