]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elfxx-mips.c
ppc64_elf_edit_opd revamp
[thirdparty/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
4b95cf5c 2 Copyright (C) 1993-2014 Free Software Foundation, Inc.
b49e97c9
TS
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
ae9a127f 11 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 12
ae9a127f
NC
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
cd123cb7 15 the Free Software Foundation; either version 3 of the License, or
ae9a127f 16 (at your option) any later version.
b49e97c9 17
ae9a127f
NC
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
b49e97c9 22
ae9a127f
NC
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
cd123cb7
NC
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
b49e97c9
TS
28
29/* This file handles functionality common to the different MIPS ABI's. */
30
b49e97c9 31#include "sysdep.h"
3db64b00 32#include "bfd.h"
b49e97c9 33#include "libbfd.h"
64543e1a 34#include "libiberty.h"
b49e97c9
TS
35#include "elf-bfd.h"
36#include "elfxx-mips.h"
37#include "elf/mips.h"
0a44bf69 38#include "elf-vxworks.h"
b49e97c9
TS
39
40/* Get the ECOFF swapping routines. */
41#include "coff/sym.h"
42#include "coff/symconst.h"
43#include "coff/ecoff.h"
44#include "coff/mips.h"
45
b15e6682
AO
46#include "hashtab.h"
47
9ab066b4
RS
48/* Types of TLS GOT entry. */
49enum mips_got_tls_type {
50 GOT_TLS_NONE,
51 GOT_TLS_GD,
52 GOT_TLS_LDM,
53 GOT_TLS_IE
54};
55
ead49a57 56/* This structure is used to hold information about one GOT entry.
3dff0dd1
RS
57 There are four types of entry:
58
59 (1) an absolute address
60 requires: abfd == NULL
61 fields: d.address
62
63 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
64 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
65 fields: abfd, symndx, d.addend, tls_type
66
67 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
68 requires: abfd != NULL, symndx == -1
69 fields: d.h, tls_type
70
71 (4) a TLS LDM slot
72 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
73 fields: none; there's only one of these per GOT. */
b15e6682
AO
74struct mips_got_entry
75{
3dff0dd1 76 /* One input bfd that needs the GOT entry. */
b15e6682 77 bfd *abfd;
f4416af6
AO
78 /* The index of the symbol, as stored in the relocation r_info, if
79 we have a local symbol; -1 otherwise. */
80 long symndx;
81 union
82 {
83 /* If abfd == NULL, an address that must be stored in the got. */
84 bfd_vma address;
85 /* If abfd != NULL && symndx != -1, the addend of the relocation
86 that should be added to the symbol value. */
87 bfd_vma addend;
88 /* If abfd != NULL && symndx == -1, the hash table entry
3dff0dd1 89 corresponding to a symbol in the GOT. The symbol's entry
020d7251
RS
90 is in the local area if h->global_got_area is GGA_NONE,
91 otherwise it is in the global area. */
f4416af6
AO
92 struct mips_elf_link_hash_entry *h;
93 } d;
0f20cc35 94
9ab066b4
RS
95 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
96 symbol entry with r_symndx == 0. */
0f20cc35
DJ
97 unsigned char tls_type;
98
9ab066b4
RS
99 /* True if we have filled in the GOT contents for a TLS entry,
100 and created the associated relocations. */
101 unsigned char tls_initialized;
102
b15e6682 103 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
104 corresponding to this symbol+addend. If it's a global symbol
105 whose offset is yet to be decided, it's going to be -1. */
106 long gotidx;
b15e6682
AO
107};
108
13db6b44
RS
109/* This structure represents a GOT page reference from an input bfd.
110 Each instance represents a symbol + ADDEND, where the representation
111 of the symbol depends on whether it is local to the input bfd.
112 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
113 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
114
115 Page references with SYMNDX >= 0 always become page references
116 in the output. Page references with SYMNDX < 0 only become page
117 references if the symbol binds locally; in other cases, the page
118 reference decays to a global GOT reference. */
119struct mips_got_page_ref
120{
121 long symndx;
122 union
123 {
124 struct mips_elf_link_hash_entry *h;
125 bfd *abfd;
126 } u;
127 bfd_vma addend;
128};
129
c224138d
RS
130/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
131 The structures form a non-overlapping list that is sorted by increasing
132 MIN_ADDEND. */
133struct mips_got_page_range
134{
135 struct mips_got_page_range *next;
136 bfd_signed_vma min_addend;
137 bfd_signed_vma max_addend;
138};
139
140/* This structure describes the range of addends that are applied to page
13db6b44 141 relocations against a given section. */
c224138d
RS
142struct mips_got_page_entry
143{
13db6b44
RS
144 /* The section that these entries are based on. */
145 asection *sec;
c224138d
RS
146 /* The ranges for this page entry. */
147 struct mips_got_page_range *ranges;
148 /* The maximum number of page entries needed for RANGES. */
149 bfd_vma num_pages;
150};
151
f0abc2a1 152/* This structure is used to hold .got information when linking. */
b49e97c9
TS
153
154struct mips_got_info
155{
b49e97c9
TS
156 /* The number of global .got entries. */
157 unsigned int global_gotno;
23cc69b6
RS
158 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
159 unsigned int reloc_only_gotno;
0f20cc35
DJ
160 /* The number of .got slots used for TLS. */
161 unsigned int tls_gotno;
162 /* The first unused TLS .got entry. Used only during
163 mips_elf_initialize_tls_index. */
164 unsigned int tls_assigned_gotno;
c224138d 165 /* The number of local .got entries, eventually including page entries. */
b49e97c9 166 unsigned int local_gotno;
c224138d
RS
167 /* The maximum number of page entries needed. */
168 unsigned int page_gotno;
ab361d49
RS
169 /* The number of relocations needed for the GOT entries. */
170 unsigned int relocs;
cb22ccf4
KCY
171 /* The first unused local .got entry. */
172 unsigned int assigned_low_gotno;
173 /* The last unused local .got entry. */
174 unsigned int assigned_high_gotno;
b15e6682
AO
175 /* A hash table holding members of the got. */
176 struct htab *got_entries;
13db6b44
RS
177 /* A hash table holding mips_got_page_ref structures. */
178 struct htab *got_page_refs;
c224138d
RS
179 /* A hash table of mips_got_page_entry structures. */
180 struct htab *got_page_entries;
f4416af6
AO
181 /* In multi-got links, a pointer to the next got (err, rather, most
182 of the time, it points to the previous got). */
183 struct mips_got_info *next;
184};
185
d7206569 186/* Structure passed when merging bfds' gots. */
f4416af6
AO
187
188struct mips_elf_got_per_bfd_arg
189{
f4416af6
AO
190 /* The output bfd. */
191 bfd *obfd;
192 /* The link information. */
193 struct bfd_link_info *info;
194 /* A pointer to the primary got, i.e., the one that's going to get
195 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
196 DT_MIPS_GOTSYM. */
197 struct mips_got_info *primary;
198 /* A non-primary got we're trying to merge with other input bfd's
199 gots. */
200 struct mips_got_info *current;
201 /* The maximum number of got entries that can be addressed with a
202 16-bit offset. */
203 unsigned int max_count;
c224138d
RS
204 /* The maximum number of page entries needed by each got. */
205 unsigned int max_pages;
0f20cc35
DJ
206 /* The total number of global entries which will live in the
207 primary got and be automatically relocated. This includes
208 those not referenced by the primary GOT but included in
209 the "master" GOT. */
210 unsigned int global_count;
f4416af6
AO
211};
212
ab361d49
RS
213/* A structure used to pass information to htab_traverse callbacks
214 when laying out the GOT. */
f4416af6 215
ab361d49 216struct mips_elf_traverse_got_arg
f4416af6 217{
ab361d49 218 struct bfd_link_info *info;
f4416af6
AO
219 struct mips_got_info *g;
220 int value;
0f20cc35
DJ
221};
222
f0abc2a1
AM
223struct _mips_elf_section_data
224{
225 struct bfd_elf_section_data elf;
226 union
227 {
f0abc2a1
AM
228 bfd_byte *tdata;
229 } u;
230};
231
232#define mips_elf_section_data(sec) \
68bfbfcc 233 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 234
d5eaccd7
RS
235#define is_mips_elf(bfd) \
236 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
237 && elf_tdata (bfd) != NULL \
4dfe6ac6 238 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 239
634835ae
RS
240/* The ABI says that every symbol used by dynamic relocations must have
241 a global GOT entry. Among other things, this provides the dynamic
242 linker with a free, directly-indexed cache. The GOT can therefore
243 contain symbols that are not referenced by GOT relocations themselves
244 (in other words, it may have symbols that are not referenced by things
245 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
246
247 GOT relocations are less likely to overflow if we put the associated
248 GOT entries towards the beginning. We therefore divide the global
249 GOT entries into two areas: "normal" and "reloc-only". Entries in
250 the first area can be used for both dynamic relocations and GP-relative
251 accesses, while those in the "reloc-only" area are for dynamic
252 relocations only.
253
254 These GGA_* ("Global GOT Area") values are organised so that lower
255 values are more general than higher values. Also, non-GGA_NONE
256 values are ordered by the position of the area in the GOT. */
257#define GGA_NORMAL 0
258#define GGA_RELOC_ONLY 1
259#define GGA_NONE 2
260
861fb55a
DJ
261/* Information about a non-PIC interface to a PIC function. There are
262 two ways of creating these interfaces. The first is to add:
263
264 lui $25,%hi(func)
265 addiu $25,$25,%lo(func)
266
267 immediately before a PIC function "func". The second is to add:
268
269 lui $25,%hi(func)
270 j func
271 addiu $25,$25,%lo(func)
272
273 to a separate trampoline section.
274
275 Stubs of the first kind go in a new section immediately before the
276 target function. Stubs of the second kind go in a single section
277 pointed to by the hash table's "strampoline" field. */
278struct mips_elf_la25_stub {
279 /* The generated section that contains this stub. */
280 asection *stub_section;
281
282 /* The offset of the stub from the start of STUB_SECTION. */
283 bfd_vma offset;
284
285 /* One symbol for the original function. Its location is available
286 in H->root.root.u.def. */
287 struct mips_elf_link_hash_entry *h;
288};
289
290/* Macros for populating a mips_elf_la25_stub. */
291
292#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
293#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
294#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
d21911ea
MR
295#define LA25_LUI_MICROMIPS(VAL) \
296 (0x41b90000 | (VAL)) /* lui t9,VAL */
297#define LA25_J_MICROMIPS(VAL) \
298 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
299#define LA25_ADDIU_MICROMIPS(VAL) \
300 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
861fb55a 301
b49e97c9
TS
302/* This structure is passed to mips_elf_sort_hash_table_f when sorting
303 the dynamic symbols. */
304
305struct mips_elf_hash_sort_data
306{
307 /* The symbol in the global GOT with the lowest dynamic symbol table
308 index. */
309 struct elf_link_hash_entry *low;
0f20cc35
DJ
310 /* The least dynamic symbol table index corresponding to a non-TLS
311 symbol with a GOT entry. */
b49e97c9 312 long min_got_dynindx;
f4416af6
AO
313 /* The greatest dynamic symbol table index corresponding to a symbol
314 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 315 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 316 long max_unref_got_dynindx;
b49e97c9
TS
317 /* The greatest dynamic symbol table index not corresponding to a
318 symbol without a GOT entry. */
319 long max_non_got_dynindx;
320};
321
1bbce132
MR
322/* We make up to two PLT entries if needed, one for standard MIPS code
323 and one for compressed code, either a MIPS16 or microMIPS one. We
324 keep a separate record of traditional lazy-binding stubs, for easier
325 processing. */
326
327struct plt_entry
328{
329 /* Traditional SVR4 stub offset, or -1 if none. */
330 bfd_vma stub_offset;
331
332 /* Standard PLT entry offset, or -1 if none. */
333 bfd_vma mips_offset;
334
335 /* Compressed PLT entry offset, or -1 if none. */
336 bfd_vma comp_offset;
337
338 /* The corresponding .got.plt index, or -1 if none. */
339 bfd_vma gotplt_index;
340
341 /* Whether we need a standard PLT entry. */
342 unsigned int need_mips : 1;
343
344 /* Whether we need a compressed PLT entry. */
345 unsigned int need_comp : 1;
346};
347
b49e97c9
TS
348/* The MIPS ELF linker needs additional information for each symbol in
349 the global hash table. */
350
351struct mips_elf_link_hash_entry
352{
353 struct elf_link_hash_entry root;
354
355 /* External symbol information. */
356 EXTR esym;
357
861fb55a
DJ
358 /* The la25 stub we have created for ths symbol, if any. */
359 struct mips_elf_la25_stub *la25_stub;
360
b49e97c9
TS
361 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
362 this symbol. */
363 unsigned int possibly_dynamic_relocs;
364
b49e97c9
TS
365 /* If there is a stub that 32 bit functions should use to call this
366 16 bit function, this points to the section containing the stub. */
367 asection *fn_stub;
368
b49e97c9
TS
369 /* If there is a stub that 16 bit functions should use to call this
370 32 bit function, this points to the section containing the stub. */
371 asection *call_stub;
372
373 /* This is like the call_stub field, but it is used if the function
374 being called returns a floating point value. */
375 asection *call_fp_stub;
7c5fcef7 376
634835ae
RS
377 /* The highest GGA_* value that satisfies all references to this symbol. */
378 unsigned int global_got_area : 2;
379
6ccf4795
RS
380 /* True if all GOT relocations against this symbol are for calls. This is
381 a looser condition than no_fn_stub below, because there may be other
382 non-call non-GOT relocations against the symbol. */
383 unsigned int got_only_for_calls : 1;
384
71782a75
RS
385 /* True if one of the relocations described by possibly_dynamic_relocs
386 is against a readonly section. */
387 unsigned int readonly_reloc : 1;
388
861fb55a
DJ
389 /* True if there is a relocation against this symbol that must be
390 resolved by the static linker (in other words, if the relocation
391 cannot possibly be made dynamic). */
392 unsigned int has_static_relocs : 1;
393
71782a75
RS
394 /* True if we must not create a .MIPS.stubs entry for this symbol.
395 This is set, for example, if there are relocations related to
396 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
397 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
398 unsigned int no_fn_stub : 1;
399
400 /* Whether we need the fn_stub; this is true if this symbol appears
401 in any relocs other than a 16 bit call. */
402 unsigned int need_fn_stub : 1;
403
861fb55a
DJ
404 /* True if this symbol is referenced by branch relocations from
405 any non-PIC input file. This is used to determine whether an
406 la25 stub is required. */
407 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
408
409 /* Does this symbol need a traditional MIPS lazy-binding stub
410 (as opposed to a PLT entry)? */
411 unsigned int needs_lazy_stub : 1;
1bbce132
MR
412
413 /* Does this symbol resolve to a PLT entry? */
414 unsigned int use_plt_entry : 1;
b49e97c9
TS
415};
416
417/* MIPS ELF linker hash table. */
418
419struct mips_elf_link_hash_table
420{
421 struct elf_link_hash_table root;
861fb55a 422
b49e97c9
TS
423 /* The number of .rtproc entries. */
424 bfd_size_type procedure_count;
861fb55a 425
b49e97c9
TS
426 /* The size of the .compact_rel section (if SGI_COMPAT). */
427 bfd_size_type compact_rel_size;
861fb55a 428
e6aea42d
MR
429 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
430 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
b34976b6 431 bfd_boolean use_rld_obj_head;
861fb55a 432
b4082c70
DD
433 /* The __rld_map or __rld_obj_head symbol. */
434 struct elf_link_hash_entry *rld_symbol;
861fb55a 435
b49e97c9 436 /* This is set if we see any mips16 stub sections. */
b34976b6 437 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
438
439 /* True if we can generate copy relocs and PLTs. */
440 bfd_boolean use_plts_and_copy_relocs;
441
833794fc
MR
442 /* True if we can only use 32-bit microMIPS instructions. */
443 bfd_boolean insn32;
444
0a44bf69
RS
445 /* True if we're generating code for VxWorks. */
446 bfd_boolean is_vxworks;
861fb55a 447
0e53d9da
AN
448 /* True if we already reported the small-data section overflow. */
449 bfd_boolean small_data_overflow_reported;
861fb55a 450
0a44bf69
RS
451 /* Shortcuts to some dynamic sections, or NULL if they are not
452 being used. */
453 asection *srelbss;
454 asection *sdynbss;
455 asection *srelplt;
456 asection *srelplt2;
457 asection *sgotplt;
458 asection *splt;
4e41d0d7 459 asection *sstubs;
a8028dd0 460 asection *sgot;
861fb55a 461
a8028dd0
RS
462 /* The master GOT information. */
463 struct mips_got_info *got_info;
861fb55a 464
d222d210
RS
465 /* The global symbol in the GOT with the lowest index in the dynamic
466 symbol table. */
467 struct elf_link_hash_entry *global_gotsym;
468
861fb55a 469 /* The size of the PLT header in bytes. */
0a44bf69 470 bfd_vma plt_header_size;
861fb55a 471
1bbce132
MR
472 /* The size of a standard PLT entry in bytes. */
473 bfd_vma plt_mips_entry_size;
474
475 /* The size of a compressed PLT entry in bytes. */
476 bfd_vma plt_comp_entry_size;
477
478 /* The offset of the next standard PLT entry to create. */
479 bfd_vma plt_mips_offset;
480
481 /* The offset of the next compressed PLT entry to create. */
482 bfd_vma plt_comp_offset;
483
484 /* The index of the next .got.plt entry to create. */
485 bfd_vma plt_got_index;
861fb55a 486
33bb52fb
RS
487 /* The number of functions that need a lazy-binding stub. */
488 bfd_vma lazy_stub_count;
861fb55a 489
5108fc1b
RS
490 /* The size of a function stub entry in bytes. */
491 bfd_vma function_stub_size;
861fb55a
DJ
492
493 /* The number of reserved entries at the beginning of the GOT. */
494 unsigned int reserved_gotno;
495
496 /* The section used for mips_elf_la25_stub trampolines.
497 See the comment above that structure for details. */
498 asection *strampoline;
499
500 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
501 pairs. */
502 htab_t la25_stubs;
503
504 /* A function FN (NAME, IS, OS) that creates a new input section
505 called NAME and links it to output section OS. If IS is nonnull,
506 the new section should go immediately before it, otherwise it
507 should go at the (current) beginning of OS.
508
509 The function returns the new section on success, otherwise it
510 returns null. */
511 asection *(*add_stub_section) (const char *, asection *, asection *);
13db6b44
RS
512
513 /* Small local sym cache. */
514 struct sym_cache sym_cache;
1bbce132
MR
515
516 /* Is the PLT header compressed? */
517 unsigned int plt_header_is_comp : 1;
861fb55a
DJ
518};
519
4dfe6ac6
NC
520/* Get the MIPS ELF linker hash table from a link_info structure. */
521
522#define mips_elf_hash_table(p) \
523 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
524 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
525
861fb55a 526/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
527struct mips_htab_traverse_info
528{
861fb55a
DJ
529 /* The usual link-wide information. */
530 struct bfd_link_info *info;
531 bfd *output_bfd;
532
533 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
534 bfd_boolean error;
b49e97c9
TS
535};
536
6ae68ba3
MR
537/* MIPS ELF private object data. */
538
539struct mips_elf_obj_tdata
540{
541 /* Generic ELF private object data. */
542 struct elf_obj_tdata root;
543
544 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
545 bfd *abi_fp_bfd;
ee227692 546
b60bf9be
CF
547 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
548 bfd *abi_msa_bfd;
549
351cdf24
MF
550 /* The abiflags for this object. */
551 Elf_Internal_ABIFlags_v0 abiflags;
552 bfd_boolean abiflags_valid;
553
ee227692
RS
554 /* The GOT requirements of input bfds. */
555 struct mips_got_info *got;
698600e4
AM
556
557 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
558 included directly in this one, but there's no point to wasting
559 the memory just for the infrequently called find_nearest_line. */
560 struct mips_elf_find_line *find_line_info;
561
562 /* An array of stub sections indexed by symbol number. */
563 asection **local_stubs;
564 asection **local_call_stubs;
565
566 /* The Irix 5 support uses two virtual sections, which represent
567 text/data symbols defined in dynamic objects. */
568 asymbol *elf_data_symbol;
569 asymbol *elf_text_symbol;
570 asection *elf_data_section;
571 asection *elf_text_section;
6ae68ba3
MR
572};
573
574/* Get MIPS ELF private object data from BFD's tdata. */
575
576#define mips_elf_tdata(bfd) \
577 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
578
0f20cc35
DJ
579#define TLS_RELOC_P(r_type) \
580 (r_type == R_MIPS_TLS_DTPMOD32 \
581 || r_type == R_MIPS_TLS_DTPMOD64 \
582 || r_type == R_MIPS_TLS_DTPREL32 \
583 || r_type == R_MIPS_TLS_DTPREL64 \
584 || r_type == R_MIPS_TLS_GD \
585 || r_type == R_MIPS_TLS_LDM \
586 || r_type == R_MIPS_TLS_DTPREL_HI16 \
587 || r_type == R_MIPS_TLS_DTPREL_LO16 \
588 || r_type == R_MIPS_TLS_GOTTPREL \
589 || r_type == R_MIPS_TLS_TPREL32 \
590 || r_type == R_MIPS_TLS_TPREL64 \
591 || r_type == R_MIPS_TLS_TPREL_HI16 \
df58fc94 592 || r_type == R_MIPS_TLS_TPREL_LO16 \
d0f13682
CLT
593 || r_type == R_MIPS16_TLS_GD \
594 || r_type == R_MIPS16_TLS_LDM \
595 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
596 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
597 || r_type == R_MIPS16_TLS_GOTTPREL \
598 || r_type == R_MIPS16_TLS_TPREL_HI16 \
599 || r_type == R_MIPS16_TLS_TPREL_LO16 \
df58fc94
RS
600 || r_type == R_MICROMIPS_TLS_GD \
601 || r_type == R_MICROMIPS_TLS_LDM \
602 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
603 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
604 || r_type == R_MICROMIPS_TLS_GOTTPREL \
605 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
606 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
0f20cc35 607
b49e97c9
TS
608/* Structure used to pass information to mips_elf_output_extsym. */
609
610struct extsym_info
611{
9e4aeb93
RS
612 bfd *abfd;
613 struct bfd_link_info *info;
b49e97c9
TS
614 struct ecoff_debug_info *debug;
615 const struct ecoff_debug_swap *swap;
b34976b6 616 bfd_boolean failed;
b49e97c9
TS
617};
618
8dc1a139 619/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
620
621static const char * const mips_elf_dynsym_rtproc_names[] =
622{
623 "_procedure_table",
624 "_procedure_string_table",
625 "_procedure_table_size",
626 NULL
627};
628
629/* These structures are used to generate the .compact_rel section on
8dc1a139 630 IRIX5. */
b49e97c9
TS
631
632typedef struct
633{
634 unsigned long id1; /* Always one? */
635 unsigned long num; /* Number of compact relocation entries. */
636 unsigned long id2; /* Always two? */
637 unsigned long offset; /* The file offset of the first relocation. */
638 unsigned long reserved0; /* Zero? */
639 unsigned long reserved1; /* Zero? */
640} Elf32_compact_rel;
641
642typedef struct
643{
644 bfd_byte id1[4];
645 bfd_byte num[4];
646 bfd_byte id2[4];
647 bfd_byte offset[4];
648 bfd_byte reserved0[4];
649 bfd_byte reserved1[4];
650} Elf32_External_compact_rel;
651
652typedef struct
653{
654 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
655 unsigned int rtype : 4; /* Relocation types. See below. */
656 unsigned int dist2to : 8;
657 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
658 unsigned long konst; /* KONST field. See below. */
659 unsigned long vaddr; /* VADDR to be relocated. */
660} Elf32_crinfo;
661
662typedef struct
663{
664 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
665 unsigned int rtype : 4; /* Relocation types. See below. */
666 unsigned int dist2to : 8;
667 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
668 unsigned long konst; /* KONST field. See below. */
669} Elf32_crinfo2;
670
671typedef struct
672{
673 bfd_byte info[4];
674 bfd_byte konst[4];
675 bfd_byte vaddr[4];
676} Elf32_External_crinfo;
677
678typedef struct
679{
680 bfd_byte info[4];
681 bfd_byte konst[4];
682} Elf32_External_crinfo2;
683
684/* These are the constants used to swap the bitfields in a crinfo. */
685
686#define CRINFO_CTYPE (0x1)
687#define CRINFO_CTYPE_SH (31)
688#define CRINFO_RTYPE (0xf)
689#define CRINFO_RTYPE_SH (27)
690#define CRINFO_DIST2TO (0xff)
691#define CRINFO_DIST2TO_SH (19)
692#define CRINFO_RELVADDR (0x7ffff)
693#define CRINFO_RELVADDR_SH (0)
694
695/* A compact relocation info has long (3 words) or short (2 words)
696 formats. A short format doesn't have VADDR field and relvaddr
697 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
698#define CRF_MIPS_LONG 1
699#define CRF_MIPS_SHORT 0
700
701/* There are 4 types of compact relocation at least. The value KONST
702 has different meaning for each type:
703
704 (type) (konst)
705 CT_MIPS_REL32 Address in data
706 CT_MIPS_WORD Address in word (XXX)
707 CT_MIPS_GPHI_LO GP - vaddr
708 CT_MIPS_JMPAD Address to jump
709 */
710
711#define CRT_MIPS_REL32 0xa
712#define CRT_MIPS_WORD 0xb
713#define CRT_MIPS_GPHI_LO 0xc
714#define CRT_MIPS_JMPAD 0xd
715
716#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
717#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
718#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
719#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
720\f
721/* The structure of the runtime procedure descriptor created by the
722 loader for use by the static exception system. */
723
724typedef struct runtime_pdr {
ae9a127f
NC
725 bfd_vma adr; /* Memory address of start of procedure. */
726 long regmask; /* Save register mask. */
727 long regoffset; /* Save register offset. */
728 long fregmask; /* Save floating point register mask. */
729 long fregoffset; /* Save floating point register offset. */
730 long frameoffset; /* Frame size. */
731 short framereg; /* Frame pointer register. */
732 short pcreg; /* Offset or reg of return pc. */
733 long irpss; /* Index into the runtime string table. */
b49e97c9 734 long reserved;
ae9a127f 735 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
736} RPDR, *pRPDR;
737#define cbRPDR sizeof (RPDR)
738#define rpdNil ((pRPDR) 0)
739\f
b15e6682 740static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
741 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
742 struct mips_elf_link_hash_entry *, int);
b34976b6 743static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 744 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
745static bfd_vma mips_elf_high
746 (bfd_vma);
b34976b6 747static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
748 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
749 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
750 bfd_vma *, asection *);
f4416af6 751static bfd_vma mips_elf_adjust_gp
9719ad41 752 (bfd *, struct mips_got_info *, bfd *);
f4416af6 753
b49e97c9
TS
754/* This will be used when we sort the dynamic relocation records. */
755static bfd *reldyn_sorting_bfd;
756
6d30f5b2
NC
757/* True if ABFD is for CPUs with load interlocking that include
758 non-MIPS1 CPUs and R3900. */
759#define LOAD_INTERLOCKS_P(abfd) \
760 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
761 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
762
cd8d5a82
CF
763/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
764 This should be safe for all architectures. We enable this predicate
765 for RM9000 for now. */
766#define JAL_TO_BAL_P(abfd) \
767 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
768
769/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
770 This should be safe for all architectures. We enable this predicate for
771 all CPUs. */
772#define JALR_TO_BAL_P(abfd) 1
773
38a7df63
CF
774/* True if ABFD is for CPUs that are faster if JR is converted to B.
775 This should be safe for all architectures. We enable this predicate for
776 all CPUs. */
777#define JR_TO_B_P(abfd) 1
778
861fb55a
DJ
779/* True if ABFD is a PIC object. */
780#define PIC_OBJECT_P(abfd) \
781 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
782
351cdf24
MF
783/* Nonzero if ABFD is using the O32 ABI. */
784#define ABI_O32_P(abfd) \
785 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
786
b49e97c9 787/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
788#define ABI_N32_P(abfd) \
789 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
790
4a14403c 791/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 792#define ABI_64_P(abfd) \
141ff970 793 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 794
4a14403c
TS
795/* Nonzero if ABFD is using NewABI conventions. */
796#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
797
e8faf7d1
MR
798/* Nonzero if ABFD has microMIPS code. */
799#define MICROMIPS_P(abfd) \
800 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
801
7361da2c
AB
802/* Nonzero if ABFD is MIPS R6. */
803#define MIPSR6_P(abfd) \
804 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
805 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
806
4a14403c 807/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
808#define IRIX_COMPAT(abfd) \
809 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
810
b49e97c9
TS
811/* Whether we are trying to be compatible with IRIX at all. */
812#define SGI_COMPAT(abfd) \
813 (IRIX_COMPAT (abfd) != ict_none)
814
815/* The name of the options section. */
816#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 817 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 818
cc2e31b9
RS
819/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
820 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
821#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
822 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
823
351cdf24
MF
824/* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
825#define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
826 (strcmp (NAME, ".MIPS.abiflags") == 0)
827
943284cc
DJ
828/* Whether the section is readonly. */
829#define MIPS_ELF_READONLY_SECTION(sec) \
830 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
831 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
832
b49e97c9 833/* The name of the stub section. */
ca07892d 834#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
835
836/* The size of an external REL relocation. */
837#define MIPS_ELF_REL_SIZE(abfd) \
838 (get_elf_backend_data (abfd)->s->sizeof_rel)
839
0a44bf69
RS
840/* The size of an external RELA relocation. */
841#define MIPS_ELF_RELA_SIZE(abfd) \
842 (get_elf_backend_data (abfd)->s->sizeof_rela)
843
b49e97c9
TS
844/* The size of an external dynamic table entry. */
845#define MIPS_ELF_DYN_SIZE(abfd) \
846 (get_elf_backend_data (abfd)->s->sizeof_dyn)
847
848/* The size of a GOT entry. */
849#define MIPS_ELF_GOT_SIZE(abfd) \
850 (get_elf_backend_data (abfd)->s->arch_size / 8)
851
b4082c70
DD
852/* The size of the .rld_map section. */
853#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
854 (get_elf_backend_data (abfd)->s->arch_size / 8)
855
b49e97c9
TS
856/* The size of a symbol-table entry. */
857#define MIPS_ELF_SYM_SIZE(abfd) \
858 (get_elf_backend_data (abfd)->s->sizeof_sym)
859
860/* The default alignment for sections, as a power of two. */
861#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 862 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
863
864/* Get word-sized data. */
865#define MIPS_ELF_GET_WORD(abfd, ptr) \
866 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
867
868/* Put out word-sized data. */
869#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
870 (ABI_64_P (abfd) \
871 ? bfd_put_64 (abfd, val, ptr) \
872 : bfd_put_32 (abfd, val, ptr))
873
861fb55a
DJ
874/* The opcode for word-sized loads (LW or LD). */
875#define MIPS_ELF_LOAD_WORD(abfd) \
876 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
877
b49e97c9 878/* Add a dynamic symbol table-entry. */
9719ad41 879#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 880 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
881
882#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
883 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
884
0a44bf69
RS
885/* The name of the dynamic relocation section. */
886#define MIPS_ELF_REL_DYN_NAME(INFO) \
887 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
888
b49e97c9
TS
889/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
890 from smaller values. Start with zero, widen, *then* decrement. */
891#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 892#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 893
51e38d68
RS
894/* The value to write into got[1] for SVR4 targets, to identify it is
895 a GNU object. The dynamic linker can then use got[1] to store the
896 module pointer. */
897#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
898 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
899
f4416af6 900/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
901#define ELF_MIPS_GP_OFFSET(INFO) \
902 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
903
904/* The maximum size of the GOT for it to be addressable using 16-bit
905 offsets from $gp. */
0a44bf69 906#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 907
6a691779 908/* Instructions which appear in a stub. */
3d6746ca
DD
909#define STUB_LW(abfd) \
910 ((ABI_64_P (abfd) \
911 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
912 : 0x8f998010)) /* lw t9,0x8010(gp) */
913#define STUB_MOVE(abfd) \
914 ((ABI_64_P (abfd) \
915 ? 0x03e0782d /* daddu t7,ra */ \
916 : 0x03e07821)) /* addu t7,ra */
917#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
918#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
919#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
920#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
921#define STUB_LI16S(abfd, VAL) \
922 ((ABI_64_P (abfd) \
923 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
924 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
925
1bbce132
MR
926/* Likewise for the microMIPS ASE. */
927#define STUB_LW_MICROMIPS(abfd) \
928 (ABI_64_P (abfd) \
929 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
930 : 0xff3c8010) /* lw t9,0x8010(gp) */
931#define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
833794fc
MR
932#define STUB_MOVE32_MICROMIPS(abfd) \
933 (ABI_64_P (abfd) \
934 ? 0x581f7950 /* daddu t7,ra,zero */ \
935 : 0x001f7950) /* addu t7,ra,zero */
1bbce132
MR
936#define STUB_LUI_MICROMIPS(VAL) \
937 (0x41b80000 + (VAL)) /* lui t8,VAL */
938#define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
833794fc 939#define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
1bbce132
MR
940#define STUB_ORI_MICROMIPS(VAL) \
941 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
942#define STUB_LI16U_MICROMIPS(VAL) \
943 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
944#define STUB_LI16S_MICROMIPS(abfd, VAL) \
945 (ABI_64_P (abfd) \
946 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
947 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
948
5108fc1b
RS
949#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
950#define MIPS_FUNCTION_STUB_BIG_SIZE 20
1bbce132
MR
951#define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
952#define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
833794fc
MR
953#define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
954#define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
955
956/* The name of the dynamic interpreter. This is put in the .interp
957 section. */
958
959#define ELF_DYNAMIC_INTERPRETER(abfd) \
960 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
961 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
962 : "/usr/lib/libc.so.1")
963
964#ifdef BFD64
ee6423ed
AO
965#define MNAME(bfd,pre,pos) \
966 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
967#define ELF_R_SYM(bfd, i) \
968 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
969#define ELF_R_TYPE(bfd, i) \
970 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
971#define ELF_R_INFO(bfd, s, t) \
972 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
973#else
ee6423ed 974#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
975#define ELF_R_SYM(bfd, i) \
976 (ELF32_R_SYM (i))
977#define ELF_R_TYPE(bfd, i) \
978 (ELF32_R_TYPE (i))
979#define ELF_R_INFO(bfd, s, t) \
980 (ELF32_R_INFO (s, t))
981#endif
982\f
983 /* The mips16 compiler uses a couple of special sections to handle
984 floating point arguments.
985
986 Section names that look like .mips16.fn.FNNAME contain stubs that
987 copy floating point arguments from the fp regs to the gp regs and
988 then jump to FNNAME. If any 32 bit function calls FNNAME, the
989 call should be redirected to the stub instead. If no 32 bit
990 function calls FNNAME, the stub should be discarded. We need to
991 consider any reference to the function, not just a call, because
992 if the address of the function is taken we will need the stub,
993 since the address might be passed to a 32 bit function.
994
995 Section names that look like .mips16.call.FNNAME contain stubs
996 that copy floating point arguments from the gp regs to the fp
997 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
998 then any 16 bit function that calls FNNAME should be redirected
999 to the stub instead. If FNNAME is not a 32 bit function, the
1000 stub should be discarded.
1001
1002 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1003 which call FNNAME and then copy the return value from the fp regs
1004 to the gp regs. These stubs store the return value in $18 while
1005 calling FNNAME; any function which might call one of these stubs
1006 must arrange to save $18 around the call. (This case is not
1007 needed for 32 bit functions that call 16 bit functions, because
1008 16 bit functions always return floating point values in both
1009 $f0/$f1 and $2/$3.)
1010
1011 Note that in all cases FNNAME might be defined statically.
1012 Therefore, FNNAME is not used literally. Instead, the relocation
1013 information will indicate which symbol the section is for.
1014
1015 We record any stubs that we find in the symbol table. */
1016
1017#define FN_STUB ".mips16.fn."
1018#define CALL_STUB ".mips16.call."
1019#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
1020
1021#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1022#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1023#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 1024\f
861fb55a 1025/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
1026static const bfd_vma mips_o32_exec_plt0_entry[] =
1027{
861fb55a
DJ
1028 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1029 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1030 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1031 0x031cc023, /* subu $24, $24, $28 */
81f5d455 1032 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
861fb55a
DJ
1033 0x0018c082, /* srl $24, $24, 2 */
1034 0x0320f809, /* jalr $25 */
1035 0x2718fffe /* subu $24, $24, 2 */
1036};
1037
1038/* The format of the first PLT entry in an N32 executable. Different
1039 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
1040static const bfd_vma mips_n32_exec_plt0_entry[] =
1041{
861fb55a
DJ
1042 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1043 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1044 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1045 0x030ec023, /* subu $24, $24, $14 */
81f5d455 1046 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
861fb55a
DJ
1047 0x0018c082, /* srl $24, $24, 2 */
1048 0x0320f809, /* jalr $25 */
1049 0x2718fffe /* subu $24, $24, 2 */
1050};
1051
1052/* The format of the first PLT entry in an N64 executable. Different
1053 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
1054static const bfd_vma mips_n64_exec_plt0_entry[] =
1055{
861fb55a
DJ
1056 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1057 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1058 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1059 0x030ec023, /* subu $24, $24, $14 */
81f5d455 1060 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
861fb55a
DJ
1061 0x0018c0c2, /* srl $24, $24, 3 */
1062 0x0320f809, /* jalr $25 */
1063 0x2718fffe /* subu $24, $24, 2 */
1064};
1065
1bbce132
MR
1066/* The format of the microMIPS first PLT entry in an O32 executable.
1067 We rely on v0 ($2) rather than t8 ($24) to contain the address
1068 of the GOTPLT entry handled, so this stub may only be used when
1069 all the subsequent PLT entries are microMIPS code too.
1070
1071 The trailing NOP is for alignment and correct disassembly only. */
1072static const bfd_vma micromips_o32_exec_plt0_entry[] =
1073{
1074 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1075 0xff23, 0x0000, /* lw $25, 0($3) */
1076 0x0535, /* subu $2, $2, $3 */
1077 0x2525, /* srl $2, $2, 2 */
1078 0x3302, 0xfffe, /* subu $24, $2, 2 */
1079 0x0dff, /* move $15, $31 */
1080 0x45f9, /* jalrs $25 */
1081 0x0f83, /* move $28, $3 */
1082 0x0c00 /* nop */
1083};
1084
833794fc
MR
1085/* The format of the microMIPS first PLT entry in an O32 executable
1086 in the insn32 mode. */
1087static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1088{
1089 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1090 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1091 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1092 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1093 0x001f, 0x7950, /* move $15, $31 */
1094 0x0318, 0x1040, /* srl $24, $24, 2 */
1095 0x03f9, 0x0f3c, /* jalr $25 */
1096 0x3318, 0xfffe /* subu $24, $24, 2 */
1097};
1098
1bbce132 1099/* The format of subsequent standard PLT entries. */
6d30f5b2
NC
1100static const bfd_vma mips_exec_plt_entry[] =
1101{
861fb55a
DJ
1102 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1103 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1104 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1105 0x03200008 /* jr $25 */
1106};
1107
7361da2c
AB
1108/* In the following PLT entry the JR and ADDIU instructions will
1109 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1110 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1111static const bfd_vma mipsr6_exec_plt_entry[] =
1112{
1113 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1114 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1115 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1116 0x03200009 /* jr $25 */
1117};
1118
1bbce132
MR
1119/* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1120 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1121 directly addressable. */
1122static const bfd_vma mips16_o32_exec_plt_entry[] =
1123{
1124 0xb203, /* lw $2, 12($pc) */
1125 0x9a60, /* lw $3, 0($2) */
1126 0x651a, /* move $24, $2 */
1127 0xeb00, /* jr $3 */
1128 0x653b, /* move $25, $3 */
1129 0x6500, /* nop */
1130 0x0000, 0x0000 /* .word (.got.plt entry) */
1131};
1132
1133/* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1134 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1135static const bfd_vma micromips_o32_exec_plt_entry[] =
1136{
1137 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1138 0xff22, 0x0000, /* lw $25, 0($2) */
1139 0x4599, /* jr $25 */
1140 0x0f02 /* move $24, $2 */
1141};
1142
833794fc
MR
1143/* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1144static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1145{
1146 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1147 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1148 0x0019, 0x0f3c, /* jr $25 */
1149 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1150};
1151
0a44bf69 1152/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
1153static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1154{
0a44bf69
RS
1155 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1156 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1157 0x8f390008, /* lw t9, 8(t9) */
1158 0x00000000, /* nop */
1159 0x03200008, /* jr t9 */
1160 0x00000000 /* nop */
1161};
1162
1163/* The format of subsequent PLT entries. */
6d30f5b2
NC
1164static const bfd_vma mips_vxworks_exec_plt_entry[] =
1165{
0a44bf69
RS
1166 0x10000000, /* b .PLT_resolver */
1167 0x24180000, /* li t8, <pltindex> */
1168 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1169 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1170 0x8f390000, /* lw t9, 0(t9) */
1171 0x00000000, /* nop */
1172 0x03200008, /* jr t9 */
1173 0x00000000 /* nop */
1174};
1175
1176/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
1177static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1178{
0a44bf69
RS
1179 0x8f990008, /* lw t9, 8(gp) */
1180 0x00000000, /* nop */
1181 0x03200008, /* jr t9 */
1182 0x00000000, /* nop */
1183 0x00000000, /* nop */
1184 0x00000000 /* nop */
1185};
1186
1187/* The format of subsequent PLT entries. */
6d30f5b2
NC
1188static const bfd_vma mips_vxworks_shared_plt_entry[] =
1189{
0a44bf69
RS
1190 0x10000000, /* b .PLT_resolver */
1191 0x24180000 /* li t8, <pltindex> */
1192};
1193\f
d21911ea
MR
1194/* microMIPS 32-bit opcode helper installer. */
1195
1196static void
1197bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1198{
1199 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1200 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1201}
1202
1203/* microMIPS 32-bit opcode helper retriever. */
1204
1205static bfd_vma
1206bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1207{
1208 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1209}
1210\f
b49e97c9
TS
1211/* Look up an entry in a MIPS ELF linker hash table. */
1212
1213#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1214 ((struct mips_elf_link_hash_entry *) \
1215 elf_link_hash_lookup (&(table)->root, (string), (create), \
1216 (copy), (follow)))
1217
1218/* Traverse a MIPS ELF linker hash table. */
1219
1220#define mips_elf_link_hash_traverse(table, func, info) \
1221 (elf_link_hash_traverse \
1222 (&(table)->root, \
9719ad41 1223 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1224 (info)))
1225
0f20cc35
DJ
1226/* Find the base offsets for thread-local storage in this object,
1227 for GD/LD and IE/LE respectively. */
1228
1229#define TP_OFFSET 0x7000
1230#define DTP_OFFSET 0x8000
1231
1232static bfd_vma
1233dtprel_base (struct bfd_link_info *info)
1234{
1235 /* If tls_sec is NULL, we should have signalled an error already. */
1236 if (elf_hash_table (info)->tls_sec == NULL)
1237 return 0;
1238 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1239}
1240
1241static bfd_vma
1242tprel_base (struct bfd_link_info *info)
1243{
1244 /* If tls_sec is NULL, we should have signalled an error already. */
1245 if (elf_hash_table (info)->tls_sec == NULL)
1246 return 0;
1247 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1248}
1249
b49e97c9
TS
1250/* Create an entry in a MIPS ELF linker hash table. */
1251
1252static struct bfd_hash_entry *
9719ad41
RS
1253mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1254 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1255{
1256 struct mips_elf_link_hash_entry *ret =
1257 (struct mips_elf_link_hash_entry *) entry;
1258
1259 /* Allocate the structure if it has not already been allocated by a
1260 subclass. */
9719ad41
RS
1261 if (ret == NULL)
1262 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1263 if (ret == NULL)
b49e97c9
TS
1264 return (struct bfd_hash_entry *) ret;
1265
1266 /* Call the allocation method of the superclass. */
1267 ret = ((struct mips_elf_link_hash_entry *)
1268 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1269 table, string));
9719ad41 1270 if (ret != NULL)
b49e97c9
TS
1271 {
1272 /* Set local fields. */
1273 memset (&ret->esym, 0, sizeof (EXTR));
1274 /* We use -2 as a marker to indicate that the information has
1275 not been set. -1 means there is no associated ifd. */
1276 ret->esym.ifd = -2;
861fb55a 1277 ret->la25_stub = 0;
b49e97c9 1278 ret->possibly_dynamic_relocs = 0;
b49e97c9 1279 ret->fn_stub = NULL;
b49e97c9
TS
1280 ret->call_stub = NULL;
1281 ret->call_fp_stub = NULL;
634835ae 1282 ret->global_got_area = GGA_NONE;
6ccf4795 1283 ret->got_only_for_calls = TRUE;
71782a75 1284 ret->readonly_reloc = FALSE;
861fb55a 1285 ret->has_static_relocs = FALSE;
71782a75
RS
1286 ret->no_fn_stub = FALSE;
1287 ret->need_fn_stub = FALSE;
861fb55a 1288 ret->has_nonpic_branches = FALSE;
33bb52fb 1289 ret->needs_lazy_stub = FALSE;
1bbce132 1290 ret->use_plt_entry = FALSE;
b49e97c9
TS
1291 }
1292
1293 return (struct bfd_hash_entry *) ret;
1294}
f0abc2a1 1295
6ae68ba3
MR
1296/* Allocate MIPS ELF private object data. */
1297
1298bfd_boolean
1299_bfd_mips_elf_mkobject (bfd *abfd)
1300{
1301 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1302 MIPS_ELF_DATA);
1303}
1304
f0abc2a1 1305bfd_boolean
9719ad41 1306_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1307{
f592407e
AM
1308 if (!sec->used_by_bfd)
1309 {
1310 struct _mips_elf_section_data *sdata;
1311 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1312
f592407e
AM
1313 sdata = bfd_zalloc (abfd, amt);
1314 if (sdata == NULL)
1315 return FALSE;
1316 sec->used_by_bfd = sdata;
1317 }
f0abc2a1
AM
1318
1319 return _bfd_elf_new_section_hook (abfd, sec);
1320}
b49e97c9
TS
1321\f
1322/* Read ECOFF debugging information from a .mdebug section into a
1323 ecoff_debug_info structure. */
1324
b34976b6 1325bfd_boolean
9719ad41
RS
1326_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1327 struct ecoff_debug_info *debug)
b49e97c9
TS
1328{
1329 HDRR *symhdr;
1330 const struct ecoff_debug_swap *swap;
9719ad41 1331 char *ext_hdr;
b49e97c9
TS
1332
1333 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1334 memset (debug, 0, sizeof (*debug));
1335
9719ad41 1336 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1337 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1338 goto error_return;
1339
9719ad41 1340 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1341 swap->external_hdr_size))
b49e97c9
TS
1342 goto error_return;
1343
1344 symhdr = &debug->symbolic_header;
1345 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1346
1347 /* The symbolic header contains absolute file offsets and sizes to
1348 read. */
1349#define READ(ptr, offset, count, size, type) \
1350 if (symhdr->count == 0) \
1351 debug->ptr = NULL; \
1352 else \
1353 { \
1354 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1355 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1356 if (debug->ptr == NULL) \
1357 goto error_return; \
9719ad41 1358 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1359 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1360 goto error_return; \
1361 }
1362
1363 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1364 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1365 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1366 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1367 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1368 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1369 union aux_ext *);
1370 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1371 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1372 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1373 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1374 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1375#undef READ
1376
1377 debug->fdr = NULL;
b49e97c9 1378
b34976b6 1379 return TRUE;
b49e97c9
TS
1380
1381 error_return:
1382 if (ext_hdr != NULL)
1383 free (ext_hdr);
1384 if (debug->line != NULL)
1385 free (debug->line);
1386 if (debug->external_dnr != NULL)
1387 free (debug->external_dnr);
1388 if (debug->external_pdr != NULL)
1389 free (debug->external_pdr);
1390 if (debug->external_sym != NULL)
1391 free (debug->external_sym);
1392 if (debug->external_opt != NULL)
1393 free (debug->external_opt);
1394 if (debug->external_aux != NULL)
1395 free (debug->external_aux);
1396 if (debug->ss != NULL)
1397 free (debug->ss);
1398 if (debug->ssext != NULL)
1399 free (debug->ssext);
1400 if (debug->external_fdr != NULL)
1401 free (debug->external_fdr);
1402 if (debug->external_rfd != NULL)
1403 free (debug->external_rfd);
1404 if (debug->external_ext != NULL)
1405 free (debug->external_ext);
b34976b6 1406 return FALSE;
b49e97c9
TS
1407}
1408\f
1409/* Swap RPDR (runtime procedure table entry) for output. */
1410
1411static void
9719ad41 1412ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1413{
1414 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1415 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1416 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1417 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1418 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1419 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1420
1421 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1422 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1423
1424 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1425}
1426
1427/* Create a runtime procedure table from the .mdebug section. */
1428
b34976b6 1429static bfd_boolean
9719ad41
RS
1430mips_elf_create_procedure_table (void *handle, bfd *abfd,
1431 struct bfd_link_info *info, asection *s,
1432 struct ecoff_debug_info *debug)
b49e97c9
TS
1433{
1434 const struct ecoff_debug_swap *swap;
1435 HDRR *hdr = &debug->symbolic_header;
1436 RPDR *rpdr, *rp;
1437 struct rpdr_ext *erp;
9719ad41 1438 void *rtproc;
b49e97c9
TS
1439 struct pdr_ext *epdr;
1440 struct sym_ext *esym;
1441 char *ss, **sv;
1442 char *str;
1443 bfd_size_type size;
1444 bfd_size_type count;
1445 unsigned long sindex;
1446 unsigned long i;
1447 PDR pdr;
1448 SYMR sym;
1449 const char *no_name_func = _("static procedure (no name)");
1450
1451 epdr = NULL;
1452 rpdr = NULL;
1453 esym = NULL;
1454 ss = NULL;
1455 sv = NULL;
1456
1457 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1458
1459 sindex = strlen (no_name_func) + 1;
1460 count = hdr->ipdMax;
1461 if (count > 0)
1462 {
1463 size = swap->external_pdr_size;
1464
9719ad41 1465 epdr = bfd_malloc (size * count);
b49e97c9
TS
1466 if (epdr == NULL)
1467 goto error_return;
1468
9719ad41 1469 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1470 goto error_return;
1471
1472 size = sizeof (RPDR);
9719ad41 1473 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1474 if (rpdr == NULL)
1475 goto error_return;
1476
1477 size = sizeof (char *);
9719ad41 1478 sv = bfd_malloc (size * count);
b49e97c9
TS
1479 if (sv == NULL)
1480 goto error_return;
1481
1482 count = hdr->isymMax;
1483 size = swap->external_sym_size;
9719ad41 1484 esym = bfd_malloc (size * count);
b49e97c9
TS
1485 if (esym == NULL)
1486 goto error_return;
1487
9719ad41 1488 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1489 goto error_return;
1490
1491 count = hdr->issMax;
9719ad41 1492 ss = bfd_malloc (count);
b49e97c9
TS
1493 if (ss == NULL)
1494 goto error_return;
f075ee0c 1495 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1496 goto error_return;
1497
1498 count = hdr->ipdMax;
1499 for (i = 0; i < (unsigned long) count; i++, rp++)
1500 {
9719ad41
RS
1501 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1502 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1503 rp->adr = sym.value;
1504 rp->regmask = pdr.regmask;
1505 rp->regoffset = pdr.regoffset;
1506 rp->fregmask = pdr.fregmask;
1507 rp->fregoffset = pdr.fregoffset;
1508 rp->frameoffset = pdr.frameoffset;
1509 rp->framereg = pdr.framereg;
1510 rp->pcreg = pdr.pcreg;
1511 rp->irpss = sindex;
1512 sv[i] = ss + sym.iss;
1513 sindex += strlen (sv[i]) + 1;
1514 }
1515 }
1516
1517 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1518 size = BFD_ALIGN (size, 16);
9719ad41 1519 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1520 if (rtproc == NULL)
1521 {
1522 mips_elf_hash_table (info)->procedure_count = 0;
1523 goto error_return;
1524 }
1525
1526 mips_elf_hash_table (info)->procedure_count = count + 2;
1527
9719ad41 1528 erp = rtproc;
b49e97c9
TS
1529 memset (erp, 0, sizeof (struct rpdr_ext));
1530 erp++;
1531 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1532 strcpy (str, no_name_func);
1533 str += strlen (no_name_func) + 1;
1534 for (i = 0; i < count; i++)
1535 {
1536 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1537 strcpy (str, sv[i]);
1538 str += strlen (sv[i]) + 1;
1539 }
1540 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1541
1542 /* Set the size and contents of .rtproc section. */
eea6121a 1543 s->size = size;
9719ad41 1544 s->contents = rtproc;
b49e97c9
TS
1545
1546 /* Skip this section later on (I don't think this currently
1547 matters, but someday it might). */
8423293d 1548 s->map_head.link_order = NULL;
b49e97c9
TS
1549
1550 if (epdr != NULL)
1551 free (epdr);
1552 if (rpdr != NULL)
1553 free (rpdr);
1554 if (esym != NULL)
1555 free (esym);
1556 if (ss != NULL)
1557 free (ss);
1558 if (sv != NULL)
1559 free (sv);
1560
b34976b6 1561 return TRUE;
b49e97c9
TS
1562
1563 error_return:
1564 if (epdr != NULL)
1565 free (epdr);
1566 if (rpdr != NULL)
1567 free (rpdr);
1568 if (esym != NULL)
1569 free (esym);
1570 if (ss != NULL)
1571 free (ss);
1572 if (sv != NULL)
1573 free (sv);
b34976b6 1574 return FALSE;
b49e97c9 1575}
738e5348 1576\f
861fb55a
DJ
1577/* We're going to create a stub for H. Create a symbol for the stub's
1578 value and size, to help make the disassembly easier to read. */
1579
1580static bfd_boolean
1581mips_elf_create_stub_symbol (struct bfd_link_info *info,
1582 struct mips_elf_link_hash_entry *h,
1583 const char *prefix, asection *s, bfd_vma value,
1584 bfd_vma size)
1585{
1586 struct bfd_link_hash_entry *bh;
1587 struct elf_link_hash_entry *elfh;
1588 const char *name;
1589
df58fc94
RS
1590 if (ELF_ST_IS_MICROMIPS (h->root.other))
1591 value |= 1;
1592
861fb55a
DJ
1593 /* Create a new symbol. */
1594 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1595 bh = NULL;
1596 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1597 BSF_LOCAL, s, value, NULL,
1598 TRUE, FALSE, &bh))
1599 return FALSE;
1600
1601 /* Make it a local function. */
1602 elfh = (struct elf_link_hash_entry *) bh;
1603 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1604 elfh->size = size;
1605 elfh->forced_local = 1;
1606 return TRUE;
1607}
1608
738e5348
RS
1609/* We're about to redefine H. Create a symbol to represent H's
1610 current value and size, to help make the disassembly easier
1611 to read. */
1612
1613static bfd_boolean
1614mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1615 struct mips_elf_link_hash_entry *h,
1616 const char *prefix)
1617{
1618 struct bfd_link_hash_entry *bh;
1619 struct elf_link_hash_entry *elfh;
1620 const char *name;
1621 asection *s;
1622 bfd_vma value;
1623
1624 /* Read the symbol's value. */
1625 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1626 || h->root.root.type == bfd_link_hash_defweak);
1627 s = h->root.root.u.def.section;
1628 value = h->root.root.u.def.value;
1629
1630 /* Create a new symbol. */
1631 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1632 bh = NULL;
1633 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1634 BSF_LOCAL, s, value, NULL,
1635 TRUE, FALSE, &bh))
1636 return FALSE;
1637
1638 /* Make it local and copy the other attributes from H. */
1639 elfh = (struct elf_link_hash_entry *) bh;
1640 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1641 elfh->other = h->root.other;
1642 elfh->size = h->root.size;
1643 elfh->forced_local = 1;
1644 return TRUE;
1645}
1646
1647/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1648 function rather than to a hard-float stub. */
1649
1650static bfd_boolean
1651section_allows_mips16_refs_p (asection *section)
1652{
1653 const char *name;
1654
1655 name = bfd_get_section_name (section->owner, section);
1656 return (FN_STUB_P (name)
1657 || CALL_STUB_P (name)
1658 || CALL_FP_STUB_P (name)
1659 || strcmp (name, ".pdr") == 0);
1660}
1661
1662/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1663 stub section of some kind. Return the R_SYMNDX of the target
1664 function, or 0 if we can't decide which function that is. */
1665
1666static unsigned long
cb4437b8
MR
1667mips16_stub_symndx (const struct elf_backend_data *bed,
1668 asection *sec ATTRIBUTE_UNUSED,
502e814e 1669 const Elf_Internal_Rela *relocs,
738e5348
RS
1670 const Elf_Internal_Rela *relend)
1671{
cb4437b8 1672 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
738e5348
RS
1673 const Elf_Internal_Rela *rel;
1674
cb4437b8
MR
1675 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1676 one in a compound relocation. */
1677 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
738e5348
RS
1678 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1679 return ELF_R_SYM (sec->owner, rel->r_info);
1680
1681 /* Otherwise trust the first relocation, whatever its kind. This is
1682 the traditional behavior. */
1683 if (relocs < relend)
1684 return ELF_R_SYM (sec->owner, relocs->r_info);
1685
1686 return 0;
1687}
b49e97c9
TS
1688
1689/* Check the mips16 stubs for a particular symbol, and see if we can
1690 discard them. */
1691
861fb55a
DJ
1692static void
1693mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1694 struct mips_elf_link_hash_entry *h)
b49e97c9 1695{
738e5348
RS
1696 /* Dynamic symbols must use the standard call interface, in case other
1697 objects try to call them. */
1698 if (h->fn_stub != NULL
1699 && h->root.dynindx != -1)
1700 {
1701 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1702 h->need_fn_stub = TRUE;
1703 }
1704
b49e97c9
TS
1705 if (h->fn_stub != NULL
1706 && ! h->need_fn_stub)
1707 {
1708 /* We don't need the fn_stub; the only references to this symbol
1709 are 16 bit calls. Clobber the size to 0 to prevent it from
1710 being included in the link. */
eea6121a 1711 h->fn_stub->size = 0;
b49e97c9
TS
1712 h->fn_stub->flags &= ~SEC_RELOC;
1713 h->fn_stub->reloc_count = 0;
1714 h->fn_stub->flags |= SEC_EXCLUDE;
1715 }
1716
1717 if (h->call_stub != NULL
30c09090 1718 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1719 {
1720 /* We don't need the call_stub; this is a 16 bit function, so
1721 calls from other 16 bit functions are OK. Clobber the size
1722 to 0 to prevent it from being included in the link. */
eea6121a 1723 h->call_stub->size = 0;
b49e97c9
TS
1724 h->call_stub->flags &= ~SEC_RELOC;
1725 h->call_stub->reloc_count = 0;
1726 h->call_stub->flags |= SEC_EXCLUDE;
1727 }
1728
1729 if (h->call_fp_stub != NULL
30c09090 1730 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1731 {
1732 /* We don't need the call_stub; this is a 16 bit function, so
1733 calls from other 16 bit functions are OK. Clobber the size
1734 to 0 to prevent it from being included in the link. */
eea6121a 1735 h->call_fp_stub->size = 0;
b49e97c9
TS
1736 h->call_fp_stub->flags &= ~SEC_RELOC;
1737 h->call_fp_stub->reloc_count = 0;
1738 h->call_fp_stub->flags |= SEC_EXCLUDE;
1739 }
861fb55a
DJ
1740}
1741
1742/* Hashtable callbacks for mips_elf_la25_stubs. */
1743
1744static hashval_t
1745mips_elf_la25_stub_hash (const void *entry_)
1746{
1747 const struct mips_elf_la25_stub *entry;
1748
1749 entry = (struct mips_elf_la25_stub *) entry_;
1750 return entry->h->root.root.u.def.section->id
1751 + entry->h->root.root.u.def.value;
1752}
1753
1754static int
1755mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1756{
1757 const struct mips_elf_la25_stub *entry1, *entry2;
1758
1759 entry1 = (struct mips_elf_la25_stub *) entry1_;
1760 entry2 = (struct mips_elf_la25_stub *) entry2_;
1761 return ((entry1->h->root.root.u.def.section
1762 == entry2->h->root.root.u.def.section)
1763 && (entry1->h->root.root.u.def.value
1764 == entry2->h->root.root.u.def.value));
1765}
1766
1767/* Called by the linker to set up the la25 stub-creation code. FN is
1768 the linker's implementation of add_stub_function. Return true on
1769 success. */
1770
1771bfd_boolean
1772_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1773 asection *(*fn) (const char *, asection *,
1774 asection *))
1775{
1776 struct mips_elf_link_hash_table *htab;
1777
1778 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1779 if (htab == NULL)
1780 return FALSE;
1781
861fb55a
DJ
1782 htab->add_stub_section = fn;
1783 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1784 mips_elf_la25_stub_eq, NULL);
1785 if (htab->la25_stubs == NULL)
1786 return FALSE;
1787
1788 return TRUE;
1789}
1790
1791/* Return true if H is a locally-defined PIC function, in the sense
8f0c309a
CLT
1792 that it or its fn_stub might need $25 to be valid on entry.
1793 Note that MIPS16 functions set up $gp using PC-relative instructions,
1794 so they themselves never need $25 to be valid. Only non-MIPS16
1795 entry points are of interest here. */
861fb55a
DJ
1796
1797static bfd_boolean
1798mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1799{
1800 return ((h->root.root.type == bfd_link_hash_defined
1801 || h->root.root.type == bfd_link_hash_defweak)
1802 && h->root.def_regular
1803 && !bfd_is_abs_section (h->root.root.u.def.section)
8f0c309a
CLT
1804 && (!ELF_ST_IS_MIPS16 (h->root.other)
1805 || (h->fn_stub && h->need_fn_stub))
861fb55a
DJ
1806 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1807 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1808}
1809
8f0c309a
CLT
1810/* Set *SEC to the input section that contains the target of STUB.
1811 Return the offset of the target from the start of that section. */
1812
1813static bfd_vma
1814mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1815 asection **sec)
1816{
1817 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1818 {
1819 BFD_ASSERT (stub->h->need_fn_stub);
1820 *sec = stub->h->fn_stub;
1821 return 0;
1822 }
1823 else
1824 {
1825 *sec = stub->h->root.root.u.def.section;
1826 return stub->h->root.root.u.def.value;
1827 }
1828}
1829
861fb55a
DJ
1830/* STUB describes an la25 stub that we have decided to implement
1831 by inserting an LUI/ADDIU pair before the target function.
1832 Create the section and redirect the function symbol to it. */
1833
1834static bfd_boolean
1835mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1836 struct bfd_link_info *info)
1837{
1838 struct mips_elf_link_hash_table *htab;
1839 char *name;
1840 asection *s, *input_section;
1841 unsigned int align;
1842
1843 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1844 if (htab == NULL)
1845 return FALSE;
861fb55a
DJ
1846
1847 /* Create a unique name for the new section. */
1848 name = bfd_malloc (11 + sizeof (".text.stub."));
1849 if (name == NULL)
1850 return FALSE;
1851 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1852
1853 /* Create the section. */
8f0c309a 1854 mips_elf_get_la25_target (stub, &input_section);
861fb55a
DJ
1855 s = htab->add_stub_section (name, input_section,
1856 input_section->output_section);
1857 if (s == NULL)
1858 return FALSE;
1859
1860 /* Make sure that any padding goes before the stub. */
1861 align = input_section->alignment_power;
1862 if (!bfd_set_section_alignment (s->owner, s, align))
1863 return FALSE;
1864 if (align > 3)
1865 s->size = (1 << align) - 8;
1866
1867 /* Create a symbol for the stub. */
1868 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1869 stub->stub_section = s;
1870 stub->offset = s->size;
1871
1872 /* Allocate room for it. */
1873 s->size += 8;
1874 return TRUE;
1875}
1876
1877/* STUB describes an la25 stub that we have decided to implement
1878 with a separate trampoline. Allocate room for it and redirect
1879 the function symbol to it. */
1880
1881static bfd_boolean
1882mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1883 struct bfd_link_info *info)
1884{
1885 struct mips_elf_link_hash_table *htab;
1886 asection *s;
1887
1888 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1889 if (htab == NULL)
1890 return FALSE;
861fb55a
DJ
1891
1892 /* Create a trampoline section, if we haven't already. */
1893 s = htab->strampoline;
1894 if (s == NULL)
1895 {
1896 asection *input_section = stub->h->root.root.u.def.section;
1897 s = htab->add_stub_section (".text", NULL,
1898 input_section->output_section);
1899 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1900 return FALSE;
1901 htab->strampoline = s;
1902 }
1903
1904 /* Create a symbol for the stub. */
1905 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1906 stub->stub_section = s;
1907 stub->offset = s->size;
1908
1909 /* Allocate room for it. */
1910 s->size += 16;
1911 return TRUE;
1912}
1913
1914/* H describes a symbol that needs an la25 stub. Make sure that an
1915 appropriate stub exists and point H at it. */
1916
1917static bfd_boolean
1918mips_elf_add_la25_stub (struct bfd_link_info *info,
1919 struct mips_elf_link_hash_entry *h)
1920{
1921 struct mips_elf_link_hash_table *htab;
1922 struct mips_elf_la25_stub search, *stub;
1923 bfd_boolean use_trampoline_p;
1924 asection *s;
1925 bfd_vma value;
1926 void **slot;
1927
861fb55a
DJ
1928 /* Describe the stub we want. */
1929 search.stub_section = NULL;
1930 search.offset = 0;
1931 search.h = h;
1932
1933 /* See if we've already created an equivalent stub. */
1934 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1935 if (htab == NULL)
1936 return FALSE;
1937
861fb55a
DJ
1938 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1939 if (slot == NULL)
1940 return FALSE;
1941
1942 stub = (struct mips_elf_la25_stub *) *slot;
1943 if (stub != NULL)
1944 {
1945 /* We can reuse the existing stub. */
1946 h->la25_stub = stub;
1947 return TRUE;
1948 }
1949
1950 /* Create a permanent copy of ENTRY and add it to the hash table. */
1951 stub = bfd_malloc (sizeof (search));
1952 if (stub == NULL)
1953 return FALSE;
1954 *stub = search;
1955 *slot = stub;
1956
8f0c309a
CLT
1957 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1958 of the section and if we would need no more than 2 nops. */
1959 value = mips_elf_get_la25_target (stub, &s);
1960 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1961
861fb55a
DJ
1962 h->la25_stub = stub;
1963 return (use_trampoline_p
1964 ? mips_elf_add_la25_trampoline (stub, info)
1965 : mips_elf_add_la25_intro (stub, info));
1966}
1967
1968/* A mips_elf_link_hash_traverse callback that is called before sizing
1969 sections. DATA points to a mips_htab_traverse_info structure. */
1970
1971static bfd_boolean
1972mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1973{
1974 struct mips_htab_traverse_info *hti;
1975
1976 hti = (struct mips_htab_traverse_info *) data;
861fb55a
DJ
1977 if (!hti->info->relocatable)
1978 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 1979
861fb55a
DJ
1980 if (mips_elf_local_pic_function_p (h))
1981 {
ba85c43e
NC
1982 /* PR 12845: If H is in a section that has been garbage
1983 collected it will have its output section set to *ABS*. */
1984 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1985 return TRUE;
1986
861fb55a
DJ
1987 /* H is a function that might need $25 to be valid on entry.
1988 If we're creating a non-PIC relocatable object, mark H as
1989 being PIC. If we're creating a non-relocatable object with
1990 non-PIC branches and jumps to H, make sure that H has an la25
1991 stub. */
1992 if (hti->info->relocatable)
1993 {
1994 if (!PIC_OBJECT_P (hti->output_bfd))
1995 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1996 }
1997 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1998 {
1999 hti->error = TRUE;
2000 return FALSE;
2001 }
2002 }
b34976b6 2003 return TRUE;
b49e97c9
TS
2004}
2005\f
d6f16593
MR
2006/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2007 Most mips16 instructions are 16 bits, but these instructions
2008 are 32 bits.
2009
2010 The format of these instructions is:
2011
2012 +--------------+--------------------------------+
2013 | JALX | X| Imm 20:16 | Imm 25:21 |
2014 +--------------+--------------------------------+
2015 | Immediate 15:0 |
2016 +-----------------------------------------------+
2017
2018 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2019 Note that the immediate value in the first word is swapped.
2020
2021 When producing a relocatable object file, R_MIPS16_26 is
2022 handled mostly like R_MIPS_26. In particular, the addend is
2023 stored as a straight 26-bit value in a 32-bit instruction.
2024 (gas makes life simpler for itself by never adjusting a
2025 R_MIPS16_26 reloc to be against a section, so the addend is
2026 always zero). However, the 32 bit instruction is stored as 2
2027 16-bit values, rather than a single 32-bit value. In a
2028 big-endian file, the result is the same; in a little-endian
2029 file, the two 16-bit halves of the 32 bit value are swapped.
2030 This is so that a disassembler can recognize the jal
2031 instruction.
2032
2033 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2034 instruction stored as two 16-bit values. The addend A is the
2035 contents of the targ26 field. The calculation is the same as
2036 R_MIPS_26. When storing the calculated value, reorder the
2037 immediate value as shown above, and don't forget to store the
2038 value as two 16-bit values.
2039
2040 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2041 defined as
2042
2043 big-endian:
2044 +--------+----------------------+
2045 | | |
2046 | | targ26-16 |
2047 |31 26|25 0|
2048 +--------+----------------------+
2049
2050 little-endian:
2051 +----------+------+-------------+
2052 | | | |
2053 | sub1 | | sub2 |
2054 |0 9|10 15|16 31|
2055 +----------+--------------------+
2056 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2057 ((sub1 << 16) | sub2)).
2058
2059 When producing a relocatable object file, the calculation is
2060 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2061 When producing a fully linked file, the calculation is
2062 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2063 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2064
738e5348
RS
2065 The table below lists the other MIPS16 instruction relocations.
2066 Each one is calculated in the same way as the non-MIPS16 relocation
2067 given on the right, but using the extended MIPS16 layout of 16-bit
2068 immediate fields:
2069
2070 R_MIPS16_GPREL R_MIPS_GPREL16
2071 R_MIPS16_GOT16 R_MIPS_GOT16
2072 R_MIPS16_CALL16 R_MIPS_CALL16
2073 R_MIPS16_HI16 R_MIPS_HI16
2074 R_MIPS16_LO16 R_MIPS_LO16
2075
2076 A typical instruction will have a format like this:
d6f16593
MR
2077
2078 +--------------+--------------------------------+
2079 | EXTEND | Imm 10:5 | Imm 15:11 |
2080 +--------------+--------------------------------+
2081 | Major | rx | ry | Imm 4:0 |
2082 +--------------+--------------------------------+
2083
2084 EXTEND is the five bit value 11110. Major is the instruction
2085 opcode.
2086
738e5348
RS
2087 All we need to do here is shuffle the bits appropriately.
2088 As above, the two 16-bit halves must be swapped on a
2089 little-endian system. */
2090
2091static inline bfd_boolean
2092mips16_reloc_p (int r_type)
2093{
2094 switch (r_type)
2095 {
2096 case R_MIPS16_26:
2097 case R_MIPS16_GPREL:
2098 case R_MIPS16_GOT16:
2099 case R_MIPS16_CALL16:
2100 case R_MIPS16_HI16:
2101 case R_MIPS16_LO16:
d0f13682
CLT
2102 case R_MIPS16_TLS_GD:
2103 case R_MIPS16_TLS_LDM:
2104 case R_MIPS16_TLS_DTPREL_HI16:
2105 case R_MIPS16_TLS_DTPREL_LO16:
2106 case R_MIPS16_TLS_GOTTPREL:
2107 case R_MIPS16_TLS_TPREL_HI16:
2108 case R_MIPS16_TLS_TPREL_LO16:
738e5348
RS
2109 return TRUE;
2110
2111 default:
2112 return FALSE;
2113 }
2114}
2115
df58fc94
RS
2116/* Check if a microMIPS reloc. */
2117
2118static inline bfd_boolean
2119micromips_reloc_p (unsigned int r_type)
2120{
2121 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2122}
2123
2124/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2125 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2126 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2127
2128static inline bfd_boolean
2129micromips_reloc_shuffle_p (unsigned int r_type)
2130{
2131 return (micromips_reloc_p (r_type)
2132 && r_type != R_MICROMIPS_PC7_S1
2133 && r_type != R_MICROMIPS_PC10_S1);
2134}
2135
738e5348
RS
2136static inline bfd_boolean
2137got16_reloc_p (int r_type)
2138{
df58fc94
RS
2139 return (r_type == R_MIPS_GOT16
2140 || r_type == R_MIPS16_GOT16
2141 || r_type == R_MICROMIPS_GOT16);
738e5348
RS
2142}
2143
2144static inline bfd_boolean
2145call16_reloc_p (int r_type)
2146{
df58fc94
RS
2147 return (r_type == R_MIPS_CALL16
2148 || r_type == R_MIPS16_CALL16
2149 || r_type == R_MICROMIPS_CALL16);
2150}
2151
2152static inline bfd_boolean
2153got_disp_reloc_p (unsigned int r_type)
2154{
2155 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2156}
2157
2158static inline bfd_boolean
2159got_page_reloc_p (unsigned int r_type)
2160{
2161 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2162}
2163
2164static inline bfd_boolean
2165got_ofst_reloc_p (unsigned int r_type)
2166{
2167 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
2168}
2169
2170static inline bfd_boolean
2171got_hi16_reloc_p (unsigned int r_type)
2172{
2173 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
2174}
2175
2176static inline bfd_boolean
2177got_lo16_reloc_p (unsigned int r_type)
2178{
2179 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2180}
2181
2182static inline bfd_boolean
2183call_hi16_reloc_p (unsigned int r_type)
2184{
2185 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2186}
2187
2188static inline bfd_boolean
2189call_lo16_reloc_p (unsigned int r_type)
2190{
2191 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
738e5348
RS
2192}
2193
2194static inline bfd_boolean
2195hi16_reloc_p (int r_type)
2196{
df58fc94
RS
2197 return (r_type == R_MIPS_HI16
2198 || r_type == R_MIPS16_HI16
7361da2c
AB
2199 || r_type == R_MICROMIPS_HI16
2200 || r_type == R_MIPS_PCHI16);
738e5348 2201}
d6f16593 2202
738e5348
RS
2203static inline bfd_boolean
2204lo16_reloc_p (int r_type)
2205{
df58fc94
RS
2206 return (r_type == R_MIPS_LO16
2207 || r_type == R_MIPS16_LO16
7361da2c
AB
2208 || r_type == R_MICROMIPS_LO16
2209 || r_type == R_MIPS_PCLO16);
738e5348
RS
2210}
2211
2212static inline bfd_boolean
2213mips16_call_reloc_p (int r_type)
2214{
2215 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2216}
d6f16593 2217
38a7df63
CF
2218static inline bfd_boolean
2219jal_reloc_p (int r_type)
2220{
df58fc94
RS
2221 return (r_type == R_MIPS_26
2222 || r_type == R_MIPS16_26
2223 || r_type == R_MICROMIPS_26_S1);
2224}
2225
7361da2c
AB
2226static inline bfd_boolean
2227aligned_pcrel_reloc_p (int r_type)
2228{
2229 return (r_type == R_MIPS_PC18_S3
2230 || r_type == R_MIPS_PC19_S2);
2231}
2232
df58fc94
RS
2233static inline bfd_boolean
2234micromips_branch_reloc_p (int r_type)
2235{
2236 return (r_type == R_MICROMIPS_26_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
2240}
2241
2242static inline bfd_boolean
2243tls_gd_reloc_p (unsigned int r_type)
2244{
d0f13682
CLT
2245 return (r_type == R_MIPS_TLS_GD
2246 || r_type == R_MIPS16_TLS_GD
2247 || r_type == R_MICROMIPS_TLS_GD);
df58fc94
RS
2248}
2249
2250static inline bfd_boolean
2251tls_ldm_reloc_p (unsigned int r_type)
2252{
d0f13682
CLT
2253 return (r_type == R_MIPS_TLS_LDM
2254 || r_type == R_MIPS16_TLS_LDM
2255 || r_type == R_MICROMIPS_TLS_LDM);
df58fc94
RS
2256}
2257
2258static inline bfd_boolean
2259tls_gottprel_reloc_p (unsigned int r_type)
2260{
d0f13682
CLT
2261 return (r_type == R_MIPS_TLS_GOTTPREL
2262 || r_type == R_MIPS16_TLS_GOTTPREL
2263 || r_type == R_MICROMIPS_TLS_GOTTPREL);
38a7df63
CF
2264}
2265
d6f16593 2266void
df58fc94
RS
2267_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2268 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2269{
df58fc94 2270 bfd_vma first, second, val;
d6f16593 2271
df58fc94 2272 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2273 return;
2274
df58fc94
RS
2275 /* Pick up the first and second halfwords of the instruction. */
2276 first = bfd_get_16 (abfd, data);
2277 second = bfd_get_16 (abfd, data + 2);
2278 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2279 val = first << 16 | second;
2280 else if (r_type != R_MIPS16_26)
2281 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2282 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
d6f16593 2283 else
df58fc94
RS
2284 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2285 | ((first & 0x1f) << 21) | second);
d6f16593
MR
2286 bfd_put_32 (abfd, val, data);
2287}
2288
2289void
df58fc94
RS
2290_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2291 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2292{
df58fc94 2293 bfd_vma first, second, val;
d6f16593 2294
df58fc94 2295 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2296 return;
2297
2298 val = bfd_get_32 (abfd, data);
df58fc94 2299 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
d6f16593 2300 {
df58fc94
RS
2301 second = val & 0xffff;
2302 first = val >> 16;
2303 }
2304 else if (r_type != R_MIPS16_26)
2305 {
2306 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2307 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
d6f16593
MR
2308 }
2309 else
2310 {
df58fc94
RS
2311 second = val & 0xffff;
2312 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2313 | ((val >> 21) & 0x1f);
d6f16593 2314 }
df58fc94
RS
2315 bfd_put_16 (abfd, second, data + 2);
2316 bfd_put_16 (abfd, first, data);
d6f16593
MR
2317}
2318
b49e97c9 2319bfd_reloc_status_type
9719ad41
RS
2320_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2321 arelent *reloc_entry, asection *input_section,
2322 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
2323{
2324 bfd_vma relocation;
a7ebbfdf 2325 bfd_signed_vma val;
30ac9238 2326 bfd_reloc_status_type status;
b49e97c9
TS
2327
2328 if (bfd_is_com_section (symbol->section))
2329 relocation = 0;
2330 else
2331 relocation = symbol->value;
2332
2333 relocation += symbol->section->output_section->vma;
2334 relocation += symbol->section->output_offset;
2335
07515404 2336 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
2337 return bfd_reloc_outofrange;
2338
b49e97c9 2339 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
2340 val = reloc_entry->addend;
2341
30ac9238 2342 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 2343
b49e97c9 2344 /* Adjust val for the final section location and GP value. If we
1049f94e 2345 are producing relocatable output, we don't want to do this for
b49e97c9 2346 an external symbol. */
1049f94e 2347 if (! relocatable
b49e97c9
TS
2348 || (symbol->flags & BSF_SECTION_SYM) != 0)
2349 val += relocation - gp;
2350
a7ebbfdf
TS
2351 if (reloc_entry->howto->partial_inplace)
2352 {
30ac9238
RS
2353 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2354 (bfd_byte *) data
2355 + reloc_entry->address);
2356 if (status != bfd_reloc_ok)
2357 return status;
a7ebbfdf
TS
2358 }
2359 else
2360 reloc_entry->addend = val;
b49e97c9 2361
1049f94e 2362 if (relocatable)
b49e97c9 2363 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2364
2365 return bfd_reloc_ok;
2366}
2367
2368/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2369 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2370 that contains the relocation field and DATA points to the start of
2371 INPUT_SECTION. */
2372
2373struct mips_hi16
2374{
2375 struct mips_hi16 *next;
2376 bfd_byte *data;
2377 asection *input_section;
2378 arelent rel;
2379};
2380
2381/* FIXME: This should not be a static variable. */
2382
2383static struct mips_hi16 *mips_hi16_list;
2384
2385/* A howto special_function for REL *HI16 relocations. We can only
2386 calculate the correct value once we've seen the partnering
2387 *LO16 relocation, so just save the information for later.
2388
2389 The ABI requires that the *LO16 immediately follow the *HI16.
2390 However, as a GNU extension, we permit an arbitrary number of
2391 *HI16s to be associated with a single *LO16. This significantly
2392 simplies the relocation handling in gcc. */
2393
2394bfd_reloc_status_type
2395_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2396 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2397 asection *input_section, bfd *output_bfd,
2398 char **error_message ATTRIBUTE_UNUSED)
2399{
2400 struct mips_hi16 *n;
2401
07515404 2402 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2403 return bfd_reloc_outofrange;
2404
2405 n = bfd_malloc (sizeof *n);
2406 if (n == NULL)
2407 return bfd_reloc_outofrange;
2408
2409 n->next = mips_hi16_list;
2410 n->data = data;
2411 n->input_section = input_section;
2412 n->rel = *reloc_entry;
2413 mips_hi16_list = n;
2414
2415 if (output_bfd != NULL)
2416 reloc_entry->address += input_section->output_offset;
2417
2418 return bfd_reloc_ok;
2419}
2420
738e5348 2421/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2422 like any other 16-bit relocation when applied to global symbols, but is
2423 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2424
2425bfd_reloc_status_type
2426_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2427 void *data, asection *input_section,
2428 bfd *output_bfd, char **error_message)
2429{
2430 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2431 || bfd_is_und_section (bfd_get_section (symbol))
2432 || bfd_is_com_section (bfd_get_section (symbol)))
2433 /* The relocation is against a global symbol. */
2434 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2435 input_section, output_bfd,
2436 error_message);
2437
2438 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2439 input_section, output_bfd, error_message);
2440}
2441
2442/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2443 is a straightforward 16 bit inplace relocation, but we must deal with
2444 any partnering high-part relocations as well. */
2445
2446bfd_reloc_status_type
2447_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2448 void *data, asection *input_section,
2449 bfd *output_bfd, char **error_message)
2450{
2451 bfd_vma vallo;
d6f16593 2452 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2453
07515404 2454 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2455 return bfd_reloc_outofrange;
2456
df58fc94 2457 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
d6f16593 2458 location);
df58fc94
RS
2459 vallo = bfd_get_32 (abfd, location);
2460 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2461 location);
d6f16593 2462
30ac9238
RS
2463 while (mips_hi16_list != NULL)
2464 {
2465 bfd_reloc_status_type ret;
2466 struct mips_hi16 *hi;
2467
2468 hi = mips_hi16_list;
2469
738e5348
RS
2470 /* R_MIPS*_GOT16 relocations are something of a special case. We
2471 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2472 relocation (with a rightshift of 16). However, since GOT16
2473 relocations can also be used with global symbols, their howto
2474 has a rightshift of 0. */
2475 if (hi->rel.howto->type == R_MIPS_GOT16)
2476 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2477 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2478 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
df58fc94
RS
2479 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2480 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
30ac9238
RS
2481
2482 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2483 carry or borrow will induce a change of +1 or -1 in the high part. */
2484 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2485
30ac9238
RS
2486 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2487 hi->input_section, output_bfd,
2488 error_message);
2489 if (ret != bfd_reloc_ok)
2490 return ret;
2491
2492 mips_hi16_list = hi->next;
2493 free (hi);
2494 }
2495
2496 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2497 input_section, output_bfd,
2498 error_message);
2499}
2500
2501/* A generic howto special_function. This calculates and installs the
2502 relocation itself, thus avoiding the oft-discussed problems in
2503 bfd_perform_relocation and bfd_install_relocation. */
2504
2505bfd_reloc_status_type
2506_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2507 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2508 asection *input_section, bfd *output_bfd,
2509 char **error_message ATTRIBUTE_UNUSED)
2510{
2511 bfd_signed_vma val;
2512 bfd_reloc_status_type status;
2513 bfd_boolean relocatable;
2514
2515 relocatable = (output_bfd != NULL);
2516
07515404 2517 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2518 return bfd_reloc_outofrange;
2519
2520 /* Build up the field adjustment in VAL. */
2521 val = 0;
2522 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2523 {
2524 /* Either we're calculating the final field value or we have a
2525 relocation against a section symbol. Add in the section's
2526 offset or address. */
2527 val += symbol->section->output_section->vma;
2528 val += symbol->section->output_offset;
2529 }
2530
2531 if (!relocatable)
2532 {
2533 /* We're calculating the final field value. Add in the symbol's value
2534 and, if pc-relative, subtract the address of the field itself. */
2535 val += symbol->value;
2536 if (reloc_entry->howto->pc_relative)
2537 {
2538 val -= input_section->output_section->vma;
2539 val -= input_section->output_offset;
2540 val -= reloc_entry->address;
2541 }
2542 }
2543
2544 /* VAL is now the final adjustment. If we're keeping this relocation
2545 in the output file, and if the relocation uses a separate addend,
2546 we just need to add VAL to that addend. Otherwise we need to add
2547 VAL to the relocation field itself. */
2548 if (relocatable && !reloc_entry->howto->partial_inplace)
2549 reloc_entry->addend += val;
2550 else
2551 {
d6f16593
MR
2552 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2553
30ac9238
RS
2554 /* Add in the separate addend, if any. */
2555 val += reloc_entry->addend;
2556
2557 /* Add VAL to the relocation field. */
df58fc94
RS
2558 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2559 location);
30ac9238 2560 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593 2561 location);
df58fc94
RS
2562 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2563 location);
d6f16593 2564
30ac9238
RS
2565 if (status != bfd_reloc_ok)
2566 return status;
2567 }
2568
2569 if (relocatable)
2570 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2571
2572 return bfd_reloc_ok;
2573}
2574\f
2575/* Swap an entry in a .gptab section. Note that these routines rely
2576 on the equivalence of the two elements of the union. */
2577
2578static void
9719ad41
RS
2579bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2580 Elf32_gptab *in)
b49e97c9
TS
2581{
2582 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2583 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2584}
2585
2586static void
9719ad41
RS
2587bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2588 Elf32_External_gptab *ex)
b49e97c9
TS
2589{
2590 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2591 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2592}
2593
2594static void
9719ad41
RS
2595bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2596 Elf32_External_compact_rel *ex)
b49e97c9
TS
2597{
2598 H_PUT_32 (abfd, in->id1, ex->id1);
2599 H_PUT_32 (abfd, in->num, ex->num);
2600 H_PUT_32 (abfd, in->id2, ex->id2);
2601 H_PUT_32 (abfd, in->offset, ex->offset);
2602 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2603 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2604}
2605
2606static void
9719ad41
RS
2607bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2608 Elf32_External_crinfo *ex)
b49e97c9
TS
2609{
2610 unsigned long l;
2611
2612 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2613 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2614 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2615 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2616 H_PUT_32 (abfd, l, ex->info);
2617 H_PUT_32 (abfd, in->konst, ex->konst);
2618 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2619}
b49e97c9
TS
2620\f
2621/* A .reginfo section holds a single Elf32_RegInfo structure. These
2622 routines swap this structure in and out. They are used outside of
2623 BFD, so they are globally visible. */
2624
2625void
9719ad41
RS
2626bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2627 Elf32_RegInfo *in)
b49e97c9
TS
2628{
2629 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2630 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2631 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2632 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2633 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2634 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2635}
2636
2637void
9719ad41
RS
2638bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2639 Elf32_External_RegInfo *ex)
b49e97c9
TS
2640{
2641 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2642 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2643 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2644 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2645 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2646 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2647}
2648
2649/* In the 64 bit ABI, the .MIPS.options section holds register
2650 information in an Elf64_Reginfo structure. These routines swap
2651 them in and out. They are globally visible because they are used
2652 outside of BFD. These routines are here so that gas can call them
2653 without worrying about whether the 64 bit ABI has been included. */
2654
2655void
9719ad41
RS
2656bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2657 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2658{
2659 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2660 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2661 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2662 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2663 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2664 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2665 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2666}
2667
2668void
9719ad41
RS
2669bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2670 Elf64_External_RegInfo *ex)
b49e97c9
TS
2671{
2672 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2673 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2674 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2675 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2676 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2677 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2678 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2679}
2680
2681/* Swap in an options header. */
2682
2683void
9719ad41
RS
2684bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2685 Elf_Internal_Options *in)
b49e97c9
TS
2686{
2687 in->kind = H_GET_8 (abfd, ex->kind);
2688 in->size = H_GET_8 (abfd, ex->size);
2689 in->section = H_GET_16 (abfd, ex->section);
2690 in->info = H_GET_32 (abfd, ex->info);
2691}
2692
2693/* Swap out an options header. */
2694
2695void
9719ad41
RS
2696bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2697 Elf_External_Options *ex)
b49e97c9
TS
2698{
2699 H_PUT_8 (abfd, in->kind, ex->kind);
2700 H_PUT_8 (abfd, in->size, ex->size);
2701 H_PUT_16 (abfd, in->section, ex->section);
2702 H_PUT_32 (abfd, in->info, ex->info);
2703}
351cdf24
MF
2704
2705/* Swap in an abiflags structure. */
2706
2707void
2708bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2709 const Elf_External_ABIFlags_v0 *ex,
2710 Elf_Internal_ABIFlags_v0 *in)
2711{
2712 in->version = H_GET_16 (abfd, ex->version);
2713 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2714 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2715 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2716 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2717 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2718 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2719 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2720 in->ases = H_GET_32 (abfd, ex->ases);
2721 in->flags1 = H_GET_32 (abfd, ex->flags1);
2722 in->flags2 = H_GET_32 (abfd, ex->flags2);
2723}
2724
2725/* Swap out an abiflags structure. */
2726
2727void
2728bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2729 const Elf_Internal_ABIFlags_v0 *in,
2730 Elf_External_ABIFlags_v0 *ex)
2731{
2732 H_PUT_16 (abfd, in->version, ex->version);
2733 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2734 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2735 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2736 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2737 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2738 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2739 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2740 H_PUT_32 (abfd, in->ases, ex->ases);
2741 H_PUT_32 (abfd, in->flags1, ex->flags1);
2742 H_PUT_32 (abfd, in->flags2, ex->flags2);
2743}
b49e97c9
TS
2744\f
2745/* This function is called via qsort() to sort the dynamic relocation
2746 entries by increasing r_symndx value. */
2747
2748static int
9719ad41 2749sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2750{
947216bf
AM
2751 Elf_Internal_Rela int_reloc1;
2752 Elf_Internal_Rela int_reloc2;
6870500c 2753 int diff;
b49e97c9 2754
947216bf
AM
2755 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2756 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2757
6870500c
RS
2758 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2759 if (diff != 0)
2760 return diff;
2761
2762 if (int_reloc1.r_offset < int_reloc2.r_offset)
2763 return -1;
2764 if (int_reloc1.r_offset > int_reloc2.r_offset)
2765 return 1;
2766 return 0;
b49e97c9
TS
2767}
2768
f4416af6
AO
2769/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2770
2771static int
7e3102a7
AM
2772sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2773 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2774{
7e3102a7 2775#ifdef BFD64
f4416af6
AO
2776 Elf_Internal_Rela int_reloc1[3];
2777 Elf_Internal_Rela int_reloc2[3];
2778
2779 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2780 (reldyn_sorting_bfd, arg1, int_reloc1);
2781 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2782 (reldyn_sorting_bfd, arg2, int_reloc2);
2783
6870500c
RS
2784 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2785 return -1;
2786 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2787 return 1;
2788
2789 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2790 return -1;
2791 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2792 return 1;
2793 return 0;
7e3102a7
AM
2794#else
2795 abort ();
2796#endif
f4416af6
AO
2797}
2798
2799
b49e97c9
TS
2800/* This routine is used to write out ECOFF debugging external symbol
2801 information. It is called via mips_elf_link_hash_traverse. The
2802 ECOFF external symbol information must match the ELF external
2803 symbol information. Unfortunately, at this point we don't know
2804 whether a symbol is required by reloc information, so the two
2805 tables may wind up being different. We must sort out the external
2806 symbol information before we can set the final size of the .mdebug
2807 section, and we must set the size of the .mdebug section before we
2808 can relocate any sections, and we can't know which symbols are
2809 required by relocation until we relocate the sections.
2810 Fortunately, it is relatively unlikely that any symbol will be
2811 stripped but required by a reloc. In particular, it can not happen
2812 when generating a final executable. */
2813
b34976b6 2814static bfd_boolean
9719ad41 2815mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2816{
9719ad41 2817 struct extsym_info *einfo = data;
b34976b6 2818 bfd_boolean strip;
b49e97c9
TS
2819 asection *sec, *output_section;
2820
b49e97c9 2821 if (h->root.indx == -2)
b34976b6 2822 strip = FALSE;
f5385ebf 2823 else if ((h->root.def_dynamic
77cfaee6
AM
2824 || h->root.ref_dynamic
2825 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2826 && !h->root.def_regular
2827 && !h->root.ref_regular)
b34976b6 2828 strip = TRUE;
b49e97c9
TS
2829 else if (einfo->info->strip == strip_all
2830 || (einfo->info->strip == strip_some
2831 && bfd_hash_lookup (einfo->info->keep_hash,
2832 h->root.root.root.string,
b34976b6
AM
2833 FALSE, FALSE) == NULL))
2834 strip = TRUE;
b49e97c9 2835 else
b34976b6 2836 strip = FALSE;
b49e97c9
TS
2837
2838 if (strip)
b34976b6 2839 return TRUE;
b49e97c9
TS
2840
2841 if (h->esym.ifd == -2)
2842 {
2843 h->esym.jmptbl = 0;
2844 h->esym.cobol_main = 0;
2845 h->esym.weakext = 0;
2846 h->esym.reserved = 0;
2847 h->esym.ifd = ifdNil;
2848 h->esym.asym.value = 0;
2849 h->esym.asym.st = stGlobal;
2850
2851 if (h->root.root.type == bfd_link_hash_undefined
2852 || h->root.root.type == bfd_link_hash_undefweak)
2853 {
2854 const char *name;
2855
2856 /* Use undefined class. Also, set class and type for some
2857 special symbols. */
2858 name = h->root.root.root.string;
2859 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2860 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2861 {
2862 h->esym.asym.sc = scData;
2863 h->esym.asym.st = stLabel;
2864 h->esym.asym.value = 0;
2865 }
2866 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2867 {
2868 h->esym.asym.sc = scAbs;
2869 h->esym.asym.st = stLabel;
2870 h->esym.asym.value =
2871 mips_elf_hash_table (einfo->info)->procedure_count;
2872 }
4a14403c 2873 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
2874 {
2875 h->esym.asym.sc = scAbs;
2876 h->esym.asym.st = stLabel;
2877 h->esym.asym.value = elf_gp (einfo->abfd);
2878 }
2879 else
2880 h->esym.asym.sc = scUndefined;
2881 }
2882 else if (h->root.root.type != bfd_link_hash_defined
2883 && h->root.root.type != bfd_link_hash_defweak)
2884 h->esym.asym.sc = scAbs;
2885 else
2886 {
2887 const char *name;
2888
2889 sec = h->root.root.u.def.section;
2890 output_section = sec->output_section;
2891
2892 /* When making a shared library and symbol h is the one from
2893 the another shared library, OUTPUT_SECTION may be null. */
2894 if (output_section == NULL)
2895 h->esym.asym.sc = scUndefined;
2896 else
2897 {
2898 name = bfd_section_name (output_section->owner, output_section);
2899
2900 if (strcmp (name, ".text") == 0)
2901 h->esym.asym.sc = scText;
2902 else if (strcmp (name, ".data") == 0)
2903 h->esym.asym.sc = scData;
2904 else if (strcmp (name, ".sdata") == 0)
2905 h->esym.asym.sc = scSData;
2906 else if (strcmp (name, ".rodata") == 0
2907 || strcmp (name, ".rdata") == 0)
2908 h->esym.asym.sc = scRData;
2909 else if (strcmp (name, ".bss") == 0)
2910 h->esym.asym.sc = scBss;
2911 else if (strcmp (name, ".sbss") == 0)
2912 h->esym.asym.sc = scSBss;
2913 else if (strcmp (name, ".init") == 0)
2914 h->esym.asym.sc = scInit;
2915 else if (strcmp (name, ".fini") == 0)
2916 h->esym.asym.sc = scFini;
2917 else
2918 h->esym.asym.sc = scAbs;
2919 }
2920 }
2921
2922 h->esym.asym.reserved = 0;
2923 h->esym.asym.index = indexNil;
2924 }
2925
2926 if (h->root.root.type == bfd_link_hash_common)
2927 h->esym.asym.value = h->root.root.u.c.size;
2928 else if (h->root.root.type == bfd_link_hash_defined
2929 || h->root.root.type == bfd_link_hash_defweak)
2930 {
2931 if (h->esym.asym.sc == scCommon)
2932 h->esym.asym.sc = scBss;
2933 else if (h->esym.asym.sc == scSCommon)
2934 h->esym.asym.sc = scSBss;
2935
2936 sec = h->root.root.u.def.section;
2937 output_section = sec->output_section;
2938 if (output_section != NULL)
2939 h->esym.asym.value = (h->root.root.u.def.value
2940 + sec->output_offset
2941 + output_section->vma);
2942 else
2943 h->esym.asym.value = 0;
2944 }
33bb52fb 2945 else
b49e97c9
TS
2946 {
2947 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
2948
2949 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 2950 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 2951
33bb52fb 2952 if (hd->needs_lazy_stub)
b49e97c9 2953 {
1bbce132
MR
2954 BFD_ASSERT (hd->root.plt.plist != NULL);
2955 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
b49e97c9
TS
2956 /* Set type and value for a symbol with a function stub. */
2957 h->esym.asym.st = stProc;
2958 sec = hd->root.root.u.def.section;
2959 if (sec == NULL)
2960 h->esym.asym.value = 0;
2961 else
2962 {
2963 output_section = sec->output_section;
2964 if (output_section != NULL)
1bbce132 2965 h->esym.asym.value = (hd->root.plt.plist->stub_offset
b49e97c9
TS
2966 + sec->output_offset
2967 + output_section->vma);
2968 else
2969 h->esym.asym.value = 0;
2970 }
b49e97c9
TS
2971 }
2972 }
2973
2974 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2975 h->root.root.root.string,
2976 &h->esym))
2977 {
b34976b6
AM
2978 einfo->failed = TRUE;
2979 return FALSE;
b49e97c9
TS
2980 }
2981
b34976b6 2982 return TRUE;
b49e97c9
TS
2983}
2984
2985/* A comparison routine used to sort .gptab entries. */
2986
2987static int
9719ad41 2988gptab_compare (const void *p1, const void *p2)
b49e97c9 2989{
9719ad41
RS
2990 const Elf32_gptab *a1 = p1;
2991 const Elf32_gptab *a2 = p2;
b49e97c9
TS
2992
2993 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2994}
2995\f
b15e6682 2996/* Functions to manage the got entry hash table. */
f4416af6
AO
2997
2998/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2999 hash number. */
3000
3001static INLINE hashval_t
9719ad41 3002mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
3003{
3004#ifdef BFD64
3005 return addr + (addr >> 32);
3006#else
3007 return addr;
3008#endif
3009}
3010
f4416af6 3011static hashval_t
d9bf376d 3012mips_elf_got_entry_hash (const void *entry_)
f4416af6
AO
3013{
3014 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3015
e641e783 3016 return (entry->symndx
9ab066b4
RS
3017 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3018 + (entry->tls_type == GOT_TLS_LDM ? 0
e641e783
RS
3019 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3020 : entry->symndx >= 0 ? (entry->abfd->id
3021 + mips_elf_hash_bfd_vma (entry->d.addend))
3022 : entry->d.h->root.root.root.hash));
f4416af6
AO
3023}
3024
3025static int
3dff0dd1 3026mips_elf_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
3027{
3028 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3029 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3030
e641e783 3031 return (e1->symndx == e2->symndx
9ab066b4
RS
3032 && e1->tls_type == e2->tls_type
3033 && (e1->tls_type == GOT_TLS_LDM ? TRUE
e641e783
RS
3034 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3035 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3036 && e1->d.addend == e2->d.addend)
3037 : e2->abfd && e1->d.h == e2->d.h));
b15e6682 3038}
c224138d 3039
13db6b44
RS
3040static hashval_t
3041mips_got_page_ref_hash (const void *ref_)
3042{
3043 const struct mips_got_page_ref *ref;
3044
3045 ref = (const struct mips_got_page_ref *) ref_;
3046 return ((ref->symndx >= 0
3047 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3048 : ref->u.h->root.root.root.hash)
3049 + mips_elf_hash_bfd_vma (ref->addend));
3050}
3051
3052static int
3053mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3054{
3055 const struct mips_got_page_ref *ref1, *ref2;
3056
3057 ref1 = (const struct mips_got_page_ref *) ref1_;
3058 ref2 = (const struct mips_got_page_ref *) ref2_;
3059 return (ref1->symndx == ref2->symndx
3060 && (ref1->symndx < 0
3061 ? ref1->u.h == ref2->u.h
3062 : ref1->u.abfd == ref2->u.abfd)
3063 && ref1->addend == ref2->addend);
3064}
3065
c224138d
RS
3066static hashval_t
3067mips_got_page_entry_hash (const void *entry_)
3068{
3069 const struct mips_got_page_entry *entry;
3070
3071 entry = (const struct mips_got_page_entry *) entry_;
13db6b44 3072 return entry->sec->id;
c224138d
RS
3073}
3074
3075static int
3076mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3077{
3078 const struct mips_got_page_entry *entry1, *entry2;
3079
3080 entry1 = (const struct mips_got_page_entry *) entry1_;
3081 entry2 = (const struct mips_got_page_entry *) entry2_;
13db6b44 3082 return entry1->sec == entry2->sec;
c224138d 3083}
b15e6682 3084\f
3dff0dd1 3085/* Create and return a new mips_got_info structure. */
5334aa52
RS
3086
3087static struct mips_got_info *
3dff0dd1 3088mips_elf_create_got_info (bfd *abfd)
5334aa52
RS
3089{
3090 struct mips_got_info *g;
3091
3092 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3093 if (g == NULL)
3094 return NULL;
3095
3dff0dd1
RS
3096 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3097 mips_elf_got_entry_eq, NULL);
5334aa52
RS
3098 if (g->got_entries == NULL)
3099 return NULL;
3100
13db6b44
RS
3101 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3102 mips_got_page_ref_eq, NULL);
3103 if (g->got_page_refs == NULL)
5334aa52
RS
3104 return NULL;
3105
3106 return g;
3107}
3108
ee227692
RS
3109/* Return the GOT info for input bfd ABFD, trying to create a new one if
3110 CREATE_P and if ABFD doesn't already have a GOT. */
3111
3112static struct mips_got_info *
3113mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3114{
3115 struct mips_elf_obj_tdata *tdata;
3116
3117 if (!is_mips_elf (abfd))
3118 return NULL;
3119
3120 tdata = mips_elf_tdata (abfd);
3121 if (!tdata->got && create_p)
3dff0dd1 3122 tdata->got = mips_elf_create_got_info (abfd);
ee227692
RS
3123 return tdata->got;
3124}
3125
d7206569
RS
3126/* Record that ABFD should use output GOT G. */
3127
3128static void
3129mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3130{
3131 struct mips_elf_obj_tdata *tdata;
3132
3133 BFD_ASSERT (is_mips_elf (abfd));
3134 tdata = mips_elf_tdata (abfd);
3135 if (tdata->got)
3136 {
3137 /* The GOT structure itself and the hash table entries are
3138 allocated to a bfd, but the hash tables aren't. */
3139 htab_delete (tdata->got->got_entries);
13db6b44
RS
3140 htab_delete (tdata->got->got_page_refs);
3141 if (tdata->got->got_page_entries)
3142 htab_delete (tdata->got->got_page_entries);
d7206569
RS
3143 }
3144 tdata->got = g;
3145}
3146
0a44bf69
RS
3147/* Return the dynamic relocation section. If it doesn't exist, try to
3148 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3149 if creation fails. */
f4416af6
AO
3150
3151static asection *
0a44bf69 3152mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 3153{
0a44bf69 3154 const char *dname;
f4416af6 3155 asection *sreloc;
0a44bf69 3156 bfd *dynobj;
f4416af6 3157
0a44bf69
RS
3158 dname = MIPS_ELF_REL_DYN_NAME (info);
3159 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3160 sreloc = bfd_get_linker_section (dynobj, dname);
f4416af6
AO
3161 if (sreloc == NULL && create_p)
3162 {
3d4d4302
AM
3163 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3164 (SEC_ALLOC
3165 | SEC_LOAD
3166 | SEC_HAS_CONTENTS
3167 | SEC_IN_MEMORY
3168 | SEC_LINKER_CREATED
3169 | SEC_READONLY));
f4416af6 3170 if (sreloc == NULL
f4416af6 3171 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 3172 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
3173 return NULL;
3174 }
3175 return sreloc;
3176}
3177
e641e783
RS
3178/* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3179
3180static int
3181mips_elf_reloc_tls_type (unsigned int r_type)
3182{
3183 if (tls_gd_reloc_p (r_type))
3184 return GOT_TLS_GD;
3185
3186 if (tls_ldm_reloc_p (r_type))
3187 return GOT_TLS_LDM;
3188
3189 if (tls_gottprel_reloc_p (r_type))
3190 return GOT_TLS_IE;
3191
9ab066b4 3192 return GOT_TLS_NONE;
e641e783
RS
3193}
3194
3195/* Return the number of GOT slots needed for GOT TLS type TYPE. */
3196
3197static int
3198mips_tls_got_entries (unsigned int type)
3199{
3200 switch (type)
3201 {
3202 case GOT_TLS_GD:
3203 case GOT_TLS_LDM:
3204 return 2;
3205
3206 case GOT_TLS_IE:
3207 return 1;
3208
9ab066b4 3209 case GOT_TLS_NONE:
e641e783
RS
3210 return 0;
3211 }
3212 abort ();
3213}
3214
0f20cc35
DJ
3215/* Count the number of relocations needed for a TLS GOT entry, with
3216 access types from TLS_TYPE, and symbol H (or a local symbol if H
3217 is NULL). */
3218
3219static int
3220mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3221 struct elf_link_hash_entry *h)
3222{
3223 int indx = 0;
0f20cc35
DJ
3224 bfd_boolean need_relocs = FALSE;
3225 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3226
3227 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3228 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
3229 indx = h->dynindx;
3230
3231 if ((info->shared || indx != 0)
3232 && (h == NULL
3233 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3234 || h->root.type != bfd_link_hash_undefweak))
3235 need_relocs = TRUE;
3236
3237 if (!need_relocs)
e641e783 3238 return 0;
0f20cc35 3239
9ab066b4 3240 switch (tls_type)
0f20cc35 3241 {
e641e783
RS
3242 case GOT_TLS_GD:
3243 return indx != 0 ? 2 : 1;
0f20cc35 3244
e641e783
RS
3245 case GOT_TLS_IE:
3246 return 1;
0f20cc35 3247
e641e783
RS
3248 case GOT_TLS_LDM:
3249 return info->shared ? 1 : 0;
0f20cc35 3250
e641e783
RS
3251 default:
3252 return 0;
3253 }
0f20cc35
DJ
3254}
3255
ab361d49
RS
3256/* Add the number of GOT entries and TLS relocations required by ENTRY
3257 to G. */
0f20cc35 3258
ab361d49
RS
3259static void
3260mips_elf_count_got_entry (struct bfd_link_info *info,
3261 struct mips_got_info *g,
3262 struct mips_got_entry *entry)
0f20cc35 3263{
9ab066b4 3264 if (entry->tls_type)
ab361d49 3265 {
9ab066b4
RS
3266 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3267 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
ab361d49
RS
3268 entry->symndx < 0
3269 ? &entry->d.h->root : NULL);
3270 }
3271 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3272 g->local_gotno += 1;
3273 else
3274 g->global_gotno += 1;
0f20cc35
DJ
3275}
3276
0f20cc35
DJ
3277/* Output a simple dynamic relocation into SRELOC. */
3278
3279static void
3280mips_elf_output_dynamic_relocation (bfd *output_bfd,
3281 asection *sreloc,
861fb55a 3282 unsigned long reloc_index,
0f20cc35
DJ
3283 unsigned long indx,
3284 int r_type,
3285 bfd_vma offset)
3286{
3287 Elf_Internal_Rela rel[3];
3288
3289 memset (rel, 0, sizeof (rel));
3290
3291 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3292 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3293
3294 if (ABI_64_P (output_bfd))
3295 {
3296 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3297 (output_bfd, &rel[0],
3298 (sreloc->contents
861fb55a 3299 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
3300 }
3301 else
3302 bfd_elf32_swap_reloc_out
3303 (output_bfd, &rel[0],
3304 (sreloc->contents
861fb55a 3305 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
3306}
3307
3308/* Initialize a set of TLS GOT entries for one symbol. */
3309
3310static void
9ab066b4
RS
3311mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3312 struct mips_got_entry *entry,
0f20cc35
DJ
3313 struct mips_elf_link_hash_entry *h,
3314 bfd_vma value)
3315{
23cc69b6 3316 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
3317 int indx;
3318 asection *sreloc, *sgot;
9ab066b4 3319 bfd_vma got_offset, got_offset2;
0f20cc35
DJ
3320 bfd_boolean need_relocs = FALSE;
3321
23cc69b6 3322 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3323 if (htab == NULL)
3324 return;
3325
23cc69b6 3326 sgot = htab->sgot;
0f20cc35
DJ
3327
3328 indx = 0;
3329 if (h != NULL)
3330 {
3331 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3332
3333 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3334 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3335 indx = h->root.dynindx;
3336 }
3337
9ab066b4 3338 if (entry->tls_initialized)
0f20cc35
DJ
3339 return;
3340
3341 if ((info->shared || indx != 0)
3342 && (h == NULL
3343 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3344 || h->root.type != bfd_link_hash_undefweak))
3345 need_relocs = TRUE;
3346
3347 /* MINUS_ONE means the symbol is not defined in this object. It may not
3348 be defined at all; assume that the value doesn't matter in that
3349 case. Otherwise complain if we would use the value. */
3350 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3351 || h->root.root.type == bfd_link_hash_undefweak);
3352
3353 /* Emit necessary relocations. */
0a44bf69 3354 sreloc = mips_elf_rel_dyn_section (info, FALSE);
9ab066b4 3355 got_offset = entry->gotidx;
0f20cc35 3356
9ab066b4 3357 switch (entry->tls_type)
0f20cc35 3358 {
e641e783
RS
3359 case GOT_TLS_GD:
3360 /* General Dynamic. */
3361 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
0f20cc35
DJ
3362
3363 if (need_relocs)
3364 {
3365 mips_elf_output_dynamic_relocation
861fb55a 3366 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3367 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
e641e783 3368 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3369
3370 if (indx)
3371 mips_elf_output_dynamic_relocation
861fb55a 3372 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3373 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
e641e783 3374 sgot->output_offset + sgot->output_section->vma + got_offset2);
0f20cc35
DJ
3375 else
3376 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3377 sgot->contents + got_offset2);
0f20cc35
DJ
3378 }
3379 else
3380 {
3381 MIPS_ELF_PUT_WORD (abfd, 1,
e641e783 3382 sgot->contents + got_offset);
0f20cc35 3383 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3384 sgot->contents + got_offset2);
0f20cc35 3385 }
e641e783 3386 break;
0f20cc35 3387
e641e783
RS
3388 case GOT_TLS_IE:
3389 /* Initial Exec model. */
0f20cc35
DJ
3390 if (need_relocs)
3391 {
3392 if (indx == 0)
3393 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
e641e783 3394 sgot->contents + got_offset);
0f20cc35
DJ
3395 else
3396 MIPS_ELF_PUT_WORD (abfd, 0,
e641e783 3397 sgot->contents + got_offset);
0f20cc35
DJ
3398
3399 mips_elf_output_dynamic_relocation
861fb55a 3400 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3401 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
e641e783 3402 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3403 }
3404 else
3405 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
e641e783
RS
3406 sgot->contents + got_offset);
3407 break;
0f20cc35 3408
e641e783 3409 case GOT_TLS_LDM:
0f20cc35
DJ
3410 /* The initial offset is zero, and the LD offsets will include the
3411 bias by DTP_OFFSET. */
3412 MIPS_ELF_PUT_WORD (abfd, 0,
3413 sgot->contents + got_offset
3414 + MIPS_ELF_GOT_SIZE (abfd));
3415
3416 if (!info->shared)
3417 MIPS_ELF_PUT_WORD (abfd, 1,
3418 sgot->contents + got_offset);
3419 else
3420 mips_elf_output_dynamic_relocation
861fb55a 3421 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3422 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3423 sgot->output_offset + sgot->output_section->vma + got_offset);
e641e783
RS
3424 break;
3425
3426 default:
3427 abort ();
0f20cc35
DJ
3428 }
3429
9ab066b4 3430 entry->tls_initialized = TRUE;
e641e783 3431}
0f20cc35 3432
0a44bf69
RS
3433/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3434 for global symbol H. .got.plt comes before the GOT, so the offset
3435 will be negative. */
3436
3437static bfd_vma
3438mips_elf_gotplt_index (struct bfd_link_info *info,
3439 struct elf_link_hash_entry *h)
3440{
1bbce132 3441 bfd_vma got_address, got_value;
0a44bf69
RS
3442 struct mips_elf_link_hash_table *htab;
3443
3444 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3445 BFD_ASSERT (htab != NULL);
3446
1bbce132
MR
3447 BFD_ASSERT (h->plt.plist != NULL);
3448 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
0a44bf69
RS
3449
3450 /* Calculate the address of the associated .got.plt entry. */
3451 got_address = (htab->sgotplt->output_section->vma
3452 + htab->sgotplt->output_offset
1bbce132
MR
3453 + (h->plt.plist->gotplt_index
3454 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
0a44bf69
RS
3455
3456 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3457 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3458 + htab->root.hgot->root.u.def.section->output_offset
3459 + htab->root.hgot->root.u.def.value);
3460
3461 return got_address - got_value;
3462}
3463
5c18022e 3464/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3465 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3466 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3467 offset can be found. */
b49e97c9
TS
3468
3469static bfd_vma
9719ad41 3470mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3471 bfd_vma value, unsigned long r_symndx,
0f20cc35 3472 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3473{
a8028dd0 3474 struct mips_elf_link_hash_table *htab;
b15e6682 3475 struct mips_got_entry *entry;
b49e97c9 3476
a8028dd0 3477 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3478 BFD_ASSERT (htab != NULL);
3479
a8028dd0
RS
3480 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3481 r_symndx, h, r_type);
0f20cc35 3482 if (!entry)
b15e6682 3483 return MINUS_ONE;
0f20cc35 3484
e641e783 3485 if (entry->tls_type)
9ab066b4
RS
3486 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3487 return entry->gotidx;
b49e97c9
TS
3488}
3489
13fbec83 3490/* Return the GOT index of global symbol H in the primary GOT. */
b49e97c9
TS
3491
3492static bfd_vma
13fbec83
RS
3493mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3494 struct elf_link_hash_entry *h)
3495{
3496 struct mips_elf_link_hash_table *htab;
3497 long global_got_dynindx;
3498 struct mips_got_info *g;
3499 bfd_vma got_index;
3500
3501 htab = mips_elf_hash_table (info);
3502 BFD_ASSERT (htab != NULL);
3503
3504 global_got_dynindx = 0;
3505 if (htab->global_gotsym != NULL)
3506 global_got_dynindx = htab->global_gotsym->dynindx;
3507
3508 /* Once we determine the global GOT entry with the lowest dynamic
3509 symbol table index, we must put all dynamic symbols with greater
3510 indices into the primary GOT. That makes it easy to calculate the
3511 GOT offset. */
3512 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3513 g = mips_elf_bfd_got (obfd, FALSE);
3514 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3515 * MIPS_ELF_GOT_SIZE (obfd));
3516 BFD_ASSERT (got_index < htab->sgot->size);
3517
3518 return got_index;
3519}
3520
3521/* Return the GOT index for the global symbol indicated by H, which is
3522 referenced by a relocation of type R_TYPE in IBFD. */
3523
3524static bfd_vma
3525mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3526 struct elf_link_hash_entry *h, int r_type)
b49e97c9 3527{
a8028dd0 3528 struct mips_elf_link_hash_table *htab;
6c42ddb9
RS
3529 struct mips_got_info *g;
3530 struct mips_got_entry lookup, *entry;
3531 bfd_vma gotidx;
b49e97c9 3532
a8028dd0 3533 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3534 BFD_ASSERT (htab != NULL);
3535
6c42ddb9
RS
3536 g = mips_elf_bfd_got (ibfd, FALSE);
3537 BFD_ASSERT (g);
f4416af6 3538
6c42ddb9
RS
3539 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3540 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3541 return mips_elf_primary_global_got_index (obfd, info, h);
f4416af6 3542
6c42ddb9
RS
3543 lookup.abfd = ibfd;
3544 lookup.symndx = -1;
3545 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3546 entry = htab_find (g->got_entries, &lookup);
3547 BFD_ASSERT (entry);
0f20cc35 3548
6c42ddb9
RS
3549 gotidx = entry->gotidx;
3550 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
f4416af6 3551
6c42ddb9 3552 if (lookup.tls_type)
0f20cc35 3553 {
0f20cc35
DJ
3554 bfd_vma value = MINUS_ONE;
3555
3556 if ((h->root.type == bfd_link_hash_defined
3557 || h->root.type == bfd_link_hash_defweak)
3558 && h->root.u.def.section->output_section)
3559 value = (h->root.u.def.value
3560 + h->root.u.def.section->output_offset
3561 + h->root.u.def.section->output_section->vma);
3562
9ab066b4 3563 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
0f20cc35 3564 }
6c42ddb9 3565 return gotidx;
b49e97c9
TS
3566}
3567
5c18022e
RS
3568/* Find a GOT page entry that points to within 32KB of VALUE. These
3569 entries are supposed to be placed at small offsets in the GOT, i.e.,
3570 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3571 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3572 offset of the GOT entry from VALUE. */
b49e97c9
TS
3573
3574static bfd_vma
9719ad41 3575mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3576 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3577{
91d6fa6a 3578 bfd_vma page, got_index;
b15e6682 3579 struct mips_got_entry *entry;
b49e97c9 3580
0a44bf69 3581 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3582 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3583 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3584
b15e6682
AO
3585 if (!entry)
3586 return MINUS_ONE;
143d77c5 3587
91d6fa6a 3588 got_index = entry->gotidx;
b49e97c9
TS
3589
3590 if (offsetp)
f4416af6 3591 *offsetp = value - entry->d.address;
b49e97c9 3592
91d6fa6a 3593 return got_index;
b49e97c9
TS
3594}
3595
738e5348 3596/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
020d7251
RS
3597 EXTERNAL is true if the relocation was originally against a global
3598 symbol that binds locally. */
b49e97c9
TS
3599
3600static bfd_vma
9719ad41 3601mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3602 bfd_vma value, bfd_boolean external)
b49e97c9 3603{
b15e6682 3604 struct mips_got_entry *entry;
b49e97c9 3605
0a44bf69
RS
3606 /* GOT16 relocations against local symbols are followed by a LO16
3607 relocation; those against global symbols are not. Thus if the
3608 symbol was originally local, the GOT16 relocation should load the
3609 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3610 if (! external)
0a44bf69 3611 value = mips_elf_high (value) << 16;
b49e97c9 3612
738e5348
RS
3613 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3614 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3615 same in all cases. */
a8028dd0
RS
3616 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3617 NULL, R_MIPS_GOT16);
b15e6682
AO
3618 if (entry)
3619 return entry->gotidx;
3620 else
3621 return MINUS_ONE;
b49e97c9
TS
3622}
3623
3624/* Returns the offset for the entry at the INDEXth position
3625 in the GOT. */
3626
3627static bfd_vma
a8028dd0 3628mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3629 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3630{
a8028dd0 3631 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3632 asection *sgot;
3633 bfd_vma gp;
3634
a8028dd0 3635 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3636 BFD_ASSERT (htab != NULL);
3637
a8028dd0 3638 sgot = htab->sgot;
f4416af6 3639 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3640 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3641
91d6fa6a 3642 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3643}
3644
0a44bf69
RS
3645/* Create and return a local GOT entry for VALUE, which was calculated
3646 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3647 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3648 instead. */
b49e97c9 3649
b15e6682 3650static struct mips_got_entry *
0a44bf69 3651mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3652 bfd *ibfd, bfd_vma value,
5c18022e 3653 unsigned long r_symndx,
0f20cc35
DJ
3654 struct mips_elf_link_hash_entry *h,
3655 int r_type)
b49e97c9 3656{
ebc53538
RS
3657 struct mips_got_entry lookup, *entry;
3658 void **loc;
f4416af6 3659 struct mips_got_info *g;
0a44bf69 3660 struct mips_elf_link_hash_table *htab;
6c42ddb9 3661 bfd_vma gotidx;
0a44bf69
RS
3662
3663 htab = mips_elf_hash_table (info);
4dfe6ac6 3664 BFD_ASSERT (htab != NULL);
b15e6682 3665
d7206569 3666 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
3667 if (g == NULL)
3668 {
d7206569 3669 g = mips_elf_bfd_got (abfd, FALSE);
f4416af6
AO
3670 BFD_ASSERT (g != NULL);
3671 }
b15e6682 3672
020d7251
RS
3673 /* This function shouldn't be called for symbols that live in the global
3674 area of the GOT. */
3675 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
0f20cc35 3676
ebc53538
RS
3677 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3678 if (lookup.tls_type)
3679 {
3680 lookup.abfd = ibfd;
df58fc94 3681 if (tls_ldm_reloc_p (r_type))
0f20cc35 3682 {
ebc53538
RS
3683 lookup.symndx = 0;
3684 lookup.d.addend = 0;
0f20cc35
DJ
3685 }
3686 else if (h == NULL)
3687 {
ebc53538
RS
3688 lookup.symndx = r_symndx;
3689 lookup.d.addend = 0;
0f20cc35
DJ
3690 }
3691 else
ebc53538
RS
3692 {
3693 lookup.symndx = -1;
3694 lookup.d.h = h;
3695 }
0f20cc35 3696
ebc53538
RS
3697 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3698 BFD_ASSERT (entry);
0f20cc35 3699
6c42ddb9
RS
3700 gotidx = entry->gotidx;
3701 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3702
ebc53538 3703 return entry;
0f20cc35
DJ
3704 }
3705
ebc53538
RS
3706 lookup.abfd = NULL;
3707 lookup.symndx = -1;
3708 lookup.d.address = value;
3709 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3710 if (!loc)
b15e6682 3711 return NULL;
143d77c5 3712
ebc53538
RS
3713 entry = (struct mips_got_entry *) *loc;
3714 if (entry)
3715 return entry;
b15e6682 3716
cb22ccf4 3717 if (g->assigned_low_gotno > g->assigned_high_gotno)
b49e97c9
TS
3718 {
3719 /* We didn't allocate enough space in the GOT. */
3720 (*_bfd_error_handler)
3721 (_("not enough GOT space for local GOT entries"));
3722 bfd_set_error (bfd_error_bad_value);
b15e6682 3723 return NULL;
b49e97c9
TS
3724 }
3725
ebc53538
RS
3726 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3727 if (!entry)
3728 return NULL;
3729
cb22ccf4
KCY
3730 if (got16_reloc_p (r_type)
3731 || call16_reloc_p (r_type)
3732 || got_page_reloc_p (r_type)
3733 || got_disp_reloc_p (r_type))
3734 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3735 else
3736 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3737
ebc53538
RS
3738 *entry = lookup;
3739 *loc = entry;
3740
3741 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
b15e6682 3742
5c18022e 3743 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3744 if (htab->is_vxworks)
3745 {
3746 Elf_Internal_Rela outrel;
5c18022e 3747 asection *s;
91d6fa6a 3748 bfd_byte *rloc;
0a44bf69 3749 bfd_vma got_address;
0a44bf69
RS
3750
3751 s = mips_elf_rel_dyn_section (info, FALSE);
a8028dd0
RS
3752 got_address = (htab->sgot->output_section->vma
3753 + htab->sgot->output_offset
ebc53538 3754 + entry->gotidx);
0a44bf69 3755
91d6fa6a 3756 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3757 outrel.r_offset = got_address;
5c18022e
RS
3758 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3759 outrel.r_addend = value;
91d6fa6a 3760 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3761 }
3762
ebc53538 3763 return entry;
b49e97c9
TS
3764}
3765
d4596a51
RS
3766/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3767 The number might be exact or a worst-case estimate, depending on how
3768 much information is available to elf_backend_omit_section_dynsym at
3769 the current linking stage. */
3770
3771static bfd_size_type
3772count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3773{
3774 bfd_size_type count;
3775
3776 count = 0;
3777 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3778 {
3779 asection *p;
3780 const struct elf_backend_data *bed;
3781
3782 bed = get_elf_backend_data (output_bfd);
3783 for (p = output_bfd->sections; p ; p = p->next)
3784 if ((p->flags & SEC_EXCLUDE) == 0
3785 && (p->flags & SEC_ALLOC) != 0
3786 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3787 ++count;
3788 }
3789 return count;
3790}
3791
b49e97c9 3792/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3793 appear towards the end. */
b49e97c9 3794
b34976b6 3795static bfd_boolean
d4596a51 3796mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3797{
a8028dd0 3798 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3799 struct mips_elf_hash_sort_data hsd;
3800 struct mips_got_info *g;
b49e97c9 3801
d4596a51
RS
3802 if (elf_hash_table (info)->dynsymcount == 0)
3803 return TRUE;
3804
a8028dd0 3805 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3806 BFD_ASSERT (htab != NULL);
3807
a8028dd0 3808 g = htab->got_info;
d4596a51
RS
3809 if (g == NULL)
3810 return TRUE;
f4416af6 3811
b49e97c9 3812 hsd.low = NULL;
23cc69b6
RS
3813 hsd.max_unref_got_dynindx
3814 = hsd.min_got_dynindx
3815 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
d4596a51 3816 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
b49e97c9
TS
3817 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3818 elf_hash_table (info)),
3819 mips_elf_sort_hash_table_f,
3820 &hsd);
3821
3822 /* There should have been enough room in the symbol table to
44c410de 3823 accommodate both the GOT and non-GOT symbols. */
b49e97c9 3824 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
d4596a51
RS
3825 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3826 == elf_hash_table (info)->dynsymcount);
3827 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3828 == g->global_gotno);
b49e97c9
TS
3829
3830 /* Now we know which dynamic symbol has the lowest dynamic symbol
3831 table index in the GOT. */
d222d210 3832 htab->global_gotsym = hsd.low;
b49e97c9 3833
b34976b6 3834 return TRUE;
b49e97c9
TS
3835}
3836
3837/* If H needs a GOT entry, assign it the highest available dynamic
3838 index. Otherwise, assign it the lowest available dynamic
3839 index. */
3840
b34976b6 3841static bfd_boolean
9719ad41 3842mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3843{
9719ad41 3844 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9 3845
b49e97c9
TS
3846 /* Symbols without dynamic symbol table entries aren't interesting
3847 at all. */
3848 if (h->root.dynindx == -1)
b34976b6 3849 return TRUE;
b49e97c9 3850
634835ae 3851 switch (h->global_got_area)
f4416af6 3852 {
634835ae
RS
3853 case GGA_NONE:
3854 h->root.dynindx = hsd->max_non_got_dynindx++;
3855 break;
0f20cc35 3856
634835ae 3857 case GGA_NORMAL:
b49e97c9
TS
3858 h->root.dynindx = --hsd->min_got_dynindx;
3859 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3860 break;
3861
3862 case GGA_RELOC_ONLY:
634835ae
RS
3863 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3864 hsd->low = (struct elf_link_hash_entry *) h;
3865 h->root.dynindx = hsd->max_unref_got_dynindx++;
3866 break;
b49e97c9
TS
3867 }
3868
b34976b6 3869 return TRUE;
b49e97c9
TS
3870}
3871
ee227692
RS
3872/* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3873 (which is owned by the caller and shouldn't be added to the
3874 hash table directly). */
3875
3876static bfd_boolean
3877mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3878 struct mips_got_entry *lookup)
3879{
3880 struct mips_elf_link_hash_table *htab;
3881 struct mips_got_entry *entry;
3882 struct mips_got_info *g;
3883 void **loc, **bfd_loc;
3884
3885 /* Make sure there's a slot for this entry in the master GOT. */
3886 htab = mips_elf_hash_table (info);
3887 g = htab->got_info;
3888 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3889 if (!loc)
3890 return FALSE;
3891
3892 /* Populate the entry if it isn't already. */
3893 entry = (struct mips_got_entry *) *loc;
3894 if (!entry)
3895 {
3896 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3897 if (!entry)
3898 return FALSE;
3899
9ab066b4 3900 lookup->tls_initialized = FALSE;
ee227692
RS
3901 lookup->gotidx = -1;
3902 *entry = *lookup;
3903 *loc = entry;
3904 }
3905
3906 /* Reuse the same GOT entry for the BFD's GOT. */
3907 g = mips_elf_bfd_got (abfd, TRUE);
3908 if (!g)
3909 return FALSE;
3910
3911 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3912 if (!bfd_loc)
3913 return FALSE;
3914
3915 if (!*bfd_loc)
3916 *bfd_loc = entry;
3917 return TRUE;
3918}
3919
e641e783
RS
3920/* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3921 entry for it. FOR_CALL is true if the caller is only interested in
6ccf4795 3922 using the GOT entry for calls. */
b49e97c9 3923
b34976b6 3924static bfd_boolean
9719ad41
RS
3925mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3926 bfd *abfd, struct bfd_link_info *info,
e641e783 3927 bfd_boolean for_call, int r_type)
b49e97c9 3928{
a8028dd0 3929 struct mips_elf_link_hash_table *htab;
634835ae 3930 struct mips_elf_link_hash_entry *hmips;
ee227692
RS
3931 struct mips_got_entry entry;
3932 unsigned char tls_type;
a8028dd0
RS
3933
3934 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3935 BFD_ASSERT (htab != NULL);
3936
634835ae 3937 hmips = (struct mips_elf_link_hash_entry *) h;
6ccf4795
RS
3938 if (!for_call)
3939 hmips->got_only_for_calls = FALSE;
f4416af6 3940
b49e97c9
TS
3941 /* A global symbol in the GOT must also be in the dynamic symbol
3942 table. */
7c5fcef7
L
3943 if (h->dynindx == -1)
3944 {
3945 switch (ELF_ST_VISIBILITY (h->other))
3946 {
3947 case STV_INTERNAL:
3948 case STV_HIDDEN:
33bb52fb 3949 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
7c5fcef7
L
3950 break;
3951 }
c152c796 3952 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3953 return FALSE;
7c5fcef7 3954 }
b49e97c9 3955
ee227692 3956 tls_type = mips_elf_reloc_tls_type (r_type);
9ab066b4 3957 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
ee227692 3958 hmips->global_got_area = GGA_NORMAL;
86324f90 3959
f4416af6
AO
3960 entry.abfd = abfd;
3961 entry.symndx = -1;
3962 entry.d.h = (struct mips_elf_link_hash_entry *) h;
ee227692
RS
3963 entry.tls_type = tls_type;
3964 return mips_elf_record_got_entry (info, abfd, &entry);
b49e97c9 3965}
f4416af6 3966
e641e783
RS
3967/* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3968 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
f4416af6
AO
3969
3970static bfd_boolean
9719ad41 3971mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
e641e783 3972 struct bfd_link_info *info, int r_type)
f4416af6 3973{
a8028dd0
RS
3974 struct mips_elf_link_hash_table *htab;
3975 struct mips_got_info *g;
ee227692 3976 struct mips_got_entry entry;
f4416af6 3977
a8028dd0 3978 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3979 BFD_ASSERT (htab != NULL);
3980
a8028dd0
RS
3981 g = htab->got_info;
3982 BFD_ASSERT (g != NULL);
3983
f4416af6
AO
3984 entry.abfd = abfd;
3985 entry.symndx = symndx;
3986 entry.d.addend = addend;
e641e783 3987 entry.tls_type = mips_elf_reloc_tls_type (r_type);
ee227692 3988 return mips_elf_record_got_entry (info, abfd, &entry);
f4416af6 3989}
c224138d 3990
13db6b44
RS
3991/* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3992 H is the symbol's hash table entry, or null if SYMNDX is local
3993 to ABFD. */
c224138d
RS
3994
3995static bfd_boolean
13db6b44
RS
3996mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
3997 long symndx, struct elf_link_hash_entry *h,
3998 bfd_signed_vma addend)
c224138d 3999{
a8028dd0 4000 struct mips_elf_link_hash_table *htab;
ee227692 4001 struct mips_got_info *g1, *g2;
13db6b44 4002 struct mips_got_page_ref lookup, *entry;
ee227692 4003 void **loc, **bfd_loc;
c224138d 4004
a8028dd0 4005 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4006 BFD_ASSERT (htab != NULL);
4007
ee227692
RS
4008 g1 = htab->got_info;
4009 BFD_ASSERT (g1 != NULL);
a8028dd0 4010
13db6b44
RS
4011 if (h)
4012 {
4013 lookup.symndx = -1;
4014 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4015 }
4016 else
4017 {
4018 lookup.symndx = symndx;
4019 lookup.u.abfd = abfd;
4020 }
4021 lookup.addend = addend;
4022 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
c224138d
RS
4023 if (loc == NULL)
4024 return FALSE;
4025
13db6b44 4026 entry = (struct mips_got_page_ref *) *loc;
c224138d
RS
4027 if (!entry)
4028 {
4029 entry = bfd_alloc (abfd, sizeof (*entry));
4030 if (!entry)
4031 return FALSE;
4032
13db6b44 4033 *entry = lookup;
c224138d
RS
4034 *loc = entry;
4035 }
4036
ee227692
RS
4037 /* Add the same entry to the BFD's GOT. */
4038 g2 = mips_elf_bfd_got (abfd, TRUE);
4039 if (!g2)
4040 return FALSE;
4041
13db6b44 4042 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
ee227692
RS
4043 if (!bfd_loc)
4044 return FALSE;
4045
4046 if (!*bfd_loc)
4047 *bfd_loc = entry;
4048
c224138d
RS
4049 return TRUE;
4050}
33bb52fb
RS
4051
4052/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4053
4054static void
4055mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4056 unsigned int n)
4057{
4058 asection *s;
4059 struct mips_elf_link_hash_table *htab;
4060
4061 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4062 BFD_ASSERT (htab != NULL);
4063
33bb52fb
RS
4064 s = mips_elf_rel_dyn_section (info, FALSE);
4065 BFD_ASSERT (s != NULL);
4066
4067 if (htab->is_vxworks)
4068 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4069 else
4070 {
4071 if (s->size == 0)
4072 {
4073 /* Make room for a null element. */
4074 s->size += MIPS_ELF_REL_SIZE (abfd);
4075 ++s->reloc_count;
4076 }
4077 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4078 }
4079}
4080\f
476366af
RS
4081/* A htab_traverse callback for GOT entries, with DATA pointing to a
4082 mips_elf_traverse_got_arg structure. Count the number of GOT
4083 entries and TLS relocs. Set DATA->value to true if we need
4084 to resolve indirect or warning symbols and then recreate the GOT. */
33bb52fb
RS
4085
4086static int
4087mips_elf_check_recreate_got (void **entryp, void *data)
4088{
4089 struct mips_got_entry *entry;
476366af 4090 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4091
4092 entry = (struct mips_got_entry *) *entryp;
476366af 4093 arg = (struct mips_elf_traverse_got_arg *) data;
33bb52fb
RS
4094 if (entry->abfd != NULL && entry->symndx == -1)
4095 {
4096 struct mips_elf_link_hash_entry *h;
4097
4098 h = entry->d.h;
4099 if (h->root.root.type == bfd_link_hash_indirect
4100 || h->root.root.type == bfd_link_hash_warning)
4101 {
476366af 4102 arg->value = TRUE;
33bb52fb
RS
4103 return 0;
4104 }
4105 }
476366af 4106 mips_elf_count_got_entry (arg->info, arg->g, entry);
33bb52fb
RS
4107 return 1;
4108}
4109
476366af
RS
4110/* A htab_traverse callback for GOT entries, with DATA pointing to a
4111 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4112 converting entries for indirect and warning symbols into entries
4113 for the target symbol. Set DATA->g to null on error. */
33bb52fb
RS
4114
4115static int
4116mips_elf_recreate_got (void **entryp, void *data)
4117{
72e7511a 4118 struct mips_got_entry new_entry, *entry;
476366af 4119 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4120 void **slot;
4121
33bb52fb 4122 entry = (struct mips_got_entry *) *entryp;
476366af 4123 arg = (struct mips_elf_traverse_got_arg *) data;
72e7511a
RS
4124 if (entry->abfd != NULL
4125 && entry->symndx == -1
4126 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4127 || entry->d.h->root.root.type == bfd_link_hash_warning))
33bb52fb
RS
4128 {
4129 struct mips_elf_link_hash_entry *h;
4130
72e7511a
RS
4131 new_entry = *entry;
4132 entry = &new_entry;
33bb52fb 4133 h = entry->d.h;
72e7511a 4134 do
634835ae
RS
4135 {
4136 BFD_ASSERT (h->global_got_area == GGA_NONE);
4137 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4138 }
72e7511a
RS
4139 while (h->root.root.type == bfd_link_hash_indirect
4140 || h->root.root.type == bfd_link_hash_warning);
33bb52fb
RS
4141 entry->d.h = h;
4142 }
476366af 4143 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
33bb52fb
RS
4144 if (slot == NULL)
4145 {
476366af 4146 arg->g = NULL;
33bb52fb
RS
4147 return 0;
4148 }
4149 if (*slot == NULL)
72e7511a
RS
4150 {
4151 if (entry == &new_entry)
4152 {
4153 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4154 if (!entry)
4155 {
476366af 4156 arg->g = NULL;
72e7511a
RS
4157 return 0;
4158 }
4159 *entry = new_entry;
4160 }
4161 *slot = entry;
476366af 4162 mips_elf_count_got_entry (arg->info, arg->g, entry);
72e7511a 4163 }
33bb52fb
RS
4164 return 1;
4165}
4166
13db6b44
RS
4167/* Return the maximum number of GOT page entries required for RANGE. */
4168
4169static bfd_vma
4170mips_elf_pages_for_range (const struct mips_got_page_range *range)
4171{
4172 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4173}
4174
4175/* Record that G requires a page entry that can reach SEC + ADDEND. */
4176
4177static bfd_boolean
b75d42bc 4178mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
13db6b44
RS
4179 asection *sec, bfd_signed_vma addend)
4180{
b75d42bc 4181 struct mips_got_info *g = arg->g;
13db6b44
RS
4182 struct mips_got_page_entry lookup, *entry;
4183 struct mips_got_page_range **range_ptr, *range;
4184 bfd_vma old_pages, new_pages;
4185 void **loc;
4186
4187 /* Find the mips_got_page_entry hash table entry for this section. */
4188 lookup.sec = sec;
4189 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4190 if (loc == NULL)
4191 return FALSE;
4192
4193 /* Create a mips_got_page_entry if this is the first time we've
4194 seen the section. */
4195 entry = (struct mips_got_page_entry *) *loc;
4196 if (!entry)
4197 {
b75d42bc 4198 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
13db6b44
RS
4199 if (!entry)
4200 return FALSE;
4201
4202 entry->sec = sec;
4203 *loc = entry;
4204 }
4205
4206 /* Skip over ranges whose maximum extent cannot share a page entry
4207 with ADDEND. */
4208 range_ptr = &entry->ranges;
4209 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4210 range_ptr = &(*range_ptr)->next;
4211
4212 /* If we scanned to the end of the list, or found a range whose
4213 minimum extent cannot share a page entry with ADDEND, create
4214 a new singleton range. */
4215 range = *range_ptr;
4216 if (!range || addend < range->min_addend - 0xffff)
4217 {
b75d42bc 4218 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
13db6b44
RS
4219 if (!range)
4220 return FALSE;
4221
4222 range->next = *range_ptr;
4223 range->min_addend = addend;
4224 range->max_addend = addend;
4225
4226 *range_ptr = range;
4227 entry->num_pages++;
4228 g->page_gotno++;
4229 return TRUE;
4230 }
4231
4232 /* Remember how many pages the old range contributed. */
4233 old_pages = mips_elf_pages_for_range (range);
4234
4235 /* Update the ranges. */
4236 if (addend < range->min_addend)
4237 range->min_addend = addend;
4238 else if (addend > range->max_addend)
4239 {
4240 if (range->next && addend >= range->next->min_addend - 0xffff)
4241 {
4242 old_pages += mips_elf_pages_for_range (range->next);
4243 range->max_addend = range->next->max_addend;
4244 range->next = range->next->next;
4245 }
4246 else
4247 range->max_addend = addend;
4248 }
4249
4250 /* Record any change in the total estimate. */
4251 new_pages = mips_elf_pages_for_range (range);
4252 if (old_pages != new_pages)
4253 {
4254 entry->num_pages += new_pages - old_pages;
4255 g->page_gotno += new_pages - old_pages;
4256 }
4257
4258 return TRUE;
4259}
4260
4261/* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4262 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4263 whether the page reference described by *REFP needs a GOT page entry,
4264 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4265
4266static bfd_boolean
4267mips_elf_resolve_got_page_ref (void **refp, void *data)
4268{
4269 struct mips_got_page_ref *ref;
4270 struct mips_elf_traverse_got_arg *arg;
4271 struct mips_elf_link_hash_table *htab;
4272 asection *sec;
4273 bfd_vma addend;
4274
4275 ref = (struct mips_got_page_ref *) *refp;
4276 arg = (struct mips_elf_traverse_got_arg *) data;
4277 htab = mips_elf_hash_table (arg->info);
4278
4279 if (ref->symndx < 0)
4280 {
4281 struct mips_elf_link_hash_entry *h;
4282
4283 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4284 h = ref->u.h;
4285 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4286 return 1;
4287
4288 /* Ignore undefined symbols; we'll issue an error later if
4289 appropriate. */
4290 if (!((h->root.root.type == bfd_link_hash_defined
4291 || h->root.root.type == bfd_link_hash_defweak)
4292 && h->root.root.u.def.section))
4293 return 1;
4294
4295 sec = h->root.root.u.def.section;
4296 addend = h->root.root.u.def.value + ref->addend;
4297 }
4298 else
4299 {
4300 Elf_Internal_Sym *isym;
4301
4302 /* Read in the symbol. */
4303 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4304 ref->symndx);
4305 if (isym == NULL)
4306 {
4307 arg->g = NULL;
4308 return 0;
4309 }
4310
4311 /* Get the associated input section. */
4312 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4313 if (sec == NULL)
4314 {
4315 arg->g = NULL;
4316 return 0;
4317 }
4318
4319 /* If this is a mergable section, work out the section and offset
4320 of the merged data. For section symbols, the addend specifies
4321 of the offset _of_ the first byte in the data, otherwise it
4322 specifies the offset _from_ the first byte. */
4323 if (sec->flags & SEC_MERGE)
4324 {
4325 void *secinfo;
4326
4327 secinfo = elf_section_data (sec)->sec_info;
4328 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4329 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4330 isym->st_value + ref->addend);
4331 else
4332 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4333 isym->st_value) + ref->addend;
4334 }
4335 else
4336 addend = isym->st_value + ref->addend;
4337 }
b75d42bc 4338 if (!mips_elf_record_got_page_entry (arg, sec, addend))
13db6b44
RS
4339 {
4340 arg->g = NULL;
4341 return 0;
4342 }
4343 return 1;
4344}
4345
33bb52fb 4346/* If any entries in G->got_entries are for indirect or warning symbols,
13db6b44
RS
4347 replace them with entries for the target symbol. Convert g->got_page_refs
4348 into got_page_entry structures and estimate the number of page entries
4349 that they require. */
33bb52fb
RS
4350
4351static bfd_boolean
476366af
RS
4352mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4353 struct mips_got_info *g)
33bb52fb 4354{
476366af
RS
4355 struct mips_elf_traverse_got_arg tga;
4356 struct mips_got_info oldg;
4357
4358 oldg = *g;
33bb52fb 4359
476366af
RS
4360 tga.info = info;
4361 tga.g = g;
4362 tga.value = FALSE;
4363 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4364 if (tga.value)
33bb52fb 4365 {
476366af
RS
4366 *g = oldg;
4367 g->got_entries = htab_create (htab_size (oldg.got_entries),
4368 mips_elf_got_entry_hash,
4369 mips_elf_got_entry_eq, NULL);
4370 if (!g->got_entries)
33bb52fb
RS
4371 return FALSE;
4372
476366af
RS
4373 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4374 if (!tga.g)
4375 return FALSE;
4376
4377 htab_delete (oldg.got_entries);
33bb52fb 4378 }
13db6b44
RS
4379
4380 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4381 mips_got_page_entry_eq, NULL);
4382 if (g->got_page_entries == NULL)
4383 return FALSE;
4384
4385 tga.info = info;
4386 tga.g = g;
4387 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4388
33bb52fb
RS
4389 return TRUE;
4390}
4391
c5d6fa44
RS
4392/* Return true if a GOT entry for H should live in the local rather than
4393 global GOT area. */
4394
4395static bfd_boolean
4396mips_use_local_got_p (struct bfd_link_info *info,
4397 struct mips_elf_link_hash_entry *h)
4398{
4399 /* Symbols that aren't in the dynamic symbol table must live in the
4400 local GOT. This includes symbols that are completely undefined
4401 and which therefore don't bind locally. We'll report undefined
4402 symbols later if appropriate. */
4403 if (h->root.dynindx == -1)
4404 return TRUE;
4405
4406 /* Symbols that bind locally can (and in the case of forced-local
4407 symbols, must) live in the local GOT. */
4408 if (h->got_only_for_calls
4409 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4410 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4411 return TRUE;
4412
4413 /* If this is an executable that must provide a definition of the symbol,
4414 either though PLTs or copy relocations, then that address should go in
4415 the local rather than global GOT. */
4416 if (info->executable && h->has_static_relocs)
4417 return TRUE;
4418
4419 return FALSE;
4420}
4421
6c42ddb9
RS
4422/* A mips_elf_link_hash_traverse callback for which DATA points to the
4423 link_info structure. Decide whether the hash entry needs an entry in
4424 the global part of the primary GOT, setting global_got_area accordingly.
4425 Count the number of global symbols that are in the primary GOT only
4426 because they have relocations against them (reloc_only_gotno). */
33bb52fb
RS
4427
4428static int
d4596a51 4429mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 4430{
020d7251 4431 struct bfd_link_info *info;
6ccf4795 4432 struct mips_elf_link_hash_table *htab;
33bb52fb
RS
4433 struct mips_got_info *g;
4434
020d7251 4435 info = (struct bfd_link_info *) data;
6ccf4795
RS
4436 htab = mips_elf_hash_table (info);
4437 g = htab->got_info;
d4596a51 4438 if (h->global_got_area != GGA_NONE)
33bb52fb 4439 {
020d7251 4440 /* Make a final decision about whether the symbol belongs in the
c5d6fa44
RS
4441 local or global GOT. */
4442 if (mips_use_local_got_p (info, h))
6c42ddb9
RS
4443 /* The symbol belongs in the local GOT. We no longer need this
4444 entry if it was only used for relocations; those relocations
4445 will be against the null or section symbol instead of H. */
4446 h->global_got_area = GGA_NONE;
6ccf4795
RS
4447 else if (htab->is_vxworks
4448 && h->got_only_for_calls
1bbce132 4449 && h->root.plt.plist->mips_offset != MINUS_ONE)
6ccf4795
RS
4450 /* On VxWorks, calls can refer directly to the .got.plt entry;
4451 they don't need entries in the regular GOT. .got.plt entries
4452 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4453 h->global_got_area = GGA_NONE;
6c42ddb9 4454 else if (h->global_got_area == GGA_RELOC_ONLY)
23cc69b6 4455 {
6c42ddb9 4456 g->reloc_only_gotno++;
23cc69b6 4457 g->global_gotno++;
23cc69b6 4458 }
33bb52fb
RS
4459 }
4460 return 1;
4461}
f4416af6 4462\f
d7206569
RS
4463/* A htab_traverse callback for GOT entries. Add each one to the GOT
4464 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
f4416af6
AO
4465
4466static int
d7206569 4467mips_elf_add_got_entry (void **entryp, void *data)
f4416af6 4468{
d7206569
RS
4469 struct mips_got_entry *entry;
4470 struct mips_elf_traverse_got_arg *arg;
4471 void **slot;
f4416af6 4472
d7206569
RS
4473 entry = (struct mips_got_entry *) *entryp;
4474 arg = (struct mips_elf_traverse_got_arg *) data;
4475 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4476 if (!slot)
f4416af6 4477 {
d7206569
RS
4478 arg->g = NULL;
4479 return 0;
f4416af6 4480 }
d7206569 4481 if (!*slot)
c224138d 4482 {
d7206569
RS
4483 *slot = entry;
4484 mips_elf_count_got_entry (arg->info, arg->g, entry);
c224138d 4485 }
f4416af6
AO
4486 return 1;
4487}
4488
d7206569
RS
4489/* A htab_traverse callback for GOT page entries. Add each one to the GOT
4490 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
c224138d
RS
4491
4492static int
d7206569 4493mips_elf_add_got_page_entry (void **entryp, void *data)
c224138d 4494{
d7206569
RS
4495 struct mips_got_page_entry *entry;
4496 struct mips_elf_traverse_got_arg *arg;
4497 void **slot;
c224138d 4498
d7206569
RS
4499 entry = (struct mips_got_page_entry *) *entryp;
4500 arg = (struct mips_elf_traverse_got_arg *) data;
4501 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4502 if (!slot)
c224138d 4503 {
d7206569 4504 arg->g = NULL;
c224138d
RS
4505 return 0;
4506 }
d7206569
RS
4507 if (!*slot)
4508 {
4509 *slot = entry;
4510 arg->g->page_gotno += entry->num_pages;
4511 }
c224138d
RS
4512 return 1;
4513}
4514
d7206569
RS
4515/* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4516 this would lead to overflow, 1 if they were merged successfully,
4517 and 0 if a merge failed due to lack of memory. (These values are chosen
4518 so that nonnegative return values can be returned by a htab_traverse
4519 callback.) */
c224138d
RS
4520
4521static int
d7206569 4522mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
c224138d
RS
4523 struct mips_got_info *to,
4524 struct mips_elf_got_per_bfd_arg *arg)
4525{
d7206569 4526 struct mips_elf_traverse_got_arg tga;
c224138d
RS
4527 unsigned int estimate;
4528
4529 /* Work out how many page entries we would need for the combined GOT. */
4530 estimate = arg->max_pages;
4531 if (estimate >= from->page_gotno + to->page_gotno)
4532 estimate = from->page_gotno + to->page_gotno;
4533
e2ece73c 4534 /* And conservatively estimate how many local and TLS entries
c224138d 4535 would be needed. */
e2ece73c
RS
4536 estimate += from->local_gotno + to->local_gotno;
4537 estimate += from->tls_gotno + to->tls_gotno;
4538
17214937
RS
4539 /* If we're merging with the primary got, any TLS relocations will
4540 come after the full set of global entries. Otherwise estimate those
e2ece73c 4541 conservatively as well. */
17214937 4542 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
e2ece73c
RS
4543 estimate += arg->global_count;
4544 else
4545 estimate += from->global_gotno + to->global_gotno;
c224138d
RS
4546
4547 /* Bail out if the combined GOT might be too big. */
4548 if (estimate > arg->max_count)
4549 return -1;
4550
c224138d 4551 /* Transfer the bfd's got information from FROM to TO. */
d7206569
RS
4552 tga.info = arg->info;
4553 tga.g = to;
4554 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4555 if (!tga.g)
c224138d
RS
4556 return 0;
4557
d7206569
RS
4558 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4559 if (!tga.g)
c224138d
RS
4560 return 0;
4561
d7206569 4562 mips_elf_replace_bfd_got (abfd, to);
c224138d
RS
4563 return 1;
4564}
4565
d7206569 4566/* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
f4416af6
AO
4567 as possible of the primary got, since it doesn't require explicit
4568 dynamic relocations, but don't use bfds that would reference global
4569 symbols out of the addressable range. Failing the primary got,
4570 attempt to merge with the current got, or finish the current got
4571 and then make make the new got current. */
4572
d7206569
RS
4573static bfd_boolean
4574mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4575 struct mips_elf_got_per_bfd_arg *arg)
f4416af6 4576{
c224138d
RS
4577 unsigned int estimate;
4578 int result;
4579
476366af 4580 if (!mips_elf_resolve_final_got_entries (arg->info, g))
d7206569
RS
4581 return FALSE;
4582
c224138d
RS
4583 /* Work out the number of page, local and TLS entries. */
4584 estimate = arg->max_pages;
4585 if (estimate > g->page_gotno)
4586 estimate = g->page_gotno;
4587 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4588
4589 /* We place TLS GOT entries after both locals and globals. The globals
4590 for the primary GOT may overflow the normal GOT size limit, so be
4591 sure not to merge a GOT which requires TLS with the primary GOT in that
4592 case. This doesn't affect non-primary GOTs. */
c224138d 4593 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4594
c224138d 4595 if (estimate <= arg->max_count)
f4416af6 4596 {
c224138d
RS
4597 /* If we don't have a primary GOT, use it as
4598 a starting point for the primary GOT. */
4599 if (!arg->primary)
4600 {
d7206569
RS
4601 arg->primary = g;
4602 return TRUE;
c224138d 4603 }
f4416af6 4604
c224138d 4605 /* Try merging with the primary GOT. */
d7206569 4606 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
c224138d
RS
4607 if (result >= 0)
4608 return result;
f4416af6 4609 }
c224138d 4610
f4416af6 4611 /* If we can merge with the last-created got, do it. */
c224138d 4612 if (arg->current)
f4416af6 4613 {
d7206569 4614 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
c224138d
RS
4615 if (result >= 0)
4616 return result;
f4416af6 4617 }
c224138d 4618
f4416af6
AO
4619 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4620 fits; if it turns out that it doesn't, we'll get relocation
4621 overflows anyway. */
c224138d
RS
4622 g->next = arg->current;
4623 arg->current = g;
0f20cc35 4624
d7206569 4625 return TRUE;
0f20cc35
DJ
4626}
4627
72e7511a
RS
4628/* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4629 to GOTIDX, duplicating the entry if it has already been assigned
4630 an index in a different GOT. */
4631
4632static bfd_boolean
4633mips_elf_set_gotidx (void **entryp, long gotidx)
4634{
4635 struct mips_got_entry *entry;
4636
4637 entry = (struct mips_got_entry *) *entryp;
4638 if (entry->gotidx > 0)
4639 {
4640 struct mips_got_entry *new_entry;
4641
4642 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4643 if (!new_entry)
4644 return FALSE;
4645
4646 *new_entry = *entry;
4647 *entryp = new_entry;
4648 entry = new_entry;
4649 }
4650 entry->gotidx = gotidx;
4651 return TRUE;
4652}
4653
4654/* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4655 mips_elf_traverse_got_arg in which DATA->value is the size of one
4656 GOT entry. Set DATA->g to null on failure. */
0f20cc35
DJ
4657
4658static int
72e7511a 4659mips_elf_initialize_tls_index (void **entryp, void *data)
0f20cc35 4660{
72e7511a
RS
4661 struct mips_got_entry *entry;
4662 struct mips_elf_traverse_got_arg *arg;
0f20cc35
DJ
4663
4664 /* We're only interested in TLS symbols. */
72e7511a 4665 entry = (struct mips_got_entry *) *entryp;
9ab066b4 4666 if (entry->tls_type == GOT_TLS_NONE)
0f20cc35
DJ
4667 return 1;
4668
72e7511a 4669 arg = (struct mips_elf_traverse_got_arg *) data;
6c42ddb9 4670 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
ead49a57 4671 {
6c42ddb9
RS
4672 arg->g = NULL;
4673 return 0;
f4416af6
AO
4674 }
4675
ead49a57 4676 /* Account for the entries we've just allocated. */
9ab066b4 4677 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
f4416af6
AO
4678 return 1;
4679}
4680
ab361d49
RS
4681/* A htab_traverse callback for GOT entries, where DATA points to a
4682 mips_elf_traverse_got_arg. Set the global_got_area of each global
4683 symbol to DATA->value. */
f4416af6 4684
f4416af6 4685static int
ab361d49 4686mips_elf_set_global_got_area (void **entryp, void *data)
f4416af6 4687{
ab361d49
RS
4688 struct mips_got_entry *entry;
4689 struct mips_elf_traverse_got_arg *arg;
f4416af6 4690
ab361d49
RS
4691 entry = (struct mips_got_entry *) *entryp;
4692 arg = (struct mips_elf_traverse_got_arg *) data;
4693 if (entry->abfd != NULL
4694 && entry->symndx == -1
4695 && entry->d.h->global_got_area != GGA_NONE)
4696 entry->d.h->global_got_area = arg->value;
4697 return 1;
4698}
4699
4700/* A htab_traverse callback for secondary GOT entries, where DATA points
4701 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4702 and record the number of relocations they require. DATA->value is
72e7511a 4703 the size of one GOT entry. Set DATA->g to null on failure. */
ab361d49
RS
4704
4705static int
4706mips_elf_set_global_gotidx (void **entryp, void *data)
4707{
4708 struct mips_got_entry *entry;
4709 struct mips_elf_traverse_got_arg *arg;
0f20cc35 4710
ab361d49
RS
4711 entry = (struct mips_got_entry *) *entryp;
4712 arg = (struct mips_elf_traverse_got_arg *) data;
634835ae
RS
4713 if (entry->abfd != NULL
4714 && entry->symndx == -1
4715 && entry->d.h->global_got_area != GGA_NONE)
f4416af6 4716 {
cb22ccf4 4717 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
72e7511a
RS
4718 {
4719 arg->g = NULL;
4720 return 0;
4721 }
cb22ccf4 4722 arg->g->assigned_low_gotno += 1;
72e7511a 4723
ab361d49
RS
4724 if (arg->info->shared
4725 || (elf_hash_table (arg->info)->dynamic_sections_created
4726 && entry->d.h->root.def_dynamic
4727 && !entry->d.h->root.def_regular))
4728 arg->g->relocs += 1;
f4416af6
AO
4729 }
4730
4731 return 1;
4732}
4733
33bb52fb
RS
4734/* A htab_traverse callback for GOT entries for which DATA is the
4735 bfd_link_info. Forbid any global symbols from having traditional
4736 lazy-binding stubs. */
4737
0626d451 4738static int
33bb52fb 4739mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4740{
33bb52fb
RS
4741 struct bfd_link_info *info;
4742 struct mips_elf_link_hash_table *htab;
4743 struct mips_got_entry *entry;
0626d451 4744
33bb52fb
RS
4745 entry = (struct mips_got_entry *) *entryp;
4746 info = (struct bfd_link_info *) data;
4747 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4748 BFD_ASSERT (htab != NULL);
4749
0626d451
RS
4750 if (entry->abfd != NULL
4751 && entry->symndx == -1
33bb52fb 4752 && entry->d.h->needs_lazy_stub)
f4416af6 4753 {
33bb52fb
RS
4754 entry->d.h->needs_lazy_stub = FALSE;
4755 htab->lazy_stub_count--;
f4416af6 4756 }
143d77c5 4757
f4416af6
AO
4758 return 1;
4759}
4760
f4416af6
AO
4761/* Return the offset of an input bfd IBFD's GOT from the beginning of
4762 the primary GOT. */
4763static bfd_vma
9719ad41 4764mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6 4765{
d7206569 4766 if (!g->next)
f4416af6
AO
4767 return 0;
4768
d7206569 4769 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
4770 if (! g)
4771 return 0;
4772
4773 BFD_ASSERT (g->next);
4774
4775 g = g->next;
143d77c5 4776
0f20cc35
DJ
4777 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4778 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4779}
4780
4781/* Turn a single GOT that is too big for 16-bit addressing into
4782 a sequence of GOTs, each one 16-bit addressable. */
4783
4784static bfd_boolean
9719ad41 4785mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4786 asection *got, bfd_size_type pages)
f4416af6 4787{
a8028dd0 4788 struct mips_elf_link_hash_table *htab;
f4416af6 4789 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
ab361d49 4790 struct mips_elf_traverse_got_arg tga;
a8028dd0 4791 struct mips_got_info *g, *gg;
33bb52fb 4792 unsigned int assign, needed_relocs;
d7206569 4793 bfd *dynobj, *ibfd;
f4416af6 4794
33bb52fb 4795 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4796 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4797 BFD_ASSERT (htab != NULL);
4798
a8028dd0 4799 g = htab->got_info;
f4416af6 4800
f4416af6
AO
4801 got_per_bfd_arg.obfd = abfd;
4802 got_per_bfd_arg.info = info;
f4416af6
AO
4803 got_per_bfd_arg.current = NULL;
4804 got_per_bfd_arg.primary = NULL;
0a44bf69 4805 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4806 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4807 - htab->reserved_gotno);
c224138d 4808 got_per_bfd_arg.max_pages = pages;
0f20cc35 4809 /* The number of globals that will be included in the primary GOT.
ab361d49 4810 See the calls to mips_elf_set_global_got_area below for more
0f20cc35
DJ
4811 information. */
4812 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4813
4814 /* Try to merge the GOTs of input bfds together, as long as they
4815 don't seem to exceed the maximum GOT size, choosing one of them
4816 to be the primary GOT. */
c72f2fb2 4817 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
4818 {
4819 gg = mips_elf_bfd_got (ibfd, FALSE);
4820 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4821 return FALSE;
4822 }
f4416af6 4823
0f20cc35 4824 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6 4825 if (got_per_bfd_arg.primary == NULL)
3dff0dd1 4826 g->next = mips_elf_create_got_info (abfd);
f4416af6
AO
4827 else
4828 g->next = got_per_bfd_arg.primary;
4829 g->next->next = got_per_bfd_arg.current;
4830
4831 /* GG is now the master GOT, and G is the primary GOT. */
4832 gg = g;
4833 g = g->next;
4834
4835 /* Map the output bfd to the primary got. That's what we're going
4836 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4837 didn't mark in check_relocs, and we want a quick way to find it.
4838 We can't just use gg->next because we're going to reverse the
4839 list. */
d7206569 4840 mips_elf_replace_bfd_got (abfd, g);
f4416af6 4841
634835ae
RS
4842 /* Every symbol that is referenced in a dynamic relocation must be
4843 present in the primary GOT, so arrange for them to appear after
4844 those that are actually referenced. */
23cc69b6 4845 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4846 g->global_gotno = gg->global_gotno;
f4416af6 4847
ab361d49
RS
4848 tga.info = info;
4849 tga.value = GGA_RELOC_ONLY;
4850 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4851 tga.value = GGA_NORMAL;
4852 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
f4416af6
AO
4853
4854 /* Now go through the GOTs assigning them offset ranges.
cb22ccf4 4855 [assigned_low_gotno, local_gotno[ will be set to the range of local
f4416af6
AO
4856 entries in each GOT. We can then compute the end of a GOT by
4857 adding local_gotno to global_gotno. We reverse the list and make
4858 it circular since then we'll be able to quickly compute the
4859 beginning of a GOT, by computing the end of its predecessor. To
4860 avoid special cases for the primary GOT, while still preserving
4861 assertions that are valid for both single- and multi-got links,
4862 we arrange for the main got struct to have the right number of
4863 global entries, but set its local_gotno such that the initial
4864 offset of the primary GOT is zero. Remember that the primary GOT
4865 will become the last item in the circular linked list, so it
4866 points back to the master GOT. */
4867 gg->local_gotno = -g->global_gotno;
4868 gg->global_gotno = g->global_gotno;
0f20cc35 4869 gg->tls_gotno = 0;
f4416af6
AO
4870 assign = 0;
4871 gg->next = gg;
4872
4873 do
4874 {
4875 struct mips_got_info *gn;
4876
861fb55a 4877 assign += htab->reserved_gotno;
cb22ccf4 4878 g->assigned_low_gotno = assign;
c224138d
RS
4879 g->local_gotno += assign;
4880 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
cb22ccf4 4881 g->assigned_high_gotno = g->local_gotno - 1;
0f20cc35
DJ
4882 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4883
ead49a57
RS
4884 /* Take g out of the direct list, and push it onto the reversed
4885 list that gg points to. g->next is guaranteed to be nonnull after
4886 this operation, as required by mips_elf_initialize_tls_index. */
4887 gn = g->next;
4888 g->next = gg->next;
4889 gg->next = g;
4890
0f20cc35
DJ
4891 /* Set up any TLS entries. We always place the TLS entries after
4892 all non-TLS entries. */
4893 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
72e7511a
RS
4894 tga.g = g;
4895 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4896 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4897 if (!tga.g)
4898 return FALSE;
1fd20d70 4899 BFD_ASSERT (g->tls_assigned_gotno == assign);
f4416af6 4900
ead49a57 4901 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 4902 g = gn;
0626d451 4903
33bb52fb
RS
4904 /* Forbid global symbols in every non-primary GOT from having
4905 lazy-binding stubs. */
0626d451 4906 if (g)
33bb52fb 4907 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
4908 }
4909 while (g);
4910
59b08994 4911 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
33bb52fb
RS
4912
4913 needed_relocs = 0;
33bb52fb
RS
4914 for (g = gg->next; g && g->next != gg; g = g->next)
4915 {
4916 unsigned int save_assign;
4917
ab361d49
RS
4918 /* Assign offsets to global GOT entries and count how many
4919 relocations they need. */
cb22ccf4
KCY
4920 save_assign = g->assigned_low_gotno;
4921 g->assigned_low_gotno = g->local_gotno;
ab361d49
RS
4922 tga.info = info;
4923 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4924 tga.g = g;
4925 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
72e7511a
RS
4926 if (!tga.g)
4927 return FALSE;
cb22ccf4
KCY
4928 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4929 g->assigned_low_gotno = save_assign;
72e7511a 4930
33bb52fb
RS
4931 if (info->shared)
4932 {
cb22ccf4
KCY
4933 g->relocs += g->local_gotno - g->assigned_low_gotno;
4934 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
33bb52fb
RS
4935 + g->next->global_gotno
4936 + g->next->tls_gotno
861fb55a 4937 + htab->reserved_gotno);
33bb52fb 4938 }
ab361d49 4939 needed_relocs += g->relocs;
33bb52fb 4940 }
ab361d49 4941 needed_relocs += g->relocs;
33bb52fb
RS
4942
4943 if (needed_relocs)
4944 mips_elf_allocate_dynamic_relocations (dynobj, info,
4945 needed_relocs);
143d77c5 4946
f4416af6
AO
4947 return TRUE;
4948}
143d77c5 4949
b49e97c9
TS
4950\f
4951/* Returns the first relocation of type r_type found, beginning with
4952 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4953
4954static const Elf_Internal_Rela *
9719ad41
RS
4955mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4956 const Elf_Internal_Rela *relocation,
4957 const Elf_Internal_Rela *relend)
b49e97c9 4958{
c000e262
TS
4959 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4960
b49e97c9
TS
4961 while (relocation < relend)
4962 {
c000e262
TS
4963 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4964 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
4965 return relocation;
4966
4967 ++relocation;
4968 }
4969
4970 /* We didn't find it. */
b49e97c9
TS
4971 return NULL;
4972}
4973
020d7251 4974/* Return whether an input relocation is against a local symbol. */
b49e97c9 4975
b34976b6 4976static bfd_boolean
9719ad41
RS
4977mips_elf_local_relocation_p (bfd *input_bfd,
4978 const Elf_Internal_Rela *relocation,
020d7251 4979 asection **local_sections)
b49e97c9
TS
4980{
4981 unsigned long r_symndx;
4982 Elf_Internal_Shdr *symtab_hdr;
b49e97c9
TS
4983 size_t extsymoff;
4984
4985 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4986 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4987 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4988
4989 if (r_symndx < extsymoff)
b34976b6 4990 return TRUE;
b49e97c9 4991 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 4992 return TRUE;
b49e97c9 4993
b34976b6 4994 return FALSE;
b49e97c9
TS
4995}
4996\f
4997/* Sign-extend VALUE, which has the indicated number of BITS. */
4998
a7ebbfdf 4999bfd_vma
9719ad41 5000_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
5001{
5002 if (value & ((bfd_vma) 1 << (bits - 1)))
5003 /* VALUE is negative. */
5004 value |= ((bfd_vma) - 1) << bits;
5005
5006 return value;
5007}
5008
5009/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 5010 range expressible by a signed number with the indicated number of
b49e97c9
TS
5011 BITS. */
5012
b34976b6 5013static bfd_boolean
9719ad41 5014mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
5015{
5016 bfd_signed_vma svalue = (bfd_signed_vma) value;
5017
5018 if (svalue > (1 << (bits - 1)) - 1)
5019 /* The value is too big. */
b34976b6 5020 return TRUE;
b49e97c9
TS
5021 else if (svalue < -(1 << (bits - 1)))
5022 /* The value is too small. */
b34976b6 5023 return TRUE;
b49e97c9
TS
5024
5025 /* All is well. */
b34976b6 5026 return FALSE;
b49e97c9
TS
5027}
5028
5029/* Calculate the %high function. */
5030
5031static bfd_vma
9719ad41 5032mips_elf_high (bfd_vma value)
b49e97c9
TS
5033{
5034 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5035}
5036
5037/* Calculate the %higher function. */
5038
5039static bfd_vma
9719ad41 5040mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5041{
5042#ifdef BFD64
5043 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5044#else
5045 abort ();
c5ae1840 5046 return MINUS_ONE;
b49e97c9
TS
5047#endif
5048}
5049
5050/* Calculate the %highest function. */
5051
5052static bfd_vma
9719ad41 5053mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5054{
5055#ifdef BFD64
b15e6682 5056 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
5057#else
5058 abort ();
c5ae1840 5059 return MINUS_ONE;
b49e97c9
TS
5060#endif
5061}
5062\f
5063/* Create the .compact_rel section. */
5064
b34976b6 5065static bfd_boolean
9719ad41
RS
5066mips_elf_create_compact_rel_section
5067 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
5068{
5069 flagword flags;
5070 register asection *s;
5071
3d4d4302 5072 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
b49e97c9
TS
5073 {
5074 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5075 | SEC_READONLY);
5076
3d4d4302 5077 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
b49e97c9 5078 if (s == NULL
b49e97c9
TS
5079 || ! bfd_set_section_alignment (abfd, s,
5080 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5081 return FALSE;
b49e97c9 5082
eea6121a 5083 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
5084 }
5085
b34976b6 5086 return TRUE;
b49e97c9
TS
5087}
5088
5089/* Create the .got section to hold the global offset table. */
5090
b34976b6 5091static bfd_boolean
23cc69b6 5092mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5093{
5094 flagword flags;
5095 register asection *s;
5096 struct elf_link_hash_entry *h;
14a793b2 5097 struct bfd_link_hash_entry *bh;
0a44bf69
RS
5098 struct mips_elf_link_hash_table *htab;
5099
5100 htab = mips_elf_hash_table (info);
4dfe6ac6 5101 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5102
5103 /* This function may be called more than once. */
23cc69b6
RS
5104 if (htab->sgot)
5105 return TRUE;
b49e97c9
TS
5106
5107 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5108 | SEC_LINKER_CREATED);
5109
72b4917c
TS
5110 /* We have to use an alignment of 2**4 here because this is hardcoded
5111 in the function stub generation and in the linker script. */
87e0a731 5112 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
b49e97c9 5113 if (s == NULL
72b4917c 5114 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 5115 return FALSE;
a8028dd0 5116 htab->sgot = s;
b49e97c9
TS
5117
5118 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5119 linker script because we don't want to define the symbol if we
5120 are not creating a global offset table. */
14a793b2 5121 bh = NULL;
b49e97c9
TS
5122 if (! (_bfd_generic_link_add_one_symbol
5123 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 5124 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5125 return FALSE;
14a793b2
AM
5126
5127 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5128 h->non_elf = 0;
5129 h->def_regular = 1;
b49e97c9 5130 h->type = STT_OBJECT;
2f9efdfc 5131 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
d329bcd1 5132 elf_hash_table (info)->hgot = h;
b49e97c9
TS
5133
5134 if (info->shared
c152c796 5135 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5136 return FALSE;
b49e97c9 5137
3dff0dd1 5138 htab->got_info = mips_elf_create_got_info (abfd);
f0abc2a1 5139 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
5140 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5141
861fb55a 5142 /* We also need a .got.plt section when generating PLTs. */
87e0a731
AM
5143 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5144 SEC_ALLOC | SEC_LOAD
5145 | SEC_HAS_CONTENTS
5146 | SEC_IN_MEMORY
5147 | SEC_LINKER_CREATED);
861fb55a
DJ
5148 if (s == NULL)
5149 return FALSE;
5150 htab->sgotplt = s;
0a44bf69 5151
b34976b6 5152 return TRUE;
b49e97c9 5153}
b49e97c9 5154\f
0a44bf69
RS
5155/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5156 __GOTT_INDEX__ symbols. These symbols are only special for
5157 shared objects; they are not used in executables. */
5158
5159static bfd_boolean
5160is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5161{
5162 return (mips_elf_hash_table (info)->is_vxworks
5163 && info->shared
5164 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5165 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5166}
861fb55a
DJ
5167
5168/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5169 require an la25 stub. See also mips_elf_local_pic_function_p,
5170 which determines whether the destination function ever requires a
5171 stub. */
5172
5173static bfd_boolean
8f0c309a
CLT
5174mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5175 bfd_boolean target_is_16_bit_code_p)
861fb55a
DJ
5176{
5177 /* We specifically ignore branches and jumps from EF_PIC objects,
5178 where the onus is on the compiler or programmer to perform any
5179 necessary initialization of $25. Sometimes such initialization
5180 is unnecessary; for example, -mno-shared functions do not use
5181 the incoming value of $25, and may therefore be called directly. */
5182 if (PIC_OBJECT_P (input_bfd))
5183 return FALSE;
5184
5185 switch (r_type)
5186 {
5187 case R_MIPS_26:
5188 case R_MIPS_PC16:
7361da2c
AB
5189 case R_MIPS_PC21_S2:
5190 case R_MIPS_PC26_S2:
df58fc94
RS
5191 case R_MICROMIPS_26_S1:
5192 case R_MICROMIPS_PC7_S1:
5193 case R_MICROMIPS_PC10_S1:
5194 case R_MICROMIPS_PC16_S1:
5195 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
5196 return TRUE;
5197
8f0c309a
CLT
5198 case R_MIPS16_26:
5199 return !target_is_16_bit_code_p;
5200
861fb55a
DJ
5201 default:
5202 return FALSE;
5203 }
5204}
0a44bf69 5205\f
b49e97c9
TS
5206/* Calculate the value produced by the RELOCATION (which comes from
5207 the INPUT_BFD). The ADDEND is the addend to use for this
5208 RELOCATION; RELOCATION->R_ADDEND is ignored.
5209
5210 The result of the relocation calculation is stored in VALUEP.
38a7df63 5211 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
df58fc94 5212 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9
TS
5213
5214 This function returns bfd_reloc_continue if the caller need take no
5215 further action regarding this relocation, bfd_reloc_notsupported if
5216 something goes dramatically wrong, bfd_reloc_overflow if an
5217 overflow occurs, and bfd_reloc_ok to indicate success. */
5218
5219static bfd_reloc_status_type
9719ad41
RS
5220mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5221 asection *input_section,
5222 struct bfd_link_info *info,
5223 const Elf_Internal_Rela *relocation,
5224 bfd_vma addend, reloc_howto_type *howto,
5225 Elf_Internal_Sym *local_syms,
5226 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
5227 const char **namep,
5228 bfd_boolean *cross_mode_jump_p,
9719ad41 5229 bfd_boolean save_addend)
b49e97c9
TS
5230{
5231 /* The eventual value we will return. */
5232 bfd_vma value;
5233 /* The address of the symbol against which the relocation is
5234 occurring. */
5235 bfd_vma symbol = 0;
5236 /* The final GP value to be used for the relocatable, executable, or
5237 shared object file being produced. */
0a61c8c2 5238 bfd_vma gp;
b49e97c9
TS
5239 /* The place (section offset or address) of the storage unit being
5240 relocated. */
5241 bfd_vma p;
5242 /* The value of GP used to create the relocatable object. */
0a61c8c2 5243 bfd_vma gp0;
b49e97c9
TS
5244 /* The offset into the global offset table at which the address of
5245 the relocation entry symbol, adjusted by the addend, resides
5246 during execution. */
5247 bfd_vma g = MINUS_ONE;
5248 /* The section in which the symbol referenced by the relocation is
5249 located. */
5250 asection *sec = NULL;
5251 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 5252 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 5253 symbol. */
b34976b6
AM
5254 bfd_boolean local_p, was_local_p;
5255 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5256 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
5257 /* TRUE if the symbol referred to by this relocation is
5258 "__gnu_local_gp". */
5259 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
5260 Elf_Internal_Shdr *symtab_hdr;
5261 size_t extsymoff;
5262 unsigned long r_symndx;
5263 int r_type;
b34976b6 5264 /* TRUE if overflow occurred during the calculation of the
b49e97c9 5265 relocation value. */
b34976b6
AM
5266 bfd_boolean overflowed_p;
5267 /* TRUE if this relocation refers to a MIPS16 function. */
5268 bfd_boolean target_is_16_bit_code_p = FALSE;
df58fc94 5269 bfd_boolean target_is_micromips_code_p = FALSE;
0a44bf69
RS
5270 struct mips_elf_link_hash_table *htab;
5271 bfd *dynobj;
5272
5273 dynobj = elf_hash_table (info)->dynobj;
5274 htab = mips_elf_hash_table (info);
4dfe6ac6 5275 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5276
5277 /* Parse the relocation. */
5278 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5279 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5280 p = (input_section->output_section->vma
5281 + input_section->output_offset
5282 + relocation->r_offset);
5283
5284 /* Assume that there will be no overflow. */
b34976b6 5285 overflowed_p = FALSE;
b49e97c9
TS
5286
5287 /* Figure out whether or not the symbol is local, and get the offset
5288 used in the array of hash table entries. */
5289 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5290 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
020d7251 5291 local_sections);
bce03d3d 5292 was_local_p = local_p;
b49e97c9
TS
5293 if (! elf_bad_symtab (input_bfd))
5294 extsymoff = symtab_hdr->sh_info;
5295 else
5296 {
5297 /* The symbol table does not follow the rule that local symbols
5298 must come before globals. */
5299 extsymoff = 0;
5300 }
5301
5302 /* Figure out the value of the symbol. */
5303 if (local_p)
5304 {
5305 Elf_Internal_Sym *sym;
5306
5307 sym = local_syms + r_symndx;
5308 sec = local_sections[r_symndx];
5309
5310 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
5311 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5312 || (sec->flags & SEC_MERGE))
b49e97c9 5313 symbol += sym->st_value;
d4df96e6
L
5314 if ((sec->flags & SEC_MERGE)
5315 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5316 {
5317 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5318 addend -= symbol;
5319 addend += sec->output_section->vma + sec->output_offset;
5320 }
b49e97c9 5321
df58fc94
RS
5322 /* MIPS16/microMIPS text labels should be treated as odd. */
5323 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
5324 ++symbol;
5325
5326 /* Record the name of this symbol, for our caller. */
5327 *namep = bfd_elf_string_from_elf_section (input_bfd,
5328 symtab_hdr->sh_link,
5329 sym->st_name);
5330 if (*namep == '\0')
5331 *namep = bfd_section_name (input_bfd, sec);
5332
30c09090 5333 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
df58fc94 5334 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
b49e97c9
TS
5335 }
5336 else
5337 {
560e09e9
NC
5338 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5339
b49e97c9
TS
5340 /* For global symbols we look up the symbol in the hash-table. */
5341 h = ((struct mips_elf_link_hash_entry *)
5342 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5343 /* Find the real hash-table entry for this symbol. */
5344 while (h->root.root.type == bfd_link_hash_indirect
5345 || h->root.root.type == bfd_link_hash_warning)
5346 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5347
5348 /* Record the name of this symbol, for our caller. */
5349 *namep = h->root.root.root.string;
5350
5351 /* See if this is the special _gp_disp symbol. Note that such a
5352 symbol must always be a global symbol. */
560e09e9 5353 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
5354 && ! NEWABI_P (input_bfd))
5355 {
5356 /* Relocations against _gp_disp are permitted only with
5357 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 5358 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
5359 return bfd_reloc_notsupported;
5360
b34976b6 5361 gp_disp_p = TRUE;
b49e97c9 5362 }
bbe506e8
TS
5363 /* See if this is the special _gp symbol. Note that such a
5364 symbol must always be a global symbol. */
5365 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5366 gnu_local_gp_p = TRUE;
5367
5368
b49e97c9
TS
5369 /* If this symbol is defined, calculate its address. Note that
5370 _gp_disp is a magic symbol, always implicitly defined by the
5371 linker, so it's inappropriate to check to see whether or not
5372 its defined. */
5373 else if ((h->root.root.type == bfd_link_hash_defined
5374 || h->root.root.type == bfd_link_hash_defweak)
5375 && h->root.root.u.def.section)
5376 {
5377 sec = h->root.root.u.def.section;
5378 if (sec->output_section)
5379 symbol = (h->root.root.u.def.value
5380 + sec->output_section->vma
5381 + sec->output_offset);
5382 else
5383 symbol = h->root.root.u.def.value;
5384 }
5385 else if (h->root.root.type == bfd_link_hash_undefweak)
5386 /* We allow relocations against undefined weak symbols, giving
5387 it the value zero, so that you can undefined weak functions
5388 and check to see if they exist by looking at their
5389 addresses. */
5390 symbol = 0;
59c2e50f 5391 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5392 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5393 symbol = 0;
a4d0f181
TS
5394 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5395 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5396 {
5397 /* If this is a dynamic link, we should have created a
5398 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5399 in in _bfd_mips_elf_create_dynamic_sections.
5400 Otherwise, we should define the symbol with a value of 0.
5401 FIXME: It should probably get into the symbol table
5402 somehow as well. */
5403 BFD_ASSERT (! info->shared);
5404 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5405 symbol = 0;
5406 }
5e2b0d47
NC
5407 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5408 {
5409 /* This is an optional symbol - an Irix specific extension to the
5410 ELF spec. Ignore it for now.
5411 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5412 than simply ignoring them, but we do not handle this for now.
5413 For information see the "64-bit ELF Object File Specification"
5414 which is available from here:
5415 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5416 symbol = 0;
5417 }
e7e2196d
MR
5418 else if ((*info->callbacks->undefined_symbol)
5419 (info, h->root.root.root.string, input_bfd,
5420 input_section, relocation->r_offset,
5421 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5422 || ELF_ST_VISIBILITY (h->root.other)))
5423 {
5424 return bfd_reloc_undefined;
5425 }
b49e97c9
TS
5426 else
5427 {
e7e2196d 5428 return bfd_reloc_notsupported;
b49e97c9
TS
5429 }
5430
30c09090 5431 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
1bbce132 5432 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
b49e97c9
TS
5433 }
5434
738e5348
RS
5435 /* If this is a reference to a 16-bit function with a stub, we need
5436 to redirect the relocation to the stub unless:
5437
5438 (a) the relocation is for a MIPS16 JAL;
5439
5440 (b) the relocation is for a MIPS16 PIC call, and there are no
5441 non-MIPS16 uses of the GOT slot; or
5442
5443 (c) the section allows direct references to MIPS16 functions. */
5444 if (r_type != R_MIPS16_26
5445 && !info->relocatable
5446 && ((h != NULL
5447 && h->fn_stub != NULL
5448 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71 5449 || (local_p
698600e4
AM
5450 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5451 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5452 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5453 {
5454 /* This is a 32- or 64-bit call to a 16-bit function. We should
5455 have already noticed that we were going to need the
5456 stub. */
5457 if (local_p)
8f0c309a 5458 {
698600e4 5459 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
8f0c309a
CLT
5460 value = 0;
5461 }
b49e97c9
TS
5462 else
5463 {
5464 BFD_ASSERT (h->need_fn_stub);
8f0c309a
CLT
5465 if (h->la25_stub)
5466 {
5467 /* If a LA25 header for the stub itself exists, point to the
5468 prepended LUI/ADDIU sequence. */
5469 sec = h->la25_stub->stub_section;
5470 value = h->la25_stub->offset;
5471 }
5472 else
5473 {
5474 sec = h->fn_stub;
5475 value = 0;
5476 }
b49e97c9
TS
5477 }
5478
8f0c309a 5479 symbol = sec->output_section->vma + sec->output_offset + value;
f38c2df5
TS
5480 /* The target is 16-bit, but the stub isn't. */
5481 target_is_16_bit_code_p = FALSE;
b49e97c9 5482 }
1bbce132
MR
5483 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5484 to a standard MIPS function, we need to redirect the call to the stub.
5485 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5486 indirect calls should use an indirect stub instead. */
1049f94e 5487 else if (r_type == R_MIPS16_26 && !info->relocatable
b314ec0e 5488 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71 5489 || (local_p
698600e4
AM
5490 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5491 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
1bbce132 5492 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
b49e97c9 5493 {
b9d58d71 5494 if (local_p)
698600e4 5495 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
b9d58d71 5496 else
b49e97c9 5497 {
b9d58d71
TS
5498 /* If both call_stub and call_fp_stub are defined, we can figure
5499 out which one to use by checking which one appears in the input
5500 file. */
5501 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5502 {
b9d58d71 5503 asection *o;
68ffbac6 5504
b9d58d71
TS
5505 sec = NULL;
5506 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5507 {
b9d58d71
TS
5508 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5509 {
5510 sec = h->call_fp_stub;
5511 break;
5512 }
b49e97c9 5513 }
b9d58d71
TS
5514 if (sec == NULL)
5515 sec = h->call_stub;
b49e97c9 5516 }
b9d58d71 5517 else if (h->call_stub != NULL)
b49e97c9 5518 sec = h->call_stub;
b9d58d71
TS
5519 else
5520 sec = h->call_fp_stub;
5521 }
b49e97c9 5522
eea6121a 5523 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5524 symbol = sec->output_section->vma + sec->output_offset;
5525 }
861fb55a
DJ
5526 /* If this is a direct call to a PIC function, redirect to the
5527 non-PIC stub. */
5528 else if (h != NULL && h->la25_stub
8f0c309a
CLT
5529 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5530 target_is_16_bit_code_p))
861fb55a
DJ
5531 symbol = (h->la25_stub->stub_section->output_section->vma
5532 + h->la25_stub->stub_section->output_offset
5533 + h->la25_stub->offset);
1bbce132
MR
5534 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5535 entry is used if a standard PLT entry has also been made. In this
5536 case the symbol will have been set by mips_elf_set_plt_sym_value
5537 to point to the standard PLT entry, so redirect to the compressed
5538 one. */
5539 else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1)
5540 && !info->relocatable
5541 && h != NULL
5542 && h->use_plt_entry
5543 && h->root.plt.plist->comp_offset != MINUS_ONE
5544 && h->root.plt.plist->mips_offset != MINUS_ONE)
5545 {
5546 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5547
5548 sec = htab->splt;
5549 symbol = (sec->output_section->vma
5550 + sec->output_offset
5551 + htab->plt_header_size
5552 + htab->plt_mips_offset
5553 + h->root.plt.plist->comp_offset
5554 + 1);
5555
5556 target_is_16_bit_code_p = !micromips_p;
5557 target_is_micromips_code_p = micromips_p;
5558 }
b49e97c9 5559
df58fc94
RS
5560 /* Make sure MIPS16 and microMIPS are not used together. */
5561 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5562 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5563 {
5564 (*_bfd_error_handler)
5565 (_("MIPS16 and microMIPS functions cannot call each other"));
5566 return bfd_reloc_notsupported;
5567 }
5568
b49e97c9 5569 /* Calls from 16-bit code to 32-bit code and vice versa require the
df58fc94
RS
5570 mode change. However, we can ignore calls to undefined weak symbols,
5571 which should never be executed at runtime. This exception is important
5572 because the assembly writer may have "known" that any definition of the
5573 symbol would be 16-bit code, and that direct jumps were therefore
5574 acceptable. */
5575 *cross_mode_jump_p = (!info->relocatable
5576 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5577 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5578 || (r_type == R_MICROMIPS_26_S1
5579 && !target_is_micromips_code_p)
5580 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5581 && (target_is_16_bit_code_p
5582 || target_is_micromips_code_p))));
b49e97c9 5583
c5d6fa44 5584 local_p = (h == NULL || mips_use_local_got_p (info, h));
b49e97c9 5585
0a61c8c2
RS
5586 gp0 = _bfd_get_gp_value (input_bfd);
5587 gp = _bfd_get_gp_value (abfd);
23cc69b6 5588 if (htab->got_info)
a8028dd0 5589 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5590
5591 if (gnu_local_gp_p)
5592 symbol = gp;
5593
df58fc94
RS
5594 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5595 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5596 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5597 if (got_page_reloc_p (r_type) && !local_p)
020d7251 5598 {
df58fc94
RS
5599 r_type = (micromips_reloc_p (r_type)
5600 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
020d7251
RS
5601 addend = 0;
5602 }
5603
e77760d2 5604 /* If we haven't already determined the GOT offset, and we're going
0a61c8c2 5605 to need it, get it now. */
b49e97c9
TS
5606 switch (r_type)
5607 {
738e5348
RS
5608 case R_MIPS16_CALL16:
5609 case R_MIPS16_GOT16:
b49e97c9
TS
5610 case R_MIPS_CALL16:
5611 case R_MIPS_GOT16:
5612 case R_MIPS_GOT_DISP:
5613 case R_MIPS_GOT_HI16:
5614 case R_MIPS_CALL_HI16:
5615 case R_MIPS_GOT_LO16:
5616 case R_MIPS_CALL_LO16:
df58fc94
RS
5617 case R_MICROMIPS_CALL16:
5618 case R_MICROMIPS_GOT16:
5619 case R_MICROMIPS_GOT_DISP:
5620 case R_MICROMIPS_GOT_HI16:
5621 case R_MICROMIPS_CALL_HI16:
5622 case R_MICROMIPS_GOT_LO16:
5623 case R_MICROMIPS_CALL_LO16:
0f20cc35
DJ
5624 case R_MIPS_TLS_GD:
5625 case R_MIPS_TLS_GOTTPREL:
5626 case R_MIPS_TLS_LDM:
d0f13682
CLT
5627 case R_MIPS16_TLS_GD:
5628 case R_MIPS16_TLS_GOTTPREL:
5629 case R_MIPS16_TLS_LDM:
df58fc94
RS
5630 case R_MICROMIPS_TLS_GD:
5631 case R_MICROMIPS_TLS_GOTTPREL:
5632 case R_MICROMIPS_TLS_LDM:
b49e97c9 5633 /* Find the index into the GOT where this value is located. */
df58fc94 5634 if (tls_ldm_reloc_p (r_type))
0f20cc35 5635 {
0a44bf69 5636 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5637 0, 0, NULL, r_type);
0f20cc35
DJ
5638 if (g == MINUS_ONE)
5639 return bfd_reloc_outofrange;
5640 }
5641 else if (!local_p)
b49e97c9 5642 {
0a44bf69
RS
5643 /* On VxWorks, CALL relocations should refer to the .got.plt
5644 entry, which is initialized to point at the PLT stub. */
5645 if (htab->is_vxworks
df58fc94
RS
5646 && (call_hi16_reloc_p (r_type)
5647 || call_lo16_reloc_p (r_type)
738e5348 5648 || call16_reloc_p (r_type)))
0a44bf69
RS
5649 {
5650 BFD_ASSERT (addend == 0);
5651 BFD_ASSERT (h->root.needs_plt);
5652 g = mips_elf_gotplt_index (info, &h->root);
5653 }
5654 else
b49e97c9 5655 {
020d7251 5656 BFD_ASSERT (addend == 0);
13fbec83
RS
5657 g = mips_elf_global_got_index (abfd, info, input_bfd,
5658 &h->root, r_type);
e641e783 5659 if (!TLS_RELOC_P (r_type)
020d7251
RS
5660 && !elf_hash_table (info)->dynamic_sections_created)
5661 /* This is a static link. We must initialize the GOT entry. */
a8028dd0 5662 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
b49e97c9
TS
5663 }
5664 }
0a44bf69 5665 else if (!htab->is_vxworks
738e5348 5666 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5667 /* The calculation below does not involve "g". */
b49e97c9
TS
5668 break;
5669 else
5670 {
5c18022e 5671 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5672 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5673 if (g == MINUS_ONE)
5674 return bfd_reloc_outofrange;
5675 }
5676
5677 /* Convert GOT indices to actual offsets. */
a8028dd0 5678 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5679 break;
b49e97c9
TS
5680 }
5681
0a44bf69
RS
5682 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5683 symbols are resolved by the loader. Add them to .rela.dyn. */
5684 if (h != NULL && is_gott_symbol (info, &h->root))
5685 {
5686 Elf_Internal_Rela outrel;
5687 bfd_byte *loc;
5688 asection *s;
5689
5690 s = mips_elf_rel_dyn_section (info, FALSE);
5691 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5692
5693 outrel.r_offset = (input_section->output_section->vma
5694 + input_section->output_offset
5695 + relocation->r_offset);
5696 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5697 outrel.r_addend = addend;
5698 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5699
5700 /* If we've written this relocation for a readonly section,
5701 we need to set DF_TEXTREL again, so that we do not delete the
5702 DT_TEXTREL tag. */
5703 if (MIPS_ELF_READONLY_SECTION (input_section))
5704 info->flags |= DF_TEXTREL;
5705
0a44bf69
RS
5706 *valuep = 0;
5707 return bfd_reloc_ok;
5708 }
5709
b49e97c9
TS
5710 /* Figure out what kind of relocation is being performed. */
5711 switch (r_type)
5712 {
5713 case R_MIPS_NONE:
5714 return bfd_reloc_continue;
5715
5716 case R_MIPS_16:
c3eb94b4
MF
5717 if (howto->partial_inplace)
5718 addend = _bfd_mips_elf_sign_extend (addend, 16);
5719 value = symbol + addend;
b49e97c9
TS
5720 overflowed_p = mips_elf_overflow_p (value, 16);
5721 break;
5722
5723 case R_MIPS_32:
5724 case R_MIPS_REL32:
5725 case R_MIPS_64:
5726 if ((info->shared
861fb55a 5727 || (htab->root.dynamic_sections_created
b49e97c9 5728 && h != NULL
f5385ebf 5729 && h->root.def_dynamic
861fb55a
DJ
5730 && !h->root.def_regular
5731 && !h->has_static_relocs))
cf35638d 5732 && r_symndx != STN_UNDEF
9a59ad6b
DJ
5733 && (h == NULL
5734 || h->root.root.type != bfd_link_hash_undefweak
5735 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
b49e97c9
TS
5736 && (input_section->flags & SEC_ALLOC) != 0)
5737 {
861fb55a 5738 /* If we're creating a shared library, then we can't know
b49e97c9
TS
5739 where the symbol will end up. So, we create a relocation
5740 record in the output, and leave the job up to the dynamic
861fb55a
DJ
5741 linker. We must do the same for executable references to
5742 shared library symbols, unless we've decided to use copy
5743 relocs or PLTs instead. */
b49e97c9
TS
5744 value = addend;
5745 if (!mips_elf_create_dynamic_relocation (abfd,
5746 info,
5747 relocation,
5748 h,
5749 sec,
5750 symbol,
5751 &value,
5752 input_section))
5753 return bfd_reloc_undefined;
5754 }
5755 else
5756 {
5757 if (r_type != R_MIPS_REL32)
5758 value = symbol + addend;
5759 else
5760 value = addend;
5761 }
5762 value &= howto->dst_mask;
092dcd75
CD
5763 break;
5764
5765 case R_MIPS_PC32:
5766 value = symbol + addend - p;
5767 value &= howto->dst_mask;
b49e97c9
TS
5768 break;
5769
b49e97c9
TS
5770 case R_MIPS16_26:
5771 /* The calculation for R_MIPS16_26 is just the same as for an
5772 R_MIPS_26. It's only the storage of the relocated field into
5773 the output file that's different. That's handled in
5774 mips_elf_perform_relocation. So, we just fall through to the
5775 R_MIPS_26 case here. */
5776 case R_MIPS_26:
df58fc94
RS
5777 case R_MICROMIPS_26_S1:
5778 {
5779 unsigned int shift;
5780
5781 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5782 the correct ISA mode selector and bit 1 must be 0. */
5783 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5784 return bfd_reloc_outofrange;
5785
5786 /* Shift is 2, unusually, for microMIPS JALX. */
5787 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5788
5789 if (was_local_p)
5790 value = addend | ((p + 4) & (0xfc000000 << shift));
c3eb94b4 5791 else if (howto->partial_inplace)
df58fc94 5792 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
c3eb94b4
MF
5793 else
5794 value = addend;
df58fc94
RS
5795 value = (value + symbol) >> shift;
5796 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5797 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5798 value &= howto->dst_mask;
5799 }
b49e97c9
TS
5800 break;
5801
0f20cc35 5802 case R_MIPS_TLS_DTPREL_HI16:
d0f13682 5803 case R_MIPS16_TLS_DTPREL_HI16:
df58fc94 5804 case R_MICROMIPS_TLS_DTPREL_HI16:
0f20cc35
DJ
5805 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5806 & howto->dst_mask);
5807 break;
5808
5809 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
5810 case R_MIPS_TLS_DTPREL32:
5811 case R_MIPS_TLS_DTPREL64:
d0f13682 5812 case R_MIPS16_TLS_DTPREL_LO16:
df58fc94 5813 case R_MICROMIPS_TLS_DTPREL_LO16:
0f20cc35
DJ
5814 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5815 break;
5816
5817 case R_MIPS_TLS_TPREL_HI16:
d0f13682 5818 case R_MIPS16_TLS_TPREL_HI16:
df58fc94 5819 case R_MICROMIPS_TLS_TPREL_HI16:
0f20cc35
DJ
5820 value = (mips_elf_high (addend + symbol - tprel_base (info))
5821 & howto->dst_mask);
5822 break;
5823
5824 case R_MIPS_TLS_TPREL_LO16:
d0f13682
CLT
5825 case R_MIPS_TLS_TPREL32:
5826 case R_MIPS_TLS_TPREL64:
5827 case R_MIPS16_TLS_TPREL_LO16:
df58fc94 5828 case R_MICROMIPS_TLS_TPREL_LO16:
0f20cc35
DJ
5829 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5830 break;
5831
b49e97c9 5832 case R_MIPS_HI16:
d6f16593 5833 case R_MIPS16_HI16:
df58fc94 5834 case R_MICROMIPS_HI16:
b49e97c9
TS
5835 if (!gp_disp_p)
5836 {
5837 value = mips_elf_high (addend + symbol);
5838 value &= howto->dst_mask;
5839 }
5840 else
5841 {
d6f16593
MR
5842 /* For MIPS16 ABI code we generate this sequence
5843 0: li $v0,%hi(_gp_disp)
5844 4: addiupc $v1,%lo(_gp_disp)
5845 8: sll $v0,16
5846 12: addu $v0,$v1
5847 14: move $gp,$v0
5848 So the offsets of hi and lo relocs are the same, but the
888b9c01
CLT
5849 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5850 ADDIUPC clears the low two bits of the instruction address,
5851 so the base is ($t9 + 4) & ~3. */
d6f16593 5852 if (r_type == R_MIPS16_HI16)
888b9c01 5853 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
df58fc94
RS
5854 /* The microMIPS .cpload sequence uses the same assembly
5855 instructions as the traditional psABI version, but the
5856 incoming $t9 has the low bit set. */
5857 else if (r_type == R_MICROMIPS_HI16)
5858 value = mips_elf_high (addend + gp - p - 1);
d6f16593
MR
5859 else
5860 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
5861 overflowed_p = mips_elf_overflow_p (value, 16);
5862 }
5863 break;
5864
5865 case R_MIPS_LO16:
d6f16593 5866 case R_MIPS16_LO16:
df58fc94
RS
5867 case R_MICROMIPS_LO16:
5868 case R_MICROMIPS_HI0_LO16:
b49e97c9
TS
5869 if (!gp_disp_p)
5870 value = (symbol + addend) & howto->dst_mask;
5871 else
5872 {
d6f16593
MR
5873 /* See the comment for R_MIPS16_HI16 above for the reason
5874 for this conditional. */
5875 if (r_type == R_MIPS16_LO16)
888b9c01 5876 value = addend + gp - (p & ~(bfd_vma) 0x3);
df58fc94
RS
5877 else if (r_type == R_MICROMIPS_LO16
5878 || r_type == R_MICROMIPS_HI0_LO16)
5879 value = addend + gp - p + 3;
d6f16593
MR
5880 else
5881 value = addend + gp - p + 4;
b49e97c9 5882 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 5883 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
5884 _gp_disp are normally generated from the .cpload
5885 pseudo-op. It generates code that normally looks like
5886 this:
5887
5888 lui $gp,%hi(_gp_disp)
5889 addiu $gp,$gp,%lo(_gp_disp)
5890 addu $gp,$gp,$t9
5891
5892 Here $t9 holds the address of the function being called,
5893 as required by the MIPS ELF ABI. The R_MIPS_LO16
5894 relocation can easily overflow in this situation, but the
5895 R_MIPS_HI16 relocation will handle the overflow.
5896 Therefore, we consider this a bug in the MIPS ABI, and do
5897 not check for overflow here. */
5898 }
5899 break;
5900
5901 case R_MIPS_LITERAL:
df58fc94 5902 case R_MICROMIPS_LITERAL:
b49e97c9
TS
5903 /* Because we don't merge literal sections, we can handle this
5904 just like R_MIPS_GPREL16. In the long run, we should merge
5905 shared literals, and then we will need to additional work
5906 here. */
5907
5908 /* Fall through. */
5909
5910 case R_MIPS16_GPREL:
5911 /* The R_MIPS16_GPREL performs the same calculation as
5912 R_MIPS_GPREL16, but stores the relocated bits in a different
5913 order. We don't need to do anything special here; the
5914 differences are handled in mips_elf_perform_relocation. */
5915 case R_MIPS_GPREL16:
df58fc94
RS
5916 case R_MICROMIPS_GPREL7_S2:
5917 case R_MICROMIPS_GPREL16:
bce03d3d
AO
5918 /* Only sign-extend the addend if it was extracted from the
5919 instruction. If the addend was separate, leave it alone,
5920 otherwise we may lose significant bits. */
5921 if (howto->partial_inplace)
a7ebbfdf 5922 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
5923 value = symbol + addend - gp;
5924 /* If the symbol was local, any earlier relocatable links will
5925 have adjusted its addend with the gp offset, so compensate
5926 for that now. Don't do it for symbols forced local in this
5927 link, though, since they won't have had the gp offset applied
5928 to them before. */
5929 if (was_local_p)
5930 value += gp0;
b49e97c9
TS
5931 overflowed_p = mips_elf_overflow_p (value, 16);
5932 break;
5933
738e5348
RS
5934 case R_MIPS16_GOT16:
5935 case R_MIPS16_CALL16:
b49e97c9
TS
5936 case R_MIPS_GOT16:
5937 case R_MIPS_CALL16:
df58fc94
RS
5938 case R_MICROMIPS_GOT16:
5939 case R_MICROMIPS_CALL16:
0a44bf69 5940 /* VxWorks does not have separate local and global semantics for
738e5348 5941 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 5942 if (!htab->is_vxworks && local_p)
b49e97c9 5943 {
5c18022e 5944 value = mips_elf_got16_entry (abfd, input_bfd, info,
020d7251 5945 symbol + addend, !was_local_p);
b49e97c9
TS
5946 if (value == MINUS_ONE)
5947 return bfd_reloc_outofrange;
5948 value
a8028dd0 5949 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
5950 overflowed_p = mips_elf_overflow_p (value, 16);
5951 break;
5952 }
5953
5954 /* Fall through. */
5955
0f20cc35
DJ
5956 case R_MIPS_TLS_GD:
5957 case R_MIPS_TLS_GOTTPREL:
5958 case R_MIPS_TLS_LDM:
b49e97c9 5959 case R_MIPS_GOT_DISP:
d0f13682
CLT
5960 case R_MIPS16_TLS_GD:
5961 case R_MIPS16_TLS_GOTTPREL:
5962 case R_MIPS16_TLS_LDM:
df58fc94
RS
5963 case R_MICROMIPS_TLS_GD:
5964 case R_MICROMIPS_TLS_GOTTPREL:
5965 case R_MICROMIPS_TLS_LDM:
5966 case R_MICROMIPS_GOT_DISP:
b49e97c9
TS
5967 value = g;
5968 overflowed_p = mips_elf_overflow_p (value, 16);
5969 break;
5970
5971 case R_MIPS_GPREL32:
bce03d3d
AO
5972 value = (addend + symbol + gp0 - gp);
5973 if (!save_addend)
5974 value &= howto->dst_mask;
b49e97c9
TS
5975 break;
5976
5977 case R_MIPS_PC16:
bad36eac 5978 case R_MIPS_GNU_REL16_S2:
c3eb94b4
MF
5979 if (howto->partial_inplace)
5980 addend = _bfd_mips_elf_sign_extend (addend, 18);
5981
5982 if ((symbol + addend) & 3)
5983 return bfd_reloc_outofrange;
5984
5985 value = symbol + addend - p;
bad36eac 5986 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
5987 value >>= howto->rightshift;
5988 value &= howto->dst_mask;
b49e97c9
TS
5989 break;
5990
7361da2c
AB
5991 case R_MIPS_PC21_S2:
5992 if (howto->partial_inplace)
5993 addend = _bfd_mips_elf_sign_extend (addend, 23);
5994
5995 if ((symbol + addend) & 3)
5996 return bfd_reloc_outofrange;
5997
5998 value = symbol + addend - p;
5999 overflowed_p = mips_elf_overflow_p (value, 23);
6000 value >>= howto->rightshift;
6001 value &= howto->dst_mask;
6002 break;
6003
6004 case R_MIPS_PC26_S2:
6005 if (howto->partial_inplace)
6006 addend = _bfd_mips_elf_sign_extend (addend, 28);
6007
6008 if ((symbol + addend) & 3)
6009 return bfd_reloc_outofrange;
6010
6011 value = symbol + addend - p;
6012 overflowed_p = mips_elf_overflow_p (value, 28);
6013 value >>= howto->rightshift;
6014 value &= howto->dst_mask;
6015 break;
6016
6017 case R_MIPS_PC18_S3:
6018 if (howto->partial_inplace)
6019 addend = _bfd_mips_elf_sign_extend (addend, 21);
6020
6021 if ((symbol + addend) & 7)
6022 return bfd_reloc_outofrange;
6023
6024 value = symbol + addend - ((p | 7) ^ 7);
6025 overflowed_p = mips_elf_overflow_p (value, 21);
6026 value >>= howto->rightshift;
6027 value &= howto->dst_mask;
6028 break;
6029
6030 case R_MIPS_PC19_S2:
6031 if (howto->partial_inplace)
6032 addend = _bfd_mips_elf_sign_extend (addend, 21);
6033
6034 if ((symbol + addend) & 3)
6035 return bfd_reloc_outofrange;
6036
6037 value = symbol + addend - p;
6038 overflowed_p = mips_elf_overflow_p (value, 21);
6039 value >>= howto->rightshift;
6040 value &= howto->dst_mask;
6041 break;
6042
6043 case R_MIPS_PCHI16:
6044 value = mips_elf_high (symbol + addend - p);
6045 overflowed_p = mips_elf_overflow_p (value, 16);
6046 value &= howto->dst_mask;
6047 break;
6048
6049 case R_MIPS_PCLO16:
6050 if (howto->partial_inplace)
6051 addend = _bfd_mips_elf_sign_extend (addend, 16);
6052 value = symbol + addend - p;
6053 value &= howto->dst_mask;
6054 break;
6055
df58fc94 6056 case R_MICROMIPS_PC7_S1:
c3eb94b4
MF
6057 if (howto->partial_inplace)
6058 addend = _bfd_mips_elf_sign_extend (addend, 8);
6059 value = symbol + addend - p;
df58fc94
RS
6060 overflowed_p = mips_elf_overflow_p (value, 8);
6061 value >>= howto->rightshift;
6062 value &= howto->dst_mask;
6063 break;
6064
6065 case R_MICROMIPS_PC10_S1:
c3eb94b4
MF
6066 if (howto->partial_inplace)
6067 addend = _bfd_mips_elf_sign_extend (addend, 11);
6068 value = symbol + addend - p;
df58fc94
RS
6069 overflowed_p = mips_elf_overflow_p (value, 11);
6070 value >>= howto->rightshift;
6071 value &= howto->dst_mask;
6072 break;
6073
6074 case R_MICROMIPS_PC16_S1:
c3eb94b4
MF
6075 if (howto->partial_inplace)
6076 addend = _bfd_mips_elf_sign_extend (addend, 17);
6077 value = symbol + addend - p;
df58fc94
RS
6078 overflowed_p = mips_elf_overflow_p (value, 17);
6079 value >>= howto->rightshift;
6080 value &= howto->dst_mask;
6081 break;
6082
6083 case R_MICROMIPS_PC23_S2:
c3eb94b4
MF
6084 if (howto->partial_inplace)
6085 addend = _bfd_mips_elf_sign_extend (addend, 25);
6086 value = symbol + addend - ((p | 3) ^ 3);
df58fc94
RS
6087 overflowed_p = mips_elf_overflow_p (value, 25);
6088 value >>= howto->rightshift;
6089 value &= howto->dst_mask;
6090 break;
6091
b49e97c9
TS
6092 case R_MIPS_GOT_HI16:
6093 case R_MIPS_CALL_HI16:
df58fc94
RS
6094 case R_MICROMIPS_GOT_HI16:
6095 case R_MICROMIPS_CALL_HI16:
b49e97c9
TS
6096 /* We're allowed to handle these two relocations identically.
6097 The dynamic linker is allowed to handle the CALL relocations
6098 differently by creating a lazy evaluation stub. */
6099 value = g;
6100 value = mips_elf_high (value);
6101 value &= howto->dst_mask;
6102 break;
6103
6104 case R_MIPS_GOT_LO16:
6105 case R_MIPS_CALL_LO16:
df58fc94
RS
6106 case R_MICROMIPS_GOT_LO16:
6107 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
6108 value = g & howto->dst_mask;
6109 break;
6110
6111 case R_MIPS_GOT_PAGE:
df58fc94 6112 case R_MICROMIPS_GOT_PAGE:
5c18022e 6113 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
6114 if (value == MINUS_ONE)
6115 return bfd_reloc_outofrange;
a8028dd0 6116 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6117 overflowed_p = mips_elf_overflow_p (value, 16);
6118 break;
6119
6120 case R_MIPS_GOT_OFST:
df58fc94 6121 case R_MICROMIPS_GOT_OFST:
93a2b7ae 6122 if (local_p)
5c18022e 6123 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
6124 else
6125 value = addend;
b49e97c9
TS
6126 overflowed_p = mips_elf_overflow_p (value, 16);
6127 break;
6128
6129 case R_MIPS_SUB:
df58fc94 6130 case R_MICROMIPS_SUB:
b49e97c9
TS
6131 value = symbol - addend;
6132 value &= howto->dst_mask;
6133 break;
6134
6135 case R_MIPS_HIGHER:
df58fc94 6136 case R_MICROMIPS_HIGHER:
b49e97c9
TS
6137 value = mips_elf_higher (addend + symbol);
6138 value &= howto->dst_mask;
6139 break;
6140
6141 case R_MIPS_HIGHEST:
df58fc94 6142 case R_MICROMIPS_HIGHEST:
b49e97c9
TS
6143 value = mips_elf_highest (addend + symbol);
6144 value &= howto->dst_mask;
6145 break;
6146
6147 case R_MIPS_SCN_DISP:
df58fc94 6148 case R_MICROMIPS_SCN_DISP:
b49e97c9
TS
6149 value = symbol + addend - sec->output_offset;
6150 value &= howto->dst_mask;
6151 break;
6152
b49e97c9 6153 case R_MIPS_JALR:
df58fc94 6154 case R_MICROMIPS_JALR:
1367d393
ILT
6155 /* This relocation is only a hint. In some cases, we optimize
6156 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
6157 when the symbol does not resolve locally. */
6158 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393
ILT
6159 return bfd_reloc_continue;
6160 value = symbol + addend;
6161 break;
b49e97c9 6162
1367d393 6163 case R_MIPS_PJUMP:
b49e97c9
TS
6164 case R_MIPS_GNU_VTINHERIT:
6165 case R_MIPS_GNU_VTENTRY:
6166 /* We don't do anything with these at present. */
6167 return bfd_reloc_continue;
6168
6169 default:
6170 /* An unrecognized relocation type. */
6171 return bfd_reloc_notsupported;
6172 }
6173
6174 /* Store the VALUE for our caller. */
6175 *valuep = value;
6176 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6177}
6178
6179/* Obtain the field relocated by RELOCATION. */
6180
6181static bfd_vma
9719ad41
RS
6182mips_elf_obtain_contents (reloc_howto_type *howto,
6183 const Elf_Internal_Rela *relocation,
6184 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
6185{
6186 bfd_vma x;
6187 bfd_byte *location = contents + relocation->r_offset;
6188
6189 /* Obtain the bytes. */
6190 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
6191
b49e97c9
TS
6192 return x;
6193}
6194
6195/* It has been determined that the result of the RELOCATION is the
6196 VALUE. Use HOWTO to place VALUE into the output file at the
6197 appropriate position. The SECTION is the section to which the
68ffbac6 6198 relocation applies.
38a7df63 6199 CROSS_MODE_JUMP_P is true if the relocation field
df58fc94 6200 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9 6201
b34976b6 6202 Returns FALSE if anything goes wrong. */
b49e97c9 6203
b34976b6 6204static bfd_boolean
9719ad41
RS
6205mips_elf_perform_relocation (struct bfd_link_info *info,
6206 reloc_howto_type *howto,
6207 const Elf_Internal_Rela *relocation,
6208 bfd_vma value, bfd *input_bfd,
6209 asection *input_section, bfd_byte *contents,
38a7df63 6210 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
6211{
6212 bfd_vma x;
6213 bfd_byte *location;
6214 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6215
6216 /* Figure out where the relocation is occurring. */
6217 location = contents + relocation->r_offset;
6218
df58fc94 6219 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
d6f16593 6220
b49e97c9
TS
6221 /* Obtain the current value. */
6222 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6223
6224 /* Clear the field we are setting. */
6225 x &= ~howto->dst_mask;
6226
b49e97c9
TS
6227 /* Set the field. */
6228 x |= (value & howto->dst_mask);
6229
6230 /* If required, turn JAL into JALX. */
38a7df63 6231 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 6232 {
b34976b6 6233 bfd_boolean ok;
b49e97c9
TS
6234 bfd_vma opcode = x >> 26;
6235 bfd_vma jalx_opcode;
6236
6237 /* Check to see if the opcode is already JAL or JALX. */
6238 if (r_type == R_MIPS16_26)
6239 {
6240 ok = ((opcode == 0x6) || (opcode == 0x7));
6241 jalx_opcode = 0x7;
6242 }
df58fc94
RS
6243 else if (r_type == R_MICROMIPS_26_S1)
6244 {
6245 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6246 jalx_opcode = 0x3c;
6247 }
b49e97c9
TS
6248 else
6249 {
6250 ok = ((opcode == 0x3) || (opcode == 0x1d));
6251 jalx_opcode = 0x1d;
6252 }
6253
3bdf9505
MR
6254 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6255 convert J or JALS to JALX. */
b49e97c9
TS
6256 if (!ok)
6257 {
6258 (*_bfd_error_handler)
3bdf9505 6259 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
d003868e
AM
6260 input_bfd,
6261 input_section,
b49e97c9
TS
6262 (unsigned long) relocation->r_offset);
6263 bfd_set_error (bfd_error_bad_value);
b34976b6 6264 return FALSE;
b49e97c9
TS
6265 }
6266
6267 /* Make this the JALX opcode. */
6268 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6269 }
6270
38a7df63
CF
6271 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6272 range. */
cd8d5a82 6273 if (!info->relocatable
38a7df63 6274 && !cross_mode_jump_p
cd8d5a82
CF
6275 && ((JAL_TO_BAL_P (input_bfd)
6276 && r_type == R_MIPS_26
6277 && (x >> 26) == 0x3) /* jal addr */
6278 || (JALR_TO_BAL_P (input_bfd)
6279 && r_type == R_MIPS_JALR
38a7df63
CF
6280 && x == 0x0320f809) /* jalr t9 */
6281 || (JR_TO_B_P (input_bfd)
6282 && r_type == R_MIPS_JALR
6283 && x == 0x03200008))) /* jr t9 */
1367d393
ILT
6284 {
6285 bfd_vma addr;
6286 bfd_vma dest;
6287 bfd_signed_vma off;
6288
6289 addr = (input_section->output_section->vma
6290 + input_section->output_offset
6291 + relocation->r_offset
6292 + 4);
6293 if (r_type == R_MIPS_26)
6294 dest = (value << 2) | ((addr >> 28) << 28);
6295 else
6296 dest = value;
6297 off = dest - addr;
6298 if (off <= 0x1ffff && off >= -0x20000)
38a7df63
CF
6299 {
6300 if (x == 0x03200008) /* jr t9 */
6301 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6302 else
6303 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6304 }
1367d393
ILT
6305 }
6306
b49e97c9
TS
6307 /* Put the value into the output. */
6308 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593 6309
df58fc94
RS
6310 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
6311 location);
d6f16593 6312
b34976b6 6313 return TRUE;
b49e97c9 6314}
b49e97c9 6315\f
b49e97c9
TS
6316/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6317 is the original relocation, which is now being transformed into a
6318 dynamic relocation. The ADDENDP is adjusted if necessary; the
6319 caller should store the result in place of the original addend. */
6320
b34976b6 6321static bfd_boolean
9719ad41
RS
6322mips_elf_create_dynamic_relocation (bfd *output_bfd,
6323 struct bfd_link_info *info,
6324 const Elf_Internal_Rela *rel,
6325 struct mips_elf_link_hash_entry *h,
6326 asection *sec, bfd_vma symbol,
6327 bfd_vma *addendp, asection *input_section)
b49e97c9 6328{
947216bf 6329 Elf_Internal_Rela outrel[3];
b49e97c9
TS
6330 asection *sreloc;
6331 bfd *dynobj;
6332 int r_type;
5d41f0b6
RS
6333 long indx;
6334 bfd_boolean defined_p;
0a44bf69 6335 struct mips_elf_link_hash_table *htab;
b49e97c9 6336
0a44bf69 6337 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
6338 BFD_ASSERT (htab != NULL);
6339
b49e97c9
TS
6340 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6341 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 6342 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
6343 BFD_ASSERT (sreloc != NULL);
6344 BFD_ASSERT (sreloc->contents != NULL);
6345 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 6346 < sreloc->size);
b49e97c9 6347
b49e97c9
TS
6348 outrel[0].r_offset =
6349 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
6350 if (ABI_64_P (output_bfd))
6351 {
6352 outrel[1].r_offset =
6353 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6354 outrel[2].r_offset =
6355 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6356 }
b49e97c9 6357
c5ae1840 6358 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 6359 /* The relocation field has been deleted. */
5d41f0b6
RS
6360 return TRUE;
6361
6362 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
6363 {
6364 /* The relocation field has been converted into a relative value of
6365 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6366 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 6367 *addendp += symbol;
5d41f0b6 6368 return TRUE;
0d591ff7 6369 }
b49e97c9 6370
5d41f0b6
RS
6371 /* We must now calculate the dynamic symbol table index to use
6372 in the relocation. */
d4a77f3f 6373 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6 6374 {
020d7251 6375 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5d41f0b6
RS
6376 indx = h->root.dynindx;
6377 if (SGI_COMPAT (output_bfd))
6378 defined_p = h->root.def_regular;
6379 else
6380 /* ??? glibc's ld.so just adds the final GOT entry to the
6381 relocation field. It therefore treats relocs against
6382 defined symbols in the same way as relocs against
6383 undefined symbols. */
6384 defined_p = FALSE;
6385 }
b49e97c9
TS
6386 else
6387 {
5d41f0b6
RS
6388 if (sec != NULL && bfd_is_abs_section (sec))
6389 indx = 0;
6390 else if (sec == NULL || sec->owner == NULL)
fdd07405 6391 {
5d41f0b6
RS
6392 bfd_set_error (bfd_error_bad_value);
6393 return FALSE;
b49e97c9
TS
6394 }
6395 else
6396 {
5d41f0b6 6397 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
6398 if (indx == 0)
6399 {
6400 asection *osec = htab->root.text_index_section;
6401 indx = elf_section_data (osec)->dynindx;
6402 }
5d41f0b6
RS
6403 if (indx == 0)
6404 abort ();
b49e97c9
TS
6405 }
6406
5d41f0b6
RS
6407 /* Instead of generating a relocation using the section
6408 symbol, we may as well make it a fully relative
6409 relocation. We want to avoid generating relocations to
6410 local symbols because we used to generate them
6411 incorrectly, without adding the original symbol value,
6412 which is mandated by the ABI for section symbols. In
6413 order to give dynamic loaders and applications time to
6414 phase out the incorrect use, we refrain from emitting
6415 section-relative relocations. It's not like they're
6416 useful, after all. This should be a bit more efficient
6417 as well. */
6418 /* ??? Although this behavior is compatible with glibc's ld.so,
6419 the ABI says that relocations against STN_UNDEF should have
6420 a symbol value of 0. Irix rld honors this, so relocations
6421 against STN_UNDEF have no effect. */
6422 if (!SGI_COMPAT (output_bfd))
6423 indx = 0;
6424 defined_p = TRUE;
b49e97c9
TS
6425 }
6426
5d41f0b6
RS
6427 /* If the relocation was previously an absolute relocation and
6428 this symbol will not be referred to by the relocation, we must
6429 adjust it by the value we give it in the dynamic symbol table.
6430 Otherwise leave the job up to the dynamic linker. */
6431 if (defined_p && r_type != R_MIPS_REL32)
6432 *addendp += symbol;
6433
0a44bf69
RS
6434 if (htab->is_vxworks)
6435 /* VxWorks uses non-relative relocations for this. */
6436 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6437 else
6438 /* The relocation is always an REL32 relocation because we don't
6439 know where the shared library will wind up at load-time. */
6440 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6441 R_MIPS_REL32);
6442
5d41f0b6
RS
6443 /* For strict adherence to the ABI specification, we should
6444 generate a R_MIPS_64 relocation record by itself before the
6445 _REL32/_64 record as well, such that the addend is read in as
6446 a 64-bit value (REL32 is a 32-bit relocation, after all).
6447 However, since none of the existing ELF64 MIPS dynamic
6448 loaders seems to care, we don't waste space with these
6449 artificial relocations. If this turns out to not be true,
6450 mips_elf_allocate_dynamic_relocation() should be tweaked so
6451 as to make room for a pair of dynamic relocations per
6452 invocation if ABI_64_P, and here we should generate an
6453 additional relocation record with R_MIPS_64 by itself for a
6454 NULL symbol before this relocation record. */
6455 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6456 ABI_64_P (output_bfd)
6457 ? R_MIPS_64
6458 : R_MIPS_NONE);
6459 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6460
6461 /* Adjust the output offset of the relocation to reference the
6462 correct location in the output file. */
6463 outrel[0].r_offset += (input_section->output_section->vma
6464 + input_section->output_offset);
6465 outrel[1].r_offset += (input_section->output_section->vma
6466 + input_section->output_offset);
6467 outrel[2].r_offset += (input_section->output_section->vma
6468 + input_section->output_offset);
6469
b49e97c9
TS
6470 /* Put the relocation back out. We have to use the special
6471 relocation outputter in the 64-bit case since the 64-bit
6472 relocation format is non-standard. */
6473 if (ABI_64_P (output_bfd))
6474 {
6475 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6476 (output_bfd, &outrel[0],
6477 (sreloc->contents
6478 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6479 }
0a44bf69
RS
6480 else if (htab->is_vxworks)
6481 {
6482 /* VxWorks uses RELA rather than REL dynamic relocations. */
6483 outrel[0].r_addend = *addendp;
6484 bfd_elf32_swap_reloca_out
6485 (output_bfd, &outrel[0],
6486 (sreloc->contents
6487 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6488 }
b49e97c9 6489 else
947216bf
AM
6490 bfd_elf32_swap_reloc_out
6491 (output_bfd, &outrel[0],
6492 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 6493
b49e97c9
TS
6494 /* We've now added another relocation. */
6495 ++sreloc->reloc_count;
6496
6497 /* Make sure the output section is writable. The dynamic linker
6498 will be writing to it. */
6499 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6500 |= SHF_WRITE;
6501
6502 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 6503 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9 6504 {
3d4d4302 6505 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
6506 bfd_byte *cr;
6507
6508 if (scpt)
6509 {
6510 Elf32_crinfo cptrel;
6511
6512 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6513 cptrel.vaddr = (rel->r_offset
6514 + input_section->output_section->vma
6515 + input_section->output_offset);
6516 if (r_type == R_MIPS_REL32)
6517 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6518 else
6519 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6520 mips_elf_set_cr_dist2to (cptrel, 0);
6521 cptrel.konst = *addendp;
6522
6523 cr = (scpt->contents
6524 + sizeof (Elf32_External_compact_rel));
abc0f8d0 6525 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
6526 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6527 ((Elf32_External_crinfo *) cr
6528 + scpt->reloc_count));
6529 ++scpt->reloc_count;
6530 }
6531 }
6532
943284cc
DJ
6533 /* If we've written this relocation for a readonly section,
6534 we need to set DF_TEXTREL again, so that we do not delete the
6535 DT_TEXTREL tag. */
6536 if (MIPS_ELF_READONLY_SECTION (input_section))
6537 info->flags |= DF_TEXTREL;
6538
b34976b6 6539 return TRUE;
b49e97c9
TS
6540}
6541\f
b49e97c9
TS
6542/* Return the MACH for a MIPS e_flags value. */
6543
6544unsigned long
9719ad41 6545_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
6546{
6547 switch (flags & EF_MIPS_MACH)
6548 {
6549 case E_MIPS_MACH_3900:
6550 return bfd_mach_mips3900;
6551
6552 case E_MIPS_MACH_4010:
6553 return bfd_mach_mips4010;
6554
6555 case E_MIPS_MACH_4100:
6556 return bfd_mach_mips4100;
6557
6558 case E_MIPS_MACH_4111:
6559 return bfd_mach_mips4111;
6560
00707a0e
RS
6561 case E_MIPS_MACH_4120:
6562 return bfd_mach_mips4120;
6563
b49e97c9
TS
6564 case E_MIPS_MACH_4650:
6565 return bfd_mach_mips4650;
6566
00707a0e
RS
6567 case E_MIPS_MACH_5400:
6568 return bfd_mach_mips5400;
6569
6570 case E_MIPS_MACH_5500:
6571 return bfd_mach_mips5500;
6572
e407c74b
NC
6573 case E_MIPS_MACH_5900:
6574 return bfd_mach_mips5900;
6575
0d2e43ed
ILT
6576 case E_MIPS_MACH_9000:
6577 return bfd_mach_mips9000;
6578
b49e97c9
TS
6579 case E_MIPS_MACH_SB1:
6580 return bfd_mach_mips_sb1;
6581
350cc38d
MS
6582 case E_MIPS_MACH_LS2E:
6583 return bfd_mach_mips_loongson_2e;
6584
6585 case E_MIPS_MACH_LS2F:
6586 return bfd_mach_mips_loongson_2f;
6587
fd503541
NC
6588 case E_MIPS_MACH_LS3A:
6589 return bfd_mach_mips_loongson_3a;
6590
2c629856
N
6591 case E_MIPS_MACH_OCTEON3:
6592 return bfd_mach_mips_octeon3;
6593
432233b3
AP
6594 case E_MIPS_MACH_OCTEON2:
6595 return bfd_mach_mips_octeon2;
6596
6f179bd0
AN
6597 case E_MIPS_MACH_OCTEON:
6598 return bfd_mach_mips_octeon;
6599
52b6b6b9
JM
6600 case E_MIPS_MACH_XLR:
6601 return bfd_mach_mips_xlr;
6602
b49e97c9
TS
6603 default:
6604 switch (flags & EF_MIPS_ARCH)
6605 {
6606 default:
6607 case E_MIPS_ARCH_1:
6608 return bfd_mach_mips3000;
b49e97c9
TS
6609
6610 case E_MIPS_ARCH_2:
6611 return bfd_mach_mips6000;
b49e97c9
TS
6612
6613 case E_MIPS_ARCH_3:
6614 return bfd_mach_mips4000;
b49e97c9
TS
6615
6616 case E_MIPS_ARCH_4:
6617 return bfd_mach_mips8000;
b49e97c9
TS
6618
6619 case E_MIPS_ARCH_5:
6620 return bfd_mach_mips5;
b49e97c9
TS
6621
6622 case E_MIPS_ARCH_32:
6623 return bfd_mach_mipsisa32;
b49e97c9
TS
6624
6625 case E_MIPS_ARCH_64:
6626 return bfd_mach_mipsisa64;
af7ee8bf
CD
6627
6628 case E_MIPS_ARCH_32R2:
6629 return bfd_mach_mipsisa32r2;
5f74bc13
CD
6630
6631 case E_MIPS_ARCH_64R2:
6632 return bfd_mach_mipsisa64r2;
7361da2c
AB
6633
6634 case E_MIPS_ARCH_32R6:
6635 return bfd_mach_mipsisa32r6;
6636
6637 case E_MIPS_ARCH_64R6:
6638 return bfd_mach_mipsisa64r6;
b49e97c9
TS
6639 }
6640 }
6641
6642 return 0;
6643}
6644
6645/* Return printable name for ABI. */
6646
6647static INLINE char *
9719ad41 6648elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
6649{
6650 flagword flags;
6651
6652 flags = elf_elfheader (abfd)->e_flags;
6653 switch (flags & EF_MIPS_ABI)
6654 {
6655 case 0:
6656 if (ABI_N32_P (abfd))
6657 return "N32";
6658 else if (ABI_64_P (abfd))
6659 return "64";
6660 else
6661 return "none";
6662 case E_MIPS_ABI_O32:
6663 return "O32";
6664 case E_MIPS_ABI_O64:
6665 return "O64";
6666 case E_MIPS_ABI_EABI32:
6667 return "EABI32";
6668 case E_MIPS_ABI_EABI64:
6669 return "EABI64";
6670 default:
6671 return "unknown abi";
6672 }
6673}
6674\f
6675/* MIPS ELF uses two common sections. One is the usual one, and the
6676 other is for small objects. All the small objects are kept
6677 together, and then referenced via the gp pointer, which yields
6678 faster assembler code. This is what we use for the small common
6679 section. This approach is copied from ecoff.c. */
6680static asection mips_elf_scom_section;
6681static asymbol mips_elf_scom_symbol;
6682static asymbol *mips_elf_scom_symbol_ptr;
6683
6684/* MIPS ELF also uses an acommon section, which represents an
6685 allocated common symbol which may be overridden by a
6686 definition in a shared library. */
6687static asection mips_elf_acom_section;
6688static asymbol mips_elf_acom_symbol;
6689static asymbol *mips_elf_acom_symbol_ptr;
6690
738e5348 6691/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
6692
6693void
9719ad41 6694_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
6695{
6696 elf_symbol_type *elfsym;
6697
738e5348 6698 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
6699 elfsym = (elf_symbol_type *) asym;
6700 switch (elfsym->internal_elf_sym.st_shndx)
6701 {
6702 case SHN_MIPS_ACOMMON:
6703 /* This section is used in a dynamically linked executable file.
6704 It is an allocated common section. The dynamic linker can
6705 either resolve these symbols to something in a shared
6706 library, or it can just leave them here. For our purposes,
6707 we can consider these symbols to be in a new section. */
6708 if (mips_elf_acom_section.name == NULL)
6709 {
6710 /* Initialize the acommon section. */
6711 mips_elf_acom_section.name = ".acommon";
6712 mips_elf_acom_section.flags = SEC_ALLOC;
6713 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6714 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6715 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6716 mips_elf_acom_symbol.name = ".acommon";
6717 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6718 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6719 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6720 }
6721 asym->section = &mips_elf_acom_section;
6722 break;
6723
6724 case SHN_COMMON:
6725 /* Common symbols less than the GP size are automatically
6726 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6727 if (asym->value > elf_gp_size (abfd)
b59eed79 6728 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
6729 || IRIX_COMPAT (abfd) == ict_irix6)
6730 break;
6731 /* Fall through. */
6732 case SHN_MIPS_SCOMMON:
6733 if (mips_elf_scom_section.name == NULL)
6734 {
6735 /* Initialize the small common section. */
6736 mips_elf_scom_section.name = ".scommon";
6737 mips_elf_scom_section.flags = SEC_IS_COMMON;
6738 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6739 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6740 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6741 mips_elf_scom_symbol.name = ".scommon";
6742 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6743 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6744 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6745 }
6746 asym->section = &mips_elf_scom_section;
6747 asym->value = elfsym->internal_elf_sym.st_size;
6748 break;
6749
6750 case SHN_MIPS_SUNDEFINED:
6751 asym->section = bfd_und_section_ptr;
6752 break;
6753
b49e97c9 6754 case SHN_MIPS_TEXT:
00b4930b
TS
6755 {
6756 asection *section = bfd_get_section_by_name (abfd, ".text");
6757
00b4930b
TS
6758 if (section != NULL)
6759 {
6760 asym->section = section;
6761 /* MIPS_TEXT is a bit special, the address is not an offset
6762 to the base of the .text section. So substract the section
6763 base address to make it an offset. */
6764 asym->value -= section->vma;
6765 }
6766 }
b49e97c9
TS
6767 break;
6768
6769 case SHN_MIPS_DATA:
00b4930b
TS
6770 {
6771 asection *section = bfd_get_section_by_name (abfd, ".data");
6772
00b4930b
TS
6773 if (section != NULL)
6774 {
6775 asym->section = section;
6776 /* MIPS_DATA is a bit special, the address is not an offset
6777 to the base of the .data section. So substract the section
6778 base address to make it an offset. */
6779 asym->value -= section->vma;
6780 }
6781 }
b49e97c9 6782 break;
b49e97c9 6783 }
738e5348 6784
df58fc94
RS
6785 /* If this is an odd-valued function symbol, assume it's a MIPS16
6786 or microMIPS one. */
738e5348
RS
6787 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6788 && (asym->value & 1) != 0)
6789 {
6790 asym->value--;
e8faf7d1 6791 if (MICROMIPS_P (abfd))
df58fc94
RS
6792 elfsym->internal_elf_sym.st_other
6793 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6794 else
6795 elfsym->internal_elf_sym.st_other
6796 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
738e5348 6797 }
b49e97c9
TS
6798}
6799\f
8c946ed5
RS
6800/* Implement elf_backend_eh_frame_address_size. This differs from
6801 the default in the way it handles EABI64.
6802
6803 EABI64 was originally specified as an LP64 ABI, and that is what
6804 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6805 historically accepted the combination of -mabi=eabi and -mlong32,
6806 and this ILP32 variation has become semi-official over time.
6807 Both forms use elf32 and have pointer-sized FDE addresses.
6808
6809 If an EABI object was generated by GCC 4.0 or above, it will have
6810 an empty .gcc_compiled_longXX section, where XX is the size of longs
6811 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6812 have no special marking to distinguish them from LP64 objects.
6813
6814 We don't want users of the official LP64 ABI to be punished for the
6815 existence of the ILP32 variant, but at the same time, we don't want
6816 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6817 We therefore take the following approach:
6818
6819 - If ABFD contains a .gcc_compiled_longXX section, use it to
6820 determine the pointer size.
6821
6822 - Otherwise check the type of the first relocation. Assume that
6823 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6824
6825 - Otherwise punt.
6826
6827 The second check is enough to detect LP64 objects generated by pre-4.0
6828 compilers because, in the kind of output generated by those compilers,
6829 the first relocation will be associated with either a CIE personality
6830 routine or an FDE start address. Furthermore, the compilers never
6831 used a special (non-pointer) encoding for this ABI.
6832
6833 Checking the relocation type should also be safe because there is no
6834 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6835 did so. */
6836
6837unsigned int
6838_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6839{
6840 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6841 return 8;
6842 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6843 {
6844 bfd_boolean long32_p, long64_p;
6845
6846 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6847 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6848 if (long32_p && long64_p)
6849 return 0;
6850 if (long32_p)
6851 return 4;
6852 if (long64_p)
6853 return 8;
6854
6855 if (sec->reloc_count > 0
6856 && elf_section_data (sec)->relocs != NULL
6857 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6858 == R_MIPS_64))
6859 return 8;
6860
6861 return 0;
6862 }
6863 return 4;
6864}
6865\f
174fd7f9
RS
6866/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6867 relocations against two unnamed section symbols to resolve to the
6868 same address. For example, if we have code like:
6869
6870 lw $4,%got_disp(.data)($gp)
6871 lw $25,%got_disp(.text)($gp)
6872 jalr $25
6873
6874 then the linker will resolve both relocations to .data and the program
6875 will jump there rather than to .text.
6876
6877 We can work around this problem by giving names to local section symbols.
6878 This is also what the MIPSpro tools do. */
6879
6880bfd_boolean
6881_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6882{
6883 return SGI_COMPAT (abfd);
6884}
6885\f
b49e97c9
TS
6886/* Work over a section just before writing it out. This routine is
6887 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6888 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6889 a better way. */
6890
b34976b6 6891bfd_boolean
9719ad41 6892_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
6893{
6894 if (hdr->sh_type == SHT_MIPS_REGINFO
6895 && hdr->sh_size > 0)
6896 {
6897 bfd_byte buf[4];
6898
6899 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6900 BFD_ASSERT (hdr->contents == NULL);
6901
6902 if (bfd_seek (abfd,
6903 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6904 SEEK_SET) != 0)
b34976b6 6905 return FALSE;
b49e97c9 6906 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6907 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6908 return FALSE;
b49e97c9
TS
6909 }
6910
6911 if (hdr->sh_type == SHT_MIPS_OPTIONS
6912 && hdr->bfd_section != NULL
f0abc2a1
AM
6913 && mips_elf_section_data (hdr->bfd_section) != NULL
6914 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
6915 {
6916 bfd_byte *contents, *l, *lend;
6917
f0abc2a1
AM
6918 /* We stored the section contents in the tdata field in the
6919 set_section_contents routine. We save the section contents
6920 so that we don't have to read them again.
b49e97c9
TS
6921 At this point we know that elf_gp is set, so we can look
6922 through the section contents to see if there is an
6923 ODK_REGINFO structure. */
6924
f0abc2a1 6925 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
6926 l = contents;
6927 lend = contents + hdr->sh_size;
6928 while (l + sizeof (Elf_External_Options) <= lend)
6929 {
6930 Elf_Internal_Options intopt;
6931
6932 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6933 &intopt);
1bc8074d
MR
6934 if (intopt.size < sizeof (Elf_External_Options))
6935 {
6936 (*_bfd_error_handler)
6937 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6938 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6939 break;
6940 }
b49e97c9
TS
6941 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6942 {
6943 bfd_byte buf[8];
6944
6945 if (bfd_seek (abfd,
6946 (hdr->sh_offset
6947 + (l - contents)
6948 + sizeof (Elf_External_Options)
6949 + (sizeof (Elf64_External_RegInfo) - 8)),
6950 SEEK_SET) != 0)
b34976b6 6951 return FALSE;
b49e97c9 6952 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 6953 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 6954 return FALSE;
b49e97c9
TS
6955 }
6956 else if (intopt.kind == ODK_REGINFO)
6957 {
6958 bfd_byte buf[4];
6959
6960 if (bfd_seek (abfd,
6961 (hdr->sh_offset
6962 + (l - contents)
6963 + sizeof (Elf_External_Options)
6964 + (sizeof (Elf32_External_RegInfo) - 4)),
6965 SEEK_SET) != 0)
b34976b6 6966 return FALSE;
b49e97c9 6967 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6968 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6969 return FALSE;
b49e97c9
TS
6970 }
6971 l += intopt.size;
6972 }
6973 }
6974
6975 if (hdr->bfd_section != NULL)
6976 {
6977 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6978
2d0f9ad9
JM
6979 /* .sbss is not handled specially here because the GNU/Linux
6980 prelinker can convert .sbss from NOBITS to PROGBITS and
6981 changing it back to NOBITS breaks the binary. The entry in
6982 _bfd_mips_elf_special_sections will ensure the correct flags
6983 are set on .sbss if BFD creates it without reading it from an
6984 input file, and without special handling here the flags set
6985 on it in an input file will be followed. */
b49e97c9
TS
6986 if (strcmp (name, ".sdata") == 0
6987 || strcmp (name, ".lit8") == 0
6988 || strcmp (name, ".lit4") == 0)
fd6f9d17 6989 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
b49e97c9 6990 else if (strcmp (name, ".srdata") == 0)
fd6f9d17 6991 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
b49e97c9 6992 else if (strcmp (name, ".compact_rel") == 0)
fd6f9d17 6993 hdr->sh_flags = 0;
b49e97c9
TS
6994 else if (strcmp (name, ".rtproc") == 0)
6995 {
6996 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6997 {
6998 unsigned int adjust;
6999
7000 adjust = hdr->sh_size % hdr->sh_addralign;
7001 if (adjust != 0)
7002 hdr->sh_size += hdr->sh_addralign - adjust;
7003 }
7004 }
7005 }
7006
b34976b6 7007 return TRUE;
b49e97c9
TS
7008}
7009
7010/* Handle a MIPS specific section when reading an object file. This
7011 is called when elfcode.h finds a section with an unknown type.
7012 This routine supports both the 32-bit and 64-bit ELF ABI.
7013
7014 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7015 how to. */
7016
b34976b6 7017bfd_boolean
6dc132d9
L
7018_bfd_mips_elf_section_from_shdr (bfd *abfd,
7019 Elf_Internal_Shdr *hdr,
7020 const char *name,
7021 int shindex)
b49e97c9
TS
7022{
7023 flagword flags = 0;
7024
7025 /* There ought to be a place to keep ELF backend specific flags, but
7026 at the moment there isn't one. We just keep track of the
7027 sections by their name, instead. Fortunately, the ABI gives
7028 suggested names for all the MIPS specific sections, so we will
7029 probably get away with this. */
7030 switch (hdr->sh_type)
7031 {
7032 case SHT_MIPS_LIBLIST:
7033 if (strcmp (name, ".liblist") != 0)
b34976b6 7034 return FALSE;
b49e97c9
TS
7035 break;
7036 case SHT_MIPS_MSYM:
7037 if (strcmp (name, ".msym") != 0)
b34976b6 7038 return FALSE;
b49e97c9
TS
7039 break;
7040 case SHT_MIPS_CONFLICT:
7041 if (strcmp (name, ".conflict") != 0)
b34976b6 7042 return FALSE;
b49e97c9
TS
7043 break;
7044 case SHT_MIPS_GPTAB:
0112cd26 7045 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 7046 return FALSE;
b49e97c9
TS
7047 break;
7048 case SHT_MIPS_UCODE:
7049 if (strcmp (name, ".ucode") != 0)
b34976b6 7050 return FALSE;
b49e97c9
TS
7051 break;
7052 case SHT_MIPS_DEBUG:
7053 if (strcmp (name, ".mdebug") != 0)
b34976b6 7054 return FALSE;
b49e97c9
TS
7055 flags = SEC_DEBUGGING;
7056 break;
7057 case SHT_MIPS_REGINFO:
7058 if (strcmp (name, ".reginfo") != 0
7059 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 7060 return FALSE;
b49e97c9
TS
7061 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7062 break;
7063 case SHT_MIPS_IFACE:
7064 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 7065 return FALSE;
b49e97c9
TS
7066 break;
7067 case SHT_MIPS_CONTENT:
0112cd26 7068 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 7069 return FALSE;
b49e97c9
TS
7070 break;
7071 case SHT_MIPS_OPTIONS:
cc2e31b9 7072 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 7073 return FALSE;
b49e97c9 7074 break;
351cdf24
MF
7075 case SHT_MIPS_ABIFLAGS:
7076 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7077 return FALSE;
7078 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7079 break;
b49e97c9 7080 case SHT_MIPS_DWARF:
1b315056 7081 if (! CONST_STRNEQ (name, ".debug_")
355d10dc 7082 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 7083 return FALSE;
b49e97c9
TS
7084 break;
7085 case SHT_MIPS_SYMBOL_LIB:
7086 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 7087 return FALSE;
b49e97c9
TS
7088 break;
7089 case SHT_MIPS_EVENTS:
0112cd26
NC
7090 if (! CONST_STRNEQ (name, ".MIPS.events")
7091 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 7092 return FALSE;
b49e97c9
TS
7093 break;
7094 default:
cc2e31b9 7095 break;
b49e97c9
TS
7096 }
7097
6dc132d9 7098 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 7099 return FALSE;
b49e97c9
TS
7100
7101 if (flags)
7102 {
7103 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7104 (bfd_get_section_flags (abfd,
7105 hdr->bfd_section)
7106 | flags)))
b34976b6 7107 return FALSE;
b49e97c9
TS
7108 }
7109
351cdf24
MF
7110 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7111 {
7112 Elf_External_ABIFlags_v0 ext;
7113
7114 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7115 &ext, 0, sizeof ext))
7116 return FALSE;
7117 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7118 &mips_elf_tdata (abfd)->abiflags);
7119 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7120 return FALSE;
7121 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7122 }
7123
b49e97c9
TS
7124 /* FIXME: We should record sh_info for a .gptab section. */
7125
7126 /* For a .reginfo section, set the gp value in the tdata information
7127 from the contents of this section. We need the gp value while
7128 processing relocs, so we just get it now. The .reginfo section
7129 is not used in the 64-bit MIPS ELF ABI. */
7130 if (hdr->sh_type == SHT_MIPS_REGINFO)
7131 {
7132 Elf32_External_RegInfo ext;
7133 Elf32_RegInfo s;
7134
9719ad41
RS
7135 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7136 &ext, 0, sizeof ext))
b34976b6 7137 return FALSE;
b49e97c9
TS
7138 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7139 elf_gp (abfd) = s.ri_gp_value;
7140 }
7141
7142 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7143 set the gp value based on what we find. We may see both
7144 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7145 they should agree. */
7146 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7147 {
7148 bfd_byte *contents, *l, *lend;
7149
9719ad41 7150 contents = bfd_malloc (hdr->sh_size);
b49e97c9 7151 if (contents == NULL)
b34976b6 7152 return FALSE;
b49e97c9 7153 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 7154 0, hdr->sh_size))
b49e97c9
TS
7155 {
7156 free (contents);
b34976b6 7157 return FALSE;
b49e97c9
TS
7158 }
7159 l = contents;
7160 lend = contents + hdr->sh_size;
7161 while (l + sizeof (Elf_External_Options) <= lend)
7162 {
7163 Elf_Internal_Options intopt;
7164
7165 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7166 &intopt);
1bc8074d
MR
7167 if (intopt.size < sizeof (Elf_External_Options))
7168 {
7169 (*_bfd_error_handler)
7170 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7171 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7172 break;
7173 }
b49e97c9
TS
7174 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7175 {
7176 Elf64_Internal_RegInfo intreg;
7177
7178 bfd_mips_elf64_swap_reginfo_in
7179 (abfd,
7180 ((Elf64_External_RegInfo *)
7181 (l + sizeof (Elf_External_Options))),
7182 &intreg);
7183 elf_gp (abfd) = intreg.ri_gp_value;
7184 }
7185 else if (intopt.kind == ODK_REGINFO)
7186 {
7187 Elf32_RegInfo intreg;
7188
7189 bfd_mips_elf32_swap_reginfo_in
7190 (abfd,
7191 ((Elf32_External_RegInfo *)
7192 (l + sizeof (Elf_External_Options))),
7193 &intreg);
7194 elf_gp (abfd) = intreg.ri_gp_value;
7195 }
7196 l += intopt.size;
7197 }
7198 free (contents);
7199 }
7200
b34976b6 7201 return TRUE;
b49e97c9
TS
7202}
7203
7204/* Set the correct type for a MIPS ELF section. We do this by the
7205 section name, which is a hack, but ought to work. This routine is
7206 used by both the 32-bit and the 64-bit ABI. */
7207
b34976b6 7208bfd_boolean
9719ad41 7209_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 7210{
0414f35b 7211 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
7212
7213 if (strcmp (name, ".liblist") == 0)
7214 {
7215 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 7216 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
7217 /* The sh_link field is set in final_write_processing. */
7218 }
7219 else if (strcmp (name, ".conflict") == 0)
7220 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 7221 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
7222 {
7223 hdr->sh_type = SHT_MIPS_GPTAB;
7224 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7225 /* The sh_info field is set in final_write_processing. */
7226 }
7227 else if (strcmp (name, ".ucode") == 0)
7228 hdr->sh_type = SHT_MIPS_UCODE;
7229 else if (strcmp (name, ".mdebug") == 0)
7230 {
7231 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 7232 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
7233 entsize of 0. FIXME: Does this matter? */
7234 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7235 hdr->sh_entsize = 0;
7236 else
7237 hdr->sh_entsize = 1;
7238 }
7239 else if (strcmp (name, ".reginfo") == 0)
7240 {
7241 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 7242 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
7243 entsize of 0x18. FIXME: Does this matter? */
7244 if (SGI_COMPAT (abfd))
7245 {
7246 if ((abfd->flags & DYNAMIC) != 0)
7247 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7248 else
7249 hdr->sh_entsize = 1;
7250 }
7251 else
7252 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7253 }
7254 else if (SGI_COMPAT (abfd)
7255 && (strcmp (name, ".hash") == 0
7256 || strcmp (name, ".dynamic") == 0
7257 || strcmp (name, ".dynstr") == 0))
7258 {
7259 if (SGI_COMPAT (abfd))
7260 hdr->sh_entsize = 0;
7261#if 0
8dc1a139 7262 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
7263 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7264#endif
7265 }
7266 else if (strcmp (name, ".got") == 0
7267 || strcmp (name, ".srdata") == 0
7268 || strcmp (name, ".sdata") == 0
7269 || strcmp (name, ".sbss") == 0
7270 || strcmp (name, ".lit4") == 0
7271 || strcmp (name, ".lit8") == 0)
7272 hdr->sh_flags |= SHF_MIPS_GPREL;
7273 else if (strcmp (name, ".MIPS.interfaces") == 0)
7274 {
7275 hdr->sh_type = SHT_MIPS_IFACE;
7276 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7277 }
0112cd26 7278 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
7279 {
7280 hdr->sh_type = SHT_MIPS_CONTENT;
7281 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7282 /* The sh_info field is set in final_write_processing. */
7283 }
cc2e31b9 7284 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
7285 {
7286 hdr->sh_type = SHT_MIPS_OPTIONS;
7287 hdr->sh_entsize = 1;
7288 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7289 }
351cdf24
MF
7290 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7291 {
7292 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7293 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7294 }
1b315056
CS
7295 else if (CONST_STRNEQ (name, ".debug_")
7296 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
7297 {
7298 hdr->sh_type = SHT_MIPS_DWARF;
7299
7300 /* Irix facilities such as libexc expect a single .debug_frame
7301 per executable, the system ones have NOSTRIP set and the linker
7302 doesn't merge sections with different flags so ... */
7303 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7304 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7305 }
b49e97c9
TS
7306 else if (strcmp (name, ".MIPS.symlib") == 0)
7307 {
7308 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7309 /* The sh_link and sh_info fields are set in
7310 final_write_processing. */
7311 }
0112cd26
NC
7312 else if (CONST_STRNEQ (name, ".MIPS.events")
7313 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
7314 {
7315 hdr->sh_type = SHT_MIPS_EVENTS;
7316 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7317 /* The sh_link field is set in final_write_processing. */
7318 }
7319 else if (strcmp (name, ".msym") == 0)
7320 {
7321 hdr->sh_type = SHT_MIPS_MSYM;
7322 hdr->sh_flags |= SHF_ALLOC;
7323 hdr->sh_entsize = 8;
7324 }
7325
7a79a000
TS
7326 /* The generic elf_fake_sections will set up REL_HDR using the default
7327 kind of relocations. We used to set up a second header for the
7328 non-default kind of relocations here, but only NewABI would use
7329 these, and the IRIX ld doesn't like resulting empty RELA sections.
7330 Thus we create those header only on demand now. */
b49e97c9 7331
b34976b6 7332 return TRUE;
b49e97c9
TS
7333}
7334
7335/* Given a BFD section, try to locate the corresponding ELF section
7336 index. This is used by both the 32-bit and the 64-bit ABI.
7337 Actually, it's not clear to me that the 64-bit ABI supports these,
7338 but for non-PIC objects we will certainly want support for at least
7339 the .scommon section. */
7340
b34976b6 7341bfd_boolean
9719ad41
RS
7342_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7343 asection *sec, int *retval)
b49e97c9
TS
7344{
7345 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7346 {
7347 *retval = SHN_MIPS_SCOMMON;
b34976b6 7348 return TRUE;
b49e97c9
TS
7349 }
7350 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7351 {
7352 *retval = SHN_MIPS_ACOMMON;
b34976b6 7353 return TRUE;
b49e97c9 7354 }
b34976b6 7355 return FALSE;
b49e97c9
TS
7356}
7357\f
7358/* Hook called by the linker routine which adds symbols from an object
7359 file. We must handle the special MIPS section numbers here. */
7360
b34976b6 7361bfd_boolean
9719ad41 7362_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 7363 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
7364 flagword *flagsp ATTRIBUTE_UNUSED,
7365 asection **secp, bfd_vma *valp)
b49e97c9
TS
7366{
7367 if (SGI_COMPAT (abfd)
7368 && (abfd->flags & DYNAMIC) != 0
7369 && strcmp (*namep, "_rld_new_interface") == 0)
7370 {
8dc1a139 7371 /* Skip IRIX5 rld entry name. */
b49e97c9 7372 *namep = NULL;
b34976b6 7373 return TRUE;
b49e97c9
TS
7374 }
7375
eedecc07
DD
7376 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7377 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7378 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7379 a magic symbol resolved by the linker, we ignore this bogus definition
7380 of _gp_disp. New ABI objects do not suffer from this problem so this
7381 is not done for them. */
7382 if (!NEWABI_P(abfd)
7383 && (sym->st_shndx == SHN_ABS)
7384 && (strcmp (*namep, "_gp_disp") == 0))
7385 {
7386 *namep = NULL;
7387 return TRUE;
7388 }
7389
b49e97c9
TS
7390 switch (sym->st_shndx)
7391 {
7392 case SHN_COMMON:
7393 /* Common symbols less than the GP size are automatically
7394 treated as SHN_MIPS_SCOMMON symbols. */
7395 if (sym->st_size > elf_gp_size (abfd)
b59eed79 7396 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
7397 || IRIX_COMPAT (abfd) == ict_irix6)
7398 break;
7399 /* Fall through. */
7400 case SHN_MIPS_SCOMMON:
7401 *secp = bfd_make_section_old_way (abfd, ".scommon");
7402 (*secp)->flags |= SEC_IS_COMMON;
7403 *valp = sym->st_size;
7404 break;
7405
7406 case SHN_MIPS_TEXT:
7407 /* This section is used in a shared object. */
698600e4 7408 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
b49e97c9
TS
7409 {
7410 asymbol *elf_text_symbol;
7411 asection *elf_text_section;
7412 bfd_size_type amt = sizeof (asection);
7413
7414 elf_text_section = bfd_zalloc (abfd, amt);
7415 if (elf_text_section == NULL)
b34976b6 7416 return FALSE;
b49e97c9
TS
7417
7418 amt = sizeof (asymbol);
7419 elf_text_symbol = bfd_zalloc (abfd, amt);
7420 if (elf_text_symbol == NULL)
b34976b6 7421 return FALSE;
b49e97c9
TS
7422
7423 /* Initialize the section. */
7424
698600e4
AM
7425 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7426 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
b49e97c9
TS
7427
7428 elf_text_section->symbol = elf_text_symbol;
698600e4 7429 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
b49e97c9
TS
7430
7431 elf_text_section->name = ".text";
7432 elf_text_section->flags = SEC_NO_FLAGS;
7433 elf_text_section->output_section = NULL;
7434 elf_text_section->owner = abfd;
7435 elf_text_symbol->name = ".text";
7436 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7437 elf_text_symbol->section = elf_text_section;
7438 }
7439 /* This code used to do *secp = bfd_und_section_ptr if
7440 info->shared. I don't know why, and that doesn't make sense,
7441 so I took it out. */
698600e4 7442 *secp = mips_elf_tdata (abfd)->elf_text_section;
b49e97c9
TS
7443 break;
7444
7445 case SHN_MIPS_ACOMMON:
7446 /* Fall through. XXX Can we treat this as allocated data? */
7447 case SHN_MIPS_DATA:
7448 /* This section is used in a shared object. */
698600e4 7449 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
b49e97c9
TS
7450 {
7451 asymbol *elf_data_symbol;
7452 asection *elf_data_section;
7453 bfd_size_type amt = sizeof (asection);
7454
7455 elf_data_section = bfd_zalloc (abfd, amt);
7456 if (elf_data_section == NULL)
b34976b6 7457 return FALSE;
b49e97c9
TS
7458
7459 amt = sizeof (asymbol);
7460 elf_data_symbol = bfd_zalloc (abfd, amt);
7461 if (elf_data_symbol == NULL)
b34976b6 7462 return FALSE;
b49e97c9
TS
7463
7464 /* Initialize the section. */
7465
698600e4
AM
7466 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7467 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
b49e97c9
TS
7468
7469 elf_data_section->symbol = elf_data_symbol;
698600e4 7470 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
b49e97c9
TS
7471
7472 elf_data_section->name = ".data";
7473 elf_data_section->flags = SEC_NO_FLAGS;
7474 elf_data_section->output_section = NULL;
7475 elf_data_section->owner = abfd;
7476 elf_data_symbol->name = ".data";
7477 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7478 elf_data_symbol->section = elf_data_section;
7479 }
7480 /* This code used to do *secp = bfd_und_section_ptr if
7481 info->shared. I don't know why, and that doesn't make sense,
7482 so I took it out. */
698600e4 7483 *secp = mips_elf_tdata (abfd)->elf_data_section;
b49e97c9
TS
7484 break;
7485
7486 case SHN_MIPS_SUNDEFINED:
7487 *secp = bfd_und_section_ptr;
7488 break;
7489 }
7490
7491 if (SGI_COMPAT (abfd)
7492 && ! info->shared
f13a99db 7493 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
7494 && strcmp (*namep, "__rld_obj_head") == 0)
7495 {
7496 struct elf_link_hash_entry *h;
14a793b2 7497 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7498
7499 /* Mark __rld_obj_head as dynamic. */
14a793b2 7500 bh = NULL;
b49e97c9 7501 if (! (_bfd_generic_link_add_one_symbol
9719ad41 7502 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 7503 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7504 return FALSE;
14a793b2
AM
7505
7506 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7507 h->non_elf = 0;
7508 h->def_regular = 1;
b49e97c9
TS
7509 h->type = STT_OBJECT;
7510
c152c796 7511 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7512 return FALSE;
b49e97c9 7513
b34976b6 7514 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b4082c70 7515 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7516 }
7517
7518 /* If this is a mips16 text symbol, add 1 to the value to make it
7519 odd. This will cause something like .word SYM to come up with
7520 the right value when it is loaded into the PC. */
df58fc94 7521 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
7522 ++*valp;
7523
b34976b6 7524 return TRUE;
b49e97c9
TS
7525}
7526
7527/* This hook function is called before the linker writes out a global
7528 symbol. We mark symbols as small common if appropriate. This is
7529 also where we undo the increment of the value for a mips16 symbol. */
7530
6e0b88f1 7531int
9719ad41
RS
7532_bfd_mips_elf_link_output_symbol_hook
7533 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7534 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7535 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
7536{
7537 /* If we see a common symbol, which implies a relocatable link, then
7538 if a symbol was small common in an input file, mark it as small
7539 common in the output file. */
7540 if (sym->st_shndx == SHN_COMMON
7541 && strcmp (input_sec->name, ".scommon") == 0)
7542 sym->st_shndx = SHN_MIPS_SCOMMON;
7543
df58fc94 7544 if (ELF_ST_IS_COMPRESSED (sym->st_other))
79cda7cf 7545 sym->st_value &= ~1;
b49e97c9 7546
6e0b88f1 7547 return 1;
b49e97c9
TS
7548}
7549\f
7550/* Functions for the dynamic linker. */
7551
7552/* Create dynamic sections when linking against a dynamic object. */
7553
b34976b6 7554bfd_boolean
9719ad41 7555_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
7556{
7557 struct elf_link_hash_entry *h;
14a793b2 7558 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7559 flagword flags;
7560 register asection *s;
7561 const char * const *namep;
0a44bf69 7562 struct mips_elf_link_hash_table *htab;
b49e97c9 7563
0a44bf69 7564 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7565 BFD_ASSERT (htab != NULL);
7566
b49e97c9
TS
7567 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7568 | SEC_LINKER_CREATED | SEC_READONLY);
7569
0a44bf69
RS
7570 /* The psABI requires a read-only .dynamic section, but the VxWorks
7571 EABI doesn't. */
7572 if (!htab->is_vxworks)
b49e97c9 7573 {
3d4d4302 7574 s = bfd_get_linker_section (abfd, ".dynamic");
0a44bf69
RS
7575 if (s != NULL)
7576 {
7577 if (! bfd_set_section_flags (abfd, s, flags))
7578 return FALSE;
7579 }
b49e97c9
TS
7580 }
7581
7582 /* We need to create .got section. */
23cc69b6 7583 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
7584 return FALSE;
7585
0a44bf69 7586 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 7587 return FALSE;
b49e97c9 7588
b49e97c9 7589 /* Create .stub section. */
3d4d4302
AM
7590 s = bfd_make_section_anyway_with_flags (abfd,
7591 MIPS_ELF_STUB_SECTION_NAME (abfd),
7592 flags | SEC_CODE);
4e41d0d7
RS
7593 if (s == NULL
7594 || ! bfd_set_section_alignment (abfd, s,
7595 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7596 return FALSE;
7597 htab->sstubs = s;
b49e97c9 7598
e6aea42d 7599 if (!mips_elf_hash_table (info)->use_rld_obj_head
b49e97c9 7600 && !info->shared
3d4d4302 7601 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
b49e97c9 7602 {
3d4d4302
AM
7603 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7604 flags &~ (flagword) SEC_READONLY);
b49e97c9 7605 if (s == NULL
b49e97c9
TS
7606 || ! bfd_set_section_alignment (abfd, s,
7607 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 7608 return FALSE;
b49e97c9
TS
7609 }
7610
7611 /* On IRIX5, we adjust add some additional symbols and change the
7612 alignments of several sections. There is no ABI documentation
7613 indicating that this is necessary on IRIX6, nor any evidence that
7614 the linker takes such action. */
7615 if (IRIX_COMPAT (abfd) == ict_irix5)
7616 {
7617 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7618 {
14a793b2 7619 bh = NULL;
b49e97c9 7620 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
7621 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7622 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7623 return FALSE;
14a793b2
AM
7624
7625 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7626 h->non_elf = 0;
7627 h->def_regular = 1;
b49e97c9
TS
7628 h->type = STT_SECTION;
7629
c152c796 7630 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7631 return FALSE;
b49e97c9
TS
7632 }
7633
7634 /* We need to create a .compact_rel section. */
7635 if (SGI_COMPAT (abfd))
7636 {
7637 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 7638 return FALSE;
b49e97c9
TS
7639 }
7640
44c410de 7641 /* Change alignments of some sections. */
3d4d4302 7642 s = bfd_get_linker_section (abfd, ".hash");
b49e97c9 7643 if (s != NULL)
a253d456
NC
7644 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7645
3d4d4302 7646 s = bfd_get_linker_section (abfd, ".dynsym");
b49e97c9 7647 if (s != NULL)
a253d456
NC
7648 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7649
3d4d4302 7650 s = bfd_get_linker_section (abfd, ".dynstr");
b49e97c9 7651 if (s != NULL)
a253d456
NC
7652 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7653
3d4d4302 7654 /* ??? */
b49e97c9
TS
7655 s = bfd_get_section_by_name (abfd, ".reginfo");
7656 if (s != NULL)
a253d456
NC
7657 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7658
3d4d4302 7659 s = bfd_get_linker_section (abfd, ".dynamic");
b49e97c9 7660 if (s != NULL)
a253d456 7661 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
7662 }
7663
7664 if (!info->shared)
7665 {
14a793b2
AM
7666 const char *name;
7667
7668 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7669 bh = NULL;
7670 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
7671 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7672 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7673 return FALSE;
14a793b2
AM
7674
7675 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7676 h->non_elf = 0;
7677 h->def_regular = 1;
b49e97c9
TS
7678 h->type = STT_SECTION;
7679
c152c796 7680 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7681 return FALSE;
b49e97c9
TS
7682
7683 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7684 {
7685 /* __rld_map is a four byte word located in the .data section
7686 and is filled in by the rtld to contain a pointer to
7687 the _r_debug structure. Its symbol value will be set in
7688 _bfd_mips_elf_finish_dynamic_symbol. */
3d4d4302 7689 s = bfd_get_linker_section (abfd, ".rld_map");
0abfb97a 7690 BFD_ASSERT (s != NULL);
14a793b2 7691
0abfb97a
L
7692 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7693 bh = NULL;
7694 if (!(_bfd_generic_link_add_one_symbol
7695 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7696 get_elf_backend_data (abfd)->collect, &bh)))
7697 return FALSE;
b49e97c9 7698
0abfb97a
L
7699 h = (struct elf_link_hash_entry *) bh;
7700 h->non_elf = 0;
7701 h->def_regular = 1;
7702 h->type = STT_OBJECT;
7703
7704 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7705 return FALSE;
b4082c70 7706 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7707 }
7708 }
7709
861fb55a 7710 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
c164a95d 7711 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
861fb55a
DJ
7712 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7713 return FALSE;
7714
7715 /* Cache the sections created above. */
3d4d4302
AM
7716 htab->splt = bfd_get_linker_section (abfd, ".plt");
7717 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
0a44bf69
RS
7718 if (htab->is_vxworks)
7719 {
3d4d4302
AM
7720 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7721 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
861fb55a
DJ
7722 }
7723 else
3d4d4302 7724 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
861fb55a
DJ
7725 if (!htab->sdynbss
7726 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7727 || !htab->srelplt
7728 || !htab->splt)
7729 abort ();
0a44bf69 7730
1bbce132
MR
7731 /* Do the usual VxWorks handling. */
7732 if (htab->is_vxworks
7733 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7734 return FALSE;
0a44bf69 7735
b34976b6 7736 return TRUE;
b49e97c9
TS
7737}
7738\f
c224138d
RS
7739/* Return true if relocation REL against section SEC is a REL rather than
7740 RELA relocation. RELOCS is the first relocation in the section and
7741 ABFD is the bfd that contains SEC. */
7742
7743static bfd_boolean
7744mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7745 const Elf_Internal_Rela *relocs,
7746 const Elf_Internal_Rela *rel)
7747{
7748 Elf_Internal_Shdr *rel_hdr;
7749 const struct elf_backend_data *bed;
7750
d4730f92
BS
7751 /* To determine which flavor of relocation this is, we depend on the
7752 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7753 rel_hdr = elf_section_data (sec)->rel.hdr;
7754 if (rel_hdr == NULL)
7755 return FALSE;
c224138d 7756 bed = get_elf_backend_data (abfd);
d4730f92
BS
7757 return ((size_t) (rel - relocs)
7758 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
c224138d
RS
7759}
7760
7761/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7762 HOWTO is the relocation's howto and CONTENTS points to the contents
7763 of the section that REL is against. */
7764
7765static bfd_vma
7766mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7767 reloc_howto_type *howto, bfd_byte *contents)
7768{
7769 bfd_byte *location;
7770 unsigned int r_type;
7771 bfd_vma addend;
7772
7773 r_type = ELF_R_TYPE (abfd, rel->r_info);
7774 location = contents + rel->r_offset;
7775
7776 /* Get the addend, which is stored in the input file. */
df58fc94 7777 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
c224138d 7778 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
df58fc94 7779 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
c224138d
RS
7780
7781 return addend & howto->src_mask;
7782}
7783
7784/* REL is a relocation in ABFD that needs a partnering LO16 relocation
7785 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7786 and update *ADDEND with the final addend. Return true on success
7787 or false if the LO16 could not be found. RELEND is the exclusive
7788 upper bound on the relocations for REL's section. */
7789
7790static bfd_boolean
7791mips_elf_add_lo16_rel_addend (bfd *abfd,
7792 const Elf_Internal_Rela *rel,
7793 const Elf_Internal_Rela *relend,
7794 bfd_byte *contents, bfd_vma *addend)
7795{
7796 unsigned int r_type, lo16_type;
7797 const Elf_Internal_Rela *lo16_relocation;
7798 reloc_howto_type *lo16_howto;
7799 bfd_vma l;
7800
7801 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 7802 if (mips16_reloc_p (r_type))
c224138d 7803 lo16_type = R_MIPS16_LO16;
df58fc94
RS
7804 else if (micromips_reloc_p (r_type))
7805 lo16_type = R_MICROMIPS_LO16;
7361da2c
AB
7806 else if (r_type == R_MIPS_PCHI16)
7807 lo16_type = R_MIPS_PCLO16;
c224138d
RS
7808 else
7809 lo16_type = R_MIPS_LO16;
7810
7811 /* The combined value is the sum of the HI16 addend, left-shifted by
7812 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7813 code does a `lui' of the HI16 value, and then an `addiu' of the
7814 LO16 value.)
7815
7816 Scan ahead to find a matching LO16 relocation.
7817
7818 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7819 be immediately following. However, for the IRIX6 ABI, the next
7820 relocation may be a composed relocation consisting of several
7821 relocations for the same address. In that case, the R_MIPS_LO16
7822 relocation may occur as one of these. We permit a similar
7823 extension in general, as that is useful for GCC.
7824
7825 In some cases GCC dead code elimination removes the LO16 but keeps
7826 the corresponding HI16. This is strictly speaking a violation of
7827 the ABI but not immediately harmful. */
7828 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7829 if (lo16_relocation == NULL)
7830 return FALSE;
7831
7832 /* Obtain the addend kept there. */
7833 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7834 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7835
7836 l <<= lo16_howto->rightshift;
7837 l = _bfd_mips_elf_sign_extend (l, 16);
7838
7839 *addend <<= 16;
7840 *addend += l;
7841 return TRUE;
7842}
7843
7844/* Try to read the contents of section SEC in bfd ABFD. Return true and
7845 store the contents in *CONTENTS on success. Assume that *CONTENTS
7846 already holds the contents if it is nonull on entry. */
7847
7848static bfd_boolean
7849mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7850{
7851 if (*contents)
7852 return TRUE;
7853
7854 /* Get cached copy if it exists. */
7855 if (elf_section_data (sec)->this_hdr.contents != NULL)
7856 {
7857 *contents = elf_section_data (sec)->this_hdr.contents;
7858 return TRUE;
7859 }
7860
7861 return bfd_malloc_and_get_section (abfd, sec, contents);
7862}
7863
1bbce132
MR
7864/* Make a new PLT record to keep internal data. */
7865
7866static struct plt_entry *
7867mips_elf_make_plt_record (bfd *abfd)
7868{
7869 struct plt_entry *entry;
7870
7871 entry = bfd_zalloc (abfd, sizeof (*entry));
7872 if (entry == NULL)
7873 return NULL;
7874
7875 entry->stub_offset = MINUS_ONE;
7876 entry->mips_offset = MINUS_ONE;
7877 entry->comp_offset = MINUS_ONE;
7878 entry->gotplt_index = MINUS_ONE;
7879 return entry;
7880}
7881
b49e97c9 7882/* Look through the relocs for a section during the first phase, and
1bbce132
MR
7883 allocate space in the global offset table and record the need for
7884 standard MIPS and compressed procedure linkage table entries. */
b49e97c9 7885
b34976b6 7886bfd_boolean
9719ad41
RS
7887_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7888 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
7889{
7890 const char *name;
7891 bfd *dynobj;
7892 Elf_Internal_Shdr *symtab_hdr;
7893 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
7894 size_t extsymoff;
7895 const Elf_Internal_Rela *rel;
7896 const Elf_Internal_Rela *rel_end;
b49e97c9 7897 asection *sreloc;
9c5bfbb7 7898 const struct elf_backend_data *bed;
0a44bf69 7899 struct mips_elf_link_hash_table *htab;
c224138d
RS
7900 bfd_byte *contents;
7901 bfd_vma addend;
7902 reloc_howto_type *howto;
b49e97c9 7903
1049f94e 7904 if (info->relocatable)
b34976b6 7905 return TRUE;
b49e97c9 7906
0a44bf69 7907 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7908 BFD_ASSERT (htab != NULL);
7909
b49e97c9
TS
7910 dynobj = elf_hash_table (info)->dynobj;
7911 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7912 sym_hashes = elf_sym_hashes (abfd);
7913 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7914
738e5348
RS
7915 bed = get_elf_backend_data (abfd);
7916 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7917
b49e97c9
TS
7918 /* Check for the mips16 stub sections. */
7919
7920 name = bfd_get_section_name (abfd, sec);
b9d58d71 7921 if (FN_STUB_P (name))
b49e97c9
TS
7922 {
7923 unsigned long r_symndx;
7924
7925 /* Look at the relocation information to figure out which symbol
7926 this is for. */
7927
cb4437b8 7928 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
7929 if (r_symndx == 0)
7930 {
7931 (*_bfd_error_handler)
7932 (_("%B: Warning: cannot determine the target function for"
7933 " stub section `%s'"),
7934 abfd, name);
7935 bfd_set_error (bfd_error_bad_value);
7936 return FALSE;
7937 }
b49e97c9
TS
7938
7939 if (r_symndx < extsymoff
7940 || sym_hashes[r_symndx - extsymoff] == NULL)
7941 {
7942 asection *o;
7943
7944 /* This stub is for a local symbol. This stub will only be
7945 needed if there is some relocation in this BFD, other
7946 than a 16 bit function call, which refers to this symbol. */
7947 for (o = abfd->sections; o != NULL; o = o->next)
7948 {
7949 Elf_Internal_Rela *sec_relocs;
7950 const Elf_Internal_Rela *r, *rend;
7951
7952 /* We can ignore stub sections when looking for relocs. */
7953 if ((o->flags & SEC_RELOC) == 0
7954 || o->reloc_count == 0
738e5348 7955 || section_allows_mips16_refs_p (o))
b49e97c9
TS
7956 continue;
7957
45d6a902 7958 sec_relocs
9719ad41 7959 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 7960 info->keep_memory);
b49e97c9 7961 if (sec_relocs == NULL)
b34976b6 7962 return FALSE;
b49e97c9
TS
7963
7964 rend = sec_relocs + o->reloc_count;
7965 for (r = sec_relocs; r < rend; r++)
7966 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 7967 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
7968 break;
7969
6cdc0ccc 7970 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
7971 free (sec_relocs);
7972
7973 if (r < rend)
7974 break;
7975 }
7976
7977 if (o == NULL)
7978 {
7979 /* There is no non-call reloc for this stub, so we do
7980 not need it. Since this function is called before
7981 the linker maps input sections to output sections, we
7982 can easily discard it by setting the SEC_EXCLUDE
7983 flag. */
7984 sec->flags |= SEC_EXCLUDE;
b34976b6 7985 return TRUE;
b49e97c9
TS
7986 }
7987
7988 /* Record this stub in an array of local symbol stubs for
7989 this BFD. */
698600e4 7990 if (mips_elf_tdata (abfd)->local_stubs == NULL)
b49e97c9
TS
7991 {
7992 unsigned long symcount;
7993 asection **n;
7994 bfd_size_type amt;
7995
7996 if (elf_bad_symtab (abfd))
7997 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7998 else
7999 symcount = symtab_hdr->sh_info;
8000 amt = symcount * sizeof (asection *);
9719ad41 8001 n = bfd_zalloc (abfd, amt);
b49e97c9 8002 if (n == NULL)
b34976b6 8003 return FALSE;
698600e4 8004 mips_elf_tdata (abfd)->local_stubs = n;
b49e97c9
TS
8005 }
8006
b9d58d71 8007 sec->flags |= SEC_KEEP;
698600e4 8008 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
b49e97c9
TS
8009
8010 /* We don't need to set mips16_stubs_seen in this case.
8011 That flag is used to see whether we need to look through
8012 the global symbol table for stubs. We don't need to set
8013 it here, because we just have a local stub. */
8014 }
8015 else
8016 {
8017 struct mips_elf_link_hash_entry *h;
8018
8019 h = ((struct mips_elf_link_hash_entry *)
8020 sym_hashes[r_symndx - extsymoff]);
8021
973a3492
L
8022 while (h->root.root.type == bfd_link_hash_indirect
8023 || h->root.root.type == bfd_link_hash_warning)
8024 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8025
b49e97c9
TS
8026 /* H is the symbol this stub is for. */
8027
b9d58d71
TS
8028 /* If we already have an appropriate stub for this function, we
8029 don't need another one, so we can discard this one. Since
8030 this function is called before the linker maps input sections
8031 to output sections, we can easily discard it by setting the
8032 SEC_EXCLUDE flag. */
8033 if (h->fn_stub != NULL)
8034 {
8035 sec->flags |= SEC_EXCLUDE;
8036 return TRUE;
8037 }
8038
8039 sec->flags |= SEC_KEEP;
b49e97c9 8040 h->fn_stub = sec;
b34976b6 8041 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
8042 }
8043 }
b9d58d71 8044 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
8045 {
8046 unsigned long r_symndx;
8047 struct mips_elf_link_hash_entry *h;
8048 asection **loc;
8049
8050 /* Look at the relocation information to figure out which symbol
8051 this is for. */
8052
cb4437b8 8053 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8054 if (r_symndx == 0)
8055 {
8056 (*_bfd_error_handler)
8057 (_("%B: Warning: cannot determine the target function for"
8058 " stub section `%s'"),
8059 abfd, name);
8060 bfd_set_error (bfd_error_bad_value);
8061 return FALSE;
8062 }
b49e97c9
TS
8063
8064 if (r_symndx < extsymoff
8065 || sym_hashes[r_symndx - extsymoff] == NULL)
8066 {
b9d58d71 8067 asection *o;
b49e97c9 8068
b9d58d71
TS
8069 /* This stub is for a local symbol. This stub will only be
8070 needed if there is some relocation (R_MIPS16_26) in this BFD
8071 that refers to this symbol. */
8072 for (o = abfd->sections; o != NULL; o = o->next)
8073 {
8074 Elf_Internal_Rela *sec_relocs;
8075 const Elf_Internal_Rela *r, *rend;
8076
8077 /* We can ignore stub sections when looking for relocs. */
8078 if ((o->flags & SEC_RELOC) == 0
8079 || o->reloc_count == 0
738e5348 8080 || section_allows_mips16_refs_p (o))
b9d58d71
TS
8081 continue;
8082
8083 sec_relocs
8084 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8085 info->keep_memory);
8086 if (sec_relocs == NULL)
8087 return FALSE;
8088
8089 rend = sec_relocs + o->reloc_count;
8090 for (r = sec_relocs; r < rend; r++)
8091 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8092 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8093 break;
8094
8095 if (elf_section_data (o)->relocs != sec_relocs)
8096 free (sec_relocs);
8097
8098 if (r < rend)
8099 break;
8100 }
8101
8102 if (o == NULL)
8103 {
8104 /* There is no non-call reloc for this stub, so we do
8105 not need it. Since this function is called before
8106 the linker maps input sections to output sections, we
8107 can easily discard it by setting the SEC_EXCLUDE
8108 flag. */
8109 sec->flags |= SEC_EXCLUDE;
8110 return TRUE;
8111 }
8112
8113 /* Record this stub in an array of local symbol call_stubs for
8114 this BFD. */
698600e4 8115 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
b9d58d71
TS
8116 {
8117 unsigned long symcount;
8118 asection **n;
8119 bfd_size_type amt;
8120
8121 if (elf_bad_symtab (abfd))
8122 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8123 else
8124 symcount = symtab_hdr->sh_info;
8125 amt = symcount * sizeof (asection *);
8126 n = bfd_zalloc (abfd, amt);
8127 if (n == NULL)
8128 return FALSE;
698600e4 8129 mips_elf_tdata (abfd)->local_call_stubs = n;
b9d58d71 8130 }
b49e97c9 8131
b9d58d71 8132 sec->flags |= SEC_KEEP;
698600e4 8133 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 8134
b9d58d71
TS
8135 /* We don't need to set mips16_stubs_seen in this case.
8136 That flag is used to see whether we need to look through
8137 the global symbol table for stubs. We don't need to set
8138 it here, because we just have a local stub. */
8139 }
b49e97c9 8140 else
b49e97c9 8141 {
b9d58d71
TS
8142 h = ((struct mips_elf_link_hash_entry *)
8143 sym_hashes[r_symndx - extsymoff]);
68ffbac6 8144
b9d58d71 8145 /* H is the symbol this stub is for. */
68ffbac6 8146
b9d58d71
TS
8147 if (CALL_FP_STUB_P (name))
8148 loc = &h->call_fp_stub;
8149 else
8150 loc = &h->call_stub;
68ffbac6 8151
b9d58d71
TS
8152 /* If we already have an appropriate stub for this function, we
8153 don't need another one, so we can discard this one. Since
8154 this function is called before the linker maps input sections
8155 to output sections, we can easily discard it by setting the
8156 SEC_EXCLUDE flag. */
8157 if (*loc != NULL)
8158 {
8159 sec->flags |= SEC_EXCLUDE;
8160 return TRUE;
8161 }
b49e97c9 8162
b9d58d71
TS
8163 sec->flags |= SEC_KEEP;
8164 *loc = sec;
8165 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8166 }
b49e97c9
TS
8167 }
8168
b49e97c9 8169 sreloc = NULL;
c224138d 8170 contents = NULL;
b49e97c9
TS
8171 for (rel = relocs; rel < rel_end; ++rel)
8172 {
8173 unsigned long r_symndx;
8174 unsigned int r_type;
8175 struct elf_link_hash_entry *h;
861fb55a 8176 bfd_boolean can_make_dynamic_p;
c5d6fa44
RS
8177 bfd_boolean call_reloc_p;
8178 bfd_boolean constrain_symbol_p;
b49e97c9
TS
8179
8180 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8181 r_type = ELF_R_TYPE (abfd, rel->r_info);
8182
8183 if (r_symndx < extsymoff)
8184 h = NULL;
8185 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8186 {
8187 (*_bfd_error_handler)
d003868e
AM
8188 (_("%B: Malformed reloc detected for section %s"),
8189 abfd, name);
b49e97c9 8190 bfd_set_error (bfd_error_bad_value);
b34976b6 8191 return FALSE;
b49e97c9
TS
8192 }
8193 else
8194 {
8195 h = sym_hashes[r_symndx - extsymoff];
81fbe831
AM
8196 if (h != NULL)
8197 {
8198 while (h->root.type == bfd_link_hash_indirect
8199 || h->root.type == bfd_link_hash_warning)
8200 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8201
8202 /* PR15323, ref flags aren't set for references in the
8203 same object. */
8204 h->root.non_ir_ref = 1;
8205 }
861fb55a 8206 }
b49e97c9 8207
861fb55a
DJ
8208 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8209 relocation into a dynamic one. */
8210 can_make_dynamic_p = FALSE;
c5d6fa44
RS
8211
8212 /* Set CALL_RELOC_P to true if the relocation is for a call,
8213 and if pointer equality therefore doesn't matter. */
8214 call_reloc_p = FALSE;
8215
8216 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8217 into account when deciding how to define the symbol.
8218 Relocations in nonallocatable sections such as .pdr and
8219 .debug* should have no effect. */
8220 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8221
861fb55a
DJ
8222 switch (r_type)
8223 {
861fb55a
DJ
8224 case R_MIPS_CALL16:
8225 case R_MIPS_CALL_HI16:
8226 case R_MIPS_CALL_LO16:
c5d6fa44
RS
8227 case R_MIPS16_CALL16:
8228 case R_MICROMIPS_CALL16:
8229 case R_MICROMIPS_CALL_HI16:
8230 case R_MICROMIPS_CALL_LO16:
8231 call_reloc_p = TRUE;
8232 /* Fall through. */
8233
8234 case R_MIPS_GOT16:
861fb55a
DJ
8235 case R_MIPS_GOT_HI16:
8236 case R_MIPS_GOT_LO16:
8237 case R_MIPS_GOT_PAGE:
8238 case R_MIPS_GOT_OFST:
8239 case R_MIPS_GOT_DISP:
8240 case R_MIPS_TLS_GOTTPREL:
8241 case R_MIPS_TLS_GD:
8242 case R_MIPS_TLS_LDM:
d0f13682 8243 case R_MIPS16_GOT16:
d0f13682
CLT
8244 case R_MIPS16_TLS_GOTTPREL:
8245 case R_MIPS16_TLS_GD:
8246 case R_MIPS16_TLS_LDM:
df58fc94 8247 case R_MICROMIPS_GOT16:
df58fc94
RS
8248 case R_MICROMIPS_GOT_HI16:
8249 case R_MICROMIPS_GOT_LO16:
8250 case R_MICROMIPS_GOT_PAGE:
8251 case R_MICROMIPS_GOT_OFST:
8252 case R_MICROMIPS_GOT_DISP:
8253 case R_MICROMIPS_TLS_GOTTPREL:
8254 case R_MICROMIPS_TLS_GD:
8255 case R_MICROMIPS_TLS_LDM:
861fb55a
DJ
8256 if (dynobj == NULL)
8257 elf_hash_table (info)->dynobj = dynobj = abfd;
8258 if (!mips_elf_create_got_section (dynobj, info))
8259 return FALSE;
8260 if (htab->is_vxworks && !info->shared)
b49e97c9 8261 {
861fb55a
DJ
8262 (*_bfd_error_handler)
8263 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8264 abfd, (unsigned long) rel->r_offset);
8265 bfd_set_error (bfd_error_bad_value);
8266 return FALSE;
b49e97c9 8267 }
c5d6fa44 8268 can_make_dynamic_p = TRUE;
861fb55a 8269 break;
b49e97c9 8270
c5d6fa44 8271 case R_MIPS_NONE:
99da6b5f 8272 case R_MIPS_JALR:
df58fc94 8273 case R_MICROMIPS_JALR:
c5d6fa44
RS
8274 /* These relocations have empty fields and are purely there to
8275 provide link information. The symbol value doesn't matter. */
8276 constrain_symbol_p = FALSE;
8277 break;
8278
8279 case R_MIPS_GPREL16:
8280 case R_MIPS_GPREL32:
8281 case R_MIPS16_GPREL:
8282 case R_MICROMIPS_GPREL16:
8283 /* GP-relative relocations always resolve to a definition in a
8284 regular input file, ignoring the one-definition rule. This is
8285 important for the GP setup sequence in NewABI code, which
8286 always resolves to a local function even if other relocations
8287 against the symbol wouldn't. */
8288 constrain_symbol_p = FALSE;
99da6b5f
AN
8289 break;
8290
861fb55a
DJ
8291 case R_MIPS_32:
8292 case R_MIPS_REL32:
8293 case R_MIPS_64:
8294 /* In VxWorks executables, references to external symbols
8295 must be handled using copy relocs or PLT entries; it is not
8296 possible to convert this relocation into a dynamic one.
8297
8298 For executables that use PLTs and copy-relocs, we have a
8299 choice between converting the relocation into a dynamic
8300 one or using copy relocations or PLT entries. It is
8301 usually better to do the former, unless the relocation is
8302 against a read-only section. */
8303 if ((info->shared
8304 || (h != NULL
8305 && !htab->is_vxworks
8306 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8307 && !(!info->nocopyreloc
8308 && !PIC_OBJECT_P (abfd)
8309 && MIPS_ELF_READONLY_SECTION (sec))))
8310 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 8311 {
861fb55a 8312 can_make_dynamic_p = TRUE;
b49e97c9
TS
8313 if (dynobj == NULL)
8314 elf_hash_table (info)->dynobj = dynobj = abfd;
861fb55a 8315 }
c5d6fa44 8316 break;
b49e97c9 8317
861fb55a
DJ
8318 case R_MIPS_26:
8319 case R_MIPS_PC16:
7361da2c
AB
8320 case R_MIPS_PC21_S2:
8321 case R_MIPS_PC26_S2:
861fb55a 8322 case R_MIPS16_26:
df58fc94
RS
8323 case R_MICROMIPS_26_S1:
8324 case R_MICROMIPS_PC7_S1:
8325 case R_MICROMIPS_PC10_S1:
8326 case R_MICROMIPS_PC16_S1:
8327 case R_MICROMIPS_PC23_S2:
c5d6fa44 8328 call_reloc_p = TRUE;
861fb55a 8329 break;
b49e97c9
TS
8330 }
8331
0a44bf69
RS
8332 if (h)
8333 {
c5d6fa44
RS
8334 if (constrain_symbol_p)
8335 {
8336 if (!can_make_dynamic_p)
8337 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8338
8339 if (!call_reloc_p)
8340 h->pointer_equality_needed = 1;
8341
8342 /* We must not create a stub for a symbol that has
8343 relocations related to taking the function's address.
8344 This doesn't apply to VxWorks, where CALL relocs refer
8345 to a .got.plt entry instead of a normal .got entry. */
8346 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8347 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8348 }
8349
0a44bf69
RS
8350 /* Relocations against the special VxWorks __GOTT_BASE__ and
8351 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8352 room for them in .rela.dyn. */
8353 if (is_gott_symbol (info, h))
8354 {
8355 if (sreloc == NULL)
8356 {
8357 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8358 if (sreloc == NULL)
8359 return FALSE;
8360 }
8361 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
8362 if (MIPS_ELF_READONLY_SECTION (sec))
8363 /* We tell the dynamic linker that there are
8364 relocations against the text segment. */
8365 info->flags |= DF_TEXTREL;
0a44bf69
RS
8366 }
8367 }
df58fc94
RS
8368 else if (call_lo16_reloc_p (r_type)
8369 || got_lo16_reloc_p (r_type)
8370 || got_disp_reloc_p (r_type)
738e5348 8371 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
8372 {
8373 /* We may need a local GOT entry for this relocation. We
8374 don't count R_MIPS_GOT_PAGE because we can estimate the
8375 maximum number of pages needed by looking at the size of
738e5348
RS
8376 the segment. Similar comments apply to R_MIPS*_GOT16 and
8377 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 8378 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 8379 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 8380 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0 8381 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
e641e783 8382 rel->r_addend, info, r_type))
f4416af6 8383 return FALSE;
b49e97c9
TS
8384 }
8385
8f0c309a
CLT
8386 if (h != NULL
8387 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8388 ELF_ST_IS_MIPS16 (h->other)))
861fb55a
DJ
8389 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8390
b49e97c9
TS
8391 switch (r_type)
8392 {
8393 case R_MIPS_CALL16:
738e5348 8394 case R_MIPS16_CALL16:
df58fc94 8395 case R_MICROMIPS_CALL16:
b49e97c9
TS
8396 if (h == NULL)
8397 {
8398 (*_bfd_error_handler)
d003868e
AM
8399 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8400 abfd, (unsigned long) rel->r_offset);
b49e97c9 8401 bfd_set_error (bfd_error_bad_value);
b34976b6 8402 return FALSE;
b49e97c9
TS
8403 }
8404 /* Fall through. */
8405
8406 case R_MIPS_CALL_HI16:
8407 case R_MIPS_CALL_LO16:
df58fc94
RS
8408 case R_MICROMIPS_CALL_HI16:
8409 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
8410 if (h != NULL)
8411 {
6ccf4795
RS
8412 /* Make sure there is room in the regular GOT to hold the
8413 function's address. We may eliminate it in favour of
8414 a .got.plt entry later; see mips_elf_count_got_symbols. */
e641e783
RS
8415 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8416 r_type))
b34976b6 8417 return FALSE;
b49e97c9
TS
8418
8419 /* We need a stub, not a plt entry for the undefined
8420 function. But we record it as if it needs plt. See
c152c796 8421 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 8422 h->needs_plt = 1;
b49e97c9
TS
8423 h->type = STT_FUNC;
8424 }
8425 break;
8426
0fdc1bf1 8427 case R_MIPS_GOT_PAGE:
df58fc94 8428 case R_MICROMIPS_GOT_PAGE:
738e5348 8429 case R_MIPS16_GOT16:
b49e97c9
TS
8430 case R_MIPS_GOT16:
8431 case R_MIPS_GOT_HI16:
8432 case R_MIPS_GOT_LO16:
df58fc94
RS
8433 case R_MICROMIPS_GOT16:
8434 case R_MICROMIPS_GOT_HI16:
8435 case R_MICROMIPS_GOT_LO16:
8436 if (!h || got_page_reloc_p (r_type))
c224138d 8437 {
3a3b6725
DJ
8438 /* This relocation needs (or may need, if h != NULL) a
8439 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8440 know for sure until we know whether the symbol is
8441 preemptible. */
c224138d
RS
8442 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8443 {
8444 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8445 return FALSE;
8446 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8447 addend = mips_elf_read_rel_addend (abfd, rel,
8448 howto, contents);
9684f078 8449 if (got16_reloc_p (r_type))
c224138d
RS
8450 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8451 contents, &addend);
8452 else
8453 addend <<= howto->rightshift;
8454 }
8455 else
8456 addend = rel->r_addend;
13db6b44
RS
8457 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8458 h, addend))
c224138d 8459 return FALSE;
13db6b44
RS
8460
8461 if (h)
8462 {
8463 struct mips_elf_link_hash_entry *hmips =
8464 (struct mips_elf_link_hash_entry *) h;
8465
8466 /* This symbol is definitely not overridable. */
8467 if (hmips->root.def_regular
8468 && ! (info->shared && ! info->symbolic
8469 && ! hmips->root.forced_local))
8470 h = NULL;
8471 }
c224138d 8472 }
13db6b44
RS
8473 /* If this is a global, overridable symbol, GOT_PAGE will
8474 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d
RS
8475 /* Fall through. */
8476
b49e97c9 8477 case R_MIPS_GOT_DISP:
df58fc94 8478 case R_MICROMIPS_GOT_DISP:
6ccf4795 8479 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
e641e783 8480 FALSE, r_type))
b34976b6 8481 return FALSE;
b49e97c9
TS
8482 break;
8483
0f20cc35 8484 case R_MIPS_TLS_GOTTPREL:
d0f13682 8485 case R_MIPS16_TLS_GOTTPREL:
df58fc94 8486 case R_MICROMIPS_TLS_GOTTPREL:
0f20cc35
DJ
8487 if (info->shared)
8488 info->flags |= DF_STATIC_TLS;
8489 /* Fall through */
8490
8491 case R_MIPS_TLS_LDM:
d0f13682 8492 case R_MIPS16_TLS_LDM:
df58fc94
RS
8493 case R_MICROMIPS_TLS_LDM:
8494 if (tls_ldm_reloc_p (r_type))
0f20cc35 8495 {
cf35638d 8496 r_symndx = STN_UNDEF;
0f20cc35
DJ
8497 h = NULL;
8498 }
8499 /* Fall through */
8500
8501 case R_MIPS_TLS_GD:
d0f13682 8502 case R_MIPS16_TLS_GD:
df58fc94 8503 case R_MICROMIPS_TLS_GD:
0f20cc35
DJ
8504 /* This symbol requires a global offset table entry, or two
8505 for TLS GD relocations. */
e641e783
RS
8506 if (h != NULL)
8507 {
8508 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8509 FALSE, r_type))
8510 return FALSE;
8511 }
8512 else
8513 {
8514 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8515 rel->r_addend,
8516 info, r_type))
8517 return FALSE;
8518 }
0f20cc35
DJ
8519 break;
8520
b49e97c9
TS
8521 case R_MIPS_32:
8522 case R_MIPS_REL32:
8523 case R_MIPS_64:
0a44bf69
RS
8524 /* In VxWorks executables, references to external symbols
8525 are handled using copy relocs or PLT stubs, so there's
8526 no need to add a .rela.dyn entry for this relocation. */
861fb55a 8527 if (can_make_dynamic_p)
b49e97c9
TS
8528 {
8529 if (sreloc == NULL)
8530 {
0a44bf69 8531 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 8532 if (sreloc == NULL)
f4416af6 8533 return FALSE;
b49e97c9 8534 }
9a59ad6b 8535 if (info->shared && h == NULL)
82f0cfbd
EC
8536 {
8537 /* When creating a shared object, we must copy these
8538 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
8539 relocs. Make room for this reloc in .rel(a).dyn. */
8540 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 8541 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8542 /* We tell the dynamic linker that there are
8543 relocations against the text segment. */
8544 info->flags |= DF_TEXTREL;
8545 }
b49e97c9
TS
8546 else
8547 {
8548 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 8549
9a59ad6b
DJ
8550 /* For a shared object, we must copy this relocation
8551 unless the symbol turns out to be undefined and
8552 weak with non-default visibility, in which case
8553 it will be left as zero.
8554
8555 We could elide R_MIPS_REL32 for locally binding symbols
8556 in shared libraries, but do not yet do so.
8557
8558 For an executable, we only need to copy this
8559 reloc if the symbol is defined in a dynamic
8560 object. */
b49e97c9
TS
8561 hmips = (struct mips_elf_link_hash_entry *) h;
8562 ++hmips->possibly_dynamic_relocs;
943284cc 8563 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8564 /* We need it to tell the dynamic linker if there
8565 are relocations against the text segment. */
8566 hmips->readonly_reloc = TRUE;
b49e97c9 8567 }
b49e97c9
TS
8568 }
8569
8570 if (SGI_COMPAT (abfd))
8571 mips_elf_hash_table (info)->compact_rel_size +=
8572 sizeof (Elf32_External_crinfo);
8573 break;
8574
8575 case R_MIPS_26:
8576 case R_MIPS_GPREL16:
8577 case R_MIPS_LITERAL:
8578 case R_MIPS_GPREL32:
df58fc94
RS
8579 case R_MICROMIPS_26_S1:
8580 case R_MICROMIPS_GPREL16:
8581 case R_MICROMIPS_LITERAL:
8582 case R_MICROMIPS_GPREL7_S2:
b49e97c9
TS
8583 if (SGI_COMPAT (abfd))
8584 mips_elf_hash_table (info)->compact_rel_size +=
8585 sizeof (Elf32_External_crinfo);
8586 break;
8587
8588 /* This relocation describes the C++ object vtable hierarchy.
8589 Reconstruct it for later use during GC. */
8590 case R_MIPS_GNU_VTINHERIT:
c152c796 8591 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 8592 return FALSE;
b49e97c9
TS
8593 break;
8594
8595 /* This relocation describes which C++ vtable entries are actually
8596 used. Record for later use during GC. */
8597 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
8598 BFD_ASSERT (h != NULL);
8599 if (h != NULL
8600 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 8601 return FALSE;
b49e97c9
TS
8602 break;
8603
8604 default:
8605 break;
8606 }
8607
1bbce132
MR
8608 /* Record the need for a PLT entry. At this point we don't know
8609 yet if we are going to create a PLT in the first place, but
8610 we only record whether the relocation requires a standard MIPS
8611 or a compressed code entry anyway. If we don't make a PLT after
8612 all, then we'll just ignore these arrangements. Likewise if
8613 a PLT entry is not created because the symbol is satisfied
8614 locally. */
8615 if (h != NULL
8616 && jal_reloc_p (r_type)
8617 && !SYMBOL_CALLS_LOCAL (info, h))
8618 {
8619 if (h->plt.plist == NULL)
8620 h->plt.plist = mips_elf_make_plt_record (abfd);
8621 if (h->plt.plist == NULL)
8622 return FALSE;
8623
8624 if (r_type == R_MIPS_26)
8625 h->plt.plist->need_mips = TRUE;
8626 else
8627 h->plt.plist->need_comp = TRUE;
8628 }
8629
738e5348
RS
8630 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8631 if there is one. We only need to handle global symbols here;
8632 we decide whether to keep or delete stubs for local symbols
8633 when processing the stub's relocations. */
b49e97c9 8634 if (h != NULL
738e5348
RS
8635 && !mips16_call_reloc_p (r_type)
8636 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
8637 {
8638 struct mips_elf_link_hash_entry *mh;
8639
8640 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 8641 mh->need_fn_stub = TRUE;
b49e97c9 8642 }
861fb55a
DJ
8643
8644 /* Refuse some position-dependent relocations when creating a
8645 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8646 not PIC, but we can create dynamic relocations and the result
8647 will be fine. Also do not refuse R_MIPS_LO16, which can be
8648 combined with R_MIPS_GOT16. */
8649 if (info->shared)
8650 {
8651 switch (r_type)
8652 {
8653 case R_MIPS16_HI16:
8654 case R_MIPS_HI16:
8655 case R_MIPS_HIGHER:
8656 case R_MIPS_HIGHEST:
df58fc94
RS
8657 case R_MICROMIPS_HI16:
8658 case R_MICROMIPS_HIGHER:
8659 case R_MICROMIPS_HIGHEST:
861fb55a
DJ
8660 /* Don't refuse a high part relocation if it's against
8661 no symbol (e.g. part of a compound relocation). */
cf35638d 8662 if (r_symndx == STN_UNDEF)
861fb55a
DJ
8663 break;
8664
8665 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8666 and has a special meaning. */
8667 if (!NEWABI_P (abfd) && h != NULL
8668 && strcmp (h->root.root.string, "_gp_disp") == 0)
8669 break;
8670
0fc1eb3c
RS
8671 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8672 if (is_gott_symbol (info, h))
8673 break;
8674
861fb55a
DJ
8675 /* FALLTHROUGH */
8676
8677 case R_MIPS16_26:
8678 case R_MIPS_26:
df58fc94 8679 case R_MICROMIPS_26_S1:
861fb55a
DJ
8680 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8681 (*_bfd_error_handler)
8682 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8683 abfd, howto->name,
8684 (h) ? h->root.root.string : "a local symbol");
8685 bfd_set_error (bfd_error_bad_value);
8686 return FALSE;
8687 default:
8688 break;
8689 }
8690 }
b49e97c9
TS
8691 }
8692
b34976b6 8693 return TRUE;
b49e97c9
TS
8694}
8695\f
d0647110 8696bfd_boolean
9719ad41
RS
8697_bfd_mips_relax_section (bfd *abfd, asection *sec,
8698 struct bfd_link_info *link_info,
8699 bfd_boolean *again)
d0647110
AO
8700{
8701 Elf_Internal_Rela *internal_relocs;
8702 Elf_Internal_Rela *irel, *irelend;
8703 Elf_Internal_Shdr *symtab_hdr;
8704 bfd_byte *contents = NULL;
d0647110
AO
8705 size_t extsymoff;
8706 bfd_boolean changed_contents = FALSE;
8707 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8708 Elf_Internal_Sym *isymbuf = NULL;
8709
8710 /* We are not currently changing any sizes, so only one pass. */
8711 *again = FALSE;
8712
1049f94e 8713 if (link_info->relocatable)
d0647110
AO
8714 return TRUE;
8715
9719ad41 8716 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 8717 link_info->keep_memory);
d0647110
AO
8718 if (internal_relocs == NULL)
8719 return TRUE;
8720
8721 irelend = internal_relocs + sec->reloc_count
8722 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8723 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8724 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8725
8726 for (irel = internal_relocs; irel < irelend; irel++)
8727 {
8728 bfd_vma symval;
8729 bfd_signed_vma sym_offset;
8730 unsigned int r_type;
8731 unsigned long r_symndx;
8732 asection *sym_sec;
8733 unsigned long instruction;
8734
8735 /* Turn jalr into bgezal, and jr into beq, if they're marked
8736 with a JALR relocation, that indicate where they jump to.
8737 This saves some pipeline bubbles. */
8738 r_type = ELF_R_TYPE (abfd, irel->r_info);
8739 if (r_type != R_MIPS_JALR)
8740 continue;
8741
8742 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8743 /* Compute the address of the jump target. */
8744 if (r_symndx >= extsymoff)
8745 {
8746 struct mips_elf_link_hash_entry *h
8747 = ((struct mips_elf_link_hash_entry *)
8748 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8749
8750 while (h->root.root.type == bfd_link_hash_indirect
8751 || h->root.root.type == bfd_link_hash_warning)
8752 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 8753
d0647110
AO
8754 /* If a symbol is undefined, or if it may be overridden,
8755 skip it. */
8756 if (! ((h->root.root.type == bfd_link_hash_defined
8757 || h->root.root.type == bfd_link_hash_defweak)
8758 && h->root.root.u.def.section)
8759 || (link_info->shared && ! link_info->symbolic
f5385ebf 8760 && !h->root.forced_local))
d0647110
AO
8761 continue;
8762
8763 sym_sec = h->root.root.u.def.section;
8764 if (sym_sec->output_section)
8765 symval = (h->root.root.u.def.value
8766 + sym_sec->output_section->vma
8767 + sym_sec->output_offset);
8768 else
8769 symval = h->root.root.u.def.value;
8770 }
8771 else
8772 {
8773 Elf_Internal_Sym *isym;
8774
8775 /* Read this BFD's symbols if we haven't done so already. */
8776 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8777 {
8778 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8779 if (isymbuf == NULL)
8780 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8781 symtab_hdr->sh_info, 0,
8782 NULL, NULL, NULL);
8783 if (isymbuf == NULL)
8784 goto relax_return;
8785 }
8786
8787 isym = isymbuf + r_symndx;
8788 if (isym->st_shndx == SHN_UNDEF)
8789 continue;
8790 else if (isym->st_shndx == SHN_ABS)
8791 sym_sec = bfd_abs_section_ptr;
8792 else if (isym->st_shndx == SHN_COMMON)
8793 sym_sec = bfd_com_section_ptr;
8794 else
8795 sym_sec
8796 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8797 symval = isym->st_value
8798 + sym_sec->output_section->vma
8799 + sym_sec->output_offset;
8800 }
8801
8802 /* Compute branch offset, from delay slot of the jump to the
8803 branch target. */
8804 sym_offset = (symval + irel->r_addend)
8805 - (sec_start + irel->r_offset + 4);
8806
8807 /* Branch offset must be properly aligned. */
8808 if ((sym_offset & 3) != 0)
8809 continue;
8810
8811 sym_offset >>= 2;
8812
8813 /* Check that it's in range. */
8814 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8815 continue;
143d77c5 8816
d0647110 8817 /* Get the section contents if we haven't done so already. */
c224138d
RS
8818 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8819 goto relax_return;
d0647110
AO
8820
8821 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8822
8823 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8824 if ((instruction & 0xfc1fffff) == 0x0000f809)
8825 instruction = 0x04110000;
8826 /* If it was jr <reg>, turn it into b <target>. */
8827 else if ((instruction & 0xfc1fffff) == 0x00000008)
8828 instruction = 0x10000000;
8829 else
8830 continue;
8831
8832 instruction |= (sym_offset & 0xffff);
8833 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8834 changed_contents = TRUE;
8835 }
8836
8837 if (contents != NULL
8838 && elf_section_data (sec)->this_hdr.contents != contents)
8839 {
8840 if (!changed_contents && !link_info->keep_memory)
8841 free (contents);
8842 else
8843 {
8844 /* Cache the section contents for elf_link_input_bfd. */
8845 elf_section_data (sec)->this_hdr.contents = contents;
8846 }
8847 }
8848 return TRUE;
8849
143d77c5 8850 relax_return:
eea6121a
AM
8851 if (contents != NULL
8852 && elf_section_data (sec)->this_hdr.contents != contents)
8853 free (contents);
d0647110
AO
8854 return FALSE;
8855}
8856\f
9a59ad6b
DJ
8857/* Allocate space for global sym dynamic relocs. */
8858
8859static bfd_boolean
8860allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8861{
8862 struct bfd_link_info *info = inf;
8863 bfd *dynobj;
8864 struct mips_elf_link_hash_entry *hmips;
8865 struct mips_elf_link_hash_table *htab;
8866
8867 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8868 BFD_ASSERT (htab != NULL);
8869
9a59ad6b
DJ
8870 dynobj = elf_hash_table (info)->dynobj;
8871 hmips = (struct mips_elf_link_hash_entry *) h;
8872
8873 /* VxWorks executables are handled elsewhere; we only need to
8874 allocate relocations in shared objects. */
8875 if (htab->is_vxworks && !info->shared)
8876 return TRUE;
8877
7686d77d
AM
8878 /* Ignore indirect symbols. All relocations against such symbols
8879 will be redirected to the target symbol. */
8880 if (h->root.type == bfd_link_hash_indirect)
63897e2c
RS
8881 return TRUE;
8882
9a59ad6b
DJ
8883 /* If this symbol is defined in a dynamic object, or we are creating
8884 a shared library, we will need to copy any R_MIPS_32 or
8885 R_MIPS_REL32 relocs against it into the output file. */
8886 if (! info->relocatable
8887 && hmips->possibly_dynamic_relocs != 0
8888 && (h->root.type == bfd_link_hash_defweak
625ef6dc 8889 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9a59ad6b
DJ
8890 || info->shared))
8891 {
8892 bfd_boolean do_copy = TRUE;
8893
8894 if (h->root.type == bfd_link_hash_undefweak)
8895 {
8896 /* Do not copy relocations for undefined weak symbols with
8897 non-default visibility. */
8898 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8899 do_copy = FALSE;
8900
8901 /* Make sure undefined weak symbols are output as a dynamic
8902 symbol in PIEs. */
8903 else if (h->dynindx == -1 && !h->forced_local)
8904 {
8905 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8906 return FALSE;
8907 }
8908 }
8909
8910 if (do_copy)
8911 {
aff469fa 8912 /* Even though we don't directly need a GOT entry for this symbol,
f7ff1106
RS
8913 the SVR4 psABI requires it to have a dynamic symbol table
8914 index greater that DT_MIPS_GOTSYM if there are dynamic
8915 relocations against it.
8916
8917 VxWorks does not enforce the same mapping between the GOT
8918 and the symbol table, so the same requirement does not
8919 apply there. */
6ccf4795
RS
8920 if (!htab->is_vxworks)
8921 {
8922 if (hmips->global_got_area > GGA_RELOC_ONLY)
8923 hmips->global_got_area = GGA_RELOC_ONLY;
8924 hmips->got_only_for_calls = FALSE;
8925 }
aff469fa 8926
9a59ad6b
DJ
8927 mips_elf_allocate_dynamic_relocations
8928 (dynobj, info, hmips->possibly_dynamic_relocs);
8929 if (hmips->readonly_reloc)
8930 /* We tell the dynamic linker that there are relocations
8931 against the text segment. */
8932 info->flags |= DF_TEXTREL;
8933 }
8934 }
8935
8936 return TRUE;
8937}
8938
b49e97c9
TS
8939/* Adjust a symbol defined by a dynamic object and referenced by a
8940 regular object. The current definition is in some section of the
8941 dynamic object, but we're not including those sections. We have to
8942 change the definition to something the rest of the link can
8943 understand. */
8944
b34976b6 8945bfd_boolean
9719ad41
RS
8946_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8947 struct elf_link_hash_entry *h)
b49e97c9
TS
8948{
8949 bfd *dynobj;
8950 struct mips_elf_link_hash_entry *hmips;
5108fc1b 8951 struct mips_elf_link_hash_table *htab;
b49e97c9 8952
5108fc1b 8953 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8954 BFD_ASSERT (htab != NULL);
8955
b49e97c9 8956 dynobj = elf_hash_table (info)->dynobj;
861fb55a 8957 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
8958
8959 /* Make sure we know what is going on here. */
8960 BFD_ASSERT (dynobj != NULL
f5385ebf 8961 && (h->needs_plt
f6e332e6 8962 || h->u.weakdef != NULL
f5385ebf
AM
8963 || (h->def_dynamic
8964 && h->ref_regular
8965 && !h->def_regular)));
b49e97c9 8966
b49e97c9 8967 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 8968
861fb55a
DJ
8969 /* If there are call relocations against an externally-defined symbol,
8970 see whether we can create a MIPS lazy-binding stub for it. We can
8971 only do this if all references to the function are through call
8972 relocations, and in that case, the traditional lazy-binding stubs
8973 are much more efficient than PLT entries.
8974
8975 Traditional stubs are only available on SVR4 psABI-based systems;
8976 VxWorks always uses PLTs instead. */
8977 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
8978 {
8979 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 8980 return TRUE;
b49e97c9
TS
8981
8982 /* If this symbol is not defined in a regular file, then set
8983 the symbol to the stub location. This is required to make
8984 function pointers compare as equal between the normal
8985 executable and the shared library. */
f5385ebf 8986 if (!h->def_regular)
b49e97c9 8987 {
33bb52fb
RS
8988 hmips->needs_lazy_stub = TRUE;
8989 htab->lazy_stub_count++;
b34976b6 8990 return TRUE;
b49e97c9
TS
8991 }
8992 }
861fb55a
DJ
8993 /* As above, VxWorks requires PLT entries for externally-defined
8994 functions that are only accessed through call relocations.
b49e97c9 8995
861fb55a
DJ
8996 Both VxWorks and non-VxWorks targets also need PLT entries if there
8997 are static-only relocations against an externally-defined function.
8998 This can technically occur for shared libraries if there are
8999 branches to the symbol, although it is unlikely that this will be
9000 used in practice due to the short ranges involved. It can occur
9001 for any relative or absolute relocation in executables; in that
9002 case, the PLT entry becomes the function's canonical address. */
9003 else if (((h->needs_plt && !hmips->no_fn_stub)
9004 || (h->type == STT_FUNC && hmips->has_static_relocs))
9005 && htab->use_plts_and_copy_relocs
9006 && !SYMBOL_CALLS_LOCAL (info, h)
9007 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9008 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 9009 {
1bbce132
MR
9010 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9011 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9012
9013 /* If this is the first symbol to need a PLT entry, then make some
9014 basic setup. Also work out PLT entry sizes. We'll need them
9015 for PLT offset calculations. */
9016 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
861fb55a
DJ
9017 {
9018 BFD_ASSERT (htab->sgotplt->size == 0);
1bbce132 9019 BFD_ASSERT (htab->plt_got_index == 0);
0a44bf69 9020
861fb55a
DJ
9021 /* If we're using the PLT additions to the psABI, each PLT
9022 entry is 16 bytes and the PLT0 entry is 32 bytes.
9023 Encourage better cache usage by aligning. We do this
9024 lazily to avoid pessimizing traditional objects. */
9025 if (!htab->is_vxworks
9026 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
9027 return FALSE;
0a44bf69 9028
861fb55a
DJ
9029 /* Make sure that .got.plt is word-aligned. We do this lazily
9030 for the same reason as above. */
9031 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
9032 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9033 return FALSE;
0a44bf69 9034
861fb55a
DJ
9035 /* On non-VxWorks targets, the first two entries in .got.plt
9036 are reserved. */
9037 if (!htab->is_vxworks)
1bbce132
MR
9038 htab->plt_got_index
9039 += (get_elf_backend_data (dynobj)->got_header_size
9040 / MIPS_ELF_GOT_SIZE (dynobj));
0a44bf69 9041
861fb55a
DJ
9042 /* On VxWorks, also allocate room for the header's
9043 .rela.plt.unloaded entries. */
9044 if (htab->is_vxworks && !info->shared)
0a44bf69 9045 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
1bbce132
MR
9046
9047 /* Now work out the sizes of individual PLT entries. */
9048 if (htab->is_vxworks && info->shared)
9049 htab->plt_mips_entry_size
9050 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9051 else if (htab->is_vxworks)
9052 htab->plt_mips_entry_size
9053 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9054 else if (newabi_p)
9055 htab->plt_mips_entry_size
9056 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
833794fc 9057 else if (!micromips_p)
1bbce132
MR
9058 {
9059 htab->plt_mips_entry_size
9060 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9061 htab->plt_comp_entry_size
833794fc
MR
9062 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9063 }
9064 else if (htab->insn32)
9065 {
9066 htab->plt_mips_entry_size
9067 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9068 htab->plt_comp_entry_size
9069 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
1bbce132
MR
9070 }
9071 else
9072 {
9073 htab->plt_mips_entry_size
9074 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9075 htab->plt_comp_entry_size
833794fc 9076 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
1bbce132 9077 }
0a44bf69
RS
9078 }
9079
1bbce132
MR
9080 if (h->plt.plist == NULL)
9081 h->plt.plist = mips_elf_make_plt_record (dynobj);
9082 if (h->plt.plist == NULL)
9083 return FALSE;
9084
9085 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9086 n32 or n64, so always use a standard entry there.
9087
9088 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9089 all MIPS16 calls will go via that stub, and there is no benefit
9090 to having a MIPS16 entry. And in the case of call_stub a
9091 standard entry actually has to be used as the stub ends with a J
9092 instruction. */
9093 if (newabi_p
9094 || htab->is_vxworks
9095 || hmips->call_stub
9096 || hmips->call_fp_stub)
9097 {
9098 h->plt.plist->need_mips = TRUE;
9099 h->plt.plist->need_comp = FALSE;
9100 }
9101
9102 /* Otherwise, if there are no direct calls to the function, we
9103 have a free choice of whether to use standard or compressed
9104 entries. Prefer microMIPS entries if the object is known to
9105 contain microMIPS code, so that it becomes possible to create
9106 pure microMIPS binaries. Prefer standard entries otherwise,
9107 because MIPS16 ones are no smaller and are usually slower. */
9108 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9109 {
9110 if (micromips_p)
9111 h->plt.plist->need_comp = TRUE;
9112 else
9113 h->plt.plist->need_mips = TRUE;
9114 }
9115
9116 if (h->plt.plist->need_mips)
9117 {
9118 h->plt.plist->mips_offset = htab->plt_mips_offset;
9119 htab->plt_mips_offset += htab->plt_mips_entry_size;
9120 }
9121 if (h->plt.plist->need_comp)
9122 {
9123 h->plt.plist->comp_offset = htab->plt_comp_offset;
9124 htab->plt_comp_offset += htab->plt_comp_entry_size;
9125 }
9126
9127 /* Reserve the corresponding .got.plt entry now too. */
9128 h->plt.plist->gotplt_index = htab->plt_got_index++;
0a44bf69
RS
9129
9130 /* If the output file has no definition of the symbol, set the
861fb55a 9131 symbol's value to the address of the stub. */
131eb6b7 9132 if (!info->shared && !h->def_regular)
1bbce132 9133 hmips->use_plt_entry = TRUE;
0a44bf69 9134
1bbce132 9135 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
861fb55a
DJ
9136 htab->srelplt->size += (htab->is_vxworks
9137 ? MIPS_ELF_RELA_SIZE (dynobj)
9138 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
9139
9140 /* Make room for the .rela.plt.unloaded relocations. */
861fb55a 9141 if (htab->is_vxworks && !info->shared)
0a44bf69
RS
9142 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9143
861fb55a
DJ
9144 /* All relocations against this symbol that could have been made
9145 dynamic will now refer to the PLT entry instead. */
9146 hmips->possibly_dynamic_relocs = 0;
0a44bf69 9147
0a44bf69
RS
9148 return TRUE;
9149 }
9150
9151 /* If this is a weak symbol, and there is a real definition, the
9152 processor independent code will have arranged for us to see the
9153 real definition first, and we can just use the same value. */
9154 if (h->u.weakdef != NULL)
9155 {
9156 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9157 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9158 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9159 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9160 return TRUE;
9161 }
9162
861fb55a
DJ
9163 /* Otherwise, there is nothing further to do for symbols defined
9164 in regular objects. */
9165 if (h->def_regular)
0a44bf69
RS
9166 return TRUE;
9167
861fb55a
DJ
9168 /* There's also nothing more to do if we'll convert all relocations
9169 against this symbol into dynamic relocations. */
9170 if (!hmips->has_static_relocs)
9171 return TRUE;
9172
9173 /* We're now relying on copy relocations. Complain if we have
9174 some that we can't convert. */
9175 if (!htab->use_plts_and_copy_relocs || info->shared)
9176 {
9177 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
9178 "dynamic symbol %s"),
9179 h->root.root.string);
9180 bfd_set_error (bfd_error_bad_value);
9181 return FALSE;
9182 }
9183
0a44bf69
RS
9184 /* We must allocate the symbol in our .dynbss section, which will
9185 become part of the .bss section of the executable. There will be
9186 an entry for this symbol in the .dynsym section. The dynamic
9187 object will contain position independent code, so all references
9188 from the dynamic object to this symbol will go through the global
9189 offset table. The dynamic linker will use the .dynsym entry to
9190 determine the address it must put in the global offset table, so
9191 both the dynamic object and the regular object will refer to the
9192 same memory location for the variable. */
9193
9194 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9195 {
861fb55a
DJ
9196 if (htab->is_vxworks)
9197 htab->srelbss->size += sizeof (Elf32_External_Rela);
9198 else
9199 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
9200 h->needs_copy = 1;
9201 }
9202
861fb55a
DJ
9203 /* All relocations against this symbol that could have been made
9204 dynamic will now refer to the local copy instead. */
9205 hmips->possibly_dynamic_relocs = 0;
9206
027297b7 9207 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
0a44bf69 9208}
b49e97c9
TS
9209\f
9210/* This function is called after all the input files have been read,
9211 and the input sections have been assigned to output sections. We
9212 check for any mips16 stub sections that we can discard. */
9213
b34976b6 9214bfd_boolean
9719ad41
RS
9215_bfd_mips_elf_always_size_sections (bfd *output_bfd,
9216 struct bfd_link_info *info)
b49e97c9 9217{
351cdf24 9218 asection *sect;
0a44bf69 9219 struct mips_elf_link_hash_table *htab;
861fb55a 9220 struct mips_htab_traverse_info hti;
0a44bf69
RS
9221
9222 htab = mips_elf_hash_table (info);
4dfe6ac6 9223 BFD_ASSERT (htab != NULL);
f4416af6 9224
b49e97c9 9225 /* The .reginfo section has a fixed size. */
351cdf24
MF
9226 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9227 if (sect != NULL)
9228 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9229
9230 /* The .MIPS.abiflags section has a fixed size. */
9231 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9232 if (sect != NULL)
9233 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
b49e97c9 9234
861fb55a
DJ
9235 hti.info = info;
9236 hti.output_bfd = output_bfd;
9237 hti.error = FALSE;
9238 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9239 mips_elf_check_symbols, &hti);
9240 if (hti.error)
9241 return FALSE;
f4416af6 9242
33bb52fb
RS
9243 return TRUE;
9244}
9245
9246/* If the link uses a GOT, lay it out and work out its size. */
9247
9248static bfd_boolean
9249mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9250{
9251 bfd *dynobj;
9252 asection *s;
9253 struct mips_got_info *g;
33bb52fb
RS
9254 bfd_size_type loadable_size = 0;
9255 bfd_size_type page_gotno;
d7206569 9256 bfd *ibfd;
ab361d49 9257 struct mips_elf_traverse_got_arg tga;
33bb52fb
RS
9258 struct mips_elf_link_hash_table *htab;
9259
9260 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9261 BFD_ASSERT (htab != NULL);
9262
a8028dd0 9263 s = htab->sgot;
f4416af6 9264 if (s == NULL)
b34976b6 9265 return TRUE;
b49e97c9 9266
33bb52fb 9267 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
9268 g = htab->got_info;
9269
861fb55a
DJ
9270 /* Allocate room for the reserved entries. VxWorks always reserves
9271 3 entries; other objects only reserve 2 entries. */
cb22ccf4 9272 BFD_ASSERT (g->assigned_low_gotno == 0);
861fb55a
DJ
9273 if (htab->is_vxworks)
9274 htab->reserved_gotno = 3;
9275 else
9276 htab->reserved_gotno = 2;
9277 g->local_gotno += htab->reserved_gotno;
cb22ccf4 9278 g->assigned_low_gotno = htab->reserved_gotno;
861fb55a 9279
6c42ddb9
RS
9280 /* Decide which symbols need to go in the global part of the GOT and
9281 count the number of reloc-only GOT symbols. */
020d7251 9282 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
f4416af6 9283
13db6b44
RS
9284 if (!mips_elf_resolve_final_got_entries (info, g))
9285 return FALSE;
9286
33bb52fb
RS
9287 /* Calculate the total loadable size of the output. That
9288 will give us the maximum number of GOT_PAGE entries
9289 required. */
c72f2fb2 9290 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
33bb52fb
RS
9291 {
9292 asection *subsection;
5108fc1b 9293
d7206569 9294 for (subsection = ibfd->sections;
33bb52fb
RS
9295 subsection;
9296 subsection = subsection->next)
9297 {
9298 if ((subsection->flags & SEC_ALLOC) == 0)
9299 continue;
9300 loadable_size += ((subsection->size + 0xf)
9301 &~ (bfd_size_type) 0xf);
9302 }
9303 }
f4416af6 9304
0a44bf69 9305 if (htab->is_vxworks)
738e5348 9306 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
9307 relocations against local symbols evaluate to "G", and the EABI does
9308 not include R_MIPS_GOT_PAGE. */
c224138d 9309 page_gotno = 0;
0a44bf69
RS
9310 else
9311 /* Assume there are two loadable segments consisting of contiguous
9312 sections. Is 5 enough? */
c224138d
RS
9313 page_gotno = (loadable_size >> 16) + 5;
9314
13db6b44 9315 /* Choose the smaller of the two page estimates; both are intended to be
c224138d
RS
9316 conservative. */
9317 if (page_gotno > g->page_gotno)
9318 page_gotno = g->page_gotno;
f4416af6 9319
c224138d 9320 g->local_gotno += page_gotno;
cb22ccf4 9321 g->assigned_high_gotno = g->local_gotno - 1;
ab361d49 9322
ab361d49
RS
9323 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9324 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
0f20cc35
DJ
9325 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9326
0a44bf69
RS
9327 /* VxWorks does not support multiple GOTs. It initializes $gp to
9328 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9329 dynamic loader. */
57093f5e 9330 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 9331 {
a8028dd0 9332 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
9333 return FALSE;
9334 }
9335 else
9336 {
d7206569
RS
9337 /* Record that all bfds use G. This also has the effect of freeing
9338 the per-bfd GOTs, which we no longer need. */
c72f2fb2 9339 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
9340 if (mips_elf_bfd_got (ibfd, FALSE))
9341 mips_elf_replace_bfd_got (ibfd, g);
9342 mips_elf_replace_bfd_got (output_bfd, g);
9343
33bb52fb 9344 /* Set up TLS entries. */
0f20cc35 9345 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
72e7511a
RS
9346 tga.info = info;
9347 tga.g = g;
9348 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9349 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9350 if (!tga.g)
9351 return FALSE;
1fd20d70
RS
9352 BFD_ASSERT (g->tls_assigned_gotno
9353 == g->global_gotno + g->local_gotno + g->tls_gotno);
33bb52fb 9354
57093f5e
RS
9355 /* Each VxWorks GOT entry needs an explicit relocation. */
9356 if (htab->is_vxworks && info->shared)
9357 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9358
33bb52fb 9359 /* Allocate room for the TLS relocations. */
ab361d49
RS
9360 if (g->relocs)
9361 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
0f20cc35 9362 }
b49e97c9 9363
b34976b6 9364 return TRUE;
b49e97c9
TS
9365}
9366
33bb52fb
RS
9367/* Estimate the size of the .MIPS.stubs section. */
9368
9369static void
9370mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9371{
9372 struct mips_elf_link_hash_table *htab;
9373 bfd_size_type dynsymcount;
9374
9375 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9376 BFD_ASSERT (htab != NULL);
9377
33bb52fb
RS
9378 if (htab->lazy_stub_count == 0)
9379 return;
9380
9381 /* IRIX rld assumes that a function stub isn't at the end of the .text
9382 section, so add a dummy entry to the end. */
9383 htab->lazy_stub_count++;
9384
9385 /* Get a worst-case estimate of the number of dynamic symbols needed.
9386 At this point, dynsymcount does not account for section symbols
9387 and count_section_dynsyms may overestimate the number that will
9388 be needed. */
9389 dynsymcount = (elf_hash_table (info)->dynsymcount
9390 + count_section_dynsyms (output_bfd, info));
9391
1bbce132
MR
9392 /* Determine the size of one stub entry. There's no disadvantage
9393 from using microMIPS code here, so for the sake of pure-microMIPS
9394 binaries we prefer it whenever there's any microMIPS code in
9395 output produced at all. This has a benefit of stubs being
833794fc
MR
9396 shorter by 4 bytes each too, unless in the insn32 mode. */
9397 if (!MICROMIPS_P (output_bfd))
1bbce132
MR
9398 htab->function_stub_size = (dynsymcount > 0x10000
9399 ? MIPS_FUNCTION_STUB_BIG_SIZE
9400 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
833794fc
MR
9401 else if (htab->insn32)
9402 htab->function_stub_size = (dynsymcount > 0x10000
9403 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9404 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9405 else
9406 htab->function_stub_size = (dynsymcount > 0x10000
9407 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9408 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
33bb52fb
RS
9409
9410 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9411}
9412
1bbce132
MR
9413/* A mips_elf_link_hash_traverse callback for which DATA points to a
9414 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9415 stub, allocate an entry in the stubs section. */
33bb52fb
RS
9416
9417static bfd_boolean
af924177 9418mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 9419{
1bbce132 9420 struct mips_htab_traverse_info *hti = data;
33bb52fb 9421 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9422 struct bfd_link_info *info;
9423 bfd *output_bfd;
9424
9425 info = hti->info;
9426 output_bfd = hti->output_bfd;
9427 htab = mips_elf_hash_table (info);
9428 BFD_ASSERT (htab != NULL);
33bb52fb 9429
33bb52fb
RS
9430 if (h->needs_lazy_stub)
9431 {
1bbce132
MR
9432 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9433 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9434 bfd_vma isa_bit = micromips_p;
9435
9436 BFD_ASSERT (htab->root.dynobj != NULL);
9437 if (h->root.plt.plist == NULL)
9438 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9439 if (h->root.plt.plist == NULL)
9440 {
9441 hti->error = TRUE;
9442 return FALSE;
9443 }
33bb52fb 9444 h->root.root.u.def.section = htab->sstubs;
1bbce132
MR
9445 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9446 h->root.plt.plist->stub_offset = htab->sstubs->size;
9447 h->root.other = other;
33bb52fb
RS
9448 htab->sstubs->size += htab->function_stub_size;
9449 }
9450 return TRUE;
9451}
9452
9453/* Allocate offsets in the stubs section to each symbol that needs one.
9454 Set the final size of the .MIPS.stub section. */
9455
1bbce132 9456static bfd_boolean
33bb52fb
RS
9457mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9458{
1bbce132
MR
9459 bfd *output_bfd = info->output_bfd;
9460 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9461 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9462 bfd_vma isa_bit = micromips_p;
33bb52fb 9463 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9464 struct mips_htab_traverse_info hti;
9465 struct elf_link_hash_entry *h;
9466 bfd *dynobj;
33bb52fb
RS
9467
9468 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9469 BFD_ASSERT (htab != NULL);
9470
33bb52fb 9471 if (htab->lazy_stub_count == 0)
1bbce132 9472 return TRUE;
33bb52fb
RS
9473
9474 htab->sstubs->size = 0;
1bbce132
MR
9475 hti.info = info;
9476 hti.output_bfd = output_bfd;
9477 hti.error = FALSE;
9478 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9479 if (hti.error)
9480 return FALSE;
33bb52fb
RS
9481 htab->sstubs->size += htab->function_stub_size;
9482 BFD_ASSERT (htab->sstubs->size
9483 == htab->lazy_stub_count * htab->function_stub_size);
1bbce132
MR
9484
9485 dynobj = elf_hash_table (info)->dynobj;
9486 BFD_ASSERT (dynobj != NULL);
9487 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9488 if (h == NULL)
9489 return FALSE;
9490 h->root.u.def.value = isa_bit;
9491 h->other = other;
9492 h->type = STT_FUNC;
9493
9494 return TRUE;
9495}
9496
9497/* A mips_elf_link_hash_traverse callback for which DATA points to a
9498 bfd_link_info. If H uses the address of a PLT entry as the value
9499 of the symbol, then set the entry in the symbol table now. Prefer
9500 a standard MIPS PLT entry. */
9501
9502static bfd_boolean
9503mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9504{
9505 struct bfd_link_info *info = data;
9506 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9507 struct mips_elf_link_hash_table *htab;
9508 unsigned int other;
9509 bfd_vma isa_bit;
9510 bfd_vma val;
9511
9512 htab = mips_elf_hash_table (info);
9513 BFD_ASSERT (htab != NULL);
9514
9515 if (h->use_plt_entry)
9516 {
9517 BFD_ASSERT (h->root.plt.plist != NULL);
9518 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9519 || h->root.plt.plist->comp_offset != MINUS_ONE);
9520
9521 val = htab->plt_header_size;
9522 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9523 {
9524 isa_bit = 0;
9525 val += h->root.plt.plist->mips_offset;
9526 other = 0;
9527 }
9528 else
9529 {
9530 isa_bit = 1;
9531 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9532 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9533 }
9534 val += isa_bit;
9535 /* For VxWorks, point at the PLT load stub rather than the lazy
9536 resolution stub; this stub will become the canonical function
9537 address. */
9538 if (htab->is_vxworks)
9539 val += 8;
9540
9541 h->root.root.u.def.section = htab->splt;
9542 h->root.root.u.def.value = val;
9543 h->root.other = other;
9544 }
9545
9546 return TRUE;
33bb52fb
RS
9547}
9548
b49e97c9
TS
9549/* Set the sizes of the dynamic sections. */
9550
b34976b6 9551bfd_boolean
9719ad41
RS
9552_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9553 struct bfd_link_info *info)
b49e97c9
TS
9554{
9555 bfd *dynobj;
861fb55a 9556 asection *s, *sreldyn;
b34976b6 9557 bfd_boolean reltext;
0a44bf69 9558 struct mips_elf_link_hash_table *htab;
b49e97c9 9559
0a44bf69 9560 htab = mips_elf_hash_table (info);
4dfe6ac6 9561 BFD_ASSERT (htab != NULL);
b49e97c9
TS
9562 dynobj = elf_hash_table (info)->dynobj;
9563 BFD_ASSERT (dynobj != NULL);
9564
9565 if (elf_hash_table (info)->dynamic_sections_created)
9566 {
9567 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 9568 if (info->executable)
b49e97c9 9569 {
3d4d4302 9570 s = bfd_get_linker_section (dynobj, ".interp");
b49e97c9 9571 BFD_ASSERT (s != NULL);
eea6121a 9572 s->size
b49e97c9
TS
9573 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9574 s->contents
9575 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9576 }
861fb55a 9577
1bbce132
MR
9578 /* Figure out the size of the PLT header if we know that we
9579 are using it. For the sake of cache alignment always use
9580 a standard header whenever any standard entries are present
9581 even if microMIPS entries are present as well. This also
9582 lets the microMIPS header rely on the value of $v0 only set
9583 by microMIPS entries, for a small size reduction.
9584
9585 Set symbol table entry values for symbols that use the
9586 address of their PLT entry now that we can calculate it.
9587
9588 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9589 haven't already in _bfd_elf_create_dynamic_sections. */
9590 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
861fb55a 9591 {
1bbce132
MR
9592 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9593 && !htab->plt_mips_offset);
9594 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9595 bfd_vma isa_bit = micromips_p;
861fb55a 9596 struct elf_link_hash_entry *h;
1bbce132 9597 bfd_vma size;
861fb55a
DJ
9598
9599 BFD_ASSERT (htab->use_plts_and_copy_relocs);
1bbce132
MR
9600 BFD_ASSERT (htab->sgotplt->size == 0);
9601 BFD_ASSERT (htab->splt->size == 0);
9602
9603 if (htab->is_vxworks && info->shared)
9604 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9605 else if (htab->is_vxworks)
9606 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9607 else if (ABI_64_P (output_bfd))
9608 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9609 else if (ABI_N32_P (output_bfd))
9610 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9611 else if (!micromips_p)
9612 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
833794fc
MR
9613 else if (htab->insn32)
9614 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
1bbce132
MR
9615 else
9616 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
861fb55a 9617
1bbce132
MR
9618 htab->plt_header_is_comp = micromips_p;
9619 htab->plt_header_size = size;
9620 htab->splt->size = (size
9621 + htab->plt_mips_offset
9622 + htab->plt_comp_offset);
9623 htab->sgotplt->size = (htab->plt_got_index
9624 * MIPS_ELF_GOT_SIZE (dynobj));
9625
9626 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9627
9628 if (htab->root.hplt == NULL)
9629 {
9630 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9631 "_PROCEDURE_LINKAGE_TABLE_");
9632 htab->root.hplt = h;
9633 if (h == NULL)
9634 return FALSE;
9635 }
9636
9637 h = htab->root.hplt;
9638 h->root.u.def.value = isa_bit;
9639 h->other = other;
861fb55a
DJ
9640 h->type = STT_FUNC;
9641 }
9642 }
4e41d0d7 9643
9a59ad6b 9644 /* Allocate space for global sym dynamic relocs. */
2c3fc389 9645 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9a59ad6b 9646
33bb52fb
RS
9647 mips_elf_estimate_stub_size (output_bfd, info);
9648
9649 if (!mips_elf_lay_out_got (output_bfd, info))
9650 return FALSE;
9651
9652 mips_elf_lay_out_lazy_stubs (info);
9653
b49e97c9
TS
9654 /* The check_relocs and adjust_dynamic_symbol entry points have
9655 determined the sizes of the various dynamic sections. Allocate
9656 memory for them. */
b34976b6 9657 reltext = FALSE;
b49e97c9
TS
9658 for (s = dynobj->sections; s != NULL; s = s->next)
9659 {
9660 const char *name;
b49e97c9
TS
9661
9662 /* It's OK to base decisions on the section name, because none
9663 of the dynobj section names depend upon the input files. */
9664 name = bfd_get_section_name (dynobj, s);
9665
9666 if ((s->flags & SEC_LINKER_CREATED) == 0)
9667 continue;
9668
0112cd26 9669 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 9670 {
c456f082 9671 if (s->size != 0)
b49e97c9
TS
9672 {
9673 const char *outname;
9674 asection *target;
9675
9676 /* If this relocation section applies to a read only
9677 section, then we probably need a DT_TEXTREL entry.
0a44bf69 9678 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
9679 assert a DT_TEXTREL entry rather than testing whether
9680 there exists a relocation to a read only section or
9681 not. */
9682 outname = bfd_get_section_name (output_bfd,
9683 s->output_section);
9684 target = bfd_get_section_by_name (output_bfd, outname + 4);
9685 if ((target != NULL
9686 && (target->flags & SEC_READONLY) != 0
9687 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 9688 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 9689 reltext = TRUE;
b49e97c9
TS
9690
9691 /* We use the reloc_count field as a counter if we need
9692 to copy relocs into the output file. */
0a44bf69 9693 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 9694 s->reloc_count = 0;
f4416af6
AO
9695
9696 /* If combreloc is enabled, elf_link_sort_relocs() will
9697 sort relocations, but in a different way than we do,
9698 and before we're done creating relocations. Also, it
9699 will move them around between input sections'
9700 relocation's contents, so our sorting would be
9701 broken, so don't let it run. */
9702 info->combreloc = 0;
b49e97c9
TS
9703 }
9704 }
b49e97c9
TS
9705 else if (! info->shared
9706 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 9707 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 9708 {
5108fc1b 9709 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 9710 rtld to contain a pointer to the _r_debug structure. */
b4082c70 9711 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
b49e97c9
TS
9712 }
9713 else if (SGI_COMPAT (output_bfd)
0112cd26 9714 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 9715 s->size += mips_elf_hash_table (info)->compact_rel_size;
861fb55a
DJ
9716 else if (s == htab->splt)
9717 {
9718 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
9719 room for an extra nop to fill the delay slot. This is
9720 for CPUs without load interlocking. */
9721 if (! LOAD_INTERLOCKS_P (output_bfd)
9722 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
9723 s->size += 4;
9724 }
0112cd26 9725 else if (! CONST_STRNEQ (name, ".init")
33bb52fb 9726 && s != htab->sgot
0a44bf69 9727 && s != htab->sgotplt
861fb55a
DJ
9728 && s != htab->sstubs
9729 && s != htab->sdynbss)
b49e97c9
TS
9730 {
9731 /* It's not one of our sections, so don't allocate space. */
9732 continue;
9733 }
9734
c456f082 9735 if (s->size == 0)
b49e97c9 9736 {
8423293d 9737 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
9738 continue;
9739 }
9740
c456f082
AM
9741 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9742 continue;
9743
b49e97c9 9744 /* Allocate memory for the section contents. */
eea6121a 9745 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 9746 if (s->contents == NULL)
b49e97c9
TS
9747 {
9748 bfd_set_error (bfd_error_no_memory);
b34976b6 9749 return FALSE;
b49e97c9
TS
9750 }
9751 }
9752
9753 if (elf_hash_table (info)->dynamic_sections_created)
9754 {
9755 /* Add some entries to the .dynamic section. We fill in the
9756 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9757 must add the entries now so that we get the correct size for
5750dcec 9758 the .dynamic section. */
af5978fb
RS
9759
9760 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec 9761 DT_MIPS_RLD_MAP entry. This must come first because glibc
6e6be592
MR
9762 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9763 may only look at the first one they see. */
af5978fb
RS
9764 if (!info->shared
9765 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9766 return FALSE;
b49e97c9 9767
5750dcec
DJ
9768 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9769 used by the debugger. */
9770 if (info->executable
9771 && !SGI_COMPAT (output_bfd)
9772 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9773 return FALSE;
9774
0a44bf69 9775 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
9776 info->flags |= DF_TEXTREL;
9777
9778 if ((info->flags & DF_TEXTREL) != 0)
9779 {
9780 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 9781 return FALSE;
943284cc
DJ
9782
9783 /* Clear the DF_TEXTREL flag. It will be set again if we
9784 write out an actual text relocation; we may not, because
9785 at this point we do not know whether e.g. any .eh_frame
9786 absolute relocations have been converted to PC-relative. */
9787 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
9788 }
9789
9790 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 9791 return FALSE;
b49e97c9 9792
861fb55a 9793 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 9794 if (htab->is_vxworks)
b49e97c9 9795 {
0a44bf69
RS
9796 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9797 use any of the DT_MIPS_* tags. */
861fb55a 9798 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9799 {
9800 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9801 return FALSE;
b49e97c9 9802
0a44bf69
RS
9803 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9804 return FALSE;
b49e97c9 9805
0a44bf69
RS
9806 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9807 return FALSE;
9808 }
b49e97c9 9809 }
0a44bf69
RS
9810 else
9811 {
861fb55a 9812 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9813 {
9814 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9815 return FALSE;
b49e97c9 9816
0a44bf69
RS
9817 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9818 return FALSE;
b49e97c9 9819
0a44bf69
RS
9820 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9821 return FALSE;
9822 }
b49e97c9 9823
0a44bf69
RS
9824 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9825 return FALSE;
b49e97c9 9826
0a44bf69
RS
9827 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9828 return FALSE;
b49e97c9 9829
0a44bf69
RS
9830 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9831 return FALSE;
b49e97c9 9832
0a44bf69
RS
9833 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9834 return FALSE;
b49e97c9 9835
0a44bf69
RS
9836 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9837 return FALSE;
b49e97c9 9838
0a44bf69
RS
9839 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9840 return FALSE;
b49e97c9 9841
0a44bf69
RS
9842 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9843 return FALSE;
9844
9845 if (IRIX_COMPAT (dynobj) == ict_irix5
9846 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9847 return FALSE;
9848
9849 if (IRIX_COMPAT (dynobj) == ict_irix6
9850 && (bfd_get_section_by_name
af0edeb8 9851 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
0a44bf69
RS
9852 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9853 return FALSE;
9854 }
861fb55a
DJ
9855 if (htab->splt->size > 0)
9856 {
9857 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9858 return FALSE;
9859
9860 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9861 return FALSE;
9862
9863 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9864 return FALSE;
9865
9866 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9867 return FALSE;
9868 }
7a2b07ff
NS
9869 if (htab->is_vxworks
9870 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9871 return FALSE;
b49e97c9
TS
9872 }
9873
b34976b6 9874 return TRUE;
b49e97c9
TS
9875}
9876\f
81d43bff
RS
9877/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9878 Adjust its R_ADDEND field so that it is correct for the output file.
9879 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9880 and sections respectively; both use symbol indexes. */
9881
9882static void
9883mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9884 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9885 asection **local_sections, Elf_Internal_Rela *rel)
9886{
9887 unsigned int r_type, r_symndx;
9888 Elf_Internal_Sym *sym;
9889 asection *sec;
9890
020d7251 9891 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
81d43bff
RS
9892 {
9893 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
df58fc94 9894 if (gprel16_reloc_p (r_type)
81d43bff 9895 || r_type == R_MIPS_GPREL32
df58fc94 9896 || literal_reloc_p (r_type))
81d43bff
RS
9897 {
9898 rel->r_addend += _bfd_get_gp_value (input_bfd);
9899 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9900 }
9901
9902 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9903 sym = local_syms + r_symndx;
9904
9905 /* Adjust REL's addend to account for section merging. */
9906 if (!info->relocatable)
9907 {
9908 sec = local_sections[r_symndx];
9909 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9910 }
9911
9912 /* This would normally be done by the rela_normal code in elflink.c. */
9913 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9914 rel->r_addend += local_sections[r_symndx]->output_offset;
9915 }
9916}
9917
545fd46b
MR
9918/* Handle relocations against symbols from removed linkonce sections,
9919 or sections discarded by a linker script. We use this wrapper around
9920 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9921 on 64-bit ELF targets. In this case for any relocation handled, which
9922 always be the first in a triplet, the remaining two have to be processed
9923 together with the first, even if they are R_MIPS_NONE. It is the symbol
9924 index referred by the first reloc that applies to all the three and the
9925 remaining two never refer to an object symbol. And it is the final
9926 relocation (the last non-null one) that determines the output field of
9927 the whole relocation so retrieve the corresponding howto structure for
9928 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9929
9930 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9931 and therefore requires to be pasted in a loop. It also defines a block
9932 and does not protect any of its arguments, hence the extra brackets. */
9933
9934static void
9935mips_reloc_against_discarded_section (bfd *output_bfd,
9936 struct bfd_link_info *info,
9937 bfd *input_bfd, asection *input_section,
9938 Elf_Internal_Rela **rel,
9939 const Elf_Internal_Rela **relend,
9940 bfd_boolean rel_reloc,
9941 reloc_howto_type *howto,
9942 bfd_byte *contents)
9943{
9944 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9945 int count = bed->s->int_rels_per_ext_rel;
9946 unsigned int r_type;
9947 int i;
9948
9949 for (i = count - 1; i > 0; i--)
9950 {
9951 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9952 if (r_type != R_MIPS_NONE)
9953 {
9954 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9955 break;
9956 }
9957 }
9958 do
9959 {
9960 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9961 (*rel), count, (*relend),
9962 howto, i, contents);
9963 }
9964 while (0);
9965}
9966
b49e97c9
TS
9967/* Relocate a MIPS ELF section. */
9968
b34976b6 9969bfd_boolean
9719ad41
RS
9970_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9971 bfd *input_bfd, asection *input_section,
9972 bfd_byte *contents, Elf_Internal_Rela *relocs,
9973 Elf_Internal_Sym *local_syms,
9974 asection **local_sections)
b49e97c9
TS
9975{
9976 Elf_Internal_Rela *rel;
9977 const Elf_Internal_Rela *relend;
9978 bfd_vma addend = 0;
b34976b6 9979 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 9980 const struct elf_backend_data *bed;
b49e97c9
TS
9981
9982 bed = get_elf_backend_data (output_bfd);
9983 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9984 for (rel = relocs; rel < relend; ++rel)
9985 {
9986 const char *name;
c9adbffe 9987 bfd_vma value = 0;
b49e97c9 9988 reloc_howto_type *howto;
ad3d9127 9989 bfd_boolean cross_mode_jump_p = FALSE;
b34976b6 9990 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 9991 REL relocation. */
b34976b6 9992 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 9993 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 9994 const char *msg;
ab96bf03
AM
9995 unsigned long r_symndx;
9996 asection *sec;
749b8d9d
L
9997 Elf_Internal_Shdr *symtab_hdr;
9998 struct elf_link_hash_entry *h;
d4730f92 9999 bfd_boolean rel_reloc;
b49e97c9 10000
d4730f92
BS
10001 rel_reloc = (NEWABI_P (input_bfd)
10002 && mips_elf_rel_relocation_p (input_bfd, input_section,
10003 relocs, rel));
b49e97c9 10004 /* Find the relocation howto for this relocation. */
d4730f92 10005 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
ab96bf03
AM
10006
10007 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 10008 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
020d7251 10009 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
749b8d9d
L
10010 {
10011 sec = local_sections[r_symndx];
10012 h = NULL;
10013 }
ab96bf03
AM
10014 else
10015 {
ab96bf03 10016 unsigned long extsymoff;
ab96bf03 10017
ab96bf03
AM
10018 extsymoff = 0;
10019 if (!elf_bad_symtab (input_bfd))
10020 extsymoff = symtab_hdr->sh_info;
10021 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10022 while (h->root.type == bfd_link_hash_indirect
10023 || h->root.type == bfd_link_hash_warning)
10024 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10025
10026 sec = NULL;
10027 if (h->root.type == bfd_link_hash_defined
10028 || h->root.type == bfd_link_hash_defweak)
10029 sec = h->root.u.def.section;
10030 }
10031
dbaa2011 10032 if (sec != NULL && discarded_section (sec))
545fd46b
MR
10033 {
10034 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10035 input_section, &rel, &relend,
10036 rel_reloc, howto, contents);
10037 continue;
10038 }
ab96bf03 10039
4a14403c 10040 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
10041 {
10042 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10043 64-bit code, but make sure all their addresses are in the
10044 lowermost or uppermost 32-bit section of the 64-bit address
10045 space. Thus, when they use an R_MIPS_64 they mean what is
10046 usually meant by R_MIPS_32, with the exception that the
10047 stored value is sign-extended to 64 bits. */
b34976b6 10048 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
10049
10050 /* On big-endian systems, we need to lie about the position
10051 of the reloc. */
10052 if (bfd_big_endian (input_bfd))
10053 rel->r_offset += 4;
10054 }
b49e97c9
TS
10055
10056 if (!use_saved_addend_p)
10057 {
b49e97c9
TS
10058 /* If these relocations were originally of the REL variety,
10059 we must pull the addend out of the field that will be
10060 relocated. Otherwise, we simply use the contents of the
c224138d
RS
10061 RELA relocation. */
10062 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10063 relocs, rel))
b49e97c9 10064 {
b34976b6 10065 rela_relocation_p = FALSE;
c224138d
RS
10066 addend = mips_elf_read_rel_addend (input_bfd, rel,
10067 howto, contents);
738e5348
RS
10068 if (hi16_reloc_p (r_type)
10069 || (got16_reloc_p (r_type)
b49e97c9 10070 && mips_elf_local_relocation_p (input_bfd, rel,
020d7251 10071 local_sections)))
b49e97c9 10072 {
c224138d
RS
10073 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10074 contents, &addend))
749b8d9d 10075 {
749b8d9d
L
10076 if (h)
10077 name = h->root.root.string;
10078 else
10079 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10080 local_syms + r_symndx,
10081 sec);
10082 (*_bfd_error_handler)
10083 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10084 input_bfd, input_section, name, howto->name,
10085 rel->r_offset);
749b8d9d 10086 }
b49e97c9 10087 }
30ac9238
RS
10088 else
10089 addend <<= howto->rightshift;
b49e97c9
TS
10090 }
10091 else
10092 addend = rel->r_addend;
81d43bff
RS
10093 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10094 local_syms, local_sections, rel);
b49e97c9
TS
10095 }
10096
1049f94e 10097 if (info->relocatable)
b49e97c9 10098 {
4a14403c 10099 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
10100 && bfd_big_endian (input_bfd))
10101 rel->r_offset -= 4;
10102
81d43bff 10103 if (!rela_relocation_p && rel->r_addend)
5a659663 10104 {
81d43bff 10105 addend += rel->r_addend;
738e5348 10106 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
10107 addend = mips_elf_high (addend);
10108 else if (r_type == R_MIPS_HIGHER)
10109 addend = mips_elf_higher (addend);
10110 else if (r_type == R_MIPS_HIGHEST)
10111 addend = mips_elf_highest (addend);
30ac9238
RS
10112 else
10113 addend >>= howto->rightshift;
b49e97c9 10114
30ac9238
RS
10115 /* We use the source mask, rather than the destination
10116 mask because the place to which we are writing will be
10117 source of the addend in the final link. */
b49e97c9
TS
10118 addend &= howto->src_mask;
10119
5a659663 10120 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10121 /* See the comment above about using R_MIPS_64 in the 32-bit
10122 ABI. Here, we need to update the addend. It would be
10123 possible to get away with just using the R_MIPS_32 reloc
10124 but for endianness. */
10125 {
10126 bfd_vma sign_bits;
10127 bfd_vma low_bits;
10128 bfd_vma high_bits;
10129
10130 if (addend & ((bfd_vma) 1 << 31))
10131#ifdef BFD64
10132 sign_bits = ((bfd_vma) 1 << 32) - 1;
10133#else
10134 sign_bits = -1;
10135#endif
10136 else
10137 sign_bits = 0;
10138
10139 /* If we don't know that we have a 64-bit type,
10140 do two separate stores. */
10141 if (bfd_big_endian (input_bfd))
10142 {
10143 /* Store the sign-bits (which are most significant)
10144 first. */
10145 low_bits = sign_bits;
10146 high_bits = addend;
10147 }
10148 else
10149 {
10150 low_bits = addend;
10151 high_bits = sign_bits;
10152 }
10153 bfd_put_32 (input_bfd, low_bits,
10154 contents + rel->r_offset);
10155 bfd_put_32 (input_bfd, high_bits,
10156 contents + rel->r_offset + 4);
10157 continue;
10158 }
10159
10160 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10161 input_bfd, input_section,
b34976b6
AM
10162 contents, FALSE))
10163 return FALSE;
b49e97c9
TS
10164 }
10165
10166 /* Go on to the next relocation. */
10167 continue;
10168 }
10169
10170 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10171 relocations for the same offset. In that case we are
10172 supposed to treat the output of each relocation as the addend
10173 for the next. */
10174 if (rel + 1 < relend
10175 && rel->r_offset == rel[1].r_offset
10176 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 10177 use_saved_addend_p = TRUE;
b49e97c9 10178 else
b34976b6 10179 use_saved_addend_p = FALSE;
b49e97c9
TS
10180
10181 /* Figure out what value we are supposed to relocate. */
10182 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10183 input_section, info, rel,
10184 addend, howto, local_syms,
10185 local_sections, &value,
38a7df63 10186 &name, &cross_mode_jump_p,
bce03d3d 10187 use_saved_addend_p))
b49e97c9
TS
10188 {
10189 case bfd_reloc_continue:
10190 /* There's nothing to do. */
10191 continue;
10192
10193 case bfd_reloc_undefined:
10194 /* mips_elf_calculate_relocation already called the
10195 undefined_symbol callback. There's no real point in
10196 trying to perform the relocation at this point, so we
10197 just skip ahead to the next relocation. */
10198 continue;
10199
10200 case bfd_reloc_notsupported:
10201 msg = _("internal error: unsupported relocation error");
10202 info->callbacks->warning
10203 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 10204 return FALSE;
b49e97c9
TS
10205
10206 case bfd_reloc_overflow:
10207 if (use_saved_addend_p)
10208 /* Ignore overflow until we reach the last relocation for
10209 a given location. */
10210 ;
10211 else
10212 {
0e53d9da
AN
10213 struct mips_elf_link_hash_table *htab;
10214
10215 htab = mips_elf_hash_table (info);
4dfe6ac6 10216 BFD_ASSERT (htab != NULL);
b49e97c9 10217 BFD_ASSERT (name != NULL);
0e53d9da 10218 if (!htab->small_data_overflow_reported
9684f078 10219 && (gprel16_reloc_p (howto->type)
df58fc94 10220 || literal_reloc_p (howto->type)))
0e53d9da 10221 {
91d6fa6a
NC
10222 msg = _("small-data section exceeds 64KB;"
10223 " lower small-data size limit (see option -G)");
0e53d9da
AN
10224
10225 htab->small_data_overflow_reported = TRUE;
10226 (*info->callbacks->einfo) ("%P: %s\n", msg);
10227 }
b49e97c9 10228 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 10229 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 10230 input_bfd, input_section, rel->r_offset)))
b34976b6 10231 return FALSE;
b49e97c9
TS
10232 }
10233 break;
10234
10235 case bfd_reloc_ok:
10236 break;
10237
df58fc94
RS
10238 case bfd_reloc_outofrange:
10239 if (jal_reloc_p (howto->type))
10240 {
10241 msg = _("JALX to a non-word-aligned address");
10242 info->callbacks->warning
10243 (info, msg, name, input_bfd, input_section, rel->r_offset);
10244 return FALSE;
10245 }
7361da2c
AB
10246 if (aligned_pcrel_reloc_p (howto->type))
10247 {
10248 msg = _("PC-relative load from unaligned address");
10249 info->callbacks->warning
10250 (info, msg, name, input_bfd, input_section, rel->r_offset);
10251 return FALSE;
10252 }
df58fc94
RS
10253 /* Fall through. */
10254
b49e97c9
TS
10255 default:
10256 abort ();
10257 break;
10258 }
10259
10260 /* If we've got another relocation for the address, keep going
10261 until we reach the last one. */
10262 if (use_saved_addend_p)
10263 {
10264 addend = value;
10265 continue;
10266 }
10267
4a14403c 10268 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10269 /* See the comment above about using R_MIPS_64 in the 32-bit
10270 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10271 that calculated the right value. Now, however, we
10272 sign-extend the 32-bit result to 64-bits, and store it as a
10273 64-bit value. We are especially generous here in that we
10274 go to extreme lengths to support this usage on systems with
10275 only a 32-bit VMA. */
10276 {
10277 bfd_vma sign_bits;
10278 bfd_vma low_bits;
10279 bfd_vma high_bits;
10280
10281 if (value & ((bfd_vma) 1 << 31))
10282#ifdef BFD64
10283 sign_bits = ((bfd_vma) 1 << 32) - 1;
10284#else
10285 sign_bits = -1;
10286#endif
10287 else
10288 sign_bits = 0;
10289
10290 /* If we don't know that we have a 64-bit type,
10291 do two separate stores. */
10292 if (bfd_big_endian (input_bfd))
10293 {
10294 /* Undo what we did above. */
10295 rel->r_offset -= 4;
10296 /* Store the sign-bits (which are most significant)
10297 first. */
10298 low_bits = sign_bits;
10299 high_bits = value;
10300 }
10301 else
10302 {
10303 low_bits = value;
10304 high_bits = sign_bits;
10305 }
10306 bfd_put_32 (input_bfd, low_bits,
10307 contents + rel->r_offset);
10308 bfd_put_32 (input_bfd, high_bits,
10309 contents + rel->r_offset + 4);
10310 continue;
10311 }
10312
10313 /* Actually perform the relocation. */
10314 if (! mips_elf_perform_relocation (info, howto, rel, value,
10315 input_bfd, input_section,
38a7df63 10316 contents, cross_mode_jump_p))
b34976b6 10317 return FALSE;
b49e97c9
TS
10318 }
10319
b34976b6 10320 return TRUE;
b49e97c9
TS
10321}
10322\f
861fb55a
DJ
10323/* A function that iterates over each entry in la25_stubs and fills
10324 in the code for each one. DATA points to a mips_htab_traverse_info. */
10325
10326static int
10327mips_elf_create_la25_stub (void **slot, void *data)
10328{
10329 struct mips_htab_traverse_info *hti;
10330 struct mips_elf_link_hash_table *htab;
10331 struct mips_elf_la25_stub *stub;
10332 asection *s;
10333 bfd_byte *loc;
10334 bfd_vma offset, target, target_high, target_low;
10335
10336 stub = (struct mips_elf_la25_stub *) *slot;
10337 hti = (struct mips_htab_traverse_info *) data;
10338 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 10339 BFD_ASSERT (htab != NULL);
861fb55a
DJ
10340
10341 /* Create the section contents, if we haven't already. */
10342 s = stub->stub_section;
10343 loc = s->contents;
10344 if (loc == NULL)
10345 {
10346 loc = bfd_malloc (s->size);
10347 if (loc == NULL)
10348 {
10349 hti->error = TRUE;
10350 return FALSE;
10351 }
10352 s->contents = loc;
10353 }
10354
10355 /* Work out where in the section this stub should go. */
10356 offset = stub->offset;
10357
10358 /* Work out the target address. */
8f0c309a
CLT
10359 target = mips_elf_get_la25_target (stub, &s);
10360 target += s->output_section->vma + s->output_offset;
10361
861fb55a
DJ
10362 target_high = ((target + 0x8000) >> 16) & 0xffff;
10363 target_low = (target & 0xffff);
10364
10365 if (stub->stub_section != htab->strampoline)
10366 {
df58fc94 10367 /* This is a simple LUI/ADDIU stub. Zero out the beginning
861fb55a
DJ
10368 of the section and write the two instructions at the end. */
10369 memset (loc, 0, offset);
10370 loc += offset;
df58fc94
RS
10371 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10372 {
d21911ea
MR
10373 bfd_put_micromips_32 (hti->output_bfd,
10374 LA25_LUI_MICROMIPS (target_high),
10375 loc);
10376 bfd_put_micromips_32 (hti->output_bfd,
10377 LA25_ADDIU_MICROMIPS (target_low),
10378 loc + 4);
df58fc94
RS
10379 }
10380 else
10381 {
10382 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10383 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10384 }
861fb55a
DJ
10385 }
10386 else
10387 {
10388 /* This is trampoline. */
10389 loc += offset;
df58fc94
RS
10390 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10391 {
d21911ea
MR
10392 bfd_put_micromips_32 (hti->output_bfd,
10393 LA25_LUI_MICROMIPS (target_high), loc);
10394 bfd_put_micromips_32 (hti->output_bfd,
10395 LA25_J_MICROMIPS (target), loc + 4);
10396 bfd_put_micromips_32 (hti->output_bfd,
10397 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
df58fc94
RS
10398 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10399 }
10400 else
10401 {
10402 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10403 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10404 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10405 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10406 }
861fb55a
DJ
10407 }
10408 return TRUE;
10409}
10410
b49e97c9
TS
10411/* If NAME is one of the special IRIX6 symbols defined by the linker,
10412 adjust it appropriately now. */
10413
10414static void
9719ad41
RS
10415mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10416 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
10417{
10418 /* The linker script takes care of providing names and values for
10419 these, but we must place them into the right sections. */
10420 static const char* const text_section_symbols[] = {
10421 "_ftext",
10422 "_etext",
10423 "__dso_displacement",
10424 "__elf_header",
10425 "__program_header_table",
10426 NULL
10427 };
10428
10429 static const char* const data_section_symbols[] = {
10430 "_fdata",
10431 "_edata",
10432 "_end",
10433 "_fbss",
10434 NULL
10435 };
10436
10437 const char* const *p;
10438 int i;
10439
10440 for (i = 0; i < 2; ++i)
10441 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10442 *p;
10443 ++p)
10444 if (strcmp (*p, name) == 0)
10445 {
10446 /* All of these symbols are given type STT_SECTION by the
10447 IRIX6 linker. */
10448 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 10449 sym->st_other = STO_PROTECTED;
b49e97c9
TS
10450
10451 /* The IRIX linker puts these symbols in special sections. */
10452 if (i == 0)
10453 sym->st_shndx = SHN_MIPS_TEXT;
10454 else
10455 sym->st_shndx = SHN_MIPS_DATA;
10456
10457 break;
10458 }
10459}
10460
10461/* Finish up dynamic symbol handling. We set the contents of various
10462 dynamic sections here. */
10463
b34976b6 10464bfd_boolean
9719ad41
RS
10465_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10466 struct bfd_link_info *info,
10467 struct elf_link_hash_entry *h,
10468 Elf_Internal_Sym *sym)
b49e97c9
TS
10469{
10470 bfd *dynobj;
b49e97c9 10471 asection *sgot;
f4416af6 10472 struct mips_got_info *g, *gg;
b49e97c9 10473 const char *name;
3d6746ca 10474 int idx;
5108fc1b 10475 struct mips_elf_link_hash_table *htab;
738e5348 10476 struct mips_elf_link_hash_entry *hmips;
b49e97c9 10477
5108fc1b 10478 htab = mips_elf_hash_table (info);
4dfe6ac6 10479 BFD_ASSERT (htab != NULL);
b49e97c9 10480 dynobj = elf_hash_table (info)->dynobj;
738e5348 10481 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 10482
861fb55a
DJ
10483 BFD_ASSERT (!htab->is_vxworks);
10484
1bbce132
MR
10485 if (h->plt.plist != NULL
10486 && (h->plt.plist->mips_offset != MINUS_ONE
10487 || h->plt.plist->comp_offset != MINUS_ONE))
861fb55a
DJ
10488 {
10489 /* We've decided to create a PLT entry for this symbol. */
10490 bfd_byte *loc;
1bbce132 10491 bfd_vma header_address, got_address;
861fb55a 10492 bfd_vma got_address_high, got_address_low, load;
1bbce132
MR
10493 bfd_vma got_index;
10494 bfd_vma isa_bit;
10495
10496 got_index = h->plt.plist->gotplt_index;
861fb55a
DJ
10497
10498 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10499 BFD_ASSERT (h->dynindx != -1);
10500 BFD_ASSERT (htab->splt != NULL);
1bbce132 10501 BFD_ASSERT (got_index != MINUS_ONE);
861fb55a
DJ
10502 BFD_ASSERT (!h->def_regular);
10503
10504 /* Calculate the address of the PLT header. */
1bbce132 10505 isa_bit = htab->plt_header_is_comp;
861fb55a 10506 header_address = (htab->splt->output_section->vma
1bbce132 10507 + htab->splt->output_offset + isa_bit);
861fb55a
DJ
10508
10509 /* Calculate the address of the .got.plt entry. */
10510 got_address = (htab->sgotplt->output_section->vma
10511 + htab->sgotplt->output_offset
1bbce132
MR
10512 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10513
861fb55a
DJ
10514 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10515 got_address_low = got_address & 0xffff;
10516
10517 /* Initially point the .got.plt entry at the PLT header. */
1bbce132 10518 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
861fb55a
DJ
10519 if (ABI_64_P (output_bfd))
10520 bfd_put_64 (output_bfd, header_address, loc);
10521 else
10522 bfd_put_32 (output_bfd, header_address, loc);
10523
1bbce132
MR
10524 /* Now handle the PLT itself. First the standard entry (the order
10525 does not matter, we just have to pick one). */
10526 if (h->plt.plist->mips_offset != MINUS_ONE)
10527 {
10528 const bfd_vma *plt_entry;
10529 bfd_vma plt_offset;
861fb55a 10530
1bbce132 10531 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
861fb55a 10532
1bbce132 10533 BFD_ASSERT (plt_offset <= htab->splt->size);
6d30f5b2 10534
1bbce132
MR
10535 /* Find out where the .plt entry should go. */
10536 loc = htab->splt->contents + plt_offset;
10537
10538 /* Pick the load opcode. */
10539 load = MIPS_ELF_LOAD_WORD (output_bfd);
10540
10541 /* Fill in the PLT entry itself. */
7361da2c
AB
10542
10543 if (MIPSR6_P (output_bfd))
10544 plt_entry = mipsr6_exec_plt_entry;
10545 else
10546 plt_entry = mips_exec_plt_entry;
1bbce132
MR
10547 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10548 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10549 loc + 4);
10550
10551 if (! LOAD_INTERLOCKS_P (output_bfd))
10552 {
10553 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10554 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10555 }
10556 else
10557 {
10558 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10559 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10560 loc + 12);
10561 }
6d30f5b2 10562 }
1bbce132
MR
10563
10564 /* Now the compressed entry. They come after any standard ones. */
10565 if (h->plt.plist->comp_offset != MINUS_ONE)
6d30f5b2 10566 {
1bbce132
MR
10567 bfd_vma plt_offset;
10568
10569 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10570 + h->plt.plist->comp_offset);
10571
10572 BFD_ASSERT (plt_offset <= htab->splt->size);
10573
10574 /* Find out where the .plt entry should go. */
10575 loc = htab->splt->contents + plt_offset;
10576
10577 /* Fill in the PLT entry itself. */
833794fc
MR
10578 if (!MICROMIPS_P (output_bfd))
10579 {
10580 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10581
10582 bfd_put_16 (output_bfd, plt_entry[0], loc);
10583 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10584 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10585 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10586 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10587 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10588 bfd_put_32 (output_bfd, got_address, loc + 12);
10589 }
10590 else if (htab->insn32)
10591 {
10592 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10593
10594 bfd_put_16 (output_bfd, plt_entry[0], loc);
10595 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10596 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10597 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10598 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10599 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10600 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10601 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10602 }
10603 else
1bbce132
MR
10604 {
10605 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10606 bfd_signed_vma gotpc_offset;
10607 bfd_vma loc_address;
10608
10609 BFD_ASSERT (got_address % 4 == 0);
10610
10611 loc_address = (htab->splt->output_section->vma
10612 + htab->splt->output_offset + plt_offset);
10613 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10614
10615 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10616 if (gotpc_offset + 0x1000000 >= 0x2000000)
10617 {
10618 (*_bfd_error_handler)
10619 (_("%B: `%A' offset of %ld from `%A' "
10620 "beyond the range of ADDIUPC"),
10621 output_bfd,
10622 htab->sgotplt->output_section,
10623 htab->splt->output_section,
10624 (long) gotpc_offset);
10625 bfd_set_error (bfd_error_no_error);
10626 return FALSE;
10627 }
10628 bfd_put_16 (output_bfd,
10629 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10630 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10631 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10632 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10633 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10634 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10635 }
6d30f5b2 10636 }
861fb55a
DJ
10637
10638 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10639 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
1bbce132 10640 got_index - 2, h->dynindx,
861fb55a
DJ
10641 R_MIPS_JUMP_SLOT, got_address);
10642
10643 /* We distinguish between PLT entries and lazy-binding stubs by
10644 giving the former an st_other value of STO_MIPS_PLT. Set the
10645 flag and leave the value if there are any relocations in the
10646 binary where pointer equality matters. */
10647 sym->st_shndx = SHN_UNDEF;
10648 if (h->pointer_equality_needed)
1bbce132 10649 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
861fb55a 10650 else
1bbce132
MR
10651 {
10652 sym->st_value = 0;
10653 sym->st_other = 0;
10654 }
861fb55a 10655 }
1bbce132
MR
10656
10657 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
b49e97c9 10658 {
861fb55a 10659 /* We've decided to create a lazy-binding stub. */
1bbce132
MR
10660 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10661 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10662 bfd_vma stub_size = htab->function_stub_size;
5108fc1b 10663 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
1bbce132
MR
10664 bfd_vma isa_bit = micromips_p;
10665 bfd_vma stub_big_size;
10666
833794fc 10667 if (!micromips_p)
1bbce132 10668 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
833794fc
MR
10669 else if (htab->insn32)
10670 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10671 else
10672 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
b49e97c9
TS
10673
10674 /* This symbol has a stub. Set it up. */
10675
10676 BFD_ASSERT (h->dynindx != -1);
10677
1bbce132 10678 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
3d6746ca
DD
10679
10680 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
10681 sign extension at runtime in the stub, resulting in a negative
10682 index value. */
10683 if (h->dynindx & ~0x7fffffff)
b34976b6 10684 return FALSE;
b49e97c9
TS
10685
10686 /* Fill the stub. */
1bbce132
MR
10687 if (micromips_p)
10688 {
10689 idx = 0;
10690 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10691 stub + idx);
10692 idx += 4;
833794fc
MR
10693 if (htab->insn32)
10694 {
10695 bfd_put_micromips_32 (output_bfd,
10696 STUB_MOVE32_MICROMIPS (output_bfd),
10697 stub + idx);
10698 idx += 4;
10699 }
10700 else
10701 {
10702 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10703 idx += 2;
10704 }
1bbce132
MR
10705 if (stub_size == stub_big_size)
10706 {
10707 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10708
10709 bfd_put_micromips_32 (output_bfd,
10710 STUB_LUI_MICROMIPS (dynindx_hi),
10711 stub + idx);
10712 idx += 4;
10713 }
833794fc
MR
10714 if (htab->insn32)
10715 {
10716 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10717 stub + idx);
10718 idx += 4;
10719 }
10720 else
10721 {
10722 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10723 idx += 2;
10724 }
1bbce132
MR
10725
10726 /* If a large stub is not required and sign extension is not a
10727 problem, then use legacy code in the stub. */
10728 if (stub_size == stub_big_size)
10729 bfd_put_micromips_32 (output_bfd,
10730 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10731 stub + idx);
10732 else if (h->dynindx & ~0x7fff)
10733 bfd_put_micromips_32 (output_bfd,
10734 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10735 stub + idx);
10736 else
10737 bfd_put_micromips_32 (output_bfd,
10738 STUB_LI16S_MICROMIPS (output_bfd,
10739 h->dynindx),
10740 stub + idx);
10741 }
3d6746ca 10742 else
1bbce132
MR
10743 {
10744 idx = 0;
10745 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10746 idx += 4;
10747 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
10748 idx += 4;
10749 if (stub_size == stub_big_size)
10750 {
10751 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10752 stub + idx);
10753 idx += 4;
10754 }
10755 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10756 idx += 4;
10757
10758 /* If a large stub is not required and sign extension is not a
10759 problem, then use legacy code in the stub. */
10760 if (stub_size == stub_big_size)
10761 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10762 stub + idx);
10763 else if (h->dynindx & ~0x7fff)
10764 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10765 stub + idx);
10766 else
10767 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10768 stub + idx);
10769 }
5108fc1b 10770
1bbce132
MR
10771 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10772 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10773 stub, stub_size);
b49e97c9 10774
1bbce132 10775 /* Mark the symbol as undefined. stub_offset != -1 occurs
b49e97c9
TS
10776 only for the referenced symbol. */
10777 sym->st_shndx = SHN_UNDEF;
10778
10779 /* The run-time linker uses the st_value field of the symbol
10780 to reset the global offset table entry for this external
10781 to its stub address when unlinking a shared object. */
4e41d0d7
RS
10782 sym->st_value = (htab->sstubs->output_section->vma
10783 + htab->sstubs->output_offset
1bbce132
MR
10784 + h->plt.plist->stub_offset
10785 + isa_bit);
10786 sym->st_other = other;
b49e97c9
TS
10787 }
10788
738e5348
RS
10789 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10790 refer to the stub, since only the stub uses the standard calling
10791 conventions. */
10792 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10793 {
10794 BFD_ASSERT (hmips->need_fn_stub);
10795 sym->st_value = (hmips->fn_stub->output_section->vma
10796 + hmips->fn_stub->output_offset);
10797 sym->st_size = hmips->fn_stub->size;
10798 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10799 }
10800
b49e97c9 10801 BFD_ASSERT (h->dynindx != -1
f5385ebf 10802 || h->forced_local);
b49e97c9 10803
23cc69b6 10804 sgot = htab->sgot;
a8028dd0 10805 g = htab->got_info;
b49e97c9
TS
10806 BFD_ASSERT (g != NULL);
10807
10808 /* Run through the global symbol table, creating GOT entries for all
10809 the symbols that need them. */
020d7251 10810 if (hmips->global_got_area != GGA_NONE)
b49e97c9
TS
10811 {
10812 bfd_vma offset;
10813 bfd_vma value;
10814
6eaa6adc 10815 value = sym->st_value;
13fbec83 10816 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
b49e97c9
TS
10817 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10818 }
10819
e641e783 10820 if (hmips->global_got_area != GGA_NONE && g->next)
f4416af6
AO
10821 {
10822 struct mips_got_entry e, *p;
0626d451 10823 bfd_vma entry;
f4416af6 10824 bfd_vma offset;
f4416af6
AO
10825
10826 gg = g;
10827
10828 e.abfd = output_bfd;
10829 e.symndx = -1;
738e5348 10830 e.d.h = hmips;
9ab066b4 10831 e.tls_type = GOT_TLS_NONE;
143d77c5 10832
f4416af6
AO
10833 for (g = g->next; g->next != gg; g = g->next)
10834 {
10835 if (g->got_entries
10836 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10837 &e)))
10838 {
10839 offset = p->gotidx;
6c42ddb9 10840 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
0626d451
RS
10841 if (info->shared
10842 || (elf_hash_table (info)->dynamic_sections_created
10843 && p->d.h != NULL
f5385ebf
AM
10844 && p->d.h->root.def_dynamic
10845 && !p->d.h->root.def_regular))
0626d451
RS
10846 {
10847 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10848 the various compatibility problems, it's easier to mock
10849 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10850 mips_elf_create_dynamic_relocation to calculate the
10851 appropriate addend. */
10852 Elf_Internal_Rela rel[3];
10853
10854 memset (rel, 0, sizeof (rel));
10855 if (ABI_64_P (output_bfd))
10856 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10857 else
10858 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10859 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10860
10861 entry = 0;
10862 if (! (mips_elf_create_dynamic_relocation
10863 (output_bfd, info, rel,
10864 e.d.h, NULL, sym->st_value, &entry, sgot)))
10865 return FALSE;
10866 }
10867 else
10868 entry = sym->st_value;
10869 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
10870 }
10871 }
10872 }
10873
b49e97c9
TS
10874 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10875 name = h->root.root.string;
9637f6ef 10876 if (h == elf_hash_table (info)->hdynamic
22edb2f1 10877 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
10878 sym->st_shndx = SHN_ABS;
10879 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10880 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10881 {
10882 sym->st_shndx = SHN_ABS;
10883 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10884 sym->st_value = 1;
10885 }
4a14403c 10886 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10887 {
10888 sym->st_shndx = SHN_ABS;
10889 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10890 sym->st_value = elf_gp (output_bfd);
10891 }
10892 else if (SGI_COMPAT (output_bfd))
10893 {
10894 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10895 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10896 {
10897 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10898 sym->st_other = STO_PROTECTED;
10899 sym->st_value = 0;
10900 sym->st_shndx = SHN_MIPS_DATA;
10901 }
10902 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10903 {
10904 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10905 sym->st_other = STO_PROTECTED;
10906 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10907 sym->st_shndx = SHN_ABS;
10908 }
10909 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10910 {
10911 if (h->type == STT_FUNC)
10912 sym->st_shndx = SHN_MIPS_TEXT;
10913 else if (h->type == STT_OBJECT)
10914 sym->st_shndx = SHN_MIPS_DATA;
10915 }
10916 }
10917
861fb55a
DJ
10918 /* Emit a copy reloc, if needed. */
10919 if (h->needs_copy)
10920 {
10921 asection *s;
10922 bfd_vma symval;
10923
10924 BFD_ASSERT (h->dynindx != -1);
10925 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10926
10927 s = mips_elf_rel_dyn_section (info, FALSE);
10928 symval = (h->root.u.def.section->output_section->vma
10929 + h->root.u.def.section->output_offset
10930 + h->root.u.def.value);
10931 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10932 h->dynindx, R_MIPS_COPY, symval);
10933 }
10934
b49e97c9
TS
10935 /* Handle the IRIX6-specific symbols. */
10936 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10937 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10938
cbf8d970
MR
10939 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
10940 to treat compressed symbols like any other. */
30c09090 10941 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
10942 {
10943 BFD_ASSERT (sym->st_value & 1);
10944 sym->st_other -= STO_MIPS16;
10945 }
cbf8d970
MR
10946 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
10947 {
10948 BFD_ASSERT (sym->st_value & 1);
10949 sym->st_other -= STO_MICROMIPS;
10950 }
b49e97c9 10951
b34976b6 10952 return TRUE;
b49e97c9
TS
10953}
10954
0a44bf69
RS
10955/* Likewise, for VxWorks. */
10956
10957bfd_boolean
10958_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10959 struct bfd_link_info *info,
10960 struct elf_link_hash_entry *h,
10961 Elf_Internal_Sym *sym)
10962{
10963 bfd *dynobj;
10964 asection *sgot;
10965 struct mips_got_info *g;
10966 struct mips_elf_link_hash_table *htab;
020d7251 10967 struct mips_elf_link_hash_entry *hmips;
0a44bf69
RS
10968
10969 htab = mips_elf_hash_table (info);
4dfe6ac6 10970 BFD_ASSERT (htab != NULL);
0a44bf69 10971 dynobj = elf_hash_table (info)->dynobj;
020d7251 10972 hmips = (struct mips_elf_link_hash_entry *) h;
0a44bf69 10973
1bbce132 10974 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
0a44bf69 10975 {
6d79d2ed 10976 bfd_byte *loc;
1bbce132 10977 bfd_vma plt_address, got_address, got_offset, branch_offset;
0a44bf69
RS
10978 Elf_Internal_Rela rel;
10979 static const bfd_vma *plt_entry;
1bbce132
MR
10980 bfd_vma gotplt_index;
10981 bfd_vma plt_offset;
10982
10983 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10984 gotplt_index = h->plt.plist->gotplt_index;
0a44bf69
RS
10985
10986 BFD_ASSERT (h->dynindx != -1);
10987 BFD_ASSERT (htab->splt != NULL);
1bbce132
MR
10988 BFD_ASSERT (gotplt_index != MINUS_ONE);
10989 BFD_ASSERT (plt_offset <= htab->splt->size);
0a44bf69
RS
10990
10991 /* Calculate the address of the .plt entry. */
10992 plt_address = (htab->splt->output_section->vma
10993 + htab->splt->output_offset
1bbce132 10994 + plt_offset);
0a44bf69
RS
10995
10996 /* Calculate the address of the .got.plt entry. */
10997 got_address = (htab->sgotplt->output_section->vma
10998 + htab->sgotplt->output_offset
1bbce132 10999 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
0a44bf69
RS
11000
11001 /* Calculate the offset of the .got.plt entry from
11002 _GLOBAL_OFFSET_TABLE_. */
11003 got_offset = mips_elf_gotplt_index (info, h);
11004
11005 /* Calculate the offset for the branch at the start of the PLT
11006 entry. The branch jumps to the beginning of .plt. */
1bbce132 11007 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
0a44bf69
RS
11008
11009 /* Fill in the initial value of the .got.plt entry. */
11010 bfd_put_32 (output_bfd, plt_address,
1bbce132
MR
11011 (htab->sgotplt->contents
11012 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
0a44bf69
RS
11013
11014 /* Find out where the .plt entry should go. */
1bbce132 11015 loc = htab->splt->contents + plt_offset;
0a44bf69
RS
11016
11017 if (info->shared)
11018 {
11019 plt_entry = mips_vxworks_shared_plt_entry;
11020 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11021 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11022 }
11023 else
11024 {
11025 bfd_vma got_address_high, got_address_low;
11026
11027 plt_entry = mips_vxworks_exec_plt_entry;
11028 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11029 got_address_low = got_address & 0xffff;
11030
11031 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11032 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11033 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11034 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11035 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11036 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11037 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11038 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11039
11040 loc = (htab->srelplt2->contents
1bbce132 11041 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
0a44bf69
RS
11042
11043 /* Emit a relocation for the .got.plt entry. */
11044 rel.r_offset = got_address;
11045 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
1bbce132 11046 rel.r_addend = plt_offset;
0a44bf69
RS
11047 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11048
11049 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11050 loc += sizeof (Elf32_External_Rela);
11051 rel.r_offset = plt_address + 8;
11052 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11053 rel.r_addend = got_offset;
11054 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11055
11056 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11057 loc += sizeof (Elf32_External_Rela);
11058 rel.r_offset += 4;
11059 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11060 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11061 }
11062
11063 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
1bbce132
MR
11064 loc = (htab->srelplt->contents
11065 + gotplt_index * sizeof (Elf32_External_Rela));
0a44bf69
RS
11066 rel.r_offset = got_address;
11067 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11068 rel.r_addend = 0;
11069 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11070
11071 if (!h->def_regular)
11072 sym->st_shndx = SHN_UNDEF;
11073 }
11074
11075 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11076
23cc69b6 11077 sgot = htab->sgot;
a8028dd0 11078 g = htab->got_info;
0a44bf69
RS
11079 BFD_ASSERT (g != NULL);
11080
11081 /* See if this symbol has an entry in the GOT. */
020d7251 11082 if (hmips->global_got_area != GGA_NONE)
0a44bf69
RS
11083 {
11084 bfd_vma offset;
11085 Elf_Internal_Rela outrel;
11086 bfd_byte *loc;
11087 asection *s;
11088
11089 /* Install the symbol value in the GOT. */
13fbec83 11090 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
0a44bf69
RS
11091 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11092
11093 /* Add a dynamic relocation for it. */
11094 s = mips_elf_rel_dyn_section (info, FALSE);
11095 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11096 outrel.r_offset = (sgot->output_section->vma
11097 + sgot->output_offset
11098 + offset);
11099 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11100 outrel.r_addend = 0;
11101 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11102 }
11103
11104 /* Emit a copy reloc, if needed. */
11105 if (h->needs_copy)
11106 {
11107 Elf_Internal_Rela rel;
11108
11109 BFD_ASSERT (h->dynindx != -1);
11110
11111 rel.r_offset = (h->root.u.def.section->output_section->vma
11112 + h->root.u.def.section->output_offset
11113 + h->root.u.def.value);
11114 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11115 rel.r_addend = 0;
11116 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11117 htab->srelbss->contents
11118 + (htab->srelbss->reloc_count
11119 * sizeof (Elf32_External_Rela)));
11120 ++htab->srelbss->reloc_count;
11121 }
11122
df58fc94
RS
11123 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11124 if (ELF_ST_IS_COMPRESSED (sym->st_other))
0a44bf69
RS
11125 sym->st_value &= ~1;
11126
11127 return TRUE;
11128}
11129
861fb55a
DJ
11130/* Write out a plt0 entry to the beginning of .plt. */
11131
1bbce132 11132static bfd_boolean
861fb55a
DJ
11133mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11134{
11135 bfd_byte *loc;
11136 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11137 static const bfd_vma *plt_entry;
11138 struct mips_elf_link_hash_table *htab;
11139
11140 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11141 BFD_ASSERT (htab != NULL);
11142
861fb55a
DJ
11143 if (ABI_64_P (output_bfd))
11144 plt_entry = mips_n64_exec_plt0_entry;
11145 else if (ABI_N32_P (output_bfd))
11146 plt_entry = mips_n32_exec_plt0_entry;
833794fc 11147 else if (!htab->plt_header_is_comp)
861fb55a 11148 plt_entry = mips_o32_exec_plt0_entry;
833794fc
MR
11149 else if (htab->insn32)
11150 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11151 else
11152 plt_entry = micromips_o32_exec_plt0_entry;
861fb55a
DJ
11153
11154 /* Calculate the value of .got.plt. */
11155 gotplt_value = (htab->sgotplt->output_section->vma
11156 + htab->sgotplt->output_offset);
11157 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11158 gotplt_value_low = gotplt_value & 0xffff;
11159
11160 /* The PLT sequence is not safe for N64 if .got.plt's address can
11161 not be loaded in two instructions. */
11162 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11163 || ~(gotplt_value | 0x7fffffff) == 0);
11164
11165 /* Install the PLT header. */
11166 loc = htab->splt->contents;
1bbce132
MR
11167 if (plt_entry == micromips_o32_exec_plt0_entry)
11168 {
11169 bfd_vma gotpc_offset;
11170 bfd_vma loc_address;
11171 size_t i;
11172
11173 BFD_ASSERT (gotplt_value % 4 == 0);
11174
11175 loc_address = (htab->splt->output_section->vma
11176 + htab->splt->output_offset);
11177 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11178
11179 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11180 if (gotpc_offset + 0x1000000 >= 0x2000000)
11181 {
11182 (*_bfd_error_handler)
11183 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11184 output_bfd,
11185 htab->sgotplt->output_section,
11186 htab->splt->output_section,
11187 (long) gotpc_offset);
11188 bfd_set_error (bfd_error_no_error);
11189 return FALSE;
11190 }
11191 bfd_put_16 (output_bfd,
11192 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11193 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11194 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11195 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11196 }
833794fc
MR
11197 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11198 {
11199 size_t i;
11200
11201 bfd_put_16 (output_bfd, plt_entry[0], loc);
11202 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11203 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11204 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11205 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11206 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11207 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11208 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11209 }
1bbce132
MR
11210 else
11211 {
11212 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11213 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11214 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11215 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11216 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11217 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11218 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11219 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11220 }
11221
11222 return TRUE;
861fb55a
DJ
11223}
11224
0a44bf69
RS
11225/* Install the PLT header for a VxWorks executable and finalize the
11226 contents of .rela.plt.unloaded. */
11227
11228static void
11229mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11230{
11231 Elf_Internal_Rela rela;
11232 bfd_byte *loc;
11233 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11234 static const bfd_vma *plt_entry;
11235 struct mips_elf_link_hash_table *htab;
11236
11237 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11238 BFD_ASSERT (htab != NULL);
11239
0a44bf69
RS
11240 plt_entry = mips_vxworks_exec_plt0_entry;
11241
11242 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11243 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11244 + htab->root.hgot->root.u.def.section->output_offset
11245 + htab->root.hgot->root.u.def.value);
11246
11247 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11248 got_value_low = got_value & 0xffff;
11249
11250 /* Calculate the address of the PLT header. */
11251 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11252
11253 /* Install the PLT header. */
11254 loc = htab->splt->contents;
11255 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11256 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11257 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11258 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11259 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11260 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11261
11262 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11263 loc = htab->srelplt2->contents;
11264 rela.r_offset = plt_address;
11265 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11266 rela.r_addend = 0;
11267 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11268 loc += sizeof (Elf32_External_Rela);
11269
11270 /* Output the relocation for the following addiu of
11271 %lo(_GLOBAL_OFFSET_TABLE_). */
11272 rela.r_offset += 4;
11273 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11274 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11275 loc += sizeof (Elf32_External_Rela);
11276
11277 /* Fix up the remaining relocations. They may have the wrong
11278 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11279 in which symbols were output. */
11280 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11281 {
11282 Elf_Internal_Rela rel;
11283
11284 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11285 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11286 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11287 loc += sizeof (Elf32_External_Rela);
11288
11289 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11290 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11291 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11292 loc += sizeof (Elf32_External_Rela);
11293
11294 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11295 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11296 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11297 loc += sizeof (Elf32_External_Rela);
11298 }
11299}
11300
11301/* Install the PLT header for a VxWorks shared library. */
11302
11303static void
11304mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11305{
11306 unsigned int i;
11307 struct mips_elf_link_hash_table *htab;
11308
11309 htab = mips_elf_hash_table (info);
4dfe6ac6 11310 BFD_ASSERT (htab != NULL);
0a44bf69
RS
11311
11312 /* We just need to copy the entry byte-by-byte. */
11313 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11314 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11315 htab->splt->contents + i * 4);
11316}
11317
b49e97c9
TS
11318/* Finish up the dynamic sections. */
11319
b34976b6 11320bfd_boolean
9719ad41
RS
11321_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11322 struct bfd_link_info *info)
b49e97c9
TS
11323{
11324 bfd *dynobj;
11325 asection *sdyn;
11326 asection *sgot;
f4416af6 11327 struct mips_got_info *gg, *g;
0a44bf69 11328 struct mips_elf_link_hash_table *htab;
b49e97c9 11329
0a44bf69 11330 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11331 BFD_ASSERT (htab != NULL);
11332
b49e97c9
TS
11333 dynobj = elf_hash_table (info)->dynobj;
11334
3d4d4302 11335 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
b49e97c9 11336
23cc69b6
RS
11337 sgot = htab->sgot;
11338 gg = htab->got_info;
b49e97c9
TS
11339
11340 if (elf_hash_table (info)->dynamic_sections_created)
11341 {
11342 bfd_byte *b;
943284cc 11343 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
11344
11345 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
11346 BFD_ASSERT (gg != NULL);
11347
d7206569 11348 g = mips_elf_bfd_got (output_bfd, FALSE);
b49e97c9
TS
11349 BFD_ASSERT (g != NULL);
11350
11351 for (b = sdyn->contents;
eea6121a 11352 b < sdyn->contents + sdyn->size;
b49e97c9
TS
11353 b += MIPS_ELF_DYN_SIZE (dynobj))
11354 {
11355 Elf_Internal_Dyn dyn;
11356 const char *name;
11357 size_t elemsize;
11358 asection *s;
b34976b6 11359 bfd_boolean swap_out_p;
b49e97c9
TS
11360
11361 /* Read in the current dynamic entry. */
11362 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11363
11364 /* Assume that we're going to modify it and write it out. */
b34976b6 11365 swap_out_p = TRUE;
b49e97c9
TS
11366
11367 switch (dyn.d_tag)
11368 {
11369 case DT_RELENT:
b49e97c9
TS
11370 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11371 break;
11372
0a44bf69
RS
11373 case DT_RELAENT:
11374 BFD_ASSERT (htab->is_vxworks);
11375 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11376 break;
11377
b49e97c9
TS
11378 case DT_STRSZ:
11379 /* Rewrite DT_STRSZ. */
11380 dyn.d_un.d_val =
11381 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11382 break;
11383
11384 case DT_PLTGOT:
861fb55a
DJ
11385 s = htab->sgot;
11386 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11387 break;
11388
11389 case DT_MIPS_PLTGOT:
11390 s = htab->sgotplt;
11391 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
11392 break;
11393
11394 case DT_MIPS_RLD_VERSION:
11395 dyn.d_un.d_val = 1; /* XXX */
11396 break;
11397
11398 case DT_MIPS_FLAGS:
11399 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11400 break;
11401
b49e97c9 11402 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
11403 {
11404 time_t t;
11405 time (&t);
11406 dyn.d_un.d_val = t;
11407 }
b49e97c9
TS
11408 break;
11409
11410 case DT_MIPS_ICHECKSUM:
11411 /* XXX FIXME: */
b34976b6 11412 swap_out_p = FALSE;
b49e97c9
TS
11413 break;
11414
11415 case DT_MIPS_IVERSION:
11416 /* XXX FIXME: */
b34976b6 11417 swap_out_p = FALSE;
b49e97c9
TS
11418 break;
11419
11420 case DT_MIPS_BASE_ADDRESS:
11421 s = output_bfd->sections;
11422 BFD_ASSERT (s != NULL);
11423 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11424 break;
11425
11426 case DT_MIPS_LOCAL_GOTNO:
11427 dyn.d_un.d_val = g->local_gotno;
11428 break;
11429
11430 case DT_MIPS_UNREFEXTNO:
11431 /* The index into the dynamic symbol table which is the
11432 entry of the first external symbol that is not
11433 referenced within the same object. */
11434 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11435 break;
11436
11437 case DT_MIPS_GOTSYM:
d222d210 11438 if (htab->global_gotsym)
b49e97c9 11439 {
d222d210 11440 dyn.d_un.d_val = htab->global_gotsym->dynindx;
b49e97c9
TS
11441 break;
11442 }
11443 /* In case if we don't have global got symbols we default
11444 to setting DT_MIPS_GOTSYM to the same value as
11445 DT_MIPS_SYMTABNO, so we just fall through. */
11446
11447 case DT_MIPS_SYMTABNO:
11448 name = ".dynsym";
11449 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11450 s = bfd_get_section_by_name (output_bfd, name);
b49e97c9 11451
131e2f8e
MF
11452 if (s != NULL)
11453 dyn.d_un.d_val = s->size / elemsize;
11454 else
11455 dyn.d_un.d_val = 0;
b49e97c9
TS
11456 break;
11457
11458 case DT_MIPS_HIPAGENO:
861fb55a 11459 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
11460 break;
11461
11462 case DT_MIPS_RLD_MAP:
b4082c70
DD
11463 {
11464 struct elf_link_hash_entry *h;
11465 h = mips_elf_hash_table (info)->rld_symbol;
11466 if (!h)
11467 {
11468 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11469 swap_out_p = FALSE;
11470 break;
11471 }
11472 s = h->root.u.def.section;
11473 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11474 + h->root.u.def.value);
11475 }
b49e97c9
TS
11476 break;
11477
11478 case DT_MIPS_OPTIONS:
11479 s = (bfd_get_section_by_name
11480 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11481 dyn.d_un.d_ptr = s->vma;
11482 break;
11483
0a44bf69
RS
11484 case DT_RELASZ:
11485 BFD_ASSERT (htab->is_vxworks);
11486 /* The count does not include the JUMP_SLOT relocations. */
11487 if (htab->srelplt)
11488 dyn.d_un.d_val -= htab->srelplt->size;
11489 break;
11490
11491 case DT_PLTREL:
861fb55a
DJ
11492 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11493 if (htab->is_vxworks)
11494 dyn.d_un.d_val = DT_RELA;
11495 else
11496 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
11497 break;
11498
11499 case DT_PLTRELSZ:
861fb55a 11500 BFD_ASSERT (htab->use_plts_and_copy_relocs);
0a44bf69
RS
11501 dyn.d_un.d_val = htab->srelplt->size;
11502 break;
11503
11504 case DT_JMPREL:
861fb55a
DJ
11505 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11506 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
0a44bf69
RS
11507 + htab->srelplt->output_offset);
11508 break;
11509
943284cc
DJ
11510 case DT_TEXTREL:
11511 /* If we didn't need any text relocations after all, delete
11512 the dynamic tag. */
11513 if (!(info->flags & DF_TEXTREL))
11514 {
11515 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11516 swap_out_p = FALSE;
11517 }
11518 break;
11519
11520 case DT_FLAGS:
11521 /* If we didn't need any text relocations after all, clear
11522 DF_TEXTREL from DT_FLAGS. */
11523 if (!(info->flags & DF_TEXTREL))
11524 dyn.d_un.d_val &= ~DF_TEXTREL;
11525 else
11526 swap_out_p = FALSE;
11527 break;
11528
b49e97c9 11529 default:
b34976b6 11530 swap_out_p = FALSE;
7a2b07ff
NS
11531 if (htab->is_vxworks
11532 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11533 swap_out_p = TRUE;
b49e97c9
TS
11534 break;
11535 }
11536
943284cc 11537 if (swap_out_p || dyn_skipped)
b49e97c9 11538 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
11539 (dynobj, &dyn, b - dyn_skipped);
11540
11541 if (dyn_to_skip)
11542 {
11543 dyn_skipped += dyn_to_skip;
11544 dyn_to_skip = 0;
11545 }
b49e97c9 11546 }
943284cc
DJ
11547
11548 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11549 if (dyn_skipped > 0)
11550 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
11551 }
11552
b55fd4d4
DJ
11553 if (sgot != NULL && sgot->size > 0
11554 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 11555 {
0a44bf69
RS
11556 if (htab->is_vxworks)
11557 {
11558 /* The first entry of the global offset table points to the
11559 ".dynamic" section. The second is initialized by the
11560 loader and contains the shared library identifier.
11561 The third is also initialized by the loader and points
11562 to the lazy resolution stub. */
11563 MIPS_ELF_PUT_WORD (output_bfd,
11564 sdyn->output_offset + sdyn->output_section->vma,
11565 sgot->contents);
11566 MIPS_ELF_PUT_WORD (output_bfd, 0,
11567 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11568 MIPS_ELF_PUT_WORD (output_bfd, 0,
11569 sgot->contents
11570 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11571 }
11572 else
11573 {
11574 /* The first entry of the global offset table will be filled at
11575 runtime. The second entry will be used by some runtime loaders.
11576 This isn't the case of IRIX rld. */
11577 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 11578 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
11579 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11580 }
b49e97c9 11581
54938e2a
TS
11582 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11583 = MIPS_ELF_GOT_SIZE (output_bfd);
11584 }
b49e97c9 11585
f4416af6
AO
11586 /* Generate dynamic relocations for the non-primary gots. */
11587 if (gg != NULL && gg->next)
11588 {
11589 Elf_Internal_Rela rel[3];
11590 bfd_vma addend = 0;
11591
11592 memset (rel, 0, sizeof (rel));
11593 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11594
11595 for (g = gg->next; g->next != gg; g = g->next)
11596 {
91d6fa6a 11597 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 11598 + g->next->tls_gotno;
f4416af6 11599
9719ad41 11600 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 11601 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
11602 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11603 sgot->contents
91d6fa6a 11604 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6
AO
11605
11606 if (! info->shared)
11607 continue;
11608
cb22ccf4 11609 for (; got_index < g->local_gotno; got_index++)
f4416af6 11610 {
cb22ccf4
KCY
11611 if (got_index >= g->assigned_low_gotno
11612 && got_index <= g->assigned_high_gotno)
11613 continue;
11614
f4416af6 11615 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
cb22ccf4 11616 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
11617 if (!(mips_elf_create_dynamic_relocation
11618 (output_bfd, info, rel, NULL,
11619 bfd_abs_section_ptr,
11620 0, &addend, sgot)))
11621 return FALSE;
11622 BFD_ASSERT (addend == 0);
11623 }
11624 }
11625 }
11626
3133ddbf
DJ
11627 /* The generation of dynamic relocations for the non-primary gots
11628 adds more dynamic relocations. We cannot count them until
11629 here. */
11630
11631 if (elf_hash_table (info)->dynamic_sections_created)
11632 {
11633 bfd_byte *b;
11634 bfd_boolean swap_out_p;
11635
11636 BFD_ASSERT (sdyn != NULL);
11637
11638 for (b = sdyn->contents;
11639 b < sdyn->contents + sdyn->size;
11640 b += MIPS_ELF_DYN_SIZE (dynobj))
11641 {
11642 Elf_Internal_Dyn dyn;
11643 asection *s;
11644
11645 /* Read in the current dynamic entry. */
11646 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11647
11648 /* Assume that we're going to modify it and write it out. */
11649 swap_out_p = TRUE;
11650
11651 switch (dyn.d_tag)
11652 {
11653 case DT_RELSZ:
11654 /* Reduce DT_RELSZ to account for any relocations we
11655 decided not to make. This is for the n64 irix rld,
11656 which doesn't seem to apply any relocations if there
11657 are trailing null entries. */
0a44bf69 11658 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
11659 dyn.d_un.d_val = (s->reloc_count
11660 * (ABI_64_P (output_bfd)
11661 ? sizeof (Elf64_Mips_External_Rel)
11662 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
11663 /* Adjust the section size too. Tools like the prelinker
11664 can reasonably expect the values to the same. */
11665 elf_section_data (s->output_section)->this_hdr.sh_size
11666 = dyn.d_un.d_val;
3133ddbf
DJ
11667 break;
11668
11669 default:
11670 swap_out_p = FALSE;
11671 break;
11672 }
11673
11674 if (swap_out_p)
11675 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11676 (dynobj, &dyn, b);
11677 }
11678 }
11679
b49e97c9 11680 {
b49e97c9
TS
11681 asection *s;
11682 Elf32_compact_rel cpt;
11683
b49e97c9
TS
11684 if (SGI_COMPAT (output_bfd))
11685 {
11686 /* Write .compact_rel section out. */
3d4d4302 11687 s = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
11688 if (s != NULL)
11689 {
11690 cpt.id1 = 1;
11691 cpt.num = s->reloc_count;
11692 cpt.id2 = 2;
11693 cpt.offset = (s->output_section->filepos
11694 + sizeof (Elf32_External_compact_rel));
11695 cpt.reserved0 = 0;
11696 cpt.reserved1 = 0;
11697 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11698 ((Elf32_External_compact_rel *)
11699 s->contents));
11700
11701 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 11702 if (htab->sstubs != NULL)
b49e97c9
TS
11703 {
11704 file_ptr dummy_offset;
11705
4e41d0d7
RS
11706 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11707 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11708 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 11709 htab->function_stub_size);
b49e97c9
TS
11710 }
11711 }
11712 }
11713
0a44bf69
RS
11714 /* The psABI says that the dynamic relocations must be sorted in
11715 increasing order of r_symndx. The VxWorks EABI doesn't require
11716 this, and because the code below handles REL rather than RELA
11717 relocations, using it for VxWorks would be outright harmful. */
11718 if (!htab->is_vxworks)
b49e97c9 11719 {
0a44bf69
RS
11720 s = mips_elf_rel_dyn_section (info, FALSE);
11721 if (s != NULL
11722 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11723 {
11724 reldyn_sorting_bfd = output_bfd;
b49e97c9 11725
0a44bf69
RS
11726 if (ABI_64_P (output_bfd))
11727 qsort ((Elf64_External_Rel *) s->contents + 1,
11728 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11729 sort_dynamic_relocs_64);
11730 else
11731 qsort ((Elf32_External_Rel *) s->contents + 1,
11732 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11733 sort_dynamic_relocs);
11734 }
b49e97c9 11735 }
b49e97c9
TS
11736 }
11737
861fb55a 11738 if (htab->splt && htab->splt->size > 0)
0a44bf69 11739 {
861fb55a
DJ
11740 if (htab->is_vxworks)
11741 {
11742 if (info->shared)
11743 mips_vxworks_finish_shared_plt (output_bfd, info);
11744 else
11745 mips_vxworks_finish_exec_plt (output_bfd, info);
11746 }
0a44bf69 11747 else
861fb55a
DJ
11748 {
11749 BFD_ASSERT (!info->shared);
1bbce132
MR
11750 if (!mips_finish_exec_plt (output_bfd, info))
11751 return FALSE;
861fb55a 11752 }
0a44bf69 11753 }
b34976b6 11754 return TRUE;
b49e97c9
TS
11755}
11756
b49e97c9 11757
64543e1a
RS
11758/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11759
11760static void
9719ad41 11761mips_set_isa_flags (bfd *abfd)
b49e97c9 11762{
64543e1a 11763 flagword val;
b49e97c9
TS
11764
11765 switch (bfd_get_mach (abfd))
11766 {
11767 default:
11768 case bfd_mach_mips3000:
11769 val = E_MIPS_ARCH_1;
11770 break;
11771
11772 case bfd_mach_mips3900:
11773 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11774 break;
11775
11776 case bfd_mach_mips6000:
11777 val = E_MIPS_ARCH_2;
11778 break;
11779
11780 case bfd_mach_mips4000:
11781 case bfd_mach_mips4300:
11782 case bfd_mach_mips4400:
11783 case bfd_mach_mips4600:
11784 val = E_MIPS_ARCH_3;
11785 break;
11786
11787 case bfd_mach_mips4010:
11788 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11789 break;
11790
11791 case bfd_mach_mips4100:
11792 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11793 break;
11794
11795 case bfd_mach_mips4111:
11796 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11797 break;
11798
00707a0e
RS
11799 case bfd_mach_mips4120:
11800 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11801 break;
11802
b49e97c9
TS
11803 case bfd_mach_mips4650:
11804 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11805 break;
11806
00707a0e
RS
11807 case bfd_mach_mips5400:
11808 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11809 break;
11810
11811 case bfd_mach_mips5500:
11812 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11813 break;
11814
e407c74b
NC
11815 case bfd_mach_mips5900:
11816 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11817 break;
11818
0d2e43ed
ILT
11819 case bfd_mach_mips9000:
11820 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11821 break;
11822
b49e97c9 11823 case bfd_mach_mips5000:
5a7ea749 11824 case bfd_mach_mips7000:
b49e97c9
TS
11825 case bfd_mach_mips8000:
11826 case bfd_mach_mips10000:
11827 case bfd_mach_mips12000:
3aa3176b
TS
11828 case bfd_mach_mips14000:
11829 case bfd_mach_mips16000:
b49e97c9
TS
11830 val = E_MIPS_ARCH_4;
11831 break;
11832
11833 case bfd_mach_mips5:
11834 val = E_MIPS_ARCH_5;
11835 break;
11836
350cc38d
MS
11837 case bfd_mach_mips_loongson_2e:
11838 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11839 break;
11840
11841 case bfd_mach_mips_loongson_2f:
11842 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11843 break;
11844
b49e97c9
TS
11845 case bfd_mach_mips_sb1:
11846 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11847 break;
11848
d051516a 11849 case bfd_mach_mips_loongson_3a:
4ba154f5 11850 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
d051516a
NC
11851 break;
11852
6f179bd0 11853 case bfd_mach_mips_octeon:
dd6a37e7 11854 case bfd_mach_mips_octeonp:
6f179bd0
AN
11855 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11856 break;
11857
2c629856
N
11858 case bfd_mach_mips_octeon3:
11859 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11860 break;
11861
52b6b6b9
JM
11862 case bfd_mach_mips_xlr:
11863 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11864 break;
11865
432233b3
AP
11866 case bfd_mach_mips_octeon2:
11867 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11868 break;
11869
b49e97c9
TS
11870 case bfd_mach_mipsisa32:
11871 val = E_MIPS_ARCH_32;
11872 break;
11873
11874 case bfd_mach_mipsisa64:
11875 val = E_MIPS_ARCH_64;
af7ee8bf
CD
11876 break;
11877
11878 case bfd_mach_mipsisa32r2:
ae52f483
AB
11879 case bfd_mach_mipsisa32r3:
11880 case bfd_mach_mipsisa32r5:
af7ee8bf
CD
11881 val = E_MIPS_ARCH_32R2;
11882 break;
5f74bc13
CD
11883
11884 case bfd_mach_mipsisa64r2:
ae52f483
AB
11885 case bfd_mach_mipsisa64r3:
11886 case bfd_mach_mipsisa64r5:
5f74bc13
CD
11887 val = E_MIPS_ARCH_64R2;
11888 break;
7361da2c
AB
11889
11890 case bfd_mach_mipsisa32r6:
11891 val = E_MIPS_ARCH_32R6;
11892 break;
11893
11894 case bfd_mach_mipsisa64r6:
11895 val = E_MIPS_ARCH_64R6;
11896 break;
b49e97c9 11897 }
b49e97c9
TS
11898 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11899 elf_elfheader (abfd)->e_flags |= val;
11900
64543e1a
RS
11901}
11902
11903
11904/* The final processing done just before writing out a MIPS ELF object
11905 file. This gets the MIPS architecture right based on the machine
11906 number. This is used by both the 32-bit and the 64-bit ABI. */
11907
11908void
9719ad41
RS
11909_bfd_mips_elf_final_write_processing (bfd *abfd,
11910 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
11911{
11912 unsigned int i;
11913 Elf_Internal_Shdr **hdrpp;
11914 const char *name;
11915 asection *sec;
11916
11917 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11918 is nonzero. This is for compatibility with old objects, which used
11919 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11920 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11921 mips_set_isa_flags (abfd);
11922
b49e97c9
TS
11923 /* Set the sh_info field for .gptab sections and other appropriate
11924 info for each special section. */
11925 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11926 i < elf_numsections (abfd);
11927 i++, hdrpp++)
11928 {
11929 switch ((*hdrpp)->sh_type)
11930 {
11931 case SHT_MIPS_MSYM:
11932 case SHT_MIPS_LIBLIST:
11933 sec = bfd_get_section_by_name (abfd, ".dynstr");
11934 if (sec != NULL)
11935 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11936 break;
11937
11938 case SHT_MIPS_GPTAB:
11939 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11940 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11941 BFD_ASSERT (name != NULL
0112cd26 11942 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
11943 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11944 BFD_ASSERT (sec != NULL);
11945 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11946 break;
11947
11948 case SHT_MIPS_CONTENT:
11949 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11950 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11951 BFD_ASSERT (name != NULL
0112cd26 11952 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
11953 sec = bfd_get_section_by_name (abfd,
11954 name + sizeof ".MIPS.content" - 1);
11955 BFD_ASSERT (sec != NULL);
11956 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11957 break;
11958
11959 case SHT_MIPS_SYMBOL_LIB:
11960 sec = bfd_get_section_by_name (abfd, ".dynsym");
11961 if (sec != NULL)
11962 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11963 sec = bfd_get_section_by_name (abfd, ".liblist");
11964 if (sec != NULL)
11965 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11966 break;
11967
11968 case SHT_MIPS_EVENTS:
11969 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11970 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11971 BFD_ASSERT (name != NULL);
0112cd26 11972 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
11973 sec = bfd_get_section_by_name (abfd,
11974 name + sizeof ".MIPS.events" - 1);
11975 else
11976 {
0112cd26 11977 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
11978 sec = bfd_get_section_by_name (abfd,
11979 (name
11980 + sizeof ".MIPS.post_rel" - 1));
11981 }
11982 BFD_ASSERT (sec != NULL);
11983 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11984 break;
11985
11986 }
11987 }
11988}
11989\f
8dc1a139 11990/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
11991 segments. */
11992
11993int
a6b96beb
AM
11994_bfd_mips_elf_additional_program_headers (bfd *abfd,
11995 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
11996{
11997 asection *s;
11998 int ret = 0;
11999
12000 /* See if we need a PT_MIPS_REGINFO segment. */
12001 s = bfd_get_section_by_name (abfd, ".reginfo");
12002 if (s && (s->flags & SEC_LOAD))
12003 ++ret;
12004
351cdf24
MF
12005 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12006 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12007 ++ret;
12008
b49e97c9
TS
12009 /* See if we need a PT_MIPS_OPTIONS segment. */
12010 if (IRIX_COMPAT (abfd) == ict_irix6
12011 && bfd_get_section_by_name (abfd,
12012 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12013 ++ret;
12014
12015 /* See if we need a PT_MIPS_RTPROC segment. */
12016 if (IRIX_COMPAT (abfd) == ict_irix5
12017 && bfd_get_section_by_name (abfd, ".dynamic")
12018 && bfd_get_section_by_name (abfd, ".mdebug"))
12019 ++ret;
12020
98c904a8
RS
12021 /* Allocate a PT_NULL header in dynamic objects. See
12022 _bfd_mips_elf_modify_segment_map for details. */
12023 if (!SGI_COMPAT (abfd)
12024 && bfd_get_section_by_name (abfd, ".dynamic"))
12025 ++ret;
12026
b49e97c9
TS
12027 return ret;
12028}
12029
8dc1a139 12030/* Modify the segment map for an IRIX5 executable. */
b49e97c9 12031
b34976b6 12032bfd_boolean
9719ad41 12033_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 12034 struct bfd_link_info *info)
b49e97c9
TS
12035{
12036 asection *s;
12037 struct elf_segment_map *m, **pm;
12038 bfd_size_type amt;
12039
12040 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12041 segment. */
12042 s = bfd_get_section_by_name (abfd, ".reginfo");
12043 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12044 {
12bd6957 12045 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12046 if (m->p_type == PT_MIPS_REGINFO)
12047 break;
12048 if (m == NULL)
12049 {
12050 amt = sizeof *m;
9719ad41 12051 m = bfd_zalloc (abfd, amt);
b49e97c9 12052 if (m == NULL)
b34976b6 12053 return FALSE;
b49e97c9
TS
12054
12055 m->p_type = PT_MIPS_REGINFO;
12056 m->count = 1;
12057 m->sections[0] = s;
12058
12059 /* We want to put it after the PHDR and INTERP segments. */
12bd6957 12060 pm = &elf_seg_map (abfd);
b49e97c9
TS
12061 while (*pm != NULL
12062 && ((*pm)->p_type == PT_PHDR
12063 || (*pm)->p_type == PT_INTERP))
12064 pm = &(*pm)->next;
12065
12066 m->next = *pm;
12067 *pm = m;
12068 }
12069 }
12070
351cdf24
MF
12071 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12072 segment. */
12073 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12074 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12075 {
12076 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12077 if (m->p_type == PT_MIPS_ABIFLAGS)
12078 break;
12079 if (m == NULL)
12080 {
12081 amt = sizeof *m;
12082 m = bfd_zalloc (abfd, amt);
12083 if (m == NULL)
12084 return FALSE;
12085
12086 m->p_type = PT_MIPS_ABIFLAGS;
12087 m->count = 1;
12088 m->sections[0] = s;
12089
12090 /* We want to put it after the PHDR and INTERP segments. */
12091 pm = &elf_seg_map (abfd);
12092 while (*pm != NULL
12093 && ((*pm)->p_type == PT_PHDR
12094 || (*pm)->p_type == PT_INTERP))
12095 pm = &(*pm)->next;
12096
12097 m->next = *pm;
12098 *pm = m;
12099 }
12100 }
12101
b49e97c9
TS
12102 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12103 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 12104 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 12105 table. */
c1fd6598
AO
12106 if (NEWABI_P (abfd)
12107 /* On non-IRIX6 new abi, we'll have already created a segment
12108 for this section, so don't create another. I'm not sure this
12109 is not also the case for IRIX 6, but I can't test it right
12110 now. */
12111 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
12112 {
12113 for (s = abfd->sections; s; s = s->next)
12114 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12115 break;
12116
12117 if (s)
12118 {
12119 struct elf_segment_map *options_segment;
12120
12bd6957 12121 pm = &elf_seg_map (abfd);
98a8deaf
RS
12122 while (*pm != NULL
12123 && ((*pm)->p_type == PT_PHDR
12124 || (*pm)->p_type == PT_INTERP))
12125 pm = &(*pm)->next;
b49e97c9 12126
8ded5a0f
AM
12127 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12128 {
12129 amt = sizeof (struct elf_segment_map);
12130 options_segment = bfd_zalloc (abfd, amt);
12131 options_segment->next = *pm;
12132 options_segment->p_type = PT_MIPS_OPTIONS;
12133 options_segment->p_flags = PF_R;
12134 options_segment->p_flags_valid = TRUE;
12135 options_segment->count = 1;
12136 options_segment->sections[0] = s;
12137 *pm = options_segment;
12138 }
b49e97c9
TS
12139 }
12140 }
12141 else
12142 {
12143 if (IRIX_COMPAT (abfd) == ict_irix5)
12144 {
12145 /* If there are .dynamic and .mdebug sections, we make a room
12146 for the RTPROC header. FIXME: Rewrite without section names. */
12147 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12148 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12149 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12150 {
12bd6957 12151 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12152 if (m->p_type == PT_MIPS_RTPROC)
12153 break;
12154 if (m == NULL)
12155 {
12156 amt = sizeof *m;
9719ad41 12157 m = bfd_zalloc (abfd, amt);
b49e97c9 12158 if (m == NULL)
b34976b6 12159 return FALSE;
b49e97c9
TS
12160
12161 m->p_type = PT_MIPS_RTPROC;
12162
12163 s = bfd_get_section_by_name (abfd, ".rtproc");
12164 if (s == NULL)
12165 {
12166 m->count = 0;
12167 m->p_flags = 0;
12168 m->p_flags_valid = 1;
12169 }
12170 else
12171 {
12172 m->count = 1;
12173 m->sections[0] = s;
12174 }
12175
12176 /* We want to put it after the DYNAMIC segment. */
12bd6957 12177 pm = &elf_seg_map (abfd);
b49e97c9
TS
12178 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12179 pm = &(*pm)->next;
12180 if (*pm != NULL)
12181 pm = &(*pm)->next;
12182
12183 m->next = *pm;
12184 *pm = m;
12185 }
12186 }
12187 }
8dc1a139 12188 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
12189 .dynstr, .dynsym, and .hash sections, and everything in
12190 between. */
12bd6957 12191 for (pm = &elf_seg_map (abfd); *pm != NULL;
b49e97c9
TS
12192 pm = &(*pm)->next)
12193 if ((*pm)->p_type == PT_DYNAMIC)
12194 break;
12195 m = *pm;
f6f62d6f
RS
12196 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12197 glibc's dynamic linker has traditionally derived the number of
12198 tags from the p_filesz field, and sometimes allocates stack
12199 arrays of that size. An overly-big PT_DYNAMIC segment can
12200 be actively harmful in such cases. Making PT_DYNAMIC contain
12201 other sections can also make life hard for the prelinker,
12202 which might move one of the other sections to a different
12203 PT_LOAD segment. */
12204 if (SGI_COMPAT (abfd)
12205 && m != NULL
12206 && m->count == 1
12207 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
12208 {
12209 static const char *sec_names[] =
12210 {
12211 ".dynamic", ".dynstr", ".dynsym", ".hash"
12212 };
12213 bfd_vma low, high;
12214 unsigned int i, c;
12215 struct elf_segment_map *n;
12216
792b4a53 12217 low = ~(bfd_vma) 0;
b49e97c9
TS
12218 high = 0;
12219 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12220 {
12221 s = bfd_get_section_by_name (abfd, sec_names[i]);
12222 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12223 {
12224 bfd_size_type sz;
12225
12226 if (low > s->vma)
12227 low = s->vma;
eea6121a 12228 sz = s->size;
b49e97c9
TS
12229 if (high < s->vma + sz)
12230 high = s->vma + sz;
12231 }
12232 }
12233
12234 c = 0;
12235 for (s = abfd->sections; s != NULL; s = s->next)
12236 if ((s->flags & SEC_LOAD) != 0
12237 && s->vma >= low
eea6121a 12238 && s->vma + s->size <= high)
b49e97c9
TS
12239 ++c;
12240
12241 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 12242 n = bfd_zalloc (abfd, amt);
b49e97c9 12243 if (n == NULL)
b34976b6 12244 return FALSE;
b49e97c9
TS
12245 *n = *m;
12246 n->count = c;
12247
12248 i = 0;
12249 for (s = abfd->sections; s != NULL; s = s->next)
12250 {
12251 if ((s->flags & SEC_LOAD) != 0
12252 && s->vma >= low
eea6121a 12253 && s->vma + s->size <= high)
b49e97c9
TS
12254 {
12255 n->sections[i] = s;
12256 ++i;
12257 }
12258 }
12259
12260 *pm = n;
12261 }
12262 }
12263
98c904a8
RS
12264 /* Allocate a spare program header in dynamic objects so that tools
12265 like the prelinker can add an extra PT_LOAD entry.
12266
12267 If the prelinker needs to make room for a new PT_LOAD entry, its
12268 standard procedure is to move the first (read-only) sections into
12269 the new (writable) segment. However, the MIPS ABI requires
12270 .dynamic to be in a read-only segment, and the section will often
12271 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12272
12273 Although the prelinker could in principle move .dynamic to a
12274 writable segment, it seems better to allocate a spare program
12275 header instead, and avoid the need to move any sections.
12276 There is a long tradition of allocating spare dynamic tags,
12277 so allocating a spare program header seems like a natural
7c8b76cc
JM
12278 extension.
12279
12280 If INFO is NULL, we may be copying an already prelinked binary
12281 with objcopy or strip, so do not add this header. */
12282 if (info != NULL
12283 && !SGI_COMPAT (abfd)
98c904a8
RS
12284 && bfd_get_section_by_name (abfd, ".dynamic"))
12285 {
12bd6957 12286 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
98c904a8
RS
12287 if ((*pm)->p_type == PT_NULL)
12288 break;
12289 if (*pm == NULL)
12290 {
12291 m = bfd_zalloc (abfd, sizeof (*m));
12292 if (m == NULL)
12293 return FALSE;
12294
12295 m->p_type = PT_NULL;
12296 *pm = m;
12297 }
12298 }
12299
b34976b6 12300 return TRUE;
b49e97c9
TS
12301}
12302\f
12303/* Return the section that should be marked against GC for a given
12304 relocation. */
12305
12306asection *
9719ad41 12307_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 12308 struct bfd_link_info *info,
9719ad41
RS
12309 Elf_Internal_Rela *rel,
12310 struct elf_link_hash_entry *h,
12311 Elf_Internal_Sym *sym)
b49e97c9
TS
12312{
12313 /* ??? Do mips16 stub sections need to be handled special? */
12314
12315 if (h != NULL)
07adf181
AM
12316 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12317 {
12318 case R_MIPS_GNU_VTINHERIT:
12319 case R_MIPS_GNU_VTENTRY:
12320 return NULL;
12321 }
b49e97c9 12322
07adf181 12323 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
12324}
12325
12326/* Update the got entry reference counts for the section being removed. */
12327
b34976b6 12328bfd_boolean
9719ad41
RS
12329_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12330 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12331 asection *sec ATTRIBUTE_UNUSED,
12332 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
12333{
12334#if 0
12335 Elf_Internal_Shdr *symtab_hdr;
12336 struct elf_link_hash_entry **sym_hashes;
12337 bfd_signed_vma *local_got_refcounts;
12338 const Elf_Internal_Rela *rel, *relend;
12339 unsigned long r_symndx;
12340 struct elf_link_hash_entry *h;
12341
7dda2462
TG
12342 if (info->relocatable)
12343 return TRUE;
12344
b49e97c9
TS
12345 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12346 sym_hashes = elf_sym_hashes (abfd);
12347 local_got_refcounts = elf_local_got_refcounts (abfd);
12348
12349 relend = relocs + sec->reloc_count;
12350 for (rel = relocs; rel < relend; rel++)
12351 switch (ELF_R_TYPE (abfd, rel->r_info))
12352 {
738e5348
RS
12353 case R_MIPS16_GOT16:
12354 case R_MIPS16_CALL16:
b49e97c9
TS
12355 case R_MIPS_GOT16:
12356 case R_MIPS_CALL16:
12357 case R_MIPS_CALL_HI16:
12358 case R_MIPS_CALL_LO16:
12359 case R_MIPS_GOT_HI16:
12360 case R_MIPS_GOT_LO16:
4a14403c
TS
12361 case R_MIPS_GOT_DISP:
12362 case R_MIPS_GOT_PAGE:
12363 case R_MIPS_GOT_OFST:
df58fc94
RS
12364 case R_MICROMIPS_GOT16:
12365 case R_MICROMIPS_CALL16:
12366 case R_MICROMIPS_CALL_HI16:
12367 case R_MICROMIPS_CALL_LO16:
12368 case R_MICROMIPS_GOT_HI16:
12369 case R_MICROMIPS_GOT_LO16:
12370 case R_MICROMIPS_GOT_DISP:
12371 case R_MICROMIPS_GOT_PAGE:
12372 case R_MICROMIPS_GOT_OFST:
b49e97c9
TS
12373 /* ??? It would seem that the existing MIPS code does no sort
12374 of reference counting or whatnot on its GOT and PLT entries,
12375 so it is not possible to garbage collect them at this time. */
12376 break;
12377
12378 default:
12379 break;
12380 }
12381#endif
12382
b34976b6 12383 return TRUE;
b49e97c9 12384}
351cdf24
MF
12385
12386/* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12387
12388bfd_boolean
12389_bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12390 elf_gc_mark_hook_fn gc_mark_hook)
12391{
12392 bfd *sub;
12393
12394 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12395
12396 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12397 {
12398 asection *o;
12399
12400 if (! is_mips_elf (sub))
12401 continue;
12402
12403 for (o = sub->sections; o != NULL; o = o->next)
12404 if (!o->gc_mark
12405 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12406 (bfd_get_section_name (sub, o)))
12407 {
12408 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12409 return FALSE;
12410 }
12411 }
12412
12413 return TRUE;
12414}
b49e97c9
TS
12415\f
12416/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12417 hiding the old indirect symbol. Process additional relocation
12418 information. Also called for weakdefs, in which case we just let
12419 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12420
12421void
fcfa13d2 12422_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
12423 struct elf_link_hash_entry *dir,
12424 struct elf_link_hash_entry *ind)
b49e97c9
TS
12425{
12426 struct mips_elf_link_hash_entry *dirmips, *indmips;
12427
fcfa13d2 12428 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 12429
861fb55a
DJ
12430 dirmips = (struct mips_elf_link_hash_entry *) dir;
12431 indmips = (struct mips_elf_link_hash_entry *) ind;
12432 /* Any absolute non-dynamic relocations against an indirect or weak
12433 definition will be against the target symbol. */
12434 if (indmips->has_static_relocs)
12435 dirmips->has_static_relocs = TRUE;
12436
b49e97c9
TS
12437 if (ind->root.type != bfd_link_hash_indirect)
12438 return;
12439
b49e97c9
TS
12440 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12441 if (indmips->readonly_reloc)
b34976b6 12442 dirmips->readonly_reloc = TRUE;
b49e97c9 12443 if (indmips->no_fn_stub)
b34976b6 12444 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
12445 if (indmips->fn_stub)
12446 {
12447 dirmips->fn_stub = indmips->fn_stub;
12448 indmips->fn_stub = NULL;
12449 }
12450 if (indmips->need_fn_stub)
12451 {
12452 dirmips->need_fn_stub = TRUE;
12453 indmips->need_fn_stub = FALSE;
12454 }
12455 if (indmips->call_stub)
12456 {
12457 dirmips->call_stub = indmips->call_stub;
12458 indmips->call_stub = NULL;
12459 }
12460 if (indmips->call_fp_stub)
12461 {
12462 dirmips->call_fp_stub = indmips->call_fp_stub;
12463 indmips->call_fp_stub = NULL;
12464 }
634835ae
RS
12465 if (indmips->global_got_area < dirmips->global_got_area)
12466 dirmips->global_got_area = indmips->global_got_area;
12467 if (indmips->global_got_area < GGA_NONE)
12468 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
12469 if (indmips->has_nonpic_branches)
12470 dirmips->has_nonpic_branches = TRUE;
b49e97c9 12471}
b49e97c9 12472\f
d01414a5
TS
12473#define PDR_SIZE 32
12474
b34976b6 12475bfd_boolean
9719ad41
RS
12476_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12477 struct bfd_link_info *info)
d01414a5
TS
12478{
12479 asection *o;
b34976b6 12480 bfd_boolean ret = FALSE;
d01414a5
TS
12481 unsigned char *tdata;
12482 size_t i, skip;
12483
12484 o = bfd_get_section_by_name (abfd, ".pdr");
12485 if (! o)
b34976b6 12486 return FALSE;
eea6121a 12487 if (o->size == 0)
b34976b6 12488 return FALSE;
eea6121a 12489 if (o->size % PDR_SIZE != 0)
b34976b6 12490 return FALSE;
d01414a5
TS
12491 if (o->output_section != NULL
12492 && bfd_is_abs_section (o->output_section))
b34976b6 12493 return FALSE;
d01414a5 12494
eea6121a 12495 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 12496 if (! tdata)
b34976b6 12497 return FALSE;
d01414a5 12498
9719ad41 12499 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 12500 info->keep_memory);
d01414a5
TS
12501 if (!cookie->rels)
12502 {
12503 free (tdata);
b34976b6 12504 return FALSE;
d01414a5
TS
12505 }
12506
12507 cookie->rel = cookie->rels;
12508 cookie->relend = cookie->rels + o->reloc_count;
12509
eea6121a 12510 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 12511 {
c152c796 12512 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
12513 {
12514 tdata[i] = 1;
12515 skip ++;
12516 }
12517 }
12518
12519 if (skip != 0)
12520 {
f0abc2a1 12521 mips_elf_section_data (o)->u.tdata = tdata;
e034b2cc
MR
12522 if (o->rawsize == 0)
12523 o->rawsize = o->size;
eea6121a 12524 o->size -= skip * PDR_SIZE;
b34976b6 12525 ret = TRUE;
d01414a5
TS
12526 }
12527 else
12528 free (tdata);
12529
12530 if (! info->keep_memory)
12531 free (cookie->rels);
12532
12533 return ret;
12534}
12535
b34976b6 12536bfd_boolean
9719ad41 12537_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
12538{
12539 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
12540 return TRUE;
12541 return FALSE;
53bfd6b4 12542}
d01414a5 12543
b34976b6 12544bfd_boolean
c7b8f16e
JB
12545_bfd_mips_elf_write_section (bfd *output_bfd,
12546 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12547 asection *sec, bfd_byte *contents)
d01414a5
TS
12548{
12549 bfd_byte *to, *from, *end;
12550 int i;
12551
12552 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 12553 return FALSE;
d01414a5 12554
f0abc2a1 12555 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 12556 return FALSE;
d01414a5
TS
12557
12558 to = contents;
eea6121a 12559 end = contents + sec->size;
d01414a5
TS
12560 for (from = contents, i = 0;
12561 from < end;
12562 from += PDR_SIZE, i++)
12563 {
f0abc2a1 12564 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
12565 continue;
12566 if (to != from)
12567 memcpy (to, from, PDR_SIZE);
12568 to += PDR_SIZE;
12569 }
12570 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 12571 sec->output_offset, sec->size);
b34976b6 12572 return TRUE;
d01414a5 12573}
53bfd6b4 12574\f
df58fc94
RS
12575/* microMIPS code retains local labels for linker relaxation. Omit them
12576 from output by default for clarity. */
12577
12578bfd_boolean
12579_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12580{
12581 return _bfd_elf_is_local_label_name (abfd, sym->name);
12582}
12583
b49e97c9
TS
12584/* MIPS ELF uses a special find_nearest_line routine in order the
12585 handle the ECOFF debugging information. */
12586
12587struct mips_elf_find_line
12588{
12589 struct ecoff_debug_info d;
12590 struct ecoff_find_line i;
12591};
12592
b34976b6 12593bfd_boolean
fb167eb2
AM
12594_bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12595 asection *section, bfd_vma offset,
9719ad41
RS
12596 const char **filename_ptr,
12597 const char **functionname_ptr,
fb167eb2
AM
12598 unsigned int *line_ptr,
12599 unsigned int *discriminator_ptr)
b49e97c9
TS
12600{
12601 asection *msec;
12602
fb167eb2 12603 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
b49e97c9 12604 filename_ptr, functionname_ptr,
fb167eb2
AM
12605 line_ptr, discriminator_ptr,
12606 dwarf_debug_sections,
12607 ABI_64_P (abfd) ? 8 : 0,
12608 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 12609 return TRUE;
b49e97c9 12610
fb167eb2 12611 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
b49e97c9 12612 filename_ptr, functionname_ptr,
fb167eb2 12613 line_ptr))
b34976b6 12614 return TRUE;
b49e97c9
TS
12615
12616 msec = bfd_get_section_by_name (abfd, ".mdebug");
12617 if (msec != NULL)
12618 {
12619 flagword origflags;
12620 struct mips_elf_find_line *fi;
12621 const struct ecoff_debug_swap * const swap =
12622 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12623
12624 /* If we are called during a link, mips_elf_final_link may have
12625 cleared the SEC_HAS_CONTENTS field. We force it back on here
12626 if appropriate (which it normally will be). */
12627 origflags = msec->flags;
12628 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12629 msec->flags |= SEC_HAS_CONTENTS;
12630
698600e4 12631 fi = mips_elf_tdata (abfd)->find_line_info;
b49e97c9
TS
12632 if (fi == NULL)
12633 {
12634 bfd_size_type external_fdr_size;
12635 char *fraw_src;
12636 char *fraw_end;
12637 struct fdr *fdr_ptr;
12638 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12639
9719ad41 12640 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
12641 if (fi == NULL)
12642 {
12643 msec->flags = origflags;
b34976b6 12644 return FALSE;
b49e97c9
TS
12645 }
12646
12647 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12648 {
12649 msec->flags = origflags;
b34976b6 12650 return FALSE;
b49e97c9
TS
12651 }
12652
12653 /* Swap in the FDR information. */
12654 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 12655 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
12656 if (fi->d.fdr == NULL)
12657 {
12658 msec->flags = origflags;
b34976b6 12659 return FALSE;
b49e97c9
TS
12660 }
12661 external_fdr_size = swap->external_fdr_size;
12662 fdr_ptr = fi->d.fdr;
12663 fraw_src = (char *) fi->d.external_fdr;
12664 fraw_end = (fraw_src
12665 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12666 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 12667 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9 12668
698600e4 12669 mips_elf_tdata (abfd)->find_line_info = fi;
b49e97c9
TS
12670
12671 /* Note that we don't bother to ever free this information.
12672 find_nearest_line is either called all the time, as in
12673 objdump -l, so the information should be saved, or it is
12674 rarely called, as in ld error messages, so the memory
12675 wasted is unimportant. Still, it would probably be a
12676 good idea for free_cached_info to throw it away. */
12677 }
12678
12679 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12680 &fi->i, filename_ptr, functionname_ptr,
12681 line_ptr))
12682 {
12683 msec->flags = origflags;
b34976b6 12684 return TRUE;
b49e97c9
TS
12685 }
12686
12687 msec->flags = origflags;
12688 }
12689
12690 /* Fall back on the generic ELF find_nearest_line routine. */
12691
fb167eb2 12692 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
b49e97c9 12693 filename_ptr, functionname_ptr,
fb167eb2 12694 line_ptr, discriminator_ptr);
b49e97c9 12695}
4ab527b0
FF
12696
12697bfd_boolean
12698_bfd_mips_elf_find_inliner_info (bfd *abfd,
12699 const char **filename_ptr,
12700 const char **functionname_ptr,
12701 unsigned int *line_ptr)
12702{
12703 bfd_boolean found;
12704 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12705 functionname_ptr, line_ptr,
12706 & elf_tdata (abfd)->dwarf2_find_line_info);
12707 return found;
12708}
12709
b49e97c9
TS
12710\f
12711/* When are writing out the .options or .MIPS.options section,
12712 remember the bytes we are writing out, so that we can install the
12713 GP value in the section_processing routine. */
12714
b34976b6 12715bfd_boolean
9719ad41
RS
12716_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12717 const void *location,
12718 file_ptr offset, bfd_size_type count)
b49e97c9 12719{
cc2e31b9 12720 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
12721 {
12722 bfd_byte *c;
12723
12724 if (elf_section_data (section) == NULL)
12725 {
12726 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 12727 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 12728 if (elf_section_data (section) == NULL)
b34976b6 12729 return FALSE;
b49e97c9 12730 }
f0abc2a1 12731 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
12732 if (c == NULL)
12733 {
eea6121a 12734 c = bfd_zalloc (abfd, section->size);
b49e97c9 12735 if (c == NULL)
b34976b6 12736 return FALSE;
f0abc2a1 12737 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
12738 }
12739
9719ad41 12740 memcpy (c + offset, location, count);
b49e97c9
TS
12741 }
12742
12743 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12744 count);
12745}
12746
12747/* This is almost identical to bfd_generic_get_... except that some
12748 MIPS relocations need to be handled specially. Sigh. */
12749
12750bfd_byte *
9719ad41
RS
12751_bfd_elf_mips_get_relocated_section_contents
12752 (bfd *abfd,
12753 struct bfd_link_info *link_info,
12754 struct bfd_link_order *link_order,
12755 bfd_byte *data,
12756 bfd_boolean relocatable,
12757 asymbol **symbols)
b49e97c9
TS
12758{
12759 /* Get enough memory to hold the stuff */
12760 bfd *input_bfd = link_order->u.indirect.section->owner;
12761 asection *input_section = link_order->u.indirect.section;
eea6121a 12762 bfd_size_type sz;
b49e97c9
TS
12763
12764 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12765 arelent **reloc_vector = NULL;
12766 long reloc_count;
12767
12768 if (reloc_size < 0)
12769 goto error_return;
12770
9719ad41 12771 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
12772 if (reloc_vector == NULL && reloc_size != 0)
12773 goto error_return;
12774
12775 /* read in the section */
eea6121a
AM
12776 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12777 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
12778 goto error_return;
12779
b49e97c9
TS
12780 reloc_count = bfd_canonicalize_reloc (input_bfd,
12781 input_section,
12782 reloc_vector,
12783 symbols);
12784 if (reloc_count < 0)
12785 goto error_return;
12786
12787 if (reloc_count > 0)
12788 {
12789 arelent **parent;
12790 /* for mips */
12791 int gp_found;
12792 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12793
12794 {
12795 struct bfd_hash_entry *h;
12796 struct bfd_link_hash_entry *lh;
12797 /* Skip all this stuff if we aren't mixing formats. */
12798 if (abfd && input_bfd
12799 && abfd->xvec == input_bfd->xvec)
12800 lh = 0;
12801 else
12802 {
b34976b6 12803 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
12804 lh = (struct bfd_link_hash_entry *) h;
12805 }
12806 lookup:
12807 if (lh)
12808 {
12809 switch (lh->type)
12810 {
12811 case bfd_link_hash_undefined:
12812 case bfd_link_hash_undefweak:
12813 case bfd_link_hash_common:
12814 gp_found = 0;
12815 break;
12816 case bfd_link_hash_defined:
12817 case bfd_link_hash_defweak:
12818 gp_found = 1;
12819 gp = lh->u.def.value;
12820 break;
12821 case bfd_link_hash_indirect:
12822 case bfd_link_hash_warning:
12823 lh = lh->u.i.link;
12824 /* @@FIXME ignoring warning for now */
12825 goto lookup;
12826 case bfd_link_hash_new:
12827 default:
12828 abort ();
12829 }
12830 }
12831 else
12832 gp_found = 0;
12833 }
12834 /* end mips */
9719ad41 12835 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 12836 {
9719ad41 12837 char *error_message = NULL;
b49e97c9
TS
12838 bfd_reloc_status_type r;
12839
12840 /* Specific to MIPS: Deal with relocation types that require
12841 knowing the gp of the output bfd. */
12842 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 12843
8236346f
EC
12844 /* If we've managed to find the gp and have a special
12845 function for the relocation then go ahead, else default
12846 to the generic handling. */
12847 if (gp_found
12848 && (*parent)->howto->special_function
12849 == _bfd_mips_elf32_gprel16_reloc)
12850 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12851 input_section, relocatable,
12852 data, gp);
12853 else
86324f90 12854 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
12855 input_section,
12856 relocatable ? abfd : NULL,
12857 &error_message);
b49e97c9 12858
1049f94e 12859 if (relocatable)
b49e97c9
TS
12860 {
12861 asection *os = input_section->output_section;
12862
12863 /* A partial link, so keep the relocs */
12864 os->orelocation[os->reloc_count] = *parent;
12865 os->reloc_count++;
12866 }
12867
12868 if (r != bfd_reloc_ok)
12869 {
12870 switch (r)
12871 {
12872 case bfd_reloc_undefined:
12873 if (!((*link_info->callbacks->undefined_symbol)
12874 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 12875 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
12876 goto error_return;
12877 break;
12878 case bfd_reloc_dangerous:
9719ad41 12879 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
12880 if (!((*link_info->callbacks->reloc_dangerous)
12881 (link_info, error_message, input_bfd, input_section,
12882 (*parent)->address)))
12883 goto error_return;
12884 break;
12885 case bfd_reloc_overflow:
12886 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
12887 (link_info, NULL,
12888 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
12889 (*parent)->howto->name, (*parent)->addend,
12890 input_bfd, input_section, (*parent)->address)))
12891 goto error_return;
12892 break;
12893 case bfd_reloc_outofrange:
12894 default:
12895 abort ();
12896 break;
12897 }
12898
12899 }
12900 }
12901 }
12902 if (reloc_vector != NULL)
12903 free (reloc_vector);
12904 return data;
12905
12906error_return:
12907 if (reloc_vector != NULL)
12908 free (reloc_vector);
12909 return NULL;
12910}
12911\f
df58fc94
RS
12912static bfd_boolean
12913mips_elf_relax_delete_bytes (bfd *abfd,
12914 asection *sec, bfd_vma addr, int count)
12915{
12916 Elf_Internal_Shdr *symtab_hdr;
12917 unsigned int sec_shndx;
12918 bfd_byte *contents;
12919 Elf_Internal_Rela *irel, *irelend;
12920 Elf_Internal_Sym *isym;
12921 Elf_Internal_Sym *isymend;
12922 struct elf_link_hash_entry **sym_hashes;
12923 struct elf_link_hash_entry **end_hashes;
12924 struct elf_link_hash_entry **start_hashes;
12925 unsigned int symcount;
12926
12927 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12928 contents = elf_section_data (sec)->this_hdr.contents;
12929
12930 irel = elf_section_data (sec)->relocs;
12931 irelend = irel + sec->reloc_count;
12932
12933 /* Actually delete the bytes. */
12934 memmove (contents + addr, contents + addr + count,
12935 (size_t) (sec->size - addr - count));
12936 sec->size -= count;
12937
12938 /* Adjust all the relocs. */
12939 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12940 {
12941 /* Get the new reloc address. */
12942 if (irel->r_offset > addr)
12943 irel->r_offset -= count;
12944 }
12945
12946 BFD_ASSERT (addr % 2 == 0);
12947 BFD_ASSERT (count % 2 == 0);
12948
12949 /* Adjust the local symbols defined in this section. */
12950 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12951 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12952 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2309ddf2 12953 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
df58fc94
RS
12954 isym->st_value -= count;
12955
12956 /* Now adjust the global symbols defined in this section. */
12957 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12958 - symtab_hdr->sh_info);
12959 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12960 end_hashes = sym_hashes + symcount;
12961
12962 for (; sym_hashes < end_hashes; sym_hashes++)
12963 {
12964 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12965
12966 if ((sym_hash->root.type == bfd_link_hash_defined
12967 || sym_hash->root.type == bfd_link_hash_defweak)
12968 && sym_hash->root.u.def.section == sec)
12969 {
2309ddf2 12970 bfd_vma value = sym_hash->root.u.def.value;
df58fc94 12971
df58fc94
RS
12972 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12973 value &= MINUS_TWO;
12974 if (value > addr)
12975 sym_hash->root.u.def.value -= count;
12976 }
12977 }
12978
12979 return TRUE;
12980}
12981
12982
12983/* Opcodes needed for microMIPS relaxation as found in
12984 opcodes/micromips-opc.c. */
12985
12986struct opcode_descriptor {
12987 unsigned long match;
12988 unsigned long mask;
12989};
12990
12991/* The $ra register aka $31. */
12992
12993#define RA 31
12994
12995/* 32-bit instruction format register fields. */
12996
12997#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12998#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12999
13000/* Check if a 5-bit register index can be abbreviated to 3 bits. */
13001
13002#define OP16_VALID_REG(r) \
13003 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13004
13005
13006/* 32-bit and 16-bit branches. */
13007
13008static const struct opcode_descriptor b_insns_32[] = {
13009 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13010 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13011 { 0, 0 } /* End marker for find_match(). */
13012};
13013
13014static const struct opcode_descriptor bc_insn_32 =
13015 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13016
13017static const struct opcode_descriptor bz_insn_32 =
13018 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13019
13020static const struct opcode_descriptor bzal_insn_32 =
13021 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13022
13023static const struct opcode_descriptor beq_insn_32 =
13024 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13025
13026static const struct opcode_descriptor b_insn_16 =
13027 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13028
13029static const struct opcode_descriptor bz_insn_16 =
c088dedf 13030 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
df58fc94
RS
13031
13032
13033/* 32-bit and 16-bit branch EQ and NE zero. */
13034
13035/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13036 eq and second the ne. This convention is used when replacing a
13037 32-bit BEQ/BNE with the 16-bit version. */
13038
13039#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13040
13041static const struct opcode_descriptor bz_rs_insns_32[] = {
13042 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13043 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13044 { 0, 0 } /* End marker for find_match(). */
13045};
13046
13047static const struct opcode_descriptor bz_rt_insns_32[] = {
13048 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13049 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13050 { 0, 0 } /* End marker for find_match(). */
13051};
13052
13053static const struct opcode_descriptor bzc_insns_32[] = {
13054 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13055 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13056 { 0, 0 } /* End marker for find_match(). */
13057};
13058
13059static const struct opcode_descriptor bz_insns_16[] = {
13060 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13061 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13062 { 0, 0 } /* End marker for find_match(). */
13063};
13064
13065/* Switch between a 5-bit register index and its 3-bit shorthand. */
13066
13067#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
13068#define BZ16_REG_FIELD(r) \
13069 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
13070
13071
13072/* 32-bit instructions with a delay slot. */
13073
13074static const struct opcode_descriptor jal_insn_32_bd16 =
13075 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13076
13077static const struct opcode_descriptor jal_insn_32_bd32 =
13078 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13079
13080static const struct opcode_descriptor jal_x_insn_32_bd32 =
13081 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13082
13083static const struct opcode_descriptor j_insn_32 =
13084 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13085
13086static const struct opcode_descriptor jalr_insn_32 =
13087 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13088
13089/* This table can be compacted, because no opcode replacement is made. */
13090
13091static const struct opcode_descriptor ds_insns_32_bd16[] = {
13092 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13093
13094 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13095 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13096
13097 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13098 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13099 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13100 { 0, 0 } /* End marker for find_match(). */
13101};
13102
13103/* This table can be compacted, because no opcode replacement is made. */
13104
13105static const struct opcode_descriptor ds_insns_32_bd32[] = {
13106 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13107
13108 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13109 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13110 { 0, 0 } /* End marker for find_match(). */
13111};
13112
13113
13114/* 16-bit instructions with a delay slot. */
13115
13116static const struct opcode_descriptor jalr_insn_16_bd16 =
13117 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13118
13119static const struct opcode_descriptor jalr_insn_16_bd32 =
13120 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13121
13122static const struct opcode_descriptor jr_insn_16 =
13123 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13124
13125#define JR16_REG(opcode) ((opcode) & 0x1f)
13126
13127/* This table can be compacted, because no opcode replacement is made. */
13128
13129static const struct opcode_descriptor ds_insns_16_bd16[] = {
13130 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13131
13132 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13133 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13134 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13135 { 0, 0 } /* End marker for find_match(). */
13136};
13137
13138
13139/* LUI instruction. */
13140
13141static const struct opcode_descriptor lui_insn =
13142 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13143
13144
13145/* ADDIU instruction. */
13146
13147static const struct opcode_descriptor addiu_insn =
13148 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13149
13150static const struct opcode_descriptor addiupc_insn =
13151 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13152
13153#define ADDIUPC_REG_FIELD(r) \
13154 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13155
13156
13157/* Relaxable instructions in a JAL delay slot: MOVE. */
13158
13159/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13160 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13161#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13162#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13163
13164#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13165#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13166
13167static const struct opcode_descriptor move_insns_32[] = {
13168 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13169 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13170 { 0, 0 } /* End marker for find_match(). */
13171};
13172
13173static const struct opcode_descriptor move_insn_16 =
13174 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13175
13176
13177/* NOP instructions. */
13178
13179static const struct opcode_descriptor nop_insn_32 =
13180 { /* "nop", "", */ 0x00000000, 0xffffffff };
13181
13182static const struct opcode_descriptor nop_insn_16 =
13183 { /* "nop", "", */ 0x0c00, 0xffff };
13184
13185
13186/* Instruction match support. */
13187
13188#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13189
13190static int
13191find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13192{
13193 unsigned long indx;
13194
13195 for (indx = 0; insn[indx].mask != 0; indx++)
13196 if (MATCH (opcode, insn[indx]))
13197 return indx;
13198
13199 return -1;
13200}
13201
13202
13203/* Branch and delay slot decoding support. */
13204
13205/* If PTR points to what *might* be a 16-bit branch or jump, then
13206 return the minimum length of its delay slot, otherwise return 0.
13207 Non-zero results are not definitive as we might be checking against
13208 the second half of another instruction. */
13209
13210static int
13211check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13212{
13213 unsigned long opcode;
13214 int bdsize;
13215
13216 opcode = bfd_get_16 (abfd, ptr);
13217 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13218 /* 16-bit branch/jump with a 32-bit delay slot. */
13219 bdsize = 4;
13220 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13221 || find_match (opcode, ds_insns_16_bd16) >= 0)
13222 /* 16-bit branch/jump with a 16-bit delay slot. */
13223 bdsize = 2;
13224 else
13225 /* No delay slot. */
13226 bdsize = 0;
13227
13228 return bdsize;
13229}
13230
13231/* If PTR points to what *might* be a 32-bit branch or jump, then
13232 return the minimum length of its delay slot, otherwise return 0.
13233 Non-zero results are not definitive as we might be checking against
13234 the second half of another instruction. */
13235
13236static int
13237check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13238{
13239 unsigned long opcode;
13240 int bdsize;
13241
d21911ea 13242 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13243 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13244 /* 32-bit branch/jump with a 32-bit delay slot. */
13245 bdsize = 4;
13246 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13247 /* 32-bit branch/jump with a 16-bit delay slot. */
13248 bdsize = 2;
13249 else
13250 /* No delay slot. */
13251 bdsize = 0;
13252
13253 return bdsize;
13254}
13255
13256/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13257 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13258
13259static bfd_boolean
13260check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13261{
13262 unsigned long opcode;
13263
13264 opcode = bfd_get_16 (abfd, ptr);
13265 if (MATCH (opcode, b_insn_16)
13266 /* B16 */
13267 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13268 /* JR16 */
13269 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13270 /* BEQZ16, BNEZ16 */
13271 || (MATCH (opcode, jalr_insn_16_bd32)
13272 /* JALR16 */
13273 && reg != JR16_REG (opcode) && reg != RA))
13274 return TRUE;
13275
13276 return FALSE;
13277}
13278
13279/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13280 then return TRUE, otherwise FALSE. */
13281
f41e5fcc 13282static bfd_boolean
df58fc94
RS
13283check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13284{
13285 unsigned long opcode;
13286
d21911ea 13287 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13288 if (MATCH (opcode, j_insn_32)
13289 /* J */
13290 || MATCH (opcode, bc_insn_32)
13291 /* BC1F, BC1T, BC2F, BC2T */
13292 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13293 /* JAL, JALX */
13294 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13295 /* BGEZ, BGTZ, BLEZ, BLTZ */
13296 || (MATCH (opcode, bzal_insn_32)
13297 /* BGEZAL, BLTZAL */
13298 && reg != OP32_SREG (opcode) && reg != RA)
13299 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13300 /* JALR, JALR.HB, BEQ, BNE */
13301 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13302 return TRUE;
13303
13304 return FALSE;
13305}
13306
80cab405
MR
13307/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13308 IRELEND) at OFFSET indicate that there must be a compact branch there,
13309 then return TRUE, otherwise FALSE. */
df58fc94
RS
13310
13311static bfd_boolean
80cab405
MR
13312check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13313 const Elf_Internal_Rela *internal_relocs,
13314 const Elf_Internal_Rela *irelend)
df58fc94 13315{
80cab405
MR
13316 const Elf_Internal_Rela *irel;
13317 unsigned long opcode;
13318
d21911ea 13319 opcode = bfd_get_micromips_32 (abfd, ptr);
80cab405
MR
13320 if (find_match (opcode, bzc_insns_32) < 0)
13321 return FALSE;
df58fc94
RS
13322
13323 for (irel = internal_relocs; irel < irelend; irel++)
80cab405
MR
13324 if (irel->r_offset == offset
13325 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13326 return TRUE;
13327
df58fc94
RS
13328 return FALSE;
13329}
80cab405
MR
13330
13331/* Bitsize checking. */
13332#define IS_BITSIZE(val, N) \
13333 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13334 - (1ULL << ((N) - 1))) == (val))
13335
df58fc94
RS
13336\f
13337bfd_boolean
13338_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13339 struct bfd_link_info *link_info,
13340 bfd_boolean *again)
13341{
833794fc 13342 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
df58fc94
RS
13343 Elf_Internal_Shdr *symtab_hdr;
13344 Elf_Internal_Rela *internal_relocs;
13345 Elf_Internal_Rela *irel, *irelend;
13346 bfd_byte *contents = NULL;
13347 Elf_Internal_Sym *isymbuf = NULL;
13348
13349 /* Assume nothing changes. */
13350 *again = FALSE;
13351
13352 /* We don't have to do anything for a relocatable link, if
13353 this section does not have relocs, or if this is not a
13354 code section. */
13355
13356 if (link_info->relocatable
13357 || (sec->flags & SEC_RELOC) == 0
13358 || sec->reloc_count == 0
13359 || (sec->flags & SEC_CODE) == 0)
13360 return TRUE;
13361
13362 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13363
13364 /* Get a copy of the native relocations. */
13365 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 13366 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
df58fc94
RS
13367 link_info->keep_memory));
13368 if (internal_relocs == NULL)
13369 goto error_return;
13370
13371 /* Walk through them looking for relaxing opportunities. */
13372 irelend = internal_relocs + sec->reloc_count;
13373 for (irel = internal_relocs; irel < irelend; irel++)
13374 {
13375 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13376 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13377 bfd_boolean target_is_micromips_code_p;
13378 unsigned long opcode;
13379 bfd_vma symval;
13380 bfd_vma pcrval;
2309ddf2 13381 bfd_byte *ptr;
df58fc94
RS
13382 int fndopc;
13383
13384 /* The number of bytes to delete for relaxation and from where
13385 to delete these bytes starting at irel->r_offset. */
13386 int delcnt = 0;
13387 int deloff = 0;
13388
13389 /* If this isn't something that can be relaxed, then ignore
13390 this reloc. */
13391 if (r_type != R_MICROMIPS_HI16
13392 && r_type != R_MICROMIPS_PC16_S1
2309ddf2 13393 && r_type != R_MICROMIPS_26_S1)
df58fc94
RS
13394 continue;
13395
13396 /* Get the section contents if we haven't done so already. */
13397 if (contents == NULL)
13398 {
13399 /* Get cached copy if it exists. */
13400 if (elf_section_data (sec)->this_hdr.contents != NULL)
13401 contents = elf_section_data (sec)->this_hdr.contents;
13402 /* Go get them off disk. */
13403 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13404 goto error_return;
13405 }
2309ddf2 13406 ptr = contents + irel->r_offset;
df58fc94
RS
13407
13408 /* Read this BFD's local symbols if we haven't done so already. */
13409 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13410 {
13411 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13412 if (isymbuf == NULL)
13413 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13414 symtab_hdr->sh_info, 0,
13415 NULL, NULL, NULL);
13416 if (isymbuf == NULL)
13417 goto error_return;
13418 }
13419
13420 /* Get the value of the symbol referred to by the reloc. */
13421 if (r_symndx < symtab_hdr->sh_info)
13422 {
13423 /* A local symbol. */
13424 Elf_Internal_Sym *isym;
13425 asection *sym_sec;
13426
13427 isym = isymbuf + r_symndx;
13428 if (isym->st_shndx == SHN_UNDEF)
13429 sym_sec = bfd_und_section_ptr;
13430 else if (isym->st_shndx == SHN_ABS)
13431 sym_sec = bfd_abs_section_ptr;
13432 else if (isym->st_shndx == SHN_COMMON)
13433 sym_sec = bfd_com_section_ptr;
13434 else
13435 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13436 symval = (isym->st_value
13437 + sym_sec->output_section->vma
13438 + sym_sec->output_offset);
13439 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13440 }
13441 else
13442 {
13443 unsigned long indx;
13444 struct elf_link_hash_entry *h;
13445
13446 /* An external symbol. */
13447 indx = r_symndx - symtab_hdr->sh_info;
13448 h = elf_sym_hashes (abfd)[indx];
13449 BFD_ASSERT (h != NULL);
13450
13451 if (h->root.type != bfd_link_hash_defined
13452 && h->root.type != bfd_link_hash_defweak)
13453 /* This appears to be a reference to an undefined
13454 symbol. Just ignore it -- it will be caught by the
13455 regular reloc processing. */
13456 continue;
13457
13458 symval = (h->root.u.def.value
13459 + h->root.u.def.section->output_section->vma
13460 + h->root.u.def.section->output_offset);
13461 target_is_micromips_code_p = (!h->needs_plt
13462 && ELF_ST_IS_MICROMIPS (h->other));
13463 }
13464
13465
13466 /* For simplicity of coding, we are going to modify the
13467 section contents, the section relocs, and the BFD symbol
13468 table. We must tell the rest of the code not to free up this
13469 information. It would be possible to instead create a table
13470 of changes which have to be made, as is done in coff-mips.c;
13471 that would be more work, but would require less memory when
13472 the linker is run. */
13473
13474 /* Only 32-bit instructions relaxed. */
13475 if (irel->r_offset + 4 > sec->size)
13476 continue;
13477
d21911ea 13478 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13479
13480 /* This is the pc-relative distance from the instruction the
13481 relocation is applied to, to the symbol referred. */
13482 pcrval = (symval
13483 - (sec->output_section->vma + sec->output_offset)
13484 - irel->r_offset);
13485
13486 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13487 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13488 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13489
13490 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13491
13492 where pcrval has first to be adjusted to apply against the LO16
13493 location (we make the adjustment later on, when we have figured
13494 out the offset). */
13495 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13496 {
80cab405 13497 bfd_boolean bzc = FALSE;
df58fc94
RS
13498 unsigned long nextopc;
13499 unsigned long reg;
13500 bfd_vma offset;
13501
13502 /* Give up if the previous reloc was a HI16 against this symbol
13503 too. */
13504 if (irel > internal_relocs
13505 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13506 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13507 continue;
13508
13509 /* Or if the next reloc is not a LO16 against this symbol. */
13510 if (irel + 1 >= irelend
13511 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13512 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13513 continue;
13514
13515 /* Or if the second next reloc is a LO16 against this symbol too. */
13516 if (irel + 2 >= irelend
13517 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13518 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13519 continue;
13520
80cab405
MR
13521 /* See if the LUI instruction *might* be in a branch delay slot.
13522 We check whether what looks like a 16-bit branch or jump is
13523 actually an immediate argument to a compact branch, and let
13524 it through if so. */
df58fc94 13525 if (irel->r_offset >= 2
2309ddf2 13526 && check_br16_dslot (abfd, ptr - 2)
df58fc94 13527 && !(irel->r_offset >= 4
80cab405
MR
13528 && (bzc = check_relocated_bzc (abfd,
13529 ptr - 4, irel->r_offset - 4,
13530 internal_relocs, irelend))))
df58fc94
RS
13531 continue;
13532 if (irel->r_offset >= 4
80cab405 13533 && !bzc
2309ddf2 13534 && check_br32_dslot (abfd, ptr - 4))
df58fc94
RS
13535 continue;
13536
13537 reg = OP32_SREG (opcode);
13538
13539 /* We only relax adjacent instructions or ones separated with
13540 a branch or jump that has a delay slot. The branch or jump
13541 must not fiddle with the register used to hold the address.
13542 Subtract 4 for the LUI itself. */
13543 offset = irel[1].r_offset - irel[0].r_offset;
13544 switch (offset - 4)
13545 {
13546 case 0:
13547 break;
13548 case 2:
2309ddf2 13549 if (check_br16 (abfd, ptr + 4, reg))
df58fc94
RS
13550 break;
13551 continue;
13552 case 4:
2309ddf2 13553 if (check_br32 (abfd, ptr + 4, reg))
df58fc94
RS
13554 break;
13555 continue;
13556 default:
13557 continue;
13558 }
13559
d21911ea 13560 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
df58fc94
RS
13561
13562 /* Give up unless the same register is used with both
13563 relocations. */
13564 if (OP32_SREG (nextopc) != reg)
13565 continue;
13566
13567 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13568 and rounding up to take masking of the two LSBs into account. */
13569 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13570
13571 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13572 if (IS_BITSIZE (symval, 16))
13573 {
13574 /* Fix the relocation's type. */
13575 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13576
13577 /* Instructions using R_MICROMIPS_LO16 have the base or
13578 source register in bits 20:16. This register becomes $0
13579 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13580 nextopc &= ~0x001f0000;
13581 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13582 contents + irel[1].r_offset);
13583 }
13584
13585 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13586 We add 4 to take LUI deletion into account while checking
13587 the PC-relative distance. */
13588 else if (symval % 4 == 0
13589 && IS_BITSIZE (pcrval + 4, 25)
13590 && MATCH (nextopc, addiu_insn)
13591 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13592 && OP16_VALID_REG (OP32_TREG (nextopc)))
13593 {
13594 /* Fix the relocation's type. */
13595 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13596
13597 /* Replace ADDIU with the ADDIUPC version. */
13598 nextopc = (addiupc_insn.match
13599 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13600
d21911ea
MR
13601 bfd_put_micromips_32 (abfd, nextopc,
13602 contents + irel[1].r_offset);
df58fc94
RS
13603 }
13604
13605 /* Can't do anything, give up, sigh... */
13606 else
13607 continue;
13608
13609 /* Fix the relocation's type. */
13610 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13611
13612 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13613 delcnt = 4;
13614 deloff = 0;
13615 }
13616
13617 /* Compact branch relaxation -- due to the multitude of macros
13618 employed by the compiler/assembler, compact branches are not
13619 always generated. Obviously, this can/will be fixed elsewhere,
13620 but there is no drawback in double checking it here. */
13621 else if (r_type == R_MICROMIPS_PC16_S1
13622 && irel->r_offset + 5 < sec->size
13623 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13624 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
833794fc
MR
13625 && ((!insn32
13626 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13627 nop_insn_16) ? 2 : 0))
13628 || (irel->r_offset + 7 < sec->size
13629 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13630 ptr + 4),
13631 nop_insn_32) ? 4 : 0))))
df58fc94
RS
13632 {
13633 unsigned long reg;
13634
13635 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13636
13637 /* Replace BEQZ/BNEZ with the compact version. */
13638 opcode = (bzc_insns_32[fndopc].match
13639 | BZC32_REG_FIELD (reg)
13640 | (opcode & 0xffff)); /* Addend value. */
13641
d21911ea 13642 bfd_put_micromips_32 (abfd, opcode, ptr);
df58fc94 13643
833794fc
MR
13644 /* Delete the delay slot NOP: two or four bytes from
13645 irel->offset + 4; delcnt has already been set above. */
df58fc94
RS
13646 deloff = 4;
13647 }
13648
13649 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13650 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
13651 else if (!insn32
13652 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
13653 && IS_BITSIZE (pcrval - 2, 11)
13654 && find_match (opcode, b_insns_32) >= 0)
13655 {
13656 /* Fix the relocation's type. */
13657 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13658
a8685210 13659 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
13660 bfd_put_16 (abfd,
13661 (b_insn_16.match
13662 | (opcode & 0x3ff)), /* Addend value. */
2309ddf2 13663 ptr);
df58fc94
RS
13664
13665 /* Delete 2 bytes from irel->r_offset + 2. */
13666 delcnt = 2;
13667 deloff = 2;
13668 }
13669
13670 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13671 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
13672 else if (!insn32
13673 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
13674 && IS_BITSIZE (pcrval - 2, 8)
13675 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13676 && OP16_VALID_REG (OP32_SREG (opcode)))
13677 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13678 && OP16_VALID_REG (OP32_TREG (opcode)))))
13679 {
13680 unsigned long reg;
13681
13682 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13683
13684 /* Fix the relocation's type. */
13685 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13686
a8685210 13687 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
13688 bfd_put_16 (abfd,
13689 (bz_insns_16[fndopc].match
13690 | BZ16_REG_FIELD (reg)
13691 | (opcode & 0x7f)), /* Addend value. */
2309ddf2 13692 ptr);
df58fc94
RS
13693
13694 /* Delete 2 bytes from irel->r_offset + 2. */
13695 delcnt = 2;
13696 deloff = 2;
13697 }
13698
13699 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
833794fc
MR
13700 else if (!insn32
13701 && r_type == R_MICROMIPS_26_S1
df58fc94
RS
13702 && target_is_micromips_code_p
13703 && irel->r_offset + 7 < sec->size
13704 && MATCH (opcode, jal_insn_32_bd32))
13705 {
13706 unsigned long n32opc;
13707 bfd_boolean relaxed = FALSE;
13708
d21911ea 13709 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
df58fc94
RS
13710
13711 if (MATCH (n32opc, nop_insn_32))
13712 {
13713 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
2309ddf2 13714 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
df58fc94
RS
13715
13716 relaxed = TRUE;
13717 }
13718 else if (find_match (n32opc, move_insns_32) >= 0)
13719 {
13720 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13721 bfd_put_16 (abfd,
13722 (move_insn_16.match
13723 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13724 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
2309ddf2 13725 ptr + 4);
df58fc94
RS
13726
13727 relaxed = TRUE;
13728 }
13729 /* Other 32-bit instructions relaxable to 16-bit
13730 instructions will be handled here later. */
13731
13732 if (relaxed)
13733 {
13734 /* JAL with 32-bit delay slot that is changed to a JALS
13735 with 16-bit delay slot. */
d21911ea 13736 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
df58fc94
RS
13737
13738 /* Delete 2 bytes from irel->r_offset + 6. */
13739 delcnt = 2;
13740 deloff = 6;
13741 }
13742 }
13743
13744 if (delcnt != 0)
13745 {
13746 /* Note that we've changed the relocs, section contents, etc. */
13747 elf_section_data (sec)->relocs = internal_relocs;
13748 elf_section_data (sec)->this_hdr.contents = contents;
13749 symtab_hdr->contents = (unsigned char *) isymbuf;
13750
13751 /* Delete bytes depending on the delcnt and deloff. */
13752 if (!mips_elf_relax_delete_bytes (abfd, sec,
13753 irel->r_offset + deloff, delcnt))
13754 goto error_return;
13755
13756 /* That will change things, so we should relax again.
13757 Note that this is not required, and it may be slow. */
13758 *again = TRUE;
13759 }
13760 }
13761
13762 if (isymbuf != NULL
13763 && symtab_hdr->contents != (unsigned char *) isymbuf)
13764 {
13765 if (! link_info->keep_memory)
13766 free (isymbuf);
13767 else
13768 {
13769 /* Cache the symbols for elf_link_input_bfd. */
13770 symtab_hdr->contents = (unsigned char *) isymbuf;
13771 }
13772 }
13773
13774 if (contents != NULL
13775 && elf_section_data (sec)->this_hdr.contents != contents)
13776 {
13777 if (! link_info->keep_memory)
13778 free (contents);
13779 else
13780 {
13781 /* Cache the section contents for elf_link_input_bfd. */
13782 elf_section_data (sec)->this_hdr.contents = contents;
13783 }
13784 }
13785
13786 if (internal_relocs != NULL
13787 && elf_section_data (sec)->relocs != internal_relocs)
13788 free (internal_relocs);
13789
13790 return TRUE;
13791
13792 error_return:
13793 if (isymbuf != NULL
13794 && symtab_hdr->contents != (unsigned char *) isymbuf)
13795 free (isymbuf);
13796 if (contents != NULL
13797 && elf_section_data (sec)->this_hdr.contents != contents)
13798 free (contents);
13799 if (internal_relocs != NULL
13800 && elf_section_data (sec)->relocs != internal_relocs)
13801 free (internal_relocs);
13802
13803 return FALSE;
13804}
13805\f
b49e97c9
TS
13806/* Create a MIPS ELF linker hash table. */
13807
13808struct bfd_link_hash_table *
9719ad41 13809_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
13810{
13811 struct mips_elf_link_hash_table *ret;
13812 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13813
7bf52ea2 13814 ret = bfd_zmalloc (amt);
9719ad41 13815 if (ret == NULL)
b49e97c9
TS
13816 return NULL;
13817
66eb6687
AM
13818 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13819 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
13820 sizeof (struct mips_elf_link_hash_entry),
13821 MIPS_ELF_DATA))
b49e97c9 13822 {
e2d34d7d 13823 free (ret);
b49e97c9
TS
13824 return NULL;
13825 }
1bbce132
MR
13826 ret->root.init_plt_refcount.plist = NULL;
13827 ret->root.init_plt_offset.plist = NULL;
b49e97c9 13828
b49e97c9
TS
13829 return &ret->root.root;
13830}
0a44bf69
RS
13831
13832/* Likewise, but indicate that the target is VxWorks. */
13833
13834struct bfd_link_hash_table *
13835_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13836{
13837 struct bfd_link_hash_table *ret;
13838
13839 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13840 if (ret)
13841 {
13842 struct mips_elf_link_hash_table *htab;
13843
13844 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
13845 htab->use_plts_and_copy_relocs = TRUE;
13846 htab->is_vxworks = TRUE;
0a44bf69
RS
13847 }
13848 return ret;
13849}
861fb55a
DJ
13850
13851/* A function that the linker calls if we are allowed to use PLTs
13852 and copy relocs. */
13853
13854void
13855_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13856{
13857 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13858}
833794fc
MR
13859
13860/* A function that the linker calls to select between all or only
13861 32-bit microMIPS instructions. */
13862
13863void
13864_bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
13865{
13866 mips_elf_hash_table (info)->insn32 = on;
13867}
b49e97c9 13868\f
351cdf24
MF
13869/* Return the .MIPS.abiflags value representing each ISA Extension. */
13870
13871unsigned int
13872bfd_mips_isa_ext (bfd *abfd)
13873{
13874 switch (bfd_get_mach (abfd))
13875 {
13876 case bfd_mach_mips3900:
13877 return AFL_EXT_3900;
13878 case bfd_mach_mips4010:
13879 return AFL_EXT_4010;
13880 case bfd_mach_mips4100:
13881 return AFL_EXT_4100;
13882 case bfd_mach_mips4111:
13883 return AFL_EXT_4111;
13884 case bfd_mach_mips4120:
13885 return AFL_EXT_4120;
13886 case bfd_mach_mips4650:
13887 return AFL_EXT_4650;
13888 case bfd_mach_mips5400:
13889 return AFL_EXT_5400;
13890 case bfd_mach_mips5500:
13891 return AFL_EXT_5500;
13892 case bfd_mach_mips5900:
13893 return AFL_EXT_5900;
13894 case bfd_mach_mips10000:
13895 return AFL_EXT_10000;
13896 case bfd_mach_mips_loongson_2e:
13897 return AFL_EXT_LOONGSON_2E;
13898 case bfd_mach_mips_loongson_2f:
13899 return AFL_EXT_LOONGSON_2F;
13900 case bfd_mach_mips_loongson_3a:
13901 return AFL_EXT_LOONGSON_3A;
13902 case bfd_mach_mips_sb1:
13903 return AFL_EXT_SB1;
13904 case bfd_mach_mips_octeon:
13905 return AFL_EXT_OCTEON;
13906 case bfd_mach_mips_octeonp:
13907 return AFL_EXT_OCTEONP;
2c629856
N
13908 case bfd_mach_mips_octeon3:
13909 return AFL_EXT_OCTEON3;
351cdf24
MF
13910 case bfd_mach_mips_octeon2:
13911 return AFL_EXT_OCTEON2;
13912 case bfd_mach_mips_xlr:
13913 return AFL_EXT_XLR;
13914 }
13915 return 0;
13916}
13917
13918/* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
13919
13920static void
13921update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
13922{
13923 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
13924 {
13925 case E_MIPS_ARCH_1:
13926 abiflags->isa_level = 1;
13927 abiflags->isa_rev = 0;
13928 break;
13929 case E_MIPS_ARCH_2:
13930 abiflags->isa_level = 2;
13931 abiflags->isa_rev = 0;
13932 break;
13933 case E_MIPS_ARCH_3:
13934 abiflags->isa_level = 3;
13935 abiflags->isa_rev = 0;
13936 break;
13937 case E_MIPS_ARCH_4:
13938 abiflags->isa_level = 4;
13939 abiflags->isa_rev = 0;
13940 break;
13941 case E_MIPS_ARCH_5:
13942 abiflags->isa_level = 5;
13943 abiflags->isa_rev = 0;
13944 break;
13945 case E_MIPS_ARCH_32:
13946 abiflags->isa_level = 32;
13947 abiflags->isa_rev = 1;
13948 break;
13949 case E_MIPS_ARCH_32R2:
13950 abiflags->isa_level = 32;
13951 /* Handle MIPS32r3 and MIPS32r5 which do not have a header flag. */
13952 if (abiflags->isa_rev < 2)
13953 abiflags->isa_rev = 2;
13954 break;
09c14161
MF
13955 case E_MIPS_ARCH_32R6:
13956 abiflags->isa_level = 32;
13957 abiflags->isa_rev = 6;
13958 break;
351cdf24
MF
13959 case E_MIPS_ARCH_64:
13960 abiflags->isa_level = 64;
13961 abiflags->isa_rev = 1;
13962 break;
13963 case E_MIPS_ARCH_64R2:
13964 /* Handle MIPS64r3 and MIPS64r5 which do not have a header flag. */
13965 abiflags->isa_level = 64;
13966 if (abiflags->isa_rev < 2)
13967 abiflags->isa_rev = 2;
13968 break;
09c14161
MF
13969 case E_MIPS_ARCH_64R6:
13970 abiflags->isa_level = 64;
13971 abiflags->isa_rev = 6;
13972 break;
351cdf24
MF
13973 default:
13974 (*_bfd_error_handler)
13975 (_("%B: Unknown architecture %s"),
13976 abfd, bfd_printable_name (abfd));
13977 }
13978
13979 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
13980}
13981
13982/* Return true if the given ELF header flags describe a 32-bit binary. */
13983
13984static bfd_boolean
13985mips_32bit_flags_p (flagword flags)
13986{
13987 return ((flags & EF_MIPS_32BITMODE) != 0
13988 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13989 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13990 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13991 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13992 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
7361da2c
AB
13993 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
13994 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
351cdf24
MF
13995}
13996
13997/* Infer the content of the ABI flags based on the elf header. */
13998
13999static void
14000infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14001{
14002 obj_attribute *in_attr;
14003
14004 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14005 update_mips_abiflags_isa (abfd, abiflags);
14006
14007 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14008 abiflags->gpr_size = AFL_REG_32;
14009 else
14010 abiflags->gpr_size = AFL_REG_64;
14011
14012 abiflags->cpr1_size = AFL_REG_NONE;
14013
14014 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14015 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14016
14017 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14018 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14019 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14020 && abiflags->gpr_size == AFL_REG_32))
14021 abiflags->cpr1_size = AFL_REG_32;
14022 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14023 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14024 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14025 abiflags->cpr1_size = AFL_REG_64;
14026
14027 abiflags->cpr2_size = AFL_REG_NONE;
14028
14029 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14030 abiflags->ases |= AFL_ASE_MDMX;
14031 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14032 abiflags->ases |= AFL_ASE_MIPS16;
14033 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14034 abiflags->ases |= AFL_ASE_MICROMIPS;
14035
14036 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14037 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14038 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14039 && abiflags->isa_level >= 32
14040 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14041 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14042}
14043
b49e97c9
TS
14044/* We need to use a special link routine to handle the .reginfo and
14045 the .mdebug sections. We need to merge all instances of these
14046 sections together, not write them all out sequentially. */
14047
b34976b6 14048bfd_boolean
9719ad41 14049_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 14050{
b49e97c9
TS
14051 asection *o;
14052 struct bfd_link_order *p;
14053 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
351cdf24 14054 asection *rtproc_sec, *abiflags_sec;
b49e97c9
TS
14055 Elf32_RegInfo reginfo;
14056 struct ecoff_debug_info debug;
861fb55a 14057 struct mips_htab_traverse_info hti;
7a2a6943
NC
14058 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14059 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 14060 HDRR *symhdr = &debug.symbolic_header;
9719ad41 14061 void *mdebug_handle = NULL;
b49e97c9
TS
14062 asection *s;
14063 EXTR esym;
14064 unsigned int i;
14065 bfd_size_type amt;
0a44bf69 14066 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
14067
14068 static const char * const secname[] =
14069 {
14070 ".text", ".init", ".fini", ".data",
14071 ".rodata", ".sdata", ".sbss", ".bss"
14072 };
14073 static const int sc[] =
14074 {
14075 scText, scInit, scFini, scData,
14076 scRData, scSData, scSBss, scBss
14077 };
14078
d4596a51
RS
14079 /* Sort the dynamic symbols so that those with GOT entries come after
14080 those without. */
0a44bf69 14081 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
14082 BFD_ASSERT (htab != NULL);
14083
d4596a51
RS
14084 if (!mips_elf_sort_hash_table (abfd, info))
14085 return FALSE;
b49e97c9 14086
861fb55a
DJ
14087 /* Create any scheduled LA25 stubs. */
14088 hti.info = info;
14089 hti.output_bfd = abfd;
14090 hti.error = FALSE;
14091 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14092 if (hti.error)
14093 return FALSE;
14094
b49e97c9
TS
14095 /* Get a value for the GP register. */
14096 if (elf_gp (abfd) == 0)
14097 {
14098 struct bfd_link_hash_entry *h;
14099
b34976b6 14100 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 14101 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
14102 elf_gp (abfd) = (h->u.def.value
14103 + h->u.def.section->output_section->vma
14104 + h->u.def.section->output_offset);
0a44bf69
RS
14105 else if (htab->is_vxworks
14106 && (h = bfd_link_hash_lookup (info->hash,
14107 "_GLOBAL_OFFSET_TABLE_",
14108 FALSE, FALSE, TRUE))
14109 && h->type == bfd_link_hash_defined)
14110 elf_gp (abfd) = (h->u.def.section->output_section->vma
14111 + h->u.def.section->output_offset
14112 + h->u.def.value);
1049f94e 14113 else if (info->relocatable)
b49e97c9
TS
14114 {
14115 bfd_vma lo = MINUS_ONE;
14116
14117 /* Find the GP-relative section with the lowest offset. */
9719ad41 14118 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
14119 if (o->vma < lo
14120 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14121 lo = o->vma;
14122
14123 /* And calculate GP relative to that. */
0a44bf69 14124 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
14125 }
14126 else
14127 {
14128 /* If the relocate_section function needs to do a reloc
14129 involving the GP value, it should make a reloc_dangerous
14130 callback to warn that GP is not defined. */
14131 }
14132 }
14133
14134 /* Go through the sections and collect the .reginfo and .mdebug
14135 information. */
351cdf24 14136 abiflags_sec = NULL;
b49e97c9
TS
14137 reginfo_sec = NULL;
14138 mdebug_sec = NULL;
14139 gptab_data_sec = NULL;
14140 gptab_bss_sec = NULL;
9719ad41 14141 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9 14142 {
351cdf24
MF
14143 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14144 {
14145 /* We have found the .MIPS.abiflags section in the output file.
14146 Look through all the link_orders comprising it and remove them.
14147 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14148 for (p = o->map_head.link_order; p != NULL; p = p->next)
14149 {
14150 asection *input_section;
14151
14152 if (p->type != bfd_indirect_link_order)
14153 {
14154 if (p->type == bfd_data_link_order)
14155 continue;
14156 abort ();
14157 }
14158
14159 input_section = p->u.indirect.section;
14160
14161 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14162 elf_link_input_bfd ignores this section. */
14163 input_section->flags &= ~SEC_HAS_CONTENTS;
14164 }
14165
14166 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14167 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14168
14169 /* Skip this section later on (I don't think this currently
14170 matters, but someday it might). */
14171 o->map_head.link_order = NULL;
14172
14173 abiflags_sec = o;
14174 }
14175
b49e97c9
TS
14176 if (strcmp (o->name, ".reginfo") == 0)
14177 {
14178 memset (&reginfo, 0, sizeof reginfo);
14179
14180 /* We have found the .reginfo section in the output file.
14181 Look through all the link_orders comprising it and merge
14182 the information together. */
8423293d 14183 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14184 {
14185 asection *input_section;
14186 bfd *input_bfd;
14187 Elf32_External_RegInfo ext;
14188 Elf32_RegInfo sub;
14189
14190 if (p->type != bfd_indirect_link_order)
14191 {
14192 if (p->type == bfd_data_link_order)
14193 continue;
14194 abort ();
14195 }
14196
14197 input_section = p->u.indirect.section;
14198 input_bfd = input_section->owner;
14199
b49e97c9 14200 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 14201 &ext, 0, sizeof ext))
b34976b6 14202 return FALSE;
b49e97c9
TS
14203
14204 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14205
14206 reginfo.ri_gprmask |= sub.ri_gprmask;
14207 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14208 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14209 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14210 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14211
14212 /* ri_gp_value is set by the function
14213 mips_elf32_section_processing when the section is
14214 finally written out. */
14215
14216 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14217 elf_link_input_bfd ignores this section. */
14218 input_section->flags &= ~SEC_HAS_CONTENTS;
14219 }
14220
14221 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 14222 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
14223
14224 /* Skip this section later on (I don't think this currently
14225 matters, but someday it might). */
8423293d 14226 o->map_head.link_order = NULL;
b49e97c9
TS
14227
14228 reginfo_sec = o;
14229 }
14230
14231 if (strcmp (o->name, ".mdebug") == 0)
14232 {
14233 struct extsym_info einfo;
14234 bfd_vma last;
14235
14236 /* We have found the .mdebug section in the output file.
14237 Look through all the link_orders comprising it and merge
14238 the information together. */
14239 symhdr->magic = swap->sym_magic;
14240 /* FIXME: What should the version stamp be? */
14241 symhdr->vstamp = 0;
14242 symhdr->ilineMax = 0;
14243 symhdr->cbLine = 0;
14244 symhdr->idnMax = 0;
14245 symhdr->ipdMax = 0;
14246 symhdr->isymMax = 0;
14247 symhdr->ioptMax = 0;
14248 symhdr->iauxMax = 0;
14249 symhdr->issMax = 0;
14250 symhdr->issExtMax = 0;
14251 symhdr->ifdMax = 0;
14252 symhdr->crfd = 0;
14253 symhdr->iextMax = 0;
14254
14255 /* We accumulate the debugging information itself in the
14256 debug_info structure. */
14257 debug.line = NULL;
14258 debug.external_dnr = NULL;
14259 debug.external_pdr = NULL;
14260 debug.external_sym = NULL;
14261 debug.external_opt = NULL;
14262 debug.external_aux = NULL;
14263 debug.ss = NULL;
14264 debug.ssext = debug.ssext_end = NULL;
14265 debug.external_fdr = NULL;
14266 debug.external_rfd = NULL;
14267 debug.external_ext = debug.external_ext_end = NULL;
14268
14269 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 14270 if (mdebug_handle == NULL)
b34976b6 14271 return FALSE;
b49e97c9
TS
14272
14273 esym.jmptbl = 0;
14274 esym.cobol_main = 0;
14275 esym.weakext = 0;
14276 esym.reserved = 0;
14277 esym.ifd = ifdNil;
14278 esym.asym.iss = issNil;
14279 esym.asym.st = stLocal;
14280 esym.asym.reserved = 0;
14281 esym.asym.index = indexNil;
14282 last = 0;
14283 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14284 {
14285 esym.asym.sc = sc[i];
14286 s = bfd_get_section_by_name (abfd, secname[i]);
14287 if (s != NULL)
14288 {
14289 esym.asym.value = s->vma;
eea6121a 14290 last = s->vma + s->size;
b49e97c9
TS
14291 }
14292 else
14293 esym.asym.value = last;
14294 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14295 secname[i], &esym))
b34976b6 14296 return FALSE;
b49e97c9
TS
14297 }
14298
8423293d 14299 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14300 {
14301 asection *input_section;
14302 bfd *input_bfd;
14303 const struct ecoff_debug_swap *input_swap;
14304 struct ecoff_debug_info input_debug;
14305 char *eraw_src;
14306 char *eraw_end;
14307
14308 if (p->type != bfd_indirect_link_order)
14309 {
14310 if (p->type == bfd_data_link_order)
14311 continue;
14312 abort ();
14313 }
14314
14315 input_section = p->u.indirect.section;
14316 input_bfd = input_section->owner;
14317
d5eaccd7 14318 if (!is_mips_elf (input_bfd))
b49e97c9
TS
14319 {
14320 /* I don't know what a non MIPS ELF bfd would be
14321 doing with a .mdebug section, but I don't really
14322 want to deal with it. */
14323 continue;
14324 }
14325
14326 input_swap = (get_elf_backend_data (input_bfd)
14327 ->elf_backend_ecoff_debug_swap);
14328
eea6121a 14329 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
14330
14331 /* The ECOFF linking code expects that we have already
14332 read in the debugging information and set up an
14333 ecoff_debug_info structure, so we do that now. */
14334 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14335 &input_debug))
b34976b6 14336 return FALSE;
b49e97c9
TS
14337
14338 if (! (bfd_ecoff_debug_accumulate
14339 (mdebug_handle, abfd, &debug, swap, input_bfd,
14340 &input_debug, input_swap, info)))
b34976b6 14341 return FALSE;
b49e97c9
TS
14342
14343 /* Loop through the external symbols. For each one with
14344 interesting information, try to find the symbol in
14345 the linker global hash table and save the information
14346 for the output external symbols. */
14347 eraw_src = input_debug.external_ext;
14348 eraw_end = (eraw_src
14349 + (input_debug.symbolic_header.iextMax
14350 * input_swap->external_ext_size));
14351 for (;
14352 eraw_src < eraw_end;
14353 eraw_src += input_swap->external_ext_size)
14354 {
14355 EXTR ext;
14356 const char *name;
14357 struct mips_elf_link_hash_entry *h;
14358
9719ad41 14359 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
14360 if (ext.asym.sc == scNil
14361 || ext.asym.sc == scUndefined
14362 || ext.asym.sc == scSUndefined)
14363 continue;
14364
14365 name = input_debug.ssext + ext.asym.iss;
14366 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 14367 name, FALSE, FALSE, TRUE);
b49e97c9
TS
14368 if (h == NULL || h->esym.ifd != -2)
14369 continue;
14370
14371 if (ext.ifd != -1)
14372 {
14373 BFD_ASSERT (ext.ifd
14374 < input_debug.symbolic_header.ifdMax);
14375 ext.ifd = input_debug.ifdmap[ext.ifd];
14376 }
14377
14378 h->esym = ext;
14379 }
14380
14381 /* Free up the information we just read. */
14382 free (input_debug.line);
14383 free (input_debug.external_dnr);
14384 free (input_debug.external_pdr);
14385 free (input_debug.external_sym);
14386 free (input_debug.external_opt);
14387 free (input_debug.external_aux);
14388 free (input_debug.ss);
14389 free (input_debug.ssext);
14390 free (input_debug.external_fdr);
14391 free (input_debug.external_rfd);
14392 free (input_debug.external_ext);
14393
14394 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14395 elf_link_input_bfd ignores this section. */
14396 input_section->flags &= ~SEC_HAS_CONTENTS;
14397 }
14398
14399 if (SGI_COMPAT (abfd) && info->shared)
14400 {
14401 /* Create .rtproc section. */
87e0a731 14402 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
b49e97c9
TS
14403 if (rtproc_sec == NULL)
14404 {
14405 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14406 | SEC_LINKER_CREATED | SEC_READONLY);
14407
87e0a731
AM
14408 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14409 ".rtproc",
14410 flags);
b49e97c9 14411 if (rtproc_sec == NULL
b49e97c9 14412 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 14413 return FALSE;
b49e97c9
TS
14414 }
14415
14416 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14417 info, rtproc_sec,
14418 &debug))
b34976b6 14419 return FALSE;
b49e97c9
TS
14420 }
14421
14422 /* Build the external symbol information. */
14423 einfo.abfd = abfd;
14424 einfo.info = info;
14425 einfo.debug = &debug;
14426 einfo.swap = swap;
b34976b6 14427 einfo.failed = FALSE;
b49e97c9 14428 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 14429 mips_elf_output_extsym, &einfo);
b49e97c9 14430 if (einfo.failed)
b34976b6 14431 return FALSE;
b49e97c9
TS
14432
14433 /* Set the size of the .mdebug section. */
eea6121a 14434 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
14435
14436 /* Skip this section later on (I don't think this currently
14437 matters, but someday it might). */
8423293d 14438 o->map_head.link_order = NULL;
b49e97c9
TS
14439
14440 mdebug_sec = o;
14441 }
14442
0112cd26 14443 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
14444 {
14445 const char *subname;
14446 unsigned int c;
14447 Elf32_gptab *tab;
14448 Elf32_External_gptab *ext_tab;
14449 unsigned int j;
14450
14451 /* The .gptab.sdata and .gptab.sbss sections hold
14452 information describing how the small data area would
14453 change depending upon the -G switch. These sections
14454 not used in executables files. */
1049f94e 14455 if (! info->relocatable)
b49e97c9 14456 {
8423293d 14457 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14458 {
14459 asection *input_section;
14460
14461 if (p->type != bfd_indirect_link_order)
14462 {
14463 if (p->type == bfd_data_link_order)
14464 continue;
14465 abort ();
14466 }
14467
14468 input_section = p->u.indirect.section;
14469
14470 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14471 elf_link_input_bfd ignores this section. */
14472 input_section->flags &= ~SEC_HAS_CONTENTS;
14473 }
14474
14475 /* Skip this section later on (I don't think this
14476 currently matters, but someday it might). */
8423293d 14477 o->map_head.link_order = NULL;
b49e97c9
TS
14478
14479 /* Really remove the section. */
5daa8fe7 14480 bfd_section_list_remove (abfd, o);
b49e97c9
TS
14481 --abfd->section_count;
14482
14483 continue;
14484 }
14485
14486 /* There is one gptab for initialized data, and one for
14487 uninitialized data. */
14488 if (strcmp (o->name, ".gptab.sdata") == 0)
14489 gptab_data_sec = o;
14490 else if (strcmp (o->name, ".gptab.sbss") == 0)
14491 gptab_bss_sec = o;
14492 else
14493 {
14494 (*_bfd_error_handler)
14495 (_("%s: illegal section name `%s'"),
14496 bfd_get_filename (abfd), o->name);
14497 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 14498 return FALSE;
b49e97c9
TS
14499 }
14500
14501 /* The linker script always combines .gptab.data and
14502 .gptab.sdata into .gptab.sdata, and likewise for
14503 .gptab.bss and .gptab.sbss. It is possible that there is
14504 no .sdata or .sbss section in the output file, in which
14505 case we must change the name of the output section. */
14506 subname = o->name + sizeof ".gptab" - 1;
14507 if (bfd_get_section_by_name (abfd, subname) == NULL)
14508 {
14509 if (o == gptab_data_sec)
14510 o->name = ".gptab.data";
14511 else
14512 o->name = ".gptab.bss";
14513 subname = o->name + sizeof ".gptab" - 1;
14514 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14515 }
14516
14517 /* Set up the first entry. */
14518 c = 1;
14519 amt = c * sizeof (Elf32_gptab);
9719ad41 14520 tab = bfd_malloc (amt);
b49e97c9 14521 if (tab == NULL)
b34976b6 14522 return FALSE;
b49e97c9
TS
14523 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14524 tab[0].gt_header.gt_unused = 0;
14525
14526 /* Combine the input sections. */
8423293d 14527 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14528 {
14529 asection *input_section;
14530 bfd *input_bfd;
14531 bfd_size_type size;
14532 unsigned long last;
14533 bfd_size_type gpentry;
14534
14535 if (p->type != bfd_indirect_link_order)
14536 {
14537 if (p->type == bfd_data_link_order)
14538 continue;
14539 abort ();
14540 }
14541
14542 input_section = p->u.indirect.section;
14543 input_bfd = input_section->owner;
14544
14545 /* Combine the gptab entries for this input section one
14546 by one. We know that the input gptab entries are
14547 sorted by ascending -G value. */
eea6121a 14548 size = input_section->size;
b49e97c9
TS
14549 last = 0;
14550 for (gpentry = sizeof (Elf32_External_gptab);
14551 gpentry < size;
14552 gpentry += sizeof (Elf32_External_gptab))
14553 {
14554 Elf32_External_gptab ext_gptab;
14555 Elf32_gptab int_gptab;
14556 unsigned long val;
14557 unsigned long add;
b34976b6 14558 bfd_boolean exact;
b49e97c9
TS
14559 unsigned int look;
14560
14561 if (! (bfd_get_section_contents
9719ad41
RS
14562 (input_bfd, input_section, &ext_gptab, gpentry,
14563 sizeof (Elf32_External_gptab))))
b49e97c9
TS
14564 {
14565 free (tab);
b34976b6 14566 return FALSE;
b49e97c9
TS
14567 }
14568
14569 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14570 &int_gptab);
14571 val = int_gptab.gt_entry.gt_g_value;
14572 add = int_gptab.gt_entry.gt_bytes - last;
14573
b34976b6 14574 exact = FALSE;
b49e97c9
TS
14575 for (look = 1; look < c; look++)
14576 {
14577 if (tab[look].gt_entry.gt_g_value >= val)
14578 tab[look].gt_entry.gt_bytes += add;
14579
14580 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 14581 exact = TRUE;
b49e97c9
TS
14582 }
14583
14584 if (! exact)
14585 {
14586 Elf32_gptab *new_tab;
14587 unsigned int max;
14588
14589 /* We need a new table entry. */
14590 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 14591 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
14592 if (new_tab == NULL)
14593 {
14594 free (tab);
b34976b6 14595 return FALSE;
b49e97c9
TS
14596 }
14597 tab = new_tab;
14598 tab[c].gt_entry.gt_g_value = val;
14599 tab[c].gt_entry.gt_bytes = add;
14600
14601 /* Merge in the size for the next smallest -G
14602 value, since that will be implied by this new
14603 value. */
14604 max = 0;
14605 for (look = 1; look < c; look++)
14606 {
14607 if (tab[look].gt_entry.gt_g_value < val
14608 && (max == 0
14609 || (tab[look].gt_entry.gt_g_value
14610 > tab[max].gt_entry.gt_g_value)))
14611 max = look;
14612 }
14613 if (max != 0)
14614 tab[c].gt_entry.gt_bytes +=
14615 tab[max].gt_entry.gt_bytes;
14616
14617 ++c;
14618 }
14619
14620 last = int_gptab.gt_entry.gt_bytes;
14621 }
14622
14623 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14624 elf_link_input_bfd ignores this section. */
14625 input_section->flags &= ~SEC_HAS_CONTENTS;
14626 }
14627
14628 /* The table must be sorted by -G value. */
14629 if (c > 2)
14630 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14631
14632 /* Swap out the table. */
14633 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 14634 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
14635 if (ext_tab == NULL)
14636 {
14637 free (tab);
b34976b6 14638 return FALSE;
b49e97c9
TS
14639 }
14640
14641 for (j = 0; j < c; j++)
14642 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14643 free (tab);
14644
eea6121a 14645 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
14646 o->contents = (bfd_byte *) ext_tab;
14647
14648 /* Skip this section later on (I don't think this currently
14649 matters, but someday it might). */
8423293d 14650 o->map_head.link_order = NULL;
b49e97c9
TS
14651 }
14652 }
14653
14654 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 14655 if (!bfd_elf_final_link (abfd, info))
b34976b6 14656 return FALSE;
b49e97c9
TS
14657
14658 /* Now write out the computed sections. */
14659
351cdf24
MF
14660 if (abiflags_sec != NULL)
14661 {
14662 Elf_External_ABIFlags_v0 ext;
14663 Elf_Internal_ABIFlags_v0 *abiflags;
14664
14665 abiflags = &mips_elf_tdata (abfd)->abiflags;
14666
14667 /* Set up the abiflags if no valid input sections were found. */
14668 if (!mips_elf_tdata (abfd)->abiflags_valid)
14669 {
14670 infer_mips_abiflags (abfd, abiflags);
14671 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14672 }
14673 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14674 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14675 return FALSE;
14676 }
14677
9719ad41 14678 if (reginfo_sec != NULL)
b49e97c9
TS
14679 {
14680 Elf32_External_RegInfo ext;
14681
14682 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 14683 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 14684 return FALSE;
b49e97c9
TS
14685 }
14686
9719ad41 14687 if (mdebug_sec != NULL)
b49e97c9
TS
14688 {
14689 BFD_ASSERT (abfd->output_has_begun);
14690 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14691 swap, info,
14692 mdebug_sec->filepos))
b34976b6 14693 return FALSE;
b49e97c9
TS
14694
14695 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14696 }
14697
9719ad41 14698 if (gptab_data_sec != NULL)
b49e97c9
TS
14699 {
14700 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14701 gptab_data_sec->contents,
eea6121a 14702 0, gptab_data_sec->size))
b34976b6 14703 return FALSE;
b49e97c9
TS
14704 }
14705
9719ad41 14706 if (gptab_bss_sec != NULL)
b49e97c9
TS
14707 {
14708 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14709 gptab_bss_sec->contents,
eea6121a 14710 0, gptab_bss_sec->size))
b34976b6 14711 return FALSE;
b49e97c9
TS
14712 }
14713
14714 if (SGI_COMPAT (abfd))
14715 {
14716 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14717 if (rtproc_sec != NULL)
14718 {
14719 if (! bfd_set_section_contents (abfd, rtproc_sec,
14720 rtproc_sec->contents,
eea6121a 14721 0, rtproc_sec->size))
b34976b6 14722 return FALSE;
b49e97c9
TS
14723 }
14724 }
14725
b34976b6 14726 return TRUE;
b49e97c9
TS
14727}
14728\f
64543e1a
RS
14729/* Structure for saying that BFD machine EXTENSION extends BASE. */
14730
a253d456
NC
14731struct mips_mach_extension
14732{
64543e1a
RS
14733 unsigned long extension, base;
14734};
14735
14736
14737/* An array describing how BFD machines relate to one another. The entries
14738 are ordered topologically with MIPS I extensions listed last. */
14739
a253d456
NC
14740static const struct mips_mach_extension mips_mach_extensions[] =
14741{
6f179bd0 14742 /* MIPS64r2 extensions. */
2c629856 14743 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
432233b3 14744 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
dd6a37e7 14745 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
6f179bd0 14746 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
4ba154f5 14747 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
6f179bd0 14748
64543e1a 14749 /* MIPS64 extensions. */
5f74bc13 14750 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a 14751 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
52b6b6b9 14752 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
64543e1a
RS
14753
14754 /* MIPS V extensions. */
14755 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14756
14757 /* R10000 extensions. */
14758 { bfd_mach_mips12000, bfd_mach_mips10000 },
3aa3176b
TS
14759 { bfd_mach_mips14000, bfd_mach_mips10000 },
14760 { bfd_mach_mips16000, bfd_mach_mips10000 },
64543e1a
RS
14761
14762 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14763 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14764 better to allow vr5400 and vr5500 code to be merged anyway, since
14765 many libraries will just use the core ISA. Perhaps we could add
14766 some sort of ASE flag if this ever proves a problem. */
14767 { bfd_mach_mips5500, bfd_mach_mips5400 },
14768 { bfd_mach_mips5400, bfd_mach_mips5000 },
14769
14770 /* MIPS IV extensions. */
14771 { bfd_mach_mips5, bfd_mach_mips8000 },
14772 { bfd_mach_mips10000, bfd_mach_mips8000 },
14773 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 14774 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 14775 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
14776
14777 /* VR4100 extensions. */
14778 { bfd_mach_mips4120, bfd_mach_mips4100 },
14779 { bfd_mach_mips4111, bfd_mach_mips4100 },
14780
14781 /* MIPS III extensions. */
350cc38d
MS
14782 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14783 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
64543e1a
RS
14784 { bfd_mach_mips8000, bfd_mach_mips4000 },
14785 { bfd_mach_mips4650, bfd_mach_mips4000 },
14786 { bfd_mach_mips4600, bfd_mach_mips4000 },
14787 { bfd_mach_mips4400, bfd_mach_mips4000 },
14788 { bfd_mach_mips4300, bfd_mach_mips4000 },
14789 { bfd_mach_mips4100, bfd_mach_mips4000 },
14790 { bfd_mach_mips4010, bfd_mach_mips4000 },
e407c74b 14791 { bfd_mach_mips5900, bfd_mach_mips4000 },
64543e1a
RS
14792
14793 /* MIPS32 extensions. */
14794 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14795
14796 /* MIPS II extensions. */
14797 { bfd_mach_mips4000, bfd_mach_mips6000 },
14798 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14799
14800 /* MIPS I extensions. */
14801 { bfd_mach_mips6000, bfd_mach_mips3000 },
14802 { bfd_mach_mips3900, bfd_mach_mips3000 }
14803};
14804
14805
14806/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14807
14808static bfd_boolean
9719ad41 14809mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
14810{
14811 size_t i;
14812
c5211a54
RS
14813 if (extension == base)
14814 return TRUE;
14815
14816 if (base == bfd_mach_mipsisa32
14817 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14818 return TRUE;
14819
14820 if (base == bfd_mach_mipsisa32r2
14821 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14822 return TRUE;
14823
14824 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 14825 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
14826 {
14827 extension = mips_mach_extensions[i].base;
14828 if (extension == base)
14829 return TRUE;
14830 }
64543e1a 14831
c5211a54 14832 return FALSE;
64543e1a
RS
14833}
14834
14835
2cf19d5c
JM
14836/* Merge object attributes from IBFD into OBFD. Raise an error if
14837 there are conflicting attributes. */
14838static bfd_boolean
14839mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
14840{
14841 obj_attribute *in_attr;
14842 obj_attribute *out_attr;
6ae68ba3 14843 bfd *abi_fp_bfd;
b60bf9be 14844 bfd *abi_msa_bfd;
6ae68ba3
MR
14845
14846 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
14847 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
d929bc19 14848 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
6ae68ba3 14849 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
2cf19d5c 14850
b60bf9be
CF
14851 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
14852 if (!abi_msa_bfd
14853 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14854 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
14855
2cf19d5c
JM
14856 if (!elf_known_obj_attributes_proc (obfd)[0].i)
14857 {
14858 /* This is the first object. Copy the attributes. */
14859 _bfd_elf_copy_obj_attributes (ibfd, obfd);
14860
14861 /* Use the Tag_null value to indicate the attributes have been
14862 initialized. */
14863 elf_known_obj_attributes_proc (obfd)[0].i = 1;
14864
14865 return TRUE;
14866 }
14867
14868 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
14869 non-conflicting ones. */
2cf19d5c
JM
14870 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
14871 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
14872 {
757a636f 14873 int out_fp, in_fp;
6ae68ba3 14874
757a636f
RS
14875 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
14876 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14877 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
14878 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
14879 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
351cdf24
MF
14880 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
14881 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
14882 || in_fp == Val_GNU_MIPS_ABI_FP_64
14883 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
14884 {
14885 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14886 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14887 }
14888 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
14889 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
14890 || out_fp == Val_GNU_MIPS_ABI_FP_64
14891 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
14892 /* Keep the current setting. */;
14893 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
14894 && in_fp == Val_GNU_MIPS_ABI_FP_64)
14895 {
14896 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14897 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14898 }
14899 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
14900 && out_fp == Val_GNU_MIPS_ABI_FP_64)
14901 /* Keep the current setting. */;
757a636f
RS
14902 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
14903 {
14904 const char *out_string, *in_string;
6ae68ba3 14905
757a636f
RS
14906 out_string = _bfd_mips_fp_abi_string (out_fp);
14907 in_string = _bfd_mips_fp_abi_string (in_fp);
14908 /* First warn about cases involving unrecognised ABIs. */
14909 if (!out_string && !in_string)
14910 _bfd_error_handler
14911 (_("Warning: %B uses unknown floating point ABI %d "
14912 "(set by %B), %B uses unknown floating point ABI %d"),
14913 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
14914 else if (!out_string)
14915 _bfd_error_handler
14916 (_("Warning: %B uses unknown floating point ABI %d "
14917 "(set by %B), %B uses %s"),
14918 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
14919 else if (!in_string)
14920 _bfd_error_handler
14921 (_("Warning: %B uses %s (set by %B), "
14922 "%B uses unknown floating point ABI %d"),
14923 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
14924 else
14925 {
14926 /* If one of the bfds is soft-float, the other must be
14927 hard-float. The exact choice of hard-float ABI isn't
14928 really relevant to the error message. */
14929 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
14930 out_string = "-mhard-float";
14931 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
14932 in_string = "-mhard-float";
14933 _bfd_error_handler
14934 (_("Warning: %B uses %s (set by %B), %B uses %s"),
14935 obfd, abi_fp_bfd, ibfd, out_string, in_string);
14936 }
14937 }
2cf19d5c
JM
14938 }
14939
b60bf9be
CF
14940 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
14941 non-conflicting ones. */
14942 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14943 {
14944 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
14945 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
14946 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
14947 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14948 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14949 {
14950 case Val_GNU_MIPS_ABI_MSA_128:
14951 _bfd_error_handler
14952 (_("Warning: %B uses %s (set by %B), "
14953 "%B uses unknown MSA ABI %d"),
14954 obfd, abi_msa_bfd, ibfd,
14955 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
14956 break;
14957
14958 default:
14959 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
14960 {
14961 case Val_GNU_MIPS_ABI_MSA_128:
14962 _bfd_error_handler
14963 (_("Warning: %B uses unknown MSA ABI %d "
14964 "(set by %B), %B uses %s"),
14965 obfd, abi_msa_bfd, ibfd,
14966 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
14967 break;
14968
14969 default:
14970 _bfd_error_handler
14971 (_("Warning: %B uses unknown MSA ABI %d "
14972 "(set by %B), %B uses unknown MSA ABI %d"),
14973 obfd, abi_msa_bfd, ibfd,
14974 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
14975 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
14976 break;
14977 }
14978 }
14979 }
14980
2cf19d5c
JM
14981 /* Merge Tag_compatibility attributes and any common GNU ones. */
14982 _bfd_elf_merge_object_attributes (ibfd, obfd);
14983
14984 return TRUE;
14985}
14986
b49e97c9
TS
14987/* Merge backend specific data from an object file to the output
14988 object file when linking. */
14989
b34976b6 14990bfd_boolean
9719ad41 14991_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
14992{
14993 flagword old_flags;
14994 flagword new_flags;
b34976b6
AM
14995 bfd_boolean ok;
14996 bfd_boolean null_input_bfd = TRUE;
b49e97c9 14997 asection *sec;
351cdf24 14998 obj_attribute *out_attr;
b49e97c9 14999
58238693 15000 /* Check if we have the same endianness. */
82e51918 15001 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
15002 {
15003 (*_bfd_error_handler)
d003868e
AM
15004 (_("%B: endianness incompatible with that of the selected emulation"),
15005 ibfd);
aa701218
AO
15006 return FALSE;
15007 }
b49e97c9 15008
d5eaccd7 15009 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 15010 return TRUE;
b49e97c9 15011
aa701218
AO
15012 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15013 {
15014 (*_bfd_error_handler)
d003868e
AM
15015 (_("%B: ABI is incompatible with that of the selected emulation"),
15016 ibfd);
aa701218
AO
15017 return FALSE;
15018 }
15019
351cdf24
MF
15020 /* Set up the FP ABI attribute from the abiflags if it is not already
15021 set. */
15022 if (mips_elf_tdata (ibfd)->abiflags_valid)
15023 {
15024 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15025 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15026 in_attr[Tag_GNU_MIPS_ABI_FP].i =
15027 mips_elf_tdata (ibfd)->abiflags.fp_abi;
15028 }
15029
2cf19d5c
JM
15030 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
15031 return FALSE;
15032
351cdf24
MF
15033 /* Check to see if the input BFD actually contains any sections.
15034 If not, its flags may not have been initialised either, but it cannot
15035 actually cause any incompatibility. */
15036 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15037 {
15038 /* Ignore synthetic sections and empty .text, .data and .bss sections
15039 which are automatically generated by gas. Also ignore fake
15040 (s)common sections, since merely defining a common symbol does
15041 not affect compatibility. */
15042 if ((sec->flags & SEC_IS_COMMON) == 0
15043 && strcmp (sec->name, ".reginfo")
15044 && strcmp (sec->name, ".mdebug")
15045 && (sec->size != 0
15046 || (strcmp (sec->name, ".text")
15047 && strcmp (sec->name, ".data")
15048 && strcmp (sec->name, ".bss"))))
15049 {
15050 null_input_bfd = FALSE;
15051 break;
15052 }
15053 }
15054 if (null_input_bfd)
15055 return TRUE;
15056
15057 /* Populate abiflags using existing information. */
15058 if (!mips_elf_tdata (ibfd)->abiflags_valid)
15059 {
15060 infer_mips_abiflags (ibfd, &mips_elf_tdata (ibfd)->abiflags);
15061 mips_elf_tdata (ibfd)->abiflags_valid = TRUE;
15062 }
15063 else
15064 {
15065 Elf_Internal_ABIFlags_v0 abiflags;
15066 Elf_Internal_ABIFlags_v0 in_abiflags;
15067 infer_mips_abiflags (ibfd, &abiflags);
15068 in_abiflags = mips_elf_tdata (ibfd)->abiflags;
15069
15070 /* It is not possible to infer the correct ISA revision
15071 for R3 or R5 so drop down to R2 for the checks. */
15072 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15073 in_abiflags.isa_rev = 2;
15074
15075 if (in_abiflags.isa_level != abiflags.isa_level
15076 || in_abiflags.isa_rev != abiflags.isa_rev
15077 || in_abiflags.isa_ext != abiflags.isa_ext)
15078 (*_bfd_error_handler)
15079 (_("%B: warning: Inconsistent ISA between e_flags and "
15080 ".MIPS.abiflags"), ibfd);
15081 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15082 && in_abiflags.fp_abi != abiflags.fp_abi)
15083 (*_bfd_error_handler)
15084 (_("%B: warning: Inconsistent FP ABI between e_flags and "
15085 ".MIPS.abiflags"), ibfd);
15086 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15087 (*_bfd_error_handler)
15088 (_("%B: warning: Inconsistent ASEs between e_flags and "
15089 ".MIPS.abiflags"), ibfd);
15090 if (in_abiflags.isa_ext != abiflags.isa_ext)
15091 (*_bfd_error_handler)
15092 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15093 ".MIPS.abiflags"), ibfd);
15094 if (in_abiflags.flags2 != 0)
15095 (*_bfd_error_handler)
15096 (_("%B: warning: Unexpected flag in the flags2 field of "
15097 ".MIPS.abiflags (0x%lx)"), ibfd,
15098 (unsigned long) in_abiflags.flags2);
15099 }
15100
15101 if (!mips_elf_tdata (obfd)->abiflags_valid)
15102 {
15103 /* Copy input abiflags if output abiflags are not already valid. */
15104 mips_elf_tdata (obfd)->abiflags = mips_elf_tdata (ibfd)->abiflags;
15105 mips_elf_tdata (obfd)->abiflags_valid = TRUE;
15106 }
b49e97c9
TS
15107
15108 if (! elf_flags_init (obfd))
15109 {
b34976b6 15110 elf_flags_init (obfd) = TRUE;
351cdf24 15111 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
b49e97c9
TS
15112 elf_elfheader (obfd)->e_ident[EI_CLASS]
15113 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15114
15115 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861 15116 && (bfd_get_arch_info (obfd)->the_default
68ffbac6 15117 || mips_mach_extends_p (bfd_get_mach (obfd),
2907b861 15118 bfd_get_mach (ibfd))))
b49e97c9
TS
15119 {
15120 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15121 bfd_get_mach (ibfd)))
b34976b6 15122 return FALSE;
351cdf24
MF
15123
15124 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15125 update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags);
b49e97c9
TS
15126 }
15127
b34976b6 15128 return TRUE;
b49e97c9
TS
15129 }
15130
351cdf24
MF
15131 /* Update the output abiflags fp_abi using the computed fp_abi. */
15132 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15133 mips_elf_tdata (obfd)->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15134
15135#define max(a,b) ((a) > (b) ? (a) : (b))
15136 /* Merge abiflags. */
15137 mips_elf_tdata (obfd)->abiflags.isa_rev
15138 = max (mips_elf_tdata (obfd)->abiflags.isa_rev,
15139 mips_elf_tdata (ibfd)->abiflags.isa_rev);
15140 mips_elf_tdata (obfd)->abiflags.gpr_size
15141 = max (mips_elf_tdata (obfd)->abiflags.gpr_size,
15142 mips_elf_tdata (ibfd)->abiflags.gpr_size);
15143 mips_elf_tdata (obfd)->abiflags.cpr1_size
15144 = max (mips_elf_tdata (obfd)->abiflags.cpr1_size,
15145 mips_elf_tdata (ibfd)->abiflags.cpr1_size);
15146 mips_elf_tdata (obfd)->abiflags.cpr2_size
15147 = max (mips_elf_tdata (obfd)->abiflags.cpr2_size,
15148 mips_elf_tdata (ibfd)->abiflags.cpr2_size);
15149#undef max
15150 mips_elf_tdata (obfd)->abiflags.ases
15151 |= mips_elf_tdata (ibfd)->abiflags.ases;
15152 mips_elf_tdata (obfd)->abiflags.flags1
15153 |= mips_elf_tdata (ibfd)->abiflags.flags1;
15154
15155 new_flags = elf_elfheader (ibfd)->e_flags;
15156 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15157 old_flags = elf_elfheader (obfd)->e_flags;
15158
b49e97c9
TS
15159 /* Check flag compatibility. */
15160
15161 new_flags &= ~EF_MIPS_NOREORDER;
15162 old_flags &= ~EF_MIPS_NOREORDER;
15163
f4416af6
AO
15164 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15165 doesn't seem to matter. */
15166 new_flags &= ~EF_MIPS_XGOT;
15167 old_flags &= ~EF_MIPS_XGOT;
15168
98a8deaf
RS
15169 /* MIPSpro generates ucode info in n64 objects. Again, we should
15170 just be able to ignore this. */
15171 new_flags &= ~EF_MIPS_UCODE;
15172 old_flags &= ~EF_MIPS_UCODE;
15173
861fb55a
DJ
15174 /* DSOs should only be linked with CPIC code. */
15175 if ((ibfd->flags & DYNAMIC) != 0)
15176 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
0a44bf69 15177
b49e97c9 15178 if (new_flags == old_flags)
b34976b6 15179 return TRUE;
b49e97c9 15180
b34976b6 15181 ok = TRUE;
b49e97c9 15182
143d77c5
EC
15183 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15184 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 15185 {
b49e97c9 15186 (*_bfd_error_handler)
861fb55a 15187 (_("%B: warning: linking abicalls files with non-abicalls files"),
d003868e 15188 ibfd);
143d77c5 15189 ok = TRUE;
b49e97c9
TS
15190 }
15191
143d77c5
EC
15192 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15193 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15194 if (! (new_flags & EF_MIPS_PIC))
15195 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15196
15197 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15198 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 15199
64543e1a
RS
15200 /* Compare the ISAs. */
15201 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 15202 {
64543e1a 15203 (*_bfd_error_handler)
d003868e
AM
15204 (_("%B: linking 32-bit code with 64-bit code"),
15205 ibfd);
64543e1a
RS
15206 ok = FALSE;
15207 }
15208 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15209 {
15210 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15211 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 15212 {
64543e1a
RS
15213 /* Copy the architecture info from IBFD to OBFD. Also copy
15214 the 32-bit flag (if set) so that we continue to recognise
15215 OBFD as a 32-bit binary. */
15216 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15217 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15218 elf_elfheader (obfd)->e_flags
15219 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15220
351cdf24
MF
15221 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15222 update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags);
15223
64543e1a
RS
15224 /* Copy across the ABI flags if OBFD doesn't use them
15225 and if that was what caused us to treat IBFD as 32-bit. */
15226 if ((old_flags & EF_MIPS_ABI) == 0
15227 && mips_32bit_flags_p (new_flags)
15228 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15229 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
15230 }
15231 else
15232 {
64543e1a 15233 /* The ISAs aren't compatible. */
b49e97c9 15234 (*_bfd_error_handler)
d003868e
AM
15235 (_("%B: linking %s module with previous %s modules"),
15236 ibfd,
64543e1a
RS
15237 bfd_printable_name (ibfd),
15238 bfd_printable_name (obfd));
b34976b6 15239 ok = FALSE;
b49e97c9 15240 }
b49e97c9
TS
15241 }
15242
64543e1a
RS
15243 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15244 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15245
15246 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
15247 does set EI_CLASS differently from any 32-bit ABI. */
15248 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15249 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15250 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15251 {
15252 /* Only error if both are set (to different values). */
15253 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15254 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15255 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15256 {
15257 (*_bfd_error_handler)
d003868e
AM
15258 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15259 ibfd,
b49e97c9
TS
15260 elf_mips_abi_name (ibfd),
15261 elf_mips_abi_name (obfd));
b34976b6 15262 ok = FALSE;
b49e97c9
TS
15263 }
15264 new_flags &= ~EF_MIPS_ABI;
15265 old_flags &= ~EF_MIPS_ABI;
15266 }
15267
df58fc94
RS
15268 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15269 and allow arbitrary mixing of the remaining ASEs (retain the union). */
fb39dac1
RS
15270 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15271 {
df58fc94
RS
15272 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15273 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15274 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15275 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15276 int micro_mis = old_m16 && new_micro;
15277 int m16_mis = old_micro && new_m16;
15278
15279 if (m16_mis || micro_mis)
15280 {
15281 (*_bfd_error_handler)
15282 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15283 ibfd,
15284 m16_mis ? "MIPS16" : "microMIPS",
15285 m16_mis ? "microMIPS" : "MIPS16");
15286 ok = FALSE;
15287 }
15288
fb39dac1
RS
15289 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15290
15291 new_flags &= ~ EF_MIPS_ARCH_ASE;
15292 old_flags &= ~ EF_MIPS_ARCH_ASE;
15293 }
15294
ba92f887
MR
15295 /* Compare NaN encodings. */
15296 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15297 {
15298 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15299 ibfd,
15300 (new_flags & EF_MIPS_NAN2008
15301 ? "-mnan=2008" : "-mnan=legacy"),
15302 (old_flags & EF_MIPS_NAN2008
15303 ? "-mnan=2008" : "-mnan=legacy"));
15304 ok = FALSE;
15305 new_flags &= ~EF_MIPS_NAN2008;
15306 old_flags &= ~EF_MIPS_NAN2008;
15307 }
15308
351cdf24
MF
15309 /* Compare FP64 state. */
15310 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15311 {
15312 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15313 ibfd,
15314 (new_flags & EF_MIPS_FP64
15315 ? "-mfp64" : "-mfp32"),
15316 (old_flags & EF_MIPS_FP64
15317 ? "-mfp64" : "-mfp32"));
15318 ok = FALSE;
15319 new_flags &= ~EF_MIPS_FP64;
15320 old_flags &= ~EF_MIPS_FP64;
15321 }
15322
b49e97c9
TS
15323 /* Warn about any other mismatches */
15324 if (new_flags != old_flags)
15325 {
15326 (*_bfd_error_handler)
d003868e
AM
15327 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
15328 ibfd, (unsigned long) new_flags,
b49e97c9 15329 (unsigned long) old_flags);
b34976b6 15330 ok = FALSE;
b49e97c9
TS
15331 }
15332
15333 if (! ok)
15334 {
15335 bfd_set_error (bfd_error_bad_value);
b34976b6 15336 return FALSE;
b49e97c9
TS
15337 }
15338
b34976b6 15339 return TRUE;
b49e97c9
TS
15340}
15341
15342/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15343
b34976b6 15344bfd_boolean
9719ad41 15345_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
15346{
15347 BFD_ASSERT (!elf_flags_init (abfd)
15348 || elf_elfheader (abfd)->e_flags == flags);
15349
15350 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
15351 elf_flags_init (abfd) = TRUE;
15352 return TRUE;
b49e97c9
TS
15353}
15354
ad9563d6
CM
15355char *
15356_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15357{
15358 switch (dtag)
15359 {
15360 default: return "";
15361 case DT_MIPS_RLD_VERSION:
15362 return "MIPS_RLD_VERSION";
15363 case DT_MIPS_TIME_STAMP:
15364 return "MIPS_TIME_STAMP";
15365 case DT_MIPS_ICHECKSUM:
15366 return "MIPS_ICHECKSUM";
15367 case DT_MIPS_IVERSION:
15368 return "MIPS_IVERSION";
15369 case DT_MIPS_FLAGS:
15370 return "MIPS_FLAGS";
15371 case DT_MIPS_BASE_ADDRESS:
15372 return "MIPS_BASE_ADDRESS";
15373 case DT_MIPS_MSYM:
15374 return "MIPS_MSYM";
15375 case DT_MIPS_CONFLICT:
15376 return "MIPS_CONFLICT";
15377 case DT_MIPS_LIBLIST:
15378 return "MIPS_LIBLIST";
15379 case DT_MIPS_LOCAL_GOTNO:
15380 return "MIPS_LOCAL_GOTNO";
15381 case DT_MIPS_CONFLICTNO:
15382 return "MIPS_CONFLICTNO";
15383 case DT_MIPS_LIBLISTNO:
15384 return "MIPS_LIBLISTNO";
15385 case DT_MIPS_SYMTABNO:
15386 return "MIPS_SYMTABNO";
15387 case DT_MIPS_UNREFEXTNO:
15388 return "MIPS_UNREFEXTNO";
15389 case DT_MIPS_GOTSYM:
15390 return "MIPS_GOTSYM";
15391 case DT_MIPS_HIPAGENO:
15392 return "MIPS_HIPAGENO";
15393 case DT_MIPS_RLD_MAP:
15394 return "MIPS_RLD_MAP";
15395 case DT_MIPS_DELTA_CLASS:
15396 return "MIPS_DELTA_CLASS";
15397 case DT_MIPS_DELTA_CLASS_NO:
15398 return "MIPS_DELTA_CLASS_NO";
15399 case DT_MIPS_DELTA_INSTANCE:
15400 return "MIPS_DELTA_INSTANCE";
15401 case DT_MIPS_DELTA_INSTANCE_NO:
15402 return "MIPS_DELTA_INSTANCE_NO";
15403 case DT_MIPS_DELTA_RELOC:
15404 return "MIPS_DELTA_RELOC";
15405 case DT_MIPS_DELTA_RELOC_NO:
15406 return "MIPS_DELTA_RELOC_NO";
15407 case DT_MIPS_DELTA_SYM:
15408 return "MIPS_DELTA_SYM";
15409 case DT_MIPS_DELTA_SYM_NO:
15410 return "MIPS_DELTA_SYM_NO";
15411 case DT_MIPS_DELTA_CLASSSYM:
15412 return "MIPS_DELTA_CLASSSYM";
15413 case DT_MIPS_DELTA_CLASSSYM_NO:
15414 return "MIPS_DELTA_CLASSSYM_NO";
15415 case DT_MIPS_CXX_FLAGS:
15416 return "MIPS_CXX_FLAGS";
15417 case DT_MIPS_PIXIE_INIT:
15418 return "MIPS_PIXIE_INIT";
15419 case DT_MIPS_SYMBOL_LIB:
15420 return "MIPS_SYMBOL_LIB";
15421 case DT_MIPS_LOCALPAGE_GOTIDX:
15422 return "MIPS_LOCALPAGE_GOTIDX";
15423 case DT_MIPS_LOCAL_GOTIDX:
15424 return "MIPS_LOCAL_GOTIDX";
15425 case DT_MIPS_HIDDEN_GOTIDX:
15426 return "MIPS_HIDDEN_GOTIDX";
15427 case DT_MIPS_PROTECTED_GOTIDX:
15428 return "MIPS_PROTECTED_GOT_IDX";
15429 case DT_MIPS_OPTIONS:
15430 return "MIPS_OPTIONS";
15431 case DT_MIPS_INTERFACE:
15432 return "MIPS_INTERFACE";
15433 case DT_MIPS_DYNSTR_ALIGN:
15434 return "DT_MIPS_DYNSTR_ALIGN";
15435 case DT_MIPS_INTERFACE_SIZE:
15436 return "DT_MIPS_INTERFACE_SIZE";
15437 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15438 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15439 case DT_MIPS_PERF_SUFFIX:
15440 return "DT_MIPS_PERF_SUFFIX";
15441 case DT_MIPS_COMPACT_SIZE:
15442 return "DT_MIPS_COMPACT_SIZE";
15443 case DT_MIPS_GP_VALUE:
15444 return "DT_MIPS_GP_VALUE";
15445 case DT_MIPS_AUX_DYNAMIC:
15446 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
15447 case DT_MIPS_PLTGOT:
15448 return "DT_MIPS_PLTGOT";
15449 case DT_MIPS_RWPLT:
15450 return "DT_MIPS_RWPLT";
ad9563d6
CM
15451 }
15452}
15453
757a636f
RS
15454/* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15455 not known. */
15456
15457const char *
15458_bfd_mips_fp_abi_string (int fp)
15459{
15460 switch (fp)
15461 {
15462 /* These strings aren't translated because they're simply
15463 option lists. */
15464 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15465 return "-mdouble-float";
15466
15467 case Val_GNU_MIPS_ABI_FP_SINGLE:
15468 return "-msingle-float";
15469
15470 case Val_GNU_MIPS_ABI_FP_SOFT:
15471 return "-msoft-float";
15472
351cdf24
MF
15473 case Val_GNU_MIPS_ABI_FP_OLD_64:
15474 return _("-mips32r2 -mfp64 (12 callee-saved)");
15475
15476 case Val_GNU_MIPS_ABI_FP_XX:
15477 return "-mfpxx";
15478
757a636f 15479 case Val_GNU_MIPS_ABI_FP_64:
351cdf24
MF
15480 return "-mgp32 -mfp64";
15481
15482 case Val_GNU_MIPS_ABI_FP_64A:
15483 return "-mgp32 -mfp64 -mno-odd-spreg";
757a636f
RS
15484
15485 default:
15486 return 0;
15487 }
15488}
15489
351cdf24
MF
15490static void
15491print_mips_ases (FILE *file, unsigned int mask)
15492{
15493 if (mask & AFL_ASE_DSP)
15494 fputs ("\n\tDSP ASE", file);
15495 if (mask & AFL_ASE_DSPR2)
15496 fputs ("\n\tDSP R2 ASE", file);
15497 if (mask & AFL_ASE_EVA)
15498 fputs ("\n\tEnhanced VA Scheme", file);
15499 if (mask & AFL_ASE_MCU)
15500 fputs ("\n\tMCU (MicroController) ASE", file);
15501 if (mask & AFL_ASE_MDMX)
15502 fputs ("\n\tMDMX ASE", file);
15503 if (mask & AFL_ASE_MIPS3D)
15504 fputs ("\n\tMIPS-3D ASE", file);
15505 if (mask & AFL_ASE_MT)
15506 fputs ("\n\tMT ASE", file);
15507 if (mask & AFL_ASE_SMARTMIPS)
15508 fputs ("\n\tSmartMIPS ASE", file);
15509 if (mask & AFL_ASE_VIRT)
15510 fputs ("\n\tVZ ASE", file);
15511 if (mask & AFL_ASE_MSA)
15512 fputs ("\n\tMSA ASE", file);
15513 if (mask & AFL_ASE_MIPS16)
15514 fputs ("\n\tMIPS16 ASE", file);
15515 if (mask & AFL_ASE_MICROMIPS)
15516 fputs ("\n\tMICROMIPS ASE", file);
15517 if (mask & AFL_ASE_XPA)
15518 fputs ("\n\tXPA ASE", file);
15519 if (mask == 0)
15520 fprintf (file, "\n\t%s", _("None"));
00ac7aa0
MF
15521 else if ((mask & ~AFL_ASE_MASK) != 0)
15522 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
351cdf24
MF
15523}
15524
15525static void
15526print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15527{
15528 switch (isa_ext)
15529 {
15530 case 0:
15531 fputs (_("None"), file);
15532 break;
15533 case AFL_EXT_XLR:
15534 fputs ("RMI XLR", file);
15535 break;
2c629856
N
15536 case AFL_EXT_OCTEON3:
15537 fputs ("Cavium Networks Octeon3", file);
15538 break;
351cdf24
MF
15539 case AFL_EXT_OCTEON2:
15540 fputs ("Cavium Networks Octeon2", file);
15541 break;
15542 case AFL_EXT_OCTEONP:
15543 fputs ("Cavium Networks OcteonP", file);
15544 break;
15545 case AFL_EXT_LOONGSON_3A:
15546 fputs ("Loongson 3A", file);
15547 break;
15548 case AFL_EXT_OCTEON:
15549 fputs ("Cavium Networks Octeon", file);
15550 break;
15551 case AFL_EXT_5900:
15552 fputs ("Toshiba R5900", file);
15553 break;
15554 case AFL_EXT_4650:
15555 fputs ("MIPS R4650", file);
15556 break;
15557 case AFL_EXT_4010:
15558 fputs ("LSI R4010", file);
15559 break;
15560 case AFL_EXT_4100:
15561 fputs ("NEC VR4100", file);
15562 break;
15563 case AFL_EXT_3900:
15564 fputs ("Toshiba R3900", file);
15565 break;
15566 case AFL_EXT_10000:
15567 fputs ("MIPS R10000", file);
15568 break;
15569 case AFL_EXT_SB1:
15570 fputs ("Broadcom SB-1", file);
15571 break;
15572 case AFL_EXT_4111:
15573 fputs ("NEC VR4111/VR4181", file);
15574 break;
15575 case AFL_EXT_4120:
15576 fputs ("NEC VR4120", file);
15577 break;
15578 case AFL_EXT_5400:
15579 fputs ("NEC VR5400", file);
15580 break;
15581 case AFL_EXT_5500:
15582 fputs ("NEC VR5500", file);
15583 break;
15584 case AFL_EXT_LOONGSON_2E:
15585 fputs ("ST Microelectronics Loongson 2E", file);
15586 break;
15587 case AFL_EXT_LOONGSON_2F:
15588 fputs ("ST Microelectronics Loongson 2F", file);
15589 break;
15590 default:
00ac7aa0 15591 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
351cdf24
MF
15592 break;
15593 }
15594}
15595
15596static void
15597print_mips_fp_abi_value (FILE *file, int val)
15598{
15599 switch (val)
15600 {
15601 case Val_GNU_MIPS_ABI_FP_ANY:
15602 fprintf (file, _("Hard or soft float\n"));
15603 break;
15604 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15605 fprintf (file, _("Hard float (double precision)\n"));
15606 break;
15607 case Val_GNU_MIPS_ABI_FP_SINGLE:
15608 fprintf (file, _("Hard float (single precision)\n"));
15609 break;
15610 case Val_GNU_MIPS_ABI_FP_SOFT:
15611 fprintf (file, _("Soft float\n"));
15612 break;
15613 case Val_GNU_MIPS_ABI_FP_OLD_64:
15614 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15615 break;
15616 case Val_GNU_MIPS_ABI_FP_XX:
15617 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15618 break;
15619 case Val_GNU_MIPS_ABI_FP_64:
15620 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15621 break;
15622 case Val_GNU_MIPS_ABI_FP_64A:
15623 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15624 break;
15625 default:
15626 fprintf (file, "??? (%d)\n", val);
15627 break;
15628 }
15629}
15630
15631static int
15632get_mips_reg_size (int reg_size)
15633{
15634 return (reg_size == AFL_REG_NONE) ? 0
15635 : (reg_size == AFL_REG_32) ? 32
15636 : (reg_size == AFL_REG_64) ? 64
15637 : (reg_size == AFL_REG_128) ? 128
15638 : -1;
15639}
15640
b34976b6 15641bfd_boolean
9719ad41 15642_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 15643{
9719ad41 15644 FILE *file = ptr;
b49e97c9
TS
15645
15646 BFD_ASSERT (abfd != NULL && ptr != NULL);
15647
15648 /* Print normal ELF private data. */
15649 _bfd_elf_print_private_bfd_data (abfd, ptr);
15650
15651 /* xgettext:c-format */
15652 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15653
15654 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15655 fprintf (file, _(" [abi=O32]"));
15656 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15657 fprintf (file, _(" [abi=O64]"));
15658 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15659 fprintf (file, _(" [abi=EABI32]"));
15660 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15661 fprintf (file, _(" [abi=EABI64]"));
15662 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15663 fprintf (file, _(" [abi unknown]"));
15664 else if (ABI_N32_P (abfd))
15665 fprintf (file, _(" [abi=N32]"));
15666 else if (ABI_64_P (abfd))
15667 fprintf (file, _(" [abi=64]"));
15668 else
15669 fprintf (file, _(" [no abi set]"));
15670
15671 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 15672 fprintf (file, " [mips1]");
b49e97c9 15673 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 15674 fprintf (file, " [mips2]");
b49e97c9 15675 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 15676 fprintf (file, " [mips3]");
b49e97c9 15677 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 15678 fprintf (file, " [mips4]");
b49e97c9 15679 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 15680 fprintf (file, " [mips5]");
b49e97c9 15681 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 15682 fprintf (file, " [mips32]");
b49e97c9 15683 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 15684 fprintf (file, " [mips64]");
af7ee8bf 15685 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 15686 fprintf (file, " [mips32r2]");
5f74bc13 15687 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 15688 fprintf (file, " [mips64r2]");
7361da2c
AB
15689 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15690 fprintf (file, " [mips32r6]");
15691 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15692 fprintf (file, " [mips64r6]");
b49e97c9
TS
15693 else
15694 fprintf (file, _(" [unknown ISA]"));
15695
40d32fc6 15696 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 15697 fprintf (file, " [mdmx]");
40d32fc6
CD
15698
15699 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 15700 fprintf (file, " [mips16]");
40d32fc6 15701
df58fc94
RS
15702 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15703 fprintf (file, " [micromips]");
15704
ba92f887
MR
15705 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15706 fprintf (file, " [nan2008]");
15707
5baf5e34 15708 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
351cdf24 15709 fprintf (file, " [old fp64]");
5baf5e34 15710
b49e97c9 15711 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 15712 fprintf (file, " [32bitmode]");
b49e97c9
TS
15713 else
15714 fprintf (file, _(" [not 32bitmode]"));
15715
c0e3f241 15716 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 15717 fprintf (file, " [noreorder]");
c0e3f241
CD
15718
15719 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 15720 fprintf (file, " [PIC]");
c0e3f241
CD
15721
15722 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 15723 fprintf (file, " [CPIC]");
c0e3f241
CD
15724
15725 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 15726 fprintf (file, " [XGOT]");
c0e3f241
CD
15727
15728 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 15729 fprintf (file, " [UCODE]");
c0e3f241 15730
b49e97c9
TS
15731 fputc ('\n', file);
15732
351cdf24
MF
15733 if (mips_elf_tdata (abfd)->abiflags_valid)
15734 {
15735 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15736 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15737 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15738 if (abiflags->isa_rev > 1)
15739 fprintf (file, "r%d", abiflags->isa_rev);
15740 fprintf (file, "\nGPR size: %d",
15741 get_mips_reg_size (abiflags->gpr_size));
15742 fprintf (file, "\nCPR1 size: %d",
15743 get_mips_reg_size (abiflags->cpr1_size));
15744 fprintf (file, "\nCPR2 size: %d",
15745 get_mips_reg_size (abiflags->cpr2_size));
15746 fputs ("\nFP ABI: ", file);
15747 print_mips_fp_abi_value (file, abiflags->fp_abi);
15748 fputs ("ISA Extension: ", file);
15749 print_mips_isa_ext (file, abiflags->isa_ext);
15750 fputs ("\nASEs:", file);
15751 print_mips_ases (file, abiflags->ases);
15752 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15753 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15754 fputc ('\n', file);
15755 }
15756
b34976b6 15757 return TRUE;
b49e97c9 15758}
2f89ff8d 15759
b35d266b 15760const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 15761{
0112cd26
NC
15762 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15763 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15764 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15765 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15766 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15767 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15768 { NULL, 0, 0, 0, 0 }
2f89ff8d 15769};
5e2b0d47 15770
8992f0d7
TS
15771/* Merge non visibility st_other attributes. Ensure that the
15772 STO_OPTIONAL flag is copied into h->other, even if this is not a
15773 definiton of the symbol. */
5e2b0d47
NC
15774void
15775_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15776 const Elf_Internal_Sym *isym,
15777 bfd_boolean definition,
15778 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15779{
8992f0d7
TS
15780 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15781 {
15782 unsigned char other;
15783
15784 other = (definition ? isym->st_other : h->other);
15785 other &= ~ELF_ST_VISIBILITY (-1);
15786 h->other = other | ELF_ST_VISIBILITY (h->other);
15787 }
15788
15789 if (!definition
5e2b0d47
NC
15790 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15791 h->other |= STO_OPTIONAL;
15792}
12ac1cf5
NC
15793
15794/* Decide whether an undefined symbol is special and can be ignored.
15795 This is the case for OPTIONAL symbols on IRIX. */
15796bfd_boolean
15797_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15798{
15799 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15800}
e0764319
NC
15801
15802bfd_boolean
15803_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15804{
15805 return (sym->st_shndx == SHN_COMMON
15806 || sym->st_shndx == SHN_MIPS_ACOMMON
15807 || sym->st_shndx == SHN_MIPS_SCOMMON);
15808}
861fb55a
DJ
15809
15810/* Return address for Ith PLT stub in section PLT, for relocation REL
15811 or (bfd_vma) -1 if it should not be included. */
15812
15813bfd_vma
15814_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15815 const arelent *rel ATTRIBUTE_UNUSED)
15816{
15817 return (plt->vma
15818 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15819 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15820}
15821
1bbce132
MR
15822/* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15823 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15824 and .got.plt and also the slots may be of a different size each we walk
15825 the PLT manually fetching instructions and matching them against known
15826 patterns. To make things easier standard MIPS slots, if any, always come
15827 first. As we don't create proper ELF symbols we use the UDATA.I member
15828 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15829 with the ST_OTHER member of the ELF symbol. */
15830
15831long
15832_bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15833 long symcount ATTRIBUTE_UNUSED,
15834 asymbol **syms ATTRIBUTE_UNUSED,
15835 long dynsymcount, asymbol **dynsyms,
15836 asymbol **ret)
15837{
15838 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15839 static const char microsuffix[] = "@micromipsplt";
15840 static const char m16suffix[] = "@mips16plt";
15841 static const char mipssuffix[] = "@plt";
15842
15843 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15844 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15845 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15846 Elf_Internal_Shdr *hdr;
15847 bfd_byte *plt_data;
15848 bfd_vma plt_offset;
15849 unsigned int other;
15850 bfd_vma entry_size;
15851 bfd_vma plt0_size;
15852 asection *relplt;
15853 bfd_vma opcode;
15854 asection *plt;
15855 asymbol *send;
15856 size_t size;
15857 char *names;
15858 long counti;
15859 arelent *p;
15860 asymbol *s;
15861 char *nend;
15862 long count;
15863 long pi;
15864 long i;
15865 long n;
15866
15867 *ret = NULL;
15868
15869 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15870 return 0;
15871
15872 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
15873 if (relplt == NULL)
15874 return 0;
15875
15876 hdr = &elf_section_data (relplt)->this_hdr;
15877 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
15878 return 0;
15879
15880 plt = bfd_get_section_by_name (abfd, ".plt");
15881 if (plt == NULL)
15882 return 0;
15883
15884 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
15885 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
15886 return -1;
15887 p = relplt->relocation;
15888
15889 /* Calculating the exact amount of space required for symbols would
15890 require two passes over the PLT, so just pessimise assuming two
15891 PLT slots per relocation. */
15892 count = relplt->size / hdr->sh_entsize;
15893 counti = count * bed->s->int_rels_per_ext_rel;
15894 size = 2 * count * sizeof (asymbol);
15895 size += count * (sizeof (mipssuffix) +
15896 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
15897 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
15898 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
15899
15900 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
15901 size += sizeof (asymbol) + sizeof (pltname);
15902
15903 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
15904 return -1;
15905
15906 if (plt->size < 16)
15907 return -1;
15908
15909 s = *ret = bfd_malloc (size);
15910 if (s == NULL)
15911 return -1;
15912 send = s + 2 * count + 1;
15913
15914 names = (char *) send;
15915 nend = (char *) s + size;
15916 n = 0;
15917
15918 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
15919 if (opcode == 0x3302fffe)
15920 {
15921 if (!micromips_p)
15922 return -1;
15923 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
15924 other = STO_MICROMIPS;
15925 }
833794fc
MR
15926 else if (opcode == 0x0398c1d0)
15927 {
15928 if (!micromips_p)
15929 return -1;
15930 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
15931 other = STO_MICROMIPS;
15932 }
1bbce132
MR
15933 else
15934 {
15935 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
15936 other = 0;
15937 }
15938
15939 s->the_bfd = abfd;
15940 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
15941 s->section = plt;
15942 s->value = 0;
15943 s->name = names;
15944 s->udata.i = other;
15945 memcpy (names, pltname, sizeof (pltname));
15946 names += sizeof (pltname);
15947 ++s, ++n;
15948
15949 pi = 0;
15950 for (plt_offset = plt0_size;
15951 plt_offset + 8 <= plt->size && s < send;
15952 plt_offset += entry_size)
15953 {
15954 bfd_vma gotplt_addr;
15955 const char *suffix;
15956 bfd_vma gotplt_hi;
15957 bfd_vma gotplt_lo;
15958 size_t suffixlen;
15959
15960 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
15961
15962 /* Check if the second word matches the expected MIPS16 instruction. */
15963 if (opcode == 0x651aeb00)
15964 {
15965 if (micromips_p)
15966 return -1;
15967 /* Truncated table??? */
15968 if (plt_offset + 16 > plt->size)
15969 break;
15970 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
15971 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
15972 suffixlen = sizeof (m16suffix);
15973 suffix = m16suffix;
15974 other = STO_MIPS16;
15975 }
833794fc 15976 /* Likewise the expected microMIPS instruction (no insn32 mode). */
1bbce132
MR
15977 else if (opcode == 0xff220000)
15978 {
15979 if (!micromips_p)
15980 return -1;
15981 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
15982 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
15983 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
15984 gotplt_lo <<= 2;
15985 gotplt_addr = gotplt_hi + gotplt_lo;
15986 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
15987 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
15988 suffixlen = sizeof (microsuffix);
15989 suffix = microsuffix;
15990 other = STO_MICROMIPS;
15991 }
833794fc
MR
15992 /* Likewise the expected microMIPS instruction (insn32 mode). */
15993 else if ((opcode & 0xffff0000) == 0xff2f0000)
15994 {
15995 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
15996 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
15997 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
15998 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
15999 gotplt_addr = gotplt_hi + gotplt_lo;
16000 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16001 suffixlen = sizeof (microsuffix);
16002 suffix = microsuffix;
16003 other = STO_MICROMIPS;
16004 }
1bbce132
MR
16005 /* Otherwise assume standard MIPS code. */
16006 else
16007 {
16008 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16009 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16010 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16011 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16012 gotplt_addr = gotplt_hi + gotplt_lo;
16013 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16014 suffixlen = sizeof (mipssuffix);
16015 suffix = mipssuffix;
16016 other = 0;
16017 }
16018 /* Truncated table??? */
16019 if (plt_offset + entry_size > plt->size)
16020 break;
16021
16022 for (i = 0;
16023 i < count && p[pi].address != gotplt_addr;
16024 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16025
16026 if (i < count)
16027 {
16028 size_t namelen;
16029 size_t len;
16030
16031 *s = **p[pi].sym_ptr_ptr;
16032 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16033 we are defining a symbol, ensure one of them is set. */
16034 if ((s->flags & BSF_LOCAL) == 0)
16035 s->flags |= BSF_GLOBAL;
16036 s->flags |= BSF_SYNTHETIC;
16037 s->section = plt;
16038 s->value = plt_offset;
16039 s->name = names;
16040 s->udata.i = other;
16041
16042 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16043 namelen = len + suffixlen;
16044 if (names + namelen > nend)
16045 break;
16046
16047 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16048 names += len;
16049 memcpy (names, suffix, suffixlen);
16050 names += suffixlen;
16051
16052 ++s, ++n;
16053 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16054 }
16055 }
16056
16057 free (plt_data);
16058
16059 return n;
16060}
16061
861fb55a
DJ
16062void
16063_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16064{
16065 struct mips_elf_link_hash_table *htab;
16066 Elf_Internal_Ehdr *i_ehdrp;
16067
16068 i_ehdrp = elf_elfheader (abfd);
16069 if (link_info)
16070 {
16071 htab = mips_elf_hash_table (link_info);
4dfe6ac6
NC
16072 BFD_ASSERT (htab != NULL);
16073
861fb55a
DJ
16074 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16075 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16076 }
0af03126
L
16077
16078 _bfd_elf_post_process_headers (abfd, link_info);
351cdf24
MF
16079
16080 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16081 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16082 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
861fb55a 16083}