]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/freeze.adb
[multiple changes]
[thirdparty/gcc.git] / gcc / ada / freeze.adb
CommitLineData
8dc10d38 1------------------------------------------------------------------------------
70482933
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- F R E E Z E --
6-- --
7-- B o d y --
8-- --
77a40ec1 9-- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
748086b7 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
2010d078
AC
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
70482933
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
23-- --
24------------------------------------------------------------------------------
25
e8cddc3b 26with Aspects; use Aspects;
70482933 27with Atree; use Atree;
0ea55619 28with Checks; use Checks;
70482933
RK
29with Debug; use Debug;
30with Einfo; use Einfo;
31with Elists; use Elists;
32with Errout; use Errout;
1ce1f005 33with Exp_Ch3; use Exp_Ch3;
70482933 34with Exp_Ch7; use Exp_Ch7;
ce2b6ba5 35with Exp_Disp; use Exp_Disp;
70482933
RK
36with Exp_Pakd; use Exp_Pakd;
37with Exp_Util; use Exp_Util;
fbf5a39b 38with Exp_Tss; use Exp_Tss;
70482933 39with Layout; use Layout;
ca0cb93e 40with Lib; use Lib;
7d8b9c99 41with Namet; use Namet;
70482933
RK
42with Nlists; use Nlists;
43with Nmake; use Nmake;
44with Opt; use Opt;
45with Restrict; use Restrict;
6e937c1c 46with Rident; use Rident;
b7f7dab2 47with Rtsfind; use Rtsfind;
70482933 48with Sem; use Sem;
a4100e55 49with Sem_Aux; use Sem_Aux;
70482933
RK
50with Sem_Cat; use Sem_Cat;
51with Sem_Ch6; use Sem_Ch6;
52with Sem_Ch7; use Sem_Ch7;
53with Sem_Ch8; use Sem_Ch8;
54with Sem_Ch13; use Sem_Ch13;
55with Sem_Eval; use Sem_Eval;
56with Sem_Mech; use Sem_Mech;
57with Sem_Prag; use Sem_Prag;
58with Sem_Res; use Sem_Res;
59with Sem_Util; use Sem_Util;
60with Sinfo; use Sinfo;
61with Snames; use Snames;
62with Stand; use Stand;
63with Targparm; use Targparm;
64with Tbuild; use Tbuild;
65with Ttypes; use Ttypes;
66with Uintp; use Uintp;
67with Urealp; use Urealp;
3f1bc2cf 68with Warnsw; use Warnsw;
70482933
RK
69
70package body Freeze is
71
72 -----------------------
73 -- Local Subprograms --
74 -----------------------
75
76 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
77 -- Typ is a type that is being frozen. If no size clause is given,
78 -- but a default Esize has been computed, then this default Esize is
79 -- adjusted up if necessary to be consistent with a given alignment,
80 -- but never to a value greater than Long_Long_Integer'Size. This
81 -- is used for all discrete types and for fixed-point types.
82
83 procedure Build_And_Analyze_Renamed_Body
84 (Decl : Node_Id;
85 New_S : Entity_Id;
86 After : in out Node_Id);
49e90211 87 -- Build body for a renaming declaration, insert in tree and analyze
70482933 88
fbf5a39b
AC
89 procedure Check_Address_Clause (E : Entity_Id);
90 -- Apply legality checks to address clauses for object declarations,
cf6956bb
AC
91 -- at the point the object is frozen. Also ensure any initialization is
92 -- performed only after the object has been frozen.
fbf5a39b 93
75965852 94 procedure Check_Component_Storage_Order
ee6208f2
AC
95 (Encl_Type : Entity_Id;
96 Comp : Entity_Id;
97 ADC : Node_Id;
98 Comp_ADC_Present : out Boolean);
75965852 99 -- For an Encl_Type that has a Scalar_Storage_Order attribute definition
8a7c0400
AC
100 -- clause, verify that the component type has an explicit and compatible
101 -- attribute/aspect. For arrays, Comp is Empty; for records, it is the
102 -- entity of the component under consideration. For an Encl_Type that
103 -- does not have a Scalar_Storage_Order attribute definition clause,
104 -- verify that the component also does not have such a clause.
ee6208f2
AC
105 -- ADC is the attribute definition clause if present (or Empty). On return,
106 -- Comp_ADC_Present is set True if the component has a Scalar_Storage_Order
107 -- attribute definition clause.
75965852 108
18c56840
ES
109 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id);
110 -- When an expression function is frozen by a use of it, the expression
111 -- itself is frozen. Check that the expression does not include references
33c9f9af
AC
112 -- to deferred constants without completion. We report this at the freeze
113 -- point of the function, to provide a better error message.
e8de1a82 114 --
3ad33e33
AC
115 -- In most cases the expression itself is frozen by the time the function
116 -- itself is frozen, because the formals will be frozen by then. However,
117 -- Attribute references to outer types are freeze points for those types;
118 -- this routine generates the required freeze nodes for them.
119
70482933
RK
120 procedure Check_Strict_Alignment (E : Entity_Id);
121 -- E is a base type. If E is tagged or has a component that is aliased
122 -- or tagged or contains something this is aliased or tagged, set
123 -- Strict_Alignment.
124
125 procedure Check_Unsigned_Type (E : Entity_Id);
126 pragma Inline (Check_Unsigned_Type);
127 -- If E is a fixed-point or discrete type, then all the necessary work
128 -- to freeze it is completed except for possible setting of the flag
129 -- Is_Unsigned_Type, which is done by this procedure. The call has no
130 -- effect if the entity E is not a discrete or fixed-point type.
131
132 procedure Freeze_And_Append
133 (Ent : Entity_Id;
c159409f 134 N : Node_Id;
70482933
RK
135 Result : in out List_Id);
136 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
c159409f
AC
137 -- nodes to Result, modifying Result from No_List if necessary. N has
138 -- the same usage as in Freeze_Entity.
70482933
RK
139
140 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
141 -- Freeze enumeration type. The Esize field is set as processing
142 -- proceeds (i.e. set by default when the type is declared and then
143 -- adjusted by rep clauses. What this procedure does is to make sure
144 -- that if a foreign convention is specified, and no specific size
145 -- is given, then the size must be at least Integer'Size.
146
70482933
RK
147 procedure Freeze_Static_Object (E : Entity_Id);
148 -- If an object is frozen which has Is_Statically_Allocated set, then
149 -- all referenced types must also be marked with this flag. This routine
150 -- is in charge of meeting this requirement for the object entity E.
151
152 procedure Freeze_Subprogram (E : Entity_Id);
153 -- Perform freezing actions for a subprogram (create extra formals,
154 -- and set proper default mechanism values). Note that this routine
155 -- is not called for internal subprograms, for which neither of these
156 -- actions is needed (or desirable, we do not want for example to have
157 -- these extra formals present in initialization procedures, where they
158 -- would serve no purpose). In this call E is either a subprogram or
159 -- a subprogram type (i.e. an access to a subprogram).
160
161 function Is_Fully_Defined (T : Entity_Id) return Boolean;
bde58e32 162 -- True if T is not private and has no private components, or has a full
657a9dd9
AC
163 -- view. Used to determine whether the designated type of an access type
164 -- should be frozen when the access type is frozen. This is done when an
165 -- allocator is frozen, or an expression that may involve attributes of
166 -- the designated type. Otherwise freezing the access type does not freeze
167 -- the designated type.
70482933
RK
168
169 procedure Process_Default_Expressions
170 (E : Entity_Id;
171 After : in out Node_Id);
c159409f
AC
172 -- This procedure is called for each subprogram to complete processing of
173 -- default expressions at the point where all types are known to be frozen.
174 -- The expressions must be analyzed in full, to make sure that all error
175 -- processing is done (they have only been pre-analyzed). If the expression
176 -- is not an entity or literal, its analysis may generate code which must
177 -- not be executed. In that case we build a function body to hold that
178 -- code. This wrapper function serves no other purpose (it used to be
179 -- called to evaluate the default, but now the default is inlined at each
180 -- point of call).
70482933
RK
181
182 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
c159409f
AC
183 -- Typ is a record or array type that is being frozen. This routine sets
184 -- the default component alignment from the scope stack values if the
185 -- alignment is otherwise not specified.
70482933
RK
186
187 procedure Check_Debug_Info_Needed (T : Entity_Id);
188 -- As each entity is frozen, this routine is called to deal with the
189 -- setting of Debug_Info_Needed for the entity. This flag is set if
190 -- the entity comes from source, or if we are in Debug_Generated_Code
191 -- mode or if the -gnatdV debug flag is set. However, it never sets
1b24ada5
RD
192 -- the flag if Debug_Info_Off is set. This procedure also ensures that
193 -- subsidiary entities have the flag set as required.
70482933 194
220d1fd9
AC
195 procedure Set_SSO_From_Default (T : Entity_Id);
196 -- T is a record or array type that is being frozen. If it is a base type,
197 -- and if SSO_Set_Low/High_By_Default is set, then Reverse_Storage order
198 -- will be set appropriately. Note that an explicit occurrence of aspect
199 -- Scalar_Storage_Order or an explicit setting of this aspect with an
200 -- attribute definition clause occurs, then these two flags are reset in
201 -- any case, so call will have no effect.
202
c6823a20 203 procedure Undelay_Type (T : Entity_Id);
c159409f
AC
204 -- T is a type of a component that we know to be an Itype. We don't want
205 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
206 -- Full_View or Corresponding_Record_Type.
c6823a20 207
fbf5a39b
AC
208 procedure Warn_Overlay
209 (Expr : Node_Id;
210 Typ : Entity_Id;
211 Nam : Node_Id);
212 -- Expr is the expression for an address clause for entity Nam whose type
213 -- is Typ. If Typ has a default initialization, and there is no explicit
214 -- initialization in the source declaration, check whether the address
215 -- clause might cause overlaying of an entity, and emit a warning on the
216 -- side effect that the initialization will cause.
217
70482933
RK
218 -------------------------------
219 -- Adjust_Esize_For_Alignment --
220 -------------------------------
221
222 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
223 Align : Uint;
224
225 begin
226 if Known_Esize (Typ) and then Known_Alignment (Typ) then
227 Align := Alignment_In_Bits (Typ);
228
229 if Align > Esize (Typ)
230 and then Align <= Standard_Long_Long_Integer_Size
231 then
232 Set_Esize (Typ, Align);
233 end if;
234 end if;
235 end Adjust_Esize_For_Alignment;
236
237 ------------------------------------
238 -- Build_And_Analyze_Renamed_Body --
239 ------------------------------------
240
241 procedure Build_And_Analyze_Renamed_Body
242 (Decl : Node_Id;
243 New_S : Entity_Id;
244 After : in out Node_Id)
245 is
ca0cb93e
AC
246 Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
247 Ent : constant Entity_Id := Defining_Entity (Decl);
248 Body_Node : Node_Id;
249 Renamed_Subp : Entity_Id;
d4fc0fb4 250
70482933 251 begin
1c612f29
RD
252 -- If the renamed subprogram is intrinsic, there is no need for a
253 -- wrapper body: we set the alias that will be called and expanded which
254 -- completes the declaration. This transformation is only legal if the
255 -- renamed entity has already been elaborated.
ca0cb93e 256
d4fc0fb4
AC
257 -- Note that it is legal for a renaming_as_body to rename an intrinsic
258 -- subprogram, as long as the renaming occurs before the new entity
ef1c0511 259 -- is frozen (RM 8.5.4 (5)).
d4fc0fb4
AC
260
261 if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
545cb5be 262 and then Is_Entity_Name (Name (Body_Decl))
d4fc0fb4 263 then
ca0cb93e
AC
264 Renamed_Subp := Entity (Name (Body_Decl));
265 else
266 Renamed_Subp := Empty;
267 end if;
268
269 if Present (Renamed_Subp)
270 and then Is_Intrinsic_Subprogram (Renamed_Subp)
ca0cb93e
AC
271 and then
272 (not In_Same_Source_Unit (Renamed_Subp, Ent)
273 or else Sloc (Renamed_Subp) < Sloc (Ent))
879e23f0 274
308e6f3a 275 -- We can make the renaming entity intrinsic if the renamed function
545cb5be
AC
276 -- has an interface name, or if it is one of the shift/rotate
277 -- operations known to the compiler.
879e23f0 278
b69cd36a
AC
279 and then
280 (Present (Interface_Name (Renamed_Subp))
281 or else Nam_In (Chars (Renamed_Subp), Name_Rotate_Left,
282 Name_Rotate_Right,
283 Name_Shift_Left,
284 Name_Shift_Right,
285 Name_Shift_Right_Arithmetic))
ca0cb93e
AC
286 then
287 Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
545cb5be 288
ca0cb93e
AC
289 if Present (Alias (Renamed_Subp)) then
290 Set_Alias (Ent, Alias (Renamed_Subp));
d4fc0fb4 291 else
ca0cb93e 292 Set_Alias (Ent, Renamed_Subp);
d4fc0fb4
AC
293 end if;
294
295 Set_Is_Intrinsic_Subprogram (Ent);
296 Set_Has_Completion (Ent);
297
298 else
299 Body_Node := Build_Renamed_Body (Decl, New_S);
300 Insert_After (After, Body_Node);
301 Mark_Rewrite_Insertion (Body_Node);
302 Analyze (Body_Node);
303 After := Body_Node;
304 end if;
70482933
RK
305 end Build_And_Analyze_Renamed_Body;
306
307 ------------------------
308 -- Build_Renamed_Body --
309 ------------------------
310
311 function Build_Renamed_Body
312 (Decl : Node_Id;
fbf5a39b 313 New_S : Entity_Id) return Node_Id
70482933
RK
314 is
315 Loc : constant Source_Ptr := Sloc (New_S);
545cb5be
AC
316 -- We use for the source location of the renamed body, the location of
317 -- the spec entity. It might seem more natural to use the location of
318 -- the renaming declaration itself, but that would be wrong, since then
319 -- the body we create would look as though it was created far too late,
320 -- and this could cause problems with elaboration order analysis,
321 -- particularly in connection with instantiations.
70482933
RK
322
323 N : constant Node_Id := Unit_Declaration_Node (New_S);
324 Nam : constant Node_Id := Name (N);
325 Old_S : Entity_Id;
326 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
327 Actuals : List_Id := No_List;
328 Call_Node : Node_Id;
329 Call_Name : Node_Id;
330 Body_Node : Node_Id;
331 Formal : Entity_Id;
332 O_Formal : Entity_Id;
333 Param_Spec : Node_Id;
334
def46b54
RD
335 Pref : Node_Id := Empty;
336 -- If the renamed entity is a primitive operation given in prefix form,
337 -- the prefix is the target object and it has to be added as the first
338 -- actual in the generated call.
339
70482933 340 begin
def46b54
RD
341 -- Determine the entity being renamed, which is the target of the call
342 -- statement. If the name is an explicit dereference, this is a renaming
343 -- of a subprogram type rather than a subprogram. The name itself is
344 -- fully analyzed.
70482933
RK
345
346 if Nkind (Nam) = N_Selected_Component then
347 Old_S := Entity (Selector_Name (Nam));
348
349 elsif Nkind (Nam) = N_Explicit_Dereference then
350 Old_S := Etype (Nam);
351
352 elsif Nkind (Nam) = N_Indexed_Component then
70482933
RK
353 if Is_Entity_Name (Prefix (Nam)) then
354 Old_S := Entity (Prefix (Nam));
355 else
356 Old_S := Entity (Selector_Name (Prefix (Nam)));
357 end if;
358
359 elsif Nkind (Nam) = N_Character_Literal then
360 Old_S := Etype (New_S);
361
362 else
363 Old_S := Entity (Nam);
364 end if;
365
366 if Is_Entity_Name (Nam) then
07fc65c4 367
def46b54
RD
368 -- If the renamed entity is a predefined operator, retain full name
369 -- to ensure its visibility.
07fc65c4
GB
370
371 if Ekind (Old_S) = E_Operator
372 and then Nkind (Nam) = N_Expanded_Name
373 then
374 Call_Name := New_Copy (Name (N));
375 else
e4494292 376 Call_Name := New_Occurrence_Of (Old_S, Loc);
07fc65c4
GB
377 end if;
378
70482933 379 else
def46b54
RD
380 if Nkind (Nam) = N_Selected_Component
381 and then Present (First_Formal (Old_S))
382 and then
383 (Is_Controlling_Formal (First_Formal (Old_S))
384 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
385 then
386
387 -- Retrieve the target object, to be added as a first actual
388 -- in the call.
389
390 Call_Name := New_Occurrence_Of (Old_S, Loc);
391 Pref := Prefix (Nam);
392
393 else
394 Call_Name := New_Copy (Name (N));
395 end if;
70482933 396
545cb5be 397 -- Original name may have been overloaded, but is fully resolved now
70482933
RK
398
399 Set_Is_Overloaded (Call_Name, False);
400 end if;
401
def46b54 402 -- For simple renamings, subsequent calls can be expanded directly as
d4fc0fb4 403 -- calls to the renamed entity. The body must be generated in any case
a3068ca6
AC
404 -- for calls that may appear elsewhere. This is not done in the case
405 -- where the subprogram is an instantiation because the actual proper
406 -- body has not been built yet.
70482933 407
545cb5be 408 if Ekind_In (Old_S, E_Function, E_Procedure)
70482933 409 and then Nkind (Decl) = N_Subprogram_Declaration
a3068ca6 410 and then not Is_Generic_Instance (Old_S)
70482933
RK
411 then
412 Set_Body_To_Inline (Decl, Old_S);
413 end if;
414
28fa5430
AC
415 -- Check whether the return type is a limited view. If the subprogram
416 -- is already frozen the generated body may have a non-limited view
417 -- of the type, that must be used, because it is the one in the spec
418 -- of the renaming declaration.
419
420 if Ekind (Old_S) = E_Function
421 and then Is_Entity_Name (Result_Definition (Spec))
422 then
423 declare
424 Ret_Type : constant Entity_Id := Etype (Result_Definition (Spec));
425 begin
426 if Ekind (Ret_Type) = E_Incomplete_Type
427 and then Present (Non_Limited_View (Ret_Type))
428 then
429 Set_Result_Definition (Spec,
430 New_Occurrence_Of (Non_Limited_View (Ret_Type), Loc));
431 end if;
432 end;
433 end if;
434
70482933
RK
435 -- The body generated for this renaming is an internal artifact, and
436 -- does not constitute a freeze point for the called entity.
437
438 Set_Must_Not_Freeze (Call_Name);
439
440 Formal := First_Formal (Defining_Entity (Decl));
441
def46b54
RD
442 if Present (Pref) then
443 declare
444 Pref_Type : constant Entity_Id := Etype (Pref);
445 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
446
447 begin
def46b54 448 -- The controlling formal may be an access parameter, or the
e14c931f 449 -- actual may be an access value, so adjust accordingly.
def46b54
RD
450
451 if Is_Access_Type (Pref_Type)
452 and then not Is_Access_Type (Form_Type)
453 then
454 Actuals := New_List
455 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
456
457 elsif Is_Access_Type (Form_Type)
458 and then not Is_Access_Type (Pref)
459 then
460 Actuals := New_List
461 (Make_Attribute_Reference (Loc,
462 Attribute_Name => Name_Access,
463 Prefix => Relocate_Node (Pref)));
464 else
465 Actuals := New_List (Pref);
466 end if;
467 end;
468
469 elsif Present (Formal) then
70482933
RK
470 Actuals := New_List;
471
def46b54
RD
472 else
473 Actuals := No_List;
474 end if;
475
476 if Present (Formal) then
70482933 477 while Present (Formal) loop
e4494292 478 Append (New_Occurrence_Of (Formal, Loc), Actuals);
70482933
RK
479 Next_Formal (Formal);
480 end loop;
481 end if;
482
def46b54
RD
483 -- If the renamed entity is an entry, inherit its profile. For other
484 -- renamings as bodies, both profiles must be subtype conformant, so it
485 -- is not necessary to replace the profile given in the declaration.
486 -- However, default values that are aggregates are rewritten when
487 -- partially analyzed, so we recover the original aggregate to insure
488 -- that subsequent conformity checking works. Similarly, if the default
489 -- expression was constant-folded, recover the original expression.
70482933
RK
490
491 Formal := First_Formal (Defining_Entity (Decl));
492
493 if Present (Formal) then
494 O_Formal := First_Formal (Old_S);
495 Param_Spec := First (Parameter_Specifications (Spec));
70482933
RK
496 while Present (Formal) loop
497 if Is_Entry (Old_S) then
70482933
RK
498 if Nkind (Parameter_Type (Param_Spec)) /=
499 N_Access_Definition
500 then
501 Set_Etype (Formal, Etype (O_Formal));
502 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
503 end if;
504
07fc65c4
GB
505 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
506 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
507 Nkind (Default_Value (O_Formal))
508 then
70482933
RK
509 Set_Expression (Param_Spec,
510 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
511 end if;
512
513 Next_Formal (Formal);
514 Next_Formal (O_Formal);
515 Next (Param_Spec);
516 end loop;
517 end if;
518
519 -- If the renamed entity is a function, the generated body contains a
520 -- return statement. Otherwise, build a procedure call. If the entity is
521 -- an entry, subsequent analysis of the call will transform it into the
522 -- proper entry or protected operation call. If the renamed entity is
523 -- a character literal, return it directly.
524
525 if Ekind (Old_S) = E_Function
526 or else Ekind (Old_S) = E_Operator
527 or else (Ekind (Old_S) = E_Subprogram_Type
528 and then Etype (Old_S) /= Standard_Void_Type)
529 then
530 Call_Node :=
86cde7b1 531 Make_Simple_Return_Statement (Loc,
70482933
RK
532 Expression =>
533 Make_Function_Call (Loc,
534 Name => Call_Name,
535 Parameter_Associations => Actuals));
536
537 elsif Ekind (Old_S) = E_Enumeration_Literal then
538 Call_Node :=
86cde7b1 539 Make_Simple_Return_Statement (Loc,
70482933
RK
540 Expression => New_Occurrence_Of (Old_S, Loc));
541
542 elsif Nkind (Nam) = N_Character_Literal then
543 Call_Node :=
86cde7b1 544 Make_Simple_Return_Statement (Loc,
70482933
RK
545 Expression => Call_Name);
546
547 else
548 Call_Node :=
549 Make_Procedure_Call_Statement (Loc,
550 Name => Call_Name,
551 Parameter_Associations => Actuals);
552 end if;
553
49e90211 554 -- Create entities for subprogram body and formals
70482933
RK
555
556 Set_Defining_Unit_Name (Spec,
557 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
558
559 Param_Spec := First (Parameter_Specifications (Spec));
70482933
RK
560 while Present (Param_Spec) loop
561 Set_Defining_Identifier (Param_Spec,
562 Make_Defining_Identifier (Loc,
563 Chars => Chars (Defining_Identifier (Param_Spec))));
564 Next (Param_Spec);
565 end loop;
566
567 Body_Node :=
568 Make_Subprogram_Body (Loc,
569 Specification => Spec,
570 Declarations => New_List,
571 Handled_Statement_Sequence =>
572 Make_Handled_Sequence_Of_Statements (Loc,
573 Statements => New_List (Call_Node)));
574
575 if Nkind (Decl) /= N_Subprogram_Declaration then
576 Rewrite (N,
577 Make_Subprogram_Declaration (Loc,
578 Specification => Specification (N)));
579 end if;
580
581 -- Link the body to the entity whose declaration it completes. If
def46b54
RD
582 -- the body is analyzed when the renamed entity is frozen, it may
583 -- be necessary to restore the proper scope (see package Exp_Ch13).
70482933
RK
584
585 if Nkind (N) = N_Subprogram_Renaming_Declaration
586 and then Present (Corresponding_Spec (N))
587 then
588 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
589 else
590 Set_Corresponding_Spec (Body_Node, New_S);
591 end if;
592
593 return Body_Node;
594 end Build_Renamed_Body;
595
fbf5a39b
AC
596 --------------------------
597 -- Check_Address_Clause --
598 --------------------------
599
600 procedure Check_Address_Clause (E : Entity_Id) is
26b043e0
AC
601 Addr : constant Node_Id := Address_Clause (E);
602 Expr : Node_Id;
603 Decl : constant Node_Id := Declaration_Node (E);
604 Loc : constant Source_Ptr := Sloc (Decl);
605 Typ : constant Entity_Id := Etype (E);
606 Lhs : Node_Id;
607 Tag_Assign : Node_Id;
fbf5a39b
AC
608
609 begin
610 if Present (Addr) then
611 Expr := Expression (Addr);
612
0d901290 613 if Needs_Constant_Address (Decl, Typ) then
fbf5a39b 614 Check_Constant_Address_Clause (Expr, E);
f3b57ab0
AC
615
616 -- Has_Delayed_Freeze was set on E when the address clause was
02217452
AC
617 -- analyzed, and must remain set because we want the address
618 -- clause to be elaborated only after any entity it references
619 -- has been elaborated.
fbf5a39b
AC
620 end if;
621
1d57c04f
AC
622 -- If Rep_Clauses are to be ignored, remove address clause from
623 -- list attached to entity, because it may be illegal for gigi,
624 -- for example by breaking order of elaboration..
625
626 if Ignore_Rep_Clauses then
627 declare
628 Rep : Node_Id;
629
630 begin
631 Rep := First_Rep_Item (E);
632
633 if Rep = Addr then
634 Set_First_Rep_Item (E, Next_Rep_Item (Addr));
635
636 else
637 while Present (Rep)
638 and then Next_Rep_Item (Rep) /= Addr
639 loop
640 Rep := Next_Rep_Item (Rep);
641 end loop;
642 end if;
643
644 if Present (Rep) then
645 Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
646 end if;
647 end;
648
cf28c974
RD
649 -- And now remove the address clause
650
651 Kill_Rep_Clause (Addr);
1d57c04f
AC
652
653 elsif not Error_Posted (Expr)
048e5cef 654 and then not Needs_Finalization (Typ)
fbf5a39b
AC
655 then
656 Warn_Overlay (Expr, Typ, Name (Addr));
657 end if;
cf6956bb
AC
658
659 if Present (Expression (Decl)) then
660
26b043e0
AC
661 -- Capture initialization value at point of declaration,
662 -- and make explicit assignment legal, because object may
663 -- be a constant.
cf6956bb
AC
664
665 Remove_Side_Effects (Expression (Decl));
26b043e0
AC
666 Lhs := New_Occurrence_Of (E, Loc);
667 Set_Assignment_OK (Lhs);
cf6956bb
AC
668
669 -- Move initialization to freeze actions (once the object has
670 -- been frozen, and the address clause alignment check has been
671 -- performed.
672
673 Append_Freeze_Action (E,
674 Make_Assignment_Statement (Loc,
26b043e0 675 Name => Lhs,
cf6956bb
AC
676 Expression => Expression (Decl)));
677
678 Set_No_Initialization (Decl);
26b043e0
AC
679
680 -- If the objet is tagged, check whether the tag must be
681 -- reassigned expliitly.
682
683 Tag_Assign := Make_Tag_Assignment (Decl);
684 if Present (Tag_Assign) then
685 Append_Freeze_Action (E, Tag_Assign);
686 end if;
cf6956bb 687 end if;
fbf5a39b
AC
688 end if;
689 end Check_Address_Clause;
690
70482933
RK
691 -----------------------------
692 -- Check_Compile_Time_Size --
693 -----------------------------
694
695 procedure Check_Compile_Time_Size (T : Entity_Id) is
696
c6823a20 697 procedure Set_Small_Size (T : Entity_Id; S : Uint);
70482933 698 -- Sets the compile time known size (32 bits or less) in the Esize
c6823a20 699 -- field, of T checking for a size clause that was given which attempts
2593c3e1 700 -- to give a smaller size, and also checking for an alignment clause.
70482933
RK
701
702 function Size_Known (T : Entity_Id) return Boolean;
07fc65c4 703 -- Recursive function that does all the work
70482933
RK
704
705 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
706 -- If T is a constrained subtype, its size is not known if any of its
707 -- discriminant constraints is not static and it is not a null record.
fbf5a39b 708 -- The test is conservative and doesn't check that the components are
70482933
RK
709 -- in fact constrained by non-static discriminant values. Could be made
710 -- more precise ???
711
712 --------------------
713 -- Set_Small_Size --
714 --------------------
715
c6823a20 716 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
70482933
RK
717 begin
718 if S > 32 then
719 return;
720
2593c3e1
AC
721 -- Check for bad size clause given
722
70482933
RK
723 elsif Has_Size_Clause (T) then
724 if RM_Size (T) < S then
725 Error_Msg_Uint_1 := S;
726 Error_Msg_NE
d58b9515 727 ("size for& too small, minimum allowed is ^",
70482933 728 Size_Clause (T), T);
70482933
RK
729 end if;
730
fc893455 731 -- Set size if not set already
70482933 732
fc893455
AC
733 elsif Unknown_RM_Size (T) then
734 Set_RM_Size (T, S);
70482933
RK
735 end if;
736 end Set_Small_Size;
737
738 ----------------
739 -- Size_Known --
740 ----------------
741
742 function Size_Known (T : Entity_Id) return Boolean is
743 Index : Entity_Id;
744 Comp : Entity_Id;
745 Ctyp : Entity_Id;
746 Low : Node_Id;
747 High : Node_Id;
748
749 begin
750 if Size_Known_At_Compile_Time (T) then
751 return True;
752
c6a9797e
RD
753 -- Always True for scalar types. This is true even for generic formal
754 -- scalar types. We used to return False in the latter case, but the
755 -- size is known at compile time, even in the template, we just do
756 -- not know the exact size but that's not the point of this routine.
757
70482933
RK
758 elsif Is_Scalar_Type (T)
759 or else Is_Task_Type (T)
760 then
c6a9797e
RD
761 return True;
762
763 -- Array types
70482933
RK
764
765 elsif Is_Array_Type (T) then
c6a9797e
RD
766
767 -- String literals always have known size, and we can set it
768
70482933 769 if Ekind (T) = E_String_Literal_Subtype then
c6823a20
EB
770 Set_Small_Size (T, Component_Size (T)
771 * String_Literal_Length (T));
70482933
RK
772 return True;
773
c6a9797e
RD
774 -- Unconstrained types never have known at compile time size
775
70482933
RK
776 elsif not Is_Constrained (T) then
777 return False;
778
def46b54
RD
779 -- Don't do any recursion on type with error posted, since we may
780 -- have a malformed type that leads us into a loop.
07fc65c4
GB
781
782 elsif Error_Posted (T) then
783 return False;
784
c6a9797e
RD
785 -- Otherwise if component size unknown, then array size unknown
786
70482933
RK
787 elsif not Size_Known (Component_Type (T)) then
788 return False;
789 end if;
790
def46b54
RD
791 -- Check for all indexes static, and also compute possible size
792 -- (in case it is less than 32 and may be packable).
70482933
RK
793
794 declare
795 Esiz : Uint := Component_Size (T);
796 Dim : Uint;
797
798 begin
799 Index := First_Index (T);
70482933
RK
800 while Present (Index) loop
801 if Nkind (Index) = N_Range then
802 Get_Index_Bounds (Index, Low, High);
803
804 elsif Error_Posted (Scalar_Range (Etype (Index))) then
805 return False;
806
807 else
808 Low := Type_Low_Bound (Etype (Index));
809 High := Type_High_Bound (Etype (Index));
810 end if;
811
812 if not Compile_Time_Known_Value (Low)
813 or else not Compile_Time_Known_Value (High)
814 or else Etype (Index) = Any_Type
815 then
816 return False;
817
818 else
819 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
820
821 if Dim >= 0 then
822 Esiz := Esiz * Dim;
823 else
824 Esiz := Uint_0;
825 end if;
826 end if;
827
828 Next_Index (Index);
829 end loop;
830
c6823a20 831 Set_Small_Size (T, Esiz);
70482933
RK
832 return True;
833 end;
834
c6a9797e
RD
835 -- Access types always have known at compile time sizes
836
70482933
RK
837 elsif Is_Access_Type (T) then
838 return True;
839
c6a9797e
RD
840 -- For non-generic private types, go to underlying type if present
841
70482933
RK
842 elsif Is_Private_Type (T)
843 and then not Is_Generic_Type (T)
844 and then Present (Underlying_Type (T))
845 then
def46b54
RD
846 -- Don't do any recursion on type with error posted, since we may
847 -- have a malformed type that leads us into a loop.
07fc65c4
GB
848
849 if Error_Posted (T) then
850 return False;
851 else
852 return Size_Known (Underlying_Type (T));
853 end if;
70482933 854
c6a9797e
RD
855 -- Record types
856
70482933 857 elsif Is_Record_Type (T) then
fbf5a39b
AC
858
859 -- A class-wide type is never considered to have a known size
860
70482933
RK
861 if Is_Class_Wide_Type (T) then
862 return False;
863
fbf5a39b 864 -- A subtype of a variant record must not have non-static
308e6f3a 865 -- discriminated components.
fbf5a39b
AC
866
867 elsif T /= Base_Type (T)
868 and then not Static_Discriminated_Components (T)
869 then
870 return False;
70482933 871
def46b54
RD
872 -- Don't do any recursion on type with error posted, since we may
873 -- have a malformed type that leads us into a loop.
07fc65c4
GB
874
875 elsif Error_Posted (T) then
876 return False;
fbf5a39b 877 end if;
07fc65c4 878
fbf5a39b 879 -- Now look at the components of the record
70482933 880
fbf5a39b 881 declare
def46b54
RD
882 -- The following two variables are used to keep track of the
883 -- size of packed records if we can tell the size of the packed
884 -- record in the front end. Packed_Size_Known is True if so far
885 -- we can figure out the size. It is initialized to True for a
ca1ffed0
AC
886 -- packed record, unless the record has discriminants or atomic
887 -- components or independent components.
888
889 -- The reason we eliminate the discriminated case is that
890 -- we don't know the way the back end lays out discriminated
891 -- packed records. If Packed_Size_Known is True, then
892 -- Packed_Size is the size in bits so far.
fbf5a39b
AC
893
894 Packed_Size_Known : Boolean :=
ca1ffed0
AC
895 Is_Packed (T)
896 and then not Has_Discriminants (T)
897 and then not Has_Atomic_Components (T)
898 and then not Has_Independent_Components (T);
fbf5a39b
AC
899
900 Packed_Size : Uint := Uint_0;
515490e0 901 -- Size in bits so far
fbf5a39b
AC
902
903 begin
904 -- Test for variant part present
905
906 if Has_Discriminants (T)
907 and then Present (Parent (T))
908 and then Nkind (Parent (T)) = N_Full_Type_Declaration
909 and then Nkind (Type_Definition (Parent (T))) =
545cb5be 910 N_Record_Definition
fbf5a39b 911 and then not Null_Present (Type_Definition (Parent (T)))
15918371
AC
912 and then
913 Present (Variant_Part
914 (Component_List (Type_Definition (Parent (T)))))
fbf5a39b
AC
915 then
916 -- If variant part is present, and type is unconstrained,
917 -- then we must have defaulted discriminants, or a size
918 -- clause must be present for the type, or else the size
919 -- is definitely not known at compile time.
920
921 if not Is_Constrained (T)
922 and then
545cb5be 923 No (Discriminant_Default_Value (First_Discriminant (T)))
fc893455 924 and then Unknown_RM_Size (T)
70482933 925 then
fbf5a39b
AC
926 return False;
927 end if;
928 end if;
70482933 929
fbf5a39b
AC
930 -- Loop through components
931
fea9e956 932 Comp := First_Component_Or_Discriminant (T);
fbf5a39b 933 while Present (Comp) loop
fea9e956 934 Ctyp := Etype (Comp);
fbf5a39b 935
fea9e956
ES
936 -- We do not know the packed size if there is a component
937 -- clause present (we possibly could, but this would only
938 -- help in the case of a record with partial rep clauses.
939 -- That's because in the case of full rep clauses, the
940 -- size gets figured out anyway by a different circuit).
fbf5a39b 941
fea9e956
ES
942 if Present (Component_Clause (Comp)) then
943 Packed_Size_Known := False;
944 end if;
70482933 945
ca1ffed0 946 -- We do not know the packed size if we have a by reference
515490e0
AC
947 -- type, or an atomic type or an atomic component, or an
948 -- aliased component (because packing does not touch these).
ca1ffed0
AC
949
950 if Is_Atomic (Ctyp)
951 or else Is_Atomic (Comp)
952 or else Is_By_Reference_Type (Ctyp)
515490e0 953 or else Is_Aliased (Comp)
ca1ffed0
AC
954 then
955 Packed_Size_Known := False;
956 end if;
957
fea9e956
ES
958 -- We need to identify a component that is an array where
959 -- the index type is an enumeration type with non-standard
960 -- representation, and some bound of the type depends on a
961 -- discriminant.
70482933 962
fea9e956 963 -- This is because gigi computes the size by doing a
e14c931f 964 -- substitution of the appropriate discriminant value in
fea9e956
ES
965 -- the size expression for the base type, and gigi is not
966 -- clever enough to evaluate the resulting expression (which
967 -- involves a call to rep_to_pos) at compile time.
fbf5a39b 968
fea9e956
ES
969 -- It would be nice if gigi would either recognize that
970 -- this expression can be computed at compile time, or
971 -- alternatively figured out the size from the subtype
972 -- directly, where all the information is at hand ???
fbf5a39b 973
fea9e956 974 if Is_Array_Type (Etype (Comp))
8ca597af 975 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
fea9e956
ES
976 then
977 declare
978 Ocomp : constant Entity_Id :=
979 Original_Record_Component (Comp);
980 OCtyp : constant Entity_Id := Etype (Ocomp);
981 Ind : Node_Id;
982 Indtyp : Entity_Id;
983 Lo, Hi : Node_Id;
70482933 984
fea9e956
ES
985 begin
986 Ind := First_Index (OCtyp);
987 while Present (Ind) loop
988 Indtyp := Etype (Ind);
70482933 989
fea9e956
ES
990 if Is_Enumeration_Type (Indtyp)
991 and then Has_Non_Standard_Rep (Indtyp)
992 then
993 Lo := Type_Low_Bound (Indtyp);
994 Hi := Type_High_Bound (Indtyp);
fbf5a39b 995
fea9e956
ES
996 if Is_Entity_Name (Lo)
997 and then Ekind (Entity (Lo)) = E_Discriminant
998 then
999 return False;
fbf5a39b 1000
fea9e956
ES
1001 elsif Is_Entity_Name (Hi)
1002 and then Ekind (Entity (Hi)) = E_Discriminant
1003 then
1004 return False;
1005 end if;
1006 end if;
fbf5a39b 1007
fea9e956
ES
1008 Next_Index (Ind);
1009 end loop;
1010 end;
1011 end if;
70482933 1012
def46b54
RD
1013 -- Clearly size of record is not known if the size of one of
1014 -- the components is not known.
70482933 1015
fea9e956
ES
1016 if not Size_Known (Ctyp) then
1017 return False;
1018 end if;
70482933 1019
fea9e956 1020 -- Accumulate packed size if possible
70482933 1021
fea9e956 1022 if Packed_Size_Known then
70482933 1023
fea9e956
ES
1024 -- We can only deal with elementary types, since for
1025 -- non-elementary components, alignment enters into the
1026 -- picture, and we don't know enough to handle proper
1027 -- alignment in this context. Packed arrays count as
1028 -- elementary if the representation is a modular type.
fbf5a39b 1029
fea9e956
ES
1030 if Is_Elementary_Type (Ctyp)
1031 or else (Is_Array_Type (Ctyp)
8ca597af
RD
1032 and then Present
1033 (Packed_Array_Impl_Type (Ctyp))
2593c3e1 1034 and then Is_Modular_Integer_Type
8ca597af 1035 (Packed_Array_Impl_Type (Ctyp)))
fea9e956 1036 then
ca1ffed0
AC
1037 -- Packed size unknown if we have an atomic type
1038 -- or a by reference type, since the back end
1039 -- knows how these are layed out.
1040
1041 if Is_Atomic (Ctyp)
1042 or else Is_By_Reference_Type (Ctyp)
1043 then
1044 Packed_Size_Known := False;
1045
2593c3e1 1046 -- If RM_Size is known and static, then we can keep
ca1ffed0 1047 -- accumulating the packed size
70482933 1048
ca1ffed0 1049 elsif Known_Static_RM_Size (Ctyp) then
70482933 1050
fea9e956
ES
1051 -- A little glitch, to be removed sometime ???
1052 -- gigi does not understand zero sizes yet.
1053
1054 if RM_Size (Ctyp) = Uint_0 then
70482933 1055 Packed_Size_Known := False;
fea9e956
ES
1056
1057 -- Normal case where we can keep accumulating the
1058 -- packed array size.
1059
1060 else
1061 Packed_Size := Packed_Size + RM_Size (Ctyp);
70482933 1062 end if;
fbf5a39b 1063
fea9e956
ES
1064 -- If we have a field whose RM_Size is not known then
1065 -- we can't figure out the packed size here.
fbf5a39b
AC
1066
1067 else
1068 Packed_Size_Known := False;
70482933 1069 end if;
fea9e956
ES
1070
1071 -- If we have a non-elementary type we can't figure out
1072 -- the packed array size (alignment issues).
1073
1074 else
1075 Packed_Size_Known := False;
70482933 1076 end if;
fbf5a39b 1077 end if;
70482933 1078
fea9e956 1079 Next_Component_Or_Discriminant (Comp);
fbf5a39b 1080 end loop;
70482933 1081
fbf5a39b 1082 if Packed_Size_Known then
c6823a20 1083 Set_Small_Size (T, Packed_Size);
fbf5a39b 1084 end if;
70482933 1085
fbf5a39b
AC
1086 return True;
1087 end;
70482933 1088
c6a9797e
RD
1089 -- All other cases, size not known at compile time
1090
70482933
RK
1091 else
1092 return False;
1093 end if;
1094 end Size_Known;
1095
1096 -------------------------------------
1097 -- Static_Discriminated_Components --
1098 -------------------------------------
1099
1100 function Static_Discriminated_Components
0da2c8ac 1101 (T : Entity_Id) return Boolean
70482933
RK
1102 is
1103 Constraint : Elmt_Id;
1104
1105 begin
1106 if Has_Discriminants (T)
1107 and then Present (Discriminant_Constraint (T))
1108 and then Present (First_Component (T))
1109 then
1110 Constraint := First_Elmt (Discriminant_Constraint (T));
70482933
RK
1111 while Present (Constraint) loop
1112 if not Compile_Time_Known_Value (Node (Constraint)) then
1113 return False;
1114 end if;
1115
1116 Next_Elmt (Constraint);
1117 end loop;
1118 end if;
1119
1120 return True;
1121 end Static_Discriminated_Components;
1122
1123 -- Start of processing for Check_Compile_Time_Size
1124
1125 begin
1126 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
1127 end Check_Compile_Time_Size;
1128
75965852
AC
1129 -----------------------------------
1130 -- Check_Component_Storage_Order --
1131 -----------------------------------
1132
1133 procedure Check_Component_Storage_Order
ee6208f2
AC
1134 (Encl_Type : Entity_Id;
1135 Comp : Entity_Id;
1136 ADC : Node_Id;
1137 Comp_ADC_Present : out Boolean)
75965852
AC
1138 is
1139 Comp_Type : Entity_Id;
8a7c0400 1140 Comp_ADC : Node_Id;
75965852 1141 Err_Node : Node_Id;
75965852 1142
5df1266a 1143 Comp_Byte_Aligned : Boolean;
e191e5ae 1144 -- Set for the record case, True if Comp starts on a byte boundary
5df1266a
AC
1145 -- (in which case it is allowed to have different storage order).
1146
637a41a5
AC
1147 Comp_SSO_Differs : Boolean;
1148 -- Set True when the component is a nested composite, and it does not
1149 -- have the same scalar storage order as Encl_Type.
1150
11d59a86
AC
1151 Component_Aliased : Boolean;
1152
75965852
AC
1153 begin
1154 -- Record case
1155
1156 if Present (Comp) then
1157 Err_Node := Comp;
1158 Comp_Type := Etype (Comp);
75965852 1159
4ff4293f 1160 if Is_Tag (Comp) then
4ff4293f 1161 Comp_Byte_Aligned := True;
11d59a86 1162 Component_Aliased := False;
4ff4293f
AC
1163
1164 else
8b034336
AC
1165 -- If a component clause is present, check if the component starts
1166 -- on a storage element boundary. Otherwise conservatively assume
1167 -- it does so only in the case where the record is not packed.
e191e5ae
TQ
1168
1169 if Present (Component_Clause (Comp)) then
1170 Comp_Byte_Aligned :=
1171 Normalized_First_Bit (Comp) mod System_Storage_Unit = 0;
1172 else
1173 Comp_Byte_Aligned := not Is_Packed (Encl_Type);
1174 end if;
1175
11d59a86 1176 Component_Aliased := Is_Aliased (Comp);
4ff4293f 1177 end if;
5df1266a 1178
75965852
AC
1179 -- Array case
1180
1181 else
1182 Err_Node := Encl_Type;
1183 Comp_Type := Component_Type (Encl_Type);
5df1266a 1184
11d59a86 1185 Component_Aliased := Has_Aliased_Components (Encl_Type);
75965852
AC
1186 end if;
1187
b3408631
RD
1188 -- Note: the Reverse_Storage_Order flag is set on the base type, but
1189 -- the attribute definition clause is attached to the first subtype.
75965852
AC
1190
1191 Comp_Type := Base_Type (Comp_Type);
8a7c0400
AC
1192 Comp_ADC := Get_Attribute_Definition_Clause
1193 (First_Subtype (Comp_Type),
1194 Attribute_Scalar_Storage_Order);
ee6208f2 1195 Comp_ADC_Present := Present (Comp_ADC);
75965852 1196
6782b1ef 1197 -- Case of record or array component: check storage order compatibility
8a7c0400 1198
6782b1ef 1199 if Is_Record_Type (Comp_Type) or else Is_Array_Type (Comp_Type) then
637a41a5
AC
1200 Comp_SSO_Differs :=
1201 Reverse_Storage_Order (Encl_Type)
1202 /=
1203 Reverse_Storage_Order (Comp_Type);
1204
6782b1ef
AC
1205 -- Parent and extension must have same storage order
1206
ae05cdd6 1207 if Present (Comp) and then Chars (Comp) = Name_uParent then
637a41a5 1208 if Comp_SSO_Differs then
8190087e
AC
1209 Error_Msg_N
1210 ("record extension must have same scalar storage order as "
1211 & "parent", Err_Node);
1212 end if;
1213
6782b1ef
AC
1214 -- If enclosing composite has explicit SSO then nested composite must
1215 -- have explicit SSO as well.
1216
1217 elsif Present (ADC) and then No (Comp_ADC) then
5df1266a
AC
1218 Error_Msg_N ("nested composite must have explicit scalar "
1219 & "storage order", Err_Node);
1220
6782b1ef
AC
1221 -- If component and composite SSO differs, check that component
1222 -- falls on byte boundaries and isn't packed.
1223
637a41a5
AC
1224 elsif Comp_SSO_Differs then
1225
1226 -- Component SSO differs from enclosing composite:
1227
1228 -- Reject if component is a packed array, as it may be represented
1229 -- as a scalar internally.
1230
e191e5ae 1231 if Is_Packed_Array (Comp_Type) then
637a41a5
AC
1232 Error_Msg_N
1233 ("type of packed component must have same scalar "
1234 & "storage order as enclosing composite", Err_Node);
1235
e191e5ae
TQ
1236 -- Reject if composite is a packed array, as it may be rewritten
1237 -- into an array of scalars.
1238
1239 elsif Is_Packed_Array (Encl_Type) then
1240 Error_Msg_N ("type of packed array must have same scalar "
1241 & "storage order as component", Err_Node);
1242
637a41a5
AC
1243 -- Reject if not byte aligned
1244
e191e5ae
TQ
1245 elsif Is_Record_Type (Encl_Type)
1246 and then not Comp_Byte_Aligned
1247 then
637a41a5
AC
1248 Error_Msg_N
1249 ("type of non-byte-aligned component must have same scalar "
1250 & "storage order as enclosing composite", Err_Node);
637a41a5 1251 end if;
5df1266a 1252 end if;
75965852 1253
6782b1ef 1254 -- Enclosing type has explicit SSO: non-composite component must not
8a7c0400
AC
1255 -- be aliased.
1256
6782b1ef 1257 elsif Present (ADC) and then Component_Aliased then
b3408631
RD
1258 Error_Msg_N
1259 ("aliased component not permitted for type with "
1260 & "explicit Scalar_Storage_Order", Err_Node);
75965852
AC
1261 end if;
1262 end Check_Component_Storage_Order;
1263
70482933
RK
1264 -----------------------------
1265 -- Check_Debug_Info_Needed --
1266 -----------------------------
1267
1268 procedure Check_Debug_Info_Needed (T : Entity_Id) is
1269 begin
1b24ada5 1270 if Debug_Info_Off (T) then
70482933
RK
1271 return;
1272
1273 elsif Comes_From_Source (T)
1274 or else Debug_Generated_Code
1275 or else Debug_Flag_VV
1b24ada5 1276 or else Needs_Debug_Info (T)
70482933
RK
1277 then
1278 Set_Debug_Info_Needed (T);
1279 end if;
1280 end Check_Debug_Info_Needed;
1281
18c56840
ES
1282 -------------------------------
1283 -- Check_Expression_Function --
1284 -------------------------------
1285
1286 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id) is
1287 Decl : Node_Id;
1288
1289 function Find_Constant (Nod : Node_Id) return Traverse_Result;
1290 -- Function to search for deferred constant
1291
1292 -------------------
1293 -- Find_Constant --
1294 -------------------
1295
1296 function Find_Constant (Nod : Node_Id) return Traverse_Result is
1297 begin
4b259b2d
AC
1298 -- When a constant is initialized with the result of a dispatching
1299 -- call, the constant declaration is rewritten as a renaming of the
1300 -- displaced function result. This scenario is not a premature use of
1301 -- a constant even though the Has_Completion flag is not set.
1302
18c56840
ES
1303 if Is_Entity_Name (Nod)
1304 and then Present (Entity (Nod))
1305 and then Ekind (Entity (Nod)) = E_Constant
4b259b2d
AC
1306 and then Scope (Entity (Nod)) = Current_Scope
1307 and then Nkind (Declaration_Node (Entity (Nod))) =
1308 N_Object_Declaration
18c56840
ES
1309 and then not Is_Imported (Entity (Nod))
1310 and then not Has_Completion (Entity (Nod))
18c56840
ES
1311 then
1312 Error_Msg_NE
1313 ("premature use of& in call or instance", N, Entity (Nod));
3ad33e33
AC
1314
1315 elsif Nkind (Nod) = N_Attribute_Reference then
1316 Analyze (Prefix (Nod));
e8de1a82 1317
3ad33e33
AC
1318 if Is_Entity_Name (Prefix (Nod))
1319 and then Is_Type (Entity (Prefix (Nod)))
1320 then
1321 Freeze_Before (N, Entity (Prefix (Nod)));
1322 end if;
18c56840
ES
1323 end if;
1324
1325 return OK;
1326 end Find_Constant;
1327
1328 procedure Check_Deferred is new Traverse_Proc (Find_Constant);
1329
1330 -- Start of processing for Check_Expression_Function
1331
1332 begin
1333 Decl := Original_Node (Unit_Declaration_Node (Nam));
1334
1335 if Scope (Nam) = Current_Scope
1336 and then Nkind (Decl) = N_Expression_Function
1337 then
1338 Check_Deferred (Expression (Decl));
1339 end if;
1340 end Check_Expression_Function;
1341
70482933
RK
1342 ----------------------------
1343 -- Check_Strict_Alignment --
1344 ----------------------------
1345
1346 procedure Check_Strict_Alignment (E : Entity_Id) is
1347 Comp : Entity_Id;
1348
1349 begin
1350 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1351 Set_Strict_Alignment (E);
1352
1353 elsif Is_Array_Type (E) then
1354 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1355
1356 elsif Is_Record_Type (E) then
1357 if Is_Limited_Record (E) then
1358 Set_Strict_Alignment (E);
1359 return;
1360 end if;
1361
1362 Comp := First_Component (E);
70482933
RK
1363 while Present (Comp) loop
1364 if not Is_Type (Comp)
1365 and then (Strict_Alignment (Etype (Comp))
fbf5a39b 1366 or else Is_Aliased (Comp))
70482933
RK
1367 then
1368 Set_Strict_Alignment (E);
1369 return;
1370 end if;
1371
1372 Next_Component (Comp);
1373 end loop;
1374 end if;
1375 end Check_Strict_Alignment;
1376
1377 -------------------------
1378 -- Check_Unsigned_Type --
1379 -------------------------
1380
1381 procedure Check_Unsigned_Type (E : Entity_Id) is
1382 Ancestor : Entity_Id;
1383 Lo_Bound : Node_Id;
1384 Btyp : Entity_Id;
1385
1386 begin
1387 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1388 return;
1389 end if;
1390
1391 -- Do not attempt to analyze case where range was in error
1392
ef1c0511 1393 if No (Scalar_Range (E)) or else Error_Posted (Scalar_Range (E)) then
70482933
RK
1394 return;
1395 end if;
1396
1397 -- The situation that is non trivial is something like
1398
1399 -- subtype x1 is integer range -10 .. +10;
1400 -- subtype x2 is x1 range 0 .. V1;
1401 -- subtype x3 is x2 range V2 .. V3;
1402 -- subtype x4 is x3 range V4 .. V5;
1403
1404 -- where Vn are variables. Here the base type is signed, but we still
1405 -- know that x4 is unsigned because of the lower bound of x2.
1406
1407 -- The only way to deal with this is to look up the ancestor chain
1408
1409 Ancestor := E;
1410 loop
1411 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1412 return;
1413 end if;
1414
1415 Lo_Bound := Type_Low_Bound (Ancestor);
1416
1417 if Compile_Time_Known_Value (Lo_Bound) then
70482933
RK
1418 if Expr_Rep_Value (Lo_Bound) >= 0 then
1419 Set_Is_Unsigned_Type (E, True);
1420 end if;
1421
1422 return;
1423
1424 else
1425 Ancestor := Ancestor_Subtype (Ancestor);
1426
1427 -- If no ancestor had a static lower bound, go to base type
1428
1429 if No (Ancestor) then
1430
1431 -- Note: the reason we still check for a compile time known
1432 -- value for the base type is that at least in the case of
1433 -- generic formals, we can have bounds that fail this test,
1434 -- and there may be other cases in error situations.
1435
1436 Btyp := Base_Type (E);
1437
1438 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1439 return;
1440 end if;
1441
1442 Lo_Bound := Type_Low_Bound (Base_Type (E));
1443
1444 if Compile_Time_Known_Value (Lo_Bound)
1445 and then Expr_Rep_Value (Lo_Bound) >= 0
1446 then
1447 Set_Is_Unsigned_Type (E, True);
1448 end if;
1449
1450 return;
70482933
RK
1451 end if;
1452 end if;
1453 end loop;
1454 end Check_Unsigned_Type;
1455
cfb120b5
AC
1456 -------------------------
1457 -- Is_Atomic_Aggregate --
1458 -------------------------
fbf5a39b 1459
cfb120b5 1460 function Is_Atomic_Aggregate
b0159fbe
AC
1461 (E : Entity_Id;
1462 Typ : Entity_Id) return Boolean
1463 is
fbf5a39b
AC
1464 Loc : constant Source_Ptr := Sloc (E);
1465 New_N : Node_Id;
b0159fbe 1466 Par : Node_Id;
fbf5a39b
AC
1467 Temp : Entity_Id;
1468
1469 begin
b0159fbe
AC
1470 Par := Parent (E);
1471
01957849 1472 -- Array may be qualified, so find outer context
b0159fbe
AC
1473
1474 if Nkind (Par) = N_Qualified_Expression then
1475 Par := Parent (Par);
1476 end if;
1477
fb2e11ee 1478 if Nkind_In (Par, N_Object_Declaration, N_Assignment_Statement)
b0159fbe 1479 and then Comes_From_Source (Par)
fbf5a39b 1480 then
b29def53 1481 Temp := Make_Temporary (Loc, 'T', E);
fbf5a39b
AC
1482 New_N :=
1483 Make_Object_Declaration (Loc,
1484 Defining_Identifier => Temp,
c6a9797e
RD
1485 Object_Definition => New_Occurrence_Of (Typ, Loc),
1486 Expression => Relocate_Node (E));
b0159fbe 1487 Insert_Before (Par, New_N);
fbf5a39b
AC
1488 Analyze (New_N);
1489
b0159fbe
AC
1490 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1491 return True;
2c1b72d7 1492
b0159fbe
AC
1493 else
1494 return False;
fbf5a39b 1495 end if;
cfb120b5 1496 end Is_Atomic_Aggregate;
fbf5a39b 1497
2ffcbaa5
AC
1498 -----------------------------------------------
1499 -- Explode_Initialization_Compound_Statement --
1500 -----------------------------------------------
1501
1502 procedure Explode_Initialization_Compound_Statement (E : Entity_Id) is
1503 Init_Stmts : constant Node_Id := Initialization_Statements (E);
9dc30a5f 1504
2ffcbaa5
AC
1505 begin
1506 if Present (Init_Stmts)
1507 and then Nkind (Init_Stmts) = N_Compound_Statement
1508 then
1509 Insert_List_Before (Init_Stmts, Actions (Init_Stmts));
1510
1511 -- Note that we rewrite Init_Stmts into a NULL statement, rather than
1512 -- just removing it, because Freeze_All may rely on this particular
1513 -- Node_Id still being present in the enclosing list to know where to
1514 -- stop freezing.
1515
1516 Rewrite (Init_Stmts, Make_Null_Statement (Sloc (Init_Stmts)));
1517
1518 Set_Initialization_Statements (E, Empty);
1519 end if;
1520 end Explode_Initialization_Compound_Statement;
1521
70482933
RK
1522 ----------------
1523 -- Freeze_All --
1524 ----------------
1525
1526 -- Note: the easy coding for this procedure would be to just build a
1527 -- single list of freeze nodes and then insert them and analyze them
1528 -- all at once. This won't work, because the analysis of earlier freeze
1529 -- nodes may recursively freeze types which would otherwise appear later
1530 -- on in the freeze list. So we must analyze and expand the freeze nodes
1531 -- as they are generated.
1532
1533 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
70482933
RK
1534 E : Entity_Id;
1535 Decl : Node_Id;
1536
1537 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
def46b54
RD
1538 -- This is the internal recursive routine that does freezing of entities
1539 -- (but NOT the analysis of default expressions, which should not be
1540 -- recursive, we don't want to analyze those till we are sure that ALL
1541 -- the types are frozen).
70482933 1542
fbf5a39b
AC
1543 --------------------
1544 -- Freeze_All_Ent --
1545 --------------------
1546
545cb5be 1547 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
70482933
RK
1548 E : Entity_Id;
1549 Flist : List_Id;
1550 Lastn : Node_Id;
1551
1552 procedure Process_Flist;
def46b54
RD
1553 -- If freeze nodes are present, insert and analyze, and reset cursor
1554 -- for next insertion.
70482933 1555
fbf5a39b
AC
1556 -------------------
1557 -- Process_Flist --
1558 -------------------
1559
70482933
RK
1560 procedure Process_Flist is
1561 begin
1562 if Is_Non_Empty_List (Flist) then
1563 Lastn := Next (After);
1564 Insert_List_After_And_Analyze (After, Flist);
1565
1566 if Present (Lastn) then
1567 After := Prev (Lastn);
1568 else
1569 After := Last (List_Containing (After));
1570 end if;
1571 end if;
1572 end Process_Flist;
1573
fbf5a39b
AC
1574 -- Start or processing for Freeze_All_Ent
1575
70482933
RK
1576 begin
1577 E := From;
1578 while Present (E) loop
1579
1580 -- If the entity is an inner package which is not a package
def46b54
RD
1581 -- renaming, then its entities must be frozen at this point. Note
1582 -- that such entities do NOT get frozen at the end of the nested
1583 -- package itself (only library packages freeze).
70482933
RK
1584
1585 -- Same is true for task declarations, where anonymous records
1586 -- created for entry parameters must be frozen.
1587
1588 if Ekind (E) = E_Package
1589 and then No (Renamed_Object (E))
1590 and then not Is_Child_Unit (E)
1591 and then not Is_Frozen (E)
1592 then
7d8b9c99 1593 Push_Scope (E);
70482933
RK
1594 Install_Visible_Declarations (E);
1595 Install_Private_Declarations (E);
1596
1597 Freeze_All (First_Entity (E), After);
1598
1599 End_Package_Scope (E);
1600
d3cb4cc0
AC
1601 if Is_Generic_Instance (E)
1602 and then Has_Delayed_Freeze (E)
1603 then
1604 Set_Has_Delayed_Freeze (E, False);
1605 Expand_N_Package_Declaration (Unit_Declaration_Node (E));
1606 end if;
1607
70482933 1608 elsif Ekind (E) in Task_Kind
ef1c0511
AC
1609 and then Nkind_In (Parent (E), N_Task_Type_Declaration,
1610 N_Single_Task_Declaration)
70482933 1611 then
7d8b9c99 1612 Push_Scope (E);
70482933
RK
1613 Freeze_All (First_Entity (E), After);
1614 End_Scope;
1615
1616 -- For a derived tagged type, we must ensure that all the
def46b54
RD
1617 -- primitive operations of the parent have been frozen, so that
1618 -- their addresses will be in the parent's dispatch table at the
1619 -- point it is inherited.
70482933
RK
1620
1621 elsif Ekind (E) = E_Record_Type
1622 and then Is_Tagged_Type (E)
1623 and then Is_Tagged_Type (Etype (E))
1624 and then Is_Derived_Type (E)
1625 then
1626 declare
1627 Prim_List : constant Elist_Id :=
1628 Primitive_Operations (Etype (E));
fbf5a39b
AC
1629
1630 Prim : Elmt_Id;
1631 Subp : Entity_Id;
70482933
RK
1632
1633 begin
df3e68b1 1634 Prim := First_Elmt (Prim_List);
70482933
RK
1635 while Present (Prim) loop
1636 Subp := Node (Prim);
1637
1638 if Comes_From_Source (Subp)
1639 and then not Is_Frozen (Subp)
1640 then
c159409f 1641 Flist := Freeze_Entity (Subp, After);
70482933
RK
1642 Process_Flist;
1643 end if;
1644
1645 Next_Elmt (Prim);
1646 end loop;
1647 end;
1648 end if;
1649
1650 if not Is_Frozen (E) then
c159409f 1651 Flist := Freeze_Entity (E, After);
70482933 1652 Process_Flist;
47e11d08
AC
1653
1654 -- If already frozen, and there are delayed aspects, this is where
1655 -- we do the visibility check for these aspects (see Sem_Ch13 spec
1656 -- for a description of how we handle aspect visibility).
1657
1658 elsif Has_Delayed_Aspects (E) then
02e4edea 1659
b98e2969
AC
1660 -- Retrieve the visibility to the discriminants in order to
1661 -- analyze properly the aspects.
1662
1663 Push_Scope_And_Install_Discriminants (E);
1664
47e11d08
AC
1665 declare
1666 Ritem : Node_Id;
1667
1668 begin
1669 Ritem := First_Rep_Item (E);
1670 while Present (Ritem) loop
1671 if Nkind (Ritem) = N_Aspect_Specification
bd949ee2 1672 and then Entity (Ritem) = E
47e11d08
AC
1673 and then Is_Delayed_Aspect (Ritem)
1674 then
1675 Check_Aspect_At_End_Of_Declarations (Ritem);
1676 end if;
1677
1678 Ritem := Next_Rep_Item (Ritem);
1679 end loop;
1680 end;
b98e2969
AC
1681
1682 Uninstall_Discriminants_And_Pop_Scope (E);
70482933
RK
1683 end if;
1684
def46b54
RD
1685 -- If an incomplete type is still not frozen, this may be a
1686 -- premature freezing because of a body declaration that follows.
ef992452
AC
1687 -- Indicate where the freezing took place. Freezing will happen
1688 -- if the body comes from source, but not if it is internally
1689 -- generated, for example as the body of a type invariant.
fbf5a39b 1690
def46b54
RD
1691 -- If the freezing is caused by the end of the current declarative
1692 -- part, it is a Taft Amendment type, and there is no error.
fbf5a39b
AC
1693
1694 if not Is_Frozen (E)
1695 and then Ekind (E) = E_Incomplete_Type
1696 then
1697 declare
1698 Bod : constant Node_Id := Next (After);
1699
1700 begin
35fae080
RD
1701 -- The presence of a body freezes all entities previously
1702 -- declared in the current list of declarations, but this
1703 -- does not apply if the body does not come from source.
1704 -- A type invariant is transformed into a subprogram body
1705 -- which is placed at the end of the private part of the
1706 -- current package, but this body does not freeze incomplete
1707 -- types that may be declared in this private part.
1708
545cb5be
AC
1709 if (Nkind_In (Bod, N_Subprogram_Body,
1710 N_Entry_Body,
1711 N_Package_Body,
1712 N_Protected_Body,
1713 N_Task_Body)
fbf5a39b 1714 or else Nkind (Bod) in N_Body_Stub)
ef992452 1715 and then
35fae080 1716 List_Containing (After) = List_Containing (Parent (E))
ef992452 1717 and then Comes_From_Source (Bod)
fbf5a39b
AC
1718 then
1719 Error_Msg_Sloc := Sloc (Next (After));
1720 Error_Msg_NE
1721 ("type& is frozen# before its full declaration",
1722 Parent (E), E);
1723 end if;
1724 end;
1725 end if;
1726
70482933
RK
1727 Next_Entity (E);
1728 end loop;
1729 end Freeze_All_Ent;
1730
1731 -- Start of processing for Freeze_All
1732
1733 begin
1734 Freeze_All_Ent (From, After);
1735
1736 -- Now that all types are frozen, we can deal with default expressions
1737 -- that require us to build a default expression functions. This is the
1738 -- point at which such functions are constructed (after all types that
1739 -- might be used in such expressions have been frozen).
fbf5a39b 1740
d4fc0fb4
AC
1741 -- For subprograms that are renaming_as_body, we create the wrapper
1742 -- bodies as needed.
1743
70482933
RK
1744 -- We also add finalization chains to access types whose designated
1745 -- types are controlled. This is normally done when freezing the type,
1746 -- but this misses recursive type definitions where the later members
c6a9797e 1747 -- of the recursion introduce controlled components.
70482933
RK
1748
1749 -- Loop through entities
1750
1751 E := From;
1752 while Present (E) loop
70482933 1753 if Is_Subprogram (E) then
70482933
RK
1754 if not Default_Expressions_Processed (E) then
1755 Process_Default_Expressions (E, After);
1756 end if;
1757
1758 if not Has_Completion (E) then
1759 Decl := Unit_Declaration_Node (E);
1760
1761 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
8417f4b2
AC
1762 if Error_Posted (Decl) then
1763 Set_Has_Completion (E);
8417f4b2
AC
1764 else
1765 Build_And_Analyze_Renamed_Body (Decl, E, After);
1766 end if;
70482933
RK
1767
1768 elsif Nkind (Decl) = N_Subprogram_Declaration
1769 and then Present (Corresponding_Body (Decl))
1770 and then
1771 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
fbf5a39b 1772 = N_Subprogram_Renaming_Declaration
70482933
RK
1773 then
1774 Build_And_Analyze_Renamed_Body
1775 (Decl, Corresponding_Body (Decl), After);
1776 end if;
1777 end if;
1778
1779 elsif Ekind (E) in Task_Kind
ef1c0511
AC
1780 and then Nkind_In (Parent (E), N_Task_Type_Declaration,
1781 N_Single_Task_Declaration)
70482933
RK
1782 then
1783 declare
1784 Ent : Entity_Id;
545cb5be 1785
70482933
RK
1786 begin
1787 Ent := First_Entity (E);
70482933 1788 while Present (Ent) loop
70482933
RK
1789 if Is_Entry (Ent)
1790 and then not Default_Expressions_Processed (Ent)
1791 then
1792 Process_Default_Expressions (Ent, After);
1793 end if;
1794
1795 Next_Entity (Ent);
1796 end loop;
1797 end;
1798
ca5af305
AC
1799 -- We add finalization masters to access types whose designated types
1800 -- require finalization. This is normally done when freezing the
1801 -- type, but this misses recursive type definitions where the later
1802 -- members of the recursion introduce controlled components (such as
1803 -- can happen when incomplete types are involved), as well cases
1804 -- where a component type is private and the controlled full type
1805 -- occurs after the access type is frozen. Cases that don't need a
1806 -- finalization master are generic formal types (the actual type will
ebdaa81b
AC
1807 -- have it) and types derived from them, and types with Java and CIL
1808 -- conventions, since those are used for API bindings.
1809 -- (Are there any other cases that should be excluded here???)
df3e68b1 1810
70482933
RK
1811 elsif Is_Access_Type (E)
1812 and then Comes_From_Source (E)
ebdaa81b 1813 and then not Is_Generic_Type (Root_Type (E))
048e5cef 1814 and then Needs_Finalization (Designated_Type (E))
70482933 1815 then
ca5af305 1816 Build_Finalization_Master (E);
70482933
RK
1817 end if;
1818
1819 Next_Entity (E);
1820 end loop;
70482933
RK
1821 end Freeze_All;
1822
1823 -----------------------
1824 -- Freeze_And_Append --
1825 -----------------------
1826
1827 procedure Freeze_And_Append
1828 (Ent : Entity_Id;
c159409f 1829 N : Node_Id;
70482933
RK
1830 Result : in out List_Id)
1831 is
c159409f 1832 L : constant List_Id := Freeze_Entity (Ent, N);
70482933
RK
1833 begin
1834 if Is_Non_Empty_List (L) then
1835 if Result = No_List then
1836 Result := L;
1837 else
1838 Append_List (L, Result);
1839 end if;
1840 end if;
1841 end Freeze_And_Append;
1842
1843 -------------------
1844 -- Freeze_Before --
1845 -------------------
1846
1847 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
c159409f 1848 Freeze_Nodes : constant List_Id := Freeze_Entity (T, N);
18c56840 1849
70482933 1850 begin
18c56840
ES
1851 if Ekind (T) = E_Function then
1852 Check_Expression_Function (N, T);
1853 end if;
1854
70482933 1855 if Is_Non_Empty_List (Freeze_Nodes) then
fbf5a39b 1856 Insert_Actions (N, Freeze_Nodes);
70482933
RK
1857 end if;
1858 end Freeze_Before;
1859
1860 -------------------
1861 -- Freeze_Entity --
1862 -------------------
1863
c159409f 1864 function Freeze_Entity (E : Entity_Id; N : Node_Id) return List_Id is
0fea901b
AC
1865 Loc : constant Source_Ptr := Sloc (N);
1866 Comp : Entity_Id;
1867 F_Node : Node_Id;
1868 Indx : Node_Id;
1869 Formal : Entity_Id;
1870 Atype : Entity_Id;
1871
c6823a20 1872 Test_E : Entity_Id := E;
0fea901b
AC
1873 -- This could use a comment ???
1874
1875 Late_Freezing : Boolean := False;
1876 -- Used to detect attempt to freeze function declared in another unit
70482933 1877
90878b12
AC
1878 Result : List_Id := No_List;
1879 -- List of freezing actions, left at No_List if none
1880
4c8a5bb8
AC
1881 Has_Default_Initialization : Boolean := False;
1882 -- This flag gets set to true for a variable with default initialization
1883
90878b12
AC
1884 procedure Add_To_Result (N : Node_Id);
1885 -- N is a freezing action to be appended to the Result
1886
b98e2969
AC
1887 function After_Last_Declaration return Boolean;
1888 -- If Loc is a freeze_entity that appears after the last declaration
1889 -- in the scope, inhibit error messages on late completion.
1890
70482933 1891 procedure Check_Current_Instance (Comp_Decl : Node_Id);
edd63e9b
ES
1892 -- Check that an Access or Unchecked_Access attribute with a prefix
1893 -- which is the current instance type can only be applied when the type
1894 -- is limited.
70482933 1895
67b3acf8
RD
1896 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
1897 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
1898 -- integer literal without an explicit corresponding size clause. The
1899 -- caller has checked that Utype is a modular integer type.
1900
63bb4268
AC
1901 procedure Freeze_Array_Type (Arr : Entity_Id);
1902 -- Freeze array type, including freezing index and component types
1903
3cd4a210
AC
1904 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id;
1905 -- Create Freeze_Generic_Entity nodes for types declared in a generic
1906 -- package. Recurse on inner generic packages.
1907
4d1429b2 1908 function Freeze_Profile (E : Entity_Id) return Boolean;
9ceeaf9d
AC
1909 -- Freeze formals and return type of subprogram. If some type in the
1910 -- profile is a limited view, freezing of the entity will take place
1911 -- elsewhere, and the function returns False. This routine will be
1912 -- modified if and when we can implement AI05-019 efficiently ???
4d1429b2 1913
70482933 1914 procedure Freeze_Record_Type (Rec : Entity_Id);
63bb4268 1915 -- Freeze record type, including freezing component types, and freezing
edd63e9b 1916 -- primitive operations if this is a tagged type.
70482933 1917
e8cddc3b
AC
1918 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean;
1919 -- Determine whether an arbitrary entity is subject to Boolean aspect
1920 -- Import and its value is specified as True.
1921
0fea901b
AC
1922 procedure Late_Freeze_Subprogram (E : Entity_Id);
1923 -- Following AI05-151, a function can return a limited view of a type
1924 -- declared elsewhere. In that case the function cannot be frozen at
1925 -- the end of its enclosing package. If its first use is in a different
1926 -- unit, it cannot be frozen there, but if the call is legal the full
1927 -- view of the return type is available and the subprogram can now be
1928 -- frozen. However the freeze node cannot be inserted at the point of
1929 -- call, but rather must go in the package holding the function, so that
1930 -- the backend can process it in the proper context.
1931
32bba3c9
AC
1932 procedure Wrap_Imported_Subprogram (E : Entity_Id);
1933 -- If E is an entity for an imported subprogram with pre/post-conditions
1934 -- then this procedure will create a wrapper to ensure that proper run-
1935 -- time checking of the pre/postconditions. See body for details.
1936
90878b12
AC
1937 -------------------
1938 -- Add_To_Result --
1939 -------------------
1940
1941 procedure Add_To_Result (N : Node_Id) is
1942 begin
1943 if No (Result) then
1944 Result := New_List (N);
1945 else
1946 Append (N, Result);
1947 end if;
1948 end Add_To_Result;
1949
70482933
RK
1950 ----------------------------
1951 -- After_Last_Declaration --
1952 ----------------------------
1953
1954 function After_Last_Declaration return Boolean is
fb2e11ee 1955 Spec : constant Node_Id := Parent (Current_Scope);
0fea901b 1956
70482933
RK
1957 begin
1958 if Nkind (Spec) = N_Package_Specification then
1959 if Present (Private_Declarations (Spec)) then
1960 return Loc >= Sloc (Last (Private_Declarations (Spec)));
70482933
RK
1961 elsif Present (Visible_Declarations (Spec)) then
1962 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1963 else
1964 return False;
1965 end if;
0fea901b 1966
70482933
RK
1967 else
1968 return False;
1969 end if;
1970 end After_Last_Declaration;
1971
1972 ----------------------------
1973 -- Check_Current_Instance --
1974 ----------------------------
1975
1976 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1977
e1308fa8
AC
1978 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean;
1979 -- Determine whether Typ is compatible with the rules for aliased
1980 -- views of types as defined in RM 3.10 in the various dialects.
32c760e6 1981
70482933 1982 function Process (N : Node_Id) return Traverse_Result;
49e90211 1983 -- Process routine to apply check to given node
70482933 1984
e1308fa8
AC
1985 -----------------------------
1986 -- Is_Aliased_View_Of_Type --
1987 -----------------------------
1988
1989 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean is
1990 Typ_Decl : constant Node_Id := Parent (Typ);
1991
1992 begin
1993 -- Common case
1994
1995 if Nkind (Typ_Decl) = N_Full_Type_Declaration
1996 and then Limited_Present (Type_Definition (Typ_Decl))
1997 then
1998 return True;
1999
2000 -- The following paragraphs describe what a legal aliased view of
2001 -- a type is in the various dialects of Ada.
2002
2003 -- Ada 95
2004
2005 -- The current instance of a limited type, and a formal parameter
2006 -- or generic formal object of a tagged type.
2007
2008 -- Ada 95 limited type
2009 -- * Type with reserved word "limited"
2010 -- * A protected or task type
2011 -- * A composite type with limited component
2012
2013 elsif Ada_Version <= Ada_95 then
2014 return Is_Limited_Type (Typ);
2015
2016 -- Ada 2005
2017
2018 -- The current instance of a limited tagged type, a protected
2019 -- type, a task type, or a type that has the reserved word
2020 -- "limited" in its full definition ... a formal parameter or
2021 -- generic formal object of a tagged type.
2022
2023 -- Ada 2005 limited type
2024 -- * Type with reserved word "limited", "synchronized", "task"
2025 -- or "protected"
2026 -- * A composite type with limited component
2027 -- * A derived type whose parent is a non-interface limited type
2028
2029 elsif Ada_Version = Ada_2005 then
2030 return
2031 (Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ))
2032 or else
2033 (Is_Derived_Type (Typ)
2034 and then not Is_Interface (Etype (Typ))
2035 and then Is_Limited_Type (Etype (Typ)));
2036
2037 -- Ada 2012 and beyond
2038
2039 -- The current instance of an immutably limited type ... a formal
2040 -- parameter or generic formal object of a tagged type.
2041
2042 -- Ada 2012 limited type
2043 -- * Type with reserved word "limited", "synchronized", "task"
2044 -- or "protected"
2045 -- * A composite type with limited component
2046 -- * A derived type whose parent is a non-interface limited type
2047 -- * An incomplete view
2048
2049 -- Ada 2012 immutably limited type
2050 -- * Explicitly limited record type
2051 -- * Record extension with "limited" present
2052 -- * Non-formal limited private type that is either tagged
2053 -- or has at least one access discriminant with a default
2054 -- expression
2055 -- * Task type, protected type or synchronized interface
2056 -- * Type derived from immutably limited type
2057
2058 else
2059 return
2060 Is_Immutably_Limited_Type (Typ)
2061 or else Is_Incomplete_Type (Typ);
2062 end if;
2063 end Is_Aliased_View_Of_Type;
2064
fbf5a39b
AC
2065 -------------
2066 -- Process --
2067 -------------
2068
70482933
RK
2069 function Process (N : Node_Id) return Traverse_Result is
2070 begin
2071 case Nkind (N) is
2072 when N_Attribute_Reference =>
b69cd36a
AC
2073 if Nam_In (Attribute_Name (N), Name_Access,
2074 Name_Unchecked_Access)
70482933
RK
2075 and then Is_Entity_Name (Prefix (N))
2076 and then Is_Type (Entity (Prefix (N)))
2077 and then Entity (Prefix (N)) = E
2078 then
a9895094
AC
2079 if Ada_Version < Ada_2012 then
2080 Error_Msg_N
2081 ("current instance must be a limited type",
1f0b1e48 2082 Prefix (N));
a9895094
AC
2083 else
2084 Error_Msg_N
1f0b1e48 2085 ("current instance must be an immutably limited "
0fea901b 2086 & "type (RM-2012, 7.5 (8.1/3))", Prefix (N));
a9895094 2087 end if;
1f0b1e48 2088
70482933 2089 return Abandon;
1f0b1e48 2090
70482933
RK
2091 else
2092 return OK;
2093 end if;
2094
2095 when others => return OK;
2096 end case;
2097 end Process;
2098
2099 procedure Traverse is new Traverse_Proc (Process);
2100
e1308fa8 2101 -- Local variables
32c760e6 2102
e1308fa8
AC
2103 Rec_Type : constant Entity_Id :=
2104 Scope (Defining_Identifier (Comp_Decl));
32c760e6 2105
e1308fa8 2106 -- Start of processing for Check_Current_Instance
32c760e6 2107
e1308fa8
AC
2108 begin
2109 if not Is_Aliased_View_Of_Type (Rec_Type) then
32c760e6
ES
2110 Traverse (Comp_Decl);
2111 end if;
70482933
RK
2112 end Check_Current_Instance;
2113
67b3acf8
RD
2114 ------------------------------
2115 -- Check_Suspicious_Modulus --
2116 ------------------------------
2117
2118 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
2119 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
2120
2121 begin
685bc70f
AC
2122 if not Warn_On_Suspicious_Modulus_Value then
2123 return;
2124 end if;
2125
67b3acf8
RD
2126 if Nkind (Decl) = N_Full_Type_Declaration then
2127 declare
2128 Tdef : constant Node_Id := Type_Definition (Decl);
3e7302c3 2129
67b3acf8
RD
2130 begin
2131 if Nkind (Tdef) = N_Modular_Type_Definition then
2132 declare
2133 Modulus : constant Node_Id :=
2134 Original_Node (Expression (Tdef));
685bc70f 2135
67b3acf8
RD
2136 begin
2137 if Nkind (Modulus) = N_Integer_Literal then
2138 declare
2139 Modv : constant Uint := Intval (Modulus);
2140 Sizv : constant Uint := RM_Size (Utype);
2141
2142 begin
2143 -- First case, modulus and size are the same. This
2144 -- happens if you have something like mod 32, with
2145 -- an explicit size of 32, this is for sure a case
2146 -- where the warning is given, since it is seems
2147 -- very unlikely that someone would want e.g. a
2148 -- five bit type stored in 32 bits. It is much
2149 -- more likely they wanted a 32-bit type.
2150
2151 if Modv = Sizv then
2152 null;
2153
2154 -- Second case, the modulus is 32 or 64 and no
2155 -- size clause is present. This is a less clear
2156 -- case for giving the warning, but in the case
2157 -- of 32/64 (5-bit or 6-bit types) these seem rare
2158 -- enough that it is a likely error (and in any
2159 -- case using 2**5 or 2**6 in these cases seems
2160 -- clearer. We don't include 8 or 16 here, simply
2161 -- because in practice 3-bit and 4-bit types are
2162 -- more common and too many false positives if
2163 -- we warn in these cases.
2164
2165 elsif not Has_Size_Clause (Utype)
2166 and then (Modv = Uint_32 or else Modv = Uint_64)
2167 then
2168 null;
2169
2170 -- No warning needed
2171
2172 else
2173 return;
2174 end if;
2175
2176 -- If we fall through, give warning
2177
2178 Error_Msg_Uint_1 := Modv;
2179 Error_Msg_N
685bc70f 2180 ("?M?2 '*'*^' may have been intended here",
67b3acf8
RD
2181 Modulus);
2182 end;
2183 end if;
2184 end;
2185 end if;
2186 end;
2187 end if;
2188 end Check_Suspicious_Modulus;
2189
63bb4268
AC
2190 -----------------------
2191 -- Freeze_Array_Type --
2192 -----------------------
2193
2194 procedure Freeze_Array_Type (Arr : Entity_Id) is
2195 FS : constant Entity_Id := First_Subtype (Arr);
2196 Ctyp : constant Entity_Id := Component_Type (Arr);
2197 Clause : Entity_Id;
2198
2199 Non_Standard_Enum : Boolean := False;
2200 -- Set true if any of the index types is an enumeration type with a
2201 -- non-standard representation.
2202
2203 begin
2204 Freeze_And_Append (Ctyp, N, Result);
2205
2206 Indx := First_Index (Arr);
2207 while Present (Indx) loop
2208 Freeze_And_Append (Etype (Indx), N, Result);
2209
2210 if Is_Enumeration_Type (Etype (Indx))
2211 and then Has_Non_Standard_Rep (Etype (Indx))
2212 then
2213 Non_Standard_Enum := True;
2214 end if;
2215
2216 Next_Index (Indx);
2217 end loop;
2218
2219 -- Processing that is done only for base types
2220
f8c79ade 2221 if Ekind (Arr) = E_Array_Type then
220d1fd9
AC
2222
2223 -- Deal with default setting of reverse storage order
2224
2225 Set_SSO_From_Default (Arr);
63bb4268
AC
2226
2227 -- Propagate flags for component type
2228
2229 if Is_Controlled (Component_Type (Arr))
2230 or else Has_Controlled_Component (Ctyp)
2231 then
2232 Set_Has_Controlled_Component (Arr);
2233 end if;
2234
2235 if Has_Unchecked_Union (Component_Type (Arr)) then
2236 Set_Has_Unchecked_Union (Arr);
2237 end if;
2238
2239 -- Warn for pragma Pack overriding foreign convention
2240
2241 if Has_Foreign_Convention (Ctyp)
2242 and then Has_Pragma_Pack (Arr)
2243 then
2244 declare
2245 CN : constant Name_Id :=
2246 Get_Convention_Name (Convention (Ctyp));
2247 PP : constant Node_Id :=
2248 Get_Pragma (First_Subtype (Arr), Pragma_Pack);
2249 begin
2250 if Present (PP) then
2251 Error_Msg_Name_1 := CN;
2252 Error_Msg_Sloc := Sloc (Arr);
2253 Error_Msg_N
0fea901b 2254 ("pragma Pack affects convention % components #??", PP);
63bb4268
AC
2255 Error_Msg_Name_1 := CN;
2256 Error_Msg_N
2257 ("\array components may not have % compatible "
2258 & "representation??", PP);
2259 end if;
2260 end;
2261 end if;
2262
2263 -- If packing was requested or if the component size was
2264 -- set explicitly, then see if bit packing is required. This
2265 -- processing is only done for base types, since all of the
ef1c0511
AC
2266 -- representation aspects involved are type-related.
2267
2268 -- This is not just an optimization, if we start processing the
2269 -- subtypes, they interfere with the settings on the base type
2270 -- (this is because Is_Packed has a slightly different meaning
2271 -- before and after freezing).
63bb4268
AC
2272
2273 declare
2274 Csiz : Uint;
2275 Esiz : Uint;
2276
2277 begin
2278 if (Is_Packed (Arr) or else Has_Pragma_Pack (Arr))
2279 and then Known_Static_RM_Size (Ctyp)
2280 and then not Has_Component_Size_Clause (Arr)
2281 then
2282 Csiz := UI_Max (RM_Size (Ctyp), 1);
2283
2284 elsif Known_Component_Size (Arr) then
2285 Csiz := Component_Size (Arr);
2286
2287 elsif not Known_Static_Esize (Ctyp) then
2288 Csiz := Uint_0;
2289
2290 else
2291 Esiz := Esize (Ctyp);
2292
2293 -- We can set the component size if it is less than 16,
2294 -- rounding it up to the next storage unit size.
2295
2296 if Esiz <= 8 then
2297 Csiz := Uint_8;
2298 elsif Esiz <= 16 then
2299 Csiz := Uint_16;
2300 else
2301 Csiz := Uint_0;
2302 end if;
2303
2304 -- Set component size up to match alignment if it would
2305 -- otherwise be less than the alignment. This deals with
2306 -- cases of types whose alignment exceeds their size (the
2307 -- padded type cases).
2308
2309 if Csiz /= 0 then
2310 declare
2311 A : constant Uint := Alignment_In_Bits (Ctyp);
2312 begin
2313 if Csiz < A then
2314 Csiz := A;
2315 end if;
2316 end;
2317 end if;
2318 end if;
2319
2320 -- Case of component size that may result in packing
2321
2322 if 1 <= Csiz and then Csiz <= 64 then
2323 declare
2324 Ent : constant Entity_Id :=
2325 First_Subtype (Arr);
2326 Pack_Pragma : constant Node_Id :=
2327 Get_Rep_Pragma (Ent, Name_Pack);
2328 Comp_Size_C : constant Node_Id :=
2329 Get_Attribute_Definition_Clause
2330 (Ent, Attribute_Component_Size);
0fea901b 2331
63bb4268
AC
2332 begin
2333 -- Warn if we have pack and component size so that the
2334 -- pack is ignored.
2335
2336 -- Note: here we must check for the presence of a
2337 -- component size before checking for a Pack pragma to
2338 -- deal with the case where the array type is a derived
2339 -- type whose parent is currently private.
2340
2341 if Present (Comp_Size_C)
2342 and then Has_Pragma_Pack (Ent)
2343 and then Warn_On_Redundant_Constructs
2344 then
2345 Error_Msg_Sloc := Sloc (Comp_Size_C);
2346 Error_Msg_NE
a90bd866 2347 ("?r?pragma Pack for& ignored!", Pack_Pragma, Ent);
63bb4268 2348 Error_Msg_N
a90bd866 2349 ("\?r?explicit component size given#!", Pack_Pragma);
63bb4268
AC
2350 Set_Is_Packed (Base_Type (Ent), False);
2351 Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
2352 end if;
2353
2354 -- Set component size if not already set by a component
2355 -- size clause.
2356
2357 if not Present (Comp_Size_C) then
2358 Set_Component_Size (Arr, Csiz);
2359 end if;
2360
2361 -- Check for base type of 8, 16, 32 bits, where an
2362 -- unsigned subtype has a length one less than the
2363 -- base type (e.g. Natural subtype of Integer).
2364
2365 -- In such cases, if a component size was not set
2366 -- explicitly, then generate a warning.
2367
2368 if Has_Pragma_Pack (Arr)
2369 and then not Present (Comp_Size_C)
f8c79ade 2370 and then (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
63bb4268
AC
2371 and then Esize (Base_Type (Ctyp)) = Csiz + 1
2372 then
2373 Error_Msg_Uint_1 := Csiz;
2374
2375 if Present (Pack_Pragma) then
2376 Error_Msg_N
0fea901b
AC
2377 ("??pragma Pack causes component size to be ^!",
2378 Pack_Pragma);
63bb4268 2379 Error_Msg_N
0fea901b
AC
2380 ("\??use Component_Size to set desired value!",
2381 Pack_Pragma);
63bb4268
AC
2382 end if;
2383 end if;
2384
2385 -- Actual packing is not needed for 8, 16, 32, 64. Also
2386 -- not needed for 24 if alignment is 1.
2387
2388 if Csiz = 8
2389 or else Csiz = 16
2390 or else Csiz = 32
2391 or else Csiz = 64
2392 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
2393 then
2394 -- Here the array was requested to be packed, but
2395 -- the packing request had no effect, so Is_Packed
2396 -- is reset.
2397
2398 -- Note: semantically this means that we lose track
2399 -- of the fact that a derived type inherited a pragma
2400 -- Pack that was non- effective, but that seems fine.
2401
2402 -- We regard a Pack pragma as a request to set a
2403 -- representation characteristic, and this request
2404 -- may be ignored.
2405
2406 Set_Is_Packed (Base_Type (Arr), False);
2407 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2408
2409 if Known_Static_Esize (Component_Type (Arr))
2410 and then Esize (Component_Type (Arr)) = Csiz
2411 then
f8c79ade 2412 Set_Has_Non_Standard_Rep (Base_Type (Arr), False);
63bb4268
AC
2413 end if;
2414
2415 -- In all other cases, packing is indeed needed
2416
2417 else
2418 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2419 Set_Is_Bit_Packed_Array (Base_Type (Arr), True);
2420 Set_Is_Packed (Base_Type (Arr), True);
2421 end if;
2422 end;
2423 end if;
2424 end;
2425
2426 -- Check for Atomic_Components or Aliased with unsuitable packing
2427 -- or explicit component size clause given.
2428
ef1c0511
AC
2429 if (Has_Atomic_Components (Arr)
2430 or else
2431 Has_Aliased_Components (Arr))
2432 and then
2433 (Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
63bb4268
AC
2434 then
2435 Alias_Atomic_Check : declare
2436
2437 procedure Complain_CS (T : String);
2438 -- Outputs error messages for incorrect CS clause or pragma
2439 -- Pack for aliased or atomic components (T is "aliased" or
2440 -- "atomic");
2441
2442 -----------------
2443 -- Complain_CS --
2444 -----------------
2445
2446 procedure Complain_CS (T : String) is
2447 begin
2448 if Has_Component_Size_Clause (Arr) then
2449 Clause :=
2450 Get_Attribute_Definition_Clause
2451 (FS, Attribute_Component_Size);
2452
2453 if Known_Static_Esize (Ctyp) then
2454 Error_Msg_N
2455 ("incorrect component size for "
2456 & T & " components", Clause);
2457 Error_Msg_Uint_1 := Esize (Ctyp);
2458 Error_Msg_N
2459 ("\only allowed value is^", Clause);
2460
2461 else
2462 Error_Msg_N
2463 ("component size cannot be given for "
2464 & T & " components", Clause);
2465 end if;
2466
2467 else
2468 Error_Msg_N
2469 ("cannot pack " & T & " components",
2470 Get_Rep_Pragma (FS, Name_Pack));
2471 end if;
2472
2473 return;
2474 end Complain_CS;
2475
2476 -- Start of processing for Alias_Atomic_Check
2477
2478 begin
63bb4268
AC
2479 -- If object size of component type isn't known, we cannot
2480 -- be sure so we defer to the back end.
2481
2482 if not Known_Static_Esize (Ctyp) then
2483 null;
2484
2485 -- Case where component size has no effect. First check for
2486 -- object size of component type multiple of the storage
2487 -- unit size.
2488
2489 elsif Esize (Ctyp) mod System_Storage_Unit = 0
2490
2491 -- OK in both packing case and component size case if RM
2492 -- size is known and static and same as the object size.
2493
2494 and then
2495 ((Known_Static_RM_Size (Ctyp)
2496 and then Esize (Ctyp) = RM_Size (Ctyp))
2497
2498 -- Or if we have an explicit component size clause and
2499 -- the component size and object size are equal.
2500
2501 or else
2502 (Has_Component_Size_Clause (Arr)
2503 and then Component_Size (Arr) = Esize (Ctyp)))
2504 then
2505 null;
2506
2507 elsif Has_Aliased_Components (Arr)
2508 or else Is_Aliased (Ctyp)
2509 then
2510 Complain_CS ("aliased");
2511
2512 elsif Has_Atomic_Components (Arr)
2513 or else Is_Atomic (Ctyp)
2514 then
2515 Complain_CS ("atomic");
2516 end if;
2517 end Alias_Atomic_Check;
2518 end if;
2519
2520 -- Warn for case of atomic type
2521
2522 Clause := Get_Rep_Pragma (FS, Name_Atomic);
2523
2524 if Present (Clause)
2525 and then not Addressable (Component_Size (FS))
2526 then
2527 Error_Msg_NE
2528 ("non-atomic components of type& may not be "
2529 & "accessible by separate tasks??", Clause, Arr);
2530
2531 if Has_Component_Size_Clause (Arr) then
ef1c0511
AC
2532 Error_Msg_Sloc := Sloc (Get_Attribute_Definition_Clause
2533 (FS, Attribute_Component_Size));
2534 Error_Msg_N ("\because of component size clause#??", Clause);
63bb4268
AC
2535
2536 elsif Has_Pragma_Pack (Arr) then
ef1c0511
AC
2537 Error_Msg_Sloc := Sloc (Get_Rep_Pragma (FS, Name_Pack));
2538 Error_Msg_N ("\because of pragma Pack#??", Clause);
63bb4268
AC
2539 end if;
2540 end if;
2541
2542 -- Check for scalar storage order
2543
ee6208f2
AC
2544 declare
2545 Dummy : Boolean;
2546 begin
2547 Check_Component_Storage_Order
2548 (Encl_Type => Arr,
2549 Comp => Empty,
2550 ADC => Get_Attribute_Definition_Clause
2551 (First_Subtype (Arr),
2552 Attribute_Scalar_Storage_Order),
2553 Comp_ADC_Present => Dummy);
2554 end;
63bb4268 2555
ee6208f2 2556 -- Processing that is done only for subtypes
63bb4268
AC
2557
2558 else
2559 -- Acquire alignment from base type
2560
2561 if Unknown_Alignment (Arr) then
2562 Set_Alignment (Arr, Alignment (Base_Type (Arr)));
2563 Adjust_Esize_Alignment (Arr);
2564 end if;
2565 end if;
2566
2567 -- Specific checks for bit-packed arrays
2568
2569 if Is_Bit_Packed_Array (Arr) then
2570
2571 -- Check number of elements for bit packed arrays that come from
2572 -- source and have compile time known ranges. The bit-packed
2573 -- arrays circuitry does not support arrays with more than
2574 -- Integer'Last + 1 elements, and when this restriction is
2575 -- violated, causes incorrect data access.
2576
2577 -- For the case where this is not compile time known, a run-time
2578 -- check should be generated???
2579
2580 if Comes_From_Source (Arr) and then Is_Constrained (Arr) then
2581 declare
2582 Elmts : Uint;
2583 Index : Node_Id;
2584 Ilen : Node_Id;
2585 Ityp : Entity_Id;
2586
2587 begin
2588 Elmts := Uint_1;
2589 Index := First_Index (Arr);
2590 while Present (Index) loop
2591 Ityp := Etype (Index);
2592
2593 -- Never generate an error if any index is of a generic
2594 -- type. We will check this in instances.
2595
2596 if Is_Generic_Type (Ityp) then
2597 Elmts := Uint_0;
2598 exit;
2599 end if;
2600
2601 Ilen :=
2602 Make_Attribute_Reference (Loc,
0fea901b 2603 Prefix => New_Occurrence_Of (Ityp, Loc),
63bb4268
AC
2604 Attribute_Name => Name_Range_Length);
2605 Analyze_And_Resolve (Ilen);
2606
9ceeaf9d
AC
2607 -- No attempt is made to check number of elements if not
2608 -- compile time known.
63bb4268
AC
2609
2610 if Nkind (Ilen) /= N_Integer_Literal then
2611 Elmts := Uint_0;
2612 exit;
2613 end if;
2614
2615 Elmts := Elmts * Intval (Ilen);
2616 Next_Index (Index);
2617 end loop;
2618
2619 if Elmts > Intval (High_Bound
ef1c0511 2620 (Scalar_Range (Standard_Integer))) + 1
63bb4268
AC
2621 then
2622 Error_Msg_N
2623 ("bit packed array type may not have "
2624 & "more than Integer''Last+1 elements", Arr);
2625 end if;
2626 end;
2627 end if;
2628
2629 -- Check size
2630
2631 if Known_RM_Size (Arr) then
2632 declare
0fea901b 2633 SizC : constant Node_Id := Size_Clause (Arr);
63bb4268 2634 Discard : Boolean;
63bb4268
AC
2635
2636 begin
2637 -- It is not clear if it is possible to have no size clause
2638 -- at this stage, but it is not worth worrying about. Post
2639 -- error on the entity name in the size clause if present,
2640 -- else on the type entity itself.
2641
2642 if Present (SizC) then
2643 Check_Size (Name (SizC), Arr, RM_Size (Arr), Discard);
2644 else
2645 Check_Size (Arr, Arr, RM_Size (Arr), Discard);
2646 end if;
2647 end;
2648 end if;
2649 end if;
2650
9ceeaf9d
AC
2651 -- If any of the index types was an enumeration type with a non-
2652 -- standard rep clause, then we indicate that the array type is
2653 -- always packed (even if it is not bit packed).
63bb4268
AC
2654
2655 if Non_Standard_Enum then
2656 Set_Has_Non_Standard_Rep (Base_Type (Arr));
2657 Set_Is_Packed (Base_Type (Arr));
2658 end if;
2659
2660 Set_Component_Alignment_If_Not_Set (Arr);
2661
2662 -- If the array is packed, we must create the packed array type to be
2663 -- used to actually implement the type. This is only needed for real
2664 -- array types (not for string literal types, since they are present
2665 -- only for the front end).
2666
2667 if Is_Packed (Arr)
2668 and then Ekind (Arr) /= E_String_Literal_Subtype
2669 then
8ca597af
RD
2670 Create_Packed_Array_Impl_Type (Arr);
2671 Freeze_And_Append (Packed_Array_Impl_Type (Arr), N, Result);
63bb4268 2672
8ad1c2df
AC
2673 -- Make sure that we have the necessary routines to implement the
2674 -- packing, and complain now if not. Note that we only test this
2675 -- for constrained array types.
2676
2677 if Is_Constrained (Arr)
2678 and then Is_Bit_Packed_Array (Arr)
2679 and then Present (Packed_Array_Impl_Type (Arr))
2680 and then Is_Array_Type (Packed_Array_Impl_Type (Arr))
2681 then
2682 declare
2683 CS : constant Uint := Component_Size (Arr);
2684 RE : constant RE_Id := Get_Id (UI_To_Int (CS));
2685
2686 begin
2687 if RE /= RE_Null
2688 and then not RTE_Available (RE)
2689 then
2690 Error_Msg_CRT
2691 ("packing of " & UI_Image (CS) & "-bit components",
2692 First_Subtype (Etype (Arr)));
2693
2694 -- Cancel the packing
2695
2696 Set_Is_Packed (Base_Type (Arr), False);
2697 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2698 Set_Packed_Array_Impl_Type (Arr, Empty);
2699 goto Skip_Packed;
2700 end if;
2701 end;
2702 end if;
2703
63bb4268
AC
2704 -- Size information of packed array type is copied to the array
2705 -- type, since this is really the representation. But do not
2706 -- override explicit existing size values. If the ancestor subtype
8ca597af
RD
2707 -- is constrained the Packed_Array_Impl_Type will be inherited
2708 -- from it, but the size may have been provided already, and
2709 -- must not be overridden either.
63bb4268
AC
2710
2711 if not Has_Size_Clause (Arr)
2712 and then
2713 (No (Ancestor_Subtype (Arr))
2714 or else not Has_Size_Clause (Ancestor_Subtype (Arr)))
2715 then
8ca597af
RD
2716 Set_Esize (Arr, Esize (Packed_Array_Impl_Type (Arr)));
2717 Set_RM_Size (Arr, RM_Size (Packed_Array_Impl_Type (Arr)));
63bb4268
AC
2718 end if;
2719
2720 if not Has_Alignment_Clause (Arr) then
8ca597af 2721 Set_Alignment (Arr, Alignment (Packed_Array_Impl_Type (Arr)));
63bb4268
AC
2722 end if;
2723 end if;
2724
8ad1c2df
AC
2725 <<Skip_Packed>>
2726
63bb4268
AC
2727 -- For non-packed arrays set the alignment of the array to the
2728 -- alignment of the component type if it is unknown. Skip this
2729 -- in atomic case (atomic arrays may need larger alignments).
2730
2731 if not Is_Packed (Arr)
2732 and then Unknown_Alignment (Arr)
2733 and then Known_Alignment (Ctyp)
2734 and then Known_Static_Component_Size (Arr)
2735 and then Known_Static_Esize (Ctyp)
2736 and then Esize (Ctyp) = Component_Size (Arr)
2737 and then not Is_Atomic (Arr)
2738 then
2739 Set_Alignment (Arr, Alignment (Component_Type (Arr)));
2740 end if;
2741 end Freeze_Array_Type;
2742
3cd4a210
AC
2743 -----------------------------
2744 -- Freeze_Generic_Entities --
2745 -----------------------------
2746
2747 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id is
5a8a6763
RD
2748 E : Entity_Id;
2749 F : Node_Id;
3cd4a210
AC
2750 Flist : List_Id;
2751
2752 begin
2753 Flist := New_List;
2754 E := First_Entity (Pack);
2755 while Present (E) loop
2756 if Is_Type (E) and then not Is_Generic_Type (E) then
2757 F := Make_Freeze_Generic_Entity (Sloc (Pack));
2758 Set_Entity (F, E);
2759 Append_To (Flist, F);
2760
2761 elsif Ekind (E) = E_Generic_Package then
2762 Append_List_To (Flist, Freeze_Generic_Entities (E));
2763 end if;
2764
2765 Next_Entity (E);
2766 end loop;
2767
2768 return Flist;
2769 end Freeze_Generic_Entities;
2770
4d1429b2
AC
2771 --------------------
2772 -- Freeze_Profile --
2773 --------------------
2774
2775 function Freeze_Profile (E : Entity_Id) return Boolean is
2776 F_Type : Entity_Id;
2777 R_Type : Entity_Id;
2778 Warn_Node : Node_Id;
2779
2780 begin
2781 -- Loop through formals
2782
2783 Formal := First_Formal (E);
2784 while Present (Formal) loop
2785 F_Type := Etype (Formal);
2786
9ceeaf9d
AC
2787 -- AI05-0151: incomplete types can appear in a profile. By the
2788 -- time the entity is frozen, the full view must be available,
2789 -- unless it is a limited view.
4d1429b2
AC
2790
2791 if Is_Incomplete_Type (F_Type)
2792 and then Present (Full_View (F_Type))
2793 and then not From_Limited_With (F_Type)
2794 then
2795 F_Type := Full_View (F_Type);
2796 Set_Etype (Formal, F_Type);
2797 end if;
2798
2799 Freeze_And_Append (F_Type, N, Result);
2800
2801 if Is_Private_Type (F_Type)
2802 and then Is_Private_Type (Base_Type (F_Type))
2803 and then No (Full_View (Base_Type (F_Type)))
2804 and then not Is_Generic_Type (F_Type)
2805 and then not Is_Derived_Type (F_Type)
2806 then
9ceeaf9d
AC
2807 -- If the type of a formal is incomplete, subprogram is being
2808 -- frozen prematurely. Within an instance (but not within a
2809 -- wrapper package) this is an artifact of our need to regard
2810 -- the end of an instantiation as a freeze point. Otherwise it
2811 -- is a definite error.
4d1429b2
AC
2812
2813 if In_Instance then
2814 Set_Is_Frozen (E, False);
2815 Result := No_List;
2816 return False;
2817
2818 elsif not After_Last_Declaration
2819 and then not Freezing_Library_Level_Tagged_Type
2820 then
2821 Error_Msg_Node_1 := F_Type;
2822 Error_Msg
9ceeaf9d 2823 ("type & must be fully defined before this point", Loc);
4d1429b2
AC
2824 end if;
2825 end if;
2826
9ceeaf9d
AC
2827 -- Check suspicious parameter for C function. These tests apply
2828 -- only to exported/imported subprograms.
4d1429b2
AC
2829
2830 if Warn_On_Export_Import
2831 and then Comes_From_Source (E)
2832 and then (Convention (E) = Convention_C
2833 or else
2834 Convention (E) = Convention_CPP)
2835 and then (Is_Imported (E) or else Is_Exported (E))
2836 and then Convention (E) /= Convention (Formal)
2837 and then not Has_Warnings_Off (E)
2838 and then not Has_Warnings_Off (F_Type)
2839 and then not Has_Warnings_Off (Formal)
2840 then
2841 -- Qualify mention of formals with subprogram name
2842
2843 Error_Msg_Qual_Level := 1;
2844
2845 -- Check suspicious use of fat C pointer
2846
2847 if Is_Access_Type (F_Type)
2848 and then Esize (F_Type) > Ttypes.System_Address_Size
2849 then
2850 Error_Msg_N
2851 ("?x?type of & does not correspond to C pointer!", Formal);
2852
2853 -- Check suspicious return of boolean
2854
2855 elsif Root_Type (F_Type) = Standard_Boolean
2856 and then Convention (F_Type) = Convention_Ada
2857 and then not Has_Warnings_Off (F_Type)
2858 and then not Has_Size_Clause (F_Type)
2859 and then VM_Target = No_VM
2860 then
9ceeaf9d
AC
2861 Error_Msg_N
2862 ("& is an 8-bit Ada Boolean?x?", Formal);
2863 Error_Msg_N
2864 ("\use appropriate corresponding type in C "
4d1429b2
AC
2865 & "(e.g. char)?x?", Formal);
2866
2867 -- Check suspicious tagged type
2868
2869 elsif (Is_Tagged_Type (F_Type)
9ceeaf9d
AC
2870 or else
2871 (Is_Access_Type (F_Type)
2872 and then Is_Tagged_Type (Designated_Type (F_Type))))
4d1429b2
AC
2873 and then Convention (E) = Convention_C
2874 then
9ceeaf9d
AC
2875 Error_Msg_N
2876 ("?x?& involves a tagged type which does not "
4d1429b2
AC
2877 & "correspond to any C type!", Formal);
2878
2879 -- Check wrong convention subprogram pointer
2880
2881 elsif Ekind (F_Type) = E_Access_Subprogram_Type
2882 and then not Has_Foreign_Convention (F_Type)
2883 then
9ceeaf9d
AC
2884 Error_Msg_N
2885 ("?x?subprogram pointer & should "
4d1429b2
AC
2886 & "have foreign convention!", Formal);
2887 Error_Msg_Sloc := Sloc (F_Type);
2888 Error_Msg_NE
2889 ("\?x?add Convention pragma to declaration of &#",
2890 Formal, F_Type);
2891 end if;
2892
2893 -- Turn off name qualification after message output
2894
2895 Error_Msg_Qual_Level := 0;
2896 end if;
2897
9ceeaf9d
AC
2898 -- Check for unconstrained array in exported foreign convention
2899 -- case.
4d1429b2
AC
2900
2901 if Has_Foreign_Convention (E)
2902 and then not Is_Imported (E)
2903 and then Is_Array_Type (F_Type)
2904 and then not Is_Constrained (F_Type)
2905 and then Warn_On_Export_Import
2906
2907 -- Exclude VM case, since both .NET and JVM can handle
2908 -- unconstrained arrays without a problem.
2909
2910 and then VM_Target = No_VM
2911 then
2912 Error_Msg_Qual_Level := 1;
2913
9ceeaf9d
AC
2914 -- If this is an inherited operation, place the warning on
2915 -- the derived type declaration, rather than on the original
2916 -- subprogram.
4d1429b2
AC
2917
2918 if Nkind (Original_Node (Parent (E))) = N_Full_Type_Declaration
2919 then
2920 Warn_Node := Parent (E);
2921
2922 if Formal = First_Formal (E) then
9ceeaf9d 2923 Error_Msg_NE ("??in inherited operation&", Warn_Node, E);
4d1429b2
AC
2924 end if;
2925 else
2926 Warn_Node := Formal;
2927 end if;
2928
2929 Error_Msg_NE ("?x?type of argument& is unconstrained array",
2930 Warn_Node, Formal);
2931 Error_Msg_NE ("?x?foreign caller must pass bounds explicitly",
2932 Warn_Node, Formal);
2933 Error_Msg_Qual_Level := 0;
2934 end if;
2935
2936 if not From_Limited_With (F_Type) then
2937 if Is_Access_Type (F_Type) then
2938 F_Type := Designated_Type (F_Type);
2939 end if;
2940
2941 -- If the formal is an anonymous_access_to_subprogram
2942 -- freeze the subprogram type as well, to prevent
2943 -- scope anomalies in gigi, because there is no other
2944 -- clear point at which it could be frozen.
2945
2946 if Is_Itype (Etype (Formal))
2947 and then Ekind (F_Type) = E_Subprogram_Type
2948 then
2949 Freeze_And_Append (F_Type, N, Result);
2950 end if;
2951 end if;
2952
2953 Next_Formal (Formal);
2954 end loop;
2955
2956 -- Case of function: similar checks on return type
2957
2958 if Ekind (E) = E_Function then
2959
2960 -- Check whether function is declared elsewhere.
2961
2962 Late_Freezing :=
2963 Get_Source_Unit (E) /= Get_Source_Unit (N)
2964 and then Returns_Limited_View (E)
2965 and then not In_Open_Scopes (Scope (E));
2966
2967 -- Freeze return type
2968
2969 R_Type := Etype (E);
2970
2971 -- AI05-0151: the return type may have been incomplete
2972 -- at the point of declaration. Replace it with the full
2973 -- view, unless the current type is a limited view. In
2974 -- that case the full view is in a different unit, and
2975 -- gigi finds the non-limited view after the other unit
2976 -- is elaborated.
2977
2978 if Ekind (R_Type) = E_Incomplete_Type
2979 and then Present (Full_View (R_Type))
2980 and then not From_Limited_With (R_Type)
2981 then
2982 R_Type := Full_View (R_Type);
2983 Set_Etype (E, R_Type);
2984
2985 -- If the return type is a limited view and the non-
2986 -- limited view is still incomplete, the function has
2987 -- to be frozen at a later time.
2988
2989 elsif Ekind (R_Type) = E_Incomplete_Type
2990 and then From_Limited_With (R_Type)
2991 and then
2992 Ekind (Non_Limited_View (R_Type)) = E_Incomplete_Type
2993 then
2994 Set_Is_Frozen (E, False);
2995 Set_Returns_Limited_View (E);
2996 return False;
2997 end if;
2998
2999 Freeze_And_Append (R_Type, N, Result);
3000
3001 -- Check suspicious return type for C function
3002
3003 if Warn_On_Export_Import
3004 and then (Convention (E) = Convention_C
3005 or else
3006 Convention (E) = Convention_CPP)
3007 and then (Is_Imported (E) or else Is_Exported (E))
3008 then
3009 -- Check suspicious return of fat C pointer
3010
3011 if Is_Access_Type (R_Type)
3012 and then Esize (R_Type) > Ttypes.System_Address_Size
3013 and then not Has_Warnings_Off (E)
3014 and then not Has_Warnings_Off (R_Type)
3015 then
3016 Error_Msg_N ("?x?return type of& does not "
3017 & "correspond to C pointer!", E);
3018
3019 -- Check suspicious return of boolean
3020
3021 elsif Root_Type (R_Type) = Standard_Boolean
3022 and then Convention (R_Type) = Convention_Ada
3023 and then VM_Target = No_VM
3024 and then not Has_Warnings_Off (E)
3025 and then not Has_Warnings_Off (R_Type)
3026 and then not Has_Size_Clause (R_Type)
3027 then
3028 declare
3029 N : constant Node_Id :=
3030 Result_Definition (Declaration_Node (E));
3031 begin
3032 Error_Msg_NE
3033 ("return type of & is an 8-bit Ada Boolean?x?", N, E);
3034 Error_Msg_NE
3035 ("\use appropriate corresponding type in C "
3036 & "(e.g. char)?x?", N, E);
3037 end;
3038
3039 -- Check suspicious return tagged type
3040
3041 elsif (Is_Tagged_Type (R_Type)
3042 or else (Is_Access_Type (R_Type)
3043 and then
3044 Is_Tagged_Type
3045 (Designated_Type (R_Type))))
3046 and then Convention (E) = Convention_C
3047 and then not Has_Warnings_Off (E)
3048 and then not Has_Warnings_Off (R_Type)
3049 then
3050 Error_Msg_N ("?x?return type of & does not "
3051 & "correspond to C type!", E);
3052
3053 -- Check return of wrong convention subprogram pointer
3054
3055 elsif Ekind (R_Type) = E_Access_Subprogram_Type
3056 and then not Has_Foreign_Convention (R_Type)
3057 and then not Has_Warnings_Off (E)
3058 and then not Has_Warnings_Off (R_Type)
3059 then
3060 Error_Msg_N ("?x?& should return a foreign "
3061 & "convention subprogram pointer", E);
3062 Error_Msg_Sloc := Sloc (R_Type);
3063 Error_Msg_NE
3064 ("\?x?add Convention pragma to declaration of& #",
3065 E, R_Type);
3066 end if;
3067 end if;
3068
3069 -- Give warning for suspicious return of a result of an
9ceeaf9d 3070 -- unconstrained array type in a foreign convention function.
4d1429b2
AC
3071
3072 if Has_Foreign_Convention (E)
3073
3074 -- We are looking for a return of unconstrained array
3075
3076 and then Is_Array_Type (R_Type)
3077 and then not Is_Constrained (R_Type)
3078
9ceeaf9d
AC
3079 -- Exclude imported routines, the warning does not belong on
3080 -- the import, but rather on the routine definition.
4d1429b2
AC
3081
3082 and then not Is_Imported (E)
3083
9ceeaf9d
AC
3084 -- Exclude VM case, since both .NET and JVM can handle return
3085 -- of unconstrained arrays without a problem.
4d1429b2
AC
3086
3087 and then VM_Target = No_VM
3088
9ceeaf9d
AC
3089 -- Check that general warning is enabled, and that it is not
3090 -- suppressed for this particular case.
4d1429b2
AC
3091
3092 and then Warn_On_Export_Import
3093 and then not Has_Warnings_Off (E)
3094 and then not Has_Warnings_Off (R_Type)
3095 then
3096 Error_Msg_N ("?x?foreign convention function& should not " &
3097 "return unconstrained array!", E);
3098 end if;
3099 end if;
3100
3101 return True;
3102 end Freeze_Profile;
3103
70482933
RK
3104 ------------------------
3105 -- Freeze_Record_Type --
3106 ------------------------
3107
3108 procedure Freeze_Record_Type (Rec : Entity_Id) is
7b4ebba5 3109 ADC : Node_Id;
70482933 3110 Comp : Entity_Id;
fbf5a39b 3111 IR : Node_Id;
c6823a20 3112 Prev : Entity_Id;
70482933 3113
67ce0d7e
RD
3114 Junk : Boolean;
3115 pragma Warnings (Off, Junk);
3116
22a83cea
AC
3117 Rec_Pushed : Boolean := False;
3118 -- Set True if the record type scope Rec has been pushed on the scope
3119 -- stack. Needed for the analysis of delayed aspects specified to the
3120 -- components of Rec.
3121
ee6208f2
AC
3122 SSO_ADC : Node_Id;
3123 -- Scalar_Storage_Order attribute definition clause for the record
3124
70482933
RK
3125 Unplaced_Component : Boolean := False;
3126 -- Set True if we find at least one component with no component
3127 -- clause (used to warn about useless Pack pragmas).
3128
3129 Placed_Component : Boolean := False;
3130 -- Set True if we find at least one component with a component
8dc10d38
AC
3131 -- clause (used to warn about useless Bit_Order pragmas, and also
3132 -- to detect cases where Implicit_Packing may have an effect).
3133
515490e0
AC
3134 Aliased_Component : Boolean := False;
3135 -- Set True if we find at least one component which is aliased. This
3136 -- is used to prevent Implicit_Packing of the record, since packing
3137 -- cannot modify the size of alignment of an aliased component.
3138
ee6208f2
AC
3139 SSO_ADC_Component : Boolean := False;
3140 -- Set True if we find at least one component whose type has a
3141 -- Scalar_Storage_Order attribute definition clause.
3142
8dc10d38
AC
3143 All_Scalar_Components : Boolean := True;
3144 -- Set False if we encounter a component of a non-scalar type
3145
3146 Scalar_Component_Total_RM_Size : Uint := Uint_0;
3147 Scalar_Component_Total_Esize : Uint := Uint_0;
3148 -- Accumulates total RM_Size values and total Esize values of all
3149 -- scalar components. Used for processing of Implicit_Packing.
70482933 3150
e18d6a15
JM
3151 function Check_Allocator (N : Node_Id) return Node_Id;
3152 -- If N is an allocator, possibly wrapped in one or more level of
3153 -- qualified expression(s), return the inner allocator node, else
3154 -- return Empty.
19590d70 3155
7d8b9c99
RD
3156 procedure Check_Itype (Typ : Entity_Id);
3157 -- If the component subtype is an access to a constrained subtype of
3158 -- an already frozen type, make the subtype frozen as well. It might
3159 -- otherwise be frozen in the wrong scope, and a freeze node on
3160 -- subtype has no effect. Similarly, if the component subtype is a
3161 -- regular (not protected) access to subprogram, set the anonymous
3162 -- subprogram type to frozen as well, to prevent an out-of-scope
3163 -- freeze node at some eventual point of call. Protected operations
3164 -- are handled elsewhere.
6e059adb 3165
c76bf0bf
AC
3166 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id);
3167 -- Make sure that all types mentioned in Discrete_Choices of the
3168 -- variants referenceed by the Variant_Part VP are frozen. This is
3169 -- a recursive routine to deal with nested variants.
3170
19590d70
GD
3171 ---------------------
3172 -- Check_Allocator --
3173 ---------------------
3174
e18d6a15
JM
3175 function Check_Allocator (N : Node_Id) return Node_Id is
3176 Inner : Node_Id;
19590d70 3177 begin
e18d6a15 3178 Inner := N;
e18d6a15
JM
3179 loop
3180 if Nkind (Inner) = N_Allocator then
3181 return Inner;
e18d6a15
JM
3182 elsif Nkind (Inner) = N_Qualified_Expression then
3183 Inner := Expression (Inner);
e18d6a15
JM
3184 else
3185 return Empty;
3186 end if;
3187 end loop;
19590d70
GD
3188 end Check_Allocator;
3189
6871ba5f
AC
3190 -----------------
3191 -- Check_Itype --
3192 -----------------
3193
7d8b9c99
RD
3194 procedure Check_Itype (Typ : Entity_Id) is
3195 Desig : constant Entity_Id := Designated_Type (Typ);
3196
6e059adb
AC
3197 begin
3198 if not Is_Frozen (Desig)
3199 and then Is_Frozen (Base_Type (Desig))
3200 then
3201 Set_Is_Frozen (Desig);
3202
3203 -- In addition, add an Itype_Reference to ensure that the
7d8b9c99
RD
3204 -- access subtype is elaborated early enough. This cannot be
3205 -- done if the subtype may depend on discriminants.
6e059adb
AC
3206
3207 if Ekind (Comp) = E_Component
3208 and then Is_Itype (Etype (Comp))
3209 and then not Has_Discriminants (Rec)
3210 then
3211 IR := Make_Itype_Reference (Sloc (Comp));
3212 Set_Itype (IR, Desig);
90878b12 3213 Add_To_Result (IR);
6e059adb 3214 end if;
7d8b9c99
RD
3215
3216 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
3217 and then Convention (Desig) /= Convention_Protected
3218 then
3219 Set_Is_Frozen (Desig);
6e059adb
AC
3220 end if;
3221 end Check_Itype;
3222
c76bf0bf
AC
3223 ------------------------------------
3224 -- Freeze_Choices_In_Variant_Part --
3225 ------------------------------------
3226
3227 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id) is
3228 pragma Assert (Nkind (VP) = N_Variant_Part);
3229
3230 Variant : Node_Id;
3231 Choice : Node_Id;
3232 CL : Node_Id;
3233
3234 begin
3235 -- Loop through variants
3236
3237 Variant := First_Non_Pragma (Variants (VP));
3238 while Present (Variant) loop
3239
3240 -- Loop through choices, checking that all types are frozen
3241
3242 Choice := First_Non_Pragma (Discrete_Choices (Variant));
3243 while Present (Choice) loop
3244 if Nkind (Choice) in N_Has_Etype
3245 and then Present (Etype (Choice))
3246 then
3247 Freeze_And_Append (Etype (Choice), N, Result);
3248 end if;
3249
3250 Next_Non_Pragma (Choice);
3251 end loop;
3252
3253 -- Check for nested variant part to process
3254
3255 CL := Component_List (Variant);
3256
3257 if not Null_Present (CL) then
3258 if Present (Variant_Part (CL)) then
3259 Freeze_Choices_In_Variant_Part (Variant_Part (CL));
3260 end if;
3261 end if;
3262
3263 Next_Non_Pragma (Variant);
3264 end loop;
3265 end Freeze_Choices_In_Variant_Part;
3266
6e059adb
AC
3267 -- Start of processing for Freeze_Record_Type
3268
70482933 3269 begin
22a83cea
AC
3270 -- Deal with delayed aspect specifications for components. The
3271 -- analysis of the aspect is required to be delayed to the freeze
d27f3ff4
AC
3272 -- point, thus we analyze the pragma or attribute definition
3273 -- clause in the tree at this point. We also analyze the aspect
22a83cea
AC
3274 -- specification node at the freeze point when the aspect doesn't
3275 -- correspond to pragma/attribute definition clause.
70482933
RK
3276
3277 Comp := First_Entity (Rec);
c6823a20 3278 while Present (Comp) loop
b3f532ce 3279 if Ekind (Comp) = E_Component
b7f7dab2 3280 and then Has_Delayed_Aspects (Comp)
b3f532ce 3281 then
22a83cea
AC
3282 if not Rec_Pushed then
3283 Push_Scope (Rec);
3284 Rec_Pushed := True;
b3f532ce 3285
22a83cea
AC
3286 -- The visibility to the discriminants must be restored in
3287 -- order to properly analyze the aspects.
b3f532ce 3288
22a83cea
AC
3289 if Has_Discriminants (Rec) then
3290 Install_Discriminants (Rec);
3291 end if;
b3f532ce
AC
3292 end if;
3293
22a83cea 3294 Analyze_Aspects_At_Freeze_Point (Comp);
b3f532ce
AC
3295 end if;
3296
22a83cea
AC
3297 Next_Entity (Comp);
3298 end loop;
3299
3300 -- Pop the scope if Rec scope has been pushed on the scope stack
3301 -- during the delayed aspect analysis process.
3302
3303 if Rec_Pushed then
3304 if Has_Discriminants (Rec) then
3305 Uninstall_Discriminants (Rec);
3306 end if;
3307
3308 Pop_Scope;
3309 end if;
3310
3311 -- Freeze components and embedded subtypes
3312
3313 Comp := First_Entity (Rec);
3314 Prev := Empty;
3315 while Present (Comp) loop
515490e0
AC
3316 if Is_Aliased (Comp) then
3317 Aliased_Component := True;
3318 end if;
22a83cea 3319
b3f532ce 3320 -- Handle the component and discriminant case
70482933 3321
d27f3ff4 3322 if Ekind_In (Comp, E_Component, E_Discriminant) then
70482933
RK
3323 declare
3324 CC : constant Node_Id := Component_Clause (Comp);
3325
3326 begin
c6823a20
EB
3327 -- Freezing a record type freezes the type of each of its
3328 -- components. However, if the type of the component is
3329 -- part of this record, we do not want or need a separate
3330 -- Freeze_Node. Note that Is_Itype is wrong because that's
3331 -- also set in private type cases. We also can't check for
3332 -- the Scope being exactly Rec because of private types and
3333 -- record extensions.
3334
3335 if Is_Itype (Etype (Comp))
3336 and then Is_Record_Type (Underlying_Type
ef1c0511 3337 (Scope (Etype (Comp))))
c6823a20
EB
3338 then
3339 Undelay_Type (Etype (Comp));
3340 end if;
3341
c159409f 3342 Freeze_And_Append (Etype (Comp), N, Result);
c6823a20 3343
63bb4268
AC
3344 -- Warn for pragma Pack overriding foreign convention
3345
3346 if Has_Foreign_Convention (Etype (Comp))
3347 and then Has_Pragma_Pack (Rec)
d12b19fa
AC
3348
3349 -- Don't warn for aliased components, since override
3350 -- cannot happen in that case.
3351
3352 and then not Is_Aliased (Comp)
63bb4268
AC
3353 then
3354 declare
3355 CN : constant Name_Id :=
3356 Get_Convention_Name (Convention (Etype (Comp)));
3357 PP : constant Node_Id :=
3358 Get_Pragma (Rec, Pragma_Pack);
3359 begin
3360 if Present (PP) then
3361 Error_Msg_Name_1 := CN;
3362 Error_Msg_Sloc := Sloc (Comp);
3363 Error_Msg_N
3364 ("pragma Pack affects convention % component#??",
3365 PP);
3366 Error_Msg_Name_1 := CN;
3367 Error_Msg_NE
3368 ("\component & may not have % compatible "
3369 & "representation??", PP, Comp);
3370 end if;
3371 end;
3372 end if;
3373
0da2c8ac
AC
3374 -- Check for error of component clause given for variable
3375 -- sized type. We have to delay this test till this point,
3376 -- since the component type has to be frozen for us to know
ef1c0511 3377 -- if it is variable length.
0da2c8ac 3378
70482933
RK
3379 if Present (CC) then
3380 Placed_Component := True;
3381
ef1c0511
AC
3382 -- We omit this test in a generic context, it will be
3383 -- applied at instantiation time.
3384
07fc65c4
GB
3385 if Inside_A_Generic then
3386 null;
3387
ef1c0511
AC
3388 -- Also omit this test in CodePeer mode, since we do not
3389 -- have sufficient info on size and rep clauses.
3390
24c34107
AC
3391 elsif CodePeer_Mode then
3392 null;
3393
71ff3d18
AC
3394 -- Omit check if component has a generic type. This can
3395 -- happen in an instantiation within a generic in ASIS
3396 -- mode, where we force freeze actions without full
3397 -- expansion.
3398
3399 elsif Is_Generic_Type (Etype (Comp)) then
3400 null;
3401
ef1c0511
AC
3402 -- Do the check
3403
7d8b9c99
RD
3404 elsif not
3405 Size_Known_At_Compile_Time
3406 (Underlying_Type (Etype (Comp)))
70482933
RK
3407 then
3408 Error_Msg_N
3409 ("component clause not allowed for variable " &
3410 "length component", CC);
3411 end if;
3412
3413 else
3414 Unplaced_Component := True;
3415 end if;
70482933 3416
0da2c8ac 3417 -- Case of component requires byte alignment
70482933 3418
0da2c8ac 3419 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
70482933 3420
0da2c8ac 3421 -- Set the enclosing record to also require byte align
70482933 3422
0da2c8ac 3423 Set_Must_Be_On_Byte_Boundary (Rec);
70482933 3424
7d8b9c99
RD
3425 -- Check for component clause that is inconsistent with
3426 -- the required byte boundary alignment.
70482933 3427
0da2c8ac
AC
3428 if Present (CC)
3429 and then Normalized_First_Bit (Comp) mod
3430 System_Storage_Unit /= 0
3431 then
3432 Error_Msg_N
3433 ("component & must be byte aligned",
3434 Component_Name (Component_Clause (Comp)));
3435 end if;
3436 end if;
0da2c8ac 3437 end;
70482933
RK
3438 end if;
3439
8a95f4e8
RD
3440 -- Gather data for possible Implicit_Packing later. Note that at
3441 -- this stage we might be dealing with a real component, or with
3442 -- an implicit subtype declaration.
8dc10d38 3443
426d2717
AC
3444 if not Is_Scalar_Type (Etype (Comp)) then
3445 All_Scalar_Components := False;
3446 else
3447 Scalar_Component_Total_RM_Size :=
3448 Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
3449 Scalar_Component_Total_Esize :=
3450 Scalar_Component_Total_Esize + Esize (Etype (Comp));
8dc10d38
AC
3451 end if;
3452
c6823a20
EB
3453 -- If the component is an Itype with Delayed_Freeze and is either
3454 -- a record or array subtype and its base type has not yet been
545cb5be
AC
3455 -- frozen, we must remove this from the entity list of this record
3456 -- and put it on the entity list of the scope of its base type.
3457 -- Note that we know that this is not the type of a component
3458 -- since we cleared Has_Delayed_Freeze for it in the previous
3459 -- loop. Thus this must be the Designated_Type of an access type,
3460 -- which is the type of a component.
c6823a20
EB
3461
3462 if Is_Itype (Comp)
3463 and then Is_Type (Scope (Comp))
3464 and then Is_Composite_Type (Comp)
3465 and then Base_Type (Comp) /= Comp
3466 and then Has_Delayed_Freeze (Comp)
3467 and then not Is_Frozen (Base_Type (Comp))
3468 then
3469 declare
3470 Will_Be_Frozen : Boolean := False;
1b24ada5 3471 S : Entity_Id;
c6823a20
EB
3472
3473 begin
e80f0cb0
RD
3474 -- We have a difficult case to handle here. Suppose Rec is
3475 -- subtype being defined in a subprogram that's created as
3476 -- part of the freezing of Rec'Base. In that case, we know
3477 -- that Comp'Base must have already been frozen by the time
3478 -- we get to elaborate this because Gigi doesn't elaborate
3479 -- any bodies until it has elaborated all of the declarative
fea9e956
ES
3480 -- part. But Is_Frozen will not be set at this point because
3481 -- we are processing code in lexical order.
3482
3483 -- We detect this case by going up the Scope chain of Rec
3484 -- and seeing if we have a subprogram scope before reaching
3485 -- the top of the scope chain or that of Comp'Base. If we
3486 -- do, then mark that Comp'Base will actually be frozen. If
3487 -- so, we merely undelay it.
c6823a20 3488
1b24ada5 3489 S := Scope (Rec);
c6823a20
EB
3490 while Present (S) loop
3491 if Is_Subprogram (S) then
3492 Will_Be_Frozen := True;
3493 exit;
3494 elsif S = Scope (Base_Type (Comp)) then
3495 exit;
3496 end if;
3497
3498 S := Scope (S);
3499 end loop;
3500
3501 if Will_Be_Frozen then
3502 Undelay_Type (Comp);
0fea901b 3503
c6823a20
EB
3504 else
3505 if Present (Prev) then
3506 Set_Next_Entity (Prev, Next_Entity (Comp));
3507 else
3508 Set_First_Entity (Rec, Next_Entity (Comp));
3509 end if;
3510
3511 -- Insert in entity list of scope of base type (which
3512 -- must be an enclosing scope, because still unfrozen).
3513
3514 Append_Entity (Comp, Scope (Base_Type (Comp)));
3515 end if;
3516 end;
3517
def46b54
RD
3518 -- If the component is an access type with an allocator as default
3519 -- value, the designated type will be frozen by the corresponding
3520 -- expression in init_proc. In order to place the freeze node for
3521 -- the designated type before that for the current record type,
3522 -- freeze it now.
c6823a20
EB
3523
3524 -- Same process if the component is an array of access types,
3525 -- initialized with an aggregate. If the designated type is
def46b54
RD
3526 -- private, it cannot contain allocators, and it is premature
3527 -- to freeze the type, so we check for this as well.
c6823a20
EB
3528
3529 elsif Is_Access_Type (Etype (Comp))
3530 and then Present (Parent (Comp))
3531 and then Present (Expression (Parent (Comp)))
c6823a20
EB
3532 then
3533 declare
e18d6a15
JM
3534 Alloc : constant Node_Id :=
3535 Check_Allocator (Expression (Parent (Comp)));
c6823a20
EB
3536
3537 begin
e18d6a15 3538 if Present (Alloc) then
19590d70 3539
15918371 3540 -- If component is pointer to a class-wide type, freeze
e18d6a15
JM
3541 -- the specific type in the expression being allocated.
3542 -- The expression may be a subtype indication, in which
3543 -- case freeze the subtype mark.
c6823a20 3544
e18d6a15
JM
3545 if Is_Class_Wide_Type
3546 (Designated_Type (Etype (Comp)))
0f4cb75c 3547 then
e18d6a15
JM
3548 if Is_Entity_Name (Expression (Alloc)) then
3549 Freeze_And_Append
c159409f 3550 (Entity (Expression (Alloc)), N, Result);
0fea901b
AC
3551
3552 elsif Nkind (Expression (Alloc)) = N_Subtype_Indication
e18d6a15
JM
3553 then
3554 Freeze_And_Append
3555 (Entity (Subtype_Mark (Expression (Alloc))),
c159409f 3556 N, Result);
e18d6a15 3557 end if;
0f4cb75c 3558
e18d6a15
JM
3559 elsif Is_Itype (Designated_Type (Etype (Comp))) then
3560 Check_Itype (Etype (Comp));
0f4cb75c 3561
e18d6a15
JM
3562 else
3563 Freeze_And_Append
c159409f 3564 (Designated_Type (Etype (Comp)), N, Result);
e18d6a15 3565 end if;
c6823a20
EB
3566 end if;
3567 end;
3568
3569 elsif Is_Access_Type (Etype (Comp))
3570 and then Is_Itype (Designated_Type (Etype (Comp)))
3571 then
7d8b9c99 3572 Check_Itype (Etype (Comp));
c6823a20 3573
7b4ebba5
AC
3574 -- Freeze the designated type when initializing a component with
3575 -- an aggregate in case the aggregate contains allocators.
3576
3577 -- type T is ...;
3578 -- type T_Ptr is access all T;
3579 -- type T_Array is array ... of T_Ptr;
3580
3581 -- type Rec is record
3582 -- Comp : T_Array := (others => ...);
3583 -- end record;
3584
c6823a20
EB
3585 elsif Is_Array_Type (Etype (Comp))
3586 and then Is_Access_Type (Component_Type (Etype (Comp)))
c6823a20 3587 then
7b4ebba5
AC
3588 declare
3589 Comp_Par : constant Node_Id := Parent (Comp);
3590 Desig_Typ : constant Entity_Id :=
3591 Designated_Type
3592 (Component_Type (Etype (Comp)));
3593
3594 begin
3595 -- The only case when this sort of freezing is not done is
3596 -- when the designated type is class-wide and the root type
3597 -- is the record owning the component. This scenario results
3598 -- in a circularity because the class-wide type requires
3599 -- primitives that have not been created yet as the root
3600 -- type is in the process of being frozen.
3601
3602 -- type Rec is tagged;
3603 -- type Rec_Ptr is access all Rec'Class;
3604 -- type Rec_Array is array ... of Rec_Ptr;
3605
3606 -- type Rec is record
3607 -- Comp : Rec_Array := (others => ...);
3608 -- end record;
3609
3610 if Is_Class_Wide_Type (Desig_Typ)
3611 and then Root_Type (Desig_Typ) = Rec
3612 then
3613 null;
3614
3615 elsif Is_Fully_Defined (Desig_Typ)
3616 and then Present (Comp_Par)
3617 and then Nkind (Comp_Par) = N_Component_Declaration
3618 and then Present (Expression (Comp_Par))
3619 and then Nkind (Expression (Comp_Par)) = N_Aggregate
3620 then
3621 Freeze_And_Append (Desig_Typ, N, Result);
3622 end if;
3623 end;
c6823a20
EB
3624 end if;
3625
3626 Prev := Comp;
70482933
RK
3627 Next_Entity (Comp);
3628 end loop;
3629
35fdafcd
AC
3630 -- Deal with default setting of reverse storage order
3631
3632 Set_SSO_From_Default (Rec);
f91510fc 3633
ee6208f2
AC
3634 -- Check consistent attribute setting on component types
3635
35fdafcd
AC
3636 SSO_ADC := Get_Attribute_Definition_Clause
3637 (Rec, Attribute_Scalar_Storage_Order);
3638
ee6208f2
AC
3639 declare
3640 Comp_ADC_Present : Boolean;
3641 begin
3642 Comp := First_Component (Rec);
3643 while Present (Comp) loop
3644 Check_Component_Storage_Order
3645 (Encl_Type => Rec,
3646 Comp => Comp,
3647 ADC => SSO_ADC,
3648 Comp_ADC_Present => Comp_ADC_Present);
3649 SSO_ADC_Component := SSO_ADC_Component or Comp_ADC_Present;
3650 Next_Component (Comp);
3651 end loop;
3652 end;
3653
220d1fd9
AC
3654 -- Now deal with reverse storage order/bit order issues
3655
ee6208f2 3656 if Present (SSO_ADC) then
d3b00ce3
AC
3657
3658 -- Check compatibility of Scalar_Storage_Order with Bit_Order, if
3659 -- the former is specified.
3660
3661 if Reverse_Bit_Order (Rec) /= Reverse_Storage_Order (Rec) then
3662
ee6208f2
AC
3663 -- Note: report error on Rec, not on SSO_ADC, as ADC may apply
3664 -- to some ancestor type.
d3b00ce3 3665
ee6208f2 3666 Error_Msg_Sloc := Sloc (SSO_ADC);
d3b00ce3
AC
3667 Error_Msg_N
3668 ("scalar storage order for& specified# inconsistent with "
3669 & "bit order", Rec);
3670 end if;
3671
ee6208f2
AC
3672 -- Warn if there is an Scalar_Storage_Order attribute definition
3673 -- clause but no component clause, no component that itself has
3674 -- such an attribute definition, and no pragma Pack.
50cd5b4d 3675
ee6208f2
AC
3676 if not (Placed_Component
3677 or else
3678 SSO_ADC_Component
3679 or else
3680 Is_Packed (Rec))
3681 then
d3b00ce3 3682 Error_Msg_N
685bc70f 3683 ("??scalar storage order specified but no component clause",
ee6208f2 3684 SSO_ADC);
d3b00ce3 3685 end if;
8a7c0400 3686 end if;
75965852 3687
ee6208f2 3688 -- Deal with Bit_Order aspect
fea9e956 3689
2a290fec 3690 ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
758ad973
AC
3691
3692 if Present (ADC) and then Base_Type (Rec) = Rec then
ee6208f2 3693 if not (Placed_Component
d3e16619
AC
3694 or else Present (SSO_ADC)
3695 or else Is_Packed (Rec))
ee6208f2
AC
3696 then
3697 -- Warn if clause has no effect when no component clause is
3698 -- present, but suppress warning if the Bit_Order is required
3699 -- due to the presence of a Scalar_Storage_Order attribute.
3700
15918371
AC
3701 Error_Msg_N
3702 ("??bit order specification has no effect", ADC);
fea9e956 3703 Error_Msg_N
685bc70f 3704 ("\??since no component clauses were specified", ADC);
fea9e956 3705
ee6208f2 3706 -- Here is where we do the processing to adjust component clauses
7ed57189 3707 -- for reversed bit order, when not using reverse SSO.
70482933 3708
758ad973 3709 elsif Reverse_Bit_Order (Rec)
2a290fec 3710 and then not Reverse_Storage_Order (Rec)
758ad973 3711 then
fea9e956 3712 Adjust_Record_For_Reverse_Bit_Order (Rec);
702d139e 3713
758ad973 3714 -- Case where we have both an explicit Bit_Order and the same
702d139e
TQ
3715 -- Scalar_Storage_Order: leave record untouched, the back-end
3716 -- will take care of required layout conversions.
3717
3718 else
3719 null;
3720
fea9e956 3721 end if;
70482933
RK
3722 end if;
3723
8a95f4e8
RD
3724 -- Complete error checking on record representation clause (e.g.
3725 -- overlap of components). This is called after adjusting the
3726 -- record for reverse bit order.
3727
3728 declare
3729 RRC : constant Node_Id := Get_Record_Representation_Clause (Rec);
3730 begin
3731 if Present (RRC) then
3732 Check_Record_Representation_Clause (RRC);
3733 end if;
3734 end;
3735
1b24ada5
RD
3736 -- Set OK_To_Reorder_Components depending on debug flags
3737
d347f572 3738 if Is_Base_Type (Rec) and then Convention (Rec) = Convention_Ada then
1b24ada5 3739 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
d3b00ce3
AC
3740 or else
3741 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
1b24ada5
RD
3742 then
3743 Set_OK_To_Reorder_Components (Rec);
3744 end if;
3745 end if;
3746
ee094616
RD
3747 -- Check for useless pragma Pack when all components placed. We only
3748 -- do this check for record types, not subtypes, since a subtype may
3749 -- have all its components placed, and it still makes perfectly good
1b24ada5
RD
3750 -- sense to pack other subtypes or the parent type. We do not give
3751 -- this warning if Optimize_Alignment is set to Space, since the
3752 -- pragma Pack does have an effect in this case (it always resets
3753 -- the alignment to one).
70482933 3754
ee094616
RD
3755 if Ekind (Rec) = E_Record_Type
3756 and then Is_Packed (Rec)
70482933 3757 and then not Unplaced_Component
1b24ada5 3758 and then Optimize_Alignment /= 'S'
70482933 3759 then
def46b54
RD
3760 -- Reset packed status. Probably not necessary, but we do it so
3761 -- that there is no chance of the back end doing something strange
3762 -- with this redundant indication of packing.
ee094616 3763
70482933 3764 Set_Is_Packed (Rec, False);
ee094616
RD
3765
3766 -- Give warning if redundant constructs warnings on
3767
3768 if Warn_On_Redundant_Constructs then
ed2233dc 3769 Error_Msg_N -- CODEFIX
685bc70f 3770 ("??pragma Pack has no effect, no unplaced components",
ee094616
RD
3771 Get_Rep_Pragma (Rec, Name_Pack));
3772 end if;
70482933
RK
3773 end if;
3774
ee094616
RD
3775 -- If this is the record corresponding to a remote type, freeze the
3776 -- remote type here since that is what we are semantically freezing.
3777 -- This prevents the freeze node for that type in an inner scope.
70482933 3778
8dc10d38 3779 if Ekind (Rec) = E_Record_Type then
70482933 3780 if Present (Corresponding_Remote_Type (Rec)) then
c159409f 3781 Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
70482933
RK
3782 end if;
3783
15918371
AC
3784 -- Check for controlled components and unchecked unions.
3785
70482933 3786 Comp := First_Component (Rec);
70482933 3787 while Present (Comp) loop
80fa4617
EB
3788
3789 -- Do not set Has_Controlled_Component on a class-wide
3790 -- equivalent type. See Make_CW_Equivalent_Type.
3791
3792 if not Is_Class_Wide_Equivalent_Type (Rec)
15918371
AC
3793 and then
3794 (Has_Controlled_Component (Etype (Comp))
3795 or else
3796 (Chars (Comp) /= Name_uParent
3797 and then Is_Controlled (Etype (Comp)))
3798 or else
3799 (Is_Protected_Type (Etype (Comp))
3800 and then
3801 Present (Corresponding_Record_Type (Etype (Comp)))
3802 and then
3803 Has_Controlled_Component
3804 (Corresponding_Record_Type (Etype (Comp)))))
70482933
RK
3805 then
3806 Set_Has_Controlled_Component (Rec);
70482933
RK
3807 end if;
3808
3809 if Has_Unchecked_Union (Etype (Comp)) then
3810 Set_Has_Unchecked_Union (Rec);
3811 end if;
3812
e1308fa8
AC
3813 -- Scan component declaration for likely misuses of current
3814 -- instance, either in a constraint or a default expression.
70482933 3815
e1308fa8 3816 if Has_Per_Object_Constraint (Comp) then
70482933
RK
3817 Check_Current_Instance (Parent (Comp));
3818 end if;
3819
3820 Next_Component (Comp);
3821 end loop;
3822 end if;
3823
15918371
AC
3824 -- Enforce the restriction that access attributes with a current
3825 -- instance prefix can only apply to limited types. This comment
3826 -- is floating here, but does not seem to belong here???
3827
3828 -- Set component alignment if not otherwise already set
3829
70482933
RK
3830 Set_Component_Alignment_If_Not_Set (Rec);
3831
ee094616
RD
3832 -- For first subtypes, check if there are any fixed-point fields with
3833 -- component clauses, where we must check the size. This is not done
15918371 3834 -- till the freeze point since for fixed-point types, we do not know
ee094616
RD
3835 -- the size until the type is frozen. Similar processing applies to
3836 -- bit packed arrays.
70482933
RK
3837
3838 if Is_First_Subtype (Rec) then
3839 Comp := First_Component (Rec);
70482933
RK
3840 while Present (Comp) loop
3841 if Present (Component_Clause (Comp))
d05ef0ab 3842 and then (Is_Fixed_Point_Type (Etype (Comp))
d3e16619 3843 or else Is_Bit_Packed_Array (Etype (Comp)))
70482933
RK
3844 then
3845 Check_Size
d05ef0ab 3846 (Component_Name (Component_Clause (Comp)),
70482933
RK
3847 Etype (Comp),
3848 Esize (Comp),
3849 Junk);
3850 end if;
3851
3852 Next_Component (Comp);
3853 end loop;
3854 end if;
7d8b9c99
RD
3855
3856 -- Generate warning for applying C or C++ convention to a record
3857 -- with discriminants. This is suppressed for the unchecked union
1b24ada5
RD
3858 -- case, since the whole point in this case is interface C. We also
3859 -- do not generate this within instantiations, since we will have
3860 -- generated a message on the template.
7d8b9c99
RD
3861
3862 if Has_Discriminants (E)
3863 and then not Is_Unchecked_Union (E)
7d8b9c99
RD
3864 and then (Convention (E) = Convention_C
3865 or else
3866 Convention (E) = Convention_CPP)
3867 and then Comes_From_Source (E)
1b24ada5
RD
3868 and then not In_Instance
3869 and then not Has_Warnings_Off (E)
3870 and then not Has_Warnings_Off (Base_Type (E))
7d8b9c99
RD
3871 then
3872 declare
3873 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
3874 A2 : Node_Id;
3875
3876 begin
3877 if Present (Cprag) then
3878 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
3879
3880 if Convention (E) = Convention_C then
3881 Error_Msg_N
685bc70f
AC
3882 ("?x?variant record has no direct equivalent in C",
3883 A2);
7d8b9c99
RD
3884 else
3885 Error_Msg_N
685bc70f
AC
3886 ("?x?variant record has no direct equivalent in C++",
3887 A2);
7d8b9c99
RD
3888 end if;
3889
3890 Error_Msg_NE
685bc70f 3891 ("\?x?use of convention for type& is dubious", A2, E);
7d8b9c99
RD
3892 end if;
3893 end;
3894 end if;
8dc10d38 3895
ce14c577 3896 -- See if Size is too small as is (and implicit packing might help)
8dc10d38 3897
426d2717 3898 if not Is_Packed (Rec)
ce14c577
AC
3899
3900 -- No implicit packing if even one component is explicitly placed
3901
426d2717 3902 and then not Placed_Component
ce14c577 3903
515490e0
AC
3904 -- Or even one component is aliased
3905
3906 and then not Aliased_Component
3907
ce14c577
AC
3908 -- Must have size clause and all scalar components
3909
8dc10d38
AC
3910 and then Has_Size_Clause (Rec)
3911 and then All_Scalar_Components
ce14c577
AC
3912
3913 -- Do not try implicit packing on records with discriminants, too
3914 -- complicated, especially in the variant record case.
3915
8dc10d38 3916 and then not Has_Discriminants (Rec)
ce14c577
AC
3917
3918 -- We can implicitly pack if the specified size of the record is
3919 -- less than the sum of the object sizes (no point in packing if
3920 -- this is not the case).
3921
fc893455 3922 and then RM_Size (Rec) < Scalar_Component_Total_Esize
ce14c577
AC
3923
3924 -- And the total RM size cannot be greater than the specified size
a90bd866 3925 -- since otherwise packing will not get us where we have to be.
ce14c577 3926
fc893455 3927 and then RM_Size (Rec) >= Scalar_Component_Total_RM_Size
ce14c577 3928
06b599fd 3929 -- Never do implicit packing in CodePeer or SPARK modes since
59e6b23c 3930 -- we don't do any packing in these modes, since this generates
25ebc085
AC
3931 -- over-complex code that confuses static analysis, and in
3932 -- general, neither CodePeer not GNATprove care about the
3933 -- internal representation of objects.
ce14c577 3934
f5da7a97 3935 and then not (CodePeer_Mode or GNATprove_Mode)
8dc10d38 3936 then
426d2717
AC
3937 -- If implicit packing enabled, do it
3938
3939 if Implicit_Packing then
3940 Set_Is_Packed (Rec);
3941
3942 -- Otherwise flag the size clause
3943
3944 else
3945 declare
3946 Sz : constant Node_Id := Size_Clause (Rec);
3947 begin
ed2233dc 3948 Error_Msg_NE -- CODEFIX
426d2717 3949 ("size given for& too small", Sz, Rec);
ed2233dc 3950 Error_Msg_N -- CODEFIX
426d2717
AC
3951 ("\use explicit pragma Pack "
3952 & "or use pragma Implicit_Packing", Sz);
3953 end;
3954 end if;
8dc10d38 3955 end if;
15918371 3956
f9e333ab
AC
3957 -- The following checks are only relevant when SPARK_Mode is on as
3958 -- they are not standard Ada legality rules.
3959
3960 if SPARK_Mode = On then
d780e54f 3961 if Is_Effectively_Volatile (Rec) then
f9e333ab 3962
d780e54f
AC
3963 -- A discriminated type cannot be effectively volatile
3964 -- (SPARK RM C.6(4)).
f9e333ab
AC
3965
3966 if Has_Discriminants (Rec) then
3967 Error_Msg_N ("discriminated type & cannot be volatile", Rec);
3968
d780e54f
AC
3969 -- A tagged type cannot be effectively volatile
3970 -- (SPARK RM C.6(5)).
f9e333ab
AC
3971
3972 elsif Is_Tagged_Type (Rec) then
3973 Error_Msg_N ("tagged type & cannot be volatile", Rec);
3974 end if;
3975
d780e54f
AC
3976 -- A non-effectively volatile record type cannot contain
3977 -- effectively volatile components (SPARK RM C.6(2)).
f9e333ab
AC
3978
3979 else
3980 Comp := First_Component (Rec);
3981 while Present (Comp) loop
3982 if Comes_From_Source (Comp)
d780e54f 3983 and then Is_Effectively_Volatile (Etype (Comp))
f9e333ab
AC
3984 then
3985 Error_Msg_Name_1 := Chars (Rec);
3986 Error_Msg_N
3987 ("component & of non-volatile type % cannot be "
3988 & "volatile", Comp);
3989 end if;
3990
3991 Next_Component (Comp);
3992 end loop;
3993 end if;
3994 end if;
3995
15918371
AC
3996 -- All done if not a full record definition
3997
3998 if Ekind (Rec) /= E_Record_Type then
3999 return;
4000 end if;
4001
c76bf0bf
AC
4002 -- Finally we need to check the variant part to make sure that
4003 -- all types within choices are properly frozen as part of the
4004 -- freezing of the record type.
15918371
AC
4005
4006 Check_Variant_Part : declare
4007 D : constant Node_Id := Declaration_Node (Rec);
4008 T : Node_Id;
4009 C : Node_Id;
15918371
AC
4010
4011 begin
4012 -- Find component list
4013
4014 C := Empty;
4015
4016 if Nkind (D) = N_Full_Type_Declaration then
4017 T := Type_Definition (D);
4018
4019 if Nkind (T) = N_Record_Definition then
4020 C := Component_List (T);
4021
4022 elsif Nkind (T) = N_Derived_Type_Definition
4023 and then Present (Record_Extension_Part (T))
4024 then
4025 C := Component_List (Record_Extension_Part (T));
4026 end if;
4027 end if;
4028
e7f23f06 4029 -- Case of variant part present
15918371
AC
4030
4031 if Present (C) and then Present (Variant_Part (C)) then
c76bf0bf
AC
4032 Freeze_Choices_In_Variant_Part (Variant_Part (C));
4033 end if;
4530b919 4034
c76bf0bf
AC
4035 -- Note: we used to call Check_Choices here, but it is too early,
4036 -- since predicated subtypes are frozen here, but their freezing
4037 -- actions are in Analyze_Freeze_Entity, which has not been called
4038 -- yet for entities frozen within this procedure, so we moved that
4039 -- call to the Analyze_Freeze_Entity for the record type.
4530b919 4040
15918371 4041 end Check_Variant_Part;
527f5eb6
AC
4042
4043 -- Check that all the primitives of an interface type are abstract
4044 -- or null procedures.
4045
4046 if Is_Interface (Rec)
4047 and then not Error_Posted (Parent (Rec))
4048 then
4049 declare
4050 Elmt : Elmt_Id;
4051 Subp : Entity_Id;
4052
4053 begin
4054 Elmt := First_Elmt (Primitive_Operations (Rec));
4055 while Present (Elmt) loop
4056 Subp := Node (Elmt);
4057
4058 if not Is_Abstract_Subprogram (Subp)
4059
4060 -- Avoid reporting the error on inherited primitives
4061
4062 and then Comes_From_Source (Subp)
4063 then
4064 Error_Msg_Name_1 := Chars (Subp);
4065
4066 if Ekind (Subp) = E_Procedure then
4067 if not Null_Present (Parent (Subp)) then
4068 Error_Msg_N
4069 ("interface procedure % must be abstract or null",
4070 Parent (Subp));
4071 end if;
4072 else
4073 Error_Msg_N
4074 ("interface function % must be abstract",
4075 Parent (Subp));
4076 end if;
4077 end if;
4078
4079 Next_Elmt (Elmt);
4080 end loop;
4081 end;
4082 end if;
70482933
RK
4083 end Freeze_Record_Type;
4084
e8cddc3b
AC
4085 -------------------------------
4086 -- Has_Boolean_Aspect_Import --
4087 -------------------------------
4088
4089 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean is
4090 Decl : constant Node_Id := Declaration_Node (E);
4091 Asp : Node_Id;
4092 Expr : Node_Id;
4093
4094 begin
4095 if Has_Aspects (Decl) then
4096 Asp := First (Aspect_Specifications (Decl));
4097 while Present (Asp) loop
4098 Expr := Expression (Asp);
4099
4100 -- The value of aspect Import is True when the expression is
4101 -- either missing or it is explicitly set to True.
4102
4103 if Get_Aspect_Id (Asp) = Aspect_Import
4104 and then (No (Expr)
4105 or else (Compile_Time_Known_Value (Expr)
4106 and then Is_True (Expr_Value (Expr))))
4107 then
4108 return True;
4109 end if;
4110
4111 Next (Asp);
4112 end loop;
4113 end if;
4114
4115 return False;
4116 end Has_Boolean_Aspect_Import;
4117
0fea901b
AC
4118 ----------------------------
4119 -- Late_Freeze_Subprogram --
4120 ----------------------------
4121
4122 procedure Late_Freeze_Subprogram (E : Entity_Id) is
4123 Spec : constant Node_Id :=
4124 Specification (Unit_Declaration_Node (Scope (E)));
4125 Decls : List_Id;
4126
4127 begin
4128 if Present (Private_Declarations (Spec)) then
4129 Decls := Private_Declarations (Spec);
4130 else
4131 Decls := Visible_Declarations (Spec);
4132 end if;
4133
4134 Append_List (Result, Decls);
4135 end Late_Freeze_Subprogram;
4136
32bba3c9
AC
4137 ------------------------------
4138 -- Wrap_Imported_Subprogram --
4139 ------------------------------
4140
4141 -- The issue here is that our normal approach of checking preconditions
4142 -- and postconditions does not work for imported procedures, since we
4143 -- are not generating code for the body. To get around this we create
4144 -- a wrapper, as shown by the following example:
4145
4146 -- procedure K (A : Integer);
4147 -- pragma Import (C, K);
4148
4149 -- The spec is rewritten by removing the effects of pragma Import, but
4150 -- leaving the convention unchanged, as though the source had said:
4151
4152 -- procedure K (A : Integer);
4153 -- pragma Convention (C, K);
4154
4155 -- and we create a body, added to the entity K freeze actions, which
4156 -- looks like:
4157
4158 -- procedure K (A : Integer) is
4159 -- procedure K (A : Integer);
4160 -- pragma Import (C, K);
4161 -- begin
4162 -- K (A);
4163 -- end K;
4164
4165 -- Now the contract applies in the normal way to the outer procedure,
4166 -- and the inner procedure has no contracts, so there is no problem
4167 -- in just calling it to get the original effect.
4168
4169 -- In the case of a function, we create an appropriate return statement
4170 -- for the subprogram body that calls the inner procedure.
4171
4172 procedure Wrap_Imported_Subprogram (E : Entity_Id) is
4173 Loc : constant Source_Ptr := Sloc (E);
f1a3590e 4174 CE : constant Name_Id := Chars (E);
32bba3c9
AC
4175 Spec : Node_Id;
4176 Parms : List_Id;
4177 Stmt : Node_Id;
4178 Iprag : Node_Id;
4179 Bod : Node_Id;
4180 Forml : Entity_Id;
4181
4182 begin
4183 -- Nothing to do if not imported
4184
4185 if not Is_Imported (E) then
4186 return;
32bba3c9
AC
4187
4188 -- Test enabling conditions for wrapping
4189
f1a3590e 4190 elsif Is_Subprogram (E)
32bba3c9
AC
4191 and then Present (Contract (E))
4192 and then Present (Pre_Post_Conditions (Contract (E)))
4193 and then not GNATprove_Mode
4194 then
f1a3590e 4195 -- Here we do the wrap
32bba3c9 4196
f1a3590e
AC
4197 -- Note on calls to Copy_Separate_Tree. The trees we are copying
4198 -- here are fully analyzed, but we definitely want fully syntactic
4199 -- unanalyzed trees in the body we construct, so that the analysis
f34b5d88
RD
4200 -- generates the right visibility, and that is exactly what the
4201 -- calls to Copy_Separate_Tree give us.
f1a3590e 4202
bb6c60f4
AC
4203 -- Acquire copy of Inline pragma, and indicate that it does not
4204 -- come from an aspect, as it applies to an internal entity.
f1a3590e 4205
7b536495 4206 Iprag := Copy_Separate_Tree (Import_Pragma (E));
bb6c60f4 4207 Set_From_Aspect_Specification (Iprag, False);
32bba3c9
AC
4208
4209 -- Fix up spec to be not imported any more
4210
32bba3c9
AC
4211 Set_Is_Imported (E, False);
4212 Set_Interface_Name (E, Empty);
4213 Set_Has_Completion (E, False);
4214 Set_Import_Pragma (E, Empty);
4215
4216 -- Grab the subprogram declaration and specification
4217
4218 Spec := Declaration_Node (E);
4219
4220 -- Build parameter list that we need
4221
4222 Parms := New_List;
4223 Forml := First_Formal (E);
4224 while Present (Forml) loop
f1a3590e 4225 Append_To (Parms, Make_Identifier (Loc, Chars (Forml)));
32bba3c9
AC
4226 Next_Formal (Forml);
4227 end loop;
4228
4229 -- Build the call
4230
4231 if Ekind_In (E, E_Function, E_Generic_Function) then
4232 Stmt :=
4233 Make_Simple_Return_Statement (Loc,
4234 Expression =>
4235 Make_Function_Call (Loc,
f1a3590e 4236 Name => Make_Identifier (Loc, CE),
32bba3c9
AC
4237 Parameter_Associations => Parms));
4238
4239 else
4240 Stmt :=
4241 Make_Procedure_Call_Statement (Loc,
f1a3590e 4242 Name => Make_Identifier (Loc, CE),
32bba3c9
AC
4243 Parameter_Associations => Parms);
4244 end if;
4245
4246 -- Now build the body
4247
4248 Bod :=
4249 Make_Subprogram_Body (Loc,
f1a3590e 4250 Specification =>
158d55fa 4251 Copy_Separate_Tree (Spec),
32bba3c9
AC
4252 Declarations => New_List (
4253 Make_Subprogram_Declaration (Loc,
f1a3590e 4254 Specification =>
158d55fa 4255 Copy_Separate_Tree (Spec)),
f1a3590e 4256 Iprag),
32bba3c9
AC
4257 Handled_Statement_Sequence =>
4258 Make_Handled_Sequence_Of_Statements (Loc,
4259 Statements => New_List (Stmt),
f1a3590e 4260 End_Label => Make_Identifier (Loc, CE)));
32bba3c9
AC
4261
4262 -- Append the body to freeze result
4263
4264 Add_To_Result (Bod);
4265 return;
32bba3c9
AC
4266
4267 -- Case of imported subprogram that does not get wrapped
4268
f1a3590e
AC
4269 else
4270 -- Set Is_Public. All imported entities need an external symbol
4271 -- created for them since they are always referenced from another
4272 -- object file. Note this used to be set when we set Is_Imported
4273 -- back in Sem_Prag, but now we delay it to this point, since we
4274 -- don't want to set this flag if we wrap an imported subprogram.
32bba3c9 4275
f1a3590e
AC
4276 Set_Is_Public (E);
4277 end if;
32bba3c9
AC
4278 end Wrap_Imported_Subprogram;
4279
70482933
RK
4280 -- Start of processing for Freeze_Entity
4281
4282 begin
c6823a20
EB
4283 -- We are going to test for various reasons why this entity need not be
4284 -- frozen here, but in the case of an Itype that's defined within a
4285 -- record, that test actually applies to the record.
4286
4287 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
4288 Test_E := Scope (E);
4289 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
4290 and then Is_Record_Type (Underlying_Type (Scope (E)))
4291 then
4292 Test_E := Underlying_Type (Scope (E));
4293 end if;
4294
fbf5a39b 4295 -- Do not freeze if already frozen since we only need one freeze node
70482933
RK
4296
4297 if Is_Frozen (E) then
4298 return No_List;
4299
c6823a20
EB
4300 -- It is improper to freeze an external entity within a generic because
4301 -- its freeze node will appear in a non-valid context. The entity will
4302 -- be frozen in the proper scope after the current generic is analyzed.
7640ef8a
AC
4303 -- However, aspects must be analyzed because they may be queried later
4304 -- within the generic itself, and the corresponding pragma or attribute
4305 -- definition has not been analyzed yet.
70482933 4306
c6823a20 4307 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
7640ef8a
AC
4308 if Has_Delayed_Aspects (E) then
4309 Analyze_Aspects_At_Freeze_Point (E);
4310 end if;
4311
70482933
RK
4312 return No_List;
4313
164e06c6
AC
4314 -- AI05-0213: A formal incomplete type does not freeze the actual. In
4315 -- the instance, the same applies to the subtype renaming the actual.
d3cb4cc0
AC
4316
4317 elsif Is_Private_Type (E)
4318 and then Is_Generic_Actual_Type (E)
4319 and then No (Full_View (Base_Type (E)))
4320 and then Ada_Version >= Ada_2012
4321 then
4322 return No_List;
4323
8575023c
AC
4324 -- Formal subprograms are never frozen
4325
4326 elsif Is_Formal_Subprogram (E) then
4327 return No_List;
4328
4329 -- Generic types are never frozen as they lack delayed semantic checks
5a8a6763
RD
4330
4331 elsif Is_Generic_Type (E) then
4332 return No_List;
4333
70482933
RK
4334 -- Do not freeze a global entity within an inner scope created during
4335 -- expansion. A call to subprogram E within some internal procedure
4336 -- (a stream attribute for example) might require freezing E, but the
4337 -- freeze node must appear in the same declarative part as E itself.
4338 -- The two-pass elaboration mechanism in gigi guarantees that E will
4339 -- be frozen before the inner call is elaborated. We exclude constants
4340 -- from this test, because deferred constants may be frozen early, and
19590d70
GD
4341 -- must be diagnosed (e.g. in the case of a deferred constant being used
4342 -- in a default expression). If the enclosing subprogram comes from
4343 -- source, or is a generic instance, then the freeze point is the one
4344 -- mandated by the language, and we freeze the entity. A subprogram that
4345 -- is a child unit body that acts as a spec does not have a spec that
4346 -- comes from source, but can only come from source.
70482933 4347
c6823a20
EB
4348 elsif In_Open_Scopes (Scope (Test_E))
4349 and then Scope (Test_E) /= Current_Scope
4350 and then Ekind (Test_E) /= E_Constant
70482933
RK
4351 then
4352 declare
3cae7f14 4353 S : Entity_Id;
70482933
RK
4354
4355 begin
3cae7f14 4356 S := Current_Scope;
70482933
RK
4357 while Present (S) loop
4358 if Is_Overloadable (S) then
4359 if Comes_From_Source (S)
4360 or else Is_Generic_Instance (S)
fea9e956 4361 or else Is_Child_Unit (S)
70482933
RK
4362 then
4363 exit;
4364 else
4365 return No_List;
4366 end if;
4367 end if;
4368
4369 S := Scope (S);
4370 end loop;
4371 end;
555360a5
AC
4372
4373 -- Similarly, an inlined instance body may make reference to global
4374 -- entities, but these references cannot be the proper freezing point
def46b54
RD
4375 -- for them, and in the absence of inlining freezing will take place in
4376 -- their own scope. Normally instance bodies are analyzed after the
4377 -- enclosing compilation, and everything has been frozen at the proper
4378 -- place, but with front-end inlining an instance body is compiled
4379 -- before the end of the enclosing scope, and as a result out-of-order
4380 -- freezing must be prevented.
555360a5
AC
4381
4382 elsif Front_End_Inlining
7d8b9c99 4383 and then In_Instance_Body
c6823a20 4384 and then Present (Scope (Test_E))
555360a5
AC
4385 then
4386 declare
3cae7f14 4387 S : Entity_Id;
c6823a20 4388
555360a5 4389 begin
3cae7f14 4390 S := Scope (Test_E);
555360a5
AC
4391 while Present (S) loop
4392 if Is_Generic_Instance (S) then
4393 exit;
4394 else
4395 S := Scope (S);
4396 end if;
4397 end loop;
4398
4399 if No (S) then
4400 return No_List;
4401 end if;
4402 end;
3cd4a210
AC
4403
4404 elsif Ekind (E) = E_Generic_Package then
4405 return Freeze_Generic_Entities (E);
70482933
RK
4406 end if;
4407
5f49133f
AC
4408 -- Add checks to detect proper initialization of scalars that may appear
4409 -- as subprogram parameters.
0ea55619 4410
15e934bf 4411 if Is_Subprogram (E) and then Check_Validity_Of_Parameters then
5f49133f 4412 Apply_Parameter_Validity_Checks (E);
0ea55619
AC
4413 end if;
4414
9a6dc470
RD
4415 -- Deal with delayed aspect specifications. The analysis of the aspect
4416 -- is required to be delayed to the freeze point, thus we analyze the
4417 -- pragma or attribute definition clause in the tree at this point. We
4418 -- also analyze the aspect specification node at the freeze point when
4419 -- the aspect doesn't correspond to pragma/attribute definition clause.
c159409f
AC
4420
4421 if Has_Delayed_Aspects (E) then
8a0320ad 4422 Analyze_Aspects_At_Freeze_Point (E);
c159409f
AC
4423 end if;
4424
70482933
RK
4425 -- Here to freeze the entity
4426
70482933
RK
4427 Set_Is_Frozen (E);
4428
4429 -- Case of entity being frozen is other than a type
4430
4431 if not Is_Type (E) then
685bc70f 4432
70482933
RK
4433 -- If entity is exported or imported and does not have an external
4434 -- name, now is the time to provide the appropriate default name.
4435 -- Skip this if the entity is stubbed, since we don't need a name
75a64833
AC
4436 -- for any stubbed routine. For the case on intrinsics, if no
4437 -- external name is specified, then calls will be handled in
545cb5be
AC
4438 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
4439 -- external name is provided, then Expand_Intrinsic_Call leaves
75a64833 4440 -- calls in place for expansion by GIGI.
70482933
RK
4441
4442 if (Is_Imported (E) or else Is_Exported (E))
4443 and then No (Interface_Name (E))
4444 and then Convention (E) /= Convention_Stubbed
75a64833 4445 and then Convention (E) /= Convention_Intrinsic
70482933
RK
4446 then
4447 Set_Encoded_Interface_Name
4448 (E, Get_Default_External_Name (E));
fbf5a39b 4449
bbaba73f
EB
4450 -- If entity is an atomic object appearing in a declaration and
4451 -- the expression is an aggregate, assign it to a temporary to
4452 -- ensure that the actual assignment is done atomically rather
4453 -- than component-wise (the assignment to the temp may be done
4454 -- component-wise, but that is harmless).
fbf5a39b
AC
4455
4456 elsif Is_Atomic (E)
4457 and then Nkind (Parent (E)) = N_Object_Declaration
4458 and then Present (Expression (Parent (E)))
bbaba73f 4459 and then Nkind (Expression (Parent (E))) = N_Aggregate
f96b2d85 4460 and then Is_Atomic_Aggregate (Expression (Parent (E)), Etype (E))
fbf5a39b 4461 then
b0159fbe 4462 null;
70482933
RK
4463 end if;
4464
32bba3c9 4465 -- Subprogram case
70482933
RK
4466
4467 if Is_Subprogram (E) then
32bba3c9
AC
4468
4469 -- Check for needing to wrap imported subprogram
4470
4471 Wrap_Imported_Subprogram (E);
4472
4473 -- Freeze all parameter types and the return type (RM 13.14(14)).
4474 -- However skip this for internal subprograms. This is also where
4475 -- any extra formal parameters are created since we now know
4476 -- whether the subprogram will use a foreign convention.
4477
c9f95e4c
AC
4478 -- In Ada 2012, freezing a subprogram does not always freeze
4479 -- the corresponding profile (see AI05-019). An attribute
4480 -- reference is not a freezing point of the profile.
4481 -- Other constructs that should not freeze ???
4482
4d1429b2 4483 -- This processing doesn't apply to internal entities (see below)
70482933 4484
4d1429b2
AC
4485 if not Is_Internal (E) then
4486 if not Freeze_Profile (E) then
4487 return Result;
4488 end if;
70482933
RK
4489 end if;
4490
4491 -- Must freeze its parent first if it is a derived subprogram
4492
4493 if Present (Alias (E)) then
c159409f 4494 Freeze_And_Append (Alias (E), N, Result);
70482933
RK
4495 end if;
4496
19590d70
GD
4497 -- We don't freeze internal subprograms, because we don't normally
4498 -- want addition of extra formals or mechanism setting to happen
4499 -- for those. However we do pass through predefined dispatching
4500 -- cases, since extra formals may be needed in some cases, such as
4501 -- for the stream 'Input function (build-in-place formals).
4502
4503 if not Is_Internal (E)
4504 or else Is_Predefined_Dispatching_Operation (E)
4505 then
70482933
RK
4506 Freeze_Subprogram (E);
4507 end if;
4508
0fea901b
AC
4509 if Late_Freezing then
4510 Late_Freeze_Subprogram (E);
4511 return No_List;
4512 end if;
4513
d3e16619
AC
4514 -- If warning on suspicious contracts then check for the case of
4515 -- a postcondition other than False for a No_Return subprogram.
4516
4517 if No_Return (E)
4518 and then Warn_On_Suspicious_Contract
4519 and then Present (Contract (E))
4520 then
4521 declare
4522 Prag : Node_Id := Pre_Post_Conditions (Contract (E));
4523 Exp : Node_Id;
4524
4525 begin
4526 while Present (Prag) loop
4527 if Nam_In (Pragma_Name (Prag), Name_Post,
4528 Name_Postcondition,
4529 Name_Refined_Post)
4530 then
4531 Exp :=
4532 Expression
4533 (First (Pragma_Argument_Associations (Prag)));
4534
4535 if Nkind (Exp) /= N_Identifier
4536 or else Chars (Exp) /= Name_False
4537 then
4538 Error_Msg_NE
4539 ("useless postcondition, & is marked "
4540 & "No_Return?T?", Exp, E);
4541 end if;
4542 end if;
4543
4544 Prag := Next_Pragma (Prag);
4545 end loop;
4546 end;
4547 end if;
4548
70482933
RK
4549 -- Here for other than a subprogram or type
4550
4551 else
4552 -- If entity has a type, and it is not a generic unit, then
7d8b9c99 4553 -- freeze it first (RM 13.14(10)).
70482933 4554
ac72c9c5 4555 if Present (Etype (E))
70482933
RK
4556 and then Ekind (E) /= E_Generic_Function
4557 then
c159409f 4558 Freeze_And_Append (Etype (E), N, Result);
32a21096
AC
4559
4560 -- For an object of an anonymous array type, aspects on the
4561 -- object declaration apply to the type itself. This is the
4562 -- case for Atomic_Components, Volatile_Components, and
4563 -- Independent_Components. In these cases analysis of the
4564 -- generated pragma will mark the anonymous types accordingly,
4565 -- and the object itself does not require a freeze node.
4566
4567 if Ekind (E) = E_Variable
4568 and then Is_Itype (Etype (E))
4569 and then Is_Array_Type (Etype (E))
4570 and then Has_Delayed_Aspects (E)
4571 then
4572 Set_Has_Delayed_Aspects (E, False);
4573 Set_Has_Delayed_Freeze (E, False);
4574 Set_Freeze_Node (E, Empty);
4575 end if;
70482933
RK
4576 end if;
4577
2c9beb8a 4578 -- Special processing for objects created by object declaration
70482933
RK
4579
4580 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2c9beb8a 4581
6823270c
AC
4582 -- Abstract type allowed only for C++ imported variables or
4583 -- constants.
4584
4585 -- Note: we inhibit this check for objects that do not come
4586 -- from source because there is at least one case (the
3e24afaa 4587 -- expansion of x'Class'Input where x is abstract) where we
6823270c
AC
4588 -- legitimately generate an abstract object.
4589
4590 if Is_Abstract_Type (Etype (E))
4591 and then Comes_From_Source (Parent (E))
4592 and then not (Is_Imported (E)
4593 and then Is_CPP_Class (Etype (E)))
4594 then
4595 Error_Msg_N ("type of object cannot be abstract",
4596 Object_Definition (Parent (E)));
4597
4598 if Is_CPP_Class (Etype (E)) then
ed2233dc
AC
4599 Error_Msg_NE
4600 ("\} may need a cpp_constructor",
e8de1a82 4601 Object_Definition (Parent (E)), Etype (E));
e699b76e
AC
4602
4603 elsif Present (Expression (Parent (E))) then
4604 Error_Msg_N -- CODEFIX
4605 ("\maybe a class-wide type was meant",
e8de1a82 4606 Object_Definition (Parent (E)));
6823270c
AC
4607 end if;
4608 end if;
4609
2c9beb8a
RD
4610 -- For object created by object declaration, perform required
4611 -- categorization (preelaborate and pure) checks. Defer these
4612 -- checks to freeze time since pragma Import inhibits default
4613 -- initialization and thus pragma Import affects these checks.
4614
70482933 4615 Validate_Object_Declaration (Declaration_Node (E));
2c9beb8a 4616
1ce1f005 4617 -- If there is an address clause, check that it is valid
2c9beb8a 4618
fbf5a39b 4619 Check_Address_Clause (E);
2c9beb8a 4620
572f38e4
AC
4621 -- Reset Is_True_Constant for non-constant aliased object. We
4622 -- consider that the fact that a non-constant object is aliased
4623 -- may indicate that some funny business is going on, e.g. an
4624 -- aliased object is passed by reference to a procedure which
4625 -- captures the address of the object, which is later used to
4626 -- assign a new value, even though the compiler thinks that
4627 -- it is not modified. Such code is highly dubious, but we
4628 -- choose to make it "work" for non-constant aliased objects.
4629 -- Note that we used to do this for all aliased objects,
4630 -- whether or not constant, but this caused anomalies down
4631 -- the line because we ended up with static objects that
4632 -- were not Is_True_Constant. Not resetting Is_True_Constant
4633 -- for (aliased) constant objects ensures that this anomaly
4634 -- never occurs.
124092ee
AC
4635
4636 -- However, we don't do that for internal entities. We figure
4637 -- that if we deliberately set Is_True_Constant for an internal
a90bd866 4638 -- entity, e.g. a dispatch table entry, then we mean it.
124092ee 4639
572f38e4
AC
4640 if Ekind (E) /= E_Constant
4641 and then (Is_Aliased (E) or else Is_Aliased (Etype (E)))
124092ee
AC
4642 and then not Is_Internal_Name (Chars (E))
4643 then
4644 Set_Is_True_Constant (E, False);
4645 end if;
4646
1ce1f005
GD
4647 -- If the object needs any kind of default initialization, an
4648 -- error must be issued if No_Default_Initialization applies.
4649 -- The check doesn't apply to imported objects, which are not
4650 -- ever default initialized, and is why the check is deferred
4651 -- until freezing, at which point we know if Import applies.
4fec4e7a
ES
4652 -- Deferred constants are also exempted from this test because
4653 -- their completion is explicit, or through an import pragma.
1ce1f005 4654
4fec4e7a
ES
4655 if Ekind (E) = E_Constant
4656 and then Present (Full_View (E))
4657 then
4658 null;
4659
4660 elsif Comes_From_Source (E)
b6e209b5 4661 and then not Is_Imported (E)
1ce1f005
GD
4662 and then not Has_Init_Expression (Declaration_Node (E))
4663 and then
4664 ((Has_Non_Null_Base_Init_Proc (Etype (E))
4665 and then not No_Initialization (Declaration_Node (E))
4666 and then not Is_Value_Type (Etype (E))
5b1e6aca 4667 and then not Initialization_Suppressed (Etype (E)))
1ce1f005
GD
4668 or else
4669 (Needs_Simple_Initialization (Etype (E))
4670 and then not Is_Internal (E)))
4671 then
4c8a5bb8 4672 Has_Default_Initialization := True;
1ce1f005
GD
4673 Check_Restriction
4674 (No_Default_Initialization, Declaration_Node (E));
4675 end if;
4676
4c8a5bb8
AC
4677 -- Check that a Thread_Local_Storage variable does not have
4678 -- default initialization, and any explicit initialization must
4679 -- either be the null constant or a static constant.
4680
4681 if Has_Pragma_Thread_Local_Storage (E) then
4682 declare
4683 Decl : constant Node_Id := Declaration_Node (E);
4684 begin
4685 if Has_Default_Initialization
4686 or else
4687 (Has_Init_Expression (Decl)
edab6088
RD
4688 and then
4689 (No (Expression (Decl))
4690 or else not
4691 (Is_OK_Static_Expression (Expression (Decl))
4692 or else
4693 Nkind (Expression (Decl)) = N_Null)))
4c8a5bb8
AC
4694 then
4695 Error_Msg_NE
4696 ("Thread_Local_Storage variable& is "
4697 & "improperly initialized", Decl, E);
4698 Error_Msg_NE
4699 ("\only allowed initialization is explicit "
4700 & "NULL or static expression", Decl, E);
4701 end if;
4702 end;
4703 end if;
4704
def46b54
RD
4705 -- For imported objects, set Is_Public unless there is also an
4706 -- address clause, which means that there is no external symbol
4707 -- needed for the Import (Is_Public may still be set for other
4708 -- unrelated reasons). Note that we delayed this processing
4709 -- till freeze time so that we can be sure not to set the flag
4710 -- if there is an address clause. If there is such a clause,
4711 -- then the only purpose of the Import pragma is to suppress
4712 -- implicit initialization.
2c9beb8a 4713
15e934bf 4714 if Is_Imported (E) and then No (Address_Clause (E)) then
2c9beb8a
RD
4715 Set_Is_Public (E);
4716 end if;
7d8b9c99 4717
19992053
AC
4718 -- For source objects that are not Imported and are library
4719 -- level, if no linker section pragma was given inherit the
4720 -- appropriate linker section from the corresponding type.
4721
4722 if Comes_From_Source (E)
4723 and then not Is_Imported (E)
4724 and then Is_Library_Level_Entity (E)
4725 and then No (Linker_Section_Pragma (E))
4726 then
4727 Set_Linker_Section_Pragma
4728 (E, Linker_Section_Pragma (Etype (E)));
4729 end if;
4730
7d8b9c99
RD
4731 -- For convention C objects of an enumeration type, warn if
4732 -- the size is not integer size and no explicit size given.
4733 -- Skip warning for Boolean, and Character, assume programmer
4734 -- expects 8-bit sizes for these cases.
4735
4736 if (Convention (E) = Convention_C
15e934bf 4737 or else
7d8b9c99
RD
4738 Convention (E) = Convention_CPP)
4739 and then Is_Enumeration_Type (Etype (E))
4740 and then not Is_Character_Type (Etype (E))
4741 and then not Is_Boolean_Type (Etype (E))
4742 and then Esize (Etype (E)) < Standard_Integer_Size
4743 and then not Has_Size_Clause (E)
4744 then
4745 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
4746 Error_Msg_N
685bc70f 4747 ("??convention C enumeration object has size less than ^",
7d8b9c99 4748 E);
b785e0b8 4749 Error_Msg_N ("\??use explicit size clause to set size", E);
7d8b9c99 4750 end if;
70482933
RK
4751 end if;
4752
4753 -- Check that a constant which has a pragma Volatile[_Components]
7d8b9c99 4754 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
70482933
RK
4755
4756 -- Note: Atomic[_Components] also sets Volatile[_Components]
4757
4758 if Ekind (E) = E_Constant
4759 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
4760 and then not Is_Imported (E)
e8cddc3b 4761 and then not Has_Boolean_Aspect_Import (E)
70482933
RK
4762 then
4763 -- Make sure we actually have a pragma, and have not merely
4764 -- inherited the indication from elsewhere (e.g. an address
a90bd866 4765 -- clause, which is not good enough in RM terms).
70482933 4766
1d571f3b 4767 if Has_Rep_Pragma (E, Name_Atomic)
91b1417d 4768 or else
1d571f3b 4769 Has_Rep_Pragma (E, Name_Atomic_Components)
70482933
RK
4770 then
4771 Error_Msg_N
91b1417d 4772 ("stand alone atomic constant must be " &
def46b54 4773 "imported (RM C.6(13))", E);
91b1417d 4774
1d571f3b 4775 elsif Has_Rep_Pragma (E, Name_Volatile)
91b1417d 4776 or else
1d571f3b 4777 Has_Rep_Pragma (E, Name_Volatile_Components)
91b1417d
AC
4778 then
4779 Error_Msg_N
4780 ("stand alone volatile constant must be " &
86cde7b1 4781 "imported (RM C.6(13))", E);
70482933
RK
4782 end if;
4783 end if;
4784
4785 -- Static objects require special handling
4786
4787 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
4788 and then Is_Statically_Allocated (E)
4789 then
4790 Freeze_Static_Object (E);
4791 end if;
4792
4793 -- Remaining step is to layout objects
4794
ef1c0511
AC
4795 if Ekind_In (E, E_Variable, E_Constant, E_Loop_Parameter)
4796 or else Is_Formal (E)
70482933
RK
4797 then
4798 Layout_Object (E);
4799 end if;
3a3af4c3 4800
2ffcbaa5
AC
4801 -- For an object that does not have delayed freezing, and whose
4802 -- initialization actions have been captured in a compound
4803 -- statement, move them back now directly within the enclosing
4804 -- statement sequence.
3a3af4c3
AC
4805
4806 if Ekind_In (E, E_Constant, E_Variable)
15e934bf 4807 and then not Has_Delayed_Freeze (E)
3a3af4c3 4808 then
2ffcbaa5 4809 Explode_Initialization_Compound_Statement (E);
3a3af4c3 4810 end if;
70482933
RK
4811 end if;
4812
4813 -- Case of a type or subtype being frozen
4814
4815 else
31b5873d
GD
4816 -- We used to check here that a full type must have preelaborable
4817 -- initialization if it completes a private type specified with
308e6f3a 4818 -- pragma Preelaborable_Initialization, but that missed cases where
31b5873d
GD
4819 -- the types occur within a generic package, since the freezing
4820 -- that occurs within a containing scope generally skips traversal
4821 -- of a generic unit's declarations (those will be frozen within
4822 -- instances). This check was moved to Analyze_Package_Specification.
3f1ede06 4823
70482933
RK
4824 -- The type may be defined in a generic unit. This can occur when
4825 -- freezing a generic function that returns the type (which is
4826 -- defined in a parent unit). It is clearly meaningless to freeze
4827 -- this type. However, if it is a subtype, its size may be determi-
4828 -- nable and used in subsequent checks, so might as well try to
4829 -- compute it.
4830
cf7bb903 4831 -- In Ada 2012, Freeze_Entities is also used in the front end to
e876c43a
AC
4832 -- trigger the analysis of aspect expressions, so in this case we
4833 -- want to continue the freezing process.
4834
70482933
RK
4835 if Present (Scope (E))
4836 and then Is_Generic_Unit (Scope (E))
3cd4a210
AC
4837 and then
4838 (not Has_Predicates (E)
4839 and then not Has_Delayed_Freeze (E))
70482933
RK
4840 then
4841 Check_Compile_Time_Size (E);
4842 return No_List;
4843 end if;
4844
e9a79435
RD
4845 -- Check for error of Type_Invariant'Class applied to an untagged
4846 -- type (check delayed to freeze time when full type is available).
2fe258bf
AC
4847
4848 declare
4849 Prag : constant Node_Id := Get_Pragma (E, Pragma_Invariant);
4850 begin
4851 if Present (Prag)
4852 and then Class_Present (Prag)
4853 and then not Is_Tagged_Type (E)
4854 then
4855 Error_Msg_NE
4856 ("Type_Invariant''Class cannot be specified for &",
4857 Prag, E);
4858 Error_Msg_N
4859 ("\can only be specified for a tagged type", Prag);
4860 end if;
4861 end;
4862
c5cec2fe
AC
4863 -- A Ghost type cannot be effectively volatile (SPARK RM 6.9(8))
4864
4865 if Is_Ghost_Entity (E)
4866 and then Is_Effectively_Volatile (E)
4867 then
a98480dd 4868 Error_Msg_N ("ghost type & cannot be volatile", E);
c5cec2fe
AC
4869 end if;
4870
70482933
RK
4871 -- Deal with special cases of freezing for subtype
4872
4873 if E /= Base_Type (E) then
4874
86cde7b1
RD
4875 -- Before we do anything else, a specialized test for the case of
4876 -- a size given for an array where the array needs to be packed,
3d529af4
RD
4877 -- but was not so the size cannot be honored. This is the case
4878 -- where implicit packing may apply. The reason we do this so
aa0dfa7e 4879 -- early is that if we have implicit packing, the layout of the
3d529af4
RD
4880 -- base type is affected, so we must do this before we freeze
4881 -- the base type.
4882
4883 -- We could do this processing only if implicit packing is enabled
4884 -- since in all other cases, the error would be caught by the back
4885 -- end. However, we choose to do the check even if we do not have
aa0dfa7e
AC
4886 -- implicit packing enabled, since this allows us to give a more
4887 -- useful error message (advising use of pragmas Implicit_Packing
4888 -- or Pack).
86cde7b1
RD
4889
4890 if Is_Array_Type (E) then
4891 declare
3d529af4
RD
4892 Ctyp : constant Entity_Id := Component_Type (E);
4893 Rsiz : constant Uint := RM_Size (Ctyp);
4894 SZ : constant Node_Id := Size_Clause (E);
4895 Btyp : constant Entity_Id := Base_Type (E);
4896
4897 Lo : Node_Id;
4898 Hi : Node_Id;
4899 Indx : Node_Id;
4900
4901 Num_Elmts : Uint;
4902 -- Number of elements in array
86cde7b1
RD
4903
4904 begin
4905 -- Check enabling conditions. These are straightforward
4906 -- except for the test for a limited composite type. This
4907 -- eliminates the rare case of a array of limited components
4908 -- where there are issues of whether or not we can go ahead
4909 -- and pack the array (since we can't freely pack and unpack
4910 -- arrays if they are limited).
4911
4912 -- Note that we check the root type explicitly because the
4913 -- whole point is we are doing this test before we have had
4914 -- a chance to freeze the base type (and it is that freeze
4915 -- action that causes stuff to be inherited).
4916
3d529af4 4917 if Has_Size_Clause (E)
fc893455 4918 and then Known_Static_RM_Size (E)
86cde7b1
RD
4919 and then not Is_Packed (E)
4920 and then not Has_Pragma_Pack (E)
86cde7b1 4921 and then not Has_Component_Size_Clause (E)
fc893455 4922 and then Known_Static_RM_Size (Ctyp)
3d529af4 4923 and then RM_Size (Ctyp) < 64
86cde7b1
RD
4924 and then not Is_Limited_Composite (E)
4925 and then not Is_Packed (Root_Type (E))
4926 and then not Has_Component_Size_Clause (Root_Type (E))
f5da7a97 4927 and then not (CodePeer_Mode or GNATprove_Mode)
86cde7b1 4928 then
3d529af4
RD
4929 -- Compute number of elements in array
4930
4931 Num_Elmts := Uint_1;
4932 Indx := First_Index (E);
4933 while Present (Indx) loop
4934 Get_Index_Bounds (Indx, Lo, Hi);
4935
4936 if not (Compile_Time_Known_Value (Lo)
4937 and then
4938 Compile_Time_Known_Value (Hi))
4939 then
4940 goto No_Implicit_Packing;
4941 end if;
86cde7b1 4942
3d529af4
RD
4943 Num_Elmts :=
4944 Num_Elmts *
4945 UI_Max (Uint_0,
4946 Expr_Value (Hi) - Expr_Value (Lo) + 1);
4947 Next_Index (Indx);
4948 end loop;
4949
4950 -- What we are looking for here is the situation where
4951 -- the RM_Size given would be exactly right if there was
4952 -- a pragma Pack (resulting in the component size being
4953 -- the same as the RM_Size). Furthermore, the component
4954 -- type size must be an odd size (not a multiple of
4955 -- storage unit). If the component RM size is an exact
4956 -- number of storage units that is a power of two, the
4957 -- array is not packed and has a standard representation.
4958
4959 if RM_Size (E) = Num_Elmts * Rsiz
4960 and then Rsiz mod System_Storage_Unit /= 0
86cde7b1 4961 then
3d529af4
RD
4962 -- For implicit packing mode, just set the component
4963 -- size silently.
86cde7b1 4964
3d529af4
RD
4965 if Implicit_Packing then
4966 Set_Component_Size (Btyp, Rsiz);
4967 Set_Is_Bit_Packed_Array (Btyp);
4968 Set_Is_Packed (Btyp);
4969 Set_Has_Non_Standard_Rep (Btyp);
5a989c6b 4970
3d529af4
RD
4971 -- Otherwise give an error message
4972
4973 else
4974 Error_Msg_NE
4975 ("size given for& too small", SZ, E);
4976 Error_Msg_N -- CODEFIX
4977 ("\use explicit pragma Pack "
4978 & "or use pragma Implicit_Packing", SZ);
4979 end if;
5a989c6b 4980
3d529af4
RD
4981 elsif RM_Size (E) = Num_Elmts * Rsiz
4982 and then Implicit_Packing
4983 and then
4984 (Rsiz / System_Storage_Unit = 1
4985 or else
4986 Rsiz / System_Storage_Unit = 2
4987 or else
4988 Rsiz / System_Storage_Unit = 4)
4989 then
4990 -- Not a packed array, but indicate the desired
4991 -- component size, for the back-end.
5a989c6b 4992
3d529af4 4993 Set_Component_Size (Btyp, Rsiz);
86cde7b1
RD
4994 end if;
4995 end if;
4996 end;
4997 end if;
4998
3d529af4
RD
4999 <<No_Implicit_Packing>>
5000
def46b54 5001 -- If ancestor subtype present, freeze that first. Note that this
8110ee3b 5002 -- will also get the base type frozen. Need RM reference ???
70482933
RK
5003
5004 Atype := Ancestor_Subtype (E);
5005
5006 if Present (Atype) then
c159409f 5007 Freeze_And_Append (Atype, N, Result);
70482933 5008
8110ee3b 5009 -- No ancestor subtype present
70482933 5010
8110ee3b
RD
5011 else
5012 -- See if we have a nearest ancestor that has a predicate.
5013 -- That catches the case of derived type with a predicate.
5014 -- Need RM reference here ???
5015
5016 Atype := Nearest_Ancestor (E);
5017
5018 if Present (Atype) and then Has_Predicates (Atype) then
5019 Freeze_And_Append (Atype, N, Result);
5020 end if;
5021
5022 -- Freeze base type before freezing the entity (RM 13.14(15))
5023
5024 if E /= Base_Type (E) then
5025 Freeze_And_Append (Base_Type (E), N, Result);
5026 end if;
70482933
RK
5027 end if;
5028
dc3af7e2
AC
5029 -- A subtype inherits all the type-related representation aspects
5030 -- from its parents (RM 13.1(8)).
5031
5032 Inherit_Aspects_At_Freeze_Point (E);
5033
fbf5a39b 5034 -- For a derived type, freeze its parent type first (RM 13.14(15))
70482933
RK
5035
5036 elsif Is_Derived_Type (E) then
c159409f
AC
5037 Freeze_And_Append (Etype (E), N, Result);
5038 Freeze_And_Append (First_Subtype (Etype (E)), N, Result);
dc3af7e2
AC
5039
5040 -- A derived type inherits each type-related representation aspect
5041 -- of its parent type that was directly specified before the
5042 -- declaration of the derived type (RM 13.1(15)).
5043
5044 Inherit_Aspects_At_Freeze_Point (E);
70482933 5045 end if;
3f1bc2cf
AC
5046
5047 -- Check for incompatible size and alignment for record type
5048
5049 if Warn_On_Size_Alignment
5050 and then Is_Record_Type (E)
5051 and then Has_Size_Clause (E) and then Has_Alignment_Clause (E)
5052
5053 -- If explicit Object_Size clause given assume that the programmer
5054 -- knows what he is doing, and expects the compiler behavior.
5055
5056 and then not Has_Object_Size_Clause (E)
5057
5058 -- Check for size not a multiple of alignment
5059
5060 and then RM_Size (E) mod (Alignment (E) * System_Storage_Unit) /= 0
5061 then
5062 declare
5063 SC : constant Node_Id := Size_Clause (E);
5064 AC : constant Node_Id := Alignment_Clause (E);
5065 Loc : Node_Id;
5066 Abits : constant Uint := Alignment (E) * System_Storage_Unit;
5067
5068 begin
5069 if Present (SC) and then Present (AC) then
5070
5071 -- Give a warning
5072
5073 if Sloc (SC) > Sloc (AC) then
5074 Loc := SC;
5075 Error_Msg_NE
5076 ("??size is not a multiple of alignment for &", Loc, E);
5077 Error_Msg_Sloc := Sloc (AC);
5078 Error_Msg_Uint_1 := Alignment (E);
5079 Error_Msg_N ("\??alignment of ^ specified #", Loc);
5080
5081 else
5082 Loc := AC;
5083 Error_Msg_NE
5084 ("??size is not a multiple of alignment for &", Loc, E);
5085 Error_Msg_Sloc := Sloc (SC);
5086 Error_Msg_Uint_1 := RM_Size (E);
5087 Error_Msg_N ("\??size of ^ specified #", Loc);
5088 end if;
5089
5090 Error_Msg_Uint_1 := ((RM_Size (E) / Abits) + 1) * Abits;
5091 Error_Msg_N ("\??Object_Size will be increased to ^", Loc);
5092 end if;
5093 end;
5094 end if;
70482933 5095
63bb4268 5096 -- Array type
70482933
RK
5097
5098 if Is_Array_Type (E) then
63bb4268 5099 Freeze_Array_Type (E);
70482933 5100
fbf5a39b
AC
5101 -- For a class-wide type, the corresponding specific type is
5102 -- frozen as well (RM 13.14(15))
70482933
RK
5103
5104 elsif Is_Class_Wide_Type (E) then
c159409f 5105 Freeze_And_Append (Root_Type (E), N, Result);
70482933 5106
86cde7b1
RD
5107 -- If the base type of the class-wide type is still incomplete,
5108 -- the class-wide remains unfrozen as well. This is legal when
5109 -- E is the formal of a primitive operation of some other type
5110 -- which is being frozen.
5111
5112 if not Is_Frozen (Root_Type (E)) then
5113 Set_Is_Frozen (E, False);
5114 return Result;
5115 end if;
5116
67336960
AC
5117 -- The equivalent type associated with a class-wide subtype needs
5118 -- to be frozen to ensure that its layout is done.
5119
5120 if Ekind (E) = E_Class_Wide_Subtype
5121 and then Present (Equivalent_Type (E))
5122 then
5123 Freeze_And_Append (Equivalent_Type (E), N, Result);
5124 end if;
5125
5126 -- Generate an itype reference for a library-level class-wide type
5127 -- at the freeze point. Otherwise the first explicit reference to
5128 -- the type may appear in an inner scope which will be rejected by
5129 -- the back-end.
70482933
RK
5130
5131 if Is_Itype (E)
5132 and then Is_Compilation_Unit (Scope (E))
5133 then
70482933 5134 declare
fbf5a39b 5135 Ref : constant Node_Id := Make_Itype_Reference (Loc);
70482933
RK
5136
5137 begin
5138 Set_Itype (Ref, E);
70482933 5139
67336960
AC
5140 -- From a gigi point of view, a class-wide subtype derives
5141 -- from its record equivalent type. As a result, the itype
5142 -- reference must appear after the freeze node of the
5143 -- equivalent type or gigi will reject the reference.
fbf5a39b 5144
67336960
AC
5145 if Ekind (E) = E_Class_Wide_Subtype
5146 and then Present (Equivalent_Type (E))
5147 then
5148 Insert_After (Freeze_Node (Equivalent_Type (E)), Ref);
5149 else
5150 Add_To_Result (Ref);
5151 end if;
5152 end;
fbf5a39b
AC
5153 end if;
5154
e187fa72
AC
5155 -- For a record type or record subtype, freeze all component types
5156 -- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
5157 -- using Is_Record_Type, because we don't want to attempt the freeze
5158 -- for the case of a private type with record extension (we will do
5159 -- that later when the full type is frozen).
5160
3cd4a210 5161 elsif Ekind_In (E, E_Record_Type, E_Record_Subtype)
43c58950
AC
5162 and then not (Present (Scope (E))
5163 and then Is_Generic_Unit (Scope (E)))
3cd4a210 5164 then
70482933
RK
5165 Freeze_Record_Type (E);
5166
220d1fd9
AC
5167 -- For a concurrent type, freeze corresponding record type. This does
5168 -- not correspond to any specific rule in the RM, but the record type
5169 -- is essentially part of the concurrent type. Also freeze all local
5170 -- entities. This includes record types created for entry parameter
5171 -- blocks and whatever local entities may appear in the private part.
70482933
RK
5172
5173 elsif Is_Concurrent_Type (E) then
5174 if Present (Corresponding_Record_Type (E)) then
ef1c0511 5175 Freeze_And_Append (Corresponding_Record_Type (E), N, Result);
70482933
RK
5176 end if;
5177
5178 Comp := First_Entity (E);
70482933
RK
5179 while Present (Comp) loop
5180 if Is_Type (Comp) then
c159409f 5181 Freeze_And_Append (Comp, N, Result);
70482933
RK
5182
5183 elsif (Ekind (Comp)) /= E_Function then
c6823a20 5184
a08bf2de
RD
5185 -- The guard on the presence of the Etype seems to be needed
5186 -- for some CodePeer (-gnatcC) cases, but not clear why???
5187
5188 if Present (Etype (Comp)) then
5189 if Is_Itype (Etype (Comp))
5190 and then Underlying_Type (Scope (Etype (Comp))) = E
5191 then
5192 Undelay_Type (Etype (Comp));
5193 end if;
5194
5195 Freeze_And_Append (Etype (Comp), N, Result);
5196 end if;
70482933
RK
5197 end if;
5198
5199 Next_Entity (Comp);
5200 end loop;
5201
ee094616
RD
5202 -- Private types are required to point to the same freeze node as
5203 -- their corresponding full views. The freeze node itself has to
5204 -- point to the partial view of the entity (because from the partial
5205 -- view, we can retrieve the full view, but not the reverse).
5206 -- However, in order to freeze correctly, we need to freeze the full
5207 -- view. If we are freezing at the end of a scope (or within the
bf0b0e5e 5208 -- scope) of the private type, the partial and full views will have
ee094616
RD
5209 -- been swapped, the full view appears first in the entity chain and
5210 -- the swapping mechanism ensures that the pointers are properly set
5211 -- (on scope exit).
5212
5213 -- If we encounter the partial view before the full view (e.g. when
5214 -- freezing from another scope), we freeze the full view, and then
5215 -- set the pointers appropriately since we cannot rely on swapping to
5216 -- fix things up (subtypes in an outer scope might not get swapped).
70482933 5217
bf0b0e5e
AC
5218 -- If the full view is itself private, the above requirements apply
5219 -- to the underlying full view instead of the full view. But there is
5220 -- no swapping mechanism for the underlying full view so we need to
5221 -- set the pointers appropriately in both cases.
5222
70482933
RK
5223 elsif Is_Incomplete_Or_Private_Type (E)
5224 and then not Is_Generic_Type (E)
5225 then
86cde7b1
RD
5226 -- The construction of the dispatch table associated with library
5227 -- level tagged types forces freezing of all the primitives of the
5228 -- type, which may cause premature freezing of the partial view.
5229 -- For example:
5230
5231 -- package Pkg is
5232 -- type T is tagged private;
5233 -- type DT is new T with private;
3e24afaa 5234 -- procedure Prim (X : in out T; Y : in out DT'Class);
86cde7b1
RD
5235 -- private
5236 -- type T is tagged null record;
5237 -- Obj : T;
5238 -- type DT is new T with null record;
5239 -- end;
5240
5241 -- In this case the type will be frozen later by the usual
5242 -- mechanism: an object declaration, an instantiation, or the
5243 -- end of a declarative part.
5244
5245 if Is_Library_Level_Tagged_Type (E)
5246 and then not Present (Full_View (E))
5247 then
5248 Set_Is_Frozen (E, False);
5249 return Result;
5250
70482933
RK
5251 -- Case of full view present
5252
86cde7b1 5253 elsif Present (Full_View (E)) then
70482933 5254
ee094616
RD
5255 -- If full view has already been frozen, then no further
5256 -- processing is required
70482933
RK
5257
5258 if Is_Frozen (Full_View (E)) then
70482933
RK
5259 Set_Has_Delayed_Freeze (E, False);
5260 Set_Freeze_Node (E, Empty);
70482933 5261
ee094616 5262 -- Otherwise freeze full view and patch the pointers so that
bf0b0e5e
AC
5263 -- the freeze node will elaborate both views in the back end.
5264 -- However, if full view is itself private, freeze underlying
625d8a9f 5265 -- full view instead and patch the pointers so that the freeze
bf0b0e5e 5266 -- node will elaborate the three views in the back end.
70482933
RK
5267
5268 else
fbf5a39b 5269 declare
bf0b0e5e 5270 Full : Entity_Id := Full_View (E);
70482933 5271
fbf5a39b
AC
5272 begin
5273 if Is_Private_Type (Full)
5274 and then Present (Underlying_Full_View (Full))
5275 then
bf0b0e5e 5276 Full := Underlying_Full_View (Full);
fbf5a39b 5277 end if;
70482933 5278
c159409f 5279 Freeze_And_Append (Full, N, Result);
70482933 5280
bf0b0e5e
AC
5281 if Full /= Full_View (E)
5282 and then Has_Delayed_Freeze (Full_View (E))
5283 then
fbf5a39b 5284 F_Node := Freeze_Node (Full);
70482933 5285
bf0b0e5e
AC
5286 if Present (F_Node) then
5287 Set_Freeze_Node (Full_View (E), F_Node);
5288 Set_Entity (F_Node, Full_View (E));
5289
5290 else
5291 Set_Has_Delayed_Freeze (Full_View (E), False);
5292 Set_Freeze_Node (Full_View (E), Empty);
5293 end if;
5294 end if;
5295
5296 if Has_Delayed_Freeze (E) then
5297 F_Node := Freeze_Node (Full_View (E));
5298
fbf5a39b
AC
5299 if Present (F_Node) then
5300 Set_Freeze_Node (E, F_Node);
5301 Set_Entity (F_Node, E);
5302
5303 else
def46b54
RD
5304 -- {Incomplete,Private}_Subtypes with Full_Views
5305 -- constrained by discriminants.
fbf5a39b
AC
5306
5307 Set_Has_Delayed_Freeze (E, False);
5308 Set_Freeze_Node (E, Empty);
5309 end if;
70482933 5310 end if;
fbf5a39b 5311 end;
70482933
RK
5312 end if;
5313
bf0b0e5e
AC
5314 Check_Debug_Info_Needed (E);
5315
ee094616
RD
5316 -- AI-117 requires that the convention of a partial view be the
5317 -- same as the convention of the full view. Note that this is a
5318 -- recognized breach of privacy, but it's essential for logical
5319 -- consistency of representation, and the lack of a rule in
5320 -- RM95 was an oversight.
70482933
RK
5321
5322 Set_Convention (E, Convention (Full_View (E)));
5323
5324 Set_Size_Known_At_Compile_Time (E,
5325 Size_Known_At_Compile_Time (Full_View (E)));
5326
5327 -- Size information is copied from the full view to the
def46b54 5328 -- incomplete or private view for consistency.
70482933 5329
ee094616
RD
5330 -- We skip this is the full view is not a type. This is very
5331 -- strange of course, and can only happen as a result of
5332 -- certain illegalities, such as a premature attempt to derive
5333 -- from an incomplete type.
70482933
RK
5334
5335 if Is_Type (Full_View (E)) then
5336 Set_Size_Info (E, Full_View (E));
5337 Set_RM_Size (E, RM_Size (Full_View (E)));
5338 end if;
5339
5340 return Result;
5341
bf0b0e5e
AC
5342 -- Case of underlying full view present
5343
5344 elsif Is_Private_Type (E)
5345 and then Present (Underlying_Full_View (E))
5346 then
5347 if not Is_Frozen (Underlying_Full_View (E)) then
5348 Freeze_And_Append (Underlying_Full_View (E), N, Result);
5349 end if;
5350
5351 -- Patch the pointers so that the freeze node will elaborate
5352 -- both views in the back end.
5353
5354 if Has_Delayed_Freeze (E) then
5355 F_Node := Freeze_Node (Underlying_Full_View (E));
5356
5357 if Present (F_Node) then
5358 Set_Freeze_Node (E, F_Node);
5359 Set_Entity (F_Node, E);
5360
5361 else
5362 Set_Has_Delayed_Freeze (E, False);
5363 Set_Freeze_Node (E, Empty);
5364 end if;
5365 end if;
5366
5367 Check_Debug_Info_Needed (E);
5368
5369 return Result;
5370
70482933
RK
5371 -- Case of no full view present. If entity is derived or subtype,
5372 -- it is safe to freeze, correctness depends on the frozen status
5373 -- of parent. Otherwise it is either premature usage, or a Taft
5374 -- amendment type, so diagnosis is at the point of use and the
5375 -- type might be frozen later.
5376
ef1c0511 5377 elsif E /= Base_Type (E) or else Is_Derived_Type (E) then
70482933
RK
5378 null;
5379
5380 else
5381 Set_Is_Frozen (E, False);
5382 return No_List;
5383 end if;
5384
5385 -- For access subprogram, freeze types of all formals, the return
5386 -- type was already frozen, since it is the Etype of the function.
8aec446b 5387 -- Formal types can be tagged Taft amendment types, but otherwise
205c14b0 5388 -- they cannot be incomplete.
70482933
RK
5389
5390 elsif Ekind (E) = E_Subprogram_Type then
5391 Formal := First_Formal (E);
5392 while Present (Formal) loop
8aec446b
AC
5393 if Ekind (Etype (Formal)) = E_Incomplete_Type
5394 and then No (Full_View (Etype (Formal)))
5395 and then not Is_Value_Type (Etype (Formal))
5396 then
5397 if Is_Tagged_Type (Etype (Formal)) then
5398 null;
dd386db0 5399
3cae7f14 5400 -- AI05-151: Incomplete types are allowed in access to
dd386db0
AC
5401 -- subprogram specifications.
5402
5403 elsif Ada_Version < Ada_2012 then
8aec446b
AC
5404 Error_Msg_NE
5405 ("invalid use of incomplete type&", E, Etype (Formal));
5406 end if;
5407 end if;
5408
c159409f 5409 Freeze_And_Append (Etype (Formal), N, Result);
70482933
RK
5410 Next_Formal (Formal);
5411 end loop;
5412
70482933
RK
5413 Freeze_Subprogram (E);
5414
ee094616
RD
5415 -- For access to a protected subprogram, freeze the equivalent type
5416 -- (however this is not set if we are not generating code or if this
5417 -- is an anonymous type used just for resolution).
70482933 5418
fea9e956 5419 elsif Is_Access_Protected_Subprogram_Type (E) then
57747aec 5420 if Present (Equivalent_Type (E)) then
c159409f 5421 Freeze_And_Append (Equivalent_Type (E), N, Result);
d8db0bca 5422 end if;
70482933
RK
5423 end if;
5424
5425 -- Generic types are never seen by the back-end, and are also not
5426 -- processed by the expander (since the expander is turned off for
5427 -- generic processing), so we never need freeze nodes for them.
5428
5429 if Is_Generic_Type (E) then
5430 return Result;
5431 end if;
5432
5433 -- Some special processing for non-generic types to complete
5434 -- representation details not known till the freeze point.
5435
5436 if Is_Fixed_Point_Type (E) then
5437 Freeze_Fixed_Point_Type (E);
5438
ee094616
RD
5439 -- Some error checks required for ordinary fixed-point type. Defer
5440 -- these till the freeze-point since we need the small and range
5441 -- values. We only do these checks for base types
fbf5a39b 5442
d347f572 5443 if Is_Ordinary_Fixed_Point_Type (E) and then Is_Base_Type (E) then
fbf5a39b
AC
5444 if Small_Value (E) < Ureal_2_M_80 then
5445 Error_Msg_Name_1 := Name_Small;
5446 Error_Msg_N
7d8b9c99 5447 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
fbf5a39b
AC
5448
5449 elsif Small_Value (E) > Ureal_2_80 then
5450 Error_Msg_Name_1 := Name_Small;
5451 Error_Msg_N
7d8b9c99 5452 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
fbf5a39b
AC
5453 end if;
5454
5455 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
5456 Error_Msg_Name_1 := Name_First;
5457 Error_Msg_N
7d8b9c99 5458 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
fbf5a39b
AC
5459 end if;
5460
5461 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
5462 Error_Msg_Name_1 := Name_Last;
5463 Error_Msg_N
7d8b9c99 5464 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
fbf5a39b
AC
5465 end if;
5466 end if;
5467
70482933
RK
5468 elsif Is_Enumeration_Type (E) then
5469 Freeze_Enumeration_Type (E);
5470
5471 elsif Is_Integer_Type (E) then
5472 Adjust_Esize_For_Alignment (E);
5473
79afa047
AC
5474 if Is_Modular_Integer_Type (E)
5475 and then Warn_On_Suspicious_Modulus_Value
5476 then
67b3acf8
RD
5477 Check_Suspicious_Modulus (E);
5478 end if;
5479
e8de1a82 5480 -- The pool applies to named and anonymous access types, but not
62a64085
AC
5481 -- to subprogram and to internal types generated for 'Access
5482 -- references.
5483
ea2af26a
AC
5484 elsif Is_Access_Type (E)
5485 and then not Is_Access_Subprogram_Type (E)
62a64085 5486 and then Ekind (E) /= E_Access_Attribute_Type
ea2af26a 5487 then
fab2daeb
AC
5488 -- If a pragma Default_Storage_Pool applies, and this type has no
5489 -- Storage_Pool or Storage_Size clause (which must have occurred
5490 -- before the freezing point), then use the default. This applies
5491 -- only to base types.
a5fe079c
AC
5492
5493 -- None of this applies to access to subprograms, for which there
ea2af26a 5494 -- are clearly no pools.
fab2daeb
AC
5495
5496 if Present (Default_Pool)
d347f572 5497 and then Is_Base_Type (E)
fab2daeb
AC
5498 and then not Has_Storage_Size_Clause (E)
5499 and then No (Associated_Storage_Pool (E))
5500 then
5501 -- Case of pragma Default_Storage_Pool (null)
5502
5503 if Nkind (Default_Pool) = N_Null then
5504 Set_No_Pool_Assigned (E);
5505
5506 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
5507
5508 else
5509 Set_Associated_Storage_Pool (E, Entity (Default_Pool));
5510 end if;
5511 end if;
5512
edd63e9b
ES
5513 -- Check restriction for standard storage pool
5514
5515 if No (Associated_Storage_Pool (E)) then
5516 Check_Restriction (No_Standard_Storage_Pools, E);
5517 end if;
5518
5519 -- Deal with error message for pure access type. This is not an
5520 -- error in Ada 2005 if there is no pool (see AI-366).
5521
5522 if Is_Pure_Unit_Access_Type (E)
0791fbe9 5523 and then (Ada_Version < Ada_2005
2c1b72d7 5524 or else not No_Pool_Assigned (E))
3cd4a210 5525 and then not Is_Generic_Unit (Scope (E))
edd63e9b
ES
5526 then
5527 Error_Msg_N ("named access type not allowed in pure unit", E);
c6a9797e 5528
0791fbe9 5529 if Ada_Version >= Ada_2005 then
c6a9797e 5530 Error_Msg_N
685bc70f 5531 ("\would be legal if Storage_Size of 0 given??", E);
c6a9797e
RD
5532
5533 elsif No_Pool_Assigned (E) then
5534 Error_Msg_N
685bc70f 5535 ("\would be legal in Ada 2005??", E);
c6a9797e
RD
5536
5537 else
5538 Error_Msg_N
5539 ("\would be legal in Ada 2005 if "
685bc70f 5540 & "Storage_Size of 0 given??", E);
c6a9797e 5541 end if;
edd63e9b 5542 end if;
70482933
RK
5543 end if;
5544
edd63e9b
ES
5545 -- Case of composite types
5546
70482933
RK
5547 if Is_Composite_Type (E) then
5548
edd63e9b
ES
5549 -- AI-117 requires that all new primitives of a tagged type must
5550 -- inherit the convention of the full view of the type. Inherited
5551 -- and overriding operations are defined to inherit the convention
5552 -- of their parent or overridden subprogram (also specified in
ee094616
RD
5553 -- AI-117), which will have occurred earlier (in Derive_Subprogram
5554 -- and New_Overloaded_Entity). Here we set the convention of
5555 -- primitives that are still convention Ada, which will ensure
def46b54
RD
5556 -- that any new primitives inherit the type's convention. Class-
5557 -- wide types can have a foreign convention inherited from their
5558 -- specific type, but are excluded from this since they don't have
5559 -- any associated primitives.
70482933
RK
5560
5561 if Is_Tagged_Type (E)
5562 and then not Is_Class_Wide_Type (E)
5563 and then Convention (E) /= Convention_Ada
5564 then
5565 declare
5566 Prim_List : constant Elist_Id := Primitive_Operations (E);
07fc65c4 5567 Prim : Elmt_Id;
3cae7f14 5568
70482933 5569 begin
07fc65c4 5570 Prim := First_Elmt (Prim_List);
70482933
RK
5571 while Present (Prim) loop
5572 if Convention (Node (Prim)) = Convention_Ada then
5573 Set_Convention (Node (Prim), Convention (E));
5574 end if;
5575
5576 Next_Elmt (Prim);
5577 end loop;
5578 end;
5579 end if;
a8551b5f
AC
5580
5581 -- If the type is a simple storage pool type, then this is where
5582 -- we attempt to locate and validate its Allocate, Deallocate, and
5583 -- Storage_Size operations (the first is required, and the latter
5584 -- two are optional). We also verify that the full type for a
5585 -- private type is allowed to be a simple storage pool type.
5586
f6205414 5587 if Present (Get_Rep_Pragma (E, Name_Simple_Storage_Pool_Type))
a8551b5f
AC
5588 and then (Is_Base_Type (E) or else Has_Private_Declaration (E))
5589 then
a8551b5f
AC
5590 -- If the type is marked Has_Private_Declaration, then this is
5591 -- a full type for a private type that was specified with the
f6205414 5592 -- pragma Simple_Storage_Pool_Type, and here we ensure that the
a8551b5f
AC
5593 -- pragma is allowed for the full type (for example, it can't
5594 -- be an array type, or a nonlimited record type).
5595
5596 if Has_Private_Declaration (E) then
ef1c0511 5597 if (not Is_Record_Type (E) or else not Is_Limited_View (E))
a8551b5f
AC
5598 and then not Is_Private_Type (E)
5599 then
f6205414 5600 Error_Msg_Name_1 := Name_Simple_Storage_Pool_Type;
a8551b5f
AC
5601 Error_Msg_N
5602 ("pragma% can only apply to full type that is an " &
5603 "explicitly limited type", E);
5604 end if;
5605 end if;
5606
5607 Validate_Simple_Pool_Ops : declare
5608 Pool_Type : Entity_Id renames E;
5609 Address_Type : constant Entity_Id := RTE (RE_Address);
5610 Stg_Cnt_Type : constant Entity_Id := RTE (RE_Storage_Count);
5611
5612 procedure Validate_Simple_Pool_Op_Formal
5613 (Pool_Op : Entity_Id;
5614 Pool_Op_Formal : in out Entity_Id;
5615 Expected_Mode : Formal_Kind;
5616 Expected_Type : Entity_Id;
5617 Formal_Name : String;
5618 OK_Formal : in out Boolean);
5619 -- Validate one formal Pool_Op_Formal of the candidate pool
5620 -- operation Pool_Op. The formal must be of Expected_Type
5621 -- and have mode Expected_Mode. OK_Formal will be set to
5622 -- False if the formal doesn't match. If OK_Formal is False
5623 -- on entry, then the formal will effectively be ignored
5624 -- (because validation of the pool op has already failed).
5625 -- Upon return, Pool_Op_Formal will be updated to the next
5626 -- formal, if any.
5627
ef1c0511
AC
5628 procedure Validate_Simple_Pool_Operation
5629 (Op_Name : Name_Id);
a8551b5f
AC
5630 -- Search for and validate a simple pool operation with the
5631 -- name Op_Name. If the name is Allocate, then there must be
5632 -- exactly one such primitive operation for the simple pool
5633 -- type. If the name is Deallocate or Storage_Size, then
5634 -- there can be at most one such primitive operation. The
5635 -- profile of the located primitive must conform to what
5636 -- is expected for each operation.
5637
5638 ------------------------------------
5639 -- Validate_Simple_Pool_Op_Formal --
5640 ------------------------------------
5641
5642 procedure Validate_Simple_Pool_Op_Formal
5643 (Pool_Op : Entity_Id;
5644 Pool_Op_Formal : in out Entity_Id;
5645 Expected_Mode : Formal_Kind;
5646 Expected_Type : Entity_Id;
5647 Formal_Name : String;
5648 OK_Formal : in out Boolean)
5649 is
5650 begin
5651 -- If OK_Formal is False on entry, then simply ignore
5652 -- the formal, because an earlier formal has already
5653 -- been flagged.
5654
5655 if not OK_Formal then
5656 return;
5657
5658 -- If no formal is passed in, then issue an error for a
5659 -- missing formal.
5660
5661 elsif not Present (Pool_Op_Formal) then
5662 Error_Msg_NE
5663 ("simple storage pool op missing formal " &
5664 Formal_Name & " of type&", Pool_Op, Expected_Type);
5665 OK_Formal := False;
5666
5667 return;
5668 end if;
5669
5670 if Etype (Pool_Op_Formal) /= Expected_Type then
260359e3 5671
a8551b5f
AC
5672 -- If the pool type was expected for this formal, then
5673 -- this will not be considered a candidate operation
5674 -- for the simple pool, so we unset OK_Formal so that
5675 -- the op and any later formals will be ignored.
5676
5677 if Expected_Type = Pool_Type then
5678 OK_Formal := False;
5679
5680 return;
5681
5682 else
5683 Error_Msg_NE
5684 ("wrong type for formal " & Formal_Name &
5685 " of simple storage pool op; expected type&",
5686 Pool_Op_Formal, Expected_Type);
5687 end if;
5688 end if;
5689
5690 -- Issue error if formal's mode is not the expected one
5691
5692 if Ekind (Pool_Op_Formal) /= Expected_Mode then
5693 Error_Msg_N
5694 ("wrong mode for formal of simple storage pool op",
5695 Pool_Op_Formal);
5696 end if;
5697
5698 -- Advance to the next formal
5699
5700 Next_Formal (Pool_Op_Formal);
5701 end Validate_Simple_Pool_Op_Formal;
5702
5703 ------------------------------------
5704 -- Validate_Simple_Pool_Operation --
5705 ------------------------------------
5706
5707 procedure Validate_Simple_Pool_Operation
5708 (Op_Name : Name_Id)
5709 is
5710 Op : Entity_Id;
5711 Found_Op : Entity_Id := Empty;
5712 Formal : Entity_Id;
5713 Is_OK : Boolean;
5714
5715 begin
5716 pragma Assert
b69cd36a
AC
5717 (Nam_In (Op_Name, Name_Allocate,
5718 Name_Deallocate,
5719 Name_Storage_Size));
a8551b5f
AC
5720
5721 Error_Msg_Name_1 := Op_Name;
5722
5723 -- For each homonym declared immediately in the scope
5724 -- of the simple storage pool type, determine whether
5725 -- the homonym is an operation of the pool type, and,
5726 -- if so, check that its profile is as expected for
5727 -- a simple pool operation of that name.
5728
5729 Op := Get_Name_Entity_Id (Op_Name);
5730 while Present (Op) loop
5731 if Ekind_In (Op, E_Function, E_Procedure)
5732 and then Scope (Op) = Current_Scope
5733 then
5734 Formal := First_Entity (Op);
5735
5736 Is_OK := True;
5737
5738 -- The first parameter must be of the pool type
5739 -- in order for the operation to qualify.
5740
5741 if Op_Name = Name_Storage_Size then
5742 Validate_Simple_Pool_Op_Formal
5743 (Op, Formal, E_In_Parameter, Pool_Type,
5744 "Pool", Is_OK);
a8551b5f
AC
5745 else
5746 Validate_Simple_Pool_Op_Formal
5747 (Op, Formal, E_In_Out_Parameter, Pool_Type,
5748 "Pool", Is_OK);
5749 end if;
5750
5751 -- If another operation with this name has already
5752 -- been located for the type, then flag an error,
5753 -- since we only allow the type to have a single
5754 -- such primitive.
5755
5756 if Present (Found_Op) and then Is_OK then
5757 Error_Msg_NE
5758 ("only one % operation allowed for " &
5759 "simple storage pool type&", Op, Pool_Type);
5760 end if;
5761
5762 -- In the case of Allocate and Deallocate, a formal
5763 -- of type System.Address is required.
5764
5765 if Op_Name = Name_Allocate then
5766 Validate_Simple_Pool_Op_Formal
5767 (Op, Formal, E_Out_Parameter,
b69cd36a
AC
5768 Address_Type, "Storage_Address", Is_OK);
5769
a8551b5f
AC
5770 elsif Op_Name = Name_Deallocate then
5771 Validate_Simple_Pool_Op_Formal
5772 (Op, Formal, E_In_Parameter,
5773 Address_Type, "Storage_Address", Is_OK);
5774 end if;
5775
5776 -- In the case of Allocate and Deallocate, formals
5777 -- of type Storage_Count are required as the third
5778 -- and fourth parameters.
5779
5780 if Op_Name /= Name_Storage_Size then
5781 Validate_Simple_Pool_Op_Formal
5782 (Op, Formal, E_In_Parameter,
5783 Stg_Cnt_Type, "Size_In_Storage_Units", Is_OK);
a8551b5f
AC
5784 Validate_Simple_Pool_Op_Formal
5785 (Op, Formal, E_In_Parameter,
5786 Stg_Cnt_Type, "Alignment", Is_OK);
5787 end if;
5788
5789 -- If no mismatched formals have been found (Is_OK)
5790 -- and no excess formals are present, then this
5791 -- operation has been validated, so record it.
5792
5793 if not Present (Formal) and then Is_OK then
5794 Found_Op := Op;
5795 end if;
5796 end if;
5797
5798 Op := Homonym (Op);
5799 end loop;
5800
5801 -- There must be a valid Allocate operation for the type,
5802 -- so issue an error if none was found.
5803
5804 if Op_Name = Name_Allocate
5805 and then not Present (Found_Op)
5806 then
5807 Error_Msg_N ("missing % operation for simple " &
5808 "storage pool type", Pool_Type);
5809
5810 elsif Present (Found_Op) then
260359e3 5811
a8551b5f
AC
5812 -- Simple pool operations can't be abstract
5813
5814 if Is_Abstract_Subprogram (Found_Op) then
5815 Error_Msg_N
5816 ("simple storage pool operation must not be " &
5817 "abstract", Found_Op);
5818 end if;
5819
5820 -- The Storage_Size operation must be a function with
5821 -- Storage_Count as its result type.
5822
5823 if Op_Name = Name_Storage_Size then
5824 if Ekind (Found_Op) = E_Procedure then
5825 Error_Msg_N
5826 ("% operation must be a function", Found_Op);
5827
5828 elsif Etype (Found_Op) /= Stg_Cnt_Type then
5829 Error_Msg_NE
5830 ("wrong result type for%, expected type&",
5831 Found_Op, Stg_Cnt_Type);
5832 end if;
5833
5834 -- Allocate and Deallocate must be procedures
5835
5836 elsif Ekind (Found_Op) = E_Function then
5837 Error_Msg_N
5838 ("% operation must be a procedure", Found_Op);
5839 end if;
5840 end if;
5841 end Validate_Simple_Pool_Operation;
5842
5843 -- Start of processing for Validate_Simple_Pool_Ops
5844
5845 begin
5846 Validate_Simple_Pool_Operation (Name_Allocate);
a8551b5f 5847 Validate_Simple_Pool_Operation (Name_Deallocate);
a8551b5f
AC
5848 Validate_Simple_Pool_Operation (Name_Storage_Size);
5849 end Validate_Simple_Pool_Ops;
5850 end if;
70482933
RK
5851 end if;
5852
ee094616
RD
5853 -- Now that all types from which E may depend are frozen, see if the
5854 -- size is known at compile time, if it must be unsigned, or if
7d8b9c99 5855 -- strict alignment is required
70482933
RK
5856
5857 Check_Compile_Time_Size (E);
5858 Check_Unsigned_Type (E);
5859
5860 if Base_Type (E) = E then
5861 Check_Strict_Alignment (E);
5862 end if;
5863
5864 -- Do not allow a size clause for a type which does not have a size
5865 -- that is known at compile time
5866
5867 if Has_Size_Clause (E)
5868 and then not Size_Known_At_Compile_Time (E)
5869 then
e14c931f 5870 -- Suppress this message if errors posted on E, even if we are
07fc65c4
GB
5871 -- in all errors mode, since this is often a junk message
5872
5873 if not Error_Posted (E) then
5874 Error_Msg_N
5875 ("size clause not allowed for variable length type",
5876 Size_Clause (E));
5877 end if;
70482933
RK
5878 end if;
5879
a01b9df6
AC
5880 -- Now we set/verify the representation information, in particular
5881 -- the size and alignment values. This processing is not required for
5882 -- generic types, since generic types do not play any part in code
5883 -- generation, and so the size and alignment values for such types
84c4181d
AC
5884 -- are irrelevant. Ditto for types declared within a generic unit,
5885 -- which may have components that depend on generic parameters, and
5886 -- that will be recreated in an instance.
70482933 5887
84c4181d
AC
5888 if Inside_A_Generic then
5889 null;
70482933
RK
5890
5891 -- Otherwise we call the layout procedure
5892
5893 else
5894 Layout_Type (E);
5895 end if;
a01b9df6 5896
cc570be6
AC
5897 -- If this is an access to subprogram whose designated type is itself
5898 -- a subprogram type, the return type of this anonymous subprogram
5899 -- type must be decorated as well.
5900
5901 if Ekind (E) = E_Anonymous_Access_Subprogram_Type
5902 and then Ekind (Designated_Type (E)) = E_Subprogram_Type
5903 then
5904 Layout_Type (Etype (Designated_Type (E)));
5905 end if;
5906
a01b9df6
AC
5907 -- If the type has a Defaut_Value/Default_Component_Value aspect,
5908 -- this is where we analye the expression (after the type is frozen,
5909 -- since in the case of Default_Value, we are analyzing with the
5910 -- type itself, and we treat Default_Component_Value similarly for
1b73408a 5911 -- the sake of uniformity).
a01b9df6
AC
5912
5913 if Is_First_Subtype (E) and then Has_Default_Aspect (E) then
5914 declare
37da997b
RD
5915 Nam : Name_Id;
5916 Exp : Node_Id;
5917 Typ : Entity_Id;
a01b9df6
AC
5918
5919 begin
5920 if Is_Scalar_Type (E) then
5921 Nam := Name_Default_Value;
5922 Typ := E;
6d9e03cb 5923 Exp := Default_Aspect_Value (Typ);
a01b9df6
AC
5924 else
5925 Nam := Name_Default_Component_Value;
5926 Typ := Component_Type (E);
37da997b 5927 Exp := Default_Aspect_Component_Value (E);
a01b9df6
AC
5928 end if;
5929
a01b9df6
AC
5930 Analyze_And_Resolve (Exp, Typ);
5931
5932 if Etype (Exp) /= Any_Type then
edab6088 5933 if not Is_OK_Static_Expression (Exp) then
a01b9df6
AC
5934 Error_Msg_Name_1 := Nam;
5935 Flag_Non_Static_Expr
5936 ("aspect% requires static expression", Exp);
5937 end if;
5938 end if;
5939 end;
5940 end if;
70482933
RK
5941
5942 -- End of freeze processing for type entities
5943 end if;
5944
5945 -- Here is where we logically freeze the current entity. If it has a
5946 -- freeze node, then this is the point at which the freeze node is
5947 -- linked into the result list.
5948
5949 if Has_Delayed_Freeze (E) then
5950
5951 -- If a freeze node is already allocated, use it, otherwise allocate
5952 -- a new one. The preallocation happens in the case of anonymous base
5953 -- types, where we preallocate so that we can set First_Subtype_Link.
5954 -- Note that we reset the Sloc to the current freeze location.
5955
5956 if Present (Freeze_Node (E)) then
5957 F_Node := Freeze_Node (E);
5958 Set_Sloc (F_Node, Loc);
5959
5960 else
5961 F_Node := New_Node (N_Freeze_Entity, Loc);
5962 Set_Freeze_Node (E, F_Node);
5963 Set_Access_Types_To_Process (F_Node, No_Elist);
5964 Set_TSS_Elist (F_Node, No_Elist);
5965 Set_Actions (F_Node, No_List);
5966 end if;
5967
5968 Set_Entity (F_Node, E);
90878b12 5969 Add_To_Result (F_Node);
35ae2ed8
AC
5970
5971 -- A final pass over record types with discriminants. If the type
5972 -- has an incomplete declaration, there may be constrained access
5973 -- subtypes declared elsewhere, which do not depend on the discrimi-
5974 -- nants of the type, and which are used as component types (i.e.
5975 -- the full view is a recursive type). The designated types of these
5976 -- subtypes can only be elaborated after the type itself, and they
5977 -- need an itype reference.
5978
5979 if Ekind (E) = E_Record_Type
5980 and then Has_Discriminants (E)
5981 then
5982 declare
5983 Comp : Entity_Id;
5984 IR : Node_Id;
5985 Typ : Entity_Id;
5986
5987 begin
5988 Comp := First_Component (E);
35ae2ed8
AC
5989 while Present (Comp) loop
5990 Typ := Etype (Comp);
5991
5992 if Ekind (Comp) = E_Component
5993 and then Is_Access_Type (Typ)
5994 and then Scope (Typ) /= E
5995 and then Base_Type (Designated_Type (Typ)) = E
5996 and then Is_Itype (Designated_Type (Typ))
5997 then
5998 IR := Make_Itype_Reference (Sloc (Comp));
5999 Set_Itype (IR, Designated_Type (Typ));
6000 Append (IR, Result);
6001 end if;
6002
6003 Next_Component (Comp);
6004 end loop;
6005 end;
6006 end if;
70482933
RK
6007 end if;
6008
6009 -- When a type is frozen, the first subtype of the type is frozen as
6010 -- well (RM 13.14(15)). This has to be done after freezing the type,
6011 -- since obviously the first subtype depends on its own base type.
6012
6013 if Is_Type (E) then
c159409f 6014 Freeze_And_Append (First_Subtype (E), N, Result);
70482933
RK
6015
6016 -- If we just froze a tagged non-class wide record, then freeze the
6017 -- corresponding class-wide type. This must be done after the tagged
6018 -- type itself is frozen, because the class-wide type refers to the
6019 -- tagged type which generates the class.
6020
6021 if Is_Tagged_Type (E)
6022 and then not Is_Class_Wide_Type (E)
6023 and then Present (Class_Wide_Type (E))
6024 then
c159409f 6025 Freeze_And_Append (Class_Wide_Type (E), N, Result);
70482933
RK
6026 end if;
6027 end if;
6028
6029 Check_Debug_Info_Needed (E);
6030
6031 -- Special handling for subprograms
6032
6033 if Is_Subprogram (E) then
6034
6035 -- If subprogram has address clause then reset Is_Public flag, since
6036 -- we do not want the backend to generate external references.
6037
6038 if Present (Address_Clause (E))
6039 and then not Is_Library_Level_Entity (E)
6040 then
6041 Set_Is_Public (E, False);
70482933 6042 end if;
70482933
RK
6043 end if;
6044
6045 return Result;
6046 end Freeze_Entity;
6047
6048 -----------------------------
6049 -- Freeze_Enumeration_Type --
6050 -----------------------------
6051
6052 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
6053 begin
d677afa9
ES
6054 -- By default, if no size clause is present, an enumeration type with
6055 -- Convention C is assumed to interface to a C enum, and has integer
6056 -- size. This applies to types. For subtypes, verify that its base
be482a8c
AC
6057 -- type has no size clause either. Treat other foreign conventions
6058 -- in the same way, and also make sure alignment is set right.
d677afa9 6059
70482933
RK
6060 if Has_Foreign_Convention (Typ)
6061 and then not Has_Size_Clause (Typ)
d677afa9 6062 and then not Has_Size_Clause (Base_Type (Typ))
70482933 6063 and then Esize (Typ) < Standard_Integer_Size
d0ef7921
AC
6064
6065 -- Don't do this if Short_Enums on target
6066
f27ad2b2 6067 and then not Target_Short_Enums
70482933
RK
6068 then
6069 Init_Esize (Typ, Standard_Integer_Size);
be482a8c 6070 Set_Alignment (Typ, Alignment (Standard_Integer));
d677afa9 6071
d0ef7921
AC
6072 -- Normal Ada case or size clause present or not Long_C_Enums on target
6073
70482933 6074 else
d677afa9
ES
6075 -- If the enumeration type interfaces to C, and it has a size clause
6076 -- that specifies less than int size, it warrants a warning. The
6077 -- user may intend the C type to be an enum or a char, so this is
6078 -- not by itself an error that the Ada compiler can detect, but it
6079 -- it is a worth a heads-up. For Boolean and Character types we
6080 -- assume that the programmer has the proper C type in mind.
6081
6082 if Convention (Typ) = Convention_C
6083 and then Has_Size_Clause (Typ)
6084 and then Esize (Typ) /= Esize (Standard_Integer)
6085 and then not Is_Boolean_Type (Typ)
6086 and then not Is_Character_Type (Typ)
d0ef7921
AC
6087
6088 -- Don't do this if Short_Enums on target
6089
f27ad2b2 6090 and then not Target_Short_Enums
d677afa9
ES
6091 then
6092 Error_Msg_N
685bc70f 6093 ("C enum types have the size of a C int??", Size_Clause (Typ));
d677afa9
ES
6094 end if;
6095
70482933
RK
6096 Adjust_Esize_For_Alignment (Typ);
6097 end if;
6098 end Freeze_Enumeration_Type;
6099
6100 -----------------------
6101 -- Freeze_Expression --
6102 -----------------------
6103
6104 procedure Freeze_Expression (N : Node_Id) is
c6a9797e
RD
6105 In_Spec_Exp : constant Boolean := In_Spec_Expression;
6106 Typ : Entity_Id;
6107 Nam : Entity_Id;
6108 Desig_Typ : Entity_Id;
6109 P : Node_Id;
6110 Parent_P : Node_Id;
70482933
RK
6111
6112 Freeze_Outside : Boolean := False;
6113 -- This flag is set true if the entity must be frozen outside the
6114 -- current subprogram. This happens in the case of expander generated
6115 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
6116 -- not freeze all entities like other bodies, but which nevertheless
6117 -- may reference entities that have to be frozen before the body and
6118 -- obviously cannot be frozen inside the body.
6119
dc06dd83
AC
6120 function Find_Aggregate_Component_Desig_Type return Entity_Id;
6121 -- If the expression is an array aggregate, the type of the component
6122 -- expressions is also frozen. If the component type is an access type
6123 -- and the expressions include allocators, the designed type is frozen
6124 -- as well.
6125
3ad33e33 6126 function In_Expanded_Body (N : Node_Id) return Boolean;
70482933 6127 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
c6823a20 6128 -- it is the handled statement sequence of an expander-generated
7d8b9c99
RD
6129 -- subprogram (init proc, stream subprogram, or renaming as body).
6130 -- If so, this is not a freezing context.
70482933 6131
dc06dd83
AC
6132 -----------------------------------------
6133 -- Find_Aggregate_Component_Desig_Type --
6134 -----------------------------------------
6135
6136 function Find_Aggregate_Component_Desig_Type return Entity_Id is
6137 Assoc : Node_Id;
6138 Exp : Node_Id;
6139
6140 begin
6141 if Present (Expressions (N)) then
6142 Exp := First (Expressions (N));
6143 while Present (Exp) loop
6144 if Nkind (Exp) = N_Allocator then
6145 return Designated_Type (Component_Type (Etype (N)));
6146 end if;
6147
6148 Next (Exp);
6149 end loop;
6150 end if;
6151
6152 if Present (Component_Associations (N)) then
6153 Assoc := First (Component_Associations (N));
6154 while Present (Assoc) loop
6155 if Nkind (Expression (Assoc)) = N_Allocator then
6156 return Designated_Type (Component_Type (Etype (N)));
6157 end if;
6158
6159 Next (Assoc);
6160 end loop;
6161 end if;
6162
6163 return Empty;
6164 end Find_Aggregate_Component_Desig_Type;
6165
3ad33e33
AC
6166 ----------------------
6167 -- In_Expanded_Body --
6168 ----------------------
fbf5a39b 6169
3ad33e33 6170 function In_Expanded_Body (N : Node_Id) return Boolean is
7d8b9c99
RD
6171 P : Node_Id;
6172 Id : Entity_Id;
70482933
RK
6173
6174 begin
6175 if Nkind (N) = N_Subprogram_Body then
6176 P := N;
6177 else
6178 P := Parent (N);
6179 end if;
6180
6181 if Nkind (P) /= N_Subprogram_Body then
6182 return False;
6183
6184 else
7d8b9c99
RD
6185 Id := Defining_Unit_Name (Specification (P));
6186
3ad33e33
AC
6187 -- The following are expander-created bodies, or bodies that
6188 -- are not freeze points.
21791d97 6189
7d8b9c99 6190 if Nkind (Id) = N_Defining_Identifier
21791d97
AC
6191 and then (Is_Init_Proc (Id)
6192 or else Is_TSS (Id, TSS_Stream_Input)
6193 or else Is_TSS (Id, TSS_Stream_Output)
6194 or else Is_TSS (Id, TSS_Stream_Read)
6195 or else Is_TSS (Id, TSS_Stream_Write)
6196 or else Nkind_In (Original_Node (P),
6197 N_Subprogram_Renaming_Declaration,
6198 N_Expression_Function))
70482933
RK
6199 then
6200 return True;
6201 else
6202 return False;
6203 end if;
6204 end if;
3ad33e33 6205 end In_Expanded_Body;
70482933
RK
6206
6207 -- Start of processing for Freeze_Expression
6208
6209 begin
edd63e9b
ES
6210 -- Immediate return if freezing is inhibited. This flag is set by the
6211 -- analyzer to stop freezing on generated expressions that would cause
6212 -- freezing if they were in the source program, but which are not
6213 -- supposed to freeze, since they are created.
70482933
RK
6214
6215 if Must_Not_Freeze (N) then
6216 return;
6217 end if;
6218
6219 -- If expression is non-static, then it does not freeze in a default
6220 -- expression, see section "Handling of Default Expressions" in the
fe58fea7
AC
6221 -- spec of package Sem for further details. Note that we have to make
6222 -- sure that we actually have a real expression (if we have a subtype
edab6088
RD
6223 -- indication, we can't test Is_OK_Static_Expression). However, we
6224 -- exclude the case of the prefix of an attribute of a static scalar
6225 -- subtype from this early return, because static subtype attributes
6226 -- should always cause freezing, even in default expressions, but
6227 -- the attribute may not have been marked as static yet (because in
6228 -- Resolve_Attribute, the call to Eval_Attribute follows the call of
6229 -- Freeze_Expression on the prefix).
70482933 6230
c6a9797e 6231 if In_Spec_Exp
70482933 6232 and then Nkind (N) in N_Subexpr
edab6088 6233 and then not Is_OK_Static_Expression (N)
fe58fea7
AC
6234 and then (Nkind (Parent (N)) /= N_Attribute_Reference
6235 or else not (Is_Entity_Name (N)
6236 and then Is_Type (Entity (N))
edab6088 6237 and then Is_OK_Static_Subtype (Entity (N))))
70482933
RK
6238 then
6239 return;
6240 end if;
6241
6242 -- Freeze type of expression if not frozen already
6243
fbf5a39b
AC
6244 Typ := Empty;
6245
6246 if Nkind (N) in N_Has_Etype then
6247 if not Is_Frozen (Etype (N)) then
6248 Typ := Etype (N);
6249
6250 -- Base type may be an derived numeric type that is frozen at
6251 -- the point of declaration, but first_subtype is still unfrozen.
6252
6253 elsif not Is_Frozen (First_Subtype (Etype (N))) then
6254 Typ := First_Subtype (Etype (N));
6255 end if;
70482933
RK
6256 end if;
6257
6258 -- For entity name, freeze entity if not frozen already. A special
6259 -- exception occurs for an identifier that did not come from source.
6260 -- We don't let such identifiers freeze a non-internal entity, i.e.
6261 -- an entity that did come from source, since such an identifier was
6262 -- generated by the expander, and cannot have any semantic effect on
6263 -- the freezing semantics. For example, this stops the parameter of
6264 -- an initialization procedure from freezing the variable.
6265
6266 if Is_Entity_Name (N)
6267 and then not Is_Frozen (Entity (N))
6268 and then (Nkind (N) /= N_Identifier
6269 or else Comes_From_Source (N)
6270 or else not Comes_From_Source (Entity (N)))
6271 then
6272 Nam := Entity (N);
18c56840
ES
6273
6274 if Present (Nam) and then Ekind (Nam) = E_Function then
6275 Check_Expression_Function (N, Nam);
6276 end if;
6277
70482933
RK
6278 else
6279 Nam := Empty;
6280 end if;
6281
49e90211 6282 -- For an allocator freeze designated type if not frozen already
70482933 6283
ee094616
RD
6284 -- For an aggregate whose component type is an access type, freeze the
6285 -- designated type now, so that its freeze does not appear within the
6286 -- loop that might be created in the expansion of the aggregate. If the
6287 -- designated type is a private type without full view, the expression
6288 -- cannot contain an allocator, so the type is not frozen.
70482933 6289
7aedb36a
AC
6290 -- For a function, we freeze the entity when the subprogram declaration
6291 -- is frozen, but a function call may appear in an initialization proc.
f6cf5b85 6292 -- before the declaration is frozen. We need to generate the extra
7aedb36a 6293 -- formals, if any, to ensure that the expansion of the call includes
2f4f3f3f
AC
6294 -- the proper actuals. This only applies to Ada subprograms, not to
6295 -- imported ones.
7aedb36a 6296
70482933 6297 Desig_Typ := Empty;
70482933 6298
fbf5a39b 6299 case Nkind (N) is
70482933
RK
6300 when N_Allocator =>
6301 Desig_Typ := Designated_Type (Etype (N));
6302
6303 when N_Aggregate =>
6304 if Is_Array_Type (Etype (N))
6305 and then Is_Access_Type (Component_Type (Etype (N)))
6306 then
dc06dd83
AC
6307
6308 -- Check whether aggregate includes allocators.
6309
6310 Desig_Typ := Find_Aggregate_Component_Desig_Type;
70482933
RK
6311 end if;
6312
6313 when N_Selected_Component |
6314 N_Indexed_Component |
6315 N_Slice =>
6316
6317 if Is_Access_Type (Etype (Prefix (N))) then
6318 Desig_Typ := Designated_Type (Etype (Prefix (N)));
6319 end if;
6320
7aedb36a
AC
6321 when N_Identifier =>
6322 if Present (Nam)
6323 and then Ekind (Nam) = E_Function
6324 and then Nkind (Parent (N)) = N_Function_Call
2f4f3f3f 6325 and then Convention (Nam) = Convention_Ada
7aedb36a
AC
6326 then
6327 Create_Extra_Formals (Nam);
6328 end if;
6329
70482933
RK
6330 when others =>
6331 null;
70482933
RK
6332 end case;
6333
6334 if Desig_Typ /= Empty
6335 and then (Is_Frozen (Desig_Typ)
6336 or else (not Is_Fully_Defined (Desig_Typ)))
6337 then
6338 Desig_Typ := Empty;
6339 end if;
6340
6341 -- All done if nothing needs freezing
6342
6343 if No (Typ)
6344 and then No (Nam)
6345 and then No (Desig_Typ)
6346 then
6347 return;
6348 end if;
6349
f15749aa
AC
6350 -- Examine the enclosing context by climbing the parent chain. The
6351 -- traversal serves two purposes - to detect scenarios where freezeing
6352 -- is not needed and to find the proper insertion point for the freeze
6353 -- nodes. Although somewhat similar to Insert_Actions, this traversal
6354 -- is freezing semantics-sensitive. Inserting freeze nodes blindly in
6355 -- the tree may result in types being frozen too early.
70482933
RK
6356
6357 P := N;
6358 loop
6359 Parent_P := Parent (P);
6360
ee094616
RD
6361 -- If we don't have a parent, then we are not in a well-formed tree.
6362 -- This is an unusual case, but there are some legitimate situations
6363 -- in which this occurs, notably when the expressions in the range of
6364 -- a type declaration are resolved. We simply ignore the freeze
6365 -- request in this case. Is this right ???
70482933
RK
6366
6367 if No (Parent_P) then
6368 return;
6369 end if;
6370
6371 -- See if we have got to an appropriate point in the tree
6372
6373 case Nkind (Parent_P) is
6374
edd63e9b
ES
6375 -- A special test for the exception of (RM 13.14(8)) for the case
6376 -- of per-object expressions (RM 3.8(18)) occurring in component
6377 -- definition or a discrete subtype definition. Note that we test
6378 -- for a component declaration which includes both cases we are
6379 -- interested in, and furthermore the tree does not have explicit
6380 -- nodes for either of these two constructs.
70482933
RK
6381
6382 when N_Component_Declaration =>
6383
6384 -- The case we want to test for here is an identifier that is
6385 -- a per-object expression, this is either a discriminant that
6386 -- appears in a context other than the component declaration
6387 -- or it is a reference to the type of the enclosing construct.
6388
6389 -- For either of these cases, we skip the freezing
6390
c6a9797e 6391 if not In_Spec_Expression
70482933
RK
6392 and then Nkind (N) = N_Identifier
6393 and then (Present (Entity (N)))
6394 then
6395 -- We recognize the discriminant case by just looking for
6396 -- a reference to a discriminant. It can only be one for
6397 -- the enclosing construct. Skip freezing in this case.
6398
6399 if Ekind (Entity (N)) = E_Discriminant then
6400 return;
6401
6402 -- For the case of a reference to the enclosing record,
6403 -- (or task or protected type), we look for a type that
6404 -- matches the current scope.
6405
6406 elsif Entity (N) = Current_Scope then
6407 return;
6408 end if;
6409 end if;
6410
edd63e9b
ES
6411 -- If we have an enumeration literal that appears as the choice in
6412 -- the aggregate of an enumeration representation clause, then
6413 -- freezing does not occur (RM 13.14(10)).
70482933
RK
6414
6415 when N_Enumeration_Representation_Clause =>
6416
6417 -- The case we are looking for is an enumeration literal
6418
6419 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
6420 and then Is_Enumeration_Type (Etype (N))
6421 then
6422 -- If enumeration literal appears directly as the choice,
e14c931f 6423 -- do not freeze (this is the normal non-overloaded case)
70482933
RK
6424
6425 if Nkind (Parent (N)) = N_Component_Association
6426 and then First (Choices (Parent (N))) = N
6427 then
6428 return;
6429
ee094616
RD
6430 -- If enumeration literal appears as the name of function
6431 -- which is the choice, then also do not freeze. This
6432 -- happens in the overloaded literal case, where the
70482933
RK
6433 -- enumeration literal is temporarily changed to a function
6434 -- call for overloading analysis purposes.
6435
6436 elsif Nkind (Parent (N)) = N_Function_Call
6437 and then
6438 Nkind (Parent (Parent (N))) = N_Component_Association
6439 and then
6440 First (Choices (Parent (Parent (N)))) = Parent (N)
6441 then
6442 return;
6443 end if;
6444 end if;
6445
6446 -- Normally if the parent is a handled sequence of statements,
6447 -- then the current node must be a statement, and that is an
6448 -- appropriate place to insert a freeze node.
6449
6450 when N_Handled_Sequence_Of_Statements =>
6451
edd63e9b
ES
6452 -- An exception occurs when the sequence of statements is for
6453 -- an expander generated body that did not do the usual freeze
6454 -- all operation. In this case we usually want to freeze
6455 -- outside this body, not inside it, and we skip past the
6456 -- subprogram body that we are inside.
70482933 6457
3ad33e33 6458 if In_Expanded_Body (Parent_P) then
70482933
RK
6459 declare
6460 Subp : constant Node_Id := Parent (Parent_P);
95081e99 6461 Spec : Entity_Id;
70482933
RK
6462
6463 begin
95081e99
AC
6464 -- Freeze the entity only when it is declared inside the
6465 -- body of the expander generated procedure. This case
6466 -- is recognized by the scope of the entity or its type,
6467 -- which is either the spec for some enclosing body, or
6468 -- (in the case of init_procs, for which there are no
6469 -- separate specs) the current scope.
6470
70482933 6471 if Nkind (Subp) = N_Subprogram_Body then
95081e99 6472 Spec := Corresponding_Spec (Subp);
70482933 6473
95081e99 6474 if (Present (Typ) and then Scope (Typ) = Spec)
70482933 6475 or else
95081e99 6476 (Present (Nam) and then Scope (Nam) = Spec)
70482933
RK
6477 then
6478 exit;
6479
6480 elsif Present (Typ)
6481 and then Scope (Typ) = Current_Scope
95081e99 6482 and then Defining_Entity (Subp) = Current_Scope
70482933
RK
6483 then
6484 exit;
6485 end if;
6486 end if;
70482933 6487
95081e99
AC
6488 -- An expression function may act as a completion of
6489 -- a function declaration. As such, it can reference
6490 -- entities declared between the two views:
70482933 6491
95081e99
AC
6492 -- Hidden []; -- 1
6493 -- function F return ...;
6494 -- private
6495 -- function Hidden return ...;
6496 -- function F return ... is (Hidden); -- 2
6497
6498 -- Refering to the example above, freezing the expression
6499 -- of F (2) would place Hidden's freeze node (1) in the
6500 -- wrong place. Avoid explicit freezing and let the usual
6501 -- scenarios do the job - for example, reaching the end
3ad33e33 6502 -- of the private declarations, or a call to F.
95081e99
AC
6503
6504 if Nkind (Original_Node (Subp)) =
6505 N_Expression_Function
6506 then
6507 null;
6508
6509 -- Freeze outside the body
6510
6511 else
6512 Parent_P := Parent (Parent_P);
6513 Freeze_Outside := True;
6514 end if;
6515 end;
70482933
RK
6516
6517 -- Here if normal case where we are in handled statement
6518 -- sequence and want to do the insertion right there.
6519
6520 else
6521 exit;
6522 end if;
6523
ee094616
RD
6524 -- If parent is a body or a spec or a block, then the current node
6525 -- is a statement or declaration and we can insert the freeze node
6526 -- before it.
70482933 6527
8b3c6430
AC
6528 when N_Block_Statement |
6529 N_Entry_Body |
70482933 6530 N_Package_Body |
8b3c6430 6531 N_Package_Specification |
70482933 6532 N_Protected_Body |
8b3c6430
AC
6533 N_Subprogram_Body |
6534 N_Task_Body => exit;
70482933
RK
6535
6536 -- The expander is allowed to define types in any statements list,
6537 -- so any of the following parent nodes also mark a freezing point
6538 -- if the actual node is in a list of statements or declarations.
6539
8b3c6430
AC
6540 when N_Abortable_Part |
6541 N_Accept_Alternative |
6542 N_And_Then |
70482933
RK
6543 N_Case_Statement_Alternative |
6544 N_Compilation_Unit_Aux |
70482933 6545 N_Conditional_Entry_Call |
8b3c6430
AC
6546 N_Delay_Alternative |
6547 N_Elsif_Part |
70482933 6548 N_Entry_Call_Alternative |
8b3c6430
AC
6549 N_Exception_Handler |
6550 N_Extended_Return_Statement |
6551 N_Freeze_Entity |
6552 N_If_Statement |
bce79204 6553 N_Or_Else |
8b3c6430
AC
6554 N_Selective_Accept |
6555 N_Triggering_Alternative =>
70482933
RK
6556
6557 exit when Is_List_Member (P);
6558
33ca2867
AC
6559 -- Freeze nodes produced by an expression coming from the Actions
6560 -- list of a N_Expression_With_Actions node must remain within the
6561 -- Actions list. Inserting the freeze nodes further up the tree
6562 -- may lead to use before declaration issues in the case of array
6563 -- types.
6564
6565 when N_Expression_With_Actions =>
6566 if Is_List_Member (P)
6567 and then List_Containing (P) = Actions (Parent_P)
6568 then
6569 exit;
6570 end if;
6571
6572 -- Note: N_Loop_Statement is a special case. A type that appears
6573 -- in the source can never be frozen in a loop (this occurs only
6574 -- because of a loop expanded by the expander), so we keep on
6575 -- going. Otherwise we terminate the search. Same is true of any
6576 -- entity which comes from source. (if they have predefined type,
6577 -- that type does not appear to come from source, but the entity
6578 -- should not be frozen here).
70482933
RK
6579
6580 when N_Loop_Statement =>
6581 exit when not Comes_From_Source (Etype (N))
6582 and then (No (Nam) or else not Comes_From_Source (Nam));
6583
6584 -- For all other cases, keep looking at parents
6585
6586 when others =>
6587 null;
6588 end case;
6589
6590 -- We fall through the case if we did not yet find the proper
a90bd866 6591 -- place in the free for inserting the freeze node, so climb.
70482933
RK
6592
6593 P := Parent_P;
6594 end loop;
6595
edd63e9b
ES
6596 -- If the expression appears in a record or an initialization procedure,
6597 -- the freeze nodes are collected and attached to the current scope, to
6598 -- be inserted and analyzed on exit from the scope, to insure that
6599 -- generated entities appear in the correct scope. If the expression is
6600 -- a default for a discriminant specification, the scope is still void.
6601 -- The expression can also appear in the discriminant part of a private
6602 -- or concurrent type.
70482933 6603
c6823a20 6604 -- If the expression appears in a constrained subcomponent of an
edd63e9b
ES
6605 -- enclosing record declaration, the freeze nodes must be attached to
6606 -- the outer record type so they can eventually be placed in the
c6823a20
EB
6607 -- enclosing declaration list.
6608
ee094616
RD
6609 -- The other case requiring this special handling is if we are in a
6610 -- default expression, since in that case we are about to freeze a
6611 -- static type, and the freeze scope needs to be the outer scope, not
6612 -- the scope of the subprogram with the default parameter.
70482933 6613
c6a9797e
RD
6614 -- For default expressions and other spec expressions in generic units,
6615 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
6616 -- placing them at the proper place, after the generic unit.
70482933 6617
c6a9797e 6618 if (In_Spec_Exp and not Inside_A_Generic)
70482933
RK
6619 or else Freeze_Outside
6620 or else (Is_Type (Current_Scope)
6621 and then (not Is_Concurrent_Type (Current_Scope)
6622 or else not Has_Completion (Current_Scope)))
6623 or else Ekind (Current_Scope) = E_Void
6624 then
6625 declare
df378148
AC
6626 N : constant Node_Id := Current_Scope;
6627 Freeze_Nodes : List_Id := No_List;
6628 Pos : Int := Scope_Stack.Last;
70482933
RK
6629
6630 begin
6631 if Present (Desig_Typ) then
c159409f 6632 Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
70482933
RK
6633 end if;
6634
6635 if Present (Typ) then
c159409f 6636 Freeze_And_Append (Typ, N, Freeze_Nodes);
70482933
RK
6637 end if;
6638
6639 if Present (Nam) then
c159409f 6640 Freeze_And_Append (Nam, N, Freeze_Nodes);
70482933
RK
6641 end if;
6642
c6823a20 6643 -- The current scope may be that of a constrained component of
df378148
AC
6644 -- an enclosing record declaration, or of a loop of an enclosing
6645 -- quantified expression, which is above the current scope in the
6646 -- scope stack. Indeed in the context of a quantified expression,
6647 -- a scope is created and pushed above the current scope in order
6648 -- to emulate the loop-like behavior of the quantified expression.
6191e212
AC
6649 -- If the expression is within a top-level pragma, as for a pre-
6650 -- condition on a library-level subprogram, nothing to do.
c6823a20 6651
6191e212 6652 if not Is_Compilation_Unit (Current_Scope)
df378148
AC
6653 and then (Is_Record_Type (Scope (Current_Scope))
6654 or else Nkind (Parent (Current_Scope)) =
21791d97 6655 N_Quantified_Expression)
6191e212 6656 then
c6823a20
EB
6657 Pos := Pos - 1;
6658 end if;
6659
70482933 6660 if Is_Non_Empty_List (Freeze_Nodes) then
c6823a20
EB
6661 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
6662 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
c159409f 6663 Freeze_Nodes;
70482933 6664 else
cd5a9750
AC
6665 Append_List (Freeze_Nodes,
6666 Scope_Stack.Table (Pos).Pending_Freeze_Actions);
70482933
RK
6667 end if;
6668 end if;
6669 end;
6670
6671 return;
6672 end if;
6673
6674 -- Now we have the right place to do the freezing. First, a special
c6a9797e
RD
6675 -- adjustment, if we are in spec-expression analysis mode, these freeze
6676 -- actions must not be thrown away (normally all inserted actions are
6677 -- thrown away in this mode. However, the freeze actions are from static
6678 -- expressions and one of the important reasons we are doing this
ee094616 6679 -- special analysis is to get these freeze actions. Therefore we turn
c6a9797e 6680 -- off the In_Spec_Expression mode to propagate these freeze actions.
ee094616 6681 -- This also means they get properly analyzed and expanded.
70482933 6682
c6a9797e 6683 In_Spec_Expression := False;
70482933 6684
fbf5a39b 6685 -- Freeze the designated type of an allocator (RM 13.14(13))
70482933
RK
6686
6687 if Present (Desig_Typ) then
6688 Freeze_Before (P, Desig_Typ);
6689 end if;
6690
fbf5a39b 6691 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
70482933
RK
6692 -- the enumeration representation clause exception in the loop above.
6693
6694 if Present (Typ) then
6695 Freeze_Before (P, Typ);
6696 end if;
6697
fbf5a39b 6698 -- Freeze name if one is present (RM 13.14(11))
70482933
RK
6699
6700 if Present (Nam) then
6701 Freeze_Before (P, Nam);
6702 end if;
6703
c6a9797e
RD
6704 -- Restore In_Spec_Expression flag
6705
6706 In_Spec_Expression := In_Spec_Exp;
70482933
RK
6707 end Freeze_Expression;
6708
6709 -----------------------------
6710 -- Freeze_Fixed_Point_Type --
6711 -----------------------------
6712
edd63e9b
ES
6713 -- Certain fixed-point types and subtypes, including implicit base types
6714 -- and declared first subtypes, have not yet set up a range. This is
6715 -- because the range cannot be set until the Small and Size values are
6716 -- known, and these are not known till the type is frozen.
70482933 6717
edd63e9b
ES
6718 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
6719 -- whose bounds are unanalyzed real literals. This routine will recognize
6720 -- this case, and transform this range node into a properly typed range
6721 -- with properly analyzed and resolved values.
70482933
RK
6722
6723 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
6724 Rng : constant Node_Id := Scalar_Range (Typ);
6725 Lo : constant Node_Id := Low_Bound (Rng);
6726 Hi : constant Node_Id := High_Bound (Rng);
6727 Btyp : constant Entity_Id := Base_Type (Typ);
6728 Brng : constant Node_Id := Scalar_Range (Btyp);
6729 BLo : constant Node_Id := Low_Bound (Brng);
6730 BHi : constant Node_Id := High_Bound (Brng);
6731 Small : constant Ureal := Small_Value (Typ);
6732 Loval : Ureal;
6733 Hival : Ureal;
6734 Atype : Entity_Id;
6735
4b6f99f5
RD
6736 Orig_Lo : Ureal;
6737 Orig_Hi : Ureal;
6738 -- Save original bounds (for shaving tests)
6739
70482933 6740 Actual_Size : Nat;
4b6f99f5 6741 -- Actual size chosen
70482933
RK
6742
6743 function Fsize (Lov, Hiv : Ureal) return Nat;
6744 -- Returns size of type with given bounds. Also leaves these
6745 -- bounds set as the current bounds of the Typ.
6746
0da2c8ac
AC
6747 -----------
6748 -- Fsize --
6749 -----------
6750
70482933
RK
6751 function Fsize (Lov, Hiv : Ureal) return Nat is
6752 begin
6753 Set_Realval (Lo, Lov);
6754 Set_Realval (Hi, Hiv);
6755 return Minimum_Size (Typ);
6756 end Fsize;
6757
0da2c8ac 6758 -- Start of processing for Freeze_Fixed_Point_Type
70482933
RK
6759
6760 begin
6761 -- If Esize of a subtype has not previously been set, set it now
6762
6763 if Unknown_Esize (Typ) then
6764 Atype := Ancestor_Subtype (Typ);
6765
6766 if Present (Atype) then
fbf5a39b 6767 Set_Esize (Typ, Esize (Atype));
70482933 6768 else
fbf5a39b 6769 Set_Esize (Typ, Esize (Base_Type (Typ)));
70482933
RK
6770 end if;
6771 end if;
6772
ee094616
RD
6773 -- Immediate return if the range is already analyzed. This means that
6774 -- the range is already set, and does not need to be computed by this
6775 -- routine.
70482933
RK
6776
6777 if Analyzed (Rng) then
6778 return;
6779 end if;
6780
6781 -- Immediate return if either of the bounds raises Constraint_Error
6782
6783 if Raises_Constraint_Error (Lo)
6784 or else Raises_Constraint_Error (Hi)
6785 then
6786 return;
6787 end if;
6788
6789 Loval := Realval (Lo);
6790 Hival := Realval (Hi);
6791
4b6f99f5
RD
6792 Orig_Lo := Loval;
6793 Orig_Hi := Hival;
6794
70482933
RK
6795 -- Ordinary fixed-point case
6796
6797 if Is_Ordinary_Fixed_Point_Type (Typ) then
6798
6799 -- For the ordinary fixed-point case, we are allowed to fudge the
ee094616
RD
6800 -- end-points up or down by small. Generally we prefer to fudge up,
6801 -- i.e. widen the bounds for non-model numbers so that the end points
6802 -- are included. However there are cases in which this cannot be
6803 -- done, and indeed cases in which we may need to narrow the bounds.
6804 -- The following circuit makes the decision.
70482933 6805
ee094616
RD
6806 -- Note: our terminology here is that Incl_EP means that the bounds
6807 -- are widened by Small if necessary to include the end points, and
6808 -- Excl_EP means that the bounds are narrowed by Small to exclude the
6809 -- end-points if this reduces the size.
70482933
RK
6810
6811 -- Note that in the Incl case, all we care about is including the
6812 -- end-points. In the Excl case, we want to narrow the bounds as
6813 -- much as permitted by the RM, to give the smallest possible size.
6814
6815 Fudge : declare
6816 Loval_Incl_EP : Ureal;
6817 Hival_Incl_EP : Ureal;
6818
6819 Loval_Excl_EP : Ureal;
6820 Hival_Excl_EP : Ureal;
6821
6822 Size_Incl_EP : Nat;
6823 Size_Excl_EP : Nat;
6824
6825 Model_Num : Ureal;
6826 First_Subt : Entity_Id;
6827 Actual_Lo : Ureal;
6828 Actual_Hi : Ureal;
6829
6830 begin
6831 -- First step. Base types are required to be symmetrical. Right
6832 -- now, the base type range is a copy of the first subtype range.
6833 -- This will be corrected before we are done, but right away we
6834 -- need to deal with the case where both bounds are non-negative.
6835 -- In this case, we set the low bound to the negative of the high
6836 -- bound, to make sure that the size is computed to include the
6837 -- required sign. Note that we do not need to worry about the
6838 -- case of both bounds negative, because the sign will be dealt
6839 -- with anyway. Furthermore we can't just go making such a bound
6840 -- symmetrical, since in a twos-complement system, there is an
e14c931f 6841 -- extra negative value which could not be accommodated on the
70482933
RK
6842 -- positive side.
6843
6844 if Typ = Btyp
6845 and then not UR_Is_Negative (Loval)
6846 and then Hival > Loval
6847 then
6848 Loval := -Hival;
6849 Set_Realval (Lo, Loval);
6850 end if;
6851
6852 -- Compute the fudged bounds. If the number is a model number,
edd63e9b
ES
6853 -- then we do nothing to include it, but we are allowed to backoff
6854 -- to the next adjacent model number when we exclude it. If it is
6855 -- not a model number then we straddle the two values with the
6856 -- model numbers on either side.
70482933
RK
6857
6858 Model_Num := UR_Trunc (Loval / Small) * Small;
6859
6860 if Loval = Model_Num then
6861 Loval_Incl_EP := Model_Num;
6862 else
6863 Loval_Incl_EP := Model_Num - Small;
6864 end if;
6865
6866 -- The low value excluding the end point is Small greater, but
6867 -- we do not do this exclusion if the low value is positive,
6868 -- since it can't help the size and could actually hurt by
6869 -- crossing the high bound.
6870
6871 if UR_Is_Negative (Loval_Incl_EP) then
6872 Loval_Excl_EP := Loval_Incl_EP + Small;
def46b54
RD
6873
6874 -- If the value went from negative to zero, then we have the
6875 -- case where Loval_Incl_EP is the model number just below
6876 -- zero, so we want to stick to the negative value for the
6877 -- base type to maintain the condition that the size will
6878 -- include signed values.
6879
6880 if Typ = Btyp
6881 and then UR_Is_Zero (Loval_Excl_EP)
6882 then
6883 Loval_Excl_EP := Loval_Incl_EP;
6884 end if;
6885
70482933
RK
6886 else
6887 Loval_Excl_EP := Loval_Incl_EP;
6888 end if;
6889
6890 -- Similar processing for upper bound and high value
6891
6892 Model_Num := UR_Trunc (Hival / Small) * Small;
6893
6894 if Hival = Model_Num then
6895 Hival_Incl_EP := Model_Num;
6896 else
6897 Hival_Incl_EP := Model_Num + Small;
6898 end if;
6899
6900 if UR_Is_Positive (Hival_Incl_EP) then
6901 Hival_Excl_EP := Hival_Incl_EP - Small;
6902 else
6903 Hival_Excl_EP := Hival_Incl_EP;
6904 end if;
6905
ee094616
RD
6906 -- One further adjustment is needed. In the case of subtypes, we
6907 -- cannot go outside the range of the base type, or we get
70482933 6908 -- peculiarities, and the base type range is already set. This
ee094616
RD
6909 -- only applies to the Incl values, since clearly the Excl values
6910 -- are already as restricted as they are allowed to be.
70482933
RK
6911
6912 if Typ /= Btyp then
6913 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
6914 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
6915 end if;
6916
6917 -- Get size including and excluding end points
6918
6919 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
6920 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
6921
6922 -- No need to exclude end-points if it does not reduce size
6923
6924 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
6925 Loval_Excl_EP := Loval_Incl_EP;
6926 end if;
6927
6928 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
6929 Hival_Excl_EP := Hival_Incl_EP;
6930 end if;
6931
6932 -- Now we set the actual size to be used. We want to use the
6933 -- bounds fudged up to include the end-points but only if this
6934 -- can be done without violating a specifically given size
6935 -- size clause or causing an unacceptable increase in size.
6936
6937 -- Case of size clause given
6938
6939 if Has_Size_Clause (Typ) then
6940
6941 -- Use the inclusive size only if it is consistent with
6942 -- the explicitly specified size.
6943
6944 if Size_Incl_EP <= RM_Size (Typ) then
6945 Actual_Lo := Loval_Incl_EP;
6946 Actual_Hi := Hival_Incl_EP;
6947 Actual_Size := Size_Incl_EP;
6948
6949 -- If the inclusive size is too large, we try excluding
6950 -- the end-points (will be caught later if does not work).
6951
6952 else
6953 Actual_Lo := Loval_Excl_EP;
6954 Actual_Hi := Hival_Excl_EP;
6955 Actual_Size := Size_Excl_EP;
6956 end if;
6957
6958 -- Case of size clause not given
6959
6960 else
6961 -- If we have a base type whose corresponding first subtype
6962 -- has an explicit size that is large enough to include our
6963 -- end-points, then do so. There is no point in working hard
6964 -- to get a base type whose size is smaller than the specified
6965 -- size of the first subtype.
6966
6967 First_Subt := First_Subtype (Typ);
6968
6969 if Has_Size_Clause (First_Subt)
6970 and then Size_Incl_EP <= Esize (First_Subt)
6971 then
6972 Actual_Size := Size_Incl_EP;
6973 Actual_Lo := Loval_Incl_EP;
6974 Actual_Hi := Hival_Incl_EP;
6975
6976 -- If excluding the end-points makes the size smaller and
6977 -- results in a size of 8,16,32,64, then we take the smaller
6978 -- size. For the 64 case, this is compulsory. For the other
6979 -- cases, it seems reasonable. We like to include end points
6980 -- if we can, but not at the expense of moving to the next
6981 -- natural boundary of size.
6982
6983 elsif Size_Incl_EP /= Size_Excl_EP
094cefda 6984 and then Addressable (Size_Excl_EP)
70482933
RK
6985 then
6986 Actual_Size := Size_Excl_EP;
6987 Actual_Lo := Loval_Excl_EP;
6988 Actual_Hi := Hival_Excl_EP;
6989
6990 -- Otherwise we can definitely include the end points
6991
6992 else
6993 Actual_Size := Size_Incl_EP;
6994 Actual_Lo := Loval_Incl_EP;
6995 Actual_Hi := Hival_Incl_EP;
6996 end if;
6997
edd63e9b
ES
6998 -- One pathological case: normally we never fudge a low bound
6999 -- down, since it would seem to increase the size (if it has
7000 -- any effect), but for ranges containing single value, or no
7001 -- values, the high bound can be small too large. Consider:
70482933
RK
7002
7003 -- type t is delta 2.0**(-14)
7004 -- range 131072.0 .. 0;
7005
edd63e9b
ES
7006 -- That lower bound is *just* outside the range of 32 bits, and
7007 -- does need fudging down in this case. Note that the bounds
7008 -- will always have crossed here, since the high bound will be
7009 -- fudged down if necessary, as in the case of:
70482933
RK
7010
7011 -- type t is delta 2.0**(-14)
7012 -- range 131072.0 .. 131072.0;
7013
edd63e9b
ES
7014 -- So we detect the situation by looking for crossed bounds,
7015 -- and if the bounds are crossed, and the low bound is greater
7016 -- than zero, we will always back it off by small, since this
7017 -- is completely harmless.
70482933
RK
7018
7019 if Actual_Lo > Actual_Hi then
7020 if UR_Is_Positive (Actual_Lo) then
7021 Actual_Lo := Loval_Incl_EP - Small;
7022 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
7023
7024 -- And of course, we need to do exactly the same parallel
7025 -- fudge for flat ranges in the negative region.
7026
7027 elsif UR_Is_Negative (Actual_Hi) then
7028 Actual_Hi := Hival_Incl_EP + Small;
7029 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
7030 end if;
7031 end if;
7032 end if;
7033
7034 Set_Realval (Lo, Actual_Lo);
7035 Set_Realval (Hi, Actual_Hi);
7036 end Fudge;
7037
7038 -- For the decimal case, none of this fudging is required, since there
7039 -- are no end-point problems in the decimal case (the end-points are
7040 -- always included).
7041
7042 else
7043 Actual_Size := Fsize (Loval, Hival);
7044 end if;
7045
7046 -- At this stage, the actual size has been calculated and the proper
7047 -- required bounds are stored in the low and high bounds.
7048
7049 if Actual_Size > 64 then
7050 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
7051 Error_Msg_N
7d8b9c99
RD
7052 ("size required (^) for type& too large, maximum allowed is 64",
7053 Typ);
70482933
RK
7054 Actual_Size := 64;
7055 end if;
7056
7057 -- Check size against explicit given size
7058
7059 if Has_Size_Clause (Typ) then
7060 if Actual_Size > RM_Size (Typ) then
7061 Error_Msg_Uint_1 := RM_Size (Typ);
7062 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
7063 Error_Msg_NE
7d8b9c99 7064 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
7065 Size_Clause (Typ), Typ);
7066
7067 else
7068 Actual_Size := UI_To_Int (Esize (Typ));
7069 end if;
7070
7071 -- Increase size to next natural boundary if no size clause given
7072
7073 else
7074 if Actual_Size <= 8 then
7075 Actual_Size := 8;
7076 elsif Actual_Size <= 16 then
7077 Actual_Size := 16;
7078 elsif Actual_Size <= 32 then
7079 Actual_Size := 32;
7080 else
7081 Actual_Size := 64;
7082 end if;
7083
7084 Init_Esize (Typ, Actual_Size);
7085 Adjust_Esize_For_Alignment (Typ);
7086 end if;
7087
edd63e9b
ES
7088 -- If we have a base type, then expand the bounds so that they extend to
7089 -- the full width of the allocated size in bits, to avoid junk range
7090 -- checks on intermediate computations.
70482933
RK
7091
7092 if Base_Type (Typ) = Typ then
7093 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
7094 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
7095 end if;
7096
7097 -- Final step is to reanalyze the bounds using the proper type
7098 -- and set the Corresponding_Integer_Value fields of the literals.
7099
7100 Set_Etype (Lo, Empty);
7101 Set_Analyzed (Lo, False);
7102 Analyze (Lo);
7103
edd63e9b
ES
7104 -- Resolve with universal fixed if the base type, and the base type if
7105 -- it is a subtype. Note we can't resolve the base type with itself,
7106 -- that would be a reference before definition.
70482933
RK
7107
7108 if Typ = Btyp then
7109 Resolve (Lo, Universal_Fixed);
7110 else
7111 Resolve (Lo, Btyp);
7112 end if;
7113
7114 -- Set corresponding integer value for bound
7115
7116 Set_Corresponding_Integer_Value
7117 (Lo, UR_To_Uint (Realval (Lo) / Small));
7118
7119 -- Similar processing for high bound
7120
7121 Set_Etype (Hi, Empty);
7122 Set_Analyzed (Hi, False);
7123 Analyze (Hi);
7124
7125 if Typ = Btyp then
7126 Resolve (Hi, Universal_Fixed);
7127 else
7128 Resolve (Hi, Btyp);
7129 end if;
7130
7131 Set_Corresponding_Integer_Value
7132 (Hi, UR_To_Uint (Realval (Hi) / Small));
7133
7134 -- Set type of range to correspond to bounds
7135
7136 Set_Etype (Rng, Etype (Lo));
7137
fbf5a39b 7138 -- Set Esize to calculated size if not set already
70482933 7139
fbf5a39b
AC
7140 if Unknown_Esize (Typ) then
7141 Init_Esize (Typ, Actual_Size);
7142 end if;
70482933
RK
7143
7144 -- Set RM_Size if not already set. If already set, check value
7145
7146 declare
7147 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
7148
7149 begin
7150 if RM_Size (Typ) /= Uint_0 then
7151 if RM_Size (Typ) < Minsiz then
7152 Error_Msg_Uint_1 := RM_Size (Typ);
7153 Error_Msg_Uint_2 := Minsiz;
7154 Error_Msg_NE
7d8b9c99 7155 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
7156 Size_Clause (Typ), Typ);
7157 end if;
7158
7159 else
7160 Set_RM_Size (Typ, Minsiz);
7161 end if;
7162 end;
4b6f99f5
RD
7163
7164 -- Check for shaving
7165
7166 if Comes_From_Source (Typ) then
7167 if Orig_Lo < Expr_Value_R (Lo) then
7168 Error_Msg_N
7169 ("declared low bound of type & is outside type range??", Typ);
7170 Error_Msg_N
7171 ("\low bound adjusted up by delta (RM 3.5.9(13))??", Typ);
7172 end if;
7173
7174 if Orig_Hi > Expr_Value_R (Hi) then
7175 Error_Msg_N
7176 ("declared high bound of type & is outside type range??", Typ);
7177 Error_Msg_N
7178 ("\high bound adjusted down by delta (RM 3.5.9(13))??", Typ);
7179 end if;
7180 end if;
70482933
RK
7181 end Freeze_Fixed_Point_Type;
7182
7183 ------------------
7184 -- Freeze_Itype --
7185 ------------------
7186
7187 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
7188 L : List_Id;
7189
7190 begin
7191 Set_Has_Delayed_Freeze (T);
c159409f 7192 L := Freeze_Entity (T, N);
70482933
RK
7193
7194 if Is_Non_Empty_List (L) then
7195 Insert_Actions (N, L);
7196 end if;
7197 end Freeze_Itype;
7198
7199 --------------------------
7200 -- Freeze_Static_Object --
7201 --------------------------
7202
7203 procedure Freeze_Static_Object (E : Entity_Id) is
7204
7205 Cannot_Be_Static : exception;
7206 -- Exception raised if the type of a static object cannot be made
7207 -- static. This happens if the type depends on non-global objects.
7208
7209 procedure Ensure_Expression_Is_SA (N : Node_Id);
ee094616
RD
7210 -- Called to ensure that an expression used as part of a type definition
7211 -- is statically allocatable, which means that the expression type is
7212 -- statically allocatable, and the expression is either static, or a
7213 -- reference to a library level constant.
70482933
RK
7214
7215 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
7216 -- Called to mark a type as static, checking that it is possible
7217 -- to set the type as static. If it is not possible, then the
7218 -- exception Cannot_Be_Static is raised.
7219
7220 -----------------------------
7221 -- Ensure_Expression_Is_SA --
7222 -----------------------------
7223
7224 procedure Ensure_Expression_Is_SA (N : Node_Id) is
7225 Ent : Entity_Id;
7226
7227 begin
7228 Ensure_Type_Is_SA (Etype (N));
7229
edab6088 7230 if Is_OK_Static_Expression (N) then
70482933
RK
7231 return;
7232
7233 elsif Nkind (N) = N_Identifier then
7234 Ent := Entity (N);
7235
7236 if Present (Ent)
7237 and then Ekind (Ent) = E_Constant
7238 and then Is_Library_Level_Entity (Ent)
7239 then
7240 return;
7241 end if;
7242 end if;
7243
7244 raise Cannot_Be_Static;
7245 end Ensure_Expression_Is_SA;
7246
7247 -----------------------
7248 -- Ensure_Type_Is_SA --
7249 -----------------------
7250
7251 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
7252 N : Node_Id;
7253 C : Entity_Id;
7254
7255 begin
7256 -- If type is library level, we are all set
7257
7258 if Is_Library_Level_Entity (Typ) then
7259 return;
7260 end if;
7261
ee094616
RD
7262 -- We are also OK if the type already marked as statically allocated,
7263 -- which means we processed it before.
70482933
RK
7264
7265 if Is_Statically_Allocated (Typ) then
7266 return;
7267 end if;
7268
7269 -- Mark type as statically allocated
7270
7271 Set_Is_Statically_Allocated (Typ);
7272
7273 -- Check that it is safe to statically allocate this type
7274
7275 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
7276 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
7277 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
7278
7279 elsif Is_Array_Type (Typ) then
7280 N := First_Index (Typ);
7281 while Present (N) loop
7282 Ensure_Type_Is_SA (Etype (N));
7283 Next_Index (N);
7284 end loop;
7285
7286 Ensure_Type_Is_SA (Component_Type (Typ));
7287
7288 elsif Is_Access_Type (Typ) then
7289 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
7290
7291 declare
7292 F : Entity_Id;
7293 T : constant Entity_Id := Etype (Designated_Type (Typ));
7294
7295 begin
7296 if T /= Standard_Void_Type then
7297 Ensure_Type_Is_SA (T);
7298 end if;
7299
7300 F := First_Formal (Designated_Type (Typ));
70482933
RK
7301 while Present (F) loop
7302 Ensure_Type_Is_SA (Etype (F));
7303 Next_Formal (F);
7304 end loop;
7305 end;
7306
7307 else
7308 Ensure_Type_Is_SA (Designated_Type (Typ));
7309 end if;
7310
7311 elsif Is_Record_Type (Typ) then
7312 C := First_Entity (Typ);
70482933
RK
7313 while Present (C) loop
7314 if Ekind (C) = E_Discriminant
7315 or else Ekind (C) = E_Component
7316 then
7317 Ensure_Type_Is_SA (Etype (C));
7318
7319 elsif Is_Type (C) then
7320 Ensure_Type_Is_SA (C);
7321 end if;
7322
7323 Next_Entity (C);
7324 end loop;
7325
7326 elsif Ekind (Typ) = E_Subprogram_Type then
7327 Ensure_Type_Is_SA (Etype (Typ));
7328
7329 C := First_Formal (Typ);
7330 while Present (C) loop
7331 Ensure_Type_Is_SA (Etype (C));
7332 Next_Formal (C);
7333 end loop;
7334
7335 else
7336 raise Cannot_Be_Static;
7337 end if;
7338 end Ensure_Type_Is_SA;
7339
7340 -- Start of processing for Freeze_Static_Object
7341
7342 begin
7343 Ensure_Type_Is_SA (Etype (E));
7344
7345 exception
7346 when Cannot_Be_Static =>
7347
09494c32
AC
7348 -- If the object that cannot be static is imported or exported, then
7349 -- issue an error message saying that this object cannot be imported
7350 -- or exported. If it has an address clause it is an overlay in the
7351 -- current partition and the static requirement is not relevant.
d606f1df 7352 -- Do not issue any error message when ignoring rep clauses.
09494c32 7353
d606f1df
AC
7354 if Ignore_Rep_Clauses then
7355 null;
7356
7357 elsif Is_Imported (E) then
7358 if No (Address_Clause (E)) then
7359 Error_Msg_N
7360 ("& cannot be imported (local type is not constant)", E);
7361 end if;
70482933
RK
7362
7363 -- Otherwise must be exported, something is wrong if compiler
7364 -- is marking something as statically allocated which cannot be).
7365
7366 else pragma Assert (Is_Exported (E));
7367 Error_Msg_N
7368 ("& cannot be exported (local type is not constant)", E);
7369 end if;
7370 end Freeze_Static_Object;
7371
7372 -----------------------
7373 -- Freeze_Subprogram --
7374 -----------------------
7375
7376 procedure Freeze_Subprogram (E : Entity_Id) is
7377 Retype : Entity_Id;
7378 F : Entity_Id;
7379
7380 begin
7381 -- Subprogram may not have an address clause unless it is imported
7382
7383 if Present (Address_Clause (E)) then
7384 if not Is_Imported (E) then
7385 Error_Msg_N
7386 ("address clause can only be given " &
7387 "for imported subprogram",
7388 Name (Address_Clause (E)));
7389 end if;
7390 end if;
7391
91b1417d 7392 -- Reset the Pure indication on an imported subprogram unless an
2db5b47e
AC
7393 -- explicit Pure_Function pragma was present or the subprogram is an
7394 -- intrinsic. We do this because otherwise it is an insidious error
7395 -- to call a non-pure function from pure unit and have calls
7396 -- mysteriously optimized away. What happens here is that the Import
7397 -- can bypass the normal check to ensure that pure units call only pure
7398 -- subprograms.
91b1417d 7399
3e247e58
RD
7400 -- The reason for the intrinsic exception is that in general, intrinsic
7401 -- functions (such as shifts) are pure anyway. The only exceptions are
7402 -- the intrinsics in GNAT.Source_Info, and that unit is not marked Pure
7403 -- in any case, so no problem arises.
7404
91b1417d
AC
7405 if Is_Imported (E)
7406 and then Is_Pure (E)
7407 and then not Has_Pragma_Pure_Function (E)
2db5b47e 7408 and then not Is_Intrinsic_Subprogram (E)
91b1417d
AC
7409 then
7410 Set_Is_Pure (E, False);
7411 end if;
7412
70482933
RK
7413 -- For non-foreign convention subprograms, this is where we create
7414 -- the extra formals (for accessibility level and constrained bit
7415 -- information). We delay this till the freeze point precisely so
a90bd866 7416 -- that we know the convention.
70482933
RK
7417
7418 if not Has_Foreign_Convention (E) then
7419 Create_Extra_Formals (E);
7420 Set_Mechanisms (E);
7421
7422 -- If this is convention Ada and a Valued_Procedure, that's odd
7423
7424 if Ekind (E) = E_Procedure
7425 and then Is_Valued_Procedure (E)
7426 and then Convention (E) = Convention_Ada
fbf5a39b 7427 and then Warn_On_Export_Import
70482933
RK
7428 then
7429 Error_Msg_N
685bc70f 7430 ("??Valued_Procedure has no effect for convention Ada", E);
70482933
RK
7431 Set_Is_Valued_Procedure (E, False);
7432 end if;
7433
7434 -- Case of foreign convention
7435
7436 else
7437 Set_Mechanisms (E);
7438
7a5b62b0 7439 -- For foreign conventions, warn about return of unconstrained array
70482933
RK
7440
7441 if Ekind (E) = E_Function then
7442 Retype := Underlying_Type (Etype (E));
7443
7444 -- If no return type, probably some other error, e.g. a
7445 -- missing full declaration, so ignore.
7446
7447 if No (Retype) then
7448 null;
7449
7450 -- If the return type is generic, we have emitted a warning
edd63e9b
ES
7451 -- earlier on, and there is nothing else to check here. Specific
7452 -- instantiations may lead to erroneous behavior.
70482933
RK
7453
7454 elsif Is_Generic_Type (Etype (E)) then
7455 null;
7456
e7d72fb9 7457 -- Display warning if returning unconstrained array
59366db6 7458
70482933
RK
7459 elsif Is_Array_Type (Retype)
7460 and then not Is_Constrained (Retype)
e7d72fb9 7461
df3e68b1
HK
7462 -- Check appropriate warning is enabled (should we check for
7463 -- Warnings (Off) on specific entities here, probably so???)
e7d72fb9 7464
fbf5a39b 7465 and then Warn_On_Export_Import
e7d72fb9 7466
2c1b72d7
AC
7467 -- Exclude the VM case, since return of unconstrained arrays
7468 -- is properly handled in both the JVM and .NET cases.
e7d72fb9 7469
f3b57ab0 7470 and then VM_Target = No_VM
70482933 7471 then
fbf5a39b 7472 Error_Msg_N
685bc70f 7473 ("?x?foreign convention function& should not return " &
fbf5a39b 7474 "unconstrained array", E);
70482933
RK
7475 return;
7476 end if;
7477 end if;
7478
7479 -- If any of the formals for an exported foreign convention
edd63e9b
ES
7480 -- subprogram have defaults, then emit an appropriate warning since
7481 -- this is odd (default cannot be used from non-Ada code)
70482933
RK
7482
7483 if Is_Exported (E) then
7484 F := First_Formal (E);
7485 while Present (F) loop
fbf5a39b
AC
7486 if Warn_On_Export_Import
7487 and then Present (Default_Value (F))
7488 then
70482933 7489 Error_Msg_N
685bc70f 7490 ("?x?parameter cannot be defaulted in non-Ada call",
70482933
RK
7491 Default_Value (F));
7492 end if;
7493
7494 Next_Formal (F);
7495 end loop;
7496 end if;
7497 end if;
7498
edd63e9b
ES
7499 -- Pragma Inline_Always is disallowed for dispatching subprograms
7500 -- because the address of such subprograms is saved in the dispatch
7501 -- table to support dispatching calls, and dispatching calls cannot
7502 -- be inlined. This is consistent with the restriction against using
7503 -- 'Access or 'Address on an Inline_Always subprogram.
7504
def46b54
RD
7505 if Is_Dispatching_Operation (E)
7506 and then Has_Pragma_Inline_Always (E)
7507 then
edd63e9b
ES
7508 Error_Msg_N
7509 ("pragma Inline_Always not allowed for dispatching subprograms", E);
7510 end if;
c6a9797e
RD
7511
7512 -- Because of the implicit representation of inherited predefined
7513 -- operators in the front-end, the overriding status of the operation
7514 -- may be affected when a full view of a type is analyzed, and this is
7515 -- not captured by the analysis of the corresponding type declaration.
7516 -- Therefore the correctness of a not-overriding indicator must be
7517 -- rechecked when the subprogram is frozen.
7518
7519 if Nkind (E) = N_Defining_Operator_Symbol
7520 and then not Error_Posted (Parent (E))
7521 then
7522 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
7523 end if;
70482933
RK
7524 end Freeze_Subprogram;
7525
15ce9ca2
AC
7526 ----------------------
7527 -- Is_Fully_Defined --
7528 ----------------------
70482933 7529
70482933
RK
7530 function Is_Fully_Defined (T : Entity_Id) return Boolean is
7531 begin
7532 if Ekind (T) = E_Class_Wide_Type then
7533 return Is_Fully_Defined (Etype (T));
657a9dd9
AC
7534
7535 elsif Is_Array_Type (T) then
7536 return Is_Fully_Defined (Component_Type (T));
7537
7538 elsif Is_Record_Type (T)
7539 and not Is_Private_Type (T)
7540 then
ee094616
RD
7541 -- Verify that the record type has no components with private types
7542 -- without completion.
657a9dd9
AC
7543
7544 declare
7545 Comp : Entity_Id;
bde58e32 7546
657a9dd9
AC
7547 begin
7548 Comp := First_Component (T);
657a9dd9
AC
7549 while Present (Comp) loop
7550 if not Is_Fully_Defined (Etype (Comp)) then
7551 return False;
7552 end if;
7553
7554 Next_Component (Comp);
7555 end loop;
7556 return True;
7557 end;
7558
30537990 7559 -- For the designated type of an access to subprogram, all types in
4519314c
AC
7560 -- the profile must be fully defined.
7561
7562 elsif Ekind (T) = E_Subprogram_Type then
7563 declare
7564 F : Entity_Id;
7565
7566 begin
7567 F := First_Formal (T);
7568 while Present (F) loop
7569 if not Is_Fully_Defined (Etype (F)) then
7570 return False;
7571 end if;
7572
7573 Next_Formal (F);
7574 end loop;
7575
7576 return Is_Fully_Defined (Etype (T));
7577 end;
7578
86cde7b1
RD
7579 else
7580 return not Is_Private_Type (T)
7581 or else Present (Full_View (Base_Type (T)));
70482933
RK
7582 end if;
7583 end Is_Fully_Defined;
7584
70d904ca 7585 ---------------------------------
70482933
RK
7586 -- Process_Default_Expressions --
7587 ---------------------------------
7588
7589 procedure Process_Default_Expressions
7590 (E : Entity_Id;
7591 After : in out Node_Id)
7592 is
7593 Loc : constant Source_Ptr := Sloc (E);
7594 Dbody : Node_Id;
7595 Formal : Node_Id;
7596 Dcopy : Node_Id;
7597 Dnam : Entity_Id;
7598
7599 begin
7600 Set_Default_Expressions_Processed (E);
7601
ee094616
RD
7602 -- A subprogram instance and its associated anonymous subprogram share
7603 -- their signature. The default expression functions are defined in the
7604 -- wrapper packages for the anonymous subprogram, and should not be
7605 -- generated again for the instance.
70482933
RK
7606
7607 if Is_Generic_Instance (E)
7608 and then Present (Alias (E))
7609 and then Default_Expressions_Processed (Alias (E))
7610 then
7611 return;
7612 end if;
7613
7614 Formal := First_Formal (E);
70482933
RK
7615 while Present (Formal) loop
7616 if Present (Default_Value (Formal)) then
7617
7618 -- We work with a copy of the default expression because we
7619 -- do not want to disturb the original, since this would mess
7620 -- up the conformance checking.
7621
7622 Dcopy := New_Copy_Tree (Default_Value (Formal));
7623
7624 -- The analysis of the expression may generate insert actions,
7625 -- which of course must not be executed. We wrap those actions
7626 -- in a procedure that is not called, and later on eliminated.
7627 -- The following cases have no side-effects, and are analyzed
7628 -- directly.
7629
7630 if Nkind (Dcopy) = N_Identifier
ef1c0511
AC
7631 or else Nkind_In (Dcopy, N_Expanded_Name,
7632 N_Integer_Literal,
7633 N_Character_Literal,
21c51f53
RD
7634 N_String_Literal,
7635 N_Real_Literal)
70482933 7636 or else (Nkind (Dcopy) = N_Attribute_Reference
ef1c0511
AC
7637 and then Attribute_Name (Dcopy) = Name_Null_Parameter)
7638 or else Known_Null (Dcopy)
70482933 7639 then
70482933 7640 -- If there is no default function, we must still do a full
ee094616
RD
7641 -- analyze call on the default value, to ensure that all error
7642 -- checks are performed, e.g. those associated with static
7643 -- evaluation. Note: this branch will always be taken if the
7644 -- analyzer is turned off (but we still need the error checks).
70482933
RK
7645
7646 -- Note: the setting of parent here is to meet the requirement
7647 -- that we can only analyze the expression while attached to
7648 -- the tree. Really the requirement is that the parent chain
7649 -- be set, we don't actually need to be in the tree.
7650
7651 Set_Parent (Dcopy, Declaration_Node (Formal));
7652 Analyze (Dcopy);
7653
7654 -- Default expressions are resolved with their own type if the
7655 -- context is generic, to avoid anomalies with private types.
7656
7657 if Ekind (Scope (E)) = E_Generic_Package then
fbf5a39b 7658 Resolve (Dcopy);
70482933
RK
7659 else
7660 Resolve (Dcopy, Etype (Formal));
7661 end if;
7662
7663 -- If that resolved expression will raise constraint error,
7664 -- then flag the default value as raising constraint error.
7665 -- This allows a proper error message on the calls.
7666
7667 if Raises_Constraint_Error (Dcopy) then
7668 Set_Raises_Constraint_Error (Default_Value (Formal));
7669 end if;
7670
7671 -- If the default is a parameterless call, we use the name of
7672 -- the called function directly, and there is no body to build.
7673
7674 elsif Nkind (Dcopy) = N_Function_Call
7675 and then No (Parameter_Associations (Dcopy))
7676 then
7677 null;
7678
7679 -- Else construct and analyze the body of a wrapper procedure
7680 -- that contains an object declaration to hold the expression.
7681 -- Given that this is done only to complete the analysis, it
7682 -- simpler to build a procedure than a function which might
7683 -- involve secondary stack expansion.
7684
7685 else
b29def53 7686 Dnam := Make_Temporary (Loc, 'D');
70482933
RK
7687
7688 Dbody :=
7689 Make_Subprogram_Body (Loc,
7690 Specification =>
7691 Make_Procedure_Specification (Loc,
7692 Defining_Unit_Name => Dnam),
7693
7694 Declarations => New_List (
7695 Make_Object_Declaration (Loc,
2c1b72d7
AC
7696 Defining_Identifier => Make_Temporary (Loc, 'T'),
7697 Object_Definition =>
df3e68b1 7698 New_Occurrence_Of (Etype (Formal), Loc),
2c1b72d7 7699 Expression => New_Copy_Tree (Dcopy))),
70482933
RK
7700
7701 Handled_Statement_Sequence =>
7702 Make_Handled_Sequence_Of_Statements (Loc,
2c1b72d7 7703 Statements => Empty_List));
70482933
RK
7704
7705 Set_Scope (Dnam, Scope (E));
7706 Set_Assignment_OK (First (Declarations (Dbody)));
7707 Set_Is_Eliminated (Dnam);
7708 Insert_After (After, Dbody);
7709 Analyze (Dbody);
7710 After := Dbody;
7711 end if;
7712 end if;
7713
7714 Next_Formal (Formal);
7715 end loop;
70482933
RK
7716 end Process_Default_Expressions;
7717
7718 ----------------------------------------
7719 -- Set_Component_Alignment_If_Not_Set --
7720 ----------------------------------------
7721
7722 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
7723 begin
7724 -- Ignore if not base type, subtypes don't need anything
7725
7726 if Typ /= Base_Type (Typ) then
7727 return;
7728 end if;
7729
7730 -- Do not override existing representation
7731
7732 if Is_Packed (Typ) then
7733 return;
7734
7735 elsif Has_Specified_Layout (Typ) then
7736 return;
7737
7738 elsif Component_Alignment (Typ) /= Calign_Default then
7739 return;
7740
7741 else
7742 Set_Component_Alignment
7743 (Typ, Scope_Stack.Table
7744 (Scope_Stack.Last).Component_Alignment_Default);
7745 end if;
7746 end Set_Component_Alignment_If_Not_Set;
7747
220d1fd9
AC
7748 --------------------------
7749 -- Set_SSO_From_Default --
7750 --------------------------
7751
7752 procedure Set_SSO_From_Default (T : Entity_Id) is
1a779058
AC
7753 Reversed : Boolean;
7754
220d1fd9 7755 begin
bcdb6b04
AC
7756 -- Set default SSO for an array or record base type, except in case of
7757 -- a type extension (which always inherits the SSO of its parent type).
eefd2467
AC
7758
7759 if Is_Base_Type (T)
7760 and then (Is_Array_Type (T)
5e9d6f05
AC
7761 or else (Is_Record_Type (T)
7762 and then not (Is_Tagged_Type (T)
7763 and then Is_Derived_Type (T))))
220d1fd9 7764 then
1a779058
AC
7765 Reversed :=
7766 (Bytes_Big_Endian and then SSO_Set_Low_By_Default (T))
7767 or else
7768 (not Bytes_Big_Endian and then SSO_Set_High_By_Default (T));
7769
7770 if (SSO_Set_Low_By_Default (T) or else SSO_Set_High_By_Default (T))
7ed57189 7771
1a779058
AC
7772 -- For a record type, if bit order is specified explicitly, then
7773 -- do not set SSO from default if not consistent.
7ed57189
AC
7774
7775 and then not
7776 (Is_Record_Type (T)
7777 and then Has_Rep_Item (T, Name_Bit_Order)
1a779058 7778 and then Reverse_Bit_Order (T) /= Reversed)
220d1fd9
AC
7779 then
7780 -- If flags cause reverse storage order, then set the result. Note
7781 -- that we would have ignored the pragma setting the non default
7782 -- storage order in any case, hence the assertion at this point.
7783
1a779058
AC
7784 pragma Assert
7785 (not Reversed or else Support_Nondefault_SSO_On_Target);
7786
7787 Set_Reverse_Storage_Order (T, Reversed);
7ed57189 7788
1a779058
AC
7789 -- For a record type, also set reversed bit order. Note: if a bit
7790 -- order has been specified explicitly, then this is a no-op.
7ed57189
AC
7791
7792 if Is_Record_Type (T) then
1a779058 7793 Set_Reverse_Bit_Order (T, Reversed);
7ed57189 7794 end if;
220d1fd9
AC
7795 end if;
7796 end if;
7797 end Set_SSO_From_Default;
7798
c6823a20
EB
7799 ------------------
7800 -- Undelay_Type --
7801 ------------------
7802
7803 procedure Undelay_Type (T : Entity_Id) is
7804 begin
7805 Set_Has_Delayed_Freeze (T, False);
7806 Set_Freeze_Node (T, Empty);
7807
7808 -- Since we don't want T to have a Freeze_Node, we don't want its
7809 -- Full_View or Corresponding_Record_Type to have one either.
7810
e80f0cb0 7811 -- ??? Fundamentally, this whole handling is unpleasant. What we really
ee094616
RD
7812 -- want is to be sure that for an Itype that's part of record R and is a
7813 -- subtype of type T, that it's frozen after the later of the freeze
c6823a20
EB
7814 -- points of R and T. We have no way of doing that directly, so what we
7815 -- do is force most such Itypes to be frozen as part of freezing R via
7816 -- this procedure and only delay the ones that need to be delayed
ee094616
RD
7817 -- (mostly the designated types of access types that are defined as part
7818 -- of the record).
c6823a20
EB
7819
7820 if Is_Private_Type (T)
7821 and then Present (Full_View (T))
7822 and then Is_Itype (Full_View (T))
7823 and then Is_Record_Type (Scope (Full_View (T)))
7824 then
7825 Undelay_Type (Full_View (T));
7826 end if;
7827
7828 if Is_Concurrent_Type (T)
7829 and then Present (Corresponding_Record_Type (T))
7830 and then Is_Itype (Corresponding_Record_Type (T))
7831 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
7832 then
7833 Undelay_Type (Corresponding_Record_Type (T));
7834 end if;
7835 end Undelay_Type;
7836
fbf5a39b
AC
7837 ------------------
7838 -- Warn_Overlay --
7839 ------------------
7840
7841 procedure Warn_Overlay
7842 (Expr : Node_Id;
7843 Typ : Entity_Id;
7844 Nam : Entity_Id)
7845 is
7846 Ent : constant Entity_Id := Entity (Nam);
49e90211 7847 -- The object to which the address clause applies
fbf5a39b
AC
7848
7849 Init : Node_Id;
7850 Old : Entity_Id := Empty;
7851 Decl : Node_Id;
7852
7853 begin
7854 -- No warning if address clause overlay warnings are off
7855
7856 if not Address_Clause_Overlay_Warnings then
7857 return;
7858 end if;
7859
7860 -- No warning if there is an explicit initialization
7861
7862 Init := Original_Node (Expression (Declaration_Node (Ent)));
7863
7864 if Present (Init) and then Comes_From_Source (Init) then
7865 return;
7866 end if;
7867
edd63e9b 7868 -- We only give the warning for non-imported entities of a type for
0ac73189 7869 -- which a non-null base init proc is defined, or for objects of access
a5d83d61 7870 -- types with implicit null initialization, or when Normalize_Scalars
0ac73189
AC
7871 -- applies and the type is scalar or a string type (the latter being
7872 -- tested for because predefined String types are initialized by inline
a5d83d61
AC
7873 -- code rather than by an init_proc). Note that we do not give the
7874 -- warning for Initialize_Scalars, since we suppressed initialization
e526d0c7 7875 -- in this case. Also, do not warn if Suppress_Initialization is set.
fbf5a39b
AC
7876
7877 if Present (Expr)
fbf5a39b 7878 and then not Is_Imported (Ent)
e526d0c7 7879 and then not Initialization_Suppressed (Typ)
0ac73189 7880 and then (Has_Non_Null_Base_Init_Proc (Typ)
e526d0c7
AC
7881 or else Is_Access_Type (Typ)
7882 or else (Normalize_Scalars
7883 and then (Is_Scalar_Type (Typ)
7884 or else Is_String_Type (Typ))))
fbf5a39b
AC
7885 then
7886 if Nkind (Expr) = N_Attribute_Reference
7887 and then Is_Entity_Name (Prefix (Expr))
7888 then
7889 Old := Entity (Prefix (Expr));
7890
7891 elsif Is_Entity_Name (Expr)
7892 and then Ekind (Entity (Expr)) = E_Constant
7893 then
7894 Decl := Declaration_Node (Entity (Expr));
7895
7896 if Nkind (Decl) = N_Object_Declaration
7897 and then Present (Expression (Decl))
7898 and then Nkind (Expression (Decl)) = N_Attribute_Reference
7899 and then Is_Entity_Name (Prefix (Expression (Decl)))
7900 then
7901 Old := Entity (Prefix (Expression (Decl)));
7902
7903 elsif Nkind (Expr) = N_Function_Call then
7904 return;
7905 end if;
7906
ee094616
RD
7907 -- A function call (most likely to To_Address) is probably not an
7908 -- overlay, so skip warning. Ditto if the function call was inlined
7909 -- and transformed into an entity.
fbf5a39b
AC
7910
7911 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
7912 return;
7913 end if;
7914
7915 Decl := Next (Parent (Expr));
7916
7917 -- If a pragma Import follows, we assume that it is for the current
7918 -- target of the address clause, and skip the warning.
7919
7920 if Present (Decl)
7921 and then Nkind (Decl) = N_Pragma
1b24ada5 7922 and then Pragma_Name (Decl) = Name_Import
fbf5a39b
AC
7923 then
7924 return;
7925 end if;
7926
7927 if Present (Old) then
7928 Error_Msg_Node_2 := Old;
7929 Error_Msg_N
685bc70f 7930 ("default initialization of & may modify &??",
fbf5a39b
AC
7931 Nam);
7932 else
7933 Error_Msg_N
685bc70f 7934 ("default initialization of & may modify overlaid storage??",
fbf5a39b
AC
7935 Nam);
7936 end if;
7937
7938 -- Add friendly warning if initialization comes from a packed array
7939 -- component.
7940
7941 if Is_Record_Type (Typ) then
7942 declare
7943 Comp : Entity_Id;
7944
7945 begin
7946 Comp := First_Component (Typ);
fbf5a39b
AC
7947 while Present (Comp) loop
7948 if Nkind (Parent (Comp)) = N_Component_Declaration
7949 and then Present (Expression (Parent (Comp)))
7950 then
7951 exit;
7952 elsif Is_Array_Type (Etype (Comp))
8ca597af 7953 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
fbf5a39b
AC
7954 then
7955 Error_Msg_NE
3f1ede06 7956 ("\packed array component& " &
685bc70f 7957 "will be initialized to zero??",
3f1ede06 7958 Nam, Comp);
fbf5a39b
AC
7959 exit;
7960 else
7961 Next_Component (Comp);
7962 end if;
7963 end loop;
7964 end;
7965 end if;
7966
7967 Error_Msg_N
3f1ede06 7968 ("\use pragma Import for & to " &
685bc70f 7969 "suppress initialization (RM B.1(24))??",
3f1ede06 7970 Nam);
fbf5a39b
AC
7971 end if;
7972 end Warn_Overlay;
7973
70482933 7974end Freeze;