]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/freeze.adb
contracts.adb (Analyze_Entry_Or_Subprogram_Body_Contract): Add a warning about SPARK...
[thirdparty/gcc.git] / gcc / ada / freeze.adb
CommitLineData
8dc10d38 1------------------------------------------------------------------------------
70482933
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- F R E E Z E --
6-- --
7-- B o d y --
8-- --
e1691d7e 9-- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
748086b7 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
2010d078
AC
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
70482933
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
23-- --
24------------------------------------------------------------------------------
25
0e77949e
AC
26with Aspects; use Aspects;
27with Atree; use Atree;
28with Checks; use Checks;
29with Contracts; use Contracts;
30with Debug; use Debug;
31with Einfo; use Einfo;
32with Elists; use Elists;
33with Errout; use Errout;
34with Exp_Ch3; use Exp_Ch3;
35with Exp_Ch7; use Exp_Ch7;
36with Exp_Disp; use Exp_Disp;
37with Exp_Pakd; use Exp_Pakd;
38with Exp_Util; use Exp_Util;
39with Exp_Tss; use Exp_Tss;
40with Fname; use Fname;
41with Ghost; use Ghost;
42with Layout; use Layout;
43with Lib; use Lib;
44with Namet; use Namet;
45with Nlists; use Nlists;
46with Nmake; use Nmake;
47with Opt; use Opt;
48with Restrict; use Restrict;
49with Rident; use Rident;
50with Rtsfind; use Rtsfind;
51with Sem; use Sem;
52with Sem_Aux; use Sem_Aux;
53with Sem_Cat; use Sem_Cat;
54with Sem_Ch6; use Sem_Ch6;
55with Sem_Ch7; use Sem_Ch7;
56with Sem_Ch8; use Sem_Ch8;
57with Sem_Ch13; use Sem_Ch13;
a187206c 58with Sem_Disp; use Sem_Disp;
0e77949e
AC
59with Sem_Eval; use Sem_Eval;
60with Sem_Mech; use Sem_Mech;
61with Sem_Prag; use Sem_Prag;
62with Sem_Res; use Sem_Res;
63with Sem_Util; use Sem_Util;
64with Sinfo; use Sinfo;
65with Snames; use Snames;
66with Stand; use Stand;
67with Targparm; use Targparm;
68with Tbuild; use Tbuild;
69with Ttypes; use Ttypes;
70with Uintp; use Uintp;
71with Urealp; use Urealp;
72with Warnsw; use Warnsw;
70482933
RK
73
74package body Freeze is
75
76 -----------------------
77 -- Local Subprograms --
78 -----------------------
79
80 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
81 -- Typ is a type that is being frozen. If no size clause is given,
82 -- but a default Esize has been computed, then this default Esize is
83 -- adjusted up if necessary to be consistent with a given alignment,
84 -- but never to a value greater than Long_Long_Integer'Size. This
85 -- is used for all discrete types and for fixed-point types.
86
87 procedure Build_And_Analyze_Renamed_Body
88 (Decl : Node_Id;
89 New_S : Entity_Id;
90 After : in out Node_Id);
49e90211 91 -- Build body for a renaming declaration, insert in tree and analyze
70482933 92
fbf5a39b
AC
93 procedure Check_Address_Clause (E : Entity_Id);
94 -- Apply legality checks to address clauses for object declarations,
cf6956bb
AC
95 -- at the point the object is frozen. Also ensure any initialization is
96 -- performed only after the object has been frozen.
fbf5a39b 97
75965852 98 procedure Check_Component_Storage_Order
ee6208f2
AC
99 (Encl_Type : Entity_Id;
100 Comp : Entity_Id;
101 ADC : Node_Id;
102 Comp_ADC_Present : out Boolean);
75965852 103 -- For an Encl_Type that has a Scalar_Storage_Order attribute definition
8a7c0400
AC
104 -- clause, verify that the component type has an explicit and compatible
105 -- attribute/aspect. For arrays, Comp is Empty; for records, it is the
106 -- entity of the component under consideration. For an Encl_Type that
107 -- does not have a Scalar_Storage_Order attribute definition clause,
108 -- verify that the component also does not have such a clause.
ee6208f2
AC
109 -- ADC is the attribute definition clause if present (or Empty). On return,
110 -- Comp_ADC_Present is set True if the component has a Scalar_Storage_Order
111 -- attribute definition clause.
75965852 112
497a660d
AC
113 procedure Check_Debug_Info_Needed (T : Entity_Id);
114 -- As each entity is frozen, this routine is called to deal with the
115 -- setting of Debug_Info_Needed for the entity. This flag is set if
116 -- the entity comes from source, or if we are in Debug_Generated_Code
117 -- mode or if the -gnatdV debug flag is set. However, it never sets
118 -- the flag if Debug_Info_Off is set. This procedure also ensures that
119 -- subsidiary entities have the flag set as required.
120
18c56840
ES
121 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id);
122 -- When an expression function is frozen by a use of it, the expression
123 -- itself is frozen. Check that the expression does not include references
33c9f9af
AC
124 -- to deferred constants without completion. We report this at the freeze
125 -- point of the function, to provide a better error message.
e8de1a82 126 --
3ad33e33
AC
127 -- In most cases the expression itself is frozen by the time the function
128 -- itself is frozen, because the formals will be frozen by then. However,
129 -- Attribute references to outer types are freeze points for those types;
130 -- this routine generates the required freeze nodes for them.
131
017d237e
ES
132 procedure Check_Inherited_Conditions (R : Entity_Id);
133 -- For a tagged derived type, create wrappers for inherited operations
8c519039 134 -- that have a class-wide condition, so it can be properly rewritten if
017d237e
ES
135 -- it involves calls to other overriding primitives.
136
70482933
RK
137 procedure Check_Strict_Alignment (E : Entity_Id);
138 -- E is a base type. If E is tagged or has a component that is aliased
139 -- or tagged or contains something this is aliased or tagged, set
140 -- Strict_Alignment.
141
142 procedure Check_Unsigned_Type (E : Entity_Id);
143 pragma Inline (Check_Unsigned_Type);
144 -- If E is a fixed-point or discrete type, then all the necessary work
145 -- to freeze it is completed except for possible setting of the flag
146 -- Is_Unsigned_Type, which is done by this procedure. The call has no
147 -- effect if the entity E is not a discrete or fixed-point type.
148
149 procedure Freeze_And_Append
150 (Ent : Entity_Id;
c159409f 151 N : Node_Id;
70482933
RK
152 Result : in out List_Id);
153 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
c159409f
AC
154 -- nodes to Result, modifying Result from No_List if necessary. N has
155 -- the same usage as in Freeze_Entity.
70482933
RK
156
157 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
158 -- Freeze enumeration type. The Esize field is set as processing
159 -- proceeds (i.e. set by default when the type is declared and then
160 -- adjusted by rep clauses. What this procedure does is to make sure
161 -- that if a foreign convention is specified, and no specific size
162 -- is given, then the size must be at least Integer'Size.
163
70482933
RK
164 procedure Freeze_Static_Object (E : Entity_Id);
165 -- If an object is frozen which has Is_Statically_Allocated set, then
166 -- all referenced types must also be marked with this flag. This routine
167 -- is in charge of meeting this requirement for the object entity E.
168
169 procedure Freeze_Subprogram (E : Entity_Id);
170 -- Perform freezing actions for a subprogram (create extra formals,
171 -- and set proper default mechanism values). Note that this routine
172 -- is not called for internal subprograms, for which neither of these
173 -- actions is needed (or desirable, we do not want for example to have
174 -- these extra formals present in initialization procedures, where they
175 -- would serve no purpose). In this call E is either a subprogram or
176 -- a subprogram type (i.e. an access to a subprogram).
177
178 function Is_Fully_Defined (T : Entity_Id) return Boolean;
bde58e32 179 -- True if T is not private and has no private components, or has a full
657a9dd9
AC
180 -- view. Used to determine whether the designated type of an access type
181 -- should be frozen when the access type is frozen. This is done when an
182 -- allocator is frozen, or an expression that may involve attributes of
183 -- the designated type. Otherwise freezing the access type does not freeze
184 -- the designated type.
70482933
RK
185
186 procedure Process_Default_Expressions
187 (E : Entity_Id;
188 After : in out Node_Id);
c159409f
AC
189 -- This procedure is called for each subprogram to complete processing of
190 -- default expressions at the point where all types are known to be frozen.
191 -- The expressions must be analyzed in full, to make sure that all error
192 -- processing is done (they have only been pre-analyzed). If the expression
193 -- is not an entity or literal, its analysis may generate code which must
194 -- not be executed. In that case we build a function body to hold that
195 -- code. This wrapper function serves no other purpose (it used to be
196 -- called to evaluate the default, but now the default is inlined at each
197 -- point of call).
70482933
RK
198
199 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
c159409f
AC
200 -- Typ is a record or array type that is being frozen. This routine sets
201 -- the default component alignment from the scope stack values if the
202 -- alignment is otherwise not specified.
70482933 203
220d1fd9
AC
204 procedure Set_SSO_From_Default (T : Entity_Id);
205 -- T is a record or array type that is being frozen. If it is a base type,
206 -- and if SSO_Set_Low/High_By_Default is set, then Reverse_Storage order
207 -- will be set appropriately. Note that an explicit occurrence of aspect
208 -- Scalar_Storage_Order or an explicit setting of this aspect with an
209 -- attribute definition clause occurs, then these two flags are reset in
210 -- any case, so call will have no effect.
211
c6823a20 212 procedure Undelay_Type (T : Entity_Id);
c159409f
AC
213 -- T is a type of a component that we know to be an Itype. We don't want
214 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
215 -- Full_View or Corresponding_Record_Type.
c6823a20 216
c31b57af 217 procedure Warn_Overlay (Expr : Node_Id; Typ : Entity_Id; Nam : Node_Id);
fbf5a39b
AC
218 -- Expr is the expression for an address clause for entity Nam whose type
219 -- is Typ. If Typ has a default initialization, and there is no explicit
220 -- initialization in the source declaration, check whether the address
221 -- clause might cause overlaying of an entity, and emit a warning on the
222 -- side effect that the initialization will cause.
223
70482933
RK
224 -------------------------------
225 -- Adjust_Esize_For_Alignment --
226 -------------------------------
227
228 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
229 Align : Uint;
230
231 begin
232 if Known_Esize (Typ) and then Known_Alignment (Typ) then
233 Align := Alignment_In_Bits (Typ);
234
235 if Align > Esize (Typ)
236 and then Align <= Standard_Long_Long_Integer_Size
237 then
238 Set_Esize (Typ, Align);
239 end if;
240 end if;
241 end Adjust_Esize_For_Alignment;
242
243 ------------------------------------
244 -- Build_And_Analyze_Renamed_Body --
245 ------------------------------------
246
247 procedure Build_And_Analyze_Renamed_Body
248 (Decl : Node_Id;
249 New_S : Entity_Id;
250 After : in out Node_Id)
251 is
ca0cb93e
AC
252 Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
253 Ent : constant Entity_Id := Defining_Entity (Decl);
254 Body_Node : Node_Id;
255 Renamed_Subp : Entity_Id;
d4fc0fb4 256
70482933 257 begin
1c612f29
RD
258 -- If the renamed subprogram is intrinsic, there is no need for a
259 -- wrapper body: we set the alias that will be called and expanded which
260 -- completes the declaration. This transformation is only legal if the
261 -- renamed entity has already been elaborated.
ca0cb93e 262
d4fc0fb4
AC
263 -- Note that it is legal for a renaming_as_body to rename an intrinsic
264 -- subprogram, as long as the renaming occurs before the new entity
ef1c0511 265 -- is frozen (RM 8.5.4 (5)).
d4fc0fb4
AC
266
267 if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
545cb5be 268 and then Is_Entity_Name (Name (Body_Decl))
d4fc0fb4 269 then
ca0cb93e
AC
270 Renamed_Subp := Entity (Name (Body_Decl));
271 else
272 Renamed_Subp := Empty;
273 end if;
274
275 if Present (Renamed_Subp)
276 and then Is_Intrinsic_Subprogram (Renamed_Subp)
ca0cb93e
AC
277 and then
278 (not In_Same_Source_Unit (Renamed_Subp, Ent)
279 or else Sloc (Renamed_Subp) < Sloc (Ent))
879e23f0 280
308e6f3a 281 -- We can make the renaming entity intrinsic if the renamed function
545cb5be
AC
282 -- has an interface name, or if it is one of the shift/rotate
283 -- operations known to the compiler.
879e23f0 284
b69cd36a
AC
285 and then
286 (Present (Interface_Name (Renamed_Subp))
287 or else Nam_In (Chars (Renamed_Subp), Name_Rotate_Left,
288 Name_Rotate_Right,
289 Name_Shift_Left,
290 Name_Shift_Right,
291 Name_Shift_Right_Arithmetic))
ca0cb93e
AC
292 then
293 Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
545cb5be 294
ca0cb93e
AC
295 if Present (Alias (Renamed_Subp)) then
296 Set_Alias (Ent, Alias (Renamed_Subp));
d4fc0fb4 297 else
ca0cb93e 298 Set_Alias (Ent, Renamed_Subp);
d4fc0fb4
AC
299 end if;
300
301 Set_Is_Intrinsic_Subprogram (Ent);
302 Set_Has_Completion (Ent);
303
304 else
305 Body_Node := Build_Renamed_Body (Decl, New_S);
306 Insert_After (After, Body_Node);
307 Mark_Rewrite_Insertion (Body_Node);
308 Analyze (Body_Node);
309 After := Body_Node;
310 end if;
70482933
RK
311 end Build_And_Analyze_Renamed_Body;
312
313 ------------------------
314 -- Build_Renamed_Body --
315 ------------------------
316
317 function Build_Renamed_Body
318 (Decl : Node_Id;
fbf5a39b 319 New_S : Entity_Id) return Node_Id
70482933
RK
320 is
321 Loc : constant Source_Ptr := Sloc (New_S);
545cb5be
AC
322 -- We use for the source location of the renamed body, the location of
323 -- the spec entity. It might seem more natural to use the location of
324 -- the renaming declaration itself, but that would be wrong, since then
325 -- the body we create would look as though it was created far too late,
326 -- and this could cause problems with elaboration order analysis,
327 -- particularly in connection with instantiations.
70482933
RK
328
329 N : constant Node_Id := Unit_Declaration_Node (New_S);
330 Nam : constant Node_Id := Name (N);
331 Old_S : Entity_Id;
332 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
333 Actuals : List_Id := No_List;
334 Call_Node : Node_Id;
335 Call_Name : Node_Id;
336 Body_Node : Node_Id;
337 Formal : Entity_Id;
338 O_Formal : Entity_Id;
339 Param_Spec : Node_Id;
340
def46b54
RD
341 Pref : Node_Id := Empty;
342 -- If the renamed entity is a primitive operation given in prefix form,
343 -- the prefix is the target object and it has to be added as the first
344 -- actual in the generated call.
345
70482933 346 begin
def46b54
RD
347 -- Determine the entity being renamed, which is the target of the call
348 -- statement. If the name is an explicit dereference, this is a renaming
349 -- of a subprogram type rather than a subprogram. The name itself is
350 -- fully analyzed.
70482933
RK
351
352 if Nkind (Nam) = N_Selected_Component then
353 Old_S := Entity (Selector_Name (Nam));
354
355 elsif Nkind (Nam) = N_Explicit_Dereference then
356 Old_S := Etype (Nam);
357
358 elsif Nkind (Nam) = N_Indexed_Component then
70482933
RK
359 if Is_Entity_Name (Prefix (Nam)) then
360 Old_S := Entity (Prefix (Nam));
361 else
362 Old_S := Entity (Selector_Name (Prefix (Nam)));
363 end if;
364
365 elsif Nkind (Nam) = N_Character_Literal then
366 Old_S := Etype (New_S);
367
368 else
369 Old_S := Entity (Nam);
370 end if;
371
372 if Is_Entity_Name (Nam) then
07fc65c4 373
def46b54
RD
374 -- If the renamed entity is a predefined operator, retain full name
375 -- to ensure its visibility.
07fc65c4
GB
376
377 if Ekind (Old_S) = E_Operator
378 and then Nkind (Nam) = N_Expanded_Name
379 then
380 Call_Name := New_Copy (Name (N));
381 else
e4494292 382 Call_Name := New_Occurrence_Of (Old_S, Loc);
07fc65c4
GB
383 end if;
384
70482933 385 else
def46b54
RD
386 if Nkind (Nam) = N_Selected_Component
387 and then Present (First_Formal (Old_S))
388 and then
389 (Is_Controlling_Formal (First_Formal (Old_S))
390 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
391 then
392
393 -- Retrieve the target object, to be added as a first actual
394 -- in the call.
395
396 Call_Name := New_Occurrence_Of (Old_S, Loc);
397 Pref := Prefix (Nam);
398
399 else
400 Call_Name := New_Copy (Name (N));
401 end if;
70482933 402
545cb5be 403 -- Original name may have been overloaded, but is fully resolved now
70482933
RK
404
405 Set_Is_Overloaded (Call_Name, False);
406 end if;
407
def46b54 408 -- For simple renamings, subsequent calls can be expanded directly as
d4fc0fb4 409 -- calls to the renamed entity. The body must be generated in any case
a3068ca6
AC
410 -- for calls that may appear elsewhere. This is not done in the case
411 -- where the subprogram is an instantiation because the actual proper
412 -- body has not been built yet.
70482933 413
545cb5be 414 if Ekind_In (Old_S, E_Function, E_Procedure)
70482933 415 and then Nkind (Decl) = N_Subprogram_Declaration
a3068ca6 416 and then not Is_Generic_Instance (Old_S)
70482933
RK
417 then
418 Set_Body_To_Inline (Decl, Old_S);
419 end if;
420
28fa5430
AC
421 -- Check whether the return type is a limited view. If the subprogram
422 -- is already frozen the generated body may have a non-limited view
423 -- of the type, that must be used, because it is the one in the spec
424 -- of the renaming declaration.
425
426 if Ekind (Old_S) = E_Function
427 and then Is_Entity_Name (Result_Definition (Spec))
428 then
429 declare
430 Ret_Type : constant Entity_Id := Etype (Result_Definition (Spec));
431 begin
47346923 432 if Has_Non_Limited_View (Ret_Type) then
e23e04db
AC
433 Set_Result_Definition
434 (Spec, New_Occurrence_Of (Non_Limited_View (Ret_Type), Loc));
28fa5430
AC
435 end if;
436 end;
437 end if;
438
70482933
RK
439 -- The body generated for this renaming is an internal artifact, and
440 -- does not constitute a freeze point for the called entity.
441
442 Set_Must_Not_Freeze (Call_Name);
443
444 Formal := First_Formal (Defining_Entity (Decl));
445
def46b54
RD
446 if Present (Pref) then
447 declare
448 Pref_Type : constant Entity_Id := Etype (Pref);
449 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
450
451 begin
def46b54 452 -- The controlling formal may be an access parameter, or the
e14c931f 453 -- actual may be an access value, so adjust accordingly.
def46b54
RD
454
455 if Is_Access_Type (Pref_Type)
456 and then not Is_Access_Type (Form_Type)
457 then
458 Actuals := New_List
459 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
460
461 elsif Is_Access_Type (Form_Type)
462 and then not Is_Access_Type (Pref)
463 then
e23e04db
AC
464 Actuals :=
465 New_List (
466 Make_Attribute_Reference (Loc,
467 Attribute_Name => Name_Access,
468 Prefix => Relocate_Node (Pref)));
def46b54
RD
469 else
470 Actuals := New_List (Pref);
471 end if;
472 end;
473
474 elsif Present (Formal) then
70482933
RK
475 Actuals := New_List;
476
def46b54
RD
477 else
478 Actuals := No_List;
479 end if;
480
481 if Present (Formal) then
70482933 482 while Present (Formal) loop
e4494292 483 Append (New_Occurrence_Of (Formal, Loc), Actuals);
70482933
RK
484 Next_Formal (Formal);
485 end loop;
486 end if;
487
def46b54
RD
488 -- If the renamed entity is an entry, inherit its profile. For other
489 -- renamings as bodies, both profiles must be subtype conformant, so it
490 -- is not necessary to replace the profile given in the declaration.
491 -- However, default values that are aggregates are rewritten when
492 -- partially analyzed, so we recover the original aggregate to insure
493 -- that subsequent conformity checking works. Similarly, if the default
494 -- expression was constant-folded, recover the original expression.
70482933
RK
495
496 Formal := First_Formal (Defining_Entity (Decl));
497
498 if Present (Formal) then
499 O_Formal := First_Formal (Old_S);
500 Param_Spec := First (Parameter_Specifications (Spec));
70482933
RK
501 while Present (Formal) loop
502 if Is_Entry (Old_S) then
70482933
RK
503 if Nkind (Parameter_Type (Param_Spec)) /=
504 N_Access_Definition
505 then
506 Set_Etype (Formal, Etype (O_Formal));
507 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
508 end if;
509
07fc65c4
GB
510 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
511 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
512 Nkind (Default_Value (O_Formal))
513 then
70482933
RK
514 Set_Expression (Param_Spec,
515 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
516 end if;
517
518 Next_Formal (Formal);
519 Next_Formal (O_Formal);
520 Next (Param_Spec);
521 end loop;
522 end if;
523
524 -- If the renamed entity is a function, the generated body contains a
525 -- return statement. Otherwise, build a procedure call. If the entity is
526 -- an entry, subsequent analysis of the call will transform it into the
527 -- proper entry or protected operation call. If the renamed entity is
528 -- a character literal, return it directly.
529
530 if Ekind (Old_S) = E_Function
531 or else Ekind (Old_S) = E_Operator
532 or else (Ekind (Old_S) = E_Subprogram_Type
533 and then Etype (Old_S) /= Standard_Void_Type)
534 then
535 Call_Node :=
86cde7b1 536 Make_Simple_Return_Statement (Loc,
70482933
RK
537 Expression =>
538 Make_Function_Call (Loc,
e23e04db 539 Name => Call_Name,
70482933
RK
540 Parameter_Associations => Actuals));
541
542 elsif Ekind (Old_S) = E_Enumeration_Literal then
543 Call_Node :=
86cde7b1 544 Make_Simple_Return_Statement (Loc,
70482933
RK
545 Expression => New_Occurrence_Of (Old_S, Loc));
546
547 elsif Nkind (Nam) = N_Character_Literal then
548 Call_Node :=
e23e04db 549 Make_Simple_Return_Statement (Loc, Expression => Call_Name);
70482933
RK
550
551 else
552 Call_Node :=
553 Make_Procedure_Call_Statement (Loc,
e23e04db 554 Name => Call_Name,
70482933
RK
555 Parameter_Associations => Actuals);
556 end if;
557
49e90211 558 -- Create entities for subprogram body and formals
70482933
RK
559
560 Set_Defining_Unit_Name (Spec,
561 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
562
563 Param_Spec := First (Parameter_Specifications (Spec));
70482933
RK
564 while Present (Param_Spec) loop
565 Set_Defining_Identifier (Param_Spec,
566 Make_Defining_Identifier (Loc,
567 Chars => Chars (Defining_Identifier (Param_Spec))));
568 Next (Param_Spec);
569 end loop;
570
571 Body_Node :=
572 Make_Subprogram_Body (Loc,
573 Specification => Spec,
574 Declarations => New_List,
575 Handled_Statement_Sequence =>
576 Make_Handled_Sequence_Of_Statements (Loc,
577 Statements => New_List (Call_Node)));
578
579 if Nkind (Decl) /= N_Subprogram_Declaration then
580 Rewrite (N,
581 Make_Subprogram_Declaration (Loc,
582 Specification => Specification (N)));
583 end if;
584
585 -- Link the body to the entity whose declaration it completes. If
def46b54
RD
586 -- the body is analyzed when the renamed entity is frozen, it may
587 -- be necessary to restore the proper scope (see package Exp_Ch13).
70482933 588
1b1d88b1 589 if Nkind (N) = N_Subprogram_Renaming_Declaration
70482933
RK
590 and then Present (Corresponding_Spec (N))
591 then
592 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
593 else
594 Set_Corresponding_Spec (Body_Node, New_S);
595 end if;
596
597 return Body_Node;
598 end Build_Renamed_Body;
599
fbf5a39b
AC
600 --------------------------
601 -- Check_Address_Clause --
602 --------------------------
603
604 procedure Check_Address_Clause (E : Entity_Id) is
c31b57af
EB
605 Addr : constant Node_Id := Address_Clause (E);
606 Typ : constant Entity_Id := Etype (E);
607 Decl : Node_Id;
26b043e0 608 Expr : Node_Id;
c31b57af 609 Init : Node_Id;
26b043e0
AC
610 Lhs : Node_Id;
611 Tag_Assign : Node_Id;
fbf5a39b
AC
612
613 begin
614 if Present (Addr) then
c31b57af
EB
615
616 -- For a deferred constant, the initialization value is on full view
617
618 if Ekind (E) = E_Constant and then Present (Full_View (E)) then
619 Decl := Declaration_Node (Full_View (E));
620 else
621 Decl := Declaration_Node (E);
622 end if;
623
fbf5a39b
AC
624 Expr := Expression (Addr);
625
0d901290 626 if Needs_Constant_Address (Decl, Typ) then
fbf5a39b 627 Check_Constant_Address_Clause (Expr, E);
f3b57ab0
AC
628
629 -- Has_Delayed_Freeze was set on E when the address clause was
02217452
AC
630 -- analyzed, and must remain set because we want the address
631 -- clause to be elaborated only after any entity it references
632 -- has been elaborated.
fbf5a39b
AC
633 end if;
634
1d57c04f
AC
635 -- If Rep_Clauses are to be ignored, remove address clause from
636 -- list attached to entity, because it may be illegal for gigi,
637 -- for example by breaking order of elaboration..
638
639 if Ignore_Rep_Clauses then
640 declare
641 Rep : Node_Id;
642
643 begin
644 Rep := First_Rep_Item (E);
645
646 if Rep = Addr then
647 Set_First_Rep_Item (E, Next_Rep_Item (Addr));
648
649 else
650 while Present (Rep)
651 and then Next_Rep_Item (Rep) /= Addr
652 loop
653 Rep := Next_Rep_Item (Rep);
654 end loop;
655 end if;
656
657 if Present (Rep) then
658 Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
659 end if;
660 end;
661
cf28c974
RD
662 -- And now remove the address clause
663
664 Kill_Rep_Clause (Addr);
1d57c04f
AC
665
666 elsif not Error_Posted (Expr)
048e5cef 667 and then not Needs_Finalization (Typ)
fbf5a39b
AC
668 then
669 Warn_Overlay (Expr, Typ, Name (Addr));
670 end if;
cf6956bb 671
c31b57af
EB
672 Init := Expression (Decl);
673
674 -- If a variable, or a non-imported constant, overlays a constant
675 -- object and has an initialization value, then the initialization
676 -- may end up writing into read-only memory. Detect the cases of
677 -- statically identical values and remove the initialization. In
678 -- the other cases, give a warning. We will give other warnings
679 -- later for the variable if it is assigned.
680
681 if (Ekind (E) = E_Variable
d6dffa66
HK
682 or else (Ekind (E) = E_Constant
683 and then not Is_Imported (E)))
c31b57af
EB
684 and then Overlays_Constant (E)
685 and then Present (Init)
686 then
687 declare
688 O_Ent : Entity_Id;
689 Off : Boolean;
d6dffa66 690
c31b57af
EB
691 begin
692 Find_Overlaid_Entity (Addr, O_Ent, Off);
693
694 if Ekind (O_Ent) = E_Constant
695 and then Etype (O_Ent) = Typ
696 and then Present (Constant_Value (O_Ent))
d6dffa66
HK
697 and then Compile_Time_Compare
698 (Init,
699 Constant_Value (O_Ent),
700 Assume_Valid => True) = EQ
c31b57af
EB
701 then
702 Set_No_Initialization (Decl);
703 return;
704
705 elsif Comes_From_Source (Init)
706 and then Address_Clause_Overlay_Warnings
707 then
708 Error_Msg_Sloc := Sloc (Addr);
709 Error_Msg_NE
710 ("??constant& may be modified via address clause#",
711 Decl, O_Ent);
712 end if;
713 end;
714 end if;
715
716 if Present (Init) then
cf6956bb 717
26b043e0
AC
718 -- Capture initialization value at point of declaration,
719 -- and make explicit assignment legal, because object may
720 -- be a constant.
cf6956bb 721
c31b57af
EB
722 Remove_Side_Effects (Init);
723 Lhs := New_Occurrence_Of (E, Sloc (Decl));
26b043e0 724 Set_Assignment_OK (Lhs);
cf6956bb 725
c31b57af
EB
726 -- Move initialization to freeze actions, once the object has
727 -- been frozen and the address clause alignment check has been
cf6956bb
AC
728 -- performed.
729
730 Append_Freeze_Action (E,
c31b57af 731 Make_Assignment_Statement (Sloc (Decl),
26b043e0 732 Name => Lhs,
cf6956bb
AC
733 Expression => Expression (Decl)));
734
735 Set_No_Initialization (Decl);
26b043e0
AC
736
737 -- If the objet is tagged, check whether the tag must be
c31b57af 738 -- reassigned explicitly.
26b043e0
AC
739
740 Tag_Assign := Make_Tag_Assignment (Decl);
741 if Present (Tag_Assign) then
742 Append_Freeze_Action (E, Tag_Assign);
743 end if;
cf6956bb 744 end if;
fbf5a39b
AC
745 end if;
746 end Check_Address_Clause;
747
70482933
RK
748 -----------------------------
749 -- Check_Compile_Time_Size --
750 -----------------------------
751
752 procedure Check_Compile_Time_Size (T : Entity_Id) is
753
c6823a20 754 procedure Set_Small_Size (T : Entity_Id; S : Uint);
34da9c98
EB
755 -- Sets the compile time known size (64 bits or less) in the RM_Size
756 -- field of T, checking for a size clause that was given which attempts
757 -- to give a smaller size.
70482933
RK
758
759 function Size_Known (T : Entity_Id) return Boolean;
07fc65c4 760 -- Recursive function that does all the work
70482933
RK
761
762 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
763 -- If T is a constrained subtype, its size is not known if any of its
764 -- discriminant constraints is not static and it is not a null record.
fbf5a39b 765 -- The test is conservative and doesn't check that the components are
70482933
RK
766 -- in fact constrained by non-static discriminant values. Could be made
767 -- more precise ???
768
769 --------------------
770 -- Set_Small_Size --
771 --------------------
772
c6823a20 773 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
70482933 774 begin
34da9c98 775 if S > 64 then
70482933
RK
776 return;
777
2593c3e1
AC
778 -- Check for bad size clause given
779
70482933
RK
780 elsif Has_Size_Clause (T) then
781 if RM_Size (T) < S then
782 Error_Msg_Uint_1 := S;
783 Error_Msg_NE
d58b9515 784 ("size for& too small, minimum allowed is ^",
70482933 785 Size_Clause (T), T);
70482933
RK
786 end if;
787
fc893455 788 -- Set size if not set already
70482933 789
fc893455
AC
790 elsif Unknown_RM_Size (T) then
791 Set_RM_Size (T, S);
70482933
RK
792 end if;
793 end Set_Small_Size;
794
795 ----------------
796 -- Size_Known --
797 ----------------
798
799 function Size_Known (T : Entity_Id) return Boolean is
800 Index : Entity_Id;
801 Comp : Entity_Id;
802 Ctyp : Entity_Id;
803 Low : Node_Id;
804 High : Node_Id;
805
806 begin
807 if Size_Known_At_Compile_Time (T) then
808 return True;
809
34da9c98
EB
810 -- Always True for elementary types, even generic formal elementary
811 -- types. We used to return False in the latter case, but the size
812 -- is known at compile time, even in the template, we just do not
813 -- know the exact size but that's not the point of this routine.
c6a9797e 814
34da9c98 815 elsif Is_Elementary_Type (T) or else Is_Task_Type (T) then
c6a9797e
RD
816 return True;
817
818 -- Array types
70482933
RK
819
820 elsif Is_Array_Type (T) then
c6a9797e
RD
821
822 -- String literals always have known size, and we can set it
823
70482933 824 if Ekind (T) = E_String_Literal_Subtype then
34da9c98
EB
825 Set_Small_Size
826 (T, Component_Size (T) * String_Literal_Length (T));
70482933
RK
827 return True;
828
c6a9797e
RD
829 -- Unconstrained types never have known at compile time size
830
70482933
RK
831 elsif not Is_Constrained (T) then
832 return False;
833
def46b54
RD
834 -- Don't do any recursion on type with error posted, since we may
835 -- have a malformed type that leads us into a loop.
07fc65c4
GB
836
837 elsif Error_Posted (T) then
838 return False;
839
c6a9797e
RD
840 -- Otherwise if component size unknown, then array size unknown
841
70482933
RK
842 elsif not Size_Known (Component_Type (T)) then
843 return False;
844 end if;
845
def46b54 846 -- Check for all indexes static, and also compute possible size
34da9c98 847 -- (in case it is not greater than 64 and may be packable).
70482933
RK
848
849 declare
34da9c98 850 Size : Uint := Component_Size (T);
70482933
RK
851 Dim : Uint;
852
853 begin
854 Index := First_Index (T);
70482933
RK
855 while Present (Index) loop
856 if Nkind (Index) = N_Range then
857 Get_Index_Bounds (Index, Low, High);
858
859 elsif Error_Posted (Scalar_Range (Etype (Index))) then
860 return False;
861
862 else
863 Low := Type_Low_Bound (Etype (Index));
864 High := Type_High_Bound (Etype (Index));
865 end if;
866
867 if not Compile_Time_Known_Value (Low)
868 or else not Compile_Time_Known_Value (High)
869 or else Etype (Index) = Any_Type
870 then
871 return False;
872
873 else
874 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
875
876 if Dim >= 0 then
34da9c98 877 Size := Size * Dim;
70482933 878 else
34da9c98 879 Size := Uint_0;
70482933
RK
880 end if;
881 end if;
882
883 Next_Index (Index);
884 end loop;
885
34da9c98 886 Set_Small_Size (T, Size);
70482933
RK
887 return True;
888 end;
889
c6a9797e
RD
890 -- For non-generic private types, go to underlying type if present
891
70482933
RK
892 elsif Is_Private_Type (T)
893 and then not Is_Generic_Type (T)
894 and then Present (Underlying_Type (T))
895 then
def46b54
RD
896 -- Don't do any recursion on type with error posted, since we may
897 -- have a malformed type that leads us into a loop.
07fc65c4
GB
898
899 if Error_Posted (T) then
900 return False;
901 else
902 return Size_Known (Underlying_Type (T));
903 end if;
70482933 904
c6a9797e
RD
905 -- Record types
906
70482933 907 elsif Is_Record_Type (T) then
fbf5a39b
AC
908
909 -- A class-wide type is never considered to have a known size
910
70482933
RK
911 if Is_Class_Wide_Type (T) then
912 return False;
913
fbf5a39b 914 -- A subtype of a variant record must not have non-static
308e6f3a 915 -- discriminated components.
fbf5a39b
AC
916
917 elsif T /= Base_Type (T)
918 and then not Static_Discriminated_Components (T)
919 then
920 return False;
70482933 921
def46b54
RD
922 -- Don't do any recursion on type with error posted, since we may
923 -- have a malformed type that leads us into a loop.
07fc65c4
GB
924
925 elsif Error_Posted (T) then
926 return False;
fbf5a39b 927 end if;
07fc65c4 928
fbf5a39b 929 -- Now look at the components of the record
70482933 930
fbf5a39b 931 declare
def46b54
RD
932 -- The following two variables are used to keep track of the
933 -- size of packed records if we can tell the size of the packed
934 -- record in the front end. Packed_Size_Known is True if so far
935 -- we can figure out the size. It is initialized to True for a
ca1ffed0
AC
936 -- packed record, unless the record has discriminants or atomic
937 -- components or independent components.
938
939 -- The reason we eliminate the discriminated case is that
940 -- we don't know the way the back end lays out discriminated
941 -- packed records. If Packed_Size_Known is True, then
942 -- Packed_Size is the size in bits so far.
fbf5a39b
AC
943
944 Packed_Size_Known : Boolean :=
ca1ffed0
AC
945 Is_Packed (T)
946 and then not Has_Discriminants (T)
947 and then not Has_Atomic_Components (T)
948 and then not Has_Independent_Components (T);
fbf5a39b
AC
949
950 Packed_Size : Uint := Uint_0;
515490e0 951 -- Size in bits so far
fbf5a39b
AC
952
953 begin
954 -- Test for variant part present
955
956 if Has_Discriminants (T)
957 and then Present (Parent (T))
958 and then Nkind (Parent (T)) = N_Full_Type_Declaration
959 and then Nkind (Type_Definition (Parent (T))) =
545cb5be 960 N_Record_Definition
fbf5a39b 961 and then not Null_Present (Type_Definition (Parent (T)))
15918371
AC
962 and then
963 Present (Variant_Part
964 (Component_List (Type_Definition (Parent (T)))))
fbf5a39b
AC
965 then
966 -- If variant part is present, and type is unconstrained,
967 -- then we must have defaulted discriminants, or a size
968 -- clause must be present for the type, or else the size
969 -- is definitely not known at compile time.
970
971 if not Is_Constrained (T)
972 and then
545cb5be 973 No (Discriminant_Default_Value (First_Discriminant (T)))
fc893455 974 and then Unknown_RM_Size (T)
70482933 975 then
fbf5a39b
AC
976 return False;
977 end if;
978 end if;
70482933 979
fbf5a39b
AC
980 -- Loop through components
981
fea9e956 982 Comp := First_Component_Or_Discriminant (T);
fbf5a39b 983 while Present (Comp) loop
fea9e956 984 Ctyp := Etype (Comp);
fbf5a39b 985
fea9e956
ES
986 -- We do not know the packed size if there is a component
987 -- clause present (we possibly could, but this would only
988 -- help in the case of a record with partial rep clauses.
989 -- That's because in the case of full rep clauses, the
990 -- size gets figured out anyway by a different circuit).
fbf5a39b 991
fea9e956
ES
992 if Present (Component_Clause (Comp)) then
993 Packed_Size_Known := False;
994 end if;
70482933 995
f280dd8f 996 -- We do not know the packed size for an atomic/VFA type
07aff4e3 997 -- or component, or an independent type or component, or a
088c7e1b 998 -- by-reference type or aliased component (because packing
07aff4e3 999 -- does not touch these).
ca1ffed0 1000
f280dd8f
RD
1001 if Is_Atomic_Or_VFA (Ctyp)
1002 or else Is_Atomic_Or_VFA (Comp)
07aff4e3
AC
1003 or else Is_Independent (Ctyp)
1004 or else Is_Independent (Comp)
ca1ffed0 1005 or else Is_By_Reference_Type (Ctyp)
515490e0 1006 or else Is_Aliased (Comp)
ca1ffed0
AC
1007 then
1008 Packed_Size_Known := False;
1009 end if;
1010
fea9e956
ES
1011 -- We need to identify a component that is an array where
1012 -- the index type is an enumeration type with non-standard
1013 -- representation, and some bound of the type depends on a
1014 -- discriminant.
70482933 1015
fea9e956 1016 -- This is because gigi computes the size by doing a
e14c931f 1017 -- substitution of the appropriate discriminant value in
fea9e956
ES
1018 -- the size expression for the base type, and gigi is not
1019 -- clever enough to evaluate the resulting expression (which
1020 -- involves a call to rep_to_pos) at compile time.
fbf5a39b 1021
fea9e956
ES
1022 -- It would be nice if gigi would either recognize that
1023 -- this expression can be computed at compile time, or
1024 -- alternatively figured out the size from the subtype
1025 -- directly, where all the information is at hand ???
fbf5a39b 1026
fea9e956 1027 if Is_Array_Type (Etype (Comp))
8ca597af 1028 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
fea9e956
ES
1029 then
1030 declare
1031 Ocomp : constant Entity_Id :=
1032 Original_Record_Component (Comp);
1033 OCtyp : constant Entity_Id := Etype (Ocomp);
1034 Ind : Node_Id;
1035 Indtyp : Entity_Id;
1036 Lo, Hi : Node_Id;
70482933 1037
fea9e956
ES
1038 begin
1039 Ind := First_Index (OCtyp);
1040 while Present (Ind) loop
1041 Indtyp := Etype (Ind);
70482933 1042
fea9e956
ES
1043 if Is_Enumeration_Type (Indtyp)
1044 and then Has_Non_Standard_Rep (Indtyp)
1045 then
1046 Lo := Type_Low_Bound (Indtyp);
1047 Hi := Type_High_Bound (Indtyp);
fbf5a39b 1048
fea9e956
ES
1049 if Is_Entity_Name (Lo)
1050 and then Ekind (Entity (Lo)) = E_Discriminant
1051 then
1052 return False;
fbf5a39b 1053
fea9e956
ES
1054 elsif Is_Entity_Name (Hi)
1055 and then Ekind (Entity (Hi)) = E_Discriminant
1056 then
1057 return False;
1058 end if;
1059 end if;
fbf5a39b 1060
fea9e956
ES
1061 Next_Index (Ind);
1062 end loop;
1063 end;
1064 end if;
70482933 1065
def46b54
RD
1066 -- Clearly size of record is not known if the size of one of
1067 -- the components is not known.
70482933 1068
fea9e956
ES
1069 if not Size_Known (Ctyp) then
1070 return False;
1071 end if;
70482933 1072
fea9e956 1073 -- Accumulate packed size if possible
70482933 1074
fea9e956 1075 if Packed_Size_Known then
70482933 1076
34da9c98
EB
1077 -- We can deal with elementary types, small packed arrays
1078 -- if the representation is a modular type and also small
1079 -- record types (if the size is not greater than 64, but
1080 -- the condition is checked by Set_Small_Size).
fbf5a39b 1081
fea9e956
ES
1082 if Is_Elementary_Type (Ctyp)
1083 or else (Is_Array_Type (Ctyp)
8ca597af
RD
1084 and then Present
1085 (Packed_Array_Impl_Type (Ctyp))
2593c3e1 1086 and then Is_Modular_Integer_Type
8ca597af 1087 (Packed_Array_Impl_Type (Ctyp)))
34da9c98 1088 or else Is_Record_Type (Ctyp)
fea9e956 1089 then
2593c3e1 1090 -- If RM_Size is known and static, then we can keep
34da9c98 1091 -- accumulating the packed size.
fea9e956 1092
34da9c98 1093 if Known_Static_RM_Size (Ctyp) then
fea9e956 1094
34da9c98 1095 Packed_Size := Packed_Size + RM_Size (Ctyp);
fbf5a39b 1096
fea9e956
ES
1097 -- If we have a field whose RM_Size is not known then
1098 -- we can't figure out the packed size here.
fbf5a39b
AC
1099
1100 else
1101 Packed_Size_Known := False;
70482933 1102 end if;
fea9e956 1103
34da9c98 1104 -- For other types we can't figure out the packed size
fea9e956
ES
1105
1106 else
1107 Packed_Size_Known := False;
70482933 1108 end if;
fbf5a39b 1109 end if;
70482933 1110
fea9e956 1111 Next_Component_Or_Discriminant (Comp);
fbf5a39b 1112 end loop;
70482933 1113
fbf5a39b 1114 if Packed_Size_Known then
c6823a20 1115 Set_Small_Size (T, Packed_Size);
fbf5a39b 1116 end if;
70482933 1117
fbf5a39b
AC
1118 return True;
1119 end;
70482933 1120
c6a9797e
RD
1121 -- All other cases, size not known at compile time
1122
70482933
RK
1123 else
1124 return False;
1125 end if;
1126 end Size_Known;
1127
1128 -------------------------------------
1129 -- Static_Discriminated_Components --
1130 -------------------------------------
1131
1132 function Static_Discriminated_Components
0da2c8ac 1133 (T : Entity_Id) return Boolean
70482933
RK
1134 is
1135 Constraint : Elmt_Id;
1136
1137 begin
1138 if Has_Discriminants (T)
1139 and then Present (Discriminant_Constraint (T))
1140 and then Present (First_Component (T))
1141 then
1142 Constraint := First_Elmt (Discriminant_Constraint (T));
70482933
RK
1143 while Present (Constraint) loop
1144 if not Compile_Time_Known_Value (Node (Constraint)) then
1145 return False;
1146 end if;
1147
1148 Next_Elmt (Constraint);
1149 end loop;
1150 end if;
1151
1152 return True;
1153 end Static_Discriminated_Components;
1154
1155 -- Start of processing for Check_Compile_Time_Size
1156
1157 begin
1158 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
1159 end Check_Compile_Time_Size;
1160
75965852
AC
1161 -----------------------------------
1162 -- Check_Component_Storage_Order --
1163 -----------------------------------
1164
1165 procedure Check_Component_Storage_Order
ee6208f2
AC
1166 (Encl_Type : Entity_Id;
1167 Comp : Entity_Id;
1168 ADC : Node_Id;
1169 Comp_ADC_Present : out Boolean)
75965852 1170 is
6232acb7 1171 Comp_Base : Entity_Id;
8a7c0400 1172 Comp_ADC : Node_Id;
5a527952 1173 Encl_Base : Entity_Id;
75965852 1174 Err_Node : Node_Id;
75965852 1175
5a527952
AC
1176 Component_Aliased : Boolean;
1177
5df1266a 1178 Comp_Byte_Aligned : Boolean;
e191e5ae 1179 -- Set for the record case, True if Comp starts on a byte boundary
5df1266a
AC
1180 -- (in which case it is allowed to have different storage order).
1181
637a41a5
AC
1182 Comp_SSO_Differs : Boolean;
1183 -- Set True when the component is a nested composite, and it does not
1184 -- have the same scalar storage order as Encl_Type.
1185
75965852
AC
1186 begin
1187 -- Record case
1188
1189 if Present (Comp) then
1190 Err_Node := Comp;
6232acb7 1191 Comp_Base := Etype (Comp);
75965852 1192
4ff4293f 1193 if Is_Tag (Comp) then
4ff4293f 1194 Comp_Byte_Aligned := True;
11d59a86 1195 Component_Aliased := False;
4ff4293f
AC
1196
1197 else
8b034336
AC
1198 -- If a component clause is present, check if the component starts
1199 -- on a storage element boundary. Otherwise conservatively assume
1200 -- it does so only in the case where the record is not packed.
e191e5ae
TQ
1201
1202 if Present (Component_Clause (Comp)) then
1203 Comp_Byte_Aligned :=
1204 Normalized_First_Bit (Comp) mod System_Storage_Unit = 0;
1205 else
1206 Comp_Byte_Aligned := not Is_Packed (Encl_Type);
1207 end if;
1208
11d59a86 1209 Component_Aliased := Is_Aliased (Comp);
4ff4293f 1210 end if;
5df1266a 1211
75965852
AC
1212 -- Array case
1213
1214 else
1215 Err_Node := Encl_Type;
6232acb7 1216 Comp_Base := Component_Type (Encl_Type);
5df1266a 1217
11d59a86 1218 Component_Aliased := Has_Aliased_Components (Encl_Type);
75965852
AC
1219 end if;
1220
b3408631
RD
1221 -- Note: the Reverse_Storage_Order flag is set on the base type, but
1222 -- the attribute definition clause is attached to the first subtype.
6232acb7
TQ
1223 -- Also, if the base type is incomplete or private, go to full view
1224 -- if known
75965852 1225
6232acb7
TQ
1226 Encl_Base := Base_Type (Encl_Type);
1227 if Present (Underlying_Type (Encl_Base)) then
1228 Encl_Base := Underlying_Type (Encl_Base);
1229 end if;
a25ad01c 1230
6232acb7
TQ
1231 Comp_Base := Base_Type (Comp_Base);
1232 if Present (Underlying_Type (Comp_Base)) then
1233 Comp_Base := Underlying_Type (Comp_Base);
a25ad01c
TQ
1234 end if;
1235
5a527952
AC
1236 Comp_ADC :=
1237 Get_Attribute_Definition_Clause
1238 (First_Subtype (Comp_Base), Attribute_Scalar_Storage_Order);
ee6208f2 1239 Comp_ADC_Present := Present (Comp_ADC);
75965852 1240
dc9111cf
EB
1241 -- Case of record or array component: check storage order compatibility.
1242 -- But, if the record has Complex_Representation, then it is treated as
1243 -- a scalar in the back end so the storage order is irrelevant.
8a7c0400 1244
6232acb7
TQ
1245 if (Is_Record_Type (Comp_Base)
1246 and then not Has_Complex_Representation (Comp_Base))
1247 or else Is_Array_Type (Comp_Base)
dc9111cf 1248 then
637a41a5 1249 Comp_SSO_Differs :=
5a527952
AC
1250 Reverse_Storage_Order (Encl_Base) /=
1251 Reverse_Storage_Order (Comp_Base);
637a41a5 1252
6782b1ef
AC
1253 -- Parent and extension must have same storage order
1254
ae05cdd6 1255 if Present (Comp) and then Chars (Comp) = Name_uParent then
637a41a5 1256 if Comp_SSO_Differs then
8190087e
AC
1257 Error_Msg_N
1258 ("record extension must have same scalar storage order as "
1259 & "parent", Err_Node);
1260 end if;
1261
6782b1ef 1262 -- If component and composite SSO differs, check that component
b3f75672 1263 -- falls on byte boundaries and isn't bit packed.
6782b1ef 1264
637a41a5
AC
1265 elsif Comp_SSO_Differs then
1266
1267 -- Component SSO differs from enclosing composite:
1268
b3f75672 1269 -- Reject if component is a bit-packed array, as it is represented
637a41a5
AC
1270 -- as a scalar internally.
1271
b3f75672 1272 if Is_Bit_Packed_Array (Comp_Base) then
637a41a5 1273 Error_Msg_N
558fbeb0
HK
1274 ("type of packed component must have same scalar storage "
1275 & "order as enclosing composite", Err_Node);
637a41a5 1276
b3f75672 1277 -- Reject if composite is a bit-packed array, as it is rewritten
e191e5ae
TQ
1278 -- into an array of scalars.
1279
b3f75672 1280 elsif Is_Bit_Packed_Array (Encl_Base) then
558fbeb0
HK
1281 Error_Msg_N
1282 ("type of packed array must have same scalar storage order "
1283 & "as component", Err_Node);
e191e5ae 1284
637a41a5
AC
1285 -- Reject if not byte aligned
1286
6232acb7 1287 elsif Is_Record_Type (Encl_Base)
558fbeb0 1288 and then not Comp_Byte_Aligned
e191e5ae 1289 then
637a41a5
AC
1290 Error_Msg_N
1291 ("type of non-byte-aligned component must have same scalar "
1292 & "storage order as enclosing composite", Err_Node);
1e60643a
AC
1293
1294 -- Warn if specified only for the outer composite
1295
1296 elsif Present (ADC) and then No (Comp_ADC) then
1297 Error_Msg_NE
558fbeb0 1298 ("scalar storage order specified for & does not apply to "
6232acb7 1299 & "component?", Err_Node, Encl_Base);
637a41a5 1300 end if;
5df1266a 1301 end if;
75965852 1302
6782b1ef 1303 -- Enclosing type has explicit SSO: non-composite component must not
8a7c0400
AC
1304 -- be aliased.
1305
6782b1ef 1306 elsif Present (ADC) and then Component_Aliased then
b3408631 1307 Error_Msg_N
558fbeb0
HK
1308 ("aliased component not permitted for type with explicit "
1309 & "Scalar_Storage_Order", Err_Node);
75965852
AC
1310 end if;
1311 end Check_Component_Storage_Order;
1312
70482933
RK
1313 -----------------------------
1314 -- Check_Debug_Info_Needed --
1315 -----------------------------
1316
1317 procedure Check_Debug_Info_Needed (T : Entity_Id) is
1318 begin
1b24ada5 1319 if Debug_Info_Off (T) then
70482933
RK
1320 return;
1321
1322 elsif Comes_From_Source (T)
1323 or else Debug_Generated_Code
1324 or else Debug_Flag_VV
1b24ada5 1325 or else Needs_Debug_Info (T)
70482933
RK
1326 then
1327 Set_Debug_Info_Needed (T);
1328 end if;
1329 end Check_Debug_Info_Needed;
1330
18c56840
ES
1331 -------------------------------
1332 -- Check_Expression_Function --
1333 -------------------------------
1334
1335 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id) is
18c56840
ES
1336 function Find_Constant (Nod : Node_Id) return Traverse_Result;
1337 -- Function to search for deferred constant
1338
1339 -------------------
1340 -- Find_Constant --
1341 -------------------
1342
1343 function Find_Constant (Nod : Node_Id) return Traverse_Result is
1344 begin
4b259b2d
AC
1345 -- When a constant is initialized with the result of a dispatching
1346 -- call, the constant declaration is rewritten as a renaming of the
1347 -- displaced function result. This scenario is not a premature use of
1348 -- a constant even though the Has_Completion flag is not set.
1349
18c56840
ES
1350 if Is_Entity_Name (Nod)
1351 and then Present (Entity (Nod))
1352 and then Ekind (Entity (Nod)) = E_Constant
4b259b2d
AC
1353 and then Scope (Entity (Nod)) = Current_Scope
1354 and then Nkind (Declaration_Node (Entity (Nod))) =
1355 N_Object_Declaration
18c56840
ES
1356 and then not Is_Imported (Entity (Nod))
1357 and then not Has_Completion (Entity (Nod))
2a02fa98 1358 and then not Is_Frozen (Entity (Nod))
18c56840
ES
1359 then
1360 Error_Msg_NE
1361 ("premature use of& in call or instance", N, Entity (Nod));
3ad33e33
AC
1362
1363 elsif Nkind (Nod) = N_Attribute_Reference then
1364 Analyze (Prefix (Nod));
e8de1a82 1365
3ad33e33
AC
1366 if Is_Entity_Name (Prefix (Nod))
1367 and then Is_Type (Entity (Prefix (Nod)))
1368 then
1369 Freeze_Before (N, Entity (Prefix (Nod)));
1370 end if;
18c56840
ES
1371 end if;
1372
1373 return OK;
1374 end Find_Constant;
1375
1376 procedure Check_Deferred is new Traverse_Proc (Find_Constant);
1377
d43584ca
AC
1378 -- Local variables
1379
1380 Decl : Node_Id;
1381
18c56840
ES
1382 -- Start of processing for Check_Expression_Function
1383
1384 begin
1385 Decl := Original_Node (Unit_Declaration_Node (Nam));
1386
b5360737
AC
1387 -- The subprogram body created for the expression function is not
1388 -- itself a freeze point.
1389
18c56840
ES
1390 if Scope (Nam) = Current_Scope
1391 and then Nkind (Decl) = N_Expression_Function
b5360737 1392 and then Nkind (N) /= N_Subprogram_Body
18c56840
ES
1393 then
1394 Check_Deferred (Expression (Decl));
1395 end if;
1396 end Check_Expression_Function;
1397
017d237e
ES
1398 --------------------------------
1399 -- Check_Inherited_Conditions --
1400 --------------------------------
1401
1402 procedure Check_Inherited_Conditions (R : Entity_Id) is
a187206c
AC
1403 Prim_Ops : constant Elist_Id := Primitive_Operations (R);
1404 A_Post : Node_Id;
1405 A_Pre : Node_Id;
1406 Decls : List_Id;
b41c731f
AC
1407 Needs_Wrapper : Boolean;
1408 New_Prag : Node_Id;
a187206c
AC
1409 Op_Node : Elmt_Id;
1410 Par_Prim : Entity_Id;
1411 Par_Type : Entity_Id;
a187206c 1412 Prim : Entity_Id;
017d237e
ES
1413
1414 begin
1415 Op_Node := First_Elmt (Prim_Ops);
1416 while Present (Op_Node) loop
a187206c
AC
1417 Prim := Node (Op_Node);
1418 Needs_Wrapper := False;
017d237e 1419
015f33d7
AC
1420 -- Map the overridden primitive to the overriding one. This takes
1421 -- care of all overridings and is done only once.
002e3d16
ES
1422
1423 if Present (Overridden_Operation (Prim))
f31dcd99 1424 and then Comes_From_Source (Prim)
017d237e 1425 then
002e3d16
ES
1426 Update_Primitives_Mapping (Overridden_Operation (Prim), Prim);
1427
1428 -- In SPARK mode this is where we can collect the inherited
1429 -- conditions, because we do not create the Check pragmas that
8c519039 1430 -- normally convey the the modified class-wide conditions on
002e3d16
ES
1431 -- overriding operations.
1432
1433 if SPARK_Mode = On then
0e77949e
AC
1434
1435 -- Analyze the contract items of the parent operation, before
1436 -- they are rewritten when inherited.
1437
1438 Analyze_Entry_Or_Subprogram_Contract
1439 (Overridden_Operation (Prim));
1440
1441 -- Now verify the legality of inherited contracts for LSP
1442 -- conformance.
1443
002e3d16
ES
1444 Collect_Inherited_Class_Wide_Conditions (Prim);
1445 end if;
017d237e
ES
1446 end if;
1447
002e3d16
ES
1448 Next_Elmt (Op_Node);
1449 end loop;
1450
1451 -- In all cases, we examine inherited operations to check whether they
1452 -- require a wrapper to handle inherited conditions that call other
1453 -- primitives, so that LSP can be verified/enforced.
1454
002e3d16
ES
1455 Op_Node := First_Elmt (Prim_Ops);
1456 while Present (Op_Node) loop
a187206c
AC
1457 Decls := Empty_List;
1458 Prim := Node (Op_Node);
1459
f31dcd99 1460 if not Comes_From_Source (Prim) and then Present (Alias (Prim)) then
017d237e 1461 Par_Prim := Alias (Prim);
a187206c 1462 Par_Type := Find_Dispatching_Type (Par_Prim);
66340e0e
AC
1463
1464 -- Analyze the contract items of the parent operation, before
1465 -- they are rewritten when inherited.
1466
1467 Analyze_Entry_Or_Subprogram_Contract (Par_Prim);
1468
1469 A_Pre := Get_Pragma (Par_Prim, Pragma_Precondition);
e3de253f 1470
017d237e 1471 if Present (A_Pre) and then Class_Present (A_Pre) then
a187206c 1472 New_Prag := New_Copy_Tree (A_Pre);
8c519039 1473 Build_Class_Wide_Expression
a187206c
AC
1474 (Prag => New_Prag,
1475 Subp => Prim,
1476 Par_Subp => Par_Prim,
1477 Adjust_Sloc => False,
1478 Needs_Wrapper => Needs_Wrapper);
1479
1480 if Needs_Wrapper then
1481 Append (New_Prag, Decls);
1482 end if;
017d237e
ES
1483 end if;
1484
66340e0e 1485 A_Post := Get_Pragma (Par_Prim, Pragma_Postcondition);
e3de253f 1486
017d237e 1487 if Present (A_Post) and then Class_Present (A_Post) then
a187206c 1488 New_Prag := New_Copy_Tree (A_Pre);
8c519039 1489 Build_Class_Wide_Expression
a187206c
AC
1490 (Prag => New_Prag,
1491 Subp => Prim,
1492 Par_Subp => Par_Prim,
1493 Adjust_Sloc => False,
1494 Needs_Wrapper => Needs_Wrapper);
1495
1496 if Needs_Wrapper then
1497 Append (New_Prag, Decls);
1498 end if;
017d237e
ES
1499 end if;
1500 end if;
1501
a187206c
AC
1502 if Needs_Wrapper and then not Is_Abstract_Subprogram (Par_Prim) then
1503
1504 -- We need to build a new primitive that overrides the inherited
1505 -- one, and whose inherited expression has been updated above.
1506 -- These expressions are the arguments of pragmas that are part
1507 -- of the declarations of the wrapper. The wrapper holds a single
1508 -- statement that is a call to the parent primitive, where the
1509 -- controlling actuals are conversions to the corresponding type
1510 -- in the parent primitive:
1511
b41c731f
AC
1512 -- procedure New_Prim (F1 : T1.; ...) is
1513 -- pragma Check (Precondition, Expr);
1514 -- begin
1515 -- Par_Prim (Par_Type (F1) ..);
1516 -- end;
1517
1518 -- If the primitive is a function the statement is a call
a187206c
AC
1519
1520 declare
1521 Loc : constant Source_Ptr := Sloc (R);
a187206c 1522 Actuals : List_Id;
b41c731f
AC
1523 Call : Node_Id;
1524 Formal : Entity_Id;
a187206c
AC
1525 New_F_Spec : Node_Id;
1526 New_Formal : Entity_Id;
1527 New_Proc : Node_Id;
1528 New_Spec : Node_Id;
a187206c
AC
1529
1530 begin
b41c731f
AC
1531 Actuals := Empty_List;
1532 New_Spec := Build_Overriding_Spec (Par_Prim, R);
a187206c
AC
1533 Formal := First_Formal (Par_Prim);
1534 New_F_Spec := First (Parameter_Specifications (New_Spec));
1535
1536 while Present (Formal) loop
1537 New_Formal := Defining_Identifier (New_F_Spec);
1538
b41c731f 1539 -- If controlling argument, add conversion
a187206c
AC
1540
1541 if Etype (Formal) = Par_Type then
1542 Append_To (Actuals,
1543 Make_Type_Conversion (Loc,
1544 New_Occurrence_Of (Par_Type, Loc),
1545 New_Occurrence_Of (New_Formal, Loc)));
1546
1547 else
1548 Append_To (Actuals, New_Occurrence_Of (New_Formal, Loc));
1549 end if;
1550
1551 Next_Formal (Formal);
1552 Next (New_F_Spec);
1553 end loop;
1554
1555 if Ekind (Par_Prim) = E_Procedure then
b41c731f
AC
1556 Call :=
1557 Make_Procedure_Call_Statement (Loc,
1558 Name =>
1559 New_Occurrence_Of (Par_Prim, Loc),
1560 Parameter_Associations => Actuals);
a187206c 1561 else
b41c731f
AC
1562 Call :=
1563 Make_Simple_Return_Statement (Loc,
a187206c
AC
1564 Expression =>
1565 Make_Function_Call (Loc,
b41c731f
AC
1566 Name =>
1567 New_Occurrence_Of (Par_Prim, Loc),
1568 Parameter_Associations => Actuals));
a187206c
AC
1569 end if;
1570
b41c731f
AC
1571 New_Proc :=
1572 Make_Subprogram_Body (Loc,
1573 Specification => New_Spec,
1574 Declarations => Decls,
1575 Handled_Statement_Sequence =>
1576 Make_Handled_Sequence_Of_Statements (Loc,
1577 Statements => New_List (Call),
1578 End_Label => Make_Identifier (Loc, Chars (Prim))));
a187206c
AC
1579
1580 Insert_After (Parent (R), New_Proc);
1581 Analyze (New_Proc);
1582 end;
1583
1584 Needs_Wrapper := False;
1585 end if;
1586
017d237e
ES
1587 Next_Elmt (Op_Node);
1588 end loop;
1589 end Check_Inherited_Conditions;
1590
70482933
RK
1591 ----------------------------
1592 -- Check_Strict_Alignment --
1593 ----------------------------
1594
1595 procedure Check_Strict_Alignment (E : Entity_Id) is
1596 Comp : Entity_Id;
1597
1598 begin
1599 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1600 Set_Strict_Alignment (E);
1601
1602 elsif Is_Array_Type (E) then
1603 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1604
1605 elsif Is_Record_Type (E) then
1606 if Is_Limited_Record (E) then
1607 Set_Strict_Alignment (E);
1608 return;
1609 end if;
1610
1611 Comp := First_Component (E);
70482933
RK
1612 while Present (Comp) loop
1613 if not Is_Type (Comp)
1614 and then (Strict_Alignment (Etype (Comp))
fbf5a39b 1615 or else Is_Aliased (Comp))
70482933
RK
1616 then
1617 Set_Strict_Alignment (E);
1618 return;
1619 end if;
1620
1621 Next_Component (Comp);
1622 end loop;
1623 end if;
1624 end Check_Strict_Alignment;
1625
1626 -------------------------
1627 -- Check_Unsigned_Type --
1628 -------------------------
1629
1630 procedure Check_Unsigned_Type (E : Entity_Id) is
1631 Ancestor : Entity_Id;
1632 Lo_Bound : Node_Id;
1633 Btyp : Entity_Id;
1634
1635 begin
1636 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1637 return;
1638 end if;
1639
1640 -- Do not attempt to analyze case where range was in error
1641
ef1c0511 1642 if No (Scalar_Range (E)) or else Error_Posted (Scalar_Range (E)) then
70482933
RK
1643 return;
1644 end if;
1645
31101470 1646 -- The situation that is nontrivial is something like:
70482933
RK
1647
1648 -- subtype x1 is integer range -10 .. +10;
1649 -- subtype x2 is x1 range 0 .. V1;
1650 -- subtype x3 is x2 range V2 .. V3;
1651 -- subtype x4 is x3 range V4 .. V5;
1652
1653 -- where Vn are variables. Here the base type is signed, but we still
1654 -- know that x4 is unsigned because of the lower bound of x2.
1655
1656 -- The only way to deal with this is to look up the ancestor chain
1657
1658 Ancestor := E;
1659 loop
1660 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1661 return;
1662 end if;
1663
1664 Lo_Bound := Type_Low_Bound (Ancestor);
1665
1666 if Compile_Time_Known_Value (Lo_Bound) then
70482933
RK
1667 if Expr_Rep_Value (Lo_Bound) >= 0 then
1668 Set_Is_Unsigned_Type (E, True);
1669 end if;
1670
1671 return;
1672
1673 else
1674 Ancestor := Ancestor_Subtype (Ancestor);
1675
1676 -- If no ancestor had a static lower bound, go to base type
1677
1678 if No (Ancestor) then
1679
1680 -- Note: the reason we still check for a compile time known
1681 -- value for the base type is that at least in the case of
1682 -- generic formals, we can have bounds that fail this test,
1683 -- and there may be other cases in error situations.
1684
1685 Btyp := Base_Type (E);
1686
1687 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1688 return;
1689 end if;
1690
1691 Lo_Bound := Type_Low_Bound (Base_Type (E));
1692
1693 if Compile_Time_Known_Value (Lo_Bound)
1694 and then Expr_Rep_Value (Lo_Bound) >= 0
1695 then
1696 Set_Is_Unsigned_Type (E, True);
1697 end if;
1698
1699 return;
70482933
RK
1700 end if;
1701 end if;
1702 end loop;
1703 end Check_Unsigned_Type;
1704
f280dd8f
RD
1705 -----------------------------
1706 -- Is_Atomic_VFA_Aggregate --
1707 -----------------------------
fbf5a39b 1708
0c6826a5
AC
1709 function Is_Atomic_VFA_Aggregate (N : Node_Id) return Boolean is
1710 Loc : constant Source_Ptr := Sloc (N);
fbf5a39b 1711 New_N : Node_Id;
b0159fbe 1712 Par : Node_Id;
fbf5a39b 1713 Temp : Entity_Id;
0c6826a5 1714 Typ : Entity_Id;
fbf5a39b
AC
1715
1716 begin
0c6826a5 1717 Par := Parent (N);
b0159fbe 1718
01957849 1719 -- Array may be qualified, so find outer context
b0159fbe
AC
1720
1721 if Nkind (Par) = N_Qualified_Expression then
1722 Par := Parent (Par);
1723 end if;
1724
0c6826a5 1725 if not Comes_From_Source (Par) then
b0159fbe 1726 return False;
fbf5a39b 1727 end if;
0c6826a5
AC
1728
1729 case Nkind (Par) is
1730 when N_Assignment_Statement =>
1731 Typ := Etype (Name (Par));
1732
1733 if not Is_Atomic_Or_VFA (Typ)
1734 and then not (Is_Entity_Name (Name (Par))
1735 and then Is_Atomic_Or_VFA (Entity (Name (Par))))
1736 then
1737 return False;
1738 end if;
1739
1740 when N_Object_Declaration =>
1741 Typ := Etype (Defining_Identifier (Par));
1742
1743 if not Is_Atomic_Or_VFA (Typ)
1744 and then not Is_Atomic_Or_VFA (Defining_Identifier (Par))
1745 then
1746 return False;
1747 end if;
1748
1749 when others =>
1750 return False;
1751 end case;
1752
1753 Temp := Make_Temporary (Loc, 'T', N);
1754 New_N :=
1755 Make_Object_Declaration (Loc,
1756 Defining_Identifier => Temp,
1757 Object_Definition => New_Occurrence_Of (Typ, Loc),
1758 Expression => Relocate_Node (N));
1759 Insert_Before (Par, New_N);
1760 Analyze (New_N);
1761
1762 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1763 return True;
f280dd8f 1764 end Is_Atomic_VFA_Aggregate;
fbf5a39b 1765
2ffcbaa5
AC
1766 -----------------------------------------------
1767 -- Explode_Initialization_Compound_Statement --
1768 -----------------------------------------------
1769
1770 procedure Explode_Initialization_Compound_Statement (E : Entity_Id) is
1771 Init_Stmts : constant Node_Id := Initialization_Statements (E);
9dc30a5f 1772
2ffcbaa5
AC
1773 begin
1774 if Present (Init_Stmts)
1775 and then Nkind (Init_Stmts) = N_Compound_Statement
1776 then
1777 Insert_List_Before (Init_Stmts, Actions (Init_Stmts));
1778
1779 -- Note that we rewrite Init_Stmts into a NULL statement, rather than
1780 -- just removing it, because Freeze_All may rely on this particular
1781 -- Node_Id still being present in the enclosing list to know where to
1782 -- stop freezing.
1783
1784 Rewrite (Init_Stmts, Make_Null_Statement (Sloc (Init_Stmts)));
1785
1786 Set_Initialization_Statements (E, Empty);
1787 end if;
1788 end Explode_Initialization_Compound_Statement;
1789
70482933
RK
1790 ----------------
1791 -- Freeze_All --
1792 ----------------
1793
1794 -- Note: the easy coding for this procedure would be to just build a
1795 -- single list of freeze nodes and then insert them and analyze them
1796 -- all at once. This won't work, because the analysis of earlier freeze
1797 -- nodes may recursively freeze types which would otherwise appear later
1798 -- on in the freeze list. So we must analyze and expand the freeze nodes
1799 -- as they are generated.
1800
1801 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
70482933 1802 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
def46b54
RD
1803 -- This is the internal recursive routine that does freezing of entities
1804 -- (but NOT the analysis of default expressions, which should not be
1805 -- recursive, we don't want to analyze those till we are sure that ALL
1806 -- the types are frozen).
70482933 1807
fbf5a39b
AC
1808 --------------------
1809 -- Freeze_All_Ent --
1810 --------------------
1811
545cb5be 1812 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
70482933
RK
1813 E : Entity_Id;
1814 Flist : List_Id;
1815 Lastn : Node_Id;
1816
1817 procedure Process_Flist;
def46b54
RD
1818 -- If freeze nodes are present, insert and analyze, and reset cursor
1819 -- for next insertion.
70482933 1820
fbf5a39b
AC
1821 -------------------
1822 -- Process_Flist --
1823 -------------------
1824
70482933
RK
1825 procedure Process_Flist is
1826 begin
1827 if Is_Non_Empty_List (Flist) then
1828 Lastn := Next (After);
1829 Insert_List_After_And_Analyze (After, Flist);
1830
1831 if Present (Lastn) then
1832 After := Prev (Lastn);
1833 else
1834 After := Last (List_Containing (After));
1835 end if;
1836 end if;
1837 end Process_Flist;
1838
704228bd 1839 -- Start of processing for Freeze_All_Ent
fbf5a39b 1840
70482933
RK
1841 begin
1842 E := From;
1843 while Present (E) loop
1844
1845 -- If the entity is an inner package which is not a package
def46b54
RD
1846 -- renaming, then its entities must be frozen at this point. Note
1847 -- that such entities do NOT get frozen at the end of the nested
1848 -- package itself (only library packages freeze).
70482933
RK
1849
1850 -- Same is true for task declarations, where anonymous records
1851 -- created for entry parameters must be frozen.
1852
1853 if Ekind (E) = E_Package
1854 and then No (Renamed_Object (E))
1855 and then not Is_Child_Unit (E)
1856 and then not Is_Frozen (E)
1857 then
7d8b9c99 1858 Push_Scope (E);
e3de253f 1859
70482933
RK
1860 Install_Visible_Declarations (E);
1861 Install_Private_Declarations (E);
70482933
RK
1862 Freeze_All (First_Entity (E), After);
1863
1864 End_Package_Scope (E);
1865
d3cb4cc0
AC
1866 if Is_Generic_Instance (E)
1867 and then Has_Delayed_Freeze (E)
1868 then
1869 Set_Has_Delayed_Freeze (E, False);
1870 Expand_N_Package_Declaration (Unit_Declaration_Node (E));
1871 end if;
1872
70482933 1873 elsif Ekind (E) in Task_Kind
e3de253f
AC
1874 and then Nkind_In (Parent (E), N_Single_Task_Declaration,
1875 N_Task_Type_Declaration)
70482933 1876 then
7d8b9c99 1877 Push_Scope (E);
70482933
RK
1878 Freeze_All (First_Entity (E), After);
1879 End_Scope;
1880
1881 -- For a derived tagged type, we must ensure that all the
def46b54
RD
1882 -- primitive operations of the parent have been frozen, so that
1883 -- their addresses will be in the parent's dispatch table at the
1884 -- point it is inherited.
70482933
RK
1885
1886 elsif Ekind (E) = E_Record_Type
1887 and then Is_Tagged_Type (E)
1888 and then Is_Tagged_Type (Etype (E))
1889 and then Is_Derived_Type (E)
1890 then
1891 declare
1892 Prim_List : constant Elist_Id :=
1893 Primitive_Operations (Etype (E));
fbf5a39b
AC
1894
1895 Prim : Elmt_Id;
1896 Subp : Entity_Id;
70482933
RK
1897
1898 begin
df3e68b1 1899 Prim := First_Elmt (Prim_List);
70482933
RK
1900 while Present (Prim) loop
1901 Subp := Node (Prim);
1902
1903 if Comes_From_Source (Subp)
1904 and then not Is_Frozen (Subp)
1905 then
c159409f 1906 Flist := Freeze_Entity (Subp, After);
70482933
RK
1907 Process_Flist;
1908 end if;
1909
1910 Next_Elmt (Prim);
1911 end loop;
1912 end;
1913 end if;
1914
1915 if not Is_Frozen (E) then
c159409f 1916 Flist := Freeze_Entity (E, After);
70482933 1917 Process_Flist;
47e11d08
AC
1918
1919 -- If already frozen, and there are delayed aspects, this is where
1920 -- we do the visibility check for these aspects (see Sem_Ch13 spec
1921 -- for a description of how we handle aspect visibility).
1922
1923 elsif Has_Delayed_Aspects (E) then
02e4edea 1924
b98e2969
AC
1925 -- Retrieve the visibility to the discriminants in order to
1926 -- analyze properly the aspects.
1927
1928 Push_Scope_And_Install_Discriminants (E);
1929
47e11d08
AC
1930 declare
1931 Ritem : Node_Id;
1932
1933 begin
1934 Ritem := First_Rep_Item (E);
1935 while Present (Ritem) loop
1936 if Nkind (Ritem) = N_Aspect_Specification
bd949ee2 1937 and then Entity (Ritem) = E
47e11d08
AC
1938 and then Is_Delayed_Aspect (Ritem)
1939 then
1940 Check_Aspect_At_End_Of_Declarations (Ritem);
1941 end if;
1942
1943 Ritem := Next_Rep_Item (Ritem);
1944 end loop;
1945 end;
b98e2969
AC
1946
1947 Uninstall_Discriminants_And_Pop_Scope (E);
70482933
RK
1948 end if;
1949
def46b54
RD
1950 -- If an incomplete type is still not frozen, this may be a
1951 -- premature freezing because of a body declaration that follows.
ef992452
AC
1952 -- Indicate where the freezing took place. Freezing will happen
1953 -- if the body comes from source, but not if it is internally
1954 -- generated, for example as the body of a type invariant.
fbf5a39b 1955
def46b54
RD
1956 -- If the freezing is caused by the end of the current declarative
1957 -- part, it is a Taft Amendment type, and there is no error.
fbf5a39b
AC
1958
1959 if not Is_Frozen (E)
1960 and then Ekind (E) = E_Incomplete_Type
1961 then
1962 declare
1963 Bod : constant Node_Id := Next (After);
1964
1965 begin
35fae080
RD
1966 -- The presence of a body freezes all entities previously
1967 -- declared in the current list of declarations, but this
1968 -- does not apply if the body does not come from source.
1969 -- A type invariant is transformed into a subprogram body
1970 -- which is placed at the end of the private part of the
1971 -- current package, but this body does not freeze incomplete
1972 -- types that may be declared in this private part.
1973
89a53f83 1974 if (Nkind_In (Bod, N_Entry_Body,
545cb5be
AC
1975 N_Package_Body,
1976 N_Protected_Body,
89a53f83 1977 N_Subprogram_Body,
545cb5be 1978 N_Task_Body)
fbf5a39b 1979 or else Nkind (Bod) in N_Body_Stub)
ef992452 1980 and then
35fae080 1981 List_Containing (After) = List_Containing (Parent (E))
ef992452 1982 and then Comes_From_Source (Bod)
fbf5a39b
AC
1983 then
1984 Error_Msg_Sloc := Sloc (Next (After));
1985 Error_Msg_NE
1986 ("type& is frozen# before its full declaration",
1987 Parent (E), E);
1988 end if;
1989 end;
1990 end if;
1991
70482933
RK
1992 Next_Entity (E);
1993 end loop;
1994 end Freeze_All_Ent;
1995
89a53f83
AC
1996 -- Local variables
1997
1998 Decl : Node_Id;
1999 E : Entity_Id;
2000 Item : Entity_Id;
2001
70482933
RK
2002 -- Start of processing for Freeze_All
2003
2004 begin
2005 Freeze_All_Ent (From, After);
2006
2007 -- Now that all types are frozen, we can deal with default expressions
2008 -- that require us to build a default expression functions. This is the
2009 -- point at which such functions are constructed (after all types that
2010 -- might be used in such expressions have been frozen).
fbf5a39b 2011
d4fc0fb4
AC
2012 -- For subprograms that are renaming_as_body, we create the wrapper
2013 -- bodies as needed.
2014
70482933
RK
2015 -- We also add finalization chains to access types whose designated
2016 -- types are controlled. This is normally done when freezing the type,
2017 -- but this misses recursive type definitions where the later members
c6a9797e 2018 -- of the recursion introduce controlled components.
70482933
RK
2019
2020 -- Loop through entities
2021
2022 E := From;
2023 while Present (E) loop
70482933 2024 if Is_Subprogram (E) then
70482933
RK
2025 if not Default_Expressions_Processed (E) then
2026 Process_Default_Expressions (E, After);
2027 end if;
2028
2029 if not Has_Completion (E) then
2030 Decl := Unit_Declaration_Node (E);
2031
2032 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
8417f4b2
AC
2033 if Error_Posted (Decl) then
2034 Set_Has_Completion (E);
8417f4b2
AC
2035 else
2036 Build_And_Analyze_Renamed_Body (Decl, E, After);
2037 end if;
70482933
RK
2038
2039 elsif Nkind (Decl) = N_Subprogram_Declaration
2040 and then Present (Corresponding_Body (Decl))
2041 and then
89a53f83
AC
2042 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl))) =
2043 N_Subprogram_Renaming_Declaration
70482933
RK
2044 then
2045 Build_And_Analyze_Renamed_Body
2046 (Decl, Corresponding_Body (Decl), After);
2047 end if;
2048 end if;
2049
89a53f83
AC
2050 -- Freeze the default expressions of entries, entry families, and
2051 -- protected subprograms.
545cb5be 2052
89a53f83
AC
2053 elsif Is_Concurrent_Type (E) then
2054 Item := First_Entity (E);
2055 while Present (Item) loop
2056 if (Is_Entry (Item) or else Is_Subprogram (Item))
2057 and then not Default_Expressions_Processed (Item)
2058 then
2059 Process_Default_Expressions (Item, After);
2060 end if;
70482933 2061
89a53f83
AC
2062 Next_Entity (Item);
2063 end loop;
70482933
RK
2064 end if;
2065
46413d9e
AC
2066 -- Historical note: We used to create a finalization master for an
2067 -- access type whose designated type is not controlled, but contains
2c6336be 2068 -- private controlled compoments. This form of postprocessing is no
46413d9e
AC
2069 -- longer needed because the finalization master is now created when
2070 -- the access type is frozen (see Exp_Ch3.Freeze_Type).
2071
70482933
RK
2072 Next_Entity (E);
2073 end loop;
70482933
RK
2074 end Freeze_All;
2075
2076 -----------------------
2077 -- Freeze_And_Append --
2078 -----------------------
2079
2080 procedure Freeze_And_Append
2081 (Ent : Entity_Id;
c159409f 2082 N : Node_Id;
70482933
RK
2083 Result : in out List_Id)
2084 is
c159409f 2085 L : constant List_Id := Freeze_Entity (Ent, N);
70482933
RK
2086 begin
2087 if Is_Non_Empty_List (L) then
2088 if Result = No_List then
2089 Result := L;
2090 else
2091 Append_List (L, Result);
2092 end if;
2093 end if;
2094 end Freeze_And_Append;
2095
2096 -------------------
2097 -- Freeze_Before --
2098 -------------------
2099
6dc87f5f 2100 procedure Freeze_Before
78bc7fe6
ES
2101 (N : Node_Id;
2102 T : Entity_Id;
2103 Do_Freeze_Profile : Boolean := True)
6dc87f5f 2104 is
78bc7fe6
ES
2105 -- Freeze T, then insert the generated Freeze nodes before the node N.
2106 -- Flag Freeze_Profile is used when T is an overloadable entity, and
2107 -- indicates whether its profile should be frozen at the same time.
6dc87f5f 2108
78bc7fe6
ES
2109 Freeze_Nodes : constant List_Id :=
2110 Freeze_Entity (T, N, Do_Freeze_Profile);
e1691d7e 2111 Pack : constant Entity_Id := Scope (T);
18c56840 2112
70482933 2113 begin
18c56840
ES
2114 if Ekind (T) = E_Function then
2115 Check_Expression_Function (N, T);
2116 end if;
2117
70482933 2118 if Is_Non_Empty_List (Freeze_Nodes) then
e1691d7e
ES
2119
2120 -- If the entity is a type declared in an inner package, it may be
2121 -- frozen by an outer declaration before the package itself is
2122 -- frozen. Install the package scope to analyze the freeze nodes,
2123 -- which may include generated subprograms such as predicate
2124 -- functions, etc.
2125
2126 if Is_Type (T) and then From_Nested_Package (T) then
2127 Push_Scope (Pack);
2128 Install_Visible_Declarations (Pack);
2129 Install_Private_Declarations (Pack);
2130 Insert_Actions (N, Freeze_Nodes);
2131 End_Package_Scope (Pack);
2132
2133 else
2134 Insert_Actions (N, Freeze_Nodes);
2135 end if;
70482933
RK
2136 end if;
2137 end Freeze_Before;
2138
2139 -------------------
2140 -- Freeze_Entity --
2141 -------------------
2142
b0bf18ad
AC
2143 -- WARNING: This routine manages Ghost regions. Return statements must be
2144 -- replaced by gotos which jump to the end of the routine and restore the
2145 -- Ghost mode.
2146
6dc87f5f 2147 function Freeze_Entity
78bc7fe6
ES
2148 (E : Entity_Id;
2149 N : Node_Id;
2150 Do_Freeze_Profile : Boolean := True) return List_Id
6dc87f5f 2151 is
8636f52f
HK
2152 Loc : constant Source_Ptr := Sloc (N);
2153 Atype : Entity_Id;
2154 Comp : Entity_Id;
2155 F_Node : Node_Id;
2156 Formal : Entity_Id;
2157 Indx : Node_Id;
0fea901b 2158
241ebe89
HK
2159 Has_Default_Initialization : Boolean := False;
2160 -- This flag gets set to true for a variable with default initialization
0fea901b 2161
90878b12
AC
2162 Result : List_Id := No_List;
2163 -- List of freezing actions, left at No_List if none
2164
241ebe89
HK
2165 Test_E : Entity_Id := E;
2166 -- This could use a comment ???
4c8a5bb8 2167
90878b12
AC
2168 procedure Add_To_Result (N : Node_Id);
2169 -- N is a freezing action to be appended to the Result
2170
b98e2969
AC
2171 function After_Last_Declaration return Boolean;
2172 -- If Loc is a freeze_entity that appears after the last declaration
2173 -- in the scope, inhibit error messages on late completion.
2174
70482933 2175 procedure Check_Current_Instance (Comp_Decl : Node_Id);
edd63e9b
ES
2176 -- Check that an Access or Unchecked_Access attribute with a prefix
2177 -- which is the current instance type can only be applied when the type
2178 -- is limited.
70482933 2179
ca0eb951
AC
2180 procedure Check_Suspicious_Convention (Rec_Type : Entity_Id);
2181 -- Give a warning for pragma Convention with language C or C++ applied
2182 -- to a discriminated record type. This is suppressed for the unchecked
2183 -- union case, since the whole point in this case is interface C. We
2184 -- also do not generate this within instantiations, since we will have
2185 -- generated a message on the template.
2186
67b3acf8
RD
2187 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
2188 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
2189 -- integer literal without an explicit corresponding size clause. The
2190 -- caller has checked that Utype is a modular integer type.
2191
63bb4268
AC
2192 procedure Freeze_Array_Type (Arr : Entity_Id);
2193 -- Freeze array type, including freezing index and component types
2194
b741083a 2195 procedure Freeze_Object_Declaration (E : Entity_Id);
73cc8f62
RD
2196 -- Perform checks and generate freeze node if needed for a constant or
2197 -- variable declared by an object declaration.
b741083a 2198
3cd4a210
AC
2199 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id;
2200 -- Create Freeze_Generic_Entity nodes for types declared in a generic
2201 -- package. Recurse on inner generic packages.
2202
4d1429b2 2203 function Freeze_Profile (E : Entity_Id) return Boolean;
9ceeaf9d 2204 -- Freeze formals and return type of subprogram. If some type in the
4d9446f9
EB
2205 -- profile is incomplete and we are in an instance, freezing of the
2206 -- entity will take place elsewhere, and the function returns False.
4d1429b2 2207
70482933 2208 procedure Freeze_Record_Type (Rec : Entity_Id);
63bb4268 2209 -- Freeze record type, including freezing component types, and freezing
edd63e9b 2210 -- primitive operations if this is a tagged type.
70482933 2211
e8cddc3b
AC
2212 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean;
2213 -- Determine whether an arbitrary entity is subject to Boolean aspect
2214 -- Import and its value is specified as True.
2215
ce06d641
AC
2216 procedure Inherit_Freeze_Node
2217 (Fnod : Node_Id;
2218 Typ : Entity_Id);
2219 -- Set type Typ's freeze node to refer to Fnode. This routine ensures
2220 -- that any attributes attached to Typ's original node are preserved.
2221
32bba3c9
AC
2222 procedure Wrap_Imported_Subprogram (E : Entity_Id);
2223 -- If E is an entity for an imported subprogram with pre/post-conditions
2224 -- then this procedure will create a wrapper to ensure that proper run-
2225 -- time checking of the pre/postconditions. See body for details.
2226
90878b12
AC
2227 -------------------
2228 -- Add_To_Result --
2229 -------------------
2230
2231 procedure Add_To_Result (N : Node_Id) is
2232 begin
2233 if No (Result) then
2234 Result := New_List (N);
2235 else
2236 Append (N, Result);
2237 end if;
2238 end Add_To_Result;
2239
70482933
RK
2240 ----------------------------
2241 -- After_Last_Declaration --
2242 ----------------------------
2243
2244 function After_Last_Declaration return Boolean is
fb2e11ee 2245 Spec : constant Node_Id := Parent (Current_Scope);
0fea901b 2246
70482933
RK
2247 begin
2248 if Nkind (Spec) = N_Package_Specification then
2249 if Present (Private_Declarations (Spec)) then
2250 return Loc >= Sloc (Last (Private_Declarations (Spec)));
70482933
RK
2251 elsif Present (Visible_Declarations (Spec)) then
2252 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
2253 else
2254 return False;
2255 end if;
0fea901b 2256
70482933
RK
2257 else
2258 return False;
2259 end if;
2260 end After_Last_Declaration;
2261
2262 ----------------------------
2263 -- Check_Current_Instance --
2264 ----------------------------
2265
2266 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
2267
e1308fa8
AC
2268 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean;
2269 -- Determine whether Typ is compatible with the rules for aliased
2270 -- views of types as defined in RM 3.10 in the various dialects.
32c760e6 2271
70482933 2272 function Process (N : Node_Id) return Traverse_Result;
49e90211 2273 -- Process routine to apply check to given node
70482933 2274
e1308fa8
AC
2275 -----------------------------
2276 -- Is_Aliased_View_Of_Type --
2277 -----------------------------
2278
2279 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean is
2280 Typ_Decl : constant Node_Id := Parent (Typ);
2281
2282 begin
2283 -- Common case
2284
2285 if Nkind (Typ_Decl) = N_Full_Type_Declaration
2286 and then Limited_Present (Type_Definition (Typ_Decl))
2287 then
2288 return True;
2289
2290 -- The following paragraphs describe what a legal aliased view of
2291 -- a type is in the various dialects of Ada.
2292
2293 -- Ada 95
2294
2295 -- The current instance of a limited type, and a formal parameter
2296 -- or generic formal object of a tagged type.
2297
2298 -- Ada 95 limited type
2299 -- * Type with reserved word "limited"
2300 -- * A protected or task type
2301 -- * A composite type with limited component
2302
2303 elsif Ada_Version <= Ada_95 then
2304 return Is_Limited_Type (Typ);
2305
2306 -- Ada 2005
2307
2308 -- The current instance of a limited tagged type, a protected
2309 -- type, a task type, or a type that has the reserved word
2310 -- "limited" in its full definition ... a formal parameter or
2311 -- generic formal object of a tagged type.
2312
2313 -- Ada 2005 limited type
2314 -- * Type with reserved word "limited", "synchronized", "task"
2315 -- or "protected"
2316 -- * A composite type with limited component
2317 -- * A derived type whose parent is a non-interface limited type
2318
2319 elsif Ada_Version = Ada_2005 then
2320 return
2321 (Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ))
2322 or else
2323 (Is_Derived_Type (Typ)
2324 and then not Is_Interface (Etype (Typ))
2325 and then Is_Limited_Type (Etype (Typ)));
2326
2327 -- Ada 2012 and beyond
2328
2329 -- The current instance of an immutably limited type ... a formal
2330 -- parameter or generic formal object of a tagged type.
2331
2332 -- Ada 2012 limited type
2333 -- * Type with reserved word "limited", "synchronized", "task"
2334 -- or "protected"
2335 -- * A composite type with limited component
2336 -- * A derived type whose parent is a non-interface limited type
2337 -- * An incomplete view
2338
2339 -- Ada 2012 immutably limited type
2340 -- * Explicitly limited record type
2341 -- * Record extension with "limited" present
2342 -- * Non-formal limited private type that is either tagged
2343 -- or has at least one access discriminant with a default
2344 -- expression
2345 -- * Task type, protected type or synchronized interface
2346 -- * Type derived from immutably limited type
2347
2348 else
2349 return
2350 Is_Immutably_Limited_Type (Typ)
2351 or else Is_Incomplete_Type (Typ);
2352 end if;
2353 end Is_Aliased_View_Of_Type;
2354
fbf5a39b
AC
2355 -------------
2356 -- Process --
2357 -------------
2358
70482933
RK
2359 function Process (N : Node_Id) return Traverse_Result is
2360 begin
2361 case Nkind (N) is
2362 when N_Attribute_Reference =>
b69cd36a
AC
2363 if Nam_In (Attribute_Name (N), Name_Access,
2364 Name_Unchecked_Access)
70482933
RK
2365 and then Is_Entity_Name (Prefix (N))
2366 and then Is_Type (Entity (Prefix (N)))
2367 and then Entity (Prefix (N)) = E
2368 then
a9895094
AC
2369 if Ada_Version < Ada_2012 then
2370 Error_Msg_N
2371 ("current instance must be a limited type",
1f0b1e48 2372 Prefix (N));
a9895094
AC
2373 else
2374 Error_Msg_N
1f0b1e48 2375 ("current instance must be an immutably limited "
0fea901b 2376 & "type (RM-2012, 7.5 (8.1/3))", Prefix (N));
a9895094 2377 end if;
1f0b1e48 2378
70482933 2379 return Abandon;
1f0b1e48 2380
70482933
RK
2381 else
2382 return OK;
2383 end if;
2384
d8f43ee6
HK
2385 when others =>
2386 return OK;
70482933
RK
2387 end case;
2388 end Process;
2389
2390 procedure Traverse is new Traverse_Proc (Process);
2391
e1308fa8 2392 -- Local variables
32c760e6 2393
e1308fa8
AC
2394 Rec_Type : constant Entity_Id :=
2395 Scope (Defining_Identifier (Comp_Decl));
32c760e6 2396
e1308fa8 2397 -- Start of processing for Check_Current_Instance
32c760e6 2398
e1308fa8
AC
2399 begin
2400 if not Is_Aliased_View_Of_Type (Rec_Type) then
32c760e6
ES
2401 Traverse (Comp_Decl);
2402 end if;
70482933
RK
2403 end Check_Current_Instance;
2404
ca0eb951
AC
2405 ---------------------------------
2406 -- Check_Suspicious_Convention --
2407 ---------------------------------
2408
2409 procedure Check_Suspicious_Convention (Rec_Type : Entity_Id) is
2410 begin
2411 if Has_Discriminants (Rec_Type)
2412 and then Is_Base_Type (Rec_Type)
2413 and then not Is_Unchecked_Union (Rec_Type)
2414 and then (Convention (Rec_Type) = Convention_C
2415 or else
2416 Convention (Rec_Type) = Convention_CPP)
2417 and then Comes_From_Source (Rec_Type)
2418 and then not In_Instance
2419 and then not Has_Warnings_Off (Rec_Type)
2420 then
2421 declare
2422 Cprag : constant Node_Id :=
2423 Get_Rep_Pragma (Rec_Type, Name_Convention);
2424 A2 : Node_Id;
2425
2426 begin
2427 if Present (Cprag) then
2428 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2429
2430 if Convention (Rec_Type) = Convention_C then
2431 Error_Msg_N
d65a80fd
HK
2432 ("?x?discriminated record has no direct equivalent in "
2433 & "C", A2);
ca0eb951
AC
2434 else
2435 Error_Msg_N
d65a80fd
HK
2436 ("?x?discriminated record has no direct equivalent in "
2437 & "C++", A2);
ca0eb951
AC
2438 end if;
2439
2440 Error_Msg_NE
2441 ("\?x?use of convention for type& is dubious",
2442 A2, Rec_Type);
2443 end if;
2444 end;
2445 end if;
2446 end Check_Suspicious_Convention;
2447
67b3acf8
RD
2448 ------------------------------
2449 -- Check_Suspicious_Modulus --
2450 ------------------------------
2451
2452 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
2453 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
2454
2455 begin
685bc70f
AC
2456 if not Warn_On_Suspicious_Modulus_Value then
2457 return;
2458 end if;
2459
67b3acf8
RD
2460 if Nkind (Decl) = N_Full_Type_Declaration then
2461 declare
2462 Tdef : constant Node_Id := Type_Definition (Decl);
3e7302c3 2463
67b3acf8
RD
2464 begin
2465 if Nkind (Tdef) = N_Modular_Type_Definition then
2466 declare
2467 Modulus : constant Node_Id :=
2468 Original_Node (Expression (Tdef));
685bc70f 2469
67b3acf8
RD
2470 begin
2471 if Nkind (Modulus) = N_Integer_Literal then
2472 declare
2473 Modv : constant Uint := Intval (Modulus);
2474 Sizv : constant Uint := RM_Size (Utype);
2475
2476 begin
2477 -- First case, modulus and size are the same. This
2478 -- happens if you have something like mod 32, with
2479 -- an explicit size of 32, this is for sure a case
2480 -- where the warning is given, since it is seems
2481 -- very unlikely that someone would want e.g. a
2482 -- five bit type stored in 32 bits. It is much
2483 -- more likely they wanted a 32-bit type.
2484
2485 if Modv = Sizv then
2486 null;
2487
2488 -- Second case, the modulus is 32 or 64 and no
2489 -- size clause is present. This is a less clear
2490 -- case for giving the warning, but in the case
2491 -- of 32/64 (5-bit or 6-bit types) these seem rare
2492 -- enough that it is a likely error (and in any
2493 -- case using 2**5 or 2**6 in these cases seems
2494 -- clearer. We don't include 8 or 16 here, simply
2495 -- because in practice 3-bit and 4-bit types are
2496 -- more common and too many false positives if
2497 -- we warn in these cases.
2498
2499 elsif not Has_Size_Clause (Utype)
2500 and then (Modv = Uint_32 or else Modv = Uint_64)
2501 then
2502 null;
2503
2504 -- No warning needed
2505
2506 else
2507 return;
2508 end if;
2509
2510 -- If we fall through, give warning
2511
2512 Error_Msg_Uint_1 := Modv;
2513 Error_Msg_N
685bc70f 2514 ("?M?2 '*'*^' may have been intended here",
67b3acf8
RD
2515 Modulus);
2516 end;
2517 end if;
2518 end;
2519 end if;
2520 end;
2521 end if;
2522 end Check_Suspicious_Modulus;
2523
63bb4268
AC
2524 -----------------------
2525 -- Freeze_Array_Type --
2526 -----------------------
2527
2528 procedure Freeze_Array_Type (Arr : Entity_Id) is
2529 FS : constant Entity_Id := First_Subtype (Arr);
2530 Ctyp : constant Entity_Id := Component_Type (Arr);
2531 Clause : Entity_Id;
2532
2533 Non_Standard_Enum : Boolean := False;
2534 -- Set true if any of the index types is an enumeration type with a
2535 -- non-standard representation.
2536
2537 begin
2538 Freeze_And_Append (Ctyp, N, Result);
2539
2540 Indx := First_Index (Arr);
2541 while Present (Indx) loop
2542 Freeze_And_Append (Etype (Indx), N, Result);
2543
2544 if Is_Enumeration_Type (Etype (Indx))
2545 and then Has_Non_Standard_Rep (Etype (Indx))
2546 then
2547 Non_Standard_Enum := True;
2548 end if;
2549
2550 Next_Index (Indx);
2551 end loop;
2552
2553 -- Processing that is done only for base types
2554
f8c79ade 2555 if Ekind (Arr) = E_Array_Type then
220d1fd9
AC
2556
2557 -- Deal with default setting of reverse storage order
2558
2559 Set_SSO_From_Default (Arr);
63bb4268
AC
2560
2561 -- Propagate flags for component type
2562
c8593453 2563 if Is_Controlled_Active (Component_Type (Arr))
63bb4268
AC
2564 or else Has_Controlled_Component (Ctyp)
2565 then
2566 Set_Has_Controlled_Component (Arr);
2567 end if;
2568
2569 if Has_Unchecked_Union (Component_Type (Arr)) then
2570 Set_Has_Unchecked_Union (Arr);
2571 end if;
2572
3ddfabe3 2573 -- The array type requires its own invariant procedure in order to
104c99ef
CD
2574 -- verify the component invariant over all elements. In GNATprove
2575 -- mode, the component invariants are checked by other means. They
2576 -- should not be added to the array type invariant procedure, so
2577 -- that the procedure can be used to check the array type
2578 -- invariants if any.
2579
2580 if Has_Invariants (Component_Type (Arr))
2581 and then not GNATprove_Mode
2582 then
3ddfabe3
AC
2583 Set_Has_Own_Invariants (Arr);
2584
2585 -- The array type is an implementation base type. Propagate the
2586 -- same property to the first subtype.
2587
2588 if Is_Itype (Arr) then
2589 Set_Has_Own_Invariants (First_Subtype (Arr));
2590 end if;
2591 end if;
2592
63bb4268
AC
2593 -- Warn for pragma Pack overriding foreign convention
2594
2595 if Has_Foreign_Convention (Ctyp)
2596 and then Has_Pragma_Pack (Arr)
2597 then
2598 declare
2599 CN : constant Name_Id :=
2600 Get_Convention_Name (Convention (Ctyp));
2601 PP : constant Node_Id :=
2602 Get_Pragma (First_Subtype (Arr), Pragma_Pack);
2603 begin
2604 if Present (PP) then
2605 Error_Msg_Name_1 := CN;
2606 Error_Msg_Sloc := Sloc (Arr);
2607 Error_Msg_N
0fea901b 2608 ("pragma Pack affects convention % components #??", PP);
63bb4268
AC
2609 Error_Msg_Name_1 := CN;
2610 Error_Msg_N
2611 ("\array components may not have % compatible "
2612 & "representation??", PP);
2613 end if;
2614 end;
2615 end if;
2616
2617 -- If packing was requested or if the component size was
2618 -- set explicitly, then see if bit packing is required. This
2619 -- processing is only done for base types, since all of the
ef1c0511
AC
2620 -- representation aspects involved are type-related.
2621
2622 -- This is not just an optimization, if we start processing the
2623 -- subtypes, they interfere with the settings on the base type
2624 -- (this is because Is_Packed has a slightly different meaning
2625 -- before and after freezing).
63bb4268
AC
2626
2627 declare
2628 Csiz : Uint;
2629 Esiz : Uint;
2630
2631 begin
2632 if (Is_Packed (Arr) or else Has_Pragma_Pack (Arr))
2633 and then Known_Static_RM_Size (Ctyp)
2634 and then not Has_Component_Size_Clause (Arr)
2635 then
2636 Csiz := UI_Max (RM_Size (Ctyp), 1);
2637
2638 elsif Known_Component_Size (Arr) then
2639 Csiz := Component_Size (Arr);
2640
2641 elsif not Known_Static_Esize (Ctyp) then
2642 Csiz := Uint_0;
2643
2644 else
2645 Esiz := Esize (Ctyp);
2646
2647 -- We can set the component size if it is less than 16,
2648 -- rounding it up to the next storage unit size.
2649
2650 if Esiz <= 8 then
2651 Csiz := Uint_8;
2652 elsif Esiz <= 16 then
2653 Csiz := Uint_16;
2654 else
2655 Csiz := Uint_0;
2656 end if;
2657
2658 -- Set component size up to match alignment if it would
2659 -- otherwise be less than the alignment. This deals with
2660 -- cases of types whose alignment exceeds their size (the
2661 -- padded type cases).
2662
2663 if Csiz /= 0 then
2664 declare
2665 A : constant Uint := Alignment_In_Bits (Ctyp);
2666 begin
2667 if Csiz < A then
2668 Csiz := A;
2669 end if;
2670 end;
2671 end if;
2672 end if;
2673
b3f75672 2674 -- Case of component size that may result in bit packing
63bb4268
AC
2675
2676 if 1 <= Csiz and then Csiz <= 64 then
2677 declare
2678 Ent : constant Entity_Id :=
2679 First_Subtype (Arr);
2680 Pack_Pragma : constant Node_Id :=
2681 Get_Rep_Pragma (Ent, Name_Pack);
2682 Comp_Size_C : constant Node_Id :=
2683 Get_Attribute_Definition_Clause
2684 (Ent, Attribute_Component_Size);
0fea901b 2685
63bb4268
AC
2686 begin
2687 -- Warn if we have pack and component size so that the
2688 -- pack is ignored.
2689
2690 -- Note: here we must check for the presence of a
2691 -- component size before checking for a Pack pragma to
2692 -- deal with the case where the array type is a derived
2693 -- type whose parent is currently private.
2694
2695 if Present (Comp_Size_C)
2696 and then Has_Pragma_Pack (Ent)
2697 and then Warn_On_Redundant_Constructs
2698 then
2699 Error_Msg_Sloc := Sloc (Comp_Size_C);
2700 Error_Msg_NE
a90bd866 2701 ("?r?pragma Pack for& ignored!", Pack_Pragma, Ent);
63bb4268 2702 Error_Msg_N
a90bd866 2703 ("\?r?explicit component size given#!", Pack_Pragma);
63bb4268
AC
2704 Set_Is_Packed (Base_Type (Ent), False);
2705 Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
2706 end if;
2707
2708 -- Set component size if not already set by a component
2709 -- size clause.
2710
2711 if not Present (Comp_Size_C) then
2712 Set_Component_Size (Arr, Csiz);
2713 end if;
2714
2715 -- Check for base type of 8, 16, 32 bits, where an
2716 -- unsigned subtype has a length one less than the
2717 -- base type (e.g. Natural subtype of Integer).
2718
2719 -- In such cases, if a component size was not set
2720 -- explicitly, then generate a warning.
2721
2722 if Has_Pragma_Pack (Arr)
2723 and then not Present (Comp_Size_C)
f8c79ade 2724 and then (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
63bb4268
AC
2725 and then Esize (Base_Type (Ctyp)) = Csiz + 1
2726 then
2727 Error_Msg_Uint_1 := Csiz;
2728
2729 if Present (Pack_Pragma) then
2730 Error_Msg_N
0fea901b
AC
2731 ("??pragma Pack causes component size to be ^!",
2732 Pack_Pragma);
63bb4268 2733 Error_Msg_N
0fea901b
AC
2734 ("\??use Component_Size to set desired value!",
2735 Pack_Pragma);
63bb4268
AC
2736 end if;
2737 end if;
2738
b3f75672 2739 -- Bit packing is never needed for 8, 16, 32, 64
63bb4268 2740
3d626f94 2741 if Addressable (Csiz) then
497a660d 2742
b3f75672
EB
2743 -- If the Esize of the component is known and equal to
2744 -- the component size then even packing is not needed.
63bb4268
AC
2745
2746 if Known_Static_Esize (Component_Type (Arr))
2747 and then Esize (Component_Type (Arr)) = Csiz
2748 then
b3f75672
EB
2749 -- Here the array was requested to be packed, but
2750 -- the packing request had no effect whatsoever,
2751 -- so flag Is_Packed is reset.
2752
2753 -- Note: semantically this means that we lose track
2754 -- of the fact that a derived type inherited pragma
2755 -- Pack that was non-effective, but that is fine.
2756
2757 -- We regard a Pack pragma as a request to set a
2758 -- representation characteristic, and this request
2759 -- may be ignored.
2760
2761 Set_Is_Packed (Base_Type (Arr), False);
f8c79ade 2762 Set_Has_Non_Standard_Rep (Base_Type (Arr), False);
b3f75672
EB
2763 else
2764 Set_Is_Packed (Base_Type (Arr), True);
2765 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
63bb4268
AC
2766 end if;
2767
b3f75672
EB
2768 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2769
2770 -- Bit packing is not needed for multiples of the storage
2771 -- unit if the type is composite because the back end can
2772 -- byte pack composite types.
2773
2774 elsif Csiz mod System_Storage_Unit = 0
2775 and then Is_Composite_Type (Ctyp)
2776 then
2777
2778 Set_Is_Packed (Base_Type (Arr), True);
2779 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2780 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2781
2782 -- In all other cases, bit packing is needed
63bb4268
AC
2783
2784 else
b3f75672 2785 Set_Is_Packed (Base_Type (Arr), True);
63bb4268
AC
2786 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2787 Set_Is_Bit_Packed_Array (Base_Type (Arr), True);
63bb4268
AC
2788 end if;
2789 end;
2790 end if;
2791 end;
2792
f280dd8f
RD
2793 -- Check for Aliased or Atomic_Components/Atomic/VFA with
2794 -- unsuitable packing or explicit component size clause given.
63bb4268 2795
7806a9ed 2796 if (Has_Aliased_Components (Arr)
18dae814 2797 or else Has_Atomic_Components (Arr)
f280dd8f 2798 or else Is_Atomic_Or_VFA (Ctyp))
ef1c0511
AC
2799 and then
2800 (Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
63bb4268
AC
2801 then
2802 Alias_Atomic_Check : declare
2803
2804 procedure Complain_CS (T : String);
2805 -- Outputs error messages for incorrect CS clause or pragma
f280dd8f
RD
2806 -- Pack for aliased or atomic/VFA components (T is "aliased"
2807 -- or "atomic/vfa");
63bb4268
AC
2808
2809 -----------------
2810 -- Complain_CS --
2811 -----------------
2812
2813 procedure Complain_CS (T : String) is
2814 begin
2815 if Has_Component_Size_Clause (Arr) then
2816 Clause :=
2817 Get_Attribute_Definition_Clause
2818 (FS, Attribute_Component_Size);
2819
5dc6778c
EB
2820 Error_Msg_N
2821 ("incorrect component size for "
2822 & T & " components", Clause);
2823 Error_Msg_Uint_1 := Esize (Ctyp);
2824 Error_Msg_N
2825 ("\only allowed value is^", Clause);
63bb4268
AC
2826
2827 else
2828 Error_Msg_N
2829 ("cannot pack " & T & " components",
2830 Get_Rep_Pragma (FS, Name_Pack));
2831 end if;
63bb4268
AC
2832 end Complain_CS;
2833
2834 -- Start of processing for Alias_Atomic_Check
2835
2836 begin
63bb4268
AC
2837 -- If object size of component type isn't known, we cannot
2838 -- be sure so we defer to the back end.
2839
2840 if not Known_Static_Esize (Ctyp) then
2841 null;
2842
2843 -- Case where component size has no effect. First check for
2844 -- object size of component type multiple of the storage
2845 -- unit size.
2846
2847 elsif Esize (Ctyp) mod System_Storage_Unit = 0
2848
2849 -- OK in both packing case and component size case if RM
2850 -- size is known and static and same as the object size.
2851
2852 and then
2853 ((Known_Static_RM_Size (Ctyp)
2854 and then Esize (Ctyp) = RM_Size (Ctyp))
2855
2856 -- Or if we have an explicit component size clause and
2857 -- the component size and object size are equal.
2858
2859 or else
2860 (Has_Component_Size_Clause (Arr)
2861 and then Component_Size (Arr) = Esize (Ctyp)))
2862 then
2863 null;
2864
7806a9ed 2865 elsif Has_Aliased_Components (Arr) then
63bb4268
AC
2866 Complain_CS ("aliased");
2867
f280dd8f
RD
2868 elsif Has_Atomic_Components (Arr)
2869 or else Is_Atomic (Ctyp)
63bb4268
AC
2870 then
2871 Complain_CS ("atomic");
f280dd8f 2872
57abdadd 2873 elsif Is_Volatile_Full_Access (Ctyp) then
f280dd8f 2874 Complain_CS ("volatile full access");
63bb4268
AC
2875 end if;
2876 end Alias_Atomic_Check;
2877 end if;
2878
07aff4e3
AC
2879 -- Check for Independent_Components/Independent with unsuitable
2880 -- packing or explicit component size clause given.
2881
2882 if (Has_Independent_Components (Arr) or else Is_Independent (Ctyp))
f280dd8f
RD
2883 and then
2884 (Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
07aff4e3
AC
2885 then
2886 begin
2887 -- If object size of component type isn't known, we cannot
2888 -- be sure so we defer to the back end.
2889
2890 if not Known_Static_Esize (Ctyp) then
2891 null;
2892
2893 -- Case where component size has no effect. First check for
2894 -- object size of component type multiple of the storage
2895 -- unit size.
2896
2897 elsif Esize (Ctyp) mod System_Storage_Unit = 0
2898
2899 -- OK in both packing case and component size case if RM
2900 -- size is known and multiple of the storage unit size.
2901
2902 and then
2903 ((Known_Static_RM_Size (Ctyp)
2904 and then RM_Size (Ctyp) mod System_Storage_Unit = 0)
2905
2906 -- Or if we have an explicit component size clause and
2907 -- the component size is larger than the object size.
2908
2909 or else
2910 (Has_Component_Size_Clause (Arr)
2911 and then Component_Size (Arr) >= Esize (Ctyp)))
2912 then
2913 null;
2914
2915 else
2916 if Has_Component_Size_Clause (Arr) then
2917 Clause :=
2918 Get_Attribute_Definition_Clause
2919 (FS, Attribute_Component_Size);
2920
2921 Error_Msg_N
2922 ("incorrect component size for "
2923 & "independent components", Clause);
2924 Error_Msg_Uint_1 := Esize (Ctyp);
2925 Error_Msg_N
2926 ("\minimum allowed is^", Clause);
2927
2928 else
2929 Error_Msg_N
2930 ("cannot pack independent components",
2931 Get_Rep_Pragma (FS, Name_Pack));
2932 end if;
2933 end if;
2934 end;
2935 end if;
2936
63bb4268
AC
2937 -- Warn for case of atomic type
2938
2939 Clause := Get_Rep_Pragma (FS, Name_Atomic);
2940
2941 if Present (Clause)
2942 and then not Addressable (Component_Size (FS))
2943 then
2944 Error_Msg_NE
2945 ("non-atomic components of type& may not be "
2946 & "accessible by separate tasks??", Clause, Arr);
2947
2948 if Has_Component_Size_Clause (Arr) then
ef1c0511
AC
2949 Error_Msg_Sloc := Sloc (Get_Attribute_Definition_Clause
2950 (FS, Attribute_Component_Size));
2951 Error_Msg_N ("\because of component size clause#??", Clause);
63bb4268
AC
2952
2953 elsif Has_Pragma_Pack (Arr) then
ef1c0511
AC
2954 Error_Msg_Sloc := Sloc (Get_Rep_Pragma (FS, Name_Pack));
2955 Error_Msg_N ("\because of pragma Pack#??", Clause);
63bb4268
AC
2956 end if;
2957 end if;
2958
2959 -- Check for scalar storage order
2960
ee6208f2
AC
2961 declare
2962 Dummy : Boolean;
2963 begin
2964 Check_Component_Storage_Order
2965 (Encl_Type => Arr,
2966 Comp => Empty,
2967 ADC => Get_Attribute_Definition_Clause
2968 (First_Subtype (Arr),
2969 Attribute_Scalar_Storage_Order),
2970 Comp_ADC_Present => Dummy);
2971 end;
63bb4268 2972
ee6208f2 2973 -- Processing that is done only for subtypes
63bb4268
AC
2974
2975 else
2976 -- Acquire alignment from base type
2977
2978 if Unknown_Alignment (Arr) then
2979 Set_Alignment (Arr, Alignment (Base_Type (Arr)));
2980 Adjust_Esize_Alignment (Arr);
2981 end if;
2982 end if;
2983
2984 -- Specific checks for bit-packed arrays
2985
2986 if Is_Bit_Packed_Array (Arr) then
2987
607114db 2988 -- Check number of elements for bit-packed arrays that come from
63bb4268
AC
2989 -- source and have compile time known ranges. The bit-packed
2990 -- arrays circuitry does not support arrays with more than
2991 -- Integer'Last + 1 elements, and when this restriction is
2992 -- violated, causes incorrect data access.
2993
2994 -- For the case where this is not compile time known, a run-time
2995 -- check should be generated???
2996
2997 if Comes_From_Source (Arr) and then Is_Constrained (Arr) then
2998 declare
2999 Elmts : Uint;
3000 Index : Node_Id;
3001 Ilen : Node_Id;
3002 Ityp : Entity_Id;
3003
3004 begin
3005 Elmts := Uint_1;
3006 Index := First_Index (Arr);
3007 while Present (Index) loop
3008 Ityp := Etype (Index);
3009
3010 -- Never generate an error if any index is of a generic
3011 -- type. We will check this in instances.
3012
3013 if Is_Generic_Type (Ityp) then
3014 Elmts := Uint_0;
3015 exit;
3016 end if;
3017
3018 Ilen :=
3019 Make_Attribute_Reference (Loc,
0fea901b 3020 Prefix => New_Occurrence_Of (Ityp, Loc),
63bb4268
AC
3021 Attribute_Name => Name_Range_Length);
3022 Analyze_And_Resolve (Ilen);
3023
9ceeaf9d
AC
3024 -- No attempt is made to check number of elements if not
3025 -- compile time known.
63bb4268
AC
3026
3027 if Nkind (Ilen) /= N_Integer_Literal then
3028 Elmts := Uint_0;
3029 exit;
3030 end if;
3031
3032 Elmts := Elmts * Intval (Ilen);
3033 Next_Index (Index);
3034 end loop;
3035
3036 if Elmts > Intval (High_Bound
ef1c0511 3037 (Scalar_Range (Standard_Integer))) + 1
63bb4268
AC
3038 then
3039 Error_Msg_N
3040 ("bit packed array type may not have "
3041 & "more than Integer''Last+1 elements", Arr);
3042 end if;
3043 end;
3044 end if;
3045
3046 -- Check size
3047
3048 if Known_RM_Size (Arr) then
3049 declare
0fea901b 3050 SizC : constant Node_Id := Size_Clause (Arr);
63bb4268 3051 Discard : Boolean;
63bb4268
AC
3052
3053 begin
3054 -- It is not clear if it is possible to have no size clause
3055 -- at this stage, but it is not worth worrying about. Post
3056 -- error on the entity name in the size clause if present,
3057 -- else on the type entity itself.
3058
3059 if Present (SizC) then
3060 Check_Size (Name (SizC), Arr, RM_Size (Arr), Discard);
3061 else
3062 Check_Size (Arr, Arr, RM_Size (Arr), Discard);
3063 end if;
3064 end;
3065 end if;
3066 end if;
3067
9ceeaf9d
AC
3068 -- If any of the index types was an enumeration type with a non-
3069 -- standard rep clause, then we indicate that the array type is
607114db 3070 -- always packed (even if it is not bit-packed).
63bb4268
AC
3071
3072 if Non_Standard_Enum then
3073 Set_Has_Non_Standard_Rep (Base_Type (Arr));
3074 Set_Is_Packed (Base_Type (Arr));
3075 end if;
3076
3077 Set_Component_Alignment_If_Not_Set (Arr);
3078
607114db 3079 -- If the array is packed and bit-packed or packed to eliminate holes
b3f75672
EB
3080 -- in the non-contiguous enumeration index types, we must create the
3081 -- packed array type to be used to actually implement the type. This
3082 -- is only needed for real array types (not for string literal types,
3083 -- since they are present only for the front end).
63bb4268
AC
3084
3085 if Is_Packed (Arr)
b3f75672 3086 and then (Is_Bit_Packed_Array (Arr) or else Non_Standard_Enum)
63bb4268
AC
3087 and then Ekind (Arr) /= E_String_Literal_Subtype
3088 then
8ca597af
RD
3089 Create_Packed_Array_Impl_Type (Arr);
3090 Freeze_And_Append (Packed_Array_Impl_Type (Arr), N, Result);
63bb4268 3091
8ad1c2df
AC
3092 -- Make sure that we have the necessary routines to implement the
3093 -- packing, and complain now if not. Note that we only test this
3094 -- for constrained array types.
3095
3096 if Is_Constrained (Arr)
3097 and then Is_Bit_Packed_Array (Arr)
3098 and then Present (Packed_Array_Impl_Type (Arr))
3099 and then Is_Array_Type (Packed_Array_Impl_Type (Arr))
3100 then
3101 declare
3102 CS : constant Uint := Component_Size (Arr);
3103 RE : constant RE_Id := Get_Id (UI_To_Int (CS));
3104
3105 begin
3106 if RE /= RE_Null
3107 and then not RTE_Available (RE)
3108 then
3109 Error_Msg_CRT
3110 ("packing of " & UI_Image (CS) & "-bit components",
3111 First_Subtype (Etype (Arr)));
3112
3113 -- Cancel the packing
3114
3115 Set_Is_Packed (Base_Type (Arr), False);
3116 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
3117 Set_Packed_Array_Impl_Type (Arr, Empty);
3118 goto Skip_Packed;
3119 end if;
3120 end;
3121 end if;
3122
63bb4268
AC
3123 -- Size information of packed array type is copied to the array
3124 -- type, since this is really the representation. But do not
3125 -- override explicit existing size values. If the ancestor subtype
8ca597af
RD
3126 -- is constrained the Packed_Array_Impl_Type will be inherited
3127 -- from it, but the size may have been provided already, and
3128 -- must not be overridden either.
63bb4268
AC
3129
3130 if not Has_Size_Clause (Arr)
3131 and then
3132 (No (Ancestor_Subtype (Arr))
3133 or else not Has_Size_Clause (Ancestor_Subtype (Arr)))
3134 then
8ca597af
RD
3135 Set_Esize (Arr, Esize (Packed_Array_Impl_Type (Arr)));
3136 Set_RM_Size (Arr, RM_Size (Packed_Array_Impl_Type (Arr)));
63bb4268
AC
3137 end if;
3138
3139 if not Has_Alignment_Clause (Arr) then
8ca597af 3140 Set_Alignment (Arr, Alignment (Packed_Array_Impl_Type (Arr)));
63bb4268
AC
3141 end if;
3142 end if;
3143
8ad1c2df
AC
3144 <<Skip_Packed>>
3145
63bb4268
AC
3146 -- For non-packed arrays set the alignment of the array to the
3147 -- alignment of the component type if it is unknown. Skip this
f280dd8f 3148 -- in atomic/VFA case (atomic/VFA arrays may need larger alignments).
63bb4268
AC
3149
3150 if not Is_Packed (Arr)
3151 and then Unknown_Alignment (Arr)
3152 and then Known_Alignment (Ctyp)
3153 and then Known_Static_Component_Size (Arr)
3154 and then Known_Static_Esize (Ctyp)
3155 and then Esize (Ctyp) = Component_Size (Arr)
f280dd8f 3156 and then not Is_Atomic_Or_VFA (Arr)
63bb4268
AC
3157 then
3158 Set_Alignment (Arr, Alignment (Component_Type (Arr)));
3159 end if;
58996b09
HK
3160
3161 -- A Ghost type cannot have a component of protected or task type
3162 -- (SPARK RM 6.9(19)).
3163
3164 if Is_Ghost_Entity (Arr) and then Is_Concurrent_Type (Ctyp) then
3165 Error_Msg_N
3166 ("ghost array type & cannot have concurrent component type",
3167 Arr);
3168 end if;
63bb4268
AC
3169 end Freeze_Array_Type;
3170
b741083a
ES
3171 -------------------------------
3172 -- Freeze_Object_Declaration --
3173 -------------------------------
3174
3175 procedure Freeze_Object_Declaration (E : Entity_Id) is
3176 begin
73cc8f62 3177 -- Abstract type allowed only for C++ imported variables or constants
b741083a 3178
73cc8f62
RD
3179 -- Note: we inhibit this check for objects that do not come from
3180 -- source because there is at least one case (the expansion of
3181 -- x'Class'Input where x is abstract) where we legitimately
3182 -- generate an abstract object.
b741083a
ES
3183
3184 if Is_Abstract_Type (Etype (E))
3185 and then Comes_From_Source (Parent (E))
3186 and then not (Is_Imported (E) and then Is_CPP_Class (Etype (E)))
3187 then
3188 Error_Msg_N ("type of object cannot be abstract",
73cc8f62 3189 Object_Definition (Parent (E)));
b741083a
ES
3190
3191 if Is_CPP_Class (Etype (E)) then
73cc8f62
RD
3192 Error_Msg_NE
3193 ("\} may need a cpp_constructor",
b741083a
ES
3194 Object_Definition (Parent (E)), Etype (E));
3195
3196 elsif Present (Expression (Parent (E))) then
3197 Error_Msg_N -- CODEFIX
3198 ("\maybe a class-wide type was meant",
3199 Object_Definition (Parent (E)));
3200 end if;
3201 end if;
3202
3203 -- For object created by object declaration, perform required
3204 -- categorization (preelaborate and pure) checks. Defer these
3205 -- checks to freeze time since pragma Import inhibits default
3206 -- initialization and thus pragma Import affects these checks.
3207
3208 Validate_Object_Declaration (Declaration_Node (E));
3209
3210 -- If there is an address clause, check that it is valid
3211 -- and if need be move initialization to the freeze node.
3212
3213 Check_Address_Clause (E);
3214
3215 -- Similar processing is needed for aspects that may affect
3216 -- object layout, like Alignment, if there is an initialization
2df23f66
AC
3217 -- expression. We don't do this if there is a pragma Linker_Section,
3218 -- because it would prevent the back end from statically initializing
3219 -- the object; we don't want elaboration code in that case.
b741083a
ES
3220
3221 if Has_Delayed_Aspects (E)
3222 and then Expander_Active
3223 and then Is_Array_Type (Etype (E))
3224 and then Present (Expression (Parent (E)))
2df23f66 3225 and then No (Linker_Section_Pragma (E))
b741083a
ES
3226 then
3227 declare
3228 Decl : constant Node_Id := Parent (E);
73cc8f62
RD
3229 Lhs : constant Node_Id := New_Occurrence_Of (E, Loc);
3230
b741083a
ES
3231 begin
3232
73cc8f62
RD
3233 -- Capture initialization value at point of declaration, and
3234 -- make explicit assignment legal, because object may be a
3235 -- constant.
b741083a
ES
3236
3237 Remove_Side_Effects (Expression (Decl));
3238 Set_Assignment_OK (Lhs);
3239
3240 -- Move initialization to freeze actions.
3241
3242 Append_Freeze_Action (E,
3243 Make_Assignment_Statement (Loc,
3244 Name => Lhs,
3245 Expression => Expression (Decl)));
3246
3247 Set_No_Initialization (Decl);
3248 -- Set_Is_Frozen (E, False);
3249 end;
3250 end if;
3251
3252 -- Reset Is_True_Constant for non-constant aliased object. We
73cc8f62
RD
3253 -- consider that the fact that a non-constant object is aliased may
3254 -- indicate that some funny business is going on, e.g. an aliased
3255 -- object is passed by reference to a procedure which captures the
3256 -- address of the object, which is later used to assign a new value,
3257 -- even though the compiler thinks that it is not modified. Such
3258 -- code is highly dubious, but we choose to make it "work" for
3259 -- non-constant aliased objects.
3260
3261 -- Note that we used to do this for all aliased objects, whether or
3262 -- not constant, but this caused anomalies down the line because we
3263 -- ended up with static objects that were not Is_True_Constant. Not
3264 -- resetting Is_True_Constant for (aliased) constant objects ensures
3265 -- that this anomaly never occurs.
3266
3267 -- However, we don't do that for internal entities. We figure that if
3268 -- we deliberately set Is_True_Constant for an internal entity, e.g.
3269 -- a dispatch table entry, then we mean it.
b741083a
ES
3270
3271 if Ekind (E) /= E_Constant
3272 and then (Is_Aliased (E) or else Is_Aliased (Etype (E)))
3273 and then not Is_Internal_Name (Chars (E))
3274 then
3275 Set_Is_True_Constant (E, False);
3276 end if;
3277
73cc8f62
RD
3278 -- If the object needs any kind of default initialization, an error
3279 -- must be issued if No_Default_Initialization applies. The check
3280 -- doesn't apply to imported objects, which are not ever default
3281 -- initialized, and is why the check is deferred until freezing, at
3282 -- which point we know if Import applies. Deferred constants are also
3283 -- exempted from this test because their completion is explicit, or
3284 -- through an import pragma.
b741083a 3285
73cc8f62 3286 if Ekind (E) = E_Constant and then Present (Full_View (E)) then
b741083a
ES
3287 null;
3288
3289 elsif Comes_From_Source (E)
3290 and then not Is_Imported (E)
3291 and then not Has_Init_Expression (Declaration_Node (E))
3292 and then
3293 ((Has_Non_Null_Base_Init_Proc (Etype (E))
3294 and then not No_Initialization (Declaration_Node (E))
b741083a
ES
3295 and then not Initialization_Suppressed (Etype (E)))
3296 or else
3297 (Needs_Simple_Initialization (Etype (E))
3298 and then not Is_Internal (E)))
3299 then
3300 Has_Default_Initialization := True;
3301 Check_Restriction
3302 (No_Default_Initialization, Declaration_Node (E));
3303 end if;
3304
3305 -- Check that a Thread_Local_Storage variable does not have
3306 -- default initialization, and any explicit initialization must
3307 -- either be the null constant or a static constant.
3308
3309 if Has_Pragma_Thread_Local_Storage (E) then
3310 declare
3311 Decl : constant Node_Id := Declaration_Node (E);
3312 begin
3313 if Has_Default_Initialization
3314 or else
3315 (Has_Init_Expression (Decl)
3316 and then
3317 (No (Expression (Decl))
3318 or else not
3319 (Is_OK_Static_Expression (Expression (Decl))
3320 or else Nkind (Expression (Decl)) = N_Null)))
3321 then
3322 Error_Msg_NE
3323 ("Thread_Local_Storage variable& is "
3324 & "improperly initialized", Decl, E);
3325 Error_Msg_NE
3326 ("\only allowed initialization is explicit "
3327 & "NULL or static expression", Decl, E);
3328 end if;
3329 end;
3330 end if;
3331
3332 -- For imported objects, set Is_Public unless there is also an
3333 -- address clause, which means that there is no external symbol
3334 -- needed for the Import (Is_Public may still be set for other
3335 -- unrelated reasons). Note that we delayed this processing
3336 -- till freeze time so that we can be sure not to set the flag
3337 -- if there is an address clause. If there is such a clause,
3338 -- then the only purpose of the Import pragma is to suppress
3339 -- implicit initialization.
3340
3341 if Is_Imported (E) and then No (Address_Clause (E)) then
3342 Set_Is_Public (E);
3343 end if;
3344
3345 -- For source objects that are not Imported and are library
3346 -- level, if no linker section pragma was given inherit the
3347 -- appropriate linker section from the corresponding type.
3348
3349 if Comes_From_Source (E)
3350 and then not Is_Imported (E)
3351 and then Is_Library_Level_Entity (E)
3352 and then No (Linker_Section_Pragma (E))
3353 then
3354 Set_Linker_Section_Pragma
3355 (E, Linker_Section_Pragma (Etype (E)));
3356 end if;
3357
3358 -- For convention C objects of an enumeration type, warn if the
3359 -- size is not integer size and no explicit size given. Skip
3360 -- warning for Boolean, and Character, assume programmer expects
3361 -- 8-bit sizes for these cases.
3362
3363 if (Convention (E) = Convention_C
73cc8f62
RD
3364 or else
3365 Convention (E) = Convention_CPP)
b741083a
ES
3366 and then Is_Enumeration_Type (Etype (E))
3367 and then not Is_Character_Type (Etype (E))
3368 and then not Is_Boolean_Type (Etype (E))
3369 and then Esize (Etype (E)) < Standard_Integer_Size
3370 and then not Has_Size_Clause (E)
3371 then
3372 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
3373 Error_Msg_N
3374 ("??convention C enumeration object has size less than ^", E);
3375 Error_Msg_N ("\??use explicit size clause to set size", E);
3376 end if;
3377 end Freeze_Object_Declaration;
3378
3cd4a210
AC
3379 -----------------------------
3380 -- Freeze_Generic_Entities --
3381 -----------------------------
3382
3383 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id is
5a8a6763
RD
3384 E : Entity_Id;
3385 F : Node_Id;
3cd4a210
AC
3386 Flist : List_Id;
3387
3388 begin
3389 Flist := New_List;
3390 E := First_Entity (Pack);
3391 while Present (E) loop
3392 if Is_Type (E) and then not Is_Generic_Type (E) then
3393 F := Make_Freeze_Generic_Entity (Sloc (Pack));
3394 Set_Entity (F, E);
3395 Append_To (Flist, F);
3396
3397 elsif Ekind (E) = E_Generic_Package then
3398 Append_List_To (Flist, Freeze_Generic_Entities (E));
3399 end if;
3400
3401 Next_Entity (E);
3402 end loop;
3403
3404 return Flist;
3405 end Freeze_Generic_Entities;
3406
4d1429b2
AC
3407 --------------------
3408 -- Freeze_Profile --
3409 --------------------
3410
3411 function Freeze_Profile (E : Entity_Id) return Boolean is
3412 F_Type : Entity_Id;
3413 R_Type : Entity_Id;
3414 Warn_Node : Node_Id;
3415
3416 begin
3417 -- Loop through formals
3418
3419 Formal := First_Formal (E);
3420 while Present (Formal) loop
3421 F_Type := Etype (Formal);
3422
9ceeaf9d
AC
3423 -- AI05-0151: incomplete types can appear in a profile. By the
3424 -- time the entity is frozen, the full view must be available,
3425 -- unless it is a limited view.
4d1429b2
AC
3426
3427 if Is_Incomplete_Type (F_Type)
3428 and then Present (Full_View (F_Type))
3429 and then not From_Limited_With (F_Type)
3430 then
3431 F_Type := Full_View (F_Type);
3432 Set_Etype (Formal, F_Type);
3433 end if;
3434
4f2cae4a
ES
3435 if not From_Limited_With (F_Type) then
3436 Freeze_And_Append (F_Type, N, Result);
3437 end if;
4d1429b2
AC
3438
3439 if Is_Private_Type (F_Type)
3440 and then Is_Private_Type (Base_Type (F_Type))
3441 and then No (Full_View (Base_Type (F_Type)))
3442 and then not Is_Generic_Type (F_Type)
3443 and then not Is_Derived_Type (F_Type)
3444 then
9ceeaf9d
AC
3445 -- If the type of a formal is incomplete, subprogram is being
3446 -- frozen prematurely. Within an instance (but not within a
3447 -- wrapper package) this is an artifact of our need to regard
3448 -- the end of an instantiation as a freeze point. Otherwise it
3449 -- is a definite error.
4d1429b2
AC
3450
3451 if In_Instance then
3452 Set_Is_Frozen (E, False);
3453 Result := No_List;
3454 return False;
3455
3456 elsif not After_Last_Declaration
3457 and then not Freezing_Library_Level_Tagged_Type
3458 then
3459 Error_Msg_Node_1 := F_Type;
3460 Error_Msg
9ceeaf9d 3461 ("type & must be fully defined before this point", Loc);
4d1429b2
AC
3462 end if;
3463 end if;
3464
9ceeaf9d
AC
3465 -- Check suspicious parameter for C function. These tests apply
3466 -- only to exported/imported subprograms.
4d1429b2
AC
3467
3468 if Warn_On_Export_Import
3469 and then Comes_From_Source (E)
3470 and then (Convention (E) = Convention_C
3471 or else
3472 Convention (E) = Convention_CPP)
3473 and then (Is_Imported (E) or else Is_Exported (E))
3474 and then Convention (E) /= Convention (Formal)
3475 and then not Has_Warnings_Off (E)
3476 and then not Has_Warnings_Off (F_Type)
3477 and then not Has_Warnings_Off (Formal)
3478 then
3479 -- Qualify mention of formals with subprogram name
3480
3481 Error_Msg_Qual_Level := 1;
3482
3483 -- Check suspicious use of fat C pointer
3484
3485 if Is_Access_Type (F_Type)
3486 and then Esize (F_Type) > Ttypes.System_Address_Size
3487 then
3488 Error_Msg_N
3489 ("?x?type of & does not correspond to C pointer!", Formal);
3490
3491 -- Check suspicious return of boolean
3492
3493 elsif Root_Type (F_Type) = Standard_Boolean
3494 and then Convention (F_Type) = Convention_Ada
3495 and then not Has_Warnings_Off (F_Type)
3496 and then not Has_Size_Clause (F_Type)
4d1429b2 3497 then
9ceeaf9d
AC
3498 Error_Msg_N
3499 ("& is an 8-bit Ada Boolean?x?", Formal);
3500 Error_Msg_N
3501 ("\use appropriate corresponding type in C "
4d1429b2
AC
3502 & "(e.g. char)?x?", Formal);
3503
3504 -- Check suspicious tagged type
3505
3506 elsif (Is_Tagged_Type (F_Type)
9ceeaf9d
AC
3507 or else
3508 (Is_Access_Type (F_Type)
3509 and then Is_Tagged_Type (Designated_Type (F_Type))))
4d1429b2
AC
3510 and then Convention (E) = Convention_C
3511 then
9ceeaf9d
AC
3512 Error_Msg_N
3513 ("?x?& involves a tagged type which does not "
4d1429b2
AC
3514 & "correspond to any C type!", Formal);
3515
3516 -- Check wrong convention subprogram pointer
3517
3518 elsif Ekind (F_Type) = E_Access_Subprogram_Type
3519 and then not Has_Foreign_Convention (F_Type)
3520 then
9ceeaf9d
AC
3521 Error_Msg_N
3522 ("?x?subprogram pointer & should "
4d1429b2
AC
3523 & "have foreign convention!", Formal);
3524 Error_Msg_Sloc := Sloc (F_Type);
3525 Error_Msg_NE
3526 ("\?x?add Convention pragma to declaration of &#",
3527 Formal, F_Type);
3528 end if;
3529
3530 -- Turn off name qualification after message output
3531
3532 Error_Msg_Qual_Level := 0;
3533 end if;
3534
9ceeaf9d
AC
3535 -- Check for unconstrained array in exported foreign convention
3536 -- case.
4d1429b2
AC
3537
3538 if Has_Foreign_Convention (E)
3539 and then not Is_Imported (E)
3540 and then Is_Array_Type (F_Type)
3541 and then not Is_Constrained (F_Type)
3542 and then Warn_On_Export_Import
4d1429b2
AC
3543 then
3544 Error_Msg_Qual_Level := 1;
3545
9ceeaf9d
AC
3546 -- If this is an inherited operation, place the warning on
3547 -- the derived type declaration, rather than on the original
3548 -- subprogram.
4d1429b2
AC
3549
3550 if Nkind (Original_Node (Parent (E))) = N_Full_Type_Declaration
3551 then
3552 Warn_Node := Parent (E);
3553
3554 if Formal = First_Formal (E) then
9ceeaf9d 3555 Error_Msg_NE ("??in inherited operation&", Warn_Node, E);
4d1429b2
AC
3556 end if;
3557 else
3558 Warn_Node := Formal;
3559 end if;
3560
3561 Error_Msg_NE ("?x?type of argument& is unconstrained array",
3562 Warn_Node, Formal);
3563 Error_Msg_NE ("?x?foreign caller must pass bounds explicitly",
3564 Warn_Node, Formal);
3565 Error_Msg_Qual_Level := 0;
3566 end if;
3567
3568 if not From_Limited_With (F_Type) then
3569 if Is_Access_Type (F_Type) then
3570 F_Type := Designated_Type (F_Type);
3571 end if;
3572
3573 -- If the formal is an anonymous_access_to_subprogram
3574 -- freeze the subprogram type as well, to prevent
3575 -- scope anomalies in gigi, because there is no other
3576 -- clear point at which it could be frozen.
3577
3578 if Is_Itype (Etype (Formal))
3579 and then Ekind (F_Type) = E_Subprogram_Type
3580 then
3581 Freeze_And_Append (F_Type, N, Result);
3582 end if;
3583 end if;
3584
3585 Next_Formal (Formal);
3586 end loop;
3587
3588 -- Case of function: similar checks on return type
3589
3590 if Ekind (E) = E_Function then
3591
4d1429b2
AC
3592 -- Freeze return type
3593
3594 R_Type := Etype (E);
3595
d8f43ee6
HK
3596 -- AI05-0151: the return type may have been incomplete at the
3597 -- point of declaration. Replace it with the full view, unless the
3598 -- current type is a limited view. In that case the full view is
3599 -- in a different unit, and gigi finds the non-limited view after
3600 -- the other unit is elaborated.
4d1429b2
AC
3601
3602 if Ekind (R_Type) = E_Incomplete_Type
3603 and then Present (Full_View (R_Type))
3604 and then not From_Limited_With (R_Type)
3605 then
3606 R_Type := Full_View (R_Type);
3607 Set_Etype (E, R_Type);
4d1429b2
AC
3608 end if;
3609
3610 Freeze_And_Append (R_Type, N, Result);
3611
3612 -- Check suspicious return type for C function
3613
3614 if Warn_On_Export_Import
3615 and then (Convention (E) = Convention_C
3616 or else
3617 Convention (E) = Convention_CPP)
3618 and then (Is_Imported (E) or else Is_Exported (E))
3619 then
3620 -- Check suspicious return of fat C pointer
3621
3622 if Is_Access_Type (R_Type)
3623 and then Esize (R_Type) > Ttypes.System_Address_Size
3624 and then not Has_Warnings_Off (E)
3625 and then not Has_Warnings_Off (R_Type)
3626 then
d8f43ee6
HK
3627 Error_Msg_N
3628 ("?x?return type of& does not correspond to C pointer!",
3629 E);
4d1429b2
AC
3630
3631 -- Check suspicious return of boolean
3632
3633 elsif Root_Type (R_Type) = Standard_Boolean
3634 and then Convention (R_Type) = Convention_Ada
4d1429b2
AC
3635 and then not Has_Warnings_Off (E)
3636 and then not Has_Warnings_Off (R_Type)
3637 and then not Has_Size_Clause (R_Type)
3638 then
3639 declare
3640 N : constant Node_Id :=
3641 Result_Definition (Declaration_Node (E));
3642 begin
3643 Error_Msg_NE
3644 ("return type of & is an 8-bit Ada Boolean?x?", N, E);
3645 Error_Msg_NE
3646 ("\use appropriate corresponding type in C "
3647 & "(e.g. char)?x?", N, E);
3648 end;
3649
3650 -- Check suspicious return tagged type
3651
3652 elsif (Is_Tagged_Type (R_Type)
3653 or else (Is_Access_Type (R_Type)
3654 and then
3655 Is_Tagged_Type
3656 (Designated_Type (R_Type))))
3657 and then Convention (E) = Convention_C
3658 and then not Has_Warnings_Off (E)
3659 and then not Has_Warnings_Off (R_Type)
3660 then
3661 Error_Msg_N ("?x?return type of & does not "
3662 & "correspond to C type!", E);
3663
3664 -- Check return of wrong convention subprogram pointer
3665
3666 elsif Ekind (R_Type) = E_Access_Subprogram_Type
3667 and then not Has_Foreign_Convention (R_Type)
3668 and then not Has_Warnings_Off (E)
3669 and then not Has_Warnings_Off (R_Type)
3670 then
3671 Error_Msg_N ("?x?& should return a foreign "
3672 & "convention subprogram pointer", E);
3673 Error_Msg_Sloc := Sloc (R_Type);
3674 Error_Msg_NE
3675 ("\?x?add Convention pragma to declaration of& #",
3676 E, R_Type);
3677 end if;
3678 end if;
3679
3680 -- Give warning for suspicious return of a result of an
9ceeaf9d 3681 -- unconstrained array type in a foreign convention function.
4d1429b2
AC
3682
3683 if Has_Foreign_Convention (E)
3684
3685 -- We are looking for a return of unconstrained array
3686
3687 and then Is_Array_Type (R_Type)
3688 and then not Is_Constrained (R_Type)
3689
9ceeaf9d
AC
3690 -- Exclude imported routines, the warning does not belong on
3691 -- the import, but rather on the routine definition.
4d1429b2
AC
3692
3693 and then not Is_Imported (E)
3694
9ceeaf9d
AC
3695 -- Check that general warning is enabled, and that it is not
3696 -- suppressed for this particular case.
4d1429b2
AC
3697
3698 and then Warn_On_Export_Import
3699 and then not Has_Warnings_Off (E)
3700 and then not Has_Warnings_Off (R_Type)
3701 then
f3bf0d9a
HK
3702 Error_Msg_N
3703 ("?x?foreign convention function& should not return "
3704 & "unconstrained array!", E);
4d1429b2
AC
3705 end if;
3706 end if;
3707
a79cdb2c
BD
3708 -- Check suspicious use of Import in pure unit (cases where the RM
3709 -- allows calls to be omitted).
e5cabfac 3710
a79cdb2c
BD
3711 if Is_Imported (E)
3712
3713 -- It might be suspicious if the compilation unit has the Pure
3714 -- aspect/pragma.
3715
3716 and then Has_Pragma_Pure (Cunit_Entity (Current_Sem_Unit))
3717
3718 -- The RM allows omission of calls only in the case of
3719 -- library-level subprograms (see RM-10.2.1(18)).
3720
3721 and then Is_Library_Level_Entity (E)
e5cabfac
AC
3722
3723 -- Ignore internally generated entity. This happens in some cases
3724 -- of subprograms in specs, where we generate an implied body.
3725
3726 and then Comes_From_Source (Import_Pragma (E))
3727
3728 -- Assume run-time knows what it is doing
3729
3730 and then not GNAT_Mode
3731
3732 -- Assume explicit Pure_Function means import is pure
3733
3734 and then not Has_Pragma_Pure_Function (E)
3735
3736 -- Don't need warning in relaxed semantics mode
3737
3738 and then not Relaxed_RM_Semantics
3739
3740 -- Assume convention Intrinsic is OK, since this is specialized.
3741 -- This deals with the DEC unit current_exception.ads
3742
3743 and then Convention (E) /= Convention_Intrinsic
3744
4179af27 3745 -- Assume that ASM interface knows what it is doing. This deals
f96fd197 3746 -- with e.g. unsigned.ads in the AAMP back end.
e5cabfac
AC
3747
3748 and then Convention (E) /= Convention_Assembler
3749 then
3750 Error_Msg_N
3751 ("pragma Import in Pure unit??", Import_Pragma (E));
3752 Error_Msg_NE
3753 ("\calls to & may be omitted (RM 10.2.1(18/3))??",
3754 Import_Pragma (E), E);
3755 end if;
3756
4d1429b2
AC
3757 return True;
3758 end Freeze_Profile;
3759
70482933
RK
3760 ------------------------
3761 -- Freeze_Record_Type --
3762 ------------------------
3763
3764 procedure Freeze_Record_Type (Rec : Entity_Id) is
7b4ebba5 3765 ADC : Node_Id;
70482933 3766 Comp : Entity_Id;
fbf5a39b 3767 IR : Node_Id;
c6823a20 3768 Prev : Entity_Id;
70482933 3769
67ce0d7e
RD
3770 Junk : Boolean;
3771 pragma Warnings (Off, Junk);
3772
515490e0
AC
3773 Aliased_Component : Boolean := False;
3774 -- Set True if we find at least one component which is aliased. This
3775 -- is used to prevent Implicit_Packing of the record, since packing
3776 -- cannot modify the size of alignment of an aliased component.
3777
f91caacb 3778 All_Elem_Components : Boolean := True;
820f1162
AC
3779 -- True if all components are of a type whose underlying type is
3780 -- elementary.
8dc10d38 3781
f91caacb 3782 All_Sized_Components : Boolean := True;
820f1162 3783 -- True if all components have a known RM_Size
f91caacb
EB
3784
3785 All_Storage_Unit_Components : Boolean := True;
820f1162
AC
3786 -- True if all components have an RM_Size that is a multiple of the
3787 -- storage unit.
f91caacb
EB
3788
3789 Elem_Component_Total_Esize : Uint := Uint_0;
3790 -- Accumulates total Esize values of all elementary components. Used
3791 -- for processing of Implicit_Packing.
3792
c70cf4f8
AC
3793 Placed_Component : Boolean := False;
3794 -- Set True if we find at least one component with a component
3795 -- clause (used to warn about useless Bit_Order pragmas, and also
3796 -- to detect cases where Implicit_Packing may have an effect).
3797
3798 Rec_Pushed : Boolean := False;
3799 -- Set True if the record type scope Rec has been pushed on the scope
3800 -- stack. Needed for the analysis of delayed aspects specified to the
3801 -- components of Rec.
3802
f91caacb
EB
3803 Sized_Component_Total_RM_Size : Uint := Uint_0;
3804 -- Accumulates total RM_Size values of all sized components. Used
3805 -- for processing of Implicit_Packing.
70482933 3806
c70cf4f8
AC
3807 SSO_ADC : Node_Id;
3808 -- Scalar_Storage_Order attribute definition clause for the record
3809
3810 SSO_ADC_Component : Boolean := False;
3811 -- Set True if we find at least one component whose type has a
3812 -- Scalar_Storage_Order attribute definition clause.
3813
3814 Unplaced_Component : Boolean := False;
3815 -- Set True if we find at least one component with no component
3816 -- clause (used to warn about useless Pack pragmas).
3817
e18d6a15
JM
3818 function Check_Allocator (N : Node_Id) return Node_Id;
3819 -- If N is an allocator, possibly wrapped in one or more level of
3820 -- qualified expression(s), return the inner allocator node, else
3821 -- return Empty.
19590d70 3822
7d8b9c99
RD
3823 procedure Check_Itype (Typ : Entity_Id);
3824 -- If the component subtype is an access to a constrained subtype of
3825 -- an already frozen type, make the subtype frozen as well. It might
3826 -- otherwise be frozen in the wrong scope, and a freeze node on
3827 -- subtype has no effect. Similarly, if the component subtype is a
3828 -- regular (not protected) access to subprogram, set the anonymous
3829 -- subprogram type to frozen as well, to prevent an out-of-scope
3830 -- freeze node at some eventual point of call. Protected operations
3831 -- are handled elsewhere.
6e059adb 3832
c76bf0bf
AC
3833 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id);
3834 -- Make sure that all types mentioned in Discrete_Choices of the
3835 -- variants referenceed by the Variant_Part VP are frozen. This is
3836 -- a recursive routine to deal with nested variants.
3837
19590d70
GD
3838 ---------------------
3839 -- Check_Allocator --
3840 ---------------------
3841
e18d6a15
JM
3842 function Check_Allocator (N : Node_Id) return Node_Id is
3843 Inner : Node_Id;
19590d70 3844 begin
e18d6a15 3845 Inner := N;
e18d6a15
JM
3846 loop
3847 if Nkind (Inner) = N_Allocator then
3848 return Inner;
e18d6a15
JM
3849 elsif Nkind (Inner) = N_Qualified_Expression then
3850 Inner := Expression (Inner);
e18d6a15
JM
3851 else
3852 return Empty;
3853 end if;
3854 end loop;
19590d70
GD
3855 end Check_Allocator;
3856
6871ba5f
AC
3857 -----------------
3858 -- Check_Itype --
3859 -----------------
3860
7d8b9c99
RD
3861 procedure Check_Itype (Typ : Entity_Id) is
3862 Desig : constant Entity_Id := Designated_Type (Typ);
3863
6e059adb
AC
3864 begin
3865 if not Is_Frozen (Desig)
3866 and then Is_Frozen (Base_Type (Desig))
3867 then
3868 Set_Is_Frozen (Desig);
3869
3870 -- In addition, add an Itype_Reference to ensure that the
7d8b9c99
RD
3871 -- access subtype is elaborated early enough. This cannot be
3872 -- done if the subtype may depend on discriminants.
6e059adb
AC
3873
3874 if Ekind (Comp) = E_Component
3875 and then Is_Itype (Etype (Comp))
3876 and then not Has_Discriminants (Rec)
3877 then
3878 IR := Make_Itype_Reference (Sloc (Comp));
3879 Set_Itype (IR, Desig);
90878b12 3880 Add_To_Result (IR);
6e059adb 3881 end if;
7d8b9c99
RD
3882
3883 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
3884 and then Convention (Desig) /= Convention_Protected
3885 then
3886 Set_Is_Frozen (Desig);
6e059adb
AC
3887 end if;
3888 end Check_Itype;
3889
c76bf0bf
AC
3890 ------------------------------------
3891 -- Freeze_Choices_In_Variant_Part --
3892 ------------------------------------
3893
3894 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id) is
3895 pragma Assert (Nkind (VP) = N_Variant_Part);
3896
3897 Variant : Node_Id;
3898 Choice : Node_Id;
3899 CL : Node_Id;
3900
3901 begin
3902 -- Loop through variants
3903
3904 Variant := First_Non_Pragma (Variants (VP));
3905 while Present (Variant) loop
3906
3907 -- Loop through choices, checking that all types are frozen
3908
3909 Choice := First_Non_Pragma (Discrete_Choices (Variant));
3910 while Present (Choice) loop
3911 if Nkind (Choice) in N_Has_Etype
3912 and then Present (Etype (Choice))
3913 then
3914 Freeze_And_Append (Etype (Choice), N, Result);
3915 end if;
3916
3917 Next_Non_Pragma (Choice);
3918 end loop;
3919
3920 -- Check for nested variant part to process
3921
3922 CL := Component_List (Variant);
3923
3924 if not Null_Present (CL) then
3925 if Present (Variant_Part (CL)) then
3926 Freeze_Choices_In_Variant_Part (Variant_Part (CL));
3927 end if;
3928 end if;
3929
3930 Next_Non_Pragma (Variant);
3931 end loop;
3932 end Freeze_Choices_In_Variant_Part;
3933
6e059adb
AC
3934 -- Start of processing for Freeze_Record_Type
3935
70482933 3936 begin
22a83cea
AC
3937 -- Deal with delayed aspect specifications for components. The
3938 -- analysis of the aspect is required to be delayed to the freeze
d27f3ff4
AC
3939 -- point, thus we analyze the pragma or attribute definition
3940 -- clause in the tree at this point. We also analyze the aspect
22a83cea
AC
3941 -- specification node at the freeze point when the aspect doesn't
3942 -- correspond to pragma/attribute definition clause.
70482933
RK
3943
3944 Comp := First_Entity (Rec);
c6823a20 3945 while Present (Comp) loop
b3f532ce 3946 if Ekind (Comp) = E_Component
b7f7dab2 3947 and then Has_Delayed_Aspects (Comp)
b3f532ce 3948 then
22a83cea
AC
3949 if not Rec_Pushed then
3950 Push_Scope (Rec);
3951 Rec_Pushed := True;
b3f532ce 3952
22a83cea
AC
3953 -- The visibility to the discriminants must be restored in
3954 -- order to properly analyze the aspects.
b3f532ce 3955
22a83cea
AC
3956 if Has_Discriminants (Rec) then
3957 Install_Discriminants (Rec);
3958 end if;
b3f532ce
AC
3959 end if;
3960
22a83cea 3961 Analyze_Aspects_At_Freeze_Point (Comp);
b3f532ce
AC
3962 end if;
3963
22a83cea
AC
3964 Next_Entity (Comp);
3965 end loop;
3966
3967 -- Pop the scope if Rec scope has been pushed on the scope stack
3968 -- during the delayed aspect analysis process.
3969
3970 if Rec_Pushed then
3971 if Has_Discriminants (Rec) then
3972 Uninstall_Discriminants (Rec);
3973 end if;
3974
3975 Pop_Scope;
3976 end if;
3977
3978 -- Freeze components and embedded subtypes
3979
3980 Comp := First_Entity (Rec);
3981 Prev := Empty;
3982 while Present (Comp) loop
515490e0
AC
3983 if Is_Aliased (Comp) then
3984 Aliased_Component := True;
3985 end if;
22a83cea 3986
b3f532ce 3987 -- Handle the component and discriminant case
70482933 3988
d27f3ff4 3989 if Ekind_In (Comp, E_Component, E_Discriminant) then
70482933
RK
3990 declare
3991 CC : constant Node_Id := Component_Clause (Comp);
3992
3993 begin
c6823a20
EB
3994 -- Freezing a record type freezes the type of each of its
3995 -- components. However, if the type of the component is
3996 -- part of this record, we do not want or need a separate
3997 -- Freeze_Node. Note that Is_Itype is wrong because that's
3998 -- also set in private type cases. We also can't check for
3999 -- the Scope being exactly Rec because of private types and
4000 -- record extensions.
4001
4002 if Is_Itype (Etype (Comp))
4003 and then Is_Record_Type (Underlying_Type
ef1c0511 4004 (Scope (Etype (Comp))))
c6823a20
EB
4005 then
4006 Undelay_Type (Etype (Comp));
4007 end if;
4008
c159409f 4009 Freeze_And_Append (Etype (Comp), N, Result);
c6823a20 4010
63bb4268
AC
4011 -- Warn for pragma Pack overriding foreign convention
4012
4013 if Has_Foreign_Convention (Etype (Comp))
4014 and then Has_Pragma_Pack (Rec)
d12b19fa
AC
4015
4016 -- Don't warn for aliased components, since override
4017 -- cannot happen in that case.
4018
4019 and then not Is_Aliased (Comp)
63bb4268
AC
4020 then
4021 declare
4022 CN : constant Name_Id :=
4023 Get_Convention_Name (Convention (Etype (Comp)));
4024 PP : constant Node_Id :=
4025 Get_Pragma (Rec, Pragma_Pack);
4026 begin
4027 if Present (PP) then
4028 Error_Msg_Name_1 := CN;
4029 Error_Msg_Sloc := Sloc (Comp);
4030 Error_Msg_N
4031 ("pragma Pack affects convention % component#??",
4032 PP);
4033 Error_Msg_Name_1 := CN;
4034 Error_Msg_NE
4035 ("\component & may not have % compatible "
4036 & "representation??", PP, Comp);
4037 end if;
4038 end;
4039 end if;
4040
0da2c8ac
AC
4041 -- Check for error of component clause given for variable
4042 -- sized type. We have to delay this test till this point,
4043 -- since the component type has to be frozen for us to know
ef1c0511 4044 -- if it is variable length.
0da2c8ac 4045
70482933
RK
4046 if Present (CC) then
4047 Placed_Component := True;
4048
ef1c0511
AC
4049 -- We omit this test in a generic context, it will be
4050 -- applied at instantiation time.
4051
07fc65c4
GB
4052 if Inside_A_Generic then
4053 null;
4054
ef1c0511
AC
4055 -- Also omit this test in CodePeer mode, since we do not
4056 -- have sufficient info on size and rep clauses.
4057
24c34107
AC
4058 elsif CodePeer_Mode then
4059 null;
4060
71ff3d18
AC
4061 -- Omit check if component has a generic type. This can
4062 -- happen in an instantiation within a generic in ASIS
4063 -- mode, where we force freeze actions without full
4064 -- expansion.
4065
4066 elsif Is_Generic_Type (Etype (Comp)) then
4067 null;
4068
ef1c0511
AC
4069 -- Do the check
4070
7d8b9c99
RD
4071 elsif not
4072 Size_Known_At_Compile_Time
4073 (Underlying_Type (Etype (Comp)))
70482933
RK
4074 then
4075 Error_Msg_N
4076 ("component clause not allowed for variable " &
4077 "length component", CC);
4078 end if;
4079
4080 else
4081 Unplaced_Component := True;
4082 end if;
70482933 4083
0da2c8ac 4084 -- Case of component requires byte alignment
70482933 4085
0da2c8ac 4086 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
70482933 4087
0da2c8ac 4088 -- Set the enclosing record to also require byte align
70482933 4089
0da2c8ac 4090 Set_Must_Be_On_Byte_Boundary (Rec);
70482933 4091
7d8b9c99
RD
4092 -- Check for component clause that is inconsistent with
4093 -- the required byte boundary alignment.
70482933 4094
0da2c8ac
AC
4095 if Present (CC)
4096 and then Normalized_First_Bit (Comp) mod
4097 System_Storage_Unit /= 0
4098 then
4099 Error_Msg_N
4100 ("component & must be byte aligned",
4101 Component_Name (Component_Clause (Comp)));
4102 end if;
4103 end if;
0da2c8ac 4104 end;
70482933
RK
4105 end if;
4106
8a95f4e8
RD
4107 -- Gather data for possible Implicit_Packing later. Note that at
4108 -- this stage we might be dealing with a real component, or with
4109 -- an implicit subtype declaration.
8dc10d38 4110
f91caacb
EB
4111 if Known_Static_RM_Size (Etype (Comp)) then
4112 Sized_Component_Total_RM_Size :=
4113 Sized_Component_Total_RM_Size + RM_Size (Etype (Comp));
4114
820f1162
AC
4115 if Present (Underlying_Type (Etype (Comp)))
4116 and then Is_Elementary_Type (Underlying_Type (Etype (Comp)))
4117 then
f91caacb
EB
4118 Elem_Component_Total_Esize :=
4119 Elem_Component_Total_Esize + Esize (Etype (Comp));
4120 else
4121 All_Elem_Components := False;
4122
4123 if RM_Size (Etype (Comp)) mod System_Storage_Unit /= 0 then
4124 All_Storage_Unit_Components := False;
4125 end if;
4126 end if;
426d2717 4127 else
f91caacb 4128 All_Sized_Components := False;
8dc10d38
AC
4129 end if;
4130
c6823a20
EB
4131 -- If the component is an Itype with Delayed_Freeze and is either
4132 -- a record or array subtype and its base type has not yet been
545cb5be
AC
4133 -- frozen, we must remove this from the entity list of this record
4134 -- and put it on the entity list of the scope of its base type.
4135 -- Note that we know that this is not the type of a component
4136 -- since we cleared Has_Delayed_Freeze for it in the previous
4137 -- loop. Thus this must be the Designated_Type of an access type,
4138 -- which is the type of a component.
c6823a20
EB
4139
4140 if Is_Itype (Comp)
4141 and then Is_Type (Scope (Comp))
4142 and then Is_Composite_Type (Comp)
4143 and then Base_Type (Comp) /= Comp
4144 and then Has_Delayed_Freeze (Comp)
4145 and then not Is_Frozen (Base_Type (Comp))
4146 then
4147 declare
4148 Will_Be_Frozen : Boolean := False;
1b24ada5 4149 S : Entity_Id;
c6823a20
EB
4150
4151 begin
e80f0cb0
RD
4152 -- We have a difficult case to handle here. Suppose Rec is
4153 -- subtype being defined in a subprogram that's created as
4154 -- part of the freezing of Rec'Base. In that case, we know
4155 -- that Comp'Base must have already been frozen by the time
4156 -- we get to elaborate this because Gigi doesn't elaborate
4157 -- any bodies until it has elaborated all of the declarative
fea9e956
ES
4158 -- part. But Is_Frozen will not be set at this point because
4159 -- we are processing code in lexical order.
4160
4161 -- We detect this case by going up the Scope chain of Rec
4162 -- and seeing if we have a subprogram scope before reaching
4163 -- the top of the scope chain or that of Comp'Base. If we
4164 -- do, then mark that Comp'Base will actually be frozen. If
4165 -- so, we merely undelay it.
c6823a20 4166
1b24ada5 4167 S := Scope (Rec);
c6823a20
EB
4168 while Present (S) loop
4169 if Is_Subprogram (S) then
4170 Will_Be_Frozen := True;
4171 exit;
4172 elsif S = Scope (Base_Type (Comp)) then
4173 exit;
4174 end if;
4175
4176 S := Scope (S);
4177 end loop;
4178
4179 if Will_Be_Frozen then
4180 Undelay_Type (Comp);
0fea901b 4181
c6823a20
EB
4182 else
4183 if Present (Prev) then
4184 Set_Next_Entity (Prev, Next_Entity (Comp));
4185 else
4186 Set_First_Entity (Rec, Next_Entity (Comp));
4187 end if;
4188
4189 -- Insert in entity list of scope of base type (which
4190 -- must be an enclosing scope, because still unfrozen).
4191
4192 Append_Entity (Comp, Scope (Base_Type (Comp)));
4193 end if;
4194 end;
4195
def46b54
RD
4196 -- If the component is an access type with an allocator as default
4197 -- value, the designated type will be frozen by the corresponding
4198 -- expression in init_proc. In order to place the freeze node for
4199 -- the designated type before that for the current record type,
4200 -- freeze it now.
c6823a20
EB
4201
4202 -- Same process if the component is an array of access types,
4203 -- initialized with an aggregate. If the designated type is
def46b54
RD
4204 -- private, it cannot contain allocators, and it is premature
4205 -- to freeze the type, so we check for this as well.
c6823a20
EB
4206
4207 elsif Is_Access_Type (Etype (Comp))
4208 and then Present (Parent (Comp))
4209 and then Present (Expression (Parent (Comp)))
c6823a20
EB
4210 then
4211 declare
e18d6a15
JM
4212 Alloc : constant Node_Id :=
4213 Check_Allocator (Expression (Parent (Comp)));
c6823a20
EB
4214
4215 begin
e18d6a15 4216 if Present (Alloc) then
19590d70 4217
15918371 4218 -- If component is pointer to a class-wide type, freeze
e18d6a15
JM
4219 -- the specific type in the expression being allocated.
4220 -- The expression may be a subtype indication, in which
4221 -- case freeze the subtype mark.
c6823a20 4222
e18d6a15
JM
4223 if Is_Class_Wide_Type
4224 (Designated_Type (Etype (Comp)))
0f4cb75c 4225 then
e18d6a15
JM
4226 if Is_Entity_Name (Expression (Alloc)) then
4227 Freeze_And_Append
c159409f 4228 (Entity (Expression (Alloc)), N, Result);
0fea901b
AC
4229
4230 elsif Nkind (Expression (Alloc)) = N_Subtype_Indication
e18d6a15
JM
4231 then
4232 Freeze_And_Append
4233 (Entity (Subtype_Mark (Expression (Alloc))),
c159409f 4234 N, Result);
e18d6a15 4235 end if;
0f4cb75c 4236
e18d6a15
JM
4237 elsif Is_Itype (Designated_Type (Etype (Comp))) then
4238 Check_Itype (Etype (Comp));
0f4cb75c 4239
e18d6a15
JM
4240 else
4241 Freeze_And_Append
c159409f 4242 (Designated_Type (Etype (Comp)), N, Result);
e18d6a15 4243 end if;
c6823a20
EB
4244 end if;
4245 end;
4246
4247 elsif Is_Access_Type (Etype (Comp))
4248 and then Is_Itype (Designated_Type (Etype (Comp)))
4249 then
7d8b9c99 4250 Check_Itype (Etype (Comp));
c6823a20 4251
7b4ebba5
AC
4252 -- Freeze the designated type when initializing a component with
4253 -- an aggregate in case the aggregate contains allocators.
4254
4255 -- type T is ...;
4256 -- type T_Ptr is access all T;
4257 -- type T_Array is array ... of T_Ptr;
4258
4259 -- type Rec is record
4260 -- Comp : T_Array := (others => ...);
4261 -- end record;
4262
c6823a20
EB
4263 elsif Is_Array_Type (Etype (Comp))
4264 and then Is_Access_Type (Component_Type (Etype (Comp)))
c6823a20 4265 then
7b4ebba5
AC
4266 declare
4267 Comp_Par : constant Node_Id := Parent (Comp);
4268 Desig_Typ : constant Entity_Id :=
4269 Designated_Type
4270 (Component_Type (Etype (Comp)));
4271
4272 begin
4273 -- The only case when this sort of freezing is not done is
4274 -- when the designated type is class-wide and the root type
4275 -- is the record owning the component. This scenario results
4276 -- in a circularity because the class-wide type requires
4277 -- primitives that have not been created yet as the root
4278 -- type is in the process of being frozen.
4279
4280 -- type Rec is tagged;
4281 -- type Rec_Ptr is access all Rec'Class;
4282 -- type Rec_Array is array ... of Rec_Ptr;
4283
4284 -- type Rec is record
4285 -- Comp : Rec_Array := (others => ...);
4286 -- end record;
4287
4288 if Is_Class_Wide_Type (Desig_Typ)
4289 and then Root_Type (Desig_Typ) = Rec
4290 then
4291 null;
4292
4293 elsif Is_Fully_Defined (Desig_Typ)
4294 and then Present (Comp_Par)
4295 and then Nkind (Comp_Par) = N_Component_Declaration
4296 and then Present (Expression (Comp_Par))
4297 and then Nkind (Expression (Comp_Par)) = N_Aggregate
4298 then
4299 Freeze_And_Append (Desig_Typ, N, Result);
4300 end if;
4301 end;
c6823a20
EB
4302 end if;
4303
4304 Prev := Comp;
70482933
RK
4305 Next_Entity (Comp);
4306 end loop;
4307
dc9111cf
EB
4308 SSO_ADC :=
4309 Get_Attribute_Definition_Clause
4310 (Rec, Attribute_Scalar_Storage_Order);
35fdafcd 4311
dc9111cf
EB
4312 -- If the record type has Complex_Representation, then it is treated
4313 -- as a scalar in the back end so the storage order is irrelevant.
f91510fc 4314
dc9111cf
EB
4315 if Has_Complex_Representation (Rec) then
4316 if Present (SSO_ADC) then
4317 Error_Msg_N
4318 ("??storage order has no effect with Complex_Representation",
4319 SSO_ADC);
4320 end if;
ee6208f2 4321
dc9111cf
EB
4322 else
4323 -- Deal with default setting of reverse storage order
35fdafcd 4324
dc9111cf 4325 Set_SSO_From_Default (Rec);
ee6208f2 4326
dc9111cf 4327 -- Check consistent attribute setting on component types
220d1fd9 4328
dc9111cf
EB
4329 declare
4330 Comp_ADC_Present : Boolean;
4331 begin
4332 Comp := First_Component (Rec);
4333 while Present (Comp) loop
4334 Check_Component_Storage_Order
4335 (Encl_Type => Rec,
4336 Comp => Comp,
4337 ADC => SSO_ADC,
4338 Comp_ADC_Present => Comp_ADC_Present);
4339 SSO_ADC_Component := SSO_ADC_Component or Comp_ADC_Present;
4340 Next_Component (Comp);
4341 end loop;
4342 end;
d3b00ce3 4343
dc9111cf 4344 -- Now deal with reverse storage order/bit order issues
d3b00ce3 4345
dc9111cf 4346 if Present (SSO_ADC) then
d3b00ce3 4347
dc9111cf
EB
4348 -- Check compatibility of Scalar_Storage_Order with Bit_Order,
4349 -- if the former is specified.
d3b00ce3 4350
dc9111cf 4351 if Reverse_Bit_Order (Rec) /= Reverse_Storage_Order (Rec) then
d3b00ce3 4352
dc9111cf
EB
4353 -- Note: report error on Rec, not on SSO_ADC, as ADC may
4354 -- apply to some ancestor type.
50cd5b4d 4355
dc9111cf
EB
4356 Error_Msg_Sloc := Sloc (SSO_ADC);
4357 Error_Msg_N
4358 ("scalar storage order for& specified# inconsistent with "
4359 & "bit order", Rec);
4360 end if;
4361
4362 -- Warn if there is a Scalar_Storage_Order attribute definition
4363 -- clause but no component clause, no component that itself has
4364 -- such an attribute definition, and no pragma Pack.
4365
4366 if not (Placed_Component
4367 or else
4368 SSO_ADC_Component
4369 or else
4370 Is_Packed (Rec))
4371 then
4372 Error_Msg_N
4373 ("??scalar storage order specified but no component "
4374 & "clause", SSO_ADC);
4375 end if;
d3b00ce3 4376 end if;
8a7c0400 4377 end if;
75965852 4378
ee6208f2 4379 -- Deal with Bit_Order aspect
fea9e956 4380
2a290fec 4381 ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
758ad973
AC
4382
4383 if Present (ADC) and then Base_Type (Rec) = Rec then
ee6208f2 4384 if not (Placed_Component
d3e16619
AC
4385 or else Present (SSO_ADC)
4386 or else Is_Packed (Rec))
ee6208f2
AC
4387 then
4388 -- Warn if clause has no effect when no component clause is
4389 -- present, but suppress warning if the Bit_Order is required
4390 -- due to the presence of a Scalar_Storage_Order attribute.
4391
15918371
AC
4392 Error_Msg_N
4393 ("??bit order specification has no effect", ADC);
fea9e956 4394 Error_Msg_N
685bc70f 4395 ("\??since no component clauses were specified", ADC);
fea9e956 4396
ee6208f2 4397 -- Here is where we do the processing to adjust component clauses
52b70b1b
TQ
4398 -- for reversed bit order, when not using reverse SSO. If an error
4399 -- has been reported on Rec already (such as SSO incompatible with
4400 -- bit order), don't bother adjusting as this may generate extra
4401 -- noise.
70482933 4402
758ad973 4403 elsif Reverse_Bit_Order (Rec)
2a290fec 4404 and then not Reverse_Storage_Order (Rec)
52b70b1b 4405 and then not Error_Posted (Rec)
758ad973 4406 then
fea9e956 4407 Adjust_Record_For_Reverse_Bit_Order (Rec);
702d139e 4408
758ad973 4409 -- Case where we have both an explicit Bit_Order and the same
702d139e
TQ
4410 -- Scalar_Storage_Order: leave record untouched, the back-end
4411 -- will take care of required layout conversions.
4412
4413 else
4414 null;
4415
fea9e956 4416 end if;
70482933
RK
4417 end if;
4418
8a95f4e8
RD
4419 -- Complete error checking on record representation clause (e.g.
4420 -- overlap of components). This is called after adjusting the
4421 -- record for reverse bit order.
4422
4423 declare
4424 RRC : constant Node_Id := Get_Record_Representation_Clause (Rec);
4425 begin
4426 if Present (RRC) then
4427 Check_Record_Representation_Clause (RRC);
4428 end if;
4429 end;
4430
1b24ada5
RD
4431 -- Set OK_To_Reorder_Components depending on debug flags
4432
d347f572 4433 if Is_Base_Type (Rec) and then Convention (Rec) = Convention_Ada then
1b24ada5 4434 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
d3b00ce3
AC
4435 or else
4436 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
1b24ada5
RD
4437 then
4438 Set_OK_To_Reorder_Components (Rec);
4439 end if;
4440 end if;
4441
ee094616
RD
4442 -- Check for useless pragma Pack when all components placed. We only
4443 -- do this check for record types, not subtypes, since a subtype may
4444 -- have all its components placed, and it still makes perfectly good
1b24ada5
RD
4445 -- sense to pack other subtypes or the parent type. We do not give
4446 -- this warning if Optimize_Alignment is set to Space, since the
4447 -- pragma Pack does have an effect in this case (it always resets
4448 -- the alignment to one).
70482933 4449
ee094616
RD
4450 if Ekind (Rec) = E_Record_Type
4451 and then Is_Packed (Rec)
70482933 4452 and then not Unplaced_Component
1b24ada5 4453 and then Optimize_Alignment /= 'S'
70482933 4454 then
def46b54
RD
4455 -- Reset packed status. Probably not necessary, but we do it so
4456 -- that there is no chance of the back end doing something strange
4457 -- with this redundant indication of packing.
ee094616 4458
70482933 4459 Set_Is_Packed (Rec, False);
ee094616
RD
4460
4461 -- Give warning if redundant constructs warnings on
4462
4463 if Warn_On_Redundant_Constructs then
ed2233dc 4464 Error_Msg_N -- CODEFIX
685bc70f 4465 ("??pragma Pack has no effect, no unplaced components",
ee094616
RD
4466 Get_Rep_Pragma (Rec, Name_Pack));
4467 end if;
70482933
RK
4468 end if;
4469
ee094616
RD
4470 -- If this is the record corresponding to a remote type, freeze the
4471 -- remote type here since that is what we are semantically freezing.
4472 -- This prevents the freeze node for that type in an inner scope.
70482933 4473
8dc10d38 4474 if Ekind (Rec) = E_Record_Type then
70482933 4475 if Present (Corresponding_Remote_Type (Rec)) then
c159409f 4476 Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
70482933
RK
4477 end if;
4478
3ddfabe3
AC
4479 -- Check for controlled components, unchecked unions, and type
4480 -- invariants.
15918371 4481
70482933 4482 Comp := First_Component (Rec);
70482933 4483 while Present (Comp) loop
80fa4617
EB
4484
4485 -- Do not set Has_Controlled_Component on a class-wide
4486 -- equivalent type. See Make_CW_Equivalent_Type.
4487
4488 if not Is_Class_Wide_Equivalent_Type (Rec)
15918371
AC
4489 and then
4490 (Has_Controlled_Component (Etype (Comp))
4491 or else
4492 (Chars (Comp) /= Name_uParent
c8593453 4493 and then Is_Controlled_Active (Etype (Comp)))
15918371
AC
4494 or else
4495 (Is_Protected_Type (Etype (Comp))
4496 and then
4497 Present (Corresponding_Record_Type (Etype (Comp)))
4498 and then
4499 Has_Controlled_Component
4500 (Corresponding_Record_Type (Etype (Comp)))))
70482933
RK
4501 then
4502 Set_Has_Controlled_Component (Rec);
70482933
RK
4503 end if;
4504
4505 if Has_Unchecked_Union (Etype (Comp)) then
4506 Set_Has_Unchecked_Union (Rec);
4507 end if;
4508
3ddfabe3
AC
4509 -- The record type requires its own invariant procedure in
4510 -- order to verify the invariant of each individual component.
4511 -- Do not consider internal components such as _parent because
4512 -- parent class-wide invariants are always inherited.
104c99ef
CD
4513 -- In GNATprove mode, the component invariants are checked by
4514 -- other means. They should not be added to the record type
4515 -- invariant procedure, so that the procedure can be used to
4516 -- check the recordy type invariants if any.
3ddfabe3
AC
4517
4518 if Comes_From_Source (Comp)
0289a8d7 4519 and then Has_Invariants (Etype (Comp))
104c99ef 4520 and then not GNATprove_Mode
3ddfabe3
AC
4521 then
4522 Set_Has_Own_Invariants (Rec);
4523 end if;
4524
e1308fa8
AC
4525 -- Scan component declaration for likely misuses of current
4526 -- instance, either in a constraint or a default expression.
70482933 4527
e1308fa8 4528 if Has_Per_Object_Constraint (Comp) then
70482933
RK
4529 Check_Current_Instance (Parent (Comp));
4530 end if;
4531
4532 Next_Component (Comp);
4533 end loop;
4534 end if;
4535
15918371
AC
4536 -- Enforce the restriction that access attributes with a current
4537 -- instance prefix can only apply to limited types. This comment
4538 -- is floating here, but does not seem to belong here???
4539
4540 -- Set component alignment if not otherwise already set
4541
70482933
RK
4542 Set_Component_Alignment_If_Not_Set (Rec);
4543
ee094616
RD
4544 -- For first subtypes, check if there are any fixed-point fields with
4545 -- component clauses, where we must check the size. This is not done
15918371 4546 -- till the freeze point since for fixed-point types, we do not know
ee094616 4547 -- the size until the type is frozen. Similar processing applies to
607114db 4548 -- bit-packed arrays.
70482933
RK
4549
4550 if Is_First_Subtype (Rec) then
4551 Comp := First_Component (Rec);
70482933
RK
4552 while Present (Comp) loop
4553 if Present (Component_Clause (Comp))
d05ef0ab 4554 and then (Is_Fixed_Point_Type (Etype (Comp))
d3e16619 4555 or else Is_Bit_Packed_Array (Etype (Comp)))
70482933
RK
4556 then
4557 Check_Size
d05ef0ab 4558 (Component_Name (Component_Clause (Comp)),
70482933
RK
4559 Etype (Comp),
4560 Esize (Comp),
4561 Junk);
4562 end if;
4563
4564 Next_Component (Comp);
4565 end loop;
4566 end if;
7d8b9c99 4567
ce14c577 4568 -- See if Size is too small as is (and implicit packing might help)
8dc10d38 4569
426d2717 4570 if not Is_Packed (Rec)
ce14c577
AC
4571
4572 -- No implicit packing if even one component is explicitly placed
4573
426d2717 4574 and then not Placed_Component
ce14c577 4575
515490e0
AC
4576 -- Or even one component is aliased
4577
4578 and then not Aliased_Component
4579
f91caacb 4580 -- Must have size clause and all sized components
ce14c577 4581
8dc10d38 4582 and then Has_Size_Clause (Rec)
f91caacb 4583 and then All_Sized_Components
ce14c577
AC
4584
4585 -- Do not try implicit packing on records with discriminants, too
4586 -- complicated, especially in the variant record case.
4587
8dc10d38 4588 and then not Has_Discriminants (Rec)
ce14c577 4589
f91caacb
EB
4590 -- We want to implicitly pack if the specified size of the record
4591 -- is less than the sum of the object sizes (no point in packing
d4b56371 4592 -- if this is not the case), if we can compute it, i.e. if we have
f91caacb 4593 -- only elementary components. Otherwise, we have at least one
d4b56371 4594 -- composite component and we want to implicitly pack only if bit
f91caacb
EB
4595 -- packing is required for it, as we are sure in this case that
4596 -- the back end cannot do the expected layout without packing.
ce14c577 4597
c70cf4f8
AC
4598 and then
4599 ((All_Elem_Components
4600 and then RM_Size (Rec) < Elem_Component_Total_Esize)
4601 or else
4602 (not All_Elem_Components
4603 and then not All_Storage_Unit_Components))
ce14c577
AC
4604
4605 -- And the total RM size cannot be greater than the specified size
a90bd866 4606 -- since otherwise packing will not get us where we have to be.
ce14c577 4607
f91caacb 4608 and then RM_Size (Rec) >= Sized_Component_Total_RM_Size
ce14c577 4609
06b599fd 4610 -- Never do implicit packing in CodePeer or SPARK modes since
59e6b23c 4611 -- we don't do any packing in these modes, since this generates
25ebc085
AC
4612 -- over-complex code that confuses static analysis, and in
4613 -- general, neither CodePeer not GNATprove care about the
4614 -- internal representation of objects.
ce14c577 4615
f5da7a97 4616 and then not (CodePeer_Mode or GNATprove_Mode)
8dc10d38 4617 then
426d2717
AC
4618 -- If implicit packing enabled, do it
4619
4620 if Implicit_Packing then
4621 Set_Is_Packed (Rec);
4622
4623 -- Otherwise flag the size clause
4624
4625 else
4626 declare
4627 Sz : constant Node_Id := Size_Clause (Rec);
4628 begin
ed2233dc 4629 Error_Msg_NE -- CODEFIX
426d2717 4630 ("size given for& too small", Sz, Rec);
ed2233dc 4631 Error_Msg_N -- CODEFIX
426d2717
AC
4632 ("\use explicit pragma Pack "
4633 & "or use pragma Implicit_Packing", Sz);
4634 end;
4635 end if;
8dc10d38 4636 end if;
15918371 4637
f3bf0d9a 4638 -- The following checks are relevant only when SPARK_Mode is on as
f9e333ab
AC
4639 -- they are not standard Ada legality rules.
4640
4641 if SPARK_Mode = On then
f9e333ab 4642
7738270b
AC
4643 -- A discriminated type cannot be effectively volatile
4644 -- (SPARK RM 7.1.3(5)).
f9e333ab 4645
7738270b
AC
4646 if Is_Effectively_Volatile (Rec) then
4647 if Has_Discriminants (Rec) then
f9e333ab 4648 Error_Msg_N ("discriminated type & cannot be volatile", Rec);
f9e333ab
AC
4649 end if;
4650
d780e54f 4651 -- A non-effectively volatile record type cannot contain
e4b1cd76 4652 -- effectively volatile components (SPARK RM 7.1.3(6)).
f9e333ab
AC
4653
4654 else
4655 Comp := First_Component (Rec);
4656 while Present (Comp) loop
4657 if Comes_From_Source (Comp)
d780e54f 4658 and then Is_Effectively_Volatile (Etype (Comp))
f9e333ab
AC
4659 then
4660 Error_Msg_Name_1 := Chars (Rec);
4661 Error_Msg_N
4662 ("component & of non-volatile type % cannot be "
4663 & "volatile", Comp);
4664 end if;
4665
4666 Next_Component (Comp);
4667 end loop;
4668 end if;
75b87c16
AC
4669
4670 -- A type which does not yield a synchronized object cannot have
4671 -- a component that yields a synchronized object (SPARK RM 9.5).
4672
4673 if not Yields_Synchronized_Object (Rec) then
4674 Comp := First_Component (Rec);
4675 while Present (Comp) loop
4676 if Comes_From_Source (Comp)
4677 and then Yields_Synchronized_Object (Etype (Comp))
4678 then
4679 Error_Msg_Name_1 := Chars (Rec);
4680 Error_Msg_N
4681 ("component & of non-synchronized type % cannot be "
4682 & "synchronized", Comp);
4683 end if;
4684
4685 Next_Component (Comp);
4686 end loop;
4687 end if;
58996b09
HK
4688
4689 -- A Ghost type cannot have a component of protected or task type
4690 -- (SPARK RM 6.9(19)).
4691
4692 if Is_Ghost_Entity (Rec) then
4693 Comp := First_Component (Rec);
4694 while Present (Comp) loop
4695 if Comes_From_Source (Comp)
4696 and then Is_Concurrent_Type (Etype (Comp))
4697 then
4698 Error_Msg_Name_1 := Chars (Rec);
4699 Error_Msg_N
4700 ("component & of ghost type % cannot be concurrent",
4701 Comp);
4702 end if;
4703
4704 Next_Component (Comp);
4705 end loop;
4706 end if;
f9e333ab
AC
4707 end if;
4708
cad97339 4709 -- Make sure that if we have an iterator aspect, then we have
7166d535
AC
4710 -- either Constant_Indexing or Variable_Indexing.
4711
4f2cae4a
ES
4712 declare
4713 Iterator_Aspect : Node_Id;
4714
4715 begin
4716 Iterator_Aspect := Find_Aspect (Rec, Aspect_Iterator_Element);
4717
4718 if No (Iterator_Aspect) then
4719 Iterator_Aspect := Find_Aspect (Rec, Aspect_Default_Iterator);
4720 end if;
4721
4722 if Present (Iterator_Aspect) then
4723 if Has_Aspect (Rec, Aspect_Constant_Indexing)
cad97339 4724 or else
4f2cae4a
ES
4725 Has_Aspect (Rec, Aspect_Variable_Indexing)
4726 then
4727 null;
4728 else
4729 Error_Msg_N
4730 ("Iterator_Element requires indexing aspect",
cad97339 4731 Iterator_Aspect);
4f2cae4a 4732 end if;
7166d535 4733 end if;
4f2cae4a 4734 end;
7166d535 4735
15918371
AC
4736 -- All done if not a full record definition
4737
4738 if Ekind (Rec) /= E_Record_Type then
4739 return;
4740 end if;
4741
c76bf0bf
AC
4742 -- Finally we need to check the variant part to make sure that
4743 -- all types within choices are properly frozen as part of the
4744 -- freezing of the record type.
15918371
AC
4745
4746 Check_Variant_Part : declare
4747 D : constant Node_Id := Declaration_Node (Rec);
4748 T : Node_Id;
4749 C : Node_Id;
15918371
AC
4750
4751 begin
4752 -- Find component list
4753
4754 C := Empty;
4755
4756 if Nkind (D) = N_Full_Type_Declaration then
4757 T := Type_Definition (D);
4758
4759 if Nkind (T) = N_Record_Definition then
4760 C := Component_List (T);
4761
4762 elsif Nkind (T) = N_Derived_Type_Definition
4763 and then Present (Record_Extension_Part (T))
4764 then
4765 C := Component_List (Record_Extension_Part (T));
4766 end if;
4767 end if;
4768
e7f23f06 4769 -- Case of variant part present
15918371
AC
4770
4771 if Present (C) and then Present (Variant_Part (C)) then
c76bf0bf
AC
4772 Freeze_Choices_In_Variant_Part (Variant_Part (C));
4773 end if;
4530b919 4774
c76bf0bf
AC
4775 -- Note: we used to call Check_Choices here, but it is too early,
4776 -- since predicated subtypes are frozen here, but their freezing
4777 -- actions are in Analyze_Freeze_Entity, which has not been called
4778 -- yet for entities frozen within this procedure, so we moved that
4779 -- call to the Analyze_Freeze_Entity for the record type.
4530b919 4780
15918371 4781 end Check_Variant_Part;
527f5eb6
AC
4782
4783 -- Check that all the primitives of an interface type are abstract
4784 -- or null procedures.
4785
4786 if Is_Interface (Rec)
4787 and then not Error_Posted (Parent (Rec))
4788 then
4789 declare
4790 Elmt : Elmt_Id;
4791 Subp : Entity_Id;
4792
4793 begin
4794 Elmt := First_Elmt (Primitive_Operations (Rec));
4795 while Present (Elmt) loop
4796 Subp := Node (Elmt);
4797
4798 if not Is_Abstract_Subprogram (Subp)
4799
4800 -- Avoid reporting the error on inherited primitives
4801
4802 and then Comes_From_Source (Subp)
4803 then
4804 Error_Msg_Name_1 := Chars (Subp);
4805
4806 if Ekind (Subp) = E_Procedure then
4807 if not Null_Present (Parent (Subp)) then
4808 Error_Msg_N
4809 ("interface procedure % must be abstract or null",
4810 Parent (Subp));
4811 end if;
4812 else
4813 Error_Msg_N
4814 ("interface function % must be abstract",
4815 Parent (Subp));
4816 end if;
4817 end if;
4818
4819 Next_Elmt (Elmt);
4820 end loop;
4821 end;
4822 end if;
017d237e
ES
4823
4824 -- For a derived tagged type, check whether inherited primitives
8c519039 4825 -- might require a wrapper to handle class-wide conditions.
017d237e
ES
4826
4827 if Is_Tagged_Type (Rec) and then Is_Derived_Type (Rec) then
4828 Check_Inherited_Conditions (Rec);
4829 end if;
70482933
RK
4830 end Freeze_Record_Type;
4831
e8cddc3b
AC
4832 -------------------------------
4833 -- Has_Boolean_Aspect_Import --
4834 -------------------------------
4835
4836 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean is
4837 Decl : constant Node_Id := Declaration_Node (E);
4838 Asp : Node_Id;
4839 Expr : Node_Id;
4840
4841 begin
4842 if Has_Aspects (Decl) then
4843 Asp := First (Aspect_Specifications (Decl));
4844 while Present (Asp) loop
4845 Expr := Expression (Asp);
4846
4847 -- The value of aspect Import is True when the expression is
4848 -- either missing or it is explicitly set to True.
4849
4850 if Get_Aspect_Id (Asp) = Aspect_Import
4851 and then (No (Expr)
4852 or else (Compile_Time_Known_Value (Expr)
4853 and then Is_True (Expr_Value (Expr))))
4854 then
4855 return True;
4856 end if;
4857
4858 Next (Asp);
4859 end loop;
4860 end if;
4861
4862 return False;
4863 end Has_Boolean_Aspect_Import;
4864
ce06d641
AC
4865 -------------------------
4866 -- Inherit_Freeze_Node --
4867 -------------------------
4868
4869 procedure Inherit_Freeze_Node
4870 (Fnod : Node_Id;
4871 Typ : Entity_Id)
4872 is
4873 Typ_Fnod : constant Node_Id := Freeze_Node (Typ);
4874
4875 begin
4876 Set_Freeze_Node (Typ, Fnod);
4877 Set_Entity (Fnod, Typ);
4878
4879 -- The input type had an existing node. Propagate relevant attributes
4880 -- from the old freeze node to the inherited freeze node.
4881
4882 -- ??? if both freeze nodes have attributes, would they differ?
4883
4884 if Present (Typ_Fnod) then
4885
4886 -- Attribute Access_Types_To_Process
4887
4888 if Present (Access_Types_To_Process (Typ_Fnod))
4889 and then No (Access_Types_To_Process (Fnod))
4890 then
4891 Set_Access_Types_To_Process (Fnod,
4892 Access_Types_To_Process (Typ_Fnod));
4893 end if;
4894
4895 -- Attribute Actions
4896
4897 if Present (Actions (Typ_Fnod)) and then No (Actions (Fnod)) then
4898 Set_Actions (Fnod, Actions (Typ_Fnod));
4899 end if;
4900
4901 -- Attribute First_Subtype_Link
4902
4903 if Present (First_Subtype_Link (Typ_Fnod))
4904 and then No (First_Subtype_Link (Fnod))
4905 then
4906 Set_First_Subtype_Link (Fnod, First_Subtype_Link (Typ_Fnod));
4907 end if;
4908
4909 -- Attribute TSS_Elist
4910
4911 if Present (TSS_Elist (Typ_Fnod))
4912 and then No (TSS_Elist (Fnod))
4913 then
4914 Set_TSS_Elist (Fnod, TSS_Elist (Typ_Fnod));
4915 end if;
4916 end if;
4917 end Inherit_Freeze_Node;
4918
32bba3c9
AC
4919 ------------------------------
4920 -- Wrap_Imported_Subprogram --
4921 ------------------------------
4922
4923 -- The issue here is that our normal approach of checking preconditions
4924 -- and postconditions does not work for imported procedures, since we
4925 -- are not generating code for the body. To get around this we create
4926 -- a wrapper, as shown by the following example:
4927
4928 -- procedure K (A : Integer);
4929 -- pragma Import (C, K);
4930
4931 -- The spec is rewritten by removing the effects of pragma Import, but
4932 -- leaving the convention unchanged, as though the source had said:
4933
4934 -- procedure K (A : Integer);
4935 -- pragma Convention (C, K);
4936
4937 -- and we create a body, added to the entity K freeze actions, which
4938 -- looks like:
4939
4940 -- procedure K (A : Integer) is
4941 -- procedure K (A : Integer);
4942 -- pragma Import (C, K);
4943 -- begin
4944 -- K (A);
4945 -- end K;
4946
4947 -- Now the contract applies in the normal way to the outer procedure,
4948 -- and the inner procedure has no contracts, so there is no problem
4949 -- in just calling it to get the original effect.
4950
4951 -- In the case of a function, we create an appropriate return statement
4952 -- for the subprogram body that calls the inner procedure.
4953
4954 procedure Wrap_Imported_Subprogram (E : Entity_Id) is
2e885a6f
AC
4955 function Copy_Import_Pragma return Node_Id;
4956 -- Obtain a copy of the Import_Pragma which belongs to subprogram E
4957
4958 ------------------------
4959 -- Copy_Import_Pragma --
4960 ------------------------
4961
4962 function Copy_Import_Pragma return Node_Id is
4963
4964 -- The subprogram should have an import pragma, otherwise it does
4965 -- need a wrapper.
4966
4967 Prag : constant Node_Id := Import_Pragma (E);
4968 pragma Assert (Present (Prag));
4969
4970 -- Save all semantic fields of the pragma
4971
4972 Save_Asp : constant Node_Id := Corresponding_Aspect (Prag);
4973 Save_From : constant Boolean := From_Aspect_Specification (Prag);
4974 Save_Prag : constant Node_Id := Next_Pragma (Prag);
4975 Save_Rep : constant Node_Id := Next_Rep_Item (Prag);
4976
4977 Result : Node_Id;
4978
4979 begin
4980 -- Reset all semantic fields. This avoids a potential infinite
4981 -- loop when the pragma comes from an aspect as the duplication
4982 -- will copy the aspect, then copy the corresponding pragma and
4983 -- so on.
4984
4985 Set_Corresponding_Aspect (Prag, Empty);
4986 Set_From_Aspect_Specification (Prag, False);
4987 Set_Next_Pragma (Prag, Empty);
4988 Set_Next_Rep_Item (Prag, Empty);
4989
4990 Result := Copy_Separate_Tree (Prag);
4991
4992 -- Restore the original semantic fields
4993
4994 Set_Corresponding_Aspect (Prag, Save_Asp);
4995 Set_From_Aspect_Specification (Prag, Save_From);
4996 Set_Next_Pragma (Prag, Save_Prag);
4997 Set_Next_Rep_Item (Prag, Save_Rep);
4998
4999 return Result;
5000 end Copy_Import_Pragma;
5001
5002 -- Local variables
5003
32bba3c9 5004 Loc : constant Source_Ptr := Sloc (E);
f1a3590e 5005 CE : constant Name_Id := Chars (E);
32bba3c9
AC
5006 Bod : Node_Id;
5007 Forml : Entity_Id;
2e885a6f
AC
5008 Parms : List_Id;
5009 Prag : Node_Id;
5010 Spec : Node_Id;
5011 Stmt : Node_Id;
5012
5013 -- Start of processing for Wrap_Imported_Subprogram
32bba3c9
AC
5014
5015 begin
5016 -- Nothing to do if not imported
5017
5018 if not Is_Imported (E) then
5019 return;
32bba3c9
AC
5020
5021 -- Test enabling conditions for wrapping
5022
f1a3590e 5023 elsif Is_Subprogram (E)
32bba3c9
AC
5024 and then Present (Contract (E))
5025 and then Present (Pre_Post_Conditions (Contract (E)))
5026 and then not GNATprove_Mode
5027 then
f1a3590e 5028 -- Here we do the wrap
32bba3c9 5029
f1a3590e
AC
5030 -- Note on calls to Copy_Separate_Tree. The trees we are copying
5031 -- here are fully analyzed, but we definitely want fully syntactic
5032 -- unanalyzed trees in the body we construct, so that the analysis
f34b5d88
RD
5033 -- generates the right visibility, and that is exactly what the
5034 -- calls to Copy_Separate_Tree give us.
f1a3590e 5035
2e885a6f 5036 Prag := Copy_Import_Pragma;
32bba3c9
AC
5037
5038 -- Fix up spec to be not imported any more
5039
32bba3c9
AC
5040 Set_Has_Completion (E, False);
5041 Set_Import_Pragma (E, Empty);
2e885a6f
AC
5042 Set_Interface_Name (E, Empty);
5043 Set_Is_Imported (E, False);
32bba3c9
AC
5044
5045 -- Grab the subprogram declaration and specification
5046
5047 Spec := Declaration_Node (E);
5048
5049 -- Build parameter list that we need
5050
5051 Parms := New_List;
5052 Forml := First_Formal (E);
5053 while Present (Forml) loop
f1a3590e 5054 Append_To (Parms, Make_Identifier (Loc, Chars (Forml)));
32bba3c9
AC
5055 Next_Formal (Forml);
5056 end loop;
5057
5058 -- Build the call
5059
5060 if Ekind_In (E, E_Function, E_Generic_Function) then
5061 Stmt :=
5062 Make_Simple_Return_Statement (Loc,
5063 Expression =>
5064 Make_Function_Call (Loc,
f1a3590e 5065 Name => Make_Identifier (Loc, CE),
32bba3c9
AC
5066 Parameter_Associations => Parms));
5067
5068 else
5069 Stmt :=
5070 Make_Procedure_Call_Statement (Loc,
f1a3590e 5071 Name => Make_Identifier (Loc, CE),
32bba3c9
AC
5072 Parameter_Associations => Parms);
5073 end if;
5074
5075 -- Now build the body
5076
5077 Bod :=
5078 Make_Subprogram_Body (Loc,
f1a3590e 5079 Specification =>
158d55fa 5080 Copy_Separate_Tree (Spec),
32bba3c9
AC
5081 Declarations => New_List (
5082 Make_Subprogram_Declaration (Loc,
2e885a6f
AC
5083 Specification => Copy_Separate_Tree (Spec)),
5084 Prag),
32bba3c9
AC
5085 Handled_Statement_Sequence =>
5086 Make_Handled_Sequence_Of_Statements (Loc,
2e885a6f
AC
5087 Statements => New_List (Stmt),
5088 End_Label => Make_Identifier (Loc, CE)));
32bba3c9
AC
5089
5090 -- Append the body to freeze result
5091
5092 Add_To_Result (Bod);
5093 return;
32bba3c9
AC
5094
5095 -- Case of imported subprogram that does not get wrapped
5096
f1a3590e
AC
5097 else
5098 -- Set Is_Public. All imported entities need an external symbol
5099 -- created for them since they are always referenced from another
5100 -- object file. Note this used to be set when we set Is_Imported
5101 -- back in Sem_Prag, but now we delay it to this point, since we
5102 -- don't want to set this flag if we wrap an imported subprogram.
32bba3c9 5103
f1a3590e
AC
5104 Set_Is_Public (E);
5105 end if;
32bba3c9
AC
5106 end Wrap_Imported_Subprogram;
5107
1af4455a
HK
5108 -- Local variables
5109
f9a8f910
HK
5110 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
5111 -- Save the Ghost mode to restore on exit
1af4455a 5112
70482933
RK
5113 -- Start of processing for Freeze_Entity
5114
5115 begin
1af4455a
HK
5116 -- The entity being frozen may be subject to pragma Ghost. Set the mode
5117 -- now to ensure that any nodes generated during freezing are properly
5118 -- flagged as Ghost.
8636f52f 5119
f9a8f910 5120 Set_Ghost_Mode (E);
8636f52f 5121
c6823a20
EB
5122 -- We are going to test for various reasons why this entity need not be
5123 -- frozen here, but in the case of an Itype that's defined within a
5124 -- record, that test actually applies to the record.
5125
5126 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
5127 Test_E := Scope (E);
5128 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
5129 and then Is_Record_Type (Underlying_Type (Scope (E)))
5130 then
5131 Test_E := Underlying_Type (Scope (E));
5132 end if;
5133
fbf5a39b 5134 -- Do not freeze if already frozen since we only need one freeze node
70482933
RK
5135
5136 if Is_Frozen (E) then
d65a80fd
HK
5137 Result := No_List;
5138 goto Leave;
70482933 5139
136236bd
JM
5140 elsif Ekind (E) = E_Generic_Package then
5141 Result := Freeze_Generic_Entities (E);
d65a80fd 5142 goto Leave;
136236bd 5143
c6823a20
EB
5144 -- It is improper to freeze an external entity within a generic because
5145 -- its freeze node will appear in a non-valid context. The entity will
5146 -- be frozen in the proper scope after the current generic is analyzed.
7640ef8a
AC
5147 -- However, aspects must be analyzed because they may be queried later
5148 -- within the generic itself, and the corresponding pragma or attribute
5149 -- definition has not been analyzed yet.
70482933 5150
c6823a20 5151 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
7640ef8a
AC
5152 if Has_Delayed_Aspects (E) then
5153 Analyze_Aspects_At_Freeze_Point (E);
5154 end if;
5155
d65a80fd
HK
5156 Result := No_List;
5157 goto Leave;
70482933 5158
164e06c6
AC
5159 -- AI05-0213: A formal incomplete type does not freeze the actual. In
5160 -- the instance, the same applies to the subtype renaming the actual.
d3cb4cc0
AC
5161
5162 elsif Is_Private_Type (E)
5163 and then Is_Generic_Actual_Type (E)
5164 and then No (Full_View (Base_Type (E)))
5165 and then Ada_Version >= Ada_2012
5166 then
d65a80fd
HK
5167 Result := No_List;
5168 goto Leave;
d3cb4cc0 5169
8575023c
AC
5170 -- Formal subprograms are never frozen
5171
5172 elsif Is_Formal_Subprogram (E) then
d65a80fd
HK
5173 Result := No_List;
5174 goto Leave;
8575023c
AC
5175
5176 -- Generic types are never frozen as they lack delayed semantic checks
5a8a6763
RD
5177
5178 elsif Is_Generic_Type (E) then
d65a80fd
HK
5179 Result := No_List;
5180 goto Leave;
5a8a6763 5181
70482933
RK
5182 -- Do not freeze a global entity within an inner scope created during
5183 -- expansion. A call to subprogram E within some internal procedure
5184 -- (a stream attribute for example) might require freezing E, but the
5185 -- freeze node must appear in the same declarative part as E itself.
5186 -- The two-pass elaboration mechanism in gigi guarantees that E will
5187 -- be frozen before the inner call is elaborated. We exclude constants
5188 -- from this test, because deferred constants may be frozen early, and
19590d70
GD
5189 -- must be diagnosed (e.g. in the case of a deferred constant being used
5190 -- in a default expression). If the enclosing subprogram comes from
5191 -- source, or is a generic instance, then the freeze point is the one
5192 -- mandated by the language, and we freeze the entity. A subprogram that
5193 -- is a child unit body that acts as a spec does not have a spec that
5194 -- comes from source, but can only come from source.
70482933 5195
c6823a20
EB
5196 elsif In_Open_Scopes (Scope (Test_E))
5197 and then Scope (Test_E) /= Current_Scope
5198 and then Ekind (Test_E) /= E_Constant
70482933
RK
5199 then
5200 declare
3cae7f14 5201 S : Entity_Id;
70482933
RK
5202
5203 begin
3cae7f14 5204 S := Current_Scope;
70482933
RK
5205 while Present (S) loop
5206 if Is_Overloadable (S) then
5207 if Comes_From_Source (S)
5208 or else Is_Generic_Instance (S)
fea9e956 5209 or else Is_Child_Unit (S)
70482933
RK
5210 then
5211 exit;
5212 else
d65a80fd
HK
5213 Result := No_List;
5214 goto Leave;
70482933
RK
5215 end if;
5216 end if;
5217
5218 S := Scope (S);
5219 end loop;
5220 end;
555360a5
AC
5221
5222 -- Similarly, an inlined instance body may make reference to global
5223 -- entities, but these references cannot be the proper freezing point
def46b54
RD
5224 -- for them, and in the absence of inlining freezing will take place in
5225 -- their own scope. Normally instance bodies are analyzed after the
5226 -- enclosing compilation, and everything has been frozen at the proper
5227 -- place, but with front-end inlining an instance body is compiled
5228 -- before the end of the enclosing scope, and as a result out-of-order
5229 -- freezing must be prevented.
555360a5
AC
5230
5231 elsif Front_End_Inlining
7d8b9c99 5232 and then In_Instance_Body
c6823a20 5233 and then Present (Scope (Test_E))
555360a5
AC
5234 then
5235 declare
3cae7f14 5236 S : Entity_Id;
c6823a20 5237
555360a5 5238 begin
3cae7f14 5239 S := Scope (Test_E);
555360a5
AC
5240 while Present (S) loop
5241 if Is_Generic_Instance (S) then
5242 exit;
5243 else
5244 S := Scope (S);
5245 end if;
5246 end loop;
5247
5248 if No (S) then
d65a80fd
HK
5249 Result := No_List;
5250 goto Leave;
555360a5
AC
5251 end if;
5252 end;
70482933
RK
5253 end if;
5254
5f49133f
AC
5255 -- Add checks to detect proper initialization of scalars that may appear
5256 -- as subprogram parameters.
0ea55619 5257
15e934bf 5258 if Is_Subprogram (E) and then Check_Validity_Of_Parameters then
5f49133f 5259 Apply_Parameter_Validity_Checks (E);
0ea55619
AC
5260 end if;
5261
9a6dc470
RD
5262 -- Deal with delayed aspect specifications. The analysis of the aspect
5263 -- is required to be delayed to the freeze point, thus we analyze the
5264 -- pragma or attribute definition clause in the tree at this point. We
5265 -- also analyze the aspect specification node at the freeze point when
5266 -- the aspect doesn't correspond to pragma/attribute definition clause.
c159409f
AC
5267
5268 if Has_Delayed_Aspects (E) then
8a0320ad 5269 Analyze_Aspects_At_Freeze_Point (E);
c159409f
AC
5270 end if;
5271
70482933
RK
5272 -- Here to freeze the entity
5273
70482933
RK
5274 Set_Is_Frozen (E);
5275
5276 -- Case of entity being frozen is other than a type
5277
5278 if not Is_Type (E) then
685bc70f 5279
70482933
RK
5280 -- If entity is exported or imported and does not have an external
5281 -- name, now is the time to provide the appropriate default name.
5282 -- Skip this if the entity is stubbed, since we don't need a name
75a64833
AC
5283 -- for any stubbed routine. For the case on intrinsics, if no
5284 -- external name is specified, then calls will be handled in
545cb5be
AC
5285 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
5286 -- external name is provided, then Expand_Intrinsic_Call leaves
75a64833 5287 -- calls in place for expansion by GIGI.
70482933
RK
5288
5289 if (Is_Imported (E) or else Is_Exported (E))
5290 and then No (Interface_Name (E))
5291 and then Convention (E) /= Convention_Stubbed
75a64833 5292 and then Convention (E) /= Convention_Intrinsic
70482933
RK
5293 then
5294 Set_Encoded_Interface_Name
5295 (E, Get_Default_External_Name (E));
fbf5a39b 5296
bbaba73f
EB
5297 -- If entity is an atomic object appearing in a declaration and
5298 -- the expression is an aggregate, assign it to a temporary to
5299 -- ensure that the actual assignment is done atomically rather
5300 -- than component-wise (the assignment to the temp may be done
5301 -- component-wise, but that is harmless).
fbf5a39b 5302
f280dd8f 5303 elsif Is_Atomic_Or_VFA (E)
fbf5a39b
AC
5304 and then Nkind (Parent (E)) = N_Object_Declaration
5305 and then Present (Expression (Parent (E)))
bbaba73f 5306 and then Nkind (Expression (Parent (E))) = N_Aggregate
0c6826a5 5307 and then Is_Atomic_VFA_Aggregate (Expression (Parent (E)))
fbf5a39b 5308 then
b0159fbe 5309 null;
70482933
RK
5310 end if;
5311
32bba3c9 5312 -- Subprogram case
70482933
RK
5313
5314 if Is_Subprogram (E) then
32bba3c9
AC
5315
5316 -- Check for needing to wrap imported subprogram
5317
5318 Wrap_Imported_Subprogram (E);
5319
5320 -- Freeze all parameter types and the return type (RM 13.14(14)).
5321 -- However skip this for internal subprograms. This is also where
5322 -- any extra formal parameters are created since we now know
5323 -- whether the subprogram will use a foreign convention.
5324
78bc7fe6
ES
5325 -- In Ada 2012, freezing a subprogram does not always freeze the
5326 -- corresponding profile (see AI05-019). An attribute reference
5327 -- is not a freezing point of the profile. Flag Do_Freeze_Profile
5328 -- indicates whether the profile should be frozen now.
c9f95e4c
AC
5329 -- Other constructs that should not freeze ???
5330
4d1429b2 5331 -- This processing doesn't apply to internal entities (see below)
b943a971 5332
c7658039 5333 if not Is_Internal (E) and then Do_Freeze_Profile then
4d1429b2 5334 if not Freeze_Profile (E) then
d65a80fd 5335 goto Leave;
4d1429b2 5336 end if;
70482933
RK
5337 end if;
5338
5339 -- Must freeze its parent first if it is a derived subprogram
5340
5341 if Present (Alias (E)) then
c159409f 5342 Freeze_And_Append (Alias (E), N, Result);
70482933
RK
5343 end if;
5344
19590d70
GD
5345 -- We don't freeze internal subprograms, because we don't normally
5346 -- want addition of extra formals or mechanism setting to happen
5347 -- for those. However we do pass through predefined dispatching
5348 -- cases, since extra formals may be needed in some cases, such as
5349 -- for the stream 'Input function (build-in-place formals).
5350
5351 if not Is_Internal (E)
5352 or else Is_Predefined_Dispatching_Operation (E)
5353 then
70482933
RK
5354 Freeze_Subprogram (E);
5355 end if;
5356
d3e16619
AC
5357 -- If warning on suspicious contracts then check for the case of
5358 -- a postcondition other than False for a No_Return subprogram.
5359
5360 if No_Return (E)
5361 and then Warn_On_Suspicious_Contract
5362 and then Present (Contract (E))
5363 then
5364 declare
5365 Prag : Node_Id := Pre_Post_Conditions (Contract (E));
5366 Exp : Node_Id;
5367
5368 begin
5369 while Present (Prag) loop
6e759c2a
BD
5370 if Nam_In (Pragma_Name_Unmapped (Prag),
5371 Name_Post,
5372 Name_Postcondition,
5373 Name_Refined_Post)
d3e16619
AC
5374 then
5375 Exp :=
5376 Expression
5377 (First (Pragma_Argument_Associations (Prag)));
5378
5379 if Nkind (Exp) /= N_Identifier
5380 or else Chars (Exp) /= Name_False
5381 then
5382 Error_Msg_NE
5383 ("useless postcondition, & is marked "
5384 & "No_Return?T?", Exp, E);
5385 end if;
5386 end if;
5387
5388 Prag := Next_Pragma (Prag);
5389 end loop;
5390 end;
5391 end if;
5392
70482933
RK
5393 -- Here for other than a subprogram or type
5394
5395 else
5396 -- If entity has a type, and it is not a generic unit, then
7d8b9c99 5397 -- freeze it first (RM 13.14(10)).
70482933 5398
ac72c9c5 5399 if Present (Etype (E))
70482933
RK
5400 and then Ekind (E) /= E_Generic_Function
5401 then
c159409f 5402 Freeze_And_Append (Etype (E), N, Result);
32a21096
AC
5403
5404 -- For an object of an anonymous array type, aspects on the
5405 -- object declaration apply to the type itself. This is the
5406 -- case for Atomic_Components, Volatile_Components, and
5407 -- Independent_Components. In these cases analysis of the
5408 -- generated pragma will mark the anonymous types accordingly,
5409 -- and the object itself does not require a freeze node.
5410
5411 if Ekind (E) = E_Variable
5412 and then Is_Itype (Etype (E))
5413 and then Is_Array_Type (Etype (E))
5414 and then Has_Delayed_Aspects (E)
5415 then
5416 Set_Has_Delayed_Aspects (E, False);
5417 Set_Has_Delayed_Freeze (E, False);
5418 Set_Freeze_Node (E, Empty);
5419 end if;
70482933
RK
5420 end if;
5421
2c9beb8a 5422 -- Special processing for objects created by object declaration
70482933
RK
5423
5424 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
b741083a 5425 Freeze_Object_Declaration (E);
70482933
RK
5426 end if;
5427
5428 -- Check that a constant which has a pragma Volatile[_Components]
7d8b9c99 5429 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
70482933
RK
5430
5431 -- Note: Atomic[_Components] also sets Volatile[_Components]
5432
5433 if Ekind (E) = E_Constant
5434 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
5435 and then not Is_Imported (E)
e8cddc3b 5436 and then not Has_Boolean_Aspect_Import (E)
70482933
RK
5437 then
5438 -- Make sure we actually have a pragma, and have not merely
5439 -- inherited the indication from elsewhere (e.g. an address
a90bd866 5440 -- clause, which is not good enough in RM terms).
70482933 5441
1d571f3b 5442 if Has_Rep_Pragma (E, Name_Atomic)
91b1417d 5443 or else
1d571f3b 5444 Has_Rep_Pragma (E, Name_Atomic_Components)
70482933
RK
5445 then
5446 Error_Msg_N
91b1417d 5447 ("stand alone atomic constant must be " &
def46b54 5448 "imported (RM C.6(13))", E);
91b1417d 5449
1d571f3b 5450 elsif Has_Rep_Pragma (E, Name_Volatile)
91b1417d 5451 or else
1d571f3b 5452 Has_Rep_Pragma (E, Name_Volatile_Components)
91b1417d
AC
5453 then
5454 Error_Msg_N
5455 ("stand alone volatile constant must be " &
86cde7b1 5456 "imported (RM C.6(13))", E);
70482933
RK
5457 end if;
5458 end if;
5459
5460 -- Static objects require special handling
5461
5462 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
5463 and then Is_Statically_Allocated (E)
5464 then
5465 Freeze_Static_Object (E);
5466 end if;
5467
5468 -- Remaining step is to layout objects
5469
ef1c0511
AC
5470 if Ekind_In (E, E_Variable, E_Constant, E_Loop_Parameter)
5471 or else Is_Formal (E)
70482933
RK
5472 then
5473 Layout_Object (E);
5474 end if;
3a3af4c3 5475
2ffcbaa5
AC
5476 -- For an object that does not have delayed freezing, and whose
5477 -- initialization actions have been captured in a compound
5478 -- statement, move them back now directly within the enclosing
5479 -- statement sequence.
3a3af4c3
AC
5480
5481 if Ekind_In (E, E_Constant, E_Variable)
15e934bf 5482 and then not Has_Delayed_Freeze (E)
3a3af4c3 5483 then
2ffcbaa5 5484 Explode_Initialization_Compound_Statement (E);
3a3af4c3 5485 end if;
70482933
RK
5486 end if;
5487
5488 -- Case of a type or subtype being frozen
5489
5490 else
31b5873d
GD
5491 -- We used to check here that a full type must have preelaborable
5492 -- initialization if it completes a private type specified with
308e6f3a 5493 -- pragma Preelaborable_Initialization, but that missed cases where
31b5873d
GD
5494 -- the types occur within a generic package, since the freezing
5495 -- that occurs within a containing scope generally skips traversal
5496 -- of a generic unit's declarations (those will be frozen within
5497 -- instances). This check was moved to Analyze_Package_Specification.
3f1ede06 5498
70482933
RK
5499 -- The type may be defined in a generic unit. This can occur when
5500 -- freezing a generic function that returns the type (which is
5501 -- defined in a parent unit). It is clearly meaningless to freeze
5502 -- this type. However, if it is a subtype, its size may be determi-
5503 -- nable and used in subsequent checks, so might as well try to
5504 -- compute it.
5505
cf7bb903 5506 -- In Ada 2012, Freeze_Entities is also used in the front end to
e876c43a
AC
5507 -- trigger the analysis of aspect expressions, so in this case we
5508 -- want to continue the freezing process.
5509
4f94fa11
AC
5510 -- Is_Generic_Unit (Scope (E)) is dubious here, do we want instead
5511 -- In_Generic_Scope (E)???
5512
70482933
RK
5513 if Present (Scope (E))
5514 and then Is_Generic_Unit (Scope (E))
3cd4a210
AC
5515 and then
5516 (not Has_Predicates (E)
5517 and then not Has_Delayed_Freeze (E))
70482933
RK
5518 then
5519 Check_Compile_Time_Size (E);
d65a80fd
HK
5520 Result := No_List;
5521 goto Leave;
70482933
RK
5522 end if;
5523
e9a79435
RD
5524 -- Check for error of Type_Invariant'Class applied to an untagged
5525 -- type (check delayed to freeze time when full type is available).
2fe258bf
AC
5526
5527 declare
5528 Prag : constant Node_Id := Get_Pragma (E, Pragma_Invariant);
5529 begin
5530 if Present (Prag)
5531 and then Class_Present (Prag)
5532 and then not Is_Tagged_Type (E)
5533 then
5534 Error_Msg_NE
3ddfabe3 5535 ("Type_Invariant''Class cannot be specified for &", Prag, E);
2fe258bf
AC
5536 Error_Msg_N
5537 ("\can only be specified for a tagged type", Prag);
5538 end if;
5539 end;
5540
58996b09 5541 if Is_Ghost_Entity (E) then
c5cec2fe 5542
58996b09
HK
5543 -- A Ghost type cannot be concurrent (SPARK RM 6.9(19)). Verify
5544 -- this legality rule first to five a finer-grained diagnostic.
5545
5546 if Is_Concurrent_Type (E) then
5547 Error_Msg_N ("ghost type & cannot be concurrent", E);
5548
4179af27 5549 -- A Ghost type cannot be effectively volatile (SPARK RM 6.9(7))
58996b09
HK
5550
5551 elsif Is_Effectively_Volatile (E) then
5552 Error_Msg_N ("ghost type & cannot be volatile", E);
5553 end if;
c5cec2fe
AC
5554 end if;
5555
70482933
RK
5556 -- Deal with special cases of freezing for subtype
5557
5558 if E /= Base_Type (E) then
5559
3d626f94
EB
5560 -- Before we do anything else, a specific test for the case of a
5561 -- size given for an array where the array would need to be packed
5562 -- in order for the size to be honored, but is not. This is the
5563 -- case where implicit packing may apply. The reason we do this so
5564 -- early is that, if we have implicit packing, the layout of the
5565 -- base type is affected, so we must do this before we freeze the
5566 -- base type.
3d529af4
RD
5567
5568 -- We could do this processing only if implicit packing is enabled
5569 -- since in all other cases, the error would be caught by the back
5570 -- end. However, we choose to do the check even if we do not have
aa0dfa7e 5571 -- implicit packing enabled, since this allows us to give a more
3d626f94
EB
5572 -- useful error message (advising use of pragma Implicit_Packing
5573 -- or pragma Pack).
86cde7b1
RD
5574
5575 if Is_Array_Type (E) then
5576 declare
3d529af4
RD
5577 Ctyp : constant Entity_Id := Component_Type (E);
5578 Rsiz : constant Uint := RM_Size (Ctyp);
5579 SZ : constant Node_Id := Size_Clause (E);
5580 Btyp : constant Entity_Id := Base_Type (E);
5581
5582 Lo : Node_Id;
5583 Hi : Node_Id;
5584 Indx : Node_Id;
5585
3d626f94
EB
5586 Dim : Uint;
5587 Num_Elmts : Uint := Uint_1;
3d529af4 5588 -- Number of elements in array
86cde7b1
RD
5589
5590 begin
5591 -- Check enabling conditions. These are straightforward
5592 -- except for the test for a limited composite type. This
5593 -- eliminates the rare case of a array of limited components
5594 -- where there are issues of whether or not we can go ahead
5595 -- and pack the array (since we can't freely pack and unpack
5596 -- arrays if they are limited).
5597
5598 -- Note that we check the root type explicitly because the
5599 -- whole point is we are doing this test before we have had
5600 -- a chance to freeze the base type (and it is that freeze
5601 -- action that causes stuff to be inherited).
5602
3d626f94
EB
5603 -- The conditions on the size are identical to those used in
5604 -- Freeze_Array_Type to set the Is_Packed flag.
5605
3d529af4 5606 if Has_Size_Clause (E)
fc893455 5607 and then Known_Static_RM_Size (E)
86cde7b1
RD
5608 and then not Is_Packed (E)
5609 and then not Has_Pragma_Pack (E)
86cde7b1 5610 and then not Has_Component_Size_Clause (E)
fc893455 5611 and then Known_Static_RM_Size (Ctyp)
3d626f94
EB
5612 and then Rsiz <= 64
5613 and then not (Addressable (Rsiz)
5614 and then Known_Static_Esize (Ctyp)
5615 and then Esize (Ctyp) = Rsiz)
5616 and then not (Rsiz mod System_Storage_Unit = 0
5617 and then Is_Composite_Type (Ctyp))
86cde7b1
RD
5618 and then not Is_Limited_Composite (E)
5619 and then not Is_Packed (Root_Type (E))
5620 and then not Has_Component_Size_Clause (Root_Type (E))
f5da7a97 5621 and then not (CodePeer_Mode or GNATprove_Mode)
86cde7b1 5622 then
3d529af4
RD
5623 -- Compute number of elements in array
5624
3d529af4
RD
5625 Indx := First_Index (E);
5626 while Present (Indx) loop
5627 Get_Index_Bounds (Indx, Lo, Hi);
5628
5629 if not (Compile_Time_Known_Value (Lo)
5630 and then
5631 Compile_Time_Known_Value (Hi))
5632 then
5633 goto No_Implicit_Packing;
5634 end if;
86cde7b1 5635
3d626f94
EB
5636 Dim := Expr_Value (Hi) - Expr_Value (Lo) + 1;
5637
5638 if Dim >= 0 then
5639 Num_Elmts := Num_Elmts * Dim;
5640 else
5641 Num_Elmts := Uint_0;
5642 end if;
5643
3d529af4
RD
5644 Next_Index (Indx);
5645 end loop;
5646
5647 -- What we are looking for here is the situation where
5648 -- the RM_Size given would be exactly right if there was
3d626f94
EB
5649 -- a pragma Pack, resulting in the component size being
5650 -- the RM_Size of the component type.
5651
5652 if RM_Size (E) = Num_Elmts * Rsiz then
c70cf4f8 5653
3d529af4 5654 -- For implicit packing mode, just set the component
3d626f94 5655 -- size and Freeze_Array_Type will do the rest.
86cde7b1 5656
3d529af4 5657 if Implicit_Packing then
3d626f94 5658 Set_Component_Size (Btyp, Rsiz);
5a989c6b 5659
c70cf4f8 5660 -- Otherwise give an error message
3d529af4
RD
5661
5662 else
5663 Error_Msg_NE
5664 ("size given for& too small", SZ, E);
5665 Error_Msg_N -- CODEFIX
c70cf4f8
AC
5666 ("\use explicit pragma Pack or use pragma "
5667 & "Implicit_Packing", SZ);
3d529af4 5668 end if;
86cde7b1
RD
5669 end if;
5670 end if;
5671 end;
5672 end if;
5673
3d529af4
RD
5674 <<No_Implicit_Packing>>
5675
def46b54 5676 -- If ancestor subtype present, freeze that first. Note that this
8110ee3b 5677 -- will also get the base type frozen. Need RM reference ???
70482933
RK
5678
5679 Atype := Ancestor_Subtype (E);
5680
5681 if Present (Atype) then
c159409f 5682 Freeze_And_Append (Atype, N, Result);
70482933 5683
8110ee3b 5684 -- No ancestor subtype present
70482933 5685
8110ee3b
RD
5686 else
5687 -- See if we have a nearest ancestor that has a predicate.
5688 -- That catches the case of derived type with a predicate.
5689 -- Need RM reference here ???
5690
5691 Atype := Nearest_Ancestor (E);
5692
5693 if Present (Atype) and then Has_Predicates (Atype) then
5694 Freeze_And_Append (Atype, N, Result);
5695 end if;
5696
5697 -- Freeze base type before freezing the entity (RM 13.14(15))
5698
5699 if E /= Base_Type (E) then
5700 Freeze_And_Append (Base_Type (E), N, Result);
5701 end if;
70482933
RK
5702 end if;
5703
dc3af7e2
AC
5704 -- A subtype inherits all the type-related representation aspects
5705 -- from its parents (RM 13.1(8)).
5706
5707 Inherit_Aspects_At_Freeze_Point (E);
5708
fbf5a39b 5709 -- For a derived type, freeze its parent type first (RM 13.14(15))
70482933
RK
5710
5711 elsif Is_Derived_Type (E) then
c159409f
AC
5712 Freeze_And_Append (Etype (E), N, Result);
5713 Freeze_And_Append (First_Subtype (Etype (E)), N, Result);
dc3af7e2
AC
5714
5715 -- A derived type inherits each type-related representation aspect
5716 -- of its parent type that was directly specified before the
5717 -- declaration of the derived type (RM 13.1(15)).
5718
5719 Inherit_Aspects_At_Freeze_Point (E);
70482933 5720 end if;
3f1bc2cf
AC
5721
5722 -- Check for incompatible size and alignment for record type
5723
5724 if Warn_On_Size_Alignment
5725 and then Is_Record_Type (E)
5726 and then Has_Size_Clause (E) and then Has_Alignment_Clause (E)
5727
5728 -- If explicit Object_Size clause given assume that the programmer
5729 -- knows what he is doing, and expects the compiler behavior.
5730
5731 and then not Has_Object_Size_Clause (E)
5732
5733 -- Check for size not a multiple of alignment
5734
5735 and then RM_Size (E) mod (Alignment (E) * System_Storage_Unit) /= 0
5736 then
5737 declare
5738 SC : constant Node_Id := Size_Clause (E);
5739 AC : constant Node_Id := Alignment_Clause (E);
5740 Loc : Node_Id;
5741 Abits : constant Uint := Alignment (E) * System_Storage_Unit;
5742
5743 begin
5744 if Present (SC) and then Present (AC) then
5745
5746 -- Give a warning
5747
5748 if Sloc (SC) > Sloc (AC) then
5749 Loc := SC;
5750 Error_Msg_NE
1ca46a77
AC
5751 ("?Z?size is not a multiple of alignment for &",
5752 Loc, E);
3f1bc2cf
AC
5753 Error_Msg_Sloc := Sloc (AC);
5754 Error_Msg_Uint_1 := Alignment (E);
1ca46a77 5755 Error_Msg_N ("\?Z?alignment of ^ specified #", Loc);
3f1bc2cf
AC
5756
5757 else
5758 Loc := AC;
5759 Error_Msg_NE
1ca46a77
AC
5760 ("?Z?size is not a multiple of alignment for &",
5761 Loc, E);
3f1bc2cf
AC
5762 Error_Msg_Sloc := Sloc (SC);
5763 Error_Msg_Uint_1 := RM_Size (E);
1ca46a77 5764 Error_Msg_N ("\?Z?size of ^ specified #", Loc);
3f1bc2cf
AC
5765 end if;
5766
5767 Error_Msg_Uint_1 := ((RM_Size (E) / Abits) + 1) * Abits;
1ca46a77 5768 Error_Msg_N ("\?Z?Object_Size will be increased to ^", Loc);
3f1bc2cf
AC
5769 end if;
5770 end;
5771 end if;
70482933 5772
63bb4268 5773 -- Array type
70482933
RK
5774
5775 if Is_Array_Type (E) then
63bb4268 5776 Freeze_Array_Type (E);
70482933 5777
fbf5a39b
AC
5778 -- For a class-wide type, the corresponding specific type is
5779 -- frozen as well (RM 13.14(15))
70482933
RK
5780
5781 elsif Is_Class_Wide_Type (E) then
c159409f 5782 Freeze_And_Append (Root_Type (E), N, Result);
70482933 5783
86cde7b1
RD
5784 -- If the base type of the class-wide type is still incomplete,
5785 -- the class-wide remains unfrozen as well. This is legal when
5786 -- E is the formal of a primitive operation of some other type
5787 -- which is being frozen.
5788
5789 if not Is_Frozen (Root_Type (E)) then
5790 Set_Is_Frozen (E, False);
d65a80fd 5791 goto Leave;
86cde7b1
RD
5792 end if;
5793
67336960
AC
5794 -- The equivalent type associated with a class-wide subtype needs
5795 -- to be frozen to ensure that its layout is done.
5796
5797 if Ekind (E) = E_Class_Wide_Subtype
5798 and then Present (Equivalent_Type (E))
5799 then
5800 Freeze_And_Append (Equivalent_Type (E), N, Result);
5801 end if;
5802
5803 -- Generate an itype reference for a library-level class-wide type
5804 -- at the freeze point. Otherwise the first explicit reference to
5805 -- the type may appear in an inner scope which will be rejected by
5806 -- the back-end.
70482933
RK
5807
5808 if Is_Itype (E)
5809 and then Is_Compilation_Unit (Scope (E))
5810 then
70482933 5811 declare
fbf5a39b 5812 Ref : constant Node_Id := Make_Itype_Reference (Loc);
70482933
RK
5813
5814 begin
5815 Set_Itype (Ref, E);
70482933 5816
67336960
AC
5817 -- From a gigi point of view, a class-wide subtype derives
5818 -- from its record equivalent type. As a result, the itype
5819 -- reference must appear after the freeze node of the
5820 -- equivalent type or gigi will reject the reference.
fbf5a39b 5821
67336960
AC
5822 if Ekind (E) = E_Class_Wide_Subtype
5823 and then Present (Equivalent_Type (E))
5824 then
5825 Insert_After (Freeze_Node (Equivalent_Type (E)), Ref);
5826 else
5827 Add_To_Result (Ref);
5828 end if;
5829 end;
fbf5a39b
AC
5830 end if;
5831
e187fa72
AC
5832 -- For a record type or record subtype, freeze all component types
5833 -- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
5834 -- using Is_Record_Type, because we don't want to attempt the freeze
5835 -- for the case of a private type with record extension (we will do
5836 -- that later when the full type is frozen).
5837
ca0eb951
AC
5838 elsif Ekind_In (E, E_Record_Type, E_Record_Subtype) then
5839 if not In_Generic_Scope (E) then
5840 Freeze_Record_Type (E);
5841 end if;
5842
5843 -- Report a warning if a discriminated record base type has a
5844 -- convention with language C or C++ applied to it. This check is
5845 -- done even within generic scopes (but not in instantiations),
5846 -- which is why we don't do it as part of Freeze_Record_Type.
5847
5848 Check_Suspicious_Convention (E);
70482933 5849
220d1fd9
AC
5850 -- For a concurrent type, freeze corresponding record type. This does
5851 -- not correspond to any specific rule in the RM, but the record type
5852 -- is essentially part of the concurrent type. Also freeze all local
5853 -- entities. This includes record types created for entry parameter
5854 -- blocks and whatever local entities may appear in the private part.
70482933
RK
5855
5856 elsif Is_Concurrent_Type (E) then
5857 if Present (Corresponding_Record_Type (E)) then
ef1c0511 5858 Freeze_And_Append (Corresponding_Record_Type (E), N, Result);
70482933
RK
5859 end if;
5860
5861 Comp := First_Entity (E);
70482933
RK
5862 while Present (Comp) loop
5863 if Is_Type (Comp) then
c159409f 5864 Freeze_And_Append (Comp, N, Result);
70482933
RK
5865
5866 elsif (Ekind (Comp)) /= E_Function then
c6823a20 5867
a08bf2de
RD
5868 -- The guard on the presence of the Etype seems to be needed
5869 -- for some CodePeer (-gnatcC) cases, but not clear why???
5870
5871 if Present (Etype (Comp)) then
5872 if Is_Itype (Etype (Comp))
5873 and then Underlying_Type (Scope (Etype (Comp))) = E
5874 then
5875 Undelay_Type (Etype (Comp));
5876 end if;
5877
5878 Freeze_And_Append (Etype (Comp), N, Result);
5879 end if;
70482933
RK
5880 end if;
5881
5882 Next_Entity (Comp);
5883 end loop;
5884
ee094616
RD
5885 -- Private types are required to point to the same freeze node as
5886 -- their corresponding full views. The freeze node itself has to
5887 -- point to the partial view of the entity (because from the partial
5888 -- view, we can retrieve the full view, but not the reverse).
5889 -- However, in order to freeze correctly, we need to freeze the full
5890 -- view. If we are freezing at the end of a scope (or within the
bf0b0e5e 5891 -- scope) of the private type, the partial and full views will have
ee094616
RD
5892 -- been swapped, the full view appears first in the entity chain and
5893 -- the swapping mechanism ensures that the pointers are properly set
5894 -- (on scope exit).
5895
5896 -- If we encounter the partial view before the full view (e.g. when
5897 -- freezing from another scope), we freeze the full view, and then
5898 -- set the pointers appropriately since we cannot rely on swapping to
5899 -- fix things up (subtypes in an outer scope might not get swapped).
70482933 5900
bf0b0e5e
AC
5901 -- If the full view is itself private, the above requirements apply
5902 -- to the underlying full view instead of the full view. But there is
5903 -- no swapping mechanism for the underlying full view so we need to
5904 -- set the pointers appropriately in both cases.
5905
70482933
RK
5906 elsif Is_Incomplete_Or_Private_Type (E)
5907 and then not Is_Generic_Type (E)
5908 then
86cde7b1
RD
5909 -- The construction of the dispatch table associated with library
5910 -- level tagged types forces freezing of all the primitives of the
5911 -- type, which may cause premature freezing of the partial view.
5912 -- For example:
5913
5914 -- package Pkg is
5915 -- type T is tagged private;
5916 -- type DT is new T with private;
3e24afaa 5917 -- procedure Prim (X : in out T; Y : in out DT'Class);
86cde7b1
RD
5918 -- private
5919 -- type T is tagged null record;
5920 -- Obj : T;
5921 -- type DT is new T with null record;
5922 -- end;
5923
5924 -- In this case the type will be frozen later by the usual
5925 -- mechanism: an object declaration, an instantiation, or the
5926 -- end of a declarative part.
5927
5928 if Is_Library_Level_Tagged_Type (E)
5929 and then not Present (Full_View (E))
5930 then
5931 Set_Is_Frozen (E, False);
d65a80fd 5932 goto Leave;
86cde7b1 5933
70482933
RK
5934 -- Case of full view present
5935
86cde7b1 5936 elsif Present (Full_View (E)) then
70482933 5937
ee094616
RD
5938 -- If full view has already been frozen, then no further
5939 -- processing is required
70482933
RK
5940
5941 if Is_Frozen (Full_View (E)) then
70482933
RK
5942 Set_Has_Delayed_Freeze (E, False);
5943 Set_Freeze_Node (E, Empty);
70482933 5944
ee094616 5945 -- Otherwise freeze full view and patch the pointers so that
bf0b0e5e
AC
5946 -- the freeze node will elaborate both views in the back end.
5947 -- However, if full view is itself private, freeze underlying
625d8a9f 5948 -- full view instead and patch the pointers so that the freeze
bf0b0e5e 5949 -- node will elaborate the three views in the back end.
70482933
RK
5950
5951 else
fbf5a39b 5952 declare
bf0b0e5e 5953 Full : Entity_Id := Full_View (E);
70482933 5954
fbf5a39b
AC
5955 begin
5956 if Is_Private_Type (Full)
5957 and then Present (Underlying_Full_View (Full))
5958 then
bf0b0e5e 5959 Full := Underlying_Full_View (Full);
fbf5a39b 5960 end if;
70482933 5961
c159409f 5962 Freeze_And_Append (Full, N, Result);
70482933 5963
bf0b0e5e
AC
5964 if Full /= Full_View (E)
5965 and then Has_Delayed_Freeze (Full_View (E))
5966 then
fbf5a39b 5967 F_Node := Freeze_Node (Full);
70482933 5968
bf0b0e5e 5969 if Present (F_Node) then
ce06d641
AC
5970 Inherit_Freeze_Node
5971 (Fnod => F_Node,
5972 Typ => Full_View (E));
bf0b0e5e
AC
5973 else
5974 Set_Has_Delayed_Freeze (Full_View (E), False);
5975 Set_Freeze_Node (Full_View (E), Empty);
5976 end if;
5977 end if;
5978
5979 if Has_Delayed_Freeze (E) then
5980 F_Node := Freeze_Node (Full_View (E));
5981
fbf5a39b 5982 if Present (F_Node) then
ce06d641
AC
5983 Inherit_Freeze_Node
5984 (Fnod => F_Node,
5985 Typ => E);
fbf5a39b 5986 else
def46b54
RD
5987 -- {Incomplete,Private}_Subtypes with Full_Views
5988 -- constrained by discriminants.
fbf5a39b
AC
5989
5990 Set_Has_Delayed_Freeze (E, False);
5991 Set_Freeze_Node (E, Empty);
5992 end if;
70482933 5993 end if;
fbf5a39b 5994 end;
70482933
RK
5995 end if;
5996
bf0b0e5e
AC
5997 Check_Debug_Info_Needed (E);
5998
ee094616
RD
5999 -- AI-117 requires that the convention of a partial view be the
6000 -- same as the convention of the full view. Note that this is a
6001 -- recognized breach of privacy, but it's essential for logical
6002 -- consistency of representation, and the lack of a rule in
6003 -- RM95 was an oversight.
70482933
RK
6004
6005 Set_Convention (E, Convention (Full_View (E)));
6006
6007 Set_Size_Known_At_Compile_Time (E,
6008 Size_Known_At_Compile_Time (Full_View (E)));
6009
6010 -- Size information is copied from the full view to the
def46b54 6011 -- incomplete or private view for consistency.
70482933 6012
ee094616
RD
6013 -- We skip this is the full view is not a type. This is very
6014 -- strange of course, and can only happen as a result of
6015 -- certain illegalities, such as a premature attempt to derive
6016 -- from an incomplete type.
70482933
RK
6017
6018 if Is_Type (Full_View (E)) then
6019 Set_Size_Info (E, Full_View (E));
6020 Set_RM_Size (E, RM_Size (Full_View (E)));
6021 end if;
6022
d65a80fd 6023 goto Leave;
70482933 6024
bf0b0e5e
AC
6025 -- Case of underlying full view present
6026
6027 elsif Is_Private_Type (E)
6028 and then Present (Underlying_Full_View (E))
6029 then
6030 if not Is_Frozen (Underlying_Full_View (E)) then
6031 Freeze_And_Append (Underlying_Full_View (E), N, Result);
6032 end if;
6033
6034 -- Patch the pointers so that the freeze node will elaborate
6035 -- both views in the back end.
6036
6037 if Has_Delayed_Freeze (E) then
6038 F_Node := Freeze_Node (Underlying_Full_View (E));
6039
6040 if Present (F_Node) then
ce06d641
AC
6041 Inherit_Freeze_Node
6042 (Fnod => F_Node,
6043 Typ => E);
bf0b0e5e
AC
6044 else
6045 Set_Has_Delayed_Freeze (E, False);
6046 Set_Freeze_Node (E, Empty);
6047 end if;
6048 end if;
6049
6050 Check_Debug_Info_Needed (E);
6051
d65a80fd 6052 goto Leave;
bf0b0e5e 6053
70482933
RK
6054 -- Case of no full view present. If entity is derived or subtype,
6055 -- it is safe to freeze, correctness depends on the frozen status
6056 -- of parent. Otherwise it is either premature usage, or a Taft
6057 -- amendment type, so diagnosis is at the point of use and the
6058 -- type might be frozen later.
6059
ef1c0511 6060 elsif E /= Base_Type (E) or else Is_Derived_Type (E) then
70482933
RK
6061 null;
6062
6063 else
6064 Set_Is_Frozen (E, False);
d65a80fd
HK
6065 Result := No_List;
6066 goto Leave;
70482933
RK
6067 end if;
6068
6069 -- For access subprogram, freeze types of all formals, the return
6070 -- type was already frozen, since it is the Etype of the function.
8aec446b 6071 -- Formal types can be tagged Taft amendment types, but otherwise
205c14b0 6072 -- they cannot be incomplete.
70482933
RK
6073
6074 elsif Ekind (E) = E_Subprogram_Type then
6075 Formal := First_Formal (E);
6076 while Present (Formal) loop
8aec446b
AC
6077 if Ekind (Etype (Formal)) = E_Incomplete_Type
6078 and then No (Full_View (Etype (Formal)))
8aec446b
AC
6079 then
6080 if Is_Tagged_Type (Etype (Formal)) then
6081 null;
dd386db0 6082
3cae7f14 6083 -- AI05-151: Incomplete types are allowed in access to
dd386db0
AC
6084 -- subprogram specifications.
6085
6086 elsif Ada_Version < Ada_2012 then
8aec446b
AC
6087 Error_Msg_NE
6088 ("invalid use of incomplete type&", E, Etype (Formal));
6089 end if;
6090 end if;
6091
c159409f 6092 Freeze_And_Append (Etype (Formal), N, Result);
70482933
RK
6093 Next_Formal (Formal);
6094 end loop;
6095
70482933
RK
6096 Freeze_Subprogram (E);
6097
ee094616
RD
6098 -- For access to a protected subprogram, freeze the equivalent type
6099 -- (however this is not set if we are not generating code or if this
6100 -- is an anonymous type used just for resolution).
70482933 6101
fea9e956 6102 elsif Is_Access_Protected_Subprogram_Type (E) then
57747aec 6103 if Present (Equivalent_Type (E)) then
c159409f 6104 Freeze_And_Append (Equivalent_Type (E), N, Result);
d8db0bca 6105 end if;
70482933
RK
6106 end if;
6107
6108 -- Generic types are never seen by the back-end, and are also not
6109 -- processed by the expander (since the expander is turned off for
6110 -- generic processing), so we never need freeze nodes for them.
6111
6112 if Is_Generic_Type (E) then
d65a80fd 6113 goto Leave;
70482933
RK
6114 end if;
6115
6116 -- Some special processing for non-generic types to complete
6117 -- representation details not known till the freeze point.
6118
6119 if Is_Fixed_Point_Type (E) then
6120 Freeze_Fixed_Point_Type (E);
6121
ee094616
RD
6122 -- Some error checks required for ordinary fixed-point type. Defer
6123 -- these till the freeze-point since we need the small and range
6124 -- values. We only do these checks for base types
fbf5a39b 6125
d347f572 6126 if Is_Ordinary_Fixed_Point_Type (E) and then Is_Base_Type (E) then
fbf5a39b
AC
6127 if Small_Value (E) < Ureal_2_M_80 then
6128 Error_Msg_Name_1 := Name_Small;
6129 Error_Msg_N
7d8b9c99 6130 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
fbf5a39b
AC
6131
6132 elsif Small_Value (E) > Ureal_2_80 then
6133 Error_Msg_Name_1 := Name_Small;
6134 Error_Msg_N
7d8b9c99 6135 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
fbf5a39b
AC
6136 end if;
6137
6138 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
6139 Error_Msg_Name_1 := Name_First;
6140 Error_Msg_N
7d8b9c99 6141 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
fbf5a39b
AC
6142 end if;
6143
6144 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
6145 Error_Msg_Name_1 := Name_Last;
6146 Error_Msg_N
7d8b9c99 6147 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
fbf5a39b
AC
6148 end if;
6149 end if;
6150
70482933
RK
6151 elsif Is_Enumeration_Type (E) then
6152 Freeze_Enumeration_Type (E);
6153
6154 elsif Is_Integer_Type (E) then
6155 Adjust_Esize_For_Alignment (E);
6156
79afa047
AC
6157 if Is_Modular_Integer_Type (E)
6158 and then Warn_On_Suspicious_Modulus_Value
6159 then
67b3acf8
RD
6160 Check_Suspicious_Modulus (E);
6161 end if;
6162
e8de1a82 6163 -- The pool applies to named and anonymous access types, but not
62a64085
AC
6164 -- to subprogram and to internal types generated for 'Access
6165 -- references.
6166
ea2af26a
AC
6167 elsif Is_Access_Type (E)
6168 and then not Is_Access_Subprogram_Type (E)
62a64085 6169 and then Ekind (E) /= E_Access_Attribute_Type
ea2af26a 6170 then
fab2daeb
AC
6171 -- If a pragma Default_Storage_Pool applies, and this type has no
6172 -- Storage_Pool or Storage_Size clause (which must have occurred
6173 -- before the freezing point), then use the default. This applies
6174 -- only to base types.
a5fe079c
AC
6175
6176 -- None of this applies to access to subprograms, for which there
ea2af26a 6177 -- are clearly no pools.
fab2daeb
AC
6178
6179 if Present (Default_Pool)
d347f572 6180 and then Is_Base_Type (E)
fab2daeb
AC
6181 and then not Has_Storage_Size_Clause (E)
6182 and then No (Associated_Storage_Pool (E))
6183 then
6184 -- Case of pragma Default_Storage_Pool (null)
6185
6186 if Nkind (Default_Pool) = N_Null then
6187 Set_No_Pool_Assigned (E);
6188
6189 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
6190
6191 else
6192 Set_Associated_Storage_Pool (E, Entity (Default_Pool));
6193 end if;
6194 end if;
6195
edd63e9b
ES
6196 -- Check restriction for standard storage pool
6197
6198 if No (Associated_Storage_Pool (E)) then
6199 Check_Restriction (No_Standard_Storage_Pools, E);
6200 end if;
6201
6202 -- Deal with error message for pure access type. This is not an
6203 -- error in Ada 2005 if there is no pool (see AI-366).
6204
6205 if Is_Pure_Unit_Access_Type (E)
0791fbe9 6206 and then (Ada_Version < Ada_2005
2c1b72d7 6207 or else not No_Pool_Assigned (E))
3cd4a210 6208 and then not Is_Generic_Unit (Scope (E))
edd63e9b
ES
6209 then
6210 Error_Msg_N ("named access type not allowed in pure unit", E);
c6a9797e 6211
0791fbe9 6212 if Ada_Version >= Ada_2005 then
c6a9797e 6213 Error_Msg_N
685bc70f 6214 ("\would be legal if Storage_Size of 0 given??", E);
c6a9797e
RD
6215
6216 elsif No_Pool_Assigned (E) then
6217 Error_Msg_N
685bc70f 6218 ("\would be legal in Ada 2005??", E);
c6a9797e
RD
6219
6220 else
6221 Error_Msg_N
6222 ("\would be legal in Ada 2005 if "
685bc70f 6223 & "Storage_Size of 0 given??", E);
c6a9797e 6224 end if;
edd63e9b 6225 end if;
70482933
RK
6226 end if;
6227
edd63e9b
ES
6228 -- Case of composite types
6229
70482933
RK
6230 if Is_Composite_Type (E) then
6231
edd63e9b
ES
6232 -- AI-117 requires that all new primitives of a tagged type must
6233 -- inherit the convention of the full view of the type. Inherited
6234 -- and overriding operations are defined to inherit the convention
6235 -- of their parent or overridden subprogram (also specified in
ee094616
RD
6236 -- AI-117), which will have occurred earlier (in Derive_Subprogram
6237 -- and New_Overloaded_Entity). Here we set the convention of
6238 -- primitives that are still convention Ada, which will ensure
def46b54
RD
6239 -- that any new primitives inherit the type's convention. Class-
6240 -- wide types can have a foreign convention inherited from their
6241 -- specific type, but are excluded from this since they don't have
6242 -- any associated primitives.
70482933
RK
6243
6244 if Is_Tagged_Type (E)
6245 and then not Is_Class_Wide_Type (E)
6246 and then Convention (E) /= Convention_Ada
6247 then
6248 declare
6249 Prim_List : constant Elist_Id := Primitive_Operations (E);
07fc65c4 6250 Prim : Elmt_Id;
3cae7f14 6251
70482933 6252 begin
07fc65c4 6253 Prim := First_Elmt (Prim_List);
70482933
RK
6254 while Present (Prim) loop
6255 if Convention (Node (Prim)) = Convention_Ada then
6256 Set_Convention (Node (Prim), Convention (E));
6257 end if;
6258
6259 Next_Elmt (Prim);
6260 end loop;
6261 end;
6262 end if;
a8551b5f
AC
6263
6264 -- If the type is a simple storage pool type, then this is where
6265 -- we attempt to locate and validate its Allocate, Deallocate, and
6266 -- Storage_Size operations (the first is required, and the latter
6267 -- two are optional). We also verify that the full type for a
6268 -- private type is allowed to be a simple storage pool type.
6269
f6205414 6270 if Present (Get_Rep_Pragma (E, Name_Simple_Storage_Pool_Type))
a8551b5f
AC
6271 and then (Is_Base_Type (E) or else Has_Private_Declaration (E))
6272 then
a8551b5f
AC
6273 -- If the type is marked Has_Private_Declaration, then this is
6274 -- a full type for a private type that was specified with the
f6205414 6275 -- pragma Simple_Storage_Pool_Type, and here we ensure that the
a8551b5f
AC
6276 -- pragma is allowed for the full type (for example, it can't
6277 -- be an array type, or a nonlimited record type).
6278
6279 if Has_Private_Declaration (E) then
ef1c0511 6280 if (not Is_Record_Type (E) or else not Is_Limited_View (E))
a8551b5f
AC
6281 and then not Is_Private_Type (E)
6282 then
f6205414 6283 Error_Msg_Name_1 := Name_Simple_Storage_Pool_Type;
a8551b5f
AC
6284 Error_Msg_N
6285 ("pragma% can only apply to full type that is an " &
6286 "explicitly limited type", E);
6287 end if;
6288 end if;
6289
6290 Validate_Simple_Pool_Ops : declare
6291 Pool_Type : Entity_Id renames E;
6292 Address_Type : constant Entity_Id := RTE (RE_Address);
6293 Stg_Cnt_Type : constant Entity_Id := RTE (RE_Storage_Count);
6294
6295 procedure Validate_Simple_Pool_Op_Formal
6296 (Pool_Op : Entity_Id;
6297 Pool_Op_Formal : in out Entity_Id;
6298 Expected_Mode : Formal_Kind;
6299 Expected_Type : Entity_Id;
6300 Formal_Name : String;
6301 OK_Formal : in out Boolean);
6302 -- Validate one formal Pool_Op_Formal of the candidate pool
6303 -- operation Pool_Op. The formal must be of Expected_Type
6304 -- and have mode Expected_Mode. OK_Formal will be set to
6305 -- False if the formal doesn't match. If OK_Formal is False
6306 -- on entry, then the formal will effectively be ignored
6307 -- (because validation of the pool op has already failed).
6308 -- Upon return, Pool_Op_Formal will be updated to the next
6309 -- formal, if any.
6310
ef1c0511
AC
6311 procedure Validate_Simple_Pool_Operation
6312 (Op_Name : Name_Id);
a8551b5f
AC
6313 -- Search for and validate a simple pool operation with the
6314 -- name Op_Name. If the name is Allocate, then there must be
6315 -- exactly one such primitive operation for the simple pool
6316 -- type. If the name is Deallocate or Storage_Size, then
6317 -- there can be at most one such primitive operation. The
6318 -- profile of the located primitive must conform to what
6319 -- is expected for each operation.
6320
6321 ------------------------------------
6322 -- Validate_Simple_Pool_Op_Formal --
6323 ------------------------------------
6324
6325 procedure Validate_Simple_Pool_Op_Formal
6326 (Pool_Op : Entity_Id;
6327 Pool_Op_Formal : in out Entity_Id;
6328 Expected_Mode : Formal_Kind;
6329 Expected_Type : Entity_Id;
6330 Formal_Name : String;
6331 OK_Formal : in out Boolean)
6332 is
6333 begin
6334 -- If OK_Formal is False on entry, then simply ignore
6335 -- the formal, because an earlier formal has already
6336 -- been flagged.
6337
6338 if not OK_Formal then
6339 return;
6340
6341 -- If no formal is passed in, then issue an error for a
6342 -- missing formal.
6343
6344 elsif not Present (Pool_Op_Formal) then
6345 Error_Msg_NE
6346 ("simple storage pool op missing formal " &
6347 Formal_Name & " of type&", Pool_Op, Expected_Type);
6348 OK_Formal := False;
6349
6350 return;
6351 end if;
6352
6353 if Etype (Pool_Op_Formal) /= Expected_Type then
260359e3 6354
a8551b5f
AC
6355 -- If the pool type was expected for this formal, then
6356 -- this will not be considered a candidate operation
6357 -- for the simple pool, so we unset OK_Formal so that
6358 -- the op and any later formals will be ignored.
6359
6360 if Expected_Type = Pool_Type then
6361 OK_Formal := False;
6362
6363 return;
6364
6365 else
6366 Error_Msg_NE
6367 ("wrong type for formal " & Formal_Name &
6368 " of simple storage pool op; expected type&",
6369 Pool_Op_Formal, Expected_Type);
6370 end if;
6371 end if;
6372
6373 -- Issue error if formal's mode is not the expected one
6374
6375 if Ekind (Pool_Op_Formal) /= Expected_Mode then
6376 Error_Msg_N
6377 ("wrong mode for formal of simple storage pool op",
6378 Pool_Op_Formal);
6379 end if;
6380
6381 -- Advance to the next formal
6382
6383 Next_Formal (Pool_Op_Formal);
6384 end Validate_Simple_Pool_Op_Formal;
6385
6386 ------------------------------------
6387 -- Validate_Simple_Pool_Operation --
6388 ------------------------------------
6389
6390 procedure Validate_Simple_Pool_Operation
6391 (Op_Name : Name_Id)
6392 is
6393 Op : Entity_Id;
6394 Found_Op : Entity_Id := Empty;
6395 Formal : Entity_Id;
6396 Is_OK : Boolean;
6397
6398 begin
6399 pragma Assert
b69cd36a
AC
6400 (Nam_In (Op_Name, Name_Allocate,
6401 Name_Deallocate,
6402 Name_Storage_Size));
a8551b5f
AC
6403
6404 Error_Msg_Name_1 := Op_Name;
6405
6406 -- For each homonym declared immediately in the scope
6407 -- of the simple storage pool type, determine whether
6408 -- the homonym is an operation of the pool type, and,
6409 -- if so, check that its profile is as expected for
6410 -- a simple pool operation of that name.
6411
6412 Op := Get_Name_Entity_Id (Op_Name);
6413 while Present (Op) loop
6414 if Ekind_In (Op, E_Function, E_Procedure)
6415 and then Scope (Op) = Current_Scope
6416 then
6417 Formal := First_Entity (Op);
6418
6419 Is_OK := True;
6420
6421 -- The first parameter must be of the pool type
6422 -- in order for the operation to qualify.
6423
6424 if Op_Name = Name_Storage_Size then
6425 Validate_Simple_Pool_Op_Formal
6426 (Op, Formal, E_In_Parameter, Pool_Type,
6427 "Pool", Is_OK);
a8551b5f
AC
6428 else
6429 Validate_Simple_Pool_Op_Formal
6430 (Op, Formal, E_In_Out_Parameter, Pool_Type,
6431 "Pool", Is_OK);
6432 end if;
6433
6434 -- If another operation with this name has already
6435 -- been located for the type, then flag an error,
6436 -- since we only allow the type to have a single
6437 -- such primitive.
6438
6439 if Present (Found_Op) and then Is_OK then
6440 Error_Msg_NE
6441 ("only one % operation allowed for " &
6442 "simple storage pool type&", Op, Pool_Type);
6443 end if;
6444
6445 -- In the case of Allocate and Deallocate, a formal
6446 -- of type System.Address is required.
6447
6448 if Op_Name = Name_Allocate then
6449 Validate_Simple_Pool_Op_Formal
6450 (Op, Formal, E_Out_Parameter,
b69cd36a
AC
6451 Address_Type, "Storage_Address", Is_OK);
6452
a8551b5f
AC
6453 elsif Op_Name = Name_Deallocate then
6454 Validate_Simple_Pool_Op_Formal
6455 (Op, Formal, E_In_Parameter,
6456 Address_Type, "Storage_Address", Is_OK);
6457 end if;
6458
6459 -- In the case of Allocate and Deallocate, formals
6460 -- of type Storage_Count are required as the third
6461 -- and fourth parameters.
6462
6463 if Op_Name /= Name_Storage_Size then
6464 Validate_Simple_Pool_Op_Formal
6465 (Op, Formal, E_In_Parameter,
6466 Stg_Cnt_Type, "Size_In_Storage_Units", Is_OK);
a8551b5f
AC
6467 Validate_Simple_Pool_Op_Formal
6468 (Op, Formal, E_In_Parameter,
6469 Stg_Cnt_Type, "Alignment", Is_OK);
6470 end if;
6471
6472 -- If no mismatched formals have been found (Is_OK)
6473 -- and no excess formals are present, then this
6474 -- operation has been validated, so record it.
6475
6476 if not Present (Formal) and then Is_OK then
6477 Found_Op := Op;
6478 end if;
6479 end if;
6480
6481 Op := Homonym (Op);
6482 end loop;
6483
6484 -- There must be a valid Allocate operation for the type,
6485 -- so issue an error if none was found.
6486
6487 if Op_Name = Name_Allocate
6488 and then not Present (Found_Op)
6489 then
6490 Error_Msg_N ("missing % operation for simple " &
6491 "storage pool type", Pool_Type);
6492
6493 elsif Present (Found_Op) then
260359e3 6494
a8551b5f
AC
6495 -- Simple pool operations can't be abstract
6496
6497 if Is_Abstract_Subprogram (Found_Op) then
6498 Error_Msg_N
6499 ("simple storage pool operation must not be " &
6500 "abstract", Found_Op);
6501 end if;
6502
6503 -- The Storage_Size operation must be a function with
6504 -- Storage_Count as its result type.
6505
6506 if Op_Name = Name_Storage_Size then
6507 if Ekind (Found_Op) = E_Procedure then
6508 Error_Msg_N
6509 ("% operation must be a function", Found_Op);
6510
6511 elsif Etype (Found_Op) /= Stg_Cnt_Type then
6512 Error_Msg_NE
6513 ("wrong result type for%, expected type&",
6514 Found_Op, Stg_Cnt_Type);
6515 end if;
6516
6517 -- Allocate and Deallocate must be procedures
6518
6519 elsif Ekind (Found_Op) = E_Function then
6520 Error_Msg_N
6521 ("% operation must be a procedure", Found_Op);
6522 end if;
6523 end if;
6524 end Validate_Simple_Pool_Operation;
6525
6526 -- Start of processing for Validate_Simple_Pool_Ops
6527
6528 begin
6529 Validate_Simple_Pool_Operation (Name_Allocate);
a8551b5f 6530 Validate_Simple_Pool_Operation (Name_Deallocate);
a8551b5f
AC
6531 Validate_Simple_Pool_Operation (Name_Storage_Size);
6532 end Validate_Simple_Pool_Ops;
6533 end if;
70482933
RK
6534 end if;
6535
ee094616
RD
6536 -- Now that all types from which E may depend are frozen, see if the
6537 -- size is known at compile time, if it must be unsigned, or if
7d8b9c99 6538 -- strict alignment is required
70482933
RK
6539
6540 Check_Compile_Time_Size (E);
6541 Check_Unsigned_Type (E);
6542
6543 if Base_Type (E) = E then
6544 Check_Strict_Alignment (E);
6545 end if;
6546
6547 -- Do not allow a size clause for a type which does not have a size
6548 -- that is known at compile time
6549
6550 if Has_Size_Clause (E)
6551 and then not Size_Known_At_Compile_Time (E)
6552 then
e14c931f 6553 -- Suppress this message if errors posted on E, even if we are
07fc65c4
GB
6554 -- in all errors mode, since this is often a junk message
6555
6556 if not Error_Posted (E) then
6557 Error_Msg_N
6558 ("size clause not allowed for variable length type",
6559 Size_Clause (E));
6560 end if;
70482933
RK
6561 end if;
6562
a01b9df6
AC
6563 -- Now we set/verify the representation information, in particular
6564 -- the size and alignment values. This processing is not required for
6565 -- generic types, since generic types do not play any part in code
6566 -- generation, and so the size and alignment values for such types
84c4181d
AC
6567 -- are irrelevant. Ditto for types declared within a generic unit,
6568 -- which may have components that depend on generic parameters, and
6569 -- that will be recreated in an instance.
70482933 6570
84c4181d
AC
6571 if Inside_A_Generic then
6572 null;
70482933
RK
6573
6574 -- Otherwise we call the layout procedure
6575
6576 else
6577 Layout_Type (E);
6578 end if;
a01b9df6 6579
cc570be6
AC
6580 -- If this is an access to subprogram whose designated type is itself
6581 -- a subprogram type, the return type of this anonymous subprogram
6582 -- type must be decorated as well.
6583
6584 if Ekind (E) = E_Anonymous_Access_Subprogram_Type
6585 and then Ekind (Designated_Type (E)) = E_Subprogram_Type
6586 then
6587 Layout_Type (Etype (Designated_Type (E)));
6588 end if;
6589
a01b9df6
AC
6590 -- If the type has a Defaut_Value/Default_Component_Value aspect,
6591 -- this is where we analye the expression (after the type is frozen,
6592 -- since in the case of Default_Value, we are analyzing with the
6593 -- type itself, and we treat Default_Component_Value similarly for
1b73408a 6594 -- the sake of uniformity).
a01b9df6
AC
6595
6596 if Is_First_Subtype (E) and then Has_Default_Aspect (E) then
6597 declare
37da997b
RD
6598 Nam : Name_Id;
6599 Exp : Node_Id;
6600 Typ : Entity_Id;
a01b9df6
AC
6601
6602 begin
6603 if Is_Scalar_Type (E) then
6604 Nam := Name_Default_Value;
6605 Typ := E;
6d9e03cb 6606 Exp := Default_Aspect_Value (Typ);
a01b9df6
AC
6607 else
6608 Nam := Name_Default_Component_Value;
6609 Typ := Component_Type (E);
37da997b 6610 Exp := Default_Aspect_Component_Value (E);
a01b9df6
AC
6611 end if;
6612
a01b9df6
AC
6613 Analyze_And_Resolve (Exp, Typ);
6614
6615 if Etype (Exp) /= Any_Type then
edab6088 6616 if not Is_OK_Static_Expression (Exp) then
a01b9df6
AC
6617 Error_Msg_Name_1 := Nam;
6618 Flag_Non_Static_Expr
6619 ("aspect% requires static expression", Exp);
6620 end if;
6621 end if;
6622 end;
6623 end if;
70482933
RK
6624
6625 -- End of freeze processing for type entities
6626 end if;
6627
6628 -- Here is where we logically freeze the current entity. If it has a
6629 -- freeze node, then this is the point at which the freeze node is
6630 -- linked into the result list.
6631
6632 if Has_Delayed_Freeze (E) then
6633
6634 -- If a freeze node is already allocated, use it, otherwise allocate
6635 -- a new one. The preallocation happens in the case of anonymous base
6636 -- types, where we preallocate so that we can set First_Subtype_Link.
6637 -- Note that we reset the Sloc to the current freeze location.
6638
6639 if Present (Freeze_Node (E)) then
6640 F_Node := Freeze_Node (E);
6641 Set_Sloc (F_Node, Loc);
6642
6643 else
d65a80fd 6644 F_Node := New_Node (N_Freeze_Entity, Loc);
70482933
RK
6645 Set_Freeze_Node (E, F_Node);
6646 Set_Access_Types_To_Process (F_Node, No_Elist);
6647 Set_TSS_Elist (F_Node, No_Elist);
6648 Set_Actions (F_Node, No_List);
6649 end if;
6650
6651 Set_Entity (F_Node, E);
90878b12 6652 Add_To_Result (F_Node);
35ae2ed8
AC
6653
6654 -- A final pass over record types with discriminants. If the type
6655 -- has an incomplete declaration, there may be constrained access
6656 -- subtypes declared elsewhere, which do not depend on the discrimi-
6657 -- nants of the type, and which are used as component types (i.e.
6658 -- the full view is a recursive type). The designated types of these
6659 -- subtypes can only be elaborated after the type itself, and they
6660 -- need an itype reference.
6661
0d66b596 6662 if Ekind (E) = E_Record_Type and then Has_Discriminants (E) then
35ae2ed8
AC
6663 declare
6664 Comp : Entity_Id;
6665 IR : Node_Id;
6666 Typ : Entity_Id;
6667
6668 begin
6669 Comp := First_Component (E);
35ae2ed8
AC
6670 while Present (Comp) loop
6671 Typ := Etype (Comp);
6672
6673 if Ekind (Comp) = E_Component
6674 and then Is_Access_Type (Typ)
6675 and then Scope (Typ) /= E
6676 and then Base_Type (Designated_Type (Typ)) = E
6677 and then Is_Itype (Designated_Type (Typ))
6678 then
6679 IR := Make_Itype_Reference (Sloc (Comp));
6680 Set_Itype (IR, Designated_Type (Typ));
6681 Append (IR, Result);
6682 end if;
6683
6684 Next_Component (Comp);
6685 end loop;
6686 end;
6687 end if;
70482933
RK
6688 end if;
6689
6690 -- When a type is frozen, the first subtype of the type is frozen as
6691 -- well (RM 13.14(15)). This has to be done after freezing the type,
6692 -- since obviously the first subtype depends on its own base type.
6693
6694 if Is_Type (E) then
c159409f 6695 Freeze_And_Append (First_Subtype (E), N, Result);
70482933
RK
6696
6697 -- If we just froze a tagged non-class wide record, then freeze the
6698 -- corresponding class-wide type. This must be done after the tagged
6699 -- type itself is frozen, because the class-wide type refers to the
6700 -- tagged type which generates the class.
6701
6702 if Is_Tagged_Type (E)
6703 and then not Is_Class_Wide_Type (E)
6704 and then Present (Class_Wide_Type (E))
6705 then
c159409f 6706 Freeze_And_Append (Class_Wide_Type (E), N, Result);
70482933
RK
6707 end if;
6708 end if;
6709
6710 Check_Debug_Info_Needed (E);
6711
6712 -- Special handling for subprograms
6713
6714 if Is_Subprogram (E) then
6715
6716 -- If subprogram has address clause then reset Is_Public flag, since
6717 -- we do not want the backend to generate external references.
6718
6719 if Present (Address_Clause (E))
6720 and then not Is_Library_Level_Entity (E)
6721 then
6722 Set_Is_Public (E, False);
70482933 6723 end if;
70482933
RK
6724 end if;
6725
d65a80fd 6726 <<Leave>>
f9a8f910
HK
6727 Restore_Ghost_Mode (Saved_GM);
6728
70482933
RK
6729 return Result;
6730 end Freeze_Entity;
6731
6732 -----------------------------
6733 -- Freeze_Enumeration_Type --
6734 -----------------------------
6735
6736 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
6737 begin
d677afa9
ES
6738 -- By default, if no size clause is present, an enumeration type with
6739 -- Convention C is assumed to interface to a C enum, and has integer
6740 -- size. This applies to types. For subtypes, verify that its base
be482a8c
AC
6741 -- type has no size clause either. Treat other foreign conventions
6742 -- in the same way, and also make sure alignment is set right.
d677afa9 6743
70482933
RK
6744 if Has_Foreign_Convention (Typ)
6745 and then not Has_Size_Clause (Typ)
d677afa9 6746 and then not Has_Size_Clause (Base_Type (Typ))
70482933 6747 and then Esize (Typ) < Standard_Integer_Size
d0ef7921
AC
6748
6749 -- Don't do this if Short_Enums on target
6750
f27ad2b2 6751 and then not Target_Short_Enums
70482933
RK
6752 then
6753 Init_Esize (Typ, Standard_Integer_Size);
be482a8c 6754 Set_Alignment (Typ, Alignment (Standard_Integer));
d677afa9 6755
d0ef7921
AC
6756 -- Normal Ada case or size clause present or not Long_C_Enums on target
6757
70482933 6758 else
d677afa9
ES
6759 -- If the enumeration type interfaces to C, and it has a size clause
6760 -- that specifies less than int size, it warrants a warning. The
6761 -- user may intend the C type to be an enum or a char, so this is
6762 -- not by itself an error that the Ada compiler can detect, but it
6763 -- it is a worth a heads-up. For Boolean and Character types we
6764 -- assume that the programmer has the proper C type in mind.
6765
6766 if Convention (Typ) = Convention_C
6767 and then Has_Size_Clause (Typ)
6768 and then Esize (Typ) /= Esize (Standard_Integer)
6769 and then not Is_Boolean_Type (Typ)
6770 and then not Is_Character_Type (Typ)
d0ef7921
AC
6771
6772 -- Don't do this if Short_Enums on target
6773
f27ad2b2 6774 and then not Target_Short_Enums
d677afa9
ES
6775 then
6776 Error_Msg_N
685bc70f 6777 ("C enum types have the size of a C int??", Size_Clause (Typ));
d677afa9
ES
6778 end if;
6779
70482933
RK
6780 Adjust_Esize_For_Alignment (Typ);
6781 end if;
6782 end Freeze_Enumeration_Type;
6783
6784 -----------------------
6785 -- Freeze_Expression --
6786 -----------------------
6787
6788 procedure Freeze_Expression (N : Node_Id) is
c6a9797e
RD
6789 In_Spec_Exp : constant Boolean := In_Spec_Expression;
6790 Typ : Entity_Id;
6791 Nam : Entity_Id;
6792 Desig_Typ : Entity_Id;
6793 P : Node_Id;
6794 Parent_P : Node_Id;
70482933
RK
6795
6796 Freeze_Outside : Boolean := False;
6797 -- This flag is set true if the entity must be frozen outside the
6798 -- current subprogram. This happens in the case of expander generated
6799 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
6800 -- not freeze all entities like other bodies, but which nevertheless
6801 -- may reference entities that have to be frozen before the body and
6802 -- obviously cannot be frozen inside the body.
6803
dc06dd83
AC
6804 function Find_Aggregate_Component_Desig_Type return Entity_Id;
6805 -- If the expression is an array aggregate, the type of the component
6806 -- expressions is also frozen. If the component type is an access type
6807 -- and the expressions include allocators, the designed type is frozen
6808 -- as well.
6809
3ad33e33 6810 function In_Expanded_Body (N : Node_Id) return Boolean;
70482933 6811 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
c6823a20 6812 -- it is the handled statement sequence of an expander-generated
7d8b9c99
RD
6813 -- subprogram (init proc, stream subprogram, or renaming as body).
6814 -- If so, this is not a freezing context.
70482933 6815
dc06dd83
AC
6816 -----------------------------------------
6817 -- Find_Aggregate_Component_Desig_Type --
6818 -----------------------------------------
6819
6820 function Find_Aggregate_Component_Desig_Type return Entity_Id is
6821 Assoc : Node_Id;
6822 Exp : Node_Id;
6823
6824 begin
6825 if Present (Expressions (N)) then
6826 Exp := First (Expressions (N));
6827 while Present (Exp) loop
6828 if Nkind (Exp) = N_Allocator then
6829 return Designated_Type (Component_Type (Etype (N)));
6830 end if;
6831
6832 Next (Exp);
6833 end loop;
6834 end if;
6835
6836 if Present (Component_Associations (N)) then
6837 Assoc := First (Component_Associations (N));
6838 while Present (Assoc) loop
6839 if Nkind (Expression (Assoc)) = N_Allocator then
6840 return Designated_Type (Component_Type (Etype (N)));
6841 end if;
6842
6843 Next (Assoc);
6844 end loop;
6845 end if;
6846
6847 return Empty;
6848 end Find_Aggregate_Component_Desig_Type;
6849
3ad33e33
AC
6850 ----------------------
6851 -- In_Expanded_Body --
6852 ----------------------
fbf5a39b 6853
3ad33e33 6854 function In_Expanded_Body (N : Node_Id) return Boolean is
7d8b9c99
RD
6855 P : Node_Id;
6856 Id : Entity_Id;
70482933
RK
6857
6858 begin
6859 if Nkind (N) = N_Subprogram_Body then
6860 P := N;
6861 else
6862 P := Parent (N);
6863 end if;
6864
6865 if Nkind (P) /= N_Subprogram_Body then
6866 return False;
6867
6868 else
7d8b9c99
RD
6869 Id := Defining_Unit_Name (Specification (P));
6870
3ad33e33
AC
6871 -- The following are expander-created bodies, or bodies that
6872 -- are not freeze points.
21791d97 6873
7d8b9c99 6874 if Nkind (Id) = N_Defining_Identifier
21791d97
AC
6875 and then (Is_Init_Proc (Id)
6876 or else Is_TSS (Id, TSS_Stream_Input)
6877 or else Is_TSS (Id, TSS_Stream_Output)
6878 or else Is_TSS (Id, TSS_Stream_Read)
6879 or else Is_TSS (Id, TSS_Stream_Write)
6880 or else Nkind_In (Original_Node (P),
6881 N_Subprogram_Renaming_Declaration,
6882 N_Expression_Function))
70482933
RK
6883 then
6884 return True;
6885 else
6886 return False;
6887 end if;
6888 end if;
3ad33e33 6889 end In_Expanded_Body;
70482933
RK
6890
6891 -- Start of processing for Freeze_Expression
6892
6893 begin
edd63e9b
ES
6894 -- Immediate return if freezing is inhibited. This flag is set by the
6895 -- analyzer to stop freezing on generated expressions that would cause
6896 -- freezing if they were in the source program, but which are not
6897 -- supposed to freeze, since they are created.
70482933
RK
6898
6899 if Must_Not_Freeze (N) then
6900 return;
6901 end if;
6902
6903 -- If expression is non-static, then it does not freeze in a default
6904 -- expression, see section "Handling of Default Expressions" in the
fe58fea7
AC
6905 -- spec of package Sem for further details. Note that we have to make
6906 -- sure that we actually have a real expression (if we have a subtype
edab6088
RD
6907 -- indication, we can't test Is_OK_Static_Expression). However, we
6908 -- exclude the case of the prefix of an attribute of a static scalar
6909 -- subtype from this early return, because static subtype attributes
6910 -- should always cause freezing, even in default expressions, but
6911 -- the attribute may not have been marked as static yet (because in
6912 -- Resolve_Attribute, the call to Eval_Attribute follows the call of
6913 -- Freeze_Expression on the prefix).
70482933 6914
c6a9797e 6915 if In_Spec_Exp
70482933 6916 and then Nkind (N) in N_Subexpr
edab6088 6917 and then not Is_OK_Static_Expression (N)
fe58fea7
AC
6918 and then (Nkind (Parent (N)) /= N_Attribute_Reference
6919 or else not (Is_Entity_Name (N)
6920 and then Is_Type (Entity (N))
edab6088 6921 and then Is_OK_Static_Subtype (Entity (N))))
70482933
RK
6922 then
6923 return;
6924 end if;
6925
6926 -- Freeze type of expression if not frozen already
6927
fbf5a39b
AC
6928 Typ := Empty;
6929
6930 if Nkind (N) in N_Has_Etype then
6931 if not Is_Frozen (Etype (N)) then
6932 Typ := Etype (N);
6933
6934 -- Base type may be an derived numeric type that is frozen at
6935 -- the point of declaration, but first_subtype is still unfrozen.
6936
6937 elsif not Is_Frozen (First_Subtype (Etype (N))) then
6938 Typ := First_Subtype (Etype (N));
6939 end if;
70482933
RK
6940 end if;
6941
6942 -- For entity name, freeze entity if not frozen already. A special
6943 -- exception occurs for an identifier that did not come from source.
6944 -- We don't let such identifiers freeze a non-internal entity, i.e.
6945 -- an entity that did come from source, since such an identifier was
6946 -- generated by the expander, and cannot have any semantic effect on
6947 -- the freezing semantics. For example, this stops the parameter of
6948 -- an initialization procedure from freezing the variable.
6949
6950 if Is_Entity_Name (N)
6951 and then not Is_Frozen (Entity (N))
6952 and then (Nkind (N) /= N_Identifier
6953 or else Comes_From_Source (N)
6954 or else not Comes_From_Source (Entity (N)))
6955 then
6956 Nam := Entity (N);
18c56840
ES
6957
6958 if Present (Nam) and then Ekind (Nam) = E_Function then
6959 Check_Expression_Function (N, Nam);
6960 end if;
6961
70482933
RK
6962 else
6963 Nam := Empty;
6964 end if;
6965
49e90211 6966 -- For an allocator freeze designated type if not frozen already
70482933 6967
ee094616
RD
6968 -- For an aggregate whose component type is an access type, freeze the
6969 -- designated type now, so that its freeze does not appear within the
6970 -- loop that might be created in the expansion of the aggregate. If the
6971 -- designated type is a private type without full view, the expression
6972 -- cannot contain an allocator, so the type is not frozen.
70482933 6973
7aedb36a
AC
6974 -- For a function, we freeze the entity when the subprogram declaration
6975 -- is frozen, but a function call may appear in an initialization proc.
f6cf5b85 6976 -- before the declaration is frozen. We need to generate the extra
7aedb36a 6977 -- formals, if any, to ensure that the expansion of the call includes
2f4f3f3f
AC
6978 -- the proper actuals. This only applies to Ada subprograms, not to
6979 -- imported ones.
7aedb36a 6980
70482933 6981 Desig_Typ := Empty;
70482933 6982
fbf5a39b 6983 case Nkind (N) is
70482933
RK
6984 when N_Allocator =>
6985 Desig_Typ := Designated_Type (Etype (N));
6986
6987 when N_Aggregate =>
6988 if Is_Array_Type (Etype (N))
6989 and then Is_Access_Type (Component_Type (Etype (N)))
6990 then
dc06dd83
AC
6991
6992 -- Check whether aggregate includes allocators.
6993
6994 Desig_Typ := Find_Aggregate_Component_Desig_Type;
70482933
RK
6995 end if;
6996
d8f43ee6
HK
6997 when N_Indexed_Component
6998 | N_Selected_Component
6999 | N_Slice
7000 =>
70482933
RK
7001 if Is_Access_Type (Etype (Prefix (N))) then
7002 Desig_Typ := Designated_Type (Etype (Prefix (N)));
7003 end if;
7004
7aedb36a
AC
7005 when N_Identifier =>
7006 if Present (Nam)
7007 and then Ekind (Nam) = E_Function
7008 and then Nkind (Parent (N)) = N_Function_Call
2f4f3f3f 7009 and then Convention (Nam) = Convention_Ada
7aedb36a
AC
7010 then
7011 Create_Extra_Formals (Nam);
7012 end if;
7013
70482933
RK
7014 when others =>
7015 null;
70482933
RK
7016 end case;
7017
7018 if Desig_Typ /= Empty
7019 and then (Is_Frozen (Desig_Typ)
7020 or else (not Is_Fully_Defined (Desig_Typ)))
7021 then
7022 Desig_Typ := Empty;
7023 end if;
7024
7025 -- All done if nothing needs freezing
7026
7027 if No (Typ)
7028 and then No (Nam)
7029 and then No (Desig_Typ)
7030 then
7031 return;
7032 end if;
7033
f15749aa
AC
7034 -- Examine the enclosing context by climbing the parent chain. The
7035 -- traversal serves two purposes - to detect scenarios where freezeing
7036 -- is not needed and to find the proper insertion point for the freeze
7037 -- nodes. Although somewhat similar to Insert_Actions, this traversal
7038 -- is freezing semantics-sensitive. Inserting freeze nodes blindly in
7039 -- the tree may result in types being frozen too early.
70482933
RK
7040
7041 P := N;
7042 loop
7043 Parent_P := Parent (P);
7044
ee094616
RD
7045 -- If we don't have a parent, then we are not in a well-formed tree.
7046 -- This is an unusual case, but there are some legitimate situations
7047 -- in which this occurs, notably when the expressions in the range of
7048 -- a type declaration are resolved. We simply ignore the freeze
7049 -- request in this case. Is this right ???
70482933
RK
7050
7051 if No (Parent_P) then
7052 return;
7053 end if;
7054
7055 -- See if we have got to an appropriate point in the tree
7056
7057 case Nkind (Parent_P) is
7058
edd63e9b
ES
7059 -- A special test for the exception of (RM 13.14(8)) for the case
7060 -- of per-object expressions (RM 3.8(18)) occurring in component
7061 -- definition or a discrete subtype definition. Note that we test
7062 -- for a component declaration which includes both cases we are
7063 -- interested in, and furthermore the tree does not have explicit
7064 -- nodes for either of these two constructs.
70482933
RK
7065
7066 when N_Component_Declaration =>
7067
7068 -- The case we want to test for here is an identifier that is
7069 -- a per-object expression, this is either a discriminant that
7070 -- appears in a context other than the component declaration
7071 -- or it is a reference to the type of the enclosing construct.
7072
7073 -- For either of these cases, we skip the freezing
7074
c6a9797e 7075 if not In_Spec_Expression
70482933
RK
7076 and then Nkind (N) = N_Identifier
7077 and then (Present (Entity (N)))
7078 then
7079 -- We recognize the discriminant case by just looking for
7080 -- a reference to a discriminant. It can only be one for
7081 -- the enclosing construct. Skip freezing in this case.
7082
7083 if Ekind (Entity (N)) = E_Discriminant then
7084 return;
7085
7086 -- For the case of a reference to the enclosing record,
7087 -- (or task or protected type), we look for a type that
7088 -- matches the current scope.
7089
7090 elsif Entity (N) = Current_Scope then
7091 return;
7092 end if;
7093 end if;
7094
edd63e9b
ES
7095 -- If we have an enumeration literal that appears as the choice in
7096 -- the aggregate of an enumeration representation clause, then
7097 -- freezing does not occur (RM 13.14(10)).
70482933
RK
7098
7099 when N_Enumeration_Representation_Clause =>
7100
7101 -- The case we are looking for is an enumeration literal
7102
7103 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
7104 and then Is_Enumeration_Type (Etype (N))
7105 then
7106 -- If enumeration literal appears directly as the choice,
e14c931f 7107 -- do not freeze (this is the normal non-overloaded case)
70482933
RK
7108
7109 if Nkind (Parent (N)) = N_Component_Association
7110 and then First (Choices (Parent (N))) = N
7111 then
7112 return;
7113
ee094616
RD
7114 -- If enumeration literal appears as the name of function
7115 -- which is the choice, then also do not freeze. This
7116 -- happens in the overloaded literal case, where the
70482933
RK
7117 -- enumeration literal is temporarily changed to a function
7118 -- call for overloading analysis purposes.
7119
7120 elsif Nkind (Parent (N)) = N_Function_Call
7121 and then
7122 Nkind (Parent (Parent (N))) = N_Component_Association
7123 and then
7124 First (Choices (Parent (Parent (N)))) = Parent (N)
7125 then
7126 return;
7127 end if;
7128 end if;
7129
7130 -- Normally if the parent is a handled sequence of statements,
7131 -- then the current node must be a statement, and that is an
7132 -- appropriate place to insert a freeze node.
7133
7134 when N_Handled_Sequence_Of_Statements =>
7135
edd63e9b
ES
7136 -- An exception occurs when the sequence of statements is for
7137 -- an expander generated body that did not do the usual freeze
7138 -- all operation. In this case we usually want to freeze
7139 -- outside this body, not inside it, and we skip past the
7140 -- subprogram body that we are inside.
70482933 7141
3ad33e33 7142 if In_Expanded_Body (Parent_P) then
70482933
RK
7143 declare
7144 Subp : constant Node_Id := Parent (Parent_P);
95081e99 7145 Spec : Entity_Id;
70482933
RK
7146
7147 begin
95081e99
AC
7148 -- Freeze the entity only when it is declared inside the
7149 -- body of the expander generated procedure. This case
7150 -- is recognized by the scope of the entity or its type,
7151 -- which is either the spec for some enclosing body, or
7152 -- (in the case of init_procs, for which there are no
7153 -- separate specs) the current scope.
7154
70482933 7155 if Nkind (Subp) = N_Subprogram_Body then
95081e99 7156 Spec := Corresponding_Spec (Subp);
70482933 7157
95081e99 7158 if (Present (Typ) and then Scope (Typ) = Spec)
70482933 7159 or else
95081e99 7160 (Present (Nam) and then Scope (Nam) = Spec)
70482933
RK
7161 then
7162 exit;
7163
7164 elsif Present (Typ)
7165 and then Scope (Typ) = Current_Scope
95081e99 7166 and then Defining_Entity (Subp) = Current_Scope
70482933
RK
7167 then
7168 exit;
7169 end if;
7170 end if;
70482933 7171
95081e99
AC
7172 -- An expression function may act as a completion of
7173 -- a function declaration. As such, it can reference
7174 -- entities declared between the two views:
70482933 7175
95081e99
AC
7176 -- Hidden []; -- 1
7177 -- function F return ...;
7178 -- private
7179 -- function Hidden return ...;
7180 -- function F return ... is (Hidden); -- 2
7181
7182 -- Refering to the example above, freezing the expression
7183 -- of F (2) would place Hidden's freeze node (1) in the
7184 -- wrong place. Avoid explicit freezing and let the usual
7185 -- scenarios do the job - for example, reaching the end
3ad33e33 7186 -- of the private declarations, or a call to F.
95081e99
AC
7187
7188 if Nkind (Original_Node (Subp)) =
7189 N_Expression_Function
7190 then
7191 null;
7192
7193 -- Freeze outside the body
7194
7195 else
7196 Parent_P := Parent (Parent_P);
7197 Freeze_Outside := True;
7198 end if;
7199 end;
70482933
RK
7200
7201 -- Here if normal case where we are in handled statement
7202 -- sequence and want to do the insertion right there.
7203
7204 else
7205 exit;
7206 end if;
7207
ee094616
RD
7208 -- If parent is a body or a spec or a block, then the current node
7209 -- is a statement or declaration and we can insert the freeze node
7210 -- before it.
70482933 7211
d8f43ee6
HK
7212 when N_Block_Statement
7213 | N_Entry_Body
7214 | N_Package_Body
7215 | N_Package_Specification
7216 | N_Protected_Body
7217 | N_Subprogram_Body
7218 | N_Task_Body
7219 =>
7220 exit;
70482933
RK
7221
7222 -- The expander is allowed to define types in any statements list,
7223 -- so any of the following parent nodes also mark a freezing point
7224 -- if the actual node is in a list of statements or declarations.
7225
d8f43ee6
HK
7226 when N_Abortable_Part
7227 | N_Accept_Alternative
7228 | N_And_Then
7229 | N_Case_Statement_Alternative
7230 | N_Compilation_Unit_Aux
7231 | N_Conditional_Entry_Call
7232 | N_Delay_Alternative
7233 | N_Elsif_Part
7234 | N_Entry_Call_Alternative
7235 | N_Exception_Handler
7236 | N_Extended_Return_Statement
7237 | N_Freeze_Entity
7238 | N_If_Statement
7239 | N_Or_Else
7240 | N_Selective_Accept
7241 | N_Triggering_Alternative
7242 =>
70482933
RK
7243 exit when Is_List_Member (P);
7244
33ca2867
AC
7245 -- Freeze nodes produced by an expression coming from the Actions
7246 -- list of a N_Expression_With_Actions node must remain within the
7247 -- Actions list. Inserting the freeze nodes further up the tree
7248 -- may lead to use before declaration issues in the case of array
7249 -- types.
7250
7251 when N_Expression_With_Actions =>
7252 if Is_List_Member (P)
7253 and then List_Containing (P) = Actions (Parent_P)
7254 then
7255 exit;
7256 end if;
7257
7258 -- Note: N_Loop_Statement is a special case. A type that appears
7259 -- in the source can never be frozen in a loop (this occurs only
7260 -- because of a loop expanded by the expander), so we keep on
7261 -- going. Otherwise we terminate the search. Same is true of any
7262 -- entity which comes from source. (if they have predefined type,
7263 -- that type does not appear to come from source, but the entity
7264 -- should not be frozen here).
70482933
RK
7265
7266 when N_Loop_Statement =>
7267 exit when not Comes_From_Source (Etype (N))
7268 and then (No (Nam) or else not Comes_From_Source (Nam));
7269
7270 -- For all other cases, keep looking at parents
7271
7272 when others =>
7273 null;
7274 end case;
7275
7276 -- We fall through the case if we did not yet find the proper
a90bd866 7277 -- place in the free for inserting the freeze node, so climb.
70482933
RK
7278
7279 P := Parent_P;
7280 end loop;
7281
edd63e9b
ES
7282 -- If the expression appears in a record or an initialization procedure,
7283 -- the freeze nodes are collected and attached to the current scope, to
7284 -- be inserted and analyzed on exit from the scope, to insure that
7285 -- generated entities appear in the correct scope. If the expression is
7286 -- a default for a discriminant specification, the scope is still void.
7287 -- The expression can also appear in the discriminant part of a private
7288 -- or concurrent type.
70482933 7289
c6823a20 7290 -- If the expression appears in a constrained subcomponent of an
edd63e9b
ES
7291 -- enclosing record declaration, the freeze nodes must be attached to
7292 -- the outer record type so they can eventually be placed in the
c6823a20
EB
7293 -- enclosing declaration list.
7294
ee094616
RD
7295 -- The other case requiring this special handling is if we are in a
7296 -- default expression, since in that case we are about to freeze a
7297 -- static type, and the freeze scope needs to be the outer scope, not
7298 -- the scope of the subprogram with the default parameter.
70482933 7299
c6a9797e
RD
7300 -- For default expressions and other spec expressions in generic units,
7301 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
7302 -- placing them at the proper place, after the generic unit.
70482933 7303
c6a9797e 7304 if (In_Spec_Exp and not Inside_A_Generic)
70482933
RK
7305 or else Freeze_Outside
7306 or else (Is_Type (Current_Scope)
7307 and then (not Is_Concurrent_Type (Current_Scope)
7308 or else not Has_Completion (Current_Scope)))
7309 or else Ekind (Current_Scope) = E_Void
7310 then
7311 declare
df378148
AC
7312 N : constant Node_Id := Current_Scope;
7313 Freeze_Nodes : List_Id := No_List;
7314 Pos : Int := Scope_Stack.Last;
70482933
RK
7315
7316 begin
7317 if Present (Desig_Typ) then
c159409f 7318 Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
70482933
RK
7319 end if;
7320
7321 if Present (Typ) then
c159409f 7322 Freeze_And_Append (Typ, N, Freeze_Nodes);
70482933
RK
7323 end if;
7324
7325 if Present (Nam) then
c159409f 7326 Freeze_And_Append (Nam, N, Freeze_Nodes);
70482933
RK
7327 end if;
7328
c6823a20 7329 -- The current scope may be that of a constrained component of
df378148
AC
7330 -- an enclosing record declaration, or of a loop of an enclosing
7331 -- quantified expression, which is above the current scope in the
7332 -- scope stack. Indeed in the context of a quantified expression,
7333 -- a scope is created and pushed above the current scope in order
7334 -- to emulate the loop-like behavior of the quantified expression.
6191e212
AC
7335 -- If the expression is within a top-level pragma, as for a pre-
7336 -- condition on a library-level subprogram, nothing to do.
c6823a20 7337
6191e212 7338 if not Is_Compilation_Unit (Current_Scope)
df378148
AC
7339 and then (Is_Record_Type (Scope (Current_Scope))
7340 or else Nkind (Parent (Current_Scope)) =
21791d97 7341 N_Quantified_Expression)
6191e212 7342 then
c6823a20
EB
7343 Pos := Pos - 1;
7344 end if;
7345
70482933 7346 if Is_Non_Empty_List (Freeze_Nodes) then
c6823a20
EB
7347 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
7348 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
c159409f 7349 Freeze_Nodes;
70482933 7350 else
cd5a9750
AC
7351 Append_List (Freeze_Nodes,
7352 Scope_Stack.Table (Pos).Pending_Freeze_Actions);
70482933
RK
7353 end if;
7354 end if;
7355 end;
7356
7357 return;
7358 end if;
7359
7360 -- Now we have the right place to do the freezing. First, a special
c6a9797e
RD
7361 -- adjustment, if we are in spec-expression analysis mode, these freeze
7362 -- actions must not be thrown away (normally all inserted actions are
7363 -- thrown away in this mode. However, the freeze actions are from static
7364 -- expressions and one of the important reasons we are doing this
ee094616 7365 -- special analysis is to get these freeze actions. Therefore we turn
c6a9797e 7366 -- off the In_Spec_Expression mode to propagate these freeze actions.
ee094616 7367 -- This also means they get properly analyzed and expanded.
70482933 7368
c6a9797e 7369 In_Spec_Expression := False;
70482933 7370
fbf5a39b 7371 -- Freeze the designated type of an allocator (RM 13.14(13))
70482933
RK
7372
7373 if Present (Desig_Typ) then
7374 Freeze_Before (P, Desig_Typ);
7375 end if;
7376
fbf5a39b 7377 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
70482933
RK
7378 -- the enumeration representation clause exception in the loop above.
7379
7380 if Present (Typ) then
7381 Freeze_Before (P, Typ);
7382 end if;
7383
fbf5a39b 7384 -- Freeze name if one is present (RM 13.14(11))
70482933
RK
7385
7386 if Present (Nam) then
7387 Freeze_Before (P, Nam);
7388 end if;
7389
c6a9797e
RD
7390 -- Restore In_Spec_Expression flag
7391
7392 In_Spec_Expression := In_Spec_Exp;
70482933
RK
7393 end Freeze_Expression;
7394
7395 -----------------------------
7396 -- Freeze_Fixed_Point_Type --
7397 -----------------------------
7398
edd63e9b
ES
7399 -- Certain fixed-point types and subtypes, including implicit base types
7400 -- and declared first subtypes, have not yet set up a range. This is
7401 -- because the range cannot be set until the Small and Size values are
7402 -- known, and these are not known till the type is frozen.
70482933 7403
edd63e9b
ES
7404 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
7405 -- whose bounds are unanalyzed real literals. This routine will recognize
7406 -- this case, and transform this range node into a properly typed range
7407 -- with properly analyzed and resolved values.
70482933
RK
7408
7409 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
7410 Rng : constant Node_Id := Scalar_Range (Typ);
7411 Lo : constant Node_Id := Low_Bound (Rng);
7412 Hi : constant Node_Id := High_Bound (Rng);
7413 Btyp : constant Entity_Id := Base_Type (Typ);
7414 Brng : constant Node_Id := Scalar_Range (Btyp);
7415 BLo : constant Node_Id := Low_Bound (Brng);
7416 BHi : constant Node_Id := High_Bound (Brng);
7417 Small : constant Ureal := Small_Value (Typ);
7418 Loval : Ureal;
7419 Hival : Ureal;
7420 Atype : Entity_Id;
7421
4b6f99f5
RD
7422 Orig_Lo : Ureal;
7423 Orig_Hi : Ureal;
7424 -- Save original bounds (for shaving tests)
7425
70482933 7426 Actual_Size : Nat;
4b6f99f5 7427 -- Actual size chosen
70482933
RK
7428
7429 function Fsize (Lov, Hiv : Ureal) return Nat;
7430 -- Returns size of type with given bounds. Also leaves these
7431 -- bounds set as the current bounds of the Typ.
7432
0da2c8ac
AC
7433 -----------
7434 -- Fsize --
7435 -----------
7436
70482933
RK
7437 function Fsize (Lov, Hiv : Ureal) return Nat is
7438 begin
7439 Set_Realval (Lo, Lov);
7440 Set_Realval (Hi, Hiv);
7441 return Minimum_Size (Typ);
7442 end Fsize;
7443
0da2c8ac 7444 -- Start of processing for Freeze_Fixed_Point_Type
70482933
RK
7445
7446 begin
7447 -- If Esize of a subtype has not previously been set, set it now
7448
7449 if Unknown_Esize (Typ) then
7450 Atype := Ancestor_Subtype (Typ);
7451
7452 if Present (Atype) then
fbf5a39b 7453 Set_Esize (Typ, Esize (Atype));
70482933 7454 else
fbf5a39b 7455 Set_Esize (Typ, Esize (Base_Type (Typ)));
70482933
RK
7456 end if;
7457 end if;
7458
ee094616
RD
7459 -- Immediate return if the range is already analyzed. This means that
7460 -- the range is already set, and does not need to be computed by this
7461 -- routine.
70482933
RK
7462
7463 if Analyzed (Rng) then
7464 return;
7465 end if;
7466
7467 -- Immediate return if either of the bounds raises Constraint_Error
7468
7469 if Raises_Constraint_Error (Lo)
7470 or else Raises_Constraint_Error (Hi)
7471 then
7472 return;
7473 end if;
7474
7475 Loval := Realval (Lo);
7476 Hival := Realval (Hi);
7477
4b6f99f5
RD
7478 Orig_Lo := Loval;
7479 Orig_Hi := Hival;
7480
70482933
RK
7481 -- Ordinary fixed-point case
7482
7483 if Is_Ordinary_Fixed_Point_Type (Typ) then
7484
7485 -- For the ordinary fixed-point case, we are allowed to fudge the
ee094616
RD
7486 -- end-points up or down by small. Generally we prefer to fudge up,
7487 -- i.e. widen the bounds for non-model numbers so that the end points
7488 -- are included. However there are cases in which this cannot be
7489 -- done, and indeed cases in which we may need to narrow the bounds.
7490 -- The following circuit makes the decision.
70482933 7491
ee094616
RD
7492 -- Note: our terminology here is that Incl_EP means that the bounds
7493 -- are widened by Small if necessary to include the end points, and
7494 -- Excl_EP means that the bounds are narrowed by Small to exclude the
7495 -- end-points if this reduces the size.
70482933
RK
7496
7497 -- Note that in the Incl case, all we care about is including the
7498 -- end-points. In the Excl case, we want to narrow the bounds as
7499 -- much as permitted by the RM, to give the smallest possible size.
7500
7501 Fudge : declare
7502 Loval_Incl_EP : Ureal;
7503 Hival_Incl_EP : Ureal;
7504
7505 Loval_Excl_EP : Ureal;
7506 Hival_Excl_EP : Ureal;
7507
7508 Size_Incl_EP : Nat;
7509 Size_Excl_EP : Nat;
7510
7511 Model_Num : Ureal;
7512 First_Subt : Entity_Id;
7513 Actual_Lo : Ureal;
7514 Actual_Hi : Ureal;
7515
7516 begin
7517 -- First step. Base types are required to be symmetrical. Right
7518 -- now, the base type range is a copy of the first subtype range.
7519 -- This will be corrected before we are done, but right away we
7520 -- need to deal with the case where both bounds are non-negative.
7521 -- In this case, we set the low bound to the negative of the high
7522 -- bound, to make sure that the size is computed to include the
7523 -- required sign. Note that we do not need to worry about the
7524 -- case of both bounds negative, because the sign will be dealt
7525 -- with anyway. Furthermore we can't just go making such a bound
7526 -- symmetrical, since in a twos-complement system, there is an
e14c931f 7527 -- extra negative value which could not be accommodated on the
70482933
RK
7528 -- positive side.
7529
7530 if Typ = Btyp
7531 and then not UR_Is_Negative (Loval)
7532 and then Hival > Loval
7533 then
7534 Loval := -Hival;
7535 Set_Realval (Lo, Loval);
7536 end if;
7537
7538 -- Compute the fudged bounds. If the number is a model number,
edd63e9b
ES
7539 -- then we do nothing to include it, but we are allowed to backoff
7540 -- to the next adjacent model number when we exclude it. If it is
7541 -- not a model number then we straddle the two values with the
7542 -- model numbers on either side.
70482933
RK
7543
7544 Model_Num := UR_Trunc (Loval / Small) * Small;
7545
7546 if Loval = Model_Num then
7547 Loval_Incl_EP := Model_Num;
7548 else
7549 Loval_Incl_EP := Model_Num - Small;
7550 end if;
7551
7552 -- The low value excluding the end point is Small greater, but
7553 -- we do not do this exclusion if the low value is positive,
7554 -- since it can't help the size and could actually hurt by
7555 -- crossing the high bound.
7556
7557 if UR_Is_Negative (Loval_Incl_EP) then
7558 Loval_Excl_EP := Loval_Incl_EP + Small;
def46b54
RD
7559
7560 -- If the value went from negative to zero, then we have the
7561 -- case where Loval_Incl_EP is the model number just below
7562 -- zero, so we want to stick to the negative value for the
7563 -- base type to maintain the condition that the size will
7564 -- include signed values.
7565
7566 if Typ = Btyp
7567 and then UR_Is_Zero (Loval_Excl_EP)
7568 then
7569 Loval_Excl_EP := Loval_Incl_EP;
7570 end if;
7571
70482933
RK
7572 else
7573 Loval_Excl_EP := Loval_Incl_EP;
7574 end if;
7575
7576 -- Similar processing for upper bound and high value
7577
7578 Model_Num := UR_Trunc (Hival / Small) * Small;
7579
7580 if Hival = Model_Num then
7581 Hival_Incl_EP := Model_Num;
7582 else
7583 Hival_Incl_EP := Model_Num + Small;
7584 end if;
7585
7586 if UR_Is_Positive (Hival_Incl_EP) then
7587 Hival_Excl_EP := Hival_Incl_EP - Small;
7588 else
7589 Hival_Excl_EP := Hival_Incl_EP;
7590 end if;
7591
ee094616
RD
7592 -- One further adjustment is needed. In the case of subtypes, we
7593 -- cannot go outside the range of the base type, or we get
70482933 7594 -- peculiarities, and the base type range is already set. This
ee094616
RD
7595 -- only applies to the Incl values, since clearly the Excl values
7596 -- are already as restricted as they are allowed to be.
70482933
RK
7597
7598 if Typ /= Btyp then
7599 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
7600 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
7601 end if;
7602
7603 -- Get size including and excluding end points
7604
7605 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
7606 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
7607
7608 -- No need to exclude end-points if it does not reduce size
7609
7610 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
7611 Loval_Excl_EP := Loval_Incl_EP;
7612 end if;
7613
7614 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
7615 Hival_Excl_EP := Hival_Incl_EP;
7616 end if;
7617
7618 -- Now we set the actual size to be used. We want to use the
7619 -- bounds fudged up to include the end-points but only if this
7620 -- can be done without violating a specifically given size
7621 -- size clause or causing an unacceptable increase in size.
7622
7623 -- Case of size clause given
7624
7625 if Has_Size_Clause (Typ) then
7626
7627 -- Use the inclusive size only if it is consistent with
7628 -- the explicitly specified size.
7629
7630 if Size_Incl_EP <= RM_Size (Typ) then
7631 Actual_Lo := Loval_Incl_EP;
7632 Actual_Hi := Hival_Incl_EP;
7633 Actual_Size := Size_Incl_EP;
7634
7635 -- If the inclusive size is too large, we try excluding
7636 -- the end-points (will be caught later if does not work).
7637
7638 else
7639 Actual_Lo := Loval_Excl_EP;
7640 Actual_Hi := Hival_Excl_EP;
7641 Actual_Size := Size_Excl_EP;
7642 end if;
7643
7644 -- Case of size clause not given
7645
7646 else
7647 -- If we have a base type whose corresponding first subtype
7648 -- has an explicit size that is large enough to include our
7649 -- end-points, then do so. There is no point in working hard
7650 -- to get a base type whose size is smaller than the specified
7651 -- size of the first subtype.
7652
7653 First_Subt := First_Subtype (Typ);
7654
7655 if Has_Size_Clause (First_Subt)
7656 and then Size_Incl_EP <= Esize (First_Subt)
7657 then
7658 Actual_Size := Size_Incl_EP;
7659 Actual_Lo := Loval_Incl_EP;
7660 Actual_Hi := Hival_Incl_EP;
7661
7662 -- If excluding the end-points makes the size smaller and
7663 -- results in a size of 8,16,32,64, then we take the smaller
7664 -- size. For the 64 case, this is compulsory. For the other
7665 -- cases, it seems reasonable. We like to include end points
7666 -- if we can, but not at the expense of moving to the next
7667 -- natural boundary of size.
7668
7669 elsif Size_Incl_EP /= Size_Excl_EP
094cefda 7670 and then Addressable (Size_Excl_EP)
70482933
RK
7671 then
7672 Actual_Size := Size_Excl_EP;
7673 Actual_Lo := Loval_Excl_EP;
7674 Actual_Hi := Hival_Excl_EP;
7675
7676 -- Otherwise we can definitely include the end points
7677
7678 else
7679 Actual_Size := Size_Incl_EP;
7680 Actual_Lo := Loval_Incl_EP;
7681 Actual_Hi := Hival_Incl_EP;
7682 end if;
7683
edd63e9b
ES
7684 -- One pathological case: normally we never fudge a low bound
7685 -- down, since it would seem to increase the size (if it has
7686 -- any effect), but for ranges containing single value, or no
7687 -- values, the high bound can be small too large. Consider:
70482933
RK
7688
7689 -- type t is delta 2.0**(-14)
7690 -- range 131072.0 .. 0;
7691
edd63e9b
ES
7692 -- That lower bound is *just* outside the range of 32 bits, and
7693 -- does need fudging down in this case. Note that the bounds
7694 -- will always have crossed here, since the high bound will be
7695 -- fudged down if necessary, as in the case of:
70482933
RK
7696
7697 -- type t is delta 2.0**(-14)
7698 -- range 131072.0 .. 131072.0;
7699
edd63e9b
ES
7700 -- So we detect the situation by looking for crossed bounds,
7701 -- and if the bounds are crossed, and the low bound is greater
7702 -- than zero, we will always back it off by small, since this
7703 -- is completely harmless.
70482933
RK
7704
7705 if Actual_Lo > Actual_Hi then
7706 if UR_Is_Positive (Actual_Lo) then
7707 Actual_Lo := Loval_Incl_EP - Small;
7708 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
7709
7710 -- And of course, we need to do exactly the same parallel
7711 -- fudge for flat ranges in the negative region.
7712
7713 elsif UR_Is_Negative (Actual_Hi) then
7714 Actual_Hi := Hival_Incl_EP + Small;
7715 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
7716 end if;
7717 end if;
7718 end if;
7719
7720 Set_Realval (Lo, Actual_Lo);
7721 Set_Realval (Hi, Actual_Hi);
7722 end Fudge;
7723
7724 -- For the decimal case, none of this fudging is required, since there
7725 -- are no end-point problems in the decimal case (the end-points are
7726 -- always included).
7727
7728 else
7729 Actual_Size := Fsize (Loval, Hival);
7730 end if;
7731
7732 -- At this stage, the actual size has been calculated and the proper
7733 -- required bounds are stored in the low and high bounds.
7734
7735 if Actual_Size > 64 then
7736 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
7737 Error_Msg_N
7d8b9c99
RD
7738 ("size required (^) for type& too large, maximum allowed is 64",
7739 Typ);
70482933
RK
7740 Actual_Size := 64;
7741 end if;
7742
7743 -- Check size against explicit given size
7744
7745 if Has_Size_Clause (Typ) then
7746 if Actual_Size > RM_Size (Typ) then
7747 Error_Msg_Uint_1 := RM_Size (Typ);
7748 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
7749 Error_Msg_NE
7d8b9c99 7750 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
7751 Size_Clause (Typ), Typ);
7752
7753 else
7754 Actual_Size := UI_To_Int (Esize (Typ));
7755 end if;
7756
7757 -- Increase size to next natural boundary if no size clause given
7758
7759 else
7760 if Actual_Size <= 8 then
7761 Actual_Size := 8;
7762 elsif Actual_Size <= 16 then
7763 Actual_Size := 16;
7764 elsif Actual_Size <= 32 then
7765 Actual_Size := 32;
7766 else
7767 Actual_Size := 64;
7768 end if;
7769
7770 Init_Esize (Typ, Actual_Size);
7771 Adjust_Esize_For_Alignment (Typ);
7772 end if;
7773
edd63e9b
ES
7774 -- If we have a base type, then expand the bounds so that they extend to
7775 -- the full width of the allocated size in bits, to avoid junk range
7776 -- checks on intermediate computations.
70482933
RK
7777
7778 if Base_Type (Typ) = Typ then
7779 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
7780 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
7781 end if;
7782
7783 -- Final step is to reanalyze the bounds using the proper type
7784 -- and set the Corresponding_Integer_Value fields of the literals.
7785
7786 Set_Etype (Lo, Empty);
7787 Set_Analyzed (Lo, False);
7788 Analyze (Lo);
7789
edd63e9b
ES
7790 -- Resolve with universal fixed if the base type, and the base type if
7791 -- it is a subtype. Note we can't resolve the base type with itself,
7792 -- that would be a reference before definition.
70482933
RK
7793
7794 if Typ = Btyp then
7795 Resolve (Lo, Universal_Fixed);
7796 else
7797 Resolve (Lo, Btyp);
7798 end if;
7799
7800 -- Set corresponding integer value for bound
7801
7802 Set_Corresponding_Integer_Value
7803 (Lo, UR_To_Uint (Realval (Lo) / Small));
7804
7805 -- Similar processing for high bound
7806
7807 Set_Etype (Hi, Empty);
7808 Set_Analyzed (Hi, False);
7809 Analyze (Hi);
7810
7811 if Typ = Btyp then
7812 Resolve (Hi, Universal_Fixed);
7813 else
7814 Resolve (Hi, Btyp);
7815 end if;
7816
7817 Set_Corresponding_Integer_Value
7818 (Hi, UR_To_Uint (Realval (Hi) / Small));
7819
7820 -- Set type of range to correspond to bounds
7821
7822 Set_Etype (Rng, Etype (Lo));
7823
fbf5a39b 7824 -- Set Esize to calculated size if not set already
70482933 7825
fbf5a39b
AC
7826 if Unknown_Esize (Typ) then
7827 Init_Esize (Typ, Actual_Size);
7828 end if;
70482933
RK
7829
7830 -- Set RM_Size if not already set. If already set, check value
7831
7832 declare
7833 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
7834
7835 begin
7836 if RM_Size (Typ) /= Uint_0 then
7837 if RM_Size (Typ) < Minsiz then
7838 Error_Msg_Uint_1 := RM_Size (Typ);
7839 Error_Msg_Uint_2 := Minsiz;
7840 Error_Msg_NE
7d8b9c99 7841 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
7842 Size_Clause (Typ), Typ);
7843 end if;
7844
7845 else
7846 Set_RM_Size (Typ, Minsiz);
7847 end if;
7848 end;
4b6f99f5
RD
7849
7850 -- Check for shaving
7851
7852 if Comes_From_Source (Typ) then
4b6f99f5 7853
8eb8461d
AC
7854 -- In SPARK mode the given bounds must be strictly representable
7855
7856 if SPARK_Mode = On then
7857 if Orig_Lo < Expr_Value_R (Lo) then
7858 Error_Msg_NE
7859 ("declared low bound of type & is outside type range",
7860 Lo, Typ);
7861 end if;
7862
7863 if Orig_Hi > Expr_Value_R (Hi) then
7864 Error_Msg_NE
7865 ("declared high bound of type & is outside type range",
7866 Hi, Typ);
7867 end if;
7868
7869 else
7870 if Orig_Lo < Expr_Value_R (Lo) then
7871 Error_Msg_N
7872 ("declared low bound of type & is outside type range??", Typ);
7873 Error_Msg_N
7874 ("\low bound adjusted up by delta (RM 3.5.9(13))??", Typ);
7875 end if;
7876
7877 if Orig_Hi > Expr_Value_R (Hi) then
7878 Error_Msg_N
7879 ("declared high bound of type & is outside type range??",
7880 Typ);
7881 Error_Msg_N
7882 ("\high bound adjusted down by delta (RM 3.5.9(13))??", Typ);
7883 end if;
4b6f99f5
RD
7884 end if;
7885 end if;
70482933
RK
7886 end Freeze_Fixed_Point_Type;
7887
7888 ------------------
7889 -- Freeze_Itype --
7890 ------------------
7891
7892 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
7893 L : List_Id;
7894
7895 begin
7896 Set_Has_Delayed_Freeze (T);
c159409f 7897 L := Freeze_Entity (T, N);
70482933
RK
7898
7899 if Is_Non_Empty_List (L) then
7900 Insert_Actions (N, L);
7901 end if;
7902 end Freeze_Itype;
7903
7904 --------------------------
7905 -- Freeze_Static_Object --
7906 --------------------------
7907
7908 procedure Freeze_Static_Object (E : Entity_Id) is
7909
7910 Cannot_Be_Static : exception;
7911 -- Exception raised if the type of a static object cannot be made
7912 -- static. This happens if the type depends on non-global objects.
7913
7914 procedure Ensure_Expression_Is_SA (N : Node_Id);
ee094616
RD
7915 -- Called to ensure that an expression used as part of a type definition
7916 -- is statically allocatable, which means that the expression type is
7917 -- statically allocatable, and the expression is either static, or a
7918 -- reference to a library level constant.
70482933
RK
7919
7920 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
7921 -- Called to mark a type as static, checking that it is possible
7922 -- to set the type as static. If it is not possible, then the
7923 -- exception Cannot_Be_Static is raised.
7924
7925 -----------------------------
7926 -- Ensure_Expression_Is_SA --
7927 -----------------------------
7928
7929 procedure Ensure_Expression_Is_SA (N : Node_Id) is
7930 Ent : Entity_Id;
7931
7932 begin
7933 Ensure_Type_Is_SA (Etype (N));
7934
edab6088 7935 if Is_OK_Static_Expression (N) then
70482933
RK
7936 return;
7937
7938 elsif Nkind (N) = N_Identifier then
7939 Ent := Entity (N);
7940
7941 if Present (Ent)
7942 and then Ekind (Ent) = E_Constant
7943 and then Is_Library_Level_Entity (Ent)
7944 then
7945 return;
7946 end if;
7947 end if;
7948
7949 raise Cannot_Be_Static;
7950 end Ensure_Expression_Is_SA;
7951
7952 -----------------------
7953 -- Ensure_Type_Is_SA --
7954 -----------------------
7955
7956 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
7957 N : Node_Id;
7958 C : Entity_Id;
7959
7960 begin
7961 -- If type is library level, we are all set
7962
7963 if Is_Library_Level_Entity (Typ) then
7964 return;
7965 end if;
7966
ee094616
RD
7967 -- We are also OK if the type already marked as statically allocated,
7968 -- which means we processed it before.
70482933
RK
7969
7970 if Is_Statically_Allocated (Typ) then
7971 return;
7972 end if;
7973
7974 -- Mark type as statically allocated
7975
7976 Set_Is_Statically_Allocated (Typ);
7977
7978 -- Check that it is safe to statically allocate this type
7979
7980 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
7981 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
7982 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
7983
7984 elsif Is_Array_Type (Typ) then
7985 N := First_Index (Typ);
7986 while Present (N) loop
7987 Ensure_Type_Is_SA (Etype (N));
7988 Next_Index (N);
7989 end loop;
7990
7991 Ensure_Type_Is_SA (Component_Type (Typ));
7992
7993 elsif Is_Access_Type (Typ) then
7994 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
7995
7996 declare
7997 F : Entity_Id;
7998 T : constant Entity_Id := Etype (Designated_Type (Typ));
7999
8000 begin
8001 if T /= Standard_Void_Type then
8002 Ensure_Type_Is_SA (T);
8003 end if;
8004
8005 F := First_Formal (Designated_Type (Typ));
70482933
RK
8006 while Present (F) loop
8007 Ensure_Type_Is_SA (Etype (F));
8008 Next_Formal (F);
8009 end loop;
8010 end;
8011
8012 else
8013 Ensure_Type_Is_SA (Designated_Type (Typ));
8014 end if;
8015
8016 elsif Is_Record_Type (Typ) then
8017 C := First_Entity (Typ);
70482933
RK
8018 while Present (C) loop
8019 if Ekind (C) = E_Discriminant
8020 or else Ekind (C) = E_Component
8021 then
8022 Ensure_Type_Is_SA (Etype (C));
8023
8024 elsif Is_Type (C) then
8025 Ensure_Type_Is_SA (C);
8026 end if;
8027
8028 Next_Entity (C);
8029 end loop;
8030
8031 elsif Ekind (Typ) = E_Subprogram_Type then
8032 Ensure_Type_Is_SA (Etype (Typ));
8033
8034 C := First_Formal (Typ);
8035 while Present (C) loop
8036 Ensure_Type_Is_SA (Etype (C));
8037 Next_Formal (C);
8038 end loop;
8039
8040 else
8041 raise Cannot_Be_Static;
8042 end if;
8043 end Ensure_Type_Is_SA;
8044
8045 -- Start of processing for Freeze_Static_Object
8046
8047 begin
8048 Ensure_Type_Is_SA (Etype (E));
8049
8050 exception
8051 when Cannot_Be_Static =>
8052
09494c32
AC
8053 -- If the object that cannot be static is imported or exported, then
8054 -- issue an error message saying that this object cannot be imported
8055 -- or exported. If it has an address clause it is an overlay in the
8056 -- current partition and the static requirement is not relevant.
d606f1df 8057 -- Do not issue any error message when ignoring rep clauses.
09494c32 8058
d606f1df
AC
8059 if Ignore_Rep_Clauses then
8060 null;
8061
8062 elsif Is_Imported (E) then
8063 if No (Address_Clause (E)) then
8064 Error_Msg_N
8065 ("& cannot be imported (local type is not constant)", E);
8066 end if;
70482933
RK
8067
8068 -- Otherwise must be exported, something is wrong if compiler
8069 -- is marking something as statically allocated which cannot be).
8070
8071 else pragma Assert (Is_Exported (E));
8072 Error_Msg_N
8073 ("& cannot be exported (local type is not constant)", E);
8074 end if;
8075 end Freeze_Static_Object;
8076
8077 -----------------------
8078 -- Freeze_Subprogram --
8079 -----------------------
8080
8081 procedure Freeze_Subprogram (E : Entity_Id) is
f991bd8e
HK
8082 procedure Set_Profile_Convention (Subp_Id : Entity_Id);
8083 -- Set the conventions of all anonymous access-to-subprogram formals and
8084 -- result subtype of subprogram Subp_Id to the convention of Subp_Id.
8085
8086 ----------------------------
8087 -- Set_Profile_Convention --
8088 ----------------------------
8089
8090 procedure Set_Profile_Convention (Subp_Id : Entity_Id) is
8091 Conv : constant Convention_Id := Convention (Subp_Id);
8092
8093 procedure Set_Type_Convention (Typ : Entity_Id);
8094 -- Set the convention of anonymous access-to-subprogram type Typ and
8095 -- its designated type to Conv.
8096
8097 -------------------------
8098 -- Set_Type_Convention --
8099 -------------------------
8100
8101 procedure Set_Type_Convention (Typ : Entity_Id) is
8102 begin
8103 -- Set the convention on both the anonymous access-to-subprogram
8104 -- type and the subprogram type it points to because both types
8105 -- participate in conformance-related checks.
8106
8107 if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then
8108 Set_Convention (Typ, Conv);
8109 Set_Convention (Designated_Type (Typ), Conv);
8110 end if;
8111 end Set_Type_Convention;
8112
8113 -- Local variables
8114
8115 Formal : Entity_Id;
8116
8117 -- Start of processing for Set_Profile_Convention
8118
8119 begin
8120 Formal := First_Formal (Subp_Id);
8121 while Present (Formal) loop
8122 Set_Type_Convention (Etype (Formal));
8123 Next_Formal (Formal);
8124 end loop;
8125
8126 if Ekind (Subp_Id) = E_Function then
8127 Set_Type_Convention (Etype (Subp_Id));
8128 end if;
8129 end Set_Profile_Convention;
8130
8131 -- Local variables
8132
70482933 8133 F : Entity_Id;
f991bd8e
HK
8134 Retype : Entity_Id;
8135
8136 -- Start of processing for Freeze_Subprogram
70482933
RK
8137
8138 begin
8139 -- Subprogram may not have an address clause unless it is imported
8140
8141 if Present (Address_Clause (E)) then
8142 if not Is_Imported (E) then
8143 Error_Msg_N
f991bd8e 8144 ("address clause can only be given for imported subprogram",
70482933
RK
8145 Name (Address_Clause (E)));
8146 end if;
8147 end if;
8148
91b1417d 8149 -- Reset the Pure indication on an imported subprogram unless an
2db5b47e
AC
8150 -- explicit Pure_Function pragma was present or the subprogram is an
8151 -- intrinsic. We do this because otherwise it is an insidious error
8152 -- to call a non-pure function from pure unit and have calls
8153 -- mysteriously optimized away. What happens here is that the Import
8154 -- can bypass the normal check to ensure that pure units call only pure
8155 -- subprograms.
91b1417d 8156
3e247e58
RD
8157 -- The reason for the intrinsic exception is that in general, intrinsic
8158 -- functions (such as shifts) are pure anyway. The only exceptions are
8159 -- the intrinsics in GNAT.Source_Info, and that unit is not marked Pure
8160 -- in any case, so no problem arises.
8161
91b1417d
AC
8162 if Is_Imported (E)
8163 and then Is_Pure (E)
8164 and then not Has_Pragma_Pure_Function (E)
2db5b47e 8165 and then not Is_Intrinsic_Subprogram (E)
91b1417d
AC
8166 then
8167 Set_Is_Pure (E, False);
8168 end if;
8169
90e7b558
AC
8170 -- We also reset the Pure indication on a subprogram with an Address
8171 -- parameter, because the parameter may be used as a pointer and the
8172 -- referenced data may change even if the address value does not.
8173
8174 -- Note that if the programmer gave an explicit Pure_Function pragma,
f991bd8e
HK
8175 -- then we believe the programmer, and leave the subprogram Pure. We
8176 -- also suppress this check on run-time files.
90e7b558
AC
8177
8178 if Is_Pure (E)
8179 and then Is_Subprogram (E)
8180 and then not Has_Pragma_Pure_Function (E)
8181 and then not Is_Internal_File_Name (Unit_File_Name (Current_Sem_Unit))
8182 then
8183 Check_Function_With_Address_Parameter (E);
8184 end if;
8185
f991bd8e 8186 -- Ensure that all anonymous access-to-subprogram types inherit the
0d1e3cc9 8187 -- convention of their related subprogram (RM 6.3.1 13.1/3). This is
f991bd8e
HK
8188 -- not done for a defaulted convention Ada because those types also
8189 -- default to Ada. Convention Protected must not be propagated when
8190 -- the subprogram is an entry because this would be illegal. The only
8191 -- way to force convention Protected on these kinds of types is to
8192 -- include keyword "protected" in the access definition.
8193
8194 if Convention (E) /= Convention_Ada
8195 and then Convention (E) /= Convention_Protected
8196 then
8197 Set_Profile_Convention (E);
8198 end if;
8199
70482933
RK
8200 -- For non-foreign convention subprograms, this is where we create
8201 -- the extra formals (for accessibility level and constrained bit
8202 -- information). We delay this till the freeze point precisely so
a90bd866 8203 -- that we know the convention.
70482933
RK
8204
8205 if not Has_Foreign_Convention (E) then
8206 Create_Extra_Formals (E);
8207 Set_Mechanisms (E);
8208
8209 -- If this is convention Ada and a Valued_Procedure, that's odd
8210
8211 if Ekind (E) = E_Procedure
8212 and then Is_Valued_Procedure (E)
8213 and then Convention (E) = Convention_Ada
fbf5a39b 8214 and then Warn_On_Export_Import
70482933
RK
8215 then
8216 Error_Msg_N
685bc70f 8217 ("??Valued_Procedure has no effect for convention Ada", E);
70482933
RK
8218 Set_Is_Valued_Procedure (E, False);
8219 end if;
8220
8221 -- Case of foreign convention
8222
8223 else
8224 Set_Mechanisms (E);
8225
7a5b62b0 8226 -- For foreign conventions, warn about return of unconstrained array
70482933
RK
8227
8228 if Ekind (E) = E_Function then
8229 Retype := Underlying_Type (Etype (E));
8230
8231 -- If no return type, probably some other error, e.g. a
8232 -- missing full declaration, so ignore.
8233
8234 if No (Retype) then
8235 null;
8236
8237 -- If the return type is generic, we have emitted a warning
edd63e9b
ES
8238 -- earlier on, and there is nothing else to check here. Specific
8239 -- instantiations may lead to erroneous behavior.
70482933
RK
8240
8241 elsif Is_Generic_Type (Etype (E)) then
8242 null;
8243
e7d72fb9 8244 -- Display warning if returning unconstrained array
59366db6 8245
70482933
RK
8246 elsif Is_Array_Type (Retype)
8247 and then not Is_Constrained (Retype)
e7d72fb9 8248
df3e68b1
HK
8249 -- Check appropriate warning is enabled (should we check for
8250 -- Warnings (Off) on specific entities here, probably so???)
e7d72fb9 8251
fbf5a39b 8252 and then Warn_On_Export_Import
70482933 8253 then
fbf5a39b 8254 Error_Msg_N
685bc70f 8255 ("?x?foreign convention function& should not return " &
fbf5a39b 8256 "unconstrained array", E);
70482933
RK
8257 return;
8258 end if;
8259 end if;
8260
8261 -- If any of the formals for an exported foreign convention
edd63e9b
ES
8262 -- subprogram have defaults, then emit an appropriate warning since
8263 -- this is odd (default cannot be used from non-Ada code)
70482933
RK
8264
8265 if Is_Exported (E) then
8266 F := First_Formal (E);
8267 while Present (F) loop
fbf5a39b
AC
8268 if Warn_On_Export_Import
8269 and then Present (Default_Value (F))
8270 then
70482933 8271 Error_Msg_N
685bc70f 8272 ("?x?parameter cannot be defaulted in non-Ada call",
70482933
RK
8273 Default_Value (F));
8274 end if;
8275
8276 Next_Formal (F);
8277 end loop;
8278 end if;
8279 end if;
8280
edd63e9b
ES
8281 -- Pragma Inline_Always is disallowed for dispatching subprograms
8282 -- because the address of such subprograms is saved in the dispatch
8283 -- table to support dispatching calls, and dispatching calls cannot
8284 -- be inlined. This is consistent with the restriction against using
8285 -- 'Access or 'Address on an Inline_Always subprogram.
8286
def46b54
RD
8287 if Is_Dispatching_Operation (E)
8288 and then Has_Pragma_Inline_Always (E)
8289 then
edd63e9b
ES
8290 Error_Msg_N
8291 ("pragma Inline_Always not allowed for dispatching subprograms", E);
8292 end if;
c6a9797e
RD
8293
8294 -- Because of the implicit representation of inherited predefined
8295 -- operators in the front-end, the overriding status of the operation
8296 -- may be affected when a full view of a type is analyzed, and this is
8297 -- not captured by the analysis of the corresponding type declaration.
8298 -- Therefore the correctness of a not-overriding indicator must be
8299 -- rechecked when the subprogram is frozen.
8300
8301 if Nkind (E) = N_Defining_Operator_Symbol
8302 and then not Error_Posted (Parent (E))
8303 then
8304 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
8305 end if;
51b42ffa
AC
8306
8307 if Modify_Tree_For_C
8308 and then Nkind (Parent (E)) = N_Function_Specification
8309 and then Is_Array_Type (Etype (E))
8310 and then Is_Constrained (Etype (E))
8311 and then not Is_Unchecked_Conversion_Instance (E)
8312 and then not Rewritten_For_C (E)
8313 then
8314 Build_Procedure_Form (Unit_Declaration_Node (E));
8315 end if;
70482933
RK
8316 end Freeze_Subprogram;
8317
15ce9ca2
AC
8318 ----------------------
8319 -- Is_Fully_Defined --
8320 ----------------------
70482933 8321
70482933
RK
8322 function Is_Fully_Defined (T : Entity_Id) return Boolean is
8323 begin
8324 if Ekind (T) = E_Class_Wide_Type then
8325 return Is_Fully_Defined (Etype (T));
657a9dd9
AC
8326
8327 elsif Is_Array_Type (T) then
8328 return Is_Fully_Defined (Component_Type (T));
8329
8330 elsif Is_Record_Type (T)
8331 and not Is_Private_Type (T)
8332 then
ee094616
RD
8333 -- Verify that the record type has no components with private types
8334 -- without completion.
657a9dd9
AC
8335
8336 declare
8337 Comp : Entity_Id;
bde58e32 8338
657a9dd9
AC
8339 begin
8340 Comp := First_Component (T);
657a9dd9
AC
8341 while Present (Comp) loop
8342 if not Is_Fully_Defined (Etype (Comp)) then
8343 return False;
8344 end if;
8345
8346 Next_Component (Comp);
8347 end loop;
8348 return True;
8349 end;
8350
30537990 8351 -- For the designated type of an access to subprogram, all types in
4519314c
AC
8352 -- the profile must be fully defined.
8353
8354 elsif Ekind (T) = E_Subprogram_Type then
8355 declare
8356 F : Entity_Id;
8357
8358 begin
8359 F := First_Formal (T);
8360 while Present (F) loop
8361 if not Is_Fully_Defined (Etype (F)) then
8362 return False;
8363 end if;
8364
8365 Next_Formal (F);
8366 end loop;
8367
8368 return Is_Fully_Defined (Etype (T));
8369 end;
8370
86cde7b1
RD
8371 else
8372 return not Is_Private_Type (T)
8373 or else Present (Full_View (Base_Type (T)));
70482933
RK
8374 end if;
8375 end Is_Fully_Defined;
8376
70d904ca 8377 ---------------------------------
70482933
RK
8378 -- Process_Default_Expressions --
8379 ---------------------------------
8380
8381 procedure Process_Default_Expressions
8382 (E : Entity_Id;
8383 After : in out Node_Id)
8384 is
8385 Loc : constant Source_Ptr := Sloc (E);
8386 Dbody : Node_Id;
8387 Formal : Node_Id;
8388 Dcopy : Node_Id;
8389 Dnam : Entity_Id;
8390
8391 begin
8392 Set_Default_Expressions_Processed (E);
8393
ee094616
RD
8394 -- A subprogram instance and its associated anonymous subprogram share
8395 -- their signature. The default expression functions are defined in the
8396 -- wrapper packages for the anonymous subprogram, and should not be
8397 -- generated again for the instance.
70482933
RK
8398
8399 if Is_Generic_Instance (E)
8400 and then Present (Alias (E))
8401 and then Default_Expressions_Processed (Alias (E))
8402 then
8403 return;
8404 end if;
8405
8406 Formal := First_Formal (E);
70482933
RK
8407 while Present (Formal) loop
8408 if Present (Default_Value (Formal)) then
8409
8410 -- We work with a copy of the default expression because we
8411 -- do not want to disturb the original, since this would mess
8412 -- up the conformance checking.
8413
8414 Dcopy := New_Copy_Tree (Default_Value (Formal));
8415
8416 -- The analysis of the expression may generate insert actions,
8417 -- which of course must not be executed. We wrap those actions
8418 -- in a procedure that is not called, and later on eliminated.
8419 -- The following cases have no side-effects, and are analyzed
8420 -- directly.
8421
8422 if Nkind (Dcopy) = N_Identifier
ef1c0511
AC
8423 or else Nkind_In (Dcopy, N_Expanded_Name,
8424 N_Integer_Literal,
8425 N_Character_Literal,
21c51f53
RD
8426 N_String_Literal,
8427 N_Real_Literal)
70482933 8428 or else (Nkind (Dcopy) = N_Attribute_Reference
ef1c0511
AC
8429 and then Attribute_Name (Dcopy) = Name_Null_Parameter)
8430 or else Known_Null (Dcopy)
70482933 8431 then
70482933 8432 -- If there is no default function, we must still do a full
ee094616
RD
8433 -- analyze call on the default value, to ensure that all error
8434 -- checks are performed, e.g. those associated with static
8435 -- evaluation. Note: this branch will always be taken if the
8436 -- analyzer is turned off (but we still need the error checks).
70482933
RK
8437
8438 -- Note: the setting of parent here is to meet the requirement
8439 -- that we can only analyze the expression while attached to
8440 -- the tree. Really the requirement is that the parent chain
8441 -- be set, we don't actually need to be in the tree.
8442
8443 Set_Parent (Dcopy, Declaration_Node (Formal));
8444 Analyze (Dcopy);
8445
8446 -- Default expressions are resolved with their own type if the
8447 -- context is generic, to avoid anomalies with private types.
8448
8449 if Ekind (Scope (E)) = E_Generic_Package then
fbf5a39b 8450 Resolve (Dcopy);
70482933
RK
8451 else
8452 Resolve (Dcopy, Etype (Formal));
8453 end if;
8454
8455 -- If that resolved expression will raise constraint error,
8456 -- then flag the default value as raising constraint error.
8457 -- This allows a proper error message on the calls.
8458
8459 if Raises_Constraint_Error (Dcopy) then
8460 Set_Raises_Constraint_Error (Default_Value (Formal));
8461 end if;
8462
8463 -- If the default is a parameterless call, we use the name of
8464 -- the called function directly, and there is no body to build.
8465
8466 elsif Nkind (Dcopy) = N_Function_Call
8467 and then No (Parameter_Associations (Dcopy))
8468 then
8469 null;
8470
8471 -- Else construct and analyze the body of a wrapper procedure
8472 -- that contains an object declaration to hold the expression.
44900051 8473 -- Given that this is done only to complete the analysis, it is
70482933
RK
8474 -- simpler to build a procedure than a function which might
8475 -- involve secondary stack expansion.
8476
8477 else
b29def53 8478 Dnam := Make_Temporary (Loc, 'D');
70482933
RK
8479
8480 Dbody :=
8481 Make_Subprogram_Body (Loc,
8482 Specification =>
8483 Make_Procedure_Specification (Loc,
8484 Defining_Unit_Name => Dnam),
8485
8486 Declarations => New_List (
8487 Make_Object_Declaration (Loc,
2c1b72d7
AC
8488 Defining_Identifier => Make_Temporary (Loc, 'T'),
8489 Object_Definition =>
df3e68b1 8490 New_Occurrence_Of (Etype (Formal), Loc),
2c1b72d7 8491 Expression => New_Copy_Tree (Dcopy))),
70482933
RK
8492
8493 Handled_Statement_Sequence =>
8494 Make_Handled_Sequence_Of_Statements (Loc,
2c1b72d7 8495 Statements => Empty_List));
70482933
RK
8496
8497 Set_Scope (Dnam, Scope (E));
8498 Set_Assignment_OK (First (Declarations (Dbody)));
8499 Set_Is_Eliminated (Dnam);
8500 Insert_After (After, Dbody);
8501 Analyze (Dbody);
8502 After := Dbody;
8503 end if;
8504 end if;
8505
8506 Next_Formal (Formal);
8507 end loop;
70482933
RK
8508 end Process_Default_Expressions;
8509
8510 ----------------------------------------
8511 -- Set_Component_Alignment_If_Not_Set --
8512 ----------------------------------------
8513
8514 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
8515 begin
8516 -- Ignore if not base type, subtypes don't need anything
8517
8518 if Typ /= Base_Type (Typ) then
8519 return;
8520 end if;
8521
8522 -- Do not override existing representation
8523
8524 if Is_Packed (Typ) then
8525 return;
8526
8527 elsif Has_Specified_Layout (Typ) then
8528 return;
8529
8530 elsif Component_Alignment (Typ) /= Calign_Default then
8531 return;
8532
8533 else
8534 Set_Component_Alignment
8535 (Typ, Scope_Stack.Table
8536 (Scope_Stack.Last).Component_Alignment_Default);
8537 end if;
8538 end Set_Component_Alignment_If_Not_Set;
8539
220d1fd9
AC
8540 --------------------------
8541 -- Set_SSO_From_Default --
8542 --------------------------
8543
8544 procedure Set_SSO_From_Default (T : Entity_Id) is
1a779058
AC
8545 Reversed : Boolean;
8546
220d1fd9 8547 begin
bcdb6b04
AC
8548 -- Set default SSO for an array or record base type, except in case of
8549 -- a type extension (which always inherits the SSO of its parent type).
eefd2467
AC
8550
8551 if Is_Base_Type (T)
8552 and then (Is_Array_Type (T)
5e9d6f05
AC
8553 or else (Is_Record_Type (T)
8554 and then not (Is_Tagged_Type (T)
8555 and then Is_Derived_Type (T))))
220d1fd9 8556 then
1a779058
AC
8557 Reversed :=
8558 (Bytes_Big_Endian and then SSO_Set_Low_By_Default (T))
8559 or else
8560 (not Bytes_Big_Endian and then SSO_Set_High_By_Default (T));
8561
8562 if (SSO_Set_Low_By_Default (T) or else SSO_Set_High_By_Default (T))
7ed57189 8563
95e0ceef
AC
8564 -- For a record type, if bit order is specified explicitly,
8565 -- then do not set SSO from default if not consistent. Note that
8566 -- we do not want to look at a Bit_Order attribute definition
8567 -- for a parent: if we were to inherit Bit_Order, then both
18dae814
RD
8568 -- SSO_Set_*_By_Default flags would have been cleared already
8569 -- (by Inherit_Aspects_At_Freeze_Point).
7ed57189
AC
8570
8571 and then not
8572 (Is_Record_Type (T)
95e0ceef
AC
8573 and then
8574 Has_Rep_Item (T, Name_Bit_Order, Check_Parents => False)
1a779058 8575 and then Reverse_Bit_Order (T) /= Reversed)
220d1fd9
AC
8576 then
8577 -- If flags cause reverse storage order, then set the result. Note
8578 -- that we would have ignored the pragma setting the non default
8579 -- storage order in any case, hence the assertion at this point.
8580
1a779058
AC
8581 pragma Assert
8582 (not Reversed or else Support_Nondefault_SSO_On_Target);
8583
8584 Set_Reverse_Storage_Order (T, Reversed);
7ed57189 8585
1a779058
AC
8586 -- For a record type, also set reversed bit order. Note: if a bit
8587 -- order has been specified explicitly, then this is a no-op.
7ed57189
AC
8588
8589 if Is_Record_Type (T) then
1a779058 8590 Set_Reverse_Bit_Order (T, Reversed);
7ed57189 8591 end if;
220d1fd9
AC
8592 end if;
8593 end if;
8594 end Set_SSO_From_Default;
8595
c6823a20
EB
8596 ------------------
8597 -- Undelay_Type --
8598 ------------------
8599
8600 procedure Undelay_Type (T : Entity_Id) is
8601 begin
8602 Set_Has_Delayed_Freeze (T, False);
8603 Set_Freeze_Node (T, Empty);
8604
8605 -- Since we don't want T to have a Freeze_Node, we don't want its
8606 -- Full_View or Corresponding_Record_Type to have one either.
8607
e80f0cb0 8608 -- ??? Fundamentally, this whole handling is unpleasant. What we really
ee094616
RD
8609 -- want is to be sure that for an Itype that's part of record R and is a
8610 -- subtype of type T, that it's frozen after the later of the freeze
c6823a20
EB
8611 -- points of R and T. We have no way of doing that directly, so what we
8612 -- do is force most such Itypes to be frozen as part of freezing R via
8613 -- this procedure and only delay the ones that need to be delayed
ee094616
RD
8614 -- (mostly the designated types of access types that are defined as part
8615 -- of the record).
c6823a20
EB
8616
8617 if Is_Private_Type (T)
8618 and then Present (Full_View (T))
8619 and then Is_Itype (Full_View (T))
8620 and then Is_Record_Type (Scope (Full_View (T)))
8621 then
8622 Undelay_Type (Full_View (T));
8623 end if;
8624
8625 if Is_Concurrent_Type (T)
8626 and then Present (Corresponding_Record_Type (T))
8627 and then Is_Itype (Corresponding_Record_Type (T))
8628 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
8629 then
8630 Undelay_Type (Corresponding_Record_Type (T));
8631 end if;
8632 end Undelay_Type;
8633
fbf5a39b
AC
8634 ------------------
8635 -- Warn_Overlay --
8636 ------------------
8637
c31b57af 8638 procedure Warn_Overlay (Expr : Node_Id; Typ : Entity_Id; Nam : Entity_Id) is
fbf5a39b 8639 Ent : constant Entity_Id := Entity (Nam);
49e90211 8640 -- The object to which the address clause applies
fbf5a39b
AC
8641
8642 Init : Node_Id;
8643 Old : Entity_Id := Empty;
8644 Decl : Node_Id;
8645
8646 begin
8647 -- No warning if address clause overlay warnings are off
8648
8649 if not Address_Clause_Overlay_Warnings then
8650 return;
8651 end if;
8652
8653 -- No warning if there is an explicit initialization
8654
8655 Init := Original_Node (Expression (Declaration_Node (Ent)));
8656
8657 if Present (Init) and then Comes_From_Source (Init) then
8658 return;
8659 end if;
8660
edd63e9b 8661 -- We only give the warning for non-imported entities of a type for
0ac73189 8662 -- which a non-null base init proc is defined, or for objects of access
a5d83d61 8663 -- types with implicit null initialization, or when Normalize_Scalars
0ac73189
AC
8664 -- applies and the type is scalar or a string type (the latter being
8665 -- tested for because predefined String types are initialized by inline
a5d83d61
AC
8666 -- code rather than by an init_proc). Note that we do not give the
8667 -- warning for Initialize_Scalars, since we suppressed initialization
e526d0c7 8668 -- in this case. Also, do not warn if Suppress_Initialization is set.
fbf5a39b
AC
8669
8670 if Present (Expr)
fbf5a39b 8671 and then not Is_Imported (Ent)
e526d0c7 8672 and then not Initialization_Suppressed (Typ)
0ac73189 8673 and then (Has_Non_Null_Base_Init_Proc (Typ)
e526d0c7
AC
8674 or else Is_Access_Type (Typ)
8675 or else (Normalize_Scalars
8676 and then (Is_Scalar_Type (Typ)
8677 or else Is_String_Type (Typ))))
fbf5a39b
AC
8678 then
8679 if Nkind (Expr) = N_Attribute_Reference
8680 and then Is_Entity_Name (Prefix (Expr))
8681 then
8682 Old := Entity (Prefix (Expr));
8683
8684 elsif Is_Entity_Name (Expr)
8685 and then Ekind (Entity (Expr)) = E_Constant
8686 then
8687 Decl := Declaration_Node (Entity (Expr));
8688
8689 if Nkind (Decl) = N_Object_Declaration
8690 and then Present (Expression (Decl))
8691 and then Nkind (Expression (Decl)) = N_Attribute_Reference
8692 and then Is_Entity_Name (Prefix (Expression (Decl)))
8693 then
8694 Old := Entity (Prefix (Expression (Decl)));
8695
8696 elsif Nkind (Expr) = N_Function_Call then
8697 return;
8698 end if;
8699
ee094616
RD
8700 -- A function call (most likely to To_Address) is probably not an
8701 -- overlay, so skip warning. Ditto if the function call was inlined
8702 -- and transformed into an entity.
fbf5a39b
AC
8703
8704 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
8705 return;
8706 end if;
8707
fbf5a39b 8708 -- If a pragma Import follows, we assume that it is for the current
ab260a3e
ES
8709 -- target of the address clause, and skip the warning. There may be
8710 -- a source pragma or an aspect that specifies import and generates
8711 -- the corresponding pragma. These will indicate that the entity is
8712 -- imported and that is checked above so that the spurious warning
8713 -- (generated when the entity is frozen) will be suppressed. The
8714 -- pragma may be attached to the aspect, so it is not yet a list
8715 -- member.
fbf5a39b 8716
2290a0fe
AC
8717 if Is_List_Member (Parent (Expr)) then
8718 Decl := Next (Parent (Expr));
8719
8720 if Present (Decl)
8721 and then Nkind (Decl) = N_Pragma
6e759c2a 8722 and then Pragma_Name (Decl) = Name_Import
2290a0fe
AC
8723 then
8724 return;
8725 end if;
fbf5a39b
AC
8726 end if;
8727
2290a0fe
AC
8728 -- Otherwise give warning message
8729
fbf5a39b
AC
8730 if Present (Old) then
8731 Error_Msg_Node_2 := Old;
8732 Error_Msg_N
685bc70f 8733 ("default initialization of & may modify &??",
fbf5a39b
AC
8734 Nam);
8735 else
8736 Error_Msg_N
685bc70f 8737 ("default initialization of & may modify overlaid storage??",
fbf5a39b
AC
8738 Nam);
8739 end if;
8740
8741 -- Add friendly warning if initialization comes from a packed array
8742 -- component.
8743
be035558 8744 if Is_Record_Type (Typ) then
fbf5a39b
AC
8745 declare
8746 Comp : Entity_Id;
8747
8748 begin
8749 Comp := First_Component (Typ);
fbf5a39b
AC
8750 while Present (Comp) loop
8751 if Nkind (Parent (Comp)) = N_Component_Declaration
8752 and then Present (Expression (Parent (Comp)))
8753 then
8754 exit;
8755 elsif Is_Array_Type (Etype (Comp))
8ca597af 8756 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
fbf5a39b
AC
8757 then
8758 Error_Msg_NE
3f1ede06 8759 ("\packed array component& " &
685bc70f 8760 "will be initialized to zero??",
3f1ede06 8761 Nam, Comp);
fbf5a39b
AC
8762 exit;
8763 else
8764 Next_Component (Comp);
8765 end if;
8766 end loop;
8767 end;
8768 end if;
8769
8770 Error_Msg_N
3f1ede06 8771 ("\use pragma Import for & to " &
685bc70f 8772 "suppress initialization (RM B.1(24))??",
3f1ede06 8773 Nam);
fbf5a39b
AC
8774 end if;
8775 end Warn_Overlay;
8776
70482933 8777end Freeze;