]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/frv-tdep.c
* regcache.c (struct regcache): Add ptid_t member.
[thirdparty/binutils-gdb.git] / gdb / frv-tdep.c
CommitLineData
456f8b9d 1/* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
0fd88904 2
6aba47ca 3 Copyright (C) 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
456f8b9d
DB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
197e01b6
EZ
19 Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
456f8b9d
DB
21
22#include "defs.h"
8baa6f92 23#include "gdb_string.h"
456f8b9d 24#include "inferior.h"
456f8b9d
DB
25#include "gdbcore.h"
26#include "arch-utils.h"
27#include "regcache.h"
8baa6f92 28#include "frame.h"
1cb761c7
KB
29#include "frame-unwind.h"
30#include "frame-base.h"
8baa6f92 31#include "trad-frame.h"
dcc6aaff 32#include "dis-asm.h"
526eef89
KB
33#include "gdb_assert.h"
34#include "sim-regno.h"
35#include "gdb/sim-frv.h"
36#include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
634aa483 37#include "symtab.h"
7e295833
KB
38#include "elf-bfd.h"
39#include "elf/frv.h"
40#include "osabi.h"
7d9b040b 41#include "infcall.h"
7e295833 42#include "frv-tdep.h"
456f8b9d
DB
43
44extern void _initialize_frv_tdep (void);
45
1cb761c7 46struct frv_unwind_cache /* was struct frame_extra_info */
456f8b9d 47 {
1cb761c7
KB
48 /* The previous frame's inner-most stack address. Used as this
49 frame ID's stack_addr. */
50 CORE_ADDR prev_sp;
456f8b9d 51
1cb761c7
KB
52 /* The frame's base, optionally used by the high-level debug info. */
53 CORE_ADDR base;
8baa6f92
KB
54
55 /* Table indicating the location of each and every register. */
56 struct trad_frame_saved_reg *saved_regs;
456f8b9d
DB
57 };
58
456f8b9d
DB
59/* A structure describing a particular variant of the FRV.
60 We allocate and initialize one of these structures when we create
61 the gdbarch object for a variant.
62
63 At the moment, all the FR variants we support differ only in which
64 registers are present; the portable code of GDB knows that
65 registers whose names are the empty string don't exist, so the
66 `register_names' array captures all the per-variant information we
67 need.
68
69 in the future, if we need to have per-variant maps for raw size,
70 virtual type, etc., we should replace register_names with an array
71 of structures, each of which gives all the necessary info for one
72 register. Don't stick parallel arrays in here --- that's so
73 Fortran. */
74struct gdbarch_tdep
75{
7e295833
KB
76 /* Which ABI is in use? */
77 enum frv_abi frv_abi;
78
456f8b9d
DB
79 /* How many general-purpose registers does this variant have? */
80 int num_gprs;
81
82 /* How many floating-point registers does this variant have? */
83 int num_fprs;
84
85 /* How many hardware watchpoints can it support? */
86 int num_hw_watchpoints;
87
88 /* How many hardware breakpoints can it support? */
89 int num_hw_breakpoints;
90
91 /* Register names. */
92 char **register_names;
93};
94
95#define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch))
96
7e295833
KB
97/* Return the FR-V ABI associated with GDBARCH. */
98enum frv_abi
99frv_abi (struct gdbarch *gdbarch)
100{
101 return gdbarch_tdep (gdbarch)->frv_abi;
102}
103
104/* Fetch the interpreter and executable loadmap addresses (for shared
105 library support) for the FDPIC ABI. Return 0 if successful, -1 if
106 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
107int
108frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
109 CORE_ADDR *exec_addr)
110{
111 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
112 return -1;
113 else
114 {
594f7785
UW
115 struct regcache *regcache = get_current_regcache ();
116
7e295833
KB
117 if (interp_addr != NULL)
118 {
119 ULONGEST val;
594f7785 120 regcache_cooked_read_unsigned (regcache,
7e295833
KB
121 fdpic_loadmap_interp_regnum, &val);
122 *interp_addr = val;
123 }
124 if (exec_addr != NULL)
125 {
126 ULONGEST val;
594f7785 127 regcache_cooked_read_unsigned (regcache,
7e295833
KB
128 fdpic_loadmap_exec_regnum, &val);
129 *exec_addr = val;
130 }
131 return 0;
132 }
133}
456f8b9d
DB
134
135/* Allocate a new variant structure, and set up default values for all
136 the fields. */
137static struct gdbarch_tdep *
5ae5f592 138new_variant (void)
456f8b9d
DB
139{
140 struct gdbarch_tdep *var;
141 int r;
142 char buf[20];
143
144 var = xmalloc (sizeof (*var));
145 memset (var, 0, sizeof (*var));
146
7e295833 147 var->frv_abi = FRV_ABI_EABI;
456f8b9d
DB
148 var->num_gprs = 64;
149 var->num_fprs = 64;
150 var->num_hw_watchpoints = 0;
151 var->num_hw_breakpoints = 0;
152
153 /* By default, don't supply any general-purpose or floating-point
154 register names. */
6a748db6
KB
155 var->register_names
156 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
157 * sizeof (char *));
158 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
456f8b9d
DB
159 var->register_names[r] = "";
160
526eef89 161 /* Do, however, supply default names for the known special-purpose
456f8b9d 162 registers. */
456f8b9d
DB
163
164 var->register_names[pc_regnum] = "pc";
165 var->register_names[lr_regnum] = "lr";
166 var->register_names[lcr_regnum] = "lcr";
167
168 var->register_names[psr_regnum] = "psr";
169 var->register_names[ccr_regnum] = "ccr";
170 var->register_names[cccr_regnum] = "cccr";
171 var->register_names[tbr_regnum] = "tbr";
172
173 /* Debug registers. */
174 var->register_names[brr_regnum] = "brr";
175 var->register_names[dbar0_regnum] = "dbar0";
176 var->register_names[dbar1_regnum] = "dbar1";
177 var->register_names[dbar2_regnum] = "dbar2";
178 var->register_names[dbar3_regnum] = "dbar3";
179
526eef89
KB
180 /* iacc0 (Only found on MB93405.) */
181 var->register_names[iacc0h_regnum] = "iacc0h";
182 var->register_names[iacc0l_regnum] = "iacc0l";
6a748db6 183 var->register_names[iacc0_regnum] = "iacc0";
526eef89 184
8b67aa36
KB
185 /* fsr0 (Found on FR555 and FR501.) */
186 var->register_names[fsr0_regnum] = "fsr0";
187
188 /* acc0 - acc7. The architecture provides for the possibility of many
189 more (up to 64 total), but we don't want to make that big of a hole
190 in the G packet. If we need more in the future, we'll add them
191 elsewhere. */
192 for (r = acc0_regnum; r <= acc7_regnum; r++)
193 {
194 char *buf;
b435e160 195 buf = xstrprintf ("acc%d", r - acc0_regnum);
8b67aa36
KB
196 var->register_names[r] = buf;
197 }
198
199 /* accg0 - accg7: These are one byte registers. The remote protocol
200 provides the raw values packed four into a slot. accg0123 and
201 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
202 We don't provide names for accg0123 and accg4567 since the user will
203 likely not want to see these raw values. */
204
205 for (r = accg0_regnum; r <= accg7_regnum; r++)
206 {
207 char *buf;
b435e160 208 buf = xstrprintf ("accg%d", r - accg0_regnum);
8b67aa36
KB
209 var->register_names[r] = buf;
210 }
211
212 /* msr0 and msr1. */
213
214 var->register_names[msr0_regnum] = "msr0";
215 var->register_names[msr1_regnum] = "msr1";
216
217 /* gner and fner registers. */
218 var->register_names[gner0_regnum] = "gner0";
219 var->register_names[gner1_regnum] = "gner1";
220 var->register_names[fner0_regnum] = "fner0";
221 var->register_names[fner1_regnum] = "fner1";
222
456f8b9d
DB
223 return var;
224}
225
226
227/* Indicate that the variant VAR has NUM_GPRS general-purpose
228 registers, and fill in the names array appropriately. */
229static void
230set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
231{
232 int r;
233
234 var->num_gprs = num_gprs;
235
236 for (r = 0; r < num_gprs; ++r)
237 {
238 char buf[20];
239
240 sprintf (buf, "gr%d", r);
241 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
242 }
243}
244
245
246/* Indicate that the variant VAR has NUM_FPRS floating-point
247 registers, and fill in the names array appropriately. */
248static void
249set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
250{
251 int r;
252
253 var->num_fprs = num_fprs;
254
255 for (r = 0; r < num_fprs; ++r)
256 {
257 char buf[20];
258
259 sprintf (buf, "fr%d", r);
260 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
261 }
262}
263
7e295833
KB
264static void
265set_variant_abi_fdpic (struct gdbarch_tdep *var)
266{
267 var->frv_abi = FRV_ABI_FDPIC;
268 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
269 var->register_names[fdpic_loadmap_interp_regnum] = xstrdup ("loadmap_interp");
270}
456f8b9d 271
b2d6d697
KB
272static void
273set_variant_scratch_registers (struct gdbarch_tdep *var)
274{
275 var->register_names[scr0_regnum] = xstrdup ("scr0");
276 var->register_names[scr1_regnum] = xstrdup ("scr1");
277 var->register_names[scr2_regnum] = xstrdup ("scr2");
278 var->register_names[scr3_regnum] = xstrdup ("scr3");
279}
280
456f8b9d
DB
281static const char *
282frv_register_name (int reg)
283{
284 if (reg < 0)
285 return "?toosmall?";
6a748db6 286 if (reg >= frv_num_regs + frv_num_pseudo_regs)
456f8b9d
DB
287 return "?toolarge?";
288
289 return CURRENT_VARIANT->register_names[reg];
290}
291
526eef89 292
456f8b9d 293static struct type *
7f398216 294frv_register_type (struct gdbarch *gdbarch, int reg)
456f8b9d 295{
526eef89 296 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
456f8b9d 297 return builtin_type_float;
6a748db6
KB
298 else if (reg == iacc0_regnum)
299 return builtin_type_int64;
456f8b9d 300 else
526eef89 301 return builtin_type_int32;
456f8b9d
DB
302}
303
6a748db6
KB
304static void
305frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
e2b7c966 306 int reg, gdb_byte *buffer)
6a748db6
KB
307{
308 if (reg == iacc0_regnum)
309 {
310 regcache_raw_read (regcache, iacc0h_regnum, buffer);
311 regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
312 }
8b67aa36
KB
313 else if (accg0_regnum <= reg && reg <= accg7_regnum)
314 {
315 /* The accg raw registers have four values in each slot with the
316 lowest register number occupying the first byte. */
317
318 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
319 int byte_num = (reg - accg0_regnum) % 4;
320 bfd_byte buf[4];
321
322 regcache_raw_read (regcache, raw_regnum, buf);
323 memset (buffer, 0, 4);
324 /* FR-V is big endian, so put the requested byte in the first byte
325 of the buffer allocated to hold the pseudo-register. */
326 ((bfd_byte *) buffer)[0] = buf[byte_num];
327 }
6a748db6
KB
328}
329
330static void
331frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
e2b7c966 332 int reg, const gdb_byte *buffer)
6a748db6
KB
333{
334 if (reg == iacc0_regnum)
335 {
336 regcache_raw_write (regcache, iacc0h_regnum, buffer);
337 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
338 }
8b67aa36
KB
339 else if (accg0_regnum <= reg && reg <= accg7_regnum)
340 {
341 /* The accg raw registers have four values in each slot with the
342 lowest register number occupying the first byte. */
343
344 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
345 int byte_num = (reg - accg0_regnum) % 4;
346 char buf[4];
347
348 regcache_raw_read (regcache, raw_regnum, buf);
349 buf[byte_num] = ((bfd_byte *) buffer)[0];
350 regcache_raw_write (regcache, raw_regnum, buf);
351 }
6a748db6
KB
352}
353
526eef89
KB
354static int
355frv_register_sim_regno (int reg)
356{
357 static const int spr_map[] =
358 {
359 H_SPR_PSR, /* psr_regnum */
360 H_SPR_CCR, /* ccr_regnum */
361 H_SPR_CCCR, /* cccr_regnum */
8b67aa36
KB
362 -1, /* fdpic_loadmap_exec_regnum */
363 -1, /* fdpic_loadmap_interp_regnum */
526eef89
KB
364 -1, /* 134 */
365 H_SPR_TBR, /* tbr_regnum */
366 H_SPR_BRR, /* brr_regnum */
367 H_SPR_DBAR0, /* dbar0_regnum */
368 H_SPR_DBAR1, /* dbar1_regnum */
369 H_SPR_DBAR2, /* dbar2_regnum */
370 H_SPR_DBAR3, /* dbar3_regnum */
8b67aa36
KB
371 H_SPR_SCR0, /* scr0_regnum */
372 H_SPR_SCR1, /* scr1_regnum */
373 H_SPR_SCR2, /* scr2_regnum */
374 H_SPR_SCR3, /* scr3_regnum */
526eef89
KB
375 H_SPR_LR, /* lr_regnum */
376 H_SPR_LCR, /* lcr_regnum */
377 H_SPR_IACC0H, /* iacc0h_regnum */
8b67aa36
KB
378 H_SPR_IACC0L, /* iacc0l_regnum */
379 H_SPR_FSR0, /* fsr0_regnum */
380 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
381 -1, /* acc0_regnum */
382 -1, /* acc1_regnum */
383 -1, /* acc2_regnum */
384 -1, /* acc3_regnum */
385 -1, /* acc4_regnum */
386 -1, /* acc5_regnum */
387 -1, /* acc6_regnum */
388 -1, /* acc7_regnum */
389 -1, /* acc0123_regnum */
390 -1, /* acc4567_regnum */
391 H_SPR_MSR0, /* msr0_regnum */
392 H_SPR_MSR1, /* msr1_regnum */
393 H_SPR_GNER0, /* gner0_regnum */
394 H_SPR_GNER1, /* gner1_regnum */
395 H_SPR_FNER0, /* fner0_regnum */
396 H_SPR_FNER1, /* fner1_regnum */
526eef89
KB
397 };
398
f57d151a 399 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (current_gdbarch));
526eef89
KB
400
401 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
402 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
403 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
404 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
405 else if (pc_regnum == reg)
406 return SIM_FRV_PC_REGNUM;
407 else if (reg >= first_spr_regnum
408 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
409 {
410 int spr_reg_offset = spr_map[reg - first_spr_regnum];
411
412 if (spr_reg_offset < 0)
413 return SIM_REGNO_DOES_NOT_EXIST;
414 else
415 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
416 }
417
e2e0b3e5 418 internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
526eef89
KB
419}
420
456f8b9d
DB
421static const unsigned char *
422frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp)
423{
424 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
425 *lenp = sizeof (breakpoint);
426 return breakpoint;
427}
428
46a16dba
KB
429/* Define the maximum number of instructions which may be packed into a
430 bundle (VLIW instruction). */
431static const int max_instrs_per_bundle = 8;
432
433/* Define the size (in bytes) of an FR-V instruction. */
434static const int frv_instr_size = 4;
435
436/* Adjust a breakpoint's address to account for the FR-V architecture's
437 constraint that a break instruction must not appear as any but the
438 first instruction in the bundle. */
439static CORE_ADDR
1208538e 440frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
46a16dba
KB
441{
442 int count = max_instrs_per_bundle;
443 CORE_ADDR addr = bpaddr - frv_instr_size;
444 CORE_ADDR func_start = get_pc_function_start (bpaddr);
445
446 /* Find the end of the previous packing sequence. This will be indicated
447 by either attempting to access some inaccessible memory or by finding
448 an instruction word whose packing bit is set to one. */
449 while (count-- > 0 && addr >= func_start)
450 {
451 char instr[frv_instr_size];
452 int status;
453
359a9262 454 status = read_memory_nobpt (addr, instr, sizeof instr);
46a16dba
KB
455
456 if (status != 0)
457 break;
458
459 /* This is a big endian architecture, so byte zero will have most
460 significant byte. The most significant bit of this byte is the
461 packing bit. */
462 if (instr[0] & 0x80)
463 break;
464
465 addr -= frv_instr_size;
466 }
467
468 if (count > 0)
469 bpaddr = addr + frv_instr_size;
470
471 return bpaddr;
472}
473
456f8b9d
DB
474
475/* Return true if REG is a caller-saves ("scratch") register,
476 false otherwise. */
477static int
478is_caller_saves_reg (int reg)
479{
480 return ((4 <= reg && reg <= 7)
481 || (14 <= reg && reg <= 15)
482 || (32 <= reg && reg <= 47));
483}
484
485
486/* Return true if REG is a callee-saves register, false otherwise. */
487static int
488is_callee_saves_reg (int reg)
489{
490 return ((16 <= reg && reg <= 31)
491 || (48 <= reg && reg <= 63));
492}
493
494
495/* Return true if REG is an argument register, false otherwise. */
496static int
497is_argument_reg (int reg)
498{
499 return (8 <= reg && reg <= 13);
500}
501
456f8b9d
DB
502/* Scan an FR-V prologue, starting at PC, until frame->PC.
503 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
504 We assume FRAME's saved_regs array has already been allocated and cleared.
505 Return the first PC value after the prologue.
506
507 Note that, for unoptimized code, we almost don't need this function
508 at all; all arguments and locals live on the stack, so we just need
509 the FP to find everything. The catch: structures passed by value
510 have their addresses living in registers; they're never spilled to
511 the stack. So if you ever want to be able to get to these
512 arguments in any frame but the top, you'll need to do this serious
513 prologue analysis. */
514static CORE_ADDR
1cb761c7
KB
515frv_analyze_prologue (CORE_ADDR pc, struct frame_info *next_frame,
516 struct frv_unwind_cache *info)
456f8b9d
DB
517{
518 /* When writing out instruction bitpatterns, we use the following
519 letters to label instruction fields:
520 P - The parallel bit. We don't use this.
521 J - The register number of GRj in the instruction description.
522 K - The register number of GRk in the instruction description.
523 I - The register number of GRi.
524 S - a signed imediate offset.
525 U - an unsigned immediate offset.
526
527 The dots below the numbers indicate where hex digit boundaries
528 fall, to make it easier to check the numbers. */
529
530 /* Non-zero iff we've seen the instruction that initializes the
531 frame pointer for this function's frame. */
532 int fp_set = 0;
533
534 /* If fp_set is non_zero, then this is the distance from
535 the stack pointer to frame pointer: fp = sp + fp_offset. */
536 int fp_offset = 0;
537
538 /* Total size of frame prior to any alloca operations. */
539 int framesize = 0;
540
1cb761c7
KB
541 /* Flag indicating if lr has been saved on the stack. */
542 int lr_saved_on_stack = 0;
543
456f8b9d
DB
544 /* The number of the general-purpose register we saved the return
545 address ("link register") in, or -1 if we haven't moved it yet. */
546 int lr_save_reg = -1;
547
1cb761c7
KB
548 /* Offset (from sp) at which lr has been saved on the stack. */
549
550 int lr_sp_offset = 0;
456f8b9d
DB
551
552 /* If gr_saved[i] is non-zero, then we've noticed that general
553 register i has been saved at gr_sp_offset[i] from the stack
554 pointer. */
555 char gr_saved[64];
556 int gr_sp_offset[64];
557
d40fcd7b
KB
558 /* The address of the most recently scanned prologue instruction. */
559 CORE_ADDR last_prologue_pc;
560
561 /* The address of the next instruction. */
562 CORE_ADDR next_pc;
563
564 /* The upper bound to of the pc values to scan. */
565 CORE_ADDR lim_pc;
566
456f8b9d
DB
567 memset (gr_saved, 0, sizeof (gr_saved));
568
d40fcd7b
KB
569 last_prologue_pc = pc;
570
571 /* Try to compute an upper limit (on how far to scan) based on the
572 line number info. */
573 lim_pc = skip_prologue_using_sal (pc);
574 /* If there's no line number info, lim_pc will be 0. In that case,
575 set the limit to be 100 instructions away from pc. Hopefully, this
576 will be far enough away to account for the entire prologue. Don't
577 worry about overshooting the end of the function. The scan loop
578 below contains some checks to avoid scanning unreasonably far. */
579 if (lim_pc == 0)
580 lim_pc = pc + 400;
581
582 /* If we have a frame, we don't want to scan past the frame's pc. This
583 will catch those cases where the pc is in the prologue. */
584 if (next_frame)
585 {
586 CORE_ADDR frame_pc = frame_pc_unwind (next_frame);
587 if (frame_pc < lim_pc)
588 lim_pc = frame_pc;
589 }
590
591 /* Scan the prologue. */
592 while (pc < lim_pc)
456f8b9d 593 {
1ccda5e9
KB
594 char buf[frv_instr_size];
595 LONGEST op;
596
597 if (target_read_memory (pc, buf, sizeof buf) != 0)
598 break;
599 op = extract_signed_integer (buf, sizeof buf);
600
d40fcd7b 601 next_pc = pc + 4;
456f8b9d
DB
602
603 /* The tests in this chain of ifs should be in order of
604 decreasing selectivity, so that more particular patterns get
605 to fire before less particular patterns. */
606
d40fcd7b
KB
607 /* Some sort of control transfer instruction: stop scanning prologue.
608 Integer Conditional Branch:
609 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
610 Floating-point / media Conditional Branch:
611 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
612 LCR Conditional Branch to LR
613 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
614 Integer conditional Branches to LR
615 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
616 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
617 Floating-point/Media Branches to LR
618 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
619 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
620 Jump and Link
621 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
622 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
623 Call
624 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
625 Return from Trap
626 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
627 Integer Conditional Trap
628 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
629 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
630 Floating-point /media Conditional Trap
631 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
632 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
633 Break
634 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
635 Media Trap
636 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
637 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
638 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
639 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
640 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
641 {
642 /* Stop scanning; not in prologue any longer. */
643 break;
644 }
645
646 /* Loading something from memory into fp probably means that
647 we're in the epilogue. Stop scanning the prologue.
648 ld @(GRi, GRk), fp
649 X 000010 0000010 XXXXXX 000100 XXXXXX
650 ldi @(GRi, d12), fp
651 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
652 else if ((op & 0x7ffc0fc0) == 0x04080100
653 || (op & 0x7ffc0000) == 0x04c80000)
654 {
655 break;
656 }
657
456f8b9d
DB
658 /* Setting the FP from the SP:
659 ori sp, 0, fp
660 P 000010 0100010 000001 000000000000 = 0x04881000
661 0 111111 1111111 111111 111111111111 = 0x7fffffff
662 . . . . . . . .
663 We treat this as part of the prologue. */
d40fcd7b 664 else if ((op & 0x7fffffff) == 0x04881000)
456f8b9d
DB
665 {
666 fp_set = 1;
667 fp_offset = 0;
d40fcd7b 668 last_prologue_pc = next_pc;
456f8b9d
DB
669 }
670
671 /* Move the link register to the scratch register grJ, before saving:
672 movsg lr, grJ
673 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
674 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
675 . . . . . . . .
676 We treat this as part of the prologue. */
677 else if ((op & 0x7fffffc0) == 0x080d01c0)
678 {
679 int gr_j = op & 0x3f;
680
681 /* If we're moving it to a scratch register, that's fine. */
682 if (is_caller_saves_reg (gr_j))
d40fcd7b
KB
683 {
684 lr_save_reg = gr_j;
685 last_prologue_pc = next_pc;
686 }
456f8b9d
DB
687 }
688
689 /* To save multiple callee-saves registers on the stack, at
690 offset zero:
691
692 std grK,@(sp,gr0)
693 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
694 0 000000 1111111 111111 111111 111111 = 0x01ffffff
695
696 stq grK,@(sp,gr0)
697 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
698 0 000000 1111111 111111 111111 111111 = 0x01ffffff
699 . . . . . . . .
700 We treat this as part of the prologue, and record the register's
701 saved address in the frame structure. */
702 else if ((op & 0x01ffffff) == 0x000c10c0
703 || (op & 0x01ffffff) == 0x000c1100)
704 {
705 int gr_k = ((op >> 25) & 0x3f);
706 int ope = ((op >> 6) & 0x3f);
707 int count;
708 int i;
709
710 /* Is it an std or an stq? */
711 if (ope == 0x03)
712 count = 2;
713 else
714 count = 4;
715
716 /* Is it really a callee-saves register? */
717 if (is_callee_saves_reg (gr_k))
718 {
719 for (i = 0; i < count; i++)
720 {
721 gr_saved[gr_k + i] = 1;
722 gr_sp_offset[gr_k + i] = 4 * i;
723 }
d40fcd7b 724 last_prologue_pc = next_pc;
456f8b9d 725 }
456f8b9d
DB
726 }
727
728 /* Adjusting the stack pointer. (The stack pointer is GR1.)
729 addi sp, S, sp
730 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
731 0 111111 1111111 111111 000000000000 = 0x7ffff000
732 . . . . . . . .
733 We treat this as part of the prologue. */
734 else if ((op & 0x7ffff000) == 0x02401000)
735 {
d40fcd7b
KB
736 if (framesize == 0)
737 {
738 /* Sign-extend the twelve-bit field.
739 (Isn't there a better way to do this?) */
740 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
456f8b9d 741
d40fcd7b
KB
742 framesize -= s;
743 last_prologue_pc = pc;
744 }
745 else
746 {
747 /* If the prologue is being adjusted again, we've
748 likely gone too far; i.e. we're probably in the
749 epilogue. */
750 break;
751 }
456f8b9d
DB
752 }
753
754 /* Setting the FP to a constant distance from the SP:
755 addi sp, S, fp
756 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
757 0 111111 1111111 111111 000000000000 = 0x7ffff000
758 . . . . . . . .
759 We treat this as part of the prologue. */
760 else if ((op & 0x7ffff000) == 0x04401000)
761 {
762 /* Sign-extend the twelve-bit field.
763 (Isn't there a better way to do this?) */
764 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
765 fp_set = 1;
766 fp_offset = s;
d40fcd7b 767 last_prologue_pc = pc;
456f8b9d
DB
768 }
769
770 /* To spill an argument register to a scratch register:
771 ori GRi, 0, GRk
772 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
773 0 000000 1111111 000000 111111111111 = 0x01fc0fff
774 . . . . . . . .
775 For the time being, we treat this as a prologue instruction,
776 assuming that GRi is an argument register. This one's kind
777 of suspicious, because it seems like it could be part of a
778 legitimate body instruction. But we only come here when the
779 source info wasn't helpful, so we have to do the best we can.
780 Hopefully once GCC and GDB agree on how to emit line number
781 info for prologues, then this code will never come into play. */
782 else if ((op & 0x01fc0fff) == 0x00880000)
783 {
784 int gr_i = ((op >> 12) & 0x3f);
785
d40fcd7b
KB
786 /* Make sure that the source is an arg register; if it is, we'll
787 treat it as a prologue instruction. */
788 if (is_argument_reg (gr_i))
789 last_prologue_pc = next_pc;
456f8b9d
DB
790 }
791
792 /* To spill 16-bit values to the stack:
793 sthi GRk, @(fp, s)
794 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
795 0 000000 1111111 111111 000000000000 = 0x01fff000
796 . . . . . . . .
797 And for 8-bit values, we use STB instructions.
798 stbi GRk, @(fp, s)
799 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
800 0 000000 1111111 111111 000000000000 = 0x01fff000
801 . . . . . . . .
802 We check that GRk is really an argument register, and treat
803 all such as part of the prologue. */
804 else if ( (op & 0x01fff000) == 0x01442000
805 || (op & 0x01fff000) == 0x01402000)
806 {
807 int gr_k = ((op >> 25) & 0x3f);
808
d40fcd7b
KB
809 /* Make sure that GRk is really an argument register; treat
810 it as a prologue instruction if so. */
811 if (is_argument_reg (gr_k))
812 last_prologue_pc = next_pc;
456f8b9d
DB
813 }
814
815 /* To save multiple callee-saves register on the stack, at a
816 non-zero offset:
817
818 stdi GRk, @(sp, s)
819 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
820 0 000000 1111111 111111 000000000000 = 0x01fff000
821 . . . . . . . .
822 stqi GRk, @(sp, s)
823 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
824 0 000000 1111111 111111 000000000000 = 0x01fff000
825 . . . . . . . .
826 We treat this as part of the prologue, and record the register's
827 saved address in the frame structure. */
828 else if ((op & 0x01fff000) == 0x014c1000
829 || (op & 0x01fff000) == 0x01501000)
830 {
831 int gr_k = ((op >> 25) & 0x3f);
832 int count;
833 int i;
834
835 /* Is it a stdi or a stqi? */
836 if ((op & 0x01fff000) == 0x014c1000)
837 count = 2;
838 else
839 count = 4;
840
841 /* Is it really a callee-saves register? */
842 if (is_callee_saves_reg (gr_k))
843 {
844 /* Sign-extend the twelve-bit field.
845 (Isn't there a better way to do this?) */
846 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
847
848 for (i = 0; i < count; i++)
849 {
850 gr_saved[gr_k + i] = 1;
851 gr_sp_offset[gr_k + i] = s + (4 * i);
852 }
d40fcd7b 853 last_prologue_pc = next_pc;
456f8b9d 854 }
456f8b9d
DB
855 }
856
857 /* Storing any kind of integer register at any constant offset
858 from any other register.
859
860 st GRk, @(GRi, gr0)
861 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
862 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
863 . . . . . . . .
864 sti GRk, @(GRi, d12)
865 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
866 0 000000 1111111 000000 000000000000 = 0x01fc0000
867 . . . . . . . .
868 These could be almost anything, but a lot of prologue
869 instructions fall into this pattern, so let's decode the
870 instruction once, and then work at a higher level. */
871 else if (((op & 0x01fc0fff) == 0x000c0080)
872 || ((op & 0x01fc0000) == 0x01480000))
873 {
874 int gr_k = ((op >> 25) & 0x3f);
875 int gr_i = ((op >> 12) & 0x3f);
876 int offset;
877
878 /* Are we storing with gr0 as an offset, or using an
879 immediate value? */
880 if ((op & 0x01fc0fff) == 0x000c0080)
881 offset = 0;
882 else
883 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
884
885 /* If the address isn't relative to the SP or FP, it's not a
886 prologue instruction. */
887 if (gr_i != sp_regnum && gr_i != fp_regnum)
d40fcd7b
KB
888 {
889 /* Do nothing; not a prologue instruction. */
890 }
456f8b9d
DB
891
892 /* Saving the old FP in the new frame (relative to the SP). */
d40fcd7b 893 else if (gr_k == fp_regnum && gr_i == sp_regnum)
1cb761c7
KB
894 {
895 gr_saved[fp_regnum] = 1;
896 gr_sp_offset[fp_regnum] = offset;
d40fcd7b 897 last_prologue_pc = next_pc;
1cb761c7 898 }
456f8b9d
DB
899
900 /* Saving callee-saves register(s) on the stack, relative to
901 the SP. */
902 else if (gr_i == sp_regnum
903 && is_callee_saves_reg (gr_k))
904 {
905 gr_saved[gr_k] = 1;
1cb761c7
KB
906 if (gr_i == sp_regnum)
907 gr_sp_offset[gr_k] = offset;
908 else
909 gr_sp_offset[gr_k] = offset + fp_offset;
d40fcd7b 910 last_prologue_pc = next_pc;
456f8b9d
DB
911 }
912
913 /* Saving the scratch register holding the return address. */
914 else if (lr_save_reg != -1
915 && gr_k == lr_save_reg)
1cb761c7
KB
916 {
917 lr_saved_on_stack = 1;
918 if (gr_i == sp_regnum)
919 lr_sp_offset = offset;
920 else
921 lr_sp_offset = offset + fp_offset;
d40fcd7b 922 last_prologue_pc = next_pc;
1cb761c7 923 }
456f8b9d
DB
924
925 /* Spilling int-sized arguments to the stack. */
926 else if (is_argument_reg (gr_k))
d40fcd7b 927 last_prologue_pc = next_pc;
456f8b9d 928 }
d40fcd7b 929 pc = next_pc;
456f8b9d
DB
930 }
931
1cb761c7 932 if (next_frame && info)
456f8b9d 933 {
1cb761c7
KB
934 int i;
935 ULONGEST this_base;
456f8b9d
DB
936
937 /* If we know the relationship between the stack and frame
938 pointers, record the addresses of the registers we noticed.
939 Note that we have to do this as a separate step at the end,
940 because instructions may save relative to the SP, but we need
941 their addresses relative to the FP. */
942 if (fp_set)
1cb761c7
KB
943 frame_unwind_unsigned_register (next_frame, fp_regnum, &this_base);
944 else
945 frame_unwind_unsigned_register (next_frame, sp_regnum, &this_base);
456f8b9d 946
1cb761c7
KB
947 for (i = 0; i < 64; i++)
948 if (gr_saved[i])
949 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
456f8b9d 950
1cb761c7
KB
951 info->prev_sp = this_base - fp_offset + framesize;
952 info->base = this_base;
953
954 /* If LR was saved on the stack, record its location. */
955 if (lr_saved_on_stack)
956 info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
957
958 /* The call instruction moves the caller's PC in the callee's LR.
959 Since this is an unwind, do the reverse. Copy the location of LR
960 into PC (the address / regnum) so that a request for PC will be
961 converted into a request for the LR. */
962 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
963
964 /* Save the previous frame's computed SP value. */
965 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
456f8b9d
DB
966 }
967
d40fcd7b 968 return last_prologue_pc;
456f8b9d
DB
969}
970
971
972static CORE_ADDR
973frv_skip_prologue (CORE_ADDR pc)
974{
975 CORE_ADDR func_addr, func_end, new_pc;
976
977 new_pc = pc;
978
979 /* If the line table has entry for a line *within* the function
980 (i.e., not in the prologue, and not past the end), then that's
981 our location. */
982 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
983 {
984 struct symtab_and_line sal;
985
986 sal = find_pc_line (func_addr, 0);
987
988 if (sal.line != 0 && sal.end < func_end)
989 {
990 new_pc = sal.end;
991 }
992 }
993
994 /* The FR-V prologue is at least five instructions long (twenty bytes).
995 If we didn't find a real source location past that, then
996 do a full analysis of the prologue. */
997 if (new_pc < pc + 20)
1cb761c7 998 new_pc = frv_analyze_prologue (pc, 0, 0);
456f8b9d
DB
999
1000 return new_pc;
1001}
1002
1cb761c7
KB
1003
1004static struct frv_unwind_cache *
1005frv_frame_unwind_cache (struct frame_info *next_frame,
1006 void **this_prologue_cache)
456f8b9d 1007{
1cb761c7
KB
1008 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1009 CORE_ADDR pc;
1cb761c7
KB
1010 ULONGEST this_base;
1011 struct frv_unwind_cache *info;
8baa6f92 1012
1cb761c7
KB
1013 if ((*this_prologue_cache))
1014 return (*this_prologue_cache);
456f8b9d 1015
1cb761c7
KB
1016 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1017 (*this_prologue_cache) = info;
1018 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
456f8b9d 1019
1cb761c7 1020 /* Prologue analysis does the rest... */
93d42b30
DJ
1021 frv_analyze_prologue (frame_func_unwind (next_frame, NORMAL_FRAME),
1022 next_frame, info);
456f8b9d 1023
1cb761c7 1024 return info;
456f8b9d
DB
1025}
1026
456f8b9d 1027static void
cd31fb03 1028frv_extract_return_value (struct type *type, struct regcache *regcache,
e2b7c966 1029 gdb_byte *valbuf)
456f8b9d 1030{
cd31fb03
KB
1031 int len = TYPE_LENGTH (type);
1032
1033 if (len <= 4)
1034 {
1035 ULONGEST gpr8_val;
1036 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1037 store_unsigned_integer (valbuf, len, gpr8_val);
1038 }
1039 else if (len == 8)
1040 {
1041 ULONGEST regval;
1042 regcache_cooked_read_unsigned (regcache, 8, &regval);
1043 store_unsigned_integer (valbuf, 4, regval);
1044 regcache_cooked_read_unsigned (regcache, 9, &regval);
1045 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, regval);
1046 }
1047 else
e2e0b3e5 1048 internal_error (__FILE__, __LINE__, _("Illegal return value length: %d"), len);
456f8b9d
DB
1049}
1050
1051static CORE_ADDR
cd31fb03 1052frv_extract_struct_value_address (struct regcache *regcache)
456f8b9d 1053{
cd31fb03
KB
1054 ULONGEST addr;
1055 regcache_cooked_read_unsigned (regcache, struct_return_regnum, &addr);
1056 return addr;
456f8b9d
DB
1057}
1058
1cb761c7
KB
1059static CORE_ADDR
1060frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
456f8b9d 1061{
1cb761c7 1062 /* Require dword alignment. */
5b03f266 1063 return align_down (sp, 8);
456f8b9d
DB
1064}
1065
c4d10515
KB
1066static CORE_ADDR
1067find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1068{
1069 CORE_ADDR descr;
1070 char valbuf[4];
35e08e03
KB
1071 CORE_ADDR start_addr;
1072
1073 /* If we can't find the function in the symbol table, then we assume
1074 that the function address is already in descriptor form. */
1075 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1076 || entry_point != start_addr)
1077 return entry_point;
c4d10515
KB
1078
1079 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1080
1081 if (descr != 0)
1082 return descr;
1083
1084 /* Construct a non-canonical descriptor from space allocated on
1085 the stack. */
1086
1087 descr = value_as_long (value_allocate_space_in_inferior (8));
1088 store_unsigned_integer (valbuf, 4, entry_point);
1089 write_memory (descr, valbuf, 4);
1090 store_unsigned_integer (valbuf, 4,
1091 frv_fdpic_find_global_pointer (entry_point));
1092 write_memory (descr + 4, valbuf, 4);
1093 return descr;
1094}
1095
1096static CORE_ADDR
1097frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1098 struct target_ops *targ)
1099{
1100 CORE_ADDR entry_point;
1101 CORE_ADDR got_address;
1102
1103 entry_point = get_target_memory_unsigned (targ, addr, 4);
1104 got_address = get_target_memory_unsigned (targ, addr + 4, 4);
1105
1106 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1107 return entry_point;
1108 else
1109 return addr;
1110}
1111
456f8b9d 1112static CORE_ADDR
7d9b040b 1113frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1cb761c7
KB
1114 struct regcache *regcache, CORE_ADDR bp_addr,
1115 int nargs, struct value **args, CORE_ADDR sp,
1116 int struct_return, CORE_ADDR struct_addr)
456f8b9d
DB
1117{
1118 int argreg;
1119 int argnum;
1120 char *val;
1121 char valbuf[4];
1122 struct value *arg;
1123 struct type *arg_type;
1124 int len;
1125 enum type_code typecode;
1126 CORE_ADDR regval;
1127 int stack_space;
1128 int stack_offset;
c4d10515 1129 enum frv_abi abi = frv_abi (gdbarch);
7d9b040b 1130 CORE_ADDR func_addr = find_function_addr (function, NULL);
456f8b9d
DB
1131
1132#if 0
1133 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1134 nargs, (int) sp, struct_return, struct_addr);
1135#endif
1136
1137 stack_space = 0;
1138 for (argnum = 0; argnum < nargs; ++argnum)
4991999e 1139 stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
456f8b9d
DB
1140
1141 stack_space -= (6 * 4);
1142 if (stack_space > 0)
1143 sp -= stack_space;
1144
1145 /* Make sure stack is dword aligned. */
5b03f266 1146 sp = align_down (sp, 8);
456f8b9d
DB
1147
1148 stack_offset = 0;
1149
1150 argreg = 8;
1151
1152 if (struct_return)
1cb761c7
KB
1153 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1154 struct_addr);
456f8b9d
DB
1155
1156 for (argnum = 0; argnum < nargs; ++argnum)
1157 {
1158 arg = args[argnum];
4991999e 1159 arg_type = check_typedef (value_type (arg));
456f8b9d
DB
1160 len = TYPE_LENGTH (arg_type);
1161 typecode = TYPE_CODE (arg_type);
1162
1163 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1164 {
fbd9dcd3 1165 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (arg));
456f8b9d
DB
1166 typecode = TYPE_CODE_PTR;
1167 len = 4;
1168 val = valbuf;
1169 }
c4d10515
KB
1170 else if (abi == FRV_ABI_FDPIC
1171 && len == 4
1172 && typecode == TYPE_CODE_PTR
1173 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1174 {
1175 /* The FDPIC ABI requires function descriptors to be passed instead
1176 of entry points. */
1177 store_unsigned_integer
1178 (valbuf, 4,
1179 find_func_descr (gdbarch,
0fd88904 1180 extract_unsigned_integer (value_contents (arg),
c4d10515
KB
1181 4)));
1182 typecode = TYPE_CODE_PTR;
1183 len = 4;
1184 val = valbuf;
1185 }
456f8b9d
DB
1186 else
1187 {
0fd88904 1188 val = (char *) value_contents (arg);
456f8b9d
DB
1189 }
1190
1191 while (len > 0)
1192 {
1193 int partial_len = (len < 4 ? len : 4);
1194
1195 if (argreg < 14)
1196 {
7c0b4a20 1197 regval = extract_unsigned_integer (val, partial_len);
456f8b9d
DB
1198#if 0
1199 printf(" Argnum %d data %x -> reg %d\n",
1200 argnum, (int) regval, argreg);
1201#endif
1cb761c7 1202 regcache_cooked_write_unsigned (regcache, argreg, regval);
456f8b9d
DB
1203 ++argreg;
1204 }
1205 else
1206 {
1207#if 0
1208 printf(" Argnum %d data %x -> offset %d (%x)\n",
1209 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
1210#endif
1211 write_memory (sp + stack_offset, val, partial_len);
5b03f266 1212 stack_offset += align_up (partial_len, 4);
456f8b9d
DB
1213 }
1214 len -= partial_len;
1215 val += partial_len;
1216 }
1217 }
456f8b9d 1218
1cb761c7
KB
1219 /* Set the return address. For the frv, the return breakpoint is
1220 always at BP_ADDR. */
1221 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1222
c4d10515
KB
1223 if (abi == FRV_ABI_FDPIC)
1224 {
1225 /* Set the GOT register for the FDPIC ABI. */
1226 regcache_cooked_write_unsigned
1227 (regcache, first_gpr_regnum + 15,
1228 frv_fdpic_find_global_pointer (func_addr));
1229 }
1230
1cb761c7
KB
1231 /* Finally, update the SP register. */
1232 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1233
456f8b9d
DB
1234 return sp;
1235}
1236
1237static void
cd31fb03 1238frv_store_return_value (struct type *type, struct regcache *regcache,
e2b7c966 1239 const gdb_byte *valbuf)
456f8b9d 1240{
cd31fb03
KB
1241 int len = TYPE_LENGTH (type);
1242
1243 if (len <= 4)
1244 {
1245 bfd_byte val[4];
1246 memset (val, 0, sizeof (val));
1247 memcpy (val + (4 - len), valbuf, len);
1248 regcache_cooked_write (regcache, 8, val);
1249 }
1250 else if (len == 8)
1251 {
1252 regcache_cooked_write (regcache, 8, valbuf);
1253 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1254 }
456f8b9d
DB
1255 else
1256 internal_error (__FILE__, __LINE__,
e2e0b3e5 1257 _("Don't know how to return a %d-byte value."), len);
456f8b9d
DB
1258}
1259
456f8b9d 1260
456f8b9d
DB
1261/* Hardware watchpoint / breakpoint support for the FR500
1262 and FR400. */
1263
1264int
1265frv_check_watch_resources (int type, int cnt, int ot)
1266{
1267 struct gdbarch_tdep *var = CURRENT_VARIANT;
1268
1269 /* Watchpoints not supported on simulator. */
1270 if (strcmp (target_shortname, "sim") == 0)
1271 return 0;
1272
1273 if (type == bp_hardware_breakpoint)
1274 {
1275 if (var->num_hw_breakpoints == 0)
1276 return 0;
1277 else if (cnt <= var->num_hw_breakpoints)
1278 return 1;
1279 }
1280 else
1281 {
1282 if (var->num_hw_watchpoints == 0)
1283 return 0;
1284 else if (ot)
1285 return -1;
1286 else if (cnt <= var->num_hw_watchpoints)
1287 return 1;
1288 }
1289 return -1;
1290}
1291
1292
4aa7a7f5
JJ
1293int
1294frv_stopped_data_address (CORE_ADDR *addr_p)
456f8b9d 1295{
1b5a9a8f 1296 struct frame_info *frame = get_current_frame ();
456f8b9d
DB
1297 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
1298
1b5a9a8f
UW
1299 brr = get_frame_register_unsigned (frame, brr_regnum);
1300 dbar0 = get_frame_register_unsigned (frame, dbar0_regnum);
1301 dbar1 = get_frame_register_unsigned (frame, dbar1_regnum);
1302 dbar2 = get_frame_register_unsigned (frame, dbar2_regnum);
1303 dbar3 = get_frame_register_unsigned (frame, dbar3_regnum);
456f8b9d
DB
1304
1305 if (brr & (1<<11))
4aa7a7f5 1306 *addr_p = dbar0;
456f8b9d 1307 else if (brr & (1<<10))
4aa7a7f5 1308 *addr_p = dbar1;
456f8b9d 1309 else if (brr & (1<<9))
4aa7a7f5 1310 *addr_p = dbar2;
456f8b9d 1311 else if (brr & (1<<8))
4aa7a7f5 1312 *addr_p = dbar3;
456f8b9d
DB
1313 else
1314 return 0;
4aa7a7f5
JJ
1315
1316 return 1;
1317}
1318
1319int
1320frv_have_stopped_data_address (void)
1321{
1322 CORE_ADDR addr = 0;
1323 return frv_stopped_data_address (&addr);
456f8b9d
DB
1324}
1325
1cb761c7
KB
1326static CORE_ADDR
1327frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1328{
1329 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1330}
1331
1332/* Given a GDB frame, determine the address of the calling function's
1333 frame. This will be used to create a new GDB frame struct. */
1334
1335static void
1336frv_frame_this_id (struct frame_info *next_frame,
1337 void **this_prologue_cache, struct frame_id *this_id)
1338{
1339 struct frv_unwind_cache *info
1340 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1341 CORE_ADDR base;
1342 CORE_ADDR func;
1343 struct minimal_symbol *msym_stack;
1344 struct frame_id id;
1345
1346 /* The FUNC is easy. */
93d42b30 1347 func = frame_func_unwind (next_frame, NORMAL_FRAME);
1cb761c7 1348
1cb761c7
KB
1349 /* Check if the stack is empty. */
1350 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1351 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1352 return;
1353
1354 /* Hopefully the prologue analysis either correctly determined the
1355 frame's base (which is the SP from the previous frame), or set
1356 that base to "NULL". */
1357 base = info->prev_sp;
1358 if (base == 0)
1359 return;
1360
1361 id = frame_id_build (base, func);
1cb761c7
KB
1362 (*this_id) = id;
1363}
1364
1365static void
1366frv_frame_prev_register (struct frame_info *next_frame,
1367 void **this_prologue_cache,
1368 int regnum, int *optimizedp,
1369 enum lval_type *lvalp, CORE_ADDR *addrp,
e2b7c966 1370 int *realnump, gdb_byte *bufferp)
1cb761c7
KB
1371{
1372 struct frv_unwind_cache *info
1373 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1f67027d
AC
1374 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1375 optimizedp, lvalp, addrp, realnump, bufferp);
1cb761c7
KB
1376}
1377
1378static const struct frame_unwind frv_frame_unwind = {
1379 NORMAL_FRAME,
1380 frv_frame_this_id,
1381 frv_frame_prev_register
1382};
1383
1384static const struct frame_unwind *
1385frv_frame_sniffer (struct frame_info *next_frame)
1386{
1387 return &frv_frame_unwind;
1388}
1389
1390static CORE_ADDR
1391frv_frame_base_address (struct frame_info *next_frame, void **this_cache)
1392{
1393 struct frv_unwind_cache *info
1394 = frv_frame_unwind_cache (next_frame, this_cache);
1395 return info->base;
1396}
1397
1398static const struct frame_base frv_frame_base = {
1399 &frv_frame_unwind,
1400 frv_frame_base_address,
1401 frv_frame_base_address,
1402 frv_frame_base_address
1403};
1404
1405static CORE_ADDR
1406frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1407{
1408 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1409}
1410
1411
1412/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1413 dummy frame. The frame ID's base needs to match the TOS value
1414 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1415 breakpoint. */
1416
1417static struct frame_id
1418frv_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1419{
1420 return frame_id_build (frv_unwind_sp (gdbarch, next_frame),
1421 frame_pc_unwind (next_frame));
1422}
1423
456f8b9d
DB
1424static struct gdbarch *
1425frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1426{
1427 struct gdbarch *gdbarch;
1428 struct gdbarch_tdep *var;
7e295833 1429 int elf_flags = 0;
456f8b9d
DB
1430
1431 /* Check to see if we've already built an appropriate architecture
1432 object for this executable. */
1433 arches = gdbarch_list_lookup_by_info (arches, &info);
1434 if (arches)
1435 return arches->gdbarch;
1436
1437 /* Select the right tdep structure for this variant. */
1438 var = new_variant ();
1439 switch (info.bfd_arch_info->mach)
1440 {
1441 case bfd_mach_frv:
1442 case bfd_mach_frvsimple:
1443 case bfd_mach_fr500:
1444 case bfd_mach_frvtomcat:
251a3ae3 1445 case bfd_mach_fr550:
456f8b9d
DB
1446 set_variant_num_gprs (var, 64);
1447 set_variant_num_fprs (var, 64);
1448 break;
1449
1450 case bfd_mach_fr400:
b2d6d697 1451 case bfd_mach_fr450:
456f8b9d
DB
1452 set_variant_num_gprs (var, 32);
1453 set_variant_num_fprs (var, 32);
1454 break;
1455
1456 default:
1457 /* Never heard of this variant. */
1458 return 0;
1459 }
7e295833
KB
1460
1461 /* Extract the ELF flags, if available. */
1462 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1463 elf_flags = elf_elfheader (info.abfd)->e_flags;
1464
1465 if (elf_flags & EF_FRV_FDPIC)
1466 set_variant_abi_fdpic (var);
1467
b2d6d697
KB
1468 if (elf_flags & EF_FRV_CPU_FR450)
1469 set_variant_scratch_registers (var);
1470
456f8b9d
DB
1471 gdbarch = gdbarch_alloc (&info, var);
1472
1473 set_gdbarch_short_bit (gdbarch, 16);
1474 set_gdbarch_int_bit (gdbarch, 32);
1475 set_gdbarch_long_bit (gdbarch, 32);
1476 set_gdbarch_long_long_bit (gdbarch, 64);
1477 set_gdbarch_float_bit (gdbarch, 32);
1478 set_gdbarch_double_bit (gdbarch, 64);
1479 set_gdbarch_long_double_bit (gdbarch, 64);
1480 set_gdbarch_ptr_bit (gdbarch, 32);
1481
1482 set_gdbarch_num_regs (gdbarch, frv_num_regs);
6a748db6
KB
1483 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1484
456f8b9d 1485 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
0ba6dca9 1486 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
456f8b9d
DB
1487 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1488
1489 set_gdbarch_register_name (gdbarch, frv_register_name);
7f398216 1490 set_gdbarch_register_type (gdbarch, frv_register_type);
526eef89 1491 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
456f8b9d 1492
6a748db6
KB
1493 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1494 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1495
456f8b9d
DB
1496 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1497 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1208538e
MK
1498 set_gdbarch_adjust_breakpoint_address
1499 (gdbarch, frv_adjust_breakpoint_address);
456f8b9d 1500
b5622e8d 1501 set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention);
cd31fb03 1502 set_gdbarch_extract_return_value (gdbarch, frv_extract_return_value);
456f8b9d 1503
cd31fb03 1504 set_gdbarch_store_return_value (gdbarch, frv_store_return_value);
74055713 1505 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, frv_extract_struct_value_address);
456f8b9d 1506
1cb761c7
KB
1507 /* Frame stuff. */
1508 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1509 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1510 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1cb761c7 1511 frame_base_set_default (gdbarch, &frv_frame_base);
5ecb7103
KB
1512 /* We set the sniffer lower down after the OSABI hooks have been
1513 established. */
456f8b9d 1514
1cb761c7
KB
1515 /* Settings for calling functions in the inferior. */
1516 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1517 set_gdbarch_unwind_dummy_id (gdbarch, frv_unwind_dummy_id);
456f8b9d
DB
1518
1519 /* Settings that should be unnecessary. */
1520 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1521
456f8b9d
DB
1522 /* Hardware watchpoint / breakpoint support. */
1523 switch (info.bfd_arch_info->mach)
1524 {
1525 case bfd_mach_frv:
1526 case bfd_mach_frvsimple:
1527 case bfd_mach_fr500:
1528 case bfd_mach_frvtomcat:
1529 /* fr500-style hardware debugging support. */
1530 var->num_hw_watchpoints = 4;
1531 var->num_hw_breakpoints = 4;
1532 break;
1533
1534 case bfd_mach_fr400:
b2d6d697 1535 case bfd_mach_fr450:
456f8b9d
DB
1536 /* fr400-style hardware debugging support. */
1537 var->num_hw_watchpoints = 2;
1538 var->num_hw_breakpoints = 4;
1539 break;
1540
1541 default:
1542 /* Otherwise, assume we don't have hardware debugging support. */
1543 var->num_hw_watchpoints = 0;
1544 var->num_hw_breakpoints = 0;
1545 break;
1546 }
1547
36482093 1548 set_gdbarch_print_insn (gdbarch, print_insn_frv);
c4d10515
KB
1549 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1550 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1551 frv_convert_from_func_ptr_addr);
36482093 1552
5ecb7103
KB
1553 /* Hook in ABI-specific overrides, if they have been registered. */
1554 gdbarch_init_osabi (info, gdbarch);
1555
5ecb7103
KB
1556 /* Set the fallback (prologue based) frame sniffer. */
1557 frame_unwind_append_sniffer (gdbarch, frv_frame_sniffer);
1558
186993b4
KB
1559 /* Enable TLS support. */
1560 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1561 frv_fetch_objfile_link_map);
1562
456f8b9d
DB
1563 return gdbarch;
1564}
1565
1566void
1567_initialize_frv_tdep (void)
1568{
1569 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
456f8b9d 1570}