]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/frv-tdep.c
*** empty log message ***
[thirdparty/binutils-gdb.git] / gdb / frv-tdep.c
CommitLineData
456f8b9d 1/* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
9ab9195f 2 Copyright 2002, 2003, 2004 Free Software Foundation, Inc.
456f8b9d
DB
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21#include "defs.h"
8baa6f92 22#include "gdb_string.h"
456f8b9d 23#include "inferior.h"
456f8b9d
DB
24#include "gdbcore.h"
25#include "arch-utils.h"
26#include "regcache.h"
8baa6f92 27#include "frame.h"
1cb761c7
KB
28#include "frame-unwind.h"
29#include "frame-base.h"
8baa6f92 30#include "trad-frame.h"
dcc6aaff 31#include "dis-asm.h"
526eef89
KB
32#include "gdb_assert.h"
33#include "sim-regno.h"
34#include "gdb/sim-frv.h"
35#include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
634aa483 36#include "symtab.h"
456f8b9d
DB
37
38extern void _initialize_frv_tdep (void);
39
40static gdbarch_init_ftype frv_gdbarch_init;
41
42static gdbarch_register_name_ftype frv_register_name;
456f8b9d 43static gdbarch_breakpoint_from_pc_ftype frv_breakpoint_from_pc;
46a16dba 44static gdbarch_adjust_breakpoint_address_ftype frv_gdbarch_adjust_breakpoint_address;
456f8b9d 45static gdbarch_skip_prologue_ftype frv_skip_prologue;
456f8b9d 46
526eef89
KB
47/* Register numbers. The order in which these appear define the
48 remote protocol, so take care in changing them. */
456f8b9d 49enum {
456f8b9d
DB
50 /* Register numbers 0 -- 63 are always reserved for general-purpose
51 registers. The chip at hand may have less. */
52 first_gpr_regnum = 0,
53 sp_regnum = 1,
54 fp_regnum = 2,
55 struct_return_regnum = 3,
56 last_gpr_regnum = 63,
57
58 /* Register numbers 64 -- 127 are always reserved for floating-point
59 registers. The chip at hand may have less. */
60 first_fpr_regnum = 64,
61 last_fpr_regnum = 127,
62
526eef89 63 /* The PC register. */
456f8b9d 64 pc_regnum = 128,
526eef89
KB
65
66 /* Register numbers 129 on up are always reserved for special-purpose
67 registers. */
68 first_spr_regnum = 129,
456f8b9d
DB
69 psr_regnum = 129,
70 ccr_regnum = 130,
71 cccr_regnum = 131,
72 tbr_regnum = 135,
73 brr_regnum = 136,
74 dbar0_regnum = 137,
75 dbar1_regnum = 138,
76 dbar2_regnum = 139,
77 dbar3_regnum = 140,
78 lr_regnum = 145,
79 lcr_regnum = 146,
526eef89
KB
80 iacc0h_regnum = 147,
81 iacc0l_regnum = 148,
82 last_spr_regnum = 148,
83
84 /* The total number of registers we know exist. */
6a748db6
KB
85 frv_num_regs = last_spr_regnum + 1,
86
87 /* Pseudo registers */
88 first_pseudo_regnum = frv_num_regs,
89
90 /* iacc0 - the 64-bit concatenation of iacc0h and iacc0l. */
91 iacc0_regnum = first_pseudo_regnum + 0,
92
93 last_pseudo_regnum = iacc0_regnum,
65ed7f0a 94 frv_num_pseudo_regs = last_pseudo_regnum - first_pseudo_regnum + 1,
456f8b9d
DB
95};
96
97static LONGEST frv_call_dummy_words[] =
98{0};
99
100
1cb761c7 101struct frv_unwind_cache /* was struct frame_extra_info */
456f8b9d 102 {
1cb761c7
KB
103 /* The previous frame's inner-most stack address. Used as this
104 frame ID's stack_addr. */
105 CORE_ADDR prev_sp;
456f8b9d 106
1cb761c7
KB
107 /* The frame's base, optionally used by the high-level debug info. */
108 CORE_ADDR base;
8baa6f92
KB
109
110 /* Table indicating the location of each and every register. */
111 struct trad_frame_saved_reg *saved_regs;
456f8b9d
DB
112 };
113
114
115/* A structure describing a particular variant of the FRV.
116 We allocate and initialize one of these structures when we create
117 the gdbarch object for a variant.
118
119 At the moment, all the FR variants we support differ only in which
120 registers are present; the portable code of GDB knows that
121 registers whose names are the empty string don't exist, so the
122 `register_names' array captures all the per-variant information we
123 need.
124
125 in the future, if we need to have per-variant maps for raw size,
126 virtual type, etc., we should replace register_names with an array
127 of structures, each of which gives all the necessary info for one
128 register. Don't stick parallel arrays in here --- that's so
129 Fortran. */
130struct gdbarch_tdep
131{
132 /* How many general-purpose registers does this variant have? */
133 int num_gprs;
134
135 /* How many floating-point registers does this variant have? */
136 int num_fprs;
137
138 /* How many hardware watchpoints can it support? */
139 int num_hw_watchpoints;
140
141 /* How many hardware breakpoints can it support? */
142 int num_hw_breakpoints;
143
144 /* Register names. */
145 char **register_names;
146};
147
148#define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch))
149
150
151/* Allocate a new variant structure, and set up default values for all
152 the fields. */
153static struct gdbarch_tdep *
5ae5f592 154new_variant (void)
456f8b9d
DB
155{
156 struct gdbarch_tdep *var;
157 int r;
158 char buf[20];
159
160 var = xmalloc (sizeof (*var));
161 memset (var, 0, sizeof (*var));
162
163 var->num_gprs = 64;
164 var->num_fprs = 64;
165 var->num_hw_watchpoints = 0;
166 var->num_hw_breakpoints = 0;
167
168 /* By default, don't supply any general-purpose or floating-point
169 register names. */
6a748db6
KB
170 var->register_names
171 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
172 * sizeof (char *));
173 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
456f8b9d
DB
174 var->register_names[r] = "";
175
526eef89 176 /* Do, however, supply default names for the known special-purpose
456f8b9d 177 registers. */
456f8b9d
DB
178
179 var->register_names[pc_regnum] = "pc";
180 var->register_names[lr_regnum] = "lr";
181 var->register_names[lcr_regnum] = "lcr";
182
183 var->register_names[psr_regnum] = "psr";
184 var->register_names[ccr_regnum] = "ccr";
185 var->register_names[cccr_regnum] = "cccr";
186 var->register_names[tbr_regnum] = "tbr";
187
188 /* Debug registers. */
189 var->register_names[brr_regnum] = "brr";
190 var->register_names[dbar0_regnum] = "dbar0";
191 var->register_names[dbar1_regnum] = "dbar1";
192 var->register_names[dbar2_regnum] = "dbar2";
193 var->register_names[dbar3_regnum] = "dbar3";
194
526eef89
KB
195 /* iacc0 (Only found on MB93405.) */
196 var->register_names[iacc0h_regnum] = "iacc0h";
197 var->register_names[iacc0l_regnum] = "iacc0l";
6a748db6 198 var->register_names[iacc0_regnum] = "iacc0";
526eef89 199
456f8b9d
DB
200 return var;
201}
202
203
204/* Indicate that the variant VAR has NUM_GPRS general-purpose
205 registers, and fill in the names array appropriately. */
206static void
207set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
208{
209 int r;
210
211 var->num_gprs = num_gprs;
212
213 for (r = 0; r < num_gprs; ++r)
214 {
215 char buf[20];
216
217 sprintf (buf, "gr%d", r);
218 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
219 }
220}
221
222
223/* Indicate that the variant VAR has NUM_FPRS floating-point
224 registers, and fill in the names array appropriately. */
225static void
226set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
227{
228 int r;
229
230 var->num_fprs = num_fprs;
231
232 for (r = 0; r < num_fprs; ++r)
233 {
234 char buf[20];
235
236 sprintf (buf, "fr%d", r);
237 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
238 }
239}
240
241
242static const char *
243frv_register_name (int reg)
244{
245 if (reg < 0)
246 return "?toosmall?";
6a748db6 247 if (reg >= frv_num_regs + frv_num_pseudo_regs)
456f8b9d
DB
248 return "?toolarge?";
249
250 return CURRENT_VARIANT->register_names[reg];
251}
252
526eef89 253
456f8b9d 254static struct type *
7f398216 255frv_register_type (struct gdbarch *gdbarch, int reg)
456f8b9d 256{
526eef89 257 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
456f8b9d 258 return builtin_type_float;
6a748db6
KB
259 else if (reg == iacc0_regnum)
260 return builtin_type_int64;
456f8b9d 261 else
526eef89 262 return builtin_type_int32;
456f8b9d
DB
263}
264
6a748db6
KB
265static void
266frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
267 int reg, void *buffer)
268{
269 if (reg == iacc0_regnum)
270 {
271 regcache_raw_read (regcache, iacc0h_regnum, buffer);
272 regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
273 }
274}
275
276static void
277frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
278 int reg, const void *buffer)
279{
280 if (reg == iacc0_regnum)
281 {
282 regcache_raw_write (regcache, iacc0h_regnum, buffer);
283 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
284 }
285}
286
526eef89
KB
287static int
288frv_register_sim_regno (int reg)
289{
290 static const int spr_map[] =
291 {
292 H_SPR_PSR, /* psr_regnum */
293 H_SPR_CCR, /* ccr_regnum */
294 H_SPR_CCCR, /* cccr_regnum */
295 -1, /* 132 */
296 -1, /* 133 */
297 -1, /* 134 */
298 H_SPR_TBR, /* tbr_regnum */
299 H_SPR_BRR, /* brr_regnum */
300 H_SPR_DBAR0, /* dbar0_regnum */
301 H_SPR_DBAR1, /* dbar1_regnum */
302 H_SPR_DBAR2, /* dbar2_regnum */
303 H_SPR_DBAR3, /* dbar3_regnum */
304 -1, /* 141 */
305 -1, /* 142 */
306 -1, /* 143 */
307 -1, /* 144 */
308 H_SPR_LR, /* lr_regnum */
309 H_SPR_LCR, /* lcr_regnum */
310 H_SPR_IACC0H, /* iacc0h_regnum */
311 H_SPR_IACC0L /* iacc0l_regnum */
312 };
313
314 gdb_assert (reg >= 0 && reg < NUM_REGS);
315
316 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
317 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
318 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
319 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
320 else if (pc_regnum == reg)
321 return SIM_FRV_PC_REGNUM;
322 else if (reg >= first_spr_regnum
323 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
324 {
325 int spr_reg_offset = spr_map[reg - first_spr_regnum];
326
327 if (spr_reg_offset < 0)
328 return SIM_REGNO_DOES_NOT_EXIST;
329 else
330 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
331 }
332
333 internal_error (__FILE__, __LINE__, "Bad register number %d", reg);
334}
335
456f8b9d
DB
336static const unsigned char *
337frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp)
338{
339 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
340 *lenp = sizeof (breakpoint);
341 return breakpoint;
342}
343
46a16dba
KB
344/* Define the maximum number of instructions which may be packed into a
345 bundle (VLIW instruction). */
346static const int max_instrs_per_bundle = 8;
347
348/* Define the size (in bytes) of an FR-V instruction. */
349static const int frv_instr_size = 4;
350
351/* Adjust a breakpoint's address to account for the FR-V architecture's
352 constraint that a break instruction must not appear as any but the
353 first instruction in the bundle. */
354static CORE_ADDR
355frv_gdbarch_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
356{
357 int count = max_instrs_per_bundle;
358 CORE_ADDR addr = bpaddr - frv_instr_size;
359 CORE_ADDR func_start = get_pc_function_start (bpaddr);
360
361 /* Find the end of the previous packing sequence. This will be indicated
362 by either attempting to access some inaccessible memory or by finding
363 an instruction word whose packing bit is set to one. */
364 while (count-- > 0 && addr >= func_start)
365 {
366 char instr[frv_instr_size];
367 int status;
368
369 status = read_memory_nobpt (addr, instr, sizeof instr);
370
371 if (status != 0)
372 break;
373
374 /* This is a big endian architecture, so byte zero will have most
375 significant byte. The most significant bit of this byte is the
376 packing bit. */
377 if (instr[0] & 0x80)
378 break;
379
380 addr -= frv_instr_size;
381 }
382
383 if (count > 0)
384 bpaddr = addr + frv_instr_size;
385
386 return bpaddr;
387}
388
456f8b9d
DB
389
390/* Return true if REG is a caller-saves ("scratch") register,
391 false otherwise. */
392static int
393is_caller_saves_reg (int reg)
394{
395 return ((4 <= reg && reg <= 7)
396 || (14 <= reg && reg <= 15)
397 || (32 <= reg && reg <= 47));
398}
399
400
401/* Return true if REG is a callee-saves register, false otherwise. */
402static int
403is_callee_saves_reg (int reg)
404{
405 return ((16 <= reg && reg <= 31)
406 || (48 <= reg && reg <= 63));
407}
408
409
410/* Return true if REG is an argument register, false otherwise. */
411static int
412is_argument_reg (int reg)
413{
414 return (8 <= reg && reg <= 13);
415}
416
456f8b9d
DB
417/* Scan an FR-V prologue, starting at PC, until frame->PC.
418 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
419 We assume FRAME's saved_regs array has already been allocated and cleared.
420 Return the first PC value after the prologue.
421
422 Note that, for unoptimized code, we almost don't need this function
423 at all; all arguments and locals live on the stack, so we just need
424 the FP to find everything. The catch: structures passed by value
425 have their addresses living in registers; they're never spilled to
426 the stack. So if you ever want to be able to get to these
427 arguments in any frame but the top, you'll need to do this serious
428 prologue analysis. */
429static CORE_ADDR
1cb761c7
KB
430frv_analyze_prologue (CORE_ADDR pc, struct frame_info *next_frame,
431 struct frv_unwind_cache *info)
456f8b9d
DB
432{
433 /* When writing out instruction bitpatterns, we use the following
434 letters to label instruction fields:
435 P - The parallel bit. We don't use this.
436 J - The register number of GRj in the instruction description.
437 K - The register number of GRk in the instruction description.
438 I - The register number of GRi.
439 S - a signed imediate offset.
440 U - an unsigned immediate offset.
441
442 The dots below the numbers indicate where hex digit boundaries
443 fall, to make it easier to check the numbers. */
444
445 /* Non-zero iff we've seen the instruction that initializes the
446 frame pointer for this function's frame. */
447 int fp_set = 0;
448
449 /* If fp_set is non_zero, then this is the distance from
450 the stack pointer to frame pointer: fp = sp + fp_offset. */
451 int fp_offset = 0;
452
453 /* Total size of frame prior to any alloca operations. */
454 int framesize = 0;
455
1cb761c7
KB
456 /* Flag indicating if lr has been saved on the stack. */
457 int lr_saved_on_stack = 0;
458
456f8b9d
DB
459 /* The number of the general-purpose register we saved the return
460 address ("link register") in, or -1 if we haven't moved it yet. */
461 int lr_save_reg = -1;
462
1cb761c7
KB
463 /* Offset (from sp) at which lr has been saved on the stack. */
464
465 int lr_sp_offset = 0;
456f8b9d
DB
466
467 /* If gr_saved[i] is non-zero, then we've noticed that general
468 register i has been saved at gr_sp_offset[i] from the stack
469 pointer. */
470 char gr_saved[64];
471 int gr_sp_offset[64];
472
d40fcd7b
KB
473 /* The address of the most recently scanned prologue instruction. */
474 CORE_ADDR last_prologue_pc;
475
476 /* The address of the next instruction. */
477 CORE_ADDR next_pc;
478
479 /* The upper bound to of the pc values to scan. */
480 CORE_ADDR lim_pc;
481
456f8b9d
DB
482 memset (gr_saved, 0, sizeof (gr_saved));
483
d40fcd7b
KB
484 last_prologue_pc = pc;
485
486 /* Try to compute an upper limit (on how far to scan) based on the
487 line number info. */
488 lim_pc = skip_prologue_using_sal (pc);
489 /* If there's no line number info, lim_pc will be 0. In that case,
490 set the limit to be 100 instructions away from pc. Hopefully, this
491 will be far enough away to account for the entire prologue. Don't
492 worry about overshooting the end of the function. The scan loop
493 below contains some checks to avoid scanning unreasonably far. */
494 if (lim_pc == 0)
495 lim_pc = pc + 400;
496
497 /* If we have a frame, we don't want to scan past the frame's pc. This
498 will catch those cases where the pc is in the prologue. */
499 if (next_frame)
500 {
501 CORE_ADDR frame_pc = frame_pc_unwind (next_frame);
502 if (frame_pc < lim_pc)
503 lim_pc = frame_pc;
504 }
505
506 /* Scan the prologue. */
507 while (pc < lim_pc)
456f8b9d
DB
508 {
509 LONGEST op = read_memory_integer (pc, 4);
d40fcd7b 510 next_pc = pc + 4;
456f8b9d
DB
511
512 /* The tests in this chain of ifs should be in order of
513 decreasing selectivity, so that more particular patterns get
514 to fire before less particular patterns. */
515
d40fcd7b
KB
516 /* Some sort of control transfer instruction: stop scanning prologue.
517 Integer Conditional Branch:
518 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
519 Floating-point / media Conditional Branch:
520 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
521 LCR Conditional Branch to LR
522 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
523 Integer conditional Branches to LR
524 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
525 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
526 Floating-point/Media Branches to LR
527 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
528 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
529 Jump and Link
530 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
531 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
532 Call
533 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
534 Return from Trap
535 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
536 Integer Conditional Trap
537 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
538 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
539 Floating-point /media Conditional Trap
540 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
541 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
542 Break
543 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
544 Media Trap
545 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
546 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
547 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
548 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
549 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
550 {
551 /* Stop scanning; not in prologue any longer. */
552 break;
553 }
554
555 /* Loading something from memory into fp probably means that
556 we're in the epilogue. Stop scanning the prologue.
557 ld @(GRi, GRk), fp
558 X 000010 0000010 XXXXXX 000100 XXXXXX
559 ldi @(GRi, d12), fp
560 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
561 else if ((op & 0x7ffc0fc0) == 0x04080100
562 || (op & 0x7ffc0000) == 0x04c80000)
563 {
564 break;
565 }
566
456f8b9d
DB
567 /* Setting the FP from the SP:
568 ori sp, 0, fp
569 P 000010 0100010 000001 000000000000 = 0x04881000
570 0 111111 1111111 111111 111111111111 = 0x7fffffff
571 . . . . . . . .
572 We treat this as part of the prologue. */
d40fcd7b 573 else if ((op & 0x7fffffff) == 0x04881000)
456f8b9d
DB
574 {
575 fp_set = 1;
576 fp_offset = 0;
d40fcd7b 577 last_prologue_pc = next_pc;
456f8b9d
DB
578 }
579
580 /* Move the link register to the scratch register grJ, before saving:
581 movsg lr, grJ
582 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
583 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
584 . . . . . . . .
585 We treat this as part of the prologue. */
586 else if ((op & 0x7fffffc0) == 0x080d01c0)
587 {
588 int gr_j = op & 0x3f;
589
590 /* If we're moving it to a scratch register, that's fine. */
591 if (is_caller_saves_reg (gr_j))
d40fcd7b
KB
592 {
593 lr_save_reg = gr_j;
594 last_prologue_pc = next_pc;
595 }
456f8b9d
DB
596 }
597
598 /* To save multiple callee-saves registers on the stack, at
599 offset zero:
600
601 std grK,@(sp,gr0)
602 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
603 0 000000 1111111 111111 111111 111111 = 0x01ffffff
604
605 stq grK,@(sp,gr0)
606 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
607 0 000000 1111111 111111 111111 111111 = 0x01ffffff
608 . . . . . . . .
609 We treat this as part of the prologue, and record the register's
610 saved address in the frame structure. */
611 else if ((op & 0x01ffffff) == 0x000c10c0
612 || (op & 0x01ffffff) == 0x000c1100)
613 {
614 int gr_k = ((op >> 25) & 0x3f);
615 int ope = ((op >> 6) & 0x3f);
616 int count;
617 int i;
618
619 /* Is it an std or an stq? */
620 if (ope == 0x03)
621 count = 2;
622 else
623 count = 4;
624
625 /* Is it really a callee-saves register? */
626 if (is_callee_saves_reg (gr_k))
627 {
628 for (i = 0; i < count; i++)
629 {
630 gr_saved[gr_k + i] = 1;
631 gr_sp_offset[gr_k + i] = 4 * i;
632 }
d40fcd7b 633 last_prologue_pc = next_pc;
456f8b9d 634 }
456f8b9d
DB
635 }
636
637 /* Adjusting the stack pointer. (The stack pointer is GR1.)
638 addi sp, S, sp
639 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
640 0 111111 1111111 111111 000000000000 = 0x7ffff000
641 . . . . . . . .
642 We treat this as part of the prologue. */
643 else if ((op & 0x7ffff000) == 0x02401000)
644 {
d40fcd7b
KB
645 if (framesize == 0)
646 {
647 /* Sign-extend the twelve-bit field.
648 (Isn't there a better way to do this?) */
649 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
456f8b9d 650
d40fcd7b
KB
651 framesize -= s;
652 last_prologue_pc = pc;
653 }
654 else
655 {
656 /* If the prologue is being adjusted again, we've
657 likely gone too far; i.e. we're probably in the
658 epilogue. */
659 break;
660 }
456f8b9d
DB
661 }
662
663 /* Setting the FP to a constant distance from the SP:
664 addi sp, S, fp
665 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
666 0 111111 1111111 111111 000000000000 = 0x7ffff000
667 . . . . . . . .
668 We treat this as part of the prologue. */
669 else if ((op & 0x7ffff000) == 0x04401000)
670 {
671 /* Sign-extend the twelve-bit field.
672 (Isn't there a better way to do this?) */
673 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
674 fp_set = 1;
675 fp_offset = s;
d40fcd7b 676 last_prologue_pc = pc;
456f8b9d
DB
677 }
678
679 /* To spill an argument register to a scratch register:
680 ori GRi, 0, GRk
681 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
682 0 000000 1111111 000000 111111111111 = 0x01fc0fff
683 . . . . . . . .
684 For the time being, we treat this as a prologue instruction,
685 assuming that GRi is an argument register. This one's kind
686 of suspicious, because it seems like it could be part of a
687 legitimate body instruction. But we only come here when the
688 source info wasn't helpful, so we have to do the best we can.
689 Hopefully once GCC and GDB agree on how to emit line number
690 info for prologues, then this code will never come into play. */
691 else if ((op & 0x01fc0fff) == 0x00880000)
692 {
693 int gr_i = ((op >> 12) & 0x3f);
694
d40fcd7b
KB
695 /* Make sure that the source is an arg register; if it is, we'll
696 treat it as a prologue instruction. */
697 if (is_argument_reg (gr_i))
698 last_prologue_pc = next_pc;
456f8b9d
DB
699 }
700
701 /* To spill 16-bit values to the stack:
702 sthi GRk, @(fp, s)
703 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
704 0 000000 1111111 111111 000000000000 = 0x01fff000
705 . . . . . . . .
706 And for 8-bit values, we use STB instructions.
707 stbi GRk, @(fp, s)
708 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
709 0 000000 1111111 111111 000000000000 = 0x01fff000
710 . . . . . . . .
711 We check that GRk is really an argument register, and treat
712 all such as part of the prologue. */
713 else if ( (op & 0x01fff000) == 0x01442000
714 || (op & 0x01fff000) == 0x01402000)
715 {
716 int gr_k = ((op >> 25) & 0x3f);
717
d40fcd7b
KB
718 /* Make sure that GRk is really an argument register; treat
719 it as a prologue instruction if so. */
720 if (is_argument_reg (gr_k))
721 last_prologue_pc = next_pc;
456f8b9d
DB
722 }
723
724 /* To save multiple callee-saves register on the stack, at a
725 non-zero offset:
726
727 stdi GRk, @(sp, s)
728 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
729 0 000000 1111111 111111 000000000000 = 0x01fff000
730 . . . . . . . .
731 stqi GRk, @(sp, s)
732 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
733 0 000000 1111111 111111 000000000000 = 0x01fff000
734 . . . . . . . .
735 We treat this as part of the prologue, and record the register's
736 saved address in the frame structure. */
737 else if ((op & 0x01fff000) == 0x014c1000
738 || (op & 0x01fff000) == 0x01501000)
739 {
740 int gr_k = ((op >> 25) & 0x3f);
741 int count;
742 int i;
743
744 /* Is it a stdi or a stqi? */
745 if ((op & 0x01fff000) == 0x014c1000)
746 count = 2;
747 else
748 count = 4;
749
750 /* Is it really a callee-saves register? */
751 if (is_callee_saves_reg (gr_k))
752 {
753 /* Sign-extend the twelve-bit field.
754 (Isn't there a better way to do this?) */
755 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
756
757 for (i = 0; i < count; i++)
758 {
759 gr_saved[gr_k + i] = 1;
760 gr_sp_offset[gr_k + i] = s + (4 * i);
761 }
d40fcd7b 762 last_prologue_pc = next_pc;
456f8b9d 763 }
456f8b9d
DB
764 }
765
766 /* Storing any kind of integer register at any constant offset
767 from any other register.
768
769 st GRk, @(GRi, gr0)
770 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
771 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
772 . . . . . . . .
773 sti GRk, @(GRi, d12)
774 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
775 0 000000 1111111 000000 000000000000 = 0x01fc0000
776 . . . . . . . .
777 These could be almost anything, but a lot of prologue
778 instructions fall into this pattern, so let's decode the
779 instruction once, and then work at a higher level. */
780 else if (((op & 0x01fc0fff) == 0x000c0080)
781 || ((op & 0x01fc0000) == 0x01480000))
782 {
783 int gr_k = ((op >> 25) & 0x3f);
784 int gr_i = ((op >> 12) & 0x3f);
785 int offset;
786
787 /* Are we storing with gr0 as an offset, or using an
788 immediate value? */
789 if ((op & 0x01fc0fff) == 0x000c0080)
790 offset = 0;
791 else
792 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
793
794 /* If the address isn't relative to the SP or FP, it's not a
795 prologue instruction. */
796 if (gr_i != sp_regnum && gr_i != fp_regnum)
d40fcd7b
KB
797 {
798 /* Do nothing; not a prologue instruction. */
799 }
456f8b9d
DB
800
801 /* Saving the old FP in the new frame (relative to the SP). */
d40fcd7b 802 else if (gr_k == fp_regnum && gr_i == sp_regnum)
1cb761c7
KB
803 {
804 gr_saved[fp_regnum] = 1;
805 gr_sp_offset[fp_regnum] = offset;
d40fcd7b 806 last_prologue_pc = next_pc;
1cb761c7 807 }
456f8b9d
DB
808
809 /* Saving callee-saves register(s) on the stack, relative to
810 the SP. */
811 else if (gr_i == sp_regnum
812 && is_callee_saves_reg (gr_k))
813 {
814 gr_saved[gr_k] = 1;
1cb761c7
KB
815 if (gr_i == sp_regnum)
816 gr_sp_offset[gr_k] = offset;
817 else
818 gr_sp_offset[gr_k] = offset + fp_offset;
d40fcd7b 819 last_prologue_pc = next_pc;
456f8b9d
DB
820 }
821
822 /* Saving the scratch register holding the return address. */
823 else if (lr_save_reg != -1
824 && gr_k == lr_save_reg)
1cb761c7
KB
825 {
826 lr_saved_on_stack = 1;
827 if (gr_i == sp_regnum)
828 lr_sp_offset = offset;
829 else
830 lr_sp_offset = offset + fp_offset;
d40fcd7b 831 last_prologue_pc = next_pc;
1cb761c7 832 }
456f8b9d
DB
833
834 /* Spilling int-sized arguments to the stack. */
835 else if (is_argument_reg (gr_k))
d40fcd7b 836 last_prologue_pc = next_pc;
456f8b9d 837 }
d40fcd7b 838 pc = next_pc;
456f8b9d
DB
839 }
840
1cb761c7 841 if (next_frame && info)
456f8b9d 842 {
1cb761c7
KB
843 int i;
844 ULONGEST this_base;
456f8b9d
DB
845
846 /* If we know the relationship between the stack and frame
847 pointers, record the addresses of the registers we noticed.
848 Note that we have to do this as a separate step at the end,
849 because instructions may save relative to the SP, but we need
850 their addresses relative to the FP. */
851 if (fp_set)
1cb761c7
KB
852 frame_unwind_unsigned_register (next_frame, fp_regnum, &this_base);
853 else
854 frame_unwind_unsigned_register (next_frame, sp_regnum, &this_base);
456f8b9d 855
1cb761c7
KB
856 for (i = 0; i < 64; i++)
857 if (gr_saved[i])
858 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
456f8b9d 859
1cb761c7
KB
860 info->prev_sp = this_base - fp_offset + framesize;
861 info->base = this_base;
862
863 /* If LR was saved on the stack, record its location. */
864 if (lr_saved_on_stack)
865 info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
866
867 /* The call instruction moves the caller's PC in the callee's LR.
868 Since this is an unwind, do the reverse. Copy the location of LR
869 into PC (the address / regnum) so that a request for PC will be
870 converted into a request for the LR. */
871 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
872
873 /* Save the previous frame's computed SP value. */
874 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
456f8b9d
DB
875 }
876
d40fcd7b 877 return last_prologue_pc;
456f8b9d
DB
878}
879
880
881static CORE_ADDR
882frv_skip_prologue (CORE_ADDR pc)
883{
884 CORE_ADDR func_addr, func_end, new_pc;
885
886 new_pc = pc;
887
888 /* If the line table has entry for a line *within* the function
889 (i.e., not in the prologue, and not past the end), then that's
890 our location. */
891 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
892 {
893 struct symtab_and_line sal;
894
895 sal = find_pc_line (func_addr, 0);
896
897 if (sal.line != 0 && sal.end < func_end)
898 {
899 new_pc = sal.end;
900 }
901 }
902
903 /* The FR-V prologue is at least five instructions long (twenty bytes).
904 If we didn't find a real source location past that, then
905 do a full analysis of the prologue. */
906 if (new_pc < pc + 20)
1cb761c7 907 new_pc = frv_analyze_prologue (pc, 0, 0);
456f8b9d
DB
908
909 return new_pc;
910}
911
1cb761c7
KB
912
913static struct frv_unwind_cache *
914frv_frame_unwind_cache (struct frame_info *next_frame,
915 void **this_prologue_cache)
456f8b9d 916{
1cb761c7
KB
917 struct gdbarch *gdbarch = get_frame_arch (next_frame);
918 CORE_ADDR pc;
919 ULONGEST prev_sp;
920 ULONGEST this_base;
921 struct frv_unwind_cache *info;
8baa6f92 922
1cb761c7
KB
923 if ((*this_prologue_cache))
924 return (*this_prologue_cache);
456f8b9d 925
1cb761c7
KB
926 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
927 (*this_prologue_cache) = info;
928 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
456f8b9d 929
1cb761c7
KB
930 /* Prologue analysis does the rest... */
931 frv_analyze_prologue (frame_func_unwind (next_frame), next_frame, info);
456f8b9d 932
1cb761c7 933 return info;
456f8b9d
DB
934}
935
456f8b9d 936static void
cd31fb03
KB
937frv_extract_return_value (struct type *type, struct regcache *regcache,
938 void *valbuf)
456f8b9d 939{
cd31fb03
KB
940 int len = TYPE_LENGTH (type);
941
942 if (len <= 4)
943 {
944 ULONGEST gpr8_val;
945 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
946 store_unsigned_integer (valbuf, len, gpr8_val);
947 }
948 else if (len == 8)
949 {
950 ULONGEST regval;
951 regcache_cooked_read_unsigned (regcache, 8, &regval);
952 store_unsigned_integer (valbuf, 4, regval);
953 regcache_cooked_read_unsigned (regcache, 9, &regval);
954 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, regval);
955 }
956 else
957 internal_error (__FILE__, __LINE__, "Illegal return value length: %d", len);
456f8b9d
DB
958}
959
960static CORE_ADDR
cd31fb03 961frv_extract_struct_value_address (struct regcache *regcache)
456f8b9d 962{
cd31fb03
KB
963 ULONGEST addr;
964 regcache_cooked_read_unsigned (regcache, struct_return_regnum, &addr);
965 return addr;
456f8b9d
DB
966}
967
968static void
969frv_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
970{
971 write_register (struct_return_regnum, addr);
972}
973
974static int
975frv_frameless_function_invocation (struct frame_info *frame)
976{
19772a2c 977 return legacy_frameless_look_for_prologue (frame);
456f8b9d
DB
978}
979
1cb761c7
KB
980static CORE_ADDR
981frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
456f8b9d 982{
1cb761c7 983 /* Require dword alignment. */
5b03f266 984 return align_down (sp, 8);
456f8b9d
DB
985}
986
456f8b9d 987static CORE_ADDR
1cb761c7
KB
988frv_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
989 struct regcache *regcache, CORE_ADDR bp_addr,
990 int nargs, struct value **args, CORE_ADDR sp,
991 int struct_return, CORE_ADDR struct_addr)
456f8b9d
DB
992{
993 int argreg;
994 int argnum;
995 char *val;
996 char valbuf[4];
997 struct value *arg;
998 struct type *arg_type;
999 int len;
1000 enum type_code typecode;
1001 CORE_ADDR regval;
1002 int stack_space;
1003 int stack_offset;
1004
1005#if 0
1006 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1007 nargs, (int) sp, struct_return, struct_addr);
1008#endif
1009
1010 stack_space = 0;
1011 for (argnum = 0; argnum < nargs; ++argnum)
5b03f266 1012 stack_space += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])), 4);
456f8b9d
DB
1013
1014 stack_space -= (6 * 4);
1015 if (stack_space > 0)
1016 sp -= stack_space;
1017
1018 /* Make sure stack is dword aligned. */
5b03f266 1019 sp = align_down (sp, 8);
456f8b9d
DB
1020
1021 stack_offset = 0;
1022
1023 argreg = 8;
1024
1025 if (struct_return)
1cb761c7
KB
1026 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1027 struct_addr);
456f8b9d
DB
1028
1029 for (argnum = 0; argnum < nargs; ++argnum)
1030 {
1031 arg = args[argnum];
1032 arg_type = check_typedef (VALUE_TYPE (arg));
1033 len = TYPE_LENGTH (arg_type);
1034 typecode = TYPE_CODE (arg_type);
1035
1036 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1037 {
fbd9dcd3 1038 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (arg));
456f8b9d
DB
1039 typecode = TYPE_CODE_PTR;
1040 len = 4;
1041 val = valbuf;
1042 }
1043 else
1044 {
1045 val = (char *) VALUE_CONTENTS (arg);
1046 }
1047
1048 while (len > 0)
1049 {
1050 int partial_len = (len < 4 ? len : 4);
1051
1052 if (argreg < 14)
1053 {
7c0b4a20 1054 regval = extract_unsigned_integer (val, partial_len);
456f8b9d
DB
1055#if 0
1056 printf(" Argnum %d data %x -> reg %d\n",
1057 argnum, (int) regval, argreg);
1058#endif
1cb761c7 1059 regcache_cooked_write_unsigned (regcache, argreg, regval);
456f8b9d
DB
1060 ++argreg;
1061 }
1062 else
1063 {
1064#if 0
1065 printf(" Argnum %d data %x -> offset %d (%x)\n",
1066 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
1067#endif
1068 write_memory (sp + stack_offset, val, partial_len);
5b03f266 1069 stack_offset += align_up (partial_len, 4);
456f8b9d
DB
1070 }
1071 len -= partial_len;
1072 val += partial_len;
1073 }
1074 }
456f8b9d 1075
1cb761c7
KB
1076 /* Set the return address. For the frv, the return breakpoint is
1077 always at BP_ADDR. */
1078 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1079
1080 /* Finally, update the SP register. */
1081 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1082
456f8b9d
DB
1083 return sp;
1084}
1085
1086static void
cd31fb03
KB
1087frv_store_return_value (struct type *type, struct regcache *regcache,
1088 const void *valbuf)
456f8b9d 1089{
cd31fb03
KB
1090 int len = TYPE_LENGTH (type);
1091
1092 if (len <= 4)
1093 {
1094 bfd_byte val[4];
1095 memset (val, 0, sizeof (val));
1096 memcpy (val + (4 - len), valbuf, len);
1097 regcache_cooked_write (regcache, 8, val);
1098 }
1099 else if (len == 8)
1100 {
1101 regcache_cooked_write (regcache, 8, valbuf);
1102 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1103 }
456f8b9d
DB
1104 else
1105 internal_error (__FILE__, __LINE__,
cd31fb03 1106 "Don't know how to return a %d-byte value.", len);
456f8b9d
DB
1107}
1108
456f8b9d 1109
456f8b9d
DB
1110/* Hardware watchpoint / breakpoint support for the FR500
1111 and FR400. */
1112
1113int
1114frv_check_watch_resources (int type, int cnt, int ot)
1115{
1116 struct gdbarch_tdep *var = CURRENT_VARIANT;
1117
1118 /* Watchpoints not supported on simulator. */
1119 if (strcmp (target_shortname, "sim") == 0)
1120 return 0;
1121
1122 if (type == bp_hardware_breakpoint)
1123 {
1124 if (var->num_hw_breakpoints == 0)
1125 return 0;
1126 else if (cnt <= var->num_hw_breakpoints)
1127 return 1;
1128 }
1129 else
1130 {
1131 if (var->num_hw_watchpoints == 0)
1132 return 0;
1133 else if (ot)
1134 return -1;
1135 else if (cnt <= var->num_hw_watchpoints)
1136 return 1;
1137 }
1138 return -1;
1139}
1140
1141
1142CORE_ADDR
5ae5f592 1143frv_stopped_data_address (void)
456f8b9d
DB
1144{
1145 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
1146
1147 brr = read_register (brr_regnum);
1148 dbar0 = read_register (dbar0_regnum);
1149 dbar1 = read_register (dbar1_regnum);
1150 dbar2 = read_register (dbar2_regnum);
1151 dbar3 = read_register (dbar3_regnum);
1152
1153 if (brr & (1<<11))
1154 return dbar0;
1155 else if (brr & (1<<10))
1156 return dbar1;
1157 else if (brr & (1<<9))
1158 return dbar2;
1159 else if (brr & (1<<8))
1160 return dbar3;
1161 else
1162 return 0;
1163}
1164
1cb761c7
KB
1165static CORE_ADDR
1166frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1167{
1168 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1169}
1170
1171/* Given a GDB frame, determine the address of the calling function's
1172 frame. This will be used to create a new GDB frame struct. */
1173
1174static void
1175frv_frame_this_id (struct frame_info *next_frame,
1176 void **this_prologue_cache, struct frame_id *this_id)
1177{
1178 struct frv_unwind_cache *info
1179 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1180 CORE_ADDR base;
1181 CORE_ADDR func;
1182 struct minimal_symbol *msym_stack;
1183 struct frame_id id;
1184
1185 /* The FUNC is easy. */
1186 func = frame_func_unwind (next_frame);
1187
1cb761c7
KB
1188 /* Check if the stack is empty. */
1189 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1190 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1191 return;
1192
1193 /* Hopefully the prologue analysis either correctly determined the
1194 frame's base (which is the SP from the previous frame), or set
1195 that base to "NULL". */
1196 base = info->prev_sp;
1197 if (base == 0)
1198 return;
1199
1200 id = frame_id_build (base, func);
1201
1202 /* Check that we're not going round in circles with the same frame
1203 ID (but avoid applying the test to sentinel frames which do go
1204 round in circles). Can't use frame_id_eq() as that doesn't yet
1205 compare the frame's PC value. */
1206 if (frame_relative_level (next_frame) >= 0
1207 && get_frame_type (next_frame) != DUMMY_FRAME
1208 && frame_id_eq (get_frame_id (next_frame), id))
1209 return;
1210
1211 (*this_id) = id;
1212}
1213
1214static void
1215frv_frame_prev_register (struct frame_info *next_frame,
1216 void **this_prologue_cache,
1217 int regnum, int *optimizedp,
1218 enum lval_type *lvalp, CORE_ADDR *addrp,
1219 int *realnump, void *bufferp)
1220{
1221 struct frv_unwind_cache *info
1222 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1223 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
1224 optimizedp, lvalp, addrp, realnump, bufferp);
1225}
1226
1227static const struct frame_unwind frv_frame_unwind = {
1228 NORMAL_FRAME,
1229 frv_frame_this_id,
1230 frv_frame_prev_register
1231};
1232
1233static const struct frame_unwind *
1234frv_frame_sniffer (struct frame_info *next_frame)
1235{
1236 return &frv_frame_unwind;
1237}
1238
1239static CORE_ADDR
1240frv_frame_base_address (struct frame_info *next_frame, void **this_cache)
1241{
1242 struct frv_unwind_cache *info
1243 = frv_frame_unwind_cache (next_frame, this_cache);
1244 return info->base;
1245}
1246
1247static const struct frame_base frv_frame_base = {
1248 &frv_frame_unwind,
1249 frv_frame_base_address,
1250 frv_frame_base_address,
1251 frv_frame_base_address
1252};
1253
1254static CORE_ADDR
1255frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1256{
1257 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1258}
1259
1260
1261/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1262 dummy frame. The frame ID's base needs to match the TOS value
1263 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1264 breakpoint. */
1265
1266static struct frame_id
1267frv_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1268{
1269 return frame_id_build (frv_unwind_sp (gdbarch, next_frame),
1270 frame_pc_unwind (next_frame));
1271}
1272
1273
456f8b9d
DB
1274static struct gdbarch *
1275frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1276{
1277 struct gdbarch *gdbarch;
1278 struct gdbarch_tdep *var;
1279
1280 /* Check to see if we've already built an appropriate architecture
1281 object for this executable. */
1282 arches = gdbarch_list_lookup_by_info (arches, &info);
1283 if (arches)
1284 return arches->gdbarch;
1285
1286 /* Select the right tdep structure for this variant. */
1287 var = new_variant ();
1288 switch (info.bfd_arch_info->mach)
1289 {
1290 case bfd_mach_frv:
1291 case bfd_mach_frvsimple:
1292 case bfd_mach_fr500:
1293 case bfd_mach_frvtomcat:
251a3ae3 1294 case bfd_mach_fr550:
456f8b9d
DB
1295 set_variant_num_gprs (var, 64);
1296 set_variant_num_fprs (var, 64);
1297 break;
1298
1299 case bfd_mach_fr400:
1300 set_variant_num_gprs (var, 32);
1301 set_variant_num_fprs (var, 32);
1302 break;
1303
1304 default:
1305 /* Never heard of this variant. */
1306 return 0;
1307 }
1308
1309 gdbarch = gdbarch_alloc (&info, var);
1310
1311 set_gdbarch_short_bit (gdbarch, 16);
1312 set_gdbarch_int_bit (gdbarch, 32);
1313 set_gdbarch_long_bit (gdbarch, 32);
1314 set_gdbarch_long_long_bit (gdbarch, 64);
1315 set_gdbarch_float_bit (gdbarch, 32);
1316 set_gdbarch_double_bit (gdbarch, 64);
1317 set_gdbarch_long_double_bit (gdbarch, 64);
1318 set_gdbarch_ptr_bit (gdbarch, 32);
1319
1320 set_gdbarch_num_regs (gdbarch, frv_num_regs);
6a748db6
KB
1321 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1322
456f8b9d 1323 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
0ba6dca9 1324 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
456f8b9d
DB
1325 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1326
1327 set_gdbarch_register_name (gdbarch, frv_register_name);
7f398216 1328 set_gdbarch_register_type (gdbarch, frv_register_type);
526eef89 1329 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
456f8b9d 1330
6a748db6
KB
1331 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1332 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1333
456f8b9d
DB
1334 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1335 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
46a16dba 1336 set_gdbarch_adjust_breakpoint_address (gdbarch, frv_gdbarch_adjust_breakpoint_address);
456f8b9d 1337
19772a2c 1338 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, frv_frameless_function_invocation);
456f8b9d 1339
1fd35568 1340 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
cd31fb03 1341 set_gdbarch_extract_return_value (gdbarch, frv_extract_return_value);
456f8b9d 1342
4183d812 1343 set_gdbarch_deprecated_store_struct_return (gdbarch, frv_store_struct_return);
cd31fb03 1344 set_gdbarch_store_return_value (gdbarch, frv_store_return_value);
74055713 1345 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, frv_extract_struct_value_address);
456f8b9d 1346
1cb761c7
KB
1347 /* Frame stuff. */
1348 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1349 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1350 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1351 frame_unwind_append_sniffer (gdbarch, frv_frame_sniffer);
1352 frame_base_set_default (gdbarch, &frv_frame_base);
456f8b9d 1353
1cb761c7
KB
1354 /* Settings for calling functions in the inferior. */
1355 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1356 set_gdbarch_unwind_dummy_id (gdbarch, frv_unwind_dummy_id);
456f8b9d
DB
1357
1358 /* Settings that should be unnecessary. */
1359 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1360
456f8b9d 1361 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
456f8b9d 1362
456f8b9d 1363 set_gdbarch_remote_translate_xfer_address
aed7f26a 1364 (gdbarch, generic_remote_translate_xfer_address);
456f8b9d
DB
1365
1366 /* Hardware watchpoint / breakpoint support. */
1367 switch (info.bfd_arch_info->mach)
1368 {
1369 case bfd_mach_frv:
1370 case bfd_mach_frvsimple:
1371 case bfd_mach_fr500:
1372 case bfd_mach_frvtomcat:
1373 /* fr500-style hardware debugging support. */
1374 var->num_hw_watchpoints = 4;
1375 var->num_hw_breakpoints = 4;
1376 break;
1377
1378 case bfd_mach_fr400:
1379 /* fr400-style hardware debugging support. */
1380 var->num_hw_watchpoints = 2;
1381 var->num_hw_breakpoints = 4;
1382 break;
1383
1384 default:
1385 /* Otherwise, assume we don't have hardware debugging support. */
1386 var->num_hw_watchpoints = 0;
1387 var->num_hw_breakpoints = 0;
1388 break;
1389 }
1390
36482093
AC
1391 set_gdbarch_print_insn (gdbarch, print_insn_frv);
1392
456f8b9d
DB
1393 return gdbarch;
1394}
1395
1396void
1397_initialize_frv_tdep (void)
1398{
1399 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
456f8b9d 1400}