]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/value.c
* ppc-opc.c (powerpc_opcodes): Add tdui, twui, tdu, twu, tui, tu.
[thirdparty/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
8acc9f48 3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "gdb_string.h"
23#include "symtab.h"
24#include "gdbtypes.h"
25#include "value.h"
26#include "gdbcore.h"
c906108c
SS
27#include "command.h"
28#include "gdbcmd.h"
29#include "target.h"
30#include "language.h"
c906108c 31#include "demangle.h"
d16aafd8 32#include "doublest.h"
5ae326fa 33#include "gdb_assert.h"
36160dc4 34#include "regcache.h"
fe898f56 35#include "block.h"
27bc4d80 36#include "dfp.h"
bccdca4a 37#include "objfiles.h"
79a45b7d 38#include "valprint.h"
bc3b79fd 39#include "cli/cli-decode.h"
8af8e3bc 40#include "exceptions.h"
a08702d6 41#include "python/python.h"
3bd0f5ef 42#include <ctype.h>
0914bcdb 43#include "tracepoint.h"
be335936 44#include "cp-abi.h"
0914bcdb 45
581e13c1 46/* Prototypes for exported functions. */
c906108c 47
a14ed312 48void _initialize_values (void);
c906108c 49
bc3b79fd
TJB
50/* Definition of a user function. */
51struct internal_function
52{
53 /* The name of the function. It is a bit odd to have this in the
54 function itself -- the user might use a differently-named
55 convenience variable to hold the function. */
56 char *name;
57
58 /* The handler. */
59 internal_function_fn handler;
60
61 /* User data for the handler. */
62 void *cookie;
63};
64
4e07d55f
PA
65/* Defines an [OFFSET, OFFSET + LENGTH) range. */
66
67struct range
68{
69 /* Lowest offset in the range. */
70 int offset;
71
72 /* Length of the range. */
73 int length;
74};
75
76typedef struct range range_s;
77
78DEF_VEC_O(range_s);
79
80/* Returns true if the ranges defined by [offset1, offset1+len1) and
81 [offset2, offset2+len2) overlap. */
82
83static int
84ranges_overlap (int offset1, int len1,
85 int offset2, int len2)
86{
87 ULONGEST h, l;
88
89 l = max (offset1, offset2);
90 h = min (offset1 + len1, offset2 + len2);
91 return (l < h);
92}
93
94/* Returns true if the first argument is strictly less than the
95 second, useful for VEC_lower_bound. We keep ranges sorted by
96 offset and coalesce overlapping and contiguous ranges, so this just
97 compares the starting offset. */
98
99static int
100range_lessthan (const range_s *r1, const range_s *r2)
101{
102 return r1->offset < r2->offset;
103}
104
105/* Returns true if RANGES contains any range that overlaps [OFFSET,
106 OFFSET+LENGTH). */
107
108static int
109ranges_contain (VEC(range_s) *ranges, int offset, int length)
110{
111 range_s what;
112 int i;
113
114 what.offset = offset;
115 what.length = length;
116
117 /* We keep ranges sorted by offset and coalesce overlapping and
118 contiguous ranges, so to check if a range list contains a given
119 range, we can do a binary search for the position the given range
120 would be inserted if we only considered the starting OFFSET of
121 ranges. We call that position I. Since we also have LENGTH to
122 care for (this is a range afterall), we need to check if the
123 _previous_ range overlaps the I range. E.g.,
124
125 R
126 |---|
127 |---| |---| |------| ... |--|
128 0 1 2 N
129
130 I=1
131
132 In the case above, the binary search would return `I=1', meaning,
133 this OFFSET should be inserted at position 1, and the current
134 position 1 should be pushed further (and before 2). But, `0'
135 overlaps with R.
136
137 Then we need to check if the I range overlaps the I range itself.
138 E.g.,
139
140 R
141 |---|
142 |---| |---| |-------| ... |--|
143 0 1 2 N
144
145 I=1
146 */
147
148 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
149
150 if (i > 0)
151 {
152 struct range *bef = VEC_index (range_s, ranges, i - 1);
153
154 if (ranges_overlap (bef->offset, bef->length, offset, length))
155 return 1;
156 }
157
158 if (i < VEC_length (range_s, ranges))
159 {
160 struct range *r = VEC_index (range_s, ranges, i);
161
162 if (ranges_overlap (r->offset, r->length, offset, length))
163 return 1;
164 }
165
166 return 0;
167}
168
bc3b79fd
TJB
169static struct cmd_list_element *functionlist;
170
87784a47
TT
171/* Note that the fields in this structure are arranged to save a bit
172 of memory. */
173
91294c83
AC
174struct value
175{
176 /* Type of value; either not an lval, or one of the various
177 different possible kinds of lval. */
178 enum lval_type lval;
179
180 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
181 unsigned int modifiable : 1;
182
183 /* If zero, contents of this value are in the contents field. If
184 nonzero, contents are in inferior. If the lval field is lval_memory,
185 the contents are in inferior memory at location.address plus offset.
186 The lval field may also be lval_register.
187
188 WARNING: This field is used by the code which handles watchpoints
189 (see breakpoint.c) to decide whether a particular value can be
190 watched by hardware watchpoints. If the lazy flag is set for
191 some member of a value chain, it is assumed that this member of
192 the chain doesn't need to be watched as part of watching the
193 value itself. This is how GDB avoids watching the entire struct
194 or array when the user wants to watch a single struct member or
195 array element. If you ever change the way lazy flag is set and
196 reset, be sure to consider this use as well! */
197 unsigned int lazy : 1;
198
199 /* If nonzero, this is the value of a variable which does not
200 actually exist in the program. */
201 unsigned int optimized_out : 1;
202
203 /* If value is a variable, is it initialized or not. */
204 unsigned int initialized : 1;
205
206 /* If value is from the stack. If this is set, read_stack will be
207 used instead of read_memory to enable extra caching. */
208 unsigned int stack : 1;
91294c83 209
e848a8a5
TT
210 /* If the value has been released. */
211 unsigned int released : 1;
212
91294c83
AC
213 /* Location of value (if lval). */
214 union
215 {
216 /* If lval == lval_memory, this is the address in the inferior.
217 If lval == lval_register, this is the byte offset into the
218 registers structure. */
219 CORE_ADDR address;
220
221 /* Pointer to internal variable. */
222 struct internalvar *internalvar;
5f5233d4
PA
223
224 /* If lval == lval_computed, this is a set of function pointers
225 to use to access and describe the value, and a closure pointer
226 for them to use. */
227 struct
228 {
c8f2448a
JK
229 /* Functions to call. */
230 const struct lval_funcs *funcs;
231
232 /* Closure for those functions to use. */
233 void *closure;
5f5233d4 234 } computed;
91294c83
AC
235 } location;
236
237 /* Describes offset of a value within lval of a structure in bytes.
238 If lval == lval_memory, this is an offset to the address. If
239 lval == lval_register, this is a further offset from
240 location.address within the registers structure. Note also the
241 member embedded_offset below. */
242 int offset;
243
244 /* Only used for bitfields; number of bits contained in them. */
245 int bitsize;
246
247 /* Only used for bitfields; position of start of field. For
32c9a795 248 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 249 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
250 int bitpos;
251
87784a47
TT
252 /* The number of references to this value. When a value is created,
253 the value chain holds a reference, so REFERENCE_COUNT is 1. If
254 release_value is called, this value is removed from the chain but
255 the caller of release_value now has a reference to this value.
256 The caller must arrange for a call to value_free later. */
257 int reference_count;
258
4ea48cc1
DJ
259 /* Only used for bitfields; the containing value. This allows a
260 single read from the target when displaying multiple
261 bitfields. */
262 struct value *parent;
263
91294c83
AC
264 /* Frame register value is relative to. This will be described in
265 the lval enum above as "lval_register". */
266 struct frame_id frame_id;
267
268 /* Type of the value. */
269 struct type *type;
270
271 /* If a value represents a C++ object, then the `type' field gives
272 the object's compile-time type. If the object actually belongs
273 to some class derived from `type', perhaps with other base
274 classes and additional members, then `type' is just a subobject
275 of the real thing, and the full object is probably larger than
276 `type' would suggest.
277
278 If `type' is a dynamic class (i.e. one with a vtable), then GDB
279 can actually determine the object's run-time type by looking at
280 the run-time type information in the vtable. When this
281 information is available, we may elect to read in the entire
282 object, for several reasons:
283
284 - When printing the value, the user would probably rather see the
285 full object, not just the limited portion apparent from the
286 compile-time type.
287
288 - If `type' has virtual base classes, then even printing `type'
289 alone may require reaching outside the `type' portion of the
290 object to wherever the virtual base class has been stored.
291
292 When we store the entire object, `enclosing_type' is the run-time
293 type -- the complete object -- and `embedded_offset' is the
294 offset of `type' within that larger type, in bytes. The
295 value_contents() macro takes `embedded_offset' into account, so
296 most GDB code continues to see the `type' portion of the value,
297 just as the inferior would.
298
299 If `type' is a pointer to an object, then `enclosing_type' is a
300 pointer to the object's run-time type, and `pointed_to_offset' is
301 the offset in bytes from the full object to the pointed-to object
302 -- that is, the value `embedded_offset' would have if we followed
303 the pointer and fetched the complete object. (I don't really see
304 the point. Why not just determine the run-time type when you
305 indirect, and avoid the special case? The contents don't matter
306 until you indirect anyway.)
307
308 If we're not doing anything fancy, `enclosing_type' is equal to
309 `type', and `embedded_offset' is zero, so everything works
310 normally. */
311 struct type *enclosing_type;
312 int embedded_offset;
313 int pointed_to_offset;
314
315 /* Values are stored in a chain, so that they can be deleted easily
316 over calls to the inferior. Values assigned to internal
a08702d6
TJB
317 variables, put into the value history or exposed to Python are
318 taken off this list. */
91294c83
AC
319 struct value *next;
320
321 /* Register number if the value is from a register. */
322 short regnum;
323
3e3d7139
JG
324 /* Actual contents of the value. Target byte-order. NULL or not
325 valid if lazy is nonzero. */
326 gdb_byte *contents;
828d3400 327
4e07d55f
PA
328 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
329 rather than available, since the common and default case is for a
330 value to be available. This is filled in at value read time. */
331 VEC(range_s) *unavailable;
91294c83
AC
332};
333
4e07d55f
PA
334int
335value_bytes_available (const struct value *value, int offset, int length)
336{
337 gdb_assert (!value->lazy);
338
339 return !ranges_contain (value->unavailable, offset, length);
340}
341
ec0a52e1
PA
342int
343value_entirely_available (struct value *value)
344{
345 /* We can only tell whether the whole value is available when we try
346 to read it. */
347 if (value->lazy)
348 value_fetch_lazy (value);
349
350 if (VEC_empty (range_s, value->unavailable))
351 return 1;
352 return 0;
353}
354
4e07d55f
PA
355void
356mark_value_bytes_unavailable (struct value *value, int offset, int length)
357{
358 range_s newr;
359 int i;
360
361 /* Insert the range sorted. If there's overlap or the new range
362 would be contiguous with an existing range, merge. */
363
364 newr.offset = offset;
365 newr.length = length;
366
367 /* Do a binary search for the position the given range would be
368 inserted if we only considered the starting OFFSET of ranges.
369 Call that position I. Since we also have LENGTH to care for
370 (this is a range afterall), we need to check if the _previous_
371 range overlaps the I range. E.g., calling R the new range:
372
373 #1 - overlaps with previous
374
375 R
376 |-...-|
377 |---| |---| |------| ... |--|
378 0 1 2 N
379
380 I=1
381
382 In the case #1 above, the binary search would return `I=1',
383 meaning, this OFFSET should be inserted at position 1, and the
384 current position 1 should be pushed further (and become 2). But,
385 note that `0' overlaps with R, so we want to merge them.
386
387 A similar consideration needs to be taken if the new range would
388 be contiguous with the previous range:
389
390 #2 - contiguous with previous
391
392 R
393 |-...-|
394 |--| |---| |------| ... |--|
395 0 1 2 N
396
397 I=1
398
399 If there's no overlap with the previous range, as in:
400
401 #3 - not overlapping and not contiguous
402
403 R
404 |-...-|
405 |--| |---| |------| ... |--|
406 0 1 2 N
407
408 I=1
409
410 or if I is 0:
411
412 #4 - R is the range with lowest offset
413
414 R
415 |-...-|
416 |--| |---| |------| ... |--|
417 0 1 2 N
418
419 I=0
420
421 ... we just push the new range to I.
422
423 All the 4 cases above need to consider that the new range may
424 also overlap several of the ranges that follow, or that R may be
425 contiguous with the following range, and merge. E.g.,
426
427 #5 - overlapping following ranges
428
429 R
430 |------------------------|
431 |--| |---| |------| ... |--|
432 0 1 2 N
433
434 I=0
435
436 or:
437
438 R
439 |-------|
440 |--| |---| |------| ... |--|
441 0 1 2 N
442
443 I=1
444
445 */
446
447 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
448 if (i > 0)
449 {
6bfc80c7 450 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
4e07d55f
PA
451
452 if (ranges_overlap (bef->offset, bef->length, offset, length))
453 {
454 /* #1 */
455 ULONGEST l = min (bef->offset, offset);
456 ULONGEST h = max (bef->offset + bef->length, offset + length);
457
458 bef->offset = l;
459 bef->length = h - l;
460 i--;
461 }
462 else if (offset == bef->offset + bef->length)
463 {
464 /* #2 */
465 bef->length += length;
466 i--;
467 }
468 else
469 {
470 /* #3 */
471 VEC_safe_insert (range_s, value->unavailable, i, &newr);
472 }
473 }
474 else
475 {
476 /* #4 */
477 VEC_safe_insert (range_s, value->unavailable, i, &newr);
478 }
479
480 /* Check whether the ranges following the one we've just added or
481 touched can be folded in (#5 above). */
482 if (i + 1 < VEC_length (range_s, value->unavailable))
483 {
484 struct range *t;
485 struct range *r;
486 int removed = 0;
487 int next = i + 1;
488
489 /* Get the range we just touched. */
490 t = VEC_index (range_s, value->unavailable, i);
491 removed = 0;
492
493 i = next;
494 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
495 if (r->offset <= t->offset + t->length)
496 {
497 ULONGEST l, h;
498
499 l = min (t->offset, r->offset);
500 h = max (t->offset + t->length, r->offset + r->length);
501
502 t->offset = l;
503 t->length = h - l;
504
505 removed++;
506 }
507 else
508 {
509 /* If we couldn't merge this one, we won't be able to
510 merge following ones either, since the ranges are
511 always sorted by OFFSET. */
512 break;
513 }
514
515 if (removed != 0)
516 VEC_block_remove (range_s, value->unavailable, next, removed);
517 }
518}
519
c8c1c22f
PA
520/* Find the first range in RANGES that overlaps the range defined by
521 OFFSET and LENGTH, starting at element POS in the RANGES vector,
522 Returns the index into RANGES where such overlapping range was
523 found, or -1 if none was found. */
524
525static int
526find_first_range_overlap (VEC(range_s) *ranges, int pos,
527 int offset, int length)
528{
529 range_s *r;
530 int i;
531
532 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
533 if (ranges_overlap (r->offset, r->length, offset, length))
534 return i;
535
536 return -1;
537}
538
539int
540value_available_contents_eq (const struct value *val1, int offset1,
541 const struct value *val2, int offset2,
542 int length)
543{
c8c1c22f 544 int idx1 = 0, idx2 = 0;
c8c1c22f 545
4eb59108 546 /* See function description in value.h. */
c8c1c22f
PA
547 gdb_assert (!val1->lazy && !val2->lazy);
548
c8c1c22f
PA
549 while (length > 0)
550 {
551 range_s *r1, *r2;
552 ULONGEST l1, h1;
553 ULONGEST l2, h2;
554
555 idx1 = find_first_range_overlap (val1->unavailable, idx1,
556 offset1, length);
557 idx2 = find_first_range_overlap (val2->unavailable, idx2,
558 offset2, length);
559
560 /* The usual case is for both values to be completely available. */
561 if (idx1 == -1 && idx2 == -1)
cd24cfaa
PA
562 return (memcmp (val1->contents + offset1,
563 val2->contents + offset2,
564 length) == 0);
c8c1c22f
PA
565 /* The contents only match equal if the available set matches as
566 well. */
567 else if (idx1 == -1 || idx2 == -1)
568 return 0;
569
570 gdb_assert (idx1 != -1 && idx2 != -1);
571
572 r1 = VEC_index (range_s, val1->unavailable, idx1);
573 r2 = VEC_index (range_s, val2->unavailable, idx2);
574
575 /* Get the unavailable windows intersected by the incoming
576 ranges. The first and last ranges that overlap the argument
577 range may be wider than said incoming arguments ranges. */
578 l1 = max (offset1, r1->offset);
579 h1 = min (offset1 + length, r1->offset + r1->length);
580
581 l2 = max (offset2, r2->offset);
582 h2 = min (offset2 + length, r2->offset + r2->length);
583
584 /* Make them relative to the respective start offsets, so we can
585 compare them for equality. */
586 l1 -= offset1;
587 h1 -= offset1;
588
589 l2 -= offset2;
590 h2 -= offset2;
591
592 /* Different availability, no match. */
593 if (l1 != l2 || h1 != h2)
594 return 0;
595
596 /* Compare the _available_ contents. */
cd24cfaa
PA
597 if (memcmp (val1->contents + offset1,
598 val2->contents + offset2,
599 l1) != 0)
c8c1c22f
PA
600 return 0;
601
c8c1c22f
PA
602 length -= h1;
603 offset1 += h1;
604 offset2 += h1;
605 }
606
607 return 1;
608}
609
581e13c1 610/* Prototypes for local functions. */
c906108c 611
a14ed312 612static void show_values (char *, int);
c906108c 613
a14ed312 614static void show_convenience (char *, int);
c906108c 615
c906108c
SS
616
617/* The value-history records all the values printed
618 by print commands during this session. Each chunk
619 records 60 consecutive values. The first chunk on
620 the chain records the most recent values.
621 The total number of values is in value_history_count. */
622
623#define VALUE_HISTORY_CHUNK 60
624
625struct value_history_chunk
c5aa993b
JM
626 {
627 struct value_history_chunk *next;
f23631e4 628 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 629 };
c906108c
SS
630
631/* Chain of chunks now in use. */
632
633static struct value_history_chunk *value_history_chain;
634
581e13c1 635static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 636
c906108c
SS
637\f
638/* List of all value objects currently allocated
639 (except for those released by calls to release_value)
640 This is so they can be freed after each command. */
641
f23631e4 642static struct value *all_values;
c906108c 643
3e3d7139
JG
644/* Allocate a lazy value for type TYPE. Its actual content is
645 "lazily" allocated too: the content field of the return value is
646 NULL; it will be allocated when it is fetched from the target. */
c906108c 647
f23631e4 648struct value *
3e3d7139 649allocate_value_lazy (struct type *type)
c906108c 650{
f23631e4 651 struct value *val;
c54eabfa
JK
652
653 /* Call check_typedef on our type to make sure that, if TYPE
654 is a TYPE_CODE_TYPEDEF, its length is set to the length
655 of the target type instead of zero. However, we do not
656 replace the typedef type by the target type, because we want
657 to keep the typedef in order to be able to set the VAL's type
658 description correctly. */
659 check_typedef (type);
c906108c 660
3e3d7139
JG
661 val = (struct value *) xzalloc (sizeof (struct value));
662 val->contents = NULL;
df407dfe 663 val->next = all_values;
c906108c 664 all_values = val;
df407dfe 665 val->type = type;
4754a64e 666 val->enclosing_type = type;
c906108c 667 VALUE_LVAL (val) = not_lval;
42ae5230 668 val->location.address = 0;
1df6926e 669 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
670 val->offset = 0;
671 val->bitpos = 0;
672 val->bitsize = 0;
9ee8fc9d 673 VALUE_REGNUM (val) = -1;
3e3d7139 674 val->lazy = 1;
feb13ab0 675 val->optimized_out = 0;
13c3b5f5 676 val->embedded_offset = 0;
b44d461b 677 val->pointed_to_offset = 0;
c906108c 678 val->modifiable = 1;
42be36b3 679 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
680
681 /* Values start out on the all_values chain. */
682 val->reference_count = 1;
683
c906108c
SS
684 return val;
685}
686
3e3d7139
JG
687/* Allocate the contents of VAL if it has not been allocated yet. */
688
689void
690allocate_value_contents (struct value *val)
691{
692 if (!val->contents)
693 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
694}
695
696/* Allocate a value and its contents for type TYPE. */
697
698struct value *
699allocate_value (struct type *type)
700{
701 struct value *val = allocate_value_lazy (type);
a109c7c1 702
3e3d7139
JG
703 allocate_value_contents (val);
704 val->lazy = 0;
705 return val;
706}
707
c906108c 708/* Allocate a value that has the correct length
938f5214 709 for COUNT repetitions of type TYPE. */
c906108c 710
f23631e4 711struct value *
fba45db2 712allocate_repeat_value (struct type *type, int count)
c906108c 713{
c5aa993b 714 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
715 /* FIXME-type-allocation: need a way to free this type when we are
716 done with it. */
e3506a9f
UW
717 struct type *array_type
718 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 719
e3506a9f 720 return allocate_value (array_type);
c906108c
SS
721}
722
5f5233d4
PA
723struct value *
724allocate_computed_value (struct type *type,
c8f2448a 725 const struct lval_funcs *funcs,
5f5233d4
PA
726 void *closure)
727{
41e8491f 728 struct value *v = allocate_value_lazy (type);
a109c7c1 729
5f5233d4
PA
730 VALUE_LVAL (v) = lval_computed;
731 v->location.computed.funcs = funcs;
732 v->location.computed.closure = closure;
5f5233d4
PA
733
734 return v;
735}
736
a7035dbb
JK
737/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
738
739struct value *
740allocate_optimized_out_value (struct type *type)
741{
742 struct value *retval = allocate_value_lazy (type);
743
744 set_value_optimized_out (retval, 1);
745
746 return retval;
747}
748
df407dfe
AC
749/* Accessor methods. */
750
17cf0ecd
AC
751struct value *
752value_next (struct value *value)
753{
754 return value->next;
755}
756
df407dfe 757struct type *
0e03807e 758value_type (const struct value *value)
df407dfe
AC
759{
760 return value->type;
761}
04624583
AC
762void
763deprecated_set_value_type (struct value *value, struct type *type)
764{
765 value->type = type;
766}
df407dfe
AC
767
768int
0e03807e 769value_offset (const struct value *value)
df407dfe
AC
770{
771 return value->offset;
772}
f5cf64a7
AC
773void
774set_value_offset (struct value *value, int offset)
775{
776 value->offset = offset;
777}
df407dfe
AC
778
779int
0e03807e 780value_bitpos (const struct value *value)
df407dfe
AC
781{
782 return value->bitpos;
783}
9bbda503
AC
784void
785set_value_bitpos (struct value *value, int bit)
786{
787 value->bitpos = bit;
788}
df407dfe
AC
789
790int
0e03807e 791value_bitsize (const struct value *value)
df407dfe
AC
792{
793 return value->bitsize;
794}
9bbda503
AC
795void
796set_value_bitsize (struct value *value, int bit)
797{
798 value->bitsize = bit;
799}
df407dfe 800
4ea48cc1
DJ
801struct value *
802value_parent (struct value *value)
803{
804 return value->parent;
805}
806
53ba8333
JB
807/* See value.h. */
808
809void
810set_value_parent (struct value *value, struct value *parent)
811{
40501e00
TT
812 struct value *old = value->parent;
813
53ba8333 814 value->parent = parent;
40501e00
TT
815 if (parent != NULL)
816 value_incref (parent);
817 value_free (old);
53ba8333
JB
818}
819
fc1a4b47 820gdb_byte *
990a07ab
AC
821value_contents_raw (struct value *value)
822{
3e3d7139
JG
823 allocate_value_contents (value);
824 return value->contents + value->embedded_offset;
990a07ab
AC
825}
826
fc1a4b47 827gdb_byte *
990a07ab
AC
828value_contents_all_raw (struct value *value)
829{
3e3d7139
JG
830 allocate_value_contents (value);
831 return value->contents;
990a07ab
AC
832}
833
4754a64e
AC
834struct type *
835value_enclosing_type (struct value *value)
836{
837 return value->enclosing_type;
838}
839
8264ba82
AG
840/* Look at value.h for description. */
841
842struct type *
843value_actual_type (struct value *value, int resolve_simple_types,
844 int *real_type_found)
845{
846 struct value_print_options opts;
8264ba82
AG
847 struct type *result;
848
849 get_user_print_options (&opts);
850
851 if (real_type_found)
852 *real_type_found = 0;
853 result = value_type (value);
854 if (opts.objectprint)
855 {
5e34c6c3
LM
856 /* If result's target type is TYPE_CODE_STRUCT, proceed to
857 fetch its rtti type. */
858 if ((TYPE_CODE (result) == TYPE_CODE_PTR
8264ba82 859 || TYPE_CODE (result) == TYPE_CODE_REF)
5e34c6c3
LM
860 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
861 == TYPE_CODE_STRUCT)
8264ba82
AG
862 {
863 struct type *real_type;
864
865 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
866 if (real_type)
867 {
868 if (real_type_found)
869 *real_type_found = 1;
870 result = real_type;
871 }
872 }
873 else if (resolve_simple_types)
874 {
875 if (real_type_found)
876 *real_type_found = 1;
877 result = value_enclosing_type (value);
878 }
879 }
880
881 return result;
882}
883
0e03807e 884static void
4e07d55f 885require_not_optimized_out (const struct value *value)
0e03807e
TT
886{
887 if (value->optimized_out)
888 error (_("value has been optimized out"));
889}
890
4e07d55f
PA
891static void
892require_available (const struct value *value)
893{
894 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 895 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
896}
897
fc1a4b47 898const gdb_byte *
0e03807e 899value_contents_for_printing (struct value *value)
46615f07
AC
900{
901 if (value->lazy)
902 value_fetch_lazy (value);
3e3d7139 903 return value->contents;
46615f07
AC
904}
905
de4127a3
PA
906const gdb_byte *
907value_contents_for_printing_const (const struct value *value)
908{
909 gdb_assert (!value->lazy);
910 return value->contents;
911}
912
0e03807e
TT
913const gdb_byte *
914value_contents_all (struct value *value)
915{
916 const gdb_byte *result = value_contents_for_printing (value);
917 require_not_optimized_out (value);
4e07d55f 918 require_available (value);
0e03807e
TT
919 return result;
920}
921
29976f3f
PA
922/* Copy LENGTH bytes of SRC value's (all) contents
923 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
924 contents, starting at DST_OFFSET. If unavailable contents are
925 being copied from SRC, the corresponding DST contents are marked
926 unavailable accordingly. Neither DST nor SRC may be lazy
927 values.
928
929 It is assumed the contents of DST in the [DST_OFFSET,
930 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
931
932void
933value_contents_copy_raw (struct value *dst, int dst_offset,
934 struct value *src, int src_offset, int length)
935{
936 range_s *r;
937 int i;
938
939 /* A lazy DST would make that this copy operation useless, since as
940 soon as DST's contents were un-lazied (by a later value_contents
941 call, say), the contents would be overwritten. A lazy SRC would
942 mean we'd be copying garbage. */
943 gdb_assert (!dst->lazy && !src->lazy);
944
29976f3f
PA
945 /* The overwritten DST range gets unavailability ORed in, not
946 replaced. Make sure to remember to implement replacing if it
947 turns out actually necessary. */
948 gdb_assert (value_bytes_available (dst, dst_offset, length));
949
39d37385
PA
950 /* Copy the data. */
951 memcpy (value_contents_all_raw (dst) + dst_offset,
952 value_contents_all_raw (src) + src_offset,
953 length);
954
955 /* Copy the meta-data, adjusted. */
956 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
957 {
958 ULONGEST h, l;
959
960 l = max (r->offset, src_offset);
961 h = min (r->offset + r->length, src_offset + length);
962
963 if (l < h)
964 mark_value_bytes_unavailable (dst,
965 dst_offset + (l - src_offset),
966 h - l);
967 }
968}
969
29976f3f
PA
970/* Copy LENGTH bytes of SRC value's (all) contents
971 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
972 (all) contents, starting at DST_OFFSET. If unavailable contents
973 are being copied from SRC, the corresponding DST contents are
974 marked unavailable accordingly. DST must not be lazy. If SRC is
975 lazy, it will be fetched now. If SRC is not valid (is optimized
976 out), an error is thrown.
977
978 It is assumed the contents of DST in the [DST_OFFSET,
979 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
980
981void
982value_contents_copy (struct value *dst, int dst_offset,
983 struct value *src, int src_offset, int length)
984{
985 require_not_optimized_out (src);
986
987 if (src->lazy)
988 value_fetch_lazy (src);
989
990 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
991}
992
d69fe07e
AC
993int
994value_lazy (struct value *value)
995{
996 return value->lazy;
997}
998
dfa52d88
AC
999void
1000set_value_lazy (struct value *value, int val)
1001{
1002 value->lazy = val;
1003}
1004
4e5d721f
DE
1005int
1006value_stack (struct value *value)
1007{
1008 return value->stack;
1009}
1010
1011void
1012set_value_stack (struct value *value, int val)
1013{
1014 value->stack = val;
1015}
1016
fc1a4b47 1017const gdb_byte *
0fd88904
AC
1018value_contents (struct value *value)
1019{
0e03807e
TT
1020 const gdb_byte *result = value_contents_writeable (value);
1021 require_not_optimized_out (value);
4e07d55f 1022 require_available (value);
0e03807e 1023 return result;
0fd88904
AC
1024}
1025
fc1a4b47 1026gdb_byte *
0fd88904
AC
1027value_contents_writeable (struct value *value)
1028{
1029 if (value->lazy)
1030 value_fetch_lazy (value);
fc0c53a0 1031 return value_contents_raw (value);
0fd88904
AC
1032}
1033
a6c442d8
MK
1034/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
1035 this function is different from value_equal; in C the operator ==
1036 can return 0 even if the two values being compared are equal. */
1037
1038int
1039value_contents_equal (struct value *val1, struct value *val2)
1040{
1041 struct type *type1;
1042 struct type *type2;
a6c442d8
MK
1043
1044 type1 = check_typedef (value_type (val1));
1045 type2 = check_typedef (value_type (val2));
744a8059 1046 if (TYPE_LENGTH (type1) != TYPE_LENGTH (type2))
a6c442d8
MK
1047 return 0;
1048
744a8059
SP
1049 return (memcmp (value_contents (val1), value_contents (val2),
1050 TYPE_LENGTH (type1)) == 0);
a6c442d8
MK
1051}
1052
feb13ab0
AC
1053int
1054value_optimized_out (struct value *value)
1055{
1056 return value->optimized_out;
1057}
1058
1059void
1060set_value_optimized_out (struct value *value, int val)
1061{
1062 value->optimized_out = val;
1063}
13c3b5f5 1064
0e03807e
TT
1065int
1066value_entirely_optimized_out (const struct value *value)
1067{
1068 if (!value->optimized_out)
1069 return 0;
1070 if (value->lval != lval_computed
ba19bb4d 1071 || !value->location.computed.funcs->check_any_valid)
0e03807e 1072 return 1;
b65c7efe 1073 return !value->location.computed.funcs->check_any_valid (value);
0e03807e
TT
1074}
1075
1076int
1077value_bits_valid (const struct value *value, int offset, int length)
1078{
e7303042 1079 if (!value->optimized_out)
0e03807e
TT
1080 return 1;
1081 if (value->lval != lval_computed
1082 || !value->location.computed.funcs->check_validity)
1083 return 0;
1084 return value->location.computed.funcs->check_validity (value, offset,
1085 length);
1086}
1087
8cf6f0b1
TT
1088int
1089value_bits_synthetic_pointer (const struct value *value,
1090 int offset, int length)
1091{
e7303042 1092 if (value->lval != lval_computed
8cf6f0b1
TT
1093 || !value->location.computed.funcs->check_synthetic_pointer)
1094 return 0;
1095 return value->location.computed.funcs->check_synthetic_pointer (value,
1096 offset,
1097 length);
1098}
1099
13c3b5f5
AC
1100int
1101value_embedded_offset (struct value *value)
1102{
1103 return value->embedded_offset;
1104}
1105
1106void
1107set_value_embedded_offset (struct value *value, int val)
1108{
1109 value->embedded_offset = val;
1110}
b44d461b
AC
1111
1112int
1113value_pointed_to_offset (struct value *value)
1114{
1115 return value->pointed_to_offset;
1116}
1117
1118void
1119set_value_pointed_to_offset (struct value *value, int val)
1120{
1121 value->pointed_to_offset = val;
1122}
13bb5560 1123
c8f2448a 1124const struct lval_funcs *
a471c594 1125value_computed_funcs (const struct value *v)
5f5233d4 1126{
a471c594 1127 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1128
1129 return v->location.computed.funcs;
1130}
1131
1132void *
0e03807e 1133value_computed_closure (const struct value *v)
5f5233d4 1134{
0e03807e 1135 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1136
1137 return v->location.computed.closure;
1138}
1139
13bb5560
AC
1140enum lval_type *
1141deprecated_value_lval_hack (struct value *value)
1142{
1143 return &value->lval;
1144}
1145
a471c594
JK
1146enum lval_type
1147value_lval_const (const struct value *value)
1148{
1149 return value->lval;
1150}
1151
42ae5230 1152CORE_ADDR
de4127a3 1153value_address (const struct value *value)
42ae5230
TT
1154{
1155 if (value->lval == lval_internalvar
1156 || value->lval == lval_internalvar_component)
1157 return 0;
53ba8333
JB
1158 if (value->parent != NULL)
1159 return value_address (value->parent) + value->offset;
1160 else
1161 return value->location.address + value->offset;
42ae5230
TT
1162}
1163
1164CORE_ADDR
1165value_raw_address (struct value *value)
1166{
1167 if (value->lval == lval_internalvar
1168 || value->lval == lval_internalvar_component)
1169 return 0;
1170 return value->location.address;
1171}
1172
1173void
1174set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1175{
42ae5230
TT
1176 gdb_assert (value->lval != lval_internalvar
1177 && value->lval != lval_internalvar_component);
1178 value->location.address = addr;
13bb5560
AC
1179}
1180
1181struct internalvar **
1182deprecated_value_internalvar_hack (struct value *value)
1183{
1184 return &value->location.internalvar;
1185}
1186
1187struct frame_id *
1188deprecated_value_frame_id_hack (struct value *value)
1189{
1190 return &value->frame_id;
1191}
1192
1193short *
1194deprecated_value_regnum_hack (struct value *value)
1195{
1196 return &value->regnum;
1197}
88e3b34b
AC
1198
1199int
1200deprecated_value_modifiable (struct value *value)
1201{
1202 return value->modifiable;
1203}
990a07ab 1204\f
c906108c
SS
1205/* Return a mark in the value chain. All values allocated after the
1206 mark is obtained (except for those released) are subject to being freed
1207 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1208struct value *
fba45db2 1209value_mark (void)
c906108c
SS
1210{
1211 return all_values;
1212}
1213
828d3400
DJ
1214/* Take a reference to VAL. VAL will not be deallocated until all
1215 references are released. */
1216
1217void
1218value_incref (struct value *val)
1219{
1220 val->reference_count++;
1221}
1222
1223/* Release a reference to VAL, which was acquired with value_incref.
1224 This function is also called to deallocate values from the value
1225 chain. */
1226
3e3d7139
JG
1227void
1228value_free (struct value *val)
1229{
1230 if (val)
5f5233d4 1231 {
828d3400
DJ
1232 gdb_assert (val->reference_count > 0);
1233 val->reference_count--;
1234 if (val->reference_count > 0)
1235 return;
1236
4ea48cc1
DJ
1237 /* If there's an associated parent value, drop our reference to
1238 it. */
1239 if (val->parent != NULL)
1240 value_free (val->parent);
1241
5f5233d4
PA
1242 if (VALUE_LVAL (val) == lval_computed)
1243 {
c8f2448a 1244 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1245
1246 if (funcs->free_closure)
1247 funcs->free_closure (val);
1248 }
1249
1250 xfree (val->contents);
4e07d55f 1251 VEC_free (range_s, val->unavailable);
5f5233d4 1252 }
3e3d7139
JG
1253 xfree (val);
1254}
1255
c906108c
SS
1256/* Free all values allocated since MARK was obtained by value_mark
1257 (except for those released). */
1258void
f23631e4 1259value_free_to_mark (struct value *mark)
c906108c 1260{
f23631e4
AC
1261 struct value *val;
1262 struct value *next;
c906108c
SS
1263
1264 for (val = all_values; val && val != mark; val = next)
1265 {
df407dfe 1266 next = val->next;
e848a8a5 1267 val->released = 1;
c906108c
SS
1268 value_free (val);
1269 }
1270 all_values = val;
1271}
1272
1273/* Free all the values that have been allocated (except for those released).
725e88af
DE
1274 Call after each command, successful or not.
1275 In practice this is called before each command, which is sufficient. */
c906108c
SS
1276
1277void
fba45db2 1278free_all_values (void)
c906108c 1279{
f23631e4
AC
1280 struct value *val;
1281 struct value *next;
c906108c
SS
1282
1283 for (val = all_values; val; val = next)
1284 {
df407dfe 1285 next = val->next;
e848a8a5 1286 val->released = 1;
c906108c
SS
1287 value_free (val);
1288 }
1289
1290 all_values = 0;
1291}
1292
0cf6dd15
TJB
1293/* Frees all the elements in a chain of values. */
1294
1295void
1296free_value_chain (struct value *v)
1297{
1298 struct value *next;
1299
1300 for (; v; v = next)
1301 {
1302 next = value_next (v);
1303 value_free (v);
1304 }
1305}
1306
c906108c
SS
1307/* Remove VAL from the chain all_values
1308 so it will not be freed automatically. */
1309
1310void
f23631e4 1311release_value (struct value *val)
c906108c 1312{
f23631e4 1313 struct value *v;
c906108c
SS
1314
1315 if (all_values == val)
1316 {
1317 all_values = val->next;
06a64a0b 1318 val->next = NULL;
e848a8a5 1319 val->released = 1;
c906108c
SS
1320 return;
1321 }
1322
1323 for (v = all_values; v; v = v->next)
1324 {
1325 if (v->next == val)
1326 {
1327 v->next = val->next;
06a64a0b 1328 val->next = NULL;
e848a8a5 1329 val->released = 1;
c906108c
SS
1330 break;
1331 }
1332 }
1333}
1334
e848a8a5
TT
1335/* If the value is not already released, release it.
1336 If the value is already released, increment its reference count.
1337 That is, this function ensures that the value is released from the
1338 value chain and that the caller owns a reference to it. */
1339
1340void
1341release_value_or_incref (struct value *val)
1342{
1343 if (val->released)
1344 value_incref (val);
1345 else
1346 release_value (val);
1347}
1348
c906108c 1349/* Release all values up to mark */
f23631e4
AC
1350struct value *
1351value_release_to_mark (struct value *mark)
c906108c 1352{
f23631e4
AC
1353 struct value *val;
1354 struct value *next;
c906108c 1355
df407dfe 1356 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1357 {
1358 if (next->next == mark)
1359 {
1360 all_values = next->next;
1361 next->next = NULL;
1362 return val;
1363 }
1364 next->released = 1;
1365 }
c906108c
SS
1366 all_values = 0;
1367 return val;
1368}
1369
1370/* Return a copy of the value ARG.
1371 It contains the same contents, for same memory address,
1372 but it's a different block of storage. */
1373
f23631e4
AC
1374struct value *
1375value_copy (struct value *arg)
c906108c 1376{
4754a64e 1377 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1378 struct value *val;
1379
1380 if (value_lazy (arg))
1381 val = allocate_value_lazy (encl_type);
1382 else
1383 val = allocate_value (encl_type);
df407dfe 1384 val->type = arg->type;
c906108c 1385 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1386 val->location = arg->location;
df407dfe
AC
1387 val->offset = arg->offset;
1388 val->bitpos = arg->bitpos;
1389 val->bitsize = arg->bitsize;
1df6926e 1390 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 1391 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 1392 val->lazy = arg->lazy;
feb13ab0 1393 val->optimized_out = arg->optimized_out;
13c3b5f5 1394 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1395 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1396 val->modifiable = arg->modifiable;
d69fe07e 1397 if (!value_lazy (val))
c906108c 1398 {
990a07ab 1399 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1400 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1401
1402 }
4e07d55f 1403 val->unavailable = VEC_copy (range_s, arg->unavailable);
40501e00 1404 set_value_parent (val, arg->parent);
5f5233d4
PA
1405 if (VALUE_LVAL (val) == lval_computed)
1406 {
c8f2448a 1407 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1408
1409 if (funcs->copy_closure)
1410 val->location.computed.closure = funcs->copy_closure (val);
1411 }
c906108c
SS
1412 return val;
1413}
74bcbdf3 1414
c37f7098
KW
1415/* Return a version of ARG that is non-lvalue. */
1416
1417struct value *
1418value_non_lval (struct value *arg)
1419{
1420 if (VALUE_LVAL (arg) != not_lval)
1421 {
1422 struct type *enc_type = value_enclosing_type (arg);
1423 struct value *val = allocate_value (enc_type);
1424
1425 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1426 TYPE_LENGTH (enc_type));
1427 val->type = arg->type;
1428 set_value_embedded_offset (val, value_embedded_offset (arg));
1429 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1430 return val;
1431 }
1432 return arg;
1433}
1434
74bcbdf3 1435void
0e03807e
TT
1436set_value_component_location (struct value *component,
1437 const struct value *whole)
74bcbdf3 1438{
0e03807e 1439 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1440 VALUE_LVAL (component) = lval_internalvar_component;
1441 else
0e03807e 1442 VALUE_LVAL (component) = whole->lval;
5f5233d4 1443
74bcbdf3 1444 component->location = whole->location;
0e03807e 1445 if (whole->lval == lval_computed)
5f5233d4 1446 {
c8f2448a 1447 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1448
1449 if (funcs->copy_closure)
1450 component->location.computed.closure = funcs->copy_closure (whole);
1451 }
74bcbdf3
PA
1452}
1453
c906108c
SS
1454\f
1455/* Access to the value history. */
1456
1457/* Record a new value in the value history.
1458 Returns the absolute history index of the entry.
1459 Result of -1 indicates the value was not saved; otherwise it is the
1460 value history index of this new item. */
1461
1462int
f23631e4 1463record_latest_value (struct value *val)
c906108c
SS
1464{
1465 int i;
1466
1467 /* We don't want this value to have anything to do with the inferior anymore.
1468 In particular, "set $1 = 50" should not affect the variable from which
1469 the value was taken, and fast watchpoints should be able to assume that
1470 a value on the value history never changes. */
d69fe07e 1471 if (value_lazy (val))
c906108c
SS
1472 value_fetch_lazy (val);
1473 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1474 from. This is a bit dubious, because then *&$1 does not just return $1
1475 but the current contents of that location. c'est la vie... */
1476 val->modifiable = 0;
1477 release_value (val);
1478
1479 /* Here we treat value_history_count as origin-zero
1480 and applying to the value being stored now. */
1481
1482 i = value_history_count % VALUE_HISTORY_CHUNK;
1483 if (i == 0)
1484 {
f23631e4 1485 struct value_history_chunk *new
a109c7c1
MS
1486 = (struct value_history_chunk *)
1487
c5aa993b 1488 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
1489 memset (new->values, 0, sizeof new->values);
1490 new->next = value_history_chain;
1491 value_history_chain = new;
1492 }
1493
1494 value_history_chain->values[i] = val;
1495
1496 /* Now we regard value_history_count as origin-one
1497 and applying to the value just stored. */
1498
1499 return ++value_history_count;
1500}
1501
1502/* Return a copy of the value in the history with sequence number NUM. */
1503
f23631e4 1504struct value *
fba45db2 1505access_value_history (int num)
c906108c 1506{
f23631e4 1507 struct value_history_chunk *chunk;
52f0bd74
AC
1508 int i;
1509 int absnum = num;
c906108c
SS
1510
1511 if (absnum <= 0)
1512 absnum += value_history_count;
1513
1514 if (absnum <= 0)
1515 {
1516 if (num == 0)
8a3fe4f8 1517 error (_("The history is empty."));
c906108c 1518 else if (num == 1)
8a3fe4f8 1519 error (_("There is only one value in the history."));
c906108c 1520 else
8a3fe4f8 1521 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1522 }
1523 if (absnum > value_history_count)
8a3fe4f8 1524 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1525
1526 absnum--;
1527
1528 /* Now absnum is always absolute and origin zero. */
1529
1530 chunk = value_history_chain;
3e43a32a
MS
1531 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1532 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1533 i > 0; i--)
1534 chunk = chunk->next;
1535
1536 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1537}
1538
c906108c 1539static void
fba45db2 1540show_values (char *num_exp, int from_tty)
c906108c 1541{
52f0bd74 1542 int i;
f23631e4 1543 struct value *val;
c906108c
SS
1544 static int num = 1;
1545
1546 if (num_exp)
1547 {
f132ba9d
TJB
1548 /* "show values +" should print from the stored position.
1549 "show values <exp>" should print around value number <exp>. */
c906108c 1550 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1551 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1552 }
1553 else
1554 {
f132ba9d 1555 /* "show values" means print the last 10 values. */
c906108c
SS
1556 num = value_history_count - 9;
1557 }
1558
1559 if (num <= 0)
1560 num = 1;
1561
1562 for (i = num; i < num + 10 && i <= value_history_count; i++)
1563 {
79a45b7d 1564 struct value_print_options opts;
a109c7c1 1565
c906108c 1566 val = access_value_history (i);
a3f17187 1567 printf_filtered (("$%d = "), i);
79a45b7d
TT
1568 get_user_print_options (&opts);
1569 value_print (val, gdb_stdout, &opts);
a3f17187 1570 printf_filtered (("\n"));
c906108c
SS
1571 }
1572
f132ba9d 1573 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1574 num += 10;
1575
1576 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1577 "show values +". If num_exp is null, this is unnecessary, since
1578 "show values +" is not useful after "show values". */
c906108c
SS
1579 if (from_tty && num_exp)
1580 {
1581 num_exp[0] = '+';
1582 num_exp[1] = '\0';
1583 }
1584}
1585\f
1586/* Internal variables. These are variables within the debugger
1587 that hold values assigned by debugger commands.
1588 The user refers to them with a '$' prefix
1589 that does not appear in the variable names stored internally. */
1590
4fa62494
UW
1591struct internalvar
1592{
1593 struct internalvar *next;
1594 char *name;
4fa62494 1595
78267919
UW
1596 /* We support various different kinds of content of an internal variable.
1597 enum internalvar_kind specifies the kind, and union internalvar_data
1598 provides the data associated with this particular kind. */
1599
1600 enum internalvar_kind
1601 {
1602 /* The internal variable is empty. */
1603 INTERNALVAR_VOID,
1604
1605 /* The value of the internal variable is provided directly as
1606 a GDB value object. */
1607 INTERNALVAR_VALUE,
1608
1609 /* A fresh value is computed via a call-back routine on every
1610 access to the internal variable. */
1611 INTERNALVAR_MAKE_VALUE,
4fa62494 1612
78267919
UW
1613 /* The internal variable holds a GDB internal convenience function. */
1614 INTERNALVAR_FUNCTION,
1615
cab0c772
UW
1616 /* The variable holds an integer value. */
1617 INTERNALVAR_INTEGER,
1618
78267919
UW
1619 /* The variable holds a GDB-provided string. */
1620 INTERNALVAR_STRING,
1621
1622 } kind;
4fa62494 1623
4fa62494
UW
1624 union internalvar_data
1625 {
78267919
UW
1626 /* A value object used with INTERNALVAR_VALUE. */
1627 struct value *value;
1628
1629 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
22d2b532
SDJ
1630 struct
1631 {
1632 /* The functions to call. */
1633 const struct internalvar_funcs *functions;
1634
1635 /* The function's user-data. */
1636 void *data;
1637 } make_value;
78267919
UW
1638
1639 /* The internal function used with INTERNALVAR_FUNCTION. */
1640 struct
1641 {
1642 struct internal_function *function;
1643 /* True if this is the canonical name for the function. */
1644 int canonical;
1645 } fn;
1646
cab0c772 1647 /* An integer value used with INTERNALVAR_INTEGER. */
78267919
UW
1648 struct
1649 {
1650 /* If type is non-NULL, it will be used as the type to generate
1651 a value for this internal variable. If type is NULL, a default
1652 integer type for the architecture is used. */
1653 struct type *type;
cab0c772
UW
1654 LONGEST val;
1655 } integer;
1656
78267919
UW
1657 /* A string value used with INTERNALVAR_STRING. */
1658 char *string;
4fa62494
UW
1659 } u;
1660};
1661
c906108c
SS
1662static struct internalvar *internalvars;
1663
3e43a32a
MS
1664/* If the variable does not already exist create it and give it the
1665 value given. If no value is given then the default is zero. */
53e5f3cf
AS
1666static void
1667init_if_undefined_command (char* args, int from_tty)
1668{
1669 struct internalvar* intvar;
1670
1671 /* Parse the expression - this is taken from set_command(). */
1672 struct expression *expr = parse_expression (args);
1673 register struct cleanup *old_chain =
1674 make_cleanup (free_current_contents, &expr);
1675
1676 /* Validate the expression.
1677 Was the expression an assignment?
1678 Or even an expression at all? */
1679 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1680 error (_("Init-if-undefined requires an assignment expression."));
1681
1682 /* Extract the variable from the parsed expression.
1683 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1684 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
1685 error (_("The first parameter to init-if-undefined "
1686 "should be a GDB variable."));
53e5f3cf
AS
1687 intvar = expr->elts[2].internalvar;
1688
1689 /* Only evaluate the expression if the lvalue is void.
1690 This may still fail if the expresssion is invalid. */
78267919 1691 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
1692 evaluate_expression (expr);
1693
1694 do_cleanups (old_chain);
1695}
1696
1697
c906108c
SS
1698/* Look up an internal variable with name NAME. NAME should not
1699 normally include a dollar sign.
1700
1701 If the specified internal variable does not exist,
c4a3d09a 1702 the return value is NULL. */
c906108c
SS
1703
1704struct internalvar *
bc3b79fd 1705lookup_only_internalvar (const char *name)
c906108c 1706{
52f0bd74 1707 struct internalvar *var;
c906108c
SS
1708
1709 for (var = internalvars; var; var = var->next)
5cb316ef 1710 if (strcmp (var->name, name) == 0)
c906108c
SS
1711 return var;
1712
c4a3d09a
MF
1713 return NULL;
1714}
1715
d55637df
TT
1716/* Complete NAME by comparing it to the names of internal variables.
1717 Returns a vector of newly allocated strings, or NULL if no matches
1718 were found. */
1719
1720VEC (char_ptr) *
1721complete_internalvar (const char *name)
1722{
1723 VEC (char_ptr) *result = NULL;
1724 struct internalvar *var;
1725 int len;
1726
1727 len = strlen (name);
1728
1729 for (var = internalvars; var; var = var->next)
1730 if (strncmp (var->name, name, len) == 0)
1731 {
1732 char *r = xstrdup (var->name);
1733
1734 VEC_safe_push (char_ptr, result, r);
1735 }
1736
1737 return result;
1738}
c4a3d09a
MF
1739
1740/* Create an internal variable with name NAME and with a void value.
1741 NAME should not normally include a dollar sign. */
1742
1743struct internalvar *
bc3b79fd 1744create_internalvar (const char *name)
c4a3d09a
MF
1745{
1746 struct internalvar *var;
a109c7c1 1747
c906108c 1748 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 1749 var->name = concat (name, (char *)NULL);
78267919 1750 var->kind = INTERNALVAR_VOID;
c906108c
SS
1751 var->next = internalvars;
1752 internalvars = var;
1753 return var;
1754}
1755
4aa995e1
PA
1756/* Create an internal variable with name NAME and register FUN as the
1757 function that value_of_internalvar uses to create a value whenever
1758 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
1759 dollar sign. DATA is passed uninterpreted to FUN when it is
1760 called. CLEANUP, if not NULL, is called when the internal variable
1761 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
1762
1763struct internalvar *
22d2b532
SDJ
1764create_internalvar_type_lazy (const char *name,
1765 const struct internalvar_funcs *funcs,
1766 void *data)
4aa995e1 1767{
4fa62494 1768 struct internalvar *var = create_internalvar (name);
a109c7c1 1769
78267919 1770 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
1771 var->u.make_value.functions = funcs;
1772 var->u.make_value.data = data;
4aa995e1
PA
1773 return var;
1774}
c4a3d09a 1775
22d2b532
SDJ
1776/* See documentation in value.h. */
1777
1778int
1779compile_internalvar_to_ax (struct internalvar *var,
1780 struct agent_expr *expr,
1781 struct axs_value *value)
1782{
1783 if (var->kind != INTERNALVAR_MAKE_VALUE
1784 || var->u.make_value.functions->compile_to_ax == NULL)
1785 return 0;
1786
1787 var->u.make_value.functions->compile_to_ax (var, expr, value,
1788 var->u.make_value.data);
1789 return 1;
1790}
1791
c4a3d09a
MF
1792/* Look up an internal variable with name NAME. NAME should not
1793 normally include a dollar sign.
1794
1795 If the specified internal variable does not exist,
1796 one is created, with a void value. */
1797
1798struct internalvar *
bc3b79fd 1799lookup_internalvar (const char *name)
c4a3d09a
MF
1800{
1801 struct internalvar *var;
1802
1803 var = lookup_only_internalvar (name);
1804 if (var)
1805 return var;
1806
1807 return create_internalvar (name);
1808}
1809
78267919
UW
1810/* Return current value of internal variable VAR. For variables that
1811 are not inherently typed, use a value type appropriate for GDBARCH. */
1812
f23631e4 1813struct value *
78267919 1814value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 1815{
f23631e4 1816 struct value *val;
0914bcdb
SS
1817 struct trace_state_variable *tsv;
1818
1819 /* If there is a trace state variable of the same name, assume that
1820 is what we really want to see. */
1821 tsv = find_trace_state_variable (var->name);
1822 if (tsv)
1823 {
1824 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1825 &(tsv->value));
1826 if (tsv->value_known)
1827 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1828 tsv->value);
1829 else
1830 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1831 return val;
1832 }
c906108c 1833
78267919 1834 switch (var->kind)
5f5233d4 1835 {
78267919
UW
1836 case INTERNALVAR_VOID:
1837 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1838 break;
4fa62494 1839
78267919
UW
1840 case INTERNALVAR_FUNCTION:
1841 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1842 break;
4fa62494 1843
cab0c772
UW
1844 case INTERNALVAR_INTEGER:
1845 if (!var->u.integer.type)
78267919 1846 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 1847 var->u.integer.val);
78267919 1848 else
cab0c772
UW
1849 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1850 break;
1851
78267919
UW
1852 case INTERNALVAR_STRING:
1853 val = value_cstring (var->u.string, strlen (var->u.string),
1854 builtin_type (gdbarch)->builtin_char);
1855 break;
4fa62494 1856
78267919
UW
1857 case INTERNALVAR_VALUE:
1858 val = value_copy (var->u.value);
4aa995e1
PA
1859 if (value_lazy (val))
1860 value_fetch_lazy (val);
78267919 1861 break;
4aa995e1 1862
78267919 1863 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
1864 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
1865 var->u.make_value.data);
78267919
UW
1866 break;
1867
1868 default:
9b20d036 1869 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
1870 }
1871
1872 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1873 on this value go back to affect the original internal variable.
1874
1875 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1876 no underlying modifyable state in the internal variable.
1877
1878 Likewise, if the variable's value is a computed lvalue, we want
1879 references to it to produce another computed lvalue, where
1880 references and assignments actually operate through the
1881 computed value's functions.
1882
1883 This means that internal variables with computed values
1884 behave a little differently from other internal variables:
1885 assignments to them don't just replace the previous value
1886 altogether. At the moment, this seems like the behavior we
1887 want. */
1888
1889 if (var->kind != INTERNALVAR_MAKE_VALUE
1890 && val->lval != lval_computed)
1891 {
1892 VALUE_LVAL (val) = lval_internalvar;
1893 VALUE_INTERNALVAR (val) = var;
5f5233d4 1894 }
d3c139e9 1895
4fa62494
UW
1896 return val;
1897}
d3c139e9 1898
4fa62494
UW
1899int
1900get_internalvar_integer (struct internalvar *var, LONGEST *result)
1901{
3158c6ed 1902 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 1903 {
cab0c772
UW
1904 *result = var->u.integer.val;
1905 return 1;
3158c6ed 1906 }
d3c139e9 1907
3158c6ed
PA
1908 if (var->kind == INTERNALVAR_VALUE)
1909 {
1910 struct type *type = check_typedef (value_type (var->u.value));
1911
1912 if (TYPE_CODE (type) == TYPE_CODE_INT)
1913 {
1914 *result = value_as_long (var->u.value);
1915 return 1;
1916 }
4fa62494 1917 }
3158c6ed
PA
1918
1919 return 0;
4fa62494 1920}
d3c139e9 1921
4fa62494
UW
1922static int
1923get_internalvar_function (struct internalvar *var,
1924 struct internal_function **result)
1925{
78267919 1926 switch (var->kind)
d3c139e9 1927 {
78267919
UW
1928 case INTERNALVAR_FUNCTION:
1929 *result = var->u.fn.function;
4fa62494 1930 return 1;
d3c139e9 1931
4fa62494
UW
1932 default:
1933 return 0;
1934 }
c906108c
SS
1935}
1936
1937void
fba45db2 1938set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 1939 int bitsize, struct value *newval)
c906108c 1940{
4fa62494 1941 gdb_byte *addr;
c906108c 1942
78267919 1943 switch (var->kind)
4fa62494 1944 {
78267919
UW
1945 case INTERNALVAR_VALUE:
1946 addr = value_contents_writeable (var->u.value);
4fa62494
UW
1947
1948 if (bitsize)
50810684 1949 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
1950 value_as_long (newval), bitpos, bitsize);
1951 else
1952 memcpy (addr + offset, value_contents (newval),
1953 TYPE_LENGTH (value_type (newval)));
1954 break;
78267919
UW
1955
1956 default:
1957 /* We can never get a component of any other kind. */
9b20d036 1958 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 1959 }
c906108c
SS
1960}
1961
1962void
f23631e4 1963set_internalvar (struct internalvar *var, struct value *val)
c906108c 1964{
78267919 1965 enum internalvar_kind new_kind;
4fa62494 1966 union internalvar_data new_data = { 0 };
c906108c 1967
78267919 1968 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
1969 error (_("Cannot overwrite convenience function %s"), var->name);
1970
4fa62494 1971 /* Prepare new contents. */
78267919 1972 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
1973 {
1974 case TYPE_CODE_VOID:
78267919 1975 new_kind = INTERNALVAR_VOID;
4fa62494
UW
1976 break;
1977
1978 case TYPE_CODE_INTERNAL_FUNCTION:
1979 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
1980 new_kind = INTERNALVAR_FUNCTION;
1981 get_internalvar_function (VALUE_INTERNALVAR (val),
1982 &new_data.fn.function);
1983 /* Copies created here are never canonical. */
4fa62494
UW
1984 break;
1985
4fa62494 1986 default:
78267919
UW
1987 new_kind = INTERNALVAR_VALUE;
1988 new_data.value = value_copy (val);
1989 new_data.value->modifiable = 1;
4fa62494
UW
1990
1991 /* Force the value to be fetched from the target now, to avoid problems
1992 later when this internalvar is referenced and the target is gone or
1993 has changed. */
78267919
UW
1994 if (value_lazy (new_data.value))
1995 value_fetch_lazy (new_data.value);
4fa62494
UW
1996
1997 /* Release the value from the value chain to prevent it from being
1998 deleted by free_all_values. From here on this function should not
1999 call error () until new_data is installed into the var->u to avoid
2000 leaking memory. */
78267919 2001 release_value (new_data.value);
4fa62494
UW
2002 break;
2003 }
2004
2005 /* Clean up old contents. */
2006 clear_internalvar (var);
2007
2008 /* Switch over. */
78267919 2009 var->kind = new_kind;
4fa62494 2010 var->u = new_data;
c906108c
SS
2011 /* End code which must not call error(). */
2012}
2013
4fa62494
UW
2014void
2015set_internalvar_integer (struct internalvar *var, LONGEST l)
2016{
2017 /* Clean up old contents. */
2018 clear_internalvar (var);
2019
cab0c772
UW
2020 var->kind = INTERNALVAR_INTEGER;
2021 var->u.integer.type = NULL;
2022 var->u.integer.val = l;
78267919
UW
2023}
2024
2025void
2026set_internalvar_string (struct internalvar *var, const char *string)
2027{
2028 /* Clean up old contents. */
2029 clear_internalvar (var);
2030
2031 var->kind = INTERNALVAR_STRING;
2032 var->u.string = xstrdup (string);
4fa62494
UW
2033}
2034
2035static void
2036set_internalvar_function (struct internalvar *var, struct internal_function *f)
2037{
2038 /* Clean up old contents. */
2039 clear_internalvar (var);
2040
78267919
UW
2041 var->kind = INTERNALVAR_FUNCTION;
2042 var->u.fn.function = f;
2043 var->u.fn.canonical = 1;
2044 /* Variables installed here are always the canonical version. */
4fa62494
UW
2045}
2046
2047void
2048clear_internalvar (struct internalvar *var)
2049{
2050 /* Clean up old contents. */
78267919 2051 switch (var->kind)
4fa62494 2052 {
78267919
UW
2053 case INTERNALVAR_VALUE:
2054 value_free (var->u.value);
2055 break;
2056
2057 case INTERNALVAR_STRING:
2058 xfree (var->u.string);
4fa62494
UW
2059 break;
2060
22d2b532
SDJ
2061 case INTERNALVAR_MAKE_VALUE:
2062 if (var->u.make_value.functions->destroy != NULL)
2063 var->u.make_value.functions->destroy (var->u.make_value.data);
2064 break;
2065
4fa62494 2066 default:
4fa62494
UW
2067 break;
2068 }
2069
78267919
UW
2070 /* Reset to void kind. */
2071 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2072}
2073
c906108c 2074char *
fba45db2 2075internalvar_name (struct internalvar *var)
c906108c
SS
2076{
2077 return var->name;
2078}
2079
4fa62494
UW
2080static struct internal_function *
2081create_internal_function (const char *name,
2082 internal_function_fn handler, void *cookie)
bc3b79fd 2083{
bc3b79fd 2084 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2085
bc3b79fd
TJB
2086 ifn->name = xstrdup (name);
2087 ifn->handler = handler;
2088 ifn->cookie = cookie;
4fa62494 2089 return ifn;
bc3b79fd
TJB
2090}
2091
2092char *
2093value_internal_function_name (struct value *val)
2094{
4fa62494
UW
2095 struct internal_function *ifn;
2096 int result;
2097
2098 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2099 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2100 gdb_assert (result);
2101
bc3b79fd
TJB
2102 return ifn->name;
2103}
2104
2105struct value *
d452c4bc
UW
2106call_internal_function (struct gdbarch *gdbarch,
2107 const struct language_defn *language,
2108 struct value *func, int argc, struct value **argv)
bc3b79fd 2109{
4fa62494
UW
2110 struct internal_function *ifn;
2111 int result;
2112
2113 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2114 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2115 gdb_assert (result);
2116
d452c4bc 2117 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2118}
2119
2120/* The 'function' command. This does nothing -- it is just a
2121 placeholder to let "help function NAME" work. This is also used as
2122 the implementation of the sub-command that is created when
2123 registering an internal function. */
2124static void
2125function_command (char *command, int from_tty)
2126{
2127 /* Do nothing. */
2128}
2129
2130/* Clean up if an internal function's command is destroyed. */
2131static void
2132function_destroyer (struct cmd_list_element *self, void *ignore)
2133{
6f937416 2134 xfree ((char *) self->name);
bc3b79fd
TJB
2135 xfree (self->doc);
2136}
2137
2138/* Add a new internal function. NAME is the name of the function; DOC
2139 is a documentation string describing the function. HANDLER is
2140 called when the function is invoked. COOKIE is an arbitrary
2141 pointer which is passed to HANDLER and is intended for "user
2142 data". */
2143void
2144add_internal_function (const char *name, const char *doc,
2145 internal_function_fn handler, void *cookie)
2146{
2147 struct cmd_list_element *cmd;
4fa62494 2148 struct internal_function *ifn;
bc3b79fd 2149 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2150
2151 ifn = create_internal_function (name, handler, cookie);
2152 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2153
2154 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2155 &functionlist);
2156 cmd->destroyer = function_destroyer;
2157}
2158
ae5a43e0
DJ
2159/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2160 prevent cycles / duplicates. */
2161
4e7a5ef5 2162void
ae5a43e0
DJ
2163preserve_one_value (struct value *value, struct objfile *objfile,
2164 htab_t copied_types)
2165{
2166 if (TYPE_OBJFILE (value->type) == objfile)
2167 value->type = copy_type_recursive (objfile, value->type, copied_types);
2168
2169 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2170 value->enclosing_type = copy_type_recursive (objfile,
2171 value->enclosing_type,
2172 copied_types);
2173}
2174
78267919
UW
2175/* Likewise for internal variable VAR. */
2176
2177static void
2178preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2179 htab_t copied_types)
2180{
2181 switch (var->kind)
2182 {
cab0c772
UW
2183 case INTERNALVAR_INTEGER:
2184 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2185 var->u.integer.type
2186 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2187 break;
2188
78267919
UW
2189 case INTERNALVAR_VALUE:
2190 preserve_one_value (var->u.value, objfile, copied_types);
2191 break;
2192 }
2193}
2194
ae5a43e0
DJ
2195/* Update the internal variables and value history when OBJFILE is
2196 discarded; we must copy the types out of the objfile. New global types
2197 will be created for every convenience variable which currently points to
2198 this objfile's types, and the convenience variables will be adjusted to
2199 use the new global types. */
c906108c
SS
2200
2201void
ae5a43e0 2202preserve_values (struct objfile *objfile)
c906108c 2203{
ae5a43e0
DJ
2204 htab_t copied_types;
2205 struct value_history_chunk *cur;
52f0bd74 2206 struct internalvar *var;
ae5a43e0 2207 int i;
c906108c 2208
ae5a43e0
DJ
2209 /* Create the hash table. We allocate on the objfile's obstack, since
2210 it is soon to be deleted. */
2211 copied_types = create_copied_types_hash (objfile);
2212
2213 for (cur = value_history_chain; cur; cur = cur->next)
2214 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2215 if (cur->values[i])
2216 preserve_one_value (cur->values[i], objfile, copied_types);
2217
2218 for (var = internalvars; var; var = var->next)
78267919 2219 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2220
4e7a5ef5 2221 preserve_python_values (objfile, copied_types);
a08702d6 2222
ae5a43e0 2223 htab_delete (copied_types);
c906108c
SS
2224}
2225
2226static void
fba45db2 2227show_convenience (char *ignore, int from_tty)
c906108c 2228{
e17c207e 2229 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2230 struct internalvar *var;
c906108c 2231 int varseen = 0;
79a45b7d 2232 struct value_print_options opts;
c906108c 2233
79a45b7d 2234 get_user_print_options (&opts);
c906108c
SS
2235 for (var = internalvars; var; var = var->next)
2236 {
c709acd1
PA
2237 volatile struct gdb_exception ex;
2238
c906108c
SS
2239 if (!varseen)
2240 {
2241 varseen = 1;
2242 }
a3f17187 2243 printf_filtered (("$%s = "), var->name);
c709acd1
PA
2244
2245 TRY_CATCH (ex, RETURN_MASK_ERROR)
2246 {
2247 struct value *val;
2248
2249 val = value_of_internalvar (gdbarch, var);
2250 value_print (val, gdb_stdout, &opts);
2251 }
2252 if (ex.reason < 0)
2253 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
a3f17187 2254 printf_filtered (("\n"));
c906108c
SS
2255 }
2256 if (!varseen)
f47f77df
DE
2257 {
2258 /* This text does not mention convenience functions on purpose.
2259 The user can't create them except via Python, and if Python support
2260 is installed this message will never be printed ($_streq will
2261 exist). */
2262 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2263 "Convenience variables have "
2264 "names starting with \"$\";\n"
2265 "use \"set\" as in \"set "
2266 "$foo = 5\" to define them.\n"));
2267 }
c906108c
SS
2268}
2269\f
2270/* Extract a value as a C number (either long or double).
2271 Knows how to convert fixed values to double, or
2272 floating values to long.
2273 Does not deallocate the value. */
2274
2275LONGEST
f23631e4 2276value_as_long (struct value *val)
c906108c
SS
2277{
2278 /* This coerces arrays and functions, which is necessary (e.g.
2279 in disassemble_command). It also dereferences references, which
2280 I suspect is the most logical thing to do. */
994b9211 2281 val = coerce_array (val);
0fd88904 2282 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2283}
2284
2285DOUBLEST
f23631e4 2286value_as_double (struct value *val)
c906108c
SS
2287{
2288 DOUBLEST foo;
2289 int inv;
c5aa993b 2290
0fd88904 2291 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 2292 if (inv)
8a3fe4f8 2293 error (_("Invalid floating value found in program."));
c906108c
SS
2294 return foo;
2295}
4ef30785 2296
581e13c1 2297/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2298 Note that val's type may not actually be a pointer; value_as_long
2299 handles all the cases. */
c906108c 2300CORE_ADDR
f23631e4 2301value_as_address (struct value *val)
c906108c 2302{
50810684
UW
2303 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2304
c906108c
SS
2305 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2306 whether we want this to be true eventually. */
2307#if 0
bf6ae464 2308 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2309 non-address (e.g. argument to "signal", "info break", etc.), or
2310 for pointers to char, in which the low bits *are* significant. */
50810684 2311 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2312#else
f312f057
JB
2313
2314 /* There are several targets (IA-64, PowerPC, and others) which
2315 don't represent pointers to functions as simply the address of
2316 the function's entry point. For example, on the IA-64, a
2317 function pointer points to a two-word descriptor, generated by
2318 the linker, which contains the function's entry point, and the
2319 value the IA-64 "global pointer" register should have --- to
2320 support position-independent code. The linker generates
2321 descriptors only for those functions whose addresses are taken.
2322
2323 On such targets, it's difficult for GDB to convert an arbitrary
2324 function address into a function pointer; it has to either find
2325 an existing descriptor for that function, or call malloc and
2326 build its own. On some targets, it is impossible for GDB to
2327 build a descriptor at all: the descriptor must contain a jump
2328 instruction; data memory cannot be executed; and code memory
2329 cannot be modified.
2330
2331 Upon entry to this function, if VAL is a value of type `function'
2332 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2333 value_address (val) is the address of the function. This is what
f312f057
JB
2334 you'll get if you evaluate an expression like `main'. The call
2335 to COERCE_ARRAY below actually does all the usual unary
2336 conversions, which includes converting values of type `function'
2337 to `pointer to function'. This is the challenging conversion
2338 discussed above. Then, `unpack_long' will convert that pointer
2339 back into an address.
2340
2341 So, suppose the user types `disassemble foo' on an architecture
2342 with a strange function pointer representation, on which GDB
2343 cannot build its own descriptors, and suppose further that `foo'
2344 has no linker-built descriptor. The address->pointer conversion
2345 will signal an error and prevent the command from running, even
2346 though the next step would have been to convert the pointer
2347 directly back into the same address.
2348
2349 The following shortcut avoids this whole mess. If VAL is a
2350 function, just return its address directly. */
df407dfe
AC
2351 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2352 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2353 return value_address (val);
f312f057 2354
994b9211 2355 val = coerce_array (val);
fc0c74b1
AC
2356
2357 /* Some architectures (e.g. Harvard), map instruction and data
2358 addresses onto a single large unified address space. For
2359 instance: An architecture may consider a large integer in the
2360 range 0x10000000 .. 0x1000ffff to already represent a data
2361 addresses (hence not need a pointer to address conversion) while
2362 a small integer would still need to be converted integer to
2363 pointer to address. Just assume such architectures handle all
2364 integer conversions in a single function. */
2365
2366 /* JimB writes:
2367
2368 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2369 must admonish GDB hackers to make sure its behavior matches the
2370 compiler's, whenever possible.
2371
2372 In general, I think GDB should evaluate expressions the same way
2373 the compiler does. When the user copies an expression out of
2374 their source code and hands it to a `print' command, they should
2375 get the same value the compiler would have computed. Any
2376 deviation from this rule can cause major confusion and annoyance,
2377 and needs to be justified carefully. In other words, GDB doesn't
2378 really have the freedom to do these conversions in clever and
2379 useful ways.
2380
2381 AndrewC pointed out that users aren't complaining about how GDB
2382 casts integers to pointers; they are complaining that they can't
2383 take an address from a disassembly listing and give it to `x/i'.
2384 This is certainly important.
2385
79dd2d24 2386 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2387 makes it possible for GDB to "get it right" in all circumstances
2388 --- the target has complete control over how things get done, so
2389 people can Do The Right Thing for their target without breaking
2390 anyone else. The standard doesn't specify how integers get
2391 converted to pointers; usually, the ABI doesn't either, but
2392 ABI-specific code is a more reasonable place to handle it. */
2393
df407dfe
AC
2394 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2395 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
2396 && gdbarch_integer_to_address_p (gdbarch))
2397 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2398 value_contents (val));
fc0c74b1 2399
0fd88904 2400 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2401#endif
2402}
2403\f
2404/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2405 as a long, or as a double, assuming the raw data is described
2406 by type TYPE. Knows how to convert different sizes of values
2407 and can convert between fixed and floating point. We don't assume
2408 any alignment for the raw data. Return value is in host byte order.
2409
2410 If you want functions and arrays to be coerced to pointers, and
2411 references to be dereferenced, call value_as_long() instead.
2412
2413 C++: It is assumed that the front-end has taken care of
2414 all matters concerning pointers to members. A pointer
2415 to member which reaches here is considered to be equivalent
2416 to an INT (or some size). After all, it is only an offset. */
2417
2418LONGEST
fc1a4b47 2419unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2420{
e17a4113 2421 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2422 enum type_code code = TYPE_CODE (type);
2423 int len = TYPE_LENGTH (type);
2424 int nosign = TYPE_UNSIGNED (type);
c906108c 2425
c906108c
SS
2426 switch (code)
2427 {
2428 case TYPE_CODE_TYPEDEF:
2429 return unpack_long (check_typedef (type), valaddr);
2430 case TYPE_CODE_ENUM:
4f2aea11 2431 case TYPE_CODE_FLAGS:
c906108c
SS
2432 case TYPE_CODE_BOOL:
2433 case TYPE_CODE_INT:
2434 case TYPE_CODE_CHAR:
2435 case TYPE_CODE_RANGE:
0d5de010 2436 case TYPE_CODE_MEMBERPTR:
c906108c 2437 if (nosign)
e17a4113 2438 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2439 else
e17a4113 2440 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2441
2442 case TYPE_CODE_FLT:
96d2f608 2443 return extract_typed_floating (valaddr, type);
c906108c 2444
4ef30785
TJB
2445 case TYPE_CODE_DECFLOAT:
2446 /* libdecnumber has a function to convert from decimal to integer, but
2447 it doesn't work when the decimal number has a fractional part. */
e17a4113 2448 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 2449
c906108c
SS
2450 case TYPE_CODE_PTR:
2451 case TYPE_CODE_REF:
2452 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2453 whether we want this to be true eventually. */
4478b372 2454 return extract_typed_address (valaddr, type);
c906108c 2455
c906108c 2456 default:
8a3fe4f8 2457 error (_("Value can't be converted to integer."));
c906108c 2458 }
c5aa993b 2459 return 0; /* Placate lint. */
c906108c
SS
2460}
2461
2462/* Return a double value from the specified type and address.
2463 INVP points to an int which is set to 0 for valid value,
2464 1 for invalid value (bad float format). In either case,
2465 the returned double is OK to use. Argument is in target
2466 format, result is in host format. */
2467
2468DOUBLEST
fc1a4b47 2469unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 2470{
e17a4113 2471 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
2472 enum type_code code;
2473 int len;
2474 int nosign;
2475
581e13c1 2476 *invp = 0; /* Assume valid. */
c906108c
SS
2477 CHECK_TYPEDEF (type);
2478 code = TYPE_CODE (type);
2479 len = TYPE_LENGTH (type);
2480 nosign = TYPE_UNSIGNED (type);
2481 if (code == TYPE_CODE_FLT)
2482 {
75bc7ddf
AC
2483 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2484 floating-point value was valid (using the macro
2485 INVALID_FLOAT). That test/macro have been removed.
2486
2487 It turns out that only the VAX defined this macro and then
2488 only in a non-portable way. Fixing the portability problem
2489 wouldn't help since the VAX floating-point code is also badly
2490 bit-rotten. The target needs to add definitions for the
ea06eb3d 2491 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
2492 exactly describe the target floating-point format. The
2493 problem here is that the corresponding floatformat_vax_f and
2494 floatformat_vax_d values these methods should be set to are
2495 also not defined either. Oops!
2496
2497 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
2498 definitions and the new cases for floatformat_is_valid (). */
2499
2500 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2501 {
2502 *invp = 1;
2503 return 0.0;
2504 }
2505
96d2f608 2506 return extract_typed_floating (valaddr, type);
c906108c 2507 }
4ef30785 2508 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 2509 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
2510 else if (nosign)
2511 {
2512 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 2513 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
2514 }
2515 else
2516 {
2517 /* Signed -- we are OK with unpack_long. */
2518 return unpack_long (type, valaddr);
2519 }
2520}
2521
2522/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2523 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2524 We don't assume any alignment for the raw data. Return value is in
2525 host byte order.
2526
2527 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2528 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2529
2530 C++: It is assumed that the front-end has taken care of
2531 all matters concerning pointers to members. A pointer
2532 to member which reaches here is considered to be equivalent
2533 to an INT (or some size). After all, it is only an offset. */
2534
2535CORE_ADDR
fc1a4b47 2536unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2537{
2538 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2539 whether we want this to be true eventually. */
2540 return unpack_long (type, valaddr);
2541}
4478b372 2542
c906108c 2543\f
1596cb5d 2544/* Get the value of the FIELDNO'th field (which must be static) of
2c2738a0 2545 TYPE. Return NULL if the field doesn't exist or has been
581e13c1 2546 optimized out. */
c906108c 2547
f23631e4 2548struct value *
fba45db2 2549value_static_field (struct type *type, int fieldno)
c906108c 2550{
948e66d9
DJ
2551 struct value *retval;
2552
1596cb5d 2553 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2554 {
1596cb5d 2555 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
2556 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2557 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2558 break;
2559 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2560 {
ff355380 2561 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2562 /* TYPE_FIELD_NAME (type, fieldno); */
2570f2b7 2563 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2564
948e66d9 2565 if (sym == NULL)
c906108c 2566 {
a109c7c1 2567 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2568 reported as non-debuggable symbols. */
a109c7c1
MS
2569 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2570 NULL, NULL);
2571
c906108c
SS
2572 if (!msym)
2573 return NULL;
2574 else
c5aa993b 2575 {
52e9fde8
SS
2576 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2577 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2578 }
2579 }
2580 else
515ed532 2581 retval = value_of_variable (sym, NULL);
1596cb5d 2582 break;
c906108c 2583 }
1596cb5d 2584 default:
f3574227 2585 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2586 }
2587
948e66d9 2588 return retval;
c906108c
SS
2589}
2590
4dfea560
DE
2591/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2592 You have to be careful here, since the size of the data area for the value
2593 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2594 than the old enclosing type, you have to allocate more space for the
2595 data. */
2b127877 2596
4dfea560
DE
2597void
2598set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 2599{
3e3d7139
JG
2600 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2601 val->contents =
2602 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2603
2604 val->enclosing_type = new_encl_type;
2b127877
DB
2605}
2606
c906108c
SS
2607/* Given a value ARG1 (offset by OFFSET bytes)
2608 of a struct or union type ARG_TYPE,
2609 extract and return the value of one of its (non-static) fields.
581e13c1 2610 FIELDNO says which field. */
c906108c 2611
f23631e4
AC
2612struct value *
2613value_primitive_field (struct value *arg1, int offset,
aa1ee363 2614 int fieldno, struct type *arg_type)
c906108c 2615{
f23631e4 2616 struct value *v;
52f0bd74 2617 struct type *type;
c906108c
SS
2618
2619 CHECK_TYPEDEF (arg_type);
2620 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
2621
2622 /* Call check_typedef on our type to make sure that, if TYPE
2623 is a TYPE_CODE_TYPEDEF, its length is set to the length
2624 of the target type instead of zero. However, we do not
2625 replace the typedef type by the target type, because we want
2626 to keep the typedef in order to be able to print the type
2627 description correctly. */
2628 check_typedef (type);
c906108c 2629
22c05d8a
JK
2630 if (value_optimized_out (arg1))
2631 v = allocate_optimized_out_value (type);
2632 else if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 2633 {
22c05d8a
JK
2634 /* Handle packed fields.
2635
2636 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
2637 set. If possible, arrange offset and bitpos so that we can
2638 do a single aligned read of the size of the containing type.
2639 Otherwise, adjust offset to the byte containing the first
2640 bit. Assume that the address, offset, and embedded offset
2641 are sufficiently aligned. */
22c05d8a 2642
4ea48cc1
DJ
2643 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2644 int container_bitsize = TYPE_LENGTH (type) * 8;
2645
2646 v = allocate_value_lazy (type);
df407dfe 2647 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
4ea48cc1
DJ
2648 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2649 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2650 v->bitpos = bitpos % container_bitsize;
2651 else
2652 v->bitpos = bitpos % 8;
38f12cfc
TT
2653 v->offset = (value_embedded_offset (arg1)
2654 + offset
2655 + (bitpos - v->bitpos) / 8);
40501e00 2656 set_value_parent (v, arg1);
4ea48cc1
DJ
2657 if (!value_lazy (arg1))
2658 value_fetch_lazy (v);
c906108c
SS
2659 }
2660 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2661 {
2662 /* This field is actually a base subobject, so preserve the
39d37385
PA
2663 entire object's contents for later references to virtual
2664 bases, etc. */
be335936 2665 int boffset;
a4e2ee12
DJ
2666
2667 /* Lazy register values with offsets are not supported. */
2668 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2669 value_fetch_lazy (arg1);
2670
9f9f1f31
TT
2671 /* We special case virtual inheritance here because this
2672 requires access to the contents, which we would rather avoid
2673 for references to ordinary fields of unavailable values. */
2674 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2675 boffset = baseclass_offset (arg_type, fieldno,
2676 value_contents (arg1),
2677 value_embedded_offset (arg1),
2678 value_address (arg1),
2679 arg1);
2680 else
2681 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
be335936 2682
a4e2ee12 2683 if (value_lazy (arg1))
3e3d7139 2684 v = allocate_value_lazy (value_enclosing_type (arg1));
c906108c 2685 else
3e3d7139
JG
2686 {
2687 v = allocate_value (value_enclosing_type (arg1));
39d37385
PA
2688 value_contents_copy_raw (v, 0, arg1, 0,
2689 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139
JG
2690 }
2691 v->type = type;
df407dfe 2692 v->offset = value_offset (arg1);
be335936 2693 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c
SS
2694 }
2695 else
2696 {
2697 /* Plain old data member */
2698 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
2699
2700 /* Lazy register values with offsets are not supported. */
2701 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2702 value_fetch_lazy (arg1);
2703
2704 if (value_lazy (arg1))
3e3d7139 2705 v = allocate_value_lazy (type);
c906108c 2706 else
3e3d7139
JG
2707 {
2708 v = allocate_value (type);
39d37385
PA
2709 value_contents_copy_raw (v, value_embedded_offset (v),
2710 arg1, value_embedded_offset (arg1) + offset,
2711 TYPE_LENGTH (type));
3e3d7139 2712 }
df407dfe 2713 v->offset = (value_offset (arg1) + offset
13c3b5f5 2714 + value_embedded_offset (arg1));
c906108c 2715 }
74bcbdf3 2716 set_value_component_location (v, arg1);
9ee8fc9d 2717 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 2718 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
2719 return v;
2720}
2721
2722/* Given a value ARG1 of a struct or union type,
2723 extract and return the value of one of its (non-static) fields.
581e13c1 2724 FIELDNO says which field. */
c906108c 2725
f23631e4 2726struct value *
aa1ee363 2727value_field (struct value *arg1, int fieldno)
c906108c 2728{
df407dfe 2729 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
2730}
2731
2732/* Return a non-virtual function as a value.
2733 F is the list of member functions which contains the desired method.
0478d61c
FF
2734 J is an index into F which provides the desired method.
2735
2736 We only use the symbol for its address, so be happy with either a
581e13c1 2737 full symbol or a minimal symbol. */
c906108c 2738
f23631e4 2739struct value *
3e43a32a
MS
2740value_fn_field (struct value **arg1p, struct fn_field *f,
2741 int j, struct type *type,
fba45db2 2742 int offset)
c906108c 2743{
f23631e4 2744 struct value *v;
52f0bd74 2745 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 2746 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 2747 struct symbol *sym;
0478d61c 2748 struct minimal_symbol *msym;
c906108c 2749
2570f2b7 2750 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 2751 if (sym != NULL)
0478d61c 2752 {
5ae326fa
AC
2753 msym = NULL;
2754 }
2755 else
2756 {
2757 gdb_assert (sym == NULL);
0478d61c 2758 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
2759 if (msym == NULL)
2760 return NULL;
0478d61c
FF
2761 }
2762
c906108c 2763 v = allocate_value (ftype);
0478d61c
FF
2764 if (sym)
2765 {
42ae5230 2766 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
2767 }
2768 else
2769 {
bccdca4a
UW
2770 /* The minimal symbol might point to a function descriptor;
2771 resolve it to the actual code address instead. */
2772 struct objfile *objfile = msymbol_objfile (msym);
2773 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2774
42ae5230
TT
2775 set_value_address (v,
2776 gdbarch_convert_from_func_ptr_addr
2777 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 2778 }
c906108c
SS
2779
2780 if (arg1p)
c5aa993b 2781 {
df407dfe 2782 if (type != value_type (*arg1p))
c5aa993b
JM
2783 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2784 value_addr (*arg1p)));
2785
070ad9f0 2786 /* Move the `this' pointer according to the offset.
581e13c1 2787 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
2788 }
2789
2790 return v;
2791}
2792
c906108c 2793\f
c906108c 2794
5467c6c8
PA
2795/* Helper function for both unpack_value_bits_as_long and
2796 unpack_bits_as_long. See those functions for more details on the
2797 interface; the only difference is that this function accepts either
2798 a NULL or a non-NULL ORIGINAL_VALUE. */
c906108c 2799
5467c6c8
PA
2800static int
2801unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
2802 int embedded_offset, int bitpos, int bitsize,
2803 const struct value *original_value,
2804 LONGEST *result)
c906108c 2805{
4ea48cc1 2806 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
2807 ULONGEST val;
2808 ULONGEST valmask;
c906108c 2809 int lsbcount;
4a76eae5 2810 int bytes_read;
5467c6c8 2811 int read_offset;
c906108c 2812
4a76eae5
DJ
2813 /* Read the minimum number of bytes required; there may not be
2814 enough bytes to read an entire ULONGEST. */
c906108c 2815 CHECK_TYPEDEF (field_type);
4a76eae5
DJ
2816 if (bitsize)
2817 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2818 else
2819 bytes_read = TYPE_LENGTH (field_type);
2820
5467c6c8
PA
2821 read_offset = bitpos / 8;
2822
2823 if (original_value != NULL
2824 && !value_bytes_available (original_value, embedded_offset + read_offset,
2825 bytes_read))
2826 return 0;
2827
2828 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
4a76eae5 2829 bytes_read, byte_order);
c906108c 2830
581e13c1 2831 /* Extract bits. See comment above. */
c906108c 2832
4ea48cc1 2833 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 2834 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
2835 else
2836 lsbcount = (bitpos % 8);
2837 val >>= lsbcount;
2838
2839 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 2840 If the field is signed, and is negative, then sign extend. */
c906108c
SS
2841
2842 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2843 {
2844 valmask = (((ULONGEST) 1) << bitsize) - 1;
2845 val &= valmask;
2846 if (!TYPE_UNSIGNED (field_type))
2847 {
2848 if (val & (valmask ^ (valmask >> 1)))
2849 {
2850 val |= ~valmask;
2851 }
2852 }
2853 }
5467c6c8
PA
2854
2855 *result = val;
2856 return 1;
c906108c
SS
2857}
2858
5467c6c8
PA
2859/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2860 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2861 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2862 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
2863 bits.
4ea48cc1 2864
5467c6c8
PA
2865 Returns false if the value contents are unavailable, otherwise
2866 returns true, indicating a valid value has been stored in *RESULT.
2867
2868 Extracting bits depends on endianness of the machine. Compute the
2869 number of least significant bits to discard. For big endian machines,
2870 we compute the total number of bits in the anonymous object, subtract
2871 off the bit count from the MSB of the object to the MSB of the
2872 bitfield, then the size of the bitfield, which leaves the LSB discard
2873 count. For little endian machines, the discard count is simply the
2874 number of bits from the LSB of the anonymous object to the LSB of the
2875 bitfield.
2876
2877 If the field is signed, we also do sign extension. */
2878
2879int
2880unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2881 int embedded_offset, int bitpos, int bitsize,
2882 const struct value *original_value,
2883 LONGEST *result)
2884{
2885 gdb_assert (original_value != NULL);
2886
2887 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2888 bitpos, bitsize, original_value, result);
2889
2890}
2891
2892/* Unpack a field FIELDNO of the specified TYPE, from the object at
2893 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2894 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
2895 details. */
2896
2897static int
2898unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
2899 int embedded_offset, int fieldno,
2900 const struct value *val, LONGEST *result)
4ea48cc1
DJ
2901{
2902 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2903 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2904 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2905
5467c6c8
PA
2906 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2907 bitpos, bitsize, val,
2908 result);
2909}
2910
2911/* Unpack a field FIELDNO of the specified TYPE, from the object at
2912 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2913 ORIGINAL_VALUE, which must not be NULL. See
2914 unpack_value_bits_as_long for more details. */
2915
2916int
2917unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
2918 int embedded_offset, int fieldno,
2919 const struct value *val, LONGEST *result)
2920{
2921 gdb_assert (val != NULL);
2922
2923 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
2924 fieldno, val, result);
2925}
2926
2927/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2928 object at VALADDR. See unpack_value_bits_as_long for more details.
2929 This function differs from unpack_value_field_as_long in that it
2930 operates without a struct value object. */
2931
2932LONGEST
2933unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2934{
2935 LONGEST result;
2936
2937 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
2938 return result;
2939}
2940
2941/* Return a new value with type TYPE, which is FIELDNO field of the
2942 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
2943 of VAL. If the VAL's contents required to extract the bitfield
2944 from are unavailable, the new value is correspondingly marked as
2945 unavailable. */
2946
2947struct value *
2948value_field_bitfield (struct type *type, int fieldno,
2949 const gdb_byte *valaddr,
2950 int embedded_offset, const struct value *val)
2951{
2952 LONGEST l;
2953
2954 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
2955 val, &l))
2956 {
2957 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2958 struct value *retval = allocate_value (field_type);
2959 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
2960 return retval;
2961 }
2962 else
2963 {
2964 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
2965 }
4ea48cc1
DJ
2966}
2967
c906108c
SS
2968/* Modify the value of a bitfield. ADDR points to a block of memory in
2969 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2970 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 2971 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 2972 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 2973 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
2974
2975void
50810684
UW
2976modify_field (struct type *type, gdb_byte *addr,
2977 LONGEST fieldval, int bitpos, int bitsize)
c906108c 2978{
e17a4113 2979 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
2980 ULONGEST oword;
2981 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
19f220c3
JK
2982 int bytesize;
2983
2984 /* Normalize BITPOS. */
2985 addr += bitpos / 8;
2986 bitpos %= 8;
c906108c
SS
2987
2988 /* If a negative fieldval fits in the field in question, chop
2989 off the sign extension bits. */
f4e88c8e
PH
2990 if ((~fieldval & ~(mask >> 1)) == 0)
2991 fieldval &= mask;
c906108c
SS
2992
2993 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 2994 if (0 != (fieldval & ~mask))
c906108c
SS
2995 {
2996 /* FIXME: would like to include fieldval in the message, but
c5aa993b 2997 we don't have a sprintf_longest. */
8a3fe4f8 2998 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
2999
3000 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3001 fieldval &= mask;
c906108c
SS
3002 }
3003
19f220c3
JK
3004 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3005 false valgrind reports. */
3006
3007 bytesize = (bitpos + bitsize + 7) / 8;
3008 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3009
3010 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3011 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3012 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3013
f4e88c8e 3014 oword &= ~(mask << bitpos);
c906108c
SS
3015 oword |= fieldval << bitpos;
3016
19f220c3 3017 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3018}
3019\f
14d06750 3020/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3021
14d06750
DJ
3022void
3023pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3024{
e17a4113 3025 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 3026 int len;
14d06750
DJ
3027
3028 type = check_typedef (type);
c906108c
SS
3029 len = TYPE_LENGTH (type);
3030
14d06750 3031 switch (TYPE_CODE (type))
c906108c 3032 {
c906108c
SS
3033 case TYPE_CODE_INT:
3034 case TYPE_CODE_CHAR:
3035 case TYPE_CODE_ENUM:
4f2aea11 3036 case TYPE_CODE_FLAGS:
c906108c
SS
3037 case TYPE_CODE_BOOL:
3038 case TYPE_CODE_RANGE:
0d5de010 3039 case TYPE_CODE_MEMBERPTR:
e17a4113 3040 store_signed_integer (buf, len, byte_order, num);
c906108c 3041 break;
c5aa993b 3042
c906108c
SS
3043 case TYPE_CODE_REF:
3044 case TYPE_CODE_PTR:
14d06750 3045 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3046 break;
c5aa993b 3047
c906108c 3048 default:
14d06750
DJ
3049 error (_("Unexpected type (%d) encountered for integer constant."),
3050 TYPE_CODE (type));
c906108c 3051 }
14d06750
DJ
3052}
3053
3054
595939de
PM
3055/* Pack NUM into BUF using a target format of TYPE. */
3056
70221824 3057static void
595939de
PM
3058pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3059{
3060 int len;
3061 enum bfd_endian byte_order;
3062
3063 type = check_typedef (type);
3064 len = TYPE_LENGTH (type);
3065 byte_order = gdbarch_byte_order (get_type_arch (type));
3066
3067 switch (TYPE_CODE (type))
3068 {
3069 case TYPE_CODE_INT:
3070 case TYPE_CODE_CHAR:
3071 case TYPE_CODE_ENUM:
3072 case TYPE_CODE_FLAGS:
3073 case TYPE_CODE_BOOL:
3074 case TYPE_CODE_RANGE:
3075 case TYPE_CODE_MEMBERPTR:
3076 store_unsigned_integer (buf, len, byte_order, num);
3077 break;
3078
3079 case TYPE_CODE_REF:
3080 case TYPE_CODE_PTR:
3081 store_typed_address (buf, type, (CORE_ADDR) num);
3082 break;
3083
3084 default:
3e43a32a
MS
3085 error (_("Unexpected type (%d) encountered "
3086 "for unsigned integer constant."),
595939de
PM
3087 TYPE_CODE (type));
3088 }
3089}
3090
3091
14d06750
DJ
3092/* Convert C numbers into newly allocated values. */
3093
3094struct value *
3095value_from_longest (struct type *type, LONGEST num)
3096{
3097 struct value *val = allocate_value (type);
3098
3099 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3100 return val;
3101}
3102
4478b372 3103
595939de
PM
3104/* Convert C unsigned numbers into newly allocated values. */
3105
3106struct value *
3107value_from_ulongest (struct type *type, ULONGEST num)
3108{
3109 struct value *val = allocate_value (type);
3110
3111 pack_unsigned_long (value_contents_raw (val), type, num);
3112
3113 return val;
3114}
3115
3116
4478b372
JB
3117/* Create a value representing a pointer of type TYPE to the address
3118 ADDR. */
f23631e4 3119struct value *
4478b372
JB
3120value_from_pointer (struct type *type, CORE_ADDR addr)
3121{
f23631e4 3122 struct value *val = allocate_value (type);
a109c7c1 3123
cab0c772 3124 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
4478b372
JB
3125 return val;
3126}
3127
3128
8acb6b92
TT
3129/* Create a value of type TYPE whose contents come from VALADDR, if it
3130 is non-null, and whose memory address (in the inferior) is
3131 ADDRESS. */
3132
3133struct value *
3134value_from_contents_and_address (struct type *type,
3135 const gdb_byte *valaddr,
3136 CORE_ADDR address)
3137{
41e8491f 3138 struct value *v;
a109c7c1 3139
8acb6b92 3140 if (valaddr == NULL)
41e8491f 3141 v = allocate_value_lazy (type);
8acb6b92 3142 else
41e8491f
JK
3143 {
3144 v = allocate_value (type);
3145 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
3146 }
42ae5230 3147 set_value_address (v, address);
33d502b4 3148 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
3149 return v;
3150}
3151
8a9b8146
TT
3152/* Create a value of type TYPE holding the contents CONTENTS.
3153 The new value is `not_lval'. */
3154
3155struct value *
3156value_from_contents (struct type *type, const gdb_byte *contents)
3157{
3158 struct value *result;
3159
3160 result = allocate_value (type);
3161 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3162 return result;
3163}
3164
f23631e4 3165struct value *
fba45db2 3166value_from_double (struct type *type, DOUBLEST num)
c906108c 3167{
f23631e4 3168 struct value *val = allocate_value (type);
c906108c 3169 struct type *base_type = check_typedef (type);
52f0bd74 3170 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
3171
3172 if (code == TYPE_CODE_FLT)
3173 {
990a07ab 3174 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
3175 }
3176 else
8a3fe4f8 3177 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
3178
3179 return val;
3180}
994b9211 3181
27bc4d80 3182struct value *
4ef30785 3183value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
3184{
3185 struct value *val = allocate_value (type);
27bc4d80 3186
4ef30785 3187 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
3188 return val;
3189}
3190
3bd0f5ef
MS
3191/* Extract a value from the history file. Input will be of the form
3192 $digits or $$digits. See block comment above 'write_dollar_variable'
3193 for details. */
3194
3195struct value *
3196value_from_history_ref (char *h, char **endp)
3197{
3198 int index, len;
3199
3200 if (h[0] == '$')
3201 len = 1;
3202 else
3203 return NULL;
3204
3205 if (h[1] == '$')
3206 len = 2;
3207
3208 /* Find length of numeral string. */
3209 for (; isdigit (h[len]); len++)
3210 ;
3211
3212 /* Make sure numeral string is not part of an identifier. */
3213 if (h[len] == '_' || isalpha (h[len]))
3214 return NULL;
3215
3216 /* Now collect the index value. */
3217 if (h[1] == '$')
3218 {
3219 if (len == 2)
3220 {
3221 /* For some bizarre reason, "$$" is equivalent to "$$1",
3222 rather than to "$$0" as it ought to be! */
3223 index = -1;
3224 *endp += len;
3225 }
3226 else
3227 index = -strtol (&h[2], endp, 10);
3228 }
3229 else
3230 {
3231 if (len == 1)
3232 {
3233 /* "$" is equivalent to "$0". */
3234 index = 0;
3235 *endp += len;
3236 }
3237 else
3238 index = strtol (&h[1], endp, 10);
3239 }
3240
3241 return access_value_history (index);
3242}
3243
a471c594
JK
3244struct value *
3245coerce_ref_if_computed (const struct value *arg)
3246{
3247 const struct lval_funcs *funcs;
3248
3249 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3250 return NULL;
3251
3252 if (value_lval_const (arg) != lval_computed)
3253 return NULL;
3254
3255 funcs = value_computed_funcs (arg);
3256 if (funcs->coerce_ref == NULL)
3257 return NULL;
3258
3259 return funcs->coerce_ref (arg);
3260}
3261
dfcee124
AG
3262/* Look at value.h for description. */
3263
3264struct value *
3265readjust_indirect_value_type (struct value *value, struct type *enc_type,
3266 struct type *original_type,
3267 struct value *original_value)
3268{
3269 /* Re-adjust type. */
3270 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3271
3272 /* Add embedding info. */
3273 set_value_enclosing_type (value, enc_type);
3274 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3275
3276 /* We may be pointing to an object of some derived type. */
3277 return value_full_object (value, NULL, 0, 0, 0);
3278}
3279
994b9211
AC
3280struct value *
3281coerce_ref (struct value *arg)
3282{
df407dfe 3283 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3284 struct value *retval;
dfcee124 3285 struct type *enc_type;
a109c7c1 3286
a471c594
JK
3287 retval = coerce_ref_if_computed (arg);
3288 if (retval)
3289 return retval;
3290
3291 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3292 return arg;
3293
dfcee124
AG
3294 enc_type = check_typedef (value_enclosing_type (arg));
3295 enc_type = TYPE_TARGET_TYPE (enc_type);
3296
3297 retval = value_at_lazy (enc_type,
3298 unpack_pointer (value_type (arg),
3299 value_contents (arg)));
3300 return readjust_indirect_value_type (retval, enc_type,
3301 value_type_arg_tmp, arg);
994b9211
AC
3302}
3303
3304struct value *
3305coerce_array (struct value *arg)
3306{
f3134b88
TT
3307 struct type *type;
3308
994b9211 3309 arg = coerce_ref (arg);
f3134b88
TT
3310 type = check_typedef (value_type (arg));
3311
3312 switch (TYPE_CODE (type))
3313 {
3314 case TYPE_CODE_ARRAY:
7346b668 3315 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3316 arg = value_coerce_array (arg);
3317 break;
3318 case TYPE_CODE_FUNC:
3319 arg = value_coerce_function (arg);
3320 break;
3321 }
994b9211
AC
3322 return arg;
3323}
c906108c 3324\f
c906108c 3325
bbfdfe1c
DM
3326/* Return the return value convention that will be used for the
3327 specified type. */
3328
3329enum return_value_convention
3330struct_return_convention (struct gdbarch *gdbarch,
3331 struct value *function, struct type *value_type)
3332{
3333 enum type_code code = TYPE_CODE (value_type);
3334
3335 if (code == TYPE_CODE_ERROR)
3336 error (_("Function return type unknown."));
3337
3338 /* Probe the architecture for the return-value convention. */
3339 return gdbarch_return_value (gdbarch, function, value_type,
3340 NULL, NULL, NULL);
3341}
3342
48436ce6
AC
3343/* Return true if the function returning the specified type is using
3344 the convention of returning structures in memory (passing in the
82585c72 3345 address as a hidden first parameter). */
c906108c
SS
3346
3347int
d80b854b 3348using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3349 struct value *function, struct type *value_type)
c906108c 3350{
bbfdfe1c 3351 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3352 /* A void return value is never in memory. See also corresponding
44e5158b 3353 code in "print_return_value". */
667e784f
AC
3354 return 0;
3355
bbfdfe1c 3356 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3357 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3358}
3359
42be36b3
CT
3360/* Set the initialized field in a value struct. */
3361
3362void
3363set_value_initialized (struct value *val, int status)
3364{
3365 val->initialized = status;
3366}
3367
3368/* Return the initialized field in a value struct. */
3369
3370int
3371value_initialized (struct value *val)
3372{
3373 return val->initialized;
3374}
3375
c906108c 3376void
fba45db2 3377_initialize_values (void)
c906108c 3378{
1a966eab 3379 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
3380Debugger convenience (\"$foo\") variables and functions.\n\
3381Convenience variables are created when you assign them values;\n\
3382thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 3383\n\
c906108c
SS
3384A few convenience variables are given values automatically:\n\
3385\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
3386\"$__\" holds the contents of the last address examined with \"x\"."
3387#ifdef HAVE_PYTHON
3388"\n\n\
3389Convenience functions are defined via the Python API."
3390#endif
3391 ), &showlist);
7e20dfcd 3392 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 3393
db5f229b 3394 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 3395Elements of value history around item number IDX (or last ten)."),
c906108c 3396 &showlist);
53e5f3cf
AS
3397
3398 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3399Initialize a convenience variable if necessary.\n\
3400init-if-undefined VARIABLE = EXPRESSION\n\
3401Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3402exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3403VARIABLE is already initialized."));
bc3b79fd
TJB
3404
3405 add_prefix_cmd ("function", no_class, function_command, _("\
3406Placeholder command for showing help on convenience functions."),
3407 &functionlist, "function ", 0, &cmdlist);
c906108c 3408}