]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/huge_memory.c
initramfs: clean old path before creating a hardlink
[thirdparty/kernel/stable.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
f7ccbae4 12#include <linux/sched/coredump.h>
6a3827d7 13#include <linux/sched/numa_balancing.h>
71e3aac0
AA
14#include <linux/highmem.h>
15#include <linux/hugetlb.h>
16#include <linux/mmu_notifier.h>
17#include <linux/rmap.h>
18#include <linux/swap.h>
97ae1749 19#include <linux/shrinker.h>
ba76149f 20#include <linux/mm_inline.h>
e9b61f19 21#include <linux/swapops.h>
4897c765 22#include <linux/dax.h>
ba76149f 23#include <linux/khugepaged.h>
878aee7d 24#include <linux/freezer.h>
f25748e3 25#include <linux/pfn_t.h>
a664b2d8 26#include <linux/mman.h>
3565fce3 27#include <linux/memremap.h>
325adeb5 28#include <linux/pagemap.h>
49071d43 29#include <linux/debugfs.h>
4daae3b4 30#include <linux/migrate.h>
43b5fbbd 31#include <linux/hashtable.h>
6b251fc9 32#include <linux/userfaultfd_k.h>
33c3fc71 33#include <linux/page_idle.h>
baa355fd 34#include <linux/shmem_fs.h>
6b31d595 35#include <linux/oom.h>
97ae1749 36
71e3aac0
AA
37#include <asm/tlb.h>
38#include <asm/pgalloc.h>
39#include "internal.h"
40
ba76149f 41/*
b14d595a
MD
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
ba76149f 48 */
71e3aac0 49unsigned long transparent_hugepage_flags __read_mostly =
13ece886 50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
52#endif
53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55#endif
444eb2a4 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 59
9a982250 60static struct shrinker deferred_split_shrinker;
f000565a 61
97ae1749 62static atomic_t huge_zero_refcount;
56873f43 63struct page *huge_zero_page __read_mostly;
4a6c1297 64
6fcb52a5 65static struct page *get_huge_zero_page(void)
97ae1749
KS
66{
67 struct page *zero_page;
68retry:
69 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 70 return READ_ONCE(huge_zero_page);
97ae1749
KS
71
72 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 73 HPAGE_PMD_ORDER);
d8a8e1f0
KS
74 if (!zero_page) {
75 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 76 return NULL;
d8a8e1f0
KS
77 }
78 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 79 preempt_disable();
5918d10a 80 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 81 preempt_enable();
5ddacbe9 82 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
83 goto retry;
84 }
85
86 /* We take additional reference here. It will be put back by shrinker */
87 atomic_set(&huge_zero_refcount, 2);
88 preempt_enable();
4db0c3c2 89 return READ_ONCE(huge_zero_page);
4a6c1297
KS
90}
91
6fcb52a5 92static void put_huge_zero_page(void)
4a6c1297 93{
97ae1749
KS
94 /*
95 * Counter should never go to zero here. Only shrinker can put
96 * last reference.
97 */
98 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
99}
100
6fcb52a5
AL
101struct page *mm_get_huge_zero_page(struct mm_struct *mm)
102{
103 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 return READ_ONCE(huge_zero_page);
105
106 if (!get_huge_zero_page())
107 return NULL;
108
109 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 put_huge_zero_page();
111
112 return READ_ONCE(huge_zero_page);
113}
114
115void mm_put_huge_zero_page(struct mm_struct *mm)
116{
117 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 put_huge_zero_page();
119}
120
48896466
GC
121static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 struct shrink_control *sc)
4a6c1297 123{
48896466
GC
124 /* we can free zero page only if last reference remains */
125 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
126}
97ae1749 127
48896466
GC
128static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 struct shrink_control *sc)
130{
97ae1749 131 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
132 struct page *zero_page = xchg(&huge_zero_page, NULL);
133 BUG_ON(zero_page == NULL);
5ddacbe9 134 __free_pages(zero_page, compound_order(zero_page));
48896466 135 return HPAGE_PMD_NR;
97ae1749
KS
136 }
137
138 return 0;
4a6c1297
KS
139}
140
97ae1749 141static struct shrinker huge_zero_page_shrinker = {
48896466
GC
142 .count_objects = shrink_huge_zero_page_count,
143 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
144 .seeks = DEFAULT_SEEKS,
145};
146
71e3aac0 147#ifdef CONFIG_SYSFS
71e3aac0
AA
148static ssize_t enabled_show(struct kobject *kobj,
149 struct kobj_attribute *attr, char *buf)
150{
444eb2a4
MG
151 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 return sprintf(buf, "[always] madvise never\n");
153 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 return sprintf(buf, "always [madvise] never\n");
155 else
156 return sprintf(buf, "always madvise [never]\n");
71e3aac0 157}
444eb2a4 158
71e3aac0
AA
159static ssize_t enabled_store(struct kobject *kobj,
160 struct kobj_attribute *attr,
161 const char *buf, size_t count)
162{
21440d7e 163 ssize_t ret = count;
ba76149f 164
21440d7e
DR
165 if (!memcmp("always", buf,
166 min(sizeof("always")-1, count))) {
167 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 } else if (!memcmp("madvise", buf,
170 min(sizeof("madvise")-1, count))) {
171 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 } else if (!memcmp("never", buf,
174 min(sizeof("never")-1, count))) {
175 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 } else
178 ret = -EINVAL;
ba76149f
AA
179
180 if (ret > 0) {
b46e756f 181 int err = start_stop_khugepaged();
ba76149f
AA
182 if (err)
183 ret = err;
184 }
ba76149f 185 return ret;
71e3aac0
AA
186}
187static struct kobj_attribute enabled_attr =
188 __ATTR(enabled, 0644, enabled_show, enabled_store);
189
b46e756f 190ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
191 struct kobj_attribute *attr, char *buf,
192 enum transparent_hugepage_flag flag)
193{
e27e6151
BH
194 return sprintf(buf, "%d\n",
195 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 196}
e27e6151 197
b46e756f 198ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
199 struct kobj_attribute *attr,
200 const char *buf, size_t count,
201 enum transparent_hugepage_flag flag)
202{
e27e6151
BH
203 unsigned long value;
204 int ret;
205
206 ret = kstrtoul(buf, 10, &value);
207 if (ret < 0)
208 return ret;
209 if (value > 1)
210 return -EINVAL;
211
212 if (value)
71e3aac0 213 set_bit(flag, &transparent_hugepage_flags);
e27e6151 214 else
71e3aac0 215 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
216
217 return count;
218}
219
71e3aac0
AA
220static ssize_t defrag_show(struct kobject *kobj,
221 struct kobj_attribute *attr, char *buf)
222{
444eb2a4 223 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 224 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 225 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
226 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 232}
21440d7e 233
71e3aac0
AA
234static ssize_t defrag_store(struct kobject *kobj,
235 struct kobj_attribute *attr,
236 const char *buf, size_t count)
237{
21440d7e
DR
238 if (!memcmp("always", buf,
239 min(sizeof("always")-1, count))) {
240 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
21440d7e
DR
244 } else if (!memcmp("defer+madvise", buf,
245 min(sizeof("defer+madvise")-1, count))) {
246 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
4fad7fb6
DR
250 } else if (!memcmp("defer", buf,
251 min(sizeof("defer")-1, count))) {
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
21440d7e
DR
256 } else if (!memcmp("madvise", buf,
257 min(sizeof("madvise")-1, count))) {
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 } else if (!memcmp("never", buf,
263 min(sizeof("never")-1, count))) {
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 } else
269 return -EINVAL;
270
271 return count;
71e3aac0
AA
272}
273static struct kobj_attribute defrag_attr =
274 __ATTR(defrag, 0644, defrag_show, defrag_store);
275
79da5407
KS
276static ssize_t use_zero_page_show(struct kobject *kobj,
277 struct kobj_attribute *attr, char *buf)
278{
b46e756f 279 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
280 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
281}
282static ssize_t use_zero_page_store(struct kobject *kobj,
283 struct kobj_attribute *attr, const char *buf, size_t count)
284{
b46e756f 285 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
286 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
287}
288static struct kobj_attribute use_zero_page_attr =
289 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
290
291static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 struct kobj_attribute *attr, char *buf)
293{
294 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
295}
296static struct kobj_attribute hpage_pmd_size_attr =
297 __ATTR_RO(hpage_pmd_size);
298
71e3aac0
AA
299#ifdef CONFIG_DEBUG_VM
300static ssize_t debug_cow_show(struct kobject *kobj,
301 struct kobj_attribute *attr, char *buf)
302{
b46e756f 303 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
304 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
305}
306static ssize_t debug_cow_store(struct kobject *kobj,
307 struct kobj_attribute *attr,
308 const char *buf, size_t count)
309{
b46e756f 310 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312}
313static struct kobj_attribute debug_cow_attr =
314 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315#endif /* CONFIG_DEBUG_VM */
316
317static struct attribute *hugepage_attr[] = {
318 &enabled_attr.attr,
319 &defrag_attr.attr,
79da5407 320 &use_zero_page_attr.attr,
49920d28 321 &hpage_pmd_size_attr.attr,
e496cf3d 322#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
323 &shmem_enabled_attr.attr,
324#endif
71e3aac0
AA
325#ifdef CONFIG_DEBUG_VM
326 &debug_cow_attr.attr,
327#endif
328 NULL,
329};
330
8aa95a21 331static const struct attribute_group hugepage_attr_group = {
71e3aac0 332 .attrs = hugepage_attr,
ba76149f
AA
333};
334
569e5590 335static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 336{
71e3aac0
AA
337 int err;
338
569e5590
SL
339 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 341 pr_err("failed to create transparent hugepage kobject\n");
569e5590 342 return -ENOMEM;
ba76149f
AA
343 }
344
569e5590 345 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 346 if (err) {
ae3a8c1c 347 pr_err("failed to register transparent hugepage group\n");
569e5590 348 goto delete_obj;
ba76149f
AA
349 }
350
569e5590 351 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 352 if (err) {
ae3a8c1c 353 pr_err("failed to register transparent hugepage group\n");
569e5590 354 goto remove_hp_group;
ba76149f 355 }
569e5590
SL
356
357 return 0;
358
359remove_hp_group:
360 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361delete_obj:
362 kobject_put(*hugepage_kobj);
363 return err;
364}
365
366static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367{
368 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 kobject_put(hugepage_kobj);
371}
372#else
373static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374{
375 return 0;
376}
377
378static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379{
380}
381#endif /* CONFIG_SYSFS */
382
383static int __init hugepage_init(void)
384{
385 int err;
386 struct kobject *hugepage_kobj;
387
388 if (!has_transparent_hugepage()) {
389 transparent_hugepage_flags = 0;
390 return -EINVAL;
391 }
392
ff20c2e0
KS
393 /*
394 * hugepages can't be allocated by the buddy allocator
395 */
396 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397 /*
398 * we use page->mapping and page->index in second tail page
399 * as list_head: assuming THP order >= 2
400 */
401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402
569e5590
SL
403 err = hugepage_init_sysfs(&hugepage_kobj);
404 if (err)
65ebb64f 405 goto err_sysfs;
ba76149f 406
b46e756f 407 err = khugepaged_init();
ba76149f 408 if (err)
65ebb64f 409 goto err_slab;
ba76149f 410
65ebb64f
KS
411 err = register_shrinker(&huge_zero_page_shrinker);
412 if (err)
413 goto err_hzp_shrinker;
9a982250
KS
414 err = register_shrinker(&deferred_split_shrinker);
415 if (err)
416 goto err_split_shrinker;
97ae1749 417
97562cd2
RR
418 /*
419 * By default disable transparent hugepages on smaller systems,
420 * where the extra memory used could hurt more than TLB overhead
421 * is likely to save. The admin can still enable it through /sys.
422 */
79553da2 423 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 424 transparent_hugepage_flags = 0;
79553da2
KS
425 return 0;
426 }
97562cd2 427
79553da2 428 err = start_stop_khugepaged();
65ebb64f
KS
429 if (err)
430 goto err_khugepaged;
ba76149f 431
569e5590 432 return 0;
65ebb64f 433err_khugepaged:
9a982250
KS
434 unregister_shrinker(&deferred_split_shrinker);
435err_split_shrinker:
65ebb64f
KS
436 unregister_shrinker(&huge_zero_page_shrinker);
437err_hzp_shrinker:
b46e756f 438 khugepaged_destroy();
65ebb64f 439err_slab:
569e5590 440 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 441err_sysfs:
ba76149f 442 return err;
71e3aac0 443}
a64fb3cd 444subsys_initcall(hugepage_init);
71e3aac0
AA
445
446static int __init setup_transparent_hugepage(char *str)
447{
448 int ret = 0;
449 if (!str)
450 goto out;
451 if (!strcmp(str, "always")) {
452 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 &transparent_hugepage_flags);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 &transparent_hugepage_flags);
456 ret = 1;
457 } else if (!strcmp(str, "madvise")) {
458 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 &transparent_hugepage_flags);
460 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 &transparent_hugepage_flags);
462 ret = 1;
463 } else if (!strcmp(str, "never")) {
464 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 &transparent_hugepage_flags);
466 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 &transparent_hugepage_flags);
468 ret = 1;
469 }
470out:
471 if (!ret)
ae3a8c1c 472 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
473 return ret;
474}
475__setup("transparent_hugepage=", setup_transparent_hugepage);
476
f55e1014 477pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 478{
f55e1014 479 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
480 pmd = pmd_mkwrite(pmd);
481 return pmd;
482}
483
9a982250
KS
484static inline struct list_head *page_deferred_list(struct page *page)
485{
fa3015b7
MW
486 /* ->lru in the tail pages is occupied by compound_head. */
487 return &page[2].deferred_list;
9a982250
KS
488}
489
490void prep_transhuge_page(struct page *page)
491{
492 /*
493 * we use page->mapping and page->indexlru in second tail page
494 * as list_head: assuming THP order >= 2
495 */
9a982250
KS
496
497 INIT_LIST_HEAD(page_deferred_list(page));
498 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
499}
500
74d2fad1
TK
501unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
502 loff_t off, unsigned long flags, unsigned long size)
503{
504 unsigned long addr;
505 loff_t off_end = off + len;
506 loff_t off_align = round_up(off, size);
507 unsigned long len_pad;
508
509 if (off_end <= off_align || (off_end - off_align) < size)
510 return 0;
511
512 len_pad = len + size;
513 if (len_pad < len || (off + len_pad) < off)
514 return 0;
515
516 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
517 off >> PAGE_SHIFT, flags);
518 if (IS_ERR_VALUE(addr))
519 return 0;
520
521 addr += (off - addr) & (size - 1);
522 return addr;
523}
524
525unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
526 unsigned long len, unsigned long pgoff, unsigned long flags)
527{
528 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
529
530 if (addr)
531 goto out;
532 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
533 goto out;
534
535 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
536 if (addr)
537 return addr;
538
539 out:
540 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
541}
542EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
543
2b740303
SJ
544static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
545 struct page *page, gfp_t gfp)
71e3aac0 546{
82b0f8c3 547 struct vm_area_struct *vma = vmf->vma;
00501b53 548 struct mem_cgroup *memcg;
71e3aac0 549 pgtable_t pgtable;
82b0f8c3 550 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 551 vm_fault_t ret = 0;
71e3aac0 552
309381fe 553 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 554
2cf85583 555 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
556 put_page(page);
557 count_vm_event(THP_FAULT_FALLBACK);
558 return VM_FAULT_FALLBACK;
559 }
00501b53 560
bae473a4 561 pgtable = pte_alloc_one(vma->vm_mm, haddr);
00501b53 562 if (unlikely(!pgtable)) {
6b31d595
MH
563 ret = VM_FAULT_OOM;
564 goto release;
00501b53 565 }
71e3aac0 566
c79b57e4 567 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
568 /*
569 * The memory barrier inside __SetPageUptodate makes sure that
570 * clear_huge_page writes become visible before the set_pmd_at()
571 * write.
572 */
71e3aac0
AA
573 __SetPageUptodate(page);
574
82b0f8c3
JK
575 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
576 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 577 goto unlock_release;
71e3aac0
AA
578 } else {
579 pmd_t entry;
6b251fc9 580
6b31d595
MH
581 ret = check_stable_address_space(vma->vm_mm);
582 if (ret)
583 goto unlock_release;
584
6b251fc9
AA
585 /* Deliver the page fault to userland */
586 if (userfaultfd_missing(vma)) {
2b740303 587 vm_fault_t ret2;
6b251fc9 588
82b0f8c3 589 spin_unlock(vmf->ptl);
f627c2f5 590 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 591 put_page(page);
bae473a4 592 pte_free(vma->vm_mm, pgtable);
2b740303
SJ
593 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
594 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
595 return ret2;
6b251fc9
AA
596 }
597
3122359a 598 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 599 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 600 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 601 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 602 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
603 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
604 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4 605 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 606 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 607 spin_unlock(vmf->ptl);
6b251fc9 608 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
609 }
610
aa2e878e 611 return 0;
6b31d595
MH
612unlock_release:
613 spin_unlock(vmf->ptl);
614release:
615 if (pgtable)
616 pte_free(vma->vm_mm, pgtable);
617 mem_cgroup_cancel_charge(page, memcg, true);
618 put_page(page);
619 return ret;
620
71e3aac0
AA
621}
622
444eb2a4 623/*
21440d7e
DR
624 * always: directly stall for all thp allocations
625 * defer: wake kswapd and fail if not immediately available
626 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
627 * fail if not immediately available
628 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
629 * available
630 * never: never stall for any thp allocation
444eb2a4 631 */
89c83fb5 632static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma, unsigned long addr)
444eb2a4 633{
21440d7e 634 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
89c83fb5
MH
635 gfp_t this_node = 0;
636
637#ifdef CONFIG_NUMA
638 struct mempolicy *pol;
639 /*
640 * __GFP_THISNODE is used only when __GFP_DIRECT_RECLAIM is not
641 * specified, to express a general desire to stay on the current
642 * node for optimistic allocation attempts. If the defrag mode
643 * and/or madvise hint requires the direct reclaim then we prefer
644 * to fallback to other node rather than node reclaim because that
645 * can lead to excessive reclaim even though there is free memory
646 * on other nodes. We expect that NUMA preferences are specified
647 * by memory policies.
648 */
649 pol = get_vma_policy(vma, addr);
650 if (pol->mode != MPOL_BIND)
651 this_node = __GFP_THISNODE;
652 mpol_cond_put(pol);
653#endif
25160354 654
21440d7e 655 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
25160354 656 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
21440d7e 657 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
89c83fb5 658 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM | this_node;
21440d7e
DR
659 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
660 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
89c83fb5 661 __GFP_KSWAPD_RECLAIM | this_node);
21440d7e
DR
662 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
663 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
89c83fb5
MH
664 this_node);
665 return GFP_TRANSHUGE_LIGHT | this_node;
444eb2a4
MG
666}
667
c4088ebd 668/* Caller must hold page table lock. */
d295e341 669static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 670 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 671 struct page *zero_page)
fc9fe822
KS
672{
673 pmd_t entry;
7c414164
AM
674 if (!pmd_none(*pmd))
675 return false;
5918d10a 676 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 677 entry = pmd_mkhuge(entry);
12c9d70b
MW
678 if (pgtable)
679 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 680 set_pmd_at(mm, haddr, pmd, entry);
c4812909 681 mm_inc_nr_ptes(mm);
7c414164 682 return true;
fc9fe822
KS
683}
684
2b740303 685vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 686{
82b0f8c3 687 struct vm_area_struct *vma = vmf->vma;
077fcf11 688 gfp_t gfp;
71e3aac0 689 struct page *page;
82b0f8c3 690 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 691
128ec037 692 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 693 return VM_FAULT_FALLBACK;
128ec037
KS
694 if (unlikely(anon_vma_prepare(vma)))
695 return VM_FAULT_OOM;
6d50e60c 696 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 697 return VM_FAULT_OOM;
82b0f8c3 698 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 699 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
700 transparent_hugepage_use_zero_page()) {
701 pgtable_t pgtable;
702 struct page *zero_page;
703 bool set;
2b740303 704 vm_fault_t ret;
bae473a4 705 pgtable = pte_alloc_one(vma->vm_mm, haddr);
128ec037 706 if (unlikely(!pgtable))
ba76149f 707 return VM_FAULT_OOM;
6fcb52a5 708 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 709 if (unlikely(!zero_page)) {
bae473a4 710 pte_free(vma->vm_mm, pgtable);
81ab4201 711 count_vm_event(THP_FAULT_FALLBACK);
c0292554 712 return VM_FAULT_FALLBACK;
b9bbfbe3 713 }
82b0f8c3 714 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
715 ret = 0;
716 set = false;
82b0f8c3 717 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
718 ret = check_stable_address_space(vma->vm_mm);
719 if (ret) {
720 spin_unlock(vmf->ptl);
721 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
722 spin_unlock(vmf->ptl);
723 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
724 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
725 } else {
bae473a4 726 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
727 haddr, vmf->pmd, zero_page);
728 spin_unlock(vmf->ptl);
6b251fc9
AA
729 set = true;
730 }
731 } else
82b0f8c3 732 spin_unlock(vmf->ptl);
6fcb52a5 733 if (!set)
bae473a4 734 pte_free(vma->vm_mm, pgtable);
6b251fc9 735 return ret;
71e3aac0 736 }
89c83fb5
MH
737 gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
738 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, vma, haddr, numa_node_id());
128ec037
KS
739 if (unlikely(!page)) {
740 count_vm_event(THP_FAULT_FALLBACK);
c0292554 741 return VM_FAULT_FALLBACK;
128ec037 742 }
9a982250 743 prep_transhuge_page(page);
82b0f8c3 744 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
745}
746
ae18d6dc 747static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
748 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
749 pgtable_t pgtable)
5cad465d
MW
750{
751 struct mm_struct *mm = vma->vm_mm;
752 pmd_t entry;
753 spinlock_t *ptl;
754
755 ptl = pmd_lock(mm, pmd);
f25748e3
DW
756 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
757 if (pfn_t_devmap(pfn))
758 entry = pmd_mkdevmap(entry);
01871e59 759 if (write) {
f55e1014
LT
760 entry = pmd_mkyoung(pmd_mkdirty(entry));
761 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 762 }
3b6521f5
OH
763
764 if (pgtable) {
765 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 766 mm_inc_nr_ptes(mm);
3b6521f5
OH
767 }
768
01871e59
RZ
769 set_pmd_at(mm, addr, pmd, entry);
770 update_mmu_cache_pmd(vma, addr, pmd);
5cad465d 771 spin_unlock(ptl);
5cad465d
MW
772}
773
226ab561 774vm_fault_t vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 775 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
776{
777 pgprot_t pgprot = vma->vm_page_prot;
3b6521f5 778 pgtable_t pgtable = NULL;
5cad465d
MW
779 /*
780 * If we had pmd_special, we could avoid all these restrictions,
781 * but we need to be consistent with PTEs and architectures that
782 * can't support a 'special' bit.
783 */
e1fb4a08
DJ
784 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
785 !pfn_t_devmap(pfn));
5cad465d
MW
786 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
787 (VM_PFNMAP|VM_MIXEDMAP));
788 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
789
790 if (addr < vma->vm_start || addr >= vma->vm_end)
791 return VM_FAULT_SIGBUS;
308a047c 792
3b6521f5
OH
793 if (arch_needs_pgtable_deposit()) {
794 pgtable = pte_alloc_one(vma->vm_mm, addr);
795 if (!pgtable)
796 return VM_FAULT_OOM;
797 }
798
308a047c
BP
799 track_pfn_insert(vma, &pgprot, pfn);
800
3b6521f5 801 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
ae18d6dc 802 return VM_FAULT_NOPAGE;
5cad465d 803}
dee41079 804EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 805
a00cc7d9 806#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 807static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 808{
f55e1014 809 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
810 pud = pud_mkwrite(pud);
811 return pud;
812}
813
814static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
815 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
816{
817 struct mm_struct *mm = vma->vm_mm;
818 pud_t entry;
819 spinlock_t *ptl;
820
821 ptl = pud_lock(mm, pud);
822 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
823 if (pfn_t_devmap(pfn))
824 entry = pud_mkdevmap(entry);
825 if (write) {
f55e1014
LT
826 entry = pud_mkyoung(pud_mkdirty(entry));
827 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
828 }
829 set_pud_at(mm, addr, pud, entry);
830 update_mmu_cache_pud(vma, addr, pud);
831 spin_unlock(ptl);
832}
833
226ab561 834vm_fault_t vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
a00cc7d9
MW
835 pud_t *pud, pfn_t pfn, bool write)
836{
837 pgprot_t pgprot = vma->vm_page_prot;
838 /*
839 * If we had pud_special, we could avoid all these restrictions,
840 * but we need to be consistent with PTEs and architectures that
841 * can't support a 'special' bit.
842 */
62ec0d8c
DJ
843 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
844 !pfn_t_devmap(pfn));
a00cc7d9
MW
845 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
846 (VM_PFNMAP|VM_MIXEDMAP));
847 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
848
849 if (addr < vma->vm_start || addr >= vma->vm_end)
850 return VM_FAULT_SIGBUS;
851
852 track_pfn_insert(vma, &pgprot, pfn);
853
854 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
855 return VM_FAULT_NOPAGE;
856}
857EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
858#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
859
3565fce3 860static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 861 pmd_t *pmd, int flags)
3565fce3
DW
862{
863 pmd_t _pmd;
864
a8f97366
KS
865 _pmd = pmd_mkyoung(*pmd);
866 if (flags & FOLL_WRITE)
867 _pmd = pmd_mkdirty(_pmd);
3565fce3 868 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 869 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
870 update_mmu_cache_pmd(vma, addr, pmd);
871}
872
873struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 874 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
875{
876 unsigned long pfn = pmd_pfn(*pmd);
877 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
878 struct page *page;
879
880 assert_spin_locked(pmd_lockptr(mm, pmd));
881
8310d48b
KF
882 /*
883 * When we COW a devmap PMD entry, we split it into PTEs, so we should
884 * not be in this function with `flags & FOLL_COW` set.
885 */
886 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
887
f6f37321 888 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
889 return NULL;
890
891 if (pmd_present(*pmd) && pmd_devmap(*pmd))
892 /* pass */;
893 else
894 return NULL;
895
896 if (flags & FOLL_TOUCH)
a8f97366 897 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
898
899 /*
900 * device mapped pages can only be returned if the
901 * caller will manage the page reference count.
902 */
903 if (!(flags & FOLL_GET))
904 return ERR_PTR(-EEXIST);
905
906 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
907 *pgmap = get_dev_pagemap(pfn, *pgmap);
908 if (!*pgmap)
3565fce3
DW
909 return ERR_PTR(-EFAULT);
910 page = pfn_to_page(pfn);
911 get_page(page);
3565fce3
DW
912
913 return page;
914}
915
71e3aac0
AA
916int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
917 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
918 struct vm_area_struct *vma)
919{
c4088ebd 920 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
921 struct page *src_page;
922 pmd_t pmd;
12c9d70b 923 pgtable_t pgtable = NULL;
628d47ce 924 int ret = -ENOMEM;
71e3aac0 925
628d47ce
KS
926 /* Skip if can be re-fill on fault */
927 if (!vma_is_anonymous(vma))
928 return 0;
929
930 pgtable = pte_alloc_one(dst_mm, addr);
931 if (unlikely(!pgtable))
932 goto out;
71e3aac0 933
c4088ebd
KS
934 dst_ptl = pmd_lock(dst_mm, dst_pmd);
935 src_ptl = pmd_lockptr(src_mm, src_pmd);
936 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
937
938 ret = -EAGAIN;
939 pmd = *src_pmd;
84c3fc4e
ZY
940
941#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
942 if (unlikely(is_swap_pmd(pmd))) {
943 swp_entry_t entry = pmd_to_swp_entry(pmd);
944
945 VM_BUG_ON(!is_pmd_migration_entry(pmd));
946 if (is_write_migration_entry(entry)) {
947 make_migration_entry_read(&entry);
948 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
949 if (pmd_swp_soft_dirty(*src_pmd))
950 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
951 set_pmd_at(src_mm, addr, src_pmd, pmd);
952 }
dd8a67f9 953 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 954 mm_inc_nr_ptes(dst_mm);
dd8a67f9 955 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
956 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
957 ret = 0;
958 goto out_unlock;
959 }
960#endif
961
628d47ce 962 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
963 pte_free(dst_mm, pgtable);
964 goto out_unlock;
965 }
fc9fe822 966 /*
c4088ebd 967 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
968 * under splitting since we don't split the page itself, only pmd to
969 * a page table.
970 */
971 if (is_huge_zero_pmd(pmd)) {
5918d10a 972 struct page *zero_page;
97ae1749
KS
973 /*
974 * get_huge_zero_page() will never allocate a new page here,
975 * since we already have a zero page to copy. It just takes a
976 * reference.
977 */
6fcb52a5 978 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 979 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 980 zero_page);
fc9fe822
KS
981 ret = 0;
982 goto out_unlock;
983 }
de466bd6 984
628d47ce
KS
985 src_page = pmd_page(pmd);
986 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
987 get_page(src_page);
988 page_dup_rmap(src_page, true);
989 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 990 mm_inc_nr_ptes(dst_mm);
628d47ce 991 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
992
993 pmdp_set_wrprotect(src_mm, addr, src_pmd);
994 pmd = pmd_mkold(pmd_wrprotect(pmd));
995 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
996
997 ret = 0;
998out_unlock:
c4088ebd
KS
999 spin_unlock(src_ptl);
1000 spin_unlock(dst_ptl);
71e3aac0
AA
1001out:
1002 return ret;
1003}
1004
a00cc7d9
MW
1005#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1006static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1007 pud_t *pud, int flags)
a00cc7d9
MW
1008{
1009 pud_t _pud;
1010
a8f97366
KS
1011 _pud = pud_mkyoung(*pud);
1012 if (flags & FOLL_WRITE)
1013 _pud = pud_mkdirty(_pud);
a00cc7d9 1014 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1015 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1016 update_mmu_cache_pud(vma, addr, pud);
1017}
1018
1019struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1020 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1021{
1022 unsigned long pfn = pud_pfn(*pud);
1023 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1024 struct page *page;
1025
1026 assert_spin_locked(pud_lockptr(mm, pud));
1027
f6f37321 1028 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1029 return NULL;
1030
1031 if (pud_present(*pud) && pud_devmap(*pud))
1032 /* pass */;
1033 else
1034 return NULL;
1035
1036 if (flags & FOLL_TOUCH)
a8f97366 1037 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1038
1039 /*
1040 * device mapped pages can only be returned if the
1041 * caller will manage the page reference count.
1042 */
1043 if (!(flags & FOLL_GET))
1044 return ERR_PTR(-EEXIST);
1045
1046 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1047 *pgmap = get_dev_pagemap(pfn, *pgmap);
1048 if (!*pgmap)
a00cc7d9
MW
1049 return ERR_PTR(-EFAULT);
1050 page = pfn_to_page(pfn);
1051 get_page(page);
a00cc7d9
MW
1052
1053 return page;
1054}
1055
1056int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1057 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1058 struct vm_area_struct *vma)
1059{
1060 spinlock_t *dst_ptl, *src_ptl;
1061 pud_t pud;
1062 int ret;
1063
1064 dst_ptl = pud_lock(dst_mm, dst_pud);
1065 src_ptl = pud_lockptr(src_mm, src_pud);
1066 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1067
1068 ret = -EAGAIN;
1069 pud = *src_pud;
1070 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1071 goto out_unlock;
1072
1073 /*
1074 * When page table lock is held, the huge zero pud should not be
1075 * under splitting since we don't split the page itself, only pud to
1076 * a page table.
1077 */
1078 if (is_huge_zero_pud(pud)) {
1079 /* No huge zero pud yet */
1080 }
1081
1082 pudp_set_wrprotect(src_mm, addr, src_pud);
1083 pud = pud_mkold(pud_wrprotect(pud));
1084 set_pud_at(dst_mm, addr, dst_pud, pud);
1085
1086 ret = 0;
1087out_unlock:
1088 spin_unlock(src_ptl);
1089 spin_unlock(dst_ptl);
1090 return ret;
1091}
1092
1093void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1094{
1095 pud_t entry;
1096 unsigned long haddr;
1097 bool write = vmf->flags & FAULT_FLAG_WRITE;
1098
1099 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1100 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1101 goto unlock;
1102
1103 entry = pud_mkyoung(orig_pud);
1104 if (write)
1105 entry = pud_mkdirty(entry);
1106 haddr = vmf->address & HPAGE_PUD_MASK;
1107 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1108 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1109
1110unlock:
1111 spin_unlock(vmf->ptl);
1112}
1113#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1114
82b0f8c3 1115void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1116{
1117 pmd_t entry;
1118 unsigned long haddr;
20f664aa 1119 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1120
82b0f8c3
JK
1121 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1122 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1123 goto unlock;
1124
1125 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1126 if (write)
1127 entry = pmd_mkdirty(entry);
82b0f8c3 1128 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1129 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1130 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1131
1132unlock:
82b0f8c3 1133 spin_unlock(vmf->ptl);
a1dd450b
WD
1134}
1135
2b740303
SJ
1136static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1137 pmd_t orig_pmd, struct page *page)
71e3aac0 1138{
82b0f8c3
JK
1139 struct vm_area_struct *vma = vmf->vma;
1140 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 1141 struct mem_cgroup *memcg;
71e3aac0
AA
1142 pgtable_t pgtable;
1143 pmd_t _pmd;
2b740303
SJ
1144 int i;
1145 vm_fault_t ret = 0;
71e3aac0 1146 struct page **pages;
2ec74c3e
SG
1147 unsigned long mmun_start; /* For mmu_notifiers */
1148 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0 1149
6da2ec56
KC
1150 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1151 GFP_KERNEL);
71e3aac0
AA
1152 if (unlikely(!pages)) {
1153 ret |= VM_FAULT_OOM;
1154 goto out;
1155 }
1156
1157 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 1158 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 1159 vmf->address, page_to_nid(page));
b9bbfbe3 1160 if (unlikely(!pages[i] ||
2cf85583 1161 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
bae473a4 1162 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1163 if (pages[i])
71e3aac0 1164 put_page(pages[i]);
b9bbfbe3 1165 while (--i >= 0) {
00501b53
JW
1166 memcg = (void *)page_private(pages[i]);
1167 set_page_private(pages[i], 0);
f627c2f5
KS
1168 mem_cgroup_cancel_charge(pages[i], memcg,
1169 false);
b9bbfbe3
AA
1170 put_page(pages[i]);
1171 }
71e3aac0
AA
1172 kfree(pages);
1173 ret |= VM_FAULT_OOM;
1174 goto out;
1175 }
00501b53 1176 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1177 }
1178
1179 for (i = 0; i < HPAGE_PMD_NR; i++) {
1180 copy_user_highpage(pages[i], page + i,
0089e485 1181 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1182 __SetPageUptodate(pages[i]);
1183 cond_resched();
1184 }
1185
2ec74c3e
SG
1186 mmun_start = haddr;
1187 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1188 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1189
82b0f8c3
JK
1190 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1191 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 1192 goto out_free_pages;
309381fe 1193 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1194
0f10851e
JG
1195 /*
1196 * Leave pmd empty until pte is filled note we must notify here as
1197 * concurrent CPU thread might write to new page before the call to
1198 * mmu_notifier_invalidate_range_end() happens which can lead to a
1199 * device seeing memory write in different order than CPU.
1200 *
ad56b738 1201 * See Documentation/vm/mmu_notifier.rst
0f10851e 1202 */
82b0f8c3 1203 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0 1204
82b0f8c3 1205 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 1206 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1207
1208 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1209 pte_t entry;
71e3aac0
AA
1210 entry = mk_pte(pages[i], vma->vm_page_prot);
1211 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1212 memcg = (void *)page_private(pages[i]);
1213 set_page_private(pages[i], 0);
82b0f8c3 1214 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 1215 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1216 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
1217 vmf->pte = pte_offset_map(&_pmd, haddr);
1218 VM_BUG_ON(!pte_none(*vmf->pte));
1219 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1220 pte_unmap(vmf->pte);
71e3aac0
AA
1221 }
1222 kfree(pages);
1223
71e3aac0 1224 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 1225 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 1226 page_remove_rmap(page, true);
82b0f8c3 1227 spin_unlock(vmf->ptl);
71e3aac0 1228
4645b9fe
JG
1229 /*
1230 * No need to double call mmu_notifier->invalidate_range() callback as
1231 * the above pmdp_huge_clear_flush_notify() did already call it.
1232 */
1233 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1234 mmun_end);
2ec74c3e 1235
71e3aac0
AA
1236 ret |= VM_FAULT_WRITE;
1237 put_page(page);
1238
1239out:
1240 return ret;
1241
1242out_free_pages:
82b0f8c3 1243 spin_unlock(vmf->ptl);
bae473a4 1244 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
b9bbfbe3 1245 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1246 memcg = (void *)page_private(pages[i]);
1247 set_page_private(pages[i], 0);
f627c2f5 1248 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1249 put_page(pages[i]);
b9bbfbe3 1250 }
71e3aac0
AA
1251 kfree(pages);
1252 goto out;
1253}
1254
2b740303 1255vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1256{
82b0f8c3 1257 struct vm_area_struct *vma = vmf->vma;
93b4796d 1258 struct page *page = NULL, *new_page;
00501b53 1259 struct mem_cgroup *memcg;
82b0f8c3 1260 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2ec74c3e
SG
1261 unsigned long mmun_start; /* For mmu_notifiers */
1262 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1263 gfp_t huge_gfp; /* for allocation and charge */
2b740303 1264 vm_fault_t ret = 0;
71e3aac0 1265
82b0f8c3 1266 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1267 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1268 if (is_huge_zero_pmd(orig_pmd))
1269 goto alloc;
82b0f8c3
JK
1270 spin_lock(vmf->ptl);
1271 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1272 goto out_unlock;
1273
1274 page = pmd_page(orig_pmd);
309381fe 1275 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1276 /*
1277 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1278 * part.
1f25fe20 1279 */
ba3c4ce6
HY
1280 if (!trylock_page(page)) {
1281 get_page(page);
1282 spin_unlock(vmf->ptl);
1283 lock_page(page);
1284 spin_lock(vmf->ptl);
1285 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1286 unlock_page(page);
1287 put_page(page);
1288 goto out_unlock;
1289 }
1290 put_page(page);
1291 }
1292 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1293 pmd_t entry;
1294 entry = pmd_mkyoung(orig_pmd);
f55e1014 1295 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3
JK
1296 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1297 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0 1298 ret |= VM_FAULT_WRITE;
ba3c4ce6 1299 unlock_page(page);
71e3aac0
AA
1300 goto out_unlock;
1301 }
ba3c4ce6 1302 unlock_page(page);
ddc58f27 1303 get_page(page);
82b0f8c3 1304 spin_unlock(vmf->ptl);
93b4796d 1305alloc:
71e3aac0 1306 if (transparent_hugepage_enabled(vma) &&
077fcf11 1307 !transparent_hugepage_debug_cow()) {
89c83fb5
MH
1308 huge_gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
1309 new_page = alloc_pages_vma(huge_gfp, HPAGE_PMD_ORDER, vma,
1310 haddr, numa_node_id());
077fcf11 1311 } else
71e3aac0
AA
1312 new_page = NULL;
1313
9a982250
KS
1314 if (likely(new_page)) {
1315 prep_transhuge_page(new_page);
1316 } else {
eecc1e42 1317 if (!page) {
82b0f8c3 1318 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1319 ret |= VM_FAULT_FALLBACK;
93b4796d 1320 } else {
82b0f8c3 1321 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1322 if (ret & VM_FAULT_OOM) {
82b0f8c3 1323 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1324 ret |= VM_FAULT_FALLBACK;
1325 }
ddc58f27 1326 put_page(page);
93b4796d 1327 }
17766dde 1328 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1329 goto out;
1330 }
1331
2cf85583 1332 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
2a70f6a7 1333 huge_gfp, &memcg, true))) {
b9bbfbe3 1334 put_page(new_page);
82b0f8c3 1335 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1336 if (page)
ddc58f27 1337 put_page(page);
9845cbbd 1338 ret |= VM_FAULT_FALLBACK;
17766dde 1339 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1340 goto out;
1341 }
1342
17766dde
DR
1343 count_vm_event(THP_FAULT_ALLOC);
1344
eecc1e42 1345 if (!page)
c79b57e4 1346 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
93b4796d 1347 else
c9f4cd71
HY
1348 copy_user_huge_page(new_page, page, vmf->address,
1349 vma, HPAGE_PMD_NR);
71e3aac0
AA
1350 __SetPageUptodate(new_page);
1351
2ec74c3e
SG
1352 mmun_start = haddr;
1353 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1354 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1355
82b0f8c3 1356 spin_lock(vmf->ptl);
93b4796d 1357 if (page)
ddc58f27 1358 put_page(page);
82b0f8c3
JK
1359 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1360 spin_unlock(vmf->ptl);
f627c2f5 1361 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1362 put_page(new_page);
2ec74c3e 1363 goto out_mn;
b9bbfbe3 1364 } else {
71e3aac0 1365 pmd_t entry;
3122359a 1366 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 1367 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3 1368 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1369 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1370 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1371 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1372 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1373 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1374 if (!page) {
bae473a4 1375 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1376 } else {
309381fe 1377 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1378 page_remove_rmap(page, true);
93b4796d
KS
1379 put_page(page);
1380 }
71e3aac0
AA
1381 ret |= VM_FAULT_WRITE;
1382 }
82b0f8c3 1383 spin_unlock(vmf->ptl);
2ec74c3e 1384out_mn:
4645b9fe
JG
1385 /*
1386 * No need to double call mmu_notifier->invalidate_range() callback as
1387 * the above pmdp_huge_clear_flush_notify() did already call it.
1388 */
1389 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1390 mmun_end);
71e3aac0
AA
1391out:
1392 return ret;
2ec74c3e 1393out_unlock:
82b0f8c3 1394 spin_unlock(vmf->ptl);
2ec74c3e 1395 return ret;
71e3aac0
AA
1396}
1397
8310d48b
KF
1398/*
1399 * FOLL_FORCE can write to even unwritable pmd's, but only
1400 * after we've gone through a COW cycle and they are dirty.
1401 */
1402static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1403{
f6f37321 1404 return pmd_write(pmd) ||
8310d48b
KF
1405 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1406}
1407
b676b293 1408struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1409 unsigned long addr,
1410 pmd_t *pmd,
1411 unsigned int flags)
1412{
b676b293 1413 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1414 struct page *page = NULL;
1415
c4088ebd 1416 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1417
8310d48b 1418 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1419 goto out;
1420
85facf25
KS
1421 /* Avoid dumping huge zero page */
1422 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1423 return ERR_PTR(-EFAULT);
1424
2b4847e7 1425 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1426 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1427 goto out;
1428
71e3aac0 1429 page = pmd_page(*pmd);
ca120cf6 1430 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3 1431 if (flags & FOLL_TOUCH)
a8f97366 1432 touch_pmd(vma, addr, pmd, flags);
de60f5f1 1433 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1434 /*
1435 * We don't mlock() pte-mapped THPs. This way we can avoid
1436 * leaking mlocked pages into non-VM_LOCKED VMAs.
1437 *
9a73f61b
KS
1438 * For anon THP:
1439 *
e90309c9
KS
1440 * In most cases the pmd is the only mapping of the page as we
1441 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1442 * writable private mappings in populate_vma_page_range().
1443 *
1444 * The only scenario when we have the page shared here is if we
1445 * mlocking read-only mapping shared over fork(). We skip
1446 * mlocking such pages.
9a73f61b
KS
1447 *
1448 * For file THP:
1449 *
1450 * We can expect PageDoubleMap() to be stable under page lock:
1451 * for file pages we set it in page_add_file_rmap(), which
1452 * requires page to be locked.
e90309c9 1453 */
9a73f61b
KS
1454
1455 if (PageAnon(page) && compound_mapcount(page) != 1)
1456 goto skip_mlock;
1457 if (PageDoubleMap(page) || !page->mapping)
1458 goto skip_mlock;
1459 if (!trylock_page(page))
1460 goto skip_mlock;
1461 lru_add_drain();
1462 if (page->mapping && !PageDoubleMap(page))
1463 mlock_vma_page(page);
1464 unlock_page(page);
b676b293 1465 }
9a73f61b 1466skip_mlock:
71e3aac0 1467 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1468 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1469 if (flags & FOLL_GET)
ddc58f27 1470 get_page(page);
71e3aac0
AA
1471
1472out:
1473 return page;
1474}
1475
d10e63f2 1476/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1477vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1478{
82b0f8c3 1479 struct vm_area_struct *vma = vmf->vma;
b8916634 1480 struct anon_vma *anon_vma = NULL;
b32967ff 1481 struct page *page;
82b0f8c3 1482 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
8191acbd 1483 int page_nid = -1, this_nid = numa_node_id();
90572890 1484 int target_nid, last_cpupid = -1;
8191acbd
MG
1485 bool page_locked;
1486 bool migrated = false;
b191f9b1 1487 bool was_writable;
6688cc05 1488 int flags = 0;
d10e63f2 1489
82b0f8c3
JK
1490 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1491 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1492 goto out_unlock;
1493
de466bd6
MG
1494 /*
1495 * If there are potential migrations, wait for completion and retry
1496 * without disrupting NUMA hinting information. Do not relock and
1497 * check_same as the page may no longer be mapped.
1498 */
82b0f8c3
JK
1499 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1500 page = pmd_page(*vmf->pmd);
3c226c63
MR
1501 if (!get_page_unless_zero(page))
1502 goto out_unlock;
82b0f8c3 1503 spin_unlock(vmf->ptl);
5d833062 1504 wait_on_page_locked(page);
3c226c63 1505 put_page(page);
de466bd6
MG
1506 goto out;
1507 }
1508
d10e63f2 1509 page = pmd_page(pmd);
a1a46184 1510 BUG_ON(is_huge_zero_page(page));
8191acbd 1511 page_nid = page_to_nid(page);
90572890 1512 last_cpupid = page_cpupid_last(page);
03c5a6e1 1513 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1514 if (page_nid == this_nid) {
03c5a6e1 1515 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1516 flags |= TNF_FAULT_LOCAL;
1517 }
4daae3b4 1518
bea66fbd 1519 /* See similar comment in do_numa_page for explanation */
288bc549 1520 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1521 flags |= TNF_NO_GROUP;
1522
ff9042b1
MG
1523 /*
1524 * Acquire the page lock to serialise THP migrations but avoid dropping
1525 * page_table_lock if at all possible
1526 */
b8916634
MG
1527 page_locked = trylock_page(page);
1528 target_nid = mpol_misplaced(page, vma, haddr);
1529 if (target_nid == -1) {
1530 /* If the page was locked, there are no parallel migrations */
a54a407f 1531 if (page_locked)
b8916634 1532 goto clear_pmdnuma;
2b4847e7 1533 }
4daae3b4 1534
de466bd6 1535 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1536 if (!page_locked) {
3c226c63
MR
1537 page_nid = -1;
1538 if (!get_page_unless_zero(page))
1539 goto out_unlock;
82b0f8c3 1540 spin_unlock(vmf->ptl);
b8916634 1541 wait_on_page_locked(page);
3c226c63 1542 put_page(page);
b8916634
MG
1543 goto out;
1544 }
1545
2b4847e7
MG
1546 /*
1547 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1548 * to serialises splits
1549 */
b8916634 1550 get_page(page);
82b0f8c3 1551 spin_unlock(vmf->ptl);
b8916634 1552 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1553
c69307d5 1554 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1555 spin_lock(vmf->ptl);
1556 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1557 unlock_page(page);
1558 put_page(page);
a54a407f 1559 page_nid = -1;
4daae3b4 1560 goto out_unlock;
b32967ff 1561 }
ff9042b1 1562
c3a489ca
MG
1563 /* Bail if we fail to protect against THP splits for any reason */
1564 if (unlikely(!anon_vma)) {
1565 put_page(page);
1566 page_nid = -1;
1567 goto clear_pmdnuma;
1568 }
1569
8b1b436d
PZ
1570 /*
1571 * Since we took the NUMA fault, we must have observed the !accessible
1572 * bit. Make sure all other CPUs agree with that, to avoid them
1573 * modifying the page we're about to migrate.
1574 *
1575 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1576 * inc_tlb_flush_pending().
1577 *
1578 * We are not sure a pending tlb flush here is for a huge page
1579 * mapping or not. Hence use the tlb range variant
8b1b436d 1580 */
7066f0f9 1581 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1582 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1583 /*
1584 * change_huge_pmd() released the pmd lock before
1585 * invalidating the secondary MMUs sharing the primary
1586 * MMU pagetables (with ->invalidate_range()). The
1587 * mmu_notifier_invalidate_range_end() (which
1588 * internally calls ->invalidate_range()) in
1589 * change_pmd_range() will run after us, so we can't
1590 * rely on it here and we need an explicit invalidate.
1591 */
1592 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1593 haddr + HPAGE_PMD_SIZE);
1594 }
8b1b436d 1595
a54a407f
MG
1596 /*
1597 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1598 * and access rights restored.
a54a407f 1599 */
82b0f8c3 1600 spin_unlock(vmf->ptl);
8b1b436d 1601
bae473a4 1602 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1603 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1604 if (migrated) {
1605 flags |= TNF_MIGRATED;
8191acbd 1606 page_nid = target_nid;
074c2381
MG
1607 } else
1608 flags |= TNF_MIGRATE_FAIL;
b32967ff 1609
8191acbd 1610 goto out;
b32967ff 1611clear_pmdnuma:
a54a407f 1612 BUG_ON(!PageLocked(page));
288bc549 1613 was_writable = pmd_savedwrite(pmd);
4d942466 1614 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1615 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1616 if (was_writable)
1617 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1618 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1619 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1620 unlock_page(page);
d10e63f2 1621out_unlock:
82b0f8c3 1622 spin_unlock(vmf->ptl);
b8916634
MG
1623
1624out:
1625 if (anon_vma)
1626 page_unlock_anon_vma_read(anon_vma);
1627
8191acbd 1628 if (page_nid != -1)
82b0f8c3 1629 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1630 flags);
8191acbd 1631
d10e63f2
MG
1632 return 0;
1633}
1634
319904ad
HY
1635/*
1636 * Return true if we do MADV_FREE successfully on entire pmd page.
1637 * Otherwise, return false.
1638 */
1639bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1640 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1641{
1642 spinlock_t *ptl;
1643 pmd_t orig_pmd;
1644 struct page *page;
1645 struct mm_struct *mm = tlb->mm;
319904ad 1646 bool ret = false;
b8d3c4c3 1647
07e32661
AK
1648 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1649
b6ec57f4
KS
1650 ptl = pmd_trans_huge_lock(pmd, vma);
1651 if (!ptl)
25eedabe 1652 goto out_unlocked;
b8d3c4c3
MK
1653
1654 orig_pmd = *pmd;
319904ad 1655 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1656 goto out;
b8d3c4c3 1657
84c3fc4e
ZY
1658 if (unlikely(!pmd_present(orig_pmd))) {
1659 VM_BUG_ON(thp_migration_supported() &&
1660 !is_pmd_migration_entry(orig_pmd));
1661 goto out;
1662 }
1663
b8d3c4c3
MK
1664 page = pmd_page(orig_pmd);
1665 /*
1666 * If other processes are mapping this page, we couldn't discard
1667 * the page unless they all do MADV_FREE so let's skip the page.
1668 */
1669 if (page_mapcount(page) != 1)
1670 goto out;
1671
1672 if (!trylock_page(page))
1673 goto out;
1674
1675 /*
1676 * If user want to discard part-pages of THP, split it so MADV_FREE
1677 * will deactivate only them.
1678 */
1679 if (next - addr != HPAGE_PMD_SIZE) {
1680 get_page(page);
1681 spin_unlock(ptl);
9818b8cd 1682 split_huge_page(page);
b8d3c4c3 1683 unlock_page(page);
bbf29ffc 1684 put_page(page);
b8d3c4c3
MK
1685 goto out_unlocked;
1686 }
1687
1688 if (PageDirty(page))
1689 ClearPageDirty(page);
1690 unlock_page(page);
1691
b8d3c4c3 1692 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1693 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1694 orig_pmd = pmd_mkold(orig_pmd);
1695 orig_pmd = pmd_mkclean(orig_pmd);
1696
1697 set_pmd_at(mm, addr, pmd, orig_pmd);
1698 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1699 }
802a3a92
SL
1700
1701 mark_page_lazyfree(page);
319904ad 1702 ret = true;
b8d3c4c3
MK
1703out:
1704 spin_unlock(ptl);
1705out_unlocked:
1706 return ret;
1707}
1708
953c66c2
AK
1709static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1710{
1711 pgtable_t pgtable;
1712
1713 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1714 pte_free(mm, pgtable);
c4812909 1715 mm_dec_nr_ptes(mm);
953c66c2
AK
1716}
1717
71e3aac0 1718int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1719 pmd_t *pmd, unsigned long addr)
71e3aac0 1720{
da146769 1721 pmd_t orig_pmd;
bf929152 1722 spinlock_t *ptl;
71e3aac0 1723
07e32661
AK
1724 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1725
b6ec57f4
KS
1726 ptl = __pmd_trans_huge_lock(pmd, vma);
1727 if (!ptl)
da146769
KS
1728 return 0;
1729 /*
1730 * For architectures like ppc64 we look at deposited pgtable
1731 * when calling pmdp_huge_get_and_clear. So do the
1732 * pgtable_trans_huge_withdraw after finishing pmdp related
1733 * operations.
1734 */
1735 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1736 tlb->fullmm);
1737 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1738 if (vma_is_dax(vma)) {
3b6521f5
OH
1739 if (arch_needs_pgtable_deposit())
1740 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1741 spin_unlock(ptl);
1742 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1743 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1744 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1745 zap_deposited_table(tlb->mm, pmd);
da146769 1746 spin_unlock(ptl);
c0f2e176 1747 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1748 } else {
616b8371
ZY
1749 struct page *page = NULL;
1750 int flush_needed = 1;
1751
1752 if (pmd_present(orig_pmd)) {
1753 page = pmd_page(orig_pmd);
1754 page_remove_rmap(page, true);
1755 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1756 VM_BUG_ON_PAGE(!PageHead(page), page);
1757 } else if (thp_migration_supported()) {
1758 swp_entry_t entry;
1759
1760 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1761 entry = pmd_to_swp_entry(orig_pmd);
1762 page = pfn_to_page(swp_offset(entry));
1763 flush_needed = 0;
1764 } else
1765 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1766
b5072380 1767 if (PageAnon(page)) {
c14a6eb4 1768 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1769 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1770 } else {
953c66c2
AK
1771 if (arch_needs_pgtable_deposit())
1772 zap_deposited_table(tlb->mm, pmd);
fadae295 1773 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1774 }
616b8371 1775
da146769 1776 spin_unlock(ptl);
616b8371
ZY
1777 if (flush_needed)
1778 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1779 }
da146769 1780 return 1;
71e3aac0
AA
1781}
1782
1dd38b6c
AK
1783#ifndef pmd_move_must_withdraw
1784static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1785 spinlock_t *old_pmd_ptl,
1786 struct vm_area_struct *vma)
1787{
1788 /*
1789 * With split pmd lock we also need to move preallocated
1790 * PTE page table if new_pmd is on different PMD page table.
1791 *
1792 * We also don't deposit and withdraw tables for file pages.
1793 */
1794 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1795}
1796#endif
1797
ab6e3d09
NH
1798static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1799{
1800#ifdef CONFIG_MEM_SOFT_DIRTY
1801 if (unlikely(is_pmd_migration_entry(pmd)))
1802 pmd = pmd_swp_mksoft_dirty(pmd);
1803 else if (pmd_present(pmd))
1804 pmd = pmd_mksoft_dirty(pmd);
1805#endif
1806 return pmd;
1807}
1808
bf8616d5 1809bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1810 unsigned long new_addr, unsigned long old_end,
eb66ae03 1811 pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1812{
bf929152 1813 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1814 pmd_t pmd;
37a1c49a 1815 struct mm_struct *mm = vma->vm_mm;
5d190420 1816 bool force_flush = false;
37a1c49a
AA
1817
1818 if ((old_addr & ~HPAGE_PMD_MASK) ||
1819 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1820 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1821 return false;
37a1c49a
AA
1822
1823 /*
1824 * The destination pmd shouldn't be established, free_pgtables()
1825 * should have release it.
1826 */
1827 if (WARN_ON(!pmd_none(*new_pmd))) {
1828 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1829 return false;
37a1c49a
AA
1830 }
1831
bf929152
KS
1832 /*
1833 * We don't have to worry about the ordering of src and dst
1834 * ptlocks because exclusive mmap_sem prevents deadlock.
1835 */
b6ec57f4
KS
1836 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1837 if (old_ptl) {
bf929152
KS
1838 new_ptl = pmd_lockptr(mm, new_pmd);
1839 if (new_ptl != old_ptl)
1840 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1841 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1842 if (pmd_present(pmd))
a2ce2666 1843 force_flush = true;
025c5b24 1844 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1845
1dd38b6c 1846 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1847 pgtable_t pgtable;
3592806c
KS
1848 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1849 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1850 }
ab6e3d09
NH
1851 pmd = move_soft_dirty_pmd(pmd);
1852 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1853 if (force_flush)
1854 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1855 if (new_ptl != old_ptl)
1856 spin_unlock(new_ptl);
bf929152 1857 spin_unlock(old_ptl);
4b471e88 1858 return true;
37a1c49a 1859 }
4b471e88 1860 return false;
37a1c49a
AA
1861}
1862
f123d74a
MG
1863/*
1864 * Returns
1865 * - 0 if PMD could not be locked
1866 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1867 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1868 */
cd7548ab 1869int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1870 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1871{
1872 struct mm_struct *mm = vma->vm_mm;
bf929152 1873 spinlock_t *ptl;
0a85e51d
KS
1874 pmd_t entry;
1875 bool preserve_write;
1876 int ret;
cd7548ab 1877
b6ec57f4 1878 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1879 if (!ptl)
1880 return 0;
e944fd67 1881
0a85e51d
KS
1882 preserve_write = prot_numa && pmd_write(*pmd);
1883 ret = 1;
e944fd67 1884
84c3fc4e
ZY
1885#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1886 if (is_swap_pmd(*pmd)) {
1887 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1888
1889 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1890 if (is_write_migration_entry(entry)) {
1891 pmd_t newpmd;
1892 /*
1893 * A protection check is difficult so
1894 * just be safe and disable write
1895 */
1896 make_migration_entry_read(&entry);
1897 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1898 if (pmd_swp_soft_dirty(*pmd))
1899 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1900 set_pmd_at(mm, addr, pmd, newpmd);
1901 }
1902 goto unlock;
1903 }
1904#endif
1905
0a85e51d
KS
1906 /*
1907 * Avoid trapping faults against the zero page. The read-only
1908 * data is likely to be read-cached on the local CPU and
1909 * local/remote hits to the zero page are not interesting.
1910 */
1911 if (prot_numa && is_huge_zero_pmd(*pmd))
1912 goto unlock;
025c5b24 1913
0a85e51d
KS
1914 if (prot_numa && pmd_protnone(*pmd))
1915 goto unlock;
1916
ced10803
KS
1917 /*
1918 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1919 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1920 * which is also under down_read(mmap_sem):
1921 *
1922 * CPU0: CPU1:
1923 * change_huge_pmd(prot_numa=1)
1924 * pmdp_huge_get_and_clear_notify()
1925 * madvise_dontneed()
1926 * zap_pmd_range()
1927 * pmd_trans_huge(*pmd) == 0 (without ptl)
1928 * // skip the pmd
1929 * set_pmd_at();
1930 * // pmd is re-established
1931 *
1932 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1933 * which may break userspace.
1934 *
1935 * pmdp_invalidate() is required to make sure we don't miss
1936 * dirty/young flags set by hardware.
1937 */
a3cf988f 1938 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1939
0a85e51d
KS
1940 entry = pmd_modify(entry, newprot);
1941 if (preserve_write)
1942 entry = pmd_mk_savedwrite(entry);
1943 ret = HPAGE_PMD_NR;
1944 set_pmd_at(mm, addr, pmd, entry);
1945 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1946unlock:
1947 spin_unlock(ptl);
025c5b24
NH
1948 return ret;
1949}
1950
1951/*
8f19b0c0 1952 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1953 *
8f19b0c0
HY
1954 * Note that if it returns page table lock pointer, this routine returns without
1955 * unlocking page table lock. So callers must unlock it.
025c5b24 1956 */
b6ec57f4 1957spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1958{
b6ec57f4
KS
1959 spinlock_t *ptl;
1960 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1961 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1962 pmd_devmap(*pmd)))
b6ec57f4
KS
1963 return ptl;
1964 spin_unlock(ptl);
1965 return NULL;
cd7548ab
JW
1966}
1967
a00cc7d9
MW
1968/*
1969 * Returns true if a given pud maps a thp, false otherwise.
1970 *
1971 * Note that if it returns true, this routine returns without unlocking page
1972 * table lock. So callers must unlock it.
1973 */
1974spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1975{
1976 spinlock_t *ptl;
1977
1978 ptl = pud_lock(vma->vm_mm, pud);
1979 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1980 return ptl;
1981 spin_unlock(ptl);
1982 return NULL;
1983}
1984
1985#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1986int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1987 pud_t *pud, unsigned long addr)
1988{
1989 pud_t orig_pud;
1990 spinlock_t *ptl;
1991
1992 ptl = __pud_trans_huge_lock(pud, vma);
1993 if (!ptl)
1994 return 0;
1995 /*
1996 * For architectures like ppc64 we look at deposited pgtable
1997 * when calling pudp_huge_get_and_clear. So do the
1998 * pgtable_trans_huge_withdraw after finishing pudp related
1999 * operations.
2000 */
2001 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
2002 tlb->fullmm);
2003 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2004 if (vma_is_dax(vma)) {
2005 spin_unlock(ptl);
2006 /* No zero page support yet */
2007 } else {
2008 /* No support for anonymous PUD pages yet */
2009 BUG();
2010 }
2011 return 1;
2012}
2013
2014static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2015 unsigned long haddr)
2016{
2017 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2018 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2019 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2020 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2021
ce9311cf 2022 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
2023
2024 pudp_huge_clear_flush_notify(vma, haddr, pud);
2025}
2026
2027void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2028 unsigned long address)
2029{
2030 spinlock_t *ptl;
2031 struct mm_struct *mm = vma->vm_mm;
2032 unsigned long haddr = address & HPAGE_PUD_MASK;
2033
2034 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2035 ptl = pud_lock(mm, pud);
2036 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2037 goto out;
2038 __split_huge_pud_locked(vma, pud, haddr);
2039
2040out:
2041 spin_unlock(ptl);
4645b9fe
JG
2042 /*
2043 * No need to double call mmu_notifier->invalidate_range() callback as
2044 * the above pudp_huge_clear_flush_notify() did already call it.
2045 */
2046 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2047 HPAGE_PUD_SIZE);
a00cc7d9
MW
2048}
2049#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2050
eef1b3ba
KS
2051static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2052 unsigned long haddr, pmd_t *pmd)
2053{
2054 struct mm_struct *mm = vma->vm_mm;
2055 pgtable_t pgtable;
2056 pmd_t _pmd;
2057 int i;
2058
0f10851e
JG
2059 /*
2060 * Leave pmd empty until pte is filled note that it is fine to delay
2061 * notification until mmu_notifier_invalidate_range_end() as we are
2062 * replacing a zero pmd write protected page with a zero pte write
2063 * protected page.
2064 *
ad56b738 2065 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2066 */
2067 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2068
2069 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2070 pmd_populate(mm, &_pmd, pgtable);
2071
2072 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2073 pte_t *pte, entry;
2074 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2075 entry = pte_mkspecial(entry);
2076 pte = pte_offset_map(&_pmd, haddr);
2077 VM_BUG_ON(!pte_none(*pte));
2078 set_pte_at(mm, haddr, pte, entry);
2079 pte_unmap(pte);
2080 }
2081 smp_wmb(); /* make pte visible before pmd */
2082 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2083}
2084
2085static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2086 unsigned long haddr, bool freeze)
eef1b3ba
KS
2087{
2088 struct mm_struct *mm = vma->vm_mm;
2089 struct page *page;
2090 pgtable_t pgtable;
423ac9af 2091 pmd_t old_pmd, _pmd;
a3cf988f 2092 bool young, write, soft_dirty, pmd_migration = false;
2ac015e2 2093 unsigned long addr;
eef1b3ba
KS
2094 int i;
2095
2096 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2097 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2098 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2099 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2100 && !pmd_devmap(*pmd));
eef1b3ba
KS
2101
2102 count_vm_event(THP_SPLIT_PMD);
2103
d21b9e57
KS
2104 if (!vma_is_anonymous(vma)) {
2105 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2106 /*
2107 * We are going to unmap this huge page. So
2108 * just go ahead and zap it
2109 */
2110 if (arch_needs_pgtable_deposit())
2111 zap_deposited_table(mm, pmd);
d21b9e57
KS
2112 if (vma_is_dax(vma))
2113 return;
2114 page = pmd_page(_pmd);
e1f1b157
HD
2115 if (!PageDirty(page) && pmd_dirty(_pmd))
2116 set_page_dirty(page);
d21b9e57
KS
2117 if (!PageReferenced(page) && pmd_young(_pmd))
2118 SetPageReferenced(page);
2119 page_remove_rmap(page, true);
2120 put_page(page);
fadae295 2121 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba
KS
2122 return;
2123 } else if (is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2124 /*
2125 * FIXME: Do we want to invalidate secondary mmu by calling
2126 * mmu_notifier_invalidate_range() see comments below inside
2127 * __split_huge_pmd() ?
2128 *
2129 * We are going from a zero huge page write protected to zero
2130 * small page also write protected so it does not seems useful
2131 * to invalidate secondary mmu at this time.
2132 */
eef1b3ba
KS
2133 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2134 }
2135
423ac9af
AK
2136 /*
2137 * Up to this point the pmd is present and huge and userland has the
2138 * whole access to the hugepage during the split (which happens in
2139 * place). If we overwrite the pmd with the not-huge version pointing
2140 * to the pte here (which of course we could if all CPUs were bug
2141 * free), userland could trigger a small page size TLB miss on the
2142 * small sized TLB while the hugepage TLB entry is still established in
2143 * the huge TLB. Some CPU doesn't like that.
2144 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2145 * 383 on page 93. Intel should be safe but is also warns that it's
2146 * only safe if the permission and cache attributes of the two entries
2147 * loaded in the two TLB is identical (which should be the case here).
2148 * But it is generally safer to never allow small and huge TLB entries
2149 * for the same virtual address to be loaded simultaneously. So instead
2150 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2151 * current pmd notpresent (atomically because here the pmd_trans_huge
2152 * must remain set at all times on the pmd until the split is complete
2153 * for this pmd), then we flush the SMP TLB and finally we write the
2154 * non-huge version of the pmd entry with pmd_populate.
2155 */
2156 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2157
84c3fc4e 2158#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
423ac9af 2159 pmd_migration = is_pmd_migration_entry(old_pmd);
84c3fc4e
ZY
2160 if (pmd_migration) {
2161 swp_entry_t entry;
2162
423ac9af 2163 entry = pmd_to_swp_entry(old_pmd);
84c3fc4e
ZY
2164 page = pfn_to_page(swp_offset(entry));
2165 } else
2166#endif
423ac9af 2167 page = pmd_page(old_pmd);
eef1b3ba 2168 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2169 page_ref_add(page, HPAGE_PMD_NR - 1);
423ac9af
AK
2170 if (pmd_dirty(old_pmd))
2171 SetPageDirty(page);
2172 write = pmd_write(old_pmd);
2173 young = pmd_young(old_pmd);
2174 soft_dirty = pmd_soft_dirty(old_pmd);
eef1b3ba 2175
423ac9af
AK
2176 /*
2177 * Withdraw the table only after we mark the pmd entry invalid.
2178 * This's critical for some architectures (Power).
2179 */
eef1b3ba
KS
2180 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2181 pmd_populate(mm, &_pmd, pgtable);
2182
2ac015e2 2183 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2184 pte_t entry, *pte;
2185 /*
2186 * Note that NUMA hinting access restrictions are not
2187 * transferred to avoid any possibility of altering
2188 * permissions across VMAs.
2189 */
84c3fc4e 2190 if (freeze || pmd_migration) {
ba988280
KS
2191 swp_entry_t swp_entry;
2192 swp_entry = make_migration_entry(page + i, write);
2193 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2194 if (soft_dirty)
2195 entry = pte_swp_mksoft_dirty(entry);
ba988280 2196 } else {
6d2329f8 2197 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2198 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2199 if (!write)
2200 entry = pte_wrprotect(entry);
2201 if (!young)
2202 entry = pte_mkold(entry);
804dd150
AA
2203 if (soft_dirty)
2204 entry = pte_mksoft_dirty(entry);
ba988280 2205 }
2ac015e2 2206 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2207 BUG_ON(!pte_none(*pte));
2ac015e2 2208 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2209 atomic_inc(&page[i]._mapcount);
2210 pte_unmap(pte);
2211 }
2212
2213 /*
2214 * Set PG_double_map before dropping compound_mapcount to avoid
2215 * false-negative page_mapped().
2216 */
2217 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2218 for (i = 0; i < HPAGE_PMD_NR; i++)
2219 atomic_inc(&page[i]._mapcount);
2220 }
2221
2222 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2223 /* Last compound_mapcount is gone. */
11fb9989 2224 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
2225 if (TestClearPageDoubleMap(page)) {
2226 /* No need in mapcount reference anymore */
2227 for (i = 0; i < HPAGE_PMD_NR; i++)
2228 atomic_dec(&page[i]._mapcount);
2229 }
2230 }
2231
2232 smp_wmb(); /* make pte visible before pmd */
2233 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2234
2235 if (freeze) {
2ac015e2 2236 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2237 page_remove_rmap(page + i, false);
2238 put_page(page + i);
2239 }
2240 }
eef1b3ba
KS
2241}
2242
2243void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2244 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2245{
2246 spinlock_t *ptl;
2247 struct mm_struct *mm = vma->vm_mm;
2248 unsigned long haddr = address & HPAGE_PMD_MASK;
2249
2250 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2251 ptl = pmd_lock(mm, pmd);
33f4751e
NH
2252
2253 /*
2254 * If caller asks to setup a migration entries, we need a page to check
2255 * pmd against. Otherwise we can end up replacing wrong page.
2256 */
2257 VM_BUG_ON(freeze && !page);
2258 if (page && page != pmd_page(*pmd))
2259 goto out;
2260
5c7fb56e 2261 if (pmd_trans_huge(*pmd)) {
33f4751e 2262 page = pmd_page(*pmd);
5c7fb56e 2263 if (PageMlocked(page))
5f737714 2264 clear_page_mlock(page);
84c3fc4e 2265 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2266 goto out;
fec89c10 2267 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
e90309c9 2268out:
eef1b3ba 2269 spin_unlock(ptl);
4645b9fe
JG
2270 /*
2271 * No need to double call mmu_notifier->invalidate_range() callback.
2272 * They are 3 cases to consider inside __split_huge_pmd_locked():
2273 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2274 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2275 * fault will trigger a flush_notify before pointing to a new page
2276 * (it is fine if the secondary mmu keeps pointing to the old zero
2277 * page in the meantime)
2278 * 3) Split a huge pmd into pte pointing to the same page. No need
2279 * to invalidate secondary tlb entry they are all still valid.
2280 * any further changes to individual pte will notify. So no need
2281 * to call mmu_notifier->invalidate_range()
2282 */
2283 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2284 HPAGE_PMD_SIZE);
eef1b3ba
KS
2285}
2286
fec89c10
KS
2287void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2288 bool freeze, struct page *page)
94fcc585 2289{
f72e7dcd 2290 pgd_t *pgd;
c2febafc 2291 p4d_t *p4d;
f72e7dcd 2292 pud_t *pud;
94fcc585
AA
2293 pmd_t *pmd;
2294
78ddc534 2295 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2296 if (!pgd_present(*pgd))
2297 return;
2298
c2febafc
KS
2299 p4d = p4d_offset(pgd, address);
2300 if (!p4d_present(*p4d))
2301 return;
2302
2303 pud = pud_offset(p4d, address);
f72e7dcd
HD
2304 if (!pud_present(*pud))
2305 return;
2306
2307 pmd = pmd_offset(pud, address);
fec89c10 2308
33f4751e 2309 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2310}
2311
e1b9996b 2312void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2313 unsigned long start,
2314 unsigned long end,
2315 long adjust_next)
2316{
2317 /*
2318 * If the new start address isn't hpage aligned and it could
2319 * previously contain an hugepage: check if we need to split
2320 * an huge pmd.
2321 */
2322 if (start & ~HPAGE_PMD_MASK &&
2323 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2324 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2325 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2326
2327 /*
2328 * If the new end address isn't hpage aligned and it could
2329 * previously contain an hugepage: check if we need to split
2330 * an huge pmd.
2331 */
2332 if (end & ~HPAGE_PMD_MASK &&
2333 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2334 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2335 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2336
2337 /*
2338 * If we're also updating the vma->vm_next->vm_start, if the new
2339 * vm_next->vm_start isn't page aligned and it could previously
2340 * contain an hugepage: check if we need to split an huge pmd.
2341 */
2342 if (adjust_next > 0) {
2343 struct vm_area_struct *next = vma->vm_next;
2344 unsigned long nstart = next->vm_start;
2345 nstart += adjust_next << PAGE_SHIFT;
2346 if (nstart & ~HPAGE_PMD_MASK &&
2347 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2348 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2349 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2350 }
2351}
e9b61f19 2352
fec89c10 2353static void freeze_page(struct page *page)
e9b61f19 2354{
baa355fd 2355 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2356 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2357 bool unmap_success;
e9b61f19
KS
2358
2359 VM_BUG_ON_PAGE(!PageHead(page), page);
2360
baa355fd 2361 if (PageAnon(page))
b5ff8161 2362 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2363
666e5a40
MK
2364 unmap_success = try_to_unmap(page, ttu_flags);
2365 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2366}
2367
fec89c10 2368static void unfreeze_page(struct page *page)
e9b61f19 2369{
fec89c10 2370 int i;
ace71a19
KS
2371 if (PageTransHuge(page)) {
2372 remove_migration_ptes(page, page, true);
2373 } else {
2374 for (i = 0; i < HPAGE_PMD_NR; i++)
2375 remove_migration_ptes(page + i, page + i, true);
2376 }
e9b61f19
KS
2377}
2378
8df651c7 2379static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2380 struct lruvec *lruvec, struct list_head *list)
2381{
e9b61f19
KS
2382 struct page *page_tail = head + tail;
2383
8df651c7 2384 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2385
2386 /*
605ca5ed
KK
2387 * Clone page flags before unfreezing refcount.
2388 *
2389 * After successful get_page_unless_zero() might follow flags change,
2390 * for exmaple lock_page() which set PG_waiters.
e9b61f19 2391 */
e9b61f19
KS
2392 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2393 page_tail->flags |= (head->flags &
2394 ((1L << PG_referenced) |
2395 (1L << PG_swapbacked) |
38d8b4e6 2396 (1L << PG_swapcache) |
e9b61f19
KS
2397 (1L << PG_mlocked) |
2398 (1L << PG_uptodate) |
2399 (1L << PG_active) |
1899ad18 2400 (1L << PG_workingset) |
e9b61f19 2401 (1L << PG_locked) |
b8d3c4c3
MK
2402 (1L << PG_unevictable) |
2403 (1L << PG_dirty)));
e9b61f19 2404
605ca5ed 2405 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2406 smp_wmb();
2407
605ca5ed
KK
2408 /*
2409 * Clear PageTail before unfreezing page refcount.
2410 *
2411 * After successful get_page_unless_zero() might follow put_page()
2412 * which needs correct compound_head().
2413 */
e9b61f19
KS
2414 clear_compound_head(page_tail);
2415
605ca5ed
KK
2416 /* Finally unfreeze refcount. Additional reference from page cache. */
2417 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2418 PageSwapCache(head)));
2419
e9b61f19
KS
2420 if (page_is_young(head))
2421 set_page_young(page_tail);
2422 if (page_is_idle(head))
2423 set_page_idle(page_tail);
2424
2425 /* ->mapping in first tail page is compound_mapcount */
9a982250 2426 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
e9b61f19
KS
2427 page_tail);
2428 page_tail->mapping = head->mapping;
2429
2430 page_tail->index = head->index + tail;
2431 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2432
2433 /*
2434 * always add to the tail because some iterators expect new
2435 * pages to show after the currently processed elements - e.g.
2436 * migrate_pages
2437 */
e9b61f19 2438 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2439}
2440
baa355fd
KS
2441static void __split_huge_page(struct page *page, struct list_head *list,
2442 unsigned long flags)
e9b61f19
KS
2443{
2444 struct page *head = compound_head(page);
2445 struct zone *zone = page_zone(head);
2446 struct lruvec *lruvec;
baa355fd 2447 pgoff_t end = -1;
8df651c7 2448 int i;
e9b61f19 2449
599d0c95 2450 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
e9b61f19
KS
2451
2452 /* complete memcg works before add pages to LRU */
2453 mem_cgroup_split_huge_fixup(head);
2454
baa355fd
KS
2455 if (!PageAnon(page))
2456 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2457
2458 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2459 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2460 /* Some pages can be beyond i_size: drop them from page cache */
2461 if (head[i].index >= end) {
2d077d4b 2462 ClearPageDirty(head + i);
baa355fd 2463 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2464 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2465 shmem_uncharge(head->mapping->host, 1);
baa355fd
KS
2466 put_page(head + i);
2467 }
2468 }
e9b61f19
KS
2469
2470 ClearPageCompound(head);
baa355fd
KS
2471 /* See comment in __split_huge_page_tail() */
2472 if (PageAnon(head)) {
aa5dc07f 2473 /* Additional pin to swap cache */
38d8b4e6
HY
2474 if (PageSwapCache(head))
2475 page_ref_add(head, 2);
2476 else
2477 page_ref_inc(head);
baa355fd 2478 } else {
aa5dc07f 2479 /* Additional pin to page cache */
baa355fd 2480 page_ref_add(head, 2);
b93b0163 2481 xa_unlock(&head->mapping->i_pages);
baa355fd
KS
2482 }
2483
a52633d8 2484 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
e9b61f19 2485
fec89c10 2486 unfreeze_page(head);
e9b61f19
KS
2487
2488 for (i = 0; i < HPAGE_PMD_NR; i++) {
2489 struct page *subpage = head + i;
2490 if (subpage == page)
2491 continue;
2492 unlock_page(subpage);
2493
2494 /*
2495 * Subpages may be freed if there wasn't any mapping
2496 * like if add_to_swap() is running on a lru page that
2497 * had its mapping zapped. And freeing these pages
2498 * requires taking the lru_lock so we do the put_page
2499 * of the tail pages after the split is complete.
2500 */
2501 put_page(subpage);
2502 }
2503}
2504
b20ce5e0
KS
2505int total_mapcount(struct page *page)
2506{
dd78fedd 2507 int i, compound, ret;
b20ce5e0
KS
2508
2509 VM_BUG_ON_PAGE(PageTail(page), page);
2510
2511 if (likely(!PageCompound(page)))
2512 return atomic_read(&page->_mapcount) + 1;
2513
dd78fedd 2514 compound = compound_mapcount(page);
b20ce5e0 2515 if (PageHuge(page))
dd78fedd
KS
2516 return compound;
2517 ret = compound;
b20ce5e0
KS
2518 for (i = 0; i < HPAGE_PMD_NR; i++)
2519 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2520 /* File pages has compound_mapcount included in _mapcount */
2521 if (!PageAnon(page))
2522 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2523 if (PageDoubleMap(page))
2524 ret -= HPAGE_PMD_NR;
2525 return ret;
2526}
2527
6d0a07ed
AA
2528/*
2529 * This calculates accurately how many mappings a transparent hugepage
2530 * has (unlike page_mapcount() which isn't fully accurate). This full
2531 * accuracy is primarily needed to know if copy-on-write faults can
2532 * reuse the page and change the mapping to read-write instead of
2533 * copying them. At the same time this returns the total_mapcount too.
2534 *
2535 * The function returns the highest mapcount any one of the subpages
2536 * has. If the return value is one, even if different processes are
2537 * mapping different subpages of the transparent hugepage, they can
2538 * all reuse it, because each process is reusing a different subpage.
2539 *
2540 * The total_mapcount is instead counting all virtual mappings of the
2541 * subpages. If the total_mapcount is equal to "one", it tells the
2542 * caller all mappings belong to the same "mm" and in turn the
2543 * anon_vma of the transparent hugepage can become the vma->anon_vma
2544 * local one as no other process may be mapping any of the subpages.
2545 *
2546 * It would be more accurate to replace page_mapcount() with
2547 * page_trans_huge_mapcount(), however we only use
2548 * page_trans_huge_mapcount() in the copy-on-write faults where we
2549 * need full accuracy to avoid breaking page pinning, because
2550 * page_trans_huge_mapcount() is slower than page_mapcount().
2551 */
2552int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2553{
2554 int i, ret, _total_mapcount, mapcount;
2555
2556 /* hugetlbfs shouldn't call it */
2557 VM_BUG_ON_PAGE(PageHuge(page), page);
2558
2559 if (likely(!PageTransCompound(page))) {
2560 mapcount = atomic_read(&page->_mapcount) + 1;
2561 if (total_mapcount)
2562 *total_mapcount = mapcount;
2563 return mapcount;
2564 }
2565
2566 page = compound_head(page);
2567
2568 _total_mapcount = ret = 0;
2569 for (i = 0; i < HPAGE_PMD_NR; i++) {
2570 mapcount = atomic_read(&page[i]._mapcount) + 1;
2571 ret = max(ret, mapcount);
2572 _total_mapcount += mapcount;
2573 }
2574 if (PageDoubleMap(page)) {
2575 ret -= 1;
2576 _total_mapcount -= HPAGE_PMD_NR;
2577 }
2578 mapcount = compound_mapcount(page);
2579 ret += mapcount;
2580 _total_mapcount += mapcount;
2581 if (total_mapcount)
2582 *total_mapcount = _total_mapcount;
2583 return ret;
2584}
2585
b8f593cd
HY
2586/* Racy check whether the huge page can be split */
2587bool can_split_huge_page(struct page *page, int *pextra_pins)
2588{
2589 int extra_pins;
2590
aa5dc07f 2591 /* Additional pins from page cache */
b8f593cd
HY
2592 if (PageAnon(page))
2593 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2594 else
2595 extra_pins = HPAGE_PMD_NR;
2596 if (pextra_pins)
2597 *pextra_pins = extra_pins;
2598 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2599}
2600
e9b61f19
KS
2601/*
2602 * This function splits huge page into normal pages. @page can point to any
2603 * subpage of huge page to split. Split doesn't change the position of @page.
2604 *
2605 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2606 * The huge page must be locked.
2607 *
2608 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2609 *
2610 * Both head page and tail pages will inherit mapping, flags, and so on from
2611 * the hugepage.
2612 *
2613 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2614 * they are not mapped.
2615 *
2616 * Returns 0 if the hugepage is split successfully.
2617 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2618 * us.
2619 */
2620int split_huge_page_to_list(struct page *page, struct list_head *list)
2621{
2622 struct page *head = compound_head(page);
a3d0a918 2623 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
baa355fd
KS
2624 struct anon_vma *anon_vma = NULL;
2625 struct address_space *mapping = NULL;
2626 int count, mapcount, extra_pins, ret;
d9654322 2627 bool mlocked;
0b9b6fff 2628 unsigned long flags;
e9b61f19
KS
2629
2630 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
e9b61f19 2631 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
2632 VM_BUG_ON_PAGE(!PageCompound(page), page);
2633
59807685
HY
2634 if (PageWriteback(page))
2635 return -EBUSY;
2636
baa355fd
KS
2637 if (PageAnon(head)) {
2638 /*
2639 * The caller does not necessarily hold an mmap_sem that would
2640 * prevent the anon_vma disappearing so we first we take a
2641 * reference to it and then lock the anon_vma for write. This
2642 * is similar to page_lock_anon_vma_read except the write lock
2643 * is taken to serialise against parallel split or collapse
2644 * operations.
2645 */
2646 anon_vma = page_get_anon_vma(head);
2647 if (!anon_vma) {
2648 ret = -EBUSY;
2649 goto out;
2650 }
baa355fd
KS
2651 mapping = NULL;
2652 anon_vma_lock_write(anon_vma);
2653 } else {
2654 mapping = head->mapping;
2655
2656 /* Truncated ? */
2657 if (!mapping) {
2658 ret = -EBUSY;
2659 goto out;
2660 }
2661
baa355fd
KS
2662 anon_vma = NULL;
2663 i_mmap_lock_read(mapping);
e9b61f19 2664 }
e9b61f19
KS
2665
2666 /*
2667 * Racy check if we can split the page, before freeze_page() will
2668 * split PMDs
2669 */
b8f593cd 2670 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2671 ret = -EBUSY;
2672 goto out_unlock;
2673 }
2674
d9654322 2675 mlocked = PageMlocked(page);
fec89c10 2676 freeze_page(head);
e9b61f19
KS
2677 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2678
d9654322
KS
2679 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2680 if (mlocked)
2681 lru_add_drain();
2682
baa355fd 2683 /* prevent PageLRU to go away from under us, and freeze lru stats */
a52633d8 2684 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
baa355fd
KS
2685
2686 if (mapping) {
aa5dc07f 2687 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2688
baa355fd 2689 /*
aa5dc07f 2690 * Check if the head page is present in page cache.
baa355fd
KS
2691 * We assume all tail are present too, if head is there.
2692 */
aa5dc07f
MW
2693 xa_lock(&mapping->i_pages);
2694 if (xas_load(&xas) != head)
baa355fd
KS
2695 goto fail;
2696 }
2697
0139aa7b 2698 /* Prevent deferred_split_scan() touching ->_refcount */
baa355fd 2699 spin_lock(&pgdata->split_queue_lock);
e9b61f19
KS
2700 count = page_count(head);
2701 mapcount = total_mapcount(head);
baa355fd 2702 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2703 if (!list_empty(page_deferred_list(head))) {
a3d0a918 2704 pgdata->split_queue_len--;
9a982250
KS
2705 list_del(page_deferred_list(head));
2706 }
65c45377 2707 if (mapping)
11fb9989 2708 __dec_node_page_state(page, NR_SHMEM_THPS);
baa355fd
KS
2709 spin_unlock(&pgdata->split_queue_lock);
2710 __split_huge_page(page, list, flags);
59807685
HY
2711 if (PageSwapCache(head)) {
2712 swp_entry_t entry = { .val = page_private(head) };
2713
2714 ret = split_swap_cluster(entry);
2715 } else
2716 ret = 0;
e9b61f19 2717 } else {
baa355fd
KS
2718 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2719 pr_alert("total_mapcount: %u, page_count(): %u\n",
2720 mapcount, count);
2721 if (PageTail(page))
2722 dump_page(head, NULL);
2723 dump_page(page, "total_mapcount(head) > 0");
2724 BUG();
2725 }
2726 spin_unlock(&pgdata->split_queue_lock);
2727fail: if (mapping)
b93b0163 2728 xa_unlock(&mapping->i_pages);
a52633d8 2729 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
fec89c10 2730 unfreeze_page(head);
e9b61f19
KS
2731 ret = -EBUSY;
2732 }
2733
2734out_unlock:
baa355fd
KS
2735 if (anon_vma) {
2736 anon_vma_unlock_write(anon_vma);
2737 put_anon_vma(anon_vma);
2738 }
2739 if (mapping)
2740 i_mmap_unlock_read(mapping);
e9b61f19
KS
2741out:
2742 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2743 return ret;
2744}
9a982250
KS
2745
2746void free_transhuge_page(struct page *page)
2747{
a3d0a918 2748 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2749 unsigned long flags;
2750
a3d0a918 2751 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2752 if (!list_empty(page_deferred_list(page))) {
a3d0a918 2753 pgdata->split_queue_len--;
9a982250
KS
2754 list_del(page_deferred_list(page));
2755 }
a3d0a918 2756 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2757 free_compound_page(page);
2758}
2759
2760void deferred_split_huge_page(struct page *page)
2761{
a3d0a918 2762 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2763 unsigned long flags;
2764
2765 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2766
a3d0a918 2767 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2768 if (list_empty(page_deferred_list(page))) {
f9719a03 2769 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
2770 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2771 pgdata->split_queue_len++;
9a982250 2772 }
a3d0a918 2773 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2774}
2775
2776static unsigned long deferred_split_count(struct shrinker *shrink,
2777 struct shrink_control *sc)
2778{
a3d0a918 2779 struct pglist_data *pgdata = NODE_DATA(sc->nid);
6aa7de05 2780 return READ_ONCE(pgdata->split_queue_len);
9a982250
KS
2781}
2782
2783static unsigned long deferred_split_scan(struct shrinker *shrink,
2784 struct shrink_control *sc)
2785{
a3d0a918 2786 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
2787 unsigned long flags;
2788 LIST_HEAD(list), *pos, *next;
2789 struct page *page;
2790 int split = 0;
2791
a3d0a918 2792 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2793 /* Take pin on all head pages to avoid freeing them under us */
ae026204 2794 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
2795 page = list_entry((void *)pos, struct page, mapping);
2796 page = compound_head(page);
e3ae1953
KS
2797 if (get_page_unless_zero(page)) {
2798 list_move(page_deferred_list(page), &list);
2799 } else {
2800 /* We lost race with put_compound_page() */
9a982250 2801 list_del_init(page_deferred_list(page));
a3d0a918 2802 pgdata->split_queue_len--;
9a982250 2803 }
e3ae1953
KS
2804 if (!--sc->nr_to_scan)
2805 break;
9a982250 2806 }
a3d0a918 2807 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2808
2809 list_for_each_safe(pos, next, &list) {
2810 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2811 if (!trylock_page(page))
2812 goto next;
9a982250
KS
2813 /* split_huge_page() removes page from list on success */
2814 if (!split_huge_page(page))
2815 split++;
2816 unlock_page(page);
fa41b900 2817next:
9a982250
KS
2818 put_page(page);
2819 }
2820
a3d0a918
KS
2821 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2822 list_splice_tail(&list, &pgdata->split_queue);
2823 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 2824
cb8d68ec
KS
2825 /*
2826 * Stop shrinker if we didn't split any page, but the queue is empty.
2827 * This can happen if pages were freed under us.
2828 */
2829 if (!split && list_empty(&pgdata->split_queue))
2830 return SHRINK_STOP;
2831 return split;
9a982250
KS
2832}
2833
2834static struct shrinker deferred_split_shrinker = {
2835 .count_objects = deferred_split_count,
2836 .scan_objects = deferred_split_scan,
2837 .seeks = DEFAULT_SEEKS,
a3d0a918 2838 .flags = SHRINKER_NUMA_AWARE,
9a982250 2839};
49071d43
KS
2840
2841#ifdef CONFIG_DEBUG_FS
2842static int split_huge_pages_set(void *data, u64 val)
2843{
2844 struct zone *zone;
2845 struct page *page;
2846 unsigned long pfn, max_zone_pfn;
2847 unsigned long total = 0, split = 0;
2848
2849 if (val != 1)
2850 return -EINVAL;
2851
2852 for_each_populated_zone(zone) {
2853 max_zone_pfn = zone_end_pfn(zone);
2854 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2855 if (!pfn_valid(pfn))
2856 continue;
2857
2858 page = pfn_to_page(pfn);
2859 if (!get_page_unless_zero(page))
2860 continue;
2861
2862 if (zone != page_zone(page))
2863 goto next;
2864
baa355fd 2865 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2866 goto next;
2867
2868 total++;
2869 lock_page(page);
2870 if (!split_huge_page(page))
2871 split++;
2872 unlock_page(page);
2873next:
2874 put_page(page);
2875 }
2876 }
2877
145bdaa1 2878 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2879
2880 return 0;
2881}
2882DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2883 "%llu\n");
2884
2885static int __init split_huge_pages_debugfs(void)
2886{
2887 void *ret;
2888
145bdaa1 2889 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
49071d43
KS
2890 &split_huge_pages_fops);
2891 if (!ret)
2892 pr_warn("Failed to create split_huge_pages in debugfs");
2893 return 0;
2894}
2895late_initcall(split_huge_pages_debugfs);
2896#endif
616b8371
ZY
2897
2898#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2899void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2900 struct page *page)
2901{
2902 struct vm_area_struct *vma = pvmw->vma;
2903 struct mm_struct *mm = vma->vm_mm;
2904 unsigned long address = pvmw->address;
2905 pmd_t pmdval;
2906 swp_entry_t entry;
ab6e3d09 2907 pmd_t pmdswp;
616b8371
ZY
2908
2909 if (!(pvmw->pmd && !pvmw->pte))
2910 return;
2911
616b8371
ZY
2912 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2913 pmdval = *pvmw->pmd;
2914 pmdp_invalidate(vma, address, pvmw->pmd);
2915 if (pmd_dirty(pmdval))
2916 set_page_dirty(page);
2917 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
2918 pmdswp = swp_entry_to_pmd(entry);
2919 if (pmd_soft_dirty(pmdval))
2920 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2921 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
2922 page_remove_rmap(page, true);
2923 put_page(page);
616b8371
ZY
2924}
2925
2926void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2927{
2928 struct vm_area_struct *vma = pvmw->vma;
2929 struct mm_struct *mm = vma->vm_mm;
2930 unsigned long address = pvmw->address;
2931 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2932 pmd_t pmde;
2933 swp_entry_t entry;
2934
2935 if (!(pvmw->pmd && !pvmw->pte))
2936 return;
2937
2938 entry = pmd_to_swp_entry(*pvmw->pmd);
2939 get_page(new);
2940 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
2941 if (pmd_swp_soft_dirty(*pvmw->pmd))
2942 pmde = pmd_mksoft_dirty(pmde);
616b8371 2943 if (is_write_migration_entry(entry))
f55e1014 2944 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
2945
2946 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
2947 if (PageAnon(new))
2948 page_add_anon_rmap(new, vma, mmun_start, true);
2949 else
2950 page_add_file_rmap(new, true);
616b8371 2951 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 2952 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
2953 mlock_vma_page(new);
2954 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2955}
2956#endif