]> git.ipfire.org Git - people/ms/linux.git/blame - fs/namespace.c
vfs: spread struct mount - remaining argument of next_mnt()
[people/ms/linux.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4
LT
11#include <linux/syscalls.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
99b7db7b
NP
14#include <linux/spinlock.h>
15#include <linux/percpu.h>
1da177e4 16#include <linux/init.h>
15a67dd8 17#include <linux/kernel.h>
1da177e4 18#include <linux/acct.h>
16f7e0fe 19#include <linux/capability.h>
3d733633 20#include <linux/cpumask.h>
1da177e4 21#include <linux/module.h>
f20a9ead 22#include <linux/sysfs.h>
1da177e4 23#include <linux/seq_file.h>
6b3286ed 24#include <linux/mnt_namespace.h>
1da177e4 25#include <linux/namei.h>
b43f3cbd 26#include <linux/nsproxy.h>
1da177e4
LT
27#include <linux/security.h>
28#include <linux/mount.h>
07f3f05c 29#include <linux/ramfs.h>
13f14b4d 30#include <linux/log2.h>
73cd49ec 31#include <linux/idr.h>
5ad4e53b 32#include <linux/fs_struct.h>
2504c5d6 33#include <linux/fsnotify.h>
1da177e4
LT
34#include <asm/uaccess.h>
35#include <asm/unistd.h>
07b20889 36#include "pnode.h"
948730b0 37#include "internal.h"
1da177e4 38
13f14b4d
ED
39#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40#define HASH_SIZE (1UL << HASH_SHIFT)
41
5addc5dd 42static int event;
73cd49ec 43static DEFINE_IDA(mnt_id_ida);
719f5d7f 44static DEFINE_IDA(mnt_group_ida);
99b7db7b 45static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
46static int mnt_id_start = 0;
47static int mnt_group_start = 1;
1da177e4 48
fa3536cc 49static struct list_head *mount_hashtable __read_mostly;
e18b890b 50static struct kmem_cache *mnt_cache __read_mostly;
390c6843 51static struct rw_semaphore namespace_sem;
1da177e4 52
f87fd4c2 53/* /sys/fs */
00d26666
GKH
54struct kobject *fs_kobj;
55EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 56
99b7db7b
NP
57/*
58 * vfsmount lock may be taken for read to prevent changes to the
59 * vfsmount hash, ie. during mountpoint lookups or walking back
60 * up the tree.
61 *
62 * It should be taken for write in all cases where the vfsmount
63 * tree or hash is modified or when a vfsmount structure is modified.
64 */
65DEFINE_BRLOCK(vfsmount_lock);
66
1da177e4
LT
67static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
68{
b58fed8b
RP
69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
71 tmp = tmp + (tmp >> HASH_SHIFT);
72 return tmp & (HASH_SIZE - 1);
1da177e4
LT
73}
74
3d733633
DH
75#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
76
99b7db7b
NP
77/*
78 * allocation is serialized by namespace_sem, but we need the spinlock to
79 * serialize with freeing.
80 */
b105e270 81static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
82{
83 int res;
84
85retry:
86 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 87 spin_lock(&mnt_id_lock);
15169fe7 88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 89 if (!res)
15169fe7 90 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 91 spin_unlock(&mnt_id_lock);
73cd49ec
MS
92 if (res == -EAGAIN)
93 goto retry;
94
95 return res;
96}
97
b105e270 98static void mnt_free_id(struct mount *mnt)
73cd49ec 99{
15169fe7 100 int id = mnt->mnt_id;
99b7db7b 101 spin_lock(&mnt_id_lock);
f21f6220
AV
102 ida_remove(&mnt_id_ida, id);
103 if (mnt_id_start > id)
104 mnt_id_start = id;
99b7db7b 105 spin_unlock(&mnt_id_lock);
73cd49ec
MS
106}
107
719f5d7f
MS
108/*
109 * Allocate a new peer group ID
110 *
111 * mnt_group_ida is protected by namespace_sem
112 */
4b8b21f4 113static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 114{
f21f6220
AV
115 int res;
116
719f5d7f
MS
117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 return -ENOMEM;
119
f21f6220
AV
120 res = ida_get_new_above(&mnt_group_ida,
121 mnt_group_start,
15169fe7 122 &mnt->mnt_group_id);
f21f6220 123 if (!res)
15169fe7 124 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
125
126 return res;
719f5d7f
MS
127}
128
129/*
130 * Release a peer group ID
131 */
4b8b21f4 132void mnt_release_group_id(struct mount *mnt)
719f5d7f 133{
15169fe7 134 int id = mnt->mnt_group_id;
f21f6220
AV
135 ida_remove(&mnt_group_ida, id);
136 if (mnt_group_start > id)
137 mnt_group_start = id;
15169fe7 138 mnt->mnt_group_id = 0;
719f5d7f
MS
139}
140
b3e19d92
NP
141/*
142 * vfsmount lock must be held for read
143 */
83adc753 144static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
145{
146#ifdef CONFIG_SMP
68e8a9fe 147 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
148#else
149 preempt_disable();
68e8a9fe 150 mnt->mnt_count += n;
b3e19d92
NP
151 preempt_enable();
152#endif
153}
154
b3e19d92
NP
155/*
156 * vfsmount lock must be held for write
157 */
83adc753 158unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
159{
160#ifdef CONFIG_SMP
f03c6599 161 unsigned int count = 0;
b3e19d92
NP
162 int cpu;
163
164 for_each_possible_cpu(cpu) {
68e8a9fe 165 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
166 }
167
168 return count;
169#else
68e8a9fe 170 return mnt->mnt_count;
b3e19d92
NP
171#endif
172}
173
b105e270 174static struct mount *alloc_vfsmnt(const char *name)
1da177e4 175{
c63181e6
AV
176 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
177 if (mnt) {
73cd49ec
MS
178 int err;
179
c63181e6 180 err = mnt_alloc_id(mnt);
88b38782
LZ
181 if (err)
182 goto out_free_cache;
183
184 if (name) {
c63181e6
AV
185 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
186 if (!mnt->mnt_devname)
88b38782 187 goto out_free_id;
73cd49ec
MS
188 }
189
b3e19d92 190#ifdef CONFIG_SMP
c63181e6
AV
191 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
192 if (!mnt->mnt_pcp)
b3e19d92
NP
193 goto out_free_devname;
194
c63181e6 195 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 196#else
c63181e6
AV
197 mnt->mnt_count = 1;
198 mnt->mnt_writers = 0;
b3e19d92
NP
199#endif
200
c63181e6
AV
201 INIT_LIST_HEAD(&mnt->mnt_hash);
202 INIT_LIST_HEAD(&mnt->mnt_child);
203 INIT_LIST_HEAD(&mnt->mnt_mounts);
204 INIT_LIST_HEAD(&mnt->mnt_list);
205 INIT_LIST_HEAD(&mnt->mnt_expire);
206 INIT_LIST_HEAD(&mnt->mnt_share);
207 INIT_LIST_HEAD(&mnt->mnt_slave_list);
208 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
209#ifdef CONFIG_FSNOTIFY
210 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 211#endif
1da177e4 212 }
c63181e6 213 return mnt;
88b38782 214
d3ef3d73
NP
215#ifdef CONFIG_SMP
216out_free_devname:
c63181e6 217 kfree(mnt->mnt_devname);
d3ef3d73 218#endif
88b38782 219out_free_id:
c63181e6 220 mnt_free_id(mnt);
88b38782 221out_free_cache:
c63181e6 222 kmem_cache_free(mnt_cache, mnt);
88b38782 223 return NULL;
1da177e4
LT
224}
225
3d733633
DH
226/*
227 * Most r/o checks on a fs are for operations that take
228 * discrete amounts of time, like a write() or unlink().
229 * We must keep track of when those operations start
230 * (for permission checks) and when they end, so that
231 * we can determine when writes are able to occur to
232 * a filesystem.
233 */
234/*
235 * __mnt_is_readonly: check whether a mount is read-only
236 * @mnt: the mount to check for its write status
237 *
238 * This shouldn't be used directly ouside of the VFS.
239 * It does not guarantee that the filesystem will stay
240 * r/w, just that it is right *now*. This can not and
241 * should not be used in place of IS_RDONLY(inode).
242 * mnt_want/drop_write() will _keep_ the filesystem
243 * r/w.
244 */
245int __mnt_is_readonly(struct vfsmount *mnt)
246{
2e4b7fcd
DH
247 if (mnt->mnt_flags & MNT_READONLY)
248 return 1;
249 if (mnt->mnt_sb->s_flags & MS_RDONLY)
250 return 1;
251 return 0;
3d733633
DH
252}
253EXPORT_SYMBOL_GPL(__mnt_is_readonly);
254
83adc753 255static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73
NP
256{
257#ifdef CONFIG_SMP
68e8a9fe 258 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 259#else
68e8a9fe 260 mnt->mnt_writers++;
d3ef3d73
NP
261#endif
262}
3d733633 263
83adc753 264static inline void mnt_dec_writers(struct mount *mnt)
3d733633 265{
d3ef3d73 266#ifdef CONFIG_SMP
68e8a9fe 267 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 268#else
68e8a9fe 269 mnt->mnt_writers--;
d3ef3d73 270#endif
3d733633 271}
3d733633 272
83adc753 273static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 274{
d3ef3d73
NP
275#ifdef CONFIG_SMP
276 unsigned int count = 0;
3d733633 277 int cpu;
3d733633
DH
278
279 for_each_possible_cpu(cpu) {
68e8a9fe 280 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 281 }
3d733633 282
d3ef3d73
NP
283 return count;
284#else
285 return mnt->mnt_writers;
286#endif
3d733633
DH
287}
288
8366025e
DH
289/*
290 * Most r/o checks on a fs are for operations that take
291 * discrete amounts of time, like a write() or unlink().
292 * We must keep track of when those operations start
293 * (for permission checks) and when they end, so that
294 * we can determine when writes are able to occur to
295 * a filesystem.
296 */
297/**
298 * mnt_want_write - get write access to a mount
83adc753 299 * @m: the mount on which to take a write
8366025e
DH
300 *
301 * This tells the low-level filesystem that a write is
302 * about to be performed to it, and makes sure that
303 * writes are allowed before returning success. When
304 * the write operation is finished, mnt_drop_write()
305 * must be called. This is effectively a refcount.
306 */
83adc753 307int mnt_want_write(struct vfsmount *m)
8366025e 308{
83adc753 309 struct mount *mnt = real_mount(m);
3d733633 310 int ret = 0;
3d733633 311
d3ef3d73 312 preempt_disable();
c6653a83 313 mnt_inc_writers(mnt);
d3ef3d73 314 /*
c6653a83 315 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73
NP
316 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
317 * incremented count after it has set MNT_WRITE_HOLD.
318 */
319 smp_mb();
83adc753 320 while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
d3ef3d73
NP
321 cpu_relax();
322 /*
323 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
324 * be set to match its requirements. So we must not load that until
325 * MNT_WRITE_HOLD is cleared.
326 */
327 smp_rmb();
83adc753 328 if (__mnt_is_readonly(m)) {
c6653a83 329 mnt_dec_writers(mnt);
3d733633
DH
330 ret = -EROFS;
331 goto out;
332 }
3d733633 333out:
d3ef3d73 334 preempt_enable();
3d733633 335 return ret;
8366025e
DH
336}
337EXPORT_SYMBOL_GPL(mnt_want_write);
338
96029c4e
NP
339/**
340 * mnt_clone_write - get write access to a mount
341 * @mnt: the mount on which to take a write
342 *
343 * This is effectively like mnt_want_write, except
344 * it must only be used to take an extra write reference
345 * on a mountpoint that we already know has a write reference
346 * on it. This allows some optimisation.
347 *
348 * After finished, mnt_drop_write must be called as usual to
349 * drop the reference.
350 */
351int mnt_clone_write(struct vfsmount *mnt)
352{
353 /* superblock may be r/o */
354 if (__mnt_is_readonly(mnt))
355 return -EROFS;
356 preempt_disable();
83adc753 357 mnt_inc_writers(real_mount(mnt));
96029c4e
NP
358 preempt_enable();
359 return 0;
360}
361EXPORT_SYMBOL_GPL(mnt_clone_write);
362
363/**
364 * mnt_want_write_file - get write access to a file's mount
365 * @file: the file who's mount on which to take a write
366 *
367 * This is like mnt_want_write, but it takes a file and can
368 * do some optimisations if the file is open for write already
369 */
370int mnt_want_write_file(struct file *file)
371{
2d8dd38a
OH
372 struct inode *inode = file->f_dentry->d_inode;
373 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
96029c4e
NP
374 return mnt_want_write(file->f_path.mnt);
375 else
376 return mnt_clone_write(file->f_path.mnt);
377}
378EXPORT_SYMBOL_GPL(mnt_want_write_file);
379
8366025e
DH
380/**
381 * mnt_drop_write - give up write access to a mount
382 * @mnt: the mount on which to give up write access
383 *
384 * Tells the low-level filesystem that we are done
385 * performing writes to it. Must be matched with
386 * mnt_want_write() call above.
387 */
388void mnt_drop_write(struct vfsmount *mnt)
389{
d3ef3d73 390 preempt_disable();
83adc753 391 mnt_dec_writers(real_mount(mnt));
d3ef3d73 392 preempt_enable();
8366025e
DH
393}
394EXPORT_SYMBOL_GPL(mnt_drop_write);
395
2a79f17e
AV
396void mnt_drop_write_file(struct file *file)
397{
398 mnt_drop_write(file->f_path.mnt);
399}
400EXPORT_SYMBOL(mnt_drop_write_file);
401
83adc753 402static int mnt_make_readonly(struct mount *mnt)
8366025e 403{
3d733633
DH
404 int ret = 0;
405
99b7db7b 406 br_write_lock(vfsmount_lock);
83adc753 407 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 408 /*
d3ef3d73
NP
409 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
410 * should be visible before we do.
3d733633 411 */
d3ef3d73
NP
412 smp_mb();
413
3d733633 414 /*
d3ef3d73
NP
415 * With writers on hold, if this value is zero, then there are
416 * definitely no active writers (although held writers may subsequently
417 * increment the count, they'll have to wait, and decrement it after
418 * seeing MNT_READONLY).
419 *
420 * It is OK to have counter incremented on one CPU and decremented on
421 * another: the sum will add up correctly. The danger would be when we
422 * sum up each counter, if we read a counter before it is incremented,
423 * but then read another CPU's count which it has been subsequently
424 * decremented from -- we would see more decrements than we should.
425 * MNT_WRITE_HOLD protects against this scenario, because
426 * mnt_want_write first increments count, then smp_mb, then spins on
427 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
428 * we're counting up here.
3d733633 429 */
c6653a83 430 if (mnt_get_writers(mnt) > 0)
d3ef3d73
NP
431 ret = -EBUSY;
432 else
83adc753 433 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73
NP
434 /*
435 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
436 * that become unheld will see MNT_READONLY.
437 */
438 smp_wmb();
83adc753 439 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
99b7db7b 440 br_write_unlock(vfsmount_lock);
3d733633 441 return ret;
8366025e 442}
8366025e 443
83adc753 444static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 445{
99b7db7b 446 br_write_lock(vfsmount_lock);
83adc753 447 mnt->mnt.mnt_flags &= ~MNT_READONLY;
99b7db7b 448 br_write_unlock(vfsmount_lock);
2e4b7fcd
DH
449}
450
b105e270 451static void free_vfsmnt(struct mount *mnt)
1da177e4 452{
52ba1621 453 kfree(mnt->mnt_devname);
73cd49ec 454 mnt_free_id(mnt);
d3ef3d73 455#ifdef CONFIG_SMP
68e8a9fe 456 free_percpu(mnt->mnt_pcp);
d3ef3d73 457#endif
b105e270 458 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
459}
460
461/*
a05964f3
RP
462 * find the first or last mount at @dentry on vfsmount @mnt depending on
463 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 464 * vfsmount_lock must be held for read or write.
1da177e4 465 */
c7105365 466struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 467 int dir)
1da177e4 468{
b58fed8b
RP
469 struct list_head *head = mount_hashtable + hash(mnt, dentry);
470 struct list_head *tmp = head;
c7105365 471 struct mount *p, *found = NULL;
1da177e4 472
1da177e4 473 for (;;) {
a05964f3 474 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
475 p = NULL;
476 if (tmp == head)
477 break;
1b8e5564 478 p = list_entry(tmp, struct mount, mnt_hash);
a73324da 479 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
a05964f3 480 found = p;
1da177e4
LT
481 break;
482 }
483 }
1da177e4
LT
484 return found;
485}
486
a05964f3
RP
487/*
488 * lookup_mnt increments the ref count before returning
489 * the vfsmount struct.
490 */
1c755af4 491struct vfsmount *lookup_mnt(struct path *path)
a05964f3 492{
c7105365 493 struct mount *child_mnt;
99b7db7b
NP
494
495 br_read_lock(vfsmount_lock);
c7105365
AV
496 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
497 if (child_mnt) {
498 mnt_add_count(child_mnt, 1);
499 br_read_unlock(vfsmount_lock);
500 return &child_mnt->mnt;
501 } else {
502 br_read_unlock(vfsmount_lock);
503 return NULL;
504 }
a05964f3
RP
505}
506
143c8c91 507static inline int check_mnt(struct mount *mnt)
1da177e4 508{
6b3286ed 509 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
510}
511
99b7db7b
NP
512/*
513 * vfsmount lock must be held for write
514 */
6b3286ed 515static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
516{
517 if (ns) {
518 ns->event = ++event;
519 wake_up_interruptible(&ns->poll);
520 }
521}
522
99b7db7b
NP
523/*
524 * vfsmount lock must be held for write
525 */
6b3286ed 526static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
527{
528 if (ns && ns->event != event) {
529 ns->event = event;
530 wake_up_interruptible(&ns->poll);
531 }
532}
533
5f57cbcc
NP
534/*
535 * Clear dentry's mounted state if it has no remaining mounts.
536 * vfsmount_lock must be held for write.
537 */
aa0a4cf0 538static void dentry_reset_mounted(struct dentry *dentry)
5f57cbcc
NP
539{
540 unsigned u;
541
542 for (u = 0; u < HASH_SIZE; u++) {
d5e50f74 543 struct mount *p;
5f57cbcc 544
1b8e5564 545 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
a73324da 546 if (p->mnt_mountpoint == dentry)
5f57cbcc
NP
547 return;
548 }
549 }
550 spin_lock(&dentry->d_lock);
551 dentry->d_flags &= ~DCACHE_MOUNTED;
552 spin_unlock(&dentry->d_lock);
553}
554
99b7db7b
NP
555/*
556 * vfsmount lock must be held for write
557 */
419148da
AV
558static void detach_mnt(struct mount *mnt, struct path *old_path)
559{
a73324da 560 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
561 old_path->mnt = &mnt->mnt_parent->mnt;
562 mnt->mnt_parent = mnt;
a73324da 563 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 564 list_del_init(&mnt->mnt_child);
1b8e5564 565 list_del_init(&mnt->mnt_hash);
aa0a4cf0 566 dentry_reset_mounted(old_path->dentry);
1da177e4
LT
567}
568
99b7db7b
NP
569/*
570 * vfsmount lock must be held for write
571 */
14cf1fa8 572void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
44d964d6 573 struct mount *child_mnt)
b90fa9ae 574{
14cf1fa8 575 child_mnt->mnt_parent = real_mount(mntget(&mnt->mnt));
a73324da 576 child_mnt->mnt_mountpoint = dget(dentry);
5f57cbcc
NP
577 spin_lock(&dentry->d_lock);
578 dentry->d_flags |= DCACHE_MOUNTED;
579 spin_unlock(&dentry->d_lock);
b90fa9ae
RP
580}
581
99b7db7b
NP
582/*
583 * vfsmount lock must be held for write
584 */
419148da 585static void attach_mnt(struct mount *mnt, struct path *path)
1da177e4 586{
14cf1fa8 587 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
1b8e5564 588 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689 589 hash(path->mnt, path->dentry));
6b41d536 590 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
b90fa9ae
RP
591}
592
83adc753 593static inline void __mnt_make_longterm(struct mount *mnt)
7e3d0eb0
AV
594{
595#ifdef CONFIG_SMP
68e8a9fe 596 atomic_inc(&mnt->mnt_longterm);
7e3d0eb0
AV
597#endif
598}
599
600/* needs vfsmount lock for write */
83adc753 601static inline void __mnt_make_shortterm(struct mount *mnt)
7e3d0eb0
AV
602{
603#ifdef CONFIG_SMP
68e8a9fe 604 atomic_dec(&mnt->mnt_longterm);
7e3d0eb0
AV
605#endif
606}
607
b90fa9ae 608/*
99b7db7b 609 * vfsmount lock must be held for write
b90fa9ae 610 */
4b2619a5 611static void commit_tree(struct mount *mnt)
b90fa9ae 612{
0714a533 613 struct mount *parent = mnt->mnt_parent;
83adc753 614 struct mount *m;
b90fa9ae 615 LIST_HEAD(head);
143c8c91 616 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 617
0714a533 618 BUG_ON(parent == mnt);
b90fa9ae 619
1a4eeaf2
AV
620 list_add_tail(&head, &mnt->mnt_list);
621 list_for_each_entry(m, &head, mnt_list) {
143c8c91 622 m->mnt_ns = n;
7e3d0eb0 623 __mnt_make_longterm(m);
f03c6599
AV
624 }
625
b90fa9ae
RP
626 list_splice(&head, n->list.prev);
627
1b8e5564 628 list_add_tail(&mnt->mnt_hash, mount_hashtable +
a73324da 629 hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 630 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 631 touch_mnt_namespace(n);
1da177e4
LT
632}
633
909b0a88 634static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 635{
6b41d536
AV
636 struct list_head *next = p->mnt_mounts.next;
637 if (next == &p->mnt_mounts) {
1da177e4 638 while (1) {
909b0a88 639 if (p == root)
1da177e4 640 return NULL;
6b41d536
AV
641 next = p->mnt_child.next;
642 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 643 break;
0714a533 644 p = p->mnt_parent;
1da177e4
LT
645 }
646 }
6b41d536 647 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
648}
649
315fc83e 650static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 651{
6b41d536
AV
652 struct list_head *prev = p->mnt_mounts.prev;
653 while (prev != &p->mnt_mounts) {
654 p = list_entry(prev, struct mount, mnt_child);
655 prev = p->mnt_mounts.prev;
9676f0c6
RP
656 }
657 return p;
658}
659
9d412a43
AV
660struct vfsmount *
661vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
662{
b105e270 663 struct mount *mnt;
9d412a43
AV
664 struct dentry *root;
665
666 if (!type)
667 return ERR_PTR(-ENODEV);
668
669 mnt = alloc_vfsmnt(name);
670 if (!mnt)
671 return ERR_PTR(-ENOMEM);
672
673 if (flags & MS_KERNMOUNT)
b105e270 674 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
675
676 root = mount_fs(type, flags, name, data);
677 if (IS_ERR(root)) {
678 free_vfsmnt(mnt);
679 return ERR_CAST(root);
680 }
681
b105e270
AV
682 mnt->mnt.mnt_root = root;
683 mnt->mnt.mnt_sb = root->d_sb;
a73324da 684 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 685 mnt->mnt_parent = mnt;
b105e270 686 return &mnt->mnt;
9d412a43
AV
687}
688EXPORT_SYMBOL_GPL(vfs_kern_mount);
689
87129cc0 690static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 691 int flag)
1da177e4 692{
87129cc0 693 struct super_block *sb = old->mnt.mnt_sb;
52ba1621 694 struct mount *mnt = alloc_vfsmnt(old->mnt_devname);
1da177e4
LT
695
696 if (mnt) {
719f5d7f 697 if (flag & (CL_SLAVE | CL_PRIVATE))
15169fe7 698 mnt->mnt_group_id = 0; /* not a peer of original */
719f5d7f 699 else
15169fe7 700 mnt->mnt_group_id = old->mnt_group_id;
719f5d7f 701
15169fe7 702 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
b105e270 703 int err = mnt_alloc_group_id(mnt);
719f5d7f
MS
704 if (err)
705 goto out_free;
706 }
707
87129cc0 708 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
1da177e4 709 atomic_inc(&sb->s_active);
b105e270
AV
710 mnt->mnt.mnt_sb = sb;
711 mnt->mnt.mnt_root = dget(root);
a73324da 712 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 713 mnt->mnt_parent = mnt;
b90fa9ae 714
5afe0022 715 if (flag & CL_SLAVE) {
6776db3d 716 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
32301920 717 mnt->mnt_master = old;
fc7be130 718 CLEAR_MNT_SHARED(mnt);
8aec0809 719 } else if (!(flag & CL_PRIVATE)) {
fc7be130 720 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
6776db3d 721 list_add(&mnt->mnt_share, &old->mnt_share);
d10e8def 722 if (IS_MNT_SLAVE(old))
6776db3d 723 list_add(&mnt->mnt_slave, &old->mnt_slave);
d10e8def 724 mnt->mnt_master = old->mnt_master;
5afe0022 725 }
b90fa9ae 726 if (flag & CL_MAKE_SHARED)
0f0afb1d 727 set_mnt_shared(mnt);
1da177e4
LT
728
729 /* stick the duplicate mount on the same expiry list
730 * as the original if that was on one */
36341f64 731 if (flag & CL_EXPIRE) {
6776db3d
AV
732 if (!list_empty(&old->mnt_expire))
733 list_add(&mnt->mnt_expire, &old->mnt_expire);
36341f64 734 }
1da177e4 735 }
cb338d06 736 return mnt;
719f5d7f
MS
737
738 out_free:
739 free_vfsmnt(mnt);
740 return NULL;
1da177e4
LT
741}
742
83adc753 743static inline void mntfree(struct mount *mnt)
1da177e4 744{
83adc753
AV
745 struct vfsmount *m = &mnt->mnt;
746 struct super_block *sb = m->mnt_sb;
b3e19d92 747
3d733633
DH
748 /*
749 * This probably indicates that somebody messed
750 * up a mnt_want/drop_write() pair. If this
751 * happens, the filesystem was probably unable
752 * to make r/w->r/o transitions.
753 */
d3ef3d73 754 /*
b3e19d92
NP
755 * The locking used to deal with mnt_count decrement provides barriers,
756 * so mnt_get_writers() below is safe.
d3ef3d73 757 */
c6653a83 758 WARN_ON(mnt_get_writers(mnt));
83adc753
AV
759 fsnotify_vfsmount_delete(m);
760 dput(m->mnt_root);
761 free_vfsmnt(mnt);
1da177e4
LT
762 deactivate_super(sb);
763}
764
900148dc 765static void mntput_no_expire(struct mount *mnt)
b3e19d92 766{
b3e19d92 767put_again:
f03c6599
AV
768#ifdef CONFIG_SMP
769 br_read_lock(vfsmount_lock);
68e8a9fe 770 if (likely(atomic_read(&mnt->mnt_longterm))) {
aa9c0e07 771 mnt_add_count(mnt, -1);
b3e19d92 772 br_read_unlock(vfsmount_lock);
f03c6599 773 return;
b3e19d92 774 }
f03c6599 775 br_read_unlock(vfsmount_lock);
b3e19d92 776
99b7db7b 777 br_write_lock(vfsmount_lock);
aa9c0e07 778 mnt_add_count(mnt, -1);
b3e19d92 779 if (mnt_get_count(mnt)) {
99b7db7b
NP
780 br_write_unlock(vfsmount_lock);
781 return;
782 }
b3e19d92 783#else
aa9c0e07 784 mnt_add_count(mnt, -1);
b3e19d92 785 if (likely(mnt_get_count(mnt)))
99b7db7b 786 return;
b3e19d92 787 br_write_lock(vfsmount_lock);
f03c6599 788#endif
863d684f
AV
789 if (unlikely(mnt->mnt_pinned)) {
790 mnt_add_count(mnt, mnt->mnt_pinned + 1);
791 mnt->mnt_pinned = 0;
b3e19d92 792 br_write_unlock(vfsmount_lock);
900148dc 793 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 794 goto put_again;
7b7b1ace 795 }
99b7db7b 796 br_write_unlock(vfsmount_lock);
b3e19d92
NP
797 mntfree(mnt);
798}
b3e19d92
NP
799
800void mntput(struct vfsmount *mnt)
801{
802 if (mnt) {
863d684f 803 struct mount *m = real_mount(mnt);
b3e19d92 804 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
805 if (unlikely(m->mnt_expiry_mark))
806 m->mnt_expiry_mark = 0;
807 mntput_no_expire(m);
b3e19d92
NP
808 }
809}
810EXPORT_SYMBOL(mntput);
811
812struct vfsmount *mntget(struct vfsmount *mnt)
813{
814 if (mnt)
83adc753 815 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
816 return mnt;
817}
818EXPORT_SYMBOL(mntget);
819
7b7b1ace
AV
820void mnt_pin(struct vfsmount *mnt)
821{
99b7db7b 822 br_write_lock(vfsmount_lock);
863d684f 823 real_mount(mnt)->mnt_pinned++;
99b7db7b 824 br_write_unlock(vfsmount_lock);
7b7b1ace 825}
7b7b1ace
AV
826EXPORT_SYMBOL(mnt_pin);
827
863d684f 828void mnt_unpin(struct vfsmount *m)
7b7b1ace 829{
863d684f 830 struct mount *mnt = real_mount(m);
99b7db7b 831 br_write_lock(vfsmount_lock);
7b7b1ace 832 if (mnt->mnt_pinned) {
863d684f 833 mnt_add_count(mnt, 1);
7b7b1ace
AV
834 mnt->mnt_pinned--;
835 }
99b7db7b 836 br_write_unlock(vfsmount_lock);
7b7b1ace 837}
7b7b1ace 838EXPORT_SYMBOL(mnt_unpin);
1da177e4 839
b3b304a2
MS
840static inline void mangle(struct seq_file *m, const char *s)
841{
842 seq_escape(m, s, " \t\n\\");
843}
844
845/*
846 * Simple .show_options callback for filesystems which don't want to
847 * implement more complex mount option showing.
848 *
849 * See also save_mount_options().
850 */
851int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
852{
2a32cebd
AV
853 const char *options;
854
855 rcu_read_lock();
856 options = rcu_dereference(mnt->mnt_sb->s_options);
b3b304a2
MS
857
858 if (options != NULL && options[0]) {
859 seq_putc(m, ',');
860 mangle(m, options);
861 }
2a32cebd 862 rcu_read_unlock();
b3b304a2
MS
863
864 return 0;
865}
866EXPORT_SYMBOL(generic_show_options);
867
868/*
869 * If filesystem uses generic_show_options(), this function should be
870 * called from the fill_super() callback.
871 *
872 * The .remount_fs callback usually needs to be handled in a special
873 * way, to make sure, that previous options are not overwritten if the
874 * remount fails.
875 *
876 * Also note, that if the filesystem's .remount_fs function doesn't
877 * reset all options to their default value, but changes only newly
878 * given options, then the displayed options will not reflect reality
879 * any more.
880 */
881void save_mount_options(struct super_block *sb, char *options)
882{
2a32cebd
AV
883 BUG_ON(sb->s_options);
884 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
885}
886EXPORT_SYMBOL(save_mount_options);
887
2a32cebd
AV
888void replace_mount_options(struct super_block *sb, char *options)
889{
890 char *old = sb->s_options;
891 rcu_assign_pointer(sb->s_options, options);
892 if (old) {
893 synchronize_rcu();
894 kfree(old);
895 }
896}
897EXPORT_SYMBOL(replace_mount_options);
898
a1a2c409 899#ifdef CONFIG_PROC_FS
1da177e4
LT
900/* iterator */
901static void *m_start(struct seq_file *m, loff_t *pos)
902{
a1a2c409 903 struct proc_mounts *p = m->private;
1da177e4 904
390c6843 905 down_read(&namespace_sem);
a1a2c409 906 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
907}
908
909static void *m_next(struct seq_file *m, void *v, loff_t *pos)
910{
a1a2c409 911 struct proc_mounts *p = m->private;
b0765fb8 912
a1a2c409 913 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
914}
915
916static void m_stop(struct seq_file *m, void *v)
917{
390c6843 918 up_read(&namespace_sem);
1da177e4
LT
919}
920
9f5596af
AV
921int mnt_had_events(struct proc_mounts *p)
922{
923 struct mnt_namespace *ns = p->ns;
924 int res = 0;
925
99b7db7b 926 br_read_lock(vfsmount_lock);
f1514638
KS
927 if (p->m.poll_event != ns->event) {
928 p->m.poll_event = ns->event;
9f5596af
AV
929 res = 1;
930 }
99b7db7b 931 br_read_unlock(vfsmount_lock);
9f5596af
AV
932
933 return res;
934}
935
2d4d4864
RP
936struct proc_fs_info {
937 int flag;
938 const char *str;
939};
940
2069f457 941static int show_sb_opts(struct seq_file *m, struct super_block *sb)
1da177e4 942{
2d4d4864 943 static const struct proc_fs_info fs_info[] = {
1da177e4
LT
944 { MS_SYNCHRONOUS, ",sync" },
945 { MS_DIRSYNC, ",dirsync" },
946 { MS_MANDLOCK, ",mand" },
1da177e4
LT
947 { 0, NULL }
948 };
2d4d4864
RP
949 const struct proc_fs_info *fs_infop;
950
951 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
952 if (sb->s_flags & fs_infop->flag)
953 seq_puts(m, fs_infop->str);
954 }
2069f457
EP
955
956 return security_sb_show_options(m, sb);
2d4d4864
RP
957}
958
959static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
960{
961 static const struct proc_fs_info mnt_info[] = {
1da177e4
LT
962 { MNT_NOSUID, ",nosuid" },
963 { MNT_NODEV, ",nodev" },
964 { MNT_NOEXEC, ",noexec" },
fc33a7bb
CH
965 { MNT_NOATIME, ",noatime" },
966 { MNT_NODIRATIME, ",nodiratime" },
47ae32d6 967 { MNT_RELATIME, ",relatime" },
1da177e4
LT
968 { 0, NULL }
969 };
2d4d4864
RP
970 const struct proc_fs_info *fs_infop;
971
972 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
973 if (mnt->mnt_flags & fs_infop->flag)
974 seq_puts(m, fs_infop->str);
975 }
976}
977
978static void show_type(struct seq_file *m, struct super_block *sb)
979{
980 mangle(m, sb->s_type->name);
981 if (sb->s_subtype && sb->s_subtype[0]) {
982 seq_putc(m, '.');
983 mangle(m, sb->s_subtype);
984 }
985}
986
987static int show_vfsmnt(struct seq_file *m, void *v)
988{
1a4eeaf2
AV
989 struct mount *r = list_entry(v, struct mount, mnt_list);
990 struct vfsmount *mnt = &r->mnt;
2d4d4864 991 int err = 0;
c32c2f63 992 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1da177e4 993
c7f404b4
AV
994 if (mnt->mnt_sb->s_op->show_devname) {
995 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
996 if (err)
997 goto out;
998 } else {
52ba1621 999 mangle(m, r->mnt_devname ? r->mnt_devname : "none");
c7f404b4 1000 }
1da177e4 1001 seq_putc(m, ' ');
c32c2f63 1002 seq_path(m, &mnt_path, " \t\n\\");
1da177e4 1003 seq_putc(m, ' ');
2d4d4864 1004 show_type(m, mnt->mnt_sb);
2e4b7fcd 1005 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
2069f457
EP
1006 err = show_sb_opts(m, mnt->mnt_sb);
1007 if (err)
1008 goto out;
2d4d4864 1009 show_mnt_opts(m, mnt);
1da177e4
LT
1010 if (mnt->mnt_sb->s_op->show_options)
1011 err = mnt->mnt_sb->s_op->show_options(m, mnt);
1012 seq_puts(m, " 0 0\n");
2069f457 1013out:
1da177e4
LT
1014 return err;
1015}
1016
a1a2c409 1017const struct seq_operations mounts_op = {
1da177e4
LT
1018 .start = m_start,
1019 .next = m_next,
1020 .stop = m_stop,
1021 .show = show_vfsmnt
1022};
1023
2d4d4864
RP
1024static int show_mountinfo(struct seq_file *m, void *v)
1025{
1026 struct proc_mounts *p = m->private;
1a4eeaf2
AV
1027 struct mount *r = list_entry(v, struct mount, mnt_list);
1028 struct vfsmount *mnt = &r->mnt;
2d4d4864
RP
1029 struct super_block *sb = mnt->mnt_sb;
1030 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1031 struct path root = p->root;
1032 int err = 0;
1033
15169fe7 1034 seq_printf(m, "%i %i %u:%u ", r->mnt_id, r->mnt_parent->mnt_id,
2d4d4864 1035 MAJOR(sb->s_dev), MINOR(sb->s_dev));
c7f404b4
AV
1036 if (sb->s_op->show_path)
1037 err = sb->s_op->show_path(m, mnt);
1038 else
1039 seq_dentry(m, mnt->mnt_root, " \t\n\\");
1040 if (err)
1041 goto out;
2d4d4864 1042 seq_putc(m, ' ');
02125a82
AV
1043
1044 /* mountpoints outside of chroot jail will give SEQ_SKIP on this */
1045 err = seq_path_root(m, &mnt_path, &root, " \t\n\\");
1046 if (err)
1047 goto out;
1048
2d4d4864
RP
1049 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
1050 show_mnt_opts(m, mnt);
1051
1052 /* Tagged fields ("foo:X" or "bar") */
fc7be130 1053 if (IS_MNT_SHARED(r))
15169fe7 1054 seq_printf(m, " shared:%i", r->mnt_group_id);
d10e8def 1055 if (IS_MNT_SLAVE(r)) {
15169fe7 1056 int master = r->mnt_master->mnt_group_id;
6fc7871f 1057 int dom = get_dominating_id(r, &p->root);
97e7e0f7
MS
1058 seq_printf(m, " master:%i", master);
1059 if (dom && dom != master)
1060 seq_printf(m, " propagate_from:%i", dom);
1061 }
fc7be130 1062 if (IS_MNT_UNBINDABLE(r))
2d4d4864
RP
1063 seq_puts(m, " unbindable");
1064
1065 /* Filesystem specific data */
1066 seq_puts(m, " - ");
1067 show_type(m, sb);
1068 seq_putc(m, ' ');
c7f404b4
AV
1069 if (sb->s_op->show_devname)
1070 err = sb->s_op->show_devname(m, mnt);
1071 else
52ba1621 1072 mangle(m, r->mnt_devname ? r->mnt_devname : "none");
c7f404b4
AV
1073 if (err)
1074 goto out;
2d4d4864 1075 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
2069f457
EP
1076 err = show_sb_opts(m, sb);
1077 if (err)
1078 goto out;
2d4d4864
RP
1079 if (sb->s_op->show_options)
1080 err = sb->s_op->show_options(m, mnt);
1081 seq_putc(m, '\n');
2069f457 1082out:
2d4d4864
RP
1083 return err;
1084}
1085
1086const struct seq_operations mountinfo_op = {
1087 .start = m_start,
1088 .next = m_next,
1089 .stop = m_stop,
1090 .show = show_mountinfo,
1091};
1092
b4629fe2
CL
1093static int show_vfsstat(struct seq_file *m, void *v)
1094{
1a4eeaf2
AV
1095 struct mount *r = list_entry(v, struct mount, mnt_list);
1096 struct vfsmount *mnt = &r->mnt;
c32c2f63 1097 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
b4629fe2
CL
1098 int err = 0;
1099
1100 /* device */
c7f404b4 1101 if (mnt->mnt_sb->s_op->show_devname) {
a877ee03 1102 seq_puts(m, "device ");
c7f404b4
AV
1103 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
1104 } else {
52ba1621 1105 if (r->mnt_devname) {
c7f404b4 1106 seq_puts(m, "device ");
52ba1621 1107 mangle(m, r->mnt_devname);
c7f404b4
AV
1108 } else
1109 seq_puts(m, "no device");
1110 }
b4629fe2
CL
1111
1112 /* mount point */
1113 seq_puts(m, " mounted on ");
c32c2f63 1114 seq_path(m, &mnt_path, " \t\n\\");
b4629fe2
CL
1115 seq_putc(m, ' ');
1116
1117 /* file system type */
1118 seq_puts(m, "with fstype ");
2d4d4864 1119 show_type(m, mnt->mnt_sb);
b4629fe2
CL
1120
1121 /* optional statistics */
1122 if (mnt->mnt_sb->s_op->show_stats) {
1123 seq_putc(m, ' ');
c7f404b4
AV
1124 if (!err)
1125 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
b4629fe2
CL
1126 }
1127
1128 seq_putc(m, '\n');
1129 return err;
1130}
1131
a1a2c409 1132const struct seq_operations mountstats_op = {
b4629fe2
CL
1133 .start = m_start,
1134 .next = m_next,
1135 .stop = m_stop,
1136 .show = show_vfsstat,
1137};
a1a2c409 1138#endif /* CONFIG_PROC_FS */
b4629fe2 1139
1da177e4
LT
1140/**
1141 * may_umount_tree - check if a mount tree is busy
1142 * @mnt: root of mount tree
1143 *
1144 * This is called to check if a tree of mounts has any
1145 * open files, pwds, chroots or sub mounts that are
1146 * busy.
1147 */
909b0a88 1148int may_umount_tree(struct vfsmount *m)
1da177e4 1149{
909b0a88 1150 struct mount *mnt = real_mount(m);
36341f64
RP
1151 int actual_refs = 0;
1152 int minimum_refs = 0;
315fc83e 1153 struct mount *p;
909b0a88 1154 BUG_ON(!m);
1da177e4 1155
b3e19d92
NP
1156 /* write lock needed for mnt_get_count */
1157 br_write_lock(vfsmount_lock);
909b0a88 1158 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1159 actual_refs += mnt_get_count(p);
1da177e4 1160 minimum_refs += 2;
1da177e4 1161 }
b3e19d92 1162 br_write_unlock(vfsmount_lock);
1da177e4
LT
1163
1164 if (actual_refs > minimum_refs)
e3474a8e 1165 return 0;
1da177e4 1166
e3474a8e 1167 return 1;
1da177e4
LT
1168}
1169
1170EXPORT_SYMBOL(may_umount_tree);
1171
1172/**
1173 * may_umount - check if a mount point is busy
1174 * @mnt: root of mount
1175 *
1176 * This is called to check if a mount point has any
1177 * open files, pwds, chroots or sub mounts. If the
1178 * mount has sub mounts this will return busy
1179 * regardless of whether the sub mounts are busy.
1180 *
1181 * Doesn't take quota and stuff into account. IOW, in some cases it will
1182 * give false negatives. The main reason why it's here is that we need
1183 * a non-destructive way to look for easily umountable filesystems.
1184 */
1185int may_umount(struct vfsmount *mnt)
1186{
e3474a8e 1187 int ret = 1;
8ad08d8a 1188 down_read(&namespace_sem);
b3e19d92 1189 br_write_lock(vfsmount_lock);
1ab59738 1190 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1191 ret = 0;
b3e19d92 1192 br_write_unlock(vfsmount_lock);
8ad08d8a 1193 up_read(&namespace_sem);
a05964f3 1194 return ret;
1da177e4
LT
1195}
1196
1197EXPORT_SYMBOL(may_umount);
1198
b90fa9ae 1199void release_mounts(struct list_head *head)
70fbcdf4 1200{
d5e50f74 1201 struct mount *mnt;
bf066c7d 1202 while (!list_empty(head)) {
1b8e5564
AV
1203 mnt = list_first_entry(head, struct mount, mnt_hash);
1204 list_del_init(&mnt->mnt_hash);
676da58d 1205 if (mnt_has_parent(mnt)) {
70fbcdf4 1206 struct dentry *dentry;
863d684f 1207 struct mount *m;
99b7db7b
NP
1208
1209 br_write_lock(vfsmount_lock);
a73324da 1210 dentry = mnt->mnt_mountpoint;
863d684f 1211 m = mnt->mnt_parent;
a73324da 1212 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1213 mnt->mnt_parent = mnt;
7c4b93d8 1214 m->mnt_ghosts--;
99b7db7b 1215 br_write_unlock(vfsmount_lock);
70fbcdf4 1216 dput(dentry);
863d684f 1217 mntput(&m->mnt);
70fbcdf4 1218 }
d5e50f74 1219 mntput(&mnt->mnt);
70fbcdf4
RP
1220 }
1221}
1222
99b7db7b
NP
1223/*
1224 * vfsmount lock must be held for write
1225 * namespace_sem must be held for write
1226 */
761d5c38 1227void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1da177e4 1228{
7b8a53fd 1229 LIST_HEAD(tmp_list);
315fc83e 1230 struct mount *p;
1da177e4 1231
909b0a88 1232 for (p = mnt; p; p = next_mnt(p, mnt))
1b8e5564 1233 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1234
a05964f3 1235 if (propagate)
7b8a53fd 1236 propagate_umount(&tmp_list);
a05964f3 1237
1b8e5564 1238 list_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1239 list_del_init(&p->mnt_expire);
1a4eeaf2 1240 list_del_init(&p->mnt_list);
143c8c91
AV
1241 __touch_mnt_namespace(p->mnt_ns);
1242 p->mnt_ns = NULL;
83adc753 1243 __mnt_make_shortterm(p);
6b41d536 1244 list_del_init(&p->mnt_child);
676da58d 1245 if (mnt_has_parent(p)) {
863d684f 1246 p->mnt_parent->mnt_ghosts++;
a73324da 1247 dentry_reset_mounted(p->mnt_mountpoint);
7c4b93d8 1248 }
0f0afb1d 1249 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1250 }
7b8a53fd 1251 list_splice(&tmp_list, kill);
1da177e4
LT
1252}
1253
692afc31 1254static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
c35038be 1255
1ab59738 1256static int do_umount(struct mount *mnt, int flags)
1da177e4 1257{
1ab59738 1258 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4 1259 int retval;
70fbcdf4 1260 LIST_HEAD(umount_list);
1da177e4 1261
1ab59738 1262 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1263 if (retval)
1264 return retval;
1265
1266 /*
1267 * Allow userspace to request a mountpoint be expired rather than
1268 * unmounting unconditionally. Unmount only happens if:
1269 * (1) the mark is already set (the mark is cleared by mntput())
1270 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1271 */
1272 if (flags & MNT_EXPIRE) {
1ab59738 1273 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1274 flags & (MNT_FORCE | MNT_DETACH))
1275 return -EINVAL;
1276
b3e19d92
NP
1277 /*
1278 * probably don't strictly need the lock here if we examined
1279 * all race cases, but it's a slowpath.
1280 */
1281 br_write_lock(vfsmount_lock);
83adc753 1282 if (mnt_get_count(mnt) != 2) {
bf9faa2a 1283 br_write_unlock(vfsmount_lock);
1da177e4 1284 return -EBUSY;
b3e19d92
NP
1285 }
1286 br_write_unlock(vfsmount_lock);
1da177e4 1287
863d684f 1288 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1289 return -EAGAIN;
1290 }
1291
1292 /*
1293 * If we may have to abort operations to get out of this
1294 * mount, and they will themselves hold resources we must
1295 * allow the fs to do things. In the Unix tradition of
1296 * 'Gee thats tricky lets do it in userspace' the umount_begin
1297 * might fail to complete on the first run through as other tasks
1298 * must return, and the like. Thats for the mount program to worry
1299 * about for the moment.
1300 */
1301
42faad99 1302 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1303 sb->s_op->umount_begin(sb);
42faad99 1304 }
1da177e4
LT
1305
1306 /*
1307 * No sense to grab the lock for this test, but test itself looks
1308 * somewhat bogus. Suggestions for better replacement?
1309 * Ho-hum... In principle, we might treat that as umount + switch
1310 * to rootfs. GC would eventually take care of the old vfsmount.
1311 * Actually it makes sense, especially if rootfs would contain a
1312 * /reboot - static binary that would close all descriptors and
1313 * call reboot(9). Then init(8) could umount root and exec /reboot.
1314 */
1ab59738 1315 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1316 /*
1317 * Special case for "unmounting" root ...
1318 * we just try to remount it readonly.
1319 */
1320 down_write(&sb->s_umount);
4aa98cf7 1321 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1322 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1323 up_write(&sb->s_umount);
1324 return retval;
1325 }
1326
390c6843 1327 down_write(&namespace_sem);
99b7db7b 1328 br_write_lock(vfsmount_lock);
5addc5dd 1329 event++;
1da177e4 1330
c35038be 1331 if (!(flags & MNT_DETACH))
1ab59738 1332 shrink_submounts(mnt, &umount_list);
c35038be 1333
1da177e4 1334 retval = -EBUSY;
a05964f3 1335 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1a4eeaf2 1336 if (!list_empty(&mnt->mnt_list))
1ab59738 1337 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1338 retval = 0;
1339 }
99b7db7b 1340 br_write_unlock(vfsmount_lock);
390c6843 1341 up_write(&namespace_sem);
70fbcdf4 1342 release_mounts(&umount_list);
1da177e4
LT
1343 return retval;
1344}
1345
1346/*
1347 * Now umount can handle mount points as well as block devices.
1348 * This is important for filesystems which use unnamed block devices.
1349 *
1350 * We now support a flag for forced unmount like the other 'big iron'
1351 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1352 */
1353
bdc480e3 1354SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1355{
2d8f3038 1356 struct path path;
900148dc 1357 struct mount *mnt;
1da177e4 1358 int retval;
db1f05bb 1359 int lookup_flags = 0;
1da177e4 1360
db1f05bb
MS
1361 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1362 return -EINVAL;
1363
1364 if (!(flags & UMOUNT_NOFOLLOW))
1365 lookup_flags |= LOOKUP_FOLLOW;
1366
1367 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1368 if (retval)
1369 goto out;
900148dc 1370 mnt = real_mount(path.mnt);
1da177e4 1371 retval = -EINVAL;
2d8f3038 1372 if (path.dentry != path.mnt->mnt_root)
1da177e4 1373 goto dput_and_out;
143c8c91 1374 if (!check_mnt(mnt))
1da177e4
LT
1375 goto dput_and_out;
1376
1377 retval = -EPERM;
1378 if (!capable(CAP_SYS_ADMIN))
1379 goto dput_and_out;
1380
900148dc 1381 retval = do_umount(mnt, flags);
1da177e4 1382dput_and_out:
429731b1 1383 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1384 dput(path.dentry);
900148dc 1385 mntput_no_expire(mnt);
1da177e4
LT
1386out:
1387 return retval;
1388}
1389
1390#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1391
1392/*
b58fed8b 1393 * The 2.0 compatible umount. No flags.
1da177e4 1394 */
bdc480e3 1395SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1396{
b58fed8b 1397 return sys_umount(name, 0);
1da177e4
LT
1398}
1399
1400#endif
1401
2d92ab3c 1402static int mount_is_safe(struct path *path)
1da177e4
LT
1403{
1404 if (capable(CAP_SYS_ADMIN))
1405 return 0;
1406 return -EPERM;
1407#ifdef notyet
2d92ab3c 1408 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1409 return -EPERM;
2d92ab3c 1410 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1411 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1412 return -EPERM;
1413 }
2d92ab3c 1414 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1415 return -EPERM;
1416 return 0;
1417#endif
1418}
1419
87129cc0 1420struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1421 int flag)
1da177e4 1422{
a73324da 1423 struct mount *res, *p, *q, *r;
1a390689 1424 struct path path;
1da177e4 1425
fc7be130 1426 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
9676f0c6
RP
1427 return NULL;
1428
36341f64 1429 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1430 if (!q)
1431 goto Enomem;
a73324da 1432 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1433
1434 p = mnt;
6b41d536 1435 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1436 struct mount *s;
7ec02ef1 1437 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1438 continue;
1439
909b0a88 1440 for (s = r; s; s = next_mnt(s, r)) {
fc7be130 1441 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
9676f0c6
RP
1442 s = skip_mnt_tree(s);
1443 continue;
1444 }
0714a533
AV
1445 while (p != s->mnt_parent) {
1446 p = p->mnt_parent;
1447 q = q->mnt_parent;
1da177e4 1448 }
87129cc0 1449 p = s;
cb338d06 1450 path.mnt = &q->mnt;
a73324da 1451 path.dentry = p->mnt_mountpoint;
87129cc0 1452 q = clone_mnt(p, p->mnt.mnt_root, flag);
1da177e4
LT
1453 if (!q)
1454 goto Enomem;
99b7db7b 1455 br_write_lock(vfsmount_lock);
1a4eeaf2 1456 list_add_tail(&q->mnt_list, &res->mnt_list);
cb338d06 1457 attach_mnt(q, &path);
99b7db7b 1458 br_write_unlock(vfsmount_lock);
1da177e4
LT
1459 }
1460 }
1461 return res;
b58fed8b 1462Enomem:
1da177e4 1463 if (res) {
70fbcdf4 1464 LIST_HEAD(umount_list);
99b7db7b 1465 br_write_lock(vfsmount_lock);
761d5c38 1466 umount_tree(res, 0, &umount_list);
99b7db7b 1467 br_write_unlock(vfsmount_lock);
70fbcdf4 1468 release_mounts(&umount_list);
1da177e4
LT
1469 }
1470 return NULL;
1471}
1472
589ff870 1473struct vfsmount *collect_mounts(struct path *path)
8aec0809 1474{
cb338d06 1475 struct mount *tree;
1a60a280 1476 down_write(&namespace_sem);
87129cc0
AV
1477 tree = copy_tree(real_mount(path->mnt), path->dentry,
1478 CL_COPY_ALL | CL_PRIVATE);
1a60a280 1479 up_write(&namespace_sem);
cb338d06 1480 return tree ? &tree->mnt : NULL;
8aec0809
AV
1481}
1482
1483void drop_collected_mounts(struct vfsmount *mnt)
1484{
1485 LIST_HEAD(umount_list);
1a60a280 1486 down_write(&namespace_sem);
99b7db7b 1487 br_write_lock(vfsmount_lock);
761d5c38 1488 umount_tree(real_mount(mnt), 0, &umount_list);
99b7db7b 1489 br_write_unlock(vfsmount_lock);
1a60a280 1490 up_write(&namespace_sem);
8aec0809
AV
1491 release_mounts(&umount_list);
1492}
1493
1f707137
AV
1494int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1495 struct vfsmount *root)
1496{
1a4eeaf2 1497 struct mount *mnt;
1f707137
AV
1498 int res = f(root, arg);
1499 if (res)
1500 return res;
1a4eeaf2
AV
1501 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1502 res = f(&mnt->mnt, arg);
1f707137
AV
1503 if (res)
1504 return res;
1505 }
1506 return 0;
1507}
1508
4b8b21f4 1509static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1510{
315fc83e 1511 struct mount *p;
719f5d7f 1512
909b0a88 1513 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1514 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1515 mnt_release_group_id(p);
719f5d7f
MS
1516 }
1517}
1518
4b8b21f4 1519static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1520{
315fc83e 1521 struct mount *p;
719f5d7f 1522
909b0a88 1523 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1524 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1525 int err = mnt_alloc_group_id(p);
719f5d7f 1526 if (err) {
4b8b21f4 1527 cleanup_group_ids(mnt, p);
719f5d7f
MS
1528 return err;
1529 }
1530 }
1531 }
1532
1533 return 0;
1534}
1535
b90fa9ae
RP
1536/*
1537 * @source_mnt : mount tree to be attached
21444403
RP
1538 * @nd : place the mount tree @source_mnt is attached
1539 * @parent_nd : if non-null, detach the source_mnt from its parent and
1540 * store the parent mount and mountpoint dentry.
1541 * (done when source_mnt is moved)
b90fa9ae
RP
1542 *
1543 * NOTE: in the table below explains the semantics when a source mount
1544 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1545 * ---------------------------------------------------------------------------
1546 * | BIND MOUNT OPERATION |
1547 * |**************************************************************************
1548 * | source-->| shared | private | slave | unbindable |
1549 * | dest | | | | |
1550 * | | | | | | |
1551 * | v | | | | |
1552 * |**************************************************************************
1553 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1554 * | | | | | |
1555 * |non-shared| shared (+) | private | slave (*) | invalid |
1556 * ***************************************************************************
b90fa9ae
RP
1557 * A bind operation clones the source mount and mounts the clone on the
1558 * destination mount.
1559 *
1560 * (++) the cloned mount is propagated to all the mounts in the propagation
1561 * tree of the destination mount and the cloned mount is added to
1562 * the peer group of the source mount.
1563 * (+) the cloned mount is created under the destination mount and is marked
1564 * as shared. The cloned mount is added to the peer group of the source
1565 * mount.
5afe0022
RP
1566 * (+++) the mount is propagated to all the mounts in the propagation tree
1567 * of the destination mount and the cloned mount is made slave
1568 * of the same master as that of the source mount. The cloned mount
1569 * is marked as 'shared and slave'.
1570 * (*) the cloned mount is made a slave of the same master as that of the
1571 * source mount.
1572 *
9676f0c6
RP
1573 * ---------------------------------------------------------------------------
1574 * | MOVE MOUNT OPERATION |
1575 * |**************************************************************************
1576 * | source-->| shared | private | slave | unbindable |
1577 * | dest | | | | |
1578 * | | | | | | |
1579 * | v | | | | |
1580 * |**************************************************************************
1581 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1582 * | | | | | |
1583 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1584 * ***************************************************************************
5afe0022
RP
1585 *
1586 * (+) the mount is moved to the destination. And is then propagated to
1587 * all the mounts in the propagation tree of the destination mount.
21444403 1588 * (+*) the mount is moved to the destination.
5afe0022
RP
1589 * (+++) the mount is moved to the destination and is then propagated to
1590 * all the mounts belonging to the destination mount's propagation tree.
1591 * the mount is marked as 'shared and slave'.
1592 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1593 *
1594 * if the source mount is a tree, the operations explained above is
1595 * applied to each mount in the tree.
1596 * Must be called without spinlocks held, since this function can sleep
1597 * in allocations.
1598 */
0fb54e50 1599static int attach_recursive_mnt(struct mount *source_mnt,
1a390689 1600 struct path *path, struct path *parent_path)
b90fa9ae
RP
1601{
1602 LIST_HEAD(tree_list);
a8d56d8e 1603 struct mount *dest_mnt = real_mount(path->mnt);
1a390689 1604 struct dentry *dest_dentry = path->dentry;
315fc83e 1605 struct mount *child, *p;
719f5d7f 1606 int err;
b90fa9ae 1607
fc7be130 1608 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1609 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1610 if (err)
1611 goto out;
1612 }
a8d56d8e 1613 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
719f5d7f
MS
1614 if (err)
1615 goto out_cleanup_ids;
b90fa9ae 1616
99b7db7b 1617 br_write_lock(vfsmount_lock);
df1a1ad2 1618
fc7be130 1619 if (IS_MNT_SHARED(dest_mnt)) {
909b0a88 1620 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1621 set_mnt_shared(p);
b90fa9ae 1622 }
1a390689 1623 if (parent_path) {
0fb54e50
AV
1624 detach_mnt(source_mnt, parent_path);
1625 attach_mnt(source_mnt, path);
143c8c91 1626 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1627 } else {
14cf1fa8 1628 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
0fb54e50 1629 commit_tree(source_mnt);
21444403 1630 }
b90fa9ae 1631
1b8e5564
AV
1632 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1633 list_del_init(&child->mnt_hash);
4b2619a5 1634 commit_tree(child);
b90fa9ae 1635 }
99b7db7b
NP
1636 br_write_unlock(vfsmount_lock);
1637
b90fa9ae 1638 return 0;
719f5d7f
MS
1639
1640 out_cleanup_ids:
fc7be130 1641 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1642 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1643 out:
1644 return err;
b90fa9ae
RP
1645}
1646
b12cea91
AV
1647static int lock_mount(struct path *path)
1648{
1649 struct vfsmount *mnt;
1650retry:
1651 mutex_lock(&path->dentry->d_inode->i_mutex);
1652 if (unlikely(cant_mount(path->dentry))) {
1653 mutex_unlock(&path->dentry->d_inode->i_mutex);
1654 return -ENOENT;
1655 }
1656 down_write(&namespace_sem);
1657 mnt = lookup_mnt(path);
1658 if (likely(!mnt))
1659 return 0;
1660 up_write(&namespace_sem);
1661 mutex_unlock(&path->dentry->d_inode->i_mutex);
1662 path_put(path);
1663 path->mnt = mnt;
1664 path->dentry = dget(mnt->mnt_root);
1665 goto retry;
1666}
1667
1668static void unlock_mount(struct path *path)
1669{
1670 up_write(&namespace_sem);
1671 mutex_unlock(&path->dentry->d_inode->i_mutex);
1672}
1673
95bc5f25 1674static int graft_tree(struct mount *mnt, struct path *path)
1da177e4 1675{
95bc5f25 1676 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1677 return -EINVAL;
1678
8c3ee42e 1679 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
95bc5f25 1680 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1681 return -ENOTDIR;
1682
b12cea91
AV
1683 if (d_unlinked(path->dentry))
1684 return -ENOENT;
1da177e4 1685
95bc5f25 1686 return attach_recursive_mnt(mnt, path, NULL);
1da177e4
LT
1687}
1688
7a2e8a8f
VA
1689/*
1690 * Sanity check the flags to change_mnt_propagation.
1691 */
1692
1693static int flags_to_propagation_type(int flags)
1694{
7c6e984d 1695 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1696
1697 /* Fail if any non-propagation flags are set */
1698 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1699 return 0;
1700 /* Only one propagation flag should be set */
1701 if (!is_power_of_2(type))
1702 return 0;
1703 return type;
1704}
1705
07b20889
RP
1706/*
1707 * recursively change the type of the mountpoint.
1708 */
0a0d8a46 1709static int do_change_type(struct path *path, int flag)
07b20889 1710{
315fc83e 1711 struct mount *m;
4b8b21f4 1712 struct mount *mnt = real_mount(path->mnt);
07b20889 1713 int recurse = flag & MS_REC;
7a2e8a8f 1714 int type;
719f5d7f 1715 int err = 0;
07b20889 1716
ee6f9582
MS
1717 if (!capable(CAP_SYS_ADMIN))
1718 return -EPERM;
1719
2d92ab3c 1720 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1721 return -EINVAL;
1722
7a2e8a8f
VA
1723 type = flags_to_propagation_type(flag);
1724 if (!type)
1725 return -EINVAL;
1726
07b20889 1727 down_write(&namespace_sem);
719f5d7f
MS
1728 if (type == MS_SHARED) {
1729 err = invent_group_ids(mnt, recurse);
1730 if (err)
1731 goto out_unlock;
1732 }
1733
99b7db7b 1734 br_write_lock(vfsmount_lock);
909b0a88 1735 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1736 change_mnt_propagation(m, type);
99b7db7b 1737 br_write_unlock(vfsmount_lock);
719f5d7f
MS
1738
1739 out_unlock:
07b20889 1740 up_write(&namespace_sem);
719f5d7f 1741 return err;
07b20889
RP
1742}
1743
1da177e4
LT
1744/*
1745 * do loopback mount.
1746 */
0a0d8a46 1747static int do_loopback(struct path *path, char *old_name,
2dafe1c4 1748 int recurse)
1da177e4 1749{
b12cea91 1750 LIST_HEAD(umount_list);
2d92ab3c 1751 struct path old_path;
87129cc0 1752 struct mount *mnt = NULL, *old;
2d92ab3c 1753 int err = mount_is_safe(path);
1da177e4
LT
1754 if (err)
1755 return err;
1756 if (!old_name || !*old_name)
1757 return -EINVAL;
815d405c 1758 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1759 if (err)
1760 return err;
1761
b12cea91
AV
1762 err = lock_mount(path);
1763 if (err)
1764 goto out;
1765
87129cc0
AV
1766 old = real_mount(old_path.mnt);
1767
1da177e4 1768 err = -EINVAL;
fc7be130 1769 if (IS_MNT_UNBINDABLE(old))
b12cea91 1770 goto out2;
9676f0c6 1771
143c8c91 1772 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
b12cea91 1773 goto out2;
1da177e4 1774
ccd48bc7
AV
1775 err = -ENOMEM;
1776 if (recurse)
87129cc0 1777 mnt = copy_tree(old, old_path.dentry, 0);
ccd48bc7 1778 else
87129cc0 1779 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7
AV
1780
1781 if (!mnt)
b12cea91 1782 goto out2;
ccd48bc7 1783
95bc5f25 1784 err = graft_tree(mnt, path);
ccd48bc7 1785 if (err) {
99b7db7b 1786 br_write_lock(vfsmount_lock);
761d5c38 1787 umount_tree(mnt, 0, &umount_list);
99b7db7b 1788 br_write_unlock(vfsmount_lock);
5b83d2c5 1789 }
b12cea91
AV
1790out2:
1791 unlock_mount(path);
1792 release_mounts(&umount_list);
ccd48bc7 1793out:
2d92ab3c 1794 path_put(&old_path);
1da177e4
LT
1795 return err;
1796}
1797
2e4b7fcd
DH
1798static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1799{
1800 int error = 0;
1801 int readonly_request = 0;
1802
1803 if (ms_flags & MS_RDONLY)
1804 readonly_request = 1;
1805 if (readonly_request == __mnt_is_readonly(mnt))
1806 return 0;
1807
1808 if (readonly_request)
83adc753 1809 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1810 else
83adc753 1811 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1812 return error;
1813}
1814
1da177e4
LT
1815/*
1816 * change filesystem flags. dir should be a physical root of filesystem.
1817 * If you've mounted a non-root directory somewhere and want to do remount
1818 * on it - tough luck.
1819 */
0a0d8a46 1820static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1821 void *data)
1822{
1823 int err;
2d92ab3c 1824 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1825 struct mount *mnt = real_mount(path->mnt);
1da177e4
LT
1826
1827 if (!capable(CAP_SYS_ADMIN))
1828 return -EPERM;
1829
143c8c91 1830 if (!check_mnt(mnt))
1da177e4
LT
1831 return -EINVAL;
1832
2d92ab3c 1833 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1834 return -EINVAL;
1835
ff36fe2c
EP
1836 err = security_sb_remount(sb, data);
1837 if (err)
1838 return err;
1839
1da177e4 1840 down_write(&sb->s_umount);
2e4b7fcd 1841 if (flags & MS_BIND)
2d92ab3c 1842 err = change_mount_flags(path->mnt, flags);
4aa98cf7 1843 else
2e4b7fcd 1844 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1845 if (!err) {
99b7db7b 1846 br_write_lock(vfsmount_lock);
143c8c91
AV
1847 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1848 mnt->mnt.mnt_flags = mnt_flags;
99b7db7b 1849 br_write_unlock(vfsmount_lock);
7b43a79f 1850 }
1da177e4 1851 up_write(&sb->s_umount);
0e55a7cc 1852 if (!err) {
99b7db7b 1853 br_write_lock(vfsmount_lock);
143c8c91 1854 touch_mnt_namespace(mnt->mnt_ns);
99b7db7b 1855 br_write_unlock(vfsmount_lock);
0e55a7cc 1856 }
1da177e4
LT
1857 return err;
1858}
1859
cbbe362c 1860static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1861{
315fc83e 1862 struct mount *p;
909b0a88 1863 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1864 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1865 return 1;
1866 }
1867 return 0;
1868}
1869
0a0d8a46 1870static int do_move_mount(struct path *path, char *old_name)
1da177e4 1871{
2d92ab3c 1872 struct path old_path, parent_path;
676da58d 1873 struct mount *p;
0fb54e50 1874 struct mount *old;
1da177e4
LT
1875 int err = 0;
1876 if (!capable(CAP_SYS_ADMIN))
1877 return -EPERM;
1878 if (!old_name || !*old_name)
1879 return -EINVAL;
2d92ab3c 1880 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1881 if (err)
1882 return err;
1883
b12cea91 1884 err = lock_mount(path);
cc53ce53
DH
1885 if (err < 0)
1886 goto out;
1887
143c8c91 1888 old = real_mount(old_path.mnt);
fc7be130 1889 p = real_mount(path->mnt);
143c8c91 1890
1da177e4 1891 err = -EINVAL;
fc7be130 1892 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1893 goto out1;
1894
f3da392e 1895 if (d_unlinked(path->dentry))
21444403 1896 goto out1;
1da177e4
LT
1897
1898 err = -EINVAL;
2d92ab3c 1899 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1900 goto out1;
1da177e4 1901
676da58d 1902 if (!mnt_has_parent(old))
21444403 1903 goto out1;
1da177e4 1904
2d92ab3c
AV
1905 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1906 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1907 goto out1;
1908 /*
1909 * Don't move a mount residing in a shared parent.
1910 */
fc7be130 1911 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1912 goto out1;
9676f0c6
RP
1913 /*
1914 * Don't move a mount tree containing unbindable mounts to a destination
1915 * mount which is shared.
1916 */
fc7be130 1917 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1918 goto out1;
1da177e4 1919 err = -ELOOP;
fc7be130 1920 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1921 if (p == old)
21444403 1922 goto out1;
1da177e4 1923
0fb54e50 1924 err = attach_recursive_mnt(old, path, &parent_path);
4ac91378 1925 if (err)
21444403 1926 goto out1;
1da177e4
LT
1927
1928 /* if the mount is moved, it should no longer be expire
1929 * automatically */
6776db3d 1930 list_del_init(&old->mnt_expire);
1da177e4 1931out1:
b12cea91 1932 unlock_mount(path);
1da177e4 1933out:
1da177e4 1934 if (!err)
1a390689 1935 path_put(&parent_path);
2d92ab3c 1936 path_put(&old_path);
1da177e4
LT
1937 return err;
1938}
1939
9d412a43
AV
1940static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1941{
1942 int err;
1943 const char *subtype = strchr(fstype, '.');
1944 if (subtype) {
1945 subtype++;
1946 err = -EINVAL;
1947 if (!subtype[0])
1948 goto err;
1949 } else
1950 subtype = "";
1951
1952 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1953 err = -ENOMEM;
1954 if (!mnt->mnt_sb->s_subtype)
1955 goto err;
1956 return mnt;
1957
1958 err:
1959 mntput(mnt);
1960 return ERR_PTR(err);
1961}
1962
79e801a9 1963static struct vfsmount *
9d412a43
AV
1964do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1965{
1966 struct file_system_type *type = get_fs_type(fstype);
1967 struct vfsmount *mnt;
1968 if (!type)
1969 return ERR_PTR(-ENODEV);
1970 mnt = vfs_kern_mount(type, flags, name, data);
1971 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1972 !mnt->mnt_sb->s_subtype)
1973 mnt = fs_set_subtype(mnt, fstype);
1974 put_filesystem(type);
1975 return mnt;
1976}
9d412a43
AV
1977
1978/*
1979 * add a mount into a namespace's mount tree
1980 */
95bc5f25 1981static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43
AV
1982{
1983 int err;
1984
1985 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1986
b12cea91
AV
1987 err = lock_mount(path);
1988 if (err)
1989 return err;
9d412a43
AV
1990
1991 err = -EINVAL;
143c8c91 1992 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(real_mount(path->mnt)))
9d412a43
AV
1993 goto unlock;
1994
1995 /* Refuse the same filesystem on the same mount point */
1996 err = -EBUSY;
95bc5f25 1997 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
1998 path->mnt->mnt_root == path->dentry)
1999 goto unlock;
2000
2001 err = -EINVAL;
95bc5f25 2002 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
2003 goto unlock;
2004
95bc5f25 2005 newmnt->mnt.mnt_flags = mnt_flags;
9d412a43
AV
2006 err = graft_tree(newmnt, path);
2007
2008unlock:
b12cea91 2009 unlock_mount(path);
9d412a43
AV
2010 return err;
2011}
b1e75df4 2012
1da177e4
LT
2013/*
2014 * create a new mount for userspace and request it to be added into the
2015 * namespace's tree
2016 */
0a0d8a46 2017static int do_new_mount(struct path *path, char *type, int flags,
1da177e4
LT
2018 int mnt_flags, char *name, void *data)
2019{
2020 struct vfsmount *mnt;
15f9a3f3 2021 int err;
1da177e4 2022
eca6f534 2023 if (!type)
1da177e4
LT
2024 return -EINVAL;
2025
2026 /* we need capabilities... */
2027 if (!capable(CAP_SYS_ADMIN))
2028 return -EPERM;
2029
2030 mnt = do_kern_mount(type, flags, name, data);
2031 if (IS_ERR(mnt))
2032 return PTR_ERR(mnt);
2033
95bc5f25 2034 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2035 if (err)
2036 mntput(mnt);
2037 return err;
1da177e4
LT
2038}
2039
19a167af
AV
2040int finish_automount(struct vfsmount *m, struct path *path)
2041{
6776db3d 2042 struct mount *mnt = real_mount(m);
19a167af
AV
2043 int err;
2044 /* The new mount record should have at least 2 refs to prevent it being
2045 * expired before we get a chance to add it
2046 */
6776db3d 2047 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2048
2049 if (m->mnt_sb == path->mnt->mnt_sb &&
2050 m->mnt_root == path->dentry) {
b1e75df4
AV
2051 err = -ELOOP;
2052 goto fail;
19a167af
AV
2053 }
2054
95bc5f25 2055 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2056 if (!err)
2057 return 0;
2058fail:
2059 /* remove m from any expiration list it may be on */
6776db3d 2060 if (!list_empty(&mnt->mnt_expire)) {
b1e75df4
AV
2061 down_write(&namespace_sem);
2062 br_write_lock(vfsmount_lock);
6776db3d 2063 list_del_init(&mnt->mnt_expire);
b1e75df4
AV
2064 br_write_unlock(vfsmount_lock);
2065 up_write(&namespace_sem);
19a167af 2066 }
b1e75df4
AV
2067 mntput(m);
2068 mntput(m);
19a167af
AV
2069 return err;
2070}
2071
ea5b778a
DH
2072/**
2073 * mnt_set_expiry - Put a mount on an expiration list
2074 * @mnt: The mount to list.
2075 * @expiry_list: The list to add the mount to.
2076 */
2077void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2078{
2079 down_write(&namespace_sem);
2080 br_write_lock(vfsmount_lock);
2081
6776db3d 2082 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a
DH
2083
2084 br_write_unlock(vfsmount_lock);
2085 up_write(&namespace_sem);
2086}
2087EXPORT_SYMBOL(mnt_set_expiry);
2088
1da177e4
LT
2089/*
2090 * process a list of expirable mountpoints with the intent of discarding any
2091 * mountpoints that aren't in use and haven't been touched since last we came
2092 * here
2093 */
2094void mark_mounts_for_expiry(struct list_head *mounts)
2095{
761d5c38 2096 struct mount *mnt, *next;
1da177e4 2097 LIST_HEAD(graveyard);
bcc5c7d2 2098 LIST_HEAD(umounts);
1da177e4
LT
2099
2100 if (list_empty(mounts))
2101 return;
2102
bcc5c7d2 2103 down_write(&namespace_sem);
99b7db7b 2104 br_write_lock(vfsmount_lock);
1da177e4
LT
2105
2106 /* extract from the expiration list every vfsmount that matches the
2107 * following criteria:
2108 * - only referenced by its parent vfsmount
2109 * - still marked for expiry (marked on the last call here; marks are
2110 * cleared by mntput())
2111 */
6776db3d 2112 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2113 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2114 propagate_mount_busy(mnt, 1))
1da177e4 2115 continue;
6776db3d 2116 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2117 }
bcc5c7d2 2118 while (!list_empty(&graveyard)) {
6776db3d 2119 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2120 touch_mnt_namespace(mnt->mnt_ns);
bcc5c7d2
AV
2121 umount_tree(mnt, 1, &umounts);
2122 }
99b7db7b 2123 br_write_unlock(vfsmount_lock);
bcc5c7d2
AV
2124 up_write(&namespace_sem);
2125
2126 release_mounts(&umounts);
5528f911
TM
2127}
2128
2129EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2130
2131/*
2132 * Ripoff of 'select_parent()'
2133 *
2134 * search the list of submounts for a given mountpoint, and move any
2135 * shrinkable submounts to the 'graveyard' list.
2136 */
692afc31 2137static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2138{
692afc31 2139 struct mount *this_parent = parent;
5528f911
TM
2140 struct list_head *next;
2141 int found = 0;
2142
2143repeat:
6b41d536 2144 next = this_parent->mnt_mounts.next;
5528f911 2145resume:
6b41d536 2146 while (next != &this_parent->mnt_mounts) {
5528f911 2147 struct list_head *tmp = next;
6b41d536 2148 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2149
2150 next = tmp->next;
692afc31 2151 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2152 continue;
5528f911
TM
2153 /*
2154 * Descend a level if the d_mounts list is non-empty.
2155 */
6b41d536 2156 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2157 this_parent = mnt;
2158 goto repeat;
2159 }
1da177e4 2160
1ab59738 2161 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2162 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2163 found++;
2164 }
1da177e4 2165 }
5528f911
TM
2166 /*
2167 * All done at this level ... ascend and resume the search
2168 */
2169 if (this_parent != parent) {
6b41d536 2170 next = this_parent->mnt_child.next;
0714a533 2171 this_parent = this_parent->mnt_parent;
5528f911
TM
2172 goto resume;
2173 }
2174 return found;
2175}
2176
2177/*
2178 * process a list of expirable mountpoints with the intent of discarding any
2179 * submounts of a specific parent mountpoint
99b7db7b
NP
2180 *
2181 * vfsmount_lock must be held for write
5528f911 2182 */
692afc31 2183static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
5528f911
TM
2184{
2185 LIST_HEAD(graveyard);
761d5c38 2186 struct mount *m;
5528f911 2187
5528f911 2188 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2189 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2190 while (!list_empty(&graveyard)) {
761d5c38 2191 m = list_first_entry(&graveyard, struct mount,
6776db3d 2192 mnt_expire);
143c8c91 2193 touch_mnt_namespace(m->mnt_ns);
afef80b3 2194 umount_tree(m, 1, umounts);
bcc5c7d2
AV
2195 }
2196 }
1da177e4
LT
2197}
2198
1da177e4
LT
2199/*
2200 * Some copy_from_user() implementations do not return the exact number of
2201 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2202 * Note that this function differs from copy_from_user() in that it will oops
2203 * on bad values of `to', rather than returning a short copy.
2204 */
b58fed8b
RP
2205static long exact_copy_from_user(void *to, const void __user * from,
2206 unsigned long n)
1da177e4
LT
2207{
2208 char *t = to;
2209 const char __user *f = from;
2210 char c;
2211
2212 if (!access_ok(VERIFY_READ, from, n))
2213 return n;
2214
2215 while (n) {
2216 if (__get_user(c, f)) {
2217 memset(t, 0, n);
2218 break;
2219 }
2220 *t++ = c;
2221 f++;
2222 n--;
2223 }
2224 return n;
2225}
2226
b58fed8b 2227int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2228{
2229 int i;
2230 unsigned long page;
2231 unsigned long size;
b58fed8b 2232
1da177e4
LT
2233 *where = 0;
2234 if (!data)
2235 return 0;
2236
2237 if (!(page = __get_free_page(GFP_KERNEL)))
2238 return -ENOMEM;
2239
2240 /* We only care that *some* data at the address the user
2241 * gave us is valid. Just in case, we'll zero
2242 * the remainder of the page.
2243 */
2244 /* copy_from_user cannot cross TASK_SIZE ! */
2245 size = TASK_SIZE - (unsigned long)data;
2246 if (size > PAGE_SIZE)
2247 size = PAGE_SIZE;
2248
2249 i = size - exact_copy_from_user((void *)page, data, size);
2250 if (!i) {
b58fed8b 2251 free_page(page);
1da177e4
LT
2252 return -EFAULT;
2253 }
2254 if (i != PAGE_SIZE)
2255 memset((char *)page + i, 0, PAGE_SIZE - i);
2256 *where = page;
2257 return 0;
2258}
2259
eca6f534
VN
2260int copy_mount_string(const void __user *data, char **where)
2261{
2262 char *tmp;
2263
2264 if (!data) {
2265 *where = NULL;
2266 return 0;
2267 }
2268
2269 tmp = strndup_user(data, PAGE_SIZE);
2270 if (IS_ERR(tmp))
2271 return PTR_ERR(tmp);
2272
2273 *where = tmp;
2274 return 0;
2275}
2276
1da177e4
LT
2277/*
2278 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2279 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2280 *
2281 * data is a (void *) that can point to any structure up to
2282 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2283 * information (or be NULL).
2284 *
2285 * Pre-0.97 versions of mount() didn't have a flags word.
2286 * When the flags word was introduced its top half was required
2287 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2288 * Therefore, if this magic number is present, it carries no information
2289 * and must be discarded.
2290 */
b58fed8b 2291long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
2292 unsigned long flags, void *data_page)
2293{
2d92ab3c 2294 struct path path;
1da177e4
LT
2295 int retval = 0;
2296 int mnt_flags = 0;
2297
2298 /* Discard magic */
2299 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2300 flags &= ~MS_MGC_MSK;
2301
2302 /* Basic sanity checks */
2303
2304 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2305 return -EINVAL;
1da177e4
LT
2306
2307 if (data_page)
2308 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2309
a27ab9f2
TH
2310 /* ... and get the mountpoint */
2311 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2312 if (retval)
2313 return retval;
2314
2315 retval = security_sb_mount(dev_name, &path,
2316 type_page, flags, data_page);
2317 if (retval)
2318 goto dput_out;
2319
613cbe3d
AK
2320 /* Default to relatime unless overriden */
2321 if (!(flags & MS_NOATIME))
2322 mnt_flags |= MNT_RELATIME;
0a1c01c9 2323
1da177e4
LT
2324 /* Separate the per-mountpoint flags */
2325 if (flags & MS_NOSUID)
2326 mnt_flags |= MNT_NOSUID;
2327 if (flags & MS_NODEV)
2328 mnt_flags |= MNT_NODEV;
2329 if (flags & MS_NOEXEC)
2330 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2331 if (flags & MS_NOATIME)
2332 mnt_flags |= MNT_NOATIME;
2333 if (flags & MS_NODIRATIME)
2334 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2335 if (flags & MS_STRICTATIME)
2336 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2337 if (flags & MS_RDONLY)
2338 mnt_flags |= MNT_READONLY;
fc33a7bb 2339
7a4dec53 2340 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2341 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2342 MS_STRICTATIME);
1da177e4 2343
1da177e4 2344 if (flags & MS_REMOUNT)
2d92ab3c 2345 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2346 data_page);
2347 else if (flags & MS_BIND)
2d92ab3c 2348 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2349 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2350 retval = do_change_type(&path, flags);
1da177e4 2351 else if (flags & MS_MOVE)
2d92ab3c 2352 retval = do_move_mount(&path, dev_name);
1da177e4 2353 else
2d92ab3c 2354 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2355 dev_name, data_page);
2356dput_out:
2d92ab3c 2357 path_put(&path);
1da177e4
LT
2358 return retval;
2359}
2360
cf8d2c11
TM
2361static struct mnt_namespace *alloc_mnt_ns(void)
2362{
2363 struct mnt_namespace *new_ns;
2364
2365 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2366 if (!new_ns)
2367 return ERR_PTR(-ENOMEM);
2368 atomic_set(&new_ns->count, 1);
2369 new_ns->root = NULL;
2370 INIT_LIST_HEAD(&new_ns->list);
2371 init_waitqueue_head(&new_ns->poll);
2372 new_ns->event = 0;
2373 return new_ns;
2374}
2375
f03c6599
AV
2376void mnt_make_longterm(struct vfsmount *mnt)
2377{
83adc753 2378 __mnt_make_longterm(real_mount(mnt));
f03c6599
AV
2379}
2380
83adc753 2381void mnt_make_shortterm(struct vfsmount *m)
f03c6599 2382{
7e3d0eb0 2383#ifdef CONFIG_SMP
83adc753 2384 struct mount *mnt = real_mount(m);
68e8a9fe 2385 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
f03c6599
AV
2386 return;
2387 br_write_lock(vfsmount_lock);
68e8a9fe 2388 atomic_dec(&mnt->mnt_longterm);
f03c6599 2389 br_write_unlock(vfsmount_lock);
7e3d0eb0 2390#endif
f03c6599
AV
2391}
2392
741a2951
JD
2393/*
2394 * Allocate a new namespace structure and populate it with contents
2395 * copied from the namespace of the passed in task structure.
2396 */
e3222c4e 2397static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 2398 struct fs_struct *fs)
1da177e4 2399{
6b3286ed 2400 struct mnt_namespace *new_ns;
7f2da1e7 2401 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2402 struct mount *p, *q;
909b0a88 2403 struct mount *old = real_mount(mnt_ns->root);
cb338d06 2404 struct mount *new;
1da177e4 2405
cf8d2c11
TM
2406 new_ns = alloc_mnt_ns();
2407 if (IS_ERR(new_ns))
2408 return new_ns;
1da177e4 2409
390c6843 2410 down_write(&namespace_sem);
1da177e4 2411 /* First pass: copy the tree topology */
909b0a88 2412 new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE);
cb338d06 2413 if (!new) {
390c6843 2414 up_write(&namespace_sem);
1da177e4 2415 kfree(new_ns);
5cc4a034 2416 return ERR_PTR(-ENOMEM);
1da177e4 2417 }
cb338d06 2418 new_ns->root = &new->mnt;
99b7db7b 2419 br_write_lock(vfsmount_lock);
1a4eeaf2 2420 list_add_tail(&new_ns->list, &new->mnt_list);
99b7db7b 2421 br_write_unlock(vfsmount_lock);
1da177e4
LT
2422
2423 /*
2424 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2425 * as belonging to new namespace. We have already acquired a private
2426 * fs_struct, so tsk->fs->lock is not needed.
2427 */
909b0a88 2428 p = old;
cb338d06 2429 q = new;
1da177e4 2430 while (p) {
143c8c91 2431 q->mnt_ns = new_ns;
83adc753 2432 __mnt_make_longterm(q);
1da177e4 2433 if (fs) {
315fc83e
AV
2434 if (&p->mnt == fs->root.mnt) {
2435 fs->root.mnt = mntget(&q->mnt);
83adc753 2436 __mnt_make_longterm(q);
315fc83e
AV
2437 mnt_make_shortterm(&p->mnt);
2438 rootmnt = &p->mnt;
1da177e4 2439 }
315fc83e
AV
2440 if (&p->mnt == fs->pwd.mnt) {
2441 fs->pwd.mnt = mntget(&q->mnt);
83adc753 2442 __mnt_make_longterm(q);
315fc83e
AV
2443 mnt_make_shortterm(&p->mnt);
2444 pwdmnt = &p->mnt;
1da177e4 2445 }
1da177e4 2446 }
909b0a88
AV
2447 p = next_mnt(p, old);
2448 q = next_mnt(q, new);
1da177e4 2449 }
390c6843 2450 up_write(&namespace_sem);
1da177e4 2451
1da177e4 2452 if (rootmnt)
f03c6599 2453 mntput(rootmnt);
1da177e4 2454 if (pwdmnt)
f03c6599 2455 mntput(pwdmnt);
1da177e4 2456
741a2951
JD
2457 return new_ns;
2458}
2459
213dd266 2460struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2461 struct fs_struct *new_fs)
741a2951 2462{
6b3286ed 2463 struct mnt_namespace *new_ns;
741a2951 2464
e3222c4e 2465 BUG_ON(!ns);
6b3286ed 2466 get_mnt_ns(ns);
741a2951
JD
2467
2468 if (!(flags & CLONE_NEWNS))
e3222c4e 2469 return ns;
741a2951 2470
e3222c4e 2471 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2472
6b3286ed 2473 put_mnt_ns(ns);
e3222c4e 2474 return new_ns;
1da177e4
LT
2475}
2476
cf8d2c11
TM
2477/**
2478 * create_mnt_ns - creates a private namespace and adds a root filesystem
2479 * @mnt: pointer to the new root filesystem mountpoint
2480 */
1a4eeaf2 2481static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2482{
1a4eeaf2 2483 struct mnt_namespace *new_ns = alloc_mnt_ns();
cf8d2c11 2484 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2485 struct mount *mnt = real_mount(m);
2486 mnt->mnt_ns = new_ns;
2487 __mnt_make_longterm(mnt);
2488 new_ns->root = m;
2489 list_add(&new_ns->list, &mnt->mnt_list);
c1334495 2490 } else {
1a4eeaf2 2491 mntput(m);
cf8d2c11
TM
2492 }
2493 return new_ns;
2494}
cf8d2c11 2495
ea441d11
AV
2496struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2497{
2498 struct mnt_namespace *ns;
d31da0f0 2499 struct super_block *s;
ea441d11
AV
2500 struct path path;
2501 int err;
2502
2503 ns = create_mnt_ns(mnt);
2504 if (IS_ERR(ns))
2505 return ERR_CAST(ns);
2506
2507 err = vfs_path_lookup(mnt->mnt_root, mnt,
2508 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2509
2510 put_mnt_ns(ns);
2511
2512 if (err)
2513 return ERR_PTR(err);
2514
2515 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2516 s = path.mnt->mnt_sb;
2517 atomic_inc(&s->s_active);
ea441d11
AV
2518 mntput(path.mnt);
2519 /* lock the sucker */
d31da0f0 2520 down_write(&s->s_umount);
ea441d11
AV
2521 /* ... and return the root of (sub)tree on it */
2522 return path.dentry;
2523}
2524EXPORT_SYMBOL(mount_subtree);
2525
bdc480e3
HC
2526SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2527 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2528{
eca6f534
VN
2529 int ret;
2530 char *kernel_type;
2531 char *kernel_dir;
2532 char *kernel_dev;
1da177e4 2533 unsigned long data_page;
1da177e4 2534
eca6f534
VN
2535 ret = copy_mount_string(type, &kernel_type);
2536 if (ret < 0)
2537 goto out_type;
1da177e4 2538
eca6f534
VN
2539 kernel_dir = getname(dir_name);
2540 if (IS_ERR(kernel_dir)) {
2541 ret = PTR_ERR(kernel_dir);
2542 goto out_dir;
2543 }
1da177e4 2544
eca6f534
VN
2545 ret = copy_mount_string(dev_name, &kernel_dev);
2546 if (ret < 0)
2547 goto out_dev;
1da177e4 2548
eca6f534
VN
2549 ret = copy_mount_options(data, &data_page);
2550 if (ret < 0)
2551 goto out_data;
1da177e4 2552
eca6f534
VN
2553 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2554 (void *) data_page);
1da177e4 2555
eca6f534
VN
2556 free_page(data_page);
2557out_data:
2558 kfree(kernel_dev);
2559out_dev:
2560 putname(kernel_dir);
2561out_dir:
2562 kfree(kernel_type);
2563out_type:
2564 return ret;
1da177e4
LT
2565}
2566
afac7cba
AV
2567/*
2568 * Return true if path is reachable from root
2569 *
2570 * namespace_sem or vfsmount_lock is held
2571 */
643822b4 2572bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2573 const struct path *root)
2574{
643822b4 2575 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2576 dentry = mnt->mnt_mountpoint;
0714a533 2577 mnt = mnt->mnt_parent;
afac7cba 2578 }
643822b4 2579 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2580}
2581
2582int path_is_under(struct path *path1, struct path *path2)
2583{
2584 int res;
2585 br_read_lock(vfsmount_lock);
643822b4 2586 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
afac7cba
AV
2587 br_read_unlock(vfsmount_lock);
2588 return res;
2589}
2590EXPORT_SYMBOL(path_is_under);
2591
1da177e4
LT
2592/*
2593 * pivot_root Semantics:
2594 * Moves the root file system of the current process to the directory put_old,
2595 * makes new_root as the new root file system of the current process, and sets
2596 * root/cwd of all processes which had them on the current root to new_root.
2597 *
2598 * Restrictions:
2599 * The new_root and put_old must be directories, and must not be on the
2600 * same file system as the current process root. The put_old must be
2601 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2602 * pointed to by put_old must yield the same directory as new_root. No other
2603 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2604 *
4a0d11fa
NB
2605 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2606 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2607 * in this situation.
2608 *
1da177e4
LT
2609 * Notes:
2610 * - we don't move root/cwd if they are not at the root (reason: if something
2611 * cared enough to change them, it's probably wrong to force them elsewhere)
2612 * - it's okay to pick a root that isn't the root of a file system, e.g.
2613 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2614 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2615 * first.
2616 */
3480b257
HC
2617SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2618 const char __user *, put_old)
1da177e4 2619{
2d8f3038 2620 struct path new, old, parent_path, root_parent, root;
419148da 2621 struct mount *new_mnt, *root_mnt;
1da177e4
LT
2622 int error;
2623
2624 if (!capable(CAP_SYS_ADMIN))
2625 return -EPERM;
2626
2d8f3038 2627 error = user_path_dir(new_root, &new);
1da177e4
LT
2628 if (error)
2629 goto out0;
1da177e4 2630
2d8f3038 2631 error = user_path_dir(put_old, &old);
1da177e4
LT
2632 if (error)
2633 goto out1;
2634
2d8f3038 2635 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2636 if (error)
2637 goto out2;
1da177e4 2638
f7ad3c6b 2639 get_fs_root(current->fs, &root);
b12cea91
AV
2640 error = lock_mount(&old);
2641 if (error)
2642 goto out3;
2643
1da177e4 2644 error = -EINVAL;
419148da
AV
2645 new_mnt = real_mount(new.mnt);
2646 root_mnt = real_mount(root.mnt);
fc7be130
AV
2647 if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2648 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2649 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2650 goto out4;
143c8c91 2651 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2652 goto out4;
1da177e4 2653 error = -ENOENT;
f3da392e 2654 if (d_unlinked(new.dentry))
b12cea91 2655 goto out4;
f3da392e 2656 if (d_unlinked(old.dentry))
b12cea91 2657 goto out4;
1da177e4 2658 error = -EBUSY;
2d8f3038
AV
2659 if (new.mnt == root.mnt ||
2660 old.mnt == root.mnt)
b12cea91 2661 goto out4; /* loop, on the same file system */
1da177e4 2662 error = -EINVAL;
8c3ee42e 2663 if (root.mnt->mnt_root != root.dentry)
b12cea91 2664 goto out4; /* not a mountpoint */
676da58d 2665 if (!mnt_has_parent(root_mnt))
b12cea91 2666 goto out4; /* not attached */
2d8f3038 2667 if (new.mnt->mnt_root != new.dentry)
b12cea91 2668 goto out4; /* not a mountpoint */
676da58d 2669 if (!mnt_has_parent(new_mnt))
b12cea91 2670 goto out4; /* not attached */
4ac91378 2671 /* make sure we can reach put_old from new_root */
643822b4 2672 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
b12cea91 2673 goto out4;
27cb1572 2674 br_write_lock(vfsmount_lock);
419148da
AV
2675 detach_mnt(new_mnt, &parent_path);
2676 detach_mnt(root_mnt, &root_parent);
4ac91378 2677 /* mount old root on put_old */
419148da 2678 attach_mnt(root_mnt, &old);
4ac91378 2679 /* mount new_root on / */
419148da 2680 attach_mnt(new_mnt, &root_parent);
6b3286ed 2681 touch_mnt_namespace(current->nsproxy->mnt_ns);
99b7db7b 2682 br_write_unlock(vfsmount_lock);
2d8f3038 2683 chroot_fs_refs(&root, &new);
1da177e4 2684 error = 0;
b12cea91
AV
2685out4:
2686 unlock_mount(&old);
2687 if (!error) {
2688 path_put(&root_parent);
2689 path_put(&parent_path);
2690 }
2691out3:
8c3ee42e 2692 path_put(&root);
b12cea91 2693out2:
2d8f3038 2694 path_put(&old);
1da177e4 2695out1:
2d8f3038 2696 path_put(&new);
1da177e4 2697out0:
1da177e4 2698 return error;
1da177e4
LT
2699}
2700
2701static void __init init_mount_tree(void)
2702{
2703 struct vfsmount *mnt;
6b3286ed 2704 struct mnt_namespace *ns;
ac748a09 2705 struct path root;
1da177e4
LT
2706
2707 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2708 if (IS_ERR(mnt))
2709 panic("Can't create rootfs");
b3e19d92 2710
3b22edc5
TM
2711 ns = create_mnt_ns(mnt);
2712 if (IS_ERR(ns))
1da177e4 2713 panic("Can't allocate initial namespace");
6b3286ed
KK
2714
2715 init_task.nsproxy->mnt_ns = ns;
2716 get_mnt_ns(ns);
2717
ac748a09
JB
2718 root.mnt = ns->root;
2719 root.dentry = ns->root->mnt_root;
2720
2721 set_fs_pwd(current->fs, &root);
2722 set_fs_root(current->fs, &root);
1da177e4
LT
2723}
2724
74bf17cf 2725void __init mnt_init(void)
1da177e4 2726{
13f14b4d 2727 unsigned u;
15a67dd8 2728 int err;
1da177e4 2729
390c6843
RP
2730 init_rwsem(&namespace_sem);
2731
7d6fec45 2732 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2733 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2734
b58fed8b 2735 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2736
2737 if (!mount_hashtable)
2738 panic("Failed to allocate mount hash table\n");
2739
80cdc6da 2740 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2741
2742 for (u = 0; u < HASH_SIZE; u++)
2743 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2744
99b7db7b
NP
2745 br_lock_init(vfsmount_lock);
2746
15a67dd8
RD
2747 err = sysfs_init();
2748 if (err)
2749 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2750 __func__, err);
00d26666
GKH
2751 fs_kobj = kobject_create_and_add("fs", NULL);
2752 if (!fs_kobj)
8e24eea7 2753 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2754 init_rootfs();
2755 init_mount_tree();
2756}
2757
616511d0 2758void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2759{
70fbcdf4 2760 LIST_HEAD(umount_list);
616511d0 2761
d498b25a 2762 if (!atomic_dec_and_test(&ns->count))
616511d0 2763 return;
390c6843 2764 down_write(&namespace_sem);
99b7db7b 2765 br_write_lock(vfsmount_lock);
761d5c38 2766 umount_tree(real_mount(ns->root), 0, &umount_list);
99b7db7b 2767 br_write_unlock(vfsmount_lock);
390c6843 2768 up_write(&namespace_sem);
70fbcdf4 2769 release_mounts(&umount_list);
6b3286ed 2770 kfree(ns);
1da177e4 2771}
9d412a43
AV
2772
2773struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2774{
423e0ab0
TC
2775 struct vfsmount *mnt;
2776 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2777 if (!IS_ERR(mnt)) {
2778 /*
2779 * it is a longterm mount, don't release mnt until
2780 * we unmount before file sys is unregistered
2781 */
2782 mnt_make_longterm(mnt);
2783 }
2784 return mnt;
9d412a43
AV
2785}
2786EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2787
2788void kern_unmount(struct vfsmount *mnt)
2789{
2790 /* release long term mount so mount point can be released */
2791 if (!IS_ERR_OR_NULL(mnt)) {
2792 mnt_make_shortterm(mnt);
2793 mntput(mnt);
2794 }
2795}
2796EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2797
2798bool our_mnt(struct vfsmount *mnt)
2799{
143c8c91 2800 return check_mnt(real_mount(mnt));
02125a82 2801}