]> git.ipfire.org Git - people/ms/u-boot.git/blame - drivers/net/fec_mxc.c
FEC: Allow multiple FECes
[people/ms/u-boot.git] / drivers / net / fec_mxc.c
CommitLineData
0b23fb36
IY
1/*
2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4 * (C) Copyright 2008 Armadeus Systems nc
5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24#include <common.h>
25#include <malloc.h>
26#include <net.h>
27#include <miiphy.h>
28#include "fec_mxc.h"
29
30#include <asm/arch/clock.h>
31#include <asm/arch/imx-regs.h>
32#include <asm/io.h>
33#include <asm/errno.h>
34
35DECLARE_GLOBAL_DATA_PTR;
36
37#ifndef CONFIG_MII
38#error "CONFIG_MII has to be defined!"
39#endif
40
392b8502
MV
41#ifndef CONFIG_FEC_XCV_TYPE
42#define CONFIG_FEC_XCV_TYPE MII100
43#endif
44
0b23fb36
IY
45#undef DEBUG
46
47struct nbuf {
48 uint8_t data[1500]; /**< actual data */
49 int length; /**< actual length */
50 int used; /**< buffer in use or not */
51 uint8_t head[16]; /**< MAC header(6 + 6 + 2) + 2(aligned) */
52};
53
0b23fb36
IY
54/*
55 * MII-interface related functions
56 */
5700bb63 57static int fec_miiphy_read(const char *dev, uint8_t phyAddr, uint8_t regAddr,
0b23fb36
IY
58 uint16_t *retVal)
59{
60 struct eth_device *edev = eth_get_dev_by_name(dev);
61 struct fec_priv *fec = (struct fec_priv *)edev->priv;
d133b881 62 struct ethernet_regs *eth = fec->eth;
0b23fb36
IY
63
64 uint32_t reg; /* convenient holder for the PHY register */
65 uint32_t phy; /* convenient holder for the PHY */
66 uint32_t start;
67
68 /*
69 * reading from any PHY's register is done by properly
70 * programming the FEC's MII data register.
71 */
d133b881 72 writel(FEC_IEVENT_MII, &eth->ievent);
0b23fb36
IY
73 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
74 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
75
76 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
d133b881 77 phy | reg, &eth->mii_data);
0b23fb36
IY
78
79 /*
80 * wait for the related interrupt
81 */
a60d1e5b 82 start = get_timer(0);
d133b881 83 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
0b23fb36
IY
84 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
85 printf("Read MDIO failed...\n");
86 return -1;
87 }
88 }
89
90 /*
91 * clear mii interrupt bit
92 */
d133b881 93 writel(FEC_IEVENT_MII, &eth->ievent);
0b23fb36
IY
94
95 /*
96 * it's now safe to read the PHY's register
97 */
d133b881 98 *retVal = readl(&eth->mii_data);
0b23fb36
IY
99 debug("fec_miiphy_read: phy: %02x reg:%02x val:%#x\n", phyAddr,
100 regAddr, *retVal);
101 return 0;
102}
103
4294b248
SB
104static void fec_mii_setspeed(struct fec_priv *fec)
105{
106 /*
107 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
108 * and do not drop the Preamble.
109 */
110 writel((((imx_get_fecclk() / 1000000) + 2) / 5) << 1,
111 &fec->eth->mii_speed);
112 debug("fec_init: mii_speed %#lx\n",
879cf261 113 readl(&fec->eth->mii_speed));
4294b248 114}
5700bb63 115static int fec_miiphy_write(const char *dev, uint8_t phyAddr, uint8_t regAddr,
0b23fb36
IY
116 uint16_t data)
117{
118 struct eth_device *edev = eth_get_dev_by_name(dev);
119 struct fec_priv *fec = (struct fec_priv *)edev->priv;
d133b881 120 struct ethernet_regs *eth = fec->eth;
0b23fb36
IY
121
122 uint32_t reg; /* convenient holder for the PHY register */
123 uint32_t phy; /* convenient holder for the PHY */
124 uint32_t start;
125
126 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
127 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
128
129 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
d133b881 130 FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
0b23fb36
IY
131
132 /*
133 * wait for the MII interrupt
134 */
a60d1e5b 135 start = get_timer(0);
d133b881 136 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
0b23fb36
IY
137 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
138 printf("Write MDIO failed...\n");
139 return -1;
140 }
141 }
142
143 /*
144 * clear MII interrupt bit
145 */
d133b881 146 writel(FEC_IEVENT_MII, &eth->ievent);
0b23fb36
IY
147 debug("fec_miiphy_write: phy: %02x reg:%02x val:%#x\n", phyAddr,
148 regAddr, data);
149
150 return 0;
151}
152
153static int miiphy_restart_aneg(struct eth_device *dev)
154{
9e27e9dc
MV
155 struct fec_priv *fec = (struct fec_priv *)dev->priv;
156
0b23fb36
IY
157 /*
158 * Wake up from sleep if necessary
159 * Reset PHY, then delay 300ns
160 */
cb17b92d 161#ifdef CONFIG_MX27
9e27e9dc 162 miiphy_write(dev->name, fec->phy_id, MII_DCOUNTER, 0x00FF);
cb17b92d 163#endif
9e27e9dc 164 miiphy_write(dev->name, fec->phy_id, MII_BMCR,
8ef583a0 165 BMCR_RESET);
0b23fb36
IY
166 udelay(1000);
167
168 /*
169 * Set the auto-negotiation advertisement register bits
170 */
9e27e9dc 171 miiphy_write(dev->name, fec->phy_id, MII_ADVERTISE,
8ef583a0
MF
172 LPA_100FULL | LPA_100HALF | LPA_10FULL |
173 LPA_10HALF | PHY_ANLPAR_PSB_802_3);
9e27e9dc 174 miiphy_write(dev->name, fec->phy_id, MII_BMCR,
8ef583a0 175 BMCR_ANENABLE | BMCR_ANRESTART);
0b23fb36
IY
176 return 0;
177}
178
179static int miiphy_wait_aneg(struct eth_device *dev)
180{
181 uint32_t start;
182 uint16_t status;
9e27e9dc 183 struct fec_priv *fec = (struct fec_priv *)dev->priv;
0b23fb36
IY
184
185 /*
186 * Wait for AN completion
187 */
a60d1e5b 188 start = get_timer(0);
0b23fb36
IY
189 do {
190 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
191 printf("%s: Autonegotiation timeout\n", dev->name);
192 return -1;
193 }
194
9e27e9dc 195 if (miiphy_read(dev->name, fec->phy_id,
8ef583a0 196 MII_BMSR, &status)) {
0b23fb36
IY
197 printf("%s: Autonegotiation failed. status: 0x%04x\n",
198 dev->name, status);
199 return -1;
200 }
8ef583a0 201 } while (!(status & BMSR_LSTATUS));
0b23fb36
IY
202
203 return 0;
204}
205static int fec_rx_task_enable(struct fec_priv *fec)
206{
207 writel(1 << 24, &fec->eth->r_des_active);
208 return 0;
209}
210
211static int fec_rx_task_disable(struct fec_priv *fec)
212{
213 return 0;
214}
215
216static int fec_tx_task_enable(struct fec_priv *fec)
217{
218 writel(1 << 24, &fec->eth->x_des_active);
219 return 0;
220}
221
222static int fec_tx_task_disable(struct fec_priv *fec)
223{
224 return 0;
225}
226
227/**
228 * Initialize receive task's buffer descriptors
229 * @param[in] fec all we know about the device yet
230 * @param[in] count receive buffer count to be allocated
231 * @param[in] size size of each receive buffer
232 * @return 0 on success
233 *
234 * For this task we need additional memory for the data buffers. And each
235 * data buffer requires some alignment. Thy must be aligned to a specific
236 * boundary each (DB_DATA_ALIGNMENT).
237 */
238static int fec_rbd_init(struct fec_priv *fec, int count, int size)
239{
240 int ix;
241 uint32_t p = 0;
242
243 /* reserve data memory and consider alignment */
651ef90f
M
244 if (fec->rdb_ptr == NULL)
245 fec->rdb_ptr = malloc(size * count + DB_DATA_ALIGNMENT);
0b23fb36
IY
246 p = (uint32_t)fec->rdb_ptr;
247 if (!p) {
4294b248 248 puts("fec_mxc: not enough malloc memory\n");
0b23fb36
IY
249 return -ENOMEM;
250 }
251 memset((void *)p, 0, size * count + DB_DATA_ALIGNMENT);
252 p += DB_DATA_ALIGNMENT-1;
253 p &= ~(DB_DATA_ALIGNMENT-1);
254
255 for (ix = 0; ix < count; ix++) {
256 writel(p, &fec->rbd_base[ix].data_pointer);
257 p += size;
258 writew(FEC_RBD_EMPTY, &fec->rbd_base[ix].status);
259 writew(0, &fec->rbd_base[ix].data_length);
260 }
261 /*
262 * mark the last RBD to close the ring
263 */
264 writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[ix - 1].status);
265 fec->rbd_index = 0;
266
267 return 0;
268}
269
270/**
271 * Initialize transmit task's buffer descriptors
272 * @param[in] fec all we know about the device yet
273 *
274 * Transmit buffers are created externally. We only have to init the BDs here.\n
275 * Note: There is a race condition in the hardware. When only one BD is in
276 * use it must be marked with the WRAP bit to use it for every transmitt.
277 * This bit in combination with the READY bit results into double transmit
278 * of each data buffer. It seems the state machine checks READY earlier then
279 * resetting it after the first transfer.
280 * Using two BDs solves this issue.
281 */
282static void fec_tbd_init(struct fec_priv *fec)
283{
284 writew(0x0000, &fec->tbd_base[0].status);
285 writew(FEC_TBD_WRAP, &fec->tbd_base[1].status);
286 fec->tbd_index = 0;
287}
288
289/**
290 * Mark the given read buffer descriptor as free
291 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
292 * @param[in] pRbd buffer descriptor to mark free again
293 */
294static void fec_rbd_clean(int last, struct fec_bd *pRbd)
295{
296 /*
297 * Reset buffer descriptor as empty
298 */
299 if (last)
300 writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &pRbd->status);
301 else
302 writew(FEC_RBD_EMPTY, &pRbd->status);
303 /*
304 * no data in it
305 */
306 writew(0, &pRbd->data_length);
307}
308
309static int fec_get_hwaddr(struct eth_device *dev, unsigned char *mac)
310{
565e39c5 311 imx_get_mac_from_fuse(mac);
2e236bf2 312 return !is_valid_ether_addr(mac);
0b23fb36
IY
313}
314
4294b248 315static int fec_set_hwaddr(struct eth_device *dev)
0b23fb36 316{
4294b248 317 uchar *mac = dev->enetaddr;
0b23fb36
IY
318 struct fec_priv *fec = (struct fec_priv *)dev->priv;
319
320 writel(0, &fec->eth->iaddr1);
321 writel(0, &fec->eth->iaddr2);
322 writel(0, &fec->eth->gaddr1);
323 writel(0, &fec->eth->gaddr2);
324
325 /*
326 * Set physical address
327 */
328 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
329 &fec->eth->paddr1);
330 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
331
332 return 0;
333}
334
335/**
336 * Start the FEC engine
337 * @param[in] dev Our device to handle
338 */
339static int fec_open(struct eth_device *edev)
340{
341 struct fec_priv *fec = (struct fec_priv *)edev->priv;
342
343 debug("fec_open: fec_open(dev)\n");
344 /* full-duplex, heartbeat disabled */
345 writel(1 << 2, &fec->eth->x_cntrl);
346 fec->rbd_index = 0;
347
348 /*
349 * Enable FEC-Lite controller
350 */
cb17b92d
JR
351 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
352 &fec->eth->ecntrl);
96912453 353#if defined(CONFIG_MX25) || defined(CONFIG_MX53)
740d6ae5
JR
354 udelay(100);
355 /*
356 * setup the MII gasket for RMII mode
357 */
358
359 /* disable the gasket */
360 writew(0, &fec->eth->miigsk_enr);
361
362 /* wait for the gasket to be disabled */
363 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
364 udelay(2);
365
366 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */
367 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
368
369 /* re-enable the gasket */
370 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
371
372 /* wait until MII gasket is ready */
373 int max_loops = 10;
374 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
375 if (--max_loops <= 0) {
376 printf("WAIT for MII Gasket ready timed out\n");
377 break;
378 }
379 }
380#endif
0b23fb36
IY
381
382 miiphy_wait_aneg(edev);
9e27e9dc
MV
383 miiphy_speed(edev->name, fec->phy_id);
384 miiphy_duplex(edev->name, fec->phy_id);
0b23fb36
IY
385
386 /*
387 * Enable SmartDMA receive task
388 */
389 fec_rx_task_enable(fec);
390
391 udelay(100000);
392 return 0;
393}
394
395static int fec_init(struct eth_device *dev, bd_t* bd)
396{
397 uint32_t base;
398 struct fec_priv *fec = (struct fec_priv *)dev->priv;
9e27e9dc 399 uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
9eb3770b 400 uint32_t rcntrl;
9e27e9dc 401 int i;
0b23fb36 402
e9319f11
JR
403 /* Initialize MAC address */
404 fec_set_hwaddr(dev);
405
0b23fb36
IY
406 /*
407 * reserve memory for both buffer descriptor chains at once
408 * Datasheet forces the startaddress of each chain is 16 byte
409 * aligned
410 */
651ef90f
M
411 if (fec->base_ptr == NULL)
412 fec->base_ptr = malloc((2 + FEC_RBD_NUM) *
413 sizeof(struct fec_bd) + DB_ALIGNMENT);
0b23fb36
IY
414 base = (uint32_t)fec->base_ptr;
415 if (!base) {
4294b248 416 puts("fec_mxc: not enough malloc memory\n");
0b23fb36
IY
417 return -ENOMEM;
418 }
419 memset((void *)base, 0, (2 + FEC_RBD_NUM) *
420 sizeof(struct fec_bd) + DB_ALIGNMENT);
421 base += (DB_ALIGNMENT-1);
422 base &= ~(DB_ALIGNMENT-1);
423
424 fec->rbd_base = (struct fec_bd *)base;
425
426 base += FEC_RBD_NUM * sizeof(struct fec_bd);
427
428 fec->tbd_base = (struct fec_bd *)base;
429
430 /*
431 * Set interrupt mask register
432 */
433 writel(0x00000000, &fec->eth->imask);
434
435 /*
436 * Clear FEC-Lite interrupt event register(IEVENT)
437 */
438 writel(0xffffffff, &fec->eth->ievent);
439
440
441 /*
442 * Set FEC-Lite receive control register(R_CNTRL):
443 */
4294b248 444
9eb3770b
MV
445 /* Start with frame length = 1518, common for all modes. */
446 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
447 if (fec->xcv_type == SEVENWIRE)
448 rcntrl |= FEC_RCNTRL_FCE;
a50a90c9
MV
449 else if (fec->xcv_type == RMII)
450 rcntrl |= FEC_RCNTRL_RMII;
9eb3770b
MV
451 else /* MII mode */
452 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
453
454 writel(rcntrl, &fec->eth->r_cntrl);
455
456 if (fec->xcv_type == MII10 || fec->xcv_type == MII100)
4294b248 457 fec_mii_setspeed(fec);
9eb3770b 458
0b23fb36
IY
459 /*
460 * Set Opcode/Pause Duration Register
461 */
462 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
463 writel(0x2, &fec->eth->x_wmrk);
464 /*
465 * Set multicast address filter
466 */
467 writel(0x00000000, &fec->eth->gaddr1);
468 writel(0x00000000, &fec->eth->gaddr2);
469
470
471 /* clear MIB RAM */
9e27e9dc
MV
472 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
473 writel(0, i);
0b23fb36
IY
474
475 /* FIFO receive start register */
476 writel(0x520, &fec->eth->r_fstart);
477
478 /* size and address of each buffer */
479 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
480 writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
481 writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
482
483 /*
484 * Initialize RxBD/TxBD rings
485 */
486 if (fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE) < 0) {
487 free(fec->base_ptr);
c179a289 488 fec->base_ptr = NULL;
0b23fb36
IY
489 return -ENOMEM;
490 }
491 fec_tbd_init(fec);
492
493
494 if (fec->xcv_type != SEVENWIRE)
495 miiphy_restart_aneg(dev);
496
497 fec_open(dev);
498 return 0;
499}
500
501/**
502 * Halt the FEC engine
503 * @param[in] dev Our device to handle
504 */
505static void fec_halt(struct eth_device *dev)
506{
9e27e9dc 507 struct fec_priv *fec = (struct fec_priv *)dev->priv;
0b23fb36
IY
508 int counter = 0xffff;
509
510 /*
511 * issue graceful stop command to the FEC transmitter if necessary
512 */
cb17b92d 513 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
0b23fb36
IY
514 &fec->eth->x_cntrl);
515
516 debug("eth_halt: wait for stop regs\n");
517 /*
518 * wait for graceful stop to register
519 */
520 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
cb17b92d 521 udelay(1);
0b23fb36
IY
522
523 /*
524 * Disable SmartDMA tasks
525 */
526 fec_tx_task_disable(fec);
527 fec_rx_task_disable(fec);
528
529 /*
530 * Disable the Ethernet Controller
531 * Note: this will also reset the BD index counter!
532 */
740d6ae5
JR
533 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
534 &fec->eth->ecntrl);
0b23fb36
IY
535 fec->rbd_index = 0;
536 fec->tbd_index = 0;
0b23fb36
IY
537 debug("eth_halt: done\n");
538}
539
540/**
541 * Transmit one frame
542 * @param[in] dev Our ethernet device to handle
543 * @param[in] packet Pointer to the data to be transmitted
544 * @param[in] length Data count in bytes
545 * @return 0 on success
546 */
547static int fec_send(struct eth_device *dev, volatile void* packet, int length)
548{
549 unsigned int status;
550
551 /*
552 * This routine transmits one frame. This routine only accepts
553 * 6-byte Ethernet addresses.
554 */
555 struct fec_priv *fec = (struct fec_priv *)dev->priv;
556
557 /*
558 * Check for valid length of data.
559 */
560 if ((length > 1500) || (length <= 0)) {
4294b248 561 printf("Payload (%d) too large\n", length);
0b23fb36
IY
562 return -1;
563 }
564
565 /*
566 * Setup the transmit buffer
567 * Note: We are always using the first buffer for transmission,
568 * the second will be empty and only used to stop the DMA engine
569 */
570 writew(length, &fec->tbd_base[fec->tbd_index].data_length);
571 writel((uint32_t)packet, &fec->tbd_base[fec->tbd_index].data_pointer);
572 /*
573 * update BD's status now
574 * This block:
575 * - is always the last in a chain (means no chain)
576 * - should transmitt the CRC
577 * - might be the last BD in the list, so the address counter should
578 * wrap (-> keep the WRAP flag)
579 */
580 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
581 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
582 writew(status, &fec->tbd_base[fec->tbd_index].status);
583
584 /*
585 * Enable SmartDMA transmit task
586 */
587 fec_tx_task_enable(fec);
588
589 /*
590 * wait until frame is sent .
591 */
592 while (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY) {
cb17b92d 593 udelay(1);
0b23fb36
IY
594 }
595 debug("fec_send: status 0x%x index %d\n",
596 readw(&fec->tbd_base[fec->tbd_index].status),
597 fec->tbd_index);
598 /* for next transmission use the other buffer */
599 if (fec->tbd_index)
600 fec->tbd_index = 0;
601 else
602 fec->tbd_index = 1;
603
604 return 0;
605}
606
607/**
608 * Pull one frame from the card
609 * @param[in] dev Our ethernet device to handle
610 * @return Length of packet read
611 */
612static int fec_recv(struct eth_device *dev)
613{
614 struct fec_priv *fec = (struct fec_priv *)dev->priv;
615 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
616 unsigned long ievent;
617 int frame_length, len = 0;
618 struct nbuf *frame;
619 uint16_t bd_status;
620 uchar buff[FEC_MAX_PKT_SIZE];
621
622 /*
623 * Check if any critical events have happened
624 */
625 ievent = readl(&fec->eth->ievent);
626 writel(ievent, &fec->eth->ievent);
627 debug("fec_recv: ievent 0x%x\n", ievent);
628 if (ievent & FEC_IEVENT_BABR) {
629 fec_halt(dev);
630 fec_init(dev, fec->bd);
631 printf("some error: 0x%08lx\n", ievent);
632 return 0;
633 }
634 if (ievent & FEC_IEVENT_HBERR) {
635 /* Heartbeat error */
636 writel(0x00000001 | readl(&fec->eth->x_cntrl),
637 &fec->eth->x_cntrl);
638 }
639 if (ievent & FEC_IEVENT_GRA) {
640 /* Graceful stop complete */
641 if (readl(&fec->eth->x_cntrl) & 0x00000001) {
642 fec_halt(dev);
643 writel(~0x00000001 & readl(&fec->eth->x_cntrl),
644 &fec->eth->x_cntrl);
645 fec_init(dev, fec->bd);
646 }
647 }
648
649 /*
650 * ensure reading the right buffer status
651 */
652 bd_status = readw(&rbd->status);
653 debug("fec_recv: status 0x%x\n", bd_status);
654
655 if (!(bd_status & FEC_RBD_EMPTY)) {
656 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
657 ((readw(&rbd->data_length) - 4) > 14)) {
658 /*
659 * Get buffer address and size
660 */
661 frame = (struct nbuf *)readl(&rbd->data_pointer);
662 frame_length = readw(&rbd->data_length) - 4;
663 /*
664 * Fill the buffer and pass it to upper layers
665 */
666 memcpy(buff, frame->data, frame_length);
667 NetReceive(buff, frame_length);
668 len = frame_length;
669 } else {
670 if (bd_status & FEC_RBD_ERR)
671 printf("error frame: 0x%08lx 0x%08x\n",
672 (ulong)rbd->data_pointer,
673 bd_status);
674 }
675 /*
676 * free the current buffer, restart the engine
677 * and move forward to the next buffer
678 */
679 fec_rbd_clean(fec->rbd_index == (FEC_RBD_NUM - 1) ? 1 : 0, rbd);
680 fec_rx_task_enable(fec);
681 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
682 }
683 debug("fec_recv: stop\n");
684
685 return len;
686}
687
9e27e9dc 688static int fec_probe(bd_t *bd, int dev_id, int phy_id, uint32_t base_addr)
0b23fb36 689{
0b23fb36 690 struct eth_device *edev;
9e27e9dc 691 struct fec_priv *fec;
0b23fb36 692 unsigned char ethaddr[6];
0b23fb36
IY
693
694 /* create and fill edev struct */
695 edev = (struct eth_device *)malloc(sizeof(struct eth_device));
696 if (!edev) {
9e27e9dc
MV
697 puts("fec_mxc: not enough malloc memory for eth_device\n");
698 return -ENOMEM;
699 }
700
701 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
702 if (!fec) {
703 puts("fec_mxc: not enough malloc memory for fec_priv\n");
0b23fb36
IY
704 return -ENOMEM;
705 }
9e27e9dc 706
de0b9576 707 memset(edev, 0, sizeof(*edev));
9e27e9dc
MV
708 memset(fec, 0, sizeof(*fec));
709
0b23fb36
IY
710 edev->priv = fec;
711 edev->init = fec_init;
712 edev->send = fec_send;
713 edev->recv = fec_recv;
714 edev->halt = fec_halt;
fb57ec97 715 edev->write_hwaddr = fec_set_hwaddr;
0b23fb36 716
9e27e9dc 717 fec->eth = (struct ethernet_regs *)base_addr;
0b23fb36
IY
718 fec->bd = bd;
719
392b8502 720 fec->xcv_type = CONFIG_FEC_XCV_TYPE;
0b23fb36
IY
721
722 /* Reset chip. */
cb17b92d 723 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
77dbd6ab 724 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET)
0b23fb36
IY
725 udelay(10);
726
727 /*
728 * Set interrupt mask register
729 */
730 writel(0x00000000, &fec->eth->imask);
731
732 /*
733 * Clear FEC-Lite interrupt event register(IEVENT)
734 */
735 writel(0xffffffff, &fec->eth->ievent);
736
737 /*
738 * Set FEC-Lite receive control register(R_CNTRL):
739 */
740 /*
741 * Frame length=1518; MII mode;
742 */
9eb3770b
MV
743 writel((PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT) | FEC_RCNTRL_FCE |
744 FEC_RCNTRL_MII_MODE, &fec->eth->r_cntrl);
4294b248 745 fec_mii_setspeed(fec);
0b23fb36 746
9e27e9dc
MV
747 if (dev_id == -1) {
748 sprintf(edev->name, "FEC");
749 fec->dev_id = 0;
750 } else {
751 sprintf(edev->name, "FEC%i", dev_id);
752 fec->dev_id = dev_id;
753 }
754 fec->phy_id = phy_id;
0b23fb36
IY
755
756 miiphy_register(edev->name, fec_miiphy_read, fec_miiphy_write);
757
758 eth_register(edev);
759
4294b248 760 if (fec_get_hwaddr(edev, ethaddr) == 0) {
565e39c5 761 printf("got MAC address from fuse: %pM\n", ethaddr);
4294b248 762 memcpy(edev->enetaddr, ethaddr, 6);
0b23fb36 763 }
0b23fb36
IY
764
765 return 0;
766}
767
9e27e9dc 768#ifndef CONFIG_FEC_MXC_MULTI
0b23fb36
IY
769int fecmxc_initialize(bd_t *bd)
770{
771 int lout = 1;
772
773 debug("eth_init: fec_probe(bd)\n");
9e27e9dc
MV
774 lout = fec_probe(bd, -1, CONFIG_FEC_MXC_PHYADDR, IMX_FEC_BASE);
775
776 return lout;
777}
778#endif
779
780int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
781{
782 int lout = 1;
783
784 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
785 lout = fec_probe(bd, dev_id, phy_id, addr);
0b23fb36
IY
786
787 return lout;
788}