]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elfxx-mips.c
MIPS/BFD: Fix assertion in `mips_elf_sort_hash_table'
[thirdparty/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
2571583a 2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
b49e97c9
TS
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
ae9a127f 11 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 12
ae9a127f
NC
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
cd123cb7 15 the Free Software Foundation; either version 3 of the License, or
ae9a127f 16 (at your option) any later version.
b49e97c9 17
ae9a127f
NC
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
b49e97c9 22
ae9a127f
NC
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
cd123cb7
NC
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
b49e97c9
TS
28
29/* This file handles functionality common to the different MIPS ABI's. */
30
b49e97c9 31#include "sysdep.h"
3db64b00 32#include "bfd.h"
b49e97c9 33#include "libbfd.h"
64543e1a 34#include "libiberty.h"
b49e97c9
TS
35#include "elf-bfd.h"
36#include "elfxx-mips.h"
37#include "elf/mips.h"
0a44bf69 38#include "elf-vxworks.h"
2f0c68f2 39#include "dwarf2.h"
b49e97c9
TS
40
41/* Get the ECOFF swapping routines. */
42#include "coff/sym.h"
43#include "coff/symconst.h"
44#include "coff/ecoff.h"
45#include "coff/mips.h"
46
b15e6682
AO
47#include "hashtab.h"
48
9ab066b4
RS
49/* Types of TLS GOT entry. */
50enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55};
56
ead49a57 57/* This structure is used to hold information about one GOT entry.
3dff0dd1
RS
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
b15e6682
AO
75struct mips_got_entry
76{
3dff0dd1 77 /* One input bfd that needs the GOT entry. */
b15e6682 78 bfd *abfd;
f4416af6
AO
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
3dff0dd1 90 corresponding to a symbol in the GOT. The symbol's entry
020d7251
RS
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
f4416af6
AO
93 struct mips_elf_link_hash_entry *h;
94 } d;
0f20cc35 95
9ab066b4
RS
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
0f20cc35
DJ
98 unsigned char tls_type;
99
9ab066b4
RS
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
b15e6682 104 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
b15e6682
AO
108};
109
13db6b44
RS
110/* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120struct mips_got_page_ref
121{
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129};
130
c224138d
RS
131/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134struct mips_got_page_range
135{
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139};
140
141/* This structure describes the range of addends that are applied to page
13db6b44 142 relocations against a given section. */
c224138d
RS
143struct mips_got_page_entry
144{
13db6b44
RS
145 /* The section that these entries are based on. */
146 asection *sec;
c224138d
RS
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151};
152
f0abc2a1 153/* This structure is used to hold .got information when linking. */
b49e97c9
TS
154
155struct mips_got_info
156{
b49e97c9
TS
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
23cc69b6
RS
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
0f20cc35
DJ
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
c224138d 166 /* The number of local .got entries, eventually including page entries. */
b49e97c9 167 unsigned int local_gotno;
c224138d
RS
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
ab361d49
RS
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
cb22ccf4
KCY
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
b15e6682
AO
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
13db6b44
RS
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
c224138d
RS
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
f4416af6
AO
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185};
186
d7206569 187/* Structure passed when merging bfds' gots. */
f4416af6
AO
188
189struct mips_elf_got_per_bfd_arg
190{
f4416af6
AO
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
c224138d
RS
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
0f20cc35
DJ
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
f4416af6
AO
212};
213
ab361d49
RS
214/* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
f4416af6 216
ab361d49 217struct mips_elf_traverse_got_arg
f4416af6 218{
ab361d49 219 struct bfd_link_info *info;
f4416af6
AO
220 struct mips_got_info *g;
221 int value;
0f20cc35
DJ
222};
223
f0abc2a1
AM
224struct _mips_elf_section_data
225{
226 struct bfd_elf_section_data elf;
227 union
228 {
f0abc2a1
AM
229 bfd_byte *tdata;
230 } u;
231};
232
233#define mips_elf_section_data(sec) \
68bfbfcc 234 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 235
d5eaccd7
RS
236#define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
4dfe6ac6 239 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 240
634835ae
RS
241/* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258#define GGA_NORMAL 0
259#define GGA_RELOC_ONLY 1
260#define GGA_NONE 2
261
861fb55a
DJ
262/* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289};
290
291/* Macros for populating a mips_elf_la25_stub. */
292
293#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
d21911ea
MR
296#define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298#define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300#define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
861fb55a 302
b49e97c9
TS
303/* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306struct mips_elf_hash_sort_data
307{
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
0f20cc35
DJ
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
b49e97c9 313 long min_got_dynindx;
f4416af6
AO
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 316 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 317 long max_unref_got_dynindx;
b49e97c9
TS
318 /* The greatest dynamic symbol table index not corresponding to a
319 symbol without a GOT entry. */
320 long max_non_got_dynindx;
321};
322
1bbce132
MR
323/* We make up to two PLT entries if needed, one for standard MIPS code
324 and one for compressed code, either a MIPS16 or microMIPS one. We
325 keep a separate record of traditional lazy-binding stubs, for easier
326 processing. */
327
328struct plt_entry
329{
330 /* Traditional SVR4 stub offset, or -1 if none. */
331 bfd_vma stub_offset;
332
333 /* Standard PLT entry offset, or -1 if none. */
334 bfd_vma mips_offset;
335
336 /* Compressed PLT entry offset, or -1 if none. */
337 bfd_vma comp_offset;
338
339 /* The corresponding .got.plt index, or -1 if none. */
340 bfd_vma gotplt_index;
341
342 /* Whether we need a standard PLT entry. */
343 unsigned int need_mips : 1;
344
345 /* Whether we need a compressed PLT entry. */
346 unsigned int need_comp : 1;
347};
348
b49e97c9
TS
349/* The MIPS ELF linker needs additional information for each symbol in
350 the global hash table. */
351
352struct mips_elf_link_hash_entry
353{
354 struct elf_link_hash_entry root;
355
356 /* External symbol information. */
357 EXTR esym;
358
861fb55a
DJ
359 /* The la25 stub we have created for ths symbol, if any. */
360 struct mips_elf_la25_stub *la25_stub;
361
b49e97c9
TS
362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
363 this symbol. */
364 unsigned int possibly_dynamic_relocs;
365
b49e97c9
TS
366 /* If there is a stub that 32 bit functions should use to call this
367 16 bit function, this points to the section containing the stub. */
368 asection *fn_stub;
369
b49e97c9
TS
370 /* If there is a stub that 16 bit functions should use to call this
371 32 bit function, this points to the section containing the stub. */
372 asection *call_stub;
373
374 /* This is like the call_stub field, but it is used if the function
375 being called returns a floating point value. */
376 asection *call_fp_stub;
7c5fcef7 377
634835ae
RS
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
380
6ccf4795
RS
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
385
71782a75
RS
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
389
861fb55a
DJ
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
394
71782a75
RS
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
400
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
404
861fb55a
DJ
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
409
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
1bbce132
MR
413
414 /* Does this symbol resolve to a PLT entry? */
415 unsigned int use_plt_entry : 1;
b49e97c9
TS
416};
417
418/* MIPS ELF linker hash table. */
419
420struct mips_elf_link_hash_table
421{
422 struct elf_link_hash_table root;
861fb55a 423
b49e97c9
TS
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
861fb55a 426
b49e97c9
TS
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
861fb55a 429
e6aea42d
MR
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
b34976b6 432 bfd_boolean use_rld_obj_head;
861fb55a 433
b4082c70
DD
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
861fb55a 436
b49e97c9 437 /* This is set if we see any mips16 stub sections. */
b34976b6 438 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
439
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
442
833794fc
MR
443 /* True if we can only use 32-bit microMIPS instructions. */
444 bfd_boolean insn32;
445
8b10b0b3
MR
446 /* True if we suppress checks for invalid branches between ISA modes. */
447 bfd_boolean ignore_branch_isa;
448
0a44bf69
RS
449 /* True if we're generating code for VxWorks. */
450 bfd_boolean is_vxworks;
861fb55a 451
0e53d9da
AN
452 /* True if we already reported the small-data section overflow. */
453 bfd_boolean small_data_overflow_reported;
861fb55a 454
0a44bf69
RS
455 /* Shortcuts to some dynamic sections, or NULL if they are not
456 being used. */
0a44bf69 457 asection *srelplt2;
4e41d0d7 458 asection *sstubs;
861fb55a 459
a8028dd0
RS
460 /* The master GOT information. */
461 struct mips_got_info *got_info;
861fb55a 462
d222d210
RS
463 /* The global symbol in the GOT with the lowest index in the dynamic
464 symbol table. */
465 struct elf_link_hash_entry *global_gotsym;
466
861fb55a 467 /* The size of the PLT header in bytes. */
0a44bf69 468 bfd_vma plt_header_size;
861fb55a 469
1bbce132
MR
470 /* The size of a standard PLT entry in bytes. */
471 bfd_vma plt_mips_entry_size;
472
473 /* The size of a compressed PLT entry in bytes. */
474 bfd_vma plt_comp_entry_size;
475
476 /* The offset of the next standard PLT entry to create. */
477 bfd_vma plt_mips_offset;
478
479 /* The offset of the next compressed PLT entry to create. */
480 bfd_vma plt_comp_offset;
481
482 /* The index of the next .got.plt entry to create. */
483 bfd_vma plt_got_index;
861fb55a 484
33bb52fb
RS
485 /* The number of functions that need a lazy-binding stub. */
486 bfd_vma lazy_stub_count;
861fb55a 487
5108fc1b
RS
488 /* The size of a function stub entry in bytes. */
489 bfd_vma function_stub_size;
861fb55a
DJ
490
491 /* The number of reserved entries at the beginning of the GOT. */
492 unsigned int reserved_gotno;
493
494 /* The section used for mips_elf_la25_stub trampolines.
495 See the comment above that structure for details. */
496 asection *strampoline;
497
498 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
499 pairs. */
500 htab_t la25_stubs;
501
502 /* A function FN (NAME, IS, OS) that creates a new input section
503 called NAME and links it to output section OS. If IS is nonnull,
504 the new section should go immediately before it, otherwise it
505 should go at the (current) beginning of OS.
506
507 The function returns the new section on success, otherwise it
508 returns null. */
509 asection *(*add_stub_section) (const char *, asection *, asection *);
13db6b44
RS
510
511 /* Small local sym cache. */
512 struct sym_cache sym_cache;
1bbce132
MR
513
514 /* Is the PLT header compressed? */
515 unsigned int plt_header_is_comp : 1;
861fb55a
DJ
516};
517
4dfe6ac6
NC
518/* Get the MIPS ELF linker hash table from a link_info structure. */
519
520#define mips_elf_hash_table(p) \
521 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
522 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
523
861fb55a 524/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
525struct mips_htab_traverse_info
526{
861fb55a
DJ
527 /* The usual link-wide information. */
528 struct bfd_link_info *info;
529 bfd *output_bfd;
530
531 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
532 bfd_boolean error;
b49e97c9
TS
533};
534
6ae68ba3
MR
535/* MIPS ELF private object data. */
536
537struct mips_elf_obj_tdata
538{
539 /* Generic ELF private object data. */
540 struct elf_obj_tdata root;
541
542 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
543 bfd *abi_fp_bfd;
ee227692 544
b60bf9be
CF
545 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
546 bfd *abi_msa_bfd;
547
351cdf24
MF
548 /* The abiflags for this object. */
549 Elf_Internal_ABIFlags_v0 abiflags;
550 bfd_boolean abiflags_valid;
551
ee227692
RS
552 /* The GOT requirements of input bfds. */
553 struct mips_got_info *got;
698600e4
AM
554
555 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
556 included directly in this one, but there's no point to wasting
557 the memory just for the infrequently called find_nearest_line. */
558 struct mips_elf_find_line *find_line_info;
559
560 /* An array of stub sections indexed by symbol number. */
561 asection **local_stubs;
562 asection **local_call_stubs;
563
564 /* The Irix 5 support uses two virtual sections, which represent
565 text/data symbols defined in dynamic objects. */
566 asymbol *elf_data_symbol;
567 asymbol *elf_text_symbol;
568 asection *elf_data_section;
569 asection *elf_text_section;
6ae68ba3
MR
570};
571
572/* Get MIPS ELF private object data from BFD's tdata. */
573
574#define mips_elf_tdata(bfd) \
575 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
576
0f20cc35
DJ
577#define TLS_RELOC_P(r_type) \
578 (r_type == R_MIPS_TLS_DTPMOD32 \
579 || r_type == R_MIPS_TLS_DTPMOD64 \
580 || r_type == R_MIPS_TLS_DTPREL32 \
581 || r_type == R_MIPS_TLS_DTPREL64 \
582 || r_type == R_MIPS_TLS_GD \
583 || r_type == R_MIPS_TLS_LDM \
584 || r_type == R_MIPS_TLS_DTPREL_HI16 \
585 || r_type == R_MIPS_TLS_DTPREL_LO16 \
586 || r_type == R_MIPS_TLS_GOTTPREL \
587 || r_type == R_MIPS_TLS_TPREL32 \
588 || r_type == R_MIPS_TLS_TPREL64 \
589 || r_type == R_MIPS_TLS_TPREL_HI16 \
df58fc94 590 || r_type == R_MIPS_TLS_TPREL_LO16 \
d0f13682
CLT
591 || r_type == R_MIPS16_TLS_GD \
592 || r_type == R_MIPS16_TLS_LDM \
593 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
594 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
595 || r_type == R_MIPS16_TLS_GOTTPREL \
596 || r_type == R_MIPS16_TLS_TPREL_HI16 \
597 || r_type == R_MIPS16_TLS_TPREL_LO16 \
df58fc94
RS
598 || r_type == R_MICROMIPS_TLS_GD \
599 || r_type == R_MICROMIPS_TLS_LDM \
600 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
601 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
602 || r_type == R_MICROMIPS_TLS_GOTTPREL \
603 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
0f20cc35 605
b49e97c9
TS
606/* Structure used to pass information to mips_elf_output_extsym. */
607
608struct extsym_info
609{
9e4aeb93
RS
610 bfd *abfd;
611 struct bfd_link_info *info;
b49e97c9
TS
612 struct ecoff_debug_info *debug;
613 const struct ecoff_debug_swap *swap;
b34976b6 614 bfd_boolean failed;
b49e97c9
TS
615};
616
8dc1a139 617/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
618
619static const char * const mips_elf_dynsym_rtproc_names[] =
620{
621 "_procedure_table",
622 "_procedure_string_table",
623 "_procedure_table_size",
624 NULL
625};
626
627/* These structures are used to generate the .compact_rel section on
8dc1a139 628 IRIX5. */
b49e97c9
TS
629
630typedef struct
631{
632 unsigned long id1; /* Always one? */
633 unsigned long num; /* Number of compact relocation entries. */
634 unsigned long id2; /* Always two? */
635 unsigned long offset; /* The file offset of the first relocation. */
636 unsigned long reserved0; /* Zero? */
637 unsigned long reserved1; /* Zero? */
638} Elf32_compact_rel;
639
640typedef struct
641{
642 bfd_byte id1[4];
643 bfd_byte num[4];
644 bfd_byte id2[4];
645 bfd_byte offset[4];
646 bfd_byte reserved0[4];
647 bfd_byte reserved1[4];
648} Elf32_External_compact_rel;
649
650typedef struct
651{
652 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
653 unsigned int rtype : 4; /* Relocation types. See below. */
654 unsigned int dist2to : 8;
655 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
656 unsigned long konst; /* KONST field. See below. */
657 unsigned long vaddr; /* VADDR to be relocated. */
658} Elf32_crinfo;
659
660typedef struct
661{
662 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
663 unsigned int rtype : 4; /* Relocation types. See below. */
664 unsigned int dist2to : 8;
665 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
666 unsigned long konst; /* KONST field. See below. */
667} Elf32_crinfo2;
668
669typedef struct
670{
671 bfd_byte info[4];
672 bfd_byte konst[4];
673 bfd_byte vaddr[4];
674} Elf32_External_crinfo;
675
676typedef struct
677{
678 bfd_byte info[4];
679 bfd_byte konst[4];
680} Elf32_External_crinfo2;
681
682/* These are the constants used to swap the bitfields in a crinfo. */
683
684#define CRINFO_CTYPE (0x1)
685#define CRINFO_CTYPE_SH (31)
686#define CRINFO_RTYPE (0xf)
687#define CRINFO_RTYPE_SH (27)
688#define CRINFO_DIST2TO (0xff)
689#define CRINFO_DIST2TO_SH (19)
690#define CRINFO_RELVADDR (0x7ffff)
691#define CRINFO_RELVADDR_SH (0)
692
693/* A compact relocation info has long (3 words) or short (2 words)
694 formats. A short format doesn't have VADDR field and relvaddr
695 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
696#define CRF_MIPS_LONG 1
697#define CRF_MIPS_SHORT 0
698
699/* There are 4 types of compact relocation at least. The value KONST
700 has different meaning for each type:
701
702 (type) (konst)
703 CT_MIPS_REL32 Address in data
704 CT_MIPS_WORD Address in word (XXX)
705 CT_MIPS_GPHI_LO GP - vaddr
706 CT_MIPS_JMPAD Address to jump
707 */
708
709#define CRT_MIPS_REL32 0xa
710#define CRT_MIPS_WORD 0xb
711#define CRT_MIPS_GPHI_LO 0xc
712#define CRT_MIPS_JMPAD 0xd
713
714#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
715#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
716#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
717#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
718\f
719/* The structure of the runtime procedure descriptor created by the
720 loader for use by the static exception system. */
721
722typedef struct runtime_pdr {
ae9a127f
NC
723 bfd_vma adr; /* Memory address of start of procedure. */
724 long regmask; /* Save register mask. */
725 long regoffset; /* Save register offset. */
726 long fregmask; /* Save floating point register mask. */
727 long fregoffset; /* Save floating point register offset. */
728 long frameoffset; /* Frame size. */
729 short framereg; /* Frame pointer register. */
730 short pcreg; /* Offset or reg of return pc. */
731 long irpss; /* Index into the runtime string table. */
b49e97c9 732 long reserved;
ae9a127f 733 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
734} RPDR, *pRPDR;
735#define cbRPDR sizeof (RPDR)
736#define rpdNil ((pRPDR) 0)
737\f
b15e6682 738static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
739 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
740 struct mips_elf_link_hash_entry *, int);
b34976b6 741static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 742 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
743static bfd_vma mips_elf_high
744 (bfd_vma);
b34976b6 745static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
746 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
747 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
748 bfd_vma *, asection *);
f4416af6 749static bfd_vma mips_elf_adjust_gp
9719ad41 750 (bfd *, struct mips_got_info *, bfd *);
f4416af6 751
b49e97c9
TS
752/* This will be used when we sort the dynamic relocation records. */
753static bfd *reldyn_sorting_bfd;
754
6d30f5b2
NC
755/* True if ABFD is for CPUs with load interlocking that include
756 non-MIPS1 CPUs and R3900. */
757#define LOAD_INTERLOCKS_P(abfd) \
758 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
759 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
760
cd8d5a82
CF
761/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
762 This should be safe for all architectures. We enable this predicate
763 for RM9000 for now. */
764#define JAL_TO_BAL_P(abfd) \
765 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
766
767/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
768 This should be safe for all architectures. We enable this predicate for
769 all CPUs. */
770#define JALR_TO_BAL_P(abfd) 1
771
38a7df63
CF
772/* True if ABFD is for CPUs that are faster if JR is converted to B.
773 This should be safe for all architectures. We enable this predicate for
774 all CPUs. */
775#define JR_TO_B_P(abfd) 1
776
861fb55a
DJ
777/* True if ABFD is a PIC object. */
778#define PIC_OBJECT_P(abfd) \
779 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
780
351cdf24
MF
781/* Nonzero if ABFD is using the O32 ABI. */
782#define ABI_O32_P(abfd) \
783 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
784
b49e97c9 785/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
786#define ABI_N32_P(abfd) \
787 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
788
4a14403c 789/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 790#define ABI_64_P(abfd) \
141ff970 791 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 792
4a14403c
TS
793/* Nonzero if ABFD is using NewABI conventions. */
794#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
795
e8faf7d1
MR
796/* Nonzero if ABFD has microMIPS code. */
797#define MICROMIPS_P(abfd) \
798 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
799
7361da2c
AB
800/* Nonzero if ABFD is MIPS R6. */
801#define MIPSR6_P(abfd) \
802 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
803 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
804
4a14403c 805/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
806#define IRIX_COMPAT(abfd) \
807 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
808
b49e97c9
TS
809/* Whether we are trying to be compatible with IRIX at all. */
810#define SGI_COMPAT(abfd) \
811 (IRIX_COMPAT (abfd) != ict_none)
812
813/* The name of the options section. */
814#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 815 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 816
cc2e31b9
RS
817/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
818 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
819#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
820 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
821
351cdf24
MF
822/* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
823#define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
824 (strcmp (NAME, ".MIPS.abiflags") == 0)
825
943284cc
DJ
826/* Whether the section is readonly. */
827#define MIPS_ELF_READONLY_SECTION(sec) \
828 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
829 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
830
b49e97c9 831/* The name of the stub section. */
ca07892d 832#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
833
834/* The size of an external REL relocation. */
835#define MIPS_ELF_REL_SIZE(abfd) \
836 (get_elf_backend_data (abfd)->s->sizeof_rel)
837
0a44bf69
RS
838/* The size of an external RELA relocation. */
839#define MIPS_ELF_RELA_SIZE(abfd) \
840 (get_elf_backend_data (abfd)->s->sizeof_rela)
841
b49e97c9
TS
842/* The size of an external dynamic table entry. */
843#define MIPS_ELF_DYN_SIZE(abfd) \
844 (get_elf_backend_data (abfd)->s->sizeof_dyn)
845
846/* The size of a GOT entry. */
847#define MIPS_ELF_GOT_SIZE(abfd) \
848 (get_elf_backend_data (abfd)->s->arch_size / 8)
849
b4082c70
DD
850/* The size of the .rld_map section. */
851#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
852 (get_elf_backend_data (abfd)->s->arch_size / 8)
853
b49e97c9
TS
854/* The size of a symbol-table entry. */
855#define MIPS_ELF_SYM_SIZE(abfd) \
856 (get_elf_backend_data (abfd)->s->sizeof_sym)
857
858/* The default alignment for sections, as a power of two. */
859#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 860 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
861
862/* Get word-sized data. */
863#define MIPS_ELF_GET_WORD(abfd, ptr) \
864 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
865
866/* Put out word-sized data. */
867#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
868 (ABI_64_P (abfd) \
869 ? bfd_put_64 (abfd, val, ptr) \
870 : bfd_put_32 (abfd, val, ptr))
871
861fb55a
DJ
872/* The opcode for word-sized loads (LW or LD). */
873#define MIPS_ELF_LOAD_WORD(abfd) \
874 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
875
b49e97c9 876/* Add a dynamic symbol table-entry. */
9719ad41 877#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 878 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
879
880#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
881 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
882
0a44bf69
RS
883/* The name of the dynamic relocation section. */
884#define MIPS_ELF_REL_DYN_NAME(INFO) \
885 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
886
b49e97c9
TS
887/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
888 from smaller values. Start with zero, widen, *then* decrement. */
889#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 890#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 891
51e38d68
RS
892/* The value to write into got[1] for SVR4 targets, to identify it is
893 a GNU object. The dynamic linker can then use got[1] to store the
894 module pointer. */
895#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
896 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
897
f4416af6 898/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
899#define ELF_MIPS_GP_OFFSET(INFO) \
900 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
901
902/* The maximum size of the GOT for it to be addressable using 16-bit
903 offsets from $gp. */
0a44bf69 904#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 905
6a691779 906/* Instructions which appear in a stub. */
3d6746ca
DD
907#define STUB_LW(abfd) \
908 ((ABI_64_P (abfd) \
909 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
910 : 0x8f998010)) /* lw t9,0x8010(gp) */
40fc1451 911#define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
3d6746ca 912#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
a18a2a34 913#define STUB_JALR 0x0320f809 /* jalr ra,t9 */
5108fc1b
RS
914#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
915#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
916#define STUB_LI16S(abfd, VAL) \
917 ((ABI_64_P (abfd) \
918 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
919 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
920
1bbce132
MR
921/* Likewise for the microMIPS ASE. */
922#define STUB_LW_MICROMIPS(abfd) \
923 (ABI_64_P (abfd) \
924 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
925 : 0xff3c8010) /* lw t9,0x8010(gp) */
926#define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
40fc1451 927#define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
1bbce132
MR
928#define STUB_LUI_MICROMIPS(VAL) \
929 (0x41b80000 + (VAL)) /* lui t8,VAL */
930#define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
833794fc 931#define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
1bbce132
MR
932#define STUB_ORI_MICROMIPS(VAL) \
933 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
934#define STUB_LI16U_MICROMIPS(VAL) \
935 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
936#define STUB_LI16S_MICROMIPS(abfd, VAL) \
937 (ABI_64_P (abfd) \
938 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
939 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
940
5108fc1b
RS
941#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
942#define MIPS_FUNCTION_STUB_BIG_SIZE 20
1bbce132
MR
943#define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
944#define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
833794fc
MR
945#define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
946#define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
947
948/* The name of the dynamic interpreter. This is put in the .interp
949 section. */
950
951#define ELF_DYNAMIC_INTERPRETER(abfd) \
952 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
953 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
954 : "/usr/lib/libc.so.1")
955
956#ifdef BFD64
ee6423ed
AO
957#define MNAME(bfd,pre,pos) \
958 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
959#define ELF_R_SYM(bfd, i) \
960 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
961#define ELF_R_TYPE(bfd, i) \
962 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
963#define ELF_R_INFO(bfd, s, t) \
964 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
965#else
ee6423ed 966#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
967#define ELF_R_SYM(bfd, i) \
968 (ELF32_R_SYM (i))
969#define ELF_R_TYPE(bfd, i) \
970 (ELF32_R_TYPE (i))
971#define ELF_R_INFO(bfd, s, t) \
972 (ELF32_R_INFO (s, t))
973#endif
974\f
975 /* The mips16 compiler uses a couple of special sections to handle
976 floating point arguments.
977
978 Section names that look like .mips16.fn.FNNAME contain stubs that
979 copy floating point arguments from the fp regs to the gp regs and
980 then jump to FNNAME. If any 32 bit function calls FNNAME, the
981 call should be redirected to the stub instead. If no 32 bit
982 function calls FNNAME, the stub should be discarded. We need to
983 consider any reference to the function, not just a call, because
984 if the address of the function is taken we will need the stub,
985 since the address might be passed to a 32 bit function.
986
987 Section names that look like .mips16.call.FNNAME contain stubs
988 that copy floating point arguments from the gp regs to the fp
989 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
990 then any 16 bit function that calls FNNAME should be redirected
991 to the stub instead. If FNNAME is not a 32 bit function, the
992 stub should be discarded.
993
994 .mips16.call.fp.FNNAME sections are similar, but contain stubs
995 which call FNNAME and then copy the return value from the fp regs
996 to the gp regs. These stubs store the return value in $18 while
997 calling FNNAME; any function which might call one of these stubs
998 must arrange to save $18 around the call. (This case is not
999 needed for 32 bit functions that call 16 bit functions, because
1000 16 bit functions always return floating point values in both
1001 $f0/$f1 and $2/$3.)
1002
1003 Note that in all cases FNNAME might be defined statically.
1004 Therefore, FNNAME is not used literally. Instead, the relocation
1005 information will indicate which symbol the section is for.
1006
1007 We record any stubs that we find in the symbol table. */
1008
1009#define FN_STUB ".mips16.fn."
1010#define CALL_STUB ".mips16.call."
1011#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
1012
1013#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1014#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1015#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 1016\f
861fb55a 1017/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
1018static const bfd_vma mips_o32_exec_plt0_entry[] =
1019{
861fb55a
DJ
1020 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1021 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1022 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1023 0x031cc023, /* subu $24, $24, $28 */
40fc1451 1024 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1025 0x0018c082, /* srl $24, $24, 2 */
1026 0x0320f809, /* jalr $25 */
1027 0x2718fffe /* subu $24, $24, 2 */
1028};
1029
1030/* The format of the first PLT entry in an N32 executable. Different
1031 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
1032static const bfd_vma mips_n32_exec_plt0_entry[] =
1033{
861fb55a
DJ
1034 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1035 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1036 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1037 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1038 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1039 0x0018c082, /* srl $24, $24, 2 */
1040 0x0320f809, /* jalr $25 */
1041 0x2718fffe /* subu $24, $24, 2 */
1042};
1043
1044/* The format of the first PLT entry in an N64 executable. Different
1045 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
1046static const bfd_vma mips_n64_exec_plt0_entry[] =
1047{
861fb55a
DJ
1048 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1049 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1050 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1051 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1052 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1053 0x0018c0c2, /* srl $24, $24, 3 */
1054 0x0320f809, /* jalr $25 */
1055 0x2718fffe /* subu $24, $24, 2 */
1056};
1057
1bbce132
MR
1058/* The format of the microMIPS first PLT entry in an O32 executable.
1059 We rely on v0 ($2) rather than t8 ($24) to contain the address
1060 of the GOTPLT entry handled, so this stub may only be used when
1061 all the subsequent PLT entries are microMIPS code too.
1062
1063 The trailing NOP is for alignment and correct disassembly only. */
1064static const bfd_vma micromips_o32_exec_plt0_entry[] =
1065{
1066 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1067 0xff23, 0x0000, /* lw $25, 0($3) */
1068 0x0535, /* subu $2, $2, $3 */
1069 0x2525, /* srl $2, $2, 2 */
1070 0x3302, 0xfffe, /* subu $24, $2, 2 */
1071 0x0dff, /* move $15, $31 */
1072 0x45f9, /* jalrs $25 */
1073 0x0f83, /* move $28, $3 */
1074 0x0c00 /* nop */
1075};
1076
833794fc
MR
1077/* The format of the microMIPS first PLT entry in an O32 executable
1078 in the insn32 mode. */
1079static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1080{
1081 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1082 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1083 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1084 0x0398, 0xc1d0, /* subu $24, $24, $28 */
40fc1451 1085 0x001f, 0x7a90, /* or $15, $31, zero */
833794fc
MR
1086 0x0318, 0x1040, /* srl $24, $24, 2 */
1087 0x03f9, 0x0f3c, /* jalr $25 */
1088 0x3318, 0xfffe /* subu $24, $24, 2 */
1089};
1090
1bbce132 1091/* The format of subsequent standard PLT entries. */
6d30f5b2
NC
1092static const bfd_vma mips_exec_plt_entry[] =
1093{
861fb55a
DJ
1094 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1095 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1096 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1097 0x03200008 /* jr $25 */
1098};
1099
7361da2c
AB
1100/* In the following PLT entry the JR and ADDIU instructions will
1101 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1102 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1103static const bfd_vma mipsr6_exec_plt_entry[] =
1104{
1105 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1106 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1107 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1108 0x03200009 /* jr $25 */
1109};
1110
1bbce132
MR
1111/* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1112 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1113 directly addressable. */
1114static const bfd_vma mips16_o32_exec_plt_entry[] =
1115{
1116 0xb203, /* lw $2, 12($pc) */
1117 0x9a60, /* lw $3, 0($2) */
1118 0x651a, /* move $24, $2 */
1119 0xeb00, /* jr $3 */
1120 0x653b, /* move $25, $3 */
1121 0x6500, /* nop */
1122 0x0000, 0x0000 /* .word (.got.plt entry) */
1123};
1124
1125/* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1126 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1127static const bfd_vma micromips_o32_exec_plt_entry[] =
1128{
1129 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1130 0xff22, 0x0000, /* lw $25, 0($2) */
1131 0x4599, /* jr $25 */
1132 0x0f02 /* move $24, $2 */
1133};
1134
833794fc
MR
1135/* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1136static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1137{
1138 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1139 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1140 0x0019, 0x0f3c, /* jr $25 */
1141 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1142};
1143
0a44bf69 1144/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
1145static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1146{
0a44bf69
RS
1147 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1148 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1149 0x8f390008, /* lw t9, 8(t9) */
1150 0x00000000, /* nop */
1151 0x03200008, /* jr t9 */
1152 0x00000000 /* nop */
1153};
1154
1155/* The format of subsequent PLT entries. */
6d30f5b2
NC
1156static const bfd_vma mips_vxworks_exec_plt_entry[] =
1157{
0a44bf69
RS
1158 0x10000000, /* b .PLT_resolver */
1159 0x24180000, /* li t8, <pltindex> */
1160 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1161 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1162 0x8f390000, /* lw t9, 0(t9) */
1163 0x00000000, /* nop */
1164 0x03200008, /* jr t9 */
1165 0x00000000 /* nop */
1166};
1167
1168/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
1169static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1170{
0a44bf69
RS
1171 0x8f990008, /* lw t9, 8(gp) */
1172 0x00000000, /* nop */
1173 0x03200008, /* jr t9 */
1174 0x00000000, /* nop */
1175 0x00000000, /* nop */
1176 0x00000000 /* nop */
1177};
1178
1179/* The format of subsequent PLT entries. */
6d30f5b2
NC
1180static const bfd_vma mips_vxworks_shared_plt_entry[] =
1181{
0a44bf69
RS
1182 0x10000000, /* b .PLT_resolver */
1183 0x24180000 /* li t8, <pltindex> */
1184};
1185\f
d21911ea
MR
1186/* microMIPS 32-bit opcode helper installer. */
1187
1188static void
1189bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1190{
1191 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1192 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1193}
1194
1195/* microMIPS 32-bit opcode helper retriever. */
1196
1197static bfd_vma
1198bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1199{
1200 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1201}
1202\f
b49e97c9
TS
1203/* Look up an entry in a MIPS ELF linker hash table. */
1204
1205#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1206 ((struct mips_elf_link_hash_entry *) \
1207 elf_link_hash_lookup (&(table)->root, (string), (create), \
1208 (copy), (follow)))
1209
1210/* Traverse a MIPS ELF linker hash table. */
1211
1212#define mips_elf_link_hash_traverse(table, func, info) \
1213 (elf_link_hash_traverse \
1214 (&(table)->root, \
9719ad41 1215 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1216 (info)))
1217
0f20cc35
DJ
1218/* Find the base offsets for thread-local storage in this object,
1219 for GD/LD and IE/LE respectively. */
1220
1221#define TP_OFFSET 0x7000
1222#define DTP_OFFSET 0x8000
1223
1224static bfd_vma
1225dtprel_base (struct bfd_link_info *info)
1226{
1227 /* If tls_sec is NULL, we should have signalled an error already. */
1228 if (elf_hash_table (info)->tls_sec == NULL)
1229 return 0;
1230 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1231}
1232
1233static bfd_vma
1234tprel_base (struct bfd_link_info *info)
1235{
1236 /* If tls_sec is NULL, we should have signalled an error already. */
1237 if (elf_hash_table (info)->tls_sec == NULL)
1238 return 0;
1239 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1240}
1241
b49e97c9
TS
1242/* Create an entry in a MIPS ELF linker hash table. */
1243
1244static struct bfd_hash_entry *
9719ad41
RS
1245mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1246 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1247{
1248 struct mips_elf_link_hash_entry *ret =
1249 (struct mips_elf_link_hash_entry *) entry;
1250
1251 /* Allocate the structure if it has not already been allocated by a
1252 subclass. */
9719ad41
RS
1253 if (ret == NULL)
1254 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1255 if (ret == NULL)
b49e97c9
TS
1256 return (struct bfd_hash_entry *) ret;
1257
1258 /* Call the allocation method of the superclass. */
1259 ret = ((struct mips_elf_link_hash_entry *)
1260 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1261 table, string));
9719ad41 1262 if (ret != NULL)
b49e97c9
TS
1263 {
1264 /* Set local fields. */
1265 memset (&ret->esym, 0, sizeof (EXTR));
1266 /* We use -2 as a marker to indicate that the information has
1267 not been set. -1 means there is no associated ifd. */
1268 ret->esym.ifd = -2;
861fb55a 1269 ret->la25_stub = 0;
b49e97c9 1270 ret->possibly_dynamic_relocs = 0;
b49e97c9 1271 ret->fn_stub = NULL;
b49e97c9
TS
1272 ret->call_stub = NULL;
1273 ret->call_fp_stub = NULL;
634835ae 1274 ret->global_got_area = GGA_NONE;
6ccf4795 1275 ret->got_only_for_calls = TRUE;
71782a75 1276 ret->readonly_reloc = FALSE;
861fb55a 1277 ret->has_static_relocs = FALSE;
71782a75
RS
1278 ret->no_fn_stub = FALSE;
1279 ret->need_fn_stub = FALSE;
861fb55a 1280 ret->has_nonpic_branches = FALSE;
33bb52fb 1281 ret->needs_lazy_stub = FALSE;
1bbce132 1282 ret->use_plt_entry = FALSE;
b49e97c9
TS
1283 }
1284
1285 return (struct bfd_hash_entry *) ret;
1286}
f0abc2a1 1287
6ae68ba3
MR
1288/* Allocate MIPS ELF private object data. */
1289
1290bfd_boolean
1291_bfd_mips_elf_mkobject (bfd *abfd)
1292{
1293 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1294 MIPS_ELF_DATA);
1295}
1296
f0abc2a1 1297bfd_boolean
9719ad41 1298_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1299{
f592407e
AM
1300 if (!sec->used_by_bfd)
1301 {
1302 struct _mips_elf_section_data *sdata;
1303 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1304
f592407e
AM
1305 sdata = bfd_zalloc (abfd, amt);
1306 if (sdata == NULL)
1307 return FALSE;
1308 sec->used_by_bfd = sdata;
1309 }
f0abc2a1
AM
1310
1311 return _bfd_elf_new_section_hook (abfd, sec);
1312}
b49e97c9
TS
1313\f
1314/* Read ECOFF debugging information from a .mdebug section into a
1315 ecoff_debug_info structure. */
1316
b34976b6 1317bfd_boolean
9719ad41
RS
1318_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1319 struct ecoff_debug_info *debug)
b49e97c9
TS
1320{
1321 HDRR *symhdr;
1322 const struct ecoff_debug_swap *swap;
9719ad41 1323 char *ext_hdr;
b49e97c9
TS
1324
1325 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1326 memset (debug, 0, sizeof (*debug));
1327
9719ad41 1328 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1329 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1330 goto error_return;
1331
9719ad41 1332 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1333 swap->external_hdr_size))
b49e97c9
TS
1334 goto error_return;
1335
1336 symhdr = &debug->symbolic_header;
1337 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1338
1339 /* The symbolic header contains absolute file offsets and sizes to
1340 read. */
1341#define READ(ptr, offset, count, size, type) \
1342 if (symhdr->count == 0) \
1343 debug->ptr = NULL; \
1344 else \
1345 { \
1346 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1347 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1348 if (debug->ptr == NULL) \
1349 goto error_return; \
9719ad41 1350 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1351 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1352 goto error_return; \
1353 }
1354
1355 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1356 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1357 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1358 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1359 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1360 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1361 union aux_ext *);
1362 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1363 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1364 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1365 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1366 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1367#undef READ
1368
1369 debug->fdr = NULL;
b49e97c9 1370
b34976b6 1371 return TRUE;
b49e97c9
TS
1372
1373 error_return:
1374 if (ext_hdr != NULL)
1375 free (ext_hdr);
1376 if (debug->line != NULL)
1377 free (debug->line);
1378 if (debug->external_dnr != NULL)
1379 free (debug->external_dnr);
1380 if (debug->external_pdr != NULL)
1381 free (debug->external_pdr);
1382 if (debug->external_sym != NULL)
1383 free (debug->external_sym);
1384 if (debug->external_opt != NULL)
1385 free (debug->external_opt);
1386 if (debug->external_aux != NULL)
1387 free (debug->external_aux);
1388 if (debug->ss != NULL)
1389 free (debug->ss);
1390 if (debug->ssext != NULL)
1391 free (debug->ssext);
1392 if (debug->external_fdr != NULL)
1393 free (debug->external_fdr);
1394 if (debug->external_rfd != NULL)
1395 free (debug->external_rfd);
1396 if (debug->external_ext != NULL)
1397 free (debug->external_ext);
b34976b6 1398 return FALSE;
b49e97c9
TS
1399}
1400\f
1401/* Swap RPDR (runtime procedure table entry) for output. */
1402
1403static void
9719ad41 1404ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1405{
1406 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1407 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1408 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1409 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1410 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1411 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1412
1413 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1414 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1415
1416 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1417}
1418
1419/* Create a runtime procedure table from the .mdebug section. */
1420
b34976b6 1421static bfd_boolean
9719ad41
RS
1422mips_elf_create_procedure_table (void *handle, bfd *abfd,
1423 struct bfd_link_info *info, asection *s,
1424 struct ecoff_debug_info *debug)
b49e97c9
TS
1425{
1426 const struct ecoff_debug_swap *swap;
1427 HDRR *hdr = &debug->symbolic_header;
1428 RPDR *rpdr, *rp;
1429 struct rpdr_ext *erp;
9719ad41 1430 void *rtproc;
b49e97c9
TS
1431 struct pdr_ext *epdr;
1432 struct sym_ext *esym;
1433 char *ss, **sv;
1434 char *str;
1435 bfd_size_type size;
1436 bfd_size_type count;
1437 unsigned long sindex;
1438 unsigned long i;
1439 PDR pdr;
1440 SYMR sym;
1441 const char *no_name_func = _("static procedure (no name)");
1442
1443 epdr = NULL;
1444 rpdr = NULL;
1445 esym = NULL;
1446 ss = NULL;
1447 sv = NULL;
1448
1449 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1450
1451 sindex = strlen (no_name_func) + 1;
1452 count = hdr->ipdMax;
1453 if (count > 0)
1454 {
1455 size = swap->external_pdr_size;
1456
9719ad41 1457 epdr = bfd_malloc (size * count);
b49e97c9
TS
1458 if (epdr == NULL)
1459 goto error_return;
1460
9719ad41 1461 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1462 goto error_return;
1463
1464 size = sizeof (RPDR);
9719ad41 1465 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1466 if (rpdr == NULL)
1467 goto error_return;
1468
1469 size = sizeof (char *);
9719ad41 1470 sv = bfd_malloc (size * count);
b49e97c9
TS
1471 if (sv == NULL)
1472 goto error_return;
1473
1474 count = hdr->isymMax;
1475 size = swap->external_sym_size;
9719ad41 1476 esym = bfd_malloc (size * count);
b49e97c9
TS
1477 if (esym == NULL)
1478 goto error_return;
1479
9719ad41 1480 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1481 goto error_return;
1482
1483 count = hdr->issMax;
9719ad41 1484 ss = bfd_malloc (count);
b49e97c9
TS
1485 if (ss == NULL)
1486 goto error_return;
f075ee0c 1487 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1488 goto error_return;
1489
1490 count = hdr->ipdMax;
1491 for (i = 0; i < (unsigned long) count; i++, rp++)
1492 {
9719ad41
RS
1493 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1494 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1495 rp->adr = sym.value;
1496 rp->regmask = pdr.regmask;
1497 rp->regoffset = pdr.regoffset;
1498 rp->fregmask = pdr.fregmask;
1499 rp->fregoffset = pdr.fregoffset;
1500 rp->frameoffset = pdr.frameoffset;
1501 rp->framereg = pdr.framereg;
1502 rp->pcreg = pdr.pcreg;
1503 rp->irpss = sindex;
1504 sv[i] = ss + sym.iss;
1505 sindex += strlen (sv[i]) + 1;
1506 }
1507 }
1508
1509 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1510 size = BFD_ALIGN (size, 16);
9719ad41 1511 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1512 if (rtproc == NULL)
1513 {
1514 mips_elf_hash_table (info)->procedure_count = 0;
1515 goto error_return;
1516 }
1517
1518 mips_elf_hash_table (info)->procedure_count = count + 2;
1519
9719ad41 1520 erp = rtproc;
b49e97c9
TS
1521 memset (erp, 0, sizeof (struct rpdr_ext));
1522 erp++;
1523 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1524 strcpy (str, no_name_func);
1525 str += strlen (no_name_func) + 1;
1526 for (i = 0; i < count; i++)
1527 {
1528 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1529 strcpy (str, sv[i]);
1530 str += strlen (sv[i]) + 1;
1531 }
1532 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1533
1534 /* Set the size and contents of .rtproc section. */
eea6121a 1535 s->size = size;
9719ad41 1536 s->contents = rtproc;
b49e97c9
TS
1537
1538 /* Skip this section later on (I don't think this currently
1539 matters, but someday it might). */
8423293d 1540 s->map_head.link_order = NULL;
b49e97c9
TS
1541
1542 if (epdr != NULL)
1543 free (epdr);
1544 if (rpdr != NULL)
1545 free (rpdr);
1546 if (esym != NULL)
1547 free (esym);
1548 if (ss != NULL)
1549 free (ss);
1550 if (sv != NULL)
1551 free (sv);
1552
b34976b6 1553 return TRUE;
b49e97c9
TS
1554
1555 error_return:
1556 if (epdr != NULL)
1557 free (epdr);
1558 if (rpdr != NULL)
1559 free (rpdr);
1560 if (esym != NULL)
1561 free (esym);
1562 if (ss != NULL)
1563 free (ss);
1564 if (sv != NULL)
1565 free (sv);
b34976b6 1566 return FALSE;
b49e97c9 1567}
738e5348 1568\f
861fb55a
DJ
1569/* We're going to create a stub for H. Create a symbol for the stub's
1570 value and size, to help make the disassembly easier to read. */
1571
1572static bfd_boolean
1573mips_elf_create_stub_symbol (struct bfd_link_info *info,
1574 struct mips_elf_link_hash_entry *h,
1575 const char *prefix, asection *s, bfd_vma value,
1576 bfd_vma size)
1577{
a848a227 1578 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
861fb55a
DJ
1579 struct bfd_link_hash_entry *bh;
1580 struct elf_link_hash_entry *elfh;
e1fa0163
NC
1581 char *name;
1582 bfd_boolean res;
861fb55a 1583
a848a227 1584 if (micromips_p)
df58fc94
RS
1585 value |= 1;
1586
861fb55a 1587 /* Create a new symbol. */
e1fa0163 1588 name = concat (prefix, h->root.root.root.string, NULL);
861fb55a 1589 bh = NULL;
e1fa0163
NC
1590 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1591 BSF_LOCAL, s, value, NULL,
1592 TRUE, FALSE, &bh);
1593 free (name);
1594 if (! res)
861fb55a
DJ
1595 return FALSE;
1596
1597 /* Make it a local function. */
1598 elfh = (struct elf_link_hash_entry *) bh;
1599 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1600 elfh->size = size;
1601 elfh->forced_local = 1;
a848a227
MR
1602 if (micromips_p)
1603 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
861fb55a
DJ
1604 return TRUE;
1605}
1606
738e5348
RS
1607/* We're about to redefine H. Create a symbol to represent H's
1608 current value and size, to help make the disassembly easier
1609 to read. */
1610
1611static bfd_boolean
1612mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1613 struct mips_elf_link_hash_entry *h,
1614 const char *prefix)
1615{
1616 struct bfd_link_hash_entry *bh;
1617 struct elf_link_hash_entry *elfh;
e1fa0163 1618 char *name;
738e5348
RS
1619 asection *s;
1620 bfd_vma value;
e1fa0163 1621 bfd_boolean res;
738e5348
RS
1622
1623 /* Read the symbol's value. */
1624 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1625 || h->root.root.type == bfd_link_hash_defweak);
1626 s = h->root.root.u.def.section;
1627 value = h->root.root.u.def.value;
1628
1629 /* Create a new symbol. */
e1fa0163 1630 name = concat (prefix, h->root.root.root.string, NULL);
738e5348 1631 bh = NULL;
e1fa0163
NC
1632 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1633 BSF_LOCAL, s, value, NULL,
1634 TRUE, FALSE, &bh);
1635 free (name);
1636 if (! res)
738e5348
RS
1637 return FALSE;
1638
1639 /* Make it local and copy the other attributes from H. */
1640 elfh = (struct elf_link_hash_entry *) bh;
1641 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1642 elfh->other = h->root.other;
1643 elfh->size = h->root.size;
1644 elfh->forced_local = 1;
1645 return TRUE;
1646}
1647
1648/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1649 function rather than to a hard-float stub. */
1650
1651static bfd_boolean
1652section_allows_mips16_refs_p (asection *section)
1653{
1654 const char *name;
1655
1656 name = bfd_get_section_name (section->owner, section);
1657 return (FN_STUB_P (name)
1658 || CALL_STUB_P (name)
1659 || CALL_FP_STUB_P (name)
1660 || strcmp (name, ".pdr") == 0);
1661}
1662
1663/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1664 stub section of some kind. Return the R_SYMNDX of the target
1665 function, or 0 if we can't decide which function that is. */
1666
1667static unsigned long
cb4437b8
MR
1668mips16_stub_symndx (const struct elf_backend_data *bed,
1669 asection *sec ATTRIBUTE_UNUSED,
502e814e 1670 const Elf_Internal_Rela *relocs,
738e5348
RS
1671 const Elf_Internal_Rela *relend)
1672{
cb4437b8 1673 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
738e5348
RS
1674 const Elf_Internal_Rela *rel;
1675
cb4437b8
MR
1676 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1677 one in a compound relocation. */
1678 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
738e5348
RS
1679 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1680 return ELF_R_SYM (sec->owner, rel->r_info);
1681
1682 /* Otherwise trust the first relocation, whatever its kind. This is
1683 the traditional behavior. */
1684 if (relocs < relend)
1685 return ELF_R_SYM (sec->owner, relocs->r_info);
1686
1687 return 0;
1688}
b49e97c9
TS
1689
1690/* Check the mips16 stubs for a particular symbol, and see if we can
1691 discard them. */
1692
861fb55a
DJ
1693static void
1694mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1695 struct mips_elf_link_hash_entry *h)
b49e97c9 1696{
738e5348
RS
1697 /* Dynamic symbols must use the standard call interface, in case other
1698 objects try to call them. */
1699 if (h->fn_stub != NULL
1700 && h->root.dynindx != -1)
1701 {
1702 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1703 h->need_fn_stub = TRUE;
1704 }
1705
b49e97c9
TS
1706 if (h->fn_stub != NULL
1707 && ! h->need_fn_stub)
1708 {
1709 /* We don't need the fn_stub; the only references to this symbol
1710 are 16 bit calls. Clobber the size to 0 to prevent it from
1711 being included in the link. */
eea6121a 1712 h->fn_stub->size = 0;
b49e97c9
TS
1713 h->fn_stub->flags &= ~SEC_RELOC;
1714 h->fn_stub->reloc_count = 0;
1715 h->fn_stub->flags |= SEC_EXCLUDE;
ca9584fb 1716 h->fn_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1717 }
1718
1719 if (h->call_stub != NULL
30c09090 1720 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1721 {
1722 /* We don't need the call_stub; this is a 16 bit function, so
1723 calls from other 16 bit functions are OK. Clobber the size
1724 to 0 to prevent it from being included in the link. */
eea6121a 1725 h->call_stub->size = 0;
b49e97c9
TS
1726 h->call_stub->flags &= ~SEC_RELOC;
1727 h->call_stub->reloc_count = 0;
1728 h->call_stub->flags |= SEC_EXCLUDE;
ca9584fb 1729 h->call_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1730 }
1731
1732 if (h->call_fp_stub != NULL
30c09090 1733 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1734 {
1735 /* We don't need the call_stub; this is a 16 bit function, so
1736 calls from other 16 bit functions are OK. Clobber the size
1737 to 0 to prevent it from being included in the link. */
eea6121a 1738 h->call_fp_stub->size = 0;
b49e97c9
TS
1739 h->call_fp_stub->flags &= ~SEC_RELOC;
1740 h->call_fp_stub->reloc_count = 0;
1741 h->call_fp_stub->flags |= SEC_EXCLUDE;
ca9584fb 1742 h->call_fp_stub->output_section = bfd_abs_section_ptr;
b49e97c9 1743 }
861fb55a
DJ
1744}
1745
1746/* Hashtable callbacks for mips_elf_la25_stubs. */
1747
1748static hashval_t
1749mips_elf_la25_stub_hash (const void *entry_)
1750{
1751 const struct mips_elf_la25_stub *entry;
1752
1753 entry = (struct mips_elf_la25_stub *) entry_;
1754 return entry->h->root.root.u.def.section->id
1755 + entry->h->root.root.u.def.value;
1756}
1757
1758static int
1759mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1760{
1761 const struct mips_elf_la25_stub *entry1, *entry2;
1762
1763 entry1 = (struct mips_elf_la25_stub *) entry1_;
1764 entry2 = (struct mips_elf_la25_stub *) entry2_;
1765 return ((entry1->h->root.root.u.def.section
1766 == entry2->h->root.root.u.def.section)
1767 && (entry1->h->root.root.u.def.value
1768 == entry2->h->root.root.u.def.value));
1769}
1770
1771/* Called by the linker to set up the la25 stub-creation code. FN is
1772 the linker's implementation of add_stub_function. Return true on
1773 success. */
1774
1775bfd_boolean
1776_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1777 asection *(*fn) (const char *, asection *,
1778 asection *))
1779{
1780 struct mips_elf_link_hash_table *htab;
1781
1782 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1783 if (htab == NULL)
1784 return FALSE;
1785
861fb55a
DJ
1786 htab->add_stub_section = fn;
1787 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1788 mips_elf_la25_stub_eq, NULL);
1789 if (htab->la25_stubs == NULL)
1790 return FALSE;
1791
1792 return TRUE;
1793}
1794
1795/* Return true if H is a locally-defined PIC function, in the sense
8f0c309a
CLT
1796 that it or its fn_stub might need $25 to be valid on entry.
1797 Note that MIPS16 functions set up $gp using PC-relative instructions,
1798 so they themselves never need $25 to be valid. Only non-MIPS16
1799 entry points are of interest here. */
861fb55a
DJ
1800
1801static bfd_boolean
1802mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1803{
1804 return ((h->root.root.type == bfd_link_hash_defined
1805 || h->root.root.type == bfd_link_hash_defweak)
1806 && h->root.def_regular
1807 && !bfd_is_abs_section (h->root.root.u.def.section)
f02cb058 1808 && !bfd_is_und_section (h->root.root.u.def.section)
8f0c309a
CLT
1809 && (!ELF_ST_IS_MIPS16 (h->root.other)
1810 || (h->fn_stub && h->need_fn_stub))
861fb55a
DJ
1811 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1812 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1813}
1814
8f0c309a
CLT
1815/* Set *SEC to the input section that contains the target of STUB.
1816 Return the offset of the target from the start of that section. */
1817
1818static bfd_vma
1819mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1820 asection **sec)
1821{
1822 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1823 {
1824 BFD_ASSERT (stub->h->need_fn_stub);
1825 *sec = stub->h->fn_stub;
1826 return 0;
1827 }
1828 else
1829 {
1830 *sec = stub->h->root.root.u.def.section;
1831 return stub->h->root.root.u.def.value;
1832 }
1833}
1834
861fb55a
DJ
1835/* STUB describes an la25 stub that we have decided to implement
1836 by inserting an LUI/ADDIU pair before the target function.
1837 Create the section and redirect the function symbol to it. */
1838
1839static bfd_boolean
1840mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1841 struct bfd_link_info *info)
1842{
1843 struct mips_elf_link_hash_table *htab;
1844 char *name;
1845 asection *s, *input_section;
1846 unsigned int align;
1847
1848 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1849 if (htab == NULL)
1850 return FALSE;
861fb55a
DJ
1851
1852 /* Create a unique name for the new section. */
1853 name = bfd_malloc (11 + sizeof (".text.stub."));
1854 if (name == NULL)
1855 return FALSE;
1856 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1857
1858 /* Create the section. */
8f0c309a 1859 mips_elf_get_la25_target (stub, &input_section);
861fb55a
DJ
1860 s = htab->add_stub_section (name, input_section,
1861 input_section->output_section);
1862 if (s == NULL)
1863 return FALSE;
1864
1865 /* Make sure that any padding goes before the stub. */
1866 align = input_section->alignment_power;
1867 if (!bfd_set_section_alignment (s->owner, s, align))
1868 return FALSE;
1869 if (align > 3)
1870 s->size = (1 << align) - 8;
1871
1872 /* Create a symbol for the stub. */
1873 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1874 stub->stub_section = s;
1875 stub->offset = s->size;
1876
1877 /* Allocate room for it. */
1878 s->size += 8;
1879 return TRUE;
1880}
1881
1882/* STUB describes an la25 stub that we have decided to implement
1883 with a separate trampoline. Allocate room for it and redirect
1884 the function symbol to it. */
1885
1886static bfd_boolean
1887mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1888 struct bfd_link_info *info)
1889{
1890 struct mips_elf_link_hash_table *htab;
1891 asection *s;
1892
1893 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1894 if (htab == NULL)
1895 return FALSE;
861fb55a
DJ
1896
1897 /* Create a trampoline section, if we haven't already. */
1898 s = htab->strampoline;
1899 if (s == NULL)
1900 {
1901 asection *input_section = stub->h->root.root.u.def.section;
1902 s = htab->add_stub_section (".text", NULL,
1903 input_section->output_section);
1904 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1905 return FALSE;
1906 htab->strampoline = s;
1907 }
1908
1909 /* Create a symbol for the stub. */
1910 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1911 stub->stub_section = s;
1912 stub->offset = s->size;
1913
1914 /* Allocate room for it. */
1915 s->size += 16;
1916 return TRUE;
1917}
1918
1919/* H describes a symbol that needs an la25 stub. Make sure that an
1920 appropriate stub exists and point H at it. */
1921
1922static bfd_boolean
1923mips_elf_add_la25_stub (struct bfd_link_info *info,
1924 struct mips_elf_link_hash_entry *h)
1925{
1926 struct mips_elf_link_hash_table *htab;
1927 struct mips_elf_la25_stub search, *stub;
1928 bfd_boolean use_trampoline_p;
1929 asection *s;
1930 bfd_vma value;
1931 void **slot;
1932
861fb55a
DJ
1933 /* Describe the stub we want. */
1934 search.stub_section = NULL;
1935 search.offset = 0;
1936 search.h = h;
1937
1938 /* See if we've already created an equivalent stub. */
1939 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1940 if (htab == NULL)
1941 return FALSE;
1942
861fb55a
DJ
1943 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1944 if (slot == NULL)
1945 return FALSE;
1946
1947 stub = (struct mips_elf_la25_stub *) *slot;
1948 if (stub != NULL)
1949 {
1950 /* We can reuse the existing stub. */
1951 h->la25_stub = stub;
1952 return TRUE;
1953 }
1954
1955 /* Create a permanent copy of ENTRY and add it to the hash table. */
1956 stub = bfd_malloc (sizeof (search));
1957 if (stub == NULL)
1958 return FALSE;
1959 *stub = search;
1960 *slot = stub;
1961
8f0c309a
CLT
1962 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1963 of the section and if we would need no more than 2 nops. */
1964 value = mips_elf_get_la25_target (stub, &s);
fe152e64
MR
1965 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1966 value &= ~1;
8f0c309a
CLT
1967 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1968
861fb55a
DJ
1969 h->la25_stub = stub;
1970 return (use_trampoline_p
1971 ? mips_elf_add_la25_trampoline (stub, info)
1972 : mips_elf_add_la25_intro (stub, info));
1973}
1974
1975/* A mips_elf_link_hash_traverse callback that is called before sizing
1976 sections. DATA points to a mips_htab_traverse_info structure. */
1977
1978static bfd_boolean
1979mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1980{
1981 struct mips_htab_traverse_info *hti;
1982
1983 hti = (struct mips_htab_traverse_info *) data;
0e1862bb 1984 if (!bfd_link_relocatable (hti->info))
861fb55a 1985 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 1986
861fb55a
DJ
1987 if (mips_elf_local_pic_function_p (h))
1988 {
ba85c43e
NC
1989 /* PR 12845: If H is in a section that has been garbage
1990 collected it will have its output section set to *ABS*. */
1991 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1992 return TRUE;
1993
861fb55a
DJ
1994 /* H is a function that might need $25 to be valid on entry.
1995 If we're creating a non-PIC relocatable object, mark H as
1996 being PIC. If we're creating a non-relocatable object with
1997 non-PIC branches and jumps to H, make sure that H has an la25
1998 stub. */
0e1862bb 1999 if (bfd_link_relocatable (hti->info))
861fb55a
DJ
2000 {
2001 if (!PIC_OBJECT_P (hti->output_bfd))
2002 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2003 }
2004 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2005 {
2006 hti->error = TRUE;
2007 return FALSE;
2008 }
2009 }
b34976b6 2010 return TRUE;
b49e97c9
TS
2011}
2012\f
d6f16593
MR
2013/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2014 Most mips16 instructions are 16 bits, but these instructions
2015 are 32 bits.
2016
2017 The format of these instructions is:
2018
2019 +--------------+--------------------------------+
2020 | JALX | X| Imm 20:16 | Imm 25:21 |
2021 +--------------+--------------------------------+
2022 | Immediate 15:0 |
2023 +-----------------------------------------------+
2024
2025 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2026 Note that the immediate value in the first word is swapped.
2027
2028 When producing a relocatable object file, R_MIPS16_26 is
2029 handled mostly like R_MIPS_26. In particular, the addend is
2030 stored as a straight 26-bit value in a 32-bit instruction.
2031 (gas makes life simpler for itself by never adjusting a
2032 R_MIPS16_26 reloc to be against a section, so the addend is
2033 always zero). However, the 32 bit instruction is stored as 2
2034 16-bit values, rather than a single 32-bit value. In a
2035 big-endian file, the result is the same; in a little-endian
2036 file, the two 16-bit halves of the 32 bit value are swapped.
2037 This is so that a disassembler can recognize the jal
2038 instruction.
2039
2040 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2041 instruction stored as two 16-bit values. The addend A is the
2042 contents of the targ26 field. The calculation is the same as
2043 R_MIPS_26. When storing the calculated value, reorder the
2044 immediate value as shown above, and don't forget to store the
2045 value as two 16-bit values.
2046
2047 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2048 defined as
2049
2050 big-endian:
2051 +--------+----------------------+
2052 | | |
2053 | | targ26-16 |
2054 |31 26|25 0|
2055 +--------+----------------------+
2056
2057 little-endian:
2058 +----------+------+-------------+
2059 | | | |
2060 | sub1 | | sub2 |
2061 |0 9|10 15|16 31|
2062 +----------+--------------------+
2063 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2064 ((sub1 << 16) | sub2)).
2065
2066 When producing a relocatable object file, the calculation is
2067 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2068 When producing a fully linked file, the calculation is
2069 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2070 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2071
738e5348
RS
2072 The table below lists the other MIPS16 instruction relocations.
2073 Each one is calculated in the same way as the non-MIPS16 relocation
2074 given on the right, but using the extended MIPS16 layout of 16-bit
2075 immediate fields:
2076
2077 R_MIPS16_GPREL R_MIPS_GPREL16
2078 R_MIPS16_GOT16 R_MIPS_GOT16
2079 R_MIPS16_CALL16 R_MIPS_CALL16
2080 R_MIPS16_HI16 R_MIPS_HI16
2081 R_MIPS16_LO16 R_MIPS_LO16
2082
2083 A typical instruction will have a format like this:
d6f16593
MR
2084
2085 +--------------+--------------------------------+
2086 | EXTEND | Imm 10:5 | Imm 15:11 |
2087 +--------------+--------------------------------+
2088 | Major | rx | ry | Imm 4:0 |
2089 +--------------+--------------------------------+
2090
2091 EXTEND is the five bit value 11110. Major is the instruction
2092 opcode.
2093
738e5348
RS
2094 All we need to do here is shuffle the bits appropriately.
2095 As above, the two 16-bit halves must be swapped on a
c9775dde
MR
2096 little-endian system.
2097
2098 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2099 relocatable field is shifted by 1 rather than 2 and the same bit
2100 shuffling is done as with the relocations above. */
738e5348
RS
2101
2102static inline bfd_boolean
2103mips16_reloc_p (int r_type)
2104{
2105 switch (r_type)
2106 {
2107 case R_MIPS16_26:
2108 case R_MIPS16_GPREL:
2109 case R_MIPS16_GOT16:
2110 case R_MIPS16_CALL16:
2111 case R_MIPS16_HI16:
2112 case R_MIPS16_LO16:
d0f13682
CLT
2113 case R_MIPS16_TLS_GD:
2114 case R_MIPS16_TLS_LDM:
2115 case R_MIPS16_TLS_DTPREL_HI16:
2116 case R_MIPS16_TLS_DTPREL_LO16:
2117 case R_MIPS16_TLS_GOTTPREL:
2118 case R_MIPS16_TLS_TPREL_HI16:
2119 case R_MIPS16_TLS_TPREL_LO16:
c9775dde 2120 case R_MIPS16_PC16_S1:
738e5348
RS
2121 return TRUE;
2122
2123 default:
2124 return FALSE;
2125 }
2126}
2127
df58fc94
RS
2128/* Check if a microMIPS reloc. */
2129
2130static inline bfd_boolean
2131micromips_reloc_p (unsigned int r_type)
2132{
2133 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2134}
2135
2136/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2137 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2138 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2139
2140static inline bfd_boolean
2141micromips_reloc_shuffle_p (unsigned int r_type)
2142{
2143 return (micromips_reloc_p (r_type)
2144 && r_type != R_MICROMIPS_PC7_S1
2145 && r_type != R_MICROMIPS_PC10_S1);
2146}
2147
738e5348
RS
2148static inline bfd_boolean
2149got16_reloc_p (int r_type)
2150{
df58fc94
RS
2151 return (r_type == R_MIPS_GOT16
2152 || r_type == R_MIPS16_GOT16
2153 || r_type == R_MICROMIPS_GOT16);
738e5348
RS
2154}
2155
2156static inline bfd_boolean
2157call16_reloc_p (int r_type)
2158{
df58fc94
RS
2159 return (r_type == R_MIPS_CALL16
2160 || r_type == R_MIPS16_CALL16
2161 || r_type == R_MICROMIPS_CALL16);
2162}
2163
2164static inline bfd_boolean
2165got_disp_reloc_p (unsigned int r_type)
2166{
2167 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2168}
2169
2170static inline bfd_boolean
2171got_page_reloc_p (unsigned int r_type)
2172{
2173 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2174}
2175
df58fc94
RS
2176static inline bfd_boolean
2177got_lo16_reloc_p (unsigned int r_type)
2178{
2179 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2180}
2181
2182static inline bfd_boolean
2183call_hi16_reloc_p (unsigned int r_type)
2184{
2185 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2186}
2187
2188static inline bfd_boolean
2189call_lo16_reloc_p (unsigned int r_type)
2190{
2191 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
738e5348
RS
2192}
2193
2194static inline bfd_boolean
2195hi16_reloc_p (int r_type)
2196{
df58fc94
RS
2197 return (r_type == R_MIPS_HI16
2198 || r_type == R_MIPS16_HI16
7361da2c
AB
2199 || r_type == R_MICROMIPS_HI16
2200 || r_type == R_MIPS_PCHI16);
738e5348 2201}
d6f16593 2202
738e5348
RS
2203static inline bfd_boolean
2204lo16_reloc_p (int r_type)
2205{
df58fc94
RS
2206 return (r_type == R_MIPS_LO16
2207 || r_type == R_MIPS16_LO16
7361da2c
AB
2208 || r_type == R_MICROMIPS_LO16
2209 || r_type == R_MIPS_PCLO16);
738e5348
RS
2210}
2211
2212static inline bfd_boolean
2213mips16_call_reloc_p (int r_type)
2214{
2215 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2216}
d6f16593 2217
38a7df63
CF
2218static inline bfd_boolean
2219jal_reloc_p (int r_type)
2220{
df58fc94
RS
2221 return (r_type == R_MIPS_26
2222 || r_type == R_MIPS16_26
2223 || r_type == R_MICROMIPS_26_S1);
2224}
2225
99aefae6
MR
2226static inline bfd_boolean
2227b_reloc_p (int r_type)
2228{
2229 return (r_type == R_MIPS_PC26_S2
2230 || r_type == R_MIPS_PC21_S2
2231 || r_type == R_MIPS_PC16
c9775dde 2232 || r_type == R_MIPS_GNU_REL16_S2
9d862524
MR
2233 || r_type == R_MIPS16_PC16_S1
2234 || r_type == R_MICROMIPS_PC16_S1
2235 || r_type == R_MICROMIPS_PC10_S1
2236 || r_type == R_MICROMIPS_PC7_S1);
99aefae6
MR
2237}
2238
7361da2c
AB
2239static inline bfd_boolean
2240aligned_pcrel_reloc_p (int r_type)
2241{
2242 return (r_type == R_MIPS_PC18_S3
2243 || r_type == R_MIPS_PC19_S2);
2244}
2245
9d862524
MR
2246static inline bfd_boolean
2247branch_reloc_p (int r_type)
2248{
2249 return (r_type == R_MIPS_26
2250 || r_type == R_MIPS_PC26_S2
2251 || r_type == R_MIPS_PC21_S2
2252 || r_type == R_MIPS_PC16
2253 || r_type == R_MIPS_GNU_REL16_S2);
2254}
2255
c9775dde
MR
2256static inline bfd_boolean
2257mips16_branch_reloc_p (int r_type)
2258{
2259 return (r_type == R_MIPS16_26
2260 || r_type == R_MIPS16_PC16_S1);
2261}
2262
df58fc94
RS
2263static inline bfd_boolean
2264micromips_branch_reloc_p (int r_type)
2265{
2266 return (r_type == R_MICROMIPS_26_S1
2267 || r_type == R_MICROMIPS_PC16_S1
2268 || r_type == R_MICROMIPS_PC10_S1
2269 || r_type == R_MICROMIPS_PC7_S1);
2270}
2271
2272static inline bfd_boolean
2273tls_gd_reloc_p (unsigned int r_type)
2274{
d0f13682
CLT
2275 return (r_type == R_MIPS_TLS_GD
2276 || r_type == R_MIPS16_TLS_GD
2277 || r_type == R_MICROMIPS_TLS_GD);
df58fc94
RS
2278}
2279
2280static inline bfd_boolean
2281tls_ldm_reloc_p (unsigned int r_type)
2282{
d0f13682
CLT
2283 return (r_type == R_MIPS_TLS_LDM
2284 || r_type == R_MIPS16_TLS_LDM
2285 || r_type == R_MICROMIPS_TLS_LDM);
df58fc94
RS
2286}
2287
2288static inline bfd_boolean
2289tls_gottprel_reloc_p (unsigned int r_type)
2290{
d0f13682
CLT
2291 return (r_type == R_MIPS_TLS_GOTTPREL
2292 || r_type == R_MIPS16_TLS_GOTTPREL
2293 || r_type == R_MICROMIPS_TLS_GOTTPREL);
38a7df63
CF
2294}
2295
d6f16593 2296void
df58fc94
RS
2297_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2298 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2299{
df58fc94 2300 bfd_vma first, second, val;
d6f16593 2301
df58fc94 2302 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2303 return;
2304
df58fc94
RS
2305 /* Pick up the first and second halfwords of the instruction. */
2306 first = bfd_get_16 (abfd, data);
2307 second = bfd_get_16 (abfd, data + 2);
2308 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2309 val = first << 16 | second;
2310 else if (r_type != R_MIPS16_26)
2311 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2312 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
d6f16593 2313 else
df58fc94
RS
2314 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2315 | ((first & 0x1f) << 21) | second);
d6f16593
MR
2316 bfd_put_32 (abfd, val, data);
2317}
2318
2319void
df58fc94
RS
2320_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2321 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2322{
df58fc94 2323 bfd_vma first, second, val;
d6f16593 2324
df58fc94 2325 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2326 return;
2327
2328 val = bfd_get_32 (abfd, data);
df58fc94 2329 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
d6f16593 2330 {
df58fc94
RS
2331 second = val & 0xffff;
2332 first = val >> 16;
2333 }
2334 else if (r_type != R_MIPS16_26)
2335 {
2336 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2337 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
d6f16593
MR
2338 }
2339 else
2340 {
df58fc94
RS
2341 second = val & 0xffff;
2342 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2343 | ((val >> 21) & 0x1f);
d6f16593 2344 }
df58fc94
RS
2345 bfd_put_16 (abfd, second, data + 2);
2346 bfd_put_16 (abfd, first, data);
d6f16593
MR
2347}
2348
b49e97c9 2349bfd_reloc_status_type
9719ad41
RS
2350_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2351 arelent *reloc_entry, asection *input_section,
2352 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
2353{
2354 bfd_vma relocation;
a7ebbfdf 2355 bfd_signed_vma val;
30ac9238 2356 bfd_reloc_status_type status;
b49e97c9
TS
2357
2358 if (bfd_is_com_section (symbol->section))
2359 relocation = 0;
2360 else
2361 relocation = symbol->value;
2362
2363 relocation += symbol->section->output_section->vma;
2364 relocation += symbol->section->output_offset;
2365
07515404 2366 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
2367 return bfd_reloc_outofrange;
2368
b49e97c9 2369 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
2370 val = reloc_entry->addend;
2371
30ac9238 2372 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 2373
b49e97c9 2374 /* Adjust val for the final section location and GP value. If we
1049f94e 2375 are producing relocatable output, we don't want to do this for
b49e97c9 2376 an external symbol. */
1049f94e 2377 if (! relocatable
b49e97c9
TS
2378 || (symbol->flags & BSF_SECTION_SYM) != 0)
2379 val += relocation - gp;
2380
a7ebbfdf
TS
2381 if (reloc_entry->howto->partial_inplace)
2382 {
30ac9238
RS
2383 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2384 (bfd_byte *) data
2385 + reloc_entry->address);
2386 if (status != bfd_reloc_ok)
2387 return status;
a7ebbfdf
TS
2388 }
2389 else
2390 reloc_entry->addend = val;
b49e97c9 2391
1049f94e 2392 if (relocatable)
b49e97c9 2393 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2394
2395 return bfd_reloc_ok;
2396}
2397
2398/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2399 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2400 that contains the relocation field and DATA points to the start of
2401 INPUT_SECTION. */
2402
2403struct mips_hi16
2404{
2405 struct mips_hi16 *next;
2406 bfd_byte *data;
2407 asection *input_section;
2408 arelent rel;
2409};
2410
2411/* FIXME: This should not be a static variable. */
2412
2413static struct mips_hi16 *mips_hi16_list;
2414
2415/* A howto special_function for REL *HI16 relocations. We can only
2416 calculate the correct value once we've seen the partnering
2417 *LO16 relocation, so just save the information for later.
2418
2419 The ABI requires that the *LO16 immediately follow the *HI16.
2420 However, as a GNU extension, we permit an arbitrary number of
2421 *HI16s to be associated with a single *LO16. This significantly
2422 simplies the relocation handling in gcc. */
2423
2424bfd_reloc_status_type
2425_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2426 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2427 asection *input_section, bfd *output_bfd,
2428 char **error_message ATTRIBUTE_UNUSED)
2429{
2430 struct mips_hi16 *n;
2431
07515404 2432 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2433 return bfd_reloc_outofrange;
2434
2435 n = bfd_malloc (sizeof *n);
2436 if (n == NULL)
2437 return bfd_reloc_outofrange;
2438
2439 n->next = mips_hi16_list;
2440 n->data = data;
2441 n->input_section = input_section;
2442 n->rel = *reloc_entry;
2443 mips_hi16_list = n;
2444
2445 if (output_bfd != NULL)
2446 reloc_entry->address += input_section->output_offset;
2447
2448 return bfd_reloc_ok;
2449}
2450
738e5348 2451/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2452 like any other 16-bit relocation when applied to global symbols, but is
2453 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2454
2455bfd_reloc_status_type
2456_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2457 void *data, asection *input_section,
2458 bfd *output_bfd, char **error_message)
2459{
2460 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2461 || bfd_is_und_section (bfd_get_section (symbol))
2462 || bfd_is_com_section (bfd_get_section (symbol)))
2463 /* The relocation is against a global symbol. */
2464 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2465 input_section, output_bfd,
2466 error_message);
2467
2468 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2469 input_section, output_bfd, error_message);
2470}
2471
2472/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2473 is a straightforward 16 bit inplace relocation, but we must deal with
2474 any partnering high-part relocations as well. */
2475
2476bfd_reloc_status_type
2477_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2478 void *data, asection *input_section,
2479 bfd *output_bfd, char **error_message)
2480{
2481 bfd_vma vallo;
d6f16593 2482 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2483
07515404 2484 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2485 return bfd_reloc_outofrange;
2486
df58fc94 2487 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
d6f16593 2488 location);
df58fc94
RS
2489 vallo = bfd_get_32 (abfd, location);
2490 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2491 location);
d6f16593 2492
30ac9238
RS
2493 while (mips_hi16_list != NULL)
2494 {
2495 bfd_reloc_status_type ret;
2496 struct mips_hi16 *hi;
2497
2498 hi = mips_hi16_list;
2499
738e5348
RS
2500 /* R_MIPS*_GOT16 relocations are something of a special case. We
2501 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2502 relocation (with a rightshift of 16). However, since GOT16
2503 relocations can also be used with global symbols, their howto
2504 has a rightshift of 0. */
2505 if (hi->rel.howto->type == R_MIPS_GOT16)
2506 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2507 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2508 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
df58fc94
RS
2509 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2510 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
30ac9238
RS
2511
2512 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2513 carry or borrow will induce a change of +1 or -1 in the high part. */
2514 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2515
30ac9238
RS
2516 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2517 hi->input_section, output_bfd,
2518 error_message);
2519 if (ret != bfd_reloc_ok)
2520 return ret;
2521
2522 mips_hi16_list = hi->next;
2523 free (hi);
2524 }
2525
2526 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2527 input_section, output_bfd,
2528 error_message);
2529}
2530
2531/* A generic howto special_function. This calculates and installs the
2532 relocation itself, thus avoiding the oft-discussed problems in
2533 bfd_perform_relocation and bfd_install_relocation. */
2534
2535bfd_reloc_status_type
2536_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2537 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2538 asection *input_section, bfd *output_bfd,
2539 char **error_message ATTRIBUTE_UNUSED)
2540{
2541 bfd_signed_vma val;
2542 bfd_reloc_status_type status;
2543 bfd_boolean relocatable;
2544
2545 relocatable = (output_bfd != NULL);
2546
07515404 2547 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2548 return bfd_reloc_outofrange;
2549
2550 /* Build up the field adjustment in VAL. */
2551 val = 0;
2552 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2553 {
2554 /* Either we're calculating the final field value or we have a
2555 relocation against a section symbol. Add in the section's
2556 offset or address. */
2557 val += symbol->section->output_section->vma;
2558 val += symbol->section->output_offset;
2559 }
2560
2561 if (!relocatable)
2562 {
2563 /* We're calculating the final field value. Add in the symbol's value
2564 and, if pc-relative, subtract the address of the field itself. */
2565 val += symbol->value;
2566 if (reloc_entry->howto->pc_relative)
2567 {
2568 val -= input_section->output_section->vma;
2569 val -= input_section->output_offset;
2570 val -= reloc_entry->address;
2571 }
2572 }
2573
2574 /* VAL is now the final adjustment. If we're keeping this relocation
2575 in the output file, and if the relocation uses a separate addend,
2576 we just need to add VAL to that addend. Otherwise we need to add
2577 VAL to the relocation field itself. */
2578 if (relocatable && !reloc_entry->howto->partial_inplace)
2579 reloc_entry->addend += val;
2580 else
2581 {
d6f16593
MR
2582 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2583
30ac9238
RS
2584 /* Add in the separate addend, if any. */
2585 val += reloc_entry->addend;
2586
2587 /* Add VAL to the relocation field. */
df58fc94
RS
2588 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2589 location);
30ac9238 2590 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593 2591 location);
df58fc94
RS
2592 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2593 location);
d6f16593 2594
30ac9238
RS
2595 if (status != bfd_reloc_ok)
2596 return status;
2597 }
2598
2599 if (relocatable)
2600 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2601
2602 return bfd_reloc_ok;
2603}
2604\f
2605/* Swap an entry in a .gptab section. Note that these routines rely
2606 on the equivalence of the two elements of the union. */
2607
2608static void
9719ad41
RS
2609bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2610 Elf32_gptab *in)
b49e97c9
TS
2611{
2612 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2613 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2614}
2615
2616static void
9719ad41
RS
2617bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2618 Elf32_External_gptab *ex)
b49e97c9
TS
2619{
2620 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2621 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2622}
2623
2624static void
9719ad41
RS
2625bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2626 Elf32_External_compact_rel *ex)
b49e97c9
TS
2627{
2628 H_PUT_32 (abfd, in->id1, ex->id1);
2629 H_PUT_32 (abfd, in->num, ex->num);
2630 H_PUT_32 (abfd, in->id2, ex->id2);
2631 H_PUT_32 (abfd, in->offset, ex->offset);
2632 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2633 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2634}
2635
2636static void
9719ad41
RS
2637bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2638 Elf32_External_crinfo *ex)
b49e97c9
TS
2639{
2640 unsigned long l;
2641
2642 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2643 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2644 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2645 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2646 H_PUT_32 (abfd, l, ex->info);
2647 H_PUT_32 (abfd, in->konst, ex->konst);
2648 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2649}
b49e97c9
TS
2650\f
2651/* A .reginfo section holds a single Elf32_RegInfo structure. These
2652 routines swap this structure in and out. They are used outside of
2653 BFD, so they are globally visible. */
2654
2655void
9719ad41
RS
2656bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2657 Elf32_RegInfo *in)
b49e97c9
TS
2658{
2659 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2660 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2661 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2662 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2663 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2664 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2665}
2666
2667void
9719ad41
RS
2668bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2669 Elf32_External_RegInfo *ex)
b49e97c9
TS
2670{
2671 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2672 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2673 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2674 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2675 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2676 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2677}
2678
2679/* In the 64 bit ABI, the .MIPS.options section holds register
2680 information in an Elf64_Reginfo structure. These routines swap
2681 them in and out. They are globally visible because they are used
2682 outside of BFD. These routines are here so that gas can call them
2683 without worrying about whether the 64 bit ABI has been included. */
2684
2685void
9719ad41
RS
2686bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2687 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2688{
2689 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2690 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2691 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2692 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2693 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2694 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2695 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2696}
2697
2698void
9719ad41
RS
2699bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2700 Elf64_External_RegInfo *ex)
b49e97c9
TS
2701{
2702 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2703 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2704 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2705 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2706 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2707 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2708 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2709}
2710
2711/* Swap in an options header. */
2712
2713void
9719ad41
RS
2714bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2715 Elf_Internal_Options *in)
b49e97c9
TS
2716{
2717 in->kind = H_GET_8 (abfd, ex->kind);
2718 in->size = H_GET_8 (abfd, ex->size);
2719 in->section = H_GET_16 (abfd, ex->section);
2720 in->info = H_GET_32 (abfd, ex->info);
2721}
2722
2723/* Swap out an options header. */
2724
2725void
9719ad41
RS
2726bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2727 Elf_External_Options *ex)
b49e97c9
TS
2728{
2729 H_PUT_8 (abfd, in->kind, ex->kind);
2730 H_PUT_8 (abfd, in->size, ex->size);
2731 H_PUT_16 (abfd, in->section, ex->section);
2732 H_PUT_32 (abfd, in->info, ex->info);
2733}
351cdf24
MF
2734
2735/* Swap in an abiflags structure. */
2736
2737void
2738bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2739 const Elf_External_ABIFlags_v0 *ex,
2740 Elf_Internal_ABIFlags_v0 *in)
2741{
2742 in->version = H_GET_16 (abfd, ex->version);
2743 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2744 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2745 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2746 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2747 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2748 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2749 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2750 in->ases = H_GET_32 (abfd, ex->ases);
2751 in->flags1 = H_GET_32 (abfd, ex->flags1);
2752 in->flags2 = H_GET_32 (abfd, ex->flags2);
2753}
2754
2755/* Swap out an abiflags structure. */
2756
2757void
2758bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2759 const Elf_Internal_ABIFlags_v0 *in,
2760 Elf_External_ABIFlags_v0 *ex)
2761{
2762 H_PUT_16 (abfd, in->version, ex->version);
2763 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2764 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2765 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2766 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2767 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2768 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2769 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2770 H_PUT_32 (abfd, in->ases, ex->ases);
2771 H_PUT_32 (abfd, in->flags1, ex->flags1);
2772 H_PUT_32 (abfd, in->flags2, ex->flags2);
2773}
b49e97c9
TS
2774\f
2775/* This function is called via qsort() to sort the dynamic relocation
2776 entries by increasing r_symndx value. */
2777
2778static int
9719ad41 2779sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2780{
947216bf
AM
2781 Elf_Internal_Rela int_reloc1;
2782 Elf_Internal_Rela int_reloc2;
6870500c 2783 int diff;
b49e97c9 2784
947216bf
AM
2785 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2786 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2787
6870500c
RS
2788 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2789 if (diff != 0)
2790 return diff;
2791
2792 if (int_reloc1.r_offset < int_reloc2.r_offset)
2793 return -1;
2794 if (int_reloc1.r_offset > int_reloc2.r_offset)
2795 return 1;
2796 return 0;
b49e97c9
TS
2797}
2798
f4416af6
AO
2799/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2800
2801static int
7e3102a7
AM
2802sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2803 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2804{
7e3102a7 2805#ifdef BFD64
f4416af6
AO
2806 Elf_Internal_Rela int_reloc1[3];
2807 Elf_Internal_Rela int_reloc2[3];
2808
2809 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2810 (reldyn_sorting_bfd, arg1, int_reloc1);
2811 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2812 (reldyn_sorting_bfd, arg2, int_reloc2);
2813
6870500c
RS
2814 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2815 return -1;
2816 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2817 return 1;
2818
2819 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2820 return -1;
2821 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2822 return 1;
2823 return 0;
7e3102a7
AM
2824#else
2825 abort ();
2826#endif
f4416af6
AO
2827}
2828
2829
b49e97c9
TS
2830/* This routine is used to write out ECOFF debugging external symbol
2831 information. It is called via mips_elf_link_hash_traverse. The
2832 ECOFF external symbol information must match the ELF external
2833 symbol information. Unfortunately, at this point we don't know
2834 whether a symbol is required by reloc information, so the two
2835 tables may wind up being different. We must sort out the external
2836 symbol information before we can set the final size of the .mdebug
2837 section, and we must set the size of the .mdebug section before we
2838 can relocate any sections, and we can't know which symbols are
2839 required by relocation until we relocate the sections.
2840 Fortunately, it is relatively unlikely that any symbol will be
2841 stripped but required by a reloc. In particular, it can not happen
2842 when generating a final executable. */
2843
b34976b6 2844static bfd_boolean
9719ad41 2845mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2846{
9719ad41 2847 struct extsym_info *einfo = data;
b34976b6 2848 bfd_boolean strip;
b49e97c9
TS
2849 asection *sec, *output_section;
2850
b49e97c9 2851 if (h->root.indx == -2)
b34976b6 2852 strip = FALSE;
f5385ebf 2853 else if ((h->root.def_dynamic
77cfaee6
AM
2854 || h->root.ref_dynamic
2855 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2856 && !h->root.def_regular
2857 && !h->root.ref_regular)
b34976b6 2858 strip = TRUE;
b49e97c9
TS
2859 else if (einfo->info->strip == strip_all
2860 || (einfo->info->strip == strip_some
2861 && bfd_hash_lookup (einfo->info->keep_hash,
2862 h->root.root.root.string,
b34976b6
AM
2863 FALSE, FALSE) == NULL))
2864 strip = TRUE;
b49e97c9 2865 else
b34976b6 2866 strip = FALSE;
b49e97c9
TS
2867
2868 if (strip)
b34976b6 2869 return TRUE;
b49e97c9
TS
2870
2871 if (h->esym.ifd == -2)
2872 {
2873 h->esym.jmptbl = 0;
2874 h->esym.cobol_main = 0;
2875 h->esym.weakext = 0;
2876 h->esym.reserved = 0;
2877 h->esym.ifd = ifdNil;
2878 h->esym.asym.value = 0;
2879 h->esym.asym.st = stGlobal;
2880
2881 if (h->root.root.type == bfd_link_hash_undefined
2882 || h->root.root.type == bfd_link_hash_undefweak)
2883 {
2884 const char *name;
2885
2886 /* Use undefined class. Also, set class and type for some
2887 special symbols. */
2888 name = h->root.root.root.string;
2889 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2890 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2891 {
2892 h->esym.asym.sc = scData;
2893 h->esym.asym.st = stLabel;
2894 h->esym.asym.value = 0;
2895 }
2896 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2897 {
2898 h->esym.asym.sc = scAbs;
2899 h->esym.asym.st = stLabel;
2900 h->esym.asym.value =
2901 mips_elf_hash_table (einfo->info)->procedure_count;
2902 }
4a14403c 2903 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
2904 {
2905 h->esym.asym.sc = scAbs;
2906 h->esym.asym.st = stLabel;
2907 h->esym.asym.value = elf_gp (einfo->abfd);
2908 }
2909 else
2910 h->esym.asym.sc = scUndefined;
2911 }
2912 else if (h->root.root.type != bfd_link_hash_defined
2913 && h->root.root.type != bfd_link_hash_defweak)
2914 h->esym.asym.sc = scAbs;
2915 else
2916 {
2917 const char *name;
2918
2919 sec = h->root.root.u.def.section;
2920 output_section = sec->output_section;
2921
2922 /* When making a shared library and symbol h is the one from
2923 the another shared library, OUTPUT_SECTION may be null. */
2924 if (output_section == NULL)
2925 h->esym.asym.sc = scUndefined;
2926 else
2927 {
2928 name = bfd_section_name (output_section->owner, output_section);
2929
2930 if (strcmp (name, ".text") == 0)
2931 h->esym.asym.sc = scText;
2932 else if (strcmp (name, ".data") == 0)
2933 h->esym.asym.sc = scData;
2934 else if (strcmp (name, ".sdata") == 0)
2935 h->esym.asym.sc = scSData;
2936 else if (strcmp (name, ".rodata") == 0
2937 || strcmp (name, ".rdata") == 0)
2938 h->esym.asym.sc = scRData;
2939 else if (strcmp (name, ".bss") == 0)
2940 h->esym.asym.sc = scBss;
2941 else if (strcmp (name, ".sbss") == 0)
2942 h->esym.asym.sc = scSBss;
2943 else if (strcmp (name, ".init") == 0)
2944 h->esym.asym.sc = scInit;
2945 else if (strcmp (name, ".fini") == 0)
2946 h->esym.asym.sc = scFini;
2947 else
2948 h->esym.asym.sc = scAbs;
2949 }
2950 }
2951
2952 h->esym.asym.reserved = 0;
2953 h->esym.asym.index = indexNil;
2954 }
2955
2956 if (h->root.root.type == bfd_link_hash_common)
2957 h->esym.asym.value = h->root.root.u.c.size;
2958 else if (h->root.root.type == bfd_link_hash_defined
2959 || h->root.root.type == bfd_link_hash_defweak)
2960 {
2961 if (h->esym.asym.sc == scCommon)
2962 h->esym.asym.sc = scBss;
2963 else if (h->esym.asym.sc == scSCommon)
2964 h->esym.asym.sc = scSBss;
2965
2966 sec = h->root.root.u.def.section;
2967 output_section = sec->output_section;
2968 if (output_section != NULL)
2969 h->esym.asym.value = (h->root.root.u.def.value
2970 + sec->output_offset
2971 + output_section->vma);
2972 else
2973 h->esym.asym.value = 0;
2974 }
33bb52fb 2975 else
b49e97c9
TS
2976 {
2977 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
2978
2979 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 2980 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 2981
33bb52fb 2982 if (hd->needs_lazy_stub)
b49e97c9 2983 {
1bbce132
MR
2984 BFD_ASSERT (hd->root.plt.plist != NULL);
2985 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
b49e97c9
TS
2986 /* Set type and value for a symbol with a function stub. */
2987 h->esym.asym.st = stProc;
2988 sec = hd->root.root.u.def.section;
2989 if (sec == NULL)
2990 h->esym.asym.value = 0;
2991 else
2992 {
2993 output_section = sec->output_section;
2994 if (output_section != NULL)
1bbce132 2995 h->esym.asym.value = (hd->root.plt.plist->stub_offset
b49e97c9
TS
2996 + sec->output_offset
2997 + output_section->vma);
2998 else
2999 h->esym.asym.value = 0;
3000 }
b49e97c9
TS
3001 }
3002 }
3003
3004 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3005 h->root.root.root.string,
3006 &h->esym))
3007 {
b34976b6
AM
3008 einfo->failed = TRUE;
3009 return FALSE;
b49e97c9
TS
3010 }
3011
b34976b6 3012 return TRUE;
b49e97c9
TS
3013}
3014
3015/* A comparison routine used to sort .gptab entries. */
3016
3017static int
9719ad41 3018gptab_compare (const void *p1, const void *p2)
b49e97c9 3019{
9719ad41
RS
3020 const Elf32_gptab *a1 = p1;
3021 const Elf32_gptab *a2 = p2;
b49e97c9
TS
3022
3023 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3024}
3025\f
b15e6682 3026/* Functions to manage the got entry hash table. */
f4416af6
AO
3027
3028/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3029 hash number. */
3030
3031static INLINE hashval_t
9719ad41 3032mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
3033{
3034#ifdef BFD64
3035 return addr + (addr >> 32);
3036#else
3037 return addr;
3038#endif
3039}
3040
f4416af6 3041static hashval_t
d9bf376d 3042mips_elf_got_entry_hash (const void *entry_)
f4416af6
AO
3043{
3044 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3045
e641e783 3046 return (entry->symndx
9ab066b4
RS
3047 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3048 + (entry->tls_type == GOT_TLS_LDM ? 0
e641e783
RS
3049 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3050 : entry->symndx >= 0 ? (entry->abfd->id
3051 + mips_elf_hash_bfd_vma (entry->d.addend))
3052 : entry->d.h->root.root.root.hash));
f4416af6
AO
3053}
3054
3055static int
3dff0dd1 3056mips_elf_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
3057{
3058 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3059 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3060
e641e783 3061 return (e1->symndx == e2->symndx
9ab066b4
RS
3062 && e1->tls_type == e2->tls_type
3063 && (e1->tls_type == GOT_TLS_LDM ? TRUE
e641e783
RS
3064 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3065 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3066 && e1->d.addend == e2->d.addend)
3067 : e2->abfd && e1->d.h == e2->d.h));
b15e6682 3068}
c224138d 3069
13db6b44
RS
3070static hashval_t
3071mips_got_page_ref_hash (const void *ref_)
3072{
3073 const struct mips_got_page_ref *ref;
3074
3075 ref = (const struct mips_got_page_ref *) ref_;
3076 return ((ref->symndx >= 0
3077 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3078 : ref->u.h->root.root.root.hash)
3079 + mips_elf_hash_bfd_vma (ref->addend));
3080}
3081
3082static int
3083mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3084{
3085 const struct mips_got_page_ref *ref1, *ref2;
3086
3087 ref1 = (const struct mips_got_page_ref *) ref1_;
3088 ref2 = (const struct mips_got_page_ref *) ref2_;
3089 return (ref1->symndx == ref2->symndx
3090 && (ref1->symndx < 0
3091 ? ref1->u.h == ref2->u.h
3092 : ref1->u.abfd == ref2->u.abfd)
3093 && ref1->addend == ref2->addend);
3094}
3095
c224138d
RS
3096static hashval_t
3097mips_got_page_entry_hash (const void *entry_)
3098{
3099 const struct mips_got_page_entry *entry;
3100
3101 entry = (const struct mips_got_page_entry *) entry_;
13db6b44 3102 return entry->sec->id;
c224138d
RS
3103}
3104
3105static int
3106mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3107{
3108 const struct mips_got_page_entry *entry1, *entry2;
3109
3110 entry1 = (const struct mips_got_page_entry *) entry1_;
3111 entry2 = (const struct mips_got_page_entry *) entry2_;
13db6b44 3112 return entry1->sec == entry2->sec;
c224138d 3113}
b15e6682 3114\f
3dff0dd1 3115/* Create and return a new mips_got_info structure. */
5334aa52
RS
3116
3117static struct mips_got_info *
3dff0dd1 3118mips_elf_create_got_info (bfd *abfd)
5334aa52
RS
3119{
3120 struct mips_got_info *g;
3121
3122 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3123 if (g == NULL)
3124 return NULL;
3125
3dff0dd1
RS
3126 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3127 mips_elf_got_entry_eq, NULL);
5334aa52
RS
3128 if (g->got_entries == NULL)
3129 return NULL;
3130
13db6b44
RS
3131 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3132 mips_got_page_ref_eq, NULL);
3133 if (g->got_page_refs == NULL)
5334aa52
RS
3134 return NULL;
3135
3136 return g;
3137}
3138
ee227692
RS
3139/* Return the GOT info for input bfd ABFD, trying to create a new one if
3140 CREATE_P and if ABFD doesn't already have a GOT. */
3141
3142static struct mips_got_info *
3143mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3144{
3145 struct mips_elf_obj_tdata *tdata;
3146
3147 if (!is_mips_elf (abfd))
3148 return NULL;
3149
3150 tdata = mips_elf_tdata (abfd);
3151 if (!tdata->got && create_p)
3dff0dd1 3152 tdata->got = mips_elf_create_got_info (abfd);
ee227692
RS
3153 return tdata->got;
3154}
3155
d7206569
RS
3156/* Record that ABFD should use output GOT G. */
3157
3158static void
3159mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3160{
3161 struct mips_elf_obj_tdata *tdata;
3162
3163 BFD_ASSERT (is_mips_elf (abfd));
3164 tdata = mips_elf_tdata (abfd);
3165 if (tdata->got)
3166 {
3167 /* The GOT structure itself and the hash table entries are
3168 allocated to a bfd, but the hash tables aren't. */
3169 htab_delete (tdata->got->got_entries);
13db6b44
RS
3170 htab_delete (tdata->got->got_page_refs);
3171 if (tdata->got->got_page_entries)
3172 htab_delete (tdata->got->got_page_entries);
d7206569
RS
3173 }
3174 tdata->got = g;
3175}
3176
0a44bf69
RS
3177/* Return the dynamic relocation section. If it doesn't exist, try to
3178 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3179 if creation fails. */
f4416af6
AO
3180
3181static asection *
0a44bf69 3182mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 3183{
0a44bf69 3184 const char *dname;
f4416af6 3185 asection *sreloc;
0a44bf69 3186 bfd *dynobj;
f4416af6 3187
0a44bf69
RS
3188 dname = MIPS_ELF_REL_DYN_NAME (info);
3189 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3190 sreloc = bfd_get_linker_section (dynobj, dname);
f4416af6
AO
3191 if (sreloc == NULL && create_p)
3192 {
3d4d4302
AM
3193 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3194 (SEC_ALLOC
3195 | SEC_LOAD
3196 | SEC_HAS_CONTENTS
3197 | SEC_IN_MEMORY
3198 | SEC_LINKER_CREATED
3199 | SEC_READONLY));
f4416af6 3200 if (sreloc == NULL
f4416af6 3201 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 3202 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
3203 return NULL;
3204 }
3205 return sreloc;
3206}
3207
e641e783
RS
3208/* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3209
3210static int
3211mips_elf_reloc_tls_type (unsigned int r_type)
3212{
3213 if (tls_gd_reloc_p (r_type))
3214 return GOT_TLS_GD;
3215
3216 if (tls_ldm_reloc_p (r_type))
3217 return GOT_TLS_LDM;
3218
3219 if (tls_gottprel_reloc_p (r_type))
3220 return GOT_TLS_IE;
3221
9ab066b4 3222 return GOT_TLS_NONE;
e641e783
RS
3223}
3224
3225/* Return the number of GOT slots needed for GOT TLS type TYPE. */
3226
3227static int
3228mips_tls_got_entries (unsigned int type)
3229{
3230 switch (type)
3231 {
3232 case GOT_TLS_GD:
3233 case GOT_TLS_LDM:
3234 return 2;
3235
3236 case GOT_TLS_IE:
3237 return 1;
3238
9ab066b4 3239 case GOT_TLS_NONE:
e641e783
RS
3240 return 0;
3241 }
3242 abort ();
3243}
3244
0f20cc35
DJ
3245/* Count the number of relocations needed for a TLS GOT entry, with
3246 access types from TLS_TYPE, and symbol H (or a local symbol if H
3247 is NULL). */
3248
3249static int
3250mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3251 struct elf_link_hash_entry *h)
3252{
3253 int indx = 0;
0f20cc35
DJ
3254 bfd_boolean need_relocs = FALSE;
3255 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3256
0e1862bb
L
3257 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3258 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
0f20cc35
DJ
3259 indx = h->dynindx;
3260
0e1862bb 3261 if ((bfd_link_pic (info) || indx != 0)
0f20cc35
DJ
3262 && (h == NULL
3263 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3264 || h->root.type != bfd_link_hash_undefweak))
3265 need_relocs = TRUE;
3266
3267 if (!need_relocs)
e641e783 3268 return 0;
0f20cc35 3269
9ab066b4 3270 switch (tls_type)
0f20cc35 3271 {
e641e783
RS
3272 case GOT_TLS_GD:
3273 return indx != 0 ? 2 : 1;
0f20cc35 3274
e641e783
RS
3275 case GOT_TLS_IE:
3276 return 1;
0f20cc35 3277
e641e783 3278 case GOT_TLS_LDM:
0e1862bb 3279 return bfd_link_pic (info) ? 1 : 0;
0f20cc35 3280
e641e783
RS
3281 default:
3282 return 0;
3283 }
0f20cc35
DJ
3284}
3285
ab361d49
RS
3286/* Add the number of GOT entries and TLS relocations required by ENTRY
3287 to G. */
0f20cc35 3288
ab361d49
RS
3289static void
3290mips_elf_count_got_entry (struct bfd_link_info *info,
3291 struct mips_got_info *g,
3292 struct mips_got_entry *entry)
0f20cc35 3293{
9ab066b4 3294 if (entry->tls_type)
ab361d49 3295 {
9ab066b4
RS
3296 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3297 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
ab361d49
RS
3298 entry->symndx < 0
3299 ? &entry->d.h->root : NULL);
3300 }
3301 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3302 g->local_gotno += 1;
3303 else
3304 g->global_gotno += 1;
0f20cc35
DJ
3305}
3306
0f20cc35
DJ
3307/* Output a simple dynamic relocation into SRELOC. */
3308
3309static void
3310mips_elf_output_dynamic_relocation (bfd *output_bfd,
3311 asection *sreloc,
861fb55a 3312 unsigned long reloc_index,
0f20cc35
DJ
3313 unsigned long indx,
3314 int r_type,
3315 bfd_vma offset)
3316{
3317 Elf_Internal_Rela rel[3];
3318
3319 memset (rel, 0, sizeof (rel));
3320
3321 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3322 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3323
3324 if (ABI_64_P (output_bfd))
3325 {
3326 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3327 (output_bfd, &rel[0],
3328 (sreloc->contents
861fb55a 3329 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
3330 }
3331 else
3332 bfd_elf32_swap_reloc_out
3333 (output_bfd, &rel[0],
3334 (sreloc->contents
861fb55a 3335 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
3336}
3337
3338/* Initialize a set of TLS GOT entries for one symbol. */
3339
3340static void
9ab066b4
RS
3341mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3342 struct mips_got_entry *entry,
0f20cc35
DJ
3343 struct mips_elf_link_hash_entry *h,
3344 bfd_vma value)
3345{
23cc69b6 3346 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
3347 int indx;
3348 asection *sreloc, *sgot;
9ab066b4 3349 bfd_vma got_offset, got_offset2;
0f20cc35
DJ
3350 bfd_boolean need_relocs = FALSE;
3351
23cc69b6 3352 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3353 if (htab == NULL)
3354 return;
3355
ce558b89 3356 sgot = htab->root.sgot;
0f20cc35
DJ
3357
3358 indx = 0;
3359 if (h != NULL)
3360 {
3361 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3362
0e1862bb
L
3363 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3364 &h->root)
3365 && (!bfd_link_pic (info)
3366 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
0f20cc35
DJ
3367 indx = h->root.dynindx;
3368 }
3369
9ab066b4 3370 if (entry->tls_initialized)
0f20cc35
DJ
3371 return;
3372
0e1862bb 3373 if ((bfd_link_pic (info) || indx != 0)
0f20cc35
DJ
3374 && (h == NULL
3375 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3376 || h->root.type != bfd_link_hash_undefweak))
3377 need_relocs = TRUE;
3378
3379 /* MINUS_ONE means the symbol is not defined in this object. It may not
3380 be defined at all; assume that the value doesn't matter in that
3381 case. Otherwise complain if we would use the value. */
3382 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3383 || h->root.root.type == bfd_link_hash_undefweak);
3384
3385 /* Emit necessary relocations. */
0a44bf69 3386 sreloc = mips_elf_rel_dyn_section (info, FALSE);
9ab066b4 3387 got_offset = entry->gotidx;
0f20cc35 3388
9ab066b4 3389 switch (entry->tls_type)
0f20cc35 3390 {
e641e783
RS
3391 case GOT_TLS_GD:
3392 /* General Dynamic. */
3393 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
0f20cc35
DJ
3394
3395 if (need_relocs)
3396 {
3397 mips_elf_output_dynamic_relocation
861fb55a 3398 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3399 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
e641e783 3400 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3401
3402 if (indx)
3403 mips_elf_output_dynamic_relocation
861fb55a 3404 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3405 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
e641e783 3406 sgot->output_offset + sgot->output_section->vma + got_offset2);
0f20cc35
DJ
3407 else
3408 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3409 sgot->contents + got_offset2);
0f20cc35
DJ
3410 }
3411 else
3412 {
3413 MIPS_ELF_PUT_WORD (abfd, 1,
e641e783 3414 sgot->contents + got_offset);
0f20cc35 3415 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3416 sgot->contents + got_offset2);
0f20cc35 3417 }
e641e783 3418 break;
0f20cc35 3419
e641e783
RS
3420 case GOT_TLS_IE:
3421 /* Initial Exec model. */
0f20cc35
DJ
3422 if (need_relocs)
3423 {
3424 if (indx == 0)
3425 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
e641e783 3426 sgot->contents + got_offset);
0f20cc35
DJ
3427 else
3428 MIPS_ELF_PUT_WORD (abfd, 0,
e641e783 3429 sgot->contents + got_offset);
0f20cc35
DJ
3430
3431 mips_elf_output_dynamic_relocation
861fb55a 3432 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3433 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
e641e783 3434 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3435 }
3436 else
3437 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
e641e783
RS
3438 sgot->contents + got_offset);
3439 break;
0f20cc35 3440
e641e783 3441 case GOT_TLS_LDM:
0f20cc35
DJ
3442 /* The initial offset is zero, and the LD offsets will include the
3443 bias by DTP_OFFSET. */
3444 MIPS_ELF_PUT_WORD (abfd, 0,
3445 sgot->contents + got_offset
3446 + MIPS_ELF_GOT_SIZE (abfd));
3447
0e1862bb 3448 if (!bfd_link_pic (info))
0f20cc35
DJ
3449 MIPS_ELF_PUT_WORD (abfd, 1,
3450 sgot->contents + got_offset);
3451 else
3452 mips_elf_output_dynamic_relocation
861fb55a 3453 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3454 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3455 sgot->output_offset + sgot->output_section->vma + got_offset);
e641e783
RS
3456 break;
3457
3458 default:
3459 abort ();
0f20cc35
DJ
3460 }
3461
9ab066b4 3462 entry->tls_initialized = TRUE;
e641e783 3463}
0f20cc35 3464
0a44bf69
RS
3465/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3466 for global symbol H. .got.plt comes before the GOT, so the offset
3467 will be negative. */
3468
3469static bfd_vma
3470mips_elf_gotplt_index (struct bfd_link_info *info,
3471 struct elf_link_hash_entry *h)
3472{
1bbce132 3473 bfd_vma got_address, got_value;
0a44bf69
RS
3474 struct mips_elf_link_hash_table *htab;
3475
3476 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3477 BFD_ASSERT (htab != NULL);
3478
1bbce132
MR
3479 BFD_ASSERT (h->plt.plist != NULL);
3480 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
0a44bf69
RS
3481
3482 /* Calculate the address of the associated .got.plt entry. */
ce558b89
AM
3483 got_address = (htab->root.sgotplt->output_section->vma
3484 + htab->root.sgotplt->output_offset
1bbce132
MR
3485 + (h->plt.plist->gotplt_index
3486 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
0a44bf69
RS
3487
3488 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3489 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3490 + htab->root.hgot->root.u.def.section->output_offset
3491 + htab->root.hgot->root.u.def.value);
3492
3493 return got_address - got_value;
3494}
3495
5c18022e 3496/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3497 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3498 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3499 offset can be found. */
b49e97c9
TS
3500
3501static bfd_vma
9719ad41 3502mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3503 bfd_vma value, unsigned long r_symndx,
0f20cc35 3504 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3505{
a8028dd0 3506 struct mips_elf_link_hash_table *htab;
b15e6682 3507 struct mips_got_entry *entry;
b49e97c9 3508
a8028dd0 3509 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3510 BFD_ASSERT (htab != NULL);
3511
a8028dd0
RS
3512 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3513 r_symndx, h, r_type);
0f20cc35 3514 if (!entry)
b15e6682 3515 return MINUS_ONE;
0f20cc35 3516
e641e783 3517 if (entry->tls_type)
9ab066b4
RS
3518 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3519 return entry->gotidx;
b49e97c9
TS
3520}
3521
13fbec83 3522/* Return the GOT index of global symbol H in the primary GOT. */
b49e97c9
TS
3523
3524static bfd_vma
13fbec83
RS
3525mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3526 struct elf_link_hash_entry *h)
3527{
3528 struct mips_elf_link_hash_table *htab;
3529 long global_got_dynindx;
3530 struct mips_got_info *g;
3531 bfd_vma got_index;
3532
3533 htab = mips_elf_hash_table (info);
3534 BFD_ASSERT (htab != NULL);
3535
3536 global_got_dynindx = 0;
3537 if (htab->global_gotsym != NULL)
3538 global_got_dynindx = htab->global_gotsym->dynindx;
3539
3540 /* Once we determine the global GOT entry with the lowest dynamic
3541 symbol table index, we must put all dynamic symbols with greater
3542 indices into the primary GOT. That makes it easy to calculate the
3543 GOT offset. */
3544 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3545 g = mips_elf_bfd_got (obfd, FALSE);
3546 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3547 * MIPS_ELF_GOT_SIZE (obfd));
ce558b89 3548 BFD_ASSERT (got_index < htab->root.sgot->size);
13fbec83
RS
3549
3550 return got_index;
3551}
3552
3553/* Return the GOT index for the global symbol indicated by H, which is
3554 referenced by a relocation of type R_TYPE in IBFD. */
3555
3556static bfd_vma
3557mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3558 struct elf_link_hash_entry *h, int r_type)
b49e97c9 3559{
a8028dd0 3560 struct mips_elf_link_hash_table *htab;
6c42ddb9
RS
3561 struct mips_got_info *g;
3562 struct mips_got_entry lookup, *entry;
3563 bfd_vma gotidx;
b49e97c9 3564
a8028dd0 3565 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3566 BFD_ASSERT (htab != NULL);
3567
6c42ddb9
RS
3568 g = mips_elf_bfd_got (ibfd, FALSE);
3569 BFD_ASSERT (g);
f4416af6 3570
6c42ddb9
RS
3571 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3572 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3573 return mips_elf_primary_global_got_index (obfd, info, h);
f4416af6 3574
6c42ddb9
RS
3575 lookup.abfd = ibfd;
3576 lookup.symndx = -1;
3577 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3578 entry = htab_find (g->got_entries, &lookup);
3579 BFD_ASSERT (entry);
0f20cc35 3580
6c42ddb9 3581 gotidx = entry->gotidx;
ce558b89 3582 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
f4416af6 3583
6c42ddb9 3584 if (lookup.tls_type)
0f20cc35 3585 {
0f20cc35
DJ
3586 bfd_vma value = MINUS_ONE;
3587
3588 if ((h->root.type == bfd_link_hash_defined
3589 || h->root.type == bfd_link_hash_defweak)
3590 && h->root.u.def.section->output_section)
3591 value = (h->root.u.def.value
3592 + h->root.u.def.section->output_offset
3593 + h->root.u.def.section->output_section->vma);
3594
9ab066b4 3595 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
0f20cc35 3596 }
6c42ddb9 3597 return gotidx;
b49e97c9
TS
3598}
3599
5c18022e
RS
3600/* Find a GOT page entry that points to within 32KB of VALUE. These
3601 entries are supposed to be placed at small offsets in the GOT, i.e.,
3602 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3603 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3604 offset of the GOT entry from VALUE. */
b49e97c9
TS
3605
3606static bfd_vma
9719ad41 3607mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3608 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3609{
91d6fa6a 3610 bfd_vma page, got_index;
b15e6682 3611 struct mips_got_entry *entry;
b49e97c9 3612
0a44bf69 3613 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3614 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3615 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3616
b15e6682
AO
3617 if (!entry)
3618 return MINUS_ONE;
143d77c5 3619
91d6fa6a 3620 got_index = entry->gotidx;
b49e97c9
TS
3621
3622 if (offsetp)
f4416af6 3623 *offsetp = value - entry->d.address;
b49e97c9 3624
91d6fa6a 3625 return got_index;
b49e97c9
TS
3626}
3627
738e5348 3628/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
020d7251
RS
3629 EXTERNAL is true if the relocation was originally against a global
3630 symbol that binds locally. */
b49e97c9
TS
3631
3632static bfd_vma
9719ad41 3633mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3634 bfd_vma value, bfd_boolean external)
b49e97c9 3635{
b15e6682 3636 struct mips_got_entry *entry;
b49e97c9 3637
0a44bf69
RS
3638 /* GOT16 relocations against local symbols are followed by a LO16
3639 relocation; those against global symbols are not. Thus if the
3640 symbol was originally local, the GOT16 relocation should load the
3641 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3642 if (! external)
0a44bf69 3643 value = mips_elf_high (value) << 16;
b49e97c9 3644
738e5348
RS
3645 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3646 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3647 same in all cases. */
a8028dd0
RS
3648 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3649 NULL, R_MIPS_GOT16);
b15e6682
AO
3650 if (entry)
3651 return entry->gotidx;
3652 else
3653 return MINUS_ONE;
b49e97c9
TS
3654}
3655
3656/* Returns the offset for the entry at the INDEXth position
3657 in the GOT. */
3658
3659static bfd_vma
a8028dd0 3660mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3661 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3662{
a8028dd0 3663 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3664 asection *sgot;
3665 bfd_vma gp;
3666
a8028dd0 3667 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3668 BFD_ASSERT (htab != NULL);
3669
ce558b89 3670 sgot = htab->root.sgot;
f4416af6 3671 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3672 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3673
91d6fa6a 3674 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3675}
3676
0a44bf69
RS
3677/* Create and return a local GOT entry for VALUE, which was calculated
3678 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3679 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3680 instead. */
b49e97c9 3681
b15e6682 3682static struct mips_got_entry *
0a44bf69 3683mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3684 bfd *ibfd, bfd_vma value,
5c18022e 3685 unsigned long r_symndx,
0f20cc35
DJ
3686 struct mips_elf_link_hash_entry *h,
3687 int r_type)
b49e97c9 3688{
ebc53538
RS
3689 struct mips_got_entry lookup, *entry;
3690 void **loc;
f4416af6 3691 struct mips_got_info *g;
0a44bf69 3692 struct mips_elf_link_hash_table *htab;
6c42ddb9 3693 bfd_vma gotidx;
0a44bf69
RS
3694
3695 htab = mips_elf_hash_table (info);
4dfe6ac6 3696 BFD_ASSERT (htab != NULL);
b15e6682 3697
d7206569 3698 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
3699 if (g == NULL)
3700 {
d7206569 3701 g = mips_elf_bfd_got (abfd, FALSE);
f4416af6
AO
3702 BFD_ASSERT (g != NULL);
3703 }
b15e6682 3704
020d7251
RS
3705 /* This function shouldn't be called for symbols that live in the global
3706 area of the GOT. */
3707 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
0f20cc35 3708
ebc53538
RS
3709 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3710 if (lookup.tls_type)
3711 {
3712 lookup.abfd = ibfd;
df58fc94 3713 if (tls_ldm_reloc_p (r_type))
0f20cc35 3714 {
ebc53538
RS
3715 lookup.symndx = 0;
3716 lookup.d.addend = 0;
0f20cc35
DJ
3717 }
3718 else if (h == NULL)
3719 {
ebc53538
RS
3720 lookup.symndx = r_symndx;
3721 lookup.d.addend = 0;
0f20cc35
DJ
3722 }
3723 else
ebc53538
RS
3724 {
3725 lookup.symndx = -1;
3726 lookup.d.h = h;
3727 }
0f20cc35 3728
ebc53538
RS
3729 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3730 BFD_ASSERT (entry);
0f20cc35 3731
6c42ddb9 3732 gotidx = entry->gotidx;
ce558b89 3733 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
6c42ddb9 3734
ebc53538 3735 return entry;
0f20cc35
DJ
3736 }
3737
ebc53538
RS
3738 lookup.abfd = NULL;
3739 lookup.symndx = -1;
3740 lookup.d.address = value;
3741 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3742 if (!loc)
b15e6682 3743 return NULL;
143d77c5 3744
ebc53538
RS
3745 entry = (struct mips_got_entry *) *loc;
3746 if (entry)
3747 return entry;
b15e6682 3748
cb22ccf4 3749 if (g->assigned_low_gotno > g->assigned_high_gotno)
b49e97c9
TS
3750 {
3751 /* We didn't allocate enough space in the GOT. */
4eca0228 3752 _bfd_error_handler
b49e97c9
TS
3753 (_("not enough GOT space for local GOT entries"));
3754 bfd_set_error (bfd_error_bad_value);
b15e6682 3755 return NULL;
b49e97c9
TS
3756 }
3757
ebc53538
RS
3758 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3759 if (!entry)
3760 return NULL;
3761
cb22ccf4
KCY
3762 if (got16_reloc_p (r_type)
3763 || call16_reloc_p (r_type)
3764 || got_page_reloc_p (r_type)
3765 || got_disp_reloc_p (r_type))
3766 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3767 else
3768 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3769
ebc53538
RS
3770 *entry = lookup;
3771 *loc = entry;
3772
ce558b89 3773 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
b15e6682 3774
5c18022e 3775 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3776 if (htab->is_vxworks)
3777 {
3778 Elf_Internal_Rela outrel;
5c18022e 3779 asection *s;
91d6fa6a 3780 bfd_byte *rloc;
0a44bf69 3781 bfd_vma got_address;
0a44bf69
RS
3782
3783 s = mips_elf_rel_dyn_section (info, FALSE);
ce558b89
AM
3784 got_address = (htab->root.sgot->output_section->vma
3785 + htab->root.sgot->output_offset
ebc53538 3786 + entry->gotidx);
0a44bf69 3787
91d6fa6a 3788 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3789 outrel.r_offset = got_address;
5c18022e
RS
3790 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3791 outrel.r_addend = value;
91d6fa6a 3792 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3793 }
3794
ebc53538 3795 return entry;
b49e97c9
TS
3796}
3797
d4596a51
RS
3798/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3799 The number might be exact or a worst-case estimate, depending on how
3800 much information is available to elf_backend_omit_section_dynsym at
3801 the current linking stage. */
3802
3803static bfd_size_type
3804count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3805{
3806 bfd_size_type count;
3807
3808 count = 0;
0e1862bb
L
3809 if (bfd_link_pic (info)
3810 || elf_hash_table (info)->is_relocatable_executable)
d4596a51
RS
3811 {
3812 asection *p;
3813 const struct elf_backend_data *bed;
3814
3815 bed = get_elf_backend_data (output_bfd);
3816 for (p = output_bfd->sections; p ; p = p->next)
3817 if ((p->flags & SEC_EXCLUDE) == 0
3818 && (p->flags & SEC_ALLOC) != 0
3819 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3820 ++count;
3821 }
3822 return count;
3823}
3824
b49e97c9 3825/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3826 appear towards the end. */
b49e97c9 3827
b34976b6 3828static bfd_boolean
d4596a51 3829mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3830{
a8028dd0 3831 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3832 struct mips_elf_hash_sort_data hsd;
3833 struct mips_got_info *g;
b49e97c9 3834
a8028dd0 3835 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3836 BFD_ASSERT (htab != NULL);
3837
17a80fa8
MR
3838 if (elf_hash_table (info)->dynsymcount == 0)
3839 return TRUE;
3840
a8028dd0 3841 g = htab->got_info;
d4596a51
RS
3842 if (g == NULL)
3843 return TRUE;
f4416af6 3844
b49e97c9 3845 hsd.low = NULL;
23cc69b6
RS
3846 hsd.max_unref_got_dynindx
3847 = hsd.min_got_dynindx
3848 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
d4596a51 3849 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
b49e97c9
TS
3850 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3851 elf_hash_table (info)),
3852 mips_elf_sort_hash_table_f,
3853 &hsd);
3854
3855 /* There should have been enough room in the symbol table to
44c410de 3856 accommodate both the GOT and non-GOT symbols. */
b49e97c9 3857 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
d4596a51
RS
3858 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3859 == elf_hash_table (info)->dynsymcount);
3860 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3861 == g->global_gotno);
b49e97c9
TS
3862
3863 /* Now we know which dynamic symbol has the lowest dynamic symbol
3864 table index in the GOT. */
d222d210 3865 htab->global_gotsym = hsd.low;
b49e97c9 3866
b34976b6 3867 return TRUE;
b49e97c9
TS
3868}
3869
3870/* If H needs a GOT entry, assign it the highest available dynamic
3871 index. Otherwise, assign it the lowest available dynamic
3872 index. */
3873
b34976b6 3874static bfd_boolean
9719ad41 3875mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3876{
9719ad41 3877 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9 3878
b49e97c9
TS
3879 /* Symbols without dynamic symbol table entries aren't interesting
3880 at all. */
3881 if (h->root.dynindx == -1)
b34976b6 3882 return TRUE;
b49e97c9 3883
634835ae 3884 switch (h->global_got_area)
f4416af6 3885 {
634835ae
RS
3886 case GGA_NONE:
3887 h->root.dynindx = hsd->max_non_got_dynindx++;
3888 break;
0f20cc35 3889
634835ae 3890 case GGA_NORMAL:
b49e97c9
TS
3891 h->root.dynindx = --hsd->min_got_dynindx;
3892 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3893 break;
3894
3895 case GGA_RELOC_ONLY:
634835ae
RS
3896 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3897 hsd->low = (struct elf_link_hash_entry *) h;
3898 h->root.dynindx = hsd->max_unref_got_dynindx++;
3899 break;
b49e97c9
TS
3900 }
3901
b34976b6 3902 return TRUE;
b49e97c9
TS
3903}
3904
ee227692
RS
3905/* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3906 (which is owned by the caller and shouldn't be added to the
3907 hash table directly). */
3908
3909static bfd_boolean
3910mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3911 struct mips_got_entry *lookup)
3912{
3913 struct mips_elf_link_hash_table *htab;
3914 struct mips_got_entry *entry;
3915 struct mips_got_info *g;
3916 void **loc, **bfd_loc;
3917
3918 /* Make sure there's a slot for this entry in the master GOT. */
3919 htab = mips_elf_hash_table (info);
3920 g = htab->got_info;
3921 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3922 if (!loc)
3923 return FALSE;
3924
3925 /* Populate the entry if it isn't already. */
3926 entry = (struct mips_got_entry *) *loc;
3927 if (!entry)
3928 {
3929 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3930 if (!entry)
3931 return FALSE;
3932
9ab066b4 3933 lookup->tls_initialized = FALSE;
ee227692
RS
3934 lookup->gotidx = -1;
3935 *entry = *lookup;
3936 *loc = entry;
3937 }
3938
3939 /* Reuse the same GOT entry for the BFD's GOT. */
3940 g = mips_elf_bfd_got (abfd, TRUE);
3941 if (!g)
3942 return FALSE;
3943
3944 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3945 if (!bfd_loc)
3946 return FALSE;
3947
3948 if (!*bfd_loc)
3949 *bfd_loc = entry;
3950 return TRUE;
3951}
3952
e641e783
RS
3953/* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3954 entry for it. FOR_CALL is true if the caller is only interested in
6ccf4795 3955 using the GOT entry for calls. */
b49e97c9 3956
b34976b6 3957static bfd_boolean
9719ad41
RS
3958mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3959 bfd *abfd, struct bfd_link_info *info,
e641e783 3960 bfd_boolean for_call, int r_type)
b49e97c9 3961{
a8028dd0 3962 struct mips_elf_link_hash_table *htab;
634835ae 3963 struct mips_elf_link_hash_entry *hmips;
ee227692
RS
3964 struct mips_got_entry entry;
3965 unsigned char tls_type;
a8028dd0
RS
3966
3967 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3968 BFD_ASSERT (htab != NULL);
3969
634835ae 3970 hmips = (struct mips_elf_link_hash_entry *) h;
6ccf4795
RS
3971 if (!for_call)
3972 hmips->got_only_for_calls = FALSE;
f4416af6 3973
b49e97c9
TS
3974 /* A global symbol in the GOT must also be in the dynamic symbol
3975 table. */
7c5fcef7
L
3976 if (h->dynindx == -1)
3977 {
3978 switch (ELF_ST_VISIBILITY (h->other))
3979 {
3980 case STV_INTERNAL:
3981 case STV_HIDDEN:
33bb52fb 3982 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
7c5fcef7
L
3983 break;
3984 }
c152c796 3985 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3986 return FALSE;
7c5fcef7 3987 }
b49e97c9 3988
ee227692 3989 tls_type = mips_elf_reloc_tls_type (r_type);
9ab066b4 3990 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
ee227692 3991 hmips->global_got_area = GGA_NORMAL;
86324f90 3992
f4416af6
AO
3993 entry.abfd = abfd;
3994 entry.symndx = -1;
3995 entry.d.h = (struct mips_elf_link_hash_entry *) h;
ee227692
RS
3996 entry.tls_type = tls_type;
3997 return mips_elf_record_got_entry (info, abfd, &entry);
b49e97c9 3998}
f4416af6 3999
e641e783
RS
4000/* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4001 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
f4416af6
AO
4002
4003static bfd_boolean
9719ad41 4004mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
e641e783 4005 struct bfd_link_info *info, int r_type)
f4416af6 4006{
a8028dd0
RS
4007 struct mips_elf_link_hash_table *htab;
4008 struct mips_got_info *g;
ee227692 4009 struct mips_got_entry entry;
f4416af6 4010
a8028dd0 4011 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4012 BFD_ASSERT (htab != NULL);
4013
a8028dd0
RS
4014 g = htab->got_info;
4015 BFD_ASSERT (g != NULL);
4016
f4416af6
AO
4017 entry.abfd = abfd;
4018 entry.symndx = symndx;
4019 entry.d.addend = addend;
e641e783 4020 entry.tls_type = mips_elf_reloc_tls_type (r_type);
ee227692 4021 return mips_elf_record_got_entry (info, abfd, &entry);
f4416af6 4022}
c224138d 4023
13db6b44
RS
4024/* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4025 H is the symbol's hash table entry, or null if SYMNDX is local
4026 to ABFD. */
c224138d
RS
4027
4028static bfd_boolean
13db6b44
RS
4029mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4030 long symndx, struct elf_link_hash_entry *h,
4031 bfd_signed_vma addend)
c224138d 4032{
a8028dd0 4033 struct mips_elf_link_hash_table *htab;
ee227692 4034 struct mips_got_info *g1, *g2;
13db6b44 4035 struct mips_got_page_ref lookup, *entry;
ee227692 4036 void **loc, **bfd_loc;
c224138d 4037
a8028dd0 4038 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4039 BFD_ASSERT (htab != NULL);
4040
ee227692
RS
4041 g1 = htab->got_info;
4042 BFD_ASSERT (g1 != NULL);
a8028dd0 4043
13db6b44
RS
4044 if (h)
4045 {
4046 lookup.symndx = -1;
4047 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4048 }
4049 else
4050 {
4051 lookup.symndx = symndx;
4052 lookup.u.abfd = abfd;
4053 }
4054 lookup.addend = addend;
4055 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
c224138d
RS
4056 if (loc == NULL)
4057 return FALSE;
4058
13db6b44 4059 entry = (struct mips_got_page_ref *) *loc;
c224138d
RS
4060 if (!entry)
4061 {
4062 entry = bfd_alloc (abfd, sizeof (*entry));
4063 if (!entry)
4064 return FALSE;
4065
13db6b44 4066 *entry = lookup;
c224138d
RS
4067 *loc = entry;
4068 }
4069
ee227692
RS
4070 /* Add the same entry to the BFD's GOT. */
4071 g2 = mips_elf_bfd_got (abfd, TRUE);
4072 if (!g2)
4073 return FALSE;
4074
13db6b44 4075 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
ee227692
RS
4076 if (!bfd_loc)
4077 return FALSE;
4078
4079 if (!*bfd_loc)
4080 *bfd_loc = entry;
4081
c224138d
RS
4082 return TRUE;
4083}
33bb52fb
RS
4084
4085/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4086
4087static void
4088mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4089 unsigned int n)
4090{
4091 asection *s;
4092 struct mips_elf_link_hash_table *htab;
4093
4094 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4095 BFD_ASSERT (htab != NULL);
4096
33bb52fb
RS
4097 s = mips_elf_rel_dyn_section (info, FALSE);
4098 BFD_ASSERT (s != NULL);
4099
4100 if (htab->is_vxworks)
4101 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4102 else
4103 {
4104 if (s->size == 0)
4105 {
4106 /* Make room for a null element. */
4107 s->size += MIPS_ELF_REL_SIZE (abfd);
4108 ++s->reloc_count;
4109 }
4110 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4111 }
4112}
4113\f
476366af
RS
4114/* A htab_traverse callback for GOT entries, with DATA pointing to a
4115 mips_elf_traverse_got_arg structure. Count the number of GOT
4116 entries and TLS relocs. Set DATA->value to true if we need
4117 to resolve indirect or warning symbols and then recreate the GOT. */
33bb52fb
RS
4118
4119static int
4120mips_elf_check_recreate_got (void **entryp, void *data)
4121{
4122 struct mips_got_entry *entry;
476366af 4123 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4124
4125 entry = (struct mips_got_entry *) *entryp;
476366af 4126 arg = (struct mips_elf_traverse_got_arg *) data;
33bb52fb
RS
4127 if (entry->abfd != NULL && entry->symndx == -1)
4128 {
4129 struct mips_elf_link_hash_entry *h;
4130
4131 h = entry->d.h;
4132 if (h->root.root.type == bfd_link_hash_indirect
4133 || h->root.root.type == bfd_link_hash_warning)
4134 {
476366af 4135 arg->value = TRUE;
33bb52fb
RS
4136 return 0;
4137 }
4138 }
476366af 4139 mips_elf_count_got_entry (arg->info, arg->g, entry);
33bb52fb
RS
4140 return 1;
4141}
4142
476366af
RS
4143/* A htab_traverse callback for GOT entries, with DATA pointing to a
4144 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4145 converting entries for indirect and warning symbols into entries
4146 for the target symbol. Set DATA->g to null on error. */
33bb52fb
RS
4147
4148static int
4149mips_elf_recreate_got (void **entryp, void *data)
4150{
72e7511a 4151 struct mips_got_entry new_entry, *entry;
476366af 4152 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4153 void **slot;
4154
33bb52fb 4155 entry = (struct mips_got_entry *) *entryp;
476366af 4156 arg = (struct mips_elf_traverse_got_arg *) data;
72e7511a
RS
4157 if (entry->abfd != NULL
4158 && entry->symndx == -1
4159 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4160 || entry->d.h->root.root.type == bfd_link_hash_warning))
33bb52fb
RS
4161 {
4162 struct mips_elf_link_hash_entry *h;
4163
72e7511a
RS
4164 new_entry = *entry;
4165 entry = &new_entry;
33bb52fb 4166 h = entry->d.h;
72e7511a 4167 do
634835ae
RS
4168 {
4169 BFD_ASSERT (h->global_got_area == GGA_NONE);
4170 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4171 }
72e7511a
RS
4172 while (h->root.root.type == bfd_link_hash_indirect
4173 || h->root.root.type == bfd_link_hash_warning);
33bb52fb
RS
4174 entry->d.h = h;
4175 }
476366af 4176 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
33bb52fb
RS
4177 if (slot == NULL)
4178 {
476366af 4179 arg->g = NULL;
33bb52fb
RS
4180 return 0;
4181 }
4182 if (*slot == NULL)
72e7511a
RS
4183 {
4184 if (entry == &new_entry)
4185 {
4186 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4187 if (!entry)
4188 {
476366af 4189 arg->g = NULL;
72e7511a
RS
4190 return 0;
4191 }
4192 *entry = new_entry;
4193 }
4194 *slot = entry;
476366af 4195 mips_elf_count_got_entry (arg->info, arg->g, entry);
72e7511a 4196 }
33bb52fb
RS
4197 return 1;
4198}
4199
13db6b44
RS
4200/* Return the maximum number of GOT page entries required for RANGE. */
4201
4202static bfd_vma
4203mips_elf_pages_for_range (const struct mips_got_page_range *range)
4204{
4205 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4206}
4207
4208/* Record that G requires a page entry that can reach SEC + ADDEND. */
4209
4210static bfd_boolean
b75d42bc 4211mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
13db6b44
RS
4212 asection *sec, bfd_signed_vma addend)
4213{
b75d42bc 4214 struct mips_got_info *g = arg->g;
13db6b44
RS
4215 struct mips_got_page_entry lookup, *entry;
4216 struct mips_got_page_range **range_ptr, *range;
4217 bfd_vma old_pages, new_pages;
4218 void **loc;
4219
4220 /* Find the mips_got_page_entry hash table entry for this section. */
4221 lookup.sec = sec;
4222 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4223 if (loc == NULL)
4224 return FALSE;
4225
4226 /* Create a mips_got_page_entry if this is the first time we've
4227 seen the section. */
4228 entry = (struct mips_got_page_entry *) *loc;
4229 if (!entry)
4230 {
b75d42bc 4231 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
13db6b44
RS
4232 if (!entry)
4233 return FALSE;
4234
4235 entry->sec = sec;
4236 *loc = entry;
4237 }
4238
4239 /* Skip over ranges whose maximum extent cannot share a page entry
4240 with ADDEND. */
4241 range_ptr = &entry->ranges;
4242 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4243 range_ptr = &(*range_ptr)->next;
4244
4245 /* If we scanned to the end of the list, or found a range whose
4246 minimum extent cannot share a page entry with ADDEND, create
4247 a new singleton range. */
4248 range = *range_ptr;
4249 if (!range || addend < range->min_addend - 0xffff)
4250 {
b75d42bc 4251 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
13db6b44
RS
4252 if (!range)
4253 return FALSE;
4254
4255 range->next = *range_ptr;
4256 range->min_addend = addend;
4257 range->max_addend = addend;
4258
4259 *range_ptr = range;
4260 entry->num_pages++;
4261 g->page_gotno++;
4262 return TRUE;
4263 }
4264
4265 /* Remember how many pages the old range contributed. */
4266 old_pages = mips_elf_pages_for_range (range);
4267
4268 /* Update the ranges. */
4269 if (addend < range->min_addend)
4270 range->min_addend = addend;
4271 else if (addend > range->max_addend)
4272 {
4273 if (range->next && addend >= range->next->min_addend - 0xffff)
4274 {
4275 old_pages += mips_elf_pages_for_range (range->next);
4276 range->max_addend = range->next->max_addend;
4277 range->next = range->next->next;
4278 }
4279 else
4280 range->max_addend = addend;
4281 }
4282
4283 /* Record any change in the total estimate. */
4284 new_pages = mips_elf_pages_for_range (range);
4285 if (old_pages != new_pages)
4286 {
4287 entry->num_pages += new_pages - old_pages;
4288 g->page_gotno += new_pages - old_pages;
4289 }
4290
4291 return TRUE;
4292}
4293
4294/* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4295 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4296 whether the page reference described by *REFP needs a GOT page entry,
4297 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4298
4299static bfd_boolean
4300mips_elf_resolve_got_page_ref (void **refp, void *data)
4301{
4302 struct mips_got_page_ref *ref;
4303 struct mips_elf_traverse_got_arg *arg;
4304 struct mips_elf_link_hash_table *htab;
4305 asection *sec;
4306 bfd_vma addend;
4307
4308 ref = (struct mips_got_page_ref *) *refp;
4309 arg = (struct mips_elf_traverse_got_arg *) data;
4310 htab = mips_elf_hash_table (arg->info);
4311
4312 if (ref->symndx < 0)
4313 {
4314 struct mips_elf_link_hash_entry *h;
4315
4316 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4317 h = ref->u.h;
4318 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4319 return 1;
4320
4321 /* Ignore undefined symbols; we'll issue an error later if
4322 appropriate. */
4323 if (!((h->root.root.type == bfd_link_hash_defined
4324 || h->root.root.type == bfd_link_hash_defweak)
4325 && h->root.root.u.def.section))
4326 return 1;
4327
4328 sec = h->root.root.u.def.section;
4329 addend = h->root.root.u.def.value + ref->addend;
4330 }
4331 else
4332 {
4333 Elf_Internal_Sym *isym;
4334
4335 /* Read in the symbol. */
4336 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4337 ref->symndx);
4338 if (isym == NULL)
4339 {
4340 arg->g = NULL;
4341 return 0;
4342 }
4343
4344 /* Get the associated input section. */
4345 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4346 if (sec == NULL)
4347 {
4348 arg->g = NULL;
4349 return 0;
4350 }
4351
4352 /* If this is a mergable section, work out the section and offset
4353 of the merged data. For section symbols, the addend specifies
4354 of the offset _of_ the first byte in the data, otherwise it
4355 specifies the offset _from_ the first byte. */
4356 if (sec->flags & SEC_MERGE)
4357 {
4358 void *secinfo;
4359
4360 secinfo = elf_section_data (sec)->sec_info;
4361 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4362 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4363 isym->st_value + ref->addend);
4364 else
4365 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4366 isym->st_value) + ref->addend;
4367 }
4368 else
4369 addend = isym->st_value + ref->addend;
4370 }
b75d42bc 4371 if (!mips_elf_record_got_page_entry (arg, sec, addend))
13db6b44
RS
4372 {
4373 arg->g = NULL;
4374 return 0;
4375 }
4376 return 1;
4377}
4378
33bb52fb 4379/* If any entries in G->got_entries are for indirect or warning symbols,
13db6b44
RS
4380 replace them with entries for the target symbol. Convert g->got_page_refs
4381 into got_page_entry structures and estimate the number of page entries
4382 that they require. */
33bb52fb
RS
4383
4384static bfd_boolean
476366af
RS
4385mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4386 struct mips_got_info *g)
33bb52fb 4387{
476366af
RS
4388 struct mips_elf_traverse_got_arg tga;
4389 struct mips_got_info oldg;
4390
4391 oldg = *g;
33bb52fb 4392
476366af
RS
4393 tga.info = info;
4394 tga.g = g;
4395 tga.value = FALSE;
4396 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4397 if (tga.value)
33bb52fb 4398 {
476366af
RS
4399 *g = oldg;
4400 g->got_entries = htab_create (htab_size (oldg.got_entries),
4401 mips_elf_got_entry_hash,
4402 mips_elf_got_entry_eq, NULL);
4403 if (!g->got_entries)
33bb52fb
RS
4404 return FALSE;
4405
476366af
RS
4406 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4407 if (!tga.g)
4408 return FALSE;
4409
4410 htab_delete (oldg.got_entries);
33bb52fb 4411 }
13db6b44
RS
4412
4413 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4414 mips_got_page_entry_eq, NULL);
4415 if (g->got_page_entries == NULL)
4416 return FALSE;
4417
4418 tga.info = info;
4419 tga.g = g;
4420 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4421
33bb52fb
RS
4422 return TRUE;
4423}
4424
c5d6fa44
RS
4425/* Return true if a GOT entry for H should live in the local rather than
4426 global GOT area. */
4427
4428static bfd_boolean
4429mips_use_local_got_p (struct bfd_link_info *info,
4430 struct mips_elf_link_hash_entry *h)
4431{
4432 /* Symbols that aren't in the dynamic symbol table must live in the
4433 local GOT. This includes symbols that are completely undefined
4434 and which therefore don't bind locally. We'll report undefined
4435 symbols later if appropriate. */
4436 if (h->root.dynindx == -1)
4437 return TRUE;
4438
4439 /* Symbols that bind locally can (and in the case of forced-local
4440 symbols, must) live in the local GOT. */
4441 if (h->got_only_for_calls
4442 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4443 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4444 return TRUE;
4445
4446 /* If this is an executable that must provide a definition of the symbol,
4447 either though PLTs or copy relocations, then that address should go in
4448 the local rather than global GOT. */
0e1862bb 4449 if (bfd_link_executable (info) && h->has_static_relocs)
c5d6fa44
RS
4450 return TRUE;
4451
4452 return FALSE;
4453}
4454
6c42ddb9
RS
4455/* A mips_elf_link_hash_traverse callback for which DATA points to the
4456 link_info structure. Decide whether the hash entry needs an entry in
4457 the global part of the primary GOT, setting global_got_area accordingly.
4458 Count the number of global symbols that are in the primary GOT only
4459 because they have relocations against them (reloc_only_gotno). */
33bb52fb
RS
4460
4461static int
d4596a51 4462mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 4463{
020d7251 4464 struct bfd_link_info *info;
6ccf4795 4465 struct mips_elf_link_hash_table *htab;
33bb52fb
RS
4466 struct mips_got_info *g;
4467
020d7251 4468 info = (struct bfd_link_info *) data;
6ccf4795
RS
4469 htab = mips_elf_hash_table (info);
4470 g = htab->got_info;
d4596a51 4471 if (h->global_got_area != GGA_NONE)
33bb52fb 4472 {
020d7251 4473 /* Make a final decision about whether the symbol belongs in the
c5d6fa44
RS
4474 local or global GOT. */
4475 if (mips_use_local_got_p (info, h))
6c42ddb9
RS
4476 /* The symbol belongs in the local GOT. We no longer need this
4477 entry if it was only used for relocations; those relocations
4478 will be against the null or section symbol instead of H. */
4479 h->global_got_area = GGA_NONE;
6ccf4795
RS
4480 else if (htab->is_vxworks
4481 && h->got_only_for_calls
1bbce132 4482 && h->root.plt.plist->mips_offset != MINUS_ONE)
6ccf4795
RS
4483 /* On VxWorks, calls can refer directly to the .got.plt entry;
4484 they don't need entries in the regular GOT. .got.plt entries
4485 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4486 h->global_got_area = GGA_NONE;
6c42ddb9 4487 else if (h->global_got_area == GGA_RELOC_ONLY)
23cc69b6 4488 {
6c42ddb9 4489 g->reloc_only_gotno++;
23cc69b6 4490 g->global_gotno++;
23cc69b6 4491 }
33bb52fb
RS
4492 }
4493 return 1;
4494}
f4416af6 4495\f
d7206569
RS
4496/* A htab_traverse callback for GOT entries. Add each one to the GOT
4497 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
f4416af6
AO
4498
4499static int
d7206569 4500mips_elf_add_got_entry (void **entryp, void *data)
f4416af6 4501{
d7206569
RS
4502 struct mips_got_entry *entry;
4503 struct mips_elf_traverse_got_arg *arg;
4504 void **slot;
f4416af6 4505
d7206569
RS
4506 entry = (struct mips_got_entry *) *entryp;
4507 arg = (struct mips_elf_traverse_got_arg *) data;
4508 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4509 if (!slot)
f4416af6 4510 {
d7206569
RS
4511 arg->g = NULL;
4512 return 0;
f4416af6 4513 }
d7206569 4514 if (!*slot)
c224138d 4515 {
d7206569
RS
4516 *slot = entry;
4517 mips_elf_count_got_entry (arg->info, arg->g, entry);
c224138d 4518 }
f4416af6
AO
4519 return 1;
4520}
4521
d7206569
RS
4522/* A htab_traverse callback for GOT page entries. Add each one to the GOT
4523 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
c224138d
RS
4524
4525static int
d7206569 4526mips_elf_add_got_page_entry (void **entryp, void *data)
c224138d 4527{
d7206569
RS
4528 struct mips_got_page_entry *entry;
4529 struct mips_elf_traverse_got_arg *arg;
4530 void **slot;
c224138d 4531
d7206569
RS
4532 entry = (struct mips_got_page_entry *) *entryp;
4533 arg = (struct mips_elf_traverse_got_arg *) data;
4534 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4535 if (!slot)
c224138d 4536 {
d7206569 4537 arg->g = NULL;
c224138d
RS
4538 return 0;
4539 }
d7206569
RS
4540 if (!*slot)
4541 {
4542 *slot = entry;
4543 arg->g->page_gotno += entry->num_pages;
4544 }
c224138d
RS
4545 return 1;
4546}
4547
d7206569
RS
4548/* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4549 this would lead to overflow, 1 if they were merged successfully,
4550 and 0 if a merge failed due to lack of memory. (These values are chosen
4551 so that nonnegative return values can be returned by a htab_traverse
4552 callback.) */
c224138d
RS
4553
4554static int
d7206569 4555mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
c224138d
RS
4556 struct mips_got_info *to,
4557 struct mips_elf_got_per_bfd_arg *arg)
4558{
d7206569 4559 struct mips_elf_traverse_got_arg tga;
c224138d
RS
4560 unsigned int estimate;
4561
4562 /* Work out how many page entries we would need for the combined GOT. */
4563 estimate = arg->max_pages;
4564 if (estimate >= from->page_gotno + to->page_gotno)
4565 estimate = from->page_gotno + to->page_gotno;
4566
e2ece73c 4567 /* And conservatively estimate how many local and TLS entries
c224138d 4568 would be needed. */
e2ece73c
RS
4569 estimate += from->local_gotno + to->local_gotno;
4570 estimate += from->tls_gotno + to->tls_gotno;
4571
17214937
RS
4572 /* If we're merging with the primary got, any TLS relocations will
4573 come after the full set of global entries. Otherwise estimate those
e2ece73c 4574 conservatively as well. */
17214937 4575 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
e2ece73c
RS
4576 estimate += arg->global_count;
4577 else
4578 estimate += from->global_gotno + to->global_gotno;
c224138d
RS
4579
4580 /* Bail out if the combined GOT might be too big. */
4581 if (estimate > arg->max_count)
4582 return -1;
4583
c224138d 4584 /* Transfer the bfd's got information from FROM to TO. */
d7206569
RS
4585 tga.info = arg->info;
4586 tga.g = to;
4587 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4588 if (!tga.g)
c224138d
RS
4589 return 0;
4590
d7206569
RS
4591 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4592 if (!tga.g)
c224138d
RS
4593 return 0;
4594
d7206569 4595 mips_elf_replace_bfd_got (abfd, to);
c224138d
RS
4596 return 1;
4597}
4598
d7206569 4599/* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
f4416af6
AO
4600 as possible of the primary got, since it doesn't require explicit
4601 dynamic relocations, but don't use bfds that would reference global
4602 symbols out of the addressable range. Failing the primary got,
4603 attempt to merge with the current got, or finish the current got
4604 and then make make the new got current. */
4605
d7206569
RS
4606static bfd_boolean
4607mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4608 struct mips_elf_got_per_bfd_arg *arg)
f4416af6 4609{
c224138d
RS
4610 unsigned int estimate;
4611 int result;
4612
476366af 4613 if (!mips_elf_resolve_final_got_entries (arg->info, g))
d7206569
RS
4614 return FALSE;
4615
c224138d
RS
4616 /* Work out the number of page, local and TLS entries. */
4617 estimate = arg->max_pages;
4618 if (estimate > g->page_gotno)
4619 estimate = g->page_gotno;
4620 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4621
4622 /* We place TLS GOT entries after both locals and globals. The globals
4623 for the primary GOT may overflow the normal GOT size limit, so be
4624 sure not to merge a GOT which requires TLS with the primary GOT in that
4625 case. This doesn't affect non-primary GOTs. */
c224138d 4626 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4627
c224138d 4628 if (estimate <= arg->max_count)
f4416af6 4629 {
c224138d
RS
4630 /* If we don't have a primary GOT, use it as
4631 a starting point for the primary GOT. */
4632 if (!arg->primary)
4633 {
d7206569
RS
4634 arg->primary = g;
4635 return TRUE;
c224138d 4636 }
f4416af6 4637
c224138d 4638 /* Try merging with the primary GOT. */
d7206569 4639 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
c224138d
RS
4640 if (result >= 0)
4641 return result;
f4416af6 4642 }
c224138d 4643
f4416af6 4644 /* If we can merge with the last-created got, do it. */
c224138d 4645 if (arg->current)
f4416af6 4646 {
d7206569 4647 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
c224138d
RS
4648 if (result >= 0)
4649 return result;
f4416af6 4650 }
c224138d 4651
f4416af6
AO
4652 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4653 fits; if it turns out that it doesn't, we'll get relocation
4654 overflows anyway. */
c224138d
RS
4655 g->next = arg->current;
4656 arg->current = g;
0f20cc35 4657
d7206569 4658 return TRUE;
0f20cc35
DJ
4659}
4660
72e7511a
RS
4661/* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4662 to GOTIDX, duplicating the entry if it has already been assigned
4663 an index in a different GOT. */
4664
4665static bfd_boolean
4666mips_elf_set_gotidx (void **entryp, long gotidx)
4667{
4668 struct mips_got_entry *entry;
4669
4670 entry = (struct mips_got_entry *) *entryp;
4671 if (entry->gotidx > 0)
4672 {
4673 struct mips_got_entry *new_entry;
4674
4675 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4676 if (!new_entry)
4677 return FALSE;
4678
4679 *new_entry = *entry;
4680 *entryp = new_entry;
4681 entry = new_entry;
4682 }
4683 entry->gotidx = gotidx;
4684 return TRUE;
4685}
4686
4687/* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4688 mips_elf_traverse_got_arg in which DATA->value is the size of one
4689 GOT entry. Set DATA->g to null on failure. */
0f20cc35
DJ
4690
4691static int
72e7511a 4692mips_elf_initialize_tls_index (void **entryp, void *data)
0f20cc35 4693{
72e7511a
RS
4694 struct mips_got_entry *entry;
4695 struct mips_elf_traverse_got_arg *arg;
0f20cc35
DJ
4696
4697 /* We're only interested in TLS symbols. */
72e7511a 4698 entry = (struct mips_got_entry *) *entryp;
9ab066b4 4699 if (entry->tls_type == GOT_TLS_NONE)
0f20cc35
DJ
4700 return 1;
4701
72e7511a 4702 arg = (struct mips_elf_traverse_got_arg *) data;
6c42ddb9 4703 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
ead49a57 4704 {
6c42ddb9
RS
4705 arg->g = NULL;
4706 return 0;
f4416af6
AO
4707 }
4708
ead49a57 4709 /* Account for the entries we've just allocated. */
9ab066b4 4710 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
f4416af6
AO
4711 return 1;
4712}
4713
ab361d49
RS
4714/* A htab_traverse callback for GOT entries, where DATA points to a
4715 mips_elf_traverse_got_arg. Set the global_got_area of each global
4716 symbol to DATA->value. */
f4416af6 4717
f4416af6 4718static int
ab361d49 4719mips_elf_set_global_got_area (void **entryp, void *data)
f4416af6 4720{
ab361d49
RS
4721 struct mips_got_entry *entry;
4722 struct mips_elf_traverse_got_arg *arg;
f4416af6 4723
ab361d49
RS
4724 entry = (struct mips_got_entry *) *entryp;
4725 arg = (struct mips_elf_traverse_got_arg *) data;
4726 if (entry->abfd != NULL
4727 && entry->symndx == -1
4728 && entry->d.h->global_got_area != GGA_NONE)
4729 entry->d.h->global_got_area = arg->value;
4730 return 1;
4731}
4732
4733/* A htab_traverse callback for secondary GOT entries, where DATA points
4734 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4735 and record the number of relocations they require. DATA->value is
72e7511a 4736 the size of one GOT entry. Set DATA->g to null on failure. */
ab361d49
RS
4737
4738static int
4739mips_elf_set_global_gotidx (void **entryp, void *data)
4740{
4741 struct mips_got_entry *entry;
4742 struct mips_elf_traverse_got_arg *arg;
0f20cc35 4743
ab361d49
RS
4744 entry = (struct mips_got_entry *) *entryp;
4745 arg = (struct mips_elf_traverse_got_arg *) data;
634835ae
RS
4746 if (entry->abfd != NULL
4747 && entry->symndx == -1
4748 && entry->d.h->global_got_area != GGA_NONE)
f4416af6 4749 {
cb22ccf4 4750 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
72e7511a
RS
4751 {
4752 arg->g = NULL;
4753 return 0;
4754 }
cb22ccf4 4755 arg->g->assigned_low_gotno += 1;
72e7511a 4756
0e1862bb 4757 if (bfd_link_pic (arg->info)
ab361d49
RS
4758 || (elf_hash_table (arg->info)->dynamic_sections_created
4759 && entry->d.h->root.def_dynamic
4760 && !entry->d.h->root.def_regular))
4761 arg->g->relocs += 1;
f4416af6
AO
4762 }
4763
4764 return 1;
4765}
4766
33bb52fb
RS
4767/* A htab_traverse callback for GOT entries for which DATA is the
4768 bfd_link_info. Forbid any global symbols from having traditional
4769 lazy-binding stubs. */
4770
0626d451 4771static int
33bb52fb 4772mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4773{
33bb52fb
RS
4774 struct bfd_link_info *info;
4775 struct mips_elf_link_hash_table *htab;
4776 struct mips_got_entry *entry;
0626d451 4777
33bb52fb
RS
4778 entry = (struct mips_got_entry *) *entryp;
4779 info = (struct bfd_link_info *) data;
4780 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4781 BFD_ASSERT (htab != NULL);
4782
0626d451
RS
4783 if (entry->abfd != NULL
4784 && entry->symndx == -1
33bb52fb 4785 && entry->d.h->needs_lazy_stub)
f4416af6 4786 {
33bb52fb
RS
4787 entry->d.h->needs_lazy_stub = FALSE;
4788 htab->lazy_stub_count--;
f4416af6 4789 }
143d77c5 4790
f4416af6
AO
4791 return 1;
4792}
4793
f4416af6
AO
4794/* Return the offset of an input bfd IBFD's GOT from the beginning of
4795 the primary GOT. */
4796static bfd_vma
9719ad41 4797mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6 4798{
d7206569 4799 if (!g->next)
f4416af6
AO
4800 return 0;
4801
d7206569 4802 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
4803 if (! g)
4804 return 0;
4805
4806 BFD_ASSERT (g->next);
4807
4808 g = g->next;
143d77c5 4809
0f20cc35
DJ
4810 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4811 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4812}
4813
4814/* Turn a single GOT that is too big for 16-bit addressing into
4815 a sequence of GOTs, each one 16-bit addressable. */
4816
4817static bfd_boolean
9719ad41 4818mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4819 asection *got, bfd_size_type pages)
f4416af6 4820{
a8028dd0 4821 struct mips_elf_link_hash_table *htab;
f4416af6 4822 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
ab361d49 4823 struct mips_elf_traverse_got_arg tga;
a8028dd0 4824 struct mips_got_info *g, *gg;
33bb52fb 4825 unsigned int assign, needed_relocs;
d7206569 4826 bfd *dynobj, *ibfd;
f4416af6 4827
33bb52fb 4828 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4829 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4830 BFD_ASSERT (htab != NULL);
4831
a8028dd0 4832 g = htab->got_info;
f4416af6 4833
f4416af6
AO
4834 got_per_bfd_arg.obfd = abfd;
4835 got_per_bfd_arg.info = info;
f4416af6
AO
4836 got_per_bfd_arg.current = NULL;
4837 got_per_bfd_arg.primary = NULL;
0a44bf69 4838 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4839 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4840 - htab->reserved_gotno);
c224138d 4841 got_per_bfd_arg.max_pages = pages;
0f20cc35 4842 /* The number of globals that will be included in the primary GOT.
ab361d49 4843 See the calls to mips_elf_set_global_got_area below for more
0f20cc35
DJ
4844 information. */
4845 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4846
4847 /* Try to merge the GOTs of input bfds together, as long as they
4848 don't seem to exceed the maximum GOT size, choosing one of them
4849 to be the primary GOT. */
c72f2fb2 4850 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
4851 {
4852 gg = mips_elf_bfd_got (ibfd, FALSE);
4853 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4854 return FALSE;
4855 }
f4416af6 4856
0f20cc35 4857 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6 4858 if (got_per_bfd_arg.primary == NULL)
3dff0dd1 4859 g->next = mips_elf_create_got_info (abfd);
f4416af6
AO
4860 else
4861 g->next = got_per_bfd_arg.primary;
4862 g->next->next = got_per_bfd_arg.current;
4863
4864 /* GG is now the master GOT, and G is the primary GOT. */
4865 gg = g;
4866 g = g->next;
4867
4868 /* Map the output bfd to the primary got. That's what we're going
4869 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4870 didn't mark in check_relocs, and we want a quick way to find it.
4871 We can't just use gg->next because we're going to reverse the
4872 list. */
d7206569 4873 mips_elf_replace_bfd_got (abfd, g);
f4416af6 4874
634835ae
RS
4875 /* Every symbol that is referenced in a dynamic relocation must be
4876 present in the primary GOT, so arrange for them to appear after
4877 those that are actually referenced. */
23cc69b6 4878 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4879 g->global_gotno = gg->global_gotno;
f4416af6 4880
ab361d49
RS
4881 tga.info = info;
4882 tga.value = GGA_RELOC_ONLY;
4883 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4884 tga.value = GGA_NORMAL;
4885 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
f4416af6
AO
4886
4887 /* Now go through the GOTs assigning them offset ranges.
cb22ccf4 4888 [assigned_low_gotno, local_gotno[ will be set to the range of local
f4416af6
AO
4889 entries in each GOT. We can then compute the end of a GOT by
4890 adding local_gotno to global_gotno. We reverse the list and make
4891 it circular since then we'll be able to quickly compute the
4892 beginning of a GOT, by computing the end of its predecessor. To
4893 avoid special cases for the primary GOT, while still preserving
4894 assertions that are valid for both single- and multi-got links,
4895 we arrange for the main got struct to have the right number of
4896 global entries, but set its local_gotno such that the initial
4897 offset of the primary GOT is zero. Remember that the primary GOT
4898 will become the last item in the circular linked list, so it
4899 points back to the master GOT. */
4900 gg->local_gotno = -g->global_gotno;
4901 gg->global_gotno = g->global_gotno;
0f20cc35 4902 gg->tls_gotno = 0;
f4416af6
AO
4903 assign = 0;
4904 gg->next = gg;
4905
4906 do
4907 {
4908 struct mips_got_info *gn;
4909
861fb55a 4910 assign += htab->reserved_gotno;
cb22ccf4 4911 g->assigned_low_gotno = assign;
c224138d
RS
4912 g->local_gotno += assign;
4913 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
cb22ccf4 4914 g->assigned_high_gotno = g->local_gotno - 1;
0f20cc35
DJ
4915 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4916
ead49a57
RS
4917 /* Take g out of the direct list, and push it onto the reversed
4918 list that gg points to. g->next is guaranteed to be nonnull after
4919 this operation, as required by mips_elf_initialize_tls_index. */
4920 gn = g->next;
4921 g->next = gg->next;
4922 gg->next = g;
4923
0f20cc35
DJ
4924 /* Set up any TLS entries. We always place the TLS entries after
4925 all non-TLS entries. */
4926 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
72e7511a
RS
4927 tga.g = g;
4928 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4929 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4930 if (!tga.g)
4931 return FALSE;
1fd20d70 4932 BFD_ASSERT (g->tls_assigned_gotno == assign);
f4416af6 4933
ead49a57 4934 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 4935 g = gn;
0626d451 4936
33bb52fb
RS
4937 /* Forbid global symbols in every non-primary GOT from having
4938 lazy-binding stubs. */
0626d451 4939 if (g)
33bb52fb 4940 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
4941 }
4942 while (g);
4943
59b08994 4944 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
33bb52fb
RS
4945
4946 needed_relocs = 0;
33bb52fb
RS
4947 for (g = gg->next; g && g->next != gg; g = g->next)
4948 {
4949 unsigned int save_assign;
4950
ab361d49
RS
4951 /* Assign offsets to global GOT entries and count how many
4952 relocations they need. */
cb22ccf4
KCY
4953 save_assign = g->assigned_low_gotno;
4954 g->assigned_low_gotno = g->local_gotno;
ab361d49
RS
4955 tga.info = info;
4956 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4957 tga.g = g;
4958 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
72e7511a
RS
4959 if (!tga.g)
4960 return FALSE;
cb22ccf4
KCY
4961 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4962 g->assigned_low_gotno = save_assign;
72e7511a 4963
0e1862bb 4964 if (bfd_link_pic (info))
33bb52fb 4965 {
cb22ccf4
KCY
4966 g->relocs += g->local_gotno - g->assigned_low_gotno;
4967 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
33bb52fb
RS
4968 + g->next->global_gotno
4969 + g->next->tls_gotno
861fb55a 4970 + htab->reserved_gotno);
33bb52fb 4971 }
ab361d49 4972 needed_relocs += g->relocs;
33bb52fb 4973 }
ab361d49 4974 needed_relocs += g->relocs;
33bb52fb
RS
4975
4976 if (needed_relocs)
4977 mips_elf_allocate_dynamic_relocations (dynobj, info,
4978 needed_relocs);
143d77c5 4979
f4416af6
AO
4980 return TRUE;
4981}
143d77c5 4982
b49e97c9
TS
4983\f
4984/* Returns the first relocation of type r_type found, beginning with
4985 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4986
4987static const Elf_Internal_Rela *
9719ad41
RS
4988mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4989 const Elf_Internal_Rela *relocation,
4990 const Elf_Internal_Rela *relend)
b49e97c9 4991{
c000e262
TS
4992 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4993
b49e97c9
TS
4994 while (relocation < relend)
4995 {
c000e262
TS
4996 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4997 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
4998 return relocation;
4999
5000 ++relocation;
5001 }
5002
5003 /* We didn't find it. */
b49e97c9
TS
5004 return NULL;
5005}
5006
020d7251 5007/* Return whether an input relocation is against a local symbol. */
b49e97c9 5008
b34976b6 5009static bfd_boolean
9719ad41
RS
5010mips_elf_local_relocation_p (bfd *input_bfd,
5011 const Elf_Internal_Rela *relocation,
020d7251 5012 asection **local_sections)
b49e97c9
TS
5013{
5014 unsigned long r_symndx;
5015 Elf_Internal_Shdr *symtab_hdr;
b49e97c9
TS
5016 size_t extsymoff;
5017
5018 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5019 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5020 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5021
5022 if (r_symndx < extsymoff)
b34976b6 5023 return TRUE;
b49e97c9 5024 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 5025 return TRUE;
b49e97c9 5026
b34976b6 5027 return FALSE;
b49e97c9
TS
5028}
5029\f
5030/* Sign-extend VALUE, which has the indicated number of BITS. */
5031
a7ebbfdf 5032bfd_vma
9719ad41 5033_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
5034{
5035 if (value & ((bfd_vma) 1 << (bits - 1)))
5036 /* VALUE is negative. */
5037 value |= ((bfd_vma) - 1) << bits;
5038
5039 return value;
5040}
5041
5042/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 5043 range expressible by a signed number with the indicated number of
b49e97c9
TS
5044 BITS. */
5045
b34976b6 5046static bfd_boolean
9719ad41 5047mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
5048{
5049 bfd_signed_vma svalue = (bfd_signed_vma) value;
5050
5051 if (svalue > (1 << (bits - 1)) - 1)
5052 /* The value is too big. */
b34976b6 5053 return TRUE;
b49e97c9
TS
5054 else if (svalue < -(1 << (bits - 1)))
5055 /* The value is too small. */
b34976b6 5056 return TRUE;
b49e97c9
TS
5057
5058 /* All is well. */
b34976b6 5059 return FALSE;
b49e97c9
TS
5060}
5061
5062/* Calculate the %high function. */
5063
5064static bfd_vma
9719ad41 5065mips_elf_high (bfd_vma value)
b49e97c9
TS
5066{
5067 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5068}
5069
5070/* Calculate the %higher function. */
5071
5072static bfd_vma
9719ad41 5073mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5074{
5075#ifdef BFD64
5076 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5077#else
5078 abort ();
c5ae1840 5079 return MINUS_ONE;
b49e97c9
TS
5080#endif
5081}
5082
5083/* Calculate the %highest function. */
5084
5085static bfd_vma
9719ad41 5086mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5087{
5088#ifdef BFD64
b15e6682 5089 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
5090#else
5091 abort ();
c5ae1840 5092 return MINUS_ONE;
b49e97c9
TS
5093#endif
5094}
5095\f
5096/* Create the .compact_rel section. */
5097
b34976b6 5098static bfd_boolean
9719ad41
RS
5099mips_elf_create_compact_rel_section
5100 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
5101{
5102 flagword flags;
5103 register asection *s;
5104
3d4d4302 5105 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
b49e97c9
TS
5106 {
5107 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5108 | SEC_READONLY);
5109
3d4d4302 5110 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
b49e97c9 5111 if (s == NULL
b49e97c9
TS
5112 || ! bfd_set_section_alignment (abfd, s,
5113 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5114 return FALSE;
b49e97c9 5115
eea6121a 5116 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
5117 }
5118
b34976b6 5119 return TRUE;
b49e97c9
TS
5120}
5121
5122/* Create the .got section to hold the global offset table. */
5123
b34976b6 5124static bfd_boolean
23cc69b6 5125mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5126{
5127 flagword flags;
5128 register asection *s;
5129 struct elf_link_hash_entry *h;
14a793b2 5130 struct bfd_link_hash_entry *bh;
0a44bf69
RS
5131 struct mips_elf_link_hash_table *htab;
5132
5133 htab = mips_elf_hash_table (info);
4dfe6ac6 5134 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5135
5136 /* This function may be called more than once. */
ce558b89 5137 if (htab->root.sgot)
23cc69b6 5138 return TRUE;
b49e97c9
TS
5139
5140 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5141 | SEC_LINKER_CREATED);
5142
72b4917c
TS
5143 /* We have to use an alignment of 2**4 here because this is hardcoded
5144 in the function stub generation and in the linker script. */
87e0a731 5145 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
b49e97c9 5146 if (s == NULL
72b4917c 5147 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 5148 return FALSE;
ce558b89 5149 htab->root.sgot = s;
b49e97c9
TS
5150
5151 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5152 linker script because we don't want to define the symbol if we
5153 are not creating a global offset table. */
14a793b2 5154 bh = NULL;
b49e97c9
TS
5155 if (! (_bfd_generic_link_add_one_symbol
5156 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 5157 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5158 return FALSE;
14a793b2
AM
5159
5160 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5161 h->non_elf = 0;
5162 h->def_regular = 1;
b49e97c9 5163 h->type = STT_OBJECT;
2f9efdfc 5164 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
d329bcd1 5165 elf_hash_table (info)->hgot = h;
b49e97c9 5166
0e1862bb 5167 if (bfd_link_pic (info)
c152c796 5168 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5169 return FALSE;
b49e97c9 5170
3dff0dd1 5171 htab->got_info = mips_elf_create_got_info (abfd);
f0abc2a1 5172 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
5173 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5174
861fb55a 5175 /* We also need a .got.plt section when generating PLTs. */
87e0a731
AM
5176 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5177 SEC_ALLOC | SEC_LOAD
5178 | SEC_HAS_CONTENTS
5179 | SEC_IN_MEMORY
5180 | SEC_LINKER_CREATED);
861fb55a
DJ
5181 if (s == NULL)
5182 return FALSE;
ce558b89 5183 htab->root.sgotplt = s;
0a44bf69 5184
b34976b6 5185 return TRUE;
b49e97c9 5186}
b49e97c9 5187\f
0a44bf69
RS
5188/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5189 __GOTT_INDEX__ symbols. These symbols are only special for
5190 shared objects; they are not used in executables. */
5191
5192static bfd_boolean
5193is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5194{
5195 return (mips_elf_hash_table (info)->is_vxworks
0e1862bb 5196 && bfd_link_pic (info)
0a44bf69
RS
5197 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5198 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5199}
861fb55a
DJ
5200
5201/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5202 require an la25 stub. See also mips_elf_local_pic_function_p,
5203 which determines whether the destination function ever requires a
5204 stub. */
5205
5206static bfd_boolean
8f0c309a
CLT
5207mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5208 bfd_boolean target_is_16_bit_code_p)
861fb55a
DJ
5209{
5210 /* We specifically ignore branches and jumps from EF_PIC objects,
5211 where the onus is on the compiler or programmer to perform any
5212 necessary initialization of $25. Sometimes such initialization
5213 is unnecessary; for example, -mno-shared functions do not use
5214 the incoming value of $25, and may therefore be called directly. */
5215 if (PIC_OBJECT_P (input_bfd))
5216 return FALSE;
5217
5218 switch (r_type)
5219 {
5220 case R_MIPS_26:
5221 case R_MIPS_PC16:
7361da2c
AB
5222 case R_MIPS_PC21_S2:
5223 case R_MIPS_PC26_S2:
df58fc94
RS
5224 case R_MICROMIPS_26_S1:
5225 case R_MICROMIPS_PC7_S1:
5226 case R_MICROMIPS_PC10_S1:
5227 case R_MICROMIPS_PC16_S1:
5228 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
5229 return TRUE;
5230
8f0c309a
CLT
5231 case R_MIPS16_26:
5232 return !target_is_16_bit_code_p;
5233
861fb55a
DJ
5234 default:
5235 return FALSE;
5236 }
5237}
0a44bf69 5238\f
b49e97c9
TS
5239/* Calculate the value produced by the RELOCATION (which comes from
5240 the INPUT_BFD). The ADDEND is the addend to use for this
5241 RELOCATION; RELOCATION->R_ADDEND is ignored.
5242
5243 The result of the relocation calculation is stored in VALUEP.
38a7df63 5244 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
df58fc94 5245 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9
TS
5246
5247 This function returns bfd_reloc_continue if the caller need take no
5248 further action regarding this relocation, bfd_reloc_notsupported if
5249 something goes dramatically wrong, bfd_reloc_overflow if an
5250 overflow occurs, and bfd_reloc_ok to indicate success. */
5251
5252static bfd_reloc_status_type
9719ad41
RS
5253mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5254 asection *input_section,
5255 struct bfd_link_info *info,
5256 const Elf_Internal_Rela *relocation,
5257 bfd_vma addend, reloc_howto_type *howto,
5258 Elf_Internal_Sym *local_syms,
5259 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
5260 const char **namep,
5261 bfd_boolean *cross_mode_jump_p,
9719ad41 5262 bfd_boolean save_addend)
b49e97c9
TS
5263{
5264 /* The eventual value we will return. */
5265 bfd_vma value;
5266 /* The address of the symbol against which the relocation is
5267 occurring. */
5268 bfd_vma symbol = 0;
5269 /* The final GP value to be used for the relocatable, executable, or
5270 shared object file being produced. */
0a61c8c2 5271 bfd_vma gp;
b49e97c9
TS
5272 /* The place (section offset or address) of the storage unit being
5273 relocated. */
5274 bfd_vma p;
5275 /* The value of GP used to create the relocatable object. */
0a61c8c2 5276 bfd_vma gp0;
b49e97c9
TS
5277 /* The offset into the global offset table at which the address of
5278 the relocation entry symbol, adjusted by the addend, resides
5279 during execution. */
5280 bfd_vma g = MINUS_ONE;
5281 /* The section in which the symbol referenced by the relocation is
5282 located. */
5283 asection *sec = NULL;
5284 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 5285 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 5286 symbol. */
b34976b6 5287 bfd_boolean local_p, was_local_p;
77434823
MR
5288 /* TRUE if the symbol referred to by this relocation is a section
5289 symbol. */
5290 bfd_boolean section_p = FALSE;
b34976b6
AM
5291 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5292 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
5293 /* TRUE if the symbol referred to by this relocation is
5294 "__gnu_local_gp". */
5295 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
5296 Elf_Internal_Shdr *symtab_hdr;
5297 size_t extsymoff;
5298 unsigned long r_symndx;
5299 int r_type;
b34976b6 5300 /* TRUE if overflow occurred during the calculation of the
b49e97c9 5301 relocation value. */
b34976b6
AM
5302 bfd_boolean overflowed_p;
5303 /* TRUE if this relocation refers to a MIPS16 function. */
5304 bfd_boolean target_is_16_bit_code_p = FALSE;
df58fc94 5305 bfd_boolean target_is_micromips_code_p = FALSE;
0a44bf69
RS
5306 struct mips_elf_link_hash_table *htab;
5307 bfd *dynobj;
5308
5309 dynobj = elf_hash_table (info)->dynobj;
5310 htab = mips_elf_hash_table (info);
4dfe6ac6 5311 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5312
5313 /* Parse the relocation. */
5314 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5315 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5316 p = (input_section->output_section->vma
5317 + input_section->output_offset
5318 + relocation->r_offset);
5319
5320 /* Assume that there will be no overflow. */
b34976b6 5321 overflowed_p = FALSE;
b49e97c9
TS
5322
5323 /* Figure out whether or not the symbol is local, and get the offset
5324 used in the array of hash table entries. */
5325 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5326 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
020d7251 5327 local_sections);
bce03d3d 5328 was_local_p = local_p;
b49e97c9
TS
5329 if (! elf_bad_symtab (input_bfd))
5330 extsymoff = symtab_hdr->sh_info;
5331 else
5332 {
5333 /* The symbol table does not follow the rule that local symbols
5334 must come before globals. */
5335 extsymoff = 0;
5336 }
5337
5338 /* Figure out the value of the symbol. */
5339 if (local_p)
5340 {
9d862524 5341 bfd_boolean micromips_p = MICROMIPS_P (abfd);
b49e97c9
TS
5342 Elf_Internal_Sym *sym;
5343
5344 sym = local_syms + r_symndx;
5345 sec = local_sections[r_symndx];
5346
77434823
MR
5347 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5348
b49e97c9 5349 symbol = sec->output_section->vma + sec->output_offset;
77434823 5350 if (!section_p || (sec->flags & SEC_MERGE))
b49e97c9 5351 symbol += sym->st_value;
77434823 5352 if ((sec->flags & SEC_MERGE) && section_p)
d4df96e6
L
5353 {
5354 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5355 addend -= symbol;
5356 addend += sec->output_section->vma + sec->output_offset;
5357 }
b49e97c9 5358
df58fc94
RS
5359 /* MIPS16/microMIPS text labels should be treated as odd. */
5360 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
5361 ++symbol;
5362
5363 /* Record the name of this symbol, for our caller. */
5364 *namep = bfd_elf_string_from_elf_section (input_bfd,
5365 symtab_hdr->sh_link,
5366 sym->st_name);
ceab86af 5367 if (*namep == NULL || **namep == '\0')
b49e97c9
TS
5368 *namep = bfd_section_name (input_bfd, sec);
5369
9d862524
MR
5370 /* For relocations against a section symbol and ones against no
5371 symbol (absolute relocations) infer the ISA mode from the addend. */
5372 if (section_p || r_symndx == STN_UNDEF)
5373 {
5374 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5375 target_is_micromips_code_p = (addend & 1) && micromips_p;
5376 }
5377 /* For relocations against an absolute symbol infer the ISA mode
5378 from the value of the symbol plus addend. */
5379 else if (bfd_is_abs_section (sec))
5380 {
5381 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5382 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5383 }
5384 /* Otherwise just use the regular symbol annotation available. */
5385 else
5386 {
5387 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5388 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5389 }
b49e97c9
TS
5390 }
5391 else
5392 {
560e09e9
NC
5393 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5394
b49e97c9
TS
5395 /* For global symbols we look up the symbol in the hash-table. */
5396 h = ((struct mips_elf_link_hash_entry *)
5397 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5398 /* Find the real hash-table entry for this symbol. */
5399 while (h->root.root.type == bfd_link_hash_indirect
5400 || h->root.root.type == bfd_link_hash_warning)
5401 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5402
5403 /* Record the name of this symbol, for our caller. */
5404 *namep = h->root.root.root.string;
5405
5406 /* See if this is the special _gp_disp symbol. Note that such a
5407 symbol must always be a global symbol. */
560e09e9 5408 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
5409 && ! NEWABI_P (input_bfd))
5410 {
5411 /* Relocations against _gp_disp are permitted only with
5412 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 5413 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
5414 return bfd_reloc_notsupported;
5415
b34976b6 5416 gp_disp_p = TRUE;
b49e97c9 5417 }
bbe506e8
TS
5418 /* See if this is the special _gp symbol. Note that such a
5419 symbol must always be a global symbol. */
5420 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5421 gnu_local_gp_p = TRUE;
5422
5423
b49e97c9
TS
5424 /* If this symbol is defined, calculate its address. Note that
5425 _gp_disp is a magic symbol, always implicitly defined by the
5426 linker, so it's inappropriate to check to see whether or not
5427 its defined. */
5428 else if ((h->root.root.type == bfd_link_hash_defined
5429 || h->root.root.type == bfd_link_hash_defweak)
5430 && h->root.root.u.def.section)
5431 {
5432 sec = h->root.root.u.def.section;
5433 if (sec->output_section)
5434 symbol = (h->root.root.u.def.value
5435 + sec->output_section->vma
5436 + sec->output_offset);
5437 else
5438 symbol = h->root.root.u.def.value;
5439 }
5440 else if (h->root.root.type == bfd_link_hash_undefweak)
5441 /* We allow relocations against undefined weak symbols, giving
5442 it the value zero, so that you can undefined weak functions
5443 and check to see if they exist by looking at their
5444 addresses. */
5445 symbol = 0;
59c2e50f 5446 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5447 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5448 symbol = 0;
a4d0f181
TS
5449 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5450 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5451 {
5452 /* If this is a dynamic link, we should have created a
5453 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5454 in in _bfd_mips_elf_create_dynamic_sections.
5455 Otherwise, we should define the symbol with a value of 0.
5456 FIXME: It should probably get into the symbol table
5457 somehow as well. */
0e1862bb 5458 BFD_ASSERT (! bfd_link_pic (info));
b49e97c9
TS
5459 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5460 symbol = 0;
5461 }
5e2b0d47
NC
5462 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5463 {
5464 /* This is an optional symbol - an Irix specific extension to the
5465 ELF spec. Ignore it for now.
5466 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5467 than simply ignoring them, but we do not handle this for now.
5468 For information see the "64-bit ELF Object File Specification"
5469 which is available from here:
5470 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5471 symbol = 0;
5472 }
b49e97c9
TS
5473 else
5474 {
1a72702b
AM
5475 (*info->callbacks->undefined_symbol)
5476 (info, h->root.root.root.string, input_bfd,
5477 input_section, relocation->r_offset,
5478 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5479 || ELF_ST_VISIBILITY (h->root.other));
5480 return bfd_reloc_undefined;
b49e97c9
TS
5481 }
5482
30c09090 5483 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
1bbce132 5484 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
b49e97c9
TS
5485 }
5486
738e5348
RS
5487 /* If this is a reference to a 16-bit function with a stub, we need
5488 to redirect the relocation to the stub unless:
5489
5490 (a) the relocation is for a MIPS16 JAL;
5491
5492 (b) the relocation is for a MIPS16 PIC call, and there are no
5493 non-MIPS16 uses of the GOT slot; or
5494
5495 (c) the section allows direct references to MIPS16 functions. */
5496 if (r_type != R_MIPS16_26
0e1862bb 5497 && !bfd_link_relocatable (info)
738e5348
RS
5498 && ((h != NULL
5499 && h->fn_stub != NULL
5500 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71 5501 || (local_p
698600e4
AM
5502 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5503 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5504 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5505 {
5506 /* This is a 32- or 64-bit call to a 16-bit function. We should
5507 have already noticed that we were going to need the
5508 stub. */
5509 if (local_p)
8f0c309a 5510 {
698600e4 5511 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
8f0c309a
CLT
5512 value = 0;
5513 }
b49e97c9
TS
5514 else
5515 {
5516 BFD_ASSERT (h->need_fn_stub);
8f0c309a
CLT
5517 if (h->la25_stub)
5518 {
5519 /* If a LA25 header for the stub itself exists, point to the
5520 prepended LUI/ADDIU sequence. */
5521 sec = h->la25_stub->stub_section;
5522 value = h->la25_stub->offset;
5523 }
5524 else
5525 {
5526 sec = h->fn_stub;
5527 value = 0;
5528 }
b49e97c9
TS
5529 }
5530
8f0c309a 5531 symbol = sec->output_section->vma + sec->output_offset + value;
f38c2df5
TS
5532 /* The target is 16-bit, but the stub isn't. */
5533 target_is_16_bit_code_p = FALSE;
b49e97c9 5534 }
1bbce132
MR
5535 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5536 to a standard MIPS function, we need to redirect the call to the stub.
5537 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5538 indirect calls should use an indirect stub instead. */
0e1862bb 5539 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
b314ec0e 5540 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71 5541 || (local_p
698600e4
AM
5542 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5543 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
1bbce132 5544 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
b49e97c9 5545 {
b9d58d71 5546 if (local_p)
698600e4 5547 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
b9d58d71 5548 else
b49e97c9 5549 {
b9d58d71
TS
5550 /* If both call_stub and call_fp_stub are defined, we can figure
5551 out which one to use by checking which one appears in the input
5552 file. */
5553 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5554 {
b9d58d71 5555 asection *o;
68ffbac6 5556
b9d58d71
TS
5557 sec = NULL;
5558 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5559 {
b9d58d71
TS
5560 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5561 {
5562 sec = h->call_fp_stub;
5563 break;
5564 }
b49e97c9 5565 }
b9d58d71
TS
5566 if (sec == NULL)
5567 sec = h->call_stub;
b49e97c9 5568 }
b9d58d71 5569 else if (h->call_stub != NULL)
b49e97c9 5570 sec = h->call_stub;
b9d58d71
TS
5571 else
5572 sec = h->call_fp_stub;
5573 }
b49e97c9 5574
eea6121a 5575 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5576 symbol = sec->output_section->vma + sec->output_offset;
5577 }
861fb55a
DJ
5578 /* If this is a direct call to a PIC function, redirect to the
5579 non-PIC stub. */
5580 else if (h != NULL && h->la25_stub
8f0c309a
CLT
5581 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5582 target_is_16_bit_code_p))
c7318def
MR
5583 {
5584 symbol = (h->la25_stub->stub_section->output_section->vma
5585 + h->la25_stub->stub_section->output_offset
5586 + h->la25_stub->offset);
5587 if (ELF_ST_IS_MICROMIPS (h->root.other))
5588 symbol |= 1;
5589 }
1bbce132
MR
5590 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5591 entry is used if a standard PLT entry has also been made. In this
5592 case the symbol will have been set by mips_elf_set_plt_sym_value
5593 to point to the standard PLT entry, so redirect to the compressed
5594 one. */
54806ffa
MR
5595 else if ((mips16_branch_reloc_p (r_type)
5596 || micromips_branch_reloc_p (r_type))
0e1862bb 5597 && !bfd_link_relocatable (info)
1bbce132
MR
5598 && h != NULL
5599 && h->use_plt_entry
5600 && h->root.plt.plist->comp_offset != MINUS_ONE
5601 && h->root.plt.plist->mips_offset != MINUS_ONE)
5602 {
5603 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5604
ce558b89 5605 sec = htab->root.splt;
1bbce132
MR
5606 symbol = (sec->output_section->vma
5607 + sec->output_offset
5608 + htab->plt_header_size
5609 + htab->plt_mips_offset
5610 + h->root.plt.plist->comp_offset
5611 + 1);
5612
5613 target_is_16_bit_code_p = !micromips_p;
5614 target_is_micromips_code_p = micromips_p;
5615 }
b49e97c9 5616
df58fc94 5617 /* Make sure MIPS16 and microMIPS are not used together. */
c9775dde 5618 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
df58fc94
RS
5619 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5620 {
4eca0228 5621 _bfd_error_handler
df58fc94
RS
5622 (_("MIPS16 and microMIPS functions cannot call each other"));
5623 return bfd_reloc_notsupported;
5624 }
5625
b49e97c9 5626 /* Calls from 16-bit code to 32-bit code and vice versa require the
df58fc94
RS
5627 mode change. However, we can ignore calls to undefined weak symbols,
5628 which should never be executed at runtime. This exception is important
5629 because the assembly writer may have "known" that any definition of the
5630 symbol would be 16-bit code, and that direct jumps were therefore
5631 acceptable. */
0e1862bb 5632 *cross_mode_jump_p = (!bfd_link_relocatable (info)
df58fc94 5633 && !(h && h->root.root.type == bfd_link_hash_undefweak)
9d862524
MR
5634 && ((mips16_branch_reloc_p (r_type)
5635 && !target_is_16_bit_code_p)
5636 || (micromips_branch_reloc_p (r_type)
df58fc94 5637 && !target_is_micromips_code_p)
9d862524
MR
5638 || ((branch_reloc_p (r_type)
5639 || r_type == R_MIPS_JALR)
df58fc94
RS
5640 && (target_is_16_bit_code_p
5641 || target_is_micromips_code_p))));
b49e97c9 5642
c5d6fa44 5643 local_p = (h == NULL || mips_use_local_got_p (info, h));
b49e97c9 5644
0a61c8c2
RS
5645 gp0 = _bfd_get_gp_value (input_bfd);
5646 gp = _bfd_get_gp_value (abfd);
23cc69b6 5647 if (htab->got_info)
a8028dd0 5648 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5649
5650 if (gnu_local_gp_p)
5651 symbol = gp;
5652
df58fc94
RS
5653 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5654 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5655 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5656 if (got_page_reloc_p (r_type) && !local_p)
020d7251 5657 {
df58fc94
RS
5658 r_type = (micromips_reloc_p (r_type)
5659 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
020d7251
RS
5660 addend = 0;
5661 }
5662
e77760d2 5663 /* If we haven't already determined the GOT offset, and we're going
0a61c8c2 5664 to need it, get it now. */
b49e97c9
TS
5665 switch (r_type)
5666 {
738e5348
RS
5667 case R_MIPS16_CALL16:
5668 case R_MIPS16_GOT16:
b49e97c9
TS
5669 case R_MIPS_CALL16:
5670 case R_MIPS_GOT16:
5671 case R_MIPS_GOT_DISP:
5672 case R_MIPS_GOT_HI16:
5673 case R_MIPS_CALL_HI16:
5674 case R_MIPS_GOT_LO16:
5675 case R_MIPS_CALL_LO16:
df58fc94
RS
5676 case R_MICROMIPS_CALL16:
5677 case R_MICROMIPS_GOT16:
5678 case R_MICROMIPS_GOT_DISP:
5679 case R_MICROMIPS_GOT_HI16:
5680 case R_MICROMIPS_CALL_HI16:
5681 case R_MICROMIPS_GOT_LO16:
5682 case R_MICROMIPS_CALL_LO16:
0f20cc35
DJ
5683 case R_MIPS_TLS_GD:
5684 case R_MIPS_TLS_GOTTPREL:
5685 case R_MIPS_TLS_LDM:
d0f13682
CLT
5686 case R_MIPS16_TLS_GD:
5687 case R_MIPS16_TLS_GOTTPREL:
5688 case R_MIPS16_TLS_LDM:
df58fc94
RS
5689 case R_MICROMIPS_TLS_GD:
5690 case R_MICROMIPS_TLS_GOTTPREL:
5691 case R_MICROMIPS_TLS_LDM:
b49e97c9 5692 /* Find the index into the GOT where this value is located. */
df58fc94 5693 if (tls_ldm_reloc_p (r_type))
0f20cc35 5694 {
0a44bf69 5695 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5696 0, 0, NULL, r_type);
0f20cc35
DJ
5697 if (g == MINUS_ONE)
5698 return bfd_reloc_outofrange;
5699 }
5700 else if (!local_p)
b49e97c9 5701 {
0a44bf69
RS
5702 /* On VxWorks, CALL relocations should refer to the .got.plt
5703 entry, which is initialized to point at the PLT stub. */
5704 if (htab->is_vxworks
df58fc94
RS
5705 && (call_hi16_reloc_p (r_type)
5706 || call_lo16_reloc_p (r_type)
738e5348 5707 || call16_reloc_p (r_type)))
0a44bf69
RS
5708 {
5709 BFD_ASSERT (addend == 0);
5710 BFD_ASSERT (h->root.needs_plt);
5711 g = mips_elf_gotplt_index (info, &h->root);
5712 }
5713 else
b49e97c9 5714 {
020d7251 5715 BFD_ASSERT (addend == 0);
13fbec83
RS
5716 g = mips_elf_global_got_index (abfd, info, input_bfd,
5717 &h->root, r_type);
e641e783 5718 if (!TLS_RELOC_P (r_type)
020d7251
RS
5719 && !elf_hash_table (info)->dynamic_sections_created)
5720 /* This is a static link. We must initialize the GOT entry. */
ce558b89 5721 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
b49e97c9
TS
5722 }
5723 }
0a44bf69 5724 else if (!htab->is_vxworks
738e5348 5725 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5726 /* The calculation below does not involve "g". */
b49e97c9
TS
5727 break;
5728 else
5729 {
5c18022e 5730 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5731 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5732 if (g == MINUS_ONE)
5733 return bfd_reloc_outofrange;
5734 }
5735
5736 /* Convert GOT indices to actual offsets. */
a8028dd0 5737 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5738 break;
b49e97c9
TS
5739 }
5740
0a44bf69
RS
5741 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5742 symbols are resolved by the loader. Add them to .rela.dyn. */
5743 if (h != NULL && is_gott_symbol (info, &h->root))
5744 {
5745 Elf_Internal_Rela outrel;
5746 bfd_byte *loc;
5747 asection *s;
5748
5749 s = mips_elf_rel_dyn_section (info, FALSE);
5750 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5751
5752 outrel.r_offset = (input_section->output_section->vma
5753 + input_section->output_offset
5754 + relocation->r_offset);
5755 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5756 outrel.r_addend = addend;
5757 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5758
5759 /* If we've written this relocation for a readonly section,
5760 we need to set DF_TEXTREL again, so that we do not delete the
5761 DT_TEXTREL tag. */
5762 if (MIPS_ELF_READONLY_SECTION (input_section))
5763 info->flags |= DF_TEXTREL;
5764
0a44bf69
RS
5765 *valuep = 0;
5766 return bfd_reloc_ok;
5767 }
5768
b49e97c9
TS
5769 /* Figure out what kind of relocation is being performed. */
5770 switch (r_type)
5771 {
5772 case R_MIPS_NONE:
5773 return bfd_reloc_continue;
5774
5775 case R_MIPS_16:
c3eb94b4
MF
5776 if (howto->partial_inplace)
5777 addend = _bfd_mips_elf_sign_extend (addend, 16);
5778 value = symbol + addend;
b49e97c9
TS
5779 overflowed_p = mips_elf_overflow_p (value, 16);
5780 break;
5781
5782 case R_MIPS_32:
5783 case R_MIPS_REL32:
5784 case R_MIPS_64:
0e1862bb 5785 if ((bfd_link_pic (info)
861fb55a 5786 || (htab->root.dynamic_sections_created
b49e97c9 5787 && h != NULL
f5385ebf 5788 && h->root.def_dynamic
861fb55a
DJ
5789 && !h->root.def_regular
5790 && !h->has_static_relocs))
cf35638d 5791 && r_symndx != STN_UNDEF
9a59ad6b
DJ
5792 && (h == NULL
5793 || h->root.root.type != bfd_link_hash_undefweak
5794 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
b49e97c9
TS
5795 && (input_section->flags & SEC_ALLOC) != 0)
5796 {
861fb55a 5797 /* If we're creating a shared library, then we can't know
b49e97c9
TS
5798 where the symbol will end up. So, we create a relocation
5799 record in the output, and leave the job up to the dynamic
861fb55a
DJ
5800 linker. We must do the same for executable references to
5801 shared library symbols, unless we've decided to use copy
5802 relocs or PLTs instead. */
b49e97c9
TS
5803 value = addend;
5804 if (!mips_elf_create_dynamic_relocation (abfd,
5805 info,
5806 relocation,
5807 h,
5808 sec,
5809 symbol,
5810 &value,
5811 input_section))
5812 return bfd_reloc_undefined;
5813 }
5814 else
5815 {
5816 if (r_type != R_MIPS_REL32)
5817 value = symbol + addend;
5818 else
5819 value = addend;
5820 }
5821 value &= howto->dst_mask;
092dcd75
CD
5822 break;
5823
5824 case R_MIPS_PC32:
5825 value = symbol + addend - p;
5826 value &= howto->dst_mask;
b49e97c9
TS
5827 break;
5828
b49e97c9
TS
5829 case R_MIPS16_26:
5830 /* The calculation for R_MIPS16_26 is just the same as for an
5831 R_MIPS_26. It's only the storage of the relocated field into
5832 the output file that's different. That's handled in
5833 mips_elf_perform_relocation. So, we just fall through to the
5834 R_MIPS_26 case here. */
5835 case R_MIPS_26:
df58fc94
RS
5836 case R_MICROMIPS_26_S1:
5837 {
5838 unsigned int shift;
5839
df58fc94
RS
5840 /* Shift is 2, unusually, for microMIPS JALX. */
5841 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5842
77434823 5843 if (howto->partial_inplace && !section_p)
df58fc94 5844 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
c3eb94b4
MF
5845 else
5846 value = addend;
bc27bb05
MR
5847 value += symbol;
5848
9d862524
MR
5849 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5850 be the correct ISA mode selector except for weak undefined
5851 symbols. */
5852 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5853 && (*cross_mode_jump_p
5854 ? (value & 3) != (r_type == R_MIPS_26)
5855 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
bc27bb05
MR
5856 return bfd_reloc_outofrange;
5857
5858 value >>= shift;
77434823 5859 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
df58fc94
RS
5860 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5861 value &= howto->dst_mask;
5862 }
b49e97c9
TS
5863 break;
5864
0f20cc35 5865 case R_MIPS_TLS_DTPREL_HI16:
d0f13682 5866 case R_MIPS16_TLS_DTPREL_HI16:
df58fc94 5867 case R_MICROMIPS_TLS_DTPREL_HI16:
0f20cc35
DJ
5868 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5869 & howto->dst_mask);
5870 break;
5871
5872 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
5873 case R_MIPS_TLS_DTPREL32:
5874 case R_MIPS_TLS_DTPREL64:
d0f13682 5875 case R_MIPS16_TLS_DTPREL_LO16:
df58fc94 5876 case R_MICROMIPS_TLS_DTPREL_LO16:
0f20cc35
DJ
5877 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5878 break;
5879
5880 case R_MIPS_TLS_TPREL_HI16:
d0f13682 5881 case R_MIPS16_TLS_TPREL_HI16:
df58fc94 5882 case R_MICROMIPS_TLS_TPREL_HI16:
0f20cc35
DJ
5883 value = (mips_elf_high (addend + symbol - tprel_base (info))
5884 & howto->dst_mask);
5885 break;
5886
5887 case R_MIPS_TLS_TPREL_LO16:
d0f13682
CLT
5888 case R_MIPS_TLS_TPREL32:
5889 case R_MIPS_TLS_TPREL64:
5890 case R_MIPS16_TLS_TPREL_LO16:
df58fc94 5891 case R_MICROMIPS_TLS_TPREL_LO16:
0f20cc35
DJ
5892 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5893 break;
5894
b49e97c9 5895 case R_MIPS_HI16:
d6f16593 5896 case R_MIPS16_HI16:
df58fc94 5897 case R_MICROMIPS_HI16:
b49e97c9
TS
5898 if (!gp_disp_p)
5899 {
5900 value = mips_elf_high (addend + symbol);
5901 value &= howto->dst_mask;
5902 }
5903 else
5904 {
d6f16593
MR
5905 /* For MIPS16 ABI code we generate this sequence
5906 0: li $v0,%hi(_gp_disp)
5907 4: addiupc $v1,%lo(_gp_disp)
5908 8: sll $v0,16
5909 12: addu $v0,$v1
5910 14: move $gp,$v0
5911 So the offsets of hi and lo relocs are the same, but the
888b9c01
CLT
5912 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5913 ADDIUPC clears the low two bits of the instruction address,
5914 so the base is ($t9 + 4) & ~3. */
d6f16593 5915 if (r_type == R_MIPS16_HI16)
888b9c01 5916 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
df58fc94
RS
5917 /* The microMIPS .cpload sequence uses the same assembly
5918 instructions as the traditional psABI version, but the
5919 incoming $t9 has the low bit set. */
5920 else if (r_type == R_MICROMIPS_HI16)
5921 value = mips_elf_high (addend + gp - p - 1);
d6f16593
MR
5922 else
5923 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
5924 }
5925 break;
5926
5927 case R_MIPS_LO16:
d6f16593 5928 case R_MIPS16_LO16:
df58fc94
RS
5929 case R_MICROMIPS_LO16:
5930 case R_MICROMIPS_HI0_LO16:
b49e97c9
TS
5931 if (!gp_disp_p)
5932 value = (symbol + addend) & howto->dst_mask;
5933 else
5934 {
d6f16593
MR
5935 /* See the comment for R_MIPS16_HI16 above for the reason
5936 for this conditional. */
5937 if (r_type == R_MIPS16_LO16)
888b9c01 5938 value = addend + gp - (p & ~(bfd_vma) 0x3);
df58fc94
RS
5939 else if (r_type == R_MICROMIPS_LO16
5940 || r_type == R_MICROMIPS_HI0_LO16)
5941 value = addend + gp - p + 3;
d6f16593
MR
5942 else
5943 value = addend + gp - p + 4;
b49e97c9 5944 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 5945 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
5946 _gp_disp are normally generated from the .cpload
5947 pseudo-op. It generates code that normally looks like
5948 this:
5949
5950 lui $gp,%hi(_gp_disp)
5951 addiu $gp,$gp,%lo(_gp_disp)
5952 addu $gp,$gp,$t9
5953
5954 Here $t9 holds the address of the function being called,
5955 as required by the MIPS ELF ABI. The R_MIPS_LO16
5956 relocation can easily overflow in this situation, but the
5957 R_MIPS_HI16 relocation will handle the overflow.
5958 Therefore, we consider this a bug in the MIPS ABI, and do
5959 not check for overflow here. */
5960 }
5961 break;
5962
5963 case R_MIPS_LITERAL:
df58fc94 5964 case R_MICROMIPS_LITERAL:
b49e97c9
TS
5965 /* Because we don't merge literal sections, we can handle this
5966 just like R_MIPS_GPREL16. In the long run, we should merge
5967 shared literals, and then we will need to additional work
5968 here. */
5969
5970 /* Fall through. */
5971
5972 case R_MIPS16_GPREL:
5973 /* The R_MIPS16_GPREL performs the same calculation as
5974 R_MIPS_GPREL16, but stores the relocated bits in a different
5975 order. We don't need to do anything special here; the
5976 differences are handled in mips_elf_perform_relocation. */
5977 case R_MIPS_GPREL16:
df58fc94
RS
5978 case R_MICROMIPS_GPREL7_S2:
5979 case R_MICROMIPS_GPREL16:
bce03d3d
AO
5980 /* Only sign-extend the addend if it was extracted from the
5981 instruction. If the addend was separate, leave it alone,
5982 otherwise we may lose significant bits. */
5983 if (howto->partial_inplace)
a7ebbfdf 5984 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
5985 value = symbol + addend - gp;
5986 /* If the symbol was local, any earlier relocatable links will
5987 have adjusted its addend with the gp offset, so compensate
5988 for that now. Don't do it for symbols forced local in this
5989 link, though, since they won't have had the gp offset applied
5990 to them before. */
5991 if (was_local_p)
5992 value += gp0;
538baf8b
AB
5993 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5994 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
5995 break;
5996
738e5348
RS
5997 case R_MIPS16_GOT16:
5998 case R_MIPS16_CALL16:
b49e97c9
TS
5999 case R_MIPS_GOT16:
6000 case R_MIPS_CALL16:
df58fc94
RS
6001 case R_MICROMIPS_GOT16:
6002 case R_MICROMIPS_CALL16:
0a44bf69 6003 /* VxWorks does not have separate local and global semantics for
738e5348 6004 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 6005 if (!htab->is_vxworks && local_p)
b49e97c9 6006 {
5c18022e 6007 value = mips_elf_got16_entry (abfd, input_bfd, info,
020d7251 6008 symbol + addend, !was_local_p);
b49e97c9
TS
6009 if (value == MINUS_ONE)
6010 return bfd_reloc_outofrange;
6011 value
a8028dd0 6012 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6013 overflowed_p = mips_elf_overflow_p (value, 16);
6014 break;
6015 }
6016
6017 /* Fall through. */
6018
0f20cc35
DJ
6019 case R_MIPS_TLS_GD:
6020 case R_MIPS_TLS_GOTTPREL:
6021 case R_MIPS_TLS_LDM:
b49e97c9 6022 case R_MIPS_GOT_DISP:
d0f13682
CLT
6023 case R_MIPS16_TLS_GD:
6024 case R_MIPS16_TLS_GOTTPREL:
6025 case R_MIPS16_TLS_LDM:
df58fc94
RS
6026 case R_MICROMIPS_TLS_GD:
6027 case R_MICROMIPS_TLS_GOTTPREL:
6028 case R_MICROMIPS_TLS_LDM:
6029 case R_MICROMIPS_GOT_DISP:
b49e97c9
TS
6030 value = g;
6031 overflowed_p = mips_elf_overflow_p (value, 16);
6032 break;
6033
6034 case R_MIPS_GPREL32:
bce03d3d
AO
6035 value = (addend + symbol + gp0 - gp);
6036 if (!save_addend)
6037 value &= howto->dst_mask;
b49e97c9
TS
6038 break;
6039
6040 case R_MIPS_PC16:
bad36eac 6041 case R_MIPS_GNU_REL16_S2:
c3eb94b4
MF
6042 if (howto->partial_inplace)
6043 addend = _bfd_mips_elf_sign_extend (addend, 18);
6044
9d862524
MR
6045 /* No need to exclude weak undefined symbols here as they resolve
6046 to 0 and never set `*cross_mode_jump_p', so this alignment check
6047 will never trigger for them. */
6048 if (*cross_mode_jump_p
6049 ? ((symbol + addend) & 3) != 1
6050 : ((symbol + addend) & 3) != 0)
c3eb94b4
MF
6051 return bfd_reloc_outofrange;
6052
6053 value = symbol + addend - p;
538baf8b
AB
6054 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6055 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
6056 value >>= howto->rightshift;
6057 value &= howto->dst_mask;
b49e97c9
TS
6058 break;
6059
c9775dde
MR
6060 case R_MIPS16_PC16_S1:
6061 if (howto->partial_inplace)
6062 addend = _bfd_mips_elf_sign_extend (addend, 17);
6063
6064 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
9d862524
MR
6065 && (*cross_mode_jump_p
6066 ? ((symbol + addend) & 3) != 0
6067 : ((symbol + addend) & 1) == 0))
c9775dde
MR
6068 return bfd_reloc_outofrange;
6069
6070 value = symbol + addend - p;
6071 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6072 overflowed_p = mips_elf_overflow_p (value, 17);
6073 value >>= howto->rightshift;
6074 value &= howto->dst_mask;
6075 break;
6076
7361da2c
AB
6077 case R_MIPS_PC21_S2:
6078 if (howto->partial_inplace)
6079 addend = _bfd_mips_elf_sign_extend (addend, 23);
6080
6081 if ((symbol + addend) & 3)
6082 return bfd_reloc_outofrange;
6083
6084 value = symbol + addend - p;
538baf8b
AB
6085 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6086 overflowed_p = mips_elf_overflow_p (value, 23);
7361da2c
AB
6087 value >>= howto->rightshift;
6088 value &= howto->dst_mask;
6089 break;
6090
6091 case R_MIPS_PC26_S2:
6092 if (howto->partial_inplace)
6093 addend = _bfd_mips_elf_sign_extend (addend, 28);
6094
6095 if ((symbol + addend) & 3)
6096 return bfd_reloc_outofrange;
6097
6098 value = symbol + addend - p;
538baf8b
AB
6099 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6100 overflowed_p = mips_elf_overflow_p (value, 28);
7361da2c
AB
6101 value >>= howto->rightshift;
6102 value &= howto->dst_mask;
6103 break;
6104
6105 case R_MIPS_PC18_S3:
6106 if (howto->partial_inplace)
6107 addend = _bfd_mips_elf_sign_extend (addend, 21);
6108
6109 if ((symbol + addend) & 7)
6110 return bfd_reloc_outofrange;
6111
6112 value = symbol + addend - ((p | 7) ^ 7);
538baf8b
AB
6113 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6114 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6115 value >>= howto->rightshift;
6116 value &= howto->dst_mask;
6117 break;
6118
6119 case R_MIPS_PC19_S2:
6120 if (howto->partial_inplace)
6121 addend = _bfd_mips_elf_sign_extend (addend, 21);
6122
6123 if ((symbol + addend) & 3)
6124 return bfd_reloc_outofrange;
6125
6126 value = symbol + addend - p;
538baf8b
AB
6127 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6128 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6129 value >>= howto->rightshift;
6130 value &= howto->dst_mask;
6131 break;
6132
6133 case R_MIPS_PCHI16:
6134 value = mips_elf_high (symbol + addend - p);
538baf8b
AB
6135 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6136 overflowed_p = mips_elf_overflow_p (value, 16);
7361da2c
AB
6137 value &= howto->dst_mask;
6138 break;
6139
6140 case R_MIPS_PCLO16:
6141 if (howto->partial_inplace)
6142 addend = _bfd_mips_elf_sign_extend (addend, 16);
6143 value = symbol + addend - p;
6144 value &= howto->dst_mask;
6145 break;
6146
df58fc94 6147 case R_MICROMIPS_PC7_S1:
c3eb94b4
MF
6148 if (howto->partial_inplace)
6149 addend = _bfd_mips_elf_sign_extend (addend, 8);
9d862524
MR
6150
6151 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6152 && (*cross_mode_jump_p
6153 ? ((symbol + addend + 2) & 3) != 0
6154 : ((symbol + addend + 2) & 1) == 0))
6155 return bfd_reloc_outofrange;
6156
c3eb94b4 6157 value = symbol + addend - p;
538baf8b
AB
6158 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6159 overflowed_p = mips_elf_overflow_p (value, 8);
df58fc94
RS
6160 value >>= howto->rightshift;
6161 value &= howto->dst_mask;
6162 break;
6163
6164 case R_MICROMIPS_PC10_S1:
c3eb94b4
MF
6165 if (howto->partial_inplace)
6166 addend = _bfd_mips_elf_sign_extend (addend, 11);
9d862524
MR
6167
6168 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6169 && (*cross_mode_jump_p
6170 ? ((symbol + addend + 2) & 3) != 0
6171 : ((symbol + addend + 2) & 1) == 0))
6172 return bfd_reloc_outofrange;
6173
c3eb94b4 6174 value = symbol + addend - p;
538baf8b
AB
6175 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6176 overflowed_p = mips_elf_overflow_p (value, 11);
df58fc94
RS
6177 value >>= howto->rightshift;
6178 value &= howto->dst_mask;
6179 break;
6180
6181 case R_MICROMIPS_PC16_S1:
c3eb94b4
MF
6182 if (howto->partial_inplace)
6183 addend = _bfd_mips_elf_sign_extend (addend, 17);
9d862524
MR
6184
6185 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6186 && (*cross_mode_jump_p
6187 ? ((symbol + addend) & 3) != 0
6188 : ((symbol + addend) & 1) == 0))
6189 return bfd_reloc_outofrange;
6190
c3eb94b4 6191 value = symbol + addend - p;
538baf8b
AB
6192 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6193 overflowed_p = mips_elf_overflow_p (value, 17);
df58fc94
RS
6194 value >>= howto->rightshift;
6195 value &= howto->dst_mask;
6196 break;
6197
6198 case R_MICROMIPS_PC23_S2:
c3eb94b4
MF
6199 if (howto->partial_inplace)
6200 addend = _bfd_mips_elf_sign_extend (addend, 25);
6201 value = symbol + addend - ((p | 3) ^ 3);
538baf8b
AB
6202 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6203 overflowed_p = mips_elf_overflow_p (value, 25);
df58fc94
RS
6204 value >>= howto->rightshift;
6205 value &= howto->dst_mask;
6206 break;
6207
b49e97c9
TS
6208 case R_MIPS_GOT_HI16:
6209 case R_MIPS_CALL_HI16:
df58fc94
RS
6210 case R_MICROMIPS_GOT_HI16:
6211 case R_MICROMIPS_CALL_HI16:
b49e97c9
TS
6212 /* We're allowed to handle these two relocations identically.
6213 The dynamic linker is allowed to handle the CALL relocations
6214 differently by creating a lazy evaluation stub. */
6215 value = g;
6216 value = mips_elf_high (value);
6217 value &= howto->dst_mask;
6218 break;
6219
6220 case R_MIPS_GOT_LO16:
6221 case R_MIPS_CALL_LO16:
df58fc94
RS
6222 case R_MICROMIPS_GOT_LO16:
6223 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
6224 value = g & howto->dst_mask;
6225 break;
6226
6227 case R_MIPS_GOT_PAGE:
df58fc94 6228 case R_MICROMIPS_GOT_PAGE:
5c18022e 6229 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
6230 if (value == MINUS_ONE)
6231 return bfd_reloc_outofrange;
a8028dd0 6232 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6233 overflowed_p = mips_elf_overflow_p (value, 16);
6234 break;
6235
6236 case R_MIPS_GOT_OFST:
df58fc94 6237 case R_MICROMIPS_GOT_OFST:
93a2b7ae 6238 if (local_p)
5c18022e 6239 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
6240 else
6241 value = addend;
b49e97c9
TS
6242 overflowed_p = mips_elf_overflow_p (value, 16);
6243 break;
6244
6245 case R_MIPS_SUB:
df58fc94 6246 case R_MICROMIPS_SUB:
b49e97c9
TS
6247 value = symbol - addend;
6248 value &= howto->dst_mask;
6249 break;
6250
6251 case R_MIPS_HIGHER:
df58fc94 6252 case R_MICROMIPS_HIGHER:
b49e97c9
TS
6253 value = mips_elf_higher (addend + symbol);
6254 value &= howto->dst_mask;
6255 break;
6256
6257 case R_MIPS_HIGHEST:
df58fc94 6258 case R_MICROMIPS_HIGHEST:
b49e97c9
TS
6259 value = mips_elf_highest (addend + symbol);
6260 value &= howto->dst_mask;
6261 break;
6262
6263 case R_MIPS_SCN_DISP:
df58fc94 6264 case R_MICROMIPS_SCN_DISP:
b49e97c9
TS
6265 value = symbol + addend - sec->output_offset;
6266 value &= howto->dst_mask;
6267 break;
6268
b49e97c9 6269 case R_MIPS_JALR:
df58fc94 6270 case R_MICROMIPS_JALR:
1367d393
ILT
6271 /* This relocation is only a hint. In some cases, we optimize
6272 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
6273 when the symbol does not resolve locally. */
6274 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393
ILT
6275 return bfd_reloc_continue;
6276 value = symbol + addend;
6277 break;
b49e97c9 6278
1367d393 6279 case R_MIPS_PJUMP:
b49e97c9
TS
6280 case R_MIPS_GNU_VTINHERIT:
6281 case R_MIPS_GNU_VTENTRY:
6282 /* We don't do anything with these at present. */
6283 return bfd_reloc_continue;
6284
6285 default:
6286 /* An unrecognized relocation type. */
6287 return bfd_reloc_notsupported;
6288 }
6289
6290 /* Store the VALUE for our caller. */
6291 *valuep = value;
6292 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6293}
6294
6295/* Obtain the field relocated by RELOCATION. */
6296
6297static bfd_vma
9719ad41
RS
6298mips_elf_obtain_contents (reloc_howto_type *howto,
6299 const Elf_Internal_Rela *relocation,
6300 bfd *input_bfd, bfd_byte *contents)
b49e97c9 6301{
6346d5ca 6302 bfd_vma x = 0;
b49e97c9 6303 bfd_byte *location = contents + relocation->r_offset;
6346d5ca 6304 unsigned int size = bfd_get_reloc_size (howto);
b49e97c9
TS
6305
6306 /* Obtain the bytes. */
6346d5ca
AM
6307 if (size != 0)
6308 x = bfd_get (8 * size, input_bfd, location);
b49e97c9 6309
b49e97c9
TS
6310 return x;
6311}
6312
6313/* It has been determined that the result of the RELOCATION is the
6314 VALUE. Use HOWTO to place VALUE into the output file at the
6315 appropriate position. The SECTION is the section to which the
68ffbac6 6316 relocation applies.
38a7df63 6317 CROSS_MODE_JUMP_P is true if the relocation field
df58fc94 6318 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9 6319
b34976b6 6320 Returns FALSE if anything goes wrong. */
b49e97c9 6321
b34976b6 6322static bfd_boolean
9719ad41
RS
6323mips_elf_perform_relocation (struct bfd_link_info *info,
6324 reloc_howto_type *howto,
6325 const Elf_Internal_Rela *relocation,
6326 bfd_vma value, bfd *input_bfd,
6327 asection *input_section, bfd_byte *contents,
38a7df63 6328 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
6329{
6330 bfd_vma x;
6331 bfd_byte *location;
6332 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6346d5ca 6333 unsigned int size;
b49e97c9
TS
6334
6335 /* Figure out where the relocation is occurring. */
6336 location = contents + relocation->r_offset;
6337
df58fc94 6338 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
d6f16593 6339
b49e97c9
TS
6340 /* Obtain the current value. */
6341 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6342
6343 /* Clear the field we are setting. */
6344 x &= ~howto->dst_mask;
6345
b49e97c9
TS
6346 /* Set the field. */
6347 x |= (value & howto->dst_mask);
6348
a6ebf616 6349 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
9d862524
MR
6350 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6351 {
6352 bfd_vma opcode = x >> 26;
6353
6354 if (r_type == R_MIPS16_26 ? opcode == 0x7
6355 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6356 : opcode == 0x1d)
6357 {
6358 info->callbacks->einfo
6359 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6360 input_bfd, input_section, relocation->r_offset);
6361 return TRUE;
6362 }
6363 }
38a7df63 6364 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 6365 {
b34976b6 6366 bfd_boolean ok;
b49e97c9
TS
6367 bfd_vma opcode = x >> 26;
6368 bfd_vma jalx_opcode;
6369
6370 /* Check to see if the opcode is already JAL or JALX. */
6371 if (r_type == R_MIPS16_26)
6372 {
6373 ok = ((opcode == 0x6) || (opcode == 0x7));
6374 jalx_opcode = 0x7;
6375 }
df58fc94
RS
6376 else if (r_type == R_MICROMIPS_26_S1)
6377 {
6378 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6379 jalx_opcode = 0x3c;
6380 }
b49e97c9
TS
6381 else
6382 {
6383 ok = ((opcode == 0x3) || (opcode == 0x1d));
6384 jalx_opcode = 0x1d;
6385 }
6386
3bdf9505
MR
6387 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6388 convert J or JALS to JALX. */
b49e97c9
TS
6389 if (!ok)
6390 {
5f68df25
MR
6391 info->callbacks->einfo
6392 (_("%X%H: Unsupported jump between ISA modes; "
6393 "consider recompiling with interlinking enabled\n"),
6394 input_bfd, input_section, relocation->r_offset);
6395 return TRUE;
b49e97c9
TS
6396 }
6397
6398 /* Make this the JALX opcode. */
6399 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6400 }
9d862524
MR
6401 else if (cross_mode_jump_p && b_reloc_p (r_type))
6402 {
a6ebf616
MR
6403 bfd_boolean ok = FALSE;
6404 bfd_vma opcode = x >> 16;
6405 bfd_vma jalx_opcode = 0;
6406 bfd_vma addr;
6407 bfd_vma dest;
6408
6409 if (r_type == R_MICROMIPS_PC16_S1)
6410 {
6411 ok = opcode == 0x4060;
6412 jalx_opcode = 0x3c;
6413 value <<= 1;
6414 }
6415 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6416 {
6417 ok = opcode == 0x411;
6418 jalx_opcode = 0x1d;
6419 value <<= 2;
6420 }
6421
8b10b0b3 6422 if (ok && !bfd_link_pic (info))
a6ebf616 6423 {
8b10b0b3
MR
6424 addr = (input_section->output_section->vma
6425 + input_section->output_offset
6426 + relocation->r_offset
6427 + 4);
6428 dest = addr + (((value & 0x3ffff) ^ 0x20000) - 0x20000);
a6ebf616 6429
8b10b0b3
MR
6430 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6431 {
6432 info->callbacks->einfo
6433 (_("%X%H: Cannot convert branch between ISA modes "
6434 "to JALX: relocation out of range\n"),
6435 input_bfd, input_section, relocation->r_offset);
6436 return TRUE;
6437 }
a6ebf616 6438
8b10b0b3
MR
6439 /* Make this the JALX opcode. */
6440 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6441 }
6442 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
a6ebf616
MR
6443 {
6444 info->callbacks->einfo
8b10b0b3 6445 (_("%X%H: Unsupported branch between ISA modes\n"),
a6ebf616
MR
6446 input_bfd, input_section, relocation->r_offset);
6447 return TRUE;
6448 }
9d862524 6449 }
b49e97c9 6450
38a7df63
CF
6451 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6452 range. */
0e1862bb 6453 if (!bfd_link_relocatable (info)
38a7df63 6454 && !cross_mode_jump_p
cd8d5a82
CF
6455 && ((JAL_TO_BAL_P (input_bfd)
6456 && r_type == R_MIPS_26
6457 && (x >> 26) == 0x3) /* jal addr */
6458 || (JALR_TO_BAL_P (input_bfd)
6459 && r_type == R_MIPS_JALR
38a7df63
CF
6460 && x == 0x0320f809) /* jalr t9 */
6461 || (JR_TO_B_P (input_bfd)
6462 && r_type == R_MIPS_JALR
6463 && x == 0x03200008))) /* jr t9 */
1367d393
ILT
6464 {
6465 bfd_vma addr;
6466 bfd_vma dest;
6467 bfd_signed_vma off;
6468
6469 addr = (input_section->output_section->vma
6470 + input_section->output_offset
6471 + relocation->r_offset
6472 + 4);
6473 if (r_type == R_MIPS_26)
6474 dest = (value << 2) | ((addr >> 28) << 28);
6475 else
6476 dest = value;
6477 off = dest - addr;
6478 if (off <= 0x1ffff && off >= -0x20000)
38a7df63
CF
6479 {
6480 if (x == 0x03200008) /* jr t9 */
6481 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6482 else
6483 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6484 }
1367d393
ILT
6485 }
6486
b49e97c9 6487 /* Put the value into the output. */
6346d5ca
AM
6488 size = bfd_get_reloc_size (howto);
6489 if (size != 0)
6490 bfd_put (8 * size, input_bfd, x, location);
d6f16593 6491
0e1862bb 6492 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
df58fc94 6493 location);
d6f16593 6494
b34976b6 6495 return TRUE;
b49e97c9 6496}
b49e97c9 6497\f
b49e97c9
TS
6498/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6499 is the original relocation, which is now being transformed into a
6500 dynamic relocation. The ADDENDP is adjusted if necessary; the
6501 caller should store the result in place of the original addend. */
6502
b34976b6 6503static bfd_boolean
9719ad41
RS
6504mips_elf_create_dynamic_relocation (bfd *output_bfd,
6505 struct bfd_link_info *info,
6506 const Elf_Internal_Rela *rel,
6507 struct mips_elf_link_hash_entry *h,
6508 asection *sec, bfd_vma symbol,
6509 bfd_vma *addendp, asection *input_section)
b49e97c9 6510{
947216bf 6511 Elf_Internal_Rela outrel[3];
b49e97c9
TS
6512 asection *sreloc;
6513 bfd *dynobj;
6514 int r_type;
5d41f0b6
RS
6515 long indx;
6516 bfd_boolean defined_p;
0a44bf69 6517 struct mips_elf_link_hash_table *htab;
b49e97c9 6518
0a44bf69 6519 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
6520 BFD_ASSERT (htab != NULL);
6521
b49e97c9
TS
6522 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6523 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 6524 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
6525 BFD_ASSERT (sreloc != NULL);
6526 BFD_ASSERT (sreloc->contents != NULL);
6527 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 6528 < sreloc->size);
b49e97c9 6529
b49e97c9
TS
6530 outrel[0].r_offset =
6531 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
6532 if (ABI_64_P (output_bfd))
6533 {
6534 outrel[1].r_offset =
6535 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6536 outrel[2].r_offset =
6537 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6538 }
b49e97c9 6539
c5ae1840 6540 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 6541 /* The relocation field has been deleted. */
5d41f0b6
RS
6542 return TRUE;
6543
6544 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
6545 {
6546 /* The relocation field has been converted into a relative value of
6547 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6548 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 6549 *addendp += symbol;
5d41f0b6 6550 return TRUE;
0d591ff7 6551 }
b49e97c9 6552
5d41f0b6
RS
6553 /* We must now calculate the dynamic symbol table index to use
6554 in the relocation. */
d4a77f3f 6555 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6 6556 {
020d7251 6557 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5d41f0b6
RS
6558 indx = h->root.dynindx;
6559 if (SGI_COMPAT (output_bfd))
6560 defined_p = h->root.def_regular;
6561 else
6562 /* ??? glibc's ld.so just adds the final GOT entry to the
6563 relocation field. It therefore treats relocs against
6564 defined symbols in the same way as relocs against
6565 undefined symbols. */
6566 defined_p = FALSE;
6567 }
b49e97c9
TS
6568 else
6569 {
5d41f0b6
RS
6570 if (sec != NULL && bfd_is_abs_section (sec))
6571 indx = 0;
6572 else if (sec == NULL || sec->owner == NULL)
fdd07405 6573 {
5d41f0b6
RS
6574 bfd_set_error (bfd_error_bad_value);
6575 return FALSE;
b49e97c9
TS
6576 }
6577 else
6578 {
5d41f0b6 6579 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
6580 if (indx == 0)
6581 {
6582 asection *osec = htab->root.text_index_section;
6583 indx = elf_section_data (osec)->dynindx;
6584 }
5d41f0b6
RS
6585 if (indx == 0)
6586 abort ();
b49e97c9
TS
6587 }
6588
5d41f0b6
RS
6589 /* Instead of generating a relocation using the section
6590 symbol, we may as well make it a fully relative
6591 relocation. We want to avoid generating relocations to
6592 local symbols because we used to generate them
6593 incorrectly, without adding the original symbol value,
6594 which is mandated by the ABI for section symbols. In
6595 order to give dynamic loaders and applications time to
6596 phase out the incorrect use, we refrain from emitting
6597 section-relative relocations. It's not like they're
6598 useful, after all. This should be a bit more efficient
6599 as well. */
6600 /* ??? Although this behavior is compatible with glibc's ld.so,
6601 the ABI says that relocations against STN_UNDEF should have
6602 a symbol value of 0. Irix rld honors this, so relocations
6603 against STN_UNDEF have no effect. */
6604 if (!SGI_COMPAT (output_bfd))
6605 indx = 0;
6606 defined_p = TRUE;
b49e97c9
TS
6607 }
6608
5d41f0b6
RS
6609 /* If the relocation was previously an absolute relocation and
6610 this symbol will not be referred to by the relocation, we must
6611 adjust it by the value we give it in the dynamic symbol table.
6612 Otherwise leave the job up to the dynamic linker. */
6613 if (defined_p && r_type != R_MIPS_REL32)
6614 *addendp += symbol;
6615
0a44bf69
RS
6616 if (htab->is_vxworks)
6617 /* VxWorks uses non-relative relocations for this. */
6618 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6619 else
6620 /* The relocation is always an REL32 relocation because we don't
6621 know where the shared library will wind up at load-time. */
6622 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6623 R_MIPS_REL32);
6624
5d41f0b6
RS
6625 /* For strict adherence to the ABI specification, we should
6626 generate a R_MIPS_64 relocation record by itself before the
6627 _REL32/_64 record as well, such that the addend is read in as
6628 a 64-bit value (REL32 is a 32-bit relocation, after all).
6629 However, since none of the existing ELF64 MIPS dynamic
6630 loaders seems to care, we don't waste space with these
6631 artificial relocations. If this turns out to not be true,
6632 mips_elf_allocate_dynamic_relocation() should be tweaked so
6633 as to make room for a pair of dynamic relocations per
6634 invocation if ABI_64_P, and here we should generate an
6635 additional relocation record with R_MIPS_64 by itself for a
6636 NULL symbol before this relocation record. */
6637 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6638 ABI_64_P (output_bfd)
6639 ? R_MIPS_64
6640 : R_MIPS_NONE);
6641 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6642
6643 /* Adjust the output offset of the relocation to reference the
6644 correct location in the output file. */
6645 outrel[0].r_offset += (input_section->output_section->vma
6646 + input_section->output_offset);
6647 outrel[1].r_offset += (input_section->output_section->vma
6648 + input_section->output_offset);
6649 outrel[2].r_offset += (input_section->output_section->vma
6650 + input_section->output_offset);
6651
b49e97c9
TS
6652 /* Put the relocation back out. We have to use the special
6653 relocation outputter in the 64-bit case since the 64-bit
6654 relocation format is non-standard. */
6655 if (ABI_64_P (output_bfd))
6656 {
6657 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6658 (output_bfd, &outrel[0],
6659 (sreloc->contents
6660 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6661 }
0a44bf69
RS
6662 else if (htab->is_vxworks)
6663 {
6664 /* VxWorks uses RELA rather than REL dynamic relocations. */
6665 outrel[0].r_addend = *addendp;
6666 bfd_elf32_swap_reloca_out
6667 (output_bfd, &outrel[0],
6668 (sreloc->contents
6669 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6670 }
b49e97c9 6671 else
947216bf
AM
6672 bfd_elf32_swap_reloc_out
6673 (output_bfd, &outrel[0],
6674 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 6675
b49e97c9
TS
6676 /* We've now added another relocation. */
6677 ++sreloc->reloc_count;
6678
6679 /* Make sure the output section is writable. The dynamic linker
6680 will be writing to it. */
6681 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6682 |= SHF_WRITE;
6683
6684 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 6685 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9 6686 {
3d4d4302 6687 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
6688 bfd_byte *cr;
6689
6690 if (scpt)
6691 {
6692 Elf32_crinfo cptrel;
6693
6694 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6695 cptrel.vaddr = (rel->r_offset
6696 + input_section->output_section->vma
6697 + input_section->output_offset);
6698 if (r_type == R_MIPS_REL32)
6699 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6700 else
6701 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6702 mips_elf_set_cr_dist2to (cptrel, 0);
6703 cptrel.konst = *addendp;
6704
6705 cr = (scpt->contents
6706 + sizeof (Elf32_External_compact_rel));
abc0f8d0 6707 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
6708 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6709 ((Elf32_External_crinfo *) cr
6710 + scpt->reloc_count));
6711 ++scpt->reloc_count;
6712 }
6713 }
6714
943284cc
DJ
6715 /* If we've written this relocation for a readonly section,
6716 we need to set DF_TEXTREL again, so that we do not delete the
6717 DT_TEXTREL tag. */
6718 if (MIPS_ELF_READONLY_SECTION (input_section))
6719 info->flags |= DF_TEXTREL;
6720
b34976b6 6721 return TRUE;
b49e97c9
TS
6722}
6723\f
b49e97c9
TS
6724/* Return the MACH for a MIPS e_flags value. */
6725
6726unsigned long
9719ad41 6727_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
6728{
6729 switch (flags & EF_MIPS_MACH)
6730 {
6731 case E_MIPS_MACH_3900:
6732 return bfd_mach_mips3900;
6733
6734 case E_MIPS_MACH_4010:
6735 return bfd_mach_mips4010;
6736
6737 case E_MIPS_MACH_4100:
6738 return bfd_mach_mips4100;
6739
6740 case E_MIPS_MACH_4111:
6741 return bfd_mach_mips4111;
6742
00707a0e
RS
6743 case E_MIPS_MACH_4120:
6744 return bfd_mach_mips4120;
6745
b49e97c9
TS
6746 case E_MIPS_MACH_4650:
6747 return bfd_mach_mips4650;
6748
00707a0e
RS
6749 case E_MIPS_MACH_5400:
6750 return bfd_mach_mips5400;
6751
6752 case E_MIPS_MACH_5500:
6753 return bfd_mach_mips5500;
6754
e407c74b
NC
6755 case E_MIPS_MACH_5900:
6756 return bfd_mach_mips5900;
6757
0d2e43ed
ILT
6758 case E_MIPS_MACH_9000:
6759 return bfd_mach_mips9000;
6760
b49e97c9
TS
6761 case E_MIPS_MACH_SB1:
6762 return bfd_mach_mips_sb1;
6763
350cc38d
MS
6764 case E_MIPS_MACH_LS2E:
6765 return bfd_mach_mips_loongson_2e;
6766
6767 case E_MIPS_MACH_LS2F:
6768 return bfd_mach_mips_loongson_2f;
6769
fd503541
NC
6770 case E_MIPS_MACH_LS3A:
6771 return bfd_mach_mips_loongson_3a;
6772
2c629856
N
6773 case E_MIPS_MACH_OCTEON3:
6774 return bfd_mach_mips_octeon3;
6775
432233b3
AP
6776 case E_MIPS_MACH_OCTEON2:
6777 return bfd_mach_mips_octeon2;
6778
6f179bd0
AN
6779 case E_MIPS_MACH_OCTEON:
6780 return bfd_mach_mips_octeon;
6781
52b6b6b9
JM
6782 case E_MIPS_MACH_XLR:
6783 return bfd_mach_mips_xlr;
6784
b49e97c9
TS
6785 default:
6786 switch (flags & EF_MIPS_ARCH)
6787 {
6788 default:
6789 case E_MIPS_ARCH_1:
6790 return bfd_mach_mips3000;
b49e97c9
TS
6791
6792 case E_MIPS_ARCH_2:
6793 return bfd_mach_mips6000;
b49e97c9
TS
6794
6795 case E_MIPS_ARCH_3:
6796 return bfd_mach_mips4000;
b49e97c9
TS
6797
6798 case E_MIPS_ARCH_4:
6799 return bfd_mach_mips8000;
b49e97c9
TS
6800
6801 case E_MIPS_ARCH_5:
6802 return bfd_mach_mips5;
b49e97c9
TS
6803
6804 case E_MIPS_ARCH_32:
6805 return bfd_mach_mipsisa32;
b49e97c9
TS
6806
6807 case E_MIPS_ARCH_64:
6808 return bfd_mach_mipsisa64;
af7ee8bf
CD
6809
6810 case E_MIPS_ARCH_32R2:
6811 return bfd_mach_mipsisa32r2;
5f74bc13
CD
6812
6813 case E_MIPS_ARCH_64R2:
6814 return bfd_mach_mipsisa64r2;
7361da2c
AB
6815
6816 case E_MIPS_ARCH_32R6:
6817 return bfd_mach_mipsisa32r6;
6818
6819 case E_MIPS_ARCH_64R6:
6820 return bfd_mach_mipsisa64r6;
b49e97c9
TS
6821 }
6822 }
6823
6824 return 0;
6825}
6826
6827/* Return printable name for ABI. */
6828
6829static INLINE char *
9719ad41 6830elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
6831{
6832 flagword flags;
6833
6834 flags = elf_elfheader (abfd)->e_flags;
6835 switch (flags & EF_MIPS_ABI)
6836 {
6837 case 0:
6838 if (ABI_N32_P (abfd))
6839 return "N32";
6840 else if (ABI_64_P (abfd))
6841 return "64";
6842 else
6843 return "none";
6844 case E_MIPS_ABI_O32:
6845 return "O32";
6846 case E_MIPS_ABI_O64:
6847 return "O64";
6848 case E_MIPS_ABI_EABI32:
6849 return "EABI32";
6850 case E_MIPS_ABI_EABI64:
6851 return "EABI64";
6852 default:
6853 return "unknown abi";
6854 }
6855}
6856\f
6857/* MIPS ELF uses two common sections. One is the usual one, and the
6858 other is for small objects. All the small objects are kept
6859 together, and then referenced via the gp pointer, which yields
6860 faster assembler code. This is what we use for the small common
6861 section. This approach is copied from ecoff.c. */
6862static asection mips_elf_scom_section;
6863static asymbol mips_elf_scom_symbol;
6864static asymbol *mips_elf_scom_symbol_ptr;
6865
6866/* MIPS ELF also uses an acommon section, which represents an
6867 allocated common symbol which may be overridden by a
6868 definition in a shared library. */
6869static asection mips_elf_acom_section;
6870static asymbol mips_elf_acom_symbol;
6871static asymbol *mips_elf_acom_symbol_ptr;
6872
738e5348 6873/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
6874
6875void
9719ad41 6876_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
6877{
6878 elf_symbol_type *elfsym;
6879
738e5348 6880 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
6881 elfsym = (elf_symbol_type *) asym;
6882 switch (elfsym->internal_elf_sym.st_shndx)
6883 {
6884 case SHN_MIPS_ACOMMON:
6885 /* This section is used in a dynamically linked executable file.
6886 It is an allocated common section. The dynamic linker can
6887 either resolve these symbols to something in a shared
6888 library, or it can just leave them here. For our purposes,
6889 we can consider these symbols to be in a new section. */
6890 if (mips_elf_acom_section.name == NULL)
6891 {
6892 /* Initialize the acommon section. */
6893 mips_elf_acom_section.name = ".acommon";
6894 mips_elf_acom_section.flags = SEC_ALLOC;
6895 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6896 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6897 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6898 mips_elf_acom_symbol.name = ".acommon";
6899 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6900 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6901 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6902 }
6903 asym->section = &mips_elf_acom_section;
6904 break;
6905
6906 case SHN_COMMON:
6907 /* Common symbols less than the GP size are automatically
6908 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6909 if (asym->value > elf_gp_size (abfd)
b59eed79 6910 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
6911 || IRIX_COMPAT (abfd) == ict_irix6)
6912 break;
6913 /* Fall through. */
6914 case SHN_MIPS_SCOMMON:
6915 if (mips_elf_scom_section.name == NULL)
6916 {
6917 /* Initialize the small common section. */
6918 mips_elf_scom_section.name = ".scommon";
6919 mips_elf_scom_section.flags = SEC_IS_COMMON;
6920 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6921 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6922 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6923 mips_elf_scom_symbol.name = ".scommon";
6924 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6925 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6926 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6927 }
6928 asym->section = &mips_elf_scom_section;
6929 asym->value = elfsym->internal_elf_sym.st_size;
6930 break;
6931
6932 case SHN_MIPS_SUNDEFINED:
6933 asym->section = bfd_und_section_ptr;
6934 break;
6935
b49e97c9 6936 case SHN_MIPS_TEXT:
00b4930b
TS
6937 {
6938 asection *section = bfd_get_section_by_name (abfd, ".text");
6939
00b4930b
TS
6940 if (section != NULL)
6941 {
6942 asym->section = section;
6943 /* MIPS_TEXT is a bit special, the address is not an offset
6944 to the base of the .text section. So substract the section
6945 base address to make it an offset. */
6946 asym->value -= section->vma;
6947 }
6948 }
b49e97c9
TS
6949 break;
6950
6951 case SHN_MIPS_DATA:
00b4930b
TS
6952 {
6953 asection *section = bfd_get_section_by_name (abfd, ".data");
6954
00b4930b
TS
6955 if (section != NULL)
6956 {
6957 asym->section = section;
6958 /* MIPS_DATA is a bit special, the address is not an offset
6959 to the base of the .data section. So substract the section
6960 base address to make it an offset. */
6961 asym->value -= section->vma;
6962 }
6963 }
b49e97c9 6964 break;
b49e97c9 6965 }
738e5348 6966
df58fc94
RS
6967 /* If this is an odd-valued function symbol, assume it's a MIPS16
6968 or microMIPS one. */
738e5348
RS
6969 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6970 && (asym->value & 1) != 0)
6971 {
6972 asym->value--;
e8faf7d1 6973 if (MICROMIPS_P (abfd))
df58fc94
RS
6974 elfsym->internal_elf_sym.st_other
6975 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6976 else
6977 elfsym->internal_elf_sym.st_other
6978 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
738e5348 6979 }
b49e97c9
TS
6980}
6981\f
8c946ed5
RS
6982/* Implement elf_backend_eh_frame_address_size. This differs from
6983 the default in the way it handles EABI64.
6984
6985 EABI64 was originally specified as an LP64 ABI, and that is what
6986 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6987 historically accepted the combination of -mabi=eabi and -mlong32,
6988 and this ILP32 variation has become semi-official over time.
6989 Both forms use elf32 and have pointer-sized FDE addresses.
6990
6991 If an EABI object was generated by GCC 4.0 or above, it will have
6992 an empty .gcc_compiled_longXX section, where XX is the size of longs
6993 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6994 have no special marking to distinguish them from LP64 objects.
6995
6996 We don't want users of the official LP64 ABI to be punished for the
6997 existence of the ILP32 variant, but at the same time, we don't want
6998 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6999 We therefore take the following approach:
7000
7001 - If ABFD contains a .gcc_compiled_longXX section, use it to
7002 determine the pointer size.
7003
7004 - Otherwise check the type of the first relocation. Assume that
7005 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7006
7007 - Otherwise punt.
7008
7009 The second check is enough to detect LP64 objects generated by pre-4.0
7010 compilers because, in the kind of output generated by those compilers,
7011 the first relocation will be associated with either a CIE personality
7012 routine or an FDE start address. Furthermore, the compilers never
7013 used a special (non-pointer) encoding for this ABI.
7014
7015 Checking the relocation type should also be safe because there is no
7016 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7017 did so. */
7018
7019unsigned int
7020_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
7021{
7022 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7023 return 8;
7024 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7025 {
7026 bfd_boolean long32_p, long64_p;
7027
7028 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7029 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7030 if (long32_p && long64_p)
7031 return 0;
7032 if (long32_p)
7033 return 4;
7034 if (long64_p)
7035 return 8;
7036
7037 if (sec->reloc_count > 0
7038 && elf_section_data (sec)->relocs != NULL
7039 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7040 == R_MIPS_64))
7041 return 8;
7042
7043 return 0;
7044 }
7045 return 4;
7046}
7047\f
174fd7f9
RS
7048/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7049 relocations against two unnamed section symbols to resolve to the
7050 same address. For example, if we have code like:
7051
7052 lw $4,%got_disp(.data)($gp)
7053 lw $25,%got_disp(.text)($gp)
7054 jalr $25
7055
7056 then the linker will resolve both relocations to .data and the program
7057 will jump there rather than to .text.
7058
7059 We can work around this problem by giving names to local section symbols.
7060 This is also what the MIPSpro tools do. */
7061
7062bfd_boolean
7063_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7064{
7065 return SGI_COMPAT (abfd);
7066}
7067\f
b49e97c9
TS
7068/* Work over a section just before writing it out. This routine is
7069 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7070 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7071 a better way. */
7072
b34976b6 7073bfd_boolean
9719ad41 7074_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
7075{
7076 if (hdr->sh_type == SHT_MIPS_REGINFO
7077 && hdr->sh_size > 0)
7078 {
7079 bfd_byte buf[4];
7080
7081 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
7082 BFD_ASSERT (hdr->contents == NULL);
7083
7084 if (bfd_seek (abfd,
7085 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7086 SEEK_SET) != 0)
b34976b6 7087 return FALSE;
b49e97c9 7088 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7089 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7090 return FALSE;
b49e97c9
TS
7091 }
7092
7093 if (hdr->sh_type == SHT_MIPS_OPTIONS
7094 && hdr->bfd_section != NULL
f0abc2a1
AM
7095 && mips_elf_section_data (hdr->bfd_section) != NULL
7096 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
7097 {
7098 bfd_byte *contents, *l, *lend;
7099
f0abc2a1
AM
7100 /* We stored the section contents in the tdata field in the
7101 set_section_contents routine. We save the section contents
7102 so that we don't have to read them again.
b49e97c9
TS
7103 At this point we know that elf_gp is set, so we can look
7104 through the section contents to see if there is an
7105 ODK_REGINFO structure. */
7106
f0abc2a1 7107 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
7108 l = contents;
7109 lend = contents + hdr->sh_size;
7110 while (l + sizeof (Elf_External_Options) <= lend)
7111 {
7112 Elf_Internal_Options intopt;
7113
7114 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7115 &intopt);
1bc8074d
MR
7116 if (intopt.size < sizeof (Elf_External_Options))
7117 {
4eca0228 7118 _bfd_error_handler
695344c0 7119 /* xgettext:c-format */
1bc8074d
MR
7120 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7121 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7122 break;
7123 }
b49e97c9
TS
7124 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7125 {
7126 bfd_byte buf[8];
7127
7128 if (bfd_seek (abfd,
7129 (hdr->sh_offset
7130 + (l - contents)
7131 + sizeof (Elf_External_Options)
7132 + (sizeof (Elf64_External_RegInfo) - 8)),
7133 SEEK_SET) != 0)
b34976b6 7134 return FALSE;
b49e97c9 7135 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 7136 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 7137 return FALSE;
b49e97c9
TS
7138 }
7139 else if (intopt.kind == ODK_REGINFO)
7140 {
7141 bfd_byte buf[4];
7142
7143 if (bfd_seek (abfd,
7144 (hdr->sh_offset
7145 + (l - contents)
7146 + sizeof (Elf_External_Options)
7147 + (sizeof (Elf32_External_RegInfo) - 4)),
7148 SEEK_SET) != 0)
b34976b6 7149 return FALSE;
b49e97c9 7150 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7151 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7152 return FALSE;
b49e97c9
TS
7153 }
7154 l += intopt.size;
7155 }
7156 }
7157
7158 if (hdr->bfd_section != NULL)
7159 {
7160 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7161
2d0f9ad9
JM
7162 /* .sbss is not handled specially here because the GNU/Linux
7163 prelinker can convert .sbss from NOBITS to PROGBITS and
7164 changing it back to NOBITS breaks the binary. The entry in
7165 _bfd_mips_elf_special_sections will ensure the correct flags
7166 are set on .sbss if BFD creates it without reading it from an
7167 input file, and without special handling here the flags set
7168 on it in an input file will be followed. */
b49e97c9
TS
7169 if (strcmp (name, ".sdata") == 0
7170 || strcmp (name, ".lit8") == 0
7171 || strcmp (name, ".lit4") == 0)
fd6f9d17 7172 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
b49e97c9 7173 else if (strcmp (name, ".srdata") == 0)
fd6f9d17 7174 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
b49e97c9 7175 else if (strcmp (name, ".compact_rel") == 0)
fd6f9d17 7176 hdr->sh_flags = 0;
b49e97c9
TS
7177 else if (strcmp (name, ".rtproc") == 0)
7178 {
7179 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7180 {
7181 unsigned int adjust;
7182
7183 adjust = hdr->sh_size % hdr->sh_addralign;
7184 if (adjust != 0)
7185 hdr->sh_size += hdr->sh_addralign - adjust;
7186 }
7187 }
7188 }
7189
b34976b6 7190 return TRUE;
b49e97c9
TS
7191}
7192
7193/* Handle a MIPS specific section when reading an object file. This
7194 is called when elfcode.h finds a section with an unknown type.
7195 This routine supports both the 32-bit and 64-bit ELF ABI.
7196
7197 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7198 how to. */
7199
b34976b6 7200bfd_boolean
6dc132d9
L
7201_bfd_mips_elf_section_from_shdr (bfd *abfd,
7202 Elf_Internal_Shdr *hdr,
7203 const char *name,
7204 int shindex)
b49e97c9
TS
7205{
7206 flagword flags = 0;
7207
7208 /* There ought to be a place to keep ELF backend specific flags, but
7209 at the moment there isn't one. We just keep track of the
7210 sections by their name, instead. Fortunately, the ABI gives
7211 suggested names for all the MIPS specific sections, so we will
7212 probably get away with this. */
7213 switch (hdr->sh_type)
7214 {
7215 case SHT_MIPS_LIBLIST:
7216 if (strcmp (name, ".liblist") != 0)
b34976b6 7217 return FALSE;
b49e97c9
TS
7218 break;
7219 case SHT_MIPS_MSYM:
7220 if (strcmp (name, ".msym") != 0)
b34976b6 7221 return FALSE;
b49e97c9
TS
7222 break;
7223 case SHT_MIPS_CONFLICT:
7224 if (strcmp (name, ".conflict") != 0)
b34976b6 7225 return FALSE;
b49e97c9
TS
7226 break;
7227 case SHT_MIPS_GPTAB:
0112cd26 7228 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 7229 return FALSE;
b49e97c9
TS
7230 break;
7231 case SHT_MIPS_UCODE:
7232 if (strcmp (name, ".ucode") != 0)
b34976b6 7233 return FALSE;
b49e97c9
TS
7234 break;
7235 case SHT_MIPS_DEBUG:
7236 if (strcmp (name, ".mdebug") != 0)
b34976b6 7237 return FALSE;
b49e97c9
TS
7238 flags = SEC_DEBUGGING;
7239 break;
7240 case SHT_MIPS_REGINFO:
7241 if (strcmp (name, ".reginfo") != 0
7242 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 7243 return FALSE;
b49e97c9
TS
7244 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7245 break;
7246 case SHT_MIPS_IFACE:
7247 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 7248 return FALSE;
b49e97c9
TS
7249 break;
7250 case SHT_MIPS_CONTENT:
0112cd26 7251 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 7252 return FALSE;
b49e97c9
TS
7253 break;
7254 case SHT_MIPS_OPTIONS:
cc2e31b9 7255 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 7256 return FALSE;
b49e97c9 7257 break;
351cdf24
MF
7258 case SHT_MIPS_ABIFLAGS:
7259 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7260 return FALSE;
7261 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7262 break;
b49e97c9 7263 case SHT_MIPS_DWARF:
1b315056 7264 if (! CONST_STRNEQ (name, ".debug_")
355d10dc 7265 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 7266 return FALSE;
b49e97c9
TS
7267 break;
7268 case SHT_MIPS_SYMBOL_LIB:
7269 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 7270 return FALSE;
b49e97c9
TS
7271 break;
7272 case SHT_MIPS_EVENTS:
0112cd26
NC
7273 if (! CONST_STRNEQ (name, ".MIPS.events")
7274 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 7275 return FALSE;
b49e97c9
TS
7276 break;
7277 default:
cc2e31b9 7278 break;
b49e97c9
TS
7279 }
7280
6dc132d9 7281 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 7282 return FALSE;
b49e97c9
TS
7283
7284 if (flags)
7285 {
7286 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7287 (bfd_get_section_flags (abfd,
7288 hdr->bfd_section)
7289 | flags)))
b34976b6 7290 return FALSE;
b49e97c9
TS
7291 }
7292
351cdf24
MF
7293 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7294 {
7295 Elf_External_ABIFlags_v0 ext;
7296
7297 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7298 &ext, 0, sizeof ext))
7299 return FALSE;
7300 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7301 &mips_elf_tdata (abfd)->abiflags);
7302 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7303 return FALSE;
7304 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7305 }
7306
b49e97c9
TS
7307 /* FIXME: We should record sh_info for a .gptab section. */
7308
7309 /* For a .reginfo section, set the gp value in the tdata information
7310 from the contents of this section. We need the gp value while
7311 processing relocs, so we just get it now. The .reginfo section
7312 is not used in the 64-bit MIPS ELF ABI. */
7313 if (hdr->sh_type == SHT_MIPS_REGINFO)
7314 {
7315 Elf32_External_RegInfo ext;
7316 Elf32_RegInfo s;
7317
9719ad41
RS
7318 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7319 &ext, 0, sizeof ext))
b34976b6 7320 return FALSE;
b49e97c9
TS
7321 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7322 elf_gp (abfd) = s.ri_gp_value;
7323 }
7324
7325 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7326 set the gp value based on what we find. We may see both
7327 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7328 they should agree. */
7329 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7330 {
7331 bfd_byte *contents, *l, *lend;
7332
9719ad41 7333 contents = bfd_malloc (hdr->sh_size);
b49e97c9 7334 if (contents == NULL)
b34976b6 7335 return FALSE;
b49e97c9 7336 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 7337 0, hdr->sh_size))
b49e97c9
TS
7338 {
7339 free (contents);
b34976b6 7340 return FALSE;
b49e97c9
TS
7341 }
7342 l = contents;
7343 lend = contents + hdr->sh_size;
7344 while (l + sizeof (Elf_External_Options) <= lend)
7345 {
7346 Elf_Internal_Options intopt;
7347
7348 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7349 &intopt);
1bc8074d
MR
7350 if (intopt.size < sizeof (Elf_External_Options))
7351 {
4eca0228 7352 _bfd_error_handler
695344c0 7353 /* xgettext:c-format */
1bc8074d
MR
7354 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7355 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7356 break;
7357 }
b49e97c9
TS
7358 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7359 {
7360 Elf64_Internal_RegInfo intreg;
7361
7362 bfd_mips_elf64_swap_reginfo_in
7363 (abfd,
7364 ((Elf64_External_RegInfo *)
7365 (l + sizeof (Elf_External_Options))),
7366 &intreg);
7367 elf_gp (abfd) = intreg.ri_gp_value;
7368 }
7369 else if (intopt.kind == ODK_REGINFO)
7370 {
7371 Elf32_RegInfo intreg;
7372
7373 bfd_mips_elf32_swap_reginfo_in
7374 (abfd,
7375 ((Elf32_External_RegInfo *)
7376 (l + sizeof (Elf_External_Options))),
7377 &intreg);
7378 elf_gp (abfd) = intreg.ri_gp_value;
7379 }
7380 l += intopt.size;
7381 }
7382 free (contents);
7383 }
7384
b34976b6 7385 return TRUE;
b49e97c9
TS
7386}
7387
7388/* Set the correct type for a MIPS ELF section. We do this by the
7389 section name, which is a hack, but ought to work. This routine is
7390 used by both the 32-bit and the 64-bit ABI. */
7391
b34976b6 7392bfd_boolean
9719ad41 7393_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 7394{
0414f35b 7395 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
7396
7397 if (strcmp (name, ".liblist") == 0)
7398 {
7399 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 7400 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
7401 /* The sh_link field is set in final_write_processing. */
7402 }
7403 else if (strcmp (name, ".conflict") == 0)
7404 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 7405 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
7406 {
7407 hdr->sh_type = SHT_MIPS_GPTAB;
7408 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7409 /* The sh_info field is set in final_write_processing. */
7410 }
7411 else if (strcmp (name, ".ucode") == 0)
7412 hdr->sh_type = SHT_MIPS_UCODE;
7413 else if (strcmp (name, ".mdebug") == 0)
7414 {
7415 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 7416 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
7417 entsize of 0. FIXME: Does this matter? */
7418 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7419 hdr->sh_entsize = 0;
7420 else
7421 hdr->sh_entsize = 1;
7422 }
7423 else if (strcmp (name, ".reginfo") == 0)
7424 {
7425 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 7426 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
7427 entsize of 0x18. FIXME: Does this matter? */
7428 if (SGI_COMPAT (abfd))
7429 {
7430 if ((abfd->flags & DYNAMIC) != 0)
7431 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7432 else
7433 hdr->sh_entsize = 1;
7434 }
7435 else
7436 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7437 }
7438 else if (SGI_COMPAT (abfd)
7439 && (strcmp (name, ".hash") == 0
7440 || strcmp (name, ".dynamic") == 0
7441 || strcmp (name, ".dynstr") == 0))
7442 {
7443 if (SGI_COMPAT (abfd))
7444 hdr->sh_entsize = 0;
7445#if 0
8dc1a139 7446 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
7447 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7448#endif
7449 }
7450 else if (strcmp (name, ".got") == 0
7451 || strcmp (name, ".srdata") == 0
7452 || strcmp (name, ".sdata") == 0
7453 || strcmp (name, ".sbss") == 0
7454 || strcmp (name, ".lit4") == 0
7455 || strcmp (name, ".lit8") == 0)
7456 hdr->sh_flags |= SHF_MIPS_GPREL;
7457 else if (strcmp (name, ".MIPS.interfaces") == 0)
7458 {
7459 hdr->sh_type = SHT_MIPS_IFACE;
7460 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7461 }
0112cd26 7462 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
7463 {
7464 hdr->sh_type = SHT_MIPS_CONTENT;
7465 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7466 /* The sh_info field is set in final_write_processing. */
7467 }
cc2e31b9 7468 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
7469 {
7470 hdr->sh_type = SHT_MIPS_OPTIONS;
7471 hdr->sh_entsize = 1;
7472 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7473 }
351cdf24
MF
7474 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7475 {
7476 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7477 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7478 }
1b315056
CS
7479 else if (CONST_STRNEQ (name, ".debug_")
7480 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
7481 {
7482 hdr->sh_type = SHT_MIPS_DWARF;
7483
7484 /* Irix facilities such as libexc expect a single .debug_frame
7485 per executable, the system ones have NOSTRIP set and the linker
7486 doesn't merge sections with different flags so ... */
7487 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7488 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7489 }
b49e97c9
TS
7490 else if (strcmp (name, ".MIPS.symlib") == 0)
7491 {
7492 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7493 /* The sh_link and sh_info fields are set in
7494 final_write_processing. */
7495 }
0112cd26
NC
7496 else if (CONST_STRNEQ (name, ".MIPS.events")
7497 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
7498 {
7499 hdr->sh_type = SHT_MIPS_EVENTS;
7500 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7501 /* The sh_link field is set in final_write_processing. */
7502 }
7503 else if (strcmp (name, ".msym") == 0)
7504 {
7505 hdr->sh_type = SHT_MIPS_MSYM;
7506 hdr->sh_flags |= SHF_ALLOC;
7507 hdr->sh_entsize = 8;
7508 }
7509
7a79a000
TS
7510 /* The generic elf_fake_sections will set up REL_HDR using the default
7511 kind of relocations. We used to set up a second header for the
7512 non-default kind of relocations here, but only NewABI would use
7513 these, and the IRIX ld doesn't like resulting empty RELA sections.
7514 Thus we create those header only on demand now. */
b49e97c9 7515
b34976b6 7516 return TRUE;
b49e97c9
TS
7517}
7518
7519/* Given a BFD section, try to locate the corresponding ELF section
7520 index. This is used by both the 32-bit and the 64-bit ABI.
7521 Actually, it's not clear to me that the 64-bit ABI supports these,
7522 but for non-PIC objects we will certainly want support for at least
7523 the .scommon section. */
7524
b34976b6 7525bfd_boolean
9719ad41
RS
7526_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7527 asection *sec, int *retval)
b49e97c9
TS
7528{
7529 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7530 {
7531 *retval = SHN_MIPS_SCOMMON;
b34976b6 7532 return TRUE;
b49e97c9
TS
7533 }
7534 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7535 {
7536 *retval = SHN_MIPS_ACOMMON;
b34976b6 7537 return TRUE;
b49e97c9 7538 }
b34976b6 7539 return FALSE;
b49e97c9
TS
7540}
7541\f
7542/* Hook called by the linker routine which adds symbols from an object
7543 file. We must handle the special MIPS section numbers here. */
7544
b34976b6 7545bfd_boolean
9719ad41 7546_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 7547 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
7548 flagword *flagsp ATTRIBUTE_UNUSED,
7549 asection **secp, bfd_vma *valp)
b49e97c9
TS
7550{
7551 if (SGI_COMPAT (abfd)
7552 && (abfd->flags & DYNAMIC) != 0
7553 && strcmp (*namep, "_rld_new_interface") == 0)
7554 {
8dc1a139 7555 /* Skip IRIX5 rld entry name. */
b49e97c9 7556 *namep = NULL;
b34976b6 7557 return TRUE;
b49e97c9
TS
7558 }
7559
eedecc07
DD
7560 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7561 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7562 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7563 a magic symbol resolved by the linker, we ignore this bogus definition
7564 of _gp_disp. New ABI objects do not suffer from this problem so this
7565 is not done for them. */
7566 if (!NEWABI_P(abfd)
7567 && (sym->st_shndx == SHN_ABS)
7568 && (strcmp (*namep, "_gp_disp") == 0))
7569 {
7570 *namep = NULL;
7571 return TRUE;
7572 }
7573
b49e97c9
TS
7574 switch (sym->st_shndx)
7575 {
7576 case SHN_COMMON:
7577 /* Common symbols less than the GP size are automatically
7578 treated as SHN_MIPS_SCOMMON symbols. */
7579 if (sym->st_size > elf_gp_size (abfd)
b59eed79 7580 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
7581 || IRIX_COMPAT (abfd) == ict_irix6)
7582 break;
7583 /* Fall through. */
7584 case SHN_MIPS_SCOMMON:
7585 *secp = bfd_make_section_old_way (abfd, ".scommon");
7586 (*secp)->flags |= SEC_IS_COMMON;
7587 *valp = sym->st_size;
7588 break;
7589
7590 case SHN_MIPS_TEXT:
7591 /* This section is used in a shared object. */
698600e4 7592 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
b49e97c9
TS
7593 {
7594 asymbol *elf_text_symbol;
7595 asection *elf_text_section;
7596 bfd_size_type amt = sizeof (asection);
7597
7598 elf_text_section = bfd_zalloc (abfd, amt);
7599 if (elf_text_section == NULL)
b34976b6 7600 return FALSE;
b49e97c9
TS
7601
7602 amt = sizeof (asymbol);
7603 elf_text_symbol = bfd_zalloc (abfd, amt);
7604 if (elf_text_symbol == NULL)
b34976b6 7605 return FALSE;
b49e97c9
TS
7606
7607 /* Initialize the section. */
7608
698600e4
AM
7609 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7610 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
b49e97c9
TS
7611
7612 elf_text_section->symbol = elf_text_symbol;
698600e4 7613 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
b49e97c9
TS
7614
7615 elf_text_section->name = ".text";
7616 elf_text_section->flags = SEC_NO_FLAGS;
7617 elf_text_section->output_section = NULL;
7618 elf_text_section->owner = abfd;
7619 elf_text_symbol->name = ".text";
7620 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7621 elf_text_symbol->section = elf_text_section;
7622 }
7623 /* This code used to do *secp = bfd_und_section_ptr if
0e1862bb 7624 bfd_link_pic (info). I don't know why, and that doesn't make sense,
b49e97c9 7625 so I took it out. */
698600e4 7626 *secp = mips_elf_tdata (abfd)->elf_text_section;
b49e97c9
TS
7627 break;
7628
7629 case SHN_MIPS_ACOMMON:
7630 /* Fall through. XXX Can we treat this as allocated data? */
7631 case SHN_MIPS_DATA:
7632 /* This section is used in a shared object. */
698600e4 7633 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
b49e97c9
TS
7634 {
7635 asymbol *elf_data_symbol;
7636 asection *elf_data_section;
7637 bfd_size_type amt = sizeof (asection);
7638
7639 elf_data_section = bfd_zalloc (abfd, amt);
7640 if (elf_data_section == NULL)
b34976b6 7641 return FALSE;
b49e97c9
TS
7642
7643 amt = sizeof (asymbol);
7644 elf_data_symbol = bfd_zalloc (abfd, amt);
7645 if (elf_data_symbol == NULL)
b34976b6 7646 return FALSE;
b49e97c9
TS
7647
7648 /* Initialize the section. */
7649
698600e4
AM
7650 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7651 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
b49e97c9
TS
7652
7653 elf_data_section->symbol = elf_data_symbol;
698600e4 7654 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
b49e97c9
TS
7655
7656 elf_data_section->name = ".data";
7657 elf_data_section->flags = SEC_NO_FLAGS;
7658 elf_data_section->output_section = NULL;
7659 elf_data_section->owner = abfd;
7660 elf_data_symbol->name = ".data";
7661 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7662 elf_data_symbol->section = elf_data_section;
7663 }
7664 /* This code used to do *secp = bfd_und_section_ptr if
0e1862bb 7665 bfd_link_pic (info). I don't know why, and that doesn't make sense,
b49e97c9 7666 so I took it out. */
698600e4 7667 *secp = mips_elf_tdata (abfd)->elf_data_section;
b49e97c9
TS
7668 break;
7669
7670 case SHN_MIPS_SUNDEFINED:
7671 *secp = bfd_und_section_ptr;
7672 break;
7673 }
7674
7675 if (SGI_COMPAT (abfd)
0e1862bb 7676 && ! bfd_link_pic (info)
f13a99db 7677 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
7678 && strcmp (*namep, "__rld_obj_head") == 0)
7679 {
7680 struct elf_link_hash_entry *h;
14a793b2 7681 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7682
7683 /* Mark __rld_obj_head as dynamic. */
14a793b2 7684 bh = NULL;
b49e97c9 7685 if (! (_bfd_generic_link_add_one_symbol
9719ad41 7686 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 7687 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7688 return FALSE;
14a793b2
AM
7689
7690 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7691 h->non_elf = 0;
7692 h->def_regular = 1;
b49e97c9
TS
7693 h->type = STT_OBJECT;
7694
c152c796 7695 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7696 return FALSE;
b49e97c9 7697
b34976b6 7698 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b4082c70 7699 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7700 }
7701
7702 /* If this is a mips16 text symbol, add 1 to the value to make it
7703 odd. This will cause something like .word SYM to come up with
7704 the right value when it is loaded into the PC. */
df58fc94 7705 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
7706 ++*valp;
7707
b34976b6 7708 return TRUE;
b49e97c9
TS
7709}
7710
7711/* This hook function is called before the linker writes out a global
7712 symbol. We mark symbols as small common if appropriate. This is
7713 also where we undo the increment of the value for a mips16 symbol. */
7714
6e0b88f1 7715int
9719ad41
RS
7716_bfd_mips_elf_link_output_symbol_hook
7717 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7718 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7719 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
7720{
7721 /* If we see a common symbol, which implies a relocatable link, then
7722 if a symbol was small common in an input file, mark it as small
7723 common in the output file. */
7724 if (sym->st_shndx == SHN_COMMON
7725 && strcmp (input_sec->name, ".scommon") == 0)
7726 sym->st_shndx = SHN_MIPS_SCOMMON;
7727
df58fc94 7728 if (ELF_ST_IS_COMPRESSED (sym->st_other))
79cda7cf 7729 sym->st_value &= ~1;
b49e97c9 7730
6e0b88f1 7731 return 1;
b49e97c9
TS
7732}
7733\f
7734/* Functions for the dynamic linker. */
7735
7736/* Create dynamic sections when linking against a dynamic object. */
7737
b34976b6 7738bfd_boolean
9719ad41 7739_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
7740{
7741 struct elf_link_hash_entry *h;
14a793b2 7742 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7743 flagword flags;
7744 register asection *s;
7745 const char * const *namep;
0a44bf69 7746 struct mips_elf_link_hash_table *htab;
b49e97c9 7747
0a44bf69 7748 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7749 BFD_ASSERT (htab != NULL);
7750
b49e97c9
TS
7751 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7752 | SEC_LINKER_CREATED | SEC_READONLY);
7753
0a44bf69
RS
7754 /* The psABI requires a read-only .dynamic section, but the VxWorks
7755 EABI doesn't. */
7756 if (!htab->is_vxworks)
b49e97c9 7757 {
3d4d4302 7758 s = bfd_get_linker_section (abfd, ".dynamic");
0a44bf69
RS
7759 if (s != NULL)
7760 {
7761 if (! bfd_set_section_flags (abfd, s, flags))
7762 return FALSE;
7763 }
b49e97c9
TS
7764 }
7765
7766 /* We need to create .got section. */
23cc69b6 7767 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
7768 return FALSE;
7769
0a44bf69 7770 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 7771 return FALSE;
b49e97c9 7772
b49e97c9 7773 /* Create .stub section. */
3d4d4302
AM
7774 s = bfd_make_section_anyway_with_flags (abfd,
7775 MIPS_ELF_STUB_SECTION_NAME (abfd),
7776 flags | SEC_CODE);
4e41d0d7
RS
7777 if (s == NULL
7778 || ! bfd_set_section_alignment (abfd, s,
7779 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7780 return FALSE;
7781 htab->sstubs = s;
b49e97c9 7782
e6aea42d 7783 if (!mips_elf_hash_table (info)->use_rld_obj_head
0e1862bb 7784 && bfd_link_executable (info)
3d4d4302 7785 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
b49e97c9 7786 {
3d4d4302
AM
7787 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7788 flags &~ (flagword) SEC_READONLY);
b49e97c9 7789 if (s == NULL
b49e97c9
TS
7790 || ! bfd_set_section_alignment (abfd, s,
7791 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 7792 return FALSE;
b49e97c9
TS
7793 }
7794
7795 /* On IRIX5, we adjust add some additional symbols and change the
7796 alignments of several sections. There is no ABI documentation
7797 indicating that this is necessary on IRIX6, nor any evidence that
7798 the linker takes such action. */
7799 if (IRIX_COMPAT (abfd) == ict_irix5)
7800 {
7801 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7802 {
14a793b2 7803 bh = NULL;
b49e97c9 7804 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
7805 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7806 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7807 return FALSE;
14a793b2
AM
7808
7809 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7810 h->non_elf = 0;
7811 h->def_regular = 1;
b49e97c9
TS
7812 h->type = STT_SECTION;
7813
c152c796 7814 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7815 return FALSE;
b49e97c9
TS
7816 }
7817
7818 /* We need to create a .compact_rel section. */
7819 if (SGI_COMPAT (abfd))
7820 {
7821 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 7822 return FALSE;
b49e97c9
TS
7823 }
7824
44c410de 7825 /* Change alignments of some sections. */
3d4d4302 7826 s = bfd_get_linker_section (abfd, ".hash");
b49e97c9 7827 if (s != NULL)
a253d456
NC
7828 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7829
3d4d4302 7830 s = bfd_get_linker_section (abfd, ".dynsym");
b49e97c9 7831 if (s != NULL)
a253d456
NC
7832 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7833
3d4d4302 7834 s = bfd_get_linker_section (abfd, ".dynstr");
b49e97c9 7835 if (s != NULL)
a253d456
NC
7836 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7837
3d4d4302 7838 /* ??? */
b49e97c9
TS
7839 s = bfd_get_section_by_name (abfd, ".reginfo");
7840 if (s != NULL)
a253d456
NC
7841 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7842
3d4d4302 7843 s = bfd_get_linker_section (abfd, ".dynamic");
b49e97c9 7844 if (s != NULL)
a253d456 7845 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
7846 }
7847
0e1862bb 7848 if (bfd_link_executable (info))
b49e97c9 7849 {
14a793b2
AM
7850 const char *name;
7851
7852 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7853 bh = NULL;
7854 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
7855 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7856 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7857 return FALSE;
14a793b2
AM
7858
7859 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7860 h->non_elf = 0;
7861 h->def_regular = 1;
b49e97c9
TS
7862 h->type = STT_SECTION;
7863
c152c796 7864 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7865 return FALSE;
b49e97c9
TS
7866
7867 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7868 {
7869 /* __rld_map is a four byte word located in the .data section
7870 and is filled in by the rtld to contain a pointer to
7871 the _r_debug structure. Its symbol value will be set in
7872 _bfd_mips_elf_finish_dynamic_symbol. */
3d4d4302 7873 s = bfd_get_linker_section (abfd, ".rld_map");
0abfb97a 7874 BFD_ASSERT (s != NULL);
14a793b2 7875
0abfb97a
L
7876 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7877 bh = NULL;
7878 if (!(_bfd_generic_link_add_one_symbol
7879 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7880 get_elf_backend_data (abfd)->collect, &bh)))
7881 return FALSE;
b49e97c9 7882
0abfb97a
L
7883 h = (struct elf_link_hash_entry *) bh;
7884 h->non_elf = 0;
7885 h->def_regular = 1;
7886 h->type = STT_OBJECT;
7887
7888 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7889 return FALSE;
b4082c70 7890 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7891 }
7892 }
7893
861fb55a 7894 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
c164a95d 7895 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
861fb55a
DJ
7896 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7897 return FALSE;
7898
1bbce132
MR
7899 /* Do the usual VxWorks handling. */
7900 if (htab->is_vxworks
7901 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7902 return FALSE;
0a44bf69 7903
b34976b6 7904 return TRUE;
b49e97c9
TS
7905}
7906\f
c224138d
RS
7907/* Return true if relocation REL against section SEC is a REL rather than
7908 RELA relocation. RELOCS is the first relocation in the section and
7909 ABFD is the bfd that contains SEC. */
7910
7911static bfd_boolean
7912mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7913 const Elf_Internal_Rela *relocs,
7914 const Elf_Internal_Rela *rel)
7915{
7916 Elf_Internal_Shdr *rel_hdr;
7917 const struct elf_backend_data *bed;
7918
d4730f92
BS
7919 /* To determine which flavor of relocation this is, we depend on the
7920 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7921 rel_hdr = elf_section_data (sec)->rel.hdr;
7922 if (rel_hdr == NULL)
7923 return FALSE;
c224138d 7924 bed = get_elf_backend_data (abfd);
d4730f92
BS
7925 return ((size_t) (rel - relocs)
7926 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
c224138d
RS
7927}
7928
7929/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7930 HOWTO is the relocation's howto and CONTENTS points to the contents
7931 of the section that REL is against. */
7932
7933static bfd_vma
7934mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7935 reloc_howto_type *howto, bfd_byte *contents)
7936{
7937 bfd_byte *location;
7938 unsigned int r_type;
7939 bfd_vma addend;
17c6c9d9 7940 bfd_vma bytes;
c224138d
RS
7941
7942 r_type = ELF_R_TYPE (abfd, rel->r_info);
7943 location = contents + rel->r_offset;
7944
7945 /* Get the addend, which is stored in the input file. */
df58fc94 7946 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
17c6c9d9 7947 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
df58fc94 7948 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
c224138d 7949
17c6c9d9
MR
7950 addend = bytes & howto->src_mask;
7951
7952 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7953 accordingly. */
7954 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7955 addend <<= 1;
7956
7957 return addend;
c224138d
RS
7958}
7959
7960/* REL is a relocation in ABFD that needs a partnering LO16 relocation
7961 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7962 and update *ADDEND with the final addend. Return true on success
7963 or false if the LO16 could not be found. RELEND is the exclusive
7964 upper bound on the relocations for REL's section. */
7965
7966static bfd_boolean
7967mips_elf_add_lo16_rel_addend (bfd *abfd,
7968 const Elf_Internal_Rela *rel,
7969 const Elf_Internal_Rela *relend,
7970 bfd_byte *contents, bfd_vma *addend)
7971{
7972 unsigned int r_type, lo16_type;
7973 const Elf_Internal_Rela *lo16_relocation;
7974 reloc_howto_type *lo16_howto;
7975 bfd_vma l;
7976
7977 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 7978 if (mips16_reloc_p (r_type))
c224138d 7979 lo16_type = R_MIPS16_LO16;
df58fc94
RS
7980 else if (micromips_reloc_p (r_type))
7981 lo16_type = R_MICROMIPS_LO16;
7361da2c
AB
7982 else if (r_type == R_MIPS_PCHI16)
7983 lo16_type = R_MIPS_PCLO16;
c224138d
RS
7984 else
7985 lo16_type = R_MIPS_LO16;
7986
7987 /* The combined value is the sum of the HI16 addend, left-shifted by
7988 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7989 code does a `lui' of the HI16 value, and then an `addiu' of the
7990 LO16 value.)
7991
7992 Scan ahead to find a matching LO16 relocation.
7993
7994 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7995 be immediately following. However, for the IRIX6 ABI, the next
7996 relocation may be a composed relocation consisting of several
7997 relocations for the same address. In that case, the R_MIPS_LO16
7998 relocation may occur as one of these. We permit a similar
7999 extension in general, as that is useful for GCC.
8000
8001 In some cases GCC dead code elimination removes the LO16 but keeps
8002 the corresponding HI16. This is strictly speaking a violation of
8003 the ABI but not immediately harmful. */
8004 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8005 if (lo16_relocation == NULL)
8006 return FALSE;
8007
8008 /* Obtain the addend kept there. */
8009 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8010 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8011
8012 l <<= lo16_howto->rightshift;
8013 l = _bfd_mips_elf_sign_extend (l, 16);
8014
8015 *addend <<= 16;
8016 *addend += l;
8017 return TRUE;
8018}
8019
8020/* Try to read the contents of section SEC in bfd ABFD. Return true and
8021 store the contents in *CONTENTS on success. Assume that *CONTENTS
8022 already holds the contents if it is nonull on entry. */
8023
8024static bfd_boolean
8025mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8026{
8027 if (*contents)
8028 return TRUE;
8029
8030 /* Get cached copy if it exists. */
8031 if (elf_section_data (sec)->this_hdr.contents != NULL)
8032 {
8033 *contents = elf_section_data (sec)->this_hdr.contents;
8034 return TRUE;
8035 }
8036
8037 return bfd_malloc_and_get_section (abfd, sec, contents);
8038}
8039
1bbce132
MR
8040/* Make a new PLT record to keep internal data. */
8041
8042static struct plt_entry *
8043mips_elf_make_plt_record (bfd *abfd)
8044{
8045 struct plt_entry *entry;
8046
8047 entry = bfd_zalloc (abfd, sizeof (*entry));
8048 if (entry == NULL)
8049 return NULL;
8050
8051 entry->stub_offset = MINUS_ONE;
8052 entry->mips_offset = MINUS_ONE;
8053 entry->comp_offset = MINUS_ONE;
8054 entry->gotplt_index = MINUS_ONE;
8055 return entry;
8056}
8057
b49e97c9 8058/* Look through the relocs for a section during the first phase, and
1bbce132
MR
8059 allocate space in the global offset table and record the need for
8060 standard MIPS and compressed procedure linkage table entries. */
b49e97c9 8061
b34976b6 8062bfd_boolean
9719ad41
RS
8063_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8064 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
8065{
8066 const char *name;
8067 bfd *dynobj;
8068 Elf_Internal_Shdr *symtab_hdr;
8069 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
8070 size_t extsymoff;
8071 const Elf_Internal_Rela *rel;
8072 const Elf_Internal_Rela *rel_end;
b49e97c9 8073 asection *sreloc;
9c5bfbb7 8074 const struct elf_backend_data *bed;
0a44bf69 8075 struct mips_elf_link_hash_table *htab;
c224138d
RS
8076 bfd_byte *contents;
8077 bfd_vma addend;
8078 reloc_howto_type *howto;
b49e97c9 8079
0e1862bb 8080 if (bfd_link_relocatable (info))
b34976b6 8081 return TRUE;
b49e97c9 8082
0a44bf69 8083 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8084 BFD_ASSERT (htab != NULL);
8085
b49e97c9
TS
8086 dynobj = elf_hash_table (info)->dynobj;
8087 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8088 sym_hashes = elf_sym_hashes (abfd);
8089 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8090
738e5348
RS
8091 bed = get_elf_backend_data (abfd);
8092 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8093
b49e97c9
TS
8094 /* Check for the mips16 stub sections. */
8095
8096 name = bfd_get_section_name (abfd, sec);
b9d58d71 8097 if (FN_STUB_P (name))
b49e97c9
TS
8098 {
8099 unsigned long r_symndx;
8100
8101 /* Look at the relocation information to figure out which symbol
8102 this is for. */
8103
cb4437b8 8104 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8105 if (r_symndx == 0)
8106 {
4eca0228 8107 _bfd_error_handler
695344c0 8108 /* xgettext:c-format */
738e5348
RS
8109 (_("%B: Warning: cannot determine the target function for"
8110 " stub section `%s'"),
8111 abfd, name);
8112 bfd_set_error (bfd_error_bad_value);
8113 return FALSE;
8114 }
b49e97c9
TS
8115
8116 if (r_symndx < extsymoff
8117 || sym_hashes[r_symndx - extsymoff] == NULL)
8118 {
8119 asection *o;
8120
8121 /* This stub is for a local symbol. This stub will only be
8122 needed if there is some relocation in this BFD, other
8123 than a 16 bit function call, which refers to this symbol. */
8124 for (o = abfd->sections; o != NULL; o = o->next)
8125 {
8126 Elf_Internal_Rela *sec_relocs;
8127 const Elf_Internal_Rela *r, *rend;
8128
8129 /* We can ignore stub sections when looking for relocs. */
8130 if ((o->flags & SEC_RELOC) == 0
8131 || o->reloc_count == 0
738e5348 8132 || section_allows_mips16_refs_p (o))
b49e97c9
TS
8133 continue;
8134
45d6a902 8135 sec_relocs
9719ad41 8136 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 8137 info->keep_memory);
b49e97c9 8138 if (sec_relocs == NULL)
b34976b6 8139 return FALSE;
b49e97c9
TS
8140
8141 rend = sec_relocs + o->reloc_count;
8142 for (r = sec_relocs; r < rend; r++)
8143 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 8144 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
8145 break;
8146
6cdc0ccc 8147 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
8148 free (sec_relocs);
8149
8150 if (r < rend)
8151 break;
8152 }
8153
8154 if (o == NULL)
8155 {
8156 /* There is no non-call reloc for this stub, so we do
8157 not need it. Since this function is called before
8158 the linker maps input sections to output sections, we
8159 can easily discard it by setting the SEC_EXCLUDE
8160 flag. */
8161 sec->flags |= SEC_EXCLUDE;
b34976b6 8162 return TRUE;
b49e97c9
TS
8163 }
8164
8165 /* Record this stub in an array of local symbol stubs for
8166 this BFD. */
698600e4 8167 if (mips_elf_tdata (abfd)->local_stubs == NULL)
b49e97c9
TS
8168 {
8169 unsigned long symcount;
8170 asection **n;
8171 bfd_size_type amt;
8172
8173 if (elf_bad_symtab (abfd))
8174 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8175 else
8176 symcount = symtab_hdr->sh_info;
8177 amt = symcount * sizeof (asection *);
9719ad41 8178 n = bfd_zalloc (abfd, amt);
b49e97c9 8179 if (n == NULL)
b34976b6 8180 return FALSE;
698600e4 8181 mips_elf_tdata (abfd)->local_stubs = n;
b49e97c9
TS
8182 }
8183
b9d58d71 8184 sec->flags |= SEC_KEEP;
698600e4 8185 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
b49e97c9
TS
8186
8187 /* We don't need to set mips16_stubs_seen in this case.
8188 That flag is used to see whether we need to look through
8189 the global symbol table for stubs. We don't need to set
8190 it here, because we just have a local stub. */
8191 }
8192 else
8193 {
8194 struct mips_elf_link_hash_entry *h;
8195
8196 h = ((struct mips_elf_link_hash_entry *)
8197 sym_hashes[r_symndx - extsymoff]);
8198
973a3492
L
8199 while (h->root.root.type == bfd_link_hash_indirect
8200 || h->root.root.type == bfd_link_hash_warning)
8201 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8202
b49e97c9
TS
8203 /* H is the symbol this stub is for. */
8204
b9d58d71
TS
8205 /* If we already have an appropriate stub for this function, we
8206 don't need another one, so we can discard this one. Since
8207 this function is called before the linker maps input sections
8208 to output sections, we can easily discard it by setting the
8209 SEC_EXCLUDE flag. */
8210 if (h->fn_stub != NULL)
8211 {
8212 sec->flags |= SEC_EXCLUDE;
8213 return TRUE;
8214 }
8215
8216 sec->flags |= SEC_KEEP;
b49e97c9 8217 h->fn_stub = sec;
b34976b6 8218 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
8219 }
8220 }
b9d58d71 8221 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
8222 {
8223 unsigned long r_symndx;
8224 struct mips_elf_link_hash_entry *h;
8225 asection **loc;
8226
8227 /* Look at the relocation information to figure out which symbol
8228 this is for. */
8229
cb4437b8 8230 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8231 if (r_symndx == 0)
8232 {
4eca0228 8233 _bfd_error_handler
695344c0 8234 /* xgettext:c-format */
738e5348
RS
8235 (_("%B: Warning: cannot determine the target function for"
8236 " stub section `%s'"),
8237 abfd, name);
8238 bfd_set_error (bfd_error_bad_value);
8239 return FALSE;
8240 }
b49e97c9
TS
8241
8242 if (r_symndx < extsymoff
8243 || sym_hashes[r_symndx - extsymoff] == NULL)
8244 {
b9d58d71 8245 asection *o;
b49e97c9 8246
b9d58d71
TS
8247 /* This stub is for a local symbol. This stub will only be
8248 needed if there is some relocation (R_MIPS16_26) in this BFD
8249 that refers to this symbol. */
8250 for (o = abfd->sections; o != NULL; o = o->next)
8251 {
8252 Elf_Internal_Rela *sec_relocs;
8253 const Elf_Internal_Rela *r, *rend;
8254
8255 /* We can ignore stub sections when looking for relocs. */
8256 if ((o->flags & SEC_RELOC) == 0
8257 || o->reloc_count == 0
738e5348 8258 || section_allows_mips16_refs_p (o))
b9d58d71
TS
8259 continue;
8260
8261 sec_relocs
8262 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8263 info->keep_memory);
8264 if (sec_relocs == NULL)
8265 return FALSE;
8266
8267 rend = sec_relocs + o->reloc_count;
8268 for (r = sec_relocs; r < rend; r++)
8269 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8270 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8271 break;
8272
8273 if (elf_section_data (o)->relocs != sec_relocs)
8274 free (sec_relocs);
8275
8276 if (r < rend)
8277 break;
8278 }
8279
8280 if (o == NULL)
8281 {
8282 /* There is no non-call reloc for this stub, so we do
8283 not need it. Since this function is called before
8284 the linker maps input sections to output sections, we
8285 can easily discard it by setting the SEC_EXCLUDE
8286 flag. */
8287 sec->flags |= SEC_EXCLUDE;
8288 return TRUE;
8289 }
8290
8291 /* Record this stub in an array of local symbol call_stubs for
8292 this BFD. */
698600e4 8293 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
b9d58d71
TS
8294 {
8295 unsigned long symcount;
8296 asection **n;
8297 bfd_size_type amt;
8298
8299 if (elf_bad_symtab (abfd))
8300 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8301 else
8302 symcount = symtab_hdr->sh_info;
8303 amt = symcount * sizeof (asection *);
8304 n = bfd_zalloc (abfd, amt);
8305 if (n == NULL)
8306 return FALSE;
698600e4 8307 mips_elf_tdata (abfd)->local_call_stubs = n;
b9d58d71 8308 }
b49e97c9 8309
b9d58d71 8310 sec->flags |= SEC_KEEP;
698600e4 8311 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 8312
b9d58d71
TS
8313 /* We don't need to set mips16_stubs_seen in this case.
8314 That flag is used to see whether we need to look through
8315 the global symbol table for stubs. We don't need to set
8316 it here, because we just have a local stub. */
8317 }
b49e97c9 8318 else
b49e97c9 8319 {
b9d58d71
TS
8320 h = ((struct mips_elf_link_hash_entry *)
8321 sym_hashes[r_symndx - extsymoff]);
68ffbac6 8322
b9d58d71 8323 /* H is the symbol this stub is for. */
68ffbac6 8324
b9d58d71
TS
8325 if (CALL_FP_STUB_P (name))
8326 loc = &h->call_fp_stub;
8327 else
8328 loc = &h->call_stub;
68ffbac6 8329
b9d58d71
TS
8330 /* If we already have an appropriate stub for this function, we
8331 don't need another one, so we can discard this one. Since
8332 this function is called before the linker maps input sections
8333 to output sections, we can easily discard it by setting the
8334 SEC_EXCLUDE flag. */
8335 if (*loc != NULL)
8336 {
8337 sec->flags |= SEC_EXCLUDE;
8338 return TRUE;
8339 }
b49e97c9 8340
b9d58d71
TS
8341 sec->flags |= SEC_KEEP;
8342 *loc = sec;
8343 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8344 }
b49e97c9
TS
8345 }
8346
b49e97c9 8347 sreloc = NULL;
c224138d 8348 contents = NULL;
b49e97c9
TS
8349 for (rel = relocs; rel < rel_end; ++rel)
8350 {
8351 unsigned long r_symndx;
8352 unsigned int r_type;
8353 struct elf_link_hash_entry *h;
861fb55a 8354 bfd_boolean can_make_dynamic_p;
c5d6fa44
RS
8355 bfd_boolean call_reloc_p;
8356 bfd_boolean constrain_symbol_p;
b49e97c9
TS
8357
8358 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8359 r_type = ELF_R_TYPE (abfd, rel->r_info);
8360
8361 if (r_symndx < extsymoff)
8362 h = NULL;
8363 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8364 {
4eca0228 8365 _bfd_error_handler
695344c0 8366 /* xgettext:c-format */
d003868e
AM
8367 (_("%B: Malformed reloc detected for section %s"),
8368 abfd, name);
b49e97c9 8369 bfd_set_error (bfd_error_bad_value);
b34976b6 8370 return FALSE;
b49e97c9
TS
8371 }
8372 else
8373 {
8374 h = sym_hashes[r_symndx - extsymoff];
81fbe831
AM
8375 if (h != NULL)
8376 {
8377 while (h->root.type == bfd_link_hash_indirect
8378 || h->root.type == bfd_link_hash_warning)
8379 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8380
8381 /* PR15323, ref flags aren't set for references in the
8382 same object. */
8383 h->root.non_ir_ref = 1;
8384 }
861fb55a 8385 }
b49e97c9 8386
861fb55a
DJ
8387 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8388 relocation into a dynamic one. */
8389 can_make_dynamic_p = FALSE;
c5d6fa44
RS
8390
8391 /* Set CALL_RELOC_P to true if the relocation is for a call,
8392 and if pointer equality therefore doesn't matter. */
8393 call_reloc_p = FALSE;
8394
8395 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8396 into account when deciding how to define the symbol.
8397 Relocations in nonallocatable sections such as .pdr and
8398 .debug* should have no effect. */
8399 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8400
861fb55a
DJ
8401 switch (r_type)
8402 {
861fb55a
DJ
8403 case R_MIPS_CALL16:
8404 case R_MIPS_CALL_HI16:
8405 case R_MIPS_CALL_LO16:
c5d6fa44
RS
8406 case R_MIPS16_CALL16:
8407 case R_MICROMIPS_CALL16:
8408 case R_MICROMIPS_CALL_HI16:
8409 case R_MICROMIPS_CALL_LO16:
8410 call_reloc_p = TRUE;
8411 /* Fall through. */
8412
8413 case R_MIPS_GOT16:
861fb55a
DJ
8414 case R_MIPS_GOT_HI16:
8415 case R_MIPS_GOT_LO16:
8416 case R_MIPS_GOT_PAGE:
8417 case R_MIPS_GOT_OFST:
8418 case R_MIPS_GOT_DISP:
8419 case R_MIPS_TLS_GOTTPREL:
8420 case R_MIPS_TLS_GD:
8421 case R_MIPS_TLS_LDM:
d0f13682 8422 case R_MIPS16_GOT16:
d0f13682
CLT
8423 case R_MIPS16_TLS_GOTTPREL:
8424 case R_MIPS16_TLS_GD:
8425 case R_MIPS16_TLS_LDM:
df58fc94 8426 case R_MICROMIPS_GOT16:
df58fc94
RS
8427 case R_MICROMIPS_GOT_HI16:
8428 case R_MICROMIPS_GOT_LO16:
8429 case R_MICROMIPS_GOT_PAGE:
8430 case R_MICROMIPS_GOT_OFST:
8431 case R_MICROMIPS_GOT_DISP:
8432 case R_MICROMIPS_TLS_GOTTPREL:
8433 case R_MICROMIPS_TLS_GD:
8434 case R_MICROMIPS_TLS_LDM:
861fb55a
DJ
8435 if (dynobj == NULL)
8436 elf_hash_table (info)->dynobj = dynobj = abfd;
8437 if (!mips_elf_create_got_section (dynobj, info))
8438 return FALSE;
0e1862bb 8439 if (htab->is_vxworks && !bfd_link_pic (info))
b49e97c9 8440 {
4eca0228 8441 _bfd_error_handler
695344c0 8442 /* xgettext:c-format */
861fb55a
DJ
8443 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8444 abfd, (unsigned long) rel->r_offset);
8445 bfd_set_error (bfd_error_bad_value);
8446 return FALSE;
b49e97c9 8447 }
c5d6fa44 8448 can_make_dynamic_p = TRUE;
861fb55a 8449 break;
b49e97c9 8450
c5d6fa44 8451 case R_MIPS_NONE:
99da6b5f 8452 case R_MIPS_JALR:
df58fc94 8453 case R_MICROMIPS_JALR:
c5d6fa44
RS
8454 /* These relocations have empty fields and are purely there to
8455 provide link information. The symbol value doesn't matter. */
8456 constrain_symbol_p = FALSE;
8457 break;
8458
8459 case R_MIPS_GPREL16:
8460 case R_MIPS_GPREL32:
8461 case R_MIPS16_GPREL:
8462 case R_MICROMIPS_GPREL16:
8463 /* GP-relative relocations always resolve to a definition in a
8464 regular input file, ignoring the one-definition rule. This is
8465 important for the GP setup sequence in NewABI code, which
8466 always resolves to a local function even if other relocations
8467 against the symbol wouldn't. */
8468 constrain_symbol_p = FALSE;
99da6b5f
AN
8469 break;
8470
861fb55a
DJ
8471 case R_MIPS_32:
8472 case R_MIPS_REL32:
8473 case R_MIPS_64:
8474 /* In VxWorks executables, references to external symbols
8475 must be handled using copy relocs or PLT entries; it is not
8476 possible to convert this relocation into a dynamic one.
8477
8478 For executables that use PLTs and copy-relocs, we have a
8479 choice between converting the relocation into a dynamic
8480 one or using copy relocations or PLT entries. It is
8481 usually better to do the former, unless the relocation is
8482 against a read-only section. */
0e1862bb 8483 if ((bfd_link_pic (info)
861fb55a
DJ
8484 || (h != NULL
8485 && !htab->is_vxworks
8486 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8487 && !(!info->nocopyreloc
8488 && !PIC_OBJECT_P (abfd)
8489 && MIPS_ELF_READONLY_SECTION (sec))))
8490 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 8491 {
861fb55a 8492 can_make_dynamic_p = TRUE;
b49e97c9
TS
8493 if (dynobj == NULL)
8494 elf_hash_table (info)->dynobj = dynobj = abfd;
861fb55a 8495 }
c5d6fa44 8496 break;
b49e97c9 8497
861fb55a
DJ
8498 case R_MIPS_26:
8499 case R_MIPS_PC16:
7361da2c
AB
8500 case R_MIPS_PC21_S2:
8501 case R_MIPS_PC26_S2:
861fb55a 8502 case R_MIPS16_26:
c9775dde 8503 case R_MIPS16_PC16_S1:
df58fc94
RS
8504 case R_MICROMIPS_26_S1:
8505 case R_MICROMIPS_PC7_S1:
8506 case R_MICROMIPS_PC10_S1:
8507 case R_MICROMIPS_PC16_S1:
8508 case R_MICROMIPS_PC23_S2:
c5d6fa44 8509 call_reloc_p = TRUE;
861fb55a 8510 break;
b49e97c9
TS
8511 }
8512
0a44bf69
RS
8513 if (h)
8514 {
c5d6fa44
RS
8515 if (constrain_symbol_p)
8516 {
8517 if (!can_make_dynamic_p)
8518 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8519
8520 if (!call_reloc_p)
8521 h->pointer_equality_needed = 1;
8522
8523 /* We must not create a stub for a symbol that has
8524 relocations related to taking the function's address.
8525 This doesn't apply to VxWorks, where CALL relocs refer
8526 to a .got.plt entry instead of a normal .got entry. */
8527 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8528 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8529 }
8530
0a44bf69
RS
8531 /* Relocations against the special VxWorks __GOTT_BASE__ and
8532 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8533 room for them in .rela.dyn. */
8534 if (is_gott_symbol (info, h))
8535 {
8536 if (sreloc == NULL)
8537 {
8538 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8539 if (sreloc == NULL)
8540 return FALSE;
8541 }
8542 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
8543 if (MIPS_ELF_READONLY_SECTION (sec))
8544 /* We tell the dynamic linker that there are
8545 relocations against the text segment. */
8546 info->flags |= DF_TEXTREL;
0a44bf69
RS
8547 }
8548 }
df58fc94
RS
8549 else if (call_lo16_reloc_p (r_type)
8550 || got_lo16_reloc_p (r_type)
8551 || got_disp_reloc_p (r_type)
738e5348 8552 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
8553 {
8554 /* We may need a local GOT entry for this relocation. We
8555 don't count R_MIPS_GOT_PAGE because we can estimate the
8556 maximum number of pages needed by looking at the size of
738e5348
RS
8557 the segment. Similar comments apply to R_MIPS*_GOT16 and
8558 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 8559 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 8560 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 8561 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0 8562 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
e641e783 8563 rel->r_addend, info, r_type))
f4416af6 8564 return FALSE;
b49e97c9
TS
8565 }
8566
8f0c309a
CLT
8567 if (h != NULL
8568 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8569 ELF_ST_IS_MIPS16 (h->other)))
861fb55a
DJ
8570 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8571
b49e97c9
TS
8572 switch (r_type)
8573 {
8574 case R_MIPS_CALL16:
738e5348 8575 case R_MIPS16_CALL16:
df58fc94 8576 case R_MICROMIPS_CALL16:
b49e97c9
TS
8577 if (h == NULL)
8578 {
4eca0228 8579 _bfd_error_handler
695344c0 8580 /* xgettext:c-format */
d003868e
AM
8581 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8582 abfd, (unsigned long) rel->r_offset);
b49e97c9 8583 bfd_set_error (bfd_error_bad_value);
b34976b6 8584 return FALSE;
b49e97c9
TS
8585 }
8586 /* Fall through. */
8587
8588 case R_MIPS_CALL_HI16:
8589 case R_MIPS_CALL_LO16:
df58fc94
RS
8590 case R_MICROMIPS_CALL_HI16:
8591 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
8592 if (h != NULL)
8593 {
6ccf4795
RS
8594 /* Make sure there is room in the regular GOT to hold the
8595 function's address. We may eliminate it in favour of
8596 a .got.plt entry later; see mips_elf_count_got_symbols. */
e641e783
RS
8597 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8598 r_type))
b34976b6 8599 return FALSE;
b49e97c9
TS
8600
8601 /* We need a stub, not a plt entry for the undefined
8602 function. But we record it as if it needs plt. See
c152c796 8603 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 8604 h->needs_plt = 1;
b49e97c9
TS
8605 h->type = STT_FUNC;
8606 }
8607 break;
8608
0fdc1bf1 8609 case R_MIPS_GOT_PAGE:
df58fc94 8610 case R_MICROMIPS_GOT_PAGE:
738e5348 8611 case R_MIPS16_GOT16:
b49e97c9
TS
8612 case R_MIPS_GOT16:
8613 case R_MIPS_GOT_HI16:
8614 case R_MIPS_GOT_LO16:
df58fc94
RS
8615 case R_MICROMIPS_GOT16:
8616 case R_MICROMIPS_GOT_HI16:
8617 case R_MICROMIPS_GOT_LO16:
8618 if (!h || got_page_reloc_p (r_type))
c224138d 8619 {
3a3b6725
DJ
8620 /* This relocation needs (or may need, if h != NULL) a
8621 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8622 know for sure until we know whether the symbol is
8623 preemptible. */
c224138d
RS
8624 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8625 {
8626 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8627 return FALSE;
8628 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8629 addend = mips_elf_read_rel_addend (abfd, rel,
8630 howto, contents);
9684f078 8631 if (got16_reloc_p (r_type))
c224138d
RS
8632 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8633 contents, &addend);
8634 else
8635 addend <<= howto->rightshift;
8636 }
8637 else
8638 addend = rel->r_addend;
13db6b44
RS
8639 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8640 h, addend))
c224138d 8641 return FALSE;
13db6b44
RS
8642
8643 if (h)
8644 {
8645 struct mips_elf_link_hash_entry *hmips =
8646 (struct mips_elf_link_hash_entry *) h;
8647
8648 /* This symbol is definitely not overridable. */
8649 if (hmips->root.def_regular
0e1862bb 8650 && ! (bfd_link_pic (info) && ! info->symbolic
13db6b44
RS
8651 && ! hmips->root.forced_local))
8652 h = NULL;
8653 }
c224138d 8654 }
13db6b44
RS
8655 /* If this is a global, overridable symbol, GOT_PAGE will
8656 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d
RS
8657 /* Fall through. */
8658
b49e97c9 8659 case R_MIPS_GOT_DISP:
df58fc94 8660 case R_MICROMIPS_GOT_DISP:
6ccf4795 8661 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
e641e783 8662 FALSE, r_type))
b34976b6 8663 return FALSE;
b49e97c9
TS
8664 break;
8665
0f20cc35 8666 case R_MIPS_TLS_GOTTPREL:
d0f13682 8667 case R_MIPS16_TLS_GOTTPREL:
df58fc94 8668 case R_MICROMIPS_TLS_GOTTPREL:
0e1862bb 8669 if (bfd_link_pic (info))
0f20cc35
DJ
8670 info->flags |= DF_STATIC_TLS;
8671 /* Fall through */
8672
8673 case R_MIPS_TLS_LDM:
d0f13682 8674 case R_MIPS16_TLS_LDM:
df58fc94
RS
8675 case R_MICROMIPS_TLS_LDM:
8676 if (tls_ldm_reloc_p (r_type))
0f20cc35 8677 {
cf35638d 8678 r_symndx = STN_UNDEF;
0f20cc35
DJ
8679 h = NULL;
8680 }
8681 /* Fall through */
8682
8683 case R_MIPS_TLS_GD:
d0f13682 8684 case R_MIPS16_TLS_GD:
df58fc94 8685 case R_MICROMIPS_TLS_GD:
0f20cc35
DJ
8686 /* This symbol requires a global offset table entry, or two
8687 for TLS GD relocations. */
e641e783
RS
8688 if (h != NULL)
8689 {
8690 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8691 FALSE, r_type))
8692 return FALSE;
8693 }
8694 else
8695 {
8696 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8697 rel->r_addend,
8698 info, r_type))
8699 return FALSE;
8700 }
0f20cc35
DJ
8701 break;
8702
b49e97c9
TS
8703 case R_MIPS_32:
8704 case R_MIPS_REL32:
8705 case R_MIPS_64:
0a44bf69
RS
8706 /* In VxWorks executables, references to external symbols
8707 are handled using copy relocs or PLT stubs, so there's
8708 no need to add a .rela.dyn entry for this relocation. */
861fb55a 8709 if (can_make_dynamic_p)
b49e97c9
TS
8710 {
8711 if (sreloc == NULL)
8712 {
0a44bf69 8713 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 8714 if (sreloc == NULL)
f4416af6 8715 return FALSE;
b49e97c9 8716 }
0e1862bb 8717 if (bfd_link_pic (info) && h == NULL)
82f0cfbd
EC
8718 {
8719 /* When creating a shared object, we must copy these
8720 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
8721 relocs. Make room for this reloc in .rel(a).dyn. */
8722 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 8723 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8724 /* We tell the dynamic linker that there are
8725 relocations against the text segment. */
8726 info->flags |= DF_TEXTREL;
8727 }
b49e97c9
TS
8728 else
8729 {
8730 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 8731
9a59ad6b
DJ
8732 /* For a shared object, we must copy this relocation
8733 unless the symbol turns out to be undefined and
8734 weak with non-default visibility, in which case
8735 it will be left as zero.
8736
8737 We could elide R_MIPS_REL32 for locally binding symbols
8738 in shared libraries, but do not yet do so.
8739
8740 For an executable, we only need to copy this
8741 reloc if the symbol is defined in a dynamic
8742 object. */
b49e97c9
TS
8743 hmips = (struct mips_elf_link_hash_entry *) h;
8744 ++hmips->possibly_dynamic_relocs;
943284cc 8745 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8746 /* We need it to tell the dynamic linker if there
8747 are relocations against the text segment. */
8748 hmips->readonly_reloc = TRUE;
b49e97c9 8749 }
b49e97c9
TS
8750 }
8751
8752 if (SGI_COMPAT (abfd))
8753 mips_elf_hash_table (info)->compact_rel_size +=
8754 sizeof (Elf32_External_crinfo);
8755 break;
8756
8757 case R_MIPS_26:
8758 case R_MIPS_GPREL16:
8759 case R_MIPS_LITERAL:
8760 case R_MIPS_GPREL32:
df58fc94
RS
8761 case R_MICROMIPS_26_S1:
8762 case R_MICROMIPS_GPREL16:
8763 case R_MICROMIPS_LITERAL:
8764 case R_MICROMIPS_GPREL7_S2:
b49e97c9
TS
8765 if (SGI_COMPAT (abfd))
8766 mips_elf_hash_table (info)->compact_rel_size +=
8767 sizeof (Elf32_External_crinfo);
8768 break;
8769
8770 /* This relocation describes the C++ object vtable hierarchy.
8771 Reconstruct it for later use during GC. */
8772 case R_MIPS_GNU_VTINHERIT:
c152c796 8773 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 8774 return FALSE;
b49e97c9
TS
8775 break;
8776
8777 /* This relocation describes which C++ vtable entries are actually
8778 used. Record for later use during GC. */
8779 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
8780 BFD_ASSERT (h != NULL);
8781 if (h != NULL
8782 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 8783 return FALSE;
b49e97c9
TS
8784 break;
8785
8786 default:
8787 break;
8788 }
8789
1bbce132
MR
8790 /* Record the need for a PLT entry. At this point we don't know
8791 yet if we are going to create a PLT in the first place, but
8792 we only record whether the relocation requires a standard MIPS
8793 or a compressed code entry anyway. If we don't make a PLT after
8794 all, then we'll just ignore these arrangements. Likewise if
8795 a PLT entry is not created because the symbol is satisfied
8796 locally. */
8797 if (h != NULL
54806ffa
MR
8798 && (branch_reloc_p (r_type)
8799 || mips16_branch_reloc_p (r_type)
8800 || micromips_branch_reloc_p (r_type))
1bbce132
MR
8801 && !SYMBOL_CALLS_LOCAL (info, h))
8802 {
8803 if (h->plt.plist == NULL)
8804 h->plt.plist = mips_elf_make_plt_record (abfd);
8805 if (h->plt.plist == NULL)
8806 return FALSE;
8807
54806ffa 8808 if (branch_reloc_p (r_type))
1bbce132
MR
8809 h->plt.plist->need_mips = TRUE;
8810 else
8811 h->plt.plist->need_comp = TRUE;
8812 }
8813
738e5348
RS
8814 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8815 if there is one. We only need to handle global symbols here;
8816 we decide whether to keep or delete stubs for local symbols
8817 when processing the stub's relocations. */
b49e97c9 8818 if (h != NULL
738e5348
RS
8819 && !mips16_call_reloc_p (r_type)
8820 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
8821 {
8822 struct mips_elf_link_hash_entry *mh;
8823
8824 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 8825 mh->need_fn_stub = TRUE;
b49e97c9 8826 }
861fb55a
DJ
8827
8828 /* Refuse some position-dependent relocations when creating a
8829 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8830 not PIC, but we can create dynamic relocations and the result
8831 will be fine. Also do not refuse R_MIPS_LO16, which can be
8832 combined with R_MIPS_GOT16. */
0e1862bb 8833 if (bfd_link_pic (info))
861fb55a
DJ
8834 {
8835 switch (r_type)
8836 {
8837 case R_MIPS16_HI16:
8838 case R_MIPS_HI16:
8839 case R_MIPS_HIGHER:
8840 case R_MIPS_HIGHEST:
df58fc94
RS
8841 case R_MICROMIPS_HI16:
8842 case R_MICROMIPS_HIGHER:
8843 case R_MICROMIPS_HIGHEST:
861fb55a
DJ
8844 /* Don't refuse a high part relocation if it's against
8845 no symbol (e.g. part of a compound relocation). */
cf35638d 8846 if (r_symndx == STN_UNDEF)
861fb55a
DJ
8847 break;
8848
8849 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8850 and has a special meaning. */
8851 if (!NEWABI_P (abfd) && h != NULL
8852 && strcmp (h->root.root.string, "_gp_disp") == 0)
8853 break;
8854
0fc1eb3c
RS
8855 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8856 if (is_gott_symbol (info, h))
8857 break;
8858
861fb55a
DJ
8859 /* FALLTHROUGH */
8860
8861 case R_MIPS16_26:
8862 case R_MIPS_26:
df58fc94 8863 case R_MICROMIPS_26_S1:
861fb55a 8864 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
4eca0228 8865 _bfd_error_handler
695344c0 8866 /* xgettext:c-format */
861fb55a
DJ
8867 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8868 abfd, howto->name,
8869 (h) ? h->root.root.string : "a local symbol");
8870 bfd_set_error (bfd_error_bad_value);
8871 return FALSE;
8872 default:
8873 break;
8874 }
8875 }
b49e97c9
TS
8876 }
8877
b34976b6 8878 return TRUE;
b49e97c9
TS
8879}
8880\f
d0647110 8881bfd_boolean
9719ad41
RS
8882_bfd_mips_relax_section (bfd *abfd, asection *sec,
8883 struct bfd_link_info *link_info,
8884 bfd_boolean *again)
d0647110
AO
8885{
8886 Elf_Internal_Rela *internal_relocs;
8887 Elf_Internal_Rela *irel, *irelend;
8888 Elf_Internal_Shdr *symtab_hdr;
8889 bfd_byte *contents = NULL;
d0647110
AO
8890 size_t extsymoff;
8891 bfd_boolean changed_contents = FALSE;
8892 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8893 Elf_Internal_Sym *isymbuf = NULL;
8894
8895 /* We are not currently changing any sizes, so only one pass. */
8896 *again = FALSE;
8897
0e1862bb 8898 if (bfd_link_relocatable (link_info))
d0647110
AO
8899 return TRUE;
8900
9719ad41 8901 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 8902 link_info->keep_memory);
d0647110
AO
8903 if (internal_relocs == NULL)
8904 return TRUE;
8905
8906 irelend = internal_relocs + sec->reloc_count
8907 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8908 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8909 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8910
8911 for (irel = internal_relocs; irel < irelend; irel++)
8912 {
8913 bfd_vma symval;
8914 bfd_signed_vma sym_offset;
8915 unsigned int r_type;
8916 unsigned long r_symndx;
8917 asection *sym_sec;
8918 unsigned long instruction;
8919
8920 /* Turn jalr into bgezal, and jr into beq, if they're marked
8921 with a JALR relocation, that indicate where they jump to.
8922 This saves some pipeline bubbles. */
8923 r_type = ELF_R_TYPE (abfd, irel->r_info);
8924 if (r_type != R_MIPS_JALR)
8925 continue;
8926
8927 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8928 /* Compute the address of the jump target. */
8929 if (r_symndx >= extsymoff)
8930 {
8931 struct mips_elf_link_hash_entry *h
8932 = ((struct mips_elf_link_hash_entry *)
8933 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8934
8935 while (h->root.root.type == bfd_link_hash_indirect
8936 || h->root.root.type == bfd_link_hash_warning)
8937 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 8938
d0647110
AO
8939 /* If a symbol is undefined, or if it may be overridden,
8940 skip it. */
8941 if (! ((h->root.root.type == bfd_link_hash_defined
8942 || h->root.root.type == bfd_link_hash_defweak)
8943 && h->root.root.u.def.section)
0e1862bb 8944 || (bfd_link_pic (link_info) && ! link_info->symbolic
f5385ebf 8945 && !h->root.forced_local))
d0647110
AO
8946 continue;
8947
8948 sym_sec = h->root.root.u.def.section;
8949 if (sym_sec->output_section)
8950 symval = (h->root.root.u.def.value
8951 + sym_sec->output_section->vma
8952 + sym_sec->output_offset);
8953 else
8954 symval = h->root.root.u.def.value;
8955 }
8956 else
8957 {
8958 Elf_Internal_Sym *isym;
8959
8960 /* Read this BFD's symbols if we haven't done so already. */
8961 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8962 {
8963 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8964 if (isymbuf == NULL)
8965 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8966 symtab_hdr->sh_info, 0,
8967 NULL, NULL, NULL);
8968 if (isymbuf == NULL)
8969 goto relax_return;
8970 }
8971
8972 isym = isymbuf + r_symndx;
8973 if (isym->st_shndx == SHN_UNDEF)
8974 continue;
8975 else if (isym->st_shndx == SHN_ABS)
8976 sym_sec = bfd_abs_section_ptr;
8977 else if (isym->st_shndx == SHN_COMMON)
8978 sym_sec = bfd_com_section_ptr;
8979 else
8980 sym_sec
8981 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8982 symval = isym->st_value
8983 + sym_sec->output_section->vma
8984 + sym_sec->output_offset;
8985 }
8986
8987 /* Compute branch offset, from delay slot of the jump to the
8988 branch target. */
8989 sym_offset = (symval + irel->r_addend)
8990 - (sec_start + irel->r_offset + 4);
8991
8992 /* Branch offset must be properly aligned. */
8993 if ((sym_offset & 3) != 0)
8994 continue;
8995
8996 sym_offset >>= 2;
8997
8998 /* Check that it's in range. */
8999 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
9000 continue;
143d77c5 9001
d0647110 9002 /* Get the section contents if we haven't done so already. */
c224138d
RS
9003 if (!mips_elf_get_section_contents (abfd, sec, &contents))
9004 goto relax_return;
d0647110
AO
9005
9006 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
9007
9008 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
9009 if ((instruction & 0xfc1fffff) == 0x0000f809)
9010 instruction = 0x04110000;
9011 /* If it was jr <reg>, turn it into b <target>. */
9012 else if ((instruction & 0xfc1fffff) == 0x00000008)
9013 instruction = 0x10000000;
9014 else
9015 continue;
9016
9017 instruction |= (sym_offset & 0xffff);
9018 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
9019 changed_contents = TRUE;
9020 }
9021
9022 if (contents != NULL
9023 && elf_section_data (sec)->this_hdr.contents != contents)
9024 {
9025 if (!changed_contents && !link_info->keep_memory)
9026 free (contents);
9027 else
9028 {
9029 /* Cache the section contents for elf_link_input_bfd. */
9030 elf_section_data (sec)->this_hdr.contents = contents;
9031 }
9032 }
9033 return TRUE;
9034
143d77c5 9035 relax_return:
eea6121a
AM
9036 if (contents != NULL
9037 && elf_section_data (sec)->this_hdr.contents != contents)
9038 free (contents);
d0647110
AO
9039 return FALSE;
9040}
9041\f
9a59ad6b
DJ
9042/* Allocate space for global sym dynamic relocs. */
9043
9044static bfd_boolean
9045allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9046{
9047 struct bfd_link_info *info = inf;
9048 bfd *dynobj;
9049 struct mips_elf_link_hash_entry *hmips;
9050 struct mips_elf_link_hash_table *htab;
9051
9052 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9053 BFD_ASSERT (htab != NULL);
9054
9a59ad6b
DJ
9055 dynobj = elf_hash_table (info)->dynobj;
9056 hmips = (struct mips_elf_link_hash_entry *) h;
9057
9058 /* VxWorks executables are handled elsewhere; we only need to
9059 allocate relocations in shared objects. */
0e1862bb 9060 if (htab->is_vxworks && !bfd_link_pic (info))
9a59ad6b
DJ
9061 return TRUE;
9062
7686d77d
AM
9063 /* Ignore indirect symbols. All relocations against such symbols
9064 will be redirected to the target symbol. */
9065 if (h->root.type == bfd_link_hash_indirect)
63897e2c
RS
9066 return TRUE;
9067
9a59ad6b
DJ
9068 /* If this symbol is defined in a dynamic object, or we are creating
9069 a shared library, we will need to copy any R_MIPS_32 or
9070 R_MIPS_REL32 relocs against it into the output file. */
0e1862bb 9071 if (! bfd_link_relocatable (info)
9a59ad6b
DJ
9072 && hmips->possibly_dynamic_relocs != 0
9073 && (h->root.type == bfd_link_hash_defweak
625ef6dc 9074 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
0e1862bb 9075 || bfd_link_pic (info)))
9a59ad6b
DJ
9076 {
9077 bfd_boolean do_copy = TRUE;
9078
9079 if (h->root.type == bfd_link_hash_undefweak)
9080 {
9081 /* Do not copy relocations for undefined weak symbols with
9082 non-default visibility. */
9083 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9084 do_copy = FALSE;
9085
9086 /* Make sure undefined weak symbols are output as a dynamic
9087 symbol in PIEs. */
9088 else if (h->dynindx == -1 && !h->forced_local)
9089 {
9090 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9091 return FALSE;
9092 }
9093 }
9094
9095 if (do_copy)
9096 {
aff469fa 9097 /* Even though we don't directly need a GOT entry for this symbol,
f7ff1106
RS
9098 the SVR4 psABI requires it to have a dynamic symbol table
9099 index greater that DT_MIPS_GOTSYM if there are dynamic
9100 relocations against it.
9101
9102 VxWorks does not enforce the same mapping between the GOT
9103 and the symbol table, so the same requirement does not
9104 apply there. */
6ccf4795
RS
9105 if (!htab->is_vxworks)
9106 {
9107 if (hmips->global_got_area > GGA_RELOC_ONLY)
9108 hmips->global_got_area = GGA_RELOC_ONLY;
9109 hmips->got_only_for_calls = FALSE;
9110 }
aff469fa 9111
9a59ad6b
DJ
9112 mips_elf_allocate_dynamic_relocations
9113 (dynobj, info, hmips->possibly_dynamic_relocs);
9114 if (hmips->readonly_reloc)
9115 /* We tell the dynamic linker that there are relocations
9116 against the text segment. */
9117 info->flags |= DF_TEXTREL;
9118 }
9119 }
9120
9121 return TRUE;
9122}
9123
b49e97c9
TS
9124/* Adjust a symbol defined by a dynamic object and referenced by a
9125 regular object. The current definition is in some section of the
9126 dynamic object, but we're not including those sections. We have to
9127 change the definition to something the rest of the link can
9128 understand. */
9129
b34976b6 9130bfd_boolean
9719ad41
RS
9131_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9132 struct elf_link_hash_entry *h)
b49e97c9
TS
9133{
9134 bfd *dynobj;
9135 struct mips_elf_link_hash_entry *hmips;
5108fc1b 9136 struct mips_elf_link_hash_table *htab;
5474d94f 9137 asection *s, *srel;
b49e97c9 9138
5108fc1b 9139 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9140 BFD_ASSERT (htab != NULL);
9141
b49e97c9 9142 dynobj = elf_hash_table (info)->dynobj;
861fb55a 9143 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
9144
9145 /* Make sure we know what is going on here. */
9146 BFD_ASSERT (dynobj != NULL
f5385ebf 9147 && (h->needs_plt
f6e332e6 9148 || h->u.weakdef != NULL
f5385ebf
AM
9149 || (h->def_dynamic
9150 && h->ref_regular
9151 && !h->def_regular)));
b49e97c9 9152
b49e97c9 9153 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 9154
861fb55a
DJ
9155 /* If there are call relocations against an externally-defined symbol,
9156 see whether we can create a MIPS lazy-binding stub for it. We can
9157 only do this if all references to the function are through call
9158 relocations, and in that case, the traditional lazy-binding stubs
9159 are much more efficient than PLT entries.
9160
9161 Traditional stubs are only available on SVR4 psABI-based systems;
9162 VxWorks always uses PLTs instead. */
9163 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
9164 {
9165 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 9166 return TRUE;
b49e97c9
TS
9167
9168 /* If this symbol is not defined in a regular file, then set
9169 the symbol to the stub location. This is required to make
9170 function pointers compare as equal between the normal
9171 executable and the shared library. */
f5385ebf 9172 if (!h->def_regular)
b49e97c9 9173 {
33bb52fb
RS
9174 hmips->needs_lazy_stub = TRUE;
9175 htab->lazy_stub_count++;
b34976b6 9176 return TRUE;
b49e97c9
TS
9177 }
9178 }
861fb55a
DJ
9179 /* As above, VxWorks requires PLT entries for externally-defined
9180 functions that are only accessed through call relocations.
b49e97c9 9181
861fb55a
DJ
9182 Both VxWorks and non-VxWorks targets also need PLT entries if there
9183 are static-only relocations against an externally-defined function.
9184 This can technically occur for shared libraries if there are
9185 branches to the symbol, although it is unlikely that this will be
9186 used in practice due to the short ranges involved. It can occur
9187 for any relative or absolute relocation in executables; in that
9188 case, the PLT entry becomes the function's canonical address. */
9189 else if (((h->needs_plt && !hmips->no_fn_stub)
9190 || (h->type == STT_FUNC && hmips->has_static_relocs))
9191 && htab->use_plts_and_copy_relocs
9192 && !SYMBOL_CALLS_LOCAL (info, h)
9193 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9194 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 9195 {
1bbce132
MR
9196 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9197 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9198
9199 /* If this is the first symbol to need a PLT entry, then make some
9200 basic setup. Also work out PLT entry sizes. We'll need them
9201 for PLT offset calculations. */
9202 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
861fb55a 9203 {
ce558b89 9204 BFD_ASSERT (htab->root.sgotplt->size == 0);
1bbce132 9205 BFD_ASSERT (htab->plt_got_index == 0);
0a44bf69 9206
861fb55a
DJ
9207 /* If we're using the PLT additions to the psABI, each PLT
9208 entry is 16 bytes and the PLT0 entry is 32 bytes.
9209 Encourage better cache usage by aligning. We do this
9210 lazily to avoid pessimizing traditional objects. */
9211 if (!htab->is_vxworks
ce558b89 9212 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
861fb55a 9213 return FALSE;
0a44bf69 9214
861fb55a
DJ
9215 /* Make sure that .got.plt is word-aligned. We do this lazily
9216 for the same reason as above. */
ce558b89 9217 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
861fb55a
DJ
9218 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9219 return FALSE;
0a44bf69 9220
861fb55a
DJ
9221 /* On non-VxWorks targets, the first two entries in .got.plt
9222 are reserved. */
9223 if (!htab->is_vxworks)
1bbce132
MR
9224 htab->plt_got_index
9225 += (get_elf_backend_data (dynobj)->got_header_size
9226 / MIPS_ELF_GOT_SIZE (dynobj));
0a44bf69 9227
861fb55a
DJ
9228 /* On VxWorks, also allocate room for the header's
9229 .rela.plt.unloaded entries. */
0e1862bb 9230 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69 9231 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
1bbce132
MR
9232
9233 /* Now work out the sizes of individual PLT entries. */
0e1862bb 9234 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9235 htab->plt_mips_entry_size
9236 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9237 else if (htab->is_vxworks)
9238 htab->plt_mips_entry_size
9239 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9240 else if (newabi_p)
9241 htab->plt_mips_entry_size
9242 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
833794fc 9243 else if (!micromips_p)
1bbce132
MR
9244 {
9245 htab->plt_mips_entry_size
9246 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9247 htab->plt_comp_entry_size
833794fc
MR
9248 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9249 }
9250 else if (htab->insn32)
9251 {
9252 htab->plt_mips_entry_size
9253 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9254 htab->plt_comp_entry_size
9255 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
1bbce132
MR
9256 }
9257 else
9258 {
9259 htab->plt_mips_entry_size
9260 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9261 htab->plt_comp_entry_size
833794fc 9262 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
1bbce132 9263 }
0a44bf69
RS
9264 }
9265
1bbce132
MR
9266 if (h->plt.plist == NULL)
9267 h->plt.plist = mips_elf_make_plt_record (dynobj);
9268 if (h->plt.plist == NULL)
9269 return FALSE;
9270
9271 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9272 n32 or n64, so always use a standard entry there.
9273
9274 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9275 all MIPS16 calls will go via that stub, and there is no benefit
9276 to having a MIPS16 entry. And in the case of call_stub a
9277 standard entry actually has to be used as the stub ends with a J
9278 instruction. */
9279 if (newabi_p
9280 || htab->is_vxworks
9281 || hmips->call_stub
9282 || hmips->call_fp_stub)
9283 {
9284 h->plt.plist->need_mips = TRUE;
9285 h->plt.plist->need_comp = FALSE;
9286 }
9287
9288 /* Otherwise, if there are no direct calls to the function, we
9289 have a free choice of whether to use standard or compressed
9290 entries. Prefer microMIPS entries if the object is known to
9291 contain microMIPS code, so that it becomes possible to create
9292 pure microMIPS binaries. Prefer standard entries otherwise,
9293 because MIPS16 ones are no smaller and are usually slower. */
9294 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9295 {
9296 if (micromips_p)
9297 h->plt.plist->need_comp = TRUE;
9298 else
9299 h->plt.plist->need_mips = TRUE;
9300 }
9301
9302 if (h->plt.plist->need_mips)
9303 {
9304 h->plt.plist->mips_offset = htab->plt_mips_offset;
9305 htab->plt_mips_offset += htab->plt_mips_entry_size;
9306 }
9307 if (h->plt.plist->need_comp)
9308 {
9309 h->plt.plist->comp_offset = htab->plt_comp_offset;
9310 htab->plt_comp_offset += htab->plt_comp_entry_size;
9311 }
9312
9313 /* Reserve the corresponding .got.plt entry now too. */
9314 h->plt.plist->gotplt_index = htab->plt_got_index++;
0a44bf69
RS
9315
9316 /* If the output file has no definition of the symbol, set the
861fb55a 9317 symbol's value to the address of the stub. */
0e1862bb 9318 if (!bfd_link_pic (info) && !h->def_regular)
1bbce132 9319 hmips->use_plt_entry = TRUE;
0a44bf69 9320
1bbce132 9321 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
ce558b89
AM
9322 htab->root.srelplt->size += (htab->is_vxworks
9323 ? MIPS_ELF_RELA_SIZE (dynobj)
9324 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
9325
9326 /* Make room for the .rela.plt.unloaded relocations. */
0e1862bb 9327 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69
RS
9328 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9329
861fb55a
DJ
9330 /* All relocations against this symbol that could have been made
9331 dynamic will now refer to the PLT entry instead. */
9332 hmips->possibly_dynamic_relocs = 0;
0a44bf69 9333
0a44bf69
RS
9334 return TRUE;
9335 }
9336
9337 /* If this is a weak symbol, and there is a real definition, the
9338 processor independent code will have arranged for us to see the
9339 real definition first, and we can just use the same value. */
9340 if (h->u.weakdef != NULL)
9341 {
9342 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9343 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9344 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9345 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9346 return TRUE;
9347 }
9348
861fb55a
DJ
9349 /* Otherwise, there is nothing further to do for symbols defined
9350 in regular objects. */
9351 if (h->def_regular)
0a44bf69
RS
9352 return TRUE;
9353
861fb55a
DJ
9354 /* There's also nothing more to do if we'll convert all relocations
9355 against this symbol into dynamic relocations. */
9356 if (!hmips->has_static_relocs)
9357 return TRUE;
9358
9359 /* We're now relying on copy relocations. Complain if we have
9360 some that we can't convert. */
0e1862bb 9361 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
861fb55a 9362 {
4eca0228
AM
9363 _bfd_error_handler (_("non-dynamic relocations refer to "
9364 "dynamic symbol %s"),
9365 h->root.root.string);
861fb55a
DJ
9366 bfd_set_error (bfd_error_bad_value);
9367 return FALSE;
9368 }
9369
0a44bf69
RS
9370 /* We must allocate the symbol in our .dynbss section, which will
9371 become part of the .bss section of the executable. There will be
9372 an entry for this symbol in the .dynsym section. The dynamic
9373 object will contain position independent code, so all references
9374 from the dynamic object to this symbol will go through the global
9375 offset table. The dynamic linker will use the .dynsym entry to
9376 determine the address it must put in the global offset table, so
9377 both the dynamic object and the regular object will refer to the
9378 same memory location for the variable. */
9379
5474d94f
AM
9380 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9381 {
9382 s = htab->root.sdynrelro;
9383 srel = htab->root.sreldynrelro;
9384 }
9385 else
9386 {
9387 s = htab->root.sdynbss;
9388 srel = htab->root.srelbss;
9389 }
0a44bf69
RS
9390 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9391 {
861fb55a 9392 if (htab->is_vxworks)
5474d94f 9393 srel->size += sizeof (Elf32_External_Rela);
861fb55a
DJ
9394 else
9395 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
9396 h->needs_copy = 1;
9397 }
9398
861fb55a
DJ
9399 /* All relocations against this symbol that could have been made
9400 dynamic will now refer to the local copy instead. */
9401 hmips->possibly_dynamic_relocs = 0;
9402
5474d94f 9403 return _bfd_elf_adjust_dynamic_copy (info, h, s);
0a44bf69 9404}
b49e97c9
TS
9405\f
9406/* This function is called after all the input files have been read,
9407 and the input sections have been assigned to output sections. We
9408 check for any mips16 stub sections that we can discard. */
9409
b34976b6 9410bfd_boolean
9719ad41
RS
9411_bfd_mips_elf_always_size_sections (bfd *output_bfd,
9412 struct bfd_link_info *info)
b49e97c9 9413{
351cdf24 9414 asection *sect;
0a44bf69 9415 struct mips_elf_link_hash_table *htab;
861fb55a 9416 struct mips_htab_traverse_info hti;
0a44bf69
RS
9417
9418 htab = mips_elf_hash_table (info);
4dfe6ac6 9419 BFD_ASSERT (htab != NULL);
f4416af6 9420
b49e97c9 9421 /* The .reginfo section has a fixed size. */
351cdf24
MF
9422 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9423 if (sect != NULL)
9424 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9425
9426 /* The .MIPS.abiflags section has a fixed size. */
9427 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9428 if (sect != NULL)
9429 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
b49e97c9 9430
861fb55a
DJ
9431 hti.info = info;
9432 hti.output_bfd = output_bfd;
9433 hti.error = FALSE;
9434 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9435 mips_elf_check_symbols, &hti);
9436 if (hti.error)
9437 return FALSE;
f4416af6 9438
33bb52fb
RS
9439 return TRUE;
9440}
9441
9442/* If the link uses a GOT, lay it out and work out its size. */
9443
9444static bfd_boolean
9445mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9446{
9447 bfd *dynobj;
9448 asection *s;
9449 struct mips_got_info *g;
33bb52fb
RS
9450 bfd_size_type loadable_size = 0;
9451 bfd_size_type page_gotno;
d7206569 9452 bfd *ibfd;
ab361d49 9453 struct mips_elf_traverse_got_arg tga;
33bb52fb
RS
9454 struct mips_elf_link_hash_table *htab;
9455
9456 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9457 BFD_ASSERT (htab != NULL);
9458
ce558b89 9459 s = htab->root.sgot;
f4416af6 9460 if (s == NULL)
b34976b6 9461 return TRUE;
b49e97c9 9462
33bb52fb 9463 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
9464 g = htab->got_info;
9465
861fb55a
DJ
9466 /* Allocate room for the reserved entries. VxWorks always reserves
9467 3 entries; other objects only reserve 2 entries. */
cb22ccf4 9468 BFD_ASSERT (g->assigned_low_gotno == 0);
861fb55a
DJ
9469 if (htab->is_vxworks)
9470 htab->reserved_gotno = 3;
9471 else
9472 htab->reserved_gotno = 2;
9473 g->local_gotno += htab->reserved_gotno;
cb22ccf4 9474 g->assigned_low_gotno = htab->reserved_gotno;
861fb55a 9475
6c42ddb9
RS
9476 /* Decide which symbols need to go in the global part of the GOT and
9477 count the number of reloc-only GOT symbols. */
020d7251 9478 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
f4416af6 9479
13db6b44
RS
9480 if (!mips_elf_resolve_final_got_entries (info, g))
9481 return FALSE;
9482
33bb52fb
RS
9483 /* Calculate the total loadable size of the output. That
9484 will give us the maximum number of GOT_PAGE entries
9485 required. */
c72f2fb2 9486 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
33bb52fb
RS
9487 {
9488 asection *subsection;
5108fc1b 9489
d7206569 9490 for (subsection = ibfd->sections;
33bb52fb
RS
9491 subsection;
9492 subsection = subsection->next)
9493 {
9494 if ((subsection->flags & SEC_ALLOC) == 0)
9495 continue;
9496 loadable_size += ((subsection->size + 0xf)
9497 &~ (bfd_size_type) 0xf);
9498 }
9499 }
f4416af6 9500
0a44bf69 9501 if (htab->is_vxworks)
738e5348 9502 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
9503 relocations against local symbols evaluate to "G", and the EABI does
9504 not include R_MIPS_GOT_PAGE. */
c224138d 9505 page_gotno = 0;
0a44bf69
RS
9506 else
9507 /* Assume there are two loadable segments consisting of contiguous
9508 sections. Is 5 enough? */
c224138d
RS
9509 page_gotno = (loadable_size >> 16) + 5;
9510
13db6b44 9511 /* Choose the smaller of the two page estimates; both are intended to be
c224138d
RS
9512 conservative. */
9513 if (page_gotno > g->page_gotno)
9514 page_gotno = g->page_gotno;
f4416af6 9515
c224138d 9516 g->local_gotno += page_gotno;
cb22ccf4 9517 g->assigned_high_gotno = g->local_gotno - 1;
ab361d49 9518
ab361d49
RS
9519 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9520 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
0f20cc35
DJ
9521 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9522
0a44bf69
RS
9523 /* VxWorks does not support multiple GOTs. It initializes $gp to
9524 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9525 dynamic loader. */
57093f5e 9526 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 9527 {
a8028dd0 9528 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
9529 return FALSE;
9530 }
9531 else
9532 {
d7206569
RS
9533 /* Record that all bfds use G. This also has the effect of freeing
9534 the per-bfd GOTs, which we no longer need. */
c72f2fb2 9535 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
9536 if (mips_elf_bfd_got (ibfd, FALSE))
9537 mips_elf_replace_bfd_got (ibfd, g);
9538 mips_elf_replace_bfd_got (output_bfd, g);
9539
33bb52fb 9540 /* Set up TLS entries. */
0f20cc35 9541 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
72e7511a
RS
9542 tga.info = info;
9543 tga.g = g;
9544 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9545 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9546 if (!tga.g)
9547 return FALSE;
1fd20d70
RS
9548 BFD_ASSERT (g->tls_assigned_gotno
9549 == g->global_gotno + g->local_gotno + g->tls_gotno);
33bb52fb 9550
57093f5e 9551 /* Each VxWorks GOT entry needs an explicit relocation. */
0e1862bb 9552 if (htab->is_vxworks && bfd_link_pic (info))
57093f5e
RS
9553 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9554
33bb52fb 9555 /* Allocate room for the TLS relocations. */
ab361d49
RS
9556 if (g->relocs)
9557 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
0f20cc35 9558 }
b49e97c9 9559
b34976b6 9560 return TRUE;
b49e97c9
TS
9561}
9562
33bb52fb
RS
9563/* Estimate the size of the .MIPS.stubs section. */
9564
9565static void
9566mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9567{
9568 struct mips_elf_link_hash_table *htab;
9569 bfd_size_type dynsymcount;
9570
9571 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9572 BFD_ASSERT (htab != NULL);
9573
33bb52fb
RS
9574 if (htab->lazy_stub_count == 0)
9575 return;
9576
9577 /* IRIX rld assumes that a function stub isn't at the end of the .text
9578 section, so add a dummy entry to the end. */
9579 htab->lazy_stub_count++;
9580
9581 /* Get a worst-case estimate of the number of dynamic symbols needed.
9582 At this point, dynsymcount does not account for section symbols
9583 and count_section_dynsyms may overestimate the number that will
9584 be needed. */
9585 dynsymcount = (elf_hash_table (info)->dynsymcount
9586 + count_section_dynsyms (output_bfd, info));
9587
1bbce132
MR
9588 /* Determine the size of one stub entry. There's no disadvantage
9589 from using microMIPS code here, so for the sake of pure-microMIPS
9590 binaries we prefer it whenever there's any microMIPS code in
9591 output produced at all. This has a benefit of stubs being
833794fc
MR
9592 shorter by 4 bytes each too, unless in the insn32 mode. */
9593 if (!MICROMIPS_P (output_bfd))
1bbce132
MR
9594 htab->function_stub_size = (dynsymcount > 0x10000
9595 ? MIPS_FUNCTION_STUB_BIG_SIZE
9596 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
833794fc
MR
9597 else if (htab->insn32)
9598 htab->function_stub_size = (dynsymcount > 0x10000
9599 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9600 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9601 else
9602 htab->function_stub_size = (dynsymcount > 0x10000
9603 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9604 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
33bb52fb
RS
9605
9606 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9607}
9608
1bbce132
MR
9609/* A mips_elf_link_hash_traverse callback for which DATA points to a
9610 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9611 stub, allocate an entry in the stubs section. */
33bb52fb
RS
9612
9613static bfd_boolean
af924177 9614mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 9615{
1bbce132 9616 struct mips_htab_traverse_info *hti = data;
33bb52fb 9617 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9618 struct bfd_link_info *info;
9619 bfd *output_bfd;
9620
9621 info = hti->info;
9622 output_bfd = hti->output_bfd;
9623 htab = mips_elf_hash_table (info);
9624 BFD_ASSERT (htab != NULL);
33bb52fb 9625
33bb52fb
RS
9626 if (h->needs_lazy_stub)
9627 {
1bbce132
MR
9628 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9629 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9630 bfd_vma isa_bit = micromips_p;
9631
9632 BFD_ASSERT (htab->root.dynobj != NULL);
9633 if (h->root.plt.plist == NULL)
9634 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9635 if (h->root.plt.plist == NULL)
9636 {
9637 hti->error = TRUE;
9638 return FALSE;
9639 }
33bb52fb 9640 h->root.root.u.def.section = htab->sstubs;
1bbce132
MR
9641 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9642 h->root.plt.plist->stub_offset = htab->sstubs->size;
9643 h->root.other = other;
33bb52fb
RS
9644 htab->sstubs->size += htab->function_stub_size;
9645 }
9646 return TRUE;
9647}
9648
9649/* Allocate offsets in the stubs section to each symbol that needs one.
9650 Set the final size of the .MIPS.stub section. */
9651
1bbce132 9652static bfd_boolean
33bb52fb
RS
9653mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9654{
1bbce132
MR
9655 bfd *output_bfd = info->output_bfd;
9656 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9657 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9658 bfd_vma isa_bit = micromips_p;
33bb52fb 9659 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9660 struct mips_htab_traverse_info hti;
9661 struct elf_link_hash_entry *h;
9662 bfd *dynobj;
33bb52fb
RS
9663
9664 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9665 BFD_ASSERT (htab != NULL);
9666
33bb52fb 9667 if (htab->lazy_stub_count == 0)
1bbce132 9668 return TRUE;
33bb52fb
RS
9669
9670 htab->sstubs->size = 0;
1bbce132
MR
9671 hti.info = info;
9672 hti.output_bfd = output_bfd;
9673 hti.error = FALSE;
9674 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9675 if (hti.error)
9676 return FALSE;
33bb52fb
RS
9677 htab->sstubs->size += htab->function_stub_size;
9678 BFD_ASSERT (htab->sstubs->size
9679 == htab->lazy_stub_count * htab->function_stub_size);
1bbce132
MR
9680
9681 dynobj = elf_hash_table (info)->dynobj;
9682 BFD_ASSERT (dynobj != NULL);
9683 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9684 if (h == NULL)
9685 return FALSE;
9686 h->root.u.def.value = isa_bit;
9687 h->other = other;
9688 h->type = STT_FUNC;
9689
9690 return TRUE;
9691}
9692
9693/* A mips_elf_link_hash_traverse callback for which DATA points to a
9694 bfd_link_info. If H uses the address of a PLT entry as the value
9695 of the symbol, then set the entry in the symbol table now. Prefer
9696 a standard MIPS PLT entry. */
9697
9698static bfd_boolean
9699mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9700{
9701 struct bfd_link_info *info = data;
9702 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9703 struct mips_elf_link_hash_table *htab;
9704 unsigned int other;
9705 bfd_vma isa_bit;
9706 bfd_vma val;
9707
9708 htab = mips_elf_hash_table (info);
9709 BFD_ASSERT (htab != NULL);
9710
9711 if (h->use_plt_entry)
9712 {
9713 BFD_ASSERT (h->root.plt.plist != NULL);
9714 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9715 || h->root.plt.plist->comp_offset != MINUS_ONE);
9716
9717 val = htab->plt_header_size;
9718 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9719 {
9720 isa_bit = 0;
9721 val += h->root.plt.plist->mips_offset;
9722 other = 0;
9723 }
9724 else
9725 {
9726 isa_bit = 1;
9727 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9728 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9729 }
9730 val += isa_bit;
9731 /* For VxWorks, point at the PLT load stub rather than the lazy
9732 resolution stub; this stub will become the canonical function
9733 address. */
9734 if (htab->is_vxworks)
9735 val += 8;
9736
ce558b89 9737 h->root.root.u.def.section = htab->root.splt;
1bbce132
MR
9738 h->root.root.u.def.value = val;
9739 h->root.other = other;
9740 }
9741
9742 return TRUE;
33bb52fb
RS
9743}
9744
b49e97c9
TS
9745/* Set the sizes of the dynamic sections. */
9746
b34976b6 9747bfd_boolean
9719ad41
RS
9748_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9749 struct bfd_link_info *info)
b49e97c9
TS
9750{
9751 bfd *dynobj;
861fb55a 9752 asection *s, *sreldyn;
b34976b6 9753 bfd_boolean reltext;
0a44bf69 9754 struct mips_elf_link_hash_table *htab;
b49e97c9 9755
0a44bf69 9756 htab = mips_elf_hash_table (info);
4dfe6ac6 9757 BFD_ASSERT (htab != NULL);
b49e97c9
TS
9758 dynobj = elf_hash_table (info)->dynobj;
9759 BFD_ASSERT (dynobj != NULL);
9760
9761 if (elf_hash_table (info)->dynamic_sections_created)
9762 {
9763 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 9764 if (bfd_link_executable (info) && !info->nointerp)
b49e97c9 9765 {
3d4d4302 9766 s = bfd_get_linker_section (dynobj, ".interp");
b49e97c9 9767 BFD_ASSERT (s != NULL);
eea6121a 9768 s->size
b49e97c9
TS
9769 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9770 s->contents
9771 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9772 }
861fb55a 9773
1bbce132
MR
9774 /* Figure out the size of the PLT header if we know that we
9775 are using it. For the sake of cache alignment always use
9776 a standard header whenever any standard entries are present
9777 even if microMIPS entries are present as well. This also
9778 lets the microMIPS header rely on the value of $v0 only set
9779 by microMIPS entries, for a small size reduction.
9780
9781 Set symbol table entry values for symbols that use the
9782 address of their PLT entry now that we can calculate it.
9783
9784 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9785 haven't already in _bfd_elf_create_dynamic_sections. */
ce558b89 9786 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
861fb55a 9787 {
1bbce132
MR
9788 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9789 && !htab->plt_mips_offset);
9790 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9791 bfd_vma isa_bit = micromips_p;
861fb55a 9792 struct elf_link_hash_entry *h;
1bbce132 9793 bfd_vma size;
861fb55a
DJ
9794
9795 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
9796 BFD_ASSERT (htab->root.sgotplt->size == 0);
9797 BFD_ASSERT (htab->root.splt->size == 0);
1bbce132 9798
0e1862bb 9799 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9800 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9801 else if (htab->is_vxworks)
9802 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9803 else if (ABI_64_P (output_bfd))
9804 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9805 else if (ABI_N32_P (output_bfd))
9806 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9807 else if (!micromips_p)
9808 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
833794fc
MR
9809 else if (htab->insn32)
9810 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
1bbce132
MR
9811 else
9812 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
861fb55a 9813
1bbce132
MR
9814 htab->plt_header_is_comp = micromips_p;
9815 htab->plt_header_size = size;
ce558b89
AM
9816 htab->root.splt->size = (size
9817 + htab->plt_mips_offset
9818 + htab->plt_comp_offset);
9819 htab->root.sgotplt->size = (htab->plt_got_index
9820 * MIPS_ELF_GOT_SIZE (dynobj));
1bbce132
MR
9821
9822 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9823
9824 if (htab->root.hplt == NULL)
9825 {
ce558b89 9826 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
1bbce132
MR
9827 "_PROCEDURE_LINKAGE_TABLE_");
9828 htab->root.hplt = h;
9829 if (h == NULL)
9830 return FALSE;
9831 }
9832
9833 h = htab->root.hplt;
9834 h->root.u.def.value = isa_bit;
9835 h->other = other;
861fb55a
DJ
9836 h->type = STT_FUNC;
9837 }
9838 }
4e41d0d7 9839
9a59ad6b 9840 /* Allocate space for global sym dynamic relocs. */
2c3fc389 9841 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9a59ad6b 9842
33bb52fb
RS
9843 mips_elf_estimate_stub_size (output_bfd, info);
9844
9845 if (!mips_elf_lay_out_got (output_bfd, info))
9846 return FALSE;
9847
9848 mips_elf_lay_out_lazy_stubs (info);
9849
b49e97c9
TS
9850 /* The check_relocs and adjust_dynamic_symbol entry points have
9851 determined the sizes of the various dynamic sections. Allocate
9852 memory for them. */
b34976b6 9853 reltext = FALSE;
b49e97c9
TS
9854 for (s = dynobj->sections; s != NULL; s = s->next)
9855 {
9856 const char *name;
b49e97c9
TS
9857
9858 /* It's OK to base decisions on the section name, because none
9859 of the dynobj section names depend upon the input files. */
9860 name = bfd_get_section_name (dynobj, s);
9861
9862 if ((s->flags & SEC_LINKER_CREATED) == 0)
9863 continue;
9864
0112cd26 9865 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 9866 {
c456f082 9867 if (s->size != 0)
b49e97c9
TS
9868 {
9869 const char *outname;
9870 asection *target;
9871
9872 /* If this relocation section applies to a read only
9873 section, then we probably need a DT_TEXTREL entry.
0a44bf69 9874 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
9875 assert a DT_TEXTREL entry rather than testing whether
9876 there exists a relocation to a read only section or
9877 not. */
9878 outname = bfd_get_section_name (output_bfd,
9879 s->output_section);
9880 target = bfd_get_section_by_name (output_bfd, outname + 4);
9881 if ((target != NULL
9882 && (target->flags & SEC_READONLY) != 0
9883 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 9884 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 9885 reltext = TRUE;
b49e97c9
TS
9886
9887 /* We use the reloc_count field as a counter if we need
9888 to copy relocs into the output file. */
0a44bf69 9889 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 9890 s->reloc_count = 0;
f4416af6
AO
9891
9892 /* If combreloc is enabled, elf_link_sort_relocs() will
9893 sort relocations, but in a different way than we do,
9894 and before we're done creating relocations. Also, it
9895 will move them around between input sections'
9896 relocation's contents, so our sorting would be
9897 broken, so don't let it run. */
9898 info->combreloc = 0;
b49e97c9
TS
9899 }
9900 }
0e1862bb 9901 else if (bfd_link_executable (info)
b49e97c9 9902 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 9903 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 9904 {
5108fc1b 9905 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 9906 rtld to contain a pointer to the _r_debug structure. */
b4082c70 9907 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
b49e97c9
TS
9908 }
9909 else if (SGI_COMPAT (output_bfd)
0112cd26 9910 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 9911 s->size += mips_elf_hash_table (info)->compact_rel_size;
ce558b89 9912 else if (s == htab->root.splt)
861fb55a
DJ
9913 {
9914 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
9915 room for an extra nop to fill the delay slot. This is
9916 for CPUs without load interlocking. */
9917 if (! LOAD_INTERLOCKS_P (output_bfd)
9918 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
9919 s->size += 4;
9920 }
0112cd26 9921 else if (! CONST_STRNEQ (name, ".init")
ce558b89
AM
9922 && s != htab->root.sgot
9923 && s != htab->root.sgotplt
861fb55a 9924 && s != htab->sstubs
5474d94f
AM
9925 && s != htab->root.sdynbss
9926 && s != htab->root.sdynrelro)
b49e97c9
TS
9927 {
9928 /* It's not one of our sections, so don't allocate space. */
9929 continue;
9930 }
9931
c456f082 9932 if (s->size == 0)
b49e97c9 9933 {
8423293d 9934 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
9935 continue;
9936 }
9937
c456f082
AM
9938 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9939 continue;
9940
b49e97c9 9941 /* Allocate memory for the section contents. */
eea6121a 9942 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 9943 if (s->contents == NULL)
b49e97c9
TS
9944 {
9945 bfd_set_error (bfd_error_no_memory);
b34976b6 9946 return FALSE;
b49e97c9
TS
9947 }
9948 }
9949
9950 if (elf_hash_table (info)->dynamic_sections_created)
9951 {
9952 /* Add some entries to the .dynamic section. We fill in the
9953 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9954 must add the entries now so that we get the correct size for
5750dcec 9955 the .dynamic section. */
af5978fb
RS
9956
9957 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec 9958 DT_MIPS_RLD_MAP entry. This must come first because glibc
6e6be592
MR
9959 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9960 may only look at the first one they see. */
0e1862bb 9961 if (!bfd_link_pic (info)
af5978fb
RS
9962 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9963 return FALSE;
b49e97c9 9964
0e1862bb 9965 if (bfd_link_executable (info)
a5499fa4
MF
9966 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9967 return FALSE;
9968
5750dcec
DJ
9969 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9970 used by the debugger. */
0e1862bb 9971 if (bfd_link_executable (info)
5750dcec
DJ
9972 && !SGI_COMPAT (output_bfd)
9973 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9974 return FALSE;
9975
0a44bf69 9976 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
9977 info->flags |= DF_TEXTREL;
9978
9979 if ((info->flags & DF_TEXTREL) != 0)
9980 {
9981 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 9982 return FALSE;
943284cc
DJ
9983
9984 /* Clear the DF_TEXTREL flag. It will be set again if we
9985 write out an actual text relocation; we may not, because
9986 at this point we do not know whether e.g. any .eh_frame
9987 absolute relocations have been converted to PC-relative. */
9988 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
9989 }
9990
9991 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 9992 return FALSE;
b49e97c9 9993
861fb55a 9994 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 9995 if (htab->is_vxworks)
b49e97c9 9996 {
0a44bf69
RS
9997 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9998 use any of the DT_MIPS_* tags. */
861fb55a 9999 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
10000 {
10001 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10002 return FALSE;
b49e97c9 10003
0a44bf69
RS
10004 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10005 return FALSE;
b49e97c9 10006
0a44bf69
RS
10007 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10008 return FALSE;
10009 }
b49e97c9 10010 }
0a44bf69
RS
10011 else
10012 {
861fb55a 10013 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
10014 {
10015 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10016 return FALSE;
b49e97c9 10017
0a44bf69
RS
10018 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10019 return FALSE;
b49e97c9 10020
0a44bf69
RS
10021 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10022 return FALSE;
10023 }
b49e97c9 10024
0a44bf69
RS
10025 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10026 return FALSE;
b49e97c9 10027
0a44bf69
RS
10028 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10029 return FALSE;
b49e97c9 10030
0a44bf69
RS
10031 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10032 return FALSE;
b49e97c9 10033
0a44bf69
RS
10034 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10035 return FALSE;
b49e97c9 10036
0a44bf69
RS
10037 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10038 return FALSE;
b49e97c9 10039
0a44bf69
RS
10040 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10041 return FALSE;
b49e97c9 10042
0a44bf69
RS
10043 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10044 return FALSE;
10045
10046 if (IRIX_COMPAT (dynobj) == ict_irix5
10047 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10048 return FALSE;
10049
10050 if (IRIX_COMPAT (dynobj) == ict_irix6
10051 && (bfd_get_section_by_name
af0edeb8 10052 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
0a44bf69
RS
10053 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10054 return FALSE;
10055 }
ce558b89 10056 if (htab->root.splt->size > 0)
861fb55a
DJ
10057 {
10058 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10059 return FALSE;
10060
10061 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10062 return FALSE;
10063
10064 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10065 return FALSE;
10066
10067 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10068 return FALSE;
10069 }
7a2b07ff
NS
10070 if (htab->is_vxworks
10071 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10072 return FALSE;
b49e97c9
TS
10073 }
10074
b34976b6 10075 return TRUE;
b49e97c9
TS
10076}
10077\f
81d43bff
RS
10078/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10079 Adjust its R_ADDEND field so that it is correct for the output file.
10080 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10081 and sections respectively; both use symbol indexes. */
10082
10083static void
10084mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10085 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10086 asection **local_sections, Elf_Internal_Rela *rel)
10087{
10088 unsigned int r_type, r_symndx;
10089 Elf_Internal_Sym *sym;
10090 asection *sec;
10091
020d7251 10092 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
81d43bff
RS
10093 {
10094 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
df58fc94 10095 if (gprel16_reloc_p (r_type)
81d43bff 10096 || r_type == R_MIPS_GPREL32
df58fc94 10097 || literal_reloc_p (r_type))
81d43bff
RS
10098 {
10099 rel->r_addend += _bfd_get_gp_value (input_bfd);
10100 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10101 }
10102
10103 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10104 sym = local_syms + r_symndx;
10105
10106 /* Adjust REL's addend to account for section merging. */
0e1862bb 10107 if (!bfd_link_relocatable (info))
81d43bff
RS
10108 {
10109 sec = local_sections[r_symndx];
10110 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10111 }
10112
10113 /* This would normally be done by the rela_normal code in elflink.c. */
10114 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10115 rel->r_addend += local_sections[r_symndx]->output_offset;
10116 }
10117}
10118
545fd46b
MR
10119/* Handle relocations against symbols from removed linkonce sections,
10120 or sections discarded by a linker script. We use this wrapper around
10121 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10122 on 64-bit ELF targets. In this case for any relocation handled, which
10123 always be the first in a triplet, the remaining two have to be processed
10124 together with the first, even if they are R_MIPS_NONE. It is the symbol
10125 index referred by the first reloc that applies to all the three and the
10126 remaining two never refer to an object symbol. And it is the final
10127 relocation (the last non-null one) that determines the output field of
10128 the whole relocation so retrieve the corresponding howto structure for
10129 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10130
10131 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10132 and therefore requires to be pasted in a loop. It also defines a block
10133 and does not protect any of its arguments, hence the extra brackets. */
10134
10135static void
10136mips_reloc_against_discarded_section (bfd *output_bfd,
10137 struct bfd_link_info *info,
10138 bfd *input_bfd, asection *input_section,
10139 Elf_Internal_Rela **rel,
10140 const Elf_Internal_Rela **relend,
10141 bfd_boolean rel_reloc,
10142 reloc_howto_type *howto,
10143 bfd_byte *contents)
10144{
10145 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10146 int count = bed->s->int_rels_per_ext_rel;
10147 unsigned int r_type;
10148 int i;
10149
10150 for (i = count - 1; i > 0; i--)
10151 {
10152 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10153 if (r_type != R_MIPS_NONE)
10154 {
10155 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10156 break;
10157 }
10158 }
10159 do
10160 {
10161 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10162 (*rel), count, (*relend),
10163 howto, i, contents);
10164 }
10165 while (0);
10166}
10167
b49e97c9
TS
10168/* Relocate a MIPS ELF section. */
10169
b34976b6 10170bfd_boolean
9719ad41
RS
10171_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10172 bfd *input_bfd, asection *input_section,
10173 bfd_byte *contents, Elf_Internal_Rela *relocs,
10174 Elf_Internal_Sym *local_syms,
10175 asection **local_sections)
b49e97c9
TS
10176{
10177 Elf_Internal_Rela *rel;
10178 const Elf_Internal_Rela *relend;
10179 bfd_vma addend = 0;
b34976b6 10180 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 10181 const struct elf_backend_data *bed;
b49e97c9
TS
10182
10183 bed = get_elf_backend_data (output_bfd);
10184 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10185 for (rel = relocs; rel < relend; ++rel)
10186 {
10187 const char *name;
c9adbffe 10188 bfd_vma value = 0;
b49e97c9 10189 reloc_howto_type *howto;
ad3d9127 10190 bfd_boolean cross_mode_jump_p = FALSE;
b34976b6 10191 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 10192 REL relocation. */
b34976b6 10193 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 10194 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 10195 const char *msg;
ab96bf03
AM
10196 unsigned long r_symndx;
10197 asection *sec;
749b8d9d
L
10198 Elf_Internal_Shdr *symtab_hdr;
10199 struct elf_link_hash_entry *h;
d4730f92 10200 bfd_boolean rel_reloc;
b49e97c9 10201
d4730f92
BS
10202 rel_reloc = (NEWABI_P (input_bfd)
10203 && mips_elf_rel_relocation_p (input_bfd, input_section,
10204 relocs, rel));
b49e97c9 10205 /* Find the relocation howto for this relocation. */
d4730f92 10206 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
ab96bf03
AM
10207
10208 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 10209 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
020d7251 10210 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
749b8d9d
L
10211 {
10212 sec = local_sections[r_symndx];
10213 h = NULL;
10214 }
ab96bf03
AM
10215 else
10216 {
ab96bf03 10217 unsigned long extsymoff;
ab96bf03 10218
ab96bf03
AM
10219 extsymoff = 0;
10220 if (!elf_bad_symtab (input_bfd))
10221 extsymoff = symtab_hdr->sh_info;
10222 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10223 while (h->root.type == bfd_link_hash_indirect
10224 || h->root.type == bfd_link_hash_warning)
10225 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10226
10227 sec = NULL;
10228 if (h->root.type == bfd_link_hash_defined
10229 || h->root.type == bfd_link_hash_defweak)
10230 sec = h->root.u.def.section;
10231 }
10232
dbaa2011 10233 if (sec != NULL && discarded_section (sec))
545fd46b
MR
10234 {
10235 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10236 input_section, &rel, &relend,
10237 rel_reloc, howto, contents);
10238 continue;
10239 }
ab96bf03 10240
4a14403c 10241 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
10242 {
10243 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10244 64-bit code, but make sure all their addresses are in the
10245 lowermost or uppermost 32-bit section of the 64-bit address
10246 space. Thus, when they use an R_MIPS_64 they mean what is
10247 usually meant by R_MIPS_32, with the exception that the
10248 stored value is sign-extended to 64 bits. */
b34976b6 10249 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
10250
10251 /* On big-endian systems, we need to lie about the position
10252 of the reloc. */
10253 if (bfd_big_endian (input_bfd))
10254 rel->r_offset += 4;
10255 }
b49e97c9
TS
10256
10257 if (!use_saved_addend_p)
10258 {
b49e97c9
TS
10259 /* If these relocations were originally of the REL variety,
10260 we must pull the addend out of the field that will be
10261 relocated. Otherwise, we simply use the contents of the
c224138d
RS
10262 RELA relocation. */
10263 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10264 relocs, rel))
b49e97c9 10265 {
b34976b6 10266 rela_relocation_p = FALSE;
c224138d
RS
10267 addend = mips_elf_read_rel_addend (input_bfd, rel,
10268 howto, contents);
738e5348
RS
10269 if (hi16_reloc_p (r_type)
10270 || (got16_reloc_p (r_type)
b49e97c9 10271 && mips_elf_local_relocation_p (input_bfd, rel,
020d7251 10272 local_sections)))
b49e97c9 10273 {
c224138d
RS
10274 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10275 contents, &addend))
749b8d9d 10276 {
749b8d9d
L
10277 if (h)
10278 name = h->root.root.string;
10279 else
10280 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10281 local_syms + r_symndx,
10282 sec);
4eca0228 10283 _bfd_error_handler
695344c0 10284 /* xgettext:c-format */
749b8d9d
L
10285 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10286 input_bfd, input_section, name, howto->name,
10287 rel->r_offset);
749b8d9d 10288 }
b49e97c9 10289 }
30ac9238
RS
10290 else
10291 addend <<= howto->rightshift;
b49e97c9
TS
10292 }
10293 else
10294 addend = rel->r_addend;
81d43bff
RS
10295 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10296 local_syms, local_sections, rel);
b49e97c9
TS
10297 }
10298
0e1862bb 10299 if (bfd_link_relocatable (info))
b49e97c9 10300 {
4a14403c 10301 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
10302 && bfd_big_endian (input_bfd))
10303 rel->r_offset -= 4;
10304
81d43bff 10305 if (!rela_relocation_p && rel->r_addend)
5a659663 10306 {
81d43bff 10307 addend += rel->r_addend;
738e5348 10308 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
10309 addend = mips_elf_high (addend);
10310 else if (r_type == R_MIPS_HIGHER)
10311 addend = mips_elf_higher (addend);
10312 else if (r_type == R_MIPS_HIGHEST)
10313 addend = mips_elf_highest (addend);
30ac9238
RS
10314 else
10315 addend >>= howto->rightshift;
b49e97c9 10316
30ac9238
RS
10317 /* We use the source mask, rather than the destination
10318 mask because the place to which we are writing will be
10319 source of the addend in the final link. */
b49e97c9
TS
10320 addend &= howto->src_mask;
10321
5a659663 10322 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10323 /* See the comment above about using R_MIPS_64 in the 32-bit
10324 ABI. Here, we need to update the addend. It would be
10325 possible to get away with just using the R_MIPS_32 reloc
10326 but for endianness. */
10327 {
10328 bfd_vma sign_bits;
10329 bfd_vma low_bits;
10330 bfd_vma high_bits;
10331
10332 if (addend & ((bfd_vma) 1 << 31))
10333#ifdef BFD64
10334 sign_bits = ((bfd_vma) 1 << 32) - 1;
10335#else
10336 sign_bits = -1;
10337#endif
10338 else
10339 sign_bits = 0;
10340
10341 /* If we don't know that we have a 64-bit type,
10342 do two separate stores. */
10343 if (bfd_big_endian (input_bfd))
10344 {
10345 /* Store the sign-bits (which are most significant)
10346 first. */
10347 low_bits = sign_bits;
10348 high_bits = addend;
10349 }
10350 else
10351 {
10352 low_bits = addend;
10353 high_bits = sign_bits;
10354 }
10355 bfd_put_32 (input_bfd, low_bits,
10356 contents + rel->r_offset);
10357 bfd_put_32 (input_bfd, high_bits,
10358 contents + rel->r_offset + 4);
10359 continue;
10360 }
10361
10362 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10363 input_bfd, input_section,
b34976b6
AM
10364 contents, FALSE))
10365 return FALSE;
b49e97c9
TS
10366 }
10367
10368 /* Go on to the next relocation. */
10369 continue;
10370 }
10371
10372 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10373 relocations for the same offset. In that case we are
10374 supposed to treat the output of each relocation as the addend
10375 for the next. */
10376 if (rel + 1 < relend
10377 && rel->r_offset == rel[1].r_offset
10378 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 10379 use_saved_addend_p = TRUE;
b49e97c9 10380 else
b34976b6 10381 use_saved_addend_p = FALSE;
b49e97c9
TS
10382
10383 /* Figure out what value we are supposed to relocate. */
10384 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10385 input_section, info, rel,
10386 addend, howto, local_syms,
10387 local_sections, &value,
38a7df63 10388 &name, &cross_mode_jump_p,
bce03d3d 10389 use_saved_addend_p))
b49e97c9
TS
10390 {
10391 case bfd_reloc_continue:
10392 /* There's nothing to do. */
10393 continue;
10394
10395 case bfd_reloc_undefined:
10396 /* mips_elf_calculate_relocation already called the
10397 undefined_symbol callback. There's no real point in
10398 trying to perform the relocation at this point, so we
10399 just skip ahead to the next relocation. */
10400 continue;
10401
10402 case bfd_reloc_notsupported:
10403 msg = _("internal error: unsupported relocation error");
10404 info->callbacks->warning
10405 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 10406 return FALSE;
b49e97c9
TS
10407
10408 case bfd_reloc_overflow:
10409 if (use_saved_addend_p)
10410 /* Ignore overflow until we reach the last relocation for
10411 a given location. */
10412 ;
10413 else
10414 {
0e53d9da
AN
10415 struct mips_elf_link_hash_table *htab;
10416
10417 htab = mips_elf_hash_table (info);
4dfe6ac6 10418 BFD_ASSERT (htab != NULL);
b49e97c9 10419 BFD_ASSERT (name != NULL);
0e53d9da 10420 if (!htab->small_data_overflow_reported
9684f078 10421 && (gprel16_reloc_p (howto->type)
df58fc94 10422 || literal_reloc_p (howto->type)))
0e53d9da 10423 {
91d6fa6a
NC
10424 msg = _("small-data section exceeds 64KB;"
10425 " lower small-data size limit (see option -G)");
0e53d9da
AN
10426
10427 htab->small_data_overflow_reported = TRUE;
10428 (*info->callbacks->einfo) ("%P: %s\n", msg);
10429 }
1a72702b
AM
10430 (*info->callbacks->reloc_overflow)
10431 (info, NULL, name, howto->name, (bfd_vma) 0,
10432 input_bfd, input_section, rel->r_offset);
b49e97c9
TS
10433 }
10434 break;
10435
10436 case bfd_reloc_ok:
10437 break;
10438
df58fc94 10439 case bfd_reloc_outofrange:
7db9a74e 10440 msg = NULL;
df58fc94 10441 if (jal_reloc_p (howto->type))
9d862524
MR
10442 msg = (cross_mode_jump_p
10443 ? _("Cannot convert a jump to JALX "
10444 "for a non-word-aligned address")
10445 : (howto->type == R_MIPS16_26
10446 ? _("Jump to a non-word-aligned address")
10447 : _("Jump to a non-instruction-aligned address")));
99aefae6 10448 else if (b_reloc_p (howto->type))
a6ebf616
MR
10449 msg = (cross_mode_jump_p
10450 ? _("Cannot convert a branch to JALX "
10451 "for a non-word-aligned address")
10452 : _("Branch to a non-instruction-aligned address"));
7db9a74e
MR
10453 else if (aligned_pcrel_reloc_p (howto->type))
10454 msg = _("PC-relative load from unaligned address");
10455 if (msg)
df58fc94 10456 {
de341542 10457 info->callbacks->einfo
ed53407e
MR
10458 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10459 break;
7361da2c 10460 }
df58fc94
RS
10461 /* Fall through. */
10462
b49e97c9
TS
10463 default:
10464 abort ();
10465 break;
10466 }
10467
10468 /* If we've got another relocation for the address, keep going
10469 until we reach the last one. */
10470 if (use_saved_addend_p)
10471 {
10472 addend = value;
10473 continue;
10474 }
10475
4a14403c 10476 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10477 /* See the comment above about using R_MIPS_64 in the 32-bit
10478 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10479 that calculated the right value. Now, however, we
10480 sign-extend the 32-bit result to 64-bits, and store it as a
10481 64-bit value. We are especially generous here in that we
10482 go to extreme lengths to support this usage on systems with
10483 only a 32-bit VMA. */
10484 {
10485 bfd_vma sign_bits;
10486 bfd_vma low_bits;
10487 bfd_vma high_bits;
10488
10489 if (value & ((bfd_vma) 1 << 31))
10490#ifdef BFD64
10491 sign_bits = ((bfd_vma) 1 << 32) - 1;
10492#else
10493 sign_bits = -1;
10494#endif
10495 else
10496 sign_bits = 0;
10497
10498 /* If we don't know that we have a 64-bit type,
10499 do two separate stores. */
10500 if (bfd_big_endian (input_bfd))
10501 {
10502 /* Undo what we did above. */
10503 rel->r_offset -= 4;
10504 /* Store the sign-bits (which are most significant)
10505 first. */
10506 low_bits = sign_bits;
10507 high_bits = value;
10508 }
10509 else
10510 {
10511 low_bits = value;
10512 high_bits = sign_bits;
10513 }
10514 bfd_put_32 (input_bfd, low_bits,
10515 contents + rel->r_offset);
10516 bfd_put_32 (input_bfd, high_bits,
10517 contents + rel->r_offset + 4);
10518 continue;
10519 }
10520
10521 /* Actually perform the relocation. */
10522 if (! mips_elf_perform_relocation (info, howto, rel, value,
10523 input_bfd, input_section,
38a7df63 10524 contents, cross_mode_jump_p))
b34976b6 10525 return FALSE;
b49e97c9
TS
10526 }
10527
b34976b6 10528 return TRUE;
b49e97c9
TS
10529}
10530\f
861fb55a
DJ
10531/* A function that iterates over each entry in la25_stubs and fills
10532 in the code for each one. DATA points to a mips_htab_traverse_info. */
10533
10534static int
10535mips_elf_create_la25_stub (void **slot, void *data)
10536{
10537 struct mips_htab_traverse_info *hti;
10538 struct mips_elf_link_hash_table *htab;
10539 struct mips_elf_la25_stub *stub;
10540 asection *s;
10541 bfd_byte *loc;
10542 bfd_vma offset, target, target_high, target_low;
10543
10544 stub = (struct mips_elf_la25_stub *) *slot;
10545 hti = (struct mips_htab_traverse_info *) data;
10546 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 10547 BFD_ASSERT (htab != NULL);
861fb55a
DJ
10548
10549 /* Create the section contents, if we haven't already. */
10550 s = stub->stub_section;
10551 loc = s->contents;
10552 if (loc == NULL)
10553 {
10554 loc = bfd_malloc (s->size);
10555 if (loc == NULL)
10556 {
10557 hti->error = TRUE;
10558 return FALSE;
10559 }
10560 s->contents = loc;
10561 }
10562
10563 /* Work out where in the section this stub should go. */
10564 offset = stub->offset;
10565
10566 /* Work out the target address. */
8f0c309a
CLT
10567 target = mips_elf_get_la25_target (stub, &s);
10568 target += s->output_section->vma + s->output_offset;
10569
861fb55a
DJ
10570 target_high = ((target + 0x8000) >> 16) & 0xffff;
10571 target_low = (target & 0xffff);
10572
10573 if (stub->stub_section != htab->strampoline)
10574 {
df58fc94 10575 /* This is a simple LUI/ADDIU stub. Zero out the beginning
861fb55a
DJ
10576 of the section and write the two instructions at the end. */
10577 memset (loc, 0, offset);
10578 loc += offset;
df58fc94
RS
10579 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10580 {
d21911ea
MR
10581 bfd_put_micromips_32 (hti->output_bfd,
10582 LA25_LUI_MICROMIPS (target_high),
10583 loc);
10584 bfd_put_micromips_32 (hti->output_bfd,
10585 LA25_ADDIU_MICROMIPS (target_low),
10586 loc + 4);
df58fc94
RS
10587 }
10588 else
10589 {
10590 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10591 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10592 }
861fb55a
DJ
10593 }
10594 else
10595 {
10596 /* This is trampoline. */
10597 loc += offset;
df58fc94
RS
10598 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10599 {
d21911ea
MR
10600 bfd_put_micromips_32 (hti->output_bfd,
10601 LA25_LUI_MICROMIPS (target_high), loc);
10602 bfd_put_micromips_32 (hti->output_bfd,
10603 LA25_J_MICROMIPS (target), loc + 4);
10604 bfd_put_micromips_32 (hti->output_bfd,
10605 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
df58fc94
RS
10606 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10607 }
10608 else
10609 {
10610 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10611 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10612 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10613 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10614 }
861fb55a
DJ
10615 }
10616 return TRUE;
10617}
10618
b49e97c9
TS
10619/* If NAME is one of the special IRIX6 symbols defined by the linker,
10620 adjust it appropriately now. */
10621
10622static void
9719ad41
RS
10623mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10624 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
10625{
10626 /* The linker script takes care of providing names and values for
10627 these, but we must place them into the right sections. */
10628 static const char* const text_section_symbols[] = {
10629 "_ftext",
10630 "_etext",
10631 "__dso_displacement",
10632 "__elf_header",
10633 "__program_header_table",
10634 NULL
10635 };
10636
10637 static const char* const data_section_symbols[] = {
10638 "_fdata",
10639 "_edata",
10640 "_end",
10641 "_fbss",
10642 NULL
10643 };
10644
10645 const char* const *p;
10646 int i;
10647
10648 for (i = 0; i < 2; ++i)
10649 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10650 *p;
10651 ++p)
10652 if (strcmp (*p, name) == 0)
10653 {
10654 /* All of these symbols are given type STT_SECTION by the
10655 IRIX6 linker. */
10656 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 10657 sym->st_other = STO_PROTECTED;
b49e97c9
TS
10658
10659 /* The IRIX linker puts these symbols in special sections. */
10660 if (i == 0)
10661 sym->st_shndx = SHN_MIPS_TEXT;
10662 else
10663 sym->st_shndx = SHN_MIPS_DATA;
10664
10665 break;
10666 }
10667}
10668
10669/* Finish up dynamic symbol handling. We set the contents of various
10670 dynamic sections here. */
10671
b34976b6 10672bfd_boolean
9719ad41
RS
10673_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10674 struct bfd_link_info *info,
10675 struct elf_link_hash_entry *h,
10676 Elf_Internal_Sym *sym)
b49e97c9
TS
10677{
10678 bfd *dynobj;
b49e97c9 10679 asection *sgot;
f4416af6 10680 struct mips_got_info *g, *gg;
b49e97c9 10681 const char *name;
3d6746ca 10682 int idx;
5108fc1b 10683 struct mips_elf_link_hash_table *htab;
738e5348 10684 struct mips_elf_link_hash_entry *hmips;
b49e97c9 10685
5108fc1b 10686 htab = mips_elf_hash_table (info);
4dfe6ac6 10687 BFD_ASSERT (htab != NULL);
b49e97c9 10688 dynobj = elf_hash_table (info)->dynobj;
738e5348 10689 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 10690
861fb55a
DJ
10691 BFD_ASSERT (!htab->is_vxworks);
10692
1bbce132
MR
10693 if (h->plt.plist != NULL
10694 && (h->plt.plist->mips_offset != MINUS_ONE
10695 || h->plt.plist->comp_offset != MINUS_ONE))
861fb55a
DJ
10696 {
10697 /* We've decided to create a PLT entry for this symbol. */
10698 bfd_byte *loc;
1bbce132 10699 bfd_vma header_address, got_address;
861fb55a 10700 bfd_vma got_address_high, got_address_low, load;
1bbce132
MR
10701 bfd_vma got_index;
10702 bfd_vma isa_bit;
10703
10704 got_index = h->plt.plist->gotplt_index;
861fb55a
DJ
10705
10706 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10707 BFD_ASSERT (h->dynindx != -1);
ce558b89 10708 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 10709 BFD_ASSERT (got_index != MINUS_ONE);
861fb55a
DJ
10710 BFD_ASSERT (!h->def_regular);
10711
10712 /* Calculate the address of the PLT header. */
1bbce132 10713 isa_bit = htab->plt_header_is_comp;
ce558b89
AM
10714 header_address = (htab->root.splt->output_section->vma
10715 + htab->root.splt->output_offset + isa_bit);
861fb55a
DJ
10716
10717 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
10718 got_address = (htab->root.sgotplt->output_section->vma
10719 + htab->root.sgotplt->output_offset
1bbce132
MR
10720 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10721
861fb55a
DJ
10722 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10723 got_address_low = got_address & 0xffff;
10724
10725 /* Initially point the .got.plt entry at the PLT header. */
ce558b89 10726 loc = (htab->root.sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
861fb55a
DJ
10727 if (ABI_64_P (output_bfd))
10728 bfd_put_64 (output_bfd, header_address, loc);
10729 else
10730 bfd_put_32 (output_bfd, header_address, loc);
10731
1bbce132
MR
10732 /* Now handle the PLT itself. First the standard entry (the order
10733 does not matter, we just have to pick one). */
10734 if (h->plt.plist->mips_offset != MINUS_ONE)
10735 {
10736 const bfd_vma *plt_entry;
10737 bfd_vma plt_offset;
861fb55a 10738
1bbce132 10739 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
861fb55a 10740
ce558b89 10741 BFD_ASSERT (plt_offset <= htab->root.splt->size);
6d30f5b2 10742
1bbce132 10743 /* Find out where the .plt entry should go. */
ce558b89 10744 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10745
10746 /* Pick the load opcode. */
10747 load = MIPS_ELF_LOAD_WORD (output_bfd);
10748
10749 /* Fill in the PLT entry itself. */
7361da2c
AB
10750
10751 if (MIPSR6_P (output_bfd))
10752 plt_entry = mipsr6_exec_plt_entry;
10753 else
10754 plt_entry = mips_exec_plt_entry;
1bbce132
MR
10755 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10756 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10757 loc + 4);
10758
10759 if (! LOAD_INTERLOCKS_P (output_bfd))
10760 {
10761 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10762 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10763 }
10764 else
10765 {
10766 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10767 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10768 loc + 12);
10769 }
6d30f5b2 10770 }
1bbce132
MR
10771
10772 /* Now the compressed entry. They come after any standard ones. */
10773 if (h->plt.plist->comp_offset != MINUS_ONE)
6d30f5b2 10774 {
1bbce132
MR
10775 bfd_vma plt_offset;
10776
10777 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10778 + h->plt.plist->comp_offset);
10779
ce558b89 10780 BFD_ASSERT (plt_offset <= htab->root.splt->size);
1bbce132
MR
10781
10782 /* Find out where the .plt entry should go. */
ce558b89 10783 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10784
10785 /* Fill in the PLT entry itself. */
833794fc
MR
10786 if (!MICROMIPS_P (output_bfd))
10787 {
10788 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10789
10790 bfd_put_16 (output_bfd, plt_entry[0], loc);
10791 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10792 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10793 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10794 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10795 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10796 bfd_put_32 (output_bfd, got_address, loc + 12);
10797 }
10798 else if (htab->insn32)
10799 {
10800 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10801
10802 bfd_put_16 (output_bfd, plt_entry[0], loc);
10803 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10804 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10805 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10806 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10807 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10808 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10809 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10810 }
10811 else
1bbce132
MR
10812 {
10813 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10814 bfd_signed_vma gotpc_offset;
10815 bfd_vma loc_address;
10816
10817 BFD_ASSERT (got_address % 4 == 0);
10818
ce558b89
AM
10819 loc_address = (htab->root.splt->output_section->vma
10820 + htab->root.splt->output_offset + plt_offset);
1bbce132
MR
10821 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10822
10823 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10824 if (gotpc_offset + 0x1000000 >= 0x2000000)
10825 {
4eca0228 10826 _bfd_error_handler
695344c0 10827 /* xgettext:c-format */
1bbce132
MR
10828 (_("%B: `%A' offset of %ld from `%A' "
10829 "beyond the range of ADDIUPC"),
10830 output_bfd,
ce558b89
AM
10831 htab->root.sgotplt->output_section,
10832 htab->root.splt->output_section,
1bbce132
MR
10833 (long) gotpc_offset);
10834 bfd_set_error (bfd_error_no_error);
10835 return FALSE;
10836 }
10837 bfd_put_16 (output_bfd,
10838 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10839 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10840 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10841 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10842 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10843 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10844 }
6d30f5b2 10845 }
861fb55a
DJ
10846
10847 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 10848 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
1bbce132 10849 got_index - 2, h->dynindx,
861fb55a
DJ
10850 R_MIPS_JUMP_SLOT, got_address);
10851
10852 /* We distinguish between PLT entries and lazy-binding stubs by
10853 giving the former an st_other value of STO_MIPS_PLT. Set the
10854 flag and leave the value if there are any relocations in the
10855 binary where pointer equality matters. */
10856 sym->st_shndx = SHN_UNDEF;
10857 if (h->pointer_equality_needed)
1bbce132 10858 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
861fb55a 10859 else
1bbce132
MR
10860 {
10861 sym->st_value = 0;
10862 sym->st_other = 0;
10863 }
861fb55a 10864 }
1bbce132
MR
10865
10866 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
b49e97c9 10867 {
861fb55a 10868 /* We've decided to create a lazy-binding stub. */
1bbce132
MR
10869 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10870 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10871 bfd_vma stub_size = htab->function_stub_size;
5108fc1b 10872 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
1bbce132
MR
10873 bfd_vma isa_bit = micromips_p;
10874 bfd_vma stub_big_size;
10875
833794fc 10876 if (!micromips_p)
1bbce132 10877 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
833794fc
MR
10878 else if (htab->insn32)
10879 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10880 else
10881 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
b49e97c9
TS
10882
10883 /* This symbol has a stub. Set it up. */
10884
10885 BFD_ASSERT (h->dynindx != -1);
10886
1bbce132 10887 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
3d6746ca
DD
10888
10889 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
10890 sign extension at runtime in the stub, resulting in a negative
10891 index value. */
10892 if (h->dynindx & ~0x7fffffff)
b34976b6 10893 return FALSE;
b49e97c9
TS
10894
10895 /* Fill the stub. */
1bbce132
MR
10896 if (micromips_p)
10897 {
10898 idx = 0;
10899 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10900 stub + idx);
10901 idx += 4;
833794fc
MR
10902 if (htab->insn32)
10903 {
10904 bfd_put_micromips_32 (output_bfd,
40fc1451 10905 STUB_MOVE32_MICROMIPS, stub + idx);
833794fc
MR
10906 idx += 4;
10907 }
10908 else
10909 {
10910 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10911 idx += 2;
10912 }
1bbce132
MR
10913 if (stub_size == stub_big_size)
10914 {
10915 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10916
10917 bfd_put_micromips_32 (output_bfd,
10918 STUB_LUI_MICROMIPS (dynindx_hi),
10919 stub + idx);
10920 idx += 4;
10921 }
833794fc
MR
10922 if (htab->insn32)
10923 {
10924 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10925 stub + idx);
10926 idx += 4;
10927 }
10928 else
10929 {
10930 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10931 idx += 2;
10932 }
1bbce132
MR
10933
10934 /* If a large stub is not required and sign extension is not a
10935 problem, then use legacy code in the stub. */
10936 if (stub_size == stub_big_size)
10937 bfd_put_micromips_32 (output_bfd,
10938 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10939 stub + idx);
10940 else if (h->dynindx & ~0x7fff)
10941 bfd_put_micromips_32 (output_bfd,
10942 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10943 stub + idx);
10944 else
10945 bfd_put_micromips_32 (output_bfd,
10946 STUB_LI16S_MICROMIPS (output_bfd,
10947 h->dynindx),
10948 stub + idx);
10949 }
3d6746ca 10950 else
1bbce132
MR
10951 {
10952 idx = 0;
10953 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10954 idx += 4;
40fc1451 10955 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
1bbce132
MR
10956 idx += 4;
10957 if (stub_size == stub_big_size)
10958 {
10959 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10960 stub + idx);
10961 idx += 4;
10962 }
10963 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10964 idx += 4;
10965
10966 /* If a large stub is not required and sign extension is not a
10967 problem, then use legacy code in the stub. */
10968 if (stub_size == stub_big_size)
10969 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10970 stub + idx);
10971 else if (h->dynindx & ~0x7fff)
10972 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10973 stub + idx);
10974 else
10975 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10976 stub + idx);
10977 }
5108fc1b 10978
1bbce132
MR
10979 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10980 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10981 stub, stub_size);
b49e97c9 10982
1bbce132 10983 /* Mark the symbol as undefined. stub_offset != -1 occurs
b49e97c9
TS
10984 only for the referenced symbol. */
10985 sym->st_shndx = SHN_UNDEF;
10986
10987 /* The run-time linker uses the st_value field of the symbol
10988 to reset the global offset table entry for this external
10989 to its stub address when unlinking a shared object. */
4e41d0d7
RS
10990 sym->st_value = (htab->sstubs->output_section->vma
10991 + htab->sstubs->output_offset
1bbce132
MR
10992 + h->plt.plist->stub_offset
10993 + isa_bit);
10994 sym->st_other = other;
b49e97c9
TS
10995 }
10996
738e5348
RS
10997 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10998 refer to the stub, since only the stub uses the standard calling
10999 conventions. */
11000 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11001 {
11002 BFD_ASSERT (hmips->need_fn_stub);
11003 sym->st_value = (hmips->fn_stub->output_section->vma
11004 + hmips->fn_stub->output_offset);
11005 sym->st_size = hmips->fn_stub->size;
11006 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11007 }
11008
b49e97c9 11009 BFD_ASSERT (h->dynindx != -1
f5385ebf 11010 || h->forced_local);
b49e97c9 11011
ce558b89 11012 sgot = htab->root.sgot;
a8028dd0 11013 g = htab->got_info;
b49e97c9
TS
11014 BFD_ASSERT (g != NULL);
11015
11016 /* Run through the global symbol table, creating GOT entries for all
11017 the symbols that need them. */
020d7251 11018 if (hmips->global_got_area != GGA_NONE)
b49e97c9
TS
11019 {
11020 bfd_vma offset;
11021 bfd_vma value;
11022
6eaa6adc 11023 value = sym->st_value;
13fbec83 11024 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
b49e97c9
TS
11025 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11026 }
11027
e641e783 11028 if (hmips->global_got_area != GGA_NONE && g->next)
f4416af6
AO
11029 {
11030 struct mips_got_entry e, *p;
0626d451 11031 bfd_vma entry;
f4416af6 11032 bfd_vma offset;
f4416af6
AO
11033
11034 gg = g;
11035
11036 e.abfd = output_bfd;
11037 e.symndx = -1;
738e5348 11038 e.d.h = hmips;
9ab066b4 11039 e.tls_type = GOT_TLS_NONE;
143d77c5 11040
f4416af6
AO
11041 for (g = g->next; g->next != gg; g = g->next)
11042 {
11043 if (g->got_entries
11044 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11045 &e)))
11046 {
11047 offset = p->gotidx;
ce558b89 11048 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
0e1862bb 11049 if (bfd_link_pic (info)
0626d451
RS
11050 || (elf_hash_table (info)->dynamic_sections_created
11051 && p->d.h != NULL
f5385ebf
AM
11052 && p->d.h->root.def_dynamic
11053 && !p->d.h->root.def_regular))
0626d451
RS
11054 {
11055 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11056 the various compatibility problems, it's easier to mock
11057 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11058 mips_elf_create_dynamic_relocation to calculate the
11059 appropriate addend. */
11060 Elf_Internal_Rela rel[3];
11061
11062 memset (rel, 0, sizeof (rel));
11063 if (ABI_64_P (output_bfd))
11064 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11065 else
11066 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11067 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11068
11069 entry = 0;
11070 if (! (mips_elf_create_dynamic_relocation
11071 (output_bfd, info, rel,
11072 e.d.h, NULL, sym->st_value, &entry, sgot)))
11073 return FALSE;
11074 }
11075 else
11076 entry = sym->st_value;
11077 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
11078 }
11079 }
11080 }
11081
b49e97c9
TS
11082 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11083 name = h->root.root.string;
9637f6ef 11084 if (h == elf_hash_table (info)->hdynamic
22edb2f1 11085 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
11086 sym->st_shndx = SHN_ABS;
11087 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11088 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11089 {
11090 sym->st_shndx = SHN_ABS;
11091 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11092 sym->st_value = 1;
11093 }
4a14403c 11094 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
11095 {
11096 sym->st_shndx = SHN_ABS;
11097 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11098 sym->st_value = elf_gp (output_bfd);
11099 }
11100 else if (SGI_COMPAT (output_bfd))
11101 {
11102 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11103 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11104 {
11105 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11106 sym->st_other = STO_PROTECTED;
11107 sym->st_value = 0;
11108 sym->st_shndx = SHN_MIPS_DATA;
11109 }
11110 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11111 {
11112 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11113 sym->st_other = STO_PROTECTED;
11114 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11115 sym->st_shndx = SHN_ABS;
11116 }
11117 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11118 {
11119 if (h->type == STT_FUNC)
11120 sym->st_shndx = SHN_MIPS_TEXT;
11121 else if (h->type == STT_OBJECT)
11122 sym->st_shndx = SHN_MIPS_DATA;
11123 }
11124 }
11125
861fb55a
DJ
11126 /* Emit a copy reloc, if needed. */
11127 if (h->needs_copy)
11128 {
11129 asection *s;
11130 bfd_vma symval;
11131
11132 BFD_ASSERT (h->dynindx != -1);
11133 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11134
11135 s = mips_elf_rel_dyn_section (info, FALSE);
11136 symval = (h->root.u.def.section->output_section->vma
11137 + h->root.u.def.section->output_offset
11138 + h->root.u.def.value);
11139 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11140 h->dynindx, R_MIPS_COPY, symval);
11141 }
11142
b49e97c9
TS
11143 /* Handle the IRIX6-specific symbols. */
11144 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11145 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11146
cbf8d970
MR
11147 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11148 to treat compressed symbols like any other. */
30c09090 11149 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
11150 {
11151 BFD_ASSERT (sym->st_value & 1);
11152 sym->st_other -= STO_MIPS16;
11153 }
cbf8d970
MR
11154 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11155 {
11156 BFD_ASSERT (sym->st_value & 1);
11157 sym->st_other -= STO_MICROMIPS;
11158 }
b49e97c9 11159
b34976b6 11160 return TRUE;
b49e97c9
TS
11161}
11162
0a44bf69
RS
11163/* Likewise, for VxWorks. */
11164
11165bfd_boolean
11166_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11167 struct bfd_link_info *info,
11168 struct elf_link_hash_entry *h,
11169 Elf_Internal_Sym *sym)
11170{
11171 bfd *dynobj;
11172 asection *sgot;
11173 struct mips_got_info *g;
11174 struct mips_elf_link_hash_table *htab;
020d7251 11175 struct mips_elf_link_hash_entry *hmips;
0a44bf69
RS
11176
11177 htab = mips_elf_hash_table (info);
4dfe6ac6 11178 BFD_ASSERT (htab != NULL);
0a44bf69 11179 dynobj = elf_hash_table (info)->dynobj;
020d7251 11180 hmips = (struct mips_elf_link_hash_entry *) h;
0a44bf69 11181
1bbce132 11182 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
0a44bf69 11183 {
6d79d2ed 11184 bfd_byte *loc;
1bbce132 11185 bfd_vma plt_address, got_address, got_offset, branch_offset;
0a44bf69
RS
11186 Elf_Internal_Rela rel;
11187 static const bfd_vma *plt_entry;
1bbce132
MR
11188 bfd_vma gotplt_index;
11189 bfd_vma plt_offset;
11190
11191 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11192 gotplt_index = h->plt.plist->gotplt_index;
0a44bf69
RS
11193
11194 BFD_ASSERT (h->dynindx != -1);
ce558b89 11195 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 11196 BFD_ASSERT (gotplt_index != MINUS_ONE);
ce558b89 11197 BFD_ASSERT (plt_offset <= htab->root.splt->size);
0a44bf69
RS
11198
11199 /* Calculate the address of the .plt entry. */
ce558b89
AM
11200 plt_address = (htab->root.splt->output_section->vma
11201 + htab->root.splt->output_offset
1bbce132 11202 + plt_offset);
0a44bf69
RS
11203
11204 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
11205 got_address = (htab->root.sgotplt->output_section->vma
11206 + htab->root.sgotplt->output_offset
1bbce132 11207 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
0a44bf69
RS
11208
11209 /* Calculate the offset of the .got.plt entry from
11210 _GLOBAL_OFFSET_TABLE_. */
11211 got_offset = mips_elf_gotplt_index (info, h);
11212
11213 /* Calculate the offset for the branch at the start of the PLT
11214 entry. The branch jumps to the beginning of .plt. */
1bbce132 11215 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
0a44bf69
RS
11216
11217 /* Fill in the initial value of the .got.plt entry. */
11218 bfd_put_32 (output_bfd, plt_address,
ce558b89 11219 (htab->root.sgotplt->contents
1bbce132 11220 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
0a44bf69
RS
11221
11222 /* Find out where the .plt entry should go. */
ce558b89 11223 loc = htab->root.splt->contents + plt_offset;
0a44bf69 11224
0e1862bb 11225 if (bfd_link_pic (info))
0a44bf69
RS
11226 {
11227 plt_entry = mips_vxworks_shared_plt_entry;
11228 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11229 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11230 }
11231 else
11232 {
11233 bfd_vma got_address_high, got_address_low;
11234
11235 plt_entry = mips_vxworks_exec_plt_entry;
11236 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11237 got_address_low = got_address & 0xffff;
11238
11239 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11240 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11241 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11242 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11243 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11244 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11245 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11246 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11247
11248 loc = (htab->srelplt2->contents
1bbce132 11249 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
0a44bf69
RS
11250
11251 /* Emit a relocation for the .got.plt entry. */
11252 rel.r_offset = got_address;
11253 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
1bbce132 11254 rel.r_addend = plt_offset;
0a44bf69
RS
11255 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11256
11257 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11258 loc += sizeof (Elf32_External_Rela);
11259 rel.r_offset = plt_address + 8;
11260 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11261 rel.r_addend = got_offset;
11262 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11263
11264 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11265 loc += sizeof (Elf32_External_Rela);
11266 rel.r_offset += 4;
11267 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11268 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11269 }
11270
11271 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 11272 loc = (htab->root.srelplt->contents
1bbce132 11273 + gotplt_index * sizeof (Elf32_External_Rela));
0a44bf69
RS
11274 rel.r_offset = got_address;
11275 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11276 rel.r_addend = 0;
11277 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11278
11279 if (!h->def_regular)
11280 sym->st_shndx = SHN_UNDEF;
11281 }
11282
11283 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11284
ce558b89 11285 sgot = htab->root.sgot;
a8028dd0 11286 g = htab->got_info;
0a44bf69
RS
11287 BFD_ASSERT (g != NULL);
11288
11289 /* See if this symbol has an entry in the GOT. */
020d7251 11290 if (hmips->global_got_area != GGA_NONE)
0a44bf69
RS
11291 {
11292 bfd_vma offset;
11293 Elf_Internal_Rela outrel;
11294 bfd_byte *loc;
11295 asection *s;
11296
11297 /* Install the symbol value in the GOT. */
13fbec83 11298 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
0a44bf69
RS
11299 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11300
11301 /* Add a dynamic relocation for it. */
11302 s = mips_elf_rel_dyn_section (info, FALSE);
11303 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11304 outrel.r_offset = (sgot->output_section->vma
11305 + sgot->output_offset
11306 + offset);
11307 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11308 outrel.r_addend = 0;
11309 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11310 }
11311
11312 /* Emit a copy reloc, if needed. */
11313 if (h->needs_copy)
11314 {
11315 Elf_Internal_Rela rel;
5474d94f
AM
11316 asection *srel;
11317 bfd_byte *loc;
0a44bf69
RS
11318
11319 BFD_ASSERT (h->dynindx != -1);
11320
11321 rel.r_offset = (h->root.u.def.section->output_section->vma
11322 + h->root.u.def.section->output_offset
11323 + h->root.u.def.value);
11324 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11325 rel.r_addend = 0;
5474d94f
AM
11326 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
11327 srel = htab->root.sreldynrelro;
11328 else
11329 srel = htab->root.srelbss;
11330 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11331 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11332 ++srel->reloc_count;
0a44bf69
RS
11333 }
11334
df58fc94
RS
11335 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11336 if (ELF_ST_IS_COMPRESSED (sym->st_other))
0a44bf69
RS
11337 sym->st_value &= ~1;
11338
11339 return TRUE;
11340}
11341
861fb55a
DJ
11342/* Write out a plt0 entry to the beginning of .plt. */
11343
1bbce132 11344static bfd_boolean
861fb55a
DJ
11345mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11346{
11347 bfd_byte *loc;
11348 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11349 static const bfd_vma *plt_entry;
11350 struct mips_elf_link_hash_table *htab;
11351
11352 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11353 BFD_ASSERT (htab != NULL);
11354
861fb55a
DJ
11355 if (ABI_64_P (output_bfd))
11356 plt_entry = mips_n64_exec_plt0_entry;
11357 else if (ABI_N32_P (output_bfd))
11358 plt_entry = mips_n32_exec_plt0_entry;
833794fc 11359 else if (!htab->plt_header_is_comp)
861fb55a 11360 plt_entry = mips_o32_exec_plt0_entry;
833794fc
MR
11361 else if (htab->insn32)
11362 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11363 else
11364 plt_entry = micromips_o32_exec_plt0_entry;
861fb55a
DJ
11365
11366 /* Calculate the value of .got.plt. */
ce558b89
AM
11367 gotplt_value = (htab->root.sgotplt->output_section->vma
11368 + htab->root.sgotplt->output_offset);
861fb55a
DJ
11369 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11370 gotplt_value_low = gotplt_value & 0xffff;
11371
11372 /* The PLT sequence is not safe for N64 if .got.plt's address can
11373 not be loaded in two instructions. */
11374 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11375 || ~(gotplt_value | 0x7fffffff) == 0);
11376
11377 /* Install the PLT header. */
ce558b89 11378 loc = htab->root.splt->contents;
1bbce132
MR
11379 if (plt_entry == micromips_o32_exec_plt0_entry)
11380 {
11381 bfd_vma gotpc_offset;
11382 bfd_vma loc_address;
11383 size_t i;
11384
11385 BFD_ASSERT (gotplt_value % 4 == 0);
11386
ce558b89
AM
11387 loc_address = (htab->root.splt->output_section->vma
11388 + htab->root.splt->output_offset);
1bbce132
MR
11389 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11390
11391 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11392 if (gotpc_offset + 0x1000000 >= 0x2000000)
11393 {
4eca0228 11394 _bfd_error_handler
695344c0 11395 /* xgettext:c-format */
1bbce132
MR
11396 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11397 output_bfd,
ce558b89
AM
11398 htab->root.sgotplt->output_section,
11399 htab->root.splt->output_section,
1bbce132
MR
11400 (long) gotpc_offset);
11401 bfd_set_error (bfd_error_no_error);
11402 return FALSE;
11403 }
11404 bfd_put_16 (output_bfd,
11405 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11406 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11407 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11408 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11409 }
833794fc
MR
11410 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11411 {
11412 size_t i;
11413
11414 bfd_put_16 (output_bfd, plt_entry[0], loc);
11415 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11416 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11417 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11418 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11419 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11420 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11421 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11422 }
1bbce132
MR
11423 else
11424 {
11425 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11426 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11427 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11428 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11429 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11430 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11431 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11432 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11433 }
11434
11435 return TRUE;
861fb55a
DJ
11436}
11437
0a44bf69
RS
11438/* Install the PLT header for a VxWorks executable and finalize the
11439 contents of .rela.plt.unloaded. */
11440
11441static void
11442mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11443{
11444 Elf_Internal_Rela rela;
11445 bfd_byte *loc;
11446 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11447 static const bfd_vma *plt_entry;
11448 struct mips_elf_link_hash_table *htab;
11449
11450 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11451 BFD_ASSERT (htab != NULL);
11452
0a44bf69
RS
11453 plt_entry = mips_vxworks_exec_plt0_entry;
11454
11455 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11456 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11457 + htab->root.hgot->root.u.def.section->output_offset
11458 + htab->root.hgot->root.u.def.value);
11459
11460 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11461 got_value_low = got_value & 0xffff;
11462
11463 /* Calculate the address of the PLT header. */
ce558b89
AM
11464 plt_address = (htab->root.splt->output_section->vma
11465 + htab->root.splt->output_offset);
0a44bf69
RS
11466
11467 /* Install the PLT header. */
ce558b89 11468 loc = htab->root.splt->contents;
0a44bf69
RS
11469 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11470 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11471 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11472 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11473 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11474 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11475
11476 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11477 loc = htab->srelplt2->contents;
11478 rela.r_offset = plt_address;
11479 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11480 rela.r_addend = 0;
11481 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11482 loc += sizeof (Elf32_External_Rela);
11483
11484 /* Output the relocation for the following addiu of
11485 %lo(_GLOBAL_OFFSET_TABLE_). */
11486 rela.r_offset += 4;
11487 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11488 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11489 loc += sizeof (Elf32_External_Rela);
11490
11491 /* Fix up the remaining relocations. They may have the wrong
11492 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11493 in which symbols were output. */
11494 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11495 {
11496 Elf_Internal_Rela rel;
11497
11498 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11499 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11500 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11501 loc += sizeof (Elf32_External_Rela);
11502
11503 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11504 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11505 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11506 loc += sizeof (Elf32_External_Rela);
11507
11508 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11509 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11510 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11511 loc += sizeof (Elf32_External_Rela);
11512 }
11513}
11514
11515/* Install the PLT header for a VxWorks shared library. */
11516
11517static void
11518mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11519{
11520 unsigned int i;
11521 struct mips_elf_link_hash_table *htab;
11522
11523 htab = mips_elf_hash_table (info);
4dfe6ac6 11524 BFD_ASSERT (htab != NULL);
0a44bf69
RS
11525
11526 /* We just need to copy the entry byte-by-byte. */
11527 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11528 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
ce558b89 11529 htab->root.splt->contents + i * 4);
0a44bf69
RS
11530}
11531
b49e97c9
TS
11532/* Finish up the dynamic sections. */
11533
b34976b6 11534bfd_boolean
9719ad41
RS
11535_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11536 struct bfd_link_info *info)
b49e97c9
TS
11537{
11538 bfd *dynobj;
11539 asection *sdyn;
11540 asection *sgot;
f4416af6 11541 struct mips_got_info *gg, *g;
0a44bf69 11542 struct mips_elf_link_hash_table *htab;
b49e97c9 11543
0a44bf69 11544 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11545 BFD_ASSERT (htab != NULL);
11546
b49e97c9
TS
11547 dynobj = elf_hash_table (info)->dynobj;
11548
3d4d4302 11549 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
b49e97c9 11550
ce558b89 11551 sgot = htab->root.sgot;
23cc69b6 11552 gg = htab->got_info;
b49e97c9
TS
11553
11554 if (elf_hash_table (info)->dynamic_sections_created)
11555 {
11556 bfd_byte *b;
943284cc 11557 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
11558
11559 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
11560 BFD_ASSERT (gg != NULL);
11561
d7206569 11562 g = mips_elf_bfd_got (output_bfd, FALSE);
b49e97c9
TS
11563 BFD_ASSERT (g != NULL);
11564
11565 for (b = sdyn->contents;
eea6121a 11566 b < sdyn->contents + sdyn->size;
b49e97c9
TS
11567 b += MIPS_ELF_DYN_SIZE (dynobj))
11568 {
11569 Elf_Internal_Dyn dyn;
11570 const char *name;
11571 size_t elemsize;
11572 asection *s;
b34976b6 11573 bfd_boolean swap_out_p;
b49e97c9
TS
11574
11575 /* Read in the current dynamic entry. */
11576 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11577
11578 /* Assume that we're going to modify it and write it out. */
b34976b6 11579 swap_out_p = TRUE;
b49e97c9
TS
11580
11581 switch (dyn.d_tag)
11582 {
11583 case DT_RELENT:
b49e97c9
TS
11584 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11585 break;
11586
0a44bf69
RS
11587 case DT_RELAENT:
11588 BFD_ASSERT (htab->is_vxworks);
11589 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11590 break;
11591
b49e97c9
TS
11592 case DT_STRSZ:
11593 /* Rewrite DT_STRSZ. */
11594 dyn.d_un.d_val =
11595 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11596 break;
11597
11598 case DT_PLTGOT:
ce558b89 11599 s = htab->root.sgot;
861fb55a
DJ
11600 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11601 break;
11602
11603 case DT_MIPS_PLTGOT:
ce558b89 11604 s = htab->root.sgotplt;
861fb55a 11605 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
11606 break;
11607
11608 case DT_MIPS_RLD_VERSION:
11609 dyn.d_un.d_val = 1; /* XXX */
11610 break;
11611
11612 case DT_MIPS_FLAGS:
11613 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11614 break;
11615
b49e97c9 11616 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
11617 {
11618 time_t t;
11619 time (&t);
11620 dyn.d_un.d_val = t;
11621 }
b49e97c9
TS
11622 break;
11623
11624 case DT_MIPS_ICHECKSUM:
11625 /* XXX FIXME: */
b34976b6 11626 swap_out_p = FALSE;
b49e97c9
TS
11627 break;
11628
11629 case DT_MIPS_IVERSION:
11630 /* XXX FIXME: */
b34976b6 11631 swap_out_p = FALSE;
b49e97c9
TS
11632 break;
11633
11634 case DT_MIPS_BASE_ADDRESS:
11635 s = output_bfd->sections;
11636 BFD_ASSERT (s != NULL);
11637 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11638 break;
11639
11640 case DT_MIPS_LOCAL_GOTNO:
11641 dyn.d_un.d_val = g->local_gotno;
11642 break;
11643
11644 case DT_MIPS_UNREFEXTNO:
11645 /* The index into the dynamic symbol table which is the
11646 entry of the first external symbol that is not
11647 referenced within the same object. */
11648 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11649 break;
11650
11651 case DT_MIPS_GOTSYM:
d222d210 11652 if (htab->global_gotsym)
b49e97c9 11653 {
d222d210 11654 dyn.d_un.d_val = htab->global_gotsym->dynindx;
b49e97c9
TS
11655 break;
11656 }
11657 /* In case if we don't have global got symbols we default
11658 to setting DT_MIPS_GOTSYM to the same value as
1a0670f3
AM
11659 DT_MIPS_SYMTABNO. */
11660 /* Fall through. */
b49e97c9
TS
11661
11662 case DT_MIPS_SYMTABNO:
11663 name = ".dynsym";
11664 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
4ade44b7 11665 s = bfd_get_linker_section (dynobj, name);
b49e97c9 11666
131e2f8e
MF
11667 if (s != NULL)
11668 dyn.d_un.d_val = s->size / elemsize;
11669 else
11670 dyn.d_un.d_val = 0;
b49e97c9
TS
11671 break;
11672
11673 case DT_MIPS_HIPAGENO:
861fb55a 11674 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
11675 break;
11676
11677 case DT_MIPS_RLD_MAP:
b4082c70
DD
11678 {
11679 struct elf_link_hash_entry *h;
11680 h = mips_elf_hash_table (info)->rld_symbol;
11681 if (!h)
11682 {
11683 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11684 swap_out_p = FALSE;
11685 break;
11686 }
11687 s = h->root.u.def.section;
a5499fa4
MF
11688
11689 /* The MIPS_RLD_MAP tag stores the absolute address of the
11690 debug pointer. */
b4082c70
DD
11691 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11692 + h->root.u.def.value);
11693 }
b49e97c9
TS
11694 break;
11695
a5499fa4
MF
11696 case DT_MIPS_RLD_MAP_REL:
11697 {
11698 struct elf_link_hash_entry *h;
11699 bfd_vma dt_addr, rld_addr;
11700 h = mips_elf_hash_table (info)->rld_symbol;
11701 if (!h)
11702 {
11703 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11704 swap_out_p = FALSE;
11705 break;
11706 }
11707 s = h->root.u.def.section;
11708
11709 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11710 pointer, relative to the address of the tag. */
11711 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
d5cff5df 11712 + (b - sdyn->contents));
a5499fa4
MF
11713 rld_addr = (s->output_section->vma + s->output_offset
11714 + h->root.u.def.value);
11715 dyn.d_un.d_ptr = rld_addr - dt_addr;
11716 }
11717 break;
11718
b49e97c9
TS
11719 case DT_MIPS_OPTIONS:
11720 s = (bfd_get_section_by_name
11721 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11722 dyn.d_un.d_ptr = s->vma;
11723 break;
11724
0a44bf69 11725 case DT_PLTREL:
861fb55a
DJ
11726 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11727 if (htab->is_vxworks)
11728 dyn.d_un.d_val = DT_RELA;
11729 else
11730 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
11731 break;
11732
11733 case DT_PLTRELSZ:
861fb55a 11734 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89 11735 dyn.d_un.d_val = htab->root.srelplt->size;
0a44bf69
RS
11736 break;
11737
11738 case DT_JMPREL:
861fb55a 11739 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
11740 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11741 + htab->root.srelplt->output_offset);
0a44bf69
RS
11742 break;
11743
943284cc
DJ
11744 case DT_TEXTREL:
11745 /* If we didn't need any text relocations after all, delete
11746 the dynamic tag. */
11747 if (!(info->flags & DF_TEXTREL))
11748 {
11749 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11750 swap_out_p = FALSE;
11751 }
11752 break;
11753
11754 case DT_FLAGS:
11755 /* If we didn't need any text relocations after all, clear
11756 DF_TEXTREL from DT_FLAGS. */
11757 if (!(info->flags & DF_TEXTREL))
11758 dyn.d_un.d_val &= ~DF_TEXTREL;
11759 else
11760 swap_out_p = FALSE;
11761 break;
11762
b49e97c9 11763 default:
b34976b6 11764 swap_out_p = FALSE;
7a2b07ff
NS
11765 if (htab->is_vxworks
11766 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11767 swap_out_p = TRUE;
b49e97c9
TS
11768 break;
11769 }
11770
943284cc 11771 if (swap_out_p || dyn_skipped)
b49e97c9 11772 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
11773 (dynobj, &dyn, b - dyn_skipped);
11774
11775 if (dyn_to_skip)
11776 {
11777 dyn_skipped += dyn_to_skip;
11778 dyn_to_skip = 0;
11779 }
b49e97c9 11780 }
943284cc
DJ
11781
11782 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11783 if (dyn_skipped > 0)
11784 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
11785 }
11786
b55fd4d4
DJ
11787 if (sgot != NULL && sgot->size > 0
11788 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 11789 {
0a44bf69
RS
11790 if (htab->is_vxworks)
11791 {
11792 /* The first entry of the global offset table points to the
11793 ".dynamic" section. The second is initialized by the
11794 loader and contains the shared library identifier.
11795 The third is also initialized by the loader and points
11796 to the lazy resolution stub. */
11797 MIPS_ELF_PUT_WORD (output_bfd,
11798 sdyn->output_offset + sdyn->output_section->vma,
11799 sgot->contents);
11800 MIPS_ELF_PUT_WORD (output_bfd, 0,
11801 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11802 MIPS_ELF_PUT_WORD (output_bfd, 0,
11803 sgot->contents
11804 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11805 }
11806 else
11807 {
11808 /* The first entry of the global offset table will be filled at
11809 runtime. The second entry will be used by some runtime loaders.
11810 This isn't the case of IRIX rld. */
11811 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 11812 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
11813 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11814 }
b49e97c9 11815
54938e2a
TS
11816 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11817 = MIPS_ELF_GOT_SIZE (output_bfd);
11818 }
b49e97c9 11819
f4416af6
AO
11820 /* Generate dynamic relocations for the non-primary gots. */
11821 if (gg != NULL && gg->next)
11822 {
11823 Elf_Internal_Rela rel[3];
11824 bfd_vma addend = 0;
11825
11826 memset (rel, 0, sizeof (rel));
11827 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11828
11829 for (g = gg->next; g->next != gg; g = g->next)
11830 {
91d6fa6a 11831 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 11832 + g->next->tls_gotno;
f4416af6 11833
9719ad41 11834 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 11835 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
11836 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11837 sgot->contents
91d6fa6a 11838 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6 11839
0e1862bb 11840 if (! bfd_link_pic (info))
f4416af6
AO
11841 continue;
11842
cb22ccf4 11843 for (; got_index < g->local_gotno; got_index++)
f4416af6 11844 {
cb22ccf4
KCY
11845 if (got_index >= g->assigned_low_gotno
11846 && got_index <= g->assigned_high_gotno)
11847 continue;
11848
f4416af6 11849 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
cb22ccf4 11850 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
11851 if (!(mips_elf_create_dynamic_relocation
11852 (output_bfd, info, rel, NULL,
11853 bfd_abs_section_ptr,
11854 0, &addend, sgot)))
11855 return FALSE;
11856 BFD_ASSERT (addend == 0);
11857 }
11858 }
11859 }
11860
3133ddbf
DJ
11861 /* The generation of dynamic relocations for the non-primary gots
11862 adds more dynamic relocations. We cannot count them until
11863 here. */
11864
11865 if (elf_hash_table (info)->dynamic_sections_created)
11866 {
11867 bfd_byte *b;
11868 bfd_boolean swap_out_p;
11869
11870 BFD_ASSERT (sdyn != NULL);
11871
11872 for (b = sdyn->contents;
11873 b < sdyn->contents + sdyn->size;
11874 b += MIPS_ELF_DYN_SIZE (dynobj))
11875 {
11876 Elf_Internal_Dyn dyn;
11877 asection *s;
11878
11879 /* Read in the current dynamic entry. */
11880 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11881
11882 /* Assume that we're going to modify it and write it out. */
11883 swap_out_p = TRUE;
11884
11885 switch (dyn.d_tag)
11886 {
11887 case DT_RELSZ:
11888 /* Reduce DT_RELSZ to account for any relocations we
11889 decided not to make. This is for the n64 irix rld,
11890 which doesn't seem to apply any relocations if there
11891 are trailing null entries. */
0a44bf69 11892 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
11893 dyn.d_un.d_val = (s->reloc_count
11894 * (ABI_64_P (output_bfd)
11895 ? sizeof (Elf64_Mips_External_Rel)
11896 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
11897 /* Adjust the section size too. Tools like the prelinker
11898 can reasonably expect the values to the same. */
11899 elf_section_data (s->output_section)->this_hdr.sh_size
11900 = dyn.d_un.d_val;
3133ddbf
DJ
11901 break;
11902
11903 default:
11904 swap_out_p = FALSE;
11905 break;
11906 }
11907
11908 if (swap_out_p)
11909 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11910 (dynobj, &dyn, b);
11911 }
11912 }
11913
b49e97c9 11914 {
b49e97c9
TS
11915 asection *s;
11916 Elf32_compact_rel cpt;
11917
b49e97c9
TS
11918 if (SGI_COMPAT (output_bfd))
11919 {
11920 /* Write .compact_rel section out. */
3d4d4302 11921 s = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
11922 if (s != NULL)
11923 {
11924 cpt.id1 = 1;
11925 cpt.num = s->reloc_count;
11926 cpt.id2 = 2;
11927 cpt.offset = (s->output_section->filepos
11928 + sizeof (Elf32_External_compact_rel));
11929 cpt.reserved0 = 0;
11930 cpt.reserved1 = 0;
11931 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11932 ((Elf32_External_compact_rel *)
11933 s->contents));
11934
11935 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 11936 if (htab->sstubs != NULL)
b49e97c9
TS
11937 {
11938 file_ptr dummy_offset;
11939
4e41d0d7
RS
11940 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11941 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11942 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 11943 htab->function_stub_size);
b49e97c9
TS
11944 }
11945 }
11946 }
11947
0a44bf69
RS
11948 /* The psABI says that the dynamic relocations must be sorted in
11949 increasing order of r_symndx. The VxWorks EABI doesn't require
11950 this, and because the code below handles REL rather than RELA
11951 relocations, using it for VxWorks would be outright harmful. */
11952 if (!htab->is_vxworks)
b49e97c9 11953 {
0a44bf69
RS
11954 s = mips_elf_rel_dyn_section (info, FALSE);
11955 if (s != NULL
11956 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11957 {
11958 reldyn_sorting_bfd = output_bfd;
b49e97c9 11959
0a44bf69
RS
11960 if (ABI_64_P (output_bfd))
11961 qsort ((Elf64_External_Rel *) s->contents + 1,
11962 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11963 sort_dynamic_relocs_64);
11964 else
11965 qsort ((Elf32_External_Rel *) s->contents + 1,
11966 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11967 sort_dynamic_relocs);
11968 }
b49e97c9 11969 }
b49e97c9
TS
11970 }
11971
ce558b89 11972 if (htab->root.splt && htab->root.splt->size > 0)
0a44bf69 11973 {
861fb55a
DJ
11974 if (htab->is_vxworks)
11975 {
0e1862bb 11976 if (bfd_link_pic (info))
861fb55a
DJ
11977 mips_vxworks_finish_shared_plt (output_bfd, info);
11978 else
11979 mips_vxworks_finish_exec_plt (output_bfd, info);
11980 }
0a44bf69 11981 else
861fb55a 11982 {
0e1862bb 11983 BFD_ASSERT (!bfd_link_pic (info));
1bbce132
MR
11984 if (!mips_finish_exec_plt (output_bfd, info))
11985 return FALSE;
861fb55a 11986 }
0a44bf69 11987 }
b34976b6 11988 return TRUE;
b49e97c9
TS
11989}
11990
b49e97c9 11991
64543e1a
RS
11992/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11993
11994static void
9719ad41 11995mips_set_isa_flags (bfd *abfd)
b49e97c9 11996{
64543e1a 11997 flagword val;
b49e97c9
TS
11998
11999 switch (bfd_get_mach (abfd))
12000 {
12001 default:
12002 case bfd_mach_mips3000:
12003 val = E_MIPS_ARCH_1;
12004 break;
12005
12006 case bfd_mach_mips3900:
12007 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12008 break;
12009
12010 case bfd_mach_mips6000:
12011 val = E_MIPS_ARCH_2;
12012 break;
12013
12014 case bfd_mach_mips4000:
12015 case bfd_mach_mips4300:
12016 case bfd_mach_mips4400:
12017 case bfd_mach_mips4600:
12018 val = E_MIPS_ARCH_3;
12019 break;
12020
12021 case bfd_mach_mips4010:
12022 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
12023 break;
12024
12025 case bfd_mach_mips4100:
12026 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12027 break;
12028
12029 case bfd_mach_mips4111:
12030 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12031 break;
12032
00707a0e
RS
12033 case bfd_mach_mips4120:
12034 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12035 break;
12036
b49e97c9
TS
12037 case bfd_mach_mips4650:
12038 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12039 break;
12040
00707a0e
RS
12041 case bfd_mach_mips5400:
12042 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12043 break;
12044
12045 case bfd_mach_mips5500:
12046 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12047 break;
12048
e407c74b
NC
12049 case bfd_mach_mips5900:
12050 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12051 break;
12052
0d2e43ed
ILT
12053 case bfd_mach_mips9000:
12054 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12055 break;
12056
b49e97c9 12057 case bfd_mach_mips5000:
5a7ea749 12058 case bfd_mach_mips7000:
b49e97c9
TS
12059 case bfd_mach_mips8000:
12060 case bfd_mach_mips10000:
12061 case bfd_mach_mips12000:
3aa3176b
TS
12062 case bfd_mach_mips14000:
12063 case bfd_mach_mips16000:
b49e97c9
TS
12064 val = E_MIPS_ARCH_4;
12065 break;
12066
12067 case bfd_mach_mips5:
12068 val = E_MIPS_ARCH_5;
12069 break;
12070
350cc38d
MS
12071 case bfd_mach_mips_loongson_2e:
12072 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12073 break;
12074
12075 case bfd_mach_mips_loongson_2f:
12076 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12077 break;
12078
b49e97c9
TS
12079 case bfd_mach_mips_sb1:
12080 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12081 break;
12082
d051516a 12083 case bfd_mach_mips_loongson_3a:
4ba154f5 12084 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
d051516a
NC
12085 break;
12086
6f179bd0 12087 case bfd_mach_mips_octeon:
dd6a37e7 12088 case bfd_mach_mips_octeonp:
6f179bd0
AN
12089 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12090 break;
12091
2c629856
N
12092 case bfd_mach_mips_octeon3:
12093 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12094 break;
12095
52b6b6b9
JM
12096 case bfd_mach_mips_xlr:
12097 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12098 break;
12099
432233b3
AP
12100 case bfd_mach_mips_octeon2:
12101 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12102 break;
12103
b49e97c9
TS
12104 case bfd_mach_mipsisa32:
12105 val = E_MIPS_ARCH_32;
12106 break;
12107
12108 case bfd_mach_mipsisa64:
12109 val = E_MIPS_ARCH_64;
af7ee8bf
CD
12110 break;
12111
12112 case bfd_mach_mipsisa32r2:
ae52f483
AB
12113 case bfd_mach_mipsisa32r3:
12114 case bfd_mach_mipsisa32r5:
af7ee8bf
CD
12115 val = E_MIPS_ARCH_32R2;
12116 break;
5f74bc13
CD
12117
12118 case bfd_mach_mipsisa64r2:
ae52f483
AB
12119 case bfd_mach_mipsisa64r3:
12120 case bfd_mach_mipsisa64r5:
5f74bc13
CD
12121 val = E_MIPS_ARCH_64R2;
12122 break;
7361da2c
AB
12123
12124 case bfd_mach_mipsisa32r6:
12125 val = E_MIPS_ARCH_32R6;
12126 break;
12127
12128 case bfd_mach_mipsisa64r6:
12129 val = E_MIPS_ARCH_64R6;
12130 break;
b49e97c9 12131 }
b49e97c9
TS
12132 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12133 elf_elfheader (abfd)->e_flags |= val;
12134
64543e1a
RS
12135}
12136
12137
28dbcedc
AM
12138/* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12139 Don't do so for code sections. We want to keep ordering of HI16/LO16
12140 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12141 relocs to be sorted. */
12142
12143bfd_boolean
12144_bfd_mips_elf_sort_relocs_p (asection *sec)
12145{
12146 return (sec->flags & SEC_CODE) == 0;
12147}
12148
12149
64543e1a
RS
12150/* The final processing done just before writing out a MIPS ELF object
12151 file. This gets the MIPS architecture right based on the machine
12152 number. This is used by both the 32-bit and the 64-bit ABI. */
12153
12154void
9719ad41
RS
12155_bfd_mips_elf_final_write_processing (bfd *abfd,
12156 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
12157{
12158 unsigned int i;
12159 Elf_Internal_Shdr **hdrpp;
12160 const char *name;
12161 asection *sec;
12162
12163 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12164 is nonzero. This is for compatibility with old objects, which used
12165 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12166 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12167 mips_set_isa_flags (abfd);
12168
b49e97c9
TS
12169 /* Set the sh_info field for .gptab sections and other appropriate
12170 info for each special section. */
12171 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12172 i < elf_numsections (abfd);
12173 i++, hdrpp++)
12174 {
12175 switch ((*hdrpp)->sh_type)
12176 {
12177 case SHT_MIPS_MSYM:
12178 case SHT_MIPS_LIBLIST:
12179 sec = bfd_get_section_by_name (abfd, ".dynstr");
12180 if (sec != NULL)
12181 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12182 break;
12183
12184 case SHT_MIPS_GPTAB:
12185 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12186 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12187 BFD_ASSERT (name != NULL
0112cd26 12188 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
12189 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12190 BFD_ASSERT (sec != NULL);
12191 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12192 break;
12193
12194 case SHT_MIPS_CONTENT:
12195 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12196 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12197 BFD_ASSERT (name != NULL
0112cd26 12198 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
12199 sec = bfd_get_section_by_name (abfd,
12200 name + sizeof ".MIPS.content" - 1);
12201 BFD_ASSERT (sec != NULL);
12202 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12203 break;
12204
12205 case SHT_MIPS_SYMBOL_LIB:
12206 sec = bfd_get_section_by_name (abfd, ".dynsym");
12207 if (sec != NULL)
12208 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12209 sec = bfd_get_section_by_name (abfd, ".liblist");
12210 if (sec != NULL)
12211 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12212 break;
12213
12214 case SHT_MIPS_EVENTS:
12215 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12216 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12217 BFD_ASSERT (name != NULL);
0112cd26 12218 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
12219 sec = bfd_get_section_by_name (abfd,
12220 name + sizeof ".MIPS.events" - 1);
12221 else
12222 {
0112cd26 12223 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
12224 sec = bfd_get_section_by_name (abfd,
12225 (name
12226 + sizeof ".MIPS.post_rel" - 1));
12227 }
12228 BFD_ASSERT (sec != NULL);
12229 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12230 break;
12231
12232 }
12233 }
12234}
12235\f
8dc1a139 12236/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
12237 segments. */
12238
12239int
a6b96beb
AM
12240_bfd_mips_elf_additional_program_headers (bfd *abfd,
12241 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
12242{
12243 asection *s;
12244 int ret = 0;
12245
12246 /* See if we need a PT_MIPS_REGINFO segment. */
12247 s = bfd_get_section_by_name (abfd, ".reginfo");
12248 if (s && (s->flags & SEC_LOAD))
12249 ++ret;
12250
351cdf24
MF
12251 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12252 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12253 ++ret;
12254
b49e97c9
TS
12255 /* See if we need a PT_MIPS_OPTIONS segment. */
12256 if (IRIX_COMPAT (abfd) == ict_irix6
12257 && bfd_get_section_by_name (abfd,
12258 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12259 ++ret;
12260
12261 /* See if we need a PT_MIPS_RTPROC segment. */
12262 if (IRIX_COMPAT (abfd) == ict_irix5
12263 && bfd_get_section_by_name (abfd, ".dynamic")
12264 && bfd_get_section_by_name (abfd, ".mdebug"))
12265 ++ret;
12266
98c904a8
RS
12267 /* Allocate a PT_NULL header in dynamic objects. See
12268 _bfd_mips_elf_modify_segment_map for details. */
12269 if (!SGI_COMPAT (abfd)
12270 && bfd_get_section_by_name (abfd, ".dynamic"))
12271 ++ret;
12272
b49e97c9
TS
12273 return ret;
12274}
12275
8dc1a139 12276/* Modify the segment map for an IRIX5 executable. */
b49e97c9 12277
b34976b6 12278bfd_boolean
9719ad41 12279_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 12280 struct bfd_link_info *info)
b49e97c9
TS
12281{
12282 asection *s;
12283 struct elf_segment_map *m, **pm;
12284 bfd_size_type amt;
12285
12286 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12287 segment. */
12288 s = bfd_get_section_by_name (abfd, ".reginfo");
12289 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12290 {
12bd6957 12291 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12292 if (m->p_type == PT_MIPS_REGINFO)
12293 break;
12294 if (m == NULL)
12295 {
12296 amt = sizeof *m;
9719ad41 12297 m = bfd_zalloc (abfd, amt);
b49e97c9 12298 if (m == NULL)
b34976b6 12299 return FALSE;
b49e97c9
TS
12300
12301 m->p_type = PT_MIPS_REGINFO;
12302 m->count = 1;
12303 m->sections[0] = s;
12304
12305 /* We want to put it after the PHDR and INTERP segments. */
12bd6957 12306 pm = &elf_seg_map (abfd);
b49e97c9
TS
12307 while (*pm != NULL
12308 && ((*pm)->p_type == PT_PHDR
12309 || (*pm)->p_type == PT_INTERP))
12310 pm = &(*pm)->next;
12311
12312 m->next = *pm;
12313 *pm = m;
12314 }
12315 }
12316
351cdf24
MF
12317 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12318 segment. */
12319 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12320 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12321 {
12322 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12323 if (m->p_type == PT_MIPS_ABIFLAGS)
12324 break;
12325 if (m == NULL)
12326 {
12327 amt = sizeof *m;
12328 m = bfd_zalloc (abfd, amt);
12329 if (m == NULL)
12330 return FALSE;
12331
12332 m->p_type = PT_MIPS_ABIFLAGS;
12333 m->count = 1;
12334 m->sections[0] = s;
12335
12336 /* We want to put it after the PHDR and INTERP segments. */
12337 pm = &elf_seg_map (abfd);
12338 while (*pm != NULL
12339 && ((*pm)->p_type == PT_PHDR
12340 || (*pm)->p_type == PT_INTERP))
12341 pm = &(*pm)->next;
12342
12343 m->next = *pm;
12344 *pm = m;
12345 }
12346 }
12347
b49e97c9
TS
12348 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12349 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 12350 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 12351 table. */
c1fd6598
AO
12352 if (NEWABI_P (abfd)
12353 /* On non-IRIX6 new abi, we'll have already created a segment
12354 for this section, so don't create another. I'm not sure this
12355 is not also the case for IRIX 6, but I can't test it right
12356 now. */
12357 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
12358 {
12359 for (s = abfd->sections; s; s = s->next)
12360 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12361 break;
12362
12363 if (s)
12364 {
12365 struct elf_segment_map *options_segment;
12366
12bd6957 12367 pm = &elf_seg_map (abfd);
98a8deaf
RS
12368 while (*pm != NULL
12369 && ((*pm)->p_type == PT_PHDR
12370 || (*pm)->p_type == PT_INTERP))
12371 pm = &(*pm)->next;
b49e97c9 12372
8ded5a0f
AM
12373 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12374 {
12375 amt = sizeof (struct elf_segment_map);
12376 options_segment = bfd_zalloc (abfd, amt);
12377 options_segment->next = *pm;
12378 options_segment->p_type = PT_MIPS_OPTIONS;
12379 options_segment->p_flags = PF_R;
12380 options_segment->p_flags_valid = TRUE;
12381 options_segment->count = 1;
12382 options_segment->sections[0] = s;
12383 *pm = options_segment;
12384 }
b49e97c9
TS
12385 }
12386 }
12387 else
12388 {
12389 if (IRIX_COMPAT (abfd) == ict_irix5)
12390 {
12391 /* If there are .dynamic and .mdebug sections, we make a room
12392 for the RTPROC header. FIXME: Rewrite without section names. */
12393 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12394 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12395 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12396 {
12bd6957 12397 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12398 if (m->p_type == PT_MIPS_RTPROC)
12399 break;
12400 if (m == NULL)
12401 {
12402 amt = sizeof *m;
9719ad41 12403 m = bfd_zalloc (abfd, amt);
b49e97c9 12404 if (m == NULL)
b34976b6 12405 return FALSE;
b49e97c9
TS
12406
12407 m->p_type = PT_MIPS_RTPROC;
12408
12409 s = bfd_get_section_by_name (abfd, ".rtproc");
12410 if (s == NULL)
12411 {
12412 m->count = 0;
12413 m->p_flags = 0;
12414 m->p_flags_valid = 1;
12415 }
12416 else
12417 {
12418 m->count = 1;
12419 m->sections[0] = s;
12420 }
12421
12422 /* We want to put it after the DYNAMIC segment. */
12bd6957 12423 pm = &elf_seg_map (abfd);
b49e97c9
TS
12424 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12425 pm = &(*pm)->next;
12426 if (*pm != NULL)
12427 pm = &(*pm)->next;
12428
12429 m->next = *pm;
12430 *pm = m;
12431 }
12432 }
12433 }
8dc1a139 12434 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
12435 .dynstr, .dynsym, and .hash sections, and everything in
12436 between. */
12bd6957 12437 for (pm = &elf_seg_map (abfd); *pm != NULL;
b49e97c9
TS
12438 pm = &(*pm)->next)
12439 if ((*pm)->p_type == PT_DYNAMIC)
12440 break;
12441 m = *pm;
f6f62d6f
RS
12442 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12443 glibc's dynamic linker has traditionally derived the number of
12444 tags from the p_filesz field, and sometimes allocates stack
12445 arrays of that size. An overly-big PT_DYNAMIC segment can
12446 be actively harmful in such cases. Making PT_DYNAMIC contain
12447 other sections can also make life hard for the prelinker,
12448 which might move one of the other sections to a different
12449 PT_LOAD segment. */
12450 if (SGI_COMPAT (abfd)
12451 && m != NULL
12452 && m->count == 1
12453 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
12454 {
12455 static const char *sec_names[] =
12456 {
12457 ".dynamic", ".dynstr", ".dynsym", ".hash"
12458 };
12459 bfd_vma low, high;
12460 unsigned int i, c;
12461 struct elf_segment_map *n;
12462
792b4a53 12463 low = ~(bfd_vma) 0;
b49e97c9
TS
12464 high = 0;
12465 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12466 {
12467 s = bfd_get_section_by_name (abfd, sec_names[i]);
12468 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12469 {
12470 bfd_size_type sz;
12471
12472 if (low > s->vma)
12473 low = s->vma;
eea6121a 12474 sz = s->size;
b49e97c9
TS
12475 if (high < s->vma + sz)
12476 high = s->vma + sz;
12477 }
12478 }
12479
12480 c = 0;
12481 for (s = abfd->sections; s != NULL; s = s->next)
12482 if ((s->flags & SEC_LOAD) != 0
12483 && s->vma >= low
eea6121a 12484 && s->vma + s->size <= high)
b49e97c9
TS
12485 ++c;
12486
12487 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 12488 n = bfd_zalloc (abfd, amt);
b49e97c9 12489 if (n == NULL)
b34976b6 12490 return FALSE;
b49e97c9
TS
12491 *n = *m;
12492 n->count = c;
12493
12494 i = 0;
12495 for (s = abfd->sections; s != NULL; s = s->next)
12496 {
12497 if ((s->flags & SEC_LOAD) != 0
12498 && s->vma >= low
eea6121a 12499 && s->vma + s->size <= high)
b49e97c9
TS
12500 {
12501 n->sections[i] = s;
12502 ++i;
12503 }
12504 }
12505
12506 *pm = n;
12507 }
12508 }
12509
98c904a8
RS
12510 /* Allocate a spare program header in dynamic objects so that tools
12511 like the prelinker can add an extra PT_LOAD entry.
12512
12513 If the prelinker needs to make room for a new PT_LOAD entry, its
12514 standard procedure is to move the first (read-only) sections into
12515 the new (writable) segment. However, the MIPS ABI requires
12516 .dynamic to be in a read-only segment, and the section will often
12517 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12518
12519 Although the prelinker could in principle move .dynamic to a
12520 writable segment, it seems better to allocate a spare program
12521 header instead, and avoid the need to move any sections.
12522 There is a long tradition of allocating spare dynamic tags,
12523 so allocating a spare program header seems like a natural
7c8b76cc
JM
12524 extension.
12525
12526 If INFO is NULL, we may be copying an already prelinked binary
12527 with objcopy or strip, so do not add this header. */
12528 if (info != NULL
12529 && !SGI_COMPAT (abfd)
98c904a8
RS
12530 && bfd_get_section_by_name (abfd, ".dynamic"))
12531 {
12bd6957 12532 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
98c904a8
RS
12533 if ((*pm)->p_type == PT_NULL)
12534 break;
12535 if (*pm == NULL)
12536 {
12537 m = bfd_zalloc (abfd, sizeof (*m));
12538 if (m == NULL)
12539 return FALSE;
12540
12541 m->p_type = PT_NULL;
12542 *pm = m;
12543 }
12544 }
12545
b34976b6 12546 return TRUE;
b49e97c9
TS
12547}
12548\f
12549/* Return the section that should be marked against GC for a given
12550 relocation. */
12551
12552asection *
9719ad41 12553_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 12554 struct bfd_link_info *info,
9719ad41
RS
12555 Elf_Internal_Rela *rel,
12556 struct elf_link_hash_entry *h,
12557 Elf_Internal_Sym *sym)
b49e97c9
TS
12558{
12559 /* ??? Do mips16 stub sections need to be handled special? */
12560
12561 if (h != NULL)
07adf181
AM
12562 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12563 {
12564 case R_MIPS_GNU_VTINHERIT:
12565 case R_MIPS_GNU_VTENTRY:
12566 return NULL;
12567 }
b49e97c9 12568
07adf181 12569 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
12570}
12571
12572/* Update the got entry reference counts for the section being removed. */
12573
b34976b6 12574bfd_boolean
9719ad41
RS
12575_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12576 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12577 asection *sec ATTRIBUTE_UNUSED,
12578 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
12579{
12580#if 0
12581 Elf_Internal_Shdr *symtab_hdr;
12582 struct elf_link_hash_entry **sym_hashes;
12583 bfd_signed_vma *local_got_refcounts;
12584 const Elf_Internal_Rela *rel, *relend;
12585 unsigned long r_symndx;
12586 struct elf_link_hash_entry *h;
12587
0e1862bb 12588 if (bfd_link_relocatable (info))
7dda2462
TG
12589 return TRUE;
12590
b49e97c9
TS
12591 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12592 sym_hashes = elf_sym_hashes (abfd);
12593 local_got_refcounts = elf_local_got_refcounts (abfd);
12594
12595 relend = relocs + sec->reloc_count;
12596 for (rel = relocs; rel < relend; rel++)
12597 switch (ELF_R_TYPE (abfd, rel->r_info))
12598 {
738e5348
RS
12599 case R_MIPS16_GOT16:
12600 case R_MIPS16_CALL16:
b49e97c9
TS
12601 case R_MIPS_GOT16:
12602 case R_MIPS_CALL16:
12603 case R_MIPS_CALL_HI16:
12604 case R_MIPS_CALL_LO16:
12605 case R_MIPS_GOT_HI16:
12606 case R_MIPS_GOT_LO16:
4a14403c
TS
12607 case R_MIPS_GOT_DISP:
12608 case R_MIPS_GOT_PAGE:
12609 case R_MIPS_GOT_OFST:
df58fc94
RS
12610 case R_MICROMIPS_GOT16:
12611 case R_MICROMIPS_CALL16:
12612 case R_MICROMIPS_CALL_HI16:
12613 case R_MICROMIPS_CALL_LO16:
12614 case R_MICROMIPS_GOT_HI16:
12615 case R_MICROMIPS_GOT_LO16:
12616 case R_MICROMIPS_GOT_DISP:
12617 case R_MICROMIPS_GOT_PAGE:
12618 case R_MICROMIPS_GOT_OFST:
b49e97c9
TS
12619 /* ??? It would seem that the existing MIPS code does no sort
12620 of reference counting or whatnot on its GOT and PLT entries,
12621 so it is not possible to garbage collect them at this time. */
12622 break;
12623
12624 default:
12625 break;
12626 }
12627#endif
12628
b34976b6 12629 return TRUE;
b49e97c9 12630}
351cdf24
MF
12631
12632/* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12633
12634bfd_boolean
12635_bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12636 elf_gc_mark_hook_fn gc_mark_hook)
12637{
12638 bfd *sub;
12639
12640 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12641
12642 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12643 {
12644 asection *o;
12645
12646 if (! is_mips_elf (sub))
12647 continue;
12648
12649 for (o = sub->sections; o != NULL; o = o->next)
12650 if (!o->gc_mark
12651 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12652 (bfd_get_section_name (sub, o)))
12653 {
12654 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12655 return FALSE;
12656 }
12657 }
12658
12659 return TRUE;
12660}
b49e97c9
TS
12661\f
12662/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12663 hiding the old indirect symbol. Process additional relocation
12664 information. Also called for weakdefs, in which case we just let
12665 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12666
12667void
fcfa13d2 12668_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
12669 struct elf_link_hash_entry *dir,
12670 struct elf_link_hash_entry *ind)
b49e97c9
TS
12671{
12672 struct mips_elf_link_hash_entry *dirmips, *indmips;
12673
fcfa13d2 12674 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 12675
861fb55a
DJ
12676 dirmips = (struct mips_elf_link_hash_entry *) dir;
12677 indmips = (struct mips_elf_link_hash_entry *) ind;
12678 /* Any absolute non-dynamic relocations against an indirect or weak
12679 definition will be against the target symbol. */
12680 if (indmips->has_static_relocs)
12681 dirmips->has_static_relocs = TRUE;
12682
b49e97c9
TS
12683 if (ind->root.type != bfd_link_hash_indirect)
12684 return;
12685
b49e97c9
TS
12686 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12687 if (indmips->readonly_reloc)
b34976b6 12688 dirmips->readonly_reloc = TRUE;
b49e97c9 12689 if (indmips->no_fn_stub)
b34976b6 12690 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
12691 if (indmips->fn_stub)
12692 {
12693 dirmips->fn_stub = indmips->fn_stub;
12694 indmips->fn_stub = NULL;
12695 }
12696 if (indmips->need_fn_stub)
12697 {
12698 dirmips->need_fn_stub = TRUE;
12699 indmips->need_fn_stub = FALSE;
12700 }
12701 if (indmips->call_stub)
12702 {
12703 dirmips->call_stub = indmips->call_stub;
12704 indmips->call_stub = NULL;
12705 }
12706 if (indmips->call_fp_stub)
12707 {
12708 dirmips->call_fp_stub = indmips->call_fp_stub;
12709 indmips->call_fp_stub = NULL;
12710 }
634835ae
RS
12711 if (indmips->global_got_area < dirmips->global_got_area)
12712 dirmips->global_got_area = indmips->global_got_area;
12713 if (indmips->global_got_area < GGA_NONE)
12714 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
12715 if (indmips->has_nonpic_branches)
12716 dirmips->has_nonpic_branches = TRUE;
b49e97c9 12717}
b49e97c9 12718\f
d01414a5
TS
12719#define PDR_SIZE 32
12720
b34976b6 12721bfd_boolean
9719ad41
RS
12722_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12723 struct bfd_link_info *info)
d01414a5
TS
12724{
12725 asection *o;
b34976b6 12726 bfd_boolean ret = FALSE;
d01414a5
TS
12727 unsigned char *tdata;
12728 size_t i, skip;
12729
12730 o = bfd_get_section_by_name (abfd, ".pdr");
12731 if (! o)
b34976b6 12732 return FALSE;
eea6121a 12733 if (o->size == 0)
b34976b6 12734 return FALSE;
eea6121a 12735 if (o->size % PDR_SIZE != 0)
b34976b6 12736 return FALSE;
d01414a5
TS
12737 if (o->output_section != NULL
12738 && bfd_is_abs_section (o->output_section))
b34976b6 12739 return FALSE;
d01414a5 12740
eea6121a 12741 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 12742 if (! tdata)
b34976b6 12743 return FALSE;
d01414a5 12744
9719ad41 12745 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 12746 info->keep_memory);
d01414a5
TS
12747 if (!cookie->rels)
12748 {
12749 free (tdata);
b34976b6 12750 return FALSE;
d01414a5
TS
12751 }
12752
12753 cookie->rel = cookie->rels;
12754 cookie->relend = cookie->rels + o->reloc_count;
12755
eea6121a 12756 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 12757 {
c152c796 12758 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
12759 {
12760 tdata[i] = 1;
12761 skip ++;
12762 }
12763 }
12764
12765 if (skip != 0)
12766 {
f0abc2a1 12767 mips_elf_section_data (o)->u.tdata = tdata;
e034b2cc
MR
12768 if (o->rawsize == 0)
12769 o->rawsize = o->size;
eea6121a 12770 o->size -= skip * PDR_SIZE;
b34976b6 12771 ret = TRUE;
d01414a5
TS
12772 }
12773 else
12774 free (tdata);
12775
12776 if (! info->keep_memory)
12777 free (cookie->rels);
12778
12779 return ret;
12780}
12781
b34976b6 12782bfd_boolean
9719ad41 12783_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
12784{
12785 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
12786 return TRUE;
12787 return FALSE;
53bfd6b4 12788}
d01414a5 12789
b34976b6 12790bfd_boolean
c7b8f16e
JB
12791_bfd_mips_elf_write_section (bfd *output_bfd,
12792 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12793 asection *sec, bfd_byte *contents)
d01414a5
TS
12794{
12795 bfd_byte *to, *from, *end;
12796 int i;
12797
12798 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 12799 return FALSE;
d01414a5 12800
f0abc2a1 12801 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 12802 return FALSE;
d01414a5
TS
12803
12804 to = contents;
eea6121a 12805 end = contents + sec->size;
d01414a5
TS
12806 for (from = contents, i = 0;
12807 from < end;
12808 from += PDR_SIZE, i++)
12809 {
f0abc2a1 12810 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
12811 continue;
12812 if (to != from)
12813 memcpy (to, from, PDR_SIZE);
12814 to += PDR_SIZE;
12815 }
12816 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 12817 sec->output_offset, sec->size);
b34976b6 12818 return TRUE;
d01414a5 12819}
53bfd6b4 12820\f
df58fc94
RS
12821/* microMIPS code retains local labels for linker relaxation. Omit them
12822 from output by default for clarity. */
12823
12824bfd_boolean
12825_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12826{
12827 return _bfd_elf_is_local_label_name (abfd, sym->name);
12828}
12829
b49e97c9
TS
12830/* MIPS ELF uses a special find_nearest_line routine in order the
12831 handle the ECOFF debugging information. */
12832
12833struct mips_elf_find_line
12834{
12835 struct ecoff_debug_info d;
12836 struct ecoff_find_line i;
12837};
12838
b34976b6 12839bfd_boolean
fb167eb2
AM
12840_bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12841 asection *section, bfd_vma offset,
9719ad41
RS
12842 const char **filename_ptr,
12843 const char **functionname_ptr,
fb167eb2
AM
12844 unsigned int *line_ptr,
12845 unsigned int *discriminator_ptr)
b49e97c9
TS
12846{
12847 asection *msec;
12848
fb167eb2 12849 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
b49e97c9 12850 filename_ptr, functionname_ptr,
fb167eb2
AM
12851 line_ptr, discriminator_ptr,
12852 dwarf_debug_sections,
12853 ABI_64_P (abfd) ? 8 : 0,
12854 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 12855 return TRUE;
b49e97c9 12856
fb167eb2 12857 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
b49e97c9 12858 filename_ptr, functionname_ptr,
fb167eb2 12859 line_ptr))
b34976b6 12860 return TRUE;
b49e97c9
TS
12861
12862 msec = bfd_get_section_by_name (abfd, ".mdebug");
12863 if (msec != NULL)
12864 {
12865 flagword origflags;
12866 struct mips_elf_find_line *fi;
12867 const struct ecoff_debug_swap * const swap =
12868 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12869
12870 /* If we are called during a link, mips_elf_final_link may have
12871 cleared the SEC_HAS_CONTENTS field. We force it back on here
12872 if appropriate (which it normally will be). */
12873 origflags = msec->flags;
12874 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12875 msec->flags |= SEC_HAS_CONTENTS;
12876
698600e4 12877 fi = mips_elf_tdata (abfd)->find_line_info;
b49e97c9
TS
12878 if (fi == NULL)
12879 {
12880 bfd_size_type external_fdr_size;
12881 char *fraw_src;
12882 char *fraw_end;
12883 struct fdr *fdr_ptr;
12884 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12885
9719ad41 12886 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
12887 if (fi == NULL)
12888 {
12889 msec->flags = origflags;
b34976b6 12890 return FALSE;
b49e97c9
TS
12891 }
12892
12893 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12894 {
12895 msec->flags = origflags;
b34976b6 12896 return FALSE;
b49e97c9
TS
12897 }
12898
12899 /* Swap in the FDR information. */
12900 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 12901 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
12902 if (fi->d.fdr == NULL)
12903 {
12904 msec->flags = origflags;
b34976b6 12905 return FALSE;
b49e97c9
TS
12906 }
12907 external_fdr_size = swap->external_fdr_size;
12908 fdr_ptr = fi->d.fdr;
12909 fraw_src = (char *) fi->d.external_fdr;
12910 fraw_end = (fraw_src
12911 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12912 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 12913 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9 12914
698600e4 12915 mips_elf_tdata (abfd)->find_line_info = fi;
b49e97c9
TS
12916
12917 /* Note that we don't bother to ever free this information.
12918 find_nearest_line is either called all the time, as in
12919 objdump -l, so the information should be saved, or it is
12920 rarely called, as in ld error messages, so the memory
12921 wasted is unimportant. Still, it would probably be a
12922 good idea for free_cached_info to throw it away. */
12923 }
12924
12925 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12926 &fi->i, filename_ptr, functionname_ptr,
12927 line_ptr))
12928 {
12929 msec->flags = origflags;
b34976b6 12930 return TRUE;
b49e97c9
TS
12931 }
12932
12933 msec->flags = origflags;
12934 }
12935
12936 /* Fall back on the generic ELF find_nearest_line routine. */
12937
fb167eb2 12938 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
b49e97c9 12939 filename_ptr, functionname_ptr,
fb167eb2 12940 line_ptr, discriminator_ptr);
b49e97c9 12941}
4ab527b0
FF
12942
12943bfd_boolean
12944_bfd_mips_elf_find_inliner_info (bfd *abfd,
12945 const char **filename_ptr,
12946 const char **functionname_ptr,
12947 unsigned int *line_ptr)
12948{
12949 bfd_boolean found;
12950 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12951 functionname_ptr, line_ptr,
12952 & elf_tdata (abfd)->dwarf2_find_line_info);
12953 return found;
12954}
12955
b49e97c9
TS
12956\f
12957/* When are writing out the .options or .MIPS.options section,
12958 remember the bytes we are writing out, so that we can install the
12959 GP value in the section_processing routine. */
12960
b34976b6 12961bfd_boolean
9719ad41
RS
12962_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12963 const void *location,
12964 file_ptr offset, bfd_size_type count)
b49e97c9 12965{
cc2e31b9 12966 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
12967 {
12968 bfd_byte *c;
12969
12970 if (elf_section_data (section) == NULL)
12971 {
12972 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 12973 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 12974 if (elf_section_data (section) == NULL)
b34976b6 12975 return FALSE;
b49e97c9 12976 }
f0abc2a1 12977 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
12978 if (c == NULL)
12979 {
eea6121a 12980 c = bfd_zalloc (abfd, section->size);
b49e97c9 12981 if (c == NULL)
b34976b6 12982 return FALSE;
f0abc2a1 12983 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
12984 }
12985
9719ad41 12986 memcpy (c + offset, location, count);
b49e97c9
TS
12987 }
12988
12989 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12990 count);
12991}
12992
12993/* This is almost identical to bfd_generic_get_... except that some
12994 MIPS relocations need to be handled specially. Sigh. */
12995
12996bfd_byte *
9719ad41
RS
12997_bfd_elf_mips_get_relocated_section_contents
12998 (bfd *abfd,
12999 struct bfd_link_info *link_info,
13000 struct bfd_link_order *link_order,
13001 bfd_byte *data,
13002 bfd_boolean relocatable,
13003 asymbol **symbols)
b49e97c9
TS
13004{
13005 /* Get enough memory to hold the stuff */
13006 bfd *input_bfd = link_order->u.indirect.section->owner;
13007 asection *input_section = link_order->u.indirect.section;
eea6121a 13008 bfd_size_type sz;
b49e97c9
TS
13009
13010 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13011 arelent **reloc_vector = NULL;
13012 long reloc_count;
13013
13014 if (reloc_size < 0)
13015 goto error_return;
13016
9719ad41 13017 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
13018 if (reloc_vector == NULL && reloc_size != 0)
13019 goto error_return;
13020
13021 /* read in the section */
eea6121a
AM
13022 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13023 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
13024 goto error_return;
13025
b49e97c9
TS
13026 reloc_count = bfd_canonicalize_reloc (input_bfd,
13027 input_section,
13028 reloc_vector,
13029 symbols);
13030 if (reloc_count < 0)
13031 goto error_return;
13032
13033 if (reloc_count > 0)
13034 {
13035 arelent **parent;
13036 /* for mips */
13037 int gp_found;
13038 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13039
13040 {
13041 struct bfd_hash_entry *h;
13042 struct bfd_link_hash_entry *lh;
13043 /* Skip all this stuff if we aren't mixing formats. */
13044 if (abfd && input_bfd
13045 && abfd->xvec == input_bfd->xvec)
13046 lh = 0;
13047 else
13048 {
b34976b6 13049 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
13050 lh = (struct bfd_link_hash_entry *) h;
13051 }
13052 lookup:
13053 if (lh)
13054 {
13055 switch (lh->type)
13056 {
13057 case bfd_link_hash_undefined:
13058 case bfd_link_hash_undefweak:
13059 case bfd_link_hash_common:
13060 gp_found = 0;
13061 break;
13062 case bfd_link_hash_defined:
13063 case bfd_link_hash_defweak:
13064 gp_found = 1;
13065 gp = lh->u.def.value;
13066 break;
13067 case bfd_link_hash_indirect:
13068 case bfd_link_hash_warning:
13069 lh = lh->u.i.link;
13070 /* @@FIXME ignoring warning for now */
13071 goto lookup;
13072 case bfd_link_hash_new:
13073 default:
13074 abort ();
13075 }
13076 }
13077 else
13078 gp_found = 0;
13079 }
13080 /* end mips */
9719ad41 13081 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 13082 {
9719ad41 13083 char *error_message = NULL;
b49e97c9
TS
13084 bfd_reloc_status_type r;
13085
13086 /* Specific to MIPS: Deal with relocation types that require
13087 knowing the gp of the output bfd. */
13088 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 13089
8236346f
EC
13090 /* If we've managed to find the gp and have a special
13091 function for the relocation then go ahead, else default
13092 to the generic handling. */
13093 if (gp_found
13094 && (*parent)->howto->special_function
13095 == _bfd_mips_elf32_gprel16_reloc)
13096 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13097 input_section, relocatable,
13098 data, gp);
13099 else
86324f90 13100 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
13101 input_section,
13102 relocatable ? abfd : NULL,
13103 &error_message);
b49e97c9 13104
1049f94e 13105 if (relocatable)
b49e97c9
TS
13106 {
13107 asection *os = input_section->output_section;
13108
13109 /* A partial link, so keep the relocs */
13110 os->orelocation[os->reloc_count] = *parent;
13111 os->reloc_count++;
13112 }
13113
13114 if (r != bfd_reloc_ok)
13115 {
13116 switch (r)
13117 {
13118 case bfd_reloc_undefined:
1a72702b
AM
13119 (*link_info->callbacks->undefined_symbol)
13120 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13121 input_bfd, input_section, (*parent)->address, TRUE);
b49e97c9
TS
13122 break;
13123 case bfd_reloc_dangerous:
9719ad41 13124 BFD_ASSERT (error_message != NULL);
1a72702b
AM
13125 (*link_info->callbacks->reloc_dangerous)
13126 (link_info, error_message,
13127 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
13128 break;
13129 case bfd_reloc_overflow:
1a72702b
AM
13130 (*link_info->callbacks->reloc_overflow)
13131 (link_info, NULL,
13132 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13133 (*parent)->howto->name, (*parent)->addend,
13134 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
13135 break;
13136 case bfd_reloc_outofrange:
13137 default:
13138 abort ();
13139 break;
13140 }
13141
13142 }
13143 }
13144 }
13145 if (reloc_vector != NULL)
13146 free (reloc_vector);
13147 return data;
13148
13149error_return:
13150 if (reloc_vector != NULL)
13151 free (reloc_vector);
13152 return NULL;
13153}
13154\f
df58fc94
RS
13155static bfd_boolean
13156mips_elf_relax_delete_bytes (bfd *abfd,
13157 asection *sec, bfd_vma addr, int count)
13158{
13159 Elf_Internal_Shdr *symtab_hdr;
13160 unsigned int sec_shndx;
13161 bfd_byte *contents;
13162 Elf_Internal_Rela *irel, *irelend;
13163 Elf_Internal_Sym *isym;
13164 Elf_Internal_Sym *isymend;
13165 struct elf_link_hash_entry **sym_hashes;
13166 struct elf_link_hash_entry **end_hashes;
13167 struct elf_link_hash_entry **start_hashes;
13168 unsigned int symcount;
13169
13170 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13171 contents = elf_section_data (sec)->this_hdr.contents;
13172
13173 irel = elf_section_data (sec)->relocs;
13174 irelend = irel + sec->reloc_count;
13175
13176 /* Actually delete the bytes. */
13177 memmove (contents + addr, contents + addr + count,
13178 (size_t) (sec->size - addr - count));
13179 sec->size -= count;
13180
13181 /* Adjust all the relocs. */
13182 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13183 {
13184 /* Get the new reloc address. */
13185 if (irel->r_offset > addr)
13186 irel->r_offset -= count;
13187 }
13188
13189 BFD_ASSERT (addr % 2 == 0);
13190 BFD_ASSERT (count % 2 == 0);
13191
13192 /* Adjust the local symbols defined in this section. */
13193 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13194 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13195 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2309ddf2 13196 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
df58fc94
RS
13197 isym->st_value -= count;
13198
13199 /* Now adjust the global symbols defined in this section. */
13200 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13201 - symtab_hdr->sh_info);
13202 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13203 end_hashes = sym_hashes + symcount;
13204
13205 for (; sym_hashes < end_hashes; sym_hashes++)
13206 {
13207 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13208
13209 if ((sym_hash->root.type == bfd_link_hash_defined
13210 || sym_hash->root.type == bfd_link_hash_defweak)
13211 && sym_hash->root.u.def.section == sec)
13212 {
2309ddf2 13213 bfd_vma value = sym_hash->root.u.def.value;
df58fc94 13214
df58fc94
RS
13215 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13216 value &= MINUS_TWO;
13217 if (value > addr)
13218 sym_hash->root.u.def.value -= count;
13219 }
13220 }
13221
13222 return TRUE;
13223}
13224
13225
13226/* Opcodes needed for microMIPS relaxation as found in
13227 opcodes/micromips-opc.c. */
13228
13229struct opcode_descriptor {
13230 unsigned long match;
13231 unsigned long mask;
13232};
13233
13234/* The $ra register aka $31. */
13235
13236#define RA 31
13237
13238/* 32-bit instruction format register fields. */
13239
13240#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13241#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13242
13243/* Check if a 5-bit register index can be abbreviated to 3 bits. */
13244
13245#define OP16_VALID_REG(r) \
13246 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13247
13248
13249/* 32-bit and 16-bit branches. */
13250
13251static const struct opcode_descriptor b_insns_32[] = {
13252 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13253 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13254 { 0, 0 } /* End marker for find_match(). */
13255};
13256
13257static const struct opcode_descriptor bc_insn_32 =
13258 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13259
13260static const struct opcode_descriptor bz_insn_32 =
13261 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13262
13263static const struct opcode_descriptor bzal_insn_32 =
13264 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13265
13266static const struct opcode_descriptor beq_insn_32 =
13267 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13268
13269static const struct opcode_descriptor b_insn_16 =
13270 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13271
13272static const struct opcode_descriptor bz_insn_16 =
c088dedf 13273 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
df58fc94
RS
13274
13275
13276/* 32-bit and 16-bit branch EQ and NE zero. */
13277
13278/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13279 eq and second the ne. This convention is used when replacing a
13280 32-bit BEQ/BNE with the 16-bit version. */
13281
13282#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13283
13284static const struct opcode_descriptor bz_rs_insns_32[] = {
13285 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13286 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13287 { 0, 0 } /* End marker for find_match(). */
13288};
13289
13290static const struct opcode_descriptor bz_rt_insns_32[] = {
13291 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13292 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13293 { 0, 0 } /* End marker for find_match(). */
13294};
13295
13296static const struct opcode_descriptor bzc_insns_32[] = {
13297 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13298 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13299 { 0, 0 } /* End marker for find_match(). */
13300};
13301
13302static const struct opcode_descriptor bz_insns_16[] = {
13303 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13304 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13305 { 0, 0 } /* End marker for find_match(). */
13306};
13307
13308/* Switch between a 5-bit register index and its 3-bit shorthand. */
13309
e67f83e5 13310#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
eb6b0cf4 13311#define BZ16_REG_FIELD(r) (((r) & 7) << 7)
df58fc94
RS
13312
13313
13314/* 32-bit instructions with a delay slot. */
13315
13316static const struct opcode_descriptor jal_insn_32_bd16 =
13317 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13318
13319static const struct opcode_descriptor jal_insn_32_bd32 =
13320 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13321
13322static const struct opcode_descriptor jal_x_insn_32_bd32 =
13323 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13324
13325static const struct opcode_descriptor j_insn_32 =
13326 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13327
13328static const struct opcode_descriptor jalr_insn_32 =
13329 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13330
13331/* This table can be compacted, because no opcode replacement is made. */
13332
13333static const struct opcode_descriptor ds_insns_32_bd16[] = {
13334 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13335
13336 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13337 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13338
13339 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13340 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13341 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13342 { 0, 0 } /* End marker for find_match(). */
13343};
13344
13345/* This table can be compacted, because no opcode replacement is made. */
13346
13347static const struct opcode_descriptor ds_insns_32_bd32[] = {
13348 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13349
13350 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13351 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13352 { 0, 0 } /* End marker for find_match(). */
13353};
13354
13355
13356/* 16-bit instructions with a delay slot. */
13357
13358static const struct opcode_descriptor jalr_insn_16_bd16 =
13359 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13360
13361static const struct opcode_descriptor jalr_insn_16_bd32 =
13362 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13363
13364static const struct opcode_descriptor jr_insn_16 =
13365 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13366
13367#define JR16_REG(opcode) ((opcode) & 0x1f)
13368
13369/* This table can be compacted, because no opcode replacement is made. */
13370
13371static const struct opcode_descriptor ds_insns_16_bd16[] = {
13372 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13373
13374 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13375 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13376 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13377 { 0, 0 } /* End marker for find_match(). */
13378};
13379
13380
13381/* LUI instruction. */
13382
13383static const struct opcode_descriptor lui_insn =
13384 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13385
13386
13387/* ADDIU instruction. */
13388
13389static const struct opcode_descriptor addiu_insn =
13390 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13391
13392static const struct opcode_descriptor addiupc_insn =
13393 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13394
13395#define ADDIUPC_REG_FIELD(r) \
13396 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13397
13398
13399/* Relaxable instructions in a JAL delay slot: MOVE. */
13400
13401/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13402 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13403#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13404#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13405
13406#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13407#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13408
13409static const struct opcode_descriptor move_insns_32[] = {
df58fc94 13410 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
40fc1451 13411 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
df58fc94
RS
13412 { 0, 0 } /* End marker for find_match(). */
13413};
13414
13415static const struct opcode_descriptor move_insn_16 =
13416 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13417
13418
13419/* NOP instructions. */
13420
13421static const struct opcode_descriptor nop_insn_32 =
13422 { /* "nop", "", */ 0x00000000, 0xffffffff };
13423
13424static const struct opcode_descriptor nop_insn_16 =
13425 { /* "nop", "", */ 0x0c00, 0xffff };
13426
13427
13428/* Instruction match support. */
13429
13430#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13431
13432static int
13433find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13434{
13435 unsigned long indx;
13436
13437 for (indx = 0; insn[indx].mask != 0; indx++)
13438 if (MATCH (opcode, insn[indx]))
13439 return indx;
13440
13441 return -1;
13442}
13443
13444
13445/* Branch and delay slot decoding support. */
13446
13447/* If PTR points to what *might* be a 16-bit branch or jump, then
13448 return the minimum length of its delay slot, otherwise return 0.
13449 Non-zero results are not definitive as we might be checking against
13450 the second half of another instruction. */
13451
13452static int
13453check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13454{
13455 unsigned long opcode;
13456 int bdsize;
13457
13458 opcode = bfd_get_16 (abfd, ptr);
13459 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13460 /* 16-bit branch/jump with a 32-bit delay slot. */
13461 bdsize = 4;
13462 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13463 || find_match (opcode, ds_insns_16_bd16) >= 0)
13464 /* 16-bit branch/jump with a 16-bit delay slot. */
13465 bdsize = 2;
13466 else
13467 /* No delay slot. */
13468 bdsize = 0;
13469
13470 return bdsize;
13471}
13472
13473/* If PTR points to what *might* be a 32-bit branch or jump, then
13474 return the minimum length of its delay slot, otherwise return 0.
13475 Non-zero results are not definitive as we might be checking against
13476 the second half of another instruction. */
13477
13478static int
13479check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13480{
13481 unsigned long opcode;
13482 int bdsize;
13483
d21911ea 13484 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13485 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13486 /* 32-bit branch/jump with a 32-bit delay slot. */
13487 bdsize = 4;
13488 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13489 /* 32-bit branch/jump with a 16-bit delay slot. */
13490 bdsize = 2;
13491 else
13492 /* No delay slot. */
13493 bdsize = 0;
13494
13495 return bdsize;
13496}
13497
13498/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13499 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13500
13501static bfd_boolean
13502check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13503{
13504 unsigned long opcode;
13505
13506 opcode = bfd_get_16 (abfd, ptr);
13507 if (MATCH (opcode, b_insn_16)
13508 /* B16 */
13509 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13510 /* JR16 */
13511 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13512 /* BEQZ16, BNEZ16 */
13513 || (MATCH (opcode, jalr_insn_16_bd32)
13514 /* JALR16 */
13515 && reg != JR16_REG (opcode) && reg != RA))
13516 return TRUE;
13517
13518 return FALSE;
13519}
13520
13521/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13522 then return TRUE, otherwise FALSE. */
13523
f41e5fcc 13524static bfd_boolean
df58fc94
RS
13525check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13526{
13527 unsigned long opcode;
13528
d21911ea 13529 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13530 if (MATCH (opcode, j_insn_32)
13531 /* J */
13532 || MATCH (opcode, bc_insn_32)
13533 /* BC1F, BC1T, BC2F, BC2T */
13534 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13535 /* JAL, JALX */
13536 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13537 /* BGEZ, BGTZ, BLEZ, BLTZ */
13538 || (MATCH (opcode, bzal_insn_32)
13539 /* BGEZAL, BLTZAL */
13540 && reg != OP32_SREG (opcode) && reg != RA)
13541 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13542 /* JALR, JALR.HB, BEQ, BNE */
13543 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13544 return TRUE;
13545
13546 return FALSE;
13547}
13548
80cab405
MR
13549/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13550 IRELEND) at OFFSET indicate that there must be a compact branch there,
13551 then return TRUE, otherwise FALSE. */
df58fc94
RS
13552
13553static bfd_boolean
80cab405
MR
13554check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13555 const Elf_Internal_Rela *internal_relocs,
13556 const Elf_Internal_Rela *irelend)
df58fc94 13557{
80cab405
MR
13558 const Elf_Internal_Rela *irel;
13559 unsigned long opcode;
13560
d21911ea 13561 opcode = bfd_get_micromips_32 (abfd, ptr);
80cab405
MR
13562 if (find_match (opcode, bzc_insns_32) < 0)
13563 return FALSE;
df58fc94
RS
13564
13565 for (irel = internal_relocs; irel < irelend; irel++)
80cab405
MR
13566 if (irel->r_offset == offset
13567 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13568 return TRUE;
13569
df58fc94
RS
13570 return FALSE;
13571}
80cab405
MR
13572
13573/* Bitsize checking. */
13574#define IS_BITSIZE(val, N) \
13575 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13576 - (1ULL << ((N) - 1))) == (val))
13577
df58fc94
RS
13578\f
13579bfd_boolean
13580_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13581 struct bfd_link_info *link_info,
13582 bfd_boolean *again)
13583{
833794fc 13584 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
df58fc94
RS
13585 Elf_Internal_Shdr *symtab_hdr;
13586 Elf_Internal_Rela *internal_relocs;
13587 Elf_Internal_Rela *irel, *irelend;
13588 bfd_byte *contents = NULL;
13589 Elf_Internal_Sym *isymbuf = NULL;
13590
13591 /* Assume nothing changes. */
13592 *again = FALSE;
13593
13594 /* We don't have to do anything for a relocatable link, if
13595 this section does not have relocs, or if this is not a
13596 code section. */
13597
0e1862bb 13598 if (bfd_link_relocatable (link_info)
df58fc94
RS
13599 || (sec->flags & SEC_RELOC) == 0
13600 || sec->reloc_count == 0
13601 || (sec->flags & SEC_CODE) == 0)
13602 return TRUE;
13603
13604 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13605
13606 /* Get a copy of the native relocations. */
13607 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 13608 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
df58fc94
RS
13609 link_info->keep_memory));
13610 if (internal_relocs == NULL)
13611 goto error_return;
13612
13613 /* Walk through them looking for relaxing opportunities. */
13614 irelend = internal_relocs + sec->reloc_count;
13615 for (irel = internal_relocs; irel < irelend; irel++)
13616 {
13617 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13618 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13619 bfd_boolean target_is_micromips_code_p;
13620 unsigned long opcode;
13621 bfd_vma symval;
13622 bfd_vma pcrval;
2309ddf2 13623 bfd_byte *ptr;
df58fc94
RS
13624 int fndopc;
13625
13626 /* The number of bytes to delete for relaxation and from where
13627 to delete these bytes starting at irel->r_offset. */
13628 int delcnt = 0;
13629 int deloff = 0;
13630
13631 /* If this isn't something that can be relaxed, then ignore
13632 this reloc. */
13633 if (r_type != R_MICROMIPS_HI16
13634 && r_type != R_MICROMIPS_PC16_S1
2309ddf2 13635 && r_type != R_MICROMIPS_26_S1)
df58fc94
RS
13636 continue;
13637
13638 /* Get the section contents if we haven't done so already. */
13639 if (contents == NULL)
13640 {
13641 /* Get cached copy if it exists. */
13642 if (elf_section_data (sec)->this_hdr.contents != NULL)
13643 contents = elf_section_data (sec)->this_hdr.contents;
13644 /* Go get them off disk. */
13645 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13646 goto error_return;
13647 }
2309ddf2 13648 ptr = contents + irel->r_offset;
df58fc94
RS
13649
13650 /* Read this BFD's local symbols if we haven't done so already. */
13651 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13652 {
13653 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13654 if (isymbuf == NULL)
13655 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13656 symtab_hdr->sh_info, 0,
13657 NULL, NULL, NULL);
13658 if (isymbuf == NULL)
13659 goto error_return;
13660 }
13661
13662 /* Get the value of the symbol referred to by the reloc. */
13663 if (r_symndx < symtab_hdr->sh_info)
13664 {
13665 /* A local symbol. */
13666 Elf_Internal_Sym *isym;
13667 asection *sym_sec;
13668
13669 isym = isymbuf + r_symndx;
13670 if (isym->st_shndx == SHN_UNDEF)
13671 sym_sec = bfd_und_section_ptr;
13672 else if (isym->st_shndx == SHN_ABS)
13673 sym_sec = bfd_abs_section_ptr;
13674 else if (isym->st_shndx == SHN_COMMON)
13675 sym_sec = bfd_com_section_ptr;
13676 else
13677 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13678 symval = (isym->st_value
13679 + sym_sec->output_section->vma
13680 + sym_sec->output_offset);
13681 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13682 }
13683 else
13684 {
13685 unsigned long indx;
13686 struct elf_link_hash_entry *h;
13687
13688 /* An external symbol. */
13689 indx = r_symndx - symtab_hdr->sh_info;
13690 h = elf_sym_hashes (abfd)[indx];
13691 BFD_ASSERT (h != NULL);
13692
13693 if (h->root.type != bfd_link_hash_defined
13694 && h->root.type != bfd_link_hash_defweak)
13695 /* This appears to be a reference to an undefined
13696 symbol. Just ignore it -- it will be caught by the
13697 regular reloc processing. */
13698 continue;
13699
13700 symval = (h->root.u.def.value
13701 + h->root.u.def.section->output_section->vma
13702 + h->root.u.def.section->output_offset);
13703 target_is_micromips_code_p = (!h->needs_plt
13704 && ELF_ST_IS_MICROMIPS (h->other));
13705 }
13706
13707
13708 /* For simplicity of coding, we are going to modify the
13709 section contents, the section relocs, and the BFD symbol
13710 table. We must tell the rest of the code not to free up this
13711 information. It would be possible to instead create a table
13712 of changes which have to be made, as is done in coff-mips.c;
13713 that would be more work, but would require less memory when
13714 the linker is run. */
13715
13716 /* Only 32-bit instructions relaxed. */
13717 if (irel->r_offset + 4 > sec->size)
13718 continue;
13719
d21911ea 13720 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13721
13722 /* This is the pc-relative distance from the instruction the
13723 relocation is applied to, to the symbol referred. */
13724 pcrval = (symval
13725 - (sec->output_section->vma + sec->output_offset)
13726 - irel->r_offset);
13727
13728 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13729 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13730 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13731
13732 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13733
13734 where pcrval has first to be adjusted to apply against the LO16
13735 location (we make the adjustment later on, when we have figured
13736 out the offset). */
13737 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13738 {
80cab405 13739 bfd_boolean bzc = FALSE;
df58fc94
RS
13740 unsigned long nextopc;
13741 unsigned long reg;
13742 bfd_vma offset;
13743
13744 /* Give up if the previous reloc was a HI16 against this symbol
13745 too. */
13746 if (irel > internal_relocs
13747 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13748 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13749 continue;
13750
13751 /* Or if the next reloc is not a LO16 against this symbol. */
13752 if (irel + 1 >= irelend
13753 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13754 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13755 continue;
13756
13757 /* Or if the second next reloc is a LO16 against this symbol too. */
13758 if (irel + 2 >= irelend
13759 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13760 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13761 continue;
13762
80cab405
MR
13763 /* See if the LUI instruction *might* be in a branch delay slot.
13764 We check whether what looks like a 16-bit branch or jump is
13765 actually an immediate argument to a compact branch, and let
13766 it through if so. */
df58fc94 13767 if (irel->r_offset >= 2
2309ddf2 13768 && check_br16_dslot (abfd, ptr - 2)
df58fc94 13769 && !(irel->r_offset >= 4
80cab405
MR
13770 && (bzc = check_relocated_bzc (abfd,
13771 ptr - 4, irel->r_offset - 4,
13772 internal_relocs, irelend))))
df58fc94
RS
13773 continue;
13774 if (irel->r_offset >= 4
80cab405 13775 && !bzc
2309ddf2 13776 && check_br32_dslot (abfd, ptr - 4))
df58fc94
RS
13777 continue;
13778
13779 reg = OP32_SREG (opcode);
13780
13781 /* We only relax adjacent instructions or ones separated with
13782 a branch or jump that has a delay slot. The branch or jump
13783 must not fiddle with the register used to hold the address.
13784 Subtract 4 for the LUI itself. */
13785 offset = irel[1].r_offset - irel[0].r_offset;
13786 switch (offset - 4)
13787 {
13788 case 0:
13789 break;
13790 case 2:
2309ddf2 13791 if (check_br16 (abfd, ptr + 4, reg))
df58fc94
RS
13792 break;
13793 continue;
13794 case 4:
2309ddf2 13795 if (check_br32 (abfd, ptr + 4, reg))
df58fc94
RS
13796 break;
13797 continue;
13798 default:
13799 continue;
13800 }
13801
d21911ea 13802 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
df58fc94
RS
13803
13804 /* Give up unless the same register is used with both
13805 relocations. */
13806 if (OP32_SREG (nextopc) != reg)
13807 continue;
13808
13809 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13810 and rounding up to take masking of the two LSBs into account. */
13811 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13812
13813 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13814 if (IS_BITSIZE (symval, 16))
13815 {
13816 /* Fix the relocation's type. */
13817 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13818
13819 /* Instructions using R_MICROMIPS_LO16 have the base or
13820 source register in bits 20:16. This register becomes $0
13821 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13822 nextopc &= ~0x001f0000;
13823 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13824 contents + irel[1].r_offset);
13825 }
13826
13827 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13828 We add 4 to take LUI deletion into account while checking
13829 the PC-relative distance. */
13830 else if (symval % 4 == 0
13831 && IS_BITSIZE (pcrval + 4, 25)
13832 && MATCH (nextopc, addiu_insn)
13833 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13834 && OP16_VALID_REG (OP32_TREG (nextopc)))
13835 {
13836 /* Fix the relocation's type. */
13837 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13838
13839 /* Replace ADDIU with the ADDIUPC version. */
13840 nextopc = (addiupc_insn.match
13841 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13842
d21911ea
MR
13843 bfd_put_micromips_32 (abfd, nextopc,
13844 contents + irel[1].r_offset);
df58fc94
RS
13845 }
13846
13847 /* Can't do anything, give up, sigh... */
13848 else
13849 continue;
13850
13851 /* Fix the relocation's type. */
13852 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13853
13854 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13855 delcnt = 4;
13856 deloff = 0;
13857 }
13858
13859 /* Compact branch relaxation -- due to the multitude of macros
13860 employed by the compiler/assembler, compact branches are not
13861 always generated. Obviously, this can/will be fixed elsewhere,
13862 but there is no drawback in double checking it here. */
13863 else if (r_type == R_MICROMIPS_PC16_S1
13864 && irel->r_offset + 5 < sec->size
13865 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13866 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
833794fc
MR
13867 && ((!insn32
13868 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13869 nop_insn_16) ? 2 : 0))
13870 || (irel->r_offset + 7 < sec->size
13871 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13872 ptr + 4),
13873 nop_insn_32) ? 4 : 0))))
df58fc94
RS
13874 {
13875 unsigned long reg;
13876
13877 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13878
13879 /* Replace BEQZ/BNEZ with the compact version. */
13880 opcode = (bzc_insns_32[fndopc].match
13881 | BZC32_REG_FIELD (reg)
13882 | (opcode & 0xffff)); /* Addend value. */
13883
d21911ea 13884 bfd_put_micromips_32 (abfd, opcode, ptr);
df58fc94 13885
833794fc
MR
13886 /* Delete the delay slot NOP: two or four bytes from
13887 irel->offset + 4; delcnt has already been set above. */
df58fc94
RS
13888 deloff = 4;
13889 }
13890
13891 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13892 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
13893 else if (!insn32
13894 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
13895 && IS_BITSIZE (pcrval - 2, 11)
13896 && find_match (opcode, b_insns_32) >= 0)
13897 {
13898 /* Fix the relocation's type. */
13899 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13900
a8685210 13901 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
13902 bfd_put_16 (abfd,
13903 (b_insn_16.match
13904 | (opcode & 0x3ff)), /* Addend value. */
2309ddf2 13905 ptr);
df58fc94
RS
13906
13907 /* Delete 2 bytes from irel->r_offset + 2. */
13908 delcnt = 2;
13909 deloff = 2;
13910 }
13911
13912 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13913 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
13914 else if (!insn32
13915 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
13916 && IS_BITSIZE (pcrval - 2, 8)
13917 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13918 && OP16_VALID_REG (OP32_SREG (opcode)))
13919 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13920 && OP16_VALID_REG (OP32_TREG (opcode)))))
13921 {
13922 unsigned long reg;
13923
13924 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13925
13926 /* Fix the relocation's type. */
13927 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13928
a8685210 13929 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
13930 bfd_put_16 (abfd,
13931 (bz_insns_16[fndopc].match
13932 | BZ16_REG_FIELD (reg)
13933 | (opcode & 0x7f)), /* Addend value. */
2309ddf2 13934 ptr);
df58fc94
RS
13935
13936 /* Delete 2 bytes from irel->r_offset + 2. */
13937 delcnt = 2;
13938 deloff = 2;
13939 }
13940
13941 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
833794fc
MR
13942 else if (!insn32
13943 && r_type == R_MICROMIPS_26_S1
df58fc94
RS
13944 && target_is_micromips_code_p
13945 && irel->r_offset + 7 < sec->size
13946 && MATCH (opcode, jal_insn_32_bd32))
13947 {
13948 unsigned long n32opc;
13949 bfd_boolean relaxed = FALSE;
13950
d21911ea 13951 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
df58fc94
RS
13952
13953 if (MATCH (n32opc, nop_insn_32))
13954 {
13955 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
2309ddf2 13956 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
df58fc94
RS
13957
13958 relaxed = TRUE;
13959 }
13960 else if (find_match (n32opc, move_insns_32) >= 0)
13961 {
13962 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13963 bfd_put_16 (abfd,
13964 (move_insn_16.match
13965 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13966 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
2309ddf2 13967 ptr + 4);
df58fc94
RS
13968
13969 relaxed = TRUE;
13970 }
13971 /* Other 32-bit instructions relaxable to 16-bit
13972 instructions will be handled here later. */
13973
13974 if (relaxed)
13975 {
13976 /* JAL with 32-bit delay slot that is changed to a JALS
13977 with 16-bit delay slot. */
d21911ea 13978 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
df58fc94
RS
13979
13980 /* Delete 2 bytes from irel->r_offset + 6. */
13981 delcnt = 2;
13982 deloff = 6;
13983 }
13984 }
13985
13986 if (delcnt != 0)
13987 {
13988 /* Note that we've changed the relocs, section contents, etc. */
13989 elf_section_data (sec)->relocs = internal_relocs;
13990 elf_section_data (sec)->this_hdr.contents = contents;
13991 symtab_hdr->contents = (unsigned char *) isymbuf;
13992
13993 /* Delete bytes depending on the delcnt and deloff. */
13994 if (!mips_elf_relax_delete_bytes (abfd, sec,
13995 irel->r_offset + deloff, delcnt))
13996 goto error_return;
13997
13998 /* That will change things, so we should relax again.
13999 Note that this is not required, and it may be slow. */
14000 *again = TRUE;
14001 }
14002 }
14003
14004 if (isymbuf != NULL
14005 && symtab_hdr->contents != (unsigned char *) isymbuf)
14006 {
14007 if (! link_info->keep_memory)
14008 free (isymbuf);
14009 else
14010 {
14011 /* Cache the symbols for elf_link_input_bfd. */
14012 symtab_hdr->contents = (unsigned char *) isymbuf;
14013 }
14014 }
14015
14016 if (contents != NULL
14017 && elf_section_data (sec)->this_hdr.contents != contents)
14018 {
14019 if (! link_info->keep_memory)
14020 free (contents);
14021 else
14022 {
14023 /* Cache the section contents for elf_link_input_bfd. */
14024 elf_section_data (sec)->this_hdr.contents = contents;
14025 }
14026 }
14027
14028 if (internal_relocs != NULL
14029 && elf_section_data (sec)->relocs != internal_relocs)
14030 free (internal_relocs);
14031
14032 return TRUE;
14033
14034 error_return:
14035 if (isymbuf != NULL
14036 && symtab_hdr->contents != (unsigned char *) isymbuf)
14037 free (isymbuf);
14038 if (contents != NULL
14039 && elf_section_data (sec)->this_hdr.contents != contents)
14040 free (contents);
14041 if (internal_relocs != NULL
14042 && elf_section_data (sec)->relocs != internal_relocs)
14043 free (internal_relocs);
14044
14045 return FALSE;
14046}
14047\f
b49e97c9
TS
14048/* Create a MIPS ELF linker hash table. */
14049
14050struct bfd_link_hash_table *
9719ad41 14051_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
14052{
14053 struct mips_elf_link_hash_table *ret;
14054 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14055
7bf52ea2 14056 ret = bfd_zmalloc (amt);
9719ad41 14057 if (ret == NULL)
b49e97c9
TS
14058 return NULL;
14059
66eb6687
AM
14060 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14061 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
14062 sizeof (struct mips_elf_link_hash_entry),
14063 MIPS_ELF_DATA))
b49e97c9 14064 {
e2d34d7d 14065 free (ret);
b49e97c9
TS
14066 return NULL;
14067 }
1bbce132
MR
14068 ret->root.init_plt_refcount.plist = NULL;
14069 ret->root.init_plt_offset.plist = NULL;
b49e97c9 14070
b49e97c9
TS
14071 return &ret->root.root;
14072}
0a44bf69
RS
14073
14074/* Likewise, but indicate that the target is VxWorks. */
14075
14076struct bfd_link_hash_table *
14077_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14078{
14079 struct bfd_link_hash_table *ret;
14080
14081 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14082 if (ret)
14083 {
14084 struct mips_elf_link_hash_table *htab;
14085
14086 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
14087 htab->use_plts_and_copy_relocs = TRUE;
14088 htab->is_vxworks = TRUE;
0a44bf69
RS
14089 }
14090 return ret;
14091}
861fb55a
DJ
14092
14093/* A function that the linker calls if we are allowed to use PLTs
14094 and copy relocs. */
14095
14096void
14097_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14098{
14099 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14100}
833794fc
MR
14101
14102/* A function that the linker calls to select between all or only
8b10b0b3
MR
14103 32-bit microMIPS instructions, and between making or ignoring
14104 branch relocation checks for invalid transitions between ISA modes. */
833794fc
MR
14105
14106void
8b10b0b3
MR
14107_bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
14108 bfd_boolean ignore_branch_isa)
833794fc 14109{
8b10b0b3
MR
14110 mips_elf_hash_table (info)->insn32 = insn32;
14111 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
833794fc 14112}
b49e97c9 14113\f
c97c330b
MF
14114/* Structure for saying that BFD machine EXTENSION extends BASE. */
14115
14116struct mips_mach_extension
14117{
14118 unsigned long extension, base;
14119};
14120
14121
14122/* An array describing how BFD machines relate to one another. The entries
14123 are ordered topologically with MIPS I extensions listed last. */
14124
14125static const struct mips_mach_extension mips_mach_extensions[] =
14126{
14127 /* MIPS64r2 extensions. */
14128 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14129 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14130 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14131 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14132 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
14133
14134 /* MIPS64 extensions. */
14135 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14136 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14137 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14138
14139 /* MIPS V extensions. */
14140 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14141
14142 /* R10000 extensions. */
14143 { bfd_mach_mips12000, bfd_mach_mips10000 },
14144 { bfd_mach_mips14000, bfd_mach_mips10000 },
14145 { bfd_mach_mips16000, bfd_mach_mips10000 },
14146
14147 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14148 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14149 better to allow vr5400 and vr5500 code to be merged anyway, since
14150 many libraries will just use the core ISA. Perhaps we could add
14151 some sort of ASE flag if this ever proves a problem. */
14152 { bfd_mach_mips5500, bfd_mach_mips5400 },
14153 { bfd_mach_mips5400, bfd_mach_mips5000 },
14154
14155 /* MIPS IV extensions. */
14156 { bfd_mach_mips5, bfd_mach_mips8000 },
14157 { bfd_mach_mips10000, bfd_mach_mips8000 },
14158 { bfd_mach_mips5000, bfd_mach_mips8000 },
14159 { bfd_mach_mips7000, bfd_mach_mips8000 },
14160 { bfd_mach_mips9000, bfd_mach_mips8000 },
14161
14162 /* VR4100 extensions. */
14163 { bfd_mach_mips4120, bfd_mach_mips4100 },
14164 { bfd_mach_mips4111, bfd_mach_mips4100 },
14165
14166 /* MIPS III extensions. */
14167 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14168 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14169 { bfd_mach_mips8000, bfd_mach_mips4000 },
14170 { bfd_mach_mips4650, bfd_mach_mips4000 },
14171 { bfd_mach_mips4600, bfd_mach_mips4000 },
14172 { bfd_mach_mips4400, bfd_mach_mips4000 },
14173 { bfd_mach_mips4300, bfd_mach_mips4000 },
14174 { bfd_mach_mips4100, bfd_mach_mips4000 },
14175 { bfd_mach_mips4010, bfd_mach_mips4000 },
14176 { bfd_mach_mips5900, bfd_mach_mips4000 },
14177
14178 /* MIPS32 extensions. */
14179 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14180
14181 /* MIPS II extensions. */
14182 { bfd_mach_mips4000, bfd_mach_mips6000 },
14183 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14184
14185 /* MIPS I extensions. */
14186 { bfd_mach_mips6000, bfd_mach_mips3000 },
14187 { bfd_mach_mips3900, bfd_mach_mips3000 }
14188};
14189
14190/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14191
14192static bfd_boolean
14193mips_mach_extends_p (unsigned long base, unsigned long extension)
14194{
14195 size_t i;
14196
14197 if (extension == base)
14198 return TRUE;
14199
14200 if (base == bfd_mach_mipsisa32
14201 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14202 return TRUE;
14203
14204 if (base == bfd_mach_mipsisa32r2
14205 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14206 return TRUE;
14207
14208 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14209 if (extension == mips_mach_extensions[i].extension)
14210 {
14211 extension = mips_mach_extensions[i].base;
14212 if (extension == base)
14213 return TRUE;
14214 }
14215
14216 return FALSE;
14217}
14218
14219/* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14220
14221static unsigned long
14222bfd_mips_isa_ext_mach (unsigned int isa_ext)
14223{
14224 switch (isa_ext)
14225 {
14226 case AFL_EXT_3900: return bfd_mach_mips3900;
14227 case AFL_EXT_4010: return bfd_mach_mips4010;
14228 case AFL_EXT_4100: return bfd_mach_mips4100;
14229 case AFL_EXT_4111: return bfd_mach_mips4111;
14230 case AFL_EXT_4120: return bfd_mach_mips4120;
14231 case AFL_EXT_4650: return bfd_mach_mips4650;
14232 case AFL_EXT_5400: return bfd_mach_mips5400;
14233 case AFL_EXT_5500: return bfd_mach_mips5500;
14234 case AFL_EXT_5900: return bfd_mach_mips5900;
14235 case AFL_EXT_10000: return bfd_mach_mips10000;
14236 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14237 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14238 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14239 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14240 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14241 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14242 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14243 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14244 default: return bfd_mach_mips3000;
14245 }
14246}
14247
351cdf24
MF
14248/* Return the .MIPS.abiflags value representing each ISA Extension. */
14249
14250unsigned int
14251bfd_mips_isa_ext (bfd *abfd)
14252{
14253 switch (bfd_get_mach (abfd))
14254 {
c97c330b
MF
14255 case bfd_mach_mips3900: return AFL_EXT_3900;
14256 case bfd_mach_mips4010: return AFL_EXT_4010;
14257 case bfd_mach_mips4100: return AFL_EXT_4100;
14258 case bfd_mach_mips4111: return AFL_EXT_4111;
14259 case bfd_mach_mips4120: return AFL_EXT_4120;
14260 case bfd_mach_mips4650: return AFL_EXT_4650;
14261 case bfd_mach_mips5400: return AFL_EXT_5400;
14262 case bfd_mach_mips5500: return AFL_EXT_5500;
14263 case bfd_mach_mips5900: return AFL_EXT_5900;
14264 case bfd_mach_mips10000: return AFL_EXT_10000;
14265 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14266 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14267 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14268 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14269 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14270 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14271 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14272 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14273 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14274 default: return 0;
14275 }
14276}
14277
14278/* Encode ISA level and revision as a single value. */
14279#define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14280
14281/* Decode a single value into level and revision. */
14282#define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14283#define ISA_REV(LEVREV) ((LEVREV) & 0x7)
351cdf24
MF
14284
14285/* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14286
14287static void
14288update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14289{
c97c330b 14290 int new_isa = 0;
351cdf24
MF
14291 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14292 {
c97c330b
MF
14293 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14294 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14295 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14296 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14297 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14298 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14299 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14300 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14301 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14302 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14303 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
351cdf24 14304 default:
4eca0228 14305 _bfd_error_handler
695344c0 14306 /* xgettext:c-format */
351cdf24
MF
14307 (_("%B: Unknown architecture %s"),
14308 abfd, bfd_printable_name (abfd));
14309 }
14310
c97c330b
MF
14311 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14312 {
14313 abiflags->isa_level = ISA_LEVEL (new_isa);
14314 abiflags->isa_rev = ISA_REV (new_isa);
14315 }
14316
14317 /* Update the isa_ext if ABFD describes a further extension. */
14318 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14319 bfd_get_mach (abfd)))
14320 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
351cdf24
MF
14321}
14322
14323/* Return true if the given ELF header flags describe a 32-bit binary. */
14324
14325static bfd_boolean
14326mips_32bit_flags_p (flagword flags)
14327{
14328 return ((flags & EF_MIPS_32BITMODE) != 0
14329 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14330 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14331 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14332 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14333 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
7361da2c
AB
14334 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14335 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
351cdf24
MF
14336}
14337
14338/* Infer the content of the ABI flags based on the elf header. */
14339
14340static void
14341infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14342{
14343 obj_attribute *in_attr;
14344
14345 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14346 update_mips_abiflags_isa (abfd, abiflags);
14347
14348 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14349 abiflags->gpr_size = AFL_REG_32;
14350 else
14351 abiflags->gpr_size = AFL_REG_64;
14352
14353 abiflags->cpr1_size = AFL_REG_NONE;
14354
14355 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14356 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14357
14358 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14359 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14360 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14361 && abiflags->gpr_size == AFL_REG_32))
14362 abiflags->cpr1_size = AFL_REG_32;
14363 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14364 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14365 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14366 abiflags->cpr1_size = AFL_REG_64;
14367
14368 abiflags->cpr2_size = AFL_REG_NONE;
14369
14370 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14371 abiflags->ases |= AFL_ASE_MDMX;
14372 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14373 abiflags->ases |= AFL_ASE_MIPS16;
14374 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14375 abiflags->ases |= AFL_ASE_MICROMIPS;
14376
14377 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14378 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14379 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14380 && abiflags->isa_level >= 32
14381 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14382 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14383}
14384
b49e97c9
TS
14385/* We need to use a special link routine to handle the .reginfo and
14386 the .mdebug sections. We need to merge all instances of these
14387 sections together, not write them all out sequentially. */
14388
b34976b6 14389bfd_boolean
9719ad41 14390_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 14391{
b49e97c9
TS
14392 asection *o;
14393 struct bfd_link_order *p;
14394 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
351cdf24 14395 asection *rtproc_sec, *abiflags_sec;
b49e97c9
TS
14396 Elf32_RegInfo reginfo;
14397 struct ecoff_debug_info debug;
861fb55a 14398 struct mips_htab_traverse_info hti;
7a2a6943
NC
14399 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14400 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 14401 HDRR *symhdr = &debug.symbolic_header;
9719ad41 14402 void *mdebug_handle = NULL;
b49e97c9
TS
14403 asection *s;
14404 EXTR esym;
14405 unsigned int i;
14406 bfd_size_type amt;
0a44bf69 14407 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
14408
14409 static const char * const secname[] =
14410 {
14411 ".text", ".init", ".fini", ".data",
14412 ".rodata", ".sdata", ".sbss", ".bss"
14413 };
14414 static const int sc[] =
14415 {
14416 scText, scInit, scFini, scData,
14417 scRData, scSData, scSBss, scBss
14418 };
14419
d4596a51
RS
14420 /* Sort the dynamic symbols so that those with GOT entries come after
14421 those without. */
0a44bf69 14422 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
14423 BFD_ASSERT (htab != NULL);
14424
d4596a51
RS
14425 if (!mips_elf_sort_hash_table (abfd, info))
14426 return FALSE;
b49e97c9 14427
861fb55a
DJ
14428 /* Create any scheduled LA25 stubs. */
14429 hti.info = info;
14430 hti.output_bfd = abfd;
14431 hti.error = FALSE;
14432 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14433 if (hti.error)
14434 return FALSE;
14435
b49e97c9
TS
14436 /* Get a value for the GP register. */
14437 if (elf_gp (abfd) == 0)
14438 {
14439 struct bfd_link_hash_entry *h;
14440
b34976b6 14441 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 14442 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
14443 elf_gp (abfd) = (h->u.def.value
14444 + h->u.def.section->output_section->vma
14445 + h->u.def.section->output_offset);
0a44bf69
RS
14446 else if (htab->is_vxworks
14447 && (h = bfd_link_hash_lookup (info->hash,
14448 "_GLOBAL_OFFSET_TABLE_",
14449 FALSE, FALSE, TRUE))
14450 && h->type == bfd_link_hash_defined)
14451 elf_gp (abfd) = (h->u.def.section->output_section->vma
14452 + h->u.def.section->output_offset
14453 + h->u.def.value);
0e1862bb 14454 else if (bfd_link_relocatable (info))
b49e97c9
TS
14455 {
14456 bfd_vma lo = MINUS_ONE;
14457
14458 /* Find the GP-relative section with the lowest offset. */
9719ad41 14459 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
14460 if (o->vma < lo
14461 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14462 lo = o->vma;
14463
14464 /* And calculate GP relative to that. */
0a44bf69 14465 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
14466 }
14467 else
14468 {
14469 /* If the relocate_section function needs to do a reloc
14470 involving the GP value, it should make a reloc_dangerous
14471 callback to warn that GP is not defined. */
14472 }
14473 }
14474
14475 /* Go through the sections and collect the .reginfo and .mdebug
14476 information. */
351cdf24 14477 abiflags_sec = NULL;
b49e97c9
TS
14478 reginfo_sec = NULL;
14479 mdebug_sec = NULL;
14480 gptab_data_sec = NULL;
14481 gptab_bss_sec = NULL;
9719ad41 14482 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9 14483 {
351cdf24
MF
14484 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14485 {
14486 /* We have found the .MIPS.abiflags section in the output file.
14487 Look through all the link_orders comprising it and remove them.
14488 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14489 for (p = o->map_head.link_order; p != NULL; p = p->next)
14490 {
14491 asection *input_section;
14492
14493 if (p->type != bfd_indirect_link_order)
14494 {
14495 if (p->type == bfd_data_link_order)
14496 continue;
14497 abort ();
14498 }
14499
14500 input_section = p->u.indirect.section;
14501
14502 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14503 elf_link_input_bfd ignores this section. */
14504 input_section->flags &= ~SEC_HAS_CONTENTS;
14505 }
14506
14507 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14508 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14509
14510 /* Skip this section later on (I don't think this currently
14511 matters, but someday it might). */
14512 o->map_head.link_order = NULL;
14513
14514 abiflags_sec = o;
14515 }
14516
b49e97c9
TS
14517 if (strcmp (o->name, ".reginfo") == 0)
14518 {
14519 memset (&reginfo, 0, sizeof reginfo);
14520
14521 /* We have found the .reginfo section in the output file.
14522 Look through all the link_orders comprising it and merge
14523 the information together. */
8423293d 14524 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14525 {
14526 asection *input_section;
14527 bfd *input_bfd;
14528 Elf32_External_RegInfo ext;
14529 Elf32_RegInfo sub;
14530
14531 if (p->type != bfd_indirect_link_order)
14532 {
14533 if (p->type == bfd_data_link_order)
14534 continue;
14535 abort ();
14536 }
14537
14538 input_section = p->u.indirect.section;
14539 input_bfd = input_section->owner;
14540
b49e97c9 14541 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 14542 &ext, 0, sizeof ext))
b34976b6 14543 return FALSE;
b49e97c9
TS
14544
14545 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14546
14547 reginfo.ri_gprmask |= sub.ri_gprmask;
14548 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14549 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14550 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14551 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14552
14553 /* ri_gp_value is set by the function
14554 mips_elf32_section_processing when the section is
14555 finally written out. */
14556
14557 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14558 elf_link_input_bfd ignores this section. */
14559 input_section->flags &= ~SEC_HAS_CONTENTS;
14560 }
14561
14562 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 14563 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
14564
14565 /* Skip this section later on (I don't think this currently
14566 matters, but someday it might). */
8423293d 14567 o->map_head.link_order = NULL;
b49e97c9
TS
14568
14569 reginfo_sec = o;
14570 }
14571
14572 if (strcmp (o->name, ".mdebug") == 0)
14573 {
14574 struct extsym_info einfo;
14575 bfd_vma last;
14576
14577 /* We have found the .mdebug section in the output file.
14578 Look through all the link_orders comprising it and merge
14579 the information together. */
14580 symhdr->magic = swap->sym_magic;
14581 /* FIXME: What should the version stamp be? */
14582 symhdr->vstamp = 0;
14583 symhdr->ilineMax = 0;
14584 symhdr->cbLine = 0;
14585 symhdr->idnMax = 0;
14586 symhdr->ipdMax = 0;
14587 symhdr->isymMax = 0;
14588 symhdr->ioptMax = 0;
14589 symhdr->iauxMax = 0;
14590 symhdr->issMax = 0;
14591 symhdr->issExtMax = 0;
14592 symhdr->ifdMax = 0;
14593 symhdr->crfd = 0;
14594 symhdr->iextMax = 0;
14595
14596 /* We accumulate the debugging information itself in the
14597 debug_info structure. */
14598 debug.line = NULL;
14599 debug.external_dnr = NULL;
14600 debug.external_pdr = NULL;
14601 debug.external_sym = NULL;
14602 debug.external_opt = NULL;
14603 debug.external_aux = NULL;
14604 debug.ss = NULL;
14605 debug.ssext = debug.ssext_end = NULL;
14606 debug.external_fdr = NULL;
14607 debug.external_rfd = NULL;
14608 debug.external_ext = debug.external_ext_end = NULL;
14609
14610 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 14611 if (mdebug_handle == NULL)
b34976b6 14612 return FALSE;
b49e97c9
TS
14613
14614 esym.jmptbl = 0;
14615 esym.cobol_main = 0;
14616 esym.weakext = 0;
14617 esym.reserved = 0;
14618 esym.ifd = ifdNil;
14619 esym.asym.iss = issNil;
14620 esym.asym.st = stLocal;
14621 esym.asym.reserved = 0;
14622 esym.asym.index = indexNil;
14623 last = 0;
14624 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14625 {
14626 esym.asym.sc = sc[i];
14627 s = bfd_get_section_by_name (abfd, secname[i]);
14628 if (s != NULL)
14629 {
14630 esym.asym.value = s->vma;
eea6121a 14631 last = s->vma + s->size;
b49e97c9
TS
14632 }
14633 else
14634 esym.asym.value = last;
14635 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14636 secname[i], &esym))
b34976b6 14637 return FALSE;
b49e97c9
TS
14638 }
14639
8423293d 14640 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14641 {
14642 asection *input_section;
14643 bfd *input_bfd;
14644 const struct ecoff_debug_swap *input_swap;
14645 struct ecoff_debug_info input_debug;
14646 char *eraw_src;
14647 char *eraw_end;
14648
14649 if (p->type != bfd_indirect_link_order)
14650 {
14651 if (p->type == bfd_data_link_order)
14652 continue;
14653 abort ();
14654 }
14655
14656 input_section = p->u.indirect.section;
14657 input_bfd = input_section->owner;
14658
d5eaccd7 14659 if (!is_mips_elf (input_bfd))
b49e97c9
TS
14660 {
14661 /* I don't know what a non MIPS ELF bfd would be
14662 doing with a .mdebug section, but I don't really
14663 want to deal with it. */
14664 continue;
14665 }
14666
14667 input_swap = (get_elf_backend_data (input_bfd)
14668 ->elf_backend_ecoff_debug_swap);
14669
eea6121a 14670 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
14671
14672 /* The ECOFF linking code expects that we have already
14673 read in the debugging information and set up an
14674 ecoff_debug_info structure, so we do that now. */
14675 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14676 &input_debug))
b34976b6 14677 return FALSE;
b49e97c9
TS
14678
14679 if (! (bfd_ecoff_debug_accumulate
14680 (mdebug_handle, abfd, &debug, swap, input_bfd,
14681 &input_debug, input_swap, info)))
b34976b6 14682 return FALSE;
b49e97c9
TS
14683
14684 /* Loop through the external symbols. For each one with
14685 interesting information, try to find the symbol in
14686 the linker global hash table and save the information
14687 for the output external symbols. */
14688 eraw_src = input_debug.external_ext;
14689 eraw_end = (eraw_src
14690 + (input_debug.symbolic_header.iextMax
14691 * input_swap->external_ext_size));
14692 for (;
14693 eraw_src < eraw_end;
14694 eraw_src += input_swap->external_ext_size)
14695 {
14696 EXTR ext;
14697 const char *name;
14698 struct mips_elf_link_hash_entry *h;
14699
9719ad41 14700 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
14701 if (ext.asym.sc == scNil
14702 || ext.asym.sc == scUndefined
14703 || ext.asym.sc == scSUndefined)
14704 continue;
14705
14706 name = input_debug.ssext + ext.asym.iss;
14707 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 14708 name, FALSE, FALSE, TRUE);
b49e97c9
TS
14709 if (h == NULL || h->esym.ifd != -2)
14710 continue;
14711
14712 if (ext.ifd != -1)
14713 {
14714 BFD_ASSERT (ext.ifd
14715 < input_debug.symbolic_header.ifdMax);
14716 ext.ifd = input_debug.ifdmap[ext.ifd];
14717 }
14718
14719 h->esym = ext;
14720 }
14721
14722 /* Free up the information we just read. */
14723 free (input_debug.line);
14724 free (input_debug.external_dnr);
14725 free (input_debug.external_pdr);
14726 free (input_debug.external_sym);
14727 free (input_debug.external_opt);
14728 free (input_debug.external_aux);
14729 free (input_debug.ss);
14730 free (input_debug.ssext);
14731 free (input_debug.external_fdr);
14732 free (input_debug.external_rfd);
14733 free (input_debug.external_ext);
14734
14735 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14736 elf_link_input_bfd ignores this section. */
14737 input_section->flags &= ~SEC_HAS_CONTENTS;
14738 }
14739
0e1862bb 14740 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
b49e97c9
TS
14741 {
14742 /* Create .rtproc section. */
87e0a731 14743 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
b49e97c9
TS
14744 if (rtproc_sec == NULL)
14745 {
14746 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14747 | SEC_LINKER_CREATED | SEC_READONLY);
14748
87e0a731
AM
14749 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14750 ".rtproc",
14751 flags);
b49e97c9 14752 if (rtproc_sec == NULL
b49e97c9 14753 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 14754 return FALSE;
b49e97c9
TS
14755 }
14756
14757 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14758 info, rtproc_sec,
14759 &debug))
b34976b6 14760 return FALSE;
b49e97c9
TS
14761 }
14762
14763 /* Build the external symbol information. */
14764 einfo.abfd = abfd;
14765 einfo.info = info;
14766 einfo.debug = &debug;
14767 einfo.swap = swap;
b34976b6 14768 einfo.failed = FALSE;
b49e97c9 14769 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 14770 mips_elf_output_extsym, &einfo);
b49e97c9 14771 if (einfo.failed)
b34976b6 14772 return FALSE;
b49e97c9
TS
14773
14774 /* Set the size of the .mdebug section. */
eea6121a 14775 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
14776
14777 /* Skip this section later on (I don't think this currently
14778 matters, but someday it might). */
8423293d 14779 o->map_head.link_order = NULL;
b49e97c9
TS
14780
14781 mdebug_sec = o;
14782 }
14783
0112cd26 14784 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
14785 {
14786 const char *subname;
14787 unsigned int c;
14788 Elf32_gptab *tab;
14789 Elf32_External_gptab *ext_tab;
14790 unsigned int j;
14791
14792 /* The .gptab.sdata and .gptab.sbss sections hold
14793 information describing how the small data area would
14794 change depending upon the -G switch. These sections
14795 not used in executables files. */
0e1862bb 14796 if (! bfd_link_relocatable (info))
b49e97c9 14797 {
8423293d 14798 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14799 {
14800 asection *input_section;
14801
14802 if (p->type != bfd_indirect_link_order)
14803 {
14804 if (p->type == bfd_data_link_order)
14805 continue;
14806 abort ();
14807 }
14808
14809 input_section = p->u.indirect.section;
14810
14811 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14812 elf_link_input_bfd ignores this section. */
14813 input_section->flags &= ~SEC_HAS_CONTENTS;
14814 }
14815
14816 /* Skip this section later on (I don't think this
14817 currently matters, but someday it might). */
8423293d 14818 o->map_head.link_order = NULL;
b49e97c9
TS
14819
14820 /* Really remove the section. */
5daa8fe7 14821 bfd_section_list_remove (abfd, o);
b49e97c9
TS
14822 --abfd->section_count;
14823
14824 continue;
14825 }
14826
14827 /* There is one gptab for initialized data, and one for
14828 uninitialized data. */
14829 if (strcmp (o->name, ".gptab.sdata") == 0)
14830 gptab_data_sec = o;
14831 else if (strcmp (o->name, ".gptab.sbss") == 0)
14832 gptab_bss_sec = o;
14833 else
14834 {
4eca0228 14835 _bfd_error_handler
695344c0 14836 /* xgettext:c-format */
b49e97c9
TS
14837 (_("%s: illegal section name `%s'"),
14838 bfd_get_filename (abfd), o->name);
14839 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 14840 return FALSE;
b49e97c9
TS
14841 }
14842
14843 /* The linker script always combines .gptab.data and
14844 .gptab.sdata into .gptab.sdata, and likewise for
14845 .gptab.bss and .gptab.sbss. It is possible that there is
14846 no .sdata or .sbss section in the output file, in which
14847 case we must change the name of the output section. */
14848 subname = o->name + sizeof ".gptab" - 1;
14849 if (bfd_get_section_by_name (abfd, subname) == NULL)
14850 {
14851 if (o == gptab_data_sec)
14852 o->name = ".gptab.data";
14853 else
14854 o->name = ".gptab.bss";
14855 subname = o->name + sizeof ".gptab" - 1;
14856 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14857 }
14858
14859 /* Set up the first entry. */
14860 c = 1;
14861 amt = c * sizeof (Elf32_gptab);
9719ad41 14862 tab = bfd_malloc (amt);
b49e97c9 14863 if (tab == NULL)
b34976b6 14864 return FALSE;
b49e97c9
TS
14865 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14866 tab[0].gt_header.gt_unused = 0;
14867
14868 /* Combine the input sections. */
8423293d 14869 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14870 {
14871 asection *input_section;
14872 bfd *input_bfd;
14873 bfd_size_type size;
14874 unsigned long last;
14875 bfd_size_type gpentry;
14876
14877 if (p->type != bfd_indirect_link_order)
14878 {
14879 if (p->type == bfd_data_link_order)
14880 continue;
14881 abort ();
14882 }
14883
14884 input_section = p->u.indirect.section;
14885 input_bfd = input_section->owner;
14886
14887 /* Combine the gptab entries for this input section one
14888 by one. We know that the input gptab entries are
14889 sorted by ascending -G value. */
eea6121a 14890 size = input_section->size;
b49e97c9
TS
14891 last = 0;
14892 for (gpentry = sizeof (Elf32_External_gptab);
14893 gpentry < size;
14894 gpentry += sizeof (Elf32_External_gptab))
14895 {
14896 Elf32_External_gptab ext_gptab;
14897 Elf32_gptab int_gptab;
14898 unsigned long val;
14899 unsigned long add;
b34976b6 14900 bfd_boolean exact;
b49e97c9
TS
14901 unsigned int look;
14902
14903 if (! (bfd_get_section_contents
9719ad41
RS
14904 (input_bfd, input_section, &ext_gptab, gpentry,
14905 sizeof (Elf32_External_gptab))))
b49e97c9
TS
14906 {
14907 free (tab);
b34976b6 14908 return FALSE;
b49e97c9
TS
14909 }
14910
14911 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14912 &int_gptab);
14913 val = int_gptab.gt_entry.gt_g_value;
14914 add = int_gptab.gt_entry.gt_bytes - last;
14915
b34976b6 14916 exact = FALSE;
b49e97c9
TS
14917 for (look = 1; look < c; look++)
14918 {
14919 if (tab[look].gt_entry.gt_g_value >= val)
14920 tab[look].gt_entry.gt_bytes += add;
14921
14922 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 14923 exact = TRUE;
b49e97c9
TS
14924 }
14925
14926 if (! exact)
14927 {
14928 Elf32_gptab *new_tab;
14929 unsigned int max;
14930
14931 /* We need a new table entry. */
14932 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 14933 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
14934 if (new_tab == NULL)
14935 {
14936 free (tab);
b34976b6 14937 return FALSE;
b49e97c9
TS
14938 }
14939 tab = new_tab;
14940 tab[c].gt_entry.gt_g_value = val;
14941 tab[c].gt_entry.gt_bytes = add;
14942
14943 /* Merge in the size for the next smallest -G
14944 value, since that will be implied by this new
14945 value. */
14946 max = 0;
14947 for (look = 1; look < c; look++)
14948 {
14949 if (tab[look].gt_entry.gt_g_value < val
14950 && (max == 0
14951 || (tab[look].gt_entry.gt_g_value
14952 > tab[max].gt_entry.gt_g_value)))
14953 max = look;
14954 }
14955 if (max != 0)
14956 tab[c].gt_entry.gt_bytes +=
14957 tab[max].gt_entry.gt_bytes;
14958
14959 ++c;
14960 }
14961
14962 last = int_gptab.gt_entry.gt_bytes;
14963 }
14964
14965 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14966 elf_link_input_bfd ignores this section. */
14967 input_section->flags &= ~SEC_HAS_CONTENTS;
14968 }
14969
14970 /* The table must be sorted by -G value. */
14971 if (c > 2)
14972 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14973
14974 /* Swap out the table. */
14975 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 14976 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
14977 if (ext_tab == NULL)
14978 {
14979 free (tab);
b34976b6 14980 return FALSE;
b49e97c9
TS
14981 }
14982
14983 for (j = 0; j < c; j++)
14984 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14985 free (tab);
14986
eea6121a 14987 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
14988 o->contents = (bfd_byte *) ext_tab;
14989
14990 /* Skip this section later on (I don't think this currently
14991 matters, but someday it might). */
8423293d 14992 o->map_head.link_order = NULL;
b49e97c9
TS
14993 }
14994 }
14995
14996 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 14997 if (!bfd_elf_final_link (abfd, info))
b34976b6 14998 return FALSE;
b49e97c9
TS
14999
15000 /* Now write out the computed sections. */
15001
351cdf24
MF
15002 if (abiflags_sec != NULL)
15003 {
15004 Elf_External_ABIFlags_v0 ext;
15005 Elf_Internal_ABIFlags_v0 *abiflags;
15006
15007 abiflags = &mips_elf_tdata (abfd)->abiflags;
15008
15009 /* Set up the abiflags if no valid input sections were found. */
15010 if (!mips_elf_tdata (abfd)->abiflags_valid)
15011 {
15012 infer_mips_abiflags (abfd, abiflags);
15013 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15014 }
15015 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15016 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15017 return FALSE;
15018 }
15019
9719ad41 15020 if (reginfo_sec != NULL)
b49e97c9
TS
15021 {
15022 Elf32_External_RegInfo ext;
15023
15024 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 15025 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 15026 return FALSE;
b49e97c9
TS
15027 }
15028
9719ad41 15029 if (mdebug_sec != NULL)
b49e97c9
TS
15030 {
15031 BFD_ASSERT (abfd->output_has_begun);
15032 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15033 swap, info,
15034 mdebug_sec->filepos))
b34976b6 15035 return FALSE;
b49e97c9
TS
15036
15037 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15038 }
15039
9719ad41 15040 if (gptab_data_sec != NULL)
b49e97c9
TS
15041 {
15042 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15043 gptab_data_sec->contents,
eea6121a 15044 0, gptab_data_sec->size))
b34976b6 15045 return FALSE;
b49e97c9
TS
15046 }
15047
9719ad41 15048 if (gptab_bss_sec != NULL)
b49e97c9
TS
15049 {
15050 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15051 gptab_bss_sec->contents,
eea6121a 15052 0, gptab_bss_sec->size))
b34976b6 15053 return FALSE;
b49e97c9
TS
15054 }
15055
15056 if (SGI_COMPAT (abfd))
15057 {
15058 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15059 if (rtproc_sec != NULL)
15060 {
15061 if (! bfd_set_section_contents (abfd, rtproc_sec,
15062 rtproc_sec->contents,
eea6121a 15063 0, rtproc_sec->size))
b34976b6 15064 return FALSE;
b49e97c9
TS
15065 }
15066 }
15067
b34976b6 15068 return TRUE;
b49e97c9
TS
15069}
15070\f
b2e9744f
MR
15071/* Merge object file header flags from IBFD into OBFD. Raise an error
15072 if there are conflicting settings. */
15073
15074static bfd_boolean
50e03d47 15075mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
b2e9744f 15076{
50e03d47 15077 bfd *obfd = info->output_bfd;
b2e9744f
MR
15078 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15079 flagword old_flags;
15080 flagword new_flags;
15081 bfd_boolean ok;
15082
15083 new_flags = elf_elfheader (ibfd)->e_flags;
15084 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15085 old_flags = elf_elfheader (obfd)->e_flags;
15086
15087 /* Check flag compatibility. */
15088
15089 new_flags &= ~EF_MIPS_NOREORDER;
15090 old_flags &= ~EF_MIPS_NOREORDER;
15091
15092 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15093 doesn't seem to matter. */
15094 new_flags &= ~EF_MIPS_XGOT;
15095 old_flags &= ~EF_MIPS_XGOT;
15096
15097 /* MIPSpro generates ucode info in n64 objects. Again, we should
15098 just be able to ignore this. */
15099 new_flags &= ~EF_MIPS_UCODE;
15100 old_flags &= ~EF_MIPS_UCODE;
15101
15102 /* DSOs should only be linked with CPIC code. */
15103 if ((ibfd->flags & DYNAMIC) != 0)
15104 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15105
15106 if (new_flags == old_flags)
15107 return TRUE;
15108
15109 ok = TRUE;
15110
15111 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15112 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15113 {
4eca0228 15114 _bfd_error_handler
b2e9744f
MR
15115 (_("%B: warning: linking abicalls files with non-abicalls files"),
15116 ibfd);
15117 ok = TRUE;
15118 }
15119
15120 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15121 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15122 if (! (new_flags & EF_MIPS_PIC))
15123 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15124
15125 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15126 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15127
15128 /* Compare the ISAs. */
15129 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15130 {
4eca0228 15131 _bfd_error_handler
b2e9744f
MR
15132 (_("%B: linking 32-bit code with 64-bit code"),
15133 ibfd);
15134 ok = FALSE;
15135 }
15136 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15137 {
15138 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15139 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15140 {
15141 /* Copy the architecture info from IBFD to OBFD. Also copy
15142 the 32-bit flag (if set) so that we continue to recognise
15143 OBFD as a 32-bit binary. */
15144 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15145 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15146 elf_elfheader (obfd)->e_flags
15147 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15148
15149 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15150 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15151
15152 /* Copy across the ABI flags if OBFD doesn't use them
15153 and if that was what caused us to treat IBFD as 32-bit. */
15154 if ((old_flags & EF_MIPS_ABI) == 0
15155 && mips_32bit_flags_p (new_flags)
15156 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15157 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15158 }
15159 else
15160 {
15161 /* The ISAs aren't compatible. */
4eca0228 15162 _bfd_error_handler
695344c0 15163 /* xgettext:c-format */
b2e9744f
MR
15164 (_("%B: linking %s module with previous %s modules"),
15165 ibfd,
15166 bfd_printable_name (ibfd),
15167 bfd_printable_name (obfd));
15168 ok = FALSE;
15169 }
15170 }
15171
15172 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15173 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15174
15175 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15176 does set EI_CLASS differently from any 32-bit ABI. */
15177 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15178 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15179 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15180 {
15181 /* Only error if both are set (to different values). */
15182 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15183 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15184 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15185 {
4eca0228 15186 _bfd_error_handler
695344c0 15187 /* xgettext:c-format */
b2e9744f
MR
15188 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15189 ibfd,
15190 elf_mips_abi_name (ibfd),
15191 elf_mips_abi_name (obfd));
15192 ok = FALSE;
15193 }
15194 new_flags &= ~EF_MIPS_ABI;
15195 old_flags &= ~EF_MIPS_ABI;
15196 }
15197
15198 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15199 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15200 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15201 {
15202 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15203 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15204 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15205 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15206 int micro_mis = old_m16 && new_micro;
15207 int m16_mis = old_micro && new_m16;
15208
15209 if (m16_mis || micro_mis)
15210 {
4eca0228 15211 _bfd_error_handler
695344c0 15212 /* xgettext:c-format */
b2e9744f
MR
15213 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15214 ibfd,
15215 m16_mis ? "MIPS16" : "microMIPS",
15216 m16_mis ? "microMIPS" : "MIPS16");
15217 ok = FALSE;
15218 }
15219
15220 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15221
15222 new_flags &= ~ EF_MIPS_ARCH_ASE;
15223 old_flags &= ~ EF_MIPS_ARCH_ASE;
15224 }
15225
15226 /* Compare NaN encodings. */
15227 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15228 {
695344c0 15229 /* xgettext:c-format */
b2e9744f
MR
15230 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15231 ibfd,
15232 (new_flags & EF_MIPS_NAN2008
15233 ? "-mnan=2008" : "-mnan=legacy"),
15234 (old_flags & EF_MIPS_NAN2008
15235 ? "-mnan=2008" : "-mnan=legacy"));
15236 ok = FALSE;
15237 new_flags &= ~EF_MIPS_NAN2008;
15238 old_flags &= ~EF_MIPS_NAN2008;
15239 }
15240
15241 /* Compare FP64 state. */
15242 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15243 {
695344c0 15244 /* xgettext:c-format */
b2e9744f
MR
15245 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15246 ibfd,
15247 (new_flags & EF_MIPS_FP64
15248 ? "-mfp64" : "-mfp32"),
15249 (old_flags & EF_MIPS_FP64
15250 ? "-mfp64" : "-mfp32"));
15251 ok = FALSE;
15252 new_flags &= ~EF_MIPS_FP64;
15253 old_flags &= ~EF_MIPS_FP64;
15254 }
15255
15256 /* Warn about any other mismatches */
15257 if (new_flags != old_flags)
15258 {
695344c0 15259 /* xgettext:c-format */
4eca0228 15260 _bfd_error_handler
b2e9744f
MR
15261 (_("%B: uses different e_flags (0x%lx) fields than previous modules "
15262 "(0x%lx)"),
15263 ibfd, (unsigned long) new_flags,
15264 (unsigned long) old_flags);
15265 ok = FALSE;
15266 }
15267
15268 return ok;
15269}
15270
2cf19d5c
JM
15271/* Merge object attributes from IBFD into OBFD. Raise an error if
15272 there are conflicting attributes. */
15273static bfd_boolean
50e03d47 15274mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
2cf19d5c 15275{
50e03d47 15276 bfd *obfd = info->output_bfd;
2cf19d5c
JM
15277 obj_attribute *in_attr;
15278 obj_attribute *out_attr;
6ae68ba3 15279 bfd *abi_fp_bfd;
b60bf9be 15280 bfd *abi_msa_bfd;
6ae68ba3
MR
15281
15282 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15283 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
d929bc19 15284 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
6ae68ba3 15285 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
2cf19d5c 15286
b60bf9be
CF
15287 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15288 if (!abi_msa_bfd
15289 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15290 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15291
2cf19d5c
JM
15292 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15293 {
15294 /* This is the first object. Copy the attributes. */
15295 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15296
15297 /* Use the Tag_null value to indicate the attributes have been
15298 initialized. */
15299 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15300
15301 return TRUE;
15302 }
15303
15304 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15305 non-conflicting ones. */
2cf19d5c
JM
15306 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15307 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15308 {
757a636f 15309 int out_fp, in_fp;
6ae68ba3 15310
757a636f
RS
15311 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15312 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15313 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15314 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15315 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
351cdf24
MF
15316 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15317 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15318 || in_fp == Val_GNU_MIPS_ABI_FP_64
15319 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15320 {
15321 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15322 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15323 }
15324 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15325 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15326 || out_fp == Val_GNU_MIPS_ABI_FP_64
15327 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15328 /* Keep the current setting. */;
15329 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15330 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15331 {
15332 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15333 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15334 }
15335 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15336 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15337 /* Keep the current setting. */;
757a636f
RS
15338 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15339 {
15340 const char *out_string, *in_string;
6ae68ba3 15341
757a636f
RS
15342 out_string = _bfd_mips_fp_abi_string (out_fp);
15343 in_string = _bfd_mips_fp_abi_string (in_fp);
15344 /* First warn about cases involving unrecognised ABIs. */
15345 if (!out_string && !in_string)
695344c0 15346 /* xgettext:c-format */
757a636f
RS
15347 _bfd_error_handler
15348 (_("Warning: %B uses unknown floating point ABI %d "
15349 "(set by %B), %B uses unknown floating point ABI %d"),
15350 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
15351 else if (!out_string)
15352 _bfd_error_handler
695344c0 15353 /* xgettext:c-format */
757a636f
RS
15354 (_("Warning: %B uses unknown floating point ABI %d "
15355 "(set by %B), %B uses %s"),
15356 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
15357 else if (!in_string)
15358 _bfd_error_handler
695344c0 15359 /* xgettext:c-format */
757a636f
RS
15360 (_("Warning: %B uses %s (set by %B), "
15361 "%B uses unknown floating point ABI %d"),
15362 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
15363 else
15364 {
15365 /* If one of the bfds is soft-float, the other must be
15366 hard-float. The exact choice of hard-float ABI isn't
15367 really relevant to the error message. */
15368 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15369 out_string = "-mhard-float";
15370 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15371 in_string = "-mhard-float";
15372 _bfd_error_handler
695344c0 15373 /* xgettext:c-format */
757a636f
RS
15374 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15375 obfd, abi_fp_bfd, ibfd, out_string, in_string);
15376 }
15377 }
2cf19d5c
JM
15378 }
15379
b60bf9be
CF
15380 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15381 non-conflicting ones. */
15382 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15383 {
15384 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15385 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15386 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15387 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15388 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15389 {
15390 case Val_GNU_MIPS_ABI_MSA_128:
15391 _bfd_error_handler
695344c0 15392 /* xgettext:c-format */
b60bf9be
CF
15393 (_("Warning: %B uses %s (set by %B), "
15394 "%B uses unknown MSA ABI %d"),
15395 obfd, abi_msa_bfd, ibfd,
15396 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15397 break;
15398
15399 default:
15400 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15401 {
15402 case Val_GNU_MIPS_ABI_MSA_128:
15403 _bfd_error_handler
695344c0 15404 /* xgettext:c-format */
b60bf9be
CF
15405 (_("Warning: %B uses unknown MSA ABI %d "
15406 "(set by %B), %B uses %s"),
15407 obfd, abi_msa_bfd, ibfd,
15408 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15409 break;
15410
15411 default:
15412 _bfd_error_handler
695344c0 15413 /* xgettext:c-format */
b60bf9be
CF
15414 (_("Warning: %B uses unknown MSA ABI %d "
15415 "(set by %B), %B uses unknown MSA ABI %d"),
15416 obfd, abi_msa_bfd, ibfd,
15417 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15418 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15419 break;
15420 }
15421 }
15422 }
15423
2cf19d5c 15424 /* Merge Tag_compatibility attributes and any common GNU ones. */
50e03d47 15425 return _bfd_elf_merge_object_attributes (ibfd, info);
2cf19d5c
JM
15426}
15427
a3dc0a7f
MR
15428/* Merge object ABI flags from IBFD into OBFD. Raise an error if
15429 there are conflicting settings. */
15430
15431static bfd_boolean
15432mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15433{
15434 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15435 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15436 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15437
15438 /* Update the output abiflags fp_abi using the computed fp_abi. */
15439 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15440
15441#define max(a, b) ((a) > (b) ? (a) : (b))
15442 /* Merge abiflags. */
15443 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15444 in_tdata->abiflags.isa_level);
15445 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15446 in_tdata->abiflags.isa_rev);
15447 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15448 in_tdata->abiflags.gpr_size);
15449 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15450 in_tdata->abiflags.cpr1_size);
15451 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15452 in_tdata->abiflags.cpr2_size);
15453#undef max
15454 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15455 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15456
15457 return TRUE;
15458}
15459
b49e97c9
TS
15460/* Merge backend specific data from an object file to the output
15461 object file when linking. */
15462
b34976b6 15463bfd_boolean
50e03d47 15464_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
b49e97c9 15465{
50e03d47 15466 bfd *obfd = info->output_bfd;
cf8502c1
MR
15467 struct mips_elf_obj_tdata *out_tdata;
15468 struct mips_elf_obj_tdata *in_tdata;
b34976b6 15469 bfd_boolean null_input_bfd = TRUE;
b49e97c9 15470 asection *sec;
d537eeb5 15471 bfd_boolean ok;
b49e97c9 15472
58238693 15473 /* Check if we have the same endianness. */
50e03d47 15474 if (! _bfd_generic_verify_endian_match (ibfd, info))
aa701218 15475 {
4eca0228 15476 _bfd_error_handler
d003868e
AM
15477 (_("%B: endianness incompatible with that of the selected emulation"),
15478 ibfd);
aa701218
AO
15479 return FALSE;
15480 }
b49e97c9 15481
d5eaccd7 15482 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 15483 return TRUE;
b49e97c9 15484
cf8502c1
MR
15485 in_tdata = mips_elf_tdata (ibfd);
15486 out_tdata = mips_elf_tdata (obfd);
15487
aa701218
AO
15488 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15489 {
4eca0228 15490 _bfd_error_handler
d003868e
AM
15491 (_("%B: ABI is incompatible with that of the selected emulation"),
15492 ibfd);
aa701218
AO
15493 return FALSE;
15494 }
15495
23ba6f18
MR
15496 /* Check to see if the input BFD actually contains any sections. If not,
15497 then it has no attributes, and its flags may not have been initialized
15498 either, but it cannot actually cause any incompatibility. */
351cdf24
MF
15499 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15500 {
15501 /* Ignore synthetic sections and empty .text, .data and .bss sections
15502 which are automatically generated by gas. Also ignore fake
15503 (s)common sections, since merely defining a common symbol does
15504 not affect compatibility. */
15505 if ((sec->flags & SEC_IS_COMMON) == 0
15506 && strcmp (sec->name, ".reginfo")
15507 && strcmp (sec->name, ".mdebug")
15508 && (sec->size != 0
15509 || (strcmp (sec->name, ".text")
15510 && strcmp (sec->name, ".data")
15511 && strcmp (sec->name, ".bss"))))
15512 {
15513 null_input_bfd = FALSE;
15514 break;
15515 }
15516 }
15517 if (null_input_bfd)
15518 return TRUE;
15519
28d45e28 15520 /* Populate abiflags using existing information. */
23ba6f18
MR
15521 if (in_tdata->abiflags_valid)
15522 {
15523 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
28d45e28
MR
15524 Elf_Internal_ABIFlags_v0 in_abiflags;
15525 Elf_Internal_ABIFlags_v0 abiflags;
15526
15527 /* Set up the FP ABI attribute from the abiflags if it is not already
15528 set. */
23ba6f18
MR
15529 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15530 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
23ba6f18 15531
351cdf24 15532 infer_mips_abiflags (ibfd, &abiflags);
cf8502c1 15533 in_abiflags = in_tdata->abiflags;
351cdf24
MF
15534
15535 /* It is not possible to infer the correct ISA revision
15536 for R3 or R5 so drop down to R2 for the checks. */
15537 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15538 in_abiflags.isa_rev = 2;
15539
c97c330b
MF
15540 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15541 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
4eca0228 15542 _bfd_error_handler
351cdf24
MF
15543 (_("%B: warning: Inconsistent ISA between e_flags and "
15544 ".MIPS.abiflags"), ibfd);
15545 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15546 && in_abiflags.fp_abi != abiflags.fp_abi)
4eca0228 15547 _bfd_error_handler
dcb1c796 15548 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
351cdf24
MF
15549 ".MIPS.abiflags"), ibfd);
15550 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
4eca0228 15551 _bfd_error_handler
351cdf24
MF
15552 (_("%B: warning: Inconsistent ASEs between e_flags and "
15553 ".MIPS.abiflags"), ibfd);
c97c330b
MF
15554 /* The isa_ext is allowed to be an extension of what can be inferred
15555 from e_flags. */
15556 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15557 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
4eca0228 15558 _bfd_error_handler
351cdf24
MF
15559 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15560 ".MIPS.abiflags"), ibfd);
15561 if (in_abiflags.flags2 != 0)
4eca0228 15562 _bfd_error_handler
351cdf24
MF
15563 (_("%B: warning: Unexpected flag in the flags2 field of "
15564 ".MIPS.abiflags (0x%lx)"), ibfd,
15565 (unsigned long) in_abiflags.flags2);
15566 }
28d45e28
MR
15567 else
15568 {
15569 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15570 in_tdata->abiflags_valid = TRUE;
15571 }
15572
cf8502c1 15573 if (!out_tdata->abiflags_valid)
351cdf24
MF
15574 {
15575 /* Copy input abiflags if output abiflags are not already valid. */
cf8502c1
MR
15576 out_tdata->abiflags = in_tdata->abiflags;
15577 out_tdata->abiflags_valid = TRUE;
351cdf24 15578 }
b49e97c9
TS
15579
15580 if (! elf_flags_init (obfd))
15581 {
b34976b6 15582 elf_flags_init (obfd) = TRUE;
351cdf24 15583 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
b49e97c9
TS
15584 elf_elfheader (obfd)->e_ident[EI_CLASS]
15585 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15586
15587 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861 15588 && (bfd_get_arch_info (obfd)->the_default
68ffbac6 15589 || mips_mach_extends_p (bfd_get_mach (obfd),
2907b861 15590 bfd_get_mach (ibfd))))
b49e97c9
TS
15591 {
15592 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15593 bfd_get_mach (ibfd)))
b34976b6 15594 return FALSE;
351cdf24
MF
15595
15596 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
cf8502c1 15597 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
b49e97c9
TS
15598 }
15599
d537eeb5 15600 ok = TRUE;
b49e97c9 15601 }
d537eeb5 15602 else
50e03d47 15603 ok = mips_elf_merge_obj_e_flags (ibfd, info);
d537eeb5 15604
50e03d47 15605 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
b49e97c9 15606
a3dc0a7f 15607 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
351cdf24 15608
d537eeb5 15609 if (!ok)
b49e97c9
TS
15610 {
15611 bfd_set_error (bfd_error_bad_value);
b34976b6 15612 return FALSE;
b49e97c9
TS
15613 }
15614
b34976b6 15615 return TRUE;
b49e97c9
TS
15616}
15617
15618/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15619
b34976b6 15620bfd_boolean
9719ad41 15621_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
15622{
15623 BFD_ASSERT (!elf_flags_init (abfd)
15624 || elf_elfheader (abfd)->e_flags == flags);
15625
15626 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
15627 elf_flags_init (abfd) = TRUE;
15628 return TRUE;
b49e97c9
TS
15629}
15630
ad9563d6
CM
15631char *
15632_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15633{
15634 switch (dtag)
15635 {
15636 default: return "";
15637 case DT_MIPS_RLD_VERSION:
15638 return "MIPS_RLD_VERSION";
15639 case DT_MIPS_TIME_STAMP:
15640 return "MIPS_TIME_STAMP";
15641 case DT_MIPS_ICHECKSUM:
15642 return "MIPS_ICHECKSUM";
15643 case DT_MIPS_IVERSION:
15644 return "MIPS_IVERSION";
15645 case DT_MIPS_FLAGS:
15646 return "MIPS_FLAGS";
15647 case DT_MIPS_BASE_ADDRESS:
15648 return "MIPS_BASE_ADDRESS";
15649 case DT_MIPS_MSYM:
15650 return "MIPS_MSYM";
15651 case DT_MIPS_CONFLICT:
15652 return "MIPS_CONFLICT";
15653 case DT_MIPS_LIBLIST:
15654 return "MIPS_LIBLIST";
15655 case DT_MIPS_LOCAL_GOTNO:
15656 return "MIPS_LOCAL_GOTNO";
15657 case DT_MIPS_CONFLICTNO:
15658 return "MIPS_CONFLICTNO";
15659 case DT_MIPS_LIBLISTNO:
15660 return "MIPS_LIBLISTNO";
15661 case DT_MIPS_SYMTABNO:
15662 return "MIPS_SYMTABNO";
15663 case DT_MIPS_UNREFEXTNO:
15664 return "MIPS_UNREFEXTNO";
15665 case DT_MIPS_GOTSYM:
15666 return "MIPS_GOTSYM";
15667 case DT_MIPS_HIPAGENO:
15668 return "MIPS_HIPAGENO";
15669 case DT_MIPS_RLD_MAP:
15670 return "MIPS_RLD_MAP";
a5499fa4
MF
15671 case DT_MIPS_RLD_MAP_REL:
15672 return "MIPS_RLD_MAP_REL";
ad9563d6
CM
15673 case DT_MIPS_DELTA_CLASS:
15674 return "MIPS_DELTA_CLASS";
15675 case DT_MIPS_DELTA_CLASS_NO:
15676 return "MIPS_DELTA_CLASS_NO";
15677 case DT_MIPS_DELTA_INSTANCE:
15678 return "MIPS_DELTA_INSTANCE";
15679 case DT_MIPS_DELTA_INSTANCE_NO:
15680 return "MIPS_DELTA_INSTANCE_NO";
15681 case DT_MIPS_DELTA_RELOC:
15682 return "MIPS_DELTA_RELOC";
15683 case DT_MIPS_DELTA_RELOC_NO:
15684 return "MIPS_DELTA_RELOC_NO";
15685 case DT_MIPS_DELTA_SYM:
15686 return "MIPS_DELTA_SYM";
15687 case DT_MIPS_DELTA_SYM_NO:
15688 return "MIPS_DELTA_SYM_NO";
15689 case DT_MIPS_DELTA_CLASSSYM:
15690 return "MIPS_DELTA_CLASSSYM";
15691 case DT_MIPS_DELTA_CLASSSYM_NO:
15692 return "MIPS_DELTA_CLASSSYM_NO";
15693 case DT_MIPS_CXX_FLAGS:
15694 return "MIPS_CXX_FLAGS";
15695 case DT_MIPS_PIXIE_INIT:
15696 return "MIPS_PIXIE_INIT";
15697 case DT_MIPS_SYMBOL_LIB:
15698 return "MIPS_SYMBOL_LIB";
15699 case DT_MIPS_LOCALPAGE_GOTIDX:
15700 return "MIPS_LOCALPAGE_GOTIDX";
15701 case DT_MIPS_LOCAL_GOTIDX:
15702 return "MIPS_LOCAL_GOTIDX";
15703 case DT_MIPS_HIDDEN_GOTIDX:
15704 return "MIPS_HIDDEN_GOTIDX";
15705 case DT_MIPS_PROTECTED_GOTIDX:
15706 return "MIPS_PROTECTED_GOT_IDX";
15707 case DT_MIPS_OPTIONS:
15708 return "MIPS_OPTIONS";
15709 case DT_MIPS_INTERFACE:
15710 return "MIPS_INTERFACE";
15711 case DT_MIPS_DYNSTR_ALIGN:
15712 return "DT_MIPS_DYNSTR_ALIGN";
15713 case DT_MIPS_INTERFACE_SIZE:
15714 return "DT_MIPS_INTERFACE_SIZE";
15715 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15716 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15717 case DT_MIPS_PERF_SUFFIX:
15718 return "DT_MIPS_PERF_SUFFIX";
15719 case DT_MIPS_COMPACT_SIZE:
15720 return "DT_MIPS_COMPACT_SIZE";
15721 case DT_MIPS_GP_VALUE:
15722 return "DT_MIPS_GP_VALUE";
15723 case DT_MIPS_AUX_DYNAMIC:
15724 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
15725 case DT_MIPS_PLTGOT:
15726 return "DT_MIPS_PLTGOT";
15727 case DT_MIPS_RWPLT:
15728 return "DT_MIPS_RWPLT";
ad9563d6
CM
15729 }
15730}
15731
757a636f
RS
15732/* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15733 not known. */
15734
15735const char *
15736_bfd_mips_fp_abi_string (int fp)
15737{
15738 switch (fp)
15739 {
15740 /* These strings aren't translated because they're simply
15741 option lists. */
15742 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15743 return "-mdouble-float";
15744
15745 case Val_GNU_MIPS_ABI_FP_SINGLE:
15746 return "-msingle-float";
15747
15748 case Val_GNU_MIPS_ABI_FP_SOFT:
15749 return "-msoft-float";
15750
351cdf24
MF
15751 case Val_GNU_MIPS_ABI_FP_OLD_64:
15752 return _("-mips32r2 -mfp64 (12 callee-saved)");
15753
15754 case Val_GNU_MIPS_ABI_FP_XX:
15755 return "-mfpxx";
15756
757a636f 15757 case Val_GNU_MIPS_ABI_FP_64:
351cdf24
MF
15758 return "-mgp32 -mfp64";
15759
15760 case Val_GNU_MIPS_ABI_FP_64A:
15761 return "-mgp32 -mfp64 -mno-odd-spreg";
757a636f
RS
15762
15763 default:
15764 return 0;
15765 }
15766}
15767
351cdf24
MF
15768static void
15769print_mips_ases (FILE *file, unsigned int mask)
15770{
15771 if (mask & AFL_ASE_DSP)
15772 fputs ("\n\tDSP ASE", file);
15773 if (mask & AFL_ASE_DSPR2)
15774 fputs ("\n\tDSP R2 ASE", file);
8f4f9071
MF
15775 if (mask & AFL_ASE_DSPR3)
15776 fputs ("\n\tDSP R3 ASE", file);
351cdf24
MF
15777 if (mask & AFL_ASE_EVA)
15778 fputs ("\n\tEnhanced VA Scheme", file);
15779 if (mask & AFL_ASE_MCU)
15780 fputs ("\n\tMCU (MicroController) ASE", file);
15781 if (mask & AFL_ASE_MDMX)
15782 fputs ("\n\tMDMX ASE", file);
15783 if (mask & AFL_ASE_MIPS3D)
15784 fputs ("\n\tMIPS-3D ASE", file);
15785 if (mask & AFL_ASE_MT)
15786 fputs ("\n\tMT ASE", file);
15787 if (mask & AFL_ASE_SMARTMIPS)
15788 fputs ("\n\tSmartMIPS ASE", file);
15789 if (mask & AFL_ASE_VIRT)
15790 fputs ("\n\tVZ ASE", file);
15791 if (mask & AFL_ASE_MSA)
15792 fputs ("\n\tMSA ASE", file);
15793 if (mask & AFL_ASE_MIPS16)
15794 fputs ("\n\tMIPS16 ASE", file);
15795 if (mask & AFL_ASE_MICROMIPS)
15796 fputs ("\n\tMICROMIPS ASE", file);
15797 if (mask & AFL_ASE_XPA)
15798 fputs ("\n\tXPA ASE", file);
15799 if (mask == 0)
15800 fprintf (file, "\n\t%s", _("None"));
00ac7aa0
MF
15801 else if ((mask & ~AFL_ASE_MASK) != 0)
15802 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
351cdf24
MF
15803}
15804
15805static void
15806print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15807{
15808 switch (isa_ext)
15809 {
15810 case 0:
15811 fputs (_("None"), file);
15812 break;
15813 case AFL_EXT_XLR:
15814 fputs ("RMI XLR", file);
15815 break;
2c629856
N
15816 case AFL_EXT_OCTEON3:
15817 fputs ("Cavium Networks Octeon3", file);
15818 break;
351cdf24
MF
15819 case AFL_EXT_OCTEON2:
15820 fputs ("Cavium Networks Octeon2", file);
15821 break;
15822 case AFL_EXT_OCTEONP:
15823 fputs ("Cavium Networks OcteonP", file);
15824 break;
15825 case AFL_EXT_LOONGSON_3A:
15826 fputs ("Loongson 3A", file);
15827 break;
15828 case AFL_EXT_OCTEON:
15829 fputs ("Cavium Networks Octeon", file);
15830 break;
15831 case AFL_EXT_5900:
15832 fputs ("Toshiba R5900", file);
15833 break;
15834 case AFL_EXT_4650:
15835 fputs ("MIPS R4650", file);
15836 break;
15837 case AFL_EXT_4010:
15838 fputs ("LSI R4010", file);
15839 break;
15840 case AFL_EXT_4100:
15841 fputs ("NEC VR4100", file);
15842 break;
15843 case AFL_EXT_3900:
15844 fputs ("Toshiba R3900", file);
15845 break;
15846 case AFL_EXT_10000:
15847 fputs ("MIPS R10000", file);
15848 break;
15849 case AFL_EXT_SB1:
15850 fputs ("Broadcom SB-1", file);
15851 break;
15852 case AFL_EXT_4111:
15853 fputs ("NEC VR4111/VR4181", file);
15854 break;
15855 case AFL_EXT_4120:
15856 fputs ("NEC VR4120", file);
15857 break;
15858 case AFL_EXT_5400:
15859 fputs ("NEC VR5400", file);
15860 break;
15861 case AFL_EXT_5500:
15862 fputs ("NEC VR5500", file);
15863 break;
15864 case AFL_EXT_LOONGSON_2E:
15865 fputs ("ST Microelectronics Loongson 2E", file);
15866 break;
15867 case AFL_EXT_LOONGSON_2F:
15868 fputs ("ST Microelectronics Loongson 2F", file);
15869 break;
15870 default:
00ac7aa0 15871 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
351cdf24
MF
15872 break;
15873 }
15874}
15875
15876static void
15877print_mips_fp_abi_value (FILE *file, int val)
15878{
15879 switch (val)
15880 {
15881 case Val_GNU_MIPS_ABI_FP_ANY:
15882 fprintf (file, _("Hard or soft float\n"));
15883 break;
15884 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15885 fprintf (file, _("Hard float (double precision)\n"));
15886 break;
15887 case Val_GNU_MIPS_ABI_FP_SINGLE:
15888 fprintf (file, _("Hard float (single precision)\n"));
15889 break;
15890 case Val_GNU_MIPS_ABI_FP_SOFT:
15891 fprintf (file, _("Soft float\n"));
15892 break;
15893 case Val_GNU_MIPS_ABI_FP_OLD_64:
15894 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15895 break;
15896 case Val_GNU_MIPS_ABI_FP_XX:
15897 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15898 break;
15899 case Val_GNU_MIPS_ABI_FP_64:
15900 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15901 break;
15902 case Val_GNU_MIPS_ABI_FP_64A:
15903 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15904 break;
15905 default:
15906 fprintf (file, "??? (%d)\n", val);
15907 break;
15908 }
15909}
15910
15911static int
15912get_mips_reg_size (int reg_size)
15913{
15914 return (reg_size == AFL_REG_NONE) ? 0
15915 : (reg_size == AFL_REG_32) ? 32
15916 : (reg_size == AFL_REG_64) ? 64
15917 : (reg_size == AFL_REG_128) ? 128
15918 : -1;
15919}
15920
b34976b6 15921bfd_boolean
9719ad41 15922_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 15923{
9719ad41 15924 FILE *file = ptr;
b49e97c9
TS
15925
15926 BFD_ASSERT (abfd != NULL && ptr != NULL);
15927
15928 /* Print normal ELF private data. */
15929 _bfd_elf_print_private_bfd_data (abfd, ptr);
15930
15931 /* xgettext:c-format */
15932 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15933
15934 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15935 fprintf (file, _(" [abi=O32]"));
15936 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15937 fprintf (file, _(" [abi=O64]"));
15938 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15939 fprintf (file, _(" [abi=EABI32]"));
15940 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15941 fprintf (file, _(" [abi=EABI64]"));
15942 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15943 fprintf (file, _(" [abi unknown]"));
15944 else if (ABI_N32_P (abfd))
15945 fprintf (file, _(" [abi=N32]"));
15946 else if (ABI_64_P (abfd))
15947 fprintf (file, _(" [abi=64]"));
15948 else
15949 fprintf (file, _(" [no abi set]"));
15950
15951 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 15952 fprintf (file, " [mips1]");
b49e97c9 15953 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 15954 fprintf (file, " [mips2]");
b49e97c9 15955 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 15956 fprintf (file, " [mips3]");
b49e97c9 15957 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 15958 fprintf (file, " [mips4]");
b49e97c9 15959 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 15960 fprintf (file, " [mips5]");
b49e97c9 15961 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 15962 fprintf (file, " [mips32]");
b49e97c9 15963 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 15964 fprintf (file, " [mips64]");
af7ee8bf 15965 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 15966 fprintf (file, " [mips32r2]");
5f74bc13 15967 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 15968 fprintf (file, " [mips64r2]");
7361da2c
AB
15969 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15970 fprintf (file, " [mips32r6]");
15971 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15972 fprintf (file, " [mips64r6]");
b49e97c9
TS
15973 else
15974 fprintf (file, _(" [unknown ISA]"));
15975
40d32fc6 15976 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 15977 fprintf (file, " [mdmx]");
40d32fc6
CD
15978
15979 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 15980 fprintf (file, " [mips16]");
40d32fc6 15981
df58fc94
RS
15982 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15983 fprintf (file, " [micromips]");
15984
ba92f887
MR
15985 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15986 fprintf (file, " [nan2008]");
15987
5baf5e34 15988 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
351cdf24 15989 fprintf (file, " [old fp64]");
5baf5e34 15990
b49e97c9 15991 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 15992 fprintf (file, " [32bitmode]");
b49e97c9
TS
15993 else
15994 fprintf (file, _(" [not 32bitmode]"));
15995
c0e3f241 15996 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 15997 fprintf (file, " [noreorder]");
c0e3f241
CD
15998
15999 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 16000 fprintf (file, " [PIC]");
c0e3f241
CD
16001
16002 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 16003 fprintf (file, " [CPIC]");
c0e3f241
CD
16004
16005 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 16006 fprintf (file, " [XGOT]");
c0e3f241
CD
16007
16008 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 16009 fprintf (file, " [UCODE]");
c0e3f241 16010
b49e97c9
TS
16011 fputc ('\n', file);
16012
351cdf24
MF
16013 if (mips_elf_tdata (abfd)->abiflags_valid)
16014 {
16015 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16016 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16017 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16018 if (abiflags->isa_rev > 1)
16019 fprintf (file, "r%d", abiflags->isa_rev);
16020 fprintf (file, "\nGPR size: %d",
16021 get_mips_reg_size (abiflags->gpr_size));
16022 fprintf (file, "\nCPR1 size: %d",
16023 get_mips_reg_size (abiflags->cpr1_size));
16024 fprintf (file, "\nCPR2 size: %d",
16025 get_mips_reg_size (abiflags->cpr2_size));
16026 fputs ("\nFP ABI: ", file);
16027 print_mips_fp_abi_value (file, abiflags->fp_abi);
16028 fputs ("ISA Extension: ", file);
16029 print_mips_isa_ext (file, abiflags->isa_ext);
16030 fputs ("\nASEs:", file);
16031 print_mips_ases (file, abiflags->ases);
16032 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16033 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16034 fputc ('\n', file);
16035 }
16036
b34976b6 16037 return TRUE;
b49e97c9 16038}
2f89ff8d 16039
b35d266b 16040const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 16041{
0112cd26
NC
16042 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16043 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16044 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16045 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16046 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16047 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16048 { NULL, 0, 0, 0, 0 }
2f89ff8d 16049};
5e2b0d47 16050
8992f0d7
TS
16051/* Merge non visibility st_other attributes. Ensure that the
16052 STO_OPTIONAL flag is copied into h->other, even if this is not a
16053 definiton of the symbol. */
5e2b0d47
NC
16054void
16055_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16056 const Elf_Internal_Sym *isym,
16057 bfd_boolean definition,
16058 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16059{
8992f0d7
TS
16060 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16061 {
16062 unsigned char other;
16063
16064 other = (definition ? isym->st_other : h->other);
16065 other &= ~ELF_ST_VISIBILITY (-1);
16066 h->other = other | ELF_ST_VISIBILITY (h->other);
16067 }
16068
16069 if (!definition
5e2b0d47
NC
16070 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16071 h->other |= STO_OPTIONAL;
16072}
12ac1cf5
NC
16073
16074/* Decide whether an undefined symbol is special and can be ignored.
16075 This is the case for OPTIONAL symbols on IRIX. */
16076bfd_boolean
16077_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16078{
16079 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16080}
e0764319
NC
16081
16082bfd_boolean
16083_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16084{
16085 return (sym->st_shndx == SHN_COMMON
16086 || sym->st_shndx == SHN_MIPS_ACOMMON
16087 || sym->st_shndx == SHN_MIPS_SCOMMON);
16088}
861fb55a
DJ
16089
16090/* Return address for Ith PLT stub in section PLT, for relocation REL
16091 or (bfd_vma) -1 if it should not be included. */
16092
16093bfd_vma
16094_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16095 const arelent *rel ATTRIBUTE_UNUSED)
16096{
16097 return (plt->vma
16098 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16099 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16100}
16101
1bbce132
MR
16102/* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16103 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16104 and .got.plt and also the slots may be of a different size each we walk
16105 the PLT manually fetching instructions and matching them against known
16106 patterns. To make things easier standard MIPS slots, if any, always come
16107 first. As we don't create proper ELF symbols we use the UDATA.I member
16108 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16109 with the ST_OTHER member of the ELF symbol. */
16110
16111long
16112_bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16113 long symcount ATTRIBUTE_UNUSED,
16114 asymbol **syms ATTRIBUTE_UNUSED,
16115 long dynsymcount, asymbol **dynsyms,
16116 asymbol **ret)
16117{
16118 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16119 static const char microsuffix[] = "@micromipsplt";
16120 static const char m16suffix[] = "@mips16plt";
16121 static const char mipssuffix[] = "@plt";
16122
16123 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16124 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16125 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16126 Elf_Internal_Shdr *hdr;
16127 bfd_byte *plt_data;
16128 bfd_vma plt_offset;
16129 unsigned int other;
16130 bfd_vma entry_size;
16131 bfd_vma plt0_size;
16132 asection *relplt;
16133 bfd_vma opcode;
16134 asection *plt;
16135 asymbol *send;
16136 size_t size;
16137 char *names;
16138 long counti;
16139 arelent *p;
16140 asymbol *s;
16141 char *nend;
16142 long count;
16143 long pi;
16144 long i;
16145 long n;
16146
16147 *ret = NULL;
16148
16149 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16150 return 0;
16151
16152 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16153 if (relplt == NULL)
16154 return 0;
16155
16156 hdr = &elf_section_data (relplt)->this_hdr;
16157 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16158 return 0;
16159
16160 plt = bfd_get_section_by_name (abfd, ".plt");
16161 if (plt == NULL)
16162 return 0;
16163
16164 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16165 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16166 return -1;
16167 p = relplt->relocation;
16168
16169 /* Calculating the exact amount of space required for symbols would
16170 require two passes over the PLT, so just pessimise assuming two
16171 PLT slots per relocation. */
16172 count = relplt->size / hdr->sh_entsize;
16173 counti = count * bed->s->int_rels_per_ext_rel;
16174 size = 2 * count * sizeof (asymbol);
16175 size += count * (sizeof (mipssuffix) +
16176 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16177 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16178 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16179
16180 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16181 size += sizeof (asymbol) + sizeof (pltname);
16182
16183 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16184 return -1;
16185
16186 if (plt->size < 16)
16187 return -1;
16188
16189 s = *ret = bfd_malloc (size);
16190 if (s == NULL)
16191 return -1;
16192 send = s + 2 * count + 1;
16193
16194 names = (char *) send;
16195 nend = (char *) s + size;
16196 n = 0;
16197
16198 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16199 if (opcode == 0x3302fffe)
16200 {
16201 if (!micromips_p)
16202 return -1;
16203 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16204 other = STO_MICROMIPS;
16205 }
833794fc
MR
16206 else if (opcode == 0x0398c1d0)
16207 {
16208 if (!micromips_p)
16209 return -1;
16210 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16211 other = STO_MICROMIPS;
16212 }
1bbce132
MR
16213 else
16214 {
16215 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16216 other = 0;
16217 }
16218
16219 s->the_bfd = abfd;
16220 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16221 s->section = plt;
16222 s->value = 0;
16223 s->name = names;
16224 s->udata.i = other;
16225 memcpy (names, pltname, sizeof (pltname));
16226 names += sizeof (pltname);
16227 ++s, ++n;
16228
16229 pi = 0;
16230 for (plt_offset = plt0_size;
16231 plt_offset + 8 <= plt->size && s < send;
16232 plt_offset += entry_size)
16233 {
16234 bfd_vma gotplt_addr;
16235 const char *suffix;
16236 bfd_vma gotplt_hi;
16237 bfd_vma gotplt_lo;
16238 size_t suffixlen;
16239
16240 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16241
16242 /* Check if the second word matches the expected MIPS16 instruction. */
16243 if (opcode == 0x651aeb00)
16244 {
16245 if (micromips_p)
16246 return -1;
16247 /* Truncated table??? */
16248 if (plt_offset + 16 > plt->size)
16249 break;
16250 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16251 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16252 suffixlen = sizeof (m16suffix);
16253 suffix = m16suffix;
16254 other = STO_MIPS16;
16255 }
833794fc 16256 /* Likewise the expected microMIPS instruction (no insn32 mode). */
1bbce132
MR
16257 else if (opcode == 0xff220000)
16258 {
16259 if (!micromips_p)
16260 return -1;
16261 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16262 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16263 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16264 gotplt_lo <<= 2;
16265 gotplt_addr = gotplt_hi + gotplt_lo;
16266 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16267 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16268 suffixlen = sizeof (microsuffix);
16269 suffix = microsuffix;
16270 other = STO_MICROMIPS;
16271 }
833794fc
MR
16272 /* Likewise the expected microMIPS instruction (insn32 mode). */
16273 else if ((opcode & 0xffff0000) == 0xff2f0000)
16274 {
16275 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16276 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16277 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16278 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16279 gotplt_addr = gotplt_hi + gotplt_lo;
16280 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16281 suffixlen = sizeof (microsuffix);
16282 suffix = microsuffix;
16283 other = STO_MICROMIPS;
16284 }
1bbce132
MR
16285 /* Otherwise assume standard MIPS code. */
16286 else
16287 {
16288 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16289 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16290 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16291 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16292 gotplt_addr = gotplt_hi + gotplt_lo;
16293 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16294 suffixlen = sizeof (mipssuffix);
16295 suffix = mipssuffix;
16296 other = 0;
16297 }
16298 /* Truncated table??? */
16299 if (plt_offset + entry_size > plt->size)
16300 break;
16301
16302 for (i = 0;
16303 i < count && p[pi].address != gotplt_addr;
16304 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16305
16306 if (i < count)
16307 {
16308 size_t namelen;
16309 size_t len;
16310
16311 *s = **p[pi].sym_ptr_ptr;
16312 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16313 we are defining a symbol, ensure one of them is set. */
16314 if ((s->flags & BSF_LOCAL) == 0)
16315 s->flags |= BSF_GLOBAL;
16316 s->flags |= BSF_SYNTHETIC;
16317 s->section = plt;
16318 s->value = plt_offset;
16319 s->name = names;
16320 s->udata.i = other;
16321
16322 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16323 namelen = len + suffixlen;
16324 if (names + namelen > nend)
16325 break;
16326
16327 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16328 names += len;
16329 memcpy (names, suffix, suffixlen);
16330 names += suffixlen;
16331
16332 ++s, ++n;
16333 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16334 }
16335 }
16336
16337 free (plt_data);
16338
16339 return n;
16340}
16341
5e7fc731
MR
16342/* Return the ABI flags associated with ABFD if available. */
16343
16344Elf_Internal_ABIFlags_v0 *
16345bfd_mips_elf_get_abiflags (bfd *abfd)
16346{
16347 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16348
16349 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16350}
16351
861fb55a
DJ
16352void
16353_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16354{
16355 struct mips_elf_link_hash_table *htab;
16356 Elf_Internal_Ehdr *i_ehdrp;
16357
16358 i_ehdrp = elf_elfheader (abfd);
16359 if (link_info)
16360 {
16361 htab = mips_elf_hash_table (link_info);
4dfe6ac6
NC
16362 BFD_ASSERT (htab != NULL);
16363
861fb55a
DJ
16364 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16365 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16366 }
0af03126
L
16367
16368 _bfd_elf_post_process_headers (abfd, link_info);
351cdf24
MF
16369
16370 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16371 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16372 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
861fb55a 16373}
2f0c68f2
CM
16374
16375int
16376_bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16377{
16378 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16379}
16380
16381/* Return the opcode for can't unwind. */
16382
16383int
16384_bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16385{
16386 return COMPACT_EH_CANT_UNWIND_OPCODE;
16387}