]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/alpha-tdep.c
2007-10-24 Nathan Sidwell <nathan@codesourcery.com>
[thirdparty/binutils-gdb.git] / gdb / alpha-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
0fd88904 2
6aba47ca
DJ
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2005, 2006, 2007 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
615967cb 22#include "doublest.h"
c906108c 23#include "frame.h"
d2427a71
RH
24#include "frame-unwind.h"
25#include "frame-base.h"
baa490c4 26#include "dwarf2-frame.h"
c906108c
SS
27#include "inferior.h"
28#include "symtab.h"
29#include "value.h"
30#include "gdbcmd.h"
31#include "gdbcore.h"
32#include "dis-asm.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "gdb_string.h"
c5f0f3d0 36#include "linespec.h"
4e052eda 37#include "regcache.h"
615967cb 38#include "reggroups.h"
dc129d82 39#include "arch-utils.h"
4be87837 40#include "osabi.h"
fe898f56 41#include "block.h"
7d9b040b 42#include "infcall.h"
dc129d82
JT
43
44#include "elf-bfd.h"
45
46#include "alpha-tdep.h"
47
c906108c 48\f
515921d7
JB
49/* Return the name of the REGNO register.
50
51 An empty name corresponds to a register number that used to
52 be used for a virtual register. That virtual register has
53 been removed, but the index is still reserved to maintain
54 compatibility with existing remote alpha targets. */
55
fa88f677 56static const char *
636a6dfc
JT
57alpha_register_name (int regno)
58{
5ab84872 59 static const char * const register_names[] =
636a6dfc
JT
60 {
61 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
62 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
63 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
64 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
65 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
66 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
67 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
68 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
44d88583 69 "pc", "", "unique"
636a6dfc
JT
70 };
71
72 if (regno < 0)
5ab84872 73 return NULL;
e8d2d628 74 if (regno >= ARRAY_SIZE(register_names))
5ab84872
RH
75 return NULL;
76 return register_names[regno];
636a6dfc 77}
d734c450 78
dc129d82 79static int
d734c450
JT
80alpha_cannot_fetch_register (int regno)
81{
515921d7
JB
82 return (regno == ALPHA_ZERO_REGNUM
83 || strlen (alpha_register_name (regno)) == 0);
d734c450
JT
84}
85
dc129d82 86static int
d734c450
JT
87alpha_cannot_store_register (int regno)
88{
515921d7
JB
89 return (regno == ALPHA_ZERO_REGNUM
90 || strlen (alpha_register_name (regno)) == 0);
d734c450
JT
91}
92
dc129d82 93static struct type *
c483c494 94alpha_register_type (struct gdbarch *gdbarch, int regno)
0d056799 95{
72667056
RH
96 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
97 return builtin_type_void_data_ptr;
98 if (regno == ALPHA_PC_REGNUM)
99 return builtin_type_void_func_ptr;
100
101 /* Don't need to worry about little vs big endian until
102 some jerk tries to port to alpha-unicosmk. */
b38b6be2 103 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
8da61cc4 104 return builtin_type_ieee_double;
72667056
RH
105
106 return builtin_type_int64;
0d056799 107}
f8453e34 108
615967cb
RH
109/* Is REGNUM a member of REGGROUP? */
110
111static int
112alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
113 struct reggroup *group)
114{
115 /* Filter out any registers eliminated, but whose regnum is
116 reserved for backward compatibility, e.g. the vfp. */
ec7cc0e8
UW
117 if (gdbarch_register_name (gdbarch, regnum) == NULL
118 || *gdbarch_register_name (gdbarch, regnum) == '\0')
615967cb
RH
119 return 0;
120
df4a182b
RH
121 if (group == all_reggroup)
122 return 1;
123
124 /* Zero should not be saved or restored. Technically it is a general
125 register (just as $f31 would be a float if we represented it), but
126 there's no point displaying it during "info regs", so leave it out
127 of all groups except for "all". */
128 if (regnum == ALPHA_ZERO_REGNUM)
129 return 0;
130
131 /* All other registers are saved and restored. */
132 if (group == save_reggroup || group == restore_reggroup)
615967cb
RH
133 return 1;
134
135 /* All other groups are non-overlapping. */
136
137 /* Since this is really a PALcode memory slot... */
138 if (regnum == ALPHA_UNIQUE_REGNUM)
139 return group == system_reggroup;
140
141 /* Force the FPCR to be considered part of the floating point state. */
142 if (regnum == ALPHA_FPCR_REGNUM)
143 return group == float_reggroup;
144
145 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
146 return group == float_reggroup;
147 else
148 return group == general_reggroup;
149}
150
c483c494
RH
151/* The following represents exactly the conversion performed by
152 the LDS instruction. This applies to both single-precision
153 floating point and 32-bit integers. */
154
155static void
156alpha_lds (void *out, const void *in)
157{
158 ULONGEST mem = extract_unsigned_integer (in, 4);
159 ULONGEST frac = (mem >> 0) & 0x7fffff;
160 ULONGEST sign = (mem >> 31) & 1;
161 ULONGEST exp_msb = (mem >> 30) & 1;
162 ULONGEST exp_low = (mem >> 23) & 0x7f;
163 ULONGEST exp, reg;
164
165 exp = (exp_msb << 10) | exp_low;
166 if (exp_msb)
167 {
168 if (exp_low == 0x7f)
169 exp = 0x7ff;
170 }
171 else
172 {
173 if (exp_low != 0x00)
174 exp |= 0x380;
175 }
176
177 reg = (sign << 63) | (exp << 52) | (frac << 29);
178 store_unsigned_integer (out, 8, reg);
179}
180
181/* Similarly, this represents exactly the conversion performed by
182 the STS instruction. */
183
39efb398 184static void
c483c494
RH
185alpha_sts (void *out, const void *in)
186{
187 ULONGEST reg, mem;
188
189 reg = extract_unsigned_integer (in, 8);
190 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
191 store_unsigned_integer (out, 4, mem);
192}
193
d2427a71
RH
194/* The alpha needs a conversion between register and memory format if the
195 register is a floating point register and memory format is float, as the
196 register format must be double or memory format is an integer with 4
197 bytes or less, as the representation of integers in floating point
198 registers is different. */
199
c483c494 200static int
ff2e87ac 201alpha_convert_register_p (int regno, struct type *type)
14696584 202{
c483c494 203 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31);
14696584
RH
204}
205
d2427a71 206static void
ff2e87ac 207alpha_register_to_value (struct frame_info *frame, int regnum,
5b819568 208 struct type *valtype, gdb_byte *out)
5868c862 209{
2a1ce6ec
MK
210 gdb_byte in[MAX_REGISTER_SIZE];
211
ff2e87ac 212 frame_register_read (frame, regnum, in);
c483c494 213 switch (TYPE_LENGTH (valtype))
d2427a71 214 {
c483c494
RH
215 case 4:
216 alpha_sts (out, in);
217 break;
218 case 8:
219 memcpy (out, in, 8);
220 break;
221 default:
323e0a4a 222 error (_("Cannot retrieve value from floating point register"));
d2427a71 223 }
d2427a71 224}
5868c862 225
d2427a71 226static void
ff2e87ac 227alpha_value_to_register (struct frame_info *frame, int regnum,
5b819568 228 struct type *valtype, const gdb_byte *in)
d2427a71 229{
2a1ce6ec
MK
230 gdb_byte out[MAX_REGISTER_SIZE];
231
c483c494 232 switch (TYPE_LENGTH (valtype))
d2427a71 233 {
c483c494
RH
234 case 4:
235 alpha_lds (out, in);
236 break;
237 case 8:
238 memcpy (out, in, 8);
239 break;
240 default:
323e0a4a 241 error (_("Cannot store value in floating point register"));
d2427a71 242 }
ff2e87ac 243 put_frame_register (frame, regnum, out);
5868c862
JT
244}
245
d2427a71
RH
246\f
247/* The alpha passes the first six arguments in the registers, the rest on
c88e30c0
RH
248 the stack. The register arguments are stored in ARG_REG_BUFFER, and
249 then moved into the register file; this simplifies the passing of a
250 large struct which extends from the registers to the stack, plus avoids
251 three ptrace invocations per word.
252
253 We don't bother tracking which register values should go in integer
254 regs or fp regs; we load the same values into both.
255
d2427a71
RH
256 If the called function is returning a structure, the address of the
257 structure to be returned is passed as a hidden first argument. */
c906108c 258
d2427a71 259static CORE_ADDR
7d9b040b 260alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
c88e30c0
RH
261 struct regcache *regcache, CORE_ADDR bp_addr,
262 int nargs, struct value **args, CORE_ADDR sp,
263 int struct_return, CORE_ADDR struct_addr)
c906108c 264{
d2427a71
RH
265 int i;
266 int accumulate_size = struct_return ? 8 : 0;
d2427a71 267 struct alpha_arg
c906108c 268 {
2a1ce6ec 269 gdb_byte *contents;
d2427a71
RH
270 int len;
271 int offset;
272 };
c88e30c0
RH
273 struct alpha_arg *alpha_args
274 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
52f0bd74 275 struct alpha_arg *m_arg;
2a1ce6ec 276 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
d2427a71 277 int required_arg_regs;
7d9b040b 278 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 279
c88e30c0
RH
280 /* The ABI places the address of the called function in T12. */
281 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
282
283 /* Set the return address register to point to the entry point
284 of the program, where a breakpoint lies in wait. */
285 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
286
287 /* Lay out the arguments in memory. */
d2427a71
RH
288 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
289 {
290 struct value *arg = args[i];
4991999e 291 struct type *arg_type = check_typedef (value_type (arg));
c88e30c0 292
d2427a71
RH
293 /* Cast argument to long if necessary as the compiler does it too. */
294 switch (TYPE_CODE (arg_type))
c906108c 295 {
d2427a71
RH
296 case TYPE_CODE_INT:
297 case TYPE_CODE_BOOL:
298 case TYPE_CODE_CHAR:
299 case TYPE_CODE_RANGE:
300 case TYPE_CODE_ENUM:
0ede8eca 301 if (TYPE_LENGTH (arg_type) == 4)
d2427a71 302 {
0ede8eca
RH
303 /* 32-bit values must be sign-extended to 64 bits
304 even if the base data type is unsigned. */
305 arg_type = builtin_type_int32;
306 arg = value_cast (arg_type, arg);
307 }
308 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
309 {
310 arg_type = builtin_type_int64;
d2427a71
RH
311 arg = value_cast (arg_type, arg);
312 }
313 break;
7b5e1cb3 314
c88e30c0
RH
315 case TYPE_CODE_FLT:
316 /* "float" arguments loaded in registers must be passed in
317 register format, aka "double". */
318 if (accumulate_size < sizeof (arg_reg_buffer)
319 && TYPE_LENGTH (arg_type) == 4)
320 {
8da61cc4 321 arg_type = builtin_type_ieee_double;
c88e30c0
RH
322 arg = value_cast (arg_type, arg);
323 }
324 /* Tru64 5.1 has a 128-bit long double, and passes this by
325 invisible reference. No one else uses this data type. */
326 else if (TYPE_LENGTH (arg_type) == 16)
327 {
328 /* Allocate aligned storage. */
329 sp = (sp & -16) - 16;
330
331 /* Write the real data into the stack. */
0fd88904 332 write_memory (sp, value_contents (arg), 16);
c88e30c0
RH
333
334 /* Construct the indirection. */
335 arg_type = lookup_pointer_type (arg_type);
336 arg = value_from_pointer (arg_type, sp);
337 }
338 break;
7b5e1cb3
RH
339
340 case TYPE_CODE_COMPLEX:
341 /* ??? The ABI says that complex values are passed as two
342 separate scalar values. This distinction only matters
343 for complex float. However, GCC does not implement this. */
344
345 /* Tru64 5.1 has a 128-bit long double, and passes this by
346 invisible reference. */
347 if (TYPE_LENGTH (arg_type) == 32)
348 {
349 /* Allocate aligned storage. */
350 sp = (sp & -16) - 16;
351
352 /* Write the real data into the stack. */
0fd88904 353 write_memory (sp, value_contents (arg), 32);
7b5e1cb3
RH
354
355 /* Construct the indirection. */
356 arg_type = lookup_pointer_type (arg_type);
357 arg = value_from_pointer (arg_type, sp);
358 }
359 break;
360
d2427a71
RH
361 default:
362 break;
c906108c 363 }
d2427a71
RH
364 m_arg->len = TYPE_LENGTH (arg_type);
365 m_arg->offset = accumulate_size;
366 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
0fd88904 367 m_arg->contents = value_contents_writeable (arg);
c906108c
SS
368 }
369
d2427a71
RH
370 /* Determine required argument register loads, loading an argument register
371 is expensive as it uses three ptrace calls. */
372 required_arg_regs = accumulate_size / 8;
373 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
374 required_arg_regs = ALPHA_NUM_ARG_REGS;
c906108c 375
d2427a71 376 /* Make room for the arguments on the stack. */
c88e30c0
RH
377 if (accumulate_size < sizeof(arg_reg_buffer))
378 accumulate_size = 0;
379 else
380 accumulate_size -= sizeof(arg_reg_buffer);
d2427a71 381 sp -= accumulate_size;
c906108c 382
c88e30c0 383 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
d2427a71 384 sp &= ~15;
c906108c 385
d2427a71
RH
386 /* `Push' arguments on the stack. */
387 for (i = nargs; m_arg--, --i >= 0;)
c906108c 388 {
2a1ce6ec 389 gdb_byte *contents = m_arg->contents;
c88e30c0
RH
390 int offset = m_arg->offset;
391 int len = m_arg->len;
392
393 /* Copy the bytes destined for registers into arg_reg_buffer. */
394 if (offset < sizeof(arg_reg_buffer))
395 {
396 if (offset + len <= sizeof(arg_reg_buffer))
397 {
398 memcpy (arg_reg_buffer + offset, contents, len);
399 continue;
400 }
401 else
402 {
403 int tlen = sizeof(arg_reg_buffer) - offset;
404 memcpy (arg_reg_buffer + offset, contents, tlen);
405 offset += tlen;
406 contents += tlen;
407 len -= tlen;
408 }
409 }
410
411 /* Everything else goes to the stack. */
412 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
c906108c 413 }
c88e30c0
RH
414 if (struct_return)
415 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE, struct_addr);
c906108c 416
d2427a71
RH
417 /* Load the argument registers. */
418 for (i = 0; i < required_arg_regs; i++)
419 {
09cc52fd
RH
420 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
421 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
422 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
423 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
d2427a71 424 }
c906108c 425
09cc52fd
RH
426 /* Finally, update the stack pointer. */
427 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
428
c88e30c0 429 return sp;
c906108c
SS
430}
431
5ec2bb99
RH
432/* Extract from REGCACHE the value about to be returned from a function
433 and copy it into VALBUF. */
d2427a71 434
dc129d82 435static void
5ec2bb99 436alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
5b819568 437 gdb_byte *valbuf)
140f9984 438{
7b5e1cb3 439 int length = TYPE_LENGTH (valtype);
2a1ce6ec 440 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99
RH
441 ULONGEST l;
442
443 switch (TYPE_CODE (valtype))
444 {
445 case TYPE_CODE_FLT:
7b5e1cb3 446 switch (length)
5ec2bb99
RH
447 {
448 case 4:
449 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
c483c494 450 alpha_sts (valbuf, raw_buffer);
5ec2bb99
RH
451 break;
452
453 case 8:
454 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
455 break;
456
24064b5c
RH
457 case 16:
458 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
459 read_memory (l, valbuf, 16);
460 break;
461
5ec2bb99 462 default:
323e0a4a 463 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
5ec2bb99
RH
464 }
465 break;
466
7b5e1cb3
RH
467 case TYPE_CODE_COMPLEX:
468 switch (length)
469 {
470 case 8:
471 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
472 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
473 break;
474
475 case 16:
476 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
2a1ce6ec 477 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
478 break;
479
480 case 32:
481 regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
482 read_memory (l, valbuf, 32);
483 break;
484
485 default:
323e0a4a 486 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
7b5e1cb3
RH
487 }
488 break;
489
5ec2bb99
RH
490 default:
491 /* Assume everything else degenerates to an integer. */
492 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
7b5e1cb3 493 store_unsigned_integer (valbuf, length, l);
5ec2bb99
RH
494 break;
495 }
140f9984
JT
496}
497
5ec2bb99
RH
498/* Insert the given value into REGCACHE as if it was being
499 returned by a function. */
0d056799 500
d2427a71 501static void
5ec2bb99 502alpha_store_return_value (struct type *valtype, struct regcache *regcache,
5b819568 503 const gdb_byte *valbuf)
c906108c 504{
d2427a71 505 int length = TYPE_LENGTH (valtype);
2a1ce6ec 506 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99 507 ULONGEST l;
d2427a71 508
5ec2bb99 509 switch (TYPE_CODE (valtype))
c906108c 510 {
5ec2bb99
RH
511 case TYPE_CODE_FLT:
512 switch (length)
513 {
514 case 4:
c483c494 515 alpha_lds (raw_buffer, valbuf);
f75d70cc
RH
516 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
517 break;
5ec2bb99
RH
518
519 case 8:
520 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
521 break;
522
24064b5c
RH
523 case 16:
524 /* FIXME: 128-bit long doubles are returned like structures:
525 by writing into indirect storage provided by the caller
526 as the first argument. */
323e0a4a 527 error (_("Cannot set a 128-bit long double return value."));
24064b5c 528
5ec2bb99 529 default:
323e0a4a 530 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
5ec2bb99
RH
531 }
532 break;
d2427a71 533
7b5e1cb3
RH
534 case TYPE_CODE_COMPLEX:
535 switch (length)
536 {
537 case 8:
538 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
539 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
540 break;
541
542 case 16:
543 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
2a1ce6ec 544 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
545 break;
546
547 case 32:
548 /* FIXME: 128-bit long doubles are returned like structures:
549 by writing into indirect storage provided by the caller
550 as the first argument. */
323e0a4a 551 error (_("Cannot set a 128-bit long double return value."));
7b5e1cb3
RH
552
553 default:
323e0a4a 554 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
7b5e1cb3
RH
555 }
556 break;
557
5ec2bb99
RH
558 default:
559 /* Assume everything else degenerates to an integer. */
0ede8eca
RH
560 /* 32-bit values must be sign-extended to 64 bits
561 even if the base data type is unsigned. */
562 if (length == 4)
563 valtype = builtin_type_int32;
5ec2bb99
RH
564 l = unpack_long (valtype, valbuf);
565 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
566 break;
567 }
c906108c
SS
568}
569
9823e921
RH
570static enum return_value_convention
571alpha_return_value (struct gdbarch *gdbarch, struct type *type,
572 struct regcache *regcache, gdb_byte *readbuf,
573 const gdb_byte *writebuf)
574{
575 enum type_code code = TYPE_CODE (type);
576
577 if ((code == TYPE_CODE_STRUCT
578 || code == TYPE_CODE_UNION
579 || code == TYPE_CODE_ARRAY)
580 && gdbarch_tdep (gdbarch)->return_in_memory (type))
581 {
582 if (readbuf)
583 {
584 ULONGEST addr;
585 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
586 read_memory (addr, readbuf, TYPE_LENGTH (type));
587 }
588
589 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
590 }
591
592 if (readbuf)
593 alpha_extract_return_value (type, regcache, readbuf);
594 if (writebuf)
595 alpha_store_return_value (type, regcache, writebuf);
596
597 return RETURN_VALUE_REGISTER_CONVENTION;
598}
599
600static int
601alpha_return_in_memory_always (struct type *type)
602{
603 return 1;
604}
d2427a71 605\f
2a1ce6ec
MK
606static const gdb_byte *
607alpha_breakpoint_from_pc (CORE_ADDR *pc, int *len)
c906108c 608{
2a1ce6ec 609 static const gdb_byte break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
c906108c 610
2a1ce6ec
MK
611 *len = sizeof(break_insn);
612 return break_insn;
d2427a71 613}
c906108c 614
d2427a71
RH
615\f
616/* This returns the PC of the first insn after the prologue.
617 If we can't find the prologue, then return 0. */
c906108c 618
d2427a71
RH
619CORE_ADDR
620alpha_after_prologue (CORE_ADDR pc)
c906108c 621{
d2427a71
RH
622 struct symtab_and_line sal;
623 CORE_ADDR func_addr, func_end;
c906108c 624
d2427a71 625 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
c5aa993b 626 return 0;
c906108c 627
d2427a71
RH
628 sal = find_pc_line (func_addr, 0);
629 if (sal.end < func_end)
630 return sal.end;
c5aa993b 631
d2427a71
RH
632 /* The line after the prologue is after the end of the function. In this
633 case, tell the caller to find the prologue the hard way. */
634 return 0;
c906108c
SS
635}
636
d2427a71
RH
637/* Read an instruction from memory at PC, looking through breakpoints. */
638
639unsigned int
640alpha_read_insn (CORE_ADDR pc)
c906108c 641{
e8d2d628 642 gdb_byte buf[ALPHA_INSN_SIZE];
d2427a71 643 int status;
c5aa993b 644
e8d2d628 645 status = read_memory_nobpt (pc, buf, sizeof (buf));
d2427a71
RH
646 if (status)
647 memory_error (status, pc);
e8d2d628 648 return extract_unsigned_integer (buf, sizeof (buf));
d2427a71 649}
c5aa993b 650
d2427a71
RH
651/* To skip prologues, I use this predicate. Returns either PC itself
652 if the code at PC does not look like a function prologue; otherwise
653 returns an address that (if we're lucky) follows the prologue. If
654 LENIENT, then we must skip everything which is involved in setting
655 up the frame (it's OK to skip more, just so long as we don't skip
656 anything which might clobber the registers which are being saved. */
c906108c 657
d2427a71
RH
658static CORE_ADDR
659alpha_skip_prologue (CORE_ADDR pc)
660{
661 unsigned long inst;
662 int offset;
663 CORE_ADDR post_prologue_pc;
e8d2d628 664 gdb_byte buf[ALPHA_INSN_SIZE];
c906108c 665
d2427a71
RH
666 /* Silently return the unaltered pc upon memory errors.
667 This could happen on OSF/1 if decode_line_1 tries to skip the
668 prologue for quickstarted shared library functions when the
669 shared library is not yet mapped in.
670 Reading target memory is slow over serial lines, so we perform
671 this check only if the target has shared libraries (which all
672 Alpha targets do). */
e8d2d628 673 if (target_read_memory (pc, buf, sizeof (buf)))
d2427a71 674 return pc;
c906108c 675
d2427a71
RH
676 /* See if we can determine the end of the prologue via the symbol table.
677 If so, then return either PC, or the PC after the prologue, whichever
678 is greater. */
c906108c 679
d2427a71
RH
680 post_prologue_pc = alpha_after_prologue (pc);
681 if (post_prologue_pc != 0)
682 return max (pc, post_prologue_pc);
c906108c 683
d2427a71
RH
684 /* Can't determine prologue from the symbol table, need to examine
685 instructions. */
dc1b0db2 686
d2427a71
RH
687 /* Skip the typical prologue instructions. These are the stack adjustment
688 instruction and the instructions that save registers on the stack
689 or in the gcc frame. */
e8d2d628 690 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
d2427a71
RH
691 {
692 inst = alpha_read_insn (pc + offset);
c906108c 693
d2427a71
RH
694 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
695 continue;
696 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
697 continue;
698 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
699 continue;
700 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
701 continue;
c906108c 702
d2427a71
RH
703 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
704 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
705 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
706 continue;
c906108c 707
d2427a71
RH
708 if (inst == 0x47de040f) /* bis sp,sp,fp */
709 continue;
710 if (inst == 0x47fe040f) /* bis zero,sp,fp */
711 continue;
c906108c 712
d2427a71 713 break;
c906108c 714 }
d2427a71
RH
715 return pc + offset;
716}
c906108c 717
d2427a71
RH
718\f
719/* Figure out where the longjmp will land.
720 We expect the first arg to be a pointer to the jmp_buf structure from
721 which we extract the PC (JB_PC) that we will land at. The PC is copied
722 into the "pc". This routine returns true on success. */
c906108c
SS
723
724static int
60ade65d 725alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 726{
60ade65d 727 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
d2427a71 728 CORE_ADDR jb_addr;
2a1ce6ec 729 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
c906108c 730
60ade65d 731 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
c906108c 732
d2427a71
RH
733 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
734 raw_buffer, tdep->jb_elt_size))
c906108c 735 return 0;
d2427a71 736
7c0b4a20 737 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size);
d2427a71 738 return 1;
c906108c
SS
739}
740
d2427a71
RH
741\f
742/* Frame unwinder for signal trampolines. We use alpha tdep bits that
743 describe the location and shape of the sigcontext structure. After
744 that, all registers are in memory, so it's easy. */
745/* ??? Shouldn't we be able to do this generically, rather than with
746 OSABI data specific to Alpha? */
747
748struct alpha_sigtramp_unwind_cache
c906108c 749{
d2427a71
RH
750 CORE_ADDR sigcontext_addr;
751};
c906108c 752
d2427a71
RH
753static struct alpha_sigtramp_unwind_cache *
754alpha_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
755 void **this_prologue_cache)
756{
757 struct alpha_sigtramp_unwind_cache *info;
758 struct gdbarch_tdep *tdep;
c906108c 759
d2427a71
RH
760 if (*this_prologue_cache)
761 return *this_prologue_cache;
c906108c 762
d2427a71
RH
763 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
764 *this_prologue_cache = info;
c906108c 765
ec7cc0e8 766 tdep = gdbarch_tdep (get_frame_arch (next_frame));
d2427a71 767 info->sigcontext_addr = tdep->sigcontext_addr (next_frame);
c906108c 768
d2427a71 769 return info;
c906108c
SS
770}
771
138e7be5
MK
772/* Return the address of REGNUM in a sigtramp frame. Since this is
773 all arithmetic, it doesn't seem worthwhile to cache it. */
c5aa993b 774
d2427a71 775static CORE_ADDR
138e7be5 776alpha_sigtramp_register_address (CORE_ADDR sigcontext_addr, int regnum)
d2427a71 777{
138e7be5
MK
778 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
779
780 if (regnum >= 0 && regnum < 32)
781 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
782 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
783 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
784 else if (regnum == ALPHA_PC_REGNUM)
785 return sigcontext_addr + tdep->sc_pc_offset;
c5aa993b 786
d2427a71 787 return 0;
c906108c
SS
788}
789
d2427a71
RH
790/* Given a GDB frame, determine the address of the calling function's
791 frame. This will be used to create a new GDB frame struct. */
140f9984 792
dc129d82 793static void
d2427a71
RH
794alpha_sigtramp_frame_this_id (struct frame_info *next_frame,
795 void **this_prologue_cache,
796 struct frame_id *this_id)
c906108c 797{
d2427a71
RH
798 struct alpha_sigtramp_unwind_cache *info
799 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
800 struct gdbarch_tdep *tdep;
801 CORE_ADDR stack_addr, code_addr;
802
803 /* If the OSABI couldn't locate the sigcontext, give up. */
804 if (info->sigcontext_addr == 0)
805 return;
806
807 /* If we have dynamic signal trampolines, find their start.
808 If we do not, then we must assume there is a symbol record
809 that can provide the start address. */
ec7cc0e8 810 tdep = gdbarch_tdep (get_frame_arch (next_frame));
d2427a71 811 if (tdep->dynamic_sigtramp_offset)
c906108c 812 {
d2427a71
RH
813 int offset;
814 code_addr = frame_pc_unwind (next_frame);
815 offset = tdep->dynamic_sigtramp_offset (code_addr);
816 if (offset >= 0)
817 code_addr -= offset;
c906108c 818 else
d2427a71 819 code_addr = 0;
c906108c 820 }
d2427a71 821 else
93d42b30 822 code_addr = frame_func_unwind (next_frame, SIGTRAMP_FRAME);
c906108c 823
d2427a71
RH
824 /* The stack address is trivially read from the sigcontext. */
825 stack_addr = alpha_sigtramp_register_address (info->sigcontext_addr,
826 ALPHA_SP_REGNUM);
b21fd293
RH
827 stack_addr = get_frame_memory_unsigned (next_frame, stack_addr,
828 ALPHA_REGISTER_SIZE);
c906108c 829
d2427a71 830 *this_id = frame_id_build (stack_addr, code_addr);
c906108c
SS
831}
832
d2427a71 833/* Retrieve the value of REGNUM in FRAME. Don't give up! */
c906108c 834
d2427a71
RH
835static void
836alpha_sigtramp_frame_prev_register (struct frame_info *next_frame,
837 void **this_prologue_cache,
838 int regnum, int *optimizedp,
839 enum lval_type *lvalp, CORE_ADDR *addrp,
5b819568 840 int *realnump, gdb_byte *bufferp)
c906108c 841{
d2427a71
RH
842 struct alpha_sigtramp_unwind_cache *info
843 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
844 CORE_ADDR addr;
c906108c 845
d2427a71 846 if (info->sigcontext_addr != 0)
c906108c 847 {
d2427a71
RH
848 /* All integer and fp registers are stored in memory. */
849 addr = alpha_sigtramp_register_address (info->sigcontext_addr, regnum);
850 if (addr != 0)
c906108c 851 {
d2427a71
RH
852 *optimizedp = 0;
853 *lvalp = lval_memory;
854 *addrp = addr;
855 *realnump = -1;
856 if (bufferp != NULL)
b21fd293 857 get_frame_memory (next_frame, addr, bufferp, ALPHA_REGISTER_SIZE);
d2427a71 858 return;
c906108c 859 }
c906108c
SS
860 }
861
d2427a71
RH
862 /* This extra register may actually be in the sigcontext, but our
863 current description of it in alpha_sigtramp_frame_unwind_cache
864 doesn't include it. Too bad. Fall back on whatever's in the
865 outer frame. */
5efde112
DJ
866 *optimizedp = 0;
867 *lvalp = lval_register;
868 *addrp = 0;
869 *realnump = regnum;
870 if (bufferp)
871 frame_unwind_register (next_frame, *realnump, bufferp);
d2427a71 872}
c906108c 873
d2427a71
RH
874static const struct frame_unwind alpha_sigtramp_frame_unwind = {
875 SIGTRAMP_FRAME,
876 alpha_sigtramp_frame_this_id,
877 alpha_sigtramp_frame_prev_register
878};
c906108c 879
d2427a71 880static const struct frame_unwind *
336d1bba 881alpha_sigtramp_frame_sniffer (struct frame_info *next_frame)
d2427a71 882{
ec7cc0e8 883 struct gdbarch *gdbarch = get_frame_arch (next_frame);
336d1bba 884 CORE_ADDR pc = frame_pc_unwind (next_frame);
d2427a71 885 char *name;
c906108c 886
f2524b93
AC
887 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
888 look at tramp-frame.h and other simplier per-architecture
889 sigtramp unwinders. */
890
891 /* We shouldn't even bother to try if the OSABI didn't register a
892 sigcontext_addr handler or pc_in_sigtramp hander. */
ec7cc0e8 893 if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
f2524b93 894 return NULL;
ec7cc0e8 895 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
d2427a71 896 return NULL;
c906108c 897
d2427a71
RH
898 /* Otherwise we should be in a signal frame. */
899 find_pc_partial_function (pc, &name, NULL, NULL);
ec7cc0e8 900 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (pc, name))
d2427a71 901 return &alpha_sigtramp_frame_unwind;
c906108c 902
d2427a71 903 return NULL;
c906108c 904}
d2427a71
RH
905\f
906/* Fallback alpha frame unwinder. Uses instruction scanning and knows
907 something about the traditional layout of alpha stack frames. */
c906108c 908
d2427a71 909struct alpha_heuristic_unwind_cache
c906108c 910{
d2427a71
RH
911 CORE_ADDR *saved_regs;
912 CORE_ADDR vfp;
913 CORE_ADDR start_pc;
914 int return_reg;
915};
c906108c 916
d2427a71
RH
917/* Heuristic_proc_start may hunt through the text section for a long
918 time across a 2400 baud serial line. Allows the user to limit this
919 search. */
920static unsigned int heuristic_fence_post = 0;
c906108c 921
d2427a71
RH
922/* Attempt to locate the start of the function containing PC. We assume that
923 the previous function ends with an about_to_return insn. Not foolproof by
924 any means, since gcc is happy to put the epilogue in the middle of a
925 function. But we're guessing anyway... */
c906108c 926
d2427a71
RH
927static CORE_ADDR
928alpha_heuristic_proc_start (CORE_ADDR pc)
929{
930 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
931 CORE_ADDR last_non_nop = pc;
932 CORE_ADDR fence = pc - heuristic_fence_post;
933 CORE_ADDR orig_pc = pc;
fbe586ae 934 CORE_ADDR func;
9e0b60a8 935
d2427a71
RH
936 if (pc == 0)
937 return 0;
9e0b60a8 938
fbe586ae
RH
939 /* First see if we can find the start of the function from minimal
940 symbol information. This can succeed with a binary that doesn't
941 have debug info, but hasn't been stripped. */
942 func = get_pc_function_start (pc);
943 if (func)
944 return func;
945
d2427a71
RH
946 if (heuristic_fence_post == UINT_MAX
947 || fence < tdep->vm_min_address)
948 fence = tdep->vm_min_address;
c906108c 949
d2427a71
RH
950 /* Search back for previous return; also stop at a 0, which might be
951 seen for instance before the start of a code section. Don't include
952 nops, since this usually indicates padding between functions. */
e8d2d628 953 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
c906108c 954 {
d2427a71
RH
955 unsigned int insn = alpha_read_insn (pc);
956 switch (insn)
c906108c 957 {
d2427a71
RH
958 case 0: /* invalid insn */
959 case 0x6bfa8001: /* ret $31,($26),1 */
960 return last_non_nop;
961
962 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
963 case 0x47ff041f: /* nop: bis $31,$31,$31 */
964 break;
965
966 default:
967 last_non_nop = pc;
968 break;
c906108c 969 }
d2427a71 970 }
c906108c 971
d2427a71
RH
972 /* It's not clear to me why we reach this point when stopping quietly,
973 but with this test, at least we don't print out warnings for every
974 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
975 if (stop_soon == NO_STOP_QUIETLY)
976 {
977 static int blurb_printed = 0;
c906108c 978
d2427a71 979 if (fence == tdep->vm_min_address)
323e0a4a
AC
980 warning (_("Hit beginning of text section without finding \
981enclosing function for address 0x%s"), paddr_nz (orig_pc));
c906108c 982 else
323e0a4a
AC
983 warning (_("Hit heuristic-fence-post without finding \
984enclosing function for address 0x%s"), paddr_nz (orig_pc));
c906108c 985
d2427a71
RH
986 if (!blurb_printed)
987 {
323e0a4a 988 printf_filtered (_("\
d2427a71
RH
989This warning occurs if you are debugging a function without any symbols\n\
990(for example, in a stripped executable). In that case, you may wish to\n\
991increase the size of the search with the `set heuristic-fence-post' command.\n\
992\n\
993Otherwise, you told GDB there was a function where there isn't one, or\n\
323e0a4a 994(more likely) you have encountered a bug in GDB.\n"));
d2427a71
RH
995 blurb_printed = 1;
996 }
997 }
c906108c 998
d2427a71
RH
999 return 0;
1000}
c906108c 1001
fbe586ae 1002static struct alpha_heuristic_unwind_cache *
d2427a71
RH
1003alpha_heuristic_frame_unwind_cache (struct frame_info *next_frame,
1004 void **this_prologue_cache,
1005 CORE_ADDR start_pc)
1006{
1007 struct alpha_heuristic_unwind_cache *info;
1008 ULONGEST val;
1009 CORE_ADDR limit_pc, cur_pc;
1010 int frame_reg, frame_size, return_reg, reg;
c906108c 1011
d2427a71
RH
1012 if (*this_prologue_cache)
1013 return *this_prologue_cache;
c906108c 1014
d2427a71
RH
1015 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1016 *this_prologue_cache = info;
1017 info->saved_regs = frame_obstack_zalloc (SIZEOF_FRAME_SAVED_REGS);
c906108c 1018
d2427a71
RH
1019 limit_pc = frame_pc_unwind (next_frame);
1020 if (start_pc == 0)
1021 start_pc = alpha_heuristic_proc_start (limit_pc);
1022 info->start_pc = start_pc;
c906108c 1023
d2427a71
RH
1024 frame_reg = ALPHA_SP_REGNUM;
1025 frame_size = 0;
1026 return_reg = -1;
c906108c 1027
d2427a71
RH
1028 /* If we've identified a likely place to start, do code scanning. */
1029 if (start_pc != 0)
c5aa993b 1030 {
d2427a71
RH
1031 /* Limit the forward search to 50 instructions. */
1032 if (start_pc + 200 < limit_pc)
1033 limit_pc = start_pc + 200;
c5aa993b 1034
e8d2d628 1035 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
d2427a71
RH
1036 {
1037 unsigned int word = alpha_read_insn (cur_pc);
c5aa993b 1038
d2427a71
RH
1039 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1040 {
1041 if (word & 0x8000)
1042 {
1043 /* Consider only the first stack allocation instruction
1044 to contain the static size of the frame. */
1045 if (frame_size == 0)
1046 frame_size = (-word) & 0xffff;
1047 }
1048 else
1049 {
1050 /* Exit loop if a positive stack adjustment is found, which
1051 usually means that the stack cleanup code in the function
1052 epilogue is reached. */
1053 break;
1054 }
1055 }
1056 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1057 {
1058 reg = (word & 0x03e00000) >> 21;
1059
d15bfd3a
AC
1060 /* Ignore this instruction if we have already encountered
1061 an instruction saving the same register earlier in the
1062 function code. The current instruction does not tell
1063 us where the original value upon function entry is saved.
1064 All it says is that the function we are scanning reused
1065 that register for some computation of its own, and is now
1066 saving its result. */
1067 if (info->saved_regs[reg])
1068 continue;
1069
d2427a71
RH
1070 if (reg == 31)
1071 continue;
1072
1073 /* Do not compute the address where the register was saved yet,
1074 because we don't know yet if the offset will need to be
1075 relative to $sp or $fp (we can not compute the address
1076 relative to $sp if $sp is updated during the execution of
1077 the current subroutine, for instance when doing some alloca).
1078 So just store the offset for the moment, and compute the
1079 address later when we know whether this frame has a frame
1080 pointer or not. */
1081 /* Hack: temporarily add one, so that the offset is non-zero
1082 and we can tell which registers have save offsets below. */
1083 info->saved_regs[reg] = (word & 0xffff) + 1;
1084
1085 /* Starting with OSF/1-3.2C, the system libraries are shipped
1086 without local symbols, but they still contain procedure
1087 descriptors without a symbol reference. GDB is currently
1088 unable to find these procedure descriptors and uses
1089 heuristic_proc_desc instead.
1090 As some low level compiler support routines (__div*, __add*)
1091 use a non-standard return address register, we have to
1092 add some heuristics to determine the return address register,
1093 or stepping over these routines will fail.
1094 Usually the return address register is the first register
1095 saved on the stack, but assembler optimization might
1096 rearrange the register saves.
1097 So we recognize only a few registers (t7, t9, ra) within
1098 the procedure prologue as valid return address registers.
1099 If we encounter a return instruction, we extract the
1100 the return address register from it.
1101
1102 FIXME: Rewriting GDB to access the procedure descriptors,
1103 e.g. via the minimal symbol table, might obviate this hack. */
1104 if (return_reg == -1
1105 && cur_pc < (start_pc + 80)
1106 && (reg == ALPHA_T7_REGNUM
1107 || reg == ALPHA_T9_REGNUM
1108 || reg == ALPHA_RA_REGNUM))
1109 return_reg = reg;
1110 }
1111 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1112 return_reg = (word >> 16) & 0x1f;
1113 else if (word == 0x47de040f) /* bis sp,sp,fp */
1114 frame_reg = ALPHA_GCC_FP_REGNUM;
1115 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1116 frame_reg = ALPHA_GCC_FP_REGNUM;
1117 }
c5aa993b 1118
d2427a71
RH
1119 /* If we haven't found a valid return address register yet, keep
1120 searching in the procedure prologue. */
1121 if (return_reg == -1)
1122 {
1123 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1124 {
1125 unsigned int word = alpha_read_insn (cur_pc);
c5aa993b 1126
d2427a71
RH
1127 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1128 {
1129 reg = (word & 0x03e00000) >> 21;
1130 if (reg == ALPHA_T7_REGNUM
1131 || reg == ALPHA_T9_REGNUM
1132 || reg == ALPHA_RA_REGNUM)
1133 {
1134 return_reg = reg;
1135 break;
1136 }
1137 }
1138 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1139 {
1140 return_reg = (word >> 16) & 0x1f;
1141 break;
1142 }
85b32d22 1143
e8d2d628 1144 cur_pc += ALPHA_INSN_SIZE;
d2427a71
RH
1145 }
1146 }
c906108c 1147 }
c906108c 1148
d2427a71
RH
1149 /* Failing that, do default to the customary RA. */
1150 if (return_reg == -1)
1151 return_reg = ALPHA_RA_REGNUM;
1152 info->return_reg = return_reg;
f8453e34 1153
11411de3 1154 val = frame_unwind_register_unsigned (next_frame, frame_reg);
d2427a71 1155 info->vfp = val + frame_size;
c906108c 1156
d2427a71
RH
1157 /* Convert offsets to absolute addresses. See above about adding
1158 one to the offsets to make all detected offsets non-zero. */
1159 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1160 if (info->saved_regs[reg])
1161 info->saved_regs[reg] += val - 1;
1162
1163 return info;
c906108c 1164}
c906108c 1165
d2427a71
RH
1166/* Given a GDB frame, determine the address of the calling function's
1167 frame. This will be used to create a new GDB frame struct. */
1168
fbe586ae 1169static void
d2427a71
RH
1170alpha_heuristic_frame_this_id (struct frame_info *next_frame,
1171 void **this_prologue_cache,
1172 struct frame_id *this_id)
c906108c 1173{
d2427a71
RH
1174 struct alpha_heuristic_unwind_cache *info
1175 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
c906108c 1176
d2427a71 1177 *this_id = frame_id_build (info->vfp, info->start_pc);
c906108c
SS
1178}
1179
d2427a71
RH
1180/* Retrieve the value of REGNUM in FRAME. Don't give up! */
1181
fbe586ae 1182static void
d2427a71
RH
1183alpha_heuristic_frame_prev_register (struct frame_info *next_frame,
1184 void **this_prologue_cache,
1185 int regnum, int *optimizedp,
1186 enum lval_type *lvalp, CORE_ADDR *addrp,
5b819568 1187 int *realnump, gdb_byte *bufferp)
c906108c 1188{
d2427a71
RH
1189 struct alpha_heuristic_unwind_cache *info
1190 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1191
1192 /* The PC of the previous frame is stored in the link register of
1193 the current frame. Frob regnum so that we pull the value from
1194 the correct place. */
1195 if (regnum == ALPHA_PC_REGNUM)
1196 regnum = info->return_reg;
1197
1198 /* For all registers known to be saved in the current frame,
1199 do the obvious and pull the value out. */
1200 if (info->saved_regs[regnum])
c906108c 1201 {
d2427a71
RH
1202 *optimizedp = 0;
1203 *lvalp = lval_memory;
1204 *addrp = info->saved_regs[regnum];
1205 *realnump = -1;
1206 if (bufferp != NULL)
b21fd293 1207 get_frame_memory (next_frame, *addrp, bufferp, ALPHA_REGISTER_SIZE);
c906108c
SS
1208 return;
1209 }
1210
d2427a71
RH
1211 /* The stack pointer of the previous frame is computed by popping
1212 the current stack frame. */
1213 if (regnum == ALPHA_SP_REGNUM)
c906108c 1214 {
d2427a71
RH
1215 *optimizedp = 0;
1216 *lvalp = not_lval;
1217 *addrp = 0;
1218 *realnump = -1;
1219 if (bufferp != NULL)
1220 store_unsigned_integer (bufferp, ALPHA_REGISTER_SIZE, info->vfp);
1221 return;
c906108c 1222 }
95b80706 1223
d2427a71 1224 /* Otherwise assume the next frame has the same register value. */
5efde112
DJ
1225 *optimizedp = 0;
1226 *lvalp = lval_register;
1227 *addrp = 0;
1228 *realnump = regnum;
1229 if (bufferp)
1230 frame_unwind_register (next_frame, *realnump, bufferp);
95b80706
JT
1231}
1232
d2427a71
RH
1233static const struct frame_unwind alpha_heuristic_frame_unwind = {
1234 NORMAL_FRAME,
1235 alpha_heuristic_frame_this_id,
1236 alpha_heuristic_frame_prev_register
1237};
c906108c 1238
d2427a71 1239static const struct frame_unwind *
336d1bba 1240alpha_heuristic_frame_sniffer (struct frame_info *next_frame)
c906108c 1241{
d2427a71 1242 return &alpha_heuristic_frame_unwind;
c906108c
SS
1243}
1244
fbe586ae 1245static CORE_ADDR
d2427a71
RH
1246alpha_heuristic_frame_base_address (struct frame_info *next_frame,
1247 void **this_prologue_cache)
c906108c 1248{
d2427a71
RH
1249 struct alpha_heuristic_unwind_cache *info
1250 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
c906108c 1251
d2427a71 1252 return info->vfp;
c906108c
SS
1253}
1254
d2427a71
RH
1255static const struct frame_base alpha_heuristic_frame_base = {
1256 &alpha_heuristic_frame_unwind,
1257 alpha_heuristic_frame_base_address,
1258 alpha_heuristic_frame_base_address,
1259 alpha_heuristic_frame_base_address
1260};
1261
c906108c 1262/* Just like reinit_frame_cache, but with the right arguments to be
d2427a71 1263 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
c906108c
SS
1264
1265static void
fba45db2 1266reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
c906108c
SS
1267{
1268 reinit_frame_cache ();
1269}
1270
d2427a71 1271\f
d2427a71
RH
1272/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1273 dummy frame. The frame ID's base needs to match the TOS value
1274 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1275 breakpoint. */
d734c450 1276
d2427a71
RH
1277static struct frame_id
1278alpha_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
0d056799 1279{
d2427a71 1280 ULONGEST base;
11411de3 1281 base = frame_unwind_register_unsigned (next_frame, ALPHA_SP_REGNUM);
d2427a71 1282 return frame_id_build (base, frame_pc_unwind (next_frame));
0d056799
JT
1283}
1284
dc129d82 1285static CORE_ADDR
d2427a71 1286alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
accc6d1f 1287{
d2427a71 1288 ULONGEST pc;
11411de3 1289 pc = frame_unwind_register_unsigned (next_frame, ALPHA_PC_REGNUM);
d2427a71 1290 return pc;
accc6d1f
JT
1291}
1292
98a8e1e5
RH
1293\f
1294/* Helper routines for alpha*-nat.c files to move register sets to and
1295 from core files. The UNIQUE pointer is allowed to be NULL, as most
1296 targets don't supply this value in their core files. */
1297
1298void
390c1522
UW
1299alpha_supply_int_regs (struct regcache *regcache, int regno,
1300 const void *r0_r30, const void *pc, const void *unique)
98a8e1e5 1301{
2a1ce6ec 1302 const gdb_byte *regs = r0_r30;
98a8e1e5
RH
1303 int i;
1304
1305 for (i = 0; i < 31; ++i)
1306 if (regno == i || regno == -1)
390c1522 1307 regcache_raw_supply (regcache, i, regs + i * 8);
98a8e1e5
RH
1308
1309 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
390c1522 1310 regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, NULL);
98a8e1e5
RH
1311
1312 if (regno == ALPHA_PC_REGNUM || regno == -1)
390c1522 1313 regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1314
1315 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
390c1522 1316 regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1317}
1318
1319void
390c1522
UW
1320alpha_fill_int_regs (const struct regcache *regcache,
1321 int regno, void *r0_r30, void *pc, void *unique)
98a8e1e5 1322{
2a1ce6ec 1323 gdb_byte *regs = r0_r30;
98a8e1e5
RH
1324 int i;
1325
1326 for (i = 0; i < 31; ++i)
1327 if (regno == i || regno == -1)
390c1522 1328 regcache_raw_collect (regcache, i, regs + i * 8);
98a8e1e5
RH
1329
1330 if (regno == ALPHA_PC_REGNUM || regno == -1)
390c1522 1331 regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1332
1333 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
390c1522 1334 regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1335}
1336
1337void
390c1522
UW
1338alpha_supply_fp_regs (struct regcache *regcache, int regno,
1339 const void *f0_f30, const void *fpcr)
98a8e1e5 1340{
2a1ce6ec 1341 const gdb_byte *regs = f0_f30;
98a8e1e5
RH
1342 int i;
1343
1344 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1345 if (regno == i || regno == -1)
390c1522 1346 regcache_raw_supply (regcache, i,
2a1ce6ec 1347 regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1348
1349 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
390c1522 1350 regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1351}
1352
1353void
390c1522
UW
1354alpha_fill_fp_regs (const struct regcache *regcache,
1355 int regno, void *f0_f30, void *fpcr)
98a8e1e5 1356{
2a1ce6ec 1357 gdb_byte *regs = f0_f30;
98a8e1e5
RH
1358 int i;
1359
1360 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1361 if (regno == i || regno == -1)
390c1522 1362 regcache_raw_collect (regcache, i,
2a1ce6ec 1363 regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1364
1365 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
390c1522 1366 regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1367}
1368
d2427a71 1369\f
0de94d4b
JB
1370
1371/* Return nonzero if the G_floating register value in REG is equal to
1372 zero for FP control instructions. */
1373
1374static int
1375fp_register_zero_p (LONGEST reg)
1376{
1377 /* Check that all bits except the sign bit are zero. */
1378 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1379
1380 return ((reg & zero_mask) == 0);
1381}
1382
1383/* Return the value of the sign bit for the G_floating register
1384 value held in REG. */
1385
1386static int
1387fp_register_sign_bit (LONGEST reg)
1388{
1389 const LONGEST sign_mask = (LONGEST) 1 << 63;
1390
1391 return ((reg & sign_mask) != 0);
1392}
1393
ec32e4be
JT
1394/* alpha_software_single_step() is called just before we want to resume
1395 the inferior, if we want to single-step it but there is no hardware
1396 or kernel single-step support (NetBSD on Alpha, for example). We find
e0cd558a 1397 the target of the coming instruction and breakpoint it. */
ec32e4be
JT
1398
1399static CORE_ADDR
0b1b3e42 1400alpha_next_pc (struct frame_info *frame, CORE_ADDR pc)
ec32e4be
JT
1401{
1402 unsigned int insn;
1403 unsigned int op;
551e4f2e 1404 int regno;
ec32e4be
JT
1405 int offset;
1406 LONGEST rav;
1407
b21fd293 1408 insn = alpha_read_insn (pc);
ec32e4be
JT
1409
1410 /* Opcode is top 6 bits. */
1411 op = (insn >> 26) & 0x3f;
1412
1413 if (op == 0x1a)
1414 {
1415 /* Jump format: target PC is:
1416 RB & ~3 */
0b1b3e42 1417 return (get_frame_register_unsigned (frame, (insn >> 16) & 0x1f) & ~3);
ec32e4be
JT
1418 }
1419
1420 if ((op & 0x30) == 0x30)
1421 {
1422 /* Branch format: target PC is:
1423 (new PC) + (4 * sext(displacement)) */
1424 if (op == 0x30 || /* BR */
1425 op == 0x34) /* BSR */
1426 {
1427 branch_taken:
1428 offset = (insn & 0x001fffff);
1429 if (offset & 0x00100000)
1430 offset |= 0xffe00000;
e8d2d628
MK
1431 offset *= ALPHA_INSN_SIZE;
1432 return (pc + ALPHA_INSN_SIZE + offset);
ec32e4be
JT
1433 }
1434
1435 /* Need to determine if branch is taken; read RA. */
551e4f2e
JB
1436 regno = (insn >> 21) & 0x1f;
1437 switch (op)
1438 {
1439 case 0x31: /* FBEQ */
1440 case 0x36: /* FBGE */
1441 case 0x37: /* FBGT */
1442 case 0x33: /* FBLE */
1443 case 0x32: /* FBLT */
1444 case 0x35: /* FBNE */
ec7cc0e8 1445 regno += gdbarch_fp0_regnum (get_frame_arch (frame));
551e4f2e
JB
1446 }
1447
0b1b3e42 1448 rav = get_frame_register_signed (frame, regno);
0de94d4b 1449
ec32e4be
JT
1450 switch (op)
1451 {
1452 case 0x38: /* BLBC */
1453 if ((rav & 1) == 0)
1454 goto branch_taken;
1455 break;
1456 case 0x3c: /* BLBS */
1457 if (rav & 1)
1458 goto branch_taken;
1459 break;
1460 case 0x39: /* BEQ */
1461 if (rav == 0)
1462 goto branch_taken;
1463 break;
1464 case 0x3d: /* BNE */
1465 if (rav != 0)
1466 goto branch_taken;
1467 break;
1468 case 0x3a: /* BLT */
1469 if (rav < 0)
1470 goto branch_taken;
1471 break;
1472 case 0x3b: /* BLE */
1473 if (rav <= 0)
1474 goto branch_taken;
1475 break;
1476 case 0x3f: /* BGT */
1477 if (rav > 0)
1478 goto branch_taken;
1479 break;
1480 case 0x3e: /* BGE */
1481 if (rav >= 0)
1482 goto branch_taken;
1483 break;
d2427a71 1484
0de94d4b
JB
1485 /* Floating point branches. */
1486
1487 case 0x31: /* FBEQ */
1488 if (fp_register_zero_p (rav))
1489 goto branch_taken;
1490 break;
1491 case 0x36: /* FBGE */
1492 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1493 goto branch_taken;
1494 break;
1495 case 0x37: /* FBGT */
1496 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1497 goto branch_taken;
1498 break;
1499 case 0x33: /* FBLE */
1500 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1501 goto branch_taken;
1502 break;
1503 case 0x32: /* FBLT */
1504 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1505 goto branch_taken;
1506 break;
1507 case 0x35: /* FBNE */
1508 if (! fp_register_zero_p (rav))
1509 goto branch_taken;
1510 break;
ec32e4be
JT
1511 }
1512 }
1513
1514 /* Not a branch or branch not taken; target PC is:
1515 pc + 4 */
e8d2d628 1516 return (pc + ALPHA_INSN_SIZE);
ec32e4be
JT
1517}
1518
e6590a1b 1519int
0b1b3e42 1520alpha_software_single_step (struct frame_info *frame)
ec32e4be 1521{
e0cd558a 1522 CORE_ADDR pc, next_pc;
ec32e4be 1523
0b1b3e42
UW
1524 pc = get_frame_pc (frame);
1525 next_pc = alpha_next_pc (frame, pc);
ec32e4be 1526
e0cd558a 1527 insert_single_step_breakpoint (next_pc);
e6590a1b 1528 return 1;
c906108c
SS
1529}
1530
dc129d82 1531\f
dc129d82
JT
1532/* Initialize the current architecture based on INFO. If possible, re-use an
1533 architecture from ARCHES, which is a list of architectures already created
1534 during this debugging session.
1535
1536 Called e.g. at program startup, when reading a core file, and when reading
1537 a binary file. */
1538
1539static struct gdbarch *
1540alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1541{
1542 struct gdbarch_tdep *tdep;
1543 struct gdbarch *gdbarch;
dc129d82
JT
1544
1545 /* Try to determine the ABI of the object we are loading. */
4be87837 1546 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
dc129d82 1547 {
4be87837
DJ
1548 /* If it's an ECOFF file, assume it's OSF/1. */
1549 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
aff87235 1550 info.osabi = GDB_OSABI_OSF1;
dc129d82
JT
1551 }
1552
1553 /* Find a candidate among extant architectures. */
4be87837
DJ
1554 arches = gdbarch_list_lookup_by_info (arches, &info);
1555 if (arches != NULL)
1556 return arches->gdbarch;
dc129d82
JT
1557
1558 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1559 gdbarch = gdbarch_alloc (&info, tdep);
1560
d2427a71
RH
1561 /* Lowest text address. This is used by heuristic_proc_start()
1562 to decide when to stop looking. */
594706e6 1563 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
d9b023cc 1564
36a6271d 1565 tdep->dynamic_sigtramp_offset = NULL;
5868c862 1566 tdep->sigcontext_addr = NULL;
138e7be5
MK
1567 tdep->sc_pc_offset = 2 * 8;
1568 tdep->sc_regs_offset = 4 * 8;
1569 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
36a6271d 1570
accc6d1f
JT
1571 tdep->jb_pc = -1; /* longjmp support not enabled by default */
1572
9823e921
RH
1573 tdep->return_in_memory = alpha_return_in_memory_always;
1574
dc129d82
JT
1575 /* Type sizes */
1576 set_gdbarch_short_bit (gdbarch, 16);
1577 set_gdbarch_int_bit (gdbarch, 32);
1578 set_gdbarch_long_bit (gdbarch, 64);
1579 set_gdbarch_long_long_bit (gdbarch, 64);
1580 set_gdbarch_float_bit (gdbarch, 32);
1581 set_gdbarch_double_bit (gdbarch, 64);
1582 set_gdbarch_long_double_bit (gdbarch, 64);
1583 set_gdbarch_ptr_bit (gdbarch, 64);
1584
1585 /* Register info */
1586 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1587 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
dc129d82
JT
1588 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1589 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1590
1591 set_gdbarch_register_name (gdbarch, alpha_register_name);
c483c494 1592 set_gdbarch_register_type (gdbarch, alpha_register_type);
dc129d82
JT
1593
1594 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1595 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1596
c483c494
RH
1597 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1598 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1599 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
dc129d82 1600
615967cb
RH
1601 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1602
d2427a71 1603 /* Prologue heuristics. */
dc129d82
JT
1604 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1605
5ef165c2
RH
1606 /* Disassembler. */
1607 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1608
d2427a71 1609 /* Call info. */
dc129d82 1610
9823e921 1611 set_gdbarch_return_value (gdbarch, alpha_return_value);
dc129d82
JT
1612
1613 /* Settings for calling functions in the inferior. */
c88e30c0 1614 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
d2427a71
RH
1615
1616 /* Methods for saving / extracting a dummy frame's ID. */
1617 set_gdbarch_unwind_dummy_id (gdbarch, alpha_unwind_dummy_id);
d2427a71
RH
1618
1619 /* Return the unwound PC value. */
1620 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
dc129d82
JT
1621
1622 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
36a6271d 1623 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
dc129d82 1624
95b80706 1625 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
e8d2d628 1626 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
9d519230 1627 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
95b80706 1628
44dffaac 1629 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 1630 gdbarch_init_osabi (info, gdbarch);
44dffaac 1631
accc6d1f
JT
1632 /* Now that we have tuned the configuration, set a few final things
1633 based on what the OS ABI has told us. */
1634
1635 if (tdep->jb_pc >= 0)
1636 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1637
336d1bba
AC
1638 frame_unwind_append_sniffer (gdbarch, alpha_sigtramp_frame_sniffer);
1639 frame_unwind_append_sniffer (gdbarch, alpha_heuristic_frame_sniffer);
dc129d82 1640
d2427a71 1641 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
accc6d1f 1642
d2427a71 1643 return gdbarch;
dc129d82
JT
1644}
1645
baa490c4
RH
1646void
1647alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1648{
336d1bba
AC
1649 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1650 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
baa490c4
RH
1651}
1652
a78f21af
AC
1653extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1654
c906108c 1655void
fba45db2 1656_initialize_alpha_tdep (void)
c906108c
SS
1657{
1658 struct cmd_list_element *c;
1659
d2427a71 1660 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
c906108c
SS
1661
1662 /* Let the user set the fence post for heuristic_proc_start. */
1663
1664 /* We really would like to have both "0" and "unlimited" work, but
1665 command.c doesn't deal with that. So make it a var_zinteger
1666 because the user can always use "999999" or some such for unlimited. */
edefbb7c
AC
1667 /* We need to throw away the frame cache when we set this, since it
1668 might change our ability to get backtraces. */
1669 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
1670 &heuristic_fence_post, _("\
1671Set the distance searched for the start of a function."), _("\
1672Show the distance searched for the start of a function."), _("\
c906108c
SS
1673If you are debugging a stripped executable, GDB needs to search through the\n\
1674program for the start of a function. This command sets the distance of the\n\
323e0a4a 1675search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 1676 reinit_frame_cache_sfunc,
7915a72c 1677 NULL, /* FIXME: i18n: The distance searched for the start of a function is \"%d\". */
edefbb7c 1678 &setlist, &showlist);
c906108c 1679}