]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/value.c
Clear entire "location" in value constructor
[thirdparty/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
e2882c85 3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "gdbcore.h"
c906108c
SS
26#include "command.h"
27#include "gdbcmd.h"
28#include "target.h"
29#include "language.h"
c906108c 30#include "demangle.h"
36160dc4 31#include "regcache.h"
fe898f56 32#include "block.h"
70100014 33#include "target-float.h"
bccdca4a 34#include "objfiles.h"
79a45b7d 35#include "valprint.h"
bc3b79fd 36#include "cli/cli-decode.h"
6dddc817 37#include "extension.h"
3bd0f5ef 38#include <ctype.h>
0914bcdb 39#include "tracepoint.h"
be335936 40#include "cp-abi.h"
a58e2656 41#include "user-regs.h"
325fac50 42#include <algorithm>
eb3ff9a5 43#include "completer.h"
d5f4488f
SM
44#include "selftest.h"
45#include "common/array-view.h"
0914bcdb 46
bc3b79fd
TJB
47/* Definition of a user function. */
48struct internal_function
49{
50 /* The name of the function. It is a bit odd to have this in the
51 function itself -- the user might use a differently-named
52 convenience variable to hold the function. */
53 char *name;
54
55 /* The handler. */
56 internal_function_fn handler;
57
58 /* User data for the handler. */
59 void *cookie;
60};
61
4e07d55f
PA
62/* Defines an [OFFSET, OFFSET + LENGTH) range. */
63
64struct range
65{
66 /* Lowest offset in the range. */
6b850546 67 LONGEST offset;
4e07d55f
PA
68
69 /* Length of the range. */
6b850546 70 LONGEST length;
4e07d55f 71
0c7e6dd8
TT
72 /* Returns true if THIS is strictly less than OTHER, useful for
73 searching. We keep ranges sorted by offset and coalesce
74 overlapping and contiguous ranges, so this just compares the
75 starting offset. */
4e07d55f 76
0c7e6dd8
TT
77 bool operator< (const range &other) const
78 {
79 return offset < other.offset;
80 }
d5f4488f
SM
81
82 /* Returns true if THIS is equal to OTHER. */
83 bool operator== (const range &other) const
84 {
85 return offset == other.offset && length == other.length;
86 }
0c7e6dd8 87};
4e07d55f
PA
88
89/* Returns true if the ranges defined by [offset1, offset1+len1) and
90 [offset2, offset2+len2) overlap. */
91
92static int
6b850546
DT
93ranges_overlap (LONGEST offset1, LONGEST len1,
94 LONGEST offset2, LONGEST len2)
4e07d55f
PA
95{
96 ULONGEST h, l;
97
325fac50
PA
98 l = std::max (offset1, offset2);
99 h = std::min (offset1 + len1, offset2 + len2);
4e07d55f
PA
100 return (l < h);
101}
102
4e07d55f
PA
103/* Returns true if RANGES contains any range that overlaps [OFFSET,
104 OFFSET+LENGTH). */
105
106static int
0c7e6dd8
TT
107ranges_contain (const std::vector<range> &ranges, LONGEST offset,
108 LONGEST length)
4e07d55f 109{
0c7e6dd8 110 range what;
4e07d55f
PA
111
112 what.offset = offset;
113 what.length = length;
114
115 /* We keep ranges sorted by offset and coalesce overlapping and
116 contiguous ranges, so to check if a range list contains a given
117 range, we can do a binary search for the position the given range
118 would be inserted if we only considered the starting OFFSET of
119 ranges. We call that position I. Since we also have LENGTH to
120 care for (this is a range afterall), we need to check if the
121 _previous_ range overlaps the I range. E.g.,
122
123 R
124 |---|
125 |---| |---| |------| ... |--|
126 0 1 2 N
127
128 I=1
129
130 In the case above, the binary search would return `I=1', meaning,
131 this OFFSET should be inserted at position 1, and the current
132 position 1 should be pushed further (and before 2). But, `0'
133 overlaps with R.
134
135 Then we need to check if the I range overlaps the I range itself.
136 E.g.,
137
138 R
139 |---|
140 |---| |---| |-------| ... |--|
141 0 1 2 N
142
143 I=1
144 */
145
4e07d55f 146
0c7e6dd8
TT
147 auto i = std::lower_bound (ranges.begin (), ranges.end (), what);
148
149 if (i > ranges.begin ())
4e07d55f 150 {
0c7e6dd8 151 const struct range &bef = *(i - 1);
4e07d55f 152
0c7e6dd8 153 if (ranges_overlap (bef.offset, bef.length, offset, length))
4e07d55f
PA
154 return 1;
155 }
156
0c7e6dd8 157 if (i < ranges.end ())
4e07d55f 158 {
0c7e6dd8 159 const struct range &r = *i;
4e07d55f 160
0c7e6dd8 161 if (ranges_overlap (r.offset, r.length, offset, length))
4e07d55f
PA
162 return 1;
163 }
164
165 return 0;
166}
167
bc3b79fd
TJB
168static struct cmd_list_element *functionlist;
169
87784a47
TT
170/* Note that the fields in this structure are arranged to save a bit
171 of memory. */
172
91294c83
AC
173struct value
174{
466ce3ae
TT
175 explicit value (struct type *type_)
176 : modifiable (1),
177 lazy (1),
178 initialized (1),
179 stack (0),
180 type (type_),
181 enclosing_type (type_)
182 {
466ce3ae
TT
183 }
184
185 ~value ()
186 {
466ce3ae
TT
187 if (VALUE_LVAL (this) == lval_computed)
188 {
189 const struct lval_funcs *funcs = location.computed.funcs;
190
191 if (funcs->free_closure)
192 funcs->free_closure (this);
193 }
194 else if (VALUE_LVAL (this) == lval_xcallable)
195 delete location.xm_worker;
466ce3ae
TT
196 }
197
198 DISABLE_COPY_AND_ASSIGN (value);
199
91294c83
AC
200 /* Type of value; either not an lval, or one of the various
201 different possible kinds of lval. */
466ce3ae 202 enum lval_type lval = not_lval;
91294c83
AC
203
204 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
205 unsigned int modifiable : 1;
206
207 /* If zero, contents of this value are in the contents field. If
208 nonzero, contents are in inferior. If the lval field is lval_memory,
209 the contents are in inferior memory at location.address plus offset.
210 The lval field may also be lval_register.
211
212 WARNING: This field is used by the code which handles watchpoints
213 (see breakpoint.c) to decide whether a particular value can be
214 watched by hardware watchpoints. If the lazy flag is set for
215 some member of a value chain, it is assumed that this member of
216 the chain doesn't need to be watched as part of watching the
217 value itself. This is how GDB avoids watching the entire struct
218 or array when the user wants to watch a single struct member or
219 array element. If you ever change the way lazy flag is set and
220 reset, be sure to consider this use as well! */
221 unsigned int lazy : 1;
222
87784a47
TT
223 /* If value is a variable, is it initialized or not. */
224 unsigned int initialized : 1;
225
226 /* If value is from the stack. If this is set, read_stack will be
227 used instead of read_memory to enable extra caching. */
228 unsigned int stack : 1;
91294c83
AC
229
230 /* Location of value (if lval). */
231 union
232 {
7dc54575 233 /* If lval == lval_memory, this is the address in the inferior */
91294c83
AC
234 CORE_ADDR address;
235
7dc54575
YQ
236 /*If lval == lval_register, the value is from a register. */
237 struct
238 {
239 /* Register number. */
240 int regnum;
241 /* Frame ID of "next" frame to which a register value is relative.
242 If the register value is found relative to frame F, then the
243 frame id of F->next will be stored in next_frame_id. */
244 struct frame_id next_frame_id;
245 } reg;
246
91294c83
AC
247 /* Pointer to internal variable. */
248 struct internalvar *internalvar;
5f5233d4 249
e81e7f5e
SC
250 /* Pointer to xmethod worker. */
251 struct xmethod_worker *xm_worker;
252
5f5233d4
PA
253 /* If lval == lval_computed, this is a set of function pointers
254 to use to access and describe the value, and a closure pointer
255 for them to use. */
256 struct
257 {
c8f2448a
JK
258 /* Functions to call. */
259 const struct lval_funcs *funcs;
260
261 /* Closure for those functions to use. */
262 void *closure;
5f5233d4 263 } computed;
41a883c8 264 } location {};
91294c83 265
3723fda8 266 /* Describes offset of a value within lval of a structure in target
7dc54575
YQ
267 addressable memory units. Note also the member embedded_offset
268 below. */
466ce3ae 269 LONGEST offset = 0;
91294c83
AC
270
271 /* Only used for bitfields; number of bits contained in them. */
466ce3ae 272 LONGEST bitsize = 0;
91294c83
AC
273
274 /* Only used for bitfields; position of start of field. For
32c9a795 275 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 276 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
466ce3ae 277 LONGEST bitpos = 0;
91294c83 278
87784a47
TT
279 /* The number of references to this value. When a value is created,
280 the value chain holds a reference, so REFERENCE_COUNT is 1. If
281 release_value is called, this value is removed from the chain but
282 the caller of release_value now has a reference to this value.
283 The caller must arrange for a call to value_free later. */
466ce3ae 284 int reference_count = 1;
87784a47 285
4ea48cc1
DJ
286 /* Only used for bitfields; the containing value. This allows a
287 single read from the target when displaying multiple
288 bitfields. */
2c8331b9 289 value_ref_ptr parent;
4ea48cc1 290
91294c83
AC
291 /* Type of the value. */
292 struct type *type;
293
294 /* If a value represents a C++ object, then the `type' field gives
295 the object's compile-time type. If the object actually belongs
296 to some class derived from `type', perhaps with other base
297 classes and additional members, then `type' is just a subobject
298 of the real thing, and the full object is probably larger than
299 `type' would suggest.
300
301 If `type' is a dynamic class (i.e. one with a vtable), then GDB
302 can actually determine the object's run-time type by looking at
303 the run-time type information in the vtable. When this
304 information is available, we may elect to read in the entire
305 object, for several reasons:
306
307 - When printing the value, the user would probably rather see the
308 full object, not just the limited portion apparent from the
309 compile-time type.
310
311 - If `type' has virtual base classes, then even printing `type'
312 alone may require reaching outside the `type' portion of the
313 object to wherever the virtual base class has been stored.
314
315 When we store the entire object, `enclosing_type' is the run-time
316 type -- the complete object -- and `embedded_offset' is the
3723fda8
SM
317 offset of `type' within that larger type, in target addressable memory
318 units. The value_contents() macro takes `embedded_offset' into account,
319 so most GDB code continues to see the `type' portion of the value, just
320 as the inferior would.
91294c83
AC
321
322 If `type' is a pointer to an object, then `enclosing_type' is a
323 pointer to the object's run-time type, and `pointed_to_offset' is
3723fda8
SM
324 the offset in target addressable memory units from the full object
325 to the pointed-to object -- that is, the value `embedded_offset' would
326 have if we followed the pointer and fetched the complete object.
327 (I don't really see the point. Why not just determine the
328 run-time type when you indirect, and avoid the special case? The
329 contents don't matter until you indirect anyway.)
91294c83
AC
330
331 If we're not doing anything fancy, `enclosing_type' is equal to
332 `type', and `embedded_offset' is zero, so everything works
333 normally. */
334 struct type *enclosing_type;
466ce3ae
TT
335 LONGEST embedded_offset = 0;
336 LONGEST pointed_to_offset = 0;
91294c83 337
3e3d7139
JG
338 /* Actual contents of the value. Target byte-order. NULL or not
339 valid if lazy is nonzero. */
14c88955 340 gdb::unique_xmalloc_ptr<gdb_byte> contents;
828d3400 341
4e07d55f
PA
342 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
343 rather than available, since the common and default case is for a
9a0dc9e3
PA
344 value to be available. This is filled in at value read time.
345 The unavailable ranges are tracked in bits. Note that a contents
346 bit that has been optimized out doesn't really exist in the
347 program, so it can't be marked unavailable either. */
0c7e6dd8 348 std::vector<range> unavailable;
9a0dc9e3
PA
349
350 /* Likewise, but for optimized out contents (a chunk of the value of
351 a variable that does not actually exist in the program). If LVAL
352 is lval_register, this is a register ($pc, $sp, etc., never a
353 program variable) that has not been saved in the frame. Not
354 saved registers and optimized-out program variables values are
355 treated pretty much the same, except not-saved registers have a
356 different string representation and related error strings. */
0c7e6dd8 357 std::vector<range> optimized_out;
91294c83
AC
358};
359
e512cdbd
SM
360/* See value.h. */
361
362struct gdbarch *
363get_value_arch (const struct value *value)
364{
365 return get_type_arch (value_type (value));
366}
367
4e07d55f 368int
6b850546 369value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
4e07d55f
PA
370{
371 gdb_assert (!value->lazy);
372
373 return !ranges_contain (value->unavailable, offset, length);
374}
375
bdf22206 376int
6b850546
DT
377value_bytes_available (const struct value *value,
378 LONGEST offset, LONGEST length)
bdf22206
AB
379{
380 return value_bits_available (value,
381 offset * TARGET_CHAR_BIT,
382 length * TARGET_CHAR_BIT);
383}
384
9a0dc9e3
PA
385int
386value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
387{
388 gdb_assert (!value->lazy);
389
390 return ranges_contain (value->optimized_out, bit_offset, bit_length);
391}
392
ec0a52e1
PA
393int
394value_entirely_available (struct value *value)
395{
396 /* We can only tell whether the whole value is available when we try
397 to read it. */
398 if (value->lazy)
399 value_fetch_lazy (value);
400
0c7e6dd8 401 if (value->unavailable.empty ())
ec0a52e1
PA
402 return 1;
403 return 0;
404}
405
9a0dc9e3
PA
406/* Returns true if VALUE is entirely covered by RANGES. If the value
407 is lazy, it'll be read now. Note that RANGE is a pointer to
408 pointer because reading the value might change *RANGE. */
409
410static int
411value_entirely_covered_by_range_vector (struct value *value,
0c7e6dd8 412 const std::vector<range> &ranges)
6211c335 413{
9a0dc9e3
PA
414 /* We can only tell whether the whole value is optimized out /
415 unavailable when we try to read it. */
6211c335
YQ
416 if (value->lazy)
417 value_fetch_lazy (value);
418
0c7e6dd8 419 if (ranges.size () == 1)
6211c335 420 {
0c7e6dd8 421 const struct range &t = ranges[0];
6211c335 422
0c7e6dd8
TT
423 if (t.offset == 0
424 && t.length == (TARGET_CHAR_BIT
425 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
426 return 1;
427 }
428
429 return 0;
430}
431
9a0dc9e3
PA
432int
433value_entirely_unavailable (struct value *value)
434{
0c7e6dd8 435 return value_entirely_covered_by_range_vector (value, value->unavailable);
9a0dc9e3
PA
436}
437
438int
439value_entirely_optimized_out (struct value *value)
440{
0c7e6dd8 441 return value_entirely_covered_by_range_vector (value, value->optimized_out);
9a0dc9e3
PA
442}
443
444/* Insert into the vector pointed to by VECTORP the bit range starting of
445 OFFSET bits, and extending for the next LENGTH bits. */
446
447static void
0c7e6dd8 448insert_into_bit_range_vector (std::vector<range> *vectorp,
6b850546 449 LONGEST offset, LONGEST length)
4e07d55f 450{
0c7e6dd8 451 range newr;
4e07d55f
PA
452
453 /* Insert the range sorted. If there's overlap or the new range
454 would be contiguous with an existing range, merge. */
455
456 newr.offset = offset;
457 newr.length = length;
458
459 /* Do a binary search for the position the given range would be
460 inserted if we only considered the starting OFFSET of ranges.
461 Call that position I. Since we also have LENGTH to care for
462 (this is a range afterall), we need to check if the _previous_
463 range overlaps the I range. E.g., calling R the new range:
464
465 #1 - overlaps with previous
466
467 R
468 |-...-|
469 |---| |---| |------| ... |--|
470 0 1 2 N
471
472 I=1
473
474 In the case #1 above, the binary search would return `I=1',
475 meaning, this OFFSET should be inserted at position 1, and the
476 current position 1 should be pushed further (and become 2). But,
477 note that `0' overlaps with R, so we want to merge them.
478
479 A similar consideration needs to be taken if the new range would
480 be contiguous with the previous range:
481
482 #2 - contiguous with previous
483
484 R
485 |-...-|
486 |--| |---| |------| ... |--|
487 0 1 2 N
488
489 I=1
490
491 If there's no overlap with the previous range, as in:
492
493 #3 - not overlapping and not contiguous
494
495 R
496 |-...-|
497 |--| |---| |------| ... |--|
498 0 1 2 N
499
500 I=1
501
502 or if I is 0:
503
504 #4 - R is the range with lowest offset
505
506 R
507 |-...-|
508 |--| |---| |------| ... |--|
509 0 1 2 N
510
511 I=0
512
513 ... we just push the new range to I.
514
515 All the 4 cases above need to consider that the new range may
516 also overlap several of the ranges that follow, or that R may be
517 contiguous with the following range, and merge. E.g.,
518
519 #5 - overlapping following ranges
520
521 R
522 |------------------------|
523 |--| |---| |------| ... |--|
524 0 1 2 N
525
526 I=0
527
528 or:
529
530 R
531 |-------|
532 |--| |---| |------| ... |--|
533 0 1 2 N
534
535 I=1
536
537 */
538
0c7e6dd8
TT
539 auto i = std::lower_bound (vectorp->begin (), vectorp->end (), newr);
540 if (i > vectorp->begin ())
4e07d55f 541 {
0c7e6dd8 542 struct range &bef = *(i - 1);
4e07d55f 543
0c7e6dd8 544 if (ranges_overlap (bef.offset, bef.length, offset, length))
4e07d55f
PA
545 {
546 /* #1 */
0c7e6dd8
TT
547 ULONGEST l = std::min (bef.offset, offset);
548 ULONGEST h = std::max (bef.offset + bef.length, offset + length);
4e07d55f 549
0c7e6dd8
TT
550 bef.offset = l;
551 bef.length = h - l;
4e07d55f
PA
552 i--;
553 }
0c7e6dd8 554 else if (offset == bef.offset + bef.length)
4e07d55f
PA
555 {
556 /* #2 */
0c7e6dd8 557 bef.length += length;
4e07d55f
PA
558 i--;
559 }
560 else
561 {
562 /* #3 */
0c7e6dd8 563 i = vectorp->insert (i, newr);
4e07d55f
PA
564 }
565 }
566 else
567 {
568 /* #4 */
0c7e6dd8 569 i = vectorp->insert (i, newr);
4e07d55f
PA
570 }
571
572 /* Check whether the ranges following the one we've just added or
573 touched can be folded in (#5 above). */
0c7e6dd8 574 if (i != vectorp->end () && i + 1 < vectorp->end ())
4e07d55f 575 {
4e07d55f 576 int removed = 0;
0c7e6dd8 577 auto next = i + 1;
4e07d55f
PA
578
579 /* Get the range we just touched. */
0c7e6dd8 580 struct range &t = *i;
4e07d55f
PA
581 removed = 0;
582
583 i = next;
0c7e6dd8
TT
584 for (; i < vectorp->end (); i++)
585 {
586 struct range &r = *i;
587 if (r.offset <= t.offset + t.length)
588 {
589 ULONGEST l, h;
590
591 l = std::min (t.offset, r.offset);
592 h = std::max (t.offset + t.length, r.offset + r.length);
593
594 t.offset = l;
595 t.length = h - l;
596
597 removed++;
598 }
599 else
600 {
601 /* If we couldn't merge this one, we won't be able to
602 merge following ones either, since the ranges are
603 always sorted by OFFSET. */
604 break;
605 }
606 }
4e07d55f
PA
607
608 if (removed != 0)
0c7e6dd8 609 vectorp->erase (next, next + removed);
4e07d55f
PA
610 }
611}
612
9a0dc9e3 613void
6b850546
DT
614mark_value_bits_unavailable (struct value *value,
615 LONGEST offset, LONGEST length)
9a0dc9e3
PA
616{
617 insert_into_bit_range_vector (&value->unavailable, offset, length);
618}
619
bdf22206 620void
6b850546
DT
621mark_value_bytes_unavailable (struct value *value,
622 LONGEST offset, LONGEST length)
bdf22206
AB
623{
624 mark_value_bits_unavailable (value,
625 offset * TARGET_CHAR_BIT,
626 length * TARGET_CHAR_BIT);
627}
628
c8c1c22f
PA
629/* Find the first range in RANGES that overlaps the range defined by
630 OFFSET and LENGTH, starting at element POS in the RANGES vector,
631 Returns the index into RANGES where such overlapping range was
632 found, or -1 if none was found. */
633
634static int
0c7e6dd8 635find_first_range_overlap (const std::vector<range> *ranges, int pos,
6b850546 636 LONGEST offset, LONGEST length)
c8c1c22f 637{
c8c1c22f
PA
638 int i;
639
0c7e6dd8
TT
640 for (i = pos; i < ranges->size (); i++)
641 {
642 const range &r = (*ranges)[i];
643 if (ranges_overlap (r.offset, r.length, offset, length))
644 return i;
645 }
c8c1c22f
PA
646
647 return -1;
648}
649
bdf22206
AB
650/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
651 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
652 return non-zero.
653
654 It must always be the case that:
655 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
656
657 It is assumed that memory can be accessed from:
658 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
659 to:
660 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
661 / TARGET_CHAR_BIT) */
662static int
663memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
664 const gdb_byte *ptr2, size_t offset2_bits,
665 size_t length_bits)
666{
667 gdb_assert (offset1_bits % TARGET_CHAR_BIT
668 == offset2_bits % TARGET_CHAR_BIT);
669
670 if (offset1_bits % TARGET_CHAR_BIT != 0)
671 {
672 size_t bits;
673 gdb_byte mask, b1, b2;
674
675 /* The offset from the base pointers PTR1 and PTR2 is not a complete
676 number of bytes. A number of bits up to either the next exact
677 byte boundary, or LENGTH_BITS (which ever is sooner) will be
678 compared. */
679 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
680 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
681 mask = (1 << bits) - 1;
682
683 if (length_bits < bits)
684 {
685 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
686 bits = length_bits;
687 }
688
689 /* Now load the two bytes and mask off the bits we care about. */
690 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
691 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
692
693 if (b1 != b2)
694 return 1;
695
696 /* Now update the length and offsets to take account of the bits
697 we've just compared. */
698 length_bits -= bits;
699 offset1_bits += bits;
700 offset2_bits += bits;
701 }
702
703 if (length_bits % TARGET_CHAR_BIT != 0)
704 {
705 size_t bits;
706 size_t o1, o2;
707 gdb_byte mask, b1, b2;
708
709 /* The length is not an exact number of bytes. After the previous
710 IF.. block then the offsets are byte aligned, or the
711 length is zero (in which case this code is not reached). Compare
712 a number of bits at the end of the region, starting from an exact
713 byte boundary. */
714 bits = length_bits % TARGET_CHAR_BIT;
715 o1 = offset1_bits + length_bits - bits;
716 o2 = offset2_bits + length_bits - bits;
717
718 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
719 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
720
721 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
722 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
723
724 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
725 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
726
727 if (b1 != b2)
728 return 1;
729
730 length_bits -= bits;
731 }
732
733 if (length_bits > 0)
734 {
735 /* We've now taken care of any stray "bits" at the start, or end of
736 the region to compare, the remainder can be covered with a simple
737 memcmp. */
738 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
739 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
740 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
741
742 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
743 ptr2 + offset2_bits / TARGET_CHAR_BIT,
744 length_bits / TARGET_CHAR_BIT);
745 }
746
747 /* Length is zero, regions match. */
748 return 0;
749}
750
9a0dc9e3
PA
751/* Helper struct for find_first_range_overlap_and_match and
752 value_contents_bits_eq. Keep track of which slot of a given ranges
753 vector have we last looked at. */
bdf22206 754
9a0dc9e3
PA
755struct ranges_and_idx
756{
757 /* The ranges. */
0c7e6dd8 758 const std::vector<range> *ranges;
9a0dc9e3
PA
759
760 /* The range we've last found in RANGES. Given ranges are sorted,
761 we can start the next lookup here. */
762 int idx;
763};
764
765/* Helper function for value_contents_bits_eq. Compare LENGTH bits of
766 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
767 ranges starting at OFFSET2 bits. Return true if the ranges match
768 and fill in *L and *H with the overlapping window relative to
769 (both) OFFSET1 or OFFSET2. */
bdf22206
AB
770
771static int
9a0dc9e3
PA
772find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
773 struct ranges_and_idx *rp2,
6b850546
DT
774 LONGEST offset1, LONGEST offset2,
775 LONGEST length, ULONGEST *l, ULONGEST *h)
c8c1c22f 776{
9a0dc9e3
PA
777 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
778 offset1, length);
779 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
780 offset2, length);
c8c1c22f 781
9a0dc9e3
PA
782 if (rp1->idx == -1 && rp2->idx == -1)
783 {
784 *l = length;
785 *h = length;
786 return 1;
787 }
788 else if (rp1->idx == -1 || rp2->idx == -1)
789 return 0;
790 else
c8c1c22f 791 {
0c7e6dd8 792 const range *r1, *r2;
c8c1c22f
PA
793 ULONGEST l1, h1;
794 ULONGEST l2, h2;
795
0c7e6dd8
TT
796 r1 = &(*rp1->ranges)[rp1->idx];
797 r2 = &(*rp2->ranges)[rp2->idx];
c8c1c22f
PA
798
799 /* Get the unavailable windows intersected by the incoming
800 ranges. The first and last ranges that overlap the argument
801 range may be wider than said incoming arguments ranges. */
325fac50
PA
802 l1 = std::max (offset1, r1->offset);
803 h1 = std::min (offset1 + length, r1->offset + r1->length);
c8c1c22f 804
325fac50
PA
805 l2 = std::max (offset2, r2->offset);
806 h2 = std::min (offset2 + length, offset2 + r2->length);
c8c1c22f
PA
807
808 /* Make them relative to the respective start offsets, so we can
809 compare them for equality. */
810 l1 -= offset1;
811 h1 -= offset1;
812
813 l2 -= offset2;
814 h2 -= offset2;
815
9a0dc9e3 816 /* Different ranges, no match. */
c8c1c22f
PA
817 if (l1 != l2 || h1 != h2)
818 return 0;
819
9a0dc9e3
PA
820 *h = h1;
821 *l = l1;
822 return 1;
823 }
824}
825
826/* Helper function for value_contents_eq. The only difference is that
827 this function is bit rather than byte based.
828
829 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
830 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
831 Return true if the available bits match. */
832
98ead37e 833static bool
9a0dc9e3
PA
834value_contents_bits_eq (const struct value *val1, int offset1,
835 const struct value *val2, int offset2,
836 int length)
837{
838 /* Each array element corresponds to a ranges source (unavailable,
839 optimized out). '1' is for VAL1, '2' for VAL2. */
840 struct ranges_and_idx rp1[2], rp2[2];
841
842 /* See function description in value.h. */
843 gdb_assert (!val1->lazy && !val2->lazy);
844
845 /* We shouldn't be trying to compare past the end of the values. */
846 gdb_assert (offset1 + length
847 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
848 gdb_assert (offset2 + length
849 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
850
851 memset (&rp1, 0, sizeof (rp1));
852 memset (&rp2, 0, sizeof (rp2));
0c7e6dd8
TT
853 rp1[0].ranges = &val1->unavailable;
854 rp2[0].ranges = &val2->unavailable;
855 rp1[1].ranges = &val1->optimized_out;
856 rp2[1].ranges = &val2->optimized_out;
9a0dc9e3
PA
857
858 while (length > 0)
859 {
000339af 860 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
9a0dc9e3
PA
861 int i;
862
863 for (i = 0; i < 2; i++)
864 {
865 ULONGEST l_tmp, h_tmp;
866
867 /* The contents only match equal if the invalid/unavailable
868 contents ranges match as well. */
869 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
870 offset1, offset2, length,
871 &l_tmp, &h_tmp))
98ead37e 872 return false;
9a0dc9e3
PA
873
874 /* We're interested in the lowest/first range found. */
875 if (i == 0 || l_tmp < l)
876 {
877 l = l_tmp;
878 h = h_tmp;
879 }
880 }
881
882 /* Compare the available/valid contents. */
14c88955
TT
883 if (memcmp_with_bit_offsets (val1->contents.get (), offset1,
884 val2->contents.get (), offset2, l) != 0)
98ead37e 885 return false;
c8c1c22f 886
9a0dc9e3
PA
887 length -= h;
888 offset1 += h;
889 offset2 += h;
c8c1c22f
PA
890 }
891
98ead37e 892 return true;
c8c1c22f
PA
893}
894
98ead37e 895bool
6b850546
DT
896value_contents_eq (const struct value *val1, LONGEST offset1,
897 const struct value *val2, LONGEST offset2,
898 LONGEST length)
bdf22206 899{
9a0dc9e3
PA
900 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
901 val2, offset2 * TARGET_CHAR_BIT,
902 length * TARGET_CHAR_BIT);
bdf22206
AB
903}
904
c906108c 905
4d0266a0
TT
906/* The value-history records all the values printed by print commands
907 during this session. */
c906108c 908
4d0266a0 909static std::vector<value_ref_ptr> value_history;
bc3b79fd 910
c906108c
SS
911\f
912/* List of all value objects currently allocated
913 (except for those released by calls to release_value)
914 This is so they can be freed after each command. */
915
062d818d 916static std::vector<value_ref_ptr> all_values;
c906108c 917
3e3d7139
JG
918/* Allocate a lazy value for type TYPE. Its actual content is
919 "lazily" allocated too: the content field of the return value is
920 NULL; it will be allocated when it is fetched from the target. */
c906108c 921
f23631e4 922struct value *
3e3d7139 923allocate_value_lazy (struct type *type)
c906108c 924{
f23631e4 925 struct value *val;
c54eabfa
JK
926
927 /* Call check_typedef on our type to make sure that, if TYPE
928 is a TYPE_CODE_TYPEDEF, its length is set to the length
929 of the target type instead of zero. However, we do not
930 replace the typedef type by the target type, because we want
931 to keep the typedef in order to be able to set the VAL's type
932 description correctly. */
933 check_typedef (type);
c906108c 934
466ce3ae 935 val = new struct value (type);
828d3400
DJ
936
937 /* Values start out on the all_values chain. */
062d818d 938 all_values.emplace_back (val);
828d3400 939
c906108c
SS
940 return val;
941}
942
5fdf6324
AB
943/* The maximum size, in bytes, that GDB will try to allocate for a value.
944 The initial value of 64k was not selected for any specific reason, it is
945 just a reasonable starting point. */
946
947static int max_value_size = 65536; /* 64k bytes */
948
949/* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
950 LONGEST, otherwise GDB will not be able to parse integer values from the
951 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
952 be unable to parse "set max-value-size 2".
953
954 As we want a consistent GDB experience across hosts with different sizes
955 of LONGEST, this arbitrary minimum value was selected, so long as this
956 is bigger than LONGEST on all GDB supported hosts we're fine. */
957
958#define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
959gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
960
961/* Implement the "set max-value-size" command. */
962
963static void
eb4c3f4a 964set_max_value_size (const char *args, int from_tty,
5fdf6324
AB
965 struct cmd_list_element *c)
966{
967 gdb_assert (max_value_size == -1 || max_value_size >= 0);
968
969 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
970 {
971 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
972 error (_("max-value-size set too low, increasing to %d bytes"),
973 max_value_size);
974 }
975}
976
977/* Implement the "show max-value-size" command. */
978
979static void
980show_max_value_size (struct ui_file *file, int from_tty,
981 struct cmd_list_element *c, const char *value)
982{
983 if (max_value_size == -1)
984 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
985 else
986 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
987 max_value_size);
988}
989
990/* Called before we attempt to allocate or reallocate a buffer for the
991 contents of a value. TYPE is the type of the value for which we are
992 allocating the buffer. If the buffer is too large (based on the user
993 controllable setting) then throw an error. If this function returns
994 then we should attempt to allocate the buffer. */
995
996static void
997check_type_length_before_alloc (const struct type *type)
998{
999 unsigned int length = TYPE_LENGTH (type);
1000
1001 if (max_value_size > -1 && length > max_value_size)
1002 {
1003 if (TYPE_NAME (type) != NULL)
1004 error (_("value of type `%s' requires %u bytes, which is more "
1005 "than max-value-size"), TYPE_NAME (type), length);
1006 else
1007 error (_("value requires %u bytes, which is more than "
1008 "max-value-size"), length);
1009 }
1010}
1011
3e3d7139
JG
1012/* Allocate the contents of VAL if it has not been allocated yet. */
1013
548b762d 1014static void
3e3d7139
JG
1015allocate_value_contents (struct value *val)
1016{
1017 if (!val->contents)
5fdf6324
AB
1018 {
1019 check_type_length_before_alloc (val->enclosing_type);
14c88955
TT
1020 val->contents.reset
1021 ((gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type)));
5fdf6324 1022 }
3e3d7139
JG
1023}
1024
1025/* Allocate a value and its contents for type TYPE. */
1026
1027struct value *
1028allocate_value (struct type *type)
1029{
1030 struct value *val = allocate_value_lazy (type);
a109c7c1 1031
3e3d7139
JG
1032 allocate_value_contents (val);
1033 val->lazy = 0;
1034 return val;
1035}
1036
c906108c 1037/* Allocate a value that has the correct length
938f5214 1038 for COUNT repetitions of type TYPE. */
c906108c 1039
f23631e4 1040struct value *
fba45db2 1041allocate_repeat_value (struct type *type, int count)
c906108c 1042{
c5aa993b 1043 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
1044 /* FIXME-type-allocation: need a way to free this type when we are
1045 done with it. */
e3506a9f
UW
1046 struct type *array_type
1047 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 1048
e3506a9f 1049 return allocate_value (array_type);
c906108c
SS
1050}
1051
5f5233d4
PA
1052struct value *
1053allocate_computed_value (struct type *type,
c8f2448a 1054 const struct lval_funcs *funcs,
5f5233d4
PA
1055 void *closure)
1056{
41e8491f 1057 struct value *v = allocate_value_lazy (type);
a109c7c1 1058
5f5233d4
PA
1059 VALUE_LVAL (v) = lval_computed;
1060 v->location.computed.funcs = funcs;
1061 v->location.computed.closure = closure;
5f5233d4
PA
1062
1063 return v;
1064}
1065
a7035dbb
JK
1066/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1067
1068struct value *
1069allocate_optimized_out_value (struct type *type)
1070{
1071 struct value *retval = allocate_value_lazy (type);
1072
9a0dc9e3
PA
1073 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1074 set_value_lazy (retval, 0);
a7035dbb
JK
1075 return retval;
1076}
1077
df407dfe
AC
1078/* Accessor methods. */
1079
1080struct type *
0e03807e 1081value_type (const struct value *value)
df407dfe
AC
1082{
1083 return value->type;
1084}
04624583
AC
1085void
1086deprecated_set_value_type (struct value *value, struct type *type)
1087{
1088 value->type = type;
1089}
df407dfe 1090
6b850546 1091LONGEST
0e03807e 1092value_offset (const struct value *value)
df407dfe
AC
1093{
1094 return value->offset;
1095}
f5cf64a7 1096void
6b850546 1097set_value_offset (struct value *value, LONGEST offset)
f5cf64a7
AC
1098{
1099 value->offset = offset;
1100}
df407dfe 1101
6b850546 1102LONGEST
0e03807e 1103value_bitpos (const struct value *value)
df407dfe
AC
1104{
1105 return value->bitpos;
1106}
9bbda503 1107void
6b850546 1108set_value_bitpos (struct value *value, LONGEST bit)
9bbda503
AC
1109{
1110 value->bitpos = bit;
1111}
df407dfe 1112
6b850546 1113LONGEST
0e03807e 1114value_bitsize (const struct value *value)
df407dfe
AC
1115{
1116 return value->bitsize;
1117}
9bbda503 1118void
6b850546 1119set_value_bitsize (struct value *value, LONGEST bit)
9bbda503
AC
1120{
1121 value->bitsize = bit;
1122}
df407dfe 1123
4ea48cc1 1124struct value *
4bf7b526 1125value_parent (const struct value *value)
4ea48cc1 1126{
2c8331b9 1127 return value->parent.get ();
4ea48cc1
DJ
1128}
1129
53ba8333
JB
1130/* See value.h. */
1131
1132void
1133set_value_parent (struct value *value, struct value *parent)
1134{
bbfa6f00 1135 value->parent = value_ref_ptr::new_reference (parent);
53ba8333
JB
1136}
1137
fc1a4b47 1138gdb_byte *
990a07ab
AC
1139value_contents_raw (struct value *value)
1140{
3ae385af
SM
1141 struct gdbarch *arch = get_value_arch (value);
1142 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1143
3e3d7139 1144 allocate_value_contents (value);
14c88955 1145 return value->contents.get () + value->embedded_offset * unit_size;
990a07ab
AC
1146}
1147
fc1a4b47 1148gdb_byte *
990a07ab
AC
1149value_contents_all_raw (struct value *value)
1150{
3e3d7139 1151 allocate_value_contents (value);
14c88955 1152 return value->contents.get ();
990a07ab
AC
1153}
1154
4754a64e 1155struct type *
4bf7b526 1156value_enclosing_type (const struct value *value)
4754a64e
AC
1157{
1158 return value->enclosing_type;
1159}
1160
8264ba82
AG
1161/* Look at value.h for description. */
1162
1163struct type *
1164value_actual_type (struct value *value, int resolve_simple_types,
1165 int *real_type_found)
1166{
1167 struct value_print_options opts;
8264ba82
AG
1168 struct type *result;
1169
1170 get_user_print_options (&opts);
1171
1172 if (real_type_found)
1173 *real_type_found = 0;
1174 result = value_type (value);
1175 if (opts.objectprint)
1176 {
5e34c6c3
LM
1177 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1178 fetch its rtti type. */
aa006118 1179 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
5e34c6c3 1180 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
ecf2e90c
DB
1181 == TYPE_CODE_STRUCT
1182 && !value_optimized_out (value))
8264ba82
AG
1183 {
1184 struct type *real_type;
1185
1186 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1187 if (real_type)
1188 {
1189 if (real_type_found)
1190 *real_type_found = 1;
1191 result = real_type;
1192 }
1193 }
1194 else if (resolve_simple_types)
1195 {
1196 if (real_type_found)
1197 *real_type_found = 1;
1198 result = value_enclosing_type (value);
1199 }
1200 }
1201
1202 return result;
1203}
1204
901461f8
PA
1205void
1206error_value_optimized_out (void)
1207{
1208 error (_("value has been optimized out"));
1209}
1210
0e03807e 1211static void
4e07d55f 1212require_not_optimized_out (const struct value *value)
0e03807e 1213{
0c7e6dd8 1214 if (!value->optimized_out.empty ())
901461f8
PA
1215 {
1216 if (value->lval == lval_register)
1217 error (_("register has not been saved in frame"));
1218 else
1219 error_value_optimized_out ();
1220 }
0e03807e
TT
1221}
1222
4e07d55f
PA
1223static void
1224require_available (const struct value *value)
1225{
0c7e6dd8 1226 if (!value->unavailable.empty ())
8af8e3bc 1227 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1228}
1229
fc1a4b47 1230const gdb_byte *
0e03807e 1231value_contents_for_printing (struct value *value)
46615f07
AC
1232{
1233 if (value->lazy)
1234 value_fetch_lazy (value);
14c88955 1235 return value->contents.get ();
46615f07
AC
1236}
1237
de4127a3
PA
1238const gdb_byte *
1239value_contents_for_printing_const (const struct value *value)
1240{
1241 gdb_assert (!value->lazy);
14c88955 1242 return value->contents.get ();
de4127a3
PA
1243}
1244
0e03807e
TT
1245const gdb_byte *
1246value_contents_all (struct value *value)
1247{
1248 const gdb_byte *result = value_contents_for_printing (value);
1249 require_not_optimized_out (value);
4e07d55f 1250 require_available (value);
0e03807e
TT
1251 return result;
1252}
1253
9a0dc9e3
PA
1254/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1255 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1256
1257static void
0c7e6dd8
TT
1258ranges_copy_adjusted (std::vector<range> *dst_range, int dst_bit_offset,
1259 const std::vector<range> &src_range, int src_bit_offset,
9a0dc9e3
PA
1260 int bit_length)
1261{
0c7e6dd8 1262 for (const range &r : src_range)
9a0dc9e3
PA
1263 {
1264 ULONGEST h, l;
1265
0c7e6dd8
TT
1266 l = std::max (r.offset, (LONGEST) src_bit_offset);
1267 h = std::min (r.offset + r.length,
325fac50 1268 (LONGEST) src_bit_offset + bit_length);
9a0dc9e3
PA
1269
1270 if (l < h)
1271 insert_into_bit_range_vector (dst_range,
1272 dst_bit_offset + (l - src_bit_offset),
1273 h - l);
1274 }
1275}
1276
4875ffdb
PA
1277/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1278 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1279
1280static void
1281value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1282 const struct value *src, int src_bit_offset,
1283 int bit_length)
1284{
1285 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1286 src->unavailable, src_bit_offset,
1287 bit_length);
1288 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1289 src->optimized_out, src_bit_offset,
1290 bit_length);
1291}
1292
3ae385af 1293/* Copy LENGTH target addressable memory units of SRC value's (all) contents
29976f3f
PA
1294 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1295 contents, starting at DST_OFFSET. If unavailable contents are
1296 being copied from SRC, the corresponding DST contents are marked
1297 unavailable accordingly. Neither DST nor SRC may be lazy
1298 values.
1299
1300 It is assumed the contents of DST in the [DST_OFFSET,
1301 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1302
1303void
6b850546
DT
1304value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1305 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1306{
6b850546 1307 LONGEST src_bit_offset, dst_bit_offset, bit_length;
3ae385af
SM
1308 struct gdbarch *arch = get_value_arch (src);
1309 int unit_size = gdbarch_addressable_memory_unit_size (arch);
39d37385
PA
1310
1311 /* A lazy DST would make that this copy operation useless, since as
1312 soon as DST's contents were un-lazied (by a later value_contents
1313 call, say), the contents would be overwritten. A lazy SRC would
1314 mean we'd be copying garbage. */
1315 gdb_assert (!dst->lazy && !src->lazy);
1316
29976f3f
PA
1317 /* The overwritten DST range gets unavailability ORed in, not
1318 replaced. Make sure to remember to implement replacing if it
1319 turns out actually necessary. */
1320 gdb_assert (value_bytes_available (dst, dst_offset, length));
9a0dc9e3
PA
1321 gdb_assert (!value_bits_any_optimized_out (dst,
1322 TARGET_CHAR_BIT * dst_offset,
1323 TARGET_CHAR_BIT * length));
29976f3f 1324
39d37385 1325 /* Copy the data. */
3ae385af
SM
1326 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1327 value_contents_all_raw (src) + src_offset * unit_size,
1328 length * unit_size);
39d37385
PA
1329
1330 /* Copy the meta-data, adjusted. */
3ae385af
SM
1331 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1332 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1333 bit_length = length * unit_size * HOST_CHAR_BIT;
39d37385 1334
4875ffdb
PA
1335 value_ranges_copy_adjusted (dst, dst_bit_offset,
1336 src, src_bit_offset,
1337 bit_length);
39d37385
PA
1338}
1339
29976f3f
PA
1340/* Copy LENGTH bytes of SRC value's (all) contents
1341 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1342 (all) contents, starting at DST_OFFSET. If unavailable contents
1343 are being copied from SRC, the corresponding DST contents are
1344 marked unavailable accordingly. DST must not be lazy. If SRC is
9a0dc9e3 1345 lazy, it will be fetched now.
29976f3f
PA
1346
1347 It is assumed the contents of DST in the [DST_OFFSET,
1348 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1349
1350void
6b850546
DT
1351value_contents_copy (struct value *dst, LONGEST dst_offset,
1352 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1353{
39d37385
PA
1354 if (src->lazy)
1355 value_fetch_lazy (src);
1356
1357 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1358}
1359
d69fe07e 1360int
4bf7b526 1361value_lazy (const struct value *value)
d69fe07e
AC
1362{
1363 return value->lazy;
1364}
1365
dfa52d88
AC
1366void
1367set_value_lazy (struct value *value, int val)
1368{
1369 value->lazy = val;
1370}
1371
4e5d721f 1372int
4bf7b526 1373value_stack (const struct value *value)
4e5d721f
DE
1374{
1375 return value->stack;
1376}
1377
1378void
1379set_value_stack (struct value *value, int val)
1380{
1381 value->stack = val;
1382}
1383
fc1a4b47 1384const gdb_byte *
0fd88904
AC
1385value_contents (struct value *value)
1386{
0e03807e
TT
1387 const gdb_byte *result = value_contents_writeable (value);
1388 require_not_optimized_out (value);
4e07d55f 1389 require_available (value);
0e03807e 1390 return result;
0fd88904
AC
1391}
1392
fc1a4b47 1393gdb_byte *
0fd88904
AC
1394value_contents_writeable (struct value *value)
1395{
1396 if (value->lazy)
1397 value_fetch_lazy (value);
fc0c53a0 1398 return value_contents_raw (value);
0fd88904
AC
1399}
1400
feb13ab0
AC
1401int
1402value_optimized_out (struct value *value)
1403{
691a26f5
AB
1404 /* We can only know if a value is optimized out once we have tried to
1405 fetch it. */
0c7e6dd8 1406 if (value->optimized_out.empty () && value->lazy)
ecf2e90c
DB
1407 {
1408 TRY
1409 {
1410 value_fetch_lazy (value);
1411 }
1412 CATCH (ex, RETURN_MASK_ERROR)
1413 {
1414 /* Fall back to checking value->optimized_out. */
1415 }
1416 END_CATCH
1417 }
691a26f5 1418
0c7e6dd8 1419 return !value->optimized_out.empty ();
feb13ab0
AC
1420}
1421
9a0dc9e3
PA
1422/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1423 the following LENGTH bytes. */
eca07816 1424
feb13ab0 1425void
9a0dc9e3 1426mark_value_bytes_optimized_out (struct value *value, int offset, int length)
feb13ab0 1427{
9a0dc9e3
PA
1428 mark_value_bits_optimized_out (value,
1429 offset * TARGET_CHAR_BIT,
1430 length * TARGET_CHAR_BIT);
feb13ab0 1431}
13c3b5f5 1432
9a0dc9e3 1433/* See value.h. */
0e03807e 1434
9a0dc9e3 1435void
6b850546
DT
1436mark_value_bits_optimized_out (struct value *value,
1437 LONGEST offset, LONGEST length)
0e03807e 1438{
9a0dc9e3 1439 insert_into_bit_range_vector (&value->optimized_out, offset, length);
0e03807e
TT
1440}
1441
8cf6f0b1
TT
1442int
1443value_bits_synthetic_pointer (const struct value *value,
6b850546 1444 LONGEST offset, LONGEST length)
8cf6f0b1 1445{
e7303042 1446 if (value->lval != lval_computed
8cf6f0b1
TT
1447 || !value->location.computed.funcs->check_synthetic_pointer)
1448 return 0;
1449 return value->location.computed.funcs->check_synthetic_pointer (value,
1450 offset,
1451 length);
1452}
1453
6b850546 1454LONGEST
4bf7b526 1455value_embedded_offset (const struct value *value)
13c3b5f5
AC
1456{
1457 return value->embedded_offset;
1458}
1459
1460void
6b850546 1461set_value_embedded_offset (struct value *value, LONGEST val)
13c3b5f5
AC
1462{
1463 value->embedded_offset = val;
1464}
b44d461b 1465
6b850546 1466LONGEST
4bf7b526 1467value_pointed_to_offset (const struct value *value)
b44d461b
AC
1468{
1469 return value->pointed_to_offset;
1470}
1471
1472void
6b850546 1473set_value_pointed_to_offset (struct value *value, LONGEST val)
b44d461b
AC
1474{
1475 value->pointed_to_offset = val;
1476}
13bb5560 1477
c8f2448a 1478const struct lval_funcs *
a471c594 1479value_computed_funcs (const struct value *v)
5f5233d4 1480{
a471c594 1481 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1482
1483 return v->location.computed.funcs;
1484}
1485
1486void *
0e03807e 1487value_computed_closure (const struct value *v)
5f5233d4 1488{
0e03807e 1489 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1490
1491 return v->location.computed.closure;
1492}
1493
13bb5560
AC
1494enum lval_type *
1495deprecated_value_lval_hack (struct value *value)
1496{
1497 return &value->lval;
1498}
1499
a471c594
JK
1500enum lval_type
1501value_lval_const (const struct value *value)
1502{
1503 return value->lval;
1504}
1505
42ae5230 1506CORE_ADDR
de4127a3 1507value_address (const struct value *value)
42ae5230 1508{
1a088441 1509 if (value->lval != lval_memory)
42ae5230 1510 return 0;
53ba8333 1511 if (value->parent != NULL)
2c8331b9 1512 return value_address (value->parent.get ()) + value->offset;
9920b434
BH
1513 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1514 {
1515 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1516 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1517 }
1518
1519 return value->location.address + value->offset;
42ae5230
TT
1520}
1521
1522CORE_ADDR
4bf7b526 1523value_raw_address (const struct value *value)
42ae5230 1524{
1a088441 1525 if (value->lval != lval_memory)
42ae5230
TT
1526 return 0;
1527 return value->location.address;
1528}
1529
1530void
1531set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1532{
1a088441 1533 gdb_assert (value->lval == lval_memory);
42ae5230 1534 value->location.address = addr;
13bb5560
AC
1535}
1536
1537struct internalvar **
1538deprecated_value_internalvar_hack (struct value *value)
1539{
1540 return &value->location.internalvar;
1541}
1542
1543struct frame_id *
41b56feb 1544deprecated_value_next_frame_id_hack (struct value *value)
13bb5560 1545{
7c2ba67e 1546 gdb_assert (value->lval == lval_register);
7dc54575 1547 return &value->location.reg.next_frame_id;
13bb5560
AC
1548}
1549
7dc54575 1550int *
13bb5560
AC
1551deprecated_value_regnum_hack (struct value *value)
1552{
7c2ba67e 1553 gdb_assert (value->lval == lval_register);
7dc54575 1554 return &value->location.reg.regnum;
13bb5560 1555}
88e3b34b
AC
1556
1557int
4bf7b526 1558deprecated_value_modifiable (const struct value *value)
88e3b34b
AC
1559{
1560 return value->modifiable;
1561}
990a07ab 1562\f
c906108c
SS
1563/* Return a mark in the value chain. All values allocated after the
1564 mark is obtained (except for those released) are subject to being freed
1565 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1566struct value *
fba45db2 1567value_mark (void)
c906108c 1568{
062d818d
TT
1569 if (all_values.empty ())
1570 return nullptr;
1571 return all_values.back ().get ();
c906108c
SS
1572}
1573
bbfa6f00 1574/* See value.h. */
828d3400 1575
bbfa6f00 1576void
828d3400
DJ
1577value_incref (struct value *val)
1578{
1579 val->reference_count++;
1580}
1581
1582/* Release a reference to VAL, which was acquired with value_incref.
1583 This function is also called to deallocate values from the value
1584 chain. */
1585
3e3d7139 1586void
22bc8444 1587value_decref (struct value *val)
3e3d7139 1588{
466ce3ae 1589 if (val != nullptr)
5f5233d4 1590 {
828d3400
DJ
1591 gdb_assert (val->reference_count > 0);
1592 val->reference_count--;
466ce3ae
TT
1593 if (val->reference_count == 0)
1594 delete val;
5f5233d4 1595 }
3e3d7139
JG
1596}
1597
c906108c
SS
1598/* Free all values allocated since MARK was obtained by value_mark
1599 (except for those released). */
1600void
4bf7b526 1601value_free_to_mark (const struct value *mark)
c906108c 1602{
062d818d
TT
1603 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1604 if (iter == all_values.end ())
1605 all_values.clear ();
1606 else
1607 all_values.erase (iter + 1, all_values.end ());
c906108c
SS
1608}
1609
c906108c
SS
1610/* Remove VAL from the chain all_values
1611 so it will not be freed automatically. */
1612
22bc8444 1613value_ref_ptr
f23631e4 1614release_value (struct value *val)
c906108c 1615{
850645cf
TT
1616 if (val == nullptr)
1617 return value_ref_ptr ();
1618
062d818d
TT
1619 std::vector<value_ref_ptr>::reverse_iterator iter;
1620 for (iter = all_values.rbegin (); iter != all_values.rend (); ++iter)
c906108c 1621 {
062d818d 1622 if (*iter == val)
c906108c 1623 {
062d818d
TT
1624 value_ref_ptr result = *iter;
1625 all_values.erase (iter.base () - 1);
1626 return result;
c906108c
SS
1627 }
1628 }
c906108c 1629
062d818d
TT
1630 /* We must always return an owned reference. Normally this happens
1631 because we transfer the reference from the value chain, but in
1632 this case the value was not on the chain. */
bbfa6f00 1633 return value_ref_ptr::new_reference (val);
e848a8a5
TT
1634}
1635
a6535de1
TT
1636/* See value.h. */
1637
1638std::vector<value_ref_ptr>
4bf7b526 1639value_release_to_mark (const struct value *mark)
c906108c 1640{
a6535de1 1641 std::vector<value_ref_ptr> result;
c906108c 1642
062d818d
TT
1643 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1644 if (iter == all_values.end ())
1645 std::swap (result, all_values);
1646 else
e848a8a5 1647 {
062d818d
TT
1648 std::move (iter + 1, all_values.end (), std::back_inserter (result));
1649 all_values.erase (iter + 1, all_values.end ());
e848a8a5 1650 }
062d818d 1651 std::reverse (result.begin (), result.end ());
a6535de1 1652 return result;
c906108c
SS
1653}
1654
1655/* Return a copy of the value ARG.
1656 It contains the same contents, for same memory address,
1657 but it's a different block of storage. */
1658
f23631e4
AC
1659struct value *
1660value_copy (struct value *arg)
c906108c 1661{
4754a64e 1662 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1663 struct value *val;
1664
1665 if (value_lazy (arg))
1666 val = allocate_value_lazy (encl_type);
1667 else
1668 val = allocate_value (encl_type);
df407dfe 1669 val->type = arg->type;
c906108c 1670 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1671 val->location = arg->location;
df407dfe
AC
1672 val->offset = arg->offset;
1673 val->bitpos = arg->bitpos;
1674 val->bitsize = arg->bitsize;
d69fe07e 1675 val->lazy = arg->lazy;
13c3b5f5 1676 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1677 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1678 val->modifiable = arg->modifiable;
d69fe07e 1679 if (!value_lazy (val))
c906108c 1680 {
990a07ab 1681 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1682 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1683
1684 }
0c7e6dd8
TT
1685 val->unavailable = arg->unavailable;
1686 val->optimized_out = arg->optimized_out;
2c8331b9 1687 val->parent = arg->parent;
5f5233d4
PA
1688 if (VALUE_LVAL (val) == lval_computed)
1689 {
c8f2448a 1690 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1691
1692 if (funcs->copy_closure)
1693 val->location.computed.closure = funcs->copy_closure (val);
1694 }
c906108c
SS
1695 return val;
1696}
74bcbdf3 1697
4c082a81
SC
1698/* Return a "const" and/or "volatile" qualified version of the value V.
1699 If CNST is true, then the returned value will be qualified with
1700 "const".
1701 if VOLTL is true, then the returned value will be qualified with
1702 "volatile". */
1703
1704struct value *
1705make_cv_value (int cnst, int voltl, struct value *v)
1706{
1707 struct type *val_type = value_type (v);
1708 struct type *enclosing_type = value_enclosing_type (v);
1709 struct value *cv_val = value_copy (v);
1710
1711 deprecated_set_value_type (cv_val,
1712 make_cv_type (cnst, voltl, val_type, NULL));
1713 set_value_enclosing_type (cv_val,
1714 make_cv_type (cnst, voltl, enclosing_type, NULL));
1715
1716 return cv_val;
1717}
1718
c37f7098
KW
1719/* Return a version of ARG that is non-lvalue. */
1720
1721struct value *
1722value_non_lval (struct value *arg)
1723{
1724 if (VALUE_LVAL (arg) != not_lval)
1725 {
1726 struct type *enc_type = value_enclosing_type (arg);
1727 struct value *val = allocate_value (enc_type);
1728
1729 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1730 TYPE_LENGTH (enc_type));
1731 val->type = arg->type;
1732 set_value_embedded_offset (val, value_embedded_offset (arg));
1733 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1734 return val;
1735 }
1736 return arg;
1737}
1738
6c659fc2
SC
1739/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1740
1741void
1742value_force_lval (struct value *v, CORE_ADDR addr)
1743{
1744 gdb_assert (VALUE_LVAL (v) == not_lval);
1745
1746 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1747 v->lval = lval_memory;
1748 v->location.address = addr;
1749}
1750
74bcbdf3 1751void
0e03807e
TT
1752set_value_component_location (struct value *component,
1753 const struct value *whole)
74bcbdf3 1754{
9920b434
BH
1755 struct type *type;
1756
e81e7f5e
SC
1757 gdb_assert (whole->lval != lval_xcallable);
1758
0e03807e 1759 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1760 VALUE_LVAL (component) = lval_internalvar_component;
1761 else
0e03807e 1762 VALUE_LVAL (component) = whole->lval;
5f5233d4 1763
74bcbdf3 1764 component->location = whole->location;
0e03807e 1765 if (whole->lval == lval_computed)
5f5233d4 1766 {
c8f2448a 1767 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1768
1769 if (funcs->copy_closure)
1770 component->location.computed.closure = funcs->copy_closure (whole);
1771 }
9920b434
BH
1772
1773 /* If type has a dynamic resolved location property
1774 update it's value address. */
1775 type = value_type (whole);
1776 if (NULL != TYPE_DATA_LOCATION (type)
1777 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1778 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
74bcbdf3
PA
1779}
1780
c906108c
SS
1781/* Access to the value history. */
1782
1783/* Record a new value in the value history.
eddf0bae 1784 Returns the absolute history index of the entry. */
c906108c
SS
1785
1786int
f23631e4 1787record_latest_value (struct value *val)
c906108c 1788{
c906108c
SS
1789 /* We don't want this value to have anything to do with the inferior anymore.
1790 In particular, "set $1 = 50" should not affect the variable from which
1791 the value was taken, and fast watchpoints should be able to assume that
1792 a value on the value history never changes. */
d69fe07e 1793 if (value_lazy (val))
c906108c
SS
1794 value_fetch_lazy (val);
1795 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1796 from. This is a bit dubious, because then *&$1 does not just return $1
1797 but the current contents of that location. c'est la vie... */
1798 val->modifiable = 0;
350e1a76 1799
4d0266a0 1800 value_history.push_back (release_value (val));
a109c7c1 1801
4d0266a0 1802 return value_history.size ();
c906108c
SS
1803}
1804
1805/* Return a copy of the value in the history with sequence number NUM. */
1806
f23631e4 1807struct value *
fba45db2 1808access_value_history (int num)
c906108c 1809{
52f0bd74 1810 int absnum = num;
c906108c
SS
1811
1812 if (absnum <= 0)
4d0266a0 1813 absnum += value_history.size ();
c906108c
SS
1814
1815 if (absnum <= 0)
1816 {
1817 if (num == 0)
8a3fe4f8 1818 error (_("The history is empty."));
c906108c 1819 else if (num == 1)
8a3fe4f8 1820 error (_("There is only one value in the history."));
c906108c 1821 else
8a3fe4f8 1822 error (_("History does not go back to $$%d."), -num);
c906108c 1823 }
4d0266a0 1824 if (absnum > value_history.size ())
8a3fe4f8 1825 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1826
1827 absnum--;
1828
4d0266a0 1829 return value_copy (value_history[absnum].get ());
c906108c
SS
1830}
1831
c906108c 1832static void
5fed81ff 1833show_values (const char *num_exp, int from_tty)
c906108c 1834{
52f0bd74 1835 int i;
f23631e4 1836 struct value *val;
c906108c
SS
1837 static int num = 1;
1838
1839 if (num_exp)
1840 {
f132ba9d
TJB
1841 /* "show values +" should print from the stored position.
1842 "show values <exp>" should print around value number <exp>. */
c906108c 1843 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1844 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1845 }
1846 else
1847 {
f132ba9d 1848 /* "show values" means print the last 10 values. */
4d0266a0 1849 num = value_history.size () - 9;
c906108c
SS
1850 }
1851
1852 if (num <= 0)
1853 num = 1;
1854
4d0266a0 1855 for (i = num; i < num + 10 && i <= value_history.size (); i++)
c906108c 1856 {
79a45b7d 1857 struct value_print_options opts;
a109c7c1 1858
c906108c 1859 val = access_value_history (i);
a3f17187 1860 printf_filtered (("$%d = "), i);
79a45b7d
TT
1861 get_user_print_options (&opts);
1862 value_print (val, gdb_stdout, &opts);
a3f17187 1863 printf_filtered (("\n"));
c906108c
SS
1864 }
1865
f132ba9d 1866 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1867 num += 10;
1868
1869 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1870 "show values +". If num_exp is null, this is unnecessary, since
1871 "show values +" is not useful after "show values". */
c906108c 1872 if (from_tty && num_exp)
85c4be7c 1873 set_repeat_arguments ("+");
c906108c
SS
1874}
1875\f
52059ffd
TT
1876enum internalvar_kind
1877{
1878 /* The internal variable is empty. */
1879 INTERNALVAR_VOID,
1880
1881 /* The value of the internal variable is provided directly as
1882 a GDB value object. */
1883 INTERNALVAR_VALUE,
1884
1885 /* A fresh value is computed via a call-back routine on every
1886 access to the internal variable. */
1887 INTERNALVAR_MAKE_VALUE,
1888
1889 /* The internal variable holds a GDB internal convenience function. */
1890 INTERNALVAR_FUNCTION,
1891
1892 /* The variable holds an integer value. */
1893 INTERNALVAR_INTEGER,
1894
1895 /* The variable holds a GDB-provided string. */
1896 INTERNALVAR_STRING,
1897};
1898
1899union internalvar_data
1900{
1901 /* A value object used with INTERNALVAR_VALUE. */
1902 struct value *value;
1903
1904 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1905 struct
1906 {
1907 /* The functions to call. */
1908 const struct internalvar_funcs *functions;
1909
1910 /* The function's user-data. */
1911 void *data;
1912 } make_value;
1913
1914 /* The internal function used with INTERNALVAR_FUNCTION. */
1915 struct
1916 {
1917 struct internal_function *function;
1918 /* True if this is the canonical name for the function. */
1919 int canonical;
1920 } fn;
1921
1922 /* An integer value used with INTERNALVAR_INTEGER. */
1923 struct
1924 {
1925 /* If type is non-NULL, it will be used as the type to generate
1926 a value for this internal variable. If type is NULL, a default
1927 integer type for the architecture is used. */
1928 struct type *type;
1929 LONGEST val;
1930 } integer;
1931
1932 /* A string value used with INTERNALVAR_STRING. */
1933 char *string;
1934};
1935
c906108c
SS
1936/* Internal variables. These are variables within the debugger
1937 that hold values assigned by debugger commands.
1938 The user refers to them with a '$' prefix
1939 that does not appear in the variable names stored internally. */
1940
4fa62494
UW
1941struct internalvar
1942{
1943 struct internalvar *next;
1944 char *name;
4fa62494 1945
78267919
UW
1946 /* We support various different kinds of content of an internal variable.
1947 enum internalvar_kind specifies the kind, and union internalvar_data
1948 provides the data associated with this particular kind. */
1949
52059ffd 1950 enum internalvar_kind kind;
4fa62494 1951
52059ffd 1952 union internalvar_data u;
4fa62494
UW
1953};
1954
c906108c
SS
1955static struct internalvar *internalvars;
1956
3e43a32a
MS
1957/* If the variable does not already exist create it and give it the
1958 value given. If no value is given then the default is zero. */
53e5f3cf 1959static void
0b39b52e 1960init_if_undefined_command (const char* args, int from_tty)
53e5f3cf
AS
1961{
1962 struct internalvar* intvar;
1963
1964 /* Parse the expression - this is taken from set_command(). */
4d01a485 1965 expression_up expr = parse_expression (args);
53e5f3cf
AS
1966
1967 /* Validate the expression.
1968 Was the expression an assignment?
1969 Or even an expression at all? */
1970 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1971 error (_("Init-if-undefined requires an assignment expression."));
1972
1973 /* Extract the variable from the parsed expression.
1974 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1975 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
1976 error (_("The first parameter to init-if-undefined "
1977 "should be a GDB variable."));
53e5f3cf
AS
1978 intvar = expr->elts[2].internalvar;
1979
1980 /* Only evaluate the expression if the lvalue is void.
1981 This may still fail if the expresssion is invalid. */
78267919 1982 if (intvar->kind == INTERNALVAR_VOID)
4d01a485 1983 evaluate_expression (expr.get ());
53e5f3cf
AS
1984}
1985
1986
c906108c
SS
1987/* Look up an internal variable with name NAME. NAME should not
1988 normally include a dollar sign.
1989
1990 If the specified internal variable does not exist,
c4a3d09a 1991 the return value is NULL. */
c906108c
SS
1992
1993struct internalvar *
bc3b79fd 1994lookup_only_internalvar (const char *name)
c906108c 1995{
52f0bd74 1996 struct internalvar *var;
c906108c
SS
1997
1998 for (var = internalvars; var; var = var->next)
5cb316ef 1999 if (strcmp (var->name, name) == 0)
c906108c
SS
2000 return var;
2001
c4a3d09a
MF
2002 return NULL;
2003}
2004
eb3ff9a5
PA
2005/* Complete NAME by comparing it to the names of internal
2006 variables. */
d55637df 2007
eb3ff9a5
PA
2008void
2009complete_internalvar (completion_tracker &tracker, const char *name)
d55637df 2010{
d55637df
TT
2011 struct internalvar *var;
2012 int len;
2013
2014 len = strlen (name);
2015
2016 for (var = internalvars; var; var = var->next)
2017 if (strncmp (var->name, name, len) == 0)
2018 {
eb3ff9a5 2019 gdb::unique_xmalloc_ptr<char> copy (xstrdup (var->name));
d55637df 2020
eb3ff9a5 2021 tracker.add_completion (std::move (copy));
d55637df 2022 }
d55637df 2023}
c4a3d09a
MF
2024
2025/* Create an internal variable with name NAME and with a void value.
2026 NAME should not normally include a dollar sign. */
2027
2028struct internalvar *
bc3b79fd 2029create_internalvar (const char *name)
c4a3d09a 2030{
8d749320 2031 struct internalvar *var = XNEW (struct internalvar);
a109c7c1 2032
1754f103 2033 var->name = concat (name, (char *)NULL);
78267919 2034 var->kind = INTERNALVAR_VOID;
c906108c
SS
2035 var->next = internalvars;
2036 internalvars = var;
2037 return var;
2038}
2039
4aa995e1
PA
2040/* Create an internal variable with name NAME and register FUN as the
2041 function that value_of_internalvar uses to create a value whenever
2042 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
2043 dollar sign. DATA is passed uninterpreted to FUN when it is
2044 called. CLEANUP, if not NULL, is called when the internal variable
2045 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
2046
2047struct internalvar *
22d2b532
SDJ
2048create_internalvar_type_lazy (const char *name,
2049 const struct internalvar_funcs *funcs,
2050 void *data)
4aa995e1 2051{
4fa62494 2052 struct internalvar *var = create_internalvar (name);
a109c7c1 2053
78267919 2054 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
2055 var->u.make_value.functions = funcs;
2056 var->u.make_value.data = data;
4aa995e1
PA
2057 return var;
2058}
c4a3d09a 2059
22d2b532
SDJ
2060/* See documentation in value.h. */
2061
2062int
2063compile_internalvar_to_ax (struct internalvar *var,
2064 struct agent_expr *expr,
2065 struct axs_value *value)
2066{
2067 if (var->kind != INTERNALVAR_MAKE_VALUE
2068 || var->u.make_value.functions->compile_to_ax == NULL)
2069 return 0;
2070
2071 var->u.make_value.functions->compile_to_ax (var, expr, value,
2072 var->u.make_value.data);
2073 return 1;
2074}
2075
c4a3d09a
MF
2076/* Look up an internal variable with name NAME. NAME should not
2077 normally include a dollar sign.
2078
2079 If the specified internal variable does not exist,
2080 one is created, with a void value. */
2081
2082struct internalvar *
bc3b79fd 2083lookup_internalvar (const char *name)
c4a3d09a
MF
2084{
2085 struct internalvar *var;
2086
2087 var = lookup_only_internalvar (name);
2088 if (var)
2089 return var;
2090
2091 return create_internalvar (name);
2092}
2093
78267919
UW
2094/* Return current value of internal variable VAR. For variables that
2095 are not inherently typed, use a value type appropriate for GDBARCH. */
2096
f23631e4 2097struct value *
78267919 2098value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2099{
f23631e4 2100 struct value *val;
0914bcdb
SS
2101 struct trace_state_variable *tsv;
2102
2103 /* If there is a trace state variable of the same name, assume that
2104 is what we really want to see. */
2105 tsv = find_trace_state_variable (var->name);
2106 if (tsv)
2107 {
2108 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2109 &(tsv->value));
2110 if (tsv->value_known)
2111 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2112 tsv->value);
2113 else
2114 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2115 return val;
2116 }
c906108c 2117
78267919 2118 switch (var->kind)
5f5233d4 2119 {
78267919
UW
2120 case INTERNALVAR_VOID:
2121 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2122 break;
4fa62494 2123
78267919
UW
2124 case INTERNALVAR_FUNCTION:
2125 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2126 break;
4fa62494 2127
cab0c772
UW
2128 case INTERNALVAR_INTEGER:
2129 if (!var->u.integer.type)
78267919 2130 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2131 var->u.integer.val);
78267919 2132 else
cab0c772
UW
2133 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2134 break;
2135
78267919
UW
2136 case INTERNALVAR_STRING:
2137 val = value_cstring (var->u.string, strlen (var->u.string),
2138 builtin_type (gdbarch)->builtin_char);
2139 break;
4fa62494 2140
78267919
UW
2141 case INTERNALVAR_VALUE:
2142 val = value_copy (var->u.value);
4aa995e1
PA
2143 if (value_lazy (val))
2144 value_fetch_lazy (val);
78267919 2145 break;
4aa995e1 2146
78267919 2147 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2148 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2149 var->u.make_value.data);
78267919
UW
2150 break;
2151
2152 default:
9b20d036 2153 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2154 }
2155
2156 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2157 on this value go back to affect the original internal variable.
2158
2159 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2160 no underlying modifyable state in the internal variable.
2161
2162 Likewise, if the variable's value is a computed lvalue, we want
2163 references to it to produce another computed lvalue, where
2164 references and assignments actually operate through the
2165 computed value's functions.
2166
2167 This means that internal variables with computed values
2168 behave a little differently from other internal variables:
2169 assignments to them don't just replace the previous value
2170 altogether. At the moment, this seems like the behavior we
2171 want. */
2172
2173 if (var->kind != INTERNALVAR_MAKE_VALUE
2174 && val->lval != lval_computed)
2175 {
2176 VALUE_LVAL (val) = lval_internalvar;
2177 VALUE_INTERNALVAR (val) = var;
5f5233d4 2178 }
d3c139e9 2179
4fa62494
UW
2180 return val;
2181}
d3c139e9 2182
4fa62494
UW
2183int
2184get_internalvar_integer (struct internalvar *var, LONGEST *result)
2185{
3158c6ed 2186 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2187 {
cab0c772
UW
2188 *result = var->u.integer.val;
2189 return 1;
3158c6ed 2190 }
d3c139e9 2191
3158c6ed
PA
2192 if (var->kind == INTERNALVAR_VALUE)
2193 {
2194 struct type *type = check_typedef (value_type (var->u.value));
2195
2196 if (TYPE_CODE (type) == TYPE_CODE_INT)
2197 {
2198 *result = value_as_long (var->u.value);
2199 return 1;
2200 }
4fa62494 2201 }
3158c6ed
PA
2202
2203 return 0;
4fa62494 2204}
d3c139e9 2205
4fa62494
UW
2206static int
2207get_internalvar_function (struct internalvar *var,
2208 struct internal_function **result)
2209{
78267919 2210 switch (var->kind)
d3c139e9 2211 {
78267919
UW
2212 case INTERNALVAR_FUNCTION:
2213 *result = var->u.fn.function;
4fa62494 2214 return 1;
d3c139e9 2215
4fa62494
UW
2216 default:
2217 return 0;
2218 }
c906108c
SS
2219}
2220
2221void
6b850546
DT
2222set_internalvar_component (struct internalvar *var,
2223 LONGEST offset, LONGEST bitpos,
2224 LONGEST bitsize, struct value *newval)
c906108c 2225{
4fa62494 2226 gdb_byte *addr;
3ae385af
SM
2227 struct gdbarch *arch;
2228 int unit_size;
c906108c 2229
78267919 2230 switch (var->kind)
4fa62494 2231 {
78267919
UW
2232 case INTERNALVAR_VALUE:
2233 addr = value_contents_writeable (var->u.value);
3ae385af
SM
2234 arch = get_value_arch (var->u.value);
2235 unit_size = gdbarch_addressable_memory_unit_size (arch);
4fa62494
UW
2236
2237 if (bitsize)
50810684 2238 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2239 value_as_long (newval), bitpos, bitsize);
2240 else
3ae385af 2241 memcpy (addr + offset * unit_size, value_contents (newval),
4fa62494
UW
2242 TYPE_LENGTH (value_type (newval)));
2243 break;
78267919
UW
2244
2245 default:
2246 /* We can never get a component of any other kind. */
9b20d036 2247 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2248 }
c906108c
SS
2249}
2250
2251void
f23631e4 2252set_internalvar (struct internalvar *var, struct value *val)
c906108c 2253{
78267919 2254 enum internalvar_kind new_kind;
4fa62494 2255 union internalvar_data new_data = { 0 };
c906108c 2256
78267919 2257 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2258 error (_("Cannot overwrite convenience function %s"), var->name);
2259
4fa62494 2260 /* Prepare new contents. */
78267919 2261 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2262 {
2263 case TYPE_CODE_VOID:
78267919 2264 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2265 break;
2266
2267 case TYPE_CODE_INTERNAL_FUNCTION:
2268 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2269 new_kind = INTERNALVAR_FUNCTION;
2270 get_internalvar_function (VALUE_INTERNALVAR (val),
2271 &new_data.fn.function);
2272 /* Copies created here are never canonical. */
4fa62494
UW
2273 break;
2274
4fa62494 2275 default:
78267919
UW
2276 new_kind = INTERNALVAR_VALUE;
2277 new_data.value = value_copy (val);
2278 new_data.value->modifiable = 1;
4fa62494
UW
2279
2280 /* Force the value to be fetched from the target now, to avoid problems
2281 later when this internalvar is referenced and the target is gone or
2282 has changed. */
78267919
UW
2283 if (value_lazy (new_data.value))
2284 value_fetch_lazy (new_data.value);
4fa62494
UW
2285
2286 /* Release the value from the value chain to prevent it from being
2287 deleted by free_all_values. From here on this function should not
2288 call error () until new_data is installed into the var->u to avoid
2289 leaking memory. */
22bc8444 2290 release_value (new_data.value).release ();
9920b434
BH
2291
2292 /* Internal variables which are created from values with a dynamic
2293 location don't need the location property of the origin anymore.
2294 The resolved dynamic location is used prior then any other address
2295 when accessing the value.
2296 If we keep it, we would still refer to the origin value.
2297 Remove the location property in case it exist. */
2298 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2299
4fa62494
UW
2300 break;
2301 }
2302
2303 /* Clean up old contents. */
2304 clear_internalvar (var);
2305
2306 /* Switch over. */
78267919 2307 var->kind = new_kind;
4fa62494 2308 var->u = new_data;
c906108c
SS
2309 /* End code which must not call error(). */
2310}
2311
4fa62494
UW
2312void
2313set_internalvar_integer (struct internalvar *var, LONGEST l)
2314{
2315 /* Clean up old contents. */
2316 clear_internalvar (var);
2317
cab0c772
UW
2318 var->kind = INTERNALVAR_INTEGER;
2319 var->u.integer.type = NULL;
2320 var->u.integer.val = l;
78267919
UW
2321}
2322
2323void
2324set_internalvar_string (struct internalvar *var, const char *string)
2325{
2326 /* Clean up old contents. */
2327 clear_internalvar (var);
2328
2329 var->kind = INTERNALVAR_STRING;
2330 var->u.string = xstrdup (string);
4fa62494
UW
2331}
2332
2333static void
2334set_internalvar_function (struct internalvar *var, struct internal_function *f)
2335{
2336 /* Clean up old contents. */
2337 clear_internalvar (var);
2338
78267919
UW
2339 var->kind = INTERNALVAR_FUNCTION;
2340 var->u.fn.function = f;
2341 var->u.fn.canonical = 1;
2342 /* Variables installed here are always the canonical version. */
4fa62494
UW
2343}
2344
2345void
2346clear_internalvar (struct internalvar *var)
2347{
2348 /* Clean up old contents. */
78267919 2349 switch (var->kind)
4fa62494 2350 {
78267919 2351 case INTERNALVAR_VALUE:
22bc8444 2352 value_decref (var->u.value);
78267919
UW
2353 break;
2354
2355 case INTERNALVAR_STRING:
2356 xfree (var->u.string);
4fa62494
UW
2357 break;
2358
22d2b532
SDJ
2359 case INTERNALVAR_MAKE_VALUE:
2360 if (var->u.make_value.functions->destroy != NULL)
2361 var->u.make_value.functions->destroy (var->u.make_value.data);
2362 break;
2363
4fa62494 2364 default:
4fa62494
UW
2365 break;
2366 }
2367
78267919
UW
2368 /* Reset to void kind. */
2369 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2370}
2371
c906108c 2372char *
4bf7b526 2373internalvar_name (const struct internalvar *var)
c906108c
SS
2374{
2375 return var->name;
2376}
2377
4fa62494
UW
2378static struct internal_function *
2379create_internal_function (const char *name,
2380 internal_function_fn handler, void *cookie)
bc3b79fd 2381{
bc3b79fd 2382 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2383
bc3b79fd
TJB
2384 ifn->name = xstrdup (name);
2385 ifn->handler = handler;
2386 ifn->cookie = cookie;
4fa62494 2387 return ifn;
bc3b79fd
TJB
2388}
2389
2390char *
2391value_internal_function_name (struct value *val)
2392{
4fa62494
UW
2393 struct internal_function *ifn;
2394 int result;
2395
2396 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2397 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2398 gdb_assert (result);
2399
bc3b79fd
TJB
2400 return ifn->name;
2401}
2402
2403struct value *
d452c4bc
UW
2404call_internal_function (struct gdbarch *gdbarch,
2405 const struct language_defn *language,
2406 struct value *func, int argc, struct value **argv)
bc3b79fd 2407{
4fa62494
UW
2408 struct internal_function *ifn;
2409 int result;
2410
2411 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2412 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2413 gdb_assert (result);
2414
d452c4bc 2415 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2416}
2417
2418/* The 'function' command. This does nothing -- it is just a
2419 placeholder to let "help function NAME" work. This is also used as
2420 the implementation of the sub-command that is created when
2421 registering an internal function. */
2422static void
981a3fb3 2423function_command (const char *command, int from_tty)
bc3b79fd
TJB
2424{
2425 /* Do nothing. */
2426}
2427
2428/* Clean up if an internal function's command is destroyed. */
2429static void
2430function_destroyer (struct cmd_list_element *self, void *ignore)
2431{
6f937416 2432 xfree ((char *) self->name);
1947513d 2433 xfree ((char *) self->doc);
bc3b79fd
TJB
2434}
2435
2436/* Add a new internal function. NAME is the name of the function; DOC
2437 is a documentation string describing the function. HANDLER is
2438 called when the function is invoked. COOKIE is an arbitrary
2439 pointer which is passed to HANDLER and is intended for "user
2440 data". */
2441void
2442add_internal_function (const char *name, const char *doc,
2443 internal_function_fn handler, void *cookie)
2444{
2445 struct cmd_list_element *cmd;
4fa62494 2446 struct internal_function *ifn;
bc3b79fd 2447 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2448
2449 ifn = create_internal_function (name, handler, cookie);
2450 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2451
2452 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2453 &functionlist);
2454 cmd->destroyer = function_destroyer;
2455}
2456
ae5a43e0
DJ
2457/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2458 prevent cycles / duplicates. */
2459
4e7a5ef5 2460void
ae5a43e0
DJ
2461preserve_one_value (struct value *value, struct objfile *objfile,
2462 htab_t copied_types)
2463{
2464 if (TYPE_OBJFILE (value->type) == objfile)
2465 value->type = copy_type_recursive (objfile, value->type, copied_types);
2466
2467 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2468 value->enclosing_type = copy_type_recursive (objfile,
2469 value->enclosing_type,
2470 copied_types);
2471}
2472
78267919
UW
2473/* Likewise for internal variable VAR. */
2474
2475static void
2476preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2477 htab_t copied_types)
2478{
2479 switch (var->kind)
2480 {
cab0c772
UW
2481 case INTERNALVAR_INTEGER:
2482 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2483 var->u.integer.type
2484 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2485 break;
2486
78267919
UW
2487 case INTERNALVAR_VALUE:
2488 preserve_one_value (var->u.value, objfile, copied_types);
2489 break;
2490 }
2491}
2492
ae5a43e0
DJ
2493/* Update the internal variables and value history when OBJFILE is
2494 discarded; we must copy the types out of the objfile. New global types
2495 will be created for every convenience variable which currently points to
2496 this objfile's types, and the convenience variables will be adjusted to
2497 use the new global types. */
c906108c
SS
2498
2499void
ae5a43e0 2500preserve_values (struct objfile *objfile)
c906108c 2501{
ae5a43e0 2502 htab_t copied_types;
52f0bd74 2503 struct internalvar *var;
c906108c 2504
ae5a43e0
DJ
2505 /* Create the hash table. We allocate on the objfile's obstack, since
2506 it is soon to be deleted. */
2507 copied_types = create_copied_types_hash (objfile);
2508
4d0266a0
TT
2509 for (const value_ref_ptr &item : value_history)
2510 preserve_one_value (item.get (), objfile, copied_types);
ae5a43e0
DJ
2511
2512 for (var = internalvars; var; var = var->next)
78267919 2513 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2514
6dddc817 2515 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2516
ae5a43e0 2517 htab_delete (copied_types);
c906108c
SS
2518}
2519
2520static void
ad25e423 2521show_convenience (const char *ignore, int from_tty)
c906108c 2522{
e17c207e 2523 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2524 struct internalvar *var;
c906108c 2525 int varseen = 0;
79a45b7d 2526 struct value_print_options opts;
c906108c 2527
79a45b7d 2528 get_user_print_options (&opts);
c906108c
SS
2529 for (var = internalvars; var; var = var->next)
2530 {
c709acd1 2531
c906108c
SS
2532 if (!varseen)
2533 {
2534 varseen = 1;
2535 }
a3f17187 2536 printf_filtered (("$%s = "), var->name);
c709acd1 2537
492d29ea 2538 TRY
c709acd1
PA
2539 {
2540 struct value *val;
2541
2542 val = value_of_internalvar (gdbarch, var);
2543 value_print (val, gdb_stdout, &opts);
2544 }
492d29ea
PA
2545 CATCH (ex, RETURN_MASK_ERROR)
2546 {
2547 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2548 }
2549 END_CATCH
2550
a3f17187 2551 printf_filtered (("\n"));
c906108c
SS
2552 }
2553 if (!varseen)
f47f77df
DE
2554 {
2555 /* This text does not mention convenience functions on purpose.
2556 The user can't create them except via Python, and if Python support
2557 is installed this message will never be printed ($_streq will
2558 exist). */
2559 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2560 "Convenience variables have "
2561 "names starting with \"$\";\n"
2562 "use \"set\" as in \"set "
2563 "$foo = 5\" to define them.\n"));
2564 }
c906108c
SS
2565}
2566\f
ba18742c
SM
2567
2568/* See value.h. */
e81e7f5e
SC
2569
2570struct value *
ba18742c 2571value_from_xmethod (xmethod_worker_up &&worker)
e81e7f5e 2572{
ba18742c 2573 struct value *v;
e81e7f5e 2574
ba18742c
SM
2575 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2576 v->lval = lval_xcallable;
2577 v->location.xm_worker = worker.release ();
2578 v->modifiable = 0;
e81e7f5e 2579
ba18742c 2580 return v;
e81e7f5e
SC
2581}
2582
2ce1cdbf
DE
2583/* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2584
2585struct type *
2586result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2587{
2588 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2589 && method->lval == lval_xcallable && argc > 0);
2590
ba18742c
SM
2591 return method->location.xm_worker->get_result_type
2592 (argv[0], argv + 1, argc - 1);
2ce1cdbf
DE
2593}
2594
e81e7f5e
SC
2595/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2596
2597struct value *
2598call_xmethod (struct value *method, int argc, struct value **argv)
2599{
2600 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2601 && method->lval == lval_xcallable && argc > 0);
2602
ba18742c 2603 return method->location.xm_worker->invoke (argv[0], argv + 1, argc - 1);
e81e7f5e
SC
2604}
2605\f
c906108c
SS
2606/* Extract a value as a C number (either long or double).
2607 Knows how to convert fixed values to double, or
2608 floating values to long.
2609 Does not deallocate the value. */
2610
2611LONGEST
f23631e4 2612value_as_long (struct value *val)
c906108c
SS
2613{
2614 /* This coerces arrays and functions, which is necessary (e.g.
2615 in disassemble_command). It also dereferences references, which
2616 I suspect is the most logical thing to do. */
994b9211 2617 val = coerce_array (val);
0fd88904 2618 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2619}
2620
581e13c1 2621/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2622 Note that val's type may not actually be a pointer; value_as_long
2623 handles all the cases. */
c906108c 2624CORE_ADDR
f23631e4 2625value_as_address (struct value *val)
c906108c 2626{
50810684
UW
2627 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2628
c906108c
SS
2629 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2630 whether we want this to be true eventually. */
2631#if 0
bf6ae464 2632 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2633 non-address (e.g. argument to "signal", "info break", etc.), or
2634 for pointers to char, in which the low bits *are* significant. */
50810684 2635 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2636#else
f312f057
JB
2637
2638 /* There are several targets (IA-64, PowerPC, and others) which
2639 don't represent pointers to functions as simply the address of
2640 the function's entry point. For example, on the IA-64, a
2641 function pointer points to a two-word descriptor, generated by
2642 the linker, which contains the function's entry point, and the
2643 value the IA-64 "global pointer" register should have --- to
2644 support position-independent code. The linker generates
2645 descriptors only for those functions whose addresses are taken.
2646
2647 On such targets, it's difficult for GDB to convert an arbitrary
2648 function address into a function pointer; it has to either find
2649 an existing descriptor for that function, or call malloc and
2650 build its own. On some targets, it is impossible for GDB to
2651 build a descriptor at all: the descriptor must contain a jump
2652 instruction; data memory cannot be executed; and code memory
2653 cannot be modified.
2654
2655 Upon entry to this function, if VAL is a value of type `function'
2656 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2657 value_address (val) is the address of the function. This is what
f312f057
JB
2658 you'll get if you evaluate an expression like `main'. The call
2659 to COERCE_ARRAY below actually does all the usual unary
2660 conversions, which includes converting values of type `function'
2661 to `pointer to function'. This is the challenging conversion
2662 discussed above. Then, `unpack_long' will convert that pointer
2663 back into an address.
2664
2665 So, suppose the user types `disassemble foo' on an architecture
2666 with a strange function pointer representation, on which GDB
2667 cannot build its own descriptors, and suppose further that `foo'
2668 has no linker-built descriptor. The address->pointer conversion
2669 will signal an error and prevent the command from running, even
2670 though the next step would have been to convert the pointer
2671 directly back into the same address.
2672
2673 The following shortcut avoids this whole mess. If VAL is a
2674 function, just return its address directly. */
df407dfe
AC
2675 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2676 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2677 return value_address (val);
f312f057 2678
994b9211 2679 val = coerce_array (val);
fc0c74b1
AC
2680
2681 /* Some architectures (e.g. Harvard), map instruction and data
2682 addresses onto a single large unified address space. For
2683 instance: An architecture may consider a large integer in the
2684 range 0x10000000 .. 0x1000ffff to already represent a data
2685 addresses (hence not need a pointer to address conversion) while
2686 a small integer would still need to be converted integer to
2687 pointer to address. Just assume such architectures handle all
2688 integer conversions in a single function. */
2689
2690 /* JimB writes:
2691
2692 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2693 must admonish GDB hackers to make sure its behavior matches the
2694 compiler's, whenever possible.
2695
2696 In general, I think GDB should evaluate expressions the same way
2697 the compiler does. When the user copies an expression out of
2698 their source code and hands it to a `print' command, they should
2699 get the same value the compiler would have computed. Any
2700 deviation from this rule can cause major confusion and annoyance,
2701 and needs to be justified carefully. In other words, GDB doesn't
2702 really have the freedom to do these conversions in clever and
2703 useful ways.
2704
2705 AndrewC pointed out that users aren't complaining about how GDB
2706 casts integers to pointers; they are complaining that they can't
2707 take an address from a disassembly listing and give it to `x/i'.
2708 This is certainly important.
2709
79dd2d24 2710 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2711 makes it possible for GDB to "get it right" in all circumstances
2712 --- the target has complete control over how things get done, so
2713 people can Do The Right Thing for their target without breaking
2714 anyone else. The standard doesn't specify how integers get
2715 converted to pointers; usually, the ABI doesn't either, but
2716 ABI-specific code is a more reasonable place to handle it. */
2717
df407dfe 2718 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
aa006118 2719 && !TYPE_IS_REFERENCE (value_type (val))
50810684
UW
2720 && gdbarch_integer_to_address_p (gdbarch))
2721 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2722 value_contents (val));
fc0c74b1 2723
0fd88904 2724 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2725#endif
2726}
2727\f
2728/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2729 as a long, or as a double, assuming the raw data is described
2730 by type TYPE. Knows how to convert different sizes of values
2731 and can convert between fixed and floating point. We don't assume
2732 any alignment for the raw data. Return value is in host byte order.
2733
2734 If you want functions and arrays to be coerced to pointers, and
2735 references to be dereferenced, call value_as_long() instead.
2736
2737 C++: It is assumed that the front-end has taken care of
2738 all matters concerning pointers to members. A pointer
2739 to member which reaches here is considered to be equivalent
2740 to an INT (or some size). After all, it is only an offset. */
2741
2742LONGEST
fc1a4b47 2743unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2744{
e17a4113 2745 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2746 enum type_code code = TYPE_CODE (type);
2747 int len = TYPE_LENGTH (type);
2748 int nosign = TYPE_UNSIGNED (type);
c906108c 2749
c906108c
SS
2750 switch (code)
2751 {
2752 case TYPE_CODE_TYPEDEF:
2753 return unpack_long (check_typedef (type), valaddr);
2754 case TYPE_CODE_ENUM:
4f2aea11 2755 case TYPE_CODE_FLAGS:
c906108c
SS
2756 case TYPE_CODE_BOOL:
2757 case TYPE_CODE_INT:
2758 case TYPE_CODE_CHAR:
2759 case TYPE_CODE_RANGE:
0d5de010 2760 case TYPE_CODE_MEMBERPTR:
c906108c 2761 if (nosign)
e17a4113 2762 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2763 else
e17a4113 2764 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2765
2766 case TYPE_CODE_FLT:
4ef30785 2767 case TYPE_CODE_DECFLOAT:
50637b26 2768 return target_float_to_longest (valaddr, type);
4ef30785 2769
c906108c
SS
2770 case TYPE_CODE_PTR:
2771 case TYPE_CODE_REF:
aa006118 2772 case TYPE_CODE_RVALUE_REF:
c906108c 2773 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2774 whether we want this to be true eventually. */
4478b372 2775 return extract_typed_address (valaddr, type);
c906108c 2776
c906108c 2777 default:
8a3fe4f8 2778 error (_("Value can't be converted to integer."));
c906108c 2779 }
c5aa993b 2780 return 0; /* Placate lint. */
c906108c
SS
2781}
2782
c906108c
SS
2783/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2784 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2785 We don't assume any alignment for the raw data. Return value is in
2786 host byte order.
2787
2788 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2789 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2790
2791 C++: It is assumed that the front-end has taken care of
2792 all matters concerning pointers to members. A pointer
2793 to member which reaches here is considered to be equivalent
2794 to an INT (or some size). After all, it is only an offset. */
2795
2796CORE_ADDR
fc1a4b47 2797unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2798{
2799 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2800 whether we want this to be true eventually. */
2801 return unpack_long (type, valaddr);
2802}
4478b372 2803
70100014
UW
2804bool
2805is_floating_value (struct value *val)
2806{
2807 struct type *type = check_typedef (value_type (val));
2808
2809 if (is_floating_type (type))
2810 {
2811 if (!target_float_is_valid (value_contents (val), type))
2812 error (_("Invalid floating value found in program."));
2813 return true;
2814 }
2815
2816 return false;
2817}
2818
c906108c 2819\f
1596cb5d 2820/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 2821 TYPE. */
c906108c 2822
f23631e4 2823struct value *
fba45db2 2824value_static_field (struct type *type, int fieldno)
c906108c 2825{
948e66d9
DJ
2826 struct value *retval;
2827
1596cb5d 2828 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2829 {
1596cb5d 2830 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
2831 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2832 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2833 break;
2834 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2835 {
ff355380 2836 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2837 /* TYPE_FIELD_NAME (type, fieldno); */
d12307c1 2838 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2839
d12307c1 2840 if (sym.symbol == NULL)
c906108c 2841 {
a109c7c1 2842 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2843 reported as non-debuggable symbols. */
3b7344d5
TT
2844 struct bound_minimal_symbol msym
2845 = lookup_minimal_symbol (phys_name, NULL, NULL);
c2e0e465 2846 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
a109c7c1 2847
3b7344d5 2848 if (!msym.minsym)
c2e0e465 2849 retval = allocate_optimized_out_value (field_type);
c906108c 2850 else
c2e0e465 2851 retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2852 }
2853 else
d12307c1 2854 retval = value_of_variable (sym.symbol, sym.block);
1596cb5d 2855 break;
c906108c 2856 }
1596cb5d 2857 default:
f3574227 2858 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2859 }
2860
948e66d9 2861 return retval;
c906108c
SS
2862}
2863
4dfea560
DE
2864/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2865 You have to be careful here, since the size of the data area for the value
2866 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2867 than the old enclosing type, you have to allocate more space for the
2868 data. */
2b127877 2869
4dfea560
DE
2870void
2871set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 2872{
5fdf6324
AB
2873 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2874 {
2875 check_type_length_before_alloc (new_encl_type);
2876 val->contents
14c88955
TT
2877 .reset ((gdb_byte *) xrealloc (val->contents.release (),
2878 TYPE_LENGTH (new_encl_type)));
5fdf6324 2879 }
3e3d7139
JG
2880
2881 val->enclosing_type = new_encl_type;
2b127877
DB
2882}
2883
c906108c
SS
2884/* Given a value ARG1 (offset by OFFSET bytes)
2885 of a struct or union type ARG_TYPE,
2886 extract and return the value of one of its (non-static) fields.
581e13c1 2887 FIELDNO says which field. */
c906108c 2888
f23631e4 2889struct value *
6b850546 2890value_primitive_field (struct value *arg1, LONGEST offset,
aa1ee363 2891 int fieldno, struct type *arg_type)
c906108c 2892{
f23631e4 2893 struct value *v;
52f0bd74 2894 struct type *type;
3ae385af
SM
2895 struct gdbarch *arch = get_value_arch (arg1);
2896 int unit_size = gdbarch_addressable_memory_unit_size (arch);
c906108c 2897
f168693b 2898 arg_type = check_typedef (arg_type);
c906108c 2899 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
2900
2901 /* Call check_typedef on our type to make sure that, if TYPE
2902 is a TYPE_CODE_TYPEDEF, its length is set to the length
2903 of the target type instead of zero. However, we do not
2904 replace the typedef type by the target type, because we want
2905 to keep the typedef in order to be able to print the type
2906 description correctly. */
2907 check_typedef (type);
c906108c 2908
691a26f5 2909 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 2910 {
22c05d8a
JK
2911 /* Handle packed fields.
2912
2913 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
2914 set. If possible, arrange offset and bitpos so that we can
2915 do a single aligned read of the size of the containing type.
2916 Otherwise, adjust offset to the byte containing the first
2917 bit. Assume that the address, offset, and embedded offset
2918 are sufficiently aligned. */
22c05d8a 2919
6b850546
DT
2920 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2921 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
4ea48cc1 2922
9a0dc9e3
PA
2923 v = allocate_value_lazy (type);
2924 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2925 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2926 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2927 v->bitpos = bitpos % container_bitsize;
4ea48cc1 2928 else
9a0dc9e3
PA
2929 v->bitpos = bitpos % 8;
2930 v->offset = (value_embedded_offset (arg1)
2931 + offset
2932 + (bitpos - v->bitpos) / 8);
2933 set_value_parent (v, arg1);
2934 if (!value_lazy (arg1))
2935 value_fetch_lazy (v);
c906108c
SS
2936 }
2937 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2938 {
2939 /* This field is actually a base subobject, so preserve the
39d37385
PA
2940 entire object's contents for later references to virtual
2941 bases, etc. */
6b850546 2942 LONGEST boffset;
a4e2ee12
DJ
2943
2944 /* Lazy register values with offsets are not supported. */
2945 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2946 value_fetch_lazy (arg1);
2947
9a0dc9e3
PA
2948 /* We special case virtual inheritance here because this
2949 requires access to the contents, which we would rather avoid
2950 for references to ordinary fields of unavailable values. */
2951 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2952 boffset = baseclass_offset (arg_type, fieldno,
2953 value_contents (arg1),
2954 value_embedded_offset (arg1),
2955 value_address (arg1),
2956 arg1);
c906108c 2957 else
9a0dc9e3 2958 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
691a26f5 2959
9a0dc9e3
PA
2960 if (value_lazy (arg1))
2961 v = allocate_value_lazy (value_enclosing_type (arg1));
2962 else
2963 {
2964 v = allocate_value (value_enclosing_type (arg1));
2965 value_contents_copy_raw (v, 0, arg1, 0,
2966 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139 2967 }
9a0dc9e3
PA
2968 v->type = type;
2969 v->offset = value_offset (arg1);
2970 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c 2971 }
9920b434
BH
2972 else if (NULL != TYPE_DATA_LOCATION (type))
2973 {
2974 /* Field is a dynamic data member. */
2975
2976 gdb_assert (0 == offset);
2977 /* We expect an already resolved data location. */
2978 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
2979 /* For dynamic data types defer memory allocation
2980 until we actual access the value. */
2981 v = allocate_value_lazy (type);
2982 }
c906108c
SS
2983 else
2984 {
2985 /* Plain old data member */
3ae385af
SM
2986 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
2987 / (HOST_CHAR_BIT * unit_size));
a4e2ee12
DJ
2988
2989 /* Lazy register values with offsets are not supported. */
2990 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2991 value_fetch_lazy (arg1);
2992
9a0dc9e3 2993 if (value_lazy (arg1))
3e3d7139 2994 v = allocate_value_lazy (type);
c906108c 2995 else
3e3d7139
JG
2996 {
2997 v = allocate_value (type);
39d37385
PA
2998 value_contents_copy_raw (v, value_embedded_offset (v),
2999 arg1, value_embedded_offset (arg1) + offset,
3ae385af 3000 type_length_units (type));
3e3d7139 3001 }
df407dfe 3002 v->offset = (value_offset (arg1) + offset
13c3b5f5 3003 + value_embedded_offset (arg1));
c906108c 3004 }
74bcbdf3 3005 set_value_component_location (v, arg1);
c906108c
SS
3006 return v;
3007}
3008
3009/* Given a value ARG1 of a struct or union type,
3010 extract and return the value of one of its (non-static) fields.
581e13c1 3011 FIELDNO says which field. */
c906108c 3012
f23631e4 3013struct value *
aa1ee363 3014value_field (struct value *arg1, int fieldno)
c906108c 3015{
df407dfe 3016 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
3017}
3018
3019/* Return a non-virtual function as a value.
3020 F is the list of member functions which contains the desired method.
0478d61c
FF
3021 J is an index into F which provides the desired method.
3022
3023 We only use the symbol for its address, so be happy with either a
581e13c1 3024 full symbol or a minimal symbol. */
c906108c 3025
f23631e4 3026struct value *
3e43a32a
MS
3027value_fn_field (struct value **arg1p, struct fn_field *f,
3028 int j, struct type *type,
6b850546 3029 LONGEST offset)
c906108c 3030{
f23631e4 3031 struct value *v;
52f0bd74 3032 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 3033 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 3034 struct symbol *sym;
7c7b6655 3035 struct bound_minimal_symbol msym;
c906108c 3036
d12307c1 3037 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
5ae326fa 3038 if (sym != NULL)
0478d61c 3039 {
7c7b6655 3040 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
3041 }
3042 else
3043 {
3044 gdb_assert (sym == NULL);
7c7b6655
TT
3045 msym = lookup_bound_minimal_symbol (physname);
3046 if (msym.minsym == NULL)
5ae326fa 3047 return NULL;
0478d61c
FF
3048 }
3049
c906108c 3050 v = allocate_value (ftype);
1a088441 3051 VALUE_LVAL (v) = lval_memory;
0478d61c
FF
3052 if (sym)
3053 {
42ae5230 3054 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
3055 }
3056 else
3057 {
bccdca4a
UW
3058 /* The minimal symbol might point to a function descriptor;
3059 resolve it to the actual code address instead. */
7c7b6655 3060 struct objfile *objfile = msym.objfile;
bccdca4a
UW
3061 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3062
42ae5230
TT
3063 set_value_address (v,
3064 gdbarch_convert_from_func_ptr_addr
f6ac5f3d 3065 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), target_stack));
0478d61c 3066 }
c906108c
SS
3067
3068 if (arg1p)
c5aa993b 3069 {
df407dfe 3070 if (type != value_type (*arg1p))
c5aa993b
JM
3071 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3072 value_addr (*arg1p)));
3073
070ad9f0 3074 /* Move the `this' pointer according to the offset.
581e13c1 3075 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3076 }
3077
3078 return v;
3079}
3080
c906108c 3081\f
c906108c 3082
4875ffdb
PA
3083/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3084 VALADDR, and store the result in *RESULT.
15ce8941
TT
3085 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
3086 BITSIZE is zero, then the length is taken from FIELD_TYPE.
c906108c 3087
4875ffdb
PA
3088 Extracting bits depends on endianness of the machine. Compute the
3089 number of least significant bits to discard. For big endian machines,
3090 we compute the total number of bits in the anonymous object, subtract
3091 off the bit count from the MSB of the object to the MSB of the
3092 bitfield, then the size of the bitfield, which leaves the LSB discard
3093 count. For little endian machines, the discard count is simply the
3094 number of bits from the LSB of the anonymous object to the LSB of the
3095 bitfield.
3096
3097 If the field is signed, we also do sign extension. */
3098
3099static LONGEST
3100unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
6b850546 3101 LONGEST bitpos, LONGEST bitsize)
c906108c 3102{
4ea48cc1 3103 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
3104 ULONGEST val;
3105 ULONGEST valmask;
c906108c 3106 int lsbcount;
6b850546
DT
3107 LONGEST bytes_read;
3108 LONGEST read_offset;
c906108c 3109
4a76eae5
DJ
3110 /* Read the minimum number of bytes required; there may not be
3111 enough bytes to read an entire ULONGEST. */
f168693b 3112 field_type = check_typedef (field_type);
4a76eae5
DJ
3113 if (bitsize)
3114 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3115 else
15ce8941
TT
3116 {
3117 bytes_read = TYPE_LENGTH (field_type);
3118 bitsize = 8 * bytes_read;
3119 }
4a76eae5 3120
5467c6c8
PA
3121 read_offset = bitpos / 8;
3122
4875ffdb 3123 val = extract_unsigned_integer (valaddr + read_offset,
4a76eae5 3124 bytes_read, byte_order);
c906108c 3125
581e13c1 3126 /* Extract bits. See comment above. */
c906108c 3127
4ea48cc1 3128 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 3129 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3130 else
3131 lsbcount = (bitpos % 8);
3132 val >>= lsbcount;
3133
3134 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3135 If the field is signed, and is negative, then sign extend. */
c906108c 3136
15ce8941 3137 if (bitsize < 8 * (int) sizeof (val))
c906108c
SS
3138 {
3139 valmask = (((ULONGEST) 1) << bitsize) - 1;
3140 val &= valmask;
3141 if (!TYPE_UNSIGNED (field_type))
3142 {
3143 if (val & (valmask ^ (valmask >> 1)))
3144 {
3145 val |= ~valmask;
3146 }
3147 }
3148 }
5467c6c8 3149
4875ffdb 3150 return val;
5467c6c8
PA
3151}
3152
3153/* Unpack a field FIELDNO of the specified TYPE, from the object at
3154 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3155 ORIGINAL_VALUE, which must not be NULL. See
3156 unpack_value_bits_as_long for more details. */
3157
3158int
3159unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
6b850546 3160 LONGEST embedded_offset, int fieldno,
5467c6c8
PA
3161 const struct value *val, LONGEST *result)
3162{
4875ffdb
PA
3163 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3164 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3165 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3166 int bit_offset;
3167
5467c6c8
PA
3168 gdb_assert (val != NULL);
3169
4875ffdb
PA
3170 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3171 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3172 || !value_bits_available (val, bit_offset, bitsize))
3173 return 0;
3174
3175 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3176 bitpos, bitsize);
3177 return 1;
5467c6c8
PA
3178}
3179
3180/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
4875ffdb 3181 object at VALADDR. See unpack_bits_as_long for more details. */
5467c6c8
PA
3182
3183LONGEST
3184unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3185{
4875ffdb
PA
3186 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3187 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3188 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
5467c6c8 3189
4875ffdb
PA
3190 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3191}
3192
3193/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3194 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3195 the contents in DEST_VAL, zero or sign extending if the type of
3196 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3197 VAL. If the VAL's contents required to extract the bitfield from
3198 are unavailable/optimized out, DEST_VAL is correspondingly
3199 marked unavailable/optimized out. */
3200
bb9d5f81 3201void
4875ffdb 3202unpack_value_bitfield (struct value *dest_val,
6b850546
DT
3203 LONGEST bitpos, LONGEST bitsize,
3204 const gdb_byte *valaddr, LONGEST embedded_offset,
4875ffdb
PA
3205 const struct value *val)
3206{
3207 enum bfd_endian byte_order;
3208 int src_bit_offset;
3209 int dst_bit_offset;
4875ffdb
PA
3210 struct type *field_type = value_type (dest_val);
3211
4875ffdb 3212 byte_order = gdbarch_byte_order (get_type_arch (field_type));
e5ca03b4
PA
3213
3214 /* First, unpack and sign extend the bitfield as if it was wholly
3215 valid. Optimized out/unavailable bits are read as zero, but
3216 that's OK, as they'll end up marked below. If the VAL is
3217 wholly-invalid we may have skipped allocating its contents,
3218 though. See allocate_optimized_out_value. */
3219 if (valaddr != NULL)
3220 {
3221 LONGEST num;
3222
3223 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3224 bitpos, bitsize);
3225 store_signed_integer (value_contents_raw (dest_val),
3226 TYPE_LENGTH (field_type), byte_order, num);
3227 }
4875ffdb
PA
3228
3229 /* Now copy the optimized out / unavailability ranges to the right
3230 bits. */
3231 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3232 if (byte_order == BFD_ENDIAN_BIG)
3233 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3234 else
3235 dst_bit_offset = 0;
3236 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3237 val, src_bit_offset, bitsize);
5467c6c8
PA
3238}
3239
3240/* Return a new value with type TYPE, which is FIELDNO field of the
3241 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3242 of VAL. If the VAL's contents required to extract the bitfield
4875ffdb
PA
3243 from are unavailable/optimized out, the new value is
3244 correspondingly marked unavailable/optimized out. */
5467c6c8
PA
3245
3246struct value *
3247value_field_bitfield (struct type *type, int fieldno,
3248 const gdb_byte *valaddr,
6b850546 3249 LONGEST embedded_offset, const struct value *val)
5467c6c8 3250{
4875ffdb
PA
3251 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3252 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3253 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
5467c6c8 3254
4875ffdb
PA
3255 unpack_value_bitfield (res_val, bitpos, bitsize,
3256 valaddr, embedded_offset, val);
3257
3258 return res_val;
4ea48cc1
DJ
3259}
3260
c906108c
SS
3261/* Modify the value of a bitfield. ADDR points to a block of memory in
3262 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3263 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3264 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3265 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3266 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3267
3268void
50810684 3269modify_field (struct type *type, gdb_byte *addr,
6b850546 3270 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
c906108c 3271{
e17a4113 3272 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3273 ULONGEST oword;
3274 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
6b850546 3275 LONGEST bytesize;
19f220c3
JK
3276
3277 /* Normalize BITPOS. */
3278 addr += bitpos / 8;
3279 bitpos %= 8;
c906108c
SS
3280
3281 /* If a negative fieldval fits in the field in question, chop
3282 off the sign extension bits. */
f4e88c8e
PH
3283 if ((~fieldval & ~(mask >> 1)) == 0)
3284 fieldval &= mask;
c906108c
SS
3285
3286 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3287 if (0 != (fieldval & ~mask))
c906108c
SS
3288 {
3289 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3290 we don't have a sprintf_longest. */
6b850546 3291 warning (_("Value does not fit in %s bits."), plongest (bitsize));
c906108c
SS
3292
3293 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3294 fieldval &= mask;
c906108c
SS
3295 }
3296
19f220c3
JK
3297 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3298 false valgrind reports. */
3299
3300 bytesize = (bitpos + bitsize + 7) / 8;
3301 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3302
3303 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3304 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3305 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3306
f4e88c8e 3307 oword &= ~(mask << bitpos);
c906108c
SS
3308 oword |= fieldval << bitpos;
3309
19f220c3 3310 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3311}
3312\f
14d06750 3313/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3314
14d06750
DJ
3315void
3316pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3317{
e17a4113 3318 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
6b850546 3319 LONGEST len;
14d06750
DJ
3320
3321 type = check_typedef (type);
c906108c
SS
3322 len = TYPE_LENGTH (type);
3323
14d06750 3324 switch (TYPE_CODE (type))
c906108c 3325 {
c906108c
SS
3326 case TYPE_CODE_INT:
3327 case TYPE_CODE_CHAR:
3328 case TYPE_CODE_ENUM:
4f2aea11 3329 case TYPE_CODE_FLAGS:
c906108c
SS
3330 case TYPE_CODE_BOOL:
3331 case TYPE_CODE_RANGE:
0d5de010 3332 case TYPE_CODE_MEMBERPTR:
e17a4113 3333 store_signed_integer (buf, len, byte_order, num);
c906108c 3334 break;
c5aa993b 3335
c906108c 3336 case TYPE_CODE_REF:
aa006118 3337 case TYPE_CODE_RVALUE_REF:
c906108c 3338 case TYPE_CODE_PTR:
14d06750 3339 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3340 break;
c5aa993b 3341
50637b26
UW
3342 case TYPE_CODE_FLT:
3343 case TYPE_CODE_DECFLOAT:
3344 target_float_from_longest (buf, type, num);
3345 break;
3346
c906108c 3347 default:
14d06750
DJ
3348 error (_("Unexpected type (%d) encountered for integer constant."),
3349 TYPE_CODE (type));
c906108c 3350 }
14d06750
DJ
3351}
3352
3353
595939de
PM
3354/* Pack NUM into BUF using a target format of TYPE. */
3355
70221824 3356static void
595939de
PM
3357pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3358{
6b850546 3359 LONGEST len;
595939de
PM
3360 enum bfd_endian byte_order;
3361
3362 type = check_typedef (type);
3363 len = TYPE_LENGTH (type);
3364 byte_order = gdbarch_byte_order (get_type_arch (type));
3365
3366 switch (TYPE_CODE (type))
3367 {
3368 case TYPE_CODE_INT:
3369 case TYPE_CODE_CHAR:
3370 case TYPE_CODE_ENUM:
3371 case TYPE_CODE_FLAGS:
3372 case TYPE_CODE_BOOL:
3373 case TYPE_CODE_RANGE:
3374 case TYPE_CODE_MEMBERPTR:
3375 store_unsigned_integer (buf, len, byte_order, num);
3376 break;
3377
3378 case TYPE_CODE_REF:
aa006118 3379 case TYPE_CODE_RVALUE_REF:
595939de
PM
3380 case TYPE_CODE_PTR:
3381 store_typed_address (buf, type, (CORE_ADDR) num);
3382 break;
3383
50637b26
UW
3384 case TYPE_CODE_FLT:
3385 case TYPE_CODE_DECFLOAT:
3386 target_float_from_ulongest (buf, type, num);
3387 break;
3388
595939de 3389 default:
3e43a32a
MS
3390 error (_("Unexpected type (%d) encountered "
3391 "for unsigned integer constant."),
595939de
PM
3392 TYPE_CODE (type));
3393 }
3394}
3395
3396
14d06750
DJ
3397/* Convert C numbers into newly allocated values. */
3398
3399struct value *
3400value_from_longest (struct type *type, LONGEST num)
3401{
3402 struct value *val = allocate_value (type);
3403
3404 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3405 return val;
3406}
3407
4478b372 3408
595939de
PM
3409/* Convert C unsigned numbers into newly allocated values. */
3410
3411struct value *
3412value_from_ulongest (struct type *type, ULONGEST num)
3413{
3414 struct value *val = allocate_value (type);
3415
3416 pack_unsigned_long (value_contents_raw (val), type, num);
3417
3418 return val;
3419}
3420
3421
4478b372 3422/* Create a value representing a pointer of type TYPE to the address
cb417230 3423 ADDR. */
80180f79 3424
f23631e4 3425struct value *
4478b372
JB
3426value_from_pointer (struct type *type, CORE_ADDR addr)
3427{
cb417230 3428 struct value *val = allocate_value (type);
a109c7c1 3429
80180f79 3430 store_typed_address (value_contents_raw (val),
cb417230 3431 check_typedef (type), addr);
4478b372
JB
3432 return val;
3433}
3434
3435
012370f6
TT
3436/* Create a value of type TYPE whose contents come from VALADDR, if it
3437 is non-null, and whose memory address (in the inferior) is
3438 ADDRESS. The type of the created value may differ from the passed
3439 type TYPE. Make sure to retrieve values new type after this call.
3440 Note that TYPE is not passed through resolve_dynamic_type; this is
3441 a special API intended for use only by Ada. */
3442
3443struct value *
3444value_from_contents_and_address_unresolved (struct type *type,
3445 const gdb_byte *valaddr,
3446 CORE_ADDR address)
3447{
3448 struct value *v;
3449
3450 if (valaddr == NULL)
3451 v = allocate_value_lazy (type);
3452 else
3453 v = value_from_contents (type, valaddr);
012370f6 3454 VALUE_LVAL (v) = lval_memory;
1a088441 3455 set_value_address (v, address);
012370f6
TT
3456 return v;
3457}
3458
8acb6b92
TT
3459/* Create a value of type TYPE whose contents come from VALADDR, if it
3460 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3461 ADDRESS. The type of the created value may differ from the passed
3462 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3463
3464struct value *
3465value_from_contents_and_address (struct type *type,
3466 const gdb_byte *valaddr,
3467 CORE_ADDR address)
3468{
c3345124 3469 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
d36430db 3470 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
41e8491f 3471 struct value *v;
a109c7c1 3472
8acb6b92 3473 if (valaddr == NULL)
80180f79 3474 v = allocate_value_lazy (resolved_type);
8acb6b92 3475 else
80180f79 3476 v = value_from_contents (resolved_type, valaddr);
d36430db
JB
3477 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3478 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3479 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
33d502b4 3480 VALUE_LVAL (v) = lval_memory;
1a088441 3481 set_value_address (v, address);
8acb6b92
TT
3482 return v;
3483}
3484
8a9b8146
TT
3485/* Create a value of type TYPE holding the contents CONTENTS.
3486 The new value is `not_lval'. */
3487
3488struct value *
3489value_from_contents (struct type *type, const gdb_byte *contents)
3490{
3491 struct value *result;
3492
3493 result = allocate_value (type);
3494 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3495 return result;
3496}
3497
3bd0f5ef
MS
3498/* Extract a value from the history file. Input will be of the form
3499 $digits or $$digits. See block comment above 'write_dollar_variable'
3500 for details. */
3501
3502struct value *
e799154c 3503value_from_history_ref (const char *h, const char **endp)
3bd0f5ef
MS
3504{
3505 int index, len;
3506
3507 if (h[0] == '$')
3508 len = 1;
3509 else
3510 return NULL;
3511
3512 if (h[1] == '$')
3513 len = 2;
3514
3515 /* Find length of numeral string. */
3516 for (; isdigit (h[len]); len++)
3517 ;
3518
3519 /* Make sure numeral string is not part of an identifier. */
3520 if (h[len] == '_' || isalpha (h[len]))
3521 return NULL;
3522
3523 /* Now collect the index value. */
3524 if (h[1] == '$')
3525 {
3526 if (len == 2)
3527 {
3528 /* For some bizarre reason, "$$" is equivalent to "$$1",
3529 rather than to "$$0" as it ought to be! */
3530 index = -1;
3531 *endp += len;
3532 }
3533 else
e799154c
TT
3534 {
3535 char *local_end;
3536
3537 index = -strtol (&h[2], &local_end, 10);
3538 *endp = local_end;
3539 }
3bd0f5ef
MS
3540 }
3541 else
3542 {
3543 if (len == 1)
3544 {
3545 /* "$" is equivalent to "$0". */
3546 index = 0;
3547 *endp += len;
3548 }
3549 else
e799154c
TT
3550 {
3551 char *local_end;
3552
3553 index = strtol (&h[1], &local_end, 10);
3554 *endp = local_end;
3555 }
3bd0f5ef
MS
3556 }
3557
3558 return access_value_history (index);
3559}
3560
3fff9862
YQ
3561/* Get the component value (offset by OFFSET bytes) of a struct or
3562 union WHOLE. Component's type is TYPE. */
3563
3564struct value *
3565value_from_component (struct value *whole, struct type *type, LONGEST offset)
3566{
3567 struct value *v;
3568
3569 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3570 v = allocate_value_lazy (type);
3571 else
3572 {
3573 v = allocate_value (type);
3574 value_contents_copy (v, value_embedded_offset (v),
3575 whole, value_embedded_offset (whole) + offset,
3576 type_length_units (type));
3577 }
3578 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3579 set_value_component_location (v, whole);
3fff9862
YQ
3580
3581 return v;
3582}
3583
a471c594
JK
3584struct value *
3585coerce_ref_if_computed (const struct value *arg)
3586{
3587 const struct lval_funcs *funcs;
3588
aa006118 3589 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
a471c594
JK
3590 return NULL;
3591
3592 if (value_lval_const (arg) != lval_computed)
3593 return NULL;
3594
3595 funcs = value_computed_funcs (arg);
3596 if (funcs->coerce_ref == NULL)
3597 return NULL;
3598
3599 return funcs->coerce_ref (arg);
3600}
3601
dfcee124
AG
3602/* Look at value.h for description. */
3603
3604struct value *
3605readjust_indirect_value_type (struct value *value, struct type *enc_type,
4bf7b526
MG
3606 const struct type *original_type,
3607 const struct value *original_value)
dfcee124
AG
3608{
3609 /* Re-adjust type. */
3610 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3611
3612 /* Add embedding info. */
3613 set_value_enclosing_type (value, enc_type);
3614 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3615
3616 /* We may be pointing to an object of some derived type. */
3617 return value_full_object (value, NULL, 0, 0, 0);
3618}
3619
994b9211
AC
3620struct value *
3621coerce_ref (struct value *arg)
3622{
df407dfe 3623 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3624 struct value *retval;
dfcee124 3625 struct type *enc_type;
a109c7c1 3626
a471c594
JK
3627 retval = coerce_ref_if_computed (arg);
3628 if (retval)
3629 return retval;
3630
aa006118 3631 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
a471c594
JK
3632 return arg;
3633
dfcee124
AG
3634 enc_type = check_typedef (value_enclosing_type (arg));
3635 enc_type = TYPE_TARGET_TYPE (enc_type);
3636
3637 retval = value_at_lazy (enc_type,
3638 unpack_pointer (value_type (arg),
3639 value_contents (arg)));
9f1f738a 3640 enc_type = value_type (retval);
dfcee124
AG
3641 return readjust_indirect_value_type (retval, enc_type,
3642 value_type_arg_tmp, arg);
994b9211
AC
3643}
3644
3645struct value *
3646coerce_array (struct value *arg)
3647{
f3134b88
TT
3648 struct type *type;
3649
994b9211 3650 arg = coerce_ref (arg);
f3134b88
TT
3651 type = check_typedef (value_type (arg));
3652
3653 switch (TYPE_CODE (type))
3654 {
3655 case TYPE_CODE_ARRAY:
7346b668 3656 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3657 arg = value_coerce_array (arg);
3658 break;
3659 case TYPE_CODE_FUNC:
3660 arg = value_coerce_function (arg);
3661 break;
3662 }
994b9211
AC
3663 return arg;
3664}
c906108c 3665\f
c906108c 3666
bbfdfe1c
DM
3667/* Return the return value convention that will be used for the
3668 specified type. */
3669
3670enum return_value_convention
3671struct_return_convention (struct gdbarch *gdbarch,
3672 struct value *function, struct type *value_type)
3673{
3674 enum type_code code = TYPE_CODE (value_type);
3675
3676 if (code == TYPE_CODE_ERROR)
3677 error (_("Function return type unknown."));
3678
3679 /* Probe the architecture for the return-value convention. */
3680 return gdbarch_return_value (gdbarch, function, value_type,
3681 NULL, NULL, NULL);
3682}
3683
48436ce6
AC
3684/* Return true if the function returning the specified type is using
3685 the convention of returning structures in memory (passing in the
82585c72 3686 address as a hidden first parameter). */
c906108c
SS
3687
3688int
d80b854b 3689using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3690 struct value *function, struct type *value_type)
c906108c 3691{
bbfdfe1c 3692 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3693 /* A void return value is never in memory. See also corresponding
44e5158b 3694 code in "print_return_value". */
667e784f
AC
3695 return 0;
3696
bbfdfe1c 3697 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3698 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3699}
3700
42be36b3
CT
3701/* Set the initialized field in a value struct. */
3702
3703void
3704set_value_initialized (struct value *val, int status)
3705{
3706 val->initialized = status;
3707}
3708
3709/* Return the initialized field in a value struct. */
3710
3711int
4bf7b526 3712value_initialized (const struct value *val)
42be36b3
CT
3713{
3714 return val->initialized;
3715}
3716
a844296a
SM
3717/* Load the actual content of a lazy value. Fetch the data from the
3718 user's process and clear the lazy flag to indicate that the data in
3719 the buffer is valid.
a58e2656
AB
3720
3721 If the value is zero-length, we avoid calling read_memory, which
3722 would abort. We mark the value as fetched anyway -- all 0 bytes of
a844296a 3723 it. */
a58e2656 3724
a844296a 3725void
a58e2656
AB
3726value_fetch_lazy (struct value *val)
3727{
3728 gdb_assert (value_lazy (val));
3729 allocate_value_contents (val);
9a0dc9e3
PA
3730 /* A value is either lazy, or fully fetched. The
3731 availability/validity is only established as we try to fetch a
3732 value. */
0c7e6dd8
TT
3733 gdb_assert (val->optimized_out.empty ());
3734 gdb_assert (val->unavailable.empty ());
a58e2656
AB
3735 if (value_bitsize (val))
3736 {
3737 /* To read a lazy bitfield, read the entire enclosing value. This
3738 prevents reading the same block of (possibly volatile) memory once
3739 per bitfield. It would be even better to read only the containing
3740 word, but we have no way to record that just specific bits of a
3741 value have been fetched. */
3742 struct type *type = check_typedef (value_type (val));
a58e2656 3743 struct value *parent = value_parent (val);
a58e2656 3744
b0c54aa5
AB
3745 if (value_lazy (parent))
3746 value_fetch_lazy (parent);
3747
4875ffdb
PA
3748 unpack_value_bitfield (val,
3749 value_bitpos (val), value_bitsize (val),
3750 value_contents_for_printing (parent),
3751 value_offset (val), parent);
a58e2656
AB
3752 }
3753 else if (VALUE_LVAL (val) == lval_memory)
3754 {
3755 CORE_ADDR addr = value_address (val);
3756 struct type *type = check_typedef (value_enclosing_type (val));
3757
3758 if (TYPE_LENGTH (type))
3759 read_value_memory (val, 0, value_stack (val),
3760 addr, value_contents_all_raw (val),
3ae385af 3761 type_length_units (type));
a58e2656
AB
3762 }
3763 else if (VALUE_LVAL (val) == lval_register)
3764 {
41b56feb 3765 struct frame_info *next_frame;
a58e2656
AB
3766 int regnum;
3767 struct type *type = check_typedef (value_type (val));
3768 struct value *new_val = val, *mark = value_mark ();
3769
3770 /* Offsets are not supported here; lazy register values must
3771 refer to the entire register. */
3772 gdb_assert (value_offset (val) == 0);
3773
3774 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3775 {
41b56feb 3776 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
6eeee81c 3777
41b56feb 3778 next_frame = frame_find_by_id (next_frame_id);
a58e2656
AB
3779 regnum = VALUE_REGNUM (new_val);
3780
41b56feb 3781 gdb_assert (next_frame != NULL);
a58e2656
AB
3782
3783 /* Convertible register routines are used for multi-register
3784 values and for interpretation in different types
3785 (e.g. float or int from a double register). Lazy
3786 register values should have the register's natural type,
3787 so they do not apply. */
41b56feb 3788 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
a58e2656
AB
3789 regnum, type));
3790
41b56feb
KB
3791 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3792 Since a "->next" operation was performed when setting
3793 this field, we do not need to perform a "next" operation
3794 again when unwinding the register. That's why
3795 frame_unwind_register_value() is called here instead of
3796 get_frame_register_value(). */
3797 new_val = frame_unwind_register_value (next_frame, regnum);
6eeee81c
TT
3798
3799 /* If we get another lazy lval_register value, it means the
41b56feb
KB
3800 register is found by reading it from NEXT_FRAME's next frame.
3801 frame_unwind_register_value should never return a value with
3802 the frame id pointing to NEXT_FRAME. If it does, it means we
6eeee81c
TT
3803 either have two consecutive frames with the same frame id
3804 in the frame chain, or some code is trying to unwind
3805 behind get_prev_frame's back (e.g., a frame unwind
3806 sniffer trying to unwind), bypassing its validations. In
3807 any case, it should always be an internal error to end up
3808 in this situation. */
3809 if (VALUE_LVAL (new_val) == lval_register
3810 && value_lazy (new_val)
41b56feb 3811 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
6eeee81c
TT
3812 internal_error (__FILE__, __LINE__,
3813 _("infinite loop while fetching a register"));
a58e2656
AB
3814 }
3815
3816 /* If it's still lazy (for instance, a saved register on the
3817 stack), fetch it. */
3818 if (value_lazy (new_val))
3819 value_fetch_lazy (new_val);
3820
9a0dc9e3
PA
3821 /* Copy the contents and the unavailability/optimized-out
3822 meta-data from NEW_VAL to VAL. */
3823 set_value_lazy (val, 0);
3824 value_contents_copy (val, value_embedded_offset (val),
3825 new_val, value_embedded_offset (new_val),
3ae385af 3826 type_length_units (type));
a58e2656
AB
3827
3828 if (frame_debug)
3829 {
3830 struct gdbarch *gdbarch;
41b56feb
KB
3831 struct frame_info *frame;
3832 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
3833 so that the frame level will be shown correctly. */
a58e2656
AB
3834 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3835 regnum = VALUE_REGNUM (val);
3836 gdbarch = get_frame_arch (frame);
3837
3838 fprintf_unfiltered (gdb_stdlog,
3839 "{ value_fetch_lazy "
3840 "(frame=%d,regnum=%d(%s),...) ",
3841 frame_relative_level (frame), regnum,
3842 user_reg_map_regnum_to_name (gdbarch, regnum));
3843
3844 fprintf_unfiltered (gdb_stdlog, "->");
3845 if (value_optimized_out (new_val))
f6c01fc5
AB
3846 {
3847 fprintf_unfiltered (gdb_stdlog, " ");
3848 val_print_optimized_out (new_val, gdb_stdlog);
3849 }
a58e2656
AB
3850 else
3851 {
3852 int i;
3853 const gdb_byte *buf = value_contents (new_val);
3854
3855 if (VALUE_LVAL (new_val) == lval_register)
3856 fprintf_unfiltered (gdb_stdlog, " register=%d",
3857 VALUE_REGNUM (new_val));
3858 else if (VALUE_LVAL (new_val) == lval_memory)
3859 fprintf_unfiltered (gdb_stdlog, " address=%s",
3860 paddress (gdbarch,
3861 value_address (new_val)));
3862 else
3863 fprintf_unfiltered (gdb_stdlog, " computed");
3864
3865 fprintf_unfiltered (gdb_stdlog, " bytes=");
3866 fprintf_unfiltered (gdb_stdlog, "[");
3867 for (i = 0; i < register_size (gdbarch, regnum); i++)
3868 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3869 fprintf_unfiltered (gdb_stdlog, "]");
3870 }
3871
3872 fprintf_unfiltered (gdb_stdlog, " }\n");
3873 }
3874
3875 /* Dispose of the intermediate values. This prevents
3876 watchpoints from trying to watch the saved frame pointer. */
3877 value_free_to_mark (mark);
3878 }
3879 else if (VALUE_LVAL (val) == lval_computed
3880 && value_computed_funcs (val)->read != NULL)
3881 value_computed_funcs (val)->read (val);
a58e2656
AB
3882 else
3883 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3884
3885 set_value_lazy (val, 0);
a58e2656
AB
3886}
3887
a280dbd1
SDJ
3888/* Implementation of the convenience function $_isvoid. */
3889
3890static struct value *
3891isvoid_internal_fn (struct gdbarch *gdbarch,
3892 const struct language_defn *language,
3893 void *cookie, int argc, struct value **argv)
3894{
3895 int ret;
3896
3897 if (argc != 1)
6bc305f5 3898 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
3899
3900 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3901
3902 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3903}
3904
d5f4488f
SM
3905#if GDB_SELF_TEST
3906namespace selftests
3907{
3908
3909/* Test the ranges_contain function. */
3910
3911static void
3912test_ranges_contain ()
3913{
3914 std::vector<range> ranges;
3915 range r;
3916
3917 /* [10, 14] */
3918 r.offset = 10;
3919 r.length = 5;
3920 ranges.push_back (r);
3921
3922 /* [20, 24] */
3923 r.offset = 20;
3924 r.length = 5;
3925 ranges.push_back (r);
3926
3927 /* [2, 6] */
3928 SELF_CHECK (!ranges_contain (ranges, 2, 5));
3929 /* [9, 13] */
3930 SELF_CHECK (ranges_contain (ranges, 9, 5));
3931 /* [10, 11] */
3932 SELF_CHECK (ranges_contain (ranges, 10, 2));
3933 /* [10, 14] */
3934 SELF_CHECK (ranges_contain (ranges, 10, 5));
3935 /* [13, 18] */
3936 SELF_CHECK (ranges_contain (ranges, 13, 6));
3937 /* [14, 18] */
3938 SELF_CHECK (ranges_contain (ranges, 14, 5));
3939 /* [15, 18] */
3940 SELF_CHECK (!ranges_contain (ranges, 15, 4));
3941 /* [16, 19] */
3942 SELF_CHECK (!ranges_contain (ranges, 16, 4));
3943 /* [16, 21] */
3944 SELF_CHECK (ranges_contain (ranges, 16, 6));
3945 /* [21, 21] */
3946 SELF_CHECK (ranges_contain (ranges, 21, 1));
3947 /* [21, 25] */
3948 SELF_CHECK (ranges_contain (ranges, 21, 5));
3949 /* [26, 28] */
3950 SELF_CHECK (!ranges_contain (ranges, 26, 3));
3951}
3952
3953/* Check that RANGES contains the same ranges as EXPECTED. */
3954
3955static bool
3956check_ranges_vector (gdb::array_view<const range> ranges,
3957 gdb::array_view<const range> expected)
3958{
3959 return ranges == expected;
3960}
3961
3962/* Test the insert_into_bit_range_vector function. */
3963
3964static void
3965test_insert_into_bit_range_vector ()
3966{
3967 std::vector<range> ranges;
3968
3969 /* [10, 14] */
3970 {
3971 insert_into_bit_range_vector (&ranges, 10, 5);
3972 static const range expected[] = {
3973 {10, 5}
3974 };
3975 SELF_CHECK (check_ranges_vector (ranges, expected));
3976 }
3977
3978 /* [10, 14] */
3979 {
3980 insert_into_bit_range_vector (&ranges, 11, 4);
3981 static const range expected = {10, 5};
3982 SELF_CHECK (check_ranges_vector (ranges, expected));
3983 }
3984
3985 /* [10, 14] [20, 24] */
3986 {
3987 insert_into_bit_range_vector (&ranges, 20, 5);
3988 static const range expected[] = {
3989 {10, 5},
3990 {20, 5},
3991 };
3992 SELF_CHECK (check_ranges_vector (ranges, expected));
3993 }
3994
3995 /* [10, 14] [17, 24] */
3996 {
3997 insert_into_bit_range_vector (&ranges, 17, 5);
3998 static const range expected[] = {
3999 {10, 5},
4000 {17, 8},
4001 };
4002 SELF_CHECK (check_ranges_vector (ranges, expected));
4003 }
4004
4005 /* [2, 8] [10, 14] [17, 24] */
4006 {
4007 insert_into_bit_range_vector (&ranges, 2, 7);
4008 static const range expected[] = {
4009 {2, 7},
4010 {10, 5},
4011 {17, 8},
4012 };
4013 SELF_CHECK (check_ranges_vector (ranges, expected));
4014 }
4015
4016 /* [2, 14] [17, 24] */
4017 {
4018 insert_into_bit_range_vector (&ranges, 9, 1);
4019 static const range expected[] = {
4020 {2, 13},
4021 {17, 8},
4022 };
4023 SELF_CHECK (check_ranges_vector (ranges, expected));
4024 }
4025
4026 /* [2, 14] [17, 24] */
4027 {
4028 insert_into_bit_range_vector (&ranges, 9, 1);
4029 static const range expected[] = {
4030 {2, 13},
4031 {17, 8},
4032 };
4033 SELF_CHECK (check_ranges_vector (ranges, expected));
4034 }
4035
4036 /* [2, 33] */
4037 {
4038 insert_into_bit_range_vector (&ranges, 4, 30);
4039 static const range expected = {2, 32};
4040 SELF_CHECK (check_ranges_vector (ranges, expected));
4041 }
4042}
4043
4044} /* namespace selftests */
4045#endif /* GDB_SELF_TEST */
4046
c906108c 4047void
fba45db2 4048_initialize_values (void)
c906108c 4049{
1a966eab 4050 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
4051Debugger convenience (\"$foo\") variables and functions.\n\
4052Convenience variables are created when you assign them values;\n\
4053thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 4054\n\
c906108c
SS
4055A few convenience variables are given values automatically:\n\
4056\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
4057\"$__\" holds the contents of the last address examined with \"x\"."
4058#ifdef HAVE_PYTHON
4059"\n\n\
4060Convenience functions are defined via the Python API."
4061#endif
4062 ), &showlist);
7e20dfcd 4063 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 4064
db5f229b 4065 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 4066Elements of value history around item number IDX (or last ten)."),
c906108c 4067 &showlist);
53e5f3cf
AS
4068
4069 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4070Initialize a convenience variable if necessary.\n\
4071init-if-undefined VARIABLE = EXPRESSION\n\
4072Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4073exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4074VARIABLE is already initialized."));
bc3b79fd
TJB
4075
4076 add_prefix_cmd ("function", no_class, function_command, _("\
4077Placeholder command for showing help on convenience functions."),
4078 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
4079
4080 add_internal_function ("_isvoid", _("\
4081Check whether an expression is void.\n\
4082Usage: $_isvoid (expression)\n\
4083Return 1 if the expression is void, zero otherwise."),
4084 isvoid_internal_fn, NULL);
5fdf6324
AB
4085
4086 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4087 class_support, &max_value_size, _("\
4088Set maximum sized value gdb will load from the inferior."), _("\
4089Show maximum sized value gdb will load from the inferior."), _("\
4090Use this to control the maximum size, in bytes, of a value that gdb\n\
4091will load from the inferior. Setting this value to 'unlimited'\n\
4092disables checking.\n\
4093Setting this does not invalidate already allocated values, it only\n\
4094prevents future values, larger than this size, from being allocated."),
4095 set_max_value_size,
4096 show_max_value_size,
4097 &setlist, &showlist);
d5f4488f
SM
4098#if GDB_SELF_TEST
4099 selftests::register_test ("ranges_contain", selftests::test_ranges_contain);
4100 selftests::register_test ("insert_into_bit_range_vector",
4101 selftests::test_insert_into_bit_range_vector);
4102#endif
c906108c 4103}