]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/value.c
Improve windres's handling of pathnames containing special characters on Windows...
[thirdparty/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
3666a048 3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "gdbcore.h"
c906108c
SS
26#include "command.h"
27#include "gdbcmd.h"
28#include "target.h"
29#include "language.h"
c906108c 30#include "demangle.h"
36160dc4 31#include "regcache.h"
fe898f56 32#include "block.h"
70100014 33#include "target-float.h"
bccdca4a 34#include "objfiles.h"
79a45b7d 35#include "valprint.h"
bc3b79fd 36#include "cli/cli-decode.h"
6dddc817 37#include "extension.h"
3bd0f5ef 38#include <ctype.h>
0914bcdb 39#include "tracepoint.h"
be335936 40#include "cp-abi.h"
a58e2656 41#include "user-regs.h"
325fac50 42#include <algorithm>
eb3ff9a5 43#include "completer.h"
268a13a5
TT
44#include "gdbsupport/selftest.h"
45#include "gdbsupport/array-view.h"
7f6aba03 46#include "cli/cli-style.h"
0914bcdb 47
bc3b79fd
TJB
48/* Definition of a user function. */
49struct internal_function
50{
51 /* The name of the function. It is a bit odd to have this in the
52 function itself -- the user might use a differently-named
53 convenience variable to hold the function. */
54 char *name;
55
56 /* The handler. */
57 internal_function_fn handler;
58
59 /* User data for the handler. */
60 void *cookie;
61};
62
4e07d55f
PA
63/* Defines an [OFFSET, OFFSET + LENGTH) range. */
64
65struct range
66{
67 /* Lowest offset in the range. */
6b850546 68 LONGEST offset;
4e07d55f
PA
69
70 /* Length of the range. */
6b850546 71 LONGEST length;
4e07d55f 72
0c7e6dd8
TT
73 /* Returns true if THIS is strictly less than OTHER, useful for
74 searching. We keep ranges sorted by offset and coalesce
75 overlapping and contiguous ranges, so this just compares the
76 starting offset. */
4e07d55f 77
0c7e6dd8
TT
78 bool operator< (const range &other) const
79 {
80 return offset < other.offset;
81 }
d5f4488f
SM
82
83 /* Returns true if THIS is equal to OTHER. */
84 bool operator== (const range &other) const
85 {
86 return offset == other.offset && length == other.length;
87 }
0c7e6dd8 88};
4e07d55f
PA
89
90/* Returns true if the ranges defined by [offset1, offset1+len1) and
91 [offset2, offset2+len2) overlap. */
92
93static int
6b850546
DT
94ranges_overlap (LONGEST offset1, LONGEST len1,
95 LONGEST offset2, LONGEST len2)
4e07d55f
PA
96{
97 ULONGEST h, l;
98
325fac50
PA
99 l = std::max (offset1, offset2);
100 h = std::min (offset1 + len1, offset2 + len2);
4e07d55f
PA
101 return (l < h);
102}
103
4e07d55f
PA
104/* Returns true if RANGES contains any range that overlaps [OFFSET,
105 OFFSET+LENGTH). */
106
107static int
0c7e6dd8
TT
108ranges_contain (const std::vector<range> &ranges, LONGEST offset,
109 LONGEST length)
4e07d55f 110{
0c7e6dd8 111 range what;
4e07d55f
PA
112
113 what.offset = offset;
114 what.length = length;
115
116 /* We keep ranges sorted by offset and coalesce overlapping and
117 contiguous ranges, so to check if a range list contains a given
118 range, we can do a binary search for the position the given range
119 would be inserted if we only considered the starting OFFSET of
120 ranges. We call that position I. Since we also have LENGTH to
121 care for (this is a range afterall), we need to check if the
122 _previous_ range overlaps the I range. E.g.,
123
dda83cd7
SM
124 R
125 |---|
4e07d55f
PA
126 |---| |---| |------| ... |--|
127 0 1 2 N
128
129 I=1
130
131 In the case above, the binary search would return `I=1', meaning,
132 this OFFSET should be inserted at position 1, and the current
133 position 1 should be pushed further (and before 2). But, `0'
134 overlaps with R.
135
136 Then we need to check if the I range overlaps the I range itself.
137 E.g.,
138
dda83cd7
SM
139 R
140 |---|
4e07d55f
PA
141 |---| |---| |-------| ... |--|
142 0 1 2 N
143
144 I=1
145 */
146
4e07d55f 147
0c7e6dd8
TT
148 auto i = std::lower_bound (ranges.begin (), ranges.end (), what);
149
150 if (i > ranges.begin ())
4e07d55f 151 {
0c7e6dd8 152 const struct range &bef = *(i - 1);
4e07d55f 153
0c7e6dd8 154 if (ranges_overlap (bef.offset, bef.length, offset, length))
4e07d55f
PA
155 return 1;
156 }
157
0c7e6dd8 158 if (i < ranges.end ())
4e07d55f 159 {
0c7e6dd8 160 const struct range &r = *i;
4e07d55f 161
0c7e6dd8 162 if (ranges_overlap (r.offset, r.length, offset, length))
4e07d55f
PA
163 return 1;
164 }
165
166 return 0;
167}
168
bc3b79fd
TJB
169static struct cmd_list_element *functionlist;
170
87784a47
TT
171/* Note that the fields in this structure are arranged to save a bit
172 of memory. */
173
91294c83
AC
174struct value
175{
466ce3ae
TT
176 explicit value (struct type *type_)
177 : modifiable (1),
178 lazy (1),
179 initialized (1),
180 stack (0),
181 type (type_),
182 enclosing_type (type_)
183 {
466ce3ae
TT
184 }
185
186 ~value ()
187 {
466ce3ae
TT
188 if (VALUE_LVAL (this) == lval_computed)
189 {
190 const struct lval_funcs *funcs = location.computed.funcs;
191
192 if (funcs->free_closure)
193 funcs->free_closure (this);
194 }
195 else if (VALUE_LVAL (this) == lval_xcallable)
196 delete location.xm_worker;
466ce3ae
TT
197 }
198
199 DISABLE_COPY_AND_ASSIGN (value);
200
91294c83
AC
201 /* Type of value; either not an lval, or one of the various
202 different possible kinds of lval. */
466ce3ae 203 enum lval_type lval = not_lval;
91294c83
AC
204
205 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
206 unsigned int modifiable : 1;
207
208 /* If zero, contents of this value are in the contents field. If
209 nonzero, contents are in inferior. If the lval field is lval_memory,
210 the contents are in inferior memory at location.address plus offset.
211 The lval field may also be lval_register.
212
213 WARNING: This field is used by the code which handles watchpoints
214 (see breakpoint.c) to decide whether a particular value can be
215 watched by hardware watchpoints. If the lazy flag is set for
216 some member of a value chain, it is assumed that this member of
217 the chain doesn't need to be watched as part of watching the
218 value itself. This is how GDB avoids watching the entire struct
219 or array when the user wants to watch a single struct member or
220 array element. If you ever change the way lazy flag is set and
221 reset, be sure to consider this use as well! */
222 unsigned int lazy : 1;
223
87784a47
TT
224 /* If value is a variable, is it initialized or not. */
225 unsigned int initialized : 1;
226
227 /* If value is from the stack. If this is set, read_stack will be
228 used instead of read_memory to enable extra caching. */
229 unsigned int stack : 1;
91294c83
AC
230
231 /* Location of value (if lval). */
232 union
233 {
7dc54575 234 /* If lval == lval_memory, this is the address in the inferior */
91294c83
AC
235 CORE_ADDR address;
236
7dc54575
YQ
237 /*If lval == lval_register, the value is from a register. */
238 struct
239 {
240 /* Register number. */
241 int regnum;
242 /* Frame ID of "next" frame to which a register value is relative.
243 If the register value is found relative to frame F, then the
244 frame id of F->next will be stored in next_frame_id. */
245 struct frame_id next_frame_id;
246 } reg;
247
91294c83
AC
248 /* Pointer to internal variable. */
249 struct internalvar *internalvar;
5f5233d4 250
e81e7f5e
SC
251 /* Pointer to xmethod worker. */
252 struct xmethod_worker *xm_worker;
253
5f5233d4
PA
254 /* If lval == lval_computed, this is a set of function pointers
255 to use to access and describe the value, and a closure pointer
256 for them to use. */
257 struct
258 {
c8f2448a
JK
259 /* Functions to call. */
260 const struct lval_funcs *funcs;
261
262 /* Closure for those functions to use. */
263 void *closure;
5f5233d4 264 } computed;
41a883c8 265 } location {};
91294c83 266
3723fda8 267 /* Describes offset of a value within lval of a structure in target
7dc54575
YQ
268 addressable memory units. Note also the member embedded_offset
269 below. */
466ce3ae 270 LONGEST offset = 0;
91294c83
AC
271
272 /* Only used for bitfields; number of bits contained in them. */
466ce3ae 273 LONGEST bitsize = 0;
91294c83
AC
274
275 /* Only used for bitfields; position of start of field. For
d5a22e77
TT
276 little-endian targets, it is the position of the LSB. For
277 big-endian targets, it is the position of the MSB. */
466ce3ae 278 LONGEST bitpos = 0;
91294c83 279
87784a47
TT
280 /* The number of references to this value. When a value is created,
281 the value chain holds a reference, so REFERENCE_COUNT is 1. If
282 release_value is called, this value is removed from the chain but
283 the caller of release_value now has a reference to this value.
284 The caller must arrange for a call to value_free later. */
466ce3ae 285 int reference_count = 1;
87784a47 286
4ea48cc1
DJ
287 /* Only used for bitfields; the containing value. This allows a
288 single read from the target when displaying multiple
289 bitfields. */
2c8331b9 290 value_ref_ptr parent;
4ea48cc1 291
91294c83
AC
292 /* Type of the value. */
293 struct type *type;
294
295 /* If a value represents a C++ object, then the `type' field gives
296 the object's compile-time type. If the object actually belongs
297 to some class derived from `type', perhaps with other base
298 classes and additional members, then `type' is just a subobject
299 of the real thing, and the full object is probably larger than
300 `type' would suggest.
301
302 If `type' is a dynamic class (i.e. one with a vtable), then GDB
303 can actually determine the object's run-time type by looking at
304 the run-time type information in the vtable. When this
305 information is available, we may elect to read in the entire
306 object, for several reasons:
307
308 - When printing the value, the user would probably rather see the
309 full object, not just the limited portion apparent from the
310 compile-time type.
311
312 - If `type' has virtual base classes, then even printing `type'
313 alone may require reaching outside the `type' portion of the
314 object to wherever the virtual base class has been stored.
315
316 When we store the entire object, `enclosing_type' is the run-time
317 type -- the complete object -- and `embedded_offset' is the
3723fda8
SM
318 offset of `type' within that larger type, in target addressable memory
319 units. The value_contents() macro takes `embedded_offset' into account,
320 so most GDB code continues to see the `type' portion of the value, just
321 as the inferior would.
91294c83
AC
322
323 If `type' is a pointer to an object, then `enclosing_type' is a
324 pointer to the object's run-time type, and `pointed_to_offset' is
3723fda8
SM
325 the offset in target addressable memory units from the full object
326 to the pointed-to object -- that is, the value `embedded_offset' would
327 have if we followed the pointer and fetched the complete object.
328 (I don't really see the point. Why not just determine the
329 run-time type when you indirect, and avoid the special case? The
330 contents don't matter until you indirect anyway.)
91294c83
AC
331
332 If we're not doing anything fancy, `enclosing_type' is equal to
333 `type', and `embedded_offset' is zero, so everything works
334 normally. */
335 struct type *enclosing_type;
466ce3ae
TT
336 LONGEST embedded_offset = 0;
337 LONGEST pointed_to_offset = 0;
91294c83 338
3e3d7139
JG
339 /* Actual contents of the value. Target byte-order. NULL or not
340 valid if lazy is nonzero. */
14c88955 341 gdb::unique_xmalloc_ptr<gdb_byte> contents;
828d3400 342
4e07d55f
PA
343 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
344 rather than available, since the common and default case is for a
9a0dc9e3
PA
345 value to be available. This is filled in at value read time.
346 The unavailable ranges are tracked in bits. Note that a contents
347 bit that has been optimized out doesn't really exist in the
348 program, so it can't be marked unavailable either. */
0c7e6dd8 349 std::vector<range> unavailable;
9a0dc9e3
PA
350
351 /* Likewise, but for optimized out contents (a chunk of the value of
352 a variable that does not actually exist in the program). If LVAL
353 is lval_register, this is a register ($pc, $sp, etc., never a
354 program variable) that has not been saved in the frame. Not
355 saved registers and optimized-out program variables values are
356 treated pretty much the same, except not-saved registers have a
357 different string representation and related error strings. */
0c7e6dd8 358 std::vector<range> optimized_out;
91294c83
AC
359};
360
e512cdbd
SM
361/* See value.h. */
362
363struct gdbarch *
364get_value_arch (const struct value *value)
365{
366 return get_type_arch (value_type (value));
367}
368
4e07d55f 369int
6b850546 370value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
4e07d55f
PA
371{
372 gdb_assert (!value->lazy);
373
374 return !ranges_contain (value->unavailable, offset, length);
375}
376
bdf22206 377int
6b850546
DT
378value_bytes_available (const struct value *value,
379 LONGEST offset, LONGEST length)
bdf22206
AB
380{
381 return value_bits_available (value,
382 offset * TARGET_CHAR_BIT,
383 length * TARGET_CHAR_BIT);
384}
385
9a0dc9e3
PA
386int
387value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
388{
389 gdb_assert (!value->lazy);
390
391 return ranges_contain (value->optimized_out, bit_offset, bit_length);
392}
393
ec0a52e1
PA
394int
395value_entirely_available (struct value *value)
396{
397 /* We can only tell whether the whole value is available when we try
398 to read it. */
399 if (value->lazy)
400 value_fetch_lazy (value);
401
0c7e6dd8 402 if (value->unavailable.empty ())
ec0a52e1
PA
403 return 1;
404 return 0;
405}
406
9a0dc9e3
PA
407/* Returns true if VALUE is entirely covered by RANGES. If the value
408 is lazy, it'll be read now. Note that RANGE is a pointer to
409 pointer because reading the value might change *RANGE. */
410
411static int
412value_entirely_covered_by_range_vector (struct value *value,
0c7e6dd8 413 const std::vector<range> &ranges)
6211c335 414{
9a0dc9e3
PA
415 /* We can only tell whether the whole value is optimized out /
416 unavailable when we try to read it. */
6211c335
YQ
417 if (value->lazy)
418 value_fetch_lazy (value);
419
0c7e6dd8 420 if (ranges.size () == 1)
6211c335 421 {
0c7e6dd8 422 const struct range &t = ranges[0];
6211c335 423
0c7e6dd8
TT
424 if (t.offset == 0
425 && t.length == (TARGET_CHAR_BIT
426 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
427 return 1;
428 }
429
430 return 0;
431}
432
9a0dc9e3
PA
433int
434value_entirely_unavailable (struct value *value)
435{
0c7e6dd8 436 return value_entirely_covered_by_range_vector (value, value->unavailable);
9a0dc9e3
PA
437}
438
439int
440value_entirely_optimized_out (struct value *value)
441{
0c7e6dd8 442 return value_entirely_covered_by_range_vector (value, value->optimized_out);
9a0dc9e3
PA
443}
444
445/* Insert into the vector pointed to by VECTORP the bit range starting of
446 OFFSET bits, and extending for the next LENGTH bits. */
447
448static void
0c7e6dd8 449insert_into_bit_range_vector (std::vector<range> *vectorp,
6b850546 450 LONGEST offset, LONGEST length)
4e07d55f 451{
0c7e6dd8 452 range newr;
4e07d55f
PA
453
454 /* Insert the range sorted. If there's overlap or the new range
455 would be contiguous with an existing range, merge. */
456
457 newr.offset = offset;
458 newr.length = length;
459
460 /* Do a binary search for the position the given range would be
461 inserted if we only considered the starting OFFSET of ranges.
462 Call that position I. Since we also have LENGTH to care for
463 (this is a range afterall), we need to check if the _previous_
464 range overlaps the I range. E.g., calling R the new range:
465
466 #1 - overlaps with previous
467
468 R
469 |-...-|
470 |---| |---| |------| ... |--|
471 0 1 2 N
472
473 I=1
474
475 In the case #1 above, the binary search would return `I=1',
476 meaning, this OFFSET should be inserted at position 1, and the
477 current position 1 should be pushed further (and become 2). But,
478 note that `0' overlaps with R, so we want to merge them.
479
480 A similar consideration needs to be taken if the new range would
481 be contiguous with the previous range:
482
483 #2 - contiguous with previous
484
485 R
486 |-...-|
487 |--| |---| |------| ... |--|
488 0 1 2 N
489
490 I=1
491
492 If there's no overlap with the previous range, as in:
493
494 #3 - not overlapping and not contiguous
495
496 R
497 |-...-|
498 |--| |---| |------| ... |--|
499 0 1 2 N
500
501 I=1
502
503 or if I is 0:
504
505 #4 - R is the range with lowest offset
506
507 R
508 |-...-|
dda83cd7
SM
509 |--| |---| |------| ... |--|
510 0 1 2 N
4e07d55f
PA
511
512 I=0
513
514 ... we just push the new range to I.
515
516 All the 4 cases above need to consider that the new range may
517 also overlap several of the ranges that follow, or that R may be
518 contiguous with the following range, and merge. E.g.,
519
520 #5 - overlapping following ranges
521
522 R
523 |------------------------|
dda83cd7
SM
524 |--| |---| |------| ... |--|
525 0 1 2 N
4e07d55f
PA
526
527 I=0
528
529 or:
530
531 R
532 |-------|
533 |--| |---| |------| ... |--|
534 0 1 2 N
535
536 I=1
537
538 */
539
0c7e6dd8
TT
540 auto i = std::lower_bound (vectorp->begin (), vectorp->end (), newr);
541 if (i > vectorp->begin ())
4e07d55f 542 {
0c7e6dd8 543 struct range &bef = *(i - 1);
4e07d55f 544
0c7e6dd8 545 if (ranges_overlap (bef.offset, bef.length, offset, length))
4e07d55f
PA
546 {
547 /* #1 */
0c7e6dd8
TT
548 ULONGEST l = std::min (bef.offset, offset);
549 ULONGEST h = std::max (bef.offset + bef.length, offset + length);
4e07d55f 550
0c7e6dd8
TT
551 bef.offset = l;
552 bef.length = h - l;
4e07d55f
PA
553 i--;
554 }
0c7e6dd8 555 else if (offset == bef.offset + bef.length)
4e07d55f
PA
556 {
557 /* #2 */
0c7e6dd8 558 bef.length += length;
4e07d55f
PA
559 i--;
560 }
561 else
562 {
563 /* #3 */
0c7e6dd8 564 i = vectorp->insert (i, newr);
4e07d55f
PA
565 }
566 }
567 else
568 {
569 /* #4 */
0c7e6dd8 570 i = vectorp->insert (i, newr);
4e07d55f
PA
571 }
572
573 /* Check whether the ranges following the one we've just added or
574 touched can be folded in (#5 above). */
0c7e6dd8 575 if (i != vectorp->end () && i + 1 < vectorp->end ())
4e07d55f 576 {
4e07d55f 577 int removed = 0;
0c7e6dd8 578 auto next = i + 1;
4e07d55f
PA
579
580 /* Get the range we just touched. */
0c7e6dd8 581 struct range &t = *i;
4e07d55f
PA
582 removed = 0;
583
584 i = next;
0c7e6dd8
TT
585 for (; i < vectorp->end (); i++)
586 {
587 struct range &r = *i;
588 if (r.offset <= t.offset + t.length)
589 {
590 ULONGEST l, h;
591
592 l = std::min (t.offset, r.offset);
593 h = std::max (t.offset + t.length, r.offset + r.length);
594
595 t.offset = l;
596 t.length = h - l;
597
598 removed++;
599 }
600 else
601 {
602 /* If we couldn't merge this one, we won't be able to
603 merge following ones either, since the ranges are
604 always sorted by OFFSET. */
605 break;
606 }
607 }
4e07d55f
PA
608
609 if (removed != 0)
0c7e6dd8 610 vectorp->erase (next, next + removed);
4e07d55f
PA
611 }
612}
613
9a0dc9e3 614void
6b850546
DT
615mark_value_bits_unavailable (struct value *value,
616 LONGEST offset, LONGEST length)
9a0dc9e3
PA
617{
618 insert_into_bit_range_vector (&value->unavailable, offset, length);
619}
620
bdf22206 621void
6b850546
DT
622mark_value_bytes_unavailable (struct value *value,
623 LONGEST offset, LONGEST length)
bdf22206
AB
624{
625 mark_value_bits_unavailable (value,
626 offset * TARGET_CHAR_BIT,
627 length * TARGET_CHAR_BIT);
628}
629
c8c1c22f
PA
630/* Find the first range in RANGES that overlaps the range defined by
631 OFFSET and LENGTH, starting at element POS in the RANGES vector,
632 Returns the index into RANGES where such overlapping range was
633 found, or -1 if none was found. */
634
635static int
0c7e6dd8 636find_first_range_overlap (const std::vector<range> *ranges, int pos,
6b850546 637 LONGEST offset, LONGEST length)
c8c1c22f 638{
c8c1c22f
PA
639 int i;
640
0c7e6dd8
TT
641 for (i = pos; i < ranges->size (); i++)
642 {
643 const range &r = (*ranges)[i];
644 if (ranges_overlap (r.offset, r.length, offset, length))
645 return i;
646 }
c8c1c22f
PA
647
648 return -1;
649}
650
bdf22206
AB
651/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
652 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
653 return non-zero.
654
655 It must always be the case that:
656 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
657
658 It is assumed that memory can be accessed from:
659 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
660 to:
661 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
dda83cd7 662 / TARGET_CHAR_BIT) */
bdf22206
AB
663static int
664memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
665 const gdb_byte *ptr2, size_t offset2_bits,
666 size_t length_bits)
667{
668 gdb_assert (offset1_bits % TARGET_CHAR_BIT
669 == offset2_bits % TARGET_CHAR_BIT);
670
671 if (offset1_bits % TARGET_CHAR_BIT != 0)
672 {
673 size_t bits;
674 gdb_byte mask, b1, b2;
675
676 /* The offset from the base pointers PTR1 and PTR2 is not a complete
677 number of bytes. A number of bits up to either the next exact
678 byte boundary, or LENGTH_BITS (which ever is sooner) will be
679 compared. */
680 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
681 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
682 mask = (1 << bits) - 1;
683
684 if (length_bits < bits)
685 {
686 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
687 bits = length_bits;
688 }
689
690 /* Now load the two bytes and mask off the bits we care about. */
691 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
692 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
693
694 if (b1 != b2)
695 return 1;
696
697 /* Now update the length and offsets to take account of the bits
698 we've just compared. */
699 length_bits -= bits;
700 offset1_bits += bits;
701 offset2_bits += bits;
702 }
703
704 if (length_bits % TARGET_CHAR_BIT != 0)
705 {
706 size_t bits;
707 size_t o1, o2;
708 gdb_byte mask, b1, b2;
709
710 /* The length is not an exact number of bytes. After the previous
711 IF.. block then the offsets are byte aligned, or the
712 length is zero (in which case this code is not reached). Compare
713 a number of bits at the end of the region, starting from an exact
714 byte boundary. */
715 bits = length_bits % TARGET_CHAR_BIT;
716 o1 = offset1_bits + length_bits - bits;
717 o2 = offset2_bits + length_bits - bits;
718
719 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
720 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
721
722 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
723 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
724
725 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
726 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
727
728 if (b1 != b2)
729 return 1;
730
731 length_bits -= bits;
732 }
733
734 if (length_bits > 0)
735 {
736 /* We've now taken care of any stray "bits" at the start, or end of
737 the region to compare, the remainder can be covered with a simple
738 memcmp. */
739 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
740 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
741 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
742
743 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
744 ptr2 + offset2_bits / TARGET_CHAR_BIT,
745 length_bits / TARGET_CHAR_BIT);
746 }
747
748 /* Length is zero, regions match. */
749 return 0;
750}
751
9a0dc9e3
PA
752/* Helper struct for find_first_range_overlap_and_match and
753 value_contents_bits_eq. Keep track of which slot of a given ranges
754 vector have we last looked at. */
bdf22206 755
9a0dc9e3
PA
756struct ranges_and_idx
757{
758 /* The ranges. */
0c7e6dd8 759 const std::vector<range> *ranges;
9a0dc9e3
PA
760
761 /* The range we've last found in RANGES. Given ranges are sorted,
762 we can start the next lookup here. */
763 int idx;
764};
765
766/* Helper function for value_contents_bits_eq. Compare LENGTH bits of
767 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
768 ranges starting at OFFSET2 bits. Return true if the ranges match
769 and fill in *L and *H with the overlapping window relative to
770 (both) OFFSET1 or OFFSET2. */
bdf22206
AB
771
772static int
9a0dc9e3
PA
773find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
774 struct ranges_and_idx *rp2,
6b850546
DT
775 LONGEST offset1, LONGEST offset2,
776 LONGEST length, ULONGEST *l, ULONGEST *h)
c8c1c22f 777{
9a0dc9e3
PA
778 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
779 offset1, length);
780 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
781 offset2, length);
c8c1c22f 782
9a0dc9e3
PA
783 if (rp1->idx == -1 && rp2->idx == -1)
784 {
785 *l = length;
786 *h = length;
787 return 1;
788 }
789 else if (rp1->idx == -1 || rp2->idx == -1)
790 return 0;
791 else
c8c1c22f 792 {
0c7e6dd8 793 const range *r1, *r2;
c8c1c22f
PA
794 ULONGEST l1, h1;
795 ULONGEST l2, h2;
796
0c7e6dd8
TT
797 r1 = &(*rp1->ranges)[rp1->idx];
798 r2 = &(*rp2->ranges)[rp2->idx];
c8c1c22f
PA
799
800 /* Get the unavailable windows intersected by the incoming
801 ranges. The first and last ranges that overlap the argument
802 range may be wider than said incoming arguments ranges. */
325fac50
PA
803 l1 = std::max (offset1, r1->offset);
804 h1 = std::min (offset1 + length, r1->offset + r1->length);
c8c1c22f 805
325fac50
PA
806 l2 = std::max (offset2, r2->offset);
807 h2 = std::min (offset2 + length, offset2 + r2->length);
c8c1c22f
PA
808
809 /* Make them relative to the respective start offsets, so we can
810 compare them for equality. */
811 l1 -= offset1;
812 h1 -= offset1;
813
814 l2 -= offset2;
815 h2 -= offset2;
816
9a0dc9e3 817 /* Different ranges, no match. */
c8c1c22f
PA
818 if (l1 != l2 || h1 != h2)
819 return 0;
820
9a0dc9e3
PA
821 *h = h1;
822 *l = l1;
823 return 1;
824 }
825}
826
827/* Helper function for value_contents_eq. The only difference is that
828 this function is bit rather than byte based.
829
830 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
831 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
832 Return true if the available bits match. */
833
98ead37e 834static bool
9a0dc9e3
PA
835value_contents_bits_eq (const struct value *val1, int offset1,
836 const struct value *val2, int offset2,
837 int length)
838{
839 /* Each array element corresponds to a ranges source (unavailable,
840 optimized out). '1' is for VAL1, '2' for VAL2. */
841 struct ranges_and_idx rp1[2], rp2[2];
842
843 /* See function description in value.h. */
844 gdb_assert (!val1->lazy && !val2->lazy);
845
846 /* We shouldn't be trying to compare past the end of the values. */
847 gdb_assert (offset1 + length
848 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
849 gdb_assert (offset2 + length
850 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
851
852 memset (&rp1, 0, sizeof (rp1));
853 memset (&rp2, 0, sizeof (rp2));
0c7e6dd8
TT
854 rp1[0].ranges = &val1->unavailable;
855 rp2[0].ranges = &val2->unavailable;
856 rp1[1].ranges = &val1->optimized_out;
857 rp2[1].ranges = &val2->optimized_out;
9a0dc9e3
PA
858
859 while (length > 0)
860 {
000339af 861 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
9a0dc9e3
PA
862 int i;
863
864 for (i = 0; i < 2; i++)
865 {
866 ULONGEST l_tmp, h_tmp;
867
868 /* The contents only match equal if the invalid/unavailable
869 contents ranges match as well. */
870 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
871 offset1, offset2, length,
872 &l_tmp, &h_tmp))
98ead37e 873 return false;
9a0dc9e3
PA
874
875 /* We're interested in the lowest/first range found. */
876 if (i == 0 || l_tmp < l)
877 {
878 l = l_tmp;
879 h = h_tmp;
880 }
881 }
882
883 /* Compare the available/valid contents. */
14c88955
TT
884 if (memcmp_with_bit_offsets (val1->contents.get (), offset1,
885 val2->contents.get (), offset2, l) != 0)
98ead37e 886 return false;
c8c1c22f 887
9a0dc9e3
PA
888 length -= h;
889 offset1 += h;
890 offset2 += h;
c8c1c22f
PA
891 }
892
98ead37e 893 return true;
c8c1c22f
PA
894}
895
98ead37e 896bool
6b850546
DT
897value_contents_eq (const struct value *val1, LONGEST offset1,
898 const struct value *val2, LONGEST offset2,
899 LONGEST length)
bdf22206 900{
9a0dc9e3
PA
901 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
902 val2, offset2 * TARGET_CHAR_BIT,
903 length * TARGET_CHAR_BIT);
bdf22206
AB
904}
905
c906108c 906
4d0266a0
TT
907/* The value-history records all the values printed by print commands
908 during this session. */
c906108c 909
4d0266a0 910static std::vector<value_ref_ptr> value_history;
bc3b79fd 911
c906108c
SS
912\f
913/* List of all value objects currently allocated
914 (except for those released by calls to release_value)
915 This is so they can be freed after each command. */
916
062d818d 917static std::vector<value_ref_ptr> all_values;
c906108c 918
3e3d7139
JG
919/* Allocate a lazy value for type TYPE. Its actual content is
920 "lazily" allocated too: the content field of the return value is
921 NULL; it will be allocated when it is fetched from the target. */
c906108c 922
f23631e4 923struct value *
3e3d7139 924allocate_value_lazy (struct type *type)
c906108c 925{
f23631e4 926 struct value *val;
c54eabfa
JK
927
928 /* Call check_typedef on our type to make sure that, if TYPE
929 is a TYPE_CODE_TYPEDEF, its length is set to the length
930 of the target type instead of zero. However, we do not
931 replace the typedef type by the target type, because we want
932 to keep the typedef in order to be able to set the VAL's type
933 description correctly. */
934 check_typedef (type);
c906108c 935
466ce3ae 936 val = new struct value (type);
828d3400
DJ
937
938 /* Values start out on the all_values chain. */
062d818d 939 all_values.emplace_back (val);
828d3400 940
c906108c
SS
941 return val;
942}
943
5fdf6324
AB
944/* The maximum size, in bytes, that GDB will try to allocate for a value.
945 The initial value of 64k was not selected for any specific reason, it is
946 just a reasonable starting point. */
947
948static int max_value_size = 65536; /* 64k bytes */
949
950/* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
951 LONGEST, otherwise GDB will not be able to parse integer values from the
952 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
953 be unable to parse "set max-value-size 2".
954
955 As we want a consistent GDB experience across hosts with different sizes
956 of LONGEST, this arbitrary minimum value was selected, so long as this
957 is bigger than LONGEST on all GDB supported hosts we're fine. */
958
959#define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
960gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
961
962/* Implement the "set max-value-size" command. */
963
964static void
eb4c3f4a 965set_max_value_size (const char *args, int from_tty,
5fdf6324
AB
966 struct cmd_list_element *c)
967{
968 gdb_assert (max_value_size == -1 || max_value_size >= 0);
969
970 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
971 {
972 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
973 error (_("max-value-size set too low, increasing to %d bytes"),
974 max_value_size);
975 }
976}
977
978/* Implement the "show max-value-size" command. */
979
980static void
981show_max_value_size (struct ui_file *file, int from_tty,
982 struct cmd_list_element *c, const char *value)
983{
984 if (max_value_size == -1)
985 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
986 else
987 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
988 max_value_size);
989}
990
991/* Called before we attempt to allocate or reallocate a buffer for the
992 contents of a value. TYPE is the type of the value for which we are
993 allocating the buffer. If the buffer is too large (based on the user
994 controllable setting) then throw an error. If this function returns
995 then we should attempt to allocate the buffer. */
996
997static void
998check_type_length_before_alloc (const struct type *type)
999{
6d8a0a5e 1000 ULONGEST length = TYPE_LENGTH (type);
5fdf6324
AB
1001
1002 if (max_value_size > -1 && length > max_value_size)
1003 {
7d93a1e0 1004 if (type->name () != NULL)
6d8a0a5e
LM
1005 error (_("value of type `%s' requires %s bytes, which is more "
1006 "than max-value-size"), type->name (), pulongest (length));
5fdf6324 1007 else
6d8a0a5e
LM
1008 error (_("value requires %s bytes, which is more than "
1009 "max-value-size"), pulongest (length));
5fdf6324
AB
1010 }
1011}
1012
3e3d7139
JG
1013/* Allocate the contents of VAL if it has not been allocated yet. */
1014
548b762d 1015static void
3e3d7139
JG
1016allocate_value_contents (struct value *val)
1017{
1018 if (!val->contents)
5fdf6324
AB
1019 {
1020 check_type_length_before_alloc (val->enclosing_type);
14c88955
TT
1021 val->contents.reset
1022 ((gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type)));
5fdf6324 1023 }
3e3d7139
JG
1024}
1025
1026/* Allocate a value and its contents for type TYPE. */
1027
1028struct value *
1029allocate_value (struct type *type)
1030{
1031 struct value *val = allocate_value_lazy (type);
a109c7c1 1032
3e3d7139
JG
1033 allocate_value_contents (val);
1034 val->lazy = 0;
1035 return val;
1036}
1037
c906108c 1038/* Allocate a value that has the correct length
938f5214 1039 for COUNT repetitions of type TYPE. */
c906108c 1040
f23631e4 1041struct value *
fba45db2 1042allocate_repeat_value (struct type *type, int count)
c906108c 1043{
22c12a6c
AB
1044 /* Despite the fact that we are really creating an array of TYPE here, we
1045 use the string lower bound as the array lower bound. This seems to
1046 work fine for now. */
1047 int low_bound = current_language->string_lower_bound ();
c906108c
SS
1048 /* FIXME-type-allocation: need a way to free this type when we are
1049 done with it. */
e3506a9f
UW
1050 struct type *array_type
1051 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 1052
e3506a9f 1053 return allocate_value (array_type);
c906108c
SS
1054}
1055
5f5233d4
PA
1056struct value *
1057allocate_computed_value (struct type *type,
dda83cd7
SM
1058 const struct lval_funcs *funcs,
1059 void *closure)
5f5233d4 1060{
41e8491f 1061 struct value *v = allocate_value_lazy (type);
a109c7c1 1062
5f5233d4
PA
1063 VALUE_LVAL (v) = lval_computed;
1064 v->location.computed.funcs = funcs;
1065 v->location.computed.closure = closure;
5f5233d4
PA
1066
1067 return v;
1068}
1069
a7035dbb
JK
1070/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1071
1072struct value *
1073allocate_optimized_out_value (struct type *type)
1074{
1075 struct value *retval = allocate_value_lazy (type);
1076
9a0dc9e3
PA
1077 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1078 set_value_lazy (retval, 0);
a7035dbb
JK
1079 return retval;
1080}
1081
df407dfe
AC
1082/* Accessor methods. */
1083
1084struct type *
0e03807e 1085value_type (const struct value *value)
df407dfe
AC
1086{
1087 return value->type;
1088}
04624583
AC
1089void
1090deprecated_set_value_type (struct value *value, struct type *type)
1091{
1092 value->type = type;
1093}
df407dfe 1094
6b850546 1095LONGEST
0e03807e 1096value_offset (const struct value *value)
df407dfe
AC
1097{
1098 return value->offset;
1099}
f5cf64a7 1100void
6b850546 1101set_value_offset (struct value *value, LONGEST offset)
f5cf64a7
AC
1102{
1103 value->offset = offset;
1104}
df407dfe 1105
6b850546 1106LONGEST
0e03807e 1107value_bitpos (const struct value *value)
df407dfe
AC
1108{
1109 return value->bitpos;
1110}
9bbda503 1111void
6b850546 1112set_value_bitpos (struct value *value, LONGEST bit)
9bbda503
AC
1113{
1114 value->bitpos = bit;
1115}
df407dfe 1116
6b850546 1117LONGEST
0e03807e 1118value_bitsize (const struct value *value)
df407dfe
AC
1119{
1120 return value->bitsize;
1121}
9bbda503 1122void
6b850546 1123set_value_bitsize (struct value *value, LONGEST bit)
9bbda503
AC
1124{
1125 value->bitsize = bit;
1126}
df407dfe 1127
4ea48cc1 1128struct value *
4bf7b526 1129value_parent (const struct value *value)
4ea48cc1 1130{
2c8331b9 1131 return value->parent.get ();
4ea48cc1
DJ
1132}
1133
53ba8333
JB
1134/* See value.h. */
1135
1136void
1137set_value_parent (struct value *value, struct value *parent)
1138{
bbfa6f00 1139 value->parent = value_ref_ptr::new_reference (parent);
53ba8333
JB
1140}
1141
fc1a4b47 1142gdb_byte *
990a07ab
AC
1143value_contents_raw (struct value *value)
1144{
3ae385af
SM
1145 struct gdbarch *arch = get_value_arch (value);
1146 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1147
3e3d7139 1148 allocate_value_contents (value);
14c88955 1149 return value->contents.get () + value->embedded_offset * unit_size;
990a07ab
AC
1150}
1151
fc1a4b47 1152gdb_byte *
990a07ab
AC
1153value_contents_all_raw (struct value *value)
1154{
3e3d7139 1155 allocate_value_contents (value);
14c88955 1156 return value->contents.get ();
990a07ab
AC
1157}
1158
4754a64e 1159struct type *
4bf7b526 1160value_enclosing_type (const struct value *value)
4754a64e
AC
1161{
1162 return value->enclosing_type;
1163}
1164
8264ba82
AG
1165/* Look at value.h for description. */
1166
1167struct type *
1168value_actual_type (struct value *value, int resolve_simple_types,
1169 int *real_type_found)
1170{
1171 struct value_print_options opts;
8264ba82
AG
1172 struct type *result;
1173
1174 get_user_print_options (&opts);
1175
1176 if (real_type_found)
1177 *real_type_found = 0;
1178 result = value_type (value);
1179 if (opts.objectprint)
1180 {
5e34c6c3
LM
1181 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1182 fetch its rtti type. */
78134374
SM
1183 if ((result->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
1184 && (check_typedef (TYPE_TARGET_TYPE (result))->code ()
1185 == TYPE_CODE_STRUCT)
ecf2e90c 1186 && !value_optimized_out (value))
dda83cd7
SM
1187 {
1188 struct type *real_type;
1189
1190 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1191 if (real_type)
1192 {
1193 if (real_type_found)
1194 *real_type_found = 1;
1195 result = real_type;
1196 }
1197 }
8264ba82 1198 else if (resolve_simple_types)
dda83cd7
SM
1199 {
1200 if (real_type_found)
1201 *real_type_found = 1;
1202 result = value_enclosing_type (value);
1203 }
8264ba82
AG
1204 }
1205
1206 return result;
1207}
1208
901461f8
PA
1209void
1210error_value_optimized_out (void)
1211{
1212 error (_("value has been optimized out"));
1213}
1214
0e03807e 1215static void
4e07d55f 1216require_not_optimized_out (const struct value *value)
0e03807e 1217{
0c7e6dd8 1218 if (!value->optimized_out.empty ())
901461f8
PA
1219 {
1220 if (value->lval == lval_register)
1221 error (_("register has not been saved in frame"));
1222 else
1223 error_value_optimized_out ();
1224 }
0e03807e
TT
1225}
1226
4e07d55f
PA
1227static void
1228require_available (const struct value *value)
1229{
0c7e6dd8 1230 if (!value->unavailable.empty ())
8af8e3bc 1231 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1232}
1233
fc1a4b47 1234const gdb_byte *
0e03807e 1235value_contents_for_printing (struct value *value)
46615f07
AC
1236{
1237 if (value->lazy)
1238 value_fetch_lazy (value);
14c88955 1239 return value->contents.get ();
46615f07
AC
1240}
1241
de4127a3
PA
1242const gdb_byte *
1243value_contents_for_printing_const (const struct value *value)
1244{
1245 gdb_assert (!value->lazy);
14c88955 1246 return value->contents.get ();
de4127a3
PA
1247}
1248
0e03807e
TT
1249const gdb_byte *
1250value_contents_all (struct value *value)
1251{
1252 const gdb_byte *result = value_contents_for_printing (value);
1253 require_not_optimized_out (value);
4e07d55f 1254 require_available (value);
0e03807e
TT
1255 return result;
1256}
1257
9a0dc9e3
PA
1258/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1259 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1260
1261static void
0c7e6dd8
TT
1262ranges_copy_adjusted (std::vector<range> *dst_range, int dst_bit_offset,
1263 const std::vector<range> &src_range, int src_bit_offset,
9a0dc9e3
PA
1264 int bit_length)
1265{
0c7e6dd8 1266 for (const range &r : src_range)
9a0dc9e3
PA
1267 {
1268 ULONGEST h, l;
1269
0c7e6dd8
TT
1270 l = std::max (r.offset, (LONGEST) src_bit_offset);
1271 h = std::min (r.offset + r.length,
325fac50 1272 (LONGEST) src_bit_offset + bit_length);
9a0dc9e3
PA
1273
1274 if (l < h)
1275 insert_into_bit_range_vector (dst_range,
1276 dst_bit_offset + (l - src_bit_offset),
1277 h - l);
1278 }
1279}
1280
4875ffdb
PA
1281/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1282 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1283
1284static void
1285value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1286 const struct value *src, int src_bit_offset,
1287 int bit_length)
1288{
1289 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1290 src->unavailable, src_bit_offset,
1291 bit_length);
1292 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1293 src->optimized_out, src_bit_offset,
1294 bit_length);
1295}
1296
3ae385af 1297/* Copy LENGTH target addressable memory units of SRC value's (all) contents
29976f3f
PA
1298 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1299 contents, starting at DST_OFFSET. If unavailable contents are
1300 being copied from SRC, the corresponding DST contents are marked
1301 unavailable accordingly. Neither DST nor SRC may be lazy
1302 values.
1303
1304 It is assumed the contents of DST in the [DST_OFFSET,
1305 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1306
1307void
6b850546
DT
1308value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1309 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1310{
6b850546 1311 LONGEST src_bit_offset, dst_bit_offset, bit_length;
3ae385af
SM
1312 struct gdbarch *arch = get_value_arch (src);
1313 int unit_size = gdbarch_addressable_memory_unit_size (arch);
39d37385
PA
1314
1315 /* A lazy DST would make that this copy operation useless, since as
1316 soon as DST's contents were un-lazied (by a later value_contents
1317 call, say), the contents would be overwritten. A lazy SRC would
1318 mean we'd be copying garbage. */
1319 gdb_assert (!dst->lazy && !src->lazy);
1320
29976f3f
PA
1321 /* The overwritten DST range gets unavailability ORed in, not
1322 replaced. Make sure to remember to implement replacing if it
1323 turns out actually necessary. */
1324 gdb_assert (value_bytes_available (dst, dst_offset, length));
9a0dc9e3
PA
1325 gdb_assert (!value_bits_any_optimized_out (dst,
1326 TARGET_CHAR_BIT * dst_offset,
1327 TARGET_CHAR_BIT * length));
29976f3f 1328
39d37385 1329 /* Copy the data. */
3ae385af
SM
1330 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1331 value_contents_all_raw (src) + src_offset * unit_size,
1332 length * unit_size);
39d37385
PA
1333
1334 /* Copy the meta-data, adjusted. */
3ae385af
SM
1335 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1336 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1337 bit_length = length * unit_size * HOST_CHAR_BIT;
39d37385 1338
4875ffdb
PA
1339 value_ranges_copy_adjusted (dst, dst_bit_offset,
1340 src, src_bit_offset,
1341 bit_length);
39d37385
PA
1342}
1343
29976f3f
PA
1344/* Copy LENGTH bytes of SRC value's (all) contents
1345 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1346 (all) contents, starting at DST_OFFSET. If unavailable contents
1347 are being copied from SRC, the corresponding DST contents are
1348 marked unavailable accordingly. DST must not be lazy. If SRC is
9a0dc9e3 1349 lazy, it will be fetched now.
29976f3f
PA
1350
1351 It is assumed the contents of DST in the [DST_OFFSET,
1352 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1353
1354void
6b850546
DT
1355value_contents_copy (struct value *dst, LONGEST dst_offset,
1356 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1357{
39d37385
PA
1358 if (src->lazy)
1359 value_fetch_lazy (src);
1360
1361 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1362}
1363
d69fe07e 1364int
4bf7b526 1365value_lazy (const struct value *value)
d69fe07e
AC
1366{
1367 return value->lazy;
1368}
1369
dfa52d88
AC
1370void
1371set_value_lazy (struct value *value, int val)
1372{
1373 value->lazy = val;
1374}
1375
4e5d721f 1376int
4bf7b526 1377value_stack (const struct value *value)
4e5d721f
DE
1378{
1379 return value->stack;
1380}
1381
1382void
1383set_value_stack (struct value *value, int val)
1384{
1385 value->stack = val;
1386}
1387
fc1a4b47 1388const gdb_byte *
0fd88904
AC
1389value_contents (struct value *value)
1390{
0e03807e
TT
1391 const gdb_byte *result = value_contents_writeable (value);
1392 require_not_optimized_out (value);
4e07d55f 1393 require_available (value);
0e03807e 1394 return result;
0fd88904
AC
1395}
1396
fc1a4b47 1397gdb_byte *
0fd88904
AC
1398value_contents_writeable (struct value *value)
1399{
1400 if (value->lazy)
1401 value_fetch_lazy (value);
fc0c53a0 1402 return value_contents_raw (value);
0fd88904
AC
1403}
1404
feb13ab0
AC
1405int
1406value_optimized_out (struct value *value)
1407{
691a26f5
AB
1408 /* We can only know if a value is optimized out once we have tried to
1409 fetch it. */
0c7e6dd8 1410 if (value->optimized_out.empty () && value->lazy)
ecf2e90c 1411 {
a70b8144 1412 try
ecf2e90c
DB
1413 {
1414 value_fetch_lazy (value);
1415 }
230d2906 1416 catch (const gdb_exception_error &ex)
ecf2e90c 1417 {
6d7aa592
PA
1418 switch (ex.error)
1419 {
1420 case MEMORY_ERROR:
1421 case OPTIMIZED_OUT_ERROR:
1422 case NOT_AVAILABLE_ERROR:
1423 /* These can normally happen when we try to access an
1424 optimized out or unavailable register, either in a
1425 physical register or spilled to memory. */
1426 break;
1427 default:
1428 throw;
1429 }
ecf2e90c 1430 }
ecf2e90c 1431 }
691a26f5 1432
0c7e6dd8 1433 return !value->optimized_out.empty ();
feb13ab0
AC
1434}
1435
9a0dc9e3
PA
1436/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1437 the following LENGTH bytes. */
eca07816 1438
feb13ab0 1439void
9a0dc9e3 1440mark_value_bytes_optimized_out (struct value *value, int offset, int length)
feb13ab0 1441{
9a0dc9e3
PA
1442 mark_value_bits_optimized_out (value,
1443 offset * TARGET_CHAR_BIT,
1444 length * TARGET_CHAR_BIT);
feb13ab0 1445}
13c3b5f5 1446
9a0dc9e3 1447/* See value.h. */
0e03807e 1448
9a0dc9e3 1449void
6b850546
DT
1450mark_value_bits_optimized_out (struct value *value,
1451 LONGEST offset, LONGEST length)
0e03807e 1452{
9a0dc9e3 1453 insert_into_bit_range_vector (&value->optimized_out, offset, length);
0e03807e
TT
1454}
1455
8cf6f0b1
TT
1456int
1457value_bits_synthetic_pointer (const struct value *value,
6b850546 1458 LONGEST offset, LONGEST length)
8cf6f0b1 1459{
e7303042 1460 if (value->lval != lval_computed
8cf6f0b1
TT
1461 || !value->location.computed.funcs->check_synthetic_pointer)
1462 return 0;
1463 return value->location.computed.funcs->check_synthetic_pointer (value,
1464 offset,
1465 length);
1466}
1467
6b850546 1468LONGEST
4bf7b526 1469value_embedded_offset (const struct value *value)
13c3b5f5
AC
1470{
1471 return value->embedded_offset;
1472}
1473
1474void
6b850546 1475set_value_embedded_offset (struct value *value, LONGEST val)
13c3b5f5
AC
1476{
1477 value->embedded_offset = val;
1478}
b44d461b 1479
6b850546 1480LONGEST
4bf7b526 1481value_pointed_to_offset (const struct value *value)
b44d461b
AC
1482{
1483 return value->pointed_to_offset;
1484}
1485
1486void
6b850546 1487set_value_pointed_to_offset (struct value *value, LONGEST val)
b44d461b
AC
1488{
1489 value->pointed_to_offset = val;
1490}
13bb5560 1491
c8f2448a 1492const struct lval_funcs *
a471c594 1493value_computed_funcs (const struct value *v)
5f5233d4 1494{
a471c594 1495 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1496
1497 return v->location.computed.funcs;
1498}
1499
1500void *
0e03807e 1501value_computed_closure (const struct value *v)
5f5233d4 1502{
0e03807e 1503 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1504
1505 return v->location.computed.closure;
1506}
1507
13bb5560
AC
1508enum lval_type *
1509deprecated_value_lval_hack (struct value *value)
1510{
1511 return &value->lval;
1512}
1513
a471c594
JK
1514enum lval_type
1515value_lval_const (const struct value *value)
1516{
1517 return value->lval;
1518}
1519
42ae5230 1520CORE_ADDR
de4127a3 1521value_address (const struct value *value)
42ae5230 1522{
1a088441 1523 if (value->lval != lval_memory)
42ae5230 1524 return 0;
53ba8333 1525 if (value->parent != NULL)
2c8331b9 1526 return value_address (value->parent.get ()) + value->offset;
9920b434
BH
1527 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1528 {
1529 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1530 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1531 }
1532
1533 return value->location.address + value->offset;
42ae5230
TT
1534}
1535
1536CORE_ADDR
4bf7b526 1537value_raw_address (const struct value *value)
42ae5230 1538{
1a088441 1539 if (value->lval != lval_memory)
42ae5230
TT
1540 return 0;
1541 return value->location.address;
1542}
1543
1544void
1545set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1546{
1a088441 1547 gdb_assert (value->lval == lval_memory);
42ae5230 1548 value->location.address = addr;
13bb5560
AC
1549}
1550
1551struct internalvar **
1552deprecated_value_internalvar_hack (struct value *value)
1553{
1554 return &value->location.internalvar;
1555}
1556
1557struct frame_id *
41b56feb 1558deprecated_value_next_frame_id_hack (struct value *value)
13bb5560 1559{
7c2ba67e 1560 gdb_assert (value->lval == lval_register);
7dc54575 1561 return &value->location.reg.next_frame_id;
13bb5560
AC
1562}
1563
7dc54575 1564int *
13bb5560
AC
1565deprecated_value_regnum_hack (struct value *value)
1566{
7c2ba67e 1567 gdb_assert (value->lval == lval_register);
7dc54575 1568 return &value->location.reg.regnum;
13bb5560 1569}
88e3b34b
AC
1570
1571int
4bf7b526 1572deprecated_value_modifiable (const struct value *value)
88e3b34b
AC
1573{
1574 return value->modifiable;
1575}
990a07ab 1576\f
c906108c
SS
1577/* Return a mark in the value chain. All values allocated after the
1578 mark is obtained (except for those released) are subject to being freed
1579 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1580struct value *
fba45db2 1581value_mark (void)
c906108c 1582{
062d818d
TT
1583 if (all_values.empty ())
1584 return nullptr;
1585 return all_values.back ().get ();
c906108c
SS
1586}
1587
bbfa6f00 1588/* See value.h. */
828d3400 1589
bbfa6f00 1590void
828d3400
DJ
1591value_incref (struct value *val)
1592{
1593 val->reference_count++;
1594}
1595
1596/* Release a reference to VAL, which was acquired with value_incref.
1597 This function is also called to deallocate values from the value
1598 chain. */
1599
3e3d7139 1600void
22bc8444 1601value_decref (struct value *val)
3e3d7139 1602{
466ce3ae 1603 if (val != nullptr)
5f5233d4 1604 {
828d3400
DJ
1605 gdb_assert (val->reference_count > 0);
1606 val->reference_count--;
466ce3ae
TT
1607 if (val->reference_count == 0)
1608 delete val;
5f5233d4 1609 }
3e3d7139
JG
1610}
1611
c906108c
SS
1612/* Free all values allocated since MARK was obtained by value_mark
1613 (except for those released). */
1614void
4bf7b526 1615value_free_to_mark (const struct value *mark)
c906108c 1616{
062d818d
TT
1617 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1618 if (iter == all_values.end ())
1619 all_values.clear ();
1620 else
1621 all_values.erase (iter + 1, all_values.end ());
c906108c
SS
1622}
1623
c906108c
SS
1624/* Remove VAL from the chain all_values
1625 so it will not be freed automatically. */
1626
22bc8444 1627value_ref_ptr
f23631e4 1628release_value (struct value *val)
c906108c 1629{
850645cf
TT
1630 if (val == nullptr)
1631 return value_ref_ptr ();
1632
062d818d
TT
1633 std::vector<value_ref_ptr>::reverse_iterator iter;
1634 for (iter = all_values.rbegin (); iter != all_values.rend (); ++iter)
c906108c 1635 {
062d818d 1636 if (*iter == val)
c906108c 1637 {
062d818d
TT
1638 value_ref_ptr result = *iter;
1639 all_values.erase (iter.base () - 1);
1640 return result;
c906108c
SS
1641 }
1642 }
c906108c 1643
062d818d
TT
1644 /* We must always return an owned reference. Normally this happens
1645 because we transfer the reference from the value chain, but in
1646 this case the value was not on the chain. */
bbfa6f00 1647 return value_ref_ptr::new_reference (val);
e848a8a5
TT
1648}
1649
a6535de1
TT
1650/* See value.h. */
1651
1652std::vector<value_ref_ptr>
4bf7b526 1653value_release_to_mark (const struct value *mark)
c906108c 1654{
a6535de1 1655 std::vector<value_ref_ptr> result;
c906108c 1656
062d818d
TT
1657 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1658 if (iter == all_values.end ())
1659 std::swap (result, all_values);
1660 else
e848a8a5 1661 {
062d818d
TT
1662 std::move (iter + 1, all_values.end (), std::back_inserter (result));
1663 all_values.erase (iter + 1, all_values.end ());
e848a8a5 1664 }
062d818d 1665 std::reverse (result.begin (), result.end ());
a6535de1 1666 return result;
c906108c
SS
1667}
1668
1669/* Return a copy of the value ARG.
1670 It contains the same contents, for same memory address,
1671 but it's a different block of storage. */
1672
f23631e4
AC
1673struct value *
1674value_copy (struct value *arg)
c906108c 1675{
4754a64e 1676 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1677 struct value *val;
1678
1679 if (value_lazy (arg))
1680 val = allocate_value_lazy (encl_type);
1681 else
1682 val = allocate_value (encl_type);
df407dfe 1683 val->type = arg->type;
c906108c 1684 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1685 val->location = arg->location;
df407dfe
AC
1686 val->offset = arg->offset;
1687 val->bitpos = arg->bitpos;
1688 val->bitsize = arg->bitsize;
d69fe07e 1689 val->lazy = arg->lazy;
13c3b5f5 1690 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1691 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1692 val->modifiable = arg->modifiable;
d69fe07e 1693 if (!value_lazy (val))
c906108c 1694 {
990a07ab 1695 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1696 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1697
1698 }
0c7e6dd8
TT
1699 val->unavailable = arg->unavailable;
1700 val->optimized_out = arg->optimized_out;
2c8331b9 1701 val->parent = arg->parent;
5f5233d4
PA
1702 if (VALUE_LVAL (val) == lval_computed)
1703 {
c8f2448a 1704 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1705
1706 if (funcs->copy_closure)
dda83cd7 1707 val->location.computed.closure = funcs->copy_closure (val);
5f5233d4 1708 }
c906108c
SS
1709 return val;
1710}
74bcbdf3 1711
4c082a81
SC
1712/* Return a "const" and/or "volatile" qualified version of the value V.
1713 If CNST is true, then the returned value will be qualified with
1714 "const".
1715 if VOLTL is true, then the returned value will be qualified with
1716 "volatile". */
1717
1718struct value *
1719make_cv_value (int cnst, int voltl, struct value *v)
1720{
1721 struct type *val_type = value_type (v);
1722 struct type *enclosing_type = value_enclosing_type (v);
1723 struct value *cv_val = value_copy (v);
1724
1725 deprecated_set_value_type (cv_val,
1726 make_cv_type (cnst, voltl, val_type, NULL));
1727 set_value_enclosing_type (cv_val,
1728 make_cv_type (cnst, voltl, enclosing_type, NULL));
1729
1730 return cv_val;
1731}
1732
c37f7098
KW
1733/* Return a version of ARG that is non-lvalue. */
1734
1735struct value *
1736value_non_lval (struct value *arg)
1737{
1738 if (VALUE_LVAL (arg) != not_lval)
1739 {
1740 struct type *enc_type = value_enclosing_type (arg);
1741 struct value *val = allocate_value (enc_type);
1742
1743 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1744 TYPE_LENGTH (enc_type));
1745 val->type = arg->type;
1746 set_value_embedded_offset (val, value_embedded_offset (arg));
1747 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1748 return val;
1749 }
1750 return arg;
1751}
1752
6c659fc2
SC
1753/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1754
1755void
1756value_force_lval (struct value *v, CORE_ADDR addr)
1757{
1758 gdb_assert (VALUE_LVAL (v) == not_lval);
1759
1760 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1761 v->lval = lval_memory;
1762 v->location.address = addr;
1763}
1764
74bcbdf3 1765void
0e03807e
TT
1766set_value_component_location (struct value *component,
1767 const struct value *whole)
74bcbdf3 1768{
9920b434
BH
1769 struct type *type;
1770
e81e7f5e
SC
1771 gdb_assert (whole->lval != lval_xcallable);
1772
0e03807e 1773 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1774 VALUE_LVAL (component) = lval_internalvar_component;
1775 else
0e03807e 1776 VALUE_LVAL (component) = whole->lval;
5f5233d4 1777
74bcbdf3 1778 component->location = whole->location;
0e03807e 1779 if (whole->lval == lval_computed)
5f5233d4 1780 {
c8f2448a 1781 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1782
1783 if (funcs->copy_closure)
dda83cd7 1784 component->location.computed.closure = funcs->copy_closure (whole);
5f5233d4 1785 }
9920b434 1786
3c8c6de2
AB
1787 /* If the WHOLE value has a dynamically resolved location property then
1788 update the address of the COMPONENT. */
9920b434
BH
1789 type = value_type (whole);
1790 if (NULL != TYPE_DATA_LOCATION (type)
1791 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1792 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
3c8c6de2
AB
1793
1794 /* Similarly, if the COMPONENT value has a dynamically resolved location
1795 property then update its address. */
1796 type = value_type (component);
1797 if (NULL != TYPE_DATA_LOCATION (type)
1798 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1799 {
1800 /* If the COMPONENT has a dynamic location, and is an
1801 lval_internalvar_component, then we change it to a lval_memory.
1802
1803 Usually a component of an internalvar is created non-lazy, and has
1804 its content immediately copied from the parent internalvar.
1805 However, for components with a dynamic location, the content of
1806 the component is not contained within the parent, but is instead
1807 accessed indirectly. Further, the component will be created as a
1808 lazy value.
1809
1810 By changing the type of the component to lval_memory we ensure
1811 that value_fetch_lazy can successfully load the component.
1812
1813 This solution isn't ideal, but a real fix would require values to
1814 carry around both the parent value contents, and the contents of
1815 any dynamic fields within the parent. This is a substantial
1816 change to how values work in GDB. */
1817 if (VALUE_LVAL (component) == lval_internalvar_component)
1818 {
1819 gdb_assert (value_lazy (component));
1820 VALUE_LVAL (component) = lval_memory;
1821 }
1822 else
1823 gdb_assert (VALUE_LVAL (component) == lval_memory);
1824 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
1825 }
74bcbdf3
PA
1826}
1827
c906108c
SS
1828/* Access to the value history. */
1829
1830/* Record a new value in the value history.
eddf0bae 1831 Returns the absolute history index of the entry. */
c906108c
SS
1832
1833int
f23631e4 1834record_latest_value (struct value *val)
c906108c 1835{
c906108c
SS
1836 /* We don't want this value to have anything to do with the inferior anymore.
1837 In particular, "set $1 = 50" should not affect the variable from which
1838 the value was taken, and fast watchpoints should be able to assume that
1839 a value on the value history never changes. */
d69fe07e 1840 if (value_lazy (val))
c906108c
SS
1841 value_fetch_lazy (val);
1842 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1843 from. This is a bit dubious, because then *&$1 does not just return $1
1844 but the current contents of that location. c'est la vie... */
1845 val->modifiable = 0;
350e1a76 1846
4d0266a0 1847 value_history.push_back (release_value (val));
a109c7c1 1848
4d0266a0 1849 return value_history.size ();
c906108c
SS
1850}
1851
1852/* Return a copy of the value in the history with sequence number NUM. */
1853
f23631e4 1854struct value *
fba45db2 1855access_value_history (int num)
c906108c 1856{
52f0bd74 1857 int absnum = num;
c906108c
SS
1858
1859 if (absnum <= 0)
4d0266a0 1860 absnum += value_history.size ();
c906108c
SS
1861
1862 if (absnum <= 0)
1863 {
1864 if (num == 0)
8a3fe4f8 1865 error (_("The history is empty."));
c906108c 1866 else if (num == 1)
8a3fe4f8 1867 error (_("There is only one value in the history."));
c906108c 1868 else
8a3fe4f8 1869 error (_("History does not go back to $$%d."), -num);
c906108c 1870 }
4d0266a0 1871 if (absnum > value_history.size ())
8a3fe4f8 1872 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1873
1874 absnum--;
1875
4d0266a0 1876 return value_copy (value_history[absnum].get ());
c906108c
SS
1877}
1878
c906108c 1879static void
5fed81ff 1880show_values (const char *num_exp, int from_tty)
c906108c 1881{
52f0bd74 1882 int i;
f23631e4 1883 struct value *val;
c906108c
SS
1884 static int num = 1;
1885
1886 if (num_exp)
1887 {
f132ba9d 1888 /* "show values +" should print from the stored position.
dda83cd7 1889 "show values <exp>" should print around value number <exp>. */
c906108c 1890 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1891 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1892 }
1893 else
1894 {
f132ba9d 1895 /* "show values" means print the last 10 values. */
4d0266a0 1896 num = value_history.size () - 9;
c906108c
SS
1897 }
1898
1899 if (num <= 0)
1900 num = 1;
1901
4d0266a0 1902 for (i = num; i < num + 10 && i <= value_history.size (); i++)
c906108c 1903 {
79a45b7d 1904 struct value_print_options opts;
a109c7c1 1905
c906108c 1906 val = access_value_history (i);
a3f17187 1907 printf_filtered (("$%d = "), i);
79a45b7d
TT
1908 get_user_print_options (&opts);
1909 value_print (val, gdb_stdout, &opts);
a3f17187 1910 printf_filtered (("\n"));
c906108c
SS
1911 }
1912
f132ba9d 1913 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1914 num += 10;
1915
1916 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1917 "show values +". If num_exp is null, this is unnecessary, since
1918 "show values +" is not useful after "show values". */
c906108c 1919 if (from_tty && num_exp)
85c4be7c 1920 set_repeat_arguments ("+");
c906108c
SS
1921}
1922\f
52059ffd
TT
1923enum internalvar_kind
1924{
1925 /* The internal variable is empty. */
1926 INTERNALVAR_VOID,
1927
1928 /* The value of the internal variable is provided directly as
1929 a GDB value object. */
1930 INTERNALVAR_VALUE,
1931
1932 /* A fresh value is computed via a call-back routine on every
1933 access to the internal variable. */
1934 INTERNALVAR_MAKE_VALUE,
1935
1936 /* The internal variable holds a GDB internal convenience function. */
1937 INTERNALVAR_FUNCTION,
1938
1939 /* The variable holds an integer value. */
1940 INTERNALVAR_INTEGER,
1941
1942 /* The variable holds a GDB-provided string. */
1943 INTERNALVAR_STRING,
1944};
1945
1946union internalvar_data
1947{
1948 /* A value object used with INTERNALVAR_VALUE. */
1949 struct value *value;
1950
1951 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1952 struct
1953 {
1954 /* The functions to call. */
1955 const struct internalvar_funcs *functions;
1956
1957 /* The function's user-data. */
1958 void *data;
1959 } make_value;
1960
1961 /* The internal function used with INTERNALVAR_FUNCTION. */
1962 struct
1963 {
1964 struct internal_function *function;
1965 /* True if this is the canonical name for the function. */
1966 int canonical;
1967 } fn;
1968
1969 /* An integer value used with INTERNALVAR_INTEGER. */
1970 struct
1971 {
1972 /* If type is non-NULL, it will be used as the type to generate
1973 a value for this internal variable. If type is NULL, a default
1974 integer type for the architecture is used. */
1975 struct type *type;
1976 LONGEST val;
1977 } integer;
1978
1979 /* A string value used with INTERNALVAR_STRING. */
1980 char *string;
1981};
1982
c906108c
SS
1983/* Internal variables. These are variables within the debugger
1984 that hold values assigned by debugger commands.
1985 The user refers to them with a '$' prefix
1986 that does not appear in the variable names stored internally. */
1987
4fa62494
UW
1988struct internalvar
1989{
1990 struct internalvar *next;
1991 char *name;
4fa62494 1992
78267919
UW
1993 /* We support various different kinds of content of an internal variable.
1994 enum internalvar_kind specifies the kind, and union internalvar_data
1995 provides the data associated with this particular kind. */
1996
52059ffd 1997 enum internalvar_kind kind;
4fa62494 1998
52059ffd 1999 union internalvar_data u;
4fa62494
UW
2000};
2001
c906108c
SS
2002static struct internalvar *internalvars;
2003
3e43a32a
MS
2004/* If the variable does not already exist create it and give it the
2005 value given. If no value is given then the default is zero. */
53e5f3cf 2006static void
0b39b52e 2007init_if_undefined_command (const char* args, int from_tty)
53e5f3cf
AS
2008{
2009 struct internalvar* intvar;
2010
2011 /* Parse the expression - this is taken from set_command(). */
4d01a485 2012 expression_up expr = parse_expression (args);
53e5f3cf
AS
2013
2014 /* Validate the expression.
2015 Was the expression an assignment?
2016 Or even an expression at all? */
2adab65c 2017 if (expr->nelts == 0 || expr->first_opcode () != BINOP_ASSIGN)
53e5f3cf
AS
2018 error (_("Init-if-undefined requires an assignment expression."));
2019
2020 /* Extract the variable from the parsed expression.
2021 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2022 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
2023 error (_("The first parameter to init-if-undefined "
2024 "should be a GDB variable."));
53e5f3cf
AS
2025 intvar = expr->elts[2].internalvar;
2026
2027 /* Only evaluate the expression if the lvalue is void.
85102364 2028 This may still fail if the expression is invalid. */
78267919 2029 if (intvar->kind == INTERNALVAR_VOID)
4d01a485 2030 evaluate_expression (expr.get ());
53e5f3cf
AS
2031}
2032
2033
c906108c
SS
2034/* Look up an internal variable with name NAME. NAME should not
2035 normally include a dollar sign.
2036
2037 If the specified internal variable does not exist,
c4a3d09a 2038 the return value is NULL. */
c906108c
SS
2039
2040struct internalvar *
bc3b79fd 2041lookup_only_internalvar (const char *name)
c906108c 2042{
52f0bd74 2043 struct internalvar *var;
c906108c
SS
2044
2045 for (var = internalvars; var; var = var->next)
5cb316ef 2046 if (strcmp (var->name, name) == 0)
c906108c
SS
2047 return var;
2048
c4a3d09a
MF
2049 return NULL;
2050}
2051
eb3ff9a5
PA
2052/* Complete NAME by comparing it to the names of internal
2053 variables. */
d55637df 2054
eb3ff9a5
PA
2055void
2056complete_internalvar (completion_tracker &tracker, const char *name)
d55637df 2057{
d55637df
TT
2058 struct internalvar *var;
2059 int len;
2060
2061 len = strlen (name);
2062
2063 for (var = internalvars; var; var = var->next)
2064 if (strncmp (var->name, name, len) == 0)
b02f78f9 2065 tracker.add_completion (make_unique_xstrdup (var->name));
d55637df 2066}
c4a3d09a
MF
2067
2068/* Create an internal variable with name NAME and with a void value.
2069 NAME should not normally include a dollar sign. */
2070
2071struct internalvar *
bc3b79fd 2072create_internalvar (const char *name)
c4a3d09a 2073{
8d749320 2074 struct internalvar *var = XNEW (struct internalvar);
a109c7c1 2075
395f9c91 2076 var->name = xstrdup (name);
78267919 2077 var->kind = INTERNALVAR_VOID;
c906108c
SS
2078 var->next = internalvars;
2079 internalvars = var;
2080 return var;
2081}
2082
4aa995e1
PA
2083/* Create an internal variable with name NAME and register FUN as the
2084 function that value_of_internalvar uses to create a value whenever
2085 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
2086 dollar sign. DATA is passed uninterpreted to FUN when it is
2087 called. CLEANUP, if not NULL, is called when the internal variable
2088 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
2089
2090struct internalvar *
22d2b532
SDJ
2091create_internalvar_type_lazy (const char *name,
2092 const struct internalvar_funcs *funcs,
2093 void *data)
4aa995e1 2094{
4fa62494 2095 struct internalvar *var = create_internalvar (name);
a109c7c1 2096
78267919 2097 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
2098 var->u.make_value.functions = funcs;
2099 var->u.make_value.data = data;
4aa995e1
PA
2100 return var;
2101}
c4a3d09a 2102
22d2b532
SDJ
2103/* See documentation in value.h. */
2104
2105int
2106compile_internalvar_to_ax (struct internalvar *var,
2107 struct agent_expr *expr,
2108 struct axs_value *value)
2109{
2110 if (var->kind != INTERNALVAR_MAKE_VALUE
2111 || var->u.make_value.functions->compile_to_ax == NULL)
2112 return 0;
2113
2114 var->u.make_value.functions->compile_to_ax (var, expr, value,
2115 var->u.make_value.data);
2116 return 1;
2117}
2118
c4a3d09a
MF
2119/* Look up an internal variable with name NAME. NAME should not
2120 normally include a dollar sign.
2121
2122 If the specified internal variable does not exist,
2123 one is created, with a void value. */
2124
2125struct internalvar *
bc3b79fd 2126lookup_internalvar (const char *name)
c4a3d09a
MF
2127{
2128 struct internalvar *var;
2129
2130 var = lookup_only_internalvar (name);
2131 if (var)
2132 return var;
2133
2134 return create_internalvar (name);
2135}
2136
78267919
UW
2137/* Return current value of internal variable VAR. For variables that
2138 are not inherently typed, use a value type appropriate for GDBARCH. */
2139
f23631e4 2140struct value *
78267919 2141value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2142{
f23631e4 2143 struct value *val;
0914bcdb
SS
2144 struct trace_state_variable *tsv;
2145
2146 /* If there is a trace state variable of the same name, assume that
2147 is what we really want to see. */
2148 tsv = find_trace_state_variable (var->name);
2149 if (tsv)
2150 {
2151 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2152 &(tsv->value));
2153 if (tsv->value_known)
2154 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2155 tsv->value);
2156 else
2157 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2158 return val;
2159 }
c906108c 2160
78267919 2161 switch (var->kind)
5f5233d4 2162 {
78267919
UW
2163 case INTERNALVAR_VOID:
2164 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2165 break;
4fa62494 2166
78267919
UW
2167 case INTERNALVAR_FUNCTION:
2168 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2169 break;
4fa62494 2170
cab0c772
UW
2171 case INTERNALVAR_INTEGER:
2172 if (!var->u.integer.type)
78267919 2173 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2174 var->u.integer.val);
78267919 2175 else
cab0c772
UW
2176 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2177 break;
2178
78267919
UW
2179 case INTERNALVAR_STRING:
2180 val = value_cstring (var->u.string, strlen (var->u.string),
2181 builtin_type (gdbarch)->builtin_char);
2182 break;
4fa62494 2183
78267919
UW
2184 case INTERNALVAR_VALUE:
2185 val = value_copy (var->u.value);
4aa995e1
PA
2186 if (value_lazy (val))
2187 value_fetch_lazy (val);
78267919 2188 break;
4aa995e1 2189
78267919 2190 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2191 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2192 var->u.make_value.data);
78267919
UW
2193 break;
2194
2195 default:
9b20d036 2196 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2197 }
2198
2199 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2200 on this value go back to affect the original internal variable.
2201
2202 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
30baf67b 2203 no underlying modifiable state in the internal variable.
78267919
UW
2204
2205 Likewise, if the variable's value is a computed lvalue, we want
2206 references to it to produce another computed lvalue, where
2207 references and assignments actually operate through the
2208 computed value's functions.
2209
2210 This means that internal variables with computed values
2211 behave a little differently from other internal variables:
2212 assignments to them don't just replace the previous value
2213 altogether. At the moment, this seems like the behavior we
2214 want. */
2215
2216 if (var->kind != INTERNALVAR_MAKE_VALUE
2217 && val->lval != lval_computed)
2218 {
2219 VALUE_LVAL (val) = lval_internalvar;
2220 VALUE_INTERNALVAR (val) = var;
5f5233d4 2221 }
d3c139e9 2222
4fa62494
UW
2223 return val;
2224}
d3c139e9 2225
4fa62494
UW
2226int
2227get_internalvar_integer (struct internalvar *var, LONGEST *result)
2228{
3158c6ed 2229 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2230 {
cab0c772
UW
2231 *result = var->u.integer.val;
2232 return 1;
3158c6ed 2233 }
d3c139e9 2234
3158c6ed
PA
2235 if (var->kind == INTERNALVAR_VALUE)
2236 {
2237 struct type *type = check_typedef (value_type (var->u.value));
2238
78134374 2239 if (type->code () == TYPE_CODE_INT)
3158c6ed
PA
2240 {
2241 *result = value_as_long (var->u.value);
2242 return 1;
2243 }
4fa62494 2244 }
3158c6ed
PA
2245
2246 return 0;
4fa62494 2247}
d3c139e9 2248
4fa62494
UW
2249static int
2250get_internalvar_function (struct internalvar *var,
2251 struct internal_function **result)
2252{
78267919 2253 switch (var->kind)
d3c139e9 2254 {
78267919
UW
2255 case INTERNALVAR_FUNCTION:
2256 *result = var->u.fn.function;
4fa62494 2257 return 1;
d3c139e9 2258
4fa62494
UW
2259 default:
2260 return 0;
2261 }
c906108c
SS
2262}
2263
2264void
6b850546
DT
2265set_internalvar_component (struct internalvar *var,
2266 LONGEST offset, LONGEST bitpos,
2267 LONGEST bitsize, struct value *newval)
c906108c 2268{
4fa62494 2269 gdb_byte *addr;
3ae385af
SM
2270 struct gdbarch *arch;
2271 int unit_size;
c906108c 2272
78267919 2273 switch (var->kind)
4fa62494 2274 {
78267919
UW
2275 case INTERNALVAR_VALUE:
2276 addr = value_contents_writeable (var->u.value);
3ae385af
SM
2277 arch = get_value_arch (var->u.value);
2278 unit_size = gdbarch_addressable_memory_unit_size (arch);
4fa62494
UW
2279
2280 if (bitsize)
50810684 2281 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2282 value_as_long (newval), bitpos, bitsize);
2283 else
3ae385af 2284 memcpy (addr + offset * unit_size, value_contents (newval),
4fa62494
UW
2285 TYPE_LENGTH (value_type (newval)));
2286 break;
78267919
UW
2287
2288 default:
2289 /* We can never get a component of any other kind. */
9b20d036 2290 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2291 }
c906108c
SS
2292}
2293
2294void
f23631e4 2295set_internalvar (struct internalvar *var, struct value *val)
c906108c 2296{
78267919 2297 enum internalvar_kind new_kind;
4fa62494 2298 union internalvar_data new_data = { 0 };
c906108c 2299
78267919 2300 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2301 error (_("Cannot overwrite convenience function %s"), var->name);
2302
4fa62494 2303 /* Prepare new contents. */
78134374 2304 switch (check_typedef (value_type (val))->code ())
4fa62494
UW
2305 {
2306 case TYPE_CODE_VOID:
78267919 2307 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2308 break;
2309
2310 case TYPE_CODE_INTERNAL_FUNCTION:
2311 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2312 new_kind = INTERNALVAR_FUNCTION;
2313 get_internalvar_function (VALUE_INTERNALVAR (val),
2314 &new_data.fn.function);
2315 /* Copies created here are never canonical. */
4fa62494
UW
2316 break;
2317
4fa62494 2318 default:
78267919 2319 new_kind = INTERNALVAR_VALUE;
895dafa6
TT
2320 struct value *copy = value_copy (val);
2321 copy->modifiable = 1;
4fa62494
UW
2322
2323 /* Force the value to be fetched from the target now, to avoid problems
2324 later when this internalvar is referenced and the target is gone or
2325 has changed. */
895dafa6
TT
2326 if (value_lazy (copy))
2327 value_fetch_lazy (copy);
4fa62494
UW
2328
2329 /* Release the value from the value chain to prevent it from being
2330 deleted by free_all_values. From here on this function should not
2331 call error () until new_data is installed into the var->u to avoid
2332 leaking memory. */
895dafa6 2333 new_data.value = release_value (copy).release ();
9920b434
BH
2334
2335 /* Internal variables which are created from values with a dynamic
dda83cd7
SM
2336 location don't need the location property of the origin anymore.
2337 The resolved dynamic location is used prior then any other address
2338 when accessing the value.
2339 If we keep it, we would still refer to the origin value.
2340 Remove the location property in case it exist. */
7aa91313 2341 value_type (new_data.value)->remove_dyn_prop (DYN_PROP_DATA_LOCATION);
9920b434 2342
4fa62494
UW
2343 break;
2344 }
2345
2346 /* Clean up old contents. */
2347 clear_internalvar (var);
2348
2349 /* Switch over. */
78267919 2350 var->kind = new_kind;
4fa62494 2351 var->u = new_data;
c906108c
SS
2352 /* End code which must not call error(). */
2353}
2354
4fa62494
UW
2355void
2356set_internalvar_integer (struct internalvar *var, LONGEST l)
2357{
2358 /* Clean up old contents. */
2359 clear_internalvar (var);
2360
cab0c772
UW
2361 var->kind = INTERNALVAR_INTEGER;
2362 var->u.integer.type = NULL;
2363 var->u.integer.val = l;
78267919
UW
2364}
2365
2366void
2367set_internalvar_string (struct internalvar *var, const char *string)
2368{
2369 /* Clean up old contents. */
2370 clear_internalvar (var);
2371
2372 var->kind = INTERNALVAR_STRING;
2373 var->u.string = xstrdup (string);
4fa62494
UW
2374}
2375
2376static void
2377set_internalvar_function (struct internalvar *var, struct internal_function *f)
2378{
2379 /* Clean up old contents. */
2380 clear_internalvar (var);
2381
78267919
UW
2382 var->kind = INTERNALVAR_FUNCTION;
2383 var->u.fn.function = f;
2384 var->u.fn.canonical = 1;
2385 /* Variables installed here are always the canonical version. */
4fa62494
UW
2386}
2387
2388void
2389clear_internalvar (struct internalvar *var)
2390{
2391 /* Clean up old contents. */
78267919 2392 switch (var->kind)
4fa62494 2393 {
78267919 2394 case INTERNALVAR_VALUE:
22bc8444 2395 value_decref (var->u.value);
78267919
UW
2396 break;
2397
2398 case INTERNALVAR_STRING:
2399 xfree (var->u.string);
4fa62494
UW
2400 break;
2401
22d2b532
SDJ
2402 case INTERNALVAR_MAKE_VALUE:
2403 if (var->u.make_value.functions->destroy != NULL)
2404 var->u.make_value.functions->destroy (var->u.make_value.data);
2405 break;
2406
4fa62494 2407 default:
4fa62494
UW
2408 break;
2409 }
2410
78267919
UW
2411 /* Reset to void kind. */
2412 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2413}
2414
baf20f76 2415const char *
4bf7b526 2416internalvar_name (const struct internalvar *var)
c906108c
SS
2417{
2418 return var->name;
2419}
2420
4fa62494
UW
2421static struct internal_function *
2422create_internal_function (const char *name,
2423 internal_function_fn handler, void *cookie)
bc3b79fd 2424{
bc3b79fd 2425 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2426
bc3b79fd
TJB
2427 ifn->name = xstrdup (name);
2428 ifn->handler = handler;
2429 ifn->cookie = cookie;
4fa62494 2430 return ifn;
bc3b79fd
TJB
2431}
2432
91f87213 2433const char *
bc3b79fd
TJB
2434value_internal_function_name (struct value *val)
2435{
4fa62494
UW
2436 struct internal_function *ifn;
2437 int result;
2438
2439 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2440 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2441 gdb_assert (result);
2442
bc3b79fd
TJB
2443 return ifn->name;
2444}
2445
2446struct value *
d452c4bc
UW
2447call_internal_function (struct gdbarch *gdbarch,
2448 const struct language_defn *language,
2449 struct value *func, int argc, struct value **argv)
bc3b79fd 2450{
4fa62494
UW
2451 struct internal_function *ifn;
2452 int result;
2453
2454 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2455 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2456 gdb_assert (result);
2457
d452c4bc 2458 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2459}
2460
2461/* The 'function' command. This does nothing -- it is just a
2462 placeholder to let "help function NAME" work. This is also used as
2463 the implementation of the sub-command that is created when
2464 registering an internal function. */
2465static void
981a3fb3 2466function_command (const char *command, int from_tty)
bc3b79fd
TJB
2467{
2468 /* Do nothing. */
2469}
2470
1a6d41c6
TT
2471/* Helper function that does the work for add_internal_function. */
2472
2473static struct cmd_list_element *
2474do_add_internal_function (const char *name, const char *doc,
2475 internal_function_fn handler, void *cookie)
bc3b79fd 2476{
4fa62494 2477 struct internal_function *ifn;
bc3b79fd 2478 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2479
2480 ifn = create_internal_function (name, handler, cookie);
2481 set_internalvar_function (var, ifn);
bc3b79fd 2482
3ea16160 2483 return add_cmd (name, no_class, function_command, doc, &functionlist);
1a6d41c6
TT
2484}
2485
2486/* See value.h. */
2487
2488void
2489add_internal_function (const char *name, const char *doc,
2490 internal_function_fn handler, void *cookie)
2491{
2492 do_add_internal_function (name, doc, handler, cookie);
2493}
2494
2495/* See value.h. */
2496
2497void
3ea16160
TT
2498add_internal_function (gdb::unique_xmalloc_ptr<char> &&name,
2499 gdb::unique_xmalloc_ptr<char> &&doc,
1a6d41c6
TT
2500 internal_function_fn handler, void *cookie)
2501{
2502 struct cmd_list_element *cmd
3ea16160 2503 = do_add_internal_function (name.get (), doc.get (), handler, cookie);
1a6d41c6
TT
2504 doc.release ();
2505 cmd->doc_allocated = 1;
3ea16160
TT
2506 name.release ();
2507 cmd->name_allocated = 1;
bc3b79fd
TJB
2508}
2509
ae5a43e0
DJ
2510/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2511 prevent cycles / duplicates. */
2512
4e7a5ef5 2513void
ae5a43e0
DJ
2514preserve_one_value (struct value *value, struct objfile *objfile,
2515 htab_t copied_types)
2516{
344e9841 2517 if (value->type->objfile () == objfile)
ae5a43e0
DJ
2518 value->type = copy_type_recursive (objfile, value->type, copied_types);
2519
344e9841 2520 if (value->enclosing_type->objfile () == objfile)
ae5a43e0
DJ
2521 value->enclosing_type = copy_type_recursive (objfile,
2522 value->enclosing_type,
2523 copied_types);
2524}
2525
78267919
UW
2526/* Likewise for internal variable VAR. */
2527
2528static void
2529preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2530 htab_t copied_types)
2531{
2532 switch (var->kind)
2533 {
cab0c772 2534 case INTERNALVAR_INTEGER:
344e9841 2535 if (var->u.integer.type && var->u.integer.type->objfile () == objfile)
cab0c772
UW
2536 var->u.integer.type
2537 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2538 break;
2539
78267919
UW
2540 case INTERNALVAR_VALUE:
2541 preserve_one_value (var->u.value, objfile, copied_types);
2542 break;
2543 }
2544}
2545
ae5a43e0
DJ
2546/* Update the internal variables and value history when OBJFILE is
2547 discarded; we must copy the types out of the objfile. New global types
2548 will be created for every convenience variable which currently points to
2549 this objfile's types, and the convenience variables will be adjusted to
2550 use the new global types. */
c906108c
SS
2551
2552void
ae5a43e0 2553preserve_values (struct objfile *objfile)
c906108c 2554{
52f0bd74 2555 struct internalvar *var;
c906108c 2556
ae5a43e0
DJ
2557 /* Create the hash table. We allocate on the objfile's obstack, since
2558 it is soon to be deleted. */
6108fd18 2559 htab_up copied_types = create_copied_types_hash (objfile);
ae5a43e0 2560
4d0266a0 2561 for (const value_ref_ptr &item : value_history)
6108fd18 2562 preserve_one_value (item.get (), objfile, copied_types.get ());
ae5a43e0
DJ
2563
2564 for (var = internalvars; var; var = var->next)
6108fd18 2565 preserve_one_internalvar (var, objfile, copied_types.get ());
ae5a43e0 2566
6108fd18 2567 preserve_ext_lang_values (objfile, copied_types.get ());
c906108c
SS
2568}
2569
2570static void
ad25e423 2571show_convenience (const char *ignore, int from_tty)
c906108c 2572{
e17c207e 2573 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2574 struct internalvar *var;
c906108c 2575 int varseen = 0;
79a45b7d 2576 struct value_print_options opts;
c906108c 2577
79a45b7d 2578 get_user_print_options (&opts);
c906108c
SS
2579 for (var = internalvars; var; var = var->next)
2580 {
c709acd1 2581
c906108c
SS
2582 if (!varseen)
2583 {
2584 varseen = 1;
2585 }
a3f17187 2586 printf_filtered (("$%s = "), var->name);
c709acd1 2587
a70b8144 2588 try
c709acd1
PA
2589 {
2590 struct value *val;
2591
2592 val = value_of_internalvar (gdbarch, var);
2593 value_print (val, gdb_stdout, &opts);
2594 }
230d2906 2595 catch (const gdb_exception_error &ex)
492d29ea 2596 {
7f6aba03
TT
2597 fprintf_styled (gdb_stdout, metadata_style.style (),
2598 _("<error: %s>"), ex.what ());
492d29ea 2599 }
492d29ea 2600
a3f17187 2601 printf_filtered (("\n"));
c906108c
SS
2602 }
2603 if (!varseen)
f47f77df
DE
2604 {
2605 /* This text does not mention convenience functions on purpose.
2606 The user can't create them except via Python, and if Python support
2607 is installed this message will never be printed ($_streq will
2608 exist). */
2609 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2610 "Convenience variables have "
2611 "names starting with \"$\";\n"
2612 "use \"set\" as in \"set "
2613 "$foo = 5\" to define them.\n"));
2614 }
c906108c
SS
2615}
2616\f
ba18742c
SM
2617
2618/* See value.h. */
e81e7f5e
SC
2619
2620struct value *
ba18742c 2621value_from_xmethod (xmethod_worker_up &&worker)
e81e7f5e 2622{
ba18742c 2623 struct value *v;
e81e7f5e 2624
ba18742c
SM
2625 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2626 v->lval = lval_xcallable;
2627 v->location.xm_worker = worker.release ();
2628 v->modifiable = 0;
e81e7f5e 2629
ba18742c 2630 return v;
e81e7f5e
SC
2631}
2632
2ce1cdbf
DE
2633/* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2634
2635struct type *
6b1747cd 2636result_type_of_xmethod (struct value *method, gdb::array_view<value *> argv)
2ce1cdbf 2637{
78134374 2638 gdb_assert (value_type (method)->code () == TYPE_CODE_XMETHOD
6b1747cd 2639 && method->lval == lval_xcallable && !argv.empty ());
2ce1cdbf 2640
6b1747cd 2641 return method->location.xm_worker->get_result_type (argv[0], argv.slice (1));
2ce1cdbf
DE
2642}
2643
e81e7f5e
SC
2644/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2645
2646struct value *
6b1747cd 2647call_xmethod (struct value *method, gdb::array_view<value *> argv)
e81e7f5e 2648{
78134374 2649 gdb_assert (value_type (method)->code () == TYPE_CODE_XMETHOD
6b1747cd 2650 && method->lval == lval_xcallable && !argv.empty ());
e81e7f5e 2651
6b1747cd 2652 return method->location.xm_worker->invoke (argv[0], argv.slice (1));
e81e7f5e
SC
2653}
2654\f
c906108c
SS
2655/* Extract a value as a C number (either long or double).
2656 Knows how to convert fixed values to double, or
2657 floating values to long.
2658 Does not deallocate the value. */
2659
2660LONGEST
f23631e4 2661value_as_long (struct value *val)
c906108c
SS
2662{
2663 /* This coerces arrays and functions, which is necessary (e.g.
2664 in disassemble_command). It also dereferences references, which
2665 I suspect is the most logical thing to do. */
994b9211 2666 val = coerce_array (val);
0fd88904 2667 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2668}
2669
581e13c1 2670/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2671 Note that val's type may not actually be a pointer; value_as_long
2672 handles all the cases. */
c906108c 2673CORE_ADDR
f23631e4 2674value_as_address (struct value *val)
c906108c 2675{
50810684
UW
2676 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2677
c906108c
SS
2678 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2679 whether we want this to be true eventually. */
2680#if 0
bf6ae464 2681 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2682 non-address (e.g. argument to "signal", "info break", etc.), or
2683 for pointers to char, in which the low bits *are* significant. */
50810684 2684 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2685#else
f312f057
JB
2686
2687 /* There are several targets (IA-64, PowerPC, and others) which
2688 don't represent pointers to functions as simply the address of
2689 the function's entry point. For example, on the IA-64, a
2690 function pointer points to a two-word descriptor, generated by
2691 the linker, which contains the function's entry point, and the
2692 value the IA-64 "global pointer" register should have --- to
2693 support position-independent code. The linker generates
2694 descriptors only for those functions whose addresses are taken.
2695
2696 On such targets, it's difficult for GDB to convert an arbitrary
2697 function address into a function pointer; it has to either find
2698 an existing descriptor for that function, or call malloc and
2699 build its own. On some targets, it is impossible for GDB to
2700 build a descriptor at all: the descriptor must contain a jump
2701 instruction; data memory cannot be executed; and code memory
2702 cannot be modified.
2703
2704 Upon entry to this function, if VAL is a value of type `function'
2705 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2706 value_address (val) is the address of the function. This is what
f312f057
JB
2707 you'll get if you evaluate an expression like `main'. The call
2708 to COERCE_ARRAY below actually does all the usual unary
2709 conversions, which includes converting values of type `function'
2710 to `pointer to function'. This is the challenging conversion
2711 discussed above. Then, `unpack_long' will convert that pointer
2712 back into an address.
2713
2714 So, suppose the user types `disassemble foo' on an architecture
2715 with a strange function pointer representation, on which GDB
2716 cannot build its own descriptors, and suppose further that `foo'
2717 has no linker-built descriptor. The address->pointer conversion
2718 will signal an error and prevent the command from running, even
2719 though the next step would have been to convert the pointer
2720 directly back into the same address.
2721
2722 The following shortcut avoids this whole mess. If VAL is a
2723 function, just return its address directly. */
78134374
SM
2724 if (value_type (val)->code () == TYPE_CODE_FUNC
2725 || value_type (val)->code () == TYPE_CODE_METHOD)
42ae5230 2726 return value_address (val);
f312f057 2727
994b9211 2728 val = coerce_array (val);
fc0c74b1
AC
2729
2730 /* Some architectures (e.g. Harvard), map instruction and data
2731 addresses onto a single large unified address space. For
2732 instance: An architecture may consider a large integer in the
2733 range 0x10000000 .. 0x1000ffff to already represent a data
2734 addresses (hence not need a pointer to address conversion) while
2735 a small integer would still need to be converted integer to
2736 pointer to address. Just assume such architectures handle all
2737 integer conversions in a single function. */
2738
2739 /* JimB writes:
2740
2741 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2742 must admonish GDB hackers to make sure its behavior matches the
2743 compiler's, whenever possible.
2744
2745 In general, I think GDB should evaluate expressions the same way
2746 the compiler does. When the user copies an expression out of
2747 their source code and hands it to a `print' command, they should
2748 get the same value the compiler would have computed. Any
2749 deviation from this rule can cause major confusion and annoyance,
2750 and needs to be justified carefully. In other words, GDB doesn't
2751 really have the freedom to do these conversions in clever and
2752 useful ways.
2753
2754 AndrewC pointed out that users aren't complaining about how GDB
2755 casts integers to pointers; they are complaining that they can't
2756 take an address from a disassembly listing and give it to `x/i'.
2757 This is certainly important.
2758
79dd2d24 2759 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2760 makes it possible for GDB to "get it right" in all circumstances
2761 --- the target has complete control over how things get done, so
2762 people can Do The Right Thing for their target without breaking
2763 anyone else. The standard doesn't specify how integers get
2764 converted to pointers; usually, the ABI doesn't either, but
2765 ABI-specific code is a more reasonable place to handle it. */
2766
78134374 2767 if (value_type (val)->code () != TYPE_CODE_PTR
aa006118 2768 && !TYPE_IS_REFERENCE (value_type (val))
50810684
UW
2769 && gdbarch_integer_to_address_p (gdbarch))
2770 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2771 value_contents (val));
fc0c74b1 2772
0fd88904 2773 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2774#endif
2775}
2776\f
2777/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2778 as a long, or as a double, assuming the raw data is described
2779 by type TYPE. Knows how to convert different sizes of values
2780 and can convert between fixed and floating point. We don't assume
2781 any alignment for the raw data. Return value is in host byte order.
2782
2783 If you want functions and arrays to be coerced to pointers, and
2784 references to be dereferenced, call value_as_long() instead.
2785
2786 C++: It is assumed that the front-end has taken care of
2787 all matters concerning pointers to members. A pointer
2788 to member which reaches here is considered to be equivalent
2789 to an INT (or some size). After all, it is only an offset. */
2790
2791LONGEST
fc1a4b47 2792unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2793{
09584414 2794 if (is_fixed_point_type (type))
d19937a7 2795 type = type->fixed_point_type_base_type ();
09584414 2796
34877895 2797 enum bfd_endian byte_order = type_byte_order (type);
78134374 2798 enum type_code code = type->code ();
52f0bd74 2799 int len = TYPE_LENGTH (type);
c6d940a9 2800 int nosign = type->is_unsigned ();
c906108c 2801
c906108c
SS
2802 switch (code)
2803 {
2804 case TYPE_CODE_TYPEDEF:
2805 return unpack_long (check_typedef (type), valaddr);
2806 case TYPE_CODE_ENUM:
4f2aea11 2807 case TYPE_CODE_FLAGS:
c906108c
SS
2808 case TYPE_CODE_BOOL:
2809 case TYPE_CODE_INT:
2810 case TYPE_CODE_CHAR:
2811 case TYPE_CODE_RANGE:
0d5de010 2812 case TYPE_CODE_MEMBERPTR:
4e962e74
TT
2813 {
2814 LONGEST result;
20a5fcbd
TT
2815
2816 if (type->bit_size_differs_p ())
2817 {
2818 unsigned bit_off = type->bit_offset ();
2819 unsigned bit_size = type->bit_size ();
2820 if (bit_size == 0)
2821 {
2822 /* unpack_bits_as_long doesn't handle this case the
2823 way we'd like, so handle it here. */
2824 result = 0;
2825 }
2826 else
2827 result = unpack_bits_as_long (type, valaddr, bit_off, bit_size);
2828 }
4e962e74 2829 else
20a5fcbd
TT
2830 {
2831 if (nosign)
2832 result = extract_unsigned_integer (valaddr, len, byte_order);
2833 else
2834 result = extract_signed_integer (valaddr, len, byte_order);
2835 }
4e962e74 2836 if (code == TYPE_CODE_RANGE)
599088e3 2837 result += type->bounds ()->bias;
4e962e74
TT
2838 return result;
2839 }
c906108c
SS
2840
2841 case TYPE_CODE_FLT:
4ef30785 2842 case TYPE_CODE_DECFLOAT:
50637b26 2843 return target_float_to_longest (valaddr, type);
4ef30785 2844
09584414
JB
2845 case TYPE_CODE_FIXED_POINT:
2846 {
2847 gdb_mpq vq;
c9f0b43f
JB
2848 vq.read_fixed_point (gdb::make_array_view (valaddr, len),
2849 byte_order, nosign,
e6fcee3a 2850 type->fixed_point_scaling_factor ());
09584414
JB
2851
2852 gdb_mpz vz;
2853 mpz_tdiv_q (vz.val, mpq_numref (vq.val), mpq_denref (vq.val));
2854 return vz.as_integer<LONGEST> ();
2855 }
2856
c906108c
SS
2857 case TYPE_CODE_PTR:
2858 case TYPE_CODE_REF:
aa006118 2859 case TYPE_CODE_RVALUE_REF:
c906108c 2860 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
dda83cd7 2861 whether we want this to be true eventually. */
4478b372 2862 return extract_typed_address (valaddr, type);
c906108c 2863
c906108c 2864 default:
8a3fe4f8 2865 error (_("Value can't be converted to integer."));
c906108c 2866 }
c906108c
SS
2867}
2868
c906108c
SS
2869/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2870 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2871 We don't assume any alignment for the raw data. Return value is in
2872 host byte order.
2873
2874 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2875 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2876
2877 C++: It is assumed that the front-end has taken care of
2878 all matters concerning pointers to members. A pointer
2879 to member which reaches here is considered to be equivalent
2880 to an INT (or some size). After all, it is only an offset. */
2881
2882CORE_ADDR
fc1a4b47 2883unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2884{
2885 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2886 whether we want this to be true eventually. */
2887 return unpack_long (type, valaddr);
2888}
4478b372 2889
70100014
UW
2890bool
2891is_floating_value (struct value *val)
2892{
2893 struct type *type = check_typedef (value_type (val));
2894
2895 if (is_floating_type (type))
2896 {
2897 if (!target_float_is_valid (value_contents (val), type))
2898 error (_("Invalid floating value found in program."));
2899 return true;
2900 }
2901
2902 return false;
2903}
2904
c906108c 2905\f
1596cb5d 2906/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 2907 TYPE. */
c906108c 2908
f23631e4 2909struct value *
fba45db2 2910value_static_field (struct type *type, int fieldno)
c906108c 2911{
948e66d9
DJ
2912 struct value *retval;
2913
1596cb5d 2914 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2915 {
1596cb5d 2916 case FIELD_LOC_KIND_PHYSADDR:
940da03e 2917 retval = value_at_lazy (type->field (fieldno).type (),
52e9fde8 2918 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2919 break;
2920 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2921 {
ff355380 2922 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2923 /* TYPE_FIELD_NAME (type, fieldno); */
d12307c1 2924 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2925
d12307c1 2926 if (sym.symbol == NULL)
c906108c 2927 {
a109c7c1 2928 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2929 reported as non-debuggable symbols. */
3b7344d5
TT
2930 struct bound_minimal_symbol msym
2931 = lookup_minimal_symbol (phys_name, NULL, NULL);
940da03e 2932 struct type *field_type = type->field (fieldno).type ();
a109c7c1 2933
3b7344d5 2934 if (!msym.minsym)
c2e0e465 2935 retval = allocate_optimized_out_value (field_type);
c906108c 2936 else
c2e0e465 2937 retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2938 }
2939 else
d12307c1 2940 retval = value_of_variable (sym.symbol, sym.block);
1596cb5d 2941 break;
c906108c 2942 }
1596cb5d 2943 default:
f3574227 2944 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2945 }
2946
948e66d9 2947 return retval;
c906108c
SS
2948}
2949
4dfea560
DE
2950/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2951 You have to be careful here, since the size of the data area for the value
2952 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2953 than the old enclosing type, you have to allocate more space for the
2954 data. */
2b127877 2955
4dfea560
DE
2956void
2957set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 2958{
5fdf6324
AB
2959 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2960 {
2961 check_type_length_before_alloc (new_encl_type);
2962 val->contents
14c88955
TT
2963 .reset ((gdb_byte *) xrealloc (val->contents.release (),
2964 TYPE_LENGTH (new_encl_type)));
5fdf6324 2965 }
3e3d7139
JG
2966
2967 val->enclosing_type = new_encl_type;
2b127877
DB
2968}
2969
c906108c
SS
2970/* Given a value ARG1 (offset by OFFSET bytes)
2971 of a struct or union type ARG_TYPE,
2972 extract and return the value of one of its (non-static) fields.
581e13c1 2973 FIELDNO says which field. */
c906108c 2974
f23631e4 2975struct value *
6b850546 2976value_primitive_field (struct value *arg1, LONGEST offset,
aa1ee363 2977 int fieldno, struct type *arg_type)
c906108c 2978{
f23631e4 2979 struct value *v;
52f0bd74 2980 struct type *type;
3ae385af
SM
2981 struct gdbarch *arch = get_value_arch (arg1);
2982 int unit_size = gdbarch_addressable_memory_unit_size (arch);
c906108c 2983
f168693b 2984 arg_type = check_typedef (arg_type);
940da03e 2985 type = arg_type->field (fieldno).type ();
c54eabfa
JK
2986
2987 /* Call check_typedef on our type to make sure that, if TYPE
2988 is a TYPE_CODE_TYPEDEF, its length is set to the length
2989 of the target type instead of zero. However, we do not
2990 replace the typedef type by the target type, because we want
2991 to keep the typedef in order to be able to print the type
2992 description correctly. */
2993 check_typedef (type);
c906108c 2994
691a26f5 2995 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 2996 {
22c05d8a
JK
2997 /* Handle packed fields.
2998
2999 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
3000 set. If possible, arrange offset and bitpos so that we can
3001 do a single aligned read of the size of the containing type.
3002 Otherwise, adjust offset to the byte containing the first
3003 bit. Assume that the address, offset, and embedded offset
3004 are sufficiently aligned. */
22c05d8a 3005
6b850546
DT
3006 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3007 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
4ea48cc1 3008
9a0dc9e3
PA
3009 v = allocate_value_lazy (type);
3010 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3011 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3012 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3013 v->bitpos = bitpos % container_bitsize;
4ea48cc1 3014 else
9a0dc9e3
PA
3015 v->bitpos = bitpos % 8;
3016 v->offset = (value_embedded_offset (arg1)
3017 + offset
3018 + (bitpos - v->bitpos) / 8);
3019 set_value_parent (v, arg1);
3020 if (!value_lazy (arg1))
3021 value_fetch_lazy (v);
c906108c
SS
3022 }
3023 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3024 {
3025 /* This field is actually a base subobject, so preserve the
39d37385
PA
3026 entire object's contents for later references to virtual
3027 bases, etc. */
6b850546 3028 LONGEST boffset;
a4e2ee12
DJ
3029
3030 /* Lazy register values with offsets are not supported. */
3031 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3032 value_fetch_lazy (arg1);
3033
9a0dc9e3
PA
3034 /* We special case virtual inheritance here because this
3035 requires access to the contents, which we would rather avoid
3036 for references to ordinary fields of unavailable values. */
3037 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3038 boffset = baseclass_offset (arg_type, fieldno,
3039 value_contents (arg1),
3040 value_embedded_offset (arg1),
3041 value_address (arg1),
3042 arg1);
c906108c 3043 else
9a0dc9e3 3044 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
691a26f5 3045
9a0dc9e3
PA
3046 if (value_lazy (arg1))
3047 v = allocate_value_lazy (value_enclosing_type (arg1));
3048 else
3049 {
3050 v = allocate_value (value_enclosing_type (arg1));
3051 value_contents_copy_raw (v, 0, arg1, 0,
3052 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139 3053 }
9a0dc9e3
PA
3054 v->type = type;
3055 v->offset = value_offset (arg1);
3056 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c 3057 }
9920b434
BH
3058 else if (NULL != TYPE_DATA_LOCATION (type))
3059 {
3060 /* Field is a dynamic data member. */
3061
3062 gdb_assert (0 == offset);
3063 /* We expect an already resolved data location. */
3064 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3065 /* For dynamic data types defer memory allocation
dda83cd7 3066 until we actual access the value. */
9920b434
BH
3067 v = allocate_value_lazy (type);
3068 }
c906108c
SS
3069 else
3070 {
3071 /* Plain old data member */
3ae385af 3072 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
dda83cd7 3073 / (HOST_CHAR_BIT * unit_size));
a4e2ee12
DJ
3074
3075 /* Lazy register values with offsets are not supported. */
3076 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3077 value_fetch_lazy (arg1);
3078
9a0dc9e3 3079 if (value_lazy (arg1))
3e3d7139 3080 v = allocate_value_lazy (type);
c906108c 3081 else
3e3d7139
JG
3082 {
3083 v = allocate_value (type);
39d37385
PA
3084 value_contents_copy_raw (v, value_embedded_offset (v),
3085 arg1, value_embedded_offset (arg1) + offset,
3ae385af 3086 type_length_units (type));
3e3d7139 3087 }
df407dfe 3088 v->offset = (value_offset (arg1) + offset
13c3b5f5 3089 + value_embedded_offset (arg1));
c906108c 3090 }
74bcbdf3 3091 set_value_component_location (v, arg1);
c906108c
SS
3092 return v;
3093}
3094
3095/* Given a value ARG1 of a struct or union type,
3096 extract and return the value of one of its (non-static) fields.
581e13c1 3097 FIELDNO says which field. */
c906108c 3098
f23631e4 3099struct value *
aa1ee363 3100value_field (struct value *arg1, int fieldno)
c906108c 3101{
df407dfe 3102 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
3103}
3104
3105/* Return a non-virtual function as a value.
3106 F is the list of member functions which contains the desired method.
0478d61c
FF
3107 J is an index into F which provides the desired method.
3108
3109 We only use the symbol for its address, so be happy with either a
581e13c1 3110 full symbol or a minimal symbol. */
c906108c 3111
f23631e4 3112struct value *
3e43a32a
MS
3113value_fn_field (struct value **arg1p, struct fn_field *f,
3114 int j, struct type *type,
6b850546 3115 LONGEST offset)
c906108c 3116{
f23631e4 3117 struct value *v;
52f0bd74 3118 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 3119 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 3120 struct symbol *sym;
7c7b6655 3121 struct bound_minimal_symbol msym;
c906108c 3122
d12307c1 3123 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
5ae326fa 3124 if (sym != NULL)
0478d61c 3125 {
7c7b6655 3126 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
3127 }
3128 else
3129 {
3130 gdb_assert (sym == NULL);
7c7b6655
TT
3131 msym = lookup_bound_minimal_symbol (physname);
3132 if (msym.minsym == NULL)
5ae326fa 3133 return NULL;
0478d61c
FF
3134 }
3135
c906108c 3136 v = allocate_value (ftype);
1a088441 3137 VALUE_LVAL (v) = lval_memory;
0478d61c
FF
3138 if (sym)
3139 {
2b1ffcfd 3140 set_value_address (v, BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
3141 }
3142 else
3143 {
bccdca4a
UW
3144 /* The minimal symbol might point to a function descriptor;
3145 resolve it to the actual code address instead. */
7c7b6655 3146 struct objfile *objfile = msym.objfile;
08feed99 3147 struct gdbarch *gdbarch = objfile->arch ();
bccdca4a 3148
42ae5230
TT
3149 set_value_address (v,
3150 gdbarch_convert_from_func_ptr_addr
8b88a78e 3151 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), current_top_target ()));
0478d61c 3152 }
c906108c
SS
3153
3154 if (arg1p)
c5aa993b 3155 {
df407dfe 3156 if (type != value_type (*arg1p))
c5aa993b
JM
3157 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3158 value_addr (*arg1p)));
3159
070ad9f0 3160 /* Move the `this' pointer according to the offset.
dda83cd7 3161 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3162 }
3163
3164 return v;
3165}
3166
c906108c 3167\f
c906108c 3168
ef83a141
TT
3169/* See value.h. */
3170
3171LONGEST
4875ffdb 3172unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
6b850546 3173 LONGEST bitpos, LONGEST bitsize)
c906108c 3174{
34877895 3175 enum bfd_endian byte_order = type_byte_order (field_type);
c906108c
SS
3176 ULONGEST val;
3177 ULONGEST valmask;
c906108c 3178 int lsbcount;
6b850546
DT
3179 LONGEST bytes_read;
3180 LONGEST read_offset;
c906108c 3181
4a76eae5
DJ
3182 /* Read the minimum number of bytes required; there may not be
3183 enough bytes to read an entire ULONGEST. */
f168693b 3184 field_type = check_typedef (field_type);
4a76eae5
DJ
3185 if (bitsize)
3186 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3187 else
15ce8941
TT
3188 {
3189 bytes_read = TYPE_LENGTH (field_type);
3190 bitsize = 8 * bytes_read;
3191 }
4a76eae5 3192
5467c6c8
PA
3193 read_offset = bitpos / 8;
3194
4875ffdb 3195 val = extract_unsigned_integer (valaddr + read_offset,
4a76eae5 3196 bytes_read, byte_order);
c906108c 3197
581e13c1 3198 /* Extract bits. See comment above. */
c906108c 3199
d5a22e77 3200 if (byte_order == BFD_ENDIAN_BIG)
4a76eae5 3201 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3202 else
3203 lsbcount = (bitpos % 8);
3204 val >>= lsbcount;
3205
3206 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3207 If the field is signed, and is negative, then sign extend. */
c906108c 3208
15ce8941 3209 if (bitsize < 8 * (int) sizeof (val))
c906108c
SS
3210 {
3211 valmask = (((ULONGEST) 1) << bitsize) - 1;
3212 val &= valmask;
c6d940a9 3213 if (!field_type->is_unsigned ())
c906108c
SS
3214 {
3215 if (val & (valmask ^ (valmask >> 1)))
3216 {
3217 val |= ~valmask;
3218 }
3219 }
3220 }
5467c6c8 3221
4875ffdb 3222 return val;
5467c6c8
PA
3223}
3224
3225/* Unpack a field FIELDNO of the specified TYPE, from the object at
3226 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3227 ORIGINAL_VALUE, which must not be NULL. See
3228 unpack_value_bits_as_long for more details. */
3229
3230int
3231unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
6b850546 3232 LONGEST embedded_offset, int fieldno,
5467c6c8
PA
3233 const struct value *val, LONGEST *result)
3234{
4875ffdb
PA
3235 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3236 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
940da03e 3237 struct type *field_type = type->field (fieldno).type ();
4875ffdb
PA
3238 int bit_offset;
3239
5467c6c8
PA
3240 gdb_assert (val != NULL);
3241
4875ffdb
PA
3242 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3243 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3244 || !value_bits_available (val, bit_offset, bitsize))
3245 return 0;
3246
3247 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3248 bitpos, bitsize);
3249 return 1;
5467c6c8
PA
3250}
3251
3252/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
4875ffdb 3253 object at VALADDR. See unpack_bits_as_long for more details. */
5467c6c8
PA
3254
3255LONGEST
3256unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3257{
4875ffdb
PA
3258 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3259 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
940da03e 3260 struct type *field_type = type->field (fieldno).type ();
5467c6c8 3261
4875ffdb
PA
3262 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3263}
3264
3265/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3266 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3267 the contents in DEST_VAL, zero or sign extending if the type of
3268 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3269 VAL. If the VAL's contents required to extract the bitfield from
3270 are unavailable/optimized out, DEST_VAL is correspondingly
3271 marked unavailable/optimized out. */
3272
bb9d5f81 3273void
4875ffdb 3274unpack_value_bitfield (struct value *dest_val,
6b850546
DT
3275 LONGEST bitpos, LONGEST bitsize,
3276 const gdb_byte *valaddr, LONGEST embedded_offset,
4875ffdb
PA
3277 const struct value *val)
3278{
3279 enum bfd_endian byte_order;
3280 int src_bit_offset;
3281 int dst_bit_offset;
4875ffdb
PA
3282 struct type *field_type = value_type (dest_val);
3283
34877895 3284 byte_order = type_byte_order (field_type);
e5ca03b4
PA
3285
3286 /* First, unpack and sign extend the bitfield as if it was wholly
3287 valid. Optimized out/unavailable bits are read as zero, but
3288 that's OK, as they'll end up marked below. If the VAL is
3289 wholly-invalid we may have skipped allocating its contents,
3290 though. See allocate_optimized_out_value. */
3291 if (valaddr != NULL)
3292 {
3293 LONGEST num;
3294
3295 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3296 bitpos, bitsize);
3297 store_signed_integer (value_contents_raw (dest_val),
3298 TYPE_LENGTH (field_type), byte_order, num);
3299 }
4875ffdb
PA
3300
3301 /* Now copy the optimized out / unavailability ranges to the right
3302 bits. */
3303 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3304 if (byte_order == BFD_ENDIAN_BIG)
3305 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3306 else
3307 dst_bit_offset = 0;
3308 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3309 val, src_bit_offset, bitsize);
5467c6c8
PA
3310}
3311
3312/* Return a new value with type TYPE, which is FIELDNO field of the
3313 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3314 of VAL. If the VAL's contents required to extract the bitfield
4875ffdb
PA
3315 from are unavailable/optimized out, the new value is
3316 correspondingly marked unavailable/optimized out. */
5467c6c8
PA
3317
3318struct value *
3319value_field_bitfield (struct type *type, int fieldno,
3320 const gdb_byte *valaddr,
6b850546 3321 LONGEST embedded_offset, const struct value *val)
5467c6c8 3322{
4875ffdb
PA
3323 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3324 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
940da03e 3325 struct value *res_val = allocate_value (type->field (fieldno).type ());
5467c6c8 3326
4875ffdb
PA
3327 unpack_value_bitfield (res_val, bitpos, bitsize,
3328 valaddr, embedded_offset, val);
3329
3330 return res_val;
4ea48cc1
DJ
3331}
3332
c906108c
SS
3333/* Modify the value of a bitfield. ADDR points to a block of memory in
3334 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3335 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3336 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3337 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3338 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3339
3340void
50810684 3341modify_field (struct type *type, gdb_byte *addr,
6b850546 3342 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
c906108c 3343{
34877895 3344 enum bfd_endian byte_order = type_byte_order (type);
f4e88c8e
PH
3345 ULONGEST oword;
3346 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
6b850546 3347 LONGEST bytesize;
19f220c3
JK
3348
3349 /* Normalize BITPOS. */
3350 addr += bitpos / 8;
3351 bitpos %= 8;
c906108c
SS
3352
3353 /* If a negative fieldval fits in the field in question, chop
3354 off the sign extension bits. */
f4e88c8e
PH
3355 if ((~fieldval & ~(mask >> 1)) == 0)
3356 fieldval &= mask;
c906108c
SS
3357
3358 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3359 if (0 != (fieldval & ~mask))
c906108c
SS
3360 {
3361 /* FIXME: would like to include fieldval in the message, but
dda83cd7 3362 we don't have a sprintf_longest. */
6b850546 3363 warning (_("Value does not fit in %s bits."), plongest (bitsize));
c906108c
SS
3364
3365 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3366 fieldval &= mask;
c906108c
SS
3367 }
3368
19f220c3
JK
3369 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3370 false valgrind reports. */
3371
3372 bytesize = (bitpos + bitsize + 7) / 8;
3373 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3374
3375 /* Shifting for bit field depends on endianness of the target machine. */
d5a22e77 3376 if (byte_order == BFD_ENDIAN_BIG)
19f220c3 3377 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3378
f4e88c8e 3379 oword &= ~(mask << bitpos);
c906108c
SS
3380 oword |= fieldval << bitpos;
3381
19f220c3 3382 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3383}
3384\f
14d06750 3385/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3386
14d06750
DJ
3387void
3388pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3389{
34877895 3390 enum bfd_endian byte_order = type_byte_order (type);
6b850546 3391 LONGEST len;
14d06750
DJ
3392
3393 type = check_typedef (type);
c906108c
SS
3394 len = TYPE_LENGTH (type);
3395
78134374 3396 switch (type->code ())
c906108c 3397 {
4e962e74 3398 case TYPE_CODE_RANGE:
599088e3 3399 num -= type->bounds ()->bias;
4e962e74 3400 /* Fall through. */
c906108c
SS
3401 case TYPE_CODE_INT:
3402 case TYPE_CODE_CHAR:
3403 case TYPE_CODE_ENUM:
4f2aea11 3404 case TYPE_CODE_FLAGS:
c906108c 3405 case TYPE_CODE_BOOL:
0d5de010 3406 case TYPE_CODE_MEMBERPTR:
20a5fcbd
TT
3407 if (type->bit_size_differs_p ())
3408 {
3409 unsigned bit_off = type->bit_offset ();
3410 unsigned bit_size = type->bit_size ();
3411 num &= ((ULONGEST) 1 << bit_size) - 1;
3412 num <<= bit_off;
3413 }
e17a4113 3414 store_signed_integer (buf, len, byte_order, num);
c906108c 3415 break;
c5aa993b 3416
c906108c 3417 case TYPE_CODE_REF:
aa006118 3418 case TYPE_CODE_RVALUE_REF:
c906108c 3419 case TYPE_CODE_PTR:
14d06750 3420 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3421 break;
c5aa993b 3422
50637b26
UW
3423 case TYPE_CODE_FLT:
3424 case TYPE_CODE_DECFLOAT:
3425 target_float_from_longest (buf, type, num);
3426 break;
3427
c906108c 3428 default:
14d06750 3429 error (_("Unexpected type (%d) encountered for integer constant."),
78134374 3430 type->code ());
c906108c 3431 }
14d06750
DJ
3432}
3433
3434
595939de
PM
3435/* Pack NUM into BUF using a target format of TYPE. */
3436
70221824 3437static void
595939de
PM
3438pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3439{
6b850546 3440 LONGEST len;
595939de
PM
3441 enum bfd_endian byte_order;
3442
3443 type = check_typedef (type);
3444 len = TYPE_LENGTH (type);
34877895 3445 byte_order = type_byte_order (type);
595939de 3446
78134374 3447 switch (type->code ())
595939de
PM
3448 {
3449 case TYPE_CODE_INT:
3450 case TYPE_CODE_CHAR:
3451 case TYPE_CODE_ENUM:
3452 case TYPE_CODE_FLAGS:
3453 case TYPE_CODE_BOOL:
3454 case TYPE_CODE_RANGE:
3455 case TYPE_CODE_MEMBERPTR:
20a5fcbd
TT
3456 if (type->bit_size_differs_p ())
3457 {
3458 unsigned bit_off = type->bit_offset ();
3459 unsigned bit_size = type->bit_size ();
3460 num &= ((ULONGEST) 1 << bit_size) - 1;
3461 num <<= bit_off;
3462 }
595939de
PM
3463 store_unsigned_integer (buf, len, byte_order, num);
3464 break;
3465
3466 case TYPE_CODE_REF:
aa006118 3467 case TYPE_CODE_RVALUE_REF:
595939de
PM
3468 case TYPE_CODE_PTR:
3469 store_typed_address (buf, type, (CORE_ADDR) num);
3470 break;
3471
50637b26
UW
3472 case TYPE_CODE_FLT:
3473 case TYPE_CODE_DECFLOAT:
3474 target_float_from_ulongest (buf, type, num);
3475 break;
3476
595939de 3477 default:
3e43a32a
MS
3478 error (_("Unexpected type (%d) encountered "
3479 "for unsigned integer constant."),
78134374 3480 type->code ());
595939de
PM
3481 }
3482}
3483
3484
14d06750
DJ
3485/* Convert C numbers into newly allocated values. */
3486
3487struct value *
3488value_from_longest (struct type *type, LONGEST num)
3489{
3490 struct value *val = allocate_value (type);
3491
3492 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3493 return val;
3494}
3495
4478b372 3496
595939de
PM
3497/* Convert C unsigned numbers into newly allocated values. */
3498
3499struct value *
3500value_from_ulongest (struct type *type, ULONGEST num)
3501{
3502 struct value *val = allocate_value (type);
3503
3504 pack_unsigned_long (value_contents_raw (val), type, num);
3505
3506 return val;
3507}
3508
3509
4478b372 3510/* Create a value representing a pointer of type TYPE to the address
cb417230 3511 ADDR. */
80180f79 3512
f23631e4 3513struct value *
4478b372
JB
3514value_from_pointer (struct type *type, CORE_ADDR addr)
3515{
cb417230 3516 struct value *val = allocate_value (type);
a109c7c1 3517
80180f79 3518 store_typed_address (value_contents_raw (val),
cb417230 3519 check_typedef (type), addr);
4478b372
JB
3520 return val;
3521}
3522
7584bb30
AB
3523/* Create and return a value object of TYPE containing the value D. The
3524 TYPE must be of TYPE_CODE_FLT, and must be large enough to hold D once
3525 it is converted to target format. */
3526
3527struct value *
3528value_from_host_double (struct type *type, double d)
3529{
3530 struct value *value = allocate_value (type);
78134374 3531 gdb_assert (type->code () == TYPE_CODE_FLT);
7584bb30
AB
3532 target_float_from_host_double (value_contents_raw (value),
3533 value_type (value), d);
3534 return value;
3535}
4478b372 3536
012370f6
TT
3537/* Create a value of type TYPE whose contents come from VALADDR, if it
3538 is non-null, and whose memory address (in the inferior) is
3539 ADDRESS. The type of the created value may differ from the passed
3540 type TYPE. Make sure to retrieve values new type after this call.
3541 Note that TYPE is not passed through resolve_dynamic_type; this is
3542 a special API intended for use only by Ada. */
3543
3544struct value *
3545value_from_contents_and_address_unresolved (struct type *type,
3546 const gdb_byte *valaddr,
3547 CORE_ADDR address)
3548{
3549 struct value *v;
3550
3551 if (valaddr == NULL)
3552 v = allocate_value_lazy (type);
3553 else
3554 v = value_from_contents (type, valaddr);
012370f6 3555 VALUE_LVAL (v) = lval_memory;
1a088441 3556 set_value_address (v, address);
012370f6
TT
3557 return v;
3558}
3559
8acb6b92
TT
3560/* Create a value of type TYPE whose contents come from VALADDR, if it
3561 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3562 ADDRESS. The type of the created value may differ from the passed
3563 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3564
3565struct value *
3566value_from_contents_and_address (struct type *type,
3567 const gdb_byte *valaddr,
3568 CORE_ADDR address)
3569{
b249d2c2
TT
3570 gdb::array_view<const gdb_byte> view;
3571 if (valaddr != nullptr)
3572 view = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
3573 struct type *resolved_type = resolve_dynamic_type (type, view, address);
d36430db 3574 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
41e8491f 3575 struct value *v;
a109c7c1 3576
8acb6b92 3577 if (valaddr == NULL)
80180f79 3578 v = allocate_value_lazy (resolved_type);
8acb6b92 3579 else
80180f79 3580 v = value_from_contents (resolved_type, valaddr);
d36430db
JB
3581 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3582 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3583 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
33d502b4 3584 VALUE_LVAL (v) = lval_memory;
1a088441 3585 set_value_address (v, address);
8acb6b92
TT
3586 return v;
3587}
3588
8a9b8146
TT
3589/* Create a value of type TYPE holding the contents CONTENTS.
3590 The new value is `not_lval'. */
3591
3592struct value *
3593value_from_contents (struct type *type, const gdb_byte *contents)
3594{
3595 struct value *result;
3596
3597 result = allocate_value (type);
3598 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3599 return result;
3600}
3601
3bd0f5ef
MS
3602/* Extract a value from the history file. Input will be of the form
3603 $digits or $$digits. See block comment above 'write_dollar_variable'
3604 for details. */
3605
3606struct value *
e799154c 3607value_from_history_ref (const char *h, const char **endp)
3bd0f5ef
MS
3608{
3609 int index, len;
3610
3611 if (h[0] == '$')
3612 len = 1;
3613 else
3614 return NULL;
3615
3616 if (h[1] == '$')
3617 len = 2;
3618
3619 /* Find length of numeral string. */
3620 for (; isdigit (h[len]); len++)
3621 ;
3622
3623 /* Make sure numeral string is not part of an identifier. */
3624 if (h[len] == '_' || isalpha (h[len]))
3625 return NULL;
3626
3627 /* Now collect the index value. */
3628 if (h[1] == '$')
3629 {
3630 if (len == 2)
3631 {
3632 /* For some bizarre reason, "$$" is equivalent to "$$1",
3633 rather than to "$$0" as it ought to be! */
3634 index = -1;
3635 *endp += len;
3636 }
3637 else
e799154c
TT
3638 {
3639 char *local_end;
3640
3641 index = -strtol (&h[2], &local_end, 10);
3642 *endp = local_end;
3643 }
3bd0f5ef
MS
3644 }
3645 else
3646 {
3647 if (len == 1)
3648 {
3649 /* "$" is equivalent to "$0". */
3650 index = 0;
3651 *endp += len;
3652 }
3653 else
e799154c
TT
3654 {
3655 char *local_end;
3656
3657 index = strtol (&h[1], &local_end, 10);
3658 *endp = local_end;
3659 }
3bd0f5ef
MS
3660 }
3661
3662 return access_value_history (index);
3663}
3664
3fff9862
YQ
3665/* Get the component value (offset by OFFSET bytes) of a struct or
3666 union WHOLE. Component's type is TYPE. */
3667
3668struct value *
3669value_from_component (struct value *whole, struct type *type, LONGEST offset)
3670{
3671 struct value *v;
3672
3673 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3674 v = allocate_value_lazy (type);
3675 else
3676 {
3677 v = allocate_value (type);
3678 value_contents_copy (v, value_embedded_offset (v),
3679 whole, value_embedded_offset (whole) + offset,
3680 type_length_units (type));
3681 }
3682 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3683 set_value_component_location (v, whole);
3fff9862
YQ
3684
3685 return v;
3686}
3687
a471c594
JK
3688struct value *
3689coerce_ref_if_computed (const struct value *arg)
3690{
3691 const struct lval_funcs *funcs;
3692
aa006118 3693 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
a471c594
JK
3694 return NULL;
3695
3696 if (value_lval_const (arg) != lval_computed)
3697 return NULL;
3698
3699 funcs = value_computed_funcs (arg);
3700 if (funcs->coerce_ref == NULL)
3701 return NULL;
3702
3703 return funcs->coerce_ref (arg);
3704}
3705
dfcee124
AG
3706/* Look at value.h for description. */
3707
3708struct value *
3709readjust_indirect_value_type (struct value *value, struct type *enc_type,
4bf7b526 3710 const struct type *original_type,
e79eb02f
AB
3711 struct value *original_value,
3712 CORE_ADDR original_value_address)
dfcee124 3713{
e79eb02f
AB
3714 gdb_assert (original_type->code () == TYPE_CODE_PTR
3715 || TYPE_IS_REFERENCE (original_type));
3716
3717 struct type *original_target_type = TYPE_TARGET_TYPE (original_type);
3718 gdb::array_view<const gdb_byte> view;
3719 struct type *resolved_original_target_type
3720 = resolve_dynamic_type (original_target_type, view,
3721 original_value_address);
3722
dfcee124 3723 /* Re-adjust type. */
e79eb02f 3724 deprecated_set_value_type (value, resolved_original_target_type);
dfcee124
AG
3725
3726 /* Add embedding info. */
3727 set_value_enclosing_type (value, enc_type);
3728 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3729
3730 /* We may be pointing to an object of some derived type. */
3731 return value_full_object (value, NULL, 0, 0, 0);
3732}
3733
994b9211
AC
3734struct value *
3735coerce_ref (struct value *arg)
3736{
df407dfe 3737 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3738 struct value *retval;
dfcee124 3739 struct type *enc_type;
a109c7c1 3740
a471c594
JK
3741 retval = coerce_ref_if_computed (arg);
3742 if (retval)
3743 return retval;
3744
aa006118 3745 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
a471c594
JK
3746 return arg;
3747
dfcee124
AG
3748 enc_type = check_typedef (value_enclosing_type (arg));
3749 enc_type = TYPE_TARGET_TYPE (enc_type);
3750
e79eb02f
AB
3751 CORE_ADDR addr = unpack_pointer (value_type (arg), value_contents (arg));
3752 retval = value_at_lazy (enc_type, addr);
9f1f738a 3753 enc_type = value_type (retval);
e79eb02f
AB
3754 return readjust_indirect_value_type (retval, enc_type, value_type_arg_tmp,
3755 arg, addr);
994b9211
AC
3756}
3757
3758struct value *
3759coerce_array (struct value *arg)
3760{
f3134b88
TT
3761 struct type *type;
3762
994b9211 3763 arg = coerce_ref (arg);
f3134b88
TT
3764 type = check_typedef (value_type (arg));
3765
78134374 3766 switch (type->code ())
f3134b88
TT
3767 {
3768 case TYPE_CODE_ARRAY:
67bd3fd5 3769 if (!type->is_vector () && current_language->c_style_arrays_p ())
f3134b88
TT
3770 arg = value_coerce_array (arg);
3771 break;
3772 case TYPE_CODE_FUNC:
3773 arg = value_coerce_function (arg);
3774 break;
3775 }
994b9211
AC
3776 return arg;
3777}
c906108c 3778\f
c906108c 3779
bbfdfe1c
DM
3780/* Return the return value convention that will be used for the
3781 specified type. */
3782
3783enum return_value_convention
3784struct_return_convention (struct gdbarch *gdbarch,
3785 struct value *function, struct type *value_type)
3786{
78134374 3787 enum type_code code = value_type->code ();
bbfdfe1c
DM
3788
3789 if (code == TYPE_CODE_ERROR)
3790 error (_("Function return type unknown."));
3791
3792 /* Probe the architecture for the return-value convention. */
3793 return gdbarch_return_value (gdbarch, function, value_type,
3794 NULL, NULL, NULL);
3795}
3796
48436ce6
AC
3797/* Return true if the function returning the specified type is using
3798 the convention of returning structures in memory (passing in the
82585c72 3799 address as a hidden first parameter). */
c906108c
SS
3800
3801int
d80b854b 3802using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3803 struct value *function, struct type *value_type)
c906108c 3804{
78134374 3805 if (value_type->code () == TYPE_CODE_VOID)
667e784f 3806 /* A void return value is never in memory. See also corresponding
44e5158b 3807 code in "print_return_value". */
667e784f
AC
3808 return 0;
3809
bbfdfe1c 3810 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3811 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3812}
3813
42be36b3
CT
3814/* Set the initialized field in a value struct. */
3815
3816void
3817set_value_initialized (struct value *val, int status)
3818{
3819 val->initialized = status;
3820}
3821
3822/* Return the initialized field in a value struct. */
3823
3824int
4bf7b526 3825value_initialized (const struct value *val)
42be36b3
CT
3826{
3827 return val->initialized;
3828}
3829
41c60b4b
SM
3830/* Helper for value_fetch_lazy when the value is a bitfield. */
3831
3832static void
3833value_fetch_lazy_bitfield (struct value *val)
3834{
3835 gdb_assert (value_bitsize (val) != 0);
3836
3837 /* To read a lazy bitfield, read the entire enclosing value. This
3838 prevents reading the same block of (possibly volatile) memory once
3839 per bitfield. It would be even better to read only the containing
3840 word, but we have no way to record that just specific bits of a
3841 value have been fetched. */
41c60b4b
SM
3842 struct value *parent = value_parent (val);
3843
3844 if (value_lazy (parent))
3845 value_fetch_lazy (parent);
3846
3847 unpack_value_bitfield (val, value_bitpos (val), value_bitsize (val),
3848 value_contents_for_printing (parent),
3849 value_offset (val), parent);
3850}
3851
3852/* Helper for value_fetch_lazy when the value is in memory. */
3853
3854static void
3855value_fetch_lazy_memory (struct value *val)
3856{
3857 gdb_assert (VALUE_LVAL (val) == lval_memory);
3858
3859 CORE_ADDR addr = value_address (val);
3860 struct type *type = check_typedef (value_enclosing_type (val));
3861
3862 if (TYPE_LENGTH (type))
3863 read_value_memory (val, 0, value_stack (val),
3864 addr, value_contents_all_raw (val),
3865 type_length_units (type));
3866}
3867
3868/* Helper for value_fetch_lazy when the value is in a register. */
3869
3870static void
3871value_fetch_lazy_register (struct value *val)
3872{
3873 struct frame_info *next_frame;
3874 int regnum;
3875 struct type *type = check_typedef (value_type (val));
3876 struct value *new_val = val, *mark = value_mark ();
3877
3878 /* Offsets are not supported here; lazy register values must
3879 refer to the entire register. */
3880 gdb_assert (value_offset (val) == 0);
3881
3882 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3883 {
3884 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
3885
3886 next_frame = frame_find_by_id (next_frame_id);
3887 regnum = VALUE_REGNUM (new_val);
3888
3889 gdb_assert (next_frame != NULL);
3890
3891 /* Convertible register routines are used for multi-register
3892 values and for interpretation in different types
3893 (e.g. float or int from a double register). Lazy
3894 register values should have the register's natural type,
3895 so they do not apply. */
3896 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
3897 regnum, type));
3898
3899 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3900 Since a "->next" operation was performed when setting
3901 this field, we do not need to perform a "next" operation
3902 again when unwinding the register. That's why
3903 frame_unwind_register_value() is called here instead of
3904 get_frame_register_value(). */
3905 new_val = frame_unwind_register_value (next_frame, regnum);
3906
3907 /* If we get another lazy lval_register value, it means the
3908 register is found by reading it from NEXT_FRAME's next frame.
3909 frame_unwind_register_value should never return a value with
3910 the frame id pointing to NEXT_FRAME. If it does, it means we
3911 either have two consecutive frames with the same frame id
3912 in the frame chain, or some code is trying to unwind
3913 behind get_prev_frame's back (e.g., a frame unwind
3914 sniffer trying to unwind), bypassing its validations. In
3915 any case, it should always be an internal error to end up
3916 in this situation. */
3917 if (VALUE_LVAL (new_val) == lval_register
3918 && value_lazy (new_val)
3919 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
3920 internal_error (__FILE__, __LINE__,
3921 _("infinite loop while fetching a register"));
3922 }
3923
3924 /* If it's still lazy (for instance, a saved register on the
3925 stack), fetch it. */
3926 if (value_lazy (new_val))
3927 value_fetch_lazy (new_val);
3928
3929 /* Copy the contents and the unavailability/optimized-out
3930 meta-data from NEW_VAL to VAL. */
3931 set_value_lazy (val, 0);
3932 value_contents_copy (val, value_embedded_offset (val),
3933 new_val, value_embedded_offset (new_val),
3934 type_length_units (type));
3935
3936 if (frame_debug)
3937 {
3938 struct gdbarch *gdbarch;
3939 struct frame_info *frame;
3940 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
3941 so that the frame level will be shown correctly. */
3942 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3943 regnum = VALUE_REGNUM (val);
3944 gdbarch = get_frame_arch (frame);
3945
3946 fprintf_unfiltered (gdb_stdlog,
3947 "{ value_fetch_lazy "
3948 "(frame=%d,regnum=%d(%s),...) ",
3949 frame_relative_level (frame), regnum,
3950 user_reg_map_regnum_to_name (gdbarch, regnum));
3951
3952 fprintf_unfiltered (gdb_stdlog, "->");
3953 if (value_optimized_out (new_val))
3954 {
3955 fprintf_unfiltered (gdb_stdlog, " ");
3956 val_print_optimized_out (new_val, gdb_stdlog);
3957 }
3958 else
3959 {
3960 int i;
3961 const gdb_byte *buf = value_contents (new_val);
3962
3963 if (VALUE_LVAL (new_val) == lval_register)
3964 fprintf_unfiltered (gdb_stdlog, " register=%d",
3965 VALUE_REGNUM (new_val));
3966 else if (VALUE_LVAL (new_val) == lval_memory)
3967 fprintf_unfiltered (gdb_stdlog, " address=%s",
3968 paddress (gdbarch,
3969 value_address (new_val)));
3970 else
3971 fprintf_unfiltered (gdb_stdlog, " computed");
3972
3973 fprintf_unfiltered (gdb_stdlog, " bytes=");
3974 fprintf_unfiltered (gdb_stdlog, "[");
3975 for (i = 0; i < register_size (gdbarch, regnum); i++)
3976 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3977 fprintf_unfiltered (gdb_stdlog, "]");
3978 }
3979
3980 fprintf_unfiltered (gdb_stdlog, " }\n");
3981 }
3982
3983 /* Dispose of the intermediate values. This prevents
3984 watchpoints from trying to watch the saved frame pointer. */
3985 value_free_to_mark (mark);
3986}
3987
a844296a
SM
3988/* Load the actual content of a lazy value. Fetch the data from the
3989 user's process and clear the lazy flag to indicate that the data in
3990 the buffer is valid.
a58e2656
AB
3991
3992 If the value is zero-length, we avoid calling read_memory, which
3993 would abort. We mark the value as fetched anyway -- all 0 bytes of
a844296a 3994 it. */
a58e2656 3995
a844296a 3996void
a58e2656
AB
3997value_fetch_lazy (struct value *val)
3998{
3999 gdb_assert (value_lazy (val));
4000 allocate_value_contents (val);
9a0dc9e3
PA
4001 /* A value is either lazy, or fully fetched. The
4002 availability/validity is only established as we try to fetch a
4003 value. */
0c7e6dd8
TT
4004 gdb_assert (val->optimized_out.empty ());
4005 gdb_assert (val->unavailable.empty ());
a58e2656 4006 if (value_bitsize (val))
41c60b4b 4007 value_fetch_lazy_bitfield (val);
a58e2656 4008 else if (VALUE_LVAL (val) == lval_memory)
41c60b4b 4009 value_fetch_lazy_memory (val);
a58e2656 4010 else if (VALUE_LVAL (val) == lval_register)
41c60b4b 4011 value_fetch_lazy_register (val);
a58e2656
AB
4012 else if (VALUE_LVAL (val) == lval_computed
4013 && value_computed_funcs (val)->read != NULL)
4014 value_computed_funcs (val)->read (val);
a58e2656
AB
4015 else
4016 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
4017
4018 set_value_lazy (val, 0);
a58e2656
AB
4019}
4020
a280dbd1
SDJ
4021/* Implementation of the convenience function $_isvoid. */
4022
4023static struct value *
4024isvoid_internal_fn (struct gdbarch *gdbarch,
4025 const struct language_defn *language,
4026 void *cookie, int argc, struct value **argv)
4027{
4028 int ret;
4029
4030 if (argc != 1)
6bc305f5 4031 error (_("You must provide one argument for $_isvoid."));
a280dbd1 4032
78134374 4033 ret = value_type (argv[0])->code () == TYPE_CODE_VOID;
a280dbd1
SDJ
4034
4035 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
4036}
4037
53a008a6 4038/* Implementation of the convenience function $_creal. Extracts the
8bdc1658
AB
4039 real part from a complex number. */
4040
4041static struct value *
4042creal_internal_fn (struct gdbarch *gdbarch,
4043 const struct language_defn *language,
4044 void *cookie, int argc, struct value **argv)
4045{
4046 if (argc != 1)
4047 error (_("You must provide one argument for $_creal."));
4048
4049 value *cval = argv[0];
4050 type *ctype = check_typedef (value_type (cval));
78134374 4051 if (ctype->code () != TYPE_CODE_COMPLEX)
8bdc1658 4052 error (_("expected a complex number"));
4c99290d 4053 return value_real_part (cval);
8bdc1658
AB
4054}
4055
4056/* Implementation of the convenience function $_cimag. Extracts the
4057 imaginary part from a complex number. */
4058
4059static struct value *
4060cimag_internal_fn (struct gdbarch *gdbarch,
4061 const struct language_defn *language,
4062 void *cookie, int argc,
4063 struct value **argv)
4064{
4065 if (argc != 1)
4066 error (_("You must provide one argument for $_cimag."));
4067
4068 value *cval = argv[0];
4069 type *ctype = check_typedef (value_type (cval));
78134374 4070 if (ctype->code () != TYPE_CODE_COMPLEX)
8bdc1658 4071 error (_("expected a complex number"));
4c99290d 4072 return value_imaginary_part (cval);
8bdc1658
AB
4073}
4074
d5f4488f
SM
4075#if GDB_SELF_TEST
4076namespace selftests
4077{
4078
4079/* Test the ranges_contain function. */
4080
4081static void
4082test_ranges_contain ()
4083{
4084 std::vector<range> ranges;
4085 range r;
4086
4087 /* [10, 14] */
4088 r.offset = 10;
4089 r.length = 5;
4090 ranges.push_back (r);
4091
4092 /* [20, 24] */
4093 r.offset = 20;
4094 r.length = 5;
4095 ranges.push_back (r);
4096
4097 /* [2, 6] */
4098 SELF_CHECK (!ranges_contain (ranges, 2, 5));
4099 /* [9, 13] */
4100 SELF_CHECK (ranges_contain (ranges, 9, 5));
4101 /* [10, 11] */
4102 SELF_CHECK (ranges_contain (ranges, 10, 2));
4103 /* [10, 14] */
4104 SELF_CHECK (ranges_contain (ranges, 10, 5));
4105 /* [13, 18] */
4106 SELF_CHECK (ranges_contain (ranges, 13, 6));
4107 /* [14, 18] */
4108 SELF_CHECK (ranges_contain (ranges, 14, 5));
4109 /* [15, 18] */
4110 SELF_CHECK (!ranges_contain (ranges, 15, 4));
4111 /* [16, 19] */
4112 SELF_CHECK (!ranges_contain (ranges, 16, 4));
4113 /* [16, 21] */
4114 SELF_CHECK (ranges_contain (ranges, 16, 6));
4115 /* [21, 21] */
4116 SELF_CHECK (ranges_contain (ranges, 21, 1));
4117 /* [21, 25] */
4118 SELF_CHECK (ranges_contain (ranges, 21, 5));
4119 /* [26, 28] */
4120 SELF_CHECK (!ranges_contain (ranges, 26, 3));
4121}
4122
4123/* Check that RANGES contains the same ranges as EXPECTED. */
4124
4125static bool
4126check_ranges_vector (gdb::array_view<const range> ranges,
4127 gdb::array_view<const range> expected)
4128{
4129 return ranges == expected;
4130}
4131
4132/* Test the insert_into_bit_range_vector function. */
4133
4134static void
4135test_insert_into_bit_range_vector ()
4136{
4137 std::vector<range> ranges;
4138
4139 /* [10, 14] */
4140 {
4141 insert_into_bit_range_vector (&ranges, 10, 5);
4142 static const range expected[] = {
4143 {10, 5}
4144 };
4145 SELF_CHECK (check_ranges_vector (ranges, expected));
4146 }
4147
4148 /* [10, 14] */
4149 {
4150 insert_into_bit_range_vector (&ranges, 11, 4);
4151 static const range expected = {10, 5};
4152 SELF_CHECK (check_ranges_vector (ranges, expected));
4153 }
4154
4155 /* [10, 14] [20, 24] */
4156 {
4157 insert_into_bit_range_vector (&ranges, 20, 5);
4158 static const range expected[] = {
4159 {10, 5},
4160 {20, 5},
4161 };
4162 SELF_CHECK (check_ranges_vector (ranges, expected));
4163 }
4164
4165 /* [10, 14] [17, 24] */
4166 {
4167 insert_into_bit_range_vector (&ranges, 17, 5);
4168 static const range expected[] = {
4169 {10, 5},
4170 {17, 8},
4171 };
4172 SELF_CHECK (check_ranges_vector (ranges, expected));
4173 }
4174
4175 /* [2, 8] [10, 14] [17, 24] */
4176 {
4177 insert_into_bit_range_vector (&ranges, 2, 7);
4178 static const range expected[] = {
4179 {2, 7},
4180 {10, 5},
4181 {17, 8},
4182 };
4183 SELF_CHECK (check_ranges_vector (ranges, expected));
4184 }
4185
4186 /* [2, 14] [17, 24] */
4187 {
4188 insert_into_bit_range_vector (&ranges, 9, 1);
4189 static const range expected[] = {
4190 {2, 13},
4191 {17, 8},
4192 };
4193 SELF_CHECK (check_ranges_vector (ranges, expected));
4194 }
4195
4196 /* [2, 14] [17, 24] */
4197 {
4198 insert_into_bit_range_vector (&ranges, 9, 1);
4199 static const range expected[] = {
4200 {2, 13},
4201 {17, 8},
4202 };
4203 SELF_CHECK (check_ranges_vector (ranges, expected));
4204 }
4205
4206 /* [2, 33] */
4207 {
4208 insert_into_bit_range_vector (&ranges, 4, 30);
4209 static const range expected = {2, 32};
4210 SELF_CHECK (check_ranges_vector (ranges, expected));
4211 }
4212}
4213
4214} /* namespace selftests */
4215#endif /* GDB_SELF_TEST */
4216
6c265988 4217void _initialize_values ();
c906108c 4218void
6c265988 4219_initialize_values ()
c906108c 4220{
1a966eab 4221 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
4222Debugger convenience (\"$foo\") variables and functions.\n\
4223Convenience variables are created when you assign them values;\n\
4224thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 4225\n\
c906108c
SS
4226A few convenience variables are given values automatically:\n\
4227\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
4228\"$__\" holds the contents of the last address examined with \"x\"."
4229#ifdef HAVE_PYTHON
4230"\n\n\
4231Convenience functions are defined via the Python API."
4232#endif
4233 ), &showlist);
7e20dfcd 4234 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 4235
db5f229b 4236 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 4237Elements of value history around item number IDX (or last ten)."),
c906108c 4238 &showlist);
53e5f3cf
AS
4239
4240 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4241Initialize a convenience variable if necessary.\n\
4242init-if-undefined VARIABLE = EXPRESSION\n\
4243Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4244exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4245VARIABLE is already initialized."));
bc3b79fd
TJB
4246
4247 add_prefix_cmd ("function", no_class, function_command, _("\
4248Placeholder command for showing help on convenience functions."),
4249 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
4250
4251 add_internal_function ("_isvoid", _("\
4252Check whether an expression is void.\n\
4253Usage: $_isvoid (expression)\n\
4254Return 1 if the expression is void, zero otherwise."),
4255 isvoid_internal_fn, NULL);
5fdf6324 4256
8bdc1658
AB
4257 add_internal_function ("_creal", _("\
4258Extract the real part of a complex number.\n\
4259Usage: $_creal (expression)\n\
4260Return the real part of a complex number, the type depends on the\n\
4261type of a complex number."),
4262 creal_internal_fn, NULL);
4263
4264 add_internal_function ("_cimag", _("\
4265Extract the imaginary part of a complex number.\n\
4266Usage: $_cimag (expression)\n\
4267Return the imaginary part of a complex number, the type depends on the\n\
4268type of a complex number."),
4269 cimag_internal_fn, NULL);
4270
5fdf6324
AB
4271 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4272 class_support, &max_value_size, _("\
4273Set maximum sized value gdb will load from the inferior."), _("\
4274Show maximum sized value gdb will load from the inferior."), _("\
4275Use this to control the maximum size, in bytes, of a value that gdb\n\
4276will load from the inferior. Setting this value to 'unlimited'\n\
4277disables checking.\n\
4278Setting this does not invalidate already allocated values, it only\n\
4279prevents future values, larger than this size, from being allocated."),
4280 set_max_value_size,
4281 show_max_value_size,
4282 &setlist, &showlist);
d5f4488f
SM
4283#if GDB_SELF_TEST
4284 selftests::register_test ("ranges_contain", selftests::test_ranges_contain);
4285 selftests::register_test ("insert_into_bit_range_vector",
4286 selftests::test_insert_into_bit_range_vector);
4287#endif
c906108c 4288}
9d1447e0
SDJ
4289
4290/* See value.h. */
4291
4292void
4293finalize_values ()
4294{
4295 all_values.clear ();
4296}