]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-m68hc1x.c
* elf32-m68hc1x.c (_bfd_m68hc11_elf_merge_private_bfd_data): Fix merge
[thirdparty/binutils-gdb.git] / bfd / elf32-m68hc1x.c
1 /* Motorola 68HC11/HC12-specific support for 32-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Stephane Carrez (stcarrez@nerim.fr)
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf32-m68hc1x.h"
27 #include "elf/m68hc11.h"
28 #include "opcode/m68hc11.h"
29
30
31 #define m68hc12_stub_hash_lookup(table, string, create, copy) \
32 ((struct elf32_m68hc11_stub_hash_entry *) \
33 bfd_hash_lookup ((table), (string), (create), (copy)))
34
35 static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub
36 PARAMS((const char *stub_name,
37 asection *section,
38 struct m68hc11_elf_link_hash_table *htab));
39
40 static struct bfd_hash_entry *stub_hash_newfunc
41 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
42
43 static void m68hc11_elf_set_symbol
44 PARAMS ((bfd* abfd, struct bfd_link_info *info,
45 const char* name, bfd_vma value, asection* sec));
46
47 static bfd_boolean m68hc11_elf_export_one_stub
48 PARAMS((struct bfd_hash_entry *gen_entry, PTR in_arg));
49
50 static bfd_boolean m68hc11_get_relocation_value
51 PARAMS ((bfd* abfd,
52 struct bfd_link_info* info,
53 asection **local_sections,
54 Elf_Internal_Sym* local_syms,
55 Elf_Internal_Rela* rel,
56 const char** name,
57 bfd_vma* relocation,
58 bfd_boolean* is_far));
59
60 static void scan_sections_for_abi PARAMS ((bfd*, asection*, PTR));
61
62 struct m68hc11_scan_param
63 {
64 struct m68hc11_page_info* pinfo;
65 bfd_boolean use_memory_banks;
66 };
67
68
69 /* Create a 68HC11/68HC12 ELF linker hash table. */
70
71 struct m68hc11_elf_link_hash_table*
72 m68hc11_elf_hash_table_create (abfd)
73 bfd *abfd;
74 {
75 struct m68hc11_elf_link_hash_table *ret;
76 bfd_size_type amt = sizeof (struct m68hc11_elf_link_hash_table);
77
78 ret = (struct m68hc11_elf_link_hash_table *) bfd_malloc (amt);
79 if (ret == (struct m68hc11_elf_link_hash_table *) NULL)
80 return NULL;
81
82 memset (ret, 0, amt);
83 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
84 _bfd_elf_link_hash_newfunc))
85 {
86 free (ret);
87 return NULL;
88 }
89
90 /* Init the stub hash table too. */
91 amt = sizeof (struct bfd_hash_table);
92 ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt);
93 if (ret->stub_hash_table == NULL)
94 {
95 free (ret);
96 return NULL;
97 }
98 if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc))
99 return NULL;
100
101 ret->stub_bfd = NULL;
102 ret->stub_section = 0;
103 ret->add_stub_section = NULL;
104 ret->sym_sec.abfd = NULL;
105
106 return ret;
107 }
108
109 /* Free the derived linker hash table. */
110
111 void
112 m68hc11_elf_bfd_link_hash_table_free (hash)
113 struct bfd_link_hash_table *hash;
114 {
115 struct m68hc11_elf_link_hash_table *ret
116 = (struct m68hc11_elf_link_hash_table *) hash;
117
118 bfd_hash_table_free (ret->stub_hash_table);
119 free (ret->stub_hash_table);
120 _bfd_generic_link_hash_table_free (hash);
121 }
122
123 /* Assorted hash table functions. */
124
125 /* Initialize an entry in the stub hash table. */
126
127 static struct bfd_hash_entry *
128 stub_hash_newfunc (entry, table, string)
129 struct bfd_hash_entry *entry;
130 struct bfd_hash_table *table;
131 const char *string;
132 {
133 /* Allocate the structure if it has not already been allocated by a
134 subclass. */
135 if (entry == NULL)
136 {
137 entry = bfd_hash_allocate (table,
138 sizeof (struct elf32_m68hc11_stub_hash_entry));
139 if (entry == NULL)
140 return entry;
141 }
142
143 /* Call the allocation method of the superclass. */
144 entry = bfd_hash_newfunc (entry, table, string);
145 if (entry != NULL)
146 {
147 struct elf32_m68hc11_stub_hash_entry *eh;
148
149 /* Initialize the local fields. */
150 eh = (struct elf32_m68hc11_stub_hash_entry *) entry;
151 eh->stub_sec = NULL;
152 eh->stub_offset = 0;
153 eh->target_value = 0;
154 eh->target_section = NULL;
155 }
156
157 return entry;
158 }
159
160 /* Add a new stub entry to the stub hash. Not all fields of the new
161 stub entry are initialised. */
162
163 static struct elf32_m68hc11_stub_hash_entry *
164 m68hc12_add_stub (stub_name, section, htab)
165 const char *stub_name;
166 asection *section;
167 struct m68hc11_elf_link_hash_table *htab;
168 {
169 struct elf32_m68hc11_stub_hash_entry *stub_entry;
170
171 /* Enter this entry into the linker stub hash table. */
172 stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name,
173 TRUE, FALSE);
174 if (stub_entry == NULL)
175 {
176 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
177 bfd_archive_filename (section->owner),
178 stub_name);
179 return NULL;
180 }
181
182 if (htab->stub_section == 0)
183 {
184 htab->stub_section = (*htab->add_stub_section) (".tramp",
185 htab->tramp_section);
186 }
187
188 stub_entry->stub_sec = htab->stub_section;
189 stub_entry->stub_offset = 0;
190 return stub_entry;
191 }
192
193 /* Hook called by the linker routine which adds symbols from an object
194 file. We use it for identify far symbols and force a loading of
195 the trampoline handler. */
196
197 bfd_boolean
198 elf32_m68hc11_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
199 bfd *abfd;
200 struct bfd_link_info *info;
201 const Elf_Internal_Sym *sym;
202 const char **namep ATTRIBUTE_UNUSED;
203 flagword *flagsp ATTRIBUTE_UNUSED;
204 asection **secp ATTRIBUTE_UNUSED;
205 bfd_vma *valp ATTRIBUTE_UNUSED;
206 {
207 if (sym->st_other & STO_M68HC12_FAR)
208 {
209 struct elf_link_hash_entry *h;
210
211 h = (struct elf_link_hash_entry *)
212 bfd_link_hash_lookup (info->hash, "__far_trampoline",
213 FALSE, FALSE, FALSE);
214 if (h == NULL)
215 {
216 struct bfd_link_hash_entry* entry = NULL;
217
218 _bfd_generic_link_add_one_symbol (info, abfd,
219 "__far_trampoline",
220 BSF_GLOBAL,
221 bfd_und_section_ptr,
222 (bfd_vma) 0, (const char*) NULL,
223 FALSE, FALSE, &entry);
224 }
225
226 }
227 return TRUE;
228 }
229
230 /* External entry points for sizing and building linker stubs. */
231
232 /* Set up various things so that we can make a list of input sections
233 for each output section included in the link. Returns -1 on error,
234 0 when no stubs will be needed, and 1 on success. */
235
236 int
237 elf32_m68hc11_setup_section_lists (output_bfd, info)
238 bfd *output_bfd;
239 struct bfd_link_info *info;
240 {
241 bfd *input_bfd;
242 unsigned int bfd_count;
243 int top_id, top_index;
244 asection *section;
245 asection **input_list, **list;
246 bfd_size_type amt;
247 asection *text_section;
248 struct m68hc11_elf_link_hash_table *htab;
249
250 htab = m68hc11_elf_hash_table (info);
251
252 if (htab->root.root.creator->flavour != bfd_target_elf_flavour)
253 return 0;
254
255 /* Count the number of input BFDs and find the top input section id.
256 Also search for an existing ".tramp" section so that we know
257 where generated trampolines must go. Default to ".text" if we
258 can't find it. */
259 htab->tramp_section = 0;
260 text_section = 0;
261 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
262 input_bfd != NULL;
263 input_bfd = input_bfd->link_next)
264 {
265 bfd_count += 1;
266 for (section = input_bfd->sections;
267 section != NULL;
268 section = section->next)
269 {
270 const char* name = bfd_get_section_name (input_bfd, section);
271
272 if (!strcmp (name, ".tramp"))
273 htab->tramp_section = section;
274
275 if (!strcmp (name, ".text"))
276 text_section = section;
277
278 if (top_id < section->id)
279 top_id = section->id;
280 }
281 }
282 htab->bfd_count = bfd_count;
283 if (htab->tramp_section == 0)
284 htab->tramp_section = text_section;
285
286 /* We can't use output_bfd->section_count here to find the top output
287 section index as some sections may have been removed, and
288 _bfd_strip_section_from_output doesn't renumber the indices. */
289 for (section = output_bfd->sections, top_index = 0;
290 section != NULL;
291 section = section->next)
292 {
293 if (top_index < section->index)
294 top_index = section->index;
295 }
296
297 htab->top_index = top_index;
298 amt = sizeof (asection *) * (top_index + 1);
299 input_list = (asection **) bfd_malloc (amt);
300 htab->input_list = input_list;
301 if (input_list == NULL)
302 return -1;
303
304 /* For sections we aren't interested in, mark their entries with a
305 value we can check later. */
306 list = input_list + top_index;
307 do
308 *list = bfd_abs_section_ptr;
309 while (list-- != input_list);
310
311 for (section = output_bfd->sections;
312 section != NULL;
313 section = section->next)
314 {
315 if ((section->flags & SEC_CODE) != 0)
316 input_list[section->index] = NULL;
317 }
318
319 return 1;
320 }
321
322 /* Determine and set the size of the stub section for a final link.
323
324 The basic idea here is to examine all the relocations looking for
325 PC-relative calls to a target that is unreachable with a "bl"
326 instruction. */
327
328 bfd_boolean
329 elf32_m68hc11_size_stubs (output_bfd, stub_bfd, info, add_stub_section)
330 bfd *output_bfd;
331 bfd *stub_bfd;
332 struct bfd_link_info *info;
333 asection * (*add_stub_section) PARAMS ((const char *, asection *));
334 {
335 bfd *input_bfd;
336 asection *section;
337 Elf_Internal_Sym *local_syms, **all_local_syms;
338 unsigned int bfd_indx, bfd_count;
339 bfd_size_type amt;
340 asection *stub_sec;
341
342 struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info);
343
344 /* Stash our params away. */
345 htab->stub_bfd = stub_bfd;
346 htab->add_stub_section = add_stub_section;
347
348 /* Count the number of input BFDs and find the top input section id. */
349 for (input_bfd = info->input_bfds, bfd_count = 0;
350 input_bfd != NULL;
351 input_bfd = input_bfd->link_next)
352 {
353 bfd_count += 1;
354 }
355
356 /* We want to read in symbol extension records only once. To do this
357 we need to read in the local symbols in parallel and save them for
358 later use; so hold pointers to the local symbols in an array. */
359 amt = sizeof (Elf_Internal_Sym *) * bfd_count;
360 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
361 if (all_local_syms == NULL)
362 return FALSE;
363
364 /* Walk over all the input BFDs, swapping in local symbols. */
365 for (input_bfd = info->input_bfds, bfd_indx = 0;
366 input_bfd != NULL;
367 input_bfd = input_bfd->link_next, bfd_indx++)
368 {
369 Elf_Internal_Shdr *symtab_hdr;
370
371 /* We'll need the symbol table in a second. */
372 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
373 if (symtab_hdr->sh_info == 0)
374 continue;
375
376 /* We need an array of the local symbols attached to the input bfd. */
377 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
378 if (local_syms == NULL)
379 {
380 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
381 symtab_hdr->sh_info, 0,
382 NULL, NULL, NULL);
383 /* Cache them for elf_link_input_bfd. */
384 symtab_hdr->contents = (unsigned char *) local_syms;
385 }
386 if (local_syms == NULL)
387 {
388 free (all_local_syms);
389 return FALSE;
390 }
391
392 all_local_syms[bfd_indx] = local_syms;
393 }
394
395 for (input_bfd = info->input_bfds, bfd_indx = 0;
396 input_bfd != NULL;
397 input_bfd = input_bfd->link_next, bfd_indx++)
398 {
399 Elf_Internal_Shdr *symtab_hdr;
400 Elf_Internal_Sym *local_syms;
401 struct elf_link_hash_entry ** sym_hashes;
402
403 sym_hashes = elf_sym_hashes (input_bfd);
404
405 /* We'll need the symbol table in a second. */
406 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
407 if (symtab_hdr->sh_info == 0)
408 continue;
409
410 local_syms = all_local_syms[bfd_indx];
411
412 /* Walk over each section attached to the input bfd. */
413 for (section = input_bfd->sections;
414 section != NULL;
415 section = section->next)
416 {
417 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
418
419 /* If there aren't any relocs, then there's nothing more
420 to do. */
421 if ((section->flags & SEC_RELOC) == 0
422 || section->reloc_count == 0)
423 continue;
424
425 /* If this section is a link-once section that will be
426 discarded, then don't create any stubs. */
427 if (section->output_section == NULL
428 || section->output_section->owner != output_bfd)
429 continue;
430
431 /* Get the relocs. */
432 internal_relocs
433 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
434 (Elf_Internal_Rela *) NULL,
435 info->keep_memory);
436 if (internal_relocs == NULL)
437 goto error_ret_free_local;
438
439 /* Now examine each relocation. */
440 irela = internal_relocs;
441 irelaend = irela + section->reloc_count;
442 for (; irela < irelaend; irela++)
443 {
444 unsigned int r_type, r_indx;
445 struct elf32_m68hc11_stub_hash_entry *stub_entry;
446 asection *sym_sec;
447 bfd_vma sym_value;
448 struct elf_link_hash_entry *hash;
449 const char *stub_name;
450 Elf_Internal_Sym *sym;
451
452 r_type = ELF32_R_TYPE (irela->r_info);
453
454 /* Only look at 16-bit relocs. */
455 if (r_type != (unsigned int) R_M68HC11_16)
456 continue;
457
458 /* Now determine the call target, its name, value,
459 section. */
460 r_indx = ELF32_R_SYM (irela->r_info);
461 if (r_indx < symtab_hdr->sh_info)
462 {
463 /* It's a local symbol. */
464 Elf_Internal_Shdr *hdr;
465 bfd_boolean is_far;
466
467 sym = local_syms + r_indx;
468 is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
469 if (!is_far)
470 continue;
471
472 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
473 sym_sec = hdr->bfd_section;
474 stub_name = (bfd_elf_string_from_elf_section
475 (input_bfd, symtab_hdr->sh_link,
476 sym->st_name));
477 sym_value = sym->st_value;
478 hash = NULL;
479 }
480 else
481 {
482 /* It's an external symbol. */
483 int e_indx;
484
485 e_indx = r_indx - symtab_hdr->sh_info;
486 hash = (struct elf_link_hash_entry *)
487 (sym_hashes[e_indx]);
488
489 while (hash->root.type == bfd_link_hash_indirect
490 || hash->root.type == bfd_link_hash_warning)
491 hash = ((struct elf_link_hash_entry *)
492 hash->root.u.i.link);
493
494 if (hash->root.type == bfd_link_hash_defined
495 || hash->root.type == bfd_link_hash_defweak)
496 {
497 if (!(hash->other & STO_M68HC12_FAR))
498 continue;
499 }
500 else if (hash->root.type == bfd_link_hash_undefweak)
501 {
502 continue;
503 }
504 else if (hash->root.type == bfd_link_hash_undefined)
505 {
506 continue;
507 }
508 else
509 {
510 bfd_set_error (bfd_error_bad_value);
511 goto error_ret_free_internal;
512 }
513 sym_sec = hash->root.u.def.section;
514 sym_value = hash->root.u.def.value;
515 stub_name = hash->root.root.string;
516 }
517
518 if (!stub_name)
519 goto error_ret_free_internal;
520
521 stub_entry = m68hc12_stub_hash_lookup
522 (htab->stub_hash_table,
523 stub_name,
524 FALSE, FALSE);
525 if (stub_entry == NULL)
526 {
527 if (add_stub_section == 0)
528 continue;
529
530 stub_entry = m68hc12_add_stub (stub_name, section, htab);
531 if (stub_entry == NULL)
532 {
533 error_ret_free_internal:
534 if (elf_section_data (section)->relocs == NULL)
535 free (internal_relocs);
536 goto error_ret_free_local;
537 }
538 }
539
540 stub_entry->target_value = sym_value;
541 stub_entry->target_section = sym_sec;
542 }
543
544 /* We're done with the internal relocs, free them. */
545 if (elf_section_data (section)->relocs == NULL)
546 free (internal_relocs);
547 }
548 }
549
550 if (add_stub_section)
551 {
552 /* OK, we've added some stubs. Find out the new size of the
553 stub sections. */
554 for (stub_sec = htab->stub_bfd->sections;
555 stub_sec != NULL;
556 stub_sec = stub_sec->next)
557 {
558 stub_sec->_raw_size = 0;
559 stub_sec->_cooked_size = 0;
560 }
561
562 bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab);
563 }
564 free (all_local_syms);
565 return TRUE;
566
567 error_ret_free_local:
568 free (all_local_syms);
569 return FALSE;
570 }
571
572 /* Export the trampoline addresses in the symbol table. */
573 static bfd_boolean
574 m68hc11_elf_export_one_stub (gen_entry, in_arg)
575 struct bfd_hash_entry *gen_entry;
576 PTR in_arg;
577 {
578 struct bfd_link_info *info;
579 struct m68hc11_elf_link_hash_table *htab;
580 struct elf32_m68hc11_stub_hash_entry *stub_entry;
581 char* name;
582 bfd_boolean result;
583
584 info = (struct bfd_link_info *) in_arg;
585 htab = m68hc11_elf_hash_table (info);
586
587 /* Massage our args to the form they really have. */
588 stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry;
589
590 /* Generate the trampoline according to HC11 or HC12. */
591 result = (* htab->build_one_stub) (gen_entry, in_arg);
592
593 /* Make a printable name that does not conflict with the real function. */
594 name = alloca (strlen (stub_entry->root.string) + 16);
595 sprintf (name, "tramp.%s", stub_entry->root.string);
596
597 /* Export the symbol for debugging/disassembling. */
598 m68hc11_elf_set_symbol (htab->stub_bfd, info, name,
599 stub_entry->stub_offset,
600 stub_entry->stub_sec);
601 return result;
602 }
603
604 /* Export a symbol or set its value and section. */
605 static void
606 m68hc11_elf_set_symbol (abfd, info, name, value, sec)
607 bfd* abfd;
608 struct bfd_link_info *info;
609 const char* name;
610 bfd_vma value;
611 asection* sec;
612 {
613 struct elf_link_hash_entry *h;
614
615 h = (struct elf_link_hash_entry *)
616 bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
617 if (h == NULL)
618 {
619 _bfd_generic_link_add_one_symbol (info, abfd,
620 name,
621 BSF_GLOBAL,
622 sec,
623 value,
624 (const char*) NULL,
625 TRUE, FALSE, NULL);
626 }
627 else
628 {
629 h->root.type = bfd_link_hash_defined;
630 h->root.u.def.value = value;
631 h->root.u.def.section = sec;
632 }
633 }
634
635
636 /* Build all the stubs associated with the current output file. The
637 stubs are kept in a hash table attached to the main linker hash
638 table. This function is called via m68hc12elf_finish in the
639 linker. */
640
641 bfd_boolean
642 elf32_m68hc11_build_stubs (abfd, info)
643 bfd* abfd;
644 struct bfd_link_info *info;
645 {
646 asection *stub_sec;
647 struct bfd_hash_table *table;
648 struct m68hc11_elf_link_hash_table *htab;
649 struct m68hc11_scan_param param;
650
651 m68hc11_elf_get_bank_parameters (info);
652 htab = m68hc11_elf_hash_table (info);
653
654 for (stub_sec = htab->stub_bfd->sections;
655 stub_sec != NULL;
656 stub_sec = stub_sec->next)
657 {
658 bfd_size_type size;
659
660 /* Allocate memory to hold the linker stubs. */
661 size = stub_sec->_raw_size;
662 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
663 if (stub_sec->contents == NULL && size != 0)
664 return FALSE;
665 stub_sec->_raw_size = 0;
666 }
667
668 /* Build the stubs as directed by the stub hash table. */
669 table = htab->stub_hash_table;
670 bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info);
671
672 /* Scan the output sections to see if we use the memory banks.
673 If so, export the symbols that define how the memory banks
674 are mapped. This is used by gdb and the simulator to obtain
675 the information. It can be used by programs to burn the eprom
676 at the good addresses. */
677 param.use_memory_banks = FALSE;
678 param.pinfo = &htab->pinfo;
679 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
680 if (param.use_memory_banks)
681 {
682 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME,
683 htab->pinfo.bank_physical,
684 bfd_abs_section_ptr);
685 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME,
686 htab->pinfo.bank_virtual,
687 bfd_abs_section_ptr);
688 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME,
689 htab->pinfo.bank_size,
690 bfd_abs_section_ptr);
691 }
692
693 return TRUE;
694 }
695
696 void
697 m68hc11_elf_get_bank_parameters (info)
698 struct bfd_link_info *info;
699 {
700 unsigned i;
701 struct m68hc11_page_info *pinfo;
702 struct bfd_link_hash_entry *h;
703
704 pinfo = &m68hc11_elf_hash_table (info)->pinfo;
705 if (pinfo->bank_param_initialized)
706 return;
707
708 pinfo->bank_virtual = M68HC12_BANK_VIRT;
709 pinfo->bank_mask = M68HC12_BANK_MASK;
710 pinfo->bank_physical = M68HC12_BANK_BASE;
711 pinfo->bank_shift = M68HC12_BANK_SHIFT;
712 pinfo->bank_size = 1 << M68HC12_BANK_SHIFT;
713
714 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME,
715 FALSE, FALSE, TRUE);
716 if (h != (struct bfd_link_hash_entry*) NULL
717 && h->type == bfd_link_hash_defined)
718 pinfo->bank_physical = (h->u.def.value
719 + h->u.def.section->output_section->vma
720 + h->u.def.section->output_offset);
721
722 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME,
723 FALSE, FALSE, TRUE);
724 if (h != (struct bfd_link_hash_entry*) NULL
725 && h->type == bfd_link_hash_defined)
726 pinfo->bank_virtual = (h->u.def.value
727 + h->u.def.section->output_section->vma
728 + h->u.def.section->output_offset);
729
730 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME,
731 FALSE, FALSE, TRUE);
732 if (h != (struct bfd_link_hash_entry*) NULL
733 && h->type == bfd_link_hash_defined)
734 pinfo->bank_size = (h->u.def.value
735 + h->u.def.section->output_section->vma
736 + h->u.def.section->output_offset);
737
738 pinfo->bank_shift = 0;
739 for (i = pinfo->bank_size; i != 0; i >>= 1)
740 pinfo->bank_shift++;
741 pinfo->bank_shift--;
742 pinfo->bank_mask = (1 << pinfo->bank_shift) - 1;
743 pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size;
744 pinfo->bank_param_initialized = 1;
745
746 h = bfd_link_hash_lookup (info->hash, "__far_trampoline", FALSE,
747 FALSE, TRUE);
748 if (h != (struct bfd_link_hash_entry*) NULL
749 && h->type == bfd_link_hash_defined)
750 pinfo->trampoline_addr = (h->u.def.value
751 + h->u.def.section->output_section->vma
752 + h->u.def.section->output_offset);
753 }
754
755 /* Return 1 if the address is in banked memory.
756 This can be applied to a virtual address and to a physical address. */
757 int
758 m68hc11_addr_is_banked (pinfo, addr)
759 struct m68hc11_page_info *pinfo;
760 bfd_vma addr;
761 {
762 if (addr >= pinfo->bank_virtual)
763 return 1;
764
765 if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end)
766 return 1;
767
768 return 0;
769 }
770
771 /* Return the physical address seen by the processor, taking
772 into account banked memory. */
773 bfd_vma
774 m68hc11_phys_addr (pinfo, addr)
775 struct m68hc11_page_info *pinfo;
776 bfd_vma addr;
777 {
778 if (addr < pinfo->bank_virtual)
779 return addr;
780
781 /* Map the address to the memory bank. */
782 addr -= pinfo->bank_virtual;
783 addr &= pinfo->bank_mask;
784 addr += pinfo->bank_physical;
785 return addr;
786 }
787
788 /* Return the page number corresponding to an address in banked memory. */
789 bfd_vma
790 m68hc11_phys_page (pinfo, addr)
791 struct m68hc11_page_info *pinfo;
792 bfd_vma addr;
793 {
794 if (addr < pinfo->bank_virtual)
795 return 0;
796
797 /* Map the address to the memory bank. */
798 addr -= pinfo->bank_virtual;
799 addr >>= pinfo->bank_shift;
800 addr &= 0x0ff;
801 return addr;
802 }
803
804 /* This function is used for relocs which are only used for relaxing,
805 which the linker should otherwise ignore. */
806
807 bfd_reloc_status_type
808 m68hc11_elf_ignore_reloc (abfd, reloc_entry, symbol, data, input_section,
809 output_bfd, error_message)
810 bfd *abfd ATTRIBUTE_UNUSED;
811 arelent *reloc_entry;
812 asymbol *symbol ATTRIBUTE_UNUSED;
813 PTR data ATTRIBUTE_UNUSED;
814 asection *input_section;
815 bfd *output_bfd;
816 char **error_message ATTRIBUTE_UNUSED;
817 {
818 if (output_bfd != NULL)
819 reloc_entry->address += input_section->output_offset;
820 return bfd_reloc_ok;
821 }
822
823 bfd_reloc_status_type
824 m68hc11_elf_special_reloc (abfd, reloc_entry, symbol, data, input_section,
825 output_bfd, error_message)
826 bfd *abfd ATTRIBUTE_UNUSED;
827 arelent *reloc_entry;
828 asymbol *symbol;
829 PTR data ATTRIBUTE_UNUSED;
830 asection *input_section;
831 bfd *output_bfd;
832 char **error_message ATTRIBUTE_UNUSED;
833 {
834 if (output_bfd != (bfd *) NULL
835 && (symbol->flags & BSF_SECTION_SYM) == 0
836 && (! reloc_entry->howto->partial_inplace
837 || reloc_entry->addend == 0))
838 {
839 reloc_entry->address += input_section->output_offset;
840 return bfd_reloc_ok;
841 }
842
843 if (output_bfd != NULL)
844 return bfd_reloc_continue;
845
846 if (reloc_entry->address > input_section->_cooked_size)
847 return bfd_reloc_outofrange;
848
849 abort();
850 }
851
852 asection *
853 elf32_m68hc11_gc_mark_hook (sec, info, rel, h, sym)
854 asection *sec;
855 struct bfd_link_info *info ATTRIBUTE_UNUSED;
856 Elf_Internal_Rela *rel;
857 struct elf_link_hash_entry *h;
858 Elf_Internal_Sym *sym;
859 {
860 if (h != NULL)
861 {
862 switch (ELF32_R_TYPE (rel->r_info))
863 {
864 default:
865 switch (h->root.type)
866 {
867 case bfd_link_hash_defined:
868 case bfd_link_hash_defweak:
869 return h->root.u.def.section;
870
871 case bfd_link_hash_common:
872 return h->root.u.c.p->section;
873
874 default:
875 break;
876 }
877 }
878 }
879 else
880 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
881
882 return NULL;
883 }
884
885 bfd_boolean
886 elf32_m68hc11_gc_sweep_hook (abfd, info, sec, relocs)
887 bfd *abfd ATTRIBUTE_UNUSED;
888 struct bfd_link_info *info ATTRIBUTE_UNUSED;
889 asection *sec ATTRIBUTE_UNUSED;
890 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
891 {
892 /* We don't use got and plt entries for 68hc11/68hc12. */
893 return TRUE;
894 }
895
896 /* Look through the relocs for a section during the first phase.
897 Since we don't do .gots or .plts, we just need to consider the
898 virtual table relocs for gc. */
899
900 bfd_boolean
901 elf32_m68hc11_check_relocs (abfd, info, sec, relocs)
902 bfd * abfd;
903 struct bfd_link_info * info;
904 asection * sec;
905 const Elf_Internal_Rela * relocs;
906 {
907 Elf_Internal_Shdr * symtab_hdr;
908 struct elf_link_hash_entry ** sym_hashes;
909 struct elf_link_hash_entry ** sym_hashes_end;
910 const Elf_Internal_Rela * rel;
911 const Elf_Internal_Rela * rel_end;
912
913 if (info->relocatable)
914 return TRUE;
915
916 symtab_hdr = & elf_tdata (abfd)->symtab_hdr;
917 sym_hashes = elf_sym_hashes (abfd);
918 sym_hashes_end = sym_hashes + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
919 if (!elf_bad_symtab (abfd))
920 sym_hashes_end -= symtab_hdr->sh_info;
921
922 rel_end = relocs + sec->reloc_count;
923
924 for (rel = relocs; rel < rel_end; rel++)
925 {
926 struct elf_link_hash_entry * h;
927 unsigned long r_symndx;
928
929 r_symndx = ELF32_R_SYM (rel->r_info);
930
931 if (r_symndx < symtab_hdr->sh_info)
932 h = NULL;
933 else
934 h = sym_hashes [r_symndx - symtab_hdr->sh_info];
935
936 switch (ELF32_R_TYPE (rel->r_info))
937 {
938 /* This relocation describes the C++ object vtable hierarchy.
939 Reconstruct it for later use during GC. */
940 case R_M68HC11_GNU_VTINHERIT:
941 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
942 return FALSE;
943 break;
944
945 /* This relocation describes which C++ vtable entries are actually
946 used. Record for later use during GC. */
947 case R_M68HC11_GNU_VTENTRY:
948 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_addend))
949 return FALSE;
950 break;
951 }
952 }
953
954 return TRUE;
955 }
956
957 static bfd_boolean
958 m68hc11_get_relocation_value (abfd, info, local_sections, local_syms,
959 rel, name,
960 relocation, is_far)
961 bfd *abfd;
962 struct bfd_link_info *info;
963 asection **local_sections;
964 Elf_Internal_Sym* local_syms;
965 Elf_Internal_Rela* rel;
966 const char** name;
967 bfd_vma* relocation;
968 bfd_boolean* is_far;
969 {
970 Elf_Internal_Shdr *symtab_hdr;
971 struct elf_link_hash_entry **sym_hashes;
972 unsigned long r_symndx;
973 asection *sec;
974 struct elf_link_hash_entry *h;
975 Elf_Internal_Sym *sym;
976 const char* stub_name = 0;
977
978 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
979 sym_hashes = elf_sym_hashes (abfd);
980
981 r_symndx = ELF32_R_SYM (rel->r_info);
982
983 /* This is a final link. */
984 h = NULL;
985 sym = NULL;
986 sec = NULL;
987 if (r_symndx < symtab_hdr->sh_info)
988 {
989 sym = local_syms + r_symndx;
990 sec = local_sections[r_symndx];
991 *relocation = (sec->output_section->vma
992 + sec->output_offset
993 + sym->st_value);
994 *is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
995 if (*is_far)
996 stub_name = (bfd_elf_string_from_elf_section
997 (abfd, symtab_hdr->sh_link,
998 sym->st_name));
999 }
1000 else
1001 {
1002 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1003 while (h->root.type == bfd_link_hash_indirect
1004 || h->root.type == bfd_link_hash_warning)
1005 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1006 if (h->root.type == bfd_link_hash_defined
1007 || h->root.type == bfd_link_hash_defweak)
1008 {
1009 sec = h->root.u.def.section;
1010 *relocation = (h->root.u.def.value
1011 + sec->output_section->vma
1012 + sec->output_offset);
1013 }
1014 else if (h->root.type == bfd_link_hash_undefweak)
1015 *relocation = 0;
1016 else
1017 {
1018 if (!((*info->callbacks->undefined_symbol)
1019 (info, h->root.root.string, abfd,
1020 sec, rel->r_offset, TRUE)))
1021 return FALSE;
1022 *relocation = 0;
1023 }
1024 *is_far = (h && (h->other & STO_M68HC12_FAR));
1025 stub_name = h->root.root.string;
1026 }
1027
1028 if (h != NULL)
1029 *name = h->root.root.string;
1030 else
1031 {
1032 *name = (bfd_elf_string_from_elf_section
1033 (abfd, symtab_hdr->sh_link, sym->st_name));
1034 if (*name == NULL || **name == '\0')
1035 *name = bfd_section_name (input_bfd, sec);
1036 }
1037
1038 if (*is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16)
1039 {
1040 struct elf32_m68hc11_stub_hash_entry* stub;
1041 struct m68hc11_elf_link_hash_table *htab;
1042
1043 htab = m68hc11_elf_hash_table (info);
1044 stub = m68hc12_stub_hash_lookup (htab->stub_hash_table,
1045 *name, FALSE, FALSE);
1046 if (stub)
1047 {
1048 *relocation = stub->stub_offset
1049 + stub->stub_sec->output_section->vma
1050 + stub->stub_sec->output_offset;
1051 *is_far = FALSE;
1052 }
1053 }
1054 return TRUE;
1055 }
1056
1057 /* Relocate a 68hc11/68hc12 ELF section. */
1058 bfd_boolean
1059 elf32_m68hc11_relocate_section (output_bfd, info, input_bfd, input_section,
1060 contents, relocs, local_syms, local_sections)
1061 bfd *output_bfd ATTRIBUTE_UNUSED;
1062 struct bfd_link_info *info;
1063 bfd *input_bfd;
1064 asection *input_section;
1065 bfd_byte *contents;
1066 Elf_Internal_Rela *relocs;
1067 Elf_Internal_Sym *local_syms;
1068 asection **local_sections;
1069 {
1070 Elf_Internal_Shdr *symtab_hdr;
1071 struct elf_link_hash_entry **sym_hashes;
1072 Elf_Internal_Rela *rel, *relend;
1073 const char *name;
1074 struct m68hc11_page_info *pinfo;
1075 const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd);
1076
1077 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1078 sym_hashes = elf_sym_hashes (input_bfd);
1079
1080 /* Get memory bank parameters. */
1081 m68hc11_elf_get_bank_parameters (info);
1082 pinfo = &m68hc11_elf_hash_table (info)->pinfo;
1083
1084 rel = relocs;
1085 relend = relocs + input_section->reloc_count;
1086 for (; rel < relend; rel++)
1087 {
1088 int r_type;
1089 arelent arel;
1090 reloc_howto_type *howto;
1091 unsigned long r_symndx;
1092 Elf_Internal_Sym *sym;
1093 asection *sec;
1094 bfd_vma relocation;
1095 bfd_reloc_status_type r = bfd_reloc_undefined;
1096 bfd_vma phys_page;
1097 bfd_vma phys_addr;
1098 bfd_vma insn_addr;
1099 bfd_vma insn_page;
1100 bfd_boolean is_far;
1101
1102 r_symndx = ELF32_R_SYM (rel->r_info);
1103 r_type = ELF32_R_TYPE (rel->r_info);
1104
1105 if (r_type == R_M68HC11_GNU_VTENTRY
1106 || r_type == R_M68HC11_GNU_VTINHERIT )
1107 continue;
1108
1109 if (info->relocatable)
1110 {
1111 /* This is a relocatable link. We don't have to change
1112 anything, unless the reloc is against a section symbol,
1113 in which case we have to adjust according to where the
1114 section symbol winds up in the output section. */
1115 if (r_symndx < symtab_hdr->sh_info)
1116 {
1117 sym = local_syms + r_symndx;
1118 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1119 {
1120 sec = local_sections[r_symndx];
1121 rel->r_addend += sec->output_offset + sym->st_value;
1122 }
1123 }
1124
1125 continue;
1126 }
1127 (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel);
1128 howto = arel.howto;
1129
1130 m68hc11_get_relocation_value (input_bfd, info,
1131 local_sections, local_syms,
1132 rel, &name, &relocation, &is_far);
1133
1134 /* Do the memory bank mapping. */
1135 phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend);
1136 phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend);
1137 switch (r_type)
1138 {
1139 case R_M68HC11_24:
1140 /* Reloc used by 68HC12 call instruction. */
1141 bfd_put_16 (input_bfd, phys_addr,
1142 (bfd_byte*) contents + rel->r_offset);
1143 bfd_put_8 (input_bfd, phys_page,
1144 (bfd_byte*) contents + rel->r_offset + 2);
1145 r = bfd_reloc_ok;
1146 r_type = R_M68HC11_NONE;
1147 break;
1148
1149 case R_M68HC11_NONE:
1150 r = bfd_reloc_ok;
1151 break;
1152
1153 case R_M68HC11_LO16:
1154 /* Reloc generated by %addr(expr) gas to obtain the
1155 address as mapped in the memory bank window. */
1156 relocation = phys_addr;
1157 break;
1158
1159 case R_M68HC11_PAGE:
1160 /* Reloc generated by %page(expr) gas to obtain the
1161 page number associated with the address. */
1162 relocation = phys_page;
1163 break;
1164
1165 case R_M68HC11_16:
1166 /* Get virtual address of instruction having the relocation. */
1167 if (is_far)
1168 {
1169 const char* msg;
1170 char* buf;
1171 msg = _("Reference to the far symbol `%s' using a wrong "
1172 "relocation may result in incorrect execution");
1173 buf = alloca (strlen (msg) + strlen (name) + 10);
1174 sprintf (buf, msg, name);
1175
1176 (* info->callbacks->warning)
1177 (info, buf, name, input_bfd, NULL, rel->r_offset);
1178 }
1179
1180 /* Get virtual address of instruction having the relocation. */
1181 insn_addr = input_section->output_section->vma
1182 + input_section->output_offset
1183 + rel->r_offset;
1184
1185 insn_page = m68hc11_phys_page (pinfo, insn_addr);
1186
1187 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)
1188 && m68hc11_addr_is_banked (pinfo, insn_addr)
1189 && phys_page != insn_page)
1190 {
1191 const char* msg;
1192 char* buf;
1193
1194 msg = _("banked address [%lx:%04lx] (%lx) is not in the same bank "
1195 "as current banked address [%lx:%04lx] (%lx)");
1196
1197 buf = alloca (strlen (msg) + 128);
1198 sprintf (buf, msg, phys_page, phys_addr,
1199 (long) (relocation + rel->r_addend),
1200 insn_page, m68hc11_phys_addr (pinfo, insn_addr),
1201 (long) (insn_addr));
1202 if (!((*info->callbacks->warning)
1203 (info, buf, name, input_bfd, input_section,
1204 rel->r_offset)))
1205 return FALSE;
1206 break;
1207 }
1208 if (phys_page != 0 && insn_page == 0)
1209 {
1210 const char* msg;
1211 char* buf;
1212
1213 msg = _("reference to a banked address [%lx:%04lx] in the "
1214 "normal address space at %04lx");
1215
1216 buf = alloca (strlen (msg) + 128);
1217 sprintf (buf, msg, phys_page, phys_addr, insn_addr);
1218 if (!((*info->callbacks->warning)
1219 (info, buf, name, input_bfd, input_section,
1220 insn_addr)))
1221 return FALSE;
1222
1223 relocation = phys_addr;
1224 break;
1225 }
1226
1227 /* If this is a banked address use the phys_addr so that
1228 we stay in the banked window. */
1229 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend))
1230 relocation = phys_addr;
1231 break;
1232 }
1233 if (r_type != R_M68HC11_NONE)
1234 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1235 contents, rel->r_offset,
1236 relocation, rel->r_addend);
1237
1238 if (r != bfd_reloc_ok)
1239 {
1240 const char * msg = (const char *) 0;
1241
1242 switch (r)
1243 {
1244 case bfd_reloc_overflow:
1245 if (!((*info->callbacks->reloc_overflow)
1246 (info, name, howto->name, (bfd_vma) 0,
1247 input_bfd, input_section, rel->r_offset)))
1248 return FALSE;
1249 break;
1250
1251 case bfd_reloc_undefined:
1252 if (!((*info->callbacks->undefined_symbol)
1253 (info, name, input_bfd, input_section,
1254 rel->r_offset, TRUE)))
1255 return FALSE;
1256 break;
1257
1258 case bfd_reloc_outofrange:
1259 msg = _ ("internal error: out of range error");
1260 goto common_error;
1261
1262 case bfd_reloc_notsupported:
1263 msg = _ ("internal error: unsupported relocation error");
1264 goto common_error;
1265
1266 case bfd_reloc_dangerous:
1267 msg = _ ("internal error: dangerous error");
1268 goto common_error;
1269
1270 default:
1271 msg = _ ("internal error: unknown error");
1272 /* fall through */
1273
1274 common_error:
1275 if (!((*info->callbacks->warning)
1276 (info, msg, name, input_bfd, input_section,
1277 rel->r_offset)))
1278 return FALSE;
1279 break;
1280 }
1281 }
1282 }
1283
1284 return TRUE;
1285 }
1286
1287
1288 \f
1289 /* Set and control ELF flags in ELF header. */
1290
1291 bfd_boolean
1292 _bfd_m68hc11_elf_set_private_flags (abfd, flags)
1293 bfd *abfd;
1294 flagword flags;
1295 {
1296 BFD_ASSERT (!elf_flags_init (abfd)
1297 || elf_elfheader (abfd)->e_flags == flags);
1298
1299 elf_elfheader (abfd)->e_flags = flags;
1300 elf_flags_init (abfd) = TRUE;
1301 return TRUE;
1302 }
1303
1304 /* Merge backend specific data from an object file to the output
1305 object file when linking. */
1306
1307 bfd_boolean
1308 _bfd_m68hc11_elf_merge_private_bfd_data (ibfd, obfd)
1309 bfd *ibfd;
1310 bfd *obfd;
1311 {
1312 flagword old_flags;
1313 flagword new_flags;
1314 bfd_boolean ok = TRUE;
1315
1316 /* Check if we have the same endianess */
1317 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
1318 return FALSE;
1319
1320 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1321 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1322 return TRUE;
1323
1324 new_flags = elf_elfheader (ibfd)->e_flags;
1325 elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI;
1326 old_flags = elf_elfheader (obfd)->e_flags;
1327
1328 if (! elf_flags_init (obfd))
1329 {
1330 elf_flags_init (obfd) = TRUE;
1331 elf_elfheader (obfd)->e_flags = new_flags;
1332 elf_elfheader (obfd)->e_ident[EI_CLASS]
1333 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
1334
1335 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
1336 && bfd_get_arch_info (obfd)->the_default)
1337 {
1338 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
1339 bfd_get_mach (ibfd)))
1340 return FALSE;
1341 }
1342
1343 return TRUE;
1344 }
1345
1346 /* Check ABI compatibility. */
1347 if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32))
1348 {
1349 (*_bfd_error_handler)
1350 (_("%s: linking files compiled for 16-bit integers (-mshort) "
1351 "and others for 32-bit integers"),
1352 bfd_archive_filename (ibfd));
1353 ok = FALSE;
1354 }
1355 if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64))
1356 {
1357 (*_bfd_error_handler)
1358 (_("%s: linking files compiled for 32-bit double (-fshort-double) "
1359 "and others for 64-bit double"),
1360 bfd_archive_filename (ibfd));
1361 ok = FALSE;
1362 }
1363
1364 /* Processor compatibility. */
1365 if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags))
1366 {
1367 (*_bfd_error_handler)
1368 (_("%s: linking files compiled for HCS12 with "
1369 "others compiled for HC12"),
1370 bfd_archive_filename (ibfd));
1371 ok = FALSE;
1372 }
1373 new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK)
1374 | (EF_M68HC11_MERGE_MACH (new_flags, old_flags)));
1375
1376 elf_elfheader (obfd)->e_flags = new_flags;
1377
1378 new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1379 old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1380
1381 /* Warn about any other mismatches */
1382 if (new_flags != old_flags)
1383 {
1384 (*_bfd_error_handler)
1385 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
1386 bfd_archive_filename (ibfd), (unsigned long) new_flags,
1387 (unsigned long) old_flags);
1388 ok = FALSE;
1389 }
1390
1391 if (! ok)
1392 {
1393 bfd_set_error (bfd_error_bad_value);
1394 return FALSE;
1395 }
1396
1397 return TRUE;
1398 }
1399
1400 bfd_boolean
1401 _bfd_m68hc11_elf_print_private_bfd_data (abfd, ptr)
1402 bfd *abfd;
1403 PTR ptr;
1404 {
1405 FILE *file = (FILE *) ptr;
1406
1407 BFD_ASSERT (abfd != NULL && ptr != NULL);
1408
1409 /* Print normal ELF private data. */
1410 _bfd_elf_print_private_bfd_data (abfd, ptr);
1411
1412 /* xgettext:c-format */
1413 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1414
1415 if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32)
1416 fprintf (file, _("[abi=32-bit int, "));
1417 else
1418 fprintf (file, _("[abi=16-bit int, "));
1419
1420 if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64)
1421 fprintf (file, _("64-bit double, "));
1422 else
1423 fprintf (file, _("32-bit double, "));
1424
1425 if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0)
1426 fprintf (file, _("cpu=HC11]"));
1427 else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH)
1428 fprintf (file, _("cpu=HCS12]"));
1429 else
1430 fprintf (file, _("cpu=HC12]"));
1431
1432 if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS)
1433 fprintf (file, _(" [memory=bank-model]"));
1434 else
1435 fprintf (file, _(" [memory=flat]"));
1436
1437 fputc ('\n', file);
1438
1439 return TRUE;
1440 }
1441
1442 static void scan_sections_for_abi (abfd, asect, arg)
1443 bfd* abfd ATTRIBUTE_UNUSED;
1444 asection* asect;
1445 PTR arg;
1446 {
1447 struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg;
1448
1449 if (asect->vma >= p->pinfo->bank_virtual)
1450 p->use_memory_banks = TRUE;
1451 }
1452
1453 /* Tweak the OSABI field of the elf header. */
1454
1455 void
1456 elf32_m68hc11_post_process_headers (abfd, link_info)
1457 bfd *abfd;
1458 struct bfd_link_info *link_info;
1459 {
1460 struct m68hc11_scan_param param;
1461
1462 if (link_info == 0)
1463 return;
1464
1465 m68hc11_elf_get_bank_parameters (link_info);
1466
1467 param.use_memory_banks = FALSE;
1468 param.pinfo = &m68hc11_elf_hash_table (link_info)->pinfo;
1469 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
1470 if (param.use_memory_banks)
1471 {
1472 Elf_Internal_Ehdr * i_ehdrp;
1473
1474 i_ehdrp = elf_elfheader (abfd);
1475 i_ehdrp->e_flags |= E_M68HC12_BANKS;
1476 }
1477 }
1478