]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-xtensa.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / bfd / elf32-xtensa.c
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright (C) 2003-2020 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23
24 #include <stdarg.h>
25 #include <strings.h>
26
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "splay-tree.h"
32 #include "xtensa-isa.h"
33 #include "xtensa-config.h"
34
35 /* All users of this file have bfd_octets_per_byte (abfd, sec) == 1. */
36 #define OCTETS_PER_BYTE(ABFD, SEC) 1
37
38 #define XTENSA_NO_NOP_REMOVAL 0
39
40 /* Local helper functions. */
41
42 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
43 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
44 static bfd_reloc_status_type bfd_elf_xtensa_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_boolean do_fix_for_relocatable_link
47 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
48 static void do_fix_for_final_link
49 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
50
51 /* Local functions to handle Xtensa configurability. */
52
53 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
54 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
55 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
56 static xtensa_opcode get_const16_opcode (void);
57 static xtensa_opcode get_l32r_opcode (void);
58 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
59 static int get_relocation_opnd (xtensa_opcode, int);
60 static int get_relocation_slot (int);
61 static xtensa_opcode get_relocation_opcode
62 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
63 static bfd_boolean is_l32r_relocation
64 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
65 static bfd_boolean is_alt_relocation (int);
66 static bfd_boolean is_operand_relocation (int);
67 static bfd_size_type insn_decode_len
68 (bfd_byte *, bfd_size_type, bfd_size_type);
69 static int insn_num_slots
70 (bfd_byte *, bfd_size_type, bfd_size_type);
71 static xtensa_opcode insn_decode_opcode
72 (bfd_byte *, bfd_size_type, bfd_size_type, int);
73 static bfd_boolean check_branch_target_aligned
74 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
75 static bfd_boolean check_loop_aligned
76 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
77 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
78 static bfd_size_type get_asm_simplify_size
79 (bfd_byte *, bfd_size_type, bfd_size_type);
80
81 /* Functions for link-time code simplifications. */
82
83 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
84 (bfd_byte *, bfd_vma, bfd_vma, char **);
85 static bfd_reloc_status_type contract_asm_expansion
86 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
87 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
88 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
89
90 /* Access to internal relocations, section contents and symbols. */
91
92 static Elf_Internal_Rela *retrieve_internal_relocs
93 (bfd *, asection *, bfd_boolean);
94 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
95 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
96 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
97 static void pin_contents (asection *, bfd_byte *);
98 static void release_contents (asection *, bfd_byte *);
99 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
100
101 /* Miscellaneous utility functions. */
102
103 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
104 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
105 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
106 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
107 (bfd *, unsigned long);
108 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
109 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
110 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
111 static bfd_boolean xtensa_is_property_section (asection *);
112 static bfd_boolean xtensa_is_insntable_section (asection *);
113 static bfd_boolean xtensa_is_littable_section (asection *);
114 static bfd_boolean xtensa_is_proptable_section (asection *);
115 static int internal_reloc_compare (const void *, const void *);
116 static int internal_reloc_matches (const void *, const void *);
117 static asection *xtensa_get_property_section (asection *, const char *);
118 static flagword xtensa_get_property_predef_flags (asection *);
119
120 /* Other functions called directly by the linker. */
121
122 typedef void (*deps_callback_t)
123 (asection *, bfd_vma, asection *, bfd_vma, void *);
124 extern bfd_boolean xtensa_callback_required_dependence
125 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
126
127
128 /* Globally visible flag for choosing size optimization of NOP removal
129 instead of branch-target-aware minimization for NOP removal.
130 When nonzero, narrow all instructions and remove all NOPs possible
131 around longcall expansions. */
132
133 int elf32xtensa_size_opt;
134
135
136 /* The "new_section_hook" is used to set up a per-section
137 "xtensa_relax_info" data structure with additional information used
138 during relaxation. */
139
140 typedef struct xtensa_relax_info_struct xtensa_relax_info;
141
142
143 /* The GNU tools do not easily allow extending interfaces to pass around
144 the pointer to the Xtensa ISA information, so instead we add a global
145 variable here (in BFD) that can be used by any of the tools that need
146 this information. */
147
148 xtensa_isa xtensa_default_isa;
149
150
151 /* When this is true, relocations may have been modified to refer to
152 symbols from other input files. The per-section list of "fix"
153 records needs to be checked when resolving relocations. */
154
155 static bfd_boolean relaxing_section = FALSE;
156
157 /* When this is true, during final links, literals that cannot be
158 coalesced and their relocations may be moved to other sections. */
159
160 int elf32xtensa_no_literal_movement = 1;
161
162 /* Place property records for a section into individual property section
163 with xt.prop. prefix. */
164
165 bfd_boolean elf32xtensa_separate_props = FALSE;
166
167 /* Rename one of the generic section flags to better document how it
168 is used here. */
169 /* Whether relocations have been processed. */
170 #define reloc_done sec_flg0
171 \f
172 static reloc_howto_type elf_howto_table[] =
173 {
174 HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
175 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
176 FALSE, 0, 0, FALSE),
177 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
178 bfd_elf_xtensa_reloc, "R_XTENSA_32",
179 TRUE, 0xffffffff, 0xffffffff, FALSE),
180
181 /* Replace a 32-bit value with a value from the runtime linker (only
182 used by linker-generated stub functions). The r_addend value is
183 special: 1 means to substitute a pointer to the runtime linker's
184 dynamic resolver function; 2 means to substitute the link map for
185 the shared object. */
186 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
187 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
188
189 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
190 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
191 FALSE, 0, 0xffffffff, FALSE),
192 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
193 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
194 FALSE, 0, 0xffffffff, FALSE),
195 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
196 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
197 FALSE, 0, 0xffffffff, FALSE),
198 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
199 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
200 FALSE, 0, 0xffffffff, FALSE),
201
202 EMPTY_HOWTO (7),
203
204 /* Old relocations for backward compatibility. */
205 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
206 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
207 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
208 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
209 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
210 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
211
212 /* Assembly auto-expansion. */
213 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
214 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
215 /* Relax assembly auto-expansion. */
216 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
217 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
218
219 EMPTY_HOWTO (13),
220
221 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
222 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
223 FALSE, 0, 0xffffffff, TRUE),
224
225 /* GNU extension to record C++ vtable hierarchy. */
226 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
227 NULL, "R_XTENSA_GNU_VTINHERIT",
228 FALSE, 0, 0, FALSE),
229 /* GNU extension to record C++ vtable member usage. */
230 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
231 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
232 FALSE, 0, 0, FALSE),
233
234 /* Relocations for supporting difference of symbols. */
235 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
236 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
237 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed,
238 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
239 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
240 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
241
242 /* General immediate operand relocations. */
243 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
245 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
246 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
247 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
249 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
251 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
253 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
254 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
255 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
257 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
259 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
260 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
261 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
263 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
264 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
265 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
267 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
269 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
271 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
273
274 /* "Alternate" relocations. The meaning of these is opcode-specific. */
275 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
277 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
279 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
281 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
283 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
285 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
287 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
289 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
290 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
291 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
292 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
293 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
294 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
295 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
296 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
297 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
298 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
299 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
300 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
301 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
302 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
303 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
304 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
305
306 /* TLS relocations. */
307 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
308 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
309 FALSE, 0, 0xffffffff, FALSE),
310 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
311 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
312 FALSE, 0, 0xffffffff, FALSE),
313 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
314 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
315 FALSE, 0, 0xffffffff, FALSE),
316 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
317 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
318 FALSE, 0, 0xffffffff, FALSE),
319 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
320 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
321 FALSE, 0, 0, FALSE),
322 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
323 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
324 FALSE, 0, 0, FALSE),
325 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
326 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
327 FALSE, 0, 0, FALSE),
328
329 HOWTO (R_XTENSA_PDIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
330 bfd_elf_xtensa_reloc, "R_XTENSA_PDIFF8", FALSE, 0, 0xff, FALSE),
331 HOWTO (R_XTENSA_PDIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
332 bfd_elf_xtensa_reloc, "R_XTENSA_PDIFF16", FALSE, 0, 0xffff, FALSE),
333 HOWTO (R_XTENSA_PDIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
334 bfd_elf_xtensa_reloc, "R_XTENSA_PDIFF32", FALSE, 0, 0xffffffff, FALSE),
335
336 HOWTO (R_XTENSA_NDIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
337 bfd_elf_xtensa_reloc, "R_XTENSA_NDIFF8", FALSE, 0, 0xff, FALSE),
338 HOWTO (R_XTENSA_NDIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
339 bfd_elf_xtensa_reloc, "R_XTENSA_NDIFF16", FALSE, 0, 0xffff, FALSE),
340 HOWTO (R_XTENSA_NDIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
341 bfd_elf_xtensa_reloc, "R_XTENSA_NDIFF32", FALSE, 0, 0xffffffff, FALSE),
342 };
343
344 #if DEBUG_GEN_RELOC
345 #define TRACE(str) \
346 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
347 #else
348 #define TRACE(str)
349 #endif
350
351 static reloc_howto_type *
352 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
353 bfd_reloc_code_real_type code)
354 {
355 switch (code)
356 {
357 case BFD_RELOC_NONE:
358 TRACE ("BFD_RELOC_NONE");
359 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
360
361 case BFD_RELOC_32:
362 TRACE ("BFD_RELOC_32");
363 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
364
365 case BFD_RELOC_32_PCREL:
366 TRACE ("BFD_RELOC_32_PCREL");
367 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
368
369 case BFD_RELOC_XTENSA_DIFF8:
370 TRACE ("BFD_RELOC_XTENSA_DIFF8");
371 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
372
373 case BFD_RELOC_XTENSA_DIFF16:
374 TRACE ("BFD_RELOC_XTENSA_DIFF16");
375 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
376
377 case BFD_RELOC_XTENSA_DIFF32:
378 TRACE ("BFD_RELOC_XTENSA_DIFF32");
379 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
380
381 case BFD_RELOC_XTENSA_PDIFF8:
382 TRACE ("BFD_RELOC_XTENSA_PDIFF8");
383 return &elf_howto_table[(unsigned) R_XTENSA_PDIFF8 ];
384
385 case BFD_RELOC_XTENSA_PDIFF16:
386 TRACE ("BFD_RELOC_XTENSA_PDIFF16");
387 return &elf_howto_table[(unsigned) R_XTENSA_PDIFF16 ];
388
389 case BFD_RELOC_XTENSA_PDIFF32:
390 TRACE ("BFD_RELOC_XTENSA_PDIFF32");
391 return &elf_howto_table[(unsigned) R_XTENSA_PDIFF32 ];
392
393 case BFD_RELOC_XTENSA_NDIFF8:
394 TRACE ("BFD_RELOC_XTENSA_NDIFF8");
395 return &elf_howto_table[(unsigned) R_XTENSA_NDIFF8 ];
396
397 case BFD_RELOC_XTENSA_NDIFF16:
398 TRACE ("BFD_RELOC_XTENSA_NDIFF16");
399 return &elf_howto_table[(unsigned) R_XTENSA_NDIFF16 ];
400
401 case BFD_RELOC_XTENSA_NDIFF32:
402 TRACE ("BFD_RELOC_XTENSA_NDIFF32");
403 return &elf_howto_table[(unsigned) R_XTENSA_NDIFF32 ];
404
405 case BFD_RELOC_XTENSA_RTLD:
406 TRACE ("BFD_RELOC_XTENSA_RTLD");
407 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
408
409 case BFD_RELOC_XTENSA_GLOB_DAT:
410 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
411 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
412
413 case BFD_RELOC_XTENSA_JMP_SLOT:
414 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
415 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
416
417 case BFD_RELOC_XTENSA_RELATIVE:
418 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
419 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
420
421 case BFD_RELOC_XTENSA_PLT:
422 TRACE ("BFD_RELOC_XTENSA_PLT");
423 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
424
425 case BFD_RELOC_XTENSA_OP0:
426 TRACE ("BFD_RELOC_XTENSA_OP0");
427 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
428
429 case BFD_RELOC_XTENSA_OP1:
430 TRACE ("BFD_RELOC_XTENSA_OP1");
431 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
432
433 case BFD_RELOC_XTENSA_OP2:
434 TRACE ("BFD_RELOC_XTENSA_OP2");
435 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
436
437 case BFD_RELOC_XTENSA_ASM_EXPAND:
438 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
439 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
440
441 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
442 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
443 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
444
445 case BFD_RELOC_VTABLE_INHERIT:
446 TRACE ("BFD_RELOC_VTABLE_INHERIT");
447 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
448
449 case BFD_RELOC_VTABLE_ENTRY:
450 TRACE ("BFD_RELOC_VTABLE_ENTRY");
451 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
452
453 case BFD_RELOC_XTENSA_TLSDESC_FN:
454 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
455 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
456
457 case BFD_RELOC_XTENSA_TLSDESC_ARG:
458 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
459 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
460
461 case BFD_RELOC_XTENSA_TLS_DTPOFF:
462 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
463 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
464
465 case BFD_RELOC_XTENSA_TLS_TPOFF:
466 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
467 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
468
469 case BFD_RELOC_XTENSA_TLS_FUNC:
470 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
471 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
472
473 case BFD_RELOC_XTENSA_TLS_ARG:
474 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
475 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
476
477 case BFD_RELOC_XTENSA_TLS_CALL:
478 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
479 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
480
481 default:
482 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
483 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
484 {
485 unsigned n = (R_XTENSA_SLOT0_OP +
486 (code - BFD_RELOC_XTENSA_SLOT0_OP));
487 return &elf_howto_table[n];
488 }
489
490 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
491 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
492 {
493 unsigned n = (R_XTENSA_SLOT0_ALT +
494 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
495 return &elf_howto_table[n];
496 }
497
498 break;
499 }
500
501 /* xgettext:c-format */
502 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, (int) code);
503 bfd_set_error (bfd_error_bad_value);
504 TRACE ("Unknown");
505 return NULL;
506 }
507
508 static reloc_howto_type *
509 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
510 const char *r_name)
511 {
512 unsigned int i;
513
514 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
515 if (elf_howto_table[i].name != NULL
516 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
517 return &elf_howto_table[i];
518
519 return NULL;
520 }
521
522
523 /* Given an ELF "rela" relocation, find the corresponding howto and record
524 it in the BFD internal arelent representation of the relocation. */
525
526 static bfd_boolean
527 elf_xtensa_info_to_howto_rela (bfd *abfd,
528 arelent *cache_ptr,
529 Elf_Internal_Rela *dst)
530 {
531 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
532
533 if (r_type >= (unsigned int) R_XTENSA_max)
534 {
535 /* xgettext:c-format */
536 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
537 abfd, r_type);
538 bfd_set_error (bfd_error_bad_value);
539 return FALSE;
540 }
541 cache_ptr->howto = &elf_howto_table[r_type];
542 return TRUE;
543 }
544
545 \f
546 /* Functions for the Xtensa ELF linker. */
547
548 /* The name of the dynamic interpreter. This is put in the .interp
549 section. */
550
551 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
552
553 /* The size in bytes of an entry in the procedure linkage table.
554 (This does _not_ include the space for the literals associated with
555 the PLT entry.) */
556
557 #define PLT_ENTRY_SIZE 16
558
559 /* For _really_ large PLTs, we may need to alternate between literals
560 and code to keep the literals within the 256K range of the L32R
561 instructions in the code. It's unlikely that anyone would ever need
562 such a big PLT, but an arbitrary limit on the PLT size would be bad.
563 Thus, we split the PLT into chunks. Since there's very little
564 overhead (2 extra literals) for each chunk, the chunk size is kept
565 small so that the code for handling multiple chunks get used and
566 tested regularly. With 254 entries, there are 1K of literals for
567 each chunk, and that seems like a nice round number. */
568
569 #define PLT_ENTRIES_PER_CHUNK 254
570
571 /* PLT entries are actually used as stub functions for lazy symbol
572 resolution. Once the symbol is resolved, the stub function is never
573 invoked. Note: the 32-byte frame size used here cannot be changed
574 without a corresponding change in the runtime linker. */
575
576 static const bfd_byte elf_xtensa_be_plt_entry[][PLT_ENTRY_SIZE] =
577 {
578 {
579 0x6c, 0x10, 0x04, /* entry sp, 32 */
580 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
581 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
582 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
583 0x0a, 0x80, 0x00, /* jx a8 */
584 0 /* unused */
585 },
586 {
587 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
588 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
589 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
590 0x0a, 0x80, 0x00, /* jx a8 */
591 0 /* unused */
592 }
593 };
594
595 static const bfd_byte elf_xtensa_le_plt_entry[][PLT_ENTRY_SIZE] =
596 {
597 {
598 0x36, 0x41, 0x00, /* entry sp, 32 */
599 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
600 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
601 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
602 0xa0, 0x08, 0x00, /* jx a8 */
603 0 /* unused */
604 },
605 {
606 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
607 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
608 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
609 0xa0, 0x08, 0x00, /* jx a8 */
610 0 /* unused */
611 }
612 };
613
614 /* The size of the thread control block. */
615 #define TCB_SIZE 8
616
617 struct elf_xtensa_link_hash_entry
618 {
619 struct elf_link_hash_entry elf;
620
621 bfd_signed_vma tlsfunc_refcount;
622
623 #define GOT_UNKNOWN 0
624 #define GOT_NORMAL 1
625 #define GOT_TLS_GD 2 /* global or local dynamic */
626 #define GOT_TLS_IE 4 /* initial or local exec */
627 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
628 unsigned char tls_type;
629 };
630
631 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
632
633 struct elf_xtensa_obj_tdata
634 {
635 struct elf_obj_tdata root;
636
637 /* tls_type for each local got entry. */
638 char *local_got_tls_type;
639
640 bfd_signed_vma *local_tlsfunc_refcounts;
641 };
642
643 #define elf_xtensa_tdata(abfd) \
644 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
645
646 #define elf_xtensa_local_got_tls_type(abfd) \
647 (elf_xtensa_tdata (abfd)->local_got_tls_type)
648
649 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
650 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
651
652 #define is_xtensa_elf(bfd) \
653 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
654 && elf_tdata (bfd) != NULL \
655 && elf_object_id (bfd) == XTENSA_ELF_DATA)
656
657 static bfd_boolean
658 elf_xtensa_mkobject (bfd *abfd)
659 {
660 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
661 XTENSA_ELF_DATA);
662 }
663
664 /* Xtensa ELF linker hash table. */
665
666 struct elf_xtensa_link_hash_table
667 {
668 struct elf_link_hash_table elf;
669
670 /* Short-cuts to get to dynamic linker sections. */
671 asection *sgotloc;
672 asection *spltlittbl;
673
674 /* Total count of PLT relocations seen during check_relocs.
675 The actual PLT code must be split into multiple sections and all
676 the sections have to be created before size_dynamic_sections,
677 where we figure out the exact number of PLT entries that will be
678 needed. It is OK if this count is an overestimate, e.g., some
679 relocations may be removed by GC. */
680 int plt_reloc_count;
681
682 struct elf_xtensa_link_hash_entry *tlsbase;
683 };
684
685 /* Get the Xtensa ELF linker hash table from a link_info structure. */
686
687 #define elf_xtensa_hash_table(p) \
688 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
689 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
690
691 /* Create an entry in an Xtensa ELF linker hash table. */
692
693 static struct bfd_hash_entry *
694 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
695 struct bfd_hash_table *table,
696 const char *string)
697 {
698 /* Allocate the structure if it has not already been allocated by a
699 subclass. */
700 if (entry == NULL)
701 {
702 entry = bfd_hash_allocate (table,
703 sizeof (struct elf_xtensa_link_hash_entry));
704 if (entry == NULL)
705 return entry;
706 }
707
708 /* Call the allocation method of the superclass. */
709 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
710 if (entry != NULL)
711 {
712 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
713 eh->tlsfunc_refcount = 0;
714 eh->tls_type = GOT_UNKNOWN;
715 }
716
717 return entry;
718 }
719
720 /* Create an Xtensa ELF linker hash table. */
721
722 static struct bfd_link_hash_table *
723 elf_xtensa_link_hash_table_create (bfd *abfd)
724 {
725 struct elf_link_hash_entry *tlsbase;
726 struct elf_xtensa_link_hash_table *ret;
727 size_t amt = sizeof (struct elf_xtensa_link_hash_table);
728
729 ret = bfd_zmalloc (amt);
730 if (ret == NULL)
731 return NULL;
732
733 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
734 elf_xtensa_link_hash_newfunc,
735 sizeof (struct elf_xtensa_link_hash_entry),
736 XTENSA_ELF_DATA))
737 {
738 free (ret);
739 return NULL;
740 }
741
742 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
743 for it later. */
744 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
745 TRUE, FALSE, FALSE);
746 tlsbase->root.type = bfd_link_hash_new;
747 tlsbase->root.u.undef.abfd = NULL;
748 tlsbase->non_elf = 0;
749 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
750 ret->tlsbase->tls_type = GOT_UNKNOWN;
751
752 return &ret->elf.root;
753 }
754
755 /* Copy the extra info we tack onto an elf_link_hash_entry. */
756
757 static void
758 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
759 struct elf_link_hash_entry *dir,
760 struct elf_link_hash_entry *ind)
761 {
762 struct elf_xtensa_link_hash_entry *edir, *eind;
763
764 edir = elf_xtensa_hash_entry (dir);
765 eind = elf_xtensa_hash_entry (ind);
766
767 if (ind->root.type == bfd_link_hash_indirect)
768 {
769 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
770 eind->tlsfunc_refcount = 0;
771
772 if (dir->got.refcount <= 0)
773 {
774 edir->tls_type = eind->tls_type;
775 eind->tls_type = GOT_UNKNOWN;
776 }
777 }
778
779 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
780 }
781
782 static inline bfd_boolean
783 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
784 struct bfd_link_info *info)
785 {
786 /* Check if we should do dynamic things to this symbol. The
787 "ignore_protected" argument need not be set, because Xtensa code
788 does not require special handling of STV_PROTECTED to make function
789 pointer comparisons work properly. The PLT addresses are never
790 used for function pointers. */
791
792 return _bfd_elf_dynamic_symbol_p (h, info, 0);
793 }
794
795 \f
796 static int
797 property_table_compare (const void *ap, const void *bp)
798 {
799 const property_table_entry *a = (const property_table_entry *) ap;
800 const property_table_entry *b = (const property_table_entry *) bp;
801
802 if (a->address == b->address)
803 {
804 if (a->size != b->size)
805 return (a->size - b->size);
806
807 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
808 return ((b->flags & XTENSA_PROP_ALIGN)
809 - (a->flags & XTENSA_PROP_ALIGN));
810
811 if ((a->flags & XTENSA_PROP_ALIGN)
812 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
813 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
814 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
815 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
816
817 if ((a->flags & XTENSA_PROP_UNREACHABLE)
818 != (b->flags & XTENSA_PROP_UNREACHABLE))
819 return ((b->flags & XTENSA_PROP_UNREACHABLE)
820 - (a->flags & XTENSA_PROP_UNREACHABLE));
821
822 return (a->flags - b->flags);
823 }
824
825 return (a->address - b->address);
826 }
827
828
829 static int
830 property_table_matches (const void *ap, const void *bp)
831 {
832 const property_table_entry *a = (const property_table_entry *) ap;
833 const property_table_entry *b = (const property_table_entry *) bp;
834
835 /* Check if one entry overlaps with the other. */
836 if ((b->address >= a->address && b->address < (a->address + a->size))
837 || (a->address >= b->address && a->address < (b->address + b->size)))
838 return 0;
839
840 return (a->address - b->address);
841 }
842
843
844 /* Get the literal table or property table entries for the given
845 section. Sets TABLE_P and returns the number of entries. On
846 error, returns a negative value. */
847
848 int
849 xtensa_read_table_entries (bfd *abfd,
850 asection *section,
851 property_table_entry **table_p,
852 const char *sec_name,
853 bfd_boolean output_addr)
854 {
855 asection *table_section;
856 bfd_size_type table_size = 0;
857 bfd_byte *table_data;
858 property_table_entry *blocks;
859 int blk, block_count;
860 bfd_size_type num_records;
861 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
862 bfd_vma section_addr, off;
863 flagword predef_flags;
864 bfd_size_type table_entry_size, section_limit;
865
866 if (!section
867 || !(section->flags & SEC_ALLOC)
868 || (section->flags & SEC_DEBUGGING))
869 {
870 *table_p = NULL;
871 return 0;
872 }
873
874 table_section = xtensa_get_property_section (section, sec_name);
875 if (table_section)
876 table_size = table_section->size;
877
878 if (table_size == 0)
879 {
880 *table_p = NULL;
881 return 0;
882 }
883
884 predef_flags = xtensa_get_property_predef_flags (table_section);
885 table_entry_size = 12;
886 if (predef_flags)
887 table_entry_size -= 4;
888
889 num_records = table_size / table_entry_size;
890 table_data = retrieve_contents (abfd, table_section, TRUE);
891 blocks = (property_table_entry *)
892 bfd_malloc (num_records * sizeof (property_table_entry));
893 block_count = 0;
894
895 if (output_addr)
896 section_addr = section->output_section->vma + section->output_offset;
897 else
898 section_addr = section->vma;
899
900 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
901 if (internal_relocs && !table_section->reloc_done)
902 {
903 qsort (internal_relocs, table_section->reloc_count,
904 sizeof (Elf_Internal_Rela), internal_reloc_compare);
905 irel = internal_relocs;
906 }
907 else
908 irel = NULL;
909
910 section_limit = bfd_get_section_limit (abfd, section);
911 rel_end = internal_relocs + table_section->reloc_count;
912
913 for (off = 0; off < table_size; off += table_entry_size)
914 {
915 bfd_vma address = bfd_get_32 (abfd, table_data + off);
916
917 /* Skip any relocations before the current offset. This should help
918 avoid confusion caused by unexpected relocations for the preceding
919 table entry. */
920 while (irel &&
921 (irel->r_offset < off
922 || (irel->r_offset == off
923 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
924 {
925 irel += 1;
926 if (irel >= rel_end)
927 irel = 0;
928 }
929
930 if (irel && irel->r_offset == off)
931 {
932 bfd_vma sym_off;
933 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
934 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
935
936 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
937 continue;
938
939 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
940 BFD_ASSERT (sym_off == 0);
941 address += (section_addr + sym_off + irel->r_addend);
942 }
943 else
944 {
945 if (address < section_addr
946 || address >= section_addr + section_limit)
947 continue;
948 }
949
950 blocks[block_count].address = address;
951 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
952 if (predef_flags)
953 blocks[block_count].flags = predef_flags;
954 else
955 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
956 block_count++;
957 }
958
959 release_contents (table_section, table_data);
960 release_internal_relocs (table_section, internal_relocs);
961
962 if (block_count > 0)
963 {
964 /* Now sort them into address order for easy reference. */
965 qsort (blocks, block_count, sizeof (property_table_entry),
966 property_table_compare);
967
968 /* Check that the table contents are valid. Problems may occur,
969 for example, if an unrelocated object file is stripped. */
970 for (blk = 1; blk < block_count; blk++)
971 {
972 /* The only circumstance where two entries may legitimately
973 have the same address is when one of them is a zero-size
974 placeholder to mark a place where fill can be inserted.
975 The zero-size entry should come first. */
976 if (blocks[blk - 1].address == blocks[blk].address &&
977 blocks[blk - 1].size != 0)
978 {
979 /* xgettext:c-format */
980 _bfd_error_handler (_("%pB(%pA): invalid property table"),
981 abfd, section);
982 bfd_set_error (bfd_error_bad_value);
983 free (blocks);
984 return -1;
985 }
986 }
987 }
988
989 *table_p = blocks;
990 return block_count;
991 }
992
993
994 static property_table_entry *
995 elf_xtensa_find_property_entry (property_table_entry *property_table,
996 int property_table_size,
997 bfd_vma addr)
998 {
999 property_table_entry entry;
1000 property_table_entry *rv;
1001
1002 if (property_table_size == 0)
1003 return NULL;
1004
1005 entry.address = addr;
1006 entry.size = 1;
1007 entry.flags = 0;
1008
1009 rv = bsearch (&entry, property_table, property_table_size,
1010 sizeof (property_table_entry), property_table_matches);
1011 return rv;
1012 }
1013
1014
1015 static bfd_boolean
1016 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
1017 int lit_table_size,
1018 bfd_vma addr)
1019 {
1020 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
1021 return TRUE;
1022
1023 return FALSE;
1024 }
1025
1026 \f
1027 /* Look through the relocs for a section during the first phase, and
1028 calculate needed space in the dynamic reloc sections. */
1029
1030 static bfd_boolean
1031 elf_xtensa_check_relocs (bfd *abfd,
1032 struct bfd_link_info *info,
1033 asection *sec,
1034 const Elf_Internal_Rela *relocs)
1035 {
1036 struct elf_xtensa_link_hash_table *htab;
1037 Elf_Internal_Shdr *symtab_hdr;
1038 struct elf_link_hash_entry **sym_hashes;
1039 const Elf_Internal_Rela *rel;
1040 const Elf_Internal_Rela *rel_end;
1041
1042 if (bfd_link_relocatable (info) || (sec->flags & SEC_ALLOC) == 0)
1043 return TRUE;
1044
1045 BFD_ASSERT (is_xtensa_elf (abfd));
1046
1047 htab = elf_xtensa_hash_table (info);
1048 if (htab == NULL)
1049 return FALSE;
1050
1051 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1052 sym_hashes = elf_sym_hashes (abfd);
1053
1054 rel_end = relocs + sec->reloc_count;
1055 for (rel = relocs; rel < rel_end; rel++)
1056 {
1057 unsigned int r_type;
1058 unsigned r_symndx;
1059 struct elf_link_hash_entry *h = NULL;
1060 struct elf_xtensa_link_hash_entry *eh;
1061 int tls_type, old_tls_type;
1062 bfd_boolean is_got = FALSE;
1063 bfd_boolean is_plt = FALSE;
1064 bfd_boolean is_tlsfunc = FALSE;
1065
1066 r_symndx = ELF32_R_SYM (rel->r_info);
1067 r_type = ELF32_R_TYPE (rel->r_info);
1068
1069 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1070 {
1071 /* xgettext:c-format */
1072 _bfd_error_handler (_("%pB: bad symbol index: %d"),
1073 abfd, r_symndx);
1074 return FALSE;
1075 }
1076
1077 if (r_symndx >= symtab_hdr->sh_info)
1078 {
1079 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1080 while (h->root.type == bfd_link_hash_indirect
1081 || h->root.type == bfd_link_hash_warning)
1082 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1083 }
1084 eh = elf_xtensa_hash_entry (h);
1085
1086 switch (r_type)
1087 {
1088 case R_XTENSA_TLSDESC_FN:
1089 if (bfd_link_pic (info))
1090 {
1091 tls_type = GOT_TLS_GD;
1092 is_got = TRUE;
1093 is_tlsfunc = TRUE;
1094 }
1095 else
1096 tls_type = GOT_TLS_IE;
1097 break;
1098
1099 case R_XTENSA_TLSDESC_ARG:
1100 if (bfd_link_pic (info))
1101 {
1102 tls_type = GOT_TLS_GD;
1103 is_got = TRUE;
1104 }
1105 else
1106 {
1107 tls_type = GOT_TLS_IE;
1108 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1109 is_got = TRUE;
1110 }
1111 break;
1112
1113 case R_XTENSA_TLS_DTPOFF:
1114 if (bfd_link_pic (info))
1115 tls_type = GOT_TLS_GD;
1116 else
1117 tls_type = GOT_TLS_IE;
1118 break;
1119
1120 case R_XTENSA_TLS_TPOFF:
1121 tls_type = GOT_TLS_IE;
1122 if (bfd_link_pic (info))
1123 info->flags |= DF_STATIC_TLS;
1124 if (bfd_link_pic (info) || h)
1125 is_got = TRUE;
1126 break;
1127
1128 case R_XTENSA_32:
1129 tls_type = GOT_NORMAL;
1130 is_got = TRUE;
1131 break;
1132
1133 case R_XTENSA_PLT:
1134 tls_type = GOT_NORMAL;
1135 is_plt = TRUE;
1136 break;
1137
1138 case R_XTENSA_GNU_VTINHERIT:
1139 /* This relocation describes the C++ object vtable hierarchy.
1140 Reconstruct it for later use during GC. */
1141 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1142 return FALSE;
1143 continue;
1144
1145 case R_XTENSA_GNU_VTENTRY:
1146 /* This relocation describes which C++ vtable entries are actually
1147 used. Record for later use during GC. */
1148 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1149 return FALSE;
1150 continue;
1151
1152 default:
1153 /* Nothing to do for any other relocations. */
1154 continue;
1155 }
1156
1157 if (h)
1158 {
1159 if (is_plt)
1160 {
1161 if (h->plt.refcount <= 0)
1162 {
1163 h->needs_plt = 1;
1164 h->plt.refcount = 1;
1165 }
1166 else
1167 h->plt.refcount += 1;
1168
1169 /* Keep track of the total PLT relocation count even if we
1170 don't yet know whether the dynamic sections will be
1171 created. */
1172 htab->plt_reloc_count += 1;
1173
1174 if (elf_hash_table (info)->dynamic_sections_created)
1175 {
1176 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1177 return FALSE;
1178 }
1179 }
1180 else if (is_got)
1181 {
1182 if (h->got.refcount <= 0)
1183 h->got.refcount = 1;
1184 else
1185 h->got.refcount += 1;
1186 }
1187
1188 if (is_tlsfunc)
1189 eh->tlsfunc_refcount += 1;
1190
1191 old_tls_type = eh->tls_type;
1192 }
1193 else
1194 {
1195 /* Allocate storage the first time. */
1196 if (elf_local_got_refcounts (abfd) == NULL)
1197 {
1198 bfd_size_type size = symtab_hdr->sh_info;
1199 void *mem;
1200
1201 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1202 if (mem == NULL)
1203 return FALSE;
1204 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
1205
1206 mem = bfd_zalloc (abfd, size);
1207 if (mem == NULL)
1208 return FALSE;
1209 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1210
1211 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1212 if (mem == NULL)
1213 return FALSE;
1214 elf_xtensa_local_tlsfunc_refcounts (abfd)
1215 = (bfd_signed_vma *) mem;
1216 }
1217
1218 /* This is a global offset table entry for a local symbol. */
1219 if (is_got || is_plt)
1220 elf_local_got_refcounts (abfd) [r_symndx] += 1;
1221
1222 if (is_tlsfunc)
1223 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
1224
1225 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1226 }
1227
1228 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1229 tls_type |= old_tls_type;
1230 /* If a TLS symbol is accessed using IE at least once,
1231 there is no point to use a dynamic model for it. */
1232 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1233 && ((old_tls_type & GOT_TLS_GD) == 0
1234 || (tls_type & GOT_TLS_IE) == 0))
1235 {
1236 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1237 tls_type = old_tls_type;
1238 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1239 tls_type |= old_tls_type;
1240 else
1241 {
1242 _bfd_error_handler
1243 /* xgettext:c-format */
1244 (_("%pB: `%s' accessed both as normal and thread local symbol"),
1245 abfd,
1246 h ? h->root.root.string : "<local>");
1247 return FALSE;
1248 }
1249 }
1250
1251 if (old_tls_type != tls_type)
1252 {
1253 if (eh)
1254 eh->tls_type = tls_type;
1255 else
1256 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
1257 }
1258 }
1259
1260 return TRUE;
1261 }
1262
1263
1264 static void
1265 elf_xtensa_make_sym_local (struct bfd_link_info *info,
1266 struct elf_link_hash_entry *h)
1267 {
1268 if (bfd_link_pic (info))
1269 {
1270 if (h->plt.refcount > 0)
1271 {
1272 /* For shared objects, there's no need for PLT entries for local
1273 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1274 if (h->got.refcount < 0)
1275 h->got.refcount = 0;
1276 h->got.refcount += h->plt.refcount;
1277 h->plt.refcount = 0;
1278 }
1279 }
1280 else
1281 {
1282 /* Don't need any dynamic relocations at all. */
1283 h->plt.refcount = 0;
1284 h->got.refcount = 0;
1285 }
1286 }
1287
1288
1289 static void
1290 elf_xtensa_hide_symbol (struct bfd_link_info *info,
1291 struct elf_link_hash_entry *h,
1292 bfd_boolean force_local)
1293 {
1294 /* For a shared link, move the plt refcount to the got refcount to leave
1295 space for RELATIVE relocs. */
1296 elf_xtensa_make_sym_local (info, h);
1297
1298 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1299 }
1300
1301
1302 /* Return the section that should be marked against GC for a given
1303 relocation. */
1304
1305 static asection *
1306 elf_xtensa_gc_mark_hook (asection *sec,
1307 struct bfd_link_info *info,
1308 Elf_Internal_Rela *rel,
1309 struct elf_link_hash_entry *h,
1310 Elf_Internal_Sym *sym)
1311 {
1312 /* Property sections are marked "KEEP" in the linker scripts, but they
1313 should not cause other sections to be marked. (This approach relies
1314 on elf_xtensa_discard_info to remove property table entries that
1315 describe discarded sections. Alternatively, it might be more
1316 efficient to avoid using "KEEP" in the linker scripts and instead use
1317 the gc_mark_extra_sections hook to mark only the property sections
1318 that describe marked sections. That alternative does not work well
1319 with the current property table sections, which do not correspond
1320 one-to-one with the sections they describe, but that should be fixed
1321 someday.) */
1322 if (xtensa_is_property_section (sec))
1323 return NULL;
1324
1325 if (h != NULL)
1326 switch (ELF32_R_TYPE (rel->r_info))
1327 {
1328 case R_XTENSA_GNU_VTINHERIT:
1329 case R_XTENSA_GNU_VTENTRY:
1330 return NULL;
1331 }
1332
1333 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1334 }
1335
1336
1337 /* Create all the dynamic sections. */
1338
1339 static bfd_boolean
1340 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1341 {
1342 struct elf_xtensa_link_hash_table *htab;
1343 flagword flags, noalloc_flags;
1344
1345 htab = elf_xtensa_hash_table (info);
1346 if (htab == NULL)
1347 return FALSE;
1348
1349 /* First do all the standard stuff. */
1350 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1351 return FALSE;
1352
1353 /* Create any extra PLT sections in case check_relocs has already
1354 been called on all the non-dynamic input files. */
1355 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1356 return FALSE;
1357
1358 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1359 | SEC_LINKER_CREATED | SEC_READONLY);
1360 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1361
1362 /* Mark the ".got.plt" section READONLY. */
1363 if (htab->elf.sgotplt == NULL
1364 || !bfd_set_section_flags (htab->elf.sgotplt, flags))
1365 return FALSE;
1366
1367 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1368 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1369 flags);
1370 if (htab->sgotloc == NULL
1371 || !bfd_set_section_alignment (htab->sgotloc, 2))
1372 return FALSE;
1373
1374 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1375 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1376 noalloc_flags);
1377 if (htab->spltlittbl == NULL
1378 || !bfd_set_section_alignment (htab->spltlittbl, 2))
1379 return FALSE;
1380
1381 return TRUE;
1382 }
1383
1384
1385 static bfd_boolean
1386 add_extra_plt_sections (struct bfd_link_info *info, int count)
1387 {
1388 bfd *dynobj = elf_hash_table (info)->dynobj;
1389 int chunk;
1390
1391 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1392 ".got.plt" sections. */
1393 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1394 {
1395 char *sname;
1396 flagword flags;
1397 asection *s;
1398
1399 /* Stop when we find a section has already been created. */
1400 if (elf_xtensa_get_plt_section (info, chunk))
1401 break;
1402
1403 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1404 | SEC_LINKER_CREATED | SEC_READONLY);
1405
1406 sname = (char *) bfd_malloc (10);
1407 sprintf (sname, ".plt.%u", chunk);
1408 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
1409 if (s == NULL
1410 || !bfd_set_section_alignment (s, 2))
1411 return FALSE;
1412
1413 sname = (char *) bfd_malloc (14);
1414 sprintf (sname, ".got.plt.%u", chunk);
1415 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
1416 if (s == NULL
1417 || !bfd_set_section_alignment (s, 2))
1418 return FALSE;
1419 }
1420
1421 return TRUE;
1422 }
1423
1424
1425 /* Adjust a symbol defined by a dynamic object and referenced by a
1426 regular object. The current definition is in some section of the
1427 dynamic object, but we're not including those sections. We have to
1428 change the definition to something the rest of the link can
1429 understand. */
1430
1431 static bfd_boolean
1432 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1433 struct elf_link_hash_entry *h)
1434 {
1435 /* If this is a weak symbol, and there is a real definition, the
1436 processor independent code will have arranged for us to see the
1437 real definition first, and we can just use the same value. */
1438 if (h->is_weakalias)
1439 {
1440 struct elf_link_hash_entry *def = weakdef (h);
1441 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1442 h->root.u.def.section = def->root.u.def.section;
1443 h->root.u.def.value = def->root.u.def.value;
1444 return TRUE;
1445 }
1446
1447 /* This is a reference to a symbol defined by a dynamic object. The
1448 reference must go through the GOT, so there's no need for COPY relocs,
1449 .dynbss, etc. */
1450
1451 return TRUE;
1452 }
1453
1454
1455 static bfd_boolean
1456 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1457 {
1458 struct bfd_link_info *info;
1459 struct elf_xtensa_link_hash_table *htab;
1460 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
1461
1462 if (h->root.type == bfd_link_hash_indirect)
1463 return TRUE;
1464
1465 info = (struct bfd_link_info *) arg;
1466 htab = elf_xtensa_hash_table (info);
1467 if (htab == NULL)
1468 return FALSE;
1469
1470 /* If we saw any use of an IE model for this symbol, we can then optimize
1471 away GOT entries for any TLSDESC_FN relocs. */
1472 if ((eh->tls_type & GOT_TLS_IE) != 0)
1473 {
1474 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1475 h->got.refcount -= eh->tlsfunc_refcount;
1476 }
1477
1478 if (! elf_xtensa_dynamic_symbol_p (h, info))
1479 elf_xtensa_make_sym_local (info, h);
1480
1481 if (! elf_xtensa_dynamic_symbol_p (h, info)
1482 && h->root.type == bfd_link_hash_undefweak)
1483 return TRUE;
1484
1485 if (h->plt.refcount > 0)
1486 htab->elf.srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1487
1488 if (h->got.refcount > 0)
1489 htab->elf.srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1490
1491 return TRUE;
1492 }
1493
1494
1495 static void
1496 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1497 {
1498 struct elf_xtensa_link_hash_table *htab;
1499 bfd *i;
1500
1501 htab = elf_xtensa_hash_table (info);
1502 if (htab == NULL)
1503 return;
1504
1505 for (i = info->input_bfds; i; i = i->link.next)
1506 {
1507 bfd_signed_vma *local_got_refcounts;
1508 bfd_size_type j, cnt;
1509 Elf_Internal_Shdr *symtab_hdr;
1510
1511 local_got_refcounts = elf_local_got_refcounts (i);
1512 if (!local_got_refcounts)
1513 continue;
1514
1515 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1516 cnt = symtab_hdr->sh_info;
1517
1518 for (j = 0; j < cnt; ++j)
1519 {
1520 /* If we saw any use of an IE model for this symbol, we can
1521 then optimize away GOT entries for any TLSDESC_FN relocs. */
1522 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1523 {
1524 bfd_signed_vma *tlsfunc_refcount
1525 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1526 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1527 local_got_refcounts[j] -= *tlsfunc_refcount;
1528 }
1529
1530 if (local_got_refcounts[j] > 0)
1531 htab->elf.srelgot->size += (local_got_refcounts[j]
1532 * sizeof (Elf32_External_Rela));
1533 }
1534 }
1535 }
1536
1537
1538 /* Set the sizes of the dynamic sections. */
1539
1540 static bfd_boolean
1541 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1542 struct bfd_link_info *info)
1543 {
1544 struct elf_xtensa_link_hash_table *htab;
1545 bfd *dynobj, *abfd;
1546 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1547 bfd_boolean relplt, relgot;
1548 int plt_entries, plt_chunks, chunk;
1549
1550 plt_entries = 0;
1551 plt_chunks = 0;
1552
1553 htab = elf_xtensa_hash_table (info);
1554 if (htab == NULL)
1555 return FALSE;
1556
1557 dynobj = elf_hash_table (info)->dynobj;
1558 if (dynobj == NULL)
1559 abort ();
1560 srelgot = htab->elf.srelgot;
1561 srelplt = htab->elf.srelplt;
1562
1563 if (elf_hash_table (info)->dynamic_sections_created)
1564 {
1565 BFD_ASSERT (htab->elf.srelgot != NULL
1566 && htab->elf.srelplt != NULL
1567 && htab->elf.sgot != NULL
1568 && htab->spltlittbl != NULL
1569 && htab->sgotloc != NULL);
1570
1571 /* Set the contents of the .interp section to the interpreter. */
1572 if (bfd_link_executable (info) && !info->nointerp)
1573 {
1574 s = bfd_get_linker_section (dynobj, ".interp");
1575 if (s == NULL)
1576 abort ();
1577 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1578 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1579 }
1580
1581 /* Allocate room for one word in ".got". */
1582 htab->elf.sgot->size = 4;
1583
1584 /* Allocate space in ".rela.got" for literals that reference global
1585 symbols and space in ".rela.plt" for literals that have PLT
1586 entries. */
1587 elf_link_hash_traverse (elf_hash_table (info),
1588 elf_xtensa_allocate_dynrelocs,
1589 (void *) info);
1590
1591 /* If we are generating a shared object, we also need space in
1592 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1593 reference local symbols. */
1594 if (bfd_link_pic (info))
1595 elf_xtensa_allocate_local_got_size (info);
1596
1597 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1598 each PLT entry, we need the PLT code plus a 4-byte literal.
1599 For each chunk of ".plt", we also need two more 4-byte
1600 literals, two corresponding entries in ".rela.got", and an
1601 8-byte entry in ".xt.lit.plt". */
1602 spltlittbl = htab->spltlittbl;
1603 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1604 plt_chunks =
1605 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1606
1607 /* Iterate over all the PLT chunks, including any extra sections
1608 created earlier because the initial count of PLT relocations
1609 was an overestimate. */
1610 for (chunk = 0;
1611 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1612 chunk++)
1613 {
1614 int chunk_entries;
1615
1616 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1617 BFD_ASSERT (sgotplt != NULL);
1618
1619 if (chunk < plt_chunks - 1)
1620 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1621 else if (chunk == plt_chunks - 1)
1622 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1623 else
1624 chunk_entries = 0;
1625
1626 if (chunk_entries != 0)
1627 {
1628 sgotplt->size = 4 * (chunk_entries + 2);
1629 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1630 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1631 spltlittbl->size += 8;
1632 }
1633 else
1634 {
1635 sgotplt->size = 0;
1636 splt->size = 0;
1637 }
1638 }
1639
1640 /* Allocate space in ".got.loc" to match the total size of all the
1641 literal tables. */
1642 sgotloc = htab->sgotloc;
1643 sgotloc->size = spltlittbl->size;
1644 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
1645 {
1646 if (abfd->flags & DYNAMIC)
1647 continue;
1648 for (s = abfd->sections; s != NULL; s = s->next)
1649 {
1650 if (! discarded_section (s)
1651 && xtensa_is_littable_section (s)
1652 && s != spltlittbl)
1653 sgotloc->size += s->size;
1654 }
1655 }
1656 }
1657
1658 /* Allocate memory for dynamic sections. */
1659 relplt = FALSE;
1660 relgot = FALSE;
1661 for (s = dynobj->sections; s != NULL; s = s->next)
1662 {
1663 const char *name;
1664
1665 if ((s->flags & SEC_LINKER_CREATED) == 0)
1666 continue;
1667
1668 /* It's OK to base decisions on the section name, because none
1669 of the dynobj section names depend upon the input files. */
1670 name = bfd_section_name (s);
1671
1672 if (CONST_STRNEQ (name, ".rela"))
1673 {
1674 if (s->size != 0)
1675 {
1676 if (strcmp (name, ".rela.plt") == 0)
1677 relplt = TRUE;
1678 else if (strcmp (name, ".rela.got") == 0)
1679 relgot = TRUE;
1680
1681 /* We use the reloc_count field as a counter if we need
1682 to copy relocs into the output file. */
1683 s->reloc_count = 0;
1684 }
1685 }
1686 else if (! CONST_STRNEQ (name, ".plt.")
1687 && ! CONST_STRNEQ (name, ".got.plt.")
1688 && strcmp (name, ".got") != 0
1689 && strcmp (name, ".plt") != 0
1690 && strcmp (name, ".got.plt") != 0
1691 && strcmp (name, ".xt.lit.plt") != 0
1692 && strcmp (name, ".got.loc") != 0)
1693 {
1694 /* It's not one of our sections, so don't allocate space. */
1695 continue;
1696 }
1697
1698 if (s->size == 0)
1699 {
1700 /* If we don't need this section, strip it from the output
1701 file. We must create the ".plt*" and ".got.plt*"
1702 sections in create_dynamic_sections and/or check_relocs
1703 based on a conservative estimate of the PLT relocation
1704 count, because the sections must be created before the
1705 linker maps input sections to output sections. The
1706 linker does that before size_dynamic_sections, where we
1707 compute the exact size of the PLT, so there may be more
1708 of these sections than are actually needed. */
1709 s->flags |= SEC_EXCLUDE;
1710 }
1711 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1712 {
1713 /* Allocate memory for the section contents. */
1714 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1715 if (s->contents == NULL)
1716 return FALSE;
1717 }
1718 }
1719
1720 if (elf_hash_table (info)->dynamic_sections_created)
1721 {
1722 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1723 known until finish_dynamic_sections, but we need to get the relocs
1724 in place before they are sorted. */
1725 for (chunk = 0; chunk < plt_chunks; chunk++)
1726 {
1727 Elf_Internal_Rela irela;
1728 bfd_byte *loc;
1729
1730 irela.r_offset = 0;
1731 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1732 irela.r_addend = 0;
1733
1734 loc = (srelgot->contents
1735 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1736 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1737 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1738 loc + sizeof (Elf32_External_Rela));
1739 srelgot->reloc_count += 2;
1740 }
1741
1742 /* Add some entries to the .dynamic section. We fill in the
1743 values later, in elf_xtensa_finish_dynamic_sections, but we
1744 must add the entries now so that we get the correct size for
1745 the .dynamic section. The DT_DEBUG entry is filled in by the
1746 dynamic linker and used by the debugger. */
1747 #define add_dynamic_entry(TAG, VAL) \
1748 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1749
1750 if (bfd_link_executable (info))
1751 {
1752 if (!add_dynamic_entry (DT_DEBUG, 0))
1753 return FALSE;
1754 }
1755
1756 if (relplt)
1757 {
1758 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1759 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1760 || !add_dynamic_entry (DT_JMPREL, 0))
1761 return FALSE;
1762 }
1763
1764 if (relgot)
1765 {
1766 if (!add_dynamic_entry (DT_RELA, 0)
1767 || !add_dynamic_entry (DT_RELASZ, 0)
1768 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1769 return FALSE;
1770 }
1771
1772 if (!add_dynamic_entry (DT_PLTGOT, 0)
1773 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1774 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1775 return FALSE;
1776 }
1777 #undef add_dynamic_entry
1778
1779 return TRUE;
1780 }
1781
1782 static bfd_boolean
1783 elf_xtensa_always_size_sections (bfd *output_bfd,
1784 struct bfd_link_info *info)
1785 {
1786 struct elf_xtensa_link_hash_table *htab;
1787 asection *tls_sec;
1788
1789 htab = elf_xtensa_hash_table (info);
1790 if (htab == NULL)
1791 return FALSE;
1792
1793 tls_sec = htab->elf.tls_sec;
1794
1795 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1796 {
1797 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1798 struct bfd_link_hash_entry *bh = &tlsbase->root;
1799 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1800
1801 tlsbase->type = STT_TLS;
1802 if (!(_bfd_generic_link_add_one_symbol
1803 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1804 tls_sec, 0, NULL, FALSE,
1805 bed->collect, &bh)))
1806 return FALSE;
1807 tlsbase->def_regular = 1;
1808 tlsbase->other = STV_HIDDEN;
1809 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1810 }
1811
1812 return TRUE;
1813 }
1814
1815 \f
1816 /* Return the base VMA address which should be subtracted from real addresses
1817 when resolving @dtpoff relocation.
1818 This is PT_TLS segment p_vaddr. */
1819
1820 static bfd_vma
1821 dtpoff_base (struct bfd_link_info *info)
1822 {
1823 /* If tls_sec is NULL, we should have signalled an error already. */
1824 if (elf_hash_table (info)->tls_sec == NULL)
1825 return 0;
1826 return elf_hash_table (info)->tls_sec->vma;
1827 }
1828
1829 /* Return the relocation value for @tpoff relocation
1830 if STT_TLS virtual address is ADDRESS. */
1831
1832 static bfd_vma
1833 tpoff (struct bfd_link_info *info, bfd_vma address)
1834 {
1835 struct elf_link_hash_table *htab = elf_hash_table (info);
1836 bfd_vma base;
1837
1838 /* If tls_sec is NULL, we should have signalled an error already. */
1839 if (htab->tls_sec == NULL)
1840 return 0;
1841 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1842 return address - htab->tls_sec->vma + base;
1843 }
1844
1845 /* Perform the specified relocation. The instruction at (contents + address)
1846 is modified to set one operand to represent the value in "relocation". The
1847 operand position is determined by the relocation type recorded in the
1848 howto. */
1849
1850 #define CALL_SEGMENT_BITS (30)
1851 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1852
1853 static bfd_reloc_status_type
1854 elf_xtensa_do_reloc (reloc_howto_type *howto,
1855 bfd *abfd,
1856 asection *input_section,
1857 bfd_vma relocation,
1858 bfd_byte *contents,
1859 bfd_vma address,
1860 bfd_boolean is_weak_undef,
1861 char **error_message)
1862 {
1863 xtensa_format fmt;
1864 xtensa_opcode opcode;
1865 xtensa_isa isa = xtensa_default_isa;
1866 static xtensa_insnbuf ibuff = NULL;
1867 static xtensa_insnbuf sbuff = NULL;
1868 bfd_vma self_address;
1869 bfd_size_type input_size;
1870 int opnd, slot;
1871 uint32 newval;
1872
1873 if (!ibuff)
1874 {
1875 ibuff = xtensa_insnbuf_alloc (isa);
1876 sbuff = xtensa_insnbuf_alloc (isa);
1877 }
1878
1879 input_size = bfd_get_section_limit (abfd, input_section);
1880
1881 /* Calculate the PC address for this instruction. */
1882 self_address = (input_section->output_section->vma
1883 + input_section->output_offset
1884 + address);
1885
1886 switch (howto->type)
1887 {
1888 case R_XTENSA_NONE:
1889 case R_XTENSA_DIFF8:
1890 case R_XTENSA_DIFF16:
1891 case R_XTENSA_DIFF32:
1892 case R_XTENSA_PDIFF8:
1893 case R_XTENSA_PDIFF16:
1894 case R_XTENSA_PDIFF32:
1895 case R_XTENSA_NDIFF8:
1896 case R_XTENSA_NDIFF16:
1897 case R_XTENSA_NDIFF32:
1898 case R_XTENSA_TLS_FUNC:
1899 case R_XTENSA_TLS_ARG:
1900 case R_XTENSA_TLS_CALL:
1901 return bfd_reloc_ok;
1902
1903 case R_XTENSA_ASM_EXPAND:
1904 if (!is_weak_undef)
1905 {
1906 /* Check for windowed CALL across a 1GB boundary. */
1907 opcode = get_expanded_call_opcode (contents + address,
1908 input_size - address, 0);
1909 if (is_windowed_call_opcode (opcode))
1910 {
1911 if ((self_address >> CALL_SEGMENT_BITS)
1912 != (relocation >> CALL_SEGMENT_BITS))
1913 {
1914 *error_message = "windowed longcall crosses 1GB boundary; "
1915 "return may fail";
1916 return bfd_reloc_dangerous;
1917 }
1918 }
1919 }
1920 return bfd_reloc_ok;
1921
1922 case R_XTENSA_ASM_SIMPLIFY:
1923 {
1924 /* Convert the L32R/CALLX to CALL. */
1925 bfd_reloc_status_type retval =
1926 elf_xtensa_do_asm_simplify (contents, address, input_size,
1927 error_message);
1928 if (retval != bfd_reloc_ok)
1929 return bfd_reloc_dangerous;
1930
1931 /* The CALL needs to be relocated. Continue below for that part. */
1932 address += 3;
1933 self_address += 3;
1934 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1935 }
1936 break;
1937
1938 case R_XTENSA_32:
1939 {
1940 bfd_vma x;
1941 x = bfd_get_32 (abfd, contents + address);
1942 x = x + relocation;
1943 bfd_put_32 (abfd, x, contents + address);
1944 }
1945 return bfd_reloc_ok;
1946
1947 case R_XTENSA_32_PCREL:
1948 bfd_put_32 (abfd, relocation - self_address, contents + address);
1949 return bfd_reloc_ok;
1950
1951 case R_XTENSA_PLT:
1952 case R_XTENSA_TLSDESC_FN:
1953 case R_XTENSA_TLSDESC_ARG:
1954 case R_XTENSA_TLS_DTPOFF:
1955 case R_XTENSA_TLS_TPOFF:
1956 bfd_put_32 (abfd, relocation, contents + address);
1957 return bfd_reloc_ok;
1958 }
1959
1960 /* Only instruction slot-specific relocations handled below.... */
1961 slot = get_relocation_slot (howto->type);
1962 if (slot == XTENSA_UNDEFINED)
1963 {
1964 *error_message = "unexpected relocation";
1965 return bfd_reloc_dangerous;
1966 }
1967
1968 /* Read the instruction into a buffer and decode the opcode. */
1969 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1970 input_size - address);
1971 fmt = xtensa_format_decode (isa, ibuff);
1972 if (fmt == XTENSA_UNDEFINED)
1973 {
1974 *error_message = "cannot decode instruction format";
1975 return bfd_reloc_dangerous;
1976 }
1977
1978 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
1979
1980 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1981 if (opcode == XTENSA_UNDEFINED)
1982 {
1983 *error_message = "cannot decode instruction opcode";
1984 return bfd_reloc_dangerous;
1985 }
1986
1987 /* Check for opcode-specific "alternate" relocations. */
1988 if (is_alt_relocation (howto->type))
1989 {
1990 if (opcode == get_l32r_opcode ())
1991 {
1992 /* Handle the special-case of non-PC-relative L32R instructions. */
1993 bfd *output_bfd = input_section->output_section->owner;
1994 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1995 if (!lit4_sec)
1996 {
1997 *error_message = "relocation references missing .lit4 section";
1998 return bfd_reloc_dangerous;
1999 }
2000 self_address = ((lit4_sec->vma & ~0xfff)
2001 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2002 newval = relocation;
2003 opnd = 1;
2004 }
2005 else if (opcode == get_const16_opcode ())
2006 {
2007 /* ALT used for high 16 bits.
2008 Ignore 32-bit overflow. */
2009 newval = (relocation >> 16) & 0xffff;
2010 opnd = 1;
2011 }
2012 else
2013 {
2014 /* No other "alternate" relocations currently defined. */
2015 *error_message = "unexpected relocation";
2016 return bfd_reloc_dangerous;
2017 }
2018 }
2019 else /* Not an "alternate" relocation.... */
2020 {
2021 if (opcode == get_const16_opcode ())
2022 {
2023 newval = relocation & 0xffff;
2024 opnd = 1;
2025 }
2026 else
2027 {
2028 /* ...normal PC-relative relocation.... */
2029
2030 /* Determine which operand is being relocated. */
2031 opnd = get_relocation_opnd (opcode, howto->type);
2032 if (opnd == XTENSA_UNDEFINED)
2033 {
2034 *error_message = "unexpected relocation";
2035 return bfd_reloc_dangerous;
2036 }
2037
2038 if (!howto->pc_relative)
2039 {
2040 *error_message = "expected PC-relative relocation";
2041 return bfd_reloc_dangerous;
2042 }
2043
2044 newval = relocation;
2045 }
2046 }
2047
2048 /* Apply the relocation. */
2049 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2050 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2051 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2052 sbuff, newval))
2053 {
2054 const char *opname = xtensa_opcode_name (isa, opcode);
2055 const char *msg;
2056
2057 msg = "cannot encode";
2058 if (is_direct_call_opcode (opcode))
2059 {
2060 if ((relocation & 0x3) != 0)
2061 msg = "misaligned call target";
2062 else
2063 msg = "call target out of range";
2064 }
2065 else if (opcode == get_l32r_opcode ())
2066 {
2067 if ((relocation & 0x3) != 0)
2068 msg = "misaligned literal target";
2069 else if (is_alt_relocation (howto->type))
2070 msg = "literal target out of range (too many literals)";
2071 else if (self_address > relocation)
2072 msg = "literal target out of range (try using text-section-literals)";
2073 else
2074 msg = "literal placed after use";
2075 }
2076
2077 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
2078 return bfd_reloc_dangerous;
2079 }
2080
2081 /* Check for calls across 1GB boundaries. */
2082 if (is_direct_call_opcode (opcode)
2083 && is_windowed_call_opcode (opcode))
2084 {
2085 if ((self_address >> CALL_SEGMENT_BITS)
2086 != (relocation >> CALL_SEGMENT_BITS))
2087 {
2088 *error_message =
2089 "windowed call crosses 1GB boundary; return may fail";
2090 return bfd_reloc_dangerous;
2091 }
2092 }
2093
2094 /* Write the modified instruction back out of the buffer. */
2095 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2096 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2097 input_size - address);
2098 return bfd_reloc_ok;
2099 }
2100
2101
2102 static char *
2103 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
2104 {
2105 /* To reduce the size of the memory leak,
2106 we only use a single message buffer. */
2107 static bfd_size_type alloc_size = 0;
2108 static char *message = NULL;
2109 bfd_size_type orig_len, len = 0;
2110 bfd_boolean is_append;
2111 va_list ap;
2112
2113 va_start (ap, arglen);
2114
2115 is_append = (origmsg == message);
2116
2117 orig_len = strlen (origmsg);
2118 len = orig_len + strlen (fmt) + arglen + 20;
2119 if (len > alloc_size)
2120 {
2121 message = (char *) bfd_realloc_or_free (message, len);
2122 alloc_size = len;
2123 }
2124 if (message != NULL)
2125 {
2126 if (!is_append)
2127 memcpy (message, origmsg, orig_len);
2128 vsprintf (message + orig_len, fmt, ap);
2129 }
2130 va_end (ap);
2131 return message;
2132 }
2133
2134
2135 /* This function is registered as the "special_function" in the
2136 Xtensa howto for handling simplify operations.
2137 bfd_perform_relocation / bfd_install_relocation use it to
2138 perform (install) the specified relocation. Since this replaces the code
2139 in bfd_perform_relocation, it is basically an Xtensa-specific,
2140 stripped-down version of bfd_perform_relocation. */
2141
2142 static bfd_reloc_status_type
2143 bfd_elf_xtensa_reloc (bfd *abfd,
2144 arelent *reloc_entry,
2145 asymbol *symbol,
2146 void *data,
2147 asection *input_section,
2148 bfd *output_bfd,
2149 char **error_message)
2150 {
2151 bfd_vma relocation;
2152 bfd_reloc_status_type flag;
2153 bfd_size_type octets = (reloc_entry->address
2154 * OCTETS_PER_BYTE (abfd, input_section));
2155 bfd_vma output_base = 0;
2156 reloc_howto_type *howto = reloc_entry->howto;
2157 asection *reloc_target_output_section;
2158 bfd_boolean is_weak_undef;
2159
2160 if (!xtensa_default_isa)
2161 xtensa_default_isa = xtensa_isa_init (0, 0);
2162
2163 /* ELF relocs are against symbols. If we are producing relocatable
2164 output, and the reloc is against an external symbol, the resulting
2165 reloc will also be against the same symbol. In such a case, we
2166 don't want to change anything about the way the reloc is handled,
2167 since it will all be done at final link time. This test is similar
2168 to what bfd_elf_generic_reloc does except that it lets relocs with
2169 howto->partial_inplace go through even if the addend is non-zero.
2170 (The real problem is that partial_inplace is set for XTENSA_32
2171 relocs to begin with, but that's a long story and there's little we
2172 can do about it now....) */
2173
2174 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
2175 {
2176 reloc_entry->address += input_section->output_offset;
2177 return bfd_reloc_ok;
2178 }
2179
2180 /* Is the address of the relocation really within the section? */
2181 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2182 return bfd_reloc_outofrange;
2183
2184 /* Work out which section the relocation is targeted at and the
2185 initial relocation command value. */
2186
2187 /* Get symbol value. (Common symbols are special.) */
2188 if (bfd_is_com_section (symbol->section))
2189 relocation = 0;
2190 else
2191 relocation = symbol->value;
2192
2193 reloc_target_output_section = symbol->section->output_section;
2194
2195 /* Convert input-section-relative symbol value to absolute. */
2196 if ((output_bfd && !howto->partial_inplace)
2197 || reloc_target_output_section == NULL)
2198 output_base = 0;
2199 else
2200 output_base = reloc_target_output_section->vma;
2201
2202 relocation += output_base + symbol->section->output_offset;
2203
2204 /* Add in supplied addend. */
2205 relocation += reloc_entry->addend;
2206
2207 /* Here the variable relocation holds the final address of the
2208 symbol we are relocating against, plus any addend. */
2209 if (output_bfd)
2210 {
2211 if (!howto->partial_inplace)
2212 {
2213 /* This is a partial relocation, and we want to apply the relocation
2214 to the reloc entry rather than the raw data. Everything except
2215 relocations against section symbols has already been handled
2216 above. */
2217
2218 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2219 reloc_entry->addend = relocation;
2220 reloc_entry->address += input_section->output_offset;
2221 return bfd_reloc_ok;
2222 }
2223 else
2224 {
2225 reloc_entry->address += input_section->output_offset;
2226 reloc_entry->addend = 0;
2227 }
2228 }
2229
2230 is_weak_undef = (bfd_is_und_section (symbol->section)
2231 && (symbol->flags & BSF_WEAK) != 0);
2232 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2233 (bfd_byte *) data, (bfd_vma) octets,
2234 is_weak_undef, error_message);
2235
2236 if (flag == bfd_reloc_dangerous)
2237 {
2238 /* Add the symbol name to the error message. */
2239 if (! *error_message)
2240 *error_message = "";
2241 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2242 strlen (symbol->name) + 17,
2243 symbol->name,
2244 (unsigned long) reloc_entry->addend);
2245 }
2246
2247 return flag;
2248 }
2249
2250
2251 /* Set up an entry in the procedure linkage table. */
2252
2253 static bfd_vma
2254 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
2255 bfd *output_bfd,
2256 unsigned reloc_index)
2257 {
2258 asection *splt, *sgotplt;
2259 bfd_vma plt_base, got_base;
2260 bfd_vma code_offset, lit_offset, abi_offset;
2261 int chunk;
2262
2263 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
2264 splt = elf_xtensa_get_plt_section (info, chunk);
2265 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2266 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2267
2268 plt_base = splt->output_section->vma + splt->output_offset;
2269 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2270
2271 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2272 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2273
2274 /* Fill in the literal entry. This is the offset of the dynamic
2275 relocation entry. */
2276 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2277 sgotplt->contents + lit_offset);
2278
2279 /* Fill in the entry in the procedure linkage table. */
2280 memcpy (splt->contents + code_offset,
2281 (bfd_big_endian (output_bfd)
2282 ? elf_xtensa_be_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED]
2283 : elf_xtensa_le_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED]),
2284 PLT_ENTRY_SIZE);
2285 abi_offset = XSHAL_ABI == XTHAL_ABI_WINDOWED ? 3 : 0;
2286 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2287 plt_base + code_offset + abi_offset),
2288 splt->contents + code_offset + abi_offset + 1);
2289 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2290 plt_base + code_offset + abi_offset + 3),
2291 splt->contents + code_offset + abi_offset + 4);
2292 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2293 plt_base + code_offset + abi_offset + 6),
2294 splt->contents + code_offset + abi_offset + 7);
2295
2296 return plt_base + code_offset;
2297 }
2298
2299
2300 static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2301
2302 static bfd_boolean
2303 replace_tls_insn (Elf_Internal_Rela *rel,
2304 bfd *abfd,
2305 asection *input_section,
2306 bfd_byte *contents,
2307 bfd_boolean is_ld_model,
2308 char **error_message)
2309 {
2310 static xtensa_insnbuf ibuff = NULL;
2311 static xtensa_insnbuf sbuff = NULL;
2312 xtensa_isa isa = xtensa_default_isa;
2313 xtensa_format fmt;
2314 xtensa_opcode old_op, new_op;
2315 bfd_size_type input_size;
2316 int r_type;
2317 unsigned dest_reg, src_reg;
2318
2319 if (ibuff == NULL)
2320 {
2321 ibuff = xtensa_insnbuf_alloc (isa);
2322 sbuff = xtensa_insnbuf_alloc (isa);
2323 }
2324
2325 input_size = bfd_get_section_limit (abfd, input_section);
2326
2327 /* Read the instruction into a buffer and decode the opcode. */
2328 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2329 input_size - rel->r_offset);
2330 fmt = xtensa_format_decode (isa, ibuff);
2331 if (fmt == XTENSA_UNDEFINED)
2332 {
2333 *error_message = "cannot decode instruction format";
2334 return FALSE;
2335 }
2336
2337 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2338 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2339
2340 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2341 if (old_op == XTENSA_UNDEFINED)
2342 {
2343 *error_message = "cannot decode instruction opcode";
2344 return FALSE;
2345 }
2346
2347 r_type = ELF32_R_TYPE (rel->r_info);
2348 switch (r_type)
2349 {
2350 case R_XTENSA_TLS_FUNC:
2351 case R_XTENSA_TLS_ARG:
2352 if (old_op != get_l32r_opcode ()
2353 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2354 sbuff, &dest_reg) != 0)
2355 {
2356 *error_message = "cannot extract L32R destination for TLS access";
2357 return FALSE;
2358 }
2359 break;
2360
2361 case R_XTENSA_TLS_CALL:
2362 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2363 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2364 sbuff, &src_reg) != 0)
2365 {
2366 *error_message = "cannot extract CALLXn operands for TLS access";
2367 return FALSE;
2368 }
2369 break;
2370
2371 default:
2372 abort ();
2373 }
2374
2375 if (is_ld_model)
2376 {
2377 switch (r_type)
2378 {
2379 case R_XTENSA_TLS_FUNC:
2380 case R_XTENSA_TLS_ARG:
2381 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2382 versions of Xtensa). */
2383 new_op = xtensa_opcode_lookup (isa, "nop");
2384 if (new_op == XTENSA_UNDEFINED)
2385 {
2386 new_op = xtensa_opcode_lookup (isa, "or");
2387 if (new_op == XTENSA_UNDEFINED
2388 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2389 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2390 sbuff, 1) != 0
2391 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2392 sbuff, 1) != 0
2393 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2394 sbuff, 1) != 0)
2395 {
2396 *error_message = "cannot encode OR for TLS access";
2397 return FALSE;
2398 }
2399 }
2400 else
2401 {
2402 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2403 {
2404 *error_message = "cannot encode NOP for TLS access";
2405 return FALSE;
2406 }
2407 }
2408 break;
2409
2410 case R_XTENSA_TLS_CALL:
2411 /* Read THREADPTR into the CALLX's return value register. */
2412 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2413 if (new_op == XTENSA_UNDEFINED
2414 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2415 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2416 sbuff, dest_reg + 2) != 0)
2417 {
2418 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2419 return FALSE;
2420 }
2421 break;
2422 }
2423 }
2424 else
2425 {
2426 switch (r_type)
2427 {
2428 case R_XTENSA_TLS_FUNC:
2429 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2430 if (new_op == XTENSA_UNDEFINED
2431 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2432 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2433 sbuff, dest_reg) != 0)
2434 {
2435 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2436 return FALSE;
2437 }
2438 break;
2439
2440 case R_XTENSA_TLS_ARG:
2441 /* Nothing to do. Keep the original L32R instruction. */
2442 return TRUE;
2443
2444 case R_XTENSA_TLS_CALL:
2445 /* Add the CALLX's src register (holding the THREADPTR value)
2446 to the first argument register (holding the offset) and put
2447 the result in the CALLX's return value register. */
2448 new_op = xtensa_opcode_lookup (isa, "add");
2449 if (new_op == XTENSA_UNDEFINED
2450 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2451 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2452 sbuff, dest_reg + 2) != 0
2453 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2454 sbuff, dest_reg + 2) != 0
2455 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2456 sbuff, src_reg) != 0)
2457 {
2458 *error_message = "cannot encode ADD for TLS access";
2459 return FALSE;
2460 }
2461 break;
2462 }
2463 }
2464
2465 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2466 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2467 input_size - rel->r_offset);
2468
2469 return TRUE;
2470 }
2471
2472
2473 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2474 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2475 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2476 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2477 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2478 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2479 || (R_TYPE) == R_XTENSA_TLS_ARG \
2480 || (R_TYPE) == R_XTENSA_TLS_CALL)
2481
2482 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2483 both relocatable and final links. */
2484
2485 static bfd_boolean
2486 elf_xtensa_relocate_section (bfd *output_bfd,
2487 struct bfd_link_info *info,
2488 bfd *input_bfd,
2489 asection *input_section,
2490 bfd_byte *contents,
2491 Elf_Internal_Rela *relocs,
2492 Elf_Internal_Sym *local_syms,
2493 asection **local_sections)
2494 {
2495 struct elf_xtensa_link_hash_table *htab;
2496 Elf_Internal_Shdr *symtab_hdr;
2497 Elf_Internal_Rela *rel;
2498 Elf_Internal_Rela *relend;
2499 struct elf_link_hash_entry **sym_hashes;
2500 property_table_entry *lit_table = 0;
2501 int ltblsize = 0;
2502 char *local_got_tls_types;
2503 char *error_message = NULL;
2504 bfd_size_type input_size;
2505 int tls_type;
2506
2507 if (!xtensa_default_isa)
2508 xtensa_default_isa = xtensa_isa_init (0, 0);
2509
2510 if (!is_xtensa_elf (input_bfd))
2511 {
2512 bfd_set_error (bfd_error_wrong_format);
2513 return FALSE;
2514 }
2515
2516 htab = elf_xtensa_hash_table (info);
2517 if (htab == NULL)
2518 return FALSE;
2519
2520 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2521 sym_hashes = elf_sym_hashes (input_bfd);
2522 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
2523
2524 if (elf_hash_table (info)->dynamic_sections_created)
2525 {
2526 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2527 &lit_table, XTENSA_LIT_SEC_NAME,
2528 TRUE);
2529 if (ltblsize < 0)
2530 return FALSE;
2531 }
2532
2533 input_size = bfd_get_section_limit (input_bfd, input_section);
2534
2535 rel = relocs;
2536 relend = relocs + input_section->reloc_count;
2537 for (; rel < relend; rel++)
2538 {
2539 int r_type;
2540 reloc_howto_type *howto;
2541 unsigned long r_symndx;
2542 struct elf_link_hash_entry *h;
2543 Elf_Internal_Sym *sym;
2544 char sym_type;
2545 const char *name;
2546 asection *sec;
2547 bfd_vma relocation;
2548 bfd_reloc_status_type r;
2549 bfd_boolean is_weak_undef;
2550 bfd_boolean unresolved_reloc;
2551 bfd_boolean warned;
2552 bfd_boolean dynamic_symbol;
2553
2554 r_type = ELF32_R_TYPE (rel->r_info);
2555 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2556 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2557 continue;
2558
2559 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2560 {
2561 bfd_set_error (bfd_error_bad_value);
2562 return FALSE;
2563 }
2564 howto = &elf_howto_table[r_type];
2565
2566 r_symndx = ELF32_R_SYM (rel->r_info);
2567
2568 h = NULL;
2569 sym = NULL;
2570 sec = NULL;
2571 is_weak_undef = FALSE;
2572 unresolved_reloc = FALSE;
2573 warned = FALSE;
2574
2575 if (howto->partial_inplace && !bfd_link_relocatable (info))
2576 {
2577 /* Because R_XTENSA_32 was made partial_inplace to fix some
2578 problems with DWARF info in partial links, there may be
2579 an addend stored in the contents. Take it out of there
2580 and move it back into the addend field of the reloc. */
2581 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2582 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2583 }
2584
2585 if (r_symndx < symtab_hdr->sh_info)
2586 {
2587 sym = local_syms + r_symndx;
2588 sym_type = ELF32_ST_TYPE (sym->st_info);
2589 sec = local_sections[r_symndx];
2590 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2591 }
2592 else
2593 {
2594 bfd_boolean ignored;
2595
2596 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2597 r_symndx, symtab_hdr, sym_hashes,
2598 h, sec, relocation,
2599 unresolved_reloc, warned, ignored);
2600
2601 if (relocation == 0
2602 && !unresolved_reloc
2603 && h->root.type == bfd_link_hash_undefweak)
2604 is_weak_undef = TRUE;
2605
2606 sym_type = h->type;
2607 }
2608
2609 if (sec != NULL && discarded_section (sec))
2610 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2611 rel, 1, relend, howto, 0, contents);
2612
2613 if (bfd_link_relocatable (info))
2614 {
2615 bfd_vma dest_addr;
2616 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2617
2618 /* This is a relocatable link.
2619 1) If the reloc is against a section symbol, adjust
2620 according to the output section.
2621 2) If there is a new target for this relocation,
2622 the new target will be in the same output section.
2623 We adjust the relocation by the output section
2624 difference. */
2625
2626 if (relaxing_section)
2627 {
2628 /* Check if this references a section in another input file. */
2629 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2630 contents))
2631 return FALSE;
2632 }
2633
2634 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2635 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2636
2637 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2638 {
2639 error_message = NULL;
2640 /* Convert ASM_SIMPLIFY into the simpler relocation
2641 so that they never escape a relaxing link. */
2642 r = contract_asm_expansion (contents, input_size, rel,
2643 &error_message);
2644 if (r != bfd_reloc_ok)
2645 (*info->callbacks->reloc_dangerous)
2646 (info, error_message,
2647 input_bfd, input_section, rel->r_offset);
2648
2649 r_type = ELF32_R_TYPE (rel->r_info);
2650 }
2651
2652 /* This is a relocatable link, so we don't have to change
2653 anything unless the reloc is against a section symbol,
2654 in which case we have to adjust according to where the
2655 section symbol winds up in the output section. */
2656 if (r_symndx < symtab_hdr->sh_info)
2657 {
2658 sym = local_syms + r_symndx;
2659 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2660 {
2661 sec = local_sections[r_symndx];
2662 rel->r_addend += sec->output_offset + sym->st_value;
2663 }
2664 }
2665
2666 /* If there is an addend with a partial_inplace howto,
2667 then move the addend to the contents. This is a hack
2668 to work around problems with DWARF in relocatable links
2669 with some previous version of BFD. Now we can't easily get
2670 rid of the hack without breaking backward compatibility.... */
2671 r = bfd_reloc_ok;
2672 howto = &elf_howto_table[r_type];
2673 if (howto->partial_inplace && rel->r_addend)
2674 {
2675 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2676 rel->r_addend, contents,
2677 rel->r_offset, FALSE,
2678 &error_message);
2679 rel->r_addend = 0;
2680 }
2681 else
2682 {
2683 /* Put the correct bits in the target instruction, even
2684 though the relocation will still be present in the output
2685 file. This makes disassembly clearer, as well as
2686 allowing loadable kernel modules to work without needing
2687 relocations on anything other than calls and l32r's. */
2688
2689 /* If it is not in the same section, there is nothing we can do. */
2690 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2691 sym_sec->output_section == input_section->output_section)
2692 {
2693 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2694 dest_addr, contents,
2695 rel->r_offset, FALSE,
2696 &error_message);
2697 }
2698 }
2699 if (r != bfd_reloc_ok)
2700 (*info->callbacks->reloc_dangerous)
2701 (info, error_message,
2702 input_bfd, input_section, rel->r_offset);
2703
2704 /* Done with work for relocatable link; continue with next reloc. */
2705 continue;
2706 }
2707
2708 /* This is a final link. */
2709
2710 if (relaxing_section)
2711 {
2712 /* Check if this references a section in another input file. */
2713 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2714 &relocation);
2715 }
2716
2717 /* Sanity check the address. */
2718 if (rel->r_offset >= input_size
2719 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2720 {
2721 _bfd_error_handler
2722 /* xgettext:c-format */
2723 (_("%pB(%pA+%#" PRIx64 "): "
2724 "relocation offset out of range (size=%#" PRIx64 ")"),
2725 input_bfd, input_section, (uint64_t) rel->r_offset,
2726 (uint64_t) input_size);
2727 bfd_set_error (bfd_error_bad_value);
2728 return FALSE;
2729 }
2730
2731 if (h != NULL)
2732 name = h->root.root.string;
2733 else
2734 {
2735 name = (bfd_elf_string_from_elf_section
2736 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2737 if (name == NULL || *name == '\0')
2738 name = bfd_section_name (sec);
2739 }
2740
2741 if (r_symndx != STN_UNDEF
2742 && r_type != R_XTENSA_NONE
2743 && (h == NULL
2744 || h->root.type == bfd_link_hash_defined
2745 || h->root.type == bfd_link_hash_defweak)
2746 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2747 {
2748 _bfd_error_handler
2749 ((sym_type == STT_TLS
2750 /* xgettext:c-format */
2751 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
2752 /* xgettext:c-format */
2753 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
2754 input_bfd,
2755 input_section,
2756 (uint64_t) rel->r_offset,
2757 howto->name,
2758 name);
2759 }
2760
2761 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2762
2763 tls_type = GOT_UNKNOWN;
2764 if (h)
2765 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2766 else if (local_got_tls_types)
2767 tls_type = local_got_tls_types [r_symndx];
2768
2769 switch (r_type)
2770 {
2771 case R_XTENSA_32:
2772 case R_XTENSA_PLT:
2773 if (elf_hash_table (info)->dynamic_sections_created
2774 && (input_section->flags & SEC_ALLOC) != 0
2775 && (dynamic_symbol || bfd_link_pic (info)))
2776 {
2777 Elf_Internal_Rela outrel;
2778 bfd_byte *loc;
2779 asection *srel;
2780
2781 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2782 srel = htab->elf.srelplt;
2783 else
2784 srel = htab->elf.srelgot;
2785
2786 BFD_ASSERT (srel != NULL);
2787
2788 outrel.r_offset =
2789 _bfd_elf_section_offset (output_bfd, info,
2790 input_section, rel->r_offset);
2791
2792 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2793 memset (&outrel, 0, sizeof outrel);
2794 else
2795 {
2796 outrel.r_offset += (input_section->output_section->vma
2797 + input_section->output_offset);
2798
2799 /* Complain if the relocation is in a read-only section
2800 and not in a literal pool. */
2801 if ((input_section->flags & SEC_READONLY) != 0
2802 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2803 outrel.r_offset))
2804 {
2805 error_message =
2806 _("dynamic relocation in read-only section");
2807 (*info->callbacks->reloc_dangerous)
2808 (info, error_message,
2809 input_bfd, input_section, rel->r_offset);
2810 }
2811
2812 if (dynamic_symbol)
2813 {
2814 outrel.r_addend = rel->r_addend;
2815 rel->r_addend = 0;
2816
2817 if (r_type == R_XTENSA_32)
2818 {
2819 outrel.r_info =
2820 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2821 relocation = 0;
2822 }
2823 else /* r_type == R_XTENSA_PLT */
2824 {
2825 outrel.r_info =
2826 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2827
2828 /* Create the PLT entry and set the initial
2829 contents of the literal entry to the address of
2830 the PLT entry. */
2831 relocation =
2832 elf_xtensa_create_plt_entry (info, output_bfd,
2833 srel->reloc_count);
2834 }
2835 unresolved_reloc = FALSE;
2836 }
2837 else if (!is_weak_undef)
2838 {
2839 /* Generate a RELATIVE relocation. */
2840 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2841 outrel.r_addend = 0;
2842 }
2843 else
2844 {
2845 continue;
2846 }
2847 }
2848
2849 loc = (srel->contents
2850 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2851 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2852 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2853 <= srel->size);
2854 }
2855 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2856 {
2857 /* This should only happen for non-PIC code, which is not
2858 supposed to be used on systems with dynamic linking.
2859 Just ignore these relocations. */
2860 continue;
2861 }
2862 break;
2863
2864 case R_XTENSA_TLS_TPOFF:
2865 /* Switch to LE model for local symbols in an executable. */
2866 if (! bfd_link_pic (info) && ! dynamic_symbol)
2867 {
2868 relocation = tpoff (info, relocation);
2869 break;
2870 }
2871 /* fall through */
2872
2873 case R_XTENSA_TLSDESC_FN:
2874 case R_XTENSA_TLSDESC_ARG:
2875 {
2876 if (r_type == R_XTENSA_TLSDESC_FN)
2877 {
2878 if (! bfd_link_pic (info) || (tls_type & GOT_TLS_IE) != 0)
2879 r_type = R_XTENSA_NONE;
2880 }
2881 else if (r_type == R_XTENSA_TLSDESC_ARG)
2882 {
2883 if (bfd_link_pic (info))
2884 {
2885 if ((tls_type & GOT_TLS_IE) != 0)
2886 r_type = R_XTENSA_TLS_TPOFF;
2887 }
2888 else
2889 {
2890 r_type = R_XTENSA_TLS_TPOFF;
2891 if (! dynamic_symbol)
2892 {
2893 relocation = tpoff (info, relocation);
2894 break;
2895 }
2896 }
2897 }
2898
2899 if (r_type == R_XTENSA_NONE)
2900 /* Nothing to do here; skip to the next reloc. */
2901 continue;
2902
2903 if (! elf_hash_table (info)->dynamic_sections_created)
2904 {
2905 error_message =
2906 _("TLS relocation invalid without dynamic sections");
2907 (*info->callbacks->reloc_dangerous)
2908 (info, error_message,
2909 input_bfd, input_section, rel->r_offset);
2910 }
2911 else
2912 {
2913 Elf_Internal_Rela outrel;
2914 bfd_byte *loc;
2915 asection *srel = htab->elf.srelgot;
2916 int indx;
2917
2918 outrel.r_offset = (input_section->output_section->vma
2919 + input_section->output_offset
2920 + rel->r_offset);
2921
2922 /* Complain if the relocation is in a read-only section
2923 and not in a literal pool. */
2924 if ((input_section->flags & SEC_READONLY) != 0
2925 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2926 outrel.r_offset))
2927 {
2928 error_message =
2929 _("dynamic relocation in read-only section");
2930 (*info->callbacks->reloc_dangerous)
2931 (info, error_message,
2932 input_bfd, input_section, rel->r_offset);
2933 }
2934
2935 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2936 if (indx == 0)
2937 outrel.r_addend = relocation - dtpoff_base (info);
2938 else
2939 outrel.r_addend = 0;
2940 rel->r_addend = 0;
2941
2942 outrel.r_info = ELF32_R_INFO (indx, r_type);
2943 relocation = 0;
2944 unresolved_reloc = FALSE;
2945
2946 BFD_ASSERT (srel);
2947 loc = (srel->contents
2948 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2949 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2950 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2951 <= srel->size);
2952 }
2953 }
2954 break;
2955
2956 case R_XTENSA_TLS_DTPOFF:
2957 if (! bfd_link_pic (info))
2958 /* Switch from LD model to LE model. */
2959 relocation = tpoff (info, relocation);
2960 else
2961 relocation -= dtpoff_base (info);
2962 break;
2963
2964 case R_XTENSA_TLS_FUNC:
2965 case R_XTENSA_TLS_ARG:
2966 case R_XTENSA_TLS_CALL:
2967 /* Check if optimizing to IE or LE model. */
2968 if ((tls_type & GOT_TLS_IE) != 0)
2969 {
2970 bfd_boolean is_ld_model =
2971 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
2972 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
2973 is_ld_model, &error_message))
2974 (*info->callbacks->reloc_dangerous)
2975 (info, error_message,
2976 input_bfd, input_section, rel->r_offset);
2977
2978 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
2979 {
2980 /* Skip subsequent relocations on the same instruction. */
2981 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
2982 rel++;
2983 }
2984 }
2985 continue;
2986
2987 default:
2988 if (elf_hash_table (info)->dynamic_sections_created
2989 && dynamic_symbol && (is_operand_relocation (r_type)
2990 || r_type == R_XTENSA_32_PCREL))
2991 {
2992 error_message =
2993 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
2994 strlen (name) + 2, name);
2995 (*info->callbacks->reloc_dangerous)
2996 (info, error_message, input_bfd, input_section, rel->r_offset);
2997 continue;
2998 }
2999 break;
3000 }
3001
3002 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3003 because such sections are not SEC_ALLOC and thus ld.so will
3004 not process them. */
3005 if (unresolved_reloc
3006 && !((input_section->flags & SEC_DEBUGGING) != 0
3007 && h->def_dynamic)
3008 && _bfd_elf_section_offset (output_bfd, info, input_section,
3009 rel->r_offset) != (bfd_vma) -1)
3010 {
3011 _bfd_error_handler
3012 /* xgettext:c-format */
3013 (_("%pB(%pA+%#" PRIx64 "): "
3014 "unresolvable %s relocation against symbol `%s'"),
3015 input_bfd,
3016 input_section,
3017 (uint64_t) rel->r_offset,
3018 howto->name,
3019 name);
3020 return FALSE;
3021 }
3022
3023 /* TLS optimizations may have changed r_type; update "howto". */
3024 howto = &elf_howto_table[r_type];
3025
3026 /* There's no point in calling bfd_perform_relocation here.
3027 Just go directly to our "special function". */
3028 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3029 relocation + rel->r_addend,
3030 contents, rel->r_offset, is_weak_undef,
3031 &error_message);
3032
3033 if (r != bfd_reloc_ok && !warned)
3034 {
3035 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
3036 BFD_ASSERT (error_message != NULL);
3037
3038 if (rel->r_addend == 0)
3039 error_message = vsprint_msg (error_message, ": %s",
3040 strlen (name) + 2, name);
3041 else
3042 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3043 strlen (name) + 22,
3044 name, (int) rel->r_addend);
3045
3046 (*info->callbacks->reloc_dangerous)
3047 (info, error_message, input_bfd, input_section, rel->r_offset);
3048 }
3049 }
3050
3051 free (lit_table);
3052 input_section->reloc_done = TRUE;
3053
3054 return TRUE;
3055 }
3056
3057
3058 /* Finish up dynamic symbol handling. There's not much to do here since
3059 the PLT and GOT entries are all set up by relocate_section. */
3060
3061 static bfd_boolean
3062 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3063 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3064 struct elf_link_hash_entry *h,
3065 Elf_Internal_Sym *sym)
3066 {
3067 if (h->needs_plt && !h->def_regular)
3068 {
3069 /* Mark the symbol as undefined, rather than as defined in
3070 the .plt section. Leave the value alone. */
3071 sym->st_shndx = SHN_UNDEF;
3072 /* If the symbol is weak, we do need to clear the value.
3073 Otherwise, the PLT entry would provide a definition for
3074 the symbol even if the symbol wasn't defined anywhere,
3075 and so the symbol would never be NULL. */
3076 if (!h->ref_regular_nonweak)
3077 sym->st_value = 0;
3078 }
3079
3080 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3081 if (h == elf_hash_table (info)->hdynamic
3082 || h == elf_hash_table (info)->hgot)
3083 sym->st_shndx = SHN_ABS;
3084
3085 return TRUE;
3086 }
3087
3088
3089 /* Combine adjacent literal table entries in the output. Adjacent
3090 entries within each input section may have been removed during
3091 relaxation, but we repeat the process here, even though it's too late
3092 to shrink the output section, because it's important to minimize the
3093 number of literal table entries to reduce the start-up work for the
3094 runtime linker. Returns the number of remaining table entries or -1
3095 on error. */
3096
3097 static int
3098 elf_xtensa_combine_prop_entries (bfd *output_bfd,
3099 asection *sxtlit,
3100 asection *sgotloc)
3101 {
3102 bfd_byte *contents;
3103 property_table_entry *table;
3104 bfd_size_type section_size, sgotloc_size;
3105 bfd_vma offset;
3106 int n, m, num;
3107
3108 section_size = sxtlit->size;
3109 BFD_ASSERT (section_size % 8 == 0);
3110 num = section_size / 8;
3111
3112 sgotloc_size = sgotloc->size;
3113 if (sgotloc_size != section_size)
3114 {
3115 _bfd_error_handler
3116 (_("internal inconsistency in size of .got.loc section"));
3117 return -1;
3118 }
3119
3120 table = bfd_malloc (num * sizeof (property_table_entry));
3121 if (table == 0)
3122 return -1;
3123
3124 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3125 propagates to the output section, where it doesn't really apply and
3126 where it breaks the following call to bfd_malloc_and_get_section. */
3127 sxtlit->flags &= ~SEC_IN_MEMORY;
3128
3129 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3130 {
3131 free (contents);
3132 free (table);
3133 return -1;
3134 }
3135
3136 /* There should never be any relocations left at this point, so this
3137 is quite a bit easier than what is done during relaxation. */
3138
3139 /* Copy the raw contents into a property table array and sort it. */
3140 offset = 0;
3141 for (n = 0; n < num; n++)
3142 {
3143 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3144 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3145 offset += 8;
3146 }
3147 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3148
3149 for (n = 0; n < num; n++)
3150 {
3151 bfd_boolean remove_entry = FALSE;
3152
3153 if (table[n].size == 0)
3154 remove_entry = TRUE;
3155 else if (n > 0
3156 && (table[n-1].address + table[n-1].size == table[n].address))
3157 {
3158 table[n-1].size += table[n].size;
3159 remove_entry = TRUE;
3160 }
3161
3162 if (remove_entry)
3163 {
3164 for (m = n; m < num - 1; m++)
3165 {
3166 table[m].address = table[m+1].address;
3167 table[m].size = table[m+1].size;
3168 }
3169
3170 n--;
3171 num--;
3172 }
3173 }
3174
3175 /* Copy the data back to the raw contents. */
3176 offset = 0;
3177 for (n = 0; n < num; n++)
3178 {
3179 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3180 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3181 offset += 8;
3182 }
3183
3184 /* Clear the removed bytes. */
3185 if ((bfd_size_type) (num * 8) < section_size)
3186 memset (&contents[num * 8], 0, section_size - num * 8);
3187
3188 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3189 section_size))
3190 return -1;
3191
3192 /* Copy the contents to ".got.loc". */
3193 memcpy (sgotloc->contents, contents, section_size);
3194
3195 free (contents);
3196 free (table);
3197 return num;
3198 }
3199
3200
3201 /* Finish up the dynamic sections. */
3202
3203 static bfd_boolean
3204 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3205 struct bfd_link_info *info)
3206 {
3207 struct elf_xtensa_link_hash_table *htab;
3208 bfd *dynobj;
3209 asection *sdyn, *srelplt, *srelgot, *sgot, *sxtlit, *sgotloc;
3210 Elf32_External_Dyn *dyncon, *dynconend;
3211 int num_xtlit_entries = 0;
3212
3213 if (! elf_hash_table (info)->dynamic_sections_created)
3214 return TRUE;
3215
3216 htab = elf_xtensa_hash_table (info);
3217 if (htab == NULL)
3218 return FALSE;
3219
3220 dynobj = elf_hash_table (info)->dynobj;
3221 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3222 BFD_ASSERT (sdyn != NULL);
3223
3224 /* Set the first entry in the global offset table to the address of
3225 the dynamic section. */
3226 sgot = htab->elf.sgot;
3227 if (sgot)
3228 {
3229 BFD_ASSERT (sgot->size == 4);
3230 if (sdyn == NULL)
3231 bfd_put_32 (output_bfd, 0, sgot->contents);
3232 else
3233 bfd_put_32 (output_bfd,
3234 sdyn->output_section->vma + sdyn->output_offset,
3235 sgot->contents);
3236 }
3237
3238 srelplt = htab->elf.srelplt;
3239 srelgot = htab->elf.srelgot;
3240 if (srelplt && srelplt->size != 0)
3241 {
3242 asection *sgotplt, *spltlittbl;
3243 int chunk, plt_chunks, plt_entries;
3244 Elf_Internal_Rela irela;
3245 bfd_byte *loc;
3246 unsigned rtld_reloc;
3247
3248 spltlittbl = htab->spltlittbl;
3249 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
3250
3251 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3252 of them follow immediately after.... */
3253 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3254 {
3255 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3256 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3257 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3258 break;
3259 }
3260 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3261
3262 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
3263 plt_chunks =
3264 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3265
3266 for (chunk = 0; chunk < plt_chunks; chunk++)
3267 {
3268 int chunk_entries = 0;
3269
3270 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
3271 BFD_ASSERT (sgotplt != NULL);
3272
3273 /* Emit special RTLD relocations for the first two entries in
3274 each chunk of the .got.plt section. */
3275
3276 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3277 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3278 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3279 irela.r_offset = (sgotplt->output_section->vma
3280 + sgotplt->output_offset);
3281 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3282 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3283 rtld_reloc += 1;
3284 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3285
3286 /* Next literal immediately follows the first. */
3287 loc += sizeof (Elf32_External_Rela);
3288 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3289 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3290 irela.r_offset = (sgotplt->output_section->vma
3291 + sgotplt->output_offset + 4);
3292 /* Tell rtld to set value to object's link map. */
3293 irela.r_addend = 2;
3294 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3295 rtld_reloc += 1;
3296 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3297
3298 /* Fill in the literal table. */
3299 if (chunk < plt_chunks - 1)
3300 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3301 else
3302 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3303
3304 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
3305 bfd_put_32 (output_bfd,
3306 sgotplt->output_section->vma + sgotplt->output_offset,
3307 spltlittbl->contents + (chunk * 8) + 0);
3308 bfd_put_32 (output_bfd,
3309 8 + (chunk_entries * 4),
3310 spltlittbl->contents + (chunk * 8) + 4);
3311 }
3312
3313 /* The .xt.lit.plt section has just been modified. This must
3314 happen before the code below which combines adjacent literal
3315 table entries, and the .xt.lit.plt contents have to be forced to
3316 the output here. */
3317 if (! bfd_set_section_contents (output_bfd,
3318 spltlittbl->output_section,
3319 spltlittbl->contents,
3320 spltlittbl->output_offset,
3321 spltlittbl->size))
3322 return FALSE;
3323 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3324 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3325 }
3326
3327 /* All the dynamic relocations have been emitted at this point.
3328 Make sure the relocation sections are the correct size. */
3329 if ((srelgot && srelgot->size != (sizeof (Elf32_External_Rela)
3330 * srelgot->reloc_count))
3331 || (srelplt && srelplt->size != (sizeof (Elf32_External_Rela)
3332 * srelplt->reloc_count)))
3333 abort ();
3334
3335 /* Combine adjacent literal table entries. */
3336 BFD_ASSERT (! bfd_link_relocatable (info));
3337 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
3338 sgotloc = htab->sgotloc;
3339 BFD_ASSERT (sgotloc);
3340 if (sxtlit)
3341 {
3342 num_xtlit_entries =
3343 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3344 if (num_xtlit_entries < 0)
3345 return FALSE;
3346 }
3347
3348 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3349 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3350 for (; dyncon < dynconend; dyncon++)
3351 {
3352 Elf_Internal_Dyn dyn;
3353
3354 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3355
3356 switch (dyn.d_tag)
3357 {
3358 default:
3359 break;
3360
3361 case DT_XTENSA_GOT_LOC_SZ:
3362 dyn.d_un.d_val = num_xtlit_entries;
3363 break;
3364
3365 case DT_XTENSA_GOT_LOC_OFF:
3366 dyn.d_un.d_ptr = (htab->sgotloc->output_section->vma
3367 + htab->sgotloc->output_offset);
3368 break;
3369
3370 case DT_PLTGOT:
3371 dyn.d_un.d_ptr = (htab->elf.sgot->output_section->vma
3372 + htab->elf.sgot->output_offset);
3373 break;
3374
3375 case DT_JMPREL:
3376 dyn.d_un.d_ptr = (htab->elf.srelplt->output_section->vma
3377 + htab->elf.srelplt->output_offset);
3378 break;
3379
3380 case DT_PLTRELSZ:
3381 dyn.d_un.d_val = htab->elf.srelplt->size;
3382 break;
3383 }
3384
3385 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3386 }
3387
3388 return TRUE;
3389 }
3390
3391 \f
3392 /* Functions for dealing with the e_flags field. */
3393
3394 /* Merge backend specific data from an object file to the output
3395 object file when linking. */
3396
3397 static bfd_boolean
3398 elf_xtensa_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
3399 {
3400 bfd *obfd = info->output_bfd;
3401 unsigned out_mach, in_mach;
3402 flagword out_flag, in_flag;
3403
3404 /* Check if we have the same endianness. */
3405 if (!_bfd_generic_verify_endian_match (ibfd, info))
3406 return FALSE;
3407
3408 /* Don't even pretend to support mixed-format linking. */
3409 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3410 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3411 return FALSE;
3412
3413 out_flag = elf_elfheader (obfd)->e_flags;
3414 in_flag = elf_elfheader (ibfd)->e_flags;
3415
3416 out_mach = out_flag & EF_XTENSA_MACH;
3417 in_mach = in_flag & EF_XTENSA_MACH;
3418 if (out_mach != in_mach)
3419 {
3420 _bfd_error_handler
3421 /* xgettext:c-format */
3422 (_("%pB: incompatible machine type; output is 0x%x; input is 0x%x"),
3423 ibfd, out_mach, in_mach);
3424 bfd_set_error (bfd_error_wrong_format);
3425 return FALSE;
3426 }
3427
3428 if (! elf_flags_init (obfd))
3429 {
3430 elf_flags_init (obfd) = TRUE;
3431 elf_elfheader (obfd)->e_flags = in_flag;
3432
3433 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3434 && bfd_get_arch_info (obfd)->the_default)
3435 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3436 bfd_get_mach (ibfd));
3437
3438 return TRUE;
3439 }
3440
3441 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3442 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
3443
3444 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3445 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
3446
3447 return TRUE;
3448 }
3449
3450
3451 static bfd_boolean
3452 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
3453 {
3454 BFD_ASSERT (!elf_flags_init (abfd)
3455 || elf_elfheader (abfd)->e_flags == flags);
3456
3457 elf_elfheader (abfd)->e_flags |= flags;
3458 elf_flags_init (abfd) = TRUE;
3459
3460 return TRUE;
3461 }
3462
3463
3464 static bfd_boolean
3465 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
3466 {
3467 FILE *f = (FILE *) farg;
3468 flagword e_flags = elf_elfheader (abfd)->e_flags;
3469
3470 fprintf (f, "\nXtensa header:\n");
3471 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
3472 fprintf (f, "\nMachine = Base\n");
3473 else
3474 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3475
3476 fprintf (f, "Insn tables = %s\n",
3477 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3478
3479 fprintf (f, "Literal tables = %s\n",
3480 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3481
3482 return _bfd_elf_print_private_bfd_data (abfd, farg);
3483 }
3484
3485
3486 /* Set the right machine number for an Xtensa ELF file. */
3487
3488 static bfd_boolean
3489 elf_xtensa_object_p (bfd *abfd)
3490 {
3491 int mach;
3492 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3493
3494 switch (arch)
3495 {
3496 case E_XTENSA_MACH:
3497 mach = bfd_mach_xtensa;
3498 break;
3499 default:
3500 return FALSE;
3501 }
3502
3503 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3504 return TRUE;
3505 }
3506
3507
3508 /* The final processing done just before writing out an Xtensa ELF object
3509 file. This gets the Xtensa architecture right based on the machine
3510 number. */
3511
3512 static bfd_boolean
3513 elf_xtensa_final_write_processing (bfd *abfd)
3514 {
3515 int mach;
3516 unsigned long val = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3517
3518 switch (mach = bfd_get_mach (abfd))
3519 {
3520 case bfd_mach_xtensa:
3521 val = E_XTENSA_MACH;
3522 break;
3523 default:
3524 break;
3525 }
3526
3527 elf_elfheader (abfd)->e_flags &= ~EF_XTENSA_MACH;
3528 elf_elfheader (abfd)->e_flags |= val;
3529 return _bfd_elf_final_write_processing (abfd);
3530 }
3531
3532
3533 static enum elf_reloc_type_class
3534 elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3535 const asection *rel_sec ATTRIBUTE_UNUSED,
3536 const Elf_Internal_Rela *rela)
3537 {
3538 switch ((int) ELF32_R_TYPE (rela->r_info))
3539 {
3540 case R_XTENSA_RELATIVE:
3541 return reloc_class_relative;
3542 case R_XTENSA_JMP_SLOT:
3543 return reloc_class_plt;
3544 default:
3545 return reloc_class_normal;
3546 }
3547 }
3548
3549 \f
3550 static bfd_boolean
3551 elf_xtensa_discard_info_for_section (bfd *abfd,
3552 struct elf_reloc_cookie *cookie,
3553 struct bfd_link_info *info,
3554 asection *sec)
3555 {
3556 bfd_byte *contents;
3557 bfd_vma offset, actual_offset;
3558 bfd_size_type removed_bytes = 0;
3559 bfd_size_type entry_size;
3560
3561 if (sec->output_section
3562 && bfd_is_abs_section (sec->output_section))
3563 return FALSE;
3564
3565 if (xtensa_is_proptable_section (sec))
3566 entry_size = 12;
3567 else
3568 entry_size = 8;
3569
3570 if (sec->size == 0 || sec->size % entry_size != 0)
3571 return FALSE;
3572
3573 contents = retrieve_contents (abfd, sec, info->keep_memory);
3574 if (!contents)
3575 return FALSE;
3576
3577 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3578 if (!cookie->rels)
3579 {
3580 release_contents (sec, contents);
3581 return FALSE;
3582 }
3583
3584 /* Sort the relocations. They should already be in order when
3585 relaxation is enabled, but it might not be. */
3586 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3587 internal_reloc_compare);
3588
3589 cookie->rel = cookie->rels;
3590 cookie->relend = cookie->rels + sec->reloc_count;
3591
3592 for (offset = 0; offset < sec->size; offset += entry_size)
3593 {
3594 actual_offset = offset - removed_bytes;
3595
3596 /* The ...symbol_deleted_p function will skip over relocs but it
3597 won't adjust their offsets, so do that here. */
3598 while (cookie->rel < cookie->relend
3599 && cookie->rel->r_offset < offset)
3600 {
3601 cookie->rel->r_offset -= removed_bytes;
3602 cookie->rel++;
3603 }
3604
3605 while (cookie->rel < cookie->relend
3606 && cookie->rel->r_offset == offset)
3607 {
3608 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
3609 {
3610 /* Remove the table entry. (If the reloc type is NONE, then
3611 the entry has already been merged with another and deleted
3612 during relaxation.) */
3613 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3614 {
3615 /* Shift the contents up. */
3616 if (offset + entry_size < sec->size)
3617 memmove (&contents[actual_offset],
3618 &contents[actual_offset + entry_size],
3619 sec->size - offset - entry_size);
3620 removed_bytes += entry_size;
3621 }
3622
3623 /* Remove this relocation. */
3624 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3625 }
3626
3627 /* Adjust the relocation offset for previous removals. This
3628 should not be done before calling ...symbol_deleted_p
3629 because it might mess up the offset comparisons there.
3630 Make sure the offset doesn't underflow in the case where
3631 the first entry is removed. */
3632 if (cookie->rel->r_offset >= removed_bytes)
3633 cookie->rel->r_offset -= removed_bytes;
3634 else
3635 cookie->rel->r_offset = 0;
3636
3637 cookie->rel++;
3638 }
3639 }
3640
3641 if (removed_bytes != 0)
3642 {
3643 /* Adjust any remaining relocs (shouldn't be any). */
3644 for (; cookie->rel < cookie->relend; cookie->rel++)
3645 {
3646 if (cookie->rel->r_offset >= removed_bytes)
3647 cookie->rel->r_offset -= removed_bytes;
3648 else
3649 cookie->rel->r_offset = 0;
3650 }
3651
3652 /* Clear the removed bytes. */
3653 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
3654
3655 pin_contents (sec, contents);
3656 pin_internal_relocs (sec, cookie->rels);
3657
3658 /* Shrink size. */
3659 if (sec->rawsize == 0)
3660 sec->rawsize = sec->size;
3661 sec->size -= removed_bytes;
3662
3663 if (xtensa_is_littable_section (sec))
3664 {
3665 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3666 if (sgotloc)
3667 sgotloc->size -= removed_bytes;
3668 }
3669 }
3670 else
3671 {
3672 release_contents (sec, contents);
3673 release_internal_relocs (sec, cookie->rels);
3674 }
3675
3676 return (removed_bytes != 0);
3677 }
3678
3679
3680 static bfd_boolean
3681 elf_xtensa_discard_info (bfd *abfd,
3682 struct elf_reloc_cookie *cookie,
3683 struct bfd_link_info *info)
3684 {
3685 asection *sec;
3686 bfd_boolean changed = FALSE;
3687
3688 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3689 {
3690 if (xtensa_is_property_section (sec))
3691 {
3692 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3693 changed = TRUE;
3694 }
3695 }
3696
3697 return changed;
3698 }
3699
3700
3701 static bfd_boolean
3702 elf_xtensa_ignore_discarded_relocs (asection *sec)
3703 {
3704 return xtensa_is_property_section (sec);
3705 }
3706
3707
3708 static unsigned int
3709 elf_xtensa_action_discarded (asection *sec)
3710 {
3711 if (strcmp (".xt_except_table", sec->name) == 0)
3712 return 0;
3713
3714 if (strcmp (".xt_except_desc", sec->name) == 0)
3715 return 0;
3716
3717 return _bfd_elf_default_action_discarded (sec);
3718 }
3719
3720 \f
3721 /* Support for core dump NOTE sections. */
3722
3723 static bfd_boolean
3724 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3725 {
3726 int offset;
3727 unsigned int size;
3728
3729 /* The size for Xtensa is variable, so don't try to recognize the format
3730 based on the size. Just assume this is GNU/Linux. */
3731
3732 /* pr_cursig */
3733 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
3734
3735 /* pr_pid */
3736 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
3737
3738 /* pr_reg */
3739 offset = 72;
3740 size = note->descsz - offset - 4;
3741
3742 /* Make a ".reg/999" section. */
3743 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3744 size, note->descpos + offset);
3745 }
3746
3747
3748 static bfd_boolean
3749 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3750 {
3751 switch (note->descsz)
3752 {
3753 default:
3754 return FALSE;
3755
3756 case 128: /* GNU/Linux elf_prpsinfo */
3757 elf_tdata (abfd)->core->program
3758 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3759 elf_tdata (abfd)->core->command
3760 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3761 }
3762
3763 /* Note that for some reason, a spurious space is tacked
3764 onto the end of the args in some (at least one anyway)
3765 implementations, so strip it off if it exists. */
3766
3767 {
3768 char *command = elf_tdata (abfd)->core->command;
3769 int n = strlen (command);
3770
3771 if (0 < n && command[n - 1] == ' ')
3772 command[n - 1] = '\0';
3773 }
3774
3775 return TRUE;
3776 }
3777
3778 \f
3779 /* Generic Xtensa configurability stuff. */
3780
3781 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3782 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3783 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3784 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3785 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3786 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3787 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3788 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3789
3790 static void
3791 init_call_opcodes (void)
3792 {
3793 if (callx0_op == XTENSA_UNDEFINED)
3794 {
3795 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3796 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3797 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3798 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3799 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3800 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3801 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3802 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3803 }
3804 }
3805
3806
3807 static bfd_boolean
3808 is_indirect_call_opcode (xtensa_opcode opcode)
3809 {
3810 init_call_opcodes ();
3811 return (opcode == callx0_op
3812 || opcode == callx4_op
3813 || opcode == callx8_op
3814 || opcode == callx12_op);
3815 }
3816
3817
3818 static bfd_boolean
3819 is_direct_call_opcode (xtensa_opcode opcode)
3820 {
3821 init_call_opcodes ();
3822 return (opcode == call0_op
3823 || opcode == call4_op
3824 || opcode == call8_op
3825 || opcode == call12_op);
3826 }
3827
3828
3829 static bfd_boolean
3830 is_windowed_call_opcode (xtensa_opcode opcode)
3831 {
3832 init_call_opcodes ();
3833 return (opcode == call4_op
3834 || opcode == call8_op
3835 || opcode == call12_op
3836 || opcode == callx4_op
3837 || opcode == callx8_op
3838 || opcode == callx12_op);
3839 }
3840
3841
3842 static bfd_boolean
3843 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3844 {
3845 unsigned dst = (unsigned) -1;
3846
3847 init_call_opcodes ();
3848 if (opcode == callx0_op)
3849 dst = 0;
3850 else if (opcode == callx4_op)
3851 dst = 4;
3852 else if (opcode == callx8_op)
3853 dst = 8;
3854 else if (opcode == callx12_op)
3855 dst = 12;
3856
3857 if (dst == (unsigned) -1)
3858 return FALSE;
3859
3860 *pdst = dst;
3861 return TRUE;
3862 }
3863
3864
3865 static xtensa_opcode
3866 get_const16_opcode (void)
3867 {
3868 static bfd_boolean done_lookup = FALSE;
3869 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3870 if (!done_lookup)
3871 {
3872 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3873 done_lookup = TRUE;
3874 }
3875 return const16_opcode;
3876 }
3877
3878
3879 static xtensa_opcode
3880 get_l32r_opcode (void)
3881 {
3882 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3883 static bfd_boolean done_lookup = FALSE;
3884
3885 if (!done_lookup)
3886 {
3887 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3888 done_lookup = TRUE;
3889 }
3890 return l32r_opcode;
3891 }
3892
3893
3894 static bfd_vma
3895 l32r_offset (bfd_vma addr, bfd_vma pc)
3896 {
3897 bfd_vma offset;
3898
3899 offset = addr - ((pc+3) & -4);
3900 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3901 offset = (signed int) offset >> 2;
3902 BFD_ASSERT ((signed int) offset >> 16 == -1);
3903 return offset;
3904 }
3905
3906
3907 static xtensa_opcode
3908 get_rsr_lend_opcode (void)
3909 {
3910 static xtensa_opcode rsr_lend_opcode = XTENSA_UNDEFINED;
3911 static bfd_boolean done_lookup = FALSE;
3912 if (!done_lookup)
3913 {
3914 rsr_lend_opcode = xtensa_opcode_lookup (xtensa_default_isa, "rsr.lend");
3915 done_lookup = TRUE;
3916 }
3917 return rsr_lend_opcode;
3918 }
3919
3920 static xtensa_opcode
3921 get_wsr_lbeg_opcode (void)
3922 {
3923 static xtensa_opcode wsr_lbeg_opcode = XTENSA_UNDEFINED;
3924 static bfd_boolean done_lookup = FALSE;
3925 if (!done_lookup)
3926 {
3927 wsr_lbeg_opcode = xtensa_opcode_lookup (xtensa_default_isa, "wsr.lbeg");
3928 done_lookup = TRUE;
3929 }
3930 return wsr_lbeg_opcode;
3931 }
3932
3933
3934 static int
3935 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3936 {
3937 xtensa_isa isa = xtensa_default_isa;
3938 int last_immed, last_opnd, opi;
3939
3940 if (opcode == XTENSA_UNDEFINED)
3941 return XTENSA_UNDEFINED;
3942
3943 /* Find the last visible PC-relative immediate operand for the opcode.
3944 If there are no PC-relative immediates, then choose the last visible
3945 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3946 last_immed = XTENSA_UNDEFINED;
3947 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3948 for (opi = last_opnd - 1; opi >= 0; opi--)
3949 {
3950 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3951 continue;
3952 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3953 {
3954 last_immed = opi;
3955 break;
3956 }
3957 if (last_immed == XTENSA_UNDEFINED
3958 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3959 last_immed = opi;
3960 }
3961 if (last_immed < 0)
3962 return XTENSA_UNDEFINED;
3963
3964 /* If the operand number was specified in an old-style relocation,
3965 check for consistency with the operand computed above. */
3966 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3967 {
3968 int reloc_opnd = r_type - R_XTENSA_OP0;
3969 if (reloc_opnd != last_immed)
3970 return XTENSA_UNDEFINED;
3971 }
3972
3973 return last_immed;
3974 }
3975
3976
3977 int
3978 get_relocation_slot (int r_type)
3979 {
3980 switch (r_type)
3981 {
3982 case R_XTENSA_OP0:
3983 case R_XTENSA_OP1:
3984 case R_XTENSA_OP2:
3985 return 0;
3986
3987 default:
3988 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3989 return r_type - R_XTENSA_SLOT0_OP;
3990 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3991 return r_type - R_XTENSA_SLOT0_ALT;
3992 break;
3993 }
3994
3995 return XTENSA_UNDEFINED;
3996 }
3997
3998
3999 /* Get the opcode for a relocation. */
4000
4001 static xtensa_opcode
4002 get_relocation_opcode (bfd *abfd,
4003 asection *sec,
4004 bfd_byte *contents,
4005 Elf_Internal_Rela *irel)
4006 {
4007 static xtensa_insnbuf ibuff = NULL;
4008 static xtensa_insnbuf sbuff = NULL;
4009 xtensa_isa isa = xtensa_default_isa;
4010 xtensa_format fmt;
4011 int slot;
4012
4013 if (contents == NULL)
4014 return XTENSA_UNDEFINED;
4015
4016 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
4017 return XTENSA_UNDEFINED;
4018
4019 if (ibuff == NULL)
4020 {
4021 ibuff = xtensa_insnbuf_alloc (isa);
4022 sbuff = xtensa_insnbuf_alloc (isa);
4023 }
4024
4025 /* Decode the instruction. */
4026 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4027 sec->size - irel->r_offset);
4028 fmt = xtensa_format_decode (isa, ibuff);
4029 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4030 if (slot == XTENSA_UNDEFINED)
4031 return XTENSA_UNDEFINED;
4032 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4033 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
4034 }
4035
4036
4037 bfd_boolean
4038 is_l32r_relocation (bfd *abfd,
4039 asection *sec,
4040 bfd_byte *contents,
4041 Elf_Internal_Rela *irel)
4042 {
4043 xtensa_opcode opcode;
4044 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
4045 return FALSE;
4046 opcode = get_relocation_opcode (abfd, sec, contents, irel);
4047 return (opcode == get_l32r_opcode ());
4048 }
4049
4050
4051 static bfd_size_type
4052 get_asm_simplify_size (bfd_byte *contents,
4053 bfd_size_type content_len,
4054 bfd_size_type offset)
4055 {
4056 bfd_size_type insnlen, size = 0;
4057
4058 /* Decode the size of the next two instructions. */
4059 insnlen = insn_decode_len (contents, content_len, offset);
4060 if (insnlen == 0)
4061 return 0;
4062
4063 size += insnlen;
4064
4065 insnlen = insn_decode_len (contents, content_len, offset + size);
4066 if (insnlen == 0)
4067 return 0;
4068
4069 size += insnlen;
4070 return size;
4071 }
4072
4073
4074 bfd_boolean
4075 is_alt_relocation (int r_type)
4076 {
4077 return (r_type >= R_XTENSA_SLOT0_ALT
4078 && r_type <= R_XTENSA_SLOT14_ALT);
4079 }
4080
4081
4082 bfd_boolean
4083 is_operand_relocation (int r_type)
4084 {
4085 switch (r_type)
4086 {
4087 case R_XTENSA_OP0:
4088 case R_XTENSA_OP1:
4089 case R_XTENSA_OP2:
4090 return TRUE;
4091
4092 default:
4093 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4094 return TRUE;
4095 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4096 return TRUE;
4097 break;
4098 }
4099
4100 return FALSE;
4101 }
4102
4103
4104 #define MIN_INSN_LENGTH 2
4105
4106 /* Return 0 if it fails to decode. */
4107
4108 bfd_size_type
4109 insn_decode_len (bfd_byte *contents,
4110 bfd_size_type content_len,
4111 bfd_size_type offset)
4112 {
4113 int insn_len;
4114 xtensa_isa isa = xtensa_default_isa;
4115 xtensa_format fmt;
4116 static xtensa_insnbuf ibuff = NULL;
4117
4118 if (offset + MIN_INSN_LENGTH > content_len)
4119 return 0;
4120
4121 if (ibuff == NULL)
4122 ibuff = xtensa_insnbuf_alloc (isa);
4123 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4124 content_len - offset);
4125 fmt = xtensa_format_decode (isa, ibuff);
4126 if (fmt == XTENSA_UNDEFINED)
4127 return 0;
4128 insn_len = xtensa_format_length (isa, fmt);
4129 if (insn_len == XTENSA_UNDEFINED)
4130 return 0;
4131 return insn_len;
4132 }
4133
4134 int
4135 insn_num_slots (bfd_byte *contents,
4136 bfd_size_type content_len,
4137 bfd_size_type offset)
4138 {
4139 xtensa_isa isa = xtensa_default_isa;
4140 xtensa_format fmt;
4141 static xtensa_insnbuf ibuff = NULL;
4142
4143 if (offset + MIN_INSN_LENGTH > content_len)
4144 return XTENSA_UNDEFINED;
4145
4146 if (ibuff == NULL)
4147 ibuff = xtensa_insnbuf_alloc (isa);
4148 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4149 content_len - offset);
4150 fmt = xtensa_format_decode (isa, ibuff);
4151 if (fmt == XTENSA_UNDEFINED)
4152 return XTENSA_UNDEFINED;
4153 return xtensa_format_num_slots (isa, fmt);
4154 }
4155
4156
4157 /* Decode the opcode for a single slot instruction.
4158 Return 0 if it fails to decode or the instruction is multi-slot. */
4159
4160 xtensa_opcode
4161 insn_decode_opcode (bfd_byte *contents,
4162 bfd_size_type content_len,
4163 bfd_size_type offset,
4164 int slot)
4165 {
4166 xtensa_isa isa = xtensa_default_isa;
4167 xtensa_format fmt;
4168 static xtensa_insnbuf insnbuf = NULL;
4169 static xtensa_insnbuf slotbuf = NULL;
4170
4171 if (offset + MIN_INSN_LENGTH > content_len)
4172 return XTENSA_UNDEFINED;
4173
4174 if (insnbuf == NULL)
4175 {
4176 insnbuf = xtensa_insnbuf_alloc (isa);
4177 slotbuf = xtensa_insnbuf_alloc (isa);
4178 }
4179
4180 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4181 content_len - offset);
4182 fmt = xtensa_format_decode (isa, insnbuf);
4183 if (fmt == XTENSA_UNDEFINED)
4184 return XTENSA_UNDEFINED;
4185
4186 if (slot >= xtensa_format_num_slots (isa, fmt))
4187 return XTENSA_UNDEFINED;
4188
4189 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4190 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4191 }
4192
4193
4194 /* The offset is the offset in the contents.
4195 The address is the address of that offset. */
4196
4197 static bfd_boolean
4198 check_branch_target_aligned (bfd_byte *contents,
4199 bfd_size_type content_length,
4200 bfd_vma offset,
4201 bfd_vma address)
4202 {
4203 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4204 if (insn_len == 0)
4205 return FALSE;
4206 return check_branch_target_aligned_address (address, insn_len);
4207 }
4208
4209
4210 static bfd_boolean
4211 check_loop_aligned (bfd_byte *contents,
4212 bfd_size_type content_length,
4213 bfd_vma offset,
4214 bfd_vma address)
4215 {
4216 bfd_size_type loop_len, insn_len;
4217 xtensa_opcode opcode;
4218
4219 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4220 if (opcode == XTENSA_UNDEFINED
4221 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4222 {
4223 BFD_ASSERT (FALSE);
4224 return FALSE;
4225 }
4226
4227 loop_len = insn_decode_len (contents, content_length, offset);
4228 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4229 if (loop_len == 0 || insn_len == 0)
4230 {
4231 BFD_ASSERT (FALSE);
4232 return FALSE;
4233 }
4234
4235 /* If this is relaxed loop, analyze first instruction of the actual loop
4236 body. It must be at offset 27 from the loop instruction address. */
4237 if (insn_len == 3
4238 && insn_num_slots (contents, content_length, offset + loop_len) == 1
4239 && insn_decode_opcode (contents, content_length,
4240 offset + loop_len, 0) == get_rsr_lend_opcode()
4241 && insn_decode_len (contents, content_length, offset + loop_len + 3) == 3
4242 && insn_num_slots (contents, content_length, offset + loop_len + 3) == 1
4243 && insn_decode_opcode (contents, content_length,
4244 offset + loop_len + 3, 0) == get_wsr_lbeg_opcode())
4245 {
4246 loop_len = 27;
4247 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4248 }
4249 return check_branch_target_aligned_address (address + loop_len, insn_len);
4250 }
4251
4252
4253 static bfd_boolean
4254 check_branch_target_aligned_address (bfd_vma addr, int len)
4255 {
4256 if (len == 8)
4257 return (addr % 8 == 0);
4258 return ((addr >> 2) == ((addr + len - 1) >> 2));
4259 }
4260
4261 \f
4262 /* Instruction widening and narrowing. */
4263
4264 /* When FLIX is available we need to access certain instructions only
4265 when they are 16-bit or 24-bit instructions. This table caches
4266 information about such instructions by walking through all the
4267 opcodes and finding the smallest single-slot format into which each
4268 can be encoded. */
4269
4270 static xtensa_format *op_single_fmt_table = NULL;
4271
4272
4273 static void
4274 init_op_single_format_table (void)
4275 {
4276 xtensa_isa isa = xtensa_default_isa;
4277 xtensa_insnbuf ibuf;
4278 xtensa_opcode opcode;
4279 xtensa_format fmt;
4280 int num_opcodes;
4281
4282 if (op_single_fmt_table)
4283 return;
4284
4285 ibuf = xtensa_insnbuf_alloc (isa);
4286 num_opcodes = xtensa_isa_num_opcodes (isa);
4287
4288 op_single_fmt_table = (xtensa_format *)
4289 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4290 for (opcode = 0; opcode < num_opcodes; opcode++)
4291 {
4292 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4293 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4294 {
4295 if (xtensa_format_num_slots (isa, fmt) == 1
4296 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4297 {
4298 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4299 int fmt_length = xtensa_format_length (isa, fmt);
4300 if (old_fmt == XTENSA_UNDEFINED
4301 || fmt_length < xtensa_format_length (isa, old_fmt))
4302 op_single_fmt_table[opcode] = fmt;
4303 }
4304 }
4305 }
4306 xtensa_insnbuf_free (isa, ibuf);
4307 }
4308
4309
4310 static xtensa_format
4311 get_single_format (xtensa_opcode opcode)
4312 {
4313 init_op_single_format_table ();
4314 return op_single_fmt_table[opcode];
4315 }
4316
4317
4318 /* For the set of narrowable instructions we do NOT include the
4319 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4320 involved during linker relaxation that may require these to
4321 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4322 requires special case code to ensure it only works when op1 == op2. */
4323
4324 struct string_pair
4325 {
4326 const char *wide;
4327 const char *narrow;
4328 };
4329
4330 struct string_pair narrowable[] =
4331 {
4332 { "add", "add.n" },
4333 { "addi", "addi.n" },
4334 { "addmi", "addi.n" },
4335 { "l32i", "l32i.n" },
4336 { "movi", "movi.n" },
4337 { "ret", "ret.n" },
4338 { "retw", "retw.n" },
4339 { "s32i", "s32i.n" },
4340 { "or", "mov.n" } /* special case only when op1 == op2 */
4341 };
4342
4343 struct string_pair widenable[] =
4344 {
4345 { "add", "add.n" },
4346 { "addi", "addi.n" },
4347 { "addmi", "addi.n" },
4348 { "beqz", "beqz.n" },
4349 { "bnez", "bnez.n" },
4350 { "l32i", "l32i.n" },
4351 { "movi", "movi.n" },
4352 { "ret", "ret.n" },
4353 { "retw", "retw.n" },
4354 { "s32i", "s32i.n" },
4355 { "or", "mov.n" } /* special case only when op1 == op2 */
4356 };
4357
4358
4359 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4360 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4361 return the instruction buffer holding the narrow instruction. Otherwise,
4362 return 0. The set of valid narrowing are specified by a string table
4363 but require some special case operand checks in some cases. */
4364
4365 static xtensa_insnbuf
4366 can_narrow_instruction (xtensa_insnbuf slotbuf,
4367 xtensa_format fmt,
4368 xtensa_opcode opcode)
4369 {
4370 xtensa_isa isa = xtensa_default_isa;
4371 xtensa_format o_fmt;
4372 unsigned opi;
4373
4374 static xtensa_insnbuf o_insnbuf = NULL;
4375 static xtensa_insnbuf o_slotbuf = NULL;
4376
4377 if (o_insnbuf == NULL)
4378 {
4379 o_insnbuf = xtensa_insnbuf_alloc (isa);
4380 o_slotbuf = xtensa_insnbuf_alloc (isa);
4381 }
4382
4383 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
4384 {
4385 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
4386
4387 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4388 {
4389 uint32 value, newval;
4390 int i, operand_count, o_operand_count;
4391 xtensa_opcode o_opcode;
4392
4393 /* Address does not matter in this case. We might need to
4394 fix it to handle branches/jumps. */
4395 bfd_vma self_address = 0;
4396
4397 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4398 if (o_opcode == XTENSA_UNDEFINED)
4399 return 0;
4400 o_fmt = get_single_format (o_opcode);
4401 if (o_fmt == XTENSA_UNDEFINED)
4402 return 0;
4403
4404 if (xtensa_format_length (isa, fmt) != 3
4405 || xtensa_format_length (isa, o_fmt) != 2)
4406 return 0;
4407
4408 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4409 operand_count = xtensa_opcode_num_operands (isa, opcode);
4410 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4411
4412 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4413 return 0;
4414
4415 if (!is_or)
4416 {
4417 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4418 return 0;
4419 }
4420 else
4421 {
4422 uint32 rawval0, rawval1, rawval2;
4423
4424 if (o_operand_count + 1 != operand_count
4425 || xtensa_operand_get_field (isa, opcode, 0,
4426 fmt, 0, slotbuf, &rawval0) != 0
4427 || xtensa_operand_get_field (isa, opcode, 1,
4428 fmt, 0, slotbuf, &rawval1) != 0
4429 || xtensa_operand_get_field (isa, opcode, 2,
4430 fmt, 0, slotbuf, &rawval2) != 0
4431 || rawval1 != rawval2
4432 || rawval0 == rawval1 /* it is a nop */)
4433 return 0;
4434 }
4435
4436 for (i = 0; i < o_operand_count; ++i)
4437 {
4438 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4439 slotbuf, &value)
4440 || xtensa_operand_decode (isa, opcode, i, &value))
4441 return 0;
4442
4443 /* PC-relative branches need adjustment, but
4444 the PC-rel operand will always have a relocation. */
4445 newval = value;
4446 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4447 self_address)
4448 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4449 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4450 o_slotbuf, newval))
4451 return 0;
4452 }
4453
4454 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4455 return 0;
4456
4457 return o_insnbuf;
4458 }
4459 }
4460 return 0;
4461 }
4462
4463
4464 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4465 the action in-place directly into the contents and return TRUE. Otherwise,
4466 the return value is FALSE and the contents are not modified. */
4467
4468 static bfd_boolean
4469 narrow_instruction (bfd_byte *contents,
4470 bfd_size_type content_length,
4471 bfd_size_type offset)
4472 {
4473 xtensa_opcode opcode;
4474 bfd_size_type insn_len;
4475 xtensa_isa isa = xtensa_default_isa;
4476 xtensa_format fmt;
4477 xtensa_insnbuf o_insnbuf;
4478
4479 static xtensa_insnbuf insnbuf = NULL;
4480 static xtensa_insnbuf slotbuf = NULL;
4481
4482 if (insnbuf == NULL)
4483 {
4484 insnbuf = xtensa_insnbuf_alloc (isa);
4485 slotbuf = xtensa_insnbuf_alloc (isa);
4486 }
4487
4488 BFD_ASSERT (offset < content_length);
4489
4490 if (content_length < 2)
4491 return FALSE;
4492
4493 /* We will hand-code a few of these for a little while.
4494 These have all been specified in the assembler aleady. */
4495 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4496 content_length - offset);
4497 fmt = xtensa_format_decode (isa, insnbuf);
4498 if (xtensa_format_num_slots (isa, fmt) != 1)
4499 return FALSE;
4500
4501 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4502 return FALSE;
4503
4504 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4505 if (opcode == XTENSA_UNDEFINED)
4506 return FALSE;
4507 insn_len = xtensa_format_length (isa, fmt);
4508 if (insn_len > content_length)
4509 return FALSE;
4510
4511 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4512 if (o_insnbuf)
4513 {
4514 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4515 content_length - offset);
4516 return TRUE;
4517 }
4518
4519 return FALSE;
4520 }
4521
4522
4523 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4524 "density" instruction to a standard 3-byte instruction. If it is valid,
4525 return the instruction buffer holding the wide instruction. Otherwise,
4526 return 0. The set of valid widenings are specified by a string table
4527 but require some special case operand checks in some cases. */
4528
4529 static xtensa_insnbuf
4530 can_widen_instruction (xtensa_insnbuf slotbuf,
4531 xtensa_format fmt,
4532 xtensa_opcode opcode)
4533 {
4534 xtensa_isa isa = xtensa_default_isa;
4535 xtensa_format o_fmt;
4536 unsigned opi;
4537
4538 static xtensa_insnbuf o_insnbuf = NULL;
4539 static xtensa_insnbuf o_slotbuf = NULL;
4540
4541 if (o_insnbuf == NULL)
4542 {
4543 o_insnbuf = xtensa_insnbuf_alloc (isa);
4544 o_slotbuf = xtensa_insnbuf_alloc (isa);
4545 }
4546
4547 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
4548 {
4549 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4550 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4551 || strcmp ("bnez", widenable[opi].wide) == 0);
4552
4553 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4554 {
4555 uint32 value, newval;
4556 int i, operand_count, o_operand_count, check_operand_count;
4557 xtensa_opcode o_opcode;
4558
4559 /* Address does not matter in this case. We might need to fix it
4560 to handle branches/jumps. */
4561 bfd_vma self_address = 0;
4562
4563 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4564 if (o_opcode == XTENSA_UNDEFINED)
4565 return 0;
4566 o_fmt = get_single_format (o_opcode);
4567 if (o_fmt == XTENSA_UNDEFINED)
4568 return 0;
4569
4570 if (xtensa_format_length (isa, fmt) != 2
4571 || xtensa_format_length (isa, o_fmt) != 3)
4572 return 0;
4573
4574 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4575 operand_count = xtensa_opcode_num_operands (isa, opcode);
4576 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4577 check_operand_count = o_operand_count;
4578
4579 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4580 return 0;
4581
4582 if (!is_or)
4583 {
4584 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4585 return 0;
4586 }
4587 else
4588 {
4589 uint32 rawval0, rawval1;
4590
4591 if (o_operand_count != operand_count + 1
4592 || xtensa_operand_get_field (isa, opcode, 0,
4593 fmt, 0, slotbuf, &rawval0) != 0
4594 || xtensa_operand_get_field (isa, opcode, 1,
4595 fmt, 0, slotbuf, &rawval1) != 0
4596 || rawval0 == rawval1 /* it is a nop */)
4597 return 0;
4598 }
4599 if (is_branch)
4600 check_operand_count--;
4601
4602 for (i = 0; i < check_operand_count; i++)
4603 {
4604 int new_i = i;
4605 if (is_or && i == o_operand_count - 1)
4606 new_i = i - 1;
4607 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4608 slotbuf, &value)
4609 || xtensa_operand_decode (isa, opcode, new_i, &value))
4610 return 0;
4611
4612 /* PC-relative branches need adjustment, but
4613 the PC-rel operand will always have a relocation. */
4614 newval = value;
4615 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4616 self_address)
4617 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4618 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4619 o_slotbuf, newval))
4620 return 0;
4621 }
4622
4623 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4624 return 0;
4625
4626 return o_insnbuf;
4627 }
4628 }
4629 return 0;
4630 }
4631
4632
4633 /* Attempt to widen an instruction. If the widening is valid, perform
4634 the action in-place directly into the contents and return TRUE. Otherwise,
4635 the return value is FALSE and the contents are not modified. */
4636
4637 static bfd_boolean
4638 widen_instruction (bfd_byte *contents,
4639 bfd_size_type content_length,
4640 bfd_size_type offset)
4641 {
4642 xtensa_opcode opcode;
4643 bfd_size_type insn_len;
4644 xtensa_isa isa = xtensa_default_isa;
4645 xtensa_format fmt;
4646 xtensa_insnbuf o_insnbuf;
4647
4648 static xtensa_insnbuf insnbuf = NULL;
4649 static xtensa_insnbuf slotbuf = NULL;
4650
4651 if (insnbuf == NULL)
4652 {
4653 insnbuf = xtensa_insnbuf_alloc (isa);
4654 slotbuf = xtensa_insnbuf_alloc (isa);
4655 }
4656
4657 BFD_ASSERT (offset < content_length);
4658
4659 if (content_length < 2)
4660 return FALSE;
4661
4662 /* We will hand-code a few of these for a little while.
4663 These have all been specified in the assembler aleady. */
4664 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4665 content_length - offset);
4666 fmt = xtensa_format_decode (isa, insnbuf);
4667 if (xtensa_format_num_slots (isa, fmt) != 1)
4668 return FALSE;
4669
4670 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4671 return FALSE;
4672
4673 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4674 if (opcode == XTENSA_UNDEFINED)
4675 return FALSE;
4676 insn_len = xtensa_format_length (isa, fmt);
4677 if (insn_len > content_length)
4678 return FALSE;
4679
4680 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4681 if (o_insnbuf)
4682 {
4683 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4684 content_length - offset);
4685 return TRUE;
4686 }
4687 return FALSE;
4688 }
4689
4690 \f
4691 /* Code for transforming CALLs at link-time. */
4692
4693 static bfd_reloc_status_type
4694 elf_xtensa_do_asm_simplify (bfd_byte *contents,
4695 bfd_vma address,
4696 bfd_vma content_length,
4697 char **error_message)
4698 {
4699 static xtensa_insnbuf insnbuf = NULL;
4700 static xtensa_insnbuf slotbuf = NULL;
4701 xtensa_format core_format = XTENSA_UNDEFINED;
4702 xtensa_opcode opcode;
4703 xtensa_opcode direct_call_opcode;
4704 xtensa_isa isa = xtensa_default_isa;
4705 bfd_byte *chbuf = contents + address;
4706 int opn;
4707
4708 if (insnbuf == NULL)
4709 {
4710 insnbuf = xtensa_insnbuf_alloc (isa);
4711 slotbuf = xtensa_insnbuf_alloc (isa);
4712 }
4713
4714 if (content_length < address)
4715 {
4716 *error_message = _("attempt to convert L32R/CALLX to CALL failed");
4717 return bfd_reloc_other;
4718 }
4719
4720 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4721 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4722 if (direct_call_opcode == XTENSA_UNDEFINED)
4723 {
4724 *error_message = _("attempt to convert L32R/CALLX to CALL failed");
4725 return bfd_reloc_other;
4726 }
4727
4728 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4729 core_format = xtensa_format_lookup (isa, "x24");
4730 opcode = xtensa_opcode_lookup (isa, "or");
4731 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4732 for (opn = 0; opn < 3; opn++)
4733 {
4734 uint32 regno = 1;
4735 xtensa_operand_encode (isa, opcode, opn, &regno);
4736 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4737 slotbuf, regno);
4738 }
4739 xtensa_format_encode (isa, core_format, insnbuf);
4740 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4741 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
4742
4743 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4744 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4745 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
4746
4747 xtensa_format_encode (isa, core_format, insnbuf);
4748 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4749 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4750 content_length - address - 3);
4751
4752 return bfd_reloc_ok;
4753 }
4754
4755
4756 static bfd_reloc_status_type
4757 contract_asm_expansion (bfd_byte *contents,
4758 bfd_vma content_length,
4759 Elf_Internal_Rela *irel,
4760 char **error_message)
4761 {
4762 bfd_reloc_status_type retval =
4763 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4764 error_message);
4765
4766 if (retval != bfd_reloc_ok)
4767 return bfd_reloc_dangerous;
4768
4769 /* Update the irel->r_offset field so that the right immediate and
4770 the right instruction are modified during the relocation. */
4771 irel->r_offset += 3;
4772 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4773 return bfd_reloc_ok;
4774 }
4775
4776
4777 static xtensa_opcode
4778 swap_callx_for_call_opcode (xtensa_opcode opcode)
4779 {
4780 init_call_opcodes ();
4781
4782 if (opcode == callx0_op) return call0_op;
4783 if (opcode == callx4_op) return call4_op;
4784 if (opcode == callx8_op) return call8_op;
4785 if (opcode == callx12_op) return call12_op;
4786
4787 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4788 return XTENSA_UNDEFINED;
4789 }
4790
4791
4792 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4793 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4794 If not, return XTENSA_UNDEFINED. */
4795
4796 #define L32R_TARGET_REG_OPERAND 0
4797 #define CONST16_TARGET_REG_OPERAND 0
4798 #define CALLN_SOURCE_OPERAND 0
4799
4800 static xtensa_opcode
4801 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4802 {
4803 static xtensa_insnbuf insnbuf = NULL;
4804 static xtensa_insnbuf slotbuf = NULL;
4805 xtensa_format fmt;
4806 xtensa_opcode opcode;
4807 xtensa_isa isa = xtensa_default_isa;
4808 uint32 regno, const16_regno, call_regno;
4809 int offset = 0;
4810
4811 if (insnbuf == NULL)
4812 {
4813 insnbuf = xtensa_insnbuf_alloc (isa);
4814 slotbuf = xtensa_insnbuf_alloc (isa);
4815 }
4816
4817 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4818 fmt = xtensa_format_decode (isa, insnbuf);
4819 if (fmt == XTENSA_UNDEFINED
4820 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4821 return XTENSA_UNDEFINED;
4822
4823 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4824 if (opcode == XTENSA_UNDEFINED)
4825 return XTENSA_UNDEFINED;
4826
4827 if (opcode == get_l32r_opcode ())
4828 {
4829 if (p_uses_l32r)
4830 *p_uses_l32r = TRUE;
4831 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4832 fmt, 0, slotbuf, &regno)
4833 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4834 &regno))
4835 return XTENSA_UNDEFINED;
4836 }
4837 else if (opcode == get_const16_opcode ())
4838 {
4839 if (p_uses_l32r)
4840 *p_uses_l32r = FALSE;
4841 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4842 fmt, 0, slotbuf, &regno)
4843 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4844 &regno))
4845 return XTENSA_UNDEFINED;
4846
4847 /* Check that the next instruction is also CONST16. */
4848 offset += xtensa_format_length (isa, fmt);
4849 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4850 fmt = xtensa_format_decode (isa, insnbuf);
4851 if (fmt == XTENSA_UNDEFINED
4852 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4853 return XTENSA_UNDEFINED;
4854 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4855 if (opcode != get_const16_opcode ())
4856 return XTENSA_UNDEFINED;
4857
4858 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4859 fmt, 0, slotbuf, &const16_regno)
4860 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4861 &const16_regno)
4862 || const16_regno != regno)
4863 return XTENSA_UNDEFINED;
4864 }
4865 else
4866 return XTENSA_UNDEFINED;
4867
4868 /* Next instruction should be an CALLXn with operand 0 == regno. */
4869 offset += xtensa_format_length (isa, fmt);
4870 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4871 fmt = xtensa_format_decode (isa, insnbuf);
4872 if (fmt == XTENSA_UNDEFINED
4873 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4874 return XTENSA_UNDEFINED;
4875 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4876 if (opcode == XTENSA_UNDEFINED
4877 || !is_indirect_call_opcode (opcode))
4878 return XTENSA_UNDEFINED;
4879
4880 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4881 fmt, 0, slotbuf, &call_regno)
4882 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4883 &call_regno))
4884 return XTENSA_UNDEFINED;
4885
4886 if (call_regno != regno)
4887 return XTENSA_UNDEFINED;
4888
4889 return opcode;
4890 }
4891
4892 \f
4893 /* Data structures used during relaxation. */
4894
4895 /* r_reloc: relocation values. */
4896
4897 /* Through the relaxation process, we need to keep track of the values
4898 that will result from evaluating relocations. The standard ELF
4899 relocation structure is not sufficient for this purpose because we're
4900 operating on multiple input files at once, so we need to know which
4901 input file a relocation refers to. The r_reloc structure thus
4902 records both the input file (bfd) and ELF relocation.
4903
4904 For efficiency, an r_reloc also contains a "target_offset" field to
4905 cache the target-section-relative offset value that is represented by
4906 the relocation.
4907
4908 The r_reloc also contains a virtual offset that allows multiple
4909 inserted literals to be placed at the same "address" with
4910 different offsets. */
4911
4912 typedef struct r_reloc_struct r_reloc;
4913
4914 struct r_reloc_struct
4915 {
4916 bfd *abfd;
4917 Elf_Internal_Rela rela;
4918 bfd_vma target_offset;
4919 bfd_vma virtual_offset;
4920 };
4921
4922
4923 /* The r_reloc structure is included by value in literal_value, but not
4924 every literal_value has an associated relocation -- some are simple
4925 constants. In such cases, we set all the fields in the r_reloc
4926 struct to zero. The r_reloc_is_const function should be used to
4927 detect this case. */
4928
4929 static bfd_boolean
4930 r_reloc_is_const (const r_reloc *r_rel)
4931 {
4932 return (r_rel->abfd == NULL);
4933 }
4934
4935
4936 static bfd_vma
4937 r_reloc_get_target_offset (const r_reloc *r_rel)
4938 {
4939 bfd_vma target_offset;
4940 unsigned long r_symndx;
4941
4942 BFD_ASSERT (!r_reloc_is_const (r_rel));
4943 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4944 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4945 return (target_offset + r_rel->rela.r_addend);
4946 }
4947
4948
4949 static struct elf_link_hash_entry *
4950 r_reloc_get_hash_entry (const r_reloc *r_rel)
4951 {
4952 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4953 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4954 }
4955
4956
4957 static asection *
4958 r_reloc_get_section (const r_reloc *r_rel)
4959 {
4960 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4961 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4962 }
4963
4964
4965 static bfd_boolean
4966 r_reloc_is_defined (const r_reloc *r_rel)
4967 {
4968 asection *sec;
4969 if (r_rel == NULL)
4970 return FALSE;
4971
4972 sec = r_reloc_get_section (r_rel);
4973 if (sec == bfd_abs_section_ptr
4974 || sec == bfd_com_section_ptr
4975 || sec == bfd_und_section_ptr)
4976 return FALSE;
4977 return TRUE;
4978 }
4979
4980
4981 static void
4982 r_reloc_init (r_reloc *r_rel,
4983 bfd *abfd,
4984 Elf_Internal_Rela *irel,
4985 bfd_byte *contents,
4986 bfd_size_type content_length)
4987 {
4988 int r_type;
4989 reloc_howto_type *howto;
4990
4991 if (irel)
4992 {
4993 r_rel->rela = *irel;
4994 r_rel->abfd = abfd;
4995 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4996 r_rel->virtual_offset = 0;
4997 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4998 howto = &elf_howto_table[r_type];
4999 if (howto->partial_inplace)
5000 {
5001 bfd_vma inplace_val;
5002 BFD_ASSERT (r_rel->rela.r_offset < content_length);
5003
5004 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
5005 r_rel->target_offset += inplace_val;
5006 }
5007 }
5008 else
5009 memset (r_rel, 0, sizeof (r_reloc));
5010 }
5011
5012
5013 #if DEBUG
5014
5015 static void
5016 print_r_reloc (FILE *fp, const r_reloc *r_rel)
5017 {
5018 if (r_reloc_is_defined (r_rel))
5019 {
5020 asection *sec = r_reloc_get_section (r_rel);
5021 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
5022 }
5023 else if (r_reloc_get_hash_entry (r_rel))
5024 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
5025 else
5026 fprintf (fp, " ?? + ");
5027
5028 fprintf_vma (fp, r_rel->target_offset);
5029 if (r_rel->virtual_offset)
5030 {
5031 fprintf (fp, " + ");
5032 fprintf_vma (fp, r_rel->virtual_offset);
5033 }
5034
5035 fprintf (fp, ")");
5036 }
5037
5038 #endif /* DEBUG */
5039
5040 \f
5041 /* source_reloc: relocations that reference literals. */
5042
5043 /* To determine whether literals can be coalesced, we need to first
5044 record all the relocations that reference the literals. The
5045 source_reloc structure below is used for this purpose. The
5046 source_reloc entries are kept in a per-literal-section array, sorted
5047 by offset within the literal section (i.e., target offset).
5048
5049 The source_sec and r_rel.rela.r_offset fields identify the source of
5050 the relocation. The r_rel field records the relocation value, i.e.,
5051 the offset of the literal being referenced. The opnd field is needed
5052 to determine the range of the immediate field to which the relocation
5053 applies, so we can determine whether another literal with the same
5054 value is within range. The is_null field is true when the relocation
5055 is being removed (e.g., when an L32R is being removed due to a CALLX
5056 that is converted to a direct CALL). */
5057
5058 typedef struct source_reloc_struct source_reloc;
5059
5060 struct source_reloc_struct
5061 {
5062 asection *source_sec;
5063 r_reloc r_rel;
5064 xtensa_opcode opcode;
5065 int opnd;
5066 bfd_boolean is_null;
5067 bfd_boolean is_abs_literal;
5068 };
5069
5070
5071 static void
5072 init_source_reloc (source_reloc *reloc,
5073 asection *source_sec,
5074 const r_reloc *r_rel,
5075 xtensa_opcode opcode,
5076 int opnd,
5077 bfd_boolean is_abs_literal)
5078 {
5079 reloc->source_sec = source_sec;
5080 reloc->r_rel = *r_rel;
5081 reloc->opcode = opcode;
5082 reloc->opnd = opnd;
5083 reloc->is_null = FALSE;
5084 reloc->is_abs_literal = is_abs_literal;
5085 }
5086
5087
5088 /* Find the source_reloc for a particular source offset and relocation
5089 type. Note that the array is sorted by _target_ offset, so this is
5090 just a linear search. */
5091
5092 static source_reloc *
5093 find_source_reloc (source_reloc *src_relocs,
5094 int src_count,
5095 asection *sec,
5096 Elf_Internal_Rela *irel)
5097 {
5098 int i;
5099
5100 for (i = 0; i < src_count; i++)
5101 {
5102 if (src_relocs[i].source_sec == sec
5103 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5104 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5105 == ELF32_R_TYPE (irel->r_info)))
5106 return &src_relocs[i];
5107 }
5108
5109 return NULL;
5110 }
5111
5112
5113 static int
5114 source_reloc_compare (const void *ap, const void *bp)
5115 {
5116 const source_reloc *a = (const source_reloc *) ap;
5117 const source_reloc *b = (const source_reloc *) bp;
5118
5119 if (a->r_rel.target_offset != b->r_rel.target_offset)
5120 return (a->r_rel.target_offset - b->r_rel.target_offset);
5121
5122 /* We don't need to sort on these criteria for correctness,
5123 but enforcing a more strict ordering prevents unstable qsort
5124 from behaving differently with different implementations.
5125 Without the code below we get correct but different results
5126 on Solaris 2.7 and 2.8. We would like to always produce the
5127 same results no matter the host. */
5128
5129 if ((!a->is_null) - (!b->is_null))
5130 return ((!a->is_null) - (!b->is_null));
5131 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
5132 }
5133
5134 \f
5135 /* Literal values and value hash tables. */
5136
5137 /* Literals with the same value can be coalesced. The literal_value
5138 structure records the value of a literal: the "r_rel" field holds the
5139 information from the relocation on the literal (if there is one) and
5140 the "value" field holds the contents of the literal word itself.
5141
5142 The value_map structure records a literal value along with the
5143 location of a literal holding that value. The value_map hash table
5144 is indexed by the literal value, so that we can quickly check if a
5145 particular literal value has been seen before and is thus a candidate
5146 for coalescing. */
5147
5148 typedef struct literal_value_struct literal_value;
5149 typedef struct value_map_struct value_map;
5150 typedef struct value_map_hash_table_struct value_map_hash_table;
5151
5152 struct literal_value_struct
5153 {
5154 r_reloc r_rel;
5155 unsigned long value;
5156 bfd_boolean is_abs_literal;
5157 };
5158
5159 struct value_map_struct
5160 {
5161 literal_value val; /* The literal value. */
5162 r_reloc loc; /* Location of the literal. */
5163 value_map *next;
5164 };
5165
5166 struct value_map_hash_table_struct
5167 {
5168 unsigned bucket_count;
5169 value_map **buckets;
5170 unsigned count;
5171 bfd_boolean has_last_loc;
5172 r_reloc last_loc;
5173 };
5174
5175
5176 static void
5177 init_literal_value (literal_value *lit,
5178 const r_reloc *r_rel,
5179 unsigned long value,
5180 bfd_boolean is_abs_literal)
5181 {
5182 lit->r_rel = *r_rel;
5183 lit->value = value;
5184 lit->is_abs_literal = is_abs_literal;
5185 }
5186
5187
5188 static bfd_boolean
5189 literal_value_equal (const literal_value *src1,
5190 const literal_value *src2,
5191 bfd_boolean final_static_link)
5192 {
5193 struct elf_link_hash_entry *h1, *h2;
5194
5195 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5196 return FALSE;
5197
5198 if (r_reloc_is_const (&src1->r_rel))
5199 return (src1->value == src2->value);
5200
5201 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5202 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5203 return FALSE;
5204
5205 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5206 return FALSE;
5207
5208 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5209 return FALSE;
5210
5211 if (src1->value != src2->value)
5212 return FALSE;
5213
5214 /* Now check for the same section (if defined) or the same elf_hash
5215 (if undefined or weak). */
5216 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5217 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5218 if (r_reloc_is_defined (&src1->r_rel)
5219 && (final_static_link
5220 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5221 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5222 {
5223 if (r_reloc_get_section (&src1->r_rel)
5224 != r_reloc_get_section (&src2->r_rel))
5225 return FALSE;
5226 }
5227 else
5228 {
5229 /* Require that the hash entries (i.e., symbols) be identical. */
5230 if (h1 != h2 || h1 == 0)
5231 return FALSE;
5232 }
5233
5234 if (src1->is_abs_literal != src2->is_abs_literal)
5235 return FALSE;
5236
5237 return TRUE;
5238 }
5239
5240
5241 /* Must be power of 2. */
5242 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5243
5244 static value_map_hash_table *
5245 value_map_hash_table_init (void)
5246 {
5247 value_map_hash_table *values;
5248
5249 values = (value_map_hash_table *)
5250 bfd_zmalloc (sizeof (value_map_hash_table));
5251 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5252 values->count = 0;
5253 values->buckets = (value_map **)
5254 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5255 if (values->buckets == NULL)
5256 {
5257 free (values);
5258 return NULL;
5259 }
5260 values->has_last_loc = FALSE;
5261
5262 return values;
5263 }
5264
5265
5266 static void
5267 value_map_hash_table_delete (value_map_hash_table *table)
5268 {
5269 free (table->buckets);
5270 free (table);
5271 }
5272
5273
5274 static unsigned
5275 hash_bfd_vma (bfd_vma val)
5276 {
5277 return (val >> 2) + (val >> 10);
5278 }
5279
5280
5281 static unsigned
5282 literal_value_hash (const literal_value *src)
5283 {
5284 unsigned hash_val;
5285
5286 hash_val = hash_bfd_vma (src->value);
5287 if (!r_reloc_is_const (&src->r_rel))
5288 {
5289 void *sec_or_hash;
5290
5291 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5292 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5293 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5294
5295 /* Now check for the same section and the same elf_hash. */
5296 if (r_reloc_is_defined (&src->r_rel))
5297 sec_or_hash = r_reloc_get_section (&src->r_rel);
5298 else
5299 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
5300 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
5301 }
5302 return hash_val;
5303 }
5304
5305
5306 /* Check if the specified literal_value has been seen before. */
5307
5308 static value_map *
5309 value_map_get_cached_value (value_map_hash_table *map,
5310 const literal_value *val,
5311 bfd_boolean final_static_link)
5312 {
5313 value_map *map_e;
5314 value_map *bucket;
5315 unsigned idx;
5316
5317 idx = literal_value_hash (val);
5318 idx = idx & (map->bucket_count - 1);
5319 bucket = map->buckets[idx];
5320 for (map_e = bucket; map_e; map_e = map_e->next)
5321 {
5322 if (literal_value_equal (&map_e->val, val, final_static_link))
5323 return map_e;
5324 }
5325 return NULL;
5326 }
5327
5328
5329 /* Record a new literal value. It is illegal to call this if VALUE
5330 already has an entry here. */
5331
5332 static value_map *
5333 add_value_map (value_map_hash_table *map,
5334 const literal_value *val,
5335 const r_reloc *loc,
5336 bfd_boolean final_static_link)
5337 {
5338 value_map **bucket_p;
5339 unsigned idx;
5340
5341 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5342 if (val_e == NULL)
5343 {
5344 bfd_set_error (bfd_error_no_memory);
5345 return NULL;
5346 }
5347
5348 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5349 val_e->val = *val;
5350 val_e->loc = *loc;
5351
5352 idx = literal_value_hash (val);
5353 idx = idx & (map->bucket_count - 1);
5354 bucket_p = &map->buckets[idx];
5355
5356 val_e->next = *bucket_p;
5357 *bucket_p = val_e;
5358 map->count++;
5359 /* FIXME: Consider resizing the hash table if we get too many entries. */
5360
5361 return val_e;
5362 }
5363
5364 \f
5365 /* Lists of text actions (ta_) for narrowing, widening, longcall
5366 conversion, space fill, code & literal removal, etc. */
5367
5368 /* The following text actions are generated:
5369
5370 "ta_remove_insn" remove an instruction or instructions
5371 "ta_remove_longcall" convert longcall to call
5372 "ta_convert_longcall" convert longcall to nop/call
5373 "ta_narrow_insn" narrow a wide instruction
5374 "ta_widen" widen a narrow instruction
5375 "ta_fill" add fill or remove fill
5376 removed < 0 is a fill; branches to the fill address will be
5377 changed to address + fill size (e.g., address - removed)
5378 removed >= 0 branches to the fill address will stay unchanged
5379 "ta_remove_literal" remove a literal; this action is
5380 indicated when a literal is removed
5381 or replaced.
5382 "ta_add_literal" insert a new literal; this action is
5383 indicated when a literal has been moved.
5384 It may use a virtual_offset because
5385 multiple literals can be placed at the
5386 same location.
5387
5388 For each of these text actions, we also record the number of bytes
5389 removed by performing the text action. In the case of a "ta_widen"
5390 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5391
5392 typedef struct text_action_struct text_action;
5393 typedef struct text_action_list_struct text_action_list;
5394 typedef enum text_action_enum_t text_action_t;
5395
5396 enum text_action_enum_t
5397 {
5398 ta_none,
5399 ta_remove_insn, /* removed = -size */
5400 ta_remove_longcall, /* removed = -size */
5401 ta_convert_longcall, /* removed = 0 */
5402 ta_narrow_insn, /* removed = -1 */
5403 ta_widen_insn, /* removed = +1 */
5404 ta_fill, /* removed = +size */
5405 ta_remove_literal,
5406 ta_add_literal
5407 };
5408
5409
5410 /* Structure for a text action record. */
5411 struct text_action_struct
5412 {
5413 text_action_t action;
5414 asection *sec; /* Optional */
5415 bfd_vma offset;
5416 bfd_vma virtual_offset; /* Zero except for adding literals. */
5417 int removed_bytes;
5418 literal_value value; /* Only valid when adding literals. */
5419 };
5420
5421 struct removal_by_action_entry_struct
5422 {
5423 bfd_vma offset;
5424 int removed;
5425 int eq_removed;
5426 int eq_removed_before_fill;
5427 };
5428 typedef struct removal_by_action_entry_struct removal_by_action_entry;
5429
5430 struct removal_by_action_map_struct
5431 {
5432 unsigned n_entries;
5433 removal_by_action_entry *entry;
5434 };
5435 typedef struct removal_by_action_map_struct removal_by_action_map;
5436
5437
5438 /* List of all of the actions taken on a text section. */
5439 struct text_action_list_struct
5440 {
5441 unsigned count;
5442 splay_tree tree;
5443 removal_by_action_map map;
5444 };
5445
5446
5447 static text_action *
5448 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
5449 {
5450 text_action a;
5451
5452 /* It is not necessary to fill at the end of a section. */
5453 if (sec->size == offset)
5454 return NULL;
5455
5456 a.offset = offset;
5457 a.action = ta_fill;
5458
5459 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5460 if (node)
5461 return (text_action *)node->value;
5462 return NULL;
5463 }
5464
5465
5466 static int
5467 compute_removed_action_diff (const text_action *ta,
5468 asection *sec,
5469 bfd_vma offset,
5470 int removed,
5471 int removable_space)
5472 {
5473 int new_removed;
5474 int current_removed = 0;
5475
5476 if (ta)
5477 current_removed = ta->removed_bytes;
5478
5479 BFD_ASSERT (ta == NULL || ta->offset == offset);
5480 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5481
5482 /* It is not necessary to fill at the end of a section. Clean this up. */
5483 if (sec->size == offset)
5484 new_removed = removable_space - 0;
5485 else
5486 {
5487 int space;
5488 int added = -removed - current_removed;
5489 /* Ignore multiples of the section alignment. */
5490 added = ((1 << sec->alignment_power) - 1) & added;
5491 new_removed = (-added);
5492
5493 /* Modify for removable. */
5494 space = removable_space - new_removed;
5495 new_removed = (removable_space
5496 - (((1 << sec->alignment_power) - 1) & space));
5497 }
5498 return (new_removed - current_removed);
5499 }
5500
5501
5502 static void
5503 adjust_fill_action (text_action *ta, int fill_diff)
5504 {
5505 ta->removed_bytes += fill_diff;
5506 }
5507
5508
5509 static int
5510 text_action_compare (splay_tree_key a, splay_tree_key b)
5511 {
5512 text_action *pa = (text_action *)a;
5513 text_action *pb = (text_action *)b;
5514 static const int action_priority[] =
5515 {
5516 [ta_fill] = 0,
5517 [ta_none] = 1,
5518 [ta_convert_longcall] = 2,
5519 [ta_narrow_insn] = 3,
5520 [ta_remove_insn] = 4,
5521 [ta_remove_longcall] = 5,
5522 [ta_remove_literal] = 6,
5523 [ta_widen_insn] = 7,
5524 [ta_add_literal] = 8,
5525 };
5526
5527 if (pa->offset == pb->offset)
5528 {
5529 if (pa->action == pb->action)
5530 return 0;
5531 return action_priority[pa->action] - action_priority[pb->action];
5532 }
5533 else
5534 return pa->offset < pb->offset ? -1 : 1;
5535 }
5536
5537 static text_action *
5538 action_first (text_action_list *action_list)
5539 {
5540 splay_tree_node node = splay_tree_min (action_list->tree);
5541 return node ? (text_action *)node->value : NULL;
5542 }
5543
5544 static text_action *
5545 action_next (text_action_list *action_list, text_action *action)
5546 {
5547 splay_tree_node node = splay_tree_successor (action_list->tree,
5548 (splay_tree_key)action);
5549 return node ? (text_action *)node->value : NULL;
5550 }
5551
5552 /* Add a modification action to the text. For the case of adding or
5553 removing space, modify any current fill and assume that
5554 "unreachable_space" bytes can be freely contracted. Note that a
5555 negative removed value is a fill. */
5556
5557 static void
5558 text_action_add (text_action_list *l,
5559 text_action_t action,
5560 asection *sec,
5561 bfd_vma offset,
5562 int removed)
5563 {
5564 text_action *ta;
5565 text_action a;
5566
5567 /* It is not necessary to fill at the end of a section. */
5568 if (action == ta_fill && sec->size == offset)
5569 return;
5570
5571 /* It is not necessary to fill 0 bytes. */
5572 if (action == ta_fill && removed == 0)
5573 return;
5574
5575 a.action = action;
5576 a.offset = offset;
5577
5578 if (action == ta_fill)
5579 {
5580 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5581
5582 if (node)
5583 {
5584 ta = (text_action *)node->value;
5585 ta->removed_bytes += removed;
5586 return;
5587 }
5588 }
5589 else
5590 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL);
5591
5592 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5593 ta->action = action;
5594 ta->sec = sec;
5595 ta->offset = offset;
5596 ta->removed_bytes = removed;
5597 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5598 ++l->count;
5599 }
5600
5601
5602 static void
5603 text_action_add_literal (text_action_list *l,
5604 text_action_t action,
5605 const r_reloc *loc,
5606 const literal_value *value,
5607 int removed)
5608 {
5609 text_action *ta;
5610 asection *sec = r_reloc_get_section (loc);
5611 bfd_vma offset = loc->target_offset;
5612 bfd_vma virtual_offset = loc->virtual_offset;
5613
5614 BFD_ASSERT (action == ta_add_literal);
5615
5616 /* Create a new record and fill it up. */
5617 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5618 ta->action = action;
5619 ta->sec = sec;
5620 ta->offset = offset;
5621 ta->virtual_offset = virtual_offset;
5622 ta->value = *value;
5623 ta->removed_bytes = removed;
5624
5625 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL);
5626 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5627 ++l->count;
5628 }
5629
5630
5631 /* Find the total offset adjustment for the relaxations specified by
5632 text_actions, beginning from a particular starting action. This is
5633 typically used from offset_with_removed_text to search an entire list of
5634 actions, but it may also be called directly when adjusting adjacent offsets
5635 so that each search may begin where the previous one left off. */
5636
5637 static int
5638 removed_by_actions (text_action_list *action_list,
5639 text_action **p_start_action,
5640 bfd_vma offset,
5641 bfd_boolean before_fill)
5642 {
5643 text_action *r;
5644 int removed = 0;
5645
5646 r = *p_start_action;
5647 if (r)
5648 {
5649 splay_tree_node node = splay_tree_lookup (action_list->tree,
5650 (splay_tree_key)r);
5651 BFD_ASSERT (node != NULL && r == (text_action *)node->value);
5652 }
5653
5654 while (r)
5655 {
5656 if (r->offset > offset)
5657 break;
5658
5659 if (r->offset == offset
5660 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5661 break;
5662
5663 removed += r->removed_bytes;
5664
5665 r = action_next (action_list, r);
5666 }
5667
5668 *p_start_action = r;
5669 return removed;
5670 }
5671
5672
5673 static bfd_vma
5674 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5675 {
5676 text_action *r = action_first (action_list);
5677
5678 return offset - removed_by_actions (action_list, &r, offset, FALSE);
5679 }
5680
5681
5682 static unsigned
5683 action_list_count (text_action_list *action_list)
5684 {
5685 return action_list->count;
5686 }
5687
5688 typedef struct map_action_fn_context_struct map_action_fn_context;
5689 struct map_action_fn_context_struct
5690 {
5691 int removed;
5692 removal_by_action_map map;
5693 bfd_boolean eq_complete;
5694 };
5695
5696 static int
5697 map_action_fn (splay_tree_node node, void *p)
5698 {
5699 map_action_fn_context *ctx = p;
5700 text_action *r = (text_action *)node->value;
5701 removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries;
5702
5703 if (ctx->map.n_entries && (ientry - 1)->offset == r->offset)
5704 {
5705 --ientry;
5706 }
5707 else
5708 {
5709 ++ctx->map.n_entries;
5710 ctx->eq_complete = FALSE;
5711 ientry->offset = r->offset;
5712 ientry->eq_removed_before_fill = ctx->removed;
5713 }
5714
5715 if (!ctx->eq_complete)
5716 {
5717 if (r->action != ta_fill || r->removed_bytes >= 0)
5718 {
5719 ientry->eq_removed = ctx->removed;
5720 ctx->eq_complete = TRUE;
5721 }
5722 else
5723 ientry->eq_removed = ctx->removed + r->removed_bytes;
5724 }
5725
5726 ctx->removed += r->removed_bytes;
5727 ientry->removed = ctx->removed;
5728 return 0;
5729 }
5730
5731 static void
5732 map_removal_by_action (text_action_list *action_list)
5733 {
5734 map_action_fn_context ctx;
5735
5736 ctx.removed = 0;
5737 ctx.map.n_entries = 0;
5738 ctx.map.entry = bfd_malloc (action_list_count (action_list) *
5739 sizeof (removal_by_action_entry));
5740 ctx.eq_complete = FALSE;
5741
5742 splay_tree_foreach (action_list->tree, map_action_fn, &ctx);
5743 action_list->map = ctx.map;
5744 }
5745
5746 static int
5747 removed_by_actions_map (text_action_list *action_list, bfd_vma offset,
5748 bfd_boolean before_fill)
5749 {
5750 unsigned a, b;
5751
5752 if (!action_list->map.entry)
5753 map_removal_by_action (action_list);
5754
5755 if (!action_list->map.n_entries)
5756 return 0;
5757
5758 a = 0;
5759 b = action_list->map.n_entries;
5760
5761 while (b - a > 1)
5762 {
5763 unsigned c = (a + b) / 2;
5764
5765 if (action_list->map.entry[c].offset <= offset)
5766 a = c;
5767 else
5768 b = c;
5769 }
5770
5771 if (action_list->map.entry[a].offset < offset)
5772 {
5773 return action_list->map.entry[a].removed;
5774 }
5775 else if (action_list->map.entry[a].offset == offset)
5776 {
5777 return before_fill ?
5778 action_list->map.entry[a].eq_removed_before_fill :
5779 action_list->map.entry[a].eq_removed;
5780 }
5781 else
5782 {
5783 return 0;
5784 }
5785 }
5786
5787 static bfd_vma
5788 offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset)
5789 {
5790 int removed = removed_by_actions_map (action_list, offset, FALSE);
5791 return offset - removed;
5792 }
5793
5794
5795 /* The find_insn_action routine will only find non-fill actions. */
5796
5797 static text_action *
5798 find_insn_action (text_action_list *action_list, bfd_vma offset)
5799 {
5800 static const text_action_t action[] =
5801 {
5802 ta_convert_longcall,
5803 ta_remove_longcall,
5804 ta_widen_insn,
5805 ta_narrow_insn,
5806 ta_remove_insn,
5807 };
5808 text_action a;
5809 unsigned i;
5810
5811 a.offset = offset;
5812 for (i = 0; i < sizeof (action) / sizeof (*action); ++i)
5813 {
5814 splay_tree_node node;
5815
5816 a.action = action[i];
5817 node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a);
5818 if (node)
5819 return (text_action *)node->value;
5820 }
5821 return NULL;
5822 }
5823
5824
5825 #if DEBUG
5826
5827 static void
5828 print_action (FILE *fp, text_action *r)
5829 {
5830 const char *t = "unknown";
5831 switch (r->action)
5832 {
5833 case ta_remove_insn:
5834 t = "remove_insn"; break;
5835 case ta_remove_longcall:
5836 t = "remove_longcall"; break;
5837 case ta_convert_longcall:
5838 t = "convert_longcall"; break;
5839 case ta_narrow_insn:
5840 t = "narrow_insn"; break;
5841 case ta_widen_insn:
5842 t = "widen_insn"; break;
5843 case ta_fill:
5844 t = "fill"; break;
5845 case ta_none:
5846 t = "none"; break;
5847 case ta_remove_literal:
5848 t = "remove_literal"; break;
5849 case ta_add_literal:
5850 t = "add_literal"; break;
5851 }
5852
5853 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5854 r->sec->owner->filename,
5855 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5856 }
5857
5858 static int
5859 print_action_list_fn (splay_tree_node node, void *p)
5860 {
5861 text_action *r = (text_action *)node->value;
5862
5863 print_action (p, r);
5864 return 0;
5865 }
5866
5867 static void
5868 print_action_list (FILE *fp, text_action_list *action_list)
5869 {
5870 fprintf (fp, "Text Action\n");
5871 splay_tree_foreach (action_list->tree, print_action_list_fn, fp);
5872 }
5873
5874 #endif /* DEBUG */
5875
5876 \f
5877 /* Lists of literals being coalesced or removed. */
5878
5879 /* In the usual case, the literal identified by "from" is being
5880 coalesced with another literal identified by "to". If the literal is
5881 unused and is being removed altogether, "to.abfd" will be NULL.
5882 The removed_literal entries are kept on a per-section list, sorted
5883 by the "from" offset field. */
5884
5885 typedef struct removed_literal_struct removed_literal;
5886 typedef struct removed_literal_map_entry_struct removed_literal_map_entry;
5887 typedef struct removed_literal_list_struct removed_literal_list;
5888
5889 struct removed_literal_struct
5890 {
5891 r_reloc from;
5892 r_reloc to;
5893 removed_literal *next;
5894 };
5895
5896 struct removed_literal_map_entry_struct
5897 {
5898 bfd_vma addr;
5899 removed_literal *literal;
5900 };
5901
5902 struct removed_literal_list_struct
5903 {
5904 removed_literal *head;
5905 removed_literal *tail;
5906
5907 unsigned n_map;
5908 removed_literal_map_entry *map;
5909 };
5910
5911
5912 /* Record that the literal at "from" is being removed. If "to" is not
5913 NULL, the "from" literal is being coalesced with the "to" literal. */
5914
5915 static void
5916 add_removed_literal (removed_literal_list *removed_list,
5917 const r_reloc *from,
5918 const r_reloc *to)
5919 {
5920 removed_literal *r, *new_r, *next_r;
5921
5922 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5923
5924 new_r->from = *from;
5925 if (to)
5926 new_r->to = *to;
5927 else
5928 new_r->to.abfd = NULL;
5929 new_r->next = NULL;
5930
5931 r = removed_list->head;
5932 if (r == NULL)
5933 {
5934 removed_list->head = new_r;
5935 removed_list->tail = new_r;
5936 }
5937 /* Special check for common case of append. */
5938 else if (removed_list->tail->from.target_offset < from->target_offset)
5939 {
5940 removed_list->tail->next = new_r;
5941 removed_list->tail = new_r;
5942 }
5943 else
5944 {
5945 while (r->from.target_offset < from->target_offset && r->next)
5946 {
5947 r = r->next;
5948 }
5949 next_r = r->next;
5950 r->next = new_r;
5951 new_r->next = next_r;
5952 if (next_r == NULL)
5953 removed_list->tail = new_r;
5954 }
5955 }
5956
5957 static void
5958 map_removed_literal (removed_literal_list *removed_list)
5959 {
5960 unsigned n_map = 0;
5961 unsigned i;
5962 removed_literal_map_entry *map = NULL;
5963 removed_literal *r = removed_list->head;
5964
5965 for (i = 0; r; ++i, r = r->next)
5966 {
5967 if (i == n_map)
5968 {
5969 n_map = (n_map * 2) + 2;
5970 map = bfd_realloc (map, n_map * sizeof (*map));
5971 }
5972 map[i].addr = r->from.target_offset;
5973 map[i].literal = r;
5974 }
5975 removed_list->map = map;
5976 removed_list->n_map = i;
5977 }
5978
5979 static int
5980 removed_literal_compare (const void *a, const void *b)
5981 {
5982 const removed_literal_map_entry *pa = a;
5983 const removed_literal_map_entry *pb = b;
5984
5985 if (pa->addr == pb->addr)
5986 return 0;
5987 else
5988 return pa->addr < pb->addr ? -1 : 1;
5989 }
5990
5991 /* Check if the list of removed literals contains an entry for the
5992 given address. Return the entry if found. */
5993
5994 static removed_literal *
5995 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
5996 {
5997 removed_literal_map_entry *p;
5998 removed_literal *r = NULL;
5999
6000 if (removed_list->map == NULL)
6001 map_removed_literal (removed_list);
6002
6003 p = bsearch (&addr, removed_list->map, removed_list->n_map,
6004 sizeof (*removed_list->map), removed_literal_compare);
6005 if (p)
6006 {
6007 while (p != removed_list->map && (p - 1)->addr == addr)
6008 --p;
6009 r = p->literal;
6010 }
6011 return r;
6012 }
6013
6014
6015 #if DEBUG
6016
6017 static void
6018 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
6019 {
6020 removed_literal *r;
6021 r = removed_list->head;
6022 if (r)
6023 fprintf (fp, "Removed Literals\n");
6024 for (; r != NULL; r = r->next)
6025 {
6026 print_r_reloc (fp, &r->from);
6027 fprintf (fp, " => ");
6028 if (r->to.abfd == NULL)
6029 fprintf (fp, "REMOVED");
6030 else
6031 print_r_reloc (fp, &r->to);
6032 fprintf (fp, "\n");
6033 }
6034 }
6035
6036 #endif /* DEBUG */
6037
6038 \f
6039 /* Per-section data for relaxation. */
6040
6041 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
6042
6043 struct xtensa_relax_info_struct
6044 {
6045 bfd_boolean is_relaxable_literal_section;
6046 bfd_boolean is_relaxable_asm_section;
6047 int visited; /* Number of times visited. */
6048
6049 source_reloc *src_relocs; /* Array[src_count]. */
6050 int src_count;
6051 int src_next; /* Next src_relocs entry to assign. */
6052
6053 removed_literal_list removed_list;
6054 text_action_list action_list;
6055
6056 reloc_bfd_fix *fix_list;
6057 reloc_bfd_fix *fix_array;
6058 unsigned fix_array_count;
6059
6060 /* Support for expanding the reloc array that is stored
6061 in the section structure. If the relocations have been
6062 reallocated, the newly allocated relocations will be referenced
6063 here along with the actual size allocated. The relocation
6064 count will always be found in the section structure. */
6065 Elf_Internal_Rela *allocated_relocs;
6066 unsigned relocs_count;
6067 unsigned allocated_relocs_count;
6068 };
6069
6070 struct elf_xtensa_section_data
6071 {
6072 struct bfd_elf_section_data elf;
6073 xtensa_relax_info relax_info;
6074 };
6075
6076
6077 static bfd_boolean
6078 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
6079 {
6080 if (!sec->used_by_bfd)
6081 {
6082 struct elf_xtensa_section_data *sdata;
6083 size_t amt = sizeof (*sdata);
6084
6085 sdata = bfd_zalloc (abfd, amt);
6086 if (sdata == NULL)
6087 return FALSE;
6088 sec->used_by_bfd = sdata;
6089 }
6090
6091 return _bfd_elf_new_section_hook (abfd, sec);
6092 }
6093
6094
6095 static xtensa_relax_info *
6096 get_xtensa_relax_info (asection *sec)
6097 {
6098 struct elf_xtensa_section_data *section_data;
6099
6100 /* No info available if no section or if it is an output section. */
6101 if (!sec || sec == sec->output_section)
6102 return NULL;
6103
6104 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
6105 return &section_data->relax_info;
6106 }
6107
6108
6109 static void
6110 init_xtensa_relax_info (asection *sec)
6111 {
6112 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6113
6114 relax_info->is_relaxable_literal_section = FALSE;
6115 relax_info->is_relaxable_asm_section = FALSE;
6116 relax_info->visited = 0;
6117
6118 relax_info->src_relocs = NULL;
6119 relax_info->src_count = 0;
6120 relax_info->src_next = 0;
6121
6122 relax_info->removed_list.head = NULL;
6123 relax_info->removed_list.tail = NULL;
6124
6125 relax_info->action_list.tree = splay_tree_new (text_action_compare,
6126 NULL, NULL);
6127 relax_info->action_list.map.n_entries = 0;
6128 relax_info->action_list.map.entry = NULL;
6129
6130 relax_info->fix_list = NULL;
6131 relax_info->fix_array = NULL;
6132 relax_info->fix_array_count = 0;
6133
6134 relax_info->allocated_relocs = NULL;
6135 relax_info->relocs_count = 0;
6136 relax_info->allocated_relocs_count = 0;
6137 }
6138
6139 \f
6140 /* Coalescing literals may require a relocation to refer to a section in
6141 a different input file, but the standard relocation information
6142 cannot express that. Instead, the reloc_bfd_fix structures are used
6143 to "fix" the relocations that refer to sections in other input files.
6144 These structures are kept on per-section lists. The "src_type" field
6145 records the relocation type in case there are multiple relocations on
6146 the same location. FIXME: This is ugly; an alternative might be to
6147 add new symbols with the "owner" field to some other input file. */
6148
6149 struct reloc_bfd_fix_struct
6150 {
6151 asection *src_sec;
6152 bfd_vma src_offset;
6153 unsigned src_type; /* Relocation type. */
6154
6155 asection *target_sec;
6156 bfd_vma target_offset;
6157 bfd_boolean translated;
6158
6159 reloc_bfd_fix *next;
6160 };
6161
6162
6163 static reloc_bfd_fix *
6164 reloc_bfd_fix_init (asection *src_sec,
6165 bfd_vma src_offset,
6166 unsigned src_type,
6167 asection *target_sec,
6168 bfd_vma target_offset,
6169 bfd_boolean translated)
6170 {
6171 reloc_bfd_fix *fix;
6172
6173 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
6174 fix->src_sec = src_sec;
6175 fix->src_offset = src_offset;
6176 fix->src_type = src_type;
6177 fix->target_sec = target_sec;
6178 fix->target_offset = target_offset;
6179 fix->translated = translated;
6180
6181 return fix;
6182 }
6183
6184
6185 static void
6186 add_fix (asection *src_sec, reloc_bfd_fix *fix)
6187 {
6188 xtensa_relax_info *relax_info;
6189
6190 relax_info = get_xtensa_relax_info (src_sec);
6191 fix->next = relax_info->fix_list;
6192 relax_info->fix_list = fix;
6193 }
6194
6195
6196 static int
6197 fix_compare (const void *ap, const void *bp)
6198 {
6199 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
6200 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
6201
6202 if (a->src_offset != b->src_offset)
6203 return (a->src_offset - b->src_offset);
6204 return (a->src_type - b->src_type);
6205 }
6206
6207
6208 static void
6209 cache_fix_array (asection *sec)
6210 {
6211 unsigned i, count = 0;
6212 reloc_bfd_fix *r;
6213 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6214
6215 if (relax_info == NULL)
6216 return;
6217 if (relax_info->fix_list == NULL)
6218 return;
6219
6220 for (r = relax_info->fix_list; r != NULL; r = r->next)
6221 count++;
6222
6223 relax_info->fix_array =
6224 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6225 relax_info->fix_array_count = count;
6226
6227 r = relax_info->fix_list;
6228 for (i = 0; i < count; i++, r = r->next)
6229 {
6230 relax_info->fix_array[count - 1 - i] = *r;
6231 relax_info->fix_array[count - 1 - i].next = NULL;
6232 }
6233
6234 qsort (relax_info->fix_array, relax_info->fix_array_count,
6235 sizeof (reloc_bfd_fix), fix_compare);
6236 }
6237
6238
6239 static reloc_bfd_fix *
6240 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
6241 {
6242 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6243 reloc_bfd_fix *rv;
6244 reloc_bfd_fix key;
6245
6246 if (relax_info == NULL)
6247 return NULL;
6248 if (relax_info->fix_list == NULL)
6249 return NULL;
6250
6251 if (relax_info->fix_array == NULL)
6252 cache_fix_array (sec);
6253
6254 key.src_offset = offset;
6255 key.src_type = type;
6256 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6257 sizeof (reloc_bfd_fix), fix_compare);
6258 return rv;
6259 }
6260
6261 \f
6262 /* Section caching. */
6263
6264 typedef struct section_cache_struct section_cache_t;
6265
6266 struct section_cache_struct
6267 {
6268 asection *sec;
6269
6270 bfd_byte *contents; /* Cache of the section contents. */
6271 bfd_size_type content_length;
6272
6273 property_table_entry *ptbl; /* Cache of the section property table. */
6274 unsigned pte_count;
6275
6276 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6277 unsigned reloc_count;
6278 };
6279
6280
6281 static void
6282 init_section_cache (section_cache_t *sec_cache)
6283 {
6284 memset (sec_cache, 0, sizeof (*sec_cache));
6285 }
6286
6287
6288 static void
6289 free_section_cache (section_cache_t *sec_cache)
6290 {
6291 if (sec_cache->sec)
6292 {
6293 release_contents (sec_cache->sec, sec_cache->contents);
6294 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6295 free (sec_cache->ptbl);
6296 }
6297 }
6298
6299
6300 static bfd_boolean
6301 section_cache_section (section_cache_t *sec_cache,
6302 asection *sec,
6303 struct bfd_link_info *link_info)
6304 {
6305 bfd *abfd;
6306 property_table_entry *prop_table = NULL;
6307 int ptblsize = 0;
6308 bfd_byte *contents = NULL;
6309 Elf_Internal_Rela *internal_relocs = NULL;
6310 bfd_size_type sec_size;
6311
6312 if (sec == NULL)
6313 return FALSE;
6314 if (sec == sec_cache->sec)
6315 return TRUE;
6316
6317 abfd = sec->owner;
6318 sec_size = bfd_get_section_limit (abfd, sec);
6319
6320 /* Get the contents. */
6321 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6322 if (contents == NULL && sec_size != 0)
6323 goto err;
6324
6325 /* Get the relocations. */
6326 internal_relocs = retrieve_internal_relocs (abfd, sec,
6327 link_info->keep_memory);
6328
6329 /* Get the entry table. */
6330 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6331 XTENSA_PROP_SEC_NAME, FALSE);
6332 if (ptblsize < 0)
6333 goto err;
6334
6335 /* Fill in the new section cache. */
6336 free_section_cache (sec_cache);
6337 init_section_cache (sec_cache);
6338
6339 sec_cache->sec = sec;
6340 sec_cache->contents = contents;
6341 sec_cache->content_length = sec_size;
6342 sec_cache->relocs = internal_relocs;
6343 sec_cache->reloc_count = sec->reloc_count;
6344 sec_cache->pte_count = ptblsize;
6345 sec_cache->ptbl = prop_table;
6346
6347 return TRUE;
6348
6349 err:
6350 release_contents (sec, contents);
6351 release_internal_relocs (sec, internal_relocs);
6352 free (prop_table);
6353 return FALSE;
6354 }
6355
6356 \f
6357 /* Extended basic blocks. */
6358
6359 /* An ebb_struct represents an Extended Basic Block. Within this
6360 range, we guarantee that all instructions are decodable, the
6361 property table entries are contiguous, and no property table
6362 specifies a segment that cannot have instructions moved. This
6363 structure contains caches of the contents, property table and
6364 relocations for the specified section for easy use. The range is
6365 specified by ranges of indices for the byte offset, property table
6366 offsets and relocation offsets. These must be consistent. */
6367
6368 typedef struct ebb_struct ebb_t;
6369
6370 struct ebb_struct
6371 {
6372 asection *sec;
6373
6374 bfd_byte *contents; /* Cache of the section contents. */
6375 bfd_size_type content_length;
6376
6377 property_table_entry *ptbl; /* Cache of the section property table. */
6378 unsigned pte_count;
6379
6380 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6381 unsigned reloc_count;
6382
6383 bfd_vma start_offset; /* Offset in section. */
6384 unsigned start_ptbl_idx; /* Offset in the property table. */
6385 unsigned start_reloc_idx; /* Offset in the relocations. */
6386
6387 bfd_vma end_offset;
6388 unsigned end_ptbl_idx;
6389 unsigned end_reloc_idx;
6390
6391 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6392
6393 /* The unreachable property table at the end of this set of blocks;
6394 NULL if the end is not an unreachable block. */
6395 property_table_entry *ends_unreachable;
6396 };
6397
6398
6399 enum ebb_target_enum
6400 {
6401 EBB_NO_ALIGN = 0,
6402 EBB_DESIRE_TGT_ALIGN,
6403 EBB_REQUIRE_TGT_ALIGN,
6404 EBB_REQUIRE_LOOP_ALIGN,
6405 EBB_REQUIRE_ALIGN
6406 };
6407
6408
6409 /* proposed_action_struct is similar to the text_action_struct except
6410 that is represents a potential transformation, not one that will
6411 occur. We build a list of these for an extended basic block
6412 and use them to compute the actual actions desired. We must be
6413 careful that the entire set of actual actions we perform do not
6414 break any relocations that would fit if the actions were not
6415 performed. */
6416
6417 typedef struct proposed_action_struct proposed_action;
6418
6419 struct proposed_action_struct
6420 {
6421 enum ebb_target_enum align_type; /* for the target alignment */
6422 bfd_vma alignment_pow;
6423 text_action_t action;
6424 bfd_vma offset;
6425 int removed_bytes;
6426 bfd_boolean do_action; /* If false, then we will not perform the action. */
6427 };
6428
6429
6430 /* The ebb_constraint_struct keeps a set of proposed actions for an
6431 extended basic block. */
6432
6433 typedef struct ebb_constraint_struct ebb_constraint;
6434
6435 struct ebb_constraint_struct
6436 {
6437 ebb_t ebb;
6438 bfd_boolean start_movable;
6439
6440 /* Bytes of extra space at the beginning if movable. */
6441 int start_extra_space;
6442
6443 enum ebb_target_enum start_align;
6444
6445 bfd_boolean end_movable;
6446
6447 /* Bytes of extra space at the end if movable. */
6448 int end_extra_space;
6449
6450 unsigned action_count;
6451 unsigned action_allocated;
6452
6453 /* Array of proposed actions. */
6454 proposed_action *actions;
6455
6456 /* Action alignments -- one for each proposed action. */
6457 enum ebb_target_enum *action_aligns;
6458 };
6459
6460
6461 static void
6462 init_ebb_constraint (ebb_constraint *c)
6463 {
6464 memset (c, 0, sizeof (ebb_constraint));
6465 }
6466
6467
6468 static void
6469 free_ebb_constraint (ebb_constraint *c)
6470 {
6471 free (c->actions);
6472 }
6473
6474
6475 static void
6476 init_ebb (ebb_t *ebb,
6477 asection *sec,
6478 bfd_byte *contents,
6479 bfd_size_type content_length,
6480 property_table_entry *prop_table,
6481 unsigned ptblsize,
6482 Elf_Internal_Rela *internal_relocs,
6483 unsigned reloc_count)
6484 {
6485 memset (ebb, 0, sizeof (ebb_t));
6486 ebb->sec = sec;
6487 ebb->contents = contents;
6488 ebb->content_length = content_length;
6489 ebb->ptbl = prop_table;
6490 ebb->pte_count = ptblsize;
6491 ebb->relocs = internal_relocs;
6492 ebb->reloc_count = reloc_count;
6493 ebb->start_offset = 0;
6494 ebb->end_offset = ebb->content_length - 1;
6495 ebb->start_ptbl_idx = 0;
6496 ebb->end_ptbl_idx = ptblsize;
6497 ebb->start_reloc_idx = 0;
6498 ebb->end_reloc_idx = reloc_count;
6499 }
6500
6501
6502 /* Extend the ebb to all decodable contiguous sections. The algorithm
6503 for building a basic block around an instruction is to push it
6504 forward until we hit the end of a section, an unreachable block or
6505 a block that cannot be transformed. Then we push it backwards
6506 searching for similar conditions. */
6507
6508 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6509 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6510 static bfd_size_type insn_block_decodable_len
6511 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6512
6513 static bfd_boolean
6514 extend_ebb_bounds (ebb_t *ebb)
6515 {
6516 if (!extend_ebb_bounds_forward (ebb))
6517 return FALSE;
6518 if (!extend_ebb_bounds_backward (ebb))
6519 return FALSE;
6520 return TRUE;
6521 }
6522
6523
6524 static bfd_boolean
6525 extend_ebb_bounds_forward (ebb_t *ebb)
6526 {
6527 property_table_entry *the_entry, *new_entry;
6528
6529 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6530
6531 /* Stop when (1) we cannot decode an instruction, (2) we are at
6532 the end of the property tables, (3) we hit a non-contiguous property
6533 table entry, (4) we hit a NO_TRANSFORM region. */
6534
6535 while (1)
6536 {
6537 bfd_vma entry_end;
6538 bfd_size_type insn_block_len;
6539
6540 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6541 insn_block_len =
6542 insn_block_decodable_len (ebb->contents, ebb->content_length,
6543 ebb->end_offset,
6544 entry_end - ebb->end_offset);
6545 if (insn_block_len != (entry_end - ebb->end_offset))
6546 {
6547 _bfd_error_handler
6548 /* xgettext:c-format */
6549 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
6550 "possible configuration mismatch"),
6551 ebb->sec->owner, ebb->sec,
6552 (uint64_t) (ebb->end_offset + insn_block_len));
6553 return FALSE;
6554 }
6555 ebb->end_offset += insn_block_len;
6556
6557 if (ebb->end_offset == ebb->sec->size)
6558 ebb->ends_section = TRUE;
6559
6560 /* Update the reloc counter. */
6561 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6562 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6563 < ebb->end_offset))
6564 {
6565 ebb->end_reloc_idx++;
6566 }
6567
6568 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6569 return TRUE;
6570
6571 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6572 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
6573 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6574 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6575 break;
6576
6577 if (the_entry->address + the_entry->size != new_entry->address)
6578 break;
6579
6580 the_entry = new_entry;
6581 ebb->end_ptbl_idx++;
6582 }
6583
6584 /* Quick check for an unreachable or end of file just at the end. */
6585 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6586 {
6587 if (ebb->end_offset == ebb->content_length)
6588 ebb->ends_section = TRUE;
6589 }
6590 else
6591 {
6592 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6593 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6594 && the_entry->address + the_entry->size == new_entry->address)
6595 ebb->ends_unreachable = new_entry;
6596 }
6597
6598 /* Any other ending requires exact alignment. */
6599 return TRUE;
6600 }
6601
6602
6603 static bfd_boolean
6604 extend_ebb_bounds_backward (ebb_t *ebb)
6605 {
6606 property_table_entry *the_entry, *new_entry;
6607
6608 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6609
6610 /* Stop when (1) we cannot decode the instructions in the current entry.
6611 (2) we are at the beginning of the property tables, (3) we hit a
6612 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6613
6614 while (1)
6615 {
6616 bfd_vma block_begin;
6617 bfd_size_type insn_block_len;
6618
6619 block_begin = the_entry->address - ebb->sec->vma;
6620 insn_block_len =
6621 insn_block_decodable_len (ebb->contents, ebb->content_length,
6622 block_begin,
6623 ebb->start_offset - block_begin);
6624 if (insn_block_len != ebb->start_offset - block_begin)
6625 {
6626 _bfd_error_handler
6627 /* xgettext:c-format */
6628 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
6629 "possible configuration mismatch"),
6630 ebb->sec->owner, ebb->sec,
6631 (uint64_t) (ebb->end_offset + insn_block_len));
6632 return FALSE;
6633 }
6634 ebb->start_offset -= insn_block_len;
6635
6636 /* Update the reloc counter. */
6637 while (ebb->start_reloc_idx > 0
6638 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6639 >= ebb->start_offset))
6640 {
6641 ebb->start_reloc_idx--;
6642 }
6643
6644 if (ebb->start_ptbl_idx == 0)
6645 return TRUE;
6646
6647 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6648 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
6649 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6650 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6651 return TRUE;
6652 if (new_entry->address + new_entry->size != the_entry->address)
6653 return TRUE;
6654
6655 the_entry = new_entry;
6656 ebb->start_ptbl_idx--;
6657 }
6658 return TRUE;
6659 }
6660
6661
6662 static bfd_size_type
6663 insn_block_decodable_len (bfd_byte *contents,
6664 bfd_size_type content_len,
6665 bfd_vma block_offset,
6666 bfd_size_type block_len)
6667 {
6668 bfd_vma offset = block_offset;
6669
6670 while (offset < block_offset + block_len)
6671 {
6672 bfd_size_type insn_len = 0;
6673
6674 insn_len = insn_decode_len (contents, content_len, offset);
6675 if (insn_len == 0)
6676 return (offset - block_offset);
6677 offset += insn_len;
6678 }
6679 return (offset - block_offset);
6680 }
6681
6682
6683 static void
6684 ebb_propose_action (ebb_constraint *c,
6685 enum ebb_target_enum align_type,
6686 bfd_vma alignment_pow,
6687 text_action_t action,
6688 bfd_vma offset,
6689 int removed_bytes,
6690 bfd_boolean do_action)
6691 {
6692 proposed_action *act;
6693
6694 if (c->action_allocated <= c->action_count)
6695 {
6696 unsigned new_allocated, i;
6697 proposed_action *new_actions;
6698
6699 new_allocated = (c->action_count + 2) * 2;
6700 new_actions = (proposed_action *)
6701 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6702
6703 for (i = 0; i < c->action_count; i++)
6704 new_actions[i] = c->actions[i];
6705 free (c->actions);
6706 c->actions = new_actions;
6707 c->action_allocated = new_allocated;
6708 }
6709
6710 act = &c->actions[c->action_count];
6711 act->align_type = align_type;
6712 act->alignment_pow = alignment_pow;
6713 act->action = action;
6714 act->offset = offset;
6715 act->removed_bytes = removed_bytes;
6716 act->do_action = do_action;
6717
6718 c->action_count++;
6719 }
6720
6721 \f
6722 /* Access to internal relocations, section contents and symbols. */
6723
6724 /* During relaxation, we need to modify relocations, section contents,
6725 and symbol definitions, and we need to keep the original values from
6726 being reloaded from the input files, i.e., we need to "pin" the
6727 modified values in memory. We also want to continue to observe the
6728 setting of the "keep-memory" flag. The following functions wrap the
6729 standard BFD functions to take care of this for us. */
6730
6731 static Elf_Internal_Rela *
6732 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6733 {
6734 Elf_Internal_Rela *internal_relocs;
6735
6736 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6737 return NULL;
6738
6739 internal_relocs = elf_section_data (sec)->relocs;
6740 if (internal_relocs == NULL)
6741 internal_relocs = (_bfd_elf_link_read_relocs
6742 (abfd, sec, NULL, NULL, keep_memory));
6743 return internal_relocs;
6744 }
6745
6746
6747 static void
6748 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6749 {
6750 elf_section_data (sec)->relocs = internal_relocs;
6751 }
6752
6753
6754 static void
6755 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6756 {
6757 if (elf_section_data (sec)->relocs != internal_relocs)
6758 free (internal_relocs);
6759 }
6760
6761
6762 static bfd_byte *
6763 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6764 {
6765 bfd_byte *contents;
6766 bfd_size_type sec_size;
6767
6768 sec_size = bfd_get_section_limit (abfd, sec);
6769 contents = elf_section_data (sec)->this_hdr.contents;
6770
6771 if (contents == NULL && sec_size != 0)
6772 {
6773 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6774 {
6775 free (contents);
6776 return NULL;
6777 }
6778 if (keep_memory)
6779 elf_section_data (sec)->this_hdr.contents = contents;
6780 }
6781 return contents;
6782 }
6783
6784
6785 static void
6786 pin_contents (asection *sec, bfd_byte *contents)
6787 {
6788 elf_section_data (sec)->this_hdr.contents = contents;
6789 }
6790
6791
6792 static void
6793 release_contents (asection *sec, bfd_byte *contents)
6794 {
6795 if (elf_section_data (sec)->this_hdr.contents != contents)
6796 free (contents);
6797 }
6798
6799
6800 static Elf_Internal_Sym *
6801 retrieve_local_syms (bfd *input_bfd)
6802 {
6803 Elf_Internal_Shdr *symtab_hdr;
6804 Elf_Internal_Sym *isymbuf;
6805 size_t locsymcount;
6806
6807 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6808 locsymcount = symtab_hdr->sh_info;
6809
6810 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6811 if (isymbuf == NULL && locsymcount != 0)
6812 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6813 NULL, NULL, NULL);
6814
6815 /* Save the symbols for this input file so they won't be read again. */
6816 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6817 symtab_hdr->contents = (unsigned char *) isymbuf;
6818
6819 return isymbuf;
6820 }
6821
6822 \f
6823 /* Code for link-time relaxation. */
6824
6825 /* Initialization for relaxation: */
6826 static bfd_boolean analyze_relocations (struct bfd_link_info *);
6827 static bfd_boolean find_relaxable_sections
6828 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
6829 static bfd_boolean collect_source_relocs
6830 (bfd *, asection *, struct bfd_link_info *);
6831 static bfd_boolean is_resolvable_asm_expansion
6832 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6833 bfd_boolean *);
6834 static Elf_Internal_Rela *find_associated_l32r_irel
6835 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
6836 static bfd_boolean compute_text_actions
6837 (bfd *, asection *, struct bfd_link_info *);
6838 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6839 static bfd_boolean compute_ebb_actions (ebb_constraint *);
6840 typedef struct reloc_range_list_struct reloc_range_list;
6841 static bfd_boolean check_section_ebb_pcrels_fit
6842 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *,
6843 reloc_range_list *, const ebb_constraint *,
6844 const xtensa_opcode *);
6845 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
6846 static void text_action_add_proposed
6847 (text_action_list *, const ebb_constraint *, asection *);
6848
6849 /* First pass: */
6850 static bfd_boolean compute_removed_literals
6851 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
6852 static Elf_Internal_Rela *get_irel_at_offset
6853 (asection *, Elf_Internal_Rela *, bfd_vma);
6854 static bfd_boolean is_removable_literal
6855 (const source_reloc *, int, const source_reloc *, int, asection *,
6856 property_table_entry *, int);
6857 static bfd_boolean remove_dead_literal
6858 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6859 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6860 static bfd_boolean identify_literal_placement
6861 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6862 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6863 source_reloc *, property_table_entry *, int, section_cache_t *,
6864 bfd_boolean);
6865 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
6866 static bfd_boolean coalesce_shared_literal
6867 (asection *, source_reloc *, property_table_entry *, int, value_map *);
6868 static bfd_boolean move_shared_literal
6869 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6870 int, const r_reloc *, const literal_value *, section_cache_t *);
6871
6872 /* Second pass: */
6873 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6874 static bfd_boolean translate_section_fixes (asection *);
6875 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
6876 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
6877 static void shrink_dynamic_reloc_sections
6878 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
6879 static bfd_boolean move_literal
6880 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6881 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
6882 static bfd_boolean relax_property_section
6883 (bfd *, asection *, struct bfd_link_info *);
6884
6885 /* Third pass: */
6886 static bfd_boolean relax_section_symbols (bfd *, asection *);
6887
6888
6889 static bfd_boolean
6890 elf_xtensa_relax_section (bfd *abfd,
6891 asection *sec,
6892 struct bfd_link_info *link_info,
6893 bfd_boolean *again)
6894 {
6895 static value_map_hash_table *values = NULL;
6896 static bfd_boolean relocations_analyzed = FALSE;
6897 xtensa_relax_info *relax_info;
6898
6899 if (!relocations_analyzed)
6900 {
6901 /* Do some overall initialization for relaxation. */
6902 values = value_map_hash_table_init ();
6903 if (values == NULL)
6904 return FALSE;
6905 relaxing_section = TRUE;
6906 if (!analyze_relocations (link_info))
6907 return FALSE;
6908 relocations_analyzed = TRUE;
6909 }
6910 *again = FALSE;
6911
6912 /* Don't mess with linker-created sections. */
6913 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6914 return TRUE;
6915
6916 relax_info = get_xtensa_relax_info (sec);
6917 BFD_ASSERT (relax_info != NULL);
6918
6919 switch (relax_info->visited)
6920 {
6921 case 0:
6922 /* Note: It would be nice to fold this pass into
6923 analyze_relocations, but it is important for this step that the
6924 sections be examined in link order. */
6925 if (!compute_removed_literals (abfd, sec, link_info, values))
6926 return FALSE;
6927 *again = TRUE;
6928 break;
6929
6930 case 1:
6931 if (values)
6932 value_map_hash_table_delete (values);
6933 values = NULL;
6934 if (!relax_section (abfd, sec, link_info))
6935 return FALSE;
6936 *again = TRUE;
6937 break;
6938
6939 case 2:
6940 if (!relax_section_symbols (abfd, sec))
6941 return FALSE;
6942 break;
6943 }
6944
6945 relax_info->visited++;
6946 return TRUE;
6947 }
6948
6949 \f
6950 /* Initialization for relaxation. */
6951
6952 /* This function is called once at the start of relaxation. It scans
6953 all the input sections and marks the ones that are relaxable (i.e.,
6954 literal sections with L32R relocations against them), and then
6955 collects source_reloc information for all the relocations against
6956 those relaxable sections. During this process, it also detects
6957 longcalls, i.e., calls relaxed by the assembler into indirect
6958 calls, that can be optimized back into direct calls. Within each
6959 extended basic block (ebb) containing an optimized longcall, it
6960 computes a set of "text actions" that can be performed to remove
6961 the L32R associated with the longcall while optionally preserving
6962 branch target alignments. */
6963
6964 static bfd_boolean
6965 analyze_relocations (struct bfd_link_info *link_info)
6966 {
6967 bfd *abfd;
6968 asection *sec;
6969 bfd_boolean is_relaxable = FALSE;
6970
6971 /* Initialize the per-section relaxation info. */
6972 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6973 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6974 {
6975 init_xtensa_relax_info (sec);
6976 }
6977
6978 /* Mark relaxable sections (and count relocations against each one). */
6979 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6980 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6981 {
6982 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6983 return FALSE;
6984 }
6985
6986 /* Bail out if there are no relaxable sections. */
6987 if (!is_relaxable)
6988 return TRUE;
6989
6990 /* Allocate space for source_relocs. */
6991 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6992 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6993 {
6994 xtensa_relax_info *relax_info;
6995
6996 relax_info = get_xtensa_relax_info (sec);
6997 if (relax_info->is_relaxable_literal_section
6998 || relax_info->is_relaxable_asm_section)
6999 {
7000 relax_info->src_relocs = (source_reloc *)
7001 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
7002 }
7003 else
7004 relax_info->src_count = 0;
7005 }
7006
7007 /* Collect info on relocations against each relaxable section. */
7008 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
7009 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7010 {
7011 if (!collect_source_relocs (abfd, sec, link_info))
7012 return FALSE;
7013 }
7014
7015 /* Compute the text actions. */
7016 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
7017 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7018 {
7019 if (!compute_text_actions (abfd, sec, link_info))
7020 return FALSE;
7021 }
7022
7023 return TRUE;
7024 }
7025
7026
7027 /* Find all the sections that might be relaxed. The motivation for
7028 this pass is that collect_source_relocs() needs to record _all_ the
7029 relocations that target each relaxable section. That is expensive
7030 and unnecessary unless the target section is actually going to be
7031 relaxed. This pass identifies all such sections by checking if
7032 they have L32Rs pointing to them. In the process, the total number
7033 of relocations targeting each section is also counted so that we
7034 know how much space to allocate for source_relocs against each
7035 relaxable literal section. */
7036
7037 static bfd_boolean
7038 find_relaxable_sections (bfd *abfd,
7039 asection *sec,
7040 struct bfd_link_info *link_info,
7041 bfd_boolean *is_relaxable_p)
7042 {
7043 Elf_Internal_Rela *internal_relocs;
7044 bfd_byte *contents;
7045 bfd_boolean ok = TRUE;
7046 unsigned i;
7047 xtensa_relax_info *source_relax_info;
7048 bfd_boolean is_l32r_reloc;
7049
7050 internal_relocs = retrieve_internal_relocs (abfd, sec,
7051 link_info->keep_memory);
7052 if (internal_relocs == NULL)
7053 return ok;
7054
7055 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7056 if (contents == NULL && sec->size != 0)
7057 {
7058 ok = FALSE;
7059 goto error_return;
7060 }
7061
7062 source_relax_info = get_xtensa_relax_info (sec);
7063 for (i = 0; i < sec->reloc_count; i++)
7064 {
7065 Elf_Internal_Rela *irel = &internal_relocs[i];
7066 r_reloc r_rel;
7067 asection *target_sec;
7068 xtensa_relax_info *target_relax_info;
7069
7070 /* If this section has not already been marked as "relaxable", and
7071 if it contains any ASM_EXPAND relocations (marking expanded
7072 longcalls) that can be optimized into direct calls, then mark
7073 the section as "relaxable". */
7074 if (source_relax_info
7075 && !source_relax_info->is_relaxable_asm_section
7076 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
7077 {
7078 bfd_boolean is_reachable = FALSE;
7079 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
7080 link_info, &is_reachable)
7081 && is_reachable)
7082 {
7083 source_relax_info->is_relaxable_asm_section = TRUE;
7084 *is_relaxable_p = TRUE;
7085 }
7086 }
7087
7088 r_reloc_init (&r_rel, abfd, irel, contents,
7089 bfd_get_section_limit (abfd, sec));
7090
7091 target_sec = r_reloc_get_section (&r_rel);
7092 target_relax_info = get_xtensa_relax_info (target_sec);
7093 if (!target_relax_info)
7094 continue;
7095
7096 /* Count PC-relative operand relocations against the target section.
7097 Note: The conditions tested here must match the conditions under
7098 which init_source_reloc is called in collect_source_relocs(). */
7099 is_l32r_reloc = FALSE;
7100 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7101 {
7102 xtensa_opcode opcode =
7103 get_relocation_opcode (abfd, sec, contents, irel);
7104 if (opcode != XTENSA_UNDEFINED)
7105 {
7106 is_l32r_reloc = (opcode == get_l32r_opcode ());
7107 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
7108 || is_l32r_reloc)
7109 target_relax_info->src_count++;
7110 }
7111 }
7112
7113 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
7114 {
7115 /* Mark the target section as relaxable. */
7116 target_relax_info->is_relaxable_literal_section = TRUE;
7117 *is_relaxable_p = TRUE;
7118 }
7119 }
7120
7121 error_return:
7122 release_contents (sec, contents);
7123 release_internal_relocs (sec, internal_relocs);
7124 return ok;
7125 }
7126
7127
7128 /* Record _all_ the relocations that point to relaxable sections, and
7129 get rid of ASM_EXPAND relocs by either converting them to
7130 ASM_SIMPLIFY or by removing them. */
7131
7132 static bfd_boolean
7133 collect_source_relocs (bfd *abfd,
7134 asection *sec,
7135 struct bfd_link_info *link_info)
7136 {
7137 Elf_Internal_Rela *internal_relocs;
7138 bfd_byte *contents;
7139 bfd_boolean ok = TRUE;
7140 unsigned i;
7141 bfd_size_type sec_size;
7142
7143 internal_relocs = retrieve_internal_relocs (abfd, sec,
7144 link_info->keep_memory);
7145 if (internal_relocs == NULL)
7146 return ok;
7147
7148 sec_size = bfd_get_section_limit (abfd, sec);
7149 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7150 if (contents == NULL && sec_size != 0)
7151 {
7152 ok = FALSE;
7153 goto error_return;
7154 }
7155
7156 /* Record relocations against relaxable literal sections. */
7157 for (i = 0; i < sec->reloc_count; i++)
7158 {
7159 Elf_Internal_Rela *irel = &internal_relocs[i];
7160 r_reloc r_rel;
7161 asection *target_sec;
7162 xtensa_relax_info *target_relax_info;
7163
7164 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7165
7166 target_sec = r_reloc_get_section (&r_rel);
7167 target_relax_info = get_xtensa_relax_info (target_sec);
7168
7169 if (target_relax_info
7170 && (target_relax_info->is_relaxable_literal_section
7171 || target_relax_info->is_relaxable_asm_section))
7172 {
7173 xtensa_opcode opcode = XTENSA_UNDEFINED;
7174 int opnd = -1;
7175 bfd_boolean is_abs_literal = FALSE;
7176
7177 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7178 {
7179 /* None of the current alternate relocs are PC-relative,
7180 and only PC-relative relocs matter here. However, we
7181 still need to record the opcode for literal
7182 coalescing. */
7183 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7184 if (opcode == get_l32r_opcode ())
7185 {
7186 is_abs_literal = TRUE;
7187 opnd = 1;
7188 }
7189 else
7190 opcode = XTENSA_UNDEFINED;
7191 }
7192 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7193 {
7194 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7195 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7196 }
7197
7198 if (opcode != XTENSA_UNDEFINED)
7199 {
7200 int src_next = target_relax_info->src_next++;
7201 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
7202
7203 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
7204 is_abs_literal);
7205 }
7206 }
7207 }
7208
7209 /* Now get rid of ASM_EXPAND relocations. At this point, the
7210 src_relocs array for the target literal section may still be
7211 incomplete, but it must at least contain the entries for the L32R
7212 relocations associated with ASM_EXPANDs because they were just
7213 added in the preceding loop over the relocations. */
7214
7215 for (i = 0; i < sec->reloc_count; i++)
7216 {
7217 Elf_Internal_Rela *irel = &internal_relocs[i];
7218 bfd_boolean is_reachable;
7219
7220 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
7221 &is_reachable))
7222 continue;
7223
7224 if (is_reachable)
7225 {
7226 Elf_Internal_Rela *l32r_irel;
7227 r_reloc r_rel;
7228 asection *target_sec;
7229 xtensa_relax_info *target_relax_info;
7230
7231 /* Mark the source_reloc for the L32R so that it will be
7232 removed in compute_removed_literals(), along with the
7233 associated literal. */
7234 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7235 irel, internal_relocs);
7236 if (l32r_irel == NULL)
7237 continue;
7238
7239 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7240
7241 target_sec = r_reloc_get_section (&r_rel);
7242 target_relax_info = get_xtensa_relax_info (target_sec);
7243
7244 if (target_relax_info
7245 && (target_relax_info->is_relaxable_literal_section
7246 || target_relax_info->is_relaxable_asm_section))
7247 {
7248 source_reloc *s_reloc;
7249
7250 /* Search the source_relocs for the entry corresponding to
7251 the l32r_irel. Note: The src_relocs array is not yet
7252 sorted, but it wouldn't matter anyway because we're
7253 searching by source offset instead of target offset. */
7254 s_reloc = find_source_reloc (target_relax_info->src_relocs,
7255 target_relax_info->src_next,
7256 sec, l32r_irel);
7257 BFD_ASSERT (s_reloc);
7258 s_reloc->is_null = TRUE;
7259 }
7260
7261 /* Convert this reloc to ASM_SIMPLIFY. */
7262 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7263 R_XTENSA_ASM_SIMPLIFY);
7264 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7265
7266 pin_internal_relocs (sec, internal_relocs);
7267 }
7268 else
7269 {
7270 /* It is resolvable but doesn't reach. We resolve now
7271 by eliminating the relocation -- the call will remain
7272 expanded into L32R/CALLX. */
7273 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7274 pin_internal_relocs (sec, internal_relocs);
7275 }
7276 }
7277
7278 error_return:
7279 release_contents (sec, contents);
7280 release_internal_relocs (sec, internal_relocs);
7281 return ok;
7282 }
7283
7284
7285 /* Return TRUE if the asm expansion can be resolved. Generally it can
7286 be resolved on a final link or when a partial link locates it in the
7287 same section as the target. Set "is_reachable" flag if the target of
7288 the call is within the range of a direct call, given the current VMA
7289 for this section and the target section. */
7290
7291 bfd_boolean
7292 is_resolvable_asm_expansion (bfd *abfd,
7293 asection *sec,
7294 bfd_byte *contents,
7295 Elf_Internal_Rela *irel,
7296 struct bfd_link_info *link_info,
7297 bfd_boolean *is_reachable_p)
7298 {
7299 asection *target_sec;
7300 asection *s;
7301 bfd_vma first_vma;
7302 bfd_vma last_vma;
7303 unsigned int first_align;
7304 unsigned int adjust;
7305 bfd_vma target_offset;
7306 r_reloc r_rel;
7307 xtensa_opcode opcode, direct_call_opcode;
7308 bfd_vma self_address;
7309 bfd_vma dest_address;
7310 bfd_boolean uses_l32r;
7311 bfd_size_type sec_size;
7312
7313 *is_reachable_p = FALSE;
7314
7315 if (contents == NULL)
7316 return FALSE;
7317
7318 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7319 return FALSE;
7320
7321 sec_size = bfd_get_section_limit (abfd, sec);
7322 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7323 sec_size - irel->r_offset, &uses_l32r);
7324 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7325 if (!uses_l32r)
7326 return FALSE;
7327
7328 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7329 if (direct_call_opcode == XTENSA_UNDEFINED)
7330 return FALSE;
7331
7332 /* Check and see that the target resolves. */
7333 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7334 if (!r_reloc_is_defined (&r_rel))
7335 return FALSE;
7336
7337 target_sec = r_reloc_get_section (&r_rel);
7338 target_offset = r_rel.target_offset;
7339
7340 /* If the target is in a shared library, then it doesn't reach. This
7341 isn't supposed to come up because the compiler should never generate
7342 non-PIC calls on systems that use shared libraries, but the linker
7343 shouldn't crash regardless. */
7344 if (!target_sec->output_section)
7345 return FALSE;
7346
7347 /* For relocatable sections, we can only simplify when the output
7348 section of the target is the same as the output section of the
7349 source. */
7350 if (bfd_link_relocatable (link_info)
7351 && (target_sec->output_section != sec->output_section
7352 || is_reloc_sym_weak (abfd, irel)))
7353 return FALSE;
7354
7355 if (target_sec->output_section != sec->output_section)
7356 {
7357 /* If the two sections are sufficiently far away that relaxation
7358 might take the call out of range, we can't simplify. For
7359 example, a positive displacement call into another memory
7360 could get moved to a lower address due to literal removal,
7361 but the destination won't move, and so the displacment might
7362 get larger.
7363
7364 If the displacement is negative, assume the destination could
7365 move as far back as the start of the output section. The
7366 self_address will be at least as far into the output section
7367 as it is prior to relaxation.
7368
7369 If the displacement is postive, assume the destination will be in
7370 it's pre-relaxed location (because relaxation only makes sections
7371 smaller). The self_address could go all the way to the beginning
7372 of the output section. */
7373
7374 dest_address = target_sec->output_section->vma;
7375 self_address = sec->output_section->vma;
7376
7377 if (sec->output_section->vma > target_sec->output_section->vma)
7378 self_address += sec->output_offset + irel->r_offset + 3;
7379 else
7380 dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
7381 /* Call targets should be four-byte aligned. */
7382 dest_address = (dest_address + 3) & ~3;
7383 }
7384 else
7385 {
7386
7387 self_address = (sec->output_section->vma
7388 + sec->output_offset + irel->r_offset + 3);
7389 dest_address = (target_sec->output_section->vma
7390 + target_sec->output_offset + target_offset);
7391 }
7392
7393 /* Adjust addresses with alignments for the worst case to see if call insn
7394 can fit. Don't relax l32r + callx to call if the target can be out of
7395 range due to alignment.
7396 Caller and target addresses are highest and lowest address.
7397 Search all sections between caller and target, looking for max alignment.
7398 The adjustment is max alignment bytes. If the alignment at the lowest
7399 address is less than the adjustment, apply the adjustment to highest
7400 address. */
7401
7402 /* Start from lowest address.
7403 Lowest address aligmnet is from input section.
7404 Initial alignment (adjust) is from input section. */
7405 if (dest_address > self_address)
7406 {
7407 s = sec->output_section;
7408 last_vma = dest_address;
7409 first_align = sec->alignment_power;
7410 adjust = target_sec->alignment_power;
7411 }
7412 else
7413 {
7414 s = target_sec->output_section;
7415 last_vma = self_address;
7416 first_align = target_sec->alignment_power;
7417 adjust = sec->alignment_power;
7418 }
7419
7420 first_vma = s->vma;
7421
7422 /* Find the largest alignment in output section list. */
7423 for (; s && s->vma >= first_vma && s->vma <= last_vma ; s = s->next)
7424 {
7425 if (s->alignment_power > adjust)
7426 adjust = s->alignment_power;
7427 }
7428
7429 if (adjust > first_align)
7430 {
7431 /* Alignment may enlarge the range, adjust highest address. */
7432 adjust = 1 << adjust;
7433 if (dest_address > self_address)
7434 {
7435 dest_address += adjust;
7436 }
7437 else
7438 {
7439 self_address += adjust;
7440 }
7441 }
7442
7443 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7444 self_address, dest_address);
7445
7446 if ((self_address >> CALL_SEGMENT_BITS) !=
7447 (dest_address >> CALL_SEGMENT_BITS))
7448 return FALSE;
7449
7450 return TRUE;
7451 }
7452
7453
7454 static Elf_Internal_Rela *
7455 find_associated_l32r_irel (bfd *abfd,
7456 asection *sec,
7457 bfd_byte *contents,
7458 Elf_Internal_Rela *other_irel,
7459 Elf_Internal_Rela *internal_relocs)
7460 {
7461 unsigned i;
7462
7463 for (i = 0; i < sec->reloc_count; i++)
7464 {
7465 Elf_Internal_Rela *irel = &internal_relocs[i];
7466
7467 if (irel == other_irel)
7468 continue;
7469 if (irel->r_offset != other_irel->r_offset)
7470 continue;
7471 if (is_l32r_relocation (abfd, sec, contents, irel))
7472 return irel;
7473 }
7474
7475 return NULL;
7476 }
7477
7478
7479 static xtensa_opcode *
7480 build_reloc_opcodes (bfd *abfd,
7481 asection *sec,
7482 bfd_byte *contents,
7483 Elf_Internal_Rela *internal_relocs)
7484 {
7485 unsigned i;
7486 xtensa_opcode *reloc_opcodes =
7487 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7488 for (i = 0; i < sec->reloc_count; i++)
7489 {
7490 Elf_Internal_Rela *irel = &internal_relocs[i];
7491 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7492 }
7493 return reloc_opcodes;
7494 }
7495
7496 struct reloc_range_struct
7497 {
7498 bfd_vma addr;
7499 bfd_boolean add; /* TRUE if start of a range, FALSE otherwise. */
7500 /* Original irel index in the array of relocations for a section. */
7501 unsigned irel_index;
7502 };
7503 typedef struct reloc_range_struct reloc_range;
7504
7505 typedef struct reloc_range_list_entry_struct reloc_range_list_entry;
7506 struct reloc_range_list_entry_struct
7507 {
7508 reloc_range_list_entry *next;
7509 reloc_range_list_entry *prev;
7510 Elf_Internal_Rela *irel;
7511 xtensa_opcode opcode;
7512 int opnum;
7513 };
7514
7515 struct reloc_range_list_struct
7516 {
7517 /* The rest of the structure is only meaningful when ok is TRUE. */
7518 bfd_boolean ok;
7519
7520 unsigned n_range; /* Number of range markers. */
7521 reloc_range *range; /* Sorted range markers. */
7522
7523 unsigned first; /* Index of a first range element in the list. */
7524 unsigned last; /* One past index of a last range element in the list. */
7525
7526 unsigned n_list; /* Number of list elements. */
7527 reloc_range_list_entry *reloc; /* */
7528 reloc_range_list_entry list_root;
7529 };
7530
7531 static int
7532 reloc_range_compare (const void *a, const void *b)
7533 {
7534 const reloc_range *ra = a;
7535 const reloc_range *rb = b;
7536
7537 if (ra->addr != rb->addr)
7538 return ra->addr < rb->addr ? -1 : 1;
7539 if (ra->add != rb->add)
7540 return ra->add ? -1 : 1;
7541 return 0;
7542 }
7543
7544 static void
7545 build_reloc_ranges (bfd *abfd, asection *sec,
7546 bfd_byte *contents,
7547 Elf_Internal_Rela *internal_relocs,
7548 xtensa_opcode *reloc_opcodes,
7549 reloc_range_list *list)
7550 {
7551 unsigned i;
7552 size_t n = 0;
7553 size_t max_n = 0;
7554 reloc_range *ranges = NULL;
7555 reloc_range_list_entry *reloc =
7556 bfd_malloc (sec->reloc_count * sizeof (*reloc));
7557
7558 memset (list, 0, sizeof (*list));
7559 list->ok = TRUE;
7560
7561 for (i = 0; i < sec->reloc_count; i++)
7562 {
7563 Elf_Internal_Rela *irel = &internal_relocs[i];
7564 int r_type = ELF32_R_TYPE (irel->r_info);
7565 reloc_howto_type *howto = &elf_howto_table[r_type];
7566 r_reloc r_rel;
7567
7568 if (r_type == R_XTENSA_ASM_SIMPLIFY
7569 || r_type == R_XTENSA_32_PCREL
7570 || !howto->pc_relative)
7571 continue;
7572
7573 r_reloc_init (&r_rel, abfd, irel, contents,
7574 bfd_get_section_limit (abfd, sec));
7575
7576 if (r_reloc_get_section (&r_rel) != sec)
7577 continue;
7578
7579 if (n + 2 > max_n)
7580 {
7581 max_n = (max_n + 2) * 2;
7582 ranges = bfd_realloc (ranges, max_n * sizeof (*ranges));
7583 }
7584
7585 ranges[n].addr = irel->r_offset;
7586 ranges[n + 1].addr = r_rel.target_offset;
7587
7588 ranges[n].add = ranges[n].addr < ranges[n + 1].addr;
7589 ranges[n + 1].add = !ranges[n].add;
7590
7591 ranges[n].irel_index = i;
7592 ranges[n + 1].irel_index = i;
7593
7594 n += 2;
7595
7596 reloc[i].irel = irel;
7597
7598 /* Every relocation won't possibly be checked in the optimized version of
7599 check_section_ebb_pcrels_fit, so this needs to be done here. */
7600 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7601 {
7602 /* None of the current alternate relocs are PC-relative,
7603 and only PC-relative relocs matter here. */
7604 }
7605 else
7606 {
7607 xtensa_opcode opcode;
7608 int opnum;
7609
7610 if (reloc_opcodes)
7611 opcode = reloc_opcodes[i];
7612 else
7613 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7614
7615 if (opcode == XTENSA_UNDEFINED)
7616 {
7617 list->ok = FALSE;
7618 break;
7619 }
7620
7621 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7622 if (opnum == XTENSA_UNDEFINED)
7623 {
7624 list->ok = FALSE;
7625 break;
7626 }
7627
7628 /* Record relocation opcode and opnum as we've calculated them
7629 anyway and they won't change. */
7630 reloc[i].opcode = opcode;
7631 reloc[i].opnum = opnum;
7632 }
7633 }
7634
7635 if (list->ok)
7636 {
7637 ranges = bfd_realloc (ranges, n * sizeof (*ranges));
7638 qsort (ranges, n, sizeof (*ranges), reloc_range_compare);
7639
7640 list->n_range = n;
7641 list->range = ranges;
7642 list->reloc = reloc;
7643 list->list_root.prev = &list->list_root;
7644 list->list_root.next = &list->list_root;
7645 }
7646 else
7647 {
7648 free (ranges);
7649 free (reloc);
7650 }
7651 }
7652
7653 static void reloc_range_list_append (reloc_range_list *list,
7654 unsigned irel_index)
7655 {
7656 reloc_range_list_entry *entry = list->reloc + irel_index;
7657
7658 entry->prev = list->list_root.prev;
7659 entry->next = &list->list_root;
7660 entry->prev->next = entry;
7661 entry->next->prev = entry;
7662 ++list->n_list;
7663 }
7664
7665 static void reloc_range_list_remove (reloc_range_list *list,
7666 unsigned irel_index)
7667 {
7668 reloc_range_list_entry *entry = list->reloc + irel_index;
7669
7670 entry->next->prev = entry->prev;
7671 entry->prev->next = entry->next;
7672 --list->n_list;
7673 }
7674
7675 /* Update relocation list object so that it lists all relocations that cross
7676 [first; last] range. Range bounds should not decrease with successive
7677 invocations. */
7678 static void reloc_range_list_update_range (reloc_range_list *list,
7679 bfd_vma first, bfd_vma last)
7680 {
7681 /* This should not happen: EBBs are iterated from lower addresses to higher.
7682 But even if that happens there's no need to break: just flush current list
7683 and start from scratch. */
7684 if ((list->last > 0 && list->range[list->last - 1].addr > last) ||
7685 (list->first > 0 && list->range[list->first - 1].addr >= first))
7686 {
7687 list->first = 0;
7688 list->last = 0;
7689 list->n_list = 0;
7690 list->list_root.next = &list->list_root;
7691 list->list_root.prev = &list->list_root;
7692 fprintf (stderr, "%s: move backwards requested\n", __func__);
7693 }
7694
7695 for (; list->last < list->n_range &&
7696 list->range[list->last].addr <= last; ++list->last)
7697 if (list->range[list->last].add)
7698 reloc_range_list_append (list, list->range[list->last].irel_index);
7699
7700 for (; list->first < list->n_range &&
7701 list->range[list->first].addr < first; ++list->first)
7702 if (!list->range[list->first].add)
7703 reloc_range_list_remove (list, list->range[list->first].irel_index);
7704 }
7705
7706 static void free_reloc_range_list (reloc_range_list *list)
7707 {
7708 free (list->range);
7709 free (list->reloc);
7710 }
7711
7712 /* The compute_text_actions function will build a list of potential
7713 transformation actions for code in the extended basic block of each
7714 longcall that is optimized to a direct call. From this list we
7715 generate a set of actions to actually perform that optimizes for
7716 space and, if not using size_opt, maintains branch target
7717 alignments.
7718
7719 These actions to be performed are placed on a per-section list.
7720 The actual changes are performed by relax_section() in the second
7721 pass. */
7722
7723 bfd_boolean
7724 compute_text_actions (bfd *abfd,
7725 asection *sec,
7726 struct bfd_link_info *link_info)
7727 {
7728 xtensa_opcode *reloc_opcodes = NULL;
7729 xtensa_relax_info *relax_info;
7730 bfd_byte *contents;
7731 Elf_Internal_Rela *internal_relocs;
7732 bfd_boolean ok = TRUE;
7733 unsigned i;
7734 property_table_entry *prop_table = 0;
7735 int ptblsize = 0;
7736 bfd_size_type sec_size;
7737 reloc_range_list relevant_relocs;
7738
7739 relax_info = get_xtensa_relax_info (sec);
7740 BFD_ASSERT (relax_info);
7741 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7742
7743 /* Do nothing if the section contains no optimized longcalls. */
7744 if (!relax_info->is_relaxable_asm_section)
7745 return ok;
7746
7747 internal_relocs = retrieve_internal_relocs (abfd, sec,
7748 link_info->keep_memory);
7749
7750 if (internal_relocs)
7751 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7752 internal_reloc_compare);
7753
7754 sec_size = bfd_get_section_limit (abfd, sec);
7755 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7756 if (contents == NULL && sec_size != 0)
7757 {
7758 ok = FALSE;
7759 goto error_return;
7760 }
7761
7762 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7763 XTENSA_PROP_SEC_NAME, FALSE);
7764 if (ptblsize < 0)
7765 {
7766 ok = FALSE;
7767 goto error_return;
7768 }
7769
7770 /* Precompute the opcode for each relocation. */
7771 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs);
7772
7773 build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes,
7774 &relevant_relocs);
7775
7776 for (i = 0; i < sec->reloc_count; i++)
7777 {
7778 Elf_Internal_Rela *irel = &internal_relocs[i];
7779 bfd_vma r_offset;
7780 property_table_entry *the_entry;
7781 int ptbl_idx;
7782 ebb_t *ebb;
7783 ebb_constraint ebb_table;
7784 bfd_size_type simplify_size;
7785
7786 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7787 continue;
7788 r_offset = irel->r_offset;
7789
7790 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7791 if (simplify_size == 0)
7792 {
7793 _bfd_error_handler
7794 /* xgettext:c-format */
7795 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction for "
7796 "XTENSA_ASM_SIMPLIFY relocation; "
7797 "possible configuration mismatch"),
7798 sec->owner, sec, (uint64_t) r_offset);
7799 continue;
7800 }
7801
7802 /* If the instruction table is not around, then don't do this
7803 relaxation. */
7804 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7805 sec->vma + irel->r_offset);
7806 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7807 {
7808 text_action_add (&relax_info->action_list,
7809 ta_convert_longcall, sec, r_offset,
7810 0);
7811 continue;
7812 }
7813
7814 /* If the next longcall happens to be at the same address as an
7815 unreachable section of size 0, then skip forward. */
7816 ptbl_idx = the_entry - prop_table;
7817 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7818 && the_entry->size == 0
7819 && ptbl_idx + 1 < ptblsize
7820 && (prop_table[ptbl_idx + 1].address
7821 == prop_table[ptbl_idx].address))
7822 {
7823 ptbl_idx++;
7824 the_entry++;
7825 }
7826
7827 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
7828 /* NO_REORDER is OK */
7829 continue;
7830
7831 init_ebb_constraint (&ebb_table);
7832 ebb = &ebb_table.ebb;
7833 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7834 internal_relocs, sec->reloc_count);
7835 ebb->start_offset = r_offset + simplify_size;
7836 ebb->end_offset = r_offset + simplify_size;
7837 ebb->start_ptbl_idx = ptbl_idx;
7838 ebb->end_ptbl_idx = ptbl_idx;
7839 ebb->start_reloc_idx = i;
7840 ebb->end_reloc_idx = i;
7841
7842 if (!extend_ebb_bounds (ebb)
7843 || !compute_ebb_proposed_actions (&ebb_table)
7844 || !compute_ebb_actions (&ebb_table)
7845 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
7846 internal_relocs,
7847 &relevant_relocs,
7848 &ebb_table, reloc_opcodes)
7849 || !check_section_ebb_reduces (&ebb_table))
7850 {
7851 /* If anything goes wrong or we get unlucky and something does
7852 not fit, with our plan because of expansion between
7853 critical branches, just convert to a NOP. */
7854
7855 text_action_add (&relax_info->action_list,
7856 ta_convert_longcall, sec, r_offset, 0);
7857 i = ebb_table.ebb.end_reloc_idx;
7858 free_ebb_constraint (&ebb_table);
7859 continue;
7860 }
7861
7862 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7863
7864 /* Update the index so we do not go looking at the relocations
7865 we have already processed. */
7866 i = ebb_table.ebb.end_reloc_idx;
7867 free_ebb_constraint (&ebb_table);
7868 }
7869
7870 free_reloc_range_list (&relevant_relocs);
7871
7872 #if DEBUG
7873 if (action_list_count (&relax_info->action_list))
7874 print_action_list (stderr, &relax_info->action_list);
7875 #endif
7876
7877 error_return:
7878 release_contents (sec, contents);
7879 release_internal_relocs (sec, internal_relocs);
7880 free (prop_table);
7881 free (reloc_opcodes);
7882
7883 return ok;
7884 }
7885
7886
7887 /* Do not widen an instruction if it is preceeded by a
7888 loop opcode. It might cause misalignment. */
7889
7890 static bfd_boolean
7891 prev_instr_is_a_loop (bfd_byte *contents,
7892 bfd_size_type content_length,
7893 bfd_size_type offset)
7894 {
7895 xtensa_opcode prev_opcode;
7896
7897 if (offset < 3)
7898 return FALSE;
7899 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7900 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7901 }
7902
7903
7904 /* Find all of the possible actions for an extended basic block. */
7905
7906 bfd_boolean
7907 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
7908 {
7909 const ebb_t *ebb = &ebb_table->ebb;
7910 unsigned rel_idx = ebb->start_reloc_idx;
7911 property_table_entry *entry, *start_entry, *end_entry;
7912 bfd_vma offset = 0;
7913 xtensa_isa isa = xtensa_default_isa;
7914 xtensa_format fmt;
7915 static xtensa_insnbuf insnbuf = NULL;
7916 static xtensa_insnbuf slotbuf = NULL;
7917
7918 if (insnbuf == NULL)
7919 {
7920 insnbuf = xtensa_insnbuf_alloc (isa);
7921 slotbuf = xtensa_insnbuf_alloc (isa);
7922 }
7923
7924 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7925 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
7926
7927 for (entry = start_entry; entry <= end_entry; entry++)
7928 {
7929 bfd_vma start_offset, end_offset;
7930 bfd_size_type insn_len;
7931
7932 start_offset = entry->address - ebb->sec->vma;
7933 end_offset = entry->address + entry->size - ebb->sec->vma;
7934
7935 if (entry == start_entry)
7936 start_offset = ebb->start_offset;
7937 if (entry == end_entry)
7938 end_offset = ebb->end_offset;
7939 offset = start_offset;
7940
7941 if (offset == entry->address - ebb->sec->vma
7942 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7943 {
7944 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7945 BFD_ASSERT (offset != end_offset);
7946 if (offset == end_offset)
7947 return FALSE;
7948
7949 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7950 offset);
7951 if (insn_len == 0)
7952 goto decode_error;
7953
7954 if (check_branch_target_aligned_address (offset, insn_len))
7955 align_type = EBB_REQUIRE_TGT_ALIGN;
7956
7957 ebb_propose_action (ebb_table, align_type, 0,
7958 ta_none, offset, 0, TRUE);
7959 }
7960
7961 while (offset != end_offset)
7962 {
7963 Elf_Internal_Rela *irel;
7964 xtensa_opcode opcode;
7965
7966 while (rel_idx < ebb->end_reloc_idx
7967 && (ebb->relocs[rel_idx].r_offset < offset
7968 || (ebb->relocs[rel_idx].r_offset == offset
7969 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7970 != R_XTENSA_ASM_SIMPLIFY))))
7971 rel_idx++;
7972
7973 /* Check for longcall. */
7974 irel = &ebb->relocs[rel_idx];
7975 if (irel->r_offset == offset
7976 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7977 {
7978 bfd_size_type simplify_size;
7979
7980 simplify_size = get_asm_simplify_size (ebb->contents,
7981 ebb->content_length,
7982 irel->r_offset);
7983 if (simplify_size == 0)
7984 goto decode_error;
7985
7986 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7987 ta_convert_longcall, offset, 0, TRUE);
7988
7989 offset += simplify_size;
7990 continue;
7991 }
7992
7993 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7994 goto decode_error;
7995 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7996 ebb->content_length - offset);
7997 fmt = xtensa_format_decode (isa, insnbuf);
7998 if (fmt == XTENSA_UNDEFINED)
7999 goto decode_error;
8000 insn_len = xtensa_format_length (isa, fmt);
8001 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
8002 goto decode_error;
8003
8004 if (xtensa_format_num_slots (isa, fmt) != 1)
8005 {
8006 offset += insn_len;
8007 continue;
8008 }
8009
8010 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
8011 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
8012 if (opcode == XTENSA_UNDEFINED)
8013 goto decode_error;
8014
8015 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
8016 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
8017 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
8018 {
8019 /* Add an instruction narrow action. */
8020 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
8021 ta_narrow_insn, offset, 0, FALSE);
8022 }
8023 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
8024 && can_widen_instruction (slotbuf, fmt, opcode) != 0
8025 && ! prev_instr_is_a_loop (ebb->contents,
8026 ebb->content_length, offset))
8027 {
8028 /* Add an instruction widen action. */
8029 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
8030 ta_widen_insn, offset, 0, FALSE);
8031 }
8032 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
8033 {
8034 /* Check for branch targets. */
8035 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
8036 ta_none, offset, 0, TRUE);
8037 }
8038
8039 offset += insn_len;
8040 }
8041 }
8042
8043 if (ebb->ends_unreachable)
8044 {
8045 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
8046 ta_fill, ebb->end_offset, 0, TRUE);
8047 }
8048
8049 return TRUE;
8050
8051 decode_error:
8052 _bfd_error_handler
8053 /* xgettext:c-format */
8054 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
8055 "possible configuration mismatch"),
8056 ebb->sec->owner, ebb->sec, (uint64_t) offset);
8057 return FALSE;
8058 }
8059
8060
8061 /* After all of the information has collected about the
8062 transformations possible in an EBB, compute the appropriate actions
8063 here in compute_ebb_actions. We still must check later to make
8064 sure that the actions do not break any relocations. The algorithm
8065 used here is pretty greedy. Basically, it removes as many no-ops
8066 as possible so that the end of the EBB has the same alignment
8067 characteristics as the original. First, it uses narrowing, then
8068 fill space at the end of the EBB, and finally widenings. If that
8069 does not work, it tries again with one fewer no-op removed. The
8070 optimization will only be performed if all of the branch targets
8071 that were aligned before transformation are also aligned after the
8072 transformation.
8073
8074 When the size_opt flag is set, ignore the branch target alignments,
8075 narrow all wide instructions, and remove all no-ops unless the end
8076 of the EBB prevents it. */
8077
8078 bfd_boolean
8079 compute_ebb_actions (ebb_constraint *ebb_table)
8080 {
8081 unsigned i = 0;
8082 unsigned j;
8083 int removed_bytes = 0;
8084 ebb_t *ebb = &ebb_table->ebb;
8085 unsigned seg_idx_start = 0;
8086 unsigned seg_idx_end = 0;
8087
8088 /* We perform this like the assembler relaxation algorithm: Start by
8089 assuming all instructions are narrow and all no-ops removed; then
8090 walk through.... */
8091
8092 /* For each segment of this that has a solid constraint, check to
8093 see if there are any combinations that will keep the constraint.
8094 If so, use it. */
8095 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
8096 {
8097 bfd_boolean requires_text_end_align = FALSE;
8098 unsigned longcall_count = 0;
8099 unsigned longcall_convert_count = 0;
8100 unsigned narrowable_count = 0;
8101 unsigned narrowable_convert_count = 0;
8102 unsigned widenable_count = 0;
8103 unsigned widenable_convert_count = 0;
8104
8105 proposed_action *action = NULL;
8106 int align = (1 << ebb_table->ebb.sec->alignment_power);
8107
8108 seg_idx_start = seg_idx_end;
8109
8110 for (i = seg_idx_start; i < ebb_table->action_count; i++)
8111 {
8112 action = &ebb_table->actions[i];
8113 if (action->action == ta_convert_longcall)
8114 longcall_count++;
8115 if (action->action == ta_narrow_insn)
8116 narrowable_count++;
8117 if (action->action == ta_widen_insn)
8118 widenable_count++;
8119 if (action->action == ta_fill)
8120 break;
8121 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8122 break;
8123 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
8124 && !elf32xtensa_size_opt)
8125 break;
8126 }
8127 seg_idx_end = i;
8128
8129 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
8130 requires_text_end_align = TRUE;
8131
8132 if (elf32xtensa_size_opt && !requires_text_end_align
8133 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
8134 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
8135 {
8136 longcall_convert_count = longcall_count;
8137 narrowable_convert_count = narrowable_count;
8138 widenable_convert_count = 0;
8139 }
8140 else
8141 {
8142 /* There is a constraint. Convert the max number of longcalls. */
8143 narrowable_convert_count = 0;
8144 longcall_convert_count = 0;
8145 widenable_convert_count = 0;
8146
8147 for (j = 0; j < longcall_count; j++)
8148 {
8149 int removed = (longcall_count - j) * 3 & (align - 1);
8150 unsigned desire_narrow = (align - removed) & (align - 1);
8151 unsigned desire_widen = removed;
8152 if (desire_narrow <= narrowable_count)
8153 {
8154 narrowable_convert_count = desire_narrow;
8155 narrowable_convert_count +=
8156 (align * ((narrowable_count - narrowable_convert_count)
8157 / align));
8158 longcall_convert_count = (longcall_count - j);
8159 widenable_convert_count = 0;
8160 break;
8161 }
8162 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
8163 {
8164 narrowable_convert_count = 0;
8165 longcall_convert_count = longcall_count - j;
8166 widenable_convert_count = desire_widen;
8167 break;
8168 }
8169 }
8170 }
8171
8172 /* Now the number of conversions are saved. Do them. */
8173 for (i = seg_idx_start; i < seg_idx_end; i++)
8174 {
8175 action = &ebb_table->actions[i];
8176 switch (action->action)
8177 {
8178 case ta_convert_longcall:
8179 if (longcall_convert_count != 0)
8180 {
8181 action->action = ta_remove_longcall;
8182 action->do_action = TRUE;
8183 action->removed_bytes += 3;
8184 longcall_convert_count--;
8185 }
8186 break;
8187 case ta_narrow_insn:
8188 if (narrowable_convert_count != 0)
8189 {
8190 action->do_action = TRUE;
8191 action->removed_bytes += 1;
8192 narrowable_convert_count--;
8193 }
8194 break;
8195 case ta_widen_insn:
8196 if (widenable_convert_count != 0)
8197 {
8198 action->do_action = TRUE;
8199 action->removed_bytes -= 1;
8200 widenable_convert_count--;
8201 }
8202 break;
8203 default:
8204 break;
8205 }
8206 }
8207 }
8208
8209 /* Now we move on to some local opts. Try to remove each of the
8210 remaining longcalls. */
8211
8212 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
8213 {
8214 removed_bytes = 0;
8215 for (i = 0; i < ebb_table->action_count; i++)
8216 {
8217 int old_removed_bytes = removed_bytes;
8218 proposed_action *action = &ebb_table->actions[i];
8219
8220 if (action->do_action && action->action == ta_convert_longcall)
8221 {
8222 bfd_boolean bad_alignment = FALSE;
8223 removed_bytes += 3;
8224 for (j = i + 1; j < ebb_table->action_count; j++)
8225 {
8226 proposed_action *new_action = &ebb_table->actions[j];
8227 bfd_vma offset = new_action->offset;
8228 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
8229 {
8230 if (!check_branch_target_aligned
8231 (ebb_table->ebb.contents,
8232 ebb_table->ebb.content_length,
8233 offset, offset - removed_bytes))
8234 {
8235 bad_alignment = TRUE;
8236 break;
8237 }
8238 }
8239 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8240 {
8241 if (!check_loop_aligned (ebb_table->ebb.contents,
8242 ebb_table->ebb.content_length,
8243 offset,
8244 offset - removed_bytes))
8245 {
8246 bad_alignment = TRUE;
8247 break;
8248 }
8249 }
8250 if (new_action->action == ta_narrow_insn
8251 && !new_action->do_action
8252 && ebb_table->ebb.sec->alignment_power == 2)
8253 {
8254 /* Narrow an instruction and we are done. */
8255 new_action->do_action = TRUE;
8256 new_action->removed_bytes += 1;
8257 bad_alignment = FALSE;
8258 break;
8259 }
8260 if (new_action->action == ta_widen_insn
8261 && new_action->do_action
8262 && ebb_table->ebb.sec->alignment_power == 2)
8263 {
8264 /* Narrow an instruction and we are done. */
8265 new_action->do_action = FALSE;
8266 new_action->removed_bytes += 1;
8267 bad_alignment = FALSE;
8268 break;
8269 }
8270 if (new_action->do_action)
8271 removed_bytes += new_action->removed_bytes;
8272 }
8273 if (!bad_alignment)
8274 {
8275 action->removed_bytes += 3;
8276 action->action = ta_remove_longcall;
8277 action->do_action = TRUE;
8278 }
8279 }
8280 removed_bytes = old_removed_bytes;
8281 if (action->do_action)
8282 removed_bytes += action->removed_bytes;
8283 }
8284 }
8285
8286 removed_bytes = 0;
8287 for (i = 0; i < ebb_table->action_count; ++i)
8288 {
8289 proposed_action *action = &ebb_table->actions[i];
8290 if (action->do_action)
8291 removed_bytes += action->removed_bytes;
8292 }
8293
8294 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
8295 && ebb->ends_unreachable)
8296 {
8297 proposed_action *action;
8298 int br;
8299 int extra_space;
8300
8301 BFD_ASSERT (ebb_table->action_count != 0);
8302 action = &ebb_table->actions[ebb_table->action_count - 1];
8303 BFD_ASSERT (action->action == ta_fill);
8304 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
8305
8306 extra_space = xtensa_compute_fill_extra_space (ebb->ends_unreachable);
8307 br = action->removed_bytes + removed_bytes + extra_space;
8308 br = br & ((1 << ebb->sec->alignment_power ) - 1);
8309
8310 action->removed_bytes = extra_space - br;
8311 }
8312 return TRUE;
8313 }
8314
8315
8316 /* The xlate_map is a sorted array of address mappings designed to
8317 answer the offset_with_removed_text() query with a binary search instead
8318 of a linear search through the section's action_list. */
8319
8320 typedef struct xlate_map_entry xlate_map_entry_t;
8321 typedef struct xlate_map xlate_map_t;
8322
8323 struct xlate_map_entry
8324 {
8325 bfd_vma orig_address;
8326 bfd_vma new_address;
8327 unsigned size;
8328 };
8329
8330 struct xlate_map
8331 {
8332 unsigned entry_count;
8333 xlate_map_entry_t *entry;
8334 };
8335
8336
8337 static int
8338 xlate_compare (const void *a_v, const void *b_v)
8339 {
8340 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
8341 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
8342 if (a->orig_address < b->orig_address)
8343 return -1;
8344 if (a->orig_address > (b->orig_address + b->size - 1))
8345 return 1;
8346 return 0;
8347 }
8348
8349
8350 static bfd_vma
8351 xlate_offset_with_removed_text (const xlate_map_t *map,
8352 text_action_list *action_list,
8353 bfd_vma offset)
8354 {
8355 void *r;
8356 xlate_map_entry_t *e;
8357 struct xlate_map_entry se;
8358
8359 if (map == NULL)
8360 return offset_with_removed_text (action_list, offset);
8361
8362 if (map->entry_count == 0)
8363 return offset;
8364
8365 se.orig_address = offset;
8366 r = bsearch (&se, map->entry, map->entry_count,
8367 sizeof (xlate_map_entry_t), &xlate_compare);
8368 e = (xlate_map_entry_t *) r;
8369
8370 /* There could be a jump past the end of the section,
8371 allow it using the last xlate map entry to translate its address. */
8372 if (e == NULL)
8373 {
8374 e = map->entry + map->entry_count - 1;
8375 if (xlate_compare (&se, e) <= 0)
8376 e = NULL;
8377 }
8378 BFD_ASSERT (e != NULL);
8379 if (e == NULL)
8380 return offset;
8381 return e->new_address - e->orig_address + offset;
8382 }
8383
8384 typedef struct xlate_map_context_struct xlate_map_context;
8385 struct xlate_map_context_struct
8386 {
8387 xlate_map_t *map;
8388 xlate_map_entry_t *current_entry;
8389 int removed;
8390 };
8391
8392 static int
8393 xlate_map_fn (splay_tree_node node, void *p)
8394 {
8395 text_action *r = (text_action *)node->value;
8396 xlate_map_context *ctx = p;
8397 unsigned orig_size = 0;
8398
8399 switch (r->action)
8400 {
8401 case ta_none:
8402 case ta_remove_insn:
8403 case ta_convert_longcall:
8404 case ta_remove_literal:
8405 case ta_add_literal:
8406 break;
8407 case ta_remove_longcall:
8408 orig_size = 6;
8409 break;
8410 case ta_narrow_insn:
8411 orig_size = 3;
8412 break;
8413 case ta_widen_insn:
8414 orig_size = 2;
8415 break;
8416 case ta_fill:
8417 break;
8418 }
8419 ctx->current_entry->size =
8420 r->offset + orig_size - ctx->current_entry->orig_address;
8421 if (ctx->current_entry->size != 0)
8422 {
8423 ctx->current_entry++;
8424 ctx->map->entry_count++;
8425 }
8426 ctx->current_entry->orig_address = r->offset + orig_size;
8427 ctx->removed += r->removed_bytes;
8428 ctx->current_entry->new_address = r->offset + orig_size - ctx->removed;
8429 ctx->current_entry->size = 0;
8430 return 0;
8431 }
8432
8433 /* Build a binary searchable offset translation map from a section's
8434 action list. */
8435
8436 static xlate_map_t *
8437 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
8438 {
8439 text_action_list *action_list = &relax_info->action_list;
8440 unsigned num_actions = 0;
8441 xlate_map_context ctx;
8442
8443 ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
8444
8445 if (ctx.map == NULL)
8446 return NULL;
8447
8448 num_actions = action_list_count (action_list);
8449 ctx.map->entry = (xlate_map_entry_t *)
8450 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
8451 if (ctx.map->entry == NULL)
8452 {
8453 free (ctx.map);
8454 return NULL;
8455 }
8456 ctx.map->entry_count = 0;
8457
8458 ctx.removed = 0;
8459 ctx.current_entry = &ctx.map->entry[0];
8460
8461 ctx.current_entry->orig_address = 0;
8462 ctx.current_entry->new_address = 0;
8463 ctx.current_entry->size = 0;
8464
8465 splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx);
8466
8467 ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec)
8468 - ctx.current_entry->orig_address);
8469 if (ctx.current_entry->size != 0)
8470 ctx.map->entry_count++;
8471
8472 return ctx.map;
8473 }
8474
8475
8476 /* Free an offset translation map. */
8477
8478 static void
8479 free_xlate_map (xlate_map_t *map)
8480 {
8481 if (map)
8482 {
8483 free (map->entry);
8484 free (map);
8485 }
8486 }
8487
8488
8489 /* Use check_section_ebb_pcrels_fit to make sure that all of the
8490 relocations in a section will fit if a proposed set of actions
8491 are performed. */
8492
8493 static bfd_boolean
8494 check_section_ebb_pcrels_fit (bfd *abfd,
8495 asection *sec,
8496 bfd_byte *contents,
8497 Elf_Internal_Rela *internal_relocs,
8498 reloc_range_list *relevant_relocs,
8499 const ebb_constraint *constraint,
8500 const xtensa_opcode *reloc_opcodes)
8501 {
8502 unsigned i, j;
8503 unsigned n = sec->reloc_count;
8504 Elf_Internal_Rela *irel;
8505 xlate_map_t *xmap = NULL;
8506 bfd_boolean ok = TRUE;
8507 xtensa_relax_info *relax_info;
8508 reloc_range_list_entry *entry = NULL;
8509
8510 relax_info = get_xtensa_relax_info (sec);
8511
8512 if (relax_info && sec->reloc_count > 100)
8513 {
8514 xmap = build_xlate_map (sec, relax_info);
8515 /* NULL indicates out of memory, but the slow version
8516 can still be used. */
8517 }
8518
8519 if (relevant_relocs && constraint->action_count)
8520 {
8521 if (!relevant_relocs->ok)
8522 {
8523 ok = FALSE;
8524 n = 0;
8525 }
8526 else
8527 {
8528 bfd_vma min_offset, max_offset;
8529 min_offset = max_offset = constraint->actions[0].offset;
8530
8531 for (i = 1; i < constraint->action_count; ++i)
8532 {
8533 proposed_action *action = &constraint->actions[i];
8534 bfd_vma offset = action->offset;
8535
8536 if (offset < min_offset)
8537 min_offset = offset;
8538 if (offset > max_offset)
8539 max_offset = offset;
8540 }
8541 reloc_range_list_update_range (relevant_relocs, min_offset,
8542 max_offset);
8543 n = relevant_relocs->n_list;
8544 entry = &relevant_relocs->list_root;
8545 }
8546 }
8547 else
8548 {
8549 relevant_relocs = NULL;
8550 }
8551
8552 for (i = 0; i < n; i++)
8553 {
8554 r_reloc r_rel;
8555 bfd_vma orig_self_offset, orig_target_offset;
8556 bfd_vma self_offset, target_offset;
8557 int r_type;
8558 reloc_howto_type *howto;
8559 int self_removed_bytes, target_removed_bytes;
8560
8561 if (relevant_relocs)
8562 {
8563 entry = entry->next;
8564 irel = entry->irel;
8565 }
8566 else
8567 {
8568 irel = internal_relocs + i;
8569 }
8570 r_type = ELF32_R_TYPE (irel->r_info);
8571
8572 howto = &elf_howto_table[r_type];
8573 /* We maintain the required invariant: PC-relative relocations
8574 that fit before linking must fit after linking. Thus we only
8575 need to deal with relocations to the same section that are
8576 PC-relative. */
8577 if (r_type == R_XTENSA_ASM_SIMPLIFY
8578 || r_type == R_XTENSA_32_PCREL
8579 || !howto->pc_relative)
8580 continue;
8581
8582 r_reloc_init (&r_rel, abfd, irel, contents,
8583 bfd_get_section_limit (abfd, sec));
8584
8585 if (r_reloc_get_section (&r_rel) != sec)
8586 continue;
8587
8588 orig_self_offset = irel->r_offset;
8589 orig_target_offset = r_rel.target_offset;
8590
8591 self_offset = orig_self_offset;
8592 target_offset = orig_target_offset;
8593
8594 if (relax_info)
8595 {
8596 self_offset =
8597 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8598 orig_self_offset);
8599 target_offset =
8600 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8601 orig_target_offset);
8602 }
8603
8604 self_removed_bytes = 0;
8605 target_removed_bytes = 0;
8606
8607 for (j = 0; j < constraint->action_count; ++j)
8608 {
8609 proposed_action *action = &constraint->actions[j];
8610 bfd_vma offset = action->offset;
8611 int removed_bytes = action->removed_bytes;
8612 if (offset < orig_self_offset
8613 || (offset == orig_self_offset && action->action == ta_fill
8614 && action->removed_bytes < 0))
8615 self_removed_bytes += removed_bytes;
8616 if (offset < orig_target_offset
8617 || (offset == orig_target_offset && action->action == ta_fill
8618 && action->removed_bytes < 0))
8619 target_removed_bytes += removed_bytes;
8620 }
8621 self_offset -= self_removed_bytes;
8622 target_offset -= target_removed_bytes;
8623
8624 /* Try to encode it. Get the operand and check. */
8625 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8626 {
8627 /* None of the current alternate relocs are PC-relative,
8628 and only PC-relative relocs matter here. */
8629 }
8630 else
8631 {
8632 xtensa_opcode opcode;
8633 int opnum;
8634
8635 if (relevant_relocs)
8636 {
8637 opcode = entry->opcode;
8638 opnum = entry->opnum;
8639 }
8640 else
8641 {
8642 if (reloc_opcodes)
8643 opcode = reloc_opcodes[relevant_relocs ?
8644 (unsigned)(entry - relevant_relocs->reloc) : i];
8645 else
8646 opcode = get_relocation_opcode (abfd, sec, contents, irel);
8647 if (opcode == XTENSA_UNDEFINED)
8648 {
8649 ok = FALSE;
8650 break;
8651 }
8652
8653 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8654 if (opnum == XTENSA_UNDEFINED)
8655 {
8656 ok = FALSE;
8657 break;
8658 }
8659 }
8660
8661 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
8662 {
8663 ok = FALSE;
8664 break;
8665 }
8666 }
8667 }
8668
8669 free_xlate_map (xmap);
8670
8671 return ok;
8672 }
8673
8674
8675 static bfd_boolean
8676 check_section_ebb_reduces (const ebb_constraint *constraint)
8677 {
8678 int removed = 0;
8679 unsigned i;
8680
8681 for (i = 0; i < constraint->action_count; i++)
8682 {
8683 const proposed_action *action = &constraint->actions[i];
8684 if (action->do_action)
8685 removed += action->removed_bytes;
8686 }
8687 if (removed < 0)
8688 return FALSE;
8689
8690 return TRUE;
8691 }
8692
8693
8694 void
8695 text_action_add_proposed (text_action_list *l,
8696 const ebb_constraint *ebb_table,
8697 asection *sec)
8698 {
8699 unsigned i;
8700
8701 for (i = 0; i < ebb_table->action_count; i++)
8702 {
8703 proposed_action *action = &ebb_table->actions[i];
8704
8705 if (!action->do_action)
8706 continue;
8707 switch (action->action)
8708 {
8709 case ta_remove_insn:
8710 case ta_remove_longcall:
8711 case ta_convert_longcall:
8712 case ta_narrow_insn:
8713 case ta_widen_insn:
8714 case ta_fill:
8715 case ta_remove_literal:
8716 text_action_add (l, action->action, sec, action->offset,
8717 action->removed_bytes);
8718 break;
8719 case ta_none:
8720 break;
8721 default:
8722 BFD_ASSERT (0);
8723 break;
8724 }
8725 }
8726 }
8727
8728
8729 int
8730 xtensa_compute_fill_extra_space (property_table_entry *entry)
8731 {
8732 int fill_extra_space;
8733
8734 if (!entry)
8735 return 0;
8736
8737 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8738 return 0;
8739
8740 fill_extra_space = entry->size;
8741 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8742 {
8743 /* Fill bytes for alignment:
8744 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8745 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8746 int nsm = (1 << pow) - 1;
8747 bfd_vma addr = entry->address + entry->size;
8748 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8749 fill_extra_space += align_fill;
8750 }
8751 return fill_extra_space;
8752 }
8753
8754 \f
8755 /* First relaxation pass. */
8756
8757 /* If the section contains relaxable literals, check each literal to
8758 see if it has the same value as another literal that has already
8759 been seen, either in the current section or a previous one. If so,
8760 add an entry to the per-section list of removed literals. The
8761 actual changes are deferred until the next pass. */
8762
8763 static bfd_boolean
8764 compute_removed_literals (bfd *abfd,
8765 asection *sec,
8766 struct bfd_link_info *link_info,
8767 value_map_hash_table *values)
8768 {
8769 xtensa_relax_info *relax_info;
8770 bfd_byte *contents;
8771 Elf_Internal_Rela *internal_relocs;
8772 source_reloc *src_relocs, *rel;
8773 bfd_boolean ok = TRUE;
8774 property_table_entry *prop_table = NULL;
8775 int ptblsize;
8776 int i, prev_i;
8777 bfd_boolean last_loc_is_prev = FALSE;
8778 bfd_vma last_target_offset = 0;
8779 section_cache_t target_sec_cache;
8780 bfd_size_type sec_size;
8781
8782 init_section_cache (&target_sec_cache);
8783
8784 /* Do nothing if it is not a relaxable literal section. */
8785 relax_info = get_xtensa_relax_info (sec);
8786 BFD_ASSERT (relax_info);
8787 if (!relax_info->is_relaxable_literal_section)
8788 return ok;
8789
8790 internal_relocs = retrieve_internal_relocs (abfd, sec,
8791 link_info->keep_memory);
8792
8793 sec_size = bfd_get_section_limit (abfd, sec);
8794 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8795 if (contents == NULL && sec_size != 0)
8796 {
8797 ok = FALSE;
8798 goto error_return;
8799 }
8800
8801 /* Sort the source_relocs by target offset. */
8802 src_relocs = relax_info->src_relocs;
8803 qsort (src_relocs, relax_info->src_count,
8804 sizeof (source_reloc), source_reloc_compare);
8805 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8806 internal_reloc_compare);
8807
8808 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8809 XTENSA_PROP_SEC_NAME, FALSE);
8810 if (ptblsize < 0)
8811 {
8812 ok = FALSE;
8813 goto error_return;
8814 }
8815
8816 prev_i = -1;
8817 for (i = 0; i < relax_info->src_count; i++)
8818 {
8819 Elf_Internal_Rela *irel = NULL;
8820
8821 rel = &src_relocs[i];
8822 if (get_l32r_opcode () != rel->opcode)
8823 continue;
8824 irel = get_irel_at_offset (sec, internal_relocs,
8825 rel->r_rel.target_offset);
8826
8827 /* If the relocation on this is not a simple R_XTENSA_32 or
8828 R_XTENSA_PLT then do not consider it. This may happen when
8829 the difference of two symbols is used in a literal. */
8830 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8831 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8832 continue;
8833
8834 /* If the target_offset for this relocation is the same as the
8835 previous relocation, then we've already considered whether the
8836 literal can be coalesced. Skip to the next one.... */
8837 if (i != 0 && prev_i != -1
8838 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
8839 continue;
8840 prev_i = i;
8841
8842 if (last_loc_is_prev &&
8843 last_target_offset + 4 != rel->r_rel.target_offset)
8844 last_loc_is_prev = FALSE;
8845
8846 /* Check if the relocation was from an L32R that is being removed
8847 because a CALLX was converted to a direct CALL, and check if
8848 there are no other relocations to the literal. */
8849 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8850 sec, prop_table, ptblsize))
8851 {
8852 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8853 irel, rel, prop_table, ptblsize))
8854 {
8855 ok = FALSE;
8856 goto error_return;
8857 }
8858 last_target_offset = rel->r_rel.target_offset;
8859 continue;
8860 }
8861
8862 if (!identify_literal_placement (abfd, sec, contents, link_info,
8863 values,
8864 &last_loc_is_prev, irel,
8865 relax_info->src_count - i, rel,
8866 prop_table, ptblsize,
8867 &target_sec_cache, rel->is_abs_literal))
8868 {
8869 ok = FALSE;
8870 goto error_return;
8871 }
8872 last_target_offset = rel->r_rel.target_offset;
8873 }
8874
8875 #if DEBUG
8876 print_removed_literals (stderr, &relax_info->removed_list);
8877 print_action_list (stderr, &relax_info->action_list);
8878 #endif /* DEBUG */
8879
8880 error_return:
8881 free (prop_table);
8882 free_section_cache (&target_sec_cache);
8883
8884 release_contents (sec, contents);
8885 release_internal_relocs (sec, internal_relocs);
8886 return ok;
8887 }
8888
8889
8890 static Elf_Internal_Rela *
8891 get_irel_at_offset (asection *sec,
8892 Elf_Internal_Rela *internal_relocs,
8893 bfd_vma offset)
8894 {
8895 unsigned i;
8896 Elf_Internal_Rela *irel;
8897 unsigned r_type;
8898 Elf_Internal_Rela key;
8899
8900 if (!internal_relocs)
8901 return NULL;
8902
8903 key.r_offset = offset;
8904 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8905 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8906 if (!irel)
8907 return NULL;
8908
8909 /* bsearch does not guarantee which will be returned if there are
8910 multiple matches. We need the first that is not an alignment. */
8911 i = irel - internal_relocs;
8912 while (i > 0)
8913 {
8914 if (internal_relocs[i-1].r_offset != offset)
8915 break;
8916 i--;
8917 }
8918 for ( ; i < sec->reloc_count; i++)
8919 {
8920 irel = &internal_relocs[i];
8921 r_type = ELF32_R_TYPE (irel->r_info);
8922 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8923 return irel;
8924 }
8925
8926 return NULL;
8927 }
8928
8929
8930 bfd_boolean
8931 is_removable_literal (const source_reloc *rel,
8932 int i,
8933 const source_reloc *src_relocs,
8934 int src_count,
8935 asection *sec,
8936 property_table_entry *prop_table,
8937 int ptblsize)
8938 {
8939 const source_reloc *curr_rel;
8940 property_table_entry *entry;
8941
8942 if (!rel->is_null)
8943 return FALSE;
8944
8945 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8946 sec->vma + rel->r_rel.target_offset);
8947 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8948 return FALSE;
8949
8950 for (++i; i < src_count; ++i)
8951 {
8952 curr_rel = &src_relocs[i];
8953 /* If all others have the same target offset.... */
8954 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8955 return TRUE;
8956
8957 if (!curr_rel->is_null
8958 && !xtensa_is_property_section (curr_rel->source_sec)
8959 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8960 return FALSE;
8961 }
8962 return TRUE;
8963 }
8964
8965
8966 bfd_boolean
8967 remove_dead_literal (bfd *abfd,
8968 asection *sec,
8969 struct bfd_link_info *link_info,
8970 Elf_Internal_Rela *internal_relocs,
8971 Elf_Internal_Rela *irel,
8972 source_reloc *rel,
8973 property_table_entry *prop_table,
8974 int ptblsize)
8975 {
8976 property_table_entry *entry;
8977 xtensa_relax_info *relax_info;
8978
8979 relax_info = get_xtensa_relax_info (sec);
8980 if (!relax_info)
8981 return FALSE;
8982
8983 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8984 sec->vma + rel->r_rel.target_offset);
8985
8986 /* Mark the unused literal so that it will be removed. */
8987 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8988
8989 text_action_add (&relax_info->action_list,
8990 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8991
8992 /* If the section is 4-byte aligned, do not add fill. */
8993 if (sec->alignment_power > 2)
8994 {
8995 int fill_extra_space;
8996 bfd_vma entry_sec_offset;
8997 text_action *fa;
8998 property_table_entry *the_add_entry;
8999 int removed_diff;
9000
9001 if (entry)
9002 entry_sec_offset = entry->address - sec->vma + entry->size;
9003 else
9004 entry_sec_offset = rel->r_rel.target_offset + 4;
9005
9006 /* If the literal range is at the end of the section,
9007 do not add fill. */
9008 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9009 entry_sec_offset);
9010 fill_extra_space = xtensa_compute_fill_extra_space (the_add_entry);
9011
9012 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9013 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9014 -4, fill_extra_space);
9015 if (fa)
9016 adjust_fill_action (fa, removed_diff);
9017 else
9018 text_action_add (&relax_info->action_list,
9019 ta_fill, sec, entry_sec_offset, removed_diff);
9020 }
9021
9022 /* Zero out the relocation on this literal location. */
9023 if (irel)
9024 {
9025 if (elf_hash_table (link_info)->dynamic_sections_created)
9026 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9027
9028 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9029 pin_internal_relocs (sec, internal_relocs);
9030 }
9031
9032 /* Do not modify "last_loc_is_prev". */
9033 return TRUE;
9034 }
9035
9036
9037 bfd_boolean
9038 identify_literal_placement (bfd *abfd,
9039 asection *sec,
9040 bfd_byte *contents,
9041 struct bfd_link_info *link_info,
9042 value_map_hash_table *values,
9043 bfd_boolean *last_loc_is_prev_p,
9044 Elf_Internal_Rela *irel,
9045 int remaining_src_rels,
9046 source_reloc *rel,
9047 property_table_entry *prop_table,
9048 int ptblsize,
9049 section_cache_t *target_sec_cache,
9050 bfd_boolean is_abs_literal)
9051 {
9052 literal_value val;
9053 value_map *val_map;
9054 xtensa_relax_info *relax_info;
9055 bfd_boolean literal_placed = FALSE;
9056 r_reloc r_rel;
9057 unsigned long value;
9058 bfd_boolean final_static_link;
9059 bfd_size_type sec_size;
9060
9061 relax_info = get_xtensa_relax_info (sec);
9062 if (!relax_info)
9063 return FALSE;
9064
9065 sec_size = bfd_get_section_limit (abfd, sec);
9066
9067 final_static_link =
9068 (!bfd_link_relocatable (link_info)
9069 && !elf_hash_table (link_info)->dynamic_sections_created);
9070
9071 /* The placement algorithm first checks to see if the literal is
9072 already in the value map. If so and the value map is reachable
9073 from all uses, then the literal is moved to that location. If
9074 not, then we identify the last location where a fresh literal was
9075 placed. If the literal can be safely moved there, then we do so.
9076 If not, then we assume that the literal is not to move and leave
9077 the literal where it is, marking it as the last literal
9078 location. */
9079
9080 /* Find the literal value. */
9081 value = 0;
9082 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9083 if (!irel)
9084 {
9085 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
9086 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
9087 }
9088 init_literal_value (&val, &r_rel, value, is_abs_literal);
9089
9090 /* Check if we've seen another literal with the same value that
9091 is in the same output section. */
9092 val_map = value_map_get_cached_value (values, &val, final_static_link);
9093
9094 if (val_map
9095 && (r_reloc_get_section (&val_map->loc)->output_section
9096 == sec->output_section)
9097 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
9098 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
9099 {
9100 /* No change to last_loc_is_prev. */
9101 literal_placed = TRUE;
9102 }
9103
9104 /* For relocatable links, do not try to move literals. To do it
9105 correctly might increase the number of relocations in an input
9106 section making the default relocatable linking fail. */
9107 if (!bfd_link_relocatable (link_info) && !literal_placed
9108 && values->has_last_loc && !(*last_loc_is_prev_p))
9109 {
9110 asection *target_sec = r_reloc_get_section (&values->last_loc);
9111 if (target_sec && target_sec->output_section == sec->output_section)
9112 {
9113 /* Increment the virtual offset. */
9114 r_reloc try_loc = values->last_loc;
9115 try_loc.virtual_offset += 4;
9116
9117 /* There is a last loc that was in the same output section. */
9118 if (relocations_reach (rel, remaining_src_rels, &try_loc)
9119 && move_shared_literal (sec, link_info, rel,
9120 prop_table, ptblsize,
9121 &try_loc, &val, target_sec_cache))
9122 {
9123 values->last_loc.virtual_offset += 4;
9124 literal_placed = TRUE;
9125 if (!val_map)
9126 val_map = add_value_map (values, &val, &try_loc,
9127 final_static_link);
9128 else
9129 val_map->loc = try_loc;
9130 }
9131 }
9132 }
9133
9134 if (!literal_placed)
9135 {
9136 /* Nothing worked, leave the literal alone but update the last loc. */
9137 values->has_last_loc = TRUE;
9138 values->last_loc = rel->r_rel;
9139 if (!val_map)
9140 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
9141 else
9142 val_map->loc = rel->r_rel;
9143 *last_loc_is_prev_p = TRUE;
9144 }
9145
9146 return TRUE;
9147 }
9148
9149
9150 /* Check if the original relocations (presumably on L32R instructions)
9151 identified by reloc[0..N] can be changed to reference the literal
9152 identified by r_rel. If r_rel is out of range for any of the
9153 original relocations, then we don't want to coalesce the original
9154 literal with the one at r_rel. We only check reloc[0..N], where the
9155 offsets are all the same as for reloc[0] (i.e., they're all
9156 referencing the same literal) and where N is also bounded by the
9157 number of remaining entries in the "reloc" array. The "reloc" array
9158 is sorted by target offset so we know all the entries for the same
9159 literal will be contiguous. */
9160
9161 static bfd_boolean
9162 relocations_reach (source_reloc *reloc,
9163 int remaining_relocs,
9164 const r_reloc *r_rel)
9165 {
9166 bfd_vma from_offset, source_address, dest_address;
9167 asection *sec;
9168 int i;
9169
9170 if (!r_reloc_is_defined (r_rel))
9171 return FALSE;
9172
9173 sec = r_reloc_get_section (r_rel);
9174 from_offset = reloc[0].r_rel.target_offset;
9175
9176 for (i = 0; i < remaining_relocs; i++)
9177 {
9178 if (reloc[i].r_rel.target_offset != from_offset)
9179 break;
9180
9181 /* Ignore relocations that have been removed. */
9182 if (reloc[i].is_null)
9183 continue;
9184
9185 /* The original and new output section for these must be the same
9186 in order to coalesce. */
9187 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
9188 != sec->output_section)
9189 return FALSE;
9190
9191 /* Absolute literals in the same output section can always be
9192 combined. */
9193 if (reloc[i].is_abs_literal)
9194 continue;
9195
9196 /* A literal with no PC-relative relocations can be moved anywhere. */
9197 if (reloc[i].opnd != -1)
9198 {
9199 /* Otherwise, check to see that it fits. */
9200 source_address = (reloc[i].source_sec->output_section->vma
9201 + reloc[i].source_sec->output_offset
9202 + reloc[i].r_rel.rela.r_offset);
9203 dest_address = (sec->output_section->vma
9204 + sec->output_offset
9205 + r_rel->target_offset);
9206
9207 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
9208 source_address, dest_address))
9209 return FALSE;
9210 }
9211 }
9212
9213 return TRUE;
9214 }
9215
9216
9217 /* Move a literal to another literal location because it is
9218 the same as the other literal value. */
9219
9220 static bfd_boolean
9221 coalesce_shared_literal (asection *sec,
9222 source_reloc *rel,
9223 property_table_entry *prop_table,
9224 int ptblsize,
9225 value_map *val_map)
9226 {
9227 property_table_entry *entry;
9228 text_action *fa;
9229 property_table_entry *the_add_entry;
9230 int removed_diff;
9231 xtensa_relax_info *relax_info;
9232
9233 relax_info = get_xtensa_relax_info (sec);
9234 if (!relax_info)
9235 return FALSE;
9236
9237 entry = elf_xtensa_find_property_entry
9238 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9239 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
9240 return TRUE;
9241
9242 /* Mark that the literal will be coalesced. */
9243 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
9244
9245 text_action_add (&relax_info->action_list,
9246 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9247
9248 /* If the section is 4-byte aligned, do not add fill. */
9249 if (sec->alignment_power > 2)
9250 {
9251 int fill_extra_space;
9252 bfd_vma entry_sec_offset;
9253
9254 if (entry)
9255 entry_sec_offset = entry->address - sec->vma + entry->size;
9256 else
9257 entry_sec_offset = rel->r_rel.target_offset + 4;
9258
9259 /* If the literal range is at the end of the section,
9260 do not add fill. */
9261 fill_extra_space = 0;
9262 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9263 entry_sec_offset);
9264 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9265 fill_extra_space = the_add_entry->size;
9266
9267 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9268 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9269 -4, fill_extra_space);
9270 if (fa)
9271 adjust_fill_action (fa, removed_diff);
9272 else
9273 text_action_add (&relax_info->action_list,
9274 ta_fill, sec, entry_sec_offset, removed_diff);
9275 }
9276
9277 return TRUE;
9278 }
9279
9280
9281 /* Move a literal to another location. This may actually increase the
9282 total amount of space used because of alignments so we need to do
9283 this carefully. Also, it may make a branch go out of range. */
9284
9285 static bfd_boolean
9286 move_shared_literal (asection *sec,
9287 struct bfd_link_info *link_info,
9288 source_reloc *rel,
9289 property_table_entry *prop_table,
9290 int ptblsize,
9291 const r_reloc *target_loc,
9292 const literal_value *lit_value,
9293 section_cache_t *target_sec_cache)
9294 {
9295 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
9296 text_action *fa, *target_fa;
9297 int removed_diff;
9298 xtensa_relax_info *relax_info, *target_relax_info;
9299 asection *target_sec;
9300 ebb_t *ebb;
9301 ebb_constraint ebb_table;
9302 bfd_boolean relocs_fit;
9303
9304 /* If this routine always returns FALSE, the literals that cannot be
9305 coalesced will not be moved. */
9306 if (elf32xtensa_no_literal_movement)
9307 return FALSE;
9308
9309 relax_info = get_xtensa_relax_info (sec);
9310 if (!relax_info)
9311 return FALSE;
9312
9313 target_sec = r_reloc_get_section (target_loc);
9314 target_relax_info = get_xtensa_relax_info (target_sec);
9315
9316 /* Literals to undefined sections may not be moved because they
9317 must report an error. */
9318 if (bfd_is_und_section (target_sec))
9319 return FALSE;
9320
9321 src_entry = elf_xtensa_find_property_entry
9322 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9323
9324 if (!section_cache_section (target_sec_cache, target_sec, link_info))
9325 return FALSE;
9326
9327 target_entry = elf_xtensa_find_property_entry
9328 (target_sec_cache->ptbl, target_sec_cache->pte_count,
9329 target_sec->vma + target_loc->target_offset);
9330
9331 if (!target_entry)
9332 return FALSE;
9333
9334 /* Make sure that we have not broken any branches. */
9335 relocs_fit = FALSE;
9336
9337 init_ebb_constraint (&ebb_table);
9338 ebb = &ebb_table.ebb;
9339 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
9340 target_sec_cache->content_length,
9341 target_sec_cache->ptbl, target_sec_cache->pte_count,
9342 target_sec_cache->relocs, target_sec_cache->reloc_count);
9343
9344 /* Propose to add 4 bytes + worst-case alignment size increase to
9345 destination. */
9346 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
9347 ta_fill, target_loc->target_offset,
9348 -4 - (1 << target_sec->alignment_power), TRUE);
9349
9350 /* Check all of the PC-relative relocations to make sure they still fit. */
9351 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
9352 target_sec_cache->contents,
9353 target_sec_cache->relocs, NULL,
9354 &ebb_table, NULL);
9355
9356 if (!relocs_fit)
9357 return FALSE;
9358
9359 text_action_add_literal (&target_relax_info->action_list,
9360 ta_add_literal, target_loc, lit_value, -4);
9361
9362 if (target_sec->alignment_power > 2 && target_entry != src_entry)
9363 {
9364 /* May need to add or remove some fill to maintain alignment. */
9365 int fill_extra_space;
9366 bfd_vma entry_sec_offset;
9367
9368 entry_sec_offset =
9369 target_entry->address - target_sec->vma + target_entry->size;
9370
9371 /* If the literal range is at the end of the section,
9372 do not add fill. */
9373 fill_extra_space = 0;
9374 the_add_entry =
9375 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
9376 target_sec_cache->pte_count,
9377 entry_sec_offset);
9378 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9379 fill_extra_space = the_add_entry->size;
9380
9381 target_fa = find_fill_action (&target_relax_info->action_list,
9382 target_sec, entry_sec_offset);
9383 removed_diff = compute_removed_action_diff (target_fa, target_sec,
9384 entry_sec_offset, 4,
9385 fill_extra_space);
9386 if (target_fa)
9387 adjust_fill_action (target_fa, removed_diff);
9388 else
9389 text_action_add (&target_relax_info->action_list,
9390 ta_fill, target_sec, entry_sec_offset, removed_diff);
9391 }
9392
9393 /* Mark that the literal will be moved to the new location. */
9394 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
9395
9396 /* Remove the literal. */
9397 text_action_add (&relax_info->action_list,
9398 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9399
9400 /* If the section is 4-byte aligned, do not add fill. */
9401 if (sec->alignment_power > 2 && target_entry != src_entry)
9402 {
9403 int fill_extra_space;
9404 bfd_vma entry_sec_offset;
9405
9406 if (src_entry)
9407 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
9408 else
9409 entry_sec_offset = rel->r_rel.target_offset+4;
9410
9411 /* If the literal range is at the end of the section,
9412 do not add fill. */
9413 fill_extra_space = 0;
9414 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9415 entry_sec_offset);
9416 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9417 fill_extra_space = the_add_entry->size;
9418
9419 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9420 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9421 -4, fill_extra_space);
9422 if (fa)
9423 adjust_fill_action (fa, removed_diff);
9424 else
9425 text_action_add (&relax_info->action_list,
9426 ta_fill, sec, entry_sec_offset, removed_diff);
9427 }
9428
9429 return TRUE;
9430 }
9431
9432 \f
9433 /* Second relaxation pass. */
9434
9435 static int
9436 action_remove_bytes_fn (splay_tree_node node, void *p)
9437 {
9438 bfd_size_type *final_size = p;
9439 text_action *action = (text_action *)node->value;
9440
9441 *final_size -= action->removed_bytes;
9442 return 0;
9443 }
9444
9445 /* Modify all of the relocations to point to the right spot, and if this
9446 is a relaxable section, delete the unwanted literals and fix the
9447 section size. */
9448
9449 bfd_boolean
9450 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
9451 {
9452 Elf_Internal_Rela *internal_relocs;
9453 xtensa_relax_info *relax_info;
9454 bfd_byte *contents;
9455 bfd_boolean ok = TRUE;
9456 unsigned i;
9457 bfd_boolean rv = FALSE;
9458 bfd_boolean virtual_action;
9459 bfd_size_type sec_size;
9460
9461 sec_size = bfd_get_section_limit (abfd, sec);
9462 relax_info = get_xtensa_relax_info (sec);
9463 BFD_ASSERT (relax_info);
9464
9465 /* First translate any of the fixes that have been added already. */
9466 translate_section_fixes (sec);
9467
9468 /* Handle property sections (e.g., literal tables) specially. */
9469 if (xtensa_is_property_section (sec))
9470 {
9471 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
9472 return relax_property_section (abfd, sec, link_info);
9473 }
9474
9475 internal_relocs = retrieve_internal_relocs (abfd, sec,
9476 link_info->keep_memory);
9477 if (!internal_relocs && !action_list_count (&relax_info->action_list))
9478 return TRUE;
9479
9480 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9481 if (contents == NULL && sec_size != 0)
9482 {
9483 ok = FALSE;
9484 goto error_return;
9485 }
9486
9487 if (internal_relocs)
9488 {
9489 for (i = 0; i < sec->reloc_count; i++)
9490 {
9491 Elf_Internal_Rela *irel;
9492 xtensa_relax_info *target_relax_info;
9493 bfd_vma source_offset, old_source_offset;
9494 r_reloc r_rel;
9495 unsigned r_type;
9496 asection *target_sec;
9497
9498 /* Locally change the source address.
9499 Translate the target to the new target address.
9500 If it points to this section and has been removed,
9501 NULLify it.
9502 Write it back. */
9503
9504 irel = &internal_relocs[i];
9505 source_offset = irel->r_offset;
9506 old_source_offset = source_offset;
9507
9508 r_type = ELF32_R_TYPE (irel->r_info);
9509 r_reloc_init (&r_rel, abfd, irel, contents,
9510 bfd_get_section_limit (abfd, sec));
9511
9512 /* If this section could have changed then we may need to
9513 change the relocation's offset. */
9514
9515 if (relax_info->is_relaxable_literal_section
9516 || relax_info->is_relaxable_asm_section)
9517 {
9518 pin_internal_relocs (sec, internal_relocs);
9519
9520 if (r_type != R_XTENSA_NONE
9521 && find_removed_literal (&relax_info->removed_list,
9522 irel->r_offset))
9523 {
9524 /* Remove this relocation. */
9525 if (elf_hash_table (link_info)->dynamic_sections_created)
9526 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9527 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9528 irel->r_offset = offset_with_removed_text_map
9529 (&relax_info->action_list, irel->r_offset);
9530 continue;
9531 }
9532
9533 if (r_type == R_XTENSA_ASM_SIMPLIFY)
9534 {
9535 text_action *action =
9536 find_insn_action (&relax_info->action_list,
9537 irel->r_offset);
9538 if (action && (action->action == ta_convert_longcall
9539 || action->action == ta_remove_longcall))
9540 {
9541 bfd_reloc_status_type retval;
9542 char *error_message = NULL;
9543
9544 retval = contract_asm_expansion (contents, sec_size,
9545 irel, &error_message);
9546 if (retval != bfd_reloc_ok)
9547 {
9548 (*link_info->callbacks->reloc_dangerous)
9549 (link_info, error_message, abfd, sec,
9550 irel->r_offset);
9551 goto error_return;
9552 }
9553 /* Update the action so that the code that moves
9554 the contents will do the right thing. */
9555 /* ta_remove_longcall and ta_remove_insn actions are
9556 grouped together in the tree as well as
9557 ta_convert_longcall and ta_none, so that changes below
9558 can be done w/o removing and reinserting action into
9559 the tree. */
9560
9561 if (action->action == ta_remove_longcall)
9562 action->action = ta_remove_insn;
9563 else
9564 action->action = ta_none;
9565 /* Refresh the info in the r_rel. */
9566 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9567 r_type = ELF32_R_TYPE (irel->r_info);
9568 }
9569 }
9570
9571 source_offset = offset_with_removed_text_map
9572 (&relax_info->action_list, irel->r_offset);
9573 irel->r_offset = source_offset;
9574 }
9575
9576 /* If the target section could have changed then
9577 we may need to change the relocation's target offset. */
9578
9579 target_sec = r_reloc_get_section (&r_rel);
9580
9581 /* For a reference to a discarded section from a DWARF section,
9582 i.e., where action_discarded is PRETEND, the symbol will
9583 eventually be modified to refer to the kept section (at least if
9584 the kept and discarded sections are the same size). Anticipate
9585 that here and adjust things accordingly. */
9586 if (! elf_xtensa_ignore_discarded_relocs (sec)
9587 && elf_xtensa_action_discarded (sec) == PRETEND
9588 && sec->sec_info_type != SEC_INFO_TYPE_STABS
9589 && target_sec != NULL
9590 && discarded_section (target_sec))
9591 {
9592 /* It would be natural to call _bfd_elf_check_kept_section
9593 here, but it's not exported from elflink.c. It's also a
9594 fairly expensive check. Adjusting the relocations to the
9595 discarded section is fairly harmless; it will only adjust
9596 some addends and difference values. If it turns out that
9597 _bfd_elf_check_kept_section fails later, it won't matter,
9598 so just compare the section names to find the right group
9599 member. */
9600 asection *kept = target_sec->kept_section;
9601 if (kept != NULL)
9602 {
9603 if ((kept->flags & SEC_GROUP) != 0)
9604 {
9605 asection *first = elf_next_in_group (kept);
9606 asection *s = first;
9607
9608 kept = NULL;
9609 while (s != NULL)
9610 {
9611 if (strcmp (s->name, target_sec->name) == 0)
9612 {
9613 kept = s;
9614 break;
9615 }
9616 s = elf_next_in_group (s);
9617 if (s == first)
9618 break;
9619 }
9620 }
9621 }
9622 if (kept != NULL
9623 && ((target_sec->rawsize != 0
9624 ? target_sec->rawsize : target_sec->size)
9625 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9626 target_sec = kept;
9627 }
9628
9629 target_relax_info = get_xtensa_relax_info (target_sec);
9630 if (target_relax_info
9631 && (target_relax_info->is_relaxable_literal_section
9632 || target_relax_info->is_relaxable_asm_section))
9633 {
9634 r_reloc new_reloc;
9635 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
9636
9637 if (r_type == R_XTENSA_DIFF8
9638 || r_type == R_XTENSA_DIFF16
9639 || r_type == R_XTENSA_DIFF32
9640 || r_type == R_XTENSA_PDIFF8
9641 || r_type == R_XTENSA_PDIFF16
9642 || r_type == R_XTENSA_PDIFF32
9643 || r_type == R_XTENSA_NDIFF8
9644 || r_type == R_XTENSA_NDIFF16
9645 || r_type == R_XTENSA_NDIFF32)
9646 {
9647 bfd_signed_vma diff_value = 0;
9648 bfd_vma new_end_offset, diff_mask = 0;
9649
9650 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9651 {
9652 (*link_info->callbacks->reloc_dangerous)
9653 (link_info, _("invalid relocation address"),
9654 abfd, sec, old_source_offset);
9655 goto error_return;
9656 }
9657
9658 switch (r_type)
9659 {
9660 case R_XTENSA_DIFF8:
9661 diff_mask = 0x7f;
9662 diff_value =
9663 bfd_get_signed_8 (abfd, &contents[old_source_offset]);
9664 break;
9665 case R_XTENSA_DIFF16:
9666 diff_mask = 0x7fff;
9667 diff_value =
9668 bfd_get_signed_16 (abfd, &contents[old_source_offset]);
9669 break;
9670 case R_XTENSA_DIFF32:
9671 diff_mask = 0x7fffffff;
9672 diff_value =
9673 bfd_get_signed_32 (abfd, &contents[old_source_offset]);
9674 break;
9675 case R_XTENSA_PDIFF8:
9676 case R_XTENSA_NDIFF8:
9677 diff_mask = 0xff;
9678 diff_value =
9679 bfd_get_8 (abfd, &contents[old_source_offset]);
9680 break;
9681 case R_XTENSA_PDIFF16:
9682 case R_XTENSA_NDIFF16:
9683 diff_mask = 0xffff;
9684 diff_value =
9685 bfd_get_16 (abfd, &contents[old_source_offset]);
9686 break;
9687 case R_XTENSA_PDIFF32:
9688 case R_XTENSA_NDIFF32:
9689 diff_mask = 0xffffffff;
9690 diff_value =
9691 bfd_get_32 (abfd, &contents[old_source_offset]);
9692 break;
9693 }
9694
9695 if (r_type >= R_XTENSA_NDIFF8
9696 && r_type <= R_XTENSA_NDIFF32
9697 && diff_value)
9698 diff_value |= ~diff_mask;
9699
9700 new_end_offset = offset_with_removed_text_map
9701 (&target_relax_info->action_list,
9702 r_rel.target_offset + diff_value);
9703 diff_value = new_end_offset - new_reloc.target_offset;
9704
9705 switch (r_type)
9706 {
9707 case R_XTENSA_DIFF8:
9708 bfd_put_signed_8 (abfd, diff_value,
9709 &contents[old_source_offset]);
9710 break;
9711 case R_XTENSA_DIFF16:
9712 bfd_put_signed_16 (abfd, diff_value,
9713 &contents[old_source_offset]);
9714 break;
9715 case R_XTENSA_DIFF32:
9716 bfd_put_signed_32 (abfd, diff_value,
9717 &contents[old_source_offset]);
9718 break;
9719 case R_XTENSA_PDIFF8:
9720 case R_XTENSA_NDIFF8:
9721 bfd_put_8 (abfd, diff_value,
9722 &contents[old_source_offset]);
9723 break;
9724 case R_XTENSA_PDIFF16:
9725 case R_XTENSA_NDIFF16:
9726 bfd_put_16 (abfd, diff_value,
9727 &contents[old_source_offset]);
9728 break;
9729 case R_XTENSA_PDIFF32:
9730 case R_XTENSA_NDIFF32:
9731 bfd_put_32 (abfd, diff_value,
9732 &contents[old_source_offset]);
9733 break;
9734 }
9735
9736 /* Check for overflow. Sign bits must be all zeroes or
9737 all ones. When sign bits are all ones diff_value
9738 may not be zero. */
9739 if (((diff_value & ~diff_mask) != 0
9740 && (diff_value & ~diff_mask) != ~diff_mask)
9741 || (diff_value && (bfd_vma) diff_value == ~diff_mask))
9742 {
9743 (*link_info->callbacks->reloc_dangerous)
9744 (link_info, _("overflow after relaxation"),
9745 abfd, sec, old_source_offset);
9746 goto error_return;
9747 }
9748
9749 pin_contents (sec, contents);
9750 }
9751
9752 /* If the relocation still references a section in the same
9753 input file, modify the relocation directly instead of
9754 adding a "fix" record. */
9755 if (target_sec->owner == abfd)
9756 {
9757 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9758 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9759 irel->r_addend = new_reloc.rela.r_addend;
9760 pin_internal_relocs (sec, internal_relocs);
9761 }
9762 else
9763 {
9764 bfd_vma addend_displacement;
9765 reloc_bfd_fix *fix;
9766
9767 addend_displacement =
9768 new_reloc.target_offset + new_reloc.virtual_offset;
9769 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9770 target_sec,
9771 addend_displacement, TRUE);
9772 add_fix (sec, fix);
9773 }
9774 }
9775 }
9776 }
9777
9778 if ((relax_info->is_relaxable_literal_section
9779 || relax_info->is_relaxable_asm_section)
9780 && action_list_count (&relax_info->action_list))
9781 {
9782 /* Walk through the planned actions and build up a table
9783 of move, copy and fill records. Use the move, copy and
9784 fill records to perform the actions once. */
9785
9786 bfd_size_type final_size, copy_size, orig_insn_size;
9787 bfd_byte *scratch = NULL;
9788 bfd_byte *dup_contents = NULL;
9789 bfd_size_type orig_size = sec->size;
9790 bfd_vma orig_dot = 0;
9791 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9792 orig dot in physical memory. */
9793 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9794 bfd_vma dup_dot = 0;
9795
9796 text_action *action;
9797
9798 final_size = sec->size;
9799
9800 splay_tree_foreach (relax_info->action_list.tree,
9801 action_remove_bytes_fn, &final_size);
9802 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9803 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9804
9805 /* The dot is the current fill location. */
9806 #if DEBUG
9807 print_action_list (stderr, &relax_info->action_list);
9808 #endif
9809
9810 for (action = action_first (&relax_info->action_list); action;
9811 action = action_next (&relax_info->action_list, action))
9812 {
9813 virtual_action = FALSE;
9814 if (action->offset > orig_dot)
9815 {
9816 orig_dot += orig_dot_copied;
9817 orig_dot_copied = 0;
9818 orig_dot_vo = 0;
9819 /* Out of the virtual world. */
9820 }
9821
9822 if (action->offset > orig_dot)
9823 {
9824 copy_size = action->offset - orig_dot;
9825 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9826 orig_dot += copy_size;
9827 dup_dot += copy_size;
9828 BFD_ASSERT (action->offset == orig_dot);
9829 }
9830 else if (action->offset < orig_dot)
9831 {
9832 if (action->action == ta_fill
9833 && action->offset - action->removed_bytes == orig_dot)
9834 {
9835 /* This is OK because the fill only effects the dup_dot. */
9836 }
9837 else if (action->action == ta_add_literal)
9838 {
9839 /* TBD. Might need to handle this. */
9840 }
9841 }
9842 if (action->offset == orig_dot)
9843 {
9844 if (action->virtual_offset > orig_dot_vo)
9845 {
9846 if (orig_dot_vo == 0)
9847 {
9848 /* Need to copy virtual_offset bytes. Probably four. */
9849 copy_size = action->virtual_offset - orig_dot_vo;
9850 memmove (&dup_contents[dup_dot],
9851 &contents[orig_dot], copy_size);
9852 orig_dot_copied = copy_size;
9853 dup_dot += copy_size;
9854 }
9855 virtual_action = TRUE;
9856 }
9857 else
9858 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9859 }
9860 switch (action->action)
9861 {
9862 case ta_remove_literal:
9863 case ta_remove_insn:
9864 BFD_ASSERT (action->removed_bytes >= 0);
9865 orig_dot += action->removed_bytes;
9866 break;
9867
9868 case ta_narrow_insn:
9869 orig_insn_size = 3;
9870 copy_size = 2;
9871 memmove (scratch, &contents[orig_dot], orig_insn_size);
9872 BFD_ASSERT (action->removed_bytes == 1);
9873 rv = narrow_instruction (scratch, final_size, 0);
9874 BFD_ASSERT (rv);
9875 memmove (&dup_contents[dup_dot], scratch, copy_size);
9876 orig_dot += orig_insn_size;
9877 dup_dot += copy_size;
9878 break;
9879
9880 case ta_fill:
9881 if (action->removed_bytes >= 0)
9882 orig_dot += action->removed_bytes;
9883 else
9884 {
9885 /* Already zeroed in dup_contents. Just bump the
9886 counters. */
9887 dup_dot += (-action->removed_bytes);
9888 }
9889 break;
9890
9891 case ta_none:
9892 BFD_ASSERT (action->removed_bytes == 0);
9893 break;
9894
9895 case ta_convert_longcall:
9896 case ta_remove_longcall:
9897 /* These will be removed or converted before we get here. */
9898 BFD_ASSERT (0);
9899 break;
9900
9901 case ta_widen_insn:
9902 orig_insn_size = 2;
9903 copy_size = 3;
9904 memmove (scratch, &contents[orig_dot], orig_insn_size);
9905 BFD_ASSERT (action->removed_bytes == -1);
9906 rv = widen_instruction (scratch, final_size, 0);
9907 BFD_ASSERT (rv);
9908 memmove (&dup_contents[dup_dot], scratch, copy_size);
9909 orig_dot += orig_insn_size;
9910 dup_dot += copy_size;
9911 break;
9912
9913 case ta_add_literal:
9914 orig_insn_size = 0;
9915 copy_size = 4;
9916 BFD_ASSERT (action->removed_bytes == -4);
9917 /* TBD -- place the literal value here and insert
9918 into the table. */
9919 memset (&dup_contents[dup_dot], 0, 4);
9920 pin_internal_relocs (sec, internal_relocs);
9921 pin_contents (sec, contents);
9922
9923 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9924 relax_info, &internal_relocs, &action->value))
9925 goto error_return;
9926
9927 if (virtual_action)
9928 orig_dot_vo += copy_size;
9929
9930 orig_dot += orig_insn_size;
9931 dup_dot += copy_size;
9932 break;
9933
9934 default:
9935 /* Not implemented yet. */
9936 BFD_ASSERT (0);
9937 break;
9938 }
9939
9940 BFD_ASSERT (dup_dot <= final_size);
9941 BFD_ASSERT (orig_dot <= orig_size);
9942 }
9943
9944 orig_dot += orig_dot_copied;
9945 orig_dot_copied = 0;
9946
9947 if (orig_dot != orig_size)
9948 {
9949 copy_size = orig_size - orig_dot;
9950 BFD_ASSERT (orig_size > orig_dot);
9951 BFD_ASSERT (dup_dot + copy_size == final_size);
9952 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9953 orig_dot += copy_size;
9954 dup_dot += copy_size;
9955 }
9956 BFD_ASSERT (orig_size == orig_dot);
9957 BFD_ASSERT (final_size == dup_dot);
9958
9959 /* Move the dup_contents back. */
9960 if (final_size > orig_size)
9961 {
9962 /* Contents need to be reallocated. Swap the dup_contents into
9963 contents. */
9964 sec->contents = dup_contents;
9965 free (contents);
9966 contents = dup_contents;
9967 pin_contents (sec, contents);
9968 }
9969 else
9970 {
9971 BFD_ASSERT (final_size <= orig_size);
9972 memset (contents, 0, orig_size);
9973 memcpy (contents, dup_contents, final_size);
9974 free (dup_contents);
9975 }
9976 free (scratch);
9977 pin_contents (sec, contents);
9978
9979 if (sec->rawsize == 0)
9980 sec->rawsize = sec->size;
9981 sec->size = final_size;
9982 }
9983
9984 error_return:
9985 release_internal_relocs (sec, internal_relocs);
9986 release_contents (sec, contents);
9987 return ok;
9988 }
9989
9990
9991 static bfd_boolean
9992 translate_section_fixes (asection *sec)
9993 {
9994 xtensa_relax_info *relax_info;
9995 reloc_bfd_fix *r;
9996
9997 relax_info = get_xtensa_relax_info (sec);
9998 if (!relax_info)
9999 return TRUE;
10000
10001 for (r = relax_info->fix_list; r != NULL; r = r->next)
10002 if (!translate_reloc_bfd_fix (r))
10003 return FALSE;
10004
10005 return TRUE;
10006 }
10007
10008
10009 /* Translate a fix given the mapping in the relax info for the target
10010 section. If it has already been translated, no work is required. */
10011
10012 static bfd_boolean
10013 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
10014 {
10015 reloc_bfd_fix new_fix;
10016 asection *sec;
10017 xtensa_relax_info *relax_info;
10018 removed_literal *removed;
10019 bfd_vma new_offset, target_offset;
10020
10021 if (fix->translated)
10022 return TRUE;
10023
10024 sec = fix->target_sec;
10025 target_offset = fix->target_offset;
10026
10027 relax_info = get_xtensa_relax_info (sec);
10028 if (!relax_info)
10029 {
10030 fix->translated = TRUE;
10031 return TRUE;
10032 }
10033
10034 new_fix = *fix;
10035
10036 /* The fix does not need to be translated if the section cannot change. */
10037 if (!relax_info->is_relaxable_literal_section
10038 && !relax_info->is_relaxable_asm_section)
10039 {
10040 fix->translated = TRUE;
10041 return TRUE;
10042 }
10043
10044 /* If the literal has been moved and this relocation was on an
10045 opcode, then the relocation should move to the new literal
10046 location. Otherwise, the relocation should move within the
10047 section. */
10048
10049 removed = FALSE;
10050 if (is_operand_relocation (fix->src_type))
10051 {
10052 /* Check if the original relocation is against a literal being
10053 removed. */
10054 removed = find_removed_literal (&relax_info->removed_list,
10055 target_offset);
10056 }
10057
10058 if (removed)
10059 {
10060 asection *new_sec;
10061
10062 /* The fact that there is still a relocation to this literal indicates
10063 that the literal is being coalesced, not simply removed. */
10064 BFD_ASSERT (removed->to.abfd != NULL);
10065
10066 /* This was moved to some other address (possibly another section). */
10067 new_sec = r_reloc_get_section (&removed->to);
10068 if (new_sec != sec)
10069 {
10070 sec = new_sec;
10071 relax_info = get_xtensa_relax_info (sec);
10072 if (!relax_info ||
10073 (!relax_info->is_relaxable_literal_section
10074 && !relax_info->is_relaxable_asm_section))
10075 {
10076 target_offset = removed->to.target_offset;
10077 new_fix.target_sec = new_sec;
10078 new_fix.target_offset = target_offset;
10079 new_fix.translated = TRUE;
10080 *fix = new_fix;
10081 return TRUE;
10082 }
10083 }
10084 target_offset = removed->to.target_offset;
10085 new_fix.target_sec = new_sec;
10086 }
10087
10088 /* The target address may have been moved within its section. */
10089 new_offset = offset_with_removed_text (&relax_info->action_list,
10090 target_offset);
10091
10092 new_fix.target_offset = new_offset;
10093 new_fix.target_offset = new_offset;
10094 new_fix.translated = TRUE;
10095 *fix = new_fix;
10096 return TRUE;
10097 }
10098
10099
10100 /* Fix up a relocation to take account of removed literals. */
10101
10102 static asection *
10103 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
10104 {
10105 xtensa_relax_info *relax_info;
10106 removed_literal *removed;
10107 bfd_vma target_offset, base_offset;
10108
10109 *new_rel = *orig_rel;
10110
10111 if (!r_reloc_is_defined (orig_rel))
10112 return sec ;
10113
10114 relax_info = get_xtensa_relax_info (sec);
10115 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
10116 || relax_info->is_relaxable_asm_section));
10117
10118 target_offset = orig_rel->target_offset;
10119
10120 removed = FALSE;
10121 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
10122 {
10123 /* Check if the original relocation is against a literal being
10124 removed. */
10125 removed = find_removed_literal (&relax_info->removed_list,
10126 target_offset);
10127 }
10128 if (removed && removed->to.abfd)
10129 {
10130 asection *new_sec;
10131
10132 /* The fact that there is still a relocation to this literal indicates
10133 that the literal is being coalesced, not simply removed. */
10134 BFD_ASSERT (removed->to.abfd != NULL);
10135
10136 /* This was moved to some other address
10137 (possibly in another section). */
10138 *new_rel = removed->to;
10139 new_sec = r_reloc_get_section (new_rel);
10140 if (new_sec != sec)
10141 {
10142 sec = new_sec;
10143 relax_info = get_xtensa_relax_info (sec);
10144 if (!relax_info
10145 || (!relax_info->is_relaxable_literal_section
10146 && !relax_info->is_relaxable_asm_section))
10147 return sec;
10148 }
10149 target_offset = new_rel->target_offset;
10150 }
10151
10152 /* Find the base offset of the reloc symbol, excluding any addend from the
10153 reloc or from the section contents (for a partial_inplace reloc). Then
10154 find the adjusted values of the offsets due to relaxation. The base
10155 offset is needed to determine the change to the reloc's addend; the reloc
10156 addend should not be adjusted due to relaxations located before the base
10157 offset. */
10158
10159 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
10160 if (base_offset <= target_offset)
10161 {
10162 int base_removed = removed_by_actions_map (&relax_info->action_list,
10163 base_offset, FALSE);
10164 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10165 target_offset, FALSE) -
10166 base_removed;
10167
10168 new_rel->target_offset = target_offset - base_removed - addend_removed;
10169 new_rel->rela.r_addend -= addend_removed;
10170 }
10171 else
10172 {
10173 /* Handle a negative addend. The base offset comes first. */
10174 int tgt_removed = removed_by_actions_map (&relax_info->action_list,
10175 target_offset, FALSE);
10176 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10177 base_offset, FALSE) -
10178 tgt_removed;
10179
10180 new_rel->target_offset = target_offset - tgt_removed;
10181 new_rel->rela.r_addend += addend_removed;
10182 }
10183
10184 return sec;
10185 }
10186
10187
10188 /* For dynamic links, there may be a dynamic relocation for each
10189 literal. The number of dynamic relocations must be computed in
10190 size_dynamic_sections, which occurs before relaxation. When a
10191 literal is removed, this function checks if there is a corresponding
10192 dynamic relocation and shrinks the size of the appropriate dynamic
10193 relocation section accordingly. At this point, the contents of the
10194 dynamic relocation sections have not yet been filled in, so there's
10195 nothing else that needs to be done. */
10196
10197 static void
10198 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
10199 bfd *abfd,
10200 asection *input_section,
10201 Elf_Internal_Rela *rel)
10202 {
10203 struct elf_xtensa_link_hash_table *htab;
10204 Elf_Internal_Shdr *symtab_hdr;
10205 struct elf_link_hash_entry **sym_hashes;
10206 unsigned long r_symndx;
10207 int r_type;
10208 struct elf_link_hash_entry *h;
10209 bfd_boolean dynamic_symbol;
10210
10211 htab = elf_xtensa_hash_table (info);
10212 if (htab == NULL)
10213 return;
10214
10215 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10216 sym_hashes = elf_sym_hashes (abfd);
10217
10218 r_type = ELF32_R_TYPE (rel->r_info);
10219 r_symndx = ELF32_R_SYM (rel->r_info);
10220
10221 if (r_symndx < symtab_hdr->sh_info)
10222 h = NULL;
10223 else
10224 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10225
10226 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
10227
10228 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
10229 && (input_section->flags & SEC_ALLOC) != 0
10230 && (dynamic_symbol
10231 || (bfd_link_pic (info)
10232 && (!h || h->root.type != bfd_link_hash_undefweak))))
10233 {
10234 asection *srel;
10235 bfd_boolean is_plt = FALSE;
10236
10237 if (dynamic_symbol && r_type == R_XTENSA_PLT)
10238 {
10239 srel = htab->elf.srelplt;
10240 is_plt = TRUE;
10241 }
10242 else
10243 srel = htab->elf.srelgot;
10244
10245 /* Reduce size of the .rela.* section by one reloc. */
10246 BFD_ASSERT (srel != NULL);
10247 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
10248 srel->size -= sizeof (Elf32_External_Rela);
10249
10250 if (is_plt)
10251 {
10252 asection *splt, *sgotplt, *srelgot;
10253 int reloc_index, chunk;
10254
10255 /* Find the PLT reloc index of the entry being removed. This
10256 is computed from the size of ".rela.plt". It is needed to
10257 figure out which PLT chunk to resize. Usually "last index
10258 = size - 1" since the index starts at zero, but in this
10259 context, the size has just been decremented so there's no
10260 need to subtract one. */
10261 reloc_index = srel->size / sizeof (Elf32_External_Rela);
10262
10263 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
10264 splt = elf_xtensa_get_plt_section (info, chunk);
10265 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
10266 BFD_ASSERT (splt != NULL && sgotplt != NULL);
10267
10268 /* Check if an entire PLT chunk has just been eliminated. */
10269 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
10270 {
10271 /* The two magic GOT entries for that chunk can go away. */
10272 srelgot = htab->elf.srelgot;
10273 BFD_ASSERT (srelgot != NULL);
10274 srelgot->reloc_count -= 2;
10275 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
10276 sgotplt->size -= 8;
10277
10278 /* There should be only one entry left (and it will be
10279 removed below). */
10280 BFD_ASSERT (sgotplt->size == 4);
10281 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
10282 }
10283
10284 BFD_ASSERT (sgotplt->size >= 4);
10285 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
10286
10287 sgotplt->size -= 4;
10288 splt->size -= PLT_ENTRY_SIZE;
10289 }
10290 }
10291 }
10292
10293
10294 /* Take an r_rel and move it to another section. This usually
10295 requires extending the interal_relocation array and pinning it. If
10296 the original r_rel is from the same BFD, we can complete this here.
10297 Otherwise, we add a fix record to let the final link fix the
10298 appropriate address. Contents and internal relocations for the
10299 section must be pinned after calling this routine. */
10300
10301 static bfd_boolean
10302 move_literal (bfd *abfd,
10303 struct bfd_link_info *link_info,
10304 asection *sec,
10305 bfd_vma offset,
10306 bfd_byte *contents,
10307 xtensa_relax_info *relax_info,
10308 Elf_Internal_Rela **internal_relocs_p,
10309 const literal_value *lit)
10310 {
10311 Elf_Internal_Rela *new_relocs = NULL;
10312 size_t new_relocs_count = 0;
10313 Elf_Internal_Rela this_rela;
10314 const r_reloc *r_rel;
10315
10316 r_rel = &lit->r_rel;
10317 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
10318
10319 if (r_reloc_is_const (r_rel))
10320 bfd_put_32 (abfd, lit->value, contents + offset);
10321 else
10322 {
10323 int r_type;
10324 unsigned i;
10325 reloc_bfd_fix *fix;
10326 unsigned insert_at;
10327
10328 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
10329
10330 /* This is the difficult case. We have to create a fix up. */
10331 this_rela.r_offset = offset;
10332 this_rela.r_info = ELF32_R_INFO (0, r_type);
10333 this_rela.r_addend =
10334 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
10335 bfd_put_32 (abfd, lit->value, contents + offset);
10336
10337 /* Currently, we cannot move relocations during a relocatable link. */
10338 BFD_ASSERT (!bfd_link_relocatable (link_info));
10339 fix = reloc_bfd_fix_init (sec, offset, r_type,
10340 r_reloc_get_section (r_rel),
10341 r_rel->target_offset + r_rel->virtual_offset,
10342 FALSE);
10343 /* We also need to mark that relocations are needed here. */
10344 sec->flags |= SEC_RELOC;
10345
10346 translate_reloc_bfd_fix (fix);
10347 /* This fix has not yet been translated. */
10348 add_fix (sec, fix);
10349
10350 /* Add the relocation. If we have already allocated our own
10351 space for the relocations and we have room for more, then use
10352 it. Otherwise, allocate new space and move the literals. */
10353 insert_at = sec->reloc_count;
10354 for (i = 0; i < sec->reloc_count; ++i)
10355 {
10356 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
10357 {
10358 insert_at = i;
10359 break;
10360 }
10361 }
10362
10363 if (*internal_relocs_p != relax_info->allocated_relocs
10364 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
10365 {
10366 BFD_ASSERT (relax_info->allocated_relocs == NULL
10367 || sec->reloc_count == relax_info->relocs_count);
10368
10369 if (relax_info->allocated_relocs_count == 0)
10370 new_relocs_count = (sec->reloc_count + 2) * 2;
10371 else
10372 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
10373
10374 new_relocs = (Elf_Internal_Rela *)
10375 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
10376 if (!new_relocs)
10377 return FALSE;
10378
10379 /* We could handle this more quickly by finding the split point. */
10380 if (insert_at != 0)
10381 memcpy (new_relocs, *internal_relocs_p,
10382 insert_at * sizeof (Elf_Internal_Rela));
10383
10384 new_relocs[insert_at] = this_rela;
10385
10386 if (insert_at != sec->reloc_count)
10387 memcpy (new_relocs + insert_at + 1,
10388 (*internal_relocs_p) + insert_at,
10389 (sec->reloc_count - insert_at)
10390 * sizeof (Elf_Internal_Rela));
10391
10392 if (*internal_relocs_p != relax_info->allocated_relocs)
10393 {
10394 /* The first time we re-allocate, we can only free the
10395 old relocs if they were allocated with bfd_malloc.
10396 This is not true when keep_memory is in effect. */
10397 if (!link_info->keep_memory)
10398 free (*internal_relocs_p);
10399 }
10400 else
10401 free (*internal_relocs_p);
10402 relax_info->allocated_relocs = new_relocs;
10403 relax_info->allocated_relocs_count = new_relocs_count;
10404 elf_section_data (sec)->relocs = new_relocs;
10405 sec->reloc_count++;
10406 relax_info->relocs_count = sec->reloc_count;
10407 *internal_relocs_p = new_relocs;
10408 }
10409 else
10410 {
10411 if (insert_at != sec->reloc_count)
10412 {
10413 unsigned idx;
10414 for (idx = sec->reloc_count; idx > insert_at; idx--)
10415 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
10416 }
10417 (*internal_relocs_p)[insert_at] = this_rela;
10418 sec->reloc_count++;
10419 if (relax_info->allocated_relocs)
10420 relax_info->relocs_count = sec->reloc_count;
10421 }
10422 }
10423 return TRUE;
10424 }
10425
10426
10427 /* This is similar to relax_section except that when a target is moved,
10428 we shift addresses up. We also need to modify the size. This
10429 algorithm does NOT allow for relocations into the middle of the
10430 property sections. */
10431
10432 static bfd_boolean
10433 relax_property_section (bfd *abfd,
10434 asection *sec,
10435 struct bfd_link_info *link_info)
10436 {
10437 Elf_Internal_Rela *internal_relocs;
10438 bfd_byte *contents;
10439 unsigned i;
10440 bfd_boolean ok = TRUE;
10441 bfd_boolean is_full_prop_section;
10442 size_t last_zfill_target_offset = 0;
10443 asection *last_zfill_target_sec = NULL;
10444 bfd_size_type sec_size;
10445 bfd_size_type entry_size;
10446
10447 sec_size = bfd_get_section_limit (abfd, sec);
10448 internal_relocs = retrieve_internal_relocs (abfd, sec,
10449 link_info->keep_memory);
10450 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
10451 if (contents == NULL && sec_size != 0)
10452 {
10453 ok = FALSE;
10454 goto error_return;
10455 }
10456
10457 is_full_prop_section = xtensa_is_proptable_section (sec);
10458 if (is_full_prop_section)
10459 entry_size = 12;
10460 else
10461 entry_size = 8;
10462
10463 if (internal_relocs)
10464 {
10465 for (i = 0; i < sec->reloc_count; i++)
10466 {
10467 Elf_Internal_Rela *irel;
10468 xtensa_relax_info *target_relax_info;
10469 unsigned r_type;
10470 asection *target_sec;
10471 literal_value val;
10472 bfd_byte *size_p, *flags_p;
10473
10474 /* Locally change the source address.
10475 Translate the target to the new target address.
10476 If it points to this section and has been removed, MOVE IT.
10477 Also, don't forget to modify the associated SIZE at
10478 (offset + 4). */
10479
10480 irel = &internal_relocs[i];
10481 r_type = ELF32_R_TYPE (irel->r_info);
10482 if (r_type == R_XTENSA_NONE)
10483 continue;
10484
10485 /* Find the literal value. */
10486 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
10487 size_p = &contents[irel->r_offset + 4];
10488 flags_p = NULL;
10489 if (is_full_prop_section)
10490 flags_p = &contents[irel->r_offset + 8];
10491 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
10492
10493 target_sec = r_reloc_get_section (&val.r_rel);
10494 target_relax_info = get_xtensa_relax_info (target_sec);
10495
10496 if (target_relax_info
10497 && (target_relax_info->is_relaxable_literal_section
10498 || target_relax_info->is_relaxable_asm_section ))
10499 {
10500 /* Translate the relocation's destination. */
10501 bfd_vma old_offset = val.r_rel.target_offset;
10502 bfd_vma new_offset;
10503 long old_size, new_size;
10504 int removed_by_old_offset =
10505 removed_by_actions_map (&target_relax_info->action_list,
10506 old_offset, FALSE);
10507 new_offset = old_offset - removed_by_old_offset;
10508
10509 /* Assert that we are not out of bounds. */
10510 old_size = bfd_get_32 (abfd, size_p);
10511 new_size = old_size;
10512
10513 if (old_size == 0)
10514 {
10515 /* Only the first zero-sized unreachable entry is
10516 allowed to expand. In this case the new offset
10517 should be the offset before the fill and the new
10518 size is the expansion size. For other zero-sized
10519 entries the resulting size should be zero with an
10520 offset before or after the fill address depending
10521 on whether the expanding unreachable entry
10522 preceeds it. */
10523 if (last_zfill_target_sec == 0
10524 || last_zfill_target_sec != target_sec
10525 || last_zfill_target_offset != old_offset)
10526 {
10527 bfd_vma new_end_offset = new_offset;
10528
10529 /* Recompute the new_offset, but this time don't
10530 include any fill inserted by relaxation. */
10531 removed_by_old_offset =
10532 removed_by_actions_map (&target_relax_info->action_list,
10533 old_offset, TRUE);
10534 new_offset = old_offset - removed_by_old_offset;
10535
10536 /* If it is not unreachable and we have not yet
10537 seen an unreachable at this address, place it
10538 before the fill address. */
10539 if (flags_p && (bfd_get_32 (abfd, flags_p)
10540 & XTENSA_PROP_UNREACHABLE) != 0)
10541 {
10542 new_size = new_end_offset - new_offset;
10543
10544 last_zfill_target_sec = target_sec;
10545 last_zfill_target_offset = old_offset;
10546 }
10547 }
10548 }
10549 else
10550 {
10551 int removed_by_old_offset_size =
10552 removed_by_actions_map (&target_relax_info->action_list,
10553 old_offset + old_size, TRUE);
10554 new_size -= removed_by_old_offset_size - removed_by_old_offset;
10555 }
10556
10557 if (new_size != old_size)
10558 {
10559 bfd_put_32 (abfd, new_size, size_p);
10560 pin_contents (sec, contents);
10561 }
10562
10563 if (new_offset != old_offset)
10564 {
10565 bfd_vma diff = new_offset - old_offset;
10566 irel->r_addend += diff;
10567 pin_internal_relocs (sec, internal_relocs);
10568 }
10569 }
10570 }
10571 }
10572
10573 /* Combine adjacent property table entries. This is also done in
10574 finish_dynamic_sections() but at that point it's too late to
10575 reclaim the space in the output section, so we do this twice. */
10576
10577 if (internal_relocs && (!bfd_link_relocatable (link_info)
10578 || xtensa_is_littable_section (sec)))
10579 {
10580 Elf_Internal_Rela *last_irel = NULL;
10581 Elf_Internal_Rela *irel, *next_rel, *rel_end;
10582 int removed_bytes = 0;
10583 bfd_vma offset;
10584 flagword predef_flags;
10585
10586 predef_flags = xtensa_get_property_predef_flags (sec);
10587
10588 /* Walk over memory and relocations at the same time.
10589 This REQUIRES that the internal_relocs be sorted by offset. */
10590 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
10591 internal_reloc_compare);
10592
10593 pin_internal_relocs (sec, internal_relocs);
10594 pin_contents (sec, contents);
10595
10596 next_rel = internal_relocs;
10597 rel_end = internal_relocs + sec->reloc_count;
10598
10599 BFD_ASSERT (sec->size % entry_size == 0);
10600
10601 for (offset = 0; offset < sec->size; offset += entry_size)
10602 {
10603 Elf_Internal_Rela *offset_rel, *extra_rel;
10604 bfd_vma bytes_to_remove, size, actual_offset;
10605 bfd_boolean remove_this_rel;
10606 flagword flags;
10607
10608 /* Find the first relocation for the entry at the current offset.
10609 Adjust the offsets of any extra relocations for the previous
10610 entry. */
10611 offset_rel = NULL;
10612 if (next_rel)
10613 {
10614 for (irel = next_rel; irel < rel_end; irel++)
10615 {
10616 if ((irel->r_offset == offset
10617 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10618 || irel->r_offset > offset)
10619 {
10620 offset_rel = irel;
10621 break;
10622 }
10623 irel->r_offset -= removed_bytes;
10624 }
10625 }
10626
10627 /* Find the next relocation (if there are any left). */
10628 extra_rel = NULL;
10629 if (offset_rel)
10630 {
10631 for (irel = offset_rel + 1; irel < rel_end; irel++)
10632 {
10633 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10634 {
10635 extra_rel = irel;
10636 break;
10637 }
10638 }
10639 }
10640
10641 /* Check if there are relocations on the current entry. There
10642 should usually be a relocation on the offset field. If there
10643 are relocations on the size or flags, then we can't optimize
10644 this entry. Also, find the next relocation to examine on the
10645 next iteration. */
10646 if (offset_rel)
10647 {
10648 if (offset_rel->r_offset >= offset + entry_size)
10649 {
10650 next_rel = offset_rel;
10651 /* There are no relocations on the current entry, but we
10652 might still be able to remove it if the size is zero. */
10653 offset_rel = NULL;
10654 }
10655 else if (offset_rel->r_offset > offset
10656 || (extra_rel
10657 && extra_rel->r_offset < offset + entry_size))
10658 {
10659 /* There is a relocation on the size or flags, so we can't
10660 do anything with this entry. Continue with the next. */
10661 next_rel = offset_rel;
10662 continue;
10663 }
10664 else
10665 {
10666 BFD_ASSERT (offset_rel->r_offset == offset);
10667 offset_rel->r_offset -= removed_bytes;
10668 next_rel = offset_rel + 1;
10669 }
10670 }
10671 else
10672 next_rel = NULL;
10673
10674 remove_this_rel = FALSE;
10675 bytes_to_remove = 0;
10676 actual_offset = offset - removed_bytes;
10677 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
10678
10679 if (is_full_prop_section)
10680 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
10681 else
10682 flags = predef_flags;
10683
10684 if (size == 0
10685 && (flags & XTENSA_PROP_ALIGN) == 0
10686 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
10687 {
10688 /* Always remove entries with zero size and no alignment. */
10689 bytes_to_remove = entry_size;
10690 if (offset_rel)
10691 remove_this_rel = TRUE;
10692 }
10693 else if (offset_rel
10694 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
10695 {
10696 if (last_irel)
10697 {
10698 flagword old_flags;
10699 bfd_vma old_size =
10700 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10701 bfd_vma old_address =
10702 (last_irel->r_addend
10703 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10704 bfd_vma new_address =
10705 (offset_rel->r_addend
10706 + bfd_get_32 (abfd, &contents[actual_offset]));
10707 if (is_full_prop_section)
10708 old_flags = bfd_get_32
10709 (abfd, &contents[last_irel->r_offset + 8]);
10710 else
10711 old_flags = predef_flags;
10712
10713 if ((ELF32_R_SYM (offset_rel->r_info)
10714 == ELF32_R_SYM (last_irel->r_info))
10715 && old_address + old_size == new_address
10716 && old_flags == flags
10717 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10718 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
10719 {
10720 /* Fix the old size. */
10721 bfd_put_32 (abfd, old_size + size,
10722 &contents[last_irel->r_offset + 4]);
10723 bytes_to_remove = entry_size;
10724 remove_this_rel = TRUE;
10725 }
10726 else
10727 last_irel = offset_rel;
10728 }
10729 else
10730 last_irel = offset_rel;
10731 }
10732
10733 if (remove_this_rel)
10734 {
10735 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
10736 offset_rel->r_offset = 0;
10737 }
10738
10739 if (bytes_to_remove != 0)
10740 {
10741 removed_bytes += bytes_to_remove;
10742 if (offset + bytes_to_remove < sec->size)
10743 memmove (&contents[actual_offset],
10744 &contents[actual_offset + bytes_to_remove],
10745 sec->size - offset - bytes_to_remove);
10746 }
10747 }
10748
10749 if (removed_bytes)
10750 {
10751 /* Fix up any extra relocations on the last entry. */
10752 for (irel = next_rel; irel < rel_end; irel++)
10753 irel->r_offset -= removed_bytes;
10754
10755 /* Clear the removed bytes. */
10756 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
10757
10758 if (sec->rawsize == 0)
10759 sec->rawsize = sec->size;
10760 sec->size -= removed_bytes;
10761
10762 if (xtensa_is_littable_section (sec))
10763 {
10764 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10765 if (sgotloc)
10766 sgotloc->size -= removed_bytes;
10767 }
10768 }
10769 }
10770
10771 error_return:
10772 release_internal_relocs (sec, internal_relocs);
10773 release_contents (sec, contents);
10774 return ok;
10775 }
10776
10777 \f
10778 /* Third relaxation pass. */
10779
10780 /* Change symbol values to account for removed literals. */
10781
10782 bfd_boolean
10783 relax_section_symbols (bfd *abfd, asection *sec)
10784 {
10785 xtensa_relax_info *relax_info;
10786 unsigned int sec_shndx;
10787 Elf_Internal_Shdr *symtab_hdr;
10788 Elf_Internal_Sym *isymbuf;
10789 unsigned i, num_syms, num_locals;
10790
10791 relax_info = get_xtensa_relax_info (sec);
10792 BFD_ASSERT (relax_info);
10793
10794 if (!relax_info->is_relaxable_literal_section
10795 && !relax_info->is_relaxable_asm_section)
10796 return TRUE;
10797
10798 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10799
10800 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10801 isymbuf = retrieve_local_syms (abfd);
10802
10803 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10804 num_locals = symtab_hdr->sh_info;
10805
10806 /* Adjust the local symbols defined in this section. */
10807 for (i = 0; i < num_locals; i++)
10808 {
10809 Elf_Internal_Sym *isym = &isymbuf[i];
10810
10811 if (isym->st_shndx == sec_shndx)
10812 {
10813 bfd_vma orig_addr = isym->st_value;
10814 int removed = removed_by_actions_map (&relax_info->action_list,
10815 orig_addr, FALSE);
10816
10817 isym->st_value -= removed;
10818 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10819 isym->st_size -=
10820 removed_by_actions_map (&relax_info->action_list,
10821 orig_addr + isym->st_size, FALSE) -
10822 removed;
10823 }
10824 }
10825
10826 /* Now adjust the global symbols defined in this section. */
10827 for (i = 0; i < (num_syms - num_locals); i++)
10828 {
10829 struct elf_link_hash_entry *sym_hash;
10830
10831 sym_hash = elf_sym_hashes (abfd)[i];
10832
10833 if (sym_hash->root.type == bfd_link_hash_warning)
10834 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10835
10836 if ((sym_hash->root.type == bfd_link_hash_defined
10837 || sym_hash->root.type == bfd_link_hash_defweak)
10838 && sym_hash->root.u.def.section == sec)
10839 {
10840 bfd_vma orig_addr = sym_hash->root.u.def.value;
10841 int removed = removed_by_actions_map (&relax_info->action_list,
10842 orig_addr, FALSE);
10843
10844 sym_hash->root.u.def.value -= removed;
10845
10846 if (sym_hash->type == STT_FUNC)
10847 sym_hash->size -=
10848 removed_by_actions_map (&relax_info->action_list,
10849 orig_addr + sym_hash->size, FALSE) -
10850 removed;
10851 }
10852 }
10853
10854 return TRUE;
10855 }
10856
10857 \f
10858 /* "Fix" handling functions, called while performing relocations. */
10859
10860 static bfd_boolean
10861 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10862 bfd *input_bfd,
10863 asection *input_section,
10864 bfd_byte *contents)
10865 {
10866 r_reloc r_rel;
10867 asection *sec, *old_sec;
10868 bfd_vma old_offset;
10869 int r_type = ELF32_R_TYPE (rel->r_info);
10870 reloc_bfd_fix *fix;
10871
10872 if (r_type == R_XTENSA_NONE)
10873 return TRUE;
10874
10875 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10876 if (!fix)
10877 return TRUE;
10878
10879 r_reloc_init (&r_rel, input_bfd, rel, contents,
10880 bfd_get_section_limit (input_bfd, input_section));
10881 old_sec = r_reloc_get_section (&r_rel);
10882 old_offset = r_rel.target_offset;
10883
10884 if (!old_sec || !r_reloc_is_defined (&r_rel))
10885 {
10886 if (r_type != R_XTENSA_ASM_EXPAND)
10887 {
10888 _bfd_error_handler
10889 /* xgettext:c-format */
10890 (_("%pB(%pA+%#" PRIx64 "): unexpected fix for %s relocation"),
10891 input_bfd, input_section, (uint64_t) rel->r_offset,
10892 elf_howto_table[r_type].name);
10893 return FALSE;
10894 }
10895 /* Leave it be. Resolution will happen in a later stage. */
10896 }
10897 else
10898 {
10899 sec = fix->target_sec;
10900 rel->r_addend += ((sec->output_offset + fix->target_offset)
10901 - (old_sec->output_offset + old_offset));
10902 }
10903 return TRUE;
10904 }
10905
10906
10907 static void
10908 do_fix_for_final_link (Elf_Internal_Rela *rel,
10909 bfd *input_bfd,
10910 asection *input_section,
10911 bfd_byte *contents,
10912 bfd_vma *relocationp)
10913 {
10914 asection *sec;
10915 int r_type = ELF32_R_TYPE (rel->r_info);
10916 reloc_bfd_fix *fix;
10917 bfd_vma fixup_diff;
10918
10919 if (r_type == R_XTENSA_NONE)
10920 return;
10921
10922 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10923 if (!fix)
10924 return;
10925
10926 sec = fix->target_sec;
10927
10928 fixup_diff = rel->r_addend;
10929 if (elf_howto_table[fix->src_type].partial_inplace)
10930 {
10931 bfd_vma inplace_val;
10932 BFD_ASSERT (fix->src_offset
10933 < bfd_get_section_limit (input_bfd, input_section));
10934 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10935 fixup_diff += inplace_val;
10936 }
10937
10938 *relocationp = (sec->output_section->vma
10939 + sec->output_offset
10940 + fix->target_offset - fixup_diff);
10941 }
10942
10943 \f
10944 /* Miscellaneous utility functions.... */
10945
10946 static asection *
10947 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
10948 {
10949 bfd *dynobj;
10950 char plt_name[17];
10951
10952 if (chunk == 0)
10953 return elf_hash_table (info)->splt;
10954
10955 dynobj = elf_hash_table (info)->dynobj;
10956 sprintf (plt_name, ".plt.%u", chunk);
10957 return bfd_get_linker_section (dynobj, plt_name);
10958 }
10959
10960
10961 static asection *
10962 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
10963 {
10964 bfd *dynobj;
10965 char got_name[21];
10966
10967 if (chunk == 0)
10968 return elf_hash_table (info)->sgotplt;
10969
10970 dynobj = elf_hash_table (info)->dynobj;
10971 sprintf (got_name, ".got.plt.%u", chunk);
10972 return bfd_get_linker_section (dynobj, got_name);
10973 }
10974
10975
10976 /* Get the input section for a given symbol index.
10977 If the symbol is:
10978 . a section symbol, return the section;
10979 . a common symbol, return the common section;
10980 . an undefined symbol, return the undefined section;
10981 . an indirect symbol, follow the links;
10982 . an absolute value, return the absolute section. */
10983
10984 static asection *
10985 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
10986 {
10987 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10988 asection *target_sec = NULL;
10989 if (r_symndx < symtab_hdr->sh_info)
10990 {
10991 Elf_Internal_Sym *isymbuf;
10992 unsigned int section_index;
10993
10994 isymbuf = retrieve_local_syms (abfd);
10995 section_index = isymbuf[r_symndx].st_shndx;
10996
10997 if (section_index == SHN_UNDEF)
10998 target_sec = bfd_und_section_ptr;
10999 else if (section_index == SHN_ABS)
11000 target_sec = bfd_abs_section_ptr;
11001 else if (section_index == SHN_COMMON)
11002 target_sec = bfd_com_section_ptr;
11003 else
11004 target_sec = bfd_section_from_elf_index (abfd, section_index);
11005 }
11006 else
11007 {
11008 unsigned long indx = r_symndx - symtab_hdr->sh_info;
11009 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
11010
11011 while (h->root.type == bfd_link_hash_indirect
11012 || h->root.type == bfd_link_hash_warning)
11013 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11014
11015 switch (h->root.type)
11016 {
11017 case bfd_link_hash_defined:
11018 case bfd_link_hash_defweak:
11019 target_sec = h->root.u.def.section;
11020 break;
11021 case bfd_link_hash_common:
11022 target_sec = bfd_com_section_ptr;
11023 break;
11024 case bfd_link_hash_undefined:
11025 case bfd_link_hash_undefweak:
11026 target_sec = bfd_und_section_ptr;
11027 break;
11028 default: /* New indirect warning. */
11029 target_sec = bfd_und_section_ptr;
11030 break;
11031 }
11032 }
11033 return target_sec;
11034 }
11035
11036
11037 static struct elf_link_hash_entry *
11038 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
11039 {
11040 unsigned long indx;
11041 struct elf_link_hash_entry *h;
11042 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11043
11044 if (r_symndx < symtab_hdr->sh_info)
11045 return NULL;
11046
11047 indx = r_symndx - symtab_hdr->sh_info;
11048 h = elf_sym_hashes (abfd)[indx];
11049 while (h->root.type == bfd_link_hash_indirect
11050 || h->root.type == bfd_link_hash_warning)
11051 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11052 return h;
11053 }
11054
11055
11056 /* Get the section-relative offset for a symbol number. */
11057
11058 static bfd_vma
11059 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
11060 {
11061 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11062 bfd_vma offset = 0;
11063
11064 if (r_symndx < symtab_hdr->sh_info)
11065 {
11066 Elf_Internal_Sym *isymbuf;
11067 isymbuf = retrieve_local_syms (abfd);
11068 offset = isymbuf[r_symndx].st_value;
11069 }
11070 else
11071 {
11072 unsigned long indx = r_symndx - symtab_hdr->sh_info;
11073 struct elf_link_hash_entry *h =
11074 elf_sym_hashes (abfd)[indx];
11075
11076 while (h->root.type == bfd_link_hash_indirect
11077 || h->root.type == bfd_link_hash_warning)
11078 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11079 if (h->root.type == bfd_link_hash_defined
11080 || h->root.type == bfd_link_hash_defweak)
11081 offset = h->root.u.def.value;
11082 }
11083 return offset;
11084 }
11085
11086
11087 static bfd_boolean
11088 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
11089 {
11090 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
11091 struct elf_link_hash_entry *h;
11092
11093 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
11094 if (h && h->root.type == bfd_link_hash_defweak)
11095 return TRUE;
11096 return FALSE;
11097 }
11098
11099
11100 static bfd_boolean
11101 pcrel_reloc_fits (xtensa_opcode opc,
11102 int opnd,
11103 bfd_vma self_address,
11104 bfd_vma dest_address)
11105 {
11106 xtensa_isa isa = xtensa_default_isa;
11107 uint32 valp = dest_address;
11108 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
11109 || xtensa_operand_encode (isa, opc, opnd, &valp))
11110 return FALSE;
11111 return TRUE;
11112 }
11113
11114
11115 static bfd_boolean
11116 xtensa_is_property_section (asection *sec)
11117 {
11118 if (xtensa_is_insntable_section (sec)
11119 || xtensa_is_littable_section (sec)
11120 || xtensa_is_proptable_section (sec))
11121 return TRUE;
11122
11123 return FALSE;
11124 }
11125
11126
11127 static bfd_boolean
11128 xtensa_is_insntable_section (asection *sec)
11129 {
11130 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
11131 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
11132 return TRUE;
11133
11134 return FALSE;
11135 }
11136
11137
11138 static bfd_boolean
11139 xtensa_is_littable_section (asection *sec)
11140 {
11141 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
11142 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
11143 return TRUE;
11144
11145 return FALSE;
11146 }
11147
11148
11149 static bfd_boolean
11150 xtensa_is_proptable_section (asection *sec)
11151 {
11152 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
11153 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
11154 return TRUE;
11155
11156 return FALSE;
11157 }
11158
11159
11160 static int
11161 internal_reloc_compare (const void *ap, const void *bp)
11162 {
11163 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11164 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11165
11166 if (a->r_offset != b->r_offset)
11167 return (a->r_offset - b->r_offset);
11168
11169 /* We don't need to sort on these criteria for correctness,
11170 but enforcing a more strict ordering prevents unstable qsort
11171 from behaving differently with different implementations.
11172 Without the code below we get correct but different results
11173 on Solaris 2.7 and 2.8. We would like to always produce the
11174 same results no matter the host. */
11175
11176 if (a->r_info != b->r_info)
11177 return (a->r_info - b->r_info);
11178
11179 return (a->r_addend - b->r_addend);
11180 }
11181
11182
11183 static int
11184 internal_reloc_matches (const void *ap, const void *bp)
11185 {
11186 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11187 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11188
11189 /* Check if one entry overlaps with the other; this shouldn't happen
11190 except when searching for a match. */
11191 return (a->r_offset - b->r_offset);
11192 }
11193
11194
11195 /* Predicate function used to look up a section in a particular group. */
11196
11197 static bfd_boolean
11198 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
11199 {
11200 const char *gname = inf;
11201 const char *group_name = elf_group_name (sec);
11202
11203 return (group_name == gname
11204 || (group_name != NULL
11205 && gname != NULL
11206 && strcmp (group_name, gname) == 0));
11207 }
11208
11209
11210 static char *
11211 xtensa_add_names (const char *base, const char *suffix)
11212 {
11213 if (suffix)
11214 {
11215 size_t base_len = strlen (base);
11216 size_t suffix_len = strlen (suffix);
11217 char *str = bfd_malloc (base_len + suffix_len + 1);
11218
11219 memcpy (str, base, base_len);
11220 memcpy (str + base_len, suffix, suffix_len + 1);
11221 return str;
11222 }
11223 else
11224 {
11225 return strdup (base);
11226 }
11227 }
11228
11229 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
11230
11231 static char *
11232 xtensa_property_section_name (asection *sec, const char *base_name,
11233 bfd_boolean separate_sections)
11234 {
11235 const char *suffix, *group_name;
11236 char *prop_sec_name;
11237
11238 group_name = elf_group_name (sec);
11239 if (group_name)
11240 {
11241 suffix = strrchr (sec->name, '.');
11242 if (suffix == sec->name)
11243 suffix = 0;
11244 prop_sec_name = xtensa_add_names (base_name, suffix);
11245 }
11246 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
11247 {
11248 char *linkonce_kind = 0;
11249
11250 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
11251 linkonce_kind = "x.";
11252 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
11253 linkonce_kind = "p.";
11254 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
11255 linkonce_kind = "prop.";
11256 else
11257 abort ();
11258
11259 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
11260 + strlen (linkonce_kind) + 1);
11261 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
11262 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
11263
11264 suffix = sec->name + linkonce_len;
11265 /* For backward compatibility, replace "t." instead of inserting
11266 the new linkonce_kind (but not for "prop" sections). */
11267 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
11268 suffix += 2;
11269 strcat (prop_sec_name + linkonce_len, suffix);
11270 }
11271 else
11272 {
11273 prop_sec_name = xtensa_add_names (base_name,
11274 separate_sections ? sec->name : NULL);
11275 }
11276
11277 return prop_sec_name;
11278 }
11279
11280
11281 static asection *
11282 xtensa_get_separate_property_section (asection *sec, const char *base_name,
11283 bfd_boolean separate_section)
11284 {
11285 char *prop_sec_name;
11286 asection *prop_sec;
11287
11288 prop_sec_name = xtensa_property_section_name (sec, base_name,
11289 separate_section);
11290 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11291 match_section_group,
11292 (void *) elf_group_name (sec));
11293 free (prop_sec_name);
11294 return prop_sec;
11295 }
11296
11297 static asection *
11298 xtensa_get_property_section (asection *sec, const char *base_name)
11299 {
11300 asection *prop_sec;
11301
11302 /* Try individual property section first. */
11303 prop_sec = xtensa_get_separate_property_section (sec, base_name, TRUE);
11304
11305 /* Refer to a common property section if individual is not present. */
11306 if (!prop_sec)
11307 prop_sec = xtensa_get_separate_property_section (sec, base_name, FALSE);
11308
11309 return prop_sec;
11310 }
11311
11312
11313 asection *
11314 xtensa_make_property_section (asection *sec, const char *base_name)
11315 {
11316 char *prop_sec_name;
11317 asection *prop_sec;
11318
11319 /* Check if the section already exists. */
11320 prop_sec_name = xtensa_property_section_name (sec, base_name,
11321 elf32xtensa_separate_props);
11322 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11323 match_section_group,
11324 (void *) elf_group_name (sec));
11325 /* If not, create it. */
11326 if (! prop_sec)
11327 {
11328 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
11329 flags |= (bfd_section_flags (sec)
11330 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
11331
11332 prop_sec = bfd_make_section_anyway_with_flags
11333 (sec->owner, strdup (prop_sec_name), flags);
11334 if (! prop_sec)
11335 return 0;
11336
11337 elf_group_name (prop_sec) = elf_group_name (sec);
11338 }
11339
11340 free (prop_sec_name);
11341 return prop_sec;
11342 }
11343
11344
11345 flagword
11346 xtensa_get_property_predef_flags (asection *sec)
11347 {
11348 if (xtensa_is_insntable_section (sec))
11349 return (XTENSA_PROP_INSN
11350 | XTENSA_PROP_NO_TRANSFORM
11351 | XTENSA_PROP_INSN_NO_REORDER);
11352
11353 if (xtensa_is_littable_section (sec))
11354 return (XTENSA_PROP_LITERAL
11355 | XTENSA_PROP_NO_TRANSFORM
11356 | XTENSA_PROP_INSN_NO_REORDER);
11357
11358 return 0;
11359 }
11360
11361 \f
11362 /* Other functions called directly by the linker. */
11363
11364 bfd_boolean
11365 xtensa_callback_required_dependence (bfd *abfd,
11366 asection *sec,
11367 struct bfd_link_info *link_info,
11368 deps_callback_t callback,
11369 void *closure)
11370 {
11371 Elf_Internal_Rela *internal_relocs;
11372 bfd_byte *contents;
11373 unsigned i;
11374 bfd_boolean ok = TRUE;
11375 bfd_size_type sec_size;
11376
11377 sec_size = bfd_get_section_limit (abfd, sec);
11378
11379 /* ".plt*" sections have no explicit relocations but they contain L32R
11380 instructions that reference the corresponding ".got.plt*" sections. */
11381 if ((sec->flags & SEC_LINKER_CREATED) != 0
11382 && CONST_STRNEQ (sec->name, ".plt"))
11383 {
11384 asection *sgotplt;
11385
11386 /* Find the corresponding ".got.plt*" section. */
11387 if (sec->name[4] == '\0')
11388 sgotplt = elf_hash_table (link_info)->sgotplt;
11389 else
11390 {
11391 char got_name[14];
11392 int chunk = 0;
11393
11394 BFD_ASSERT (sec->name[4] == '.');
11395 chunk = strtol (&sec->name[5], NULL, 10);
11396
11397 sprintf (got_name, ".got.plt.%u", chunk);
11398 sgotplt = bfd_get_linker_section (sec->owner, got_name);
11399 }
11400 BFD_ASSERT (sgotplt);
11401
11402 /* Assume worst-case offsets: L32R at the very end of the ".plt"
11403 section referencing a literal at the very beginning of
11404 ".got.plt". This is very close to the real dependence, anyway. */
11405 (*callback) (sec, sec_size, sgotplt, 0, closure);
11406 }
11407
11408 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
11409 when building uclibc, which runs "ld -b binary /dev/null". */
11410 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11411 return ok;
11412
11413 internal_relocs = retrieve_internal_relocs (abfd, sec,
11414 link_info->keep_memory);
11415 if (internal_relocs == NULL
11416 || sec->reloc_count == 0)
11417 return ok;
11418
11419 /* Cache the contents for the duration of this scan. */
11420 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
11421 if (contents == NULL && sec_size != 0)
11422 {
11423 ok = FALSE;
11424 goto error_return;
11425 }
11426
11427 if (!xtensa_default_isa)
11428 xtensa_default_isa = xtensa_isa_init (0, 0);
11429
11430 for (i = 0; i < sec->reloc_count; i++)
11431 {
11432 Elf_Internal_Rela *irel = &internal_relocs[i];
11433 if (is_l32r_relocation (abfd, sec, contents, irel))
11434 {
11435 r_reloc l32r_rel;
11436 asection *target_sec;
11437 bfd_vma target_offset;
11438
11439 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
11440 target_sec = NULL;
11441 target_offset = 0;
11442 /* L32Rs must be local to the input file. */
11443 if (r_reloc_is_defined (&l32r_rel))
11444 {
11445 target_sec = r_reloc_get_section (&l32r_rel);
11446 target_offset = l32r_rel.target_offset;
11447 }
11448 (*callback) (sec, irel->r_offset, target_sec, target_offset,
11449 closure);
11450 }
11451 }
11452
11453 error_return:
11454 release_internal_relocs (sec, internal_relocs);
11455 release_contents (sec, contents);
11456 return ok;
11457 }
11458
11459 /* The default literal sections should always be marked as "code" (i.e.,
11460 SHF_EXECINSTR). This is particularly important for the Linux kernel
11461 module loader so that the literals are not placed after the text. */
11462 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
11463 {
11464 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11465 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11466 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11467 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
11468 { NULL, 0, 0, 0, 0 }
11469 };
11470 \f
11471 #define ELF_TARGET_ID XTENSA_ELF_DATA
11472 #ifndef ELF_ARCH
11473 #define TARGET_LITTLE_SYM xtensa_elf32_le_vec
11474 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
11475 #define TARGET_BIG_SYM xtensa_elf32_be_vec
11476 #define TARGET_BIG_NAME "elf32-xtensa-be"
11477 #define ELF_ARCH bfd_arch_xtensa
11478
11479 #define ELF_MACHINE_CODE EM_XTENSA
11480 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
11481
11482 #define ELF_MAXPAGESIZE 0x1000
11483 #endif /* ELF_ARCH */
11484
11485 #define elf_backend_can_gc_sections 1
11486 #define elf_backend_can_refcount 1
11487 #define elf_backend_plt_readonly 1
11488 #define elf_backend_got_header_size 4
11489 #define elf_backend_want_dynbss 0
11490 #define elf_backend_want_got_plt 1
11491 #define elf_backend_dtrel_excludes_plt 1
11492
11493 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
11494
11495 #define bfd_elf32_mkobject elf_xtensa_mkobject
11496
11497 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
11498 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
11499 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
11500 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
11501 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
11502 #define bfd_elf32_bfd_reloc_name_lookup \
11503 elf_xtensa_reloc_name_lookup
11504 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
11505 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
11506
11507 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
11508 #define elf_backend_check_relocs elf_xtensa_check_relocs
11509 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
11510 #define elf_backend_discard_info elf_xtensa_discard_info
11511 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
11512 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
11513 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
11514 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
11515 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
11516 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
11517 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
11518 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
11519 #define elf_backend_object_p elf_xtensa_object_p
11520 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
11521 #define elf_backend_relocate_section elf_xtensa_relocate_section
11522 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
11523 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
11524 #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
11525 #define elf_backend_special_sections elf_xtensa_special_sections
11526 #define elf_backend_action_discarded elf_xtensa_action_discarded
11527 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
11528
11529 #include "elf32-target.h"