]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-xtensa.c
[gdb/symtab] Work around PR gas/29517, dwarf2 case
[thirdparty/binutils-gdb.git] / bfd / elf32-xtensa.c
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright (C) 2003-2019 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23
24 #include <stdarg.h>
25 #include <strings.h>
26
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "splay-tree.h"
32 #include "xtensa-isa.h"
33 #include "xtensa-config.h"
34
35 #define XTENSA_NO_NOP_REMOVAL 0
36
37 /* Local helper functions. */
38
39 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
40 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
41 static bfd_reloc_status_type bfd_elf_xtensa_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_boolean do_fix_for_relocatable_link
44 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
45 static void do_fix_for_final_link
46 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
47
48 /* Local functions to handle Xtensa configurability. */
49
50 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
51 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
52 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
53 static xtensa_opcode get_const16_opcode (void);
54 static xtensa_opcode get_l32r_opcode (void);
55 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
56 static int get_relocation_opnd (xtensa_opcode, int);
57 static int get_relocation_slot (int);
58 static xtensa_opcode get_relocation_opcode
59 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
60 static bfd_boolean is_l32r_relocation
61 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
62 static bfd_boolean is_alt_relocation (int);
63 static bfd_boolean is_operand_relocation (int);
64 static bfd_size_type insn_decode_len
65 (bfd_byte *, bfd_size_type, bfd_size_type);
66 static xtensa_opcode insn_decode_opcode
67 (bfd_byte *, bfd_size_type, bfd_size_type, int);
68 static bfd_boolean check_branch_target_aligned
69 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
70 static bfd_boolean check_loop_aligned
71 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
72 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
73 static bfd_size_type get_asm_simplify_size
74 (bfd_byte *, bfd_size_type, bfd_size_type);
75
76 /* Functions for link-time code simplifications. */
77
78 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
79 (bfd_byte *, bfd_vma, bfd_vma, char **);
80 static bfd_reloc_status_type contract_asm_expansion
81 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
82 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
83 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
84
85 /* Access to internal relocations, section contents and symbols. */
86
87 static Elf_Internal_Rela *retrieve_internal_relocs
88 (bfd *, asection *, bfd_boolean);
89 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
90 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
91 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
92 static void pin_contents (asection *, bfd_byte *);
93 static void release_contents (asection *, bfd_byte *);
94 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
95
96 /* Miscellaneous utility functions. */
97
98 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
99 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
100 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
101 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
102 (bfd *, unsigned long);
103 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
104 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
105 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
106 static bfd_boolean xtensa_is_property_section (asection *);
107 static bfd_boolean xtensa_is_insntable_section (asection *);
108 static bfd_boolean xtensa_is_littable_section (asection *);
109 static bfd_boolean xtensa_is_proptable_section (asection *);
110 static int internal_reloc_compare (const void *, const void *);
111 static int internal_reloc_matches (const void *, const void *);
112 static asection *xtensa_get_property_section (asection *, const char *);
113 static flagword xtensa_get_property_predef_flags (asection *);
114
115 /* Other functions called directly by the linker. */
116
117 typedef void (*deps_callback_t)
118 (asection *, bfd_vma, asection *, bfd_vma, void *);
119 extern bfd_boolean xtensa_callback_required_dependence
120 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
121
122
123 /* Globally visible flag for choosing size optimization of NOP removal
124 instead of branch-target-aware minimization for NOP removal.
125 When nonzero, narrow all instructions and remove all NOPs possible
126 around longcall expansions. */
127
128 int elf32xtensa_size_opt;
129
130
131 /* The "new_section_hook" is used to set up a per-section
132 "xtensa_relax_info" data structure with additional information used
133 during relaxation. */
134
135 typedef struct xtensa_relax_info_struct xtensa_relax_info;
136
137
138 /* The GNU tools do not easily allow extending interfaces to pass around
139 the pointer to the Xtensa ISA information, so instead we add a global
140 variable here (in BFD) that can be used by any of the tools that need
141 this information. */
142
143 xtensa_isa xtensa_default_isa;
144
145
146 /* When this is true, relocations may have been modified to refer to
147 symbols from other input files. The per-section list of "fix"
148 records needs to be checked when resolving relocations. */
149
150 static bfd_boolean relaxing_section = FALSE;
151
152 /* When this is true, during final links, literals that cannot be
153 coalesced and their relocations may be moved to other sections. */
154
155 int elf32xtensa_no_literal_movement = 1;
156
157 /* Place property records for a section into individual property section
158 with xt.prop. prefix. */
159
160 bfd_boolean elf32xtensa_separate_props = FALSE;
161
162 /* Rename one of the generic section flags to better document how it
163 is used here. */
164 /* Whether relocations have been processed. */
165 #define reloc_done sec_flg0
166 \f
167 static reloc_howto_type elf_howto_table[] =
168 {
169 HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
170 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
171 FALSE, 0, 0, FALSE),
172 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
173 bfd_elf_xtensa_reloc, "R_XTENSA_32",
174 TRUE, 0xffffffff, 0xffffffff, FALSE),
175
176 /* Replace a 32-bit value with a value from the runtime linker (only
177 used by linker-generated stub functions). The r_addend value is
178 special: 1 means to substitute a pointer to the runtime linker's
179 dynamic resolver function; 2 means to substitute the link map for
180 the shared object. */
181 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
182 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
183
184 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
185 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
186 FALSE, 0, 0xffffffff, FALSE),
187 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
188 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
189 FALSE, 0, 0xffffffff, FALSE),
190 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
191 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
192 FALSE, 0, 0xffffffff, FALSE),
193 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
194 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
195 FALSE, 0, 0xffffffff, FALSE),
196
197 EMPTY_HOWTO (7),
198
199 /* Old relocations for backward compatibility. */
200 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
201 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
202 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
203 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
204 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
205 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
206
207 /* Assembly auto-expansion. */
208 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
209 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
210 /* Relax assembly auto-expansion. */
211 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
212 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
213
214 EMPTY_HOWTO (13),
215
216 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
217 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
218 FALSE, 0, 0xffffffff, TRUE),
219
220 /* GNU extension to record C++ vtable hierarchy. */
221 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
222 NULL, "R_XTENSA_GNU_VTINHERIT",
223 FALSE, 0, 0, FALSE),
224 /* GNU extension to record C++ vtable member usage. */
225 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
226 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
227 FALSE, 0, 0, FALSE),
228
229 /* Relocations for supporting difference of symbols. */
230 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
231 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
232 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed,
233 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
234 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
235 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
236
237 /* General immediate operand relocations. */
238 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
239 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
240 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
242 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
243 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
244 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
245 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
246 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
248 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
249 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
250 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
251 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
252 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
254 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
255 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
256 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
257 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
258 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
260 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
261 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
262 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
263 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
264 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
265 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
266 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
267 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
268
269 /* "Alternate" relocations. The meaning of these is opcode-specific. */
270 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
272 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
273 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
274 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
275 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
276 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
278 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
279 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
280 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
281 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
282 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
283 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
284 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
286 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
287 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
288 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
289 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
290 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
292 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
293 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
294 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
295 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
296 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
297 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
298 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
299 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
300
301 /* TLS relocations. */
302 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
303 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
304 FALSE, 0, 0xffffffff, FALSE),
305 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
306 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
307 FALSE, 0, 0xffffffff, FALSE),
308 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
309 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
310 FALSE, 0, 0xffffffff, FALSE),
311 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
312 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
313 FALSE, 0, 0xffffffff, FALSE),
314 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
315 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
316 FALSE, 0, 0, FALSE),
317 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
318 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
319 FALSE, 0, 0, FALSE),
320 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
321 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
322 FALSE, 0, 0, FALSE),
323 };
324
325 #if DEBUG_GEN_RELOC
326 #define TRACE(str) \
327 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
328 #else
329 #define TRACE(str)
330 #endif
331
332 static reloc_howto_type *
333 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
334 bfd_reloc_code_real_type code)
335 {
336 switch (code)
337 {
338 case BFD_RELOC_NONE:
339 TRACE ("BFD_RELOC_NONE");
340 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
341
342 case BFD_RELOC_32:
343 TRACE ("BFD_RELOC_32");
344 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
345
346 case BFD_RELOC_32_PCREL:
347 TRACE ("BFD_RELOC_32_PCREL");
348 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
349
350 case BFD_RELOC_XTENSA_DIFF8:
351 TRACE ("BFD_RELOC_XTENSA_DIFF8");
352 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
353
354 case BFD_RELOC_XTENSA_DIFF16:
355 TRACE ("BFD_RELOC_XTENSA_DIFF16");
356 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
357
358 case BFD_RELOC_XTENSA_DIFF32:
359 TRACE ("BFD_RELOC_XTENSA_DIFF32");
360 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
361
362 case BFD_RELOC_XTENSA_RTLD:
363 TRACE ("BFD_RELOC_XTENSA_RTLD");
364 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
365
366 case BFD_RELOC_XTENSA_GLOB_DAT:
367 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
368 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
369
370 case BFD_RELOC_XTENSA_JMP_SLOT:
371 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
372 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
373
374 case BFD_RELOC_XTENSA_RELATIVE:
375 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
376 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
377
378 case BFD_RELOC_XTENSA_PLT:
379 TRACE ("BFD_RELOC_XTENSA_PLT");
380 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
381
382 case BFD_RELOC_XTENSA_OP0:
383 TRACE ("BFD_RELOC_XTENSA_OP0");
384 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
385
386 case BFD_RELOC_XTENSA_OP1:
387 TRACE ("BFD_RELOC_XTENSA_OP1");
388 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
389
390 case BFD_RELOC_XTENSA_OP2:
391 TRACE ("BFD_RELOC_XTENSA_OP2");
392 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
393
394 case BFD_RELOC_XTENSA_ASM_EXPAND:
395 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
396 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
397
398 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
399 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
400 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
401
402 case BFD_RELOC_VTABLE_INHERIT:
403 TRACE ("BFD_RELOC_VTABLE_INHERIT");
404 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
405
406 case BFD_RELOC_VTABLE_ENTRY:
407 TRACE ("BFD_RELOC_VTABLE_ENTRY");
408 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
409
410 case BFD_RELOC_XTENSA_TLSDESC_FN:
411 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
412 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
413
414 case BFD_RELOC_XTENSA_TLSDESC_ARG:
415 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
416 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
417
418 case BFD_RELOC_XTENSA_TLS_DTPOFF:
419 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
420 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
421
422 case BFD_RELOC_XTENSA_TLS_TPOFF:
423 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
424 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
425
426 case BFD_RELOC_XTENSA_TLS_FUNC:
427 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
428 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
429
430 case BFD_RELOC_XTENSA_TLS_ARG:
431 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
432 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
433
434 case BFD_RELOC_XTENSA_TLS_CALL:
435 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
436 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
437
438 default:
439 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
440 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
441 {
442 unsigned n = (R_XTENSA_SLOT0_OP +
443 (code - BFD_RELOC_XTENSA_SLOT0_OP));
444 return &elf_howto_table[n];
445 }
446
447 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
448 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
449 {
450 unsigned n = (R_XTENSA_SLOT0_ALT +
451 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
452 return &elf_howto_table[n];
453 }
454
455 break;
456 }
457
458 /* xgettext:c-format */
459 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, (int) code);
460 bfd_set_error (bfd_error_bad_value);
461 TRACE ("Unknown");
462 return NULL;
463 }
464
465 static reloc_howto_type *
466 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
467 const char *r_name)
468 {
469 unsigned int i;
470
471 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
472 if (elf_howto_table[i].name != NULL
473 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
474 return &elf_howto_table[i];
475
476 return NULL;
477 }
478
479
480 /* Given an ELF "rela" relocation, find the corresponding howto and record
481 it in the BFD internal arelent representation of the relocation. */
482
483 static bfd_boolean
484 elf_xtensa_info_to_howto_rela (bfd *abfd,
485 arelent *cache_ptr,
486 Elf_Internal_Rela *dst)
487 {
488 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
489
490 if (r_type >= (unsigned int) R_XTENSA_max)
491 {
492 /* xgettext:c-format */
493 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
494 abfd, r_type);
495 bfd_set_error (bfd_error_bad_value);
496 return FALSE;
497 }
498 cache_ptr->howto = &elf_howto_table[r_type];
499 return TRUE;
500 }
501
502 \f
503 /* Functions for the Xtensa ELF linker. */
504
505 /* The name of the dynamic interpreter. This is put in the .interp
506 section. */
507
508 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
509
510 /* The size in bytes of an entry in the procedure linkage table.
511 (This does _not_ include the space for the literals associated with
512 the PLT entry.) */
513
514 #define PLT_ENTRY_SIZE 16
515
516 /* For _really_ large PLTs, we may need to alternate between literals
517 and code to keep the literals within the 256K range of the L32R
518 instructions in the code. It's unlikely that anyone would ever need
519 such a big PLT, but an arbitrary limit on the PLT size would be bad.
520 Thus, we split the PLT into chunks. Since there's very little
521 overhead (2 extra literals) for each chunk, the chunk size is kept
522 small so that the code for handling multiple chunks get used and
523 tested regularly. With 254 entries, there are 1K of literals for
524 each chunk, and that seems like a nice round number. */
525
526 #define PLT_ENTRIES_PER_CHUNK 254
527
528 /* PLT entries are actually used as stub functions for lazy symbol
529 resolution. Once the symbol is resolved, the stub function is never
530 invoked. Note: the 32-byte frame size used here cannot be changed
531 without a corresponding change in the runtime linker. */
532
533 static const bfd_byte elf_xtensa_be_plt_entry[][PLT_ENTRY_SIZE] =
534 {
535 {
536 0x6c, 0x10, 0x04, /* entry sp, 32 */
537 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
538 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
539 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
540 0x0a, 0x80, 0x00, /* jx a8 */
541 0 /* unused */
542 },
543 {
544 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
545 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
546 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
547 0x0a, 0x80, 0x00, /* jx a8 */
548 0 /* unused */
549 }
550 };
551
552 static const bfd_byte elf_xtensa_le_plt_entry[][PLT_ENTRY_SIZE] =
553 {
554 {
555 0x36, 0x41, 0x00, /* entry sp, 32 */
556 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
557 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
558 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
559 0xa0, 0x08, 0x00, /* jx a8 */
560 0 /* unused */
561 },
562 {
563 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
564 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
565 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
566 0xa0, 0x08, 0x00, /* jx a8 */
567 0 /* unused */
568 }
569 };
570
571 /* The size of the thread control block. */
572 #define TCB_SIZE 8
573
574 struct elf_xtensa_link_hash_entry
575 {
576 struct elf_link_hash_entry elf;
577
578 bfd_signed_vma tlsfunc_refcount;
579
580 #define GOT_UNKNOWN 0
581 #define GOT_NORMAL 1
582 #define GOT_TLS_GD 2 /* global or local dynamic */
583 #define GOT_TLS_IE 4 /* initial or local exec */
584 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
585 unsigned char tls_type;
586 };
587
588 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
589
590 struct elf_xtensa_obj_tdata
591 {
592 struct elf_obj_tdata root;
593
594 /* tls_type for each local got entry. */
595 char *local_got_tls_type;
596
597 bfd_signed_vma *local_tlsfunc_refcounts;
598 };
599
600 #define elf_xtensa_tdata(abfd) \
601 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
602
603 #define elf_xtensa_local_got_tls_type(abfd) \
604 (elf_xtensa_tdata (abfd)->local_got_tls_type)
605
606 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
607 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
608
609 #define is_xtensa_elf(bfd) \
610 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
611 && elf_tdata (bfd) != NULL \
612 && elf_object_id (bfd) == XTENSA_ELF_DATA)
613
614 static bfd_boolean
615 elf_xtensa_mkobject (bfd *abfd)
616 {
617 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
618 XTENSA_ELF_DATA);
619 }
620
621 /* Xtensa ELF linker hash table. */
622
623 struct elf_xtensa_link_hash_table
624 {
625 struct elf_link_hash_table elf;
626
627 /* Short-cuts to get to dynamic linker sections. */
628 asection *sgotloc;
629 asection *spltlittbl;
630
631 /* Total count of PLT relocations seen during check_relocs.
632 The actual PLT code must be split into multiple sections and all
633 the sections have to be created before size_dynamic_sections,
634 where we figure out the exact number of PLT entries that will be
635 needed. It is OK if this count is an overestimate, e.g., some
636 relocations may be removed by GC. */
637 int plt_reloc_count;
638
639 struct elf_xtensa_link_hash_entry *tlsbase;
640 };
641
642 /* Get the Xtensa ELF linker hash table from a link_info structure. */
643
644 #define elf_xtensa_hash_table(p) \
645 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
646 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
647
648 /* Create an entry in an Xtensa ELF linker hash table. */
649
650 static struct bfd_hash_entry *
651 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
652 struct bfd_hash_table *table,
653 const char *string)
654 {
655 /* Allocate the structure if it has not already been allocated by a
656 subclass. */
657 if (entry == NULL)
658 {
659 entry = bfd_hash_allocate (table,
660 sizeof (struct elf_xtensa_link_hash_entry));
661 if (entry == NULL)
662 return entry;
663 }
664
665 /* Call the allocation method of the superclass. */
666 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
667 if (entry != NULL)
668 {
669 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
670 eh->tlsfunc_refcount = 0;
671 eh->tls_type = GOT_UNKNOWN;
672 }
673
674 return entry;
675 }
676
677 /* Create an Xtensa ELF linker hash table. */
678
679 static struct bfd_link_hash_table *
680 elf_xtensa_link_hash_table_create (bfd *abfd)
681 {
682 struct elf_link_hash_entry *tlsbase;
683 struct elf_xtensa_link_hash_table *ret;
684 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
685
686 ret = bfd_zmalloc (amt);
687 if (ret == NULL)
688 return NULL;
689
690 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
691 elf_xtensa_link_hash_newfunc,
692 sizeof (struct elf_xtensa_link_hash_entry),
693 XTENSA_ELF_DATA))
694 {
695 free (ret);
696 return NULL;
697 }
698
699 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
700 for it later. */
701 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
702 TRUE, FALSE, FALSE);
703 tlsbase->root.type = bfd_link_hash_new;
704 tlsbase->root.u.undef.abfd = NULL;
705 tlsbase->non_elf = 0;
706 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
707 ret->tlsbase->tls_type = GOT_UNKNOWN;
708
709 return &ret->elf.root;
710 }
711
712 /* Copy the extra info we tack onto an elf_link_hash_entry. */
713
714 static void
715 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
716 struct elf_link_hash_entry *dir,
717 struct elf_link_hash_entry *ind)
718 {
719 struct elf_xtensa_link_hash_entry *edir, *eind;
720
721 edir = elf_xtensa_hash_entry (dir);
722 eind = elf_xtensa_hash_entry (ind);
723
724 if (ind->root.type == bfd_link_hash_indirect)
725 {
726 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
727 eind->tlsfunc_refcount = 0;
728
729 if (dir->got.refcount <= 0)
730 {
731 edir->tls_type = eind->tls_type;
732 eind->tls_type = GOT_UNKNOWN;
733 }
734 }
735
736 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
737 }
738
739 static inline bfd_boolean
740 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
741 struct bfd_link_info *info)
742 {
743 /* Check if we should do dynamic things to this symbol. The
744 "ignore_protected" argument need not be set, because Xtensa code
745 does not require special handling of STV_PROTECTED to make function
746 pointer comparisons work properly. The PLT addresses are never
747 used for function pointers. */
748
749 return _bfd_elf_dynamic_symbol_p (h, info, 0);
750 }
751
752 \f
753 static int
754 property_table_compare (const void *ap, const void *bp)
755 {
756 const property_table_entry *a = (const property_table_entry *) ap;
757 const property_table_entry *b = (const property_table_entry *) bp;
758
759 if (a->address == b->address)
760 {
761 if (a->size != b->size)
762 return (a->size - b->size);
763
764 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
765 return ((b->flags & XTENSA_PROP_ALIGN)
766 - (a->flags & XTENSA_PROP_ALIGN));
767
768 if ((a->flags & XTENSA_PROP_ALIGN)
769 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
770 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
771 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
772 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
773
774 if ((a->flags & XTENSA_PROP_UNREACHABLE)
775 != (b->flags & XTENSA_PROP_UNREACHABLE))
776 return ((b->flags & XTENSA_PROP_UNREACHABLE)
777 - (a->flags & XTENSA_PROP_UNREACHABLE));
778
779 return (a->flags - b->flags);
780 }
781
782 return (a->address - b->address);
783 }
784
785
786 static int
787 property_table_matches (const void *ap, const void *bp)
788 {
789 const property_table_entry *a = (const property_table_entry *) ap;
790 const property_table_entry *b = (const property_table_entry *) bp;
791
792 /* Check if one entry overlaps with the other. */
793 if ((b->address >= a->address && b->address < (a->address + a->size))
794 || (a->address >= b->address && a->address < (b->address + b->size)))
795 return 0;
796
797 return (a->address - b->address);
798 }
799
800
801 /* Get the literal table or property table entries for the given
802 section. Sets TABLE_P and returns the number of entries. On
803 error, returns a negative value. */
804
805 int
806 xtensa_read_table_entries (bfd *abfd,
807 asection *section,
808 property_table_entry **table_p,
809 const char *sec_name,
810 bfd_boolean output_addr)
811 {
812 asection *table_section;
813 bfd_size_type table_size = 0;
814 bfd_byte *table_data;
815 property_table_entry *blocks;
816 int blk, block_count;
817 bfd_size_type num_records;
818 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
819 bfd_vma section_addr, off;
820 flagword predef_flags;
821 bfd_size_type table_entry_size, section_limit;
822
823 if (!section
824 || !(section->flags & SEC_ALLOC)
825 || (section->flags & SEC_DEBUGGING))
826 {
827 *table_p = NULL;
828 return 0;
829 }
830
831 table_section = xtensa_get_property_section (section, sec_name);
832 if (table_section)
833 table_size = table_section->size;
834
835 if (table_size == 0)
836 {
837 *table_p = NULL;
838 return 0;
839 }
840
841 predef_flags = xtensa_get_property_predef_flags (table_section);
842 table_entry_size = 12;
843 if (predef_flags)
844 table_entry_size -= 4;
845
846 num_records = table_size / table_entry_size;
847 table_data = retrieve_contents (abfd, table_section, TRUE);
848 blocks = (property_table_entry *)
849 bfd_malloc (num_records * sizeof (property_table_entry));
850 block_count = 0;
851
852 if (output_addr)
853 section_addr = section->output_section->vma + section->output_offset;
854 else
855 section_addr = section->vma;
856
857 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
858 if (internal_relocs && !table_section->reloc_done)
859 {
860 qsort (internal_relocs, table_section->reloc_count,
861 sizeof (Elf_Internal_Rela), internal_reloc_compare);
862 irel = internal_relocs;
863 }
864 else
865 irel = NULL;
866
867 section_limit = bfd_get_section_limit (abfd, section);
868 rel_end = internal_relocs + table_section->reloc_count;
869
870 for (off = 0; off < table_size; off += table_entry_size)
871 {
872 bfd_vma address = bfd_get_32 (abfd, table_data + off);
873
874 /* Skip any relocations before the current offset. This should help
875 avoid confusion caused by unexpected relocations for the preceding
876 table entry. */
877 while (irel &&
878 (irel->r_offset < off
879 || (irel->r_offset == off
880 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
881 {
882 irel += 1;
883 if (irel >= rel_end)
884 irel = 0;
885 }
886
887 if (irel && irel->r_offset == off)
888 {
889 bfd_vma sym_off;
890 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
891 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
892
893 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
894 continue;
895
896 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
897 BFD_ASSERT (sym_off == 0);
898 address += (section_addr + sym_off + irel->r_addend);
899 }
900 else
901 {
902 if (address < section_addr
903 || address >= section_addr + section_limit)
904 continue;
905 }
906
907 blocks[block_count].address = address;
908 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
909 if (predef_flags)
910 blocks[block_count].flags = predef_flags;
911 else
912 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
913 block_count++;
914 }
915
916 release_contents (table_section, table_data);
917 release_internal_relocs (table_section, internal_relocs);
918
919 if (block_count > 0)
920 {
921 /* Now sort them into address order for easy reference. */
922 qsort (blocks, block_count, sizeof (property_table_entry),
923 property_table_compare);
924
925 /* Check that the table contents are valid. Problems may occur,
926 for example, if an unrelocated object file is stripped. */
927 for (blk = 1; blk < block_count; blk++)
928 {
929 /* The only circumstance where two entries may legitimately
930 have the same address is when one of them is a zero-size
931 placeholder to mark a place where fill can be inserted.
932 The zero-size entry should come first. */
933 if (blocks[blk - 1].address == blocks[blk].address &&
934 blocks[blk - 1].size != 0)
935 {
936 /* xgettext:c-format */
937 _bfd_error_handler (_("%pB(%pA): invalid property table"),
938 abfd, section);
939 bfd_set_error (bfd_error_bad_value);
940 free (blocks);
941 return -1;
942 }
943 }
944 }
945
946 *table_p = blocks;
947 return block_count;
948 }
949
950
951 static property_table_entry *
952 elf_xtensa_find_property_entry (property_table_entry *property_table,
953 int property_table_size,
954 bfd_vma addr)
955 {
956 property_table_entry entry;
957 property_table_entry *rv;
958
959 if (property_table_size == 0)
960 return NULL;
961
962 entry.address = addr;
963 entry.size = 1;
964 entry.flags = 0;
965
966 rv = bsearch (&entry, property_table, property_table_size,
967 sizeof (property_table_entry), property_table_matches);
968 return rv;
969 }
970
971
972 static bfd_boolean
973 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
974 int lit_table_size,
975 bfd_vma addr)
976 {
977 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
978 return TRUE;
979
980 return FALSE;
981 }
982
983 \f
984 /* Look through the relocs for a section during the first phase, and
985 calculate needed space in the dynamic reloc sections. */
986
987 static bfd_boolean
988 elf_xtensa_check_relocs (bfd *abfd,
989 struct bfd_link_info *info,
990 asection *sec,
991 const Elf_Internal_Rela *relocs)
992 {
993 struct elf_xtensa_link_hash_table *htab;
994 Elf_Internal_Shdr *symtab_hdr;
995 struct elf_link_hash_entry **sym_hashes;
996 const Elf_Internal_Rela *rel;
997 const Elf_Internal_Rela *rel_end;
998
999 if (bfd_link_relocatable (info) || (sec->flags & SEC_ALLOC) == 0)
1000 return TRUE;
1001
1002 BFD_ASSERT (is_xtensa_elf (abfd));
1003
1004 htab = elf_xtensa_hash_table (info);
1005 if (htab == NULL)
1006 return FALSE;
1007
1008 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1009 sym_hashes = elf_sym_hashes (abfd);
1010
1011 rel_end = relocs + sec->reloc_count;
1012 for (rel = relocs; rel < rel_end; rel++)
1013 {
1014 unsigned int r_type;
1015 unsigned r_symndx;
1016 struct elf_link_hash_entry *h = NULL;
1017 struct elf_xtensa_link_hash_entry *eh;
1018 int tls_type, old_tls_type;
1019 bfd_boolean is_got = FALSE;
1020 bfd_boolean is_plt = FALSE;
1021 bfd_boolean is_tlsfunc = FALSE;
1022
1023 r_symndx = ELF32_R_SYM (rel->r_info);
1024 r_type = ELF32_R_TYPE (rel->r_info);
1025
1026 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1027 {
1028 /* xgettext:c-format */
1029 _bfd_error_handler (_("%pB: bad symbol index: %d"),
1030 abfd, r_symndx);
1031 return FALSE;
1032 }
1033
1034 if (r_symndx >= symtab_hdr->sh_info)
1035 {
1036 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1037 while (h->root.type == bfd_link_hash_indirect
1038 || h->root.type == bfd_link_hash_warning)
1039 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1040 }
1041 eh = elf_xtensa_hash_entry (h);
1042
1043 switch (r_type)
1044 {
1045 case R_XTENSA_TLSDESC_FN:
1046 if (bfd_link_pic (info))
1047 {
1048 tls_type = GOT_TLS_GD;
1049 is_got = TRUE;
1050 is_tlsfunc = TRUE;
1051 }
1052 else
1053 tls_type = GOT_TLS_IE;
1054 break;
1055
1056 case R_XTENSA_TLSDESC_ARG:
1057 if (bfd_link_pic (info))
1058 {
1059 tls_type = GOT_TLS_GD;
1060 is_got = TRUE;
1061 }
1062 else
1063 {
1064 tls_type = GOT_TLS_IE;
1065 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1066 is_got = TRUE;
1067 }
1068 break;
1069
1070 case R_XTENSA_TLS_DTPOFF:
1071 if (bfd_link_pic (info))
1072 tls_type = GOT_TLS_GD;
1073 else
1074 tls_type = GOT_TLS_IE;
1075 break;
1076
1077 case R_XTENSA_TLS_TPOFF:
1078 tls_type = GOT_TLS_IE;
1079 if (bfd_link_pic (info))
1080 info->flags |= DF_STATIC_TLS;
1081 if (bfd_link_pic (info) || h)
1082 is_got = TRUE;
1083 break;
1084
1085 case R_XTENSA_32:
1086 tls_type = GOT_NORMAL;
1087 is_got = TRUE;
1088 break;
1089
1090 case R_XTENSA_PLT:
1091 tls_type = GOT_NORMAL;
1092 is_plt = TRUE;
1093 break;
1094
1095 case R_XTENSA_GNU_VTINHERIT:
1096 /* This relocation describes the C++ object vtable hierarchy.
1097 Reconstruct it for later use during GC. */
1098 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1099 return FALSE;
1100 continue;
1101
1102 case R_XTENSA_GNU_VTENTRY:
1103 /* This relocation describes which C++ vtable entries are actually
1104 used. Record for later use during GC. */
1105 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1106 return FALSE;
1107 continue;
1108
1109 default:
1110 /* Nothing to do for any other relocations. */
1111 continue;
1112 }
1113
1114 if (h)
1115 {
1116 if (is_plt)
1117 {
1118 if (h->plt.refcount <= 0)
1119 {
1120 h->needs_plt = 1;
1121 h->plt.refcount = 1;
1122 }
1123 else
1124 h->plt.refcount += 1;
1125
1126 /* Keep track of the total PLT relocation count even if we
1127 don't yet know whether the dynamic sections will be
1128 created. */
1129 htab->plt_reloc_count += 1;
1130
1131 if (elf_hash_table (info)->dynamic_sections_created)
1132 {
1133 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1134 return FALSE;
1135 }
1136 }
1137 else if (is_got)
1138 {
1139 if (h->got.refcount <= 0)
1140 h->got.refcount = 1;
1141 else
1142 h->got.refcount += 1;
1143 }
1144
1145 if (is_tlsfunc)
1146 eh->tlsfunc_refcount += 1;
1147
1148 old_tls_type = eh->tls_type;
1149 }
1150 else
1151 {
1152 /* Allocate storage the first time. */
1153 if (elf_local_got_refcounts (abfd) == NULL)
1154 {
1155 bfd_size_type size = symtab_hdr->sh_info;
1156 void *mem;
1157
1158 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1159 if (mem == NULL)
1160 return FALSE;
1161 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
1162
1163 mem = bfd_zalloc (abfd, size);
1164 if (mem == NULL)
1165 return FALSE;
1166 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1167
1168 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1169 if (mem == NULL)
1170 return FALSE;
1171 elf_xtensa_local_tlsfunc_refcounts (abfd)
1172 = (bfd_signed_vma *) mem;
1173 }
1174
1175 /* This is a global offset table entry for a local symbol. */
1176 if (is_got || is_plt)
1177 elf_local_got_refcounts (abfd) [r_symndx] += 1;
1178
1179 if (is_tlsfunc)
1180 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
1181
1182 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1183 }
1184
1185 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1186 tls_type |= old_tls_type;
1187 /* If a TLS symbol is accessed using IE at least once,
1188 there is no point to use a dynamic model for it. */
1189 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1190 && ((old_tls_type & GOT_TLS_GD) == 0
1191 || (tls_type & GOT_TLS_IE) == 0))
1192 {
1193 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1194 tls_type = old_tls_type;
1195 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1196 tls_type |= old_tls_type;
1197 else
1198 {
1199 _bfd_error_handler
1200 /* xgettext:c-format */
1201 (_("%pB: `%s' accessed both as normal and thread local symbol"),
1202 abfd,
1203 h ? h->root.root.string : "<local>");
1204 return FALSE;
1205 }
1206 }
1207
1208 if (old_tls_type != tls_type)
1209 {
1210 if (eh)
1211 eh->tls_type = tls_type;
1212 else
1213 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
1214 }
1215 }
1216
1217 return TRUE;
1218 }
1219
1220
1221 static void
1222 elf_xtensa_make_sym_local (struct bfd_link_info *info,
1223 struct elf_link_hash_entry *h)
1224 {
1225 if (bfd_link_pic (info))
1226 {
1227 if (h->plt.refcount > 0)
1228 {
1229 /* For shared objects, there's no need for PLT entries for local
1230 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1231 if (h->got.refcount < 0)
1232 h->got.refcount = 0;
1233 h->got.refcount += h->plt.refcount;
1234 h->plt.refcount = 0;
1235 }
1236 }
1237 else
1238 {
1239 /* Don't need any dynamic relocations at all. */
1240 h->plt.refcount = 0;
1241 h->got.refcount = 0;
1242 }
1243 }
1244
1245
1246 static void
1247 elf_xtensa_hide_symbol (struct bfd_link_info *info,
1248 struct elf_link_hash_entry *h,
1249 bfd_boolean force_local)
1250 {
1251 /* For a shared link, move the plt refcount to the got refcount to leave
1252 space for RELATIVE relocs. */
1253 elf_xtensa_make_sym_local (info, h);
1254
1255 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1256 }
1257
1258
1259 /* Return the section that should be marked against GC for a given
1260 relocation. */
1261
1262 static asection *
1263 elf_xtensa_gc_mark_hook (asection *sec,
1264 struct bfd_link_info *info,
1265 Elf_Internal_Rela *rel,
1266 struct elf_link_hash_entry *h,
1267 Elf_Internal_Sym *sym)
1268 {
1269 /* Property sections are marked "KEEP" in the linker scripts, but they
1270 should not cause other sections to be marked. (This approach relies
1271 on elf_xtensa_discard_info to remove property table entries that
1272 describe discarded sections. Alternatively, it might be more
1273 efficient to avoid using "KEEP" in the linker scripts and instead use
1274 the gc_mark_extra_sections hook to mark only the property sections
1275 that describe marked sections. That alternative does not work well
1276 with the current property table sections, which do not correspond
1277 one-to-one with the sections they describe, but that should be fixed
1278 someday.) */
1279 if (xtensa_is_property_section (sec))
1280 return NULL;
1281
1282 if (h != NULL)
1283 switch (ELF32_R_TYPE (rel->r_info))
1284 {
1285 case R_XTENSA_GNU_VTINHERIT:
1286 case R_XTENSA_GNU_VTENTRY:
1287 return NULL;
1288 }
1289
1290 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1291 }
1292
1293
1294 /* Create all the dynamic sections. */
1295
1296 static bfd_boolean
1297 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1298 {
1299 struct elf_xtensa_link_hash_table *htab;
1300 flagword flags, noalloc_flags;
1301
1302 htab = elf_xtensa_hash_table (info);
1303 if (htab == NULL)
1304 return FALSE;
1305
1306 /* First do all the standard stuff. */
1307 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1308 return FALSE;
1309
1310 /* Create any extra PLT sections in case check_relocs has already
1311 been called on all the non-dynamic input files. */
1312 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1313 return FALSE;
1314
1315 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1316 | SEC_LINKER_CREATED | SEC_READONLY);
1317 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1318
1319 /* Mark the ".got.plt" section READONLY. */
1320 if (htab->elf.sgotplt == NULL
1321 || ! bfd_set_section_flags (dynobj, htab->elf.sgotplt, flags))
1322 return FALSE;
1323
1324 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1325 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1326 flags);
1327 if (htab->sgotloc == NULL
1328 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1329 return FALSE;
1330
1331 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1332 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1333 noalloc_flags);
1334 if (htab->spltlittbl == NULL
1335 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1336 return FALSE;
1337
1338 return TRUE;
1339 }
1340
1341
1342 static bfd_boolean
1343 add_extra_plt_sections (struct bfd_link_info *info, int count)
1344 {
1345 bfd *dynobj = elf_hash_table (info)->dynobj;
1346 int chunk;
1347
1348 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1349 ".got.plt" sections. */
1350 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1351 {
1352 char *sname;
1353 flagword flags;
1354 asection *s;
1355
1356 /* Stop when we find a section has already been created. */
1357 if (elf_xtensa_get_plt_section (info, chunk))
1358 break;
1359
1360 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1361 | SEC_LINKER_CREATED | SEC_READONLY);
1362
1363 sname = (char *) bfd_malloc (10);
1364 sprintf (sname, ".plt.%u", chunk);
1365 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
1366 if (s == NULL
1367 || ! bfd_set_section_alignment (dynobj, s, 2))
1368 return FALSE;
1369
1370 sname = (char *) bfd_malloc (14);
1371 sprintf (sname, ".got.plt.%u", chunk);
1372 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
1373 if (s == NULL
1374 || ! bfd_set_section_alignment (dynobj, s, 2))
1375 return FALSE;
1376 }
1377
1378 return TRUE;
1379 }
1380
1381
1382 /* Adjust a symbol defined by a dynamic object and referenced by a
1383 regular object. The current definition is in some section of the
1384 dynamic object, but we're not including those sections. We have to
1385 change the definition to something the rest of the link can
1386 understand. */
1387
1388 static bfd_boolean
1389 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1390 struct elf_link_hash_entry *h)
1391 {
1392 /* If this is a weak symbol, and there is a real definition, the
1393 processor independent code will have arranged for us to see the
1394 real definition first, and we can just use the same value. */
1395 if (h->is_weakalias)
1396 {
1397 struct elf_link_hash_entry *def = weakdef (h);
1398 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1399 h->root.u.def.section = def->root.u.def.section;
1400 h->root.u.def.value = def->root.u.def.value;
1401 return TRUE;
1402 }
1403
1404 /* This is a reference to a symbol defined by a dynamic object. The
1405 reference must go through the GOT, so there's no need for COPY relocs,
1406 .dynbss, etc. */
1407
1408 return TRUE;
1409 }
1410
1411
1412 static bfd_boolean
1413 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1414 {
1415 struct bfd_link_info *info;
1416 struct elf_xtensa_link_hash_table *htab;
1417 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
1418
1419 if (h->root.type == bfd_link_hash_indirect)
1420 return TRUE;
1421
1422 info = (struct bfd_link_info *) arg;
1423 htab = elf_xtensa_hash_table (info);
1424 if (htab == NULL)
1425 return FALSE;
1426
1427 /* If we saw any use of an IE model for this symbol, we can then optimize
1428 away GOT entries for any TLSDESC_FN relocs. */
1429 if ((eh->tls_type & GOT_TLS_IE) != 0)
1430 {
1431 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1432 h->got.refcount -= eh->tlsfunc_refcount;
1433 }
1434
1435 if (! elf_xtensa_dynamic_symbol_p (h, info))
1436 elf_xtensa_make_sym_local (info, h);
1437
1438 if (! elf_xtensa_dynamic_symbol_p (h, info)
1439 && h->root.type == bfd_link_hash_undefweak)
1440 return TRUE;
1441
1442 if (h->plt.refcount > 0)
1443 htab->elf.srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1444
1445 if (h->got.refcount > 0)
1446 htab->elf.srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1447
1448 return TRUE;
1449 }
1450
1451
1452 static void
1453 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1454 {
1455 struct elf_xtensa_link_hash_table *htab;
1456 bfd *i;
1457
1458 htab = elf_xtensa_hash_table (info);
1459 if (htab == NULL)
1460 return;
1461
1462 for (i = info->input_bfds; i; i = i->link.next)
1463 {
1464 bfd_signed_vma *local_got_refcounts;
1465 bfd_size_type j, cnt;
1466 Elf_Internal_Shdr *symtab_hdr;
1467
1468 local_got_refcounts = elf_local_got_refcounts (i);
1469 if (!local_got_refcounts)
1470 continue;
1471
1472 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1473 cnt = symtab_hdr->sh_info;
1474
1475 for (j = 0; j < cnt; ++j)
1476 {
1477 /* If we saw any use of an IE model for this symbol, we can
1478 then optimize away GOT entries for any TLSDESC_FN relocs. */
1479 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1480 {
1481 bfd_signed_vma *tlsfunc_refcount
1482 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1483 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1484 local_got_refcounts[j] -= *tlsfunc_refcount;
1485 }
1486
1487 if (local_got_refcounts[j] > 0)
1488 htab->elf.srelgot->size += (local_got_refcounts[j]
1489 * sizeof (Elf32_External_Rela));
1490 }
1491 }
1492 }
1493
1494
1495 /* Set the sizes of the dynamic sections. */
1496
1497 static bfd_boolean
1498 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1499 struct bfd_link_info *info)
1500 {
1501 struct elf_xtensa_link_hash_table *htab;
1502 bfd *dynobj, *abfd;
1503 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1504 bfd_boolean relplt, relgot;
1505 int plt_entries, plt_chunks, chunk;
1506
1507 plt_entries = 0;
1508 plt_chunks = 0;
1509
1510 htab = elf_xtensa_hash_table (info);
1511 if (htab == NULL)
1512 return FALSE;
1513
1514 dynobj = elf_hash_table (info)->dynobj;
1515 if (dynobj == NULL)
1516 abort ();
1517 srelgot = htab->elf.srelgot;
1518 srelplt = htab->elf.srelplt;
1519
1520 if (elf_hash_table (info)->dynamic_sections_created)
1521 {
1522 BFD_ASSERT (htab->elf.srelgot != NULL
1523 && htab->elf.srelplt != NULL
1524 && htab->elf.sgot != NULL
1525 && htab->spltlittbl != NULL
1526 && htab->sgotloc != NULL);
1527
1528 /* Set the contents of the .interp section to the interpreter. */
1529 if (bfd_link_executable (info) && !info->nointerp)
1530 {
1531 s = bfd_get_linker_section (dynobj, ".interp");
1532 if (s == NULL)
1533 abort ();
1534 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1535 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1536 }
1537
1538 /* Allocate room for one word in ".got". */
1539 htab->elf.sgot->size = 4;
1540
1541 /* Allocate space in ".rela.got" for literals that reference global
1542 symbols and space in ".rela.plt" for literals that have PLT
1543 entries. */
1544 elf_link_hash_traverse (elf_hash_table (info),
1545 elf_xtensa_allocate_dynrelocs,
1546 (void *) info);
1547
1548 /* If we are generating a shared object, we also need space in
1549 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1550 reference local symbols. */
1551 if (bfd_link_pic (info))
1552 elf_xtensa_allocate_local_got_size (info);
1553
1554 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1555 each PLT entry, we need the PLT code plus a 4-byte literal.
1556 For each chunk of ".plt", we also need two more 4-byte
1557 literals, two corresponding entries in ".rela.got", and an
1558 8-byte entry in ".xt.lit.plt". */
1559 spltlittbl = htab->spltlittbl;
1560 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1561 plt_chunks =
1562 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1563
1564 /* Iterate over all the PLT chunks, including any extra sections
1565 created earlier because the initial count of PLT relocations
1566 was an overestimate. */
1567 for (chunk = 0;
1568 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1569 chunk++)
1570 {
1571 int chunk_entries;
1572
1573 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1574 BFD_ASSERT (sgotplt != NULL);
1575
1576 if (chunk < plt_chunks - 1)
1577 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1578 else if (chunk == plt_chunks - 1)
1579 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1580 else
1581 chunk_entries = 0;
1582
1583 if (chunk_entries != 0)
1584 {
1585 sgotplt->size = 4 * (chunk_entries + 2);
1586 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1587 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1588 spltlittbl->size += 8;
1589 }
1590 else
1591 {
1592 sgotplt->size = 0;
1593 splt->size = 0;
1594 }
1595 }
1596
1597 /* Allocate space in ".got.loc" to match the total size of all the
1598 literal tables. */
1599 sgotloc = htab->sgotloc;
1600 sgotloc->size = spltlittbl->size;
1601 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
1602 {
1603 if (abfd->flags & DYNAMIC)
1604 continue;
1605 for (s = abfd->sections; s != NULL; s = s->next)
1606 {
1607 if (! discarded_section (s)
1608 && xtensa_is_littable_section (s)
1609 && s != spltlittbl)
1610 sgotloc->size += s->size;
1611 }
1612 }
1613 }
1614
1615 /* Allocate memory for dynamic sections. */
1616 relplt = FALSE;
1617 relgot = FALSE;
1618 for (s = dynobj->sections; s != NULL; s = s->next)
1619 {
1620 const char *name;
1621
1622 if ((s->flags & SEC_LINKER_CREATED) == 0)
1623 continue;
1624
1625 /* It's OK to base decisions on the section name, because none
1626 of the dynobj section names depend upon the input files. */
1627 name = bfd_get_section_name (dynobj, s);
1628
1629 if (CONST_STRNEQ (name, ".rela"))
1630 {
1631 if (s->size != 0)
1632 {
1633 if (strcmp (name, ".rela.plt") == 0)
1634 relplt = TRUE;
1635 else if (strcmp (name, ".rela.got") == 0)
1636 relgot = TRUE;
1637
1638 /* We use the reloc_count field as a counter if we need
1639 to copy relocs into the output file. */
1640 s->reloc_count = 0;
1641 }
1642 }
1643 else if (! CONST_STRNEQ (name, ".plt.")
1644 && ! CONST_STRNEQ (name, ".got.plt.")
1645 && strcmp (name, ".got") != 0
1646 && strcmp (name, ".plt") != 0
1647 && strcmp (name, ".got.plt") != 0
1648 && strcmp (name, ".xt.lit.plt") != 0
1649 && strcmp (name, ".got.loc") != 0)
1650 {
1651 /* It's not one of our sections, so don't allocate space. */
1652 continue;
1653 }
1654
1655 if (s->size == 0)
1656 {
1657 /* If we don't need this section, strip it from the output
1658 file. We must create the ".plt*" and ".got.plt*"
1659 sections in create_dynamic_sections and/or check_relocs
1660 based on a conservative estimate of the PLT relocation
1661 count, because the sections must be created before the
1662 linker maps input sections to output sections. The
1663 linker does that before size_dynamic_sections, where we
1664 compute the exact size of the PLT, so there may be more
1665 of these sections than are actually needed. */
1666 s->flags |= SEC_EXCLUDE;
1667 }
1668 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1669 {
1670 /* Allocate memory for the section contents. */
1671 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1672 if (s->contents == NULL)
1673 return FALSE;
1674 }
1675 }
1676
1677 if (elf_hash_table (info)->dynamic_sections_created)
1678 {
1679 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1680 known until finish_dynamic_sections, but we need to get the relocs
1681 in place before they are sorted. */
1682 for (chunk = 0; chunk < plt_chunks; chunk++)
1683 {
1684 Elf_Internal_Rela irela;
1685 bfd_byte *loc;
1686
1687 irela.r_offset = 0;
1688 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1689 irela.r_addend = 0;
1690
1691 loc = (srelgot->contents
1692 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1693 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1694 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1695 loc + sizeof (Elf32_External_Rela));
1696 srelgot->reloc_count += 2;
1697 }
1698
1699 /* Add some entries to the .dynamic section. We fill in the
1700 values later, in elf_xtensa_finish_dynamic_sections, but we
1701 must add the entries now so that we get the correct size for
1702 the .dynamic section. The DT_DEBUG entry is filled in by the
1703 dynamic linker and used by the debugger. */
1704 #define add_dynamic_entry(TAG, VAL) \
1705 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1706
1707 if (bfd_link_executable (info))
1708 {
1709 if (!add_dynamic_entry (DT_DEBUG, 0))
1710 return FALSE;
1711 }
1712
1713 if (relplt)
1714 {
1715 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1716 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1717 || !add_dynamic_entry (DT_JMPREL, 0))
1718 return FALSE;
1719 }
1720
1721 if (relgot)
1722 {
1723 if (!add_dynamic_entry (DT_RELA, 0)
1724 || !add_dynamic_entry (DT_RELASZ, 0)
1725 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1726 return FALSE;
1727 }
1728
1729 if (!add_dynamic_entry (DT_PLTGOT, 0)
1730 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1731 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1732 return FALSE;
1733 }
1734 #undef add_dynamic_entry
1735
1736 return TRUE;
1737 }
1738
1739 static bfd_boolean
1740 elf_xtensa_always_size_sections (bfd *output_bfd,
1741 struct bfd_link_info *info)
1742 {
1743 struct elf_xtensa_link_hash_table *htab;
1744 asection *tls_sec;
1745
1746 htab = elf_xtensa_hash_table (info);
1747 if (htab == NULL)
1748 return FALSE;
1749
1750 tls_sec = htab->elf.tls_sec;
1751
1752 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1753 {
1754 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1755 struct bfd_link_hash_entry *bh = &tlsbase->root;
1756 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1757
1758 tlsbase->type = STT_TLS;
1759 if (!(_bfd_generic_link_add_one_symbol
1760 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1761 tls_sec, 0, NULL, FALSE,
1762 bed->collect, &bh)))
1763 return FALSE;
1764 tlsbase->def_regular = 1;
1765 tlsbase->other = STV_HIDDEN;
1766 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1767 }
1768
1769 return TRUE;
1770 }
1771
1772 \f
1773 /* Return the base VMA address which should be subtracted from real addresses
1774 when resolving @dtpoff relocation.
1775 This is PT_TLS segment p_vaddr. */
1776
1777 static bfd_vma
1778 dtpoff_base (struct bfd_link_info *info)
1779 {
1780 /* If tls_sec is NULL, we should have signalled an error already. */
1781 if (elf_hash_table (info)->tls_sec == NULL)
1782 return 0;
1783 return elf_hash_table (info)->tls_sec->vma;
1784 }
1785
1786 /* Return the relocation value for @tpoff relocation
1787 if STT_TLS virtual address is ADDRESS. */
1788
1789 static bfd_vma
1790 tpoff (struct bfd_link_info *info, bfd_vma address)
1791 {
1792 struct elf_link_hash_table *htab = elf_hash_table (info);
1793 bfd_vma base;
1794
1795 /* If tls_sec is NULL, we should have signalled an error already. */
1796 if (htab->tls_sec == NULL)
1797 return 0;
1798 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1799 return address - htab->tls_sec->vma + base;
1800 }
1801
1802 /* Perform the specified relocation. The instruction at (contents + address)
1803 is modified to set one operand to represent the value in "relocation". The
1804 operand position is determined by the relocation type recorded in the
1805 howto. */
1806
1807 #define CALL_SEGMENT_BITS (30)
1808 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1809
1810 static bfd_reloc_status_type
1811 elf_xtensa_do_reloc (reloc_howto_type *howto,
1812 bfd *abfd,
1813 asection *input_section,
1814 bfd_vma relocation,
1815 bfd_byte *contents,
1816 bfd_vma address,
1817 bfd_boolean is_weak_undef,
1818 char **error_message)
1819 {
1820 xtensa_format fmt;
1821 xtensa_opcode opcode;
1822 xtensa_isa isa = xtensa_default_isa;
1823 static xtensa_insnbuf ibuff = NULL;
1824 static xtensa_insnbuf sbuff = NULL;
1825 bfd_vma self_address;
1826 bfd_size_type input_size;
1827 int opnd, slot;
1828 uint32 newval;
1829
1830 if (!ibuff)
1831 {
1832 ibuff = xtensa_insnbuf_alloc (isa);
1833 sbuff = xtensa_insnbuf_alloc (isa);
1834 }
1835
1836 input_size = bfd_get_section_limit (abfd, input_section);
1837
1838 /* Calculate the PC address for this instruction. */
1839 self_address = (input_section->output_section->vma
1840 + input_section->output_offset
1841 + address);
1842
1843 switch (howto->type)
1844 {
1845 case R_XTENSA_NONE:
1846 case R_XTENSA_DIFF8:
1847 case R_XTENSA_DIFF16:
1848 case R_XTENSA_DIFF32:
1849 case R_XTENSA_TLS_FUNC:
1850 case R_XTENSA_TLS_ARG:
1851 case R_XTENSA_TLS_CALL:
1852 return bfd_reloc_ok;
1853
1854 case R_XTENSA_ASM_EXPAND:
1855 if (!is_weak_undef)
1856 {
1857 /* Check for windowed CALL across a 1GB boundary. */
1858 opcode = get_expanded_call_opcode (contents + address,
1859 input_size - address, 0);
1860 if (is_windowed_call_opcode (opcode))
1861 {
1862 if ((self_address >> CALL_SEGMENT_BITS)
1863 != (relocation >> CALL_SEGMENT_BITS))
1864 {
1865 *error_message = "windowed longcall crosses 1GB boundary; "
1866 "return may fail";
1867 return bfd_reloc_dangerous;
1868 }
1869 }
1870 }
1871 return bfd_reloc_ok;
1872
1873 case R_XTENSA_ASM_SIMPLIFY:
1874 {
1875 /* Convert the L32R/CALLX to CALL. */
1876 bfd_reloc_status_type retval =
1877 elf_xtensa_do_asm_simplify (contents, address, input_size,
1878 error_message);
1879 if (retval != bfd_reloc_ok)
1880 return bfd_reloc_dangerous;
1881
1882 /* The CALL needs to be relocated. Continue below for that part. */
1883 address += 3;
1884 self_address += 3;
1885 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1886 }
1887 break;
1888
1889 case R_XTENSA_32:
1890 {
1891 bfd_vma x;
1892 x = bfd_get_32 (abfd, contents + address);
1893 x = x + relocation;
1894 bfd_put_32 (abfd, x, contents + address);
1895 }
1896 return bfd_reloc_ok;
1897
1898 case R_XTENSA_32_PCREL:
1899 bfd_put_32 (abfd, relocation - self_address, contents + address);
1900 return bfd_reloc_ok;
1901
1902 case R_XTENSA_PLT:
1903 case R_XTENSA_TLSDESC_FN:
1904 case R_XTENSA_TLSDESC_ARG:
1905 case R_XTENSA_TLS_DTPOFF:
1906 case R_XTENSA_TLS_TPOFF:
1907 bfd_put_32 (abfd, relocation, contents + address);
1908 return bfd_reloc_ok;
1909 }
1910
1911 /* Only instruction slot-specific relocations handled below.... */
1912 slot = get_relocation_slot (howto->type);
1913 if (slot == XTENSA_UNDEFINED)
1914 {
1915 *error_message = "unexpected relocation";
1916 return bfd_reloc_dangerous;
1917 }
1918
1919 /* Read the instruction into a buffer and decode the opcode. */
1920 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1921 input_size - address);
1922 fmt = xtensa_format_decode (isa, ibuff);
1923 if (fmt == XTENSA_UNDEFINED)
1924 {
1925 *error_message = "cannot decode instruction format";
1926 return bfd_reloc_dangerous;
1927 }
1928
1929 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
1930
1931 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1932 if (opcode == XTENSA_UNDEFINED)
1933 {
1934 *error_message = "cannot decode instruction opcode";
1935 return bfd_reloc_dangerous;
1936 }
1937
1938 /* Check for opcode-specific "alternate" relocations. */
1939 if (is_alt_relocation (howto->type))
1940 {
1941 if (opcode == get_l32r_opcode ())
1942 {
1943 /* Handle the special-case of non-PC-relative L32R instructions. */
1944 bfd *output_bfd = input_section->output_section->owner;
1945 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1946 if (!lit4_sec)
1947 {
1948 *error_message = "relocation references missing .lit4 section";
1949 return bfd_reloc_dangerous;
1950 }
1951 self_address = ((lit4_sec->vma & ~0xfff)
1952 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1953 newval = relocation;
1954 opnd = 1;
1955 }
1956 else if (opcode == get_const16_opcode ())
1957 {
1958 /* ALT used for high 16 bits.
1959 Ignore 32-bit overflow. */
1960 newval = (relocation >> 16) & 0xffff;
1961 opnd = 1;
1962 }
1963 else
1964 {
1965 /* No other "alternate" relocations currently defined. */
1966 *error_message = "unexpected relocation";
1967 return bfd_reloc_dangerous;
1968 }
1969 }
1970 else /* Not an "alternate" relocation.... */
1971 {
1972 if (opcode == get_const16_opcode ())
1973 {
1974 newval = relocation & 0xffff;
1975 opnd = 1;
1976 }
1977 else
1978 {
1979 /* ...normal PC-relative relocation.... */
1980
1981 /* Determine which operand is being relocated. */
1982 opnd = get_relocation_opnd (opcode, howto->type);
1983 if (opnd == XTENSA_UNDEFINED)
1984 {
1985 *error_message = "unexpected relocation";
1986 return bfd_reloc_dangerous;
1987 }
1988
1989 if (!howto->pc_relative)
1990 {
1991 *error_message = "expected PC-relative relocation";
1992 return bfd_reloc_dangerous;
1993 }
1994
1995 newval = relocation;
1996 }
1997 }
1998
1999 /* Apply the relocation. */
2000 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2001 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2002 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2003 sbuff, newval))
2004 {
2005 const char *opname = xtensa_opcode_name (isa, opcode);
2006 const char *msg;
2007
2008 msg = "cannot encode";
2009 if (is_direct_call_opcode (opcode))
2010 {
2011 if ((relocation & 0x3) != 0)
2012 msg = "misaligned call target";
2013 else
2014 msg = "call target out of range";
2015 }
2016 else if (opcode == get_l32r_opcode ())
2017 {
2018 if ((relocation & 0x3) != 0)
2019 msg = "misaligned literal target";
2020 else if (is_alt_relocation (howto->type))
2021 msg = "literal target out of range (too many literals)";
2022 else if (self_address > relocation)
2023 msg = "literal target out of range (try using text-section-literals)";
2024 else
2025 msg = "literal placed after use";
2026 }
2027
2028 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
2029 return bfd_reloc_dangerous;
2030 }
2031
2032 /* Check for calls across 1GB boundaries. */
2033 if (is_direct_call_opcode (opcode)
2034 && is_windowed_call_opcode (opcode))
2035 {
2036 if ((self_address >> CALL_SEGMENT_BITS)
2037 != (relocation >> CALL_SEGMENT_BITS))
2038 {
2039 *error_message =
2040 "windowed call crosses 1GB boundary; return may fail";
2041 return bfd_reloc_dangerous;
2042 }
2043 }
2044
2045 /* Write the modified instruction back out of the buffer. */
2046 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2047 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2048 input_size - address);
2049 return bfd_reloc_ok;
2050 }
2051
2052
2053 static char *
2054 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
2055 {
2056 /* To reduce the size of the memory leak,
2057 we only use a single message buffer. */
2058 static bfd_size_type alloc_size = 0;
2059 static char *message = NULL;
2060 bfd_size_type orig_len, len = 0;
2061 bfd_boolean is_append;
2062 va_list ap;
2063
2064 va_start (ap, arglen);
2065
2066 is_append = (origmsg == message);
2067
2068 orig_len = strlen (origmsg);
2069 len = orig_len + strlen (fmt) + arglen + 20;
2070 if (len > alloc_size)
2071 {
2072 message = (char *) bfd_realloc_or_free (message, len);
2073 alloc_size = len;
2074 }
2075 if (message != NULL)
2076 {
2077 if (!is_append)
2078 memcpy (message, origmsg, orig_len);
2079 vsprintf (message + orig_len, fmt, ap);
2080 }
2081 va_end (ap);
2082 return message;
2083 }
2084
2085
2086 /* This function is registered as the "special_function" in the
2087 Xtensa howto for handling simplify operations.
2088 bfd_perform_relocation / bfd_install_relocation use it to
2089 perform (install) the specified relocation. Since this replaces the code
2090 in bfd_perform_relocation, it is basically an Xtensa-specific,
2091 stripped-down version of bfd_perform_relocation. */
2092
2093 static bfd_reloc_status_type
2094 bfd_elf_xtensa_reloc (bfd *abfd,
2095 arelent *reloc_entry,
2096 asymbol *symbol,
2097 void *data,
2098 asection *input_section,
2099 bfd *output_bfd,
2100 char **error_message)
2101 {
2102 bfd_vma relocation;
2103 bfd_reloc_status_type flag;
2104 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2105 bfd_vma output_base = 0;
2106 reloc_howto_type *howto = reloc_entry->howto;
2107 asection *reloc_target_output_section;
2108 bfd_boolean is_weak_undef;
2109
2110 if (!xtensa_default_isa)
2111 xtensa_default_isa = xtensa_isa_init (0, 0);
2112
2113 /* ELF relocs are against symbols. If we are producing relocatable
2114 output, and the reloc is against an external symbol, the resulting
2115 reloc will also be against the same symbol. In such a case, we
2116 don't want to change anything about the way the reloc is handled,
2117 since it will all be done at final link time. This test is similar
2118 to what bfd_elf_generic_reloc does except that it lets relocs with
2119 howto->partial_inplace go through even if the addend is non-zero.
2120 (The real problem is that partial_inplace is set for XTENSA_32
2121 relocs to begin with, but that's a long story and there's little we
2122 can do about it now....) */
2123
2124 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
2125 {
2126 reloc_entry->address += input_section->output_offset;
2127 return bfd_reloc_ok;
2128 }
2129
2130 /* Is the address of the relocation really within the section? */
2131 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2132 return bfd_reloc_outofrange;
2133
2134 /* Work out which section the relocation is targeted at and the
2135 initial relocation command value. */
2136
2137 /* Get symbol value. (Common symbols are special.) */
2138 if (bfd_is_com_section (symbol->section))
2139 relocation = 0;
2140 else
2141 relocation = symbol->value;
2142
2143 reloc_target_output_section = symbol->section->output_section;
2144
2145 /* Convert input-section-relative symbol value to absolute. */
2146 if ((output_bfd && !howto->partial_inplace)
2147 || reloc_target_output_section == NULL)
2148 output_base = 0;
2149 else
2150 output_base = reloc_target_output_section->vma;
2151
2152 relocation += output_base + symbol->section->output_offset;
2153
2154 /* Add in supplied addend. */
2155 relocation += reloc_entry->addend;
2156
2157 /* Here the variable relocation holds the final address of the
2158 symbol we are relocating against, plus any addend. */
2159 if (output_bfd)
2160 {
2161 if (!howto->partial_inplace)
2162 {
2163 /* This is a partial relocation, and we want to apply the relocation
2164 to the reloc entry rather than the raw data. Everything except
2165 relocations against section symbols has already been handled
2166 above. */
2167
2168 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2169 reloc_entry->addend = relocation;
2170 reloc_entry->address += input_section->output_offset;
2171 return bfd_reloc_ok;
2172 }
2173 else
2174 {
2175 reloc_entry->address += input_section->output_offset;
2176 reloc_entry->addend = 0;
2177 }
2178 }
2179
2180 is_weak_undef = (bfd_is_und_section (symbol->section)
2181 && (symbol->flags & BSF_WEAK) != 0);
2182 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2183 (bfd_byte *) data, (bfd_vma) octets,
2184 is_weak_undef, error_message);
2185
2186 if (flag == bfd_reloc_dangerous)
2187 {
2188 /* Add the symbol name to the error message. */
2189 if (! *error_message)
2190 *error_message = "";
2191 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2192 strlen (symbol->name) + 17,
2193 symbol->name,
2194 (unsigned long) reloc_entry->addend);
2195 }
2196
2197 return flag;
2198 }
2199
2200
2201 /* Set up an entry in the procedure linkage table. */
2202
2203 static bfd_vma
2204 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
2205 bfd *output_bfd,
2206 unsigned reloc_index)
2207 {
2208 asection *splt, *sgotplt;
2209 bfd_vma plt_base, got_base;
2210 bfd_vma code_offset, lit_offset, abi_offset;
2211 int chunk;
2212
2213 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
2214 splt = elf_xtensa_get_plt_section (info, chunk);
2215 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2216 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2217
2218 plt_base = splt->output_section->vma + splt->output_offset;
2219 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2220
2221 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2222 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2223
2224 /* Fill in the literal entry. This is the offset of the dynamic
2225 relocation entry. */
2226 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2227 sgotplt->contents + lit_offset);
2228
2229 /* Fill in the entry in the procedure linkage table. */
2230 memcpy (splt->contents + code_offset,
2231 (bfd_big_endian (output_bfd)
2232 ? elf_xtensa_be_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED]
2233 : elf_xtensa_le_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED]),
2234 PLT_ENTRY_SIZE);
2235 abi_offset = XSHAL_ABI == XTHAL_ABI_WINDOWED ? 3 : 0;
2236 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2237 plt_base + code_offset + abi_offset),
2238 splt->contents + code_offset + abi_offset + 1);
2239 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2240 plt_base + code_offset + abi_offset + 3),
2241 splt->contents + code_offset + abi_offset + 4);
2242 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2243 plt_base + code_offset + abi_offset + 6),
2244 splt->contents + code_offset + abi_offset + 7);
2245
2246 return plt_base + code_offset;
2247 }
2248
2249
2250 static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2251
2252 static bfd_boolean
2253 replace_tls_insn (Elf_Internal_Rela *rel,
2254 bfd *abfd,
2255 asection *input_section,
2256 bfd_byte *contents,
2257 bfd_boolean is_ld_model,
2258 char **error_message)
2259 {
2260 static xtensa_insnbuf ibuff = NULL;
2261 static xtensa_insnbuf sbuff = NULL;
2262 xtensa_isa isa = xtensa_default_isa;
2263 xtensa_format fmt;
2264 xtensa_opcode old_op, new_op;
2265 bfd_size_type input_size;
2266 int r_type;
2267 unsigned dest_reg, src_reg;
2268
2269 if (ibuff == NULL)
2270 {
2271 ibuff = xtensa_insnbuf_alloc (isa);
2272 sbuff = xtensa_insnbuf_alloc (isa);
2273 }
2274
2275 input_size = bfd_get_section_limit (abfd, input_section);
2276
2277 /* Read the instruction into a buffer and decode the opcode. */
2278 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2279 input_size - rel->r_offset);
2280 fmt = xtensa_format_decode (isa, ibuff);
2281 if (fmt == XTENSA_UNDEFINED)
2282 {
2283 *error_message = "cannot decode instruction format";
2284 return FALSE;
2285 }
2286
2287 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2288 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2289
2290 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2291 if (old_op == XTENSA_UNDEFINED)
2292 {
2293 *error_message = "cannot decode instruction opcode";
2294 return FALSE;
2295 }
2296
2297 r_type = ELF32_R_TYPE (rel->r_info);
2298 switch (r_type)
2299 {
2300 case R_XTENSA_TLS_FUNC:
2301 case R_XTENSA_TLS_ARG:
2302 if (old_op != get_l32r_opcode ()
2303 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2304 sbuff, &dest_reg) != 0)
2305 {
2306 *error_message = "cannot extract L32R destination for TLS access";
2307 return FALSE;
2308 }
2309 break;
2310
2311 case R_XTENSA_TLS_CALL:
2312 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2313 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2314 sbuff, &src_reg) != 0)
2315 {
2316 *error_message = "cannot extract CALLXn operands for TLS access";
2317 return FALSE;
2318 }
2319 break;
2320
2321 default:
2322 abort ();
2323 }
2324
2325 if (is_ld_model)
2326 {
2327 switch (r_type)
2328 {
2329 case R_XTENSA_TLS_FUNC:
2330 case R_XTENSA_TLS_ARG:
2331 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2332 versions of Xtensa). */
2333 new_op = xtensa_opcode_lookup (isa, "nop");
2334 if (new_op == XTENSA_UNDEFINED)
2335 {
2336 new_op = xtensa_opcode_lookup (isa, "or");
2337 if (new_op == XTENSA_UNDEFINED
2338 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2339 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2340 sbuff, 1) != 0
2341 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2342 sbuff, 1) != 0
2343 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2344 sbuff, 1) != 0)
2345 {
2346 *error_message = "cannot encode OR for TLS access";
2347 return FALSE;
2348 }
2349 }
2350 else
2351 {
2352 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2353 {
2354 *error_message = "cannot encode NOP for TLS access";
2355 return FALSE;
2356 }
2357 }
2358 break;
2359
2360 case R_XTENSA_TLS_CALL:
2361 /* Read THREADPTR into the CALLX's return value register. */
2362 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2363 if (new_op == XTENSA_UNDEFINED
2364 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2365 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2366 sbuff, dest_reg + 2) != 0)
2367 {
2368 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2369 return FALSE;
2370 }
2371 break;
2372 }
2373 }
2374 else
2375 {
2376 switch (r_type)
2377 {
2378 case R_XTENSA_TLS_FUNC:
2379 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2380 if (new_op == XTENSA_UNDEFINED
2381 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2382 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2383 sbuff, dest_reg) != 0)
2384 {
2385 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2386 return FALSE;
2387 }
2388 break;
2389
2390 case R_XTENSA_TLS_ARG:
2391 /* Nothing to do. Keep the original L32R instruction. */
2392 return TRUE;
2393
2394 case R_XTENSA_TLS_CALL:
2395 /* Add the CALLX's src register (holding the THREADPTR value)
2396 to the first argument register (holding the offset) and put
2397 the result in the CALLX's return value register. */
2398 new_op = xtensa_opcode_lookup (isa, "add");
2399 if (new_op == XTENSA_UNDEFINED
2400 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2401 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2402 sbuff, dest_reg + 2) != 0
2403 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2404 sbuff, dest_reg + 2) != 0
2405 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2406 sbuff, src_reg) != 0)
2407 {
2408 *error_message = "cannot encode ADD for TLS access";
2409 return FALSE;
2410 }
2411 break;
2412 }
2413 }
2414
2415 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2416 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2417 input_size - rel->r_offset);
2418
2419 return TRUE;
2420 }
2421
2422
2423 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2424 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2425 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2426 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2427 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2428 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2429 || (R_TYPE) == R_XTENSA_TLS_ARG \
2430 || (R_TYPE) == R_XTENSA_TLS_CALL)
2431
2432 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2433 both relocatable and final links. */
2434
2435 static bfd_boolean
2436 elf_xtensa_relocate_section (bfd *output_bfd,
2437 struct bfd_link_info *info,
2438 bfd *input_bfd,
2439 asection *input_section,
2440 bfd_byte *contents,
2441 Elf_Internal_Rela *relocs,
2442 Elf_Internal_Sym *local_syms,
2443 asection **local_sections)
2444 {
2445 struct elf_xtensa_link_hash_table *htab;
2446 Elf_Internal_Shdr *symtab_hdr;
2447 Elf_Internal_Rela *rel;
2448 Elf_Internal_Rela *relend;
2449 struct elf_link_hash_entry **sym_hashes;
2450 property_table_entry *lit_table = 0;
2451 int ltblsize = 0;
2452 char *local_got_tls_types;
2453 char *error_message = NULL;
2454 bfd_size_type input_size;
2455 int tls_type;
2456
2457 if (!xtensa_default_isa)
2458 xtensa_default_isa = xtensa_isa_init (0, 0);
2459
2460 if (!is_xtensa_elf (input_bfd))
2461 {
2462 bfd_set_error (bfd_error_wrong_format);
2463 return FALSE;
2464 }
2465
2466 htab = elf_xtensa_hash_table (info);
2467 if (htab == NULL)
2468 return FALSE;
2469
2470 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2471 sym_hashes = elf_sym_hashes (input_bfd);
2472 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
2473
2474 if (elf_hash_table (info)->dynamic_sections_created)
2475 {
2476 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2477 &lit_table, XTENSA_LIT_SEC_NAME,
2478 TRUE);
2479 if (ltblsize < 0)
2480 return FALSE;
2481 }
2482
2483 input_size = bfd_get_section_limit (input_bfd, input_section);
2484
2485 rel = relocs;
2486 relend = relocs + input_section->reloc_count;
2487 for (; rel < relend; rel++)
2488 {
2489 int r_type;
2490 reloc_howto_type *howto;
2491 unsigned long r_symndx;
2492 struct elf_link_hash_entry *h;
2493 Elf_Internal_Sym *sym;
2494 char sym_type;
2495 const char *name;
2496 asection *sec;
2497 bfd_vma relocation;
2498 bfd_reloc_status_type r;
2499 bfd_boolean is_weak_undef;
2500 bfd_boolean unresolved_reloc;
2501 bfd_boolean warned;
2502 bfd_boolean dynamic_symbol;
2503
2504 r_type = ELF32_R_TYPE (rel->r_info);
2505 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2506 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2507 continue;
2508
2509 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2510 {
2511 bfd_set_error (bfd_error_bad_value);
2512 return FALSE;
2513 }
2514 howto = &elf_howto_table[r_type];
2515
2516 r_symndx = ELF32_R_SYM (rel->r_info);
2517
2518 h = NULL;
2519 sym = NULL;
2520 sec = NULL;
2521 is_weak_undef = FALSE;
2522 unresolved_reloc = FALSE;
2523 warned = FALSE;
2524
2525 if (howto->partial_inplace && !bfd_link_relocatable (info))
2526 {
2527 /* Because R_XTENSA_32 was made partial_inplace to fix some
2528 problems with DWARF info in partial links, there may be
2529 an addend stored in the contents. Take it out of there
2530 and move it back into the addend field of the reloc. */
2531 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2532 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2533 }
2534
2535 if (r_symndx < symtab_hdr->sh_info)
2536 {
2537 sym = local_syms + r_symndx;
2538 sym_type = ELF32_ST_TYPE (sym->st_info);
2539 sec = local_sections[r_symndx];
2540 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2541 }
2542 else
2543 {
2544 bfd_boolean ignored;
2545
2546 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2547 r_symndx, symtab_hdr, sym_hashes,
2548 h, sec, relocation,
2549 unresolved_reloc, warned, ignored);
2550
2551 if (relocation == 0
2552 && !unresolved_reloc
2553 && h->root.type == bfd_link_hash_undefweak)
2554 is_weak_undef = TRUE;
2555
2556 sym_type = h->type;
2557 }
2558
2559 if (sec != NULL && discarded_section (sec))
2560 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2561 rel, 1, relend, howto, 0, contents);
2562
2563 if (bfd_link_relocatable (info))
2564 {
2565 bfd_vma dest_addr;
2566 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2567
2568 /* This is a relocatable link.
2569 1) If the reloc is against a section symbol, adjust
2570 according to the output section.
2571 2) If there is a new target for this relocation,
2572 the new target will be in the same output section.
2573 We adjust the relocation by the output section
2574 difference. */
2575
2576 if (relaxing_section)
2577 {
2578 /* Check if this references a section in another input file. */
2579 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2580 contents))
2581 return FALSE;
2582 }
2583
2584 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2585 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2586
2587 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2588 {
2589 error_message = NULL;
2590 /* Convert ASM_SIMPLIFY into the simpler relocation
2591 so that they never escape a relaxing link. */
2592 r = contract_asm_expansion (contents, input_size, rel,
2593 &error_message);
2594 if (r != bfd_reloc_ok)
2595 (*info->callbacks->reloc_dangerous)
2596 (info, error_message,
2597 input_bfd, input_section, rel->r_offset);
2598
2599 r_type = ELF32_R_TYPE (rel->r_info);
2600 }
2601
2602 /* This is a relocatable link, so we don't have to change
2603 anything unless the reloc is against a section symbol,
2604 in which case we have to adjust according to where the
2605 section symbol winds up in the output section. */
2606 if (r_symndx < symtab_hdr->sh_info)
2607 {
2608 sym = local_syms + r_symndx;
2609 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2610 {
2611 sec = local_sections[r_symndx];
2612 rel->r_addend += sec->output_offset + sym->st_value;
2613 }
2614 }
2615
2616 /* If there is an addend with a partial_inplace howto,
2617 then move the addend to the contents. This is a hack
2618 to work around problems with DWARF in relocatable links
2619 with some previous version of BFD. Now we can't easily get
2620 rid of the hack without breaking backward compatibility.... */
2621 r = bfd_reloc_ok;
2622 howto = &elf_howto_table[r_type];
2623 if (howto->partial_inplace && rel->r_addend)
2624 {
2625 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2626 rel->r_addend, contents,
2627 rel->r_offset, FALSE,
2628 &error_message);
2629 rel->r_addend = 0;
2630 }
2631 else
2632 {
2633 /* Put the correct bits in the target instruction, even
2634 though the relocation will still be present in the output
2635 file. This makes disassembly clearer, as well as
2636 allowing loadable kernel modules to work without needing
2637 relocations on anything other than calls and l32r's. */
2638
2639 /* If it is not in the same section, there is nothing we can do. */
2640 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2641 sym_sec->output_section == input_section->output_section)
2642 {
2643 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2644 dest_addr, contents,
2645 rel->r_offset, FALSE,
2646 &error_message);
2647 }
2648 }
2649 if (r != bfd_reloc_ok)
2650 (*info->callbacks->reloc_dangerous)
2651 (info, error_message,
2652 input_bfd, input_section, rel->r_offset);
2653
2654 /* Done with work for relocatable link; continue with next reloc. */
2655 continue;
2656 }
2657
2658 /* This is a final link. */
2659
2660 if (relaxing_section)
2661 {
2662 /* Check if this references a section in another input file. */
2663 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2664 &relocation);
2665 }
2666
2667 /* Sanity check the address. */
2668 if (rel->r_offset >= input_size
2669 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2670 {
2671 _bfd_error_handler
2672 /* xgettext:c-format */
2673 (_("%pB(%pA+%#" PRIx64 "): "
2674 "relocation offset out of range (size=%#" PRIx64 ")"),
2675 input_bfd, input_section, (uint64_t) rel->r_offset,
2676 (uint64_t) input_size);
2677 bfd_set_error (bfd_error_bad_value);
2678 return FALSE;
2679 }
2680
2681 if (h != NULL)
2682 name = h->root.root.string;
2683 else
2684 {
2685 name = (bfd_elf_string_from_elf_section
2686 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2687 if (name == NULL || *name == '\0')
2688 name = bfd_section_name (input_bfd, sec);
2689 }
2690
2691 if (r_symndx != STN_UNDEF
2692 && r_type != R_XTENSA_NONE
2693 && (h == NULL
2694 || h->root.type == bfd_link_hash_defined
2695 || h->root.type == bfd_link_hash_defweak)
2696 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2697 {
2698 _bfd_error_handler
2699 ((sym_type == STT_TLS
2700 /* xgettext:c-format */
2701 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
2702 /* xgettext:c-format */
2703 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
2704 input_bfd,
2705 input_section,
2706 (uint64_t) rel->r_offset,
2707 howto->name,
2708 name);
2709 }
2710
2711 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2712
2713 tls_type = GOT_UNKNOWN;
2714 if (h)
2715 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2716 else if (local_got_tls_types)
2717 tls_type = local_got_tls_types [r_symndx];
2718
2719 switch (r_type)
2720 {
2721 case R_XTENSA_32:
2722 case R_XTENSA_PLT:
2723 if (elf_hash_table (info)->dynamic_sections_created
2724 && (input_section->flags & SEC_ALLOC) != 0
2725 && (dynamic_symbol || bfd_link_pic (info)))
2726 {
2727 Elf_Internal_Rela outrel;
2728 bfd_byte *loc;
2729 asection *srel;
2730
2731 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2732 srel = htab->elf.srelplt;
2733 else
2734 srel = htab->elf.srelgot;
2735
2736 BFD_ASSERT (srel != NULL);
2737
2738 outrel.r_offset =
2739 _bfd_elf_section_offset (output_bfd, info,
2740 input_section, rel->r_offset);
2741
2742 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2743 memset (&outrel, 0, sizeof outrel);
2744 else
2745 {
2746 outrel.r_offset += (input_section->output_section->vma
2747 + input_section->output_offset);
2748
2749 /* Complain if the relocation is in a read-only section
2750 and not in a literal pool. */
2751 if ((input_section->flags & SEC_READONLY) != 0
2752 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2753 outrel.r_offset))
2754 {
2755 error_message =
2756 _("dynamic relocation in read-only section");
2757 (*info->callbacks->reloc_dangerous)
2758 (info, error_message,
2759 input_bfd, input_section, rel->r_offset);
2760 }
2761
2762 if (dynamic_symbol)
2763 {
2764 outrel.r_addend = rel->r_addend;
2765 rel->r_addend = 0;
2766
2767 if (r_type == R_XTENSA_32)
2768 {
2769 outrel.r_info =
2770 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2771 relocation = 0;
2772 }
2773 else /* r_type == R_XTENSA_PLT */
2774 {
2775 outrel.r_info =
2776 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2777
2778 /* Create the PLT entry and set the initial
2779 contents of the literal entry to the address of
2780 the PLT entry. */
2781 relocation =
2782 elf_xtensa_create_plt_entry (info, output_bfd,
2783 srel->reloc_count);
2784 }
2785 unresolved_reloc = FALSE;
2786 }
2787 else if (!is_weak_undef)
2788 {
2789 /* Generate a RELATIVE relocation. */
2790 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2791 outrel.r_addend = 0;
2792 }
2793 else
2794 {
2795 continue;
2796 }
2797 }
2798
2799 loc = (srel->contents
2800 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2801 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2802 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2803 <= srel->size);
2804 }
2805 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2806 {
2807 /* This should only happen for non-PIC code, which is not
2808 supposed to be used on systems with dynamic linking.
2809 Just ignore these relocations. */
2810 continue;
2811 }
2812 break;
2813
2814 case R_XTENSA_TLS_TPOFF:
2815 /* Switch to LE model for local symbols in an executable. */
2816 if (! bfd_link_pic (info) && ! dynamic_symbol)
2817 {
2818 relocation = tpoff (info, relocation);
2819 break;
2820 }
2821 /* fall through */
2822
2823 case R_XTENSA_TLSDESC_FN:
2824 case R_XTENSA_TLSDESC_ARG:
2825 {
2826 if (r_type == R_XTENSA_TLSDESC_FN)
2827 {
2828 if (! bfd_link_pic (info) || (tls_type & GOT_TLS_IE) != 0)
2829 r_type = R_XTENSA_NONE;
2830 }
2831 else if (r_type == R_XTENSA_TLSDESC_ARG)
2832 {
2833 if (bfd_link_pic (info))
2834 {
2835 if ((tls_type & GOT_TLS_IE) != 0)
2836 r_type = R_XTENSA_TLS_TPOFF;
2837 }
2838 else
2839 {
2840 r_type = R_XTENSA_TLS_TPOFF;
2841 if (! dynamic_symbol)
2842 {
2843 relocation = tpoff (info, relocation);
2844 break;
2845 }
2846 }
2847 }
2848
2849 if (r_type == R_XTENSA_NONE)
2850 /* Nothing to do here; skip to the next reloc. */
2851 continue;
2852
2853 if (! elf_hash_table (info)->dynamic_sections_created)
2854 {
2855 error_message =
2856 _("TLS relocation invalid without dynamic sections");
2857 (*info->callbacks->reloc_dangerous)
2858 (info, error_message,
2859 input_bfd, input_section, rel->r_offset);
2860 }
2861 else
2862 {
2863 Elf_Internal_Rela outrel;
2864 bfd_byte *loc;
2865 asection *srel = htab->elf.srelgot;
2866 int indx;
2867
2868 outrel.r_offset = (input_section->output_section->vma
2869 + input_section->output_offset
2870 + rel->r_offset);
2871
2872 /* Complain if the relocation is in a read-only section
2873 and not in a literal pool. */
2874 if ((input_section->flags & SEC_READONLY) != 0
2875 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2876 outrel.r_offset))
2877 {
2878 error_message =
2879 _("dynamic relocation in read-only section");
2880 (*info->callbacks->reloc_dangerous)
2881 (info, error_message,
2882 input_bfd, input_section, rel->r_offset);
2883 }
2884
2885 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2886 if (indx == 0)
2887 outrel.r_addend = relocation - dtpoff_base (info);
2888 else
2889 outrel.r_addend = 0;
2890 rel->r_addend = 0;
2891
2892 outrel.r_info = ELF32_R_INFO (indx, r_type);
2893 relocation = 0;
2894 unresolved_reloc = FALSE;
2895
2896 BFD_ASSERT (srel);
2897 loc = (srel->contents
2898 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2899 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2900 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2901 <= srel->size);
2902 }
2903 }
2904 break;
2905
2906 case R_XTENSA_TLS_DTPOFF:
2907 if (! bfd_link_pic (info))
2908 /* Switch from LD model to LE model. */
2909 relocation = tpoff (info, relocation);
2910 else
2911 relocation -= dtpoff_base (info);
2912 break;
2913
2914 case R_XTENSA_TLS_FUNC:
2915 case R_XTENSA_TLS_ARG:
2916 case R_XTENSA_TLS_CALL:
2917 /* Check if optimizing to IE or LE model. */
2918 if ((tls_type & GOT_TLS_IE) != 0)
2919 {
2920 bfd_boolean is_ld_model =
2921 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
2922 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
2923 is_ld_model, &error_message))
2924 (*info->callbacks->reloc_dangerous)
2925 (info, error_message,
2926 input_bfd, input_section, rel->r_offset);
2927
2928 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
2929 {
2930 /* Skip subsequent relocations on the same instruction. */
2931 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
2932 rel++;
2933 }
2934 }
2935 continue;
2936
2937 default:
2938 if (elf_hash_table (info)->dynamic_sections_created
2939 && dynamic_symbol && (is_operand_relocation (r_type)
2940 || r_type == R_XTENSA_32_PCREL))
2941 {
2942 error_message =
2943 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
2944 strlen (name) + 2, name);
2945 (*info->callbacks->reloc_dangerous)
2946 (info, error_message, input_bfd, input_section, rel->r_offset);
2947 continue;
2948 }
2949 break;
2950 }
2951
2952 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2953 because such sections are not SEC_ALLOC and thus ld.so will
2954 not process them. */
2955 if (unresolved_reloc
2956 && !((input_section->flags & SEC_DEBUGGING) != 0
2957 && h->def_dynamic)
2958 && _bfd_elf_section_offset (output_bfd, info, input_section,
2959 rel->r_offset) != (bfd_vma) -1)
2960 {
2961 _bfd_error_handler
2962 /* xgettext:c-format */
2963 (_("%pB(%pA+%#" PRIx64 "): "
2964 "unresolvable %s relocation against symbol `%s'"),
2965 input_bfd,
2966 input_section,
2967 (uint64_t) rel->r_offset,
2968 howto->name,
2969 name);
2970 return FALSE;
2971 }
2972
2973 /* TLS optimizations may have changed r_type; update "howto". */
2974 howto = &elf_howto_table[r_type];
2975
2976 /* There's no point in calling bfd_perform_relocation here.
2977 Just go directly to our "special function". */
2978 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2979 relocation + rel->r_addend,
2980 contents, rel->r_offset, is_weak_undef,
2981 &error_message);
2982
2983 if (r != bfd_reloc_ok && !warned)
2984 {
2985 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
2986 BFD_ASSERT (error_message != NULL);
2987
2988 if (rel->r_addend == 0)
2989 error_message = vsprint_msg (error_message, ": %s",
2990 strlen (name) + 2, name);
2991 else
2992 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2993 strlen (name) + 22,
2994 name, (int) rel->r_addend);
2995
2996 (*info->callbacks->reloc_dangerous)
2997 (info, error_message, input_bfd, input_section, rel->r_offset);
2998 }
2999 }
3000
3001 if (lit_table)
3002 free (lit_table);
3003
3004 input_section->reloc_done = TRUE;
3005
3006 return TRUE;
3007 }
3008
3009
3010 /* Finish up dynamic symbol handling. There's not much to do here since
3011 the PLT and GOT entries are all set up by relocate_section. */
3012
3013 static bfd_boolean
3014 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3015 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3016 struct elf_link_hash_entry *h,
3017 Elf_Internal_Sym *sym)
3018 {
3019 if (h->needs_plt && !h->def_regular)
3020 {
3021 /* Mark the symbol as undefined, rather than as defined in
3022 the .plt section. Leave the value alone. */
3023 sym->st_shndx = SHN_UNDEF;
3024 /* If the symbol is weak, we do need to clear the value.
3025 Otherwise, the PLT entry would provide a definition for
3026 the symbol even if the symbol wasn't defined anywhere,
3027 and so the symbol would never be NULL. */
3028 if (!h->ref_regular_nonweak)
3029 sym->st_value = 0;
3030 }
3031
3032 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3033 if (h == elf_hash_table (info)->hdynamic
3034 || h == elf_hash_table (info)->hgot)
3035 sym->st_shndx = SHN_ABS;
3036
3037 return TRUE;
3038 }
3039
3040
3041 /* Combine adjacent literal table entries in the output. Adjacent
3042 entries within each input section may have been removed during
3043 relaxation, but we repeat the process here, even though it's too late
3044 to shrink the output section, because it's important to minimize the
3045 number of literal table entries to reduce the start-up work for the
3046 runtime linker. Returns the number of remaining table entries or -1
3047 on error. */
3048
3049 static int
3050 elf_xtensa_combine_prop_entries (bfd *output_bfd,
3051 asection *sxtlit,
3052 asection *sgotloc)
3053 {
3054 bfd_byte *contents;
3055 property_table_entry *table;
3056 bfd_size_type section_size, sgotloc_size;
3057 bfd_vma offset;
3058 int n, m, num;
3059
3060 section_size = sxtlit->size;
3061 BFD_ASSERT (section_size % 8 == 0);
3062 num = section_size / 8;
3063
3064 sgotloc_size = sgotloc->size;
3065 if (sgotloc_size != section_size)
3066 {
3067 _bfd_error_handler
3068 (_("internal inconsistency in size of .got.loc section"));
3069 return -1;
3070 }
3071
3072 table = bfd_malloc (num * sizeof (property_table_entry));
3073 if (table == 0)
3074 return -1;
3075
3076 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3077 propagates to the output section, where it doesn't really apply and
3078 where it breaks the following call to bfd_malloc_and_get_section. */
3079 sxtlit->flags &= ~SEC_IN_MEMORY;
3080
3081 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3082 {
3083 if (contents != 0)
3084 free (contents);
3085 free (table);
3086 return -1;
3087 }
3088
3089 /* There should never be any relocations left at this point, so this
3090 is quite a bit easier than what is done during relaxation. */
3091
3092 /* Copy the raw contents into a property table array and sort it. */
3093 offset = 0;
3094 for (n = 0; n < num; n++)
3095 {
3096 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3097 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3098 offset += 8;
3099 }
3100 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3101
3102 for (n = 0; n < num; n++)
3103 {
3104 bfd_boolean remove_entry = FALSE;
3105
3106 if (table[n].size == 0)
3107 remove_entry = TRUE;
3108 else if (n > 0
3109 && (table[n-1].address + table[n-1].size == table[n].address))
3110 {
3111 table[n-1].size += table[n].size;
3112 remove_entry = TRUE;
3113 }
3114
3115 if (remove_entry)
3116 {
3117 for (m = n; m < num - 1; m++)
3118 {
3119 table[m].address = table[m+1].address;
3120 table[m].size = table[m+1].size;
3121 }
3122
3123 n--;
3124 num--;
3125 }
3126 }
3127
3128 /* Copy the data back to the raw contents. */
3129 offset = 0;
3130 for (n = 0; n < num; n++)
3131 {
3132 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3133 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3134 offset += 8;
3135 }
3136
3137 /* Clear the removed bytes. */
3138 if ((bfd_size_type) (num * 8) < section_size)
3139 memset (&contents[num * 8], 0, section_size - num * 8);
3140
3141 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3142 section_size))
3143 return -1;
3144
3145 /* Copy the contents to ".got.loc". */
3146 memcpy (sgotloc->contents, contents, section_size);
3147
3148 free (contents);
3149 free (table);
3150 return num;
3151 }
3152
3153
3154 /* Finish up the dynamic sections. */
3155
3156 static bfd_boolean
3157 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3158 struct bfd_link_info *info)
3159 {
3160 struct elf_xtensa_link_hash_table *htab;
3161 bfd *dynobj;
3162 asection *sdyn, *srelplt, *srelgot, *sgot, *sxtlit, *sgotloc;
3163 Elf32_External_Dyn *dyncon, *dynconend;
3164 int num_xtlit_entries = 0;
3165
3166 if (! elf_hash_table (info)->dynamic_sections_created)
3167 return TRUE;
3168
3169 htab = elf_xtensa_hash_table (info);
3170 if (htab == NULL)
3171 return FALSE;
3172
3173 dynobj = elf_hash_table (info)->dynobj;
3174 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3175 BFD_ASSERT (sdyn != NULL);
3176
3177 /* Set the first entry in the global offset table to the address of
3178 the dynamic section. */
3179 sgot = htab->elf.sgot;
3180 if (sgot)
3181 {
3182 BFD_ASSERT (sgot->size == 4);
3183 if (sdyn == NULL)
3184 bfd_put_32 (output_bfd, 0, sgot->contents);
3185 else
3186 bfd_put_32 (output_bfd,
3187 sdyn->output_section->vma + sdyn->output_offset,
3188 sgot->contents);
3189 }
3190
3191 srelplt = htab->elf.srelplt;
3192 srelgot = htab->elf.srelgot;
3193 if (srelplt && srelplt->size != 0)
3194 {
3195 asection *sgotplt, *spltlittbl;
3196 int chunk, plt_chunks, plt_entries;
3197 Elf_Internal_Rela irela;
3198 bfd_byte *loc;
3199 unsigned rtld_reloc;
3200
3201 spltlittbl = htab->spltlittbl;
3202 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
3203
3204 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3205 of them follow immediately after.... */
3206 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3207 {
3208 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3209 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3210 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3211 break;
3212 }
3213 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3214
3215 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
3216 plt_chunks =
3217 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3218
3219 for (chunk = 0; chunk < plt_chunks; chunk++)
3220 {
3221 int chunk_entries = 0;
3222
3223 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
3224 BFD_ASSERT (sgotplt != NULL);
3225
3226 /* Emit special RTLD relocations for the first two entries in
3227 each chunk of the .got.plt section. */
3228
3229 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3230 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3231 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3232 irela.r_offset = (sgotplt->output_section->vma
3233 + sgotplt->output_offset);
3234 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3235 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3236 rtld_reloc += 1;
3237 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3238
3239 /* Next literal immediately follows the first. */
3240 loc += sizeof (Elf32_External_Rela);
3241 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3242 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3243 irela.r_offset = (sgotplt->output_section->vma
3244 + sgotplt->output_offset + 4);
3245 /* Tell rtld to set value to object's link map. */
3246 irela.r_addend = 2;
3247 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3248 rtld_reloc += 1;
3249 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3250
3251 /* Fill in the literal table. */
3252 if (chunk < plt_chunks - 1)
3253 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3254 else
3255 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3256
3257 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
3258 bfd_put_32 (output_bfd,
3259 sgotplt->output_section->vma + sgotplt->output_offset,
3260 spltlittbl->contents + (chunk * 8) + 0);
3261 bfd_put_32 (output_bfd,
3262 8 + (chunk_entries * 4),
3263 spltlittbl->contents + (chunk * 8) + 4);
3264 }
3265
3266 /* The .xt.lit.plt section has just been modified. This must
3267 happen before the code below which combines adjacent literal
3268 table entries, and the .xt.lit.plt contents have to be forced to
3269 the output here. */
3270 if (! bfd_set_section_contents (output_bfd,
3271 spltlittbl->output_section,
3272 spltlittbl->contents,
3273 spltlittbl->output_offset,
3274 spltlittbl->size))
3275 return FALSE;
3276 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3277 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3278 }
3279
3280 /* All the dynamic relocations have been emitted at this point.
3281 Make sure the relocation sections are the correct size. */
3282 if ((srelgot && srelgot->size != (sizeof (Elf32_External_Rela)
3283 * srelgot->reloc_count))
3284 || (srelplt && srelplt->size != (sizeof (Elf32_External_Rela)
3285 * srelplt->reloc_count)))
3286 abort ();
3287
3288 /* Combine adjacent literal table entries. */
3289 BFD_ASSERT (! bfd_link_relocatable (info));
3290 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
3291 sgotloc = htab->sgotloc;
3292 BFD_ASSERT (sgotloc);
3293 if (sxtlit)
3294 {
3295 num_xtlit_entries =
3296 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3297 if (num_xtlit_entries < 0)
3298 return FALSE;
3299 }
3300
3301 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3302 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3303 for (; dyncon < dynconend; dyncon++)
3304 {
3305 Elf_Internal_Dyn dyn;
3306
3307 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3308
3309 switch (dyn.d_tag)
3310 {
3311 default:
3312 break;
3313
3314 case DT_XTENSA_GOT_LOC_SZ:
3315 dyn.d_un.d_val = num_xtlit_entries;
3316 break;
3317
3318 case DT_XTENSA_GOT_LOC_OFF:
3319 dyn.d_un.d_ptr = (htab->sgotloc->output_section->vma
3320 + htab->sgotloc->output_offset);
3321 break;
3322
3323 case DT_PLTGOT:
3324 dyn.d_un.d_ptr = (htab->elf.sgot->output_section->vma
3325 + htab->elf.sgot->output_offset);
3326 break;
3327
3328 case DT_JMPREL:
3329 dyn.d_un.d_ptr = (htab->elf.srelplt->output_section->vma
3330 + htab->elf.srelplt->output_offset);
3331 break;
3332
3333 case DT_PLTRELSZ:
3334 dyn.d_un.d_val = htab->elf.srelplt->size;
3335 break;
3336 }
3337
3338 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3339 }
3340
3341 return TRUE;
3342 }
3343
3344 \f
3345 /* Functions for dealing with the e_flags field. */
3346
3347 /* Merge backend specific data from an object file to the output
3348 object file when linking. */
3349
3350 static bfd_boolean
3351 elf_xtensa_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
3352 {
3353 bfd *obfd = info->output_bfd;
3354 unsigned out_mach, in_mach;
3355 flagword out_flag, in_flag;
3356
3357 /* Check if we have the same endianness. */
3358 if (!_bfd_generic_verify_endian_match (ibfd, info))
3359 return FALSE;
3360
3361 /* Don't even pretend to support mixed-format linking. */
3362 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3363 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3364 return FALSE;
3365
3366 out_flag = elf_elfheader (obfd)->e_flags;
3367 in_flag = elf_elfheader (ibfd)->e_flags;
3368
3369 out_mach = out_flag & EF_XTENSA_MACH;
3370 in_mach = in_flag & EF_XTENSA_MACH;
3371 if (out_mach != in_mach)
3372 {
3373 _bfd_error_handler
3374 /* xgettext:c-format */
3375 (_("%pB: incompatible machine type; output is 0x%x; input is 0x%x"),
3376 ibfd, out_mach, in_mach);
3377 bfd_set_error (bfd_error_wrong_format);
3378 return FALSE;
3379 }
3380
3381 if (! elf_flags_init (obfd))
3382 {
3383 elf_flags_init (obfd) = TRUE;
3384 elf_elfheader (obfd)->e_flags = in_flag;
3385
3386 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3387 && bfd_get_arch_info (obfd)->the_default)
3388 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3389 bfd_get_mach (ibfd));
3390
3391 return TRUE;
3392 }
3393
3394 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3395 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
3396
3397 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3398 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
3399
3400 return TRUE;
3401 }
3402
3403
3404 static bfd_boolean
3405 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
3406 {
3407 BFD_ASSERT (!elf_flags_init (abfd)
3408 || elf_elfheader (abfd)->e_flags == flags);
3409
3410 elf_elfheader (abfd)->e_flags |= flags;
3411 elf_flags_init (abfd) = TRUE;
3412
3413 return TRUE;
3414 }
3415
3416
3417 static bfd_boolean
3418 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
3419 {
3420 FILE *f = (FILE *) farg;
3421 flagword e_flags = elf_elfheader (abfd)->e_flags;
3422
3423 fprintf (f, "\nXtensa header:\n");
3424 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
3425 fprintf (f, "\nMachine = Base\n");
3426 else
3427 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3428
3429 fprintf (f, "Insn tables = %s\n",
3430 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3431
3432 fprintf (f, "Literal tables = %s\n",
3433 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3434
3435 return _bfd_elf_print_private_bfd_data (abfd, farg);
3436 }
3437
3438
3439 /* Set the right machine number for an Xtensa ELF file. */
3440
3441 static bfd_boolean
3442 elf_xtensa_object_p (bfd *abfd)
3443 {
3444 int mach;
3445 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3446
3447 switch (arch)
3448 {
3449 case E_XTENSA_MACH:
3450 mach = bfd_mach_xtensa;
3451 break;
3452 default:
3453 return FALSE;
3454 }
3455
3456 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3457 return TRUE;
3458 }
3459
3460
3461 /* The final processing done just before writing out an Xtensa ELF object
3462 file. This gets the Xtensa architecture right based on the machine
3463 number. */
3464
3465 static void
3466 elf_xtensa_final_write_processing (bfd *abfd,
3467 bfd_boolean linker ATTRIBUTE_UNUSED)
3468 {
3469 int mach;
3470 unsigned long val;
3471
3472 switch (mach = bfd_get_mach (abfd))
3473 {
3474 case bfd_mach_xtensa:
3475 val = E_XTENSA_MACH;
3476 break;
3477 default:
3478 return;
3479 }
3480
3481 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3482 elf_elfheader (abfd)->e_flags |= val;
3483 }
3484
3485
3486 static enum elf_reloc_type_class
3487 elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3488 const asection *rel_sec ATTRIBUTE_UNUSED,
3489 const Elf_Internal_Rela *rela)
3490 {
3491 switch ((int) ELF32_R_TYPE (rela->r_info))
3492 {
3493 case R_XTENSA_RELATIVE:
3494 return reloc_class_relative;
3495 case R_XTENSA_JMP_SLOT:
3496 return reloc_class_plt;
3497 default:
3498 return reloc_class_normal;
3499 }
3500 }
3501
3502 \f
3503 static bfd_boolean
3504 elf_xtensa_discard_info_for_section (bfd *abfd,
3505 struct elf_reloc_cookie *cookie,
3506 struct bfd_link_info *info,
3507 asection *sec)
3508 {
3509 bfd_byte *contents;
3510 bfd_vma offset, actual_offset;
3511 bfd_size_type removed_bytes = 0;
3512 bfd_size_type entry_size;
3513
3514 if (sec->output_section
3515 && bfd_is_abs_section (sec->output_section))
3516 return FALSE;
3517
3518 if (xtensa_is_proptable_section (sec))
3519 entry_size = 12;
3520 else
3521 entry_size = 8;
3522
3523 if (sec->size == 0 || sec->size % entry_size != 0)
3524 return FALSE;
3525
3526 contents = retrieve_contents (abfd, sec, info->keep_memory);
3527 if (!contents)
3528 return FALSE;
3529
3530 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3531 if (!cookie->rels)
3532 {
3533 release_contents (sec, contents);
3534 return FALSE;
3535 }
3536
3537 /* Sort the relocations. They should already be in order when
3538 relaxation is enabled, but it might not be. */
3539 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3540 internal_reloc_compare);
3541
3542 cookie->rel = cookie->rels;
3543 cookie->relend = cookie->rels + sec->reloc_count;
3544
3545 for (offset = 0; offset < sec->size; offset += entry_size)
3546 {
3547 actual_offset = offset - removed_bytes;
3548
3549 /* The ...symbol_deleted_p function will skip over relocs but it
3550 won't adjust their offsets, so do that here. */
3551 while (cookie->rel < cookie->relend
3552 && cookie->rel->r_offset < offset)
3553 {
3554 cookie->rel->r_offset -= removed_bytes;
3555 cookie->rel++;
3556 }
3557
3558 while (cookie->rel < cookie->relend
3559 && cookie->rel->r_offset == offset)
3560 {
3561 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
3562 {
3563 /* Remove the table entry. (If the reloc type is NONE, then
3564 the entry has already been merged with another and deleted
3565 during relaxation.) */
3566 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3567 {
3568 /* Shift the contents up. */
3569 if (offset + entry_size < sec->size)
3570 memmove (&contents[actual_offset],
3571 &contents[actual_offset + entry_size],
3572 sec->size - offset - entry_size);
3573 removed_bytes += entry_size;
3574 }
3575
3576 /* Remove this relocation. */
3577 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3578 }
3579
3580 /* Adjust the relocation offset for previous removals. This
3581 should not be done before calling ...symbol_deleted_p
3582 because it might mess up the offset comparisons there.
3583 Make sure the offset doesn't underflow in the case where
3584 the first entry is removed. */
3585 if (cookie->rel->r_offset >= removed_bytes)
3586 cookie->rel->r_offset -= removed_bytes;
3587 else
3588 cookie->rel->r_offset = 0;
3589
3590 cookie->rel++;
3591 }
3592 }
3593
3594 if (removed_bytes != 0)
3595 {
3596 /* Adjust any remaining relocs (shouldn't be any). */
3597 for (; cookie->rel < cookie->relend; cookie->rel++)
3598 {
3599 if (cookie->rel->r_offset >= removed_bytes)
3600 cookie->rel->r_offset -= removed_bytes;
3601 else
3602 cookie->rel->r_offset = 0;
3603 }
3604
3605 /* Clear the removed bytes. */
3606 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
3607
3608 pin_contents (sec, contents);
3609 pin_internal_relocs (sec, cookie->rels);
3610
3611 /* Shrink size. */
3612 if (sec->rawsize == 0)
3613 sec->rawsize = sec->size;
3614 sec->size -= removed_bytes;
3615
3616 if (xtensa_is_littable_section (sec))
3617 {
3618 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3619 if (sgotloc)
3620 sgotloc->size -= removed_bytes;
3621 }
3622 }
3623 else
3624 {
3625 release_contents (sec, contents);
3626 release_internal_relocs (sec, cookie->rels);
3627 }
3628
3629 return (removed_bytes != 0);
3630 }
3631
3632
3633 static bfd_boolean
3634 elf_xtensa_discard_info (bfd *abfd,
3635 struct elf_reloc_cookie *cookie,
3636 struct bfd_link_info *info)
3637 {
3638 asection *sec;
3639 bfd_boolean changed = FALSE;
3640
3641 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3642 {
3643 if (xtensa_is_property_section (sec))
3644 {
3645 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3646 changed = TRUE;
3647 }
3648 }
3649
3650 return changed;
3651 }
3652
3653
3654 static bfd_boolean
3655 elf_xtensa_ignore_discarded_relocs (asection *sec)
3656 {
3657 return xtensa_is_property_section (sec);
3658 }
3659
3660
3661 static unsigned int
3662 elf_xtensa_action_discarded (asection *sec)
3663 {
3664 if (strcmp (".xt_except_table", sec->name) == 0)
3665 return 0;
3666
3667 if (strcmp (".xt_except_desc", sec->name) == 0)
3668 return 0;
3669
3670 return _bfd_elf_default_action_discarded (sec);
3671 }
3672
3673 \f
3674 /* Support for core dump NOTE sections. */
3675
3676 static bfd_boolean
3677 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3678 {
3679 int offset;
3680 unsigned int size;
3681
3682 /* The size for Xtensa is variable, so don't try to recognize the format
3683 based on the size. Just assume this is GNU/Linux. */
3684
3685 /* pr_cursig */
3686 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
3687
3688 /* pr_pid */
3689 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
3690
3691 /* pr_reg */
3692 offset = 72;
3693 size = note->descsz - offset - 4;
3694
3695 /* Make a ".reg/999" section. */
3696 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3697 size, note->descpos + offset);
3698 }
3699
3700
3701 static bfd_boolean
3702 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3703 {
3704 switch (note->descsz)
3705 {
3706 default:
3707 return FALSE;
3708
3709 case 128: /* GNU/Linux elf_prpsinfo */
3710 elf_tdata (abfd)->core->program
3711 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3712 elf_tdata (abfd)->core->command
3713 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3714 }
3715
3716 /* Note that for some reason, a spurious space is tacked
3717 onto the end of the args in some (at least one anyway)
3718 implementations, so strip it off if it exists. */
3719
3720 {
3721 char *command = elf_tdata (abfd)->core->command;
3722 int n = strlen (command);
3723
3724 if (0 < n && command[n - 1] == ' ')
3725 command[n - 1] = '\0';
3726 }
3727
3728 return TRUE;
3729 }
3730
3731 \f
3732 /* Generic Xtensa configurability stuff. */
3733
3734 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3735 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3736 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3737 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3738 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3739 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3740 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3741 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3742
3743 static void
3744 init_call_opcodes (void)
3745 {
3746 if (callx0_op == XTENSA_UNDEFINED)
3747 {
3748 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3749 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3750 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3751 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3752 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3753 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3754 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3755 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3756 }
3757 }
3758
3759
3760 static bfd_boolean
3761 is_indirect_call_opcode (xtensa_opcode opcode)
3762 {
3763 init_call_opcodes ();
3764 return (opcode == callx0_op
3765 || opcode == callx4_op
3766 || opcode == callx8_op
3767 || opcode == callx12_op);
3768 }
3769
3770
3771 static bfd_boolean
3772 is_direct_call_opcode (xtensa_opcode opcode)
3773 {
3774 init_call_opcodes ();
3775 return (opcode == call0_op
3776 || opcode == call4_op
3777 || opcode == call8_op
3778 || opcode == call12_op);
3779 }
3780
3781
3782 static bfd_boolean
3783 is_windowed_call_opcode (xtensa_opcode opcode)
3784 {
3785 init_call_opcodes ();
3786 return (opcode == call4_op
3787 || opcode == call8_op
3788 || opcode == call12_op
3789 || opcode == callx4_op
3790 || opcode == callx8_op
3791 || opcode == callx12_op);
3792 }
3793
3794
3795 static bfd_boolean
3796 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3797 {
3798 unsigned dst = (unsigned) -1;
3799
3800 init_call_opcodes ();
3801 if (opcode == callx0_op)
3802 dst = 0;
3803 else if (opcode == callx4_op)
3804 dst = 4;
3805 else if (opcode == callx8_op)
3806 dst = 8;
3807 else if (opcode == callx12_op)
3808 dst = 12;
3809
3810 if (dst == (unsigned) -1)
3811 return FALSE;
3812
3813 *pdst = dst;
3814 return TRUE;
3815 }
3816
3817
3818 static xtensa_opcode
3819 get_const16_opcode (void)
3820 {
3821 static bfd_boolean done_lookup = FALSE;
3822 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3823 if (!done_lookup)
3824 {
3825 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3826 done_lookup = TRUE;
3827 }
3828 return const16_opcode;
3829 }
3830
3831
3832 static xtensa_opcode
3833 get_l32r_opcode (void)
3834 {
3835 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3836 static bfd_boolean done_lookup = FALSE;
3837
3838 if (!done_lookup)
3839 {
3840 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3841 done_lookup = TRUE;
3842 }
3843 return l32r_opcode;
3844 }
3845
3846
3847 static bfd_vma
3848 l32r_offset (bfd_vma addr, bfd_vma pc)
3849 {
3850 bfd_vma offset;
3851
3852 offset = addr - ((pc+3) & -4);
3853 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3854 offset = (signed int) offset >> 2;
3855 BFD_ASSERT ((signed int) offset >> 16 == -1);
3856 return offset;
3857 }
3858
3859
3860 static int
3861 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3862 {
3863 xtensa_isa isa = xtensa_default_isa;
3864 int last_immed, last_opnd, opi;
3865
3866 if (opcode == XTENSA_UNDEFINED)
3867 return XTENSA_UNDEFINED;
3868
3869 /* Find the last visible PC-relative immediate operand for the opcode.
3870 If there are no PC-relative immediates, then choose the last visible
3871 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3872 last_immed = XTENSA_UNDEFINED;
3873 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3874 for (opi = last_opnd - 1; opi >= 0; opi--)
3875 {
3876 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3877 continue;
3878 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3879 {
3880 last_immed = opi;
3881 break;
3882 }
3883 if (last_immed == XTENSA_UNDEFINED
3884 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3885 last_immed = opi;
3886 }
3887 if (last_immed < 0)
3888 return XTENSA_UNDEFINED;
3889
3890 /* If the operand number was specified in an old-style relocation,
3891 check for consistency with the operand computed above. */
3892 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3893 {
3894 int reloc_opnd = r_type - R_XTENSA_OP0;
3895 if (reloc_opnd != last_immed)
3896 return XTENSA_UNDEFINED;
3897 }
3898
3899 return last_immed;
3900 }
3901
3902
3903 int
3904 get_relocation_slot (int r_type)
3905 {
3906 switch (r_type)
3907 {
3908 case R_XTENSA_OP0:
3909 case R_XTENSA_OP1:
3910 case R_XTENSA_OP2:
3911 return 0;
3912
3913 default:
3914 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3915 return r_type - R_XTENSA_SLOT0_OP;
3916 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3917 return r_type - R_XTENSA_SLOT0_ALT;
3918 break;
3919 }
3920
3921 return XTENSA_UNDEFINED;
3922 }
3923
3924
3925 /* Get the opcode for a relocation. */
3926
3927 static xtensa_opcode
3928 get_relocation_opcode (bfd *abfd,
3929 asection *sec,
3930 bfd_byte *contents,
3931 Elf_Internal_Rela *irel)
3932 {
3933 static xtensa_insnbuf ibuff = NULL;
3934 static xtensa_insnbuf sbuff = NULL;
3935 xtensa_isa isa = xtensa_default_isa;
3936 xtensa_format fmt;
3937 int slot;
3938
3939 if (contents == NULL)
3940 return XTENSA_UNDEFINED;
3941
3942 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
3943 return XTENSA_UNDEFINED;
3944
3945 if (ibuff == NULL)
3946 {
3947 ibuff = xtensa_insnbuf_alloc (isa);
3948 sbuff = xtensa_insnbuf_alloc (isa);
3949 }
3950
3951 /* Decode the instruction. */
3952 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3953 sec->size - irel->r_offset);
3954 fmt = xtensa_format_decode (isa, ibuff);
3955 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3956 if (slot == XTENSA_UNDEFINED)
3957 return XTENSA_UNDEFINED;
3958 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3959 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
3960 }
3961
3962
3963 bfd_boolean
3964 is_l32r_relocation (bfd *abfd,
3965 asection *sec,
3966 bfd_byte *contents,
3967 Elf_Internal_Rela *irel)
3968 {
3969 xtensa_opcode opcode;
3970 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
3971 return FALSE;
3972 opcode = get_relocation_opcode (abfd, sec, contents, irel);
3973 return (opcode == get_l32r_opcode ());
3974 }
3975
3976
3977 static bfd_size_type
3978 get_asm_simplify_size (bfd_byte *contents,
3979 bfd_size_type content_len,
3980 bfd_size_type offset)
3981 {
3982 bfd_size_type insnlen, size = 0;
3983
3984 /* Decode the size of the next two instructions. */
3985 insnlen = insn_decode_len (contents, content_len, offset);
3986 if (insnlen == 0)
3987 return 0;
3988
3989 size += insnlen;
3990
3991 insnlen = insn_decode_len (contents, content_len, offset + size);
3992 if (insnlen == 0)
3993 return 0;
3994
3995 size += insnlen;
3996 return size;
3997 }
3998
3999
4000 bfd_boolean
4001 is_alt_relocation (int r_type)
4002 {
4003 return (r_type >= R_XTENSA_SLOT0_ALT
4004 && r_type <= R_XTENSA_SLOT14_ALT);
4005 }
4006
4007
4008 bfd_boolean
4009 is_operand_relocation (int r_type)
4010 {
4011 switch (r_type)
4012 {
4013 case R_XTENSA_OP0:
4014 case R_XTENSA_OP1:
4015 case R_XTENSA_OP2:
4016 return TRUE;
4017
4018 default:
4019 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4020 return TRUE;
4021 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4022 return TRUE;
4023 break;
4024 }
4025
4026 return FALSE;
4027 }
4028
4029
4030 #define MIN_INSN_LENGTH 2
4031
4032 /* Return 0 if it fails to decode. */
4033
4034 bfd_size_type
4035 insn_decode_len (bfd_byte *contents,
4036 bfd_size_type content_len,
4037 bfd_size_type offset)
4038 {
4039 int insn_len;
4040 xtensa_isa isa = xtensa_default_isa;
4041 xtensa_format fmt;
4042 static xtensa_insnbuf ibuff = NULL;
4043
4044 if (offset + MIN_INSN_LENGTH > content_len)
4045 return 0;
4046
4047 if (ibuff == NULL)
4048 ibuff = xtensa_insnbuf_alloc (isa);
4049 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4050 content_len - offset);
4051 fmt = xtensa_format_decode (isa, ibuff);
4052 if (fmt == XTENSA_UNDEFINED)
4053 return 0;
4054 insn_len = xtensa_format_length (isa, fmt);
4055 if (insn_len == XTENSA_UNDEFINED)
4056 return 0;
4057 return insn_len;
4058 }
4059
4060
4061 /* Decode the opcode for a single slot instruction.
4062 Return 0 if it fails to decode or the instruction is multi-slot. */
4063
4064 xtensa_opcode
4065 insn_decode_opcode (bfd_byte *contents,
4066 bfd_size_type content_len,
4067 bfd_size_type offset,
4068 int slot)
4069 {
4070 xtensa_isa isa = xtensa_default_isa;
4071 xtensa_format fmt;
4072 static xtensa_insnbuf insnbuf = NULL;
4073 static xtensa_insnbuf slotbuf = NULL;
4074
4075 if (offset + MIN_INSN_LENGTH > content_len)
4076 return XTENSA_UNDEFINED;
4077
4078 if (insnbuf == NULL)
4079 {
4080 insnbuf = xtensa_insnbuf_alloc (isa);
4081 slotbuf = xtensa_insnbuf_alloc (isa);
4082 }
4083
4084 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4085 content_len - offset);
4086 fmt = xtensa_format_decode (isa, insnbuf);
4087 if (fmt == XTENSA_UNDEFINED)
4088 return XTENSA_UNDEFINED;
4089
4090 if (slot >= xtensa_format_num_slots (isa, fmt))
4091 return XTENSA_UNDEFINED;
4092
4093 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4094 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4095 }
4096
4097
4098 /* The offset is the offset in the contents.
4099 The address is the address of that offset. */
4100
4101 static bfd_boolean
4102 check_branch_target_aligned (bfd_byte *contents,
4103 bfd_size_type content_length,
4104 bfd_vma offset,
4105 bfd_vma address)
4106 {
4107 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4108 if (insn_len == 0)
4109 return FALSE;
4110 return check_branch_target_aligned_address (address, insn_len);
4111 }
4112
4113
4114 static bfd_boolean
4115 check_loop_aligned (bfd_byte *contents,
4116 bfd_size_type content_length,
4117 bfd_vma offset,
4118 bfd_vma address)
4119 {
4120 bfd_size_type loop_len, insn_len;
4121 xtensa_opcode opcode;
4122
4123 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4124 if (opcode == XTENSA_UNDEFINED
4125 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4126 {
4127 BFD_ASSERT (FALSE);
4128 return FALSE;
4129 }
4130
4131 loop_len = insn_decode_len (contents, content_length, offset);
4132 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4133 if (loop_len == 0 || insn_len == 0)
4134 {
4135 BFD_ASSERT (FALSE);
4136 return FALSE;
4137 }
4138
4139 return check_branch_target_aligned_address (address + loop_len, insn_len);
4140 }
4141
4142
4143 static bfd_boolean
4144 check_branch_target_aligned_address (bfd_vma addr, int len)
4145 {
4146 if (len == 8)
4147 return (addr % 8 == 0);
4148 return ((addr >> 2) == ((addr + len - 1) >> 2));
4149 }
4150
4151 \f
4152 /* Instruction widening and narrowing. */
4153
4154 /* When FLIX is available we need to access certain instructions only
4155 when they are 16-bit or 24-bit instructions. This table caches
4156 information about such instructions by walking through all the
4157 opcodes and finding the smallest single-slot format into which each
4158 can be encoded. */
4159
4160 static xtensa_format *op_single_fmt_table = NULL;
4161
4162
4163 static void
4164 init_op_single_format_table (void)
4165 {
4166 xtensa_isa isa = xtensa_default_isa;
4167 xtensa_insnbuf ibuf;
4168 xtensa_opcode opcode;
4169 xtensa_format fmt;
4170 int num_opcodes;
4171
4172 if (op_single_fmt_table)
4173 return;
4174
4175 ibuf = xtensa_insnbuf_alloc (isa);
4176 num_opcodes = xtensa_isa_num_opcodes (isa);
4177
4178 op_single_fmt_table = (xtensa_format *)
4179 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4180 for (opcode = 0; opcode < num_opcodes; opcode++)
4181 {
4182 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4183 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4184 {
4185 if (xtensa_format_num_slots (isa, fmt) == 1
4186 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4187 {
4188 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4189 int fmt_length = xtensa_format_length (isa, fmt);
4190 if (old_fmt == XTENSA_UNDEFINED
4191 || fmt_length < xtensa_format_length (isa, old_fmt))
4192 op_single_fmt_table[opcode] = fmt;
4193 }
4194 }
4195 }
4196 xtensa_insnbuf_free (isa, ibuf);
4197 }
4198
4199
4200 static xtensa_format
4201 get_single_format (xtensa_opcode opcode)
4202 {
4203 init_op_single_format_table ();
4204 return op_single_fmt_table[opcode];
4205 }
4206
4207
4208 /* For the set of narrowable instructions we do NOT include the
4209 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4210 involved during linker relaxation that may require these to
4211 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4212 requires special case code to ensure it only works when op1 == op2. */
4213
4214 struct string_pair
4215 {
4216 const char *wide;
4217 const char *narrow;
4218 };
4219
4220 struct string_pair narrowable[] =
4221 {
4222 { "add", "add.n" },
4223 { "addi", "addi.n" },
4224 { "addmi", "addi.n" },
4225 { "l32i", "l32i.n" },
4226 { "movi", "movi.n" },
4227 { "ret", "ret.n" },
4228 { "retw", "retw.n" },
4229 { "s32i", "s32i.n" },
4230 { "or", "mov.n" } /* special case only when op1 == op2 */
4231 };
4232
4233 struct string_pair widenable[] =
4234 {
4235 { "add", "add.n" },
4236 { "addi", "addi.n" },
4237 { "addmi", "addi.n" },
4238 { "beqz", "beqz.n" },
4239 { "bnez", "bnez.n" },
4240 { "l32i", "l32i.n" },
4241 { "movi", "movi.n" },
4242 { "ret", "ret.n" },
4243 { "retw", "retw.n" },
4244 { "s32i", "s32i.n" },
4245 { "or", "mov.n" } /* special case only when op1 == op2 */
4246 };
4247
4248
4249 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4250 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4251 return the instruction buffer holding the narrow instruction. Otherwise,
4252 return 0. The set of valid narrowing are specified by a string table
4253 but require some special case operand checks in some cases. */
4254
4255 static xtensa_insnbuf
4256 can_narrow_instruction (xtensa_insnbuf slotbuf,
4257 xtensa_format fmt,
4258 xtensa_opcode opcode)
4259 {
4260 xtensa_isa isa = xtensa_default_isa;
4261 xtensa_format o_fmt;
4262 unsigned opi;
4263
4264 static xtensa_insnbuf o_insnbuf = NULL;
4265 static xtensa_insnbuf o_slotbuf = NULL;
4266
4267 if (o_insnbuf == NULL)
4268 {
4269 o_insnbuf = xtensa_insnbuf_alloc (isa);
4270 o_slotbuf = xtensa_insnbuf_alloc (isa);
4271 }
4272
4273 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
4274 {
4275 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
4276
4277 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4278 {
4279 uint32 value, newval;
4280 int i, operand_count, o_operand_count;
4281 xtensa_opcode o_opcode;
4282
4283 /* Address does not matter in this case. We might need to
4284 fix it to handle branches/jumps. */
4285 bfd_vma self_address = 0;
4286
4287 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4288 if (o_opcode == XTENSA_UNDEFINED)
4289 return 0;
4290 o_fmt = get_single_format (o_opcode);
4291 if (o_fmt == XTENSA_UNDEFINED)
4292 return 0;
4293
4294 if (xtensa_format_length (isa, fmt) != 3
4295 || xtensa_format_length (isa, o_fmt) != 2)
4296 return 0;
4297
4298 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4299 operand_count = xtensa_opcode_num_operands (isa, opcode);
4300 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4301
4302 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4303 return 0;
4304
4305 if (!is_or)
4306 {
4307 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4308 return 0;
4309 }
4310 else
4311 {
4312 uint32 rawval0, rawval1, rawval2;
4313
4314 if (o_operand_count + 1 != operand_count
4315 || xtensa_operand_get_field (isa, opcode, 0,
4316 fmt, 0, slotbuf, &rawval0) != 0
4317 || xtensa_operand_get_field (isa, opcode, 1,
4318 fmt, 0, slotbuf, &rawval1) != 0
4319 || xtensa_operand_get_field (isa, opcode, 2,
4320 fmt, 0, slotbuf, &rawval2) != 0
4321 || rawval1 != rawval2
4322 || rawval0 == rawval1 /* it is a nop */)
4323 return 0;
4324 }
4325
4326 for (i = 0; i < o_operand_count; ++i)
4327 {
4328 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4329 slotbuf, &value)
4330 || xtensa_operand_decode (isa, opcode, i, &value))
4331 return 0;
4332
4333 /* PC-relative branches need adjustment, but
4334 the PC-rel operand will always have a relocation. */
4335 newval = value;
4336 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4337 self_address)
4338 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4339 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4340 o_slotbuf, newval))
4341 return 0;
4342 }
4343
4344 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4345 return 0;
4346
4347 return o_insnbuf;
4348 }
4349 }
4350 return 0;
4351 }
4352
4353
4354 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4355 the action in-place directly into the contents and return TRUE. Otherwise,
4356 the return value is FALSE and the contents are not modified. */
4357
4358 static bfd_boolean
4359 narrow_instruction (bfd_byte *contents,
4360 bfd_size_type content_length,
4361 bfd_size_type offset)
4362 {
4363 xtensa_opcode opcode;
4364 bfd_size_type insn_len;
4365 xtensa_isa isa = xtensa_default_isa;
4366 xtensa_format fmt;
4367 xtensa_insnbuf o_insnbuf;
4368
4369 static xtensa_insnbuf insnbuf = NULL;
4370 static xtensa_insnbuf slotbuf = NULL;
4371
4372 if (insnbuf == NULL)
4373 {
4374 insnbuf = xtensa_insnbuf_alloc (isa);
4375 slotbuf = xtensa_insnbuf_alloc (isa);
4376 }
4377
4378 BFD_ASSERT (offset < content_length);
4379
4380 if (content_length < 2)
4381 return FALSE;
4382
4383 /* We will hand-code a few of these for a little while.
4384 These have all been specified in the assembler aleady. */
4385 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4386 content_length - offset);
4387 fmt = xtensa_format_decode (isa, insnbuf);
4388 if (xtensa_format_num_slots (isa, fmt) != 1)
4389 return FALSE;
4390
4391 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4392 return FALSE;
4393
4394 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4395 if (opcode == XTENSA_UNDEFINED)
4396 return FALSE;
4397 insn_len = xtensa_format_length (isa, fmt);
4398 if (insn_len > content_length)
4399 return FALSE;
4400
4401 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4402 if (o_insnbuf)
4403 {
4404 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4405 content_length - offset);
4406 return TRUE;
4407 }
4408
4409 return FALSE;
4410 }
4411
4412
4413 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4414 "density" instruction to a standard 3-byte instruction. If it is valid,
4415 return the instruction buffer holding the wide instruction. Otherwise,
4416 return 0. The set of valid widenings are specified by a string table
4417 but require some special case operand checks in some cases. */
4418
4419 static xtensa_insnbuf
4420 can_widen_instruction (xtensa_insnbuf slotbuf,
4421 xtensa_format fmt,
4422 xtensa_opcode opcode)
4423 {
4424 xtensa_isa isa = xtensa_default_isa;
4425 xtensa_format o_fmt;
4426 unsigned opi;
4427
4428 static xtensa_insnbuf o_insnbuf = NULL;
4429 static xtensa_insnbuf o_slotbuf = NULL;
4430
4431 if (o_insnbuf == NULL)
4432 {
4433 o_insnbuf = xtensa_insnbuf_alloc (isa);
4434 o_slotbuf = xtensa_insnbuf_alloc (isa);
4435 }
4436
4437 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
4438 {
4439 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4440 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4441 || strcmp ("bnez", widenable[opi].wide) == 0);
4442
4443 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4444 {
4445 uint32 value, newval;
4446 int i, operand_count, o_operand_count, check_operand_count;
4447 xtensa_opcode o_opcode;
4448
4449 /* Address does not matter in this case. We might need to fix it
4450 to handle branches/jumps. */
4451 bfd_vma self_address = 0;
4452
4453 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4454 if (o_opcode == XTENSA_UNDEFINED)
4455 return 0;
4456 o_fmt = get_single_format (o_opcode);
4457 if (o_fmt == XTENSA_UNDEFINED)
4458 return 0;
4459
4460 if (xtensa_format_length (isa, fmt) != 2
4461 || xtensa_format_length (isa, o_fmt) != 3)
4462 return 0;
4463
4464 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4465 operand_count = xtensa_opcode_num_operands (isa, opcode);
4466 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4467 check_operand_count = o_operand_count;
4468
4469 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4470 return 0;
4471
4472 if (!is_or)
4473 {
4474 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4475 return 0;
4476 }
4477 else
4478 {
4479 uint32 rawval0, rawval1;
4480
4481 if (o_operand_count != operand_count + 1
4482 || xtensa_operand_get_field (isa, opcode, 0,
4483 fmt, 0, slotbuf, &rawval0) != 0
4484 || xtensa_operand_get_field (isa, opcode, 1,
4485 fmt, 0, slotbuf, &rawval1) != 0
4486 || rawval0 == rawval1 /* it is a nop */)
4487 return 0;
4488 }
4489 if (is_branch)
4490 check_operand_count--;
4491
4492 for (i = 0; i < check_operand_count; i++)
4493 {
4494 int new_i = i;
4495 if (is_or && i == o_operand_count - 1)
4496 new_i = i - 1;
4497 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4498 slotbuf, &value)
4499 || xtensa_operand_decode (isa, opcode, new_i, &value))
4500 return 0;
4501
4502 /* PC-relative branches need adjustment, but
4503 the PC-rel operand will always have a relocation. */
4504 newval = value;
4505 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4506 self_address)
4507 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4508 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4509 o_slotbuf, newval))
4510 return 0;
4511 }
4512
4513 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4514 return 0;
4515
4516 return o_insnbuf;
4517 }
4518 }
4519 return 0;
4520 }
4521
4522
4523 /* Attempt to widen an instruction. If the widening is valid, perform
4524 the action in-place directly into the contents and return TRUE. Otherwise,
4525 the return value is FALSE and the contents are not modified. */
4526
4527 static bfd_boolean
4528 widen_instruction (bfd_byte *contents,
4529 bfd_size_type content_length,
4530 bfd_size_type offset)
4531 {
4532 xtensa_opcode opcode;
4533 bfd_size_type insn_len;
4534 xtensa_isa isa = xtensa_default_isa;
4535 xtensa_format fmt;
4536 xtensa_insnbuf o_insnbuf;
4537
4538 static xtensa_insnbuf insnbuf = NULL;
4539 static xtensa_insnbuf slotbuf = NULL;
4540
4541 if (insnbuf == NULL)
4542 {
4543 insnbuf = xtensa_insnbuf_alloc (isa);
4544 slotbuf = xtensa_insnbuf_alloc (isa);
4545 }
4546
4547 BFD_ASSERT (offset < content_length);
4548
4549 if (content_length < 2)
4550 return FALSE;
4551
4552 /* We will hand-code a few of these for a little while.
4553 These have all been specified in the assembler aleady. */
4554 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4555 content_length - offset);
4556 fmt = xtensa_format_decode (isa, insnbuf);
4557 if (xtensa_format_num_slots (isa, fmt) != 1)
4558 return FALSE;
4559
4560 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4561 return FALSE;
4562
4563 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4564 if (opcode == XTENSA_UNDEFINED)
4565 return FALSE;
4566 insn_len = xtensa_format_length (isa, fmt);
4567 if (insn_len > content_length)
4568 return FALSE;
4569
4570 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4571 if (o_insnbuf)
4572 {
4573 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4574 content_length - offset);
4575 return TRUE;
4576 }
4577 return FALSE;
4578 }
4579
4580 \f
4581 /* Code for transforming CALLs at link-time. */
4582
4583 static bfd_reloc_status_type
4584 elf_xtensa_do_asm_simplify (bfd_byte *contents,
4585 bfd_vma address,
4586 bfd_vma content_length,
4587 char **error_message)
4588 {
4589 static xtensa_insnbuf insnbuf = NULL;
4590 static xtensa_insnbuf slotbuf = NULL;
4591 xtensa_format core_format = XTENSA_UNDEFINED;
4592 xtensa_opcode opcode;
4593 xtensa_opcode direct_call_opcode;
4594 xtensa_isa isa = xtensa_default_isa;
4595 bfd_byte *chbuf = contents + address;
4596 int opn;
4597
4598 if (insnbuf == NULL)
4599 {
4600 insnbuf = xtensa_insnbuf_alloc (isa);
4601 slotbuf = xtensa_insnbuf_alloc (isa);
4602 }
4603
4604 if (content_length < address)
4605 {
4606 *error_message = _("attempt to convert L32R/CALLX to CALL failed");
4607 return bfd_reloc_other;
4608 }
4609
4610 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4611 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4612 if (direct_call_opcode == XTENSA_UNDEFINED)
4613 {
4614 *error_message = _("attempt to convert L32R/CALLX to CALL failed");
4615 return bfd_reloc_other;
4616 }
4617
4618 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4619 core_format = xtensa_format_lookup (isa, "x24");
4620 opcode = xtensa_opcode_lookup (isa, "or");
4621 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4622 for (opn = 0; opn < 3; opn++)
4623 {
4624 uint32 regno = 1;
4625 xtensa_operand_encode (isa, opcode, opn, &regno);
4626 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4627 slotbuf, regno);
4628 }
4629 xtensa_format_encode (isa, core_format, insnbuf);
4630 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4631 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
4632
4633 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4634 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4635 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
4636
4637 xtensa_format_encode (isa, core_format, insnbuf);
4638 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4639 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4640 content_length - address - 3);
4641
4642 return bfd_reloc_ok;
4643 }
4644
4645
4646 static bfd_reloc_status_type
4647 contract_asm_expansion (bfd_byte *contents,
4648 bfd_vma content_length,
4649 Elf_Internal_Rela *irel,
4650 char **error_message)
4651 {
4652 bfd_reloc_status_type retval =
4653 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4654 error_message);
4655
4656 if (retval != bfd_reloc_ok)
4657 return bfd_reloc_dangerous;
4658
4659 /* Update the irel->r_offset field so that the right immediate and
4660 the right instruction are modified during the relocation. */
4661 irel->r_offset += 3;
4662 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4663 return bfd_reloc_ok;
4664 }
4665
4666
4667 static xtensa_opcode
4668 swap_callx_for_call_opcode (xtensa_opcode opcode)
4669 {
4670 init_call_opcodes ();
4671
4672 if (opcode == callx0_op) return call0_op;
4673 if (opcode == callx4_op) return call4_op;
4674 if (opcode == callx8_op) return call8_op;
4675 if (opcode == callx12_op) return call12_op;
4676
4677 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4678 return XTENSA_UNDEFINED;
4679 }
4680
4681
4682 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4683 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4684 If not, return XTENSA_UNDEFINED. */
4685
4686 #define L32R_TARGET_REG_OPERAND 0
4687 #define CONST16_TARGET_REG_OPERAND 0
4688 #define CALLN_SOURCE_OPERAND 0
4689
4690 static xtensa_opcode
4691 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4692 {
4693 static xtensa_insnbuf insnbuf = NULL;
4694 static xtensa_insnbuf slotbuf = NULL;
4695 xtensa_format fmt;
4696 xtensa_opcode opcode;
4697 xtensa_isa isa = xtensa_default_isa;
4698 uint32 regno, const16_regno, call_regno;
4699 int offset = 0;
4700
4701 if (insnbuf == NULL)
4702 {
4703 insnbuf = xtensa_insnbuf_alloc (isa);
4704 slotbuf = xtensa_insnbuf_alloc (isa);
4705 }
4706
4707 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4708 fmt = xtensa_format_decode (isa, insnbuf);
4709 if (fmt == XTENSA_UNDEFINED
4710 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4711 return XTENSA_UNDEFINED;
4712
4713 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4714 if (opcode == XTENSA_UNDEFINED)
4715 return XTENSA_UNDEFINED;
4716
4717 if (opcode == get_l32r_opcode ())
4718 {
4719 if (p_uses_l32r)
4720 *p_uses_l32r = TRUE;
4721 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4722 fmt, 0, slotbuf, &regno)
4723 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4724 &regno))
4725 return XTENSA_UNDEFINED;
4726 }
4727 else if (opcode == get_const16_opcode ())
4728 {
4729 if (p_uses_l32r)
4730 *p_uses_l32r = FALSE;
4731 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4732 fmt, 0, slotbuf, &regno)
4733 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4734 &regno))
4735 return XTENSA_UNDEFINED;
4736
4737 /* Check that the next instruction is also CONST16. */
4738 offset += xtensa_format_length (isa, fmt);
4739 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4740 fmt = xtensa_format_decode (isa, insnbuf);
4741 if (fmt == XTENSA_UNDEFINED
4742 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4743 return XTENSA_UNDEFINED;
4744 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4745 if (opcode != get_const16_opcode ())
4746 return XTENSA_UNDEFINED;
4747
4748 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4749 fmt, 0, slotbuf, &const16_regno)
4750 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4751 &const16_regno)
4752 || const16_regno != regno)
4753 return XTENSA_UNDEFINED;
4754 }
4755 else
4756 return XTENSA_UNDEFINED;
4757
4758 /* Next instruction should be an CALLXn with operand 0 == regno. */
4759 offset += xtensa_format_length (isa, fmt);
4760 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4761 fmt = xtensa_format_decode (isa, insnbuf);
4762 if (fmt == XTENSA_UNDEFINED
4763 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4764 return XTENSA_UNDEFINED;
4765 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4766 if (opcode == XTENSA_UNDEFINED
4767 || !is_indirect_call_opcode (opcode))
4768 return XTENSA_UNDEFINED;
4769
4770 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4771 fmt, 0, slotbuf, &call_regno)
4772 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4773 &call_regno))
4774 return XTENSA_UNDEFINED;
4775
4776 if (call_regno != regno)
4777 return XTENSA_UNDEFINED;
4778
4779 return opcode;
4780 }
4781
4782 \f
4783 /* Data structures used during relaxation. */
4784
4785 /* r_reloc: relocation values. */
4786
4787 /* Through the relaxation process, we need to keep track of the values
4788 that will result from evaluating relocations. The standard ELF
4789 relocation structure is not sufficient for this purpose because we're
4790 operating on multiple input files at once, so we need to know which
4791 input file a relocation refers to. The r_reloc structure thus
4792 records both the input file (bfd) and ELF relocation.
4793
4794 For efficiency, an r_reloc also contains a "target_offset" field to
4795 cache the target-section-relative offset value that is represented by
4796 the relocation.
4797
4798 The r_reloc also contains a virtual offset that allows multiple
4799 inserted literals to be placed at the same "address" with
4800 different offsets. */
4801
4802 typedef struct r_reloc_struct r_reloc;
4803
4804 struct r_reloc_struct
4805 {
4806 bfd *abfd;
4807 Elf_Internal_Rela rela;
4808 bfd_vma target_offset;
4809 bfd_vma virtual_offset;
4810 };
4811
4812
4813 /* The r_reloc structure is included by value in literal_value, but not
4814 every literal_value has an associated relocation -- some are simple
4815 constants. In such cases, we set all the fields in the r_reloc
4816 struct to zero. The r_reloc_is_const function should be used to
4817 detect this case. */
4818
4819 static bfd_boolean
4820 r_reloc_is_const (const r_reloc *r_rel)
4821 {
4822 return (r_rel->abfd == NULL);
4823 }
4824
4825
4826 static bfd_vma
4827 r_reloc_get_target_offset (const r_reloc *r_rel)
4828 {
4829 bfd_vma target_offset;
4830 unsigned long r_symndx;
4831
4832 BFD_ASSERT (!r_reloc_is_const (r_rel));
4833 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4834 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4835 return (target_offset + r_rel->rela.r_addend);
4836 }
4837
4838
4839 static struct elf_link_hash_entry *
4840 r_reloc_get_hash_entry (const r_reloc *r_rel)
4841 {
4842 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4843 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4844 }
4845
4846
4847 static asection *
4848 r_reloc_get_section (const r_reloc *r_rel)
4849 {
4850 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4851 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4852 }
4853
4854
4855 static bfd_boolean
4856 r_reloc_is_defined (const r_reloc *r_rel)
4857 {
4858 asection *sec;
4859 if (r_rel == NULL)
4860 return FALSE;
4861
4862 sec = r_reloc_get_section (r_rel);
4863 if (sec == bfd_abs_section_ptr
4864 || sec == bfd_com_section_ptr
4865 || sec == bfd_und_section_ptr)
4866 return FALSE;
4867 return TRUE;
4868 }
4869
4870
4871 static void
4872 r_reloc_init (r_reloc *r_rel,
4873 bfd *abfd,
4874 Elf_Internal_Rela *irel,
4875 bfd_byte *contents,
4876 bfd_size_type content_length)
4877 {
4878 int r_type;
4879 reloc_howto_type *howto;
4880
4881 if (irel)
4882 {
4883 r_rel->rela = *irel;
4884 r_rel->abfd = abfd;
4885 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4886 r_rel->virtual_offset = 0;
4887 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4888 howto = &elf_howto_table[r_type];
4889 if (howto->partial_inplace)
4890 {
4891 bfd_vma inplace_val;
4892 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4893
4894 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4895 r_rel->target_offset += inplace_val;
4896 }
4897 }
4898 else
4899 memset (r_rel, 0, sizeof (r_reloc));
4900 }
4901
4902
4903 #if DEBUG
4904
4905 static void
4906 print_r_reloc (FILE *fp, const r_reloc *r_rel)
4907 {
4908 if (r_reloc_is_defined (r_rel))
4909 {
4910 asection *sec = r_reloc_get_section (r_rel);
4911 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4912 }
4913 else if (r_reloc_get_hash_entry (r_rel))
4914 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4915 else
4916 fprintf (fp, " ?? + ");
4917
4918 fprintf_vma (fp, r_rel->target_offset);
4919 if (r_rel->virtual_offset)
4920 {
4921 fprintf (fp, " + ");
4922 fprintf_vma (fp, r_rel->virtual_offset);
4923 }
4924
4925 fprintf (fp, ")");
4926 }
4927
4928 #endif /* DEBUG */
4929
4930 \f
4931 /* source_reloc: relocations that reference literals. */
4932
4933 /* To determine whether literals can be coalesced, we need to first
4934 record all the relocations that reference the literals. The
4935 source_reloc structure below is used for this purpose. The
4936 source_reloc entries are kept in a per-literal-section array, sorted
4937 by offset within the literal section (i.e., target offset).
4938
4939 The source_sec and r_rel.rela.r_offset fields identify the source of
4940 the relocation. The r_rel field records the relocation value, i.e.,
4941 the offset of the literal being referenced. The opnd field is needed
4942 to determine the range of the immediate field to which the relocation
4943 applies, so we can determine whether another literal with the same
4944 value is within range. The is_null field is true when the relocation
4945 is being removed (e.g., when an L32R is being removed due to a CALLX
4946 that is converted to a direct CALL). */
4947
4948 typedef struct source_reloc_struct source_reloc;
4949
4950 struct source_reloc_struct
4951 {
4952 asection *source_sec;
4953 r_reloc r_rel;
4954 xtensa_opcode opcode;
4955 int opnd;
4956 bfd_boolean is_null;
4957 bfd_boolean is_abs_literal;
4958 };
4959
4960
4961 static void
4962 init_source_reloc (source_reloc *reloc,
4963 asection *source_sec,
4964 const r_reloc *r_rel,
4965 xtensa_opcode opcode,
4966 int opnd,
4967 bfd_boolean is_abs_literal)
4968 {
4969 reloc->source_sec = source_sec;
4970 reloc->r_rel = *r_rel;
4971 reloc->opcode = opcode;
4972 reloc->opnd = opnd;
4973 reloc->is_null = FALSE;
4974 reloc->is_abs_literal = is_abs_literal;
4975 }
4976
4977
4978 /* Find the source_reloc for a particular source offset and relocation
4979 type. Note that the array is sorted by _target_ offset, so this is
4980 just a linear search. */
4981
4982 static source_reloc *
4983 find_source_reloc (source_reloc *src_relocs,
4984 int src_count,
4985 asection *sec,
4986 Elf_Internal_Rela *irel)
4987 {
4988 int i;
4989
4990 for (i = 0; i < src_count; i++)
4991 {
4992 if (src_relocs[i].source_sec == sec
4993 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4994 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4995 == ELF32_R_TYPE (irel->r_info)))
4996 return &src_relocs[i];
4997 }
4998
4999 return NULL;
5000 }
5001
5002
5003 static int
5004 source_reloc_compare (const void *ap, const void *bp)
5005 {
5006 const source_reloc *a = (const source_reloc *) ap;
5007 const source_reloc *b = (const source_reloc *) bp;
5008
5009 if (a->r_rel.target_offset != b->r_rel.target_offset)
5010 return (a->r_rel.target_offset - b->r_rel.target_offset);
5011
5012 /* We don't need to sort on these criteria for correctness,
5013 but enforcing a more strict ordering prevents unstable qsort
5014 from behaving differently with different implementations.
5015 Without the code below we get correct but different results
5016 on Solaris 2.7 and 2.8. We would like to always produce the
5017 same results no matter the host. */
5018
5019 if ((!a->is_null) - (!b->is_null))
5020 return ((!a->is_null) - (!b->is_null));
5021 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
5022 }
5023
5024 \f
5025 /* Literal values and value hash tables. */
5026
5027 /* Literals with the same value can be coalesced. The literal_value
5028 structure records the value of a literal: the "r_rel" field holds the
5029 information from the relocation on the literal (if there is one) and
5030 the "value" field holds the contents of the literal word itself.
5031
5032 The value_map structure records a literal value along with the
5033 location of a literal holding that value. The value_map hash table
5034 is indexed by the literal value, so that we can quickly check if a
5035 particular literal value has been seen before and is thus a candidate
5036 for coalescing. */
5037
5038 typedef struct literal_value_struct literal_value;
5039 typedef struct value_map_struct value_map;
5040 typedef struct value_map_hash_table_struct value_map_hash_table;
5041
5042 struct literal_value_struct
5043 {
5044 r_reloc r_rel;
5045 unsigned long value;
5046 bfd_boolean is_abs_literal;
5047 };
5048
5049 struct value_map_struct
5050 {
5051 literal_value val; /* The literal value. */
5052 r_reloc loc; /* Location of the literal. */
5053 value_map *next;
5054 };
5055
5056 struct value_map_hash_table_struct
5057 {
5058 unsigned bucket_count;
5059 value_map **buckets;
5060 unsigned count;
5061 bfd_boolean has_last_loc;
5062 r_reloc last_loc;
5063 };
5064
5065
5066 static void
5067 init_literal_value (literal_value *lit,
5068 const r_reloc *r_rel,
5069 unsigned long value,
5070 bfd_boolean is_abs_literal)
5071 {
5072 lit->r_rel = *r_rel;
5073 lit->value = value;
5074 lit->is_abs_literal = is_abs_literal;
5075 }
5076
5077
5078 static bfd_boolean
5079 literal_value_equal (const literal_value *src1,
5080 const literal_value *src2,
5081 bfd_boolean final_static_link)
5082 {
5083 struct elf_link_hash_entry *h1, *h2;
5084
5085 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5086 return FALSE;
5087
5088 if (r_reloc_is_const (&src1->r_rel))
5089 return (src1->value == src2->value);
5090
5091 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5092 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5093 return FALSE;
5094
5095 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5096 return FALSE;
5097
5098 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5099 return FALSE;
5100
5101 if (src1->value != src2->value)
5102 return FALSE;
5103
5104 /* Now check for the same section (if defined) or the same elf_hash
5105 (if undefined or weak). */
5106 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5107 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5108 if (r_reloc_is_defined (&src1->r_rel)
5109 && (final_static_link
5110 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5111 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5112 {
5113 if (r_reloc_get_section (&src1->r_rel)
5114 != r_reloc_get_section (&src2->r_rel))
5115 return FALSE;
5116 }
5117 else
5118 {
5119 /* Require that the hash entries (i.e., symbols) be identical. */
5120 if (h1 != h2 || h1 == 0)
5121 return FALSE;
5122 }
5123
5124 if (src1->is_abs_literal != src2->is_abs_literal)
5125 return FALSE;
5126
5127 return TRUE;
5128 }
5129
5130
5131 /* Must be power of 2. */
5132 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5133
5134 static value_map_hash_table *
5135 value_map_hash_table_init (void)
5136 {
5137 value_map_hash_table *values;
5138
5139 values = (value_map_hash_table *)
5140 bfd_zmalloc (sizeof (value_map_hash_table));
5141 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5142 values->count = 0;
5143 values->buckets = (value_map **)
5144 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5145 if (values->buckets == NULL)
5146 {
5147 free (values);
5148 return NULL;
5149 }
5150 values->has_last_loc = FALSE;
5151
5152 return values;
5153 }
5154
5155
5156 static void
5157 value_map_hash_table_delete (value_map_hash_table *table)
5158 {
5159 free (table->buckets);
5160 free (table);
5161 }
5162
5163
5164 static unsigned
5165 hash_bfd_vma (bfd_vma val)
5166 {
5167 return (val >> 2) + (val >> 10);
5168 }
5169
5170
5171 static unsigned
5172 literal_value_hash (const literal_value *src)
5173 {
5174 unsigned hash_val;
5175
5176 hash_val = hash_bfd_vma (src->value);
5177 if (!r_reloc_is_const (&src->r_rel))
5178 {
5179 void *sec_or_hash;
5180
5181 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5182 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5183 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5184
5185 /* Now check for the same section and the same elf_hash. */
5186 if (r_reloc_is_defined (&src->r_rel))
5187 sec_or_hash = r_reloc_get_section (&src->r_rel);
5188 else
5189 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
5190 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
5191 }
5192 return hash_val;
5193 }
5194
5195
5196 /* Check if the specified literal_value has been seen before. */
5197
5198 static value_map *
5199 value_map_get_cached_value (value_map_hash_table *map,
5200 const literal_value *val,
5201 bfd_boolean final_static_link)
5202 {
5203 value_map *map_e;
5204 value_map *bucket;
5205 unsigned idx;
5206
5207 idx = literal_value_hash (val);
5208 idx = idx & (map->bucket_count - 1);
5209 bucket = map->buckets[idx];
5210 for (map_e = bucket; map_e; map_e = map_e->next)
5211 {
5212 if (literal_value_equal (&map_e->val, val, final_static_link))
5213 return map_e;
5214 }
5215 return NULL;
5216 }
5217
5218
5219 /* Record a new literal value. It is illegal to call this if VALUE
5220 already has an entry here. */
5221
5222 static value_map *
5223 add_value_map (value_map_hash_table *map,
5224 const literal_value *val,
5225 const r_reloc *loc,
5226 bfd_boolean final_static_link)
5227 {
5228 value_map **bucket_p;
5229 unsigned idx;
5230
5231 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5232 if (val_e == NULL)
5233 {
5234 bfd_set_error (bfd_error_no_memory);
5235 return NULL;
5236 }
5237
5238 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5239 val_e->val = *val;
5240 val_e->loc = *loc;
5241
5242 idx = literal_value_hash (val);
5243 idx = idx & (map->bucket_count - 1);
5244 bucket_p = &map->buckets[idx];
5245
5246 val_e->next = *bucket_p;
5247 *bucket_p = val_e;
5248 map->count++;
5249 /* FIXME: Consider resizing the hash table if we get too many entries. */
5250
5251 return val_e;
5252 }
5253
5254 \f
5255 /* Lists of text actions (ta_) for narrowing, widening, longcall
5256 conversion, space fill, code & literal removal, etc. */
5257
5258 /* The following text actions are generated:
5259
5260 "ta_remove_insn" remove an instruction or instructions
5261 "ta_remove_longcall" convert longcall to call
5262 "ta_convert_longcall" convert longcall to nop/call
5263 "ta_narrow_insn" narrow a wide instruction
5264 "ta_widen" widen a narrow instruction
5265 "ta_fill" add fill or remove fill
5266 removed < 0 is a fill; branches to the fill address will be
5267 changed to address + fill size (e.g., address - removed)
5268 removed >= 0 branches to the fill address will stay unchanged
5269 "ta_remove_literal" remove a literal; this action is
5270 indicated when a literal is removed
5271 or replaced.
5272 "ta_add_literal" insert a new literal; this action is
5273 indicated when a literal has been moved.
5274 It may use a virtual_offset because
5275 multiple literals can be placed at the
5276 same location.
5277
5278 For each of these text actions, we also record the number of bytes
5279 removed by performing the text action. In the case of a "ta_widen"
5280 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5281
5282 typedef struct text_action_struct text_action;
5283 typedef struct text_action_list_struct text_action_list;
5284 typedef enum text_action_enum_t text_action_t;
5285
5286 enum text_action_enum_t
5287 {
5288 ta_none,
5289 ta_remove_insn, /* removed = -size */
5290 ta_remove_longcall, /* removed = -size */
5291 ta_convert_longcall, /* removed = 0 */
5292 ta_narrow_insn, /* removed = -1 */
5293 ta_widen_insn, /* removed = +1 */
5294 ta_fill, /* removed = +size */
5295 ta_remove_literal,
5296 ta_add_literal
5297 };
5298
5299
5300 /* Structure for a text action record. */
5301 struct text_action_struct
5302 {
5303 text_action_t action;
5304 asection *sec; /* Optional */
5305 bfd_vma offset;
5306 bfd_vma virtual_offset; /* Zero except for adding literals. */
5307 int removed_bytes;
5308 literal_value value; /* Only valid when adding literals. */
5309 };
5310
5311 struct removal_by_action_entry_struct
5312 {
5313 bfd_vma offset;
5314 int removed;
5315 int eq_removed;
5316 int eq_removed_before_fill;
5317 };
5318 typedef struct removal_by_action_entry_struct removal_by_action_entry;
5319
5320 struct removal_by_action_map_struct
5321 {
5322 unsigned n_entries;
5323 removal_by_action_entry *entry;
5324 };
5325 typedef struct removal_by_action_map_struct removal_by_action_map;
5326
5327
5328 /* List of all of the actions taken on a text section. */
5329 struct text_action_list_struct
5330 {
5331 unsigned count;
5332 splay_tree tree;
5333 removal_by_action_map map;
5334 };
5335
5336
5337 static text_action *
5338 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
5339 {
5340 text_action a;
5341
5342 /* It is not necessary to fill at the end of a section. */
5343 if (sec->size == offset)
5344 return NULL;
5345
5346 a.offset = offset;
5347 a.action = ta_fill;
5348
5349 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5350 if (node)
5351 return (text_action *)node->value;
5352 return NULL;
5353 }
5354
5355
5356 static int
5357 compute_removed_action_diff (const text_action *ta,
5358 asection *sec,
5359 bfd_vma offset,
5360 int removed,
5361 int removable_space)
5362 {
5363 int new_removed;
5364 int current_removed = 0;
5365
5366 if (ta)
5367 current_removed = ta->removed_bytes;
5368
5369 BFD_ASSERT (ta == NULL || ta->offset == offset);
5370 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5371
5372 /* It is not necessary to fill at the end of a section. Clean this up. */
5373 if (sec->size == offset)
5374 new_removed = removable_space - 0;
5375 else
5376 {
5377 int space;
5378 int added = -removed - current_removed;
5379 /* Ignore multiples of the section alignment. */
5380 added = ((1 << sec->alignment_power) - 1) & added;
5381 new_removed = (-added);
5382
5383 /* Modify for removable. */
5384 space = removable_space - new_removed;
5385 new_removed = (removable_space
5386 - (((1 << sec->alignment_power) - 1) & space));
5387 }
5388 return (new_removed - current_removed);
5389 }
5390
5391
5392 static void
5393 adjust_fill_action (text_action *ta, int fill_diff)
5394 {
5395 ta->removed_bytes += fill_diff;
5396 }
5397
5398
5399 static int
5400 text_action_compare (splay_tree_key a, splay_tree_key b)
5401 {
5402 text_action *pa = (text_action *)a;
5403 text_action *pb = (text_action *)b;
5404 static const int action_priority[] =
5405 {
5406 [ta_fill] = 0,
5407 [ta_none] = 1,
5408 [ta_convert_longcall] = 2,
5409 [ta_narrow_insn] = 3,
5410 [ta_remove_insn] = 4,
5411 [ta_remove_longcall] = 5,
5412 [ta_remove_literal] = 6,
5413 [ta_widen_insn] = 7,
5414 [ta_add_literal] = 8,
5415 };
5416
5417 if (pa->offset == pb->offset)
5418 {
5419 if (pa->action == pb->action)
5420 return 0;
5421 return action_priority[pa->action] - action_priority[pb->action];
5422 }
5423 else
5424 return pa->offset < pb->offset ? -1 : 1;
5425 }
5426
5427 static text_action *
5428 action_first (text_action_list *action_list)
5429 {
5430 splay_tree_node node = splay_tree_min (action_list->tree);
5431 return node ? (text_action *)node->value : NULL;
5432 }
5433
5434 static text_action *
5435 action_next (text_action_list *action_list, text_action *action)
5436 {
5437 splay_tree_node node = splay_tree_successor (action_list->tree,
5438 (splay_tree_key)action);
5439 return node ? (text_action *)node->value : NULL;
5440 }
5441
5442 /* Add a modification action to the text. For the case of adding or
5443 removing space, modify any current fill and assume that
5444 "unreachable_space" bytes can be freely contracted. Note that a
5445 negative removed value is a fill. */
5446
5447 static void
5448 text_action_add (text_action_list *l,
5449 text_action_t action,
5450 asection *sec,
5451 bfd_vma offset,
5452 int removed)
5453 {
5454 text_action *ta;
5455 text_action a;
5456
5457 /* It is not necessary to fill at the end of a section. */
5458 if (action == ta_fill && sec->size == offset)
5459 return;
5460
5461 /* It is not necessary to fill 0 bytes. */
5462 if (action == ta_fill && removed == 0)
5463 return;
5464
5465 a.action = action;
5466 a.offset = offset;
5467
5468 if (action == ta_fill)
5469 {
5470 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5471
5472 if (node)
5473 {
5474 ta = (text_action *)node->value;
5475 ta->removed_bytes += removed;
5476 return;
5477 }
5478 }
5479 else
5480 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL);
5481
5482 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5483 ta->action = action;
5484 ta->sec = sec;
5485 ta->offset = offset;
5486 ta->removed_bytes = removed;
5487 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5488 ++l->count;
5489 }
5490
5491
5492 static void
5493 text_action_add_literal (text_action_list *l,
5494 text_action_t action,
5495 const r_reloc *loc,
5496 const literal_value *value,
5497 int removed)
5498 {
5499 text_action *ta;
5500 asection *sec = r_reloc_get_section (loc);
5501 bfd_vma offset = loc->target_offset;
5502 bfd_vma virtual_offset = loc->virtual_offset;
5503
5504 BFD_ASSERT (action == ta_add_literal);
5505
5506 /* Create a new record and fill it up. */
5507 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5508 ta->action = action;
5509 ta->sec = sec;
5510 ta->offset = offset;
5511 ta->virtual_offset = virtual_offset;
5512 ta->value = *value;
5513 ta->removed_bytes = removed;
5514
5515 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL);
5516 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5517 ++l->count;
5518 }
5519
5520
5521 /* Find the total offset adjustment for the relaxations specified by
5522 text_actions, beginning from a particular starting action. This is
5523 typically used from offset_with_removed_text to search an entire list of
5524 actions, but it may also be called directly when adjusting adjacent offsets
5525 so that each search may begin where the previous one left off. */
5526
5527 static int
5528 removed_by_actions (text_action_list *action_list,
5529 text_action **p_start_action,
5530 bfd_vma offset,
5531 bfd_boolean before_fill)
5532 {
5533 text_action *r;
5534 int removed = 0;
5535
5536 r = *p_start_action;
5537 if (r)
5538 {
5539 splay_tree_node node = splay_tree_lookup (action_list->tree,
5540 (splay_tree_key)r);
5541 BFD_ASSERT (node != NULL && r == (text_action *)node->value);
5542 }
5543
5544 while (r)
5545 {
5546 if (r->offset > offset)
5547 break;
5548
5549 if (r->offset == offset
5550 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5551 break;
5552
5553 removed += r->removed_bytes;
5554
5555 r = action_next (action_list, r);
5556 }
5557
5558 *p_start_action = r;
5559 return removed;
5560 }
5561
5562
5563 static bfd_vma
5564 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5565 {
5566 text_action *r = action_first (action_list);
5567
5568 return offset - removed_by_actions (action_list, &r, offset, FALSE);
5569 }
5570
5571
5572 static unsigned
5573 action_list_count (text_action_list *action_list)
5574 {
5575 return action_list->count;
5576 }
5577
5578 typedef struct map_action_fn_context_struct map_action_fn_context;
5579 struct map_action_fn_context_struct
5580 {
5581 int removed;
5582 removal_by_action_map map;
5583 bfd_boolean eq_complete;
5584 };
5585
5586 static int
5587 map_action_fn (splay_tree_node node, void *p)
5588 {
5589 map_action_fn_context *ctx = p;
5590 text_action *r = (text_action *)node->value;
5591 removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries;
5592
5593 if (ctx->map.n_entries && (ientry - 1)->offset == r->offset)
5594 {
5595 --ientry;
5596 }
5597 else
5598 {
5599 ++ctx->map.n_entries;
5600 ctx->eq_complete = FALSE;
5601 ientry->offset = r->offset;
5602 ientry->eq_removed_before_fill = ctx->removed;
5603 }
5604
5605 if (!ctx->eq_complete)
5606 {
5607 if (r->action != ta_fill || r->removed_bytes >= 0)
5608 {
5609 ientry->eq_removed = ctx->removed;
5610 ctx->eq_complete = TRUE;
5611 }
5612 else
5613 ientry->eq_removed = ctx->removed + r->removed_bytes;
5614 }
5615
5616 ctx->removed += r->removed_bytes;
5617 ientry->removed = ctx->removed;
5618 return 0;
5619 }
5620
5621 static void
5622 map_removal_by_action (text_action_list *action_list)
5623 {
5624 map_action_fn_context ctx;
5625
5626 ctx.removed = 0;
5627 ctx.map.n_entries = 0;
5628 ctx.map.entry = bfd_malloc (action_list_count (action_list) *
5629 sizeof (removal_by_action_entry));
5630 ctx.eq_complete = FALSE;
5631
5632 splay_tree_foreach (action_list->tree, map_action_fn, &ctx);
5633 action_list->map = ctx.map;
5634 }
5635
5636 static int
5637 removed_by_actions_map (text_action_list *action_list, bfd_vma offset,
5638 bfd_boolean before_fill)
5639 {
5640 unsigned a, b;
5641
5642 if (!action_list->map.entry)
5643 map_removal_by_action (action_list);
5644
5645 if (!action_list->map.n_entries)
5646 return 0;
5647
5648 a = 0;
5649 b = action_list->map.n_entries;
5650
5651 while (b - a > 1)
5652 {
5653 unsigned c = (a + b) / 2;
5654
5655 if (action_list->map.entry[c].offset <= offset)
5656 a = c;
5657 else
5658 b = c;
5659 }
5660
5661 if (action_list->map.entry[a].offset < offset)
5662 {
5663 return action_list->map.entry[a].removed;
5664 }
5665 else if (action_list->map.entry[a].offset == offset)
5666 {
5667 return before_fill ?
5668 action_list->map.entry[a].eq_removed_before_fill :
5669 action_list->map.entry[a].eq_removed;
5670 }
5671 else
5672 {
5673 return 0;
5674 }
5675 }
5676
5677 static bfd_vma
5678 offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset)
5679 {
5680 int removed = removed_by_actions_map (action_list, offset, FALSE);
5681 return offset - removed;
5682 }
5683
5684
5685 /* The find_insn_action routine will only find non-fill actions. */
5686
5687 static text_action *
5688 find_insn_action (text_action_list *action_list, bfd_vma offset)
5689 {
5690 static const text_action_t action[] =
5691 {
5692 ta_convert_longcall,
5693 ta_remove_longcall,
5694 ta_widen_insn,
5695 ta_narrow_insn,
5696 ta_remove_insn,
5697 };
5698 text_action a;
5699 unsigned i;
5700
5701 a.offset = offset;
5702 for (i = 0; i < sizeof (action) / sizeof (*action); ++i)
5703 {
5704 splay_tree_node node;
5705
5706 a.action = action[i];
5707 node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a);
5708 if (node)
5709 return (text_action *)node->value;
5710 }
5711 return NULL;
5712 }
5713
5714
5715 #if DEBUG
5716
5717 static void
5718 print_action (FILE *fp, text_action *r)
5719 {
5720 const char *t = "unknown";
5721 switch (r->action)
5722 {
5723 case ta_remove_insn:
5724 t = "remove_insn"; break;
5725 case ta_remove_longcall:
5726 t = "remove_longcall"; break;
5727 case ta_convert_longcall:
5728 t = "convert_longcall"; break;
5729 case ta_narrow_insn:
5730 t = "narrow_insn"; break;
5731 case ta_widen_insn:
5732 t = "widen_insn"; break;
5733 case ta_fill:
5734 t = "fill"; break;
5735 case ta_none:
5736 t = "none"; break;
5737 case ta_remove_literal:
5738 t = "remove_literal"; break;
5739 case ta_add_literal:
5740 t = "add_literal"; break;
5741 }
5742
5743 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5744 r->sec->owner->filename,
5745 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5746 }
5747
5748 static int
5749 print_action_list_fn (splay_tree_node node, void *p)
5750 {
5751 text_action *r = (text_action *)node->value;
5752
5753 print_action (p, r);
5754 return 0;
5755 }
5756
5757 static void
5758 print_action_list (FILE *fp, text_action_list *action_list)
5759 {
5760 fprintf (fp, "Text Action\n");
5761 splay_tree_foreach (action_list->tree, print_action_list_fn, fp);
5762 }
5763
5764 #endif /* DEBUG */
5765
5766 \f
5767 /* Lists of literals being coalesced or removed. */
5768
5769 /* In the usual case, the literal identified by "from" is being
5770 coalesced with another literal identified by "to". If the literal is
5771 unused and is being removed altogether, "to.abfd" will be NULL.
5772 The removed_literal entries are kept on a per-section list, sorted
5773 by the "from" offset field. */
5774
5775 typedef struct removed_literal_struct removed_literal;
5776 typedef struct removed_literal_map_entry_struct removed_literal_map_entry;
5777 typedef struct removed_literal_list_struct removed_literal_list;
5778
5779 struct removed_literal_struct
5780 {
5781 r_reloc from;
5782 r_reloc to;
5783 removed_literal *next;
5784 };
5785
5786 struct removed_literal_map_entry_struct
5787 {
5788 bfd_vma addr;
5789 removed_literal *literal;
5790 };
5791
5792 struct removed_literal_list_struct
5793 {
5794 removed_literal *head;
5795 removed_literal *tail;
5796
5797 unsigned n_map;
5798 removed_literal_map_entry *map;
5799 };
5800
5801
5802 /* Record that the literal at "from" is being removed. If "to" is not
5803 NULL, the "from" literal is being coalesced with the "to" literal. */
5804
5805 static void
5806 add_removed_literal (removed_literal_list *removed_list,
5807 const r_reloc *from,
5808 const r_reloc *to)
5809 {
5810 removed_literal *r, *new_r, *next_r;
5811
5812 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5813
5814 new_r->from = *from;
5815 if (to)
5816 new_r->to = *to;
5817 else
5818 new_r->to.abfd = NULL;
5819 new_r->next = NULL;
5820
5821 r = removed_list->head;
5822 if (r == NULL)
5823 {
5824 removed_list->head = new_r;
5825 removed_list->tail = new_r;
5826 }
5827 /* Special check for common case of append. */
5828 else if (removed_list->tail->from.target_offset < from->target_offset)
5829 {
5830 removed_list->tail->next = new_r;
5831 removed_list->tail = new_r;
5832 }
5833 else
5834 {
5835 while (r->from.target_offset < from->target_offset && r->next)
5836 {
5837 r = r->next;
5838 }
5839 next_r = r->next;
5840 r->next = new_r;
5841 new_r->next = next_r;
5842 if (next_r == NULL)
5843 removed_list->tail = new_r;
5844 }
5845 }
5846
5847 static void
5848 map_removed_literal (removed_literal_list *removed_list)
5849 {
5850 unsigned n_map = 0;
5851 unsigned i;
5852 removed_literal_map_entry *map = NULL;
5853 removed_literal *r = removed_list->head;
5854
5855 for (i = 0; r; ++i, r = r->next)
5856 {
5857 if (i == n_map)
5858 {
5859 n_map = (n_map * 2) + 2;
5860 map = bfd_realloc (map, n_map * sizeof (*map));
5861 }
5862 map[i].addr = r->from.target_offset;
5863 map[i].literal = r;
5864 }
5865 removed_list->map = map;
5866 removed_list->n_map = i;
5867 }
5868
5869 static int
5870 removed_literal_compare (const void *a, const void *b)
5871 {
5872 const removed_literal_map_entry *pa = a;
5873 const removed_literal_map_entry *pb = b;
5874
5875 if (pa->addr == pb->addr)
5876 return 0;
5877 else
5878 return pa->addr < pb->addr ? -1 : 1;
5879 }
5880
5881 /* Check if the list of removed literals contains an entry for the
5882 given address. Return the entry if found. */
5883
5884 static removed_literal *
5885 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
5886 {
5887 removed_literal_map_entry *p;
5888 removed_literal *r = NULL;
5889
5890 if (removed_list->map == NULL)
5891 map_removed_literal (removed_list);
5892
5893 p = bsearch (&addr, removed_list->map, removed_list->n_map,
5894 sizeof (*removed_list->map), removed_literal_compare);
5895 if (p)
5896 {
5897 while (p != removed_list->map && (p - 1)->addr == addr)
5898 --p;
5899 r = p->literal;
5900 }
5901 return r;
5902 }
5903
5904
5905 #if DEBUG
5906
5907 static void
5908 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
5909 {
5910 removed_literal *r;
5911 r = removed_list->head;
5912 if (r)
5913 fprintf (fp, "Removed Literals\n");
5914 for (; r != NULL; r = r->next)
5915 {
5916 print_r_reloc (fp, &r->from);
5917 fprintf (fp, " => ");
5918 if (r->to.abfd == NULL)
5919 fprintf (fp, "REMOVED");
5920 else
5921 print_r_reloc (fp, &r->to);
5922 fprintf (fp, "\n");
5923 }
5924 }
5925
5926 #endif /* DEBUG */
5927
5928 \f
5929 /* Per-section data for relaxation. */
5930
5931 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5932
5933 struct xtensa_relax_info_struct
5934 {
5935 bfd_boolean is_relaxable_literal_section;
5936 bfd_boolean is_relaxable_asm_section;
5937 int visited; /* Number of times visited. */
5938
5939 source_reloc *src_relocs; /* Array[src_count]. */
5940 int src_count;
5941 int src_next; /* Next src_relocs entry to assign. */
5942
5943 removed_literal_list removed_list;
5944 text_action_list action_list;
5945
5946 reloc_bfd_fix *fix_list;
5947 reloc_bfd_fix *fix_array;
5948 unsigned fix_array_count;
5949
5950 /* Support for expanding the reloc array that is stored
5951 in the section structure. If the relocations have been
5952 reallocated, the newly allocated relocations will be referenced
5953 here along with the actual size allocated. The relocation
5954 count will always be found in the section structure. */
5955 Elf_Internal_Rela *allocated_relocs;
5956 unsigned relocs_count;
5957 unsigned allocated_relocs_count;
5958 };
5959
5960 struct elf_xtensa_section_data
5961 {
5962 struct bfd_elf_section_data elf;
5963 xtensa_relax_info relax_info;
5964 };
5965
5966
5967 static bfd_boolean
5968 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
5969 {
5970 if (!sec->used_by_bfd)
5971 {
5972 struct elf_xtensa_section_data *sdata;
5973 bfd_size_type amt = sizeof (*sdata);
5974
5975 sdata = bfd_zalloc (abfd, amt);
5976 if (sdata == NULL)
5977 return FALSE;
5978 sec->used_by_bfd = sdata;
5979 }
5980
5981 return _bfd_elf_new_section_hook (abfd, sec);
5982 }
5983
5984
5985 static xtensa_relax_info *
5986 get_xtensa_relax_info (asection *sec)
5987 {
5988 struct elf_xtensa_section_data *section_data;
5989
5990 /* No info available if no section or if it is an output section. */
5991 if (!sec || sec == sec->output_section)
5992 return NULL;
5993
5994 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5995 return &section_data->relax_info;
5996 }
5997
5998
5999 static void
6000 init_xtensa_relax_info (asection *sec)
6001 {
6002 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6003
6004 relax_info->is_relaxable_literal_section = FALSE;
6005 relax_info->is_relaxable_asm_section = FALSE;
6006 relax_info->visited = 0;
6007
6008 relax_info->src_relocs = NULL;
6009 relax_info->src_count = 0;
6010 relax_info->src_next = 0;
6011
6012 relax_info->removed_list.head = NULL;
6013 relax_info->removed_list.tail = NULL;
6014
6015 relax_info->action_list.tree = splay_tree_new (text_action_compare,
6016 NULL, NULL);
6017 relax_info->action_list.map.n_entries = 0;
6018 relax_info->action_list.map.entry = NULL;
6019
6020 relax_info->fix_list = NULL;
6021 relax_info->fix_array = NULL;
6022 relax_info->fix_array_count = 0;
6023
6024 relax_info->allocated_relocs = NULL;
6025 relax_info->relocs_count = 0;
6026 relax_info->allocated_relocs_count = 0;
6027 }
6028
6029 \f
6030 /* Coalescing literals may require a relocation to refer to a section in
6031 a different input file, but the standard relocation information
6032 cannot express that. Instead, the reloc_bfd_fix structures are used
6033 to "fix" the relocations that refer to sections in other input files.
6034 These structures are kept on per-section lists. The "src_type" field
6035 records the relocation type in case there are multiple relocations on
6036 the same location. FIXME: This is ugly; an alternative might be to
6037 add new symbols with the "owner" field to some other input file. */
6038
6039 struct reloc_bfd_fix_struct
6040 {
6041 asection *src_sec;
6042 bfd_vma src_offset;
6043 unsigned src_type; /* Relocation type. */
6044
6045 asection *target_sec;
6046 bfd_vma target_offset;
6047 bfd_boolean translated;
6048
6049 reloc_bfd_fix *next;
6050 };
6051
6052
6053 static reloc_bfd_fix *
6054 reloc_bfd_fix_init (asection *src_sec,
6055 bfd_vma src_offset,
6056 unsigned src_type,
6057 asection *target_sec,
6058 bfd_vma target_offset,
6059 bfd_boolean translated)
6060 {
6061 reloc_bfd_fix *fix;
6062
6063 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
6064 fix->src_sec = src_sec;
6065 fix->src_offset = src_offset;
6066 fix->src_type = src_type;
6067 fix->target_sec = target_sec;
6068 fix->target_offset = target_offset;
6069 fix->translated = translated;
6070
6071 return fix;
6072 }
6073
6074
6075 static void
6076 add_fix (asection *src_sec, reloc_bfd_fix *fix)
6077 {
6078 xtensa_relax_info *relax_info;
6079
6080 relax_info = get_xtensa_relax_info (src_sec);
6081 fix->next = relax_info->fix_list;
6082 relax_info->fix_list = fix;
6083 }
6084
6085
6086 static int
6087 fix_compare (const void *ap, const void *bp)
6088 {
6089 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
6090 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
6091
6092 if (a->src_offset != b->src_offset)
6093 return (a->src_offset - b->src_offset);
6094 return (a->src_type - b->src_type);
6095 }
6096
6097
6098 static void
6099 cache_fix_array (asection *sec)
6100 {
6101 unsigned i, count = 0;
6102 reloc_bfd_fix *r;
6103 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6104
6105 if (relax_info == NULL)
6106 return;
6107 if (relax_info->fix_list == NULL)
6108 return;
6109
6110 for (r = relax_info->fix_list; r != NULL; r = r->next)
6111 count++;
6112
6113 relax_info->fix_array =
6114 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6115 relax_info->fix_array_count = count;
6116
6117 r = relax_info->fix_list;
6118 for (i = 0; i < count; i++, r = r->next)
6119 {
6120 relax_info->fix_array[count - 1 - i] = *r;
6121 relax_info->fix_array[count - 1 - i].next = NULL;
6122 }
6123
6124 qsort (relax_info->fix_array, relax_info->fix_array_count,
6125 sizeof (reloc_bfd_fix), fix_compare);
6126 }
6127
6128
6129 static reloc_bfd_fix *
6130 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
6131 {
6132 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6133 reloc_bfd_fix *rv;
6134 reloc_bfd_fix key;
6135
6136 if (relax_info == NULL)
6137 return NULL;
6138 if (relax_info->fix_list == NULL)
6139 return NULL;
6140
6141 if (relax_info->fix_array == NULL)
6142 cache_fix_array (sec);
6143
6144 key.src_offset = offset;
6145 key.src_type = type;
6146 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6147 sizeof (reloc_bfd_fix), fix_compare);
6148 return rv;
6149 }
6150
6151 \f
6152 /* Section caching. */
6153
6154 typedef struct section_cache_struct section_cache_t;
6155
6156 struct section_cache_struct
6157 {
6158 asection *sec;
6159
6160 bfd_byte *contents; /* Cache of the section contents. */
6161 bfd_size_type content_length;
6162
6163 property_table_entry *ptbl; /* Cache of the section property table. */
6164 unsigned pte_count;
6165
6166 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6167 unsigned reloc_count;
6168 };
6169
6170
6171 static void
6172 init_section_cache (section_cache_t *sec_cache)
6173 {
6174 memset (sec_cache, 0, sizeof (*sec_cache));
6175 }
6176
6177
6178 static void
6179 free_section_cache (section_cache_t *sec_cache)
6180 {
6181 if (sec_cache->sec)
6182 {
6183 release_contents (sec_cache->sec, sec_cache->contents);
6184 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6185 if (sec_cache->ptbl)
6186 free (sec_cache->ptbl);
6187 }
6188 }
6189
6190
6191 static bfd_boolean
6192 section_cache_section (section_cache_t *sec_cache,
6193 asection *sec,
6194 struct bfd_link_info *link_info)
6195 {
6196 bfd *abfd;
6197 property_table_entry *prop_table = NULL;
6198 int ptblsize = 0;
6199 bfd_byte *contents = NULL;
6200 Elf_Internal_Rela *internal_relocs = NULL;
6201 bfd_size_type sec_size;
6202
6203 if (sec == NULL)
6204 return FALSE;
6205 if (sec == sec_cache->sec)
6206 return TRUE;
6207
6208 abfd = sec->owner;
6209 sec_size = bfd_get_section_limit (abfd, sec);
6210
6211 /* Get the contents. */
6212 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6213 if (contents == NULL && sec_size != 0)
6214 goto err;
6215
6216 /* Get the relocations. */
6217 internal_relocs = retrieve_internal_relocs (abfd, sec,
6218 link_info->keep_memory);
6219
6220 /* Get the entry table. */
6221 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6222 XTENSA_PROP_SEC_NAME, FALSE);
6223 if (ptblsize < 0)
6224 goto err;
6225
6226 /* Fill in the new section cache. */
6227 free_section_cache (sec_cache);
6228 init_section_cache (sec_cache);
6229
6230 sec_cache->sec = sec;
6231 sec_cache->contents = contents;
6232 sec_cache->content_length = sec_size;
6233 sec_cache->relocs = internal_relocs;
6234 sec_cache->reloc_count = sec->reloc_count;
6235 sec_cache->pte_count = ptblsize;
6236 sec_cache->ptbl = prop_table;
6237
6238 return TRUE;
6239
6240 err:
6241 release_contents (sec, contents);
6242 release_internal_relocs (sec, internal_relocs);
6243 if (prop_table)
6244 free (prop_table);
6245 return FALSE;
6246 }
6247
6248 \f
6249 /* Extended basic blocks. */
6250
6251 /* An ebb_struct represents an Extended Basic Block. Within this
6252 range, we guarantee that all instructions are decodable, the
6253 property table entries are contiguous, and no property table
6254 specifies a segment that cannot have instructions moved. This
6255 structure contains caches of the contents, property table and
6256 relocations for the specified section for easy use. The range is
6257 specified by ranges of indices for the byte offset, property table
6258 offsets and relocation offsets. These must be consistent. */
6259
6260 typedef struct ebb_struct ebb_t;
6261
6262 struct ebb_struct
6263 {
6264 asection *sec;
6265
6266 bfd_byte *contents; /* Cache of the section contents. */
6267 bfd_size_type content_length;
6268
6269 property_table_entry *ptbl; /* Cache of the section property table. */
6270 unsigned pte_count;
6271
6272 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6273 unsigned reloc_count;
6274
6275 bfd_vma start_offset; /* Offset in section. */
6276 unsigned start_ptbl_idx; /* Offset in the property table. */
6277 unsigned start_reloc_idx; /* Offset in the relocations. */
6278
6279 bfd_vma end_offset;
6280 unsigned end_ptbl_idx;
6281 unsigned end_reloc_idx;
6282
6283 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6284
6285 /* The unreachable property table at the end of this set of blocks;
6286 NULL if the end is not an unreachable block. */
6287 property_table_entry *ends_unreachable;
6288 };
6289
6290
6291 enum ebb_target_enum
6292 {
6293 EBB_NO_ALIGN = 0,
6294 EBB_DESIRE_TGT_ALIGN,
6295 EBB_REQUIRE_TGT_ALIGN,
6296 EBB_REQUIRE_LOOP_ALIGN,
6297 EBB_REQUIRE_ALIGN
6298 };
6299
6300
6301 /* proposed_action_struct is similar to the text_action_struct except
6302 that is represents a potential transformation, not one that will
6303 occur. We build a list of these for an extended basic block
6304 and use them to compute the actual actions desired. We must be
6305 careful that the entire set of actual actions we perform do not
6306 break any relocations that would fit if the actions were not
6307 performed. */
6308
6309 typedef struct proposed_action_struct proposed_action;
6310
6311 struct proposed_action_struct
6312 {
6313 enum ebb_target_enum align_type; /* for the target alignment */
6314 bfd_vma alignment_pow;
6315 text_action_t action;
6316 bfd_vma offset;
6317 int removed_bytes;
6318 bfd_boolean do_action; /* If false, then we will not perform the action. */
6319 };
6320
6321
6322 /* The ebb_constraint_struct keeps a set of proposed actions for an
6323 extended basic block. */
6324
6325 typedef struct ebb_constraint_struct ebb_constraint;
6326
6327 struct ebb_constraint_struct
6328 {
6329 ebb_t ebb;
6330 bfd_boolean start_movable;
6331
6332 /* Bytes of extra space at the beginning if movable. */
6333 int start_extra_space;
6334
6335 enum ebb_target_enum start_align;
6336
6337 bfd_boolean end_movable;
6338
6339 /* Bytes of extra space at the end if movable. */
6340 int end_extra_space;
6341
6342 unsigned action_count;
6343 unsigned action_allocated;
6344
6345 /* Array of proposed actions. */
6346 proposed_action *actions;
6347
6348 /* Action alignments -- one for each proposed action. */
6349 enum ebb_target_enum *action_aligns;
6350 };
6351
6352
6353 static void
6354 init_ebb_constraint (ebb_constraint *c)
6355 {
6356 memset (c, 0, sizeof (ebb_constraint));
6357 }
6358
6359
6360 static void
6361 free_ebb_constraint (ebb_constraint *c)
6362 {
6363 if (c->actions)
6364 free (c->actions);
6365 }
6366
6367
6368 static void
6369 init_ebb (ebb_t *ebb,
6370 asection *sec,
6371 bfd_byte *contents,
6372 bfd_size_type content_length,
6373 property_table_entry *prop_table,
6374 unsigned ptblsize,
6375 Elf_Internal_Rela *internal_relocs,
6376 unsigned reloc_count)
6377 {
6378 memset (ebb, 0, sizeof (ebb_t));
6379 ebb->sec = sec;
6380 ebb->contents = contents;
6381 ebb->content_length = content_length;
6382 ebb->ptbl = prop_table;
6383 ebb->pte_count = ptblsize;
6384 ebb->relocs = internal_relocs;
6385 ebb->reloc_count = reloc_count;
6386 ebb->start_offset = 0;
6387 ebb->end_offset = ebb->content_length - 1;
6388 ebb->start_ptbl_idx = 0;
6389 ebb->end_ptbl_idx = ptblsize;
6390 ebb->start_reloc_idx = 0;
6391 ebb->end_reloc_idx = reloc_count;
6392 }
6393
6394
6395 /* Extend the ebb to all decodable contiguous sections. The algorithm
6396 for building a basic block around an instruction is to push it
6397 forward until we hit the end of a section, an unreachable block or
6398 a block that cannot be transformed. Then we push it backwards
6399 searching for similar conditions. */
6400
6401 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6402 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6403 static bfd_size_type insn_block_decodable_len
6404 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6405
6406 static bfd_boolean
6407 extend_ebb_bounds (ebb_t *ebb)
6408 {
6409 if (!extend_ebb_bounds_forward (ebb))
6410 return FALSE;
6411 if (!extend_ebb_bounds_backward (ebb))
6412 return FALSE;
6413 return TRUE;
6414 }
6415
6416
6417 static bfd_boolean
6418 extend_ebb_bounds_forward (ebb_t *ebb)
6419 {
6420 property_table_entry *the_entry, *new_entry;
6421
6422 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6423
6424 /* Stop when (1) we cannot decode an instruction, (2) we are at
6425 the end of the property tables, (3) we hit a non-contiguous property
6426 table entry, (4) we hit a NO_TRANSFORM region. */
6427
6428 while (1)
6429 {
6430 bfd_vma entry_end;
6431 bfd_size_type insn_block_len;
6432
6433 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6434 insn_block_len =
6435 insn_block_decodable_len (ebb->contents, ebb->content_length,
6436 ebb->end_offset,
6437 entry_end - ebb->end_offset);
6438 if (insn_block_len != (entry_end - ebb->end_offset))
6439 {
6440 _bfd_error_handler
6441 /* xgettext:c-format */
6442 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
6443 "possible configuration mismatch"),
6444 ebb->sec->owner, ebb->sec,
6445 (uint64_t) (ebb->end_offset + insn_block_len));
6446 return FALSE;
6447 }
6448 ebb->end_offset += insn_block_len;
6449
6450 if (ebb->end_offset == ebb->sec->size)
6451 ebb->ends_section = TRUE;
6452
6453 /* Update the reloc counter. */
6454 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6455 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6456 < ebb->end_offset))
6457 {
6458 ebb->end_reloc_idx++;
6459 }
6460
6461 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6462 return TRUE;
6463
6464 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6465 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
6466 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6467 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6468 break;
6469
6470 if (the_entry->address + the_entry->size != new_entry->address)
6471 break;
6472
6473 the_entry = new_entry;
6474 ebb->end_ptbl_idx++;
6475 }
6476
6477 /* Quick check for an unreachable or end of file just at the end. */
6478 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6479 {
6480 if (ebb->end_offset == ebb->content_length)
6481 ebb->ends_section = TRUE;
6482 }
6483 else
6484 {
6485 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6486 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6487 && the_entry->address + the_entry->size == new_entry->address)
6488 ebb->ends_unreachable = new_entry;
6489 }
6490
6491 /* Any other ending requires exact alignment. */
6492 return TRUE;
6493 }
6494
6495
6496 static bfd_boolean
6497 extend_ebb_bounds_backward (ebb_t *ebb)
6498 {
6499 property_table_entry *the_entry, *new_entry;
6500
6501 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6502
6503 /* Stop when (1) we cannot decode the instructions in the current entry.
6504 (2) we are at the beginning of the property tables, (3) we hit a
6505 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6506
6507 while (1)
6508 {
6509 bfd_vma block_begin;
6510 bfd_size_type insn_block_len;
6511
6512 block_begin = the_entry->address - ebb->sec->vma;
6513 insn_block_len =
6514 insn_block_decodable_len (ebb->contents, ebb->content_length,
6515 block_begin,
6516 ebb->start_offset - block_begin);
6517 if (insn_block_len != ebb->start_offset - block_begin)
6518 {
6519 _bfd_error_handler
6520 /* xgettext:c-format */
6521 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
6522 "possible configuration mismatch"),
6523 ebb->sec->owner, ebb->sec,
6524 (uint64_t) (ebb->end_offset + insn_block_len));
6525 return FALSE;
6526 }
6527 ebb->start_offset -= insn_block_len;
6528
6529 /* Update the reloc counter. */
6530 while (ebb->start_reloc_idx > 0
6531 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6532 >= ebb->start_offset))
6533 {
6534 ebb->start_reloc_idx--;
6535 }
6536
6537 if (ebb->start_ptbl_idx == 0)
6538 return TRUE;
6539
6540 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6541 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
6542 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6543 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6544 return TRUE;
6545 if (new_entry->address + new_entry->size != the_entry->address)
6546 return TRUE;
6547
6548 the_entry = new_entry;
6549 ebb->start_ptbl_idx--;
6550 }
6551 return TRUE;
6552 }
6553
6554
6555 static bfd_size_type
6556 insn_block_decodable_len (bfd_byte *contents,
6557 bfd_size_type content_len,
6558 bfd_vma block_offset,
6559 bfd_size_type block_len)
6560 {
6561 bfd_vma offset = block_offset;
6562
6563 while (offset < block_offset + block_len)
6564 {
6565 bfd_size_type insn_len = 0;
6566
6567 insn_len = insn_decode_len (contents, content_len, offset);
6568 if (insn_len == 0)
6569 return (offset - block_offset);
6570 offset += insn_len;
6571 }
6572 return (offset - block_offset);
6573 }
6574
6575
6576 static void
6577 ebb_propose_action (ebb_constraint *c,
6578 enum ebb_target_enum align_type,
6579 bfd_vma alignment_pow,
6580 text_action_t action,
6581 bfd_vma offset,
6582 int removed_bytes,
6583 bfd_boolean do_action)
6584 {
6585 proposed_action *act;
6586
6587 if (c->action_allocated <= c->action_count)
6588 {
6589 unsigned new_allocated, i;
6590 proposed_action *new_actions;
6591
6592 new_allocated = (c->action_count + 2) * 2;
6593 new_actions = (proposed_action *)
6594 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6595
6596 for (i = 0; i < c->action_count; i++)
6597 new_actions[i] = c->actions[i];
6598 if (c->actions)
6599 free (c->actions);
6600 c->actions = new_actions;
6601 c->action_allocated = new_allocated;
6602 }
6603
6604 act = &c->actions[c->action_count];
6605 act->align_type = align_type;
6606 act->alignment_pow = alignment_pow;
6607 act->action = action;
6608 act->offset = offset;
6609 act->removed_bytes = removed_bytes;
6610 act->do_action = do_action;
6611
6612 c->action_count++;
6613 }
6614
6615 \f
6616 /* Access to internal relocations, section contents and symbols. */
6617
6618 /* During relaxation, we need to modify relocations, section contents,
6619 and symbol definitions, and we need to keep the original values from
6620 being reloaded from the input files, i.e., we need to "pin" the
6621 modified values in memory. We also want to continue to observe the
6622 setting of the "keep-memory" flag. The following functions wrap the
6623 standard BFD functions to take care of this for us. */
6624
6625 static Elf_Internal_Rela *
6626 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6627 {
6628 Elf_Internal_Rela *internal_relocs;
6629
6630 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6631 return NULL;
6632
6633 internal_relocs = elf_section_data (sec)->relocs;
6634 if (internal_relocs == NULL)
6635 internal_relocs = (_bfd_elf_link_read_relocs
6636 (abfd, sec, NULL, NULL, keep_memory));
6637 return internal_relocs;
6638 }
6639
6640
6641 static void
6642 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6643 {
6644 elf_section_data (sec)->relocs = internal_relocs;
6645 }
6646
6647
6648 static void
6649 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6650 {
6651 if (internal_relocs
6652 && elf_section_data (sec)->relocs != internal_relocs)
6653 free (internal_relocs);
6654 }
6655
6656
6657 static bfd_byte *
6658 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6659 {
6660 bfd_byte *contents;
6661 bfd_size_type sec_size;
6662
6663 sec_size = bfd_get_section_limit (abfd, sec);
6664 contents = elf_section_data (sec)->this_hdr.contents;
6665
6666 if (contents == NULL && sec_size != 0)
6667 {
6668 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6669 {
6670 if (contents)
6671 free (contents);
6672 return NULL;
6673 }
6674 if (keep_memory)
6675 elf_section_data (sec)->this_hdr.contents = contents;
6676 }
6677 return contents;
6678 }
6679
6680
6681 static void
6682 pin_contents (asection *sec, bfd_byte *contents)
6683 {
6684 elf_section_data (sec)->this_hdr.contents = contents;
6685 }
6686
6687
6688 static void
6689 release_contents (asection *sec, bfd_byte *contents)
6690 {
6691 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6692 free (contents);
6693 }
6694
6695
6696 static Elf_Internal_Sym *
6697 retrieve_local_syms (bfd *input_bfd)
6698 {
6699 Elf_Internal_Shdr *symtab_hdr;
6700 Elf_Internal_Sym *isymbuf;
6701 size_t locsymcount;
6702
6703 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6704 locsymcount = symtab_hdr->sh_info;
6705
6706 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6707 if (isymbuf == NULL && locsymcount != 0)
6708 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6709 NULL, NULL, NULL);
6710
6711 /* Save the symbols for this input file so they won't be read again. */
6712 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6713 symtab_hdr->contents = (unsigned char *) isymbuf;
6714
6715 return isymbuf;
6716 }
6717
6718 \f
6719 /* Code for link-time relaxation. */
6720
6721 /* Initialization for relaxation: */
6722 static bfd_boolean analyze_relocations (struct bfd_link_info *);
6723 static bfd_boolean find_relaxable_sections
6724 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
6725 static bfd_boolean collect_source_relocs
6726 (bfd *, asection *, struct bfd_link_info *);
6727 static bfd_boolean is_resolvable_asm_expansion
6728 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6729 bfd_boolean *);
6730 static Elf_Internal_Rela *find_associated_l32r_irel
6731 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
6732 static bfd_boolean compute_text_actions
6733 (bfd *, asection *, struct bfd_link_info *);
6734 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6735 static bfd_boolean compute_ebb_actions (ebb_constraint *);
6736 typedef struct reloc_range_list_struct reloc_range_list;
6737 static bfd_boolean check_section_ebb_pcrels_fit
6738 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *,
6739 reloc_range_list *, const ebb_constraint *,
6740 const xtensa_opcode *);
6741 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
6742 static void text_action_add_proposed
6743 (text_action_list *, const ebb_constraint *, asection *);
6744
6745 /* First pass: */
6746 static bfd_boolean compute_removed_literals
6747 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
6748 static Elf_Internal_Rela *get_irel_at_offset
6749 (asection *, Elf_Internal_Rela *, bfd_vma);
6750 static bfd_boolean is_removable_literal
6751 (const source_reloc *, int, const source_reloc *, int, asection *,
6752 property_table_entry *, int);
6753 static bfd_boolean remove_dead_literal
6754 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6755 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6756 static bfd_boolean identify_literal_placement
6757 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6758 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6759 source_reloc *, property_table_entry *, int, section_cache_t *,
6760 bfd_boolean);
6761 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
6762 static bfd_boolean coalesce_shared_literal
6763 (asection *, source_reloc *, property_table_entry *, int, value_map *);
6764 static bfd_boolean move_shared_literal
6765 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6766 int, const r_reloc *, const literal_value *, section_cache_t *);
6767
6768 /* Second pass: */
6769 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6770 static bfd_boolean translate_section_fixes (asection *);
6771 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
6772 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
6773 static void shrink_dynamic_reloc_sections
6774 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
6775 static bfd_boolean move_literal
6776 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6777 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
6778 static bfd_boolean relax_property_section
6779 (bfd *, asection *, struct bfd_link_info *);
6780
6781 /* Third pass: */
6782 static bfd_boolean relax_section_symbols (bfd *, asection *);
6783
6784
6785 static bfd_boolean
6786 elf_xtensa_relax_section (bfd *abfd,
6787 asection *sec,
6788 struct bfd_link_info *link_info,
6789 bfd_boolean *again)
6790 {
6791 static value_map_hash_table *values = NULL;
6792 static bfd_boolean relocations_analyzed = FALSE;
6793 xtensa_relax_info *relax_info;
6794
6795 if (!relocations_analyzed)
6796 {
6797 /* Do some overall initialization for relaxation. */
6798 values = value_map_hash_table_init ();
6799 if (values == NULL)
6800 return FALSE;
6801 relaxing_section = TRUE;
6802 if (!analyze_relocations (link_info))
6803 return FALSE;
6804 relocations_analyzed = TRUE;
6805 }
6806 *again = FALSE;
6807
6808 /* Don't mess with linker-created sections. */
6809 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6810 return TRUE;
6811
6812 relax_info = get_xtensa_relax_info (sec);
6813 BFD_ASSERT (relax_info != NULL);
6814
6815 switch (relax_info->visited)
6816 {
6817 case 0:
6818 /* Note: It would be nice to fold this pass into
6819 analyze_relocations, but it is important for this step that the
6820 sections be examined in link order. */
6821 if (!compute_removed_literals (abfd, sec, link_info, values))
6822 return FALSE;
6823 *again = TRUE;
6824 break;
6825
6826 case 1:
6827 if (values)
6828 value_map_hash_table_delete (values);
6829 values = NULL;
6830 if (!relax_section (abfd, sec, link_info))
6831 return FALSE;
6832 *again = TRUE;
6833 break;
6834
6835 case 2:
6836 if (!relax_section_symbols (abfd, sec))
6837 return FALSE;
6838 break;
6839 }
6840
6841 relax_info->visited++;
6842 return TRUE;
6843 }
6844
6845 \f
6846 /* Initialization for relaxation. */
6847
6848 /* This function is called once at the start of relaxation. It scans
6849 all the input sections and marks the ones that are relaxable (i.e.,
6850 literal sections with L32R relocations against them), and then
6851 collects source_reloc information for all the relocations against
6852 those relaxable sections. During this process, it also detects
6853 longcalls, i.e., calls relaxed by the assembler into indirect
6854 calls, that can be optimized back into direct calls. Within each
6855 extended basic block (ebb) containing an optimized longcall, it
6856 computes a set of "text actions" that can be performed to remove
6857 the L32R associated with the longcall while optionally preserving
6858 branch target alignments. */
6859
6860 static bfd_boolean
6861 analyze_relocations (struct bfd_link_info *link_info)
6862 {
6863 bfd *abfd;
6864 asection *sec;
6865 bfd_boolean is_relaxable = FALSE;
6866
6867 /* Initialize the per-section relaxation info. */
6868 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6869 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6870 {
6871 init_xtensa_relax_info (sec);
6872 }
6873
6874 /* Mark relaxable sections (and count relocations against each one). */
6875 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6876 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6877 {
6878 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6879 return FALSE;
6880 }
6881
6882 /* Bail out if there are no relaxable sections. */
6883 if (!is_relaxable)
6884 return TRUE;
6885
6886 /* Allocate space for source_relocs. */
6887 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6888 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6889 {
6890 xtensa_relax_info *relax_info;
6891
6892 relax_info = get_xtensa_relax_info (sec);
6893 if (relax_info->is_relaxable_literal_section
6894 || relax_info->is_relaxable_asm_section)
6895 {
6896 relax_info->src_relocs = (source_reloc *)
6897 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6898 }
6899 else
6900 relax_info->src_count = 0;
6901 }
6902
6903 /* Collect info on relocations against each relaxable section. */
6904 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6905 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6906 {
6907 if (!collect_source_relocs (abfd, sec, link_info))
6908 return FALSE;
6909 }
6910
6911 /* Compute the text actions. */
6912 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6913 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6914 {
6915 if (!compute_text_actions (abfd, sec, link_info))
6916 return FALSE;
6917 }
6918
6919 return TRUE;
6920 }
6921
6922
6923 /* Find all the sections that might be relaxed. The motivation for
6924 this pass is that collect_source_relocs() needs to record _all_ the
6925 relocations that target each relaxable section. That is expensive
6926 and unnecessary unless the target section is actually going to be
6927 relaxed. This pass identifies all such sections by checking if
6928 they have L32Rs pointing to them. In the process, the total number
6929 of relocations targeting each section is also counted so that we
6930 know how much space to allocate for source_relocs against each
6931 relaxable literal section. */
6932
6933 static bfd_boolean
6934 find_relaxable_sections (bfd *abfd,
6935 asection *sec,
6936 struct bfd_link_info *link_info,
6937 bfd_boolean *is_relaxable_p)
6938 {
6939 Elf_Internal_Rela *internal_relocs;
6940 bfd_byte *contents;
6941 bfd_boolean ok = TRUE;
6942 unsigned i;
6943 xtensa_relax_info *source_relax_info;
6944 bfd_boolean is_l32r_reloc;
6945
6946 internal_relocs = retrieve_internal_relocs (abfd, sec,
6947 link_info->keep_memory);
6948 if (internal_relocs == NULL)
6949 return ok;
6950
6951 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6952 if (contents == NULL && sec->size != 0)
6953 {
6954 ok = FALSE;
6955 goto error_return;
6956 }
6957
6958 source_relax_info = get_xtensa_relax_info (sec);
6959 for (i = 0; i < sec->reloc_count; i++)
6960 {
6961 Elf_Internal_Rela *irel = &internal_relocs[i];
6962 r_reloc r_rel;
6963 asection *target_sec;
6964 xtensa_relax_info *target_relax_info;
6965
6966 /* If this section has not already been marked as "relaxable", and
6967 if it contains any ASM_EXPAND relocations (marking expanded
6968 longcalls) that can be optimized into direct calls, then mark
6969 the section as "relaxable". */
6970 if (source_relax_info
6971 && !source_relax_info->is_relaxable_asm_section
6972 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6973 {
6974 bfd_boolean is_reachable = FALSE;
6975 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6976 link_info, &is_reachable)
6977 && is_reachable)
6978 {
6979 source_relax_info->is_relaxable_asm_section = TRUE;
6980 *is_relaxable_p = TRUE;
6981 }
6982 }
6983
6984 r_reloc_init (&r_rel, abfd, irel, contents,
6985 bfd_get_section_limit (abfd, sec));
6986
6987 target_sec = r_reloc_get_section (&r_rel);
6988 target_relax_info = get_xtensa_relax_info (target_sec);
6989 if (!target_relax_info)
6990 continue;
6991
6992 /* Count PC-relative operand relocations against the target section.
6993 Note: The conditions tested here must match the conditions under
6994 which init_source_reloc is called in collect_source_relocs(). */
6995 is_l32r_reloc = FALSE;
6996 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6997 {
6998 xtensa_opcode opcode =
6999 get_relocation_opcode (abfd, sec, contents, irel);
7000 if (opcode != XTENSA_UNDEFINED)
7001 {
7002 is_l32r_reloc = (opcode == get_l32r_opcode ());
7003 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
7004 || is_l32r_reloc)
7005 target_relax_info->src_count++;
7006 }
7007 }
7008
7009 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
7010 {
7011 /* Mark the target section as relaxable. */
7012 target_relax_info->is_relaxable_literal_section = TRUE;
7013 *is_relaxable_p = TRUE;
7014 }
7015 }
7016
7017 error_return:
7018 release_contents (sec, contents);
7019 release_internal_relocs (sec, internal_relocs);
7020 return ok;
7021 }
7022
7023
7024 /* Record _all_ the relocations that point to relaxable sections, and
7025 get rid of ASM_EXPAND relocs by either converting them to
7026 ASM_SIMPLIFY or by removing them. */
7027
7028 static bfd_boolean
7029 collect_source_relocs (bfd *abfd,
7030 asection *sec,
7031 struct bfd_link_info *link_info)
7032 {
7033 Elf_Internal_Rela *internal_relocs;
7034 bfd_byte *contents;
7035 bfd_boolean ok = TRUE;
7036 unsigned i;
7037 bfd_size_type sec_size;
7038
7039 internal_relocs = retrieve_internal_relocs (abfd, sec,
7040 link_info->keep_memory);
7041 if (internal_relocs == NULL)
7042 return ok;
7043
7044 sec_size = bfd_get_section_limit (abfd, sec);
7045 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7046 if (contents == NULL && sec_size != 0)
7047 {
7048 ok = FALSE;
7049 goto error_return;
7050 }
7051
7052 /* Record relocations against relaxable literal sections. */
7053 for (i = 0; i < sec->reloc_count; i++)
7054 {
7055 Elf_Internal_Rela *irel = &internal_relocs[i];
7056 r_reloc r_rel;
7057 asection *target_sec;
7058 xtensa_relax_info *target_relax_info;
7059
7060 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7061
7062 target_sec = r_reloc_get_section (&r_rel);
7063 target_relax_info = get_xtensa_relax_info (target_sec);
7064
7065 if (target_relax_info
7066 && (target_relax_info->is_relaxable_literal_section
7067 || target_relax_info->is_relaxable_asm_section))
7068 {
7069 xtensa_opcode opcode = XTENSA_UNDEFINED;
7070 int opnd = -1;
7071 bfd_boolean is_abs_literal = FALSE;
7072
7073 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7074 {
7075 /* None of the current alternate relocs are PC-relative,
7076 and only PC-relative relocs matter here. However, we
7077 still need to record the opcode for literal
7078 coalescing. */
7079 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7080 if (opcode == get_l32r_opcode ())
7081 {
7082 is_abs_literal = TRUE;
7083 opnd = 1;
7084 }
7085 else
7086 opcode = XTENSA_UNDEFINED;
7087 }
7088 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7089 {
7090 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7091 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7092 }
7093
7094 if (opcode != XTENSA_UNDEFINED)
7095 {
7096 int src_next = target_relax_info->src_next++;
7097 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
7098
7099 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
7100 is_abs_literal);
7101 }
7102 }
7103 }
7104
7105 /* Now get rid of ASM_EXPAND relocations. At this point, the
7106 src_relocs array for the target literal section may still be
7107 incomplete, but it must at least contain the entries for the L32R
7108 relocations associated with ASM_EXPANDs because they were just
7109 added in the preceding loop over the relocations. */
7110
7111 for (i = 0; i < sec->reloc_count; i++)
7112 {
7113 Elf_Internal_Rela *irel = &internal_relocs[i];
7114 bfd_boolean is_reachable;
7115
7116 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
7117 &is_reachable))
7118 continue;
7119
7120 if (is_reachable)
7121 {
7122 Elf_Internal_Rela *l32r_irel;
7123 r_reloc r_rel;
7124 asection *target_sec;
7125 xtensa_relax_info *target_relax_info;
7126
7127 /* Mark the source_reloc for the L32R so that it will be
7128 removed in compute_removed_literals(), along with the
7129 associated literal. */
7130 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7131 irel, internal_relocs);
7132 if (l32r_irel == NULL)
7133 continue;
7134
7135 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7136
7137 target_sec = r_reloc_get_section (&r_rel);
7138 target_relax_info = get_xtensa_relax_info (target_sec);
7139
7140 if (target_relax_info
7141 && (target_relax_info->is_relaxable_literal_section
7142 || target_relax_info->is_relaxable_asm_section))
7143 {
7144 source_reloc *s_reloc;
7145
7146 /* Search the source_relocs for the entry corresponding to
7147 the l32r_irel. Note: The src_relocs array is not yet
7148 sorted, but it wouldn't matter anyway because we're
7149 searching by source offset instead of target offset. */
7150 s_reloc = find_source_reloc (target_relax_info->src_relocs,
7151 target_relax_info->src_next,
7152 sec, l32r_irel);
7153 BFD_ASSERT (s_reloc);
7154 s_reloc->is_null = TRUE;
7155 }
7156
7157 /* Convert this reloc to ASM_SIMPLIFY. */
7158 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7159 R_XTENSA_ASM_SIMPLIFY);
7160 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7161
7162 pin_internal_relocs (sec, internal_relocs);
7163 }
7164 else
7165 {
7166 /* It is resolvable but doesn't reach. We resolve now
7167 by eliminating the relocation -- the call will remain
7168 expanded into L32R/CALLX. */
7169 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7170 pin_internal_relocs (sec, internal_relocs);
7171 }
7172 }
7173
7174 error_return:
7175 release_contents (sec, contents);
7176 release_internal_relocs (sec, internal_relocs);
7177 return ok;
7178 }
7179
7180
7181 /* Return TRUE if the asm expansion can be resolved. Generally it can
7182 be resolved on a final link or when a partial link locates it in the
7183 same section as the target. Set "is_reachable" flag if the target of
7184 the call is within the range of a direct call, given the current VMA
7185 for this section and the target section. */
7186
7187 bfd_boolean
7188 is_resolvable_asm_expansion (bfd *abfd,
7189 asection *sec,
7190 bfd_byte *contents,
7191 Elf_Internal_Rela *irel,
7192 struct bfd_link_info *link_info,
7193 bfd_boolean *is_reachable_p)
7194 {
7195 asection *target_sec;
7196 asection *s;
7197 bfd_vma first_vma;
7198 bfd_vma last_vma;
7199 unsigned int first_align;
7200 unsigned int adjust;
7201 bfd_vma target_offset;
7202 r_reloc r_rel;
7203 xtensa_opcode opcode, direct_call_opcode;
7204 bfd_vma self_address;
7205 bfd_vma dest_address;
7206 bfd_boolean uses_l32r;
7207 bfd_size_type sec_size;
7208
7209 *is_reachable_p = FALSE;
7210
7211 if (contents == NULL)
7212 return FALSE;
7213
7214 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7215 return FALSE;
7216
7217 sec_size = bfd_get_section_limit (abfd, sec);
7218 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7219 sec_size - irel->r_offset, &uses_l32r);
7220 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7221 if (!uses_l32r)
7222 return FALSE;
7223
7224 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7225 if (direct_call_opcode == XTENSA_UNDEFINED)
7226 return FALSE;
7227
7228 /* Check and see that the target resolves. */
7229 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7230 if (!r_reloc_is_defined (&r_rel))
7231 return FALSE;
7232
7233 target_sec = r_reloc_get_section (&r_rel);
7234 target_offset = r_rel.target_offset;
7235
7236 /* If the target is in a shared library, then it doesn't reach. This
7237 isn't supposed to come up because the compiler should never generate
7238 non-PIC calls on systems that use shared libraries, but the linker
7239 shouldn't crash regardless. */
7240 if (!target_sec->output_section)
7241 return FALSE;
7242
7243 /* For relocatable sections, we can only simplify when the output
7244 section of the target is the same as the output section of the
7245 source. */
7246 if (bfd_link_relocatable (link_info)
7247 && (target_sec->output_section != sec->output_section
7248 || is_reloc_sym_weak (abfd, irel)))
7249 return FALSE;
7250
7251 if (target_sec->output_section != sec->output_section)
7252 {
7253 /* If the two sections are sufficiently far away that relaxation
7254 might take the call out of range, we can't simplify. For
7255 example, a positive displacement call into another memory
7256 could get moved to a lower address due to literal removal,
7257 but the destination won't move, and so the displacment might
7258 get larger.
7259
7260 If the displacement is negative, assume the destination could
7261 move as far back as the start of the output section. The
7262 self_address will be at least as far into the output section
7263 as it is prior to relaxation.
7264
7265 If the displacement is postive, assume the destination will be in
7266 it's pre-relaxed location (because relaxation only makes sections
7267 smaller). The self_address could go all the way to the beginning
7268 of the output section. */
7269
7270 dest_address = target_sec->output_section->vma;
7271 self_address = sec->output_section->vma;
7272
7273 if (sec->output_section->vma > target_sec->output_section->vma)
7274 self_address += sec->output_offset + irel->r_offset + 3;
7275 else
7276 dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
7277 /* Call targets should be four-byte aligned. */
7278 dest_address = (dest_address + 3) & ~3;
7279 }
7280 else
7281 {
7282
7283 self_address = (sec->output_section->vma
7284 + sec->output_offset + irel->r_offset + 3);
7285 dest_address = (target_sec->output_section->vma
7286 + target_sec->output_offset + target_offset);
7287 }
7288
7289 /* Adjust addresses with alignments for the worst case to see if call insn
7290 can fit. Don't relax l32r + callx to call if the target can be out of
7291 range due to alignment.
7292 Caller and target addresses are highest and lowest address.
7293 Search all sections between caller and target, looking for max alignment.
7294 The adjustment is max alignment bytes. If the alignment at the lowest
7295 address is less than the adjustment, apply the adjustment to highest
7296 address. */
7297
7298 /* Start from lowest address.
7299 Lowest address aligmnet is from input section.
7300 Initial alignment (adjust) is from input section. */
7301 if (dest_address > self_address)
7302 {
7303 s = sec->output_section;
7304 last_vma = dest_address;
7305 first_align = sec->alignment_power;
7306 adjust = target_sec->alignment_power;
7307 }
7308 else
7309 {
7310 s = target_sec->output_section;
7311 last_vma = self_address;
7312 first_align = target_sec->alignment_power;
7313 adjust = sec->alignment_power;
7314 }
7315
7316 first_vma = s->vma;
7317
7318 /* Find the largest alignment in output section list. */
7319 for (; s && s->vma >= first_vma && s->vma <= last_vma ; s = s->next)
7320 {
7321 if (s->alignment_power > adjust)
7322 adjust = s->alignment_power;
7323 }
7324
7325 if (adjust > first_align)
7326 {
7327 /* Alignment may enlarge the range, adjust highest address. */
7328 adjust = 1 << adjust;
7329 if (dest_address > self_address)
7330 {
7331 dest_address += adjust;
7332 }
7333 else
7334 {
7335 self_address += adjust;
7336 }
7337 }
7338
7339 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7340 self_address, dest_address);
7341
7342 if ((self_address >> CALL_SEGMENT_BITS) !=
7343 (dest_address >> CALL_SEGMENT_BITS))
7344 return FALSE;
7345
7346 return TRUE;
7347 }
7348
7349
7350 static Elf_Internal_Rela *
7351 find_associated_l32r_irel (bfd *abfd,
7352 asection *sec,
7353 bfd_byte *contents,
7354 Elf_Internal_Rela *other_irel,
7355 Elf_Internal_Rela *internal_relocs)
7356 {
7357 unsigned i;
7358
7359 for (i = 0; i < sec->reloc_count; i++)
7360 {
7361 Elf_Internal_Rela *irel = &internal_relocs[i];
7362
7363 if (irel == other_irel)
7364 continue;
7365 if (irel->r_offset != other_irel->r_offset)
7366 continue;
7367 if (is_l32r_relocation (abfd, sec, contents, irel))
7368 return irel;
7369 }
7370
7371 return NULL;
7372 }
7373
7374
7375 static xtensa_opcode *
7376 build_reloc_opcodes (bfd *abfd,
7377 asection *sec,
7378 bfd_byte *contents,
7379 Elf_Internal_Rela *internal_relocs)
7380 {
7381 unsigned i;
7382 xtensa_opcode *reloc_opcodes =
7383 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7384 for (i = 0; i < sec->reloc_count; i++)
7385 {
7386 Elf_Internal_Rela *irel = &internal_relocs[i];
7387 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7388 }
7389 return reloc_opcodes;
7390 }
7391
7392 struct reloc_range_struct
7393 {
7394 bfd_vma addr;
7395 bfd_boolean add; /* TRUE if start of a range, FALSE otherwise. */
7396 /* Original irel index in the array of relocations for a section. */
7397 unsigned irel_index;
7398 };
7399 typedef struct reloc_range_struct reloc_range;
7400
7401 typedef struct reloc_range_list_entry_struct reloc_range_list_entry;
7402 struct reloc_range_list_entry_struct
7403 {
7404 reloc_range_list_entry *next;
7405 reloc_range_list_entry *prev;
7406 Elf_Internal_Rela *irel;
7407 xtensa_opcode opcode;
7408 int opnum;
7409 };
7410
7411 struct reloc_range_list_struct
7412 {
7413 /* The rest of the structure is only meaningful when ok is TRUE. */
7414 bfd_boolean ok;
7415
7416 unsigned n_range; /* Number of range markers. */
7417 reloc_range *range; /* Sorted range markers. */
7418
7419 unsigned first; /* Index of a first range element in the list. */
7420 unsigned last; /* One past index of a last range element in the list. */
7421
7422 unsigned n_list; /* Number of list elements. */
7423 reloc_range_list_entry *reloc; /* */
7424 reloc_range_list_entry list_root;
7425 };
7426
7427 static int
7428 reloc_range_compare (const void *a, const void *b)
7429 {
7430 const reloc_range *ra = a;
7431 const reloc_range *rb = b;
7432
7433 if (ra->addr != rb->addr)
7434 return ra->addr < rb->addr ? -1 : 1;
7435 if (ra->add != rb->add)
7436 return ra->add ? -1 : 1;
7437 return 0;
7438 }
7439
7440 static void
7441 build_reloc_ranges (bfd *abfd, asection *sec,
7442 bfd_byte *contents,
7443 Elf_Internal_Rela *internal_relocs,
7444 xtensa_opcode *reloc_opcodes,
7445 reloc_range_list *list)
7446 {
7447 unsigned i;
7448 size_t n = 0;
7449 size_t max_n = 0;
7450 reloc_range *ranges = NULL;
7451 reloc_range_list_entry *reloc =
7452 bfd_malloc (sec->reloc_count * sizeof (*reloc));
7453
7454 memset (list, 0, sizeof (*list));
7455 list->ok = TRUE;
7456
7457 for (i = 0; i < sec->reloc_count; i++)
7458 {
7459 Elf_Internal_Rela *irel = &internal_relocs[i];
7460 int r_type = ELF32_R_TYPE (irel->r_info);
7461 reloc_howto_type *howto = &elf_howto_table[r_type];
7462 r_reloc r_rel;
7463
7464 if (r_type == R_XTENSA_ASM_SIMPLIFY
7465 || r_type == R_XTENSA_32_PCREL
7466 || !howto->pc_relative)
7467 continue;
7468
7469 r_reloc_init (&r_rel, abfd, irel, contents,
7470 bfd_get_section_limit (abfd, sec));
7471
7472 if (r_reloc_get_section (&r_rel) != sec)
7473 continue;
7474
7475 if (n + 2 > max_n)
7476 {
7477 max_n = (max_n + 2) * 2;
7478 ranges = bfd_realloc (ranges, max_n * sizeof (*ranges));
7479 }
7480
7481 ranges[n].addr = irel->r_offset;
7482 ranges[n + 1].addr = r_rel.target_offset;
7483
7484 ranges[n].add = ranges[n].addr < ranges[n + 1].addr;
7485 ranges[n + 1].add = !ranges[n].add;
7486
7487 ranges[n].irel_index = i;
7488 ranges[n + 1].irel_index = i;
7489
7490 n += 2;
7491
7492 reloc[i].irel = irel;
7493
7494 /* Every relocation won't possibly be checked in the optimized version of
7495 check_section_ebb_pcrels_fit, so this needs to be done here. */
7496 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7497 {
7498 /* None of the current alternate relocs are PC-relative,
7499 and only PC-relative relocs matter here. */
7500 }
7501 else
7502 {
7503 xtensa_opcode opcode;
7504 int opnum;
7505
7506 if (reloc_opcodes)
7507 opcode = reloc_opcodes[i];
7508 else
7509 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7510
7511 if (opcode == XTENSA_UNDEFINED)
7512 {
7513 list->ok = FALSE;
7514 break;
7515 }
7516
7517 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7518 if (opnum == XTENSA_UNDEFINED)
7519 {
7520 list->ok = FALSE;
7521 break;
7522 }
7523
7524 /* Record relocation opcode and opnum as we've calculated them
7525 anyway and they won't change. */
7526 reloc[i].opcode = opcode;
7527 reloc[i].opnum = opnum;
7528 }
7529 }
7530
7531 if (list->ok)
7532 {
7533 ranges = bfd_realloc (ranges, n * sizeof (*ranges));
7534 qsort (ranges, n, sizeof (*ranges), reloc_range_compare);
7535
7536 list->n_range = n;
7537 list->range = ranges;
7538 list->reloc = reloc;
7539 list->list_root.prev = &list->list_root;
7540 list->list_root.next = &list->list_root;
7541 }
7542 else
7543 {
7544 free (ranges);
7545 free (reloc);
7546 }
7547 }
7548
7549 static void reloc_range_list_append (reloc_range_list *list,
7550 unsigned irel_index)
7551 {
7552 reloc_range_list_entry *entry = list->reloc + irel_index;
7553
7554 entry->prev = list->list_root.prev;
7555 entry->next = &list->list_root;
7556 entry->prev->next = entry;
7557 entry->next->prev = entry;
7558 ++list->n_list;
7559 }
7560
7561 static void reloc_range_list_remove (reloc_range_list *list,
7562 unsigned irel_index)
7563 {
7564 reloc_range_list_entry *entry = list->reloc + irel_index;
7565
7566 entry->next->prev = entry->prev;
7567 entry->prev->next = entry->next;
7568 --list->n_list;
7569 }
7570
7571 /* Update relocation list object so that it lists all relocations that cross
7572 [first; last] range. Range bounds should not decrease with successive
7573 invocations. */
7574 static void reloc_range_list_update_range (reloc_range_list *list,
7575 bfd_vma first, bfd_vma last)
7576 {
7577 /* This should not happen: EBBs are iterated from lower addresses to higher.
7578 But even if that happens there's no need to break: just flush current list
7579 and start from scratch. */
7580 if ((list->last > 0 && list->range[list->last - 1].addr > last) ||
7581 (list->first > 0 && list->range[list->first - 1].addr >= first))
7582 {
7583 list->first = 0;
7584 list->last = 0;
7585 list->n_list = 0;
7586 list->list_root.next = &list->list_root;
7587 list->list_root.prev = &list->list_root;
7588 fprintf (stderr, "%s: move backwards requested\n", __func__);
7589 }
7590
7591 for (; list->last < list->n_range &&
7592 list->range[list->last].addr <= last; ++list->last)
7593 if (list->range[list->last].add)
7594 reloc_range_list_append (list, list->range[list->last].irel_index);
7595
7596 for (; list->first < list->n_range &&
7597 list->range[list->first].addr < first; ++list->first)
7598 if (!list->range[list->first].add)
7599 reloc_range_list_remove (list, list->range[list->first].irel_index);
7600 }
7601
7602 static void free_reloc_range_list (reloc_range_list *list)
7603 {
7604 free (list->range);
7605 free (list->reloc);
7606 }
7607
7608 /* The compute_text_actions function will build a list of potential
7609 transformation actions for code in the extended basic block of each
7610 longcall that is optimized to a direct call. From this list we
7611 generate a set of actions to actually perform that optimizes for
7612 space and, if not using size_opt, maintains branch target
7613 alignments.
7614
7615 These actions to be performed are placed on a per-section list.
7616 The actual changes are performed by relax_section() in the second
7617 pass. */
7618
7619 bfd_boolean
7620 compute_text_actions (bfd *abfd,
7621 asection *sec,
7622 struct bfd_link_info *link_info)
7623 {
7624 xtensa_opcode *reloc_opcodes = NULL;
7625 xtensa_relax_info *relax_info;
7626 bfd_byte *contents;
7627 Elf_Internal_Rela *internal_relocs;
7628 bfd_boolean ok = TRUE;
7629 unsigned i;
7630 property_table_entry *prop_table = 0;
7631 int ptblsize = 0;
7632 bfd_size_type sec_size;
7633 reloc_range_list relevant_relocs;
7634
7635 relax_info = get_xtensa_relax_info (sec);
7636 BFD_ASSERT (relax_info);
7637 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7638
7639 /* Do nothing if the section contains no optimized longcalls. */
7640 if (!relax_info->is_relaxable_asm_section)
7641 return ok;
7642
7643 internal_relocs = retrieve_internal_relocs (abfd, sec,
7644 link_info->keep_memory);
7645
7646 if (internal_relocs)
7647 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7648 internal_reloc_compare);
7649
7650 sec_size = bfd_get_section_limit (abfd, sec);
7651 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7652 if (contents == NULL && sec_size != 0)
7653 {
7654 ok = FALSE;
7655 goto error_return;
7656 }
7657
7658 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7659 XTENSA_PROP_SEC_NAME, FALSE);
7660 if (ptblsize < 0)
7661 {
7662 ok = FALSE;
7663 goto error_return;
7664 }
7665
7666 /* Precompute the opcode for each relocation. */
7667 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs);
7668
7669 build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes,
7670 &relevant_relocs);
7671
7672 for (i = 0; i < sec->reloc_count; i++)
7673 {
7674 Elf_Internal_Rela *irel = &internal_relocs[i];
7675 bfd_vma r_offset;
7676 property_table_entry *the_entry;
7677 int ptbl_idx;
7678 ebb_t *ebb;
7679 ebb_constraint ebb_table;
7680 bfd_size_type simplify_size;
7681
7682 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7683 continue;
7684 r_offset = irel->r_offset;
7685
7686 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7687 if (simplify_size == 0)
7688 {
7689 _bfd_error_handler
7690 /* xgettext:c-format */
7691 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction for "
7692 "XTENSA_ASM_SIMPLIFY relocation; "
7693 "possible configuration mismatch"),
7694 sec->owner, sec, (uint64_t) r_offset);
7695 continue;
7696 }
7697
7698 /* If the instruction table is not around, then don't do this
7699 relaxation. */
7700 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7701 sec->vma + irel->r_offset);
7702 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7703 {
7704 text_action_add (&relax_info->action_list,
7705 ta_convert_longcall, sec, r_offset,
7706 0);
7707 continue;
7708 }
7709
7710 /* If the next longcall happens to be at the same address as an
7711 unreachable section of size 0, then skip forward. */
7712 ptbl_idx = the_entry - prop_table;
7713 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7714 && the_entry->size == 0
7715 && ptbl_idx + 1 < ptblsize
7716 && (prop_table[ptbl_idx + 1].address
7717 == prop_table[ptbl_idx].address))
7718 {
7719 ptbl_idx++;
7720 the_entry++;
7721 }
7722
7723 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
7724 /* NO_REORDER is OK */
7725 continue;
7726
7727 init_ebb_constraint (&ebb_table);
7728 ebb = &ebb_table.ebb;
7729 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7730 internal_relocs, sec->reloc_count);
7731 ebb->start_offset = r_offset + simplify_size;
7732 ebb->end_offset = r_offset + simplify_size;
7733 ebb->start_ptbl_idx = ptbl_idx;
7734 ebb->end_ptbl_idx = ptbl_idx;
7735 ebb->start_reloc_idx = i;
7736 ebb->end_reloc_idx = i;
7737
7738 if (!extend_ebb_bounds (ebb)
7739 || !compute_ebb_proposed_actions (&ebb_table)
7740 || !compute_ebb_actions (&ebb_table)
7741 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
7742 internal_relocs,
7743 &relevant_relocs,
7744 &ebb_table, reloc_opcodes)
7745 || !check_section_ebb_reduces (&ebb_table))
7746 {
7747 /* If anything goes wrong or we get unlucky and something does
7748 not fit, with our plan because of expansion between
7749 critical branches, just convert to a NOP. */
7750
7751 text_action_add (&relax_info->action_list,
7752 ta_convert_longcall, sec, r_offset, 0);
7753 i = ebb_table.ebb.end_reloc_idx;
7754 free_ebb_constraint (&ebb_table);
7755 continue;
7756 }
7757
7758 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7759
7760 /* Update the index so we do not go looking at the relocations
7761 we have already processed. */
7762 i = ebb_table.ebb.end_reloc_idx;
7763 free_ebb_constraint (&ebb_table);
7764 }
7765
7766 free_reloc_range_list (&relevant_relocs);
7767
7768 #if DEBUG
7769 if (action_list_count (&relax_info->action_list))
7770 print_action_list (stderr, &relax_info->action_list);
7771 #endif
7772
7773 error_return:
7774 release_contents (sec, contents);
7775 release_internal_relocs (sec, internal_relocs);
7776 if (prop_table)
7777 free (prop_table);
7778 if (reloc_opcodes)
7779 free (reloc_opcodes);
7780
7781 return ok;
7782 }
7783
7784
7785 /* Do not widen an instruction if it is preceeded by a
7786 loop opcode. It might cause misalignment. */
7787
7788 static bfd_boolean
7789 prev_instr_is_a_loop (bfd_byte *contents,
7790 bfd_size_type content_length,
7791 bfd_size_type offset)
7792 {
7793 xtensa_opcode prev_opcode;
7794
7795 if (offset < 3)
7796 return FALSE;
7797 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7798 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7799 }
7800
7801
7802 /* Find all of the possible actions for an extended basic block. */
7803
7804 bfd_boolean
7805 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
7806 {
7807 const ebb_t *ebb = &ebb_table->ebb;
7808 unsigned rel_idx = ebb->start_reloc_idx;
7809 property_table_entry *entry, *start_entry, *end_entry;
7810 bfd_vma offset = 0;
7811 xtensa_isa isa = xtensa_default_isa;
7812 xtensa_format fmt;
7813 static xtensa_insnbuf insnbuf = NULL;
7814 static xtensa_insnbuf slotbuf = NULL;
7815
7816 if (insnbuf == NULL)
7817 {
7818 insnbuf = xtensa_insnbuf_alloc (isa);
7819 slotbuf = xtensa_insnbuf_alloc (isa);
7820 }
7821
7822 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7823 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
7824
7825 for (entry = start_entry; entry <= end_entry; entry++)
7826 {
7827 bfd_vma start_offset, end_offset;
7828 bfd_size_type insn_len;
7829
7830 start_offset = entry->address - ebb->sec->vma;
7831 end_offset = entry->address + entry->size - ebb->sec->vma;
7832
7833 if (entry == start_entry)
7834 start_offset = ebb->start_offset;
7835 if (entry == end_entry)
7836 end_offset = ebb->end_offset;
7837 offset = start_offset;
7838
7839 if (offset == entry->address - ebb->sec->vma
7840 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7841 {
7842 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7843 BFD_ASSERT (offset != end_offset);
7844 if (offset == end_offset)
7845 return FALSE;
7846
7847 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7848 offset);
7849 if (insn_len == 0)
7850 goto decode_error;
7851
7852 if (check_branch_target_aligned_address (offset, insn_len))
7853 align_type = EBB_REQUIRE_TGT_ALIGN;
7854
7855 ebb_propose_action (ebb_table, align_type, 0,
7856 ta_none, offset, 0, TRUE);
7857 }
7858
7859 while (offset != end_offset)
7860 {
7861 Elf_Internal_Rela *irel;
7862 xtensa_opcode opcode;
7863
7864 while (rel_idx < ebb->end_reloc_idx
7865 && (ebb->relocs[rel_idx].r_offset < offset
7866 || (ebb->relocs[rel_idx].r_offset == offset
7867 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7868 != R_XTENSA_ASM_SIMPLIFY))))
7869 rel_idx++;
7870
7871 /* Check for longcall. */
7872 irel = &ebb->relocs[rel_idx];
7873 if (irel->r_offset == offset
7874 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7875 {
7876 bfd_size_type simplify_size;
7877
7878 simplify_size = get_asm_simplify_size (ebb->contents,
7879 ebb->content_length,
7880 irel->r_offset);
7881 if (simplify_size == 0)
7882 goto decode_error;
7883
7884 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7885 ta_convert_longcall, offset, 0, TRUE);
7886
7887 offset += simplify_size;
7888 continue;
7889 }
7890
7891 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7892 goto decode_error;
7893 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7894 ebb->content_length - offset);
7895 fmt = xtensa_format_decode (isa, insnbuf);
7896 if (fmt == XTENSA_UNDEFINED)
7897 goto decode_error;
7898 insn_len = xtensa_format_length (isa, fmt);
7899 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7900 goto decode_error;
7901
7902 if (xtensa_format_num_slots (isa, fmt) != 1)
7903 {
7904 offset += insn_len;
7905 continue;
7906 }
7907
7908 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7909 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7910 if (opcode == XTENSA_UNDEFINED)
7911 goto decode_error;
7912
7913 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
7914 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7915 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
7916 {
7917 /* Add an instruction narrow action. */
7918 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7919 ta_narrow_insn, offset, 0, FALSE);
7920 }
7921 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7922 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7923 && ! prev_instr_is_a_loop (ebb->contents,
7924 ebb->content_length, offset))
7925 {
7926 /* Add an instruction widen action. */
7927 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7928 ta_widen_insn, offset, 0, FALSE);
7929 }
7930 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
7931 {
7932 /* Check for branch targets. */
7933 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7934 ta_none, offset, 0, TRUE);
7935 }
7936
7937 offset += insn_len;
7938 }
7939 }
7940
7941 if (ebb->ends_unreachable)
7942 {
7943 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7944 ta_fill, ebb->end_offset, 0, TRUE);
7945 }
7946
7947 return TRUE;
7948
7949 decode_error:
7950 _bfd_error_handler
7951 /* xgettext:c-format */
7952 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
7953 "possible configuration mismatch"),
7954 ebb->sec->owner, ebb->sec, (uint64_t) offset);
7955 return FALSE;
7956 }
7957
7958
7959 /* After all of the information has collected about the
7960 transformations possible in an EBB, compute the appropriate actions
7961 here in compute_ebb_actions. We still must check later to make
7962 sure that the actions do not break any relocations. The algorithm
7963 used here is pretty greedy. Basically, it removes as many no-ops
7964 as possible so that the end of the EBB has the same alignment
7965 characteristics as the original. First, it uses narrowing, then
7966 fill space at the end of the EBB, and finally widenings. If that
7967 does not work, it tries again with one fewer no-op removed. The
7968 optimization will only be performed if all of the branch targets
7969 that were aligned before transformation are also aligned after the
7970 transformation.
7971
7972 When the size_opt flag is set, ignore the branch target alignments,
7973 narrow all wide instructions, and remove all no-ops unless the end
7974 of the EBB prevents it. */
7975
7976 bfd_boolean
7977 compute_ebb_actions (ebb_constraint *ebb_table)
7978 {
7979 unsigned i = 0;
7980 unsigned j;
7981 int removed_bytes = 0;
7982 ebb_t *ebb = &ebb_table->ebb;
7983 unsigned seg_idx_start = 0;
7984 unsigned seg_idx_end = 0;
7985
7986 /* We perform this like the assembler relaxation algorithm: Start by
7987 assuming all instructions are narrow and all no-ops removed; then
7988 walk through.... */
7989
7990 /* For each segment of this that has a solid constraint, check to
7991 see if there are any combinations that will keep the constraint.
7992 If so, use it. */
7993 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
7994 {
7995 bfd_boolean requires_text_end_align = FALSE;
7996 unsigned longcall_count = 0;
7997 unsigned longcall_convert_count = 0;
7998 unsigned narrowable_count = 0;
7999 unsigned narrowable_convert_count = 0;
8000 unsigned widenable_count = 0;
8001 unsigned widenable_convert_count = 0;
8002
8003 proposed_action *action = NULL;
8004 int align = (1 << ebb_table->ebb.sec->alignment_power);
8005
8006 seg_idx_start = seg_idx_end;
8007
8008 for (i = seg_idx_start; i < ebb_table->action_count; i++)
8009 {
8010 action = &ebb_table->actions[i];
8011 if (action->action == ta_convert_longcall)
8012 longcall_count++;
8013 if (action->action == ta_narrow_insn)
8014 narrowable_count++;
8015 if (action->action == ta_widen_insn)
8016 widenable_count++;
8017 if (action->action == ta_fill)
8018 break;
8019 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8020 break;
8021 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
8022 && !elf32xtensa_size_opt)
8023 break;
8024 }
8025 seg_idx_end = i;
8026
8027 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
8028 requires_text_end_align = TRUE;
8029
8030 if (elf32xtensa_size_opt && !requires_text_end_align
8031 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
8032 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
8033 {
8034 longcall_convert_count = longcall_count;
8035 narrowable_convert_count = narrowable_count;
8036 widenable_convert_count = 0;
8037 }
8038 else
8039 {
8040 /* There is a constraint. Convert the max number of longcalls. */
8041 narrowable_convert_count = 0;
8042 longcall_convert_count = 0;
8043 widenable_convert_count = 0;
8044
8045 for (j = 0; j < longcall_count; j++)
8046 {
8047 int removed = (longcall_count - j) * 3 & (align - 1);
8048 unsigned desire_narrow = (align - removed) & (align - 1);
8049 unsigned desire_widen = removed;
8050 if (desire_narrow <= narrowable_count)
8051 {
8052 narrowable_convert_count = desire_narrow;
8053 narrowable_convert_count +=
8054 (align * ((narrowable_count - narrowable_convert_count)
8055 / align));
8056 longcall_convert_count = (longcall_count - j);
8057 widenable_convert_count = 0;
8058 break;
8059 }
8060 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
8061 {
8062 narrowable_convert_count = 0;
8063 longcall_convert_count = longcall_count - j;
8064 widenable_convert_count = desire_widen;
8065 break;
8066 }
8067 }
8068 }
8069
8070 /* Now the number of conversions are saved. Do them. */
8071 for (i = seg_idx_start; i < seg_idx_end; i++)
8072 {
8073 action = &ebb_table->actions[i];
8074 switch (action->action)
8075 {
8076 case ta_convert_longcall:
8077 if (longcall_convert_count != 0)
8078 {
8079 action->action = ta_remove_longcall;
8080 action->do_action = TRUE;
8081 action->removed_bytes += 3;
8082 longcall_convert_count--;
8083 }
8084 break;
8085 case ta_narrow_insn:
8086 if (narrowable_convert_count != 0)
8087 {
8088 action->do_action = TRUE;
8089 action->removed_bytes += 1;
8090 narrowable_convert_count--;
8091 }
8092 break;
8093 case ta_widen_insn:
8094 if (widenable_convert_count != 0)
8095 {
8096 action->do_action = TRUE;
8097 action->removed_bytes -= 1;
8098 widenable_convert_count--;
8099 }
8100 break;
8101 default:
8102 break;
8103 }
8104 }
8105 }
8106
8107 /* Now we move on to some local opts. Try to remove each of the
8108 remaining longcalls. */
8109
8110 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
8111 {
8112 removed_bytes = 0;
8113 for (i = 0; i < ebb_table->action_count; i++)
8114 {
8115 int old_removed_bytes = removed_bytes;
8116 proposed_action *action = &ebb_table->actions[i];
8117
8118 if (action->do_action && action->action == ta_convert_longcall)
8119 {
8120 bfd_boolean bad_alignment = FALSE;
8121 removed_bytes += 3;
8122 for (j = i + 1; j < ebb_table->action_count; j++)
8123 {
8124 proposed_action *new_action = &ebb_table->actions[j];
8125 bfd_vma offset = new_action->offset;
8126 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
8127 {
8128 if (!check_branch_target_aligned
8129 (ebb_table->ebb.contents,
8130 ebb_table->ebb.content_length,
8131 offset, offset - removed_bytes))
8132 {
8133 bad_alignment = TRUE;
8134 break;
8135 }
8136 }
8137 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8138 {
8139 if (!check_loop_aligned (ebb_table->ebb.contents,
8140 ebb_table->ebb.content_length,
8141 offset,
8142 offset - removed_bytes))
8143 {
8144 bad_alignment = TRUE;
8145 break;
8146 }
8147 }
8148 if (new_action->action == ta_narrow_insn
8149 && !new_action->do_action
8150 && ebb_table->ebb.sec->alignment_power == 2)
8151 {
8152 /* Narrow an instruction and we are done. */
8153 new_action->do_action = TRUE;
8154 new_action->removed_bytes += 1;
8155 bad_alignment = FALSE;
8156 break;
8157 }
8158 if (new_action->action == ta_widen_insn
8159 && new_action->do_action
8160 && ebb_table->ebb.sec->alignment_power == 2)
8161 {
8162 /* Narrow an instruction and we are done. */
8163 new_action->do_action = FALSE;
8164 new_action->removed_bytes += 1;
8165 bad_alignment = FALSE;
8166 break;
8167 }
8168 if (new_action->do_action)
8169 removed_bytes += new_action->removed_bytes;
8170 }
8171 if (!bad_alignment)
8172 {
8173 action->removed_bytes += 3;
8174 action->action = ta_remove_longcall;
8175 action->do_action = TRUE;
8176 }
8177 }
8178 removed_bytes = old_removed_bytes;
8179 if (action->do_action)
8180 removed_bytes += action->removed_bytes;
8181 }
8182 }
8183
8184 removed_bytes = 0;
8185 for (i = 0; i < ebb_table->action_count; ++i)
8186 {
8187 proposed_action *action = &ebb_table->actions[i];
8188 if (action->do_action)
8189 removed_bytes += action->removed_bytes;
8190 }
8191
8192 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
8193 && ebb->ends_unreachable)
8194 {
8195 proposed_action *action;
8196 int br;
8197 int extra_space;
8198
8199 BFD_ASSERT (ebb_table->action_count != 0);
8200 action = &ebb_table->actions[ebb_table->action_count - 1];
8201 BFD_ASSERT (action->action == ta_fill);
8202 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
8203
8204 extra_space = xtensa_compute_fill_extra_space (ebb->ends_unreachable);
8205 br = action->removed_bytes + removed_bytes + extra_space;
8206 br = br & ((1 << ebb->sec->alignment_power ) - 1);
8207
8208 action->removed_bytes = extra_space - br;
8209 }
8210 return TRUE;
8211 }
8212
8213
8214 /* The xlate_map is a sorted array of address mappings designed to
8215 answer the offset_with_removed_text() query with a binary search instead
8216 of a linear search through the section's action_list. */
8217
8218 typedef struct xlate_map_entry xlate_map_entry_t;
8219 typedef struct xlate_map xlate_map_t;
8220
8221 struct xlate_map_entry
8222 {
8223 bfd_vma orig_address;
8224 bfd_vma new_address;
8225 unsigned size;
8226 };
8227
8228 struct xlate_map
8229 {
8230 unsigned entry_count;
8231 xlate_map_entry_t *entry;
8232 };
8233
8234
8235 static int
8236 xlate_compare (const void *a_v, const void *b_v)
8237 {
8238 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
8239 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
8240 if (a->orig_address < b->orig_address)
8241 return -1;
8242 if (a->orig_address > (b->orig_address + b->size - 1))
8243 return 1;
8244 return 0;
8245 }
8246
8247
8248 static bfd_vma
8249 xlate_offset_with_removed_text (const xlate_map_t *map,
8250 text_action_list *action_list,
8251 bfd_vma offset)
8252 {
8253 void *r;
8254 xlate_map_entry_t *e;
8255 struct xlate_map_entry se;
8256
8257 if (map == NULL)
8258 return offset_with_removed_text (action_list, offset);
8259
8260 if (map->entry_count == 0)
8261 return offset;
8262
8263 se.orig_address = offset;
8264 r = bsearch (&se, map->entry, map->entry_count,
8265 sizeof (xlate_map_entry_t), &xlate_compare);
8266 e = (xlate_map_entry_t *) r;
8267
8268 /* There could be a jump past the end of the section,
8269 allow it using the last xlate map entry to translate its address. */
8270 if (e == NULL)
8271 {
8272 e = map->entry + map->entry_count - 1;
8273 if (xlate_compare (&se, e) <= 0)
8274 e = NULL;
8275 }
8276 BFD_ASSERT (e != NULL);
8277 if (e == NULL)
8278 return offset;
8279 return e->new_address - e->orig_address + offset;
8280 }
8281
8282 typedef struct xlate_map_context_struct xlate_map_context;
8283 struct xlate_map_context_struct
8284 {
8285 xlate_map_t *map;
8286 xlate_map_entry_t *current_entry;
8287 int removed;
8288 };
8289
8290 static int
8291 xlate_map_fn (splay_tree_node node, void *p)
8292 {
8293 text_action *r = (text_action *)node->value;
8294 xlate_map_context *ctx = p;
8295 unsigned orig_size = 0;
8296
8297 switch (r->action)
8298 {
8299 case ta_none:
8300 case ta_remove_insn:
8301 case ta_convert_longcall:
8302 case ta_remove_literal:
8303 case ta_add_literal:
8304 break;
8305 case ta_remove_longcall:
8306 orig_size = 6;
8307 break;
8308 case ta_narrow_insn:
8309 orig_size = 3;
8310 break;
8311 case ta_widen_insn:
8312 orig_size = 2;
8313 break;
8314 case ta_fill:
8315 break;
8316 }
8317 ctx->current_entry->size =
8318 r->offset + orig_size - ctx->current_entry->orig_address;
8319 if (ctx->current_entry->size != 0)
8320 {
8321 ctx->current_entry++;
8322 ctx->map->entry_count++;
8323 }
8324 ctx->current_entry->orig_address = r->offset + orig_size;
8325 ctx->removed += r->removed_bytes;
8326 ctx->current_entry->new_address = r->offset + orig_size - ctx->removed;
8327 ctx->current_entry->size = 0;
8328 return 0;
8329 }
8330
8331 /* Build a binary searchable offset translation map from a section's
8332 action list. */
8333
8334 static xlate_map_t *
8335 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
8336 {
8337 text_action_list *action_list = &relax_info->action_list;
8338 unsigned num_actions = 0;
8339 xlate_map_context ctx;
8340
8341 ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
8342
8343 if (ctx.map == NULL)
8344 return NULL;
8345
8346 num_actions = action_list_count (action_list);
8347 ctx.map->entry = (xlate_map_entry_t *)
8348 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
8349 if (ctx.map->entry == NULL)
8350 {
8351 free (ctx.map);
8352 return NULL;
8353 }
8354 ctx.map->entry_count = 0;
8355
8356 ctx.removed = 0;
8357 ctx.current_entry = &ctx.map->entry[0];
8358
8359 ctx.current_entry->orig_address = 0;
8360 ctx.current_entry->new_address = 0;
8361 ctx.current_entry->size = 0;
8362
8363 splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx);
8364
8365 ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec)
8366 - ctx.current_entry->orig_address);
8367 if (ctx.current_entry->size != 0)
8368 ctx.map->entry_count++;
8369
8370 return ctx.map;
8371 }
8372
8373
8374 /* Free an offset translation map. */
8375
8376 static void
8377 free_xlate_map (xlate_map_t *map)
8378 {
8379 if (map && map->entry)
8380 free (map->entry);
8381 if (map)
8382 free (map);
8383 }
8384
8385
8386 /* Use check_section_ebb_pcrels_fit to make sure that all of the
8387 relocations in a section will fit if a proposed set of actions
8388 are performed. */
8389
8390 static bfd_boolean
8391 check_section_ebb_pcrels_fit (bfd *abfd,
8392 asection *sec,
8393 bfd_byte *contents,
8394 Elf_Internal_Rela *internal_relocs,
8395 reloc_range_list *relevant_relocs,
8396 const ebb_constraint *constraint,
8397 const xtensa_opcode *reloc_opcodes)
8398 {
8399 unsigned i, j;
8400 unsigned n = sec->reloc_count;
8401 Elf_Internal_Rela *irel;
8402 xlate_map_t *xmap = NULL;
8403 bfd_boolean ok = TRUE;
8404 xtensa_relax_info *relax_info;
8405 reloc_range_list_entry *entry = NULL;
8406
8407 relax_info = get_xtensa_relax_info (sec);
8408
8409 if (relax_info && sec->reloc_count > 100)
8410 {
8411 xmap = build_xlate_map (sec, relax_info);
8412 /* NULL indicates out of memory, but the slow version
8413 can still be used. */
8414 }
8415
8416 if (relevant_relocs && constraint->action_count)
8417 {
8418 if (!relevant_relocs->ok)
8419 {
8420 ok = FALSE;
8421 n = 0;
8422 }
8423 else
8424 {
8425 bfd_vma min_offset, max_offset;
8426 min_offset = max_offset = constraint->actions[0].offset;
8427
8428 for (i = 1; i < constraint->action_count; ++i)
8429 {
8430 proposed_action *action = &constraint->actions[i];
8431 bfd_vma offset = action->offset;
8432
8433 if (offset < min_offset)
8434 min_offset = offset;
8435 if (offset > max_offset)
8436 max_offset = offset;
8437 }
8438 reloc_range_list_update_range (relevant_relocs, min_offset,
8439 max_offset);
8440 n = relevant_relocs->n_list;
8441 entry = &relevant_relocs->list_root;
8442 }
8443 }
8444 else
8445 {
8446 relevant_relocs = NULL;
8447 }
8448
8449 for (i = 0; i < n; i++)
8450 {
8451 r_reloc r_rel;
8452 bfd_vma orig_self_offset, orig_target_offset;
8453 bfd_vma self_offset, target_offset;
8454 int r_type;
8455 reloc_howto_type *howto;
8456 int self_removed_bytes, target_removed_bytes;
8457
8458 if (relevant_relocs)
8459 {
8460 entry = entry->next;
8461 irel = entry->irel;
8462 }
8463 else
8464 {
8465 irel = internal_relocs + i;
8466 }
8467 r_type = ELF32_R_TYPE (irel->r_info);
8468
8469 howto = &elf_howto_table[r_type];
8470 /* We maintain the required invariant: PC-relative relocations
8471 that fit before linking must fit after linking. Thus we only
8472 need to deal with relocations to the same section that are
8473 PC-relative. */
8474 if (r_type == R_XTENSA_ASM_SIMPLIFY
8475 || r_type == R_XTENSA_32_PCREL
8476 || !howto->pc_relative)
8477 continue;
8478
8479 r_reloc_init (&r_rel, abfd, irel, contents,
8480 bfd_get_section_limit (abfd, sec));
8481
8482 if (r_reloc_get_section (&r_rel) != sec)
8483 continue;
8484
8485 orig_self_offset = irel->r_offset;
8486 orig_target_offset = r_rel.target_offset;
8487
8488 self_offset = orig_self_offset;
8489 target_offset = orig_target_offset;
8490
8491 if (relax_info)
8492 {
8493 self_offset =
8494 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8495 orig_self_offset);
8496 target_offset =
8497 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8498 orig_target_offset);
8499 }
8500
8501 self_removed_bytes = 0;
8502 target_removed_bytes = 0;
8503
8504 for (j = 0; j < constraint->action_count; ++j)
8505 {
8506 proposed_action *action = &constraint->actions[j];
8507 bfd_vma offset = action->offset;
8508 int removed_bytes = action->removed_bytes;
8509 if (offset < orig_self_offset
8510 || (offset == orig_self_offset && action->action == ta_fill
8511 && action->removed_bytes < 0))
8512 self_removed_bytes += removed_bytes;
8513 if (offset < orig_target_offset
8514 || (offset == orig_target_offset && action->action == ta_fill
8515 && action->removed_bytes < 0))
8516 target_removed_bytes += removed_bytes;
8517 }
8518 self_offset -= self_removed_bytes;
8519 target_offset -= target_removed_bytes;
8520
8521 /* Try to encode it. Get the operand and check. */
8522 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8523 {
8524 /* None of the current alternate relocs are PC-relative,
8525 and only PC-relative relocs matter here. */
8526 }
8527 else
8528 {
8529 xtensa_opcode opcode;
8530 int opnum;
8531
8532 if (relevant_relocs)
8533 {
8534 opcode = entry->opcode;
8535 opnum = entry->opnum;
8536 }
8537 else
8538 {
8539 if (reloc_opcodes)
8540 opcode = reloc_opcodes[relevant_relocs ?
8541 (unsigned)(entry - relevant_relocs->reloc) : i];
8542 else
8543 opcode = get_relocation_opcode (abfd, sec, contents, irel);
8544 if (opcode == XTENSA_UNDEFINED)
8545 {
8546 ok = FALSE;
8547 break;
8548 }
8549
8550 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8551 if (opnum == XTENSA_UNDEFINED)
8552 {
8553 ok = FALSE;
8554 break;
8555 }
8556 }
8557
8558 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
8559 {
8560 ok = FALSE;
8561 break;
8562 }
8563 }
8564 }
8565
8566 if (xmap)
8567 free_xlate_map (xmap);
8568
8569 return ok;
8570 }
8571
8572
8573 static bfd_boolean
8574 check_section_ebb_reduces (const ebb_constraint *constraint)
8575 {
8576 int removed = 0;
8577 unsigned i;
8578
8579 for (i = 0; i < constraint->action_count; i++)
8580 {
8581 const proposed_action *action = &constraint->actions[i];
8582 if (action->do_action)
8583 removed += action->removed_bytes;
8584 }
8585 if (removed < 0)
8586 return FALSE;
8587
8588 return TRUE;
8589 }
8590
8591
8592 void
8593 text_action_add_proposed (text_action_list *l,
8594 const ebb_constraint *ebb_table,
8595 asection *sec)
8596 {
8597 unsigned i;
8598
8599 for (i = 0; i < ebb_table->action_count; i++)
8600 {
8601 proposed_action *action = &ebb_table->actions[i];
8602
8603 if (!action->do_action)
8604 continue;
8605 switch (action->action)
8606 {
8607 case ta_remove_insn:
8608 case ta_remove_longcall:
8609 case ta_convert_longcall:
8610 case ta_narrow_insn:
8611 case ta_widen_insn:
8612 case ta_fill:
8613 case ta_remove_literal:
8614 text_action_add (l, action->action, sec, action->offset,
8615 action->removed_bytes);
8616 break;
8617 case ta_none:
8618 break;
8619 default:
8620 BFD_ASSERT (0);
8621 break;
8622 }
8623 }
8624 }
8625
8626
8627 int
8628 xtensa_compute_fill_extra_space (property_table_entry *entry)
8629 {
8630 int fill_extra_space;
8631
8632 if (!entry)
8633 return 0;
8634
8635 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8636 return 0;
8637
8638 fill_extra_space = entry->size;
8639 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8640 {
8641 /* Fill bytes for alignment:
8642 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8643 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8644 int nsm = (1 << pow) - 1;
8645 bfd_vma addr = entry->address + entry->size;
8646 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8647 fill_extra_space += align_fill;
8648 }
8649 return fill_extra_space;
8650 }
8651
8652 \f
8653 /* First relaxation pass. */
8654
8655 /* If the section contains relaxable literals, check each literal to
8656 see if it has the same value as another literal that has already
8657 been seen, either in the current section or a previous one. If so,
8658 add an entry to the per-section list of removed literals. The
8659 actual changes are deferred until the next pass. */
8660
8661 static bfd_boolean
8662 compute_removed_literals (bfd *abfd,
8663 asection *sec,
8664 struct bfd_link_info *link_info,
8665 value_map_hash_table *values)
8666 {
8667 xtensa_relax_info *relax_info;
8668 bfd_byte *contents;
8669 Elf_Internal_Rela *internal_relocs;
8670 source_reloc *src_relocs, *rel;
8671 bfd_boolean ok = TRUE;
8672 property_table_entry *prop_table = NULL;
8673 int ptblsize;
8674 int i, prev_i;
8675 bfd_boolean last_loc_is_prev = FALSE;
8676 bfd_vma last_target_offset = 0;
8677 section_cache_t target_sec_cache;
8678 bfd_size_type sec_size;
8679
8680 init_section_cache (&target_sec_cache);
8681
8682 /* Do nothing if it is not a relaxable literal section. */
8683 relax_info = get_xtensa_relax_info (sec);
8684 BFD_ASSERT (relax_info);
8685 if (!relax_info->is_relaxable_literal_section)
8686 return ok;
8687
8688 internal_relocs = retrieve_internal_relocs (abfd, sec,
8689 link_info->keep_memory);
8690
8691 sec_size = bfd_get_section_limit (abfd, sec);
8692 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8693 if (contents == NULL && sec_size != 0)
8694 {
8695 ok = FALSE;
8696 goto error_return;
8697 }
8698
8699 /* Sort the source_relocs by target offset. */
8700 src_relocs = relax_info->src_relocs;
8701 qsort (src_relocs, relax_info->src_count,
8702 sizeof (source_reloc), source_reloc_compare);
8703 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8704 internal_reloc_compare);
8705
8706 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8707 XTENSA_PROP_SEC_NAME, FALSE);
8708 if (ptblsize < 0)
8709 {
8710 ok = FALSE;
8711 goto error_return;
8712 }
8713
8714 prev_i = -1;
8715 for (i = 0; i < relax_info->src_count; i++)
8716 {
8717 Elf_Internal_Rela *irel = NULL;
8718
8719 rel = &src_relocs[i];
8720 if (get_l32r_opcode () != rel->opcode)
8721 continue;
8722 irel = get_irel_at_offset (sec, internal_relocs,
8723 rel->r_rel.target_offset);
8724
8725 /* If the relocation on this is not a simple R_XTENSA_32 or
8726 R_XTENSA_PLT then do not consider it. This may happen when
8727 the difference of two symbols is used in a literal. */
8728 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8729 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8730 continue;
8731
8732 /* If the target_offset for this relocation is the same as the
8733 previous relocation, then we've already considered whether the
8734 literal can be coalesced. Skip to the next one.... */
8735 if (i != 0 && prev_i != -1
8736 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
8737 continue;
8738 prev_i = i;
8739
8740 if (last_loc_is_prev &&
8741 last_target_offset + 4 != rel->r_rel.target_offset)
8742 last_loc_is_prev = FALSE;
8743
8744 /* Check if the relocation was from an L32R that is being removed
8745 because a CALLX was converted to a direct CALL, and check if
8746 there are no other relocations to the literal. */
8747 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8748 sec, prop_table, ptblsize))
8749 {
8750 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8751 irel, rel, prop_table, ptblsize))
8752 {
8753 ok = FALSE;
8754 goto error_return;
8755 }
8756 last_target_offset = rel->r_rel.target_offset;
8757 continue;
8758 }
8759
8760 if (!identify_literal_placement (abfd, sec, contents, link_info,
8761 values,
8762 &last_loc_is_prev, irel,
8763 relax_info->src_count - i, rel,
8764 prop_table, ptblsize,
8765 &target_sec_cache, rel->is_abs_literal))
8766 {
8767 ok = FALSE;
8768 goto error_return;
8769 }
8770 last_target_offset = rel->r_rel.target_offset;
8771 }
8772
8773 #if DEBUG
8774 print_removed_literals (stderr, &relax_info->removed_list);
8775 print_action_list (stderr, &relax_info->action_list);
8776 #endif /* DEBUG */
8777
8778 error_return:
8779 if (prop_table)
8780 free (prop_table);
8781 free_section_cache (&target_sec_cache);
8782
8783 release_contents (sec, contents);
8784 release_internal_relocs (sec, internal_relocs);
8785 return ok;
8786 }
8787
8788
8789 static Elf_Internal_Rela *
8790 get_irel_at_offset (asection *sec,
8791 Elf_Internal_Rela *internal_relocs,
8792 bfd_vma offset)
8793 {
8794 unsigned i;
8795 Elf_Internal_Rela *irel;
8796 unsigned r_type;
8797 Elf_Internal_Rela key;
8798
8799 if (!internal_relocs)
8800 return NULL;
8801
8802 key.r_offset = offset;
8803 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8804 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8805 if (!irel)
8806 return NULL;
8807
8808 /* bsearch does not guarantee which will be returned if there are
8809 multiple matches. We need the first that is not an alignment. */
8810 i = irel - internal_relocs;
8811 while (i > 0)
8812 {
8813 if (internal_relocs[i-1].r_offset != offset)
8814 break;
8815 i--;
8816 }
8817 for ( ; i < sec->reloc_count; i++)
8818 {
8819 irel = &internal_relocs[i];
8820 r_type = ELF32_R_TYPE (irel->r_info);
8821 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8822 return irel;
8823 }
8824
8825 return NULL;
8826 }
8827
8828
8829 bfd_boolean
8830 is_removable_literal (const source_reloc *rel,
8831 int i,
8832 const source_reloc *src_relocs,
8833 int src_count,
8834 asection *sec,
8835 property_table_entry *prop_table,
8836 int ptblsize)
8837 {
8838 const source_reloc *curr_rel;
8839 property_table_entry *entry;
8840
8841 if (!rel->is_null)
8842 return FALSE;
8843
8844 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8845 sec->vma + rel->r_rel.target_offset);
8846 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8847 return FALSE;
8848
8849 for (++i; i < src_count; ++i)
8850 {
8851 curr_rel = &src_relocs[i];
8852 /* If all others have the same target offset.... */
8853 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8854 return TRUE;
8855
8856 if (!curr_rel->is_null
8857 && !xtensa_is_property_section (curr_rel->source_sec)
8858 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8859 return FALSE;
8860 }
8861 return TRUE;
8862 }
8863
8864
8865 bfd_boolean
8866 remove_dead_literal (bfd *abfd,
8867 asection *sec,
8868 struct bfd_link_info *link_info,
8869 Elf_Internal_Rela *internal_relocs,
8870 Elf_Internal_Rela *irel,
8871 source_reloc *rel,
8872 property_table_entry *prop_table,
8873 int ptblsize)
8874 {
8875 property_table_entry *entry;
8876 xtensa_relax_info *relax_info;
8877
8878 relax_info = get_xtensa_relax_info (sec);
8879 if (!relax_info)
8880 return FALSE;
8881
8882 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8883 sec->vma + rel->r_rel.target_offset);
8884
8885 /* Mark the unused literal so that it will be removed. */
8886 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8887
8888 text_action_add (&relax_info->action_list,
8889 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8890
8891 /* If the section is 4-byte aligned, do not add fill. */
8892 if (sec->alignment_power > 2)
8893 {
8894 int fill_extra_space;
8895 bfd_vma entry_sec_offset;
8896 text_action *fa;
8897 property_table_entry *the_add_entry;
8898 int removed_diff;
8899
8900 if (entry)
8901 entry_sec_offset = entry->address - sec->vma + entry->size;
8902 else
8903 entry_sec_offset = rel->r_rel.target_offset + 4;
8904
8905 /* If the literal range is at the end of the section,
8906 do not add fill. */
8907 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8908 entry_sec_offset);
8909 fill_extra_space = xtensa_compute_fill_extra_space (the_add_entry);
8910
8911 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8912 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8913 -4, fill_extra_space);
8914 if (fa)
8915 adjust_fill_action (fa, removed_diff);
8916 else
8917 text_action_add (&relax_info->action_list,
8918 ta_fill, sec, entry_sec_offset, removed_diff);
8919 }
8920
8921 /* Zero out the relocation on this literal location. */
8922 if (irel)
8923 {
8924 if (elf_hash_table (link_info)->dynamic_sections_created)
8925 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8926
8927 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8928 pin_internal_relocs (sec, internal_relocs);
8929 }
8930
8931 /* Do not modify "last_loc_is_prev". */
8932 return TRUE;
8933 }
8934
8935
8936 bfd_boolean
8937 identify_literal_placement (bfd *abfd,
8938 asection *sec,
8939 bfd_byte *contents,
8940 struct bfd_link_info *link_info,
8941 value_map_hash_table *values,
8942 bfd_boolean *last_loc_is_prev_p,
8943 Elf_Internal_Rela *irel,
8944 int remaining_src_rels,
8945 source_reloc *rel,
8946 property_table_entry *prop_table,
8947 int ptblsize,
8948 section_cache_t *target_sec_cache,
8949 bfd_boolean is_abs_literal)
8950 {
8951 literal_value val;
8952 value_map *val_map;
8953 xtensa_relax_info *relax_info;
8954 bfd_boolean literal_placed = FALSE;
8955 r_reloc r_rel;
8956 unsigned long value;
8957 bfd_boolean final_static_link;
8958 bfd_size_type sec_size;
8959
8960 relax_info = get_xtensa_relax_info (sec);
8961 if (!relax_info)
8962 return FALSE;
8963
8964 sec_size = bfd_get_section_limit (abfd, sec);
8965
8966 final_static_link =
8967 (!bfd_link_relocatable (link_info)
8968 && !elf_hash_table (link_info)->dynamic_sections_created);
8969
8970 /* The placement algorithm first checks to see if the literal is
8971 already in the value map. If so and the value map is reachable
8972 from all uses, then the literal is moved to that location. If
8973 not, then we identify the last location where a fresh literal was
8974 placed. If the literal can be safely moved there, then we do so.
8975 If not, then we assume that the literal is not to move and leave
8976 the literal where it is, marking it as the last literal
8977 location. */
8978
8979 /* Find the literal value. */
8980 value = 0;
8981 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8982 if (!irel)
8983 {
8984 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
8985 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
8986 }
8987 init_literal_value (&val, &r_rel, value, is_abs_literal);
8988
8989 /* Check if we've seen another literal with the same value that
8990 is in the same output section. */
8991 val_map = value_map_get_cached_value (values, &val, final_static_link);
8992
8993 if (val_map
8994 && (r_reloc_get_section (&val_map->loc)->output_section
8995 == sec->output_section)
8996 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
8997 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
8998 {
8999 /* No change to last_loc_is_prev. */
9000 literal_placed = TRUE;
9001 }
9002
9003 /* For relocatable links, do not try to move literals. To do it
9004 correctly might increase the number of relocations in an input
9005 section making the default relocatable linking fail. */
9006 if (!bfd_link_relocatable (link_info) && !literal_placed
9007 && values->has_last_loc && !(*last_loc_is_prev_p))
9008 {
9009 asection *target_sec = r_reloc_get_section (&values->last_loc);
9010 if (target_sec && target_sec->output_section == sec->output_section)
9011 {
9012 /* Increment the virtual offset. */
9013 r_reloc try_loc = values->last_loc;
9014 try_loc.virtual_offset += 4;
9015
9016 /* There is a last loc that was in the same output section. */
9017 if (relocations_reach (rel, remaining_src_rels, &try_loc)
9018 && move_shared_literal (sec, link_info, rel,
9019 prop_table, ptblsize,
9020 &try_loc, &val, target_sec_cache))
9021 {
9022 values->last_loc.virtual_offset += 4;
9023 literal_placed = TRUE;
9024 if (!val_map)
9025 val_map = add_value_map (values, &val, &try_loc,
9026 final_static_link);
9027 else
9028 val_map->loc = try_loc;
9029 }
9030 }
9031 }
9032
9033 if (!literal_placed)
9034 {
9035 /* Nothing worked, leave the literal alone but update the last loc. */
9036 values->has_last_loc = TRUE;
9037 values->last_loc = rel->r_rel;
9038 if (!val_map)
9039 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
9040 else
9041 val_map->loc = rel->r_rel;
9042 *last_loc_is_prev_p = TRUE;
9043 }
9044
9045 return TRUE;
9046 }
9047
9048
9049 /* Check if the original relocations (presumably on L32R instructions)
9050 identified by reloc[0..N] can be changed to reference the literal
9051 identified by r_rel. If r_rel is out of range for any of the
9052 original relocations, then we don't want to coalesce the original
9053 literal with the one at r_rel. We only check reloc[0..N], where the
9054 offsets are all the same as for reloc[0] (i.e., they're all
9055 referencing the same literal) and where N is also bounded by the
9056 number of remaining entries in the "reloc" array. The "reloc" array
9057 is sorted by target offset so we know all the entries for the same
9058 literal will be contiguous. */
9059
9060 static bfd_boolean
9061 relocations_reach (source_reloc *reloc,
9062 int remaining_relocs,
9063 const r_reloc *r_rel)
9064 {
9065 bfd_vma from_offset, source_address, dest_address;
9066 asection *sec;
9067 int i;
9068
9069 if (!r_reloc_is_defined (r_rel))
9070 return FALSE;
9071
9072 sec = r_reloc_get_section (r_rel);
9073 from_offset = reloc[0].r_rel.target_offset;
9074
9075 for (i = 0; i < remaining_relocs; i++)
9076 {
9077 if (reloc[i].r_rel.target_offset != from_offset)
9078 break;
9079
9080 /* Ignore relocations that have been removed. */
9081 if (reloc[i].is_null)
9082 continue;
9083
9084 /* The original and new output section for these must be the same
9085 in order to coalesce. */
9086 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
9087 != sec->output_section)
9088 return FALSE;
9089
9090 /* Absolute literals in the same output section can always be
9091 combined. */
9092 if (reloc[i].is_abs_literal)
9093 continue;
9094
9095 /* A literal with no PC-relative relocations can be moved anywhere. */
9096 if (reloc[i].opnd != -1)
9097 {
9098 /* Otherwise, check to see that it fits. */
9099 source_address = (reloc[i].source_sec->output_section->vma
9100 + reloc[i].source_sec->output_offset
9101 + reloc[i].r_rel.rela.r_offset);
9102 dest_address = (sec->output_section->vma
9103 + sec->output_offset
9104 + r_rel->target_offset);
9105
9106 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
9107 source_address, dest_address))
9108 return FALSE;
9109 }
9110 }
9111
9112 return TRUE;
9113 }
9114
9115
9116 /* Move a literal to another literal location because it is
9117 the same as the other literal value. */
9118
9119 static bfd_boolean
9120 coalesce_shared_literal (asection *sec,
9121 source_reloc *rel,
9122 property_table_entry *prop_table,
9123 int ptblsize,
9124 value_map *val_map)
9125 {
9126 property_table_entry *entry;
9127 text_action *fa;
9128 property_table_entry *the_add_entry;
9129 int removed_diff;
9130 xtensa_relax_info *relax_info;
9131
9132 relax_info = get_xtensa_relax_info (sec);
9133 if (!relax_info)
9134 return FALSE;
9135
9136 entry = elf_xtensa_find_property_entry
9137 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9138 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
9139 return TRUE;
9140
9141 /* Mark that the literal will be coalesced. */
9142 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
9143
9144 text_action_add (&relax_info->action_list,
9145 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9146
9147 /* If the section is 4-byte aligned, do not add fill. */
9148 if (sec->alignment_power > 2)
9149 {
9150 int fill_extra_space;
9151 bfd_vma entry_sec_offset;
9152
9153 if (entry)
9154 entry_sec_offset = entry->address - sec->vma + entry->size;
9155 else
9156 entry_sec_offset = rel->r_rel.target_offset + 4;
9157
9158 /* If the literal range is at the end of the section,
9159 do not add fill. */
9160 fill_extra_space = 0;
9161 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9162 entry_sec_offset);
9163 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9164 fill_extra_space = the_add_entry->size;
9165
9166 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9167 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9168 -4, fill_extra_space);
9169 if (fa)
9170 adjust_fill_action (fa, removed_diff);
9171 else
9172 text_action_add (&relax_info->action_list,
9173 ta_fill, sec, entry_sec_offset, removed_diff);
9174 }
9175
9176 return TRUE;
9177 }
9178
9179
9180 /* Move a literal to another location. This may actually increase the
9181 total amount of space used because of alignments so we need to do
9182 this carefully. Also, it may make a branch go out of range. */
9183
9184 static bfd_boolean
9185 move_shared_literal (asection *sec,
9186 struct bfd_link_info *link_info,
9187 source_reloc *rel,
9188 property_table_entry *prop_table,
9189 int ptblsize,
9190 const r_reloc *target_loc,
9191 const literal_value *lit_value,
9192 section_cache_t *target_sec_cache)
9193 {
9194 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
9195 text_action *fa, *target_fa;
9196 int removed_diff;
9197 xtensa_relax_info *relax_info, *target_relax_info;
9198 asection *target_sec;
9199 ebb_t *ebb;
9200 ebb_constraint ebb_table;
9201 bfd_boolean relocs_fit;
9202
9203 /* If this routine always returns FALSE, the literals that cannot be
9204 coalesced will not be moved. */
9205 if (elf32xtensa_no_literal_movement)
9206 return FALSE;
9207
9208 relax_info = get_xtensa_relax_info (sec);
9209 if (!relax_info)
9210 return FALSE;
9211
9212 target_sec = r_reloc_get_section (target_loc);
9213 target_relax_info = get_xtensa_relax_info (target_sec);
9214
9215 /* Literals to undefined sections may not be moved because they
9216 must report an error. */
9217 if (bfd_is_und_section (target_sec))
9218 return FALSE;
9219
9220 src_entry = elf_xtensa_find_property_entry
9221 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9222
9223 if (!section_cache_section (target_sec_cache, target_sec, link_info))
9224 return FALSE;
9225
9226 target_entry = elf_xtensa_find_property_entry
9227 (target_sec_cache->ptbl, target_sec_cache->pte_count,
9228 target_sec->vma + target_loc->target_offset);
9229
9230 if (!target_entry)
9231 return FALSE;
9232
9233 /* Make sure that we have not broken any branches. */
9234 relocs_fit = FALSE;
9235
9236 init_ebb_constraint (&ebb_table);
9237 ebb = &ebb_table.ebb;
9238 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
9239 target_sec_cache->content_length,
9240 target_sec_cache->ptbl, target_sec_cache->pte_count,
9241 target_sec_cache->relocs, target_sec_cache->reloc_count);
9242
9243 /* Propose to add 4 bytes + worst-case alignment size increase to
9244 destination. */
9245 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
9246 ta_fill, target_loc->target_offset,
9247 -4 - (1 << target_sec->alignment_power), TRUE);
9248
9249 /* Check all of the PC-relative relocations to make sure they still fit. */
9250 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
9251 target_sec_cache->contents,
9252 target_sec_cache->relocs, NULL,
9253 &ebb_table, NULL);
9254
9255 if (!relocs_fit)
9256 return FALSE;
9257
9258 text_action_add_literal (&target_relax_info->action_list,
9259 ta_add_literal, target_loc, lit_value, -4);
9260
9261 if (target_sec->alignment_power > 2 && target_entry != src_entry)
9262 {
9263 /* May need to add or remove some fill to maintain alignment. */
9264 int fill_extra_space;
9265 bfd_vma entry_sec_offset;
9266
9267 entry_sec_offset =
9268 target_entry->address - target_sec->vma + target_entry->size;
9269
9270 /* If the literal range is at the end of the section,
9271 do not add fill. */
9272 fill_extra_space = 0;
9273 the_add_entry =
9274 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
9275 target_sec_cache->pte_count,
9276 entry_sec_offset);
9277 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9278 fill_extra_space = the_add_entry->size;
9279
9280 target_fa = find_fill_action (&target_relax_info->action_list,
9281 target_sec, entry_sec_offset);
9282 removed_diff = compute_removed_action_diff (target_fa, target_sec,
9283 entry_sec_offset, 4,
9284 fill_extra_space);
9285 if (target_fa)
9286 adjust_fill_action (target_fa, removed_diff);
9287 else
9288 text_action_add (&target_relax_info->action_list,
9289 ta_fill, target_sec, entry_sec_offset, removed_diff);
9290 }
9291
9292 /* Mark that the literal will be moved to the new location. */
9293 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
9294
9295 /* Remove the literal. */
9296 text_action_add (&relax_info->action_list,
9297 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9298
9299 /* If the section is 4-byte aligned, do not add fill. */
9300 if (sec->alignment_power > 2 && target_entry != src_entry)
9301 {
9302 int fill_extra_space;
9303 bfd_vma entry_sec_offset;
9304
9305 if (src_entry)
9306 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
9307 else
9308 entry_sec_offset = rel->r_rel.target_offset+4;
9309
9310 /* If the literal range is at the end of the section,
9311 do not add fill. */
9312 fill_extra_space = 0;
9313 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9314 entry_sec_offset);
9315 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9316 fill_extra_space = the_add_entry->size;
9317
9318 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9319 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9320 -4, fill_extra_space);
9321 if (fa)
9322 adjust_fill_action (fa, removed_diff);
9323 else
9324 text_action_add (&relax_info->action_list,
9325 ta_fill, sec, entry_sec_offset, removed_diff);
9326 }
9327
9328 return TRUE;
9329 }
9330
9331 \f
9332 /* Second relaxation pass. */
9333
9334 static int
9335 action_remove_bytes_fn (splay_tree_node node, void *p)
9336 {
9337 bfd_size_type *final_size = p;
9338 text_action *action = (text_action *)node->value;
9339
9340 *final_size -= action->removed_bytes;
9341 return 0;
9342 }
9343
9344 /* Modify all of the relocations to point to the right spot, and if this
9345 is a relaxable section, delete the unwanted literals and fix the
9346 section size. */
9347
9348 bfd_boolean
9349 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
9350 {
9351 Elf_Internal_Rela *internal_relocs;
9352 xtensa_relax_info *relax_info;
9353 bfd_byte *contents;
9354 bfd_boolean ok = TRUE;
9355 unsigned i;
9356 bfd_boolean rv = FALSE;
9357 bfd_boolean virtual_action;
9358 bfd_size_type sec_size;
9359
9360 sec_size = bfd_get_section_limit (abfd, sec);
9361 relax_info = get_xtensa_relax_info (sec);
9362 BFD_ASSERT (relax_info);
9363
9364 /* First translate any of the fixes that have been added already. */
9365 translate_section_fixes (sec);
9366
9367 /* Handle property sections (e.g., literal tables) specially. */
9368 if (xtensa_is_property_section (sec))
9369 {
9370 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
9371 return relax_property_section (abfd, sec, link_info);
9372 }
9373
9374 internal_relocs = retrieve_internal_relocs (abfd, sec,
9375 link_info->keep_memory);
9376 if (!internal_relocs && !action_list_count (&relax_info->action_list))
9377 return TRUE;
9378
9379 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9380 if (contents == NULL && sec_size != 0)
9381 {
9382 ok = FALSE;
9383 goto error_return;
9384 }
9385
9386 if (internal_relocs)
9387 {
9388 for (i = 0; i < sec->reloc_count; i++)
9389 {
9390 Elf_Internal_Rela *irel;
9391 xtensa_relax_info *target_relax_info;
9392 bfd_vma source_offset, old_source_offset;
9393 r_reloc r_rel;
9394 unsigned r_type;
9395 asection *target_sec;
9396
9397 /* Locally change the source address.
9398 Translate the target to the new target address.
9399 If it points to this section and has been removed,
9400 NULLify it.
9401 Write it back. */
9402
9403 irel = &internal_relocs[i];
9404 source_offset = irel->r_offset;
9405 old_source_offset = source_offset;
9406
9407 r_type = ELF32_R_TYPE (irel->r_info);
9408 r_reloc_init (&r_rel, abfd, irel, contents,
9409 bfd_get_section_limit (abfd, sec));
9410
9411 /* If this section could have changed then we may need to
9412 change the relocation's offset. */
9413
9414 if (relax_info->is_relaxable_literal_section
9415 || relax_info->is_relaxable_asm_section)
9416 {
9417 pin_internal_relocs (sec, internal_relocs);
9418
9419 if (r_type != R_XTENSA_NONE
9420 && find_removed_literal (&relax_info->removed_list,
9421 irel->r_offset))
9422 {
9423 /* Remove this relocation. */
9424 if (elf_hash_table (link_info)->dynamic_sections_created)
9425 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9426 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9427 irel->r_offset = offset_with_removed_text_map
9428 (&relax_info->action_list, irel->r_offset);
9429 continue;
9430 }
9431
9432 if (r_type == R_XTENSA_ASM_SIMPLIFY)
9433 {
9434 text_action *action =
9435 find_insn_action (&relax_info->action_list,
9436 irel->r_offset);
9437 if (action && (action->action == ta_convert_longcall
9438 || action->action == ta_remove_longcall))
9439 {
9440 bfd_reloc_status_type retval;
9441 char *error_message = NULL;
9442
9443 retval = contract_asm_expansion (contents, sec_size,
9444 irel, &error_message);
9445 if (retval != bfd_reloc_ok)
9446 {
9447 (*link_info->callbacks->reloc_dangerous)
9448 (link_info, error_message, abfd, sec,
9449 irel->r_offset);
9450 goto error_return;
9451 }
9452 /* Update the action so that the code that moves
9453 the contents will do the right thing. */
9454 /* ta_remove_longcall and ta_remove_insn actions are
9455 grouped together in the tree as well as
9456 ta_convert_longcall and ta_none, so that changes below
9457 can be done w/o removing and reinserting action into
9458 the tree. */
9459
9460 if (action->action == ta_remove_longcall)
9461 action->action = ta_remove_insn;
9462 else
9463 action->action = ta_none;
9464 /* Refresh the info in the r_rel. */
9465 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9466 r_type = ELF32_R_TYPE (irel->r_info);
9467 }
9468 }
9469
9470 source_offset = offset_with_removed_text_map
9471 (&relax_info->action_list, irel->r_offset);
9472 irel->r_offset = source_offset;
9473 }
9474
9475 /* If the target section could have changed then
9476 we may need to change the relocation's target offset. */
9477
9478 target_sec = r_reloc_get_section (&r_rel);
9479
9480 /* For a reference to a discarded section from a DWARF section,
9481 i.e., where action_discarded is PRETEND, the symbol will
9482 eventually be modified to refer to the kept section (at least if
9483 the kept and discarded sections are the same size). Anticipate
9484 that here and adjust things accordingly. */
9485 if (! elf_xtensa_ignore_discarded_relocs (sec)
9486 && elf_xtensa_action_discarded (sec) == PRETEND
9487 && sec->sec_info_type != SEC_INFO_TYPE_STABS
9488 && target_sec != NULL
9489 && discarded_section (target_sec))
9490 {
9491 /* It would be natural to call _bfd_elf_check_kept_section
9492 here, but it's not exported from elflink.c. It's also a
9493 fairly expensive check. Adjusting the relocations to the
9494 discarded section is fairly harmless; it will only adjust
9495 some addends and difference values. If it turns out that
9496 _bfd_elf_check_kept_section fails later, it won't matter,
9497 so just compare the section names to find the right group
9498 member. */
9499 asection *kept = target_sec->kept_section;
9500 if (kept != NULL)
9501 {
9502 if ((kept->flags & SEC_GROUP) != 0)
9503 {
9504 asection *first = elf_next_in_group (kept);
9505 asection *s = first;
9506
9507 kept = NULL;
9508 while (s != NULL)
9509 {
9510 if (strcmp (s->name, target_sec->name) == 0)
9511 {
9512 kept = s;
9513 break;
9514 }
9515 s = elf_next_in_group (s);
9516 if (s == first)
9517 break;
9518 }
9519 }
9520 }
9521 if (kept != NULL
9522 && ((target_sec->rawsize != 0
9523 ? target_sec->rawsize : target_sec->size)
9524 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9525 target_sec = kept;
9526 }
9527
9528 target_relax_info = get_xtensa_relax_info (target_sec);
9529 if (target_relax_info
9530 && (target_relax_info->is_relaxable_literal_section
9531 || target_relax_info->is_relaxable_asm_section))
9532 {
9533 r_reloc new_reloc;
9534 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
9535
9536 if (r_type == R_XTENSA_DIFF8
9537 || r_type == R_XTENSA_DIFF16
9538 || r_type == R_XTENSA_DIFF32)
9539 {
9540 bfd_signed_vma diff_value = 0;
9541 bfd_vma new_end_offset, diff_mask = 0;
9542
9543 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9544 {
9545 (*link_info->callbacks->reloc_dangerous)
9546 (link_info, _("invalid relocation address"),
9547 abfd, sec, old_source_offset);
9548 goto error_return;
9549 }
9550
9551 switch (r_type)
9552 {
9553 case R_XTENSA_DIFF8:
9554 diff_value =
9555 bfd_get_signed_8 (abfd, &contents[old_source_offset]);
9556 break;
9557 case R_XTENSA_DIFF16:
9558 diff_value =
9559 bfd_get_signed_16 (abfd, &contents[old_source_offset]);
9560 break;
9561 case R_XTENSA_DIFF32:
9562 diff_value =
9563 bfd_get_signed_32 (abfd, &contents[old_source_offset]);
9564 break;
9565 }
9566
9567 new_end_offset = offset_with_removed_text_map
9568 (&target_relax_info->action_list,
9569 r_rel.target_offset + diff_value);
9570 diff_value = new_end_offset - new_reloc.target_offset;
9571
9572 switch (r_type)
9573 {
9574 case R_XTENSA_DIFF8:
9575 diff_mask = 0x7f;
9576 bfd_put_signed_8 (abfd, diff_value,
9577 &contents[old_source_offset]);
9578 break;
9579 case R_XTENSA_DIFF16:
9580 diff_mask = 0x7fff;
9581 bfd_put_signed_16 (abfd, diff_value,
9582 &contents[old_source_offset]);
9583 break;
9584 case R_XTENSA_DIFF32:
9585 diff_mask = 0x7fffffff;
9586 bfd_put_signed_32 (abfd, diff_value,
9587 &contents[old_source_offset]);
9588 break;
9589 }
9590
9591 /* Check for overflow. Sign bits must be all zeroes or all ones */
9592 if ((diff_value & ~diff_mask) != 0 &&
9593 (diff_value & ~diff_mask) != (-1 & ~diff_mask))
9594 {
9595 (*link_info->callbacks->reloc_dangerous)
9596 (link_info, _("overflow after relaxation"),
9597 abfd, sec, old_source_offset);
9598 goto error_return;
9599 }
9600
9601 pin_contents (sec, contents);
9602 }
9603
9604 /* If the relocation still references a section in the same
9605 input file, modify the relocation directly instead of
9606 adding a "fix" record. */
9607 if (target_sec->owner == abfd)
9608 {
9609 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9610 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9611 irel->r_addend = new_reloc.rela.r_addend;
9612 pin_internal_relocs (sec, internal_relocs);
9613 }
9614 else
9615 {
9616 bfd_vma addend_displacement;
9617 reloc_bfd_fix *fix;
9618
9619 addend_displacement =
9620 new_reloc.target_offset + new_reloc.virtual_offset;
9621 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9622 target_sec,
9623 addend_displacement, TRUE);
9624 add_fix (sec, fix);
9625 }
9626 }
9627 }
9628 }
9629
9630 if ((relax_info->is_relaxable_literal_section
9631 || relax_info->is_relaxable_asm_section)
9632 && action_list_count (&relax_info->action_list))
9633 {
9634 /* Walk through the planned actions and build up a table
9635 of move, copy and fill records. Use the move, copy and
9636 fill records to perform the actions once. */
9637
9638 bfd_size_type final_size, copy_size, orig_insn_size;
9639 bfd_byte *scratch = NULL;
9640 bfd_byte *dup_contents = NULL;
9641 bfd_size_type orig_size = sec->size;
9642 bfd_vma orig_dot = 0;
9643 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9644 orig dot in physical memory. */
9645 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9646 bfd_vma dup_dot = 0;
9647
9648 text_action *action;
9649
9650 final_size = sec->size;
9651
9652 splay_tree_foreach (relax_info->action_list.tree,
9653 action_remove_bytes_fn, &final_size);
9654 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9655 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9656
9657 /* The dot is the current fill location. */
9658 #if DEBUG
9659 print_action_list (stderr, &relax_info->action_list);
9660 #endif
9661
9662 for (action = action_first (&relax_info->action_list); action;
9663 action = action_next (&relax_info->action_list, action))
9664 {
9665 virtual_action = FALSE;
9666 if (action->offset > orig_dot)
9667 {
9668 orig_dot += orig_dot_copied;
9669 orig_dot_copied = 0;
9670 orig_dot_vo = 0;
9671 /* Out of the virtual world. */
9672 }
9673
9674 if (action->offset > orig_dot)
9675 {
9676 copy_size = action->offset - orig_dot;
9677 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9678 orig_dot += copy_size;
9679 dup_dot += copy_size;
9680 BFD_ASSERT (action->offset == orig_dot);
9681 }
9682 else if (action->offset < orig_dot)
9683 {
9684 if (action->action == ta_fill
9685 && action->offset - action->removed_bytes == orig_dot)
9686 {
9687 /* This is OK because the fill only effects the dup_dot. */
9688 }
9689 else if (action->action == ta_add_literal)
9690 {
9691 /* TBD. Might need to handle this. */
9692 }
9693 }
9694 if (action->offset == orig_dot)
9695 {
9696 if (action->virtual_offset > orig_dot_vo)
9697 {
9698 if (orig_dot_vo == 0)
9699 {
9700 /* Need to copy virtual_offset bytes. Probably four. */
9701 copy_size = action->virtual_offset - orig_dot_vo;
9702 memmove (&dup_contents[dup_dot],
9703 &contents[orig_dot], copy_size);
9704 orig_dot_copied = copy_size;
9705 dup_dot += copy_size;
9706 }
9707 virtual_action = TRUE;
9708 }
9709 else
9710 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9711 }
9712 switch (action->action)
9713 {
9714 case ta_remove_literal:
9715 case ta_remove_insn:
9716 BFD_ASSERT (action->removed_bytes >= 0);
9717 orig_dot += action->removed_bytes;
9718 break;
9719
9720 case ta_narrow_insn:
9721 orig_insn_size = 3;
9722 copy_size = 2;
9723 memmove (scratch, &contents[orig_dot], orig_insn_size);
9724 BFD_ASSERT (action->removed_bytes == 1);
9725 rv = narrow_instruction (scratch, final_size, 0);
9726 BFD_ASSERT (rv);
9727 memmove (&dup_contents[dup_dot], scratch, copy_size);
9728 orig_dot += orig_insn_size;
9729 dup_dot += copy_size;
9730 break;
9731
9732 case ta_fill:
9733 if (action->removed_bytes >= 0)
9734 orig_dot += action->removed_bytes;
9735 else
9736 {
9737 /* Already zeroed in dup_contents. Just bump the
9738 counters. */
9739 dup_dot += (-action->removed_bytes);
9740 }
9741 break;
9742
9743 case ta_none:
9744 BFD_ASSERT (action->removed_bytes == 0);
9745 break;
9746
9747 case ta_convert_longcall:
9748 case ta_remove_longcall:
9749 /* These will be removed or converted before we get here. */
9750 BFD_ASSERT (0);
9751 break;
9752
9753 case ta_widen_insn:
9754 orig_insn_size = 2;
9755 copy_size = 3;
9756 memmove (scratch, &contents[orig_dot], orig_insn_size);
9757 BFD_ASSERT (action->removed_bytes == -1);
9758 rv = widen_instruction (scratch, final_size, 0);
9759 BFD_ASSERT (rv);
9760 memmove (&dup_contents[dup_dot], scratch, copy_size);
9761 orig_dot += orig_insn_size;
9762 dup_dot += copy_size;
9763 break;
9764
9765 case ta_add_literal:
9766 orig_insn_size = 0;
9767 copy_size = 4;
9768 BFD_ASSERT (action->removed_bytes == -4);
9769 /* TBD -- place the literal value here and insert
9770 into the table. */
9771 memset (&dup_contents[dup_dot], 0, 4);
9772 pin_internal_relocs (sec, internal_relocs);
9773 pin_contents (sec, contents);
9774
9775 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9776 relax_info, &internal_relocs, &action->value))
9777 goto error_return;
9778
9779 if (virtual_action)
9780 orig_dot_vo += copy_size;
9781
9782 orig_dot += orig_insn_size;
9783 dup_dot += copy_size;
9784 break;
9785
9786 default:
9787 /* Not implemented yet. */
9788 BFD_ASSERT (0);
9789 break;
9790 }
9791
9792 BFD_ASSERT (dup_dot <= final_size);
9793 BFD_ASSERT (orig_dot <= orig_size);
9794 }
9795
9796 orig_dot += orig_dot_copied;
9797 orig_dot_copied = 0;
9798
9799 if (orig_dot != orig_size)
9800 {
9801 copy_size = orig_size - orig_dot;
9802 BFD_ASSERT (orig_size > orig_dot);
9803 BFD_ASSERT (dup_dot + copy_size == final_size);
9804 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9805 orig_dot += copy_size;
9806 dup_dot += copy_size;
9807 }
9808 BFD_ASSERT (orig_size == orig_dot);
9809 BFD_ASSERT (final_size == dup_dot);
9810
9811 /* Move the dup_contents back. */
9812 if (final_size > orig_size)
9813 {
9814 /* Contents need to be reallocated. Swap the dup_contents into
9815 contents. */
9816 sec->contents = dup_contents;
9817 free (contents);
9818 contents = dup_contents;
9819 pin_contents (sec, contents);
9820 }
9821 else
9822 {
9823 BFD_ASSERT (final_size <= orig_size);
9824 memset (contents, 0, orig_size);
9825 memcpy (contents, dup_contents, final_size);
9826 free (dup_contents);
9827 }
9828 free (scratch);
9829 pin_contents (sec, contents);
9830
9831 if (sec->rawsize == 0)
9832 sec->rawsize = sec->size;
9833 sec->size = final_size;
9834 }
9835
9836 error_return:
9837 release_internal_relocs (sec, internal_relocs);
9838 release_contents (sec, contents);
9839 return ok;
9840 }
9841
9842
9843 static bfd_boolean
9844 translate_section_fixes (asection *sec)
9845 {
9846 xtensa_relax_info *relax_info;
9847 reloc_bfd_fix *r;
9848
9849 relax_info = get_xtensa_relax_info (sec);
9850 if (!relax_info)
9851 return TRUE;
9852
9853 for (r = relax_info->fix_list; r != NULL; r = r->next)
9854 if (!translate_reloc_bfd_fix (r))
9855 return FALSE;
9856
9857 return TRUE;
9858 }
9859
9860
9861 /* Translate a fix given the mapping in the relax info for the target
9862 section. If it has already been translated, no work is required. */
9863
9864 static bfd_boolean
9865 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
9866 {
9867 reloc_bfd_fix new_fix;
9868 asection *sec;
9869 xtensa_relax_info *relax_info;
9870 removed_literal *removed;
9871 bfd_vma new_offset, target_offset;
9872
9873 if (fix->translated)
9874 return TRUE;
9875
9876 sec = fix->target_sec;
9877 target_offset = fix->target_offset;
9878
9879 relax_info = get_xtensa_relax_info (sec);
9880 if (!relax_info)
9881 {
9882 fix->translated = TRUE;
9883 return TRUE;
9884 }
9885
9886 new_fix = *fix;
9887
9888 /* The fix does not need to be translated if the section cannot change. */
9889 if (!relax_info->is_relaxable_literal_section
9890 && !relax_info->is_relaxable_asm_section)
9891 {
9892 fix->translated = TRUE;
9893 return TRUE;
9894 }
9895
9896 /* If the literal has been moved and this relocation was on an
9897 opcode, then the relocation should move to the new literal
9898 location. Otherwise, the relocation should move within the
9899 section. */
9900
9901 removed = FALSE;
9902 if (is_operand_relocation (fix->src_type))
9903 {
9904 /* Check if the original relocation is against a literal being
9905 removed. */
9906 removed = find_removed_literal (&relax_info->removed_list,
9907 target_offset);
9908 }
9909
9910 if (removed)
9911 {
9912 asection *new_sec;
9913
9914 /* The fact that there is still a relocation to this literal indicates
9915 that the literal is being coalesced, not simply removed. */
9916 BFD_ASSERT (removed->to.abfd != NULL);
9917
9918 /* This was moved to some other address (possibly another section). */
9919 new_sec = r_reloc_get_section (&removed->to);
9920 if (new_sec != sec)
9921 {
9922 sec = new_sec;
9923 relax_info = get_xtensa_relax_info (sec);
9924 if (!relax_info ||
9925 (!relax_info->is_relaxable_literal_section
9926 && !relax_info->is_relaxable_asm_section))
9927 {
9928 target_offset = removed->to.target_offset;
9929 new_fix.target_sec = new_sec;
9930 new_fix.target_offset = target_offset;
9931 new_fix.translated = TRUE;
9932 *fix = new_fix;
9933 return TRUE;
9934 }
9935 }
9936 target_offset = removed->to.target_offset;
9937 new_fix.target_sec = new_sec;
9938 }
9939
9940 /* The target address may have been moved within its section. */
9941 new_offset = offset_with_removed_text (&relax_info->action_list,
9942 target_offset);
9943
9944 new_fix.target_offset = new_offset;
9945 new_fix.target_offset = new_offset;
9946 new_fix.translated = TRUE;
9947 *fix = new_fix;
9948 return TRUE;
9949 }
9950
9951
9952 /* Fix up a relocation to take account of removed literals. */
9953
9954 static asection *
9955 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
9956 {
9957 xtensa_relax_info *relax_info;
9958 removed_literal *removed;
9959 bfd_vma target_offset, base_offset;
9960
9961 *new_rel = *orig_rel;
9962
9963 if (!r_reloc_is_defined (orig_rel))
9964 return sec ;
9965
9966 relax_info = get_xtensa_relax_info (sec);
9967 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
9968 || relax_info->is_relaxable_asm_section));
9969
9970 target_offset = orig_rel->target_offset;
9971
9972 removed = FALSE;
9973 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
9974 {
9975 /* Check if the original relocation is against a literal being
9976 removed. */
9977 removed = find_removed_literal (&relax_info->removed_list,
9978 target_offset);
9979 }
9980 if (removed && removed->to.abfd)
9981 {
9982 asection *new_sec;
9983
9984 /* The fact that there is still a relocation to this literal indicates
9985 that the literal is being coalesced, not simply removed. */
9986 BFD_ASSERT (removed->to.abfd != NULL);
9987
9988 /* This was moved to some other address
9989 (possibly in another section). */
9990 *new_rel = removed->to;
9991 new_sec = r_reloc_get_section (new_rel);
9992 if (new_sec != sec)
9993 {
9994 sec = new_sec;
9995 relax_info = get_xtensa_relax_info (sec);
9996 if (!relax_info
9997 || (!relax_info->is_relaxable_literal_section
9998 && !relax_info->is_relaxable_asm_section))
9999 return sec;
10000 }
10001 target_offset = new_rel->target_offset;
10002 }
10003
10004 /* Find the base offset of the reloc symbol, excluding any addend from the
10005 reloc or from the section contents (for a partial_inplace reloc). Then
10006 find the adjusted values of the offsets due to relaxation. The base
10007 offset is needed to determine the change to the reloc's addend; the reloc
10008 addend should not be adjusted due to relaxations located before the base
10009 offset. */
10010
10011 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
10012 if (base_offset <= target_offset)
10013 {
10014 int base_removed = removed_by_actions_map (&relax_info->action_list,
10015 base_offset, FALSE);
10016 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10017 target_offset, FALSE) -
10018 base_removed;
10019
10020 new_rel->target_offset = target_offset - base_removed - addend_removed;
10021 new_rel->rela.r_addend -= addend_removed;
10022 }
10023 else
10024 {
10025 /* Handle a negative addend. The base offset comes first. */
10026 int tgt_removed = removed_by_actions_map (&relax_info->action_list,
10027 target_offset, FALSE);
10028 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10029 base_offset, FALSE) -
10030 tgt_removed;
10031
10032 new_rel->target_offset = target_offset - tgt_removed;
10033 new_rel->rela.r_addend += addend_removed;
10034 }
10035
10036 return sec;
10037 }
10038
10039
10040 /* For dynamic links, there may be a dynamic relocation for each
10041 literal. The number of dynamic relocations must be computed in
10042 size_dynamic_sections, which occurs before relaxation. When a
10043 literal is removed, this function checks if there is a corresponding
10044 dynamic relocation and shrinks the size of the appropriate dynamic
10045 relocation section accordingly. At this point, the contents of the
10046 dynamic relocation sections have not yet been filled in, so there's
10047 nothing else that needs to be done. */
10048
10049 static void
10050 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
10051 bfd *abfd,
10052 asection *input_section,
10053 Elf_Internal_Rela *rel)
10054 {
10055 struct elf_xtensa_link_hash_table *htab;
10056 Elf_Internal_Shdr *symtab_hdr;
10057 struct elf_link_hash_entry **sym_hashes;
10058 unsigned long r_symndx;
10059 int r_type;
10060 struct elf_link_hash_entry *h;
10061 bfd_boolean dynamic_symbol;
10062
10063 htab = elf_xtensa_hash_table (info);
10064 if (htab == NULL)
10065 return;
10066
10067 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10068 sym_hashes = elf_sym_hashes (abfd);
10069
10070 r_type = ELF32_R_TYPE (rel->r_info);
10071 r_symndx = ELF32_R_SYM (rel->r_info);
10072
10073 if (r_symndx < symtab_hdr->sh_info)
10074 h = NULL;
10075 else
10076 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10077
10078 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
10079
10080 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
10081 && (input_section->flags & SEC_ALLOC) != 0
10082 && (dynamic_symbol || bfd_link_pic (info))
10083 && (!h || h->root.type != bfd_link_hash_undefweak
10084 || (dynamic_symbol
10085 && (bfd_link_dll (info) || info->export_dynamic))))
10086 {
10087 asection *srel;
10088 bfd_boolean is_plt = FALSE;
10089
10090 if (dynamic_symbol && r_type == R_XTENSA_PLT)
10091 {
10092 srel = htab->elf.srelplt;
10093 is_plt = TRUE;
10094 }
10095 else
10096 srel = htab->elf.srelgot;
10097
10098 /* Reduce size of the .rela.* section by one reloc. */
10099 BFD_ASSERT (srel != NULL);
10100 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
10101 srel->size -= sizeof (Elf32_External_Rela);
10102
10103 if (is_plt)
10104 {
10105 asection *splt, *sgotplt, *srelgot;
10106 int reloc_index, chunk;
10107
10108 /* Find the PLT reloc index of the entry being removed. This
10109 is computed from the size of ".rela.plt". It is needed to
10110 figure out which PLT chunk to resize. Usually "last index
10111 = size - 1" since the index starts at zero, but in this
10112 context, the size has just been decremented so there's no
10113 need to subtract one. */
10114 reloc_index = srel->size / sizeof (Elf32_External_Rela);
10115
10116 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
10117 splt = elf_xtensa_get_plt_section (info, chunk);
10118 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
10119 BFD_ASSERT (splt != NULL && sgotplt != NULL);
10120
10121 /* Check if an entire PLT chunk has just been eliminated. */
10122 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
10123 {
10124 /* The two magic GOT entries for that chunk can go away. */
10125 srelgot = htab->elf.srelgot;
10126 BFD_ASSERT (srelgot != NULL);
10127 srelgot->reloc_count -= 2;
10128 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
10129 sgotplt->size -= 8;
10130
10131 /* There should be only one entry left (and it will be
10132 removed below). */
10133 BFD_ASSERT (sgotplt->size == 4);
10134 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
10135 }
10136
10137 BFD_ASSERT (sgotplt->size >= 4);
10138 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
10139
10140 sgotplt->size -= 4;
10141 splt->size -= PLT_ENTRY_SIZE;
10142 }
10143 }
10144 }
10145
10146
10147 /* Take an r_rel and move it to another section. This usually
10148 requires extending the interal_relocation array and pinning it. If
10149 the original r_rel is from the same BFD, we can complete this here.
10150 Otherwise, we add a fix record to let the final link fix the
10151 appropriate address. Contents and internal relocations for the
10152 section must be pinned after calling this routine. */
10153
10154 static bfd_boolean
10155 move_literal (bfd *abfd,
10156 struct bfd_link_info *link_info,
10157 asection *sec,
10158 bfd_vma offset,
10159 bfd_byte *contents,
10160 xtensa_relax_info *relax_info,
10161 Elf_Internal_Rela **internal_relocs_p,
10162 const literal_value *lit)
10163 {
10164 Elf_Internal_Rela *new_relocs = NULL;
10165 size_t new_relocs_count = 0;
10166 Elf_Internal_Rela this_rela;
10167 const r_reloc *r_rel;
10168
10169 r_rel = &lit->r_rel;
10170 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
10171
10172 if (r_reloc_is_const (r_rel))
10173 bfd_put_32 (abfd, lit->value, contents + offset);
10174 else
10175 {
10176 int r_type;
10177 unsigned i;
10178 reloc_bfd_fix *fix;
10179 unsigned insert_at;
10180
10181 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
10182
10183 /* This is the difficult case. We have to create a fix up. */
10184 this_rela.r_offset = offset;
10185 this_rela.r_info = ELF32_R_INFO (0, r_type);
10186 this_rela.r_addend =
10187 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
10188 bfd_put_32 (abfd, lit->value, contents + offset);
10189
10190 /* Currently, we cannot move relocations during a relocatable link. */
10191 BFD_ASSERT (!bfd_link_relocatable (link_info));
10192 fix = reloc_bfd_fix_init (sec, offset, r_type,
10193 r_reloc_get_section (r_rel),
10194 r_rel->target_offset + r_rel->virtual_offset,
10195 FALSE);
10196 /* We also need to mark that relocations are needed here. */
10197 sec->flags |= SEC_RELOC;
10198
10199 translate_reloc_bfd_fix (fix);
10200 /* This fix has not yet been translated. */
10201 add_fix (sec, fix);
10202
10203 /* Add the relocation. If we have already allocated our own
10204 space for the relocations and we have room for more, then use
10205 it. Otherwise, allocate new space and move the literals. */
10206 insert_at = sec->reloc_count;
10207 for (i = 0; i < sec->reloc_count; ++i)
10208 {
10209 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
10210 {
10211 insert_at = i;
10212 break;
10213 }
10214 }
10215
10216 if (*internal_relocs_p != relax_info->allocated_relocs
10217 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
10218 {
10219 BFD_ASSERT (relax_info->allocated_relocs == NULL
10220 || sec->reloc_count == relax_info->relocs_count);
10221
10222 if (relax_info->allocated_relocs_count == 0)
10223 new_relocs_count = (sec->reloc_count + 2) * 2;
10224 else
10225 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
10226
10227 new_relocs = (Elf_Internal_Rela *)
10228 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
10229 if (!new_relocs)
10230 return FALSE;
10231
10232 /* We could handle this more quickly by finding the split point. */
10233 if (insert_at != 0)
10234 memcpy (new_relocs, *internal_relocs_p,
10235 insert_at * sizeof (Elf_Internal_Rela));
10236
10237 new_relocs[insert_at] = this_rela;
10238
10239 if (insert_at != sec->reloc_count)
10240 memcpy (new_relocs + insert_at + 1,
10241 (*internal_relocs_p) + insert_at,
10242 (sec->reloc_count - insert_at)
10243 * sizeof (Elf_Internal_Rela));
10244
10245 if (*internal_relocs_p != relax_info->allocated_relocs)
10246 {
10247 /* The first time we re-allocate, we can only free the
10248 old relocs if they were allocated with bfd_malloc.
10249 This is not true when keep_memory is in effect. */
10250 if (!link_info->keep_memory)
10251 free (*internal_relocs_p);
10252 }
10253 else
10254 free (*internal_relocs_p);
10255 relax_info->allocated_relocs = new_relocs;
10256 relax_info->allocated_relocs_count = new_relocs_count;
10257 elf_section_data (sec)->relocs = new_relocs;
10258 sec->reloc_count++;
10259 relax_info->relocs_count = sec->reloc_count;
10260 *internal_relocs_p = new_relocs;
10261 }
10262 else
10263 {
10264 if (insert_at != sec->reloc_count)
10265 {
10266 unsigned idx;
10267 for (idx = sec->reloc_count; idx > insert_at; idx--)
10268 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
10269 }
10270 (*internal_relocs_p)[insert_at] = this_rela;
10271 sec->reloc_count++;
10272 if (relax_info->allocated_relocs)
10273 relax_info->relocs_count = sec->reloc_count;
10274 }
10275 }
10276 return TRUE;
10277 }
10278
10279
10280 /* This is similar to relax_section except that when a target is moved,
10281 we shift addresses up. We also need to modify the size. This
10282 algorithm does NOT allow for relocations into the middle of the
10283 property sections. */
10284
10285 static bfd_boolean
10286 relax_property_section (bfd *abfd,
10287 asection *sec,
10288 struct bfd_link_info *link_info)
10289 {
10290 Elf_Internal_Rela *internal_relocs;
10291 bfd_byte *contents;
10292 unsigned i;
10293 bfd_boolean ok = TRUE;
10294 bfd_boolean is_full_prop_section;
10295 size_t last_zfill_target_offset = 0;
10296 asection *last_zfill_target_sec = NULL;
10297 bfd_size_type sec_size;
10298 bfd_size_type entry_size;
10299
10300 sec_size = bfd_get_section_limit (abfd, sec);
10301 internal_relocs = retrieve_internal_relocs (abfd, sec,
10302 link_info->keep_memory);
10303 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
10304 if (contents == NULL && sec_size != 0)
10305 {
10306 ok = FALSE;
10307 goto error_return;
10308 }
10309
10310 is_full_prop_section = xtensa_is_proptable_section (sec);
10311 if (is_full_prop_section)
10312 entry_size = 12;
10313 else
10314 entry_size = 8;
10315
10316 if (internal_relocs)
10317 {
10318 for (i = 0; i < sec->reloc_count; i++)
10319 {
10320 Elf_Internal_Rela *irel;
10321 xtensa_relax_info *target_relax_info;
10322 unsigned r_type;
10323 asection *target_sec;
10324 literal_value val;
10325 bfd_byte *size_p, *flags_p;
10326
10327 /* Locally change the source address.
10328 Translate the target to the new target address.
10329 If it points to this section and has been removed, MOVE IT.
10330 Also, don't forget to modify the associated SIZE at
10331 (offset + 4). */
10332
10333 irel = &internal_relocs[i];
10334 r_type = ELF32_R_TYPE (irel->r_info);
10335 if (r_type == R_XTENSA_NONE)
10336 continue;
10337
10338 /* Find the literal value. */
10339 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
10340 size_p = &contents[irel->r_offset + 4];
10341 flags_p = NULL;
10342 if (is_full_prop_section)
10343 flags_p = &contents[irel->r_offset + 8];
10344 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
10345
10346 target_sec = r_reloc_get_section (&val.r_rel);
10347 target_relax_info = get_xtensa_relax_info (target_sec);
10348
10349 if (target_relax_info
10350 && (target_relax_info->is_relaxable_literal_section
10351 || target_relax_info->is_relaxable_asm_section ))
10352 {
10353 /* Translate the relocation's destination. */
10354 bfd_vma old_offset = val.r_rel.target_offset;
10355 bfd_vma new_offset;
10356 long old_size, new_size;
10357 int removed_by_old_offset =
10358 removed_by_actions_map (&target_relax_info->action_list,
10359 old_offset, FALSE);
10360 new_offset = old_offset - removed_by_old_offset;
10361
10362 /* Assert that we are not out of bounds. */
10363 old_size = bfd_get_32 (abfd, size_p);
10364 new_size = old_size;
10365
10366 if (old_size == 0)
10367 {
10368 /* Only the first zero-sized unreachable entry is
10369 allowed to expand. In this case the new offset
10370 should be the offset before the fill and the new
10371 size is the expansion size. For other zero-sized
10372 entries the resulting size should be zero with an
10373 offset before or after the fill address depending
10374 on whether the expanding unreachable entry
10375 preceeds it. */
10376 if (last_zfill_target_sec == 0
10377 || last_zfill_target_sec != target_sec
10378 || last_zfill_target_offset != old_offset)
10379 {
10380 bfd_vma new_end_offset = new_offset;
10381
10382 /* Recompute the new_offset, but this time don't
10383 include any fill inserted by relaxation. */
10384 removed_by_old_offset =
10385 removed_by_actions_map (&target_relax_info->action_list,
10386 old_offset, TRUE);
10387 new_offset = old_offset - removed_by_old_offset;
10388
10389 /* If it is not unreachable and we have not yet
10390 seen an unreachable at this address, place it
10391 before the fill address. */
10392 if (flags_p && (bfd_get_32 (abfd, flags_p)
10393 & XTENSA_PROP_UNREACHABLE) != 0)
10394 {
10395 new_size = new_end_offset - new_offset;
10396
10397 last_zfill_target_sec = target_sec;
10398 last_zfill_target_offset = old_offset;
10399 }
10400 }
10401 }
10402 else
10403 {
10404 int removed_by_old_offset_size =
10405 removed_by_actions_map (&target_relax_info->action_list,
10406 old_offset + old_size, TRUE);
10407 new_size -= removed_by_old_offset_size - removed_by_old_offset;
10408 }
10409
10410 if (new_size != old_size)
10411 {
10412 bfd_put_32 (abfd, new_size, size_p);
10413 pin_contents (sec, contents);
10414 }
10415
10416 if (new_offset != old_offset)
10417 {
10418 bfd_vma diff = new_offset - old_offset;
10419 irel->r_addend += diff;
10420 pin_internal_relocs (sec, internal_relocs);
10421 }
10422 }
10423 }
10424 }
10425
10426 /* Combine adjacent property table entries. This is also done in
10427 finish_dynamic_sections() but at that point it's too late to
10428 reclaim the space in the output section, so we do this twice. */
10429
10430 if (internal_relocs && (!bfd_link_relocatable (link_info)
10431 || xtensa_is_littable_section (sec)))
10432 {
10433 Elf_Internal_Rela *last_irel = NULL;
10434 Elf_Internal_Rela *irel, *next_rel, *rel_end;
10435 int removed_bytes = 0;
10436 bfd_vma offset;
10437 flagword predef_flags;
10438
10439 predef_flags = xtensa_get_property_predef_flags (sec);
10440
10441 /* Walk over memory and relocations at the same time.
10442 This REQUIRES that the internal_relocs be sorted by offset. */
10443 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
10444 internal_reloc_compare);
10445
10446 pin_internal_relocs (sec, internal_relocs);
10447 pin_contents (sec, contents);
10448
10449 next_rel = internal_relocs;
10450 rel_end = internal_relocs + sec->reloc_count;
10451
10452 BFD_ASSERT (sec->size % entry_size == 0);
10453
10454 for (offset = 0; offset < sec->size; offset += entry_size)
10455 {
10456 Elf_Internal_Rela *offset_rel, *extra_rel;
10457 bfd_vma bytes_to_remove, size, actual_offset;
10458 bfd_boolean remove_this_rel;
10459 flagword flags;
10460
10461 /* Find the first relocation for the entry at the current offset.
10462 Adjust the offsets of any extra relocations for the previous
10463 entry. */
10464 offset_rel = NULL;
10465 if (next_rel)
10466 {
10467 for (irel = next_rel; irel < rel_end; irel++)
10468 {
10469 if ((irel->r_offset == offset
10470 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10471 || irel->r_offset > offset)
10472 {
10473 offset_rel = irel;
10474 break;
10475 }
10476 irel->r_offset -= removed_bytes;
10477 }
10478 }
10479
10480 /* Find the next relocation (if there are any left). */
10481 extra_rel = NULL;
10482 if (offset_rel)
10483 {
10484 for (irel = offset_rel + 1; irel < rel_end; irel++)
10485 {
10486 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10487 {
10488 extra_rel = irel;
10489 break;
10490 }
10491 }
10492 }
10493
10494 /* Check if there are relocations on the current entry. There
10495 should usually be a relocation on the offset field. If there
10496 are relocations on the size or flags, then we can't optimize
10497 this entry. Also, find the next relocation to examine on the
10498 next iteration. */
10499 if (offset_rel)
10500 {
10501 if (offset_rel->r_offset >= offset + entry_size)
10502 {
10503 next_rel = offset_rel;
10504 /* There are no relocations on the current entry, but we
10505 might still be able to remove it if the size is zero. */
10506 offset_rel = NULL;
10507 }
10508 else if (offset_rel->r_offset > offset
10509 || (extra_rel
10510 && extra_rel->r_offset < offset + entry_size))
10511 {
10512 /* There is a relocation on the size or flags, so we can't
10513 do anything with this entry. Continue with the next. */
10514 next_rel = offset_rel;
10515 continue;
10516 }
10517 else
10518 {
10519 BFD_ASSERT (offset_rel->r_offset == offset);
10520 offset_rel->r_offset -= removed_bytes;
10521 next_rel = offset_rel + 1;
10522 }
10523 }
10524 else
10525 next_rel = NULL;
10526
10527 remove_this_rel = FALSE;
10528 bytes_to_remove = 0;
10529 actual_offset = offset - removed_bytes;
10530 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
10531
10532 if (is_full_prop_section)
10533 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
10534 else
10535 flags = predef_flags;
10536
10537 if (size == 0
10538 && (flags & XTENSA_PROP_ALIGN) == 0
10539 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
10540 {
10541 /* Always remove entries with zero size and no alignment. */
10542 bytes_to_remove = entry_size;
10543 if (offset_rel)
10544 remove_this_rel = TRUE;
10545 }
10546 else if (offset_rel
10547 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
10548 {
10549 if (last_irel)
10550 {
10551 flagword old_flags;
10552 bfd_vma old_size =
10553 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10554 bfd_vma old_address =
10555 (last_irel->r_addend
10556 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10557 bfd_vma new_address =
10558 (offset_rel->r_addend
10559 + bfd_get_32 (abfd, &contents[actual_offset]));
10560 if (is_full_prop_section)
10561 old_flags = bfd_get_32
10562 (abfd, &contents[last_irel->r_offset + 8]);
10563 else
10564 old_flags = predef_flags;
10565
10566 if ((ELF32_R_SYM (offset_rel->r_info)
10567 == ELF32_R_SYM (last_irel->r_info))
10568 && old_address + old_size == new_address
10569 && old_flags == flags
10570 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10571 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
10572 {
10573 /* Fix the old size. */
10574 bfd_put_32 (abfd, old_size + size,
10575 &contents[last_irel->r_offset + 4]);
10576 bytes_to_remove = entry_size;
10577 remove_this_rel = TRUE;
10578 }
10579 else
10580 last_irel = offset_rel;
10581 }
10582 else
10583 last_irel = offset_rel;
10584 }
10585
10586 if (remove_this_rel)
10587 {
10588 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
10589 offset_rel->r_offset = 0;
10590 }
10591
10592 if (bytes_to_remove != 0)
10593 {
10594 removed_bytes += bytes_to_remove;
10595 if (offset + bytes_to_remove < sec->size)
10596 memmove (&contents[actual_offset],
10597 &contents[actual_offset + bytes_to_remove],
10598 sec->size - offset - bytes_to_remove);
10599 }
10600 }
10601
10602 if (removed_bytes)
10603 {
10604 /* Fix up any extra relocations on the last entry. */
10605 for (irel = next_rel; irel < rel_end; irel++)
10606 irel->r_offset -= removed_bytes;
10607
10608 /* Clear the removed bytes. */
10609 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
10610
10611 if (sec->rawsize == 0)
10612 sec->rawsize = sec->size;
10613 sec->size -= removed_bytes;
10614
10615 if (xtensa_is_littable_section (sec))
10616 {
10617 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10618 if (sgotloc)
10619 sgotloc->size -= removed_bytes;
10620 }
10621 }
10622 }
10623
10624 error_return:
10625 release_internal_relocs (sec, internal_relocs);
10626 release_contents (sec, contents);
10627 return ok;
10628 }
10629
10630 \f
10631 /* Third relaxation pass. */
10632
10633 /* Change symbol values to account for removed literals. */
10634
10635 bfd_boolean
10636 relax_section_symbols (bfd *abfd, asection *sec)
10637 {
10638 xtensa_relax_info *relax_info;
10639 unsigned int sec_shndx;
10640 Elf_Internal_Shdr *symtab_hdr;
10641 Elf_Internal_Sym *isymbuf;
10642 unsigned i, num_syms, num_locals;
10643
10644 relax_info = get_xtensa_relax_info (sec);
10645 BFD_ASSERT (relax_info);
10646
10647 if (!relax_info->is_relaxable_literal_section
10648 && !relax_info->is_relaxable_asm_section)
10649 return TRUE;
10650
10651 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10652
10653 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10654 isymbuf = retrieve_local_syms (abfd);
10655
10656 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10657 num_locals = symtab_hdr->sh_info;
10658
10659 /* Adjust the local symbols defined in this section. */
10660 for (i = 0; i < num_locals; i++)
10661 {
10662 Elf_Internal_Sym *isym = &isymbuf[i];
10663
10664 if (isym->st_shndx == sec_shndx)
10665 {
10666 bfd_vma orig_addr = isym->st_value;
10667 int removed = removed_by_actions_map (&relax_info->action_list,
10668 orig_addr, FALSE);
10669
10670 isym->st_value -= removed;
10671 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10672 isym->st_size -=
10673 removed_by_actions_map (&relax_info->action_list,
10674 orig_addr + isym->st_size, FALSE) -
10675 removed;
10676 }
10677 }
10678
10679 /* Now adjust the global symbols defined in this section. */
10680 for (i = 0; i < (num_syms - num_locals); i++)
10681 {
10682 struct elf_link_hash_entry *sym_hash;
10683
10684 sym_hash = elf_sym_hashes (abfd)[i];
10685
10686 if (sym_hash->root.type == bfd_link_hash_warning)
10687 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10688
10689 if ((sym_hash->root.type == bfd_link_hash_defined
10690 || sym_hash->root.type == bfd_link_hash_defweak)
10691 && sym_hash->root.u.def.section == sec)
10692 {
10693 bfd_vma orig_addr = sym_hash->root.u.def.value;
10694 int removed = removed_by_actions_map (&relax_info->action_list,
10695 orig_addr, FALSE);
10696
10697 sym_hash->root.u.def.value -= removed;
10698
10699 if (sym_hash->type == STT_FUNC)
10700 sym_hash->size -=
10701 removed_by_actions_map (&relax_info->action_list,
10702 orig_addr + sym_hash->size, FALSE) -
10703 removed;
10704 }
10705 }
10706
10707 return TRUE;
10708 }
10709
10710 \f
10711 /* "Fix" handling functions, called while performing relocations. */
10712
10713 static bfd_boolean
10714 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10715 bfd *input_bfd,
10716 asection *input_section,
10717 bfd_byte *contents)
10718 {
10719 r_reloc r_rel;
10720 asection *sec, *old_sec;
10721 bfd_vma old_offset;
10722 int r_type = ELF32_R_TYPE (rel->r_info);
10723 reloc_bfd_fix *fix;
10724
10725 if (r_type == R_XTENSA_NONE)
10726 return TRUE;
10727
10728 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10729 if (!fix)
10730 return TRUE;
10731
10732 r_reloc_init (&r_rel, input_bfd, rel, contents,
10733 bfd_get_section_limit (input_bfd, input_section));
10734 old_sec = r_reloc_get_section (&r_rel);
10735 old_offset = r_rel.target_offset;
10736
10737 if (!old_sec || !r_reloc_is_defined (&r_rel))
10738 {
10739 if (r_type != R_XTENSA_ASM_EXPAND)
10740 {
10741 _bfd_error_handler
10742 /* xgettext:c-format */
10743 (_("%pB(%pA+%#" PRIx64 "): unexpected fix for %s relocation"),
10744 input_bfd, input_section, (uint64_t) rel->r_offset,
10745 elf_howto_table[r_type].name);
10746 return FALSE;
10747 }
10748 /* Leave it be. Resolution will happen in a later stage. */
10749 }
10750 else
10751 {
10752 sec = fix->target_sec;
10753 rel->r_addend += ((sec->output_offset + fix->target_offset)
10754 - (old_sec->output_offset + old_offset));
10755 }
10756 return TRUE;
10757 }
10758
10759
10760 static void
10761 do_fix_for_final_link (Elf_Internal_Rela *rel,
10762 bfd *input_bfd,
10763 asection *input_section,
10764 bfd_byte *contents,
10765 bfd_vma *relocationp)
10766 {
10767 asection *sec;
10768 int r_type = ELF32_R_TYPE (rel->r_info);
10769 reloc_bfd_fix *fix;
10770 bfd_vma fixup_diff;
10771
10772 if (r_type == R_XTENSA_NONE)
10773 return;
10774
10775 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10776 if (!fix)
10777 return;
10778
10779 sec = fix->target_sec;
10780
10781 fixup_diff = rel->r_addend;
10782 if (elf_howto_table[fix->src_type].partial_inplace)
10783 {
10784 bfd_vma inplace_val;
10785 BFD_ASSERT (fix->src_offset
10786 < bfd_get_section_limit (input_bfd, input_section));
10787 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10788 fixup_diff += inplace_val;
10789 }
10790
10791 *relocationp = (sec->output_section->vma
10792 + sec->output_offset
10793 + fix->target_offset - fixup_diff);
10794 }
10795
10796 \f
10797 /* Miscellaneous utility functions.... */
10798
10799 static asection *
10800 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
10801 {
10802 bfd *dynobj;
10803 char plt_name[17];
10804
10805 if (chunk == 0)
10806 return elf_hash_table (info)->splt;
10807
10808 dynobj = elf_hash_table (info)->dynobj;
10809 sprintf (plt_name, ".plt.%u", chunk);
10810 return bfd_get_linker_section (dynobj, plt_name);
10811 }
10812
10813
10814 static asection *
10815 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
10816 {
10817 bfd *dynobj;
10818 char got_name[21];
10819
10820 if (chunk == 0)
10821 return elf_hash_table (info)->sgotplt;
10822
10823 dynobj = elf_hash_table (info)->dynobj;
10824 sprintf (got_name, ".got.plt.%u", chunk);
10825 return bfd_get_linker_section (dynobj, got_name);
10826 }
10827
10828
10829 /* Get the input section for a given symbol index.
10830 If the symbol is:
10831 . a section symbol, return the section;
10832 . a common symbol, return the common section;
10833 . an undefined symbol, return the undefined section;
10834 . an indirect symbol, follow the links;
10835 . an absolute value, return the absolute section. */
10836
10837 static asection *
10838 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
10839 {
10840 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10841 asection *target_sec = NULL;
10842 if (r_symndx < symtab_hdr->sh_info)
10843 {
10844 Elf_Internal_Sym *isymbuf;
10845 unsigned int section_index;
10846
10847 isymbuf = retrieve_local_syms (abfd);
10848 section_index = isymbuf[r_symndx].st_shndx;
10849
10850 if (section_index == SHN_UNDEF)
10851 target_sec = bfd_und_section_ptr;
10852 else if (section_index == SHN_ABS)
10853 target_sec = bfd_abs_section_ptr;
10854 else if (section_index == SHN_COMMON)
10855 target_sec = bfd_com_section_ptr;
10856 else
10857 target_sec = bfd_section_from_elf_index (abfd, section_index);
10858 }
10859 else
10860 {
10861 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10862 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10863
10864 while (h->root.type == bfd_link_hash_indirect
10865 || h->root.type == bfd_link_hash_warning)
10866 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10867
10868 switch (h->root.type)
10869 {
10870 case bfd_link_hash_defined:
10871 case bfd_link_hash_defweak:
10872 target_sec = h->root.u.def.section;
10873 break;
10874 case bfd_link_hash_common:
10875 target_sec = bfd_com_section_ptr;
10876 break;
10877 case bfd_link_hash_undefined:
10878 case bfd_link_hash_undefweak:
10879 target_sec = bfd_und_section_ptr;
10880 break;
10881 default: /* New indirect warning. */
10882 target_sec = bfd_und_section_ptr;
10883 break;
10884 }
10885 }
10886 return target_sec;
10887 }
10888
10889
10890 static struct elf_link_hash_entry *
10891 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
10892 {
10893 unsigned long indx;
10894 struct elf_link_hash_entry *h;
10895 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10896
10897 if (r_symndx < symtab_hdr->sh_info)
10898 return NULL;
10899
10900 indx = r_symndx - symtab_hdr->sh_info;
10901 h = elf_sym_hashes (abfd)[indx];
10902 while (h->root.type == bfd_link_hash_indirect
10903 || h->root.type == bfd_link_hash_warning)
10904 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10905 return h;
10906 }
10907
10908
10909 /* Get the section-relative offset for a symbol number. */
10910
10911 static bfd_vma
10912 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
10913 {
10914 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10915 bfd_vma offset = 0;
10916
10917 if (r_symndx < symtab_hdr->sh_info)
10918 {
10919 Elf_Internal_Sym *isymbuf;
10920 isymbuf = retrieve_local_syms (abfd);
10921 offset = isymbuf[r_symndx].st_value;
10922 }
10923 else
10924 {
10925 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10926 struct elf_link_hash_entry *h =
10927 elf_sym_hashes (abfd)[indx];
10928
10929 while (h->root.type == bfd_link_hash_indirect
10930 || h->root.type == bfd_link_hash_warning)
10931 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10932 if (h->root.type == bfd_link_hash_defined
10933 || h->root.type == bfd_link_hash_defweak)
10934 offset = h->root.u.def.value;
10935 }
10936 return offset;
10937 }
10938
10939
10940 static bfd_boolean
10941 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
10942 {
10943 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10944 struct elf_link_hash_entry *h;
10945
10946 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10947 if (h && h->root.type == bfd_link_hash_defweak)
10948 return TRUE;
10949 return FALSE;
10950 }
10951
10952
10953 static bfd_boolean
10954 pcrel_reloc_fits (xtensa_opcode opc,
10955 int opnd,
10956 bfd_vma self_address,
10957 bfd_vma dest_address)
10958 {
10959 xtensa_isa isa = xtensa_default_isa;
10960 uint32 valp = dest_address;
10961 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10962 || xtensa_operand_encode (isa, opc, opnd, &valp))
10963 return FALSE;
10964 return TRUE;
10965 }
10966
10967
10968 static bfd_boolean
10969 xtensa_is_property_section (asection *sec)
10970 {
10971 if (xtensa_is_insntable_section (sec)
10972 || xtensa_is_littable_section (sec)
10973 || xtensa_is_proptable_section (sec))
10974 return TRUE;
10975
10976 return FALSE;
10977 }
10978
10979
10980 static bfd_boolean
10981 xtensa_is_insntable_section (asection *sec)
10982 {
10983 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
10984 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
10985 return TRUE;
10986
10987 return FALSE;
10988 }
10989
10990
10991 static bfd_boolean
10992 xtensa_is_littable_section (asection *sec)
10993 {
10994 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
10995 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
10996 return TRUE;
10997
10998 return FALSE;
10999 }
11000
11001
11002 static bfd_boolean
11003 xtensa_is_proptable_section (asection *sec)
11004 {
11005 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
11006 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
11007 return TRUE;
11008
11009 return FALSE;
11010 }
11011
11012
11013 static int
11014 internal_reloc_compare (const void *ap, const void *bp)
11015 {
11016 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11017 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11018
11019 if (a->r_offset != b->r_offset)
11020 return (a->r_offset - b->r_offset);
11021
11022 /* We don't need to sort on these criteria for correctness,
11023 but enforcing a more strict ordering prevents unstable qsort
11024 from behaving differently with different implementations.
11025 Without the code below we get correct but different results
11026 on Solaris 2.7 and 2.8. We would like to always produce the
11027 same results no matter the host. */
11028
11029 if (a->r_info != b->r_info)
11030 return (a->r_info - b->r_info);
11031
11032 return (a->r_addend - b->r_addend);
11033 }
11034
11035
11036 static int
11037 internal_reloc_matches (const void *ap, const void *bp)
11038 {
11039 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11040 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11041
11042 /* Check if one entry overlaps with the other; this shouldn't happen
11043 except when searching for a match. */
11044 return (a->r_offset - b->r_offset);
11045 }
11046
11047
11048 /* Predicate function used to look up a section in a particular group. */
11049
11050 static bfd_boolean
11051 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
11052 {
11053 const char *gname = inf;
11054 const char *group_name = elf_group_name (sec);
11055
11056 return (group_name == gname
11057 || (group_name != NULL
11058 && gname != NULL
11059 && strcmp (group_name, gname) == 0));
11060 }
11061
11062
11063 static char *
11064 xtensa_add_names (const char *base, const char *suffix)
11065 {
11066 if (suffix)
11067 {
11068 size_t base_len = strlen (base);
11069 size_t suffix_len = strlen (suffix);
11070 char *str = bfd_malloc (base_len + suffix_len + 1);
11071
11072 memcpy (str, base, base_len);
11073 memcpy (str + base_len, suffix, suffix_len + 1);
11074 return str;
11075 }
11076 else
11077 {
11078 return strdup (base);
11079 }
11080 }
11081
11082 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
11083
11084 static char *
11085 xtensa_property_section_name (asection *sec, const char *base_name,
11086 bfd_boolean separate_sections)
11087 {
11088 const char *suffix, *group_name;
11089 char *prop_sec_name;
11090
11091 group_name = elf_group_name (sec);
11092 if (group_name)
11093 {
11094 suffix = strrchr (sec->name, '.');
11095 if (suffix == sec->name)
11096 suffix = 0;
11097 prop_sec_name = xtensa_add_names (base_name, suffix);
11098 }
11099 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
11100 {
11101 char *linkonce_kind = 0;
11102
11103 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
11104 linkonce_kind = "x.";
11105 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
11106 linkonce_kind = "p.";
11107 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
11108 linkonce_kind = "prop.";
11109 else
11110 abort ();
11111
11112 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
11113 + strlen (linkonce_kind) + 1);
11114 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
11115 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
11116
11117 suffix = sec->name + linkonce_len;
11118 /* For backward compatibility, replace "t." instead of inserting
11119 the new linkonce_kind (but not for "prop" sections). */
11120 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
11121 suffix += 2;
11122 strcat (prop_sec_name + linkonce_len, suffix);
11123 }
11124 else
11125 {
11126 prop_sec_name = xtensa_add_names (base_name,
11127 separate_sections ? sec->name : NULL);
11128 }
11129
11130 return prop_sec_name;
11131 }
11132
11133
11134 static asection *
11135 xtensa_get_separate_property_section (asection *sec, const char *base_name,
11136 bfd_boolean separate_section)
11137 {
11138 char *prop_sec_name;
11139 asection *prop_sec;
11140
11141 prop_sec_name = xtensa_property_section_name (sec, base_name,
11142 separate_section);
11143 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11144 match_section_group,
11145 (void *) elf_group_name (sec));
11146 free (prop_sec_name);
11147 return prop_sec;
11148 }
11149
11150 static asection *
11151 xtensa_get_property_section (asection *sec, const char *base_name)
11152 {
11153 asection *prop_sec;
11154
11155 /* Try individual property section first. */
11156 prop_sec = xtensa_get_separate_property_section (sec, base_name, TRUE);
11157
11158 /* Refer to a common property section if individual is not present. */
11159 if (!prop_sec)
11160 prop_sec = xtensa_get_separate_property_section (sec, base_name, FALSE);
11161
11162 return prop_sec;
11163 }
11164
11165
11166 asection *
11167 xtensa_make_property_section (asection *sec, const char *base_name)
11168 {
11169 char *prop_sec_name;
11170 asection *prop_sec;
11171
11172 /* Check if the section already exists. */
11173 prop_sec_name = xtensa_property_section_name (sec, base_name,
11174 elf32xtensa_separate_props);
11175 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11176 match_section_group,
11177 (void *) elf_group_name (sec));
11178 /* If not, create it. */
11179 if (! prop_sec)
11180 {
11181 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
11182 flags |= (bfd_get_section_flags (sec->owner, sec)
11183 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
11184
11185 prop_sec = bfd_make_section_anyway_with_flags
11186 (sec->owner, strdup (prop_sec_name), flags);
11187 if (! prop_sec)
11188 return 0;
11189
11190 elf_group_name (prop_sec) = elf_group_name (sec);
11191 }
11192
11193 free (prop_sec_name);
11194 return prop_sec;
11195 }
11196
11197
11198 flagword
11199 xtensa_get_property_predef_flags (asection *sec)
11200 {
11201 if (xtensa_is_insntable_section (sec))
11202 return (XTENSA_PROP_INSN
11203 | XTENSA_PROP_NO_TRANSFORM
11204 | XTENSA_PROP_INSN_NO_REORDER);
11205
11206 if (xtensa_is_littable_section (sec))
11207 return (XTENSA_PROP_LITERAL
11208 | XTENSA_PROP_NO_TRANSFORM
11209 | XTENSA_PROP_INSN_NO_REORDER);
11210
11211 return 0;
11212 }
11213
11214 \f
11215 /* Other functions called directly by the linker. */
11216
11217 bfd_boolean
11218 xtensa_callback_required_dependence (bfd *abfd,
11219 asection *sec,
11220 struct bfd_link_info *link_info,
11221 deps_callback_t callback,
11222 void *closure)
11223 {
11224 Elf_Internal_Rela *internal_relocs;
11225 bfd_byte *contents;
11226 unsigned i;
11227 bfd_boolean ok = TRUE;
11228 bfd_size_type sec_size;
11229
11230 sec_size = bfd_get_section_limit (abfd, sec);
11231
11232 /* ".plt*" sections have no explicit relocations but they contain L32R
11233 instructions that reference the corresponding ".got.plt*" sections. */
11234 if ((sec->flags & SEC_LINKER_CREATED) != 0
11235 && CONST_STRNEQ (sec->name, ".plt"))
11236 {
11237 asection *sgotplt;
11238
11239 /* Find the corresponding ".got.plt*" section. */
11240 if (sec->name[4] == '\0')
11241 sgotplt = elf_hash_table (link_info)->sgotplt;
11242 else
11243 {
11244 char got_name[14];
11245 int chunk = 0;
11246
11247 BFD_ASSERT (sec->name[4] == '.');
11248 chunk = strtol (&sec->name[5], NULL, 10);
11249
11250 sprintf (got_name, ".got.plt.%u", chunk);
11251 sgotplt = bfd_get_linker_section (sec->owner, got_name);
11252 }
11253 BFD_ASSERT (sgotplt);
11254
11255 /* Assume worst-case offsets: L32R at the very end of the ".plt"
11256 section referencing a literal at the very beginning of
11257 ".got.plt". This is very close to the real dependence, anyway. */
11258 (*callback) (sec, sec_size, sgotplt, 0, closure);
11259 }
11260
11261 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
11262 when building uclibc, which runs "ld -b binary /dev/null". */
11263 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11264 return ok;
11265
11266 internal_relocs = retrieve_internal_relocs (abfd, sec,
11267 link_info->keep_memory);
11268 if (internal_relocs == NULL
11269 || sec->reloc_count == 0)
11270 return ok;
11271
11272 /* Cache the contents for the duration of this scan. */
11273 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
11274 if (contents == NULL && sec_size != 0)
11275 {
11276 ok = FALSE;
11277 goto error_return;
11278 }
11279
11280 if (!xtensa_default_isa)
11281 xtensa_default_isa = xtensa_isa_init (0, 0);
11282
11283 for (i = 0; i < sec->reloc_count; i++)
11284 {
11285 Elf_Internal_Rela *irel = &internal_relocs[i];
11286 if (is_l32r_relocation (abfd, sec, contents, irel))
11287 {
11288 r_reloc l32r_rel;
11289 asection *target_sec;
11290 bfd_vma target_offset;
11291
11292 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
11293 target_sec = NULL;
11294 target_offset = 0;
11295 /* L32Rs must be local to the input file. */
11296 if (r_reloc_is_defined (&l32r_rel))
11297 {
11298 target_sec = r_reloc_get_section (&l32r_rel);
11299 target_offset = l32r_rel.target_offset;
11300 }
11301 (*callback) (sec, irel->r_offset, target_sec, target_offset,
11302 closure);
11303 }
11304 }
11305
11306 error_return:
11307 release_internal_relocs (sec, internal_relocs);
11308 release_contents (sec, contents);
11309 return ok;
11310 }
11311
11312 /* The default literal sections should always be marked as "code" (i.e.,
11313 SHF_EXECINSTR). This is particularly important for the Linux kernel
11314 module loader so that the literals are not placed after the text. */
11315 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
11316 {
11317 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11318 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11319 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11320 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
11321 { NULL, 0, 0, 0, 0 }
11322 };
11323 \f
11324 #define ELF_TARGET_ID XTENSA_ELF_DATA
11325 #ifndef ELF_ARCH
11326 #define TARGET_LITTLE_SYM xtensa_elf32_le_vec
11327 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
11328 #define TARGET_BIG_SYM xtensa_elf32_be_vec
11329 #define TARGET_BIG_NAME "elf32-xtensa-be"
11330 #define ELF_ARCH bfd_arch_xtensa
11331
11332 #define ELF_MACHINE_CODE EM_XTENSA
11333 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
11334
11335 #define ELF_MAXPAGESIZE 0x1000
11336 #endif /* ELF_ARCH */
11337
11338 #define elf_backend_can_gc_sections 1
11339 #define elf_backend_can_refcount 1
11340 #define elf_backend_plt_readonly 1
11341 #define elf_backend_got_header_size 4
11342 #define elf_backend_want_dynbss 0
11343 #define elf_backend_want_got_plt 1
11344 #define elf_backend_dtrel_excludes_plt 1
11345
11346 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
11347
11348 #define bfd_elf32_mkobject elf_xtensa_mkobject
11349
11350 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
11351 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
11352 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
11353 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
11354 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
11355 #define bfd_elf32_bfd_reloc_name_lookup \
11356 elf_xtensa_reloc_name_lookup
11357 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
11358 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
11359
11360 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
11361 #define elf_backend_check_relocs elf_xtensa_check_relocs
11362 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
11363 #define elf_backend_discard_info elf_xtensa_discard_info
11364 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
11365 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
11366 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
11367 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
11368 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
11369 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
11370 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
11371 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
11372 #define elf_backend_object_p elf_xtensa_object_p
11373 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
11374 #define elf_backend_relocate_section elf_xtensa_relocate_section
11375 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
11376 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
11377 #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
11378 #define elf_backend_special_sections elf_xtensa_special_sections
11379 #define elf_backend_action_discarded elf_xtensa_action_discarded
11380 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
11381
11382 #include "elf32-target.h"