]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-hppa.c
PR 5146
[thirdparty/binutils-gdb.git] / bfd / elf64-hppa.c
1 /* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/hppa.h"
27 #include "libhppa.h"
28 #include "elf64-hppa.h"
29
30 /* This is the code recommended in the autoconf documentation, almost
31 verbatim. */
32 #ifndef __GNUC__
33 # if HAVE_ALLOCA_H
34 # include <alloca.h>
35 # else
36 # ifdef _AIX
37 /* Indented so that pre-ansi C compilers will ignore it, rather than
38 choke on it. Some versions of AIX require this to be the first
39 thing in the file. */
40 #pragma alloca
41 # else
42 # ifndef alloca /* predefined by HP cc +Olibcalls */
43 # if !defined (__STDC__) && !defined (__hpux)
44 extern char *alloca ();
45 # else
46 extern void *alloca ();
47 # endif /* __STDC__, __hpux */
48 # endif /* alloca */
49 # endif /* _AIX */
50 # endif /* HAVE_ALLOCA_H */
51 #endif /* __GNUC__ */
52
53
54 #define ARCH_SIZE 64
55
56 #define PLT_ENTRY_SIZE 0x10
57 #define DLT_ENTRY_SIZE 0x8
58 #define OPD_ENTRY_SIZE 0x20
59
60 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
61
62 /* The stub is supposed to load the target address and target's DP
63 value out of the PLT, then do an external branch to the target
64 address.
65
66 LDD PLTOFF(%r27),%r1
67 BVE (%r1)
68 LDD PLTOFF+8(%r27),%r27
69
70 Note that we must use the LDD with a 14 bit displacement, not the one
71 with a 5 bit displacement. */
72 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
73 0x53, 0x7b, 0x00, 0x00 };
74
75 struct elf64_hppa_dyn_hash_entry
76 {
77 struct bfd_hash_entry root;
78
79 /* Offsets for this symbol in various linker sections. */
80 bfd_vma dlt_offset;
81 bfd_vma plt_offset;
82 bfd_vma opd_offset;
83 bfd_vma stub_offset;
84
85 /* The symbol table entry, if any, that this was derived from. */
86 struct elf_link_hash_entry *h;
87
88 /* The index of the (possibly local) symbol in the input bfd and its
89 associated BFD. Needed so that we can have relocs against local
90 symbols in shared libraries. */
91 long sym_indx;
92 bfd *owner;
93
94 /* Dynamic symbols may need to have two different values. One for
95 the dynamic symbol table, one for the normal symbol table.
96
97 In such cases we store the symbol's real value and section
98 index here so we can restore the real value before we write
99 the normal symbol table. */
100 bfd_vma st_value;
101 int st_shndx;
102
103 /* Used to count non-got, non-plt relocations for delayed sizing
104 of relocation sections. */
105 struct elf64_hppa_dyn_reloc_entry
106 {
107 /* Next relocation in the chain. */
108 struct elf64_hppa_dyn_reloc_entry *next;
109
110 /* The type of the relocation. */
111 int type;
112
113 /* The input section of the relocation. */
114 asection *sec;
115
116 /* The index of the section symbol for the input section of
117 the relocation. Only needed when building shared libraries. */
118 int sec_symndx;
119
120 /* The offset within the input section of the relocation. */
121 bfd_vma offset;
122
123 /* The addend for the relocation. */
124 bfd_vma addend;
125
126 } *reloc_entries;
127
128 /* Nonzero if this symbol needs an entry in one of the linker
129 sections. */
130 unsigned want_dlt;
131 unsigned want_plt;
132 unsigned want_opd;
133 unsigned want_stub;
134 };
135
136 struct elf64_hppa_dyn_hash_table
137 {
138 struct bfd_hash_table root;
139 };
140
141 struct elf64_hppa_link_hash_table
142 {
143 struct elf_link_hash_table root;
144
145 /* Shortcuts to get to the various linker defined sections. */
146 asection *dlt_sec;
147 asection *dlt_rel_sec;
148 asection *plt_sec;
149 asection *plt_rel_sec;
150 asection *opd_sec;
151 asection *opd_rel_sec;
152 asection *other_rel_sec;
153
154 /* Offset of __gp within .plt section. When the PLT gets large we want
155 to slide __gp into the PLT section so that we can continue to use
156 single DP relative instructions to load values out of the PLT. */
157 bfd_vma gp_offset;
158
159 /* Note this is not strictly correct. We should create a stub section for
160 each input section with calls. The stub section should be placed before
161 the section with the call. */
162 asection *stub_sec;
163
164 bfd_vma text_segment_base;
165 bfd_vma data_segment_base;
166
167 struct elf64_hppa_dyn_hash_table dyn_hash_table;
168
169 /* We build tables to map from an input section back to its
170 symbol index. This is the BFD for which we currently have
171 a map. */
172 bfd *section_syms_bfd;
173
174 /* Array of symbol numbers for each input section attached to the
175 current BFD. */
176 int *section_syms;
177 };
178
179 #define elf64_hppa_hash_table(p) \
180 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
181
182 typedef struct bfd_hash_entry *(*new_hash_entry_func)
183 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
184
185 static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
186 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
187 const char *string));
188 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
189 PARAMS ((bfd *abfd));
190 static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
191 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
192 bfd_boolean create, bfd_boolean copy));
193 static void elf64_hppa_dyn_hash_traverse
194 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
195 bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
196 PTR info));
197
198 static const char *get_dyn_name
199 PARAMS ((bfd *, struct elf_link_hash_entry *,
200 const Elf_Internal_Rela *, char **, size_t *));
201
202 /* This must follow the definitions of the various derived linker
203 hash tables and shared functions. */
204 #include "elf-hppa.h"
205
206 static bfd_boolean elf64_hppa_object_p
207 PARAMS ((bfd *));
208
209 static void elf64_hppa_post_process_headers
210 PARAMS ((bfd *, struct bfd_link_info *));
211
212 static bfd_boolean elf64_hppa_create_dynamic_sections
213 PARAMS ((bfd *, struct bfd_link_info *));
214
215 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
216 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
217
218 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
219 PARAMS ((struct elf_link_hash_entry *, PTR));
220
221 static bfd_boolean elf64_hppa_size_dynamic_sections
222 PARAMS ((bfd *, struct bfd_link_info *));
223
224 static bfd_boolean elf64_hppa_link_output_symbol_hook
225 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
226 asection *, struct elf_link_hash_entry *));
227
228 static bfd_boolean elf64_hppa_finish_dynamic_symbol
229 PARAMS ((bfd *, struct bfd_link_info *,
230 struct elf_link_hash_entry *, Elf_Internal_Sym *));
231
232 static enum elf_reloc_type_class elf64_hppa_reloc_type_class
233 PARAMS ((const Elf_Internal_Rela *));
234
235 static bfd_boolean elf64_hppa_finish_dynamic_sections
236 PARAMS ((bfd *, struct bfd_link_info *));
237
238 static bfd_boolean elf64_hppa_check_relocs
239 PARAMS ((bfd *, struct bfd_link_info *,
240 asection *, const Elf_Internal_Rela *));
241
242 static bfd_boolean elf64_hppa_dynamic_symbol_p
243 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
244
245 static bfd_boolean elf64_hppa_mark_exported_functions
246 PARAMS ((struct elf_link_hash_entry *, PTR));
247
248 static bfd_boolean elf64_hppa_finalize_opd
249 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
250
251 static bfd_boolean elf64_hppa_finalize_dlt
252 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
253
254 static bfd_boolean allocate_global_data_dlt
255 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
256
257 static bfd_boolean allocate_global_data_plt
258 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
259
260 static bfd_boolean allocate_global_data_stub
261 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
262
263 static bfd_boolean allocate_global_data_opd
264 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
265
266 static bfd_boolean get_reloc_section
267 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
268
269 static bfd_boolean count_dyn_reloc
270 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
271 int, asection *, int, bfd_vma, bfd_vma));
272
273 static bfd_boolean allocate_dynrel_entries
274 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
275
276 static bfd_boolean elf64_hppa_finalize_dynreloc
277 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
278
279 static bfd_boolean get_opd
280 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
281
282 static bfd_boolean get_plt
283 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
284
285 static bfd_boolean get_dlt
286 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
287
288 static bfd_boolean get_stub
289 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
290
291 static int elf64_hppa_elf_get_symbol_type
292 PARAMS ((Elf_Internal_Sym *, int));
293
294 static bfd_boolean
295 elf64_hppa_dyn_hash_table_init (struct elf64_hppa_dyn_hash_table *ht,
296 bfd *abfd ATTRIBUTE_UNUSED,
297 new_hash_entry_func new,
298 unsigned int entsize)
299 {
300 memset (ht, 0, sizeof (*ht));
301 return bfd_hash_table_init (&ht->root, new, entsize);
302 }
303
304 static struct bfd_hash_entry*
305 elf64_hppa_new_dyn_hash_entry (entry, table, string)
306 struct bfd_hash_entry *entry;
307 struct bfd_hash_table *table;
308 const char *string;
309 {
310 struct elf64_hppa_dyn_hash_entry *ret;
311 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
312
313 /* Allocate the structure if it has not already been allocated by a
314 subclass. */
315 if (!ret)
316 ret = bfd_hash_allocate (table, sizeof (*ret));
317
318 if (!ret)
319 return 0;
320
321 /* Call the allocation method of the superclass. */
322 ret = ((struct elf64_hppa_dyn_hash_entry *)
323 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
324
325 /* Initialize our local data. All zeros. */
326 memset (&ret->dlt_offset, 0,
327 (sizeof (struct elf64_hppa_dyn_hash_entry)
328 - offsetof (struct elf64_hppa_dyn_hash_entry, dlt_offset)));
329
330 return &ret->root;
331 }
332
333 /* Create the derived linker hash table. The PA64 ELF port uses this
334 derived hash table to keep information specific to the PA ElF
335 linker (without using static variables). */
336
337 static struct bfd_link_hash_table*
338 elf64_hppa_hash_table_create (abfd)
339 bfd *abfd;
340 {
341 struct elf64_hppa_link_hash_table *ret;
342
343 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
344 if (!ret)
345 return 0;
346 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
347 _bfd_elf_link_hash_newfunc,
348 sizeof (struct elf_link_hash_entry)))
349 {
350 bfd_release (abfd, ret);
351 return 0;
352 }
353
354 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
355 elf64_hppa_new_dyn_hash_entry,
356 sizeof (struct elf64_hppa_dyn_hash_entry)))
357 return 0;
358 return &ret->root.root;
359 }
360
361 /* Look up an entry in a PA64 ELF linker hash table. */
362
363 static struct elf64_hppa_dyn_hash_entry *
364 elf64_hppa_dyn_hash_lookup(table, string, create, copy)
365 struct elf64_hppa_dyn_hash_table *table;
366 const char *string;
367 bfd_boolean create, copy;
368 {
369 return ((struct elf64_hppa_dyn_hash_entry *)
370 bfd_hash_lookup (&table->root, string, create, copy));
371 }
372
373 /* Traverse a PA64 ELF linker hash table. */
374
375 static void
376 elf64_hppa_dyn_hash_traverse (table, func, info)
377 struct elf64_hppa_dyn_hash_table *table;
378 bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
379 PTR info;
380 {
381 (bfd_hash_traverse
382 (&table->root,
383 (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
384 info));
385 }
386 \f
387 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
388
389 Additionally we set the default architecture and machine. */
390 static bfd_boolean
391 elf64_hppa_object_p (abfd)
392 bfd *abfd;
393 {
394 Elf_Internal_Ehdr * i_ehdrp;
395 unsigned int flags;
396
397 i_ehdrp = elf_elfheader (abfd);
398 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
399 {
400 /* GCC on hppa-linux produces binaries with OSABI=Linux,
401 but the kernel produces corefiles with OSABI=SysV. */
402 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX
403 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
404 return FALSE;
405 }
406 else
407 {
408 /* HPUX produces binaries with OSABI=HPUX,
409 but the kernel produces corefiles with OSABI=SysV. */
410 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
411 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
412 return FALSE;
413 }
414
415 flags = i_ehdrp->e_flags;
416 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
417 {
418 case EFA_PARISC_1_0:
419 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
420 case EFA_PARISC_1_1:
421 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
422 case EFA_PARISC_2_0:
423 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
424 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
425 else
426 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
427 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
428 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
429 }
430 /* Don't be fussy. */
431 return TRUE;
432 }
433
434 /* Given section type (hdr->sh_type), return a boolean indicating
435 whether or not the section is an elf64-hppa specific section. */
436 static bfd_boolean
437 elf64_hppa_section_from_shdr (bfd *abfd,
438 Elf_Internal_Shdr *hdr,
439 const char *name,
440 int shindex)
441 {
442 asection *newsect;
443
444 switch (hdr->sh_type)
445 {
446 case SHT_PARISC_EXT:
447 if (strcmp (name, ".PARISC.archext") != 0)
448 return FALSE;
449 break;
450 case SHT_PARISC_UNWIND:
451 if (strcmp (name, ".PARISC.unwind") != 0)
452 return FALSE;
453 break;
454 case SHT_PARISC_DOC:
455 case SHT_PARISC_ANNOT:
456 default:
457 return FALSE;
458 }
459
460 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
461 return FALSE;
462 newsect = hdr->bfd_section;
463
464 return TRUE;
465 }
466
467 /* Construct a string for use in the elf64_hppa_dyn_hash_table. The
468 name describes what was once potentially anonymous memory. We
469 allocate memory as necessary, possibly reusing PBUF/PLEN. */
470
471 static const char *
472 get_dyn_name (abfd, h, rel, pbuf, plen)
473 bfd *abfd;
474 struct elf_link_hash_entry *h;
475 const Elf_Internal_Rela *rel;
476 char **pbuf;
477 size_t *plen;
478 {
479 asection *sec = abfd->sections;
480 size_t nlen, tlen;
481 char *buf;
482 size_t len;
483
484 if (h && rel->r_addend == 0)
485 return h->root.root.string;
486
487 if (h)
488 nlen = strlen (h->root.root.string);
489 else
490 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
491 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
492
493 len = *plen;
494 buf = *pbuf;
495 if (len < tlen)
496 {
497 if (buf)
498 free (buf);
499 *pbuf = buf = malloc (tlen);
500 *plen = len = tlen;
501 if (!buf)
502 return NULL;
503 }
504
505 if (h)
506 {
507 memcpy (buf, h->root.root.string, nlen);
508 buf[nlen++] = '+';
509 sprintf_vma (buf + nlen, rel->r_addend);
510 }
511 else
512 {
513 nlen = sprintf (buf, "%x:%lx",
514 sec->id & 0xffffffff,
515 (long) ELF64_R_SYM (rel->r_info));
516 if (rel->r_addend)
517 {
518 buf[nlen++] = '+';
519 sprintf_vma (buf + nlen, rel->r_addend);
520 }
521 }
522
523 return buf;
524 }
525
526 /* SEC is a section containing relocs for an input BFD when linking; return
527 a suitable section for holding relocs in the output BFD for a link. */
528
529 static bfd_boolean
530 get_reloc_section (abfd, hppa_info, sec)
531 bfd *abfd;
532 struct elf64_hppa_link_hash_table *hppa_info;
533 asection *sec;
534 {
535 const char *srel_name;
536 asection *srel;
537 bfd *dynobj;
538
539 srel_name = (bfd_elf_string_from_elf_section
540 (abfd, elf_elfheader(abfd)->e_shstrndx,
541 elf_section_data(sec)->rel_hdr.sh_name));
542 if (srel_name == NULL)
543 return FALSE;
544
545 BFD_ASSERT ((CONST_STRNEQ (srel_name, ".rela")
546 && strcmp (bfd_get_section_name (abfd, sec),
547 srel_name + 5) == 0)
548 || (CONST_STRNEQ (srel_name, ".rel")
549 && strcmp (bfd_get_section_name (abfd, sec),
550 srel_name + 4) == 0));
551
552 dynobj = hppa_info->root.dynobj;
553 if (!dynobj)
554 hppa_info->root.dynobj = dynobj = abfd;
555
556 srel = bfd_get_section_by_name (dynobj, srel_name);
557 if (srel == NULL)
558 {
559 srel = bfd_make_section_with_flags (dynobj, srel_name,
560 (SEC_ALLOC
561 | SEC_LOAD
562 | SEC_HAS_CONTENTS
563 | SEC_IN_MEMORY
564 | SEC_LINKER_CREATED
565 | SEC_READONLY));
566 if (srel == NULL
567 || !bfd_set_section_alignment (dynobj, srel, 3))
568 return FALSE;
569 }
570
571 hppa_info->other_rel_sec = srel;
572 return TRUE;
573 }
574
575 /* Add a new entry to the list of dynamic relocations against DYN_H.
576
577 We use this to keep a record of all the FPTR relocations against a
578 particular symbol so that we can create FPTR relocations in the
579 output file. */
580
581 static bfd_boolean
582 count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
583 bfd *abfd;
584 struct elf64_hppa_dyn_hash_entry *dyn_h;
585 int type;
586 asection *sec;
587 int sec_symndx;
588 bfd_vma offset;
589 bfd_vma addend;
590 {
591 struct elf64_hppa_dyn_reloc_entry *rent;
592
593 rent = (struct elf64_hppa_dyn_reloc_entry *)
594 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
595 if (!rent)
596 return FALSE;
597
598 rent->next = dyn_h->reloc_entries;
599 rent->type = type;
600 rent->sec = sec;
601 rent->sec_symndx = sec_symndx;
602 rent->offset = offset;
603 rent->addend = addend;
604 dyn_h->reloc_entries = rent;
605
606 return TRUE;
607 }
608
609 /* Scan the RELOCS and record the type of dynamic entries that each
610 referenced symbol needs. */
611
612 static bfd_boolean
613 elf64_hppa_check_relocs (abfd, info, sec, relocs)
614 bfd *abfd;
615 struct bfd_link_info *info;
616 asection *sec;
617 const Elf_Internal_Rela *relocs;
618 {
619 struct elf64_hppa_link_hash_table *hppa_info;
620 const Elf_Internal_Rela *relend;
621 Elf_Internal_Shdr *symtab_hdr;
622 const Elf_Internal_Rela *rel;
623 asection *dlt, *plt, *stubs;
624 char *buf;
625 size_t buf_len;
626 int sec_symndx;
627
628 if (info->relocatable)
629 return TRUE;
630
631 /* If this is the first dynamic object found in the link, create
632 the special sections required for dynamic linking. */
633 if (! elf_hash_table (info)->dynamic_sections_created)
634 {
635 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
636 return FALSE;
637 }
638
639 hppa_info = elf64_hppa_hash_table (info);
640 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
641
642 /* If necessary, build a new table holding section symbols indices
643 for this BFD. */
644
645 if (info->shared && hppa_info->section_syms_bfd != abfd)
646 {
647 unsigned long i;
648 unsigned int highest_shndx;
649 Elf_Internal_Sym *local_syms = NULL;
650 Elf_Internal_Sym *isym, *isymend;
651 bfd_size_type amt;
652
653 /* We're done with the old cache of section index to section symbol
654 index information. Free it.
655
656 ?!? Note we leak the last section_syms array. Presumably we
657 could free it in one of the later routines in this file. */
658 if (hppa_info->section_syms)
659 free (hppa_info->section_syms);
660
661 /* Read this BFD's local symbols. */
662 if (symtab_hdr->sh_info != 0)
663 {
664 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
665 if (local_syms == NULL)
666 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
667 symtab_hdr->sh_info, 0,
668 NULL, NULL, NULL);
669 if (local_syms == NULL)
670 return FALSE;
671 }
672
673 /* Record the highest section index referenced by the local symbols. */
674 highest_shndx = 0;
675 isymend = local_syms + symtab_hdr->sh_info;
676 for (isym = local_syms; isym < isymend; isym++)
677 {
678 if (isym->st_shndx > highest_shndx)
679 highest_shndx = isym->st_shndx;
680 }
681
682 /* Allocate an array to hold the section index to section symbol index
683 mapping. Bump by one since we start counting at zero. */
684 highest_shndx++;
685 amt = highest_shndx;
686 amt *= sizeof (int);
687 hppa_info->section_syms = (int *) bfd_malloc (amt);
688
689 /* Now walk the local symbols again. If we find a section symbol,
690 record the index of the symbol into the section_syms array. */
691 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
692 {
693 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
694 hppa_info->section_syms[isym->st_shndx] = i;
695 }
696
697 /* We are finished with the local symbols. */
698 if (local_syms != NULL
699 && symtab_hdr->contents != (unsigned char *) local_syms)
700 {
701 if (! info->keep_memory)
702 free (local_syms);
703 else
704 {
705 /* Cache the symbols for elf_link_input_bfd. */
706 symtab_hdr->contents = (unsigned char *) local_syms;
707 }
708 }
709
710 /* Record which BFD we built the section_syms mapping for. */
711 hppa_info->section_syms_bfd = abfd;
712 }
713
714 /* Record the symbol index for this input section. We may need it for
715 relocations when building shared libraries. When not building shared
716 libraries this value is never really used, but assign it to zero to
717 prevent out of bounds memory accesses in other routines. */
718 if (info->shared)
719 {
720 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
721
722 /* If we did not find a section symbol for this section, then
723 something went terribly wrong above. */
724 if (sec_symndx == -1)
725 return FALSE;
726
727 sec_symndx = hppa_info->section_syms[sec_symndx];
728 }
729 else
730 sec_symndx = 0;
731
732 dlt = plt = stubs = NULL;
733 buf = NULL;
734 buf_len = 0;
735
736 relend = relocs + sec->reloc_count;
737 for (rel = relocs; rel < relend; ++rel)
738 {
739 enum
740 {
741 NEED_DLT = 1,
742 NEED_PLT = 2,
743 NEED_STUB = 4,
744 NEED_OPD = 8,
745 NEED_DYNREL = 16,
746 };
747
748 struct elf_link_hash_entry *h = NULL;
749 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
750 struct elf64_hppa_dyn_hash_entry *dyn_h;
751 int need_entry;
752 const char *addr_name;
753 bfd_boolean maybe_dynamic;
754 int dynrel_type = R_PARISC_NONE;
755 static reloc_howto_type *howto;
756
757 if (r_symndx >= symtab_hdr->sh_info)
758 {
759 /* We're dealing with a global symbol -- find its hash entry
760 and mark it as being referenced. */
761 long indx = r_symndx - symtab_hdr->sh_info;
762 h = elf_sym_hashes (abfd)[indx];
763 while (h->root.type == bfd_link_hash_indirect
764 || h->root.type == bfd_link_hash_warning)
765 h = (struct elf_link_hash_entry *) h->root.u.i.link;
766
767 h->ref_regular = 1;
768 }
769
770 /* We can only get preliminary data on whether a symbol is
771 locally or externally defined, as not all of the input files
772 have yet been processed. Do something with what we know, as
773 this may help reduce memory usage and processing time later. */
774 maybe_dynamic = FALSE;
775 if (h && ((info->shared
776 && (!info->symbolic
777 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
778 || !h->def_regular
779 || h->root.type == bfd_link_hash_defweak))
780 maybe_dynamic = TRUE;
781
782 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
783 need_entry = 0;
784 switch (howto->type)
785 {
786 /* These are simple indirect references to symbols through the
787 DLT. We need to create a DLT entry for any symbols which
788 appears in a DLTIND relocation. */
789 case R_PARISC_DLTIND21L:
790 case R_PARISC_DLTIND14R:
791 case R_PARISC_DLTIND14F:
792 case R_PARISC_DLTIND14WR:
793 case R_PARISC_DLTIND14DR:
794 need_entry = NEED_DLT;
795 break;
796
797 /* ?!? These need a DLT entry. But I have no idea what to do with
798 the "link time TP value. */
799 case R_PARISC_LTOFF_TP21L:
800 case R_PARISC_LTOFF_TP14R:
801 case R_PARISC_LTOFF_TP14F:
802 case R_PARISC_LTOFF_TP64:
803 case R_PARISC_LTOFF_TP14WR:
804 case R_PARISC_LTOFF_TP14DR:
805 case R_PARISC_LTOFF_TP16F:
806 case R_PARISC_LTOFF_TP16WF:
807 case R_PARISC_LTOFF_TP16DF:
808 need_entry = NEED_DLT;
809 break;
810
811 /* These are function calls. Depending on their precise target we
812 may need to make a stub for them. The stub uses the PLT, so we
813 need to create PLT entries for these symbols too. */
814 case R_PARISC_PCREL12F:
815 case R_PARISC_PCREL17F:
816 case R_PARISC_PCREL22F:
817 case R_PARISC_PCREL32:
818 case R_PARISC_PCREL64:
819 case R_PARISC_PCREL21L:
820 case R_PARISC_PCREL17R:
821 case R_PARISC_PCREL17C:
822 case R_PARISC_PCREL14R:
823 case R_PARISC_PCREL14F:
824 case R_PARISC_PCREL22C:
825 case R_PARISC_PCREL14WR:
826 case R_PARISC_PCREL14DR:
827 case R_PARISC_PCREL16F:
828 case R_PARISC_PCREL16WF:
829 case R_PARISC_PCREL16DF:
830 need_entry = (NEED_PLT | NEED_STUB);
831 break;
832
833 case R_PARISC_PLTOFF21L:
834 case R_PARISC_PLTOFF14R:
835 case R_PARISC_PLTOFF14F:
836 case R_PARISC_PLTOFF14WR:
837 case R_PARISC_PLTOFF14DR:
838 case R_PARISC_PLTOFF16F:
839 case R_PARISC_PLTOFF16WF:
840 case R_PARISC_PLTOFF16DF:
841 need_entry = (NEED_PLT);
842 break;
843
844 case R_PARISC_DIR64:
845 if (info->shared || maybe_dynamic)
846 need_entry = (NEED_DYNREL);
847 dynrel_type = R_PARISC_DIR64;
848 break;
849
850 /* This is an indirect reference through the DLT to get the address
851 of a OPD descriptor. Thus we need to make a DLT entry that points
852 to an OPD entry. */
853 case R_PARISC_LTOFF_FPTR21L:
854 case R_PARISC_LTOFF_FPTR14R:
855 case R_PARISC_LTOFF_FPTR14WR:
856 case R_PARISC_LTOFF_FPTR14DR:
857 case R_PARISC_LTOFF_FPTR32:
858 case R_PARISC_LTOFF_FPTR64:
859 case R_PARISC_LTOFF_FPTR16F:
860 case R_PARISC_LTOFF_FPTR16WF:
861 case R_PARISC_LTOFF_FPTR16DF:
862 if (info->shared || maybe_dynamic)
863 need_entry = (NEED_DLT | NEED_OPD);
864 else
865 need_entry = (NEED_DLT | NEED_OPD);
866 dynrel_type = R_PARISC_FPTR64;
867 break;
868
869 /* This is a simple OPD entry. */
870 case R_PARISC_FPTR64:
871 if (info->shared || maybe_dynamic)
872 need_entry = (NEED_OPD | NEED_DYNREL);
873 else
874 need_entry = (NEED_OPD);
875 dynrel_type = R_PARISC_FPTR64;
876 break;
877
878 /* Add more cases as needed. */
879 }
880
881 if (!need_entry)
882 continue;
883
884 /* Collect a canonical name for this address. */
885 addr_name = get_dyn_name (abfd, h, rel, &buf, &buf_len);
886
887 /* Collect the canonical entry data for this address. */
888 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
889 addr_name, TRUE, TRUE);
890 BFD_ASSERT (dyn_h);
891
892 /* Stash away enough information to be able to find this symbol
893 regardless of whether or not it is local or global. */
894 dyn_h->h = h;
895 dyn_h->owner = abfd;
896 dyn_h->sym_indx = r_symndx;
897
898 /* ?!? We may need to do some error checking in here. */
899 /* Create what's needed. */
900 if (need_entry & NEED_DLT)
901 {
902 if (! hppa_info->dlt_sec
903 && ! get_dlt (abfd, info, hppa_info))
904 goto err_out;
905 dyn_h->want_dlt = 1;
906 }
907
908 if (need_entry & NEED_PLT)
909 {
910 if (! hppa_info->plt_sec
911 && ! get_plt (abfd, info, hppa_info))
912 goto err_out;
913 dyn_h->want_plt = 1;
914 }
915
916 if (need_entry & NEED_STUB)
917 {
918 if (! hppa_info->stub_sec
919 && ! get_stub (abfd, info, hppa_info))
920 goto err_out;
921 dyn_h->want_stub = 1;
922 }
923
924 if (need_entry & NEED_OPD)
925 {
926 if (! hppa_info->opd_sec
927 && ! get_opd (abfd, info, hppa_info))
928 goto err_out;
929
930 dyn_h->want_opd = 1;
931
932 /* FPTRs are not allocated by the dynamic linker for PA64, though
933 it is possible that will change in the future. */
934
935 /* This could be a local function that had its address taken, in
936 which case H will be NULL. */
937 if (h)
938 h->needs_plt = 1;
939 }
940
941 /* Add a new dynamic relocation to the chain of dynamic
942 relocations for this symbol. */
943 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
944 {
945 if (! hppa_info->other_rel_sec
946 && ! get_reloc_section (abfd, hppa_info, sec))
947 goto err_out;
948
949 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
950 sec_symndx, rel->r_offset, rel->r_addend))
951 goto err_out;
952
953 /* If we are building a shared library and we just recorded
954 a dynamic R_PARISC_FPTR64 relocation, then make sure the
955 section symbol for this section ends up in the dynamic
956 symbol table. */
957 if (info->shared && dynrel_type == R_PARISC_FPTR64
958 && ! (bfd_elf_link_record_local_dynamic_symbol
959 (info, abfd, sec_symndx)))
960 return FALSE;
961 }
962 }
963
964 if (buf)
965 free (buf);
966 return TRUE;
967
968 err_out:
969 if (buf)
970 free (buf);
971 return FALSE;
972 }
973
974 struct elf64_hppa_allocate_data
975 {
976 struct bfd_link_info *info;
977 bfd_size_type ofs;
978 };
979
980 /* Should we do dynamic things to this symbol? */
981
982 static bfd_boolean
983 elf64_hppa_dynamic_symbol_p (h, info)
984 struct elf_link_hash_entry *h;
985 struct bfd_link_info *info;
986 {
987 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
988 and relocations that retrieve a function descriptor? Assume the
989 worst for now. */
990 if (_bfd_elf_dynamic_symbol_p (h, info, 1))
991 {
992 /* ??? Why is this here and not elsewhere is_local_label_name. */
993 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
994 return FALSE;
995
996 return TRUE;
997 }
998 else
999 return FALSE;
1000 }
1001
1002 /* Mark all functions exported by this file so that we can later allocate
1003 entries in .opd for them. */
1004
1005 static bfd_boolean
1006 elf64_hppa_mark_exported_functions (h, data)
1007 struct elf_link_hash_entry *h;
1008 PTR data;
1009 {
1010 struct bfd_link_info *info = (struct bfd_link_info *)data;
1011 struct elf64_hppa_link_hash_table *hppa_info;
1012
1013 hppa_info = elf64_hppa_hash_table (info);
1014
1015 if (h->root.type == bfd_link_hash_warning)
1016 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1017
1018 if (h
1019 && (h->root.type == bfd_link_hash_defined
1020 || h->root.type == bfd_link_hash_defweak)
1021 && h->root.u.def.section->output_section != NULL
1022 && h->type == STT_FUNC)
1023 {
1024 struct elf64_hppa_dyn_hash_entry *dyn_h;
1025
1026 /* Add this symbol to the PA64 linker hash table. */
1027 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1028 h->root.root.string, TRUE, TRUE);
1029 BFD_ASSERT (dyn_h);
1030 dyn_h->h = h;
1031
1032 if (! hppa_info->opd_sec
1033 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1034 return FALSE;
1035
1036 dyn_h->want_opd = 1;
1037 /* Put a flag here for output_symbol_hook. */
1038 dyn_h->st_shndx = -1;
1039 h->needs_plt = 1;
1040 }
1041
1042 return TRUE;
1043 }
1044
1045 /* Allocate space for a DLT entry. */
1046
1047 static bfd_boolean
1048 allocate_global_data_dlt (dyn_h, data)
1049 struct elf64_hppa_dyn_hash_entry *dyn_h;
1050 PTR data;
1051 {
1052 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1053
1054 if (dyn_h->want_dlt)
1055 {
1056 struct elf_link_hash_entry *h = dyn_h->h;
1057
1058 if (x->info->shared)
1059 {
1060 /* Possibly add the symbol to the local dynamic symbol
1061 table since we might need to create a dynamic relocation
1062 against it. */
1063 if (! h
1064 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
1065 {
1066 bfd *owner;
1067 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1068
1069 if (! (bfd_elf_link_record_local_dynamic_symbol
1070 (x->info, owner, dyn_h->sym_indx)))
1071 return FALSE;
1072 }
1073 }
1074
1075 dyn_h->dlt_offset = x->ofs;
1076 x->ofs += DLT_ENTRY_SIZE;
1077 }
1078 return TRUE;
1079 }
1080
1081 /* Allocate space for a DLT.PLT entry. */
1082
1083 static bfd_boolean
1084 allocate_global_data_plt (dyn_h, data)
1085 struct elf64_hppa_dyn_hash_entry *dyn_h;
1086 PTR data;
1087 {
1088 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1089
1090 if (dyn_h->want_plt
1091 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1092 && !((dyn_h->h->root.type == bfd_link_hash_defined
1093 || dyn_h->h->root.type == bfd_link_hash_defweak)
1094 && dyn_h->h->root.u.def.section->output_section != NULL))
1095 {
1096 dyn_h->plt_offset = x->ofs;
1097 x->ofs += PLT_ENTRY_SIZE;
1098 if (dyn_h->plt_offset < 0x2000)
1099 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1100 }
1101 else
1102 dyn_h->want_plt = 0;
1103
1104 return TRUE;
1105 }
1106
1107 /* Allocate space for a STUB entry. */
1108
1109 static bfd_boolean
1110 allocate_global_data_stub (dyn_h, data)
1111 struct elf64_hppa_dyn_hash_entry *dyn_h;
1112 PTR data;
1113 {
1114 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1115
1116 if (dyn_h->want_stub
1117 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1118 && !((dyn_h->h->root.type == bfd_link_hash_defined
1119 || dyn_h->h->root.type == bfd_link_hash_defweak)
1120 && dyn_h->h->root.u.def.section->output_section != NULL))
1121 {
1122 dyn_h->stub_offset = x->ofs;
1123 x->ofs += sizeof (plt_stub);
1124 }
1125 else
1126 dyn_h->want_stub = 0;
1127 return TRUE;
1128 }
1129
1130 /* Allocate space for a FPTR entry. */
1131
1132 static bfd_boolean
1133 allocate_global_data_opd (dyn_h, data)
1134 struct elf64_hppa_dyn_hash_entry *dyn_h;
1135 PTR data;
1136 {
1137 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1138
1139 if (dyn_h->want_opd)
1140 {
1141 struct elf_link_hash_entry *h = dyn_h->h;
1142
1143 if (h)
1144 while (h->root.type == bfd_link_hash_indirect
1145 || h->root.type == bfd_link_hash_warning)
1146 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1147
1148 /* We never need an opd entry for a symbol which is not
1149 defined by this output file. */
1150 if (h && (h->root.type == bfd_link_hash_undefined
1151 || h->root.type == bfd_link_hash_undefweak
1152 || h->root.u.def.section->output_section == NULL))
1153 dyn_h->want_opd = 0;
1154
1155 /* If we are creating a shared library, took the address of a local
1156 function or might export this function from this object file, then
1157 we have to create an opd descriptor. */
1158 else if (x->info->shared
1159 || h == NULL
1160 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
1161 || (h->root.type == bfd_link_hash_defined
1162 || h->root.type == bfd_link_hash_defweak))
1163 {
1164 /* If we are creating a shared library, then we will have to
1165 create a runtime relocation for the symbol to properly
1166 initialize the .opd entry. Make sure the symbol gets
1167 added to the dynamic symbol table. */
1168 if (x->info->shared
1169 && (h == NULL || (h->dynindx == -1)))
1170 {
1171 bfd *owner;
1172 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1173
1174 if (!bfd_elf_link_record_local_dynamic_symbol
1175 (x->info, owner, dyn_h->sym_indx))
1176 return FALSE;
1177 }
1178
1179 /* This may not be necessary or desirable anymore now that
1180 we have some support for dealing with section symbols
1181 in dynamic relocs. But name munging does make the result
1182 much easier to debug. ie, the EPLT reloc will reference
1183 a symbol like .foobar, instead of .text + offset. */
1184 if (x->info->shared && h)
1185 {
1186 char *new_name;
1187 struct elf_link_hash_entry *nh;
1188
1189 new_name = alloca (strlen (h->root.root.string) + 2);
1190 new_name[0] = '.';
1191 strcpy (new_name + 1, h->root.root.string);
1192
1193 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1194 new_name, TRUE, TRUE, TRUE);
1195
1196 nh->root.type = h->root.type;
1197 nh->root.u.def.value = h->root.u.def.value;
1198 nh->root.u.def.section = h->root.u.def.section;
1199
1200 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1201 return FALSE;
1202
1203 }
1204 dyn_h->opd_offset = x->ofs;
1205 x->ofs += OPD_ENTRY_SIZE;
1206 }
1207
1208 /* Otherwise we do not need an opd entry. */
1209 else
1210 dyn_h->want_opd = 0;
1211 }
1212 return TRUE;
1213 }
1214
1215 /* HP requires the EI_OSABI field to be filled in. The assignment to
1216 EI_ABIVERSION may not be strictly necessary. */
1217
1218 static void
1219 elf64_hppa_post_process_headers (abfd, link_info)
1220 bfd * abfd;
1221 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1222 {
1223 Elf_Internal_Ehdr * i_ehdrp;
1224
1225 i_ehdrp = elf_elfheader (abfd);
1226
1227 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
1228 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1229 }
1230
1231 /* Create function descriptor section (.opd). This section is called .opd
1232 because it contains "official procedure descriptors". The "official"
1233 refers to the fact that these descriptors are used when taking the address
1234 of a procedure, thus ensuring a unique address for each procedure. */
1235
1236 static bfd_boolean
1237 get_opd (abfd, info, hppa_info)
1238 bfd *abfd;
1239 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1240 struct elf64_hppa_link_hash_table *hppa_info;
1241 {
1242 asection *opd;
1243 bfd *dynobj;
1244
1245 opd = hppa_info->opd_sec;
1246 if (!opd)
1247 {
1248 dynobj = hppa_info->root.dynobj;
1249 if (!dynobj)
1250 hppa_info->root.dynobj = dynobj = abfd;
1251
1252 opd = bfd_make_section_with_flags (dynobj, ".opd",
1253 (SEC_ALLOC
1254 | SEC_LOAD
1255 | SEC_HAS_CONTENTS
1256 | SEC_IN_MEMORY
1257 | SEC_LINKER_CREATED));
1258 if (!opd
1259 || !bfd_set_section_alignment (abfd, opd, 3))
1260 {
1261 BFD_ASSERT (0);
1262 return FALSE;
1263 }
1264
1265 hppa_info->opd_sec = opd;
1266 }
1267
1268 return TRUE;
1269 }
1270
1271 /* Create the PLT section. */
1272
1273 static bfd_boolean
1274 get_plt (abfd, info, hppa_info)
1275 bfd *abfd;
1276 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1277 struct elf64_hppa_link_hash_table *hppa_info;
1278 {
1279 asection *plt;
1280 bfd *dynobj;
1281
1282 plt = hppa_info->plt_sec;
1283 if (!plt)
1284 {
1285 dynobj = hppa_info->root.dynobj;
1286 if (!dynobj)
1287 hppa_info->root.dynobj = dynobj = abfd;
1288
1289 plt = bfd_make_section_with_flags (dynobj, ".plt",
1290 (SEC_ALLOC
1291 | SEC_LOAD
1292 | SEC_HAS_CONTENTS
1293 | SEC_IN_MEMORY
1294 | SEC_LINKER_CREATED));
1295 if (!plt
1296 || !bfd_set_section_alignment (abfd, plt, 3))
1297 {
1298 BFD_ASSERT (0);
1299 return FALSE;
1300 }
1301
1302 hppa_info->plt_sec = plt;
1303 }
1304
1305 return TRUE;
1306 }
1307
1308 /* Create the DLT section. */
1309
1310 static bfd_boolean
1311 get_dlt (abfd, info, hppa_info)
1312 bfd *abfd;
1313 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1314 struct elf64_hppa_link_hash_table *hppa_info;
1315 {
1316 asection *dlt;
1317 bfd *dynobj;
1318
1319 dlt = hppa_info->dlt_sec;
1320 if (!dlt)
1321 {
1322 dynobj = hppa_info->root.dynobj;
1323 if (!dynobj)
1324 hppa_info->root.dynobj = dynobj = abfd;
1325
1326 dlt = bfd_make_section_with_flags (dynobj, ".dlt",
1327 (SEC_ALLOC
1328 | SEC_LOAD
1329 | SEC_HAS_CONTENTS
1330 | SEC_IN_MEMORY
1331 | SEC_LINKER_CREATED));
1332 if (!dlt
1333 || !bfd_set_section_alignment (abfd, dlt, 3))
1334 {
1335 BFD_ASSERT (0);
1336 return FALSE;
1337 }
1338
1339 hppa_info->dlt_sec = dlt;
1340 }
1341
1342 return TRUE;
1343 }
1344
1345 /* Create the stubs section. */
1346
1347 static bfd_boolean
1348 get_stub (abfd, info, hppa_info)
1349 bfd *abfd;
1350 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1351 struct elf64_hppa_link_hash_table *hppa_info;
1352 {
1353 asection *stub;
1354 bfd *dynobj;
1355
1356 stub = hppa_info->stub_sec;
1357 if (!stub)
1358 {
1359 dynobj = hppa_info->root.dynobj;
1360 if (!dynobj)
1361 hppa_info->root.dynobj = dynobj = abfd;
1362
1363 stub = bfd_make_section_with_flags (dynobj, ".stub",
1364 (SEC_ALLOC | SEC_LOAD
1365 | SEC_HAS_CONTENTS
1366 | SEC_IN_MEMORY
1367 | SEC_READONLY
1368 | SEC_LINKER_CREATED));
1369 if (!stub
1370 || !bfd_set_section_alignment (abfd, stub, 3))
1371 {
1372 BFD_ASSERT (0);
1373 return FALSE;
1374 }
1375
1376 hppa_info->stub_sec = stub;
1377 }
1378
1379 return TRUE;
1380 }
1381
1382 /* Create sections necessary for dynamic linking. This is only a rough
1383 cut and will likely change as we learn more about the somewhat
1384 unusual dynamic linking scheme HP uses.
1385
1386 .stub:
1387 Contains code to implement cross-space calls. The first time one
1388 of the stubs is used it will call into the dynamic linker, later
1389 calls will go straight to the target.
1390
1391 The only stub we support right now looks like
1392
1393 ldd OFFSET(%dp),%r1
1394 bve %r0(%r1)
1395 ldd OFFSET+8(%dp),%dp
1396
1397 Other stubs may be needed in the future. We may want the remove
1398 the break/nop instruction. It is only used right now to keep the
1399 offset of a .plt entry and a .stub entry in sync.
1400
1401 .dlt:
1402 This is what most people call the .got. HP used a different name.
1403 Losers.
1404
1405 .rela.dlt:
1406 Relocations for the DLT.
1407
1408 .plt:
1409 Function pointers as address,gp pairs.
1410
1411 .rela.plt:
1412 Should contain dynamic IPLT (and EPLT?) relocations.
1413
1414 .opd:
1415 FPTRS
1416
1417 .rela.opd:
1418 EPLT relocations for symbols exported from shared libraries. */
1419
1420 static bfd_boolean
1421 elf64_hppa_create_dynamic_sections (abfd, info)
1422 bfd *abfd;
1423 struct bfd_link_info *info;
1424 {
1425 asection *s;
1426
1427 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1428 return FALSE;
1429
1430 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1431 return FALSE;
1432
1433 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1434 return FALSE;
1435
1436 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1437 return FALSE;
1438
1439 s = bfd_make_section_with_flags (abfd, ".rela.dlt",
1440 (SEC_ALLOC | SEC_LOAD
1441 | SEC_HAS_CONTENTS
1442 | SEC_IN_MEMORY
1443 | SEC_READONLY
1444 | SEC_LINKER_CREATED));
1445 if (s == NULL
1446 || !bfd_set_section_alignment (abfd, s, 3))
1447 return FALSE;
1448 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1449
1450 s = bfd_make_section_with_flags (abfd, ".rela.plt",
1451 (SEC_ALLOC | SEC_LOAD
1452 | SEC_HAS_CONTENTS
1453 | SEC_IN_MEMORY
1454 | SEC_READONLY
1455 | SEC_LINKER_CREATED));
1456 if (s == NULL
1457 || !bfd_set_section_alignment (abfd, s, 3))
1458 return FALSE;
1459 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1460
1461 s = bfd_make_section_with_flags (abfd, ".rela.data",
1462 (SEC_ALLOC | SEC_LOAD
1463 | SEC_HAS_CONTENTS
1464 | SEC_IN_MEMORY
1465 | SEC_READONLY
1466 | SEC_LINKER_CREATED));
1467 if (s == NULL
1468 || !bfd_set_section_alignment (abfd, s, 3))
1469 return FALSE;
1470 elf64_hppa_hash_table (info)->other_rel_sec = s;
1471
1472 s = bfd_make_section_with_flags (abfd, ".rela.opd",
1473 (SEC_ALLOC | SEC_LOAD
1474 | SEC_HAS_CONTENTS
1475 | SEC_IN_MEMORY
1476 | SEC_READONLY
1477 | SEC_LINKER_CREATED));
1478 if (s == NULL
1479 || !bfd_set_section_alignment (abfd, s, 3))
1480 return FALSE;
1481 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1482
1483 return TRUE;
1484 }
1485
1486 /* Allocate dynamic relocations for those symbols that turned out
1487 to be dynamic. */
1488
1489 static bfd_boolean
1490 allocate_dynrel_entries (dyn_h, data)
1491 struct elf64_hppa_dyn_hash_entry *dyn_h;
1492 PTR data;
1493 {
1494 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1495 struct elf64_hppa_link_hash_table *hppa_info;
1496 struct elf64_hppa_dyn_reloc_entry *rent;
1497 bfd_boolean dynamic_symbol, shared;
1498
1499 hppa_info = elf64_hppa_hash_table (x->info);
1500 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1501 shared = x->info->shared;
1502
1503 /* We may need to allocate relocations for a non-dynamic symbol
1504 when creating a shared library. */
1505 if (!dynamic_symbol && !shared)
1506 return TRUE;
1507
1508 /* Take care of the normal data relocations. */
1509
1510 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1511 {
1512 /* Allocate one iff we are building a shared library, the relocation
1513 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1514 if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1515 continue;
1516
1517 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1518
1519 /* Make sure this symbol gets into the dynamic symbol table if it is
1520 not already recorded. ?!? This should not be in the loop since
1521 the symbol need only be added once. */
1522 if (dyn_h->h == 0
1523 || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
1524 if (!bfd_elf_link_record_local_dynamic_symbol
1525 (x->info, rent->sec->owner, dyn_h->sym_indx))
1526 return FALSE;
1527 }
1528
1529 /* Take care of the GOT and PLT relocations. */
1530
1531 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1532 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1533
1534 /* If we are building a shared library, then every symbol that has an
1535 opd entry will need an EPLT relocation to relocate the symbol's address
1536 and __gp value based on the runtime load address. */
1537 if (shared && dyn_h->want_opd)
1538 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1539
1540 if (dyn_h->want_plt && dynamic_symbol)
1541 {
1542 bfd_size_type t = 0;
1543
1544 /* Dynamic symbols get one IPLT relocation. Local symbols in
1545 shared libraries get two REL relocations. Local symbols in
1546 main applications get nothing. */
1547 if (dynamic_symbol)
1548 t = sizeof (Elf64_External_Rela);
1549 else if (shared)
1550 t = 2 * sizeof (Elf64_External_Rela);
1551
1552 hppa_info->plt_rel_sec->size += t;
1553 }
1554
1555 return TRUE;
1556 }
1557
1558 /* Adjust a symbol defined by a dynamic object and referenced by a
1559 regular object. */
1560
1561 static bfd_boolean
1562 elf64_hppa_adjust_dynamic_symbol (info, h)
1563 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1564 struct elf_link_hash_entry *h;
1565 {
1566 /* ??? Undefined symbols with PLT entries should be re-defined
1567 to be the PLT entry. */
1568
1569 /* If this is a weak symbol, and there is a real definition, the
1570 processor independent code will have arranged for us to see the
1571 real definition first, and we can just use the same value. */
1572 if (h->u.weakdef != NULL)
1573 {
1574 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1575 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1576 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1577 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1578 return TRUE;
1579 }
1580
1581 /* If this is a reference to a symbol defined by a dynamic object which
1582 is not a function, we might allocate the symbol in our .dynbss section
1583 and allocate a COPY dynamic relocation.
1584
1585 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1586 of hackery. */
1587
1588 return TRUE;
1589 }
1590
1591 /* This function is called via elf_link_hash_traverse to mark millicode
1592 symbols with a dynindx of -1 and to remove the string table reference
1593 from the dynamic symbol table. If the symbol is not a millicode symbol,
1594 elf64_hppa_mark_exported_functions is called. */
1595
1596 static bfd_boolean
1597 elf64_hppa_mark_milli_and_exported_functions (h, data)
1598 struct elf_link_hash_entry *h;
1599 PTR data;
1600 {
1601 struct bfd_link_info *info = (struct bfd_link_info *)data;
1602 struct elf_link_hash_entry *elf = h;
1603
1604 if (elf->root.type == bfd_link_hash_warning)
1605 elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1606
1607 if (elf->type == STT_PARISC_MILLI)
1608 {
1609 if (elf->dynindx != -1)
1610 {
1611 elf->dynindx = -1;
1612 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1613 elf->dynstr_index);
1614 }
1615 return TRUE;
1616 }
1617
1618 return elf64_hppa_mark_exported_functions (h, data);
1619 }
1620
1621 /* Set the final sizes of the dynamic sections and allocate memory for
1622 the contents of our special sections. */
1623
1624 static bfd_boolean
1625 elf64_hppa_size_dynamic_sections (output_bfd, info)
1626 bfd *output_bfd;
1627 struct bfd_link_info *info;
1628 {
1629 bfd *dynobj;
1630 asection *s;
1631 bfd_boolean plt;
1632 bfd_boolean relocs;
1633 bfd_boolean reltext;
1634 struct elf64_hppa_allocate_data data;
1635 struct elf64_hppa_link_hash_table *hppa_info;
1636
1637 hppa_info = elf64_hppa_hash_table (info);
1638
1639 dynobj = elf_hash_table (info)->dynobj;
1640 BFD_ASSERT (dynobj != NULL);
1641
1642 /* Mark each function this program exports so that we will allocate
1643 space in the .opd section for each function's FPTR. If we are
1644 creating dynamic sections, change the dynamic index of millicode
1645 symbols to -1 and remove them from the string table for .dynstr.
1646
1647 We have to traverse the main linker hash table since we have to
1648 find functions which may not have been mentioned in any relocs. */
1649 elf_link_hash_traverse (elf_hash_table (info),
1650 (elf_hash_table (info)->dynamic_sections_created
1651 ? elf64_hppa_mark_milli_and_exported_functions
1652 : elf64_hppa_mark_exported_functions),
1653 info);
1654
1655 if (elf_hash_table (info)->dynamic_sections_created)
1656 {
1657 /* Set the contents of the .interp section to the interpreter. */
1658 if (info->executable)
1659 {
1660 s = bfd_get_section_by_name (dynobj, ".interp");
1661 BFD_ASSERT (s != NULL);
1662 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1663 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1664 }
1665 }
1666 else
1667 {
1668 /* We may have created entries in the .rela.got section.
1669 However, if we are not creating the dynamic sections, we will
1670 not actually use these entries. Reset the size of .rela.dlt,
1671 which will cause it to get stripped from the output file
1672 below. */
1673 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1674 if (s != NULL)
1675 s->size = 0;
1676 }
1677
1678 /* Allocate the GOT entries. */
1679
1680 data.info = info;
1681 if (elf64_hppa_hash_table (info)->dlt_sec)
1682 {
1683 data.ofs = 0x0;
1684 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1685 allocate_global_data_dlt, &data);
1686 hppa_info->dlt_sec->size = data.ofs;
1687
1688 data.ofs = 0x0;
1689 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1690 allocate_global_data_plt, &data);
1691 hppa_info->plt_sec->size = data.ofs;
1692
1693 data.ofs = 0x0;
1694 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1695 allocate_global_data_stub, &data);
1696 hppa_info->stub_sec->size = data.ofs;
1697 }
1698
1699 /* Allocate space for entries in the .opd section. */
1700 if (elf64_hppa_hash_table (info)->opd_sec)
1701 {
1702 data.ofs = 0;
1703 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1704 allocate_global_data_opd, &data);
1705 hppa_info->opd_sec->size = data.ofs;
1706 }
1707
1708 /* Now allocate space for dynamic relocations, if necessary. */
1709 if (hppa_info->root.dynamic_sections_created)
1710 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1711 allocate_dynrel_entries, &data);
1712
1713 /* The sizes of all the sections are set. Allocate memory for them. */
1714 plt = FALSE;
1715 relocs = FALSE;
1716 reltext = FALSE;
1717 for (s = dynobj->sections; s != NULL; s = s->next)
1718 {
1719 const char *name;
1720
1721 if ((s->flags & SEC_LINKER_CREATED) == 0)
1722 continue;
1723
1724 /* It's OK to base decisions on the section name, because none
1725 of the dynobj section names depend upon the input files. */
1726 name = bfd_get_section_name (dynobj, s);
1727
1728 if (strcmp (name, ".plt") == 0)
1729 {
1730 /* Remember whether there is a PLT. */
1731 plt = s->size != 0;
1732 }
1733 else if (strcmp (name, ".opd") == 0
1734 || CONST_STRNEQ (name, ".dlt")
1735 || strcmp (name, ".stub") == 0
1736 || strcmp (name, ".got") == 0)
1737 {
1738 /* Strip this section if we don't need it; see the comment below. */
1739 }
1740 else if (CONST_STRNEQ (name, ".rela"))
1741 {
1742 if (s->size != 0)
1743 {
1744 asection *target;
1745
1746 /* Remember whether there are any reloc sections other
1747 than .rela.plt. */
1748 if (strcmp (name, ".rela.plt") != 0)
1749 {
1750 const char *outname;
1751
1752 relocs = TRUE;
1753
1754 /* If this relocation section applies to a read only
1755 section, then we probably need a DT_TEXTREL
1756 entry. The entries in the .rela.plt section
1757 really apply to the .got section, which we
1758 created ourselves and so know is not readonly. */
1759 outname = bfd_get_section_name (output_bfd,
1760 s->output_section);
1761 target = bfd_get_section_by_name (output_bfd, outname + 4);
1762 if (target != NULL
1763 && (target->flags & SEC_READONLY) != 0
1764 && (target->flags & SEC_ALLOC) != 0)
1765 reltext = TRUE;
1766 }
1767
1768 /* We use the reloc_count field as a counter if we need
1769 to copy relocs into the output file. */
1770 s->reloc_count = 0;
1771 }
1772 }
1773 else
1774 {
1775 /* It's not one of our sections, so don't allocate space. */
1776 continue;
1777 }
1778
1779 if (s->size == 0)
1780 {
1781 /* If we don't need this section, strip it from the
1782 output file. This is mostly to handle .rela.bss and
1783 .rela.plt. We must create both sections in
1784 create_dynamic_sections, because they must be created
1785 before the linker maps input sections to output
1786 sections. The linker does that before
1787 adjust_dynamic_symbol is called, and it is that
1788 function which decides whether anything needs to go
1789 into these sections. */
1790 s->flags |= SEC_EXCLUDE;
1791 continue;
1792 }
1793
1794 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1795 continue;
1796
1797 /* Allocate memory for the section contents if it has not
1798 been allocated already. We use bfd_zalloc here in case
1799 unused entries are not reclaimed before the section's
1800 contents are written out. This should not happen, but this
1801 way if it does, we get a R_PARISC_NONE reloc instead of
1802 garbage. */
1803 if (s->contents == NULL)
1804 {
1805 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1806 if (s->contents == NULL)
1807 return FALSE;
1808 }
1809 }
1810
1811 if (elf_hash_table (info)->dynamic_sections_created)
1812 {
1813 /* Always create a DT_PLTGOT. It actually has nothing to do with
1814 the PLT, it is how we communicate the __gp value of a load
1815 module to the dynamic linker. */
1816 #define add_dynamic_entry(TAG, VAL) \
1817 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1818
1819 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1820 || !add_dynamic_entry (DT_PLTGOT, 0))
1821 return FALSE;
1822
1823 /* Add some entries to the .dynamic section. We fill in the
1824 values later, in elf64_hppa_finish_dynamic_sections, but we
1825 must add the entries now so that we get the correct size for
1826 the .dynamic section. The DT_DEBUG entry is filled in by the
1827 dynamic linker and used by the debugger. */
1828 if (! info->shared)
1829 {
1830 if (!add_dynamic_entry (DT_DEBUG, 0)
1831 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1832 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1833 return FALSE;
1834 }
1835
1836 /* Force DT_FLAGS to always be set.
1837 Required by HPUX 11.00 patch PHSS_26559. */
1838 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1839 return FALSE;
1840
1841 if (plt)
1842 {
1843 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1844 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1845 || !add_dynamic_entry (DT_JMPREL, 0))
1846 return FALSE;
1847 }
1848
1849 if (relocs)
1850 {
1851 if (!add_dynamic_entry (DT_RELA, 0)
1852 || !add_dynamic_entry (DT_RELASZ, 0)
1853 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1854 return FALSE;
1855 }
1856
1857 if (reltext)
1858 {
1859 if (!add_dynamic_entry (DT_TEXTREL, 0))
1860 return FALSE;
1861 info->flags |= DF_TEXTREL;
1862 }
1863 }
1864 #undef add_dynamic_entry
1865
1866 return TRUE;
1867 }
1868
1869 /* Called after we have output the symbol into the dynamic symbol
1870 table, but before we output the symbol into the normal symbol
1871 table.
1872
1873 For some symbols we had to change their address when outputting
1874 the dynamic symbol table. We undo that change here so that
1875 the symbols have their expected value in the normal symbol
1876 table. Ick. */
1877
1878 static bfd_boolean
1879 elf64_hppa_link_output_symbol_hook (info, name, sym, input_sec, h)
1880 struct bfd_link_info *info;
1881 const char *name;
1882 Elf_Internal_Sym *sym;
1883 asection *input_sec ATTRIBUTE_UNUSED;
1884 struct elf_link_hash_entry *h;
1885 {
1886 struct elf64_hppa_link_hash_table *hppa_info;
1887 struct elf64_hppa_dyn_hash_entry *dyn_h;
1888
1889 /* We may be called with the file symbol or section symbols.
1890 They never need munging, so it is safe to ignore them. */
1891 if (!name)
1892 return TRUE;
1893
1894 /* Get the PA dyn_symbol (if any) associated with NAME. */
1895 hppa_info = elf64_hppa_hash_table (info);
1896 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1897 name, FALSE, FALSE);
1898 if (!dyn_h || dyn_h->h != h)
1899 return TRUE;
1900
1901 /* Function symbols for which we created .opd entries *may* have been
1902 munged by finish_dynamic_symbol and have to be un-munged here.
1903
1904 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1905 into non-dynamic ones, so we initialize st_shndx to -1 in
1906 mark_exported_functions and check to see if it was overwritten
1907 here instead of just checking dyn_h->h->dynindx. */
1908 if (dyn_h->want_opd && dyn_h->st_shndx != -1)
1909 {
1910 /* Restore the saved value and section index. */
1911 sym->st_value = dyn_h->st_value;
1912 sym->st_shndx = dyn_h->st_shndx;
1913 }
1914
1915 return TRUE;
1916 }
1917
1918 /* Finish up dynamic symbol handling. We set the contents of various
1919 dynamic sections here. */
1920
1921 static bfd_boolean
1922 elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1923 bfd *output_bfd;
1924 struct bfd_link_info *info;
1925 struct elf_link_hash_entry *h;
1926 Elf_Internal_Sym *sym;
1927 {
1928 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1929 struct elf64_hppa_link_hash_table *hppa_info;
1930 struct elf64_hppa_dyn_hash_entry *dyn_h;
1931
1932 hppa_info = elf64_hppa_hash_table (info);
1933 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1934 h->root.root.string, FALSE, FALSE);
1935
1936 stub = hppa_info->stub_sec;
1937 splt = hppa_info->plt_sec;
1938 sdlt = hppa_info->dlt_sec;
1939 sopd = hppa_info->opd_sec;
1940 spltrel = hppa_info->plt_rel_sec;
1941 sdltrel = hppa_info->dlt_rel_sec;
1942
1943 /* Incredible. It is actually necessary to NOT use the symbol's real
1944 value when building the dynamic symbol table for a shared library.
1945 At least for symbols that refer to functions.
1946
1947 We will store a new value and section index into the symbol long
1948 enough to output it into the dynamic symbol table, then we restore
1949 the original values (in elf64_hppa_link_output_symbol_hook). */
1950 if (dyn_h && dyn_h->want_opd)
1951 {
1952 BFD_ASSERT (sopd != NULL);
1953
1954 /* Save away the original value and section index so that we
1955 can restore them later. */
1956 dyn_h->st_value = sym->st_value;
1957 dyn_h->st_shndx = sym->st_shndx;
1958
1959 /* For the dynamic symbol table entry, we want the value to be
1960 address of this symbol's entry within the .opd section. */
1961 sym->st_value = (dyn_h->opd_offset
1962 + sopd->output_offset
1963 + sopd->output_section->vma);
1964 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1965 sopd->output_section);
1966 }
1967
1968 /* Initialize a .plt entry if requested. */
1969 if (dyn_h && dyn_h->want_plt
1970 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1971 {
1972 bfd_vma value;
1973 Elf_Internal_Rela rel;
1974 bfd_byte *loc;
1975
1976 BFD_ASSERT (splt != NULL && spltrel != NULL);
1977
1978 /* We do not actually care about the value in the PLT entry
1979 if we are creating a shared library and the symbol is
1980 still undefined, we create a dynamic relocation to fill
1981 in the correct value. */
1982 if (info->shared && h->root.type == bfd_link_hash_undefined)
1983 value = 0;
1984 else
1985 value = (h->root.u.def.value + h->root.u.def.section->vma);
1986
1987 /* Fill in the entry in the procedure linkage table.
1988
1989 The format of a plt entry is
1990 <funcaddr> <__gp>.
1991
1992 plt_offset is the offset within the PLT section at which to
1993 install the PLT entry.
1994
1995 We are modifying the in-memory PLT contents here, so we do not add
1996 in the output_offset of the PLT section. */
1997
1998 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
1999 value = _bfd_get_gp_value (splt->output_section->owner);
2000 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
2001
2002 /* Create a dynamic IPLT relocation for this entry.
2003
2004 We are creating a relocation in the output file's PLT section,
2005 which is included within the DLT secton. So we do need to include
2006 the PLT's output_offset in the computation of the relocation's
2007 address. */
2008 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
2009 + splt->output_section->vma);
2010 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
2011 rel.r_addend = 0;
2012
2013 loc = spltrel->contents;
2014 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2015 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2016 }
2017
2018 /* Initialize an external call stub entry if requested. */
2019 if (dyn_h && dyn_h->want_stub
2020 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2021 {
2022 bfd_vma value;
2023 int insn;
2024 unsigned int max_offset;
2025
2026 BFD_ASSERT (stub != NULL);
2027
2028 /* Install the generic stub template.
2029
2030 We are modifying the contents of the stub section, so we do not
2031 need to include the stub section's output_offset here. */
2032 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2033
2034 /* Fix up the first ldd instruction.
2035
2036 We are modifying the contents of the STUB section in memory,
2037 so we do not need to include its output offset in this computation.
2038
2039 Note the plt_offset value is the value of the PLT entry relative to
2040 the start of the PLT section. These instructions will reference
2041 data relative to the value of __gp, which may not necessarily have
2042 the same address as the start of the PLT section.
2043
2044 gp_offset contains the offset of __gp within the PLT section. */
2045 value = dyn_h->plt_offset - hppa_info->gp_offset;
2046
2047 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
2048 if (output_bfd->arch_info->mach >= 25)
2049 {
2050 /* Wide mode allows 16 bit offsets. */
2051 max_offset = 32768;
2052 insn &= ~ 0xfff1;
2053 insn |= re_assemble_16 ((int) value);
2054 }
2055 else
2056 {
2057 max_offset = 8192;
2058 insn &= ~ 0x3ff1;
2059 insn |= re_assemble_14 ((int) value);
2060 }
2061
2062 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2063 {
2064 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2065 dyn_h->root.string,
2066 (long) value);
2067 return FALSE;
2068 }
2069
2070 bfd_put_32 (stub->owner, (bfd_vma) insn,
2071 stub->contents + dyn_h->stub_offset);
2072
2073 /* Fix up the second ldd instruction. */
2074 value += 8;
2075 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
2076 if (output_bfd->arch_info->mach >= 25)
2077 {
2078 insn &= ~ 0xfff1;
2079 insn |= re_assemble_16 ((int) value);
2080 }
2081 else
2082 {
2083 insn &= ~ 0x3ff1;
2084 insn |= re_assemble_14 ((int) value);
2085 }
2086 bfd_put_32 (stub->owner, (bfd_vma) insn,
2087 stub->contents + dyn_h->stub_offset + 8);
2088 }
2089
2090 return TRUE;
2091 }
2092
2093 /* The .opd section contains FPTRs for each function this file
2094 exports. Initialize the FPTR entries. */
2095
2096 static bfd_boolean
2097 elf64_hppa_finalize_opd (dyn_h, data)
2098 struct elf64_hppa_dyn_hash_entry *dyn_h;
2099 PTR data;
2100 {
2101 struct bfd_link_info *info = (struct bfd_link_info *)data;
2102 struct elf64_hppa_link_hash_table *hppa_info;
2103 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2104 asection *sopd;
2105 asection *sopdrel;
2106
2107 hppa_info = elf64_hppa_hash_table (info);
2108 sopd = hppa_info->opd_sec;
2109 sopdrel = hppa_info->opd_rel_sec;
2110
2111 if (h && dyn_h->want_opd)
2112 {
2113 bfd_vma value;
2114
2115 /* The first two words of an .opd entry are zero.
2116
2117 We are modifying the contents of the OPD section in memory, so we
2118 do not need to include its output offset in this computation. */
2119 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2120
2121 value = (h->root.u.def.value
2122 + h->root.u.def.section->output_section->vma
2123 + h->root.u.def.section->output_offset);
2124
2125 /* The next word is the address of the function. */
2126 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2127
2128 /* The last word is our local __gp value. */
2129 value = _bfd_get_gp_value (sopd->output_section->owner);
2130 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2131 }
2132
2133 /* If we are generating a shared library, we must generate EPLT relocations
2134 for each entry in the .opd, even for static functions (they may have
2135 had their address taken). */
2136 if (info->shared && dyn_h && dyn_h->want_opd)
2137 {
2138 Elf_Internal_Rela rel;
2139 bfd_byte *loc;
2140 int dynindx;
2141
2142 /* We may need to do a relocation against a local symbol, in
2143 which case we have to look up it's dynamic symbol index off
2144 the local symbol hash table. */
2145 if (h && h->dynindx != -1)
2146 dynindx = h->dynindx;
2147 else
2148 dynindx
2149 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2150 dyn_h->sym_indx);
2151
2152 /* The offset of this relocation is the absolute address of the
2153 .opd entry for this symbol. */
2154 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2155 + sopd->output_section->vma);
2156
2157 /* If H is non-null, then we have an external symbol.
2158
2159 It is imperative that we use a different dynamic symbol for the
2160 EPLT relocation if the symbol has global scope.
2161
2162 In the dynamic symbol table, the function symbol will have a value
2163 which is address of the function's .opd entry.
2164
2165 Thus, we can not use that dynamic symbol for the EPLT relocation
2166 (if we did, the data in the .opd would reference itself rather
2167 than the actual address of the function). Instead we have to use
2168 a new dynamic symbol which has the same value as the original global
2169 function symbol.
2170
2171 We prefix the original symbol with a "." and use the new symbol in
2172 the EPLT relocation. This new symbol has already been recorded in
2173 the symbol table, we just have to look it up and use it.
2174
2175 We do not have such problems with static functions because we do
2176 not make their addresses in the dynamic symbol table point to
2177 the .opd entry. Ultimately this should be safe since a static
2178 function can not be directly referenced outside of its shared
2179 library.
2180
2181 We do have to play similar games for FPTR relocations in shared
2182 libraries, including those for static symbols. See the FPTR
2183 handling in elf64_hppa_finalize_dynreloc. */
2184 if (h)
2185 {
2186 char *new_name;
2187 struct elf_link_hash_entry *nh;
2188
2189 new_name = alloca (strlen (h->root.root.string) + 2);
2190 new_name[0] = '.';
2191 strcpy (new_name + 1, h->root.root.string);
2192
2193 nh = elf_link_hash_lookup (elf_hash_table (info),
2194 new_name, FALSE, FALSE, FALSE);
2195
2196 /* All we really want from the new symbol is its dynamic
2197 symbol index. */
2198 dynindx = nh->dynindx;
2199 }
2200
2201 rel.r_addend = 0;
2202 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2203
2204 loc = sopdrel->contents;
2205 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2206 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2207 }
2208 return TRUE;
2209 }
2210
2211 /* The .dlt section contains addresses for items referenced through the
2212 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2213 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2214
2215 static bfd_boolean
2216 elf64_hppa_finalize_dlt (dyn_h, data)
2217 struct elf64_hppa_dyn_hash_entry *dyn_h;
2218 PTR data;
2219 {
2220 struct bfd_link_info *info = (struct bfd_link_info *)data;
2221 struct elf64_hppa_link_hash_table *hppa_info;
2222 asection *sdlt, *sdltrel;
2223 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2224
2225 hppa_info = elf64_hppa_hash_table (info);
2226
2227 sdlt = hppa_info->dlt_sec;
2228 sdltrel = hppa_info->dlt_rel_sec;
2229
2230 /* H/DYN_H may refer to a local variable and we know it's
2231 address, so there is no need to create a relocation. Just install
2232 the proper value into the DLT, note this shortcut can not be
2233 skipped when building a shared library. */
2234 if (! info->shared && h && dyn_h->want_dlt)
2235 {
2236 bfd_vma value;
2237
2238 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2239 to point to the FPTR entry in the .opd section.
2240
2241 We include the OPD's output offset in this computation as
2242 we are referring to an absolute address in the resulting
2243 object file. */
2244 if (dyn_h->want_opd)
2245 {
2246 value = (dyn_h->opd_offset
2247 + hppa_info->opd_sec->output_offset
2248 + hppa_info->opd_sec->output_section->vma);
2249 }
2250 else if ((h->root.type == bfd_link_hash_defined
2251 || h->root.type == bfd_link_hash_defweak)
2252 && h->root.u.def.section)
2253 {
2254 value = h->root.u.def.value + h->root.u.def.section->output_offset;
2255 if (h->root.u.def.section->output_section)
2256 value += h->root.u.def.section->output_section->vma;
2257 else
2258 value += h->root.u.def.section->vma;
2259 }
2260 else
2261 /* We have an undefined function reference. */
2262 value = 0;
2263
2264 /* We do not need to include the output offset of the DLT section
2265 here because we are modifying the in-memory contents. */
2266 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2267 }
2268
2269 /* Create a relocation for the DLT entry associated with this symbol.
2270 When building a shared library the symbol does not have to be dynamic. */
2271 if (dyn_h->want_dlt
2272 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2273 {
2274 Elf_Internal_Rela rel;
2275 bfd_byte *loc;
2276 int dynindx;
2277
2278 /* We may need to do a relocation against a local symbol, in
2279 which case we have to look up it's dynamic symbol index off
2280 the local symbol hash table. */
2281 if (h && h->dynindx != -1)
2282 dynindx = h->dynindx;
2283 else
2284 dynindx
2285 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2286 dyn_h->sym_indx);
2287
2288 /* Create a dynamic relocation for this entry. Do include the output
2289 offset of the DLT entry since we need an absolute address in the
2290 resulting object file. */
2291 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2292 + sdlt->output_section->vma);
2293 if (h && h->type == STT_FUNC)
2294 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2295 else
2296 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2297 rel.r_addend = 0;
2298
2299 loc = sdltrel->contents;
2300 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2301 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2302 }
2303 return TRUE;
2304 }
2305
2306 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2307 for dynamic functions used to initialize static data. */
2308
2309 static bfd_boolean
2310 elf64_hppa_finalize_dynreloc (dyn_h, data)
2311 struct elf64_hppa_dyn_hash_entry *dyn_h;
2312 PTR data;
2313 {
2314 struct bfd_link_info *info = (struct bfd_link_info *)data;
2315 struct elf64_hppa_link_hash_table *hppa_info;
2316 struct elf_link_hash_entry *h;
2317 int dynamic_symbol;
2318
2319 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2320
2321 if (!dynamic_symbol && !info->shared)
2322 return TRUE;
2323
2324 if (dyn_h->reloc_entries)
2325 {
2326 struct elf64_hppa_dyn_reloc_entry *rent;
2327 int dynindx;
2328
2329 hppa_info = elf64_hppa_hash_table (info);
2330 h = dyn_h->h;
2331
2332 /* We may need to do a relocation against a local symbol, in
2333 which case we have to look up it's dynamic symbol index off
2334 the local symbol hash table. */
2335 if (h && h->dynindx != -1)
2336 dynindx = h->dynindx;
2337 else
2338 dynindx
2339 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2340 dyn_h->sym_indx);
2341
2342 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2343 {
2344 Elf_Internal_Rela rel;
2345 bfd_byte *loc;
2346
2347 /* Allocate one iff we are building a shared library, the relocation
2348 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2349 if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2350 continue;
2351
2352 /* Create a dynamic relocation for this entry.
2353
2354 We need the output offset for the reloc's section because
2355 we are creating an absolute address in the resulting object
2356 file. */
2357 rel.r_offset = (rent->offset + rent->sec->output_offset
2358 + rent->sec->output_section->vma);
2359
2360 /* An FPTR64 relocation implies that we took the address of
2361 a function and that the function has an entry in the .opd
2362 section. We want the FPTR64 relocation to reference the
2363 entry in .opd.
2364
2365 We could munge the symbol value in the dynamic symbol table
2366 (in fact we already do for functions with global scope) to point
2367 to the .opd entry. Then we could use that dynamic symbol in
2368 this relocation.
2369
2370 Or we could do something sensible, not munge the symbol's
2371 address and instead just use a different symbol to reference
2372 the .opd entry. At least that seems sensible until you
2373 realize there's no local dynamic symbols we can use for that
2374 purpose. Thus the hair in the check_relocs routine.
2375
2376 We use a section symbol recorded by check_relocs as the
2377 base symbol for the relocation. The addend is the difference
2378 between the section symbol and the address of the .opd entry. */
2379 if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2380 {
2381 bfd_vma value, value2;
2382
2383 /* First compute the address of the opd entry for this symbol. */
2384 value = (dyn_h->opd_offset
2385 + hppa_info->opd_sec->output_section->vma
2386 + hppa_info->opd_sec->output_offset);
2387
2388 /* Compute the value of the start of the section with
2389 the relocation. */
2390 value2 = (rent->sec->output_section->vma
2391 + rent->sec->output_offset);
2392
2393 /* Compute the difference between the start of the section
2394 with the relocation and the opd entry. */
2395 value -= value2;
2396
2397 /* The result becomes the addend of the relocation. */
2398 rel.r_addend = value;
2399
2400 /* The section symbol becomes the symbol for the dynamic
2401 relocation. */
2402 dynindx
2403 = _bfd_elf_link_lookup_local_dynindx (info,
2404 rent->sec->owner,
2405 rent->sec_symndx);
2406 }
2407 else
2408 rel.r_addend = rent->addend;
2409
2410 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2411
2412 loc = hppa_info->other_rel_sec->contents;
2413 loc += (hppa_info->other_rel_sec->reloc_count++
2414 * sizeof (Elf64_External_Rela));
2415 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2416 &rel, loc);
2417 }
2418 }
2419
2420 return TRUE;
2421 }
2422
2423 /* Used to decide how to sort relocs in an optimal manner for the
2424 dynamic linker, before writing them out. */
2425
2426 static enum elf_reloc_type_class
2427 elf64_hppa_reloc_type_class (rela)
2428 const Elf_Internal_Rela *rela;
2429 {
2430 if (ELF64_R_SYM (rela->r_info) == 0)
2431 return reloc_class_relative;
2432
2433 switch ((int) ELF64_R_TYPE (rela->r_info))
2434 {
2435 case R_PARISC_IPLT:
2436 return reloc_class_plt;
2437 case R_PARISC_COPY:
2438 return reloc_class_copy;
2439 default:
2440 return reloc_class_normal;
2441 }
2442 }
2443
2444 /* Finish up the dynamic sections. */
2445
2446 static bfd_boolean
2447 elf64_hppa_finish_dynamic_sections (output_bfd, info)
2448 bfd *output_bfd;
2449 struct bfd_link_info *info;
2450 {
2451 bfd *dynobj;
2452 asection *sdyn;
2453 struct elf64_hppa_link_hash_table *hppa_info;
2454
2455 hppa_info = elf64_hppa_hash_table (info);
2456
2457 /* Finalize the contents of the .opd section. */
2458 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2459 elf64_hppa_finalize_opd,
2460 info);
2461
2462 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2463 elf64_hppa_finalize_dynreloc,
2464 info);
2465
2466 /* Finalize the contents of the .dlt section. */
2467 dynobj = elf_hash_table (info)->dynobj;
2468 /* Finalize the contents of the .dlt section. */
2469 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2470 elf64_hppa_finalize_dlt,
2471 info);
2472
2473 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2474
2475 if (elf_hash_table (info)->dynamic_sections_created)
2476 {
2477 Elf64_External_Dyn *dyncon, *dynconend;
2478
2479 BFD_ASSERT (sdyn != NULL);
2480
2481 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2482 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2483 for (; dyncon < dynconend; dyncon++)
2484 {
2485 Elf_Internal_Dyn dyn;
2486 asection *s;
2487
2488 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2489
2490 switch (dyn.d_tag)
2491 {
2492 default:
2493 break;
2494
2495 case DT_HP_LOAD_MAP:
2496 /* Compute the absolute address of 16byte scratchpad area
2497 for the dynamic linker.
2498
2499 By convention the linker script will allocate the scratchpad
2500 area at the start of the .data section. So all we have to
2501 to is find the start of the .data section. */
2502 s = bfd_get_section_by_name (output_bfd, ".data");
2503 dyn.d_un.d_ptr = s->vma;
2504 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2505 break;
2506
2507 case DT_PLTGOT:
2508 /* HP's use PLTGOT to set the GOT register. */
2509 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2510 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2511 break;
2512
2513 case DT_JMPREL:
2514 s = hppa_info->plt_rel_sec;
2515 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2516 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2517 break;
2518
2519 case DT_PLTRELSZ:
2520 s = hppa_info->plt_rel_sec;
2521 dyn.d_un.d_val = s->size;
2522 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2523 break;
2524
2525 case DT_RELA:
2526 s = hppa_info->other_rel_sec;
2527 if (! s || ! s->size)
2528 s = hppa_info->dlt_rel_sec;
2529 if (! s || ! s->size)
2530 s = hppa_info->opd_rel_sec;
2531 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2532 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2533 break;
2534
2535 case DT_RELASZ:
2536 s = hppa_info->other_rel_sec;
2537 dyn.d_un.d_val = s->size;
2538 s = hppa_info->dlt_rel_sec;
2539 dyn.d_un.d_val += s->size;
2540 s = hppa_info->opd_rel_sec;
2541 dyn.d_un.d_val += s->size;
2542 /* There is some question about whether or not the size of
2543 the PLT relocs should be included here. HP's tools do
2544 it, so we'll emulate them. */
2545 s = hppa_info->plt_rel_sec;
2546 dyn.d_un.d_val += s->size;
2547 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2548 break;
2549
2550 }
2551 }
2552 }
2553
2554 return TRUE;
2555 }
2556
2557 /* Support for core dump NOTE sections. */
2558
2559 static bfd_boolean
2560 elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2561 {
2562 int offset;
2563 size_t size;
2564
2565 switch (note->descsz)
2566 {
2567 default:
2568 return FALSE;
2569
2570 case 760: /* Linux/hppa */
2571 /* pr_cursig */
2572 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2573
2574 /* pr_pid */
2575 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2576
2577 /* pr_reg */
2578 offset = 112;
2579 size = 640;
2580
2581 break;
2582 }
2583
2584 /* Make a ".reg/999" section. */
2585 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2586 size, note->descpos + offset);
2587 }
2588
2589 static bfd_boolean
2590 elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2591 {
2592 char * command;
2593 int n;
2594
2595 switch (note->descsz)
2596 {
2597 default:
2598 return FALSE;
2599
2600 case 136: /* Linux/hppa elf_prpsinfo. */
2601 elf_tdata (abfd)->core_program
2602 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2603 elf_tdata (abfd)->core_command
2604 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2605 }
2606
2607 /* Note that for some reason, a spurious space is tacked
2608 onto the end of the args in some (at least one anyway)
2609 implementations, so strip it off if it exists. */
2610 command = elf_tdata (abfd)->core_command;
2611 n = strlen (command);
2612
2613 if (0 < n && command[n - 1] == ' ')
2614 command[n - 1] = '\0';
2615
2616 return TRUE;
2617 }
2618
2619 /* Return the number of additional phdrs we will need.
2620
2621 The generic ELF code only creates PT_PHDRs for executables. The HP
2622 dynamic linker requires PT_PHDRs for dynamic libraries too.
2623
2624 This routine indicates that the backend needs one additional program
2625 header for that case.
2626
2627 Note we do not have access to the link info structure here, so we have
2628 to guess whether or not we are building a shared library based on the
2629 existence of a .interp section. */
2630
2631 static int
2632 elf64_hppa_additional_program_headers (bfd *abfd,
2633 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2634 {
2635 asection *s;
2636
2637 /* If we are creating a shared library, then we have to create a
2638 PT_PHDR segment. HP's dynamic linker chokes without it. */
2639 s = bfd_get_section_by_name (abfd, ".interp");
2640 if (! s)
2641 return 1;
2642 return 0;
2643 }
2644
2645 /* Allocate and initialize any program headers required by this
2646 specific backend.
2647
2648 The generic ELF code only creates PT_PHDRs for executables. The HP
2649 dynamic linker requires PT_PHDRs for dynamic libraries too.
2650
2651 This allocates the PT_PHDR and initializes it in a manner suitable
2652 for the HP linker.
2653
2654 Note we do not have access to the link info structure here, so we have
2655 to guess whether or not we are building a shared library based on the
2656 existence of a .interp section. */
2657
2658 static bfd_boolean
2659 elf64_hppa_modify_segment_map (bfd *abfd,
2660 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2661 {
2662 struct elf_segment_map *m;
2663 asection *s;
2664
2665 s = bfd_get_section_by_name (abfd, ".interp");
2666 if (! s)
2667 {
2668 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2669 if (m->p_type == PT_PHDR)
2670 break;
2671 if (m == NULL)
2672 {
2673 m = ((struct elf_segment_map *)
2674 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2675 if (m == NULL)
2676 return FALSE;
2677
2678 m->p_type = PT_PHDR;
2679 m->p_flags = PF_R | PF_X;
2680 m->p_flags_valid = 1;
2681 m->p_paddr_valid = 1;
2682 m->includes_phdrs = 1;
2683
2684 m->next = elf_tdata (abfd)->segment_map;
2685 elf_tdata (abfd)->segment_map = m;
2686 }
2687 }
2688
2689 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2690 if (m->p_type == PT_LOAD)
2691 {
2692 unsigned int i;
2693
2694 for (i = 0; i < m->count; i++)
2695 {
2696 /* The code "hint" is not really a hint. It is a requirement
2697 for certain versions of the HP dynamic linker. Worse yet,
2698 it must be set even if the shared library does not have
2699 any code in its "text" segment (thus the check for .hash
2700 to catch this situation). */
2701 if (m->sections[i]->flags & SEC_CODE
2702 || (strcmp (m->sections[i]->name, ".hash") == 0))
2703 m->p_flags |= (PF_X | PF_HP_CODE);
2704 }
2705 }
2706
2707 return TRUE;
2708 }
2709
2710 /* Called when writing out an object file to decide the type of a
2711 symbol. */
2712 static int
2713 elf64_hppa_elf_get_symbol_type (elf_sym, type)
2714 Elf_Internal_Sym *elf_sym;
2715 int type;
2716 {
2717 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2718 return STT_PARISC_MILLI;
2719 else
2720 return type;
2721 }
2722
2723 /* Support HP specific sections for core files. */
2724 static bfd_boolean
2725 elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index,
2726 const char *typename)
2727 {
2728 if (hdr->p_type == PT_HP_CORE_KERNEL)
2729 {
2730 asection *sect;
2731
2732 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2733 return FALSE;
2734
2735 sect = bfd_make_section_anyway (abfd, ".kernel");
2736 if (sect == NULL)
2737 return FALSE;
2738 sect->size = hdr->p_filesz;
2739 sect->filepos = hdr->p_offset;
2740 sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2741 return TRUE;
2742 }
2743
2744 if (hdr->p_type == PT_HP_CORE_PROC)
2745 {
2746 int sig;
2747
2748 if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2749 return FALSE;
2750 if (bfd_bread (&sig, 4, abfd) != 4)
2751 return FALSE;
2752
2753 elf_tdata (abfd)->core_signal = sig;
2754
2755 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2756 return FALSE;
2757
2758 /* GDB uses the ".reg" section to read register contents. */
2759 return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2760 hdr->p_offset);
2761 }
2762
2763 if (hdr->p_type == PT_HP_CORE_LOADABLE
2764 || hdr->p_type == PT_HP_CORE_STACK
2765 || hdr->p_type == PT_HP_CORE_MMF)
2766 hdr->p_type = PT_LOAD;
2767
2768 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename);
2769 }
2770
2771 static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
2772 {
2773 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2774 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2775 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2776 { STRING_COMMA_LEN (".dlt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2777 { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2778 { STRING_COMMA_LEN (".sbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2779 { STRING_COMMA_LEN (".tbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
2780 { NULL, 0, 0, 0, 0 }
2781 };
2782
2783 /* The hash bucket size is the standard one, namely 4. */
2784
2785 const struct elf_size_info hppa64_elf_size_info =
2786 {
2787 sizeof (Elf64_External_Ehdr),
2788 sizeof (Elf64_External_Phdr),
2789 sizeof (Elf64_External_Shdr),
2790 sizeof (Elf64_External_Rel),
2791 sizeof (Elf64_External_Rela),
2792 sizeof (Elf64_External_Sym),
2793 sizeof (Elf64_External_Dyn),
2794 sizeof (Elf_External_Note),
2795 4,
2796 1,
2797 64, 3,
2798 ELFCLASS64, EV_CURRENT,
2799 bfd_elf64_write_out_phdrs,
2800 bfd_elf64_write_shdrs_and_ehdr,
2801 bfd_elf64_checksum_contents,
2802 bfd_elf64_write_relocs,
2803 bfd_elf64_swap_symbol_in,
2804 bfd_elf64_swap_symbol_out,
2805 bfd_elf64_slurp_reloc_table,
2806 bfd_elf64_slurp_symbol_table,
2807 bfd_elf64_swap_dyn_in,
2808 bfd_elf64_swap_dyn_out,
2809 bfd_elf64_swap_reloc_in,
2810 bfd_elf64_swap_reloc_out,
2811 bfd_elf64_swap_reloca_in,
2812 bfd_elf64_swap_reloca_out
2813 };
2814
2815 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
2816 #define TARGET_BIG_NAME "elf64-hppa"
2817 #define ELF_ARCH bfd_arch_hppa
2818 #define ELF_MACHINE_CODE EM_PARISC
2819 /* This is not strictly correct. The maximum page size for PA2.0 is
2820 64M. But everything still uses 4k. */
2821 #define ELF_MAXPAGESIZE 0x1000
2822 #define ELF_OSABI ELFOSABI_HPUX
2823
2824 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2825 #define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
2826 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2827 #define elf_info_to_howto elf_hppa_info_to_howto
2828 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2829
2830 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2831 #define elf_backend_object_p elf64_hppa_object_p
2832 #define elf_backend_final_write_processing \
2833 elf_hppa_final_write_processing
2834 #define elf_backend_fake_sections elf_hppa_fake_sections
2835 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2836
2837 #define elf_backend_relocate_section elf_hppa_relocate_section
2838
2839 #define bfd_elf64_bfd_final_link elf_hppa_final_link
2840
2841 #define elf_backend_create_dynamic_sections \
2842 elf64_hppa_create_dynamic_sections
2843 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
2844
2845 #define elf_backend_omit_section_dynsym \
2846 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
2847 #define elf_backend_adjust_dynamic_symbol \
2848 elf64_hppa_adjust_dynamic_symbol
2849
2850 #define elf_backend_size_dynamic_sections \
2851 elf64_hppa_size_dynamic_sections
2852
2853 #define elf_backend_finish_dynamic_symbol \
2854 elf64_hppa_finish_dynamic_symbol
2855 #define elf_backend_finish_dynamic_sections \
2856 elf64_hppa_finish_dynamic_sections
2857 #define elf_backend_grok_prstatus elf64_hppa_grok_prstatus
2858 #define elf_backend_grok_psinfo elf64_hppa_grok_psinfo
2859
2860 /* Stuff for the BFD linker: */
2861 #define bfd_elf64_bfd_link_hash_table_create \
2862 elf64_hppa_hash_table_create
2863
2864 #define elf_backend_check_relocs \
2865 elf64_hppa_check_relocs
2866
2867 #define elf_backend_size_info \
2868 hppa64_elf_size_info
2869
2870 #define elf_backend_additional_program_headers \
2871 elf64_hppa_additional_program_headers
2872
2873 #define elf_backend_modify_segment_map \
2874 elf64_hppa_modify_segment_map
2875
2876 #define elf_backend_link_output_symbol_hook \
2877 elf64_hppa_link_output_symbol_hook
2878
2879 #define elf_backend_want_got_plt 0
2880 #define elf_backend_plt_readonly 0
2881 #define elf_backend_want_plt_sym 0
2882 #define elf_backend_got_header_size 0
2883 #define elf_backend_type_change_ok TRUE
2884 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2885 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
2886 #define elf_backend_rela_normal 1
2887 #define elf_backend_special_sections elf64_hppa_special_sections
2888 #define elf_backend_action_discarded elf_hppa_action_discarded
2889 #define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
2890
2891 #define elf64_bed elf64_hppa_hpux_bed
2892
2893 #include "elf64-target.h"
2894
2895 #undef TARGET_BIG_SYM
2896 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2897 #undef TARGET_BIG_NAME
2898 #define TARGET_BIG_NAME "elf64-hppa-linux"
2899 #undef ELF_OSABI
2900 #define ELF_OSABI ELFOSABI_LINUX
2901 #undef elf_backend_post_process_headers
2902 #define elf_backend_post_process_headers _bfd_elf_set_osabi
2903 #undef elf64_bed
2904 #define elf64_bed elf64_hppa_linux_bed
2905
2906 #include "elf64-target.h"