]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-ppc.c
PR26656, power10 libstdc++.so segfault in __cxxabiv1::__cxa_throw
[thirdparty/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright (C) 1999-2020 Free Software Foundation, Inc.
3 Written by Linus Nordberg, Swox AB <info@swox.com>,
4 based on elf32-ppc.c by Ian Lance Taylor.
5 Largely rewritten by Alan Modra.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License along
20 with this program; if not, write to the Free Software Foundation, Inc.,
21 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "sysdep.h"
29 #include <stdarg.h>
30 #include "bfd.h"
31 #include "bfdlink.h"
32 #include "libbfd.h"
33 #include "elf-bfd.h"
34 #include "elf/ppc64.h"
35 #include "elf64-ppc.h"
36 #include "dwarf2.h"
37
38 /* All users of this file have bfd_octets_per_byte (abfd, sec) == 1. */
39 #define OCTETS_PER_BYTE(ABFD, SEC) 1
40
41 static bfd_reloc_status_type ppc64_elf_ha_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_reloc_status_type ppc64_elf_branch_reloc
44 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
45 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
46 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
47 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
48 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
49 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
50 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
51 static bfd_reloc_status_type ppc64_elf_toc_reloc
52 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
53 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
54 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
55 static bfd_reloc_status_type ppc64_elf_toc64_reloc
56 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
57 static bfd_reloc_status_type ppc64_elf_prefix_reloc
58 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
59 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
60 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
61 static bfd_vma opd_entry_value
62 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
63
64 #define TARGET_LITTLE_SYM powerpc_elf64_le_vec
65 #define TARGET_LITTLE_NAME "elf64-powerpcle"
66 #define TARGET_BIG_SYM powerpc_elf64_vec
67 #define TARGET_BIG_NAME "elf64-powerpc"
68 #define ELF_ARCH bfd_arch_powerpc
69 #define ELF_TARGET_ID PPC64_ELF_DATA
70 #define ELF_MACHINE_CODE EM_PPC64
71 #define ELF_MAXPAGESIZE 0x10000
72 #define ELF_COMMONPAGESIZE 0x1000
73 #define ELF_RELROPAGESIZE ELF_MAXPAGESIZE
74 #define elf_info_to_howto ppc64_elf_info_to_howto
75
76 #define elf_backend_want_got_sym 0
77 #define elf_backend_want_plt_sym 0
78 #define elf_backend_plt_alignment 3
79 #define elf_backend_plt_not_loaded 1
80 #define elf_backend_got_header_size 8
81 #define elf_backend_want_dynrelro 1
82 #define elf_backend_can_gc_sections 1
83 #define elf_backend_can_refcount 1
84 #define elf_backend_rela_normal 1
85 #define elf_backend_dtrel_excludes_plt 1
86 #define elf_backend_default_execstack 0
87
88 #define bfd_elf64_mkobject ppc64_elf_mkobject
89 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
90 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
91 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
92 #define bfd_elf64_bfd_print_private_bfd_data ppc64_elf_print_private_bfd_data
93 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
94 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
95 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
96 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
97 #define bfd_elf64_bfd_gc_sections ppc64_elf_gc_sections
98
99 #define elf_backend_object_p ppc64_elf_object_p
100 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
101 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
102 #define elf_backend_write_core_note ppc64_elf_write_core_note
103 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
104 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
105 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
106 #define elf_backend_check_directives ppc64_elf_before_check_relocs
107 #define elf_backend_notice_as_needed ppc64_elf_notice_as_needed
108 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
109 #define elf_backend_check_relocs ppc64_elf_check_relocs
110 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
111 #define elf_backend_gc_keep ppc64_elf_gc_keep
112 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
113 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
114 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
115 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
116 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
117 #define elf_backend_always_size_sections ppc64_elf_edit
118 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
119 #define elf_backend_hash_symbol ppc64_elf_hash_symbol
120 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
121 #define elf_backend_action_discarded ppc64_elf_action_discarded
122 #define elf_backend_relocate_section ppc64_elf_relocate_section
123 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
124 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
125 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
126 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
127 #define elf_backend_special_sections ppc64_elf_special_sections
128 #define elf_backend_section_flags ppc64_elf_section_flags
129 #define elf_backend_merge_symbol_attribute ppc64_elf_merge_symbol_attribute
130 #define elf_backend_merge_symbol ppc64_elf_merge_symbol
131 #define elf_backend_get_reloc_section bfd_get_section_by_name
132
133 /* The name of the dynamic interpreter. This is put in the .interp
134 section. */
135 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
136
137 /* The size in bytes of an entry in the procedure linkage table. */
138 #define PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 8)
139 #define LOCAL_PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 16 : 8)
140
141 /* The initial size of the plt reserved for the dynamic linker. */
142 #define PLT_INITIAL_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 16)
143
144 /* Offsets to some stack save slots. */
145 #define STK_LR 16
146 #define STK_TOC(htab) (htab->opd_abi ? 40 : 24)
147 /* This one is dodgy. ELFv2 does not have a linker word, so use the
148 CR save slot. Used only by optimised __tls_get_addr call stub,
149 relying on __tls_get_addr_opt not saving CR.. */
150 #define STK_LINKER(htab) (htab->opd_abi ? 32 : 8)
151
152 /* TOC base pointers offset from start of TOC. */
153 #define TOC_BASE_OFF 0x8000
154 /* TOC base alignment. */
155 #define TOC_BASE_ALIGN 256
156
157 /* Offset of tp and dtp pointers from start of TLS block. */
158 #define TP_OFFSET 0x7000
159 #define DTP_OFFSET 0x8000
160
161 /* .plt call stub instructions. The normal stub is like this, but
162 sometimes the .plt entry crosses a 64k boundary and we need to
163 insert an addi to adjust r11. */
164 #define STD_R2_0R1 0xf8410000 /* std %r2,0+40(%r1) */
165 #define ADDIS_R11_R2 0x3d620000 /* addis %r11,%r2,xxx@ha */
166 #define LD_R12_0R11 0xe98b0000 /* ld %r12,xxx+0@l(%r11) */
167 #define MTCTR_R12 0x7d8903a6 /* mtctr %r12 */
168 #define LD_R2_0R11 0xe84b0000 /* ld %r2,xxx+8@l(%r11) */
169 #define LD_R11_0R11 0xe96b0000 /* ld %r11,xxx+16@l(%r11) */
170 #define BCTR 0x4e800420 /* bctr */
171
172 #define ADDI_R11_R11 0x396b0000 /* addi %r11,%r11,off@l */
173 #define ADDI_R12_R11 0x398b0000 /* addi %r12,%r11,off@l */
174 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,off@l */
175 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
176 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
177
178 #define XOR_R2_R12_R12 0x7d826278 /* xor %r2,%r12,%r12 */
179 #define ADD_R11_R11_R2 0x7d6b1214 /* add %r11,%r11,%r2 */
180 #define XOR_R11_R12_R12 0x7d8b6278 /* xor %r11,%r12,%r12 */
181 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
182 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
183 #define BNECTR 0x4ca20420 /* bnectr+ */
184 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
185
186 #define LD_R12_0R2 0xe9820000 /* ld %r12,xxx+0(%r2) */
187 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
188 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
189
190 #define LD_R2_0R1 0xe8410000 /* ld %r2,0(%r1) */
191 #define LD_R2_0R12 0xe84c0000 /* ld %r2,0(%r12) */
192 #define ADD_R2_R2_R12 0x7c426214 /* add %r2,%r2,%r12 */
193
194 #define LI_R11_0 0x39600000 /* li %r11,0 */
195 #define LIS_R2 0x3c400000 /* lis %r2,xxx@ha */
196 #define LIS_R11 0x3d600000 /* lis %r11,xxx@ha */
197 #define LIS_R12 0x3d800000 /* lis %r12,xxx@ha */
198 #define ADDIS_R2_R12 0x3c4c0000 /* addis %r2,%r12,xxx@ha */
199 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
200 #define ADDIS_R12_R11 0x3d8b0000 /* addis %r12,%r11,xxx@ha */
201 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
202 #define ORIS_R12_R12_0 0x658c0000 /* oris %r12,%r12,xxx@hi */
203 #define ORI_R11_R11_0 0x616b0000 /* ori %r11,%r11,xxx@l */
204 #define ORI_R12_R12_0 0x618c0000 /* ori %r12,%r12,xxx@l */
205 #define LD_R12_0R12 0xe98c0000 /* ld %r12,xxx@l(%r12) */
206 #define SLDI_R11_R11_34 0x796b1746 /* sldi %r11,%r11,34 */
207 #define SLDI_R12_R12_32 0x799c07c6 /* sldi %r12,%r12,32 */
208 #define LDX_R12_R11_R12 0x7d8b602a /* ldx %r12,%r11,%r12 */
209 #define ADD_R12_R11_R12 0x7d8b6214 /* add %r12,%r11,%r12 */
210 #define PADDI_R12_PC 0x0610000039800000ULL
211 #define PLD_R12_PC 0x04100000e5800000ULL
212 #define PNOP 0x0700000000000000ULL
213
214 /* __glink_PLTresolve stub instructions. We enter with the index in R0. */
215 #define GLINK_PLTRESOLVE_SIZE(htab) \
216 (8u + (htab->opd_abi ? 11 * 4 : 14 * 4))
217 /* 0: */
218 /* .quad plt0-1f */
219 /* __glink: */
220 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
221 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
222 /* 1: */
223 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
224 /* ld %2,(0b-1b)(%11) */
225 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
226 #define ADD_R11_R2_R11 0x7d625a14 /* add %11,%2,%11 */
227 /* ld %12,0(%11) */
228 /* ld %2,8(%11) */
229 /* mtctr %12 */
230 /* ld %11,16(%11) */
231 /* bctr */
232 #define MFLR_R0 0x7c0802a6 /* mflr %r0 */
233 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
234 #define SUB_R12_R12_R11 0x7d8b6050 /* subf %r12,%r11,%r12 */
235 #define ADDI_R0_R12 0x380c0000 /* addi %r0,%r12,0 */
236 #define SRDI_R0_R0_2 0x7800f082 /* rldicl %r0,%r0,62,2 */
237
238 /* Pad with this. */
239 #define NOP 0x60000000
240
241 /* Some other nops. */
242 #define CROR_151515 0x4def7b82
243 #define CROR_313131 0x4ffffb82
244
245 /* .glink entries for the first 32k functions are two instructions. */
246 #define LI_R0_0 0x38000000 /* li %r0,0 */
247 #define B_DOT 0x48000000 /* b . */
248
249 /* After that, we need two instructions to load the index, followed by
250 a branch. */
251 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
252 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
253
254 /* Instructions used by the save and restore reg functions. */
255 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
256 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
257 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
258 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
259 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
260 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
261 #define LI_R12_0 0x39800000 /* li %r12,0 */
262 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
263 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
264 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
265 #define BLR 0x4e800020 /* blr */
266
267 /* Since .opd is an array of descriptors and each entry will end up
268 with identical R_PPC64_RELATIVE relocs, there is really no need to
269 propagate .opd relocs; The dynamic linker should be taught to
270 relocate .opd without reloc entries. */
271 #ifndef NO_OPD_RELOCS
272 #define NO_OPD_RELOCS 0
273 #endif
274
275 #ifndef ARRAY_SIZE
276 #define ARRAY_SIZE(a) (sizeof (a) / sizeof ((a)[0]))
277 #endif
278
279 static inline int
280 abiversion (bfd *abfd)
281 {
282 return elf_elfheader (abfd)->e_flags & EF_PPC64_ABI;
283 }
284
285 static inline void
286 set_abiversion (bfd *abfd, int ver)
287 {
288 elf_elfheader (abfd)->e_flags &= ~EF_PPC64_ABI;
289 elf_elfheader (abfd)->e_flags |= ver & EF_PPC64_ABI;
290 }
291 \f
292 /* Relocation HOWTO's. */
293 /* Like other ELF RELA targets that don't apply multiple
294 field-altering relocations to the same localation, src_mask is
295 always zero and pcrel_offset is the same as pc_relative.
296 PowerPC can always use a zero bitpos, even when the field is not at
297 the LSB. For example, a REL24 could use rightshift=2, bisize=24
298 and bitpos=2 which matches the ABI description, or as we do here,
299 rightshift=0, bitsize=26 and bitpos=0. */
300 #define HOW(type, size, bitsize, mask, rightshift, pc_relative, \
301 complain, special_func) \
302 HOWTO (type, rightshift, size, bitsize, pc_relative, 0, \
303 complain_overflow_ ## complain, special_func, \
304 #type, FALSE, 0, mask, pc_relative)
305
306 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
307
308 static reloc_howto_type ppc64_elf_howto_raw[] =
309 {
310 /* This reloc does nothing. */
311 HOW (R_PPC64_NONE, 3, 0, 0, 0, FALSE, dont,
312 bfd_elf_generic_reloc),
313
314 /* A standard 32 bit relocation. */
315 HOW (R_PPC64_ADDR32, 2, 32, 0xffffffff, 0, FALSE, bitfield,
316 bfd_elf_generic_reloc),
317
318 /* An absolute 26 bit branch; the lower two bits must be zero.
319 FIXME: we don't check that, we just clear them. */
320 HOW (R_PPC64_ADDR24, 2, 26, 0x03fffffc, 0, FALSE, bitfield,
321 bfd_elf_generic_reloc),
322
323 /* A standard 16 bit relocation. */
324 HOW (R_PPC64_ADDR16, 1, 16, 0xffff, 0, FALSE, bitfield,
325 bfd_elf_generic_reloc),
326
327 /* A 16 bit relocation without overflow. */
328 HOW (R_PPC64_ADDR16_LO, 1, 16, 0xffff, 0, FALSE, dont,
329 bfd_elf_generic_reloc),
330
331 /* Bits 16-31 of an address. */
332 HOW (R_PPC64_ADDR16_HI, 1, 16, 0xffff, 16, FALSE, signed,
333 bfd_elf_generic_reloc),
334
335 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
336 bits, treated as a signed number, is negative. */
337 HOW (R_PPC64_ADDR16_HA, 1, 16, 0xffff, 16, FALSE, signed,
338 ppc64_elf_ha_reloc),
339
340 /* An absolute 16 bit branch; the lower two bits must be zero.
341 FIXME: we don't check that, we just clear them. */
342 HOW (R_PPC64_ADDR14, 2, 16, 0x0000fffc, 0, FALSE, signed,
343 ppc64_elf_branch_reloc),
344
345 /* An absolute 16 bit branch, for which bit 10 should be set to
346 indicate that the branch is expected to be taken. The lower two
347 bits must be zero. */
348 HOW (R_PPC64_ADDR14_BRTAKEN, 2, 16, 0x0000fffc, 0, FALSE, signed,
349 ppc64_elf_brtaken_reloc),
350
351 /* An absolute 16 bit branch, for which bit 10 should be set to
352 indicate that the branch is not expected to be taken. The lower
353 two bits must be zero. */
354 HOW (R_PPC64_ADDR14_BRNTAKEN, 2, 16, 0x0000fffc, 0, FALSE, signed,
355 ppc64_elf_brtaken_reloc),
356
357 /* A relative 26 bit branch; the lower two bits must be zero. */
358 HOW (R_PPC64_REL24, 2, 26, 0x03fffffc, 0, TRUE, signed,
359 ppc64_elf_branch_reloc),
360
361 /* A variant of R_PPC64_REL24, used when r2 is not the toc pointer. */
362 HOW (R_PPC64_REL24_NOTOC, 2, 26, 0x03fffffc, 0, TRUE, signed,
363 ppc64_elf_branch_reloc),
364
365 /* A relative 16 bit branch; the lower two bits must be zero. */
366 HOW (R_PPC64_REL14, 2, 16, 0x0000fffc, 0, TRUE, signed,
367 ppc64_elf_branch_reloc),
368
369 /* A relative 16 bit branch. Bit 10 should be set to indicate that
370 the branch is expected to be taken. The lower two bits must be
371 zero. */
372 HOW (R_PPC64_REL14_BRTAKEN, 2, 16, 0x0000fffc, 0, TRUE, signed,
373 ppc64_elf_brtaken_reloc),
374
375 /* A relative 16 bit branch. Bit 10 should be set to indicate that
376 the branch is not expected to be taken. The lower two bits must
377 be zero. */
378 HOW (R_PPC64_REL14_BRNTAKEN, 2, 16, 0x0000fffc, 0, TRUE, signed,
379 ppc64_elf_brtaken_reloc),
380
381 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
382 symbol. */
383 HOW (R_PPC64_GOT16, 1, 16, 0xffff, 0, FALSE, signed,
384 ppc64_elf_unhandled_reloc),
385
386 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
387 the symbol. */
388 HOW (R_PPC64_GOT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
389 ppc64_elf_unhandled_reloc),
390
391 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
392 the symbol. */
393 HOW (R_PPC64_GOT16_HI, 1, 16, 0xffff, 16, FALSE, signed,
394 ppc64_elf_unhandled_reloc),
395
396 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
397 the symbol. */
398 HOW (R_PPC64_GOT16_HA, 1, 16, 0xffff, 16, FALSE, signed,
399 ppc64_elf_unhandled_reloc),
400
401 /* This is used only by the dynamic linker. The symbol should exist
402 both in the object being run and in some shared library. The
403 dynamic linker copies the data addressed by the symbol from the
404 shared library into the object, because the object being
405 run has to have the data at some particular address. */
406 HOW (R_PPC64_COPY, 0, 0, 0, 0, FALSE, dont,
407 ppc64_elf_unhandled_reloc),
408
409 /* Like R_PPC64_ADDR64, but used when setting global offset table
410 entries. */
411 HOW (R_PPC64_GLOB_DAT, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
412 ppc64_elf_unhandled_reloc),
413
414 /* Created by the link editor. Marks a procedure linkage table
415 entry for a symbol. */
416 HOW (R_PPC64_JMP_SLOT, 0, 0, 0, 0, FALSE, dont,
417 ppc64_elf_unhandled_reloc),
418
419 /* Used only by the dynamic linker. When the object is run, this
420 doubleword64 is set to the load address of the object, plus the
421 addend. */
422 HOW (R_PPC64_RELATIVE, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
423 bfd_elf_generic_reloc),
424
425 /* Like R_PPC64_ADDR32, but may be unaligned. */
426 HOW (R_PPC64_UADDR32, 2, 32, 0xffffffff, 0, FALSE, bitfield,
427 bfd_elf_generic_reloc),
428
429 /* Like R_PPC64_ADDR16, but may be unaligned. */
430 HOW (R_PPC64_UADDR16, 1, 16, 0xffff, 0, FALSE, bitfield,
431 bfd_elf_generic_reloc),
432
433 /* 32-bit PC relative. */
434 HOW (R_PPC64_REL32, 2, 32, 0xffffffff, 0, TRUE, signed,
435 bfd_elf_generic_reloc),
436
437 /* 32-bit relocation to the symbol's procedure linkage table. */
438 HOW (R_PPC64_PLT32, 2, 32, 0xffffffff, 0, FALSE, bitfield,
439 ppc64_elf_unhandled_reloc),
440
441 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
442 FIXME: R_PPC64_PLTREL32 not supported. */
443 HOW (R_PPC64_PLTREL32, 2, 32, 0xffffffff, 0, TRUE, signed,
444 ppc64_elf_unhandled_reloc),
445
446 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
447 the symbol. */
448 HOW (R_PPC64_PLT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
449 ppc64_elf_unhandled_reloc),
450
451 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
452 the symbol. */
453 HOW (R_PPC64_PLT16_HI, 1, 16, 0xffff, 16, FALSE, signed,
454 ppc64_elf_unhandled_reloc),
455
456 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
457 the symbol. */
458 HOW (R_PPC64_PLT16_HA, 1, 16, 0xffff, 16, FALSE, signed,
459 ppc64_elf_unhandled_reloc),
460
461 /* 16-bit section relative relocation. */
462 HOW (R_PPC64_SECTOFF, 1, 16, 0xffff, 0, FALSE, signed,
463 ppc64_elf_sectoff_reloc),
464
465 /* Like R_PPC64_SECTOFF, but no overflow warning. */
466 HOW (R_PPC64_SECTOFF_LO, 1, 16, 0xffff, 0, FALSE, dont,
467 ppc64_elf_sectoff_reloc),
468
469 /* 16-bit upper half section relative relocation. */
470 HOW (R_PPC64_SECTOFF_HI, 1, 16, 0xffff, 16, FALSE, signed,
471 ppc64_elf_sectoff_reloc),
472
473 /* 16-bit upper half adjusted section relative relocation. */
474 HOW (R_PPC64_SECTOFF_HA, 1, 16, 0xffff, 16, FALSE, signed,
475 ppc64_elf_sectoff_ha_reloc),
476
477 /* Like R_PPC64_REL24 without touching the two least significant bits. */
478 HOW (R_PPC64_REL30, 2, 30, 0xfffffffc, 2, TRUE, dont,
479 bfd_elf_generic_reloc),
480
481 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
482
483 /* A standard 64-bit relocation. */
484 HOW (R_PPC64_ADDR64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
485 bfd_elf_generic_reloc),
486
487 /* The bits 32-47 of an address. */
488 HOW (R_PPC64_ADDR16_HIGHER, 1, 16, 0xffff, 32, FALSE, dont,
489 bfd_elf_generic_reloc),
490
491 /* The bits 32-47 of an address, plus 1 if the contents of the low
492 16 bits, treated as a signed number, is negative. */
493 HOW (R_PPC64_ADDR16_HIGHERA, 1, 16, 0xffff, 32, FALSE, dont,
494 ppc64_elf_ha_reloc),
495
496 /* The bits 48-63 of an address. */
497 HOW (R_PPC64_ADDR16_HIGHEST, 1, 16, 0xffff, 48, FALSE, dont,
498 bfd_elf_generic_reloc),
499
500 /* The bits 48-63 of an address, plus 1 if the contents of the low
501 16 bits, treated as a signed number, is negative. */
502 HOW (R_PPC64_ADDR16_HIGHESTA, 1, 16, 0xffff, 48, FALSE, dont,
503 ppc64_elf_ha_reloc),
504
505 /* Like ADDR64, but may be unaligned. */
506 HOW (R_PPC64_UADDR64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
507 bfd_elf_generic_reloc),
508
509 /* 64-bit relative relocation. */
510 HOW (R_PPC64_REL64, 4, 64, 0xffffffffffffffffULL, 0, TRUE, dont,
511 bfd_elf_generic_reloc),
512
513 /* 64-bit relocation to the symbol's procedure linkage table. */
514 HOW (R_PPC64_PLT64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
515 ppc64_elf_unhandled_reloc),
516
517 /* 64-bit PC relative relocation to the symbol's procedure linkage
518 table. */
519 /* FIXME: R_PPC64_PLTREL64 not supported. */
520 HOW (R_PPC64_PLTREL64, 4, 64, 0xffffffffffffffffULL, 0, TRUE, dont,
521 ppc64_elf_unhandled_reloc),
522
523 /* 16 bit TOC-relative relocation. */
524 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
525 HOW (R_PPC64_TOC16, 1, 16, 0xffff, 0, FALSE, signed,
526 ppc64_elf_toc_reloc),
527
528 /* 16 bit TOC-relative relocation without overflow. */
529 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
530 HOW (R_PPC64_TOC16_LO, 1, 16, 0xffff, 0, FALSE, dont,
531 ppc64_elf_toc_reloc),
532
533 /* 16 bit TOC-relative relocation, high 16 bits. */
534 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
535 HOW (R_PPC64_TOC16_HI, 1, 16, 0xffff, 16, FALSE, signed,
536 ppc64_elf_toc_reloc),
537
538 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
539 contents of the low 16 bits, treated as a signed number, is
540 negative. */
541 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
542 HOW (R_PPC64_TOC16_HA, 1, 16, 0xffff, 16, FALSE, signed,
543 ppc64_elf_toc_ha_reloc),
544
545 /* 64-bit relocation; insert value of TOC base (.TOC.). */
546 /* R_PPC64_TOC 51 doubleword64 .TOC. */
547 HOW (R_PPC64_TOC, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
548 ppc64_elf_toc64_reloc),
549
550 /* Like R_PPC64_GOT16, but also informs the link editor that the
551 value to relocate may (!) refer to a PLT entry which the link
552 editor (a) may replace with the symbol value. If the link editor
553 is unable to fully resolve the symbol, it may (b) create a PLT
554 entry and store the address to the new PLT entry in the GOT.
555 This permits lazy resolution of function symbols at run time.
556 The link editor may also skip all of this and just (c) emit a
557 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
558 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
559 HOW (R_PPC64_PLTGOT16, 1, 16, 0xffff, 0, FALSE,signed,
560 ppc64_elf_unhandled_reloc),
561
562 /* Like R_PPC64_PLTGOT16, but without overflow. */
563 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
564 HOW (R_PPC64_PLTGOT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
565 ppc64_elf_unhandled_reloc),
566
567 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
568 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
569 HOW (R_PPC64_PLTGOT16_HI, 1, 16, 0xffff, 16, FALSE, signed,
570 ppc64_elf_unhandled_reloc),
571
572 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
573 1 if the contents of the low 16 bits, treated as a signed number,
574 is negative. */
575 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
576 HOW (R_PPC64_PLTGOT16_HA, 1, 16, 0xffff, 16, FALSE, signed,
577 ppc64_elf_unhandled_reloc),
578
579 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
580 HOW (R_PPC64_ADDR16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
581 bfd_elf_generic_reloc),
582
583 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
584 HOW (R_PPC64_ADDR16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
585 bfd_elf_generic_reloc),
586
587 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
588 HOW (R_PPC64_GOT16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
589 ppc64_elf_unhandled_reloc),
590
591 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
592 HOW (R_PPC64_GOT16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
593 ppc64_elf_unhandled_reloc),
594
595 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
596 HOW (R_PPC64_PLT16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
597 ppc64_elf_unhandled_reloc),
598
599 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
600 HOW (R_PPC64_SECTOFF_DS, 1, 16, 0xfffc, 0, FALSE, signed,
601 ppc64_elf_sectoff_reloc),
602
603 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
604 HOW (R_PPC64_SECTOFF_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
605 ppc64_elf_sectoff_reloc),
606
607 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
608 HOW (R_PPC64_TOC16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
609 ppc64_elf_toc_reloc),
610
611 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
612 HOW (R_PPC64_TOC16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
613 ppc64_elf_toc_reloc),
614
615 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
616 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
617 HOW (R_PPC64_PLTGOT16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
618 ppc64_elf_unhandled_reloc),
619
620 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
621 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
622 HOW (R_PPC64_PLTGOT16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
623 ppc64_elf_unhandled_reloc),
624
625 /* Marker relocs for TLS. */
626 HOW (R_PPC64_TLS, 2, 32, 0, 0, FALSE, dont,
627 bfd_elf_generic_reloc),
628
629 HOW (R_PPC64_TLSGD, 2, 32, 0, 0, FALSE, dont,
630 bfd_elf_generic_reloc),
631
632 HOW (R_PPC64_TLSLD, 2, 32, 0, 0, FALSE, dont,
633 bfd_elf_generic_reloc),
634
635 /* Marker reloc for optimizing r2 save in prologue rather than on
636 each plt call stub. */
637 HOW (R_PPC64_TOCSAVE, 2, 32, 0, 0, FALSE, dont,
638 bfd_elf_generic_reloc),
639
640 /* Marker relocs on inline plt call instructions. */
641 HOW (R_PPC64_PLTSEQ, 2, 32, 0, 0, FALSE, dont,
642 bfd_elf_generic_reloc),
643
644 HOW (R_PPC64_PLTCALL, 2, 32, 0, 0, FALSE, dont,
645 bfd_elf_generic_reloc),
646
647 /* Computes the load module index of the load module that contains the
648 definition of its TLS sym. */
649 HOW (R_PPC64_DTPMOD64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
650 ppc64_elf_unhandled_reloc),
651
652 /* Computes a dtv-relative displacement, the difference between the value
653 of sym+add and the base address of the thread-local storage block that
654 contains the definition of sym, minus 0x8000. */
655 HOW (R_PPC64_DTPREL64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
656 ppc64_elf_unhandled_reloc),
657
658 /* A 16 bit dtprel reloc. */
659 HOW (R_PPC64_DTPREL16, 1, 16, 0xffff, 0, FALSE, signed,
660 ppc64_elf_unhandled_reloc),
661
662 /* Like DTPREL16, but no overflow. */
663 HOW (R_PPC64_DTPREL16_LO, 1, 16, 0xffff, 0, FALSE, dont,
664 ppc64_elf_unhandled_reloc),
665
666 /* Like DTPREL16_LO, but next higher group of 16 bits. */
667 HOW (R_PPC64_DTPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
668 ppc64_elf_unhandled_reloc),
669
670 /* Like DTPREL16_HI, but adjust for low 16 bits. */
671 HOW (R_PPC64_DTPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
672 ppc64_elf_unhandled_reloc),
673
674 /* Like DTPREL16_HI, but next higher group of 16 bits. */
675 HOW (R_PPC64_DTPREL16_HIGHER, 1, 16, 0xffff, 32, FALSE, dont,
676 ppc64_elf_unhandled_reloc),
677
678 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
679 HOW (R_PPC64_DTPREL16_HIGHERA, 1, 16, 0xffff, 32, FALSE, dont,
680 ppc64_elf_unhandled_reloc),
681
682 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
683 HOW (R_PPC64_DTPREL16_HIGHEST, 1, 16, 0xffff, 48, FALSE, dont,
684 ppc64_elf_unhandled_reloc),
685
686 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
687 HOW (R_PPC64_DTPREL16_HIGHESTA, 1, 16, 0xffff, 48, FALSE, dont,
688 ppc64_elf_unhandled_reloc),
689
690 /* Like DTPREL16, but for insns with a DS field. */
691 HOW (R_PPC64_DTPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
692 ppc64_elf_unhandled_reloc),
693
694 /* Like DTPREL16_DS, but no overflow. */
695 HOW (R_PPC64_DTPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
696 ppc64_elf_unhandled_reloc),
697
698 /* Computes a tp-relative displacement, the difference between the value of
699 sym+add and the value of the thread pointer (r13). */
700 HOW (R_PPC64_TPREL64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
701 ppc64_elf_unhandled_reloc),
702
703 /* A 16 bit tprel reloc. */
704 HOW (R_PPC64_TPREL16, 1, 16, 0xffff, 0, FALSE, signed,
705 ppc64_elf_unhandled_reloc),
706
707 /* Like TPREL16, but no overflow. */
708 HOW (R_PPC64_TPREL16_LO, 1, 16, 0xffff, 0, FALSE, dont,
709 ppc64_elf_unhandled_reloc),
710
711 /* Like TPREL16_LO, but next higher group of 16 bits. */
712 HOW (R_PPC64_TPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
713 ppc64_elf_unhandled_reloc),
714
715 /* Like TPREL16_HI, but adjust for low 16 bits. */
716 HOW (R_PPC64_TPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
717 ppc64_elf_unhandled_reloc),
718
719 /* Like TPREL16_HI, but next higher group of 16 bits. */
720 HOW (R_PPC64_TPREL16_HIGHER, 1, 16, 0xffff, 32, FALSE, dont,
721 ppc64_elf_unhandled_reloc),
722
723 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
724 HOW (R_PPC64_TPREL16_HIGHERA, 1, 16, 0xffff, 32, FALSE, dont,
725 ppc64_elf_unhandled_reloc),
726
727 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
728 HOW (R_PPC64_TPREL16_HIGHEST, 1, 16, 0xffff, 48, FALSE, dont,
729 ppc64_elf_unhandled_reloc),
730
731 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
732 HOW (R_PPC64_TPREL16_HIGHESTA, 1, 16, 0xffff, 48, FALSE, dont,
733 ppc64_elf_unhandled_reloc),
734
735 /* Like TPREL16, but for insns with a DS field. */
736 HOW (R_PPC64_TPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
737 ppc64_elf_unhandled_reloc),
738
739 /* Like TPREL16_DS, but no overflow. */
740 HOW (R_PPC64_TPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
741 ppc64_elf_unhandled_reloc),
742
743 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
744 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
745 to the first entry relative to the TOC base (r2). */
746 HOW (R_PPC64_GOT_TLSGD16, 1, 16, 0xffff, 0, FALSE, signed,
747 ppc64_elf_unhandled_reloc),
748
749 /* Like GOT_TLSGD16, but no overflow. */
750 HOW (R_PPC64_GOT_TLSGD16_LO, 1, 16, 0xffff, 0, FALSE, dont,
751 ppc64_elf_unhandled_reloc),
752
753 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
754 HOW (R_PPC64_GOT_TLSGD16_HI, 1, 16, 0xffff, 16, FALSE, signed,
755 ppc64_elf_unhandled_reloc),
756
757 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
758 HOW (R_PPC64_GOT_TLSGD16_HA, 1, 16, 0xffff, 16, FALSE, signed,
759 ppc64_elf_unhandled_reloc),
760
761 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
762 with values (sym+add)@dtpmod and zero, and computes the offset to the
763 first entry relative to the TOC base (r2). */
764 HOW (R_PPC64_GOT_TLSLD16, 1, 16, 0xffff, 0, FALSE, signed,
765 ppc64_elf_unhandled_reloc),
766
767 /* Like GOT_TLSLD16, but no overflow. */
768 HOW (R_PPC64_GOT_TLSLD16_LO, 1, 16, 0xffff, 0, FALSE, dont,
769 ppc64_elf_unhandled_reloc),
770
771 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
772 HOW (R_PPC64_GOT_TLSLD16_HI, 1, 16, 0xffff, 16, FALSE, signed,
773 ppc64_elf_unhandled_reloc),
774
775 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
776 HOW (R_PPC64_GOT_TLSLD16_HA, 1, 16, 0xffff, 16, FALSE, signed,
777 ppc64_elf_unhandled_reloc),
778
779 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
780 the offset to the entry relative to the TOC base (r2). */
781 HOW (R_PPC64_GOT_DTPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
782 ppc64_elf_unhandled_reloc),
783
784 /* Like GOT_DTPREL16_DS, but no overflow. */
785 HOW (R_PPC64_GOT_DTPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
786 ppc64_elf_unhandled_reloc),
787
788 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
789 HOW (R_PPC64_GOT_DTPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
790 ppc64_elf_unhandled_reloc),
791
792 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
793 HOW (R_PPC64_GOT_DTPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
794 ppc64_elf_unhandled_reloc),
795
796 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
797 offset to the entry relative to the TOC base (r2). */
798 HOW (R_PPC64_GOT_TPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
799 ppc64_elf_unhandled_reloc),
800
801 /* Like GOT_TPREL16_DS, but no overflow. */
802 HOW (R_PPC64_GOT_TPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
803 ppc64_elf_unhandled_reloc),
804
805 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
806 HOW (R_PPC64_GOT_TPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
807 ppc64_elf_unhandled_reloc),
808
809 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
810 HOW (R_PPC64_GOT_TPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
811 ppc64_elf_unhandled_reloc),
812
813 HOW (R_PPC64_JMP_IREL, 0, 0, 0, 0, FALSE, dont,
814 ppc64_elf_unhandled_reloc),
815
816 HOW (R_PPC64_IRELATIVE, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
817 bfd_elf_generic_reloc),
818
819 /* A 16 bit relative relocation. */
820 HOW (R_PPC64_REL16, 1, 16, 0xffff, 0, TRUE, signed,
821 bfd_elf_generic_reloc),
822
823 /* A 16 bit relative relocation without overflow. */
824 HOW (R_PPC64_REL16_LO, 1, 16, 0xffff, 0, TRUE, dont,
825 bfd_elf_generic_reloc),
826
827 /* The high order 16 bits of a relative address. */
828 HOW (R_PPC64_REL16_HI, 1, 16, 0xffff, 16, TRUE, signed,
829 bfd_elf_generic_reloc),
830
831 /* The high order 16 bits of a relative address, plus 1 if the contents of
832 the low 16 bits, treated as a signed number, is negative. */
833 HOW (R_PPC64_REL16_HA, 1, 16, 0xffff, 16, TRUE, signed,
834 ppc64_elf_ha_reloc),
835
836 HOW (R_PPC64_REL16_HIGH, 1, 16, 0xffff, 16, TRUE, dont,
837 bfd_elf_generic_reloc),
838
839 HOW (R_PPC64_REL16_HIGHA, 1, 16, 0xffff, 16, TRUE, dont,
840 ppc64_elf_ha_reloc),
841
842 HOW (R_PPC64_REL16_HIGHER, 1, 16, 0xffff, 32, TRUE, dont,
843 bfd_elf_generic_reloc),
844
845 HOW (R_PPC64_REL16_HIGHERA, 1, 16, 0xffff, 32, TRUE, dont,
846 ppc64_elf_ha_reloc),
847
848 HOW (R_PPC64_REL16_HIGHEST, 1, 16, 0xffff, 48, TRUE, dont,
849 bfd_elf_generic_reloc),
850
851 HOW (R_PPC64_REL16_HIGHESTA, 1, 16, 0xffff, 48, TRUE, dont,
852 ppc64_elf_ha_reloc),
853
854 /* Like R_PPC64_REL16_HA but for split field in addpcis. */
855 HOW (R_PPC64_REL16DX_HA, 2, 16, 0x1fffc1, 16, TRUE, signed,
856 ppc64_elf_ha_reloc),
857
858 /* A split-field reloc for addpcis, non-relative (gas internal use only). */
859 HOW (R_PPC64_16DX_HA, 2, 16, 0x1fffc1, 16, FALSE, signed,
860 ppc64_elf_ha_reloc),
861
862 /* Like R_PPC64_ADDR16_HI, but no overflow. */
863 HOW (R_PPC64_ADDR16_HIGH, 1, 16, 0xffff, 16, FALSE, dont,
864 bfd_elf_generic_reloc),
865
866 /* Like R_PPC64_ADDR16_HA, but no overflow. */
867 HOW (R_PPC64_ADDR16_HIGHA, 1, 16, 0xffff, 16, FALSE, dont,
868 ppc64_elf_ha_reloc),
869
870 /* Like R_PPC64_DTPREL16_HI, but no overflow. */
871 HOW (R_PPC64_DTPREL16_HIGH, 1, 16, 0xffff, 16, FALSE, dont,
872 ppc64_elf_unhandled_reloc),
873
874 /* Like R_PPC64_DTPREL16_HA, but no overflow. */
875 HOW (R_PPC64_DTPREL16_HIGHA, 1, 16, 0xffff, 16, FALSE, dont,
876 ppc64_elf_unhandled_reloc),
877
878 /* Like R_PPC64_TPREL16_HI, but no overflow. */
879 HOW (R_PPC64_TPREL16_HIGH, 1, 16, 0xffff, 16, FALSE, dont,
880 ppc64_elf_unhandled_reloc),
881
882 /* Like R_PPC64_TPREL16_HA, but no overflow. */
883 HOW (R_PPC64_TPREL16_HIGHA, 1, 16, 0xffff, 16, FALSE, dont,
884 ppc64_elf_unhandled_reloc),
885
886 /* Marker reloc on ELFv2 large-model function entry. */
887 HOW (R_PPC64_ENTRY, 2, 32, 0, 0, FALSE, dont,
888 bfd_elf_generic_reloc),
889
890 /* Like ADDR64, but use local entry point of function. */
891 HOW (R_PPC64_ADDR64_LOCAL, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
892 bfd_elf_generic_reloc),
893
894 HOW (R_PPC64_PLTSEQ_NOTOC, 2, 32, 0, 0, FALSE, dont,
895 bfd_elf_generic_reloc),
896
897 HOW (R_PPC64_PLTCALL_NOTOC, 2, 32, 0, 0, FALSE, dont,
898 bfd_elf_generic_reloc),
899
900 HOW (R_PPC64_PCREL_OPT, 2, 32, 0, 0, FALSE, dont,
901 bfd_elf_generic_reloc),
902
903 HOW (R_PPC64_D34, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, signed,
904 ppc64_elf_prefix_reloc),
905
906 HOW (R_PPC64_D34_LO, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, dont,
907 ppc64_elf_prefix_reloc),
908
909 HOW (R_PPC64_D34_HI30, 4, 34, 0x3ffff0000ffffULL, 34, FALSE, dont,
910 ppc64_elf_prefix_reloc),
911
912 HOW (R_PPC64_D34_HA30, 4, 34, 0x3ffff0000ffffULL, 34, FALSE, dont,
913 ppc64_elf_prefix_reloc),
914
915 HOW (R_PPC64_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
916 ppc64_elf_prefix_reloc),
917
918 HOW (R_PPC64_GOT_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
919 ppc64_elf_unhandled_reloc),
920
921 HOW (R_PPC64_PLT_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
922 ppc64_elf_unhandled_reloc),
923
924 HOW (R_PPC64_PLT_PCREL34_NOTOC, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
925 ppc64_elf_unhandled_reloc),
926
927 HOW (R_PPC64_TPREL34, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, signed,
928 ppc64_elf_unhandled_reloc),
929
930 HOW (R_PPC64_DTPREL34, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, signed,
931 ppc64_elf_unhandled_reloc),
932
933 HOW (R_PPC64_GOT_TLSGD_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
934 ppc64_elf_unhandled_reloc),
935
936 HOW (R_PPC64_GOT_TLSLD_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
937 ppc64_elf_unhandled_reloc),
938
939 HOW (R_PPC64_GOT_TPREL_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
940 ppc64_elf_unhandled_reloc),
941
942 HOW (R_PPC64_GOT_DTPREL_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
943 ppc64_elf_unhandled_reloc),
944
945 HOW (R_PPC64_ADDR16_HIGHER34, 1, 16, 0xffff, 34, FALSE, dont,
946 bfd_elf_generic_reloc),
947
948 HOW (R_PPC64_ADDR16_HIGHERA34, 1, 16, 0xffff, 34, FALSE, dont,
949 ppc64_elf_ha_reloc),
950
951 HOW (R_PPC64_ADDR16_HIGHEST34, 1, 16, 0xffff, 50, FALSE, dont,
952 bfd_elf_generic_reloc),
953
954 HOW (R_PPC64_ADDR16_HIGHESTA34, 1, 16, 0xffff, 50, FALSE, dont,
955 ppc64_elf_ha_reloc),
956
957 HOW (R_PPC64_REL16_HIGHER34, 1, 16, 0xffff, 34, TRUE, dont,
958 bfd_elf_generic_reloc),
959
960 HOW (R_PPC64_REL16_HIGHERA34, 1, 16, 0xffff, 34, TRUE, dont,
961 ppc64_elf_ha_reloc),
962
963 HOW (R_PPC64_REL16_HIGHEST34, 1, 16, 0xffff, 50, TRUE, dont,
964 bfd_elf_generic_reloc),
965
966 HOW (R_PPC64_REL16_HIGHESTA34, 1, 16, 0xffff, 50, TRUE, dont,
967 ppc64_elf_ha_reloc),
968
969 HOW (R_PPC64_D28, 4, 28, 0xfff0000ffffULL, 0, FALSE, signed,
970 ppc64_elf_prefix_reloc),
971
972 HOW (R_PPC64_PCREL28, 4, 28, 0xfff0000ffffULL, 0, TRUE, signed,
973 ppc64_elf_prefix_reloc),
974
975 /* GNU extension to record C++ vtable hierarchy. */
976 HOW (R_PPC64_GNU_VTINHERIT, 0, 0, 0, 0, FALSE, dont,
977 NULL),
978
979 /* GNU extension to record C++ vtable member usage. */
980 HOW (R_PPC64_GNU_VTENTRY, 0, 0, 0, 0, FALSE, dont,
981 NULL),
982 };
983
984 \f
985 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
986 be done. */
987
988 static void
989 ppc_howto_init (void)
990 {
991 unsigned int i, type;
992
993 for (i = 0; i < ARRAY_SIZE (ppc64_elf_howto_raw); i++)
994 {
995 type = ppc64_elf_howto_raw[i].type;
996 BFD_ASSERT (type < ARRAY_SIZE (ppc64_elf_howto_table));
997 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
998 }
999 }
1000
1001 static reloc_howto_type *
1002 ppc64_elf_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code)
1003 {
1004 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
1005
1006 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1007 /* Initialize howto table if needed. */
1008 ppc_howto_init ();
1009
1010 switch (code)
1011 {
1012 default:
1013 /* xgettext:c-format */
1014 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd,
1015 (int) code);
1016 bfd_set_error (bfd_error_bad_value);
1017 return NULL;
1018
1019 case BFD_RELOC_NONE: r = R_PPC64_NONE;
1020 break;
1021 case BFD_RELOC_32: r = R_PPC64_ADDR32;
1022 break;
1023 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
1024 break;
1025 case BFD_RELOC_16: r = R_PPC64_ADDR16;
1026 break;
1027 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
1028 break;
1029 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
1030 break;
1031 case BFD_RELOC_PPC64_ADDR16_HIGH: r = R_PPC64_ADDR16_HIGH;
1032 break;
1033 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
1034 break;
1035 case BFD_RELOC_PPC64_ADDR16_HIGHA: r = R_PPC64_ADDR16_HIGHA;
1036 break;
1037 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
1038 break;
1039 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
1040 break;
1041 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
1042 break;
1043 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
1044 break;
1045 case BFD_RELOC_PPC64_REL24_NOTOC: r = R_PPC64_REL24_NOTOC;
1046 break;
1047 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
1048 break;
1049 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
1050 break;
1051 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
1052 break;
1053 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
1054 break;
1055 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
1056 break;
1057 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
1058 break;
1059 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
1060 break;
1061 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
1062 break;
1063 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
1064 break;
1065 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
1066 break;
1067 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
1068 break;
1069 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
1070 break;
1071 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
1072 break;
1073 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
1074 break;
1075 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
1076 break;
1077 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
1078 break;
1079 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
1080 break;
1081 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
1082 break;
1083 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
1084 break;
1085 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
1086 break;
1087 case BFD_RELOC_64: r = R_PPC64_ADDR64;
1088 break;
1089 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
1090 break;
1091 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
1092 break;
1093 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
1094 break;
1095 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
1096 break;
1097 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
1098 break;
1099 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
1100 break;
1101 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
1102 break;
1103 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
1104 break;
1105 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
1106 break;
1107 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
1108 break;
1109 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
1110 break;
1111 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
1112 break;
1113 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
1114 break;
1115 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
1116 break;
1117 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
1118 break;
1119 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
1120 break;
1121 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
1122 break;
1123 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
1124 break;
1125 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
1126 break;
1127 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
1128 break;
1129 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
1130 break;
1131 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
1132 break;
1133 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
1134 break;
1135 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
1136 break;
1137 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
1138 break;
1139 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
1140 break;
1141 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
1142 break;
1143 case BFD_RELOC_PPC64_TLS_PCREL:
1144 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
1145 break;
1146 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
1147 break;
1148 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
1149 break;
1150 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
1151 break;
1152 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
1153 break;
1154 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
1155 break;
1156 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
1157 break;
1158 case BFD_RELOC_PPC64_TPREL16_HIGH: r = R_PPC64_TPREL16_HIGH;
1159 break;
1160 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
1161 break;
1162 case BFD_RELOC_PPC64_TPREL16_HIGHA: r = R_PPC64_TPREL16_HIGHA;
1163 break;
1164 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
1165 break;
1166 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
1167 break;
1168 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
1169 break;
1170 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
1171 break;
1172 case BFD_RELOC_PPC64_DTPREL16_HIGH: r = R_PPC64_DTPREL16_HIGH;
1173 break;
1174 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
1175 break;
1176 case BFD_RELOC_PPC64_DTPREL16_HIGHA: r = R_PPC64_DTPREL16_HIGHA;
1177 break;
1178 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
1179 break;
1180 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
1181 break;
1182 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
1183 break;
1184 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
1185 break;
1186 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
1187 break;
1188 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
1189 break;
1190 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
1191 break;
1192 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
1193 break;
1194 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
1195 break;
1196 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
1197 break;
1198 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
1199 break;
1200 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
1201 break;
1202 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
1203 break;
1204 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
1205 break;
1206 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
1207 break;
1208 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
1209 break;
1210 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
1211 break;
1212 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
1213 break;
1214 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
1215 break;
1216 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
1217 break;
1218 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
1219 break;
1220 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
1221 break;
1222 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
1223 break;
1224 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
1225 break;
1226 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
1227 break;
1228 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
1229 break;
1230 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
1231 break;
1232 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
1233 break;
1234 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
1235 break;
1236 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
1237 break;
1238 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
1239 break;
1240 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
1241 break;
1242 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
1243 break;
1244 case BFD_RELOC_PPC64_REL16_HIGH: r = R_PPC64_REL16_HIGH;
1245 break;
1246 case BFD_RELOC_PPC64_REL16_HIGHA: r = R_PPC64_REL16_HIGHA;
1247 break;
1248 case BFD_RELOC_PPC64_REL16_HIGHER: r = R_PPC64_REL16_HIGHER;
1249 break;
1250 case BFD_RELOC_PPC64_REL16_HIGHERA: r = R_PPC64_REL16_HIGHERA;
1251 break;
1252 case BFD_RELOC_PPC64_REL16_HIGHEST: r = R_PPC64_REL16_HIGHEST;
1253 break;
1254 case BFD_RELOC_PPC64_REL16_HIGHESTA: r = R_PPC64_REL16_HIGHESTA;
1255 break;
1256 case BFD_RELOC_PPC_16DX_HA: r = R_PPC64_16DX_HA;
1257 break;
1258 case BFD_RELOC_PPC_REL16DX_HA: r = R_PPC64_REL16DX_HA;
1259 break;
1260 case BFD_RELOC_PPC64_ENTRY: r = R_PPC64_ENTRY;
1261 break;
1262 case BFD_RELOC_PPC64_ADDR64_LOCAL: r = R_PPC64_ADDR64_LOCAL;
1263 break;
1264 case BFD_RELOC_PPC64_D34: r = R_PPC64_D34;
1265 break;
1266 case BFD_RELOC_PPC64_D34_LO: r = R_PPC64_D34_LO;
1267 break;
1268 case BFD_RELOC_PPC64_D34_HI30: r = R_PPC64_D34_HI30;
1269 break;
1270 case BFD_RELOC_PPC64_D34_HA30: r = R_PPC64_D34_HA30;
1271 break;
1272 case BFD_RELOC_PPC64_PCREL34: r = R_PPC64_PCREL34;
1273 break;
1274 case BFD_RELOC_PPC64_GOT_PCREL34: r = R_PPC64_GOT_PCREL34;
1275 break;
1276 case BFD_RELOC_PPC64_PLT_PCREL34: r = R_PPC64_PLT_PCREL34;
1277 break;
1278 case BFD_RELOC_PPC64_TPREL34: r = R_PPC64_TPREL34;
1279 break;
1280 case BFD_RELOC_PPC64_DTPREL34: r = R_PPC64_DTPREL34;
1281 break;
1282 case BFD_RELOC_PPC64_GOT_TLSGD_PCREL34: r = R_PPC64_GOT_TLSGD_PCREL34;
1283 break;
1284 case BFD_RELOC_PPC64_GOT_TLSLD_PCREL34: r = R_PPC64_GOT_TLSLD_PCREL34;
1285 break;
1286 case BFD_RELOC_PPC64_GOT_TPREL_PCREL34: r = R_PPC64_GOT_TPREL_PCREL34;
1287 break;
1288 case BFD_RELOC_PPC64_GOT_DTPREL_PCREL34: r = R_PPC64_GOT_DTPREL_PCREL34;
1289 break;
1290 case BFD_RELOC_PPC64_ADDR16_HIGHER34: r = R_PPC64_ADDR16_HIGHER34;
1291 break;
1292 case BFD_RELOC_PPC64_ADDR16_HIGHERA34: r = R_PPC64_ADDR16_HIGHERA34;
1293 break;
1294 case BFD_RELOC_PPC64_ADDR16_HIGHEST34: r = R_PPC64_ADDR16_HIGHEST34;
1295 break;
1296 case BFD_RELOC_PPC64_ADDR16_HIGHESTA34: r = R_PPC64_ADDR16_HIGHESTA34;
1297 break;
1298 case BFD_RELOC_PPC64_REL16_HIGHER34: r = R_PPC64_REL16_HIGHER34;
1299 break;
1300 case BFD_RELOC_PPC64_REL16_HIGHERA34: r = R_PPC64_REL16_HIGHERA34;
1301 break;
1302 case BFD_RELOC_PPC64_REL16_HIGHEST34: r = R_PPC64_REL16_HIGHEST34;
1303 break;
1304 case BFD_RELOC_PPC64_REL16_HIGHESTA34: r = R_PPC64_REL16_HIGHESTA34;
1305 break;
1306 case BFD_RELOC_PPC64_D28: r = R_PPC64_D28;
1307 break;
1308 case BFD_RELOC_PPC64_PCREL28: r = R_PPC64_PCREL28;
1309 break;
1310 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
1311 break;
1312 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
1313 break;
1314 }
1315
1316 return ppc64_elf_howto_table[r];
1317 };
1318
1319 static reloc_howto_type *
1320 ppc64_elf_reloc_name_lookup (bfd *abfd, const char *r_name)
1321 {
1322 unsigned int i;
1323 static char *compat_map[][2] = {
1324 { "R_PPC64_GOT_TLSGD34", "R_PPC64_GOT_TLSGD_PCREL34" },
1325 { "R_PPC64_GOT_TLSLD34", "R_PPC64_GOT_TLSLD_PCREL34" },
1326 { "R_PPC64_GOT_TPREL34", "R_PPC64_GOT_TPREL_PCREL34" },
1327 { "R_PPC64_GOT_DTPREL34", "R_PPC64_GOT_DTPREL_PCREL34" }
1328 };
1329
1330 for (i = 0; i < ARRAY_SIZE (ppc64_elf_howto_raw); i++)
1331 if (ppc64_elf_howto_raw[i].name != NULL
1332 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
1333 return &ppc64_elf_howto_raw[i];
1334
1335 /* Handle old names of relocations in case they were used by
1336 .reloc directives.
1337 FIXME: Remove this soon. Mapping the reloc names is very likely
1338 completely unnecessary. */
1339 for (i = 0; i < ARRAY_SIZE (compat_map); i++)
1340 if (strcasecmp (compat_map[i][0], r_name) == 0)
1341 {
1342 _bfd_error_handler (_("warning: %s should be used rather than %s"),
1343 compat_map[i][1], compat_map[i][0]);
1344 return ppc64_elf_reloc_name_lookup (abfd, compat_map[i][1]);
1345 }
1346
1347 return NULL;
1348 }
1349
1350 /* Set the howto pointer for a PowerPC ELF reloc. */
1351
1352 static bfd_boolean
1353 ppc64_elf_info_to_howto (bfd *abfd, arelent *cache_ptr,
1354 Elf_Internal_Rela *dst)
1355 {
1356 unsigned int type;
1357
1358 /* Initialize howto table if needed. */
1359 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1360 ppc_howto_init ();
1361
1362 type = ELF64_R_TYPE (dst->r_info);
1363 if (type >= ARRAY_SIZE (ppc64_elf_howto_table))
1364 {
1365 /* xgettext:c-format */
1366 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1367 abfd, type);
1368 bfd_set_error (bfd_error_bad_value);
1369 return FALSE;
1370 }
1371 cache_ptr->howto = ppc64_elf_howto_table[type];
1372 if (cache_ptr->howto == NULL || cache_ptr->howto->name == NULL)
1373 {
1374 /* xgettext:c-format */
1375 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1376 abfd, type);
1377 bfd_set_error (bfd_error_bad_value);
1378 return FALSE;
1379 }
1380
1381 return TRUE;
1382 }
1383
1384 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
1385
1386 static bfd_reloc_status_type
1387 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1388 void *data, asection *input_section,
1389 bfd *output_bfd, char **error_message)
1390 {
1391 enum elf_ppc64_reloc_type r_type;
1392 long insn;
1393 bfd_size_type octets;
1394 bfd_vma value;
1395
1396 /* If this is a relocatable link (output_bfd test tells us), just
1397 call the generic function. Any adjustment will be done at final
1398 link time. */
1399 if (output_bfd != NULL)
1400 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1401 input_section, output_bfd, error_message);
1402
1403 /* Adjust the addend for sign extension of the low 16 (or 34) bits.
1404 We won't actually be using the low bits, so trashing them
1405 doesn't matter. */
1406 r_type = reloc_entry->howto->type;
1407 if (r_type == R_PPC64_ADDR16_HIGHERA34
1408 || r_type == R_PPC64_ADDR16_HIGHESTA34
1409 || r_type == R_PPC64_REL16_HIGHERA34
1410 || r_type == R_PPC64_REL16_HIGHESTA34)
1411 reloc_entry->addend += 1ULL << 33;
1412 else
1413 reloc_entry->addend += 1U << 15;
1414 if (r_type != R_PPC64_REL16DX_HA)
1415 return bfd_reloc_continue;
1416
1417 value = 0;
1418 if (!bfd_is_com_section (symbol->section))
1419 value = symbol->value;
1420 value += (reloc_entry->addend
1421 + symbol->section->output_offset
1422 + symbol->section->output_section->vma);
1423 value -= (reloc_entry->address
1424 + input_section->output_offset
1425 + input_section->output_section->vma);
1426 value = (bfd_signed_vma) value >> 16;
1427
1428 octets = reloc_entry->address * OCTETS_PER_BYTE (abfd, input_section);
1429 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
1430 insn &= ~0x1fffc1;
1431 insn |= (value & 0xffc1) | ((value & 0x3e) << 15);
1432 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
1433 if (value + 0x8000 > 0xffff)
1434 return bfd_reloc_overflow;
1435 return bfd_reloc_ok;
1436 }
1437
1438 static bfd_reloc_status_type
1439 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1440 void *data, asection *input_section,
1441 bfd *output_bfd, char **error_message)
1442 {
1443 if (output_bfd != NULL)
1444 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1445 input_section, output_bfd, error_message);
1446
1447 if (strcmp (symbol->section->name, ".opd") == 0
1448 && (symbol->section->owner->flags & DYNAMIC) == 0)
1449 {
1450 bfd_vma dest = opd_entry_value (symbol->section,
1451 symbol->value + reloc_entry->addend,
1452 NULL, NULL, FALSE);
1453 if (dest != (bfd_vma) -1)
1454 reloc_entry->addend = dest - (symbol->value
1455 + symbol->section->output_section->vma
1456 + symbol->section->output_offset);
1457 }
1458 else
1459 {
1460 elf_symbol_type *elfsym = (elf_symbol_type *) symbol;
1461
1462 if (symbol->section->owner != abfd
1463 && symbol->section->owner != NULL
1464 && abiversion (symbol->section->owner) >= 2)
1465 {
1466 unsigned int i;
1467
1468 for (i = 0; i < symbol->section->owner->symcount; ++i)
1469 {
1470 asymbol *symdef = symbol->section->owner->outsymbols[i];
1471
1472 if (strcmp (symdef->name, symbol->name) == 0)
1473 {
1474 elfsym = (elf_symbol_type *) symdef;
1475 break;
1476 }
1477 }
1478 }
1479 reloc_entry->addend
1480 += PPC64_LOCAL_ENTRY_OFFSET (elfsym->internal_elf_sym.st_other);
1481 }
1482 return bfd_reloc_continue;
1483 }
1484
1485 static bfd_reloc_status_type
1486 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1487 void *data, asection *input_section,
1488 bfd *output_bfd, char **error_message)
1489 {
1490 long insn;
1491 enum elf_ppc64_reloc_type r_type;
1492 bfd_size_type octets;
1493 /* Assume 'at' branch hints. */
1494 bfd_boolean is_isa_v2 = TRUE;
1495
1496 /* If this is a relocatable link (output_bfd test tells us), just
1497 call the generic function. Any adjustment will be done at final
1498 link time. */
1499 if (output_bfd != NULL)
1500 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1501 input_section, output_bfd, error_message);
1502
1503 octets = reloc_entry->address * OCTETS_PER_BYTE (abfd, input_section);
1504 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
1505 insn &= ~(0x01 << 21);
1506 r_type = reloc_entry->howto->type;
1507 if (r_type == R_PPC64_ADDR14_BRTAKEN
1508 || r_type == R_PPC64_REL14_BRTAKEN)
1509 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
1510
1511 if (is_isa_v2)
1512 {
1513 /* Set 'a' bit. This is 0b00010 in BO field for branch
1514 on CR(BI) insns (BO == 001at or 011at), and 0b01000
1515 for branch on CTR insns (BO == 1a00t or 1a01t). */
1516 if ((insn & (0x14 << 21)) == (0x04 << 21))
1517 insn |= 0x02 << 21;
1518 else if ((insn & (0x14 << 21)) == (0x10 << 21))
1519 insn |= 0x08 << 21;
1520 else
1521 goto out;
1522 }
1523 else
1524 {
1525 bfd_vma target = 0;
1526 bfd_vma from;
1527
1528 if (!bfd_is_com_section (symbol->section))
1529 target = symbol->value;
1530 target += symbol->section->output_section->vma;
1531 target += symbol->section->output_offset;
1532 target += reloc_entry->addend;
1533
1534 from = (reloc_entry->address
1535 + input_section->output_offset
1536 + input_section->output_section->vma);
1537
1538 /* Invert 'y' bit if not the default. */
1539 if ((bfd_signed_vma) (target - from) < 0)
1540 insn ^= 0x01 << 21;
1541 }
1542 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
1543 out:
1544 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
1545 input_section, output_bfd, error_message);
1546 }
1547
1548 static bfd_reloc_status_type
1549 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1550 void *data, asection *input_section,
1551 bfd *output_bfd, char **error_message)
1552 {
1553 /* If this is a relocatable link (output_bfd test tells us), just
1554 call the generic function. Any adjustment will be done at final
1555 link time. */
1556 if (output_bfd != NULL)
1557 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1558 input_section, output_bfd, error_message);
1559
1560 /* Subtract the symbol section base address. */
1561 reloc_entry->addend -= symbol->section->output_section->vma;
1562 return bfd_reloc_continue;
1563 }
1564
1565 static bfd_reloc_status_type
1566 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1567 void *data, asection *input_section,
1568 bfd *output_bfd, char **error_message)
1569 {
1570 /* If this is a relocatable link (output_bfd test tells us), just
1571 call the generic function. Any adjustment will be done at final
1572 link time. */
1573 if (output_bfd != NULL)
1574 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1575 input_section, output_bfd, error_message);
1576
1577 /* Subtract the symbol section base address. */
1578 reloc_entry->addend -= symbol->section->output_section->vma;
1579
1580 /* Adjust the addend for sign extension of the low 16 bits. */
1581 reloc_entry->addend += 0x8000;
1582 return bfd_reloc_continue;
1583 }
1584
1585 static bfd_reloc_status_type
1586 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1587 void *data, asection *input_section,
1588 bfd *output_bfd, char **error_message)
1589 {
1590 bfd_vma TOCstart;
1591
1592 /* If this is a relocatable link (output_bfd test tells us), just
1593 call the generic function. Any adjustment will be done at final
1594 link time. */
1595 if (output_bfd != NULL)
1596 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1597 input_section, output_bfd, error_message);
1598
1599 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1600 if (TOCstart == 0)
1601 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1602
1603 /* Subtract the TOC base address. */
1604 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
1605 return bfd_reloc_continue;
1606 }
1607
1608 static bfd_reloc_status_type
1609 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1610 void *data, asection *input_section,
1611 bfd *output_bfd, char **error_message)
1612 {
1613 bfd_vma TOCstart;
1614
1615 /* If this is a relocatable link (output_bfd test tells us), just
1616 call the generic function. Any adjustment will be done at final
1617 link time. */
1618 if (output_bfd != NULL)
1619 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1620 input_section, output_bfd, error_message);
1621
1622 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1623 if (TOCstart == 0)
1624 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1625
1626 /* Subtract the TOC base address. */
1627 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
1628
1629 /* Adjust the addend for sign extension of the low 16 bits. */
1630 reloc_entry->addend += 0x8000;
1631 return bfd_reloc_continue;
1632 }
1633
1634 static bfd_reloc_status_type
1635 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1636 void *data, asection *input_section,
1637 bfd *output_bfd, char **error_message)
1638 {
1639 bfd_vma TOCstart;
1640 bfd_size_type octets;
1641
1642 /* If this is a relocatable link (output_bfd test tells us), just
1643 call the generic function. Any adjustment will be done at final
1644 link time. */
1645 if (output_bfd != NULL)
1646 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1647 input_section, output_bfd, error_message);
1648
1649 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1650 if (TOCstart == 0)
1651 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1652
1653 octets = reloc_entry->address * OCTETS_PER_BYTE (abfd, input_section);
1654 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
1655 return bfd_reloc_ok;
1656 }
1657
1658 static bfd_reloc_status_type
1659 ppc64_elf_prefix_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1660 void *data, asection *input_section,
1661 bfd *output_bfd, char **error_message)
1662 {
1663 uint64_t insn;
1664 bfd_vma targ;
1665
1666 if (output_bfd != NULL)
1667 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1668 input_section, output_bfd, error_message);
1669
1670 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1671 insn <<= 32;
1672 insn |= bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address + 4);
1673
1674 targ = (symbol->section->output_section->vma
1675 + symbol->section->output_offset
1676 + reloc_entry->addend);
1677 if (!bfd_is_com_section (symbol->section))
1678 targ += symbol->value;
1679 if (reloc_entry->howto->type == R_PPC64_D34_HA30)
1680 targ += 1ULL << 33;
1681 if (reloc_entry->howto->pc_relative)
1682 {
1683 bfd_vma from = (reloc_entry->address
1684 + input_section->output_offset
1685 + input_section->output_section->vma);
1686 targ -=from;
1687 }
1688 targ >>= reloc_entry->howto->rightshift;
1689 insn &= ~reloc_entry->howto->dst_mask;
1690 insn |= ((targ << 16) | (targ & 0xffff)) & reloc_entry->howto->dst_mask;
1691 bfd_put_32 (abfd, insn >> 32, (bfd_byte *) data + reloc_entry->address);
1692 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address + 4);
1693 if (reloc_entry->howto->complain_on_overflow == complain_overflow_signed
1694 && (targ + (1ULL << (reloc_entry->howto->bitsize - 1))
1695 >= 1ULL << reloc_entry->howto->bitsize))
1696 return bfd_reloc_overflow;
1697 return bfd_reloc_ok;
1698 }
1699
1700 static bfd_reloc_status_type
1701 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1702 void *data, asection *input_section,
1703 bfd *output_bfd, char **error_message)
1704 {
1705 /* If this is a relocatable link (output_bfd test tells us), just
1706 call the generic function. Any adjustment will be done at final
1707 link time. */
1708 if (output_bfd != NULL)
1709 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1710 input_section, output_bfd, error_message);
1711
1712 if (error_message != NULL)
1713 {
1714 static char buf[60];
1715 sprintf (buf, "generic linker can't handle %s",
1716 reloc_entry->howto->name);
1717 *error_message = buf;
1718 }
1719 return bfd_reloc_dangerous;
1720 }
1721
1722 /* Track GOT entries needed for a given symbol. We might need more
1723 than one got entry per symbol. */
1724 struct got_entry
1725 {
1726 struct got_entry *next;
1727
1728 /* The symbol addend that we'll be placing in the GOT. */
1729 bfd_vma addend;
1730
1731 /* Unlike other ELF targets, we use separate GOT entries for the same
1732 symbol referenced from different input files. This is to support
1733 automatic multiple TOC/GOT sections, where the TOC base can vary
1734 from one input file to another. After partitioning into TOC groups
1735 we merge entries within the group.
1736
1737 Point to the BFD owning this GOT entry. */
1738 bfd *owner;
1739
1740 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
1741 TLS_TPREL or TLS_DTPREL for tls entries. */
1742 unsigned char tls_type;
1743
1744 /* Non-zero if got.ent points to real entry. */
1745 unsigned char is_indirect;
1746
1747 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
1748 union
1749 {
1750 bfd_signed_vma refcount;
1751 bfd_vma offset;
1752 struct got_entry *ent;
1753 } got;
1754 };
1755
1756 /* The same for PLT. */
1757 struct plt_entry
1758 {
1759 struct plt_entry *next;
1760
1761 bfd_vma addend;
1762
1763 union
1764 {
1765 bfd_signed_vma refcount;
1766 bfd_vma offset;
1767 } plt;
1768 };
1769
1770 struct ppc64_elf_obj_tdata
1771 {
1772 struct elf_obj_tdata elf;
1773
1774 /* Shortcuts to dynamic linker sections. */
1775 asection *got;
1776 asection *relgot;
1777
1778 /* Used during garbage collection. We attach global symbols defined
1779 on removed .opd entries to this section so that the sym is removed. */
1780 asection *deleted_section;
1781
1782 /* TLS local dynamic got entry handling. Support for multiple GOT
1783 sections means we potentially need one of these for each input bfd. */
1784 struct got_entry tlsld_got;
1785
1786 union
1787 {
1788 /* A copy of relocs before they are modified for --emit-relocs. */
1789 Elf_Internal_Rela *relocs;
1790
1791 /* Section contents. */
1792 bfd_byte *contents;
1793 } opd;
1794
1795 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
1796 the reloc to be in the range -32768 to 32767. */
1797 unsigned int has_small_toc_reloc : 1;
1798
1799 /* Set if toc/got ha relocs detected not using r2, or lo reloc
1800 instruction not one we handle. */
1801 unsigned int unexpected_toc_insn : 1;
1802
1803 /* Set if PLT/GOT/TOC relocs that can be optimised are present in
1804 this file. */
1805 unsigned int has_optrel : 1;
1806 };
1807
1808 #define ppc64_elf_tdata(bfd) \
1809 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
1810
1811 #define ppc64_tlsld_got(bfd) \
1812 (&ppc64_elf_tdata (bfd)->tlsld_got)
1813
1814 #define is_ppc64_elf(bfd) \
1815 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
1816 && elf_object_id (bfd) == PPC64_ELF_DATA)
1817
1818 /* Override the generic function because we store some extras. */
1819
1820 static bfd_boolean
1821 ppc64_elf_mkobject (bfd *abfd)
1822 {
1823 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
1824 PPC64_ELF_DATA);
1825 }
1826
1827 /* Fix bad default arch selected for a 64 bit input bfd when the
1828 default is 32 bit. Also select arch based on apuinfo. */
1829
1830 static bfd_boolean
1831 ppc64_elf_object_p (bfd *abfd)
1832 {
1833 if (!abfd->arch_info->the_default)
1834 return TRUE;
1835
1836 if (abfd->arch_info->bits_per_word == 32)
1837 {
1838 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
1839
1840 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
1841 {
1842 /* Relies on arch after 32 bit default being 64 bit default. */
1843 abfd->arch_info = abfd->arch_info->next;
1844 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
1845 }
1846 }
1847 return _bfd_elf_ppc_set_arch (abfd);
1848 }
1849
1850 /* Support for core dump NOTE sections. */
1851
1852 static bfd_boolean
1853 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1854 {
1855 size_t offset, size;
1856
1857 if (note->descsz != 504)
1858 return FALSE;
1859
1860 /* pr_cursig */
1861 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1862
1863 /* pr_pid */
1864 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
1865
1866 /* pr_reg */
1867 offset = 112;
1868 size = 384;
1869
1870 /* Make a ".reg/999" section. */
1871 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1872 size, note->descpos + offset);
1873 }
1874
1875 static bfd_boolean
1876 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1877 {
1878 if (note->descsz != 136)
1879 return FALSE;
1880
1881 elf_tdata (abfd)->core->pid
1882 = bfd_get_32 (abfd, note->descdata + 24);
1883 elf_tdata (abfd)->core->program
1884 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
1885 elf_tdata (abfd)->core->command
1886 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
1887
1888 return TRUE;
1889 }
1890
1891 static char *
1892 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
1893 ...)
1894 {
1895 switch (note_type)
1896 {
1897 default:
1898 return NULL;
1899
1900 case NT_PRPSINFO:
1901 {
1902 char data[136] ATTRIBUTE_NONSTRING;
1903 va_list ap;
1904
1905 va_start (ap, note_type);
1906 memset (data, 0, sizeof (data));
1907 strncpy (data + 40, va_arg (ap, const char *), 16);
1908 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
1909 DIAGNOSTIC_PUSH;
1910 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
1911 -Wstringop-truncation:
1912 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
1913 */
1914 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
1915 #endif
1916 strncpy (data + 56, va_arg (ap, const char *), 80);
1917 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
1918 DIAGNOSTIC_POP;
1919 #endif
1920 va_end (ap);
1921 return elfcore_write_note (abfd, buf, bufsiz,
1922 "CORE", note_type, data, sizeof (data));
1923 }
1924
1925 case NT_PRSTATUS:
1926 {
1927 char data[504];
1928 va_list ap;
1929 long pid;
1930 int cursig;
1931 const void *greg;
1932
1933 va_start (ap, note_type);
1934 memset (data, 0, 112);
1935 pid = va_arg (ap, long);
1936 bfd_put_32 (abfd, pid, data + 32);
1937 cursig = va_arg (ap, int);
1938 bfd_put_16 (abfd, cursig, data + 12);
1939 greg = va_arg (ap, const void *);
1940 memcpy (data + 112, greg, 384);
1941 memset (data + 496, 0, 8);
1942 va_end (ap);
1943 return elfcore_write_note (abfd, buf, bufsiz,
1944 "CORE", note_type, data, sizeof (data));
1945 }
1946 }
1947 }
1948
1949 /* Add extra PPC sections. */
1950
1951 static const struct bfd_elf_special_section ppc64_elf_special_sections[] =
1952 {
1953 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
1954 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1955 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1956 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1957 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1958 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1959 { NULL, 0, 0, 0, 0 }
1960 };
1961
1962 enum _ppc64_sec_type {
1963 sec_normal = 0,
1964 sec_opd = 1,
1965 sec_toc = 2
1966 };
1967
1968 struct _ppc64_elf_section_data
1969 {
1970 struct bfd_elf_section_data elf;
1971
1972 union
1973 {
1974 /* An array with one entry for each opd function descriptor,
1975 and some spares since opd entries may be either 16 or 24 bytes. */
1976 #define OPD_NDX(OFF) ((OFF) >> 4)
1977 struct _opd_sec_data
1978 {
1979 /* Points to the function code section for local opd entries. */
1980 asection **func_sec;
1981
1982 /* After editing .opd, adjust references to opd local syms. */
1983 long *adjust;
1984 } opd;
1985
1986 /* An array for toc sections, indexed by offset/8. */
1987 struct _toc_sec_data
1988 {
1989 /* Specifies the relocation symbol index used at a given toc offset. */
1990 unsigned *symndx;
1991
1992 /* And the relocation addend. */
1993 bfd_vma *add;
1994 } toc;
1995 } u;
1996
1997 enum _ppc64_sec_type sec_type:2;
1998
1999 /* Flag set when small branches are detected. Used to
2000 select suitable defaults for the stub group size. */
2001 unsigned int has_14bit_branch:1;
2002
2003 /* Flag set when PLTCALL relocs are detected. */
2004 unsigned int has_pltcall:1;
2005
2006 /* Flag set when section has PLT/GOT/TOC relocations that can be
2007 optimised. */
2008 unsigned int has_optrel:1;
2009 };
2010
2011 #define ppc64_elf_section_data(sec) \
2012 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2013
2014 static bfd_boolean
2015 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2016 {
2017 if (!sec->used_by_bfd)
2018 {
2019 struct _ppc64_elf_section_data *sdata;
2020 size_t amt = sizeof (*sdata);
2021
2022 sdata = bfd_zalloc (abfd, amt);
2023 if (sdata == NULL)
2024 return FALSE;
2025 sec->used_by_bfd = sdata;
2026 }
2027
2028 return _bfd_elf_new_section_hook (abfd, sec);
2029 }
2030
2031 static bfd_boolean
2032 ppc64_elf_section_flags (const Elf_Internal_Shdr *hdr)
2033 {
2034 const char *name = hdr->bfd_section->name;
2035
2036 if (strncmp (name, ".sbss", 5) == 0
2037 || strncmp (name, ".sdata", 6) == 0)
2038 hdr->bfd_section->flags |= SEC_SMALL_DATA;
2039
2040 return TRUE;
2041 }
2042
2043 static struct _opd_sec_data *
2044 get_opd_info (asection * sec)
2045 {
2046 if (sec != NULL
2047 && ppc64_elf_section_data (sec) != NULL
2048 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
2049 return &ppc64_elf_section_data (sec)->u.opd;
2050 return NULL;
2051 }
2052 \f
2053 /* Parameters for the qsort hook. */
2054 static bfd_boolean synthetic_relocatable;
2055 static asection *synthetic_opd;
2056
2057 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2058
2059 static int
2060 compare_symbols (const void *ap, const void *bp)
2061 {
2062 const asymbol *a = *(const asymbol **) ap;
2063 const asymbol *b = *(const asymbol **) bp;
2064
2065 /* Section symbols first. */
2066 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2067 return -1;
2068 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2069 return 1;
2070
2071 /* then .opd symbols. */
2072 if (synthetic_opd != NULL)
2073 {
2074 if (strcmp (a->section->name, ".opd") == 0
2075 && strcmp (b->section->name, ".opd") != 0)
2076 return -1;
2077 if (strcmp (a->section->name, ".opd") != 0
2078 && strcmp (b->section->name, ".opd") == 0)
2079 return 1;
2080 }
2081
2082 /* then other code symbols. */
2083 if (((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2084 == (SEC_CODE | SEC_ALLOC))
2085 && ((b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2086 != (SEC_CODE | SEC_ALLOC)))
2087 return -1;
2088
2089 if (((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2090 != (SEC_CODE | SEC_ALLOC))
2091 && ((b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2092 == (SEC_CODE | SEC_ALLOC)))
2093 return 1;
2094
2095 if (synthetic_relocatable)
2096 {
2097 if (a->section->id < b->section->id)
2098 return -1;
2099
2100 if (a->section->id > b->section->id)
2101 return 1;
2102 }
2103
2104 if (a->value + a->section->vma < b->value + b->section->vma)
2105 return -1;
2106
2107 if (a->value + a->section->vma > b->value + b->section->vma)
2108 return 1;
2109
2110 /* For syms with the same value, prefer strong dynamic global function
2111 syms over other syms. */
2112 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
2113 return -1;
2114
2115 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
2116 return 1;
2117
2118 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
2119 return -1;
2120
2121 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
2122 return 1;
2123
2124 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
2125 return -1;
2126
2127 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
2128 return 1;
2129
2130 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
2131 return -1;
2132
2133 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
2134 return 1;
2135
2136 /* Finally, sort on where the symbol is in memory. The symbols will
2137 be in at most two malloc'd blocks, one for static syms, one for
2138 dynamic syms, and we distinguish the two blocks above by testing
2139 BSF_DYNAMIC. Since we are sorting the symbol pointers which were
2140 originally in the same order as the symbols (and we're not
2141 sorting the symbols themselves), this ensures a stable sort. */
2142 if (a < b)
2143 return -1;
2144 if (a > b)
2145 return 1;
2146 return 0;
2147 }
2148
2149 /* Search SYMS for a symbol of the given VALUE. */
2150
2151 static asymbol *
2152 sym_exists_at (asymbol **syms, size_t lo, size_t hi, unsigned int id,
2153 bfd_vma value)
2154 {
2155 size_t mid;
2156
2157 if (id == (unsigned) -1)
2158 {
2159 while (lo < hi)
2160 {
2161 mid = (lo + hi) >> 1;
2162 if (syms[mid]->value + syms[mid]->section->vma < value)
2163 lo = mid + 1;
2164 else if (syms[mid]->value + syms[mid]->section->vma > value)
2165 hi = mid;
2166 else
2167 return syms[mid];
2168 }
2169 }
2170 else
2171 {
2172 while (lo < hi)
2173 {
2174 mid = (lo + hi) >> 1;
2175 if (syms[mid]->section->id < id)
2176 lo = mid + 1;
2177 else if (syms[mid]->section->id > id)
2178 hi = mid;
2179 else if (syms[mid]->value < value)
2180 lo = mid + 1;
2181 else if (syms[mid]->value > value)
2182 hi = mid;
2183 else
2184 return syms[mid];
2185 }
2186 }
2187 return NULL;
2188 }
2189
2190 static bfd_boolean
2191 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
2192 {
2193 bfd_vma vma = *(bfd_vma *) ptr;
2194 return ((section->flags & SEC_ALLOC) != 0
2195 && section->vma <= vma
2196 && vma < section->vma + section->size);
2197 }
2198
2199 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2200 entry syms. Also generate @plt symbols for the glink branch table.
2201 Returns count of synthetic symbols in RET or -1 on error. */
2202
2203 static long
2204 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2205 long static_count, asymbol **static_syms,
2206 long dyn_count, asymbol **dyn_syms,
2207 asymbol **ret)
2208 {
2209 asymbol *s;
2210 size_t i, j, count;
2211 char *names;
2212 size_t symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2213 asection *opd = NULL;
2214 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2215 asymbol **syms;
2216 int abi = abiversion (abfd);
2217
2218 *ret = NULL;
2219
2220 if (abi < 2)
2221 {
2222 opd = bfd_get_section_by_name (abfd, ".opd");
2223 if (opd == NULL && abi == 1)
2224 return 0;
2225 }
2226
2227 syms = NULL;
2228 codesecsym = 0;
2229 codesecsymend = 0;
2230 secsymend = 0;
2231 opdsymend = 0;
2232 symcount = 0;
2233 if (opd != NULL)
2234 {
2235 symcount = static_count;
2236 if (!relocatable)
2237 symcount += dyn_count;
2238 if (symcount == 0)
2239 return 0;
2240
2241 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
2242 if (syms == NULL)
2243 return -1;
2244
2245 if (!relocatable && static_count != 0 && dyn_count != 0)
2246 {
2247 /* Use both symbol tables. */
2248 memcpy (syms, static_syms, static_count * sizeof (*syms));
2249 memcpy (syms + static_count, dyn_syms,
2250 (dyn_count + 1) * sizeof (*syms));
2251 }
2252 else if (!relocatable && static_count == 0)
2253 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
2254 else
2255 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
2256
2257 /* Trim uninteresting symbols. Interesting symbols are section,
2258 function, and notype symbols. */
2259 for (i = 0, j = 0; i < symcount; ++i)
2260 if ((syms[i]->flags & (BSF_FILE | BSF_OBJECT | BSF_THREAD_LOCAL
2261 | BSF_RELC | BSF_SRELC)) == 0)
2262 syms[j++] = syms[i];
2263 symcount = j;
2264
2265 synthetic_relocatable = relocatable;
2266 synthetic_opd = opd;
2267 qsort (syms, symcount, sizeof (*syms), compare_symbols);
2268
2269 if (!relocatable && symcount > 1)
2270 {
2271 /* Trim duplicate syms, since we may have merged the normal
2272 and dynamic symbols. Actually, we only care about syms
2273 that have different values, so trim any with the same
2274 value. Don't consider ifunc and ifunc resolver symbols
2275 duplicates however, because GDB wants to know whether a
2276 text symbol is an ifunc resolver. */
2277 for (i = 1, j = 1; i < symcount; ++i)
2278 {
2279 const asymbol *s0 = syms[i - 1];
2280 const asymbol *s1 = syms[i];
2281
2282 if ((s0->value + s0->section->vma
2283 != s1->value + s1->section->vma)
2284 || ((s0->flags & BSF_GNU_INDIRECT_FUNCTION)
2285 != (s1->flags & BSF_GNU_INDIRECT_FUNCTION)))
2286 syms[j++] = syms[i];
2287 }
2288 symcount = j;
2289 }
2290
2291 i = 0;
2292 /* Note that here and in compare_symbols we can't compare opd and
2293 sym->section directly. With separate debug info files, the
2294 symbols will be extracted from the debug file while abfd passed
2295 to this function is the real binary. */
2296 if (strcmp (syms[i]->section->name, ".opd") == 0)
2297 ++i;
2298 codesecsym = i;
2299
2300 for (; i < symcount; ++i)
2301 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC
2302 | SEC_THREAD_LOCAL))
2303 != (SEC_CODE | SEC_ALLOC))
2304 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
2305 break;
2306 codesecsymend = i;
2307
2308 for (; i < symcount; ++i)
2309 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
2310 break;
2311 secsymend = i;
2312
2313 for (; i < symcount; ++i)
2314 if (strcmp (syms[i]->section->name, ".opd") != 0)
2315 break;
2316 opdsymend = i;
2317
2318 for (; i < symcount; ++i)
2319 if (((syms[i]->section->flags
2320 & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL)))
2321 != (SEC_CODE | SEC_ALLOC))
2322 break;
2323 symcount = i;
2324 }
2325 count = 0;
2326
2327 if (relocatable)
2328 {
2329 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2330 arelent *r;
2331 size_t size;
2332 size_t relcount;
2333
2334 if (opdsymend == secsymend)
2335 goto done;
2336
2337 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2338 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
2339 if (relcount == 0)
2340 goto done;
2341
2342 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
2343 {
2344 count = -1;
2345 goto done;
2346 }
2347
2348 size = 0;
2349 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2350 {
2351 asymbol *sym;
2352
2353 while (r < opd->relocation + relcount
2354 && r->address < syms[i]->value + opd->vma)
2355 ++r;
2356
2357 if (r == opd->relocation + relcount)
2358 break;
2359
2360 if (r->address != syms[i]->value + opd->vma)
2361 continue;
2362
2363 if (r->howto->type != R_PPC64_ADDR64)
2364 continue;
2365
2366 sym = *r->sym_ptr_ptr;
2367 if (!sym_exists_at (syms, opdsymend, symcount,
2368 sym->section->id, sym->value + r->addend))
2369 {
2370 ++count;
2371 size += sizeof (asymbol);
2372 size += strlen (syms[i]->name) + 2;
2373 }
2374 }
2375
2376 if (size == 0)
2377 goto done;
2378 s = *ret = bfd_malloc (size);
2379 if (s == NULL)
2380 {
2381 count = -1;
2382 goto done;
2383 }
2384
2385 names = (char *) (s + count);
2386
2387 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2388 {
2389 asymbol *sym;
2390
2391 while (r < opd->relocation + relcount
2392 && r->address < syms[i]->value + opd->vma)
2393 ++r;
2394
2395 if (r == opd->relocation + relcount)
2396 break;
2397
2398 if (r->address != syms[i]->value + opd->vma)
2399 continue;
2400
2401 if (r->howto->type != R_PPC64_ADDR64)
2402 continue;
2403
2404 sym = *r->sym_ptr_ptr;
2405 if (!sym_exists_at (syms, opdsymend, symcount,
2406 sym->section->id, sym->value + r->addend))
2407 {
2408 size_t len;
2409
2410 *s = *syms[i];
2411 s->flags |= BSF_SYNTHETIC;
2412 s->section = sym->section;
2413 s->value = sym->value + r->addend;
2414 s->name = names;
2415 *names++ = '.';
2416 len = strlen (syms[i]->name);
2417 memcpy (names, syms[i]->name, len + 1);
2418 names += len + 1;
2419 /* Have udata.p point back to the original symbol this
2420 synthetic symbol was derived from. */
2421 s->udata.p = syms[i];
2422 s++;
2423 }
2424 }
2425 }
2426 else
2427 {
2428 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2429 bfd_byte *contents = NULL;
2430 size_t size;
2431 size_t plt_count = 0;
2432 bfd_vma glink_vma = 0, resolv_vma = 0;
2433 asection *dynamic, *glink = NULL, *relplt = NULL;
2434 arelent *p;
2435
2436 if (opd != NULL && !bfd_malloc_and_get_section (abfd, opd, &contents))
2437 {
2438 free_contents_and_exit_err:
2439 count = -1;
2440 free_contents_and_exit:
2441 free (contents);
2442 goto done;
2443 }
2444
2445 size = 0;
2446 for (i = secsymend; i < opdsymend; ++i)
2447 {
2448 bfd_vma ent;
2449
2450 /* Ignore bogus symbols. */
2451 if (syms[i]->value > opd->size - 8)
2452 continue;
2453
2454 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2455 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2456 {
2457 ++count;
2458 size += sizeof (asymbol);
2459 size += strlen (syms[i]->name) + 2;
2460 }
2461 }
2462
2463 /* Get start of .glink stubs from DT_PPC64_GLINK. */
2464 if (dyn_count != 0
2465 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
2466 {
2467 bfd_byte *dynbuf, *extdyn, *extdynend;
2468 size_t extdynsize;
2469 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
2470
2471 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
2472 goto free_contents_and_exit_err;
2473
2474 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
2475 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
2476
2477 extdyn = dynbuf;
2478 extdynend = extdyn + dynamic->size;
2479 for (; extdyn < extdynend; extdyn += extdynsize)
2480 {
2481 Elf_Internal_Dyn dyn;
2482 (*swap_dyn_in) (abfd, extdyn, &dyn);
2483
2484 if (dyn.d_tag == DT_NULL)
2485 break;
2486
2487 if (dyn.d_tag == DT_PPC64_GLINK)
2488 {
2489 /* The first glink stub starts at DT_PPC64_GLINK plus 32.
2490 See comment in ppc64_elf_finish_dynamic_sections. */
2491 glink_vma = dyn.d_un.d_val + 8 * 4;
2492 /* The .glink section usually does not survive the final
2493 link; search for the section (usually .text) where the
2494 glink stubs now reside. */
2495 glink = bfd_sections_find_if (abfd, section_covers_vma,
2496 &glink_vma);
2497 break;
2498 }
2499 }
2500
2501 free (dynbuf);
2502 }
2503
2504 if (glink != NULL)
2505 {
2506 /* Determine __glink trampoline by reading the relative branch
2507 from the first glink stub. */
2508 bfd_byte buf[4];
2509 unsigned int off = 0;
2510
2511 while (bfd_get_section_contents (abfd, glink, buf,
2512 glink_vma + off - glink->vma, 4))
2513 {
2514 unsigned int insn = bfd_get_32 (abfd, buf);
2515 insn ^= B_DOT;
2516 if ((insn & ~0x3fffffc) == 0)
2517 {
2518 resolv_vma
2519 = glink_vma + off + (insn ^ 0x2000000) - 0x2000000;
2520 break;
2521 }
2522 off += 4;
2523 if (off > 4)
2524 break;
2525 }
2526
2527 if (resolv_vma)
2528 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
2529
2530 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
2531 if (relplt != NULL)
2532 {
2533 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2534 if (!(*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
2535 goto free_contents_and_exit_err;
2536
2537 plt_count = relplt->size / sizeof (Elf64_External_Rela);
2538 size += plt_count * sizeof (asymbol);
2539
2540 p = relplt->relocation;
2541 for (i = 0; i < plt_count; i++, p++)
2542 {
2543 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
2544 if (p->addend != 0)
2545 size += sizeof ("+0x") - 1 + 16;
2546 }
2547 }
2548 }
2549
2550 if (size == 0)
2551 goto free_contents_and_exit;
2552 s = *ret = bfd_malloc (size);
2553 if (s == NULL)
2554 goto free_contents_and_exit_err;
2555
2556 names = (char *) (s + count + plt_count + (resolv_vma != 0));
2557
2558 for (i = secsymend; i < opdsymend; ++i)
2559 {
2560 bfd_vma ent;
2561
2562 if (syms[i]->value > opd->size - 8)
2563 continue;
2564
2565 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2566 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2567 {
2568 size_t lo, hi;
2569 size_t len;
2570 asection *sec = abfd->sections;
2571
2572 *s = *syms[i];
2573 lo = codesecsym;
2574 hi = codesecsymend;
2575 while (lo < hi)
2576 {
2577 size_t mid = (lo + hi) >> 1;
2578 if (syms[mid]->section->vma < ent)
2579 lo = mid + 1;
2580 else if (syms[mid]->section->vma > ent)
2581 hi = mid;
2582 else
2583 {
2584 sec = syms[mid]->section;
2585 break;
2586 }
2587 }
2588
2589 if (lo >= hi && lo > codesecsym)
2590 sec = syms[lo - 1]->section;
2591
2592 for (; sec != NULL; sec = sec->next)
2593 {
2594 if (sec->vma > ent)
2595 break;
2596 /* SEC_LOAD may not be set if SEC is from a separate debug
2597 info file. */
2598 if ((sec->flags & SEC_ALLOC) == 0)
2599 break;
2600 if ((sec->flags & SEC_CODE) != 0)
2601 s->section = sec;
2602 }
2603 s->flags |= BSF_SYNTHETIC;
2604 s->value = ent - s->section->vma;
2605 s->name = names;
2606 *names++ = '.';
2607 len = strlen (syms[i]->name);
2608 memcpy (names, syms[i]->name, len + 1);
2609 names += len + 1;
2610 /* Have udata.p point back to the original symbol this
2611 synthetic symbol was derived from. */
2612 s->udata.p = syms[i];
2613 s++;
2614 }
2615 }
2616 free (contents);
2617
2618 if (glink != NULL && relplt != NULL)
2619 {
2620 if (resolv_vma)
2621 {
2622 /* Add a symbol for the main glink trampoline. */
2623 memset (s, 0, sizeof *s);
2624 s->the_bfd = abfd;
2625 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
2626 s->section = glink;
2627 s->value = resolv_vma - glink->vma;
2628 s->name = names;
2629 memcpy (names, "__glink_PLTresolve",
2630 sizeof ("__glink_PLTresolve"));
2631 names += sizeof ("__glink_PLTresolve");
2632 s++;
2633 count++;
2634 }
2635
2636 /* FIXME: It would be very much nicer to put sym@plt on the
2637 stub rather than on the glink branch table entry. The
2638 objdump disassembler would then use a sensible symbol
2639 name on plt calls. The difficulty in doing so is
2640 a) finding the stubs, and,
2641 b) matching stubs against plt entries, and,
2642 c) there can be multiple stubs for a given plt entry.
2643
2644 Solving (a) could be done by code scanning, but older
2645 ppc64 binaries used different stubs to current code.
2646 (b) is the tricky one since you need to known the toc
2647 pointer for at least one function that uses a pic stub to
2648 be able to calculate the plt address referenced.
2649 (c) means gdb would need to set multiple breakpoints (or
2650 find the glink branch itself) when setting breakpoints
2651 for pending shared library loads. */
2652 p = relplt->relocation;
2653 for (i = 0; i < plt_count; i++, p++)
2654 {
2655 size_t len;
2656
2657 *s = **p->sym_ptr_ptr;
2658 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
2659 we are defining a symbol, ensure one of them is set. */
2660 if ((s->flags & BSF_LOCAL) == 0)
2661 s->flags |= BSF_GLOBAL;
2662 s->flags |= BSF_SYNTHETIC;
2663 s->section = glink;
2664 s->value = glink_vma - glink->vma;
2665 s->name = names;
2666 s->udata.p = NULL;
2667 len = strlen ((*p->sym_ptr_ptr)->name);
2668 memcpy (names, (*p->sym_ptr_ptr)->name, len);
2669 names += len;
2670 if (p->addend != 0)
2671 {
2672 memcpy (names, "+0x", sizeof ("+0x") - 1);
2673 names += sizeof ("+0x") - 1;
2674 bfd_sprintf_vma (abfd, names, p->addend);
2675 names += strlen (names);
2676 }
2677 memcpy (names, "@plt", sizeof ("@plt"));
2678 names += sizeof ("@plt");
2679 s++;
2680 if (abi < 2)
2681 {
2682 glink_vma += 8;
2683 if (i >= 0x8000)
2684 glink_vma += 4;
2685 }
2686 else
2687 glink_vma += 4;
2688 }
2689 count += plt_count;
2690 }
2691 }
2692
2693 done:
2694 free (syms);
2695 return count;
2696 }
2697 \f
2698 /* The following functions are specific to the ELF linker, while
2699 functions above are used generally. Those named ppc64_elf_* are
2700 called by the main ELF linker code. They appear in this file more
2701 or less in the order in which they are called. eg.
2702 ppc64_elf_check_relocs is called early in the link process,
2703 ppc64_elf_finish_dynamic_sections is one of the last functions
2704 called.
2705
2706 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
2707 functions have both a function code symbol and a function descriptor
2708 symbol. A call to foo in a relocatable object file looks like:
2709
2710 . .text
2711 . x:
2712 . bl .foo
2713 . nop
2714
2715 The function definition in another object file might be:
2716
2717 . .section .opd
2718 . foo: .quad .foo
2719 . .quad .TOC.@tocbase
2720 . .quad 0
2721 .
2722 . .text
2723 . .foo: blr
2724
2725 When the linker resolves the call during a static link, the branch
2726 unsurprisingly just goes to .foo and the .opd information is unused.
2727 If the function definition is in a shared library, things are a little
2728 different: The call goes via a plt call stub, the opd information gets
2729 copied to the plt, and the linker patches the nop.
2730
2731 . x:
2732 . bl .foo_stub
2733 . ld 2,40(1)
2734 .
2735 .
2736 . .foo_stub:
2737 . std 2,40(1) # in practice, the call stub
2738 . addis 11,2,Lfoo@toc@ha # is slightly optimized, but
2739 . addi 11,11,Lfoo@toc@l # this is the general idea
2740 . ld 12,0(11)
2741 . ld 2,8(11)
2742 . mtctr 12
2743 . ld 11,16(11)
2744 . bctr
2745 .
2746 . .section .plt
2747 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
2748
2749 The "reloc ()" notation is supposed to indicate that the linker emits
2750 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
2751 copying.
2752
2753 What are the difficulties here? Well, firstly, the relocations
2754 examined by the linker in check_relocs are against the function code
2755 sym .foo, while the dynamic relocation in the plt is emitted against
2756 the function descriptor symbol, foo. Somewhere along the line, we need
2757 to carefully copy dynamic link information from one symbol to the other.
2758 Secondly, the generic part of the elf linker will make .foo a dynamic
2759 symbol as is normal for most other backends. We need foo dynamic
2760 instead, at least for an application final link. However, when
2761 creating a shared library containing foo, we need to have both symbols
2762 dynamic so that references to .foo are satisfied during the early
2763 stages of linking. Otherwise the linker might decide to pull in a
2764 definition from some other object, eg. a static library.
2765
2766 Update: As of August 2004, we support a new convention. Function
2767 calls may use the function descriptor symbol, ie. "bl foo". This
2768 behaves exactly as "bl .foo". */
2769
2770 /* Of those relocs that might be copied as dynamic relocs, this
2771 function selects those that must be copied when linking a shared
2772 library or PIE, even when the symbol is local. */
2773
2774 static int
2775 must_be_dyn_reloc (struct bfd_link_info *info,
2776 enum elf_ppc64_reloc_type r_type)
2777 {
2778 switch (r_type)
2779 {
2780 default:
2781 /* Only relative relocs can be resolved when the object load
2782 address isn't fixed. DTPREL64 is excluded because the
2783 dynamic linker needs to differentiate global dynamic from
2784 local dynamic __tls_index pairs when PPC64_OPT_TLS is set. */
2785 return 1;
2786
2787 case R_PPC64_REL32:
2788 case R_PPC64_REL64:
2789 case R_PPC64_REL30:
2790 case R_PPC64_TOC16:
2791 case R_PPC64_TOC16_DS:
2792 case R_PPC64_TOC16_LO:
2793 case R_PPC64_TOC16_HI:
2794 case R_PPC64_TOC16_HA:
2795 case R_PPC64_TOC16_LO_DS:
2796 return 0;
2797
2798 case R_PPC64_TPREL16:
2799 case R_PPC64_TPREL16_LO:
2800 case R_PPC64_TPREL16_HI:
2801 case R_PPC64_TPREL16_HA:
2802 case R_PPC64_TPREL16_DS:
2803 case R_PPC64_TPREL16_LO_DS:
2804 case R_PPC64_TPREL16_HIGH:
2805 case R_PPC64_TPREL16_HIGHA:
2806 case R_PPC64_TPREL16_HIGHER:
2807 case R_PPC64_TPREL16_HIGHERA:
2808 case R_PPC64_TPREL16_HIGHEST:
2809 case R_PPC64_TPREL16_HIGHESTA:
2810 case R_PPC64_TPREL64:
2811 case R_PPC64_TPREL34:
2812 /* These relocations are relative but in a shared library the
2813 linker doesn't know the thread pointer base. */
2814 return bfd_link_dll (info);
2815 }
2816 }
2817
2818 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
2819 copying dynamic variables from a shared lib into an app's .dynbss
2820 section, and instead use a dynamic relocation to point into the
2821 shared lib. With code that gcc generates it is vital that this be
2822 enabled; In the PowerPC64 ELFv1 ABI the address of a function is
2823 actually the address of a function descriptor which resides in the
2824 .opd section. gcc uses the descriptor directly rather than going
2825 via the GOT as some other ABIs do, which means that initialized
2826 function pointers reference the descriptor. Thus, a function
2827 pointer initialized to the address of a function in a shared
2828 library will either require a .dynbss copy and a copy reloc, or a
2829 dynamic reloc. Using a .dynbss copy redefines the function
2830 descriptor symbol to point to the copy. This presents a problem as
2831 a PLT entry for that function is also initialized from the function
2832 descriptor symbol and the copy may not be initialized first. */
2833 #define ELIMINATE_COPY_RELOCS 1
2834
2835 /* Section name for stubs is the associated section name plus this
2836 string. */
2837 #define STUB_SUFFIX ".stub"
2838
2839 /* Linker stubs.
2840 ppc_stub_long_branch:
2841 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
2842 destination, but a 24 bit branch in a stub section will reach.
2843 . b dest
2844
2845 ppc_stub_plt_branch:
2846 Similar to the above, but a 24 bit branch in the stub section won't
2847 reach its destination.
2848 . addis %r12,%r2,xxx@toc@ha
2849 . ld %r12,xxx@toc@l(%r12)
2850 . mtctr %r12
2851 . bctr
2852
2853 ppc_stub_plt_call:
2854 Used to call a function in a shared library. If it so happens that
2855 the plt entry referenced crosses a 64k boundary, then an extra
2856 "addi %r11,%r11,xxx@toc@l" will be inserted before the "mtctr".
2857 ppc_stub_plt_call_r2save starts with "std %r2,40(%r1)".
2858 . addis %r11,%r2,xxx@toc@ha
2859 . ld %r12,xxx+0@toc@l(%r11)
2860 . mtctr %r12
2861 . ld %r2,xxx+8@toc@l(%r11)
2862 . ld %r11,xxx+16@toc@l(%r11)
2863 . bctr
2864
2865 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
2866 code to adjust the value and save r2 to support multiple toc sections.
2867 A ppc_stub_long_branch with an r2 offset looks like:
2868 . std %r2,40(%r1)
2869 . addis %r2,%r2,off@ha
2870 . addi %r2,%r2,off@l
2871 . b dest
2872
2873 A ppc_stub_plt_branch with an r2 offset looks like:
2874 . std %r2,40(%r1)
2875 . addis %r12,%r2,xxx@toc@ha
2876 . ld %r12,xxx@toc@l(%r12)
2877 . addis %r2,%r2,off@ha
2878 . addi %r2,%r2,off@l
2879 . mtctr %r12
2880 . bctr
2881
2882 All of the above stubs are shown as their ELFv1 variants. ELFv2
2883 variants exist too, simpler for plt calls since a new toc pointer
2884 and static chain are not loaded by the stub. In addition, ELFv2
2885 has some more complex stubs to handle calls marked with NOTOC
2886 relocs from functions where r2 is not a valid toc pointer. These
2887 come in two flavours, the ones shown below, and _both variants that
2888 start with "std %r2,24(%r1)" to save r2 in the unlikely event that
2889 one call is from a function where r2 is used as the toc pointer but
2890 needs a toc adjusting stub for small-model multi-toc, and another
2891 call is from a function where r2 is not valid.
2892 ppc_stub_long_branch_notoc:
2893 . mflr %r12
2894 . bcl 20,31,1f
2895 . 1:
2896 . mflr %r11
2897 . mtlr %r12
2898 . addis %r12,%r11,dest-1b@ha
2899 . addi %r12,%r12,dest-1b@l
2900 . b dest
2901
2902 ppc_stub_plt_branch_notoc:
2903 . mflr %r12
2904 . bcl 20,31,1f
2905 . 1:
2906 . mflr %r11
2907 . mtlr %r12
2908 . lis %r12,xxx-1b@highest
2909 . ori %r12,%r12,xxx-1b@higher
2910 . sldi %r12,%r12,32
2911 . oris %r12,%r12,xxx-1b@high
2912 . ori %r12,%r12,xxx-1b@l
2913 . add %r12,%r11,%r12
2914 . mtctr %r12
2915 . bctr
2916
2917 ppc_stub_plt_call_notoc:
2918 . mflr %r12
2919 . bcl 20,31,1f
2920 . 1:
2921 . mflr %r11
2922 . mtlr %r12
2923 . lis %r12,xxx-1b@highest
2924 . ori %r12,%r12,xxx-1b@higher
2925 . sldi %r12,%r12,32
2926 . oris %r12,%r12,xxx-1b@high
2927 . ori %r12,%r12,xxx-1b@l
2928 . ldx %r12,%r11,%r12
2929 . mtctr %r12
2930 . bctr
2931
2932 There are also ELFv1 power10 variants of these stubs.
2933 ppc_stub_long_branch_notoc:
2934 . pla %r12,dest@pcrel
2935 . b dest
2936 ppc_stub_plt_branch_notoc:
2937 . lis %r11,(dest-1f)@highesta34
2938 . ori %r11,%r11,(dest-1f)@highera34
2939 . sldi %r11,%r11,34
2940 . 1: pla %r12,dest@pcrel
2941 . add %r12,%r11,%r12
2942 . mtctr %r12
2943 . bctr
2944 ppc_stub_plt_call_notoc:
2945 . lis %r11,(xxx-1f)@highesta34
2946 . ori %r11,%r11,(xxx-1f)@highera34
2947 . sldi %r11,%r11,34
2948 . 1: pla %r12,xxx@pcrel
2949 . ldx %r12,%r11,%r12
2950 . mtctr %r12
2951 . bctr
2952
2953 In cases where the high instructions would add zero, they are
2954 omitted and following instructions modified in some cases.
2955 For example, a power10 ppc_stub_plt_call_notoc might simplify down
2956 to
2957 . pld %r12,xxx@pcrel
2958 . mtctr %r12
2959 . bctr
2960
2961 For a given stub group (a set of sections all using the same toc
2962 pointer value) there will be just one stub type used for any
2963 particular function symbol. For example, if printf is called from
2964 code with the tocsave optimization (ie. r2 saved in function
2965 prologue) and therefore calls use a ppc_stub_plt_call linkage stub,
2966 and from other code without the tocsave optimization requiring a
2967 ppc_stub_plt_call_r2save linkage stub, a single stub of the latter
2968 type will be created. Calls with the tocsave optimization will
2969 enter this stub after the instruction saving r2. A similar
2970 situation exists when calls are marked with R_PPC64_REL24_NOTOC
2971 relocations. These require a ppc_stub_plt_call_notoc linkage stub
2972 to call an external function like printf. If other calls to printf
2973 require a ppc_stub_plt_call linkage stub then a single
2974 ppc_stub_plt_call_notoc linkage stub will be used for both types of
2975 call. If other calls to printf require a ppc_stub_plt_call_r2save
2976 linkage stub then a single ppc_stub_plt_call_both linkage stub will
2977 be created and calls not requiring r2 to be saved will enter the
2978 stub after the r2 save instruction. There is an analogous
2979 hierarchy of long branch and plt branch stubs for local call
2980 linkage. */
2981
2982 enum ppc_stub_type
2983 {
2984 ppc_stub_none,
2985 ppc_stub_long_branch,
2986 ppc_stub_long_branch_r2off,
2987 ppc_stub_long_branch_notoc,
2988 ppc_stub_long_branch_both, /* r2off and notoc variants both needed. */
2989 ppc_stub_plt_branch,
2990 ppc_stub_plt_branch_r2off,
2991 ppc_stub_plt_branch_notoc,
2992 ppc_stub_plt_branch_both,
2993 ppc_stub_plt_call,
2994 ppc_stub_plt_call_r2save,
2995 ppc_stub_plt_call_notoc,
2996 ppc_stub_plt_call_both,
2997 ppc_stub_global_entry,
2998 ppc_stub_save_res
2999 };
3000
3001 /* Information on stub grouping. */
3002 struct map_stub
3003 {
3004 /* The stub section. */
3005 asection *stub_sec;
3006 /* This is the section to which stubs in the group will be attached. */
3007 asection *link_sec;
3008 /* Next group. */
3009 struct map_stub *next;
3010 /* Whether to emit a copy of register save/restore functions in this
3011 group. */
3012 int needs_save_res;
3013 /* Current offset within stubs after the insn restoring lr in a
3014 _notoc or _both stub using bcl for pc-relative addressing, or
3015 after the insn restoring lr in a __tls_get_addr_opt plt stub. */
3016 unsigned int lr_restore;
3017 /* Accumulated size of EH info emitted to describe return address
3018 if stubs modify lr. Does not include 17 byte FDE header. */
3019 unsigned int eh_size;
3020 /* Offset in glink_eh_frame to the start of EH info for this group. */
3021 unsigned int eh_base;
3022 };
3023
3024 struct ppc_stub_hash_entry
3025 {
3026 /* Base hash table entry structure. */
3027 struct bfd_hash_entry root;
3028
3029 enum ppc_stub_type stub_type;
3030
3031 /* Group information. */
3032 struct map_stub *group;
3033
3034 /* Offset within stub_sec of the beginning of this stub. */
3035 bfd_vma stub_offset;
3036
3037 /* Given the symbol's value and its section we can determine its final
3038 value when building the stubs (so the stub knows where to jump. */
3039 bfd_vma target_value;
3040 asection *target_section;
3041
3042 /* The symbol table entry, if any, that this was derived from. */
3043 struct ppc_link_hash_entry *h;
3044 struct plt_entry *plt_ent;
3045
3046 /* Symbol type. */
3047 unsigned char symtype;
3048
3049 /* Symbol st_other. */
3050 unsigned char other;
3051 };
3052
3053 struct ppc_branch_hash_entry
3054 {
3055 /* Base hash table entry structure. */
3056 struct bfd_hash_entry root;
3057
3058 /* Offset within branch lookup table. */
3059 unsigned int offset;
3060
3061 /* Generation marker. */
3062 unsigned int iter;
3063 };
3064
3065 /* Used to track dynamic relocations for local symbols. */
3066 struct ppc_dyn_relocs
3067 {
3068 struct ppc_dyn_relocs *next;
3069
3070 /* The input section of the reloc. */
3071 asection *sec;
3072
3073 /* Total number of relocs copied for the input section. */
3074 unsigned int count : 31;
3075
3076 /* Whether this entry is for STT_GNU_IFUNC symbols. */
3077 unsigned int ifunc : 1;
3078 };
3079
3080 struct ppc_link_hash_entry
3081 {
3082 struct elf_link_hash_entry elf;
3083
3084 union
3085 {
3086 /* A pointer to the most recently used stub hash entry against this
3087 symbol. */
3088 struct ppc_stub_hash_entry *stub_cache;
3089
3090 /* A pointer to the next symbol starting with a '.' */
3091 struct ppc_link_hash_entry *next_dot_sym;
3092 } u;
3093
3094 /* Link between function code and descriptor symbols. */
3095 struct ppc_link_hash_entry *oh;
3096
3097 /* Flag function code and descriptor symbols. */
3098 unsigned int is_func:1;
3099 unsigned int is_func_descriptor:1;
3100 unsigned int fake:1;
3101
3102 /* Whether global opd/toc sym has been adjusted or not.
3103 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3104 should be set for all globals defined in any opd/toc section. */
3105 unsigned int adjust_done:1;
3106
3107 /* Set if this is an out-of-line register save/restore function,
3108 with non-standard calling convention. */
3109 unsigned int save_res:1;
3110
3111 /* Set if a duplicate symbol with non-zero localentry is detected,
3112 even when the duplicate symbol does not provide a definition. */
3113 unsigned int non_zero_localentry:1;
3114
3115 /* Contexts in which symbol is used in the GOT (or TOC).
3116 Bits are or'd into the mask as the corresponding relocs are
3117 encountered during check_relocs, with TLS_TLS being set when any
3118 of the other TLS bits are set. tls_optimize clears bits when
3119 optimizing to indicate the corresponding GOT entry type is not
3120 needed. If set, TLS_TLS is never cleared. tls_optimize may also
3121 set TLS_GDIE when a GD reloc turns into an IE one.
3122 These flags are also kept for local symbols. */
3123 #define TLS_TLS 1 /* Any TLS reloc. */
3124 #define TLS_GD 2 /* GD reloc. */
3125 #define TLS_LD 4 /* LD reloc. */
3126 #define TLS_TPREL 8 /* TPREL reloc, => IE. */
3127 #define TLS_DTPREL 16 /* DTPREL reloc, => LD. */
3128 #define TLS_MARK 32 /* __tls_get_addr call marked. */
3129 #define TLS_GDIE 64 /* GOT TPREL reloc resulting from GD->IE. */
3130 #define TLS_EXPLICIT 256 /* TOC section TLS reloc, not stored. */
3131 unsigned char tls_mask;
3132
3133 /* The above field is also used to mark function symbols. In which
3134 case TLS_TLS will be 0. */
3135 #define PLT_IFUNC 2 /* STT_GNU_IFUNC. */
3136 #define PLT_KEEP 4 /* inline plt call requires plt entry. */
3137 #define NON_GOT 256 /* local symbol plt, not stored. */
3138 };
3139
3140 static inline struct ppc_link_hash_entry *
3141 ppc_elf_hash_entry (struct elf_link_hash_entry *ent)
3142 {
3143 return (struct ppc_link_hash_entry *) ent;
3144 }
3145
3146 /* ppc64 ELF linker hash table. */
3147
3148 struct ppc_link_hash_table
3149 {
3150 struct elf_link_hash_table elf;
3151
3152 /* The stub hash table. */
3153 struct bfd_hash_table stub_hash_table;
3154
3155 /* Another hash table for plt_branch stubs. */
3156 struct bfd_hash_table branch_hash_table;
3157
3158 /* Hash table for function prologue tocsave. */
3159 htab_t tocsave_htab;
3160
3161 /* Various options and other info passed from the linker. */
3162 struct ppc64_elf_params *params;
3163
3164 /* The size of sec_info below. */
3165 unsigned int sec_info_arr_size;
3166
3167 /* Per-section array of extra section info. Done this way rather
3168 than as part of ppc64_elf_section_data so we have the info for
3169 non-ppc64 sections. */
3170 struct
3171 {
3172 /* Along with elf_gp, specifies the TOC pointer used by this section. */
3173 bfd_vma toc_off;
3174
3175 union
3176 {
3177 /* The section group that this section belongs to. */
3178 struct map_stub *group;
3179 /* A temp section list pointer. */
3180 asection *list;
3181 } u;
3182 } *sec_info;
3183
3184 /* Linked list of groups. */
3185 struct map_stub *group;
3186
3187 /* Temp used when calculating TOC pointers. */
3188 bfd_vma toc_curr;
3189 bfd *toc_bfd;
3190 asection *toc_first_sec;
3191
3192 /* Used when adding symbols. */
3193 struct ppc_link_hash_entry *dot_syms;
3194
3195 /* Shortcuts to get to dynamic linker sections. */
3196 asection *glink;
3197 asection *global_entry;
3198 asection *sfpr;
3199 asection *pltlocal;
3200 asection *relpltlocal;
3201 asection *brlt;
3202 asection *relbrlt;
3203 asection *glink_eh_frame;
3204
3205 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3206 struct ppc_link_hash_entry *tls_get_addr;
3207 struct ppc_link_hash_entry *tls_get_addr_fd;
3208 struct ppc_link_hash_entry *tga_desc;
3209 struct ppc_link_hash_entry *tga_desc_fd;
3210 struct map_stub *tga_group;
3211
3212 /* The size of reliplt used by got entry relocs. */
3213 bfd_size_type got_reli_size;
3214
3215 /* Statistics. */
3216 unsigned long stub_count[ppc_stub_global_entry];
3217
3218 /* Number of stubs against global syms. */
3219 unsigned long stub_globals;
3220
3221 /* Set if we're linking code with function descriptors. */
3222 unsigned int opd_abi:1;
3223
3224 /* Support for multiple toc sections. */
3225 unsigned int do_multi_toc:1;
3226 unsigned int multi_toc_needed:1;
3227 unsigned int second_toc_pass:1;
3228 unsigned int do_toc_opt:1;
3229
3230 /* Set if tls optimization is enabled. */
3231 unsigned int do_tls_opt:1;
3232
3233 /* Set if inline plt calls should be converted to direct calls. */
3234 unsigned int can_convert_all_inline_plt:1;
3235
3236 /* Set on error. */
3237 unsigned int stub_error:1;
3238
3239 /* Whether func_desc_adjust needs to be run over symbols. */
3240 unsigned int need_func_desc_adj:1;
3241
3242 /* Whether plt calls for ELFv2 localentry:0 funcs have been optimized. */
3243 unsigned int has_plt_localentry0:1;
3244
3245 /* Whether calls are made via the PLT from NOTOC functions. */
3246 unsigned int notoc_plt:1;
3247
3248 /* Whether any code linked seems to be Power10. */
3249 unsigned int has_power10_relocs:1;
3250
3251 /* Incremented every time we size stubs. */
3252 unsigned int stub_iteration;
3253 };
3254
3255 /* Rename some of the generic section flags to better document how they
3256 are used here. */
3257
3258 /* Nonzero if this section has TLS related relocations. */
3259 #define has_tls_reloc sec_flg0
3260
3261 /* Nonzero if this section has a call to __tls_get_addr lacking marker
3262 relocations. */
3263 #define nomark_tls_get_addr sec_flg1
3264
3265 /* Nonzero if this section has any toc or got relocs. */
3266 #define has_toc_reloc sec_flg2
3267
3268 /* Nonzero if this section has a call to another section that uses
3269 the toc or got. */
3270 #define makes_toc_func_call sec_flg3
3271
3272 /* Recursion protection when determining above flag. */
3273 #define call_check_in_progress sec_flg4
3274 #define call_check_done sec_flg5
3275
3276 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3277
3278 #define ppc_hash_table(p) \
3279 ((is_elf_hash_table ((p)->hash) \
3280 && elf_hash_table_id (elf_hash_table (p)) == PPC64_ELF_DATA) \
3281 ? (struct ppc_link_hash_table *) (p)->hash : NULL)
3282
3283 #define ppc_stub_hash_lookup(table, string, create, copy) \
3284 ((struct ppc_stub_hash_entry *) \
3285 bfd_hash_lookup ((table), (string), (create), (copy)))
3286
3287 #define ppc_branch_hash_lookup(table, string, create, copy) \
3288 ((struct ppc_branch_hash_entry *) \
3289 bfd_hash_lookup ((table), (string), (create), (copy)))
3290
3291 /* Create an entry in the stub hash table. */
3292
3293 static struct bfd_hash_entry *
3294 stub_hash_newfunc (struct bfd_hash_entry *entry,
3295 struct bfd_hash_table *table,
3296 const char *string)
3297 {
3298 /* Allocate the structure if it has not already been allocated by a
3299 subclass. */
3300 if (entry == NULL)
3301 {
3302 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3303 if (entry == NULL)
3304 return entry;
3305 }
3306
3307 /* Call the allocation method of the superclass. */
3308 entry = bfd_hash_newfunc (entry, table, string);
3309 if (entry != NULL)
3310 {
3311 struct ppc_stub_hash_entry *eh;
3312
3313 /* Initialize the local fields. */
3314 eh = (struct ppc_stub_hash_entry *) entry;
3315 eh->stub_type = ppc_stub_none;
3316 eh->group = NULL;
3317 eh->stub_offset = 0;
3318 eh->target_value = 0;
3319 eh->target_section = NULL;
3320 eh->h = NULL;
3321 eh->plt_ent = NULL;
3322 eh->other = 0;
3323 }
3324
3325 return entry;
3326 }
3327
3328 /* Create an entry in the branch hash table. */
3329
3330 static struct bfd_hash_entry *
3331 branch_hash_newfunc (struct bfd_hash_entry *entry,
3332 struct bfd_hash_table *table,
3333 const char *string)
3334 {
3335 /* Allocate the structure if it has not already been allocated by a
3336 subclass. */
3337 if (entry == NULL)
3338 {
3339 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3340 if (entry == NULL)
3341 return entry;
3342 }
3343
3344 /* Call the allocation method of the superclass. */
3345 entry = bfd_hash_newfunc (entry, table, string);
3346 if (entry != NULL)
3347 {
3348 struct ppc_branch_hash_entry *eh;
3349
3350 /* Initialize the local fields. */
3351 eh = (struct ppc_branch_hash_entry *) entry;
3352 eh->offset = 0;
3353 eh->iter = 0;
3354 }
3355
3356 return entry;
3357 }
3358
3359 /* Create an entry in a ppc64 ELF linker hash table. */
3360
3361 static struct bfd_hash_entry *
3362 link_hash_newfunc (struct bfd_hash_entry *entry,
3363 struct bfd_hash_table *table,
3364 const char *string)
3365 {
3366 /* Allocate the structure if it has not already been allocated by a
3367 subclass. */
3368 if (entry == NULL)
3369 {
3370 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3371 if (entry == NULL)
3372 return entry;
3373 }
3374
3375 /* Call the allocation method of the superclass. */
3376 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3377 if (entry != NULL)
3378 {
3379 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3380
3381 memset (&eh->u.stub_cache, 0,
3382 (sizeof (struct ppc_link_hash_entry)
3383 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
3384
3385 /* When making function calls, old ABI code references function entry
3386 points (dot symbols), while new ABI code references the function
3387 descriptor symbol. We need to make any combination of reference and
3388 definition work together, without breaking archive linking.
3389
3390 For a defined function "foo" and an undefined call to "bar":
3391 An old object defines "foo" and ".foo", references ".bar" (possibly
3392 "bar" too).
3393 A new object defines "foo" and references "bar".
3394
3395 A new object thus has no problem with its undefined symbols being
3396 satisfied by definitions in an old object. On the other hand, the
3397 old object won't have ".bar" satisfied by a new object.
3398
3399 Keep a list of newly added dot-symbols. */
3400
3401 if (string[0] == '.')
3402 {
3403 struct ppc_link_hash_table *htab;
3404
3405 htab = (struct ppc_link_hash_table *) table;
3406 eh->u.next_dot_sym = htab->dot_syms;
3407 htab->dot_syms = eh;
3408 }
3409 }
3410
3411 return entry;
3412 }
3413
3414 struct tocsave_entry
3415 {
3416 asection *sec;
3417 bfd_vma offset;
3418 };
3419
3420 static hashval_t
3421 tocsave_htab_hash (const void *p)
3422 {
3423 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
3424 return ((bfd_vma) (intptr_t) e->sec ^ e->offset) >> 3;
3425 }
3426
3427 static int
3428 tocsave_htab_eq (const void *p1, const void *p2)
3429 {
3430 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
3431 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
3432 return e1->sec == e2->sec && e1->offset == e2->offset;
3433 }
3434
3435 /* Destroy a ppc64 ELF linker hash table. */
3436
3437 static void
3438 ppc64_elf_link_hash_table_free (bfd *obfd)
3439 {
3440 struct ppc_link_hash_table *htab;
3441
3442 htab = (struct ppc_link_hash_table *) obfd->link.hash;
3443 if (htab->tocsave_htab)
3444 htab_delete (htab->tocsave_htab);
3445 bfd_hash_table_free (&htab->branch_hash_table);
3446 bfd_hash_table_free (&htab->stub_hash_table);
3447 _bfd_elf_link_hash_table_free (obfd);
3448 }
3449
3450 /* Create a ppc64 ELF linker hash table. */
3451
3452 static struct bfd_link_hash_table *
3453 ppc64_elf_link_hash_table_create (bfd *abfd)
3454 {
3455 struct ppc_link_hash_table *htab;
3456 size_t amt = sizeof (struct ppc_link_hash_table);
3457
3458 htab = bfd_zmalloc (amt);
3459 if (htab == NULL)
3460 return NULL;
3461
3462 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
3463 sizeof (struct ppc_link_hash_entry),
3464 PPC64_ELF_DATA))
3465 {
3466 free (htab);
3467 return NULL;
3468 }
3469
3470 /* Init the stub hash table too. */
3471 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
3472 sizeof (struct ppc_stub_hash_entry)))
3473 {
3474 _bfd_elf_link_hash_table_free (abfd);
3475 return NULL;
3476 }
3477
3478 /* And the branch hash table. */
3479 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
3480 sizeof (struct ppc_branch_hash_entry)))
3481 {
3482 bfd_hash_table_free (&htab->stub_hash_table);
3483 _bfd_elf_link_hash_table_free (abfd);
3484 return NULL;
3485 }
3486
3487 htab->tocsave_htab = htab_try_create (1024,
3488 tocsave_htab_hash,
3489 tocsave_htab_eq,
3490 NULL);
3491 if (htab->tocsave_htab == NULL)
3492 {
3493 ppc64_elf_link_hash_table_free (abfd);
3494 return NULL;
3495 }
3496 htab->elf.root.hash_table_free = ppc64_elf_link_hash_table_free;
3497
3498 /* Initializing two fields of the union is just cosmetic. We really
3499 only care about glist, but when compiled on a 32-bit host the
3500 bfd_vma fields are larger. Setting the bfd_vma to zero makes
3501 debugger inspection of these fields look nicer. */
3502 htab->elf.init_got_refcount.refcount = 0;
3503 htab->elf.init_got_refcount.glist = NULL;
3504 htab->elf.init_plt_refcount.refcount = 0;
3505 htab->elf.init_plt_refcount.glist = NULL;
3506 htab->elf.init_got_offset.offset = 0;
3507 htab->elf.init_got_offset.glist = NULL;
3508 htab->elf.init_plt_offset.offset = 0;
3509 htab->elf.init_plt_offset.glist = NULL;
3510
3511 return &htab->elf.root;
3512 }
3513
3514 /* Create sections for linker generated code. */
3515
3516 static bfd_boolean
3517 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
3518 {
3519 struct ppc_link_hash_table *htab;
3520 flagword flags;
3521
3522 htab = ppc_hash_table (info);
3523
3524 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
3525 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3526 if (htab->params->save_restore_funcs)
3527 {
3528 /* Create .sfpr for code to save and restore fp regs. */
3529 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
3530 flags);
3531 if (htab->sfpr == NULL
3532 || !bfd_set_section_alignment (htab->sfpr, 2))
3533 return FALSE;
3534 }
3535
3536 if (bfd_link_relocatable (info))
3537 return TRUE;
3538
3539 /* Create .glink for lazy dynamic linking support. */
3540 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
3541 flags);
3542 if (htab->glink == NULL
3543 || !bfd_set_section_alignment (htab->glink, 3))
3544 return FALSE;
3545
3546 /* The part of .glink used by global entry stubs, separate so that
3547 it can be aligned appropriately without affecting htab->glink. */
3548 htab->global_entry = bfd_make_section_anyway_with_flags (dynobj, ".glink",
3549 flags);
3550 if (htab->global_entry == NULL
3551 || !bfd_set_section_alignment (htab->global_entry, 2))
3552 return FALSE;
3553
3554 if (!info->no_ld_generated_unwind_info)
3555 {
3556 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
3557 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3558 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
3559 ".eh_frame",
3560 flags);
3561 if (htab->glink_eh_frame == NULL
3562 || !bfd_set_section_alignment (htab->glink_eh_frame, 2))
3563 return FALSE;
3564 }
3565
3566 flags = SEC_ALLOC | SEC_LINKER_CREATED;
3567 htab->elf.iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
3568 if (htab->elf.iplt == NULL
3569 || !bfd_set_section_alignment (htab->elf.iplt, 3))
3570 return FALSE;
3571
3572 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3573 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3574 htab->elf.irelplt
3575 = bfd_make_section_anyway_with_flags (dynobj, ".rela.iplt", flags);
3576 if (htab->elf.irelplt == NULL
3577 || !bfd_set_section_alignment (htab->elf.irelplt, 3))
3578 return FALSE;
3579
3580 /* Create branch lookup table for plt_branch stubs. */
3581 flags = (SEC_ALLOC | SEC_LOAD
3582 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3583 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
3584 flags);
3585 if (htab->brlt == NULL
3586 || !bfd_set_section_alignment (htab->brlt, 3))
3587 return FALSE;
3588
3589 /* Local plt entries, put in .branch_lt but a separate section for
3590 convenience. */
3591 htab->pltlocal = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
3592 flags);
3593 if (htab->pltlocal == NULL
3594 || !bfd_set_section_alignment (htab->pltlocal, 3))
3595 return FALSE;
3596
3597 if (!bfd_link_pic (info))
3598 return TRUE;
3599
3600 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3601 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3602 htab->relbrlt
3603 = bfd_make_section_anyway_with_flags (dynobj, ".rela.branch_lt", flags);
3604 if (htab->relbrlt == NULL
3605 || !bfd_set_section_alignment (htab->relbrlt, 3))
3606 return FALSE;
3607
3608 htab->relpltlocal
3609 = bfd_make_section_anyway_with_flags (dynobj, ".rela.branch_lt", flags);
3610 if (htab->relpltlocal == NULL
3611 || !bfd_set_section_alignment (htab->relpltlocal, 3))
3612 return FALSE;
3613
3614 return TRUE;
3615 }
3616
3617 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
3618
3619 bfd_boolean
3620 ppc64_elf_init_stub_bfd (struct bfd_link_info *info,
3621 struct ppc64_elf_params *params)
3622 {
3623 struct ppc_link_hash_table *htab;
3624
3625 elf_elfheader (params->stub_bfd)->e_ident[EI_CLASS] = ELFCLASS64;
3626
3627 /* Always hook our dynamic sections into the first bfd, which is the
3628 linker created stub bfd. This ensures that the GOT header is at
3629 the start of the output TOC section. */
3630 htab = ppc_hash_table (info);
3631 htab->elf.dynobj = params->stub_bfd;
3632 htab->params = params;
3633
3634 return create_linkage_sections (htab->elf.dynobj, info);
3635 }
3636
3637 /* Build a name for an entry in the stub hash table. */
3638
3639 static char *
3640 ppc_stub_name (const asection *input_section,
3641 const asection *sym_sec,
3642 const struct ppc_link_hash_entry *h,
3643 const Elf_Internal_Rela *rel)
3644 {
3645 char *stub_name;
3646 ssize_t len;
3647
3648 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
3649 offsets from a sym as a branch target? In fact, we could
3650 probably assume the addend is always zero. */
3651 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
3652
3653 if (h)
3654 {
3655 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
3656 stub_name = bfd_malloc (len);
3657 if (stub_name == NULL)
3658 return stub_name;
3659
3660 len = sprintf (stub_name, "%08x.%s+%x",
3661 input_section->id & 0xffffffff,
3662 h->elf.root.root.string,
3663 (int) rel->r_addend & 0xffffffff);
3664 }
3665 else
3666 {
3667 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3668 stub_name = bfd_malloc (len);
3669 if (stub_name == NULL)
3670 return stub_name;
3671
3672 len = sprintf (stub_name, "%08x.%x:%x+%x",
3673 input_section->id & 0xffffffff,
3674 sym_sec->id & 0xffffffff,
3675 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
3676 (int) rel->r_addend & 0xffffffff);
3677 }
3678 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
3679 stub_name[len - 2] = 0;
3680 return stub_name;
3681 }
3682
3683 /* If mixing power10 with non-power10 code and --power10-stubs is not
3684 specified (or is auto) then calls using @notoc relocations that
3685 need a stub will utilize power10 instructions in the stub, and
3686 calls without @notoc relocations will not use power10 instructions.
3687 The two classes of stubs are stored in separate stub_hash_table
3688 entries having the same key string. The two entries will always be
3689 adjacent on entry->root.next chain, even if hash table resizing
3690 occurs. This function selects the correct entry to use. */
3691
3692 static struct ppc_stub_hash_entry *
3693 select_alt_stub (struct ppc_stub_hash_entry *entry, bfd_boolean notoc)
3694 {
3695 bfd_boolean have_notoc;
3696
3697 have_notoc = (entry->stub_type == ppc_stub_plt_call_notoc
3698 || entry->stub_type == ppc_stub_plt_branch_notoc
3699 || entry->stub_type == ppc_stub_long_branch_notoc);
3700
3701 if (have_notoc != notoc)
3702 {
3703 const char *stub_name = entry->root.string;
3704
3705 entry = (struct ppc_stub_hash_entry *) entry->root.next;
3706 if (entry != NULL
3707 && entry->root.string != stub_name)
3708 entry = NULL;
3709 }
3710
3711 return entry;
3712 }
3713
3714 /* Look up an entry in the stub hash. Stub entries are cached because
3715 creating the stub name takes a bit of time. */
3716
3717 static struct ppc_stub_hash_entry *
3718 ppc_get_stub_entry (const asection *input_section,
3719 const asection *sym_sec,
3720 struct ppc_link_hash_entry *h,
3721 const Elf_Internal_Rela *rel,
3722 struct ppc_link_hash_table *htab)
3723 {
3724 struct ppc_stub_hash_entry *stub_entry;
3725 struct map_stub *group;
3726
3727 /* If this input section is part of a group of sections sharing one
3728 stub section, then use the id of the first section in the group.
3729 Stub names need to include a section id, as there may well be
3730 more than one stub used to reach say, printf, and we need to
3731 distinguish between them. */
3732 group = htab->sec_info[input_section->id].u.group;
3733 if (group == NULL)
3734 return NULL;
3735
3736 if (h != NULL && h->u.stub_cache != NULL
3737 && h->u.stub_cache->h == h
3738 && h->u.stub_cache->group == group)
3739 {
3740 stub_entry = h->u.stub_cache;
3741 }
3742 else
3743 {
3744 char *stub_name;
3745
3746 stub_name = ppc_stub_name (group->link_sec, sym_sec, h, rel);
3747 if (stub_name == NULL)
3748 return NULL;
3749
3750 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
3751 stub_name, FALSE, FALSE);
3752 if (h != NULL)
3753 h->u.stub_cache = stub_entry;
3754
3755 free (stub_name);
3756 }
3757
3758 if (stub_entry != NULL && htab->params->power10_stubs == -1)
3759 {
3760 bfd_boolean notoc = ELF64_R_TYPE (rel->r_info) == R_PPC64_REL24_NOTOC;
3761
3762 stub_entry = select_alt_stub (stub_entry, notoc);
3763 }
3764
3765 return stub_entry;
3766 }
3767
3768 /* Add a new stub entry to the stub hash. Not all fields of the new
3769 stub entry are initialised. */
3770
3771 static struct ppc_stub_hash_entry *
3772 ppc_add_stub (const char *stub_name,
3773 asection *section,
3774 struct bfd_link_info *info)
3775 {
3776 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3777 struct map_stub *group;
3778 asection *link_sec;
3779 asection *stub_sec;
3780 struct ppc_stub_hash_entry *stub_entry;
3781
3782 group = htab->sec_info[section->id].u.group;
3783 link_sec = group->link_sec;
3784 stub_sec = group->stub_sec;
3785 if (stub_sec == NULL)
3786 {
3787 size_t namelen;
3788 bfd_size_type len;
3789 char *s_name;
3790
3791 namelen = strlen (link_sec->name);
3792 len = namelen + sizeof (STUB_SUFFIX);
3793 s_name = bfd_alloc (htab->params->stub_bfd, len);
3794 if (s_name == NULL)
3795 return NULL;
3796
3797 memcpy (s_name, link_sec->name, namelen);
3798 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3799 stub_sec = (*htab->params->add_stub_section) (s_name, link_sec);
3800 if (stub_sec == NULL)
3801 return NULL;
3802 group->stub_sec = stub_sec;
3803 }
3804
3805 /* Enter this entry into the linker stub hash table. */
3806 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3807 TRUE, FALSE);
3808 if (stub_entry == NULL)
3809 {
3810 /* xgettext:c-format */
3811 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3812 section->owner, stub_name);
3813 return NULL;
3814 }
3815
3816 stub_entry->group = group;
3817 stub_entry->stub_offset = 0;
3818 return stub_entry;
3819 }
3820
3821 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
3822 not already done. */
3823
3824 static bfd_boolean
3825 create_got_section (bfd *abfd, struct bfd_link_info *info)
3826 {
3827 asection *got, *relgot;
3828 flagword flags;
3829 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3830
3831 if (!is_ppc64_elf (abfd))
3832 return FALSE;
3833 if (htab == NULL)
3834 return FALSE;
3835
3836 if (!htab->elf.sgot
3837 && !_bfd_elf_create_got_section (htab->elf.dynobj, info))
3838 return FALSE;
3839
3840 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3841 | SEC_LINKER_CREATED);
3842
3843 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
3844 if (!got
3845 || !bfd_set_section_alignment (got, 3))
3846 return FALSE;
3847
3848 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
3849 flags | SEC_READONLY);
3850 if (!relgot
3851 || !bfd_set_section_alignment (relgot, 3))
3852 return FALSE;
3853
3854 ppc64_elf_tdata (abfd)->got = got;
3855 ppc64_elf_tdata (abfd)->relgot = relgot;
3856 return TRUE;
3857 }
3858
3859 /* Follow indirect and warning symbol links. */
3860
3861 static inline struct bfd_link_hash_entry *
3862 follow_link (struct bfd_link_hash_entry *h)
3863 {
3864 while (h->type == bfd_link_hash_indirect
3865 || h->type == bfd_link_hash_warning)
3866 h = h->u.i.link;
3867 return h;
3868 }
3869
3870 static inline struct elf_link_hash_entry *
3871 elf_follow_link (struct elf_link_hash_entry *h)
3872 {
3873 return (struct elf_link_hash_entry *) follow_link (&h->root);
3874 }
3875
3876 static inline struct ppc_link_hash_entry *
3877 ppc_follow_link (struct ppc_link_hash_entry *h)
3878 {
3879 return ppc_elf_hash_entry (elf_follow_link (&h->elf));
3880 }
3881
3882 /* Merge PLT info on FROM with that on TO. */
3883
3884 static void
3885 move_plt_plist (struct ppc_link_hash_entry *from,
3886 struct ppc_link_hash_entry *to)
3887 {
3888 if (from->elf.plt.plist != NULL)
3889 {
3890 if (to->elf.plt.plist != NULL)
3891 {
3892 struct plt_entry **entp;
3893 struct plt_entry *ent;
3894
3895 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
3896 {
3897 struct plt_entry *dent;
3898
3899 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
3900 if (dent->addend == ent->addend)
3901 {
3902 dent->plt.refcount += ent->plt.refcount;
3903 *entp = ent->next;
3904 break;
3905 }
3906 if (dent == NULL)
3907 entp = &ent->next;
3908 }
3909 *entp = to->elf.plt.plist;
3910 }
3911
3912 to->elf.plt.plist = from->elf.plt.plist;
3913 from->elf.plt.plist = NULL;
3914 }
3915 }
3916
3917 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3918
3919 static void
3920 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
3921 struct elf_link_hash_entry *dir,
3922 struct elf_link_hash_entry *ind)
3923 {
3924 struct ppc_link_hash_entry *edir, *eind;
3925
3926 edir = ppc_elf_hash_entry (dir);
3927 eind = ppc_elf_hash_entry (ind);
3928
3929 edir->is_func |= eind->is_func;
3930 edir->is_func_descriptor |= eind->is_func_descriptor;
3931 edir->tls_mask |= eind->tls_mask;
3932 if (eind->oh != NULL)
3933 edir->oh = ppc_follow_link (eind->oh);
3934
3935 if (edir->elf.versioned != versioned_hidden)
3936 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
3937 edir->elf.ref_regular |= eind->elf.ref_regular;
3938 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
3939 edir->elf.non_got_ref |= eind->elf.non_got_ref;
3940 edir->elf.needs_plt |= eind->elf.needs_plt;
3941 edir->elf.pointer_equality_needed |= eind->elf.pointer_equality_needed;
3942
3943 /* If we were called to copy over info for a weak sym, don't copy
3944 dyn_relocs, plt/got info, or dynindx. We used to copy dyn_relocs
3945 in order to simplify readonly_dynrelocs and save a field in the
3946 symbol hash entry, but that means dyn_relocs can't be used in any
3947 tests about a specific symbol, or affect other symbol flags which
3948 are then tested. */
3949 if (eind->elf.root.type != bfd_link_hash_indirect)
3950 return;
3951
3952 /* Copy over any dynamic relocs we may have on the indirect sym. */
3953 if (ind->dyn_relocs != NULL)
3954 {
3955 if (dir->dyn_relocs != NULL)
3956 {
3957 struct elf_dyn_relocs **pp;
3958 struct elf_dyn_relocs *p;
3959
3960 /* Add reloc counts against the indirect sym to the direct sym
3961 list. Merge any entries against the same section. */
3962 for (pp = &ind->dyn_relocs; (p = *pp) != NULL; )
3963 {
3964 struct elf_dyn_relocs *q;
3965
3966 for (q = dir->dyn_relocs; q != NULL; q = q->next)
3967 if (q->sec == p->sec)
3968 {
3969 q->pc_count += p->pc_count;
3970 q->count += p->count;
3971 *pp = p->next;
3972 break;
3973 }
3974 if (q == NULL)
3975 pp = &p->next;
3976 }
3977 *pp = dir->dyn_relocs;
3978 }
3979
3980 dir->dyn_relocs = ind->dyn_relocs;
3981 ind->dyn_relocs = NULL;
3982 }
3983
3984 /* Copy over got entries that we may have already seen to the
3985 symbol which just became indirect. */
3986 if (eind->elf.got.glist != NULL)
3987 {
3988 if (edir->elf.got.glist != NULL)
3989 {
3990 struct got_entry **entp;
3991 struct got_entry *ent;
3992
3993 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
3994 {
3995 struct got_entry *dent;
3996
3997 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
3998 if (dent->addend == ent->addend
3999 && dent->owner == ent->owner
4000 && dent->tls_type == ent->tls_type)
4001 {
4002 dent->got.refcount += ent->got.refcount;
4003 *entp = ent->next;
4004 break;
4005 }
4006 if (dent == NULL)
4007 entp = &ent->next;
4008 }
4009 *entp = edir->elf.got.glist;
4010 }
4011
4012 edir->elf.got.glist = eind->elf.got.glist;
4013 eind->elf.got.glist = NULL;
4014 }
4015
4016 /* And plt entries. */
4017 move_plt_plist (eind, edir);
4018
4019 if (eind->elf.dynindx != -1)
4020 {
4021 if (edir->elf.dynindx != -1)
4022 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4023 edir->elf.dynstr_index);
4024 edir->elf.dynindx = eind->elf.dynindx;
4025 edir->elf.dynstr_index = eind->elf.dynstr_index;
4026 eind->elf.dynindx = -1;
4027 eind->elf.dynstr_index = 0;
4028 }
4029 }
4030
4031 /* Find the function descriptor hash entry from the given function code
4032 hash entry FH. Link the entries via their OH fields. */
4033
4034 static struct ppc_link_hash_entry *
4035 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4036 {
4037 struct ppc_link_hash_entry *fdh = fh->oh;
4038
4039 if (fdh == NULL)
4040 {
4041 const char *fd_name = fh->elf.root.root.string + 1;
4042
4043 fdh = ppc_elf_hash_entry (elf_link_hash_lookup (&htab->elf, fd_name,
4044 FALSE, FALSE, FALSE));
4045 if (fdh == NULL)
4046 return fdh;
4047
4048 fdh->is_func_descriptor = 1;
4049 fdh->oh = fh;
4050 fh->is_func = 1;
4051 fh->oh = fdh;
4052 }
4053
4054 fdh = ppc_follow_link (fdh);
4055 fdh->is_func_descriptor = 1;
4056 fdh->oh = fh;
4057 return fdh;
4058 }
4059
4060 /* Make a fake function descriptor sym for the undefined code sym FH. */
4061
4062 static struct ppc_link_hash_entry *
4063 make_fdh (struct bfd_link_info *info,
4064 struct ppc_link_hash_entry *fh)
4065 {
4066 bfd *abfd = fh->elf.root.u.undef.abfd;
4067 struct bfd_link_hash_entry *bh = NULL;
4068 struct ppc_link_hash_entry *fdh;
4069 flagword flags = (fh->elf.root.type == bfd_link_hash_undefweak
4070 ? BSF_WEAK
4071 : BSF_GLOBAL);
4072
4073 if (!_bfd_generic_link_add_one_symbol (info, abfd,
4074 fh->elf.root.root.string + 1,
4075 flags, bfd_und_section_ptr, 0,
4076 NULL, FALSE, FALSE, &bh))
4077 return NULL;
4078
4079 fdh = (struct ppc_link_hash_entry *) bh;
4080 fdh->elf.non_elf = 0;
4081 fdh->fake = 1;
4082 fdh->is_func_descriptor = 1;
4083 fdh->oh = fh;
4084 fh->is_func = 1;
4085 fh->oh = fdh;
4086 return fdh;
4087 }
4088
4089 /* Fix function descriptor symbols defined in .opd sections to be
4090 function type. */
4091
4092 static bfd_boolean
4093 ppc64_elf_add_symbol_hook (bfd *ibfd,
4094 struct bfd_link_info *info,
4095 Elf_Internal_Sym *isym,
4096 const char **name,
4097 flagword *flags ATTRIBUTE_UNUSED,
4098 asection **sec,
4099 bfd_vma *value)
4100 {
4101 if (*sec != NULL
4102 && strcmp ((*sec)->name, ".opd") == 0)
4103 {
4104 asection *code_sec;
4105
4106 if (!(ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4107 || ELF_ST_TYPE (isym->st_info) == STT_FUNC))
4108 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4109
4110 /* If the symbol is a function defined in .opd, and the function
4111 code is in a discarded group, let it appear to be undefined. */
4112 if (!bfd_link_relocatable (info)
4113 && (*sec)->reloc_count != 0
4114 && opd_entry_value (*sec, *value, &code_sec, NULL,
4115 FALSE) != (bfd_vma) -1
4116 && discarded_section (code_sec))
4117 {
4118 *sec = bfd_und_section_ptr;
4119 isym->st_shndx = SHN_UNDEF;
4120 }
4121 }
4122 else if (*sec != NULL
4123 && strcmp ((*sec)->name, ".toc") == 0
4124 && ELF_ST_TYPE (isym->st_info) == STT_OBJECT)
4125 {
4126 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4127 if (htab != NULL)
4128 htab->params->object_in_toc = 1;
4129 }
4130
4131 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4132 {
4133 if (abiversion (ibfd) == 0)
4134 set_abiversion (ibfd, 2);
4135 else if (abiversion (ibfd) == 1)
4136 {
4137 _bfd_error_handler (_("symbol '%s' has invalid st_other"
4138 " for ABI version 1"), *name);
4139 bfd_set_error (bfd_error_bad_value);
4140 return FALSE;
4141 }
4142 }
4143
4144 return TRUE;
4145 }
4146
4147 /* Merge non-visibility st_other attributes: local entry point. */
4148
4149 static void
4150 ppc64_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
4151 const Elf_Internal_Sym *isym,
4152 bfd_boolean definition,
4153 bfd_boolean dynamic)
4154 {
4155 if (definition && (!dynamic || !h->def_regular))
4156 h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
4157 | ELF_ST_VISIBILITY (h->other));
4158 }
4159
4160 /* Hook called on merging a symbol. We use this to clear "fake" since
4161 we now have a real symbol. */
4162
4163 static bfd_boolean
4164 ppc64_elf_merge_symbol (struct elf_link_hash_entry *h,
4165 const Elf_Internal_Sym *isym,
4166 asection **psec ATTRIBUTE_UNUSED,
4167 bfd_boolean newdef ATTRIBUTE_UNUSED,
4168 bfd_boolean olddef ATTRIBUTE_UNUSED,
4169 bfd *oldbfd ATTRIBUTE_UNUSED,
4170 const asection *oldsec ATTRIBUTE_UNUSED)
4171 {
4172 ppc_elf_hash_entry (h)->fake = 0;
4173 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4174 ppc_elf_hash_entry (h)->non_zero_localentry = 1;
4175 return TRUE;
4176 }
4177
4178 /* This function makes an old ABI object reference to ".bar" cause the
4179 inclusion of a new ABI object archive that defines "bar".
4180 NAME is a symbol defined in an archive. Return a symbol in the hash
4181 table that might be satisfied by the archive symbols. */
4182
4183 static struct elf_link_hash_entry *
4184 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4185 struct bfd_link_info *info,
4186 const char *name)
4187 {
4188 struct elf_link_hash_entry *h;
4189 char *dot_name;
4190 size_t len;
4191
4192 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4193 if (h != NULL
4194 /* Don't return this sym if it is a fake function descriptor
4195 created by add_symbol_adjust. */
4196 && !ppc_elf_hash_entry (h)->fake)
4197 return h;
4198
4199 if (name[0] == '.')
4200 return h;
4201
4202 len = strlen (name);
4203 dot_name = bfd_alloc (abfd, len + 2);
4204 if (dot_name == NULL)
4205 return (struct elf_link_hash_entry *) -1;
4206 dot_name[0] = '.';
4207 memcpy (dot_name + 1, name, len + 1);
4208 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4209 bfd_release (abfd, dot_name);
4210 if (h != NULL)
4211 return h;
4212
4213 if (strcmp (name, "__tls_get_addr_opt") == 0)
4214 h = _bfd_elf_archive_symbol_lookup (abfd, info, "__tls_get_addr_desc");
4215 return h;
4216 }
4217
4218 /* This function satisfies all old ABI object references to ".bar" if a
4219 new ABI object defines "bar". Well, at least, undefined dot symbols
4220 are made weak. This stops later archive searches from including an
4221 object if we already have a function descriptor definition. It also
4222 prevents the linker complaining about undefined symbols.
4223 We also check and correct mismatched symbol visibility here. The
4224 most restrictive visibility of the function descriptor and the
4225 function entry symbol is used. */
4226
4227 static bfd_boolean
4228 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4229 {
4230 struct ppc_link_hash_table *htab;
4231 struct ppc_link_hash_entry *fdh;
4232
4233 if (eh->elf.root.type == bfd_link_hash_warning)
4234 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4235
4236 if (eh->elf.root.type == bfd_link_hash_indirect)
4237 return TRUE;
4238
4239 if (eh->elf.root.root.string[0] != '.')
4240 abort ();
4241
4242 htab = ppc_hash_table (info);
4243 if (htab == NULL)
4244 return FALSE;
4245
4246 fdh = lookup_fdh (eh, htab);
4247 if (fdh == NULL
4248 && !bfd_link_relocatable (info)
4249 && (eh->elf.root.type == bfd_link_hash_undefined
4250 || eh->elf.root.type == bfd_link_hash_undefweak)
4251 && eh->elf.ref_regular)
4252 {
4253 /* Make an undefined function descriptor sym, in order to
4254 pull in an --as-needed shared lib. Archives are handled
4255 elsewhere. */
4256 fdh = make_fdh (info, eh);
4257 if (fdh == NULL)
4258 return FALSE;
4259 }
4260
4261 if (fdh != NULL)
4262 {
4263 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4264 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4265
4266 /* Make both descriptor and entry symbol have the most
4267 constraining visibility of either symbol. */
4268 if (entry_vis < descr_vis)
4269 fdh->elf.other += entry_vis - descr_vis;
4270 else if (entry_vis > descr_vis)
4271 eh->elf.other += descr_vis - entry_vis;
4272
4273 /* Propagate reference flags from entry symbol to function
4274 descriptor symbol. */
4275 fdh->elf.root.non_ir_ref_regular |= eh->elf.root.non_ir_ref_regular;
4276 fdh->elf.root.non_ir_ref_dynamic |= eh->elf.root.non_ir_ref_dynamic;
4277 fdh->elf.ref_regular |= eh->elf.ref_regular;
4278 fdh->elf.ref_regular_nonweak |= eh->elf.ref_regular_nonweak;
4279
4280 if (!fdh->elf.forced_local
4281 && fdh->elf.dynindx == -1
4282 && fdh->elf.versioned != versioned_hidden
4283 && (bfd_link_dll (info)
4284 || fdh->elf.def_dynamic
4285 || fdh->elf.ref_dynamic)
4286 && (eh->elf.ref_regular
4287 || eh->elf.def_regular))
4288 {
4289 if (!bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
4290 return FALSE;
4291 }
4292 }
4293
4294 return TRUE;
4295 }
4296
4297 /* Set up opd section info and abiversion for IBFD, and process list
4298 of dot-symbols we made in link_hash_newfunc. */
4299
4300 static bfd_boolean
4301 ppc64_elf_before_check_relocs (bfd *ibfd, struct bfd_link_info *info)
4302 {
4303 struct ppc_link_hash_table *htab;
4304 struct ppc_link_hash_entry **p, *eh;
4305 asection *opd = bfd_get_section_by_name (ibfd, ".opd");
4306
4307 if (opd != NULL && opd->size != 0)
4308 {
4309 BFD_ASSERT (ppc64_elf_section_data (opd)->sec_type == sec_normal);
4310 ppc64_elf_section_data (opd)->sec_type = sec_opd;
4311
4312 if (abiversion (ibfd) == 0)
4313 set_abiversion (ibfd, 1);
4314 else if (abiversion (ibfd) >= 2)
4315 {
4316 /* xgettext:c-format */
4317 _bfd_error_handler (_("%pB .opd not allowed in ABI version %d"),
4318 ibfd, abiversion (ibfd));
4319 bfd_set_error (bfd_error_bad_value);
4320 return FALSE;
4321 }
4322 }
4323
4324 if (is_ppc64_elf (info->output_bfd))
4325 {
4326 /* For input files without an explicit abiversion in e_flags
4327 we should have flagged any with symbol st_other bits set
4328 as ELFv1 and above flagged those with .opd as ELFv2.
4329 Set the output abiversion if not yet set, and for any input
4330 still ambiguous, take its abiversion from the output.
4331 Differences in ABI are reported later. */
4332 if (abiversion (info->output_bfd) == 0)
4333 set_abiversion (info->output_bfd, abiversion (ibfd));
4334 else if (abiversion (ibfd) == 0)
4335 set_abiversion (ibfd, abiversion (info->output_bfd));
4336 }
4337
4338 htab = ppc_hash_table (info);
4339 if (htab == NULL)
4340 return TRUE;
4341
4342 if (opd != NULL && opd->size != 0
4343 && (ibfd->flags & DYNAMIC) == 0
4344 && (opd->flags & SEC_RELOC) != 0
4345 && opd->reloc_count != 0
4346 && !bfd_is_abs_section (opd->output_section)
4347 && info->gc_sections)
4348 {
4349 /* Garbage collection needs some extra help with .opd sections.
4350 We don't want to necessarily keep everything referenced by
4351 relocs in .opd, as that would keep all functions. Instead,
4352 if we reference an .opd symbol (a function descriptor), we
4353 want to keep the function code symbol's section. This is
4354 easy for global symbols, but for local syms we need to keep
4355 information about the associated function section. */
4356 bfd_size_type amt;
4357 asection **opd_sym_map;
4358 Elf_Internal_Shdr *symtab_hdr;
4359 Elf_Internal_Rela *relocs, *rel_end, *rel;
4360
4361 amt = OPD_NDX (opd->size) * sizeof (*opd_sym_map);
4362 opd_sym_map = bfd_zalloc (ibfd, amt);
4363 if (opd_sym_map == NULL)
4364 return FALSE;
4365 ppc64_elf_section_data (opd)->u.opd.func_sec = opd_sym_map;
4366 relocs = _bfd_elf_link_read_relocs (ibfd, opd, NULL, NULL,
4367 info->keep_memory);
4368 if (relocs == NULL)
4369 return FALSE;
4370 symtab_hdr = &elf_symtab_hdr (ibfd);
4371 rel_end = relocs + opd->reloc_count - 1;
4372 for (rel = relocs; rel < rel_end; rel++)
4373 {
4374 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
4375 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
4376
4377 if (r_type == R_PPC64_ADDR64
4378 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC
4379 && r_symndx < symtab_hdr->sh_info)
4380 {
4381 Elf_Internal_Sym *isym;
4382 asection *s;
4383
4384 isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache, ibfd,
4385 r_symndx);
4386 if (isym == NULL)
4387 {
4388 if (elf_section_data (opd)->relocs != relocs)
4389 free (relocs);
4390 return FALSE;
4391 }
4392
4393 s = bfd_section_from_elf_index (ibfd, isym->st_shndx);
4394 if (s != NULL && s != opd)
4395 opd_sym_map[OPD_NDX (rel->r_offset)] = s;
4396 }
4397 }
4398 if (elf_section_data (opd)->relocs != relocs)
4399 free (relocs);
4400 }
4401
4402 p = &htab->dot_syms;
4403 while ((eh = *p) != NULL)
4404 {
4405 *p = NULL;
4406 if (&eh->elf == htab->elf.hgot)
4407 ;
4408 else if (htab->elf.hgot == NULL
4409 && strcmp (eh->elf.root.root.string, ".TOC.") == 0)
4410 htab->elf.hgot = &eh->elf;
4411 else if (abiversion (ibfd) <= 1)
4412 {
4413 htab->need_func_desc_adj = 1;
4414 if (!add_symbol_adjust (eh, info))
4415 return FALSE;
4416 }
4417 p = &eh->u.next_dot_sym;
4418 }
4419 return TRUE;
4420 }
4421
4422 /* Undo hash table changes when an --as-needed input file is determined
4423 not to be needed. */
4424
4425 static bfd_boolean
4426 ppc64_elf_notice_as_needed (bfd *ibfd,
4427 struct bfd_link_info *info,
4428 enum notice_asneeded_action act)
4429 {
4430 if (act == notice_not_needed)
4431 {
4432 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4433
4434 if (htab == NULL)
4435 return FALSE;
4436
4437 htab->dot_syms = NULL;
4438 }
4439 return _bfd_elf_notice_as_needed (ibfd, info, act);
4440 }
4441
4442 /* If --just-symbols against a final linked binary, then assume we need
4443 toc adjusting stubs when calling functions defined there. */
4444
4445 static void
4446 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
4447 {
4448 if ((sec->flags & SEC_CODE) != 0
4449 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
4450 && is_ppc64_elf (sec->owner))
4451 {
4452 if (abiversion (sec->owner) >= 2
4453 || bfd_get_section_by_name (sec->owner, ".opd") != NULL)
4454 sec->has_toc_reloc = 1;
4455 }
4456 _bfd_elf_link_just_syms (sec, info);
4457 }
4458
4459 static struct plt_entry **
4460 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4461 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4462 {
4463 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4464 struct plt_entry **local_plt;
4465 unsigned char *local_got_tls_masks;
4466
4467 if (local_got_ents == NULL)
4468 {
4469 bfd_size_type size = symtab_hdr->sh_info;
4470
4471 size *= (sizeof (*local_got_ents)
4472 + sizeof (*local_plt)
4473 + sizeof (*local_got_tls_masks));
4474 local_got_ents = bfd_zalloc (abfd, size);
4475 if (local_got_ents == NULL)
4476 return NULL;
4477 elf_local_got_ents (abfd) = local_got_ents;
4478 }
4479
4480 if ((tls_type & (NON_GOT | TLS_EXPLICIT)) == 0)
4481 {
4482 struct got_entry *ent;
4483
4484 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4485 if (ent->addend == r_addend
4486 && ent->owner == abfd
4487 && ent->tls_type == tls_type)
4488 break;
4489 if (ent == NULL)
4490 {
4491 size_t amt = sizeof (*ent);
4492 ent = bfd_alloc (abfd, amt);
4493 if (ent == NULL)
4494 return FALSE;
4495 ent->next = local_got_ents[r_symndx];
4496 ent->addend = r_addend;
4497 ent->owner = abfd;
4498 ent->tls_type = tls_type;
4499 ent->is_indirect = FALSE;
4500 ent->got.refcount = 0;
4501 local_got_ents[r_symndx] = ent;
4502 }
4503 ent->got.refcount += 1;
4504 }
4505
4506 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
4507 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
4508 local_got_tls_masks[r_symndx] |= tls_type & 0xff;
4509
4510 return local_plt + r_symndx;
4511 }
4512
4513 static bfd_boolean
4514 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
4515 {
4516 struct plt_entry *ent;
4517
4518 for (ent = *plist; ent != NULL; ent = ent->next)
4519 if (ent->addend == addend)
4520 break;
4521 if (ent == NULL)
4522 {
4523 size_t amt = sizeof (*ent);
4524 ent = bfd_alloc (abfd, amt);
4525 if (ent == NULL)
4526 return FALSE;
4527 ent->next = *plist;
4528 ent->addend = addend;
4529 ent->plt.refcount = 0;
4530 *plist = ent;
4531 }
4532 ent->plt.refcount += 1;
4533 return TRUE;
4534 }
4535
4536 static bfd_boolean
4537 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
4538 {
4539 return (r_type == R_PPC64_REL24
4540 || r_type == R_PPC64_REL24_NOTOC
4541 || r_type == R_PPC64_REL14
4542 || r_type == R_PPC64_REL14_BRTAKEN
4543 || r_type == R_PPC64_REL14_BRNTAKEN
4544 || r_type == R_PPC64_ADDR24
4545 || r_type == R_PPC64_ADDR14
4546 || r_type == R_PPC64_ADDR14_BRTAKEN
4547 || r_type == R_PPC64_ADDR14_BRNTAKEN
4548 || r_type == R_PPC64_PLTCALL
4549 || r_type == R_PPC64_PLTCALL_NOTOC);
4550 }
4551
4552 /* Relocs on inline plt call sequence insns prior to the call. */
4553
4554 static bfd_boolean
4555 is_plt_seq_reloc (enum elf_ppc64_reloc_type r_type)
4556 {
4557 return (r_type == R_PPC64_PLT16_HA
4558 || r_type == R_PPC64_PLT16_HI
4559 || r_type == R_PPC64_PLT16_LO
4560 || r_type == R_PPC64_PLT16_LO_DS
4561 || r_type == R_PPC64_PLT_PCREL34
4562 || r_type == R_PPC64_PLT_PCREL34_NOTOC
4563 || r_type == R_PPC64_PLTSEQ
4564 || r_type == R_PPC64_PLTSEQ_NOTOC);
4565 }
4566
4567 /* Look through the relocs for a section during the first phase, and
4568 calculate needed space in the global offset table, procedure
4569 linkage table, and dynamic reloc sections. */
4570
4571 static bfd_boolean
4572 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4573 asection *sec, const Elf_Internal_Rela *relocs)
4574 {
4575 struct ppc_link_hash_table *htab;
4576 Elf_Internal_Shdr *symtab_hdr;
4577 struct elf_link_hash_entry **sym_hashes;
4578 const Elf_Internal_Rela *rel;
4579 const Elf_Internal_Rela *rel_end;
4580 asection *sreloc;
4581 struct elf_link_hash_entry *tga, *dottga;
4582 bfd_boolean is_opd;
4583
4584 if (bfd_link_relocatable (info))
4585 return TRUE;
4586
4587 BFD_ASSERT (is_ppc64_elf (abfd));
4588
4589 htab = ppc_hash_table (info);
4590 if (htab == NULL)
4591 return FALSE;
4592
4593 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
4594 FALSE, FALSE, TRUE);
4595 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
4596 FALSE, FALSE, TRUE);
4597 symtab_hdr = &elf_symtab_hdr (abfd);
4598 sym_hashes = elf_sym_hashes (abfd);
4599 sreloc = NULL;
4600 is_opd = ppc64_elf_section_data (sec)->sec_type == sec_opd;
4601 rel_end = relocs + sec->reloc_count;
4602 for (rel = relocs; rel < rel_end; rel++)
4603 {
4604 unsigned long r_symndx;
4605 struct elf_link_hash_entry *h;
4606 enum elf_ppc64_reloc_type r_type;
4607 int tls_type;
4608 struct _ppc64_elf_section_data *ppc64_sec;
4609 struct plt_entry **ifunc, **plt_list;
4610
4611 r_symndx = ELF64_R_SYM (rel->r_info);
4612 if (r_symndx < symtab_hdr->sh_info)
4613 h = NULL;
4614 else
4615 {
4616 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4617 h = elf_follow_link (h);
4618
4619 if (h == htab->elf.hgot)
4620 sec->has_toc_reloc = 1;
4621 }
4622
4623 r_type = ELF64_R_TYPE (rel->r_info);
4624 switch (r_type)
4625 {
4626 case R_PPC64_D34:
4627 case R_PPC64_D34_LO:
4628 case R_PPC64_D34_HI30:
4629 case R_PPC64_D34_HA30:
4630 case R_PPC64_D28:
4631 case R_PPC64_TPREL34:
4632 case R_PPC64_DTPREL34:
4633 case R_PPC64_PCREL34:
4634 case R_PPC64_GOT_PCREL34:
4635 case R_PPC64_GOT_TLSGD_PCREL34:
4636 case R_PPC64_GOT_TLSLD_PCREL34:
4637 case R_PPC64_GOT_TPREL_PCREL34:
4638 case R_PPC64_GOT_DTPREL_PCREL34:
4639 case R_PPC64_PLT_PCREL34:
4640 case R_PPC64_PLT_PCREL34_NOTOC:
4641 case R_PPC64_PCREL28:
4642 htab->has_power10_relocs = 1;
4643 break;
4644 default:
4645 break;
4646 }
4647
4648 switch (r_type)
4649 {
4650 case R_PPC64_PLT16_HA:
4651 case R_PPC64_GOT_TLSLD16_HA:
4652 case R_PPC64_GOT_TLSGD16_HA:
4653 case R_PPC64_GOT_TPREL16_HA:
4654 case R_PPC64_GOT_DTPREL16_HA:
4655 case R_PPC64_GOT16_HA:
4656 case R_PPC64_TOC16_HA:
4657 case R_PPC64_PLT16_LO:
4658 case R_PPC64_PLT16_LO_DS:
4659 case R_PPC64_GOT_TLSLD16_LO:
4660 case R_PPC64_GOT_TLSGD16_LO:
4661 case R_PPC64_GOT_TPREL16_LO_DS:
4662 case R_PPC64_GOT_DTPREL16_LO_DS:
4663 case R_PPC64_GOT16_LO:
4664 case R_PPC64_GOT16_LO_DS:
4665 case R_PPC64_TOC16_LO:
4666 case R_PPC64_TOC16_LO_DS:
4667 case R_PPC64_GOT_PCREL34:
4668 ppc64_elf_tdata (abfd)->has_optrel = 1;
4669 ppc64_elf_section_data (sec)->has_optrel = 1;
4670 break;
4671 default:
4672 break;
4673 }
4674
4675 ifunc = NULL;
4676 if (h != NULL)
4677 {
4678 if (h->type == STT_GNU_IFUNC)
4679 {
4680 h->needs_plt = 1;
4681 ifunc = &h->plt.plist;
4682 }
4683 }
4684 else
4685 {
4686 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache,
4687 abfd, r_symndx);
4688 if (isym == NULL)
4689 return FALSE;
4690
4691 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4692 {
4693 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
4694 rel->r_addend,
4695 NON_GOT | PLT_IFUNC);
4696 if (ifunc == NULL)
4697 return FALSE;
4698 }
4699 }
4700
4701 tls_type = 0;
4702 switch (r_type)
4703 {
4704 case R_PPC64_TLSGD:
4705 case R_PPC64_TLSLD:
4706 /* These special tls relocs tie a call to __tls_get_addr with
4707 its parameter symbol. */
4708 if (h != NULL)
4709 ppc_elf_hash_entry (h)->tls_mask |= TLS_TLS | TLS_MARK;
4710 else
4711 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4712 rel->r_addend,
4713 NON_GOT | TLS_TLS | TLS_MARK))
4714 return FALSE;
4715 sec->has_tls_reloc = 1;
4716 break;
4717
4718 case R_PPC64_GOT_TLSLD16:
4719 case R_PPC64_GOT_TLSLD16_LO:
4720 case R_PPC64_GOT_TLSLD16_HI:
4721 case R_PPC64_GOT_TLSLD16_HA:
4722 case R_PPC64_GOT_TLSLD_PCREL34:
4723 tls_type = TLS_TLS | TLS_LD;
4724 goto dogottls;
4725
4726 case R_PPC64_GOT_TLSGD16:
4727 case R_PPC64_GOT_TLSGD16_LO:
4728 case R_PPC64_GOT_TLSGD16_HI:
4729 case R_PPC64_GOT_TLSGD16_HA:
4730 case R_PPC64_GOT_TLSGD_PCREL34:
4731 tls_type = TLS_TLS | TLS_GD;
4732 goto dogottls;
4733
4734 case R_PPC64_GOT_TPREL16_DS:
4735 case R_PPC64_GOT_TPREL16_LO_DS:
4736 case R_PPC64_GOT_TPREL16_HI:
4737 case R_PPC64_GOT_TPREL16_HA:
4738 case R_PPC64_GOT_TPREL_PCREL34:
4739 if (bfd_link_dll (info))
4740 info->flags |= DF_STATIC_TLS;
4741 tls_type = TLS_TLS | TLS_TPREL;
4742 goto dogottls;
4743
4744 case R_PPC64_GOT_DTPREL16_DS:
4745 case R_PPC64_GOT_DTPREL16_LO_DS:
4746 case R_PPC64_GOT_DTPREL16_HI:
4747 case R_PPC64_GOT_DTPREL16_HA:
4748 case R_PPC64_GOT_DTPREL_PCREL34:
4749 tls_type = TLS_TLS | TLS_DTPREL;
4750 dogottls:
4751 sec->has_tls_reloc = 1;
4752 goto dogot;
4753
4754 case R_PPC64_GOT16:
4755 case R_PPC64_GOT16_LO:
4756 case R_PPC64_GOT16_HI:
4757 case R_PPC64_GOT16_HA:
4758 case R_PPC64_GOT16_DS:
4759 case R_PPC64_GOT16_LO_DS:
4760 case R_PPC64_GOT_PCREL34:
4761 dogot:
4762 /* This symbol requires a global offset table entry. */
4763 sec->has_toc_reloc = 1;
4764 if (r_type == R_PPC64_GOT_TLSLD16
4765 || r_type == R_PPC64_GOT_TLSGD16
4766 || r_type == R_PPC64_GOT_TPREL16_DS
4767 || r_type == R_PPC64_GOT_DTPREL16_DS
4768 || r_type == R_PPC64_GOT16
4769 || r_type == R_PPC64_GOT16_DS)
4770 {
4771 htab->do_multi_toc = 1;
4772 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
4773 }
4774
4775 if (ppc64_elf_tdata (abfd)->got == NULL
4776 && !create_got_section (abfd, info))
4777 return FALSE;
4778
4779 if (h != NULL)
4780 {
4781 struct ppc_link_hash_entry *eh;
4782 struct got_entry *ent;
4783
4784 eh = ppc_elf_hash_entry (h);
4785 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
4786 if (ent->addend == rel->r_addend
4787 && ent->owner == abfd
4788 && ent->tls_type == tls_type)
4789 break;
4790 if (ent == NULL)
4791 {
4792 size_t amt = sizeof (*ent);
4793 ent = bfd_alloc (abfd, amt);
4794 if (ent == NULL)
4795 return FALSE;
4796 ent->next = eh->elf.got.glist;
4797 ent->addend = rel->r_addend;
4798 ent->owner = abfd;
4799 ent->tls_type = tls_type;
4800 ent->is_indirect = FALSE;
4801 ent->got.refcount = 0;
4802 eh->elf.got.glist = ent;
4803 }
4804 ent->got.refcount += 1;
4805 eh->tls_mask |= tls_type;
4806 }
4807 else
4808 /* This is a global offset table entry for a local symbol. */
4809 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4810 rel->r_addend, tls_type))
4811 return FALSE;
4812 break;
4813
4814 case R_PPC64_PLT16_HA:
4815 case R_PPC64_PLT16_HI:
4816 case R_PPC64_PLT16_LO:
4817 case R_PPC64_PLT16_LO_DS:
4818 case R_PPC64_PLT_PCREL34:
4819 case R_PPC64_PLT_PCREL34_NOTOC:
4820 case R_PPC64_PLT32:
4821 case R_PPC64_PLT64:
4822 /* This symbol requires a procedure linkage table entry. */
4823 plt_list = ifunc;
4824 if (h != NULL)
4825 {
4826 h->needs_plt = 1;
4827 if (h->root.root.string[0] == '.'
4828 && h->root.root.string[1] != '\0')
4829 ppc_elf_hash_entry (h)->is_func = 1;
4830 ppc_elf_hash_entry (h)->tls_mask |= PLT_KEEP;
4831 plt_list = &h->plt.plist;
4832 }
4833 if (plt_list == NULL)
4834 plt_list = update_local_sym_info (abfd, symtab_hdr, r_symndx,
4835 rel->r_addend,
4836 NON_GOT | PLT_KEEP);
4837 if (!update_plt_info (abfd, plt_list, rel->r_addend))
4838 return FALSE;
4839 break;
4840
4841 /* The following relocations don't need to propagate the
4842 relocation if linking a shared object since they are
4843 section relative. */
4844 case R_PPC64_SECTOFF:
4845 case R_PPC64_SECTOFF_LO:
4846 case R_PPC64_SECTOFF_HI:
4847 case R_PPC64_SECTOFF_HA:
4848 case R_PPC64_SECTOFF_DS:
4849 case R_PPC64_SECTOFF_LO_DS:
4850 case R_PPC64_DTPREL16:
4851 case R_PPC64_DTPREL16_LO:
4852 case R_PPC64_DTPREL16_HI:
4853 case R_PPC64_DTPREL16_HA:
4854 case R_PPC64_DTPREL16_DS:
4855 case R_PPC64_DTPREL16_LO_DS:
4856 case R_PPC64_DTPREL16_HIGH:
4857 case R_PPC64_DTPREL16_HIGHA:
4858 case R_PPC64_DTPREL16_HIGHER:
4859 case R_PPC64_DTPREL16_HIGHERA:
4860 case R_PPC64_DTPREL16_HIGHEST:
4861 case R_PPC64_DTPREL16_HIGHESTA:
4862 break;
4863
4864 /* Nor do these. */
4865 case R_PPC64_REL16:
4866 case R_PPC64_REL16_LO:
4867 case R_PPC64_REL16_HI:
4868 case R_PPC64_REL16_HA:
4869 case R_PPC64_REL16_HIGH:
4870 case R_PPC64_REL16_HIGHA:
4871 case R_PPC64_REL16_HIGHER:
4872 case R_PPC64_REL16_HIGHERA:
4873 case R_PPC64_REL16_HIGHEST:
4874 case R_PPC64_REL16_HIGHESTA:
4875 case R_PPC64_REL16_HIGHER34:
4876 case R_PPC64_REL16_HIGHERA34:
4877 case R_PPC64_REL16_HIGHEST34:
4878 case R_PPC64_REL16_HIGHESTA34:
4879 case R_PPC64_REL16DX_HA:
4880 break;
4881
4882 /* Not supported as a dynamic relocation. */
4883 case R_PPC64_ADDR64_LOCAL:
4884 if (bfd_link_pic (info))
4885 {
4886 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
4887 ppc_howto_init ();
4888 /* xgettext:c-format */
4889 info->callbacks->einfo (_("%H: %s reloc unsupported "
4890 "in shared libraries and PIEs\n"),
4891 abfd, sec, rel->r_offset,
4892 ppc64_elf_howto_table[r_type]->name);
4893 bfd_set_error (bfd_error_bad_value);
4894 return FALSE;
4895 }
4896 break;
4897
4898 case R_PPC64_TOC16:
4899 case R_PPC64_TOC16_DS:
4900 htab->do_multi_toc = 1;
4901 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
4902 /* Fall through. */
4903 case R_PPC64_TOC16_LO:
4904 case R_PPC64_TOC16_HI:
4905 case R_PPC64_TOC16_HA:
4906 case R_PPC64_TOC16_LO_DS:
4907 sec->has_toc_reloc = 1;
4908 if (h != NULL && bfd_link_executable (info))
4909 {
4910 /* We may need a copy reloc. */
4911 h->non_got_ref = 1;
4912 /* Strongly prefer a copy reloc over a dynamic reloc.
4913 glibc ld.so as of 2019-08 will error out if one of
4914 these relocations is emitted. */
4915 h->needs_copy = 1;
4916 goto dodyn;
4917 }
4918 break;
4919
4920 /* Marker reloc. */
4921 case R_PPC64_ENTRY:
4922 break;
4923
4924 /* This relocation describes the C++ object vtable hierarchy.
4925 Reconstruct it for later use during GC. */
4926 case R_PPC64_GNU_VTINHERIT:
4927 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4928 return FALSE;
4929 break;
4930
4931 /* This relocation describes which C++ vtable entries are actually
4932 used. Record for later use during GC. */
4933 case R_PPC64_GNU_VTENTRY:
4934 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4935 return FALSE;
4936 break;
4937
4938 case R_PPC64_REL14:
4939 case R_PPC64_REL14_BRTAKEN:
4940 case R_PPC64_REL14_BRNTAKEN:
4941 {
4942 asection *dest = NULL;
4943
4944 /* Heuristic: If jumping outside our section, chances are
4945 we are going to need a stub. */
4946 if (h != NULL)
4947 {
4948 /* If the sym is weak it may be overridden later, so
4949 don't assume we know where a weak sym lives. */
4950 if (h->root.type == bfd_link_hash_defined)
4951 dest = h->root.u.def.section;
4952 }
4953 else
4954 {
4955 Elf_Internal_Sym *isym;
4956
4957 isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache,
4958 abfd, r_symndx);
4959 if (isym == NULL)
4960 return FALSE;
4961
4962 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
4963 }
4964
4965 if (dest != sec)
4966 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
4967 }
4968 goto rel24;
4969
4970 case R_PPC64_PLTCALL:
4971 case R_PPC64_PLTCALL_NOTOC:
4972 ppc64_elf_section_data (sec)->has_pltcall = 1;
4973 /* Fall through. */
4974
4975 case R_PPC64_REL24:
4976 case R_PPC64_REL24_NOTOC:
4977 rel24:
4978 plt_list = ifunc;
4979 if (h != NULL)
4980 {
4981 h->needs_plt = 1;
4982 if (h->root.root.string[0] == '.'
4983 && h->root.root.string[1] != '\0')
4984 ppc_elf_hash_entry (h)->is_func = 1;
4985
4986 if (h == tga || h == dottga)
4987 {
4988 sec->has_tls_reloc = 1;
4989 if (rel != relocs
4990 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
4991 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
4992 /* We have a new-style __tls_get_addr call with
4993 a marker reloc. */
4994 ;
4995 else
4996 /* Mark this section as having an old-style call. */
4997 sec->nomark_tls_get_addr = 1;
4998 }
4999 plt_list = &h->plt.plist;
5000 }
5001
5002 /* We may need a .plt entry if the function this reloc
5003 refers to is in a shared lib. */
5004 if (plt_list
5005 && !update_plt_info (abfd, plt_list, rel->r_addend))
5006 return FALSE;
5007 break;
5008
5009 case R_PPC64_ADDR14:
5010 case R_PPC64_ADDR14_BRNTAKEN:
5011 case R_PPC64_ADDR14_BRTAKEN:
5012 case R_PPC64_ADDR24:
5013 goto dodyn;
5014
5015 case R_PPC64_TPREL64:
5016 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
5017 if (bfd_link_dll (info))
5018 info->flags |= DF_STATIC_TLS;
5019 goto dotlstoc;
5020
5021 case R_PPC64_DTPMOD64:
5022 if (rel + 1 < rel_end
5023 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
5024 && rel[1].r_offset == rel->r_offset + 8)
5025 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
5026 else
5027 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
5028 goto dotlstoc;
5029
5030 case R_PPC64_DTPREL64:
5031 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
5032 if (rel != relocs
5033 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
5034 && rel[-1].r_offset == rel->r_offset - 8)
5035 /* This is the second reloc of a dtpmod, dtprel pair.
5036 Don't mark with TLS_DTPREL. */
5037 goto dodyn;
5038
5039 dotlstoc:
5040 sec->has_tls_reloc = 1;
5041 if (h != NULL)
5042 ppc_elf_hash_entry (h)->tls_mask |= tls_type & 0xff;
5043 else
5044 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5045 rel->r_addend, tls_type))
5046 return FALSE;
5047
5048 ppc64_sec = ppc64_elf_section_data (sec);
5049 if (ppc64_sec->sec_type != sec_toc)
5050 {
5051 bfd_size_type amt;
5052
5053 /* One extra to simplify get_tls_mask. */
5054 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5055 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5056 if (ppc64_sec->u.toc.symndx == NULL)
5057 return FALSE;
5058 amt = sec->size * sizeof (bfd_vma) / 8;
5059 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5060 if (ppc64_sec->u.toc.add == NULL)
5061 return FALSE;
5062 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5063 ppc64_sec->sec_type = sec_toc;
5064 }
5065 BFD_ASSERT (rel->r_offset % 8 == 0);
5066 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5067 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5068
5069 /* Mark the second slot of a GD or LD entry.
5070 -1 to indicate GD and -2 to indicate LD. */
5071 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5072 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5073 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5074 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5075 goto dodyn;
5076
5077 case R_PPC64_TPREL16_HI:
5078 case R_PPC64_TPREL16_HA:
5079 case R_PPC64_TPREL16_HIGH:
5080 case R_PPC64_TPREL16_HIGHA:
5081 case R_PPC64_TPREL16_HIGHER:
5082 case R_PPC64_TPREL16_HIGHERA:
5083 case R_PPC64_TPREL16_HIGHEST:
5084 case R_PPC64_TPREL16_HIGHESTA:
5085 sec->has_tls_reloc = 1;
5086 /* Fall through. */
5087 case R_PPC64_TPREL34:
5088 case R_PPC64_TPREL16:
5089 case R_PPC64_TPREL16_DS:
5090 case R_PPC64_TPREL16_LO:
5091 case R_PPC64_TPREL16_LO_DS:
5092 if (bfd_link_dll (info))
5093 info->flags |= DF_STATIC_TLS;
5094 goto dodyn;
5095
5096 case R_PPC64_ADDR64:
5097 if (is_opd
5098 && rel + 1 < rel_end
5099 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5100 {
5101 if (h != NULL)
5102 ppc_elf_hash_entry (h)->is_func = 1;
5103 }
5104 /* Fall through. */
5105
5106 case R_PPC64_ADDR16:
5107 case R_PPC64_ADDR16_DS:
5108 case R_PPC64_ADDR16_HA:
5109 case R_PPC64_ADDR16_HI:
5110 case R_PPC64_ADDR16_HIGH:
5111 case R_PPC64_ADDR16_HIGHA:
5112 case R_PPC64_ADDR16_HIGHER:
5113 case R_PPC64_ADDR16_HIGHERA:
5114 case R_PPC64_ADDR16_HIGHEST:
5115 case R_PPC64_ADDR16_HIGHESTA:
5116 case R_PPC64_ADDR16_LO:
5117 case R_PPC64_ADDR16_LO_DS:
5118 case R_PPC64_D34:
5119 case R_PPC64_D34_LO:
5120 case R_PPC64_D34_HI30:
5121 case R_PPC64_D34_HA30:
5122 case R_PPC64_ADDR16_HIGHER34:
5123 case R_PPC64_ADDR16_HIGHERA34:
5124 case R_PPC64_ADDR16_HIGHEST34:
5125 case R_PPC64_ADDR16_HIGHESTA34:
5126 case R_PPC64_D28:
5127 if (h != NULL && !bfd_link_pic (info) && abiversion (abfd) != 1
5128 && rel->r_addend == 0)
5129 {
5130 /* We may need a .plt entry if this reloc refers to a
5131 function in a shared lib. */
5132 if (!update_plt_info (abfd, &h->plt.plist, 0))
5133 return FALSE;
5134 h->pointer_equality_needed = 1;
5135 }
5136 /* Fall through. */
5137
5138 case R_PPC64_REL30:
5139 case R_PPC64_REL32:
5140 case R_PPC64_REL64:
5141 case R_PPC64_ADDR32:
5142 case R_PPC64_UADDR16:
5143 case R_PPC64_UADDR32:
5144 case R_PPC64_UADDR64:
5145 case R_PPC64_TOC:
5146 if (h != NULL && bfd_link_executable (info))
5147 /* We may need a copy reloc. */
5148 h->non_got_ref = 1;
5149
5150 /* Don't propagate .opd relocs. */
5151 if (NO_OPD_RELOCS && is_opd)
5152 break;
5153
5154 /* If we are creating a shared library, and this is a reloc
5155 against a global symbol, or a non PC relative reloc
5156 against a local symbol, then we need to copy the reloc
5157 into the shared library. However, if we are linking with
5158 -Bsymbolic, we do not need to copy a reloc against a
5159 global symbol which is defined in an object we are
5160 including in the link (i.e., DEF_REGULAR is set). At
5161 this point we have not seen all the input files, so it is
5162 possible that DEF_REGULAR is not set now but will be set
5163 later (it is never cleared). In case of a weak definition,
5164 DEF_REGULAR may be cleared later by a strong definition in
5165 a shared library. We account for that possibility below by
5166 storing information in the dyn_relocs field of the hash
5167 table entry. A similar situation occurs when creating
5168 shared libraries and symbol visibility changes render the
5169 symbol local.
5170
5171 If on the other hand, we are creating an executable, we
5172 may need to keep relocations for symbols satisfied by a
5173 dynamic library if we manage to avoid copy relocs for the
5174 symbol. */
5175 dodyn:
5176 if ((h != NULL
5177 && (h->root.type == bfd_link_hash_defweak
5178 || !h->def_regular))
5179 || (h != NULL
5180 && !bfd_link_executable (info)
5181 && !SYMBOLIC_BIND (info, h))
5182 || (bfd_link_pic (info)
5183 && must_be_dyn_reloc (info, r_type))
5184 || (!bfd_link_pic (info)
5185 && ifunc != NULL))
5186 {
5187 /* We must copy these reloc types into the output file.
5188 Create a reloc section in dynobj and make room for
5189 this reloc. */
5190 if (sreloc == NULL)
5191 {
5192 sreloc = _bfd_elf_make_dynamic_reloc_section
5193 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5194
5195 if (sreloc == NULL)
5196 return FALSE;
5197 }
5198
5199 /* If this is a global symbol, we count the number of
5200 relocations we need for this symbol. */
5201 if (h != NULL)
5202 {
5203 struct elf_dyn_relocs *p;
5204 struct elf_dyn_relocs **head;
5205
5206 head = &h->dyn_relocs;
5207 p = *head;
5208 if (p == NULL || p->sec != sec)
5209 {
5210 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5211 if (p == NULL)
5212 return FALSE;
5213 p->next = *head;
5214 *head = p;
5215 p->sec = sec;
5216 p->count = 0;
5217 p->pc_count = 0;
5218 }
5219 p->count += 1;
5220 if (!must_be_dyn_reloc (info, r_type))
5221 p->pc_count += 1;
5222 }
5223 else
5224 {
5225 /* Track dynamic relocs needed for local syms too.
5226 We really need local syms available to do this
5227 easily. Oh well. */
5228 struct ppc_dyn_relocs *p;
5229 struct ppc_dyn_relocs **head;
5230 bfd_boolean is_ifunc;
5231 asection *s;
5232 void *vpp;
5233 Elf_Internal_Sym *isym;
5234
5235 isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache,
5236 abfd, r_symndx);
5237 if (isym == NULL)
5238 return FALSE;
5239
5240 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5241 if (s == NULL)
5242 s = sec;
5243
5244 vpp = &elf_section_data (s)->local_dynrel;
5245 head = (struct ppc_dyn_relocs **) vpp;
5246 is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
5247 p = *head;
5248 if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
5249 p = p->next;
5250 if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
5251 {
5252 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5253 if (p == NULL)
5254 return FALSE;
5255 p->next = *head;
5256 *head = p;
5257 p->sec = sec;
5258 p->ifunc = is_ifunc;
5259 p->count = 0;
5260 }
5261 p->count += 1;
5262 }
5263 }
5264 break;
5265
5266 default:
5267 break;
5268 }
5269 }
5270
5271 return TRUE;
5272 }
5273
5274 /* Merge backend specific data from an object file to the output
5275 object file when linking. */
5276
5277 static bfd_boolean
5278 ppc64_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
5279 {
5280 bfd *obfd = info->output_bfd;
5281 unsigned long iflags, oflags;
5282
5283 if ((ibfd->flags & BFD_LINKER_CREATED) != 0)
5284 return TRUE;
5285
5286 if (!is_ppc64_elf (ibfd) || !is_ppc64_elf (obfd))
5287 return TRUE;
5288
5289 if (!_bfd_generic_verify_endian_match (ibfd, info))
5290 return FALSE;
5291
5292 iflags = elf_elfheader (ibfd)->e_flags;
5293 oflags = elf_elfheader (obfd)->e_flags;
5294
5295 if (iflags & ~EF_PPC64_ABI)
5296 {
5297 _bfd_error_handler
5298 /* xgettext:c-format */
5299 (_("%pB uses unknown e_flags 0x%lx"), ibfd, iflags);
5300 bfd_set_error (bfd_error_bad_value);
5301 return FALSE;
5302 }
5303 else if (iflags != oflags && iflags != 0)
5304 {
5305 _bfd_error_handler
5306 /* xgettext:c-format */
5307 (_("%pB: ABI version %ld is not compatible with ABI version %ld output"),
5308 ibfd, iflags, oflags);
5309 bfd_set_error (bfd_error_bad_value);
5310 return FALSE;
5311 }
5312
5313 if (!_bfd_elf_ppc_merge_fp_attributes (ibfd, info))
5314 return FALSE;
5315
5316 /* Merge Tag_compatibility attributes and any common GNU ones. */
5317 return _bfd_elf_merge_object_attributes (ibfd, info);
5318 }
5319
5320 static bfd_boolean
5321 ppc64_elf_print_private_bfd_data (bfd *abfd, void *ptr)
5322 {
5323 /* Print normal ELF private data. */
5324 _bfd_elf_print_private_bfd_data (abfd, ptr);
5325
5326 if (elf_elfheader (abfd)->e_flags != 0)
5327 {
5328 FILE *file = ptr;
5329
5330 fprintf (file, _("private flags = 0x%lx:"),
5331 elf_elfheader (abfd)->e_flags);
5332
5333 if ((elf_elfheader (abfd)->e_flags & EF_PPC64_ABI) != 0)
5334 fprintf (file, _(" [abiv%ld]"),
5335 elf_elfheader (abfd)->e_flags & EF_PPC64_ABI);
5336 fputc ('\n', file);
5337 }
5338
5339 return TRUE;
5340 }
5341
5342 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5343 of the code entry point, and its section, which must be in the same
5344 object as OPD_SEC. Returns (bfd_vma) -1 on error. */
5345
5346 static bfd_vma
5347 opd_entry_value (asection *opd_sec,
5348 bfd_vma offset,
5349 asection **code_sec,
5350 bfd_vma *code_off,
5351 bfd_boolean in_code_sec)
5352 {
5353 bfd *opd_bfd = opd_sec->owner;
5354 Elf_Internal_Rela *relocs;
5355 Elf_Internal_Rela *lo, *hi, *look;
5356 bfd_vma val;
5357
5358 /* No relocs implies we are linking a --just-symbols object, or looking
5359 at a final linked executable with addr2line or somesuch. */
5360 if (opd_sec->reloc_count == 0)
5361 {
5362 bfd_byte *contents = ppc64_elf_tdata (opd_bfd)->opd.contents;
5363
5364 if (contents == NULL)
5365 {
5366 if (!bfd_malloc_and_get_section (opd_bfd, opd_sec, &contents))
5367 return (bfd_vma) -1;
5368 ppc64_elf_tdata (opd_bfd)->opd.contents = contents;
5369 }
5370
5371 /* PR 17512: file: 64b9dfbb. */
5372 if (offset + 7 >= opd_sec->size || offset + 7 < offset)
5373 return (bfd_vma) -1;
5374
5375 val = bfd_get_64 (opd_bfd, contents + offset);
5376 if (code_sec != NULL)
5377 {
5378 asection *sec, *likely = NULL;
5379
5380 if (in_code_sec)
5381 {
5382 sec = *code_sec;
5383 if (sec->vma <= val
5384 && val < sec->vma + sec->size)
5385 likely = sec;
5386 else
5387 val = -1;
5388 }
5389 else
5390 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5391 if (sec->vma <= val
5392 && (sec->flags & SEC_LOAD) != 0
5393 && (sec->flags & SEC_ALLOC) != 0)
5394 likely = sec;
5395 if (likely != NULL)
5396 {
5397 *code_sec = likely;
5398 if (code_off != NULL)
5399 *code_off = val - likely->vma;
5400 }
5401 }
5402 return val;
5403 }
5404
5405 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5406
5407 relocs = ppc64_elf_tdata (opd_bfd)->opd.relocs;
5408 if (relocs == NULL)
5409 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5410 /* PR 17512: file: df8e1fd6. */
5411 if (relocs == NULL)
5412 return (bfd_vma) -1;
5413
5414 /* Go find the opd reloc at the sym address. */
5415 lo = relocs;
5416 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5417 val = (bfd_vma) -1;
5418 while (lo < hi)
5419 {
5420 look = lo + (hi - lo) / 2;
5421 if (look->r_offset < offset)
5422 lo = look + 1;
5423 else if (look->r_offset > offset)
5424 hi = look;
5425 else
5426 {
5427 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5428
5429 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5430 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5431 {
5432 unsigned long symndx = ELF64_R_SYM (look->r_info);
5433 asection *sec = NULL;
5434
5435 if (symndx >= symtab_hdr->sh_info
5436 && elf_sym_hashes (opd_bfd) != NULL)
5437 {
5438 struct elf_link_hash_entry **sym_hashes;
5439 struct elf_link_hash_entry *rh;
5440
5441 sym_hashes = elf_sym_hashes (opd_bfd);
5442 rh = sym_hashes[symndx - symtab_hdr->sh_info];
5443 if (rh != NULL)
5444 {
5445 rh = elf_follow_link (rh);
5446 if (rh->root.type != bfd_link_hash_defined
5447 && rh->root.type != bfd_link_hash_defweak)
5448 break;
5449 if (rh->root.u.def.section->owner == opd_bfd)
5450 {
5451 val = rh->root.u.def.value;
5452 sec = rh->root.u.def.section;
5453 }
5454 }
5455 }
5456
5457 if (sec == NULL)
5458 {
5459 Elf_Internal_Sym *sym;
5460
5461 if (symndx < symtab_hdr->sh_info)
5462 {
5463 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
5464 if (sym == NULL)
5465 {
5466 size_t symcnt = symtab_hdr->sh_info;
5467 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
5468 symcnt, 0,
5469 NULL, NULL, NULL);
5470 if (sym == NULL)
5471 break;
5472 symtab_hdr->contents = (bfd_byte *) sym;
5473 }
5474 sym += symndx;
5475 }
5476 else
5477 {
5478 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
5479 1, symndx,
5480 NULL, NULL, NULL);
5481 if (sym == NULL)
5482 break;
5483 }
5484 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5485 if (sec == NULL)
5486 break;
5487 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
5488 val = sym->st_value;
5489 }
5490
5491 val += look->r_addend;
5492 if (code_off != NULL)
5493 *code_off = val;
5494 if (code_sec != NULL)
5495 {
5496 if (in_code_sec && *code_sec != sec)
5497 return -1;
5498 else
5499 *code_sec = sec;
5500 }
5501 if (sec->output_section != NULL)
5502 val += sec->output_section->vma + sec->output_offset;
5503 }
5504 break;
5505 }
5506 }
5507
5508 return val;
5509 }
5510
5511 /* If the ELF symbol SYM might be a function in SEC, return the
5512 function size and set *CODE_OFF to the function's entry point,
5513 otherwise return zero. */
5514
5515 static bfd_size_type
5516 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
5517 bfd_vma *code_off)
5518 {
5519 bfd_size_type size;
5520
5521 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
5522 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
5523 return 0;
5524
5525 size = 0;
5526 if (!(sym->flags & BSF_SYNTHETIC))
5527 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
5528
5529 if (strcmp (sym->section->name, ".opd") == 0)
5530 {
5531 struct _opd_sec_data *opd = get_opd_info (sym->section);
5532 bfd_vma symval = sym->value;
5533
5534 if (opd != NULL
5535 && opd->adjust != NULL
5536 && elf_section_data (sym->section)->relocs != NULL)
5537 {
5538 /* opd_entry_value will use cached relocs that have been
5539 adjusted, but with raw symbols. That means both local
5540 and global symbols need adjusting. */
5541 long adjust = opd->adjust[OPD_NDX (symval)];
5542 if (adjust == -1)
5543 return 0;
5544 symval += adjust;
5545 }
5546
5547 if (opd_entry_value (sym->section, symval,
5548 &sec, code_off, TRUE) == (bfd_vma) -1)
5549 return 0;
5550 /* An old ABI binary with dot-syms has a size of 24 on the .opd
5551 symbol. This size has nothing to do with the code size of the
5552 function, which is what we're supposed to return, but the
5553 code size isn't available without looking up the dot-sym.
5554 However, doing that would be a waste of time particularly
5555 since elf_find_function will look at the dot-sym anyway.
5556 Now, elf_find_function will keep the largest size of any
5557 function sym found at the code address of interest, so return
5558 1 here to avoid it incorrectly caching a larger function size
5559 for a small function. This does mean we return the wrong
5560 size for a new-ABI function of size 24, but all that does is
5561 disable caching for such functions. */
5562 if (size == 24)
5563 size = 1;
5564 }
5565 else
5566 {
5567 if (sym->section != sec)
5568 return 0;
5569 *code_off = sym->value;
5570 }
5571 if (size == 0)
5572 size = 1;
5573 return size;
5574 }
5575
5576 /* Return true if symbol is a strong function defined in an ELFv2
5577 object with st_other localentry bits of zero, ie. its local entry
5578 point coincides with its global entry point. */
5579
5580 static bfd_boolean
5581 is_elfv2_localentry0 (struct elf_link_hash_entry *h)
5582 {
5583 return (h != NULL
5584 && h->type == STT_FUNC
5585 && h->root.type == bfd_link_hash_defined
5586 && (STO_PPC64_LOCAL_MASK & h->other) == 0
5587 && !ppc_elf_hash_entry (h)->non_zero_localentry
5588 && is_ppc64_elf (h->root.u.def.section->owner)
5589 && abiversion (h->root.u.def.section->owner) >= 2);
5590 }
5591
5592 /* Return true if symbol is defined in a regular object file. */
5593
5594 static bfd_boolean
5595 is_static_defined (struct elf_link_hash_entry *h)
5596 {
5597 return ((h->root.type == bfd_link_hash_defined
5598 || h->root.type == bfd_link_hash_defweak)
5599 && h->root.u.def.section != NULL
5600 && h->root.u.def.section->output_section != NULL);
5601 }
5602
5603 /* If FDH is a function descriptor symbol, return the associated code
5604 entry symbol if it is defined. Return NULL otherwise. */
5605
5606 static struct ppc_link_hash_entry *
5607 defined_code_entry (struct ppc_link_hash_entry *fdh)
5608 {
5609 if (fdh->is_func_descriptor)
5610 {
5611 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
5612 if (fh->elf.root.type == bfd_link_hash_defined
5613 || fh->elf.root.type == bfd_link_hash_defweak)
5614 return fh;
5615 }
5616 return NULL;
5617 }
5618
5619 /* If FH is a function code entry symbol, return the associated
5620 function descriptor symbol if it is defined. Return NULL otherwise. */
5621
5622 static struct ppc_link_hash_entry *
5623 defined_func_desc (struct ppc_link_hash_entry *fh)
5624 {
5625 if (fh->oh != NULL
5626 && fh->oh->is_func_descriptor)
5627 {
5628 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
5629 if (fdh->elf.root.type == bfd_link_hash_defined
5630 || fdh->elf.root.type == bfd_link_hash_defweak)
5631 return fdh;
5632 }
5633 return NULL;
5634 }
5635
5636 /* Given H is a symbol that satisfies is_static_defined, return the
5637 value in the output file. */
5638
5639 static bfd_vma
5640 defined_sym_val (struct elf_link_hash_entry *h)
5641 {
5642 return (h->root.u.def.section->output_section->vma
5643 + h->root.u.def.section->output_offset
5644 + h->root.u.def.value);
5645 }
5646
5647 /* Return true if H matches __tls_get_addr or one of its variants. */
5648
5649 static bfd_boolean
5650 is_tls_get_addr (struct elf_link_hash_entry *h,
5651 struct ppc_link_hash_table *htab)
5652 {
5653 return (h == (struct elf_link_hash_entry *) htab->tls_get_addr_fd
5654 || h == (struct elf_link_hash_entry *) htab->tga_desc_fd
5655 || h == (struct elf_link_hash_entry *) htab->tls_get_addr
5656 || h == (struct elf_link_hash_entry *) htab->tga_desc);
5657 }
5658
5659 static bfd_boolean func_desc_adjust (struct elf_link_hash_entry *, void *);
5660
5661 /* Garbage collect sections, after first dealing with dot-symbols. */
5662
5663 static bfd_boolean
5664 ppc64_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
5665 {
5666 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5667
5668 if (htab != NULL && htab->need_func_desc_adj)
5669 {
5670 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
5671 htab->need_func_desc_adj = 0;
5672 }
5673 return bfd_elf_gc_sections (abfd, info);
5674 }
5675
5676 /* Mark all our entry sym sections, both opd and code section. */
5677
5678 static void
5679 ppc64_elf_gc_keep (struct bfd_link_info *info)
5680 {
5681 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5682 struct bfd_sym_chain *sym;
5683
5684 if (htab == NULL)
5685 return;
5686
5687 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
5688 {
5689 struct ppc_link_hash_entry *eh, *fh;
5690 asection *sec;
5691
5692 eh = ppc_elf_hash_entry (elf_link_hash_lookup (&htab->elf, sym->name,
5693 FALSE, FALSE, TRUE));
5694 if (eh == NULL)
5695 continue;
5696 if (eh->elf.root.type != bfd_link_hash_defined
5697 && eh->elf.root.type != bfd_link_hash_defweak)
5698 continue;
5699
5700 fh = defined_code_entry (eh);
5701 if (fh != NULL)
5702 {
5703 sec = fh->elf.root.u.def.section;
5704 sec->flags |= SEC_KEEP;
5705 }
5706 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5707 && opd_entry_value (eh->elf.root.u.def.section,
5708 eh->elf.root.u.def.value,
5709 &sec, NULL, FALSE) != (bfd_vma) -1)
5710 sec->flags |= SEC_KEEP;
5711
5712 sec = eh->elf.root.u.def.section;
5713 sec->flags |= SEC_KEEP;
5714 }
5715 }
5716
5717 /* Mark sections containing dynamically referenced symbols. When
5718 building shared libraries, we must assume that any visible symbol is
5719 referenced. */
5720
5721 static bfd_boolean
5722 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
5723 {
5724 struct bfd_link_info *info = (struct bfd_link_info *) inf;
5725 struct ppc_link_hash_entry *eh = ppc_elf_hash_entry (h);
5726 struct ppc_link_hash_entry *fdh;
5727 struct bfd_elf_dynamic_list *d = info->dynamic_list;
5728
5729 /* Dynamic linking info is on the func descriptor sym. */
5730 fdh = defined_func_desc (eh);
5731 if (fdh != NULL)
5732 eh = fdh;
5733
5734 if ((eh->elf.root.type == bfd_link_hash_defined
5735 || eh->elf.root.type == bfd_link_hash_defweak)
5736 && ((eh->elf.ref_dynamic && !eh->elf.forced_local)
5737 || ((eh->elf.def_regular || ELF_COMMON_DEF_P (&eh->elf))
5738 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
5739 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
5740 && (!bfd_link_executable (info)
5741 || info->gc_keep_exported
5742 || info->export_dynamic
5743 || (eh->elf.dynamic
5744 && d != NULL
5745 && (*d->match) (&d->head, NULL,
5746 eh->elf.root.root.string)))
5747 && (eh->elf.versioned >= versioned
5748 || !bfd_hide_sym_by_version (info->version_info,
5749 eh->elf.root.root.string)))))
5750 {
5751 asection *code_sec;
5752 struct ppc_link_hash_entry *fh;
5753
5754 eh->elf.root.u.def.section->flags |= SEC_KEEP;
5755
5756 /* Function descriptor syms cause the associated
5757 function code sym section to be marked. */
5758 fh = defined_code_entry (eh);
5759 if (fh != NULL)
5760 {
5761 code_sec = fh->elf.root.u.def.section;
5762 code_sec->flags |= SEC_KEEP;
5763 }
5764 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5765 && opd_entry_value (eh->elf.root.u.def.section,
5766 eh->elf.root.u.def.value,
5767 &code_sec, NULL, FALSE) != (bfd_vma) -1)
5768 code_sec->flags |= SEC_KEEP;
5769 }
5770
5771 return TRUE;
5772 }
5773
5774 /* Return the section that should be marked against GC for a given
5775 relocation. */
5776
5777 static asection *
5778 ppc64_elf_gc_mark_hook (asection *sec,
5779 struct bfd_link_info *info,
5780 Elf_Internal_Rela *rel,
5781 struct elf_link_hash_entry *h,
5782 Elf_Internal_Sym *sym)
5783 {
5784 asection *rsec;
5785
5786 /* Syms return NULL if we're marking .opd, so we avoid marking all
5787 function sections, as all functions are referenced in .opd. */
5788 rsec = NULL;
5789 if (get_opd_info (sec) != NULL)
5790 return rsec;
5791
5792 if (h != NULL)
5793 {
5794 enum elf_ppc64_reloc_type r_type;
5795 struct ppc_link_hash_entry *eh, *fh, *fdh;
5796
5797 r_type = ELF64_R_TYPE (rel->r_info);
5798 switch (r_type)
5799 {
5800 case R_PPC64_GNU_VTINHERIT:
5801 case R_PPC64_GNU_VTENTRY:
5802 break;
5803
5804 default:
5805 switch (h->root.type)
5806 {
5807 case bfd_link_hash_defined:
5808 case bfd_link_hash_defweak:
5809 eh = ppc_elf_hash_entry (h);
5810 fdh = defined_func_desc (eh);
5811 if (fdh != NULL)
5812 {
5813 /* -mcall-aixdesc code references the dot-symbol on
5814 a call reloc. Mark the function descriptor too
5815 against garbage collection. */
5816 fdh->elf.mark = 1;
5817 if (fdh->elf.is_weakalias)
5818 weakdef (&fdh->elf)->mark = 1;
5819 eh = fdh;
5820 }
5821
5822 /* Function descriptor syms cause the associated
5823 function code sym section to be marked. */
5824 fh = defined_code_entry (eh);
5825 if (fh != NULL)
5826 {
5827 /* They also mark their opd section. */
5828 eh->elf.root.u.def.section->gc_mark = 1;
5829
5830 rsec = fh->elf.root.u.def.section;
5831 }
5832 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5833 && opd_entry_value (eh->elf.root.u.def.section,
5834 eh->elf.root.u.def.value,
5835 &rsec, NULL, FALSE) != (bfd_vma) -1)
5836 eh->elf.root.u.def.section->gc_mark = 1;
5837 else
5838 rsec = h->root.u.def.section;
5839 break;
5840
5841 case bfd_link_hash_common:
5842 rsec = h->root.u.c.p->section;
5843 break;
5844
5845 default:
5846 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
5847 }
5848 }
5849 }
5850 else
5851 {
5852 struct _opd_sec_data *opd;
5853
5854 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
5855 opd = get_opd_info (rsec);
5856 if (opd != NULL && opd->func_sec != NULL)
5857 {
5858 rsec->gc_mark = 1;
5859
5860 rsec = opd->func_sec[OPD_NDX (sym->st_value + rel->r_addend)];
5861 }
5862 }
5863
5864 return rsec;
5865 }
5866
5867 /* The maximum size of .sfpr. */
5868 #define SFPR_MAX (218*4)
5869
5870 struct sfpr_def_parms
5871 {
5872 const char name[12];
5873 unsigned char lo, hi;
5874 bfd_byte *(*write_ent) (bfd *, bfd_byte *, int);
5875 bfd_byte *(*write_tail) (bfd *, bfd_byte *, int);
5876 };
5877
5878 /* Auto-generate _save*, _rest* functions in .sfpr.
5879 If STUB_SEC is non-null, define alias symbols in STUB_SEC
5880 instead. */
5881
5882 static bfd_boolean
5883 sfpr_define (struct bfd_link_info *info,
5884 const struct sfpr_def_parms *parm,
5885 asection *stub_sec)
5886 {
5887 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5888 unsigned int i;
5889 size_t len = strlen (parm->name);
5890 bfd_boolean writing = FALSE;
5891 char sym[16];
5892
5893 if (htab == NULL)
5894 return FALSE;
5895
5896 memcpy (sym, parm->name, len);
5897 sym[len + 2] = 0;
5898
5899 for (i = parm->lo; i <= parm->hi; i++)
5900 {
5901 struct ppc_link_hash_entry *h;
5902
5903 sym[len + 0] = i / 10 + '0';
5904 sym[len + 1] = i % 10 + '0';
5905 h = ppc_elf_hash_entry (elf_link_hash_lookup (&htab->elf, sym,
5906 writing, TRUE, TRUE));
5907 if (stub_sec != NULL)
5908 {
5909 if (h != NULL
5910 && h->elf.root.type == bfd_link_hash_defined
5911 && h->elf.root.u.def.section == htab->sfpr)
5912 {
5913 struct elf_link_hash_entry *s;
5914 char buf[32];
5915 sprintf (buf, "%08x.%s", stub_sec->id & 0xffffffff, sym);
5916 s = elf_link_hash_lookup (&htab->elf, buf, TRUE, TRUE, FALSE);
5917 if (s == NULL)
5918 return FALSE;
5919 if (s->root.type == bfd_link_hash_new)
5920 {
5921 s->root.type = bfd_link_hash_defined;
5922 s->root.u.def.section = stub_sec;
5923 s->root.u.def.value = (stub_sec->size - htab->sfpr->size
5924 + h->elf.root.u.def.value);
5925 s->ref_regular = 1;
5926 s->def_regular = 1;
5927 s->ref_regular_nonweak = 1;
5928 s->forced_local = 1;
5929 s->non_elf = 0;
5930 s->root.linker_def = 1;
5931 }
5932 }
5933 continue;
5934 }
5935 if (h != NULL)
5936 {
5937 h->save_res = 1;
5938 if (!h->elf.def_regular)
5939 {
5940 h->elf.root.type = bfd_link_hash_defined;
5941 h->elf.root.u.def.section = htab->sfpr;
5942 h->elf.root.u.def.value = htab->sfpr->size;
5943 h->elf.type = STT_FUNC;
5944 h->elf.def_regular = 1;
5945 h->elf.non_elf = 0;
5946 _bfd_elf_link_hash_hide_symbol (info, &h->elf, TRUE);
5947 writing = TRUE;
5948 if (htab->sfpr->contents == NULL)
5949 {
5950 htab->sfpr->contents
5951 = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
5952 if (htab->sfpr->contents == NULL)
5953 return FALSE;
5954 }
5955 }
5956 }
5957 if (writing)
5958 {
5959 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
5960 if (i != parm->hi)
5961 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
5962 else
5963 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
5964 htab->sfpr->size = p - htab->sfpr->contents;
5965 }
5966 }
5967
5968 return TRUE;
5969 }
5970
5971 static bfd_byte *
5972 savegpr0 (bfd *abfd, bfd_byte *p, int r)
5973 {
5974 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5975 return p + 4;
5976 }
5977
5978 static bfd_byte *
5979 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
5980 {
5981 p = savegpr0 (abfd, p, r);
5982 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
5983 p = p + 4;
5984 bfd_put_32 (abfd, BLR, p);
5985 return p + 4;
5986 }
5987
5988 static bfd_byte *
5989 restgpr0 (bfd *abfd, bfd_byte *p, int r)
5990 {
5991 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5992 return p + 4;
5993 }
5994
5995 static bfd_byte *
5996 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
5997 {
5998 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
5999 p = p + 4;
6000 p = restgpr0 (abfd, p, r);
6001 bfd_put_32 (abfd, MTLR_R0, p);
6002 p = p + 4;
6003 if (r == 29)
6004 {
6005 p = restgpr0 (abfd, p, 30);
6006 p = restgpr0 (abfd, p, 31);
6007 }
6008 bfd_put_32 (abfd, BLR, p);
6009 return p + 4;
6010 }
6011
6012 static bfd_byte *
6013 savegpr1 (bfd *abfd, bfd_byte *p, int r)
6014 {
6015 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6016 return p + 4;
6017 }
6018
6019 static bfd_byte *
6020 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
6021 {
6022 p = savegpr1 (abfd, p, r);
6023 bfd_put_32 (abfd, BLR, p);
6024 return p + 4;
6025 }
6026
6027 static bfd_byte *
6028 restgpr1 (bfd *abfd, bfd_byte *p, int r)
6029 {
6030 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6031 return p + 4;
6032 }
6033
6034 static bfd_byte *
6035 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
6036 {
6037 p = restgpr1 (abfd, p, r);
6038 bfd_put_32 (abfd, BLR, p);
6039 return p + 4;
6040 }
6041
6042 static bfd_byte *
6043 savefpr (bfd *abfd, bfd_byte *p, int r)
6044 {
6045 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6046 return p + 4;
6047 }
6048
6049 static bfd_byte *
6050 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6051 {
6052 p = savefpr (abfd, p, r);
6053 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6054 p = p + 4;
6055 bfd_put_32 (abfd, BLR, p);
6056 return p + 4;
6057 }
6058
6059 static bfd_byte *
6060 restfpr (bfd *abfd, bfd_byte *p, int r)
6061 {
6062 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6063 return p + 4;
6064 }
6065
6066 static bfd_byte *
6067 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6068 {
6069 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6070 p = p + 4;
6071 p = restfpr (abfd, p, r);
6072 bfd_put_32 (abfd, MTLR_R0, p);
6073 p = p + 4;
6074 if (r == 29)
6075 {
6076 p = restfpr (abfd, p, 30);
6077 p = restfpr (abfd, p, 31);
6078 }
6079 bfd_put_32 (abfd, BLR, p);
6080 return p + 4;
6081 }
6082
6083 static bfd_byte *
6084 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6085 {
6086 p = savefpr (abfd, p, r);
6087 bfd_put_32 (abfd, BLR, p);
6088 return p + 4;
6089 }
6090
6091 static bfd_byte *
6092 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6093 {
6094 p = restfpr (abfd, p, r);
6095 bfd_put_32 (abfd, BLR, p);
6096 return p + 4;
6097 }
6098
6099 static bfd_byte *
6100 savevr (bfd *abfd, bfd_byte *p, int r)
6101 {
6102 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6103 p = p + 4;
6104 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6105 return p + 4;
6106 }
6107
6108 static bfd_byte *
6109 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6110 {
6111 p = savevr (abfd, p, r);
6112 bfd_put_32 (abfd, BLR, p);
6113 return p + 4;
6114 }
6115
6116 static bfd_byte *
6117 restvr (bfd *abfd, bfd_byte *p, int r)
6118 {
6119 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6120 p = p + 4;
6121 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6122 return p + 4;
6123 }
6124
6125 static bfd_byte *
6126 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6127 {
6128 p = restvr (abfd, p, r);
6129 bfd_put_32 (abfd, BLR, p);
6130 return p + 4;
6131 }
6132
6133 #define STDU_R1_0R1 0xf8210001
6134 #define ADDI_R1_R1 0x38210000
6135
6136 /* Emit prologue of wrapper preserving regs around a call to
6137 __tls_get_addr_opt. */
6138
6139 static bfd_byte *
6140 tls_get_addr_prologue (bfd *obfd, bfd_byte *p, struct ppc_link_hash_table *htab)
6141 {
6142 unsigned int i;
6143
6144 bfd_put_32 (obfd, MFLR_R0, p);
6145 p += 4;
6146 bfd_put_32 (obfd, STD_R0_0R1 + 16, p);
6147 p += 4;
6148
6149 if (htab->opd_abi)
6150 {
6151 for (i = 4; i < 12; i++)
6152 {
6153 bfd_put_32 (obfd,
6154 STD_R0_0R1 | i << 21 | (-(13 - i) * 8 & 0xffff), p);
6155 p += 4;
6156 }
6157 bfd_put_32 (obfd, STDU_R1_0R1 | (-128 & 0xffff), p);
6158 p += 4;
6159 }
6160 else
6161 {
6162 for (i = 4; i < 12; i++)
6163 {
6164 bfd_put_32 (obfd,
6165 STD_R0_0R1 | i << 21 | (-(12 - i) * 8 & 0xffff), p);
6166 p += 4;
6167 }
6168 bfd_put_32 (obfd, STDU_R1_0R1 | (-96 & 0xffff), p);
6169 p += 4;
6170 }
6171 return p;
6172 }
6173
6174 /* Emit epilogue of wrapper preserving regs around a call to
6175 __tls_get_addr_opt. */
6176
6177 static bfd_byte *
6178 tls_get_addr_epilogue (bfd *obfd, bfd_byte *p, struct ppc_link_hash_table *htab)
6179 {
6180 unsigned int i;
6181
6182 if (htab->opd_abi)
6183 {
6184 for (i = 4; i < 12; i++)
6185 {
6186 bfd_put_32 (obfd, LD_R0_0R1 | i << 21 | (128 - (13 - i) * 8), p);
6187 p += 4;
6188 }
6189 bfd_put_32 (obfd, ADDI_R1_R1 | 128, p);
6190 p += 4;
6191 }
6192 else
6193 {
6194 for (i = 4; i < 12; i++)
6195 {
6196 bfd_put_32 (obfd, LD_R0_0R1 | i << 21 | (96 - (12 - i) * 8), p);
6197 p += 4;
6198 }
6199 bfd_put_32 (obfd, ADDI_R1_R1 | 96, p);
6200 p += 4;
6201 }
6202 bfd_put_32 (obfd, LD_R0_0R1 | 16, p);
6203 p += 4;
6204 bfd_put_32 (obfd, MTLR_R0, p);
6205 p += 4;
6206 bfd_put_32 (obfd, BLR, p);
6207 p += 4;
6208 return p;
6209 }
6210
6211 /* Called via elf_link_hash_traverse to transfer dynamic linking
6212 information on function code symbol entries to their corresponding
6213 function descriptor symbol entries. */
6214
6215 static bfd_boolean
6216 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6217 {
6218 struct bfd_link_info *info;
6219 struct ppc_link_hash_table *htab;
6220 struct ppc_link_hash_entry *fh;
6221 struct ppc_link_hash_entry *fdh;
6222 bfd_boolean force_local;
6223
6224 fh = ppc_elf_hash_entry (h);
6225 if (fh->elf.root.type == bfd_link_hash_indirect)
6226 return TRUE;
6227
6228 if (!fh->is_func)
6229 return TRUE;
6230
6231 if (fh->elf.root.root.string[0] != '.'
6232 || fh->elf.root.root.string[1] == '\0')
6233 return TRUE;
6234
6235 info = inf;
6236 htab = ppc_hash_table (info);
6237 if (htab == NULL)
6238 return FALSE;
6239
6240 /* Find the corresponding function descriptor symbol. */
6241 fdh = lookup_fdh (fh, htab);
6242
6243 /* Resolve undefined references to dot-symbols as the value
6244 in the function descriptor, if we have one in a regular object.
6245 This is to satisfy cases like ".quad .foo". Calls to functions
6246 in dynamic objects are handled elsewhere. */
6247 if ((fh->elf.root.type == bfd_link_hash_undefined
6248 || fh->elf.root.type == bfd_link_hash_undefweak)
6249 && (fdh->elf.root.type == bfd_link_hash_defined
6250 || fdh->elf.root.type == bfd_link_hash_defweak)
6251 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6252 && opd_entry_value (fdh->elf.root.u.def.section,
6253 fdh->elf.root.u.def.value,
6254 &fh->elf.root.u.def.section,
6255 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6256 {
6257 fh->elf.root.type = fdh->elf.root.type;
6258 fh->elf.forced_local = 1;
6259 fh->elf.def_regular = fdh->elf.def_regular;
6260 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6261 }
6262
6263 if (!fh->elf.dynamic)
6264 {
6265 struct plt_entry *ent;
6266
6267 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6268 if (ent->plt.refcount > 0)
6269 break;
6270 if (ent == NULL)
6271 return TRUE;
6272 }
6273
6274 /* Create a descriptor as undefined if necessary. */
6275 if (fdh == NULL
6276 && !bfd_link_executable (info)
6277 && (fh->elf.root.type == bfd_link_hash_undefined
6278 || fh->elf.root.type == bfd_link_hash_undefweak))
6279 {
6280 fdh = make_fdh (info, fh);
6281 if (fdh == NULL)
6282 return FALSE;
6283 }
6284
6285 /* We can't support overriding of symbols on a fake descriptor. */
6286 if (fdh != NULL
6287 && fdh->fake
6288 && (fh->elf.root.type == bfd_link_hash_defined
6289 || fh->elf.root.type == bfd_link_hash_defweak))
6290 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6291
6292 /* Transfer dynamic linking information to the function descriptor. */
6293 if (fdh != NULL)
6294 {
6295 fdh->elf.ref_regular |= fh->elf.ref_regular;
6296 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6297 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6298 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6299 fdh->elf.dynamic |= fh->elf.dynamic;
6300 fdh->elf.needs_plt |= (fh->elf.needs_plt
6301 || fh->elf.type == STT_FUNC
6302 || fh->elf.type == STT_GNU_IFUNC);
6303 move_plt_plist (fh, fdh);
6304
6305 if (!fdh->elf.forced_local
6306 && fh->elf.dynindx != -1)
6307 if (!bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6308 return FALSE;
6309 }
6310
6311 /* Now that the info is on the function descriptor, clear the
6312 function code sym info. Any function code syms for which we
6313 don't have a definition in a regular file, we force local.
6314 This prevents a shared library from exporting syms that have
6315 been imported from another library. Function code syms that
6316 are really in the library we must leave global to prevent the
6317 linker dragging in a definition from a static library. */
6318 force_local = (!fh->elf.def_regular
6319 || fdh == NULL
6320 || !fdh->elf.def_regular
6321 || fdh->elf.forced_local);
6322 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6323
6324 return TRUE;
6325 }
6326
6327 static const struct sfpr_def_parms save_res_funcs[] =
6328 {
6329 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6330 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6331 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6332 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6333 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6334 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6335 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6336 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6337 { "._savef", 14, 31, savefpr, savefpr1_tail },
6338 { "._restf", 14, 31, restfpr, restfpr1_tail },
6339 { "_savevr_", 20, 31, savevr, savevr_tail },
6340 { "_restvr_", 20, 31, restvr, restvr_tail }
6341 };
6342
6343 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6344 this hook to a) run the edit functions in this file, b) provide
6345 some gcc support functions, and c) transfer dynamic linking
6346 information gathered so far on function code symbol entries, to
6347 their corresponding function descriptor symbol entries. */
6348
6349 static bfd_boolean
6350 ppc64_elf_edit (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
6351 {
6352 struct ppc_link_hash_table *htab;
6353
6354 htab = ppc_hash_table (info);
6355 if (htab == NULL)
6356 return FALSE;
6357
6358 /* Call back into the linker, which then runs the edit functions. */
6359 htab->params->edit ();
6360
6361 /* Provide any missing _save* and _rest* functions. */
6362 if (htab->sfpr != NULL)
6363 {
6364 unsigned int i;
6365
6366 htab->sfpr->size = 0;
6367 for (i = 0; i < ARRAY_SIZE (save_res_funcs); i++)
6368 if (!sfpr_define (info, &save_res_funcs[i], NULL))
6369 return FALSE;
6370 if (htab->sfpr->size == 0)
6371 htab->sfpr->flags |= SEC_EXCLUDE;
6372 }
6373
6374 if (bfd_link_relocatable (info))
6375 return TRUE;
6376
6377 if (htab->elf.hgot != NULL)
6378 {
6379 _bfd_elf_link_hash_hide_symbol (info, htab->elf.hgot, TRUE);
6380 /* Make .TOC. defined so as to prevent it being made dynamic.
6381 The wrong value here is fixed later in ppc64_elf_set_toc. */
6382 if (!htab->elf.hgot->def_regular
6383 || htab->elf.hgot->root.type != bfd_link_hash_defined)
6384 {
6385 htab->elf.hgot->root.type = bfd_link_hash_defined;
6386 htab->elf.hgot->root.u.def.value = 0;
6387 htab->elf.hgot->root.u.def.section = bfd_abs_section_ptr;
6388 htab->elf.hgot->def_regular = 1;
6389 htab->elf.hgot->root.linker_def = 1;
6390 }
6391 htab->elf.hgot->type = STT_OBJECT;
6392 htab->elf.hgot->other
6393 = (htab->elf.hgot->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
6394 }
6395
6396 if (htab->need_func_desc_adj)
6397 {
6398 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6399 htab->need_func_desc_adj = 0;
6400 }
6401
6402 return TRUE;
6403 }
6404
6405 /* Return true if we have dynamic relocs against H or any of its weak
6406 aliases, that apply to read-only sections. Cannot be used after
6407 size_dynamic_sections. */
6408
6409 static bfd_boolean
6410 alias_readonly_dynrelocs (struct elf_link_hash_entry *h)
6411 {
6412 struct ppc_link_hash_entry *eh = ppc_elf_hash_entry (h);
6413 do
6414 {
6415 if (_bfd_elf_readonly_dynrelocs (&eh->elf))
6416 return TRUE;
6417 eh = ppc_elf_hash_entry (eh->elf.u.alias);
6418 }
6419 while (eh != NULL && &eh->elf != h);
6420
6421 return FALSE;
6422 }
6423
6424 /* Return whether EH has pc-relative dynamic relocs. */
6425
6426 static bfd_boolean
6427 pc_dynrelocs (struct ppc_link_hash_entry *eh)
6428 {
6429 struct elf_dyn_relocs *p;
6430
6431 for (p = eh->elf.dyn_relocs; p != NULL; p = p->next)
6432 if (p->pc_count != 0)
6433 return TRUE;
6434 return FALSE;
6435 }
6436
6437 /* Return true if a global entry stub will be created for H. Valid
6438 for ELFv2 before plt entries have been allocated. */
6439
6440 static bfd_boolean
6441 global_entry_stub (struct elf_link_hash_entry *h)
6442 {
6443 struct plt_entry *pent;
6444
6445 if (!h->pointer_equality_needed
6446 || h->def_regular)
6447 return FALSE;
6448
6449 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
6450 if (pent->plt.refcount > 0
6451 && pent->addend == 0)
6452 return TRUE;
6453
6454 return FALSE;
6455 }
6456
6457 /* Adjust a symbol defined by a dynamic object and referenced by a
6458 regular object. The current definition is in some section of the
6459 dynamic object, but we're not including those sections. We have to
6460 change the definition to something the rest of the link can
6461 understand. */
6462
6463 static bfd_boolean
6464 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6465 struct elf_link_hash_entry *h)
6466 {
6467 struct ppc_link_hash_table *htab;
6468 asection *s, *srel;
6469
6470 htab = ppc_hash_table (info);
6471 if (htab == NULL)
6472 return FALSE;
6473
6474 /* Deal with function syms. */
6475 if (h->type == STT_FUNC
6476 || h->type == STT_GNU_IFUNC
6477 || h->needs_plt)
6478 {
6479 bfd_boolean local = (ppc_elf_hash_entry (h)->save_res
6480 || SYMBOL_CALLS_LOCAL (info, h)
6481 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
6482 /* Discard dyn_relocs when non-pic if we've decided that a
6483 function symbol is local and not an ifunc. We keep dynamic
6484 relocs for ifuncs when local rather than always emitting a
6485 plt call stub for them and defining the symbol on the call
6486 stub. We can't do that for ELFv1 anyway (a function symbol
6487 is defined on a descriptor, not code) and it can be faster at
6488 run-time due to not needing to bounce through a stub. The
6489 dyn_relocs for ifuncs will be applied even in a static
6490 executable. */
6491 if (!bfd_link_pic (info)
6492 && h->type != STT_GNU_IFUNC
6493 && local)
6494 h->dyn_relocs = NULL;
6495
6496 /* Clear procedure linkage table information for any symbol that
6497 won't need a .plt entry. */
6498 struct plt_entry *ent;
6499 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6500 if (ent->plt.refcount > 0)
6501 break;
6502 if (ent == NULL
6503 || (h->type != STT_GNU_IFUNC
6504 && local
6505 && (htab->can_convert_all_inline_plt
6506 || (ppc_elf_hash_entry (h)->tls_mask
6507 & (TLS_TLS | PLT_KEEP)) != PLT_KEEP)))
6508 {
6509 h->plt.plist = NULL;
6510 h->needs_plt = 0;
6511 h->pointer_equality_needed = 0;
6512 }
6513 else if (abiversion (info->output_bfd) >= 2)
6514 {
6515 /* Taking a function's address in a read/write section
6516 doesn't require us to define the function symbol in the
6517 executable on a global entry stub. A dynamic reloc can
6518 be used instead. The reason we prefer a few more dynamic
6519 relocs is that calling via a global entry stub costs a
6520 few more instructions, and pointer_equality_needed causes
6521 extra work in ld.so when resolving these symbols. */
6522 if (global_entry_stub (h))
6523 {
6524 if (!_bfd_elf_readonly_dynrelocs (h))
6525 {
6526 h->pointer_equality_needed = 0;
6527 /* If we haven't seen a branch reloc and the symbol
6528 isn't an ifunc then we don't need a plt entry. */
6529 if (!h->needs_plt)
6530 h->plt.plist = NULL;
6531 }
6532 else if (!bfd_link_pic (info))
6533 /* We are going to be defining the function symbol on the
6534 plt stub, so no dyn_relocs needed when non-pic. */
6535 h->dyn_relocs = NULL;
6536 }
6537
6538 /* ELFv2 function symbols can't have copy relocs. */
6539 return TRUE;
6540 }
6541 else if (!h->needs_plt
6542 && !_bfd_elf_readonly_dynrelocs (h))
6543 {
6544 /* If we haven't seen a branch reloc and the symbol isn't an
6545 ifunc then we don't need a plt entry. */
6546 h->plt.plist = NULL;
6547 h->pointer_equality_needed = 0;
6548 return TRUE;
6549 }
6550 }
6551 else
6552 h->plt.plist = NULL;
6553
6554 /* If this is a weak symbol, and there is a real definition, the
6555 processor independent code will have arranged for us to see the
6556 real definition first, and we can just use the same value. */
6557 if (h->is_weakalias)
6558 {
6559 struct elf_link_hash_entry *def = weakdef (h);
6560 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
6561 h->root.u.def.section = def->root.u.def.section;
6562 h->root.u.def.value = def->root.u.def.value;
6563 if (def->root.u.def.section == htab->elf.sdynbss
6564 || def->root.u.def.section == htab->elf.sdynrelro)
6565 h->dyn_relocs = NULL;
6566 return TRUE;
6567 }
6568
6569 /* If we are creating a shared library, we must presume that the
6570 only references to the symbol are via the global offset table.
6571 For such cases we need not do anything here; the relocations will
6572 be handled correctly by relocate_section. */
6573 if (!bfd_link_executable (info))
6574 return TRUE;
6575
6576 /* If there are no references to this symbol that do not use the
6577 GOT, we don't need to generate a copy reloc. */
6578 if (!h->non_got_ref)
6579 return TRUE;
6580
6581 /* Don't generate a copy reloc for symbols defined in the executable. */
6582 if (!h->def_dynamic || !h->ref_regular || h->def_regular
6583
6584 /* If -z nocopyreloc was given, don't generate them either. */
6585 || info->nocopyreloc
6586
6587 /* If we don't find any dynamic relocs in read-only sections, then
6588 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6589 || (ELIMINATE_COPY_RELOCS
6590 && !h->needs_copy
6591 && !alias_readonly_dynrelocs (h))
6592
6593 /* Protected variables do not work with .dynbss. The copy in
6594 .dynbss won't be used by the shared library with the protected
6595 definition for the variable. Text relocations are preferable
6596 to an incorrect program. */
6597 || h->protected_def)
6598 return TRUE;
6599
6600 if (h->type == STT_FUNC
6601 || h->type == STT_GNU_IFUNC)
6602 {
6603 /* .dynbss copies of function symbols only work if we have
6604 ELFv1 dot-symbols. ELFv1 compilers since 2004 default to not
6605 use dot-symbols and set the function symbol size to the text
6606 size of the function rather than the size of the descriptor.
6607 That's wrong for copying a descriptor. */
6608 if (ppc_elf_hash_entry (h)->oh == NULL
6609 || !(h->size == 24 || h->size == 16))
6610 return TRUE;
6611
6612 /* We should never get here, but unfortunately there are old
6613 versions of gcc (circa gcc-3.2) that improperly for the
6614 ELFv1 ABI put initialized function pointers, vtable refs and
6615 suchlike in read-only sections. Allow them to proceed, but
6616 warn that this might break at runtime. */
6617 info->callbacks->einfo
6618 (_("%P: copy reloc against `%pT' requires lazy plt linking; "
6619 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
6620 h->root.root.string);
6621 }
6622
6623 /* This is a reference to a symbol defined by a dynamic object which
6624 is not a function. */
6625
6626 /* We must allocate the symbol in our .dynbss section, which will
6627 become part of the .bss section of the executable. There will be
6628 an entry for this symbol in the .dynsym section. The dynamic
6629 object will contain position independent code, so all references
6630 from the dynamic object to this symbol will go through the global
6631 offset table. The dynamic linker will use the .dynsym entry to
6632 determine the address it must put in the global offset table, so
6633 both the dynamic object and the regular object will refer to the
6634 same memory location for the variable. */
6635 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
6636 {
6637 s = htab->elf.sdynrelro;
6638 srel = htab->elf.sreldynrelro;
6639 }
6640 else
6641 {
6642 s = htab->elf.sdynbss;
6643 srel = htab->elf.srelbss;
6644 }
6645 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6646 {
6647 /* We must generate a R_PPC64_COPY reloc to tell the dynamic
6648 linker to copy the initial value out of the dynamic object
6649 and into the runtime process image. */
6650 srel->size += sizeof (Elf64_External_Rela);
6651 h->needs_copy = 1;
6652 }
6653
6654 /* We no longer want dyn_relocs. */
6655 h->dyn_relocs = NULL;
6656 return _bfd_elf_adjust_dynamic_copy (info, h, s);
6657 }
6658
6659 /* If given a function descriptor symbol, hide both the function code
6660 sym and the descriptor. */
6661 static void
6662 ppc64_elf_hide_symbol (struct bfd_link_info *info,
6663 struct elf_link_hash_entry *h,
6664 bfd_boolean force_local)
6665 {
6666 struct ppc_link_hash_entry *eh;
6667 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
6668
6669 if (ppc_hash_table (info) == NULL)
6670 return;
6671
6672 eh = ppc_elf_hash_entry (h);
6673 if (eh->is_func_descriptor)
6674 {
6675 struct ppc_link_hash_entry *fh = eh->oh;
6676
6677 if (fh == NULL)
6678 {
6679 const char *p, *q;
6680 struct elf_link_hash_table *htab = elf_hash_table (info);
6681 char save;
6682
6683 /* We aren't supposed to use alloca in BFD because on
6684 systems which do not have alloca the version in libiberty
6685 calls xmalloc, which might cause the program to crash
6686 when it runs out of memory. This function doesn't have a
6687 return status, so there's no way to gracefully return an
6688 error. So cheat. We know that string[-1] can be safely
6689 accessed; It's either a string in an ELF string table,
6690 or allocated in an objalloc structure. */
6691
6692 p = eh->elf.root.root.string - 1;
6693 save = *p;
6694 *(char *) p = '.';
6695 fh = ppc_elf_hash_entry (elf_link_hash_lookup (htab, p, FALSE,
6696 FALSE, FALSE));
6697 *(char *) p = save;
6698
6699 /* Unfortunately, if it so happens that the string we were
6700 looking for was allocated immediately before this string,
6701 then we overwrote the string terminator. That's the only
6702 reason the lookup should fail. */
6703 if (fh == NULL)
6704 {
6705 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
6706 while (q >= eh->elf.root.root.string && *q == *p)
6707 --q, --p;
6708 if (q < eh->elf.root.root.string && *p == '.')
6709 fh = ppc_elf_hash_entry (elf_link_hash_lookup (htab, p, FALSE,
6710 FALSE, FALSE));
6711 }
6712 if (fh != NULL)
6713 {
6714 eh->oh = fh;
6715 fh->oh = eh;
6716 }
6717 }
6718 if (fh != NULL)
6719 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6720 }
6721 }
6722
6723 static bfd_boolean
6724 get_sym_h (struct elf_link_hash_entry **hp,
6725 Elf_Internal_Sym **symp,
6726 asection **symsecp,
6727 unsigned char **tls_maskp,
6728 Elf_Internal_Sym **locsymsp,
6729 unsigned long r_symndx,
6730 bfd *ibfd)
6731 {
6732 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
6733
6734 if (r_symndx >= symtab_hdr->sh_info)
6735 {
6736 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
6737 struct elf_link_hash_entry *h;
6738
6739 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6740 h = elf_follow_link (h);
6741
6742 if (hp != NULL)
6743 *hp = h;
6744
6745 if (symp != NULL)
6746 *symp = NULL;
6747
6748 if (symsecp != NULL)
6749 {
6750 asection *symsec = NULL;
6751 if (h->root.type == bfd_link_hash_defined
6752 || h->root.type == bfd_link_hash_defweak)
6753 symsec = h->root.u.def.section;
6754 *symsecp = symsec;
6755 }
6756
6757 if (tls_maskp != NULL)
6758 *tls_maskp = &ppc_elf_hash_entry (h)->tls_mask;
6759 }
6760 else
6761 {
6762 Elf_Internal_Sym *sym;
6763 Elf_Internal_Sym *locsyms = *locsymsp;
6764
6765 if (locsyms == NULL)
6766 {
6767 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
6768 if (locsyms == NULL)
6769 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
6770 symtab_hdr->sh_info,
6771 0, NULL, NULL, NULL);
6772 if (locsyms == NULL)
6773 return FALSE;
6774 *locsymsp = locsyms;
6775 }
6776 sym = locsyms + r_symndx;
6777
6778 if (hp != NULL)
6779 *hp = NULL;
6780
6781 if (symp != NULL)
6782 *symp = sym;
6783
6784 if (symsecp != NULL)
6785 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
6786
6787 if (tls_maskp != NULL)
6788 {
6789 struct got_entry **lgot_ents;
6790 unsigned char *tls_mask;
6791
6792 tls_mask = NULL;
6793 lgot_ents = elf_local_got_ents (ibfd);
6794 if (lgot_ents != NULL)
6795 {
6796 struct plt_entry **local_plt = (struct plt_entry **)
6797 (lgot_ents + symtab_hdr->sh_info);
6798 unsigned char *lgot_masks = (unsigned char *)
6799 (local_plt + symtab_hdr->sh_info);
6800 tls_mask = &lgot_masks[r_symndx];
6801 }
6802 *tls_maskp = tls_mask;
6803 }
6804 }
6805 return TRUE;
6806 }
6807
6808 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
6809 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
6810 type suitable for optimization, and 1 otherwise. */
6811
6812 static int
6813 get_tls_mask (unsigned char **tls_maskp,
6814 unsigned long *toc_symndx,
6815 bfd_vma *toc_addend,
6816 Elf_Internal_Sym **locsymsp,
6817 const Elf_Internal_Rela *rel,
6818 bfd *ibfd)
6819 {
6820 unsigned long r_symndx;
6821 int next_r;
6822 struct elf_link_hash_entry *h;
6823 Elf_Internal_Sym *sym;
6824 asection *sec;
6825 bfd_vma off;
6826
6827 r_symndx = ELF64_R_SYM (rel->r_info);
6828 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6829 return 0;
6830
6831 if ((*tls_maskp != NULL
6832 && (**tls_maskp & TLS_TLS) != 0
6833 && **tls_maskp != (TLS_TLS | TLS_MARK))
6834 || sec == NULL
6835 || ppc64_elf_section_data (sec) == NULL
6836 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
6837 return 1;
6838
6839 /* Look inside a TOC section too. */
6840 if (h != NULL)
6841 {
6842 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
6843 off = h->root.u.def.value;
6844 }
6845 else
6846 off = sym->st_value;
6847 off += rel->r_addend;
6848 BFD_ASSERT (off % 8 == 0);
6849 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
6850 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
6851 if (toc_symndx != NULL)
6852 *toc_symndx = r_symndx;
6853 if (toc_addend != NULL)
6854 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
6855 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6856 return 0;
6857 if ((h == NULL || is_static_defined (h))
6858 && (next_r == -1 || next_r == -2))
6859 return 1 - next_r;
6860 return 1;
6861 }
6862
6863 /* Find (or create) an entry in the tocsave hash table. */
6864
6865 static struct tocsave_entry *
6866 tocsave_find (struct ppc_link_hash_table *htab,
6867 enum insert_option insert,
6868 Elf_Internal_Sym **local_syms,
6869 const Elf_Internal_Rela *irela,
6870 bfd *ibfd)
6871 {
6872 unsigned long r_indx;
6873 struct elf_link_hash_entry *h;
6874 Elf_Internal_Sym *sym;
6875 struct tocsave_entry ent, *p;
6876 hashval_t hash;
6877 struct tocsave_entry **slot;
6878
6879 r_indx = ELF64_R_SYM (irela->r_info);
6880 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
6881 return NULL;
6882 if (ent.sec == NULL || ent.sec->output_section == NULL)
6883 {
6884 _bfd_error_handler
6885 (_("%pB: undefined symbol on R_PPC64_TOCSAVE relocation"), ibfd);
6886 return NULL;
6887 }
6888
6889 if (h != NULL)
6890 ent.offset = h->root.u.def.value;
6891 else
6892 ent.offset = sym->st_value;
6893 ent.offset += irela->r_addend;
6894
6895 hash = tocsave_htab_hash (&ent);
6896 slot = ((struct tocsave_entry **)
6897 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
6898 if (slot == NULL)
6899 return NULL;
6900
6901 if (*slot == NULL)
6902 {
6903 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
6904 if (p == NULL)
6905 return NULL;
6906 *p = ent;
6907 *slot = p;
6908 }
6909 return *slot;
6910 }
6911
6912 /* Adjust all global syms defined in opd sections. In gcc generated
6913 code for the old ABI, these will already have been done. */
6914
6915 static bfd_boolean
6916 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
6917 {
6918 struct ppc_link_hash_entry *eh;
6919 asection *sym_sec;
6920 struct _opd_sec_data *opd;
6921
6922 if (h->root.type == bfd_link_hash_indirect)
6923 return TRUE;
6924
6925 if (h->root.type != bfd_link_hash_defined
6926 && h->root.type != bfd_link_hash_defweak)
6927 return TRUE;
6928
6929 eh = ppc_elf_hash_entry (h);
6930 if (eh->adjust_done)
6931 return TRUE;
6932
6933 sym_sec = eh->elf.root.u.def.section;
6934 opd = get_opd_info (sym_sec);
6935 if (opd != NULL && opd->adjust != NULL)
6936 {
6937 long adjust = opd->adjust[OPD_NDX (eh->elf.root.u.def.value)];
6938 if (adjust == -1)
6939 {
6940 /* This entry has been deleted. */
6941 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
6942 if (dsec == NULL)
6943 {
6944 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
6945 if (discarded_section (dsec))
6946 {
6947 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
6948 break;
6949 }
6950 }
6951 eh->elf.root.u.def.value = 0;
6952 eh->elf.root.u.def.section = dsec;
6953 }
6954 else
6955 eh->elf.root.u.def.value += adjust;
6956 eh->adjust_done = 1;
6957 }
6958 return TRUE;
6959 }
6960
6961 /* Handles decrementing dynamic reloc counts for the reloc specified by
6962 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
6963 have already been determined. */
6964
6965 static bfd_boolean
6966 dec_dynrel_count (bfd_vma r_info,
6967 asection *sec,
6968 struct bfd_link_info *info,
6969 Elf_Internal_Sym **local_syms,
6970 struct elf_link_hash_entry *h,
6971 Elf_Internal_Sym *sym)
6972 {
6973 enum elf_ppc64_reloc_type r_type;
6974 asection *sym_sec = NULL;
6975
6976 /* Can this reloc be dynamic? This switch, and later tests here
6977 should be kept in sync with the code in check_relocs. */
6978 r_type = ELF64_R_TYPE (r_info);
6979 switch (r_type)
6980 {
6981 default:
6982 return TRUE;
6983
6984 case R_PPC64_TOC16:
6985 case R_PPC64_TOC16_DS:
6986 case R_PPC64_TOC16_LO:
6987 case R_PPC64_TOC16_HI:
6988 case R_PPC64_TOC16_HA:
6989 case R_PPC64_TOC16_LO_DS:
6990 if (h == NULL)
6991 return TRUE;
6992 break;
6993
6994 case R_PPC64_TPREL16:
6995 case R_PPC64_TPREL16_LO:
6996 case R_PPC64_TPREL16_HI:
6997 case R_PPC64_TPREL16_HA:
6998 case R_PPC64_TPREL16_DS:
6999 case R_PPC64_TPREL16_LO_DS:
7000 case R_PPC64_TPREL16_HIGH:
7001 case R_PPC64_TPREL16_HIGHA:
7002 case R_PPC64_TPREL16_HIGHER:
7003 case R_PPC64_TPREL16_HIGHERA:
7004 case R_PPC64_TPREL16_HIGHEST:
7005 case R_PPC64_TPREL16_HIGHESTA:
7006 case R_PPC64_TPREL64:
7007 case R_PPC64_TPREL34:
7008 case R_PPC64_DTPMOD64:
7009 case R_PPC64_DTPREL64:
7010 case R_PPC64_ADDR64:
7011 case R_PPC64_REL30:
7012 case R_PPC64_REL32:
7013 case R_PPC64_REL64:
7014 case R_PPC64_ADDR14:
7015 case R_PPC64_ADDR14_BRNTAKEN:
7016 case R_PPC64_ADDR14_BRTAKEN:
7017 case R_PPC64_ADDR16:
7018 case R_PPC64_ADDR16_DS:
7019 case R_PPC64_ADDR16_HA:
7020 case R_PPC64_ADDR16_HI:
7021 case R_PPC64_ADDR16_HIGH:
7022 case R_PPC64_ADDR16_HIGHA:
7023 case R_PPC64_ADDR16_HIGHER:
7024 case R_PPC64_ADDR16_HIGHERA:
7025 case R_PPC64_ADDR16_HIGHEST:
7026 case R_PPC64_ADDR16_HIGHESTA:
7027 case R_PPC64_ADDR16_LO:
7028 case R_PPC64_ADDR16_LO_DS:
7029 case R_PPC64_ADDR24:
7030 case R_PPC64_ADDR32:
7031 case R_PPC64_UADDR16:
7032 case R_PPC64_UADDR32:
7033 case R_PPC64_UADDR64:
7034 case R_PPC64_TOC:
7035 case R_PPC64_D34:
7036 case R_PPC64_D34_LO:
7037 case R_PPC64_D34_HI30:
7038 case R_PPC64_D34_HA30:
7039 case R_PPC64_ADDR16_HIGHER34:
7040 case R_PPC64_ADDR16_HIGHERA34:
7041 case R_PPC64_ADDR16_HIGHEST34:
7042 case R_PPC64_ADDR16_HIGHESTA34:
7043 case R_PPC64_D28:
7044 break;
7045 }
7046
7047 if (local_syms != NULL)
7048 {
7049 unsigned long r_symndx;
7050 bfd *ibfd = sec->owner;
7051
7052 r_symndx = ELF64_R_SYM (r_info);
7053 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
7054 return FALSE;
7055 }
7056
7057 if ((h != NULL
7058 && (h->root.type == bfd_link_hash_defweak
7059 || !h->def_regular))
7060 || (h != NULL
7061 && !bfd_link_executable (info)
7062 && !SYMBOLIC_BIND (info, h))
7063 || (bfd_link_pic (info)
7064 && must_be_dyn_reloc (info, r_type))
7065 || (!bfd_link_pic (info)
7066 && (h != NULL
7067 ? h->type == STT_GNU_IFUNC
7068 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
7069 ;
7070 else
7071 return TRUE;
7072
7073 if (h != NULL)
7074 {
7075 struct elf_dyn_relocs *p;
7076 struct elf_dyn_relocs **pp;
7077 pp = &h->dyn_relocs;
7078
7079 /* elf_gc_sweep may have already removed all dyn relocs associated
7080 with local syms for a given section. Also, symbol flags are
7081 changed by elf_gc_sweep_symbol, confusing the test above. Don't
7082 report a dynreloc miscount. */
7083 if (*pp == NULL && info->gc_sections)
7084 return TRUE;
7085
7086 while ((p = *pp) != NULL)
7087 {
7088 if (p->sec == sec)
7089 {
7090 if (!must_be_dyn_reloc (info, r_type))
7091 p->pc_count -= 1;
7092 p->count -= 1;
7093 if (p->count == 0)
7094 *pp = p->next;
7095 return TRUE;
7096 }
7097 pp = &p->next;
7098 }
7099 }
7100 else
7101 {
7102 struct ppc_dyn_relocs *p;
7103 struct ppc_dyn_relocs **pp;
7104 void *vpp;
7105 bfd_boolean is_ifunc;
7106
7107 if (local_syms == NULL)
7108 sym_sec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7109 if (sym_sec == NULL)
7110 sym_sec = sec;
7111
7112 vpp = &elf_section_data (sym_sec)->local_dynrel;
7113 pp = (struct ppc_dyn_relocs **) vpp;
7114
7115 if (*pp == NULL && info->gc_sections)
7116 return TRUE;
7117
7118 is_ifunc = ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC;
7119 while ((p = *pp) != NULL)
7120 {
7121 if (p->sec == sec && p->ifunc == is_ifunc)
7122 {
7123 p->count -= 1;
7124 if (p->count == 0)
7125 *pp = p->next;
7126 return TRUE;
7127 }
7128 pp = &p->next;
7129 }
7130 }
7131
7132 /* xgettext:c-format */
7133 _bfd_error_handler (_("dynreloc miscount for %pB, section %pA"),
7134 sec->owner, sec);
7135 bfd_set_error (bfd_error_bad_value);
7136 return FALSE;
7137 }
7138
7139 /* Remove unused Official Procedure Descriptor entries. Currently we
7140 only remove those associated with functions in discarded link-once
7141 sections, or weakly defined functions that have been overridden. It
7142 would be possible to remove many more entries for statically linked
7143 applications. */
7144
7145 bfd_boolean
7146 ppc64_elf_edit_opd (struct bfd_link_info *info)
7147 {
7148 bfd *ibfd;
7149 bfd_boolean some_edited = FALSE;
7150 asection *need_pad = NULL;
7151 struct ppc_link_hash_table *htab;
7152
7153 htab = ppc_hash_table (info);
7154 if (htab == NULL)
7155 return FALSE;
7156
7157 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7158 {
7159 asection *sec;
7160 Elf_Internal_Rela *relstart, *rel, *relend;
7161 Elf_Internal_Shdr *symtab_hdr;
7162 Elf_Internal_Sym *local_syms;
7163 struct _opd_sec_data *opd;
7164 bfd_boolean need_edit, add_aux_fields, broken;
7165 bfd_size_type cnt_16b = 0;
7166
7167 if (!is_ppc64_elf (ibfd))
7168 continue;
7169
7170 sec = bfd_get_section_by_name (ibfd, ".opd");
7171 if (sec == NULL || sec->size == 0)
7172 continue;
7173
7174 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7175 continue;
7176
7177 if (sec->output_section == bfd_abs_section_ptr)
7178 continue;
7179
7180 /* Look through the section relocs. */
7181 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7182 continue;
7183
7184 local_syms = NULL;
7185 symtab_hdr = &elf_symtab_hdr (ibfd);
7186
7187 /* Read the relocations. */
7188 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7189 info->keep_memory);
7190 if (relstart == NULL)
7191 return FALSE;
7192
7193 /* First run through the relocs to check they are sane, and to
7194 determine whether we need to edit this opd section. */
7195 need_edit = FALSE;
7196 broken = FALSE;
7197 need_pad = sec;
7198 relend = relstart + sec->reloc_count;
7199 for (rel = relstart; rel < relend; )
7200 {
7201 enum elf_ppc64_reloc_type r_type;
7202 unsigned long r_symndx;
7203 asection *sym_sec;
7204 struct elf_link_hash_entry *h;
7205 Elf_Internal_Sym *sym;
7206 bfd_vma offset;
7207
7208 /* .opd contains an array of 16 or 24 byte entries. We're
7209 only interested in the reloc pointing to a function entry
7210 point. */
7211 offset = rel->r_offset;
7212 if (rel + 1 == relend
7213 || rel[1].r_offset != offset + 8)
7214 {
7215 /* If someone messes with .opd alignment then after a
7216 "ld -r" we might have padding in the middle of .opd.
7217 Also, there's nothing to prevent someone putting
7218 something silly in .opd with the assembler. No .opd
7219 optimization for them! */
7220 broken_opd:
7221 _bfd_error_handler
7222 (_("%pB: .opd is not a regular array of opd entries"), ibfd);
7223 broken = TRUE;
7224 break;
7225 }
7226
7227 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7228 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7229 {
7230 _bfd_error_handler
7231 /* xgettext:c-format */
7232 (_("%pB: unexpected reloc type %u in .opd section"),
7233 ibfd, r_type);
7234 broken = TRUE;
7235 break;
7236 }
7237
7238 r_symndx = ELF64_R_SYM (rel->r_info);
7239 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7240 r_symndx, ibfd))
7241 goto error_ret;
7242
7243 if (sym_sec == NULL || sym_sec->owner == NULL)
7244 {
7245 const char *sym_name;
7246 if (h != NULL)
7247 sym_name = h->root.root.string;
7248 else
7249 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7250 sym_sec);
7251
7252 _bfd_error_handler
7253 /* xgettext:c-format */
7254 (_("%pB: undefined sym `%s' in .opd section"),
7255 ibfd, sym_name);
7256 broken = TRUE;
7257 break;
7258 }
7259
7260 /* opd entries are always for functions defined in the
7261 current input bfd. If the symbol isn't defined in the
7262 input bfd, then we won't be using the function in this
7263 bfd; It must be defined in a linkonce section in another
7264 bfd, or is weak. It's also possible that we are
7265 discarding the function due to a linker script /DISCARD/,
7266 which we test for via the output_section. */
7267 if (sym_sec->owner != ibfd
7268 || sym_sec->output_section == bfd_abs_section_ptr)
7269 need_edit = TRUE;
7270
7271 rel += 2;
7272 if (rel + 1 == relend
7273 || (rel + 2 < relend
7274 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC))
7275 ++rel;
7276
7277 if (rel == relend)
7278 {
7279 if (sec->size == offset + 24)
7280 {
7281 need_pad = NULL;
7282 break;
7283 }
7284 if (sec->size == offset + 16)
7285 {
7286 cnt_16b++;
7287 break;
7288 }
7289 goto broken_opd;
7290 }
7291 else if (rel + 1 < relend
7292 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7293 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7294 {
7295 if (rel[0].r_offset == offset + 16)
7296 cnt_16b++;
7297 else if (rel[0].r_offset != offset + 24)
7298 goto broken_opd;
7299 }
7300 else
7301 goto broken_opd;
7302 }
7303
7304 add_aux_fields = htab->params->non_overlapping_opd && cnt_16b > 0;
7305
7306 if (!broken && (need_edit || add_aux_fields))
7307 {
7308 Elf_Internal_Rela *write_rel;
7309 Elf_Internal_Shdr *rel_hdr;
7310 bfd_byte *rptr, *wptr;
7311 bfd_byte *new_contents;
7312 bfd_size_type amt;
7313
7314 new_contents = NULL;
7315 amt = OPD_NDX (sec->size) * sizeof (long);
7316 opd = &ppc64_elf_section_data (sec)->u.opd;
7317 opd->adjust = bfd_zalloc (sec->owner, amt);
7318 if (opd->adjust == NULL)
7319 return FALSE;
7320
7321 /* This seems a waste of time as input .opd sections are all
7322 zeros as generated by gcc, but I suppose there's no reason
7323 this will always be so. We might start putting something in
7324 the third word of .opd entries. */
7325 if ((sec->flags & SEC_IN_MEMORY) == 0)
7326 {
7327 bfd_byte *loc;
7328 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7329 {
7330 free (loc);
7331 error_ret:
7332 if (symtab_hdr->contents != (unsigned char *) local_syms)
7333 free (local_syms);
7334 if (elf_section_data (sec)->relocs != relstart)
7335 free (relstart);
7336 return FALSE;
7337 }
7338 sec->contents = loc;
7339 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7340 }
7341
7342 elf_section_data (sec)->relocs = relstart;
7343
7344 new_contents = sec->contents;
7345 if (add_aux_fields)
7346 {
7347 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7348 if (new_contents == NULL)
7349 return FALSE;
7350 need_pad = NULL;
7351 }
7352 wptr = new_contents;
7353 rptr = sec->contents;
7354 write_rel = relstart;
7355 for (rel = relstart; rel < relend; )
7356 {
7357 unsigned long r_symndx;
7358 asection *sym_sec;
7359 struct elf_link_hash_entry *h;
7360 struct ppc_link_hash_entry *fdh = NULL;
7361 Elf_Internal_Sym *sym;
7362 long opd_ent_size;
7363 Elf_Internal_Rela *next_rel;
7364 bfd_boolean skip;
7365
7366 r_symndx = ELF64_R_SYM (rel->r_info);
7367 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7368 r_symndx, ibfd))
7369 goto error_ret;
7370
7371 next_rel = rel + 2;
7372 if (next_rel + 1 == relend
7373 || (next_rel + 2 < relend
7374 && ELF64_R_TYPE (next_rel[2].r_info) == R_PPC64_TOC))
7375 ++next_rel;
7376
7377 /* See if the .opd entry is full 24 byte or
7378 16 byte (with fd_aux entry overlapped with next
7379 fd_func). */
7380 opd_ent_size = 24;
7381 if (next_rel == relend)
7382 {
7383 if (sec->size == rel->r_offset + 16)
7384 opd_ent_size = 16;
7385 }
7386 else if (next_rel->r_offset == rel->r_offset + 16)
7387 opd_ent_size = 16;
7388
7389 if (h != NULL
7390 && h->root.root.string[0] == '.')
7391 {
7392 fdh = ppc_elf_hash_entry (h)->oh;
7393 if (fdh != NULL)
7394 {
7395 fdh = ppc_follow_link (fdh);
7396 if (fdh->elf.root.type != bfd_link_hash_defined
7397 && fdh->elf.root.type != bfd_link_hash_defweak)
7398 fdh = NULL;
7399 }
7400 }
7401
7402 skip = (sym_sec->owner != ibfd
7403 || sym_sec->output_section == bfd_abs_section_ptr);
7404 if (skip)
7405 {
7406 if (fdh != NULL && sym_sec->owner == ibfd)
7407 {
7408 /* Arrange for the function descriptor sym
7409 to be dropped. */
7410 fdh->elf.root.u.def.value = 0;
7411 fdh->elf.root.u.def.section = sym_sec;
7412 }
7413 opd->adjust[OPD_NDX (rel->r_offset)] = -1;
7414
7415 if (NO_OPD_RELOCS || bfd_link_relocatable (info))
7416 rel = next_rel;
7417 else
7418 while (1)
7419 {
7420 if (!dec_dynrel_count (rel->r_info, sec, info,
7421 NULL, h, sym))
7422 goto error_ret;
7423
7424 if (++rel == next_rel)
7425 break;
7426
7427 r_symndx = ELF64_R_SYM (rel->r_info);
7428 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7429 r_symndx, ibfd))
7430 goto error_ret;
7431 }
7432 }
7433 else
7434 {
7435 /* We'll be keeping this opd entry. */
7436 long adjust;
7437
7438 if (fdh != NULL)
7439 {
7440 /* Redefine the function descriptor symbol to
7441 this location in the opd section. It is
7442 necessary to update the value here rather
7443 than using an array of adjustments as we do
7444 for local symbols, because various places
7445 in the generic ELF code use the value
7446 stored in u.def.value. */
7447 fdh->elf.root.u.def.value = wptr - new_contents;
7448 fdh->adjust_done = 1;
7449 }
7450
7451 /* Local syms are a bit tricky. We could
7452 tweak them as they can be cached, but
7453 we'd need to look through the local syms
7454 for the function descriptor sym which we
7455 don't have at the moment. So keep an
7456 array of adjustments. */
7457 adjust = (wptr - new_contents) - (rptr - sec->contents);
7458 opd->adjust[OPD_NDX (rel->r_offset)] = adjust;
7459
7460 if (wptr != rptr)
7461 memcpy (wptr, rptr, opd_ent_size);
7462 wptr += opd_ent_size;
7463 if (add_aux_fields && opd_ent_size == 16)
7464 {
7465 memset (wptr, '\0', 8);
7466 wptr += 8;
7467 }
7468
7469 /* We need to adjust any reloc offsets to point to the
7470 new opd entries. */
7471 for ( ; rel != next_rel; ++rel)
7472 {
7473 rel->r_offset += adjust;
7474 if (write_rel != rel)
7475 memcpy (write_rel, rel, sizeof (*rel));
7476 ++write_rel;
7477 }
7478 }
7479
7480 rptr += opd_ent_size;
7481 }
7482
7483 sec->size = wptr - new_contents;
7484 sec->reloc_count = write_rel - relstart;
7485 if (add_aux_fields)
7486 {
7487 free (sec->contents);
7488 sec->contents = new_contents;
7489 }
7490
7491 /* Fudge the header size too, as this is used later in
7492 elf_bfd_final_link if we are emitting relocs. */
7493 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7494 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7495 some_edited = TRUE;
7496 }
7497 else if (elf_section_data (sec)->relocs != relstart)
7498 free (relstart);
7499
7500 if (local_syms != NULL
7501 && symtab_hdr->contents != (unsigned char *) local_syms)
7502 {
7503 if (!info->keep_memory)
7504 free (local_syms);
7505 else
7506 symtab_hdr->contents = (unsigned char *) local_syms;
7507 }
7508 }
7509
7510 if (some_edited)
7511 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7512
7513 /* If we are doing a final link and the last .opd entry is just 16 byte
7514 long, add a 8 byte padding after it. */
7515 if (need_pad != NULL && !bfd_link_relocatable (info))
7516 {
7517 bfd_byte *p;
7518
7519 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7520 {
7521 BFD_ASSERT (need_pad->size > 0);
7522
7523 p = bfd_malloc (need_pad->size + 8);
7524 if (p == NULL)
7525 return FALSE;
7526
7527 if (!bfd_get_section_contents (need_pad->owner, need_pad,
7528 p, 0, need_pad->size))
7529 return FALSE;
7530
7531 need_pad->contents = p;
7532 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7533 }
7534 else
7535 {
7536 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
7537 if (p == NULL)
7538 return FALSE;
7539
7540 need_pad->contents = p;
7541 }
7542
7543 memset (need_pad->contents + need_pad->size, 0, 8);
7544 need_pad->size += 8;
7545 }
7546
7547 return TRUE;
7548 }
7549
7550 /* Analyze inline PLT call relocations to see whether calls to locally
7551 defined functions can be converted to direct calls. */
7552
7553 bfd_boolean
7554 ppc64_elf_inline_plt (struct bfd_link_info *info)
7555 {
7556 struct ppc_link_hash_table *htab;
7557 bfd *ibfd;
7558 asection *sec;
7559 bfd_vma low_vma, high_vma, limit;
7560
7561 htab = ppc_hash_table (info);
7562 if (htab == NULL)
7563 return FALSE;
7564
7565 /* A bl insn can reach -0x2000000 to 0x1fffffc. The limit is
7566 reduced somewhat to cater for possible stubs that might be added
7567 between the call and its destination. */
7568 if (htab->params->group_size < 0)
7569 {
7570 limit = -htab->params->group_size;
7571 if (limit == 1)
7572 limit = 0x1e00000;
7573 }
7574 else
7575 {
7576 limit = htab->params->group_size;
7577 if (limit == 1)
7578 limit = 0x1c00000;
7579 }
7580
7581 low_vma = -1;
7582 high_vma = 0;
7583 for (sec = info->output_bfd->sections; sec != NULL; sec = sec->next)
7584 if ((sec->flags & (SEC_ALLOC | SEC_CODE)) == (SEC_ALLOC | SEC_CODE))
7585 {
7586 if (low_vma > sec->vma)
7587 low_vma = sec->vma;
7588 if (high_vma < sec->vma + sec->size)
7589 high_vma = sec->vma + sec->size;
7590 }
7591
7592 /* If a "bl" can reach anywhere in local code sections, then we can
7593 convert all inline PLT sequences to direct calls when the symbol
7594 is local. */
7595 if (high_vma - low_vma < limit)
7596 {
7597 htab->can_convert_all_inline_plt = 1;
7598 return TRUE;
7599 }
7600
7601 /* Otherwise, go looking through relocs for cases where a direct
7602 call won't reach. Mark the symbol on any such reloc to disable
7603 the optimization and keep the PLT entry as it seems likely that
7604 this will be better than creating trampolines. Note that this
7605 will disable the optimization for all inline PLT calls to a
7606 particular symbol, not just those that won't reach. The
7607 difficulty in doing a more precise optimization is that the
7608 linker needs to make a decision depending on whether a
7609 particular R_PPC64_PLTCALL insn can be turned into a direct
7610 call, for each of the R_PPC64_PLTSEQ and R_PPC64_PLT16* insns in
7611 the sequence, and there is nothing that ties those relocs
7612 together except their symbol. */
7613
7614 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7615 {
7616 Elf_Internal_Shdr *symtab_hdr;
7617 Elf_Internal_Sym *local_syms;
7618
7619 if (!is_ppc64_elf (ibfd))
7620 continue;
7621
7622 local_syms = NULL;
7623 symtab_hdr = &elf_symtab_hdr (ibfd);
7624
7625 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7626 if (ppc64_elf_section_data (sec)->has_pltcall
7627 && !bfd_is_abs_section (sec->output_section))
7628 {
7629 Elf_Internal_Rela *relstart, *rel, *relend;
7630
7631 /* Read the relocations. */
7632 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7633 info->keep_memory);
7634 if (relstart == NULL)
7635 return FALSE;
7636
7637 relend = relstart + sec->reloc_count;
7638 for (rel = relstart; rel < relend; rel++)
7639 {
7640 enum elf_ppc64_reloc_type r_type;
7641 unsigned long r_symndx;
7642 asection *sym_sec;
7643 struct elf_link_hash_entry *h;
7644 Elf_Internal_Sym *sym;
7645 unsigned char *tls_maskp;
7646
7647 r_type = ELF64_R_TYPE (rel->r_info);
7648 if (r_type != R_PPC64_PLTCALL
7649 && r_type != R_PPC64_PLTCALL_NOTOC)
7650 continue;
7651
7652 r_symndx = ELF64_R_SYM (rel->r_info);
7653 if (!get_sym_h (&h, &sym, &sym_sec, &tls_maskp, &local_syms,
7654 r_symndx, ibfd))
7655 {
7656 if (elf_section_data (sec)->relocs != relstart)
7657 free (relstart);
7658 if (symtab_hdr->contents != (bfd_byte *) local_syms)
7659 free (local_syms);
7660 return FALSE;
7661 }
7662
7663 if (sym_sec != NULL && sym_sec->output_section != NULL)
7664 {
7665 bfd_vma from, to;
7666 if (h != NULL)
7667 to = h->root.u.def.value;
7668 else
7669 to = sym->st_value;
7670 to += (rel->r_addend
7671 + sym_sec->output_offset
7672 + sym_sec->output_section->vma);
7673 from = (rel->r_offset
7674 + sec->output_offset
7675 + sec->output_section->vma);
7676 if (to - from + limit < 2 * limit
7677 && !(r_type == R_PPC64_PLTCALL_NOTOC
7678 && (((h ? h->other : sym->st_other)
7679 & STO_PPC64_LOCAL_MASK)
7680 > 1 << STO_PPC64_LOCAL_BIT)))
7681 *tls_maskp &= ~PLT_KEEP;
7682 }
7683 }
7684 if (elf_section_data (sec)->relocs != relstart)
7685 free (relstart);
7686 }
7687
7688 if (local_syms != NULL
7689 && symtab_hdr->contents != (unsigned char *) local_syms)
7690 {
7691 if (!info->keep_memory)
7692 free (local_syms);
7693 else
7694 symtab_hdr->contents = (unsigned char *) local_syms;
7695 }
7696 }
7697
7698 return TRUE;
7699 }
7700
7701 /* Set htab->tls_get_addr and various other info specific to TLS.
7702 This needs to run before dynamic symbols are processed in
7703 bfd_elf_size_dynamic_sections. */
7704
7705 bfd_boolean
7706 ppc64_elf_tls_setup (struct bfd_link_info *info)
7707 {
7708 struct ppc_link_hash_table *htab;
7709 struct elf_link_hash_entry *tga, *tga_fd, *desc, *desc_fd;
7710
7711 htab = ppc_hash_table (info);
7712 if (htab == NULL)
7713 return FALSE;
7714
7715 if (abiversion (info->output_bfd) == 1)
7716 htab->opd_abi = 1;
7717
7718 if (htab->params->no_multi_toc)
7719 htab->do_multi_toc = 0;
7720 else if (!htab->do_multi_toc)
7721 htab->params->no_multi_toc = 1;
7722
7723 /* Default to --no-plt-localentry, as this option can cause problems
7724 with symbol interposition. For example, glibc libpthread.so and
7725 libc.so duplicate many pthread symbols, with a fallback
7726 implementation in libc.so. In some cases the fallback does more
7727 work than the pthread implementation. __pthread_condattr_destroy
7728 is one such symbol: the libpthread.so implementation is
7729 localentry:0 while the libc.so implementation is localentry:8.
7730 An app that "cleverly" uses dlopen to only load necessary
7731 libraries at runtime may omit loading libpthread.so when not
7732 running multi-threaded, which then results in the libc.so
7733 fallback symbols being used and ld.so complaining. Now there
7734 are workarounds in ld (see non_zero_localentry) to detect the
7735 pthread situation, but that may not be the only case where
7736 --plt-localentry can cause trouble. */
7737 if (htab->params->plt_localentry0 < 0)
7738 htab->params->plt_localentry0 = 0;
7739 if (htab->params->plt_localentry0
7740 && elf_link_hash_lookup (&htab->elf, "GLIBC_2.26",
7741 FALSE, FALSE, FALSE) == NULL)
7742 _bfd_error_handler
7743 (_("warning: --plt-localentry is especially dangerous without "
7744 "ld.so support to detect ABI violations"));
7745
7746 tga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
7747 FALSE, FALSE, TRUE);
7748 htab->tls_get_addr = ppc_elf_hash_entry (tga);
7749
7750 /* Move dynamic linking info to the function descriptor sym. */
7751 if (tga != NULL)
7752 func_desc_adjust (tga, info);
7753 tga_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
7754 FALSE, FALSE, TRUE);
7755 htab->tls_get_addr_fd = ppc_elf_hash_entry (tga_fd);
7756
7757 desc = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_desc",
7758 FALSE, FALSE, TRUE);
7759 htab->tga_desc = ppc_elf_hash_entry (desc);
7760 if (desc != NULL)
7761 func_desc_adjust (desc, info);
7762 desc_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_desc",
7763 FALSE, FALSE, TRUE);
7764 htab->tga_desc_fd = ppc_elf_hash_entry (desc_fd);
7765
7766 if (htab->params->tls_get_addr_opt)
7767 {
7768 struct elf_link_hash_entry *opt, *opt_fd;
7769
7770 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
7771 FALSE, FALSE, TRUE);
7772 if (opt != NULL)
7773 func_desc_adjust (opt, info);
7774 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
7775 FALSE, FALSE, TRUE);
7776 if (opt_fd != NULL
7777 && (opt_fd->root.type == bfd_link_hash_defined
7778 || opt_fd->root.type == bfd_link_hash_defweak))
7779 {
7780 /* If glibc supports an optimized __tls_get_addr call stub,
7781 signalled by the presence of __tls_get_addr_opt, and we'll
7782 be calling __tls_get_addr via a plt call stub, then
7783 make __tls_get_addr point to __tls_get_addr_opt. */
7784 if (!(htab->elf.dynamic_sections_created
7785 && tga_fd != NULL
7786 && (tga_fd->type == STT_FUNC
7787 || tga_fd->needs_plt)
7788 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
7789 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, tga_fd))))
7790 tga_fd = NULL;
7791 if (!(htab->elf.dynamic_sections_created
7792 && desc_fd != NULL
7793 && (desc_fd->type == STT_FUNC
7794 || desc_fd->needs_plt)
7795 && !(SYMBOL_CALLS_LOCAL (info, desc_fd)
7796 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, desc_fd))))
7797 desc_fd = NULL;
7798
7799 if (tga_fd != NULL || desc_fd != NULL)
7800 {
7801 struct plt_entry *ent = NULL;
7802
7803 if (tga_fd != NULL)
7804 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
7805 if (ent->plt.refcount > 0)
7806 break;
7807 if (ent == NULL && desc_fd != NULL)
7808 for (ent = desc_fd->plt.plist; ent != NULL; ent = ent->next)
7809 if (ent->plt.refcount > 0)
7810 break;
7811 if (ent != NULL)
7812 {
7813 if (tga_fd != NULL)
7814 {
7815 tga_fd->root.type = bfd_link_hash_indirect;
7816 tga_fd->root.u.i.link = &opt_fd->root;
7817 tga_fd->root.u.i.warning = NULL;
7818 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
7819 }
7820 if (desc_fd != NULL)
7821 {
7822 desc_fd->root.type = bfd_link_hash_indirect;
7823 desc_fd->root.u.i.link = &opt_fd->root;
7824 desc_fd->root.u.i.warning = NULL;
7825 ppc64_elf_copy_indirect_symbol (info, opt_fd, desc_fd);
7826 }
7827 opt_fd->mark = 1;
7828 if (opt_fd->dynindx != -1)
7829 {
7830 /* Use __tls_get_addr_opt in dynamic relocations. */
7831 opt_fd->dynindx = -1;
7832 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7833 opt_fd->dynstr_index);
7834 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
7835 return FALSE;
7836 }
7837 if (tga_fd != NULL)
7838 {
7839 htab->tls_get_addr_fd = ppc_elf_hash_entry (opt_fd);
7840 tga = (struct elf_link_hash_entry *) htab->tls_get_addr;
7841 if (opt != NULL && tga != NULL)
7842 {
7843 tga->root.type = bfd_link_hash_indirect;
7844 tga->root.u.i.link = &opt->root;
7845 tga->root.u.i.warning = NULL;
7846 ppc64_elf_copy_indirect_symbol (info, opt, tga);
7847 opt->mark = 1;
7848 _bfd_elf_link_hash_hide_symbol (info, opt,
7849 tga->forced_local);
7850 htab->tls_get_addr = ppc_elf_hash_entry (opt);
7851 }
7852 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
7853 htab->tls_get_addr_fd->is_func_descriptor = 1;
7854 if (htab->tls_get_addr != NULL)
7855 {
7856 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
7857 htab->tls_get_addr->is_func = 1;
7858 }
7859 }
7860 if (desc_fd != NULL)
7861 {
7862 htab->tga_desc_fd = ppc_elf_hash_entry (opt_fd);
7863 if (opt != NULL && desc != NULL)
7864 {
7865 desc->root.type = bfd_link_hash_indirect;
7866 desc->root.u.i.link = &opt->root;
7867 desc->root.u.i.warning = NULL;
7868 ppc64_elf_copy_indirect_symbol (info, opt, desc);
7869 opt->mark = 1;
7870 _bfd_elf_link_hash_hide_symbol (info, opt,
7871 desc->forced_local);
7872 htab->tga_desc = ppc_elf_hash_entry (opt);
7873 }
7874 htab->tga_desc_fd->oh = htab->tga_desc;
7875 htab->tga_desc_fd->is_func_descriptor = 1;
7876 if (htab->tga_desc != NULL)
7877 {
7878 htab->tga_desc->oh = htab->tga_desc_fd;
7879 htab->tga_desc->is_func = 1;
7880 }
7881 }
7882 }
7883 }
7884 }
7885 else if (htab->params->tls_get_addr_opt < 0)
7886 htab->params->tls_get_addr_opt = 0;
7887 }
7888
7889 if (htab->tga_desc_fd != NULL
7890 && htab->params->tls_get_addr_opt
7891 && htab->params->no_tls_get_addr_regsave == -1)
7892 htab->params->no_tls_get_addr_regsave = 0;
7893
7894 return TRUE;
7895 }
7896
7897 /* Return TRUE iff REL is a branch reloc with a global symbol matching
7898 any of HASH1, HASH2, HASH3, or HASH4. */
7899
7900 static bfd_boolean
7901 branch_reloc_hash_match (const bfd *ibfd,
7902 const Elf_Internal_Rela *rel,
7903 const struct ppc_link_hash_entry *hash1,
7904 const struct ppc_link_hash_entry *hash2,
7905 const struct ppc_link_hash_entry *hash3,
7906 const struct ppc_link_hash_entry *hash4)
7907 {
7908 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7909 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
7910 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
7911
7912 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
7913 {
7914 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7915 struct elf_link_hash_entry *h;
7916
7917 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7918 h = elf_follow_link (h);
7919 if (h == (struct elf_link_hash_entry *) hash1
7920 || h == (struct elf_link_hash_entry *) hash2
7921 || h == (struct elf_link_hash_entry *) hash3
7922 || h == (struct elf_link_hash_entry *) hash4)
7923 return TRUE;
7924 }
7925 return FALSE;
7926 }
7927
7928 /* Run through all the TLS relocs looking for optimization
7929 opportunities. The linker has been hacked (see ppc64elf.em) to do
7930 a preliminary section layout so that we know the TLS segment
7931 offsets. We can't optimize earlier because some optimizations need
7932 to know the tp offset, and we need to optimize before allocating
7933 dynamic relocations. */
7934
7935 bfd_boolean
7936 ppc64_elf_tls_optimize (struct bfd_link_info *info)
7937 {
7938 bfd *ibfd;
7939 asection *sec;
7940 struct ppc_link_hash_table *htab;
7941 unsigned char *toc_ref;
7942 int pass;
7943
7944 if (!bfd_link_executable (info))
7945 return TRUE;
7946
7947 htab = ppc_hash_table (info);
7948 if (htab == NULL)
7949 return FALSE;
7950
7951 htab->do_tls_opt = 1;
7952
7953 /* Make two passes over the relocs. On the first pass, mark toc
7954 entries involved with tls relocs, and check that tls relocs
7955 involved in setting up a tls_get_addr call are indeed followed by
7956 such a call. If they are not, we can't do any tls optimization.
7957 On the second pass twiddle tls_mask flags to notify
7958 relocate_section that optimization can be done, and adjust got
7959 and plt refcounts. */
7960 toc_ref = NULL;
7961 for (pass = 0; pass < 2; ++pass)
7962 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7963 {
7964 Elf_Internal_Sym *locsyms = NULL;
7965 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
7966
7967 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7968 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
7969 {
7970 Elf_Internal_Rela *relstart, *rel, *relend;
7971 bfd_boolean found_tls_get_addr_arg = 0;
7972
7973 /* Read the relocations. */
7974 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7975 info->keep_memory);
7976 if (relstart == NULL)
7977 {
7978 free (toc_ref);
7979 return FALSE;
7980 }
7981
7982 relend = relstart + sec->reloc_count;
7983 for (rel = relstart; rel < relend; rel++)
7984 {
7985 enum elf_ppc64_reloc_type r_type;
7986 unsigned long r_symndx;
7987 struct elf_link_hash_entry *h;
7988 Elf_Internal_Sym *sym;
7989 asection *sym_sec;
7990 unsigned char *tls_mask;
7991 unsigned int tls_set, tls_clear, tls_type = 0;
7992 bfd_vma value;
7993 bfd_boolean ok_tprel, is_local;
7994 long toc_ref_index = 0;
7995 int expecting_tls_get_addr = 0;
7996 bfd_boolean ret = FALSE;
7997
7998 r_symndx = ELF64_R_SYM (rel->r_info);
7999 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
8000 r_symndx, ibfd))
8001 {
8002 err_free_rel:
8003 if (elf_section_data (sec)->relocs != relstart)
8004 free (relstart);
8005 free (toc_ref);
8006 if (elf_symtab_hdr (ibfd).contents
8007 != (unsigned char *) locsyms)
8008 free (locsyms);
8009 return ret;
8010 }
8011
8012 if (h != NULL)
8013 {
8014 if (h->root.type == bfd_link_hash_defined
8015 || h->root.type == bfd_link_hash_defweak)
8016 value = h->root.u.def.value;
8017 else if (h->root.type == bfd_link_hash_undefweak)
8018 value = 0;
8019 else
8020 {
8021 found_tls_get_addr_arg = 0;
8022 continue;
8023 }
8024 }
8025 else
8026 /* Symbols referenced by TLS relocs must be of type
8027 STT_TLS. So no need for .opd local sym adjust. */
8028 value = sym->st_value;
8029
8030 ok_tprel = FALSE;
8031 is_local = SYMBOL_REFERENCES_LOCAL (info, h);
8032 if (is_local)
8033 {
8034 if (h != NULL
8035 && h->root.type == bfd_link_hash_undefweak)
8036 ok_tprel = TRUE;
8037 else if (sym_sec != NULL
8038 && sym_sec->output_section != NULL)
8039 {
8040 value += sym_sec->output_offset;
8041 value += sym_sec->output_section->vma;
8042 value -= htab->elf.tls_sec->vma + TP_OFFSET;
8043 /* Note that even though the prefix insns
8044 allow a 1<<33 offset we use the same test
8045 as for addis;addi. There may be a mix of
8046 pcrel and non-pcrel code and the decision
8047 to optimise is per symbol, not per TLS
8048 sequence. */
8049 ok_tprel = value + 0x80008000ULL < 1ULL << 32;
8050 }
8051 }
8052
8053 r_type = ELF64_R_TYPE (rel->r_info);
8054 /* If this section has old-style __tls_get_addr calls
8055 without marker relocs, then check that each
8056 __tls_get_addr call reloc is preceded by a reloc
8057 that conceivably belongs to the __tls_get_addr arg
8058 setup insn. If we don't find matching arg setup
8059 relocs, don't do any tls optimization. */
8060 if (pass == 0
8061 && sec->nomark_tls_get_addr
8062 && h != NULL
8063 && is_tls_get_addr (h, htab)
8064 && !found_tls_get_addr_arg
8065 && is_branch_reloc (r_type))
8066 {
8067 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
8068 "TLS optimization disabled\n"),
8069 ibfd, sec, rel->r_offset);
8070 ret = TRUE;
8071 goto err_free_rel;
8072 }
8073
8074 found_tls_get_addr_arg = 0;
8075 switch (r_type)
8076 {
8077 case R_PPC64_GOT_TLSLD16:
8078 case R_PPC64_GOT_TLSLD16_LO:
8079 case R_PPC64_GOT_TLSLD_PCREL34:
8080 expecting_tls_get_addr = 1;
8081 found_tls_get_addr_arg = 1;
8082 /* Fall through. */
8083
8084 case R_PPC64_GOT_TLSLD16_HI:
8085 case R_PPC64_GOT_TLSLD16_HA:
8086 /* These relocs should never be against a symbol
8087 defined in a shared lib. Leave them alone if
8088 that turns out to be the case. */
8089 if (!is_local)
8090 continue;
8091
8092 /* LD -> LE */
8093 tls_set = 0;
8094 tls_clear = TLS_LD;
8095 tls_type = TLS_TLS | TLS_LD;
8096 break;
8097
8098 case R_PPC64_GOT_TLSGD16:
8099 case R_PPC64_GOT_TLSGD16_LO:
8100 case R_PPC64_GOT_TLSGD_PCREL34:
8101 expecting_tls_get_addr = 1;
8102 found_tls_get_addr_arg = 1;
8103 /* Fall through. */
8104
8105 case R_PPC64_GOT_TLSGD16_HI:
8106 case R_PPC64_GOT_TLSGD16_HA:
8107 if (ok_tprel)
8108 /* GD -> LE */
8109 tls_set = 0;
8110 else
8111 /* GD -> IE */
8112 tls_set = TLS_TLS | TLS_GDIE;
8113 tls_clear = TLS_GD;
8114 tls_type = TLS_TLS | TLS_GD;
8115 break;
8116
8117 case R_PPC64_GOT_TPREL_PCREL34:
8118 case R_PPC64_GOT_TPREL16_DS:
8119 case R_PPC64_GOT_TPREL16_LO_DS:
8120 case R_PPC64_GOT_TPREL16_HI:
8121 case R_PPC64_GOT_TPREL16_HA:
8122 if (ok_tprel)
8123 {
8124 /* IE -> LE */
8125 tls_set = 0;
8126 tls_clear = TLS_TPREL;
8127 tls_type = TLS_TLS | TLS_TPREL;
8128 break;
8129 }
8130 continue;
8131
8132 case R_PPC64_TLSLD:
8133 if (!is_local)
8134 continue;
8135 /* Fall through. */
8136 case R_PPC64_TLSGD:
8137 if (rel + 1 < relend
8138 && is_plt_seq_reloc (ELF64_R_TYPE (rel[1].r_info)))
8139 {
8140 if (pass != 0
8141 && (ELF64_R_TYPE (rel[1].r_info)
8142 != R_PPC64_PLTSEQ)
8143 && (ELF64_R_TYPE (rel[1].r_info)
8144 != R_PPC64_PLTSEQ_NOTOC))
8145 {
8146 r_symndx = ELF64_R_SYM (rel[1].r_info);
8147 if (!get_sym_h (&h, NULL, NULL, NULL, &locsyms,
8148 r_symndx, ibfd))
8149 goto err_free_rel;
8150 if (h != NULL)
8151 {
8152 struct plt_entry *ent = NULL;
8153
8154 for (ent = h->plt.plist;
8155 ent != NULL;
8156 ent = ent->next)
8157 if (ent->addend == rel[1].r_addend)
8158 break;
8159
8160 if (ent != NULL
8161 && ent->plt.refcount > 0)
8162 ent->plt.refcount -= 1;
8163 }
8164 }
8165 continue;
8166 }
8167 found_tls_get_addr_arg = 1;
8168 /* Fall through. */
8169
8170 case R_PPC64_TLS:
8171 case R_PPC64_TOC16:
8172 case R_PPC64_TOC16_LO:
8173 if (sym_sec == NULL || sym_sec != toc)
8174 continue;
8175
8176 /* Mark this toc entry as referenced by a TLS
8177 code sequence. We can do that now in the
8178 case of R_PPC64_TLS, and after checking for
8179 tls_get_addr for the TOC16 relocs. */
8180 if (toc_ref == NULL)
8181 toc_ref
8182 = bfd_zmalloc (toc->output_section->rawsize / 8);
8183 if (toc_ref == NULL)
8184 goto err_free_rel;
8185
8186 if (h != NULL)
8187 value = h->root.u.def.value;
8188 else
8189 value = sym->st_value;
8190 value += rel->r_addend;
8191 if (value % 8 != 0)
8192 continue;
8193 BFD_ASSERT (value < toc->size
8194 && toc->output_offset % 8 == 0);
8195 toc_ref_index = (value + toc->output_offset) / 8;
8196 if (r_type == R_PPC64_TLS
8197 || r_type == R_PPC64_TLSGD
8198 || r_type == R_PPC64_TLSLD)
8199 {
8200 toc_ref[toc_ref_index] = 1;
8201 continue;
8202 }
8203
8204 if (pass != 0 && toc_ref[toc_ref_index] == 0)
8205 continue;
8206
8207 tls_set = 0;
8208 tls_clear = 0;
8209 expecting_tls_get_addr = 2;
8210 break;
8211
8212 case R_PPC64_TPREL64:
8213 if (pass == 0
8214 || sec != toc
8215 || toc_ref == NULL
8216 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8217 continue;
8218 if (ok_tprel)
8219 {
8220 /* IE -> LE */
8221 tls_set = TLS_EXPLICIT;
8222 tls_clear = TLS_TPREL;
8223 break;
8224 }
8225 continue;
8226
8227 case R_PPC64_DTPMOD64:
8228 if (pass == 0
8229 || sec != toc
8230 || toc_ref == NULL
8231 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8232 continue;
8233 if (rel + 1 < relend
8234 && (rel[1].r_info
8235 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
8236 && rel[1].r_offset == rel->r_offset + 8)
8237 {
8238 if (ok_tprel)
8239 /* GD -> LE */
8240 tls_set = TLS_EXPLICIT | TLS_GD;
8241 else
8242 /* GD -> IE */
8243 tls_set = TLS_EXPLICIT | TLS_GD | TLS_GDIE;
8244 tls_clear = TLS_GD;
8245 }
8246 else
8247 {
8248 if (!is_local)
8249 continue;
8250
8251 /* LD -> LE */
8252 tls_set = TLS_EXPLICIT;
8253 tls_clear = TLS_LD;
8254 }
8255 break;
8256
8257 case R_PPC64_TPREL16_HA:
8258 if (pass == 0)
8259 {
8260 unsigned char buf[4];
8261 unsigned int insn;
8262 bfd_vma off = rel->r_offset & ~3;
8263 if (!bfd_get_section_contents (ibfd, sec, buf,
8264 off, 4))
8265 goto err_free_rel;
8266 insn = bfd_get_32 (ibfd, buf);
8267 /* addis rt,13,imm */
8268 if ((insn & ((0x3fu << 26) | 0x1f << 16))
8269 != ((15u << 26) | (13 << 16)))
8270 {
8271 /* xgettext:c-format */
8272 info->callbacks->minfo
8273 (_("%H: warning: %s unexpected insn %#x.\n"),
8274 ibfd, sec, off, "R_PPC64_TPREL16_HA", insn);
8275 htab->do_tls_opt = 0;
8276 }
8277 }
8278 continue;
8279
8280 case R_PPC64_TPREL16_HI:
8281 case R_PPC64_TPREL16_HIGH:
8282 case R_PPC64_TPREL16_HIGHA:
8283 case R_PPC64_TPREL16_HIGHER:
8284 case R_PPC64_TPREL16_HIGHERA:
8285 case R_PPC64_TPREL16_HIGHEST:
8286 case R_PPC64_TPREL16_HIGHESTA:
8287 /* These can all be used in sequences along with
8288 TPREL16_LO or TPREL16_LO_DS in ways we aren't
8289 able to verify easily. */
8290 htab->do_tls_opt = 0;
8291 continue;
8292
8293 default:
8294 continue;
8295 }
8296
8297 if (pass == 0)
8298 {
8299 if (!expecting_tls_get_addr
8300 || !sec->nomark_tls_get_addr)
8301 continue;
8302
8303 if (rel + 1 < relend
8304 && branch_reloc_hash_match (ibfd, rel + 1,
8305 htab->tls_get_addr_fd,
8306 htab->tga_desc_fd,
8307 htab->tls_get_addr,
8308 htab->tga_desc))
8309 {
8310 if (expecting_tls_get_addr == 2)
8311 {
8312 /* Check for toc tls entries. */
8313 unsigned char *toc_tls;
8314 int retval;
8315
8316 retval = get_tls_mask (&toc_tls, NULL, NULL,
8317 &locsyms,
8318 rel, ibfd);
8319 if (retval == 0)
8320 goto err_free_rel;
8321 if (toc_tls != NULL)
8322 {
8323 if ((*toc_tls & TLS_TLS) != 0
8324 && ((*toc_tls & (TLS_GD | TLS_LD)) != 0))
8325 found_tls_get_addr_arg = 1;
8326 if (retval > 1)
8327 toc_ref[toc_ref_index] = 1;
8328 }
8329 }
8330 continue;
8331 }
8332
8333 /* Uh oh, we didn't find the expected call. We
8334 could just mark this symbol to exclude it
8335 from tls optimization but it's safer to skip
8336 the entire optimization. */
8337 /* xgettext:c-format */
8338 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
8339 "TLS optimization disabled\n"),
8340 ibfd, sec, rel->r_offset);
8341 ret = TRUE;
8342 goto err_free_rel;
8343 }
8344
8345 /* If we don't have old-style __tls_get_addr calls
8346 without TLSGD/TLSLD marker relocs, and we haven't
8347 found a new-style __tls_get_addr call with a
8348 marker for this symbol, then we either have a
8349 broken object file or an -mlongcall style
8350 indirect call to __tls_get_addr without a marker.
8351 Disable optimization in this case. */
8352 if ((tls_clear & (TLS_GD | TLS_LD)) != 0
8353 && (tls_set & TLS_EXPLICIT) == 0
8354 && !sec->nomark_tls_get_addr
8355 && ((*tls_mask & (TLS_TLS | TLS_MARK))
8356 != (TLS_TLS | TLS_MARK)))
8357 continue;
8358
8359 if (expecting_tls_get_addr == 1 + !sec->nomark_tls_get_addr)
8360 {
8361 struct plt_entry *ent = NULL;
8362
8363 if (htab->tls_get_addr_fd != NULL)
8364 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
8365 ent != NULL;
8366 ent = ent->next)
8367 if (ent->addend == 0)
8368 break;
8369
8370 if (ent == NULL && htab->tga_desc_fd != NULL)
8371 for (ent = htab->tga_desc_fd->elf.plt.plist;
8372 ent != NULL;
8373 ent = ent->next)
8374 if (ent->addend == 0)
8375 break;
8376
8377 if (ent == NULL && htab->tls_get_addr != NULL)
8378 for (ent = htab->tls_get_addr->elf.plt.plist;
8379 ent != NULL;
8380 ent = ent->next)
8381 if (ent->addend == 0)
8382 break;
8383
8384 if (ent == NULL && htab->tga_desc != NULL)
8385 for (ent = htab->tga_desc->elf.plt.plist;
8386 ent != NULL;
8387 ent = ent->next)
8388 if (ent->addend == 0)
8389 break;
8390
8391 if (ent != NULL
8392 && ent->plt.refcount > 0)
8393 ent->plt.refcount -= 1;
8394 }
8395
8396 if (tls_clear == 0)
8397 continue;
8398
8399 if ((tls_set & TLS_EXPLICIT) == 0)
8400 {
8401 struct got_entry *ent;
8402
8403 /* Adjust got entry for this reloc. */
8404 if (h != NULL)
8405 ent = h->got.glist;
8406 else
8407 ent = elf_local_got_ents (ibfd)[r_symndx];
8408
8409 for (; ent != NULL; ent = ent->next)
8410 if (ent->addend == rel->r_addend
8411 && ent->owner == ibfd
8412 && ent->tls_type == tls_type)
8413 break;
8414 if (ent == NULL)
8415 abort ();
8416
8417 if (tls_set == 0)
8418 {
8419 /* We managed to get rid of a got entry. */
8420 if (ent->got.refcount > 0)
8421 ent->got.refcount -= 1;
8422 }
8423 }
8424 else
8425 {
8426 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8427 we'll lose one or two dyn relocs. */
8428 if (!dec_dynrel_count (rel->r_info, sec, info,
8429 NULL, h, sym))
8430 return FALSE;
8431
8432 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8433 {
8434 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8435 NULL, h, sym))
8436 return FALSE;
8437 }
8438 }
8439
8440 *tls_mask |= tls_set & 0xff;
8441 *tls_mask &= ~tls_clear;
8442 }
8443
8444 if (elf_section_data (sec)->relocs != relstart)
8445 free (relstart);
8446 }
8447
8448 if (locsyms != NULL
8449 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8450 {
8451 if (!info->keep_memory)
8452 free (locsyms);
8453 else
8454 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8455 }
8456 }
8457
8458 free (toc_ref);
8459 return TRUE;
8460 }
8461
8462 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8463 the values of any global symbols in a toc section that has been
8464 edited. Globals in toc sections should be a rarity, so this function
8465 sets a flag if any are found in toc sections other than the one just
8466 edited, so that further hash table traversals can be avoided. */
8467
8468 struct adjust_toc_info
8469 {
8470 asection *toc;
8471 unsigned long *skip;
8472 bfd_boolean global_toc_syms;
8473 };
8474
8475 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8476
8477 static bfd_boolean
8478 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8479 {
8480 struct ppc_link_hash_entry *eh;
8481 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8482 unsigned long i;
8483
8484 if (h->root.type != bfd_link_hash_defined
8485 && h->root.type != bfd_link_hash_defweak)
8486 return TRUE;
8487
8488 eh = ppc_elf_hash_entry (h);
8489 if (eh->adjust_done)
8490 return TRUE;
8491
8492 if (eh->elf.root.u.def.section == toc_inf->toc)
8493 {
8494 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8495 i = toc_inf->toc->rawsize >> 3;
8496 else
8497 i = eh->elf.root.u.def.value >> 3;
8498
8499 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8500 {
8501 _bfd_error_handler
8502 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8503 do
8504 ++i;
8505 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8506 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8507 }
8508
8509 eh->elf.root.u.def.value -= toc_inf->skip[i];
8510 eh->adjust_done = 1;
8511 }
8512 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8513 toc_inf->global_toc_syms = TRUE;
8514
8515 return TRUE;
8516 }
8517
8518 /* Return TRUE iff INSN with a relocation of R_TYPE is one we expect
8519 on a _LO variety toc/got reloc. */
8520
8521 static bfd_boolean
8522 ok_lo_toc_insn (unsigned int insn, enum elf_ppc64_reloc_type r_type)
8523 {
8524 return ((insn & (0x3fu << 26)) == 12u << 26 /* addic */
8525 || (insn & (0x3fu << 26)) == 14u << 26 /* addi */
8526 || (insn & (0x3fu << 26)) == 32u << 26 /* lwz */
8527 || (insn & (0x3fu << 26)) == 34u << 26 /* lbz */
8528 || (insn & (0x3fu << 26)) == 36u << 26 /* stw */
8529 || (insn & (0x3fu << 26)) == 38u << 26 /* stb */
8530 || (insn & (0x3fu << 26)) == 40u << 26 /* lhz */
8531 || (insn & (0x3fu << 26)) == 42u << 26 /* lha */
8532 || (insn & (0x3fu << 26)) == 44u << 26 /* sth */
8533 || (insn & (0x3fu << 26)) == 46u << 26 /* lmw */
8534 || (insn & (0x3fu << 26)) == 47u << 26 /* stmw */
8535 || (insn & (0x3fu << 26)) == 48u << 26 /* lfs */
8536 || (insn & (0x3fu << 26)) == 50u << 26 /* lfd */
8537 || (insn & (0x3fu << 26)) == 52u << 26 /* stfs */
8538 || (insn & (0x3fu << 26)) == 54u << 26 /* stfd */
8539 || (insn & (0x3fu << 26)) == 56u << 26 /* lq,lfq */
8540 || ((insn & (0x3fu << 26)) == 57u << 26 /* lxsd,lxssp,lfdp */
8541 /* Exclude lfqu by testing reloc. If relocs are ever
8542 defined for the reduced D field in psq_lu then those
8543 will need testing too. */
8544 && r_type != R_PPC64_TOC16_LO && r_type != R_PPC64_GOT16_LO)
8545 || ((insn & (0x3fu << 26)) == 58u << 26 /* ld,lwa */
8546 && (insn & 1) == 0)
8547 || (insn & (0x3fu << 26)) == 60u << 26 /* stfq */
8548 || ((insn & (0x3fu << 26)) == 61u << 26 /* lxv,stx{v,sd,ssp},stfdp */
8549 /* Exclude stfqu. psq_stu as above for psq_lu. */
8550 && r_type != R_PPC64_TOC16_LO && r_type != R_PPC64_GOT16_LO)
8551 || ((insn & (0x3fu << 26)) == 62u << 26 /* std,stq */
8552 && (insn & 1) == 0));
8553 }
8554
8555 /* PCREL_OPT in one instance flags to the linker that a pair of insns:
8556 pld ra,symbol@got@pcrel
8557 load/store rt,off(ra)
8558 or
8559 pla ra,symbol@pcrel
8560 load/store rt,off(ra)
8561 may be translated to
8562 pload/pstore rt,symbol+off@pcrel
8563 nop.
8564 This function returns true if the optimization is possible, placing
8565 the prefix insn in *PINSN1, a NOP in *PINSN2 and the offset in *POFF.
8566
8567 On entry to this function, the linker has already determined that
8568 the pld can be replaced with pla: *PINSN1 is that pla insn,
8569 while *PINSN2 is the second instruction. */
8570
8571 static bfd_boolean
8572 xlate_pcrel_opt (uint64_t *pinsn1, uint64_t *pinsn2, bfd_signed_vma *poff)
8573 {
8574 uint64_t insn1 = *pinsn1;
8575 uint64_t insn2 = *pinsn2;
8576 bfd_signed_vma off;
8577
8578 if ((insn2 & (63ULL << 58)) == 1ULL << 58)
8579 {
8580 /* Check that regs match. */
8581 if (((insn2 >> 16) & 31) != ((insn1 >> 21) & 31))
8582 return FALSE;
8583
8584 /* P8LS or PMLS form, non-pcrel. */
8585 if ((insn2 & (-1ULL << 50) & ~(1ULL << 56)) != (1ULL << 58))
8586 return FALSE;
8587
8588 *pinsn1 = (insn2 & ~(31 << 16) & ~0x3ffff0000ffffULL) | (1ULL << 52);
8589 *pinsn2 = PNOP;
8590 off = ((insn2 >> 16) & 0x3ffff0000ULL) | (insn2 & 0xffff);
8591 *poff = (off ^ 0x200000000ULL) - 0x200000000ULL;
8592 return TRUE;
8593 }
8594
8595 insn2 >>= 32;
8596
8597 /* Check that regs match. */
8598 if (((insn2 >> 16) & 31) != ((insn1 >> 21) & 31))
8599 return FALSE;
8600
8601 switch ((insn2 >> 26) & 63)
8602 {
8603 default:
8604 return FALSE;
8605
8606 case 32: /* lwz */
8607 case 34: /* lbz */
8608 case 36: /* stw */
8609 case 38: /* stb */
8610 case 40: /* lhz */
8611 case 42: /* lha */
8612 case 44: /* sth */
8613 case 48: /* lfs */
8614 case 50: /* lfd */
8615 case 52: /* stfs */
8616 case 54: /* stfd */
8617 /* These are the PMLS cases, where we just need to tack a prefix
8618 on the insn. */
8619 insn1 = ((1ULL << 58) | (2ULL << 56) | (1ULL << 52)
8620 | (insn2 & ((63ULL << 26) | (31ULL << 21))));
8621 off = insn2 & 0xffff;
8622 break;
8623
8624 case 58: /* lwa, ld */
8625 if ((insn2 & 1) != 0)
8626 return FALSE;
8627 insn1 = ((1ULL << 58) | (1ULL << 52)
8628 | (insn2 & 2 ? 41ULL << 26 : 57ULL << 26)
8629 | (insn2 & (31ULL << 21)));
8630 off = insn2 & 0xfffc;
8631 break;
8632
8633 case 57: /* lxsd, lxssp */
8634 if ((insn2 & 3) < 2)
8635 return FALSE;
8636 insn1 = ((1ULL << 58) | (1ULL << 52)
8637 | ((40ULL | (insn2 & 3)) << 26)
8638 | (insn2 & (31ULL << 21)));
8639 off = insn2 & 0xfffc;
8640 break;
8641
8642 case 61: /* stxsd, stxssp, lxv, stxv */
8643 if ((insn2 & 3) == 0)
8644 return FALSE;
8645 else if ((insn2 & 3) >= 2)
8646 {
8647 insn1 = ((1ULL << 58) | (1ULL << 52)
8648 | ((44ULL | (insn2 & 3)) << 26)
8649 | (insn2 & (31ULL << 21)));
8650 off = insn2 & 0xfffc;
8651 }
8652 else
8653 {
8654 insn1 = ((1ULL << 58) | (1ULL << 52)
8655 | ((50ULL | (insn2 & 4) | ((insn2 & 8) >> 3)) << 26)
8656 | (insn2 & (31ULL << 21)));
8657 off = insn2 & 0xfff0;
8658 }
8659 break;
8660
8661 case 56: /* lq */
8662 insn1 = ((1ULL << 58) | (1ULL << 52)
8663 | (insn2 & ((63ULL << 26) | (31ULL << 21))));
8664 off = insn2 & 0xffff;
8665 break;
8666
8667 case 6: /* lxvp, stxvp */
8668 if ((insn2 & 0xe) != 0)
8669 return FALSE;
8670 insn1 = ((1ULL << 58) | (1ULL << 52)
8671 | ((insn2 & 1) == 0 ? 58ULL << 26 : 62ULL << 26)
8672 | (insn2 & (31ULL << 21)));
8673 off = insn2 & 0xfff0;
8674 break;
8675
8676 case 62: /* std, stq */
8677 if ((insn2 & 1) != 0)
8678 return FALSE;
8679 insn1 = ((1ULL << 58) | (1ULL << 52)
8680 | ((insn2 & 2) == 0 ? 61ULL << 26 : 60ULL << 26)
8681 | (insn2 & (31ULL << 21)));
8682 off = insn2 & 0xfffc;
8683 break;
8684 }
8685
8686 *pinsn1 = insn1;
8687 *pinsn2 = (uint64_t) NOP << 32;
8688 *poff = (off ^ 0x8000) - 0x8000;
8689 return TRUE;
8690 }
8691
8692 /* Examine all relocs referencing .toc sections in order to remove
8693 unused .toc entries. */
8694
8695 bfd_boolean
8696 ppc64_elf_edit_toc (struct bfd_link_info *info)
8697 {
8698 bfd *ibfd;
8699 struct adjust_toc_info toc_inf;
8700 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8701
8702 htab->do_toc_opt = 1;
8703 toc_inf.global_toc_syms = TRUE;
8704 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8705 {
8706 asection *toc, *sec;
8707 Elf_Internal_Shdr *symtab_hdr;
8708 Elf_Internal_Sym *local_syms;
8709 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8710 unsigned long *skip, *drop;
8711 unsigned char *used;
8712 unsigned char *keep, last, some_unused;
8713
8714 if (!is_ppc64_elf (ibfd))
8715 continue;
8716
8717 toc = bfd_get_section_by_name (ibfd, ".toc");
8718 if (toc == NULL
8719 || toc->size == 0
8720 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8721 || discarded_section (toc))
8722 continue;
8723
8724 toc_relocs = NULL;
8725 local_syms = NULL;
8726 symtab_hdr = &elf_symtab_hdr (ibfd);
8727
8728 /* Look at sections dropped from the final link. */
8729 skip = NULL;
8730 relstart = NULL;
8731 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8732 {
8733 if (sec->reloc_count == 0
8734 || !discarded_section (sec)
8735 || get_opd_info (sec)
8736 || (sec->flags & SEC_ALLOC) == 0
8737 || (sec->flags & SEC_DEBUGGING) != 0)
8738 continue;
8739
8740 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8741 if (relstart == NULL)
8742 goto error_ret;
8743
8744 /* Run through the relocs to see which toc entries might be
8745 unused. */
8746 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8747 {
8748 enum elf_ppc64_reloc_type r_type;
8749 unsigned long r_symndx;
8750 asection *sym_sec;
8751 struct elf_link_hash_entry *h;
8752 Elf_Internal_Sym *sym;
8753 bfd_vma val;
8754
8755 r_type = ELF64_R_TYPE (rel->r_info);
8756 switch (r_type)
8757 {
8758 default:
8759 continue;
8760
8761 case R_PPC64_TOC16:
8762 case R_PPC64_TOC16_LO:
8763 case R_PPC64_TOC16_HI:
8764 case R_PPC64_TOC16_HA:
8765 case R_PPC64_TOC16_DS:
8766 case R_PPC64_TOC16_LO_DS:
8767 break;
8768 }
8769
8770 r_symndx = ELF64_R_SYM (rel->r_info);
8771 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8772 r_symndx, ibfd))
8773 goto error_ret;
8774
8775 if (sym_sec != toc)
8776 continue;
8777
8778 if (h != NULL)
8779 val = h->root.u.def.value;
8780 else
8781 val = sym->st_value;
8782 val += rel->r_addend;
8783
8784 if (val >= toc->size)
8785 continue;
8786
8787 /* Anything in the toc ought to be aligned to 8 bytes.
8788 If not, don't mark as unused. */
8789 if (val & 7)
8790 continue;
8791
8792 if (skip == NULL)
8793 {
8794 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8795 if (skip == NULL)
8796 goto error_ret;
8797 }
8798
8799 skip[val >> 3] = ref_from_discarded;
8800 }
8801
8802 if (elf_section_data (sec)->relocs != relstart)
8803 free (relstart);
8804 }
8805
8806 /* For largetoc loads of address constants, we can convert
8807 . addis rx,2,addr@got@ha
8808 . ld ry,addr@got@l(rx)
8809 to
8810 . addis rx,2,addr@toc@ha
8811 . addi ry,rx,addr@toc@l
8812 when addr is within 2G of the toc pointer. This then means
8813 that the word storing "addr" in the toc is no longer needed. */
8814
8815 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8816 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8817 && toc->reloc_count != 0)
8818 {
8819 /* Read toc relocs. */
8820 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8821 info->keep_memory);
8822 if (toc_relocs == NULL)
8823 goto error_ret;
8824
8825 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8826 {
8827 enum elf_ppc64_reloc_type r_type;
8828 unsigned long r_symndx;
8829 asection *sym_sec;
8830 struct elf_link_hash_entry *h;
8831 Elf_Internal_Sym *sym;
8832 bfd_vma val, addr;
8833
8834 r_type = ELF64_R_TYPE (rel->r_info);
8835 if (r_type != R_PPC64_ADDR64)
8836 continue;
8837
8838 r_symndx = ELF64_R_SYM (rel->r_info);
8839 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8840 r_symndx, ibfd))
8841 goto error_ret;
8842
8843 if (sym_sec == NULL
8844 || sym_sec->output_section == NULL
8845 || discarded_section (sym_sec))
8846 continue;
8847
8848 if (!SYMBOL_REFERENCES_LOCAL (info, h))
8849 continue;
8850
8851 if (h != NULL)
8852 {
8853 if (h->type == STT_GNU_IFUNC)
8854 continue;
8855 val = h->root.u.def.value;
8856 }
8857 else
8858 {
8859 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8860 continue;
8861 val = sym->st_value;
8862 }
8863 val += rel->r_addend;
8864 val += sym_sec->output_section->vma + sym_sec->output_offset;
8865
8866 /* We don't yet know the exact toc pointer value, but we
8867 know it will be somewhere in the toc section. Don't
8868 optimize if the difference from any possible toc
8869 pointer is outside [ff..f80008000, 7fff7fff]. */
8870 addr = toc->output_section->vma + TOC_BASE_OFF;
8871 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8872 continue;
8873
8874 addr = toc->output_section->vma + toc->output_section->rawsize;
8875 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8876 continue;
8877
8878 if (skip == NULL)
8879 {
8880 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8881 if (skip == NULL)
8882 goto error_ret;
8883 }
8884
8885 skip[rel->r_offset >> 3]
8886 |= can_optimize | ((rel - toc_relocs) << 2);
8887 }
8888 }
8889
8890 if (skip == NULL)
8891 continue;
8892
8893 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8894 if (used == NULL)
8895 {
8896 error_ret:
8897 if (symtab_hdr->contents != (unsigned char *) local_syms)
8898 free (local_syms);
8899 if (sec != NULL
8900 && elf_section_data (sec)->relocs != relstart)
8901 free (relstart);
8902 if (elf_section_data (toc)->relocs != toc_relocs)
8903 free (toc_relocs);
8904 free (skip);
8905 return FALSE;
8906 }
8907
8908 /* Now check all kept sections that might reference the toc.
8909 Check the toc itself last. */
8910 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8911 : ibfd->sections);
8912 sec != NULL;
8913 sec = (sec == toc ? NULL
8914 : sec->next == NULL ? toc
8915 : sec->next == toc && toc->next ? toc->next
8916 : sec->next))
8917 {
8918 int repeat;
8919
8920 if (sec->reloc_count == 0
8921 || discarded_section (sec)
8922 || get_opd_info (sec)
8923 || (sec->flags & SEC_ALLOC) == 0
8924 || (sec->flags & SEC_DEBUGGING) != 0)
8925 continue;
8926
8927 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8928 info->keep_memory);
8929 if (relstart == NULL)
8930 {
8931 free (used);
8932 goto error_ret;
8933 }
8934
8935 /* Mark toc entries referenced as used. */
8936 do
8937 {
8938 repeat = 0;
8939 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8940 {
8941 enum elf_ppc64_reloc_type r_type;
8942 unsigned long r_symndx;
8943 asection *sym_sec;
8944 struct elf_link_hash_entry *h;
8945 Elf_Internal_Sym *sym;
8946 bfd_vma val;
8947
8948 r_type = ELF64_R_TYPE (rel->r_info);
8949 switch (r_type)
8950 {
8951 case R_PPC64_TOC16:
8952 case R_PPC64_TOC16_LO:
8953 case R_PPC64_TOC16_HI:
8954 case R_PPC64_TOC16_HA:
8955 case R_PPC64_TOC16_DS:
8956 case R_PPC64_TOC16_LO_DS:
8957 /* In case we're taking addresses of toc entries. */
8958 case R_PPC64_ADDR64:
8959 break;
8960
8961 default:
8962 continue;
8963 }
8964
8965 r_symndx = ELF64_R_SYM (rel->r_info);
8966 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8967 r_symndx, ibfd))
8968 {
8969 free (used);
8970 goto error_ret;
8971 }
8972
8973 if (sym_sec != toc)
8974 continue;
8975
8976 if (h != NULL)
8977 val = h->root.u.def.value;
8978 else
8979 val = sym->st_value;
8980 val += rel->r_addend;
8981
8982 if (val >= toc->size)
8983 continue;
8984
8985 if ((skip[val >> 3] & can_optimize) != 0)
8986 {
8987 bfd_vma off;
8988 unsigned char opc;
8989
8990 switch (r_type)
8991 {
8992 case R_PPC64_TOC16_HA:
8993 break;
8994
8995 case R_PPC64_TOC16_LO_DS:
8996 off = rel->r_offset;
8997 off += (bfd_big_endian (ibfd) ? -2 : 3);
8998 if (!bfd_get_section_contents (ibfd, sec, &opc,
8999 off, 1))
9000 {
9001 free (used);
9002 goto error_ret;
9003 }
9004 if ((opc & (0x3f << 2)) == (58u << 2))
9005 break;
9006 /* Fall through. */
9007
9008 default:
9009 /* Wrong sort of reloc, or not a ld. We may
9010 as well clear ref_from_discarded too. */
9011 skip[val >> 3] = 0;
9012 }
9013 }
9014
9015 if (sec != toc)
9016 used[val >> 3] = 1;
9017 /* For the toc section, we only mark as used if this
9018 entry itself isn't unused. */
9019 else if ((used[rel->r_offset >> 3]
9020 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
9021 && !used[val >> 3])
9022 {
9023 /* Do all the relocs again, to catch reference
9024 chains. */
9025 repeat = 1;
9026 used[val >> 3] = 1;
9027 }
9028 }
9029 }
9030 while (repeat);
9031
9032 if (elf_section_data (sec)->relocs != relstart)
9033 free (relstart);
9034 }
9035
9036 /* Merge the used and skip arrays. Assume that TOC
9037 doublewords not appearing as either used or unused belong
9038 to an entry more than one doubleword in size. */
9039 for (drop = skip, keep = used, last = 0, some_unused = 0;
9040 drop < skip + (toc->size + 7) / 8;
9041 ++drop, ++keep)
9042 {
9043 if (*keep)
9044 {
9045 *drop &= ~ref_from_discarded;
9046 if ((*drop & can_optimize) != 0)
9047 some_unused = 1;
9048 last = 0;
9049 }
9050 else if ((*drop & ref_from_discarded) != 0)
9051 {
9052 some_unused = 1;
9053 last = ref_from_discarded;
9054 }
9055 else
9056 *drop = last;
9057 }
9058
9059 free (used);
9060
9061 if (some_unused)
9062 {
9063 bfd_byte *contents, *src;
9064 unsigned long off;
9065 Elf_Internal_Sym *sym;
9066 bfd_boolean local_toc_syms = FALSE;
9067
9068 /* Shuffle the toc contents, and at the same time convert the
9069 skip array from booleans into offsets. */
9070 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
9071 goto error_ret;
9072
9073 elf_section_data (toc)->this_hdr.contents = contents;
9074
9075 for (src = contents, off = 0, drop = skip;
9076 src < contents + toc->size;
9077 src += 8, ++drop)
9078 {
9079 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
9080 off += 8;
9081 else if (off != 0)
9082 {
9083 *drop = off;
9084 memcpy (src - off, src, 8);
9085 }
9086 }
9087 *drop = off;
9088 toc->rawsize = toc->size;
9089 toc->size = src - contents - off;
9090
9091 /* Adjust addends for relocs against the toc section sym,
9092 and optimize any accesses we can. */
9093 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9094 {
9095 if (sec->reloc_count == 0
9096 || discarded_section (sec))
9097 continue;
9098
9099 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9100 info->keep_memory);
9101 if (relstart == NULL)
9102 goto error_ret;
9103
9104 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9105 {
9106 enum elf_ppc64_reloc_type r_type;
9107 unsigned long r_symndx;
9108 asection *sym_sec;
9109 struct elf_link_hash_entry *h;
9110 bfd_vma val;
9111
9112 r_type = ELF64_R_TYPE (rel->r_info);
9113 switch (r_type)
9114 {
9115 default:
9116 continue;
9117
9118 case R_PPC64_TOC16:
9119 case R_PPC64_TOC16_LO:
9120 case R_PPC64_TOC16_HI:
9121 case R_PPC64_TOC16_HA:
9122 case R_PPC64_TOC16_DS:
9123 case R_PPC64_TOC16_LO_DS:
9124 case R_PPC64_ADDR64:
9125 break;
9126 }
9127
9128 r_symndx = ELF64_R_SYM (rel->r_info);
9129 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9130 r_symndx, ibfd))
9131 goto error_ret;
9132
9133 if (sym_sec != toc)
9134 continue;
9135
9136 if (h != NULL)
9137 val = h->root.u.def.value;
9138 else
9139 {
9140 val = sym->st_value;
9141 if (val != 0)
9142 local_toc_syms = TRUE;
9143 }
9144
9145 val += rel->r_addend;
9146
9147 if (val > toc->rawsize)
9148 val = toc->rawsize;
9149 else if ((skip[val >> 3] & ref_from_discarded) != 0)
9150 continue;
9151 else if ((skip[val >> 3] & can_optimize) != 0)
9152 {
9153 Elf_Internal_Rela *tocrel
9154 = toc_relocs + (skip[val >> 3] >> 2);
9155 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
9156
9157 switch (r_type)
9158 {
9159 case R_PPC64_TOC16_HA:
9160 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
9161 break;
9162
9163 case R_PPC64_TOC16_LO_DS:
9164 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
9165 break;
9166
9167 default:
9168 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9169 ppc_howto_init ();
9170 info->callbacks->einfo
9171 /* xgettext:c-format */
9172 (_("%H: %s references "
9173 "optimized away TOC entry\n"),
9174 ibfd, sec, rel->r_offset,
9175 ppc64_elf_howto_table[r_type]->name);
9176 bfd_set_error (bfd_error_bad_value);
9177 goto error_ret;
9178 }
9179 rel->r_addend = tocrel->r_addend;
9180 elf_section_data (sec)->relocs = relstart;
9181 continue;
9182 }
9183
9184 if (h != NULL || sym->st_value != 0)
9185 continue;
9186
9187 rel->r_addend -= skip[val >> 3];
9188 elf_section_data (sec)->relocs = relstart;
9189 }
9190
9191 if (elf_section_data (sec)->relocs != relstart)
9192 free (relstart);
9193 }
9194
9195 /* We shouldn't have local or global symbols defined in the TOC,
9196 but handle them anyway. */
9197 if (local_syms != NULL)
9198 for (sym = local_syms;
9199 sym < local_syms + symtab_hdr->sh_info;
9200 ++sym)
9201 if (sym->st_value != 0
9202 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
9203 {
9204 unsigned long i;
9205
9206 if (sym->st_value > toc->rawsize)
9207 i = toc->rawsize >> 3;
9208 else
9209 i = sym->st_value >> 3;
9210
9211 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
9212 {
9213 if (local_toc_syms)
9214 _bfd_error_handler
9215 (_("%s defined on removed toc entry"),
9216 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
9217 do
9218 ++i;
9219 while ((skip[i] & (ref_from_discarded | can_optimize)));
9220 sym->st_value = (bfd_vma) i << 3;
9221 }
9222
9223 sym->st_value -= skip[i];
9224 symtab_hdr->contents = (unsigned char *) local_syms;
9225 }
9226
9227 /* Adjust any global syms defined in this toc input section. */
9228 if (toc_inf.global_toc_syms)
9229 {
9230 toc_inf.toc = toc;
9231 toc_inf.skip = skip;
9232 toc_inf.global_toc_syms = FALSE;
9233 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
9234 &toc_inf);
9235 }
9236
9237 if (toc->reloc_count != 0)
9238 {
9239 Elf_Internal_Shdr *rel_hdr;
9240 Elf_Internal_Rela *wrel;
9241 bfd_size_type sz;
9242
9243 /* Remove unused toc relocs, and adjust those we keep. */
9244 if (toc_relocs == NULL)
9245 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
9246 info->keep_memory);
9247 if (toc_relocs == NULL)
9248 goto error_ret;
9249
9250 wrel = toc_relocs;
9251 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
9252 if ((skip[rel->r_offset >> 3]
9253 & (ref_from_discarded | can_optimize)) == 0)
9254 {
9255 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
9256 wrel->r_info = rel->r_info;
9257 wrel->r_addend = rel->r_addend;
9258 ++wrel;
9259 }
9260 else if (!dec_dynrel_count (rel->r_info, toc, info,
9261 &local_syms, NULL, NULL))
9262 goto error_ret;
9263
9264 elf_section_data (toc)->relocs = toc_relocs;
9265 toc->reloc_count = wrel - toc_relocs;
9266 rel_hdr = _bfd_elf_single_rel_hdr (toc);
9267 sz = rel_hdr->sh_entsize;
9268 rel_hdr->sh_size = toc->reloc_count * sz;
9269 }
9270 }
9271 else if (elf_section_data (toc)->relocs != toc_relocs)
9272 free (toc_relocs);
9273
9274 if (local_syms != NULL
9275 && symtab_hdr->contents != (unsigned char *) local_syms)
9276 {
9277 if (!info->keep_memory)
9278 free (local_syms);
9279 else
9280 symtab_hdr->contents = (unsigned char *) local_syms;
9281 }
9282 free (skip);
9283 }
9284
9285 /* Look for cases where we can change an indirect GOT access to
9286 a GOT relative or PC relative access, possibly reducing the
9287 number of GOT entries. */
9288 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9289 {
9290 asection *sec;
9291 Elf_Internal_Shdr *symtab_hdr;
9292 Elf_Internal_Sym *local_syms;
9293 Elf_Internal_Rela *relstart, *rel;
9294 bfd_vma got;
9295
9296 if (!is_ppc64_elf (ibfd))
9297 continue;
9298
9299 if (!ppc64_elf_tdata (ibfd)->has_optrel)
9300 continue;
9301
9302 sec = ppc64_elf_tdata (ibfd)->got;
9303 got = 0;
9304 if (sec != NULL)
9305 got = sec->output_section->vma + sec->output_offset + 0x8000;
9306
9307 local_syms = NULL;
9308 symtab_hdr = &elf_symtab_hdr (ibfd);
9309
9310 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9311 {
9312 if (sec->reloc_count == 0
9313 || !ppc64_elf_section_data (sec)->has_optrel
9314 || discarded_section (sec))
9315 continue;
9316
9317 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9318 info->keep_memory);
9319 if (relstart == NULL)
9320 {
9321 got_error_ret:
9322 if (symtab_hdr->contents != (unsigned char *) local_syms)
9323 free (local_syms);
9324 if (sec != NULL
9325 && elf_section_data (sec)->relocs != relstart)
9326 free (relstart);
9327 return FALSE;
9328 }
9329
9330 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9331 {
9332 enum elf_ppc64_reloc_type r_type;
9333 unsigned long r_symndx;
9334 Elf_Internal_Sym *sym;
9335 asection *sym_sec;
9336 struct elf_link_hash_entry *h;
9337 struct got_entry *ent;
9338 bfd_vma val, pc;
9339 unsigned char buf[8];
9340 unsigned int insn;
9341 enum {no_check, check_lo, check_ha} insn_check;
9342
9343 r_type = ELF64_R_TYPE (rel->r_info);
9344 switch (r_type)
9345 {
9346 default:
9347 insn_check = no_check;
9348 break;
9349
9350 case R_PPC64_PLT16_HA:
9351 case R_PPC64_GOT_TLSLD16_HA:
9352 case R_PPC64_GOT_TLSGD16_HA:
9353 case R_PPC64_GOT_TPREL16_HA:
9354 case R_PPC64_GOT_DTPREL16_HA:
9355 case R_PPC64_GOT16_HA:
9356 case R_PPC64_TOC16_HA:
9357 insn_check = check_ha;
9358 break;
9359
9360 case R_PPC64_PLT16_LO:
9361 case R_PPC64_PLT16_LO_DS:
9362 case R_PPC64_GOT_TLSLD16_LO:
9363 case R_PPC64_GOT_TLSGD16_LO:
9364 case R_PPC64_GOT_TPREL16_LO_DS:
9365 case R_PPC64_GOT_DTPREL16_LO_DS:
9366 case R_PPC64_GOT16_LO:
9367 case R_PPC64_GOT16_LO_DS:
9368 case R_PPC64_TOC16_LO:
9369 case R_PPC64_TOC16_LO_DS:
9370 insn_check = check_lo;
9371 break;
9372 }
9373
9374 if (insn_check != no_check)
9375 {
9376 bfd_vma off = rel->r_offset & ~3;
9377
9378 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
9379 goto got_error_ret;
9380
9381 insn = bfd_get_32 (ibfd, buf);
9382 if (insn_check == check_lo
9383 ? !ok_lo_toc_insn (insn, r_type)
9384 : ((insn & ((0x3fu << 26) | 0x1f << 16))
9385 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
9386 {
9387 char str[12];
9388
9389 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
9390 sprintf (str, "%#08x", insn);
9391 info->callbacks->einfo
9392 /* xgettext:c-format */
9393 (_("%H: got/toc optimization is not supported for"
9394 " %s instruction\n"),
9395 ibfd, sec, rel->r_offset & ~3, str);
9396 continue;
9397 }
9398 }
9399
9400 switch (r_type)
9401 {
9402 /* Note that we don't delete GOT entries for
9403 R_PPC64_GOT16_DS since we'd need a lot more
9404 analysis. For starters, the preliminary layout is
9405 before the GOT, PLT, dynamic sections and stubs are
9406 laid out. Then we'd need to allow for changes in
9407 distance between sections caused by alignment. */
9408 default:
9409 continue;
9410
9411 case R_PPC64_GOT16_HA:
9412 case R_PPC64_GOT16_LO_DS:
9413 case R_PPC64_GOT_PCREL34:
9414 break;
9415 }
9416
9417 r_symndx = ELF64_R_SYM (rel->r_info);
9418 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9419 r_symndx, ibfd))
9420 goto got_error_ret;
9421
9422 if (sym_sec == NULL
9423 || sym_sec->output_section == NULL
9424 || discarded_section (sym_sec))
9425 continue;
9426
9427 if ((h ? h->type : ELF_ST_TYPE (sym->st_info)) == STT_GNU_IFUNC)
9428 continue;
9429
9430 if (!SYMBOL_REFERENCES_LOCAL (info, h))
9431 continue;
9432
9433 if (h != NULL)
9434 val = h->root.u.def.value;
9435 else
9436 val = sym->st_value;
9437 val += rel->r_addend;
9438 val += sym_sec->output_section->vma + sym_sec->output_offset;
9439
9440 /* Fudge factor to allow for the fact that the preliminary layout
9441 isn't exact. Reduce limits by this factor. */
9442 #define LIMIT_ADJUST(LIMIT) ((LIMIT) - (LIMIT) / 16)
9443
9444 switch (r_type)
9445 {
9446 default:
9447 continue;
9448
9449 case R_PPC64_GOT16_HA:
9450 if (val - got + LIMIT_ADJUST (0x80008000ULL)
9451 >= LIMIT_ADJUST (0x100000000ULL))
9452 continue;
9453
9454 if (!bfd_get_section_contents (ibfd, sec, buf,
9455 rel->r_offset & ~3, 4))
9456 goto got_error_ret;
9457 insn = bfd_get_32 (ibfd, buf);
9458 if (((insn & ((0x3fu << 26) | 0x1f << 16))
9459 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
9460 continue;
9461 break;
9462
9463 case R_PPC64_GOT16_LO_DS:
9464 if (val - got + LIMIT_ADJUST (0x80008000ULL)
9465 >= LIMIT_ADJUST (0x100000000ULL))
9466 continue;
9467 if (!bfd_get_section_contents (ibfd, sec, buf,
9468 rel->r_offset & ~3, 4))
9469 goto got_error_ret;
9470 insn = bfd_get_32 (ibfd, buf);
9471 if ((insn & (0x3fu << 26 | 0x3)) != 58u << 26 /* ld */)
9472 continue;
9473 break;
9474
9475 case R_PPC64_GOT_PCREL34:
9476 pc = rel->r_offset;
9477 pc += sec->output_section->vma + sec->output_offset;
9478 if (val - pc + LIMIT_ADJUST (1ULL << 33)
9479 >= LIMIT_ADJUST (1ULL << 34))
9480 continue;
9481 if (!bfd_get_section_contents (ibfd, sec, buf,
9482 rel->r_offset & ~3, 8))
9483 goto got_error_ret;
9484 insn = bfd_get_32 (ibfd, buf);
9485 if ((insn & (-1u << 18)) != ((1u << 26) | (1u << 20)))
9486 continue;
9487 insn = bfd_get_32 (ibfd, buf + 4);
9488 if ((insn & (0x3fu << 26)) != 57u << 26)
9489 continue;
9490 break;
9491 }
9492 #undef LIMIT_ADJUST
9493
9494 if (h != NULL)
9495 ent = h->got.glist;
9496 else
9497 {
9498 struct got_entry **local_got_ents = elf_local_got_ents (ibfd);
9499 ent = local_got_ents[r_symndx];
9500 }
9501 for (; ent != NULL; ent = ent->next)
9502 if (ent->addend == rel->r_addend
9503 && ent->owner == ibfd
9504 && ent->tls_type == 0)
9505 break;
9506 BFD_ASSERT (ent && ent->got.refcount > 0);
9507 ent->got.refcount -= 1;
9508 }
9509
9510 if (elf_section_data (sec)->relocs != relstart)
9511 free (relstart);
9512 }
9513
9514 if (local_syms != NULL
9515 && symtab_hdr->contents != (unsigned char *) local_syms)
9516 {
9517 if (!info->keep_memory)
9518 free (local_syms);
9519 else
9520 symtab_hdr->contents = (unsigned char *) local_syms;
9521 }
9522 }
9523
9524 return TRUE;
9525 }
9526
9527 /* Return true iff input section I references the TOC using
9528 instructions limited to +/-32k offsets. */
9529
9530 bfd_boolean
9531 ppc64_elf_has_small_toc_reloc (asection *i)
9532 {
9533 return (is_ppc64_elf (i->owner)
9534 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
9535 }
9536
9537 /* Allocate space for one GOT entry. */
9538
9539 static void
9540 allocate_got (struct elf_link_hash_entry *h,
9541 struct bfd_link_info *info,
9542 struct got_entry *gent)
9543 {
9544 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9545 struct ppc_link_hash_entry *eh = ppc_elf_hash_entry (h);
9546 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
9547 ? 16 : 8);
9548 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
9549 ? 2 : 1) * sizeof (Elf64_External_Rela);
9550 asection *got = ppc64_elf_tdata (gent->owner)->got;
9551
9552 gent->got.offset = got->size;
9553 got->size += entsize;
9554
9555 if (h->type == STT_GNU_IFUNC)
9556 {
9557 htab->elf.irelplt->size += rentsize;
9558 htab->got_reli_size += rentsize;
9559 }
9560 else if (((bfd_link_pic (info)
9561 && !(gent->tls_type != 0
9562 && bfd_link_executable (info)
9563 && SYMBOL_REFERENCES_LOCAL (info, h)))
9564 || (htab->elf.dynamic_sections_created
9565 && h->dynindx != -1
9566 && !SYMBOL_REFERENCES_LOCAL (info, h)))
9567 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9568 {
9569 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
9570 relgot->size += rentsize;
9571 }
9572 }
9573
9574 /* This function merges got entries in the same toc group. */
9575
9576 static void
9577 merge_got_entries (struct got_entry **pent)
9578 {
9579 struct got_entry *ent, *ent2;
9580
9581 for (ent = *pent; ent != NULL; ent = ent->next)
9582 if (!ent->is_indirect)
9583 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
9584 if (!ent2->is_indirect
9585 && ent2->addend == ent->addend
9586 && ent2->tls_type == ent->tls_type
9587 && elf_gp (ent2->owner) == elf_gp (ent->owner))
9588 {
9589 ent2->is_indirect = TRUE;
9590 ent2->got.ent = ent;
9591 }
9592 }
9593
9594 /* If H is undefined, make it dynamic if that makes sense. */
9595
9596 static bfd_boolean
9597 ensure_undef_dynamic (struct bfd_link_info *info,
9598 struct elf_link_hash_entry *h)
9599 {
9600 struct elf_link_hash_table *htab = elf_hash_table (info);
9601
9602 if (htab->dynamic_sections_created
9603 && ((info->dynamic_undefined_weak != 0
9604 && h->root.type == bfd_link_hash_undefweak)
9605 || h->root.type == bfd_link_hash_undefined)
9606 && h->dynindx == -1
9607 && !h->forced_local
9608 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
9609 return bfd_elf_link_record_dynamic_symbol (info, h);
9610 return TRUE;
9611 }
9612
9613 /* Allocate space in .plt, .got and associated reloc sections for
9614 dynamic relocs. */
9615
9616 static bfd_boolean
9617 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9618 {
9619 struct bfd_link_info *info;
9620 struct ppc_link_hash_table *htab;
9621 asection *s;
9622 struct ppc_link_hash_entry *eh;
9623 struct got_entry **pgent, *gent;
9624
9625 if (h->root.type == bfd_link_hash_indirect)
9626 return TRUE;
9627
9628 info = (struct bfd_link_info *) inf;
9629 htab = ppc_hash_table (info);
9630 if (htab == NULL)
9631 return FALSE;
9632
9633 eh = ppc_elf_hash_entry (h);
9634 /* Run through the TLS GD got entries first if we're changing them
9635 to TPREL. */
9636 if ((eh->tls_mask & (TLS_TLS | TLS_GDIE)) == (TLS_TLS | TLS_GDIE))
9637 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9638 if (gent->got.refcount > 0
9639 && (gent->tls_type & TLS_GD) != 0)
9640 {
9641 /* This was a GD entry that has been converted to TPREL. If
9642 there happens to be a TPREL entry we can use that one. */
9643 struct got_entry *ent;
9644 for (ent = h->got.glist; ent != NULL; ent = ent->next)
9645 if (ent->got.refcount > 0
9646 && (ent->tls_type & TLS_TPREL) != 0
9647 && ent->addend == gent->addend
9648 && ent->owner == gent->owner)
9649 {
9650 gent->got.refcount = 0;
9651 break;
9652 }
9653
9654 /* If not, then we'll be using our own TPREL entry. */
9655 if (gent->got.refcount != 0)
9656 gent->tls_type = TLS_TLS | TLS_TPREL;
9657 }
9658
9659 /* Remove any list entry that won't generate a word in the GOT before
9660 we call merge_got_entries. Otherwise we risk merging to empty
9661 entries. */
9662 pgent = &h->got.glist;
9663 while ((gent = *pgent) != NULL)
9664 if (gent->got.refcount > 0)
9665 {
9666 if ((gent->tls_type & TLS_LD) != 0
9667 && SYMBOL_REFERENCES_LOCAL (info, h))
9668 {
9669 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
9670 *pgent = gent->next;
9671 }
9672 else
9673 pgent = &gent->next;
9674 }
9675 else
9676 *pgent = gent->next;
9677
9678 if (!htab->do_multi_toc)
9679 merge_got_entries (&h->got.glist);
9680
9681 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9682 if (!gent->is_indirect)
9683 {
9684 /* Ensure we catch all the cases where this symbol should
9685 be made dynamic. */
9686 if (!ensure_undef_dynamic (info, h))
9687 return FALSE;
9688
9689 if (!is_ppc64_elf (gent->owner))
9690 abort ();
9691
9692 allocate_got (h, info, gent);
9693 }
9694
9695 /* If no dynamic sections we can't have dynamic relocs, except for
9696 IFUNCs which are handled even in static executables. */
9697 if (!htab->elf.dynamic_sections_created
9698 && h->type != STT_GNU_IFUNC)
9699 h->dyn_relocs = NULL;
9700
9701 /* Discard relocs on undefined symbols that must be local. */
9702 else if (h->root.type == bfd_link_hash_undefined
9703 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9704 h->dyn_relocs = NULL;
9705
9706 /* Also discard relocs on undefined weak syms with non-default
9707 visibility, or when dynamic_undefined_weak says so. */
9708 else if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9709 h->dyn_relocs = NULL;
9710
9711 if (h->dyn_relocs != NULL)
9712 {
9713 struct elf_dyn_relocs *p, **pp;
9714
9715 /* In the shared -Bsymbolic case, discard space allocated for
9716 dynamic pc-relative relocs against symbols which turn out to
9717 be defined in regular objects. For the normal shared case,
9718 discard space for relocs that have become local due to symbol
9719 visibility changes. */
9720 if (bfd_link_pic (info))
9721 {
9722 /* Relocs that use pc_count are those that appear on a call
9723 insn, or certain REL relocs (see must_be_dyn_reloc) that
9724 can be generated via assembly. We want calls to
9725 protected symbols to resolve directly to the function
9726 rather than going via the plt. If people want function
9727 pointer comparisons to work as expected then they should
9728 avoid writing weird assembly. */
9729 if (SYMBOL_CALLS_LOCAL (info, h))
9730 {
9731 for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
9732 {
9733 p->count -= p->pc_count;
9734 p->pc_count = 0;
9735 if (p->count == 0)
9736 *pp = p->next;
9737 else
9738 pp = &p->next;
9739 }
9740 }
9741
9742 if (h->dyn_relocs != NULL)
9743 {
9744 /* Ensure we catch all the cases where this symbol
9745 should be made dynamic. */
9746 if (!ensure_undef_dynamic (info, h))
9747 return FALSE;
9748 }
9749 }
9750
9751 /* For a fixed position executable, discard space for
9752 relocs against symbols which are not dynamic. */
9753 else if (h->type != STT_GNU_IFUNC)
9754 {
9755 if (h->dynamic_adjusted
9756 && !h->def_regular
9757 && !ELF_COMMON_DEF_P (h))
9758 {
9759 /* Ensure we catch all the cases where this symbol
9760 should be made dynamic. */
9761 if (!ensure_undef_dynamic (info, h))
9762 return FALSE;
9763
9764 /* But if that didn't work out, discard dynamic relocs. */
9765 if (h->dynindx == -1)
9766 h->dyn_relocs = NULL;
9767 }
9768 else
9769 h->dyn_relocs = NULL;
9770 }
9771
9772 /* Finally, allocate space. */
9773 for (p = h->dyn_relocs; p != NULL; p = p->next)
9774 {
9775 asection *sreloc = elf_section_data (p->sec)->sreloc;
9776 if (eh->elf.type == STT_GNU_IFUNC)
9777 sreloc = htab->elf.irelplt;
9778 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9779 }
9780 }
9781
9782 /* We might need a PLT entry when the symbol
9783 a) is dynamic, or
9784 b) is an ifunc, or
9785 c) has plt16 relocs and has been processed by adjust_dynamic_symbol, or
9786 d) has plt16 relocs and we are linking statically. */
9787 if ((htab->elf.dynamic_sections_created && h->dynindx != -1)
9788 || h->type == STT_GNU_IFUNC
9789 || (h->needs_plt && h->dynamic_adjusted)
9790 || (h->needs_plt
9791 && h->def_regular
9792 && !htab->elf.dynamic_sections_created
9793 && !htab->can_convert_all_inline_plt
9794 && (ppc_elf_hash_entry (h)->tls_mask
9795 & (TLS_TLS | PLT_KEEP)) == PLT_KEEP))
9796 {
9797 struct plt_entry *pent;
9798 bfd_boolean doneone = FALSE;
9799 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9800 if (pent->plt.refcount > 0)
9801 {
9802 if (!htab->elf.dynamic_sections_created
9803 || h->dynindx == -1)
9804 {
9805 if (h->type == STT_GNU_IFUNC)
9806 {
9807 s = htab->elf.iplt;
9808 pent->plt.offset = s->size;
9809 s->size += PLT_ENTRY_SIZE (htab);
9810 s = htab->elf.irelplt;
9811 }
9812 else
9813 {
9814 s = htab->pltlocal;
9815 pent->plt.offset = s->size;
9816 s->size += LOCAL_PLT_ENTRY_SIZE (htab);
9817 s = bfd_link_pic (info) ? htab->relpltlocal : NULL;
9818 }
9819 }
9820 else
9821 {
9822 /* If this is the first .plt entry, make room for the special
9823 first entry. */
9824 s = htab->elf.splt;
9825 if (s->size == 0)
9826 s->size += PLT_INITIAL_ENTRY_SIZE (htab);
9827
9828 pent->plt.offset = s->size;
9829
9830 /* Make room for this entry. */
9831 s->size += PLT_ENTRY_SIZE (htab);
9832
9833 /* Make room for the .glink code. */
9834 s = htab->glink;
9835 if (s->size == 0)
9836 s->size += GLINK_PLTRESOLVE_SIZE (htab);
9837 if (htab->opd_abi)
9838 {
9839 /* We need bigger stubs past index 32767. */
9840 if (s->size >= GLINK_PLTRESOLVE_SIZE (htab) + 32768*2*4)
9841 s->size += 4;
9842 s->size += 2*4;
9843 }
9844 else
9845 s->size += 4;
9846
9847 /* We also need to make an entry in the .rela.plt section. */
9848 s = htab->elf.srelplt;
9849 }
9850 if (s != NULL)
9851 s->size += sizeof (Elf64_External_Rela);
9852 doneone = TRUE;
9853 }
9854 else
9855 pent->plt.offset = (bfd_vma) -1;
9856 if (!doneone)
9857 {
9858 h->plt.plist = NULL;
9859 h->needs_plt = 0;
9860 }
9861 }
9862 else
9863 {
9864 h->plt.plist = NULL;
9865 h->needs_plt = 0;
9866 }
9867
9868 return TRUE;
9869 }
9870
9871 #define PPC_LO(v) ((v) & 0xffff)
9872 #define PPC_HI(v) (((v) >> 16) & 0xffff)
9873 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
9874 #define D34(v) \
9875 ((((v) & 0x3ffff0000ULL) << 16) | (v & 0xffff))
9876 #define HA34(v) ((v + (1ULL << 33)) >> 34)
9877
9878 /* Called via elf_link_hash_traverse from ppc64_elf_size_dynamic_sections
9879 to set up space for global entry stubs. These are put in glink,
9880 after the branch table. */
9881
9882 static bfd_boolean
9883 size_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
9884 {
9885 struct bfd_link_info *info;
9886 struct ppc_link_hash_table *htab;
9887 struct plt_entry *pent;
9888 asection *s, *plt;
9889
9890 if (h->root.type == bfd_link_hash_indirect)
9891 return TRUE;
9892
9893 if (!h->pointer_equality_needed)
9894 return TRUE;
9895
9896 if (h->def_regular)
9897 return TRUE;
9898
9899 info = inf;
9900 htab = ppc_hash_table (info);
9901 if (htab == NULL)
9902 return FALSE;
9903
9904 s = htab->global_entry;
9905 plt = htab->elf.splt;
9906 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9907 if (pent->plt.offset != (bfd_vma) -1
9908 && pent->addend == 0)
9909 {
9910 /* For ELFv2, if this symbol is not defined in a regular file
9911 and we are not generating a shared library or pie, then we
9912 need to define the symbol in the executable on a call stub.
9913 This is to avoid text relocations. */
9914 bfd_vma off, stub_align, stub_off, stub_size;
9915 unsigned int align_power;
9916
9917 stub_size = 16;
9918 stub_off = s->size;
9919 if (htab->params->plt_stub_align >= 0)
9920 align_power = htab->params->plt_stub_align;
9921 else
9922 align_power = -htab->params->plt_stub_align;
9923 /* Setting section alignment is delayed until we know it is
9924 non-empty. Otherwise the .text output section will be
9925 aligned at least to plt_stub_align even when no global
9926 entry stubs are needed. */
9927 if (s->alignment_power < align_power)
9928 s->alignment_power = align_power;
9929 stub_align = (bfd_vma) 1 << align_power;
9930 if (htab->params->plt_stub_align >= 0
9931 || ((((stub_off + stub_size - 1) & -stub_align)
9932 - (stub_off & -stub_align))
9933 > ((stub_size - 1) & -stub_align)))
9934 stub_off = (stub_off + stub_align - 1) & -stub_align;
9935 off = pent->plt.offset + plt->output_offset + plt->output_section->vma;
9936 off -= stub_off + s->output_offset + s->output_section->vma;
9937 /* Note that for --plt-stub-align negative we have a possible
9938 dependency between stub offset and size. Break that
9939 dependency by assuming the max stub size when calculating
9940 the stub offset. */
9941 if (PPC_HA (off) == 0)
9942 stub_size -= 4;
9943 h->root.type = bfd_link_hash_defined;
9944 h->root.u.def.section = s;
9945 h->root.u.def.value = stub_off;
9946 s->size = stub_off + stub_size;
9947 break;
9948 }
9949 return TRUE;
9950 }
9951
9952 /* Set the sizes of the dynamic sections. */
9953
9954 static bfd_boolean
9955 ppc64_elf_size_dynamic_sections (bfd *output_bfd,
9956 struct bfd_link_info *info)
9957 {
9958 struct ppc_link_hash_table *htab;
9959 bfd *dynobj;
9960 asection *s;
9961 bfd_boolean relocs;
9962 bfd *ibfd;
9963 struct got_entry *first_tlsld;
9964
9965 htab = ppc_hash_table (info);
9966 if (htab == NULL)
9967 return FALSE;
9968
9969 dynobj = htab->elf.dynobj;
9970 if (dynobj == NULL)
9971 abort ();
9972
9973 if (htab->elf.dynamic_sections_created)
9974 {
9975 /* Set the contents of the .interp section to the interpreter. */
9976 if (bfd_link_executable (info) && !info->nointerp)
9977 {
9978 s = bfd_get_linker_section (dynobj, ".interp");
9979 if (s == NULL)
9980 abort ();
9981 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9982 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9983 }
9984 }
9985
9986 /* Set up .got offsets for local syms, and space for local dynamic
9987 relocs. */
9988 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9989 {
9990 struct got_entry **lgot_ents;
9991 struct got_entry **end_lgot_ents;
9992 struct plt_entry **local_plt;
9993 struct plt_entry **end_local_plt;
9994 unsigned char *lgot_masks;
9995 bfd_size_type locsymcount;
9996 Elf_Internal_Shdr *symtab_hdr;
9997
9998 if (!is_ppc64_elf (ibfd))
9999 continue;
10000
10001 for (s = ibfd->sections; s != NULL; s = s->next)
10002 {
10003 struct ppc_dyn_relocs *p;
10004
10005 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
10006 {
10007 if (!bfd_is_abs_section (p->sec)
10008 && bfd_is_abs_section (p->sec->output_section))
10009 {
10010 /* Input section has been discarded, either because
10011 it is a copy of a linkonce section or due to
10012 linker script /DISCARD/, so we'll be discarding
10013 the relocs too. */
10014 }
10015 else if (p->count != 0)
10016 {
10017 asection *srel = elf_section_data (p->sec)->sreloc;
10018 if (p->ifunc)
10019 srel = htab->elf.irelplt;
10020 srel->size += p->count * sizeof (Elf64_External_Rela);
10021 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
10022 info->flags |= DF_TEXTREL;
10023 }
10024 }
10025 }
10026
10027 lgot_ents = elf_local_got_ents (ibfd);
10028 if (!lgot_ents)
10029 continue;
10030
10031 symtab_hdr = &elf_symtab_hdr (ibfd);
10032 locsymcount = symtab_hdr->sh_info;
10033 end_lgot_ents = lgot_ents + locsymcount;
10034 local_plt = (struct plt_entry **) end_lgot_ents;
10035 end_local_plt = local_plt + locsymcount;
10036 lgot_masks = (unsigned char *) end_local_plt;
10037 s = ppc64_elf_tdata (ibfd)->got;
10038 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
10039 {
10040 struct got_entry **pent, *ent;
10041
10042 pent = lgot_ents;
10043 while ((ent = *pent) != NULL)
10044 if (ent->got.refcount > 0)
10045 {
10046 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
10047 {
10048 ppc64_tlsld_got (ibfd)->got.refcount += 1;
10049 *pent = ent->next;
10050 }
10051 else
10052 {
10053 unsigned int ent_size = 8;
10054 unsigned int rel_size = sizeof (Elf64_External_Rela);
10055
10056 ent->got.offset = s->size;
10057 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
10058 {
10059 ent_size *= 2;
10060 rel_size *= 2;
10061 }
10062 s->size += ent_size;
10063 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
10064 {
10065 htab->elf.irelplt->size += rel_size;
10066 htab->got_reli_size += rel_size;
10067 }
10068 else if (bfd_link_pic (info)
10069 && !(ent->tls_type != 0
10070 && bfd_link_executable (info)))
10071 {
10072 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
10073 srel->size += rel_size;
10074 }
10075 pent = &ent->next;
10076 }
10077 }
10078 else
10079 *pent = ent->next;
10080 }
10081
10082 /* Allocate space for plt calls to local syms. */
10083 lgot_masks = (unsigned char *) end_local_plt;
10084 for (; local_plt < end_local_plt; ++local_plt, ++lgot_masks)
10085 {
10086 struct plt_entry *ent;
10087
10088 for (ent = *local_plt; ent != NULL; ent = ent->next)
10089 if (ent->plt.refcount > 0)
10090 {
10091 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
10092 {
10093 s = htab->elf.iplt;
10094 ent->plt.offset = s->size;
10095 s->size += PLT_ENTRY_SIZE (htab);
10096 htab->elf.irelplt->size += sizeof (Elf64_External_Rela);
10097 }
10098 else if (htab->can_convert_all_inline_plt
10099 || (*lgot_masks & (TLS_TLS | PLT_KEEP)) != PLT_KEEP)
10100 ent->plt.offset = (bfd_vma) -1;
10101 else
10102 {
10103 s = htab->pltlocal;
10104 ent->plt.offset = s->size;
10105 s->size += LOCAL_PLT_ENTRY_SIZE (htab);
10106 if (bfd_link_pic (info))
10107 htab->relpltlocal->size += sizeof (Elf64_External_Rela);
10108 }
10109 }
10110 else
10111 ent->plt.offset = (bfd_vma) -1;
10112 }
10113 }
10114
10115 /* Allocate global sym .plt and .got entries, and space for global
10116 sym dynamic relocs. */
10117 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
10118
10119 if (!htab->opd_abi && !bfd_link_pic (info))
10120 elf_link_hash_traverse (&htab->elf, size_global_entry_stubs, info);
10121
10122 first_tlsld = NULL;
10123 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
10124 {
10125 struct got_entry *ent;
10126
10127 if (!is_ppc64_elf (ibfd))
10128 continue;
10129
10130 ent = ppc64_tlsld_got (ibfd);
10131 if (ent->got.refcount > 0)
10132 {
10133 if (!htab->do_multi_toc && first_tlsld != NULL)
10134 {
10135 ent->is_indirect = TRUE;
10136 ent->got.ent = first_tlsld;
10137 }
10138 else
10139 {
10140 if (first_tlsld == NULL)
10141 first_tlsld = ent;
10142 s = ppc64_elf_tdata (ibfd)->got;
10143 ent->got.offset = s->size;
10144 ent->owner = ibfd;
10145 s->size += 16;
10146 if (bfd_link_dll (info))
10147 {
10148 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
10149 srel->size += sizeof (Elf64_External_Rela);
10150 }
10151 }
10152 }
10153 else
10154 ent->got.offset = (bfd_vma) -1;
10155 }
10156
10157 /* We now have determined the sizes of the various dynamic sections.
10158 Allocate memory for them. */
10159 relocs = FALSE;
10160 for (s = dynobj->sections; s != NULL; s = s->next)
10161 {
10162 if ((s->flags & SEC_LINKER_CREATED) == 0)
10163 continue;
10164
10165 if (s == htab->brlt || s == htab->relbrlt)
10166 /* These haven't been allocated yet; don't strip. */
10167 continue;
10168 else if (s == htab->elf.sgot
10169 || s == htab->elf.splt
10170 || s == htab->elf.iplt
10171 || s == htab->pltlocal
10172 || s == htab->glink
10173 || s == htab->global_entry
10174 || s == htab->elf.sdynbss
10175 || s == htab->elf.sdynrelro)
10176 {
10177 /* Strip this section if we don't need it; see the
10178 comment below. */
10179 }
10180 else if (s == htab->glink_eh_frame)
10181 {
10182 if (!bfd_is_abs_section (s->output_section))
10183 /* Not sized yet. */
10184 continue;
10185 }
10186 else if (CONST_STRNEQ (s->name, ".rela"))
10187 {
10188 if (s->size != 0)
10189 {
10190 if (s != htab->elf.srelplt)
10191 relocs = TRUE;
10192
10193 /* We use the reloc_count field as a counter if we need
10194 to copy relocs into the output file. */
10195 s->reloc_count = 0;
10196 }
10197 }
10198 else
10199 {
10200 /* It's not one of our sections, so don't allocate space. */
10201 continue;
10202 }
10203
10204 if (s->size == 0)
10205 {
10206 /* If we don't need this section, strip it from the
10207 output file. This is mostly to handle .rela.bss and
10208 .rela.plt. We must create both sections in
10209 create_dynamic_sections, because they must be created
10210 before the linker maps input sections to output
10211 sections. The linker does that before
10212 adjust_dynamic_symbol is called, and it is that
10213 function which decides whether anything needs to go
10214 into these sections. */
10215 s->flags |= SEC_EXCLUDE;
10216 continue;
10217 }
10218
10219 if (bfd_is_abs_section (s->output_section))
10220 _bfd_error_handler (_("warning: discarding dynamic section %s"),
10221 s->name);
10222
10223 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10224 continue;
10225
10226 /* Allocate memory for the section contents. We use bfd_zalloc
10227 here in case unused entries are not reclaimed before the
10228 section's contents are written out. This should not happen,
10229 but this way if it does we get a R_PPC64_NONE reloc in .rela
10230 sections instead of garbage.
10231 We also rely on the section contents being zero when writing
10232 the GOT and .dynrelro. */
10233 s->contents = bfd_zalloc (dynobj, s->size);
10234 if (s->contents == NULL)
10235 return FALSE;
10236 }
10237
10238 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
10239 {
10240 if (!is_ppc64_elf (ibfd))
10241 continue;
10242
10243 s = ppc64_elf_tdata (ibfd)->got;
10244 if (s != NULL && s != htab->elf.sgot)
10245 {
10246 if (s->size == 0)
10247 s->flags |= SEC_EXCLUDE;
10248 else
10249 {
10250 s->contents = bfd_zalloc (ibfd, s->size);
10251 if (s->contents == NULL)
10252 return FALSE;
10253 }
10254 }
10255 s = ppc64_elf_tdata (ibfd)->relgot;
10256 if (s != NULL)
10257 {
10258 if (s->size == 0)
10259 s->flags |= SEC_EXCLUDE;
10260 else
10261 {
10262 s->contents = bfd_zalloc (ibfd, s->size);
10263 if (s->contents == NULL)
10264 return FALSE;
10265 relocs = TRUE;
10266 s->reloc_count = 0;
10267 }
10268 }
10269 }
10270
10271 if (htab->elf.dynamic_sections_created)
10272 {
10273 bfd_boolean tls_opt;
10274
10275 /* Add some entries to the .dynamic section. We fill in the
10276 values later, in ppc64_elf_finish_dynamic_sections, but we
10277 must add the entries now so that we get the correct size for
10278 the .dynamic section. The DT_DEBUG entry is filled in by the
10279 dynamic linker and used by the debugger. */
10280 #define add_dynamic_entry(TAG, VAL) \
10281 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10282
10283 if (bfd_link_executable (info))
10284 {
10285 if (!add_dynamic_entry (DT_DEBUG, 0))
10286 return FALSE;
10287 }
10288
10289 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
10290 {
10291 if (!add_dynamic_entry (DT_PLTGOT, 0)
10292 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10293 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
10294 || !add_dynamic_entry (DT_JMPREL, 0)
10295 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
10296 return FALSE;
10297 }
10298
10299 if (NO_OPD_RELOCS && abiversion (output_bfd) <= 1)
10300 {
10301 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
10302 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
10303 return FALSE;
10304 }
10305
10306 tls_opt = (htab->params->tls_get_addr_opt
10307 && ((htab->tls_get_addr_fd != NULL
10308 && htab->tls_get_addr_fd->elf.plt.plist != NULL)
10309 || (htab->tga_desc_fd != NULL
10310 && htab->tga_desc_fd->elf.plt.plist != NULL)));
10311 if (tls_opt || !htab->opd_abi)
10312 {
10313 if (!add_dynamic_entry (DT_PPC64_OPT, tls_opt ? PPC64_OPT_TLS : 0))
10314 return FALSE;
10315 }
10316
10317 if (relocs)
10318 {
10319 if (!add_dynamic_entry (DT_RELA, 0)
10320 || !add_dynamic_entry (DT_RELASZ, 0)
10321 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
10322 return FALSE;
10323
10324 /* If any dynamic relocs apply to a read-only section,
10325 then we need a DT_TEXTREL entry. */
10326 if ((info->flags & DF_TEXTREL) == 0)
10327 elf_link_hash_traverse (&htab->elf,
10328 _bfd_elf_maybe_set_textrel, info);
10329
10330 if ((info->flags & DF_TEXTREL) != 0)
10331 {
10332 if (!add_dynamic_entry (DT_TEXTREL, 0))
10333 return FALSE;
10334 }
10335 }
10336 }
10337 #undef add_dynamic_entry
10338
10339 return TRUE;
10340 }
10341
10342 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
10343
10344 static bfd_boolean
10345 ppc64_elf_hash_symbol (struct elf_link_hash_entry *h)
10346 {
10347 if (h->plt.plist != NULL
10348 && !h->def_regular
10349 && !h->pointer_equality_needed)
10350 return FALSE;
10351
10352 return _bfd_elf_hash_symbol (h);
10353 }
10354
10355 /* Determine the type of stub needed, if any, for a call. */
10356
10357 static inline enum ppc_stub_type
10358 ppc_type_of_stub (asection *input_sec,
10359 const Elf_Internal_Rela *rel,
10360 struct ppc_link_hash_entry **hash,
10361 struct plt_entry **plt_ent,
10362 bfd_vma destination,
10363 unsigned long local_off)
10364 {
10365 struct ppc_link_hash_entry *h = *hash;
10366 bfd_vma location;
10367 bfd_vma branch_offset;
10368 bfd_vma max_branch_offset;
10369 enum elf_ppc64_reloc_type r_type;
10370
10371 if (h != NULL)
10372 {
10373 struct plt_entry *ent;
10374 struct ppc_link_hash_entry *fdh = h;
10375 if (h->oh != NULL
10376 && h->oh->is_func_descriptor)
10377 {
10378 fdh = ppc_follow_link (h->oh);
10379 *hash = fdh;
10380 }
10381
10382 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
10383 if (ent->addend == rel->r_addend
10384 && ent->plt.offset != (bfd_vma) -1)
10385 {
10386 *plt_ent = ent;
10387 return ppc_stub_plt_call;
10388 }
10389
10390 /* Here, we know we don't have a plt entry. If we don't have a
10391 either a defined function descriptor or a defined entry symbol
10392 in a regular object file, then it is pointless trying to make
10393 any other type of stub. */
10394 if (!is_static_defined (&fdh->elf)
10395 && !is_static_defined (&h->elf))
10396 return ppc_stub_none;
10397 }
10398 else if (elf_local_got_ents (input_sec->owner) != NULL)
10399 {
10400 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
10401 struct plt_entry **local_plt = (struct plt_entry **)
10402 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
10403 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
10404
10405 if (local_plt[r_symndx] != NULL)
10406 {
10407 struct plt_entry *ent;
10408
10409 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
10410 if (ent->addend == rel->r_addend
10411 && ent->plt.offset != (bfd_vma) -1)
10412 {
10413 *plt_ent = ent;
10414 return ppc_stub_plt_call;
10415 }
10416 }
10417 }
10418
10419 /* Determine where the call point is. */
10420 location = (input_sec->output_offset
10421 + input_sec->output_section->vma
10422 + rel->r_offset);
10423
10424 branch_offset = destination - location;
10425 r_type = ELF64_R_TYPE (rel->r_info);
10426
10427 /* Determine if a long branch stub is needed. */
10428 max_branch_offset = 1 << 25;
10429 if (r_type == R_PPC64_REL14
10430 || r_type == R_PPC64_REL14_BRTAKEN
10431 || r_type == R_PPC64_REL14_BRNTAKEN)
10432 max_branch_offset = 1 << 15;
10433
10434 if (branch_offset + max_branch_offset >= 2 * max_branch_offset - local_off)
10435 /* We need a stub. Figure out whether a long_branch or plt_branch
10436 is needed later. */
10437 return ppc_stub_long_branch;
10438
10439 return ppc_stub_none;
10440 }
10441
10442 /* Gets the address of a label (1:) in r11 and builds an offset in r12,
10443 then adds it to r11 (LOAD false) or loads r12 from r11+r12 (LOAD true).
10444 . mflr %r12
10445 . bcl 20,31,1f
10446 .1: mflr %r11
10447 . mtlr %r12
10448 . lis %r12,xxx-1b@highest
10449 . ori %r12,%r12,xxx-1b@higher
10450 . sldi %r12,%r12,32
10451 . oris %r12,%r12,xxx-1b@high
10452 . ori %r12,%r12,xxx-1b@l
10453 . add/ldx %r12,%r11,%r12 */
10454
10455 static bfd_byte *
10456 build_offset (bfd *abfd, bfd_byte *p, bfd_vma off, bfd_boolean load)
10457 {
10458 bfd_put_32 (abfd, MFLR_R12, p);
10459 p += 4;
10460 bfd_put_32 (abfd, BCL_20_31, p);
10461 p += 4;
10462 bfd_put_32 (abfd, MFLR_R11, p);
10463 p += 4;
10464 bfd_put_32 (abfd, MTLR_R12, p);
10465 p += 4;
10466 if (off + 0x8000 < 0x10000)
10467 {
10468 if (load)
10469 bfd_put_32 (abfd, LD_R12_0R11 + PPC_LO (off), p);
10470 else
10471 bfd_put_32 (abfd, ADDI_R12_R11 + PPC_LO (off), p);
10472 p += 4;
10473 }
10474 else if (off + 0x80008000ULL < 0x100000000ULL)
10475 {
10476 bfd_put_32 (abfd, ADDIS_R12_R11 + PPC_HA (off), p);
10477 p += 4;
10478 if (load)
10479 bfd_put_32 (abfd, LD_R12_0R12 + PPC_LO (off), p);
10480 else
10481 bfd_put_32 (abfd, ADDI_R12_R12 + PPC_LO (off), p);
10482 p += 4;
10483 }
10484 else
10485 {
10486 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10487 {
10488 bfd_put_32 (abfd, LI_R12_0 + ((off >> 32) & 0xffff), p);
10489 p += 4;
10490 }
10491 else
10492 {
10493 bfd_put_32 (abfd, LIS_R12 + ((off >> 48) & 0xffff), p);
10494 p += 4;
10495 if (((off >> 32) & 0xffff) != 0)
10496 {
10497 bfd_put_32 (abfd, ORI_R12_R12_0 + ((off >> 32) & 0xffff), p);
10498 p += 4;
10499 }
10500 }
10501 if (((off >> 32) & 0xffffffffULL) != 0)
10502 {
10503 bfd_put_32 (abfd, SLDI_R12_R12_32, p);
10504 p += 4;
10505 }
10506 if (PPC_HI (off) != 0)
10507 {
10508 bfd_put_32 (abfd, ORIS_R12_R12_0 + PPC_HI (off), p);
10509 p += 4;
10510 }
10511 if (PPC_LO (off) != 0)
10512 {
10513 bfd_put_32 (abfd, ORI_R12_R12_0 + PPC_LO (off), p);
10514 p += 4;
10515 }
10516 if (load)
10517 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10518 else
10519 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10520 p += 4;
10521 }
10522 return p;
10523 }
10524
10525 static unsigned int
10526 size_offset (bfd_vma off)
10527 {
10528 unsigned int size;
10529 if (off + 0x8000 < 0x10000)
10530 size = 4;
10531 else if (off + 0x80008000ULL < 0x100000000ULL)
10532 size = 8;
10533 else
10534 {
10535 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10536 size = 4;
10537 else
10538 {
10539 size = 4;
10540 if (((off >> 32) & 0xffff) != 0)
10541 size += 4;
10542 }
10543 if (((off >> 32) & 0xffffffffULL) != 0)
10544 size += 4;
10545 if (PPC_HI (off) != 0)
10546 size += 4;
10547 if (PPC_LO (off) != 0)
10548 size += 4;
10549 size += 4;
10550 }
10551 return size + 16;
10552 }
10553
10554 static unsigned int
10555 num_relocs_for_offset (bfd_vma off)
10556 {
10557 unsigned int num_rel;
10558 if (off + 0x8000 < 0x10000)
10559 num_rel = 1;
10560 else if (off + 0x80008000ULL < 0x100000000ULL)
10561 num_rel = 2;
10562 else
10563 {
10564 num_rel = 1;
10565 if (off + 0x800000000000ULL >= 0x1000000000000ULL
10566 && ((off >> 32) & 0xffff) != 0)
10567 num_rel += 1;
10568 if (PPC_HI (off) != 0)
10569 num_rel += 1;
10570 if (PPC_LO (off) != 0)
10571 num_rel += 1;
10572 }
10573 return num_rel;
10574 }
10575
10576 static Elf_Internal_Rela *
10577 emit_relocs_for_offset (struct bfd_link_info *info, Elf_Internal_Rela *r,
10578 bfd_vma roff, bfd_vma targ, bfd_vma off)
10579 {
10580 bfd_vma relative_targ = targ - (roff - 8);
10581 if (bfd_big_endian (info->output_bfd))
10582 roff += 2;
10583 r->r_offset = roff;
10584 r->r_addend = relative_targ + roff;
10585 if (off + 0x8000 < 0x10000)
10586 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16);
10587 else if (off + 0x80008000ULL < 0x100000000ULL)
10588 {
10589 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HA);
10590 ++r;
10591 roff += 4;
10592 r->r_offset = roff;
10593 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_LO);
10594 r->r_addend = relative_targ + roff;
10595 }
10596 else
10597 {
10598 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10599 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHER);
10600 else
10601 {
10602 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHEST);
10603 if (((off >> 32) & 0xffff) != 0)
10604 {
10605 ++r;
10606 roff += 4;
10607 r->r_offset = roff;
10608 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHER);
10609 r->r_addend = relative_targ + roff;
10610 }
10611 }
10612 if (((off >> 32) & 0xffffffffULL) != 0)
10613 roff += 4;
10614 if (PPC_HI (off) != 0)
10615 {
10616 ++r;
10617 roff += 4;
10618 r->r_offset = roff;
10619 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGH);
10620 r->r_addend = relative_targ + roff;
10621 }
10622 if (PPC_LO (off) != 0)
10623 {
10624 ++r;
10625 roff += 4;
10626 r->r_offset = roff;
10627 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_LO);
10628 r->r_addend = relative_targ + roff;
10629 }
10630 }
10631 return r;
10632 }
10633
10634 static bfd_byte *
10635 build_power10_offset (bfd *abfd, bfd_byte *p, bfd_vma off, int odd,
10636 bfd_boolean load)
10637 {
10638 uint64_t insn;
10639 if (off - odd + (1ULL << 33) < 1ULL << 34)
10640 {
10641 off -= odd;
10642 if (odd)
10643 {
10644 bfd_put_32 (abfd, NOP, p);
10645 p += 4;
10646 }
10647 if (load)
10648 insn = PLD_R12_PC;
10649 else
10650 insn = PADDI_R12_PC;
10651 insn |= D34 (off);
10652 bfd_put_32 (abfd, insn >> 32, p);
10653 p += 4;
10654 bfd_put_32 (abfd, insn, p);
10655 }
10656 /* The minimum value for paddi is -0x200000000. The minimum value
10657 for li is -0x8000, which when shifted by 34 and added gives a
10658 minimum value of -0x2000200000000. The maximum value is
10659 0x1ffffffff+0x7fff<<34 which is 0x2000200000000-1. */
10660 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10661 {
10662 off -= 8 - odd;
10663 bfd_put_32 (abfd, LI_R11_0 | (HA34 (off) & 0xffff), p);
10664 p += 4;
10665 if (!odd)
10666 {
10667 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10668 p += 4;
10669 }
10670 insn = PADDI_R12_PC | D34 (off);
10671 bfd_put_32 (abfd, insn >> 32, p);
10672 p += 4;
10673 bfd_put_32 (abfd, insn, p);
10674 p += 4;
10675 if (odd)
10676 {
10677 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10678 p += 4;
10679 }
10680 if (load)
10681 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10682 else
10683 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10684 }
10685 else
10686 {
10687 off -= odd + 8;
10688 bfd_put_32 (abfd, LIS_R11 | ((HA34 (off) >> 16) & 0x3fff), p);
10689 p += 4;
10690 bfd_put_32 (abfd, ORI_R11_R11_0 | (HA34 (off) & 0xffff), p);
10691 p += 4;
10692 if (odd)
10693 {
10694 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10695 p += 4;
10696 }
10697 insn = PADDI_R12_PC | D34 (off);
10698 bfd_put_32 (abfd, insn >> 32, p);
10699 p += 4;
10700 bfd_put_32 (abfd, insn, p);
10701 p += 4;
10702 if (!odd)
10703 {
10704 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10705 p += 4;
10706 }
10707 if (load)
10708 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10709 else
10710 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10711 }
10712 p += 4;
10713 return p;
10714 }
10715
10716 static unsigned int
10717 size_power10_offset (bfd_vma off, int odd)
10718 {
10719 if (off - odd + (1ULL << 33) < 1ULL << 34)
10720 return odd + 8;
10721 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10722 return 20;
10723 else
10724 return 24;
10725 }
10726
10727 static unsigned int
10728 num_relocs_for_power10_offset (bfd_vma off, int odd)
10729 {
10730 if (off - odd + (1ULL << 33) < 1ULL << 34)
10731 return 1;
10732 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10733 return 2;
10734 else
10735 return 3;
10736 }
10737
10738 static Elf_Internal_Rela *
10739 emit_relocs_for_power10_offset (struct bfd_link_info *info,
10740 Elf_Internal_Rela *r, bfd_vma roff,
10741 bfd_vma targ, bfd_vma off, int odd)
10742 {
10743 if (off - odd + (1ULL << 33) < 1ULL << 34)
10744 roff += odd;
10745 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10746 {
10747 int d_offset = bfd_big_endian (info->output_bfd) ? 2 : 0;
10748 r->r_offset = roff + d_offset;
10749 r->r_addend = targ + 8 - odd - d_offset;
10750 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHERA34);
10751 ++r;
10752 roff += 8 - odd;
10753 }
10754 else
10755 {
10756 int d_offset = bfd_big_endian (info->output_bfd) ? 2 : 0;
10757 r->r_offset = roff + d_offset;
10758 r->r_addend = targ + 8 + odd - d_offset;
10759 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHESTA34);
10760 ++r;
10761 roff += 4;
10762 r->r_offset = roff + d_offset;
10763 r->r_addend = targ + 4 + odd - d_offset;
10764 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHERA34);
10765 ++r;
10766 roff += 4 + odd;
10767 }
10768 r->r_offset = roff;
10769 r->r_addend = targ;
10770 r->r_info = ELF64_R_INFO (0, R_PPC64_PCREL34);
10771 return r;
10772 }
10773
10774 /* Emit .eh_frame opcode to advance pc by DELTA. */
10775
10776 static bfd_byte *
10777 eh_advance (bfd *abfd, bfd_byte *eh, unsigned int delta)
10778 {
10779 delta /= 4;
10780 if (delta < 64)
10781 *eh++ = DW_CFA_advance_loc + delta;
10782 else if (delta < 256)
10783 {
10784 *eh++ = DW_CFA_advance_loc1;
10785 *eh++ = delta;
10786 }
10787 else if (delta < 65536)
10788 {
10789 *eh++ = DW_CFA_advance_loc2;
10790 bfd_put_16 (abfd, delta, eh);
10791 eh += 2;
10792 }
10793 else
10794 {
10795 *eh++ = DW_CFA_advance_loc4;
10796 bfd_put_32 (abfd, delta, eh);
10797 eh += 4;
10798 }
10799 return eh;
10800 }
10801
10802 /* Size of required .eh_frame opcode to advance pc by DELTA. */
10803
10804 static unsigned int
10805 eh_advance_size (unsigned int delta)
10806 {
10807 if (delta < 64 * 4)
10808 /* DW_CFA_advance_loc+[1..63]. */
10809 return 1;
10810 if (delta < 256 * 4)
10811 /* DW_CFA_advance_loc1, byte. */
10812 return 2;
10813 if (delta < 65536 * 4)
10814 /* DW_CFA_advance_loc2, 2 bytes. */
10815 return 3;
10816 /* DW_CFA_advance_loc4, 4 bytes. */
10817 return 5;
10818 }
10819
10820 /* With power7 weakly ordered memory model, it is possible for ld.so
10821 to update a plt entry in one thread and have another thread see a
10822 stale zero toc entry. To avoid this we need some sort of acquire
10823 barrier in the call stub. One solution is to make the load of the
10824 toc word seem to appear to depend on the load of the function entry
10825 word. Another solution is to test for r2 being zero, and branch to
10826 the appropriate glink entry if so.
10827
10828 . fake dep barrier compare
10829 . ld 12,xxx(2) ld 12,xxx(2)
10830 . mtctr 12 mtctr 12
10831 . xor 11,12,12 ld 2,xxx+8(2)
10832 . add 2,2,11 cmpldi 2,0
10833 . ld 2,xxx+8(2) bnectr+
10834 . bctr b <glink_entry>
10835
10836 The solution involving the compare turns out to be faster, so
10837 that's what we use unless the branch won't reach. */
10838
10839 #define ALWAYS_USE_FAKE_DEP 0
10840 #define ALWAYS_EMIT_R2SAVE 0
10841
10842 static inline unsigned int
10843 plt_stub_size (struct ppc_link_hash_table *htab,
10844 struct ppc_stub_hash_entry *stub_entry,
10845 bfd_vma off,
10846 unsigned int odd)
10847 {
10848 unsigned size;
10849
10850 if (stub_entry->stub_type >= ppc_stub_plt_call_notoc)
10851 {
10852 if (htab->params->power10_stubs != 0)
10853 size = 8 + size_power10_offset (off, odd);
10854 else
10855 size = 8 + size_offset (off - 8);
10856 if (stub_entry->stub_type > ppc_stub_plt_call_notoc)
10857 size += 4;
10858 }
10859 else
10860 {
10861 size = 12;
10862 if (ALWAYS_EMIT_R2SAVE
10863 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10864 size += 4;
10865 if (PPC_HA (off) != 0)
10866 size += 4;
10867 if (htab->opd_abi)
10868 {
10869 size += 4;
10870 if (htab->params->plt_static_chain)
10871 size += 4;
10872 if (htab->params->plt_thread_safe
10873 && htab->elf.dynamic_sections_created
10874 && stub_entry->h != NULL
10875 && stub_entry->h->elf.dynindx != -1)
10876 size += 8;
10877 if (PPC_HA (off + 8 + 8 * htab->params->plt_static_chain)
10878 != PPC_HA (off))
10879 size += 4;
10880 }
10881 }
10882 if (stub_entry->h != NULL
10883 && is_tls_get_addr (&stub_entry->h->elf, htab)
10884 && htab->params->tls_get_addr_opt)
10885 {
10886 if (!htab->params->no_tls_get_addr_regsave)
10887 {
10888 size += 30 * 4;
10889 if (stub_entry->stub_type == ppc_stub_plt_call_r2save
10890 || stub_entry->stub_type == ppc_stub_plt_call_both)
10891 size += 4;
10892 }
10893 else
10894 {
10895 size += 7 * 4;
10896 if (stub_entry->stub_type == ppc_stub_plt_call_r2save
10897 || stub_entry->stub_type == ppc_stub_plt_call_both)
10898 size += 6 * 4;
10899 }
10900 }
10901 return size;
10902 }
10903
10904 /* Depending on the sign of plt_stub_align:
10905 If positive, return the padding to align to a 2**plt_stub_align
10906 boundary.
10907 If negative, if this stub would cross fewer 2**plt_stub_align
10908 boundaries if we align, then return the padding needed to do so. */
10909
10910 static inline unsigned int
10911 plt_stub_pad (struct ppc_link_hash_table *htab,
10912 struct ppc_stub_hash_entry *stub_entry,
10913 bfd_vma plt_off,
10914 unsigned int odd)
10915 {
10916 int stub_align;
10917 unsigned stub_size;
10918 bfd_vma stub_off = stub_entry->group->stub_sec->size;
10919
10920 if (htab->params->plt_stub_align >= 0)
10921 {
10922 stub_align = 1 << htab->params->plt_stub_align;
10923 if ((stub_off & (stub_align - 1)) != 0)
10924 return stub_align - (stub_off & (stub_align - 1));
10925 return 0;
10926 }
10927
10928 stub_align = 1 << -htab->params->plt_stub_align;
10929 stub_size = plt_stub_size (htab, stub_entry, plt_off, odd);
10930 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
10931 > ((stub_size - 1) & -stub_align))
10932 return stub_align - (stub_off & (stub_align - 1));
10933 return 0;
10934 }
10935
10936 /* Build a .plt call stub. */
10937
10938 static inline bfd_byte *
10939 build_plt_stub (struct ppc_link_hash_table *htab,
10940 struct ppc_stub_hash_entry *stub_entry,
10941 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10942 {
10943 bfd *obfd = htab->params->stub_bfd;
10944 bfd_boolean plt_load_toc = htab->opd_abi;
10945 bfd_boolean plt_static_chain = htab->params->plt_static_chain;
10946 bfd_boolean plt_thread_safe = (htab->params->plt_thread_safe
10947 && htab->elf.dynamic_sections_created
10948 && stub_entry->h != NULL
10949 && stub_entry->h->elf.dynindx != -1);
10950 bfd_boolean use_fake_dep = plt_thread_safe;
10951 bfd_vma cmp_branch_off = 0;
10952
10953 if (!ALWAYS_USE_FAKE_DEP
10954 && plt_load_toc
10955 && plt_thread_safe
10956 && !(stub_entry->h != NULL
10957 && is_tls_get_addr (&stub_entry->h->elf, htab)
10958 && htab->params->tls_get_addr_opt))
10959 {
10960 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
10961 bfd_vma pltindex = ((pltoff - PLT_INITIAL_ENTRY_SIZE (htab))
10962 / PLT_ENTRY_SIZE (htab));
10963 bfd_vma glinkoff = GLINK_PLTRESOLVE_SIZE (htab) + pltindex * 8;
10964 bfd_vma to, from;
10965
10966 if (pltindex > 32768)
10967 glinkoff += (pltindex - 32768) * 4;
10968 to = (glinkoff
10969 + htab->glink->output_offset
10970 + htab->glink->output_section->vma);
10971 from = (p - stub_entry->group->stub_sec->contents
10972 + 4 * (ALWAYS_EMIT_R2SAVE
10973 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10974 + 4 * (PPC_HA (offset) != 0)
10975 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
10976 != PPC_HA (offset))
10977 + 4 * (plt_static_chain != 0)
10978 + 20
10979 + stub_entry->group->stub_sec->output_offset
10980 + stub_entry->group->stub_sec->output_section->vma);
10981 cmp_branch_off = to - from;
10982 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
10983 }
10984
10985 if (PPC_HA (offset) != 0)
10986 {
10987 if (r != NULL)
10988 {
10989 if (ALWAYS_EMIT_R2SAVE
10990 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10991 r[0].r_offset += 4;
10992 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10993 r[1].r_offset = r[0].r_offset + 4;
10994 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10995 r[1].r_addend = r[0].r_addend;
10996 if (plt_load_toc)
10997 {
10998 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10999 {
11000 r[2].r_offset = r[1].r_offset + 4;
11001 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
11002 r[2].r_addend = r[0].r_addend;
11003 }
11004 else
11005 {
11006 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
11007 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
11008 r[2].r_addend = r[0].r_addend + 8;
11009 if (plt_static_chain)
11010 {
11011 r[3].r_offset = r[2].r_offset + 4;
11012 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
11013 r[3].r_addend = r[0].r_addend + 16;
11014 }
11015 }
11016 }
11017 }
11018 if (ALWAYS_EMIT_R2SAVE
11019 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
11020 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
11021 if (plt_load_toc)
11022 {
11023 bfd_put_32 (obfd, ADDIS_R11_R2 | PPC_HA (offset), p), p += 4;
11024 bfd_put_32 (obfd, LD_R12_0R11 | PPC_LO (offset), p), p += 4;
11025 }
11026 else
11027 {
11028 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
11029 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (offset), p), p += 4;
11030 }
11031 if (plt_load_toc
11032 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
11033 {
11034 bfd_put_32 (obfd, ADDI_R11_R11 | PPC_LO (offset), p), p += 4;
11035 offset = 0;
11036 }
11037 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
11038 if (plt_load_toc)
11039 {
11040 if (use_fake_dep)
11041 {
11042 bfd_put_32 (obfd, XOR_R2_R12_R12, p), p += 4;
11043 bfd_put_32 (obfd, ADD_R11_R11_R2, p), p += 4;
11044 }
11045 bfd_put_32 (obfd, LD_R2_0R11 | PPC_LO (offset + 8), p), p += 4;
11046 if (plt_static_chain)
11047 bfd_put_32 (obfd, LD_R11_0R11 | PPC_LO (offset + 16), p), p += 4;
11048 }
11049 }
11050 else
11051 {
11052 if (r != NULL)
11053 {
11054 if (ALWAYS_EMIT_R2SAVE
11055 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
11056 r[0].r_offset += 4;
11057 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11058 if (plt_load_toc)
11059 {
11060 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
11061 {
11062 r[1].r_offset = r[0].r_offset + 4;
11063 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
11064 r[1].r_addend = r[0].r_addend;
11065 }
11066 else
11067 {
11068 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
11069 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11070 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
11071 if (plt_static_chain)
11072 {
11073 r[2].r_offset = r[1].r_offset + 4;
11074 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11075 r[2].r_addend = r[0].r_addend + 8;
11076 }
11077 }
11078 }
11079 }
11080 if (ALWAYS_EMIT_R2SAVE
11081 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
11082 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
11083 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (offset), p), p += 4;
11084 if (plt_load_toc
11085 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
11086 {
11087 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
11088 offset = 0;
11089 }
11090 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
11091 if (plt_load_toc)
11092 {
11093 if (use_fake_dep)
11094 {
11095 bfd_put_32 (obfd, XOR_R11_R12_R12, p), p += 4;
11096 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
11097 }
11098 if (plt_static_chain)
11099 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
11100 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
11101 }
11102 }
11103 if (plt_load_toc && plt_thread_safe && !use_fake_dep)
11104 {
11105 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
11106 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
11107 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
11108 }
11109 else
11110 bfd_put_32 (obfd, BCTR, p), p += 4;
11111 return p;
11112 }
11113
11114 /* Build a special .plt call stub for __tls_get_addr. */
11115
11116 #define LD_R0_0R3 0xe8030000
11117 #define LD_R12_0R3 0xe9830000
11118 #define MR_R0_R3 0x7c601b78
11119 #define CMPDI_R0_0 0x2c200000
11120 #define ADD_R3_R12_R13 0x7c6c6a14
11121 #define BEQLR 0x4d820020
11122 #define MR_R3_R0 0x7c030378
11123 #define BCTRL 0x4e800421
11124
11125 static bfd_byte *
11126 build_tls_get_addr_head (struct ppc_link_hash_table *htab,
11127 struct ppc_stub_hash_entry *stub_entry,
11128 bfd_byte *p)
11129 {
11130 bfd *obfd = htab->params->stub_bfd;
11131
11132 bfd_put_32 (obfd, LD_R0_0R3 + 0, p), p += 4;
11133 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
11134 bfd_put_32 (obfd, CMPDI_R0_0, p), p += 4;
11135 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
11136 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
11137 bfd_put_32 (obfd, BEQLR, p), p += 4;
11138 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
11139
11140 if (!htab->params->no_tls_get_addr_regsave)
11141 p = tls_get_addr_prologue (obfd, p, htab);
11142 else if (stub_entry->stub_type == ppc_stub_plt_call_r2save
11143 || stub_entry->stub_type == ppc_stub_plt_call_both)
11144 {
11145 bfd_put_32 (obfd, MFLR_R0, p);
11146 p += 4;
11147 bfd_put_32 (obfd, STD_R0_0R1 + STK_LINKER (htab), p);
11148 p += 4;
11149 }
11150 return p;
11151 }
11152
11153 static bfd_byte *
11154 build_tls_get_addr_tail (struct ppc_link_hash_table *htab,
11155 struct ppc_stub_hash_entry *stub_entry,
11156 bfd_byte *p,
11157 bfd_byte *loc)
11158 {
11159 bfd *obfd = htab->params->stub_bfd;
11160
11161 if (!htab->params->no_tls_get_addr_regsave)
11162 {
11163 bfd_put_32 (obfd, BCTRL, p - 4);
11164
11165 if (stub_entry->stub_type == ppc_stub_plt_call_r2save
11166 || stub_entry->stub_type == ppc_stub_plt_call_both)
11167 {
11168 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p);
11169 p += 4;
11170 }
11171 p = tls_get_addr_epilogue (obfd, p, htab);
11172 }
11173 else if (stub_entry->stub_type == ppc_stub_plt_call_r2save
11174 || stub_entry->stub_type == ppc_stub_plt_call_both)
11175 {
11176 bfd_put_32 (obfd, BCTRL, p - 4);
11177
11178 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p);
11179 p += 4;
11180 bfd_put_32 (obfd, LD_R0_0R1 + STK_LINKER (htab), p);
11181 p += 4;
11182 bfd_put_32 (obfd, MTLR_R0, p);
11183 p += 4;
11184 bfd_put_32 (obfd, BLR, p);
11185 p += 4;
11186 }
11187
11188 if (htab->glink_eh_frame != NULL
11189 && htab->glink_eh_frame->size != 0)
11190 {
11191 bfd_byte *base, *eh;
11192
11193 base = htab->glink_eh_frame->contents + stub_entry->group->eh_base + 17;
11194 eh = base + stub_entry->group->eh_size;
11195
11196 if (!htab->params->no_tls_get_addr_regsave)
11197 {
11198 unsigned int cfa_updt, delta, i;
11199
11200 /* After the bctrl, lr has been modified so we need to emit
11201 .eh_frame info saying the return address is on the stack. In
11202 fact we must put the EH info at or before the call rather
11203 than after it, because the EH info for a call needs to be
11204 specified by that point.
11205 See libgcc/unwind-dw2.c execute_cfa_program.
11206 Any stack pointer update must be described immediately after
11207 the instruction making the change, and since the stdu occurs
11208 after saving regs we put all the reg saves and the cfa
11209 change there. */
11210 cfa_updt = stub_entry->stub_offset + 18 * 4;
11211 delta = cfa_updt - stub_entry->group->lr_restore;
11212 stub_entry->group->lr_restore
11213 = stub_entry->stub_offset + (p - loc) - 4;
11214 eh = eh_advance (htab->elf.dynobj, eh, delta);
11215 *eh++ = DW_CFA_def_cfa_offset;
11216 if (htab->opd_abi)
11217 {
11218 *eh++ = 128;
11219 *eh++ = 1;
11220 }
11221 else
11222 *eh++ = 96;
11223 *eh++ = DW_CFA_offset_extended_sf;
11224 *eh++ = 65;
11225 *eh++ = (-16 / 8) & 0x7f;
11226 for (i = 4; i < 12; i++)
11227 {
11228 *eh++ = DW_CFA_offset + i;
11229 *eh++ = (htab->opd_abi ? 13 : 12) - i;
11230 }
11231 *eh++ = (DW_CFA_advance_loc
11232 + (stub_entry->group->lr_restore - 8 - cfa_updt) / 4);
11233 *eh++ = DW_CFA_def_cfa_offset;
11234 *eh++ = 0;
11235 for (i = 4; i < 12; i++)
11236 *eh++ = DW_CFA_restore + i;
11237 *eh++ = DW_CFA_advance_loc + 2;
11238 *eh++ = DW_CFA_restore_extended;
11239 *eh++ = 65;
11240 stub_entry->group->eh_size = eh - base;
11241 }
11242 else if (stub_entry->stub_type == ppc_stub_plt_call_r2save
11243 || stub_entry->stub_type == ppc_stub_plt_call_both)
11244 {
11245 unsigned int lr_used, delta;
11246
11247 lr_used = stub_entry->stub_offset + (p - 20 - loc);
11248 delta = lr_used - stub_entry->group->lr_restore;
11249 stub_entry->group->lr_restore = lr_used + 16;
11250 eh = eh_advance (htab->elf.dynobj, eh, delta);
11251 *eh++ = DW_CFA_offset_extended_sf;
11252 *eh++ = 65;
11253 *eh++ = -(STK_LINKER (htab) / 8) & 0x7f;
11254 *eh++ = DW_CFA_advance_loc + 4;
11255 *eh++ = DW_CFA_restore_extended;
11256 *eh++ = 65;
11257 stub_entry->group->eh_size = eh - base;
11258 }
11259 }
11260 return p;
11261 }
11262
11263 static Elf_Internal_Rela *
11264 get_relocs (asection *sec, int count)
11265 {
11266 Elf_Internal_Rela *relocs;
11267 struct bfd_elf_section_data *elfsec_data;
11268
11269 elfsec_data = elf_section_data (sec);
11270 relocs = elfsec_data->relocs;
11271 if (relocs == NULL)
11272 {
11273 bfd_size_type relsize;
11274 relsize = sec->reloc_count * sizeof (*relocs);
11275 relocs = bfd_alloc (sec->owner, relsize);
11276 if (relocs == NULL)
11277 return NULL;
11278 elfsec_data->relocs = relocs;
11279 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
11280 sizeof (Elf_Internal_Shdr));
11281 if (elfsec_data->rela.hdr == NULL)
11282 return NULL;
11283 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
11284 * sizeof (Elf64_External_Rela));
11285 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
11286 sec->reloc_count = 0;
11287 }
11288 relocs += sec->reloc_count;
11289 sec->reloc_count += count;
11290 return relocs;
11291 }
11292
11293 /* Convert the relocs R[0] thru R[-NUM_REL+1], which are all no-symbol
11294 forms, to the equivalent relocs against the global symbol given by
11295 STUB_ENTRY->H. */
11296
11297 static bfd_boolean
11298 use_global_in_relocs (struct ppc_link_hash_table *htab,
11299 struct ppc_stub_hash_entry *stub_entry,
11300 Elf_Internal_Rela *r, unsigned int num_rel)
11301 {
11302 struct elf_link_hash_entry **hashes;
11303 unsigned long symndx;
11304 struct ppc_link_hash_entry *h;
11305 bfd_vma symval;
11306
11307 /* Relocs are always against symbols in their own object file. Fake
11308 up global sym hashes for the stub bfd (which has no symbols). */
11309 hashes = elf_sym_hashes (htab->params->stub_bfd);
11310 if (hashes == NULL)
11311 {
11312 bfd_size_type hsize;
11313
11314 /* When called the first time, stub_globals will contain the
11315 total number of symbols seen during stub sizing. After
11316 allocating, stub_globals is used as an index to fill the
11317 hashes array. */
11318 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
11319 hashes = bfd_zalloc (htab->params->stub_bfd, hsize);
11320 if (hashes == NULL)
11321 return FALSE;
11322 elf_sym_hashes (htab->params->stub_bfd) = hashes;
11323 htab->stub_globals = 1;
11324 }
11325 symndx = htab->stub_globals++;
11326 h = stub_entry->h;
11327 hashes[symndx] = &h->elf;
11328 if (h->oh != NULL && h->oh->is_func)
11329 h = ppc_follow_link (h->oh);
11330 BFD_ASSERT (h->elf.root.type == bfd_link_hash_defined
11331 || h->elf.root.type == bfd_link_hash_defweak);
11332 symval = defined_sym_val (&h->elf);
11333 while (num_rel-- != 0)
11334 {
11335 r->r_info = ELF64_R_INFO (symndx, ELF64_R_TYPE (r->r_info));
11336 if (h->elf.root.u.def.section != stub_entry->target_section)
11337 {
11338 /* H is an opd symbol. The addend must be zero, and the
11339 branch reloc is the only one we can convert. */
11340 r->r_addend = 0;
11341 break;
11342 }
11343 else
11344 r->r_addend -= symval;
11345 --r;
11346 }
11347 return TRUE;
11348 }
11349
11350 static bfd_vma
11351 get_r2off (struct bfd_link_info *info,
11352 struct ppc_stub_hash_entry *stub_entry)
11353 {
11354 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11355 bfd_vma r2off = htab->sec_info[stub_entry->target_section->id].toc_off;
11356
11357 if (r2off == 0)
11358 {
11359 /* Support linking -R objects. Get the toc pointer from the
11360 opd entry. */
11361 char buf[8];
11362 if (!htab->opd_abi)
11363 return r2off;
11364 asection *opd = stub_entry->h->elf.root.u.def.section;
11365 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
11366
11367 if (strcmp (opd->name, ".opd") != 0
11368 || opd->reloc_count != 0)
11369 {
11370 info->callbacks->einfo
11371 (_("%P: cannot find opd entry toc for `%pT'\n"),
11372 stub_entry->h->elf.root.root.string);
11373 bfd_set_error (bfd_error_bad_value);
11374 return (bfd_vma) -1;
11375 }
11376 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
11377 return (bfd_vma) -1;
11378 r2off = bfd_get_64 (opd->owner, buf);
11379 r2off -= elf_gp (info->output_bfd);
11380 }
11381 r2off -= htab->sec_info[stub_entry->group->link_sec->id].toc_off;
11382 return r2off;
11383 }
11384
11385 static bfd_boolean
11386 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
11387 {
11388 struct ppc_stub_hash_entry *stub_entry;
11389 struct ppc_branch_hash_entry *br_entry;
11390 struct bfd_link_info *info;
11391 struct ppc_link_hash_table *htab;
11392 bfd *obfd;
11393 bfd_byte *loc;
11394 bfd_byte *p, *relp;
11395 bfd_vma targ, off;
11396 Elf_Internal_Rela *r;
11397 asection *plt;
11398 int num_rel;
11399 int odd;
11400 bfd_boolean is_tga;
11401
11402 /* Massage our args to the form they really have. */
11403 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
11404 info = in_arg;
11405
11406 /* Fail if the target section could not be assigned to an output
11407 section. The user should fix his linker script. */
11408 if (stub_entry->target_section != NULL
11409 && stub_entry->target_section->output_section == NULL
11410 && info->non_contiguous_regions)
11411 info->callbacks->einfo (_("%F%P: Could not assign '%pA' to an output section. "
11412 "Retry without --enable-non-contiguous-regions.\n"),
11413 stub_entry->target_section);
11414
11415 /* Same for the group. */
11416 if (stub_entry->group->stub_sec != NULL
11417 && stub_entry->group->stub_sec->output_section == NULL
11418 && info->non_contiguous_regions)
11419 info->callbacks->einfo (_("%F%P: Could not assign group %pA target %pA to an "
11420 "output section. Retry without "
11421 "--enable-non-contiguous-regions.\n"),
11422 stub_entry->group->stub_sec,
11423 stub_entry->target_section);
11424
11425 htab = ppc_hash_table (info);
11426 if (htab == NULL)
11427 return FALSE;
11428
11429 BFD_ASSERT (stub_entry->stub_offset >= stub_entry->group->stub_sec->size);
11430 loc = stub_entry->group->stub_sec->contents + stub_entry->stub_offset;
11431
11432 htab->stub_count[stub_entry->stub_type - 1] += 1;
11433 switch (stub_entry->stub_type)
11434 {
11435 case ppc_stub_long_branch:
11436 case ppc_stub_long_branch_r2off:
11437 /* Branches are relative. This is where we are going to. */
11438 targ = (stub_entry->target_value
11439 + stub_entry->target_section->output_offset
11440 + stub_entry->target_section->output_section->vma);
11441 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11442
11443 /* And this is where we are coming from. */
11444 off = (stub_entry->stub_offset
11445 + stub_entry->group->stub_sec->output_offset
11446 + stub_entry->group->stub_sec->output_section->vma);
11447 off = targ - off;
11448
11449 p = loc;
11450 obfd = htab->params->stub_bfd;
11451 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
11452 {
11453 bfd_vma r2off = get_r2off (info, stub_entry);
11454
11455 if (r2off == (bfd_vma) -1)
11456 {
11457 htab->stub_error = TRUE;
11458 return FALSE;
11459 }
11460 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p);
11461 p += 4;
11462 if (PPC_HA (r2off) != 0)
11463 {
11464 bfd_put_32 (obfd, ADDIS_R2_R2 | PPC_HA (r2off), p);
11465 p += 4;
11466 }
11467 if (PPC_LO (r2off) != 0)
11468 {
11469 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (r2off), p);
11470 p += 4;
11471 }
11472 off -= p - loc;
11473 }
11474 bfd_put_32 (obfd, B_DOT | (off & 0x3fffffc), p);
11475 p += 4;
11476
11477 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
11478 {
11479 _bfd_error_handler
11480 (_("long branch stub `%s' offset overflow"),
11481 stub_entry->root.string);
11482 htab->stub_error = TRUE;
11483 return FALSE;
11484 }
11485
11486 if (info->emitrelocations)
11487 {
11488 r = get_relocs (stub_entry->group->stub_sec, 1);
11489 if (r == NULL)
11490 return FALSE;
11491 r->r_offset = p - 4 - stub_entry->group->stub_sec->contents;
11492 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
11493 r->r_addend = targ;
11494 if (stub_entry->h != NULL
11495 && !use_global_in_relocs (htab, stub_entry, r, 1))
11496 return FALSE;
11497 }
11498 break;
11499
11500 case ppc_stub_plt_branch:
11501 case ppc_stub_plt_branch_r2off:
11502 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11503 stub_entry->root.string + 9,
11504 FALSE, FALSE);
11505 if (br_entry == NULL)
11506 {
11507 _bfd_error_handler (_("can't find branch stub `%s'"),
11508 stub_entry->root.string);
11509 htab->stub_error = TRUE;
11510 return FALSE;
11511 }
11512
11513 targ = (stub_entry->target_value
11514 + stub_entry->target_section->output_offset
11515 + stub_entry->target_section->output_section->vma);
11516 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11517 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11518
11519 bfd_put_64 (htab->brlt->owner, targ,
11520 htab->brlt->contents + br_entry->offset);
11521
11522 if (br_entry->iter == htab->stub_iteration)
11523 {
11524 br_entry->iter = 0;
11525
11526 if (htab->relbrlt != NULL)
11527 {
11528 /* Create a reloc for the branch lookup table entry. */
11529 Elf_Internal_Rela rela;
11530 bfd_byte *rl;
11531
11532 rela.r_offset = (br_entry->offset
11533 + htab->brlt->output_offset
11534 + htab->brlt->output_section->vma);
11535 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
11536 rela.r_addend = targ;
11537
11538 rl = htab->relbrlt->contents;
11539 rl += (htab->relbrlt->reloc_count++
11540 * sizeof (Elf64_External_Rela));
11541 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
11542 }
11543 else if (info->emitrelocations)
11544 {
11545 r = get_relocs (htab->brlt, 1);
11546 if (r == NULL)
11547 return FALSE;
11548 /* brlt, being SEC_LINKER_CREATED does not go through the
11549 normal reloc processing. Symbols and offsets are not
11550 translated from input file to output file form, so
11551 set up the offset per the output file. */
11552 r->r_offset = (br_entry->offset
11553 + htab->brlt->output_offset
11554 + htab->brlt->output_section->vma);
11555 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
11556 r->r_addend = targ;
11557 }
11558 }
11559
11560 targ = (br_entry->offset
11561 + htab->brlt->output_offset
11562 + htab->brlt->output_section->vma);
11563
11564 off = (elf_gp (info->output_bfd)
11565 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11566 off = targ - off;
11567
11568 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
11569 {
11570 info->callbacks->einfo
11571 (_("%P: linkage table error against `%pT'\n"),
11572 stub_entry->root.string);
11573 bfd_set_error (bfd_error_bad_value);
11574 htab->stub_error = TRUE;
11575 return FALSE;
11576 }
11577
11578 if (info->emitrelocations)
11579 {
11580 r = get_relocs (stub_entry->group->stub_sec, 1 + (PPC_HA (off) != 0));
11581 if (r == NULL)
11582 return FALSE;
11583 r[0].r_offset = loc - stub_entry->group->stub_sec->contents;
11584 if (bfd_big_endian (info->output_bfd))
11585 r[0].r_offset += 2;
11586 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
11587 r[0].r_offset += 4;
11588 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11589 r[0].r_addend = targ;
11590 if (PPC_HA (off) != 0)
11591 {
11592 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
11593 r[1].r_offset = r[0].r_offset + 4;
11594 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
11595 r[1].r_addend = r[0].r_addend;
11596 }
11597 }
11598
11599 p = loc;
11600 obfd = htab->params->stub_bfd;
11601 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11602 {
11603 if (PPC_HA (off) != 0)
11604 {
11605 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (off), p);
11606 p += 4;
11607 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (off), p);
11608 }
11609 else
11610 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (off), p);
11611 }
11612 else
11613 {
11614 bfd_vma r2off = get_r2off (info, stub_entry);
11615
11616 if (r2off == (bfd_vma) -1)
11617 {
11618 htab->stub_error = TRUE;
11619 return FALSE;
11620 }
11621
11622 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p);
11623 p += 4;
11624 if (PPC_HA (off) != 0)
11625 {
11626 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (off), p);
11627 p += 4;
11628 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (off), p);
11629 }
11630 else
11631 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (off), p);
11632
11633 if (PPC_HA (r2off) != 0)
11634 {
11635 p += 4;
11636 bfd_put_32 (obfd, ADDIS_R2_R2 | PPC_HA (r2off), p);
11637 }
11638 if (PPC_LO (r2off) != 0)
11639 {
11640 p += 4;
11641 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (r2off), p);
11642 }
11643 }
11644 p += 4;
11645 bfd_put_32 (obfd, MTCTR_R12, p);
11646 p += 4;
11647 bfd_put_32 (obfd, BCTR, p);
11648 p += 4;
11649 break;
11650
11651 case ppc_stub_long_branch_notoc:
11652 case ppc_stub_long_branch_both:
11653 case ppc_stub_plt_branch_notoc:
11654 case ppc_stub_plt_branch_both:
11655 case ppc_stub_plt_call_notoc:
11656 case ppc_stub_plt_call_both:
11657 p = loc;
11658 off = (stub_entry->stub_offset
11659 + stub_entry->group->stub_sec->output_offset
11660 + stub_entry->group->stub_sec->output_section->vma);
11661 obfd = htab->params->stub_bfd;
11662 is_tga = ((stub_entry->stub_type == ppc_stub_plt_call_notoc
11663 || stub_entry->stub_type == ppc_stub_plt_call_both)
11664 && is_tls_get_addr (&stub_entry->h->elf, htab)
11665 && htab->params->tls_get_addr_opt);
11666 if (is_tga)
11667 {
11668 p = build_tls_get_addr_head (htab, stub_entry, p);
11669 off += p - loc;
11670 }
11671 if (stub_entry->stub_type == ppc_stub_long_branch_both
11672 || stub_entry->stub_type == ppc_stub_plt_branch_both
11673 || stub_entry->stub_type == ppc_stub_plt_call_both)
11674 {
11675 off += 4;
11676 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p);
11677 p += 4;
11678 }
11679 if (stub_entry->stub_type >= ppc_stub_plt_call_notoc)
11680 {
11681 targ = stub_entry->plt_ent->plt.offset & ~1;
11682 if (targ >= (bfd_vma) -2)
11683 abort ();
11684
11685 plt = htab->elf.splt;
11686 if (!htab->elf.dynamic_sections_created
11687 || stub_entry->h == NULL
11688 || stub_entry->h->elf.dynindx == -1)
11689 {
11690 if (stub_entry->symtype == STT_GNU_IFUNC)
11691 plt = htab->elf.iplt;
11692 else
11693 plt = htab->pltlocal;
11694 }
11695 targ += plt->output_offset + plt->output_section->vma;
11696 }
11697 else
11698 targ = (stub_entry->target_value
11699 + stub_entry->target_section->output_offset
11700 + stub_entry->target_section->output_section->vma);
11701 odd = off & 4;
11702 off = targ - off;
11703
11704 relp = p;
11705 num_rel = 0;
11706 if (htab->params->power10_stubs != 0)
11707 {
11708 bfd_boolean load = stub_entry->stub_type >= ppc_stub_plt_call_notoc;
11709 p = build_power10_offset (obfd, p, off, odd, load);
11710 }
11711 else
11712 {
11713 if (htab->glink_eh_frame != NULL
11714 && htab->glink_eh_frame->size != 0)
11715 {
11716 bfd_byte *base, *eh;
11717 unsigned int lr_used, delta;
11718
11719 base = (htab->glink_eh_frame->contents
11720 + stub_entry->group->eh_base + 17);
11721 eh = base + stub_entry->group->eh_size;
11722 lr_used = stub_entry->stub_offset + (p - loc) + 8;
11723 delta = lr_used - stub_entry->group->lr_restore;
11724 stub_entry->group->lr_restore = lr_used + 8;
11725 eh = eh_advance (htab->elf.dynobj, eh, delta);
11726 *eh++ = DW_CFA_register;
11727 *eh++ = 65;
11728 *eh++ = 12;
11729 *eh++ = DW_CFA_advance_loc + 2;
11730 *eh++ = DW_CFA_restore_extended;
11731 *eh++ = 65;
11732 stub_entry->group->eh_size = eh - base;
11733 }
11734
11735 /* The notoc stubs calculate their target (either a PLT entry or
11736 the global entry point of a function) relative to the PC
11737 returned by the "bcl" two instructions past the start of the
11738 sequence emitted by build_offset. The offset is therefore 8
11739 less than calculated from the start of the sequence. */
11740 off -= 8;
11741 p = build_offset (obfd, p, off,
11742 stub_entry->stub_type >= ppc_stub_plt_call_notoc);
11743 }
11744
11745 if (stub_entry->stub_type <= ppc_stub_long_branch_both)
11746 {
11747 bfd_vma from;
11748 num_rel = 1;
11749 from = (stub_entry->stub_offset
11750 + stub_entry->group->stub_sec->output_offset
11751 + stub_entry->group->stub_sec->output_section->vma
11752 + (p - loc));
11753 bfd_put_32 (obfd, B_DOT | ((targ - from) & 0x3fffffc), p);
11754 }
11755 else
11756 {
11757 bfd_put_32 (obfd, MTCTR_R12, p);
11758 p += 4;
11759 bfd_put_32 (obfd, BCTR, p);
11760 }
11761 p += 4;
11762
11763 if (is_tga)
11764 p = build_tls_get_addr_tail (htab, stub_entry, p, loc);
11765
11766 if (info->emitrelocations)
11767 {
11768 bfd_vma roff = relp - stub_entry->group->stub_sec->contents;
11769 if (htab->params->power10_stubs != 0)
11770 num_rel += num_relocs_for_power10_offset (off, odd);
11771 else
11772 {
11773 num_rel += num_relocs_for_offset (off);
11774 roff += 16;
11775 }
11776 r = get_relocs (stub_entry->group->stub_sec, num_rel);
11777 if (r == NULL)
11778 return FALSE;
11779 if (htab->params->power10_stubs != 0)
11780 r = emit_relocs_for_power10_offset (info, r, roff, targ, off, odd);
11781 else
11782 r = emit_relocs_for_offset (info, r, roff, targ, off);
11783 if (stub_entry->stub_type == ppc_stub_long_branch_notoc
11784 || stub_entry->stub_type == ppc_stub_long_branch_both)
11785 {
11786 ++r;
11787 roff = p - 4 - stub_entry->group->stub_sec->contents;
11788 r->r_offset = roff;
11789 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
11790 r->r_addend = targ;
11791 if (stub_entry->h != NULL
11792 && !use_global_in_relocs (htab, stub_entry, r, num_rel))
11793 return FALSE;
11794 }
11795 }
11796 break;
11797
11798 case ppc_stub_plt_call:
11799 case ppc_stub_plt_call_r2save:
11800 if (stub_entry->h != NULL
11801 && stub_entry->h->is_func_descriptor
11802 && stub_entry->h->oh != NULL)
11803 {
11804 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
11805
11806 /* If the old-ABI "dot-symbol" is undefined make it weak so
11807 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL. */
11808 if (fh->elf.root.type == bfd_link_hash_undefined
11809 && (stub_entry->h->elf.root.type == bfd_link_hash_defined
11810 || stub_entry->h->elf.root.type == bfd_link_hash_defweak))
11811 fh->elf.root.type = bfd_link_hash_undefweak;
11812 }
11813
11814 /* Now build the stub. */
11815 targ = stub_entry->plt_ent->plt.offset & ~1;
11816 if (targ >= (bfd_vma) -2)
11817 abort ();
11818
11819 plt = htab->elf.splt;
11820 if (!htab->elf.dynamic_sections_created
11821 || stub_entry->h == NULL
11822 || stub_entry->h->elf.dynindx == -1)
11823 {
11824 if (stub_entry->symtype == STT_GNU_IFUNC)
11825 plt = htab->elf.iplt;
11826 else
11827 plt = htab->pltlocal;
11828 }
11829 targ += plt->output_offset + plt->output_section->vma;
11830
11831 off = (elf_gp (info->output_bfd)
11832 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11833 off = targ - off;
11834
11835 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
11836 {
11837 info->callbacks->einfo
11838 /* xgettext:c-format */
11839 (_("%P: linkage table error against `%pT'\n"),
11840 stub_entry->h != NULL
11841 ? stub_entry->h->elf.root.root.string
11842 : "<local sym>");
11843 bfd_set_error (bfd_error_bad_value);
11844 htab->stub_error = TRUE;
11845 return FALSE;
11846 }
11847
11848 r = NULL;
11849 if (info->emitrelocations)
11850 {
11851 r = get_relocs (stub_entry->group->stub_sec,
11852 ((PPC_HA (off) != 0)
11853 + (htab->opd_abi
11854 ? 2 + (htab->params->plt_static_chain
11855 && PPC_HA (off + 16) == PPC_HA (off))
11856 : 1)));
11857 if (r == NULL)
11858 return FALSE;
11859 r[0].r_offset = loc - stub_entry->group->stub_sec->contents;
11860 if (bfd_big_endian (info->output_bfd))
11861 r[0].r_offset += 2;
11862 r[0].r_addend = targ;
11863 }
11864 p = loc;
11865 obfd = htab->params->stub_bfd;
11866 is_tga = (stub_entry->h != NULL
11867 && is_tls_get_addr (&stub_entry->h->elf, htab)
11868 && htab->params->tls_get_addr_opt);
11869 if (is_tga)
11870 {
11871 p = build_tls_get_addr_head (htab, stub_entry, p);
11872 if (r != NULL)
11873 r[0].r_offset += p - loc;
11874 }
11875 p = build_plt_stub (htab, stub_entry, p, off, r);
11876 if (is_tga)
11877 p = build_tls_get_addr_tail (htab, stub_entry, p, loc);
11878 break;
11879
11880 case ppc_stub_save_res:
11881 return TRUE;
11882
11883 default:
11884 BFD_FAIL ();
11885 return FALSE;
11886 }
11887
11888 stub_entry->group->stub_sec->size = stub_entry->stub_offset + (p - loc);
11889
11890 if (htab->params->emit_stub_syms)
11891 {
11892 struct elf_link_hash_entry *h;
11893 size_t len1, len2;
11894 char *name;
11895 const char *const stub_str[] = { "long_branch",
11896 "long_branch",
11897 "long_branch",
11898 "long_branch",
11899 "plt_branch",
11900 "plt_branch",
11901 "plt_branch",
11902 "plt_branch",
11903 "plt_call",
11904 "plt_call",
11905 "plt_call",
11906 "plt_call" };
11907
11908 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
11909 len2 = strlen (stub_entry->root.string);
11910 name = bfd_malloc (len1 + len2 + 2);
11911 if (name == NULL)
11912 return FALSE;
11913 memcpy (name, stub_entry->root.string, 9);
11914 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
11915 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
11916 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
11917 if (h == NULL)
11918 return FALSE;
11919 if (h->root.type == bfd_link_hash_new)
11920 {
11921 h->root.type = bfd_link_hash_defined;
11922 h->root.u.def.section = stub_entry->group->stub_sec;
11923 h->root.u.def.value = stub_entry->stub_offset;
11924 h->ref_regular = 1;
11925 h->def_regular = 1;
11926 h->ref_regular_nonweak = 1;
11927 h->forced_local = 1;
11928 h->non_elf = 0;
11929 h->root.linker_def = 1;
11930 }
11931 }
11932
11933 return TRUE;
11934 }
11935
11936 /* As above, but don't actually build the stub. Just bump offset so
11937 we know stub section sizes, and select plt_branch stubs where
11938 long_branch stubs won't do. */
11939
11940 static bfd_boolean
11941 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
11942 {
11943 struct ppc_stub_hash_entry *stub_entry;
11944 struct bfd_link_info *info;
11945 struct ppc_link_hash_table *htab;
11946 asection *plt;
11947 bfd_vma targ, off, r2off;
11948 unsigned int size, extra, lr_used, delta, odd;
11949
11950 /* Massage our args to the form they really have. */
11951 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
11952 info = in_arg;
11953
11954 htab = ppc_hash_table (info);
11955 if (htab == NULL)
11956 return FALSE;
11957
11958 /* Fail if the target section could not be assigned to an output
11959 section. The user should fix his linker script. */
11960 if (stub_entry->target_section != NULL
11961 && stub_entry->target_section->output_section == NULL
11962 && info->non_contiguous_regions)
11963 info->callbacks->einfo (_("%F%P: Could not assign %pA to an output section. "
11964 "Retry without --enable-non-contiguous-regions.\n"),
11965 stub_entry->target_section);
11966
11967 /* Same for the group. */
11968 if (stub_entry->group->stub_sec != NULL
11969 && stub_entry->group->stub_sec->output_section == NULL
11970 && info->non_contiguous_regions)
11971 info->callbacks->einfo (_("%F%P: Could not assign group %pA target %pA to an "
11972 "output section. Retry without "
11973 "--enable-non-contiguous-regions.\n"),
11974 stub_entry->group->stub_sec,
11975 stub_entry->target_section);
11976
11977 /* Make a note of the offset within the stubs for this entry. */
11978 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
11979
11980 if (stub_entry->h != NULL
11981 && stub_entry->h->save_res
11982 && stub_entry->h->elf.root.type == bfd_link_hash_defined
11983 && stub_entry->h->elf.root.u.def.section == htab->sfpr)
11984 {
11985 /* Don't make stubs to out-of-line register save/restore
11986 functions. Instead, emit copies of the functions. */
11987 stub_entry->group->needs_save_res = 1;
11988 stub_entry->stub_type = ppc_stub_save_res;
11989 return TRUE;
11990 }
11991
11992 switch (stub_entry->stub_type)
11993 {
11994 case ppc_stub_plt_branch:
11995 case ppc_stub_plt_branch_r2off:
11996 /* Reset the stub type from the plt branch variant in case we now
11997 can reach with a shorter stub. */
11998 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
11999 /* Fall through. */
12000 case ppc_stub_long_branch:
12001 case ppc_stub_long_branch_r2off:
12002 targ = (stub_entry->target_value
12003 + stub_entry->target_section->output_offset
12004 + stub_entry->target_section->output_section->vma);
12005 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
12006 off = (stub_entry->stub_offset
12007 + stub_entry->group->stub_sec->output_offset
12008 + stub_entry->group->stub_sec->output_section->vma);
12009
12010 size = 4;
12011 r2off = 0;
12012 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
12013 {
12014 r2off = get_r2off (info, stub_entry);
12015 if (r2off == (bfd_vma) -1)
12016 {
12017 htab->stub_error = TRUE;
12018 return FALSE;
12019 }
12020 size = 8;
12021 if (PPC_HA (r2off) != 0)
12022 size += 4;
12023 if (PPC_LO (r2off) != 0)
12024 size += 4;
12025 off += size - 4;
12026 }
12027 off = targ - off;
12028
12029 /* If the branch offset is too big, use a ppc_stub_plt_branch.
12030 Do the same for -R objects without function descriptors. */
12031 if ((stub_entry->stub_type == ppc_stub_long_branch_r2off
12032 && r2off == 0
12033 && htab->sec_info[stub_entry->target_section->id].toc_off == 0)
12034 || off + (1 << 25) >= (bfd_vma) (1 << 26))
12035 {
12036 struct ppc_branch_hash_entry *br_entry;
12037
12038 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
12039 stub_entry->root.string + 9,
12040 TRUE, FALSE);
12041 if (br_entry == NULL)
12042 {
12043 _bfd_error_handler (_("can't build branch stub `%s'"),
12044 stub_entry->root.string);
12045 htab->stub_error = TRUE;
12046 return FALSE;
12047 }
12048
12049 if (br_entry->iter != htab->stub_iteration)
12050 {
12051 br_entry->iter = htab->stub_iteration;
12052 br_entry->offset = htab->brlt->size;
12053 htab->brlt->size += 8;
12054
12055 if (htab->relbrlt != NULL)
12056 htab->relbrlt->size += sizeof (Elf64_External_Rela);
12057 else if (info->emitrelocations)
12058 {
12059 htab->brlt->reloc_count += 1;
12060 htab->brlt->flags |= SEC_RELOC;
12061 }
12062 }
12063
12064 targ = (br_entry->offset
12065 + htab->brlt->output_offset
12066 + htab->brlt->output_section->vma);
12067 off = (elf_gp (info->output_bfd)
12068 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
12069 off = targ - off;
12070
12071 if (info->emitrelocations)
12072 {
12073 stub_entry->group->stub_sec->reloc_count
12074 += 1 + (PPC_HA (off) != 0);
12075 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12076 }
12077
12078 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
12079 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
12080 {
12081 size = 12;
12082 if (PPC_HA (off) != 0)
12083 size = 16;
12084 }
12085 else
12086 {
12087 size = 16;
12088 if (PPC_HA (off) != 0)
12089 size += 4;
12090
12091 if (PPC_HA (r2off) != 0)
12092 size += 4;
12093 if (PPC_LO (r2off) != 0)
12094 size += 4;
12095 }
12096 }
12097 else if (info->emitrelocations)
12098 {
12099 stub_entry->group->stub_sec->reloc_count += 1;
12100 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12101 }
12102 break;
12103
12104 case ppc_stub_plt_branch_notoc:
12105 case ppc_stub_plt_branch_both:
12106 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
12107 /* Fall through. */
12108 case ppc_stub_long_branch_notoc:
12109 case ppc_stub_long_branch_both:
12110 off = (stub_entry->stub_offset
12111 + stub_entry->group->stub_sec->output_offset
12112 + stub_entry->group->stub_sec->output_section->vma);
12113 size = 0;
12114 if (stub_entry->stub_type == ppc_stub_long_branch_both)
12115 size = 4;
12116 off += size;
12117 targ = (stub_entry->target_value
12118 + stub_entry->target_section->output_offset
12119 + stub_entry->target_section->output_section->vma);
12120 odd = off & 4;
12121 off = targ - off;
12122
12123 if (info->emitrelocations)
12124 {
12125 unsigned int num_rel;
12126 if (htab->params->power10_stubs != 0)
12127 num_rel = num_relocs_for_power10_offset (off, odd);
12128 else
12129 num_rel = num_relocs_for_offset (off - 8);
12130 stub_entry->group->stub_sec->reloc_count += num_rel;
12131 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12132 }
12133
12134 if (htab->params->power10_stubs != 0)
12135 extra = size_power10_offset (off, odd);
12136 else
12137 extra = size_offset (off - 8);
12138 /* Include branch insn plus those in the offset sequence. */
12139 size += 4 + extra;
12140 /* The branch insn is at the end, or "extra" bytes along. So
12141 its offset will be "extra" bytes less that that already
12142 calculated. */
12143 off -= extra;
12144
12145 if (htab->params->power10_stubs == 0)
12146 {
12147 /* After the bcl, lr has been modified so we need to emit
12148 .eh_frame info saying the return address is in r12. */
12149 lr_used = stub_entry->stub_offset + 8;
12150 if (stub_entry->stub_type == ppc_stub_long_branch_both)
12151 lr_used += 4;
12152 /* The eh_frame info will consist of a DW_CFA_advance_loc or
12153 variant, DW_CFA_register, 65, 12, DW_CFA_advance_loc+2,
12154 DW_CFA_restore_extended 65. */
12155 delta = lr_used - stub_entry->group->lr_restore;
12156 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
12157 stub_entry->group->lr_restore = lr_used + 8;
12158 }
12159
12160 /* If the branch can't reach, use a plt_branch. */
12161 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
12162 {
12163 stub_entry->stub_type += (ppc_stub_plt_branch_notoc
12164 - ppc_stub_long_branch_notoc);
12165 size += 4;
12166 }
12167 else if (info->emitrelocations)
12168 stub_entry->group->stub_sec->reloc_count +=1;
12169 break;
12170
12171 case ppc_stub_plt_call_notoc:
12172 case ppc_stub_plt_call_both:
12173 lr_used = 0;
12174 if (is_tls_get_addr (&stub_entry->h->elf, htab)
12175 && htab->params->tls_get_addr_opt)
12176 {
12177 lr_used += 7 * 4;
12178 if (!htab->params->no_tls_get_addr_regsave)
12179 lr_used += 11 * 4;
12180 else if (stub_entry->stub_type == ppc_stub_plt_call_both)
12181 lr_used += 2 * 4;
12182 }
12183 if (stub_entry->stub_type == ppc_stub_plt_call_both)
12184 lr_used += 4;
12185 targ = stub_entry->plt_ent->plt.offset & ~1;
12186 if (targ >= (bfd_vma) -2)
12187 abort ();
12188
12189 plt = htab->elf.splt;
12190 if (!htab->elf.dynamic_sections_created
12191 || stub_entry->h == NULL
12192 || stub_entry->h->elf.dynindx == -1)
12193 {
12194 if (stub_entry->symtype == STT_GNU_IFUNC)
12195 plt = htab->elf.iplt;
12196 else
12197 plt = htab->pltlocal;
12198 }
12199 targ += plt->output_offset + plt->output_section->vma;
12200 off = (stub_entry->stub_offset
12201 + stub_entry->group->stub_sec->output_offset
12202 + stub_entry->group->stub_sec->output_section->vma
12203 + lr_used);
12204 odd = off & 4;
12205 off = targ - off;
12206
12207 if (htab->params->plt_stub_align != 0)
12208 {
12209 unsigned pad = plt_stub_pad (htab, stub_entry, off, odd);
12210
12211 stub_entry->group->stub_sec->size += pad;
12212 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
12213 off -= pad;
12214 odd ^= pad & 4;
12215 }
12216
12217 if (info->emitrelocations)
12218 {
12219 unsigned int num_rel;
12220 if (htab->params->power10_stubs != 0)
12221 num_rel = num_relocs_for_power10_offset (off, odd);
12222 else
12223 num_rel = num_relocs_for_offset (off - 8);
12224 stub_entry->group->stub_sec->reloc_count += num_rel;
12225 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12226 }
12227
12228 size = plt_stub_size (htab, stub_entry, off, odd);
12229
12230 if (htab->params->power10_stubs == 0)
12231 {
12232 /* After the bcl, lr has been modified so we need to emit
12233 .eh_frame info saying the return address is in r12. */
12234 lr_used += stub_entry->stub_offset + 8;
12235 /* The eh_frame info will consist of a DW_CFA_advance_loc or
12236 variant, DW_CFA_register, 65, 12, DW_CFA_advance_loc+2,
12237 DW_CFA_restore_extended 65. */
12238 delta = lr_used - stub_entry->group->lr_restore;
12239 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
12240 stub_entry->group->lr_restore = lr_used + 8;
12241 }
12242 if ((stub_entry->stub_type == ppc_stub_plt_call_notoc
12243 || stub_entry->stub_type == ppc_stub_plt_call_both)
12244 && is_tls_get_addr (&stub_entry->h->elf, htab)
12245 && htab->params->tls_get_addr_opt)
12246 {
12247 if (!htab->params->no_tls_get_addr_regsave)
12248 {
12249 unsigned int cfa_updt = stub_entry->stub_offset + 18 * 4;
12250 delta = cfa_updt - stub_entry->group->lr_restore;
12251 stub_entry->group->eh_size += eh_advance_size (delta);
12252 stub_entry->group->eh_size += htab->opd_abi ? 36 : 35;
12253 stub_entry->group->lr_restore
12254 = stub_entry->stub_offset + size - 4;
12255 }
12256 else if (stub_entry->stub_type == ppc_stub_plt_call_both)
12257 {
12258 lr_used = stub_entry->stub_offset + size - 20;
12259 delta = lr_used - stub_entry->group->lr_restore;
12260 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
12261 stub_entry->group->lr_restore
12262 = stub_entry->stub_offset + size - 4;
12263 }
12264 }
12265 break;
12266
12267 case ppc_stub_plt_call:
12268 case ppc_stub_plt_call_r2save:
12269 targ = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
12270 if (targ >= (bfd_vma) -2)
12271 abort ();
12272 plt = htab->elf.splt;
12273 if (!htab->elf.dynamic_sections_created
12274 || stub_entry->h == NULL
12275 || stub_entry->h->elf.dynindx == -1)
12276 {
12277 if (stub_entry->symtype == STT_GNU_IFUNC)
12278 plt = htab->elf.iplt;
12279 else
12280 plt = htab->pltlocal;
12281 }
12282 targ += plt->output_offset + plt->output_section->vma;
12283
12284 off = (elf_gp (info->output_bfd)
12285 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
12286 off = targ - off;
12287
12288 if (htab->params->plt_stub_align != 0)
12289 {
12290 unsigned pad = plt_stub_pad (htab, stub_entry, off, 0);
12291
12292 stub_entry->group->stub_sec->size += pad;
12293 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
12294 }
12295
12296 if (info->emitrelocations)
12297 {
12298 stub_entry->group->stub_sec->reloc_count
12299 += ((PPC_HA (off) != 0)
12300 + (htab->opd_abi
12301 ? 2 + (htab->params->plt_static_chain
12302 && PPC_HA (off + 16) == PPC_HA (off))
12303 : 1));
12304 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12305 }
12306
12307 size = plt_stub_size (htab, stub_entry, off, 0);
12308
12309 if (stub_entry->h != NULL
12310 && is_tls_get_addr (&stub_entry->h->elf, htab)
12311 && htab->params->tls_get_addr_opt
12312 && stub_entry->stub_type == ppc_stub_plt_call_r2save)
12313 {
12314 if (!htab->params->no_tls_get_addr_regsave)
12315 {
12316 /* Adjustments to r1 need to be described. */
12317 unsigned int cfa_updt = stub_entry->stub_offset + 18 * 4;
12318 delta = cfa_updt - stub_entry->group->lr_restore;
12319 stub_entry->group->eh_size += eh_advance_size (delta);
12320 stub_entry->group->eh_size += htab->opd_abi ? 36 : 35;
12321 }
12322 else
12323 {
12324 lr_used = stub_entry->stub_offset + size - 20;
12325 /* The eh_frame info will consist of a DW_CFA_advance_loc
12326 or variant, DW_CFA_offset_externed_sf, 65, -stackoff,
12327 DW_CFA_advance_loc+4, DW_CFA_restore_extended, 65. */
12328 delta = lr_used - stub_entry->group->lr_restore;
12329 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
12330 }
12331 stub_entry->group->lr_restore = stub_entry->stub_offset + size - 4;
12332 }
12333 break;
12334
12335 default:
12336 BFD_FAIL ();
12337 return FALSE;
12338 }
12339
12340 stub_entry->group->stub_sec->size += size;
12341 return TRUE;
12342 }
12343
12344 /* Set up various things so that we can make a list of input sections
12345 for each output section included in the link. Returns -1 on error,
12346 0 when no stubs will be needed, and 1 on success. */
12347
12348 int
12349 ppc64_elf_setup_section_lists (struct bfd_link_info *info)
12350 {
12351 unsigned int id;
12352 size_t amt;
12353 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12354
12355 if (htab == NULL)
12356 return -1;
12357
12358 htab->sec_info_arr_size = _bfd_section_id;
12359 amt = sizeof (*htab->sec_info) * (htab->sec_info_arr_size);
12360 htab->sec_info = bfd_zmalloc (amt);
12361 if (htab->sec_info == NULL)
12362 return -1;
12363
12364 /* Set toc_off for com, und, abs and ind sections. */
12365 for (id = 0; id < 3; id++)
12366 htab->sec_info[id].toc_off = TOC_BASE_OFF;
12367
12368 return 1;
12369 }
12370
12371 /* Set up for first pass at multitoc partitioning. */
12372
12373 void
12374 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
12375 {
12376 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12377
12378 htab->toc_curr = ppc64_elf_set_toc (info, info->output_bfd);
12379 htab->toc_bfd = NULL;
12380 htab->toc_first_sec = NULL;
12381 }
12382
12383 /* The linker repeatedly calls this function for each TOC input section
12384 and linker generated GOT section. Group input bfds such that the toc
12385 within a group is less than 64k in size. */
12386
12387 bfd_boolean
12388 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
12389 {
12390 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12391 bfd_vma addr, off, limit;
12392
12393 if (htab == NULL)
12394 return FALSE;
12395
12396 if (!htab->second_toc_pass)
12397 {
12398 /* Keep track of the first .toc or .got section for this input bfd. */
12399 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
12400
12401 if (new_bfd)
12402 {
12403 htab->toc_bfd = isec->owner;
12404 htab->toc_first_sec = isec;
12405 }
12406
12407 addr = isec->output_offset + isec->output_section->vma;
12408 off = addr - htab->toc_curr;
12409 limit = 0x80008000;
12410 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
12411 limit = 0x10000;
12412 if (off + isec->size > limit)
12413 {
12414 addr = (htab->toc_first_sec->output_offset
12415 + htab->toc_first_sec->output_section->vma);
12416 htab->toc_curr = addr;
12417 htab->toc_curr &= -TOC_BASE_ALIGN;
12418 }
12419
12420 /* toc_curr is the base address of this toc group. Set elf_gp
12421 for the input section to be the offset relative to the
12422 output toc base plus 0x8000. Making the input elf_gp an
12423 offset allows us to move the toc as a whole without
12424 recalculating input elf_gp. */
12425 off = htab->toc_curr - elf_gp (info->output_bfd);
12426 off += TOC_BASE_OFF;
12427
12428 /* Die if someone uses a linker script that doesn't keep input
12429 file .toc and .got together. */
12430 if (new_bfd
12431 && elf_gp (isec->owner) != 0
12432 && elf_gp (isec->owner) != off)
12433 return FALSE;
12434
12435 elf_gp (isec->owner) = off;
12436 return TRUE;
12437 }
12438
12439 /* During the second pass toc_first_sec points to the start of
12440 a toc group, and toc_curr is used to track the old elf_gp.
12441 We use toc_bfd to ensure we only look at each bfd once. */
12442 if (htab->toc_bfd == isec->owner)
12443 return TRUE;
12444 htab->toc_bfd = isec->owner;
12445
12446 if (htab->toc_first_sec == NULL
12447 || htab->toc_curr != elf_gp (isec->owner))
12448 {
12449 htab->toc_curr = elf_gp (isec->owner);
12450 htab->toc_first_sec = isec;
12451 }
12452 addr = (htab->toc_first_sec->output_offset
12453 + htab->toc_first_sec->output_section->vma);
12454 off = addr - elf_gp (info->output_bfd) + TOC_BASE_OFF;
12455 elf_gp (isec->owner) = off;
12456
12457 return TRUE;
12458 }
12459
12460 /* Called via elf_link_hash_traverse to merge GOT entries for global
12461 symbol H. */
12462
12463 static bfd_boolean
12464 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12465 {
12466 if (h->root.type == bfd_link_hash_indirect)
12467 return TRUE;
12468
12469 merge_got_entries (&h->got.glist);
12470
12471 return TRUE;
12472 }
12473
12474 /* Called via elf_link_hash_traverse to allocate GOT entries for global
12475 symbol H. */
12476
12477 static bfd_boolean
12478 reallocate_got (struct elf_link_hash_entry *h, void *inf)
12479 {
12480 struct got_entry *gent;
12481
12482 if (h->root.type == bfd_link_hash_indirect)
12483 return TRUE;
12484
12485 for (gent = h->got.glist; gent != NULL; gent = gent->next)
12486 if (!gent->is_indirect)
12487 allocate_got (h, (struct bfd_link_info *) inf, gent);
12488 return TRUE;
12489 }
12490
12491 /* Called on the first multitoc pass after the last call to
12492 ppc64_elf_next_toc_section. This function removes duplicate GOT
12493 entries. */
12494
12495 bfd_boolean
12496 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
12497 {
12498 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12499 struct bfd *ibfd, *ibfd2;
12500 bfd_boolean done_something;
12501
12502 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
12503
12504 if (!htab->do_multi_toc)
12505 return FALSE;
12506
12507 /* Merge global sym got entries within a toc group. */
12508 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
12509
12510 /* And tlsld_got. */
12511 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12512 {
12513 struct got_entry *ent, *ent2;
12514
12515 if (!is_ppc64_elf (ibfd))
12516 continue;
12517
12518 ent = ppc64_tlsld_got (ibfd);
12519 if (!ent->is_indirect
12520 && ent->got.offset != (bfd_vma) -1)
12521 {
12522 for (ibfd2 = ibfd->link.next; ibfd2 != NULL; ibfd2 = ibfd2->link.next)
12523 {
12524 if (!is_ppc64_elf (ibfd2))
12525 continue;
12526
12527 ent2 = ppc64_tlsld_got (ibfd2);
12528 if (!ent2->is_indirect
12529 && ent2->got.offset != (bfd_vma) -1
12530 && elf_gp (ibfd2) == elf_gp (ibfd))
12531 {
12532 ent2->is_indirect = TRUE;
12533 ent2->got.ent = ent;
12534 }
12535 }
12536 }
12537 }
12538
12539 /* Zap sizes of got sections. */
12540 htab->elf.irelplt->rawsize = htab->elf.irelplt->size;
12541 htab->elf.irelplt->size -= htab->got_reli_size;
12542 htab->got_reli_size = 0;
12543
12544 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12545 {
12546 asection *got, *relgot;
12547
12548 if (!is_ppc64_elf (ibfd))
12549 continue;
12550
12551 got = ppc64_elf_tdata (ibfd)->got;
12552 if (got != NULL)
12553 {
12554 got->rawsize = got->size;
12555 got->size = 0;
12556 relgot = ppc64_elf_tdata (ibfd)->relgot;
12557 relgot->rawsize = relgot->size;
12558 relgot->size = 0;
12559 }
12560 }
12561
12562 /* Now reallocate the got, local syms first. We don't need to
12563 allocate section contents again since we never increase size. */
12564 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12565 {
12566 struct got_entry **lgot_ents;
12567 struct got_entry **end_lgot_ents;
12568 struct plt_entry **local_plt;
12569 struct plt_entry **end_local_plt;
12570 unsigned char *lgot_masks;
12571 bfd_size_type locsymcount;
12572 Elf_Internal_Shdr *symtab_hdr;
12573 asection *s;
12574
12575 if (!is_ppc64_elf (ibfd))
12576 continue;
12577
12578 lgot_ents = elf_local_got_ents (ibfd);
12579 if (!lgot_ents)
12580 continue;
12581
12582 symtab_hdr = &elf_symtab_hdr (ibfd);
12583 locsymcount = symtab_hdr->sh_info;
12584 end_lgot_ents = lgot_ents + locsymcount;
12585 local_plt = (struct plt_entry **) end_lgot_ents;
12586 end_local_plt = local_plt + locsymcount;
12587 lgot_masks = (unsigned char *) end_local_plt;
12588 s = ppc64_elf_tdata (ibfd)->got;
12589 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
12590 {
12591 struct got_entry *ent;
12592
12593 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
12594 {
12595 unsigned int ent_size = 8;
12596 unsigned int rel_size = sizeof (Elf64_External_Rela);
12597
12598 ent->got.offset = s->size;
12599 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
12600 {
12601 ent_size *= 2;
12602 rel_size *= 2;
12603 }
12604 s->size += ent_size;
12605 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
12606 {
12607 htab->elf.irelplt->size += rel_size;
12608 htab->got_reli_size += rel_size;
12609 }
12610 else if (bfd_link_pic (info)
12611 && !(ent->tls_type != 0
12612 && bfd_link_executable (info)))
12613 {
12614 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
12615 srel->size += rel_size;
12616 }
12617 }
12618 }
12619 }
12620
12621 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
12622
12623 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12624 {
12625 struct got_entry *ent;
12626
12627 if (!is_ppc64_elf (ibfd))
12628 continue;
12629
12630 ent = ppc64_tlsld_got (ibfd);
12631 if (!ent->is_indirect
12632 && ent->got.offset != (bfd_vma) -1)
12633 {
12634 asection *s = ppc64_elf_tdata (ibfd)->got;
12635 ent->got.offset = s->size;
12636 s->size += 16;
12637 if (bfd_link_dll (info))
12638 {
12639 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
12640 srel->size += sizeof (Elf64_External_Rela);
12641 }
12642 }
12643 }
12644
12645 done_something = htab->elf.irelplt->rawsize != htab->elf.irelplt->size;
12646 if (!done_something)
12647 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12648 {
12649 asection *got;
12650
12651 if (!is_ppc64_elf (ibfd))
12652 continue;
12653
12654 got = ppc64_elf_tdata (ibfd)->got;
12655 if (got != NULL)
12656 {
12657 done_something = got->rawsize != got->size;
12658 if (done_something)
12659 break;
12660 }
12661 }
12662
12663 if (done_something)
12664 (*htab->params->layout_sections_again) ();
12665
12666 /* Set up for second pass over toc sections to recalculate elf_gp
12667 on input sections. */
12668 htab->toc_bfd = NULL;
12669 htab->toc_first_sec = NULL;
12670 htab->second_toc_pass = TRUE;
12671 return done_something;
12672 }
12673
12674 /* Called after second pass of multitoc partitioning. */
12675
12676 void
12677 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
12678 {
12679 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12680
12681 /* After the second pass, toc_curr tracks the TOC offset used
12682 for code sections below in ppc64_elf_next_input_section. */
12683 htab->toc_curr = TOC_BASE_OFF;
12684 }
12685
12686 /* No toc references were found in ISEC. If the code in ISEC makes no
12687 calls, then there's no need to use toc adjusting stubs when branching
12688 into ISEC. Actually, indirect calls from ISEC are OK as they will
12689 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
12690 needed, and 2 if a cyclical call-graph was found but no other reason
12691 for a stub was detected. If called from the top level, a return of
12692 2 means the same as a return of 0. */
12693
12694 static int
12695 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
12696 {
12697 int ret;
12698
12699 /* Mark this section as checked. */
12700 isec->call_check_done = 1;
12701
12702 /* We know none of our code bearing sections will need toc stubs. */
12703 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12704 return 0;
12705
12706 if (isec->size == 0)
12707 return 0;
12708
12709 if (isec->output_section == NULL)
12710 return 0;
12711
12712 ret = 0;
12713 if (isec->reloc_count != 0)
12714 {
12715 Elf_Internal_Rela *relstart, *rel;
12716 Elf_Internal_Sym *local_syms;
12717 struct ppc_link_hash_table *htab;
12718
12719 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
12720 info->keep_memory);
12721 if (relstart == NULL)
12722 return -1;
12723
12724 /* Look for branches to outside of this section. */
12725 local_syms = NULL;
12726 htab = ppc_hash_table (info);
12727 if (htab == NULL)
12728 return -1;
12729
12730 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
12731 {
12732 enum elf_ppc64_reloc_type r_type;
12733 unsigned long r_symndx;
12734 struct elf_link_hash_entry *h;
12735 struct ppc_link_hash_entry *eh;
12736 Elf_Internal_Sym *sym;
12737 asection *sym_sec;
12738 struct _opd_sec_data *opd;
12739 bfd_vma sym_value;
12740 bfd_vma dest;
12741
12742 r_type = ELF64_R_TYPE (rel->r_info);
12743 if (r_type != R_PPC64_REL24
12744 && r_type != R_PPC64_REL24_NOTOC
12745 && r_type != R_PPC64_REL14
12746 && r_type != R_PPC64_REL14_BRTAKEN
12747 && r_type != R_PPC64_REL14_BRNTAKEN
12748 && r_type != R_PPC64_PLTCALL
12749 && r_type != R_PPC64_PLTCALL_NOTOC)
12750 continue;
12751
12752 r_symndx = ELF64_R_SYM (rel->r_info);
12753 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
12754 isec->owner))
12755 {
12756 ret = -1;
12757 break;
12758 }
12759
12760 /* Calls to dynamic lib functions go through a plt call stub
12761 that uses r2. */
12762 eh = ppc_elf_hash_entry (h);
12763 if (eh != NULL
12764 && (eh->elf.plt.plist != NULL
12765 || (eh->oh != NULL
12766 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
12767 {
12768 ret = 1;
12769 break;
12770 }
12771
12772 if (sym_sec == NULL)
12773 /* Ignore other undefined symbols. */
12774 continue;
12775
12776 /* Assume branches to other sections not included in the
12777 link need stubs too, to cover -R and absolute syms. */
12778 if (sym_sec->output_section == NULL)
12779 {
12780 ret = 1;
12781 break;
12782 }
12783
12784 if (h == NULL)
12785 sym_value = sym->st_value;
12786 else
12787 {
12788 if (h->root.type != bfd_link_hash_defined
12789 && h->root.type != bfd_link_hash_defweak)
12790 abort ();
12791 sym_value = h->root.u.def.value;
12792 }
12793 sym_value += rel->r_addend;
12794
12795 /* If this branch reloc uses an opd sym, find the code section. */
12796 opd = get_opd_info (sym_sec);
12797 if (opd != NULL)
12798 {
12799 if (h == NULL && opd->adjust != NULL)
12800 {
12801 long adjust;
12802
12803 adjust = opd->adjust[OPD_NDX (sym_value)];
12804 if (adjust == -1)
12805 /* Assume deleted functions won't ever be called. */
12806 continue;
12807 sym_value += adjust;
12808 }
12809
12810 dest = opd_entry_value (sym_sec, sym_value,
12811 &sym_sec, NULL, FALSE);
12812 if (dest == (bfd_vma) -1)
12813 continue;
12814 }
12815 else
12816 dest = (sym_value
12817 + sym_sec->output_offset
12818 + sym_sec->output_section->vma);
12819
12820 /* Ignore branch to self. */
12821 if (sym_sec == isec)
12822 continue;
12823
12824 /* If the called function uses the toc, we need a stub. */
12825 if (sym_sec->has_toc_reloc
12826 || sym_sec->makes_toc_func_call)
12827 {
12828 ret = 1;
12829 break;
12830 }
12831
12832 /* Assume any branch that needs a long branch stub might in fact
12833 need a plt_branch stub. A plt_branch stub uses r2. */
12834 else if (dest - (isec->output_offset
12835 + isec->output_section->vma
12836 + rel->r_offset) + (1 << 25)
12837 >= (2u << 25) - PPC64_LOCAL_ENTRY_OFFSET (h
12838 ? h->other
12839 : sym->st_other))
12840 {
12841 ret = 1;
12842 break;
12843 }
12844
12845 /* If calling back to a section in the process of being
12846 tested, we can't say for sure that no toc adjusting stubs
12847 are needed, so don't return zero. */
12848 else if (sym_sec->call_check_in_progress)
12849 ret = 2;
12850
12851 /* Branches to another section that itself doesn't have any TOC
12852 references are OK. Recursively call ourselves to check. */
12853 else if (!sym_sec->call_check_done)
12854 {
12855 int recur;
12856
12857 /* Mark current section as indeterminate, so that other
12858 sections that call back to current won't be marked as
12859 known. */
12860 isec->call_check_in_progress = 1;
12861 recur = toc_adjusting_stub_needed (info, sym_sec);
12862 isec->call_check_in_progress = 0;
12863
12864 if (recur != 0)
12865 {
12866 ret = recur;
12867 if (recur != 2)
12868 break;
12869 }
12870 }
12871 }
12872
12873 if (elf_symtab_hdr (isec->owner).contents
12874 != (unsigned char *) local_syms)
12875 free (local_syms);
12876 if (elf_section_data (isec)->relocs != relstart)
12877 free (relstart);
12878 }
12879
12880 if ((ret & 1) == 0
12881 && isec->map_head.s != NULL
12882 && (strcmp (isec->output_section->name, ".init") == 0
12883 || strcmp (isec->output_section->name, ".fini") == 0))
12884 {
12885 if (isec->map_head.s->has_toc_reloc
12886 || isec->map_head.s->makes_toc_func_call)
12887 ret = 1;
12888 else if (!isec->map_head.s->call_check_done)
12889 {
12890 int recur;
12891 isec->call_check_in_progress = 1;
12892 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
12893 isec->call_check_in_progress = 0;
12894 if (recur != 0)
12895 ret = recur;
12896 }
12897 }
12898
12899 if (ret == 1)
12900 isec->makes_toc_func_call = 1;
12901
12902 return ret;
12903 }
12904
12905 /* The linker repeatedly calls this function for each input section,
12906 in the order that input sections are linked into output sections.
12907 Build lists of input sections to determine groupings between which
12908 we may insert linker stubs. */
12909
12910 bfd_boolean
12911 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
12912 {
12913 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12914
12915 if (htab == NULL)
12916 return FALSE;
12917
12918 if ((isec->output_section->flags & SEC_CODE) != 0
12919 && isec->output_section->id < htab->sec_info_arr_size)
12920 {
12921 /* This happens to make the list in reverse order,
12922 which is what we want. */
12923 htab->sec_info[isec->id].u.list
12924 = htab->sec_info[isec->output_section->id].u.list;
12925 htab->sec_info[isec->output_section->id].u.list = isec;
12926 }
12927
12928 if (htab->multi_toc_needed)
12929 {
12930 /* Analyse sections that aren't already flagged as needing a
12931 valid toc pointer. Exclude .fixup for the linux kernel.
12932 .fixup contains branches, but only back to the function that
12933 hit an exception. */
12934 if (!(isec->has_toc_reloc
12935 || (isec->flags & SEC_CODE) == 0
12936 || strcmp (isec->name, ".fixup") == 0
12937 || isec->call_check_done))
12938 {
12939 if (toc_adjusting_stub_needed (info, isec) < 0)
12940 return FALSE;
12941 }
12942 /* Make all sections use the TOC assigned for this object file.
12943 This will be wrong for pasted sections; We fix that in
12944 check_pasted_section(). */
12945 if (elf_gp (isec->owner) != 0)
12946 htab->toc_curr = elf_gp (isec->owner);
12947 }
12948
12949 htab->sec_info[isec->id].toc_off = htab->toc_curr;
12950 return TRUE;
12951 }
12952
12953 /* Check that all .init and .fini sections use the same toc, if they
12954 have toc relocs. */
12955
12956 static bfd_boolean
12957 check_pasted_section (struct bfd_link_info *info, const char *name)
12958 {
12959 asection *o = bfd_get_section_by_name (info->output_bfd, name);
12960
12961 if (o != NULL)
12962 {
12963 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12964 bfd_vma toc_off = 0;
12965 asection *i;
12966
12967 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12968 if (i->has_toc_reloc)
12969 {
12970 if (toc_off == 0)
12971 toc_off = htab->sec_info[i->id].toc_off;
12972 else if (toc_off != htab->sec_info[i->id].toc_off)
12973 return FALSE;
12974 }
12975
12976 if (toc_off == 0)
12977 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12978 if (i->makes_toc_func_call)
12979 {
12980 toc_off = htab->sec_info[i->id].toc_off;
12981 break;
12982 }
12983
12984 /* Make sure the whole pasted function uses the same toc offset. */
12985 if (toc_off != 0)
12986 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12987 htab->sec_info[i->id].toc_off = toc_off;
12988 }
12989 return TRUE;
12990 }
12991
12992 bfd_boolean
12993 ppc64_elf_check_init_fini (struct bfd_link_info *info)
12994 {
12995 return (check_pasted_section (info, ".init")
12996 & check_pasted_section (info, ".fini"));
12997 }
12998
12999 /* See whether we can group stub sections together. Grouping stub
13000 sections may result in fewer stubs. More importantly, we need to
13001 put all .init* and .fini* stubs at the beginning of the .init or
13002 .fini output sections respectively, because glibc splits the
13003 _init and _fini functions into multiple parts. Putting a stub in
13004 the middle of a function is not a good idea. */
13005
13006 static bfd_boolean
13007 group_sections (struct bfd_link_info *info,
13008 bfd_size_type stub_group_size,
13009 bfd_boolean stubs_always_before_branch)
13010 {
13011 struct ppc_link_hash_table *htab;
13012 asection *osec;
13013 bfd_boolean suppress_size_errors;
13014
13015 htab = ppc_hash_table (info);
13016 if (htab == NULL)
13017 return FALSE;
13018
13019 suppress_size_errors = FALSE;
13020 if (stub_group_size == 1)
13021 {
13022 /* Default values. */
13023 if (stubs_always_before_branch)
13024 stub_group_size = 0x1e00000;
13025 else
13026 stub_group_size = 0x1c00000;
13027 suppress_size_errors = TRUE;
13028 }
13029
13030 for (osec = info->output_bfd->sections; osec != NULL; osec = osec->next)
13031 {
13032 asection *tail;
13033
13034 if (osec->id >= htab->sec_info_arr_size)
13035 continue;
13036
13037 tail = htab->sec_info[osec->id].u.list;
13038 while (tail != NULL)
13039 {
13040 asection *curr;
13041 asection *prev;
13042 bfd_size_type total;
13043 bfd_boolean big_sec;
13044 bfd_vma curr_toc;
13045 struct map_stub *group;
13046 bfd_size_type group_size;
13047
13048 curr = tail;
13049 total = tail->size;
13050 group_size = (ppc64_elf_section_data (tail) != NULL
13051 && ppc64_elf_section_data (tail)->has_14bit_branch
13052 ? stub_group_size >> 10 : stub_group_size);
13053
13054 big_sec = total > group_size;
13055 if (big_sec && !suppress_size_errors)
13056 /* xgettext:c-format */
13057 _bfd_error_handler (_("%pB section %pA exceeds stub group size"),
13058 tail->owner, tail);
13059 curr_toc = htab->sec_info[tail->id].toc_off;
13060
13061 while ((prev = htab->sec_info[curr->id].u.list) != NULL
13062 && ((total += curr->output_offset - prev->output_offset)
13063 < (ppc64_elf_section_data (prev) != NULL
13064 && ppc64_elf_section_data (prev)->has_14bit_branch
13065 ? (group_size = stub_group_size >> 10) : group_size))
13066 && htab->sec_info[prev->id].toc_off == curr_toc)
13067 curr = prev;
13068
13069 /* OK, the size from the start of CURR to the end is less
13070 than group_size and thus can be handled by one stub
13071 section. (or the tail section is itself larger than
13072 group_size, in which case we may be toast.) We should
13073 really be keeping track of the total size of stubs added
13074 here, as stubs contribute to the final output section
13075 size. That's a little tricky, and this way will only
13076 break if stubs added make the total size more than 2^25,
13077 ie. for the default stub_group_size, if stubs total more
13078 than 2097152 bytes, or nearly 75000 plt call stubs. */
13079 group = bfd_alloc (curr->owner, sizeof (*group));
13080 if (group == NULL)
13081 return FALSE;
13082 group->link_sec = curr;
13083 group->stub_sec = NULL;
13084 group->needs_save_res = 0;
13085 group->lr_restore = 0;
13086 group->eh_size = 0;
13087 group->eh_base = 0;
13088 group->next = htab->group;
13089 htab->group = group;
13090 do
13091 {
13092 prev = htab->sec_info[tail->id].u.list;
13093 /* Set up this stub group. */
13094 htab->sec_info[tail->id].u.group = group;
13095 }
13096 while (tail != curr && (tail = prev) != NULL);
13097
13098 /* But wait, there's more! Input sections up to group_size
13099 bytes before the stub section can be handled by it too.
13100 Don't do this if we have a really large section after the
13101 stubs, as adding more stubs increases the chance that
13102 branches may not reach into the stub section. */
13103 if (!stubs_always_before_branch && !big_sec)
13104 {
13105 total = 0;
13106 while (prev != NULL
13107 && ((total += tail->output_offset - prev->output_offset)
13108 < (ppc64_elf_section_data (prev) != NULL
13109 && ppc64_elf_section_data (prev)->has_14bit_branch
13110 ? (group_size = stub_group_size >> 10)
13111 : group_size))
13112 && htab->sec_info[prev->id].toc_off == curr_toc)
13113 {
13114 tail = prev;
13115 prev = htab->sec_info[tail->id].u.list;
13116 htab->sec_info[tail->id].u.group = group;
13117 }
13118 }
13119 tail = prev;
13120 }
13121 }
13122 return TRUE;
13123 }
13124
13125 static const unsigned char glink_eh_frame_cie[] =
13126 {
13127 0, 0, 0, 16, /* length. */
13128 0, 0, 0, 0, /* id. */
13129 1, /* CIE version. */
13130 'z', 'R', 0, /* Augmentation string. */
13131 4, /* Code alignment. */
13132 0x78, /* Data alignment. */
13133 65, /* RA reg. */
13134 1, /* Augmentation size. */
13135 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
13136 DW_CFA_def_cfa, 1, 0 /* def_cfa: r1 offset 0. */
13137 };
13138
13139 /* Stripping output sections is normally done before dynamic section
13140 symbols have been allocated. This function is called later, and
13141 handles cases like htab->brlt which is mapped to its own output
13142 section. */
13143
13144 static void
13145 maybe_strip_output (struct bfd_link_info *info, asection *isec)
13146 {
13147 if (isec->size == 0
13148 && isec->output_section->size == 0
13149 && !(isec->output_section->flags & SEC_KEEP)
13150 && !bfd_section_removed_from_list (info->output_bfd,
13151 isec->output_section)
13152 && elf_section_data (isec->output_section)->dynindx == 0)
13153 {
13154 isec->output_section->flags |= SEC_EXCLUDE;
13155 bfd_section_list_remove (info->output_bfd, isec->output_section);
13156 info->output_bfd->section_count--;
13157 }
13158 }
13159
13160 /* Determine and set the size of the stub section for a final link.
13161
13162 The basic idea here is to examine all the relocations looking for
13163 PC-relative calls to a target that is unreachable with a "bl"
13164 instruction. */
13165
13166 bfd_boolean
13167 ppc64_elf_size_stubs (struct bfd_link_info *info)
13168 {
13169 bfd_size_type stub_group_size;
13170 bfd_boolean stubs_always_before_branch;
13171 struct ppc_link_hash_table *htab = ppc_hash_table (info);
13172
13173 if (htab == NULL)
13174 return FALSE;
13175
13176 if (htab->params->power10_stubs == -1 && !htab->has_power10_relocs)
13177 htab->params->power10_stubs = 0;
13178
13179 if (htab->params->plt_thread_safe == -1 && !bfd_link_executable (info))
13180 htab->params->plt_thread_safe = 1;
13181 if (!htab->opd_abi)
13182 htab->params->plt_thread_safe = 0;
13183 else if (htab->params->plt_thread_safe == -1)
13184 {
13185 static const char *const thread_starter[] =
13186 {
13187 "pthread_create",
13188 /* libstdc++ */
13189 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
13190 /* librt */
13191 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
13192 "mq_notify", "create_timer",
13193 /* libanl */
13194 "getaddrinfo_a",
13195 /* libgomp */
13196 "GOMP_parallel",
13197 "GOMP_parallel_start",
13198 "GOMP_parallel_loop_static",
13199 "GOMP_parallel_loop_static_start",
13200 "GOMP_parallel_loop_dynamic",
13201 "GOMP_parallel_loop_dynamic_start",
13202 "GOMP_parallel_loop_guided",
13203 "GOMP_parallel_loop_guided_start",
13204 "GOMP_parallel_loop_runtime",
13205 "GOMP_parallel_loop_runtime_start",
13206 "GOMP_parallel_sections",
13207 "GOMP_parallel_sections_start",
13208 /* libgo */
13209 "__go_go",
13210 };
13211 unsigned i;
13212
13213 for (i = 0; i < ARRAY_SIZE (thread_starter); i++)
13214 {
13215 struct elf_link_hash_entry *h;
13216 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
13217 FALSE, FALSE, TRUE);
13218 htab->params->plt_thread_safe = h != NULL && h->ref_regular;
13219 if (htab->params->plt_thread_safe)
13220 break;
13221 }
13222 }
13223 stubs_always_before_branch = htab->params->group_size < 0;
13224 if (htab->params->group_size < 0)
13225 stub_group_size = -htab->params->group_size;
13226 else
13227 stub_group_size = htab->params->group_size;
13228
13229 if (!group_sections (info, stub_group_size, stubs_always_before_branch))
13230 return FALSE;
13231
13232 htab->tga_group = NULL;
13233 if (!htab->params->no_tls_get_addr_regsave
13234 && htab->tga_desc_fd != NULL
13235 && (htab->tga_desc_fd->elf.root.type == bfd_link_hash_undefined
13236 || htab->tga_desc_fd->elf.root.type == bfd_link_hash_undefweak)
13237 && htab->tls_get_addr_fd != NULL
13238 && is_static_defined (&htab->tls_get_addr_fd->elf))
13239 {
13240 asection *sym_sec, *code_sec, *stub_sec;
13241 bfd_vma sym_value;
13242 struct _opd_sec_data *opd;
13243
13244 sym_sec = htab->tls_get_addr_fd->elf.root.u.def.section;
13245 sym_value = defined_sym_val (&htab->tls_get_addr_fd->elf);
13246 code_sec = sym_sec;
13247 opd = get_opd_info (sym_sec);
13248 if (opd != NULL)
13249 opd_entry_value (sym_sec, sym_value, &code_sec, NULL, FALSE);
13250 htab->tga_group = htab->sec_info[code_sec->id].u.group;
13251 stub_sec = (*htab->params->add_stub_section) (".tga_desc.stub",
13252 htab->tga_group->link_sec);
13253 if (stub_sec == NULL)
13254 return FALSE;
13255 htab->tga_group->stub_sec = stub_sec;
13256
13257 htab->tga_desc_fd->elf.root.type = bfd_link_hash_defined;
13258 htab->tga_desc_fd->elf.root.u.def.section = stub_sec;
13259 htab->tga_desc_fd->elf.root.u.def.value = 0;
13260 htab->tga_desc_fd->elf.type = STT_FUNC;
13261 htab->tga_desc_fd->elf.def_regular = 1;
13262 htab->tga_desc_fd->elf.non_elf = 0;
13263 _bfd_elf_link_hash_hide_symbol (info, &htab->tga_desc_fd->elf, TRUE);
13264 }
13265
13266 #define STUB_SHRINK_ITER 20
13267 /* Loop until no stubs added. After iteration 20 of this loop we may
13268 exit on a stub section shrinking. This is to break out of a
13269 pathological case where adding stubs on one iteration decreases
13270 section gaps (perhaps due to alignment), which then requires
13271 fewer or smaller stubs on the next iteration. */
13272
13273 while (1)
13274 {
13275 bfd *input_bfd;
13276 unsigned int bfd_indx;
13277 struct map_stub *group;
13278
13279 htab->stub_iteration += 1;
13280
13281 for (input_bfd = info->input_bfds, bfd_indx = 0;
13282 input_bfd != NULL;
13283 input_bfd = input_bfd->link.next, bfd_indx++)
13284 {
13285 Elf_Internal_Shdr *symtab_hdr;
13286 asection *section;
13287 Elf_Internal_Sym *local_syms = NULL;
13288
13289 if (!is_ppc64_elf (input_bfd))
13290 continue;
13291
13292 /* We'll need the symbol table in a second. */
13293 symtab_hdr = &elf_symtab_hdr (input_bfd);
13294 if (symtab_hdr->sh_info == 0)
13295 continue;
13296
13297 /* Walk over each section attached to the input bfd. */
13298 for (section = input_bfd->sections;
13299 section != NULL;
13300 section = section->next)
13301 {
13302 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
13303
13304 /* If there aren't any relocs, then there's nothing more
13305 to do. */
13306 if ((section->flags & SEC_RELOC) == 0
13307 || (section->flags & SEC_ALLOC) == 0
13308 || (section->flags & SEC_LOAD) == 0
13309 || (section->flags & SEC_CODE) == 0
13310 || section->reloc_count == 0)
13311 continue;
13312
13313 /* If this section is a link-once section that will be
13314 discarded, then don't create any stubs. */
13315 if (section->output_section == NULL
13316 || section->output_section->owner != info->output_bfd)
13317 continue;
13318
13319 /* Get the relocs. */
13320 internal_relocs
13321 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
13322 info->keep_memory);
13323 if (internal_relocs == NULL)
13324 goto error_ret_free_local;
13325
13326 /* Now examine each relocation. */
13327 irela = internal_relocs;
13328 irelaend = irela + section->reloc_count;
13329 for (; irela < irelaend; irela++)
13330 {
13331 enum elf_ppc64_reloc_type r_type;
13332 unsigned int r_indx;
13333 enum ppc_stub_type stub_type;
13334 struct ppc_stub_hash_entry *stub_entry;
13335 asection *sym_sec, *code_sec;
13336 bfd_vma sym_value, code_value;
13337 bfd_vma destination;
13338 unsigned long local_off;
13339 bfd_boolean ok_dest;
13340 struct ppc_link_hash_entry *hash;
13341 struct ppc_link_hash_entry *fdh;
13342 struct elf_link_hash_entry *h;
13343 Elf_Internal_Sym *sym;
13344 char *stub_name;
13345 const asection *id_sec;
13346 struct _opd_sec_data *opd;
13347 struct plt_entry *plt_ent;
13348
13349 r_type = ELF64_R_TYPE (irela->r_info);
13350 r_indx = ELF64_R_SYM (irela->r_info);
13351
13352 if (r_type >= R_PPC64_max)
13353 {
13354 bfd_set_error (bfd_error_bad_value);
13355 goto error_ret_free_internal;
13356 }
13357
13358 /* Only look for stubs on branch instructions. */
13359 if (r_type != R_PPC64_REL24
13360 && r_type != R_PPC64_REL24_NOTOC
13361 && r_type != R_PPC64_REL14
13362 && r_type != R_PPC64_REL14_BRTAKEN
13363 && r_type != R_PPC64_REL14_BRNTAKEN)
13364 continue;
13365
13366 /* Now determine the call target, its name, value,
13367 section. */
13368 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
13369 r_indx, input_bfd))
13370 goto error_ret_free_internal;
13371 hash = ppc_elf_hash_entry (h);
13372
13373 ok_dest = FALSE;
13374 fdh = NULL;
13375 sym_value = 0;
13376 if (hash == NULL)
13377 {
13378 sym_value = sym->st_value;
13379 if (sym_sec != NULL
13380 && sym_sec->output_section != NULL)
13381 ok_dest = TRUE;
13382 }
13383 else if (hash->elf.root.type == bfd_link_hash_defined
13384 || hash->elf.root.type == bfd_link_hash_defweak)
13385 {
13386 sym_value = hash->elf.root.u.def.value;
13387 if (sym_sec->output_section != NULL)
13388 ok_dest = TRUE;
13389 }
13390 else if (hash->elf.root.type == bfd_link_hash_undefweak
13391 || hash->elf.root.type == bfd_link_hash_undefined)
13392 {
13393 /* Recognise an old ABI func code entry sym, and
13394 use the func descriptor sym instead if it is
13395 defined. */
13396 if (hash->elf.root.root.string[0] == '.'
13397 && hash->oh != NULL)
13398 {
13399 fdh = ppc_follow_link (hash->oh);
13400 if (fdh->elf.root.type == bfd_link_hash_defined
13401 || fdh->elf.root.type == bfd_link_hash_defweak)
13402 {
13403 sym_sec = fdh->elf.root.u.def.section;
13404 sym_value = fdh->elf.root.u.def.value;
13405 if (sym_sec->output_section != NULL)
13406 ok_dest = TRUE;
13407 }
13408 else
13409 fdh = NULL;
13410 }
13411 }
13412 else
13413 {
13414 bfd_set_error (bfd_error_bad_value);
13415 goto error_ret_free_internal;
13416 }
13417
13418 destination = 0;
13419 local_off = 0;
13420 if (ok_dest)
13421 {
13422 sym_value += irela->r_addend;
13423 destination = (sym_value
13424 + sym_sec->output_offset
13425 + sym_sec->output_section->vma);
13426 local_off = PPC64_LOCAL_ENTRY_OFFSET (hash
13427 ? hash->elf.other
13428 : sym->st_other);
13429 }
13430
13431 code_sec = sym_sec;
13432 code_value = sym_value;
13433 opd = get_opd_info (sym_sec);
13434 if (opd != NULL)
13435 {
13436 bfd_vma dest;
13437
13438 if (hash == NULL && opd->adjust != NULL)
13439 {
13440 long adjust = opd->adjust[OPD_NDX (sym_value)];
13441 if (adjust == -1)
13442 continue;
13443 code_value += adjust;
13444 sym_value += adjust;
13445 }
13446 dest = opd_entry_value (sym_sec, sym_value,
13447 &code_sec, &code_value, FALSE);
13448 if (dest != (bfd_vma) -1)
13449 {
13450 destination = dest;
13451 if (fdh != NULL)
13452 {
13453 /* Fixup old ABI sym to point at code
13454 entry. */
13455 hash->elf.root.type = bfd_link_hash_defweak;
13456 hash->elf.root.u.def.section = code_sec;
13457 hash->elf.root.u.def.value = code_value;
13458 }
13459 }
13460 }
13461
13462 /* Determine what (if any) linker stub is needed. */
13463 plt_ent = NULL;
13464 stub_type = ppc_type_of_stub (section, irela, &hash,
13465 &plt_ent, destination,
13466 local_off);
13467
13468 if (r_type == R_PPC64_REL24_NOTOC)
13469 {
13470 if (stub_type == ppc_stub_plt_call)
13471 stub_type = ppc_stub_plt_call_notoc;
13472 else if (stub_type == ppc_stub_long_branch
13473 || (code_sec != NULL
13474 && code_sec->output_section != NULL
13475 && (((hash ? hash->elf.other : sym->st_other)
13476 & STO_PPC64_LOCAL_MASK)
13477 > 1 << STO_PPC64_LOCAL_BIT)))
13478 stub_type = ppc_stub_long_branch_notoc;
13479 }
13480 else if (stub_type != ppc_stub_plt_call)
13481 {
13482 /* Check whether we need a TOC adjusting stub.
13483 Since the linker pastes together pieces from
13484 different object files when creating the
13485 _init and _fini functions, it may be that a
13486 call to what looks like a local sym is in
13487 fact a call needing a TOC adjustment. */
13488 if ((code_sec != NULL
13489 && code_sec->output_section != NULL
13490 && (code_sec->has_toc_reloc
13491 || code_sec->makes_toc_func_call)
13492 && (htab->sec_info[code_sec->id].toc_off
13493 != htab->sec_info[section->id].toc_off))
13494 || (((hash ? hash->elf.other : sym->st_other)
13495 & STO_PPC64_LOCAL_MASK)
13496 == 1 << STO_PPC64_LOCAL_BIT))
13497 stub_type = ppc_stub_long_branch_r2off;
13498 }
13499
13500 if (stub_type == ppc_stub_none)
13501 continue;
13502
13503 /* __tls_get_addr calls might be eliminated. */
13504 if (stub_type != ppc_stub_plt_call
13505 && stub_type != ppc_stub_plt_call_notoc
13506 && hash != NULL
13507 && is_tls_get_addr (&hash->elf, htab)
13508 && section->has_tls_reloc
13509 && irela != internal_relocs)
13510 {
13511 /* Get tls info. */
13512 unsigned char *tls_mask;
13513
13514 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
13515 irela - 1, input_bfd))
13516 goto error_ret_free_internal;
13517 if ((*tls_mask & TLS_TLS) != 0
13518 && (*tls_mask & (TLS_GD | TLS_LD)) == 0)
13519 continue;
13520 }
13521
13522 if (stub_type == ppc_stub_plt_call)
13523 {
13524 if (!htab->opd_abi
13525 && htab->params->plt_localentry0 != 0
13526 && is_elfv2_localentry0 (&hash->elf))
13527 htab->has_plt_localentry0 = 1;
13528 else if (irela + 1 < irelaend
13529 && irela[1].r_offset == irela->r_offset + 4
13530 && (ELF64_R_TYPE (irela[1].r_info)
13531 == R_PPC64_TOCSAVE))
13532 {
13533 if (!tocsave_find (htab, INSERT,
13534 &local_syms, irela + 1, input_bfd))
13535 goto error_ret_free_internal;
13536 }
13537 else
13538 stub_type = ppc_stub_plt_call_r2save;
13539 }
13540
13541 /* Support for grouping stub sections. */
13542 id_sec = htab->sec_info[section->id].u.group->link_sec;
13543
13544 /* Get the name of this stub. */
13545 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
13546 if (!stub_name)
13547 goto error_ret_free_internal;
13548
13549 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
13550 stub_name, FALSE, FALSE);
13551 if (stub_entry != NULL)
13552 {
13553 enum ppc_stub_type old_type;
13554
13555 /* A stub has already been created, but it may
13556 not be the required type. We shouldn't be
13557 transitioning from plt_call to long_branch
13558 stubs or vice versa, but we might be
13559 upgrading from plt_call to plt_call_r2save or
13560 from long_branch to long_branch_r2off. */
13561 free (stub_name);
13562 if (htab->params->power10_stubs == -1)
13563 {
13564 /* For --power10-stubs=auto, don't merge _notoc
13565 and other varieties of stubs. (The _both
13566 variety won't be created.) */
13567 bfd_boolean notoc = r_type == R_PPC64_REL24_NOTOC;
13568 struct ppc_stub_hash_entry *alt_stub
13569 = select_alt_stub (stub_entry, notoc);
13570
13571 if (alt_stub == NULL)
13572 {
13573 alt_stub = (struct ppc_stub_hash_entry *)
13574 stub_hash_newfunc (NULL,
13575 &htab->stub_hash_table,
13576 stub_entry->root.string);
13577 if (alt_stub == NULL)
13578 {
13579 /* xgettext:c-format */
13580 _bfd_error_handler
13581 (_("%pB: cannot create stub entry %s"),
13582 section->owner, stub_entry->root.string);
13583 goto error_ret_free_internal;
13584 }
13585 *alt_stub = *stub_entry;
13586 stub_entry->root.next = &alt_stub->root;
13587 if (notoc)
13588 /* Sort notoc stubs first, for no good
13589 reason. */
13590 alt_stub = stub_entry;
13591 alt_stub->stub_type = stub_type;
13592 }
13593 stub_entry = alt_stub;
13594 }
13595 old_type = stub_entry->stub_type;
13596 switch (old_type)
13597 {
13598 default:
13599 abort ();
13600
13601 case ppc_stub_save_res:
13602 continue;
13603
13604 case ppc_stub_plt_call:
13605 case ppc_stub_plt_call_r2save:
13606 case ppc_stub_plt_call_notoc:
13607 case ppc_stub_plt_call_both:
13608 if (stub_type == ppc_stub_plt_call)
13609 continue;
13610 else if (stub_type == ppc_stub_plt_call_r2save)
13611 {
13612 if (old_type == ppc_stub_plt_call_notoc)
13613 stub_type = ppc_stub_plt_call_both;
13614 }
13615 else if (stub_type == ppc_stub_plt_call_notoc)
13616 {
13617 if (old_type == ppc_stub_plt_call_r2save)
13618 stub_type = ppc_stub_plt_call_both;
13619 }
13620 else
13621 abort ();
13622 break;
13623
13624 case ppc_stub_plt_branch:
13625 case ppc_stub_plt_branch_r2off:
13626 case ppc_stub_plt_branch_notoc:
13627 case ppc_stub_plt_branch_both:
13628 old_type += (ppc_stub_long_branch
13629 - ppc_stub_plt_branch);
13630 /* Fall through. */
13631 case ppc_stub_long_branch:
13632 case ppc_stub_long_branch_r2off:
13633 case ppc_stub_long_branch_notoc:
13634 case ppc_stub_long_branch_both:
13635 if (stub_type == ppc_stub_long_branch)
13636 continue;
13637 else if (stub_type == ppc_stub_long_branch_r2off)
13638 {
13639 if (old_type == ppc_stub_long_branch_notoc)
13640 stub_type = ppc_stub_long_branch_both;
13641 }
13642 else if (stub_type == ppc_stub_long_branch_notoc)
13643 {
13644 if (old_type == ppc_stub_long_branch_r2off)
13645 stub_type = ppc_stub_long_branch_both;
13646 }
13647 else
13648 abort ();
13649 break;
13650 }
13651 if (old_type < stub_type)
13652 stub_entry->stub_type = stub_type;
13653 continue;
13654 }
13655
13656 stub_entry = ppc_add_stub (stub_name, section, info);
13657 if (stub_entry == NULL)
13658 {
13659 free (stub_name);
13660 error_ret_free_internal:
13661 if (elf_section_data (section)->relocs == NULL)
13662 free (internal_relocs);
13663 error_ret_free_local:
13664 if (symtab_hdr->contents
13665 != (unsigned char *) local_syms)
13666 free (local_syms);
13667 return FALSE;
13668 }
13669
13670 stub_entry->stub_type = stub_type;
13671 if (stub_type >= ppc_stub_plt_call
13672 && stub_type <= ppc_stub_plt_call_both)
13673 {
13674 stub_entry->target_value = sym_value;
13675 stub_entry->target_section = sym_sec;
13676 }
13677 else
13678 {
13679 stub_entry->target_value = code_value;
13680 stub_entry->target_section = code_sec;
13681 }
13682 stub_entry->h = hash;
13683 stub_entry->plt_ent = plt_ent;
13684 stub_entry->symtype
13685 = hash ? hash->elf.type : ELF_ST_TYPE (sym->st_info);
13686 stub_entry->other = hash ? hash->elf.other : sym->st_other;
13687
13688 if (hash != NULL
13689 && (hash->elf.root.type == bfd_link_hash_defined
13690 || hash->elf.root.type == bfd_link_hash_defweak))
13691 htab->stub_globals += 1;
13692 }
13693
13694 /* We're done with the internal relocs, free them. */
13695 if (elf_section_data (section)->relocs != internal_relocs)
13696 free (internal_relocs);
13697 }
13698
13699 if (local_syms != NULL
13700 && symtab_hdr->contents != (unsigned char *) local_syms)
13701 {
13702 if (!info->keep_memory)
13703 free (local_syms);
13704 else
13705 symtab_hdr->contents = (unsigned char *) local_syms;
13706 }
13707 }
13708
13709 /* We may have added some stubs. Find out the new size of the
13710 stub sections. */
13711 for (group = htab->group; group != NULL; group = group->next)
13712 {
13713 group->lr_restore = 0;
13714 group->eh_size = 0;
13715 if (group->stub_sec != NULL)
13716 {
13717 asection *stub_sec = group->stub_sec;
13718
13719 if (htab->stub_iteration <= STUB_SHRINK_ITER
13720 || stub_sec->rawsize < stub_sec->size)
13721 /* Past STUB_SHRINK_ITER, rawsize is the max size seen. */
13722 stub_sec->rawsize = stub_sec->size;
13723 stub_sec->size = 0;
13724 stub_sec->reloc_count = 0;
13725 stub_sec->flags &= ~SEC_RELOC;
13726 }
13727 }
13728 if (htab->tga_group != NULL)
13729 {
13730 /* See emit_tga_desc and emit_tga_desc_eh_frame. */
13731 htab->tga_group->eh_size
13732 = 1 + 2 + (htab->opd_abi != 0) + 3 + 8 * 2 + 3 + 8 + 3;
13733 htab->tga_group->lr_restore = 23 * 4;
13734 htab->tga_group->stub_sec->size = 24 * 4;
13735 }
13736
13737 if (htab->stub_iteration <= STUB_SHRINK_ITER
13738 || htab->brlt->rawsize < htab->brlt->size)
13739 htab->brlt->rawsize = htab->brlt->size;
13740 htab->brlt->size = 0;
13741 htab->brlt->reloc_count = 0;
13742 htab->brlt->flags &= ~SEC_RELOC;
13743 if (htab->relbrlt != NULL)
13744 htab->relbrlt->size = 0;
13745
13746 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
13747
13748 for (group = htab->group; group != NULL; group = group->next)
13749 if (group->needs_save_res)
13750 group->stub_sec->size += htab->sfpr->size;
13751
13752 if (info->emitrelocations
13753 && htab->glink != NULL && htab->glink->size != 0)
13754 {
13755 htab->glink->reloc_count = 1;
13756 htab->glink->flags |= SEC_RELOC;
13757 }
13758
13759 if (htab->glink_eh_frame != NULL
13760 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
13761 && htab->glink_eh_frame->output_section->size > 8)
13762 {
13763 size_t size = 0, align = 4;
13764
13765 for (group = htab->group; group != NULL; group = group->next)
13766 if (group->eh_size != 0)
13767 size += (group->eh_size + 17 + align - 1) & -align;
13768 if (htab->glink != NULL && htab->glink->size != 0)
13769 size += (24 + align - 1) & -align;
13770 if (size != 0)
13771 size += (sizeof (glink_eh_frame_cie) + align - 1) & -align;
13772 align = 1ul << htab->glink_eh_frame->output_section->alignment_power;
13773 size = (size + align - 1) & -align;
13774 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
13775 htab->glink_eh_frame->size = size;
13776 }
13777
13778 if (htab->params->plt_stub_align != 0)
13779 for (group = htab->group; group != NULL; group = group->next)
13780 if (group->stub_sec != NULL)
13781 {
13782 int align = abs (htab->params->plt_stub_align);
13783 group->stub_sec->size
13784 = (group->stub_sec->size + (1 << align) - 1) & -(1 << align);
13785 }
13786
13787 for (group = htab->group; group != NULL; group = group->next)
13788 if (group->stub_sec != NULL
13789 && group->stub_sec->rawsize != group->stub_sec->size
13790 && (htab->stub_iteration <= STUB_SHRINK_ITER
13791 || group->stub_sec->rawsize < group->stub_sec->size))
13792 break;
13793
13794 if (group == NULL
13795 && (htab->brlt->rawsize == htab->brlt->size
13796 || (htab->stub_iteration > STUB_SHRINK_ITER
13797 && htab->brlt->rawsize > htab->brlt->size))
13798 && (htab->glink_eh_frame == NULL
13799 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size)
13800 && (htab->tga_group == NULL
13801 || htab->stub_iteration > 1))
13802 break;
13803
13804 /* Ask the linker to do its stuff. */
13805 (*htab->params->layout_sections_again) ();
13806 }
13807
13808 if (htab->glink_eh_frame != NULL
13809 && htab->glink_eh_frame->size != 0)
13810 {
13811 bfd_vma val;
13812 bfd_byte *p, *last_fde;
13813 size_t last_fde_len, size, align, pad;
13814 struct map_stub *group;
13815
13816 /* It is necessary to at least have a rough outline of the
13817 linker generated CIEs and FDEs written before
13818 bfd_elf_discard_info is run, in order for these FDEs to be
13819 indexed in .eh_frame_hdr. */
13820 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
13821 if (p == NULL)
13822 return FALSE;
13823 htab->glink_eh_frame->contents = p;
13824 last_fde = p;
13825 align = 4;
13826
13827 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
13828 /* CIE length (rewrite in case little-endian). */
13829 last_fde_len = ((sizeof (glink_eh_frame_cie) + align - 1) & -align) - 4;
13830 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13831 p += last_fde_len + 4;
13832
13833 for (group = htab->group; group != NULL; group = group->next)
13834 if (group->eh_size != 0)
13835 {
13836 group->eh_base = p - htab->glink_eh_frame->contents;
13837 last_fde = p;
13838 last_fde_len = ((group->eh_size + 17 + align - 1) & -align) - 4;
13839 /* FDE length. */
13840 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13841 p += 4;
13842 /* CIE pointer. */
13843 val = p - htab->glink_eh_frame->contents;
13844 bfd_put_32 (htab->elf.dynobj, val, p);
13845 p += 4;
13846 /* Offset to stub section, written later. */
13847 p += 4;
13848 /* stub section size. */
13849 bfd_put_32 (htab->elf.dynobj, group->stub_sec->size, p);
13850 p += 4;
13851 /* Augmentation. */
13852 p += 1;
13853 /* Make sure we don't have all nops. This is enough for
13854 elf-eh-frame.c to detect the last non-nop opcode. */
13855 p[group->eh_size - 1] = DW_CFA_advance_loc + 1;
13856 p = last_fde + last_fde_len + 4;
13857 }
13858 if (htab->glink != NULL && htab->glink->size != 0)
13859 {
13860 last_fde = p;
13861 last_fde_len = ((24 + align - 1) & -align) - 4;
13862 /* FDE length. */
13863 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13864 p += 4;
13865 /* CIE pointer. */
13866 val = p - htab->glink_eh_frame->contents;
13867 bfd_put_32 (htab->elf.dynobj, val, p);
13868 p += 4;
13869 /* Offset to .glink, written later. */
13870 p += 4;
13871 /* .glink size. */
13872 bfd_put_32 (htab->elf.dynobj, htab->glink->size - 8, p);
13873 p += 4;
13874 /* Augmentation. */
13875 p += 1;
13876
13877 *p++ = DW_CFA_advance_loc + 1;
13878 *p++ = DW_CFA_register;
13879 *p++ = 65;
13880 *p++ = htab->opd_abi ? 12 : 0;
13881 *p++ = DW_CFA_advance_loc + (htab->opd_abi ? 5 : 7);
13882 *p++ = DW_CFA_restore_extended;
13883 *p++ = 65;
13884 p += ((24 + align - 1) & -align) - 24;
13885 }
13886 /* Subsume any padding into the last FDE if user .eh_frame
13887 sections are aligned more than glink_eh_frame. Otherwise any
13888 zero padding will be seen as a terminator. */
13889 align = 1ul << htab->glink_eh_frame->output_section->alignment_power;
13890 size = p - htab->glink_eh_frame->contents;
13891 pad = ((size + align - 1) & -align) - size;
13892 htab->glink_eh_frame->size = size + pad;
13893 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
13894 }
13895
13896 maybe_strip_output (info, htab->brlt);
13897 if (htab->relbrlt != NULL)
13898 maybe_strip_output (info, htab->relbrlt);
13899 if (htab->glink_eh_frame != NULL)
13900 maybe_strip_output (info, htab->glink_eh_frame);
13901
13902 return TRUE;
13903 }
13904
13905 /* Called after we have determined section placement. If sections
13906 move, we'll be called again. Provide a value for TOCstart. */
13907
13908 bfd_vma
13909 ppc64_elf_set_toc (struct bfd_link_info *info, bfd *obfd)
13910 {
13911 asection *s;
13912 bfd_vma TOCstart, adjust;
13913
13914 if (info != NULL)
13915 {
13916 struct elf_link_hash_entry *h;
13917 struct elf_link_hash_table *htab = elf_hash_table (info);
13918
13919 if (is_elf_hash_table (htab)
13920 && htab->hgot != NULL)
13921 h = htab->hgot;
13922 else
13923 {
13924 h = elf_link_hash_lookup (htab, ".TOC.", FALSE, FALSE, TRUE);
13925 if (is_elf_hash_table (htab))
13926 htab->hgot = h;
13927 }
13928 if (h != NULL
13929 && h->root.type == bfd_link_hash_defined
13930 && !h->root.linker_def
13931 && (!is_elf_hash_table (htab)
13932 || h->def_regular))
13933 {
13934 TOCstart = defined_sym_val (h) - TOC_BASE_OFF;
13935 _bfd_set_gp_value (obfd, TOCstart);
13936 return TOCstart;
13937 }
13938 }
13939
13940 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
13941 order. The TOC starts where the first of these sections starts. */
13942 s = bfd_get_section_by_name (obfd, ".got");
13943 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13944 s = bfd_get_section_by_name (obfd, ".toc");
13945 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13946 s = bfd_get_section_by_name (obfd, ".tocbss");
13947 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13948 s = bfd_get_section_by_name (obfd, ".plt");
13949 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13950 {
13951 /* This may happen for
13952 o references to TOC base (SYM@toc / TOC[tc0]) without a
13953 .toc directive
13954 o bad linker script
13955 o --gc-sections and empty TOC sections
13956
13957 FIXME: Warn user? */
13958
13959 /* Look for a likely section. We probably won't even be
13960 using TOCstart. */
13961 for (s = obfd->sections; s != NULL; s = s->next)
13962 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
13963 | SEC_EXCLUDE))
13964 == (SEC_ALLOC | SEC_SMALL_DATA))
13965 break;
13966 if (s == NULL)
13967 for (s = obfd->sections; s != NULL; s = s->next)
13968 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
13969 == (SEC_ALLOC | SEC_SMALL_DATA))
13970 break;
13971 if (s == NULL)
13972 for (s = obfd->sections; s != NULL; s = s->next)
13973 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
13974 == SEC_ALLOC)
13975 break;
13976 if (s == NULL)
13977 for (s = obfd->sections; s != NULL; s = s->next)
13978 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
13979 break;
13980 }
13981
13982 TOCstart = 0;
13983 if (s != NULL)
13984 TOCstart = s->output_section->vma + s->output_offset;
13985
13986 /* Force alignment. */
13987 adjust = TOCstart & (TOC_BASE_ALIGN - 1);
13988 TOCstart -= adjust;
13989 _bfd_set_gp_value (obfd, TOCstart);
13990
13991 if (info != NULL && s != NULL)
13992 {
13993 struct ppc_link_hash_table *htab = ppc_hash_table (info);
13994
13995 if (htab != NULL)
13996 {
13997 if (htab->elf.hgot != NULL)
13998 {
13999 htab->elf.hgot->root.u.def.value = TOC_BASE_OFF - adjust;
14000 htab->elf.hgot->root.u.def.section = s;
14001 }
14002 }
14003 else
14004 {
14005 struct bfd_link_hash_entry *bh = NULL;
14006 _bfd_generic_link_add_one_symbol (info, obfd, ".TOC.", BSF_GLOBAL,
14007 s, TOC_BASE_OFF - adjust,
14008 NULL, FALSE, FALSE, &bh);
14009 }
14010 }
14011 return TOCstart;
14012 }
14013
14014 /* Called via elf_link_hash_traverse from ppc64_elf_build_stubs to
14015 write out any global entry stubs, and PLT relocations. */
14016
14017 static bfd_boolean
14018 build_global_entry_stubs_and_plt (struct elf_link_hash_entry *h, void *inf)
14019 {
14020 struct bfd_link_info *info;
14021 struct ppc_link_hash_table *htab;
14022 struct plt_entry *ent;
14023 asection *s;
14024
14025 if (h->root.type == bfd_link_hash_indirect)
14026 return TRUE;
14027
14028 info = inf;
14029 htab = ppc_hash_table (info);
14030 if (htab == NULL)
14031 return FALSE;
14032
14033 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14034 if (ent->plt.offset != (bfd_vma) -1)
14035 {
14036 /* This symbol has an entry in the procedure linkage
14037 table. Set it up. */
14038 Elf_Internal_Rela rela;
14039 asection *plt, *relplt;
14040 bfd_byte *loc;
14041
14042 if (!htab->elf.dynamic_sections_created
14043 || h->dynindx == -1)
14044 {
14045 if (!(h->def_regular
14046 && (h->root.type == bfd_link_hash_defined
14047 || h->root.type == bfd_link_hash_defweak)))
14048 continue;
14049 if (h->type == STT_GNU_IFUNC)
14050 {
14051 plt = htab->elf.iplt;
14052 relplt = htab->elf.irelplt;
14053 htab->elf.ifunc_resolvers = TRUE;
14054 if (htab->opd_abi)
14055 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14056 else
14057 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14058 }
14059 else
14060 {
14061 plt = htab->pltlocal;
14062 if (bfd_link_pic (info))
14063 {
14064 relplt = htab->relpltlocal;
14065 if (htab->opd_abi)
14066 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_SLOT);
14067 else
14068 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14069 }
14070 else
14071 relplt = NULL;
14072 }
14073 rela.r_addend = defined_sym_val (h) + ent->addend;
14074
14075 if (relplt == NULL)
14076 {
14077 loc = plt->contents + ent->plt.offset;
14078 bfd_put_64 (info->output_bfd, rela.r_addend, loc);
14079 if (htab->opd_abi)
14080 {
14081 bfd_vma toc = elf_gp (info->output_bfd);
14082 toc += htab->sec_info[h->root.u.def.section->id].toc_off;
14083 bfd_put_64 (info->output_bfd, toc, loc + 8);
14084 }
14085 }
14086 else
14087 {
14088 rela.r_offset = (plt->output_section->vma
14089 + plt->output_offset
14090 + ent->plt.offset);
14091 loc = relplt->contents + (relplt->reloc_count++
14092 * sizeof (Elf64_External_Rela));
14093 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
14094 }
14095 }
14096 else
14097 {
14098 rela.r_offset = (htab->elf.splt->output_section->vma
14099 + htab->elf.splt->output_offset
14100 + ent->plt.offset);
14101 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
14102 rela.r_addend = ent->addend;
14103 loc = (htab->elf.srelplt->contents
14104 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE (htab))
14105 / PLT_ENTRY_SIZE (htab) * sizeof (Elf64_External_Rela)));
14106 if (h->type == STT_GNU_IFUNC && is_static_defined (h))
14107 htab->elf.ifunc_resolvers = TRUE;
14108 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
14109 }
14110 }
14111
14112 if (!h->pointer_equality_needed)
14113 return TRUE;
14114
14115 if (h->def_regular)
14116 return TRUE;
14117
14118 s = htab->global_entry;
14119 if (s == NULL || s->size == 0)
14120 return TRUE;
14121
14122 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14123 if (ent->plt.offset != (bfd_vma) -1
14124 && ent->addend == 0)
14125 {
14126 bfd_byte *p;
14127 asection *plt;
14128 bfd_vma off;
14129
14130 p = s->contents + h->root.u.def.value;
14131 plt = htab->elf.splt;
14132 if (!htab->elf.dynamic_sections_created
14133 || h->dynindx == -1)
14134 {
14135 if (h->type == STT_GNU_IFUNC)
14136 plt = htab->elf.iplt;
14137 else
14138 plt = htab->pltlocal;
14139 }
14140 off = ent->plt.offset + plt->output_offset + plt->output_section->vma;
14141 off -= h->root.u.def.value + s->output_offset + s->output_section->vma;
14142
14143 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
14144 {
14145 info->callbacks->einfo
14146 (_("%P: linkage table error against `%pT'\n"),
14147 h->root.root.string);
14148 bfd_set_error (bfd_error_bad_value);
14149 htab->stub_error = TRUE;
14150 }
14151
14152 htab->stub_count[ppc_stub_global_entry - 1] += 1;
14153 if (htab->params->emit_stub_syms)
14154 {
14155 size_t len = strlen (h->root.root.string);
14156 char *name = bfd_malloc (sizeof "12345678.global_entry." + len);
14157
14158 if (name == NULL)
14159 return FALSE;
14160
14161 sprintf (name, "%08x.global_entry.%s", s->id, h->root.root.string);
14162 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
14163 if (h == NULL)
14164 return FALSE;
14165 if (h->root.type == bfd_link_hash_new)
14166 {
14167 h->root.type = bfd_link_hash_defined;
14168 h->root.u.def.section = s;
14169 h->root.u.def.value = p - s->contents;
14170 h->ref_regular = 1;
14171 h->def_regular = 1;
14172 h->ref_regular_nonweak = 1;
14173 h->forced_local = 1;
14174 h->non_elf = 0;
14175 h->root.linker_def = 1;
14176 }
14177 }
14178
14179 if (PPC_HA (off) != 0)
14180 {
14181 bfd_put_32 (s->owner, ADDIS_R12_R12 | PPC_HA (off), p);
14182 p += 4;
14183 }
14184 bfd_put_32 (s->owner, LD_R12_0R12 | PPC_LO (off), p);
14185 p += 4;
14186 bfd_put_32 (s->owner, MTCTR_R12, p);
14187 p += 4;
14188 bfd_put_32 (s->owner, BCTR, p);
14189 break;
14190 }
14191 return TRUE;
14192 }
14193
14194 /* Write PLT relocs for locals. */
14195
14196 static bfd_boolean
14197 write_plt_relocs_for_local_syms (struct bfd_link_info *info)
14198 {
14199 struct ppc_link_hash_table *htab = ppc_hash_table (info);
14200 bfd *ibfd;
14201
14202 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
14203 {
14204 struct got_entry **lgot_ents, **end_lgot_ents;
14205 struct plt_entry **local_plt, **lplt, **end_local_plt;
14206 Elf_Internal_Shdr *symtab_hdr;
14207 bfd_size_type locsymcount;
14208 Elf_Internal_Sym *local_syms = NULL;
14209 struct plt_entry *ent;
14210
14211 if (!is_ppc64_elf (ibfd))
14212 continue;
14213
14214 lgot_ents = elf_local_got_ents (ibfd);
14215 if (!lgot_ents)
14216 continue;
14217
14218 symtab_hdr = &elf_symtab_hdr (ibfd);
14219 locsymcount = symtab_hdr->sh_info;
14220 end_lgot_ents = lgot_ents + locsymcount;
14221 local_plt = (struct plt_entry **) end_lgot_ents;
14222 end_local_plt = local_plt + locsymcount;
14223 for (lplt = local_plt; lplt < end_local_plt; ++lplt)
14224 for (ent = *lplt; ent != NULL; ent = ent->next)
14225 if (ent->plt.offset != (bfd_vma) -1)
14226 {
14227 Elf_Internal_Sym *sym;
14228 asection *sym_sec;
14229 asection *plt, *relplt;
14230 bfd_byte *loc;
14231 bfd_vma val;
14232
14233 if (!get_sym_h (NULL, &sym, &sym_sec, NULL, &local_syms,
14234 lplt - local_plt, ibfd))
14235 {
14236 if (symtab_hdr->contents != (unsigned char *) local_syms)
14237 free (local_syms);
14238 return FALSE;
14239 }
14240
14241 val = sym->st_value + ent->addend;
14242 if (ELF_ST_TYPE (sym->st_info) != STT_GNU_IFUNC)
14243 val += PPC64_LOCAL_ENTRY_OFFSET (sym->st_other);
14244 if (sym_sec != NULL && sym_sec->output_section != NULL)
14245 val += sym_sec->output_offset + sym_sec->output_section->vma;
14246
14247 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14248 {
14249 htab->elf.ifunc_resolvers = TRUE;
14250 plt = htab->elf.iplt;
14251 relplt = htab->elf.irelplt;
14252 }
14253 else
14254 {
14255 plt = htab->pltlocal;
14256 relplt = bfd_link_pic (info) ? htab->relpltlocal : NULL;
14257 }
14258
14259 if (relplt == NULL)
14260 {
14261 loc = plt->contents + ent->plt.offset;
14262 bfd_put_64 (info->output_bfd, val, loc);
14263 if (htab->opd_abi)
14264 {
14265 bfd_vma toc = elf_gp (ibfd);
14266 bfd_put_64 (info->output_bfd, toc, loc + 8);
14267 }
14268 }
14269 else
14270 {
14271 Elf_Internal_Rela rela;
14272 rela.r_offset = (ent->plt.offset
14273 + plt->output_offset
14274 + plt->output_section->vma);
14275 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14276 {
14277 if (htab->opd_abi)
14278 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14279 else
14280 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14281 }
14282 else
14283 {
14284 if (htab->opd_abi)
14285 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_SLOT);
14286 else
14287 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14288 }
14289 rela.r_addend = val;
14290 loc = relplt->contents + (relplt->reloc_count++
14291 * sizeof (Elf64_External_Rela));
14292 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
14293 }
14294 }
14295
14296 if (local_syms != NULL
14297 && symtab_hdr->contents != (unsigned char *) local_syms)
14298 {
14299 if (!info->keep_memory)
14300 free (local_syms);
14301 else
14302 symtab_hdr->contents = (unsigned char *) local_syms;
14303 }
14304 }
14305 return TRUE;
14306 }
14307
14308 /* Emit the static wrapper function preserving registers around a
14309 __tls_get_addr_opt call. */
14310
14311 static bfd_boolean
14312 emit_tga_desc (struct ppc_link_hash_table *htab)
14313 {
14314 asection *stub_sec = htab->tga_group->stub_sec;
14315 unsigned int cfa_updt = 11 * 4;
14316 bfd_byte *p;
14317 bfd_vma to, from, delta;
14318
14319 BFD_ASSERT (htab->tga_desc_fd->elf.root.type == bfd_link_hash_defined
14320 && htab->tga_desc_fd->elf.root.u.def.section == stub_sec
14321 && htab->tga_desc_fd->elf.root.u.def.value == 0);
14322 to = defined_sym_val (&htab->tls_get_addr_fd->elf);
14323 from = defined_sym_val (&htab->tga_desc_fd->elf) + cfa_updt;
14324 delta = to - from;
14325 if (delta + (1 << 25) >= 1 << 26)
14326 {
14327 _bfd_error_handler (_("__tls_get_addr call offset overflow"));
14328 htab->stub_error = TRUE;
14329 return FALSE;
14330 }
14331
14332 p = stub_sec->contents;
14333 p = tls_get_addr_prologue (htab->elf.dynobj, p, htab);
14334 bfd_put_32 (stub_sec->owner, B_DOT | 1 | (delta & 0x3fffffc), p);
14335 p += 4;
14336 p = tls_get_addr_epilogue (htab->elf.dynobj, p, htab);
14337 return stub_sec->size == (bfd_size_type) (p - stub_sec->contents);
14338 }
14339
14340 /* Emit eh_frame describing the static wrapper function. */
14341
14342 static bfd_byte *
14343 emit_tga_desc_eh_frame (struct ppc_link_hash_table *htab, bfd_byte *p)
14344 {
14345 unsigned int cfa_updt = 11 * 4;
14346 unsigned int i;
14347
14348 *p++ = DW_CFA_advance_loc + cfa_updt / 4;
14349 *p++ = DW_CFA_def_cfa_offset;
14350 if (htab->opd_abi)
14351 {
14352 *p++ = 128;
14353 *p++ = 1;
14354 }
14355 else
14356 *p++ = 96;
14357 *p++ = DW_CFA_offset_extended_sf;
14358 *p++ = 65;
14359 *p++ = (-16 / 8) & 0x7f;
14360 for (i = 4; i < 12; i++)
14361 {
14362 *p++ = DW_CFA_offset + i;
14363 *p++ = (htab->opd_abi ? 13 : 12) - i;
14364 }
14365 *p++ = DW_CFA_advance_loc + 10;
14366 *p++ = DW_CFA_def_cfa_offset;
14367 *p++ = 0;
14368 for (i = 4; i < 12; i++)
14369 *p++ = DW_CFA_restore + i;
14370 *p++ = DW_CFA_advance_loc + 2;
14371 *p++ = DW_CFA_restore_extended;
14372 *p++ = 65;
14373 return p;
14374 }
14375
14376 /* Build all the stubs associated with the current output file.
14377 The stubs are kept in a hash table attached to the main linker
14378 hash table. This function is called via gldelf64ppc_finish. */
14379
14380 bfd_boolean
14381 ppc64_elf_build_stubs (struct bfd_link_info *info,
14382 char **stats)
14383 {
14384 struct ppc_link_hash_table *htab = ppc_hash_table (info);
14385 struct map_stub *group;
14386 asection *stub_sec;
14387 bfd_byte *p;
14388 int stub_sec_count = 0;
14389
14390 if (htab == NULL)
14391 return FALSE;
14392
14393 /* Allocate memory to hold the linker stubs. */
14394 for (group = htab->group; group != NULL; group = group->next)
14395 {
14396 group->eh_size = 0;
14397 group->lr_restore = 0;
14398 if ((stub_sec = group->stub_sec) != NULL
14399 && stub_sec->size != 0)
14400 {
14401 stub_sec->contents = bfd_zalloc (htab->params->stub_bfd,
14402 stub_sec->size);
14403 if (stub_sec->contents == NULL)
14404 return FALSE;
14405 stub_sec->size = 0;
14406 }
14407 }
14408
14409 if (htab->glink != NULL && htab->glink->size != 0)
14410 {
14411 unsigned int indx;
14412 bfd_vma plt0;
14413
14414 /* Build the .glink plt call stub. */
14415 if (htab->params->emit_stub_syms)
14416 {
14417 struct elf_link_hash_entry *h;
14418 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
14419 TRUE, FALSE, FALSE);
14420 if (h == NULL)
14421 return FALSE;
14422 if (h->root.type == bfd_link_hash_new)
14423 {
14424 h->root.type = bfd_link_hash_defined;
14425 h->root.u.def.section = htab->glink;
14426 h->root.u.def.value = 8;
14427 h->ref_regular = 1;
14428 h->def_regular = 1;
14429 h->ref_regular_nonweak = 1;
14430 h->forced_local = 1;
14431 h->non_elf = 0;
14432 h->root.linker_def = 1;
14433 }
14434 }
14435 plt0 = (htab->elf.splt->output_section->vma
14436 + htab->elf.splt->output_offset
14437 - 16);
14438 if (info->emitrelocations)
14439 {
14440 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
14441 if (r == NULL)
14442 return FALSE;
14443 r->r_offset = (htab->glink->output_offset
14444 + htab->glink->output_section->vma);
14445 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
14446 r->r_addend = plt0;
14447 }
14448 p = htab->glink->contents;
14449 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
14450 bfd_put_64 (htab->glink->owner, plt0, p);
14451 p += 8;
14452 if (htab->opd_abi)
14453 {
14454 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
14455 p += 4;
14456 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
14457 p += 4;
14458 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
14459 p += 4;
14460 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
14461 p += 4;
14462 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
14463 p += 4;
14464 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
14465 p += 4;
14466 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
14467 p += 4;
14468 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | 8, p);
14469 p += 4;
14470 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
14471 p += 4;
14472 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 16, p);
14473 p += 4;
14474 }
14475 else
14476 {
14477 bfd_put_32 (htab->glink->owner, MFLR_R0, p);
14478 p += 4;
14479 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
14480 p += 4;
14481 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
14482 p += 4;
14483 bfd_put_32 (htab->glink->owner, STD_R2_0R1 + 24, p);
14484 p += 4;
14485 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
14486 p += 4;
14487 bfd_put_32 (htab->glink->owner, MTLR_R0, p);
14488 p += 4;
14489 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
14490 p += 4;
14491 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
14492 p += 4;
14493 bfd_put_32 (htab->glink->owner, ADDI_R0_R12 | (-48 & 0xffff), p);
14494 p += 4;
14495 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
14496 p += 4;
14497 bfd_put_32 (htab->glink->owner, SRDI_R0_R0_2, p);
14498 p += 4;
14499 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
14500 p += 4;
14501 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 8, p);
14502 p += 4;
14503 }
14504 bfd_put_32 (htab->glink->owner, BCTR, p);
14505 p += 4;
14506 BFD_ASSERT (p == htab->glink->contents + GLINK_PLTRESOLVE_SIZE (htab));
14507
14508 /* Build the .glink lazy link call stubs. */
14509 indx = 0;
14510 while (p < htab->glink->contents + htab->glink->size)
14511 {
14512 if (htab->opd_abi)
14513 {
14514 if (indx < 0x8000)
14515 {
14516 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
14517 p += 4;
14518 }
14519 else
14520 {
14521 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
14522 p += 4;
14523 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx),
14524 p);
14525 p += 4;
14526 }
14527 }
14528 bfd_put_32 (htab->glink->owner,
14529 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
14530 indx++;
14531 p += 4;
14532 }
14533 }
14534
14535 if (htab->tga_group != NULL)
14536 {
14537 htab->tga_group->lr_restore = 23 * 4;
14538 htab->tga_group->stub_sec->size = 24 * 4;
14539 if (!emit_tga_desc (htab))
14540 return FALSE;
14541 if (htab->glink_eh_frame != NULL
14542 && htab->glink_eh_frame->size != 0)
14543 {
14544 size_t align = 4;
14545
14546 p = htab->glink_eh_frame->contents;
14547 p += (sizeof (glink_eh_frame_cie) + align - 1) & -align;
14548 p += 17;
14549 htab->tga_group->eh_size = emit_tga_desc_eh_frame (htab, p) - p;
14550 }
14551 }
14552
14553 /* Build .glink global entry stubs, and PLT relocs for globals. */
14554 elf_link_hash_traverse (&htab->elf, build_global_entry_stubs_and_plt, info);
14555
14556 if (!write_plt_relocs_for_local_syms (info))
14557 return FALSE;
14558
14559 if (htab->brlt != NULL && htab->brlt->size != 0)
14560 {
14561 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
14562 htab->brlt->size);
14563 if (htab->brlt->contents == NULL)
14564 return FALSE;
14565 }
14566 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
14567 {
14568 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
14569 htab->relbrlt->size);
14570 if (htab->relbrlt->contents == NULL)
14571 return FALSE;
14572 }
14573
14574 /* Build the stubs as directed by the stub hash table. */
14575 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
14576
14577 for (group = htab->group; group != NULL; group = group->next)
14578 if (group->needs_save_res)
14579 group->stub_sec->size += htab->sfpr->size;
14580
14581 if (htab->relbrlt != NULL)
14582 htab->relbrlt->reloc_count = 0;
14583
14584 if (htab->params->plt_stub_align != 0)
14585 for (group = htab->group; group != NULL; group = group->next)
14586 if ((stub_sec = group->stub_sec) != NULL)
14587 {
14588 int align = abs (htab->params->plt_stub_align);
14589 stub_sec->size = (stub_sec->size + (1 << align) - 1) & -(1 << align);
14590 }
14591
14592 for (group = htab->group; group != NULL; group = group->next)
14593 if (group->needs_save_res)
14594 {
14595 stub_sec = group->stub_sec;
14596 memcpy (stub_sec->contents + stub_sec->size - htab->sfpr->size,
14597 htab->sfpr->contents, htab->sfpr->size);
14598 if (htab->params->emit_stub_syms)
14599 {
14600 unsigned int i;
14601
14602 for (i = 0; i < ARRAY_SIZE (save_res_funcs); i++)
14603 if (!sfpr_define (info, &save_res_funcs[i], stub_sec))
14604 return FALSE;
14605 }
14606 }
14607
14608 if (htab->glink_eh_frame != NULL
14609 && htab->glink_eh_frame->size != 0)
14610 {
14611 bfd_vma val;
14612 size_t align = 4;
14613
14614 p = htab->glink_eh_frame->contents;
14615 p += (sizeof (glink_eh_frame_cie) + align - 1) & -align;
14616
14617 for (group = htab->group; group != NULL; group = group->next)
14618 if (group->eh_size != 0)
14619 {
14620 /* Offset to stub section. */
14621 val = (group->stub_sec->output_section->vma
14622 + group->stub_sec->output_offset);
14623 val -= (htab->glink_eh_frame->output_section->vma
14624 + htab->glink_eh_frame->output_offset
14625 + (p + 8 - htab->glink_eh_frame->contents));
14626 if (val + 0x80000000 > 0xffffffff)
14627 {
14628 _bfd_error_handler
14629 (_("%s offset too large for .eh_frame sdata4 encoding"),
14630 group->stub_sec->name);
14631 return FALSE;
14632 }
14633 bfd_put_32 (htab->elf.dynobj, val, p + 8);
14634 p += (group->eh_size + 17 + 3) & -4;
14635 }
14636 if (htab->glink != NULL && htab->glink->size != 0)
14637 {
14638 /* Offset to .glink. */
14639 val = (htab->glink->output_section->vma
14640 + htab->glink->output_offset
14641 + 8);
14642 val -= (htab->glink_eh_frame->output_section->vma
14643 + htab->glink_eh_frame->output_offset
14644 + (p + 8 - htab->glink_eh_frame->contents));
14645 if (val + 0x80000000 > 0xffffffff)
14646 {
14647 _bfd_error_handler
14648 (_("%s offset too large for .eh_frame sdata4 encoding"),
14649 htab->glink->name);
14650 return FALSE;
14651 }
14652 bfd_put_32 (htab->elf.dynobj, val, p + 8);
14653 p += (24 + align - 1) & -align;
14654 }
14655 }
14656
14657 for (group = htab->group; group != NULL; group = group->next)
14658 if ((stub_sec = group->stub_sec) != NULL)
14659 {
14660 stub_sec_count += 1;
14661 if (stub_sec->rawsize != stub_sec->size
14662 && (htab->stub_iteration <= STUB_SHRINK_ITER
14663 || stub_sec->rawsize < stub_sec->size))
14664 break;
14665 }
14666
14667 if (group != NULL)
14668 {
14669 htab->stub_error = TRUE;
14670 _bfd_error_handler (_("stubs don't match calculated size"));
14671 }
14672
14673 if (htab->stub_error)
14674 return FALSE;
14675
14676 if (stats != NULL)
14677 {
14678 char *groupmsg;
14679 if (asprintf (&groupmsg,
14680 ngettext ("linker stubs in %u group\n",
14681 "linker stubs in %u groups\n",
14682 stub_sec_count),
14683 stub_sec_count) < 0)
14684 *stats = NULL;
14685 else
14686 {
14687 if (asprintf (stats, _("%s"
14688 " branch %lu\n"
14689 " branch toc adj %lu\n"
14690 " branch notoc %lu\n"
14691 " branch both %lu\n"
14692 " long branch %lu\n"
14693 " long toc adj %lu\n"
14694 " long notoc %lu\n"
14695 " long both %lu\n"
14696 " plt call %lu\n"
14697 " plt call save %lu\n"
14698 " plt call notoc %lu\n"
14699 " plt call both %lu\n"
14700 " global entry %lu"),
14701 groupmsg,
14702 htab->stub_count[ppc_stub_long_branch - 1],
14703 htab->stub_count[ppc_stub_long_branch_r2off - 1],
14704 htab->stub_count[ppc_stub_long_branch_notoc - 1],
14705 htab->stub_count[ppc_stub_long_branch_both - 1],
14706 htab->stub_count[ppc_stub_plt_branch - 1],
14707 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
14708 htab->stub_count[ppc_stub_plt_branch_notoc - 1],
14709 htab->stub_count[ppc_stub_plt_branch_both - 1],
14710 htab->stub_count[ppc_stub_plt_call - 1],
14711 htab->stub_count[ppc_stub_plt_call_r2save - 1],
14712 htab->stub_count[ppc_stub_plt_call_notoc - 1],
14713 htab->stub_count[ppc_stub_plt_call_both - 1],
14714 htab->stub_count[ppc_stub_global_entry - 1]) < 0)
14715 *stats = NULL;
14716 free (groupmsg);
14717 }
14718 }
14719 return TRUE;
14720 }
14721
14722 /* What to do when ld finds relocations against symbols defined in
14723 discarded sections. */
14724
14725 static unsigned int
14726 ppc64_elf_action_discarded (asection *sec)
14727 {
14728 if (strcmp (".opd", sec->name) == 0)
14729 return 0;
14730
14731 if (strcmp (".toc", sec->name) == 0)
14732 return 0;
14733
14734 if (strcmp (".toc1", sec->name) == 0)
14735 return 0;
14736
14737 return _bfd_elf_default_action_discarded (sec);
14738 }
14739
14740 /* These are the dynamic relocations supported by glibc. */
14741
14742 static bfd_boolean
14743 ppc64_glibc_dynamic_reloc (enum elf_ppc64_reloc_type r_type)
14744 {
14745 switch (r_type)
14746 {
14747 case R_PPC64_RELATIVE:
14748 case R_PPC64_NONE:
14749 case R_PPC64_ADDR64:
14750 case R_PPC64_GLOB_DAT:
14751 case R_PPC64_IRELATIVE:
14752 case R_PPC64_JMP_IREL:
14753 case R_PPC64_JMP_SLOT:
14754 case R_PPC64_DTPMOD64:
14755 case R_PPC64_DTPREL64:
14756 case R_PPC64_TPREL64:
14757 case R_PPC64_TPREL16_LO_DS:
14758 case R_PPC64_TPREL16_DS:
14759 case R_PPC64_TPREL16:
14760 case R_PPC64_TPREL16_LO:
14761 case R_PPC64_TPREL16_HI:
14762 case R_PPC64_TPREL16_HIGH:
14763 case R_PPC64_TPREL16_HA:
14764 case R_PPC64_TPREL16_HIGHA:
14765 case R_PPC64_TPREL16_HIGHER:
14766 case R_PPC64_TPREL16_HIGHEST:
14767 case R_PPC64_TPREL16_HIGHERA:
14768 case R_PPC64_TPREL16_HIGHESTA:
14769 case R_PPC64_ADDR16_LO_DS:
14770 case R_PPC64_ADDR16_LO:
14771 case R_PPC64_ADDR16_HI:
14772 case R_PPC64_ADDR16_HIGH:
14773 case R_PPC64_ADDR16_HA:
14774 case R_PPC64_ADDR16_HIGHA:
14775 case R_PPC64_REL30:
14776 case R_PPC64_COPY:
14777 case R_PPC64_UADDR64:
14778 case R_PPC64_UADDR32:
14779 case R_PPC64_ADDR32:
14780 case R_PPC64_ADDR24:
14781 case R_PPC64_ADDR16:
14782 case R_PPC64_UADDR16:
14783 case R_PPC64_ADDR16_DS:
14784 case R_PPC64_ADDR16_HIGHER:
14785 case R_PPC64_ADDR16_HIGHEST:
14786 case R_PPC64_ADDR16_HIGHERA:
14787 case R_PPC64_ADDR16_HIGHESTA:
14788 case R_PPC64_ADDR14:
14789 case R_PPC64_ADDR14_BRTAKEN:
14790 case R_PPC64_ADDR14_BRNTAKEN:
14791 case R_PPC64_REL32:
14792 case R_PPC64_REL64:
14793 return TRUE;
14794
14795 default:
14796 return FALSE;
14797 }
14798 }
14799
14800 /* The RELOCATE_SECTION function is called by the ELF backend linker
14801 to handle the relocations for a section.
14802
14803 The relocs are always passed as Rela structures; if the section
14804 actually uses Rel structures, the r_addend field will always be
14805 zero.
14806
14807 This function is responsible for adjust the section contents as
14808 necessary, and (if using Rela relocs and generating a
14809 relocatable output file) adjusting the reloc addend as
14810 necessary.
14811
14812 This function does not have to worry about setting the reloc
14813 address or the reloc symbol index.
14814
14815 LOCAL_SYMS is a pointer to the swapped in local symbols.
14816
14817 LOCAL_SECTIONS is an array giving the section in the input file
14818 corresponding to the st_shndx field of each local symbol.
14819
14820 The global hash table entry for the global symbols can be found
14821 via elf_sym_hashes (input_bfd).
14822
14823 When generating relocatable output, this function must handle
14824 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
14825 going to be the section symbol corresponding to the output
14826 section, which means that the addend must be adjusted
14827 accordingly. */
14828
14829 static bfd_boolean
14830 ppc64_elf_relocate_section (bfd *output_bfd,
14831 struct bfd_link_info *info,
14832 bfd *input_bfd,
14833 asection *input_section,
14834 bfd_byte *contents,
14835 Elf_Internal_Rela *relocs,
14836 Elf_Internal_Sym *local_syms,
14837 asection **local_sections)
14838 {
14839 struct ppc_link_hash_table *htab;
14840 Elf_Internal_Shdr *symtab_hdr;
14841 struct elf_link_hash_entry **sym_hashes;
14842 Elf_Internal_Rela *rel;
14843 Elf_Internal_Rela *wrel;
14844 Elf_Internal_Rela *relend;
14845 Elf_Internal_Rela outrel;
14846 bfd_byte *loc;
14847 struct got_entry **local_got_ents;
14848 bfd_vma TOCstart;
14849 bfd_boolean ret = TRUE;
14850 bfd_boolean is_opd;
14851 /* Assume 'at' branch hints. */
14852 bfd_boolean is_isa_v2 = TRUE;
14853 bfd_boolean warned_dynamic = FALSE;
14854 bfd_vma d_offset = (bfd_big_endian (input_bfd) ? 2 : 0);
14855
14856 /* Initialize howto table if needed. */
14857 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
14858 ppc_howto_init ();
14859
14860 htab = ppc_hash_table (info);
14861 if (htab == NULL)
14862 return FALSE;
14863
14864 /* Don't relocate stub sections. */
14865 if (input_section->owner == htab->params->stub_bfd)
14866 return TRUE;
14867
14868 if (!is_ppc64_elf (input_bfd))
14869 {
14870 bfd_set_error (bfd_error_wrong_format);
14871 return FALSE;
14872 }
14873
14874 local_got_ents = elf_local_got_ents (input_bfd);
14875 TOCstart = elf_gp (output_bfd);
14876 symtab_hdr = &elf_symtab_hdr (input_bfd);
14877 sym_hashes = elf_sym_hashes (input_bfd);
14878 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
14879
14880 rel = wrel = relocs;
14881 relend = relocs + input_section->reloc_count;
14882 for (; rel < relend; wrel++, rel++)
14883 {
14884 enum elf_ppc64_reloc_type r_type;
14885 bfd_vma addend;
14886 bfd_reloc_status_type r;
14887 Elf_Internal_Sym *sym;
14888 asection *sec;
14889 struct elf_link_hash_entry *h_elf;
14890 struct ppc_link_hash_entry *h;
14891 struct ppc_link_hash_entry *fdh;
14892 const char *sym_name;
14893 unsigned long r_symndx, toc_symndx;
14894 bfd_vma toc_addend;
14895 unsigned char tls_mask, tls_gd, tls_type;
14896 unsigned char sym_type;
14897 bfd_vma relocation;
14898 bfd_boolean unresolved_reloc, save_unresolved_reloc;
14899 bfd_boolean warned;
14900 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
14901 unsigned int insn;
14902 unsigned int mask;
14903 struct ppc_stub_hash_entry *stub_entry;
14904 bfd_vma max_br_offset;
14905 bfd_vma from;
14906 Elf_Internal_Rela orig_rel;
14907 reloc_howto_type *howto;
14908 struct reloc_howto_struct alt_howto;
14909 uint64_t pinsn;
14910 bfd_vma offset;
14911
14912 again:
14913 orig_rel = *rel;
14914
14915 r_type = ELF64_R_TYPE (rel->r_info);
14916 r_symndx = ELF64_R_SYM (rel->r_info);
14917
14918 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
14919 symbol of the previous ADDR64 reloc. The symbol gives us the
14920 proper TOC base to use. */
14921 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
14922 && wrel != relocs
14923 && ELF64_R_TYPE (wrel[-1].r_info) == R_PPC64_ADDR64
14924 && is_opd)
14925 r_symndx = ELF64_R_SYM (wrel[-1].r_info);
14926
14927 sym = NULL;
14928 sec = NULL;
14929 h_elf = NULL;
14930 sym_name = NULL;
14931 unresolved_reloc = FALSE;
14932 warned = FALSE;
14933
14934 if (r_symndx < symtab_hdr->sh_info)
14935 {
14936 /* It's a local symbol. */
14937 struct _opd_sec_data *opd;
14938
14939 sym = local_syms + r_symndx;
14940 sec = local_sections[r_symndx];
14941 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
14942 sym_type = ELF64_ST_TYPE (sym->st_info);
14943 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
14944 opd = get_opd_info (sec);
14945 if (opd != NULL && opd->adjust != NULL)
14946 {
14947 long adjust = opd->adjust[OPD_NDX (sym->st_value
14948 + rel->r_addend)];
14949 if (adjust == -1)
14950 relocation = 0;
14951 else
14952 {
14953 /* If this is a relocation against the opd section sym
14954 and we have edited .opd, adjust the reloc addend so
14955 that ld -r and ld --emit-relocs output is correct.
14956 If it is a reloc against some other .opd symbol,
14957 then the symbol value will be adjusted later. */
14958 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
14959 rel->r_addend += adjust;
14960 else
14961 relocation += adjust;
14962 }
14963 }
14964 }
14965 else
14966 {
14967 bfd_boolean ignored;
14968
14969 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
14970 r_symndx, symtab_hdr, sym_hashes,
14971 h_elf, sec, relocation,
14972 unresolved_reloc, warned, ignored);
14973 sym_name = h_elf->root.root.string;
14974 sym_type = h_elf->type;
14975 if (sec != NULL
14976 && sec->owner == output_bfd
14977 && strcmp (sec->name, ".opd") == 0)
14978 {
14979 /* This is a symbol defined in a linker script. All
14980 such are defined in output sections, even those
14981 defined by simple assignment from a symbol defined in
14982 an input section. Transfer the symbol to an
14983 appropriate input .opd section, so that a branch to
14984 this symbol will be mapped to the location specified
14985 by the opd entry. */
14986 struct bfd_link_order *lo;
14987 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
14988 if (lo->type == bfd_indirect_link_order)
14989 {
14990 asection *isec = lo->u.indirect.section;
14991 if (h_elf->root.u.def.value >= isec->output_offset
14992 && h_elf->root.u.def.value < (isec->output_offset
14993 + isec->size))
14994 {
14995 h_elf->root.u.def.value -= isec->output_offset;
14996 h_elf->root.u.def.section = isec;
14997 sec = isec;
14998 break;
14999 }
15000 }
15001 }
15002 }
15003 h = ppc_elf_hash_entry (h_elf);
15004
15005 if (sec != NULL && discarded_section (sec))
15006 {
15007 _bfd_clear_contents (ppc64_elf_howto_table[r_type],
15008 input_bfd, input_section,
15009 contents, rel->r_offset);
15010 wrel->r_offset = rel->r_offset;
15011 wrel->r_info = 0;
15012 wrel->r_addend = 0;
15013
15014 /* For ld -r, remove relocations in debug sections against
15015 symbols defined in discarded sections. Not done for
15016 non-debug to preserve relocs in .eh_frame which the
15017 eh_frame editing code expects to be present. */
15018 if (bfd_link_relocatable (info)
15019 && (input_section->flags & SEC_DEBUGGING))
15020 wrel--;
15021
15022 continue;
15023 }
15024
15025 if (bfd_link_relocatable (info))
15026 goto copy_reloc;
15027
15028 if (h != NULL && &h->elf == htab->elf.hgot)
15029 {
15030 relocation = TOCstart + htab->sec_info[input_section->id].toc_off;
15031 sec = bfd_abs_section_ptr;
15032 unresolved_reloc = FALSE;
15033 }
15034
15035 /* TLS optimizations. Replace instruction sequences and relocs
15036 based on information we collected in tls_optimize. We edit
15037 RELOCS so that --emit-relocs will output something sensible
15038 for the final instruction stream. */
15039 tls_mask = 0;
15040 tls_gd = 0;
15041 toc_symndx = 0;
15042 if (h != NULL)
15043 tls_mask = h->tls_mask;
15044 else if (local_got_ents != NULL)
15045 {
15046 struct plt_entry **local_plt = (struct plt_entry **)
15047 (local_got_ents + symtab_hdr->sh_info);
15048 unsigned char *lgot_masks = (unsigned char *)
15049 (local_plt + symtab_hdr->sh_info);
15050 tls_mask = lgot_masks[r_symndx];
15051 }
15052 if (((tls_mask & TLS_TLS) == 0 || tls_mask == (TLS_TLS | TLS_MARK))
15053 && (r_type == R_PPC64_TLS
15054 || r_type == R_PPC64_TLSGD
15055 || r_type == R_PPC64_TLSLD))
15056 {
15057 /* Check for toc tls entries. */
15058 unsigned char *toc_tls;
15059
15060 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
15061 &local_syms, rel, input_bfd))
15062 return FALSE;
15063
15064 if (toc_tls)
15065 tls_mask = *toc_tls;
15066 }
15067
15068 /* Check that tls relocs are used with tls syms, and non-tls
15069 relocs are used with non-tls syms. */
15070 if (r_symndx != STN_UNDEF
15071 && r_type != R_PPC64_NONE
15072 && (h == NULL
15073 || h->elf.root.type == bfd_link_hash_defined
15074 || h->elf.root.type == bfd_link_hash_defweak)
15075 && IS_PPC64_TLS_RELOC (r_type) != (sym_type == STT_TLS))
15076 {
15077 if ((tls_mask & TLS_TLS) != 0
15078 && (r_type == R_PPC64_TLS
15079 || r_type == R_PPC64_TLSGD
15080 || r_type == R_PPC64_TLSLD))
15081 /* R_PPC64_TLS is OK against a symbol in the TOC. */
15082 ;
15083 else
15084 info->callbacks->einfo
15085 (!IS_PPC64_TLS_RELOC (r_type)
15086 /* xgettext:c-format */
15087 ? _("%H: %s used with TLS symbol `%pT'\n")
15088 /* xgettext:c-format */
15089 : _("%H: %s used with non-TLS symbol `%pT'\n"),
15090 input_bfd, input_section, rel->r_offset,
15091 ppc64_elf_howto_table[r_type]->name,
15092 sym_name);
15093 }
15094
15095 /* Ensure reloc mapping code below stays sane. */
15096 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
15097 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
15098 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
15099 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
15100 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
15101 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
15102 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
15103 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
15104 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
15105 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
15106 abort ();
15107
15108 switch (r_type)
15109 {
15110 default:
15111 break;
15112
15113 case R_PPC64_LO_DS_OPT:
15114 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - d_offset);
15115 if ((insn & (0x3fu << 26)) != 58u << 26)
15116 abort ();
15117 insn += (14u << 26) - (58u << 26);
15118 bfd_put_32 (input_bfd, insn, contents + rel->r_offset - d_offset);
15119 r_type = R_PPC64_TOC16_LO;
15120 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15121 break;
15122
15123 case R_PPC64_TOC16:
15124 case R_PPC64_TOC16_LO:
15125 case R_PPC64_TOC16_DS:
15126 case R_PPC64_TOC16_LO_DS:
15127 {
15128 /* Check for toc tls entries. */
15129 unsigned char *toc_tls;
15130 int retval;
15131
15132 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
15133 &local_syms, rel, input_bfd);
15134 if (retval == 0)
15135 return FALSE;
15136
15137 if (toc_tls)
15138 {
15139 tls_mask = *toc_tls;
15140 if (r_type == R_PPC64_TOC16_DS
15141 || r_type == R_PPC64_TOC16_LO_DS)
15142 {
15143 if ((tls_mask & TLS_TLS) != 0
15144 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
15145 goto toctprel;
15146 }
15147 else
15148 {
15149 /* If we found a GD reloc pair, then we might be
15150 doing a GD->IE transition. */
15151 if (retval == 2)
15152 {
15153 tls_gd = TLS_GDIE;
15154 if ((tls_mask & TLS_TLS) != 0
15155 && (tls_mask & TLS_GD) == 0)
15156 goto tls_ldgd_opt;
15157 }
15158 else if (retval == 3)
15159 {
15160 if ((tls_mask & TLS_TLS) != 0
15161 && (tls_mask & TLS_LD) == 0)
15162 goto tls_ldgd_opt;
15163 }
15164 }
15165 }
15166 }
15167 break;
15168
15169 case R_PPC64_GOT_TPREL16_HI:
15170 case R_PPC64_GOT_TPREL16_HA:
15171 if ((tls_mask & TLS_TLS) != 0
15172 && (tls_mask & TLS_TPREL) == 0)
15173 {
15174 rel->r_offset -= d_offset;
15175 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
15176 r_type = R_PPC64_NONE;
15177 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15178 }
15179 break;
15180
15181 case R_PPC64_GOT_TPREL16_DS:
15182 case R_PPC64_GOT_TPREL16_LO_DS:
15183 if ((tls_mask & TLS_TLS) != 0
15184 && (tls_mask & TLS_TPREL) == 0)
15185 {
15186 toctprel:
15187 insn = bfd_get_32 (input_bfd,
15188 contents + rel->r_offset - d_offset);
15189 insn &= 31 << 21;
15190 insn |= 0x3c0d0000; /* addis 0,13,0 */
15191 bfd_put_32 (input_bfd, insn,
15192 contents + rel->r_offset - d_offset);
15193 r_type = R_PPC64_TPREL16_HA;
15194 if (toc_symndx != 0)
15195 {
15196 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
15197 rel->r_addend = toc_addend;
15198 /* We changed the symbol. Start over in order to
15199 get h, sym, sec etc. right. */
15200 goto again;
15201 }
15202 else
15203 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15204 }
15205 break;
15206
15207 case R_PPC64_GOT_TPREL_PCREL34:
15208 if ((tls_mask & TLS_TLS) != 0
15209 && (tls_mask & TLS_TPREL) == 0)
15210 {
15211 /* pld ra,sym@got@tprel@pcrel -> paddi ra,r13,sym@tprel */
15212 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
15213 pinsn <<= 32;
15214 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15215 pinsn += ((2ULL << 56) + (-1ULL << 52)
15216 + (14ULL << 26) - (57ULL << 26) + (13ULL << 16));
15217 bfd_put_32 (input_bfd, pinsn >> 32,
15218 contents + rel->r_offset);
15219 bfd_put_32 (input_bfd, pinsn & 0xffffffff,
15220 contents + rel->r_offset + 4);
15221 r_type = R_PPC64_TPREL34;
15222 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15223 }
15224 break;
15225
15226 case R_PPC64_TLS:
15227 if ((tls_mask & TLS_TLS) != 0
15228 && (tls_mask & TLS_TPREL) == 0)
15229 {
15230 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
15231 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
15232 if (insn == 0)
15233 break;
15234 if ((rel->r_offset & 3) == 0)
15235 {
15236 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
15237 /* Was PPC64_TLS which sits on insn boundary, now
15238 PPC64_TPREL16_LO which is at low-order half-word. */
15239 rel->r_offset += d_offset;
15240 r_type = R_PPC64_TPREL16_LO;
15241 if (toc_symndx != 0)
15242 {
15243 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
15244 rel->r_addend = toc_addend;
15245 /* We changed the symbol. Start over in order to
15246 get h, sym, sec etc. right. */
15247 goto again;
15248 }
15249 else
15250 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15251 }
15252 else if ((rel->r_offset & 3) == 1)
15253 {
15254 /* For pcrel IE to LE we already have the full
15255 offset and thus don't need an addi here. A nop
15256 or mr will do. */
15257 if ((insn & (0x3fu << 26)) == 14 << 26)
15258 {
15259 /* Extract regs from addi rt,ra,si. */
15260 unsigned int rt = (insn >> 21) & 0x1f;
15261 unsigned int ra = (insn >> 16) & 0x1f;
15262 if (rt == ra)
15263 insn = NOP;
15264 else
15265 {
15266 /* Build or ra,rs,rb with rb==rs, ie. mr ra,rs. */
15267 insn = (rt << 16) | (ra << 21) | (ra << 11);
15268 insn |= (31u << 26) | (444u << 1);
15269 }
15270 }
15271 bfd_put_32 (input_bfd, insn, contents + rel->r_offset - 1);
15272 }
15273 }
15274 break;
15275
15276 case R_PPC64_GOT_TLSGD16_HI:
15277 case R_PPC64_GOT_TLSGD16_HA:
15278 tls_gd = TLS_GDIE;
15279 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
15280 goto tls_gdld_hi;
15281 break;
15282
15283 case R_PPC64_GOT_TLSLD16_HI:
15284 case R_PPC64_GOT_TLSLD16_HA:
15285 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
15286 {
15287 tls_gdld_hi:
15288 if ((tls_mask & tls_gd) != 0)
15289 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
15290 + R_PPC64_GOT_TPREL16_DS);
15291 else
15292 {
15293 rel->r_offset -= d_offset;
15294 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
15295 r_type = R_PPC64_NONE;
15296 }
15297 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15298 }
15299 break;
15300
15301 case R_PPC64_GOT_TLSGD16:
15302 case R_PPC64_GOT_TLSGD16_LO:
15303 tls_gd = TLS_GDIE;
15304 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
15305 goto tls_ldgd_opt;
15306 break;
15307
15308 case R_PPC64_GOT_TLSLD16:
15309 case R_PPC64_GOT_TLSLD16_LO:
15310 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
15311 {
15312 unsigned int insn1, insn2;
15313
15314 tls_ldgd_opt:
15315 offset = (bfd_vma) -1;
15316 /* If not using the newer R_PPC64_TLSGD/LD to mark
15317 __tls_get_addr calls, we must trust that the call
15318 stays with its arg setup insns, ie. that the next
15319 reloc is the __tls_get_addr call associated with
15320 the current reloc. Edit both insns. */
15321 if (input_section->nomark_tls_get_addr
15322 && rel + 1 < relend
15323 && branch_reloc_hash_match (input_bfd, rel + 1,
15324 htab->tls_get_addr_fd,
15325 htab->tga_desc_fd,
15326 htab->tls_get_addr,
15327 htab->tga_desc))
15328 offset = rel[1].r_offset;
15329 /* We read the low GOT_TLS (or TOC16) insn because we
15330 need to keep the destination reg. It may be
15331 something other than the usual r3, and moved to r3
15332 before the call by intervening code. */
15333 insn1 = bfd_get_32 (input_bfd,
15334 contents + rel->r_offset - d_offset);
15335 if ((tls_mask & tls_gd) != 0)
15336 {
15337 /* IE */
15338 insn1 &= (0x1f << 21) | (0x1f << 16);
15339 insn1 |= 58u << 26; /* ld */
15340 insn2 = 0x7c636a14; /* add 3,3,13 */
15341 if (offset != (bfd_vma) -1)
15342 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15343 if (r_type == R_PPC64_TOC16
15344 || r_type == R_PPC64_TOC16_LO)
15345 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
15346 else
15347 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 1)) & 1)
15348 + R_PPC64_GOT_TPREL16_DS);
15349 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15350 }
15351 else
15352 {
15353 /* LE */
15354 insn1 &= 0x1f << 21;
15355 insn1 |= 0x3c0d0000; /* addis r,13,0 */
15356 insn2 = 0x38630000; /* addi 3,3,0 */
15357 if (tls_gd == 0)
15358 {
15359 /* Was an LD reloc. */
15360 r_symndx = STN_UNDEF;
15361 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
15362 }
15363 else if (toc_symndx != 0)
15364 {
15365 r_symndx = toc_symndx;
15366 rel->r_addend = toc_addend;
15367 }
15368 r_type = R_PPC64_TPREL16_HA;
15369 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15370 if (offset != (bfd_vma) -1)
15371 {
15372 rel[1].r_info = ELF64_R_INFO (r_symndx,
15373 R_PPC64_TPREL16_LO);
15374 rel[1].r_offset = offset + d_offset;
15375 rel[1].r_addend = rel->r_addend;
15376 }
15377 }
15378 bfd_put_32 (input_bfd, insn1,
15379 contents + rel->r_offset - d_offset);
15380 if (offset != (bfd_vma) -1)
15381 {
15382 bfd_put_32 (input_bfd, insn2, contents + offset);
15383 if (offset + 8 <= input_section->size)
15384 {
15385 insn2 = bfd_get_32 (input_bfd, contents + offset + 4);
15386 if (insn2 == LD_R2_0R1 + STK_TOC (htab))
15387 bfd_put_32 (input_bfd, NOP, contents + offset + 4);
15388 }
15389 }
15390 if ((tls_mask & tls_gd) == 0
15391 && (tls_gd == 0 || toc_symndx != 0))
15392 {
15393 /* We changed the symbol. Start over in order
15394 to get h, sym, sec etc. right. */
15395 goto again;
15396 }
15397 }
15398 break;
15399
15400 case R_PPC64_GOT_TLSGD_PCREL34:
15401 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
15402 {
15403 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
15404 pinsn <<= 32;
15405 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15406 if ((tls_mask & TLS_GDIE) != 0)
15407 {
15408 /* IE, pla -> pld */
15409 pinsn += (-2ULL << 56) + (57ULL << 26) - (14ULL << 26);
15410 r_type = R_PPC64_GOT_TPREL_PCREL34;
15411 }
15412 else
15413 {
15414 /* LE, pla pcrel -> paddi r13 */
15415 pinsn += (-1ULL << 52) + (13ULL << 16);
15416 r_type = R_PPC64_TPREL34;
15417 }
15418 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15419 bfd_put_32 (input_bfd, pinsn >> 32,
15420 contents + rel->r_offset);
15421 bfd_put_32 (input_bfd, pinsn & 0xffffffff,
15422 contents + rel->r_offset + 4);
15423 }
15424 break;
15425
15426 case R_PPC64_GOT_TLSLD_PCREL34:
15427 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
15428 {
15429 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
15430 pinsn <<= 32;
15431 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15432 pinsn += (-1ULL << 52) + (13ULL << 16);
15433 bfd_put_32 (input_bfd, pinsn >> 32,
15434 contents + rel->r_offset);
15435 bfd_put_32 (input_bfd, pinsn & 0xffffffff,
15436 contents + rel->r_offset + 4);
15437 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
15438 r_symndx = STN_UNDEF;
15439 r_type = R_PPC64_TPREL34;
15440 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15441 goto again;
15442 }
15443 break;
15444
15445 case R_PPC64_TLSGD:
15446 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0
15447 && rel + 1 < relend)
15448 {
15449 unsigned int insn2;
15450 enum elf_ppc64_reloc_type r_type1 = ELF64_R_TYPE (rel[1].r_info);
15451
15452 offset = rel->r_offset;
15453 if (is_plt_seq_reloc (r_type1))
15454 {
15455 bfd_put_32 (output_bfd, NOP, contents + offset);
15456 if (r_type1 == R_PPC64_PLT_PCREL34
15457 || r_type1 == R_PPC64_PLT_PCREL34_NOTOC)
15458 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
15459 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15460 break;
15461 }
15462
15463 if (ELF64_R_TYPE (rel[1].r_info) == R_PPC64_PLTCALL)
15464 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
15465
15466 if ((tls_mask & TLS_GDIE) != 0)
15467 {
15468 /* IE */
15469 r_type = R_PPC64_NONE;
15470 insn2 = 0x7c636a14; /* add 3,3,13 */
15471 }
15472 else
15473 {
15474 /* LE */
15475 if (toc_symndx != 0)
15476 {
15477 r_symndx = toc_symndx;
15478 rel->r_addend = toc_addend;
15479 }
15480 if (r_type1 == R_PPC64_REL24_NOTOC
15481 || r_type1 == R_PPC64_PLTCALL_NOTOC)
15482 {
15483 r_type = R_PPC64_NONE;
15484 insn2 = NOP;
15485 }
15486 else
15487 {
15488 rel->r_offset = offset + d_offset;
15489 r_type = R_PPC64_TPREL16_LO;
15490 insn2 = 0x38630000; /* addi 3,3,0 */
15491 }
15492 }
15493 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15494 /* Zap the reloc on the _tls_get_addr call too. */
15495 BFD_ASSERT (offset == rel[1].r_offset);
15496 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15497 bfd_put_32 (input_bfd, insn2, contents + offset);
15498 if ((tls_mask & TLS_GDIE) == 0
15499 && toc_symndx != 0
15500 && r_type != R_PPC64_NONE)
15501 goto again;
15502 }
15503 break;
15504
15505 case R_PPC64_TLSLD:
15506 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0
15507 && rel + 1 < relend)
15508 {
15509 unsigned int insn2;
15510 enum elf_ppc64_reloc_type r_type1 = ELF64_R_TYPE (rel[1].r_info);
15511
15512 offset = rel->r_offset;
15513 if (is_plt_seq_reloc (r_type1))
15514 {
15515 bfd_put_32 (output_bfd, NOP, contents + offset);
15516 if (r_type1 == R_PPC64_PLT_PCREL34
15517 || r_type1 == R_PPC64_PLT_PCREL34_NOTOC)
15518 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
15519 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15520 break;
15521 }
15522
15523 if (ELF64_R_TYPE (rel[1].r_info) == R_PPC64_PLTCALL)
15524 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
15525
15526 if (r_type1 == R_PPC64_REL24_NOTOC
15527 || r_type1 == R_PPC64_PLTCALL_NOTOC)
15528 {
15529 r_type = R_PPC64_NONE;
15530 insn2 = NOP;
15531 }
15532 else
15533 {
15534 rel->r_offset = offset + d_offset;
15535 r_symndx = STN_UNDEF;
15536 r_type = R_PPC64_TPREL16_LO;
15537 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
15538 insn2 = 0x38630000; /* addi 3,3,0 */
15539 }
15540 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15541 /* Zap the reloc on the _tls_get_addr call too. */
15542 BFD_ASSERT (offset == rel[1].r_offset);
15543 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15544 bfd_put_32 (input_bfd, insn2, contents + offset);
15545 if (r_type != R_PPC64_NONE)
15546 goto again;
15547 }
15548 break;
15549
15550 case R_PPC64_DTPMOD64:
15551 if (rel + 1 < relend
15552 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
15553 && rel[1].r_offset == rel->r_offset + 8)
15554 {
15555 if ((tls_mask & TLS_GD) == 0)
15556 {
15557 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
15558 if ((tls_mask & TLS_GDIE) != 0)
15559 r_type = R_PPC64_TPREL64;
15560 else
15561 {
15562 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
15563 r_type = R_PPC64_NONE;
15564 }
15565 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15566 }
15567 }
15568 else
15569 {
15570 if ((tls_mask & TLS_LD) == 0)
15571 {
15572 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
15573 r_type = R_PPC64_NONE;
15574 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15575 }
15576 }
15577 break;
15578
15579 case R_PPC64_TPREL64:
15580 if ((tls_mask & TLS_TPREL) == 0)
15581 {
15582 r_type = R_PPC64_NONE;
15583 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15584 }
15585 break;
15586
15587 case R_PPC64_ENTRY:
15588 relocation = TOCstart + htab->sec_info[input_section->id].toc_off;
15589 if (!bfd_link_pic (info)
15590 && !info->traditional_format
15591 && relocation + 0x80008000 <= 0xffffffff)
15592 {
15593 unsigned int insn1, insn2;
15594
15595 insn1 = bfd_get_32 (input_bfd, contents + rel->r_offset);
15596 insn2 = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15597 if ((insn1 & ~0xfffc) == LD_R2_0R12
15598 && insn2 == ADD_R2_R2_R12)
15599 {
15600 bfd_put_32 (input_bfd,
15601 LIS_R2 + PPC_HA (relocation),
15602 contents + rel->r_offset);
15603 bfd_put_32 (input_bfd,
15604 ADDI_R2_R2 + PPC_LO (relocation),
15605 contents + rel->r_offset + 4);
15606 }
15607 }
15608 else
15609 {
15610 relocation -= (rel->r_offset
15611 + input_section->output_offset
15612 + input_section->output_section->vma);
15613 if (relocation + 0x80008000 <= 0xffffffff)
15614 {
15615 unsigned int insn1, insn2;
15616
15617 insn1 = bfd_get_32 (input_bfd, contents + rel->r_offset);
15618 insn2 = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15619 if ((insn1 & ~0xfffc) == LD_R2_0R12
15620 && insn2 == ADD_R2_R2_R12)
15621 {
15622 bfd_put_32 (input_bfd,
15623 ADDIS_R2_R12 + PPC_HA (relocation),
15624 contents + rel->r_offset);
15625 bfd_put_32 (input_bfd,
15626 ADDI_R2_R2 + PPC_LO (relocation),
15627 contents + rel->r_offset + 4);
15628 }
15629 }
15630 }
15631 break;
15632
15633 case R_PPC64_REL16_HA:
15634 /* If we are generating a non-PIC executable, edit
15635 . 0: addis 2,12,.TOC.-0b@ha
15636 . addi 2,2,.TOC.-0b@l
15637 used by ELFv2 global entry points to set up r2, to
15638 . lis 2,.TOC.@ha
15639 . addi 2,2,.TOC.@l
15640 if .TOC. is in range. */
15641 if (!bfd_link_pic (info)
15642 && !info->traditional_format
15643 && !htab->opd_abi
15644 && rel->r_addend == d_offset
15645 && h != NULL && &h->elf == htab->elf.hgot
15646 && rel + 1 < relend
15647 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_REL16_LO)
15648 && rel[1].r_offset == rel->r_offset + 4
15649 && rel[1].r_addend == rel->r_addend + 4
15650 && relocation + 0x80008000 <= 0xffffffff)
15651 {
15652 unsigned int insn1, insn2;
15653 offset = rel->r_offset - d_offset;
15654 insn1 = bfd_get_32 (input_bfd, contents + offset);
15655 insn2 = bfd_get_32 (input_bfd, contents + offset + 4);
15656 if ((insn1 & 0xffff0000) == ADDIS_R2_R12
15657 && (insn2 & 0xffff0000) == ADDI_R2_R2)
15658 {
15659 r_type = R_PPC64_ADDR16_HA;
15660 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15661 rel->r_addend -= d_offset;
15662 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_ADDR16_LO);
15663 rel[1].r_addend -= d_offset + 4;
15664 bfd_put_32 (input_bfd, LIS_R2, contents + offset);
15665 }
15666 }
15667 break;
15668 }
15669
15670 /* Handle other relocations that tweak non-addend part of insn. */
15671 insn = 0;
15672 max_br_offset = 1 << 25;
15673 addend = rel->r_addend;
15674 reloc_dest = DEST_NORMAL;
15675 switch (r_type)
15676 {
15677 default:
15678 break;
15679
15680 case R_PPC64_TOCSAVE:
15681 if (relocation + addend == (rel->r_offset
15682 + input_section->output_offset
15683 + input_section->output_section->vma)
15684 && tocsave_find (htab, NO_INSERT,
15685 &local_syms, rel, input_bfd))
15686 {
15687 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
15688 if (insn == NOP
15689 || insn == CROR_151515 || insn == CROR_313131)
15690 bfd_put_32 (input_bfd,
15691 STD_R2_0R1 + STK_TOC (htab),
15692 contents + rel->r_offset);
15693 }
15694 break;
15695
15696 /* Branch taken prediction relocations. */
15697 case R_PPC64_ADDR14_BRTAKEN:
15698 case R_PPC64_REL14_BRTAKEN:
15699 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
15700 /* Fall through. */
15701
15702 /* Branch not taken prediction relocations. */
15703 case R_PPC64_ADDR14_BRNTAKEN:
15704 case R_PPC64_REL14_BRNTAKEN:
15705 insn |= bfd_get_32 (input_bfd,
15706 contents + rel->r_offset) & ~(0x01 << 21);
15707 /* Fall through. */
15708
15709 case R_PPC64_REL14:
15710 max_br_offset = 1 << 15;
15711 /* Fall through. */
15712
15713 case R_PPC64_REL24:
15714 case R_PPC64_REL24_NOTOC:
15715 case R_PPC64_PLTCALL:
15716 case R_PPC64_PLTCALL_NOTOC:
15717 /* Calls to functions with a different TOC, such as calls to
15718 shared objects, need to alter the TOC pointer. This is
15719 done using a linkage stub. A REL24 branching to these
15720 linkage stubs needs to be followed by a nop, as the nop
15721 will be replaced with an instruction to restore the TOC
15722 base pointer. */
15723 fdh = h;
15724 if (h != NULL
15725 && h->oh != NULL
15726 && h->oh->is_func_descriptor)
15727 fdh = ppc_follow_link (h->oh);
15728 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
15729 htab);
15730 if ((r_type == R_PPC64_PLTCALL
15731 || r_type == R_PPC64_PLTCALL_NOTOC)
15732 && stub_entry != NULL
15733 && stub_entry->stub_type >= ppc_stub_plt_call
15734 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15735 stub_entry = NULL;
15736
15737 if (stub_entry != NULL
15738 && ((stub_entry->stub_type >= ppc_stub_plt_call
15739 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15740 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
15741 || stub_entry->stub_type == ppc_stub_plt_branch_both
15742 || stub_entry->stub_type == ppc_stub_long_branch_r2off
15743 || stub_entry->stub_type == ppc_stub_long_branch_both))
15744 {
15745 bfd_boolean can_plt_call = FALSE;
15746
15747 if (stub_entry->stub_type == ppc_stub_plt_call
15748 && !htab->opd_abi
15749 && htab->params->plt_localentry0 != 0
15750 && h != NULL
15751 && is_elfv2_localentry0 (&h->elf))
15752 {
15753 /* The function doesn't use or change r2. */
15754 can_plt_call = TRUE;
15755 }
15756 else if (r_type == R_PPC64_REL24_NOTOC)
15757 {
15758 /* NOTOC calls don't need to restore r2. */
15759 can_plt_call = TRUE;
15760 }
15761
15762 /* All of these stubs may modify r2, so there must be a
15763 branch and link followed by a nop. The nop is
15764 replaced by an insn to restore r2. */
15765 else if (rel->r_offset + 8 <= input_section->size)
15766 {
15767 unsigned long br;
15768
15769 br = bfd_get_32 (input_bfd,
15770 contents + rel->r_offset);
15771 if ((br & 1) != 0)
15772 {
15773 unsigned long nop;
15774
15775 nop = bfd_get_32 (input_bfd,
15776 contents + rel->r_offset + 4);
15777 if (nop == LD_R2_0R1 + STK_TOC (htab))
15778 can_plt_call = TRUE;
15779 else if (nop == NOP
15780 || nop == CROR_151515
15781 || nop == CROR_313131)
15782 {
15783 if (h != NULL
15784 && is_tls_get_addr (&h->elf, htab)
15785 && htab->params->tls_get_addr_opt)
15786 {
15787 /* Special stub used, leave nop alone. */
15788 }
15789 else
15790 bfd_put_32 (input_bfd,
15791 LD_R2_0R1 + STK_TOC (htab),
15792 contents + rel->r_offset + 4);
15793 can_plt_call = TRUE;
15794 }
15795 }
15796 }
15797
15798 if (!can_plt_call && h != NULL)
15799 {
15800 const char *name = h->elf.root.root.string;
15801
15802 if (*name == '.')
15803 ++name;
15804
15805 if (strncmp (name, "__libc_start_main", 17) == 0
15806 && (name[17] == 0 || name[17] == '@'))
15807 {
15808 /* Allow crt1 branch to go via a toc adjusting
15809 stub. Other calls that never return could do
15810 the same, if we could detect such. */
15811 can_plt_call = TRUE;
15812 }
15813 }
15814
15815 if (!can_plt_call)
15816 {
15817 /* g++ as of 20130507 emits self-calls without a
15818 following nop. This is arguably wrong since we
15819 have conflicting information. On the one hand a
15820 global symbol and on the other a local call
15821 sequence, but don't error for this special case.
15822 It isn't possible to cheaply verify we have
15823 exactly such a call. Allow all calls to the same
15824 section. */
15825 asection *code_sec = sec;
15826
15827 if (get_opd_info (sec) != NULL)
15828 {
15829 bfd_vma off = (relocation + addend
15830 - sec->output_section->vma
15831 - sec->output_offset);
15832
15833 opd_entry_value (sec, off, &code_sec, NULL, FALSE);
15834 }
15835 if (code_sec == input_section)
15836 can_plt_call = TRUE;
15837 }
15838
15839 if (!can_plt_call)
15840 {
15841 if (stub_entry->stub_type >= ppc_stub_plt_call
15842 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15843 info->callbacks->einfo
15844 /* xgettext:c-format */
15845 (_("%H: call to `%pT' lacks nop, can't restore toc; "
15846 "(plt call stub)\n"),
15847 input_bfd, input_section, rel->r_offset, sym_name);
15848 else
15849 info->callbacks->einfo
15850 /* xgettext:c-format */
15851 (_("%H: call to `%pT' lacks nop, can't restore toc; "
15852 "(toc save/adjust stub)\n"),
15853 input_bfd, input_section, rel->r_offset, sym_name);
15854
15855 bfd_set_error (bfd_error_bad_value);
15856 ret = FALSE;
15857 }
15858
15859 if (can_plt_call
15860 && stub_entry->stub_type >= ppc_stub_plt_call
15861 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15862 unresolved_reloc = FALSE;
15863 }
15864
15865 if ((stub_entry == NULL
15866 || stub_entry->stub_type == ppc_stub_long_branch
15867 || stub_entry->stub_type == ppc_stub_plt_branch)
15868 && get_opd_info (sec) != NULL)
15869 {
15870 /* The branch destination is the value of the opd entry. */
15871 bfd_vma off = (relocation + addend
15872 - sec->output_section->vma
15873 - sec->output_offset);
15874 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
15875 if (dest != (bfd_vma) -1)
15876 {
15877 relocation = dest;
15878 addend = 0;
15879 reloc_dest = DEST_OPD;
15880 }
15881 }
15882
15883 /* If the branch is out of reach we ought to have a long
15884 branch stub. */
15885 from = (rel->r_offset
15886 + input_section->output_offset
15887 + input_section->output_section->vma);
15888
15889 relocation += PPC64_LOCAL_ENTRY_OFFSET (fdh
15890 ? fdh->elf.other
15891 : sym->st_other);
15892
15893 if (stub_entry != NULL
15894 && (stub_entry->stub_type == ppc_stub_long_branch
15895 || stub_entry->stub_type == ppc_stub_plt_branch)
15896 && (r_type == R_PPC64_ADDR14_BRTAKEN
15897 || r_type == R_PPC64_ADDR14_BRNTAKEN
15898 || (relocation + addend - from + max_br_offset
15899 < 2 * max_br_offset)))
15900 /* Don't use the stub if this branch is in range. */
15901 stub_entry = NULL;
15902
15903 if (stub_entry != NULL
15904 && (stub_entry->stub_type == ppc_stub_long_branch_notoc
15905 || stub_entry->stub_type == ppc_stub_long_branch_both
15906 || stub_entry->stub_type == ppc_stub_plt_branch_notoc
15907 || stub_entry->stub_type == ppc_stub_plt_branch_both)
15908 && (r_type != R_PPC64_REL24_NOTOC
15909 || ((fdh ? fdh->elf.other : sym->st_other)
15910 & STO_PPC64_LOCAL_MASK) <= 1 << STO_PPC64_LOCAL_BIT)
15911 && (relocation + addend - from + max_br_offset
15912 < 2 * max_br_offset))
15913 stub_entry = NULL;
15914
15915 if (stub_entry != NULL
15916 && (stub_entry->stub_type == ppc_stub_long_branch_r2off
15917 || stub_entry->stub_type == ppc_stub_long_branch_both
15918 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
15919 || stub_entry->stub_type == ppc_stub_plt_branch_both)
15920 && r_type == R_PPC64_REL24_NOTOC
15921 && (relocation + addend - from + max_br_offset
15922 < 2 * max_br_offset))
15923 stub_entry = NULL;
15924
15925 if (stub_entry != NULL)
15926 {
15927 /* Munge up the value and addend so that we call the stub
15928 rather than the procedure directly. */
15929 asection *stub_sec = stub_entry->group->stub_sec;
15930
15931 if (stub_entry->stub_type == ppc_stub_save_res)
15932 relocation += (stub_sec->output_offset
15933 + stub_sec->output_section->vma
15934 + stub_sec->size - htab->sfpr->size
15935 - htab->sfpr->output_offset
15936 - htab->sfpr->output_section->vma);
15937 else
15938 relocation = (stub_entry->stub_offset
15939 + stub_sec->output_offset
15940 + stub_sec->output_section->vma);
15941 addend = 0;
15942 reloc_dest = DEST_STUB;
15943
15944 if ((((stub_entry->stub_type == ppc_stub_plt_call
15945 && ALWAYS_EMIT_R2SAVE)
15946 || stub_entry->stub_type == ppc_stub_plt_call_r2save
15947 || stub_entry->stub_type == ppc_stub_plt_call_both)
15948 && rel + 1 < relend
15949 && rel[1].r_offset == rel->r_offset + 4
15950 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
15951 || ((stub_entry->stub_type == ppc_stub_long_branch_both
15952 || stub_entry->stub_type == ppc_stub_plt_branch_both
15953 || stub_entry->stub_type == ppc_stub_plt_call_both)
15954 && r_type == R_PPC64_REL24_NOTOC))
15955 {
15956 /* Skip over the r2 store at the start of the stub. */
15957 if (!(stub_entry->stub_type >= ppc_stub_plt_call
15958 && htab->params->tls_get_addr_opt
15959 && h != NULL
15960 && is_tls_get_addr (&h->elf, htab)))
15961 relocation += 4;
15962 }
15963
15964 if (r_type == R_PPC64_REL24_NOTOC
15965 && (stub_entry->stub_type == ppc_stub_plt_call_notoc
15966 || stub_entry->stub_type == ppc_stub_plt_call_both))
15967 htab->notoc_plt = 1;
15968 }
15969
15970 if (insn != 0)
15971 {
15972 if (is_isa_v2)
15973 {
15974 /* Set 'a' bit. This is 0b00010 in BO field for branch
15975 on CR(BI) insns (BO == 001at or 011at), and 0b01000
15976 for branch on CTR insns (BO == 1a00t or 1a01t). */
15977 if ((insn & (0x14 << 21)) == (0x04 << 21))
15978 insn |= 0x02 << 21;
15979 else if ((insn & (0x14 << 21)) == (0x10 << 21))
15980 insn |= 0x08 << 21;
15981 else
15982 break;
15983 }
15984 else
15985 {
15986 /* Invert 'y' bit if not the default. */
15987 if ((bfd_signed_vma) (relocation + addend - from) < 0)
15988 insn ^= 0x01 << 21;
15989 }
15990
15991 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
15992 }
15993
15994 /* NOP out calls to undefined weak functions.
15995 We can thus call a weak function without first
15996 checking whether the function is defined. */
15997 else if (h != NULL
15998 && h->elf.root.type == bfd_link_hash_undefweak
15999 && h->elf.dynindx == -1
16000 && (r_type == R_PPC64_REL24
16001 || r_type == R_PPC64_REL24_NOTOC)
16002 && relocation == 0
16003 && addend == 0)
16004 {
16005 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
16006 goto copy_reloc;
16007 }
16008 break;
16009
16010 case R_PPC64_GOT16_DS:
16011 if ((h ? h->elf.type : ELF_ST_TYPE (sym->st_info)) == STT_GNU_IFUNC
16012 || !htab->do_toc_opt)
16013 break;
16014 from = TOCstart + htab->sec_info[input_section->id].toc_off;
16015 if (relocation + addend - from + 0x8000 < 0x10000
16016 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
16017 {
16018 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
16019 if ((insn & (0x3fu << 26 | 0x3)) == 58u << 26 /* ld */)
16020 {
16021 insn += (14u << 26) - (58u << 26);
16022 bfd_put_32 (input_bfd, insn, contents + (rel->r_offset & ~3));
16023 r_type = R_PPC64_TOC16;
16024 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
16025 }
16026 }
16027 break;
16028
16029 case R_PPC64_GOT16_LO_DS:
16030 case R_PPC64_GOT16_HA:
16031 if ((h ? h->elf.type : ELF_ST_TYPE (sym->st_info)) == STT_GNU_IFUNC
16032 || !htab->do_toc_opt)
16033 break;
16034 from = TOCstart + htab->sec_info[input_section->id].toc_off;
16035 if (relocation + addend - from + 0x80008000ULL < 0x100000000ULL
16036 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
16037 {
16038 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
16039 if ((insn & (0x3fu << 26 | 0x3)) == 58u << 26 /* ld */)
16040 {
16041 insn += (14u << 26) - (58u << 26);
16042 bfd_put_32 (input_bfd, insn, contents + (rel->r_offset & ~3));
16043 r_type = R_PPC64_TOC16_LO;
16044 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
16045 }
16046 else if ((insn & (0x3fu << 26)) == 15u << 26 /* addis */)
16047 {
16048 r_type = R_PPC64_TOC16_HA;
16049 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
16050 }
16051 }
16052 break;
16053
16054 case R_PPC64_GOT_PCREL34:
16055 if ((h ? h->elf.type : ELF_ST_TYPE (sym->st_info)) == STT_GNU_IFUNC
16056 || !htab->do_toc_opt)
16057 break;
16058 from = (rel->r_offset
16059 + input_section->output_section->vma
16060 + input_section->output_offset);
16061 if (!(relocation - from + (1ULL << 33) < 1ULL << 34
16062 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->elf))))
16063 break;
16064
16065 offset = rel->r_offset;
16066 pinsn = bfd_get_32 (input_bfd, contents + offset);
16067 pinsn <<= 32;
16068 pinsn |= bfd_get_32 (input_bfd, contents + offset + 4);
16069 if ((pinsn & ((-1ULL << 50) | (63ULL << 26)))
16070 != ((1ULL << 58) | (1ULL << 52) | (57ULL << 26) /* pld */))
16071 break;
16072
16073 /* Replace with paddi. */
16074 pinsn += (2ULL << 56) + (14ULL << 26) - (57ULL << 26);
16075 r_type = R_PPC64_PCREL34;
16076 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
16077 bfd_put_32 (input_bfd, pinsn >> 32, contents + offset);
16078 bfd_put_32 (input_bfd, pinsn, contents + offset + 4);
16079 /* Fall through. */
16080
16081 case R_PPC64_PCREL34:
16082 if (!htab->params->no_pcrel_opt
16083 && rel + 1 < relend
16084 && rel[1].r_offset == rel->r_offset
16085 && rel[1].r_info == ELF64_R_INFO (0, R_PPC64_PCREL_OPT)
16086 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
16087 {
16088 offset = rel->r_offset;
16089 pinsn = bfd_get_32 (input_bfd, contents + offset);
16090 pinsn <<= 32;
16091 pinsn |= bfd_get_32 (input_bfd, contents + offset + 4);
16092 if ((pinsn & ((-1ULL << 50) | (63ULL << 26)))
16093 == ((1ULL << 58) | (2ULL << 56) | (1ULL << 52)
16094 | (14ULL << 26) /* paddi */))
16095 {
16096 bfd_vma off2 = rel[1].r_addend;
16097 if (off2 == 0)
16098 /* zero means next insn. */
16099 off2 = 8;
16100 off2 += offset;
16101 if (off2 + 4 <= input_section->size)
16102 {
16103 uint64_t pinsn2;
16104 bfd_signed_vma addend_off;
16105 pinsn2 = bfd_get_32 (input_bfd, contents + off2);
16106 pinsn2 <<= 32;
16107 if ((pinsn2 & (63ULL << 58)) == 1ULL << 58)
16108 {
16109 if (off2 + 8 > input_section->size)
16110 break;
16111 pinsn2 |= bfd_get_32 (input_bfd,
16112 contents + off2 + 4);
16113 }
16114 if (xlate_pcrel_opt (&pinsn, &pinsn2, &addend_off))
16115 {
16116 addend += addend_off;
16117 rel->r_addend = addend;
16118 bfd_put_32 (input_bfd, pinsn >> 32,
16119 contents + offset);
16120 bfd_put_32 (input_bfd, pinsn,
16121 contents + offset + 4);
16122 bfd_put_32 (input_bfd, pinsn2 >> 32,
16123 contents + off2);
16124 if ((pinsn2 & (63ULL << 58)) == 1ULL << 58)
16125 bfd_put_32 (input_bfd, pinsn2,
16126 contents + off2 + 4);
16127 }
16128 }
16129 }
16130 }
16131 break;
16132 }
16133
16134 tls_type = 0;
16135 save_unresolved_reloc = unresolved_reloc;
16136 switch (r_type)
16137 {
16138 default:
16139 /* xgettext:c-format */
16140 _bfd_error_handler (_("%pB: %s unsupported"),
16141 input_bfd, ppc64_elf_howto_table[r_type]->name);
16142
16143 bfd_set_error (bfd_error_bad_value);
16144 ret = FALSE;
16145 goto copy_reloc;
16146
16147 case R_PPC64_NONE:
16148 case R_PPC64_TLS:
16149 case R_PPC64_TLSGD:
16150 case R_PPC64_TLSLD:
16151 case R_PPC64_TOCSAVE:
16152 case R_PPC64_GNU_VTINHERIT:
16153 case R_PPC64_GNU_VTENTRY:
16154 case R_PPC64_ENTRY:
16155 case R_PPC64_PCREL_OPT:
16156 goto copy_reloc;
16157
16158 /* GOT16 relocations. Like an ADDR16 using the symbol's
16159 address in the GOT as relocation value instead of the
16160 symbol's value itself. Also, create a GOT entry for the
16161 symbol and put the symbol value there. */
16162 case R_PPC64_GOT_TLSGD16:
16163 case R_PPC64_GOT_TLSGD16_LO:
16164 case R_PPC64_GOT_TLSGD16_HI:
16165 case R_PPC64_GOT_TLSGD16_HA:
16166 case R_PPC64_GOT_TLSGD_PCREL34:
16167 tls_type = TLS_TLS | TLS_GD;
16168 goto dogot;
16169
16170 case R_PPC64_GOT_TLSLD16:
16171 case R_PPC64_GOT_TLSLD16_LO:
16172 case R_PPC64_GOT_TLSLD16_HI:
16173 case R_PPC64_GOT_TLSLD16_HA:
16174 case R_PPC64_GOT_TLSLD_PCREL34:
16175 tls_type = TLS_TLS | TLS_LD;
16176 goto dogot;
16177
16178 case R_PPC64_GOT_TPREL16_DS:
16179 case R_PPC64_GOT_TPREL16_LO_DS:
16180 case R_PPC64_GOT_TPREL16_HI:
16181 case R_PPC64_GOT_TPREL16_HA:
16182 case R_PPC64_GOT_TPREL_PCREL34:
16183 tls_type = TLS_TLS | TLS_TPREL;
16184 goto dogot;
16185
16186 case R_PPC64_GOT_DTPREL16_DS:
16187 case R_PPC64_GOT_DTPREL16_LO_DS:
16188 case R_PPC64_GOT_DTPREL16_HI:
16189 case R_PPC64_GOT_DTPREL16_HA:
16190 case R_PPC64_GOT_DTPREL_PCREL34:
16191 tls_type = TLS_TLS | TLS_DTPREL;
16192 goto dogot;
16193
16194 case R_PPC64_GOT16:
16195 case R_PPC64_GOT16_LO:
16196 case R_PPC64_GOT16_HI:
16197 case R_PPC64_GOT16_HA:
16198 case R_PPC64_GOT16_DS:
16199 case R_PPC64_GOT16_LO_DS:
16200 case R_PPC64_GOT_PCREL34:
16201 dogot:
16202 {
16203 /* Relocation is to the entry for this symbol in the global
16204 offset table. */
16205 asection *got;
16206 bfd_vma *offp;
16207 bfd_vma off;
16208 unsigned long indx = 0;
16209 struct got_entry *ent;
16210
16211 if (tls_type == (TLS_TLS | TLS_LD)
16212 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
16213 ent = ppc64_tlsld_got (input_bfd);
16214 else
16215 {
16216 if (h != NULL)
16217 {
16218 if (!htab->elf.dynamic_sections_created
16219 || h->elf.dynindx == -1
16220 || SYMBOL_REFERENCES_LOCAL (info, &h->elf)
16221 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->elf))
16222 /* This is actually a static link, or it is a
16223 -Bsymbolic link and the symbol is defined
16224 locally, or the symbol was forced to be local
16225 because of a version file. */
16226 ;
16227 else
16228 {
16229 indx = h->elf.dynindx;
16230 unresolved_reloc = FALSE;
16231 }
16232 ent = h->elf.got.glist;
16233 }
16234 else
16235 {
16236 if (local_got_ents == NULL)
16237 abort ();
16238 ent = local_got_ents[r_symndx];
16239 }
16240
16241 for (; ent != NULL; ent = ent->next)
16242 if (ent->addend == orig_rel.r_addend
16243 && ent->owner == input_bfd
16244 && ent->tls_type == tls_type)
16245 break;
16246 }
16247
16248 if (ent == NULL)
16249 abort ();
16250 if (ent->is_indirect)
16251 ent = ent->got.ent;
16252 offp = &ent->got.offset;
16253 got = ppc64_elf_tdata (ent->owner)->got;
16254 if (got == NULL)
16255 abort ();
16256
16257 /* The offset must always be a multiple of 8. We use the
16258 least significant bit to record whether we have already
16259 processed this entry. */
16260 off = *offp;
16261 if ((off & 1) != 0)
16262 off &= ~1;
16263 else
16264 {
16265 /* Generate relocs for the dynamic linker, except in
16266 the case of TLSLD where we'll use one entry per
16267 module. */
16268 asection *relgot;
16269 bfd_boolean ifunc;
16270
16271 *offp = off | 1;
16272 relgot = NULL;
16273 ifunc = (h != NULL
16274 ? h->elf.type == STT_GNU_IFUNC
16275 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
16276 if (ifunc)
16277 {
16278 relgot = htab->elf.irelplt;
16279 if (indx == 0 || is_static_defined (&h->elf))
16280 htab->elf.ifunc_resolvers = TRUE;
16281 }
16282 else if (indx != 0
16283 || (bfd_link_pic (info)
16284 && (h == NULL
16285 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->elf))
16286 && !(tls_type != 0
16287 && bfd_link_executable (info)
16288 && (h == NULL
16289 || SYMBOL_REFERENCES_LOCAL (info,
16290 &h->elf)))))
16291 relgot = ppc64_elf_tdata (ent->owner)->relgot;
16292 if (relgot != NULL)
16293 {
16294 outrel.r_offset = (got->output_section->vma
16295 + got->output_offset
16296 + off);
16297 outrel.r_addend = orig_rel.r_addend;
16298 if (tls_type & (TLS_LD | TLS_GD))
16299 {
16300 outrel.r_addend = 0;
16301 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
16302 if (tls_type == (TLS_TLS | TLS_GD))
16303 {
16304 loc = relgot->contents;
16305 loc += (relgot->reloc_count++
16306 * sizeof (Elf64_External_Rela));
16307 bfd_elf64_swap_reloca_out (output_bfd,
16308 &outrel, loc);
16309 outrel.r_offset += 8;
16310 outrel.r_addend = orig_rel.r_addend;
16311 outrel.r_info
16312 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
16313 }
16314 }
16315 else if (tls_type == (TLS_TLS | TLS_DTPREL))
16316 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
16317 else if (tls_type == (TLS_TLS | TLS_TPREL))
16318 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
16319 else if (indx != 0)
16320 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
16321 else
16322 {
16323 if (ifunc)
16324 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
16325 else
16326 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
16327
16328 /* Write the .got section contents for the sake
16329 of prelink. */
16330 loc = got->contents + off;
16331 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
16332 loc);
16333 }
16334
16335 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
16336 {
16337 outrel.r_addend += relocation;
16338 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
16339 {
16340 if (htab->elf.tls_sec == NULL)
16341 outrel.r_addend = 0;
16342 else
16343 outrel.r_addend -= htab->elf.tls_sec->vma;
16344 }
16345 }
16346 loc = relgot->contents;
16347 loc += (relgot->reloc_count++
16348 * sizeof (Elf64_External_Rela));
16349 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
16350 }
16351
16352 /* Init the .got section contents here if we're not
16353 emitting a reloc. */
16354 else
16355 {
16356 relocation += orig_rel.r_addend;
16357 if (tls_type != 0)
16358 {
16359 if (htab->elf.tls_sec == NULL)
16360 relocation = 0;
16361 else
16362 {
16363 if (tls_type & TLS_LD)
16364 relocation = 0;
16365 else
16366 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
16367 if (tls_type & TLS_TPREL)
16368 relocation += DTP_OFFSET - TP_OFFSET;
16369 }
16370
16371 if (tls_type & (TLS_GD | TLS_LD))
16372 {
16373 bfd_put_64 (output_bfd, relocation,
16374 got->contents + off + 8);
16375 relocation = 1;
16376 }
16377 }
16378 bfd_put_64 (output_bfd, relocation,
16379 got->contents + off);
16380 }
16381 }
16382
16383 if (off >= (bfd_vma) -2)
16384 abort ();
16385
16386 relocation = got->output_section->vma + got->output_offset + off;
16387 addend = 0;
16388 if (!(r_type == R_PPC64_GOT_PCREL34
16389 || r_type == R_PPC64_GOT_TLSGD_PCREL34
16390 || r_type == R_PPC64_GOT_TLSLD_PCREL34
16391 || r_type == R_PPC64_GOT_TPREL_PCREL34
16392 || r_type == R_PPC64_GOT_DTPREL_PCREL34))
16393 addend = -(TOCstart + htab->sec_info[input_section->id].toc_off);
16394 }
16395 break;
16396
16397 case R_PPC64_PLT16_HA:
16398 case R_PPC64_PLT16_HI:
16399 case R_PPC64_PLT16_LO:
16400 case R_PPC64_PLT16_LO_DS:
16401 case R_PPC64_PLT_PCREL34:
16402 case R_PPC64_PLT_PCREL34_NOTOC:
16403 case R_PPC64_PLT32:
16404 case R_PPC64_PLT64:
16405 case R_PPC64_PLTSEQ:
16406 case R_PPC64_PLTSEQ_NOTOC:
16407 case R_PPC64_PLTCALL:
16408 case R_PPC64_PLTCALL_NOTOC:
16409 /* Relocation is to the entry for this symbol in the
16410 procedure linkage table. */
16411 unresolved_reloc = TRUE;
16412 {
16413 struct plt_entry **plt_list = NULL;
16414 if (h != NULL)
16415 plt_list = &h->elf.plt.plist;
16416 else if (local_got_ents != NULL)
16417 {
16418 struct plt_entry **local_plt = (struct plt_entry **)
16419 (local_got_ents + symtab_hdr->sh_info);
16420 plt_list = local_plt + r_symndx;
16421 }
16422 if (plt_list)
16423 {
16424 struct plt_entry *ent;
16425
16426 for (ent = *plt_list; ent != NULL; ent = ent->next)
16427 if (ent->plt.offset != (bfd_vma) -1
16428 && ent->addend == orig_rel.r_addend)
16429 {
16430 asection *plt;
16431 bfd_vma got;
16432
16433 plt = htab->elf.splt;
16434 if (!htab->elf.dynamic_sections_created
16435 || h == NULL
16436 || h->elf.dynindx == -1)
16437 {
16438 if (h != NULL
16439 ? h->elf.type == STT_GNU_IFUNC
16440 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
16441 plt = htab->elf.iplt;
16442 else
16443 plt = htab->pltlocal;
16444 }
16445 relocation = (plt->output_section->vma
16446 + plt->output_offset
16447 + ent->plt.offset);
16448 if (r_type == R_PPC64_PLT16_HA
16449 || r_type == R_PPC64_PLT16_HI
16450 || r_type == R_PPC64_PLT16_LO
16451 || r_type == R_PPC64_PLT16_LO_DS)
16452 {
16453 got = (elf_gp (output_bfd)
16454 + htab->sec_info[input_section->id].toc_off);
16455 relocation -= got;
16456 }
16457 addend = 0;
16458 unresolved_reloc = FALSE;
16459 break;
16460 }
16461 }
16462 }
16463 break;
16464
16465 case R_PPC64_TOC:
16466 /* Relocation value is TOC base. */
16467 relocation = TOCstart;
16468 if (r_symndx == STN_UNDEF)
16469 relocation += htab->sec_info[input_section->id].toc_off;
16470 else if (unresolved_reloc)
16471 ;
16472 else if (sec != NULL && sec->id < htab->sec_info_arr_size)
16473 relocation += htab->sec_info[sec->id].toc_off;
16474 else
16475 unresolved_reloc = TRUE;
16476 goto dodyn;
16477
16478 /* TOC16 relocs. We want the offset relative to the TOC base,
16479 which is the address of the start of the TOC plus 0x8000.
16480 The TOC consists of sections .got, .toc, .tocbss, and .plt,
16481 in this order. */
16482 case R_PPC64_TOC16:
16483 case R_PPC64_TOC16_LO:
16484 case R_PPC64_TOC16_HI:
16485 case R_PPC64_TOC16_DS:
16486 case R_PPC64_TOC16_LO_DS:
16487 case R_PPC64_TOC16_HA:
16488 addend -= TOCstart + htab->sec_info[input_section->id].toc_off;
16489 if (h != NULL)
16490 goto dodyn;
16491 break;
16492
16493 /* Relocate against the beginning of the section. */
16494 case R_PPC64_SECTOFF:
16495 case R_PPC64_SECTOFF_LO:
16496 case R_PPC64_SECTOFF_HI:
16497 case R_PPC64_SECTOFF_DS:
16498 case R_PPC64_SECTOFF_LO_DS:
16499 case R_PPC64_SECTOFF_HA:
16500 if (sec != NULL)
16501 addend -= sec->output_section->vma;
16502 break;
16503
16504 case R_PPC64_REL16:
16505 case R_PPC64_REL16_LO:
16506 case R_PPC64_REL16_HI:
16507 case R_PPC64_REL16_HA:
16508 case R_PPC64_REL16_HIGH:
16509 case R_PPC64_REL16_HIGHA:
16510 case R_PPC64_REL16_HIGHER:
16511 case R_PPC64_REL16_HIGHERA:
16512 case R_PPC64_REL16_HIGHEST:
16513 case R_PPC64_REL16_HIGHESTA:
16514 case R_PPC64_REL16_HIGHER34:
16515 case R_PPC64_REL16_HIGHERA34:
16516 case R_PPC64_REL16_HIGHEST34:
16517 case R_PPC64_REL16_HIGHESTA34:
16518 case R_PPC64_REL16DX_HA:
16519 case R_PPC64_REL14:
16520 case R_PPC64_REL14_BRNTAKEN:
16521 case R_PPC64_REL14_BRTAKEN:
16522 case R_PPC64_REL24:
16523 case R_PPC64_REL24_NOTOC:
16524 case R_PPC64_PCREL34:
16525 case R_PPC64_PCREL28:
16526 break;
16527
16528 case R_PPC64_TPREL16:
16529 case R_PPC64_TPREL16_LO:
16530 case R_PPC64_TPREL16_HI:
16531 case R_PPC64_TPREL16_HA:
16532 case R_PPC64_TPREL16_DS:
16533 case R_PPC64_TPREL16_LO_DS:
16534 case R_PPC64_TPREL16_HIGH:
16535 case R_PPC64_TPREL16_HIGHA:
16536 case R_PPC64_TPREL16_HIGHER:
16537 case R_PPC64_TPREL16_HIGHERA:
16538 case R_PPC64_TPREL16_HIGHEST:
16539 case R_PPC64_TPREL16_HIGHESTA:
16540 case R_PPC64_TPREL34:
16541 if (h != NULL
16542 && h->elf.root.type == bfd_link_hash_undefweak
16543 && h->elf.dynindx == -1)
16544 {
16545 /* Make this relocation against an undefined weak symbol
16546 resolve to zero. This is really just a tweak, since
16547 code using weak externs ought to check that they are
16548 defined before using them. */
16549 bfd_byte *p = contents + rel->r_offset - d_offset;
16550
16551 insn = bfd_get_32 (input_bfd, p);
16552 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
16553 if (insn != 0)
16554 bfd_put_32 (input_bfd, insn, p);
16555 break;
16556 }
16557 if (htab->elf.tls_sec != NULL)
16558 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
16559 /* The TPREL16 relocs shouldn't really be used in shared
16560 libs or with non-local symbols as that will result in
16561 DT_TEXTREL being set, but support them anyway. */
16562 goto dodyn;
16563
16564 case R_PPC64_DTPREL16:
16565 case R_PPC64_DTPREL16_LO:
16566 case R_PPC64_DTPREL16_HI:
16567 case R_PPC64_DTPREL16_HA:
16568 case R_PPC64_DTPREL16_DS:
16569 case R_PPC64_DTPREL16_LO_DS:
16570 case R_PPC64_DTPREL16_HIGH:
16571 case R_PPC64_DTPREL16_HIGHA:
16572 case R_PPC64_DTPREL16_HIGHER:
16573 case R_PPC64_DTPREL16_HIGHERA:
16574 case R_PPC64_DTPREL16_HIGHEST:
16575 case R_PPC64_DTPREL16_HIGHESTA:
16576 case R_PPC64_DTPREL34:
16577 if (htab->elf.tls_sec != NULL)
16578 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
16579 break;
16580
16581 case R_PPC64_ADDR64_LOCAL:
16582 addend += PPC64_LOCAL_ENTRY_OFFSET (h != NULL
16583 ? h->elf.other
16584 : sym->st_other);
16585 break;
16586
16587 case R_PPC64_DTPMOD64:
16588 relocation = 1;
16589 addend = 0;
16590 goto dodyn;
16591
16592 case R_PPC64_TPREL64:
16593 if (htab->elf.tls_sec != NULL)
16594 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
16595 goto dodyn;
16596
16597 case R_PPC64_DTPREL64:
16598 if (htab->elf.tls_sec != NULL)
16599 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
16600 /* Fall through. */
16601
16602 /* Relocations that may need to be propagated if this is a
16603 dynamic object. */
16604 case R_PPC64_REL30:
16605 case R_PPC64_REL32:
16606 case R_PPC64_REL64:
16607 case R_PPC64_ADDR14:
16608 case R_PPC64_ADDR14_BRNTAKEN:
16609 case R_PPC64_ADDR14_BRTAKEN:
16610 case R_PPC64_ADDR16:
16611 case R_PPC64_ADDR16_DS:
16612 case R_PPC64_ADDR16_HA:
16613 case R_PPC64_ADDR16_HI:
16614 case R_PPC64_ADDR16_HIGH:
16615 case R_PPC64_ADDR16_HIGHA:
16616 case R_PPC64_ADDR16_HIGHER:
16617 case R_PPC64_ADDR16_HIGHERA:
16618 case R_PPC64_ADDR16_HIGHEST:
16619 case R_PPC64_ADDR16_HIGHESTA:
16620 case R_PPC64_ADDR16_LO:
16621 case R_PPC64_ADDR16_LO_DS:
16622 case R_PPC64_ADDR16_HIGHER34:
16623 case R_PPC64_ADDR16_HIGHERA34:
16624 case R_PPC64_ADDR16_HIGHEST34:
16625 case R_PPC64_ADDR16_HIGHESTA34:
16626 case R_PPC64_ADDR24:
16627 case R_PPC64_ADDR32:
16628 case R_PPC64_ADDR64:
16629 case R_PPC64_UADDR16:
16630 case R_PPC64_UADDR32:
16631 case R_PPC64_UADDR64:
16632 case R_PPC64_D34:
16633 case R_PPC64_D34_LO:
16634 case R_PPC64_D34_HI30:
16635 case R_PPC64_D34_HA30:
16636 case R_PPC64_D28:
16637 dodyn:
16638 if ((input_section->flags & SEC_ALLOC) == 0)
16639 break;
16640
16641 if (NO_OPD_RELOCS && is_opd)
16642 break;
16643
16644 if (bfd_link_pic (info)
16645 ? ((h == NULL
16646 || h->elf.dyn_relocs != NULL)
16647 && ((h != NULL && pc_dynrelocs (h))
16648 || must_be_dyn_reloc (info, r_type)))
16649 : (h != NULL
16650 ? h->elf.dyn_relocs != NULL
16651 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
16652 {
16653 bfd_boolean skip, relocate;
16654 asection *sreloc;
16655 bfd_vma out_off;
16656 long indx = 0;
16657
16658 /* When generating a dynamic object, these relocations
16659 are copied into the output file to be resolved at run
16660 time. */
16661
16662 skip = FALSE;
16663 relocate = FALSE;
16664
16665 out_off = _bfd_elf_section_offset (output_bfd, info,
16666 input_section, rel->r_offset);
16667 if (out_off == (bfd_vma) -1)
16668 skip = TRUE;
16669 else if (out_off == (bfd_vma) -2)
16670 skip = TRUE, relocate = TRUE;
16671 out_off += (input_section->output_section->vma
16672 + input_section->output_offset);
16673 outrel.r_offset = out_off;
16674 outrel.r_addend = rel->r_addend;
16675
16676 /* Optimize unaligned reloc use. */
16677 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
16678 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
16679 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
16680 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
16681 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
16682 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
16683 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
16684 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
16685 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
16686
16687 if (skip)
16688 memset (&outrel, 0, sizeof outrel);
16689 else if (h != NULL
16690 && !SYMBOL_REFERENCES_LOCAL (info, &h->elf)
16691 && !is_opd
16692 && r_type != R_PPC64_TOC)
16693 {
16694 indx = h->elf.dynindx;
16695 BFD_ASSERT (indx != -1);
16696 outrel.r_info = ELF64_R_INFO (indx, r_type);
16697 }
16698 else
16699 {
16700 /* This symbol is local, or marked to become local,
16701 or this is an opd section reloc which must point
16702 at a local function. */
16703 outrel.r_addend += relocation;
16704 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
16705 {
16706 if (is_opd && h != NULL)
16707 {
16708 /* Lie about opd entries. This case occurs
16709 when building shared libraries and we
16710 reference a function in another shared
16711 lib. The same thing happens for a weak
16712 definition in an application that's
16713 overridden by a strong definition in a
16714 shared lib. (I believe this is a generic
16715 bug in binutils handling of weak syms.)
16716 In these cases we won't use the opd
16717 entry in this lib. */
16718 unresolved_reloc = FALSE;
16719 }
16720 if (!is_opd
16721 && r_type == R_PPC64_ADDR64
16722 && (h != NULL
16723 ? h->elf.type == STT_GNU_IFUNC
16724 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
16725 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
16726 else
16727 {
16728 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
16729
16730 /* We need to relocate .opd contents for ld.so.
16731 Prelink also wants simple and consistent rules
16732 for relocs. This make all RELATIVE relocs have
16733 *r_offset equal to r_addend. */
16734 relocate = TRUE;
16735 }
16736 }
16737 else
16738 {
16739 if (h != NULL
16740 ? h->elf.type == STT_GNU_IFUNC
16741 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
16742 {
16743 info->callbacks->einfo
16744 /* xgettext:c-format */
16745 (_("%H: %s for indirect "
16746 "function `%pT' unsupported\n"),
16747 input_bfd, input_section, rel->r_offset,
16748 ppc64_elf_howto_table[r_type]->name,
16749 sym_name);
16750 ret = FALSE;
16751 }
16752 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
16753 ;
16754 else if (sec == NULL || sec->owner == NULL)
16755 {
16756 bfd_set_error (bfd_error_bad_value);
16757 return FALSE;
16758 }
16759 else
16760 {
16761 asection *osec = sec->output_section;
16762
16763 if ((osec->flags & SEC_THREAD_LOCAL) != 0)
16764 {
16765 /* TLS symbol values are relative to the
16766 TLS segment. Dynamic relocations for
16767 local TLS symbols therefore can't be
16768 reduced to a relocation against their
16769 section symbol because it holds the
16770 address of the section, not a value
16771 relative to the TLS segment. We could
16772 change the .tdata dynamic section symbol
16773 to be zero value but STN_UNDEF works
16774 and is used elsewhere, eg. for TPREL64
16775 GOT relocs against local TLS symbols. */
16776 osec = htab->elf.tls_sec;
16777 indx = 0;
16778 }
16779 else
16780 {
16781 indx = elf_section_data (osec)->dynindx;
16782 if (indx == 0)
16783 {
16784 if ((osec->flags & SEC_READONLY) == 0
16785 && htab->elf.data_index_section != NULL)
16786 osec = htab->elf.data_index_section;
16787 else
16788 osec = htab->elf.text_index_section;
16789 indx = elf_section_data (osec)->dynindx;
16790 }
16791 BFD_ASSERT (indx != 0);
16792 }
16793
16794 /* We are turning this relocation into one
16795 against a section symbol, so subtract out
16796 the output section's address but not the
16797 offset of the input section in the output
16798 section. */
16799 outrel.r_addend -= osec->vma;
16800 }
16801
16802 outrel.r_info = ELF64_R_INFO (indx, r_type);
16803 }
16804 }
16805
16806 sreloc = elf_section_data (input_section)->sreloc;
16807 if (h != NULL
16808 ? h->elf.type == STT_GNU_IFUNC
16809 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
16810 {
16811 sreloc = htab->elf.irelplt;
16812 if (indx == 0 || is_static_defined (&h->elf))
16813 htab->elf.ifunc_resolvers = TRUE;
16814 }
16815 if (sreloc == NULL)
16816 abort ();
16817
16818 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
16819 >= sreloc->size)
16820 abort ();
16821 loc = sreloc->contents;
16822 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
16823 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
16824
16825 if (!warned_dynamic
16826 && !ppc64_glibc_dynamic_reloc (ELF64_R_TYPE (outrel.r_info)))
16827 {
16828 info->callbacks->einfo
16829 /* xgettext:c-format */
16830 (_("%X%P: %pB: %s against %pT "
16831 "is not supported by glibc as a dynamic relocation\n"),
16832 input_bfd,
16833 ppc64_elf_howto_table[ELF64_R_TYPE (outrel.r_info)]->name,
16834 sym_name);
16835 warned_dynamic = TRUE;
16836 }
16837
16838 /* If this reloc is against an external symbol, it will
16839 be computed at runtime, so there's no need to do
16840 anything now. However, for the sake of prelink ensure
16841 that the section contents are a known value. */
16842 if (!relocate)
16843 {
16844 unresolved_reloc = FALSE;
16845 /* The value chosen here is quite arbitrary as ld.so
16846 ignores section contents except for the special
16847 case of .opd where the contents might be accessed
16848 before relocation. Choose zero, as that won't
16849 cause reloc overflow. */
16850 relocation = 0;
16851 addend = 0;
16852 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
16853 to improve backward compatibility with older
16854 versions of ld. */
16855 if (r_type == R_PPC64_ADDR64)
16856 addend = outrel.r_addend;
16857 /* Adjust pc_relative relocs to have zero in *r_offset. */
16858 else if (ppc64_elf_howto_table[r_type]->pc_relative)
16859 addend = outrel.r_offset;
16860 }
16861 }
16862 break;
16863
16864 case R_PPC64_COPY:
16865 case R_PPC64_GLOB_DAT:
16866 case R_PPC64_JMP_SLOT:
16867 case R_PPC64_JMP_IREL:
16868 case R_PPC64_RELATIVE:
16869 /* We shouldn't ever see these dynamic relocs in relocatable
16870 files. */
16871 /* Fall through. */
16872
16873 case R_PPC64_PLTGOT16:
16874 case R_PPC64_PLTGOT16_DS:
16875 case R_PPC64_PLTGOT16_HA:
16876 case R_PPC64_PLTGOT16_HI:
16877 case R_PPC64_PLTGOT16_LO:
16878 case R_PPC64_PLTGOT16_LO_DS:
16879 case R_PPC64_PLTREL32:
16880 case R_PPC64_PLTREL64:
16881 /* These ones haven't been implemented yet. */
16882
16883 info->callbacks->einfo
16884 /* xgettext:c-format */
16885 (_("%P: %pB: %s is not supported for `%pT'\n"),
16886 input_bfd,
16887 ppc64_elf_howto_table[r_type]->name, sym_name);
16888
16889 bfd_set_error (bfd_error_invalid_operation);
16890 ret = FALSE;
16891 goto copy_reloc;
16892 }
16893
16894 /* Multi-instruction sequences that access the TOC can be
16895 optimized, eg. addis ra,r2,0; addi rb,ra,x;
16896 to nop; addi rb,r2,x; */
16897 switch (r_type)
16898 {
16899 default:
16900 break;
16901
16902 case R_PPC64_GOT_TLSLD16_HI:
16903 case R_PPC64_GOT_TLSGD16_HI:
16904 case R_PPC64_GOT_TPREL16_HI:
16905 case R_PPC64_GOT_DTPREL16_HI:
16906 case R_PPC64_GOT16_HI:
16907 case R_PPC64_TOC16_HI:
16908 /* These relocs would only be useful if building up an
16909 offset to later add to r2, perhaps in an indexed
16910 addressing mode instruction. Don't try to optimize.
16911 Unfortunately, the possibility of someone building up an
16912 offset like this or even with the HA relocs, means that
16913 we need to check the high insn when optimizing the low
16914 insn. */
16915 break;
16916
16917 case R_PPC64_PLTCALL_NOTOC:
16918 if (!unresolved_reloc)
16919 htab->notoc_plt = 1;
16920 /* Fall through. */
16921 case R_PPC64_PLTCALL:
16922 if (unresolved_reloc)
16923 {
16924 /* No plt entry. Make this into a direct call. */
16925 bfd_byte *p = contents + rel->r_offset;
16926 insn = bfd_get_32 (input_bfd, p);
16927 insn &= 1;
16928 bfd_put_32 (input_bfd, B_DOT | insn, p);
16929 if (r_type == R_PPC64_PLTCALL)
16930 bfd_put_32 (input_bfd, NOP, p + 4);
16931 unresolved_reloc = save_unresolved_reloc;
16932 r_type = R_PPC64_REL24;
16933 }
16934 break;
16935
16936 case R_PPC64_PLTSEQ_NOTOC:
16937 case R_PPC64_PLTSEQ:
16938 if (unresolved_reloc)
16939 {
16940 unresolved_reloc = FALSE;
16941 goto nop_it;
16942 }
16943 break;
16944
16945 case R_PPC64_PLT_PCREL34_NOTOC:
16946 if (!unresolved_reloc)
16947 htab->notoc_plt = 1;
16948 /* Fall through. */
16949 case R_PPC64_PLT_PCREL34:
16950 if (unresolved_reloc)
16951 {
16952 bfd_byte *p = contents + rel->r_offset;
16953 bfd_put_32 (input_bfd, PNOP >> 32, p);
16954 bfd_put_32 (input_bfd, PNOP, p + 4);
16955 unresolved_reloc = FALSE;
16956 goto copy_reloc;
16957 }
16958 break;
16959
16960 case R_PPC64_PLT16_HA:
16961 if (unresolved_reloc)
16962 {
16963 unresolved_reloc = FALSE;
16964 goto nop_it;
16965 }
16966 /* Fall through. */
16967 case R_PPC64_GOT_TLSLD16_HA:
16968 case R_PPC64_GOT_TLSGD16_HA:
16969 case R_PPC64_GOT_TPREL16_HA:
16970 case R_PPC64_GOT_DTPREL16_HA:
16971 case R_PPC64_GOT16_HA:
16972 case R_PPC64_TOC16_HA:
16973 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
16974 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
16975 {
16976 bfd_byte *p;
16977 nop_it:
16978 p = contents + (rel->r_offset & ~3);
16979 bfd_put_32 (input_bfd, NOP, p);
16980 goto copy_reloc;
16981 }
16982 break;
16983
16984 case R_PPC64_PLT16_LO:
16985 case R_PPC64_PLT16_LO_DS:
16986 if (unresolved_reloc)
16987 {
16988 unresolved_reloc = FALSE;
16989 goto nop_it;
16990 }
16991 /* Fall through. */
16992 case R_PPC64_GOT_TLSLD16_LO:
16993 case R_PPC64_GOT_TLSGD16_LO:
16994 case R_PPC64_GOT_TPREL16_LO_DS:
16995 case R_PPC64_GOT_DTPREL16_LO_DS:
16996 case R_PPC64_GOT16_LO:
16997 case R_PPC64_GOT16_LO_DS:
16998 case R_PPC64_TOC16_LO:
16999 case R_PPC64_TOC16_LO_DS:
17000 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
17001 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
17002 {
17003 bfd_byte *p = contents + (rel->r_offset & ~3);
17004 insn = bfd_get_32 (input_bfd, p);
17005 if ((insn & (0x3fu << 26)) == 12u << 26 /* addic */)
17006 {
17007 /* Transform addic to addi when we change reg. */
17008 insn &= ~((0x3fu << 26) | (0x1f << 16));
17009 insn |= (14u << 26) | (2 << 16);
17010 }
17011 else
17012 {
17013 insn &= ~(0x1f << 16);
17014 insn |= 2 << 16;
17015 }
17016 bfd_put_32 (input_bfd, insn, p);
17017 }
17018 break;
17019
17020 case R_PPC64_TPREL16_HA:
17021 if (htab->do_tls_opt && relocation + addend + 0x8000 < 0x10000)
17022 {
17023 bfd_byte *p = contents + (rel->r_offset & ~3);
17024 bfd_put_32 (input_bfd, NOP, p);
17025 goto copy_reloc;
17026 }
17027 break;
17028
17029 case R_PPC64_TPREL16_LO:
17030 case R_PPC64_TPREL16_LO_DS:
17031 if (htab->do_tls_opt && relocation + addend + 0x8000 < 0x10000)
17032 {
17033 bfd_byte *p = contents + (rel->r_offset & ~3);
17034 insn = bfd_get_32 (input_bfd, p);
17035 insn &= ~(0x1f << 16);
17036 insn |= 13 << 16;
17037 bfd_put_32 (input_bfd, insn, p);
17038 }
17039 break;
17040 }
17041
17042 /* Do any further special processing. */
17043 switch (r_type)
17044 {
17045 default:
17046 break;
17047
17048 case R_PPC64_REL16_HA:
17049 case R_PPC64_REL16_HIGHA:
17050 case R_PPC64_REL16_HIGHERA:
17051 case R_PPC64_REL16_HIGHESTA:
17052 case R_PPC64_REL16DX_HA:
17053 case R_PPC64_ADDR16_HA:
17054 case R_PPC64_ADDR16_HIGHA:
17055 case R_PPC64_ADDR16_HIGHERA:
17056 case R_PPC64_ADDR16_HIGHESTA:
17057 case R_PPC64_TOC16_HA:
17058 case R_PPC64_SECTOFF_HA:
17059 case R_PPC64_TPREL16_HA:
17060 case R_PPC64_TPREL16_HIGHA:
17061 case R_PPC64_TPREL16_HIGHERA:
17062 case R_PPC64_TPREL16_HIGHESTA:
17063 case R_PPC64_DTPREL16_HA:
17064 case R_PPC64_DTPREL16_HIGHA:
17065 case R_PPC64_DTPREL16_HIGHERA:
17066 case R_PPC64_DTPREL16_HIGHESTA:
17067 /* It's just possible that this symbol is a weak symbol
17068 that's not actually defined anywhere. In that case,
17069 'sec' would be NULL, and we should leave the symbol
17070 alone (it will be set to zero elsewhere in the link). */
17071 if (sec == NULL)
17072 break;
17073 /* Fall through. */
17074
17075 case R_PPC64_GOT16_HA:
17076 case R_PPC64_PLTGOT16_HA:
17077 case R_PPC64_PLT16_HA:
17078 case R_PPC64_GOT_TLSGD16_HA:
17079 case R_PPC64_GOT_TLSLD16_HA:
17080 case R_PPC64_GOT_TPREL16_HA:
17081 case R_PPC64_GOT_DTPREL16_HA:
17082 /* Add 0x10000 if sign bit in 0:15 is set.
17083 Bits 0:15 are not used. */
17084 addend += 0x8000;
17085 break;
17086
17087 case R_PPC64_D34_HA30:
17088 case R_PPC64_ADDR16_HIGHERA34:
17089 case R_PPC64_ADDR16_HIGHESTA34:
17090 case R_PPC64_REL16_HIGHERA34:
17091 case R_PPC64_REL16_HIGHESTA34:
17092 if (sec != NULL)
17093 addend += 1ULL << 33;
17094 break;
17095
17096 case R_PPC64_ADDR16_DS:
17097 case R_PPC64_ADDR16_LO_DS:
17098 case R_PPC64_GOT16_DS:
17099 case R_PPC64_GOT16_LO_DS:
17100 case R_PPC64_PLT16_LO_DS:
17101 case R_PPC64_SECTOFF_DS:
17102 case R_PPC64_SECTOFF_LO_DS:
17103 case R_PPC64_TOC16_DS:
17104 case R_PPC64_TOC16_LO_DS:
17105 case R_PPC64_PLTGOT16_DS:
17106 case R_PPC64_PLTGOT16_LO_DS:
17107 case R_PPC64_GOT_TPREL16_DS:
17108 case R_PPC64_GOT_TPREL16_LO_DS:
17109 case R_PPC64_GOT_DTPREL16_DS:
17110 case R_PPC64_GOT_DTPREL16_LO_DS:
17111 case R_PPC64_TPREL16_DS:
17112 case R_PPC64_TPREL16_LO_DS:
17113 case R_PPC64_DTPREL16_DS:
17114 case R_PPC64_DTPREL16_LO_DS:
17115 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
17116 mask = 3;
17117 /* If this reloc is against an lq, lxv, or stxv insn, then
17118 the value must be a multiple of 16. This is somewhat of
17119 a hack, but the "correct" way to do this by defining _DQ
17120 forms of all the _DS relocs bloats all reloc switches in
17121 this file. It doesn't make much sense to use these
17122 relocs in data, so testing the insn should be safe. */
17123 if ((insn & (0x3fu << 26)) == (56u << 26)
17124 || ((insn & (0x3fu << 26)) == (61u << 26) && (insn & 3) == 1))
17125 mask = 15;
17126 relocation += addend;
17127 addend = insn & (mask ^ 3);
17128 if ((relocation & mask) != 0)
17129 {
17130 relocation ^= relocation & mask;
17131 info->callbacks->einfo
17132 /* xgettext:c-format */
17133 (_("%H: error: %s not a multiple of %u\n"),
17134 input_bfd, input_section, rel->r_offset,
17135 ppc64_elf_howto_table[r_type]->name,
17136 mask + 1);
17137 bfd_set_error (bfd_error_bad_value);
17138 ret = FALSE;
17139 goto copy_reloc;
17140 }
17141 break;
17142 }
17143
17144 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
17145 because such sections are not SEC_ALLOC and thus ld.so will
17146 not process them. */
17147 howto = ppc64_elf_howto_table[(int) r_type];
17148 if (unresolved_reloc
17149 && !((input_section->flags & SEC_DEBUGGING) != 0
17150 && h->elf.def_dynamic)
17151 && _bfd_elf_section_offset (output_bfd, info, input_section,
17152 rel->r_offset) != (bfd_vma) -1)
17153 {
17154 info->callbacks->einfo
17155 /* xgettext:c-format */
17156 (_("%H: unresolvable %s against `%pT'\n"),
17157 input_bfd, input_section, rel->r_offset,
17158 howto->name,
17159 h->elf.root.root.string);
17160 ret = FALSE;
17161 }
17162
17163 /* 16-bit fields in insns mostly have signed values, but a
17164 few insns have 16-bit unsigned values. Really, we should
17165 have different reloc types. */
17166 if (howto->complain_on_overflow != complain_overflow_dont
17167 && howto->dst_mask == 0xffff
17168 && (input_section->flags & SEC_CODE) != 0)
17169 {
17170 enum complain_overflow complain = complain_overflow_signed;
17171
17172 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
17173 if ((insn & (0x3fu << 26)) == 10u << 26 /* cmpli */)
17174 complain = complain_overflow_bitfield;
17175 else if (howto->rightshift == 0
17176 ? ((insn & (0x3fu << 26)) == 28u << 26 /* andi */
17177 || (insn & (0x3fu << 26)) == 24u << 26 /* ori */
17178 || (insn & (0x3fu << 26)) == 26u << 26 /* xori */)
17179 : ((insn & (0x3fu << 26)) == 29u << 26 /* andis */
17180 || (insn & (0x3fu << 26)) == 25u << 26 /* oris */
17181 || (insn & (0x3fu << 26)) == 27u << 26 /* xoris */))
17182 complain = complain_overflow_unsigned;
17183 if (howto->complain_on_overflow != complain)
17184 {
17185 alt_howto = *howto;
17186 alt_howto.complain_on_overflow = complain;
17187 howto = &alt_howto;
17188 }
17189 }
17190
17191 switch (r_type)
17192 {
17193 /* Split field relocs aren't handled by _bfd_final_link_relocate. */
17194 case R_PPC64_D34:
17195 case R_PPC64_D34_LO:
17196 case R_PPC64_D34_HI30:
17197 case R_PPC64_D34_HA30:
17198 case R_PPC64_PCREL34:
17199 case R_PPC64_GOT_PCREL34:
17200 case R_PPC64_TPREL34:
17201 case R_PPC64_DTPREL34:
17202 case R_PPC64_GOT_TLSGD_PCREL34:
17203 case R_PPC64_GOT_TLSLD_PCREL34:
17204 case R_PPC64_GOT_TPREL_PCREL34:
17205 case R_PPC64_GOT_DTPREL_PCREL34:
17206 case R_PPC64_PLT_PCREL34:
17207 case R_PPC64_PLT_PCREL34_NOTOC:
17208 case R_PPC64_D28:
17209 case R_PPC64_PCREL28:
17210 if (rel->r_offset + 8 > input_section->size)
17211 r = bfd_reloc_outofrange;
17212 else
17213 {
17214 relocation += addend;
17215 if (howto->pc_relative)
17216 relocation -= (rel->r_offset
17217 + input_section->output_offset
17218 + input_section->output_section->vma);
17219 relocation >>= howto->rightshift;
17220
17221 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
17222 pinsn <<= 32;
17223 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
17224
17225 pinsn &= ~howto->dst_mask;
17226 pinsn |= (((relocation << 16) | (relocation & 0xffff))
17227 & howto->dst_mask);
17228 bfd_put_32 (input_bfd, pinsn >> 32, contents + rel->r_offset);
17229 bfd_put_32 (input_bfd, pinsn, contents + rel->r_offset + 4);
17230 r = bfd_reloc_ok;
17231 if (howto->complain_on_overflow == complain_overflow_signed
17232 && (relocation + (1ULL << (howto->bitsize - 1))
17233 >= 1ULL << howto->bitsize))
17234 r = bfd_reloc_overflow;
17235 }
17236 break;
17237
17238 case R_PPC64_REL16DX_HA:
17239 if (rel->r_offset + 4 > input_section->size)
17240 r = bfd_reloc_outofrange;
17241 else
17242 {
17243 relocation += addend;
17244 relocation -= (rel->r_offset
17245 + input_section->output_offset
17246 + input_section->output_section->vma);
17247 relocation = (bfd_signed_vma) relocation >> 16;
17248 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
17249 insn &= ~0x1fffc1;
17250 insn |= (relocation & 0xffc1) | ((relocation & 0x3e) << 15);
17251 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
17252 r = bfd_reloc_ok;
17253 if (relocation + 0x8000 > 0xffff)
17254 r = bfd_reloc_overflow;
17255 }
17256 break;
17257
17258 default:
17259 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
17260 contents, rel->r_offset,
17261 relocation, addend);
17262 }
17263
17264 if (r != bfd_reloc_ok)
17265 {
17266 char *more_info = NULL;
17267 const char *reloc_name = howto->name;
17268
17269 if (reloc_dest != DEST_NORMAL)
17270 {
17271 more_info = bfd_malloc (strlen (reloc_name) + 8);
17272 if (more_info != NULL)
17273 {
17274 strcpy (more_info, reloc_name);
17275 strcat (more_info, (reloc_dest == DEST_OPD
17276 ? " (OPD)" : " (stub)"));
17277 reloc_name = more_info;
17278 }
17279 }
17280
17281 if (r == bfd_reloc_overflow)
17282 {
17283 /* On code like "if (foo) foo();" don't report overflow
17284 on a branch to zero when foo is undefined. */
17285 if (!warned
17286 && (reloc_dest == DEST_STUB
17287 || !(h != NULL
17288 && (h->elf.root.type == bfd_link_hash_undefweak
17289 || h->elf.root.type == bfd_link_hash_undefined)
17290 && is_branch_reloc (r_type))))
17291 info->callbacks->reloc_overflow
17292 (info, (struct bfd_link_hash_entry *) h, sym_name,
17293 reloc_name, orig_rel.r_addend, input_bfd, input_section,
17294 rel->r_offset);
17295 }
17296 else
17297 {
17298 info->callbacks->einfo
17299 /* xgettext:c-format */
17300 (_("%H: %s against `%pT': error %d\n"),
17301 input_bfd, input_section, rel->r_offset,
17302 reloc_name, sym_name, (int) r);
17303 ret = FALSE;
17304 }
17305 free (more_info);
17306 }
17307 copy_reloc:
17308 if (wrel != rel)
17309 *wrel = *rel;
17310 }
17311
17312 if (wrel != rel)
17313 {
17314 Elf_Internal_Shdr *rel_hdr;
17315 size_t deleted = rel - wrel;
17316
17317 rel_hdr = _bfd_elf_single_rel_hdr (input_section->output_section);
17318 rel_hdr->sh_size -= rel_hdr->sh_entsize * deleted;
17319 if (rel_hdr->sh_size == 0)
17320 {
17321 /* It is too late to remove an empty reloc section. Leave
17322 one NONE reloc.
17323 ??? What is wrong with an empty section??? */
17324 rel_hdr->sh_size = rel_hdr->sh_entsize;
17325 deleted -= 1;
17326 }
17327 rel_hdr = _bfd_elf_single_rel_hdr (input_section);
17328 rel_hdr->sh_size -= rel_hdr->sh_entsize * deleted;
17329 input_section->reloc_count -= deleted;
17330 }
17331
17332 /* If we're emitting relocations, then shortly after this function
17333 returns, reloc offsets and addends for this section will be
17334 adjusted. Worse, reloc symbol indices will be for the output
17335 file rather than the input. Save a copy of the relocs for
17336 opd_entry_value. */
17337 if (is_opd && (info->emitrelocations || bfd_link_relocatable (info)))
17338 {
17339 bfd_size_type amt;
17340 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
17341 rel = bfd_alloc (input_bfd, amt);
17342 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd.relocs == NULL);
17343 ppc64_elf_tdata (input_bfd)->opd.relocs = rel;
17344 if (rel == NULL)
17345 return FALSE;
17346 memcpy (rel, relocs, amt);
17347 }
17348 return ret;
17349 }
17350
17351 /* Adjust the value of any local symbols in opd sections. */
17352
17353 static int
17354 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
17355 const char *name ATTRIBUTE_UNUSED,
17356 Elf_Internal_Sym *elfsym,
17357 asection *input_sec,
17358 struct elf_link_hash_entry *h)
17359 {
17360 struct _opd_sec_data *opd;
17361 long adjust;
17362 bfd_vma value;
17363
17364 if (h != NULL)
17365 return 1;
17366
17367 opd = get_opd_info (input_sec);
17368 if (opd == NULL || opd->adjust == NULL)
17369 return 1;
17370
17371 value = elfsym->st_value - input_sec->output_offset;
17372 if (!bfd_link_relocatable (info))
17373 value -= input_sec->output_section->vma;
17374
17375 adjust = opd->adjust[OPD_NDX (value)];
17376 if (adjust == -1)
17377 return 2;
17378
17379 elfsym->st_value += adjust;
17380 return 1;
17381 }
17382
17383 /* Finish up dynamic symbol handling. We set the contents of various
17384 dynamic sections here. */
17385
17386 static bfd_boolean
17387 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
17388 struct bfd_link_info *info,
17389 struct elf_link_hash_entry *h,
17390 Elf_Internal_Sym *sym)
17391 {
17392 struct ppc_link_hash_table *htab;
17393 struct plt_entry *ent;
17394
17395 htab = ppc_hash_table (info);
17396 if (htab == NULL)
17397 return FALSE;
17398
17399 if (!htab->opd_abi && !h->def_regular)
17400 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
17401 if (ent->plt.offset != (bfd_vma) -1)
17402 {
17403 /* Mark the symbol as undefined, rather than as
17404 defined in glink. Leave the value if there were
17405 any relocations where pointer equality matters
17406 (this is a clue for the dynamic linker, to make
17407 function pointer comparisons work between an
17408 application and shared library), otherwise set it
17409 to zero. */
17410 sym->st_shndx = SHN_UNDEF;
17411 if (!h->pointer_equality_needed)
17412 sym->st_value = 0;
17413 else if (!h->ref_regular_nonweak)
17414 {
17415 /* This breaks function pointer comparisons, but
17416 that is better than breaking tests for a NULL
17417 function pointer. */
17418 sym->st_value = 0;
17419 }
17420 break;
17421 }
17422
17423 if (h->needs_copy
17424 && (h->root.type == bfd_link_hash_defined
17425 || h->root.type == bfd_link_hash_defweak)
17426 && (h->root.u.def.section == htab->elf.sdynbss
17427 || h->root.u.def.section == htab->elf.sdynrelro))
17428 {
17429 /* This symbol needs a copy reloc. Set it up. */
17430 Elf_Internal_Rela rela;
17431 asection *srel;
17432 bfd_byte *loc;
17433
17434 if (h->dynindx == -1)
17435 abort ();
17436
17437 rela.r_offset = defined_sym_val (h);
17438 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
17439 rela.r_addend = 0;
17440 if (h->root.u.def.section == htab->elf.sdynrelro)
17441 srel = htab->elf.sreldynrelro;
17442 else
17443 srel = htab->elf.srelbss;
17444 loc = srel->contents;
17445 loc += srel->reloc_count++ * sizeof (Elf64_External_Rela);
17446 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
17447 }
17448
17449 return TRUE;
17450 }
17451
17452 /* Used to decide how to sort relocs in an optimal manner for the
17453 dynamic linker, before writing them out. */
17454
17455 static enum elf_reloc_type_class
17456 ppc64_elf_reloc_type_class (const struct bfd_link_info *info,
17457 const asection *rel_sec,
17458 const Elf_Internal_Rela *rela)
17459 {
17460 enum elf_ppc64_reloc_type r_type;
17461 struct ppc_link_hash_table *htab = ppc_hash_table (info);
17462
17463 if (rel_sec == htab->elf.irelplt)
17464 return reloc_class_ifunc;
17465
17466 r_type = ELF64_R_TYPE (rela->r_info);
17467 switch (r_type)
17468 {
17469 case R_PPC64_RELATIVE:
17470 return reloc_class_relative;
17471 case R_PPC64_JMP_SLOT:
17472 return reloc_class_plt;
17473 case R_PPC64_COPY:
17474 return reloc_class_copy;
17475 default:
17476 return reloc_class_normal;
17477 }
17478 }
17479
17480 /* Finish up the dynamic sections. */
17481
17482 static bfd_boolean
17483 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
17484 struct bfd_link_info *info)
17485 {
17486 struct ppc_link_hash_table *htab;
17487 bfd *dynobj;
17488 asection *sdyn;
17489
17490 htab = ppc_hash_table (info);
17491 if (htab == NULL)
17492 return FALSE;
17493
17494 dynobj = htab->elf.dynobj;
17495 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
17496
17497 if (htab->elf.dynamic_sections_created)
17498 {
17499 Elf64_External_Dyn *dyncon, *dynconend;
17500
17501 if (sdyn == NULL || htab->elf.sgot == NULL)
17502 abort ();
17503
17504 dyncon = (Elf64_External_Dyn *) sdyn->contents;
17505 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
17506 for (; dyncon < dynconend; dyncon++)
17507 {
17508 Elf_Internal_Dyn dyn;
17509 asection *s;
17510
17511 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
17512
17513 switch (dyn.d_tag)
17514 {
17515 default:
17516 continue;
17517
17518 case DT_PPC64_GLINK:
17519 s = htab->glink;
17520 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17521 /* We stupidly defined DT_PPC64_GLINK to be the start
17522 of glink rather than the first entry point, which is
17523 what ld.so needs, and now have a bigger stub to
17524 support automatic multiple TOCs. */
17525 dyn.d_un.d_ptr += GLINK_PLTRESOLVE_SIZE (htab) - 8 * 4;
17526 break;
17527
17528 case DT_PPC64_OPD:
17529 s = bfd_get_section_by_name (output_bfd, ".opd");
17530 if (s == NULL)
17531 continue;
17532 dyn.d_un.d_ptr = s->vma;
17533 break;
17534
17535 case DT_PPC64_OPT:
17536 if ((htab->do_multi_toc && htab->multi_toc_needed)
17537 || htab->notoc_plt)
17538 dyn.d_un.d_val |= PPC64_OPT_MULTI_TOC;
17539 if (htab->has_plt_localentry0)
17540 dyn.d_un.d_val |= PPC64_OPT_LOCALENTRY;
17541 break;
17542
17543 case DT_PPC64_OPDSZ:
17544 s = bfd_get_section_by_name (output_bfd, ".opd");
17545 if (s == NULL)
17546 continue;
17547 dyn.d_un.d_val = s->size;
17548 break;
17549
17550 case DT_PLTGOT:
17551 s = htab->elf.splt;
17552 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17553 break;
17554
17555 case DT_JMPREL:
17556 s = htab->elf.srelplt;
17557 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17558 break;
17559
17560 case DT_PLTRELSZ:
17561 dyn.d_un.d_val = htab->elf.srelplt->size;
17562 break;
17563
17564 case DT_TEXTREL:
17565 if (htab->elf.ifunc_resolvers)
17566 info->callbacks->einfo
17567 (_("%P: warning: text relocations and GNU indirect "
17568 "functions may result in a segfault at runtime\n"));
17569 continue;
17570 }
17571
17572 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
17573 }
17574 }
17575
17576 if (htab->elf.sgot != NULL && htab->elf.sgot->size != 0
17577 && htab->elf.sgot->output_section != bfd_abs_section_ptr)
17578 {
17579 /* Fill in the first entry in the global offset table.
17580 We use it to hold the link-time TOCbase. */
17581 bfd_put_64 (output_bfd,
17582 elf_gp (output_bfd) + TOC_BASE_OFF,
17583 htab->elf.sgot->contents);
17584
17585 /* Set .got entry size. */
17586 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
17587 = 8;
17588 }
17589
17590 if (htab->elf.splt != NULL && htab->elf.splt->size != 0
17591 && htab->elf.splt->output_section != bfd_abs_section_ptr)
17592 {
17593 /* Set .plt entry size. */
17594 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize
17595 = PLT_ENTRY_SIZE (htab);
17596 }
17597
17598 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
17599 brlt ourselves if emitrelocations. */
17600 if (htab->brlt != NULL
17601 && htab->brlt->reloc_count != 0
17602 && !_bfd_elf_link_output_relocs (output_bfd,
17603 htab->brlt,
17604 elf_section_data (htab->brlt)->rela.hdr,
17605 elf_section_data (htab->brlt)->relocs,
17606 NULL))
17607 return FALSE;
17608
17609 if (htab->glink != NULL
17610 && htab->glink->reloc_count != 0
17611 && !_bfd_elf_link_output_relocs (output_bfd,
17612 htab->glink,
17613 elf_section_data (htab->glink)->rela.hdr,
17614 elf_section_data (htab->glink)->relocs,
17615 NULL))
17616 return FALSE;
17617
17618
17619 if (htab->glink_eh_frame != NULL
17620 && htab->glink_eh_frame->size != 0
17621 && htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
17622 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
17623 htab->glink_eh_frame,
17624 htab->glink_eh_frame->contents))
17625 return FALSE;
17626
17627 /* We need to handle writing out multiple GOT sections ourselves,
17628 since we didn't add them to DYNOBJ. We know dynobj is the first
17629 bfd. */
17630 while ((dynobj = dynobj->link.next) != NULL)
17631 {
17632 asection *s;
17633
17634 if (!is_ppc64_elf (dynobj))
17635 continue;
17636
17637 s = ppc64_elf_tdata (dynobj)->got;
17638 if (s != NULL
17639 && s->size != 0
17640 && s->output_section != bfd_abs_section_ptr
17641 && !bfd_set_section_contents (output_bfd, s->output_section,
17642 s->contents, s->output_offset,
17643 s->size))
17644 return FALSE;
17645 s = ppc64_elf_tdata (dynobj)->relgot;
17646 if (s != NULL
17647 && s->size != 0
17648 && s->output_section != bfd_abs_section_ptr
17649 && !bfd_set_section_contents (output_bfd, s->output_section,
17650 s->contents, s->output_offset,
17651 s->size))
17652 return FALSE;
17653 }
17654
17655 return TRUE;
17656 }
17657
17658 #include "elf64-target.h"
17659
17660 /* FreeBSD support */
17661
17662 #undef TARGET_LITTLE_SYM
17663 #undef TARGET_LITTLE_NAME
17664
17665 #undef TARGET_BIG_SYM
17666 #define TARGET_BIG_SYM powerpc_elf64_fbsd_vec
17667 #undef TARGET_BIG_NAME
17668 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
17669
17670 #undef ELF_OSABI
17671 #define ELF_OSABI ELFOSABI_FREEBSD
17672
17673 #undef elf64_bed
17674 #define elf64_bed elf64_powerpc_fbsd_bed
17675
17676 #include "elf64-target.h"