]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-sparc.c
SPARC: fix PR ld/18841
[thirdparty/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/sparc.h"
26 #include "opcode/sparc.h"
27 #include "elfxx-sparc.h"
28
29 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
30 #define MINUS_ONE (~ (bfd_vma) 0)
31
32 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
33 section can represent up to two relocs, we must tell the user to allocate
34 more space. */
35
36 static long
37 elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
38 {
39 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
40 }
41
42 static long
43 elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd)
44 {
45 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
46 }
47
48 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
49 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
50 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
51 for the same location, R_SPARC_LO10 and R_SPARC_13. */
52
53 static bfd_boolean
54 elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect,
55 Elf_Internal_Shdr *rel_hdr,
56 asymbol **symbols, bfd_boolean dynamic)
57 {
58 void * allocated = NULL;
59 bfd_byte *native_relocs;
60 arelent *relent;
61 unsigned int i;
62 int entsize;
63 bfd_size_type count;
64 arelent *relents;
65
66 allocated = bfd_malloc (rel_hdr->sh_size);
67 if (allocated == NULL)
68 goto error_return;
69
70 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
71 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
72 goto error_return;
73
74 native_relocs = (bfd_byte *) allocated;
75
76 relents = asect->relocation + canon_reloc_count (asect);
77
78 entsize = rel_hdr->sh_entsize;
79 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
80
81 count = rel_hdr->sh_size / entsize;
82
83 for (i = 0, relent = relents; i < count;
84 i++, relent++, native_relocs += entsize)
85 {
86 Elf_Internal_Rela rela;
87 unsigned int r_type;
88
89 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
90
91 /* The address of an ELF reloc is section relative for an object
92 file, and absolute for an executable file or shared library.
93 The address of a normal BFD reloc is always section relative,
94 and the address of a dynamic reloc is absolute.. */
95 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
96 relent->address = rela.r_offset;
97 else
98 relent->address = rela.r_offset - asect->vma;
99
100 if (ELF64_R_SYM (rela.r_info) == STN_UNDEF)
101 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
102 else if (/* PR 17512: file: 996185f8. */
103 (!dynamic && ELF64_R_SYM(rela.r_info) > bfd_get_symcount(abfd))
104 || (dynamic
105 && ELF64_R_SYM(rela.r_info) > bfd_get_dynamic_symcount(abfd)))
106 {
107 _bfd_error_handler
108 /* xgettext:c-format */
109 (_("%pB(%pA): relocation %d has invalid symbol index %ld"),
110 abfd, asect, i, (long) ELF64_R_SYM (rela.r_info));
111 bfd_set_error (bfd_error_bad_value);
112 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
113 }
114 else
115 {
116 asymbol **ps, *s;
117
118 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
119 s = *ps;
120
121 /* Canonicalize ELF section symbols. FIXME: Why? */
122 if ((s->flags & BSF_SECTION_SYM) == 0)
123 relent->sym_ptr_ptr = ps;
124 else
125 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
126 }
127
128 relent->addend = rela.r_addend;
129
130 r_type = ELF64_R_TYPE_ID (rela.r_info);
131 if (r_type == R_SPARC_OLO10)
132 {
133 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (abfd, R_SPARC_LO10);
134 relent[1].address = relent->address;
135 relent++;
136 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
137 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
138 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (abfd, R_SPARC_13);
139 }
140 else
141 {
142 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (abfd, r_type);
143 if (relent->howto == NULL)
144 goto error_return;
145 }
146 }
147
148 canon_reloc_count (asect) += relent - relents;
149
150 if (allocated != NULL)
151 free (allocated);
152
153 return TRUE;
154
155 error_return:
156 if (allocated != NULL)
157 free (allocated);
158 return FALSE;
159 }
160
161 /* Read in and swap the external relocs. */
162
163 static bfd_boolean
164 elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect,
165 asymbol **symbols, bfd_boolean dynamic)
166 {
167 struct bfd_elf_section_data * const d = elf_section_data (asect);
168 Elf_Internal_Shdr *rel_hdr;
169 Elf_Internal_Shdr *rel_hdr2;
170 bfd_size_type amt;
171
172 if (asect->relocation != NULL)
173 return TRUE;
174
175 if (! dynamic)
176 {
177 if ((asect->flags & SEC_RELOC) == 0
178 || asect->reloc_count == 0)
179 return TRUE;
180
181 rel_hdr = d->rel.hdr;
182 rel_hdr2 = d->rela.hdr;
183
184 BFD_ASSERT ((rel_hdr && asect->rel_filepos == rel_hdr->sh_offset)
185 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
186 }
187 else
188 {
189 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
190 case because relocations against this section may use the
191 dynamic symbol table, and in that case bfd_section_from_shdr
192 in elf.c does not update the RELOC_COUNT. */
193 if (asect->size == 0)
194 return TRUE;
195
196 rel_hdr = &d->this_hdr;
197 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
198 rel_hdr2 = NULL;
199 }
200
201 amt = asect->reloc_count;
202 amt *= 2 * sizeof (arelent);
203 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
204 if (asect->relocation == NULL)
205 return FALSE;
206
207 /* The elf64_sparc_slurp_one_reloc_table routine increments
208 canon_reloc_count. */
209 canon_reloc_count (asect) = 0;
210
211 if (rel_hdr
212 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
213 dynamic))
214 return FALSE;
215
216 if (rel_hdr2
217 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
218 dynamic))
219 return FALSE;
220
221 return TRUE;
222 }
223
224 /* Canonicalize the relocs. */
225
226 static long
227 elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section,
228 arelent **relptr, asymbol **symbols)
229 {
230 arelent *tblptr;
231 unsigned int i;
232 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
233
234 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
235 return -1;
236
237 tblptr = section->relocation;
238 for (i = 0; i < canon_reloc_count (section); i++)
239 *relptr++ = tblptr++;
240
241 *relptr = NULL;
242
243 return canon_reloc_count (section);
244 }
245
246
247 /* Canonicalize the dynamic relocation entries. Note that we return
248 the dynamic relocations as a single block, although they are
249 actually associated with particular sections; the interface, which
250 was designed for SunOS style shared libraries, expects that there
251 is only one set of dynamic relocs. Any section that was actually
252 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
253 the dynamic symbol table, is considered to be a dynamic reloc
254 section. */
255
256 static long
257 elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage,
258 asymbol **syms)
259 {
260 asection *s;
261 long ret;
262
263 if (elf_dynsymtab (abfd) == 0)
264 {
265 bfd_set_error (bfd_error_invalid_operation);
266 return -1;
267 }
268
269 ret = 0;
270 for (s = abfd->sections; s != NULL; s = s->next)
271 {
272 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
273 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
274 {
275 arelent *p;
276 long count, i;
277
278 if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE))
279 return -1;
280 count = canon_reloc_count (s);
281 p = s->relocation;
282 for (i = 0; i < count; i++)
283 *storage++ = p++;
284 ret += count;
285 }
286 }
287
288 *storage = NULL;
289
290 return ret;
291 }
292
293 /* Install a new set of internal relocs. */
294
295 static void
296 elf64_sparc_set_reloc (bfd *abfd ATTRIBUTE_UNUSED,
297 asection *asect,
298 arelent **location,
299 unsigned int count)
300 {
301 asect->orelocation = location;
302 canon_reloc_count (asect) = count;
303 }
304
305 /* Write out the relocs. */
306
307 static void
308 elf64_sparc_write_relocs (bfd *abfd, asection *sec, void * data)
309 {
310 bfd_boolean *failedp = (bfd_boolean *) data;
311 Elf_Internal_Shdr *rela_hdr;
312 bfd_vma addr_offset;
313 Elf64_External_Rela *outbound_relocas, *src_rela;
314 unsigned int idx, count;
315 asymbol *last_sym = 0;
316 int last_sym_idx = 0;
317
318 /* If we have already failed, don't do anything. */
319 if (*failedp)
320 return;
321
322 if ((sec->flags & SEC_RELOC) == 0)
323 return;
324
325 /* The linker backend writes the relocs out itself, and sets the
326 reloc_count field to zero to inhibit writing them here. Also,
327 sometimes the SEC_RELOC flag gets set even when there aren't any
328 relocs. */
329 if (canon_reloc_count (sec) == 0)
330 return;
331
332 /* We can combine two relocs that refer to the same address
333 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
334 latter is R_SPARC_13 with no associated symbol. */
335 count = 0;
336 for (idx = 0; idx < canon_reloc_count (sec); idx++)
337 {
338 bfd_vma addr;
339
340 ++count;
341
342 addr = sec->orelocation[idx]->address;
343 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
344 && idx < canon_reloc_count (sec) - 1)
345 {
346 arelent *r = sec->orelocation[idx + 1];
347
348 if (r->howto->type == R_SPARC_13
349 && r->address == addr
350 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
351 && (*r->sym_ptr_ptr)->value == 0)
352 ++idx;
353 }
354 }
355
356 rela_hdr = elf_section_data (sec)->rela.hdr;
357
358 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
359 rela_hdr->contents = bfd_alloc (abfd, rela_hdr->sh_size);
360 if (rela_hdr->contents == NULL)
361 {
362 *failedp = TRUE;
363 return;
364 }
365
366 /* Figure out whether the relocations are RELA or REL relocations. */
367 if (rela_hdr->sh_type != SHT_RELA)
368 abort ();
369
370 /* The address of an ELF reloc is section relative for an object
371 file, and absolute for an executable file or shared library.
372 The address of a BFD reloc is always section relative. */
373 addr_offset = 0;
374 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
375 addr_offset = sec->vma;
376
377 /* orelocation has the data, reloc_count has the count... */
378 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
379 src_rela = outbound_relocas;
380
381 for (idx = 0; idx < canon_reloc_count (sec); idx++)
382 {
383 Elf_Internal_Rela dst_rela;
384 arelent *ptr;
385 asymbol *sym;
386 int n;
387
388 ptr = sec->orelocation[idx];
389 sym = *ptr->sym_ptr_ptr;
390 if (sym == last_sym)
391 n = last_sym_idx;
392 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
393 n = STN_UNDEF;
394 else
395 {
396 last_sym = sym;
397 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
398 if (n < 0)
399 {
400 *failedp = TRUE;
401 return;
402 }
403 last_sym_idx = n;
404 }
405
406 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
407 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
408 && ! _bfd_elf_validate_reloc (abfd, ptr))
409 {
410 *failedp = TRUE;
411 return;
412 }
413
414 if (ptr->howto->type == R_SPARC_LO10
415 && idx < canon_reloc_count (sec) - 1)
416 {
417 arelent *r = sec->orelocation[idx + 1];
418
419 if (r->howto->type == R_SPARC_13
420 && r->address == ptr->address
421 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
422 && (*r->sym_ptr_ptr)->value == 0)
423 {
424 idx++;
425 dst_rela.r_info
426 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
427 R_SPARC_OLO10));
428 }
429 else
430 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
431 }
432 else
433 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
434
435 dst_rela.r_offset = ptr->address + addr_offset;
436 dst_rela.r_addend = ptr->addend;
437
438 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
439 ++src_rela;
440 }
441 }
442 \f
443 /* Hook called by the linker routine which adds symbols from an object
444 file. We use it for STT_REGISTER symbols. */
445
446 static bfd_boolean
447 elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
448 Elf_Internal_Sym *sym, const char **namep,
449 flagword *flagsp ATTRIBUTE_UNUSED,
450 asection **secp ATTRIBUTE_UNUSED,
451 bfd_vma *valp ATTRIBUTE_UNUSED)
452 {
453 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
454
455 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
456 {
457 int reg;
458 struct _bfd_sparc_elf_app_reg *p;
459
460 reg = (int)sym->st_value;
461 switch (reg & ~1)
462 {
463 case 2: reg -= 2; break;
464 case 6: reg -= 4; break;
465 default:
466 _bfd_error_handler
467 (_("%pB: only registers %%g[2367] can be declared using STT_REGISTER"),
468 abfd);
469 return FALSE;
470 }
471
472 if (info->output_bfd->xvec != abfd->xvec
473 || (abfd->flags & DYNAMIC) != 0)
474 {
475 /* STT_REGISTER only works when linking an elf64_sparc object.
476 If STT_REGISTER comes from a dynamic object, don't put it into
477 the output bfd. The dynamic linker will recheck it. */
478 *namep = NULL;
479 return TRUE;
480 }
481
482 p = _bfd_sparc_elf_hash_table(info)->app_regs + reg;
483
484 if (p->name != NULL && strcmp (p->name, *namep))
485 {
486 _bfd_error_handler
487 /* xgettext:c-format */
488 (_("register %%g%d used incompatibly: %s in %pB,"
489 " previously %s in %pB"),
490 (int) sym->st_value, **namep ? *namep : "#scratch", abfd,
491 *p->name ? p->name : "#scratch", p->abfd);
492 return FALSE;
493 }
494
495 if (p->name == NULL)
496 {
497 if (**namep)
498 {
499 struct elf_link_hash_entry *h;
500
501 h = (struct elf_link_hash_entry *)
502 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
503
504 if (h != NULL)
505 {
506 unsigned char type = h->type;
507
508 if (type > STT_FUNC)
509 type = 0;
510 _bfd_error_handler
511 /* xgettext:c-format */
512 (_("symbol `%s' has differing types: REGISTER in %pB,"
513 " previously %s in %pB"),
514 *namep, abfd, stt_types[type], p->abfd);
515 return FALSE;
516 }
517
518 p->name = bfd_hash_allocate (&info->hash->table,
519 strlen (*namep) + 1);
520 if (!p->name)
521 return FALSE;
522
523 strcpy (p->name, *namep);
524 }
525 else
526 p->name = "";
527 p->bind = ELF_ST_BIND (sym->st_info);
528 p->abfd = abfd;
529 p->shndx = sym->st_shndx;
530 }
531 else
532 {
533 if (p->bind == STB_WEAK
534 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
535 {
536 p->bind = STB_GLOBAL;
537 p->abfd = abfd;
538 }
539 }
540 *namep = NULL;
541 return TRUE;
542 }
543 else if (*namep && **namep
544 && info->output_bfd->xvec == abfd->xvec)
545 {
546 int i;
547 struct _bfd_sparc_elf_app_reg *p;
548
549 p = _bfd_sparc_elf_hash_table(info)->app_regs;
550 for (i = 0; i < 4; i++, p++)
551 if (p->name != NULL && ! strcmp (p->name, *namep))
552 {
553 unsigned char type = ELF_ST_TYPE (sym->st_info);
554
555 if (type > STT_FUNC)
556 type = 0;
557 _bfd_error_handler
558 /* xgettext:c-format */
559 (_("Symbol `%s' has differing types: %s in %pB,"
560 " previously REGISTER in %pB"),
561 *namep, stt_types[type], abfd, p->abfd);
562 return FALSE;
563 }
564 }
565 return TRUE;
566 }
567
568 /* This function takes care of emitting STT_REGISTER symbols
569 which we cannot easily keep in the symbol hash table. */
570
571 static bfd_boolean
572 elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED,
573 struct bfd_link_info *info,
574 void * flaginfo,
575 int (*func) (void *, const char *,
576 Elf_Internal_Sym *,
577 asection *,
578 struct elf_link_hash_entry *))
579 {
580 int reg;
581 struct _bfd_sparc_elf_app_reg *app_regs =
582 _bfd_sparc_elf_hash_table(info)->app_regs;
583 Elf_Internal_Sym sym;
584
585 for (reg = 0; reg < 4; reg++)
586 if (app_regs [reg].name != NULL)
587 {
588 if (info->strip == strip_some
589 && bfd_hash_lookup (info->keep_hash,
590 app_regs [reg].name,
591 FALSE, FALSE) == NULL)
592 continue;
593
594 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
595 sym.st_size = 0;
596 sym.st_other = 0;
597 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
598 sym.st_shndx = app_regs [reg].shndx;
599 sym.st_target_internal = 0;
600 if ((*func) (flaginfo, app_regs [reg].name, &sym,
601 sym.st_shndx == SHN_ABS
602 ? bfd_abs_section_ptr : bfd_und_section_ptr,
603 NULL) != 1)
604 return FALSE;
605 }
606
607 return TRUE;
608 }
609
610 static int
611 elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
612 {
613 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
614 return STT_REGISTER;
615 else
616 return type;
617 }
618
619 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
620 even in SHN_UNDEF section. */
621
622 static void
623 elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
624 {
625 elf_symbol_type *elfsym;
626
627 elfsym = (elf_symbol_type *) asym;
628 if (elfsym->internal_elf_sym.st_info
629 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
630 {
631 asym->flags |= BSF_GLOBAL;
632 }
633 }
634
635 \f
636 /* Functions for dealing with the e_flags field. */
637
638 /* Merge backend specific data from an object file to the output
639 object file when linking. */
640
641 static bfd_boolean
642 elf64_sparc_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
643 {
644 bfd *obfd = info->output_bfd;
645 bfd_boolean error;
646 flagword new_flags, old_flags;
647 int new_mm, old_mm;
648
649 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
650 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
651 return TRUE;
652
653 new_flags = elf_elfheader (ibfd)->e_flags;
654 old_flags = elf_elfheader (obfd)->e_flags;
655
656 if (!elf_flags_init (obfd)) /* First call, no flags set */
657 {
658 elf_flags_init (obfd) = TRUE;
659 elf_elfheader (obfd)->e_flags = new_flags;
660 }
661
662 else if (new_flags == old_flags) /* Compatible flags are ok */
663 ;
664
665 else /* Incompatible flags */
666 {
667 error = FALSE;
668
669 #define EF_SPARC_ISA_EXTENSIONS \
670 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
671
672 if ((ibfd->flags & DYNAMIC) != 0)
673 {
674 /* We don't want dynamic objects memory ordering and
675 architecture to have any role. That's what dynamic linker
676 should do. */
677 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
678 new_flags |= (old_flags
679 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
680 }
681 else
682 {
683 /* Choose the highest architecture requirements. */
684 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
685 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
686 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
687 && (old_flags & EF_SPARC_HAL_R1))
688 {
689 error = TRUE;
690 _bfd_error_handler
691 (_("%pB: linking UltraSPARC specific with HAL specific code"),
692 ibfd);
693 }
694 /* Choose the most restrictive memory ordering. */
695 old_mm = (old_flags & EF_SPARCV9_MM);
696 new_mm = (new_flags & EF_SPARCV9_MM);
697 old_flags &= ~EF_SPARCV9_MM;
698 new_flags &= ~EF_SPARCV9_MM;
699 if (new_mm < old_mm)
700 old_mm = new_mm;
701 old_flags |= old_mm;
702 new_flags |= old_mm;
703 }
704
705 /* Warn about any other mismatches */
706 if (new_flags != old_flags)
707 {
708 error = TRUE;
709 _bfd_error_handler
710 /* xgettext:c-format */
711 (_("%pB: uses different e_flags (%#x) fields than previous modules (%#x)"),
712 ibfd, new_flags, old_flags);
713 }
714
715 elf_elfheader (obfd)->e_flags = old_flags;
716
717 if (error)
718 {
719 bfd_set_error (bfd_error_bad_value);
720 return FALSE;
721 }
722 }
723 return _bfd_sparc_elf_merge_private_bfd_data (ibfd, info);
724 }
725
726 /* MARCO: Set the correct entry size for the .stab section. */
727
728 static bfd_boolean
729 elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
730 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED,
731 asection *sec)
732 {
733 const char *name;
734
735 name = bfd_get_section_name (abfd, sec);
736
737 if (strcmp (name, ".stab") == 0)
738 {
739 /* Even in the 64bit case the stab entries are only 12 bytes long. */
740 elf_section_data (sec)->this_hdr.sh_entsize = 12;
741 }
742
743 return TRUE;
744 }
745 \f
746 /* Print a STT_REGISTER symbol to file FILE. */
747
748 static const char *
749 elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, void * filep,
750 asymbol *symbol)
751 {
752 FILE *file = (FILE *) filep;
753 int reg, type;
754
755 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
756 != STT_REGISTER)
757 return NULL;
758
759 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
760 type = symbol->flags;
761 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
762 ((type & BSF_LOCAL)
763 ? (type & BSF_GLOBAL) ? '!' : 'l'
764 : (type & BSF_GLOBAL) ? 'g' : ' '),
765 (type & BSF_WEAK) ? 'w' : ' ');
766 if (symbol->name == NULL || symbol->name [0] == '\0')
767 return "#scratch";
768 else
769 return symbol->name;
770 }
771 \f
772 /* Used to decide how to sort relocs in an optimal manner for the
773 dynamic linker, before writing them out. */
774
775 static enum elf_reloc_type_class
776 elf64_sparc_reloc_type_class (const struct bfd_link_info *info,
777 const asection *rel_sec ATTRIBUTE_UNUSED,
778 const Elf_Internal_Rela *rela)
779 {
780 bfd *abfd = info->output_bfd;
781 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
782 struct _bfd_sparc_elf_link_hash_table *htab
783 = _bfd_sparc_elf_hash_table (info);
784 BFD_ASSERT (htab != NULL);
785
786 if (htab->elf.dynsym != NULL
787 && htab->elf.dynsym->contents != NULL)
788 {
789 /* Check relocation against STT_GNU_IFUNC symbol if there are
790 dynamic symbols. */
791 unsigned long r_symndx = htab->r_symndx (rela->r_info);
792 if (r_symndx != STN_UNDEF)
793 {
794 Elf_Internal_Sym sym;
795 if (!bed->s->swap_symbol_in (abfd,
796 (htab->elf.dynsym->contents
797 + r_symndx * bed->s->sizeof_sym),
798 0, &sym))
799 abort ();
800
801 if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
802 return reloc_class_ifunc;
803 }
804 }
805
806 switch ((int) ELF64_R_TYPE (rela->r_info))
807 {
808 case R_SPARC_IRELATIVE:
809 return reloc_class_ifunc;
810 case R_SPARC_RELATIVE:
811 return reloc_class_relative;
812 case R_SPARC_JMP_SLOT:
813 return reloc_class_plt;
814 case R_SPARC_COPY:
815 return reloc_class_copy;
816 default:
817 return reloc_class_normal;
818 }
819 }
820
821 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
822 standard ELF, because R_SPARC_OLO10 has secondary addend in
823 ELF64_R_TYPE_DATA field. This structure is used to redirect the
824 relocation handling routines. */
825
826 const struct elf_size_info elf64_sparc_size_info =
827 {
828 sizeof (Elf64_External_Ehdr),
829 sizeof (Elf64_External_Phdr),
830 sizeof (Elf64_External_Shdr),
831 sizeof (Elf64_External_Rel),
832 sizeof (Elf64_External_Rela),
833 sizeof (Elf64_External_Sym),
834 sizeof (Elf64_External_Dyn),
835 sizeof (Elf_External_Note),
836 4, /* hash-table entry size. */
837 /* Internal relocations per external relocations.
838 For link purposes we use just 1 internal per
839 1 external, for assembly and slurp symbol table
840 we use 2. */
841 1,
842 64, /* arch_size. */
843 3, /* log_file_align. */
844 ELFCLASS64,
845 EV_CURRENT,
846 bfd_elf64_write_out_phdrs,
847 bfd_elf64_write_shdrs_and_ehdr,
848 bfd_elf64_checksum_contents,
849 elf64_sparc_write_relocs,
850 bfd_elf64_swap_symbol_in,
851 bfd_elf64_swap_symbol_out,
852 elf64_sparc_slurp_reloc_table,
853 bfd_elf64_slurp_symbol_table,
854 bfd_elf64_swap_dyn_in,
855 bfd_elf64_swap_dyn_out,
856 bfd_elf64_swap_reloc_in,
857 bfd_elf64_swap_reloc_out,
858 bfd_elf64_swap_reloca_in,
859 bfd_elf64_swap_reloca_out
860 };
861
862 #define TARGET_BIG_SYM sparc_elf64_vec
863 #define TARGET_BIG_NAME "elf64-sparc"
864 #define ELF_ARCH bfd_arch_sparc
865 #define ELF_MAXPAGESIZE 0x100000
866 #define ELF_COMMONPAGESIZE 0x2000
867
868 /* This is the official ABI value. */
869 #define ELF_MACHINE_CODE EM_SPARCV9
870
871 /* This is the value that we used before the ABI was released. */
872 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
873
874 #define elf_backend_reloc_type_class \
875 elf64_sparc_reloc_type_class
876 #define bfd_elf64_get_reloc_upper_bound \
877 elf64_sparc_get_reloc_upper_bound
878 #define bfd_elf64_get_dynamic_reloc_upper_bound \
879 elf64_sparc_get_dynamic_reloc_upper_bound
880 #define bfd_elf64_canonicalize_reloc \
881 elf64_sparc_canonicalize_reloc
882 #define bfd_elf64_canonicalize_dynamic_reloc \
883 elf64_sparc_canonicalize_dynamic_reloc
884 #define bfd_elf64_set_reloc \
885 elf64_sparc_set_reloc
886 #define elf_backend_add_symbol_hook \
887 elf64_sparc_add_symbol_hook
888 #define elf_backend_get_symbol_type \
889 elf64_sparc_get_symbol_type
890 #define elf_backend_symbol_processing \
891 elf64_sparc_symbol_processing
892 #define elf_backend_print_symbol_all \
893 elf64_sparc_print_symbol_all
894 #define elf_backend_output_arch_syms \
895 elf64_sparc_output_arch_syms
896 #define bfd_elf64_bfd_merge_private_bfd_data \
897 elf64_sparc_merge_private_bfd_data
898 #define elf_backend_fake_sections \
899 elf64_sparc_fake_sections
900 #define elf_backend_size_info \
901 elf64_sparc_size_info
902
903 #define elf_backend_plt_sym_val \
904 _bfd_sparc_elf_plt_sym_val
905 #define bfd_elf64_bfd_link_hash_table_create \
906 _bfd_sparc_elf_link_hash_table_create
907 #define elf_info_to_howto \
908 _bfd_sparc_elf_info_to_howto
909 #define elf_backend_copy_indirect_symbol \
910 _bfd_sparc_elf_copy_indirect_symbol
911 #define bfd_elf64_bfd_reloc_type_lookup \
912 _bfd_sparc_elf_reloc_type_lookup
913 #define bfd_elf64_bfd_reloc_name_lookup \
914 _bfd_sparc_elf_reloc_name_lookup
915 #define bfd_elf64_bfd_relax_section \
916 _bfd_sparc_elf_relax_section
917 #define bfd_elf64_new_section_hook \
918 _bfd_sparc_elf_new_section_hook
919
920 #define elf_backend_create_dynamic_sections \
921 _bfd_sparc_elf_create_dynamic_sections
922 #define elf_backend_relocs_compatible \
923 _bfd_elf_relocs_compatible
924 #define elf_backend_check_relocs \
925 _bfd_sparc_elf_check_relocs
926 #define elf_backend_adjust_dynamic_symbol \
927 _bfd_sparc_elf_adjust_dynamic_symbol
928 #define elf_backend_omit_section_dynsym \
929 _bfd_sparc_elf_omit_section_dynsym
930 #define elf_backend_size_dynamic_sections \
931 _bfd_sparc_elf_size_dynamic_sections
932 #define elf_backend_relocate_section \
933 _bfd_sparc_elf_relocate_section
934 #define elf_backend_finish_dynamic_symbol \
935 _bfd_sparc_elf_finish_dynamic_symbol
936 #define elf_backend_finish_dynamic_sections \
937 _bfd_sparc_elf_finish_dynamic_sections
938 #define elf_backend_fixup_symbol \
939 _bfd_sparc_elf_fixup_symbol
940
941 #define bfd_elf64_mkobject \
942 _bfd_sparc_elf_mkobject
943 #define elf_backend_object_p \
944 _bfd_sparc_elf_object_p
945 #define elf_backend_gc_mark_hook \
946 _bfd_sparc_elf_gc_mark_hook
947 #define elf_backend_init_index_section \
948 _bfd_elf_init_1_index_section
949
950 #define elf_backend_can_gc_sections 1
951 #define elf_backend_can_refcount 1
952 #define elf_backend_want_got_plt 0
953 #define elf_backend_plt_readonly 0
954 #define elf_backend_want_plt_sym 1
955 #define elf_backend_got_header_size 8
956 #define elf_backend_want_dynrelro 1
957 #define elf_backend_rela_normal 1
958
959 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
960 #define elf_backend_plt_alignment 8
961
962 #include "elf64-target.h"
963
964 /* FreeBSD support */
965 #undef TARGET_BIG_SYM
966 #define TARGET_BIG_SYM sparc_elf64_fbsd_vec
967 #undef TARGET_BIG_NAME
968 #define TARGET_BIG_NAME "elf64-sparc-freebsd"
969 #undef ELF_OSABI
970 #define ELF_OSABI ELFOSABI_FREEBSD
971
972 #undef elf64_bed
973 #define elf64_bed elf64_sparc_fbsd_bed
974
975 #include "elf64-target.h"
976
977 /* Solaris 2. */
978
979 #undef TARGET_BIG_SYM
980 #define TARGET_BIG_SYM sparc_elf64_sol2_vec
981 #undef TARGET_BIG_NAME
982 #define TARGET_BIG_NAME "elf64-sparc-sol2"
983
984 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
985 objects won't be recognized. */
986 #undef ELF_OSABI
987
988 #undef elf64_bed
989 #define elf64_bed elf64_sparc_sol2_bed
990
991 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
992 boundary. */
993 #undef elf_backend_static_tls_alignment
994 #define elf_backend_static_tls_alignment 16
995
996 #include "elf64-target.h"