]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elflink.c
[PATCH] fix windmc typedef bug
[thirdparty/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2020 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
32 #include "plugin.h"
33 #endif
34
35 /* This struct is used to pass information to routines called via
36 elf_link_hash_traverse which must return failure. */
37
38 struct elf_info_failed
39 {
40 struct bfd_link_info *info;
41 bfd_boolean failed;
42 };
43
44 /* This structure is used to pass information to
45 _bfd_elf_link_find_version_dependencies. */
46
47 struct elf_find_verdep_info
48 {
49 /* General link information. */
50 struct bfd_link_info *info;
51 /* The number of dependencies. */
52 unsigned int vers;
53 /* Whether we had a failure. */
54 bfd_boolean failed;
55 };
56
57 static bfd_boolean _bfd_elf_fix_symbol_flags
58 (struct elf_link_hash_entry *, struct elf_info_failed *);
59
60 asection *
61 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
62 unsigned long r_symndx,
63 bfd_boolean discard)
64 {
65 if (r_symndx >= cookie->locsymcount
66 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
67 {
68 struct elf_link_hash_entry *h;
69
70 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
71
72 while (h->root.type == bfd_link_hash_indirect
73 || h->root.type == bfd_link_hash_warning)
74 h = (struct elf_link_hash_entry *) h->root.u.i.link;
75
76 if ((h->root.type == bfd_link_hash_defined
77 || h->root.type == bfd_link_hash_defweak)
78 && discarded_section (h->root.u.def.section))
79 return h->root.u.def.section;
80 else
81 return NULL;
82 }
83 else
84 {
85 /* It's not a relocation against a global symbol,
86 but it could be a relocation against a local
87 symbol for a discarded section. */
88 asection *isec;
89 Elf_Internal_Sym *isym;
90
91 /* Need to: get the symbol; get the section. */
92 isym = &cookie->locsyms[r_symndx];
93 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
94 if (isec != NULL
95 && discard ? discarded_section (isec) : 1)
96 return isec;
97 }
98 return NULL;
99 }
100
101 /* Define a symbol in a dynamic linkage section. */
102
103 struct elf_link_hash_entry *
104 _bfd_elf_define_linkage_sym (bfd *abfd,
105 struct bfd_link_info *info,
106 asection *sec,
107 const char *name)
108 {
109 struct elf_link_hash_entry *h;
110 struct bfd_link_hash_entry *bh;
111 const struct elf_backend_data *bed;
112
113 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
114 if (h != NULL)
115 {
116 /* Zap symbol defined in an as-needed lib that wasn't linked.
117 This is a symptom of a larger problem: Absolute symbols
118 defined in shared libraries can't be overridden, because we
119 lose the link to the bfd which is via the symbol section. */
120 h->root.type = bfd_link_hash_new;
121 bh = &h->root;
122 }
123 else
124 bh = NULL;
125
126 bed = get_elf_backend_data (abfd);
127 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
128 sec, 0, NULL, FALSE, bed->collect,
129 &bh))
130 return NULL;
131 h = (struct elf_link_hash_entry *) bh;
132 BFD_ASSERT (h != NULL);
133 h->def_regular = 1;
134 h->non_elf = 0;
135 h->root.linker_def = 1;
136 h->type = STT_OBJECT;
137 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
138 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
139
140 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
141 return h;
142 }
143
144 bfd_boolean
145 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
146 {
147 flagword flags;
148 asection *s;
149 struct elf_link_hash_entry *h;
150 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
151 struct elf_link_hash_table *htab = elf_hash_table (info);
152
153 /* This function may be called more than once. */
154 if (htab->sgot != NULL)
155 return TRUE;
156
157 flags = bed->dynamic_sec_flags;
158
159 s = bfd_make_section_anyway_with_flags (abfd,
160 (bed->rela_plts_and_copies_p
161 ? ".rela.got" : ".rel.got"),
162 (bed->dynamic_sec_flags
163 | SEC_READONLY));
164 if (s == NULL
165 || !bfd_set_section_alignment (s, bed->s->log_file_align))
166 return FALSE;
167 htab->srelgot = s;
168
169 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
170 if (s == NULL
171 || !bfd_set_section_alignment (s, bed->s->log_file_align))
172 return FALSE;
173 htab->sgot = s;
174
175 if (bed->want_got_plt)
176 {
177 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
178 if (s == NULL
179 || !bfd_set_section_alignment (s, bed->s->log_file_align))
180 return FALSE;
181 htab->sgotplt = s;
182 }
183
184 /* The first bit of the global offset table is the header. */
185 s->size += bed->got_header_size;
186
187 if (bed->want_got_sym)
188 {
189 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
190 (or .got.plt) section. We don't do this in the linker script
191 because we don't want to define the symbol if we are not creating
192 a global offset table. */
193 h = _bfd_elf_define_linkage_sym (abfd, info, s,
194 "_GLOBAL_OFFSET_TABLE_");
195 elf_hash_table (info)->hgot = h;
196 if (h == NULL)
197 return FALSE;
198 }
199
200 return TRUE;
201 }
202 \f
203 /* Create a strtab to hold the dynamic symbol names. */
204 static bfd_boolean
205 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
206 {
207 struct elf_link_hash_table *hash_table;
208
209 hash_table = elf_hash_table (info);
210 if (hash_table->dynobj == NULL)
211 {
212 /* We may not set dynobj, an input file holding linker created
213 dynamic sections to abfd, which may be a dynamic object with
214 its own dynamic sections. We need to find a normal input file
215 to hold linker created sections if possible. */
216 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
217 {
218 bfd *ibfd;
219 asection *s;
220 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
221 if ((ibfd->flags
222 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
223 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
224 && elf_object_id (ibfd) == elf_hash_table_id (hash_table)
225 && !((s = ibfd->sections) != NULL
226 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
227 {
228 abfd = ibfd;
229 break;
230 }
231 }
232 hash_table->dynobj = abfd;
233 }
234
235 if (hash_table->dynstr == NULL)
236 {
237 hash_table->dynstr = _bfd_elf_strtab_init ();
238 if (hash_table->dynstr == NULL)
239 return FALSE;
240 }
241 return TRUE;
242 }
243
244 /* Create some sections which will be filled in with dynamic linking
245 information. ABFD is an input file which requires dynamic sections
246 to be created. The dynamic sections take up virtual memory space
247 when the final executable is run, so we need to create them before
248 addresses are assigned to the output sections. We work out the
249 actual contents and size of these sections later. */
250
251 bfd_boolean
252 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
253 {
254 flagword flags;
255 asection *s;
256 const struct elf_backend_data *bed;
257 struct elf_link_hash_entry *h;
258
259 if (! is_elf_hash_table (info->hash))
260 return FALSE;
261
262 if (elf_hash_table (info)->dynamic_sections_created)
263 return TRUE;
264
265 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
266 return FALSE;
267
268 abfd = elf_hash_table (info)->dynobj;
269 bed = get_elf_backend_data (abfd);
270
271 flags = bed->dynamic_sec_flags;
272
273 /* A dynamically linked executable has a .interp section, but a
274 shared library does not. */
275 if (bfd_link_executable (info) && !info->nointerp)
276 {
277 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
278 flags | SEC_READONLY);
279 if (s == NULL)
280 return FALSE;
281 }
282
283 /* Create sections to hold version informations. These are removed
284 if they are not needed. */
285 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
286 flags | SEC_READONLY);
287 if (s == NULL
288 || !bfd_set_section_alignment (s, bed->s->log_file_align))
289 return FALSE;
290
291 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
292 flags | SEC_READONLY);
293 if (s == NULL
294 || !bfd_set_section_alignment (s, 1))
295 return FALSE;
296
297 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
298 flags | SEC_READONLY);
299 if (s == NULL
300 || !bfd_set_section_alignment (s, bed->s->log_file_align))
301 return FALSE;
302
303 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
304 flags | SEC_READONLY);
305 if (s == NULL
306 || !bfd_set_section_alignment (s, bed->s->log_file_align))
307 return FALSE;
308 elf_hash_table (info)->dynsym = s;
309
310 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
311 flags | SEC_READONLY);
312 if (s == NULL)
313 return FALSE;
314
315 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
316 if (s == NULL
317 || !bfd_set_section_alignment (s, bed->s->log_file_align))
318 return FALSE;
319
320 /* The special symbol _DYNAMIC is always set to the start of the
321 .dynamic section. We could set _DYNAMIC in a linker script, but we
322 only want to define it if we are, in fact, creating a .dynamic
323 section. We don't want to define it if there is no .dynamic
324 section, since on some ELF platforms the start up code examines it
325 to decide how to initialize the process. */
326 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
327 elf_hash_table (info)->hdynamic = h;
328 if (h == NULL)
329 return FALSE;
330
331 if (info->emit_hash)
332 {
333 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
334 flags | SEC_READONLY);
335 if (s == NULL
336 || !bfd_set_section_alignment (s, bed->s->log_file_align))
337 return FALSE;
338 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
339 }
340
341 if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL)
342 {
343 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
344 flags | SEC_READONLY);
345 if (s == NULL
346 || !bfd_set_section_alignment (s, bed->s->log_file_align))
347 return FALSE;
348 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
349 4 32-bit words followed by variable count of 64-bit words, then
350 variable count of 32-bit words. */
351 if (bed->s->arch_size == 64)
352 elf_section_data (s)->this_hdr.sh_entsize = 0;
353 else
354 elf_section_data (s)->this_hdr.sh_entsize = 4;
355 }
356
357 /* Let the backend create the rest of the sections. This lets the
358 backend set the right flags. The backend will normally create
359 the .got and .plt sections. */
360 if (bed->elf_backend_create_dynamic_sections == NULL
361 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
362 return FALSE;
363
364 elf_hash_table (info)->dynamic_sections_created = TRUE;
365
366 return TRUE;
367 }
368
369 /* Create dynamic sections when linking against a dynamic object. */
370
371 bfd_boolean
372 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
373 {
374 flagword flags, pltflags;
375 struct elf_link_hash_entry *h;
376 asection *s;
377 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
378 struct elf_link_hash_table *htab = elf_hash_table (info);
379
380 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
381 .rel[a].bss sections. */
382 flags = bed->dynamic_sec_flags;
383
384 pltflags = flags;
385 if (bed->plt_not_loaded)
386 /* We do not clear SEC_ALLOC here because we still want the OS to
387 allocate space for the section; it's just that there's nothing
388 to read in from the object file. */
389 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
390 else
391 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
392 if (bed->plt_readonly)
393 pltflags |= SEC_READONLY;
394
395 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
396 if (s == NULL
397 || !bfd_set_section_alignment (s, bed->plt_alignment))
398 return FALSE;
399 htab->splt = s;
400
401 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
402 .plt section. */
403 if (bed->want_plt_sym)
404 {
405 h = _bfd_elf_define_linkage_sym (abfd, info, s,
406 "_PROCEDURE_LINKAGE_TABLE_");
407 elf_hash_table (info)->hplt = h;
408 if (h == NULL)
409 return FALSE;
410 }
411
412 s = bfd_make_section_anyway_with_flags (abfd,
413 (bed->rela_plts_and_copies_p
414 ? ".rela.plt" : ".rel.plt"),
415 flags | SEC_READONLY);
416 if (s == NULL
417 || !bfd_set_section_alignment (s, bed->s->log_file_align))
418 return FALSE;
419 htab->srelplt = s;
420
421 if (! _bfd_elf_create_got_section (abfd, info))
422 return FALSE;
423
424 if (bed->want_dynbss)
425 {
426 /* The .dynbss section is a place to put symbols which are defined
427 by dynamic objects, are referenced by regular objects, and are
428 not functions. We must allocate space for them in the process
429 image and use a R_*_COPY reloc to tell the dynamic linker to
430 initialize them at run time. The linker script puts the .dynbss
431 section into the .bss section of the final image. */
432 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
433 SEC_ALLOC | SEC_LINKER_CREATED);
434 if (s == NULL)
435 return FALSE;
436 htab->sdynbss = s;
437
438 if (bed->want_dynrelro)
439 {
440 /* Similarly, but for symbols that were originally in read-only
441 sections. This section doesn't really need to have contents,
442 but make it like other .data.rel.ro sections. */
443 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
444 flags);
445 if (s == NULL)
446 return FALSE;
447 htab->sdynrelro = s;
448 }
449
450 /* The .rel[a].bss section holds copy relocs. This section is not
451 normally needed. We need to create it here, though, so that the
452 linker will map it to an output section. We can't just create it
453 only if we need it, because we will not know whether we need it
454 until we have seen all the input files, and the first time the
455 main linker code calls BFD after examining all the input files
456 (size_dynamic_sections) the input sections have already been
457 mapped to the output sections. If the section turns out not to
458 be needed, we can discard it later. We will never need this
459 section when generating a shared object, since they do not use
460 copy relocs. */
461 if (bfd_link_executable (info))
462 {
463 s = bfd_make_section_anyway_with_flags (abfd,
464 (bed->rela_plts_and_copies_p
465 ? ".rela.bss" : ".rel.bss"),
466 flags | SEC_READONLY);
467 if (s == NULL
468 || !bfd_set_section_alignment (s, bed->s->log_file_align))
469 return FALSE;
470 htab->srelbss = s;
471
472 if (bed->want_dynrelro)
473 {
474 s = (bfd_make_section_anyway_with_flags
475 (abfd, (bed->rela_plts_and_copies_p
476 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
477 flags | SEC_READONLY));
478 if (s == NULL
479 || !bfd_set_section_alignment (s, bed->s->log_file_align))
480 return FALSE;
481 htab->sreldynrelro = s;
482 }
483 }
484 }
485
486 return TRUE;
487 }
488 \f
489 /* Record a new dynamic symbol. We record the dynamic symbols as we
490 read the input files, since we need to have a list of all of them
491 before we can determine the final sizes of the output sections.
492 Note that we may actually call this function even though we are not
493 going to output any dynamic symbols; in some cases we know that a
494 symbol should be in the dynamic symbol table, but only if there is
495 one. */
496
497 bfd_boolean
498 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
499 struct elf_link_hash_entry *h)
500 {
501 if (h->dynindx == -1)
502 {
503 struct elf_strtab_hash *dynstr;
504 char *p;
505 const char *name;
506 size_t indx;
507
508 /* XXX: The ABI draft says the linker must turn hidden and
509 internal symbols into STB_LOCAL symbols when producing the
510 DSO. However, if ld.so honors st_other in the dynamic table,
511 this would not be necessary. */
512 switch (ELF_ST_VISIBILITY (h->other))
513 {
514 case STV_INTERNAL:
515 case STV_HIDDEN:
516 if (h->root.type != bfd_link_hash_undefined
517 && h->root.type != bfd_link_hash_undefweak)
518 {
519 h->forced_local = 1;
520 if (!elf_hash_table (info)->is_relocatable_executable)
521 return TRUE;
522 }
523
524 default:
525 break;
526 }
527
528 h->dynindx = elf_hash_table (info)->dynsymcount;
529 ++elf_hash_table (info)->dynsymcount;
530
531 dynstr = elf_hash_table (info)->dynstr;
532 if (dynstr == NULL)
533 {
534 /* Create a strtab to hold the dynamic symbol names. */
535 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
536 if (dynstr == NULL)
537 return FALSE;
538 }
539
540 /* We don't put any version information in the dynamic string
541 table. */
542 name = h->root.root.string;
543 p = strchr (name, ELF_VER_CHR);
544 if (p != NULL)
545 /* We know that the p points into writable memory. In fact,
546 there are only a few symbols that have read-only names, being
547 those like _GLOBAL_OFFSET_TABLE_ that are created specially
548 by the backends. Most symbols will have names pointing into
549 an ELF string table read from a file, or to objalloc memory. */
550 *p = 0;
551
552 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
553
554 if (p != NULL)
555 *p = ELF_VER_CHR;
556
557 if (indx == (size_t) -1)
558 return FALSE;
559 h->dynstr_index = indx;
560 }
561
562 return TRUE;
563 }
564 \f
565 /* Mark a symbol dynamic. */
566
567 static void
568 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
569 struct elf_link_hash_entry *h,
570 Elf_Internal_Sym *sym)
571 {
572 struct bfd_elf_dynamic_list *d = info->dynamic_list;
573
574 /* It may be called more than once on the same H. */
575 if(h->dynamic || bfd_link_relocatable (info))
576 return;
577
578 if ((info->dynamic_data
579 && (h->type == STT_OBJECT
580 || h->type == STT_COMMON
581 || (sym != NULL
582 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
583 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
584 || (d != NULL
585 && h->non_elf
586 && (*d->match) (&d->head, NULL, h->root.root.string)))
587 {
588 h->dynamic = 1;
589 /* NB: If a symbol is made dynamic by --dynamic-list, it has
590 non-IR reference. */
591 h->root.non_ir_ref_dynamic = 1;
592 }
593 }
594
595 /* Record an assignment to a symbol made by a linker script. We need
596 this in case some dynamic object refers to this symbol. */
597
598 bfd_boolean
599 bfd_elf_record_link_assignment (bfd *output_bfd,
600 struct bfd_link_info *info,
601 const char *name,
602 bfd_boolean provide,
603 bfd_boolean hidden)
604 {
605 struct elf_link_hash_entry *h, *hv;
606 struct elf_link_hash_table *htab;
607 const struct elf_backend_data *bed;
608
609 if (!is_elf_hash_table (info->hash))
610 return TRUE;
611
612 htab = elf_hash_table (info);
613 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
614 if (h == NULL)
615 return provide;
616
617 if (h->root.type == bfd_link_hash_warning)
618 h = (struct elf_link_hash_entry *) h->root.u.i.link;
619
620 if (h->versioned == unknown)
621 {
622 /* Set versioned if symbol version is unknown. */
623 char *version = strrchr (name, ELF_VER_CHR);
624 if (version)
625 {
626 if (version > name && version[-1] != ELF_VER_CHR)
627 h->versioned = versioned_hidden;
628 else
629 h->versioned = versioned;
630 }
631 }
632
633 /* Symbols defined in a linker script but not referenced anywhere
634 else will have non_elf set. */
635 if (h->non_elf)
636 {
637 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
638 h->non_elf = 0;
639 }
640
641 switch (h->root.type)
642 {
643 case bfd_link_hash_defined:
644 case bfd_link_hash_defweak:
645 case bfd_link_hash_common:
646 break;
647 case bfd_link_hash_undefweak:
648 case bfd_link_hash_undefined:
649 /* Since we're defining the symbol, don't let it seem to have not
650 been defined. record_dynamic_symbol and size_dynamic_sections
651 may depend on this. */
652 h->root.type = bfd_link_hash_new;
653 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
654 bfd_link_repair_undef_list (&htab->root);
655 break;
656 case bfd_link_hash_new:
657 break;
658 case bfd_link_hash_indirect:
659 /* We had a versioned symbol in a dynamic library. We make the
660 the versioned symbol point to this one. */
661 bed = get_elf_backend_data (output_bfd);
662 hv = h;
663 while (hv->root.type == bfd_link_hash_indirect
664 || hv->root.type == bfd_link_hash_warning)
665 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
666 /* We don't need to update h->root.u since linker will set them
667 later. */
668 h->root.type = bfd_link_hash_undefined;
669 hv->root.type = bfd_link_hash_indirect;
670 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
671 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
672 break;
673 default:
674 BFD_FAIL ();
675 return FALSE;
676 }
677
678 /* If this symbol is being provided by the linker script, and it is
679 currently defined by a dynamic object, but not by a regular
680 object, then mark it as undefined so that the generic linker will
681 force the correct value. */
682 if (provide
683 && h->def_dynamic
684 && !h->def_regular)
685 h->root.type = bfd_link_hash_undefined;
686
687 /* If this symbol is currently defined by a dynamic object, but not
688 by a regular object, then clear out any version information because
689 the symbol will not be associated with the dynamic object any
690 more. */
691 if (h->def_dynamic && !h->def_regular)
692 h->verinfo.verdef = NULL;
693
694 /* Make sure this symbol is not garbage collected. */
695 h->mark = 1;
696
697 h->def_regular = 1;
698
699 if (hidden)
700 {
701 bed = get_elf_backend_data (output_bfd);
702 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
703 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
704 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
705 }
706
707 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
708 and executables. */
709 if (!bfd_link_relocatable (info)
710 && h->dynindx != -1
711 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
712 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
713 h->forced_local = 1;
714
715 if ((h->def_dynamic
716 || h->ref_dynamic
717 || bfd_link_dll (info)
718 || elf_hash_table (info)->is_relocatable_executable)
719 && !h->forced_local
720 && h->dynindx == -1)
721 {
722 if (! bfd_elf_link_record_dynamic_symbol (info, h))
723 return FALSE;
724
725 /* If this is a weak defined symbol, and we know a corresponding
726 real symbol from the same dynamic object, make sure the real
727 symbol is also made into a dynamic symbol. */
728 if (h->is_weakalias)
729 {
730 struct elf_link_hash_entry *def = weakdef (h);
731
732 if (def->dynindx == -1
733 && !bfd_elf_link_record_dynamic_symbol (info, def))
734 return FALSE;
735 }
736 }
737
738 return TRUE;
739 }
740
741 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
742 success, and 2 on a failure caused by attempting to record a symbol
743 in a discarded section, eg. a discarded link-once section symbol. */
744
745 int
746 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
747 bfd *input_bfd,
748 long input_indx)
749 {
750 size_t amt;
751 struct elf_link_local_dynamic_entry *entry;
752 struct elf_link_hash_table *eht;
753 struct elf_strtab_hash *dynstr;
754 size_t dynstr_index;
755 char *name;
756 Elf_External_Sym_Shndx eshndx;
757 char esym[sizeof (Elf64_External_Sym)];
758
759 if (! is_elf_hash_table (info->hash))
760 return 0;
761
762 /* See if the entry exists already. */
763 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
764 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
765 return 1;
766
767 amt = sizeof (*entry);
768 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
769 if (entry == NULL)
770 return 0;
771
772 /* Go find the symbol, so that we can find it's name. */
773 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
774 1, input_indx, &entry->isym, esym, &eshndx))
775 {
776 bfd_release (input_bfd, entry);
777 return 0;
778 }
779
780 if (entry->isym.st_shndx != SHN_UNDEF
781 && entry->isym.st_shndx < SHN_LORESERVE)
782 {
783 asection *s;
784
785 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
786 if (s == NULL || bfd_is_abs_section (s->output_section))
787 {
788 /* We can still bfd_release here as nothing has done another
789 bfd_alloc. We can't do this later in this function. */
790 bfd_release (input_bfd, entry);
791 return 2;
792 }
793 }
794
795 name = (bfd_elf_string_from_elf_section
796 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
797 entry->isym.st_name));
798
799 dynstr = elf_hash_table (info)->dynstr;
800 if (dynstr == NULL)
801 {
802 /* Create a strtab to hold the dynamic symbol names. */
803 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
804 if (dynstr == NULL)
805 return 0;
806 }
807
808 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
809 if (dynstr_index == (size_t) -1)
810 return 0;
811 entry->isym.st_name = dynstr_index;
812
813 eht = elf_hash_table (info);
814
815 entry->next = eht->dynlocal;
816 eht->dynlocal = entry;
817 entry->input_bfd = input_bfd;
818 entry->input_indx = input_indx;
819 eht->dynsymcount++;
820
821 /* Whatever binding the symbol had before, it's now local. */
822 entry->isym.st_info
823 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
824
825 /* The dynindx will be set at the end of size_dynamic_sections. */
826
827 return 1;
828 }
829
830 /* Return the dynindex of a local dynamic symbol. */
831
832 long
833 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
834 bfd *input_bfd,
835 long input_indx)
836 {
837 struct elf_link_local_dynamic_entry *e;
838
839 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
840 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
841 return e->dynindx;
842 return -1;
843 }
844
845 /* This function is used to renumber the dynamic symbols, if some of
846 them are removed because they are marked as local. This is called
847 via elf_link_hash_traverse. */
848
849 static bfd_boolean
850 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
851 void *data)
852 {
853 size_t *count = (size_t *) data;
854
855 if (h->forced_local)
856 return TRUE;
857
858 if (h->dynindx != -1)
859 h->dynindx = ++(*count);
860
861 return TRUE;
862 }
863
864
865 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
866 STB_LOCAL binding. */
867
868 static bfd_boolean
869 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
870 void *data)
871 {
872 size_t *count = (size_t *) data;
873
874 if (!h->forced_local)
875 return TRUE;
876
877 if (h->dynindx != -1)
878 h->dynindx = ++(*count);
879
880 return TRUE;
881 }
882
883 /* Return true if the dynamic symbol for a given section should be
884 omitted when creating a shared library. */
885 bfd_boolean
886 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
887 struct bfd_link_info *info,
888 asection *p)
889 {
890 struct elf_link_hash_table *htab;
891 asection *ip;
892
893 switch (elf_section_data (p)->this_hdr.sh_type)
894 {
895 case SHT_PROGBITS:
896 case SHT_NOBITS:
897 /* If sh_type is yet undecided, assume it could be
898 SHT_PROGBITS/SHT_NOBITS. */
899 case SHT_NULL:
900 htab = elf_hash_table (info);
901 if (htab->text_index_section != NULL)
902 return p != htab->text_index_section && p != htab->data_index_section;
903
904 return (htab->dynobj != NULL
905 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
906 && ip->output_section == p);
907
908 /* There shouldn't be section relative relocations
909 against any other section. */
910 default:
911 return TRUE;
912 }
913 }
914
915 bfd_boolean
916 _bfd_elf_omit_section_dynsym_all
917 (bfd *output_bfd ATTRIBUTE_UNUSED,
918 struct bfd_link_info *info ATTRIBUTE_UNUSED,
919 asection *p ATTRIBUTE_UNUSED)
920 {
921 return TRUE;
922 }
923
924 /* Assign dynsym indices. In a shared library we generate a section
925 symbol for each output section, which come first. Next come symbols
926 which have been forced to local binding. Then all of the back-end
927 allocated local dynamic syms, followed by the rest of the global
928 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
929 (This prevents the early call before elf_backend_init_index_section
930 and strip_excluded_output_sections setting dynindx for sections
931 that are stripped.) */
932
933 static unsigned long
934 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
935 struct bfd_link_info *info,
936 unsigned long *section_sym_count)
937 {
938 unsigned long dynsymcount = 0;
939 bfd_boolean do_sec = section_sym_count != NULL;
940
941 if (bfd_link_pic (info)
942 || elf_hash_table (info)->is_relocatable_executable)
943 {
944 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
945 asection *p;
946 for (p = output_bfd->sections; p ; p = p->next)
947 if ((p->flags & SEC_EXCLUDE) == 0
948 && (p->flags & SEC_ALLOC) != 0
949 && elf_hash_table (info)->dynamic_relocs
950 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
951 {
952 ++dynsymcount;
953 if (do_sec)
954 elf_section_data (p)->dynindx = dynsymcount;
955 }
956 else if (do_sec)
957 elf_section_data (p)->dynindx = 0;
958 }
959 if (do_sec)
960 *section_sym_count = dynsymcount;
961
962 elf_link_hash_traverse (elf_hash_table (info),
963 elf_link_renumber_local_hash_table_dynsyms,
964 &dynsymcount);
965
966 if (elf_hash_table (info)->dynlocal)
967 {
968 struct elf_link_local_dynamic_entry *p;
969 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
970 p->dynindx = ++dynsymcount;
971 }
972 elf_hash_table (info)->local_dynsymcount = dynsymcount;
973
974 elf_link_hash_traverse (elf_hash_table (info),
975 elf_link_renumber_hash_table_dynsyms,
976 &dynsymcount);
977
978 /* There is an unused NULL entry at the head of the table which we
979 must account for in our count even if the table is empty since it
980 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
981 .dynamic section. */
982 dynsymcount++;
983
984 elf_hash_table (info)->dynsymcount = dynsymcount;
985 return dynsymcount;
986 }
987
988 /* Merge st_other field. */
989
990 static void
991 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
992 const Elf_Internal_Sym *isym, asection *sec,
993 bfd_boolean definition, bfd_boolean dynamic)
994 {
995 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
996
997 /* If st_other has a processor-specific meaning, specific
998 code might be needed here. */
999 if (bed->elf_backend_merge_symbol_attribute)
1000 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
1001 dynamic);
1002
1003 if (!dynamic)
1004 {
1005 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
1006 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1007
1008 /* Keep the most constraining visibility. Leave the remainder
1009 of the st_other field to elf_backend_merge_symbol_attribute. */
1010 if (symvis - 1 < hvis - 1)
1011 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1012 }
1013 else if (definition
1014 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
1015 && (sec->flags & SEC_READONLY) == 0)
1016 h->protected_def = 1;
1017 }
1018
1019 /* This function is called when we want to merge a new symbol with an
1020 existing symbol. It handles the various cases which arise when we
1021 find a definition in a dynamic object, or when there is already a
1022 definition in a dynamic object. The new symbol is described by
1023 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1024 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1025 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1026 of an old common symbol. We set OVERRIDE if the old symbol is
1027 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1028 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1029 to change. By OK to change, we mean that we shouldn't warn if the
1030 type or size does change. */
1031
1032 static bfd_boolean
1033 _bfd_elf_merge_symbol (bfd *abfd,
1034 struct bfd_link_info *info,
1035 const char *name,
1036 Elf_Internal_Sym *sym,
1037 asection **psec,
1038 bfd_vma *pvalue,
1039 struct elf_link_hash_entry **sym_hash,
1040 bfd **poldbfd,
1041 bfd_boolean *pold_weak,
1042 unsigned int *pold_alignment,
1043 bfd_boolean *skip,
1044 bfd_boolean *override,
1045 bfd_boolean *type_change_ok,
1046 bfd_boolean *size_change_ok,
1047 bfd_boolean *matched)
1048 {
1049 asection *sec, *oldsec;
1050 struct elf_link_hash_entry *h;
1051 struct elf_link_hash_entry *hi;
1052 struct elf_link_hash_entry *flip;
1053 int bind;
1054 bfd *oldbfd;
1055 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1056 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1057 const struct elf_backend_data *bed;
1058 char *new_version;
1059 bfd_boolean default_sym = *matched;
1060
1061 *skip = FALSE;
1062 *override = FALSE;
1063
1064 sec = *psec;
1065 bind = ELF_ST_BIND (sym->st_info);
1066
1067 if (! bfd_is_und_section (sec))
1068 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1069 else
1070 h = ((struct elf_link_hash_entry *)
1071 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1072 if (h == NULL)
1073 return FALSE;
1074 *sym_hash = h;
1075
1076 bed = get_elf_backend_data (abfd);
1077
1078 /* NEW_VERSION is the symbol version of the new symbol. */
1079 if (h->versioned != unversioned)
1080 {
1081 /* Symbol version is unknown or versioned. */
1082 new_version = strrchr (name, ELF_VER_CHR);
1083 if (new_version)
1084 {
1085 if (h->versioned == unknown)
1086 {
1087 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1088 h->versioned = versioned_hidden;
1089 else
1090 h->versioned = versioned;
1091 }
1092 new_version += 1;
1093 if (new_version[0] == '\0')
1094 new_version = NULL;
1095 }
1096 else
1097 h->versioned = unversioned;
1098 }
1099 else
1100 new_version = NULL;
1101
1102 /* For merging, we only care about real symbols. But we need to make
1103 sure that indirect symbol dynamic flags are updated. */
1104 hi = h;
1105 while (h->root.type == bfd_link_hash_indirect
1106 || h->root.type == bfd_link_hash_warning)
1107 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1108
1109 if (!*matched)
1110 {
1111 if (hi == h || h->root.type == bfd_link_hash_new)
1112 *matched = TRUE;
1113 else
1114 {
1115 /* OLD_HIDDEN is true if the existing symbol is only visible
1116 to the symbol with the same symbol version. NEW_HIDDEN is
1117 true if the new symbol is only visible to the symbol with
1118 the same symbol version. */
1119 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1120 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1121 if (!old_hidden && !new_hidden)
1122 /* The new symbol matches the existing symbol if both
1123 aren't hidden. */
1124 *matched = TRUE;
1125 else
1126 {
1127 /* OLD_VERSION is the symbol version of the existing
1128 symbol. */
1129 char *old_version;
1130
1131 if (h->versioned >= versioned)
1132 old_version = strrchr (h->root.root.string,
1133 ELF_VER_CHR) + 1;
1134 else
1135 old_version = NULL;
1136
1137 /* The new symbol matches the existing symbol if they
1138 have the same symbol version. */
1139 *matched = (old_version == new_version
1140 || (old_version != NULL
1141 && new_version != NULL
1142 && strcmp (old_version, new_version) == 0));
1143 }
1144 }
1145 }
1146
1147 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1148 existing symbol. */
1149
1150 oldbfd = NULL;
1151 oldsec = NULL;
1152 switch (h->root.type)
1153 {
1154 default:
1155 break;
1156
1157 case bfd_link_hash_undefined:
1158 case bfd_link_hash_undefweak:
1159 oldbfd = h->root.u.undef.abfd;
1160 break;
1161
1162 case bfd_link_hash_defined:
1163 case bfd_link_hash_defweak:
1164 oldbfd = h->root.u.def.section->owner;
1165 oldsec = h->root.u.def.section;
1166 break;
1167
1168 case bfd_link_hash_common:
1169 oldbfd = h->root.u.c.p->section->owner;
1170 oldsec = h->root.u.c.p->section;
1171 if (pold_alignment)
1172 *pold_alignment = h->root.u.c.p->alignment_power;
1173 break;
1174 }
1175 if (poldbfd && *poldbfd == NULL)
1176 *poldbfd = oldbfd;
1177
1178 /* Differentiate strong and weak symbols. */
1179 newweak = bind == STB_WEAK;
1180 oldweak = (h->root.type == bfd_link_hash_defweak
1181 || h->root.type == bfd_link_hash_undefweak);
1182 if (pold_weak)
1183 *pold_weak = oldweak;
1184
1185 /* We have to check it for every instance since the first few may be
1186 references and not all compilers emit symbol type for undefined
1187 symbols. */
1188 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1189
1190 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1191 respectively, is from a dynamic object. */
1192
1193 newdyn = (abfd->flags & DYNAMIC) != 0;
1194
1195 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1196 syms and defined syms in dynamic libraries respectively.
1197 ref_dynamic on the other hand can be set for a symbol defined in
1198 a dynamic library, and def_dynamic may not be set; When the
1199 definition in a dynamic lib is overridden by a definition in the
1200 executable use of the symbol in the dynamic lib becomes a
1201 reference to the executable symbol. */
1202 if (newdyn)
1203 {
1204 if (bfd_is_und_section (sec))
1205 {
1206 if (bind != STB_WEAK)
1207 {
1208 h->ref_dynamic_nonweak = 1;
1209 hi->ref_dynamic_nonweak = 1;
1210 }
1211 }
1212 else
1213 {
1214 /* Update the existing symbol only if they match. */
1215 if (*matched)
1216 h->dynamic_def = 1;
1217 hi->dynamic_def = 1;
1218 }
1219 }
1220
1221 /* If we just created the symbol, mark it as being an ELF symbol.
1222 Other than that, there is nothing to do--there is no merge issue
1223 with a newly defined symbol--so we just return. */
1224
1225 if (h->root.type == bfd_link_hash_new)
1226 {
1227 h->non_elf = 0;
1228 return TRUE;
1229 }
1230
1231 /* In cases involving weak versioned symbols, we may wind up trying
1232 to merge a symbol with itself. Catch that here, to avoid the
1233 confusion that results if we try to override a symbol with
1234 itself. The additional tests catch cases like
1235 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1236 dynamic object, which we do want to handle here. */
1237 if (abfd == oldbfd
1238 && (newweak || oldweak)
1239 && ((abfd->flags & DYNAMIC) == 0
1240 || !h->def_regular))
1241 return TRUE;
1242
1243 olddyn = FALSE;
1244 if (oldbfd != NULL)
1245 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1246 else if (oldsec != NULL)
1247 {
1248 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1249 indices used by MIPS ELF. */
1250 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1251 }
1252
1253 /* Handle a case where plugin_notice won't be called and thus won't
1254 set the non_ir_ref flags on the first pass over symbols. */
1255 if (oldbfd != NULL
1256 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1257 && newdyn != olddyn)
1258 {
1259 h->root.non_ir_ref_dynamic = TRUE;
1260 hi->root.non_ir_ref_dynamic = TRUE;
1261 }
1262
1263 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1264 respectively, appear to be a definition rather than reference. */
1265
1266 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1267
1268 olddef = (h->root.type != bfd_link_hash_undefined
1269 && h->root.type != bfd_link_hash_undefweak
1270 && h->root.type != bfd_link_hash_common);
1271
1272 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1273 respectively, appear to be a function. */
1274
1275 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1276 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1277
1278 oldfunc = (h->type != STT_NOTYPE
1279 && bed->is_function_type (h->type));
1280
1281 if (!(newfunc && oldfunc)
1282 && ELF_ST_TYPE (sym->st_info) != h->type
1283 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1284 && h->type != STT_NOTYPE
1285 && (newdef || bfd_is_com_section (sec))
1286 && (olddef || h->root.type == bfd_link_hash_common))
1287 {
1288 /* If creating a default indirect symbol ("foo" or "foo@") from
1289 a dynamic versioned definition ("foo@@") skip doing so if
1290 there is an existing regular definition with a different
1291 type. We don't want, for example, a "time" variable in the
1292 executable overriding a "time" function in a shared library. */
1293 if (newdyn
1294 && !olddyn)
1295 {
1296 *skip = TRUE;
1297 return TRUE;
1298 }
1299
1300 /* When adding a symbol from a regular object file after we have
1301 created indirect symbols, undo the indirection and any
1302 dynamic state. */
1303 if (hi != h
1304 && !newdyn
1305 && olddyn)
1306 {
1307 h = hi;
1308 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1309 h->forced_local = 0;
1310 h->ref_dynamic = 0;
1311 h->def_dynamic = 0;
1312 h->dynamic_def = 0;
1313 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1314 {
1315 h->root.type = bfd_link_hash_undefined;
1316 h->root.u.undef.abfd = abfd;
1317 }
1318 else
1319 {
1320 h->root.type = bfd_link_hash_new;
1321 h->root.u.undef.abfd = NULL;
1322 }
1323 return TRUE;
1324 }
1325 }
1326
1327 /* Check TLS symbols. We don't check undefined symbols introduced
1328 by "ld -u" which have no type (and oldbfd NULL), and we don't
1329 check symbols from plugins because they also have no type. */
1330 if (oldbfd != NULL
1331 && (oldbfd->flags & BFD_PLUGIN) == 0
1332 && (abfd->flags & BFD_PLUGIN) == 0
1333 && ELF_ST_TYPE (sym->st_info) != h->type
1334 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1335 {
1336 bfd *ntbfd, *tbfd;
1337 bfd_boolean ntdef, tdef;
1338 asection *ntsec, *tsec;
1339
1340 if (h->type == STT_TLS)
1341 {
1342 ntbfd = abfd;
1343 ntsec = sec;
1344 ntdef = newdef;
1345 tbfd = oldbfd;
1346 tsec = oldsec;
1347 tdef = olddef;
1348 }
1349 else
1350 {
1351 ntbfd = oldbfd;
1352 ntsec = oldsec;
1353 ntdef = olddef;
1354 tbfd = abfd;
1355 tsec = sec;
1356 tdef = newdef;
1357 }
1358
1359 if (tdef && ntdef)
1360 _bfd_error_handler
1361 /* xgettext:c-format */
1362 (_("%s: TLS definition in %pB section %pA "
1363 "mismatches non-TLS definition in %pB section %pA"),
1364 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1365 else if (!tdef && !ntdef)
1366 _bfd_error_handler
1367 /* xgettext:c-format */
1368 (_("%s: TLS reference in %pB "
1369 "mismatches non-TLS reference in %pB"),
1370 h->root.root.string, tbfd, ntbfd);
1371 else if (tdef)
1372 _bfd_error_handler
1373 /* xgettext:c-format */
1374 (_("%s: TLS definition in %pB section %pA "
1375 "mismatches non-TLS reference in %pB"),
1376 h->root.root.string, tbfd, tsec, ntbfd);
1377 else
1378 _bfd_error_handler
1379 /* xgettext:c-format */
1380 (_("%s: TLS reference in %pB "
1381 "mismatches non-TLS definition in %pB section %pA"),
1382 h->root.root.string, tbfd, ntbfd, ntsec);
1383
1384 bfd_set_error (bfd_error_bad_value);
1385 return FALSE;
1386 }
1387
1388 /* If the old symbol has non-default visibility, we ignore the new
1389 definition from a dynamic object. */
1390 if (newdyn
1391 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1392 && !bfd_is_und_section (sec))
1393 {
1394 *skip = TRUE;
1395 /* Make sure this symbol is dynamic. */
1396 h->ref_dynamic = 1;
1397 hi->ref_dynamic = 1;
1398 /* A protected symbol has external availability. Make sure it is
1399 recorded as dynamic.
1400
1401 FIXME: Should we check type and size for protected symbol? */
1402 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1403 return bfd_elf_link_record_dynamic_symbol (info, h);
1404 else
1405 return TRUE;
1406 }
1407 else if (!newdyn
1408 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1409 && h->def_dynamic)
1410 {
1411 /* If the new symbol with non-default visibility comes from a
1412 relocatable file and the old definition comes from a dynamic
1413 object, we remove the old definition. */
1414 if (hi->root.type == bfd_link_hash_indirect)
1415 {
1416 /* Handle the case where the old dynamic definition is
1417 default versioned. We need to copy the symbol info from
1418 the symbol with default version to the normal one if it
1419 was referenced before. */
1420 if (h->ref_regular)
1421 {
1422 hi->root.type = h->root.type;
1423 h->root.type = bfd_link_hash_indirect;
1424 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1425
1426 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1427 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1428 {
1429 /* If the new symbol is hidden or internal, completely undo
1430 any dynamic link state. */
1431 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1432 h->forced_local = 0;
1433 h->ref_dynamic = 0;
1434 }
1435 else
1436 h->ref_dynamic = 1;
1437
1438 h->def_dynamic = 0;
1439 /* FIXME: Should we check type and size for protected symbol? */
1440 h->size = 0;
1441 h->type = 0;
1442
1443 h = hi;
1444 }
1445 else
1446 h = hi;
1447 }
1448
1449 /* If the old symbol was undefined before, then it will still be
1450 on the undefs list. If the new symbol is undefined or
1451 common, we can't make it bfd_link_hash_new here, because new
1452 undefined or common symbols will be added to the undefs list
1453 by _bfd_generic_link_add_one_symbol. Symbols may not be
1454 added twice to the undefs list. Also, if the new symbol is
1455 undefweak then we don't want to lose the strong undef. */
1456 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1457 {
1458 h->root.type = bfd_link_hash_undefined;
1459 h->root.u.undef.abfd = abfd;
1460 }
1461 else
1462 {
1463 h->root.type = bfd_link_hash_new;
1464 h->root.u.undef.abfd = NULL;
1465 }
1466
1467 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1468 {
1469 /* If the new symbol is hidden or internal, completely undo
1470 any dynamic link state. */
1471 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1472 h->forced_local = 0;
1473 h->ref_dynamic = 0;
1474 }
1475 else
1476 h->ref_dynamic = 1;
1477 h->def_dynamic = 0;
1478 /* FIXME: Should we check type and size for protected symbol? */
1479 h->size = 0;
1480 h->type = 0;
1481 return TRUE;
1482 }
1483
1484 /* If a new weak symbol definition comes from a regular file and the
1485 old symbol comes from a dynamic library, we treat the new one as
1486 strong. Similarly, an old weak symbol definition from a regular
1487 file is treated as strong when the new symbol comes from a dynamic
1488 library. Further, an old weak symbol from a dynamic library is
1489 treated as strong if the new symbol is from a dynamic library.
1490 This reflects the way glibc's ld.so works.
1491
1492 Also allow a weak symbol to override a linker script symbol
1493 defined by an early pass over the script. This is done so the
1494 linker knows the symbol is defined in an object file, for the
1495 DEFINED script function.
1496
1497 Do this before setting *type_change_ok or *size_change_ok so that
1498 we warn properly when dynamic library symbols are overridden. */
1499
1500 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1501 newweak = FALSE;
1502 if (olddef && newdyn)
1503 oldweak = FALSE;
1504
1505 /* Allow changes between different types of function symbol. */
1506 if (newfunc && oldfunc)
1507 *type_change_ok = TRUE;
1508
1509 /* It's OK to change the type if either the existing symbol or the
1510 new symbol is weak. A type change is also OK if the old symbol
1511 is undefined and the new symbol is defined. */
1512
1513 if (oldweak
1514 || newweak
1515 || (newdef
1516 && h->root.type == bfd_link_hash_undefined))
1517 *type_change_ok = TRUE;
1518
1519 /* It's OK to change the size if either the existing symbol or the
1520 new symbol is weak, or if the old symbol is undefined. */
1521
1522 if (*type_change_ok
1523 || h->root.type == bfd_link_hash_undefined)
1524 *size_change_ok = TRUE;
1525
1526 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1527 symbol, respectively, appears to be a common symbol in a dynamic
1528 object. If a symbol appears in an uninitialized section, and is
1529 not weak, and is not a function, then it may be a common symbol
1530 which was resolved when the dynamic object was created. We want
1531 to treat such symbols specially, because they raise special
1532 considerations when setting the symbol size: if the symbol
1533 appears as a common symbol in a regular object, and the size in
1534 the regular object is larger, we must make sure that we use the
1535 larger size. This problematic case can always be avoided in C,
1536 but it must be handled correctly when using Fortran shared
1537 libraries.
1538
1539 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1540 likewise for OLDDYNCOMMON and OLDDEF.
1541
1542 Note that this test is just a heuristic, and that it is quite
1543 possible to have an uninitialized symbol in a shared object which
1544 is really a definition, rather than a common symbol. This could
1545 lead to some minor confusion when the symbol really is a common
1546 symbol in some regular object. However, I think it will be
1547 harmless. */
1548
1549 if (newdyn
1550 && newdef
1551 && !newweak
1552 && (sec->flags & SEC_ALLOC) != 0
1553 && (sec->flags & SEC_LOAD) == 0
1554 && sym->st_size > 0
1555 && !newfunc)
1556 newdyncommon = TRUE;
1557 else
1558 newdyncommon = FALSE;
1559
1560 if (olddyn
1561 && olddef
1562 && h->root.type == bfd_link_hash_defined
1563 && h->def_dynamic
1564 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1565 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1566 && h->size > 0
1567 && !oldfunc)
1568 olddyncommon = TRUE;
1569 else
1570 olddyncommon = FALSE;
1571
1572 /* We now know everything about the old and new symbols. We ask the
1573 backend to check if we can merge them. */
1574 if (bed->merge_symbol != NULL)
1575 {
1576 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1577 return FALSE;
1578 sec = *psec;
1579 }
1580
1581 /* There are multiple definitions of a normal symbol. Skip the
1582 default symbol as well as definition from an IR object. */
1583 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1584 && !default_sym && h->def_regular
1585 && !(oldbfd != NULL
1586 && (oldbfd->flags & BFD_PLUGIN) != 0
1587 && (abfd->flags & BFD_PLUGIN) == 0))
1588 {
1589 /* Handle a multiple definition. */
1590 (*info->callbacks->multiple_definition) (info, &h->root,
1591 abfd, sec, *pvalue);
1592 *skip = TRUE;
1593 return TRUE;
1594 }
1595
1596 /* If both the old and the new symbols look like common symbols in a
1597 dynamic object, set the size of the symbol to the larger of the
1598 two. */
1599
1600 if (olddyncommon
1601 && newdyncommon
1602 && sym->st_size != h->size)
1603 {
1604 /* Since we think we have two common symbols, issue a multiple
1605 common warning if desired. Note that we only warn if the
1606 size is different. If the size is the same, we simply let
1607 the old symbol override the new one as normally happens with
1608 symbols defined in dynamic objects. */
1609
1610 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1611 bfd_link_hash_common, sym->st_size);
1612 if (sym->st_size > h->size)
1613 h->size = sym->st_size;
1614
1615 *size_change_ok = TRUE;
1616 }
1617
1618 /* If we are looking at a dynamic object, and we have found a
1619 definition, we need to see if the symbol was already defined by
1620 some other object. If so, we want to use the existing
1621 definition, and we do not want to report a multiple symbol
1622 definition error; we do this by clobbering *PSEC to be
1623 bfd_und_section_ptr.
1624
1625 We treat a common symbol as a definition if the symbol in the
1626 shared library is a function, since common symbols always
1627 represent variables; this can cause confusion in principle, but
1628 any such confusion would seem to indicate an erroneous program or
1629 shared library. We also permit a common symbol in a regular
1630 object to override a weak symbol in a shared object. */
1631
1632 if (newdyn
1633 && newdef
1634 && (olddef
1635 || (h->root.type == bfd_link_hash_common
1636 && (newweak || newfunc))))
1637 {
1638 *override = TRUE;
1639 newdef = FALSE;
1640 newdyncommon = FALSE;
1641
1642 *psec = sec = bfd_und_section_ptr;
1643 *size_change_ok = TRUE;
1644
1645 /* If we get here when the old symbol is a common symbol, then
1646 we are explicitly letting it override a weak symbol or
1647 function in a dynamic object, and we don't want to warn about
1648 a type change. If the old symbol is a defined symbol, a type
1649 change warning may still be appropriate. */
1650
1651 if (h->root.type == bfd_link_hash_common)
1652 *type_change_ok = TRUE;
1653 }
1654
1655 /* Handle the special case of an old common symbol merging with a
1656 new symbol which looks like a common symbol in a shared object.
1657 We change *PSEC and *PVALUE to make the new symbol look like a
1658 common symbol, and let _bfd_generic_link_add_one_symbol do the
1659 right thing. */
1660
1661 if (newdyncommon
1662 && h->root.type == bfd_link_hash_common)
1663 {
1664 *override = TRUE;
1665 newdef = FALSE;
1666 newdyncommon = FALSE;
1667 *pvalue = sym->st_size;
1668 *psec = sec = bed->common_section (oldsec);
1669 *size_change_ok = TRUE;
1670 }
1671
1672 /* Skip weak definitions of symbols that are already defined. */
1673 if (newdef && olddef && newweak)
1674 {
1675 /* Don't skip new non-IR weak syms. */
1676 if (!(oldbfd != NULL
1677 && (oldbfd->flags & BFD_PLUGIN) != 0
1678 && (abfd->flags & BFD_PLUGIN) == 0))
1679 {
1680 newdef = FALSE;
1681 *skip = TRUE;
1682 }
1683
1684 /* Merge st_other. If the symbol already has a dynamic index,
1685 but visibility says it should not be visible, turn it into a
1686 local symbol. */
1687 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1688 if (h->dynindx != -1)
1689 switch (ELF_ST_VISIBILITY (h->other))
1690 {
1691 case STV_INTERNAL:
1692 case STV_HIDDEN:
1693 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1694 break;
1695 }
1696 }
1697
1698 /* If the old symbol is from a dynamic object, and the new symbol is
1699 a definition which is not from a dynamic object, then the new
1700 symbol overrides the old symbol. Symbols from regular files
1701 always take precedence over symbols from dynamic objects, even if
1702 they are defined after the dynamic object in the link.
1703
1704 As above, we again permit a common symbol in a regular object to
1705 override a definition in a shared object if the shared object
1706 symbol is a function or is weak. */
1707
1708 flip = NULL;
1709 if (!newdyn
1710 && (newdef
1711 || (bfd_is_com_section (sec)
1712 && (oldweak || oldfunc)))
1713 && olddyn
1714 && olddef
1715 && h->def_dynamic)
1716 {
1717 /* Change the hash table entry to undefined, and let
1718 _bfd_generic_link_add_one_symbol do the right thing with the
1719 new definition. */
1720
1721 h->root.type = bfd_link_hash_undefined;
1722 h->root.u.undef.abfd = h->root.u.def.section->owner;
1723 *size_change_ok = TRUE;
1724
1725 olddef = FALSE;
1726 olddyncommon = FALSE;
1727
1728 /* We again permit a type change when a common symbol may be
1729 overriding a function. */
1730
1731 if (bfd_is_com_section (sec))
1732 {
1733 if (oldfunc)
1734 {
1735 /* If a common symbol overrides a function, make sure
1736 that it isn't defined dynamically nor has type
1737 function. */
1738 h->def_dynamic = 0;
1739 h->type = STT_NOTYPE;
1740 }
1741 *type_change_ok = TRUE;
1742 }
1743
1744 if (hi->root.type == bfd_link_hash_indirect)
1745 flip = hi;
1746 else
1747 /* This union may have been set to be non-NULL when this symbol
1748 was seen in a dynamic object. We must force the union to be
1749 NULL, so that it is correct for a regular symbol. */
1750 h->verinfo.vertree = NULL;
1751 }
1752
1753 /* Handle the special case of a new common symbol merging with an
1754 old symbol that looks like it might be a common symbol defined in
1755 a shared object. Note that we have already handled the case in
1756 which a new common symbol should simply override the definition
1757 in the shared library. */
1758
1759 if (! newdyn
1760 && bfd_is_com_section (sec)
1761 && olddyncommon)
1762 {
1763 /* It would be best if we could set the hash table entry to a
1764 common symbol, but we don't know what to use for the section
1765 or the alignment. */
1766 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1767 bfd_link_hash_common, sym->st_size);
1768
1769 /* If the presumed common symbol in the dynamic object is
1770 larger, pretend that the new symbol has its size. */
1771
1772 if (h->size > *pvalue)
1773 *pvalue = h->size;
1774
1775 /* We need to remember the alignment required by the symbol
1776 in the dynamic object. */
1777 BFD_ASSERT (pold_alignment);
1778 *pold_alignment = h->root.u.def.section->alignment_power;
1779
1780 olddef = FALSE;
1781 olddyncommon = FALSE;
1782
1783 h->root.type = bfd_link_hash_undefined;
1784 h->root.u.undef.abfd = h->root.u.def.section->owner;
1785
1786 *size_change_ok = TRUE;
1787 *type_change_ok = TRUE;
1788
1789 if (hi->root.type == bfd_link_hash_indirect)
1790 flip = hi;
1791 else
1792 h->verinfo.vertree = NULL;
1793 }
1794
1795 if (flip != NULL)
1796 {
1797 /* Handle the case where we had a versioned symbol in a dynamic
1798 library and now find a definition in a normal object. In this
1799 case, we make the versioned symbol point to the normal one. */
1800 flip->root.type = h->root.type;
1801 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1802 h->root.type = bfd_link_hash_indirect;
1803 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1804 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1805 if (h->def_dynamic)
1806 {
1807 h->def_dynamic = 0;
1808 flip->ref_dynamic = 1;
1809 }
1810 }
1811
1812 return TRUE;
1813 }
1814
1815 /* This function is called to create an indirect symbol from the
1816 default for the symbol with the default version if needed. The
1817 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1818 set DYNSYM if the new indirect symbol is dynamic. */
1819
1820 static bfd_boolean
1821 _bfd_elf_add_default_symbol (bfd *abfd,
1822 struct bfd_link_info *info,
1823 struct elf_link_hash_entry *h,
1824 const char *name,
1825 Elf_Internal_Sym *sym,
1826 asection *sec,
1827 bfd_vma value,
1828 bfd **poldbfd,
1829 bfd_boolean *dynsym)
1830 {
1831 bfd_boolean type_change_ok;
1832 bfd_boolean size_change_ok;
1833 bfd_boolean skip;
1834 char *shortname;
1835 struct elf_link_hash_entry *hi;
1836 struct bfd_link_hash_entry *bh;
1837 const struct elf_backend_data *bed;
1838 bfd_boolean collect;
1839 bfd_boolean dynamic;
1840 bfd_boolean override;
1841 char *p;
1842 size_t len, shortlen;
1843 asection *tmp_sec;
1844 bfd_boolean matched;
1845
1846 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1847 return TRUE;
1848
1849 /* If this symbol has a version, and it is the default version, we
1850 create an indirect symbol from the default name to the fully
1851 decorated name. This will cause external references which do not
1852 specify a version to be bound to this version of the symbol. */
1853 p = strchr (name, ELF_VER_CHR);
1854 if (h->versioned == unknown)
1855 {
1856 if (p == NULL)
1857 {
1858 h->versioned = unversioned;
1859 return TRUE;
1860 }
1861 else
1862 {
1863 if (p[1] != ELF_VER_CHR)
1864 {
1865 h->versioned = versioned_hidden;
1866 return TRUE;
1867 }
1868 else
1869 h->versioned = versioned;
1870 }
1871 }
1872 else
1873 {
1874 /* PR ld/19073: We may see an unversioned definition after the
1875 default version. */
1876 if (p == NULL)
1877 return TRUE;
1878 }
1879
1880 bed = get_elf_backend_data (abfd);
1881 collect = bed->collect;
1882 dynamic = (abfd->flags & DYNAMIC) != 0;
1883
1884 shortlen = p - name;
1885 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1886 if (shortname == NULL)
1887 return FALSE;
1888 memcpy (shortname, name, shortlen);
1889 shortname[shortlen] = '\0';
1890
1891 /* We are going to create a new symbol. Merge it with any existing
1892 symbol with this name. For the purposes of the merge, act as
1893 though we were defining the symbol we just defined, although we
1894 actually going to define an indirect symbol. */
1895 type_change_ok = FALSE;
1896 size_change_ok = FALSE;
1897 matched = TRUE;
1898 tmp_sec = sec;
1899 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1900 &hi, poldbfd, NULL, NULL, &skip, &override,
1901 &type_change_ok, &size_change_ok, &matched))
1902 return FALSE;
1903
1904 if (skip)
1905 goto nondefault;
1906
1907 if (hi->def_regular || ELF_COMMON_DEF_P (hi))
1908 {
1909 /* If the undecorated symbol will have a version added by a
1910 script different to H, then don't indirect to/from the
1911 undecorated symbol. This isn't ideal because we may not yet
1912 have seen symbol versions, if given by a script on the
1913 command line rather than via --version-script. */
1914 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1915 {
1916 bfd_boolean hide;
1917
1918 hi->verinfo.vertree
1919 = bfd_find_version_for_sym (info->version_info,
1920 hi->root.root.string, &hide);
1921 if (hi->verinfo.vertree != NULL && hide)
1922 {
1923 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1924 goto nondefault;
1925 }
1926 }
1927 if (hi->verinfo.vertree != NULL
1928 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1929 goto nondefault;
1930 }
1931
1932 if (! override)
1933 {
1934 /* Add the default symbol if not performing a relocatable link. */
1935 if (! bfd_link_relocatable (info))
1936 {
1937 bh = &hi->root;
1938 if (bh->type == bfd_link_hash_defined
1939 && bh->u.def.section->owner != NULL
1940 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1941 {
1942 /* Mark the previous definition from IR object as
1943 undefined so that the generic linker will override
1944 it. */
1945 bh->type = bfd_link_hash_undefined;
1946 bh->u.undef.abfd = bh->u.def.section->owner;
1947 }
1948 if (! (_bfd_generic_link_add_one_symbol
1949 (info, abfd, shortname, BSF_INDIRECT,
1950 bfd_ind_section_ptr,
1951 0, name, FALSE, collect, &bh)))
1952 return FALSE;
1953 hi = (struct elf_link_hash_entry *) bh;
1954 }
1955 }
1956 else
1957 {
1958 /* In this case the symbol named SHORTNAME is overriding the
1959 indirect symbol we want to add. We were planning on making
1960 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1961 is the name without a version. NAME is the fully versioned
1962 name, and it is the default version.
1963
1964 Overriding means that we already saw a definition for the
1965 symbol SHORTNAME in a regular object, and it is overriding
1966 the symbol defined in the dynamic object.
1967
1968 When this happens, we actually want to change NAME, the
1969 symbol we just added, to refer to SHORTNAME. This will cause
1970 references to NAME in the shared object to become references
1971 to SHORTNAME in the regular object. This is what we expect
1972 when we override a function in a shared object: that the
1973 references in the shared object will be mapped to the
1974 definition in the regular object. */
1975
1976 while (hi->root.type == bfd_link_hash_indirect
1977 || hi->root.type == bfd_link_hash_warning)
1978 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1979
1980 h->root.type = bfd_link_hash_indirect;
1981 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1982 if (h->def_dynamic)
1983 {
1984 h->def_dynamic = 0;
1985 hi->ref_dynamic = 1;
1986 if (hi->ref_regular
1987 || hi->def_regular)
1988 {
1989 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1990 return FALSE;
1991 }
1992 }
1993
1994 /* Now set HI to H, so that the following code will set the
1995 other fields correctly. */
1996 hi = h;
1997 }
1998
1999 /* Check if HI is a warning symbol. */
2000 if (hi->root.type == bfd_link_hash_warning)
2001 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2002
2003 /* If there is a duplicate definition somewhere, then HI may not
2004 point to an indirect symbol. We will have reported an error to
2005 the user in that case. */
2006
2007 if (hi->root.type == bfd_link_hash_indirect)
2008 {
2009 struct elf_link_hash_entry *ht;
2010
2011 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2012 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2013
2014 /* A reference to the SHORTNAME symbol from a dynamic library
2015 will be satisfied by the versioned symbol at runtime. In
2016 effect, we have a reference to the versioned symbol. */
2017 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2018 hi->dynamic_def |= ht->dynamic_def;
2019
2020 /* See if the new flags lead us to realize that the symbol must
2021 be dynamic. */
2022 if (! *dynsym)
2023 {
2024 if (! dynamic)
2025 {
2026 if (! bfd_link_executable (info)
2027 || hi->def_dynamic
2028 || hi->ref_dynamic)
2029 *dynsym = TRUE;
2030 }
2031 else
2032 {
2033 if (hi->ref_regular)
2034 *dynsym = TRUE;
2035 }
2036 }
2037 }
2038
2039 /* We also need to define an indirection from the nondefault version
2040 of the symbol. */
2041
2042 nondefault:
2043 len = strlen (name);
2044 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2045 if (shortname == NULL)
2046 return FALSE;
2047 memcpy (shortname, name, shortlen);
2048 memcpy (shortname + shortlen, p + 1, len - shortlen);
2049
2050 /* Once again, merge with any existing symbol. */
2051 type_change_ok = FALSE;
2052 size_change_ok = FALSE;
2053 tmp_sec = sec;
2054 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2055 &hi, poldbfd, NULL, NULL, &skip, &override,
2056 &type_change_ok, &size_change_ok, &matched))
2057 return FALSE;
2058
2059 if (skip)
2060 return TRUE;
2061
2062 if (override)
2063 {
2064 /* Here SHORTNAME is a versioned name, so we don't expect to see
2065 the type of override we do in the case above unless it is
2066 overridden by a versioned definition. */
2067 if (hi->root.type != bfd_link_hash_defined
2068 && hi->root.type != bfd_link_hash_defweak)
2069 _bfd_error_handler
2070 /* xgettext:c-format */
2071 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2072 abfd, shortname);
2073 }
2074 else
2075 {
2076 bh = &hi->root;
2077 if (! (_bfd_generic_link_add_one_symbol
2078 (info, abfd, shortname, BSF_INDIRECT,
2079 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2080 return FALSE;
2081 hi = (struct elf_link_hash_entry *) bh;
2082
2083 /* If there is a duplicate definition somewhere, then HI may not
2084 point to an indirect symbol. We will have reported an error
2085 to the user in that case. */
2086
2087 if (hi->root.type == bfd_link_hash_indirect)
2088 {
2089 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2090 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2091 hi->dynamic_def |= h->dynamic_def;
2092
2093 /* See if the new flags lead us to realize that the symbol
2094 must be dynamic. */
2095 if (! *dynsym)
2096 {
2097 if (! dynamic)
2098 {
2099 if (! bfd_link_executable (info)
2100 || hi->ref_dynamic)
2101 *dynsym = TRUE;
2102 }
2103 else
2104 {
2105 if (hi->ref_regular)
2106 *dynsym = TRUE;
2107 }
2108 }
2109 }
2110 }
2111
2112 return TRUE;
2113 }
2114 \f
2115 /* This routine is used to export all defined symbols into the dynamic
2116 symbol table. It is called via elf_link_hash_traverse. */
2117
2118 static bfd_boolean
2119 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2120 {
2121 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2122
2123 /* Ignore indirect symbols. These are added by the versioning code. */
2124 if (h->root.type == bfd_link_hash_indirect)
2125 return TRUE;
2126
2127 /* Ignore this if we won't export it. */
2128 if (!eif->info->export_dynamic && !h->dynamic)
2129 return TRUE;
2130
2131 if (h->dynindx == -1
2132 && (h->def_regular || h->ref_regular)
2133 && ! bfd_hide_sym_by_version (eif->info->version_info,
2134 h->root.root.string))
2135 {
2136 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2137 {
2138 eif->failed = TRUE;
2139 return FALSE;
2140 }
2141 }
2142
2143 return TRUE;
2144 }
2145 \f
2146 /* Look through the symbols which are defined in other shared
2147 libraries and referenced here. Update the list of version
2148 dependencies. This will be put into the .gnu.version_r section.
2149 This function is called via elf_link_hash_traverse. */
2150
2151 static bfd_boolean
2152 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2153 void *data)
2154 {
2155 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2156 Elf_Internal_Verneed *t;
2157 Elf_Internal_Vernaux *a;
2158 size_t amt;
2159
2160 /* We only care about symbols defined in shared objects with version
2161 information. */
2162 if (!h->def_dynamic
2163 || h->def_regular
2164 || h->dynindx == -1
2165 || h->verinfo.verdef == NULL
2166 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2167 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2168 return TRUE;
2169
2170 /* See if we already know about this version. */
2171 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2172 t != NULL;
2173 t = t->vn_nextref)
2174 {
2175 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2176 continue;
2177
2178 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2179 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2180 return TRUE;
2181
2182 break;
2183 }
2184
2185 /* This is a new version. Add it to tree we are building. */
2186
2187 if (t == NULL)
2188 {
2189 amt = sizeof *t;
2190 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2191 if (t == NULL)
2192 {
2193 rinfo->failed = TRUE;
2194 return FALSE;
2195 }
2196
2197 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2198 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2199 elf_tdata (rinfo->info->output_bfd)->verref = t;
2200 }
2201
2202 amt = sizeof *a;
2203 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2204 if (a == NULL)
2205 {
2206 rinfo->failed = TRUE;
2207 return FALSE;
2208 }
2209
2210 /* Note that we are copying a string pointer here, and testing it
2211 above. If bfd_elf_string_from_elf_section is ever changed to
2212 discard the string data when low in memory, this will have to be
2213 fixed. */
2214 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2215
2216 a->vna_flags = h->verinfo.verdef->vd_flags;
2217 a->vna_nextptr = t->vn_auxptr;
2218
2219 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2220 ++rinfo->vers;
2221
2222 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2223
2224 t->vn_auxptr = a;
2225
2226 return TRUE;
2227 }
2228
2229 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2230 hidden. Set *T_P to NULL if there is no match. */
2231
2232 static bfd_boolean
2233 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2234 struct elf_link_hash_entry *h,
2235 const char *version_p,
2236 struct bfd_elf_version_tree **t_p,
2237 bfd_boolean *hide)
2238 {
2239 struct bfd_elf_version_tree *t;
2240
2241 /* Look for the version. If we find it, it is no longer weak. */
2242 for (t = info->version_info; t != NULL; t = t->next)
2243 {
2244 if (strcmp (t->name, version_p) == 0)
2245 {
2246 size_t len;
2247 char *alc;
2248 struct bfd_elf_version_expr *d;
2249
2250 len = version_p - h->root.root.string;
2251 alc = (char *) bfd_malloc (len);
2252 if (alc == NULL)
2253 return FALSE;
2254 memcpy (alc, h->root.root.string, len - 1);
2255 alc[len - 1] = '\0';
2256 if (alc[len - 2] == ELF_VER_CHR)
2257 alc[len - 2] = '\0';
2258
2259 h->verinfo.vertree = t;
2260 t->used = TRUE;
2261 d = NULL;
2262
2263 if (t->globals.list != NULL)
2264 d = (*t->match) (&t->globals, NULL, alc);
2265
2266 /* See if there is anything to force this symbol to
2267 local scope. */
2268 if (d == NULL && t->locals.list != NULL)
2269 {
2270 d = (*t->match) (&t->locals, NULL, alc);
2271 if (d != NULL
2272 && h->dynindx != -1
2273 && ! info->export_dynamic)
2274 *hide = TRUE;
2275 }
2276
2277 free (alc);
2278 break;
2279 }
2280 }
2281
2282 *t_p = t;
2283
2284 return TRUE;
2285 }
2286
2287 /* Return TRUE if the symbol H is hidden by version script. */
2288
2289 bfd_boolean
2290 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2291 struct elf_link_hash_entry *h)
2292 {
2293 const char *p;
2294 bfd_boolean hide = FALSE;
2295 const struct elf_backend_data *bed
2296 = get_elf_backend_data (info->output_bfd);
2297
2298 /* Version script only hides symbols defined in regular objects. */
2299 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2300 return TRUE;
2301
2302 p = strchr (h->root.root.string, ELF_VER_CHR);
2303 if (p != NULL && h->verinfo.vertree == NULL)
2304 {
2305 struct bfd_elf_version_tree *t;
2306
2307 ++p;
2308 if (*p == ELF_VER_CHR)
2309 ++p;
2310
2311 if (*p != '\0'
2312 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2313 && hide)
2314 {
2315 if (hide)
2316 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2317 return TRUE;
2318 }
2319 }
2320
2321 /* If we don't have a version for this symbol, see if we can find
2322 something. */
2323 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2324 {
2325 h->verinfo.vertree
2326 = bfd_find_version_for_sym (info->version_info,
2327 h->root.root.string, &hide);
2328 if (h->verinfo.vertree != NULL && hide)
2329 {
2330 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2331 return TRUE;
2332 }
2333 }
2334
2335 return FALSE;
2336 }
2337
2338 /* Figure out appropriate versions for all the symbols. We may not
2339 have the version number script until we have read all of the input
2340 files, so until that point we don't know which symbols should be
2341 local. This function is called via elf_link_hash_traverse. */
2342
2343 static bfd_boolean
2344 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2345 {
2346 struct elf_info_failed *sinfo;
2347 struct bfd_link_info *info;
2348 const struct elf_backend_data *bed;
2349 struct elf_info_failed eif;
2350 char *p;
2351 bfd_boolean hide;
2352
2353 sinfo = (struct elf_info_failed *) data;
2354 info = sinfo->info;
2355
2356 /* Fix the symbol flags. */
2357 eif.failed = FALSE;
2358 eif.info = info;
2359 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2360 {
2361 if (eif.failed)
2362 sinfo->failed = TRUE;
2363 return FALSE;
2364 }
2365
2366 bed = get_elf_backend_data (info->output_bfd);
2367
2368 /* We only need version numbers for symbols defined in regular
2369 objects. */
2370 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2371 {
2372 /* Hide symbols defined in discarded input sections. */
2373 if ((h->root.type == bfd_link_hash_defined
2374 || h->root.type == bfd_link_hash_defweak)
2375 && discarded_section (h->root.u.def.section))
2376 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2377 return TRUE;
2378 }
2379
2380 hide = FALSE;
2381 p = strchr (h->root.root.string, ELF_VER_CHR);
2382 if (p != NULL && h->verinfo.vertree == NULL)
2383 {
2384 struct bfd_elf_version_tree *t;
2385
2386 ++p;
2387 if (*p == ELF_VER_CHR)
2388 ++p;
2389
2390 /* If there is no version string, we can just return out. */
2391 if (*p == '\0')
2392 return TRUE;
2393
2394 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2395 {
2396 sinfo->failed = TRUE;
2397 return FALSE;
2398 }
2399
2400 if (hide)
2401 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2402
2403 /* If we are building an application, we need to create a
2404 version node for this version. */
2405 if (t == NULL && bfd_link_executable (info))
2406 {
2407 struct bfd_elf_version_tree **pp;
2408 int version_index;
2409
2410 /* If we aren't going to export this symbol, we don't need
2411 to worry about it. */
2412 if (h->dynindx == -1)
2413 return TRUE;
2414
2415 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2416 sizeof *t);
2417 if (t == NULL)
2418 {
2419 sinfo->failed = TRUE;
2420 return FALSE;
2421 }
2422
2423 t->name = p;
2424 t->name_indx = (unsigned int) -1;
2425 t->used = TRUE;
2426
2427 version_index = 1;
2428 /* Don't count anonymous version tag. */
2429 if (sinfo->info->version_info != NULL
2430 && sinfo->info->version_info->vernum == 0)
2431 version_index = 0;
2432 for (pp = &sinfo->info->version_info;
2433 *pp != NULL;
2434 pp = &(*pp)->next)
2435 ++version_index;
2436 t->vernum = version_index;
2437
2438 *pp = t;
2439
2440 h->verinfo.vertree = t;
2441 }
2442 else if (t == NULL)
2443 {
2444 /* We could not find the version for a symbol when
2445 generating a shared archive. Return an error. */
2446 _bfd_error_handler
2447 /* xgettext:c-format */
2448 (_("%pB: version node not found for symbol %s"),
2449 info->output_bfd, h->root.root.string);
2450 bfd_set_error (bfd_error_bad_value);
2451 sinfo->failed = TRUE;
2452 return FALSE;
2453 }
2454 }
2455
2456 /* If we don't have a version for this symbol, see if we can find
2457 something. */
2458 if (!hide
2459 && h->verinfo.vertree == NULL
2460 && sinfo->info->version_info != NULL)
2461 {
2462 h->verinfo.vertree
2463 = bfd_find_version_for_sym (sinfo->info->version_info,
2464 h->root.root.string, &hide);
2465 if (h->verinfo.vertree != NULL && hide)
2466 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2467 }
2468
2469 return TRUE;
2470 }
2471 \f
2472 /* Read and swap the relocs from the section indicated by SHDR. This
2473 may be either a REL or a RELA section. The relocations are
2474 translated into RELA relocations and stored in INTERNAL_RELOCS,
2475 which should have already been allocated to contain enough space.
2476 The EXTERNAL_RELOCS are a buffer where the external form of the
2477 relocations should be stored.
2478
2479 Returns FALSE if something goes wrong. */
2480
2481 static bfd_boolean
2482 elf_link_read_relocs_from_section (bfd *abfd,
2483 asection *sec,
2484 Elf_Internal_Shdr *shdr,
2485 void *external_relocs,
2486 Elf_Internal_Rela *internal_relocs)
2487 {
2488 const struct elf_backend_data *bed;
2489 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2490 const bfd_byte *erela;
2491 const bfd_byte *erelaend;
2492 Elf_Internal_Rela *irela;
2493 Elf_Internal_Shdr *symtab_hdr;
2494 size_t nsyms;
2495
2496 /* Position ourselves at the start of the section. */
2497 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2498 return FALSE;
2499
2500 /* Read the relocations. */
2501 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2502 return FALSE;
2503
2504 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2505 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2506
2507 bed = get_elf_backend_data (abfd);
2508
2509 /* Convert the external relocations to the internal format. */
2510 if (shdr->sh_entsize == bed->s->sizeof_rel)
2511 swap_in = bed->s->swap_reloc_in;
2512 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2513 swap_in = bed->s->swap_reloca_in;
2514 else
2515 {
2516 bfd_set_error (bfd_error_wrong_format);
2517 return FALSE;
2518 }
2519
2520 erela = (const bfd_byte *) external_relocs;
2521 /* Setting erelaend like this and comparing with <= handles case of
2522 a fuzzed object with sh_size not a multiple of sh_entsize. */
2523 erelaend = erela + shdr->sh_size - shdr->sh_entsize;
2524 irela = internal_relocs;
2525 while (erela <= erelaend)
2526 {
2527 bfd_vma r_symndx;
2528
2529 (*swap_in) (abfd, erela, irela);
2530 r_symndx = ELF32_R_SYM (irela->r_info);
2531 if (bed->s->arch_size == 64)
2532 r_symndx >>= 24;
2533 if (nsyms > 0)
2534 {
2535 if ((size_t) r_symndx >= nsyms)
2536 {
2537 _bfd_error_handler
2538 /* xgettext:c-format */
2539 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2540 " for offset %#" PRIx64 " in section `%pA'"),
2541 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2542 (uint64_t) irela->r_offset, sec);
2543 bfd_set_error (bfd_error_bad_value);
2544 return FALSE;
2545 }
2546 }
2547 else if (r_symndx != STN_UNDEF)
2548 {
2549 _bfd_error_handler
2550 /* xgettext:c-format */
2551 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2552 " for offset %#" PRIx64 " in section `%pA'"
2553 " when the object file has no symbol table"),
2554 abfd, (uint64_t) r_symndx,
2555 (uint64_t) irela->r_offset, sec);
2556 bfd_set_error (bfd_error_bad_value);
2557 return FALSE;
2558 }
2559 irela += bed->s->int_rels_per_ext_rel;
2560 erela += shdr->sh_entsize;
2561 }
2562
2563 return TRUE;
2564 }
2565
2566 /* Read and swap the relocs for a section O. They may have been
2567 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2568 not NULL, they are used as buffers to read into. They are known to
2569 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2570 the return value is allocated using either malloc or bfd_alloc,
2571 according to the KEEP_MEMORY argument. If O has two relocation
2572 sections (both REL and RELA relocations), then the REL_HDR
2573 relocations will appear first in INTERNAL_RELOCS, followed by the
2574 RELA_HDR relocations. */
2575
2576 Elf_Internal_Rela *
2577 _bfd_elf_link_read_relocs (bfd *abfd,
2578 asection *o,
2579 void *external_relocs,
2580 Elf_Internal_Rela *internal_relocs,
2581 bfd_boolean keep_memory)
2582 {
2583 void *alloc1 = NULL;
2584 Elf_Internal_Rela *alloc2 = NULL;
2585 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2586 struct bfd_elf_section_data *esdo = elf_section_data (o);
2587 Elf_Internal_Rela *internal_rela_relocs;
2588
2589 if (esdo->relocs != NULL)
2590 return esdo->relocs;
2591
2592 if (o->reloc_count == 0)
2593 return NULL;
2594
2595 if (internal_relocs == NULL)
2596 {
2597 bfd_size_type size;
2598
2599 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2600 if (keep_memory)
2601 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2602 else
2603 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2604 if (internal_relocs == NULL)
2605 goto error_return;
2606 }
2607
2608 if (external_relocs == NULL)
2609 {
2610 bfd_size_type size = 0;
2611
2612 if (esdo->rel.hdr)
2613 size += esdo->rel.hdr->sh_size;
2614 if (esdo->rela.hdr)
2615 size += esdo->rela.hdr->sh_size;
2616
2617 alloc1 = bfd_malloc (size);
2618 if (alloc1 == NULL)
2619 goto error_return;
2620 external_relocs = alloc1;
2621 }
2622
2623 internal_rela_relocs = internal_relocs;
2624 if (esdo->rel.hdr)
2625 {
2626 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2627 external_relocs,
2628 internal_relocs))
2629 goto error_return;
2630 external_relocs = (((bfd_byte *) external_relocs)
2631 + esdo->rel.hdr->sh_size);
2632 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2633 * bed->s->int_rels_per_ext_rel);
2634 }
2635
2636 if (esdo->rela.hdr
2637 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2638 external_relocs,
2639 internal_rela_relocs)))
2640 goto error_return;
2641
2642 /* Cache the results for next time, if we can. */
2643 if (keep_memory)
2644 esdo->relocs = internal_relocs;
2645
2646 free (alloc1);
2647
2648 /* Don't free alloc2, since if it was allocated we are passing it
2649 back (under the name of internal_relocs). */
2650
2651 return internal_relocs;
2652
2653 error_return:
2654 free (alloc1);
2655 if (alloc2 != NULL)
2656 {
2657 if (keep_memory)
2658 bfd_release (abfd, alloc2);
2659 else
2660 free (alloc2);
2661 }
2662 return NULL;
2663 }
2664
2665 /* Compute the size of, and allocate space for, REL_HDR which is the
2666 section header for a section containing relocations for O. */
2667
2668 static bfd_boolean
2669 _bfd_elf_link_size_reloc_section (bfd *abfd,
2670 struct bfd_elf_section_reloc_data *reldata)
2671 {
2672 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2673
2674 /* That allows us to calculate the size of the section. */
2675 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2676
2677 /* The contents field must last into write_object_contents, so we
2678 allocate it with bfd_alloc rather than malloc. Also since we
2679 cannot be sure that the contents will actually be filled in,
2680 we zero the allocated space. */
2681 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2682 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2683 return FALSE;
2684
2685 if (reldata->hashes == NULL && reldata->count)
2686 {
2687 struct elf_link_hash_entry **p;
2688
2689 p = ((struct elf_link_hash_entry **)
2690 bfd_zmalloc (reldata->count * sizeof (*p)));
2691 if (p == NULL)
2692 return FALSE;
2693
2694 reldata->hashes = p;
2695 }
2696
2697 return TRUE;
2698 }
2699
2700 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2701 originated from the section given by INPUT_REL_HDR) to the
2702 OUTPUT_BFD. */
2703
2704 bfd_boolean
2705 _bfd_elf_link_output_relocs (bfd *output_bfd,
2706 asection *input_section,
2707 Elf_Internal_Shdr *input_rel_hdr,
2708 Elf_Internal_Rela *internal_relocs,
2709 struct elf_link_hash_entry **rel_hash
2710 ATTRIBUTE_UNUSED)
2711 {
2712 Elf_Internal_Rela *irela;
2713 Elf_Internal_Rela *irelaend;
2714 bfd_byte *erel;
2715 struct bfd_elf_section_reloc_data *output_reldata;
2716 asection *output_section;
2717 const struct elf_backend_data *bed;
2718 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2719 struct bfd_elf_section_data *esdo;
2720
2721 output_section = input_section->output_section;
2722
2723 bed = get_elf_backend_data (output_bfd);
2724 esdo = elf_section_data (output_section);
2725 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2726 {
2727 output_reldata = &esdo->rel;
2728 swap_out = bed->s->swap_reloc_out;
2729 }
2730 else if (esdo->rela.hdr
2731 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2732 {
2733 output_reldata = &esdo->rela;
2734 swap_out = bed->s->swap_reloca_out;
2735 }
2736 else
2737 {
2738 _bfd_error_handler
2739 /* xgettext:c-format */
2740 (_("%pB: relocation size mismatch in %pB section %pA"),
2741 output_bfd, input_section->owner, input_section);
2742 bfd_set_error (bfd_error_wrong_format);
2743 return FALSE;
2744 }
2745
2746 erel = output_reldata->hdr->contents;
2747 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2748 irela = internal_relocs;
2749 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2750 * bed->s->int_rels_per_ext_rel);
2751 while (irela < irelaend)
2752 {
2753 (*swap_out) (output_bfd, irela, erel);
2754 irela += bed->s->int_rels_per_ext_rel;
2755 erel += input_rel_hdr->sh_entsize;
2756 }
2757
2758 /* Bump the counter, so that we know where to add the next set of
2759 relocations. */
2760 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2761
2762 return TRUE;
2763 }
2764 \f
2765 /* Make weak undefined symbols in PIE dynamic. */
2766
2767 bfd_boolean
2768 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2769 struct elf_link_hash_entry *h)
2770 {
2771 if (bfd_link_pie (info)
2772 && h->dynindx == -1
2773 && h->root.type == bfd_link_hash_undefweak)
2774 return bfd_elf_link_record_dynamic_symbol (info, h);
2775
2776 return TRUE;
2777 }
2778
2779 /* Fix up the flags for a symbol. This handles various cases which
2780 can only be fixed after all the input files are seen. This is
2781 currently called by both adjust_dynamic_symbol and
2782 assign_sym_version, which is unnecessary but perhaps more robust in
2783 the face of future changes. */
2784
2785 static bfd_boolean
2786 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2787 struct elf_info_failed *eif)
2788 {
2789 const struct elf_backend_data *bed;
2790
2791 /* If this symbol was mentioned in a non-ELF file, try to set
2792 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2793 permit a non-ELF file to correctly refer to a symbol defined in
2794 an ELF dynamic object. */
2795 if (h->non_elf)
2796 {
2797 while (h->root.type == bfd_link_hash_indirect)
2798 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2799
2800 if (h->root.type != bfd_link_hash_defined
2801 && h->root.type != bfd_link_hash_defweak)
2802 {
2803 h->ref_regular = 1;
2804 h->ref_regular_nonweak = 1;
2805 }
2806 else
2807 {
2808 if (h->root.u.def.section->owner != NULL
2809 && (bfd_get_flavour (h->root.u.def.section->owner)
2810 == bfd_target_elf_flavour))
2811 {
2812 h->ref_regular = 1;
2813 h->ref_regular_nonweak = 1;
2814 }
2815 else
2816 h->def_regular = 1;
2817 }
2818
2819 if (h->dynindx == -1
2820 && (h->def_dynamic
2821 || h->ref_dynamic))
2822 {
2823 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2824 {
2825 eif->failed = TRUE;
2826 return FALSE;
2827 }
2828 }
2829 }
2830 else
2831 {
2832 /* Unfortunately, NON_ELF is only correct if the symbol
2833 was first seen in a non-ELF file. Fortunately, if the symbol
2834 was first seen in an ELF file, we're probably OK unless the
2835 symbol was defined in a non-ELF file. Catch that case here.
2836 FIXME: We're still in trouble if the symbol was first seen in
2837 a dynamic object, and then later in a non-ELF regular object. */
2838 if ((h->root.type == bfd_link_hash_defined
2839 || h->root.type == bfd_link_hash_defweak)
2840 && !h->def_regular
2841 && (h->root.u.def.section->owner != NULL
2842 ? (bfd_get_flavour (h->root.u.def.section->owner)
2843 != bfd_target_elf_flavour)
2844 : (bfd_is_abs_section (h->root.u.def.section)
2845 && !h->def_dynamic)))
2846 h->def_regular = 1;
2847 }
2848
2849 /* Backend specific symbol fixup. */
2850 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2851 if (bed->elf_backend_fixup_symbol
2852 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2853 return FALSE;
2854
2855 /* If this is a final link, and the symbol was defined as a common
2856 symbol in a regular object file, and there was no definition in
2857 any dynamic object, then the linker will have allocated space for
2858 the symbol in a common section but the DEF_REGULAR
2859 flag will not have been set. */
2860 if (h->root.type == bfd_link_hash_defined
2861 && !h->def_regular
2862 && h->ref_regular
2863 && !h->def_dynamic
2864 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2865 h->def_regular = 1;
2866
2867 /* Symbols defined in discarded sections shouldn't be dynamic. */
2868 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
2869 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2870
2871 /* If a weak undefined symbol has non-default visibility, we also
2872 hide it from the dynamic linker. */
2873 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2874 && h->root.type == bfd_link_hash_undefweak)
2875 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2876
2877 /* A hidden versioned symbol in executable should be forced local if
2878 it is is locally defined, not referenced by shared library and not
2879 exported. */
2880 else if (bfd_link_executable (eif->info)
2881 && h->versioned == versioned_hidden
2882 && !eif->info->export_dynamic
2883 && !h->dynamic
2884 && !h->ref_dynamic
2885 && h->def_regular)
2886 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2887
2888 /* If -Bsymbolic was used (which means to bind references to global
2889 symbols to the definition within the shared object), and this
2890 symbol was defined in a regular object, then it actually doesn't
2891 need a PLT entry. Likewise, if the symbol has non-default
2892 visibility. If the symbol has hidden or internal visibility, we
2893 will force it local. */
2894 else if (h->needs_plt
2895 && bfd_link_pic (eif->info)
2896 && is_elf_hash_table (eif->info->hash)
2897 && (SYMBOLIC_BIND (eif->info, h)
2898 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2899 && h->def_regular)
2900 {
2901 bfd_boolean force_local;
2902
2903 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2904 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2905 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2906 }
2907
2908 /* If this is a weak defined symbol in a dynamic object, and we know
2909 the real definition in the dynamic object, copy interesting flags
2910 over to the real definition. */
2911 if (h->is_weakalias)
2912 {
2913 struct elf_link_hash_entry *def = weakdef (h);
2914
2915 /* If the real definition is defined by a regular object file,
2916 don't do anything special. See the longer description in
2917 _bfd_elf_adjust_dynamic_symbol, below. If the def is not
2918 bfd_link_hash_defined as it was when put on the alias list
2919 then it must have originally been a versioned symbol (for
2920 which a non-versioned indirect symbol is created) and later
2921 a definition for the non-versioned symbol is found. In that
2922 case the indirection is flipped with the versioned symbol
2923 becoming an indirect pointing at the non-versioned symbol.
2924 Thus, not an alias any more. */
2925 if (def->def_regular
2926 || def->root.type != bfd_link_hash_defined)
2927 {
2928 h = def;
2929 while ((h = h->u.alias) != def)
2930 h->is_weakalias = 0;
2931 }
2932 else
2933 {
2934 while (h->root.type == bfd_link_hash_indirect)
2935 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2936 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2937 || h->root.type == bfd_link_hash_defweak);
2938 BFD_ASSERT (def->def_dynamic);
2939 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2940 }
2941 }
2942
2943 return TRUE;
2944 }
2945
2946 /* Make the backend pick a good value for a dynamic symbol. This is
2947 called via elf_link_hash_traverse, and also calls itself
2948 recursively. */
2949
2950 static bfd_boolean
2951 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2952 {
2953 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2954 struct elf_link_hash_table *htab;
2955 const struct elf_backend_data *bed;
2956
2957 if (! is_elf_hash_table (eif->info->hash))
2958 return FALSE;
2959
2960 /* Ignore indirect symbols. These are added by the versioning code. */
2961 if (h->root.type == bfd_link_hash_indirect)
2962 return TRUE;
2963
2964 /* Fix the symbol flags. */
2965 if (! _bfd_elf_fix_symbol_flags (h, eif))
2966 return FALSE;
2967
2968 htab = elf_hash_table (eif->info);
2969 bed = get_elf_backend_data (htab->dynobj);
2970
2971 if (h->root.type == bfd_link_hash_undefweak)
2972 {
2973 if (eif->info->dynamic_undefined_weak == 0)
2974 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2975 else if (eif->info->dynamic_undefined_weak > 0
2976 && h->ref_regular
2977 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2978 && !bfd_hide_sym_by_version (eif->info->version_info,
2979 h->root.root.string))
2980 {
2981 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2982 {
2983 eif->failed = TRUE;
2984 return FALSE;
2985 }
2986 }
2987 }
2988
2989 /* If this symbol does not require a PLT entry, and it is not
2990 defined by a dynamic object, or is not referenced by a regular
2991 object, ignore it. We do have to handle a weak defined symbol,
2992 even if no regular object refers to it, if we decided to add it
2993 to the dynamic symbol table. FIXME: Do we normally need to worry
2994 about symbols which are defined by one dynamic object and
2995 referenced by another one? */
2996 if (!h->needs_plt
2997 && h->type != STT_GNU_IFUNC
2998 && (h->def_regular
2999 || !h->def_dynamic
3000 || (!h->ref_regular
3001 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
3002 {
3003 h->plt = elf_hash_table (eif->info)->init_plt_offset;
3004 return TRUE;
3005 }
3006
3007 /* If we've already adjusted this symbol, don't do it again. This
3008 can happen via a recursive call. */
3009 if (h->dynamic_adjusted)
3010 return TRUE;
3011
3012 /* Don't look at this symbol again. Note that we must set this
3013 after checking the above conditions, because we may look at a
3014 symbol once, decide not to do anything, and then get called
3015 recursively later after REF_REGULAR is set below. */
3016 h->dynamic_adjusted = 1;
3017
3018 /* If this is a weak definition, and we know a real definition, and
3019 the real symbol is not itself defined by a regular object file,
3020 then get a good value for the real definition. We handle the
3021 real symbol first, for the convenience of the backend routine.
3022
3023 Note that there is a confusing case here. If the real definition
3024 is defined by a regular object file, we don't get the real symbol
3025 from the dynamic object, but we do get the weak symbol. If the
3026 processor backend uses a COPY reloc, then if some routine in the
3027 dynamic object changes the real symbol, we will not see that
3028 change in the corresponding weak symbol. This is the way other
3029 ELF linkers work as well, and seems to be a result of the shared
3030 library model.
3031
3032 I will clarify this issue. Most SVR4 shared libraries define the
3033 variable _timezone and define timezone as a weak synonym. The
3034 tzset call changes _timezone. If you write
3035 extern int timezone;
3036 int _timezone = 5;
3037 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3038 you might expect that, since timezone is a synonym for _timezone,
3039 the same number will print both times. However, if the processor
3040 backend uses a COPY reloc, then actually timezone will be copied
3041 into your process image, and, since you define _timezone
3042 yourself, _timezone will not. Thus timezone and _timezone will
3043 wind up at different memory locations. The tzset call will set
3044 _timezone, leaving timezone unchanged. */
3045
3046 if (h->is_weakalias)
3047 {
3048 struct elf_link_hash_entry *def = weakdef (h);
3049
3050 /* If we get to this point, there is an implicit reference to
3051 the alias by a regular object file via the weak symbol H. */
3052 def->ref_regular = 1;
3053
3054 /* Ensure that the backend adjust_dynamic_symbol function sees
3055 the strong alias before H by recursively calling ourselves. */
3056 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3057 return FALSE;
3058 }
3059
3060 /* If a symbol has no type and no size and does not require a PLT
3061 entry, then we are probably about to do the wrong thing here: we
3062 are probably going to create a COPY reloc for an empty object.
3063 This case can arise when a shared object is built with assembly
3064 code, and the assembly code fails to set the symbol type. */
3065 if (h->size == 0
3066 && h->type == STT_NOTYPE
3067 && !h->needs_plt)
3068 _bfd_error_handler
3069 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3070 h->root.root.string);
3071
3072 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3073 {
3074 eif->failed = TRUE;
3075 return FALSE;
3076 }
3077
3078 return TRUE;
3079 }
3080
3081 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3082 DYNBSS. */
3083
3084 bfd_boolean
3085 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3086 struct elf_link_hash_entry *h,
3087 asection *dynbss)
3088 {
3089 unsigned int power_of_two;
3090 bfd_vma mask;
3091 asection *sec = h->root.u.def.section;
3092
3093 /* The section alignment of the definition is the maximum alignment
3094 requirement of symbols defined in the section. Since we don't
3095 know the symbol alignment requirement, we start with the
3096 maximum alignment and check low bits of the symbol address
3097 for the minimum alignment. */
3098 power_of_two = bfd_section_alignment (sec);
3099 mask = ((bfd_vma) 1 << power_of_two) - 1;
3100 while ((h->root.u.def.value & mask) != 0)
3101 {
3102 mask >>= 1;
3103 --power_of_two;
3104 }
3105
3106 if (power_of_two > bfd_section_alignment (dynbss))
3107 {
3108 /* Adjust the section alignment if needed. */
3109 if (!bfd_set_section_alignment (dynbss, power_of_two))
3110 return FALSE;
3111 }
3112
3113 /* We make sure that the symbol will be aligned properly. */
3114 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3115
3116 /* Define the symbol as being at this point in DYNBSS. */
3117 h->root.u.def.section = dynbss;
3118 h->root.u.def.value = dynbss->size;
3119
3120 /* Increment the size of DYNBSS to make room for the symbol. */
3121 dynbss->size += h->size;
3122
3123 /* No error if extern_protected_data is true. */
3124 if (h->protected_def
3125 && (!info->extern_protected_data
3126 || (info->extern_protected_data < 0
3127 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3128 info->callbacks->einfo
3129 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3130 h->root.root.string);
3131
3132 return TRUE;
3133 }
3134
3135 /* Adjust all external symbols pointing into SEC_MERGE sections
3136 to reflect the object merging within the sections. */
3137
3138 static bfd_boolean
3139 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3140 {
3141 asection *sec;
3142
3143 if ((h->root.type == bfd_link_hash_defined
3144 || h->root.type == bfd_link_hash_defweak)
3145 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3146 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3147 {
3148 bfd *output_bfd = (bfd *) data;
3149
3150 h->root.u.def.value =
3151 _bfd_merged_section_offset (output_bfd,
3152 &h->root.u.def.section,
3153 elf_section_data (sec)->sec_info,
3154 h->root.u.def.value);
3155 }
3156
3157 return TRUE;
3158 }
3159
3160 /* Returns false if the symbol referred to by H should be considered
3161 to resolve local to the current module, and true if it should be
3162 considered to bind dynamically. */
3163
3164 bfd_boolean
3165 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3166 struct bfd_link_info *info,
3167 bfd_boolean not_local_protected)
3168 {
3169 bfd_boolean binding_stays_local_p;
3170 const struct elf_backend_data *bed;
3171 struct elf_link_hash_table *hash_table;
3172
3173 if (h == NULL)
3174 return FALSE;
3175
3176 while (h->root.type == bfd_link_hash_indirect
3177 || h->root.type == bfd_link_hash_warning)
3178 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3179
3180 /* If it was forced local, then clearly it's not dynamic. */
3181 if (h->dynindx == -1)
3182 return FALSE;
3183 if (h->forced_local)
3184 return FALSE;
3185
3186 /* Identify the cases where name binding rules say that a
3187 visible symbol resolves locally. */
3188 binding_stays_local_p = (bfd_link_executable (info)
3189 || SYMBOLIC_BIND (info, h));
3190
3191 switch (ELF_ST_VISIBILITY (h->other))
3192 {
3193 case STV_INTERNAL:
3194 case STV_HIDDEN:
3195 return FALSE;
3196
3197 case STV_PROTECTED:
3198 hash_table = elf_hash_table (info);
3199 if (!is_elf_hash_table (hash_table))
3200 return FALSE;
3201
3202 bed = get_elf_backend_data (hash_table->dynobj);
3203
3204 /* Proper resolution for function pointer equality may require
3205 that these symbols perhaps be resolved dynamically, even though
3206 we should be resolving them to the current module. */
3207 if (!not_local_protected || !bed->is_function_type (h->type))
3208 binding_stays_local_p = TRUE;
3209 break;
3210
3211 default:
3212 break;
3213 }
3214
3215 /* If it isn't defined locally, then clearly it's dynamic. */
3216 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3217 return TRUE;
3218
3219 /* Otherwise, the symbol is dynamic if binding rules don't tell
3220 us that it remains local. */
3221 return !binding_stays_local_p;
3222 }
3223
3224 /* Return true if the symbol referred to by H should be considered
3225 to resolve local to the current module, and false otherwise. Differs
3226 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3227 undefined symbols. The two functions are virtually identical except
3228 for the place where dynindx == -1 is tested. If that test is true,
3229 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3230 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3231 defined symbols.
3232 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3233 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3234 treatment of undefined weak symbols. For those that do not make
3235 undefined weak symbols dynamic, both functions may return false. */
3236
3237 bfd_boolean
3238 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3239 struct bfd_link_info *info,
3240 bfd_boolean local_protected)
3241 {
3242 const struct elf_backend_data *bed;
3243 struct elf_link_hash_table *hash_table;
3244
3245 /* If it's a local sym, of course we resolve locally. */
3246 if (h == NULL)
3247 return TRUE;
3248
3249 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3250 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3251 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3252 return TRUE;
3253
3254 /* Forced local symbols resolve locally. */
3255 if (h->forced_local)
3256 return TRUE;
3257
3258 /* Common symbols that become definitions don't get the DEF_REGULAR
3259 flag set, so test it first, and don't bail out. */
3260 if (ELF_COMMON_DEF_P (h))
3261 /* Do nothing. */;
3262 /* If we don't have a definition in a regular file, then we can't
3263 resolve locally. The sym is either undefined or dynamic. */
3264 else if (!h->def_regular)
3265 return FALSE;
3266
3267 /* Non-dynamic symbols resolve locally. */
3268 if (h->dynindx == -1)
3269 return TRUE;
3270
3271 /* At this point, we know the symbol is defined and dynamic. In an
3272 executable it must resolve locally, likewise when building symbolic
3273 shared libraries. */
3274 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3275 return TRUE;
3276
3277 /* Now deal with defined dynamic symbols in shared libraries. Ones
3278 with default visibility might not resolve locally. */
3279 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3280 return FALSE;
3281
3282 hash_table = elf_hash_table (info);
3283 if (!is_elf_hash_table (hash_table))
3284 return TRUE;
3285
3286 bed = get_elf_backend_data (hash_table->dynobj);
3287
3288 /* If extern_protected_data is false, STV_PROTECTED non-function
3289 symbols are local. */
3290 if ((!info->extern_protected_data
3291 || (info->extern_protected_data < 0
3292 && !bed->extern_protected_data))
3293 && !bed->is_function_type (h->type))
3294 return TRUE;
3295
3296 /* Function pointer equality tests may require that STV_PROTECTED
3297 symbols be treated as dynamic symbols. If the address of a
3298 function not defined in an executable is set to that function's
3299 plt entry in the executable, then the address of the function in
3300 a shared library must also be the plt entry in the executable. */
3301 return local_protected;
3302 }
3303
3304 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3305 aligned. Returns the first TLS output section. */
3306
3307 struct bfd_section *
3308 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3309 {
3310 struct bfd_section *sec, *tls;
3311 unsigned int align = 0;
3312
3313 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3314 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3315 break;
3316 tls = sec;
3317
3318 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3319 if (sec->alignment_power > align)
3320 align = sec->alignment_power;
3321
3322 elf_hash_table (info)->tls_sec = tls;
3323
3324 /* Ensure the alignment of the first section (usually .tdata) is the largest
3325 alignment, so that the tls segment starts aligned. */
3326 if (tls != NULL)
3327 tls->alignment_power = align;
3328
3329 return tls;
3330 }
3331
3332 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3333 static bfd_boolean
3334 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3335 Elf_Internal_Sym *sym)
3336 {
3337 const struct elf_backend_data *bed;
3338
3339 /* Local symbols do not count, but target specific ones might. */
3340 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3341 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3342 return FALSE;
3343
3344 bed = get_elf_backend_data (abfd);
3345 /* Function symbols do not count. */
3346 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3347 return FALSE;
3348
3349 /* If the section is undefined, then so is the symbol. */
3350 if (sym->st_shndx == SHN_UNDEF)
3351 return FALSE;
3352
3353 /* If the symbol is defined in the common section, then
3354 it is a common definition and so does not count. */
3355 if (bed->common_definition (sym))
3356 return FALSE;
3357
3358 /* If the symbol is in a target specific section then we
3359 must rely upon the backend to tell us what it is. */
3360 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3361 /* FIXME - this function is not coded yet:
3362
3363 return _bfd_is_global_symbol_definition (abfd, sym);
3364
3365 Instead for now assume that the definition is not global,
3366 Even if this is wrong, at least the linker will behave
3367 in the same way that it used to do. */
3368 return FALSE;
3369
3370 return TRUE;
3371 }
3372
3373 /* Search the symbol table of the archive element of the archive ABFD
3374 whose archive map contains a mention of SYMDEF, and determine if
3375 the symbol is defined in this element. */
3376 static bfd_boolean
3377 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3378 {
3379 Elf_Internal_Shdr * hdr;
3380 size_t symcount;
3381 size_t extsymcount;
3382 size_t extsymoff;
3383 Elf_Internal_Sym *isymbuf;
3384 Elf_Internal_Sym *isym;
3385 Elf_Internal_Sym *isymend;
3386 bfd_boolean result;
3387
3388 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3389 if (abfd == NULL)
3390 return FALSE;
3391
3392 if (! bfd_check_format (abfd, bfd_object))
3393 return FALSE;
3394
3395 /* Select the appropriate symbol table. If we don't know if the
3396 object file is an IR object, give linker LTO plugin a chance to
3397 get the correct symbol table. */
3398 if (abfd->plugin_format == bfd_plugin_yes
3399 #if BFD_SUPPORTS_PLUGINS
3400 || (abfd->plugin_format == bfd_plugin_unknown
3401 && bfd_link_plugin_object_p (abfd))
3402 #endif
3403 )
3404 {
3405 /* Use the IR symbol table if the object has been claimed by
3406 plugin. */
3407 abfd = abfd->plugin_dummy_bfd;
3408 hdr = &elf_tdata (abfd)->symtab_hdr;
3409 }
3410 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3411 hdr = &elf_tdata (abfd)->symtab_hdr;
3412 else
3413 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3414
3415 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3416
3417 /* The sh_info field of the symtab header tells us where the
3418 external symbols start. We don't care about the local symbols. */
3419 if (elf_bad_symtab (abfd))
3420 {
3421 extsymcount = symcount;
3422 extsymoff = 0;
3423 }
3424 else
3425 {
3426 extsymcount = symcount - hdr->sh_info;
3427 extsymoff = hdr->sh_info;
3428 }
3429
3430 if (extsymcount == 0)
3431 return FALSE;
3432
3433 /* Read in the symbol table. */
3434 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3435 NULL, NULL, NULL);
3436 if (isymbuf == NULL)
3437 return FALSE;
3438
3439 /* Scan the symbol table looking for SYMDEF. */
3440 result = FALSE;
3441 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3442 {
3443 const char *name;
3444
3445 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3446 isym->st_name);
3447 if (name == NULL)
3448 break;
3449
3450 if (strcmp (name, symdef->name) == 0)
3451 {
3452 result = is_global_data_symbol_definition (abfd, isym);
3453 break;
3454 }
3455 }
3456
3457 free (isymbuf);
3458
3459 return result;
3460 }
3461 \f
3462 /* Add an entry to the .dynamic table. */
3463
3464 bfd_boolean
3465 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3466 bfd_vma tag,
3467 bfd_vma val)
3468 {
3469 struct elf_link_hash_table *hash_table;
3470 const struct elf_backend_data *bed;
3471 asection *s;
3472 bfd_size_type newsize;
3473 bfd_byte *newcontents;
3474 Elf_Internal_Dyn dyn;
3475
3476 hash_table = elf_hash_table (info);
3477 if (! is_elf_hash_table (hash_table))
3478 return FALSE;
3479
3480 if (tag == DT_RELA || tag == DT_REL)
3481 hash_table->dynamic_relocs = TRUE;
3482
3483 bed = get_elf_backend_data (hash_table->dynobj);
3484 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3485 BFD_ASSERT (s != NULL);
3486
3487 newsize = s->size + bed->s->sizeof_dyn;
3488 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3489 if (newcontents == NULL)
3490 return FALSE;
3491
3492 dyn.d_tag = tag;
3493 dyn.d_un.d_val = val;
3494 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3495
3496 s->size = newsize;
3497 s->contents = newcontents;
3498
3499 return TRUE;
3500 }
3501
3502 /* Strip zero-sized dynamic sections. */
3503
3504 bfd_boolean
3505 _bfd_elf_strip_zero_sized_dynamic_sections (struct bfd_link_info *info)
3506 {
3507 struct elf_link_hash_table *hash_table;
3508 const struct elf_backend_data *bed;
3509 asection *s, *sdynamic, **pp;
3510 asection *rela_dyn, *rel_dyn;
3511 Elf_Internal_Dyn dyn;
3512 bfd_byte *extdyn, *next;
3513 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3514 bfd_boolean strip_zero_sized;
3515 bfd_boolean strip_zero_sized_plt;
3516
3517 if (bfd_link_relocatable (info))
3518 return TRUE;
3519
3520 hash_table = elf_hash_table (info);
3521 if (!is_elf_hash_table (hash_table))
3522 return FALSE;
3523
3524 if (!hash_table->dynobj)
3525 return TRUE;
3526
3527 sdynamic= bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3528 if (!sdynamic)
3529 return TRUE;
3530
3531 bed = get_elf_backend_data (hash_table->dynobj);
3532 swap_dyn_in = bed->s->swap_dyn_in;
3533
3534 strip_zero_sized = FALSE;
3535 strip_zero_sized_plt = FALSE;
3536
3537 /* Strip zero-sized dynamic sections. */
3538 rela_dyn = bfd_get_section_by_name (info->output_bfd, ".rela.dyn");
3539 rel_dyn = bfd_get_section_by_name (info->output_bfd, ".rel.dyn");
3540 for (pp = &info->output_bfd->sections; (s = *pp) != NULL;)
3541 if (s->size == 0
3542 && (s == rela_dyn
3543 || s == rel_dyn
3544 || s == hash_table->srelplt->output_section
3545 || s == hash_table->splt->output_section))
3546 {
3547 *pp = s->next;
3548 info->output_bfd->section_count--;
3549 strip_zero_sized = TRUE;
3550 if (s == rela_dyn)
3551 s = rela_dyn;
3552 if (s == rel_dyn)
3553 s = rel_dyn;
3554 else if (s == hash_table->splt->output_section)
3555 {
3556 s = hash_table->splt;
3557 strip_zero_sized_plt = TRUE;
3558 }
3559 else
3560 s = hash_table->srelplt;
3561 s->flags |= SEC_EXCLUDE;
3562 s->output_section = bfd_abs_section_ptr;
3563 }
3564 else
3565 pp = &s->next;
3566
3567 if (strip_zero_sized_plt)
3568 for (extdyn = sdynamic->contents;
3569 extdyn < sdynamic->contents + sdynamic->size;
3570 extdyn = next)
3571 {
3572 next = extdyn + bed->s->sizeof_dyn;
3573 swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3574 switch (dyn.d_tag)
3575 {
3576 default:
3577 break;
3578 case DT_JMPREL:
3579 case DT_PLTRELSZ:
3580 case DT_PLTREL:
3581 /* Strip DT_PLTRELSZ, DT_JMPREL and DT_PLTREL entries if
3582 the procedure linkage table (the .plt section) has been
3583 removed. */
3584 memmove (extdyn, next,
3585 sdynamic->size - (next - sdynamic->contents));
3586 next = extdyn;
3587 }
3588 }
3589
3590 if (strip_zero_sized)
3591 {
3592 /* Regenerate program headers. */
3593 elf_seg_map (info->output_bfd) = NULL;
3594 return _bfd_elf_map_sections_to_segments (info->output_bfd, info);
3595 }
3596
3597 return TRUE;
3598 }
3599
3600 /* Add a DT_NEEDED entry for this dynamic object. Returns -1 on error,
3601 1 if a DT_NEEDED tag already exists, and 0 on success. */
3602
3603 int
3604 bfd_elf_add_dt_needed_tag (bfd *abfd, struct bfd_link_info *info)
3605 {
3606 struct elf_link_hash_table *hash_table;
3607 size_t strindex;
3608 const char *soname;
3609
3610 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3611 return -1;
3612
3613 hash_table = elf_hash_table (info);
3614 soname = elf_dt_name (abfd);
3615 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3616 if (strindex == (size_t) -1)
3617 return -1;
3618
3619 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3620 {
3621 asection *sdyn;
3622 const struct elf_backend_data *bed;
3623 bfd_byte *extdyn;
3624
3625 bed = get_elf_backend_data (hash_table->dynobj);
3626 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3627 if (sdyn != NULL)
3628 for (extdyn = sdyn->contents;
3629 extdyn < sdyn->contents + sdyn->size;
3630 extdyn += bed->s->sizeof_dyn)
3631 {
3632 Elf_Internal_Dyn dyn;
3633
3634 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3635 if (dyn.d_tag == DT_NEEDED
3636 && dyn.d_un.d_val == strindex)
3637 {
3638 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3639 return 1;
3640 }
3641 }
3642 }
3643
3644 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3645 return -1;
3646
3647 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3648 return -1;
3649
3650 return 0;
3651 }
3652
3653 /* Return true if SONAME is on the needed list between NEEDED and STOP
3654 (or the end of list if STOP is NULL), and needed by a library that
3655 will be loaded. */
3656
3657 static bfd_boolean
3658 on_needed_list (const char *soname,
3659 struct bfd_link_needed_list *needed,
3660 struct bfd_link_needed_list *stop)
3661 {
3662 struct bfd_link_needed_list *look;
3663 for (look = needed; look != stop; look = look->next)
3664 if (strcmp (soname, look->name) == 0
3665 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3666 /* If needed by a library that itself is not directly
3667 needed, recursively check whether that library is
3668 indirectly needed. Since we add DT_NEEDED entries to
3669 the end of the list, library dependencies appear after
3670 the library. Therefore search prior to the current
3671 LOOK, preventing possible infinite recursion. */
3672 || on_needed_list (elf_dt_name (look->by), needed, look)))
3673 return TRUE;
3674
3675 return FALSE;
3676 }
3677
3678 /* Sort symbol by value, section, size, and type. */
3679 static int
3680 elf_sort_symbol (const void *arg1, const void *arg2)
3681 {
3682 const struct elf_link_hash_entry *h1;
3683 const struct elf_link_hash_entry *h2;
3684 bfd_signed_vma vdiff;
3685 int sdiff;
3686 const char *n1;
3687 const char *n2;
3688
3689 h1 = *(const struct elf_link_hash_entry **) arg1;
3690 h2 = *(const struct elf_link_hash_entry **) arg2;
3691 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3692 if (vdiff != 0)
3693 return vdiff > 0 ? 1 : -1;
3694
3695 sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3696 if (sdiff != 0)
3697 return sdiff;
3698
3699 /* Sort so that sized symbols are selected over zero size symbols. */
3700 vdiff = h1->size - h2->size;
3701 if (vdiff != 0)
3702 return vdiff > 0 ? 1 : -1;
3703
3704 /* Sort so that STT_OBJECT is selected over STT_NOTYPE. */
3705 if (h1->type != h2->type)
3706 return h1->type - h2->type;
3707
3708 /* If symbols are properly sized and typed, and multiple strong
3709 aliases are not defined in a shared library by the user we
3710 shouldn't get here. Unfortunately linker script symbols like
3711 __bss_start sometimes match a user symbol defined at the start of
3712 .bss without proper size and type. We'd like to preference the
3713 user symbol over reserved system symbols. Sort on leading
3714 underscores. */
3715 n1 = h1->root.root.string;
3716 n2 = h2->root.root.string;
3717 while (*n1 == *n2)
3718 {
3719 if (*n1 == 0)
3720 break;
3721 ++n1;
3722 ++n2;
3723 }
3724 if (*n1 == '_')
3725 return -1;
3726 if (*n2 == '_')
3727 return 1;
3728
3729 /* Final sort on name selects user symbols like '_u' over reserved
3730 system symbols like '_Z' and also will avoid qsort instability. */
3731 return *n1 - *n2;
3732 }
3733
3734 /* This function is used to adjust offsets into .dynstr for
3735 dynamic symbols. This is called via elf_link_hash_traverse. */
3736
3737 static bfd_boolean
3738 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3739 {
3740 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3741
3742 if (h->dynindx != -1)
3743 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3744 return TRUE;
3745 }
3746
3747 /* Assign string offsets in .dynstr, update all structures referencing
3748 them. */
3749
3750 static bfd_boolean
3751 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3752 {
3753 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3754 struct elf_link_local_dynamic_entry *entry;
3755 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3756 bfd *dynobj = hash_table->dynobj;
3757 asection *sdyn;
3758 bfd_size_type size;
3759 const struct elf_backend_data *bed;
3760 bfd_byte *extdyn;
3761
3762 _bfd_elf_strtab_finalize (dynstr);
3763 size = _bfd_elf_strtab_size (dynstr);
3764
3765 bed = get_elf_backend_data (dynobj);
3766 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3767 BFD_ASSERT (sdyn != NULL);
3768
3769 /* Update all .dynamic entries referencing .dynstr strings. */
3770 for (extdyn = sdyn->contents;
3771 extdyn < sdyn->contents + sdyn->size;
3772 extdyn += bed->s->sizeof_dyn)
3773 {
3774 Elf_Internal_Dyn dyn;
3775
3776 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3777 switch (dyn.d_tag)
3778 {
3779 case DT_STRSZ:
3780 dyn.d_un.d_val = size;
3781 break;
3782 case DT_NEEDED:
3783 case DT_SONAME:
3784 case DT_RPATH:
3785 case DT_RUNPATH:
3786 case DT_FILTER:
3787 case DT_AUXILIARY:
3788 case DT_AUDIT:
3789 case DT_DEPAUDIT:
3790 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3791 break;
3792 default:
3793 continue;
3794 }
3795 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3796 }
3797
3798 /* Now update local dynamic symbols. */
3799 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3800 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3801 entry->isym.st_name);
3802
3803 /* And the rest of dynamic symbols. */
3804 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3805
3806 /* Adjust version definitions. */
3807 if (elf_tdata (output_bfd)->cverdefs)
3808 {
3809 asection *s;
3810 bfd_byte *p;
3811 size_t i;
3812 Elf_Internal_Verdef def;
3813 Elf_Internal_Verdaux defaux;
3814
3815 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3816 p = s->contents;
3817 do
3818 {
3819 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3820 &def);
3821 p += sizeof (Elf_External_Verdef);
3822 if (def.vd_aux != sizeof (Elf_External_Verdef))
3823 continue;
3824 for (i = 0; i < def.vd_cnt; ++i)
3825 {
3826 _bfd_elf_swap_verdaux_in (output_bfd,
3827 (Elf_External_Verdaux *) p, &defaux);
3828 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3829 defaux.vda_name);
3830 _bfd_elf_swap_verdaux_out (output_bfd,
3831 &defaux, (Elf_External_Verdaux *) p);
3832 p += sizeof (Elf_External_Verdaux);
3833 }
3834 }
3835 while (def.vd_next);
3836 }
3837
3838 /* Adjust version references. */
3839 if (elf_tdata (output_bfd)->verref)
3840 {
3841 asection *s;
3842 bfd_byte *p;
3843 size_t i;
3844 Elf_Internal_Verneed need;
3845 Elf_Internal_Vernaux needaux;
3846
3847 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3848 p = s->contents;
3849 do
3850 {
3851 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3852 &need);
3853 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3854 _bfd_elf_swap_verneed_out (output_bfd, &need,
3855 (Elf_External_Verneed *) p);
3856 p += sizeof (Elf_External_Verneed);
3857 for (i = 0; i < need.vn_cnt; ++i)
3858 {
3859 _bfd_elf_swap_vernaux_in (output_bfd,
3860 (Elf_External_Vernaux *) p, &needaux);
3861 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3862 needaux.vna_name);
3863 _bfd_elf_swap_vernaux_out (output_bfd,
3864 &needaux,
3865 (Elf_External_Vernaux *) p);
3866 p += sizeof (Elf_External_Vernaux);
3867 }
3868 }
3869 while (need.vn_next);
3870 }
3871
3872 return TRUE;
3873 }
3874 \f
3875 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3876 The default is to only match when the INPUT and OUTPUT are exactly
3877 the same target. */
3878
3879 bfd_boolean
3880 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3881 const bfd_target *output)
3882 {
3883 return input == output;
3884 }
3885
3886 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3887 This version is used when different targets for the same architecture
3888 are virtually identical. */
3889
3890 bfd_boolean
3891 _bfd_elf_relocs_compatible (const bfd_target *input,
3892 const bfd_target *output)
3893 {
3894 const struct elf_backend_data *obed, *ibed;
3895
3896 if (input == output)
3897 return TRUE;
3898
3899 ibed = xvec_get_elf_backend_data (input);
3900 obed = xvec_get_elf_backend_data (output);
3901
3902 if (ibed->arch != obed->arch)
3903 return FALSE;
3904
3905 /* If both backends are using this function, deem them compatible. */
3906 return ibed->relocs_compatible == obed->relocs_compatible;
3907 }
3908
3909 /* Make a special call to the linker "notice" function to tell it that
3910 we are about to handle an as-needed lib, or have finished
3911 processing the lib. */
3912
3913 bfd_boolean
3914 _bfd_elf_notice_as_needed (bfd *ibfd,
3915 struct bfd_link_info *info,
3916 enum notice_asneeded_action act)
3917 {
3918 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3919 }
3920
3921 /* Check relocations an ELF object file. */
3922
3923 bfd_boolean
3924 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3925 {
3926 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3927 struct elf_link_hash_table *htab = elf_hash_table (info);
3928
3929 /* If this object is the same format as the output object, and it is
3930 not a shared library, then let the backend look through the
3931 relocs.
3932
3933 This is required to build global offset table entries and to
3934 arrange for dynamic relocs. It is not required for the
3935 particular common case of linking non PIC code, even when linking
3936 against shared libraries, but unfortunately there is no way of
3937 knowing whether an object file has been compiled PIC or not.
3938 Looking through the relocs is not particularly time consuming.
3939 The problem is that we must either (1) keep the relocs in memory,
3940 which causes the linker to require additional runtime memory or
3941 (2) read the relocs twice from the input file, which wastes time.
3942 This would be a good case for using mmap.
3943
3944 I have no idea how to handle linking PIC code into a file of a
3945 different format. It probably can't be done. */
3946 if ((abfd->flags & DYNAMIC) == 0
3947 && is_elf_hash_table (htab)
3948 && bed->check_relocs != NULL
3949 && elf_object_id (abfd) == elf_hash_table_id (htab)
3950 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3951 {
3952 asection *o;
3953
3954 for (o = abfd->sections; o != NULL; o = o->next)
3955 {
3956 Elf_Internal_Rela *internal_relocs;
3957 bfd_boolean ok;
3958
3959 /* Don't check relocations in excluded sections. */
3960 if ((o->flags & SEC_RELOC) == 0
3961 || (o->flags & SEC_EXCLUDE) != 0
3962 || o->reloc_count == 0
3963 || ((info->strip == strip_all || info->strip == strip_debugger)
3964 && (o->flags & SEC_DEBUGGING) != 0)
3965 || bfd_is_abs_section (o->output_section))
3966 continue;
3967
3968 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3969 info->keep_memory);
3970 if (internal_relocs == NULL)
3971 return FALSE;
3972
3973 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3974
3975 if (elf_section_data (o)->relocs != internal_relocs)
3976 free (internal_relocs);
3977
3978 if (! ok)
3979 return FALSE;
3980 }
3981 }
3982
3983 return TRUE;
3984 }
3985
3986 /* Add symbols from an ELF object file to the linker hash table. */
3987
3988 static bfd_boolean
3989 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3990 {
3991 Elf_Internal_Ehdr *ehdr;
3992 Elf_Internal_Shdr *hdr;
3993 size_t symcount;
3994 size_t extsymcount;
3995 size_t extsymoff;
3996 struct elf_link_hash_entry **sym_hash;
3997 bfd_boolean dynamic;
3998 Elf_External_Versym *extversym = NULL;
3999 Elf_External_Versym *extversym_end = NULL;
4000 Elf_External_Versym *ever;
4001 struct elf_link_hash_entry *weaks;
4002 struct elf_link_hash_entry **nondeflt_vers = NULL;
4003 size_t nondeflt_vers_cnt = 0;
4004 Elf_Internal_Sym *isymbuf = NULL;
4005 Elf_Internal_Sym *isym;
4006 Elf_Internal_Sym *isymend;
4007 const struct elf_backend_data *bed;
4008 bfd_boolean add_needed;
4009 struct elf_link_hash_table *htab;
4010 void *alloc_mark = NULL;
4011 struct bfd_hash_entry **old_table = NULL;
4012 unsigned int old_size = 0;
4013 unsigned int old_count = 0;
4014 void *old_tab = NULL;
4015 void *old_ent;
4016 struct bfd_link_hash_entry *old_undefs = NULL;
4017 struct bfd_link_hash_entry *old_undefs_tail = NULL;
4018 void *old_strtab = NULL;
4019 size_t tabsize = 0;
4020 asection *s;
4021 bfd_boolean just_syms;
4022
4023 htab = elf_hash_table (info);
4024 bed = get_elf_backend_data (abfd);
4025
4026 if ((abfd->flags & DYNAMIC) == 0)
4027 dynamic = FALSE;
4028 else
4029 {
4030 dynamic = TRUE;
4031
4032 /* You can't use -r against a dynamic object. Also, there's no
4033 hope of using a dynamic object which does not exactly match
4034 the format of the output file. */
4035 if (bfd_link_relocatable (info)
4036 || !is_elf_hash_table (htab)
4037 || info->output_bfd->xvec != abfd->xvec)
4038 {
4039 if (bfd_link_relocatable (info))
4040 bfd_set_error (bfd_error_invalid_operation);
4041 else
4042 bfd_set_error (bfd_error_wrong_format);
4043 goto error_return;
4044 }
4045 }
4046
4047 ehdr = elf_elfheader (abfd);
4048 if (info->warn_alternate_em
4049 && bed->elf_machine_code != ehdr->e_machine
4050 && ((bed->elf_machine_alt1 != 0
4051 && ehdr->e_machine == bed->elf_machine_alt1)
4052 || (bed->elf_machine_alt2 != 0
4053 && ehdr->e_machine == bed->elf_machine_alt2)))
4054 _bfd_error_handler
4055 /* xgettext:c-format */
4056 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
4057 ehdr->e_machine, abfd, bed->elf_machine_code);
4058
4059 /* As a GNU extension, any input sections which are named
4060 .gnu.warning.SYMBOL are treated as warning symbols for the given
4061 symbol. This differs from .gnu.warning sections, which generate
4062 warnings when they are included in an output file. */
4063 /* PR 12761: Also generate this warning when building shared libraries. */
4064 for (s = abfd->sections; s != NULL; s = s->next)
4065 {
4066 const char *name;
4067
4068 name = bfd_section_name (s);
4069 if (CONST_STRNEQ (name, ".gnu.warning."))
4070 {
4071 char *msg;
4072 bfd_size_type sz;
4073
4074 name += sizeof ".gnu.warning." - 1;
4075
4076 /* If this is a shared object, then look up the symbol
4077 in the hash table. If it is there, and it is already
4078 been defined, then we will not be using the entry
4079 from this shared object, so we don't need to warn.
4080 FIXME: If we see the definition in a regular object
4081 later on, we will warn, but we shouldn't. The only
4082 fix is to keep track of what warnings we are supposed
4083 to emit, and then handle them all at the end of the
4084 link. */
4085 if (dynamic)
4086 {
4087 struct elf_link_hash_entry *h;
4088
4089 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
4090
4091 /* FIXME: What about bfd_link_hash_common? */
4092 if (h != NULL
4093 && (h->root.type == bfd_link_hash_defined
4094 || h->root.type == bfd_link_hash_defweak))
4095 continue;
4096 }
4097
4098 sz = s->size;
4099 msg = (char *) bfd_alloc (abfd, sz + 1);
4100 if (msg == NULL)
4101 goto error_return;
4102
4103 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4104 goto error_return;
4105
4106 msg[sz] = '\0';
4107
4108 if (! (_bfd_generic_link_add_one_symbol
4109 (info, abfd, name, BSF_WARNING, s, 0, msg,
4110 FALSE, bed->collect, NULL)))
4111 goto error_return;
4112
4113 if (bfd_link_executable (info))
4114 {
4115 /* Clobber the section size so that the warning does
4116 not get copied into the output file. */
4117 s->size = 0;
4118
4119 /* Also set SEC_EXCLUDE, so that symbols defined in
4120 the warning section don't get copied to the output. */
4121 s->flags |= SEC_EXCLUDE;
4122 }
4123 }
4124 }
4125
4126 just_syms = ((s = abfd->sections) != NULL
4127 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4128
4129 add_needed = TRUE;
4130 if (! dynamic)
4131 {
4132 /* If we are creating a shared library, create all the dynamic
4133 sections immediately. We need to attach them to something,
4134 so we attach them to this BFD, provided it is the right
4135 format and is not from ld --just-symbols. Always create the
4136 dynamic sections for -E/--dynamic-list. FIXME: If there
4137 are no input BFD's of the same format as the output, we can't
4138 make a shared library. */
4139 if (!just_syms
4140 && (bfd_link_pic (info)
4141 || (!bfd_link_relocatable (info)
4142 && info->nointerp
4143 && (info->export_dynamic || info->dynamic)))
4144 && is_elf_hash_table (htab)
4145 && info->output_bfd->xvec == abfd->xvec
4146 && !htab->dynamic_sections_created)
4147 {
4148 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4149 goto error_return;
4150 }
4151 }
4152 else if (!is_elf_hash_table (htab))
4153 goto error_return;
4154 else
4155 {
4156 const char *soname = NULL;
4157 char *audit = NULL;
4158 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4159 const Elf_Internal_Phdr *phdr;
4160 struct elf_link_loaded_list *loaded_lib;
4161
4162 /* ld --just-symbols and dynamic objects don't mix very well.
4163 ld shouldn't allow it. */
4164 if (just_syms)
4165 abort ();
4166
4167 /* If this dynamic lib was specified on the command line with
4168 --as-needed in effect, then we don't want to add a DT_NEEDED
4169 tag unless the lib is actually used. Similary for libs brought
4170 in by another lib's DT_NEEDED. When --no-add-needed is used
4171 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4172 any dynamic library in DT_NEEDED tags in the dynamic lib at
4173 all. */
4174 add_needed = (elf_dyn_lib_class (abfd)
4175 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4176 | DYN_NO_NEEDED)) == 0;
4177
4178 s = bfd_get_section_by_name (abfd, ".dynamic");
4179 if (s != NULL)
4180 {
4181 bfd_byte *dynbuf;
4182 bfd_byte *extdyn;
4183 unsigned int elfsec;
4184 unsigned long shlink;
4185
4186 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4187 {
4188 error_free_dyn:
4189 free (dynbuf);
4190 goto error_return;
4191 }
4192
4193 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4194 if (elfsec == SHN_BAD)
4195 goto error_free_dyn;
4196 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4197
4198 for (extdyn = dynbuf;
4199 extdyn <= dynbuf + s->size - bed->s->sizeof_dyn;
4200 extdyn += bed->s->sizeof_dyn)
4201 {
4202 Elf_Internal_Dyn dyn;
4203
4204 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4205 if (dyn.d_tag == DT_SONAME)
4206 {
4207 unsigned int tagv = dyn.d_un.d_val;
4208 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4209 if (soname == NULL)
4210 goto error_free_dyn;
4211 }
4212 if (dyn.d_tag == DT_NEEDED)
4213 {
4214 struct bfd_link_needed_list *n, **pn;
4215 char *fnm, *anm;
4216 unsigned int tagv = dyn.d_un.d_val;
4217 size_t amt = sizeof (struct bfd_link_needed_list);
4218
4219 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4220 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4221 if (n == NULL || fnm == NULL)
4222 goto error_free_dyn;
4223 amt = strlen (fnm) + 1;
4224 anm = (char *) bfd_alloc (abfd, amt);
4225 if (anm == NULL)
4226 goto error_free_dyn;
4227 memcpy (anm, fnm, amt);
4228 n->name = anm;
4229 n->by = abfd;
4230 n->next = NULL;
4231 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4232 ;
4233 *pn = n;
4234 }
4235 if (dyn.d_tag == DT_RUNPATH)
4236 {
4237 struct bfd_link_needed_list *n, **pn;
4238 char *fnm, *anm;
4239 unsigned int tagv = dyn.d_un.d_val;
4240 size_t amt = sizeof (struct bfd_link_needed_list);
4241
4242 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4243 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4244 if (n == NULL || fnm == NULL)
4245 goto error_free_dyn;
4246 amt = strlen (fnm) + 1;
4247 anm = (char *) bfd_alloc (abfd, amt);
4248 if (anm == NULL)
4249 goto error_free_dyn;
4250 memcpy (anm, fnm, amt);
4251 n->name = anm;
4252 n->by = abfd;
4253 n->next = NULL;
4254 for (pn = & runpath;
4255 *pn != NULL;
4256 pn = &(*pn)->next)
4257 ;
4258 *pn = n;
4259 }
4260 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4261 if (!runpath && dyn.d_tag == DT_RPATH)
4262 {
4263 struct bfd_link_needed_list *n, **pn;
4264 char *fnm, *anm;
4265 unsigned int tagv = dyn.d_un.d_val;
4266 size_t amt = sizeof (struct bfd_link_needed_list);
4267
4268 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4269 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4270 if (n == NULL || fnm == NULL)
4271 goto error_free_dyn;
4272 amt = strlen (fnm) + 1;
4273 anm = (char *) bfd_alloc (abfd, amt);
4274 if (anm == NULL)
4275 goto error_free_dyn;
4276 memcpy (anm, fnm, amt);
4277 n->name = anm;
4278 n->by = abfd;
4279 n->next = NULL;
4280 for (pn = & rpath;
4281 *pn != NULL;
4282 pn = &(*pn)->next)
4283 ;
4284 *pn = n;
4285 }
4286 if (dyn.d_tag == DT_AUDIT)
4287 {
4288 unsigned int tagv = dyn.d_un.d_val;
4289 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4290 }
4291 }
4292
4293 free (dynbuf);
4294 }
4295
4296 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4297 frees all more recently bfd_alloc'd blocks as well. */
4298 if (runpath)
4299 rpath = runpath;
4300
4301 if (rpath)
4302 {
4303 struct bfd_link_needed_list **pn;
4304 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4305 ;
4306 *pn = rpath;
4307 }
4308
4309 /* If we have a PT_GNU_RELRO program header, mark as read-only
4310 all sections contained fully therein. This makes relro
4311 shared library sections appear as they will at run-time. */
4312 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4313 while (phdr-- > elf_tdata (abfd)->phdr)
4314 if (phdr->p_type == PT_GNU_RELRO)
4315 {
4316 for (s = abfd->sections; s != NULL; s = s->next)
4317 {
4318 unsigned int opb = bfd_octets_per_byte (abfd, s);
4319
4320 if ((s->flags & SEC_ALLOC) != 0
4321 && s->vma * opb >= phdr->p_vaddr
4322 && s->vma * opb + s->size <= phdr->p_vaddr + phdr->p_memsz)
4323 s->flags |= SEC_READONLY;
4324 }
4325 break;
4326 }
4327
4328 /* We do not want to include any of the sections in a dynamic
4329 object in the output file. We hack by simply clobbering the
4330 list of sections in the BFD. This could be handled more
4331 cleanly by, say, a new section flag; the existing
4332 SEC_NEVER_LOAD flag is not the one we want, because that one
4333 still implies that the section takes up space in the output
4334 file. */
4335 bfd_section_list_clear (abfd);
4336
4337 /* Find the name to use in a DT_NEEDED entry that refers to this
4338 object. If the object has a DT_SONAME entry, we use it.
4339 Otherwise, if the generic linker stuck something in
4340 elf_dt_name, we use that. Otherwise, we just use the file
4341 name. */
4342 if (soname == NULL || *soname == '\0')
4343 {
4344 soname = elf_dt_name (abfd);
4345 if (soname == NULL || *soname == '\0')
4346 soname = bfd_get_filename (abfd);
4347 }
4348
4349 /* Save the SONAME because sometimes the linker emulation code
4350 will need to know it. */
4351 elf_dt_name (abfd) = soname;
4352
4353 /* If we have already included this dynamic object in the
4354 link, just ignore it. There is no reason to include a
4355 particular dynamic object more than once. */
4356 for (loaded_lib = htab->dyn_loaded;
4357 loaded_lib != NULL;
4358 loaded_lib = loaded_lib->next)
4359 {
4360 if (strcmp (elf_dt_name (loaded_lib->abfd), soname) == 0)
4361 return TRUE;
4362 }
4363
4364 /* Create dynamic sections for backends that require that be done
4365 before setup_gnu_properties. */
4366 if (add_needed
4367 && !_bfd_elf_link_create_dynamic_sections (abfd, info))
4368 return FALSE;
4369
4370 /* Save the DT_AUDIT entry for the linker emulation code. */
4371 elf_dt_audit (abfd) = audit;
4372 }
4373
4374 /* If this is a dynamic object, we always link against the .dynsym
4375 symbol table, not the .symtab symbol table. The dynamic linker
4376 will only see the .dynsym symbol table, so there is no reason to
4377 look at .symtab for a dynamic object. */
4378
4379 if (! dynamic || elf_dynsymtab (abfd) == 0)
4380 hdr = &elf_tdata (abfd)->symtab_hdr;
4381 else
4382 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4383
4384 symcount = hdr->sh_size / bed->s->sizeof_sym;
4385
4386 /* The sh_info field of the symtab header tells us where the
4387 external symbols start. We don't care about the local symbols at
4388 this point. */
4389 if (elf_bad_symtab (abfd))
4390 {
4391 extsymcount = symcount;
4392 extsymoff = 0;
4393 }
4394 else
4395 {
4396 extsymcount = symcount - hdr->sh_info;
4397 extsymoff = hdr->sh_info;
4398 }
4399
4400 sym_hash = elf_sym_hashes (abfd);
4401 if (extsymcount != 0)
4402 {
4403 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4404 NULL, NULL, NULL);
4405 if (isymbuf == NULL)
4406 goto error_return;
4407
4408 if (sym_hash == NULL)
4409 {
4410 /* We store a pointer to the hash table entry for each
4411 external symbol. */
4412 size_t amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4413 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4414 if (sym_hash == NULL)
4415 goto error_free_sym;
4416 elf_sym_hashes (abfd) = sym_hash;
4417 }
4418 }
4419
4420 if (dynamic)
4421 {
4422 /* Read in any version definitions. */
4423 if (!_bfd_elf_slurp_version_tables (abfd,
4424 info->default_imported_symver))
4425 goto error_free_sym;
4426
4427 /* Read in the symbol versions, but don't bother to convert them
4428 to internal format. */
4429 if (elf_dynversym (abfd) != 0)
4430 {
4431 Elf_Internal_Shdr *versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4432 bfd_size_type amt = versymhdr->sh_size;
4433
4434 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0)
4435 goto error_free_sym;
4436 extversym = (Elf_External_Versym *)
4437 _bfd_malloc_and_read (abfd, amt, amt);
4438 if (extversym == NULL)
4439 goto error_free_sym;
4440 extversym_end = extversym + amt / sizeof (*extversym);
4441 }
4442 }
4443
4444 /* If we are loading an as-needed shared lib, save the symbol table
4445 state before we start adding symbols. If the lib turns out
4446 to be unneeded, restore the state. */
4447 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4448 {
4449 unsigned int i;
4450 size_t entsize;
4451
4452 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4453 {
4454 struct bfd_hash_entry *p;
4455 struct elf_link_hash_entry *h;
4456
4457 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4458 {
4459 h = (struct elf_link_hash_entry *) p;
4460 entsize += htab->root.table.entsize;
4461 if (h->root.type == bfd_link_hash_warning)
4462 entsize += htab->root.table.entsize;
4463 }
4464 }
4465
4466 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4467 old_tab = bfd_malloc (tabsize + entsize);
4468 if (old_tab == NULL)
4469 goto error_free_vers;
4470
4471 /* Remember the current objalloc pointer, so that all mem for
4472 symbols added can later be reclaimed. */
4473 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4474 if (alloc_mark == NULL)
4475 goto error_free_vers;
4476
4477 /* Make a special call to the linker "notice" function to
4478 tell it that we are about to handle an as-needed lib. */
4479 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4480 goto error_free_vers;
4481
4482 /* Clone the symbol table. Remember some pointers into the
4483 symbol table, and dynamic symbol count. */
4484 old_ent = (char *) old_tab + tabsize;
4485 memcpy (old_tab, htab->root.table.table, tabsize);
4486 old_undefs = htab->root.undefs;
4487 old_undefs_tail = htab->root.undefs_tail;
4488 old_table = htab->root.table.table;
4489 old_size = htab->root.table.size;
4490 old_count = htab->root.table.count;
4491 old_strtab = NULL;
4492 if (htab->dynstr != NULL)
4493 {
4494 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4495 if (old_strtab == NULL)
4496 goto error_free_vers;
4497 }
4498
4499 for (i = 0; i < htab->root.table.size; i++)
4500 {
4501 struct bfd_hash_entry *p;
4502 struct elf_link_hash_entry *h;
4503
4504 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4505 {
4506 memcpy (old_ent, p, htab->root.table.entsize);
4507 old_ent = (char *) old_ent + htab->root.table.entsize;
4508 h = (struct elf_link_hash_entry *) p;
4509 if (h->root.type == bfd_link_hash_warning)
4510 {
4511 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4512 old_ent = (char *) old_ent + htab->root.table.entsize;
4513 }
4514 }
4515 }
4516 }
4517
4518 weaks = NULL;
4519 if (extversym == NULL)
4520 ever = NULL;
4521 else if (extversym + extsymoff < extversym_end)
4522 ever = extversym + extsymoff;
4523 else
4524 {
4525 /* xgettext:c-format */
4526 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4527 abfd, (long) extsymoff,
4528 (long) (extversym_end - extversym) / sizeof (* extversym));
4529 bfd_set_error (bfd_error_bad_value);
4530 goto error_free_vers;
4531 }
4532
4533 if (!bfd_link_relocatable (info)
4534 && abfd->lto_slim_object)
4535 {
4536 _bfd_error_handler
4537 (_("%pB: plugin needed to handle lto object"), abfd);
4538 }
4539
4540 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4541 isym < isymend;
4542 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4543 {
4544 int bind;
4545 bfd_vma value;
4546 asection *sec, *new_sec;
4547 flagword flags;
4548 const char *name;
4549 struct elf_link_hash_entry *h;
4550 struct elf_link_hash_entry *hi;
4551 bfd_boolean definition;
4552 bfd_boolean size_change_ok;
4553 bfd_boolean type_change_ok;
4554 bfd_boolean new_weak;
4555 bfd_boolean old_weak;
4556 bfd_boolean override;
4557 bfd_boolean common;
4558 bfd_boolean discarded;
4559 unsigned int old_alignment;
4560 unsigned int shindex;
4561 bfd *old_bfd;
4562 bfd_boolean matched;
4563
4564 override = FALSE;
4565
4566 flags = BSF_NO_FLAGS;
4567 sec = NULL;
4568 value = isym->st_value;
4569 common = bed->common_definition (isym);
4570 if (common && info->inhibit_common_definition)
4571 {
4572 /* Treat common symbol as undefined for --no-define-common. */
4573 isym->st_shndx = SHN_UNDEF;
4574 common = FALSE;
4575 }
4576 discarded = FALSE;
4577
4578 bind = ELF_ST_BIND (isym->st_info);
4579 switch (bind)
4580 {
4581 case STB_LOCAL:
4582 /* This should be impossible, since ELF requires that all
4583 global symbols follow all local symbols, and that sh_info
4584 point to the first global symbol. Unfortunately, Irix 5
4585 screws this up. */
4586 if (elf_bad_symtab (abfd))
4587 continue;
4588
4589 /* If we aren't prepared to handle locals within the globals
4590 then we'll likely segfault on a NULL symbol hash if the
4591 symbol is ever referenced in relocations. */
4592 shindex = elf_elfheader (abfd)->e_shstrndx;
4593 name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name);
4594 _bfd_error_handler (_("%pB: %s local symbol at index %lu"
4595 " (>= sh_info of %lu)"),
4596 abfd, name, (long) (isym - isymbuf + extsymoff),
4597 (long) extsymoff);
4598
4599 /* Dynamic object relocations are not processed by ld, so
4600 ld won't run into the problem mentioned above. */
4601 if (dynamic)
4602 continue;
4603 bfd_set_error (bfd_error_bad_value);
4604 goto error_free_vers;
4605
4606 case STB_GLOBAL:
4607 if (isym->st_shndx != SHN_UNDEF && !common)
4608 flags = BSF_GLOBAL;
4609 break;
4610
4611 case STB_WEAK:
4612 flags = BSF_WEAK;
4613 break;
4614
4615 case STB_GNU_UNIQUE:
4616 flags = BSF_GNU_UNIQUE;
4617 break;
4618
4619 default:
4620 /* Leave it up to the processor backend. */
4621 break;
4622 }
4623
4624 if (isym->st_shndx == SHN_UNDEF)
4625 sec = bfd_und_section_ptr;
4626 else if (isym->st_shndx == SHN_ABS)
4627 sec = bfd_abs_section_ptr;
4628 else if (isym->st_shndx == SHN_COMMON)
4629 {
4630 sec = bfd_com_section_ptr;
4631 /* What ELF calls the size we call the value. What ELF
4632 calls the value we call the alignment. */
4633 value = isym->st_size;
4634 }
4635 else
4636 {
4637 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4638 if (sec == NULL)
4639 sec = bfd_abs_section_ptr;
4640 else if (discarded_section (sec))
4641 {
4642 /* Symbols from discarded section are undefined. We keep
4643 its visibility. */
4644 sec = bfd_und_section_ptr;
4645 discarded = TRUE;
4646 isym->st_shndx = SHN_UNDEF;
4647 }
4648 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4649 value -= sec->vma;
4650 }
4651
4652 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4653 isym->st_name);
4654 if (name == NULL)
4655 goto error_free_vers;
4656
4657 if (isym->st_shndx == SHN_COMMON
4658 && (abfd->flags & BFD_PLUGIN) != 0)
4659 {
4660 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4661
4662 if (xc == NULL)
4663 {
4664 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4665 | SEC_EXCLUDE);
4666 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4667 if (xc == NULL)
4668 goto error_free_vers;
4669 }
4670 sec = xc;
4671 }
4672 else if (isym->st_shndx == SHN_COMMON
4673 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4674 && !bfd_link_relocatable (info))
4675 {
4676 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4677
4678 if (tcomm == NULL)
4679 {
4680 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4681 | SEC_LINKER_CREATED);
4682 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4683 if (tcomm == NULL)
4684 goto error_free_vers;
4685 }
4686 sec = tcomm;
4687 }
4688 else if (bed->elf_add_symbol_hook)
4689 {
4690 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4691 &sec, &value))
4692 goto error_free_vers;
4693
4694 /* The hook function sets the name to NULL if this symbol
4695 should be skipped for some reason. */
4696 if (name == NULL)
4697 continue;
4698 }
4699
4700 /* Sanity check that all possibilities were handled. */
4701 if (sec == NULL)
4702 abort ();
4703
4704 /* Silently discard TLS symbols from --just-syms. There's
4705 no way to combine a static TLS block with a new TLS block
4706 for this executable. */
4707 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4708 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4709 continue;
4710
4711 if (bfd_is_und_section (sec)
4712 || bfd_is_com_section (sec))
4713 definition = FALSE;
4714 else
4715 definition = TRUE;
4716
4717 size_change_ok = FALSE;
4718 type_change_ok = bed->type_change_ok;
4719 old_weak = FALSE;
4720 matched = FALSE;
4721 old_alignment = 0;
4722 old_bfd = NULL;
4723 new_sec = sec;
4724
4725 if (is_elf_hash_table (htab))
4726 {
4727 Elf_Internal_Versym iver;
4728 unsigned int vernum = 0;
4729 bfd_boolean skip;
4730
4731 if (ever == NULL)
4732 {
4733 if (info->default_imported_symver)
4734 /* Use the default symbol version created earlier. */
4735 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4736 else
4737 iver.vs_vers = 0;
4738 }
4739 else if (ever >= extversym_end)
4740 {
4741 /* xgettext:c-format */
4742 _bfd_error_handler (_("%pB: not enough version information"),
4743 abfd);
4744 bfd_set_error (bfd_error_bad_value);
4745 goto error_free_vers;
4746 }
4747 else
4748 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4749
4750 vernum = iver.vs_vers & VERSYM_VERSION;
4751
4752 /* If this is a hidden symbol, or if it is not version
4753 1, we append the version name to the symbol name.
4754 However, we do not modify a non-hidden absolute symbol
4755 if it is not a function, because it might be the version
4756 symbol itself. FIXME: What if it isn't? */
4757 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4758 || (vernum > 1
4759 && (!bfd_is_abs_section (sec)
4760 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4761 {
4762 const char *verstr;
4763 size_t namelen, verlen, newlen;
4764 char *newname, *p;
4765
4766 if (isym->st_shndx != SHN_UNDEF)
4767 {
4768 if (vernum > elf_tdata (abfd)->cverdefs)
4769 verstr = NULL;
4770 else if (vernum > 1)
4771 verstr =
4772 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4773 else
4774 verstr = "";
4775
4776 if (verstr == NULL)
4777 {
4778 _bfd_error_handler
4779 /* xgettext:c-format */
4780 (_("%pB: %s: invalid version %u (max %d)"),
4781 abfd, name, vernum,
4782 elf_tdata (abfd)->cverdefs);
4783 bfd_set_error (bfd_error_bad_value);
4784 goto error_free_vers;
4785 }
4786 }
4787 else
4788 {
4789 /* We cannot simply test for the number of
4790 entries in the VERNEED section since the
4791 numbers for the needed versions do not start
4792 at 0. */
4793 Elf_Internal_Verneed *t;
4794
4795 verstr = NULL;
4796 for (t = elf_tdata (abfd)->verref;
4797 t != NULL;
4798 t = t->vn_nextref)
4799 {
4800 Elf_Internal_Vernaux *a;
4801
4802 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4803 {
4804 if (a->vna_other == vernum)
4805 {
4806 verstr = a->vna_nodename;
4807 break;
4808 }
4809 }
4810 if (a != NULL)
4811 break;
4812 }
4813 if (verstr == NULL)
4814 {
4815 _bfd_error_handler
4816 /* xgettext:c-format */
4817 (_("%pB: %s: invalid needed version %d"),
4818 abfd, name, vernum);
4819 bfd_set_error (bfd_error_bad_value);
4820 goto error_free_vers;
4821 }
4822 }
4823
4824 namelen = strlen (name);
4825 verlen = strlen (verstr);
4826 newlen = namelen + verlen + 2;
4827 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4828 && isym->st_shndx != SHN_UNDEF)
4829 ++newlen;
4830
4831 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4832 if (newname == NULL)
4833 goto error_free_vers;
4834 memcpy (newname, name, namelen);
4835 p = newname + namelen;
4836 *p++ = ELF_VER_CHR;
4837 /* If this is a defined non-hidden version symbol,
4838 we add another @ to the name. This indicates the
4839 default version of the symbol. */
4840 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4841 && isym->st_shndx != SHN_UNDEF)
4842 *p++ = ELF_VER_CHR;
4843 memcpy (p, verstr, verlen + 1);
4844
4845 name = newname;
4846 }
4847
4848 /* If this symbol has default visibility and the user has
4849 requested we not re-export it, then mark it as hidden. */
4850 if (!bfd_is_und_section (sec)
4851 && !dynamic
4852 && abfd->no_export
4853 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4854 isym->st_other = (STV_HIDDEN
4855 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4856
4857 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4858 sym_hash, &old_bfd, &old_weak,
4859 &old_alignment, &skip, &override,
4860 &type_change_ok, &size_change_ok,
4861 &matched))
4862 goto error_free_vers;
4863
4864 if (skip)
4865 continue;
4866
4867 /* Override a definition only if the new symbol matches the
4868 existing one. */
4869 if (override && matched)
4870 definition = FALSE;
4871
4872 h = *sym_hash;
4873 while (h->root.type == bfd_link_hash_indirect
4874 || h->root.type == bfd_link_hash_warning)
4875 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4876
4877 if (elf_tdata (abfd)->verdef != NULL
4878 && vernum > 1
4879 && definition)
4880 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4881 }
4882
4883 if (! (_bfd_generic_link_add_one_symbol
4884 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4885 (struct bfd_link_hash_entry **) sym_hash)))
4886 goto error_free_vers;
4887
4888 h = *sym_hash;
4889 /* We need to make sure that indirect symbol dynamic flags are
4890 updated. */
4891 hi = h;
4892 while (h->root.type == bfd_link_hash_indirect
4893 || h->root.type == bfd_link_hash_warning)
4894 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4895
4896 /* Setting the index to -3 tells elf_link_output_extsym that
4897 this symbol is defined in a discarded section. */
4898 if (discarded)
4899 h->indx = -3;
4900
4901 *sym_hash = h;
4902
4903 new_weak = (flags & BSF_WEAK) != 0;
4904 if (dynamic
4905 && definition
4906 && new_weak
4907 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4908 && is_elf_hash_table (htab)
4909 && h->u.alias == NULL)
4910 {
4911 /* Keep a list of all weak defined non function symbols from
4912 a dynamic object, using the alias field. Later in this
4913 function we will set the alias field to the correct
4914 value. We only put non-function symbols from dynamic
4915 objects on this list, because that happens to be the only
4916 time we need to know the normal symbol corresponding to a
4917 weak symbol, and the information is time consuming to
4918 figure out. If the alias field is not already NULL,
4919 then this symbol was already defined by some previous
4920 dynamic object, and we will be using that previous
4921 definition anyhow. */
4922
4923 h->u.alias = weaks;
4924 weaks = h;
4925 }
4926
4927 /* Set the alignment of a common symbol. */
4928 if ((common || bfd_is_com_section (sec))
4929 && h->root.type == bfd_link_hash_common)
4930 {
4931 unsigned int align;
4932
4933 if (common)
4934 align = bfd_log2 (isym->st_value);
4935 else
4936 {
4937 /* The new symbol is a common symbol in a shared object.
4938 We need to get the alignment from the section. */
4939 align = new_sec->alignment_power;
4940 }
4941 if (align > old_alignment)
4942 h->root.u.c.p->alignment_power = align;
4943 else
4944 h->root.u.c.p->alignment_power = old_alignment;
4945 }
4946
4947 if (is_elf_hash_table (htab))
4948 {
4949 /* Set a flag in the hash table entry indicating the type of
4950 reference or definition we just found. A dynamic symbol
4951 is one which is referenced or defined by both a regular
4952 object and a shared object. */
4953 bfd_boolean dynsym = FALSE;
4954
4955 /* Plugin symbols aren't normal. Don't set def_regular or
4956 ref_regular for them, or make them dynamic. */
4957 if ((abfd->flags & BFD_PLUGIN) != 0)
4958 ;
4959 else if (! dynamic)
4960 {
4961 if (! definition)
4962 {
4963 h->ref_regular = 1;
4964 if (bind != STB_WEAK)
4965 h->ref_regular_nonweak = 1;
4966 }
4967 else
4968 {
4969 h->def_regular = 1;
4970 if (h->def_dynamic)
4971 {
4972 h->def_dynamic = 0;
4973 h->ref_dynamic = 1;
4974 }
4975 }
4976
4977 /* If the indirect symbol has been forced local, don't
4978 make the real symbol dynamic. */
4979 if ((h == hi || !hi->forced_local)
4980 && (bfd_link_dll (info)
4981 || h->def_dynamic
4982 || h->ref_dynamic))
4983 dynsym = TRUE;
4984 }
4985 else
4986 {
4987 if (! definition)
4988 {
4989 h->ref_dynamic = 1;
4990 hi->ref_dynamic = 1;
4991 }
4992 else
4993 {
4994 h->def_dynamic = 1;
4995 hi->def_dynamic = 1;
4996 }
4997
4998 /* If the indirect symbol has been forced local, don't
4999 make the real symbol dynamic. */
5000 if ((h == hi || !hi->forced_local)
5001 && (h->def_regular
5002 || h->ref_regular
5003 || (h->is_weakalias
5004 && weakdef (h)->dynindx != -1)))
5005 dynsym = TRUE;
5006 }
5007
5008 /* Check to see if we need to add an indirect symbol for
5009 the default name. */
5010 if (definition
5011 || (!override && h->root.type == bfd_link_hash_common))
5012 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
5013 sec, value, &old_bfd, &dynsym))
5014 goto error_free_vers;
5015
5016 /* Check the alignment when a common symbol is involved. This
5017 can change when a common symbol is overridden by a normal
5018 definition or a common symbol is ignored due to the old
5019 normal definition. We need to make sure the maximum
5020 alignment is maintained. */
5021 if ((old_alignment || common)
5022 && h->root.type != bfd_link_hash_common)
5023 {
5024 unsigned int common_align;
5025 unsigned int normal_align;
5026 unsigned int symbol_align;
5027 bfd *normal_bfd;
5028 bfd *common_bfd;
5029
5030 BFD_ASSERT (h->root.type == bfd_link_hash_defined
5031 || h->root.type == bfd_link_hash_defweak);
5032
5033 symbol_align = ffs (h->root.u.def.value) - 1;
5034 if (h->root.u.def.section->owner != NULL
5035 && (h->root.u.def.section->owner->flags
5036 & (DYNAMIC | BFD_PLUGIN)) == 0)
5037 {
5038 normal_align = h->root.u.def.section->alignment_power;
5039 if (normal_align > symbol_align)
5040 normal_align = symbol_align;
5041 }
5042 else
5043 normal_align = symbol_align;
5044
5045 if (old_alignment)
5046 {
5047 common_align = old_alignment;
5048 common_bfd = old_bfd;
5049 normal_bfd = abfd;
5050 }
5051 else
5052 {
5053 common_align = bfd_log2 (isym->st_value);
5054 common_bfd = abfd;
5055 normal_bfd = old_bfd;
5056 }
5057
5058 if (normal_align < common_align)
5059 {
5060 /* PR binutils/2735 */
5061 if (normal_bfd == NULL)
5062 _bfd_error_handler
5063 /* xgettext:c-format */
5064 (_("warning: alignment %u of common symbol `%s' in %pB is"
5065 " greater than the alignment (%u) of its section %pA"),
5066 1 << common_align, name, common_bfd,
5067 1 << normal_align, h->root.u.def.section);
5068 else
5069 _bfd_error_handler
5070 /* xgettext:c-format */
5071 (_("warning: alignment %u of symbol `%s' in %pB"
5072 " is smaller than %u in %pB"),
5073 1 << normal_align, name, normal_bfd,
5074 1 << common_align, common_bfd);
5075 }
5076 }
5077
5078 /* Remember the symbol size if it isn't undefined. */
5079 if (isym->st_size != 0
5080 && isym->st_shndx != SHN_UNDEF
5081 && (definition || h->size == 0))
5082 {
5083 if (h->size != 0
5084 && h->size != isym->st_size
5085 && ! size_change_ok)
5086 _bfd_error_handler
5087 /* xgettext:c-format */
5088 (_("warning: size of symbol `%s' changed"
5089 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
5090 name, (uint64_t) h->size, old_bfd,
5091 (uint64_t) isym->st_size, abfd);
5092
5093 h->size = isym->st_size;
5094 }
5095
5096 /* If this is a common symbol, then we always want H->SIZE
5097 to be the size of the common symbol. The code just above
5098 won't fix the size if a common symbol becomes larger. We
5099 don't warn about a size change here, because that is
5100 covered by --warn-common. Allow changes between different
5101 function types. */
5102 if (h->root.type == bfd_link_hash_common)
5103 h->size = h->root.u.c.size;
5104
5105 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
5106 && ((definition && !new_weak)
5107 || (old_weak && h->root.type == bfd_link_hash_common)
5108 || h->type == STT_NOTYPE))
5109 {
5110 unsigned int type = ELF_ST_TYPE (isym->st_info);
5111
5112 /* Turn an IFUNC symbol from a DSO into a normal FUNC
5113 symbol. */
5114 if (type == STT_GNU_IFUNC
5115 && (abfd->flags & DYNAMIC) != 0)
5116 type = STT_FUNC;
5117
5118 if (h->type != type)
5119 {
5120 if (h->type != STT_NOTYPE && ! type_change_ok)
5121 /* xgettext:c-format */
5122 _bfd_error_handler
5123 (_("warning: type of symbol `%s' changed"
5124 " from %d to %d in %pB"),
5125 name, h->type, type, abfd);
5126
5127 h->type = type;
5128 }
5129 }
5130
5131 /* Merge st_other field. */
5132 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
5133
5134 /* We don't want to make debug symbol dynamic. */
5135 if (definition
5136 && (sec->flags & SEC_DEBUGGING)
5137 && !bfd_link_relocatable (info))
5138 dynsym = FALSE;
5139
5140 /* Nor should we make plugin symbols dynamic. */
5141 if ((abfd->flags & BFD_PLUGIN) != 0)
5142 dynsym = FALSE;
5143
5144 if (definition)
5145 {
5146 h->target_internal = isym->st_target_internal;
5147 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
5148 }
5149
5150 if (definition && !dynamic)
5151 {
5152 char *p = strchr (name, ELF_VER_CHR);
5153 if (p != NULL && p[1] != ELF_VER_CHR)
5154 {
5155 /* Queue non-default versions so that .symver x, x@FOO
5156 aliases can be checked. */
5157 if (!nondeflt_vers)
5158 {
5159 size_t amt = ((isymend - isym + 1)
5160 * sizeof (struct elf_link_hash_entry *));
5161 nondeflt_vers
5162 = (struct elf_link_hash_entry **) bfd_malloc (amt);
5163 if (!nondeflt_vers)
5164 goto error_free_vers;
5165 }
5166 nondeflt_vers[nondeflt_vers_cnt++] = h;
5167 }
5168 }
5169
5170 if (dynsym && h->dynindx == -1)
5171 {
5172 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5173 goto error_free_vers;
5174 if (h->is_weakalias
5175 && weakdef (h)->dynindx == -1)
5176 {
5177 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5178 goto error_free_vers;
5179 }
5180 }
5181 else if (h->dynindx != -1)
5182 /* If the symbol already has a dynamic index, but
5183 visibility says it should not be visible, turn it into
5184 a local symbol. */
5185 switch (ELF_ST_VISIBILITY (h->other))
5186 {
5187 case STV_INTERNAL:
5188 case STV_HIDDEN:
5189 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
5190 dynsym = FALSE;
5191 break;
5192 }
5193
5194 /* Don't add DT_NEEDED for references from the dummy bfd nor
5195 for unmatched symbol. */
5196 if (!add_needed
5197 && matched
5198 && definition
5199 && ((dynsym
5200 && h->ref_regular_nonweak
5201 && (old_bfd == NULL
5202 || (old_bfd->flags & BFD_PLUGIN) == 0))
5203 || (h->ref_dynamic_nonweak
5204 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5205 && !on_needed_list (elf_dt_name (abfd),
5206 htab->needed, NULL))))
5207 {
5208 const char *soname = elf_dt_name (abfd);
5209
5210 info->callbacks->minfo ("%!", soname, old_bfd,
5211 h->root.root.string);
5212
5213 /* A symbol from a library loaded via DT_NEEDED of some
5214 other library is referenced by a regular object.
5215 Add a DT_NEEDED entry for it. Issue an error if
5216 --no-add-needed is used and the reference was not
5217 a weak one. */
5218 if (old_bfd != NULL
5219 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5220 {
5221 _bfd_error_handler
5222 /* xgettext:c-format */
5223 (_("%pB: undefined reference to symbol '%s'"),
5224 old_bfd, name);
5225 bfd_set_error (bfd_error_missing_dso);
5226 goto error_free_vers;
5227 }
5228
5229 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5230 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5231
5232 /* Create dynamic sections for backends that require
5233 that be done before setup_gnu_properties. */
5234 if (!_bfd_elf_link_create_dynamic_sections (abfd, info))
5235 return FALSE;
5236 add_needed = TRUE;
5237 }
5238 }
5239 }
5240
5241 if (info->lto_plugin_active
5242 && !bfd_link_relocatable (info)
5243 && (abfd->flags & BFD_PLUGIN) == 0
5244 && !just_syms
5245 && extsymcount)
5246 {
5247 int r_sym_shift;
5248
5249 if (bed->s->arch_size == 32)
5250 r_sym_shift = 8;
5251 else
5252 r_sym_shift = 32;
5253
5254 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5255 referenced in regular objects so that linker plugin will get
5256 the correct symbol resolution. */
5257
5258 sym_hash = elf_sym_hashes (abfd);
5259 for (s = abfd->sections; s != NULL; s = s->next)
5260 {
5261 Elf_Internal_Rela *internal_relocs;
5262 Elf_Internal_Rela *rel, *relend;
5263
5264 /* Don't check relocations in excluded sections. */
5265 if ((s->flags & SEC_RELOC) == 0
5266 || s->reloc_count == 0
5267 || (s->flags & SEC_EXCLUDE) != 0
5268 || ((info->strip == strip_all
5269 || info->strip == strip_debugger)
5270 && (s->flags & SEC_DEBUGGING) != 0))
5271 continue;
5272
5273 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
5274 NULL,
5275 info->keep_memory);
5276 if (internal_relocs == NULL)
5277 goto error_free_vers;
5278
5279 rel = internal_relocs;
5280 relend = rel + s->reloc_count;
5281 for ( ; rel < relend; rel++)
5282 {
5283 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5284 struct elf_link_hash_entry *h;
5285
5286 /* Skip local symbols. */
5287 if (r_symndx < extsymoff)
5288 continue;
5289
5290 h = sym_hash[r_symndx - extsymoff];
5291 if (h != NULL)
5292 h->root.non_ir_ref_regular = 1;
5293 }
5294
5295 if (elf_section_data (s)->relocs != internal_relocs)
5296 free (internal_relocs);
5297 }
5298 }
5299
5300 free (extversym);
5301 extversym = NULL;
5302 free (isymbuf);
5303 isymbuf = NULL;
5304
5305 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5306 {
5307 unsigned int i;
5308
5309 /* Restore the symbol table. */
5310 old_ent = (char *) old_tab + tabsize;
5311 memset (elf_sym_hashes (abfd), 0,
5312 extsymcount * sizeof (struct elf_link_hash_entry *));
5313 htab->root.table.table = old_table;
5314 htab->root.table.size = old_size;
5315 htab->root.table.count = old_count;
5316 memcpy (htab->root.table.table, old_tab, tabsize);
5317 htab->root.undefs = old_undefs;
5318 htab->root.undefs_tail = old_undefs_tail;
5319 if (htab->dynstr != NULL)
5320 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5321 free (old_strtab);
5322 old_strtab = NULL;
5323 for (i = 0; i < htab->root.table.size; i++)
5324 {
5325 struct bfd_hash_entry *p;
5326 struct elf_link_hash_entry *h;
5327 bfd_size_type size;
5328 unsigned int alignment_power;
5329 unsigned int non_ir_ref_dynamic;
5330
5331 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5332 {
5333 h = (struct elf_link_hash_entry *) p;
5334 if (h->root.type == bfd_link_hash_warning)
5335 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5336
5337 /* Preserve the maximum alignment and size for common
5338 symbols even if this dynamic lib isn't on DT_NEEDED
5339 since it can still be loaded at run time by another
5340 dynamic lib. */
5341 if (h->root.type == bfd_link_hash_common)
5342 {
5343 size = h->root.u.c.size;
5344 alignment_power = h->root.u.c.p->alignment_power;
5345 }
5346 else
5347 {
5348 size = 0;
5349 alignment_power = 0;
5350 }
5351 /* Preserve non_ir_ref_dynamic so that this symbol
5352 will be exported when the dynamic lib becomes needed
5353 in the second pass. */
5354 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5355 memcpy (p, old_ent, htab->root.table.entsize);
5356 old_ent = (char *) old_ent + htab->root.table.entsize;
5357 h = (struct elf_link_hash_entry *) p;
5358 if (h->root.type == bfd_link_hash_warning)
5359 {
5360 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
5361 old_ent = (char *) old_ent + htab->root.table.entsize;
5362 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5363 }
5364 if (h->root.type == bfd_link_hash_common)
5365 {
5366 if (size > h->root.u.c.size)
5367 h->root.u.c.size = size;
5368 if (alignment_power > h->root.u.c.p->alignment_power)
5369 h->root.u.c.p->alignment_power = alignment_power;
5370 }
5371 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5372 }
5373 }
5374
5375 /* Make a special call to the linker "notice" function to
5376 tell it that symbols added for crefs may need to be removed. */
5377 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5378 goto error_free_vers;
5379
5380 free (old_tab);
5381 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5382 alloc_mark);
5383 free (nondeflt_vers);
5384 return TRUE;
5385 }
5386
5387 if (old_tab != NULL)
5388 {
5389 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5390 goto error_free_vers;
5391 free (old_tab);
5392 old_tab = NULL;
5393 }
5394
5395 /* Now that all the symbols from this input file are created, if
5396 not performing a relocatable link, handle .symver foo, foo@BAR
5397 such that any relocs against foo become foo@BAR. */
5398 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5399 {
5400 size_t cnt, symidx;
5401
5402 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5403 {
5404 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5405 char *shortname, *p;
5406 size_t amt;
5407
5408 p = strchr (h->root.root.string, ELF_VER_CHR);
5409 if (p == NULL
5410 || (h->root.type != bfd_link_hash_defined
5411 && h->root.type != bfd_link_hash_defweak))
5412 continue;
5413
5414 amt = p - h->root.root.string;
5415 shortname = (char *) bfd_malloc (amt + 1);
5416 if (!shortname)
5417 goto error_free_vers;
5418 memcpy (shortname, h->root.root.string, amt);
5419 shortname[amt] = '\0';
5420
5421 hi = (struct elf_link_hash_entry *)
5422 bfd_link_hash_lookup (&htab->root, shortname,
5423 FALSE, FALSE, FALSE);
5424 if (hi != NULL
5425 && hi->root.type == h->root.type
5426 && hi->root.u.def.value == h->root.u.def.value
5427 && hi->root.u.def.section == h->root.u.def.section)
5428 {
5429 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5430 hi->root.type = bfd_link_hash_indirect;
5431 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5432 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5433 sym_hash = elf_sym_hashes (abfd);
5434 if (sym_hash)
5435 for (symidx = 0; symidx < extsymcount; ++symidx)
5436 if (sym_hash[symidx] == hi)
5437 {
5438 sym_hash[symidx] = h;
5439 break;
5440 }
5441 }
5442 free (shortname);
5443 }
5444 free (nondeflt_vers);
5445 nondeflt_vers = NULL;
5446 }
5447
5448 /* Now set the alias field correctly for all the weak defined
5449 symbols we found. The only way to do this is to search all the
5450 symbols. Since we only need the information for non functions in
5451 dynamic objects, that's the only time we actually put anything on
5452 the list WEAKS. We need this information so that if a regular
5453 object refers to a symbol defined weakly in a dynamic object, the
5454 real symbol in the dynamic object is also put in the dynamic
5455 symbols; we also must arrange for both symbols to point to the
5456 same memory location. We could handle the general case of symbol
5457 aliasing, but a general symbol alias can only be generated in
5458 assembler code, handling it correctly would be very time
5459 consuming, and other ELF linkers don't handle general aliasing
5460 either. */
5461 if (weaks != NULL)
5462 {
5463 struct elf_link_hash_entry **hpp;
5464 struct elf_link_hash_entry **hppend;
5465 struct elf_link_hash_entry **sorted_sym_hash;
5466 struct elf_link_hash_entry *h;
5467 size_t sym_count, amt;
5468
5469 /* Since we have to search the whole symbol list for each weak
5470 defined symbol, search time for N weak defined symbols will be
5471 O(N^2). Binary search will cut it down to O(NlogN). */
5472 amt = extsymcount * sizeof (*sorted_sym_hash);
5473 sorted_sym_hash = bfd_malloc (amt);
5474 if (sorted_sym_hash == NULL)
5475 goto error_return;
5476 sym_hash = sorted_sym_hash;
5477 hpp = elf_sym_hashes (abfd);
5478 hppend = hpp + extsymcount;
5479 sym_count = 0;
5480 for (; hpp < hppend; hpp++)
5481 {
5482 h = *hpp;
5483 if (h != NULL
5484 && h->root.type == bfd_link_hash_defined
5485 && !bed->is_function_type (h->type))
5486 {
5487 *sym_hash = h;
5488 sym_hash++;
5489 sym_count++;
5490 }
5491 }
5492
5493 qsort (sorted_sym_hash, sym_count, sizeof (*sorted_sym_hash),
5494 elf_sort_symbol);
5495
5496 while (weaks != NULL)
5497 {
5498 struct elf_link_hash_entry *hlook;
5499 asection *slook;
5500 bfd_vma vlook;
5501 size_t i, j, idx = 0;
5502
5503 hlook = weaks;
5504 weaks = hlook->u.alias;
5505 hlook->u.alias = NULL;
5506
5507 if (hlook->root.type != bfd_link_hash_defined
5508 && hlook->root.type != bfd_link_hash_defweak)
5509 continue;
5510
5511 slook = hlook->root.u.def.section;
5512 vlook = hlook->root.u.def.value;
5513
5514 i = 0;
5515 j = sym_count;
5516 while (i != j)
5517 {
5518 bfd_signed_vma vdiff;
5519 idx = (i + j) / 2;
5520 h = sorted_sym_hash[idx];
5521 vdiff = vlook - h->root.u.def.value;
5522 if (vdiff < 0)
5523 j = idx;
5524 else if (vdiff > 0)
5525 i = idx + 1;
5526 else
5527 {
5528 int sdiff = slook->id - h->root.u.def.section->id;
5529 if (sdiff < 0)
5530 j = idx;
5531 else if (sdiff > 0)
5532 i = idx + 1;
5533 else
5534 break;
5535 }
5536 }
5537
5538 /* We didn't find a value/section match. */
5539 if (i == j)
5540 continue;
5541
5542 /* With multiple aliases, or when the weak symbol is already
5543 strongly defined, we have multiple matching symbols and
5544 the binary search above may land on any of them. Step
5545 one past the matching symbol(s). */
5546 while (++idx != j)
5547 {
5548 h = sorted_sym_hash[idx];
5549 if (h->root.u.def.section != slook
5550 || h->root.u.def.value != vlook)
5551 break;
5552 }
5553
5554 /* Now look back over the aliases. Since we sorted by size
5555 as well as value and section, we'll choose the one with
5556 the largest size. */
5557 while (idx-- != i)
5558 {
5559 h = sorted_sym_hash[idx];
5560
5561 /* Stop if value or section doesn't match. */
5562 if (h->root.u.def.section != slook
5563 || h->root.u.def.value != vlook)
5564 break;
5565 else if (h != hlook)
5566 {
5567 struct elf_link_hash_entry *t;
5568
5569 hlook->u.alias = h;
5570 hlook->is_weakalias = 1;
5571 t = h;
5572 if (t->u.alias != NULL)
5573 while (t->u.alias != h)
5574 t = t->u.alias;
5575 t->u.alias = hlook;
5576
5577 /* If the weak definition is in the list of dynamic
5578 symbols, make sure the real definition is put
5579 there as well. */
5580 if (hlook->dynindx != -1 && h->dynindx == -1)
5581 {
5582 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5583 {
5584 err_free_sym_hash:
5585 free (sorted_sym_hash);
5586 goto error_return;
5587 }
5588 }
5589
5590 /* If the real definition is in the list of dynamic
5591 symbols, make sure the weak definition is put
5592 there as well. If we don't do this, then the
5593 dynamic loader might not merge the entries for the
5594 real definition and the weak definition. */
5595 if (h->dynindx != -1 && hlook->dynindx == -1)
5596 {
5597 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5598 goto err_free_sym_hash;
5599 }
5600 break;
5601 }
5602 }
5603 }
5604
5605 free (sorted_sym_hash);
5606 }
5607
5608 if (bed->check_directives
5609 && !(*bed->check_directives) (abfd, info))
5610 return FALSE;
5611
5612 /* If this is a non-traditional link, try to optimize the handling
5613 of the .stab/.stabstr sections. */
5614 if (! dynamic
5615 && ! info->traditional_format
5616 && is_elf_hash_table (htab)
5617 && (info->strip != strip_all && info->strip != strip_debugger))
5618 {
5619 asection *stabstr;
5620
5621 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5622 if (stabstr != NULL)
5623 {
5624 bfd_size_type string_offset = 0;
5625 asection *stab;
5626
5627 for (stab = abfd->sections; stab; stab = stab->next)
5628 if (CONST_STRNEQ (stab->name, ".stab")
5629 && (!stab->name[5] ||
5630 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5631 && (stab->flags & SEC_MERGE) == 0
5632 && !bfd_is_abs_section (stab->output_section))
5633 {
5634 struct bfd_elf_section_data *secdata;
5635
5636 secdata = elf_section_data (stab);
5637 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5638 stabstr, &secdata->sec_info,
5639 &string_offset))
5640 goto error_return;
5641 if (secdata->sec_info)
5642 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5643 }
5644 }
5645 }
5646
5647 if (dynamic && add_needed)
5648 {
5649 /* Add this bfd to the loaded list. */
5650 struct elf_link_loaded_list *n;
5651
5652 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5653 if (n == NULL)
5654 goto error_return;
5655 n->abfd = abfd;
5656 n->next = htab->dyn_loaded;
5657 htab->dyn_loaded = n;
5658 }
5659 if (dynamic && !add_needed
5660 && (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) != 0)
5661 elf_dyn_lib_class (abfd) |= DYN_NO_NEEDED;
5662
5663 return TRUE;
5664
5665 error_free_vers:
5666 free (old_tab);
5667 free (old_strtab);
5668 free (nondeflt_vers);
5669 free (extversym);
5670 error_free_sym:
5671 free (isymbuf);
5672 error_return:
5673 return FALSE;
5674 }
5675
5676 /* Return the linker hash table entry of a symbol that might be
5677 satisfied by an archive symbol. Return -1 on error. */
5678
5679 struct elf_link_hash_entry *
5680 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5681 struct bfd_link_info *info,
5682 const char *name)
5683 {
5684 struct elf_link_hash_entry *h;
5685 char *p, *copy;
5686 size_t len, first;
5687
5688 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5689 if (h != NULL)
5690 return h;
5691
5692 /* If this is a default version (the name contains @@), look up the
5693 symbol again with only one `@' as well as without the version.
5694 The effect is that references to the symbol with and without the
5695 version will be matched by the default symbol in the archive. */
5696
5697 p = strchr (name, ELF_VER_CHR);
5698 if (p == NULL || p[1] != ELF_VER_CHR)
5699 return h;
5700
5701 /* First check with only one `@'. */
5702 len = strlen (name);
5703 copy = (char *) bfd_alloc (abfd, len);
5704 if (copy == NULL)
5705 return (struct elf_link_hash_entry *) -1;
5706
5707 first = p - name + 1;
5708 memcpy (copy, name, first);
5709 memcpy (copy + first, name + first + 1, len - first);
5710
5711 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5712 if (h == NULL)
5713 {
5714 /* We also need to check references to the symbol without the
5715 version. */
5716 copy[first - 1] = '\0';
5717 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5718 FALSE, FALSE, TRUE);
5719 }
5720
5721 bfd_release (abfd, copy);
5722 return h;
5723 }
5724
5725 /* Add symbols from an ELF archive file to the linker hash table. We
5726 don't use _bfd_generic_link_add_archive_symbols because we need to
5727 handle versioned symbols.
5728
5729 Fortunately, ELF archive handling is simpler than that done by
5730 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5731 oddities. In ELF, if we find a symbol in the archive map, and the
5732 symbol is currently undefined, we know that we must pull in that
5733 object file.
5734
5735 Unfortunately, we do have to make multiple passes over the symbol
5736 table until nothing further is resolved. */
5737
5738 static bfd_boolean
5739 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5740 {
5741 symindex c;
5742 unsigned char *included = NULL;
5743 carsym *symdefs;
5744 bfd_boolean loop;
5745 size_t amt;
5746 const struct elf_backend_data *bed;
5747 struct elf_link_hash_entry * (*archive_symbol_lookup)
5748 (bfd *, struct bfd_link_info *, const char *);
5749
5750 if (! bfd_has_map (abfd))
5751 {
5752 /* An empty archive is a special case. */
5753 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5754 return TRUE;
5755 bfd_set_error (bfd_error_no_armap);
5756 return FALSE;
5757 }
5758
5759 /* Keep track of all symbols we know to be already defined, and all
5760 files we know to be already included. This is to speed up the
5761 second and subsequent passes. */
5762 c = bfd_ardata (abfd)->symdef_count;
5763 if (c == 0)
5764 return TRUE;
5765 amt = c * sizeof (*included);
5766 included = (unsigned char *) bfd_zmalloc (amt);
5767 if (included == NULL)
5768 return FALSE;
5769
5770 symdefs = bfd_ardata (abfd)->symdefs;
5771 bed = get_elf_backend_data (abfd);
5772 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5773
5774 do
5775 {
5776 file_ptr last;
5777 symindex i;
5778 carsym *symdef;
5779 carsym *symdefend;
5780
5781 loop = FALSE;
5782 last = -1;
5783
5784 symdef = symdefs;
5785 symdefend = symdef + c;
5786 for (i = 0; symdef < symdefend; symdef++, i++)
5787 {
5788 struct elf_link_hash_entry *h;
5789 bfd *element;
5790 struct bfd_link_hash_entry *undefs_tail;
5791 symindex mark;
5792
5793 if (included[i])
5794 continue;
5795 if (symdef->file_offset == last)
5796 {
5797 included[i] = TRUE;
5798 continue;
5799 }
5800
5801 h = archive_symbol_lookup (abfd, info, symdef->name);
5802 if (h == (struct elf_link_hash_entry *) -1)
5803 goto error_return;
5804
5805 if (h == NULL)
5806 continue;
5807
5808 if (h->root.type == bfd_link_hash_common)
5809 {
5810 /* We currently have a common symbol. The archive map contains
5811 a reference to this symbol, so we may want to include it. We
5812 only want to include it however, if this archive element
5813 contains a definition of the symbol, not just another common
5814 declaration of it.
5815
5816 Unfortunately some archivers (including GNU ar) will put
5817 declarations of common symbols into their archive maps, as
5818 well as real definitions, so we cannot just go by the archive
5819 map alone. Instead we must read in the element's symbol
5820 table and check that to see what kind of symbol definition
5821 this is. */
5822 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5823 continue;
5824 }
5825 else if (h->root.type != bfd_link_hash_undefined)
5826 {
5827 if (h->root.type != bfd_link_hash_undefweak)
5828 /* Symbol must be defined. Don't check it again. */
5829 included[i] = TRUE;
5830 continue;
5831 }
5832
5833 /* We need to include this archive member. */
5834 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5835 if (element == NULL)
5836 goto error_return;
5837
5838 if (! bfd_check_format (element, bfd_object))
5839 goto error_return;
5840
5841 undefs_tail = info->hash->undefs_tail;
5842
5843 if (!(*info->callbacks
5844 ->add_archive_element) (info, element, symdef->name, &element))
5845 continue;
5846 if (!bfd_link_add_symbols (element, info))
5847 goto error_return;
5848
5849 /* If there are any new undefined symbols, we need to make
5850 another pass through the archive in order to see whether
5851 they can be defined. FIXME: This isn't perfect, because
5852 common symbols wind up on undefs_tail and because an
5853 undefined symbol which is defined later on in this pass
5854 does not require another pass. This isn't a bug, but it
5855 does make the code less efficient than it could be. */
5856 if (undefs_tail != info->hash->undefs_tail)
5857 loop = TRUE;
5858
5859 /* Look backward to mark all symbols from this object file
5860 which we have already seen in this pass. */
5861 mark = i;
5862 do
5863 {
5864 included[mark] = TRUE;
5865 if (mark == 0)
5866 break;
5867 --mark;
5868 }
5869 while (symdefs[mark].file_offset == symdef->file_offset);
5870
5871 /* We mark subsequent symbols from this object file as we go
5872 on through the loop. */
5873 last = symdef->file_offset;
5874 }
5875 }
5876 while (loop);
5877
5878 free (included);
5879 return TRUE;
5880
5881 error_return:
5882 free (included);
5883 return FALSE;
5884 }
5885
5886 /* Given an ELF BFD, add symbols to the global hash table as
5887 appropriate. */
5888
5889 bfd_boolean
5890 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5891 {
5892 switch (bfd_get_format (abfd))
5893 {
5894 case bfd_object:
5895 return elf_link_add_object_symbols (abfd, info);
5896 case bfd_archive:
5897 return elf_link_add_archive_symbols (abfd, info);
5898 default:
5899 bfd_set_error (bfd_error_wrong_format);
5900 return FALSE;
5901 }
5902 }
5903 \f
5904 struct hash_codes_info
5905 {
5906 unsigned long *hashcodes;
5907 bfd_boolean error;
5908 };
5909
5910 /* This function will be called though elf_link_hash_traverse to store
5911 all hash value of the exported symbols in an array. */
5912
5913 static bfd_boolean
5914 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5915 {
5916 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5917 const char *name;
5918 unsigned long ha;
5919 char *alc = NULL;
5920
5921 /* Ignore indirect symbols. These are added by the versioning code. */
5922 if (h->dynindx == -1)
5923 return TRUE;
5924
5925 name = h->root.root.string;
5926 if (h->versioned >= versioned)
5927 {
5928 char *p = strchr (name, ELF_VER_CHR);
5929 if (p != NULL)
5930 {
5931 alc = (char *) bfd_malloc (p - name + 1);
5932 if (alc == NULL)
5933 {
5934 inf->error = TRUE;
5935 return FALSE;
5936 }
5937 memcpy (alc, name, p - name);
5938 alc[p - name] = '\0';
5939 name = alc;
5940 }
5941 }
5942
5943 /* Compute the hash value. */
5944 ha = bfd_elf_hash (name);
5945
5946 /* Store the found hash value in the array given as the argument. */
5947 *(inf->hashcodes)++ = ha;
5948
5949 /* And store it in the struct so that we can put it in the hash table
5950 later. */
5951 h->u.elf_hash_value = ha;
5952
5953 free (alc);
5954 return TRUE;
5955 }
5956
5957 struct collect_gnu_hash_codes
5958 {
5959 bfd *output_bfd;
5960 const struct elf_backend_data *bed;
5961 unsigned long int nsyms;
5962 unsigned long int maskbits;
5963 unsigned long int *hashcodes;
5964 unsigned long int *hashval;
5965 unsigned long int *indx;
5966 unsigned long int *counts;
5967 bfd_vma *bitmask;
5968 bfd_byte *contents;
5969 bfd_size_type xlat;
5970 long int min_dynindx;
5971 unsigned long int bucketcount;
5972 unsigned long int symindx;
5973 long int local_indx;
5974 long int shift1, shift2;
5975 unsigned long int mask;
5976 bfd_boolean error;
5977 };
5978
5979 /* This function will be called though elf_link_hash_traverse to store
5980 all hash value of the exported symbols in an array. */
5981
5982 static bfd_boolean
5983 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5984 {
5985 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5986 const char *name;
5987 unsigned long ha;
5988 char *alc = NULL;
5989
5990 /* Ignore indirect symbols. These are added by the versioning code. */
5991 if (h->dynindx == -1)
5992 return TRUE;
5993
5994 /* Ignore also local symbols and undefined symbols. */
5995 if (! (*s->bed->elf_hash_symbol) (h))
5996 return TRUE;
5997
5998 name = h->root.root.string;
5999 if (h->versioned >= versioned)
6000 {
6001 char *p = strchr (name, ELF_VER_CHR);
6002 if (p != NULL)
6003 {
6004 alc = (char *) bfd_malloc (p - name + 1);
6005 if (alc == NULL)
6006 {
6007 s->error = TRUE;
6008 return FALSE;
6009 }
6010 memcpy (alc, name, p - name);
6011 alc[p - name] = '\0';
6012 name = alc;
6013 }
6014 }
6015
6016 /* Compute the hash value. */
6017 ha = bfd_elf_gnu_hash (name);
6018
6019 /* Store the found hash value in the array for compute_bucket_count,
6020 and also for .dynsym reordering purposes. */
6021 s->hashcodes[s->nsyms] = ha;
6022 s->hashval[h->dynindx] = ha;
6023 ++s->nsyms;
6024 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
6025 s->min_dynindx = h->dynindx;
6026
6027 free (alc);
6028 return TRUE;
6029 }
6030
6031 /* This function will be called though elf_link_hash_traverse to do
6032 final dynamic symbol renumbering in case of .gnu.hash.
6033 If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index
6034 to the translation table. */
6035
6036 static bfd_boolean
6037 elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data)
6038 {
6039 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
6040 unsigned long int bucket;
6041 unsigned long int val;
6042
6043 /* Ignore indirect symbols. */
6044 if (h->dynindx == -1)
6045 return TRUE;
6046
6047 /* Ignore also local symbols and undefined symbols. */
6048 if (! (*s->bed->elf_hash_symbol) (h))
6049 {
6050 if (h->dynindx >= s->min_dynindx)
6051 {
6052 if (s->bed->record_xhash_symbol != NULL)
6053 {
6054 (*s->bed->record_xhash_symbol) (h, 0);
6055 s->local_indx++;
6056 }
6057 else
6058 h->dynindx = s->local_indx++;
6059 }
6060 return TRUE;
6061 }
6062
6063 bucket = s->hashval[h->dynindx] % s->bucketcount;
6064 val = (s->hashval[h->dynindx] >> s->shift1)
6065 & ((s->maskbits >> s->shift1) - 1);
6066 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
6067 s->bitmask[val]
6068 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
6069 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
6070 if (s->counts[bucket] == 1)
6071 /* Last element terminates the chain. */
6072 val |= 1;
6073 bfd_put_32 (s->output_bfd, val,
6074 s->contents + (s->indx[bucket] - s->symindx) * 4);
6075 --s->counts[bucket];
6076 if (s->bed->record_xhash_symbol != NULL)
6077 {
6078 bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4;
6079
6080 (*s->bed->record_xhash_symbol) (h, xlat_loc);
6081 }
6082 else
6083 h->dynindx = s->indx[bucket]++;
6084 return TRUE;
6085 }
6086
6087 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
6088
6089 bfd_boolean
6090 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
6091 {
6092 return !(h->forced_local
6093 || h->root.type == bfd_link_hash_undefined
6094 || h->root.type == bfd_link_hash_undefweak
6095 || ((h->root.type == bfd_link_hash_defined
6096 || h->root.type == bfd_link_hash_defweak)
6097 && h->root.u.def.section->output_section == NULL));
6098 }
6099
6100 /* Array used to determine the number of hash table buckets to use
6101 based on the number of symbols there are. If there are fewer than
6102 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
6103 fewer than 37 we use 17 buckets, and so forth. We never use more
6104 than 32771 buckets. */
6105
6106 static const size_t elf_buckets[] =
6107 {
6108 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
6109 16411, 32771, 0
6110 };
6111
6112 /* Compute bucket count for hashing table. We do not use a static set
6113 of possible tables sizes anymore. Instead we determine for all
6114 possible reasonable sizes of the table the outcome (i.e., the
6115 number of collisions etc) and choose the best solution. The
6116 weighting functions are not too simple to allow the table to grow
6117 without bounds. Instead one of the weighting factors is the size.
6118 Therefore the result is always a good payoff between few collisions
6119 (= short chain lengths) and table size. */
6120 static size_t
6121 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6122 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
6123 unsigned long int nsyms,
6124 int gnu_hash)
6125 {
6126 size_t best_size = 0;
6127 unsigned long int i;
6128
6129 /* We have a problem here. The following code to optimize the table
6130 size requires an integer type with more the 32 bits. If
6131 BFD_HOST_U_64_BIT is set we know about such a type. */
6132 #ifdef BFD_HOST_U_64_BIT
6133 if (info->optimize)
6134 {
6135 size_t minsize;
6136 size_t maxsize;
6137 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
6138 bfd *dynobj = elf_hash_table (info)->dynobj;
6139 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
6140 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
6141 unsigned long int *counts;
6142 bfd_size_type amt;
6143 unsigned int no_improvement_count = 0;
6144
6145 /* Possible optimization parameters: if we have NSYMS symbols we say
6146 that the hashing table must at least have NSYMS/4 and at most
6147 2*NSYMS buckets. */
6148 minsize = nsyms / 4;
6149 if (minsize == 0)
6150 minsize = 1;
6151 best_size = maxsize = nsyms * 2;
6152 if (gnu_hash)
6153 {
6154 if (minsize < 2)
6155 minsize = 2;
6156 if ((best_size & 31) == 0)
6157 ++best_size;
6158 }
6159
6160 /* Create array where we count the collisions in. We must use bfd_malloc
6161 since the size could be large. */
6162 amt = maxsize;
6163 amt *= sizeof (unsigned long int);
6164 counts = (unsigned long int *) bfd_malloc (amt);
6165 if (counts == NULL)
6166 return 0;
6167
6168 /* Compute the "optimal" size for the hash table. The criteria is a
6169 minimal chain length. The minor criteria is (of course) the size
6170 of the table. */
6171 for (i = minsize; i < maxsize; ++i)
6172 {
6173 /* Walk through the array of hashcodes and count the collisions. */
6174 BFD_HOST_U_64_BIT max;
6175 unsigned long int j;
6176 unsigned long int fact;
6177
6178 if (gnu_hash && (i & 31) == 0)
6179 continue;
6180
6181 memset (counts, '\0', i * sizeof (unsigned long int));
6182
6183 /* Determine how often each hash bucket is used. */
6184 for (j = 0; j < nsyms; ++j)
6185 ++counts[hashcodes[j] % i];
6186
6187 /* For the weight function we need some information about the
6188 pagesize on the target. This is information need not be 100%
6189 accurate. Since this information is not available (so far) we
6190 define it here to a reasonable default value. If it is crucial
6191 to have a better value some day simply define this value. */
6192 # ifndef BFD_TARGET_PAGESIZE
6193 # define BFD_TARGET_PAGESIZE (4096)
6194 # endif
6195
6196 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6197 and the chains. */
6198 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6199
6200 # if 1
6201 /* Variant 1: optimize for short chains. We add the squares
6202 of all the chain lengths (which favors many small chain
6203 over a few long chains). */
6204 for (j = 0; j < i; ++j)
6205 max += counts[j] * counts[j];
6206
6207 /* This adds penalties for the overall size of the table. */
6208 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6209 max *= fact * fact;
6210 # else
6211 /* Variant 2: Optimize a lot more for small table. Here we
6212 also add squares of the size but we also add penalties for
6213 empty slots (the +1 term). */
6214 for (j = 0; j < i; ++j)
6215 max += (1 + counts[j]) * (1 + counts[j]);
6216
6217 /* The overall size of the table is considered, but not as
6218 strong as in variant 1, where it is squared. */
6219 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6220 max *= fact;
6221 # endif
6222
6223 /* Compare with current best results. */
6224 if (max < best_chlen)
6225 {
6226 best_chlen = max;
6227 best_size = i;
6228 no_improvement_count = 0;
6229 }
6230 /* PR 11843: Avoid futile long searches for the best bucket size
6231 when there are a large number of symbols. */
6232 else if (++no_improvement_count == 100)
6233 break;
6234 }
6235
6236 free (counts);
6237 }
6238 else
6239 #endif /* defined (BFD_HOST_U_64_BIT) */
6240 {
6241 /* This is the fallback solution if no 64bit type is available or if we
6242 are not supposed to spend much time on optimizations. We select the
6243 bucket count using a fixed set of numbers. */
6244 for (i = 0; elf_buckets[i] != 0; i++)
6245 {
6246 best_size = elf_buckets[i];
6247 if (nsyms < elf_buckets[i + 1])
6248 break;
6249 }
6250 if (gnu_hash && best_size < 2)
6251 best_size = 2;
6252 }
6253
6254 return best_size;
6255 }
6256
6257 /* Size any SHT_GROUP section for ld -r. */
6258
6259 bfd_boolean
6260 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6261 {
6262 bfd *ibfd;
6263 asection *s;
6264
6265 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6266 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6267 && (s = ibfd->sections) != NULL
6268 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6269 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6270 return FALSE;
6271 return TRUE;
6272 }
6273
6274 /* Set a default stack segment size. The value in INFO wins. If it
6275 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6276 undefined it is initialized. */
6277
6278 bfd_boolean
6279 bfd_elf_stack_segment_size (bfd *output_bfd,
6280 struct bfd_link_info *info,
6281 const char *legacy_symbol,
6282 bfd_vma default_size)
6283 {
6284 struct elf_link_hash_entry *h = NULL;
6285
6286 /* Look for legacy symbol. */
6287 if (legacy_symbol)
6288 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6289 FALSE, FALSE, FALSE);
6290 if (h && (h->root.type == bfd_link_hash_defined
6291 || h->root.type == bfd_link_hash_defweak)
6292 && h->def_regular
6293 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6294 {
6295 /* The symbol has no type if specified on the command line. */
6296 h->type = STT_OBJECT;
6297 if (info->stacksize)
6298 /* xgettext:c-format */
6299 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6300 output_bfd, legacy_symbol);
6301 else if (h->root.u.def.section != bfd_abs_section_ptr)
6302 /* xgettext:c-format */
6303 _bfd_error_handler (_("%pB: %s not absolute"),
6304 output_bfd, legacy_symbol);
6305 else
6306 info->stacksize = h->root.u.def.value;
6307 }
6308
6309 if (!info->stacksize)
6310 /* If the user didn't set a size, or explicitly inhibit the
6311 size, set it now. */
6312 info->stacksize = default_size;
6313
6314 /* Provide the legacy symbol, if it is referenced. */
6315 if (h && (h->root.type == bfd_link_hash_undefined
6316 || h->root.type == bfd_link_hash_undefweak))
6317 {
6318 struct bfd_link_hash_entry *bh = NULL;
6319
6320 if (!(_bfd_generic_link_add_one_symbol
6321 (info, output_bfd, legacy_symbol,
6322 BSF_GLOBAL, bfd_abs_section_ptr,
6323 info->stacksize >= 0 ? info->stacksize : 0,
6324 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6325 return FALSE;
6326
6327 h = (struct elf_link_hash_entry *) bh;
6328 h->def_regular = 1;
6329 h->type = STT_OBJECT;
6330 }
6331
6332 return TRUE;
6333 }
6334
6335 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6336
6337 struct elf_gc_sweep_symbol_info
6338 {
6339 struct bfd_link_info *info;
6340 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6341 bfd_boolean);
6342 };
6343
6344 static bfd_boolean
6345 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6346 {
6347 if (!h->mark
6348 && (((h->root.type == bfd_link_hash_defined
6349 || h->root.type == bfd_link_hash_defweak)
6350 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6351 && h->root.u.def.section->gc_mark))
6352 || h->root.type == bfd_link_hash_undefined
6353 || h->root.type == bfd_link_hash_undefweak))
6354 {
6355 struct elf_gc_sweep_symbol_info *inf;
6356
6357 inf = (struct elf_gc_sweep_symbol_info *) data;
6358 (*inf->hide_symbol) (inf->info, h, TRUE);
6359 h->def_regular = 0;
6360 h->ref_regular = 0;
6361 h->ref_regular_nonweak = 0;
6362 }
6363
6364 return TRUE;
6365 }
6366
6367 /* Set up the sizes and contents of the ELF dynamic sections. This is
6368 called by the ELF linker emulation before_allocation routine. We
6369 must set the sizes of the sections before the linker sets the
6370 addresses of the various sections. */
6371
6372 bfd_boolean
6373 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6374 const char *soname,
6375 const char *rpath,
6376 const char *filter_shlib,
6377 const char *audit,
6378 const char *depaudit,
6379 const char * const *auxiliary_filters,
6380 struct bfd_link_info *info,
6381 asection **sinterpptr)
6382 {
6383 bfd *dynobj;
6384 const struct elf_backend_data *bed;
6385
6386 *sinterpptr = NULL;
6387
6388 if (!is_elf_hash_table (info->hash))
6389 return TRUE;
6390
6391 dynobj = elf_hash_table (info)->dynobj;
6392
6393 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6394 {
6395 struct bfd_elf_version_tree *verdefs;
6396 struct elf_info_failed asvinfo;
6397 struct bfd_elf_version_tree *t;
6398 struct bfd_elf_version_expr *d;
6399 asection *s;
6400 size_t soname_indx;
6401
6402 /* If we are supposed to export all symbols into the dynamic symbol
6403 table (this is not the normal case), then do so. */
6404 if (info->export_dynamic
6405 || (bfd_link_executable (info) && info->dynamic))
6406 {
6407 struct elf_info_failed eif;
6408
6409 eif.info = info;
6410 eif.failed = FALSE;
6411 elf_link_hash_traverse (elf_hash_table (info),
6412 _bfd_elf_export_symbol,
6413 &eif);
6414 if (eif.failed)
6415 return FALSE;
6416 }
6417
6418 if (soname != NULL)
6419 {
6420 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6421 soname, TRUE);
6422 if (soname_indx == (size_t) -1
6423 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6424 return FALSE;
6425 }
6426 else
6427 soname_indx = (size_t) -1;
6428
6429 /* Make all global versions with definition. */
6430 for (t = info->version_info; t != NULL; t = t->next)
6431 for (d = t->globals.list; d != NULL; d = d->next)
6432 if (!d->symver && d->literal)
6433 {
6434 const char *verstr, *name;
6435 size_t namelen, verlen, newlen;
6436 char *newname, *p, leading_char;
6437 struct elf_link_hash_entry *newh;
6438
6439 leading_char = bfd_get_symbol_leading_char (output_bfd);
6440 name = d->pattern;
6441 namelen = strlen (name) + (leading_char != '\0');
6442 verstr = t->name;
6443 verlen = strlen (verstr);
6444 newlen = namelen + verlen + 3;
6445
6446 newname = (char *) bfd_malloc (newlen);
6447 if (newname == NULL)
6448 return FALSE;
6449 newname[0] = leading_char;
6450 memcpy (newname + (leading_char != '\0'), name, namelen);
6451
6452 /* Check the hidden versioned definition. */
6453 p = newname + namelen;
6454 *p++ = ELF_VER_CHR;
6455 memcpy (p, verstr, verlen + 1);
6456 newh = elf_link_hash_lookup (elf_hash_table (info),
6457 newname, FALSE, FALSE,
6458 FALSE);
6459 if (newh == NULL
6460 || (newh->root.type != bfd_link_hash_defined
6461 && newh->root.type != bfd_link_hash_defweak))
6462 {
6463 /* Check the default versioned definition. */
6464 *p++ = ELF_VER_CHR;
6465 memcpy (p, verstr, verlen + 1);
6466 newh = elf_link_hash_lookup (elf_hash_table (info),
6467 newname, FALSE, FALSE,
6468 FALSE);
6469 }
6470 free (newname);
6471
6472 /* Mark this version if there is a definition and it is
6473 not defined in a shared object. */
6474 if (newh != NULL
6475 && !newh->def_dynamic
6476 && (newh->root.type == bfd_link_hash_defined
6477 || newh->root.type == bfd_link_hash_defweak))
6478 d->symver = 1;
6479 }
6480
6481 /* Attach all the symbols to their version information. */
6482 asvinfo.info = info;
6483 asvinfo.failed = FALSE;
6484
6485 elf_link_hash_traverse (elf_hash_table (info),
6486 _bfd_elf_link_assign_sym_version,
6487 &asvinfo);
6488 if (asvinfo.failed)
6489 return FALSE;
6490
6491 if (!info->allow_undefined_version)
6492 {
6493 /* Check if all global versions have a definition. */
6494 bfd_boolean all_defined = TRUE;
6495 for (t = info->version_info; t != NULL; t = t->next)
6496 for (d = t->globals.list; d != NULL; d = d->next)
6497 if (d->literal && !d->symver && !d->script)
6498 {
6499 _bfd_error_handler
6500 (_("%s: undefined version: %s"),
6501 d->pattern, t->name);
6502 all_defined = FALSE;
6503 }
6504
6505 if (!all_defined)
6506 {
6507 bfd_set_error (bfd_error_bad_value);
6508 return FALSE;
6509 }
6510 }
6511
6512 /* Set up the version definition section. */
6513 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6514 BFD_ASSERT (s != NULL);
6515
6516 /* We may have created additional version definitions if we are
6517 just linking a regular application. */
6518 verdefs = info->version_info;
6519
6520 /* Skip anonymous version tag. */
6521 if (verdefs != NULL && verdefs->vernum == 0)
6522 verdefs = verdefs->next;
6523
6524 if (verdefs == NULL && !info->create_default_symver)
6525 s->flags |= SEC_EXCLUDE;
6526 else
6527 {
6528 unsigned int cdefs;
6529 bfd_size_type size;
6530 bfd_byte *p;
6531 Elf_Internal_Verdef def;
6532 Elf_Internal_Verdaux defaux;
6533 struct bfd_link_hash_entry *bh;
6534 struct elf_link_hash_entry *h;
6535 const char *name;
6536
6537 cdefs = 0;
6538 size = 0;
6539
6540 /* Make space for the base version. */
6541 size += sizeof (Elf_External_Verdef);
6542 size += sizeof (Elf_External_Verdaux);
6543 ++cdefs;
6544
6545 /* Make space for the default version. */
6546 if (info->create_default_symver)
6547 {
6548 size += sizeof (Elf_External_Verdef);
6549 ++cdefs;
6550 }
6551
6552 for (t = verdefs; t != NULL; t = t->next)
6553 {
6554 struct bfd_elf_version_deps *n;
6555
6556 /* Don't emit base version twice. */
6557 if (t->vernum == 0)
6558 continue;
6559
6560 size += sizeof (Elf_External_Verdef);
6561 size += sizeof (Elf_External_Verdaux);
6562 ++cdefs;
6563
6564 for (n = t->deps; n != NULL; n = n->next)
6565 size += sizeof (Elf_External_Verdaux);
6566 }
6567
6568 s->size = size;
6569 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6570 if (s->contents == NULL && s->size != 0)
6571 return FALSE;
6572
6573 /* Fill in the version definition section. */
6574
6575 p = s->contents;
6576
6577 def.vd_version = VER_DEF_CURRENT;
6578 def.vd_flags = VER_FLG_BASE;
6579 def.vd_ndx = 1;
6580 def.vd_cnt = 1;
6581 if (info->create_default_symver)
6582 {
6583 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6584 def.vd_next = sizeof (Elf_External_Verdef);
6585 }
6586 else
6587 {
6588 def.vd_aux = sizeof (Elf_External_Verdef);
6589 def.vd_next = (sizeof (Elf_External_Verdef)
6590 + sizeof (Elf_External_Verdaux));
6591 }
6592
6593 if (soname_indx != (size_t) -1)
6594 {
6595 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6596 soname_indx);
6597 def.vd_hash = bfd_elf_hash (soname);
6598 defaux.vda_name = soname_indx;
6599 name = soname;
6600 }
6601 else
6602 {
6603 size_t indx;
6604
6605 name = lbasename (bfd_get_filename (output_bfd));
6606 def.vd_hash = bfd_elf_hash (name);
6607 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6608 name, FALSE);
6609 if (indx == (size_t) -1)
6610 return FALSE;
6611 defaux.vda_name = indx;
6612 }
6613 defaux.vda_next = 0;
6614
6615 _bfd_elf_swap_verdef_out (output_bfd, &def,
6616 (Elf_External_Verdef *) p);
6617 p += sizeof (Elf_External_Verdef);
6618 if (info->create_default_symver)
6619 {
6620 /* Add a symbol representing this version. */
6621 bh = NULL;
6622 if (! (_bfd_generic_link_add_one_symbol
6623 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6624 0, NULL, FALSE,
6625 get_elf_backend_data (dynobj)->collect, &bh)))
6626 return FALSE;
6627 h = (struct elf_link_hash_entry *) bh;
6628 h->non_elf = 0;
6629 h->def_regular = 1;
6630 h->type = STT_OBJECT;
6631 h->verinfo.vertree = NULL;
6632
6633 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6634 return FALSE;
6635
6636 /* Create a duplicate of the base version with the same
6637 aux block, but different flags. */
6638 def.vd_flags = 0;
6639 def.vd_ndx = 2;
6640 def.vd_aux = sizeof (Elf_External_Verdef);
6641 if (verdefs)
6642 def.vd_next = (sizeof (Elf_External_Verdef)
6643 + sizeof (Elf_External_Verdaux));
6644 else
6645 def.vd_next = 0;
6646 _bfd_elf_swap_verdef_out (output_bfd, &def,
6647 (Elf_External_Verdef *) p);
6648 p += sizeof (Elf_External_Verdef);
6649 }
6650 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6651 (Elf_External_Verdaux *) p);
6652 p += sizeof (Elf_External_Verdaux);
6653
6654 for (t = verdefs; t != NULL; t = t->next)
6655 {
6656 unsigned int cdeps;
6657 struct bfd_elf_version_deps *n;
6658
6659 /* Don't emit the base version twice. */
6660 if (t->vernum == 0)
6661 continue;
6662
6663 cdeps = 0;
6664 for (n = t->deps; n != NULL; n = n->next)
6665 ++cdeps;
6666
6667 /* Add a symbol representing this version. */
6668 bh = NULL;
6669 if (! (_bfd_generic_link_add_one_symbol
6670 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6671 0, NULL, FALSE,
6672 get_elf_backend_data (dynobj)->collect, &bh)))
6673 return FALSE;
6674 h = (struct elf_link_hash_entry *) bh;
6675 h->non_elf = 0;
6676 h->def_regular = 1;
6677 h->type = STT_OBJECT;
6678 h->verinfo.vertree = t;
6679
6680 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6681 return FALSE;
6682
6683 def.vd_version = VER_DEF_CURRENT;
6684 def.vd_flags = 0;
6685 if (t->globals.list == NULL
6686 && t->locals.list == NULL
6687 && ! t->used)
6688 def.vd_flags |= VER_FLG_WEAK;
6689 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6690 def.vd_cnt = cdeps + 1;
6691 def.vd_hash = bfd_elf_hash (t->name);
6692 def.vd_aux = sizeof (Elf_External_Verdef);
6693 def.vd_next = 0;
6694
6695 /* If a basever node is next, it *must* be the last node in
6696 the chain, otherwise Verdef construction breaks. */
6697 if (t->next != NULL && t->next->vernum == 0)
6698 BFD_ASSERT (t->next->next == NULL);
6699
6700 if (t->next != NULL && t->next->vernum != 0)
6701 def.vd_next = (sizeof (Elf_External_Verdef)
6702 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6703
6704 _bfd_elf_swap_verdef_out (output_bfd, &def,
6705 (Elf_External_Verdef *) p);
6706 p += sizeof (Elf_External_Verdef);
6707
6708 defaux.vda_name = h->dynstr_index;
6709 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6710 h->dynstr_index);
6711 defaux.vda_next = 0;
6712 if (t->deps != NULL)
6713 defaux.vda_next = sizeof (Elf_External_Verdaux);
6714 t->name_indx = defaux.vda_name;
6715
6716 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6717 (Elf_External_Verdaux *) p);
6718 p += sizeof (Elf_External_Verdaux);
6719
6720 for (n = t->deps; n != NULL; n = n->next)
6721 {
6722 if (n->version_needed == NULL)
6723 {
6724 /* This can happen if there was an error in the
6725 version script. */
6726 defaux.vda_name = 0;
6727 }
6728 else
6729 {
6730 defaux.vda_name = n->version_needed->name_indx;
6731 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6732 defaux.vda_name);
6733 }
6734 if (n->next == NULL)
6735 defaux.vda_next = 0;
6736 else
6737 defaux.vda_next = sizeof (Elf_External_Verdaux);
6738
6739 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6740 (Elf_External_Verdaux *) p);
6741 p += sizeof (Elf_External_Verdaux);
6742 }
6743 }
6744
6745 elf_tdata (output_bfd)->cverdefs = cdefs;
6746 }
6747 }
6748
6749 bed = get_elf_backend_data (output_bfd);
6750
6751 if (info->gc_sections && bed->can_gc_sections)
6752 {
6753 struct elf_gc_sweep_symbol_info sweep_info;
6754
6755 /* Remove the symbols that were in the swept sections from the
6756 dynamic symbol table. */
6757 sweep_info.info = info;
6758 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6759 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6760 &sweep_info);
6761 }
6762
6763 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6764 {
6765 asection *s;
6766 struct elf_find_verdep_info sinfo;
6767
6768 /* Work out the size of the version reference section. */
6769
6770 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6771 BFD_ASSERT (s != NULL);
6772
6773 sinfo.info = info;
6774 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6775 if (sinfo.vers == 0)
6776 sinfo.vers = 1;
6777 sinfo.failed = FALSE;
6778
6779 elf_link_hash_traverse (elf_hash_table (info),
6780 _bfd_elf_link_find_version_dependencies,
6781 &sinfo);
6782 if (sinfo.failed)
6783 return FALSE;
6784
6785 if (elf_tdata (output_bfd)->verref == NULL)
6786 s->flags |= SEC_EXCLUDE;
6787 else
6788 {
6789 Elf_Internal_Verneed *vn;
6790 unsigned int size;
6791 unsigned int crefs;
6792 bfd_byte *p;
6793
6794 /* Build the version dependency section. */
6795 size = 0;
6796 crefs = 0;
6797 for (vn = elf_tdata (output_bfd)->verref;
6798 vn != NULL;
6799 vn = vn->vn_nextref)
6800 {
6801 Elf_Internal_Vernaux *a;
6802
6803 size += sizeof (Elf_External_Verneed);
6804 ++crefs;
6805 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6806 size += sizeof (Elf_External_Vernaux);
6807 }
6808
6809 s->size = size;
6810 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6811 if (s->contents == NULL)
6812 return FALSE;
6813
6814 p = s->contents;
6815 for (vn = elf_tdata (output_bfd)->verref;
6816 vn != NULL;
6817 vn = vn->vn_nextref)
6818 {
6819 unsigned int caux;
6820 Elf_Internal_Vernaux *a;
6821 size_t indx;
6822
6823 caux = 0;
6824 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6825 ++caux;
6826
6827 vn->vn_version = VER_NEED_CURRENT;
6828 vn->vn_cnt = caux;
6829 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6830 elf_dt_name (vn->vn_bfd) != NULL
6831 ? elf_dt_name (vn->vn_bfd)
6832 : lbasename (bfd_get_filename
6833 (vn->vn_bfd)),
6834 FALSE);
6835 if (indx == (size_t) -1)
6836 return FALSE;
6837 vn->vn_file = indx;
6838 vn->vn_aux = sizeof (Elf_External_Verneed);
6839 if (vn->vn_nextref == NULL)
6840 vn->vn_next = 0;
6841 else
6842 vn->vn_next = (sizeof (Elf_External_Verneed)
6843 + caux * sizeof (Elf_External_Vernaux));
6844
6845 _bfd_elf_swap_verneed_out (output_bfd, vn,
6846 (Elf_External_Verneed *) p);
6847 p += sizeof (Elf_External_Verneed);
6848
6849 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6850 {
6851 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6852 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6853 a->vna_nodename, FALSE);
6854 if (indx == (size_t) -1)
6855 return FALSE;
6856 a->vna_name = indx;
6857 if (a->vna_nextptr == NULL)
6858 a->vna_next = 0;
6859 else
6860 a->vna_next = sizeof (Elf_External_Vernaux);
6861
6862 _bfd_elf_swap_vernaux_out (output_bfd, a,
6863 (Elf_External_Vernaux *) p);
6864 p += sizeof (Elf_External_Vernaux);
6865 }
6866 }
6867
6868 elf_tdata (output_bfd)->cverrefs = crefs;
6869 }
6870 }
6871
6872 /* Any syms created from now on start with -1 in
6873 got.refcount/offset and plt.refcount/offset. */
6874 elf_hash_table (info)->init_got_refcount
6875 = elf_hash_table (info)->init_got_offset;
6876 elf_hash_table (info)->init_plt_refcount
6877 = elf_hash_table (info)->init_plt_offset;
6878
6879 if (bfd_link_relocatable (info)
6880 && !_bfd_elf_size_group_sections (info))
6881 return FALSE;
6882
6883 /* The backend may have to create some sections regardless of whether
6884 we're dynamic or not. */
6885 if (bed->elf_backend_always_size_sections
6886 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6887 return FALSE;
6888
6889 /* Determine any GNU_STACK segment requirements, after the backend
6890 has had a chance to set a default segment size. */
6891 if (info->execstack)
6892 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6893 else if (info->noexecstack)
6894 elf_stack_flags (output_bfd) = PF_R | PF_W;
6895 else
6896 {
6897 bfd *inputobj;
6898 asection *notesec = NULL;
6899 int exec = 0;
6900
6901 for (inputobj = info->input_bfds;
6902 inputobj;
6903 inputobj = inputobj->link.next)
6904 {
6905 asection *s;
6906
6907 if (inputobj->flags
6908 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6909 continue;
6910 s = inputobj->sections;
6911 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6912 continue;
6913
6914 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6915 if (s)
6916 {
6917 if (s->flags & SEC_CODE)
6918 exec = PF_X;
6919 notesec = s;
6920 }
6921 else if (bed->default_execstack)
6922 exec = PF_X;
6923 }
6924 if (notesec || info->stacksize > 0)
6925 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6926 if (notesec && exec && bfd_link_relocatable (info)
6927 && notesec->output_section != bfd_abs_section_ptr)
6928 notesec->output_section->flags |= SEC_CODE;
6929 }
6930
6931 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6932 {
6933 struct elf_info_failed eif;
6934 struct elf_link_hash_entry *h;
6935 asection *dynstr;
6936 asection *s;
6937
6938 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6939 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6940
6941 if (info->symbolic)
6942 {
6943 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6944 return FALSE;
6945 info->flags |= DF_SYMBOLIC;
6946 }
6947
6948 if (rpath != NULL)
6949 {
6950 size_t indx;
6951 bfd_vma tag;
6952
6953 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6954 TRUE);
6955 if (indx == (size_t) -1)
6956 return FALSE;
6957
6958 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6959 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6960 return FALSE;
6961 }
6962
6963 if (filter_shlib != NULL)
6964 {
6965 size_t indx;
6966
6967 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6968 filter_shlib, TRUE);
6969 if (indx == (size_t) -1
6970 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6971 return FALSE;
6972 }
6973
6974 if (auxiliary_filters != NULL)
6975 {
6976 const char * const *p;
6977
6978 for (p = auxiliary_filters; *p != NULL; p++)
6979 {
6980 size_t indx;
6981
6982 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6983 *p, TRUE);
6984 if (indx == (size_t) -1
6985 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6986 return FALSE;
6987 }
6988 }
6989
6990 if (audit != NULL)
6991 {
6992 size_t indx;
6993
6994 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6995 TRUE);
6996 if (indx == (size_t) -1
6997 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6998 return FALSE;
6999 }
7000
7001 if (depaudit != NULL)
7002 {
7003 size_t indx;
7004
7005 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
7006 TRUE);
7007 if (indx == (size_t) -1
7008 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
7009 return FALSE;
7010 }
7011
7012 eif.info = info;
7013 eif.failed = FALSE;
7014
7015 /* Find all symbols which were defined in a dynamic object and make
7016 the backend pick a reasonable value for them. */
7017 elf_link_hash_traverse (elf_hash_table (info),
7018 _bfd_elf_adjust_dynamic_symbol,
7019 &eif);
7020 if (eif.failed)
7021 return FALSE;
7022
7023 /* Add some entries to the .dynamic section. We fill in some of the
7024 values later, in bfd_elf_final_link, but we must add the entries
7025 now so that we know the final size of the .dynamic section. */
7026
7027 /* If there are initialization and/or finalization functions to
7028 call then add the corresponding DT_INIT/DT_FINI entries. */
7029 h = (info->init_function
7030 ? elf_link_hash_lookup (elf_hash_table (info),
7031 info->init_function, FALSE,
7032 FALSE, FALSE)
7033 : NULL);
7034 if (h != NULL
7035 && (h->ref_regular
7036 || h->def_regular))
7037 {
7038 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
7039 return FALSE;
7040 }
7041 h = (info->fini_function
7042 ? elf_link_hash_lookup (elf_hash_table (info),
7043 info->fini_function, FALSE,
7044 FALSE, FALSE)
7045 : NULL);
7046 if (h != NULL
7047 && (h->ref_regular
7048 || h->def_regular))
7049 {
7050 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
7051 return FALSE;
7052 }
7053
7054 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
7055 if (s != NULL && s->linker_has_input)
7056 {
7057 /* DT_PREINIT_ARRAY is not allowed in shared library. */
7058 if (! bfd_link_executable (info))
7059 {
7060 bfd *sub;
7061 asection *o;
7062
7063 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
7064 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
7065 && (o = sub->sections) != NULL
7066 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
7067 for (o = sub->sections; o != NULL; o = o->next)
7068 if (elf_section_data (o)->this_hdr.sh_type
7069 == SHT_PREINIT_ARRAY)
7070 {
7071 _bfd_error_handler
7072 (_("%pB: .preinit_array section is not allowed in DSO"),
7073 sub);
7074 break;
7075 }
7076
7077 bfd_set_error (bfd_error_nonrepresentable_section);
7078 return FALSE;
7079 }
7080
7081 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
7082 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
7083 return FALSE;
7084 }
7085 s = bfd_get_section_by_name (output_bfd, ".init_array");
7086 if (s != NULL && s->linker_has_input)
7087 {
7088 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
7089 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
7090 return FALSE;
7091 }
7092 s = bfd_get_section_by_name (output_bfd, ".fini_array");
7093 if (s != NULL && s->linker_has_input)
7094 {
7095 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
7096 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
7097 return FALSE;
7098 }
7099
7100 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
7101 /* If .dynstr is excluded from the link, we don't want any of
7102 these tags. Strictly, we should be checking each section
7103 individually; This quick check covers for the case where
7104 someone does a /DISCARD/ : { *(*) }. */
7105 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
7106 {
7107 bfd_size_type strsize;
7108
7109 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7110 if ((info->emit_hash
7111 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
7112 || (info->emit_gnu_hash
7113 && (bed->record_xhash_symbol == NULL
7114 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0)))
7115 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
7116 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
7117 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
7118 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
7119 bed->s->sizeof_sym))
7120 return FALSE;
7121 }
7122 }
7123
7124 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
7125 return FALSE;
7126
7127 /* The backend must work out the sizes of all the other dynamic
7128 sections. */
7129 if (dynobj != NULL
7130 && bed->elf_backend_size_dynamic_sections != NULL
7131 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
7132 return FALSE;
7133
7134 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7135 {
7136 if (elf_tdata (output_bfd)->cverdefs)
7137 {
7138 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
7139
7140 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
7141 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
7142 return FALSE;
7143 }
7144
7145 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
7146 {
7147 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
7148 return FALSE;
7149 }
7150 else if (info->flags & DF_BIND_NOW)
7151 {
7152 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
7153 return FALSE;
7154 }
7155
7156 if (info->flags_1)
7157 {
7158 if (bfd_link_executable (info))
7159 info->flags_1 &= ~ (DF_1_INITFIRST
7160 | DF_1_NODELETE
7161 | DF_1_NOOPEN);
7162 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
7163 return FALSE;
7164 }
7165
7166 if (elf_tdata (output_bfd)->cverrefs)
7167 {
7168 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
7169
7170 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7171 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7172 return FALSE;
7173 }
7174
7175 if ((elf_tdata (output_bfd)->cverrefs == 0
7176 && elf_tdata (output_bfd)->cverdefs == 0)
7177 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7178 {
7179 asection *s;
7180
7181 s = bfd_get_linker_section (dynobj, ".gnu.version");
7182 s->flags |= SEC_EXCLUDE;
7183 }
7184 }
7185 return TRUE;
7186 }
7187
7188 /* Find the first non-excluded output section. We'll use its
7189 section symbol for some emitted relocs. */
7190 void
7191 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7192 {
7193 asection *s;
7194 asection *found = NULL;
7195
7196 for (s = output_bfd->sections; s != NULL; s = s->next)
7197 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7198 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7199 {
7200 found = s;
7201 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7202 break;
7203 }
7204 elf_hash_table (info)->text_index_section = found;
7205 }
7206
7207 /* Find two non-excluded output sections, one for code, one for data.
7208 We'll use their section symbols for some emitted relocs. */
7209 void
7210 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7211 {
7212 asection *s;
7213 asection *found = NULL;
7214
7215 /* Data first, since setting text_index_section changes
7216 _bfd_elf_omit_section_dynsym_default. */
7217 for (s = output_bfd->sections; s != NULL; s = s->next)
7218 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7219 && !(s->flags & SEC_READONLY)
7220 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7221 {
7222 found = s;
7223 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7224 break;
7225 }
7226 elf_hash_table (info)->data_index_section = found;
7227
7228 for (s = output_bfd->sections; s != NULL; s = s->next)
7229 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7230 && (s->flags & SEC_READONLY)
7231 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7232 {
7233 found = s;
7234 break;
7235 }
7236 elf_hash_table (info)->text_index_section = found;
7237 }
7238
7239 #define GNU_HASH_SECTION_NAME(bed) \
7240 (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash"
7241
7242 bfd_boolean
7243 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7244 {
7245 const struct elf_backend_data *bed;
7246 unsigned long section_sym_count;
7247 bfd_size_type dynsymcount = 0;
7248
7249 if (!is_elf_hash_table (info->hash))
7250 return TRUE;
7251
7252 bed = get_elf_backend_data (output_bfd);
7253 (*bed->elf_backend_init_index_section) (output_bfd, info);
7254
7255 /* Assign dynsym indices. In a shared library we generate a section
7256 symbol for each output section, which come first. Next come all
7257 of the back-end allocated local dynamic syms, followed by the rest
7258 of the global symbols.
7259
7260 This is usually not needed for static binaries, however backends
7261 can request to always do it, e.g. the MIPS backend uses dynamic
7262 symbol counts to lay out GOT, which will be produced in the
7263 presence of GOT relocations even in static binaries (holding fixed
7264 data in that case, to satisfy those relocations). */
7265
7266 if (elf_hash_table (info)->dynamic_sections_created
7267 || bed->always_renumber_dynsyms)
7268 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7269 &section_sym_count);
7270
7271 if (elf_hash_table (info)->dynamic_sections_created)
7272 {
7273 bfd *dynobj;
7274 asection *s;
7275 unsigned int dtagcount;
7276
7277 dynobj = elf_hash_table (info)->dynobj;
7278
7279 /* Work out the size of the symbol version section. */
7280 s = bfd_get_linker_section (dynobj, ".gnu.version");
7281 BFD_ASSERT (s != NULL);
7282 if ((s->flags & SEC_EXCLUDE) == 0)
7283 {
7284 s->size = dynsymcount * sizeof (Elf_External_Versym);
7285 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7286 if (s->contents == NULL)
7287 return FALSE;
7288
7289 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7290 return FALSE;
7291 }
7292
7293 /* Set the size of the .dynsym and .hash sections. We counted
7294 the number of dynamic symbols in elf_link_add_object_symbols.
7295 We will build the contents of .dynsym and .hash when we build
7296 the final symbol table, because until then we do not know the
7297 correct value to give the symbols. We built the .dynstr
7298 section as we went along in elf_link_add_object_symbols. */
7299 s = elf_hash_table (info)->dynsym;
7300 BFD_ASSERT (s != NULL);
7301 s->size = dynsymcount * bed->s->sizeof_sym;
7302
7303 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7304 if (s->contents == NULL)
7305 return FALSE;
7306
7307 /* The first entry in .dynsym is a dummy symbol. Clear all the
7308 section syms, in case we don't output them all. */
7309 ++section_sym_count;
7310 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7311
7312 elf_hash_table (info)->bucketcount = 0;
7313
7314 /* Compute the size of the hashing table. As a side effect this
7315 computes the hash values for all the names we export. */
7316 if (info->emit_hash)
7317 {
7318 unsigned long int *hashcodes;
7319 struct hash_codes_info hashinf;
7320 bfd_size_type amt;
7321 unsigned long int nsyms;
7322 size_t bucketcount;
7323 size_t hash_entry_size;
7324
7325 /* Compute the hash values for all exported symbols. At the same
7326 time store the values in an array so that we could use them for
7327 optimizations. */
7328 amt = dynsymcount * sizeof (unsigned long int);
7329 hashcodes = (unsigned long int *) bfd_malloc (amt);
7330 if (hashcodes == NULL)
7331 return FALSE;
7332 hashinf.hashcodes = hashcodes;
7333 hashinf.error = FALSE;
7334
7335 /* Put all hash values in HASHCODES. */
7336 elf_link_hash_traverse (elf_hash_table (info),
7337 elf_collect_hash_codes, &hashinf);
7338 if (hashinf.error)
7339 {
7340 free (hashcodes);
7341 return FALSE;
7342 }
7343
7344 nsyms = hashinf.hashcodes - hashcodes;
7345 bucketcount
7346 = compute_bucket_count (info, hashcodes, nsyms, 0);
7347 free (hashcodes);
7348
7349 if (bucketcount == 0 && nsyms > 0)
7350 return FALSE;
7351
7352 elf_hash_table (info)->bucketcount = bucketcount;
7353
7354 s = bfd_get_linker_section (dynobj, ".hash");
7355 BFD_ASSERT (s != NULL);
7356 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7357 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7358 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7359 if (s->contents == NULL)
7360 return FALSE;
7361
7362 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7363 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7364 s->contents + hash_entry_size);
7365 }
7366
7367 if (info->emit_gnu_hash)
7368 {
7369 size_t i, cnt;
7370 unsigned char *contents;
7371 struct collect_gnu_hash_codes cinfo;
7372 bfd_size_type amt;
7373 size_t bucketcount;
7374
7375 memset (&cinfo, 0, sizeof (cinfo));
7376
7377 /* Compute the hash values for all exported symbols. At the same
7378 time store the values in an array so that we could use them for
7379 optimizations. */
7380 amt = dynsymcount * 2 * sizeof (unsigned long int);
7381 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7382 if (cinfo.hashcodes == NULL)
7383 return FALSE;
7384
7385 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7386 cinfo.min_dynindx = -1;
7387 cinfo.output_bfd = output_bfd;
7388 cinfo.bed = bed;
7389
7390 /* Put all hash values in HASHCODES. */
7391 elf_link_hash_traverse (elf_hash_table (info),
7392 elf_collect_gnu_hash_codes, &cinfo);
7393 if (cinfo.error)
7394 {
7395 free (cinfo.hashcodes);
7396 return FALSE;
7397 }
7398
7399 bucketcount
7400 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7401
7402 if (bucketcount == 0)
7403 {
7404 free (cinfo.hashcodes);
7405 return FALSE;
7406 }
7407
7408 s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed));
7409 BFD_ASSERT (s != NULL);
7410
7411 if (cinfo.nsyms == 0)
7412 {
7413 /* Empty .gnu.hash or .MIPS.xhash section is special. */
7414 BFD_ASSERT (cinfo.min_dynindx == -1);
7415 free (cinfo.hashcodes);
7416 s->size = 5 * 4 + bed->s->arch_size / 8;
7417 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7418 if (contents == NULL)
7419 return FALSE;
7420 s->contents = contents;
7421 /* 1 empty bucket. */
7422 bfd_put_32 (output_bfd, 1, contents);
7423 /* SYMIDX above the special symbol 0. */
7424 bfd_put_32 (output_bfd, 1, contents + 4);
7425 /* Just one word for bitmask. */
7426 bfd_put_32 (output_bfd, 1, contents + 8);
7427 /* Only hash fn bloom filter. */
7428 bfd_put_32 (output_bfd, 0, contents + 12);
7429 /* No hashes are valid - empty bitmask. */
7430 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7431 /* No hashes in the only bucket. */
7432 bfd_put_32 (output_bfd, 0,
7433 contents + 16 + bed->s->arch_size / 8);
7434 }
7435 else
7436 {
7437 unsigned long int maskwords, maskbitslog2, x;
7438 BFD_ASSERT (cinfo.min_dynindx != -1);
7439
7440 x = cinfo.nsyms;
7441 maskbitslog2 = 1;
7442 while ((x >>= 1) != 0)
7443 ++maskbitslog2;
7444 if (maskbitslog2 < 3)
7445 maskbitslog2 = 5;
7446 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7447 maskbitslog2 = maskbitslog2 + 3;
7448 else
7449 maskbitslog2 = maskbitslog2 + 2;
7450 if (bed->s->arch_size == 64)
7451 {
7452 if (maskbitslog2 == 5)
7453 maskbitslog2 = 6;
7454 cinfo.shift1 = 6;
7455 }
7456 else
7457 cinfo.shift1 = 5;
7458 cinfo.mask = (1 << cinfo.shift1) - 1;
7459 cinfo.shift2 = maskbitslog2;
7460 cinfo.maskbits = 1 << maskbitslog2;
7461 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7462 amt = bucketcount * sizeof (unsigned long int) * 2;
7463 amt += maskwords * sizeof (bfd_vma);
7464 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7465 if (cinfo.bitmask == NULL)
7466 {
7467 free (cinfo.hashcodes);
7468 return FALSE;
7469 }
7470
7471 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7472 cinfo.indx = cinfo.counts + bucketcount;
7473 cinfo.symindx = dynsymcount - cinfo.nsyms;
7474 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7475
7476 /* Determine how often each hash bucket is used. */
7477 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7478 for (i = 0; i < cinfo.nsyms; ++i)
7479 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7480
7481 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7482 if (cinfo.counts[i] != 0)
7483 {
7484 cinfo.indx[i] = cnt;
7485 cnt += cinfo.counts[i];
7486 }
7487 BFD_ASSERT (cnt == dynsymcount);
7488 cinfo.bucketcount = bucketcount;
7489 cinfo.local_indx = cinfo.min_dynindx;
7490
7491 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7492 s->size += cinfo.maskbits / 8;
7493 if (bed->record_xhash_symbol != NULL)
7494 s->size += cinfo.nsyms * 4;
7495 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7496 if (contents == NULL)
7497 {
7498 free (cinfo.bitmask);
7499 free (cinfo.hashcodes);
7500 return FALSE;
7501 }
7502
7503 s->contents = contents;
7504 bfd_put_32 (output_bfd, bucketcount, contents);
7505 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7506 bfd_put_32 (output_bfd, maskwords, contents + 8);
7507 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7508 contents += 16 + cinfo.maskbits / 8;
7509
7510 for (i = 0; i < bucketcount; ++i)
7511 {
7512 if (cinfo.counts[i] == 0)
7513 bfd_put_32 (output_bfd, 0, contents);
7514 else
7515 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7516 contents += 4;
7517 }
7518
7519 cinfo.contents = contents;
7520
7521 cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents;
7522 /* Renumber dynamic symbols, if populating .gnu.hash section.
7523 If using .MIPS.xhash, populate the translation table. */
7524 elf_link_hash_traverse (elf_hash_table (info),
7525 elf_gnu_hash_process_symidx, &cinfo);
7526
7527 contents = s->contents + 16;
7528 for (i = 0; i < maskwords; ++i)
7529 {
7530 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7531 contents);
7532 contents += bed->s->arch_size / 8;
7533 }
7534
7535 free (cinfo.bitmask);
7536 free (cinfo.hashcodes);
7537 }
7538 }
7539
7540 s = bfd_get_linker_section (dynobj, ".dynstr");
7541 BFD_ASSERT (s != NULL);
7542
7543 elf_finalize_dynstr (output_bfd, info);
7544
7545 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7546
7547 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7548 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7549 return FALSE;
7550 }
7551
7552 return TRUE;
7553 }
7554 \f
7555 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7556
7557 static void
7558 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7559 asection *sec)
7560 {
7561 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7562 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7563 }
7564
7565 /* Finish SHF_MERGE section merging. */
7566
7567 bfd_boolean
7568 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7569 {
7570 bfd *ibfd;
7571 asection *sec;
7572
7573 if (!is_elf_hash_table (info->hash))
7574 return FALSE;
7575
7576 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7577 if ((ibfd->flags & DYNAMIC) == 0
7578 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7579 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7580 == get_elf_backend_data (obfd)->s->elfclass))
7581 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7582 if ((sec->flags & SEC_MERGE) != 0
7583 && !bfd_is_abs_section (sec->output_section))
7584 {
7585 struct bfd_elf_section_data *secdata;
7586
7587 secdata = elf_section_data (sec);
7588 if (! _bfd_add_merge_section (obfd,
7589 &elf_hash_table (info)->merge_info,
7590 sec, &secdata->sec_info))
7591 return FALSE;
7592 else if (secdata->sec_info)
7593 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7594 }
7595
7596 if (elf_hash_table (info)->merge_info != NULL)
7597 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7598 merge_sections_remove_hook);
7599 return TRUE;
7600 }
7601
7602 /* Create an entry in an ELF linker hash table. */
7603
7604 struct bfd_hash_entry *
7605 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7606 struct bfd_hash_table *table,
7607 const char *string)
7608 {
7609 /* Allocate the structure if it has not already been allocated by a
7610 subclass. */
7611 if (entry == NULL)
7612 {
7613 entry = (struct bfd_hash_entry *)
7614 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7615 if (entry == NULL)
7616 return entry;
7617 }
7618
7619 /* Call the allocation method of the superclass. */
7620 entry = _bfd_link_hash_newfunc (entry, table, string);
7621 if (entry != NULL)
7622 {
7623 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7624 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7625
7626 /* Set local fields. */
7627 ret->indx = -1;
7628 ret->dynindx = -1;
7629 ret->got = htab->init_got_refcount;
7630 ret->plt = htab->init_plt_refcount;
7631 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7632 - offsetof (struct elf_link_hash_entry, size)));
7633 /* Assume that we have been called by a non-ELF symbol reader.
7634 This flag is then reset by the code which reads an ELF input
7635 file. This ensures that a symbol created by a non-ELF symbol
7636 reader will have the flag set correctly. */
7637 ret->non_elf = 1;
7638 }
7639
7640 return entry;
7641 }
7642
7643 /* Copy data from an indirect symbol to its direct symbol, hiding the
7644 old indirect symbol. Also used for copying flags to a weakdef. */
7645
7646 void
7647 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7648 struct elf_link_hash_entry *dir,
7649 struct elf_link_hash_entry *ind)
7650 {
7651 struct elf_link_hash_table *htab;
7652
7653 if (ind->dyn_relocs != NULL)
7654 {
7655 if (dir->dyn_relocs != NULL)
7656 {
7657 struct elf_dyn_relocs **pp;
7658 struct elf_dyn_relocs *p;
7659
7660 /* Add reloc counts against the indirect sym to the direct sym
7661 list. Merge any entries against the same section. */
7662 for (pp = &ind->dyn_relocs; (p = *pp) != NULL; )
7663 {
7664 struct elf_dyn_relocs *q;
7665
7666 for (q = dir->dyn_relocs; q != NULL; q = q->next)
7667 if (q->sec == p->sec)
7668 {
7669 q->pc_count += p->pc_count;
7670 q->count += p->count;
7671 *pp = p->next;
7672 break;
7673 }
7674 if (q == NULL)
7675 pp = &p->next;
7676 }
7677 *pp = dir->dyn_relocs;
7678 }
7679
7680 dir->dyn_relocs = ind->dyn_relocs;
7681 ind->dyn_relocs = NULL;
7682 }
7683
7684 /* Copy down any references that we may have already seen to the
7685 symbol which just became indirect. */
7686
7687 if (dir->versioned != versioned_hidden)
7688 dir->ref_dynamic |= ind->ref_dynamic;
7689 dir->ref_regular |= ind->ref_regular;
7690 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7691 dir->non_got_ref |= ind->non_got_ref;
7692 dir->needs_plt |= ind->needs_plt;
7693 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7694
7695 if (ind->root.type != bfd_link_hash_indirect)
7696 return;
7697
7698 /* Copy over the global and procedure linkage table refcount entries.
7699 These may have been already set up by a check_relocs routine. */
7700 htab = elf_hash_table (info);
7701 if (ind->got.refcount > htab->init_got_refcount.refcount)
7702 {
7703 if (dir->got.refcount < 0)
7704 dir->got.refcount = 0;
7705 dir->got.refcount += ind->got.refcount;
7706 ind->got.refcount = htab->init_got_refcount.refcount;
7707 }
7708
7709 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7710 {
7711 if (dir->plt.refcount < 0)
7712 dir->plt.refcount = 0;
7713 dir->plt.refcount += ind->plt.refcount;
7714 ind->plt.refcount = htab->init_plt_refcount.refcount;
7715 }
7716
7717 if (ind->dynindx != -1)
7718 {
7719 if (dir->dynindx != -1)
7720 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7721 dir->dynindx = ind->dynindx;
7722 dir->dynstr_index = ind->dynstr_index;
7723 ind->dynindx = -1;
7724 ind->dynstr_index = 0;
7725 }
7726 }
7727
7728 void
7729 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7730 struct elf_link_hash_entry *h,
7731 bfd_boolean force_local)
7732 {
7733 /* STT_GNU_IFUNC symbol must go through PLT. */
7734 if (h->type != STT_GNU_IFUNC)
7735 {
7736 h->plt = elf_hash_table (info)->init_plt_offset;
7737 h->needs_plt = 0;
7738 }
7739 if (force_local)
7740 {
7741 h->forced_local = 1;
7742 if (h->dynindx != -1)
7743 {
7744 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7745 h->dynstr_index);
7746 h->dynindx = -1;
7747 h->dynstr_index = 0;
7748 }
7749 }
7750 }
7751
7752 /* Hide a symbol. */
7753
7754 void
7755 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7756 struct bfd_link_info *info,
7757 struct bfd_link_hash_entry *h)
7758 {
7759 if (is_elf_hash_table (info->hash))
7760 {
7761 const struct elf_backend_data *bed
7762 = get_elf_backend_data (output_bfd);
7763 struct elf_link_hash_entry *eh
7764 = (struct elf_link_hash_entry *) h;
7765 bed->elf_backend_hide_symbol (info, eh, TRUE);
7766 eh->def_dynamic = 0;
7767 eh->ref_dynamic = 0;
7768 eh->dynamic_def = 0;
7769 }
7770 }
7771
7772 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7773 caller. */
7774
7775 bfd_boolean
7776 _bfd_elf_link_hash_table_init
7777 (struct elf_link_hash_table *table,
7778 bfd *abfd,
7779 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7780 struct bfd_hash_table *,
7781 const char *),
7782 unsigned int entsize,
7783 enum elf_target_id target_id)
7784 {
7785 bfd_boolean ret;
7786 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7787
7788 table->init_got_refcount.refcount = can_refcount - 1;
7789 table->init_plt_refcount.refcount = can_refcount - 1;
7790 table->init_got_offset.offset = -(bfd_vma) 1;
7791 table->init_plt_offset.offset = -(bfd_vma) 1;
7792 /* The first dynamic symbol is a dummy. */
7793 table->dynsymcount = 1;
7794
7795 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7796
7797 table->root.type = bfd_link_elf_hash_table;
7798 table->hash_table_id = target_id;
7799
7800 return ret;
7801 }
7802
7803 /* Create an ELF linker hash table. */
7804
7805 struct bfd_link_hash_table *
7806 _bfd_elf_link_hash_table_create (bfd *abfd)
7807 {
7808 struct elf_link_hash_table *ret;
7809 size_t amt = sizeof (struct elf_link_hash_table);
7810
7811 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7812 if (ret == NULL)
7813 return NULL;
7814
7815 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7816 sizeof (struct elf_link_hash_entry),
7817 GENERIC_ELF_DATA))
7818 {
7819 free (ret);
7820 return NULL;
7821 }
7822 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7823
7824 return &ret->root;
7825 }
7826
7827 /* Destroy an ELF linker hash table. */
7828
7829 void
7830 _bfd_elf_link_hash_table_free (bfd *obfd)
7831 {
7832 struct elf_link_hash_table *htab;
7833
7834 htab = (struct elf_link_hash_table *) obfd->link.hash;
7835 if (htab->dynstr != NULL)
7836 _bfd_elf_strtab_free (htab->dynstr);
7837 _bfd_merge_sections_free (htab->merge_info);
7838 _bfd_generic_link_hash_table_free (obfd);
7839 }
7840
7841 /* This is a hook for the ELF emulation code in the generic linker to
7842 tell the backend linker what file name to use for the DT_NEEDED
7843 entry for a dynamic object. */
7844
7845 void
7846 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7847 {
7848 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7849 && bfd_get_format (abfd) == bfd_object)
7850 elf_dt_name (abfd) = name;
7851 }
7852
7853 int
7854 bfd_elf_get_dyn_lib_class (bfd *abfd)
7855 {
7856 int lib_class;
7857 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7858 && bfd_get_format (abfd) == bfd_object)
7859 lib_class = elf_dyn_lib_class (abfd);
7860 else
7861 lib_class = 0;
7862 return lib_class;
7863 }
7864
7865 void
7866 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7867 {
7868 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7869 && bfd_get_format (abfd) == bfd_object)
7870 elf_dyn_lib_class (abfd) = lib_class;
7871 }
7872
7873 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7874 the linker ELF emulation code. */
7875
7876 struct bfd_link_needed_list *
7877 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7878 struct bfd_link_info *info)
7879 {
7880 if (! is_elf_hash_table (info->hash))
7881 return NULL;
7882 return elf_hash_table (info)->needed;
7883 }
7884
7885 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7886 hook for the linker ELF emulation code. */
7887
7888 struct bfd_link_needed_list *
7889 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7890 struct bfd_link_info *info)
7891 {
7892 if (! is_elf_hash_table (info->hash))
7893 return NULL;
7894 return elf_hash_table (info)->runpath;
7895 }
7896
7897 /* Get the name actually used for a dynamic object for a link. This
7898 is the SONAME entry if there is one. Otherwise, it is the string
7899 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7900
7901 const char *
7902 bfd_elf_get_dt_soname (bfd *abfd)
7903 {
7904 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7905 && bfd_get_format (abfd) == bfd_object)
7906 return elf_dt_name (abfd);
7907 return NULL;
7908 }
7909
7910 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7911 the ELF linker emulation code. */
7912
7913 bfd_boolean
7914 bfd_elf_get_bfd_needed_list (bfd *abfd,
7915 struct bfd_link_needed_list **pneeded)
7916 {
7917 asection *s;
7918 bfd_byte *dynbuf = NULL;
7919 unsigned int elfsec;
7920 unsigned long shlink;
7921 bfd_byte *extdyn, *extdynend;
7922 size_t extdynsize;
7923 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7924
7925 *pneeded = NULL;
7926
7927 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7928 || bfd_get_format (abfd) != bfd_object)
7929 return TRUE;
7930
7931 s = bfd_get_section_by_name (abfd, ".dynamic");
7932 if (s == NULL || s->size == 0)
7933 return TRUE;
7934
7935 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7936 goto error_return;
7937
7938 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7939 if (elfsec == SHN_BAD)
7940 goto error_return;
7941
7942 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7943
7944 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7945 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7946
7947 extdyn = dynbuf;
7948 extdynend = extdyn + s->size;
7949 for (; extdyn < extdynend; extdyn += extdynsize)
7950 {
7951 Elf_Internal_Dyn dyn;
7952
7953 (*swap_dyn_in) (abfd, extdyn, &dyn);
7954
7955 if (dyn.d_tag == DT_NULL)
7956 break;
7957
7958 if (dyn.d_tag == DT_NEEDED)
7959 {
7960 const char *string;
7961 struct bfd_link_needed_list *l;
7962 unsigned int tagv = dyn.d_un.d_val;
7963 size_t amt;
7964
7965 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7966 if (string == NULL)
7967 goto error_return;
7968
7969 amt = sizeof *l;
7970 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7971 if (l == NULL)
7972 goto error_return;
7973
7974 l->by = abfd;
7975 l->name = string;
7976 l->next = *pneeded;
7977 *pneeded = l;
7978 }
7979 }
7980
7981 free (dynbuf);
7982
7983 return TRUE;
7984
7985 error_return:
7986 free (dynbuf);
7987 return FALSE;
7988 }
7989
7990 struct elf_symbuf_symbol
7991 {
7992 unsigned long st_name; /* Symbol name, index in string tbl */
7993 unsigned char st_info; /* Type and binding attributes */
7994 unsigned char st_other; /* Visibilty, and target specific */
7995 };
7996
7997 struct elf_symbuf_head
7998 {
7999 struct elf_symbuf_symbol *ssym;
8000 size_t count;
8001 unsigned int st_shndx;
8002 };
8003
8004 struct elf_symbol
8005 {
8006 union
8007 {
8008 Elf_Internal_Sym *isym;
8009 struct elf_symbuf_symbol *ssym;
8010 void *p;
8011 } u;
8012 const char *name;
8013 };
8014
8015 /* Sort references to symbols by ascending section number. */
8016
8017 static int
8018 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8019 {
8020 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
8021 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
8022
8023 if (s1->st_shndx != s2->st_shndx)
8024 return s1->st_shndx > s2->st_shndx ? 1 : -1;
8025 /* Final sort by the address of the sym in the symbuf ensures
8026 a stable sort. */
8027 if (s1 != s2)
8028 return s1 > s2 ? 1 : -1;
8029 return 0;
8030 }
8031
8032 static int
8033 elf_sym_name_compare (const void *arg1, const void *arg2)
8034 {
8035 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8036 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8037 int ret = strcmp (s1->name, s2->name);
8038 if (ret != 0)
8039 return ret;
8040 if (s1->u.p != s2->u.p)
8041 return s1->u.p > s2->u.p ? 1 : -1;
8042 return 0;
8043 }
8044
8045 static struct elf_symbuf_head *
8046 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
8047 {
8048 Elf_Internal_Sym **ind, **indbufend, **indbuf;
8049 struct elf_symbuf_symbol *ssym;
8050 struct elf_symbuf_head *ssymbuf, *ssymhead;
8051 size_t i, shndx_count, total_size, amt;
8052
8053 amt = symcount * sizeof (*indbuf);
8054 indbuf = (Elf_Internal_Sym **) bfd_malloc (amt);
8055 if (indbuf == NULL)
8056 return NULL;
8057
8058 for (ind = indbuf, i = 0; i < symcount; i++)
8059 if (isymbuf[i].st_shndx != SHN_UNDEF)
8060 *ind++ = &isymbuf[i];
8061 indbufend = ind;
8062
8063 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
8064 elf_sort_elf_symbol);
8065
8066 shndx_count = 0;
8067 if (indbufend > indbuf)
8068 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
8069 if (ind[0]->st_shndx != ind[1]->st_shndx)
8070 shndx_count++;
8071
8072 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
8073 + (indbufend - indbuf) * sizeof (*ssym));
8074 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
8075 if (ssymbuf == NULL)
8076 {
8077 free (indbuf);
8078 return NULL;
8079 }
8080
8081 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
8082 ssymbuf->ssym = NULL;
8083 ssymbuf->count = shndx_count;
8084 ssymbuf->st_shndx = 0;
8085 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
8086 {
8087 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
8088 {
8089 ssymhead++;
8090 ssymhead->ssym = ssym;
8091 ssymhead->count = 0;
8092 ssymhead->st_shndx = (*ind)->st_shndx;
8093 }
8094 ssym->st_name = (*ind)->st_name;
8095 ssym->st_info = (*ind)->st_info;
8096 ssym->st_other = (*ind)->st_other;
8097 ssymhead->count++;
8098 }
8099 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
8100 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
8101 == total_size));
8102
8103 free (indbuf);
8104 return ssymbuf;
8105 }
8106
8107 /* Check if 2 sections define the same set of local and global
8108 symbols. */
8109
8110 static bfd_boolean
8111 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
8112 struct bfd_link_info *info)
8113 {
8114 bfd *bfd1, *bfd2;
8115 const struct elf_backend_data *bed1, *bed2;
8116 Elf_Internal_Shdr *hdr1, *hdr2;
8117 size_t symcount1, symcount2;
8118 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8119 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
8120 Elf_Internal_Sym *isym, *isymend;
8121 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
8122 size_t count1, count2, i;
8123 unsigned int shndx1, shndx2;
8124 bfd_boolean result;
8125
8126 bfd1 = sec1->owner;
8127 bfd2 = sec2->owner;
8128
8129 /* Both sections have to be in ELF. */
8130 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8131 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8132 return FALSE;
8133
8134 if (elf_section_type (sec1) != elf_section_type (sec2))
8135 return FALSE;
8136
8137 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8138 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8139 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
8140 return FALSE;
8141
8142 bed1 = get_elf_backend_data (bfd1);
8143 bed2 = get_elf_backend_data (bfd2);
8144 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8145 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8146 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8147 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8148
8149 if (symcount1 == 0 || symcount2 == 0)
8150 return FALSE;
8151
8152 result = FALSE;
8153 isymbuf1 = NULL;
8154 isymbuf2 = NULL;
8155 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
8156 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
8157
8158 if (ssymbuf1 == NULL)
8159 {
8160 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8161 NULL, NULL, NULL);
8162 if (isymbuf1 == NULL)
8163 goto done;
8164
8165 if (!info->reduce_memory_overheads)
8166 {
8167 ssymbuf1 = elf_create_symbuf (symcount1, isymbuf1);
8168 elf_tdata (bfd1)->symbuf = ssymbuf1;
8169 }
8170 }
8171
8172 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
8173 {
8174 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8175 NULL, NULL, NULL);
8176 if (isymbuf2 == NULL)
8177 goto done;
8178
8179 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
8180 {
8181 ssymbuf2 = elf_create_symbuf (symcount2, isymbuf2);
8182 elf_tdata (bfd2)->symbuf = ssymbuf2;
8183 }
8184 }
8185
8186 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8187 {
8188 /* Optimized faster version. */
8189 size_t lo, hi, mid;
8190 struct elf_symbol *symp;
8191 struct elf_symbuf_symbol *ssym, *ssymend;
8192
8193 lo = 0;
8194 hi = ssymbuf1->count;
8195 ssymbuf1++;
8196 count1 = 0;
8197 while (lo < hi)
8198 {
8199 mid = (lo + hi) / 2;
8200 if (shndx1 < ssymbuf1[mid].st_shndx)
8201 hi = mid;
8202 else if (shndx1 > ssymbuf1[mid].st_shndx)
8203 lo = mid + 1;
8204 else
8205 {
8206 count1 = ssymbuf1[mid].count;
8207 ssymbuf1 += mid;
8208 break;
8209 }
8210 }
8211
8212 lo = 0;
8213 hi = ssymbuf2->count;
8214 ssymbuf2++;
8215 count2 = 0;
8216 while (lo < hi)
8217 {
8218 mid = (lo + hi) / 2;
8219 if (shndx2 < ssymbuf2[mid].st_shndx)
8220 hi = mid;
8221 else if (shndx2 > ssymbuf2[mid].st_shndx)
8222 lo = mid + 1;
8223 else
8224 {
8225 count2 = ssymbuf2[mid].count;
8226 ssymbuf2 += mid;
8227 break;
8228 }
8229 }
8230
8231 if (count1 == 0 || count2 == 0 || count1 != count2)
8232 goto done;
8233
8234 symtable1
8235 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8236 symtable2
8237 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8238 if (symtable1 == NULL || symtable2 == NULL)
8239 goto done;
8240
8241 symp = symtable1;
8242 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
8243 ssym < ssymend; ssym++, symp++)
8244 {
8245 symp->u.ssym = ssym;
8246 symp->name = bfd_elf_string_from_elf_section (bfd1,
8247 hdr1->sh_link,
8248 ssym->st_name);
8249 }
8250
8251 symp = symtable2;
8252 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
8253 ssym < ssymend; ssym++, symp++)
8254 {
8255 symp->u.ssym = ssym;
8256 symp->name = bfd_elf_string_from_elf_section (bfd2,
8257 hdr2->sh_link,
8258 ssym->st_name);
8259 }
8260
8261 /* Sort symbol by name. */
8262 qsort (symtable1, count1, sizeof (struct elf_symbol),
8263 elf_sym_name_compare);
8264 qsort (symtable2, count1, sizeof (struct elf_symbol),
8265 elf_sym_name_compare);
8266
8267 for (i = 0; i < count1; i++)
8268 /* Two symbols must have the same binding, type and name. */
8269 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8270 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8271 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8272 goto done;
8273
8274 result = TRUE;
8275 goto done;
8276 }
8277
8278 symtable1 = (struct elf_symbol *)
8279 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8280 symtable2 = (struct elf_symbol *)
8281 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8282 if (symtable1 == NULL || symtable2 == NULL)
8283 goto done;
8284
8285 /* Count definitions in the section. */
8286 count1 = 0;
8287 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8288 if (isym->st_shndx == shndx1)
8289 symtable1[count1++].u.isym = isym;
8290
8291 count2 = 0;
8292 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8293 if (isym->st_shndx == shndx2)
8294 symtable2[count2++].u.isym = isym;
8295
8296 if (count1 == 0 || count2 == 0 || count1 != count2)
8297 goto done;
8298
8299 for (i = 0; i < count1; i++)
8300 symtable1[i].name
8301 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8302 symtable1[i].u.isym->st_name);
8303
8304 for (i = 0; i < count2; i++)
8305 symtable2[i].name
8306 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8307 symtable2[i].u.isym->st_name);
8308
8309 /* Sort symbol by name. */
8310 qsort (symtable1, count1, sizeof (struct elf_symbol),
8311 elf_sym_name_compare);
8312 qsort (symtable2, count1, sizeof (struct elf_symbol),
8313 elf_sym_name_compare);
8314
8315 for (i = 0; i < count1; i++)
8316 /* Two symbols must have the same binding, type and name. */
8317 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8318 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8319 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8320 goto done;
8321
8322 result = TRUE;
8323
8324 done:
8325 free (symtable1);
8326 free (symtable2);
8327 free (isymbuf1);
8328 free (isymbuf2);
8329
8330 return result;
8331 }
8332
8333 /* Return TRUE if 2 section types are compatible. */
8334
8335 bfd_boolean
8336 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8337 bfd *bbfd, const asection *bsec)
8338 {
8339 if (asec == NULL
8340 || bsec == NULL
8341 || abfd->xvec->flavour != bfd_target_elf_flavour
8342 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8343 return TRUE;
8344
8345 return elf_section_type (asec) == elf_section_type (bsec);
8346 }
8347 \f
8348 /* Final phase of ELF linker. */
8349
8350 /* A structure we use to avoid passing large numbers of arguments. */
8351
8352 struct elf_final_link_info
8353 {
8354 /* General link information. */
8355 struct bfd_link_info *info;
8356 /* Output BFD. */
8357 bfd *output_bfd;
8358 /* Symbol string table. */
8359 struct elf_strtab_hash *symstrtab;
8360 /* .hash section. */
8361 asection *hash_sec;
8362 /* symbol version section (.gnu.version). */
8363 asection *symver_sec;
8364 /* Buffer large enough to hold contents of any section. */
8365 bfd_byte *contents;
8366 /* Buffer large enough to hold external relocs of any section. */
8367 void *external_relocs;
8368 /* Buffer large enough to hold internal relocs of any section. */
8369 Elf_Internal_Rela *internal_relocs;
8370 /* Buffer large enough to hold external local symbols of any input
8371 BFD. */
8372 bfd_byte *external_syms;
8373 /* And a buffer for symbol section indices. */
8374 Elf_External_Sym_Shndx *locsym_shndx;
8375 /* Buffer large enough to hold internal local symbols of any input
8376 BFD. */
8377 Elf_Internal_Sym *internal_syms;
8378 /* Array large enough to hold a symbol index for each local symbol
8379 of any input BFD. */
8380 long *indices;
8381 /* Array large enough to hold a section pointer for each local
8382 symbol of any input BFD. */
8383 asection **sections;
8384 /* Buffer for SHT_SYMTAB_SHNDX section. */
8385 Elf_External_Sym_Shndx *symshndxbuf;
8386 /* Number of STT_FILE syms seen. */
8387 size_t filesym_count;
8388 };
8389
8390 /* This struct is used to pass information to elf_link_output_extsym. */
8391
8392 struct elf_outext_info
8393 {
8394 bfd_boolean failed;
8395 bfd_boolean localsyms;
8396 bfd_boolean file_sym_done;
8397 struct elf_final_link_info *flinfo;
8398 };
8399
8400
8401 /* Support for evaluating a complex relocation.
8402
8403 Complex relocations are generalized, self-describing relocations. The
8404 implementation of them consists of two parts: complex symbols, and the
8405 relocations themselves.
8406
8407 The relocations are use a reserved elf-wide relocation type code (R_RELC
8408 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8409 information (start bit, end bit, word width, etc) into the addend. This
8410 information is extracted from CGEN-generated operand tables within gas.
8411
8412 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
8413 internal) representing prefix-notation expressions, including but not
8414 limited to those sorts of expressions normally encoded as addends in the
8415 addend field. The symbol mangling format is:
8416
8417 <node> := <literal>
8418 | <unary-operator> ':' <node>
8419 | <binary-operator> ':' <node> ':' <node>
8420 ;
8421
8422 <literal> := 's' <digits=N> ':' <N character symbol name>
8423 | 'S' <digits=N> ':' <N character section name>
8424 | '#' <hexdigits>
8425 ;
8426
8427 <binary-operator> := as in C
8428 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8429
8430 static void
8431 set_symbol_value (bfd *bfd_with_globals,
8432 Elf_Internal_Sym *isymbuf,
8433 size_t locsymcount,
8434 size_t symidx,
8435 bfd_vma val)
8436 {
8437 struct elf_link_hash_entry **sym_hashes;
8438 struct elf_link_hash_entry *h;
8439 size_t extsymoff = locsymcount;
8440
8441 if (symidx < locsymcount)
8442 {
8443 Elf_Internal_Sym *sym;
8444
8445 sym = isymbuf + symidx;
8446 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8447 {
8448 /* It is a local symbol: move it to the
8449 "absolute" section and give it a value. */
8450 sym->st_shndx = SHN_ABS;
8451 sym->st_value = val;
8452 return;
8453 }
8454 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8455 extsymoff = 0;
8456 }
8457
8458 /* It is a global symbol: set its link type
8459 to "defined" and give it a value. */
8460
8461 sym_hashes = elf_sym_hashes (bfd_with_globals);
8462 h = sym_hashes [symidx - extsymoff];
8463 while (h->root.type == bfd_link_hash_indirect
8464 || h->root.type == bfd_link_hash_warning)
8465 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8466 h->root.type = bfd_link_hash_defined;
8467 h->root.u.def.value = val;
8468 h->root.u.def.section = bfd_abs_section_ptr;
8469 }
8470
8471 static bfd_boolean
8472 resolve_symbol (const char *name,
8473 bfd *input_bfd,
8474 struct elf_final_link_info *flinfo,
8475 bfd_vma *result,
8476 Elf_Internal_Sym *isymbuf,
8477 size_t locsymcount)
8478 {
8479 Elf_Internal_Sym *sym;
8480 struct bfd_link_hash_entry *global_entry;
8481 const char *candidate = NULL;
8482 Elf_Internal_Shdr *symtab_hdr;
8483 size_t i;
8484
8485 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8486
8487 for (i = 0; i < locsymcount; ++ i)
8488 {
8489 sym = isymbuf + i;
8490
8491 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8492 continue;
8493
8494 candidate = bfd_elf_string_from_elf_section (input_bfd,
8495 symtab_hdr->sh_link,
8496 sym->st_name);
8497 #ifdef DEBUG
8498 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8499 name, candidate, (unsigned long) sym->st_value);
8500 #endif
8501 if (candidate && strcmp (candidate, name) == 0)
8502 {
8503 asection *sec = flinfo->sections [i];
8504
8505 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8506 *result += sec->output_offset + sec->output_section->vma;
8507 #ifdef DEBUG
8508 printf ("Found symbol with value %8.8lx\n",
8509 (unsigned long) *result);
8510 #endif
8511 return TRUE;
8512 }
8513 }
8514
8515 /* Hmm, haven't found it yet. perhaps it is a global. */
8516 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8517 FALSE, FALSE, TRUE);
8518 if (!global_entry)
8519 return FALSE;
8520
8521 if (global_entry->type == bfd_link_hash_defined
8522 || global_entry->type == bfd_link_hash_defweak)
8523 {
8524 *result = (global_entry->u.def.value
8525 + global_entry->u.def.section->output_section->vma
8526 + global_entry->u.def.section->output_offset);
8527 #ifdef DEBUG
8528 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8529 global_entry->root.string, (unsigned long) *result);
8530 #endif
8531 return TRUE;
8532 }
8533
8534 return FALSE;
8535 }
8536
8537 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8538 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8539 names like "foo.end" which is the end address of section "foo". */
8540
8541 static bfd_boolean
8542 resolve_section (const char *name,
8543 asection *sections,
8544 bfd_vma *result,
8545 bfd * abfd)
8546 {
8547 asection *curr;
8548 unsigned int len;
8549
8550 for (curr = sections; curr; curr = curr->next)
8551 if (strcmp (curr->name, name) == 0)
8552 {
8553 *result = curr->vma;
8554 return TRUE;
8555 }
8556
8557 /* Hmm. still haven't found it. try pseudo-section names. */
8558 /* FIXME: This could be coded more efficiently... */
8559 for (curr = sections; curr; curr = curr->next)
8560 {
8561 len = strlen (curr->name);
8562 if (len > strlen (name))
8563 continue;
8564
8565 if (strncmp (curr->name, name, len) == 0)
8566 {
8567 if (strncmp (".end", name + len, 4) == 0)
8568 {
8569 *result = (curr->vma
8570 + curr->size / bfd_octets_per_byte (abfd, curr));
8571 return TRUE;
8572 }
8573
8574 /* Insert more pseudo-section names here, if you like. */
8575 }
8576 }
8577
8578 return FALSE;
8579 }
8580
8581 static void
8582 undefined_reference (const char *reftype, const char *name)
8583 {
8584 /* xgettext:c-format */
8585 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8586 reftype, name);
8587 }
8588
8589 static bfd_boolean
8590 eval_symbol (bfd_vma *result,
8591 const char **symp,
8592 bfd *input_bfd,
8593 struct elf_final_link_info *flinfo,
8594 bfd_vma dot,
8595 Elf_Internal_Sym *isymbuf,
8596 size_t locsymcount,
8597 int signed_p)
8598 {
8599 size_t len;
8600 size_t symlen;
8601 bfd_vma a;
8602 bfd_vma b;
8603 char symbuf[4096];
8604 const char *sym = *symp;
8605 const char *symend;
8606 bfd_boolean symbol_is_section = FALSE;
8607
8608 len = strlen (sym);
8609 symend = sym + len;
8610
8611 if (len < 1 || len > sizeof (symbuf))
8612 {
8613 bfd_set_error (bfd_error_invalid_operation);
8614 return FALSE;
8615 }
8616
8617 switch (* sym)
8618 {
8619 case '.':
8620 *result = dot;
8621 *symp = sym + 1;
8622 return TRUE;
8623
8624 case '#':
8625 ++sym;
8626 *result = strtoul (sym, (char **) symp, 16);
8627 return TRUE;
8628
8629 case 'S':
8630 symbol_is_section = TRUE;
8631 /* Fall through. */
8632 case 's':
8633 ++sym;
8634 symlen = strtol (sym, (char **) symp, 10);
8635 sym = *symp + 1; /* Skip the trailing ':'. */
8636
8637 if (symend < sym || symlen + 1 > sizeof (symbuf))
8638 {
8639 bfd_set_error (bfd_error_invalid_operation);
8640 return FALSE;
8641 }
8642
8643 memcpy (symbuf, sym, symlen);
8644 symbuf[symlen] = '\0';
8645 *symp = sym + symlen;
8646
8647 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8648 the symbol as a section, or vice-versa. so we're pretty liberal in our
8649 interpretation here; section means "try section first", not "must be a
8650 section", and likewise with symbol. */
8651
8652 if (symbol_is_section)
8653 {
8654 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8655 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8656 isymbuf, locsymcount))
8657 {
8658 undefined_reference ("section", symbuf);
8659 return FALSE;
8660 }
8661 }
8662 else
8663 {
8664 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8665 isymbuf, locsymcount)
8666 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8667 result, input_bfd))
8668 {
8669 undefined_reference ("symbol", symbuf);
8670 return FALSE;
8671 }
8672 }
8673
8674 return TRUE;
8675
8676 /* All that remains are operators. */
8677
8678 #define UNARY_OP(op) \
8679 if (strncmp (sym, #op, strlen (#op)) == 0) \
8680 { \
8681 sym += strlen (#op); \
8682 if (*sym == ':') \
8683 ++sym; \
8684 *symp = sym; \
8685 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8686 isymbuf, locsymcount, signed_p)) \
8687 return FALSE; \
8688 if (signed_p) \
8689 *result = op ((bfd_signed_vma) a); \
8690 else \
8691 *result = op a; \
8692 return TRUE; \
8693 }
8694
8695 #define BINARY_OP(op) \
8696 if (strncmp (sym, #op, strlen (#op)) == 0) \
8697 { \
8698 sym += strlen (#op); \
8699 if (*sym == ':') \
8700 ++sym; \
8701 *symp = sym; \
8702 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8703 isymbuf, locsymcount, signed_p)) \
8704 return FALSE; \
8705 ++*symp; \
8706 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8707 isymbuf, locsymcount, signed_p)) \
8708 return FALSE; \
8709 if (signed_p) \
8710 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8711 else \
8712 *result = a op b; \
8713 return TRUE; \
8714 }
8715
8716 default:
8717 UNARY_OP (0-);
8718 BINARY_OP (<<);
8719 BINARY_OP (>>);
8720 BINARY_OP (==);
8721 BINARY_OP (!=);
8722 BINARY_OP (<=);
8723 BINARY_OP (>=);
8724 BINARY_OP (&&);
8725 BINARY_OP (||);
8726 UNARY_OP (~);
8727 UNARY_OP (!);
8728 BINARY_OP (*);
8729 BINARY_OP (/);
8730 BINARY_OP (%);
8731 BINARY_OP (^);
8732 BINARY_OP (|);
8733 BINARY_OP (&);
8734 BINARY_OP (+);
8735 BINARY_OP (-);
8736 BINARY_OP (<);
8737 BINARY_OP (>);
8738 #undef UNARY_OP
8739 #undef BINARY_OP
8740 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8741 bfd_set_error (bfd_error_invalid_operation);
8742 return FALSE;
8743 }
8744 }
8745
8746 static void
8747 put_value (bfd_vma size,
8748 unsigned long chunksz,
8749 bfd *input_bfd,
8750 bfd_vma x,
8751 bfd_byte *location)
8752 {
8753 location += (size - chunksz);
8754
8755 for (; size; size -= chunksz, location -= chunksz)
8756 {
8757 switch (chunksz)
8758 {
8759 case 1:
8760 bfd_put_8 (input_bfd, x, location);
8761 x >>= 8;
8762 break;
8763 case 2:
8764 bfd_put_16 (input_bfd, x, location);
8765 x >>= 16;
8766 break;
8767 case 4:
8768 bfd_put_32 (input_bfd, x, location);
8769 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8770 x >>= 16;
8771 x >>= 16;
8772 break;
8773 #ifdef BFD64
8774 case 8:
8775 bfd_put_64 (input_bfd, x, location);
8776 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8777 x >>= 32;
8778 x >>= 32;
8779 break;
8780 #endif
8781 default:
8782 abort ();
8783 break;
8784 }
8785 }
8786 }
8787
8788 static bfd_vma
8789 get_value (bfd_vma size,
8790 unsigned long chunksz,
8791 bfd *input_bfd,
8792 bfd_byte *location)
8793 {
8794 int shift;
8795 bfd_vma x = 0;
8796
8797 /* Sanity checks. */
8798 BFD_ASSERT (chunksz <= sizeof (x)
8799 && size >= chunksz
8800 && chunksz != 0
8801 && (size % chunksz) == 0
8802 && input_bfd != NULL
8803 && location != NULL);
8804
8805 if (chunksz == sizeof (x))
8806 {
8807 BFD_ASSERT (size == chunksz);
8808
8809 /* Make sure that we do not perform an undefined shift operation.
8810 We know that size == chunksz so there will only be one iteration
8811 of the loop below. */
8812 shift = 0;
8813 }
8814 else
8815 shift = 8 * chunksz;
8816
8817 for (; size; size -= chunksz, location += chunksz)
8818 {
8819 switch (chunksz)
8820 {
8821 case 1:
8822 x = (x << shift) | bfd_get_8 (input_bfd, location);
8823 break;
8824 case 2:
8825 x = (x << shift) | bfd_get_16 (input_bfd, location);
8826 break;
8827 case 4:
8828 x = (x << shift) | bfd_get_32 (input_bfd, location);
8829 break;
8830 #ifdef BFD64
8831 case 8:
8832 x = (x << shift) | bfd_get_64 (input_bfd, location);
8833 break;
8834 #endif
8835 default:
8836 abort ();
8837 }
8838 }
8839 return x;
8840 }
8841
8842 static void
8843 decode_complex_addend (unsigned long *start, /* in bits */
8844 unsigned long *oplen, /* in bits */
8845 unsigned long *len, /* in bits */
8846 unsigned long *wordsz, /* in bytes */
8847 unsigned long *chunksz, /* in bytes */
8848 unsigned long *lsb0_p,
8849 unsigned long *signed_p,
8850 unsigned long *trunc_p,
8851 unsigned long encoded)
8852 {
8853 * start = encoded & 0x3F;
8854 * len = (encoded >> 6) & 0x3F;
8855 * oplen = (encoded >> 12) & 0x3F;
8856 * wordsz = (encoded >> 18) & 0xF;
8857 * chunksz = (encoded >> 22) & 0xF;
8858 * lsb0_p = (encoded >> 27) & 1;
8859 * signed_p = (encoded >> 28) & 1;
8860 * trunc_p = (encoded >> 29) & 1;
8861 }
8862
8863 bfd_reloc_status_type
8864 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8865 asection *input_section,
8866 bfd_byte *contents,
8867 Elf_Internal_Rela *rel,
8868 bfd_vma relocation)
8869 {
8870 bfd_vma shift, x, mask;
8871 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8872 bfd_reloc_status_type r;
8873 bfd_size_type octets;
8874
8875 /* Perform this reloc, since it is complex.
8876 (this is not to say that it necessarily refers to a complex
8877 symbol; merely that it is a self-describing CGEN based reloc.
8878 i.e. the addend has the complete reloc information (bit start, end,
8879 word size, etc) encoded within it.). */
8880
8881 decode_complex_addend (&start, &oplen, &len, &wordsz,
8882 &chunksz, &lsb0_p, &signed_p,
8883 &trunc_p, rel->r_addend);
8884
8885 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8886
8887 if (lsb0_p)
8888 shift = (start + 1) - len;
8889 else
8890 shift = (8 * wordsz) - (start + len);
8891
8892 octets = rel->r_offset * bfd_octets_per_byte (input_bfd, input_section);
8893 x = get_value (wordsz, chunksz, input_bfd, contents + octets);
8894
8895 #ifdef DEBUG
8896 printf ("Doing complex reloc: "
8897 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8898 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8899 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8900 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8901 oplen, (unsigned long) x, (unsigned long) mask,
8902 (unsigned long) relocation);
8903 #endif
8904
8905 r = bfd_reloc_ok;
8906 if (! trunc_p)
8907 /* Now do an overflow check. */
8908 r = bfd_check_overflow ((signed_p
8909 ? complain_overflow_signed
8910 : complain_overflow_unsigned),
8911 len, 0, (8 * wordsz),
8912 relocation);
8913
8914 /* Do the deed. */
8915 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8916
8917 #ifdef DEBUG
8918 printf (" relocation: %8.8lx\n"
8919 " shifted mask: %8.8lx\n"
8920 " shifted/masked reloc: %8.8lx\n"
8921 " result: %8.8lx\n",
8922 (unsigned long) relocation, (unsigned long) (mask << shift),
8923 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8924 #endif
8925 put_value (wordsz, chunksz, input_bfd, x, contents + octets);
8926 return r;
8927 }
8928
8929 /* Functions to read r_offset from external (target order) reloc
8930 entry. Faster than bfd_getl32 et al, because we let the compiler
8931 know the value is aligned. */
8932
8933 static bfd_vma
8934 ext32l_r_offset (const void *p)
8935 {
8936 union aligned32
8937 {
8938 uint32_t v;
8939 unsigned char c[4];
8940 };
8941 const union aligned32 *a
8942 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8943
8944 uint32_t aval = ( (uint32_t) a->c[0]
8945 | (uint32_t) a->c[1] << 8
8946 | (uint32_t) a->c[2] << 16
8947 | (uint32_t) a->c[3] << 24);
8948 return aval;
8949 }
8950
8951 static bfd_vma
8952 ext32b_r_offset (const void *p)
8953 {
8954 union aligned32
8955 {
8956 uint32_t v;
8957 unsigned char c[4];
8958 };
8959 const union aligned32 *a
8960 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8961
8962 uint32_t aval = ( (uint32_t) a->c[0] << 24
8963 | (uint32_t) a->c[1] << 16
8964 | (uint32_t) a->c[2] << 8
8965 | (uint32_t) a->c[3]);
8966 return aval;
8967 }
8968
8969 #ifdef BFD_HOST_64_BIT
8970 static bfd_vma
8971 ext64l_r_offset (const void *p)
8972 {
8973 union aligned64
8974 {
8975 uint64_t v;
8976 unsigned char c[8];
8977 };
8978 const union aligned64 *a
8979 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8980
8981 uint64_t aval = ( (uint64_t) a->c[0]
8982 | (uint64_t) a->c[1] << 8
8983 | (uint64_t) a->c[2] << 16
8984 | (uint64_t) a->c[3] << 24
8985 | (uint64_t) a->c[4] << 32
8986 | (uint64_t) a->c[5] << 40
8987 | (uint64_t) a->c[6] << 48
8988 | (uint64_t) a->c[7] << 56);
8989 return aval;
8990 }
8991
8992 static bfd_vma
8993 ext64b_r_offset (const void *p)
8994 {
8995 union aligned64
8996 {
8997 uint64_t v;
8998 unsigned char c[8];
8999 };
9000 const union aligned64 *a
9001 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
9002
9003 uint64_t aval = ( (uint64_t) a->c[0] << 56
9004 | (uint64_t) a->c[1] << 48
9005 | (uint64_t) a->c[2] << 40
9006 | (uint64_t) a->c[3] << 32
9007 | (uint64_t) a->c[4] << 24
9008 | (uint64_t) a->c[5] << 16
9009 | (uint64_t) a->c[6] << 8
9010 | (uint64_t) a->c[7]);
9011 return aval;
9012 }
9013 #endif
9014
9015 /* When performing a relocatable link, the input relocations are
9016 preserved. But, if they reference global symbols, the indices
9017 referenced must be updated. Update all the relocations found in
9018 RELDATA. */
9019
9020 static bfd_boolean
9021 elf_link_adjust_relocs (bfd *abfd,
9022 asection *sec,
9023 struct bfd_elf_section_reloc_data *reldata,
9024 bfd_boolean sort,
9025 struct bfd_link_info *info)
9026 {
9027 unsigned int i;
9028 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9029 bfd_byte *erela;
9030 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9031 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9032 bfd_vma r_type_mask;
9033 int r_sym_shift;
9034 unsigned int count = reldata->count;
9035 struct elf_link_hash_entry **rel_hash = reldata->hashes;
9036
9037 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
9038 {
9039 swap_in = bed->s->swap_reloc_in;
9040 swap_out = bed->s->swap_reloc_out;
9041 }
9042 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
9043 {
9044 swap_in = bed->s->swap_reloca_in;
9045 swap_out = bed->s->swap_reloca_out;
9046 }
9047 else
9048 abort ();
9049
9050 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
9051 abort ();
9052
9053 if (bed->s->arch_size == 32)
9054 {
9055 r_type_mask = 0xff;
9056 r_sym_shift = 8;
9057 }
9058 else
9059 {
9060 r_type_mask = 0xffffffff;
9061 r_sym_shift = 32;
9062 }
9063
9064 erela = reldata->hdr->contents;
9065 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
9066 {
9067 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
9068 unsigned int j;
9069
9070 if (*rel_hash == NULL)
9071 continue;
9072
9073 if ((*rel_hash)->indx == -2
9074 && info->gc_sections
9075 && ! info->gc_keep_exported)
9076 {
9077 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
9078 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
9079 abfd, sec,
9080 (*rel_hash)->root.root.string);
9081 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
9082 abfd, sec);
9083 bfd_set_error (bfd_error_invalid_operation);
9084 return FALSE;
9085 }
9086 BFD_ASSERT ((*rel_hash)->indx >= 0);
9087
9088 (*swap_in) (abfd, erela, irela);
9089 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
9090 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
9091 | (irela[j].r_info & r_type_mask));
9092 (*swap_out) (abfd, irela, erela);
9093 }
9094
9095 if (bed->elf_backend_update_relocs)
9096 (*bed->elf_backend_update_relocs) (sec, reldata);
9097
9098 if (sort && count != 0)
9099 {
9100 bfd_vma (*ext_r_off) (const void *);
9101 bfd_vma r_off;
9102 size_t elt_size;
9103 bfd_byte *base, *end, *p, *loc;
9104 bfd_byte *buf = NULL;
9105
9106 if (bed->s->arch_size == 32)
9107 {
9108 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9109 ext_r_off = ext32l_r_offset;
9110 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9111 ext_r_off = ext32b_r_offset;
9112 else
9113 abort ();
9114 }
9115 else
9116 {
9117 #ifdef BFD_HOST_64_BIT
9118 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9119 ext_r_off = ext64l_r_offset;
9120 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9121 ext_r_off = ext64b_r_offset;
9122 else
9123 #endif
9124 abort ();
9125 }
9126
9127 /* Must use a stable sort here. A modified insertion sort,
9128 since the relocs are mostly sorted already. */
9129 elt_size = reldata->hdr->sh_entsize;
9130 base = reldata->hdr->contents;
9131 end = base + count * elt_size;
9132 if (elt_size > sizeof (Elf64_External_Rela))
9133 abort ();
9134
9135 /* Ensure the first element is lowest. This acts as a sentinel,
9136 speeding the main loop below. */
9137 r_off = (*ext_r_off) (base);
9138 for (p = loc = base; (p += elt_size) < end; )
9139 {
9140 bfd_vma r_off2 = (*ext_r_off) (p);
9141 if (r_off > r_off2)
9142 {
9143 r_off = r_off2;
9144 loc = p;
9145 }
9146 }
9147 if (loc != base)
9148 {
9149 /* Don't just swap *base and *loc as that changes the order
9150 of the original base[0] and base[1] if they happen to
9151 have the same r_offset. */
9152 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
9153 memcpy (onebuf, loc, elt_size);
9154 memmove (base + elt_size, base, loc - base);
9155 memcpy (base, onebuf, elt_size);
9156 }
9157
9158 for (p = base + elt_size; (p += elt_size) < end; )
9159 {
9160 /* base to p is sorted, *p is next to insert. */
9161 r_off = (*ext_r_off) (p);
9162 /* Search the sorted region for location to insert. */
9163 loc = p - elt_size;
9164 while (r_off < (*ext_r_off) (loc))
9165 loc -= elt_size;
9166 loc += elt_size;
9167 if (loc != p)
9168 {
9169 /* Chances are there is a run of relocs to insert here,
9170 from one of more input files. Files are not always
9171 linked in order due to the way elf_link_input_bfd is
9172 called. See pr17666. */
9173 size_t sortlen = p - loc;
9174 bfd_vma r_off2 = (*ext_r_off) (loc);
9175 size_t runlen = elt_size;
9176 size_t buf_size = 96 * 1024;
9177 while (p + runlen < end
9178 && (sortlen <= buf_size
9179 || runlen + elt_size <= buf_size)
9180 && r_off2 > (*ext_r_off) (p + runlen))
9181 runlen += elt_size;
9182 if (buf == NULL)
9183 {
9184 buf = bfd_malloc (buf_size);
9185 if (buf == NULL)
9186 return FALSE;
9187 }
9188 if (runlen < sortlen)
9189 {
9190 memcpy (buf, p, runlen);
9191 memmove (loc + runlen, loc, sortlen);
9192 memcpy (loc, buf, runlen);
9193 }
9194 else
9195 {
9196 memcpy (buf, loc, sortlen);
9197 memmove (loc, p, runlen);
9198 memcpy (loc + runlen, buf, sortlen);
9199 }
9200 p += runlen - elt_size;
9201 }
9202 }
9203 /* Hashes are no longer valid. */
9204 free (reldata->hashes);
9205 reldata->hashes = NULL;
9206 free (buf);
9207 }
9208 return TRUE;
9209 }
9210
9211 struct elf_link_sort_rela
9212 {
9213 union {
9214 bfd_vma offset;
9215 bfd_vma sym_mask;
9216 } u;
9217 enum elf_reloc_type_class type;
9218 /* We use this as an array of size int_rels_per_ext_rel. */
9219 Elf_Internal_Rela rela[1];
9220 };
9221
9222 /* qsort stability here and for cmp2 is only an issue if multiple
9223 dynamic relocations are emitted at the same address. But targets
9224 that apply a series of dynamic relocations each operating on the
9225 result of the prior relocation can't use -z combreloc as
9226 implemented anyway. Such schemes tend to be broken by sorting on
9227 symbol index. That leaves dynamic NONE relocs as the only other
9228 case where ld might emit multiple relocs at the same address, and
9229 those are only emitted due to target bugs. */
9230
9231 static int
9232 elf_link_sort_cmp1 (const void *A, const void *B)
9233 {
9234 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9235 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9236 int relativea, relativeb;
9237
9238 relativea = a->type == reloc_class_relative;
9239 relativeb = b->type == reloc_class_relative;
9240
9241 if (relativea < relativeb)
9242 return 1;
9243 if (relativea > relativeb)
9244 return -1;
9245 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9246 return -1;
9247 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9248 return 1;
9249 if (a->rela->r_offset < b->rela->r_offset)
9250 return -1;
9251 if (a->rela->r_offset > b->rela->r_offset)
9252 return 1;
9253 return 0;
9254 }
9255
9256 static int
9257 elf_link_sort_cmp2 (const void *A, const void *B)
9258 {
9259 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9260 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9261
9262 if (a->type < b->type)
9263 return -1;
9264 if (a->type > b->type)
9265 return 1;
9266 if (a->u.offset < b->u.offset)
9267 return -1;
9268 if (a->u.offset > b->u.offset)
9269 return 1;
9270 if (a->rela->r_offset < b->rela->r_offset)
9271 return -1;
9272 if (a->rela->r_offset > b->rela->r_offset)
9273 return 1;
9274 return 0;
9275 }
9276
9277 static size_t
9278 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9279 {
9280 asection *dynamic_relocs;
9281 asection *rela_dyn;
9282 asection *rel_dyn;
9283 bfd_size_type count, size;
9284 size_t i, ret, sort_elt, ext_size;
9285 bfd_byte *sort, *s_non_relative, *p;
9286 struct elf_link_sort_rela *sq;
9287 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9288 int i2e = bed->s->int_rels_per_ext_rel;
9289 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
9290 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9291 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9292 struct bfd_link_order *lo;
9293 bfd_vma r_sym_mask;
9294 bfd_boolean use_rela;
9295
9296 /* Find a dynamic reloc section. */
9297 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9298 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9299 if (rela_dyn != NULL && rela_dyn->size > 0
9300 && rel_dyn != NULL && rel_dyn->size > 0)
9301 {
9302 bfd_boolean use_rela_initialised = FALSE;
9303
9304 /* This is just here to stop gcc from complaining.
9305 Its initialization checking code is not perfect. */
9306 use_rela = TRUE;
9307
9308 /* Both sections are present. Examine the sizes
9309 of the indirect sections to help us choose. */
9310 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9311 if (lo->type == bfd_indirect_link_order)
9312 {
9313 asection *o = lo->u.indirect.section;
9314
9315 if ((o->size % bed->s->sizeof_rela) == 0)
9316 {
9317 if ((o->size % bed->s->sizeof_rel) == 0)
9318 /* Section size is divisible by both rel and rela sizes.
9319 It is of no help to us. */
9320 ;
9321 else
9322 {
9323 /* Section size is only divisible by rela. */
9324 if (use_rela_initialised && !use_rela)
9325 {
9326 _bfd_error_handler (_("%pB: unable to sort relocs - "
9327 "they are in more than one size"),
9328 abfd);
9329 bfd_set_error (bfd_error_invalid_operation);
9330 return 0;
9331 }
9332 else
9333 {
9334 use_rela = TRUE;
9335 use_rela_initialised = TRUE;
9336 }
9337 }
9338 }
9339 else if ((o->size % bed->s->sizeof_rel) == 0)
9340 {
9341 /* Section size is only divisible by rel. */
9342 if (use_rela_initialised && use_rela)
9343 {
9344 _bfd_error_handler (_("%pB: unable to sort relocs - "
9345 "they are in more than one size"),
9346 abfd);
9347 bfd_set_error (bfd_error_invalid_operation);
9348 return 0;
9349 }
9350 else
9351 {
9352 use_rela = FALSE;
9353 use_rela_initialised = TRUE;
9354 }
9355 }
9356 else
9357 {
9358 /* The section size is not divisible by either -
9359 something is wrong. */
9360 _bfd_error_handler (_("%pB: unable to sort relocs - "
9361 "they are of an unknown size"), abfd);
9362 bfd_set_error (bfd_error_invalid_operation);
9363 return 0;
9364 }
9365 }
9366
9367 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9368 if (lo->type == bfd_indirect_link_order)
9369 {
9370 asection *o = lo->u.indirect.section;
9371
9372 if ((o->size % bed->s->sizeof_rela) == 0)
9373 {
9374 if ((o->size % bed->s->sizeof_rel) == 0)
9375 /* Section size is divisible by both rel and rela sizes.
9376 It is of no help to us. */
9377 ;
9378 else
9379 {
9380 /* Section size is only divisible by rela. */
9381 if (use_rela_initialised && !use_rela)
9382 {
9383 _bfd_error_handler (_("%pB: unable to sort relocs - "
9384 "they are in more than one size"),
9385 abfd);
9386 bfd_set_error (bfd_error_invalid_operation);
9387 return 0;
9388 }
9389 else
9390 {
9391 use_rela = TRUE;
9392 use_rela_initialised = TRUE;
9393 }
9394 }
9395 }
9396 else if ((o->size % bed->s->sizeof_rel) == 0)
9397 {
9398 /* Section size is only divisible by rel. */
9399 if (use_rela_initialised && use_rela)
9400 {
9401 _bfd_error_handler (_("%pB: unable to sort relocs - "
9402 "they are in more than one size"),
9403 abfd);
9404 bfd_set_error (bfd_error_invalid_operation);
9405 return 0;
9406 }
9407 else
9408 {
9409 use_rela = FALSE;
9410 use_rela_initialised = TRUE;
9411 }
9412 }
9413 else
9414 {
9415 /* The section size is not divisible by either -
9416 something is wrong. */
9417 _bfd_error_handler (_("%pB: unable to sort relocs - "
9418 "they are of an unknown size"), abfd);
9419 bfd_set_error (bfd_error_invalid_operation);
9420 return 0;
9421 }
9422 }
9423
9424 if (! use_rela_initialised)
9425 /* Make a guess. */
9426 use_rela = TRUE;
9427 }
9428 else if (rela_dyn != NULL && rela_dyn->size > 0)
9429 use_rela = TRUE;
9430 else if (rel_dyn != NULL && rel_dyn->size > 0)
9431 use_rela = FALSE;
9432 else
9433 return 0;
9434
9435 if (use_rela)
9436 {
9437 dynamic_relocs = rela_dyn;
9438 ext_size = bed->s->sizeof_rela;
9439 swap_in = bed->s->swap_reloca_in;
9440 swap_out = bed->s->swap_reloca_out;
9441 }
9442 else
9443 {
9444 dynamic_relocs = rel_dyn;
9445 ext_size = bed->s->sizeof_rel;
9446 swap_in = bed->s->swap_reloc_in;
9447 swap_out = bed->s->swap_reloc_out;
9448 }
9449
9450 size = 0;
9451 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9452 if (lo->type == bfd_indirect_link_order)
9453 size += lo->u.indirect.section->size;
9454
9455 if (size != dynamic_relocs->size)
9456 return 0;
9457
9458 sort_elt = (sizeof (struct elf_link_sort_rela)
9459 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9460
9461 count = dynamic_relocs->size / ext_size;
9462 if (count == 0)
9463 return 0;
9464 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9465
9466 if (sort == NULL)
9467 {
9468 (*info->callbacks->warning)
9469 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9470 return 0;
9471 }
9472
9473 if (bed->s->arch_size == 32)
9474 r_sym_mask = ~(bfd_vma) 0xff;
9475 else
9476 r_sym_mask = ~(bfd_vma) 0xffffffff;
9477
9478 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9479 if (lo->type == bfd_indirect_link_order)
9480 {
9481 bfd_byte *erel, *erelend;
9482 asection *o = lo->u.indirect.section;
9483
9484 if (o->contents == NULL && o->size != 0)
9485 {
9486 /* This is a reloc section that is being handled as a normal
9487 section. See bfd_section_from_shdr. We can't combine
9488 relocs in this case. */
9489 free (sort);
9490 return 0;
9491 }
9492 erel = o->contents;
9493 erelend = o->contents + o->size;
9494 p = sort + o->output_offset * opb / ext_size * sort_elt;
9495
9496 while (erel < erelend)
9497 {
9498 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9499
9500 (*swap_in) (abfd, erel, s->rela);
9501 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9502 s->u.sym_mask = r_sym_mask;
9503 p += sort_elt;
9504 erel += ext_size;
9505 }
9506 }
9507
9508 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9509
9510 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9511 {
9512 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9513 if (s->type != reloc_class_relative)
9514 break;
9515 }
9516 ret = i;
9517 s_non_relative = p;
9518
9519 sq = (struct elf_link_sort_rela *) s_non_relative;
9520 for (; i < count; i++, p += sort_elt)
9521 {
9522 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9523 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9524 sq = sp;
9525 sp->u.offset = sq->rela->r_offset;
9526 }
9527
9528 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9529
9530 struct elf_link_hash_table *htab = elf_hash_table (info);
9531 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9532 {
9533 /* We have plt relocs in .rela.dyn. */
9534 sq = (struct elf_link_sort_rela *) sort;
9535 for (i = 0; i < count; i++)
9536 if (sq[count - i - 1].type != reloc_class_plt)
9537 break;
9538 if (i != 0 && htab->srelplt->size == i * ext_size)
9539 {
9540 struct bfd_link_order **plo;
9541 /* Put srelplt link_order last. This is so the output_offset
9542 set in the next loop is correct for DT_JMPREL. */
9543 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9544 if ((*plo)->type == bfd_indirect_link_order
9545 && (*plo)->u.indirect.section == htab->srelplt)
9546 {
9547 lo = *plo;
9548 *plo = lo->next;
9549 }
9550 else
9551 plo = &(*plo)->next;
9552 *plo = lo;
9553 lo->next = NULL;
9554 dynamic_relocs->map_tail.link_order = lo;
9555 }
9556 }
9557
9558 p = sort;
9559 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9560 if (lo->type == bfd_indirect_link_order)
9561 {
9562 bfd_byte *erel, *erelend;
9563 asection *o = lo->u.indirect.section;
9564
9565 erel = o->contents;
9566 erelend = o->contents + o->size;
9567 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9568 while (erel < erelend)
9569 {
9570 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9571 (*swap_out) (abfd, s->rela, erel);
9572 p += sort_elt;
9573 erel += ext_size;
9574 }
9575 }
9576
9577 free (sort);
9578 *psec = dynamic_relocs;
9579 return ret;
9580 }
9581
9582 /* Add a symbol to the output symbol string table. */
9583
9584 static int
9585 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9586 const char *name,
9587 Elf_Internal_Sym *elfsym,
9588 asection *input_sec,
9589 struct elf_link_hash_entry *h)
9590 {
9591 int (*output_symbol_hook)
9592 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9593 struct elf_link_hash_entry *);
9594 struct elf_link_hash_table *hash_table;
9595 const struct elf_backend_data *bed;
9596 bfd_size_type strtabsize;
9597
9598 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9599
9600 bed = get_elf_backend_data (flinfo->output_bfd);
9601 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9602 if (output_symbol_hook != NULL)
9603 {
9604 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9605 if (ret != 1)
9606 return ret;
9607 }
9608
9609 if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC)
9610 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc;
9611 if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE)
9612 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique;
9613
9614 if (name == NULL
9615 || *name == '\0'
9616 || (input_sec->flags & SEC_EXCLUDE))
9617 elfsym->st_name = (unsigned long) -1;
9618 else
9619 {
9620 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9621 to get the final offset for st_name. */
9622 elfsym->st_name
9623 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9624 name, FALSE);
9625 if (elfsym->st_name == (unsigned long) -1)
9626 return 0;
9627 }
9628
9629 hash_table = elf_hash_table (flinfo->info);
9630 strtabsize = hash_table->strtabsize;
9631 if (strtabsize <= hash_table->strtabcount)
9632 {
9633 strtabsize += strtabsize;
9634 hash_table->strtabsize = strtabsize;
9635 strtabsize *= sizeof (*hash_table->strtab);
9636 hash_table->strtab
9637 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9638 strtabsize);
9639 if (hash_table->strtab == NULL)
9640 return 0;
9641 }
9642 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9643 hash_table->strtab[hash_table->strtabcount].dest_index
9644 = hash_table->strtabcount;
9645 hash_table->strtab[hash_table->strtabcount].destshndx_index
9646 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9647
9648 flinfo->output_bfd->symcount += 1;
9649 hash_table->strtabcount += 1;
9650
9651 return 1;
9652 }
9653
9654 /* Swap symbols out to the symbol table and flush the output symbols to
9655 the file. */
9656
9657 static bfd_boolean
9658 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9659 {
9660 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9661 size_t amt;
9662 size_t i;
9663 const struct elf_backend_data *bed;
9664 bfd_byte *symbuf;
9665 Elf_Internal_Shdr *hdr;
9666 file_ptr pos;
9667 bfd_boolean ret;
9668
9669 if (!hash_table->strtabcount)
9670 return TRUE;
9671
9672 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9673
9674 bed = get_elf_backend_data (flinfo->output_bfd);
9675
9676 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9677 symbuf = (bfd_byte *) bfd_malloc (amt);
9678 if (symbuf == NULL)
9679 return FALSE;
9680
9681 if (flinfo->symshndxbuf)
9682 {
9683 amt = sizeof (Elf_External_Sym_Shndx);
9684 amt *= bfd_get_symcount (flinfo->output_bfd);
9685 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9686 if (flinfo->symshndxbuf == NULL)
9687 {
9688 free (symbuf);
9689 return FALSE;
9690 }
9691 }
9692
9693 for (i = 0; i < hash_table->strtabcount; i++)
9694 {
9695 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9696 if (elfsym->sym.st_name == (unsigned long) -1)
9697 elfsym->sym.st_name = 0;
9698 else
9699 elfsym->sym.st_name
9700 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9701 elfsym->sym.st_name);
9702 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9703 ((bfd_byte *) symbuf
9704 + (elfsym->dest_index
9705 * bed->s->sizeof_sym)),
9706 (flinfo->symshndxbuf
9707 + elfsym->destshndx_index));
9708 }
9709
9710 /* Allow the linker to examine the strtab and symtab now they are
9711 populated. */
9712
9713 if (flinfo->info->callbacks->examine_strtab)
9714 flinfo->info->callbacks->examine_strtab (hash_table->strtab,
9715 hash_table->strtabcount,
9716 flinfo->symstrtab);
9717
9718 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9719 pos = hdr->sh_offset + hdr->sh_size;
9720 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9721 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9722 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9723 {
9724 hdr->sh_size += amt;
9725 ret = TRUE;
9726 }
9727 else
9728 ret = FALSE;
9729
9730 free (symbuf);
9731
9732 free (hash_table->strtab);
9733 hash_table->strtab = NULL;
9734
9735 return ret;
9736 }
9737
9738 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9739
9740 static bfd_boolean
9741 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9742 {
9743 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9744 && sym->st_shndx < SHN_LORESERVE)
9745 {
9746 /* The gABI doesn't support dynamic symbols in output sections
9747 beyond 64k. */
9748 _bfd_error_handler
9749 /* xgettext:c-format */
9750 (_("%pB: too many sections: %d (>= %d)"),
9751 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9752 bfd_set_error (bfd_error_nonrepresentable_section);
9753 return FALSE;
9754 }
9755 return TRUE;
9756 }
9757
9758 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9759 allowing an unsatisfied unversioned symbol in the DSO to match a
9760 versioned symbol that would normally require an explicit version.
9761 We also handle the case that a DSO references a hidden symbol
9762 which may be satisfied by a versioned symbol in another DSO. */
9763
9764 static bfd_boolean
9765 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9766 const struct elf_backend_data *bed,
9767 struct elf_link_hash_entry *h)
9768 {
9769 bfd *abfd;
9770 struct elf_link_loaded_list *loaded;
9771
9772 if (!is_elf_hash_table (info->hash))
9773 return FALSE;
9774
9775 /* Check indirect symbol. */
9776 while (h->root.type == bfd_link_hash_indirect)
9777 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9778
9779 switch (h->root.type)
9780 {
9781 default:
9782 abfd = NULL;
9783 break;
9784
9785 case bfd_link_hash_undefined:
9786 case bfd_link_hash_undefweak:
9787 abfd = h->root.u.undef.abfd;
9788 if (abfd == NULL
9789 || (abfd->flags & DYNAMIC) == 0
9790 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9791 return FALSE;
9792 break;
9793
9794 case bfd_link_hash_defined:
9795 case bfd_link_hash_defweak:
9796 abfd = h->root.u.def.section->owner;
9797 break;
9798
9799 case bfd_link_hash_common:
9800 abfd = h->root.u.c.p->section->owner;
9801 break;
9802 }
9803 BFD_ASSERT (abfd != NULL);
9804
9805 for (loaded = elf_hash_table (info)->dyn_loaded;
9806 loaded != NULL;
9807 loaded = loaded->next)
9808 {
9809 bfd *input;
9810 Elf_Internal_Shdr *hdr;
9811 size_t symcount;
9812 size_t extsymcount;
9813 size_t extsymoff;
9814 Elf_Internal_Shdr *versymhdr;
9815 Elf_Internal_Sym *isym;
9816 Elf_Internal_Sym *isymend;
9817 Elf_Internal_Sym *isymbuf;
9818 Elf_External_Versym *ever;
9819 Elf_External_Versym *extversym;
9820
9821 input = loaded->abfd;
9822
9823 /* We check each DSO for a possible hidden versioned definition. */
9824 if (input == abfd
9825 || elf_dynversym (input) == 0)
9826 continue;
9827
9828 hdr = &elf_tdata (input)->dynsymtab_hdr;
9829
9830 symcount = hdr->sh_size / bed->s->sizeof_sym;
9831 if (elf_bad_symtab (input))
9832 {
9833 extsymcount = symcount;
9834 extsymoff = 0;
9835 }
9836 else
9837 {
9838 extsymcount = symcount - hdr->sh_info;
9839 extsymoff = hdr->sh_info;
9840 }
9841
9842 if (extsymcount == 0)
9843 continue;
9844
9845 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9846 NULL, NULL, NULL);
9847 if (isymbuf == NULL)
9848 return FALSE;
9849
9850 /* Read in any version definitions. */
9851 versymhdr = &elf_tdata (input)->dynversym_hdr;
9852 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9853 || (extversym = (Elf_External_Versym *)
9854 _bfd_malloc_and_read (input, versymhdr->sh_size,
9855 versymhdr->sh_size)) == NULL)
9856 {
9857 free (isymbuf);
9858 return FALSE;
9859 }
9860
9861 ever = extversym + extsymoff;
9862 isymend = isymbuf + extsymcount;
9863 for (isym = isymbuf; isym < isymend; isym++, ever++)
9864 {
9865 const char *name;
9866 Elf_Internal_Versym iver;
9867 unsigned short version_index;
9868
9869 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9870 || isym->st_shndx == SHN_UNDEF)
9871 continue;
9872
9873 name = bfd_elf_string_from_elf_section (input,
9874 hdr->sh_link,
9875 isym->st_name);
9876 if (strcmp (name, h->root.root.string) != 0)
9877 continue;
9878
9879 _bfd_elf_swap_versym_in (input, ever, &iver);
9880
9881 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9882 && !(h->def_regular
9883 && h->forced_local))
9884 {
9885 /* If we have a non-hidden versioned sym, then it should
9886 have provided a definition for the undefined sym unless
9887 it is defined in a non-shared object and forced local.
9888 */
9889 abort ();
9890 }
9891
9892 version_index = iver.vs_vers & VERSYM_VERSION;
9893 if (version_index == 1 || version_index == 2)
9894 {
9895 /* This is the base or first version. We can use it. */
9896 free (extversym);
9897 free (isymbuf);
9898 return TRUE;
9899 }
9900 }
9901
9902 free (extversym);
9903 free (isymbuf);
9904 }
9905
9906 return FALSE;
9907 }
9908
9909 /* Convert ELF common symbol TYPE. */
9910
9911 static int
9912 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9913 {
9914 /* Commom symbol can only appear in relocatable link. */
9915 if (!bfd_link_relocatable (info))
9916 abort ();
9917 switch (info->elf_stt_common)
9918 {
9919 case unchanged:
9920 break;
9921 case elf_stt_common:
9922 type = STT_COMMON;
9923 break;
9924 case no_elf_stt_common:
9925 type = STT_OBJECT;
9926 break;
9927 }
9928 return type;
9929 }
9930
9931 /* Add an external symbol to the symbol table. This is called from
9932 the hash table traversal routine. When generating a shared object,
9933 we go through the symbol table twice. The first time we output
9934 anything that might have been forced to local scope in a version
9935 script. The second time we output the symbols that are still
9936 global symbols. */
9937
9938 static bfd_boolean
9939 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9940 {
9941 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9942 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9943 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9944 bfd_boolean strip;
9945 Elf_Internal_Sym sym;
9946 asection *input_sec;
9947 const struct elf_backend_data *bed;
9948 long indx;
9949 int ret;
9950 unsigned int type;
9951
9952 if (h->root.type == bfd_link_hash_warning)
9953 {
9954 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9955 if (h->root.type == bfd_link_hash_new)
9956 return TRUE;
9957 }
9958
9959 /* Decide whether to output this symbol in this pass. */
9960 if (eoinfo->localsyms)
9961 {
9962 if (!h->forced_local)
9963 return TRUE;
9964 }
9965 else
9966 {
9967 if (h->forced_local)
9968 return TRUE;
9969 }
9970
9971 bed = get_elf_backend_data (flinfo->output_bfd);
9972
9973 if (h->root.type == bfd_link_hash_undefined)
9974 {
9975 /* If we have an undefined symbol reference here then it must have
9976 come from a shared library that is being linked in. (Undefined
9977 references in regular files have already been handled unless
9978 they are in unreferenced sections which are removed by garbage
9979 collection). */
9980 bfd_boolean ignore_undef = FALSE;
9981
9982 /* Some symbols may be special in that the fact that they're
9983 undefined can be safely ignored - let backend determine that. */
9984 if (bed->elf_backend_ignore_undef_symbol)
9985 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9986
9987 /* If we are reporting errors for this situation then do so now. */
9988 if (!ignore_undef
9989 && h->ref_dynamic_nonweak
9990 && (!h->ref_regular || flinfo->info->gc_sections)
9991 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9992 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9993 {
9994 flinfo->info->callbacks->undefined_symbol
9995 (flinfo->info, h->root.root.string,
9996 h->ref_regular ? NULL : h->root.u.undef.abfd, NULL, 0,
9997 flinfo->info->unresolved_syms_in_shared_libs == RM_DIAGNOSE
9998 && !flinfo->info->warn_unresolved_syms);
9999 }
10000
10001 /* Strip a global symbol defined in a discarded section. */
10002 if (h->indx == -3)
10003 return TRUE;
10004 }
10005
10006 /* We should also warn if a forced local symbol is referenced from
10007 shared libraries. */
10008 if (bfd_link_executable (flinfo->info)
10009 && h->forced_local
10010 && h->ref_dynamic
10011 && h->def_regular
10012 && !h->dynamic_def
10013 && h->ref_dynamic_nonweak
10014 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
10015 {
10016 bfd *def_bfd;
10017 const char *msg;
10018 struct elf_link_hash_entry *hi = h;
10019
10020 /* Check indirect symbol. */
10021 while (hi->root.type == bfd_link_hash_indirect)
10022 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
10023
10024 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
10025 /* xgettext:c-format */
10026 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
10027 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
10028 /* xgettext:c-format */
10029 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
10030 else
10031 /* xgettext:c-format */
10032 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
10033 def_bfd = flinfo->output_bfd;
10034 if (hi->root.u.def.section != bfd_abs_section_ptr)
10035 def_bfd = hi->root.u.def.section->owner;
10036 _bfd_error_handler (msg, flinfo->output_bfd,
10037 h->root.root.string, def_bfd);
10038 bfd_set_error (bfd_error_bad_value);
10039 eoinfo->failed = TRUE;
10040 return FALSE;
10041 }
10042
10043 /* We don't want to output symbols that have never been mentioned by
10044 a regular file, or that we have been told to strip. However, if
10045 h->indx is set to -2, the symbol is used by a reloc and we must
10046 output it. */
10047 strip = FALSE;
10048 if (h->indx == -2)
10049 ;
10050 else if ((h->def_dynamic
10051 || h->ref_dynamic
10052 || h->root.type == bfd_link_hash_new)
10053 && !h->def_regular
10054 && !h->ref_regular)
10055 strip = TRUE;
10056 else if (flinfo->info->strip == strip_all)
10057 strip = TRUE;
10058 else if (flinfo->info->strip == strip_some
10059 && bfd_hash_lookup (flinfo->info->keep_hash,
10060 h->root.root.string, FALSE, FALSE) == NULL)
10061 strip = TRUE;
10062 else if ((h->root.type == bfd_link_hash_defined
10063 || h->root.type == bfd_link_hash_defweak)
10064 && ((flinfo->info->strip_discarded
10065 && discarded_section (h->root.u.def.section))
10066 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
10067 && h->root.u.def.section->owner != NULL
10068 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
10069 strip = TRUE;
10070 else if ((h->root.type == bfd_link_hash_undefined
10071 || h->root.type == bfd_link_hash_undefweak)
10072 && h->root.u.undef.abfd != NULL
10073 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
10074 strip = TRUE;
10075
10076 type = h->type;
10077
10078 /* If we're stripping it, and it's not a dynamic symbol, there's
10079 nothing else to do. However, if it is a forced local symbol or
10080 an ifunc symbol we need to give the backend finish_dynamic_symbol
10081 function a chance to make it dynamic. */
10082 if (strip
10083 && h->dynindx == -1
10084 && type != STT_GNU_IFUNC
10085 && !h->forced_local)
10086 return TRUE;
10087
10088 sym.st_value = 0;
10089 sym.st_size = h->size;
10090 sym.st_other = h->other;
10091 switch (h->root.type)
10092 {
10093 default:
10094 case bfd_link_hash_new:
10095 case bfd_link_hash_warning:
10096 abort ();
10097 return FALSE;
10098
10099 case bfd_link_hash_undefined:
10100 case bfd_link_hash_undefweak:
10101 input_sec = bfd_und_section_ptr;
10102 sym.st_shndx = SHN_UNDEF;
10103 break;
10104
10105 case bfd_link_hash_defined:
10106 case bfd_link_hash_defweak:
10107 {
10108 input_sec = h->root.u.def.section;
10109 if (input_sec->output_section != NULL)
10110 {
10111 sym.st_shndx =
10112 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
10113 input_sec->output_section);
10114 if (sym.st_shndx == SHN_BAD)
10115 {
10116 _bfd_error_handler
10117 /* xgettext:c-format */
10118 (_("%pB: could not find output section %pA for input section %pA"),
10119 flinfo->output_bfd, input_sec->output_section, input_sec);
10120 bfd_set_error (bfd_error_nonrepresentable_section);
10121 eoinfo->failed = TRUE;
10122 return FALSE;
10123 }
10124
10125 /* ELF symbols in relocatable files are section relative,
10126 but in nonrelocatable files they are virtual
10127 addresses. */
10128 sym.st_value = h->root.u.def.value + input_sec->output_offset;
10129 if (!bfd_link_relocatable (flinfo->info))
10130 {
10131 sym.st_value += input_sec->output_section->vma;
10132 if (h->type == STT_TLS)
10133 {
10134 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
10135 if (tls_sec != NULL)
10136 sym.st_value -= tls_sec->vma;
10137 }
10138 }
10139 }
10140 else
10141 {
10142 BFD_ASSERT (input_sec->owner == NULL
10143 || (input_sec->owner->flags & DYNAMIC) != 0);
10144 sym.st_shndx = SHN_UNDEF;
10145 input_sec = bfd_und_section_ptr;
10146 }
10147 }
10148 break;
10149
10150 case bfd_link_hash_common:
10151 input_sec = h->root.u.c.p->section;
10152 sym.st_shndx = bed->common_section_index (input_sec);
10153 sym.st_value = 1 << h->root.u.c.p->alignment_power;
10154 break;
10155
10156 case bfd_link_hash_indirect:
10157 /* These symbols are created by symbol versioning. They point
10158 to the decorated version of the name. For example, if the
10159 symbol foo@@GNU_1.2 is the default, which should be used when
10160 foo is used with no version, then we add an indirect symbol
10161 foo which points to foo@@GNU_1.2. We ignore these symbols,
10162 since the indirected symbol is already in the hash table. */
10163 return TRUE;
10164 }
10165
10166 if (type == STT_COMMON || type == STT_OBJECT)
10167 switch (h->root.type)
10168 {
10169 case bfd_link_hash_common:
10170 type = elf_link_convert_common_type (flinfo->info, type);
10171 break;
10172 case bfd_link_hash_defined:
10173 case bfd_link_hash_defweak:
10174 if (bed->common_definition (&sym))
10175 type = elf_link_convert_common_type (flinfo->info, type);
10176 else
10177 type = STT_OBJECT;
10178 break;
10179 case bfd_link_hash_undefined:
10180 case bfd_link_hash_undefweak:
10181 break;
10182 default:
10183 abort ();
10184 }
10185
10186 if (h->forced_local)
10187 {
10188 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
10189 /* Turn off visibility on local symbol. */
10190 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10191 }
10192 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
10193 else if (h->unique_global && h->def_regular)
10194 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
10195 else if (h->root.type == bfd_link_hash_undefweak
10196 || h->root.type == bfd_link_hash_defweak)
10197 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
10198 else
10199 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
10200 sym.st_target_internal = h->target_internal;
10201
10202 /* Give the processor backend a chance to tweak the symbol value,
10203 and also to finish up anything that needs to be done for this
10204 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
10205 forced local syms when non-shared is due to a historical quirk.
10206 STT_GNU_IFUNC symbol must go through PLT. */
10207 if ((h->type == STT_GNU_IFUNC
10208 && h->def_regular
10209 && !bfd_link_relocatable (flinfo->info))
10210 || ((h->dynindx != -1
10211 || h->forced_local)
10212 && ((bfd_link_pic (flinfo->info)
10213 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10214 || h->root.type != bfd_link_hash_undefweak))
10215 || !h->forced_local)
10216 && elf_hash_table (flinfo->info)->dynamic_sections_created))
10217 {
10218 if (! ((*bed->elf_backend_finish_dynamic_symbol)
10219 (flinfo->output_bfd, flinfo->info, h, &sym)))
10220 {
10221 eoinfo->failed = TRUE;
10222 return FALSE;
10223 }
10224 }
10225
10226 /* If we are marking the symbol as undefined, and there are no
10227 non-weak references to this symbol from a regular object, then
10228 mark the symbol as weak undefined; if there are non-weak
10229 references, mark the symbol as strong. We can't do this earlier,
10230 because it might not be marked as undefined until the
10231 finish_dynamic_symbol routine gets through with it. */
10232 if (sym.st_shndx == SHN_UNDEF
10233 && h->ref_regular
10234 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
10235 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
10236 {
10237 int bindtype;
10238 type = ELF_ST_TYPE (sym.st_info);
10239
10240 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10241 if (type == STT_GNU_IFUNC)
10242 type = STT_FUNC;
10243
10244 if (h->ref_regular_nonweak)
10245 bindtype = STB_GLOBAL;
10246 else
10247 bindtype = STB_WEAK;
10248 sym.st_info = ELF_ST_INFO (bindtype, type);
10249 }
10250
10251 /* If this is a symbol defined in a dynamic library, don't use the
10252 symbol size from the dynamic library. Relinking an executable
10253 against a new library may introduce gratuitous changes in the
10254 executable's symbols if we keep the size. */
10255 if (sym.st_shndx == SHN_UNDEF
10256 && !h->def_regular
10257 && h->def_dynamic)
10258 sym.st_size = 0;
10259
10260 /* If a non-weak symbol with non-default visibility is not defined
10261 locally, it is a fatal error. */
10262 if (!bfd_link_relocatable (flinfo->info)
10263 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10264 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10265 && h->root.type == bfd_link_hash_undefined
10266 && !h->def_regular)
10267 {
10268 const char *msg;
10269
10270 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10271 /* xgettext:c-format */
10272 msg = _("%pB: protected symbol `%s' isn't defined");
10273 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10274 /* xgettext:c-format */
10275 msg = _("%pB: internal symbol `%s' isn't defined");
10276 else
10277 /* xgettext:c-format */
10278 msg = _("%pB: hidden symbol `%s' isn't defined");
10279 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10280 bfd_set_error (bfd_error_bad_value);
10281 eoinfo->failed = TRUE;
10282 return FALSE;
10283 }
10284
10285 /* If this symbol should be put in the .dynsym section, then put it
10286 there now. We already know the symbol index. We also fill in
10287 the entry in the .hash section. */
10288 if (h->dynindx != -1
10289 && elf_hash_table (flinfo->info)->dynamic_sections_created
10290 && elf_hash_table (flinfo->info)->dynsym != NULL
10291 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10292 {
10293 bfd_byte *esym;
10294
10295 /* Since there is no version information in the dynamic string,
10296 if there is no version info in symbol version section, we will
10297 have a run-time problem if not linking executable, referenced
10298 by shared library, or not bound locally. */
10299 if (h->verinfo.verdef == NULL
10300 && (!bfd_link_executable (flinfo->info)
10301 || h->ref_dynamic
10302 || !h->def_regular))
10303 {
10304 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10305
10306 if (p && p [1] != '\0')
10307 {
10308 _bfd_error_handler
10309 /* xgettext:c-format */
10310 (_("%pB: no symbol version section for versioned symbol `%s'"),
10311 flinfo->output_bfd, h->root.root.string);
10312 eoinfo->failed = TRUE;
10313 return FALSE;
10314 }
10315 }
10316
10317 sym.st_name = h->dynstr_index;
10318 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10319 + h->dynindx * bed->s->sizeof_sym);
10320 if (!check_dynsym (flinfo->output_bfd, &sym))
10321 {
10322 eoinfo->failed = TRUE;
10323 return FALSE;
10324 }
10325 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10326
10327 if (flinfo->hash_sec != NULL)
10328 {
10329 size_t hash_entry_size;
10330 bfd_byte *bucketpos;
10331 bfd_vma chain;
10332 size_t bucketcount;
10333 size_t bucket;
10334
10335 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10336 bucket = h->u.elf_hash_value % bucketcount;
10337
10338 hash_entry_size
10339 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10340 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10341 + (bucket + 2) * hash_entry_size);
10342 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10343 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10344 bucketpos);
10345 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10346 ((bfd_byte *) flinfo->hash_sec->contents
10347 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10348 }
10349
10350 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10351 {
10352 Elf_Internal_Versym iversym;
10353 Elf_External_Versym *eversym;
10354
10355 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
10356 {
10357 if (h->verinfo.verdef == NULL
10358 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10359 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10360 iversym.vs_vers = 0;
10361 else
10362 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10363 }
10364 else
10365 {
10366 if (h->verinfo.vertree == NULL)
10367 iversym.vs_vers = 1;
10368 else
10369 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10370 if (flinfo->info->create_default_symver)
10371 iversym.vs_vers++;
10372 }
10373
10374 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10375 defined locally. */
10376 if (h->versioned == versioned_hidden && h->def_regular)
10377 iversym.vs_vers |= VERSYM_HIDDEN;
10378
10379 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10380 eversym += h->dynindx;
10381 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10382 }
10383 }
10384
10385 /* If the symbol is undefined, and we didn't output it to .dynsym,
10386 strip it from .symtab too. Obviously we can't do this for
10387 relocatable output or when needed for --emit-relocs. */
10388 else if (input_sec == bfd_und_section_ptr
10389 && h->indx != -2
10390 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10391 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10392 && !bfd_link_relocatable (flinfo->info))
10393 return TRUE;
10394
10395 /* Also strip others that we couldn't earlier due to dynamic symbol
10396 processing. */
10397 if (strip)
10398 return TRUE;
10399 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10400 return TRUE;
10401
10402 /* Output a FILE symbol so that following locals are not associated
10403 with the wrong input file. We need one for forced local symbols
10404 if we've seen more than one FILE symbol or when we have exactly
10405 one FILE symbol but global symbols are present in a file other
10406 than the one with the FILE symbol. We also need one if linker
10407 defined symbols are present. In practice these conditions are
10408 always met, so just emit the FILE symbol unconditionally. */
10409 if (eoinfo->localsyms
10410 && !eoinfo->file_sym_done
10411 && eoinfo->flinfo->filesym_count != 0)
10412 {
10413 Elf_Internal_Sym fsym;
10414
10415 memset (&fsym, 0, sizeof (fsym));
10416 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10417 fsym.st_shndx = SHN_ABS;
10418 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10419 bfd_und_section_ptr, NULL))
10420 return FALSE;
10421
10422 eoinfo->file_sym_done = TRUE;
10423 }
10424
10425 indx = bfd_get_symcount (flinfo->output_bfd);
10426 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10427 input_sec, h);
10428 if (ret == 0)
10429 {
10430 eoinfo->failed = TRUE;
10431 return FALSE;
10432 }
10433 else if (ret == 1)
10434 h->indx = indx;
10435 else if (h->indx == -2)
10436 abort();
10437
10438 return TRUE;
10439 }
10440
10441 /* Return TRUE if special handling is done for relocs in SEC against
10442 symbols defined in discarded sections. */
10443
10444 static bfd_boolean
10445 elf_section_ignore_discarded_relocs (asection *sec)
10446 {
10447 const struct elf_backend_data *bed;
10448
10449 switch (sec->sec_info_type)
10450 {
10451 case SEC_INFO_TYPE_STABS:
10452 case SEC_INFO_TYPE_EH_FRAME:
10453 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10454 return TRUE;
10455 default:
10456 break;
10457 }
10458
10459 bed = get_elf_backend_data (sec->owner);
10460 if (bed->elf_backend_ignore_discarded_relocs != NULL
10461 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10462 return TRUE;
10463
10464 return FALSE;
10465 }
10466
10467 /* Return a mask saying how ld should treat relocations in SEC against
10468 symbols defined in discarded sections. If this function returns
10469 COMPLAIN set, ld will issue a warning message. If this function
10470 returns PRETEND set, and the discarded section was link-once and the
10471 same size as the kept link-once section, ld will pretend that the
10472 symbol was actually defined in the kept section. Otherwise ld will
10473 zero the reloc (at least that is the intent, but some cooperation by
10474 the target dependent code is needed, particularly for REL targets). */
10475
10476 unsigned int
10477 _bfd_elf_default_action_discarded (asection *sec)
10478 {
10479 if (sec->flags & SEC_DEBUGGING)
10480 return PRETEND;
10481
10482 if (strcmp (".eh_frame", sec->name) == 0)
10483 return 0;
10484
10485 if (strcmp (".gcc_except_table", sec->name) == 0)
10486 return 0;
10487
10488 return COMPLAIN | PRETEND;
10489 }
10490
10491 /* Find a match between a section and a member of a section group. */
10492
10493 static asection *
10494 match_group_member (asection *sec, asection *group,
10495 struct bfd_link_info *info)
10496 {
10497 asection *first = elf_next_in_group (group);
10498 asection *s = first;
10499
10500 while (s != NULL)
10501 {
10502 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10503 return s;
10504
10505 s = elf_next_in_group (s);
10506 if (s == first)
10507 break;
10508 }
10509
10510 return NULL;
10511 }
10512
10513 /* Check if the kept section of a discarded section SEC can be used
10514 to replace it. Return the replacement if it is OK. Otherwise return
10515 NULL. */
10516
10517 asection *
10518 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10519 {
10520 asection *kept;
10521
10522 kept = sec->kept_section;
10523 if (kept != NULL)
10524 {
10525 if ((kept->flags & SEC_GROUP) != 0)
10526 kept = match_group_member (sec, kept, info);
10527 if (kept != NULL
10528 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10529 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10530 kept = NULL;
10531 sec->kept_section = kept;
10532 }
10533 return kept;
10534 }
10535
10536 /* Link an input file into the linker output file. This function
10537 handles all the sections and relocations of the input file at once.
10538 This is so that we only have to read the local symbols once, and
10539 don't have to keep them in memory. */
10540
10541 static bfd_boolean
10542 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10543 {
10544 int (*relocate_section)
10545 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10546 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10547 bfd *output_bfd;
10548 Elf_Internal_Shdr *symtab_hdr;
10549 size_t locsymcount;
10550 size_t extsymoff;
10551 Elf_Internal_Sym *isymbuf;
10552 Elf_Internal_Sym *isym;
10553 Elf_Internal_Sym *isymend;
10554 long *pindex;
10555 asection **ppsection;
10556 asection *o;
10557 const struct elf_backend_data *bed;
10558 struct elf_link_hash_entry **sym_hashes;
10559 bfd_size_type address_size;
10560 bfd_vma r_type_mask;
10561 int r_sym_shift;
10562 bfd_boolean have_file_sym = FALSE;
10563
10564 output_bfd = flinfo->output_bfd;
10565 bed = get_elf_backend_data (output_bfd);
10566 relocate_section = bed->elf_backend_relocate_section;
10567
10568 /* If this is a dynamic object, we don't want to do anything here:
10569 we don't want the local symbols, and we don't want the section
10570 contents. */
10571 if ((input_bfd->flags & DYNAMIC) != 0)
10572 return TRUE;
10573
10574 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10575 if (elf_bad_symtab (input_bfd))
10576 {
10577 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10578 extsymoff = 0;
10579 }
10580 else
10581 {
10582 locsymcount = symtab_hdr->sh_info;
10583 extsymoff = symtab_hdr->sh_info;
10584 }
10585
10586 /* Read the local symbols. */
10587 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10588 if (isymbuf == NULL && locsymcount != 0)
10589 {
10590 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10591 flinfo->internal_syms,
10592 flinfo->external_syms,
10593 flinfo->locsym_shndx);
10594 if (isymbuf == NULL)
10595 return FALSE;
10596 }
10597
10598 /* Find local symbol sections and adjust values of symbols in
10599 SEC_MERGE sections. Write out those local symbols we know are
10600 going into the output file. */
10601 isymend = isymbuf + locsymcount;
10602 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10603 isym < isymend;
10604 isym++, pindex++, ppsection++)
10605 {
10606 asection *isec;
10607 const char *name;
10608 Elf_Internal_Sym osym;
10609 long indx;
10610 int ret;
10611
10612 *pindex = -1;
10613
10614 if (elf_bad_symtab (input_bfd))
10615 {
10616 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10617 {
10618 *ppsection = NULL;
10619 continue;
10620 }
10621 }
10622
10623 if (isym->st_shndx == SHN_UNDEF)
10624 isec = bfd_und_section_ptr;
10625 else if (isym->st_shndx == SHN_ABS)
10626 isec = bfd_abs_section_ptr;
10627 else if (isym->st_shndx == SHN_COMMON)
10628 isec = bfd_com_section_ptr;
10629 else
10630 {
10631 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10632 if (isec == NULL)
10633 {
10634 /* Don't attempt to output symbols with st_shnx in the
10635 reserved range other than SHN_ABS and SHN_COMMON. */
10636 isec = bfd_und_section_ptr;
10637 }
10638 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10639 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10640 isym->st_value =
10641 _bfd_merged_section_offset (output_bfd, &isec,
10642 elf_section_data (isec)->sec_info,
10643 isym->st_value);
10644 }
10645
10646 *ppsection = isec;
10647
10648 /* Don't output the first, undefined, symbol. In fact, don't
10649 output any undefined local symbol. */
10650 if (isec == bfd_und_section_ptr)
10651 continue;
10652
10653 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10654 {
10655 /* We never output section symbols. Instead, we use the
10656 section symbol of the corresponding section in the output
10657 file. */
10658 continue;
10659 }
10660
10661 /* If we are stripping all symbols, we don't want to output this
10662 one. */
10663 if (flinfo->info->strip == strip_all)
10664 continue;
10665
10666 /* If we are discarding all local symbols, we don't want to
10667 output this one. If we are generating a relocatable output
10668 file, then some of the local symbols may be required by
10669 relocs; we output them below as we discover that they are
10670 needed. */
10671 if (flinfo->info->discard == discard_all)
10672 continue;
10673
10674 /* If this symbol is defined in a section which we are
10675 discarding, we don't need to keep it. */
10676 if (isym->st_shndx != SHN_UNDEF
10677 && isym->st_shndx < SHN_LORESERVE
10678 && isec->output_section == NULL
10679 && flinfo->info->non_contiguous_regions
10680 && flinfo->info->non_contiguous_regions_warnings)
10681 {
10682 _bfd_error_handler (_("warning: --enable-non-contiguous-regions "
10683 "discards section `%s' from '%s'\n"),
10684 isec->name, bfd_get_filename (isec->owner));
10685 continue;
10686 }
10687
10688 if (isym->st_shndx != SHN_UNDEF
10689 && isym->st_shndx < SHN_LORESERVE
10690 && bfd_section_removed_from_list (output_bfd,
10691 isec->output_section))
10692 continue;
10693
10694 /* Get the name of the symbol. */
10695 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10696 isym->st_name);
10697 if (name == NULL)
10698 return FALSE;
10699
10700 /* See if we are discarding symbols with this name. */
10701 if ((flinfo->info->strip == strip_some
10702 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10703 == NULL))
10704 || (((flinfo->info->discard == discard_sec_merge
10705 && (isec->flags & SEC_MERGE)
10706 && !bfd_link_relocatable (flinfo->info))
10707 || flinfo->info->discard == discard_l)
10708 && bfd_is_local_label_name (input_bfd, name)))
10709 continue;
10710
10711 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10712 {
10713 if (input_bfd->lto_output)
10714 /* -flto puts a temp file name here. This means builds
10715 are not reproducible. Discard the symbol. */
10716 continue;
10717 have_file_sym = TRUE;
10718 flinfo->filesym_count += 1;
10719 }
10720 if (!have_file_sym)
10721 {
10722 /* In the absence of debug info, bfd_find_nearest_line uses
10723 FILE symbols to determine the source file for local
10724 function symbols. Provide a FILE symbol here if input
10725 files lack such, so that their symbols won't be
10726 associated with a previous input file. It's not the
10727 source file, but the best we can do. */
10728 have_file_sym = TRUE;
10729 flinfo->filesym_count += 1;
10730 memset (&osym, 0, sizeof (osym));
10731 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10732 osym.st_shndx = SHN_ABS;
10733 if (!elf_link_output_symstrtab (flinfo,
10734 (input_bfd->lto_output ? NULL
10735 : bfd_get_filename (input_bfd)),
10736 &osym, bfd_abs_section_ptr,
10737 NULL))
10738 return FALSE;
10739 }
10740
10741 osym = *isym;
10742
10743 /* Adjust the section index for the output file. */
10744 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10745 isec->output_section);
10746 if (osym.st_shndx == SHN_BAD)
10747 return FALSE;
10748
10749 /* ELF symbols in relocatable files are section relative, but
10750 in executable files they are virtual addresses. Note that
10751 this code assumes that all ELF sections have an associated
10752 BFD section with a reasonable value for output_offset; below
10753 we assume that they also have a reasonable value for
10754 output_section. Any special sections must be set up to meet
10755 these requirements. */
10756 osym.st_value += isec->output_offset;
10757 if (!bfd_link_relocatable (flinfo->info))
10758 {
10759 osym.st_value += isec->output_section->vma;
10760 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10761 {
10762 /* STT_TLS symbols are relative to PT_TLS segment base. */
10763 if (elf_hash_table (flinfo->info)->tls_sec != NULL)
10764 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10765 else
10766 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
10767 STT_NOTYPE);
10768 }
10769 }
10770
10771 indx = bfd_get_symcount (output_bfd);
10772 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10773 if (ret == 0)
10774 return FALSE;
10775 else if (ret == 1)
10776 *pindex = indx;
10777 }
10778
10779 if (bed->s->arch_size == 32)
10780 {
10781 r_type_mask = 0xff;
10782 r_sym_shift = 8;
10783 address_size = 4;
10784 }
10785 else
10786 {
10787 r_type_mask = 0xffffffff;
10788 r_sym_shift = 32;
10789 address_size = 8;
10790 }
10791
10792 /* Relocate the contents of each section. */
10793 sym_hashes = elf_sym_hashes (input_bfd);
10794 for (o = input_bfd->sections; o != NULL; o = o->next)
10795 {
10796 bfd_byte *contents;
10797
10798 if (! o->linker_mark)
10799 {
10800 /* This section was omitted from the link. */
10801 continue;
10802 }
10803
10804 if (!flinfo->info->resolve_section_groups
10805 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10806 {
10807 /* Deal with the group signature symbol. */
10808 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10809 unsigned long symndx = sec_data->this_hdr.sh_info;
10810 asection *osec = o->output_section;
10811
10812 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10813 if (symndx >= locsymcount
10814 || (elf_bad_symtab (input_bfd)
10815 && flinfo->sections[symndx] == NULL))
10816 {
10817 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10818 while (h->root.type == bfd_link_hash_indirect
10819 || h->root.type == bfd_link_hash_warning)
10820 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10821 /* Arrange for symbol to be output. */
10822 h->indx = -2;
10823 elf_section_data (osec)->this_hdr.sh_info = -2;
10824 }
10825 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10826 {
10827 /* We'll use the output section target_index. */
10828 asection *sec = flinfo->sections[symndx]->output_section;
10829 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10830 }
10831 else
10832 {
10833 if (flinfo->indices[symndx] == -1)
10834 {
10835 /* Otherwise output the local symbol now. */
10836 Elf_Internal_Sym sym = isymbuf[symndx];
10837 asection *sec = flinfo->sections[symndx]->output_section;
10838 const char *name;
10839 long indx;
10840 int ret;
10841
10842 name = bfd_elf_string_from_elf_section (input_bfd,
10843 symtab_hdr->sh_link,
10844 sym.st_name);
10845 if (name == NULL)
10846 return FALSE;
10847
10848 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10849 sec);
10850 if (sym.st_shndx == SHN_BAD)
10851 return FALSE;
10852
10853 sym.st_value += o->output_offset;
10854
10855 indx = bfd_get_symcount (output_bfd);
10856 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10857 NULL);
10858 if (ret == 0)
10859 return FALSE;
10860 else if (ret == 1)
10861 flinfo->indices[symndx] = indx;
10862 else
10863 abort ();
10864 }
10865 elf_section_data (osec)->this_hdr.sh_info
10866 = flinfo->indices[symndx];
10867 }
10868 }
10869
10870 if ((o->flags & SEC_HAS_CONTENTS) == 0
10871 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10872 continue;
10873
10874 if ((o->flags & SEC_LINKER_CREATED) != 0)
10875 {
10876 /* Section was created by _bfd_elf_link_create_dynamic_sections
10877 or somesuch. */
10878 continue;
10879 }
10880
10881 /* Get the contents of the section. They have been cached by a
10882 relaxation routine. Note that o is a section in an input
10883 file, so the contents field will not have been set by any of
10884 the routines which work on output files. */
10885 if (elf_section_data (o)->this_hdr.contents != NULL)
10886 {
10887 contents = elf_section_data (o)->this_hdr.contents;
10888 if (bed->caches_rawsize
10889 && o->rawsize != 0
10890 && o->rawsize < o->size)
10891 {
10892 memcpy (flinfo->contents, contents, o->rawsize);
10893 contents = flinfo->contents;
10894 }
10895 }
10896 else
10897 {
10898 contents = flinfo->contents;
10899 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10900 return FALSE;
10901 }
10902
10903 if ((o->flags & SEC_RELOC) != 0)
10904 {
10905 Elf_Internal_Rela *internal_relocs;
10906 Elf_Internal_Rela *rel, *relend;
10907 int action_discarded;
10908 int ret;
10909
10910 /* Get the swapped relocs. */
10911 internal_relocs
10912 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10913 flinfo->internal_relocs, FALSE);
10914 if (internal_relocs == NULL
10915 && o->reloc_count > 0)
10916 return FALSE;
10917
10918 /* We need to reverse-copy input .ctors/.dtors sections if
10919 they are placed in .init_array/.finit_array for output. */
10920 if (o->size > address_size
10921 && ((strncmp (o->name, ".ctors", 6) == 0
10922 && strcmp (o->output_section->name,
10923 ".init_array") == 0)
10924 || (strncmp (o->name, ".dtors", 6) == 0
10925 && strcmp (o->output_section->name,
10926 ".fini_array") == 0))
10927 && (o->name[6] == 0 || o->name[6] == '.'))
10928 {
10929 if (o->size * bed->s->int_rels_per_ext_rel
10930 != o->reloc_count * address_size)
10931 {
10932 _bfd_error_handler
10933 /* xgettext:c-format */
10934 (_("error: %pB: size of section %pA is not "
10935 "multiple of address size"),
10936 input_bfd, o);
10937 bfd_set_error (bfd_error_bad_value);
10938 return FALSE;
10939 }
10940 o->flags |= SEC_ELF_REVERSE_COPY;
10941 }
10942
10943 action_discarded = -1;
10944 if (!elf_section_ignore_discarded_relocs (o))
10945 action_discarded = (*bed->action_discarded) (o);
10946
10947 /* Run through the relocs evaluating complex reloc symbols and
10948 looking for relocs against symbols from discarded sections
10949 or section symbols from removed link-once sections.
10950 Complain about relocs against discarded sections. Zero
10951 relocs against removed link-once sections. */
10952
10953 rel = internal_relocs;
10954 relend = rel + o->reloc_count;
10955 for ( ; rel < relend; rel++)
10956 {
10957 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10958 unsigned int s_type;
10959 asection **ps, *sec;
10960 struct elf_link_hash_entry *h = NULL;
10961 const char *sym_name;
10962
10963 if (r_symndx == STN_UNDEF)
10964 continue;
10965
10966 if (r_symndx >= locsymcount
10967 || (elf_bad_symtab (input_bfd)
10968 && flinfo->sections[r_symndx] == NULL))
10969 {
10970 h = sym_hashes[r_symndx - extsymoff];
10971
10972 /* Badly formatted input files can contain relocs that
10973 reference non-existant symbols. Check here so that
10974 we do not seg fault. */
10975 if (h == NULL)
10976 {
10977 _bfd_error_handler
10978 /* xgettext:c-format */
10979 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
10980 "that references a non-existent global symbol"),
10981 input_bfd, (uint64_t) rel->r_info, o);
10982 bfd_set_error (bfd_error_bad_value);
10983 return FALSE;
10984 }
10985
10986 while (h->root.type == bfd_link_hash_indirect
10987 || h->root.type == bfd_link_hash_warning)
10988 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10989
10990 s_type = h->type;
10991
10992 /* If a plugin symbol is referenced from a non-IR file,
10993 mark the symbol as undefined. Note that the
10994 linker may attach linker created dynamic sections
10995 to the plugin bfd. Symbols defined in linker
10996 created sections are not plugin symbols. */
10997 if ((h->root.non_ir_ref_regular
10998 || h->root.non_ir_ref_dynamic)
10999 && (h->root.type == bfd_link_hash_defined
11000 || h->root.type == bfd_link_hash_defweak)
11001 && (h->root.u.def.section->flags
11002 & SEC_LINKER_CREATED) == 0
11003 && h->root.u.def.section->owner != NULL
11004 && (h->root.u.def.section->owner->flags
11005 & BFD_PLUGIN) != 0)
11006 {
11007 h->root.type = bfd_link_hash_undefined;
11008 h->root.u.undef.abfd = h->root.u.def.section->owner;
11009 }
11010
11011 ps = NULL;
11012 if (h->root.type == bfd_link_hash_defined
11013 || h->root.type == bfd_link_hash_defweak)
11014 ps = &h->root.u.def.section;
11015
11016 sym_name = h->root.root.string;
11017 }
11018 else
11019 {
11020 Elf_Internal_Sym *sym = isymbuf + r_symndx;
11021
11022 s_type = ELF_ST_TYPE (sym->st_info);
11023 ps = &flinfo->sections[r_symndx];
11024 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
11025 sym, *ps);
11026 }
11027
11028 if ((s_type == STT_RELC || s_type == STT_SRELC)
11029 && !bfd_link_relocatable (flinfo->info))
11030 {
11031 bfd_vma val;
11032 bfd_vma dot = (rel->r_offset
11033 + o->output_offset + o->output_section->vma);
11034 #ifdef DEBUG
11035 printf ("Encountered a complex symbol!");
11036 printf (" (input_bfd %s, section %s, reloc %ld\n",
11037 bfd_get_filename (input_bfd), o->name,
11038 (long) (rel - internal_relocs));
11039 printf (" symbol: idx %8.8lx, name %s\n",
11040 r_symndx, sym_name);
11041 printf (" reloc : info %8.8lx, addr %8.8lx\n",
11042 (unsigned long) rel->r_info,
11043 (unsigned long) rel->r_offset);
11044 #endif
11045 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
11046 isymbuf, locsymcount, s_type == STT_SRELC))
11047 return FALSE;
11048
11049 /* Symbol evaluated OK. Update to absolute value. */
11050 set_symbol_value (input_bfd, isymbuf, locsymcount,
11051 r_symndx, val);
11052 continue;
11053 }
11054
11055 if (action_discarded != -1 && ps != NULL)
11056 {
11057 /* Complain if the definition comes from a
11058 discarded section. */
11059 if ((sec = *ps) != NULL && discarded_section (sec))
11060 {
11061 BFD_ASSERT (r_symndx != STN_UNDEF);
11062 if (action_discarded & COMPLAIN)
11063 (*flinfo->info->callbacks->einfo)
11064 /* xgettext:c-format */
11065 (_("%X`%s' referenced in section `%pA' of %pB: "
11066 "defined in discarded section `%pA' of %pB\n"),
11067 sym_name, o, input_bfd, sec, sec->owner);
11068
11069 /* Try to do the best we can to support buggy old
11070 versions of gcc. Pretend that the symbol is
11071 really defined in the kept linkonce section.
11072 FIXME: This is quite broken. Modifying the
11073 symbol here means we will be changing all later
11074 uses of the symbol, not just in this section. */
11075 if (action_discarded & PRETEND)
11076 {
11077 asection *kept;
11078
11079 kept = _bfd_elf_check_kept_section (sec,
11080 flinfo->info);
11081 if (kept != NULL)
11082 {
11083 *ps = kept;
11084 continue;
11085 }
11086 }
11087 }
11088 }
11089 }
11090
11091 /* Relocate the section by invoking a back end routine.
11092
11093 The back end routine is responsible for adjusting the
11094 section contents as necessary, and (if using Rela relocs
11095 and generating a relocatable output file) adjusting the
11096 reloc addend as necessary.
11097
11098 The back end routine does not have to worry about setting
11099 the reloc address or the reloc symbol index.
11100
11101 The back end routine is given a pointer to the swapped in
11102 internal symbols, and can access the hash table entries
11103 for the external symbols via elf_sym_hashes (input_bfd).
11104
11105 When generating relocatable output, the back end routine
11106 must handle STB_LOCAL/STT_SECTION symbols specially. The
11107 output symbol is going to be a section symbol
11108 corresponding to the output section, which will require
11109 the addend to be adjusted. */
11110
11111 ret = (*relocate_section) (output_bfd, flinfo->info,
11112 input_bfd, o, contents,
11113 internal_relocs,
11114 isymbuf,
11115 flinfo->sections);
11116 if (!ret)
11117 return FALSE;
11118
11119 if (ret == 2
11120 || bfd_link_relocatable (flinfo->info)
11121 || flinfo->info->emitrelocations)
11122 {
11123 Elf_Internal_Rela *irela;
11124 Elf_Internal_Rela *irelaend, *irelamid;
11125 bfd_vma last_offset;
11126 struct elf_link_hash_entry **rel_hash;
11127 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
11128 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
11129 unsigned int next_erel;
11130 bfd_boolean rela_normal;
11131 struct bfd_elf_section_data *esdi, *esdo;
11132
11133 esdi = elf_section_data (o);
11134 esdo = elf_section_data (o->output_section);
11135 rela_normal = FALSE;
11136
11137 /* Adjust the reloc addresses and symbol indices. */
11138
11139 irela = internal_relocs;
11140 irelaend = irela + o->reloc_count;
11141 rel_hash = esdo->rel.hashes + esdo->rel.count;
11142 /* We start processing the REL relocs, if any. When we reach
11143 IRELAMID in the loop, we switch to the RELA relocs. */
11144 irelamid = irela;
11145 if (esdi->rel.hdr != NULL)
11146 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
11147 * bed->s->int_rels_per_ext_rel);
11148 rel_hash_list = rel_hash;
11149 rela_hash_list = NULL;
11150 last_offset = o->output_offset;
11151 if (!bfd_link_relocatable (flinfo->info))
11152 last_offset += o->output_section->vma;
11153 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
11154 {
11155 unsigned long r_symndx;
11156 asection *sec;
11157 Elf_Internal_Sym sym;
11158
11159 if (next_erel == bed->s->int_rels_per_ext_rel)
11160 {
11161 rel_hash++;
11162 next_erel = 0;
11163 }
11164
11165 if (irela == irelamid)
11166 {
11167 rel_hash = esdo->rela.hashes + esdo->rela.count;
11168 rela_hash_list = rel_hash;
11169 rela_normal = bed->rela_normal;
11170 }
11171
11172 irela->r_offset = _bfd_elf_section_offset (output_bfd,
11173 flinfo->info, o,
11174 irela->r_offset);
11175 if (irela->r_offset >= (bfd_vma) -2)
11176 {
11177 /* This is a reloc for a deleted entry or somesuch.
11178 Turn it into an R_*_NONE reloc, at the same
11179 offset as the last reloc. elf_eh_frame.c and
11180 bfd_elf_discard_info rely on reloc offsets
11181 being ordered. */
11182 irela->r_offset = last_offset;
11183 irela->r_info = 0;
11184 irela->r_addend = 0;
11185 continue;
11186 }
11187
11188 irela->r_offset += o->output_offset;
11189
11190 /* Relocs in an executable have to be virtual addresses. */
11191 if (!bfd_link_relocatable (flinfo->info))
11192 irela->r_offset += o->output_section->vma;
11193
11194 last_offset = irela->r_offset;
11195
11196 r_symndx = irela->r_info >> r_sym_shift;
11197 if (r_symndx == STN_UNDEF)
11198 continue;
11199
11200 if (r_symndx >= locsymcount
11201 || (elf_bad_symtab (input_bfd)
11202 && flinfo->sections[r_symndx] == NULL))
11203 {
11204 struct elf_link_hash_entry *rh;
11205 unsigned long indx;
11206
11207 /* This is a reloc against a global symbol. We
11208 have not yet output all the local symbols, so
11209 we do not know the symbol index of any global
11210 symbol. We set the rel_hash entry for this
11211 reloc to point to the global hash table entry
11212 for this symbol. The symbol index is then
11213 set at the end of bfd_elf_final_link. */
11214 indx = r_symndx - extsymoff;
11215 rh = elf_sym_hashes (input_bfd)[indx];
11216 while (rh->root.type == bfd_link_hash_indirect
11217 || rh->root.type == bfd_link_hash_warning)
11218 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
11219
11220 /* Setting the index to -2 tells
11221 elf_link_output_extsym that this symbol is
11222 used by a reloc. */
11223 BFD_ASSERT (rh->indx < 0);
11224 rh->indx = -2;
11225 *rel_hash = rh;
11226
11227 continue;
11228 }
11229
11230 /* This is a reloc against a local symbol. */
11231
11232 *rel_hash = NULL;
11233 sym = isymbuf[r_symndx];
11234 sec = flinfo->sections[r_symndx];
11235 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
11236 {
11237 /* I suppose the backend ought to fill in the
11238 section of any STT_SECTION symbol against a
11239 processor specific section. */
11240 r_symndx = STN_UNDEF;
11241 if (bfd_is_abs_section (sec))
11242 ;
11243 else if (sec == NULL || sec->owner == NULL)
11244 {
11245 bfd_set_error (bfd_error_bad_value);
11246 return FALSE;
11247 }
11248 else
11249 {
11250 asection *osec = sec->output_section;
11251
11252 /* If we have discarded a section, the output
11253 section will be the absolute section. In
11254 case of discarded SEC_MERGE sections, use
11255 the kept section. relocate_section should
11256 have already handled discarded linkonce
11257 sections. */
11258 if (bfd_is_abs_section (osec)
11259 && sec->kept_section != NULL
11260 && sec->kept_section->output_section != NULL)
11261 {
11262 osec = sec->kept_section->output_section;
11263 irela->r_addend -= osec->vma;
11264 }
11265
11266 if (!bfd_is_abs_section (osec))
11267 {
11268 r_symndx = osec->target_index;
11269 if (r_symndx == STN_UNDEF)
11270 {
11271 irela->r_addend += osec->vma;
11272 osec = _bfd_nearby_section (output_bfd, osec,
11273 osec->vma);
11274 irela->r_addend -= osec->vma;
11275 r_symndx = osec->target_index;
11276 }
11277 }
11278 }
11279
11280 /* Adjust the addend according to where the
11281 section winds up in the output section. */
11282 if (rela_normal)
11283 irela->r_addend += sec->output_offset;
11284 }
11285 else
11286 {
11287 if (flinfo->indices[r_symndx] == -1)
11288 {
11289 unsigned long shlink;
11290 const char *name;
11291 asection *osec;
11292 long indx;
11293
11294 if (flinfo->info->strip == strip_all)
11295 {
11296 /* You can't do ld -r -s. */
11297 bfd_set_error (bfd_error_invalid_operation);
11298 return FALSE;
11299 }
11300
11301 /* This symbol was skipped earlier, but
11302 since it is needed by a reloc, we
11303 must output it now. */
11304 shlink = symtab_hdr->sh_link;
11305 name = (bfd_elf_string_from_elf_section
11306 (input_bfd, shlink, sym.st_name));
11307 if (name == NULL)
11308 return FALSE;
11309
11310 osec = sec->output_section;
11311 sym.st_shndx =
11312 _bfd_elf_section_from_bfd_section (output_bfd,
11313 osec);
11314 if (sym.st_shndx == SHN_BAD)
11315 return FALSE;
11316
11317 sym.st_value += sec->output_offset;
11318 if (!bfd_link_relocatable (flinfo->info))
11319 {
11320 sym.st_value += osec->vma;
11321 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11322 {
11323 struct elf_link_hash_table *htab
11324 = elf_hash_table (flinfo->info);
11325
11326 /* STT_TLS symbols are relative to PT_TLS
11327 segment base. */
11328 if (htab->tls_sec != NULL)
11329 sym.st_value -= htab->tls_sec->vma;
11330 else
11331 sym.st_info
11332 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11333 STT_NOTYPE);
11334 }
11335 }
11336
11337 indx = bfd_get_symcount (output_bfd);
11338 ret = elf_link_output_symstrtab (flinfo, name,
11339 &sym, sec,
11340 NULL);
11341 if (ret == 0)
11342 return FALSE;
11343 else if (ret == 1)
11344 flinfo->indices[r_symndx] = indx;
11345 else
11346 abort ();
11347 }
11348
11349 r_symndx = flinfo->indices[r_symndx];
11350 }
11351
11352 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11353 | (irela->r_info & r_type_mask));
11354 }
11355
11356 /* Swap out the relocs. */
11357 input_rel_hdr = esdi->rel.hdr;
11358 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11359 {
11360 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11361 input_rel_hdr,
11362 internal_relocs,
11363 rel_hash_list))
11364 return FALSE;
11365 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11366 * bed->s->int_rels_per_ext_rel);
11367 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11368 }
11369
11370 input_rela_hdr = esdi->rela.hdr;
11371 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11372 {
11373 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11374 input_rela_hdr,
11375 internal_relocs,
11376 rela_hash_list))
11377 return FALSE;
11378 }
11379 }
11380 }
11381
11382 /* Write out the modified section contents. */
11383 if (bed->elf_backend_write_section
11384 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11385 contents))
11386 {
11387 /* Section written out. */
11388 }
11389 else switch (o->sec_info_type)
11390 {
11391 case SEC_INFO_TYPE_STABS:
11392 if (! (_bfd_write_section_stabs
11393 (output_bfd,
11394 &elf_hash_table (flinfo->info)->stab_info,
11395 o, &elf_section_data (o)->sec_info, contents)))
11396 return FALSE;
11397 break;
11398 case SEC_INFO_TYPE_MERGE:
11399 if (! _bfd_write_merged_section (output_bfd, o,
11400 elf_section_data (o)->sec_info))
11401 return FALSE;
11402 break;
11403 case SEC_INFO_TYPE_EH_FRAME:
11404 {
11405 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11406 o, contents))
11407 return FALSE;
11408 }
11409 break;
11410 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11411 {
11412 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11413 flinfo->info,
11414 o, contents))
11415 return FALSE;
11416 }
11417 break;
11418 default:
11419 {
11420 if (! (o->flags & SEC_EXCLUDE))
11421 {
11422 file_ptr offset = (file_ptr) o->output_offset;
11423 bfd_size_type todo = o->size;
11424
11425 offset *= bfd_octets_per_byte (output_bfd, o);
11426
11427 if ((o->flags & SEC_ELF_REVERSE_COPY))
11428 {
11429 /* Reverse-copy input section to output. */
11430 do
11431 {
11432 todo -= address_size;
11433 if (! bfd_set_section_contents (output_bfd,
11434 o->output_section,
11435 contents + todo,
11436 offset,
11437 address_size))
11438 return FALSE;
11439 if (todo == 0)
11440 break;
11441 offset += address_size;
11442 }
11443 while (1);
11444 }
11445 else if (! bfd_set_section_contents (output_bfd,
11446 o->output_section,
11447 contents,
11448 offset, todo))
11449 return FALSE;
11450 }
11451 }
11452 break;
11453 }
11454 }
11455
11456 return TRUE;
11457 }
11458
11459 /* Generate a reloc when linking an ELF file. This is a reloc
11460 requested by the linker, and does not come from any input file. This
11461 is used to build constructor and destructor tables when linking
11462 with -Ur. */
11463
11464 static bfd_boolean
11465 elf_reloc_link_order (bfd *output_bfd,
11466 struct bfd_link_info *info,
11467 asection *output_section,
11468 struct bfd_link_order *link_order)
11469 {
11470 reloc_howto_type *howto;
11471 long indx;
11472 bfd_vma offset;
11473 bfd_vma addend;
11474 struct bfd_elf_section_reloc_data *reldata;
11475 struct elf_link_hash_entry **rel_hash_ptr;
11476 Elf_Internal_Shdr *rel_hdr;
11477 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11478 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11479 bfd_byte *erel;
11480 unsigned int i;
11481 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11482
11483 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11484 if (howto == NULL)
11485 {
11486 bfd_set_error (bfd_error_bad_value);
11487 return FALSE;
11488 }
11489
11490 addend = link_order->u.reloc.p->addend;
11491
11492 if (esdo->rel.hdr)
11493 reldata = &esdo->rel;
11494 else if (esdo->rela.hdr)
11495 reldata = &esdo->rela;
11496 else
11497 {
11498 reldata = NULL;
11499 BFD_ASSERT (0);
11500 }
11501
11502 /* Figure out the symbol index. */
11503 rel_hash_ptr = reldata->hashes + reldata->count;
11504 if (link_order->type == bfd_section_reloc_link_order)
11505 {
11506 indx = link_order->u.reloc.p->u.section->target_index;
11507 BFD_ASSERT (indx != 0);
11508 *rel_hash_ptr = NULL;
11509 }
11510 else
11511 {
11512 struct elf_link_hash_entry *h;
11513
11514 /* Treat a reloc against a defined symbol as though it were
11515 actually against the section. */
11516 h = ((struct elf_link_hash_entry *)
11517 bfd_wrapped_link_hash_lookup (output_bfd, info,
11518 link_order->u.reloc.p->u.name,
11519 FALSE, FALSE, TRUE));
11520 if (h != NULL
11521 && (h->root.type == bfd_link_hash_defined
11522 || h->root.type == bfd_link_hash_defweak))
11523 {
11524 asection *section;
11525
11526 section = h->root.u.def.section;
11527 indx = section->output_section->target_index;
11528 *rel_hash_ptr = NULL;
11529 /* It seems that we ought to add the symbol value to the
11530 addend here, but in practice it has already been added
11531 because it was passed to constructor_callback. */
11532 addend += section->output_section->vma + section->output_offset;
11533 }
11534 else if (h != NULL)
11535 {
11536 /* Setting the index to -2 tells elf_link_output_extsym that
11537 this symbol is used by a reloc. */
11538 h->indx = -2;
11539 *rel_hash_ptr = h;
11540 indx = 0;
11541 }
11542 else
11543 {
11544 (*info->callbacks->unattached_reloc)
11545 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11546 indx = 0;
11547 }
11548 }
11549
11550 /* If this is an inplace reloc, we must write the addend into the
11551 object file. */
11552 if (howto->partial_inplace && addend != 0)
11553 {
11554 bfd_size_type size;
11555 bfd_reloc_status_type rstat;
11556 bfd_byte *buf;
11557 bfd_boolean ok;
11558 const char *sym_name;
11559 bfd_size_type octets;
11560
11561 size = (bfd_size_type) bfd_get_reloc_size (howto);
11562 buf = (bfd_byte *) bfd_zmalloc (size);
11563 if (buf == NULL && size != 0)
11564 return FALSE;
11565 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11566 switch (rstat)
11567 {
11568 case bfd_reloc_ok:
11569 break;
11570
11571 default:
11572 case bfd_reloc_outofrange:
11573 abort ();
11574
11575 case bfd_reloc_overflow:
11576 if (link_order->type == bfd_section_reloc_link_order)
11577 sym_name = bfd_section_name (link_order->u.reloc.p->u.section);
11578 else
11579 sym_name = link_order->u.reloc.p->u.name;
11580 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11581 howto->name, addend, NULL, NULL,
11582 (bfd_vma) 0);
11583 break;
11584 }
11585
11586 octets = link_order->offset * bfd_octets_per_byte (output_bfd,
11587 output_section);
11588 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11589 octets, size);
11590 free (buf);
11591 if (! ok)
11592 return FALSE;
11593 }
11594
11595 /* The address of a reloc is relative to the section in a
11596 relocatable file, and is a virtual address in an executable
11597 file. */
11598 offset = link_order->offset;
11599 if (! bfd_link_relocatable (info))
11600 offset += output_section->vma;
11601
11602 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11603 {
11604 irel[i].r_offset = offset;
11605 irel[i].r_info = 0;
11606 irel[i].r_addend = 0;
11607 }
11608 if (bed->s->arch_size == 32)
11609 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11610 else
11611 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11612
11613 rel_hdr = reldata->hdr;
11614 erel = rel_hdr->contents;
11615 if (rel_hdr->sh_type == SHT_REL)
11616 {
11617 erel += reldata->count * bed->s->sizeof_rel;
11618 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11619 }
11620 else
11621 {
11622 irel[0].r_addend = addend;
11623 erel += reldata->count * bed->s->sizeof_rela;
11624 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11625 }
11626
11627 ++reldata->count;
11628
11629 return TRUE;
11630 }
11631
11632
11633 /* Compare two sections based on the locations of the sections they are
11634 linked to. Used by elf_fixup_link_order. */
11635
11636 static int
11637 compare_link_order (const void *a, const void *b)
11638 {
11639 const struct bfd_link_order *alo = *(const struct bfd_link_order **) a;
11640 const struct bfd_link_order *blo = *(const struct bfd_link_order **) b;
11641 asection *asec = elf_linked_to_section (alo->u.indirect.section);
11642 asection *bsec = elf_linked_to_section (blo->u.indirect.section);
11643 bfd_vma apos = asec->output_section->lma + asec->output_offset;
11644 bfd_vma bpos = bsec->output_section->lma + bsec->output_offset;
11645
11646 if (apos < bpos)
11647 return -1;
11648 if (apos > bpos)
11649 return 1;
11650
11651 /* The only way we should get matching LMAs is when the first of two
11652 sections has zero size. */
11653 if (asec->size < bsec->size)
11654 return -1;
11655 if (asec->size > bsec->size)
11656 return 1;
11657
11658 /* If they are both zero size then they almost certainly have the same
11659 VMA and thus are not ordered with respect to each other. Test VMA
11660 anyway, and fall back to id to make the result reproducible across
11661 qsort implementations. */
11662 apos = asec->output_section->vma + asec->output_offset;
11663 bpos = bsec->output_section->vma + bsec->output_offset;
11664 if (apos < bpos)
11665 return -1;
11666 if (apos > bpos)
11667 return 1;
11668
11669 return asec->id - bsec->id;
11670 }
11671
11672
11673 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11674 order as their linked sections. Returns false if this could not be done
11675 because an output section includes both ordered and unordered
11676 sections. Ideally we'd do this in the linker proper. */
11677
11678 static bfd_boolean
11679 elf_fixup_link_order (bfd *abfd, asection *o)
11680 {
11681 size_t seen_linkorder;
11682 size_t seen_other;
11683 size_t n;
11684 struct bfd_link_order *p;
11685 bfd *sub;
11686 struct bfd_link_order **sections;
11687 asection *other_sec, *linkorder_sec;
11688 bfd_vma offset; /* Octets. */
11689
11690 other_sec = NULL;
11691 linkorder_sec = NULL;
11692 seen_other = 0;
11693 seen_linkorder = 0;
11694 for (p = o->map_head.link_order; p != NULL; p = p->next)
11695 {
11696 if (p->type == bfd_indirect_link_order)
11697 {
11698 asection *s = p->u.indirect.section;
11699 sub = s->owner;
11700 if ((s->flags & SEC_LINKER_CREATED) == 0
11701 && bfd_get_flavour (sub) == bfd_target_elf_flavour
11702 && elf_section_data (s) != NULL
11703 && elf_linked_to_section (s) != NULL)
11704 {
11705 seen_linkorder++;
11706 linkorder_sec = s;
11707 }
11708 else
11709 {
11710 seen_other++;
11711 other_sec = s;
11712 }
11713 }
11714 else
11715 seen_other++;
11716
11717 if (seen_other && seen_linkorder)
11718 {
11719 if (other_sec && linkorder_sec)
11720 _bfd_error_handler
11721 /* xgettext:c-format */
11722 (_("%pA has both ordered [`%pA' in %pB] "
11723 "and unordered [`%pA' in %pB] sections"),
11724 o, linkorder_sec, linkorder_sec->owner,
11725 other_sec, other_sec->owner);
11726 else
11727 _bfd_error_handler
11728 (_("%pA has both ordered and unordered sections"), o);
11729 bfd_set_error (bfd_error_bad_value);
11730 return FALSE;
11731 }
11732 }
11733
11734 if (!seen_linkorder)
11735 return TRUE;
11736
11737 sections = bfd_malloc (seen_linkorder * sizeof (*sections));
11738 if (sections == NULL)
11739 return FALSE;
11740
11741 seen_linkorder = 0;
11742 for (p = o->map_head.link_order; p != NULL; p = p->next)
11743 sections[seen_linkorder++] = p;
11744
11745 /* Sort the input sections in the order of their linked section. */
11746 qsort (sections, seen_linkorder, sizeof (*sections), compare_link_order);
11747
11748 /* Change the offsets of the sections. */
11749 offset = 0;
11750 for (n = 0; n < seen_linkorder; n++)
11751 {
11752 bfd_vma mask;
11753 asection *s = sections[n]->u.indirect.section;
11754 unsigned int opb = bfd_octets_per_byte (abfd, s);
11755
11756 mask = ~(bfd_vma) 0 << s->alignment_power * opb;
11757 offset = (offset + ~mask) & mask;
11758 sections[n]->offset = s->output_offset = offset / opb;
11759 offset += sections[n]->size;
11760 }
11761
11762 free (sections);
11763 return TRUE;
11764 }
11765
11766 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11767 Returns TRUE upon success, FALSE otherwise. */
11768
11769 static bfd_boolean
11770 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11771 {
11772 bfd_boolean ret = FALSE;
11773 bfd *implib_bfd;
11774 const struct elf_backend_data *bed;
11775 flagword flags;
11776 enum bfd_architecture arch;
11777 unsigned int mach;
11778 asymbol **sympp = NULL;
11779 long symsize;
11780 long symcount;
11781 long src_count;
11782 elf_symbol_type *osymbuf;
11783 size_t amt;
11784
11785 implib_bfd = info->out_implib_bfd;
11786 bed = get_elf_backend_data (abfd);
11787
11788 if (!bfd_set_format (implib_bfd, bfd_object))
11789 return FALSE;
11790
11791 /* Use flag from executable but make it a relocatable object. */
11792 flags = bfd_get_file_flags (abfd);
11793 flags &= ~HAS_RELOC;
11794 if (!bfd_set_start_address (implib_bfd, 0)
11795 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11796 return FALSE;
11797
11798 /* Copy architecture of output file to import library file. */
11799 arch = bfd_get_arch (abfd);
11800 mach = bfd_get_mach (abfd);
11801 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11802 && (abfd->target_defaulted
11803 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11804 return FALSE;
11805
11806 /* Get symbol table size. */
11807 symsize = bfd_get_symtab_upper_bound (abfd);
11808 if (symsize < 0)
11809 return FALSE;
11810
11811 /* Read in the symbol table. */
11812 sympp = (asymbol **) bfd_malloc (symsize);
11813 if (sympp == NULL)
11814 return FALSE;
11815
11816 symcount = bfd_canonicalize_symtab (abfd, sympp);
11817 if (symcount < 0)
11818 goto free_sym_buf;
11819
11820 /* Allow the BFD backend to copy any private header data it
11821 understands from the output BFD to the import library BFD. */
11822 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11823 goto free_sym_buf;
11824
11825 /* Filter symbols to appear in the import library. */
11826 if (bed->elf_backend_filter_implib_symbols)
11827 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11828 symcount);
11829 else
11830 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11831 if (symcount == 0)
11832 {
11833 bfd_set_error (bfd_error_no_symbols);
11834 _bfd_error_handler (_("%pB: no symbol found for import library"),
11835 implib_bfd);
11836 goto free_sym_buf;
11837 }
11838
11839
11840 /* Make symbols absolute. */
11841 amt = symcount * sizeof (*osymbuf);
11842 osymbuf = (elf_symbol_type *) bfd_alloc (implib_bfd, amt);
11843 if (osymbuf == NULL)
11844 goto free_sym_buf;
11845
11846 for (src_count = 0; src_count < symcount; src_count++)
11847 {
11848 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11849 sizeof (*osymbuf));
11850 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11851 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11852 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11853 osymbuf[src_count].internal_elf_sym.st_value =
11854 osymbuf[src_count].symbol.value;
11855 sympp[src_count] = &osymbuf[src_count].symbol;
11856 }
11857
11858 bfd_set_symtab (implib_bfd, sympp, symcount);
11859
11860 /* Allow the BFD backend to copy any private data it understands
11861 from the output BFD to the import library BFD. This is done last
11862 to permit the routine to look at the filtered symbol table. */
11863 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11864 goto free_sym_buf;
11865
11866 if (!bfd_close (implib_bfd))
11867 goto free_sym_buf;
11868
11869 ret = TRUE;
11870
11871 free_sym_buf:
11872 free (sympp);
11873 return ret;
11874 }
11875
11876 static void
11877 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11878 {
11879 asection *o;
11880
11881 if (flinfo->symstrtab != NULL)
11882 _bfd_elf_strtab_free (flinfo->symstrtab);
11883 free (flinfo->contents);
11884 free (flinfo->external_relocs);
11885 free (flinfo->internal_relocs);
11886 free (flinfo->external_syms);
11887 free (flinfo->locsym_shndx);
11888 free (flinfo->internal_syms);
11889 free (flinfo->indices);
11890 free (flinfo->sections);
11891 if (flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1)
11892 free (flinfo->symshndxbuf);
11893 for (o = obfd->sections; o != NULL; o = o->next)
11894 {
11895 struct bfd_elf_section_data *esdo = elf_section_data (o);
11896 free (esdo->rel.hashes);
11897 free (esdo->rela.hashes);
11898 }
11899 }
11900
11901 /* Do the final step of an ELF link. */
11902
11903 bfd_boolean
11904 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11905 {
11906 bfd_boolean dynamic;
11907 bfd_boolean emit_relocs;
11908 bfd *dynobj;
11909 struct elf_final_link_info flinfo;
11910 asection *o;
11911 struct bfd_link_order *p;
11912 bfd *sub;
11913 bfd_size_type max_contents_size;
11914 bfd_size_type max_external_reloc_size;
11915 bfd_size_type max_internal_reloc_count;
11916 bfd_size_type max_sym_count;
11917 bfd_size_type max_sym_shndx_count;
11918 Elf_Internal_Sym elfsym;
11919 unsigned int i;
11920 Elf_Internal_Shdr *symtab_hdr;
11921 Elf_Internal_Shdr *symtab_shndx_hdr;
11922 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11923 struct elf_outext_info eoinfo;
11924 bfd_boolean merged;
11925 size_t relativecount = 0;
11926 asection *reldyn = 0;
11927 bfd_size_type amt;
11928 asection *attr_section = NULL;
11929 bfd_vma attr_size = 0;
11930 const char *std_attrs_section;
11931 struct elf_link_hash_table *htab = elf_hash_table (info);
11932 bfd_boolean sections_removed;
11933
11934 if (!is_elf_hash_table (htab))
11935 return FALSE;
11936
11937 if (bfd_link_pic (info))
11938 abfd->flags |= DYNAMIC;
11939
11940 dynamic = htab->dynamic_sections_created;
11941 dynobj = htab->dynobj;
11942
11943 emit_relocs = (bfd_link_relocatable (info)
11944 || info->emitrelocations);
11945
11946 flinfo.info = info;
11947 flinfo.output_bfd = abfd;
11948 flinfo.symstrtab = _bfd_elf_strtab_init ();
11949 if (flinfo.symstrtab == NULL)
11950 return FALSE;
11951
11952 if (! dynamic)
11953 {
11954 flinfo.hash_sec = NULL;
11955 flinfo.symver_sec = NULL;
11956 }
11957 else
11958 {
11959 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11960 /* Note that dynsym_sec can be NULL (on VMS). */
11961 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11962 /* Note that it is OK if symver_sec is NULL. */
11963 }
11964
11965 flinfo.contents = NULL;
11966 flinfo.external_relocs = NULL;
11967 flinfo.internal_relocs = NULL;
11968 flinfo.external_syms = NULL;
11969 flinfo.locsym_shndx = NULL;
11970 flinfo.internal_syms = NULL;
11971 flinfo.indices = NULL;
11972 flinfo.sections = NULL;
11973 flinfo.symshndxbuf = NULL;
11974 flinfo.filesym_count = 0;
11975
11976 /* The object attributes have been merged. Remove the input
11977 sections from the link, and set the contents of the output
11978 section. */
11979 sections_removed = FALSE;
11980 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11981 for (o = abfd->sections; o != NULL; o = o->next)
11982 {
11983 bfd_boolean remove_section = FALSE;
11984
11985 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11986 || strcmp (o->name, ".gnu.attributes") == 0)
11987 {
11988 for (p = o->map_head.link_order; p != NULL; p = p->next)
11989 {
11990 asection *input_section;
11991
11992 if (p->type != bfd_indirect_link_order)
11993 continue;
11994 input_section = p->u.indirect.section;
11995 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11996 elf_link_input_bfd ignores this section. */
11997 input_section->flags &= ~SEC_HAS_CONTENTS;
11998 }
11999
12000 attr_size = bfd_elf_obj_attr_size (abfd);
12001 bfd_set_section_size (o, attr_size);
12002 /* Skip this section later on. */
12003 o->map_head.link_order = NULL;
12004 if (attr_size)
12005 attr_section = o;
12006 else
12007 remove_section = TRUE;
12008 }
12009 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
12010 {
12011 /* Remove empty group section from linker output. */
12012 remove_section = TRUE;
12013 }
12014 if (remove_section)
12015 {
12016 o->flags |= SEC_EXCLUDE;
12017 bfd_section_list_remove (abfd, o);
12018 abfd->section_count--;
12019 sections_removed = TRUE;
12020 }
12021 }
12022 if (sections_removed)
12023 _bfd_fix_excluded_sec_syms (abfd, info);
12024
12025 /* Count up the number of relocations we will output for each output
12026 section, so that we know the sizes of the reloc sections. We
12027 also figure out some maximum sizes. */
12028 max_contents_size = 0;
12029 max_external_reloc_size = 0;
12030 max_internal_reloc_count = 0;
12031 max_sym_count = 0;
12032 max_sym_shndx_count = 0;
12033 merged = FALSE;
12034 for (o = abfd->sections; o != NULL; o = o->next)
12035 {
12036 struct bfd_elf_section_data *esdo = elf_section_data (o);
12037 o->reloc_count = 0;
12038
12039 for (p = o->map_head.link_order; p != NULL; p = p->next)
12040 {
12041 unsigned int reloc_count = 0;
12042 unsigned int additional_reloc_count = 0;
12043 struct bfd_elf_section_data *esdi = NULL;
12044
12045 if (p->type == bfd_section_reloc_link_order
12046 || p->type == bfd_symbol_reloc_link_order)
12047 reloc_count = 1;
12048 else if (p->type == bfd_indirect_link_order)
12049 {
12050 asection *sec;
12051
12052 sec = p->u.indirect.section;
12053
12054 /* Mark all sections which are to be included in the
12055 link. This will normally be every section. We need
12056 to do this so that we can identify any sections which
12057 the linker has decided to not include. */
12058 sec->linker_mark = TRUE;
12059
12060 if (sec->flags & SEC_MERGE)
12061 merged = TRUE;
12062
12063 if (sec->rawsize > max_contents_size)
12064 max_contents_size = sec->rawsize;
12065 if (sec->size > max_contents_size)
12066 max_contents_size = sec->size;
12067
12068 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
12069 && (sec->owner->flags & DYNAMIC) == 0)
12070 {
12071 size_t sym_count;
12072
12073 /* We are interested in just local symbols, not all
12074 symbols. */
12075 if (elf_bad_symtab (sec->owner))
12076 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
12077 / bed->s->sizeof_sym);
12078 else
12079 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
12080
12081 if (sym_count > max_sym_count)
12082 max_sym_count = sym_count;
12083
12084 if (sym_count > max_sym_shndx_count
12085 && elf_symtab_shndx_list (sec->owner) != NULL)
12086 max_sym_shndx_count = sym_count;
12087
12088 if (esdo->this_hdr.sh_type == SHT_REL
12089 || esdo->this_hdr.sh_type == SHT_RELA)
12090 /* Some backends use reloc_count in relocation sections
12091 to count particular types of relocs. Of course,
12092 reloc sections themselves can't have relocations. */
12093 ;
12094 else if (emit_relocs)
12095 {
12096 reloc_count = sec->reloc_count;
12097 if (bed->elf_backend_count_additional_relocs)
12098 {
12099 int c;
12100 c = (*bed->elf_backend_count_additional_relocs) (sec);
12101 additional_reloc_count += c;
12102 }
12103 }
12104 else if (bed->elf_backend_count_relocs)
12105 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
12106
12107 esdi = elf_section_data (sec);
12108
12109 if ((sec->flags & SEC_RELOC) != 0)
12110 {
12111 size_t ext_size = 0;
12112
12113 if (esdi->rel.hdr != NULL)
12114 ext_size = esdi->rel.hdr->sh_size;
12115 if (esdi->rela.hdr != NULL)
12116 ext_size += esdi->rela.hdr->sh_size;
12117
12118 if (ext_size > max_external_reloc_size)
12119 max_external_reloc_size = ext_size;
12120 if (sec->reloc_count > max_internal_reloc_count)
12121 max_internal_reloc_count = sec->reloc_count;
12122 }
12123 }
12124 }
12125
12126 if (reloc_count == 0)
12127 continue;
12128
12129 reloc_count += additional_reloc_count;
12130 o->reloc_count += reloc_count;
12131
12132 if (p->type == bfd_indirect_link_order && emit_relocs)
12133 {
12134 if (esdi->rel.hdr)
12135 {
12136 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
12137 esdo->rel.count += additional_reloc_count;
12138 }
12139 if (esdi->rela.hdr)
12140 {
12141 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
12142 esdo->rela.count += additional_reloc_count;
12143 }
12144 }
12145 else
12146 {
12147 if (o->use_rela_p)
12148 esdo->rela.count += reloc_count;
12149 else
12150 esdo->rel.count += reloc_count;
12151 }
12152 }
12153
12154 if (o->reloc_count > 0)
12155 o->flags |= SEC_RELOC;
12156 else
12157 {
12158 /* Explicitly clear the SEC_RELOC flag. The linker tends to
12159 set it (this is probably a bug) and if it is set
12160 assign_section_numbers will create a reloc section. */
12161 o->flags &=~ SEC_RELOC;
12162 }
12163
12164 /* If the SEC_ALLOC flag is not set, force the section VMA to
12165 zero. This is done in elf_fake_sections as well, but forcing
12166 the VMA to 0 here will ensure that relocs against these
12167 sections are handled correctly. */
12168 if ((o->flags & SEC_ALLOC) == 0
12169 && ! o->user_set_vma)
12170 o->vma = 0;
12171 }
12172
12173 if (! bfd_link_relocatable (info) && merged)
12174 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
12175
12176 /* Figure out the file positions for everything but the symbol table
12177 and the relocs. We set symcount to force assign_section_numbers
12178 to create a symbol table. */
12179 abfd->symcount = info->strip != strip_all || emit_relocs;
12180 BFD_ASSERT (! abfd->output_has_begun);
12181 if (! _bfd_elf_compute_section_file_positions (abfd, info))
12182 goto error_return;
12183
12184 /* Set sizes, and assign file positions for reloc sections. */
12185 for (o = abfd->sections; o != NULL; o = o->next)
12186 {
12187 struct bfd_elf_section_data *esdo = elf_section_data (o);
12188 if ((o->flags & SEC_RELOC) != 0)
12189 {
12190 if (esdo->rel.hdr
12191 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
12192 goto error_return;
12193
12194 if (esdo->rela.hdr
12195 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
12196 goto error_return;
12197 }
12198
12199 /* _bfd_elf_compute_section_file_positions makes temporary use
12200 of target_index. Reset it. */
12201 o->target_index = 0;
12202
12203 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
12204 to count upwards while actually outputting the relocations. */
12205 esdo->rel.count = 0;
12206 esdo->rela.count = 0;
12207
12208 if ((esdo->this_hdr.sh_offset == (file_ptr) -1)
12209 && !bfd_section_is_ctf (o))
12210 {
12211 /* Cache the section contents so that they can be compressed
12212 later. Use bfd_malloc since it will be freed by
12213 bfd_compress_section_contents. */
12214 unsigned char *contents = esdo->this_hdr.contents;
12215 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
12216 abort ();
12217 contents
12218 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
12219 if (contents == NULL)
12220 goto error_return;
12221 esdo->this_hdr.contents = contents;
12222 }
12223 }
12224
12225 /* We have now assigned file positions for all the sections except .symtab,
12226 .strtab, and non-loaded reloc and compressed debugging sections. We start
12227 the .symtab section at the current file position, and write directly to it.
12228 We build the .strtab section in memory. */
12229 abfd->symcount = 0;
12230 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12231 /* sh_name is set in prep_headers. */
12232 symtab_hdr->sh_type = SHT_SYMTAB;
12233 /* sh_flags, sh_addr and sh_size all start off zero. */
12234 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
12235 /* sh_link is set in assign_section_numbers. */
12236 /* sh_info is set below. */
12237 /* sh_offset is set just below. */
12238 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
12239
12240 if (max_sym_count < 20)
12241 max_sym_count = 20;
12242 htab->strtabsize = max_sym_count;
12243 amt = max_sym_count * sizeof (struct elf_sym_strtab);
12244 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12245 if (htab->strtab == NULL)
12246 goto error_return;
12247 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12248 flinfo.symshndxbuf
12249 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12250 ? (Elf_External_Sym_Shndx *) -1 : NULL);
12251
12252 if (info->strip != strip_all || emit_relocs)
12253 {
12254 file_ptr off = elf_next_file_pos (abfd);
12255
12256 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
12257
12258 /* Note that at this point elf_next_file_pos (abfd) is
12259 incorrect. We do not yet know the size of the .symtab section.
12260 We correct next_file_pos below, after we do know the size. */
12261
12262 /* Start writing out the symbol table. The first symbol is always a
12263 dummy symbol. */
12264 elfsym.st_value = 0;
12265 elfsym.st_size = 0;
12266 elfsym.st_info = 0;
12267 elfsym.st_other = 0;
12268 elfsym.st_shndx = SHN_UNDEF;
12269 elfsym.st_target_internal = 0;
12270 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12271 bfd_und_section_ptr, NULL) != 1)
12272 goto error_return;
12273
12274 /* Output a symbol for each section. We output these even if we are
12275 discarding local symbols, since they are used for relocs. These
12276 symbols have no names. We store the index of each one in the
12277 index field of the section, so that we can find it again when
12278 outputting relocs. */
12279
12280 elfsym.st_size = 0;
12281 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12282 elfsym.st_other = 0;
12283 elfsym.st_value = 0;
12284 elfsym.st_target_internal = 0;
12285 for (i = 1; i < elf_numsections (abfd); i++)
12286 {
12287 o = bfd_section_from_elf_index (abfd, i);
12288 if (o != NULL)
12289 {
12290 o->target_index = bfd_get_symcount (abfd);
12291 elfsym.st_shndx = i;
12292 if (!bfd_link_relocatable (info))
12293 elfsym.st_value = o->vma;
12294 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
12295 NULL) != 1)
12296 goto error_return;
12297 }
12298 }
12299 }
12300
12301 /* Allocate some memory to hold information read in from the input
12302 files. */
12303 if (max_contents_size != 0)
12304 {
12305 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12306 if (flinfo.contents == NULL)
12307 goto error_return;
12308 }
12309
12310 if (max_external_reloc_size != 0)
12311 {
12312 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12313 if (flinfo.external_relocs == NULL)
12314 goto error_return;
12315 }
12316
12317 if (max_internal_reloc_count != 0)
12318 {
12319 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12320 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12321 if (flinfo.internal_relocs == NULL)
12322 goto error_return;
12323 }
12324
12325 if (max_sym_count != 0)
12326 {
12327 amt = max_sym_count * bed->s->sizeof_sym;
12328 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12329 if (flinfo.external_syms == NULL)
12330 goto error_return;
12331
12332 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12333 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12334 if (flinfo.internal_syms == NULL)
12335 goto error_return;
12336
12337 amt = max_sym_count * sizeof (long);
12338 flinfo.indices = (long int *) bfd_malloc (amt);
12339 if (flinfo.indices == NULL)
12340 goto error_return;
12341
12342 amt = max_sym_count * sizeof (asection *);
12343 flinfo.sections = (asection **) bfd_malloc (amt);
12344 if (flinfo.sections == NULL)
12345 goto error_return;
12346 }
12347
12348 if (max_sym_shndx_count != 0)
12349 {
12350 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12351 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12352 if (flinfo.locsym_shndx == NULL)
12353 goto error_return;
12354 }
12355
12356 if (htab->tls_sec)
12357 {
12358 bfd_vma base, end = 0; /* Both bytes. */
12359 asection *sec;
12360
12361 for (sec = htab->tls_sec;
12362 sec && (sec->flags & SEC_THREAD_LOCAL);
12363 sec = sec->next)
12364 {
12365 bfd_size_type size = sec->size;
12366 unsigned int opb = bfd_octets_per_byte (abfd, sec);
12367
12368 if (size == 0
12369 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12370 {
12371 struct bfd_link_order *ord = sec->map_tail.link_order;
12372
12373 if (ord != NULL)
12374 size = ord->offset * opb + ord->size;
12375 }
12376 end = sec->vma + size / opb;
12377 }
12378 base = htab->tls_sec->vma;
12379 /* Only align end of TLS section if static TLS doesn't have special
12380 alignment requirements. */
12381 if (bed->static_tls_alignment == 1)
12382 end = align_power (end, htab->tls_sec->alignment_power);
12383 htab->tls_size = end - base;
12384 }
12385
12386 /* Reorder SHF_LINK_ORDER sections. */
12387 for (o = abfd->sections; o != NULL; o = o->next)
12388 {
12389 if (!elf_fixup_link_order (abfd, o))
12390 return FALSE;
12391 }
12392
12393 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12394 return FALSE;
12395
12396 /* Since ELF permits relocations to be against local symbols, we
12397 must have the local symbols available when we do the relocations.
12398 Since we would rather only read the local symbols once, and we
12399 would rather not keep them in memory, we handle all the
12400 relocations for a single input file at the same time.
12401
12402 Unfortunately, there is no way to know the total number of local
12403 symbols until we have seen all of them, and the local symbol
12404 indices precede the global symbol indices. This means that when
12405 we are generating relocatable output, and we see a reloc against
12406 a global symbol, we can not know the symbol index until we have
12407 finished examining all the local symbols to see which ones we are
12408 going to output. To deal with this, we keep the relocations in
12409 memory, and don't output them until the end of the link. This is
12410 an unfortunate waste of memory, but I don't see a good way around
12411 it. Fortunately, it only happens when performing a relocatable
12412 link, which is not the common case. FIXME: If keep_memory is set
12413 we could write the relocs out and then read them again; I don't
12414 know how bad the memory loss will be. */
12415
12416 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12417 sub->output_has_begun = FALSE;
12418 for (o = abfd->sections; o != NULL; o = o->next)
12419 {
12420 for (p = o->map_head.link_order; p != NULL; p = p->next)
12421 {
12422 if (p->type == bfd_indirect_link_order
12423 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12424 == bfd_target_elf_flavour)
12425 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12426 {
12427 if (! sub->output_has_begun)
12428 {
12429 if (! elf_link_input_bfd (&flinfo, sub))
12430 goto error_return;
12431 sub->output_has_begun = TRUE;
12432 }
12433 }
12434 else if (p->type == bfd_section_reloc_link_order
12435 || p->type == bfd_symbol_reloc_link_order)
12436 {
12437 if (! elf_reloc_link_order (abfd, info, o, p))
12438 goto error_return;
12439 }
12440 else
12441 {
12442 if (! _bfd_default_link_order (abfd, info, o, p))
12443 {
12444 if (p->type == bfd_indirect_link_order
12445 && (bfd_get_flavour (sub)
12446 == bfd_target_elf_flavour)
12447 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12448 != bed->s->elfclass))
12449 {
12450 const char *iclass, *oclass;
12451
12452 switch (bed->s->elfclass)
12453 {
12454 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12455 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12456 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12457 default: abort ();
12458 }
12459
12460 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12461 {
12462 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12463 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12464 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12465 default: abort ();
12466 }
12467
12468 bfd_set_error (bfd_error_wrong_format);
12469 _bfd_error_handler
12470 /* xgettext:c-format */
12471 (_("%pB: file class %s incompatible with %s"),
12472 sub, iclass, oclass);
12473 }
12474
12475 goto error_return;
12476 }
12477 }
12478 }
12479 }
12480
12481 /* Free symbol buffer if needed. */
12482 if (!info->reduce_memory_overheads)
12483 {
12484 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12485 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
12486 {
12487 free (elf_tdata (sub)->symbuf);
12488 elf_tdata (sub)->symbuf = NULL;
12489 }
12490 }
12491
12492 /* Output any global symbols that got converted to local in a
12493 version script or due to symbol visibility. We do this in a
12494 separate step since ELF requires all local symbols to appear
12495 prior to any global symbols. FIXME: We should only do this if
12496 some global symbols were, in fact, converted to become local.
12497 FIXME: Will this work correctly with the Irix 5 linker? */
12498 eoinfo.failed = FALSE;
12499 eoinfo.flinfo = &flinfo;
12500 eoinfo.localsyms = TRUE;
12501 eoinfo.file_sym_done = FALSE;
12502 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12503 if (eoinfo.failed)
12504 return FALSE;
12505
12506 /* If backend needs to output some local symbols not present in the hash
12507 table, do it now. */
12508 if (bed->elf_backend_output_arch_local_syms
12509 && (info->strip != strip_all || emit_relocs))
12510 {
12511 typedef int (*out_sym_func)
12512 (void *, const char *, Elf_Internal_Sym *, asection *,
12513 struct elf_link_hash_entry *);
12514
12515 if (! ((*bed->elf_backend_output_arch_local_syms)
12516 (abfd, info, &flinfo,
12517 (out_sym_func) elf_link_output_symstrtab)))
12518 return FALSE;
12519 }
12520
12521 /* That wrote out all the local symbols. Finish up the symbol table
12522 with the global symbols. Even if we want to strip everything we
12523 can, we still need to deal with those global symbols that got
12524 converted to local in a version script. */
12525
12526 /* The sh_info field records the index of the first non local symbol. */
12527 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12528
12529 if (dynamic
12530 && htab->dynsym != NULL
12531 && htab->dynsym->output_section != bfd_abs_section_ptr)
12532 {
12533 Elf_Internal_Sym sym;
12534 bfd_byte *dynsym = htab->dynsym->contents;
12535
12536 o = htab->dynsym->output_section;
12537 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12538
12539 /* Write out the section symbols for the output sections. */
12540 if (bfd_link_pic (info)
12541 || htab->is_relocatable_executable)
12542 {
12543 asection *s;
12544
12545 sym.st_size = 0;
12546 sym.st_name = 0;
12547 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12548 sym.st_other = 0;
12549 sym.st_target_internal = 0;
12550
12551 for (s = abfd->sections; s != NULL; s = s->next)
12552 {
12553 int indx;
12554 bfd_byte *dest;
12555 long dynindx;
12556
12557 dynindx = elf_section_data (s)->dynindx;
12558 if (dynindx <= 0)
12559 continue;
12560 indx = elf_section_data (s)->this_idx;
12561 BFD_ASSERT (indx > 0);
12562 sym.st_shndx = indx;
12563 if (! check_dynsym (abfd, &sym))
12564 return FALSE;
12565 sym.st_value = s->vma;
12566 dest = dynsym + dynindx * bed->s->sizeof_sym;
12567 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12568 }
12569 }
12570
12571 /* Write out the local dynsyms. */
12572 if (htab->dynlocal)
12573 {
12574 struct elf_link_local_dynamic_entry *e;
12575 for (e = htab->dynlocal; e ; e = e->next)
12576 {
12577 asection *s;
12578 bfd_byte *dest;
12579
12580 /* Copy the internal symbol and turn off visibility.
12581 Note that we saved a word of storage and overwrote
12582 the original st_name with the dynstr_index. */
12583 sym = e->isym;
12584 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12585
12586 s = bfd_section_from_elf_index (e->input_bfd,
12587 e->isym.st_shndx);
12588 if (s != NULL)
12589 {
12590 sym.st_shndx =
12591 elf_section_data (s->output_section)->this_idx;
12592 if (! check_dynsym (abfd, &sym))
12593 return FALSE;
12594 sym.st_value = (s->output_section->vma
12595 + s->output_offset
12596 + e->isym.st_value);
12597 }
12598
12599 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12600 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12601 }
12602 }
12603 }
12604
12605 /* We get the global symbols from the hash table. */
12606 eoinfo.failed = FALSE;
12607 eoinfo.localsyms = FALSE;
12608 eoinfo.flinfo = &flinfo;
12609 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12610 if (eoinfo.failed)
12611 return FALSE;
12612
12613 /* If backend needs to output some symbols not present in the hash
12614 table, do it now. */
12615 if (bed->elf_backend_output_arch_syms
12616 && (info->strip != strip_all || emit_relocs))
12617 {
12618 typedef int (*out_sym_func)
12619 (void *, const char *, Elf_Internal_Sym *, asection *,
12620 struct elf_link_hash_entry *);
12621
12622 if (! ((*bed->elf_backend_output_arch_syms)
12623 (abfd, info, &flinfo,
12624 (out_sym_func) elf_link_output_symstrtab)))
12625 return FALSE;
12626 }
12627
12628 /* Finalize the .strtab section. */
12629 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12630
12631 /* Swap out the .strtab section. */
12632 if (!elf_link_swap_symbols_out (&flinfo))
12633 return FALSE;
12634
12635 /* Now we know the size of the symtab section. */
12636 if (bfd_get_symcount (abfd) > 0)
12637 {
12638 /* Finish up and write out the symbol string table (.strtab)
12639 section. */
12640 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12641 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12642
12643 if (elf_symtab_shndx_list (abfd))
12644 {
12645 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12646
12647 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12648 {
12649 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12650 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12651 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12652 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12653 symtab_shndx_hdr->sh_size = amt;
12654
12655 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12656 off, TRUE);
12657
12658 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12659 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12660 return FALSE;
12661 }
12662 }
12663
12664 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12665 /* sh_name was set in prep_headers. */
12666 symstrtab_hdr->sh_type = SHT_STRTAB;
12667 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12668 symstrtab_hdr->sh_addr = 0;
12669 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12670 symstrtab_hdr->sh_entsize = 0;
12671 symstrtab_hdr->sh_link = 0;
12672 symstrtab_hdr->sh_info = 0;
12673 /* sh_offset is set just below. */
12674 symstrtab_hdr->sh_addralign = 1;
12675
12676 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12677 off, TRUE);
12678 elf_next_file_pos (abfd) = off;
12679
12680 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12681 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12682 return FALSE;
12683 }
12684
12685 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12686 {
12687 _bfd_error_handler (_("%pB: failed to generate import library"),
12688 info->out_implib_bfd);
12689 return FALSE;
12690 }
12691
12692 /* Adjust the relocs to have the correct symbol indices. */
12693 for (o = abfd->sections; o != NULL; o = o->next)
12694 {
12695 struct bfd_elf_section_data *esdo = elf_section_data (o);
12696 bfd_boolean sort;
12697
12698 if ((o->flags & SEC_RELOC) == 0)
12699 continue;
12700
12701 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12702 if (esdo->rel.hdr != NULL
12703 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12704 return FALSE;
12705 if (esdo->rela.hdr != NULL
12706 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12707 return FALSE;
12708
12709 /* Set the reloc_count field to 0 to prevent write_relocs from
12710 trying to swap the relocs out itself. */
12711 o->reloc_count = 0;
12712 }
12713
12714 if (dynamic && info->combreloc && dynobj != NULL)
12715 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12716
12717 /* If we are linking against a dynamic object, or generating a
12718 shared library, finish up the dynamic linking information. */
12719 if (dynamic)
12720 {
12721 bfd_byte *dyncon, *dynconend;
12722
12723 /* Fix up .dynamic entries. */
12724 o = bfd_get_linker_section (dynobj, ".dynamic");
12725 BFD_ASSERT (o != NULL);
12726
12727 dyncon = o->contents;
12728 dynconend = o->contents + o->size;
12729 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12730 {
12731 Elf_Internal_Dyn dyn;
12732 const char *name;
12733 unsigned int type;
12734 bfd_size_type sh_size;
12735 bfd_vma sh_addr;
12736
12737 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12738
12739 switch (dyn.d_tag)
12740 {
12741 default:
12742 continue;
12743 case DT_NULL:
12744 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12745 {
12746 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12747 {
12748 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12749 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12750 default: continue;
12751 }
12752 dyn.d_un.d_val = relativecount;
12753 relativecount = 0;
12754 break;
12755 }
12756 continue;
12757
12758 case DT_INIT:
12759 name = info->init_function;
12760 goto get_sym;
12761 case DT_FINI:
12762 name = info->fini_function;
12763 get_sym:
12764 {
12765 struct elf_link_hash_entry *h;
12766
12767 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12768 if (h != NULL
12769 && (h->root.type == bfd_link_hash_defined
12770 || h->root.type == bfd_link_hash_defweak))
12771 {
12772 dyn.d_un.d_ptr = h->root.u.def.value;
12773 o = h->root.u.def.section;
12774 if (o->output_section != NULL)
12775 dyn.d_un.d_ptr += (o->output_section->vma
12776 + o->output_offset);
12777 else
12778 {
12779 /* The symbol is imported from another shared
12780 library and does not apply to this one. */
12781 dyn.d_un.d_ptr = 0;
12782 }
12783 break;
12784 }
12785 }
12786 continue;
12787
12788 case DT_PREINIT_ARRAYSZ:
12789 name = ".preinit_array";
12790 goto get_out_size;
12791 case DT_INIT_ARRAYSZ:
12792 name = ".init_array";
12793 goto get_out_size;
12794 case DT_FINI_ARRAYSZ:
12795 name = ".fini_array";
12796 get_out_size:
12797 o = bfd_get_section_by_name (abfd, name);
12798 if (o == NULL)
12799 {
12800 _bfd_error_handler
12801 (_("could not find section %s"), name);
12802 goto error_return;
12803 }
12804 if (o->size == 0)
12805 _bfd_error_handler
12806 (_("warning: %s section has zero size"), name);
12807 dyn.d_un.d_val = o->size;
12808 break;
12809
12810 case DT_PREINIT_ARRAY:
12811 name = ".preinit_array";
12812 goto get_out_vma;
12813 case DT_INIT_ARRAY:
12814 name = ".init_array";
12815 goto get_out_vma;
12816 case DT_FINI_ARRAY:
12817 name = ".fini_array";
12818 get_out_vma:
12819 o = bfd_get_section_by_name (abfd, name);
12820 goto do_vma;
12821
12822 case DT_HASH:
12823 name = ".hash";
12824 goto get_vma;
12825 case DT_GNU_HASH:
12826 name = ".gnu.hash";
12827 goto get_vma;
12828 case DT_STRTAB:
12829 name = ".dynstr";
12830 goto get_vma;
12831 case DT_SYMTAB:
12832 name = ".dynsym";
12833 goto get_vma;
12834 case DT_VERDEF:
12835 name = ".gnu.version_d";
12836 goto get_vma;
12837 case DT_VERNEED:
12838 name = ".gnu.version_r";
12839 goto get_vma;
12840 case DT_VERSYM:
12841 name = ".gnu.version";
12842 get_vma:
12843 o = bfd_get_linker_section (dynobj, name);
12844 do_vma:
12845 if (o == NULL || bfd_is_abs_section (o->output_section))
12846 {
12847 _bfd_error_handler
12848 (_("could not find section %s"), name);
12849 goto error_return;
12850 }
12851 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12852 {
12853 _bfd_error_handler
12854 (_("warning: section '%s' is being made into a note"), name);
12855 bfd_set_error (bfd_error_nonrepresentable_section);
12856 goto error_return;
12857 }
12858 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12859 break;
12860
12861 case DT_REL:
12862 case DT_RELA:
12863 case DT_RELSZ:
12864 case DT_RELASZ:
12865 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12866 type = SHT_REL;
12867 else
12868 type = SHT_RELA;
12869 sh_size = 0;
12870 sh_addr = 0;
12871 for (i = 1; i < elf_numsections (abfd); i++)
12872 {
12873 Elf_Internal_Shdr *hdr;
12874
12875 hdr = elf_elfsections (abfd)[i];
12876 if (hdr->sh_type == type
12877 && (hdr->sh_flags & SHF_ALLOC) != 0)
12878 {
12879 sh_size += hdr->sh_size;
12880 if (sh_addr == 0
12881 || sh_addr > hdr->sh_addr)
12882 sh_addr = hdr->sh_addr;
12883 }
12884 }
12885
12886 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12887 {
12888 unsigned int opb = bfd_octets_per_byte (abfd, o);
12889
12890 /* Don't count procedure linkage table relocs in the
12891 overall reloc count. */
12892 sh_size -= htab->srelplt->size;
12893 if (sh_size == 0)
12894 /* If the size is zero, make the address zero too.
12895 This is to avoid a glibc bug. If the backend
12896 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12897 zero, then we'll put DT_RELA at the end of
12898 DT_JMPREL. glibc will interpret the end of
12899 DT_RELA matching the end of DT_JMPREL as the
12900 case where DT_RELA includes DT_JMPREL, and for
12901 LD_BIND_NOW will decide that processing DT_RELA
12902 will process the PLT relocs too. Net result:
12903 No PLT relocs applied. */
12904 sh_addr = 0;
12905
12906 /* If .rela.plt is the first .rela section, exclude
12907 it from DT_RELA. */
12908 else if (sh_addr == (htab->srelplt->output_section->vma
12909 + htab->srelplt->output_offset) * opb)
12910 sh_addr += htab->srelplt->size;
12911 }
12912
12913 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12914 dyn.d_un.d_val = sh_size;
12915 else
12916 dyn.d_un.d_ptr = sh_addr;
12917 break;
12918 }
12919 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12920 }
12921 }
12922
12923 /* If we have created any dynamic sections, then output them. */
12924 if (dynobj != NULL)
12925 {
12926 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12927 goto error_return;
12928
12929 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12930 if (bfd_link_textrel_check (info)
12931 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12932 {
12933 bfd_byte *dyncon, *dynconend;
12934
12935 dyncon = o->contents;
12936 dynconend = o->contents + o->size;
12937 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12938 {
12939 Elf_Internal_Dyn dyn;
12940
12941 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12942
12943 if (dyn.d_tag == DT_TEXTREL)
12944 {
12945 if (info->textrel_check == textrel_check_error)
12946 info->callbacks->einfo
12947 (_("%P%X: read-only segment has dynamic relocations\n"));
12948 else if (bfd_link_dll (info))
12949 info->callbacks->einfo
12950 (_("%P: warning: creating DT_TEXTREL in a shared object\n"));
12951 else
12952 info->callbacks->einfo
12953 (_("%P: warning: creating DT_TEXTREL in a PIE\n"));
12954 break;
12955 }
12956 }
12957 }
12958
12959 for (o = dynobj->sections; o != NULL; o = o->next)
12960 {
12961 if ((o->flags & SEC_HAS_CONTENTS) == 0
12962 || o->size == 0
12963 || o->output_section == bfd_abs_section_ptr)
12964 continue;
12965 if ((o->flags & SEC_LINKER_CREATED) == 0)
12966 {
12967 /* At this point, we are only interested in sections
12968 created by _bfd_elf_link_create_dynamic_sections. */
12969 continue;
12970 }
12971 if (htab->stab_info.stabstr == o)
12972 continue;
12973 if (htab->eh_info.hdr_sec == o)
12974 continue;
12975 if (strcmp (o->name, ".dynstr") != 0)
12976 {
12977 bfd_size_type octets = ((file_ptr) o->output_offset
12978 * bfd_octets_per_byte (abfd, o));
12979 if (!bfd_set_section_contents (abfd, o->output_section,
12980 o->contents, octets, o->size))
12981 goto error_return;
12982 }
12983 else
12984 {
12985 /* The contents of the .dynstr section are actually in a
12986 stringtab. */
12987 file_ptr off;
12988
12989 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12990 if (bfd_seek (abfd, off, SEEK_SET) != 0
12991 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12992 goto error_return;
12993 }
12994 }
12995 }
12996
12997 if (!info->resolve_section_groups)
12998 {
12999 bfd_boolean failed = FALSE;
13000
13001 BFD_ASSERT (bfd_link_relocatable (info));
13002 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
13003 if (failed)
13004 goto error_return;
13005 }
13006
13007 /* If we have optimized stabs strings, output them. */
13008 if (htab->stab_info.stabstr != NULL)
13009 {
13010 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
13011 goto error_return;
13012 }
13013
13014 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
13015 goto error_return;
13016
13017 if (info->callbacks->emit_ctf)
13018 info->callbacks->emit_ctf ();
13019
13020 elf_final_link_free (abfd, &flinfo);
13021
13022 if (attr_section)
13023 {
13024 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
13025 if (contents == NULL)
13026 return FALSE; /* Bail out and fail. */
13027 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
13028 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
13029 free (contents);
13030 }
13031
13032 return TRUE;
13033
13034 error_return:
13035 elf_final_link_free (abfd, &flinfo);
13036 return FALSE;
13037 }
13038 \f
13039 /* Initialize COOKIE for input bfd ABFD. */
13040
13041 static bfd_boolean
13042 init_reloc_cookie (struct elf_reloc_cookie *cookie,
13043 struct bfd_link_info *info, bfd *abfd)
13044 {
13045 Elf_Internal_Shdr *symtab_hdr;
13046 const struct elf_backend_data *bed;
13047
13048 bed = get_elf_backend_data (abfd);
13049 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13050
13051 cookie->abfd = abfd;
13052 cookie->sym_hashes = elf_sym_hashes (abfd);
13053 cookie->bad_symtab = elf_bad_symtab (abfd);
13054 if (cookie->bad_symtab)
13055 {
13056 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13057 cookie->extsymoff = 0;
13058 }
13059 else
13060 {
13061 cookie->locsymcount = symtab_hdr->sh_info;
13062 cookie->extsymoff = symtab_hdr->sh_info;
13063 }
13064
13065 if (bed->s->arch_size == 32)
13066 cookie->r_sym_shift = 8;
13067 else
13068 cookie->r_sym_shift = 32;
13069
13070 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
13071 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
13072 {
13073 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13074 cookie->locsymcount, 0,
13075 NULL, NULL, NULL);
13076 if (cookie->locsyms == NULL)
13077 {
13078 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
13079 return FALSE;
13080 }
13081 if (info->keep_memory)
13082 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
13083 }
13084 return TRUE;
13085 }
13086
13087 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
13088
13089 static void
13090 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
13091 {
13092 Elf_Internal_Shdr *symtab_hdr;
13093
13094 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13095 if (symtab_hdr->contents != (unsigned char *) cookie->locsyms)
13096 free (cookie->locsyms);
13097 }
13098
13099 /* Initialize the relocation information in COOKIE for input section SEC
13100 of input bfd ABFD. */
13101
13102 static bfd_boolean
13103 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13104 struct bfd_link_info *info, bfd *abfd,
13105 asection *sec)
13106 {
13107 if (sec->reloc_count == 0)
13108 {
13109 cookie->rels = NULL;
13110 cookie->relend = NULL;
13111 }
13112 else
13113 {
13114 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
13115 info->keep_memory);
13116 if (cookie->rels == NULL)
13117 return FALSE;
13118 cookie->rel = cookie->rels;
13119 cookie->relend = cookie->rels + sec->reloc_count;
13120 }
13121 cookie->rel = cookie->rels;
13122 return TRUE;
13123 }
13124
13125 /* Free the memory allocated by init_reloc_cookie_rels,
13126 if appropriate. */
13127
13128 static void
13129 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13130 asection *sec)
13131 {
13132 if (elf_section_data (sec)->relocs != cookie->rels)
13133 free (cookie->rels);
13134 }
13135
13136 /* Initialize the whole of COOKIE for input section SEC. */
13137
13138 static bfd_boolean
13139 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13140 struct bfd_link_info *info,
13141 asection *sec)
13142 {
13143 if (!init_reloc_cookie (cookie, info, sec->owner))
13144 goto error1;
13145 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
13146 goto error2;
13147 return TRUE;
13148
13149 error2:
13150 fini_reloc_cookie (cookie, sec->owner);
13151 error1:
13152 return FALSE;
13153 }
13154
13155 /* Free the memory allocated by init_reloc_cookie_for_section,
13156 if appropriate. */
13157
13158 static void
13159 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13160 asection *sec)
13161 {
13162 fini_reloc_cookie_rels (cookie, sec);
13163 fini_reloc_cookie (cookie, sec->owner);
13164 }
13165 \f
13166 /* Garbage collect unused sections. */
13167
13168 /* Default gc_mark_hook. */
13169
13170 asection *
13171 _bfd_elf_gc_mark_hook (asection *sec,
13172 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13173 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13174 struct elf_link_hash_entry *h,
13175 Elf_Internal_Sym *sym)
13176 {
13177 if (h != NULL)
13178 {
13179 switch (h->root.type)
13180 {
13181 case bfd_link_hash_defined:
13182 case bfd_link_hash_defweak:
13183 return h->root.u.def.section;
13184
13185 case bfd_link_hash_common:
13186 return h->root.u.c.p->section;
13187
13188 default:
13189 break;
13190 }
13191 }
13192 else
13193 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
13194
13195 return NULL;
13196 }
13197
13198 /* Return the debug definition section. */
13199
13200 static asection *
13201 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
13202 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13203 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13204 struct elf_link_hash_entry *h,
13205 Elf_Internal_Sym *sym)
13206 {
13207 if (h != NULL)
13208 {
13209 /* Return the global debug definition section. */
13210 if ((h->root.type == bfd_link_hash_defined
13211 || h->root.type == bfd_link_hash_defweak)
13212 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
13213 return h->root.u.def.section;
13214 }
13215 else
13216 {
13217 /* Return the local debug definition section. */
13218 asection *isec = bfd_section_from_elf_index (sec->owner,
13219 sym->st_shndx);
13220 if ((isec->flags & SEC_DEBUGGING) != 0)
13221 return isec;
13222 }
13223
13224 return NULL;
13225 }
13226
13227 /* COOKIE->rel describes a relocation against section SEC, which is
13228 a section we've decided to keep. Return the section that contains
13229 the relocation symbol, or NULL if no section contains it. */
13230
13231 asection *
13232 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
13233 elf_gc_mark_hook_fn gc_mark_hook,
13234 struct elf_reloc_cookie *cookie,
13235 bfd_boolean *start_stop)
13236 {
13237 unsigned long r_symndx;
13238 struct elf_link_hash_entry *h, *hw;
13239
13240 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
13241 if (r_symndx == STN_UNDEF)
13242 return NULL;
13243
13244 if (r_symndx >= cookie->locsymcount
13245 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13246 {
13247 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13248 if (h == NULL)
13249 {
13250 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13251 sec->owner);
13252 return NULL;
13253 }
13254 while (h->root.type == bfd_link_hash_indirect
13255 || h->root.type == bfd_link_hash_warning)
13256 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13257 h->mark = 1;
13258 /* Keep all aliases of the symbol too. If an object symbol
13259 needs to be copied into .dynbss then all of its aliases
13260 should be present as dynamic symbols, not just the one used
13261 on the copy relocation. */
13262 hw = h;
13263 while (hw->is_weakalias)
13264 {
13265 hw = hw->u.alias;
13266 hw->mark = 1;
13267 }
13268
13269 if (start_stop != NULL)
13270 {
13271 /* To work around a glibc bug, mark XXX input sections
13272 when there is a reference to __start_XXX or __stop_XXX
13273 symbols. */
13274 if (h->start_stop)
13275 {
13276 asection *s = h->u2.start_stop_section;
13277 *start_stop = !s->gc_mark;
13278 return s;
13279 }
13280 }
13281
13282 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13283 }
13284
13285 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13286 &cookie->locsyms[r_symndx]);
13287 }
13288
13289 /* COOKIE->rel describes a relocation against section SEC, which is
13290 a section we've decided to keep. Mark the section that contains
13291 the relocation symbol. */
13292
13293 bfd_boolean
13294 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13295 asection *sec,
13296 elf_gc_mark_hook_fn gc_mark_hook,
13297 struct elf_reloc_cookie *cookie)
13298 {
13299 asection *rsec;
13300 bfd_boolean start_stop = FALSE;
13301
13302 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13303 while (rsec != NULL)
13304 {
13305 if (!rsec->gc_mark)
13306 {
13307 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13308 || (rsec->owner->flags & DYNAMIC) != 0)
13309 rsec->gc_mark = 1;
13310 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13311 return FALSE;
13312 }
13313 if (!start_stop)
13314 break;
13315 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13316 }
13317 return TRUE;
13318 }
13319
13320 /* The mark phase of garbage collection. For a given section, mark
13321 it and any sections in this section's group, and all the sections
13322 which define symbols to which it refers. */
13323
13324 bfd_boolean
13325 _bfd_elf_gc_mark (struct bfd_link_info *info,
13326 asection *sec,
13327 elf_gc_mark_hook_fn gc_mark_hook)
13328 {
13329 bfd_boolean ret;
13330 asection *group_sec, *eh_frame;
13331
13332 sec->gc_mark = 1;
13333
13334 /* Mark all the sections in the group. */
13335 group_sec = elf_section_data (sec)->next_in_group;
13336 if (group_sec && !group_sec->gc_mark)
13337 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13338 return FALSE;
13339
13340 /* Look through the section relocs. */
13341 ret = TRUE;
13342 eh_frame = elf_eh_frame_section (sec->owner);
13343 if ((sec->flags & SEC_RELOC) != 0
13344 && sec->reloc_count > 0
13345 && sec != eh_frame)
13346 {
13347 struct elf_reloc_cookie cookie;
13348
13349 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13350 ret = FALSE;
13351 else
13352 {
13353 for (; cookie.rel < cookie.relend; cookie.rel++)
13354 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13355 {
13356 ret = FALSE;
13357 break;
13358 }
13359 fini_reloc_cookie_for_section (&cookie, sec);
13360 }
13361 }
13362
13363 if (ret && eh_frame && elf_fde_list (sec))
13364 {
13365 struct elf_reloc_cookie cookie;
13366
13367 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13368 ret = FALSE;
13369 else
13370 {
13371 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13372 gc_mark_hook, &cookie))
13373 ret = FALSE;
13374 fini_reloc_cookie_for_section (&cookie, eh_frame);
13375 }
13376 }
13377
13378 eh_frame = elf_section_eh_frame_entry (sec);
13379 if (ret && eh_frame && !eh_frame->gc_mark)
13380 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13381 ret = FALSE;
13382
13383 return ret;
13384 }
13385
13386 /* Scan and mark sections in a special or debug section group. */
13387
13388 static void
13389 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13390 {
13391 /* Point to first section of section group. */
13392 asection *ssec;
13393 /* Used to iterate the section group. */
13394 asection *msec;
13395
13396 bfd_boolean is_special_grp = TRUE;
13397 bfd_boolean is_debug_grp = TRUE;
13398
13399 /* First scan to see if group contains any section other than debug
13400 and special section. */
13401 ssec = msec = elf_next_in_group (grp);
13402 do
13403 {
13404 if ((msec->flags & SEC_DEBUGGING) == 0)
13405 is_debug_grp = FALSE;
13406
13407 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13408 is_special_grp = FALSE;
13409
13410 msec = elf_next_in_group (msec);
13411 }
13412 while (msec != ssec);
13413
13414 /* If this is a pure debug section group or pure special section group,
13415 keep all sections in this group. */
13416 if (is_debug_grp || is_special_grp)
13417 {
13418 do
13419 {
13420 msec->gc_mark = 1;
13421 msec = elf_next_in_group (msec);
13422 }
13423 while (msec != ssec);
13424 }
13425 }
13426
13427 /* Keep debug and special sections. */
13428
13429 bfd_boolean
13430 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13431 elf_gc_mark_hook_fn mark_hook)
13432 {
13433 bfd *ibfd;
13434
13435 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13436 {
13437 asection *isec;
13438 bfd_boolean some_kept;
13439 bfd_boolean debug_frag_seen;
13440 bfd_boolean has_kept_debug_info;
13441
13442 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13443 continue;
13444 isec = ibfd->sections;
13445 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13446 continue;
13447
13448 /* Ensure all linker created sections are kept,
13449 see if any other section is already marked,
13450 and note if we have any fragmented debug sections. */
13451 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13452 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13453 {
13454 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13455 isec->gc_mark = 1;
13456 else if (isec->gc_mark
13457 && (isec->flags & SEC_ALLOC) != 0
13458 && elf_section_type (isec) != SHT_NOTE)
13459 some_kept = TRUE;
13460 else
13461 {
13462 /* Since all sections, except for backend specific ones,
13463 have been garbage collected, call mark_hook on this
13464 section if any of its linked-to sections is marked. */
13465 asection *linked_to_sec = elf_linked_to_section (isec);
13466 for (; linked_to_sec != NULL;
13467 linked_to_sec = elf_linked_to_section (linked_to_sec))
13468 if (linked_to_sec->gc_mark)
13469 {
13470 if (!_bfd_elf_gc_mark (info, isec, mark_hook))
13471 return FALSE;
13472 break;
13473 }
13474 }
13475
13476 if (!debug_frag_seen
13477 && (isec->flags & SEC_DEBUGGING)
13478 && CONST_STRNEQ (isec->name, ".debug_line."))
13479 debug_frag_seen = TRUE;
13480 else if (strcmp (bfd_section_name (isec),
13481 "__patchable_function_entries") == 0
13482 && elf_linked_to_section (isec) == NULL)
13483 info->callbacks->einfo (_("%F%P: %pB(%pA): error: "
13484 "need linked-to section "
13485 "for --gc-sections\n"),
13486 isec->owner, isec);
13487 }
13488
13489 /* If no non-note alloc section in this file will be kept, then
13490 we can toss out the debug and special sections. */
13491 if (!some_kept)
13492 continue;
13493
13494 /* Keep debug and special sections like .comment when they are
13495 not part of a group. Also keep section groups that contain
13496 just debug sections or special sections. NB: Sections with
13497 linked-to section has been handled above. */
13498 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13499 {
13500 if ((isec->flags & SEC_GROUP) != 0)
13501 _bfd_elf_gc_mark_debug_special_section_group (isec);
13502 else if (((isec->flags & SEC_DEBUGGING) != 0
13503 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13504 && elf_next_in_group (isec) == NULL
13505 && elf_linked_to_section (isec) == NULL)
13506 isec->gc_mark = 1;
13507 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13508 has_kept_debug_info = TRUE;
13509 }
13510
13511 /* Look for CODE sections which are going to be discarded,
13512 and find and discard any fragmented debug sections which
13513 are associated with that code section. */
13514 if (debug_frag_seen)
13515 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13516 if ((isec->flags & SEC_CODE) != 0
13517 && isec->gc_mark == 0)
13518 {
13519 unsigned int ilen;
13520 asection *dsec;
13521
13522 ilen = strlen (isec->name);
13523
13524 /* Association is determined by the name of the debug
13525 section containing the name of the code section as
13526 a suffix. For example .debug_line.text.foo is a
13527 debug section associated with .text.foo. */
13528 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13529 {
13530 unsigned int dlen;
13531
13532 if (dsec->gc_mark == 0
13533 || (dsec->flags & SEC_DEBUGGING) == 0)
13534 continue;
13535
13536 dlen = strlen (dsec->name);
13537
13538 if (dlen > ilen
13539 && strncmp (dsec->name + (dlen - ilen),
13540 isec->name, ilen) == 0)
13541 dsec->gc_mark = 0;
13542 }
13543 }
13544
13545 /* Mark debug sections referenced by kept debug sections. */
13546 if (has_kept_debug_info)
13547 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13548 if (isec->gc_mark
13549 && (isec->flags & SEC_DEBUGGING) != 0)
13550 if (!_bfd_elf_gc_mark (info, isec,
13551 elf_gc_mark_debug_section))
13552 return FALSE;
13553 }
13554 return TRUE;
13555 }
13556
13557 static bfd_boolean
13558 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13559 {
13560 bfd *sub;
13561 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13562
13563 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13564 {
13565 asection *o;
13566
13567 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13568 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13569 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13570 continue;
13571 o = sub->sections;
13572 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13573 continue;
13574
13575 for (o = sub->sections; o != NULL; o = o->next)
13576 {
13577 /* When any section in a section group is kept, we keep all
13578 sections in the section group. If the first member of
13579 the section group is excluded, we will also exclude the
13580 group section. */
13581 if (o->flags & SEC_GROUP)
13582 {
13583 asection *first = elf_next_in_group (o);
13584 o->gc_mark = first->gc_mark;
13585 }
13586
13587 if (o->gc_mark)
13588 continue;
13589
13590 /* Skip sweeping sections already excluded. */
13591 if (o->flags & SEC_EXCLUDE)
13592 continue;
13593
13594 /* Since this is early in the link process, it is simple
13595 to remove a section from the output. */
13596 o->flags |= SEC_EXCLUDE;
13597
13598 if (info->print_gc_sections && o->size != 0)
13599 /* xgettext:c-format */
13600 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13601 o, sub);
13602 }
13603 }
13604
13605 return TRUE;
13606 }
13607
13608 /* Propagate collected vtable information. This is called through
13609 elf_link_hash_traverse. */
13610
13611 static bfd_boolean
13612 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13613 {
13614 /* Those that are not vtables. */
13615 if (h->start_stop
13616 || h->u2.vtable == NULL
13617 || h->u2.vtable->parent == NULL)
13618 return TRUE;
13619
13620 /* Those vtables that do not have parents, we cannot merge. */
13621 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13622 return TRUE;
13623
13624 /* If we've already been done, exit. */
13625 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13626 return TRUE;
13627
13628 /* Make sure the parent's table is up to date. */
13629 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13630
13631 if (h->u2.vtable->used == NULL)
13632 {
13633 /* None of this table's entries were referenced. Re-use the
13634 parent's table. */
13635 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13636 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13637 }
13638 else
13639 {
13640 size_t n;
13641 bfd_boolean *cu, *pu;
13642
13643 /* Or the parent's entries into ours. */
13644 cu = h->u2.vtable->used;
13645 cu[-1] = TRUE;
13646 pu = h->u2.vtable->parent->u2.vtable->used;
13647 if (pu != NULL)
13648 {
13649 const struct elf_backend_data *bed;
13650 unsigned int log_file_align;
13651
13652 bed = get_elf_backend_data (h->root.u.def.section->owner);
13653 log_file_align = bed->s->log_file_align;
13654 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13655 while (n--)
13656 {
13657 if (*pu)
13658 *cu = TRUE;
13659 pu++;
13660 cu++;
13661 }
13662 }
13663 }
13664
13665 return TRUE;
13666 }
13667
13668 static bfd_boolean
13669 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13670 {
13671 asection *sec;
13672 bfd_vma hstart, hend;
13673 Elf_Internal_Rela *relstart, *relend, *rel;
13674 const struct elf_backend_data *bed;
13675 unsigned int log_file_align;
13676
13677 /* Take care of both those symbols that do not describe vtables as
13678 well as those that are not loaded. */
13679 if (h->start_stop
13680 || h->u2.vtable == NULL
13681 || h->u2.vtable->parent == NULL)
13682 return TRUE;
13683
13684 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13685 || h->root.type == bfd_link_hash_defweak);
13686
13687 sec = h->root.u.def.section;
13688 hstart = h->root.u.def.value;
13689 hend = hstart + h->size;
13690
13691 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13692 if (!relstart)
13693 return *(bfd_boolean *) okp = FALSE;
13694 bed = get_elf_backend_data (sec->owner);
13695 log_file_align = bed->s->log_file_align;
13696
13697 relend = relstart + sec->reloc_count;
13698
13699 for (rel = relstart; rel < relend; ++rel)
13700 if (rel->r_offset >= hstart && rel->r_offset < hend)
13701 {
13702 /* If the entry is in use, do nothing. */
13703 if (h->u2.vtable->used
13704 && (rel->r_offset - hstart) < h->u2.vtable->size)
13705 {
13706 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13707 if (h->u2.vtable->used[entry])
13708 continue;
13709 }
13710 /* Otherwise, kill it. */
13711 rel->r_offset = rel->r_info = rel->r_addend = 0;
13712 }
13713
13714 return TRUE;
13715 }
13716
13717 /* Mark sections containing dynamically referenced symbols. When
13718 building shared libraries, we must assume that any visible symbol is
13719 referenced. */
13720
13721 bfd_boolean
13722 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13723 {
13724 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13725 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13726
13727 if ((h->root.type == bfd_link_hash_defined
13728 || h->root.type == bfd_link_hash_defweak)
13729 && ((h->ref_dynamic && !h->forced_local)
13730 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13731 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13732 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13733 && (!bfd_link_executable (info)
13734 || info->gc_keep_exported
13735 || info->export_dynamic
13736 || (h->dynamic
13737 && d != NULL
13738 && (*d->match) (&d->head, NULL, h->root.root.string)))
13739 && (h->versioned >= versioned
13740 || !bfd_hide_sym_by_version (info->version_info,
13741 h->root.root.string)))))
13742 h->root.u.def.section->flags |= SEC_KEEP;
13743
13744 return TRUE;
13745 }
13746
13747 /* Keep all sections containing symbols undefined on the command-line,
13748 and the section containing the entry symbol. */
13749
13750 void
13751 _bfd_elf_gc_keep (struct bfd_link_info *info)
13752 {
13753 struct bfd_sym_chain *sym;
13754
13755 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13756 {
13757 struct elf_link_hash_entry *h;
13758
13759 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13760 FALSE, FALSE, FALSE);
13761
13762 if (h != NULL
13763 && (h->root.type == bfd_link_hash_defined
13764 || h->root.type == bfd_link_hash_defweak)
13765 && !bfd_is_abs_section (h->root.u.def.section)
13766 && !bfd_is_und_section (h->root.u.def.section))
13767 h->root.u.def.section->flags |= SEC_KEEP;
13768 }
13769 }
13770
13771 bfd_boolean
13772 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13773 struct bfd_link_info *info)
13774 {
13775 bfd *ibfd = info->input_bfds;
13776
13777 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13778 {
13779 asection *sec;
13780 struct elf_reloc_cookie cookie;
13781
13782 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13783 continue;
13784 sec = ibfd->sections;
13785 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13786 continue;
13787
13788 if (!init_reloc_cookie (&cookie, info, ibfd))
13789 return FALSE;
13790
13791 for (sec = ibfd->sections; sec; sec = sec->next)
13792 {
13793 if (CONST_STRNEQ (bfd_section_name (sec), ".eh_frame_entry")
13794 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13795 {
13796 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13797 fini_reloc_cookie_rels (&cookie, sec);
13798 }
13799 }
13800 }
13801 return TRUE;
13802 }
13803
13804 /* Do mark and sweep of unused sections. */
13805
13806 bfd_boolean
13807 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13808 {
13809 bfd_boolean ok = TRUE;
13810 bfd *sub;
13811 elf_gc_mark_hook_fn gc_mark_hook;
13812 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13813 struct elf_link_hash_table *htab;
13814
13815 if (!bed->can_gc_sections
13816 || !is_elf_hash_table (info->hash))
13817 {
13818 _bfd_error_handler(_("warning: gc-sections option ignored"));
13819 return TRUE;
13820 }
13821
13822 bed->gc_keep (info);
13823 htab = elf_hash_table (info);
13824
13825 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13826 at the .eh_frame section if we can mark the FDEs individually. */
13827 for (sub = info->input_bfds;
13828 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13829 sub = sub->link.next)
13830 {
13831 asection *sec;
13832 struct elf_reloc_cookie cookie;
13833
13834 sec = sub->sections;
13835 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13836 continue;
13837 sec = bfd_get_section_by_name (sub, ".eh_frame");
13838 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13839 {
13840 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13841 if (elf_section_data (sec)->sec_info
13842 && (sec->flags & SEC_LINKER_CREATED) == 0)
13843 elf_eh_frame_section (sub) = sec;
13844 fini_reloc_cookie_for_section (&cookie, sec);
13845 sec = bfd_get_next_section_by_name (NULL, sec);
13846 }
13847 }
13848
13849 /* Apply transitive closure to the vtable entry usage info. */
13850 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13851 if (!ok)
13852 return FALSE;
13853
13854 /* Kill the vtable relocations that were not used. */
13855 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13856 if (!ok)
13857 return FALSE;
13858
13859 /* Mark dynamically referenced symbols. */
13860 if (htab->dynamic_sections_created || info->gc_keep_exported)
13861 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13862
13863 /* Grovel through relocs to find out who stays ... */
13864 gc_mark_hook = bed->gc_mark_hook;
13865 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13866 {
13867 asection *o;
13868
13869 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13870 || elf_object_id (sub) != elf_hash_table_id (htab)
13871 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13872 continue;
13873
13874 o = sub->sections;
13875 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13876 continue;
13877
13878 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13879 Also treat note sections as a root, if the section is not part
13880 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
13881 well as FINI_ARRAY sections for ld -r. */
13882 for (o = sub->sections; o != NULL; o = o->next)
13883 if (!o->gc_mark
13884 && (o->flags & SEC_EXCLUDE) == 0
13885 && ((o->flags & SEC_KEEP) != 0
13886 || (bfd_link_relocatable (info)
13887 && ((elf_section_data (o)->this_hdr.sh_type
13888 == SHT_PREINIT_ARRAY)
13889 || (elf_section_data (o)->this_hdr.sh_type
13890 == SHT_INIT_ARRAY)
13891 || (elf_section_data (o)->this_hdr.sh_type
13892 == SHT_FINI_ARRAY)))
13893 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13894 && elf_next_in_group (o) == NULL )))
13895 {
13896 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13897 return FALSE;
13898 }
13899 }
13900
13901 /* Allow the backend to mark additional target specific sections. */
13902 bed->gc_mark_extra_sections (info, gc_mark_hook);
13903
13904 /* ... and mark SEC_EXCLUDE for those that go. */
13905 return elf_gc_sweep (abfd, info);
13906 }
13907 \f
13908 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13909
13910 bfd_boolean
13911 bfd_elf_gc_record_vtinherit (bfd *abfd,
13912 asection *sec,
13913 struct elf_link_hash_entry *h,
13914 bfd_vma offset)
13915 {
13916 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13917 struct elf_link_hash_entry **search, *child;
13918 size_t extsymcount;
13919 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13920
13921 /* The sh_info field of the symtab header tells us where the
13922 external symbols start. We don't care about the local symbols at
13923 this point. */
13924 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13925 if (!elf_bad_symtab (abfd))
13926 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13927
13928 sym_hashes = elf_sym_hashes (abfd);
13929 sym_hashes_end = sym_hashes + extsymcount;
13930
13931 /* Hunt down the child symbol, which is in this section at the same
13932 offset as the relocation. */
13933 for (search = sym_hashes; search != sym_hashes_end; ++search)
13934 {
13935 if ((child = *search) != NULL
13936 && (child->root.type == bfd_link_hash_defined
13937 || child->root.type == bfd_link_hash_defweak)
13938 && child->root.u.def.section == sec
13939 && child->root.u.def.value == offset)
13940 goto win;
13941 }
13942
13943 /* xgettext:c-format */
13944 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
13945 abfd, sec, (uint64_t) offset);
13946 bfd_set_error (bfd_error_invalid_operation);
13947 return FALSE;
13948
13949 win:
13950 if (!child->u2.vtable)
13951 {
13952 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13953 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13954 if (!child->u2.vtable)
13955 return FALSE;
13956 }
13957 if (!h)
13958 {
13959 /* This *should* only be the absolute section. It could potentially
13960 be that someone has defined a non-global vtable though, which
13961 would be bad. It isn't worth paging in the local symbols to be
13962 sure though; that case should simply be handled by the assembler. */
13963
13964 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13965 }
13966 else
13967 child->u2.vtable->parent = h;
13968
13969 return TRUE;
13970 }
13971
13972 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13973
13974 bfd_boolean
13975 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec,
13976 struct elf_link_hash_entry *h,
13977 bfd_vma addend)
13978 {
13979 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13980 unsigned int log_file_align = bed->s->log_file_align;
13981
13982 if (!h)
13983 {
13984 /* xgettext:c-format */
13985 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
13986 abfd, sec);
13987 bfd_set_error (bfd_error_bad_value);
13988 return FALSE;
13989 }
13990
13991 if (!h->u2.vtable)
13992 {
13993 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
13994 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
13995 if (!h->u2.vtable)
13996 return FALSE;
13997 }
13998
13999 if (addend >= h->u2.vtable->size)
14000 {
14001 size_t size, bytes, file_align;
14002 bfd_boolean *ptr = h->u2.vtable->used;
14003
14004 /* While the symbol is undefined, we have to be prepared to handle
14005 a zero size. */
14006 file_align = 1 << log_file_align;
14007 if (h->root.type == bfd_link_hash_undefined)
14008 size = addend + file_align;
14009 else
14010 {
14011 size = h->size;
14012 if (addend >= size)
14013 {
14014 /* Oops! We've got a reference past the defined end of
14015 the table. This is probably a bug -- shall we warn? */
14016 size = addend + file_align;
14017 }
14018 }
14019 size = (size + file_align - 1) & -file_align;
14020
14021 /* Allocate one extra entry for use as a "done" flag for the
14022 consolidation pass. */
14023 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
14024
14025 if (ptr)
14026 {
14027 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
14028
14029 if (ptr != NULL)
14030 {
14031 size_t oldbytes;
14032
14033 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
14034 * sizeof (bfd_boolean));
14035 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
14036 }
14037 }
14038 else
14039 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
14040
14041 if (ptr == NULL)
14042 return FALSE;
14043
14044 /* And arrange for that done flag to be at index -1. */
14045 h->u2.vtable->used = ptr + 1;
14046 h->u2.vtable->size = size;
14047 }
14048
14049 h->u2.vtable->used[addend >> log_file_align] = TRUE;
14050
14051 return TRUE;
14052 }
14053
14054 /* Map an ELF section header flag to its corresponding string. */
14055 typedef struct
14056 {
14057 char *flag_name;
14058 flagword flag_value;
14059 } elf_flags_to_name_table;
14060
14061 static elf_flags_to_name_table elf_flags_to_names [] =
14062 {
14063 { "SHF_WRITE", SHF_WRITE },
14064 { "SHF_ALLOC", SHF_ALLOC },
14065 { "SHF_EXECINSTR", SHF_EXECINSTR },
14066 { "SHF_MERGE", SHF_MERGE },
14067 { "SHF_STRINGS", SHF_STRINGS },
14068 { "SHF_INFO_LINK", SHF_INFO_LINK},
14069 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
14070 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
14071 { "SHF_GROUP", SHF_GROUP },
14072 { "SHF_TLS", SHF_TLS },
14073 { "SHF_MASKOS", SHF_MASKOS },
14074 { "SHF_EXCLUDE", SHF_EXCLUDE },
14075 };
14076
14077 /* Returns TRUE if the section is to be included, otherwise FALSE. */
14078 bfd_boolean
14079 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
14080 struct flag_info *flaginfo,
14081 asection *section)
14082 {
14083 const bfd_vma sh_flags = elf_section_flags (section);
14084
14085 if (!flaginfo->flags_initialized)
14086 {
14087 bfd *obfd = info->output_bfd;
14088 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14089 struct flag_info_list *tf = flaginfo->flag_list;
14090 int with_hex = 0;
14091 int without_hex = 0;
14092
14093 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
14094 {
14095 unsigned i;
14096 flagword (*lookup) (char *);
14097
14098 lookup = bed->elf_backend_lookup_section_flags_hook;
14099 if (lookup != NULL)
14100 {
14101 flagword hexval = (*lookup) ((char *) tf->name);
14102
14103 if (hexval != 0)
14104 {
14105 if (tf->with == with_flags)
14106 with_hex |= hexval;
14107 else if (tf->with == without_flags)
14108 without_hex |= hexval;
14109 tf->valid = TRUE;
14110 continue;
14111 }
14112 }
14113 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
14114 {
14115 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
14116 {
14117 if (tf->with == with_flags)
14118 with_hex |= elf_flags_to_names[i].flag_value;
14119 else if (tf->with == without_flags)
14120 without_hex |= elf_flags_to_names[i].flag_value;
14121 tf->valid = TRUE;
14122 break;
14123 }
14124 }
14125 if (!tf->valid)
14126 {
14127 info->callbacks->einfo
14128 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
14129 return FALSE;
14130 }
14131 }
14132 flaginfo->flags_initialized = TRUE;
14133 flaginfo->only_with_flags |= with_hex;
14134 flaginfo->not_with_flags |= without_hex;
14135 }
14136
14137 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
14138 return FALSE;
14139
14140 if ((flaginfo->not_with_flags & sh_flags) != 0)
14141 return FALSE;
14142
14143 return TRUE;
14144 }
14145
14146 struct alloc_got_off_arg {
14147 bfd_vma gotoff;
14148 struct bfd_link_info *info;
14149 };
14150
14151 /* We need a special top-level link routine to convert got reference counts
14152 to real got offsets. */
14153
14154 static bfd_boolean
14155 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
14156 {
14157 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
14158 bfd *obfd = gofarg->info->output_bfd;
14159 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14160
14161 if (h->got.refcount > 0)
14162 {
14163 h->got.offset = gofarg->gotoff;
14164 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
14165 }
14166 else
14167 h->got.offset = (bfd_vma) -1;
14168
14169 return TRUE;
14170 }
14171
14172 /* And an accompanying bit to work out final got entry offsets once
14173 we're done. Should be called from final_link. */
14174
14175 bfd_boolean
14176 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
14177 struct bfd_link_info *info)
14178 {
14179 bfd *i;
14180 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14181 bfd_vma gotoff;
14182 struct alloc_got_off_arg gofarg;
14183
14184 BFD_ASSERT (abfd == info->output_bfd);
14185
14186 if (! is_elf_hash_table (info->hash))
14187 return FALSE;
14188
14189 /* The GOT offset is relative to the .got section, but the GOT header is
14190 put into the .got.plt section, if the backend uses it. */
14191 if (bed->want_got_plt)
14192 gotoff = 0;
14193 else
14194 gotoff = bed->got_header_size;
14195
14196 /* Do the local .got entries first. */
14197 for (i = info->input_bfds; i; i = i->link.next)
14198 {
14199 bfd_signed_vma *local_got;
14200 size_t j, locsymcount;
14201 Elf_Internal_Shdr *symtab_hdr;
14202
14203 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
14204 continue;
14205
14206 local_got = elf_local_got_refcounts (i);
14207 if (!local_got)
14208 continue;
14209
14210 symtab_hdr = &elf_tdata (i)->symtab_hdr;
14211 if (elf_bad_symtab (i))
14212 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
14213 else
14214 locsymcount = symtab_hdr->sh_info;
14215
14216 for (j = 0; j < locsymcount; ++j)
14217 {
14218 if (local_got[j] > 0)
14219 {
14220 local_got[j] = gotoff;
14221 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
14222 }
14223 else
14224 local_got[j] = (bfd_vma) -1;
14225 }
14226 }
14227
14228 /* Then the global .got entries. .plt refcounts are handled by
14229 adjust_dynamic_symbol */
14230 gofarg.gotoff = gotoff;
14231 gofarg.info = info;
14232 elf_link_hash_traverse (elf_hash_table (info),
14233 elf_gc_allocate_got_offsets,
14234 &gofarg);
14235 return TRUE;
14236 }
14237
14238 /* Many folk need no more in the way of final link than this, once
14239 got entry reference counting is enabled. */
14240
14241 bfd_boolean
14242 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
14243 {
14244 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
14245 return FALSE;
14246
14247 /* Invoke the regular ELF backend linker to do all the work. */
14248 return bfd_elf_final_link (abfd, info);
14249 }
14250
14251 bfd_boolean
14252 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
14253 {
14254 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
14255
14256 if (rcookie->bad_symtab)
14257 rcookie->rel = rcookie->rels;
14258
14259 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
14260 {
14261 unsigned long r_symndx;
14262
14263 if (! rcookie->bad_symtab)
14264 if (rcookie->rel->r_offset > offset)
14265 return FALSE;
14266 if (rcookie->rel->r_offset != offset)
14267 continue;
14268
14269 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
14270 if (r_symndx == STN_UNDEF)
14271 return TRUE;
14272
14273 if (r_symndx >= rcookie->locsymcount
14274 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
14275 {
14276 struct elf_link_hash_entry *h;
14277
14278 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
14279
14280 while (h->root.type == bfd_link_hash_indirect
14281 || h->root.type == bfd_link_hash_warning)
14282 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14283
14284 if ((h->root.type == bfd_link_hash_defined
14285 || h->root.type == bfd_link_hash_defweak)
14286 && (h->root.u.def.section->owner != rcookie->abfd
14287 || h->root.u.def.section->kept_section != NULL
14288 || discarded_section (h->root.u.def.section)))
14289 return TRUE;
14290 }
14291 else
14292 {
14293 /* It's not a relocation against a global symbol,
14294 but it could be a relocation against a local
14295 symbol for a discarded section. */
14296 asection *isec;
14297 Elf_Internal_Sym *isym;
14298
14299 /* Need to: get the symbol; get the section. */
14300 isym = &rcookie->locsyms[r_symndx];
14301 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14302 if (isec != NULL
14303 && (isec->kept_section != NULL
14304 || discarded_section (isec)))
14305 return TRUE;
14306 }
14307 return FALSE;
14308 }
14309 return FALSE;
14310 }
14311
14312 /* Discard unneeded references to discarded sections.
14313 Returns -1 on error, 1 if any section's size was changed, 0 if
14314 nothing changed. This function assumes that the relocations are in
14315 sorted order, which is true for all known assemblers. */
14316
14317 int
14318 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14319 {
14320 struct elf_reloc_cookie cookie;
14321 asection *o;
14322 bfd *abfd;
14323 int changed = 0;
14324
14325 if (info->traditional_format
14326 || !is_elf_hash_table (info->hash))
14327 return 0;
14328
14329 o = bfd_get_section_by_name (output_bfd, ".stab");
14330 if (o != NULL)
14331 {
14332 asection *i;
14333
14334 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14335 {
14336 if (i->size == 0
14337 || i->reloc_count == 0
14338 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14339 continue;
14340
14341 abfd = i->owner;
14342 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14343 continue;
14344
14345 if (!init_reloc_cookie_for_section (&cookie, info, i))
14346 return -1;
14347
14348 if (_bfd_discard_section_stabs (abfd, i,
14349 elf_section_data (i)->sec_info,
14350 bfd_elf_reloc_symbol_deleted_p,
14351 &cookie))
14352 changed = 1;
14353
14354 fini_reloc_cookie_for_section (&cookie, i);
14355 }
14356 }
14357
14358 o = NULL;
14359 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14360 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14361 if (o != NULL)
14362 {
14363 asection *i;
14364 int eh_changed = 0;
14365 unsigned int eh_alignment; /* Octets. */
14366
14367 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14368 {
14369 if (i->size == 0)
14370 continue;
14371
14372 abfd = i->owner;
14373 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14374 continue;
14375
14376 if (!init_reloc_cookie_for_section (&cookie, info, i))
14377 return -1;
14378
14379 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14380 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14381 bfd_elf_reloc_symbol_deleted_p,
14382 &cookie))
14383 {
14384 eh_changed = 1;
14385 if (i->size != i->rawsize)
14386 changed = 1;
14387 }
14388
14389 fini_reloc_cookie_for_section (&cookie, i);
14390 }
14391
14392 eh_alignment = ((1 << o->alignment_power)
14393 * bfd_octets_per_byte (output_bfd, o));
14394 /* Skip over zero terminator, and prevent empty sections from
14395 adding alignment padding at the end. */
14396 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14397 if (i->size == 0)
14398 i->flags |= SEC_EXCLUDE;
14399 else if (i->size > 4)
14400 break;
14401 /* The last non-empty eh_frame section doesn't need padding. */
14402 if (i != NULL)
14403 i = i->map_tail.s;
14404 /* Any prior sections must pad the last FDE out to the output
14405 section alignment. Otherwise we might have zero padding
14406 between sections, which would be seen as a terminator. */
14407 for (; i != NULL; i = i->map_tail.s)
14408 if (i->size == 4)
14409 /* All but the last zero terminator should have been removed. */
14410 BFD_FAIL ();
14411 else
14412 {
14413 bfd_size_type size
14414 = (i->size + eh_alignment - 1) & -eh_alignment;
14415 if (i->size != size)
14416 {
14417 i->size = size;
14418 changed = 1;
14419 eh_changed = 1;
14420 }
14421 }
14422 if (eh_changed)
14423 elf_link_hash_traverse (elf_hash_table (info),
14424 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14425 }
14426
14427 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14428 {
14429 const struct elf_backend_data *bed;
14430 asection *s;
14431
14432 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14433 continue;
14434 s = abfd->sections;
14435 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14436 continue;
14437
14438 bed = get_elf_backend_data (abfd);
14439
14440 if (bed->elf_backend_discard_info != NULL)
14441 {
14442 if (!init_reloc_cookie (&cookie, info, abfd))
14443 return -1;
14444
14445 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14446 changed = 1;
14447
14448 fini_reloc_cookie (&cookie, abfd);
14449 }
14450 }
14451
14452 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14453 _bfd_elf_end_eh_frame_parsing (info);
14454
14455 if (info->eh_frame_hdr_type
14456 && !bfd_link_relocatable (info)
14457 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14458 changed = 1;
14459
14460 return changed;
14461 }
14462
14463 bfd_boolean
14464 _bfd_elf_section_already_linked (bfd *abfd,
14465 asection *sec,
14466 struct bfd_link_info *info)
14467 {
14468 flagword flags;
14469 const char *name, *key;
14470 struct bfd_section_already_linked *l;
14471 struct bfd_section_already_linked_hash_entry *already_linked_list;
14472
14473 if (sec->output_section == bfd_abs_section_ptr)
14474 return FALSE;
14475
14476 flags = sec->flags;
14477
14478 /* Return if it isn't a linkonce section. A comdat group section
14479 also has SEC_LINK_ONCE set. */
14480 if ((flags & SEC_LINK_ONCE) == 0)
14481 return FALSE;
14482
14483 /* Don't put group member sections on our list of already linked
14484 sections. They are handled as a group via their group section. */
14485 if (elf_sec_group (sec) != NULL)
14486 return FALSE;
14487
14488 /* For a SHT_GROUP section, use the group signature as the key. */
14489 name = sec->name;
14490 if ((flags & SEC_GROUP) != 0
14491 && elf_next_in_group (sec) != NULL
14492 && elf_group_name (elf_next_in_group (sec)) != NULL)
14493 key = elf_group_name (elf_next_in_group (sec));
14494 else
14495 {
14496 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14497 if (CONST_STRNEQ (name, ".gnu.linkonce.")
14498 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14499 key++;
14500 else
14501 /* Must be a user linkonce section that doesn't follow gcc's
14502 naming convention. In this case we won't be matching
14503 single member groups. */
14504 key = name;
14505 }
14506
14507 already_linked_list = bfd_section_already_linked_table_lookup (key);
14508
14509 for (l = already_linked_list->entry; l != NULL; l = l->next)
14510 {
14511 /* We may have 2 different types of sections on the list: group
14512 sections with a signature of <key> (<key> is some string),
14513 and linkonce sections named .gnu.linkonce.<type>.<key>.
14514 Match like sections. LTO plugin sections are an exception.
14515 They are always named .gnu.linkonce.t.<key> and match either
14516 type of section. */
14517 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14518 && ((flags & SEC_GROUP) != 0
14519 || strcmp (name, l->sec->name) == 0))
14520 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
14521 {
14522 /* The section has already been linked. See if we should
14523 issue a warning. */
14524 if (!_bfd_handle_already_linked (sec, l, info))
14525 return FALSE;
14526
14527 if (flags & SEC_GROUP)
14528 {
14529 asection *first = elf_next_in_group (sec);
14530 asection *s = first;
14531
14532 while (s != NULL)
14533 {
14534 s->output_section = bfd_abs_section_ptr;
14535 /* Record which group discards it. */
14536 s->kept_section = l->sec;
14537 s = elf_next_in_group (s);
14538 /* These lists are circular. */
14539 if (s == first)
14540 break;
14541 }
14542 }
14543
14544 return TRUE;
14545 }
14546 }
14547
14548 /* A single member comdat group section may be discarded by a
14549 linkonce section and vice versa. */
14550 if ((flags & SEC_GROUP) != 0)
14551 {
14552 asection *first = elf_next_in_group (sec);
14553
14554 if (first != NULL && elf_next_in_group (first) == first)
14555 /* Check this single member group against linkonce sections. */
14556 for (l = already_linked_list->entry; l != NULL; l = l->next)
14557 if ((l->sec->flags & SEC_GROUP) == 0
14558 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14559 {
14560 first->output_section = bfd_abs_section_ptr;
14561 first->kept_section = l->sec;
14562 sec->output_section = bfd_abs_section_ptr;
14563 break;
14564 }
14565 }
14566 else
14567 /* Check this linkonce section against single member groups. */
14568 for (l = already_linked_list->entry; l != NULL; l = l->next)
14569 if (l->sec->flags & SEC_GROUP)
14570 {
14571 asection *first = elf_next_in_group (l->sec);
14572
14573 if (first != NULL
14574 && elf_next_in_group (first) == first
14575 && bfd_elf_match_symbols_in_sections (first, sec, info))
14576 {
14577 sec->output_section = bfd_abs_section_ptr;
14578 sec->kept_section = first;
14579 break;
14580 }
14581 }
14582
14583 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14584 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14585 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14586 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14587 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14588 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14589 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14590 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14591 The reverse order cannot happen as there is never a bfd with only the
14592 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14593 matter as here were are looking only for cross-bfd sections. */
14594
14595 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14596 for (l = already_linked_list->entry; l != NULL; l = l->next)
14597 if ((l->sec->flags & SEC_GROUP) == 0
14598 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14599 {
14600 if (abfd != l->sec->owner)
14601 sec->output_section = bfd_abs_section_ptr;
14602 break;
14603 }
14604
14605 /* This is the first section with this name. Record it. */
14606 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14607 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14608 return sec->output_section == bfd_abs_section_ptr;
14609 }
14610
14611 bfd_boolean
14612 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14613 {
14614 return sym->st_shndx == SHN_COMMON;
14615 }
14616
14617 unsigned int
14618 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14619 {
14620 return SHN_COMMON;
14621 }
14622
14623 asection *
14624 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14625 {
14626 return bfd_com_section_ptr;
14627 }
14628
14629 bfd_vma
14630 _bfd_elf_default_got_elt_size (bfd *abfd,
14631 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14632 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14633 bfd *ibfd ATTRIBUTE_UNUSED,
14634 unsigned long symndx ATTRIBUTE_UNUSED)
14635 {
14636 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14637 return bed->s->arch_size / 8;
14638 }
14639
14640 /* Routines to support the creation of dynamic relocs. */
14641
14642 /* Returns the name of the dynamic reloc section associated with SEC. */
14643
14644 static const char *
14645 get_dynamic_reloc_section_name (bfd * abfd,
14646 asection * sec,
14647 bfd_boolean is_rela)
14648 {
14649 char *name;
14650 const char *old_name = bfd_section_name (sec);
14651 const char *prefix = is_rela ? ".rela" : ".rel";
14652
14653 if (old_name == NULL)
14654 return NULL;
14655
14656 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14657 sprintf (name, "%s%s", prefix, old_name);
14658
14659 return name;
14660 }
14661
14662 /* Returns the dynamic reloc section associated with SEC.
14663 If necessary compute the name of the dynamic reloc section based
14664 on SEC's name (looked up in ABFD's string table) and the setting
14665 of IS_RELA. */
14666
14667 asection *
14668 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14669 asection * sec,
14670 bfd_boolean is_rela)
14671 {
14672 asection * reloc_sec = elf_section_data (sec)->sreloc;
14673
14674 if (reloc_sec == NULL)
14675 {
14676 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14677
14678 if (name != NULL)
14679 {
14680 reloc_sec = bfd_get_linker_section (abfd, name);
14681
14682 if (reloc_sec != NULL)
14683 elf_section_data (sec)->sreloc = reloc_sec;
14684 }
14685 }
14686
14687 return reloc_sec;
14688 }
14689
14690 /* Returns the dynamic reloc section associated with SEC. If the
14691 section does not exist it is created and attached to the DYNOBJ
14692 bfd and stored in the SRELOC field of SEC's elf_section_data
14693 structure.
14694
14695 ALIGNMENT is the alignment for the newly created section and
14696 IS_RELA defines whether the name should be .rela.<SEC's name>
14697 or .rel.<SEC's name>. The section name is looked up in the
14698 string table associated with ABFD. */
14699
14700 asection *
14701 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14702 bfd *dynobj,
14703 unsigned int alignment,
14704 bfd *abfd,
14705 bfd_boolean is_rela)
14706 {
14707 asection * reloc_sec = elf_section_data (sec)->sreloc;
14708
14709 if (reloc_sec == NULL)
14710 {
14711 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14712
14713 if (name == NULL)
14714 return NULL;
14715
14716 reloc_sec = bfd_get_linker_section (dynobj, name);
14717
14718 if (reloc_sec == NULL)
14719 {
14720 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14721 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14722 if ((sec->flags & SEC_ALLOC) != 0)
14723 flags |= SEC_ALLOC | SEC_LOAD;
14724
14725 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14726 if (reloc_sec != NULL)
14727 {
14728 /* _bfd_elf_get_sec_type_attr chooses a section type by
14729 name. Override as it may be wrong, eg. for a user
14730 section named "auto" we'll get ".relauto" which is
14731 seen to be a .rela section. */
14732 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14733 if (!bfd_set_section_alignment (reloc_sec, alignment))
14734 reloc_sec = NULL;
14735 }
14736 }
14737
14738 elf_section_data (sec)->sreloc = reloc_sec;
14739 }
14740
14741 return reloc_sec;
14742 }
14743
14744 /* Copy the ELF symbol type and other attributes for a linker script
14745 assignment from HSRC to HDEST. Generally this should be treated as
14746 if we found a strong non-dynamic definition for HDEST (except that
14747 ld ignores multiple definition errors). */
14748 void
14749 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14750 struct bfd_link_hash_entry *hdest,
14751 struct bfd_link_hash_entry *hsrc)
14752 {
14753 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14754 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14755 Elf_Internal_Sym isym;
14756
14757 ehdest->type = ehsrc->type;
14758 ehdest->target_internal = ehsrc->target_internal;
14759
14760 isym.st_other = ehsrc->other;
14761 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14762 }
14763
14764 /* Append a RELA relocation REL to section S in BFD. */
14765
14766 void
14767 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14768 {
14769 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14770 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14771 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14772 bed->s->swap_reloca_out (abfd, rel, loc);
14773 }
14774
14775 /* Append a REL relocation REL to section S in BFD. */
14776
14777 void
14778 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14779 {
14780 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14781 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14782 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14783 bed->s->swap_reloc_out (abfd, rel, loc);
14784 }
14785
14786 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14787
14788 struct bfd_link_hash_entry *
14789 bfd_elf_define_start_stop (struct bfd_link_info *info,
14790 const char *symbol, asection *sec)
14791 {
14792 struct elf_link_hash_entry *h;
14793
14794 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14795 FALSE, FALSE, TRUE);
14796 if (h != NULL
14797 && (h->root.type == bfd_link_hash_undefined
14798 || h->root.type == bfd_link_hash_undefweak
14799 || ((h->ref_regular || h->def_dynamic) && !h->def_regular)))
14800 {
14801 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic;
14802 h->root.type = bfd_link_hash_defined;
14803 h->root.u.def.section = sec;
14804 h->root.u.def.value = 0;
14805 h->def_regular = 1;
14806 h->def_dynamic = 0;
14807 h->start_stop = 1;
14808 h->u2.start_stop_section = sec;
14809 if (symbol[0] == '.')
14810 {
14811 /* .startof. and .sizeof. symbols are local. */
14812 const struct elf_backend_data *bed;
14813 bed = get_elf_backend_data (info->output_bfd);
14814 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14815 }
14816 else
14817 {
14818 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14819 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED;
14820 if (was_dynamic)
14821 bfd_elf_link_record_dynamic_symbol (info, h);
14822 }
14823 return &h->root;
14824 }
14825 return NULL;
14826 }
14827
14828 /* Find dynamic relocs for H that apply to read-only sections. */
14829
14830 asection *
14831 _bfd_elf_readonly_dynrelocs (struct elf_link_hash_entry *h)
14832 {
14833 struct elf_dyn_relocs *p;
14834
14835 for (p = h->dyn_relocs; p != NULL; p = p->next)
14836 {
14837 asection *s = p->sec->output_section;
14838
14839 if (s != NULL && (s->flags & SEC_READONLY) != 0)
14840 return p->sec;
14841 }
14842 return NULL;
14843 }
14844
14845 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
14846 read-only sections. */
14847
14848 bfd_boolean
14849 _bfd_elf_maybe_set_textrel (struct elf_link_hash_entry *h, void *inf)
14850 {
14851 asection *sec;
14852
14853 if (h->root.type == bfd_link_hash_indirect)
14854 return TRUE;
14855
14856 sec = _bfd_elf_readonly_dynrelocs (h);
14857 if (sec != NULL)
14858 {
14859 struct bfd_link_info *info = (struct bfd_link_info *) inf;
14860
14861 info->flags |= DF_TEXTREL;
14862 /* xgettext:c-format */
14863 info->callbacks->minfo (_("%pB: dynamic relocation against `%pT' "
14864 "in read-only section `%pA'\n"),
14865 sec->owner, h->root.root.string, sec);
14866
14867 if (bfd_link_textrel_check (info))
14868 /* xgettext:c-format */
14869 info->callbacks->einfo (_("%P: %pB: warning: relocation against `%s' "
14870 "in read-only section `%pA'\n"),
14871 sec->owner, h->root.root.string, sec);
14872
14873 /* Not an error, just cut short the traversal. */
14874 return FALSE;
14875 }
14876 return TRUE;
14877 }