]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elfnn-aarch64.c
[PATCH] fix windmc typedef bug
[thirdparty/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2020 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "elf-bfd.h"
143 #include "bfdlink.h"
144 #include "objalloc.h"
145 #include "elf/aarch64.h"
146 #include "elfxx-aarch64.h"
147 #include "cpu-aarch64.h"
148
149 #define ARCH_SIZE NN
150
151 #if ARCH_SIZE == 64
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #define BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
158 #endif
159
160 #if ARCH_SIZE == 32
161 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
162 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
163 #define HOWTO64(...) EMPTY_HOWTO (0)
164 #define HOWTO32(...) HOWTO (__VA_ARGS__)
165 #define LOG_FILE_ALIGN 2
166 #define BFD_RELOC_AARCH64_TLSDESC_LD32_LO12 BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
167 #define R_AARCH64_P32_TLSDESC_ADD_LO12 R_AARCH64_P32_TLSDESC_ADD_LO12_NC
168 #endif
169
170 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
171 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12 \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12 \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12 \
209 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC \
210 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12 \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC \
212 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
220 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
221
222 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
223 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
239 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
244 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
245
246 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
247 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
248 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
249 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
250 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
251 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
252 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
253 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
254 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12 \
255 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
256 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
257 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
258 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
259
260 #define ELIMINATE_COPY_RELOCS 1
261
262 /* Return size of a relocation entry. HTAB is the bfd's
263 elf_aarch64_link_hash_entry. */
264 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
265
266 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
267 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
268 #define PLT_ENTRY_SIZE (32)
269 #define PLT_SMALL_ENTRY_SIZE (16)
270 #define PLT_TLSDESC_ENTRY_SIZE (32)
271 /* PLT sizes with BTI insn. */
272 #define PLT_BTI_SMALL_ENTRY_SIZE (24)
273 /* PLT sizes with PAC insn. */
274 #define PLT_PAC_SMALL_ENTRY_SIZE (24)
275 /* PLT sizes with BTI and PAC insn. */
276 #define PLT_BTI_PAC_SMALL_ENTRY_SIZE (24)
277
278 /* Encoding of the nop instruction. */
279 #define INSN_NOP 0xd503201f
280
281 #define aarch64_compute_jump_table_size(htab) \
282 (((htab)->root.srelplt == NULL) ? 0 \
283 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
284
285 /* The first entry in a procedure linkage table looks like this
286 if the distance between the PLTGOT and the PLT is < 4GB use
287 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
288 in x16 and needs to work out PLTGOT[1] by using an address of
289 [x16,#-GOT_ENTRY_SIZE]. */
290 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
291 {
292 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
293 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
294 #if ARCH_SIZE == 64
295 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
296 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
297 #else
298 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
299 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
300 #endif
301 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
302 0x1f, 0x20, 0x03, 0xd5, /* nop */
303 0x1f, 0x20, 0x03, 0xd5, /* nop */
304 0x1f, 0x20, 0x03, 0xd5, /* nop */
305 };
306
307 static const bfd_byte elfNN_aarch64_small_plt0_bti_entry[PLT_ENTRY_SIZE] =
308 {
309 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
310 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
311 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
312 #if ARCH_SIZE == 64
313 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
314 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
315 #else
316 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
317 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
318 #endif
319 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
320 0x1f, 0x20, 0x03, 0xd5, /* nop */
321 0x1f, 0x20, 0x03, 0xd5, /* nop */
322 };
323
324 /* Per function entry in a procedure linkage table looks like this
325 if the distance between the PLTGOT and the PLT is < 4GB use
326 these PLT entries. Use BTI versions of the PLTs when enabled. */
327 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
328 {
329 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
330 #if ARCH_SIZE == 64
331 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
332 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
333 #else
334 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
335 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
336 #endif
337 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
338 };
339
340 static const bfd_byte
341 elfNN_aarch64_small_plt_bti_entry[PLT_BTI_SMALL_ENTRY_SIZE] =
342 {
343 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
344 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
345 #if ARCH_SIZE == 64
346 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
347 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
348 #else
349 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
350 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
351 #endif
352 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
353 0x1f, 0x20, 0x03, 0xd5, /* nop */
354 };
355
356 static const bfd_byte
357 elfNN_aarch64_small_plt_pac_entry[PLT_PAC_SMALL_ENTRY_SIZE] =
358 {
359 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
360 #if ARCH_SIZE == 64
361 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
362 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
363 #else
364 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
365 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
366 #endif
367 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
368 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
369 0x1f, 0x20, 0x03, 0xd5, /* nop */
370 };
371
372 static const bfd_byte
373 elfNN_aarch64_small_plt_bti_pac_entry[PLT_BTI_PAC_SMALL_ENTRY_SIZE] =
374 {
375 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
376 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
377 #if ARCH_SIZE == 64
378 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
379 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
380 #else
381 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
382 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
383 #endif
384 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
385 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
386 };
387
388 static const bfd_byte
389 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
390 {
391 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
392 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
393 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
394 #if ARCH_SIZE == 64
395 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
396 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
397 #else
398 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
399 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
400 #endif
401 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
402 0x1f, 0x20, 0x03, 0xd5, /* nop */
403 0x1f, 0x20, 0x03, 0xd5, /* nop */
404 };
405
406 static const bfd_byte
407 elfNN_aarch64_tlsdesc_small_plt_bti_entry[PLT_TLSDESC_ENTRY_SIZE] =
408 {
409 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
410 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
411 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
412 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
413 #if ARCH_SIZE == 64
414 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
415 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
416 #else
417 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
418 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
419 #endif
420 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
421 0x1f, 0x20, 0x03, 0xd5, /* nop */
422 };
423
424 #define elf_info_to_howto elfNN_aarch64_info_to_howto
425 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
426
427 #define AARCH64_ELF_ABI_VERSION 0
428
429 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
430 #define ALL_ONES (~ (bfd_vma) 0)
431
432 /* Indexed by the bfd interal reloc enumerators.
433 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
434 in reloc.c. */
435
436 static reloc_howto_type elfNN_aarch64_howto_table[] =
437 {
438 EMPTY_HOWTO (0),
439
440 /* Basic data relocations. */
441
442 /* Deprecated, but retained for backwards compatibility. */
443 HOWTO64 (R_AARCH64_NULL, /* type */
444 0, /* rightshift */
445 3, /* size (0 = byte, 1 = short, 2 = long) */
446 0, /* bitsize */
447 FALSE, /* pc_relative */
448 0, /* bitpos */
449 complain_overflow_dont, /* complain_on_overflow */
450 bfd_elf_generic_reloc, /* special_function */
451 "R_AARCH64_NULL", /* name */
452 FALSE, /* partial_inplace */
453 0, /* src_mask */
454 0, /* dst_mask */
455 FALSE), /* pcrel_offset */
456 HOWTO (R_AARCH64_NONE, /* type */
457 0, /* rightshift */
458 3, /* size (0 = byte, 1 = short, 2 = long) */
459 0, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_dont, /* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_AARCH64_NONE", /* name */
465 FALSE, /* partial_inplace */
466 0, /* src_mask */
467 0, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 /* .xword: (S+A) */
471 HOWTO64 (AARCH64_R (ABS64), /* type */
472 0, /* rightshift */
473 4, /* size (4 = long long) */
474 64, /* bitsize */
475 FALSE, /* pc_relative */
476 0, /* bitpos */
477 complain_overflow_unsigned, /* complain_on_overflow */
478 bfd_elf_generic_reloc, /* special_function */
479 AARCH64_R_STR (ABS64), /* name */
480 FALSE, /* partial_inplace */
481 ALL_ONES, /* src_mask */
482 ALL_ONES, /* dst_mask */
483 FALSE), /* pcrel_offset */
484
485 /* .word: (S+A) */
486 HOWTO (AARCH64_R (ABS32), /* type */
487 0, /* rightshift */
488 2, /* size (0 = byte, 1 = short, 2 = long) */
489 32, /* bitsize */
490 FALSE, /* pc_relative */
491 0, /* bitpos */
492 complain_overflow_unsigned, /* complain_on_overflow */
493 bfd_elf_generic_reloc, /* special_function */
494 AARCH64_R_STR (ABS32), /* name */
495 FALSE, /* partial_inplace */
496 0xffffffff, /* src_mask */
497 0xffffffff, /* dst_mask */
498 FALSE), /* pcrel_offset */
499
500 /* .half: (S+A) */
501 HOWTO (AARCH64_R (ABS16), /* type */
502 0, /* rightshift */
503 1, /* size (0 = byte, 1 = short, 2 = long) */
504 16, /* bitsize */
505 FALSE, /* pc_relative */
506 0, /* bitpos */
507 complain_overflow_unsigned, /* complain_on_overflow */
508 bfd_elf_generic_reloc, /* special_function */
509 AARCH64_R_STR (ABS16), /* name */
510 FALSE, /* partial_inplace */
511 0xffff, /* src_mask */
512 0xffff, /* dst_mask */
513 FALSE), /* pcrel_offset */
514
515 /* .xword: (S+A-P) */
516 HOWTO64 (AARCH64_R (PREL64), /* type */
517 0, /* rightshift */
518 4, /* size (4 = long long) */
519 64, /* bitsize */
520 TRUE, /* pc_relative */
521 0, /* bitpos */
522 complain_overflow_signed, /* complain_on_overflow */
523 bfd_elf_generic_reloc, /* special_function */
524 AARCH64_R_STR (PREL64), /* name */
525 FALSE, /* partial_inplace */
526 ALL_ONES, /* src_mask */
527 ALL_ONES, /* dst_mask */
528 TRUE), /* pcrel_offset */
529
530 /* .word: (S+A-P) */
531 HOWTO (AARCH64_R (PREL32), /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 32, /* bitsize */
535 TRUE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_signed, /* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 AARCH64_R_STR (PREL32), /* name */
540 FALSE, /* partial_inplace */
541 0xffffffff, /* src_mask */
542 0xffffffff, /* dst_mask */
543 TRUE), /* pcrel_offset */
544
545 /* .half: (S+A-P) */
546 HOWTO (AARCH64_R (PREL16), /* type */
547 0, /* rightshift */
548 1, /* size (0 = byte, 1 = short, 2 = long) */
549 16, /* bitsize */
550 TRUE, /* pc_relative */
551 0, /* bitpos */
552 complain_overflow_signed, /* complain_on_overflow */
553 bfd_elf_generic_reloc, /* special_function */
554 AARCH64_R_STR (PREL16), /* name */
555 FALSE, /* partial_inplace */
556 0xffff, /* src_mask */
557 0xffff, /* dst_mask */
558 TRUE), /* pcrel_offset */
559
560 /* Group relocations to create a 16, 32, 48 or 64 bit
561 unsigned data or abs address inline. */
562
563 /* MOVZ: ((S+A) >> 0) & 0xffff */
564 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
565 0, /* rightshift */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
567 16, /* bitsize */
568 FALSE, /* pc_relative */
569 0, /* bitpos */
570 complain_overflow_unsigned, /* complain_on_overflow */
571 bfd_elf_generic_reloc, /* special_function */
572 AARCH64_R_STR (MOVW_UABS_G0), /* name */
573 FALSE, /* partial_inplace */
574 0xffff, /* src_mask */
575 0xffff, /* dst_mask */
576 FALSE), /* pcrel_offset */
577
578 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
579 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
580 0, /* rightshift */
581 2, /* size (0 = byte, 1 = short, 2 = long) */
582 16, /* bitsize */
583 FALSE, /* pc_relative */
584 0, /* bitpos */
585 complain_overflow_dont, /* complain_on_overflow */
586 bfd_elf_generic_reloc, /* special_function */
587 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
588 FALSE, /* partial_inplace */
589 0xffff, /* src_mask */
590 0xffff, /* dst_mask */
591 FALSE), /* pcrel_offset */
592
593 /* MOVZ: ((S+A) >> 16) & 0xffff */
594 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
595 16, /* rightshift */
596 2, /* size (0 = byte, 1 = short, 2 = long) */
597 16, /* bitsize */
598 FALSE, /* pc_relative */
599 0, /* bitpos */
600 complain_overflow_unsigned, /* complain_on_overflow */
601 bfd_elf_generic_reloc, /* special_function */
602 AARCH64_R_STR (MOVW_UABS_G1), /* name */
603 FALSE, /* partial_inplace */
604 0xffff, /* src_mask */
605 0xffff, /* dst_mask */
606 FALSE), /* pcrel_offset */
607
608 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
609 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
610 16, /* rightshift */
611 2, /* size (0 = byte, 1 = short, 2 = long) */
612 16, /* bitsize */
613 FALSE, /* pc_relative */
614 0, /* bitpos */
615 complain_overflow_dont, /* complain_on_overflow */
616 bfd_elf_generic_reloc, /* special_function */
617 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
618 FALSE, /* partial_inplace */
619 0xffff, /* src_mask */
620 0xffff, /* dst_mask */
621 FALSE), /* pcrel_offset */
622
623 /* MOVZ: ((S+A) >> 32) & 0xffff */
624 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
625 32, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 16, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_unsigned, /* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 AARCH64_R_STR (MOVW_UABS_G2), /* name */
633 FALSE, /* partial_inplace */
634 0xffff, /* src_mask */
635 0xffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
639 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
640 32, /* rightshift */
641 2, /* size (0 = byte, 1 = short, 2 = long) */
642 16, /* bitsize */
643 FALSE, /* pc_relative */
644 0, /* bitpos */
645 complain_overflow_dont, /* complain_on_overflow */
646 bfd_elf_generic_reloc, /* special_function */
647 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
648 FALSE, /* partial_inplace */
649 0xffff, /* src_mask */
650 0xffff, /* dst_mask */
651 FALSE), /* pcrel_offset */
652
653 /* MOVZ: ((S+A) >> 48) & 0xffff */
654 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
655 48, /* rightshift */
656 2, /* size (0 = byte, 1 = short, 2 = long) */
657 16, /* bitsize */
658 FALSE, /* pc_relative */
659 0, /* bitpos */
660 complain_overflow_unsigned, /* complain_on_overflow */
661 bfd_elf_generic_reloc, /* special_function */
662 AARCH64_R_STR (MOVW_UABS_G3), /* name */
663 FALSE, /* partial_inplace */
664 0xffff, /* src_mask */
665 0xffff, /* dst_mask */
666 FALSE), /* pcrel_offset */
667
668 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
669 signed data or abs address inline. Will change instruction
670 to MOVN or MOVZ depending on sign of calculated value. */
671
672 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
673 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
674 0, /* rightshift */
675 2, /* size (0 = byte, 1 = short, 2 = long) */
676 17, /* bitsize */
677 FALSE, /* pc_relative */
678 0, /* bitpos */
679 complain_overflow_signed, /* complain_on_overflow */
680 bfd_elf_generic_reloc, /* special_function */
681 AARCH64_R_STR (MOVW_SABS_G0), /* name */
682 FALSE, /* partial_inplace */
683 0xffff, /* src_mask */
684 0xffff, /* dst_mask */
685 FALSE), /* pcrel_offset */
686
687 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
688 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
689 16, /* rightshift */
690 2, /* size (0 = byte, 1 = short, 2 = long) */
691 17, /* bitsize */
692 FALSE, /* pc_relative */
693 0, /* bitpos */
694 complain_overflow_signed, /* complain_on_overflow */
695 bfd_elf_generic_reloc, /* special_function */
696 AARCH64_R_STR (MOVW_SABS_G1), /* name */
697 FALSE, /* partial_inplace */
698 0xffff, /* src_mask */
699 0xffff, /* dst_mask */
700 FALSE), /* pcrel_offset */
701
702 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
703 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
704 32, /* rightshift */
705 2, /* size (0 = byte, 1 = short, 2 = long) */
706 17, /* bitsize */
707 FALSE, /* pc_relative */
708 0, /* bitpos */
709 complain_overflow_signed, /* complain_on_overflow */
710 bfd_elf_generic_reloc, /* special_function */
711 AARCH64_R_STR (MOVW_SABS_G2), /* name */
712 FALSE, /* partial_inplace */
713 0xffff, /* src_mask */
714 0xffff, /* dst_mask */
715 FALSE), /* pcrel_offset */
716
717 /* Group relocations to create a 16, 32, 48 or 64 bit
718 PC relative address inline. */
719
720 /* MOV[NZ]: ((S+A-P) >> 0) & 0xffff */
721 HOWTO (AARCH64_R (MOVW_PREL_G0), /* type */
722 0, /* rightshift */
723 2, /* size (0 = byte, 1 = short, 2 = long) */
724 17, /* bitsize */
725 TRUE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_signed, /* complain_on_overflow */
728 bfd_elf_generic_reloc, /* special_function */
729 AARCH64_R_STR (MOVW_PREL_G0), /* name */
730 FALSE, /* partial_inplace */
731 0xffff, /* src_mask */
732 0xffff, /* dst_mask */
733 TRUE), /* pcrel_offset */
734
735 /* MOVK: ((S+A-P) >> 0) & 0xffff [no overflow check] */
736 HOWTO (AARCH64_R (MOVW_PREL_G0_NC), /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_dont, /* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 AARCH64_R_STR (MOVW_PREL_G0_NC), /* name */
745 FALSE, /* partial_inplace */
746 0xffff, /* src_mask */
747 0xffff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 /* MOV[NZ]: ((S+A-P) >> 16) & 0xffff */
751 HOWTO (AARCH64_R (MOVW_PREL_G1), /* type */
752 16, /* rightshift */
753 2, /* size (0 = byte, 1 = short, 2 = long) */
754 17, /* bitsize */
755 TRUE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_signed, /* complain_on_overflow */
758 bfd_elf_generic_reloc, /* special_function */
759 AARCH64_R_STR (MOVW_PREL_G1), /* name */
760 FALSE, /* partial_inplace */
761 0xffff, /* src_mask */
762 0xffff, /* dst_mask */
763 TRUE), /* pcrel_offset */
764
765 /* MOVK: ((S+A-P) >> 16) & 0xffff [no overflow check] */
766 HOWTO64 (AARCH64_R (MOVW_PREL_G1_NC), /* type */
767 16, /* rightshift */
768 2, /* size (0 = byte, 1 = short, 2 = long) */
769 16, /* bitsize */
770 TRUE, /* pc_relative */
771 0, /* bitpos */
772 complain_overflow_dont, /* complain_on_overflow */
773 bfd_elf_generic_reloc, /* special_function */
774 AARCH64_R_STR (MOVW_PREL_G1_NC), /* name */
775 FALSE, /* partial_inplace */
776 0xffff, /* src_mask */
777 0xffff, /* dst_mask */
778 TRUE), /* pcrel_offset */
779
780 /* MOV[NZ]: ((S+A-P) >> 32) & 0xffff */
781 HOWTO64 (AARCH64_R (MOVW_PREL_G2), /* type */
782 32, /* rightshift */
783 2, /* size (0 = byte, 1 = short, 2 = long) */
784 17, /* bitsize */
785 TRUE, /* pc_relative */
786 0, /* bitpos */
787 complain_overflow_signed, /* complain_on_overflow */
788 bfd_elf_generic_reloc, /* special_function */
789 AARCH64_R_STR (MOVW_PREL_G2), /* name */
790 FALSE, /* partial_inplace */
791 0xffff, /* src_mask */
792 0xffff, /* dst_mask */
793 TRUE), /* pcrel_offset */
794
795 /* MOVK: ((S+A-P) >> 32) & 0xffff [no overflow check] */
796 HOWTO64 (AARCH64_R (MOVW_PREL_G2_NC), /* type */
797 32, /* rightshift */
798 2, /* size (0 = byte, 1 = short, 2 = long) */
799 16, /* bitsize */
800 TRUE, /* pc_relative */
801 0, /* bitpos */
802 complain_overflow_dont, /* complain_on_overflow */
803 bfd_elf_generic_reloc, /* special_function */
804 AARCH64_R_STR (MOVW_PREL_G2_NC), /* name */
805 FALSE, /* partial_inplace */
806 0xffff, /* src_mask */
807 0xffff, /* dst_mask */
808 TRUE), /* pcrel_offset */
809
810 /* MOV[NZ]: ((S+A-P) >> 48) & 0xffff */
811 HOWTO64 (AARCH64_R (MOVW_PREL_G3), /* type */
812 48, /* rightshift */
813 2, /* size (0 = byte, 1 = short, 2 = long) */
814 16, /* bitsize */
815 TRUE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_dont, /* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 AARCH64_R_STR (MOVW_PREL_G3), /* name */
820 FALSE, /* partial_inplace */
821 0xffff, /* src_mask */
822 0xffff, /* dst_mask */
823 TRUE), /* pcrel_offset */
824
825 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
826 addresses: PG(x) is (x & ~0xfff). */
827
828 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
829 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
830 2, /* rightshift */
831 2, /* size (0 = byte, 1 = short, 2 = long) */
832 19, /* bitsize */
833 TRUE, /* pc_relative */
834 0, /* bitpos */
835 complain_overflow_signed, /* complain_on_overflow */
836 bfd_elf_generic_reloc, /* special_function */
837 AARCH64_R_STR (LD_PREL_LO19), /* name */
838 FALSE, /* partial_inplace */
839 0x7ffff, /* src_mask */
840 0x7ffff, /* dst_mask */
841 TRUE), /* pcrel_offset */
842
843 /* ADR: (S+A-P) & 0x1fffff */
844 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
845 0, /* rightshift */
846 2, /* size (0 = byte, 1 = short, 2 = long) */
847 21, /* bitsize */
848 TRUE, /* pc_relative */
849 0, /* bitpos */
850 complain_overflow_signed, /* complain_on_overflow */
851 bfd_elf_generic_reloc, /* special_function */
852 AARCH64_R_STR (ADR_PREL_LO21), /* name */
853 FALSE, /* partial_inplace */
854 0x1fffff, /* src_mask */
855 0x1fffff, /* dst_mask */
856 TRUE), /* pcrel_offset */
857
858 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
859 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
860 12, /* rightshift */
861 2, /* size (0 = byte, 1 = short, 2 = long) */
862 21, /* bitsize */
863 TRUE, /* pc_relative */
864 0, /* bitpos */
865 complain_overflow_signed, /* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
868 FALSE, /* partial_inplace */
869 0x1fffff, /* src_mask */
870 0x1fffff, /* dst_mask */
871 TRUE), /* pcrel_offset */
872
873 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
874 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
875 12, /* rightshift */
876 2, /* size (0 = byte, 1 = short, 2 = long) */
877 21, /* bitsize */
878 TRUE, /* pc_relative */
879 0, /* bitpos */
880 complain_overflow_dont, /* complain_on_overflow */
881 bfd_elf_generic_reloc, /* special_function */
882 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
883 FALSE, /* partial_inplace */
884 0x1fffff, /* src_mask */
885 0x1fffff, /* dst_mask */
886 TRUE), /* pcrel_offset */
887
888 /* ADD: (S+A) & 0xfff [no overflow check] */
889 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
890 0, /* rightshift */
891 2, /* size (0 = byte, 1 = short, 2 = long) */
892 12, /* bitsize */
893 FALSE, /* pc_relative */
894 10, /* bitpos */
895 complain_overflow_dont, /* complain_on_overflow */
896 bfd_elf_generic_reloc, /* special_function */
897 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
898 FALSE, /* partial_inplace */
899 0x3ffc00, /* src_mask */
900 0x3ffc00, /* dst_mask */
901 FALSE), /* pcrel_offset */
902
903 /* LD/ST8: (S+A) & 0xfff */
904 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
905 0, /* rightshift */
906 2, /* size (0 = byte, 1 = short, 2 = long) */
907 12, /* bitsize */
908 FALSE, /* pc_relative */
909 0, /* bitpos */
910 complain_overflow_dont, /* complain_on_overflow */
911 bfd_elf_generic_reloc, /* special_function */
912 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
913 FALSE, /* partial_inplace */
914 0xfff, /* src_mask */
915 0xfff, /* dst_mask */
916 FALSE), /* pcrel_offset */
917
918 /* Relocations for control-flow instructions. */
919
920 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
921 HOWTO (AARCH64_R (TSTBR14), /* type */
922 2, /* rightshift */
923 2, /* size (0 = byte, 1 = short, 2 = long) */
924 14, /* bitsize */
925 TRUE, /* pc_relative */
926 0, /* bitpos */
927 complain_overflow_signed, /* complain_on_overflow */
928 bfd_elf_generic_reloc, /* special_function */
929 AARCH64_R_STR (TSTBR14), /* name */
930 FALSE, /* partial_inplace */
931 0x3fff, /* src_mask */
932 0x3fff, /* dst_mask */
933 TRUE), /* pcrel_offset */
934
935 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
936 HOWTO (AARCH64_R (CONDBR19), /* type */
937 2, /* rightshift */
938 2, /* size (0 = byte, 1 = short, 2 = long) */
939 19, /* bitsize */
940 TRUE, /* pc_relative */
941 0, /* bitpos */
942 complain_overflow_signed, /* complain_on_overflow */
943 bfd_elf_generic_reloc, /* special_function */
944 AARCH64_R_STR (CONDBR19), /* name */
945 FALSE, /* partial_inplace */
946 0x7ffff, /* src_mask */
947 0x7ffff, /* dst_mask */
948 TRUE), /* pcrel_offset */
949
950 /* B: ((S+A-P) >> 2) & 0x3ffffff */
951 HOWTO (AARCH64_R (JUMP26), /* type */
952 2, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 26, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_signed, /* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 AARCH64_R_STR (JUMP26), /* name */
960 FALSE, /* partial_inplace */
961 0x3ffffff, /* src_mask */
962 0x3ffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
966 HOWTO (AARCH64_R (CALL26), /* type */
967 2, /* rightshift */
968 2, /* size (0 = byte, 1 = short, 2 = long) */
969 26, /* bitsize */
970 TRUE, /* pc_relative */
971 0, /* bitpos */
972 complain_overflow_signed, /* complain_on_overflow */
973 bfd_elf_generic_reloc, /* special_function */
974 AARCH64_R_STR (CALL26), /* name */
975 FALSE, /* partial_inplace */
976 0x3ffffff, /* src_mask */
977 0x3ffffff, /* dst_mask */
978 TRUE), /* pcrel_offset */
979
980 /* LD/ST16: (S+A) & 0xffe */
981 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
982 1, /* rightshift */
983 2, /* size (0 = byte, 1 = short, 2 = long) */
984 12, /* bitsize */
985 FALSE, /* pc_relative */
986 0, /* bitpos */
987 complain_overflow_dont, /* complain_on_overflow */
988 bfd_elf_generic_reloc, /* special_function */
989 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
990 FALSE, /* partial_inplace */
991 0xffe, /* src_mask */
992 0xffe, /* dst_mask */
993 FALSE), /* pcrel_offset */
994
995 /* LD/ST32: (S+A) & 0xffc */
996 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
997 2, /* rightshift */
998 2, /* size (0 = byte, 1 = short, 2 = long) */
999 12, /* bitsize */
1000 FALSE, /* pc_relative */
1001 0, /* bitpos */
1002 complain_overflow_dont, /* complain_on_overflow */
1003 bfd_elf_generic_reloc, /* special_function */
1004 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
1005 FALSE, /* partial_inplace */
1006 0xffc, /* src_mask */
1007 0xffc, /* dst_mask */
1008 FALSE), /* pcrel_offset */
1009
1010 /* LD/ST64: (S+A) & 0xff8 */
1011 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
1012 3, /* rightshift */
1013 2, /* size (0 = byte, 1 = short, 2 = long) */
1014 12, /* bitsize */
1015 FALSE, /* pc_relative */
1016 0, /* bitpos */
1017 complain_overflow_dont, /* complain_on_overflow */
1018 bfd_elf_generic_reloc, /* special_function */
1019 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
1020 FALSE, /* partial_inplace */
1021 0xff8, /* src_mask */
1022 0xff8, /* dst_mask */
1023 FALSE), /* pcrel_offset */
1024
1025 /* LD/ST128: (S+A) & 0xff0 */
1026 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
1027 4, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 12, /* bitsize */
1030 FALSE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont, /* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
1035 FALSE, /* partial_inplace */
1036 0xff0, /* src_mask */
1037 0xff0, /* dst_mask */
1038 FALSE), /* pcrel_offset */
1039
1040 /* Set a load-literal immediate field to bits
1041 0x1FFFFC of G(S)-P */
1042 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
1043 2, /* rightshift */
1044 2, /* size (0 = byte,1 = short,2 = long) */
1045 19, /* bitsize */
1046 TRUE, /* pc_relative */
1047 0, /* bitpos */
1048 complain_overflow_signed, /* complain_on_overflow */
1049 bfd_elf_generic_reloc, /* special_function */
1050 AARCH64_R_STR (GOT_LD_PREL19), /* name */
1051 FALSE, /* partial_inplace */
1052 0xffffe0, /* src_mask */
1053 0xffffe0, /* dst_mask */
1054 TRUE), /* pcrel_offset */
1055
1056 /* Get to the page for the GOT entry for the symbol
1057 (G(S) - P) using an ADRP instruction. */
1058 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
1059 12, /* rightshift */
1060 2, /* size (0 = byte, 1 = short, 2 = long) */
1061 21, /* bitsize */
1062 TRUE, /* pc_relative */
1063 0, /* bitpos */
1064 complain_overflow_dont, /* complain_on_overflow */
1065 bfd_elf_generic_reloc, /* special_function */
1066 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
1067 FALSE, /* partial_inplace */
1068 0x1fffff, /* src_mask */
1069 0x1fffff, /* dst_mask */
1070 TRUE), /* pcrel_offset */
1071
1072 /* LD64: GOT offset G(S) & 0xff8 */
1073 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
1074 3, /* rightshift */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1076 12, /* bitsize */
1077 FALSE, /* pc_relative */
1078 0, /* bitpos */
1079 complain_overflow_dont, /* complain_on_overflow */
1080 bfd_elf_generic_reloc, /* special_function */
1081 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
1082 FALSE, /* partial_inplace */
1083 0xff8, /* src_mask */
1084 0xff8, /* dst_mask */
1085 FALSE), /* pcrel_offset */
1086
1087 /* LD32: GOT offset G(S) & 0xffc */
1088 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
1089 2, /* rightshift */
1090 2, /* size (0 = byte, 1 = short, 2 = long) */
1091 12, /* bitsize */
1092 FALSE, /* pc_relative */
1093 0, /* bitpos */
1094 complain_overflow_dont, /* complain_on_overflow */
1095 bfd_elf_generic_reloc, /* special_function */
1096 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
1097 FALSE, /* partial_inplace */
1098 0xffc, /* src_mask */
1099 0xffc, /* dst_mask */
1100 FALSE), /* pcrel_offset */
1101
1102 /* Lower 16 bits of GOT offset for the symbol. */
1103 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
1104 0, /* rightshift */
1105 2, /* size (0 = byte, 1 = short, 2 = long) */
1106 16, /* bitsize */
1107 FALSE, /* pc_relative */
1108 0, /* bitpos */
1109 complain_overflow_dont, /* complain_on_overflow */
1110 bfd_elf_generic_reloc, /* special_function */
1111 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
1112 FALSE, /* partial_inplace */
1113 0xffff, /* src_mask */
1114 0xffff, /* dst_mask */
1115 FALSE), /* pcrel_offset */
1116
1117 /* Higher 16 bits of GOT offset for the symbol. */
1118 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
1119 16, /* rightshift */
1120 2, /* size (0 = byte, 1 = short, 2 = long) */
1121 16, /* bitsize */
1122 FALSE, /* pc_relative */
1123 0, /* bitpos */
1124 complain_overflow_unsigned, /* complain_on_overflow */
1125 bfd_elf_generic_reloc, /* special_function */
1126 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
1127 FALSE, /* partial_inplace */
1128 0xffff, /* src_mask */
1129 0xffff, /* dst_mask */
1130 FALSE), /* pcrel_offset */
1131
1132 /* LD64: GOT offset for the symbol. */
1133 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
1134 3, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 12, /* bitsize */
1137 FALSE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_unsigned, /* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
1142 FALSE, /* partial_inplace */
1143 0x7ff8, /* src_mask */
1144 0x7ff8, /* dst_mask */
1145 FALSE), /* pcrel_offset */
1146
1147 /* LD32: GOT offset to the page address of GOT table.
1148 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
1149 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
1150 2, /* rightshift */
1151 2, /* size (0 = byte, 1 = short, 2 = long) */
1152 12, /* bitsize */
1153 FALSE, /* pc_relative */
1154 0, /* bitpos */
1155 complain_overflow_unsigned, /* complain_on_overflow */
1156 bfd_elf_generic_reloc, /* special_function */
1157 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
1158 FALSE, /* partial_inplace */
1159 0x5ffc, /* src_mask */
1160 0x5ffc, /* dst_mask */
1161 FALSE), /* pcrel_offset */
1162
1163 /* LD64: GOT offset to the page address of GOT table.
1164 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
1165 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
1166 3, /* rightshift */
1167 2, /* size (0 = byte, 1 = short, 2 = long) */
1168 12, /* bitsize */
1169 FALSE, /* pc_relative */
1170 0, /* bitpos */
1171 complain_overflow_unsigned, /* complain_on_overflow */
1172 bfd_elf_generic_reloc, /* special_function */
1173 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
1174 FALSE, /* partial_inplace */
1175 0x7ff8, /* src_mask */
1176 0x7ff8, /* dst_mask */
1177 FALSE), /* pcrel_offset */
1178
1179 /* Get to the page for the GOT entry for the symbol
1180 (G(S) - P) using an ADRP instruction. */
1181 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
1182 12, /* rightshift */
1183 2, /* size (0 = byte, 1 = short, 2 = long) */
1184 21, /* bitsize */
1185 TRUE, /* pc_relative */
1186 0, /* bitpos */
1187 complain_overflow_dont, /* complain_on_overflow */
1188 bfd_elf_generic_reloc, /* special_function */
1189 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
1190 FALSE, /* partial_inplace */
1191 0x1fffff, /* src_mask */
1192 0x1fffff, /* dst_mask */
1193 TRUE), /* pcrel_offset */
1194
1195 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
1196 0, /* rightshift */
1197 2, /* size (0 = byte, 1 = short, 2 = long) */
1198 21, /* bitsize */
1199 TRUE, /* pc_relative */
1200 0, /* bitpos */
1201 complain_overflow_dont, /* complain_on_overflow */
1202 bfd_elf_generic_reloc, /* special_function */
1203 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
1204 FALSE, /* partial_inplace */
1205 0x1fffff, /* src_mask */
1206 0x1fffff, /* dst_mask */
1207 TRUE), /* pcrel_offset */
1208
1209 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1210 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
1211 0, /* rightshift */
1212 2, /* size (0 = byte, 1 = short, 2 = long) */
1213 12, /* bitsize */
1214 FALSE, /* pc_relative */
1215 0, /* bitpos */
1216 complain_overflow_dont, /* complain_on_overflow */
1217 bfd_elf_generic_reloc, /* special_function */
1218 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
1219 FALSE, /* partial_inplace */
1220 0xfff, /* src_mask */
1221 0xfff, /* dst_mask */
1222 FALSE), /* pcrel_offset */
1223
1224 /* Lower 16 bits of GOT offset to tls_index. */
1225 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1226 0, /* rightshift */
1227 2, /* size (0 = byte, 1 = short, 2 = long) */
1228 16, /* bitsize */
1229 FALSE, /* pc_relative */
1230 0, /* bitpos */
1231 complain_overflow_dont, /* complain_on_overflow */
1232 bfd_elf_generic_reloc, /* special_function */
1233 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1234 FALSE, /* partial_inplace */
1235 0xffff, /* src_mask */
1236 0xffff, /* dst_mask */
1237 FALSE), /* pcrel_offset */
1238
1239 /* Higher 16 bits of GOT offset to tls_index. */
1240 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1241 16, /* rightshift */
1242 2, /* size (0 = byte, 1 = short, 2 = long) */
1243 16, /* bitsize */
1244 FALSE, /* pc_relative */
1245 0, /* bitpos */
1246 complain_overflow_unsigned, /* complain_on_overflow */
1247 bfd_elf_generic_reloc, /* special_function */
1248 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1249 FALSE, /* partial_inplace */
1250 0xffff, /* src_mask */
1251 0xffff, /* dst_mask */
1252 FALSE), /* pcrel_offset */
1253
1254 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1255 12, /* rightshift */
1256 2, /* size (0 = byte, 1 = short, 2 = long) */
1257 21, /* bitsize */
1258 FALSE, /* pc_relative */
1259 0, /* bitpos */
1260 complain_overflow_dont, /* complain_on_overflow */
1261 bfd_elf_generic_reloc, /* special_function */
1262 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1263 FALSE, /* partial_inplace */
1264 0x1fffff, /* src_mask */
1265 0x1fffff, /* dst_mask */
1266 FALSE), /* pcrel_offset */
1267
1268 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1269 3, /* rightshift */
1270 2, /* size (0 = byte, 1 = short, 2 = long) */
1271 12, /* bitsize */
1272 FALSE, /* pc_relative */
1273 0, /* bitpos */
1274 complain_overflow_dont, /* complain_on_overflow */
1275 bfd_elf_generic_reloc, /* special_function */
1276 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1277 FALSE, /* partial_inplace */
1278 0xff8, /* src_mask */
1279 0xff8, /* dst_mask */
1280 FALSE), /* pcrel_offset */
1281
1282 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1283 2, /* rightshift */
1284 2, /* size (0 = byte, 1 = short, 2 = long) */
1285 12, /* bitsize */
1286 FALSE, /* pc_relative */
1287 0, /* bitpos */
1288 complain_overflow_dont, /* complain_on_overflow */
1289 bfd_elf_generic_reloc, /* special_function */
1290 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1291 FALSE, /* partial_inplace */
1292 0xffc, /* src_mask */
1293 0xffc, /* dst_mask */
1294 FALSE), /* pcrel_offset */
1295
1296 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1297 2, /* rightshift */
1298 2, /* size (0 = byte, 1 = short, 2 = long) */
1299 19, /* bitsize */
1300 FALSE, /* pc_relative */
1301 0, /* bitpos */
1302 complain_overflow_dont, /* complain_on_overflow */
1303 bfd_elf_generic_reloc, /* special_function */
1304 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1305 FALSE, /* partial_inplace */
1306 0x1ffffc, /* src_mask */
1307 0x1ffffc, /* dst_mask */
1308 FALSE), /* pcrel_offset */
1309
1310 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1311 0, /* rightshift */
1312 2, /* size (0 = byte, 1 = short, 2 = long) */
1313 16, /* bitsize */
1314 FALSE, /* pc_relative */
1315 0, /* bitpos */
1316 complain_overflow_dont, /* complain_on_overflow */
1317 bfd_elf_generic_reloc, /* special_function */
1318 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1319 FALSE, /* partial_inplace */
1320 0xffff, /* src_mask */
1321 0xffff, /* dst_mask */
1322 FALSE), /* pcrel_offset */
1323
1324 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1325 16, /* rightshift */
1326 2, /* size (0 = byte, 1 = short, 2 = long) */
1327 16, /* bitsize */
1328 FALSE, /* pc_relative */
1329 0, /* bitpos */
1330 complain_overflow_unsigned, /* complain_on_overflow */
1331 bfd_elf_generic_reloc, /* special_function */
1332 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1333 FALSE, /* partial_inplace */
1334 0xffff, /* src_mask */
1335 0xffff, /* dst_mask */
1336 FALSE), /* pcrel_offset */
1337
1338 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1339 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1340 12, /* rightshift */
1341 2, /* size (0 = byte, 1 = short, 2 = long) */
1342 12, /* bitsize */
1343 FALSE, /* pc_relative */
1344 0, /* bitpos */
1345 complain_overflow_unsigned, /* complain_on_overflow */
1346 bfd_elf_generic_reloc, /* special_function */
1347 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1348 FALSE, /* partial_inplace */
1349 0xfff, /* src_mask */
1350 0xfff, /* dst_mask */
1351 FALSE), /* pcrel_offset */
1352
1353 /* Unsigned 12 bit byte offset to module TLS base address. */
1354 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1355 0, /* rightshift */
1356 2, /* size (0 = byte, 1 = short, 2 = long) */
1357 12, /* bitsize */
1358 FALSE, /* pc_relative */
1359 0, /* bitpos */
1360 complain_overflow_unsigned, /* complain_on_overflow */
1361 bfd_elf_generic_reloc, /* special_function */
1362 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1363 FALSE, /* partial_inplace */
1364 0xfff, /* src_mask */
1365 0xfff, /* dst_mask */
1366 FALSE), /* pcrel_offset */
1367
1368 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1369 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 12, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont, /* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1378 FALSE, /* partial_inplace */
1379 0xfff, /* src_mask */
1380 0xfff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1384 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1385 0, /* rightshift */
1386 2, /* size (0 = byte, 1 = short, 2 = long) */
1387 12, /* bitsize */
1388 FALSE, /* pc_relative */
1389 0, /* bitpos */
1390 complain_overflow_dont, /* complain_on_overflow */
1391 bfd_elf_generic_reloc, /* special_function */
1392 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1393 FALSE, /* partial_inplace */
1394 0xfff, /* src_mask */
1395 0xfff, /* dst_mask */
1396 FALSE), /* pcrel_offset */
1397
1398 /* Get to the page for the GOT entry for the symbol
1399 (G(S) - P) using an ADRP instruction. */
1400 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1401 12, /* rightshift */
1402 2, /* size (0 = byte, 1 = short, 2 = long) */
1403 21, /* bitsize */
1404 TRUE, /* pc_relative */
1405 0, /* bitpos */
1406 complain_overflow_signed, /* complain_on_overflow */
1407 bfd_elf_generic_reloc, /* special_function */
1408 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1409 FALSE, /* partial_inplace */
1410 0x1fffff, /* src_mask */
1411 0x1fffff, /* dst_mask */
1412 TRUE), /* pcrel_offset */
1413
1414 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1415 0, /* rightshift */
1416 2, /* size (0 = byte, 1 = short, 2 = long) */
1417 21, /* bitsize */
1418 TRUE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_signed, /* complain_on_overflow */
1421 bfd_elf_generic_reloc, /* special_function */
1422 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1423 FALSE, /* partial_inplace */
1424 0x1fffff, /* src_mask */
1425 0x1fffff, /* dst_mask */
1426 TRUE), /* pcrel_offset */
1427
1428 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1429 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1430 1, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 11, /* bitsize */
1433 FALSE, /* pc_relative */
1434 10, /* bitpos */
1435 complain_overflow_unsigned, /* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1438 FALSE, /* partial_inplace */
1439 0x1ffc00, /* src_mask */
1440 0x1ffc00, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1444 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1445 1, /* rightshift */
1446 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 11, /* bitsize */
1448 FALSE, /* pc_relative */
1449 10, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 bfd_elf_generic_reloc, /* special_function */
1452 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1453 FALSE, /* partial_inplace */
1454 0x1ffc00, /* src_mask */
1455 0x1ffc00, /* dst_mask */
1456 FALSE), /* pcrel_offset */
1457
1458 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1459 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1460 2, /* rightshift */
1461 2, /* size (0 = byte, 1 = short, 2 = long) */
1462 10, /* bitsize */
1463 FALSE, /* pc_relative */
1464 10, /* bitpos */
1465 complain_overflow_unsigned, /* complain_on_overflow */
1466 bfd_elf_generic_reloc, /* special_function */
1467 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1468 FALSE, /* partial_inplace */
1469 0x3ffc00, /* src_mask */
1470 0x3ffc00, /* dst_mask */
1471 FALSE), /* pcrel_offset */
1472
1473 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1474 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1475 2, /* rightshift */
1476 2, /* size (0 = byte, 1 = short, 2 = long) */
1477 10, /* bitsize */
1478 FALSE, /* pc_relative */
1479 10, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 bfd_elf_generic_reloc, /* special_function */
1482 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1483 FALSE, /* partial_inplace */
1484 0xffc00, /* src_mask */
1485 0xffc00, /* dst_mask */
1486 FALSE), /* pcrel_offset */
1487
1488 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1489 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1490 3, /* rightshift */
1491 2, /* size (0 = byte, 1 = short, 2 = long) */
1492 9, /* bitsize */
1493 FALSE, /* pc_relative */
1494 10, /* bitpos */
1495 complain_overflow_unsigned, /* complain_on_overflow */
1496 bfd_elf_generic_reloc, /* special_function */
1497 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1498 FALSE, /* partial_inplace */
1499 0x3ffc00, /* src_mask */
1500 0x3ffc00, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1504 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1505 3, /* rightshift */
1506 2, /* size (0 = byte, 1 = short, 2 = long) */
1507 9, /* bitsize */
1508 FALSE, /* pc_relative */
1509 10, /* bitpos */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 bfd_elf_generic_reloc, /* special_function */
1512 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1513 FALSE, /* partial_inplace */
1514 0x7fc00, /* src_mask */
1515 0x7fc00, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1519 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1520 0, /* rightshift */
1521 2, /* size (0 = byte, 1 = short, 2 = long) */
1522 12, /* bitsize */
1523 FALSE, /* pc_relative */
1524 10, /* bitpos */
1525 complain_overflow_unsigned, /* complain_on_overflow */
1526 bfd_elf_generic_reloc, /* special_function */
1527 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1528 FALSE, /* partial_inplace */
1529 0x3ffc00, /* src_mask */
1530 0x3ffc00, /* dst_mask */
1531 FALSE), /* pcrel_offset */
1532
1533 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1534 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1535 0, /* rightshift */
1536 2, /* size (0 = byte, 1 = short, 2 = long) */
1537 12, /* bitsize */
1538 FALSE, /* pc_relative */
1539 10, /* bitpos */
1540 complain_overflow_dont, /* complain_on_overflow */
1541 bfd_elf_generic_reloc, /* special_function */
1542 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1543 FALSE, /* partial_inplace */
1544 0x3ffc00, /* src_mask */
1545 0x3ffc00, /* dst_mask */
1546 FALSE), /* pcrel_offset */
1547
1548 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1549 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1550 0, /* rightshift */
1551 2, /* size (0 = byte, 1 = short, 2 = long) */
1552 16, /* bitsize */
1553 FALSE, /* pc_relative */
1554 0, /* bitpos */
1555 complain_overflow_unsigned, /* complain_on_overflow */
1556 bfd_elf_generic_reloc, /* special_function */
1557 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1558 FALSE, /* partial_inplace */
1559 0xffff, /* src_mask */
1560 0xffff, /* dst_mask */
1561 FALSE), /* pcrel_offset */
1562
1563 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1564 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1565 0, /* rightshift */
1566 2, /* size (0 = byte, 1 = short, 2 = long) */
1567 16, /* bitsize */
1568 FALSE, /* pc_relative */
1569 0, /* bitpos */
1570 complain_overflow_dont, /* complain_on_overflow */
1571 bfd_elf_generic_reloc, /* special_function */
1572 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1573 FALSE, /* partial_inplace */
1574 0xffff, /* src_mask */
1575 0xffff, /* dst_mask */
1576 FALSE), /* pcrel_offset */
1577
1578 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1579 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1580 16, /* rightshift */
1581 2, /* size (0 = byte, 1 = short, 2 = long) */
1582 16, /* bitsize */
1583 FALSE, /* pc_relative */
1584 0, /* bitpos */
1585 complain_overflow_unsigned, /* complain_on_overflow */
1586 bfd_elf_generic_reloc, /* special_function */
1587 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1588 FALSE, /* partial_inplace */
1589 0xffff, /* src_mask */
1590 0xffff, /* dst_mask */
1591 FALSE), /* pcrel_offset */
1592
1593 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1594 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1595 16, /* rightshift */
1596 2, /* size (0 = byte, 1 = short, 2 = long) */
1597 16, /* bitsize */
1598 FALSE, /* pc_relative */
1599 0, /* bitpos */
1600 complain_overflow_dont, /* complain_on_overflow */
1601 bfd_elf_generic_reloc, /* special_function */
1602 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1603 FALSE, /* partial_inplace */
1604 0xffff, /* src_mask */
1605 0xffff, /* dst_mask */
1606 FALSE), /* pcrel_offset */
1607
1608 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1609 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1610 32, /* rightshift */
1611 2, /* size (0 = byte, 1 = short, 2 = long) */
1612 16, /* bitsize */
1613 FALSE, /* pc_relative */
1614 0, /* bitpos */
1615 complain_overflow_unsigned, /* complain_on_overflow */
1616 bfd_elf_generic_reloc, /* special_function */
1617 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1618 FALSE, /* partial_inplace */
1619 0xffff, /* src_mask */
1620 0xffff, /* dst_mask */
1621 FALSE), /* pcrel_offset */
1622
1623 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1624 32, /* rightshift */
1625 2, /* size (0 = byte, 1 = short, 2 = long) */
1626 16, /* bitsize */
1627 FALSE, /* pc_relative */
1628 0, /* bitpos */
1629 complain_overflow_unsigned, /* complain_on_overflow */
1630 bfd_elf_generic_reloc, /* special_function */
1631 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1632 FALSE, /* partial_inplace */
1633 0xffff, /* src_mask */
1634 0xffff, /* dst_mask */
1635 FALSE), /* pcrel_offset */
1636
1637 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1638 16, /* rightshift */
1639 2, /* size (0 = byte, 1 = short, 2 = long) */
1640 16, /* bitsize */
1641 FALSE, /* pc_relative */
1642 0, /* bitpos */
1643 complain_overflow_dont, /* complain_on_overflow */
1644 bfd_elf_generic_reloc, /* special_function */
1645 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1646 FALSE, /* partial_inplace */
1647 0xffff, /* src_mask */
1648 0xffff, /* dst_mask */
1649 FALSE), /* pcrel_offset */
1650
1651 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1652 16, /* rightshift */
1653 2, /* size (0 = byte, 1 = short, 2 = long) */
1654 16, /* bitsize */
1655 FALSE, /* pc_relative */
1656 0, /* bitpos */
1657 complain_overflow_dont, /* complain_on_overflow */
1658 bfd_elf_generic_reloc, /* special_function */
1659 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1660 FALSE, /* partial_inplace */
1661 0xffff, /* src_mask */
1662 0xffff, /* dst_mask */
1663 FALSE), /* pcrel_offset */
1664
1665 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1666 0, /* rightshift */
1667 2, /* size (0 = byte, 1 = short, 2 = long) */
1668 16, /* bitsize */
1669 FALSE, /* pc_relative */
1670 0, /* bitpos */
1671 complain_overflow_dont, /* complain_on_overflow */
1672 bfd_elf_generic_reloc, /* special_function */
1673 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1674 FALSE, /* partial_inplace */
1675 0xffff, /* src_mask */
1676 0xffff, /* dst_mask */
1677 FALSE), /* pcrel_offset */
1678
1679 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1680 0, /* rightshift */
1681 2, /* size (0 = byte, 1 = short, 2 = long) */
1682 16, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_dont, /* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1688 FALSE, /* partial_inplace */
1689 0xffff, /* src_mask */
1690 0xffff, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1692
1693 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1694 12, /* rightshift */
1695 2, /* size (0 = byte, 1 = short, 2 = long) */
1696 12, /* bitsize */
1697 FALSE, /* pc_relative */
1698 0, /* bitpos */
1699 complain_overflow_unsigned, /* complain_on_overflow */
1700 bfd_elf_generic_reloc, /* special_function */
1701 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1702 FALSE, /* partial_inplace */
1703 0xfff, /* src_mask */
1704 0xfff, /* dst_mask */
1705 FALSE), /* pcrel_offset */
1706
1707 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1708 0, /* rightshift */
1709 2, /* size (0 = byte, 1 = short, 2 = long) */
1710 12, /* bitsize */
1711 FALSE, /* pc_relative */
1712 0, /* bitpos */
1713 complain_overflow_unsigned, /* complain_on_overflow */
1714 bfd_elf_generic_reloc, /* special_function */
1715 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1716 FALSE, /* partial_inplace */
1717 0xfff, /* src_mask */
1718 0xfff, /* dst_mask */
1719 FALSE), /* pcrel_offset */
1720
1721 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1722 0, /* rightshift */
1723 2, /* size (0 = byte, 1 = short, 2 = long) */
1724 12, /* bitsize */
1725 FALSE, /* pc_relative */
1726 0, /* bitpos */
1727 complain_overflow_dont, /* complain_on_overflow */
1728 bfd_elf_generic_reloc, /* special_function */
1729 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1730 FALSE, /* partial_inplace */
1731 0xfff, /* src_mask */
1732 0xfff, /* dst_mask */
1733 FALSE), /* pcrel_offset */
1734
1735 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1736 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12), /* type */
1737 1, /* rightshift */
1738 2, /* size (0 = byte, 1 = short, 2 = long) */
1739 11, /* bitsize */
1740 FALSE, /* pc_relative */
1741 10, /* bitpos */
1742 complain_overflow_unsigned, /* complain_on_overflow */
1743 bfd_elf_generic_reloc, /* special_function */
1744 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12), /* name */
1745 FALSE, /* partial_inplace */
1746 0x1ffc00, /* src_mask */
1747 0x1ffc00, /* dst_mask */
1748 FALSE), /* pcrel_offset */
1749
1750 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12, but no overflow check. */
1751 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12_NC), /* type */
1752 1, /* rightshift */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1754 11, /* bitsize */
1755 FALSE, /* pc_relative */
1756 10, /* bitpos */
1757 complain_overflow_dont, /* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12_NC), /* name */
1760 FALSE, /* partial_inplace */
1761 0x1ffc00, /* src_mask */
1762 0x1ffc00, /* dst_mask */
1763 FALSE), /* pcrel_offset */
1764
1765 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1766 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12), /* type */
1767 2, /* rightshift */
1768 2, /* size (0 = byte, 1 = short, 2 = long) */
1769 10, /* bitsize */
1770 FALSE, /* pc_relative */
1771 10, /* bitpos */
1772 complain_overflow_unsigned, /* complain_on_overflow */
1773 bfd_elf_generic_reloc, /* special_function */
1774 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12), /* name */
1775 FALSE, /* partial_inplace */
1776 0xffc00, /* src_mask */
1777 0xffc00, /* dst_mask */
1778 FALSE), /* pcrel_offset */
1779
1780 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12, but no overflow check. */
1781 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12_NC), /* type */
1782 2, /* rightshift */
1783 2, /* size (0 = byte, 1 = short, 2 = long) */
1784 10, /* bitsize */
1785 FALSE, /* pc_relative */
1786 10, /* bitpos */
1787 complain_overflow_dont, /* complain_on_overflow */
1788 bfd_elf_generic_reloc, /* special_function */
1789 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12_NC), /* name */
1790 FALSE, /* partial_inplace */
1791 0xffc00, /* src_mask */
1792 0xffc00, /* dst_mask */
1793 FALSE), /* pcrel_offset */
1794
1795 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1796 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12), /* type */
1797 3, /* rightshift */
1798 2, /* size (0 = byte, 1 = short, 2 = long) */
1799 9, /* bitsize */
1800 FALSE, /* pc_relative */
1801 10, /* bitpos */
1802 complain_overflow_unsigned, /* complain_on_overflow */
1803 bfd_elf_generic_reloc, /* special_function */
1804 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12), /* name */
1805 FALSE, /* partial_inplace */
1806 0x7fc00, /* src_mask */
1807 0x7fc00, /* dst_mask */
1808 FALSE), /* pcrel_offset */
1809
1810 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12, but no overflow check. */
1811 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12_NC), /* type */
1812 3, /* rightshift */
1813 2, /* size (0 = byte, 1 = short, 2 = long) */
1814 9, /* bitsize */
1815 FALSE, /* pc_relative */
1816 10, /* bitpos */
1817 complain_overflow_dont, /* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12_NC), /* name */
1820 FALSE, /* partial_inplace */
1821 0x7fc00, /* src_mask */
1822 0x7fc00, /* dst_mask */
1823 FALSE), /* pcrel_offset */
1824
1825 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1826 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12), /* type */
1827 0, /* rightshift */
1828 2, /* size (0 = byte, 1 = short, 2 = long) */
1829 12, /* bitsize */
1830 FALSE, /* pc_relative */
1831 10, /* bitpos */
1832 complain_overflow_unsigned, /* complain_on_overflow */
1833 bfd_elf_generic_reloc, /* special_function */
1834 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12), /* name */
1835 FALSE, /* partial_inplace */
1836 0x3ffc00, /* src_mask */
1837 0x3ffc00, /* dst_mask */
1838 FALSE), /* pcrel_offset */
1839
1840 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12, but no overflow check. */
1841 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12_NC), /* type */
1842 0, /* rightshift */
1843 2, /* size (0 = byte, 1 = short, 2 = long) */
1844 12, /* bitsize */
1845 FALSE, /* pc_relative */
1846 10, /* bitpos */
1847 complain_overflow_dont, /* complain_on_overflow */
1848 bfd_elf_generic_reloc, /* special_function */
1849 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12_NC), /* name */
1850 FALSE, /* partial_inplace */
1851 0x3ffc00, /* src_mask */
1852 0x3ffc00, /* dst_mask */
1853 FALSE), /* pcrel_offset */
1854
1855 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1856 2, /* rightshift */
1857 2, /* size (0 = byte, 1 = short, 2 = long) */
1858 19, /* bitsize */
1859 TRUE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_dont, /* complain_on_overflow */
1862 bfd_elf_generic_reloc, /* special_function */
1863 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1864 FALSE, /* partial_inplace */
1865 0x0ffffe0, /* src_mask */
1866 0x0ffffe0, /* dst_mask */
1867 TRUE), /* pcrel_offset */
1868
1869 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1870 0, /* rightshift */
1871 2, /* size (0 = byte, 1 = short, 2 = long) */
1872 21, /* bitsize */
1873 TRUE, /* pc_relative */
1874 0, /* bitpos */
1875 complain_overflow_dont, /* complain_on_overflow */
1876 bfd_elf_generic_reloc, /* special_function */
1877 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1878 FALSE, /* partial_inplace */
1879 0x1fffff, /* src_mask */
1880 0x1fffff, /* dst_mask */
1881 TRUE), /* pcrel_offset */
1882
1883 /* Get to the page for the GOT entry for the symbol
1884 (G(S) - P) using an ADRP instruction. */
1885 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1886 12, /* rightshift */
1887 2, /* size (0 = byte, 1 = short, 2 = long) */
1888 21, /* bitsize */
1889 TRUE, /* pc_relative */
1890 0, /* bitpos */
1891 complain_overflow_dont, /* complain_on_overflow */
1892 bfd_elf_generic_reloc, /* special_function */
1893 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1894 FALSE, /* partial_inplace */
1895 0x1fffff, /* src_mask */
1896 0x1fffff, /* dst_mask */
1897 TRUE), /* pcrel_offset */
1898
1899 /* LD64: GOT offset G(S) & 0xff8. */
1900 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12), /* type */
1901 3, /* rightshift */
1902 2, /* size (0 = byte, 1 = short, 2 = long) */
1903 12, /* bitsize */
1904 FALSE, /* pc_relative */
1905 0, /* bitpos */
1906 complain_overflow_dont, /* complain_on_overflow */
1907 bfd_elf_generic_reloc, /* special_function */
1908 AARCH64_R_STR (TLSDESC_LD64_LO12), /* name */
1909 FALSE, /* partial_inplace */
1910 0xff8, /* src_mask */
1911 0xff8, /* dst_mask */
1912 FALSE), /* pcrel_offset */
1913
1914 /* LD32: GOT offset G(S) & 0xffc. */
1915 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1916 2, /* rightshift */
1917 2, /* size (0 = byte, 1 = short, 2 = long) */
1918 12, /* bitsize */
1919 FALSE, /* pc_relative */
1920 0, /* bitpos */
1921 complain_overflow_dont, /* complain_on_overflow */
1922 bfd_elf_generic_reloc, /* special_function */
1923 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1924 FALSE, /* partial_inplace */
1925 0xffc, /* src_mask */
1926 0xffc, /* dst_mask */
1927 FALSE), /* pcrel_offset */
1928
1929 /* ADD: GOT offset G(S) & 0xfff. */
1930 HOWTO (AARCH64_R (TLSDESC_ADD_LO12), /* type */
1931 0, /* rightshift */
1932 2, /* size (0 = byte, 1 = short, 2 = long) */
1933 12, /* bitsize */
1934 FALSE, /* pc_relative */
1935 0, /* bitpos */
1936 complain_overflow_dont,/* complain_on_overflow */
1937 bfd_elf_generic_reloc, /* special_function */
1938 AARCH64_R_STR (TLSDESC_ADD_LO12), /* name */
1939 FALSE, /* partial_inplace */
1940 0xfff, /* src_mask */
1941 0xfff, /* dst_mask */
1942 FALSE), /* pcrel_offset */
1943
1944 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1945 16, /* rightshift */
1946 2, /* size (0 = byte, 1 = short, 2 = long) */
1947 12, /* bitsize */
1948 FALSE, /* pc_relative */
1949 0, /* bitpos */
1950 complain_overflow_unsigned, /* complain_on_overflow */
1951 bfd_elf_generic_reloc, /* special_function */
1952 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1953 FALSE, /* partial_inplace */
1954 0xffff, /* src_mask */
1955 0xffff, /* dst_mask */
1956 FALSE), /* pcrel_offset */
1957
1958 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1959 0, /* rightshift */
1960 2, /* size (0 = byte, 1 = short, 2 = long) */
1961 12, /* bitsize */
1962 FALSE, /* pc_relative */
1963 0, /* bitpos */
1964 complain_overflow_dont, /* complain_on_overflow */
1965 bfd_elf_generic_reloc, /* special_function */
1966 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1967 FALSE, /* partial_inplace */
1968 0xffff, /* src_mask */
1969 0xffff, /* dst_mask */
1970 FALSE), /* pcrel_offset */
1971
1972 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1973 0, /* rightshift */
1974 2, /* size (0 = byte, 1 = short, 2 = long) */
1975 12, /* bitsize */
1976 FALSE, /* pc_relative */
1977 0, /* bitpos */
1978 complain_overflow_dont, /* complain_on_overflow */
1979 bfd_elf_generic_reloc, /* special_function */
1980 AARCH64_R_STR (TLSDESC_LDR), /* name */
1981 FALSE, /* partial_inplace */
1982 0x0, /* src_mask */
1983 0x0, /* dst_mask */
1984 FALSE), /* pcrel_offset */
1985
1986 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1987 0, /* rightshift */
1988 2, /* size (0 = byte, 1 = short, 2 = long) */
1989 12, /* bitsize */
1990 FALSE, /* pc_relative */
1991 0, /* bitpos */
1992 complain_overflow_dont, /* complain_on_overflow */
1993 bfd_elf_generic_reloc, /* special_function */
1994 AARCH64_R_STR (TLSDESC_ADD), /* name */
1995 FALSE, /* partial_inplace */
1996 0x0, /* src_mask */
1997 0x0, /* dst_mask */
1998 FALSE), /* pcrel_offset */
1999
2000 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
2001 0, /* rightshift */
2002 2, /* size (0 = byte, 1 = short, 2 = long) */
2003 0, /* bitsize */
2004 FALSE, /* pc_relative */
2005 0, /* bitpos */
2006 complain_overflow_dont, /* complain_on_overflow */
2007 bfd_elf_generic_reloc, /* special_function */
2008 AARCH64_R_STR (TLSDESC_CALL), /* name */
2009 FALSE, /* partial_inplace */
2010 0x0, /* src_mask */
2011 0x0, /* dst_mask */
2012 FALSE), /* pcrel_offset */
2013
2014 HOWTO (AARCH64_R (COPY), /* type */
2015 0, /* rightshift */
2016 2, /* size (0 = byte, 1 = short, 2 = long) */
2017 64, /* bitsize */
2018 FALSE, /* pc_relative */
2019 0, /* bitpos */
2020 complain_overflow_bitfield, /* complain_on_overflow */
2021 bfd_elf_generic_reloc, /* special_function */
2022 AARCH64_R_STR (COPY), /* name */
2023 TRUE, /* partial_inplace */
2024 0xffffffff, /* src_mask */
2025 0xffffffff, /* dst_mask */
2026 FALSE), /* pcrel_offset */
2027
2028 HOWTO (AARCH64_R (GLOB_DAT), /* type */
2029 0, /* rightshift */
2030 2, /* size (0 = byte, 1 = short, 2 = long) */
2031 64, /* bitsize */
2032 FALSE, /* pc_relative */
2033 0, /* bitpos */
2034 complain_overflow_bitfield, /* complain_on_overflow */
2035 bfd_elf_generic_reloc, /* special_function */
2036 AARCH64_R_STR (GLOB_DAT), /* name */
2037 TRUE, /* partial_inplace */
2038 0xffffffff, /* src_mask */
2039 0xffffffff, /* dst_mask */
2040 FALSE), /* pcrel_offset */
2041
2042 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
2043 0, /* rightshift */
2044 2, /* size (0 = byte, 1 = short, 2 = long) */
2045 64, /* bitsize */
2046 FALSE, /* pc_relative */
2047 0, /* bitpos */
2048 complain_overflow_bitfield, /* complain_on_overflow */
2049 bfd_elf_generic_reloc, /* special_function */
2050 AARCH64_R_STR (JUMP_SLOT), /* name */
2051 TRUE, /* partial_inplace */
2052 0xffffffff, /* src_mask */
2053 0xffffffff, /* dst_mask */
2054 FALSE), /* pcrel_offset */
2055
2056 HOWTO (AARCH64_R (RELATIVE), /* type */
2057 0, /* rightshift */
2058 2, /* size (0 = byte, 1 = short, 2 = long) */
2059 64, /* bitsize */
2060 FALSE, /* pc_relative */
2061 0, /* bitpos */
2062 complain_overflow_bitfield, /* complain_on_overflow */
2063 bfd_elf_generic_reloc, /* special_function */
2064 AARCH64_R_STR (RELATIVE), /* name */
2065 TRUE, /* partial_inplace */
2066 ALL_ONES, /* src_mask */
2067 ALL_ONES, /* dst_mask */
2068 FALSE), /* pcrel_offset */
2069
2070 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
2071 0, /* rightshift */
2072 2, /* size (0 = byte, 1 = short, 2 = long) */
2073 64, /* bitsize */
2074 FALSE, /* pc_relative */
2075 0, /* bitpos */
2076 complain_overflow_dont, /* complain_on_overflow */
2077 bfd_elf_generic_reloc, /* special_function */
2078 #if ARCH_SIZE == 64
2079 AARCH64_R_STR (TLS_DTPMOD64), /* name */
2080 #else
2081 AARCH64_R_STR (TLS_DTPMOD), /* name */
2082 #endif
2083 FALSE, /* partial_inplace */
2084 0, /* src_mask */
2085 ALL_ONES, /* dst_mask */
2086 FALSE), /* pc_reloffset */
2087
2088 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
2089 0, /* rightshift */
2090 2, /* size (0 = byte, 1 = short, 2 = long) */
2091 64, /* bitsize */
2092 FALSE, /* pc_relative */
2093 0, /* bitpos */
2094 complain_overflow_dont, /* complain_on_overflow */
2095 bfd_elf_generic_reloc, /* special_function */
2096 #if ARCH_SIZE == 64
2097 AARCH64_R_STR (TLS_DTPREL64), /* name */
2098 #else
2099 AARCH64_R_STR (TLS_DTPREL), /* name */
2100 #endif
2101 FALSE, /* partial_inplace */
2102 0, /* src_mask */
2103 ALL_ONES, /* dst_mask */
2104 FALSE), /* pcrel_offset */
2105
2106 HOWTO (AARCH64_R (TLS_TPREL), /* type */
2107 0, /* rightshift */
2108 2, /* size (0 = byte, 1 = short, 2 = long) */
2109 64, /* bitsize */
2110 FALSE, /* pc_relative */
2111 0, /* bitpos */
2112 complain_overflow_dont, /* complain_on_overflow */
2113 bfd_elf_generic_reloc, /* special_function */
2114 #if ARCH_SIZE == 64
2115 AARCH64_R_STR (TLS_TPREL64), /* name */
2116 #else
2117 AARCH64_R_STR (TLS_TPREL), /* name */
2118 #endif
2119 FALSE, /* partial_inplace */
2120 0, /* src_mask */
2121 ALL_ONES, /* dst_mask */
2122 FALSE), /* pcrel_offset */
2123
2124 HOWTO (AARCH64_R (TLSDESC), /* type */
2125 0, /* rightshift */
2126 2, /* size (0 = byte, 1 = short, 2 = long) */
2127 64, /* bitsize */
2128 FALSE, /* pc_relative */
2129 0, /* bitpos */
2130 complain_overflow_dont, /* complain_on_overflow */
2131 bfd_elf_generic_reloc, /* special_function */
2132 AARCH64_R_STR (TLSDESC), /* name */
2133 FALSE, /* partial_inplace */
2134 0, /* src_mask */
2135 ALL_ONES, /* dst_mask */
2136 FALSE), /* pcrel_offset */
2137
2138 HOWTO (AARCH64_R (IRELATIVE), /* type */
2139 0, /* rightshift */
2140 2, /* size (0 = byte, 1 = short, 2 = long) */
2141 64, /* bitsize */
2142 FALSE, /* pc_relative */
2143 0, /* bitpos */
2144 complain_overflow_bitfield, /* complain_on_overflow */
2145 bfd_elf_generic_reloc, /* special_function */
2146 AARCH64_R_STR (IRELATIVE), /* name */
2147 FALSE, /* partial_inplace */
2148 0, /* src_mask */
2149 ALL_ONES, /* dst_mask */
2150 FALSE), /* pcrel_offset */
2151
2152 EMPTY_HOWTO (0),
2153 };
2154
2155 static reloc_howto_type elfNN_aarch64_howto_none =
2156 HOWTO (R_AARCH64_NONE, /* type */
2157 0, /* rightshift */
2158 3, /* size (0 = byte, 1 = short, 2 = long) */
2159 0, /* bitsize */
2160 FALSE, /* pc_relative */
2161 0, /* bitpos */
2162 complain_overflow_dont,/* complain_on_overflow */
2163 bfd_elf_generic_reloc, /* special_function */
2164 "R_AARCH64_NONE", /* name */
2165 FALSE, /* partial_inplace */
2166 0, /* src_mask */
2167 0, /* dst_mask */
2168 FALSE); /* pcrel_offset */
2169
2170 /* Given HOWTO, return the bfd internal relocation enumerator. */
2171
2172 static bfd_reloc_code_real_type
2173 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
2174 {
2175 const int size
2176 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
2177 const ptrdiff_t offset
2178 = howto - elfNN_aarch64_howto_table;
2179
2180 if (offset > 0 && offset < size - 1)
2181 return BFD_RELOC_AARCH64_RELOC_START + offset;
2182
2183 if (howto == &elfNN_aarch64_howto_none)
2184 return BFD_RELOC_AARCH64_NONE;
2185
2186 return BFD_RELOC_AARCH64_RELOC_START;
2187 }
2188
2189 /* Given R_TYPE, return the bfd internal relocation enumerator. */
2190
2191 static bfd_reloc_code_real_type
2192 elfNN_aarch64_bfd_reloc_from_type (bfd *abfd, unsigned int r_type)
2193 {
2194 static bfd_boolean initialized_p = FALSE;
2195 /* Indexed by R_TYPE, values are offsets in the howto_table. */
2196 static unsigned int offsets[R_AARCH64_end];
2197
2198 if (!initialized_p)
2199 {
2200 unsigned int i;
2201
2202 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2203 if (elfNN_aarch64_howto_table[i].type != 0)
2204 offsets[elfNN_aarch64_howto_table[i].type] = i;
2205
2206 initialized_p = TRUE;
2207 }
2208
2209 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
2210 return BFD_RELOC_AARCH64_NONE;
2211
2212 /* PR 17512: file: b371e70a. */
2213 if (r_type >= R_AARCH64_end)
2214 {
2215 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
2216 abfd, r_type);
2217 bfd_set_error (bfd_error_bad_value);
2218 return BFD_RELOC_AARCH64_NONE;
2219 }
2220
2221 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
2222 }
2223
2224 struct elf_aarch64_reloc_map
2225 {
2226 bfd_reloc_code_real_type from;
2227 bfd_reloc_code_real_type to;
2228 };
2229
2230 /* Map bfd generic reloc to AArch64-specific reloc. */
2231 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
2232 {
2233 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
2234
2235 /* Basic data relocations. */
2236 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
2237 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
2238 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
2239 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
2240 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
2241 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
2242 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
2243 };
2244
2245 /* Given the bfd internal relocation enumerator in CODE, return the
2246 corresponding howto entry. */
2247
2248 static reloc_howto_type *
2249 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
2250 {
2251 unsigned int i;
2252
2253 /* Convert bfd generic reloc to AArch64-specific reloc. */
2254 if (code < BFD_RELOC_AARCH64_RELOC_START
2255 || code > BFD_RELOC_AARCH64_RELOC_END)
2256 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
2257 if (elf_aarch64_reloc_map[i].from == code)
2258 {
2259 code = elf_aarch64_reloc_map[i].to;
2260 break;
2261 }
2262
2263 if (code > BFD_RELOC_AARCH64_RELOC_START
2264 && code < BFD_RELOC_AARCH64_RELOC_END)
2265 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
2266 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
2267
2268 if (code == BFD_RELOC_AARCH64_NONE)
2269 return &elfNN_aarch64_howto_none;
2270
2271 return NULL;
2272 }
2273
2274 static reloc_howto_type *
2275 elfNN_aarch64_howto_from_type (bfd *abfd, unsigned int r_type)
2276 {
2277 bfd_reloc_code_real_type val;
2278 reloc_howto_type *howto;
2279
2280 #if ARCH_SIZE == 32
2281 if (r_type > 256)
2282 {
2283 bfd_set_error (bfd_error_bad_value);
2284 return NULL;
2285 }
2286 #endif
2287
2288 if (r_type == R_AARCH64_NONE)
2289 return &elfNN_aarch64_howto_none;
2290
2291 val = elfNN_aarch64_bfd_reloc_from_type (abfd, r_type);
2292 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
2293
2294 if (howto != NULL)
2295 return howto;
2296
2297 bfd_set_error (bfd_error_bad_value);
2298 return NULL;
2299 }
2300
2301 static bfd_boolean
2302 elfNN_aarch64_info_to_howto (bfd *abfd, arelent *bfd_reloc,
2303 Elf_Internal_Rela *elf_reloc)
2304 {
2305 unsigned int r_type;
2306
2307 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
2308 bfd_reloc->howto = elfNN_aarch64_howto_from_type (abfd, r_type);
2309
2310 if (bfd_reloc->howto == NULL)
2311 {
2312 /* xgettext:c-format */
2313 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, r_type);
2314 return FALSE;
2315 }
2316 return TRUE;
2317 }
2318
2319 static reloc_howto_type *
2320 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2321 bfd_reloc_code_real_type code)
2322 {
2323 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
2324
2325 if (howto != NULL)
2326 return howto;
2327
2328 bfd_set_error (bfd_error_bad_value);
2329 return NULL;
2330 }
2331
2332 static reloc_howto_type *
2333 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2334 const char *r_name)
2335 {
2336 unsigned int i;
2337
2338 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2339 if (elfNN_aarch64_howto_table[i].name != NULL
2340 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2341 return &elfNN_aarch64_howto_table[i];
2342
2343 return NULL;
2344 }
2345
2346 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2347 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2348 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2349 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2350
2351 /* The linker script knows the section names for placement.
2352 The entry_names are used to do simple name mangling on the stubs.
2353 Given a function name, and its type, the stub can be found. The
2354 name can be changed. The only requirement is the %s be present. */
2355 #define STUB_ENTRY_NAME "__%s_veneer"
2356
2357 /* The name of the dynamic interpreter. This is put in the .interp
2358 section. */
2359 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2360
2361 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2362 (((1 << 25) - 1) << 2)
2363 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2364 (-((1 << 25) << 2))
2365
2366 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2367 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2368
2369 static int
2370 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2371 {
2372 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2373 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2374 }
2375
2376 static int
2377 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2378 {
2379 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2380 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2381 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2382 }
2383
2384 static const uint32_t aarch64_adrp_branch_stub [] =
2385 {
2386 0x90000010, /* adrp ip0, X */
2387 /* R_AARCH64_ADR_HI21_PCREL(X) */
2388 0x91000210, /* add ip0, ip0, :lo12:X */
2389 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2390 0xd61f0200, /* br ip0 */
2391 };
2392
2393 static const uint32_t aarch64_long_branch_stub[] =
2394 {
2395 #if ARCH_SIZE == 64
2396 0x58000090, /* ldr ip0, 1f */
2397 #else
2398 0x18000090, /* ldr wip0, 1f */
2399 #endif
2400 0x10000011, /* adr ip1, #0 */
2401 0x8b110210, /* add ip0, ip0, ip1 */
2402 0xd61f0200, /* br ip0 */
2403 0x00000000, /* 1: .xword or .word
2404 R_AARCH64_PRELNN(X) + 12
2405 */
2406 0x00000000,
2407 };
2408
2409 static const uint32_t aarch64_erratum_835769_stub[] =
2410 {
2411 0x00000000, /* Placeholder for multiply accumulate. */
2412 0x14000000, /* b <label> */
2413 };
2414
2415 static const uint32_t aarch64_erratum_843419_stub[] =
2416 {
2417 0x00000000, /* Placeholder for LDR instruction. */
2418 0x14000000, /* b <label> */
2419 };
2420
2421 /* Section name for stubs is the associated section name plus this
2422 string. */
2423 #define STUB_SUFFIX ".stub"
2424
2425 enum elf_aarch64_stub_type
2426 {
2427 aarch64_stub_none,
2428 aarch64_stub_adrp_branch,
2429 aarch64_stub_long_branch,
2430 aarch64_stub_erratum_835769_veneer,
2431 aarch64_stub_erratum_843419_veneer,
2432 };
2433
2434 struct elf_aarch64_stub_hash_entry
2435 {
2436 /* Base hash table entry structure. */
2437 struct bfd_hash_entry root;
2438
2439 /* The stub section. */
2440 asection *stub_sec;
2441
2442 /* Offset within stub_sec of the beginning of this stub. */
2443 bfd_vma stub_offset;
2444
2445 /* Given the symbol's value and its section we can determine its final
2446 value when building the stubs (so the stub knows where to jump). */
2447 bfd_vma target_value;
2448 asection *target_section;
2449
2450 enum elf_aarch64_stub_type stub_type;
2451
2452 /* The symbol table entry, if any, that this was derived from. */
2453 struct elf_aarch64_link_hash_entry *h;
2454
2455 /* Destination symbol type */
2456 unsigned char st_type;
2457
2458 /* Where this stub is being called from, or, in the case of combined
2459 stub sections, the first input section in the group. */
2460 asection *id_sec;
2461
2462 /* The name for the local symbol at the start of this stub. The
2463 stub name in the hash table has to be unique; this does not, so
2464 it can be friendlier. */
2465 char *output_name;
2466
2467 /* The instruction which caused this stub to be generated (only valid for
2468 erratum 835769 workaround stubs at present). */
2469 uint32_t veneered_insn;
2470
2471 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2472 bfd_vma adrp_offset;
2473 };
2474
2475 /* Used to build a map of a section. This is required for mixed-endian
2476 code/data. */
2477
2478 typedef struct elf_elf_section_map
2479 {
2480 bfd_vma vma;
2481 char type;
2482 }
2483 elf_aarch64_section_map;
2484
2485
2486 typedef struct _aarch64_elf_section_data
2487 {
2488 struct bfd_elf_section_data elf;
2489 unsigned int mapcount;
2490 unsigned int mapsize;
2491 elf_aarch64_section_map *map;
2492 }
2493 _aarch64_elf_section_data;
2494
2495 #define elf_aarch64_section_data(sec) \
2496 ((_aarch64_elf_section_data *) elf_section_data (sec))
2497
2498 /* The size of the thread control block which is defined to be two pointers. */
2499 #define TCB_SIZE (ARCH_SIZE/8)*2
2500
2501 struct elf_aarch64_local_symbol
2502 {
2503 unsigned int got_type;
2504 bfd_signed_vma got_refcount;
2505 bfd_vma got_offset;
2506
2507 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2508 offset is from the end of the jump table and reserved entries
2509 within the PLTGOT.
2510
2511 The magic value (bfd_vma) -1 indicates that an offset has not be
2512 allocated. */
2513 bfd_vma tlsdesc_got_jump_table_offset;
2514 };
2515
2516 struct elf_aarch64_obj_tdata
2517 {
2518 struct elf_obj_tdata root;
2519
2520 /* local symbol descriptors */
2521 struct elf_aarch64_local_symbol *locals;
2522
2523 /* Zero to warn when linking objects with incompatible enum sizes. */
2524 int no_enum_size_warning;
2525
2526 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2527 int no_wchar_size_warning;
2528
2529 /* All GNU_PROPERTY_AARCH64_FEATURE_1_AND properties. */
2530 uint32_t gnu_and_prop;
2531
2532 /* Zero to warn when linking objects with incompatible
2533 GNU_PROPERTY_AARCH64_FEATURE_1_BTI. */
2534 int no_bti_warn;
2535
2536 /* PLT type based on security. */
2537 aarch64_plt_type plt_type;
2538 };
2539
2540 #define elf_aarch64_tdata(bfd) \
2541 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2542
2543 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2544
2545 #define is_aarch64_elf(bfd) \
2546 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2547 && elf_tdata (bfd) != NULL \
2548 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2549
2550 static bfd_boolean
2551 elfNN_aarch64_mkobject (bfd *abfd)
2552 {
2553 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2554 AARCH64_ELF_DATA);
2555 }
2556
2557 #define elf_aarch64_hash_entry(ent) \
2558 ((struct elf_aarch64_link_hash_entry *)(ent))
2559
2560 #define GOT_UNKNOWN 0
2561 #define GOT_NORMAL 1
2562 #define GOT_TLS_GD 2
2563 #define GOT_TLS_IE 4
2564 #define GOT_TLSDESC_GD 8
2565
2566 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2567
2568 /* AArch64 ELF linker hash entry. */
2569 struct elf_aarch64_link_hash_entry
2570 {
2571 struct elf_link_hash_entry root;
2572
2573 /* Since PLT entries have variable size, we need to record the
2574 index into .got.plt instead of recomputing it from the PLT
2575 offset. */
2576 bfd_signed_vma plt_got_offset;
2577
2578 /* Bit mask representing the type of GOT entry(s) if any required by
2579 this symbol. */
2580 unsigned int got_type;
2581
2582 /* A pointer to the most recently used stub hash entry against this
2583 symbol. */
2584 struct elf_aarch64_stub_hash_entry *stub_cache;
2585
2586 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2587 is from the end of the jump table and reserved entries within the PLTGOT.
2588
2589 The magic value (bfd_vma) -1 indicates that an offset has not
2590 be allocated. */
2591 bfd_vma tlsdesc_got_jump_table_offset;
2592 };
2593
2594 static unsigned int
2595 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2596 bfd *abfd,
2597 unsigned long r_symndx)
2598 {
2599 if (h)
2600 return elf_aarch64_hash_entry (h)->got_type;
2601
2602 if (! elf_aarch64_locals (abfd))
2603 return GOT_UNKNOWN;
2604
2605 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2606 }
2607
2608 /* Get the AArch64 elf linker hash table from a link_info structure. */
2609 #define elf_aarch64_hash_table(info) \
2610 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2611
2612 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2613 ((struct elf_aarch64_stub_hash_entry *) \
2614 bfd_hash_lookup ((table), (string), (create), (copy)))
2615
2616 /* AArch64 ELF linker hash table. */
2617 struct elf_aarch64_link_hash_table
2618 {
2619 /* The main hash table. */
2620 struct elf_link_hash_table root;
2621
2622 /* Nonzero to force PIC branch veneers. */
2623 int pic_veneer;
2624
2625 /* Fix erratum 835769. */
2626 int fix_erratum_835769;
2627
2628 /* Fix erratum 843419. */
2629 erratum_84319_opts fix_erratum_843419;
2630
2631 /* Don't apply link-time values for dynamic relocations. */
2632 int no_apply_dynamic_relocs;
2633
2634 /* The number of bytes in the initial entry in the PLT. */
2635 bfd_size_type plt_header_size;
2636
2637 /* The bytes of the initial PLT entry. */
2638 const bfd_byte *plt0_entry;
2639
2640 /* The number of bytes in the subsequent PLT entries. */
2641 bfd_size_type plt_entry_size;
2642
2643 /* The bytes of the subsequent PLT entry. */
2644 const bfd_byte *plt_entry;
2645
2646 /* Small local sym cache. */
2647 struct sym_cache sym_cache;
2648
2649 /* For convenience in allocate_dynrelocs. */
2650 bfd *obfd;
2651
2652 /* The amount of space used by the reserved portion of the sgotplt
2653 section, plus whatever space is used by the jump slots. */
2654 bfd_vma sgotplt_jump_table_size;
2655
2656 /* The stub hash table. */
2657 struct bfd_hash_table stub_hash_table;
2658
2659 /* Linker stub bfd. */
2660 bfd *stub_bfd;
2661
2662 /* Linker call-backs. */
2663 asection *(*add_stub_section) (const char *, asection *);
2664 void (*layout_sections_again) (void);
2665
2666 /* Array to keep track of which stub sections have been created, and
2667 information on stub grouping. */
2668 struct map_stub
2669 {
2670 /* This is the section to which stubs in the group will be
2671 attached. */
2672 asection *link_sec;
2673 /* The stub section. */
2674 asection *stub_sec;
2675 } *stub_group;
2676
2677 /* Assorted information used by elfNN_aarch64_size_stubs. */
2678 unsigned int bfd_count;
2679 unsigned int top_index;
2680 asection **input_list;
2681
2682 /* JUMP_SLOT relocs for variant PCS symbols may be present. */
2683 int variant_pcs;
2684
2685 /* The offset into splt of the PLT entry for the TLS descriptor
2686 resolver. Special values are 0, if not necessary (or not found
2687 to be necessary yet), and -1 if needed but not determined
2688 yet. */
2689 bfd_vma tlsdesc_plt;
2690
2691 /* The number of bytes in the PLT enty for the TLS descriptor. */
2692 bfd_size_type tlsdesc_plt_entry_size;
2693
2694 /* The GOT offset for the lazy trampoline. Communicated to the
2695 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2696 indicates an offset is not allocated. */
2697 bfd_vma dt_tlsdesc_got;
2698
2699 /* Used by local STT_GNU_IFUNC symbols. */
2700 htab_t loc_hash_table;
2701 void * loc_hash_memory;
2702 };
2703
2704 /* Create an entry in an AArch64 ELF linker hash table. */
2705
2706 static struct bfd_hash_entry *
2707 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2708 struct bfd_hash_table *table,
2709 const char *string)
2710 {
2711 struct elf_aarch64_link_hash_entry *ret =
2712 (struct elf_aarch64_link_hash_entry *) entry;
2713
2714 /* Allocate the structure if it has not already been allocated by a
2715 subclass. */
2716 if (ret == NULL)
2717 ret = bfd_hash_allocate (table,
2718 sizeof (struct elf_aarch64_link_hash_entry));
2719 if (ret == NULL)
2720 return (struct bfd_hash_entry *) ret;
2721
2722 /* Call the allocation method of the superclass. */
2723 ret = ((struct elf_aarch64_link_hash_entry *)
2724 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2725 table, string));
2726 if (ret != NULL)
2727 {
2728 ret->got_type = GOT_UNKNOWN;
2729 ret->plt_got_offset = (bfd_vma) - 1;
2730 ret->stub_cache = NULL;
2731 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2732 }
2733
2734 return (struct bfd_hash_entry *) ret;
2735 }
2736
2737 /* Initialize an entry in the stub hash table. */
2738
2739 static struct bfd_hash_entry *
2740 stub_hash_newfunc (struct bfd_hash_entry *entry,
2741 struct bfd_hash_table *table, const char *string)
2742 {
2743 /* Allocate the structure if it has not already been allocated by a
2744 subclass. */
2745 if (entry == NULL)
2746 {
2747 entry = bfd_hash_allocate (table,
2748 sizeof (struct
2749 elf_aarch64_stub_hash_entry));
2750 if (entry == NULL)
2751 return entry;
2752 }
2753
2754 /* Call the allocation method of the superclass. */
2755 entry = bfd_hash_newfunc (entry, table, string);
2756 if (entry != NULL)
2757 {
2758 struct elf_aarch64_stub_hash_entry *eh;
2759
2760 /* Initialize the local fields. */
2761 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2762 eh->adrp_offset = 0;
2763 eh->stub_sec = NULL;
2764 eh->stub_offset = 0;
2765 eh->target_value = 0;
2766 eh->target_section = NULL;
2767 eh->stub_type = aarch64_stub_none;
2768 eh->h = NULL;
2769 eh->id_sec = NULL;
2770 }
2771
2772 return entry;
2773 }
2774
2775 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2776 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2777 as global symbol. We reuse indx and dynstr_index for local symbol
2778 hash since they aren't used by global symbols in this backend. */
2779
2780 static hashval_t
2781 elfNN_aarch64_local_htab_hash (const void *ptr)
2782 {
2783 struct elf_link_hash_entry *h
2784 = (struct elf_link_hash_entry *) ptr;
2785 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2786 }
2787
2788 /* Compare local hash entries. */
2789
2790 static int
2791 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2792 {
2793 struct elf_link_hash_entry *h1
2794 = (struct elf_link_hash_entry *) ptr1;
2795 struct elf_link_hash_entry *h2
2796 = (struct elf_link_hash_entry *) ptr2;
2797
2798 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2799 }
2800
2801 /* Find and/or create a hash entry for local symbol. */
2802
2803 static struct elf_link_hash_entry *
2804 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2805 bfd *abfd, const Elf_Internal_Rela *rel,
2806 bfd_boolean create)
2807 {
2808 struct elf_aarch64_link_hash_entry e, *ret;
2809 asection *sec = abfd->sections;
2810 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2811 ELFNN_R_SYM (rel->r_info));
2812 void **slot;
2813
2814 e.root.indx = sec->id;
2815 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2816 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2817 create ? INSERT : NO_INSERT);
2818
2819 if (!slot)
2820 return NULL;
2821
2822 if (*slot)
2823 {
2824 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2825 return &ret->root;
2826 }
2827
2828 ret = (struct elf_aarch64_link_hash_entry *)
2829 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2830 sizeof (struct elf_aarch64_link_hash_entry));
2831 if (ret)
2832 {
2833 memset (ret, 0, sizeof (*ret));
2834 ret->root.indx = sec->id;
2835 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2836 ret->root.dynindx = -1;
2837 *slot = ret;
2838 }
2839 return &ret->root;
2840 }
2841
2842 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2843
2844 static void
2845 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2846 struct elf_link_hash_entry *dir,
2847 struct elf_link_hash_entry *ind)
2848 {
2849 struct elf_aarch64_link_hash_entry *edir, *eind;
2850
2851 edir = (struct elf_aarch64_link_hash_entry *) dir;
2852 eind = (struct elf_aarch64_link_hash_entry *) ind;
2853
2854 if (ind->root.type == bfd_link_hash_indirect)
2855 {
2856 /* Copy over PLT info. */
2857 if (dir->got.refcount <= 0)
2858 {
2859 edir->got_type = eind->got_type;
2860 eind->got_type = GOT_UNKNOWN;
2861 }
2862 }
2863
2864 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2865 }
2866
2867 /* Merge non-visibility st_other attributes. */
2868
2869 static void
2870 elfNN_aarch64_merge_symbol_attribute (struct elf_link_hash_entry *h,
2871 const Elf_Internal_Sym *isym,
2872 bfd_boolean definition ATTRIBUTE_UNUSED,
2873 bfd_boolean dynamic ATTRIBUTE_UNUSED)
2874 {
2875 unsigned int isym_sto = isym->st_other & ~ELF_ST_VISIBILITY (-1);
2876 unsigned int h_sto = h->other & ~ELF_ST_VISIBILITY (-1);
2877
2878 if (isym_sto == h_sto)
2879 return;
2880
2881 if (isym_sto & ~STO_AARCH64_VARIANT_PCS)
2882 /* Not fatal, this callback cannot fail. */
2883 _bfd_error_handler (_("unknown attribute for symbol `%s': 0x%02x"),
2884 h->root.root.string, isym_sto);
2885
2886 /* Note: Ideally we would warn about any attribute mismatch, but
2887 this api does not allow that without substantial changes. */
2888 if (isym_sto & STO_AARCH64_VARIANT_PCS)
2889 h->other |= STO_AARCH64_VARIANT_PCS;
2890 }
2891
2892 /* Destroy an AArch64 elf linker hash table. */
2893
2894 static void
2895 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2896 {
2897 struct elf_aarch64_link_hash_table *ret
2898 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2899
2900 if (ret->loc_hash_table)
2901 htab_delete (ret->loc_hash_table);
2902 if (ret->loc_hash_memory)
2903 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2904
2905 bfd_hash_table_free (&ret->stub_hash_table);
2906 _bfd_elf_link_hash_table_free (obfd);
2907 }
2908
2909 /* Create an AArch64 elf linker hash table. */
2910
2911 static struct bfd_link_hash_table *
2912 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2913 {
2914 struct elf_aarch64_link_hash_table *ret;
2915 size_t amt = sizeof (struct elf_aarch64_link_hash_table);
2916
2917 ret = bfd_zmalloc (amt);
2918 if (ret == NULL)
2919 return NULL;
2920
2921 if (!_bfd_elf_link_hash_table_init
2922 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2923 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2924 {
2925 free (ret);
2926 return NULL;
2927 }
2928
2929 ret->plt_header_size = PLT_ENTRY_SIZE;
2930 ret->plt0_entry = elfNN_aarch64_small_plt0_entry;
2931 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2932 ret->plt_entry = elfNN_aarch64_small_plt_entry;
2933 ret->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
2934 ret->obfd = abfd;
2935 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2936
2937 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2938 sizeof (struct elf_aarch64_stub_hash_entry)))
2939 {
2940 _bfd_elf_link_hash_table_free (abfd);
2941 return NULL;
2942 }
2943
2944 ret->loc_hash_table = htab_try_create (1024,
2945 elfNN_aarch64_local_htab_hash,
2946 elfNN_aarch64_local_htab_eq,
2947 NULL);
2948 ret->loc_hash_memory = objalloc_create ();
2949 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2950 {
2951 elfNN_aarch64_link_hash_table_free (abfd);
2952 return NULL;
2953 }
2954 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2955
2956 return &ret->root.root;
2957 }
2958
2959 /* Perform relocation R_TYPE. Returns TRUE upon success, FALSE otherwise. */
2960
2961 static bfd_boolean
2962 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2963 bfd_vma offset, bfd_vma value)
2964 {
2965 reloc_howto_type *howto;
2966 bfd_vma place;
2967
2968 howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
2969 place = (input_section->output_section->vma + input_section->output_offset
2970 + offset);
2971
2972 r_type = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
2973 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, r_type, place,
2974 value, 0, FALSE);
2975 return _bfd_aarch64_elf_put_addend (input_bfd,
2976 input_section->contents + offset, r_type,
2977 howto, value) == bfd_reloc_ok;
2978 }
2979
2980 static enum elf_aarch64_stub_type
2981 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2982 {
2983 if (aarch64_valid_for_adrp_p (value, place))
2984 return aarch64_stub_adrp_branch;
2985 return aarch64_stub_long_branch;
2986 }
2987
2988 /* Determine the type of stub needed, if any, for a call. */
2989
2990 static enum elf_aarch64_stub_type
2991 aarch64_type_of_stub (asection *input_sec,
2992 const Elf_Internal_Rela *rel,
2993 asection *sym_sec,
2994 unsigned char st_type,
2995 bfd_vma destination)
2996 {
2997 bfd_vma location;
2998 bfd_signed_vma branch_offset;
2999 unsigned int r_type;
3000 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
3001
3002 if (st_type != STT_FUNC
3003 && (sym_sec == input_sec))
3004 return stub_type;
3005
3006 /* Determine where the call point is. */
3007 location = (input_sec->output_offset
3008 + input_sec->output_section->vma + rel->r_offset);
3009
3010 branch_offset = (bfd_signed_vma) (destination - location);
3011
3012 r_type = ELFNN_R_TYPE (rel->r_info);
3013
3014 /* We don't want to redirect any old unconditional jump in this way,
3015 only one which is being used for a sibcall, where it is
3016 acceptable for the IP0 and IP1 registers to be clobbered. */
3017 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
3018 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
3019 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
3020 {
3021 stub_type = aarch64_stub_long_branch;
3022 }
3023
3024 return stub_type;
3025 }
3026
3027 /* Build a name for an entry in the stub hash table. */
3028
3029 static char *
3030 elfNN_aarch64_stub_name (const asection *input_section,
3031 const asection *sym_sec,
3032 const struct elf_aarch64_link_hash_entry *hash,
3033 const Elf_Internal_Rela *rel)
3034 {
3035 char *stub_name;
3036 bfd_size_type len;
3037
3038 if (hash)
3039 {
3040 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
3041 stub_name = bfd_malloc (len);
3042 if (stub_name != NULL)
3043 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
3044 (unsigned int) input_section->id,
3045 hash->root.root.root.string,
3046 rel->r_addend);
3047 }
3048 else
3049 {
3050 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
3051 stub_name = bfd_malloc (len);
3052 if (stub_name != NULL)
3053 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
3054 (unsigned int) input_section->id,
3055 (unsigned int) sym_sec->id,
3056 (unsigned int) ELFNN_R_SYM (rel->r_info),
3057 rel->r_addend);
3058 }
3059
3060 return stub_name;
3061 }
3062
3063 /* Return TRUE if symbol H should be hashed in the `.gnu.hash' section. For
3064 executable PLT slots where the executable never takes the address of those
3065 functions, the function symbols are not added to the hash table. */
3066
3067 static bfd_boolean
3068 elf_aarch64_hash_symbol (struct elf_link_hash_entry *h)
3069 {
3070 if (h->plt.offset != (bfd_vma) -1
3071 && !h->def_regular
3072 && !h->pointer_equality_needed)
3073 return FALSE;
3074
3075 return _bfd_elf_hash_symbol (h);
3076 }
3077
3078
3079 /* Look up an entry in the stub hash. Stub entries are cached because
3080 creating the stub name takes a bit of time. */
3081
3082 static struct elf_aarch64_stub_hash_entry *
3083 elfNN_aarch64_get_stub_entry (const asection *input_section,
3084 const asection *sym_sec,
3085 struct elf_link_hash_entry *hash,
3086 const Elf_Internal_Rela *rel,
3087 struct elf_aarch64_link_hash_table *htab)
3088 {
3089 struct elf_aarch64_stub_hash_entry *stub_entry;
3090 struct elf_aarch64_link_hash_entry *h =
3091 (struct elf_aarch64_link_hash_entry *) hash;
3092 const asection *id_sec;
3093
3094 if ((input_section->flags & SEC_CODE) == 0)
3095 return NULL;
3096
3097 /* If this input section is part of a group of sections sharing one
3098 stub section, then use the id of the first section in the group.
3099 Stub names need to include a section id, as there may well be
3100 more than one stub used to reach say, printf, and we need to
3101 distinguish between them. */
3102 id_sec = htab->stub_group[input_section->id].link_sec;
3103
3104 if (h != NULL && h->stub_cache != NULL
3105 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
3106 {
3107 stub_entry = h->stub_cache;
3108 }
3109 else
3110 {
3111 char *stub_name;
3112
3113 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
3114 if (stub_name == NULL)
3115 return NULL;
3116
3117 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
3118 stub_name, FALSE, FALSE);
3119 if (h != NULL)
3120 h->stub_cache = stub_entry;
3121
3122 free (stub_name);
3123 }
3124
3125 return stub_entry;
3126 }
3127
3128
3129 /* Create a stub section. */
3130
3131 static asection *
3132 _bfd_aarch64_create_stub_section (asection *section,
3133 struct elf_aarch64_link_hash_table *htab)
3134 {
3135 size_t namelen;
3136 bfd_size_type len;
3137 char *s_name;
3138
3139 namelen = strlen (section->name);
3140 len = namelen + sizeof (STUB_SUFFIX);
3141 s_name = bfd_alloc (htab->stub_bfd, len);
3142 if (s_name == NULL)
3143 return NULL;
3144
3145 memcpy (s_name, section->name, namelen);
3146 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3147 return (*htab->add_stub_section) (s_name, section);
3148 }
3149
3150
3151 /* Find or create a stub section for a link section.
3152
3153 Fix or create the stub section used to collect stubs attached to
3154 the specified link section. */
3155
3156 static asection *
3157 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
3158 struct elf_aarch64_link_hash_table *htab)
3159 {
3160 if (htab->stub_group[link_section->id].stub_sec == NULL)
3161 htab->stub_group[link_section->id].stub_sec
3162 = _bfd_aarch64_create_stub_section (link_section, htab);
3163 return htab->stub_group[link_section->id].stub_sec;
3164 }
3165
3166
3167 /* Find or create a stub section in the stub group for an input
3168 section. */
3169
3170 static asection *
3171 _bfd_aarch64_create_or_find_stub_sec (asection *section,
3172 struct elf_aarch64_link_hash_table *htab)
3173 {
3174 asection *link_sec = htab->stub_group[section->id].link_sec;
3175 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
3176 }
3177
3178
3179 /* Add a new stub entry in the stub group associated with an input
3180 section to the stub hash. Not all fields of the new stub entry are
3181 initialised. */
3182
3183 static struct elf_aarch64_stub_hash_entry *
3184 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
3185 asection *section,
3186 struct elf_aarch64_link_hash_table *htab)
3187 {
3188 asection *link_sec;
3189 asection *stub_sec;
3190 struct elf_aarch64_stub_hash_entry *stub_entry;
3191
3192 link_sec = htab->stub_group[section->id].link_sec;
3193 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
3194
3195 /* Enter this entry into the linker stub hash table. */
3196 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3197 TRUE, FALSE);
3198 if (stub_entry == NULL)
3199 {
3200 /* xgettext:c-format */
3201 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3202 section->owner, stub_name);
3203 return NULL;
3204 }
3205
3206 stub_entry->stub_sec = stub_sec;
3207 stub_entry->stub_offset = 0;
3208 stub_entry->id_sec = link_sec;
3209
3210 return stub_entry;
3211 }
3212
3213 /* Add a new stub entry in the final stub section to the stub hash.
3214 Not all fields of the new stub entry are initialised. */
3215
3216 static struct elf_aarch64_stub_hash_entry *
3217 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
3218 asection *link_section,
3219 struct elf_aarch64_link_hash_table *htab)
3220 {
3221 asection *stub_sec;
3222 struct elf_aarch64_stub_hash_entry *stub_entry;
3223
3224 stub_sec = NULL;
3225 /* Only create the actual stub if we will end up needing it. */
3226 if (htab->fix_erratum_843419 & ERRAT_ADRP)
3227 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
3228 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3229 TRUE, FALSE);
3230 if (stub_entry == NULL)
3231 {
3232 _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
3233 return NULL;
3234 }
3235
3236 stub_entry->stub_sec = stub_sec;
3237 stub_entry->stub_offset = 0;
3238 stub_entry->id_sec = link_section;
3239
3240 return stub_entry;
3241 }
3242
3243
3244 static bfd_boolean
3245 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
3246 void *in_arg)
3247 {
3248 struct elf_aarch64_stub_hash_entry *stub_entry;
3249 asection *stub_sec;
3250 bfd *stub_bfd;
3251 bfd_byte *loc;
3252 bfd_vma sym_value;
3253 bfd_vma veneered_insn_loc;
3254 bfd_vma veneer_entry_loc;
3255 bfd_signed_vma branch_offset = 0;
3256 unsigned int template_size;
3257 const uint32_t *template;
3258 unsigned int i;
3259 struct bfd_link_info *info;
3260
3261 /* Massage our args to the form they really have. */
3262 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3263
3264 info = (struct bfd_link_info *) in_arg;
3265
3266 /* Fail if the target section could not be assigned to an output
3267 section. The user should fix his linker script. */
3268 if (stub_entry->target_section->output_section == NULL
3269 && info->non_contiguous_regions)
3270 info->callbacks->einfo (_("%F%P: Could not assign '%pA' to an output section. "
3271 "Retry without "
3272 "--enable-non-contiguous-regions.\n"),
3273 stub_entry->target_section);
3274
3275 stub_sec = stub_entry->stub_sec;
3276
3277 /* Make a note of the offset within the stubs for this entry. */
3278 stub_entry->stub_offset = stub_sec->size;
3279 loc = stub_sec->contents + stub_entry->stub_offset;
3280
3281 stub_bfd = stub_sec->owner;
3282
3283 /* This is the address of the stub destination. */
3284 sym_value = (stub_entry->target_value
3285 + stub_entry->target_section->output_offset
3286 + stub_entry->target_section->output_section->vma);
3287
3288 if (stub_entry->stub_type == aarch64_stub_long_branch)
3289 {
3290 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
3291 + stub_sec->output_offset);
3292
3293 /* See if we can relax the stub. */
3294 if (aarch64_valid_for_adrp_p (sym_value, place))
3295 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
3296 }
3297
3298 switch (stub_entry->stub_type)
3299 {
3300 case aarch64_stub_adrp_branch:
3301 template = aarch64_adrp_branch_stub;
3302 template_size = sizeof (aarch64_adrp_branch_stub);
3303 break;
3304 case aarch64_stub_long_branch:
3305 template = aarch64_long_branch_stub;
3306 template_size = sizeof (aarch64_long_branch_stub);
3307 break;
3308 case aarch64_stub_erratum_835769_veneer:
3309 template = aarch64_erratum_835769_stub;
3310 template_size = sizeof (aarch64_erratum_835769_stub);
3311 break;
3312 case aarch64_stub_erratum_843419_veneer:
3313 template = aarch64_erratum_843419_stub;
3314 template_size = sizeof (aarch64_erratum_843419_stub);
3315 break;
3316 default:
3317 abort ();
3318 }
3319
3320 for (i = 0; i < (template_size / sizeof template[0]); i++)
3321 {
3322 bfd_putl32 (template[i], loc);
3323 loc += 4;
3324 }
3325
3326 template_size = (template_size + 7) & ~7;
3327 stub_sec->size += template_size;
3328
3329 switch (stub_entry->stub_type)
3330 {
3331 case aarch64_stub_adrp_branch:
3332 if (!aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
3333 stub_entry->stub_offset, sym_value))
3334 /* The stub would not have been relaxed if the offset was out
3335 of range. */
3336 BFD_FAIL ();
3337
3338 if (!aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
3339 stub_entry->stub_offset + 4, sym_value))
3340 BFD_FAIL ();
3341 break;
3342
3343 case aarch64_stub_long_branch:
3344 /* We want the value relative to the address 12 bytes back from the
3345 value itself. */
3346 if (!aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
3347 stub_entry->stub_offset + 16, sym_value + 12))
3348 BFD_FAIL ();
3349 break;
3350
3351 case aarch64_stub_erratum_835769_veneer:
3352 veneered_insn_loc = stub_entry->target_section->output_section->vma
3353 + stub_entry->target_section->output_offset
3354 + stub_entry->target_value;
3355 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
3356 + stub_entry->stub_sec->output_offset
3357 + stub_entry->stub_offset;
3358 branch_offset = veneered_insn_loc - veneer_entry_loc;
3359 branch_offset >>= 2;
3360 branch_offset &= 0x3ffffff;
3361 bfd_putl32 (stub_entry->veneered_insn,
3362 stub_sec->contents + stub_entry->stub_offset);
3363 bfd_putl32 (template[1] | branch_offset,
3364 stub_sec->contents + stub_entry->stub_offset + 4);
3365 break;
3366
3367 case aarch64_stub_erratum_843419_veneer:
3368 if (!aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
3369 stub_entry->stub_offset + 4, sym_value + 4))
3370 BFD_FAIL ();
3371 break;
3372
3373 default:
3374 abort ();
3375 }
3376
3377 return TRUE;
3378 }
3379
3380 /* As above, but don't actually build the stub. Just bump offset so
3381 we know stub section sizes. */
3382
3383 static bfd_boolean
3384 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
3385 {
3386 struct elf_aarch64_stub_hash_entry *stub_entry;
3387 struct elf_aarch64_link_hash_table *htab;
3388 int size;
3389
3390 /* Massage our args to the form they really have. */
3391 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3392 htab = (struct elf_aarch64_link_hash_table *) in_arg;
3393
3394 switch (stub_entry->stub_type)
3395 {
3396 case aarch64_stub_adrp_branch:
3397 size = sizeof (aarch64_adrp_branch_stub);
3398 break;
3399 case aarch64_stub_long_branch:
3400 size = sizeof (aarch64_long_branch_stub);
3401 break;
3402 case aarch64_stub_erratum_835769_veneer:
3403 size = sizeof (aarch64_erratum_835769_stub);
3404 break;
3405 case aarch64_stub_erratum_843419_veneer:
3406 {
3407 if (htab->fix_erratum_843419 == ERRAT_ADR)
3408 return TRUE;
3409 size = sizeof (aarch64_erratum_843419_stub);
3410 }
3411 break;
3412 default:
3413 abort ();
3414 }
3415
3416 size = (size + 7) & ~7;
3417 stub_entry->stub_sec->size += size;
3418 return TRUE;
3419 }
3420
3421 /* External entry points for sizing and building linker stubs. */
3422
3423 /* Set up various things so that we can make a list of input sections
3424 for each output section included in the link. Returns -1 on error,
3425 0 when no stubs will be needed, and 1 on success. */
3426
3427 int
3428 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3429 struct bfd_link_info *info)
3430 {
3431 bfd *input_bfd;
3432 unsigned int bfd_count;
3433 unsigned int top_id, top_index;
3434 asection *section;
3435 asection **input_list, **list;
3436 size_t amt;
3437 struct elf_aarch64_link_hash_table *htab =
3438 elf_aarch64_hash_table (info);
3439
3440 if (!is_elf_hash_table (htab))
3441 return 0;
3442
3443 /* Count the number of input BFDs and find the top input section id. */
3444 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3445 input_bfd != NULL; input_bfd = input_bfd->link.next)
3446 {
3447 bfd_count += 1;
3448 for (section = input_bfd->sections;
3449 section != NULL; section = section->next)
3450 {
3451 if (top_id < section->id)
3452 top_id = section->id;
3453 }
3454 }
3455 htab->bfd_count = bfd_count;
3456
3457 amt = sizeof (struct map_stub) * (top_id + 1);
3458 htab->stub_group = bfd_zmalloc (amt);
3459 if (htab->stub_group == NULL)
3460 return -1;
3461
3462 /* We can't use output_bfd->section_count here to find the top output
3463 section index as some sections may have been removed, and
3464 _bfd_strip_section_from_output doesn't renumber the indices. */
3465 for (section = output_bfd->sections, top_index = 0;
3466 section != NULL; section = section->next)
3467 {
3468 if (top_index < section->index)
3469 top_index = section->index;
3470 }
3471
3472 htab->top_index = top_index;
3473 amt = sizeof (asection *) * (top_index + 1);
3474 input_list = bfd_malloc (amt);
3475 htab->input_list = input_list;
3476 if (input_list == NULL)
3477 return -1;
3478
3479 /* For sections we aren't interested in, mark their entries with a
3480 value we can check later. */
3481 list = input_list + top_index;
3482 do
3483 *list = bfd_abs_section_ptr;
3484 while (list-- != input_list);
3485
3486 for (section = output_bfd->sections;
3487 section != NULL; section = section->next)
3488 {
3489 if ((section->flags & SEC_CODE) != 0)
3490 input_list[section->index] = NULL;
3491 }
3492
3493 return 1;
3494 }
3495
3496 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3497 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3498
3499 /* The linker repeatedly calls this function for each input section,
3500 in the order that input sections are linked into output sections.
3501 Build lists of input sections to determine groupings between which
3502 we may insert linker stubs. */
3503
3504 void
3505 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3506 {
3507 struct elf_aarch64_link_hash_table *htab =
3508 elf_aarch64_hash_table (info);
3509
3510 if (isec->output_section->index <= htab->top_index)
3511 {
3512 asection **list = htab->input_list + isec->output_section->index;
3513
3514 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
3515 {
3516 /* Steal the link_sec pointer for our list. */
3517 /* This happens to make the list in reverse order,
3518 which is what we want. */
3519 PREV_SEC (isec) = *list;
3520 *list = isec;
3521 }
3522 }
3523 }
3524
3525 /* See whether we can group stub sections together. Grouping stub
3526 sections may result in fewer stubs. More importantly, we need to
3527 put all .init* and .fini* stubs at the beginning of the .init or
3528 .fini output sections respectively, because glibc splits the
3529 _init and _fini functions into multiple parts. Putting a stub in
3530 the middle of a function is not a good idea. */
3531
3532 static void
3533 group_sections (struct elf_aarch64_link_hash_table *htab,
3534 bfd_size_type stub_group_size,
3535 bfd_boolean stubs_always_after_branch)
3536 {
3537 asection **list = htab->input_list;
3538
3539 do
3540 {
3541 asection *tail = *list;
3542 asection *head;
3543
3544 if (tail == bfd_abs_section_ptr)
3545 continue;
3546
3547 /* Reverse the list: we must avoid placing stubs at the
3548 beginning of the section because the beginning of the text
3549 section may be required for an interrupt vector in bare metal
3550 code. */
3551 #define NEXT_SEC PREV_SEC
3552 head = NULL;
3553 while (tail != NULL)
3554 {
3555 /* Pop from tail. */
3556 asection *item = tail;
3557 tail = PREV_SEC (item);
3558
3559 /* Push on head. */
3560 NEXT_SEC (item) = head;
3561 head = item;
3562 }
3563
3564 while (head != NULL)
3565 {
3566 asection *curr;
3567 asection *next;
3568 bfd_vma stub_group_start = head->output_offset;
3569 bfd_vma end_of_next;
3570
3571 curr = head;
3572 while (NEXT_SEC (curr) != NULL)
3573 {
3574 next = NEXT_SEC (curr);
3575 end_of_next = next->output_offset + next->size;
3576 if (end_of_next - stub_group_start >= stub_group_size)
3577 /* End of NEXT is too far from start, so stop. */
3578 break;
3579 /* Add NEXT to the group. */
3580 curr = next;
3581 }
3582
3583 /* OK, the size from the start to the start of CURR is less
3584 than stub_group_size and thus can be handled by one stub
3585 section. (Or the head section is itself larger than
3586 stub_group_size, in which case we may be toast.)
3587 We should really be keeping track of the total size of
3588 stubs added here, as stubs contribute to the final output
3589 section size. */
3590 do
3591 {
3592 next = NEXT_SEC (head);
3593 /* Set up this stub group. */
3594 htab->stub_group[head->id].link_sec = curr;
3595 }
3596 while (head != curr && (head = next) != NULL);
3597
3598 /* But wait, there's more! Input sections up to stub_group_size
3599 bytes after the stub section can be handled by it too. */
3600 if (!stubs_always_after_branch)
3601 {
3602 stub_group_start = curr->output_offset + curr->size;
3603
3604 while (next != NULL)
3605 {
3606 end_of_next = next->output_offset + next->size;
3607 if (end_of_next - stub_group_start >= stub_group_size)
3608 /* End of NEXT is too far from stubs, so stop. */
3609 break;
3610 /* Add NEXT to the stub group. */
3611 head = next;
3612 next = NEXT_SEC (head);
3613 htab->stub_group[head->id].link_sec = curr;
3614 }
3615 }
3616 head = next;
3617 }
3618 }
3619 while (list++ != htab->input_list + htab->top_index);
3620
3621 free (htab->input_list);
3622 }
3623
3624 #undef PREV_SEC
3625 #undef PREV_SEC
3626
3627 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3628
3629 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3630 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3631 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3632 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3633 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3634 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3635
3636 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3637 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3638 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3639 #define AARCH64_ZR 0x1f
3640
3641 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3642 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3643
3644 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3645 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3646 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3647 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3648 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3649 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3650 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3651 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3652 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3653 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3654 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3655 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3656 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3657 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3658 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3659 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3660 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3661 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3662
3663 /* Classify an INSN if it is indeed a load/store.
3664
3665 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3666
3667 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3668 is set equal to RT.
3669
3670 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned. */
3671
3672 static bfd_boolean
3673 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3674 bfd_boolean *pair, bfd_boolean *load)
3675 {
3676 uint32_t opcode;
3677 unsigned int r;
3678 uint32_t opc = 0;
3679 uint32_t v = 0;
3680 uint32_t opc_v = 0;
3681
3682 /* Bail out quickly if INSN doesn't fall into the load-store
3683 encoding space. */
3684 if (!AARCH64_LDST (insn))
3685 return FALSE;
3686
3687 *pair = FALSE;
3688 *load = FALSE;
3689 if (AARCH64_LDST_EX (insn))
3690 {
3691 *rt = AARCH64_RT (insn);
3692 *rt2 = *rt;
3693 if (AARCH64_BIT (insn, 21) == 1)
3694 {
3695 *pair = TRUE;
3696 *rt2 = AARCH64_RT2 (insn);
3697 }
3698 *load = AARCH64_LD (insn);
3699 return TRUE;
3700 }
3701 else if (AARCH64_LDST_NAP (insn)
3702 || AARCH64_LDSTP_PI (insn)
3703 || AARCH64_LDSTP_O (insn)
3704 || AARCH64_LDSTP_PRE (insn))
3705 {
3706 *pair = TRUE;
3707 *rt = AARCH64_RT (insn);
3708 *rt2 = AARCH64_RT2 (insn);
3709 *load = AARCH64_LD (insn);
3710 return TRUE;
3711 }
3712 else if (AARCH64_LDST_PCREL (insn)
3713 || AARCH64_LDST_UI (insn)
3714 || AARCH64_LDST_PIIMM (insn)
3715 || AARCH64_LDST_U (insn)
3716 || AARCH64_LDST_PREIMM (insn)
3717 || AARCH64_LDST_RO (insn)
3718 || AARCH64_LDST_UIMM (insn))
3719 {
3720 *rt = AARCH64_RT (insn);
3721 *rt2 = *rt;
3722 if (AARCH64_LDST_PCREL (insn))
3723 *load = TRUE;
3724 opc = AARCH64_BITS (insn, 22, 2);
3725 v = AARCH64_BIT (insn, 26);
3726 opc_v = opc | (v << 2);
3727 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3728 || opc_v == 5 || opc_v == 7);
3729 return TRUE;
3730 }
3731 else if (AARCH64_LDST_SIMD_M (insn)
3732 || AARCH64_LDST_SIMD_M_PI (insn))
3733 {
3734 *rt = AARCH64_RT (insn);
3735 *load = AARCH64_BIT (insn, 22);
3736 opcode = (insn >> 12) & 0xf;
3737 switch (opcode)
3738 {
3739 case 0:
3740 case 2:
3741 *rt2 = *rt + 3;
3742 break;
3743
3744 case 4:
3745 case 6:
3746 *rt2 = *rt + 2;
3747 break;
3748
3749 case 7:
3750 *rt2 = *rt;
3751 break;
3752
3753 case 8:
3754 case 10:
3755 *rt2 = *rt + 1;
3756 break;
3757
3758 default:
3759 return FALSE;
3760 }
3761 return TRUE;
3762 }
3763 else if (AARCH64_LDST_SIMD_S (insn)
3764 || AARCH64_LDST_SIMD_S_PI (insn))
3765 {
3766 *rt = AARCH64_RT (insn);
3767 r = (insn >> 21) & 1;
3768 *load = AARCH64_BIT (insn, 22);
3769 opcode = (insn >> 13) & 0x7;
3770 switch (opcode)
3771 {
3772 case 0:
3773 case 2:
3774 case 4:
3775 *rt2 = *rt + r;
3776 break;
3777
3778 case 1:
3779 case 3:
3780 case 5:
3781 *rt2 = *rt + (r == 0 ? 2 : 3);
3782 break;
3783
3784 case 6:
3785 *rt2 = *rt + r;
3786 break;
3787
3788 case 7:
3789 *rt2 = *rt + (r == 0 ? 2 : 3);
3790 break;
3791
3792 default:
3793 return FALSE;
3794 }
3795 return TRUE;
3796 }
3797
3798 return FALSE;
3799 }
3800
3801 /* Return TRUE if INSN is multiply-accumulate. */
3802
3803 static bfd_boolean
3804 aarch64_mlxl_p (uint32_t insn)
3805 {
3806 uint32_t op31 = AARCH64_OP31 (insn);
3807
3808 if (AARCH64_MAC (insn)
3809 && (op31 == 0 || op31 == 1 || op31 == 5)
3810 /* Exclude MUL instructions which are encoded as a multiple accumulate
3811 with RA = XZR. */
3812 && AARCH64_RA (insn) != AARCH64_ZR)
3813 return TRUE;
3814
3815 return FALSE;
3816 }
3817
3818 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3819 it is possible for a 64-bit multiply-accumulate instruction to generate an
3820 incorrect result. The details are quite complex and hard to
3821 determine statically, since branches in the code may exist in some
3822 circumstances, but all cases end with a memory (load, store, or
3823 prefetch) instruction followed immediately by the multiply-accumulate
3824 operation. We employ a linker patching technique, by moving the potentially
3825 affected multiply-accumulate instruction into a patch region and replacing
3826 the original instruction with a branch to the patch. This function checks
3827 if INSN_1 is the memory operation followed by a multiply-accumulate
3828 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3829 if INSN_1 and INSN_2 are safe. */
3830
3831 static bfd_boolean
3832 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3833 {
3834 uint32_t rt;
3835 uint32_t rt2;
3836 uint32_t rn;
3837 uint32_t rm;
3838 uint32_t ra;
3839 bfd_boolean pair;
3840 bfd_boolean load;
3841
3842 if (aarch64_mlxl_p (insn_2)
3843 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3844 {
3845 /* Any SIMD memory op is independent of the subsequent MLA
3846 by definition of the erratum. */
3847 if (AARCH64_BIT (insn_1, 26))
3848 return TRUE;
3849
3850 /* If not SIMD, check for integer memory ops and MLA relationship. */
3851 rn = AARCH64_RN (insn_2);
3852 ra = AARCH64_RA (insn_2);
3853 rm = AARCH64_RM (insn_2);
3854
3855 /* If this is a load and there's a true(RAW) dependency, we are safe
3856 and this is not an erratum sequence. */
3857 if (load &&
3858 (rt == rn || rt == rm || rt == ra
3859 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3860 return FALSE;
3861
3862 /* We conservatively put out stubs for all other cases (including
3863 writebacks). */
3864 return TRUE;
3865 }
3866
3867 return FALSE;
3868 }
3869
3870 /* Used to order a list of mapping symbols by address. */
3871
3872 static int
3873 elf_aarch64_compare_mapping (const void *a, const void *b)
3874 {
3875 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3876 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3877
3878 if (amap->vma > bmap->vma)
3879 return 1;
3880 else if (amap->vma < bmap->vma)
3881 return -1;
3882 else if (amap->type > bmap->type)
3883 /* Ensure results do not depend on the host qsort for objects with
3884 multiple mapping symbols at the same address by sorting on type
3885 after vma. */
3886 return 1;
3887 else if (amap->type < bmap->type)
3888 return -1;
3889 else
3890 return 0;
3891 }
3892
3893
3894 static char *
3895 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3896 {
3897 char *stub_name = (char *) bfd_malloc
3898 (strlen ("__erratum_835769_veneer_") + 16);
3899 if (stub_name != NULL)
3900 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3901 return stub_name;
3902 }
3903
3904 /* Scan for Cortex-A53 erratum 835769 sequence.
3905
3906 Return TRUE else FALSE on abnormal termination. */
3907
3908 static bfd_boolean
3909 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3910 struct bfd_link_info *info,
3911 unsigned int *num_fixes_p)
3912 {
3913 asection *section;
3914 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3915 unsigned int num_fixes = *num_fixes_p;
3916
3917 if (htab == NULL)
3918 return TRUE;
3919
3920 for (section = input_bfd->sections;
3921 section != NULL;
3922 section = section->next)
3923 {
3924 bfd_byte *contents = NULL;
3925 struct _aarch64_elf_section_data *sec_data;
3926 unsigned int span;
3927
3928 if (elf_section_type (section) != SHT_PROGBITS
3929 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3930 || (section->flags & SEC_EXCLUDE) != 0
3931 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3932 || (section->output_section == bfd_abs_section_ptr))
3933 continue;
3934
3935 if (elf_section_data (section)->this_hdr.contents != NULL)
3936 contents = elf_section_data (section)->this_hdr.contents;
3937 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3938 return FALSE;
3939
3940 sec_data = elf_aarch64_section_data (section);
3941
3942 qsort (sec_data->map, sec_data->mapcount,
3943 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3944
3945 for (span = 0; span < sec_data->mapcount; span++)
3946 {
3947 unsigned int span_start = sec_data->map[span].vma;
3948 unsigned int span_end = ((span == sec_data->mapcount - 1)
3949 ? sec_data->map[0].vma + section->size
3950 : sec_data->map[span + 1].vma);
3951 unsigned int i;
3952 char span_type = sec_data->map[span].type;
3953
3954 if (span_type == 'd')
3955 continue;
3956
3957 for (i = span_start; i + 4 < span_end; i += 4)
3958 {
3959 uint32_t insn_1 = bfd_getl32 (contents + i);
3960 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3961
3962 if (aarch64_erratum_sequence (insn_1, insn_2))
3963 {
3964 struct elf_aarch64_stub_hash_entry *stub_entry;
3965 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3966 if (! stub_name)
3967 return FALSE;
3968
3969 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3970 section,
3971 htab);
3972 if (! stub_entry)
3973 return FALSE;
3974
3975 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3976 stub_entry->target_section = section;
3977 stub_entry->target_value = i + 4;
3978 stub_entry->veneered_insn = insn_2;
3979 stub_entry->output_name = stub_name;
3980 num_fixes++;
3981 }
3982 }
3983 }
3984 if (elf_section_data (section)->this_hdr.contents == NULL)
3985 free (contents);
3986 }
3987
3988 *num_fixes_p = num_fixes;
3989
3990 return TRUE;
3991 }
3992
3993
3994 /* Test if instruction INSN is ADRP. */
3995
3996 static bfd_boolean
3997 _bfd_aarch64_adrp_p (uint32_t insn)
3998 {
3999 return ((insn & AARCH64_ADRP_OP_MASK) == AARCH64_ADRP_OP);
4000 }
4001
4002
4003 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
4004
4005 static bfd_boolean
4006 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
4007 uint32_t insn_3)
4008 {
4009 uint32_t rt;
4010 uint32_t rt2;
4011 bfd_boolean pair;
4012 bfd_boolean load;
4013
4014 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
4015 && (!pair
4016 || (pair && !load))
4017 && AARCH64_LDST_UIMM (insn_3)
4018 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
4019 }
4020
4021
4022 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
4023
4024 Return TRUE if section CONTENTS at offset I contains one of the
4025 erratum 843419 sequences, otherwise return FALSE. If a sequence is
4026 seen set P_VENEER_I to the offset of the final LOAD/STORE
4027 instruction in the sequence.
4028 */
4029
4030 static bfd_boolean
4031 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
4032 bfd_vma i, bfd_vma span_end,
4033 bfd_vma *p_veneer_i)
4034 {
4035 uint32_t insn_1 = bfd_getl32 (contents + i);
4036
4037 if (!_bfd_aarch64_adrp_p (insn_1))
4038 return FALSE;
4039
4040 if (span_end < i + 12)
4041 return FALSE;
4042
4043 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
4044 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
4045
4046 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
4047 return FALSE;
4048
4049 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
4050 {
4051 *p_veneer_i = i + 8;
4052 return TRUE;
4053 }
4054
4055 if (span_end < i + 16)
4056 return FALSE;
4057
4058 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
4059
4060 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
4061 {
4062 *p_veneer_i = i + 12;
4063 return TRUE;
4064 }
4065
4066 return FALSE;
4067 }
4068
4069
4070 /* Resize all stub sections. */
4071
4072 static void
4073 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
4074 {
4075 asection *section;
4076
4077 /* OK, we've added some stubs. Find out the new size of the
4078 stub sections. */
4079 for (section = htab->stub_bfd->sections;
4080 section != NULL; section = section->next)
4081 {
4082 /* Ignore non-stub sections. */
4083 if (!strstr (section->name, STUB_SUFFIX))
4084 continue;
4085 section->size = 0;
4086 }
4087
4088 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
4089
4090 for (section = htab->stub_bfd->sections;
4091 section != NULL; section = section->next)
4092 {
4093 if (!strstr (section->name, STUB_SUFFIX))
4094 continue;
4095
4096 /* Add space for a branch. Add 8 bytes to keep section 8 byte aligned,
4097 as long branch stubs contain a 64-bit address. */
4098 if (section->size)
4099 section->size += 8;
4100
4101 /* Ensure all stub sections have a size which is a multiple of
4102 4096. This is important in order to ensure that the insertion
4103 of stub sections does not in itself move existing code around
4104 in such a way that new errata sequences are created. We only do this
4105 when the ADRP workaround is enabled. If only the ADR workaround is
4106 enabled then the stubs workaround won't ever be used. */
4107 if (htab->fix_erratum_843419 & ERRAT_ADRP)
4108 if (section->size)
4109 section->size = BFD_ALIGN (section->size, 0x1000);
4110 }
4111 }
4112
4113 /* Construct an erratum 843419 workaround stub name. */
4114
4115 static char *
4116 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
4117 bfd_vma offset)
4118 {
4119 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
4120 char *stub_name = bfd_malloc (len);
4121
4122 if (stub_name != NULL)
4123 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
4124 input_section->owner->id,
4125 input_section->id,
4126 offset);
4127 return stub_name;
4128 }
4129
4130 /* Build a stub_entry structure describing an 843419 fixup.
4131
4132 The stub_entry constructed is populated with the bit pattern INSN
4133 of the instruction located at OFFSET within input SECTION.
4134
4135 Returns TRUE on success. */
4136
4137 static bfd_boolean
4138 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
4139 bfd_vma adrp_offset,
4140 bfd_vma ldst_offset,
4141 asection *section,
4142 struct bfd_link_info *info)
4143 {
4144 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4145 char *stub_name;
4146 struct elf_aarch64_stub_hash_entry *stub_entry;
4147
4148 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
4149 if (stub_name == NULL)
4150 return FALSE;
4151 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4152 FALSE, FALSE);
4153 if (stub_entry)
4154 {
4155 free (stub_name);
4156 return TRUE;
4157 }
4158
4159 /* We always place an 843419 workaround veneer in the stub section
4160 attached to the input section in which an erratum sequence has
4161 been found. This ensures that later in the link process (in
4162 elfNN_aarch64_write_section) when we copy the veneered
4163 instruction from the input section into the stub section the
4164 copied instruction will have had any relocations applied to it.
4165 If we placed workaround veneers in any other stub section then we
4166 could not assume that all relocations have been processed on the
4167 corresponding input section at the point we output the stub
4168 section. */
4169
4170 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
4171 if (stub_entry == NULL)
4172 {
4173 free (stub_name);
4174 return FALSE;
4175 }
4176
4177 stub_entry->adrp_offset = adrp_offset;
4178 stub_entry->target_value = ldst_offset;
4179 stub_entry->target_section = section;
4180 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
4181 stub_entry->veneered_insn = insn;
4182 stub_entry->output_name = stub_name;
4183
4184 return TRUE;
4185 }
4186
4187
4188 /* Scan an input section looking for the signature of erratum 843419.
4189
4190 Scans input SECTION in INPUT_BFD looking for erratum 843419
4191 signatures, for each signature found a stub_entry is created
4192 describing the location of the erratum for subsequent fixup.
4193
4194 Return TRUE on successful scan, FALSE on failure to scan.
4195 */
4196
4197 static bfd_boolean
4198 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
4199 struct bfd_link_info *info)
4200 {
4201 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4202
4203 if (htab == NULL)
4204 return TRUE;
4205
4206 if (elf_section_type (section) != SHT_PROGBITS
4207 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4208 || (section->flags & SEC_EXCLUDE) != 0
4209 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4210 || (section->output_section == bfd_abs_section_ptr))
4211 return TRUE;
4212
4213 do
4214 {
4215 bfd_byte *contents = NULL;
4216 struct _aarch64_elf_section_data *sec_data;
4217 unsigned int span;
4218
4219 if (elf_section_data (section)->this_hdr.contents != NULL)
4220 contents = elf_section_data (section)->this_hdr.contents;
4221 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4222 return FALSE;
4223
4224 sec_data = elf_aarch64_section_data (section);
4225
4226 qsort (sec_data->map, sec_data->mapcount,
4227 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
4228
4229 for (span = 0; span < sec_data->mapcount; span++)
4230 {
4231 unsigned int span_start = sec_data->map[span].vma;
4232 unsigned int span_end = ((span == sec_data->mapcount - 1)
4233 ? sec_data->map[0].vma + section->size
4234 : sec_data->map[span + 1].vma);
4235 unsigned int i;
4236 char span_type = sec_data->map[span].type;
4237
4238 if (span_type == 'd')
4239 continue;
4240
4241 for (i = span_start; i + 8 < span_end; i += 4)
4242 {
4243 bfd_vma vma = (section->output_section->vma
4244 + section->output_offset
4245 + i);
4246 bfd_vma veneer_i;
4247
4248 if (_bfd_aarch64_erratum_843419_p
4249 (contents, vma, i, span_end, &veneer_i))
4250 {
4251 uint32_t insn = bfd_getl32 (contents + veneer_i);
4252
4253 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
4254 section, info))
4255 return FALSE;
4256 }
4257 }
4258 }
4259
4260 if (elf_section_data (section)->this_hdr.contents == NULL)
4261 free (contents);
4262 }
4263 while (0);
4264
4265 return TRUE;
4266 }
4267
4268
4269 /* Determine and set the size of the stub section for a final link.
4270
4271 The basic idea here is to examine all the relocations looking for
4272 PC-relative calls to a target that is unreachable with a "bl"
4273 instruction. */
4274
4275 bfd_boolean
4276 elfNN_aarch64_size_stubs (bfd *output_bfd,
4277 bfd *stub_bfd,
4278 struct bfd_link_info *info,
4279 bfd_signed_vma group_size,
4280 asection * (*add_stub_section) (const char *,
4281 asection *),
4282 void (*layout_sections_again) (void))
4283 {
4284 bfd_size_type stub_group_size;
4285 bfd_boolean stubs_always_before_branch;
4286 bfd_boolean stub_changed = FALSE;
4287 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4288 unsigned int num_erratum_835769_fixes = 0;
4289
4290 /* Propagate mach to stub bfd, because it may not have been
4291 finalized when we created stub_bfd. */
4292 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4293 bfd_get_mach (output_bfd));
4294
4295 /* Stash our params away. */
4296 htab->stub_bfd = stub_bfd;
4297 htab->add_stub_section = add_stub_section;
4298 htab->layout_sections_again = layout_sections_again;
4299 stubs_always_before_branch = group_size < 0;
4300 if (group_size < 0)
4301 stub_group_size = -group_size;
4302 else
4303 stub_group_size = group_size;
4304
4305 if (stub_group_size == 1)
4306 {
4307 /* Default values. */
4308 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
4309 stub_group_size = 127 * 1024 * 1024;
4310 }
4311
4312 group_sections (htab, stub_group_size, stubs_always_before_branch);
4313
4314 (*htab->layout_sections_again) ();
4315
4316 if (htab->fix_erratum_835769)
4317 {
4318 bfd *input_bfd;
4319
4320 for (input_bfd = info->input_bfds;
4321 input_bfd != NULL; input_bfd = input_bfd->link.next)
4322 {
4323 if (!is_aarch64_elf (input_bfd)
4324 || (input_bfd->flags & BFD_LINKER_CREATED) != 0)
4325 continue;
4326
4327 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
4328 &num_erratum_835769_fixes))
4329 return FALSE;
4330 }
4331
4332 _bfd_aarch64_resize_stubs (htab);
4333 (*htab->layout_sections_again) ();
4334 }
4335
4336 if (htab->fix_erratum_843419 != ERRAT_NONE)
4337 {
4338 bfd *input_bfd;
4339
4340 for (input_bfd = info->input_bfds;
4341 input_bfd != NULL;
4342 input_bfd = input_bfd->link.next)
4343 {
4344 asection *section;
4345
4346 if (!is_aarch64_elf (input_bfd)
4347 || (input_bfd->flags & BFD_LINKER_CREATED) != 0)
4348 continue;
4349
4350 for (section = input_bfd->sections;
4351 section != NULL;
4352 section = section->next)
4353 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
4354 return FALSE;
4355 }
4356
4357 _bfd_aarch64_resize_stubs (htab);
4358 (*htab->layout_sections_again) ();
4359 }
4360
4361 while (1)
4362 {
4363 bfd *input_bfd;
4364
4365 for (input_bfd = info->input_bfds;
4366 input_bfd != NULL; input_bfd = input_bfd->link.next)
4367 {
4368 Elf_Internal_Shdr *symtab_hdr;
4369 asection *section;
4370 Elf_Internal_Sym *local_syms = NULL;
4371
4372 if (!is_aarch64_elf (input_bfd)
4373 || (input_bfd->flags & BFD_LINKER_CREATED) != 0)
4374 continue;
4375
4376 /* We'll need the symbol table in a second. */
4377 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4378 if (symtab_hdr->sh_info == 0)
4379 continue;
4380
4381 /* Walk over each section attached to the input bfd. */
4382 for (section = input_bfd->sections;
4383 section != NULL; section = section->next)
4384 {
4385 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4386
4387 /* If there aren't any relocs, then there's nothing more
4388 to do. */
4389 if ((section->flags & SEC_RELOC) == 0
4390 || section->reloc_count == 0
4391 || (section->flags & SEC_CODE) == 0)
4392 continue;
4393
4394 /* If this section is a link-once section that will be
4395 discarded, then don't create any stubs. */
4396 if (section->output_section == NULL
4397 || section->output_section->owner != output_bfd)
4398 continue;
4399
4400 /* Get the relocs. */
4401 internal_relocs
4402 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4403 NULL, info->keep_memory);
4404 if (internal_relocs == NULL)
4405 goto error_ret_free_local;
4406
4407 /* Now examine each relocation. */
4408 irela = internal_relocs;
4409 irelaend = irela + section->reloc_count;
4410 for (; irela < irelaend; irela++)
4411 {
4412 unsigned int r_type, r_indx;
4413 enum elf_aarch64_stub_type stub_type;
4414 struct elf_aarch64_stub_hash_entry *stub_entry;
4415 asection *sym_sec;
4416 bfd_vma sym_value;
4417 bfd_vma destination;
4418 struct elf_aarch64_link_hash_entry *hash;
4419 const char *sym_name;
4420 char *stub_name;
4421 const asection *id_sec;
4422 unsigned char st_type;
4423 bfd_size_type len;
4424
4425 r_type = ELFNN_R_TYPE (irela->r_info);
4426 r_indx = ELFNN_R_SYM (irela->r_info);
4427
4428 if (r_type >= (unsigned int) R_AARCH64_end)
4429 {
4430 bfd_set_error (bfd_error_bad_value);
4431 error_ret_free_internal:
4432 if (elf_section_data (section)->relocs == NULL)
4433 free (internal_relocs);
4434 goto error_ret_free_local;
4435 }
4436
4437 /* Only look for stubs on unconditional branch and
4438 branch and link instructions. */
4439 if (r_type != (unsigned int) AARCH64_R (CALL26)
4440 && r_type != (unsigned int) AARCH64_R (JUMP26))
4441 continue;
4442
4443 /* Now determine the call target, its name, value,
4444 section. */
4445 sym_sec = NULL;
4446 sym_value = 0;
4447 destination = 0;
4448 hash = NULL;
4449 sym_name = NULL;
4450 if (r_indx < symtab_hdr->sh_info)
4451 {
4452 /* It's a local symbol. */
4453 Elf_Internal_Sym *sym;
4454 Elf_Internal_Shdr *hdr;
4455
4456 if (local_syms == NULL)
4457 {
4458 local_syms
4459 = (Elf_Internal_Sym *) symtab_hdr->contents;
4460 if (local_syms == NULL)
4461 local_syms
4462 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4463 symtab_hdr->sh_info, 0,
4464 NULL, NULL, NULL);
4465 if (local_syms == NULL)
4466 goto error_ret_free_internal;
4467 }
4468
4469 sym = local_syms + r_indx;
4470 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4471 sym_sec = hdr->bfd_section;
4472 if (!sym_sec)
4473 /* This is an undefined symbol. It can never
4474 be resolved. */
4475 continue;
4476
4477 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4478 sym_value = sym->st_value;
4479 destination = (sym_value + irela->r_addend
4480 + sym_sec->output_offset
4481 + sym_sec->output_section->vma);
4482 st_type = ELF_ST_TYPE (sym->st_info);
4483 sym_name
4484 = bfd_elf_string_from_elf_section (input_bfd,
4485 symtab_hdr->sh_link,
4486 sym->st_name);
4487 }
4488 else
4489 {
4490 int e_indx;
4491
4492 e_indx = r_indx - symtab_hdr->sh_info;
4493 hash = ((struct elf_aarch64_link_hash_entry *)
4494 elf_sym_hashes (input_bfd)[e_indx]);
4495
4496 while (hash->root.root.type == bfd_link_hash_indirect
4497 || hash->root.root.type == bfd_link_hash_warning)
4498 hash = ((struct elf_aarch64_link_hash_entry *)
4499 hash->root.root.u.i.link);
4500
4501 if (hash->root.root.type == bfd_link_hash_defined
4502 || hash->root.root.type == bfd_link_hash_defweak)
4503 {
4504 struct elf_aarch64_link_hash_table *globals =
4505 elf_aarch64_hash_table (info);
4506 sym_sec = hash->root.root.u.def.section;
4507 sym_value = hash->root.root.u.def.value;
4508 /* For a destination in a shared library,
4509 use the PLT stub as target address to
4510 decide whether a branch stub is
4511 needed. */
4512 if (globals->root.splt != NULL && hash != NULL
4513 && hash->root.plt.offset != (bfd_vma) - 1)
4514 {
4515 sym_sec = globals->root.splt;
4516 sym_value = hash->root.plt.offset;
4517 if (sym_sec->output_section != NULL)
4518 destination = (sym_value
4519 + sym_sec->output_offset
4520 +
4521 sym_sec->output_section->vma);
4522 }
4523 else if (sym_sec->output_section != NULL)
4524 destination = (sym_value + irela->r_addend
4525 + sym_sec->output_offset
4526 + sym_sec->output_section->vma);
4527 }
4528 else if (hash->root.root.type == bfd_link_hash_undefined
4529 || (hash->root.root.type
4530 == bfd_link_hash_undefweak))
4531 {
4532 /* For a shared library, use the PLT stub as
4533 target address to decide whether a long
4534 branch stub is needed.
4535 For absolute code, they cannot be handled. */
4536 struct elf_aarch64_link_hash_table *globals =
4537 elf_aarch64_hash_table (info);
4538
4539 if (globals->root.splt != NULL && hash != NULL
4540 && hash->root.plt.offset != (bfd_vma) - 1)
4541 {
4542 sym_sec = globals->root.splt;
4543 sym_value = hash->root.plt.offset;
4544 if (sym_sec->output_section != NULL)
4545 destination = (sym_value
4546 + sym_sec->output_offset
4547 +
4548 sym_sec->output_section->vma);
4549 }
4550 else
4551 continue;
4552 }
4553 else
4554 {
4555 bfd_set_error (bfd_error_bad_value);
4556 goto error_ret_free_internal;
4557 }
4558 st_type = ELF_ST_TYPE (hash->root.type);
4559 sym_name = hash->root.root.root.string;
4560 }
4561
4562 /* Determine what (if any) linker stub is needed. */
4563 stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4564 st_type, destination);
4565 if (stub_type == aarch64_stub_none)
4566 continue;
4567
4568 /* Support for grouping stub sections. */
4569 id_sec = htab->stub_group[section->id].link_sec;
4570
4571 /* Get the name of this stub. */
4572 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4573 irela);
4574 if (!stub_name)
4575 goto error_ret_free_internal;
4576
4577 stub_entry =
4578 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4579 stub_name, FALSE, FALSE);
4580 if (stub_entry != NULL)
4581 {
4582 /* The proper stub has already been created. */
4583 free (stub_name);
4584 /* Always update this stub's target since it may have
4585 changed after layout. */
4586 stub_entry->target_value = sym_value + irela->r_addend;
4587 continue;
4588 }
4589
4590 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4591 (stub_name, section, htab);
4592 if (stub_entry == NULL)
4593 {
4594 free (stub_name);
4595 goto error_ret_free_internal;
4596 }
4597
4598 stub_entry->target_value = sym_value + irela->r_addend;
4599 stub_entry->target_section = sym_sec;
4600 stub_entry->stub_type = stub_type;
4601 stub_entry->h = hash;
4602 stub_entry->st_type = st_type;
4603
4604 if (sym_name == NULL)
4605 sym_name = "unnamed";
4606 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4607 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4608 if (stub_entry->output_name == NULL)
4609 {
4610 free (stub_name);
4611 goto error_ret_free_internal;
4612 }
4613
4614 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4615 sym_name);
4616
4617 stub_changed = TRUE;
4618 }
4619
4620 /* We're done with the internal relocs, free them. */
4621 if (elf_section_data (section)->relocs == NULL)
4622 free (internal_relocs);
4623 }
4624 }
4625
4626 if (!stub_changed)
4627 break;
4628
4629 _bfd_aarch64_resize_stubs (htab);
4630
4631 /* Ask the linker to do its stuff. */
4632 (*htab->layout_sections_again) ();
4633 stub_changed = FALSE;
4634 }
4635
4636 return TRUE;
4637
4638 error_ret_free_local:
4639 return FALSE;
4640 }
4641
4642 /* Build all the stubs associated with the current output file. The
4643 stubs are kept in a hash table attached to the main linker hash
4644 table. We also set up the .plt entries for statically linked PIC
4645 functions here. This function is called via aarch64_elf_finish in the
4646 linker. */
4647
4648 bfd_boolean
4649 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4650 {
4651 asection *stub_sec;
4652 struct bfd_hash_table *table;
4653 struct elf_aarch64_link_hash_table *htab;
4654
4655 htab = elf_aarch64_hash_table (info);
4656
4657 for (stub_sec = htab->stub_bfd->sections;
4658 stub_sec != NULL; stub_sec = stub_sec->next)
4659 {
4660 bfd_size_type size;
4661
4662 /* Ignore non-stub sections. */
4663 if (!strstr (stub_sec->name, STUB_SUFFIX))
4664 continue;
4665
4666 /* Allocate memory to hold the linker stubs. */
4667 size = stub_sec->size;
4668 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4669 if (stub_sec->contents == NULL && size != 0)
4670 return FALSE;
4671 stub_sec->size = 0;
4672
4673 /* Add a branch around the stub section, and a nop, to keep it 8 byte
4674 aligned, as long branch stubs contain a 64-bit address. */
4675 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4676 bfd_putl32 (INSN_NOP, stub_sec->contents + 4);
4677 stub_sec->size += 8;
4678 }
4679
4680 /* Build the stubs as directed by the stub hash table. */
4681 table = &htab->stub_hash_table;
4682 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4683
4684 return TRUE;
4685 }
4686
4687
4688 /* Add an entry to the code/data map for section SEC. */
4689
4690 static void
4691 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4692 {
4693 struct _aarch64_elf_section_data *sec_data =
4694 elf_aarch64_section_data (sec);
4695 unsigned int newidx;
4696
4697 if (sec_data->map == NULL)
4698 {
4699 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4700 sec_data->mapcount = 0;
4701 sec_data->mapsize = 1;
4702 }
4703
4704 newidx = sec_data->mapcount++;
4705
4706 if (sec_data->mapcount > sec_data->mapsize)
4707 {
4708 sec_data->mapsize *= 2;
4709 sec_data->map = bfd_realloc_or_free
4710 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4711 }
4712
4713 if (sec_data->map)
4714 {
4715 sec_data->map[newidx].vma = vma;
4716 sec_data->map[newidx].type = type;
4717 }
4718 }
4719
4720
4721 /* Initialise maps of insn/data for input BFDs. */
4722 void
4723 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4724 {
4725 Elf_Internal_Sym *isymbuf;
4726 Elf_Internal_Shdr *hdr;
4727 unsigned int i, localsyms;
4728
4729 /* Make sure that we are dealing with an AArch64 elf binary. */
4730 if (!is_aarch64_elf (abfd))
4731 return;
4732
4733 if ((abfd->flags & DYNAMIC) != 0)
4734 return;
4735
4736 hdr = &elf_symtab_hdr (abfd);
4737 localsyms = hdr->sh_info;
4738
4739 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4740 should contain the number of local symbols, which should come before any
4741 global symbols. Mapping symbols are always local. */
4742 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4743
4744 /* No internal symbols read? Skip this BFD. */
4745 if (isymbuf == NULL)
4746 return;
4747
4748 for (i = 0; i < localsyms; i++)
4749 {
4750 Elf_Internal_Sym *isym = &isymbuf[i];
4751 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4752 const char *name;
4753
4754 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4755 {
4756 name = bfd_elf_string_from_elf_section (abfd,
4757 hdr->sh_link,
4758 isym->st_name);
4759
4760 if (bfd_is_aarch64_special_symbol_name
4761 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4762 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4763 }
4764 }
4765 }
4766
4767 static void
4768 setup_plt_values (struct bfd_link_info *link_info,
4769 aarch64_plt_type plt_type)
4770 {
4771 struct elf_aarch64_link_hash_table *globals;
4772 globals = elf_aarch64_hash_table (link_info);
4773
4774 if (plt_type == PLT_BTI_PAC)
4775 {
4776 globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4777
4778 /* Only in ET_EXEC we need PLTn with BTI. */
4779 if (bfd_link_pde (link_info))
4780 {
4781 globals->plt_entry_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
4782 globals->plt_entry = elfNN_aarch64_small_plt_bti_pac_entry;
4783 }
4784 else
4785 {
4786 globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4787 globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4788 }
4789 }
4790 else if (plt_type == PLT_BTI)
4791 {
4792 globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4793
4794 /* Only in ET_EXEC we need PLTn with BTI. */
4795 if (bfd_link_pde (link_info))
4796 {
4797 globals->plt_entry_size = PLT_BTI_SMALL_ENTRY_SIZE;
4798 globals->plt_entry = elfNN_aarch64_small_plt_bti_entry;
4799 }
4800 }
4801 else if (plt_type == PLT_PAC)
4802 {
4803 globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4804 globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4805 }
4806 }
4807
4808 /* Set option values needed during linking. */
4809 void
4810 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4811 struct bfd_link_info *link_info,
4812 int no_enum_warn,
4813 int no_wchar_warn, int pic_veneer,
4814 int fix_erratum_835769,
4815 erratum_84319_opts fix_erratum_843419,
4816 int no_apply_dynamic_relocs,
4817 aarch64_bti_pac_info bp_info)
4818 {
4819 struct elf_aarch64_link_hash_table *globals;
4820
4821 globals = elf_aarch64_hash_table (link_info);
4822 globals->pic_veneer = pic_veneer;
4823 globals->fix_erratum_835769 = fix_erratum_835769;
4824 /* If the default options are used, then ERRAT_ADR will be set by default
4825 which will enable the ADRP->ADR workaround for the erratum 843419
4826 workaround. */
4827 globals->fix_erratum_843419 = fix_erratum_843419;
4828 globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
4829
4830 BFD_ASSERT (is_aarch64_elf (output_bfd));
4831 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4832 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4833
4834 switch (bp_info.bti_type)
4835 {
4836 case BTI_WARN:
4837 elf_aarch64_tdata (output_bfd)->no_bti_warn = 0;
4838 elf_aarch64_tdata (output_bfd)->gnu_and_prop
4839 |= GNU_PROPERTY_AARCH64_FEATURE_1_BTI;
4840 break;
4841
4842 default:
4843 break;
4844 }
4845 elf_aarch64_tdata (output_bfd)->plt_type = bp_info.plt_type;
4846 setup_plt_values (link_info, bp_info.plt_type);
4847 }
4848
4849 static bfd_vma
4850 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4851 struct elf_aarch64_link_hash_table
4852 *globals, struct bfd_link_info *info,
4853 bfd_vma value, bfd *output_bfd,
4854 bfd_boolean *unresolved_reloc_p)
4855 {
4856 bfd_vma off = (bfd_vma) - 1;
4857 asection *basegot = globals->root.sgot;
4858 bfd_boolean dyn = globals->root.dynamic_sections_created;
4859
4860 if (h != NULL)
4861 {
4862 BFD_ASSERT (basegot != NULL);
4863 off = h->got.offset;
4864 BFD_ASSERT (off != (bfd_vma) - 1);
4865 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4866 || (bfd_link_pic (info)
4867 && SYMBOL_REFERENCES_LOCAL (info, h))
4868 || (ELF_ST_VISIBILITY (h->other)
4869 && h->root.type == bfd_link_hash_undefweak))
4870 {
4871 /* This is actually a static link, or it is a -Bsymbolic link
4872 and the symbol is defined locally. We must initialize this
4873 entry in the global offset table. Since the offset must
4874 always be a multiple of 8 (4 in the case of ILP32), we use
4875 the least significant bit to record whether we have
4876 initialized it already.
4877 When doing a dynamic link, we create a .rel(a).got relocation
4878 entry to initialize the value. This is done in the
4879 finish_dynamic_symbol routine. */
4880 if ((off & 1) != 0)
4881 off &= ~1;
4882 else
4883 {
4884 bfd_put_NN (output_bfd, value, basegot->contents + off);
4885 h->got.offset |= 1;
4886 }
4887 }
4888 else
4889 *unresolved_reloc_p = FALSE;
4890
4891 off = off + basegot->output_section->vma + basegot->output_offset;
4892 }
4893
4894 return off;
4895 }
4896
4897 /* Change R_TYPE to a more efficient access model where possible,
4898 return the new reloc type. */
4899
4900 static bfd_reloc_code_real_type
4901 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4902 struct elf_link_hash_entry *h)
4903 {
4904 bfd_boolean is_local = h == NULL;
4905
4906 switch (r_type)
4907 {
4908 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4909 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4910 return (is_local
4911 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4912 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4913
4914 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4915 return (is_local
4916 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4917 : r_type);
4918
4919 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4920 return (is_local
4921 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4922 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4923
4924 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4925 return (is_local
4926 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4927 : BFD_RELOC_AARCH64_NONE);
4928
4929 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4930 return (is_local
4931 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4932 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4933
4934 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4935 return (is_local
4936 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4937 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4938
4939 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4940 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4941 return (is_local
4942 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4943 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4944
4945 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4946 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4947
4948 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4949 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4950
4951 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4952 return r_type;
4953
4954 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4955 return (is_local
4956 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4957 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4958
4959 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4960 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4961 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4962 /* Instructions with these relocations will become NOPs. */
4963 return BFD_RELOC_AARCH64_NONE;
4964
4965 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4966 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4967 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4968 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4969
4970 #if ARCH_SIZE == 64
4971 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4972 return is_local
4973 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4974 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
4975
4976 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4977 return is_local
4978 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4979 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
4980 #endif
4981
4982 default:
4983 break;
4984 }
4985
4986 return r_type;
4987 }
4988
4989 static unsigned int
4990 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4991 {
4992 switch (r_type)
4993 {
4994 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4995 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4996 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4997 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4998 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
4999 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5000 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5001 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5002 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5003 return GOT_NORMAL;
5004
5005 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5006 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5007 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5008 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5009 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5010 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5011 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5012 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5013 return GOT_TLS_GD;
5014
5015 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5016 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
5017 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5018 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5019 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5020 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5021 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
5022 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5023 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5024 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5025 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5026 return GOT_TLSDESC_GD;
5027
5028 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5029 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5030 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5031 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5032 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5033 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5034 return GOT_TLS_IE;
5035
5036 default:
5037 break;
5038 }
5039 return GOT_UNKNOWN;
5040 }
5041
5042 static bfd_boolean
5043 aarch64_can_relax_tls (bfd *input_bfd,
5044 struct bfd_link_info *info,
5045 bfd_reloc_code_real_type r_type,
5046 struct elf_link_hash_entry *h,
5047 unsigned long r_symndx)
5048 {
5049 unsigned int symbol_got_type;
5050 unsigned int reloc_got_type;
5051
5052 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
5053 return FALSE;
5054
5055 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
5056 reloc_got_type = aarch64_reloc_got_type (r_type);
5057
5058 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
5059 return TRUE;
5060
5061 if (!bfd_link_executable (info))
5062 return FALSE;
5063
5064 if (h && h->root.type == bfd_link_hash_undefweak)
5065 return FALSE;
5066
5067 return TRUE;
5068 }
5069
5070 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
5071 enumerator. */
5072
5073 static bfd_reloc_code_real_type
5074 aarch64_tls_transition (bfd *input_bfd,
5075 struct bfd_link_info *info,
5076 unsigned int r_type,
5077 struct elf_link_hash_entry *h,
5078 unsigned long r_symndx)
5079 {
5080 bfd_reloc_code_real_type bfd_r_type
5081 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
5082
5083 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
5084 return bfd_r_type;
5085
5086 return aarch64_tls_transition_without_check (bfd_r_type, h);
5087 }
5088
5089 /* Return the base VMA address which should be subtracted from real addresses
5090 when resolving R_AARCH64_TLS_DTPREL relocation. */
5091
5092 static bfd_vma
5093 dtpoff_base (struct bfd_link_info *info)
5094 {
5095 /* If tls_sec is NULL, we should have signalled an error already. */
5096 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
5097 return elf_hash_table (info)->tls_sec->vma;
5098 }
5099
5100 /* Return the base VMA address which should be subtracted from real addresses
5101 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
5102
5103 static bfd_vma
5104 tpoff_base (struct bfd_link_info *info)
5105 {
5106 struct elf_link_hash_table *htab = elf_hash_table (info);
5107
5108 /* If tls_sec is NULL, we should have signalled an error already. */
5109 BFD_ASSERT (htab->tls_sec != NULL);
5110
5111 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
5112 htab->tls_sec->alignment_power);
5113 return htab->tls_sec->vma - base;
5114 }
5115
5116 static bfd_vma *
5117 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5118 unsigned long r_symndx)
5119 {
5120 /* Calculate the address of the GOT entry for symbol
5121 referred to in h. */
5122 if (h != NULL)
5123 return &h->got.offset;
5124 else
5125 {
5126 /* local symbol */
5127 struct elf_aarch64_local_symbol *l;
5128
5129 l = elf_aarch64_locals (input_bfd);
5130 return &l[r_symndx].got_offset;
5131 }
5132 }
5133
5134 static void
5135 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5136 unsigned long r_symndx)
5137 {
5138 bfd_vma *p;
5139 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
5140 *p |= 1;
5141 }
5142
5143 static int
5144 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
5145 unsigned long r_symndx)
5146 {
5147 bfd_vma value;
5148 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5149 return value & 1;
5150 }
5151
5152 static bfd_vma
5153 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5154 unsigned long r_symndx)
5155 {
5156 bfd_vma value;
5157 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5158 value &= ~1;
5159 return value;
5160 }
5161
5162 static bfd_vma *
5163 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5164 unsigned long r_symndx)
5165 {
5166 /* Calculate the address of the GOT entry for symbol
5167 referred to in h. */
5168 if (h != NULL)
5169 {
5170 struct elf_aarch64_link_hash_entry *eh;
5171 eh = (struct elf_aarch64_link_hash_entry *) h;
5172 return &eh->tlsdesc_got_jump_table_offset;
5173 }
5174 else
5175 {
5176 /* local symbol */
5177 struct elf_aarch64_local_symbol *l;
5178
5179 l = elf_aarch64_locals (input_bfd);
5180 return &l[r_symndx].tlsdesc_got_jump_table_offset;
5181 }
5182 }
5183
5184 static void
5185 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5186 unsigned long r_symndx)
5187 {
5188 bfd_vma *p;
5189 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5190 *p |= 1;
5191 }
5192
5193 static int
5194 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
5195 struct elf_link_hash_entry *h,
5196 unsigned long r_symndx)
5197 {
5198 bfd_vma value;
5199 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5200 return value & 1;
5201 }
5202
5203 static bfd_vma
5204 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5205 unsigned long r_symndx)
5206 {
5207 bfd_vma value;
5208 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5209 value &= ~1;
5210 return value;
5211 }
5212
5213 /* Data for make_branch_to_erratum_835769_stub(). */
5214
5215 struct erratum_835769_branch_to_stub_data
5216 {
5217 struct bfd_link_info *info;
5218 asection *output_section;
5219 bfd_byte *contents;
5220 };
5221
5222 /* Helper to insert branches to erratum 835769 stubs in the right
5223 places for a particular section. */
5224
5225 static bfd_boolean
5226 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
5227 void *in_arg)
5228 {
5229 struct elf_aarch64_stub_hash_entry *stub_entry;
5230 struct erratum_835769_branch_to_stub_data *data;
5231 bfd_byte *contents;
5232 unsigned long branch_insn = 0;
5233 bfd_vma veneered_insn_loc, veneer_entry_loc;
5234 bfd_signed_vma branch_offset;
5235 unsigned int target;
5236 bfd *abfd;
5237
5238 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5239 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
5240
5241 if (stub_entry->target_section != data->output_section
5242 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
5243 return TRUE;
5244
5245 contents = data->contents;
5246 veneered_insn_loc = stub_entry->target_section->output_section->vma
5247 + stub_entry->target_section->output_offset
5248 + stub_entry->target_value;
5249 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5250 + stub_entry->stub_sec->output_offset
5251 + stub_entry->stub_offset;
5252 branch_offset = veneer_entry_loc - veneered_insn_loc;
5253
5254 abfd = stub_entry->target_section->owner;
5255 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5256 _bfd_error_handler
5257 (_("%pB: error: erratum 835769 stub out "
5258 "of range (input file too large)"), abfd);
5259
5260 target = stub_entry->target_value;
5261 branch_insn = 0x14000000;
5262 branch_offset >>= 2;
5263 branch_offset &= 0x3ffffff;
5264 branch_insn |= branch_offset;
5265 bfd_putl32 (branch_insn, &contents[target]);
5266
5267 return TRUE;
5268 }
5269
5270
5271 static bfd_boolean
5272 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
5273 void *in_arg)
5274 {
5275 struct elf_aarch64_stub_hash_entry *stub_entry
5276 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5277 struct erratum_835769_branch_to_stub_data *data
5278 = (struct erratum_835769_branch_to_stub_data *) in_arg;
5279 struct bfd_link_info *info;
5280 struct elf_aarch64_link_hash_table *htab;
5281 bfd_byte *contents;
5282 asection *section;
5283 bfd *abfd;
5284 bfd_vma place;
5285 uint32_t insn;
5286
5287 info = data->info;
5288 contents = data->contents;
5289 section = data->output_section;
5290
5291 htab = elf_aarch64_hash_table (info);
5292
5293 if (stub_entry->target_section != section
5294 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
5295 return TRUE;
5296
5297 BFD_ASSERT (((htab->fix_erratum_843419 & ERRAT_ADRP) && stub_entry->stub_sec)
5298 || (htab->fix_erratum_843419 & ERRAT_ADR));
5299
5300 /* Only update the stub section if we have one. We should always have one if
5301 we're allowed to use the ADRP errata workaround, otherwise it is not
5302 required. */
5303 if (stub_entry->stub_sec)
5304 {
5305 insn = bfd_getl32 (contents + stub_entry->target_value);
5306 bfd_putl32 (insn,
5307 stub_entry->stub_sec->contents + stub_entry->stub_offset);
5308 }
5309
5310 place = (section->output_section->vma + section->output_offset
5311 + stub_entry->adrp_offset);
5312 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
5313
5314 if (!_bfd_aarch64_adrp_p (insn))
5315 abort ();
5316
5317 bfd_signed_vma imm =
5318 (_bfd_aarch64_sign_extend
5319 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
5320 - (place & 0xfff));
5321
5322 if ((htab->fix_erratum_843419 & ERRAT_ADR)
5323 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
5324 {
5325 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
5326 | AARCH64_RT (insn));
5327 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
5328 /* Stub is not needed, don't map it out. */
5329 stub_entry->stub_type = aarch64_stub_none;
5330 }
5331 else if (htab->fix_erratum_843419 & ERRAT_ADRP)
5332 {
5333 bfd_vma veneered_insn_loc;
5334 bfd_vma veneer_entry_loc;
5335 bfd_signed_vma branch_offset;
5336 uint32_t branch_insn;
5337
5338 veneered_insn_loc = stub_entry->target_section->output_section->vma
5339 + stub_entry->target_section->output_offset
5340 + stub_entry->target_value;
5341 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5342 + stub_entry->stub_sec->output_offset
5343 + stub_entry->stub_offset;
5344 branch_offset = veneer_entry_loc - veneered_insn_loc;
5345
5346 abfd = stub_entry->target_section->owner;
5347 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5348 _bfd_error_handler
5349 (_("%pB: error: erratum 843419 stub out "
5350 "of range (input file too large)"), abfd);
5351
5352 branch_insn = 0x14000000;
5353 branch_offset >>= 2;
5354 branch_offset &= 0x3ffffff;
5355 branch_insn |= branch_offset;
5356 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
5357 }
5358 else
5359 {
5360 abfd = stub_entry->target_section->owner;
5361 _bfd_error_handler
5362 (_("%pB: error: erratum 843419 immediate 0x%" BFD_VMA_FMT "x "
5363 "out of range for ADR (input file too large) and "
5364 "--fix-cortex-a53-843419=adr used. Run the linker with "
5365 "--fix-cortex-a53-843419=full instead"), abfd, imm);
5366 bfd_set_error (bfd_error_bad_value);
5367 /* This function is called inside a hashtable traversal and the error
5368 handlers called above turn into non-fatal errors. Which means this
5369 case ld returns an exit code 0 and also produces a broken object file.
5370 To prevent this, issue a hard abort. */
5371 BFD_FAIL ();
5372 }
5373 return TRUE;
5374 }
5375
5376
5377 static bfd_boolean
5378 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
5379 struct bfd_link_info *link_info,
5380 asection *sec,
5381 bfd_byte *contents)
5382
5383 {
5384 struct elf_aarch64_link_hash_table *globals =
5385 elf_aarch64_hash_table (link_info);
5386
5387 if (globals == NULL)
5388 return FALSE;
5389
5390 /* Fix code to point to erratum 835769 stubs. */
5391 if (globals->fix_erratum_835769)
5392 {
5393 struct erratum_835769_branch_to_stub_data data;
5394
5395 data.info = link_info;
5396 data.output_section = sec;
5397 data.contents = contents;
5398 bfd_hash_traverse (&globals->stub_hash_table,
5399 make_branch_to_erratum_835769_stub, &data);
5400 }
5401
5402 if (globals->fix_erratum_843419)
5403 {
5404 struct erratum_835769_branch_to_stub_data data;
5405
5406 data.info = link_info;
5407 data.output_section = sec;
5408 data.contents = contents;
5409 bfd_hash_traverse (&globals->stub_hash_table,
5410 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
5411 }
5412
5413 return FALSE;
5414 }
5415
5416 /* Return TRUE if RELOC is a relocation against the base of GOT table. */
5417
5418 static bfd_boolean
5419 aarch64_relocation_aginst_gp_p (bfd_reloc_code_real_type reloc)
5420 {
5421 return (reloc == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
5422 || reloc == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5423 || reloc == BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
5424 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
5425 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G1);
5426 }
5427
5428 /* Perform a relocation as part of a final link. The input relocation type
5429 should be TLS relaxed. */
5430
5431 static bfd_reloc_status_type
5432 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
5433 bfd *input_bfd,
5434 bfd *output_bfd,
5435 asection *input_section,
5436 bfd_byte *contents,
5437 Elf_Internal_Rela *rel,
5438 bfd_vma value,
5439 struct bfd_link_info *info,
5440 asection *sym_sec,
5441 struct elf_link_hash_entry *h,
5442 bfd_boolean *unresolved_reloc_p,
5443 bfd_boolean save_addend,
5444 bfd_vma *saved_addend,
5445 Elf_Internal_Sym *sym)
5446 {
5447 Elf_Internal_Shdr *symtab_hdr;
5448 unsigned int r_type = howto->type;
5449 bfd_reloc_code_real_type bfd_r_type
5450 = elfNN_aarch64_bfd_reloc_from_howto (howto);
5451 unsigned long r_symndx;
5452 bfd_byte *hit_data = contents + rel->r_offset;
5453 bfd_vma place, off, got_entry_addr = 0;
5454 bfd_signed_vma signed_addend;
5455 struct elf_aarch64_link_hash_table *globals;
5456 bfd_boolean weak_undef_p;
5457 bfd_boolean relative_reloc;
5458 asection *base_got;
5459 bfd_vma orig_value = value;
5460 bfd_boolean resolved_to_zero;
5461 bfd_boolean abs_symbol_p;
5462 bfd_boolean via_plt_p;
5463
5464 globals = elf_aarch64_hash_table (info);
5465
5466 symtab_hdr = &elf_symtab_hdr (input_bfd);
5467
5468 BFD_ASSERT (is_aarch64_elf (input_bfd));
5469
5470 r_symndx = ELFNN_R_SYM (rel->r_info);
5471
5472 place = input_section->output_section->vma
5473 + input_section->output_offset + rel->r_offset;
5474
5475 /* Get addend, accumulating the addend for consecutive relocs
5476 which refer to the same offset. */
5477 signed_addend = saved_addend ? *saved_addend : 0;
5478 signed_addend += rel->r_addend;
5479
5480 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
5481 : bfd_is_und_section (sym_sec));
5482 abs_symbol_p = h != NULL && bfd_is_abs_symbol (&h->root);
5483
5484 via_plt_p = (globals->root.splt != NULL && h != NULL
5485 && h->plt.offset != (bfd_vma) - 1);
5486
5487 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
5488 it here if it is defined in a non-shared object. */
5489 if (h != NULL
5490 && h->type == STT_GNU_IFUNC
5491 && h->def_regular)
5492 {
5493 asection *plt;
5494 const char *name;
5495 bfd_vma addend = 0;
5496
5497 if ((input_section->flags & SEC_ALLOC) == 0)
5498 {
5499 /* If this is a SHT_NOTE section without SHF_ALLOC, treat
5500 STT_GNU_IFUNC symbol as STT_FUNC. */
5501 if (elf_section_type (input_section) == SHT_NOTE)
5502 goto skip_ifunc;
5503
5504 /* Dynamic relocs are not propagated for SEC_DEBUGGING
5505 sections because such sections are not SEC_ALLOC and
5506 thus ld.so will not process them. */
5507 if ((input_section->flags & SEC_DEBUGGING) != 0)
5508 return bfd_reloc_ok;
5509
5510 if (h->root.root.string)
5511 name = h->root.root.string;
5512 else
5513 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL);
5514 _bfd_error_handler
5515 /* xgettext:c-format */
5516 (_("%pB(%pA+%#" PRIx64 "): "
5517 "unresolvable %s relocation against symbol `%s'"),
5518 input_bfd, input_section, (uint64_t) rel->r_offset,
5519 howto->name, name);
5520 bfd_set_error (bfd_error_bad_value);
5521 return bfd_reloc_notsupported;
5522 }
5523 else if (h->plt.offset == (bfd_vma) -1)
5524 goto bad_ifunc_reloc;
5525
5526 /* STT_GNU_IFUNC symbol must go through PLT. */
5527 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
5528 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
5529
5530 switch (bfd_r_type)
5531 {
5532 default:
5533 bad_ifunc_reloc:
5534 if (h->root.root.string)
5535 name = h->root.root.string;
5536 else
5537 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5538 NULL);
5539 _bfd_error_handler
5540 /* xgettext:c-format */
5541 (_("%pB: relocation %s against STT_GNU_IFUNC "
5542 "symbol `%s' isn't handled by %s"), input_bfd,
5543 howto->name, name, __FUNCTION__);
5544 bfd_set_error (bfd_error_bad_value);
5545 return bfd_reloc_notsupported;
5546
5547 case BFD_RELOC_AARCH64_NN:
5548 if (rel->r_addend != 0)
5549 {
5550 if (h->root.root.string)
5551 name = h->root.root.string;
5552 else
5553 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
5554 sym, NULL);
5555 _bfd_error_handler
5556 /* xgettext:c-format */
5557 (_("%pB: relocation %s against STT_GNU_IFUNC "
5558 "symbol `%s' has non-zero addend: %" PRId64),
5559 input_bfd, howto->name, name, (int64_t) rel->r_addend);
5560 bfd_set_error (bfd_error_bad_value);
5561 return bfd_reloc_notsupported;
5562 }
5563
5564 /* Generate dynamic relocation only when there is a
5565 non-GOT reference in a shared object. */
5566 if (bfd_link_pic (info) && h->non_got_ref)
5567 {
5568 Elf_Internal_Rela outrel;
5569 asection *sreloc;
5570
5571 /* Need a dynamic relocation to get the real function
5572 address. */
5573 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5574 info,
5575 input_section,
5576 rel->r_offset);
5577 if (outrel.r_offset == (bfd_vma) -1
5578 || outrel.r_offset == (bfd_vma) -2)
5579 abort ();
5580
5581 outrel.r_offset += (input_section->output_section->vma
5582 + input_section->output_offset);
5583
5584 if (h->dynindx == -1
5585 || h->forced_local
5586 || bfd_link_executable (info))
5587 {
5588 /* This symbol is resolved locally. */
5589 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5590 outrel.r_addend = (h->root.u.def.value
5591 + h->root.u.def.section->output_section->vma
5592 + h->root.u.def.section->output_offset);
5593 }
5594 else
5595 {
5596 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5597 outrel.r_addend = 0;
5598 }
5599
5600 sreloc = globals->root.irelifunc;
5601 elf_append_rela (output_bfd, sreloc, &outrel);
5602
5603 /* If this reloc is against an external symbol, we
5604 do not want to fiddle with the addend. Otherwise,
5605 we need to include the symbol value so that it
5606 becomes an addend for the dynamic reloc. For an
5607 internal symbol, we have updated addend. */
5608 return bfd_reloc_ok;
5609 }
5610 /* FALLTHROUGH */
5611 case BFD_RELOC_AARCH64_CALL26:
5612 case BFD_RELOC_AARCH64_JUMP26:
5613 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5614 place, value,
5615 signed_addend,
5616 weak_undef_p);
5617 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5618 howto, value);
5619 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5620 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5621 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5622 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5623 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5624 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5625 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5626 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5627 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5628 base_got = globals->root.sgot;
5629 off = h->got.offset;
5630
5631 if (base_got == NULL)
5632 abort ();
5633
5634 if (off == (bfd_vma) -1)
5635 {
5636 bfd_vma plt_index;
5637
5638 /* We can't use h->got.offset here to save state, or
5639 even just remember the offset, as finish_dynamic_symbol
5640 would use that as offset into .got. */
5641
5642 if (globals->root.splt != NULL)
5643 {
5644 plt_index = ((h->plt.offset - globals->plt_header_size) /
5645 globals->plt_entry_size);
5646 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5647 base_got = globals->root.sgotplt;
5648 }
5649 else
5650 {
5651 plt_index = h->plt.offset / globals->plt_entry_size;
5652 off = plt_index * GOT_ENTRY_SIZE;
5653 base_got = globals->root.igotplt;
5654 }
5655
5656 if (h->dynindx == -1
5657 || h->forced_local
5658 || info->symbolic)
5659 {
5660 /* This references the local definition. We must
5661 initialize this entry in the global offset table.
5662 Since the offset must always be a multiple of 8,
5663 we use the least significant bit to record
5664 whether we have initialized it already.
5665
5666 When doing a dynamic link, we create a .rela.got
5667 relocation entry to initialize the value. This
5668 is done in the finish_dynamic_symbol routine. */
5669 if ((off & 1) != 0)
5670 off &= ~1;
5671 else
5672 {
5673 bfd_put_NN (output_bfd, value,
5674 base_got->contents + off);
5675 /* Note that this is harmless as -1 | 1 still is -1. */
5676 h->got.offset |= 1;
5677 }
5678 }
5679 value = (base_got->output_section->vma
5680 + base_got->output_offset + off);
5681 }
5682 else
5683 value = aarch64_calculate_got_entry_vma (h, globals, info,
5684 value, output_bfd,
5685 unresolved_reloc_p);
5686
5687 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5688 addend = (globals->root.sgot->output_section->vma
5689 + globals->root.sgot->output_offset);
5690
5691 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5692 place, value,
5693 addend, weak_undef_p);
5694 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5695 case BFD_RELOC_AARCH64_ADD_LO12:
5696 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5697 break;
5698 }
5699 }
5700
5701 skip_ifunc:
5702 resolved_to_zero = (h != NULL
5703 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
5704
5705 switch (bfd_r_type)
5706 {
5707 case BFD_RELOC_AARCH64_NONE:
5708 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5709 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5710 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5711 *unresolved_reloc_p = FALSE;
5712 return bfd_reloc_ok;
5713
5714 case BFD_RELOC_AARCH64_NN:
5715
5716 /* When generating a shared object or relocatable executable, these
5717 relocations are copied into the output file to be resolved at
5718 run time. */
5719 if (((bfd_link_pic (info)
5720 || globals->root.is_relocatable_executable)
5721 && (input_section->flags & SEC_ALLOC)
5722 && (h == NULL
5723 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5724 && !resolved_to_zero)
5725 || h->root.type != bfd_link_hash_undefweak))
5726 /* Or we are creating an executable, we may need to keep relocations
5727 for symbols satisfied by a dynamic library if we manage to avoid
5728 copy relocs for the symbol. */
5729 || (ELIMINATE_COPY_RELOCS
5730 && !bfd_link_pic (info)
5731 && h != NULL
5732 && (input_section->flags & SEC_ALLOC)
5733 && h->dynindx != -1
5734 && !h->non_got_ref
5735 && ((h->def_dynamic
5736 && !h->def_regular)
5737 || h->root.type == bfd_link_hash_undefweak
5738 || h->root.type == bfd_link_hash_undefined)))
5739 {
5740 Elf_Internal_Rela outrel;
5741 bfd_byte *loc;
5742 bfd_boolean skip, relocate;
5743 asection *sreloc;
5744
5745 *unresolved_reloc_p = FALSE;
5746
5747 skip = FALSE;
5748 relocate = FALSE;
5749
5750 outrel.r_addend = signed_addend;
5751 outrel.r_offset =
5752 _bfd_elf_section_offset (output_bfd, info, input_section,
5753 rel->r_offset);
5754 if (outrel.r_offset == (bfd_vma) - 1)
5755 skip = TRUE;
5756 else if (outrel.r_offset == (bfd_vma) - 2)
5757 {
5758 skip = TRUE;
5759 relocate = TRUE;
5760 }
5761 else if (abs_symbol_p)
5762 {
5763 /* Local absolute symbol. */
5764 skip = (h->forced_local || (h->dynindx == -1));
5765 relocate = skip;
5766 }
5767
5768 outrel.r_offset += (input_section->output_section->vma
5769 + input_section->output_offset);
5770
5771 if (skip)
5772 memset (&outrel, 0, sizeof outrel);
5773 else if (h != NULL
5774 && h->dynindx != -1
5775 && (!bfd_link_pic (info)
5776 || !(bfd_link_pie (info) || SYMBOLIC_BIND (info, h))
5777 || !h->def_regular))
5778 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5779 else
5780 {
5781 int symbol;
5782
5783 /* On SVR4-ish systems, the dynamic loader cannot
5784 relocate the text and data segments independently,
5785 so the symbol does not matter. */
5786 symbol = 0;
5787 relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
5788 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5789 outrel.r_addend += value;
5790 }
5791
5792 sreloc = elf_section_data (input_section)->sreloc;
5793 if (sreloc == NULL || sreloc->contents == NULL)
5794 return bfd_reloc_notsupported;
5795
5796 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5797 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5798
5799 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5800 {
5801 /* Sanity to check that we have previously allocated
5802 sufficient space in the relocation section for the
5803 number of relocations we actually want to emit. */
5804 abort ();
5805 }
5806
5807 /* If this reloc is against an external symbol, we do not want to
5808 fiddle with the addend. Otherwise, we need to include the symbol
5809 value so that it becomes an addend for the dynamic reloc. */
5810 if (!relocate)
5811 return bfd_reloc_ok;
5812
5813 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5814 contents, rel->r_offset, value,
5815 signed_addend);
5816 }
5817 else
5818 value += signed_addend;
5819 break;
5820
5821 case BFD_RELOC_AARCH64_BRANCH19:
5822 case BFD_RELOC_AARCH64_TSTBR14:
5823 /* A conditional branch to an undefined weak symbol is converted to a
5824 branch to itself. */
5825 if (weak_undef_p && !via_plt_p)
5826 {
5827 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5828 place, value,
5829 signed_addend,
5830 weak_undef_p);
5831 break;
5832 }
5833 /* Fall through. */
5834 case BFD_RELOC_AARCH64_CALL26:
5835 case BFD_RELOC_AARCH64_JUMP26:
5836 {
5837 asection *splt = globals->root.splt;
5838
5839 /* A call to an undefined weak symbol is converted to a jump to
5840 the next instruction unless a PLT entry will be created.
5841 The jump to the next instruction is optimized as a NOP.
5842 Do the same for local undefined symbols. */
5843 if (weak_undef_p && ! via_plt_p)
5844 {
5845 bfd_putl32 (INSN_NOP, hit_data);
5846 return bfd_reloc_ok;
5847 }
5848
5849 /* If the call goes through a PLT entry, make sure to
5850 check distance to the right destination address. */
5851 if (via_plt_p)
5852 value = (splt->output_section->vma
5853 + splt->output_offset + h->plt.offset);
5854
5855 /* Check if a stub has to be inserted because the destination
5856 is too far away. */
5857 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5858
5859 /* If the branch destination is directed to plt stub, "value" will be
5860 the final destination, otherwise we should plus signed_addend, it may
5861 contain non-zero value, for example call to local function symbol
5862 which are turned into "sec_sym + sec_off", and sec_off is kept in
5863 signed_addend. */
5864 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5865 place))
5866 /* The target is out of reach, so redirect the branch to
5867 the local stub for this function. */
5868 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5869 rel, globals);
5870 if (stub_entry != NULL)
5871 {
5872 value = (stub_entry->stub_offset
5873 + stub_entry->stub_sec->output_offset
5874 + stub_entry->stub_sec->output_section->vma);
5875
5876 /* We have redirected the destination to stub entry address,
5877 so ignore any addend record in the original rela entry. */
5878 signed_addend = 0;
5879 }
5880 }
5881 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5882 place, value,
5883 signed_addend, weak_undef_p);
5884 *unresolved_reloc_p = FALSE;
5885 break;
5886
5887 case BFD_RELOC_AARCH64_16_PCREL:
5888 case BFD_RELOC_AARCH64_32_PCREL:
5889 case BFD_RELOC_AARCH64_64_PCREL:
5890 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5891 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5892 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5893 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5894 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5895 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
5896 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5897 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
5898 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5899 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
5900 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
5901 if (bfd_link_pic (info)
5902 && (input_section->flags & SEC_ALLOC) != 0
5903 && (input_section->flags & SEC_READONLY) != 0
5904 && !SYMBOL_REFERENCES_LOCAL (info, h))
5905 {
5906 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5907
5908 _bfd_error_handler
5909 /* xgettext:c-format */
5910 (_("%pB: relocation %s against symbol `%s' which may bind "
5911 "externally can not be used when making a shared object; "
5912 "recompile with -fPIC"),
5913 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5914 h->root.root.string);
5915 bfd_set_error (bfd_error_bad_value);
5916 return bfd_reloc_notsupported;
5917 }
5918 /* Fall through. */
5919
5920 case BFD_RELOC_AARCH64_16:
5921 #if ARCH_SIZE == 64
5922 case BFD_RELOC_AARCH64_32:
5923 #endif
5924 case BFD_RELOC_AARCH64_ADD_LO12:
5925 case BFD_RELOC_AARCH64_LDST128_LO12:
5926 case BFD_RELOC_AARCH64_LDST16_LO12:
5927 case BFD_RELOC_AARCH64_LDST32_LO12:
5928 case BFD_RELOC_AARCH64_LDST64_LO12:
5929 case BFD_RELOC_AARCH64_LDST8_LO12:
5930 case BFD_RELOC_AARCH64_MOVW_G0:
5931 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5932 case BFD_RELOC_AARCH64_MOVW_G0_S:
5933 case BFD_RELOC_AARCH64_MOVW_G1:
5934 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5935 case BFD_RELOC_AARCH64_MOVW_G1_S:
5936 case BFD_RELOC_AARCH64_MOVW_G2:
5937 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5938 case BFD_RELOC_AARCH64_MOVW_G2_S:
5939 case BFD_RELOC_AARCH64_MOVW_G3:
5940 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5941 place, value,
5942 signed_addend, weak_undef_p);
5943 break;
5944
5945 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5946 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5947 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5948 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5949 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5950 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5951 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5952 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5953 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5954 if (globals->root.sgot == NULL)
5955 BFD_ASSERT (h != NULL);
5956
5957 relative_reloc = FALSE;
5958 if (h != NULL)
5959 {
5960 bfd_vma addend = 0;
5961
5962 /* If a symbol is not dynamic and is not undefined weak, bind it
5963 locally and generate a RELATIVE relocation under PIC mode.
5964
5965 NOTE: one symbol may be referenced by several relocations, we
5966 should only generate one RELATIVE relocation for that symbol.
5967 Therefore, check GOT offset mark first. */
5968 if (h->dynindx == -1
5969 && !h->forced_local
5970 && h->root.type != bfd_link_hash_undefweak
5971 && bfd_link_pic (info)
5972 && !symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5973 relative_reloc = TRUE;
5974
5975 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5976 output_bfd,
5977 unresolved_reloc_p);
5978 /* Record the GOT entry address which will be used when generating
5979 RELATIVE relocation. */
5980 if (relative_reloc)
5981 got_entry_addr = value;
5982
5983 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5984 addend = (globals->root.sgot->output_section->vma
5985 + globals->root.sgot->output_offset);
5986 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5987 place, value,
5988 addend, weak_undef_p);
5989 }
5990 else
5991 {
5992 bfd_vma addend = 0;
5993 struct elf_aarch64_local_symbol *locals
5994 = elf_aarch64_locals (input_bfd);
5995
5996 if (locals == NULL)
5997 {
5998 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5999 _bfd_error_handler
6000 /* xgettext:c-format */
6001 (_("%pB: local symbol descriptor table be NULL when applying "
6002 "relocation %s against local symbol"),
6003 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
6004 abort ();
6005 }
6006
6007 off = symbol_got_offset (input_bfd, h, r_symndx);
6008 base_got = globals->root.sgot;
6009 got_entry_addr = (base_got->output_section->vma
6010 + base_got->output_offset + off);
6011
6012 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6013 {
6014 bfd_put_64 (output_bfd, value, base_got->contents + off);
6015
6016 /* For local symbol, we have done absolute relocation in static
6017 linking stage. While for shared library, we need to update the
6018 content of GOT entry according to the shared object's runtime
6019 base address. So, we need to generate a R_AARCH64_RELATIVE reloc
6020 for dynamic linker. */
6021 if (bfd_link_pic (info))
6022 relative_reloc = TRUE;
6023
6024 symbol_got_offset_mark (input_bfd, h, r_symndx);
6025 }
6026
6027 /* Update the relocation value to GOT entry addr as we have transformed
6028 the direct data access into indirect data access through GOT. */
6029 value = got_entry_addr;
6030
6031 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
6032 addend = base_got->output_section->vma + base_got->output_offset;
6033
6034 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6035 place, value,
6036 addend, weak_undef_p);
6037 }
6038
6039 if (relative_reloc)
6040 {
6041 asection *s;
6042 Elf_Internal_Rela outrel;
6043
6044 s = globals->root.srelgot;
6045 if (s == NULL)
6046 abort ();
6047
6048 outrel.r_offset = got_entry_addr;
6049 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
6050 outrel.r_addend = orig_value;
6051 elf_append_rela (output_bfd, s, &outrel);
6052 }
6053 break;
6054
6055 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6056 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6057 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6058 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6059 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6060 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6061 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6062 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6063 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6064 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6065 if (globals->root.sgot == NULL)
6066 return bfd_reloc_notsupported;
6067
6068 value = (symbol_got_offset (input_bfd, h, r_symndx)
6069 + globals->root.sgot->output_section->vma
6070 + globals->root.sgot->output_offset);
6071
6072 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6073 place, value,
6074 0, weak_undef_p);
6075 *unresolved_reloc_p = FALSE;
6076 break;
6077
6078 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6079 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6080 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6081 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6082 if (globals->root.sgot == NULL)
6083 return bfd_reloc_notsupported;
6084
6085 value = symbol_got_offset (input_bfd, h, r_symndx);
6086 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6087 place, value,
6088 0, weak_undef_p);
6089 *unresolved_reloc_p = FALSE;
6090 break;
6091
6092 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
6093 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
6094 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6095 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
6096 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
6097 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
6098 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
6099 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
6100 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
6101 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
6102 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
6103 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
6104 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6105 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
6106 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
6107 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
6108 {
6109 if (!(weak_undef_p || elf_hash_table (info)->tls_sec))
6110 {
6111 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6112 _bfd_error_handler
6113 /* xgettext:c-format */
6114 (_("%pB: TLS relocation %s against undefined symbol `%s'"),
6115 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
6116 h->root.root.string);
6117 bfd_set_error (bfd_error_bad_value);
6118 return bfd_reloc_notsupported;
6119 }
6120
6121 bfd_vma def_value
6122 = weak_undef_p ? 0 : signed_addend - dtpoff_base (info);
6123 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6124 place, value,
6125 def_value, weak_undef_p);
6126 break;
6127 }
6128
6129 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
6130 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
6131 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6132 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
6133 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
6134 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
6135 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
6136 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
6137 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
6138 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
6139 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
6140 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6141 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6142 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6143 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6144 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
6145 {
6146 if (!(weak_undef_p || elf_hash_table (info)->tls_sec))
6147 {
6148 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6149 _bfd_error_handler
6150 /* xgettext:c-format */
6151 (_("%pB: TLS relocation %s against undefined symbol `%s'"),
6152 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
6153 h->root.root.string);
6154 bfd_set_error (bfd_error_bad_value);
6155 return bfd_reloc_notsupported;
6156 }
6157
6158 bfd_vma def_value
6159 = weak_undef_p ? 0 : signed_addend - tpoff_base (info);
6160 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6161 place, value,
6162 def_value, weak_undef_p);
6163 *unresolved_reloc_p = FALSE;
6164 break;
6165 }
6166
6167 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6168 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6169 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6170 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6171 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
6172 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6173 if (globals->root.sgot == NULL)
6174 return bfd_reloc_notsupported;
6175 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6176 + globals->root.sgotplt->output_section->vma
6177 + globals->root.sgotplt->output_offset
6178 + globals->sgotplt_jump_table_size);
6179
6180 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6181 place, value,
6182 0, weak_undef_p);
6183 *unresolved_reloc_p = FALSE;
6184 break;
6185
6186 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6187 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6188 if (globals->root.sgot == NULL)
6189 return bfd_reloc_notsupported;
6190
6191 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6192 + globals->root.sgotplt->output_section->vma
6193 + globals->root.sgotplt->output_offset
6194 + globals->sgotplt_jump_table_size);
6195
6196 value -= (globals->root.sgot->output_section->vma
6197 + globals->root.sgot->output_offset);
6198
6199 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6200 place, value,
6201 0, weak_undef_p);
6202 *unresolved_reloc_p = FALSE;
6203 break;
6204
6205 default:
6206 return bfd_reloc_notsupported;
6207 }
6208
6209 if (saved_addend)
6210 *saved_addend = value;
6211
6212 /* Only apply the final relocation in a sequence. */
6213 if (save_addend)
6214 return bfd_reloc_continue;
6215
6216 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
6217 howto, value);
6218 }
6219
6220 /* LP64 and ILP32 operates on x- and w-registers respectively.
6221 Next definitions take into account the difference between
6222 corresponding machine codes. R means x-register if the target
6223 arch is LP64, and w-register if the target is ILP32. */
6224
6225 #if ARCH_SIZE == 64
6226 # define add_R0_R0 (0x91000000)
6227 # define add_R0_R0_R1 (0x8b000020)
6228 # define add_R0_R1 (0x91400020)
6229 # define ldr_R0 (0x58000000)
6230 # define ldr_R0_mask(i) (i & 0xffffffe0)
6231 # define ldr_R0_x0 (0xf9400000)
6232 # define ldr_hw_R0 (0xf2a00000)
6233 # define movk_R0 (0xf2800000)
6234 # define movz_R0 (0xd2a00000)
6235 # define movz_hw_R0 (0xd2c00000)
6236 #else /*ARCH_SIZE == 32 */
6237 # define add_R0_R0 (0x11000000)
6238 # define add_R0_R0_R1 (0x0b000020)
6239 # define add_R0_R1 (0x11400020)
6240 # define ldr_R0 (0x18000000)
6241 # define ldr_R0_mask(i) (i & 0xbfffffe0)
6242 # define ldr_R0_x0 (0xb9400000)
6243 # define ldr_hw_R0 (0x72a00000)
6244 # define movk_R0 (0x72800000)
6245 # define movz_R0 (0x52a00000)
6246 # define movz_hw_R0 (0x52c00000)
6247 #endif
6248
6249 /* Structure to hold payload for _bfd_aarch64_erratum_843419_clear_stub,
6250 it is used to identify the stub information to reset. */
6251
6252 struct erratum_843419_branch_to_stub_clear_data
6253 {
6254 bfd_vma adrp_offset;
6255 asection *output_section;
6256 };
6257
6258 /* Clear the erratum information for GEN_ENTRY if the ADRP_OFFSET and
6259 section inside IN_ARG matches. The clearing is done by setting the
6260 stub_type to none. */
6261
6262 static bfd_boolean
6263 _bfd_aarch64_erratum_843419_clear_stub (struct bfd_hash_entry *gen_entry,
6264 void *in_arg)
6265 {
6266 struct elf_aarch64_stub_hash_entry *stub_entry
6267 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
6268 struct erratum_843419_branch_to_stub_clear_data *data
6269 = (struct erratum_843419_branch_to_stub_clear_data *) in_arg;
6270
6271 if (stub_entry->target_section != data->output_section
6272 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer
6273 || stub_entry->adrp_offset != data->adrp_offset)
6274 return TRUE;
6275
6276 /* Change the stub type instead of removing the entry, removing from the hash
6277 table would be slower and we have already reserved the memory for the entry
6278 so there wouldn't be much gain. Changing the stub also keeps around a
6279 record of what was there before. */
6280 stub_entry->stub_type = aarch64_stub_none;
6281
6282 /* We're done and there could have been only one matching stub at that
6283 particular offset, so abort further traversal. */
6284 return FALSE;
6285 }
6286
6287 /* TLS Relaxations may relax an adrp sequence that matches the erratum 843419
6288 sequence. In this case the erratum no longer applies and we need to remove
6289 the entry from the pending stub generation. This clears matching adrp insn
6290 at ADRP_OFFSET in INPUT_SECTION in the stub table defined in GLOBALS. */
6291
6292 static void
6293 clear_erratum_843419_entry (struct elf_aarch64_link_hash_table *globals,
6294 bfd_vma adrp_offset, asection *input_section)
6295 {
6296 if (globals->fix_erratum_843419 & ERRAT_ADRP)
6297 {
6298 struct erratum_843419_branch_to_stub_clear_data data;
6299 data.adrp_offset = adrp_offset;
6300 data.output_section = input_section;
6301
6302 bfd_hash_traverse (&globals->stub_hash_table,
6303 _bfd_aarch64_erratum_843419_clear_stub, &data);
6304 }
6305 }
6306
6307 /* Handle TLS relaxations. Relaxing is possible for symbols that use
6308 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
6309 link.
6310
6311 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
6312 is to then call final_link_relocate. Return other values in the
6313 case of error. */
6314
6315 static bfd_reloc_status_type
6316 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
6317 bfd *input_bfd, asection *input_section,
6318 bfd_byte *contents, Elf_Internal_Rela *rel,
6319 struct elf_link_hash_entry *h)
6320 {
6321 bfd_boolean is_local = h == NULL;
6322 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
6323 unsigned long insn;
6324
6325 BFD_ASSERT (globals && input_bfd && contents && rel);
6326
6327 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6328 {
6329 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6330 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6331 if (is_local)
6332 {
6333 /* GD->LE relaxation:
6334 adrp x0, :tlsgd:var => movz R0, :tprel_g1:var
6335 or
6336 adrp x0, :tlsdesc:var => movz R0, :tprel_g1:var
6337
6338 Where R is x for LP64, and w for ILP32. */
6339 bfd_putl32 (movz_R0, contents + rel->r_offset);
6340 /* We have relaxed the adrp into a mov, we may have to clear any
6341 pending erratum fixes. */
6342 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6343 return bfd_reloc_continue;
6344 }
6345 else
6346 {
6347 /* GD->IE relaxation:
6348 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
6349 or
6350 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
6351 */
6352 return bfd_reloc_continue;
6353 }
6354
6355 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6356 BFD_ASSERT (0);
6357 break;
6358
6359 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6360 if (is_local)
6361 {
6362 /* Tiny TLSDESC->LE relaxation:
6363 ldr x1, :tlsdesc:var => movz R0, #:tprel_g1:var
6364 adr x0, :tlsdesc:var => movk R0, #:tprel_g0_nc:var
6365 .tlsdesccall var
6366 blr x1 => nop
6367
6368 Where R is x for LP64, and w for ILP32. */
6369 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6370 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6371
6372 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6373 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6374 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6375
6376 bfd_putl32 (movz_R0, contents + rel->r_offset);
6377 bfd_putl32 (movk_R0, contents + rel->r_offset + 4);
6378 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6379 return bfd_reloc_continue;
6380 }
6381 else
6382 {
6383 /* Tiny TLSDESC->IE relaxation:
6384 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
6385 adr x0, :tlsdesc:var => nop
6386 .tlsdesccall var
6387 blr x1 => nop
6388 */
6389 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6390 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6391
6392 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6393 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6394
6395 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6396 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6397 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6398 return bfd_reloc_continue;
6399 }
6400
6401 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6402 if (is_local)
6403 {
6404 /* Tiny GD->LE relaxation:
6405 adr x0, :tlsgd:var => mrs x1, tpidr_el0
6406 bl __tls_get_addr => add R0, R1, #:tprel_hi12:x, lsl #12
6407 nop => add R0, R0, #:tprel_lo12_nc:x
6408
6409 Where R is x for LP64, and x for Ilp32. */
6410
6411 /* First kill the tls_get_addr reloc on the bl instruction. */
6412 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6413
6414 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
6415 bfd_putl32 (add_R0_R1, contents + rel->r_offset + 4);
6416 bfd_putl32 (add_R0_R0, contents + rel->r_offset + 8);
6417
6418 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6419 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
6420 rel[1].r_offset = rel->r_offset + 8;
6421
6422 /* Move the current relocation to the second instruction in
6423 the sequence. */
6424 rel->r_offset += 4;
6425 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6426 AARCH64_R (TLSLE_ADD_TPREL_HI12));
6427 return bfd_reloc_continue;
6428 }
6429 else
6430 {
6431 /* Tiny GD->IE relaxation:
6432 adr x0, :tlsgd:var => ldr R0, :gottprel:var
6433 bl __tls_get_addr => mrs x1, tpidr_el0
6434 nop => add R0, R0, R1
6435
6436 Where R is x for LP64, and w for Ilp32. */
6437
6438 /* First kill the tls_get_addr reloc on the bl instruction. */
6439 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6440 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6441
6442 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6443 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6444 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6445 return bfd_reloc_continue;
6446 }
6447
6448 #if ARCH_SIZE == 64
6449 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6450 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
6451 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
6452 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
6453
6454 if (is_local)
6455 {
6456 /* Large GD->LE relaxation:
6457 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
6458 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
6459 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
6460 bl __tls_get_addr => mrs x1, tpidr_el0
6461 nop => add x0, x0, x1
6462 */
6463 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6464 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6465 rel[2].r_offset = rel->r_offset + 8;
6466
6467 bfd_putl32 (movz_hw_R0, contents + rel->r_offset + 0);
6468 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset + 4);
6469 bfd_putl32 (movk_R0, contents + rel->r_offset + 8);
6470 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6471 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6472 }
6473 else
6474 {
6475 /* Large GD->IE relaxation:
6476 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
6477 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
6478 add x0, gp, x0 => ldr x0, [gp, x0]
6479 bl __tls_get_addr => mrs x1, tpidr_el0
6480 nop => add x0, x0, x1
6481 */
6482 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6483 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
6484 bfd_putl32 (ldr_R0, contents + rel->r_offset + 8);
6485 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6486 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6487 }
6488 return bfd_reloc_continue;
6489
6490 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6491 return bfd_reloc_continue;
6492 #endif
6493
6494 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6495 return bfd_reloc_continue;
6496
6497 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6498 if (is_local)
6499 {
6500 /* GD->LE relaxation:
6501 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
6502
6503 Where R is x for lp64 mode, and w for ILP32 mode. */
6504 bfd_putl32 (movk_R0, contents + rel->r_offset);
6505 return bfd_reloc_continue;
6506 }
6507 else
6508 {
6509 /* GD->IE relaxation:
6510 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr R0, [x0, #:gottprel_lo12:var]
6511
6512 Where R is x for lp64 mode, and w for ILP32 mode. */
6513 insn = bfd_getl32 (contents + rel->r_offset);
6514 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6515 return bfd_reloc_continue;
6516 }
6517
6518 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6519 if (is_local)
6520 {
6521 /* GD->LE relaxation
6522 add x0, #:tlsgd_lo12:var => movk R0, :tprel_g0_nc:var
6523 bl __tls_get_addr => mrs x1, tpidr_el0
6524 nop => add R0, R1, R0
6525
6526 Where R is x for lp64 mode, and w for ILP32 mode. */
6527
6528 /* First kill the tls_get_addr reloc on the bl instruction. */
6529 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6530 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6531
6532 bfd_putl32 (movk_R0, contents + rel->r_offset);
6533 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6534 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6535 return bfd_reloc_continue;
6536 }
6537 else
6538 {
6539 /* GD->IE relaxation
6540 ADD x0, #:tlsgd_lo12:var => ldr R0, [x0, #:gottprel_lo12:var]
6541 BL __tls_get_addr => mrs x1, tpidr_el0
6542 R_AARCH64_CALL26
6543 NOP => add R0, R1, R0
6544
6545 Where R is x for lp64 mode, and w for ilp32 mode. */
6546
6547 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6548
6549 /* Remove the relocation on the BL instruction. */
6550 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6551
6552 /* We choose to fixup the BL and NOP instructions using the
6553 offset from the second relocation to allow flexibility in
6554 scheduling instructions between the ADD and BL. */
6555 bfd_putl32 (ldr_R0_x0, contents + rel->r_offset);
6556 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
6557 bfd_putl32 (add_R0_R0_R1, contents + rel[1].r_offset + 4);
6558 return bfd_reloc_continue;
6559 }
6560
6561 case BFD_RELOC_AARCH64_TLSDESC_ADD:
6562 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6563 case BFD_RELOC_AARCH64_TLSDESC_CALL:
6564 /* GD->IE/LE relaxation:
6565 add x0, x0, #:tlsdesc_lo12:var => nop
6566 blr xd => nop
6567 */
6568 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
6569 return bfd_reloc_ok;
6570
6571 case BFD_RELOC_AARCH64_TLSDESC_LDR:
6572 if (is_local)
6573 {
6574 /* GD->LE relaxation:
6575 ldr xd, [gp, xn] => movk R0, #:tprel_g0_nc:var
6576
6577 Where R is x for lp64 mode, and w for ILP32 mode. */
6578 bfd_putl32 (movk_R0, contents + rel->r_offset);
6579 return bfd_reloc_continue;
6580 }
6581 else
6582 {
6583 /* GD->IE relaxation:
6584 ldr xd, [gp, xn] => ldr R0, [gp, xn]
6585
6586 Where R is x for lp64 mode, and w for ILP32 mode. */
6587 insn = bfd_getl32 (contents + rel->r_offset);
6588 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6589 return bfd_reloc_ok;
6590 }
6591
6592 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6593 /* GD->LE relaxation:
6594 movk xd, #:tlsdesc_off_g0_nc:var => movk R0, #:tprel_g1_nc:var, lsl #16
6595 GD->IE relaxation:
6596 movk xd, #:tlsdesc_off_g0_nc:var => movk Rd, #:gottprel_g0_nc:var
6597
6598 Where R is x for lp64 mode, and w for ILP32 mode. */
6599 if (is_local)
6600 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset);
6601 return bfd_reloc_continue;
6602
6603 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6604 if (is_local)
6605 {
6606 /* GD->LE relaxation:
6607 movz xd, #:tlsdesc_off_g1:var => movz R0, #:tprel_g2:var, lsl #32
6608
6609 Where R is x for lp64 mode, and w for ILP32 mode. */
6610 bfd_putl32 (movz_hw_R0, contents + rel->r_offset);
6611 return bfd_reloc_continue;
6612 }
6613 else
6614 {
6615 /* GD->IE relaxation:
6616 movz xd, #:tlsdesc_off_g1:var => movz Rd, #:gottprel_g1:var, lsl #16
6617
6618 Where R is x for lp64 mode, and w for ILP32 mode. */
6619 insn = bfd_getl32 (contents + rel->r_offset);
6620 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6621 return bfd_reloc_continue;
6622 }
6623
6624 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6625 /* IE->LE relaxation:
6626 adrp xd, :gottprel:var => movz Rd, :tprel_g1:var
6627
6628 Where R is x for lp64 mode, and w for ILP32 mode. */
6629 if (is_local)
6630 {
6631 insn = bfd_getl32 (contents + rel->r_offset);
6632 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6633 /* We have relaxed the adrp into a mov, we may have to clear any
6634 pending erratum fixes. */
6635 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6636 }
6637 return bfd_reloc_continue;
6638
6639 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6640 /* IE->LE relaxation:
6641 ldr xd, [xm, #:gottprel_lo12:var] => movk Rd, :tprel_g0_nc:var
6642
6643 Where R is x for lp64 mode, and w for ILP32 mode. */
6644 if (is_local)
6645 {
6646 insn = bfd_getl32 (contents + rel->r_offset);
6647 bfd_putl32 (movk_R0 | (insn & 0x1f), contents + rel->r_offset);
6648 }
6649 return bfd_reloc_continue;
6650
6651 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6652 /* LD->LE relaxation (tiny):
6653 adr x0, :tlsldm:x => mrs x0, tpidr_el0
6654 bl __tls_get_addr => add R0, R0, TCB_SIZE
6655
6656 Where R is x for lp64 mode, and w for ilp32 mode. */
6657 if (is_local)
6658 {
6659 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6660 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6661 /* No need of CALL26 relocation for tls_get_addr. */
6662 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6663 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
6664 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6665 contents + rel->r_offset + 4);
6666 return bfd_reloc_ok;
6667 }
6668 return bfd_reloc_continue;
6669
6670 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6671 /* LD->LE relaxation (small):
6672 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
6673 */
6674 if (is_local)
6675 {
6676 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
6677 return bfd_reloc_ok;
6678 }
6679 return bfd_reloc_continue;
6680
6681 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6682 /* LD->LE relaxation (small):
6683 add x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE
6684 bl __tls_get_addr => nop
6685
6686 Where R is x for lp64 mode, and w for ilp32 mode. */
6687 if (is_local)
6688 {
6689 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6690 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6691 /* No need of CALL26 relocation for tls_get_addr. */
6692 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6693 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6694 contents + rel->r_offset + 0);
6695 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6696 return bfd_reloc_ok;
6697 }
6698 return bfd_reloc_continue;
6699
6700 default:
6701 return bfd_reloc_continue;
6702 }
6703
6704 return bfd_reloc_ok;
6705 }
6706
6707 /* Relocate an AArch64 ELF section. */
6708
6709 static bfd_boolean
6710 elfNN_aarch64_relocate_section (bfd *output_bfd,
6711 struct bfd_link_info *info,
6712 bfd *input_bfd,
6713 asection *input_section,
6714 bfd_byte *contents,
6715 Elf_Internal_Rela *relocs,
6716 Elf_Internal_Sym *local_syms,
6717 asection **local_sections)
6718 {
6719 Elf_Internal_Shdr *symtab_hdr;
6720 struct elf_link_hash_entry **sym_hashes;
6721 Elf_Internal_Rela *rel;
6722 Elf_Internal_Rela *relend;
6723 const char *name;
6724 struct elf_aarch64_link_hash_table *globals;
6725 bfd_boolean save_addend = FALSE;
6726 bfd_vma addend = 0;
6727
6728 globals = elf_aarch64_hash_table (info);
6729
6730 symtab_hdr = &elf_symtab_hdr (input_bfd);
6731 sym_hashes = elf_sym_hashes (input_bfd);
6732
6733 rel = relocs;
6734 relend = relocs + input_section->reloc_count;
6735 for (; rel < relend; rel++)
6736 {
6737 unsigned int r_type;
6738 bfd_reloc_code_real_type bfd_r_type;
6739 bfd_reloc_code_real_type relaxed_bfd_r_type;
6740 reloc_howto_type *howto;
6741 unsigned long r_symndx;
6742 Elf_Internal_Sym *sym;
6743 asection *sec;
6744 struct elf_link_hash_entry *h;
6745 bfd_vma relocation;
6746 bfd_reloc_status_type r;
6747 arelent bfd_reloc;
6748 char sym_type;
6749 bfd_boolean unresolved_reloc = FALSE;
6750 char *error_message = NULL;
6751
6752 r_symndx = ELFNN_R_SYM (rel->r_info);
6753 r_type = ELFNN_R_TYPE (rel->r_info);
6754
6755 bfd_reloc.howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
6756 howto = bfd_reloc.howto;
6757
6758 if (howto == NULL)
6759 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
6760
6761 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
6762
6763 h = NULL;
6764 sym = NULL;
6765 sec = NULL;
6766
6767 if (r_symndx < symtab_hdr->sh_info)
6768 {
6769 sym = local_syms + r_symndx;
6770 sym_type = ELFNN_ST_TYPE (sym->st_info);
6771 sec = local_sections[r_symndx];
6772
6773 /* An object file might have a reference to a local
6774 undefined symbol. This is a daft object file, but we
6775 should at least do something about it. */
6776 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6777 && bfd_is_und_section (sec)
6778 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6779 (*info->callbacks->undefined_symbol)
6780 (info, bfd_elf_string_from_elf_section
6781 (input_bfd, symtab_hdr->sh_link, sym->st_name),
6782 input_bfd, input_section, rel->r_offset, TRUE);
6783
6784 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6785
6786 /* Relocate against local STT_GNU_IFUNC symbol. */
6787 if (!bfd_link_relocatable (info)
6788 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6789 {
6790 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6791 rel, FALSE);
6792 if (h == NULL)
6793 abort ();
6794
6795 /* Set STT_GNU_IFUNC symbol value. */
6796 h->root.u.def.value = sym->st_value;
6797 h->root.u.def.section = sec;
6798 }
6799 }
6800 else
6801 {
6802 bfd_boolean warned, ignored;
6803
6804 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6805 r_symndx, symtab_hdr, sym_hashes,
6806 h, sec, relocation,
6807 unresolved_reloc, warned, ignored);
6808
6809 sym_type = h->type;
6810 }
6811
6812 if (sec != NULL && discarded_section (sec))
6813 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6814 rel, 1, relend, howto, 0, contents);
6815
6816 if (bfd_link_relocatable (info))
6817 continue;
6818
6819 if (h != NULL)
6820 name = h->root.root.string;
6821 else
6822 {
6823 name = (bfd_elf_string_from_elf_section
6824 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6825 if (name == NULL || *name == '\0')
6826 name = bfd_section_name (sec);
6827 }
6828
6829 if (r_symndx != 0
6830 && r_type != R_AARCH64_NONE
6831 && r_type != R_AARCH64_NULL
6832 && (h == NULL
6833 || h->root.type == bfd_link_hash_defined
6834 || h->root.type == bfd_link_hash_defweak)
6835 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
6836 {
6837 _bfd_error_handler
6838 ((sym_type == STT_TLS
6839 /* xgettext:c-format */
6840 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
6841 /* xgettext:c-format */
6842 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
6843 input_bfd,
6844 input_section, (uint64_t) rel->r_offset, howto->name, name);
6845 }
6846
6847 /* We relax only if we can see that there can be a valid transition
6848 from a reloc type to another.
6849 We call elfNN_aarch64_final_link_relocate unless we're completely
6850 done, i.e., the relaxation produced the final output we want. */
6851
6852 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6853 h, r_symndx);
6854 if (relaxed_bfd_r_type != bfd_r_type)
6855 {
6856 bfd_r_type = relaxed_bfd_r_type;
6857 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6858 BFD_ASSERT (howto != NULL);
6859 r_type = howto->type;
6860 r = elfNN_aarch64_tls_relax (globals, input_bfd, input_section,
6861 contents, rel, h);
6862 unresolved_reloc = 0;
6863 }
6864 else
6865 r = bfd_reloc_continue;
6866
6867 /* There may be multiple consecutive relocations for the
6868 same offset. In that case we are supposed to treat the
6869 output of each relocation as the addend for the next. */
6870 if (rel + 1 < relend
6871 && rel->r_offset == rel[1].r_offset
6872 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6873 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6874 save_addend = TRUE;
6875 else
6876 save_addend = FALSE;
6877
6878 if (r == bfd_reloc_continue)
6879 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6880 input_section, contents, rel,
6881 relocation, info, sec,
6882 h, &unresolved_reloc,
6883 save_addend, &addend, sym);
6884
6885 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6886 {
6887 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6888 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6889 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6890 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6891 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6892 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6893 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6894 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6895 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6896 {
6897 bfd_boolean need_relocs = FALSE;
6898 bfd_byte *loc;
6899 int indx;
6900 bfd_vma off;
6901
6902 off = symbol_got_offset (input_bfd, h, r_symndx);
6903 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6904
6905 need_relocs =
6906 (!bfd_link_executable (info) || indx != 0) &&
6907 (h == NULL
6908 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6909 || h->root.type != bfd_link_hash_undefweak);
6910
6911 BFD_ASSERT (globals->root.srelgot != NULL);
6912
6913 if (need_relocs)
6914 {
6915 Elf_Internal_Rela rela;
6916 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6917 rela.r_addend = 0;
6918 rela.r_offset = globals->root.sgot->output_section->vma +
6919 globals->root.sgot->output_offset + off;
6920
6921
6922 loc = globals->root.srelgot->contents;
6923 loc += globals->root.srelgot->reloc_count++
6924 * RELOC_SIZE (htab);
6925 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6926
6927 bfd_reloc_code_real_type real_type =
6928 elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
6929
6930 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6931 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6932 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6933 {
6934 /* For local dynamic, don't generate DTPREL in any case.
6935 Initialize the DTPREL slot into zero, so we get module
6936 base address when invoke runtime TLS resolver. */
6937 bfd_put_NN (output_bfd, 0,
6938 globals->root.sgot->contents + off
6939 + GOT_ENTRY_SIZE);
6940 }
6941 else if (indx == 0)
6942 {
6943 bfd_put_NN (output_bfd,
6944 relocation - dtpoff_base (info),
6945 globals->root.sgot->contents + off
6946 + GOT_ENTRY_SIZE);
6947 }
6948 else
6949 {
6950 /* This TLS symbol is global. We emit a
6951 relocation to fixup the tls offset at load
6952 time. */
6953 rela.r_info =
6954 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6955 rela.r_addend = 0;
6956 rela.r_offset =
6957 (globals->root.sgot->output_section->vma
6958 + globals->root.sgot->output_offset + off
6959 + GOT_ENTRY_SIZE);
6960
6961 loc = globals->root.srelgot->contents;
6962 loc += globals->root.srelgot->reloc_count++
6963 * RELOC_SIZE (globals);
6964 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6965 bfd_put_NN (output_bfd, (bfd_vma) 0,
6966 globals->root.sgot->contents + off
6967 + GOT_ENTRY_SIZE);
6968 }
6969 }
6970 else
6971 {
6972 bfd_put_NN (output_bfd, (bfd_vma) 1,
6973 globals->root.sgot->contents + off);
6974 bfd_put_NN (output_bfd,
6975 relocation - dtpoff_base (info),
6976 globals->root.sgot->contents + off
6977 + GOT_ENTRY_SIZE);
6978 }
6979
6980 symbol_got_offset_mark (input_bfd, h, r_symndx);
6981 }
6982 break;
6983
6984 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6985 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6986 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6987 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6988 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6989 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6990 {
6991 bfd_boolean need_relocs = FALSE;
6992 bfd_byte *loc;
6993 int indx;
6994 bfd_vma off;
6995
6996 off = symbol_got_offset (input_bfd, h, r_symndx);
6997
6998 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6999
7000 need_relocs =
7001 (!bfd_link_executable (info) || indx != 0) &&
7002 (h == NULL
7003 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7004 || h->root.type != bfd_link_hash_undefweak);
7005
7006 BFD_ASSERT (globals->root.srelgot != NULL);
7007
7008 if (need_relocs)
7009 {
7010 Elf_Internal_Rela rela;
7011
7012 if (indx == 0)
7013 rela.r_addend = relocation - dtpoff_base (info);
7014 else
7015 rela.r_addend = 0;
7016
7017 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
7018 rela.r_offset = globals->root.sgot->output_section->vma +
7019 globals->root.sgot->output_offset + off;
7020
7021 loc = globals->root.srelgot->contents;
7022 loc += globals->root.srelgot->reloc_count++
7023 * RELOC_SIZE (htab);
7024
7025 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
7026
7027 bfd_put_NN (output_bfd, rela.r_addend,
7028 globals->root.sgot->contents + off);
7029 }
7030 else
7031 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
7032 globals->root.sgot->contents + off);
7033
7034 symbol_got_offset_mark (input_bfd, h, r_symndx);
7035 }
7036 break;
7037
7038 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7039 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7040 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7041 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
7042 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7043 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7044 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7045 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
7046 {
7047 bfd_boolean need_relocs = FALSE;
7048 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
7049 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
7050
7051 need_relocs = (h == NULL
7052 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7053 || h->root.type != bfd_link_hash_undefweak);
7054
7055 BFD_ASSERT (globals->root.srelgot != NULL);
7056 BFD_ASSERT (globals->root.sgot != NULL);
7057
7058 if (need_relocs)
7059 {
7060 bfd_byte *loc;
7061 Elf_Internal_Rela rela;
7062 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
7063
7064 rela.r_addend = 0;
7065 rela.r_offset = (globals->root.sgotplt->output_section->vma
7066 + globals->root.sgotplt->output_offset
7067 + off + globals->sgotplt_jump_table_size);
7068
7069 if (indx == 0)
7070 rela.r_addend = relocation - dtpoff_base (info);
7071
7072 /* Allocate the next available slot in the PLT reloc
7073 section to hold our R_AARCH64_TLSDESC, the next
7074 available slot is determined from reloc_count,
7075 which we step. But note, reloc_count was
7076 artifically moved down while allocating slots for
7077 real PLT relocs such that all of the PLT relocs
7078 will fit above the initial reloc_count and the
7079 extra stuff will fit below. */
7080 loc = globals->root.srelplt->contents;
7081 loc += globals->root.srelplt->reloc_count++
7082 * RELOC_SIZE (globals);
7083
7084 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
7085
7086 bfd_put_NN (output_bfd, (bfd_vma) 0,
7087 globals->root.sgotplt->contents + off +
7088 globals->sgotplt_jump_table_size);
7089 bfd_put_NN (output_bfd, (bfd_vma) 0,
7090 globals->root.sgotplt->contents + off +
7091 globals->sgotplt_jump_table_size +
7092 GOT_ENTRY_SIZE);
7093 }
7094
7095 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
7096 }
7097 break;
7098 default:
7099 break;
7100 }
7101
7102 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7103 because such sections are not SEC_ALLOC and thus ld.so will
7104 not process them. */
7105 if (unresolved_reloc
7106 && !((input_section->flags & SEC_DEBUGGING) != 0
7107 && h->def_dynamic)
7108 && _bfd_elf_section_offset (output_bfd, info, input_section,
7109 +rel->r_offset) != (bfd_vma) - 1)
7110 {
7111 _bfd_error_handler
7112 /* xgettext:c-format */
7113 (_("%pB(%pA+%#" PRIx64 "): "
7114 "unresolvable %s relocation against symbol `%s'"),
7115 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name,
7116 h->root.root.string);
7117 return FALSE;
7118 }
7119
7120 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
7121 {
7122 bfd_reloc_code_real_type real_r_type
7123 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
7124
7125 switch (r)
7126 {
7127 case bfd_reloc_overflow:
7128 (*info->callbacks->reloc_overflow)
7129 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
7130 input_bfd, input_section, rel->r_offset);
7131 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
7132 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
7133 {
7134 (*info->callbacks->warning)
7135 (info,
7136 _("too many GOT entries for -fpic, "
7137 "please recompile with -fPIC"),
7138 name, input_bfd, input_section, rel->r_offset);
7139 return FALSE;
7140 }
7141 /* Overflow can occur when a variable is referenced with a type
7142 that has a larger alignment than the type with which it was
7143 declared. eg:
7144 file1.c: extern int foo; int a (void) { return foo; }
7145 file2.c: char bar, foo, baz;
7146 If the variable is placed into a data section at an offset
7147 that is incompatible with the larger alignment requirement
7148 overflow will occur. (Strictly speaking this is not overflow
7149 but rather an alignment problem, but the bfd_reloc_ error
7150 enum does not have a value to cover that situation).
7151
7152 Try to catch this situation here and provide a more helpful
7153 error message to the user. */
7154 if (addend & ((1 << howto->rightshift) - 1)
7155 /* FIXME: Are we testing all of the appropriate reloc
7156 types here ? */
7157 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
7158 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
7159 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
7160 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
7161 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
7162 {
7163 info->callbacks->warning
7164 (info, _("one possible cause of this error is that the \
7165 symbol is being referenced in the indicated code as if it had a larger \
7166 alignment than was declared where it was defined"),
7167 name, input_bfd, input_section, rel->r_offset);
7168 }
7169 break;
7170
7171 case bfd_reloc_undefined:
7172 (*info->callbacks->undefined_symbol)
7173 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
7174 break;
7175
7176 case bfd_reloc_outofrange:
7177 error_message = _("out of range");
7178 goto common_error;
7179
7180 case bfd_reloc_notsupported:
7181 error_message = _("unsupported relocation");
7182 goto common_error;
7183
7184 case bfd_reloc_dangerous:
7185 /* error_message should already be set. */
7186 goto common_error;
7187
7188 default:
7189 error_message = _("unknown error");
7190 /* Fall through. */
7191
7192 common_error:
7193 BFD_ASSERT (error_message != NULL);
7194 (*info->callbacks->reloc_dangerous)
7195 (info, error_message, input_bfd, input_section, rel->r_offset);
7196 break;
7197 }
7198 }
7199
7200 if (!save_addend)
7201 addend = 0;
7202 }
7203
7204 return TRUE;
7205 }
7206
7207 /* Set the right machine number. */
7208
7209 static bfd_boolean
7210 elfNN_aarch64_object_p (bfd *abfd)
7211 {
7212 #if ARCH_SIZE == 32
7213 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
7214 #else
7215 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
7216 #endif
7217 return TRUE;
7218 }
7219
7220 /* Function to keep AArch64 specific flags in the ELF header. */
7221
7222 static bfd_boolean
7223 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
7224 {
7225 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
7226 {
7227 }
7228 else
7229 {
7230 elf_elfheader (abfd)->e_flags = flags;
7231 elf_flags_init (abfd) = TRUE;
7232 }
7233
7234 return TRUE;
7235 }
7236
7237 /* Merge backend specific data from an object file to the output
7238 object file when linking. */
7239
7240 static bfd_boolean
7241 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
7242 {
7243 bfd *obfd = info->output_bfd;
7244 flagword out_flags;
7245 flagword in_flags;
7246 bfd_boolean flags_compatible = TRUE;
7247 asection *sec;
7248
7249 /* Check if we have the same endianess. */
7250 if (!_bfd_generic_verify_endian_match (ibfd, info))
7251 return FALSE;
7252
7253 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
7254 return TRUE;
7255
7256 /* The input BFD must have had its flags initialised. */
7257 /* The following seems bogus to me -- The flags are initialized in
7258 the assembler but I don't think an elf_flags_init field is
7259 written into the object. */
7260 /* BFD_ASSERT (elf_flags_init (ibfd)); */
7261
7262 in_flags = elf_elfheader (ibfd)->e_flags;
7263 out_flags = elf_elfheader (obfd)->e_flags;
7264
7265 if (!elf_flags_init (obfd))
7266 {
7267 /* If the input is the default architecture and had the default
7268 flags then do not bother setting the flags for the output
7269 architecture, instead allow future merges to do this. If no
7270 future merges ever set these flags then they will retain their
7271 uninitialised values, which surprise surprise, correspond
7272 to the default values. */
7273 if (bfd_get_arch_info (ibfd)->the_default
7274 && elf_elfheader (ibfd)->e_flags == 0)
7275 return TRUE;
7276
7277 elf_flags_init (obfd) = TRUE;
7278 elf_elfheader (obfd)->e_flags = in_flags;
7279
7280 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
7281 && bfd_get_arch_info (obfd)->the_default)
7282 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
7283 bfd_get_mach (ibfd));
7284
7285 return TRUE;
7286 }
7287
7288 /* Identical flags must be compatible. */
7289 if (in_flags == out_flags)
7290 return TRUE;
7291
7292 /* Check to see if the input BFD actually contains any sections. If
7293 not, its flags may not have been initialised either, but it
7294 cannot actually cause any incompatiblity. Do not short-circuit
7295 dynamic objects; their section list may be emptied by
7296 elf_link_add_object_symbols.
7297
7298 Also check to see if there are no code sections in the input.
7299 In this case there is no need to check for code specific flags.
7300 XXX - do we need to worry about floating-point format compatability
7301 in data sections ? */
7302 if (!(ibfd->flags & DYNAMIC))
7303 {
7304 bfd_boolean null_input_bfd = TRUE;
7305 bfd_boolean only_data_sections = TRUE;
7306
7307 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7308 {
7309 if ((bfd_section_flags (sec)
7310 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7311 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7312 only_data_sections = FALSE;
7313
7314 null_input_bfd = FALSE;
7315 break;
7316 }
7317
7318 if (null_input_bfd || only_data_sections)
7319 return TRUE;
7320 }
7321
7322 return flags_compatible;
7323 }
7324
7325 /* Display the flags field. */
7326
7327 static bfd_boolean
7328 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
7329 {
7330 FILE *file = (FILE *) ptr;
7331 unsigned long flags;
7332
7333 BFD_ASSERT (abfd != NULL && ptr != NULL);
7334
7335 /* Print normal ELF private data. */
7336 _bfd_elf_print_private_bfd_data (abfd, ptr);
7337
7338 flags = elf_elfheader (abfd)->e_flags;
7339 /* Ignore init flag - it may not be set, despite the flags field
7340 containing valid data. */
7341
7342 /* xgettext:c-format */
7343 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
7344
7345 if (flags)
7346 fprintf (file, _("<Unrecognised flag bits set>"));
7347
7348 fputc ('\n', file);
7349
7350 return TRUE;
7351 }
7352
7353 /* Return true if we need copy relocation against EH. */
7354
7355 static bfd_boolean
7356 need_copy_relocation_p (struct elf_aarch64_link_hash_entry *eh)
7357 {
7358 struct elf_dyn_relocs *p;
7359 asection *s;
7360
7361 for (p = eh->root.dyn_relocs; p != NULL; p = p->next)
7362 {
7363 /* If there is any pc-relative reference, we need to keep copy relocation
7364 to avoid propagating the relocation into runtime that current glibc
7365 does not support. */
7366 if (p->pc_count)
7367 return TRUE;
7368
7369 s = p->sec->output_section;
7370 /* Need copy relocation if it's against read-only section. */
7371 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7372 return TRUE;
7373 }
7374
7375 return FALSE;
7376 }
7377
7378 /* Adjust a symbol defined by a dynamic object and referenced by a
7379 regular object. The current definition is in some section of the
7380 dynamic object, but we're not including those sections. We have to
7381 change the definition to something the rest of the link can
7382 understand. */
7383
7384 static bfd_boolean
7385 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
7386 struct elf_link_hash_entry *h)
7387 {
7388 struct elf_aarch64_link_hash_table *htab;
7389 asection *s, *srel;
7390
7391 /* If this is a function, put it in the procedure linkage table. We
7392 will fill in the contents of the procedure linkage table later,
7393 when we know the address of the .got section. */
7394 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
7395 {
7396 if (h->plt.refcount <= 0
7397 || (h->type != STT_GNU_IFUNC
7398 && (SYMBOL_CALLS_LOCAL (info, h)
7399 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7400 && h->root.type == bfd_link_hash_undefweak))))
7401 {
7402 /* This case can occur if we saw a CALL26 reloc in
7403 an input file, but the symbol wasn't referred to
7404 by a dynamic object or all references were
7405 garbage collected. In which case we can end up
7406 resolving. */
7407 h->plt.offset = (bfd_vma) - 1;
7408 h->needs_plt = 0;
7409 }
7410
7411 return TRUE;
7412 }
7413 else
7414 /* Otherwise, reset to -1. */
7415 h->plt.offset = (bfd_vma) - 1;
7416
7417
7418 /* If this is a weak symbol, and there is a real definition, the
7419 processor independent code will have arranged for us to see the
7420 real definition first, and we can just use the same value. */
7421 if (h->is_weakalias)
7422 {
7423 struct elf_link_hash_entry *def = weakdef (h);
7424 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
7425 h->root.u.def.section = def->root.u.def.section;
7426 h->root.u.def.value = def->root.u.def.value;
7427 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
7428 h->non_got_ref = def->non_got_ref;
7429 return TRUE;
7430 }
7431
7432 /* If we are creating a shared library, we must presume that the
7433 only references to the symbol are via the global offset table.
7434 For such cases we need not do anything here; the relocations will
7435 be handled correctly by relocate_section. */
7436 if (bfd_link_pic (info))
7437 return TRUE;
7438
7439 /* If there are no references to this symbol that do not use the
7440 GOT, we don't need to generate a copy reloc. */
7441 if (!h->non_got_ref)
7442 return TRUE;
7443
7444 /* If -z nocopyreloc was given, we won't generate them either. */
7445 if (info->nocopyreloc)
7446 {
7447 h->non_got_ref = 0;
7448 return TRUE;
7449 }
7450
7451 if (ELIMINATE_COPY_RELOCS)
7452 {
7453 struct elf_aarch64_link_hash_entry *eh;
7454 /* If we don't find any dynamic relocs in read-only sections, then
7455 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7456 eh = (struct elf_aarch64_link_hash_entry *) h;
7457 if (!need_copy_relocation_p (eh))
7458 {
7459 h->non_got_ref = 0;
7460 return TRUE;
7461 }
7462 }
7463
7464 /* We must allocate the symbol in our .dynbss section, which will
7465 become part of the .bss section of the executable. There will be
7466 an entry for this symbol in the .dynsym section. The dynamic
7467 object will contain position independent code, so all references
7468 from the dynamic object to this symbol will go through the global
7469 offset table. The dynamic linker will use the .dynsym entry to
7470 determine the address it must put in the global offset table, so
7471 both the dynamic object and the regular object will refer to the
7472 same memory location for the variable. */
7473
7474 htab = elf_aarch64_hash_table (info);
7475
7476 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
7477 to copy the initial value out of the dynamic object and into the
7478 runtime process image. */
7479 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
7480 {
7481 s = htab->root.sdynrelro;
7482 srel = htab->root.sreldynrelro;
7483 }
7484 else
7485 {
7486 s = htab->root.sdynbss;
7487 srel = htab->root.srelbss;
7488 }
7489 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7490 {
7491 srel->size += RELOC_SIZE (htab);
7492 h->needs_copy = 1;
7493 }
7494
7495 return _bfd_elf_adjust_dynamic_copy (info, h, s);
7496
7497 }
7498
7499 static bfd_boolean
7500 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
7501 {
7502 struct elf_aarch64_local_symbol *locals;
7503 locals = elf_aarch64_locals (abfd);
7504 if (locals == NULL)
7505 {
7506 locals = (struct elf_aarch64_local_symbol *)
7507 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
7508 if (locals == NULL)
7509 return FALSE;
7510 elf_aarch64_locals (abfd) = locals;
7511 }
7512 return TRUE;
7513 }
7514
7515 /* Create the .got section to hold the global offset table. */
7516
7517 static bfd_boolean
7518 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
7519 {
7520 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7521 flagword flags;
7522 asection *s;
7523 struct elf_link_hash_entry *h;
7524 struct elf_link_hash_table *htab = elf_hash_table (info);
7525
7526 /* This function may be called more than once. */
7527 if (htab->sgot != NULL)
7528 return TRUE;
7529
7530 flags = bed->dynamic_sec_flags;
7531
7532 s = bfd_make_section_anyway_with_flags (abfd,
7533 (bed->rela_plts_and_copies_p
7534 ? ".rela.got" : ".rel.got"),
7535 (bed->dynamic_sec_flags
7536 | SEC_READONLY));
7537 if (s == NULL
7538 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7539 return FALSE;
7540 htab->srelgot = s;
7541
7542 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
7543 if (s == NULL
7544 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7545 return FALSE;
7546 htab->sgot = s;
7547 htab->sgot->size += GOT_ENTRY_SIZE;
7548
7549 if (bed->want_got_sym)
7550 {
7551 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
7552 (or .got.plt) section. We don't do this in the linker script
7553 because we don't want to define the symbol if we are not creating
7554 a global offset table. */
7555 h = _bfd_elf_define_linkage_sym (abfd, info, s,
7556 "_GLOBAL_OFFSET_TABLE_");
7557 elf_hash_table (info)->hgot = h;
7558 if (h == NULL)
7559 return FALSE;
7560 }
7561
7562 if (bed->want_got_plt)
7563 {
7564 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
7565 if (s == NULL
7566 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7567 return FALSE;
7568 htab->sgotplt = s;
7569 }
7570
7571 /* The first bit of the global offset table is the header. */
7572 s->size += bed->got_header_size;
7573
7574 return TRUE;
7575 }
7576
7577 /* Look through the relocs for a section during the first phase. */
7578
7579 static bfd_boolean
7580 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
7581 asection *sec, const Elf_Internal_Rela *relocs)
7582 {
7583 Elf_Internal_Shdr *symtab_hdr;
7584 struct elf_link_hash_entry **sym_hashes;
7585 const Elf_Internal_Rela *rel;
7586 const Elf_Internal_Rela *rel_end;
7587 asection *sreloc;
7588
7589 struct elf_aarch64_link_hash_table *htab;
7590
7591 if (bfd_link_relocatable (info))
7592 return TRUE;
7593
7594 BFD_ASSERT (is_aarch64_elf (abfd));
7595
7596 htab = elf_aarch64_hash_table (info);
7597 sreloc = NULL;
7598
7599 symtab_hdr = &elf_symtab_hdr (abfd);
7600 sym_hashes = elf_sym_hashes (abfd);
7601
7602 rel_end = relocs + sec->reloc_count;
7603 for (rel = relocs; rel < rel_end; rel++)
7604 {
7605 struct elf_link_hash_entry *h;
7606 unsigned int r_symndx;
7607 unsigned int r_type;
7608 bfd_reloc_code_real_type bfd_r_type;
7609 Elf_Internal_Sym *isym;
7610
7611 r_symndx = ELFNN_R_SYM (rel->r_info);
7612 r_type = ELFNN_R_TYPE (rel->r_info);
7613
7614 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7615 {
7616 /* xgettext:c-format */
7617 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd, r_symndx);
7618 return FALSE;
7619 }
7620
7621 if (r_symndx < symtab_hdr->sh_info)
7622 {
7623 /* A local symbol. */
7624 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7625 abfd, r_symndx);
7626 if (isym == NULL)
7627 return FALSE;
7628
7629 /* Check relocation against local STT_GNU_IFUNC symbol. */
7630 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7631 {
7632 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7633 TRUE);
7634 if (h == NULL)
7635 return FALSE;
7636
7637 /* Fake a STT_GNU_IFUNC symbol. */
7638 h->type = STT_GNU_IFUNC;
7639 h->def_regular = 1;
7640 h->ref_regular = 1;
7641 h->forced_local = 1;
7642 h->root.type = bfd_link_hash_defined;
7643 }
7644 else
7645 h = NULL;
7646 }
7647 else
7648 {
7649 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7650 while (h->root.type == bfd_link_hash_indirect
7651 || h->root.type == bfd_link_hash_warning)
7652 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7653 }
7654
7655 /* Could be done earlier, if h were already available. */
7656 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
7657
7658 if (h != NULL)
7659 {
7660 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7661 This shows up in particular in an R_AARCH64_PREL64 in large model
7662 when calculating the pc-relative address to .got section which is
7663 used to initialize the gp register. */
7664 if (h->root.root.string
7665 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7666 {
7667 if (htab->root.dynobj == NULL)
7668 htab->root.dynobj = abfd;
7669
7670 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7671 return FALSE;
7672
7673 BFD_ASSERT (h == htab->root.hgot);
7674 }
7675
7676 /* Create the ifunc sections for static executables. If we
7677 never see an indirect function symbol nor we are building
7678 a static executable, those sections will be empty and
7679 won't appear in output. */
7680 switch (bfd_r_type)
7681 {
7682 default:
7683 break;
7684
7685 case BFD_RELOC_AARCH64_ADD_LO12:
7686 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7687 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7688 case BFD_RELOC_AARCH64_CALL26:
7689 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7690 case BFD_RELOC_AARCH64_JUMP26:
7691 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7692 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7693 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7694 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7695 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7696 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7697 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7698 case BFD_RELOC_AARCH64_NN:
7699 if (htab->root.dynobj == NULL)
7700 htab->root.dynobj = abfd;
7701 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7702 return FALSE;
7703 break;
7704 }
7705
7706 /* It is referenced by a non-shared object. */
7707 h->ref_regular = 1;
7708 }
7709
7710 switch (bfd_r_type)
7711 {
7712 case BFD_RELOC_AARCH64_16:
7713 #if ARCH_SIZE == 64
7714 case BFD_RELOC_AARCH64_32:
7715 #endif
7716 if (bfd_link_pic (info) && (sec->flags & SEC_ALLOC) != 0)
7717 {
7718 if (h != NULL
7719 /* This is an absolute symbol. It represents a value instead
7720 of an address. */
7721 && (bfd_is_abs_symbol (&h->root)
7722 /* This is an undefined symbol. */
7723 || h->root.type == bfd_link_hash_undefined))
7724 break;
7725
7726 /* For local symbols, defined global symbols in a non-ABS section,
7727 it is assumed that the value is an address. */
7728 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7729 _bfd_error_handler
7730 /* xgettext:c-format */
7731 (_("%pB: relocation %s against `%s' can not be used when making "
7732 "a shared object"),
7733 abfd, elfNN_aarch64_howto_table[howto_index].name,
7734 (h) ? h->root.root.string : "a local symbol");
7735 bfd_set_error (bfd_error_bad_value);
7736 return FALSE;
7737 }
7738 else
7739 break;
7740
7741 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7742 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7743 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7744 case BFD_RELOC_AARCH64_MOVW_G3:
7745 if (bfd_link_pic (info))
7746 {
7747 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7748 _bfd_error_handler
7749 /* xgettext:c-format */
7750 (_("%pB: relocation %s against `%s' can not be used when making "
7751 "a shared object; recompile with -fPIC"),
7752 abfd, elfNN_aarch64_howto_table[howto_index].name,
7753 (h) ? h->root.root.string : "a local symbol");
7754 bfd_set_error (bfd_error_bad_value);
7755 return FALSE;
7756 }
7757 /* Fall through. */
7758
7759 case BFD_RELOC_AARCH64_16_PCREL:
7760 case BFD_RELOC_AARCH64_32_PCREL:
7761 case BFD_RELOC_AARCH64_64_PCREL:
7762 case BFD_RELOC_AARCH64_ADD_LO12:
7763 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7764 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7765 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7766 case BFD_RELOC_AARCH64_LDST128_LO12:
7767 case BFD_RELOC_AARCH64_LDST16_LO12:
7768 case BFD_RELOC_AARCH64_LDST32_LO12:
7769 case BFD_RELOC_AARCH64_LDST64_LO12:
7770 case BFD_RELOC_AARCH64_LDST8_LO12:
7771 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7772 if (h == NULL || bfd_link_pic (info))
7773 break;
7774 /* Fall through. */
7775
7776 case BFD_RELOC_AARCH64_NN:
7777
7778 /* We don't need to handle relocs into sections not going into
7779 the "real" output. */
7780 if ((sec->flags & SEC_ALLOC) == 0)
7781 break;
7782
7783 if (h != NULL)
7784 {
7785 if (!bfd_link_pic (info))
7786 h->non_got_ref = 1;
7787
7788 h->plt.refcount += 1;
7789 h->pointer_equality_needed = 1;
7790 }
7791
7792 /* No need to do anything if we're not creating a shared
7793 object. */
7794 if (!(bfd_link_pic (info)
7795 /* If on the other hand, we are creating an executable, we
7796 may need to keep relocations for symbols satisfied by a
7797 dynamic library if we manage to avoid copy relocs for the
7798 symbol.
7799
7800 NOTE: Currently, there is no support of copy relocs
7801 elimination on pc-relative relocation types, because there is
7802 no dynamic relocation support for them in glibc. We still
7803 record the dynamic symbol reference for them. This is
7804 because one symbol may be referenced by both absolute
7805 relocation (for example, BFD_RELOC_AARCH64_NN) and
7806 pc-relative relocation. We need full symbol reference
7807 information to make correct decision later in
7808 elfNN_aarch64_adjust_dynamic_symbol. */
7809 || (ELIMINATE_COPY_RELOCS
7810 && !bfd_link_pic (info)
7811 && h != NULL
7812 && (h->root.type == bfd_link_hash_defweak
7813 || !h->def_regular))))
7814 break;
7815
7816 {
7817 struct elf_dyn_relocs *p;
7818 struct elf_dyn_relocs **head;
7819 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7820
7821 /* We must copy these reloc types into the output file.
7822 Create a reloc section in dynobj and make room for
7823 this reloc. */
7824 if (sreloc == NULL)
7825 {
7826 if (htab->root.dynobj == NULL)
7827 htab->root.dynobj = abfd;
7828
7829 sreloc = _bfd_elf_make_dynamic_reloc_section
7830 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
7831
7832 if (sreloc == NULL)
7833 return FALSE;
7834 }
7835
7836 /* If this is a global symbol, we count the number of
7837 relocations we need for this symbol. */
7838 if (h != NULL)
7839 {
7840 head = &h->dyn_relocs;
7841 }
7842 else
7843 {
7844 /* Track dynamic relocs needed for local syms too.
7845 We really need local syms available to do this
7846 easily. Oh well. */
7847
7848 asection *s;
7849 void **vpp;
7850
7851 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7852 abfd, r_symndx);
7853 if (isym == NULL)
7854 return FALSE;
7855
7856 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7857 if (s == NULL)
7858 s = sec;
7859
7860 /* Beware of type punned pointers vs strict aliasing
7861 rules. */
7862 vpp = &(elf_section_data (s)->local_dynrel);
7863 head = (struct elf_dyn_relocs **) vpp;
7864 }
7865
7866 p = *head;
7867 if (p == NULL || p->sec != sec)
7868 {
7869 size_t amt = sizeof *p;
7870 p = ((struct elf_dyn_relocs *)
7871 bfd_zalloc (htab->root.dynobj, amt));
7872 if (p == NULL)
7873 return FALSE;
7874 p->next = *head;
7875 *head = p;
7876 p->sec = sec;
7877 }
7878
7879 p->count += 1;
7880
7881 if (elfNN_aarch64_howto_table[howto_index].pc_relative)
7882 p->pc_count += 1;
7883 }
7884 break;
7885
7886 /* RR: We probably want to keep a consistency check that
7887 there are no dangling GOT_PAGE relocs. */
7888 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7889 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7890 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7891 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7892 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7893 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7894 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7895 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7896 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7897 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7898 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7899 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7900 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7901 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7902 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7903 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7904 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7905 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7906 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7907 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7908 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7909 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7910 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7911 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7912 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7913 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7914 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7915 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7916 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7917 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7918 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7919 {
7920 unsigned got_type;
7921 unsigned old_got_type;
7922
7923 got_type = aarch64_reloc_got_type (bfd_r_type);
7924
7925 if (h)
7926 {
7927 h->got.refcount += 1;
7928 old_got_type = elf_aarch64_hash_entry (h)->got_type;
7929 }
7930 else
7931 {
7932 struct elf_aarch64_local_symbol *locals;
7933
7934 if (!elfNN_aarch64_allocate_local_symbols
7935 (abfd, symtab_hdr->sh_info))
7936 return FALSE;
7937
7938 locals = elf_aarch64_locals (abfd);
7939 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7940 locals[r_symndx].got_refcount += 1;
7941 old_got_type = locals[r_symndx].got_type;
7942 }
7943
7944 /* If a variable is accessed with both general dynamic TLS
7945 methods, two slots may be created. */
7946 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7947 got_type |= old_got_type;
7948
7949 /* We will already have issued an error message if there
7950 is a TLS/non-TLS mismatch, based on the symbol type.
7951 So just combine any TLS types needed. */
7952 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7953 && got_type != GOT_NORMAL)
7954 got_type |= old_got_type;
7955
7956 /* If the symbol is accessed by both IE and GD methods, we
7957 are able to relax. Turn off the GD flag, without
7958 messing up with any other kind of TLS types that may be
7959 involved. */
7960 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7961 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7962
7963 if (old_got_type != got_type)
7964 {
7965 if (h != NULL)
7966 elf_aarch64_hash_entry (h)->got_type = got_type;
7967 else
7968 {
7969 struct elf_aarch64_local_symbol *locals;
7970 locals = elf_aarch64_locals (abfd);
7971 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7972 locals[r_symndx].got_type = got_type;
7973 }
7974 }
7975
7976 if (htab->root.dynobj == NULL)
7977 htab->root.dynobj = abfd;
7978 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7979 return FALSE;
7980 break;
7981 }
7982
7983 case BFD_RELOC_AARCH64_BRANCH19:
7984 case BFD_RELOC_AARCH64_TSTBR14:
7985 case BFD_RELOC_AARCH64_CALL26:
7986 case BFD_RELOC_AARCH64_JUMP26:
7987 /* If this is a local symbol then we resolve it
7988 directly without creating a PLT entry. */
7989 if (h == NULL)
7990 continue;
7991
7992 h->needs_plt = 1;
7993 if (h->plt.refcount <= 0)
7994 h->plt.refcount = 1;
7995 else
7996 h->plt.refcount += 1;
7997 break;
7998
7999 default:
8000 break;
8001 }
8002 }
8003
8004 return TRUE;
8005 }
8006
8007 /* Treat mapping symbols as special target symbols. */
8008
8009 static bfd_boolean
8010 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8011 asymbol *sym)
8012 {
8013 return bfd_is_aarch64_special_symbol_name (sym->name,
8014 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
8015 }
8016
8017 /* If the ELF symbol SYM might be a function in SEC, return the
8018 function size and set *CODE_OFF to the function's entry point,
8019 otherwise return zero. */
8020
8021 static bfd_size_type
8022 elfNN_aarch64_maybe_function_sym (const asymbol *sym, asection *sec,
8023 bfd_vma *code_off)
8024 {
8025 bfd_size_type size;
8026
8027 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
8028 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
8029 || sym->section != sec)
8030 return 0;
8031
8032 if (!(sym->flags & BSF_SYNTHETIC))
8033 switch (ELF_ST_TYPE (((elf_symbol_type *) sym)->internal_elf_sym.st_info))
8034 {
8035 case STT_FUNC:
8036 case STT_NOTYPE:
8037 break;
8038 default:
8039 return 0;
8040 }
8041
8042 if ((sym->flags & BSF_LOCAL)
8043 && bfd_is_aarch64_special_symbol_name (sym->name,
8044 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY))
8045 return 0;
8046
8047 *code_off = sym->value;
8048 size = 0;
8049 if (!(sym->flags & BSF_SYNTHETIC))
8050 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
8051 if (size == 0)
8052 size = 1;
8053 return size;
8054 }
8055
8056 static bfd_boolean
8057 elfNN_aarch64_find_inliner_info (bfd *abfd,
8058 const char **filename_ptr,
8059 const char **functionname_ptr,
8060 unsigned int *line_ptr)
8061 {
8062 bfd_boolean found;
8063 found = _bfd_dwarf2_find_inliner_info
8064 (abfd, filename_ptr,
8065 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
8066 return found;
8067 }
8068
8069
8070 static bfd_boolean
8071 elfNN_aarch64_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
8072 {
8073 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
8074
8075 if (!_bfd_elf_init_file_header (abfd, link_info))
8076 return FALSE;
8077
8078 i_ehdrp = elf_elfheader (abfd);
8079 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
8080 return TRUE;
8081 }
8082
8083 static enum elf_reloc_type_class
8084 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
8085 const asection *rel_sec ATTRIBUTE_UNUSED,
8086 const Elf_Internal_Rela *rela)
8087 {
8088 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
8089
8090 if (htab->root.dynsym != NULL
8091 && htab->root.dynsym->contents != NULL)
8092 {
8093 /* Check relocation against STT_GNU_IFUNC symbol if there are
8094 dynamic symbols. */
8095 bfd *abfd = info->output_bfd;
8096 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8097 unsigned long r_symndx = ELFNN_R_SYM (rela->r_info);
8098 if (r_symndx != STN_UNDEF)
8099 {
8100 Elf_Internal_Sym sym;
8101 if (!bed->s->swap_symbol_in (abfd,
8102 (htab->root.dynsym->contents
8103 + r_symndx * bed->s->sizeof_sym),
8104 0, &sym))
8105 {
8106 /* xgettext:c-format */
8107 _bfd_error_handler (_("%pB symbol number %lu references"
8108 " nonexistent SHT_SYMTAB_SHNDX section"),
8109 abfd, r_symndx);
8110 /* Ideally an error class should be returned here. */
8111 }
8112 else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
8113 return reloc_class_ifunc;
8114 }
8115 }
8116
8117 switch ((int) ELFNN_R_TYPE (rela->r_info))
8118 {
8119 case AARCH64_R (IRELATIVE):
8120 return reloc_class_ifunc;
8121 case AARCH64_R (RELATIVE):
8122 return reloc_class_relative;
8123 case AARCH64_R (JUMP_SLOT):
8124 return reloc_class_plt;
8125 case AARCH64_R (COPY):
8126 return reloc_class_copy;
8127 default:
8128 return reloc_class_normal;
8129 }
8130 }
8131
8132 /* Handle an AArch64 specific section when reading an object file. This is
8133 called when bfd_section_from_shdr finds a section with an unknown
8134 type. */
8135
8136 static bfd_boolean
8137 elfNN_aarch64_section_from_shdr (bfd *abfd,
8138 Elf_Internal_Shdr *hdr,
8139 const char *name, int shindex)
8140 {
8141 /* There ought to be a place to keep ELF backend specific flags, but
8142 at the moment there isn't one. We just keep track of the
8143 sections by their name, instead. Fortunately, the ABI gives
8144 names for all the AArch64 specific sections, so we will probably get
8145 away with this. */
8146 switch (hdr->sh_type)
8147 {
8148 case SHT_AARCH64_ATTRIBUTES:
8149 break;
8150
8151 default:
8152 return FALSE;
8153 }
8154
8155 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
8156 return FALSE;
8157
8158 return TRUE;
8159 }
8160
8161 /* A structure used to record a list of sections, independently
8162 of the next and prev fields in the asection structure. */
8163 typedef struct section_list
8164 {
8165 asection *sec;
8166 struct section_list *next;
8167 struct section_list *prev;
8168 }
8169 section_list;
8170
8171 /* Unfortunately we need to keep a list of sections for which
8172 an _aarch64_elf_section_data structure has been allocated. This
8173 is because it is possible for functions like elfNN_aarch64_write_section
8174 to be called on a section which has had an elf_data_structure
8175 allocated for it (and so the used_by_bfd field is valid) but
8176 for which the AArch64 extended version of this structure - the
8177 _aarch64_elf_section_data structure - has not been allocated. */
8178 static section_list *sections_with_aarch64_elf_section_data = NULL;
8179
8180 static void
8181 record_section_with_aarch64_elf_section_data (asection *sec)
8182 {
8183 struct section_list *entry;
8184
8185 entry = bfd_malloc (sizeof (*entry));
8186 if (entry == NULL)
8187 return;
8188 entry->sec = sec;
8189 entry->next = sections_with_aarch64_elf_section_data;
8190 entry->prev = NULL;
8191 if (entry->next != NULL)
8192 entry->next->prev = entry;
8193 sections_with_aarch64_elf_section_data = entry;
8194 }
8195
8196 static struct section_list *
8197 find_aarch64_elf_section_entry (asection *sec)
8198 {
8199 struct section_list *entry;
8200 static struct section_list *last_entry = NULL;
8201
8202 /* This is a short cut for the typical case where the sections are added
8203 to the sections_with_aarch64_elf_section_data list in forward order and
8204 then looked up here in backwards order. This makes a real difference
8205 to the ld-srec/sec64k.exp linker test. */
8206 entry = sections_with_aarch64_elf_section_data;
8207 if (last_entry != NULL)
8208 {
8209 if (last_entry->sec == sec)
8210 entry = last_entry;
8211 else if (last_entry->next != NULL && last_entry->next->sec == sec)
8212 entry = last_entry->next;
8213 }
8214
8215 for (; entry; entry = entry->next)
8216 if (entry->sec == sec)
8217 break;
8218
8219 if (entry)
8220 /* Record the entry prior to this one - it is the entry we are
8221 most likely to want to locate next time. Also this way if we
8222 have been called from
8223 unrecord_section_with_aarch64_elf_section_data () we will not
8224 be caching a pointer that is about to be freed. */
8225 last_entry = entry->prev;
8226
8227 return entry;
8228 }
8229
8230 static void
8231 unrecord_section_with_aarch64_elf_section_data (asection *sec)
8232 {
8233 struct section_list *entry;
8234
8235 entry = find_aarch64_elf_section_entry (sec);
8236
8237 if (entry)
8238 {
8239 if (entry->prev != NULL)
8240 entry->prev->next = entry->next;
8241 if (entry->next != NULL)
8242 entry->next->prev = entry->prev;
8243 if (entry == sections_with_aarch64_elf_section_data)
8244 sections_with_aarch64_elf_section_data = entry->next;
8245 free (entry);
8246 }
8247 }
8248
8249
8250 typedef struct
8251 {
8252 void *finfo;
8253 struct bfd_link_info *info;
8254 asection *sec;
8255 int sec_shndx;
8256 int (*func) (void *, const char *, Elf_Internal_Sym *,
8257 asection *, struct elf_link_hash_entry *);
8258 } output_arch_syminfo;
8259
8260 enum map_symbol_type
8261 {
8262 AARCH64_MAP_INSN,
8263 AARCH64_MAP_DATA
8264 };
8265
8266
8267 /* Output a single mapping symbol. */
8268
8269 static bfd_boolean
8270 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
8271 enum map_symbol_type type, bfd_vma offset)
8272 {
8273 static const char *names[2] = { "$x", "$d" };
8274 Elf_Internal_Sym sym;
8275
8276 sym.st_value = (osi->sec->output_section->vma
8277 + osi->sec->output_offset + offset);
8278 sym.st_size = 0;
8279 sym.st_other = 0;
8280 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
8281 sym.st_shndx = osi->sec_shndx;
8282 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
8283 }
8284
8285 /* Output a single local symbol for a generated stub. */
8286
8287 static bfd_boolean
8288 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
8289 bfd_vma offset, bfd_vma size)
8290 {
8291 Elf_Internal_Sym sym;
8292
8293 sym.st_value = (osi->sec->output_section->vma
8294 + osi->sec->output_offset + offset);
8295 sym.st_size = size;
8296 sym.st_other = 0;
8297 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
8298 sym.st_shndx = osi->sec_shndx;
8299 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
8300 }
8301
8302 static bfd_boolean
8303 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8304 {
8305 struct elf_aarch64_stub_hash_entry *stub_entry;
8306 asection *stub_sec;
8307 bfd_vma addr;
8308 char *stub_name;
8309 output_arch_syminfo *osi;
8310
8311 /* Massage our args to the form they really have. */
8312 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
8313 osi = (output_arch_syminfo *) in_arg;
8314
8315 stub_sec = stub_entry->stub_sec;
8316
8317 /* Ensure this stub is attached to the current section being
8318 processed. */
8319 if (stub_sec != osi->sec)
8320 return TRUE;
8321
8322 addr = (bfd_vma) stub_entry->stub_offset;
8323
8324 stub_name = stub_entry->output_name;
8325
8326 switch (stub_entry->stub_type)
8327 {
8328 case aarch64_stub_adrp_branch:
8329 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8330 sizeof (aarch64_adrp_branch_stub)))
8331 return FALSE;
8332 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8333 return FALSE;
8334 break;
8335 case aarch64_stub_long_branch:
8336 if (!elfNN_aarch64_output_stub_sym
8337 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
8338 return FALSE;
8339 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8340 return FALSE;
8341 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
8342 return FALSE;
8343 break;
8344 case aarch64_stub_erratum_835769_veneer:
8345 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8346 sizeof (aarch64_erratum_835769_stub)))
8347 return FALSE;
8348 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8349 return FALSE;
8350 break;
8351 case aarch64_stub_erratum_843419_veneer:
8352 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8353 sizeof (aarch64_erratum_843419_stub)))
8354 return FALSE;
8355 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8356 return FALSE;
8357 break;
8358 case aarch64_stub_none:
8359 break;
8360
8361 default:
8362 abort ();
8363 }
8364
8365 return TRUE;
8366 }
8367
8368 /* Output mapping symbols for linker generated sections. */
8369
8370 static bfd_boolean
8371 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
8372 struct bfd_link_info *info,
8373 void *finfo,
8374 int (*func) (void *, const char *,
8375 Elf_Internal_Sym *,
8376 asection *,
8377 struct elf_link_hash_entry
8378 *))
8379 {
8380 output_arch_syminfo osi;
8381 struct elf_aarch64_link_hash_table *htab;
8382
8383 htab = elf_aarch64_hash_table (info);
8384
8385 osi.finfo = finfo;
8386 osi.info = info;
8387 osi.func = func;
8388
8389 /* Long calls stubs. */
8390 if (htab->stub_bfd && htab->stub_bfd->sections)
8391 {
8392 asection *stub_sec;
8393
8394 for (stub_sec = htab->stub_bfd->sections;
8395 stub_sec != NULL; stub_sec = stub_sec->next)
8396 {
8397 /* Ignore non-stub sections. */
8398 if (!strstr (stub_sec->name, STUB_SUFFIX))
8399 continue;
8400
8401 osi.sec = stub_sec;
8402
8403 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8404 (output_bfd, osi.sec->output_section);
8405
8406 /* The first instruction in a stub is always a branch. */
8407 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
8408 return FALSE;
8409
8410 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
8411 &osi);
8412 }
8413 }
8414
8415 /* Finally, output mapping symbols for the PLT. */
8416 if (!htab->root.splt || htab->root.splt->size == 0)
8417 return TRUE;
8418
8419 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8420 (output_bfd, htab->root.splt->output_section);
8421 osi.sec = htab->root.splt;
8422
8423 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
8424
8425 return TRUE;
8426
8427 }
8428
8429 /* Allocate target specific section data. */
8430
8431 static bfd_boolean
8432 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
8433 {
8434 if (!sec->used_by_bfd)
8435 {
8436 _aarch64_elf_section_data *sdata;
8437 size_t amt = sizeof (*sdata);
8438
8439 sdata = bfd_zalloc (abfd, amt);
8440 if (sdata == NULL)
8441 return FALSE;
8442 sec->used_by_bfd = sdata;
8443 }
8444
8445 record_section_with_aarch64_elf_section_data (sec);
8446
8447 return _bfd_elf_new_section_hook (abfd, sec);
8448 }
8449
8450
8451 static void
8452 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
8453 asection *sec,
8454 void *ignore ATTRIBUTE_UNUSED)
8455 {
8456 unrecord_section_with_aarch64_elf_section_data (sec);
8457 }
8458
8459 static bfd_boolean
8460 elfNN_aarch64_close_and_cleanup (bfd *abfd)
8461 {
8462 if (abfd->sections)
8463 bfd_map_over_sections (abfd,
8464 unrecord_section_via_map_over_sections, NULL);
8465
8466 return _bfd_elf_close_and_cleanup (abfd);
8467 }
8468
8469 static bfd_boolean
8470 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
8471 {
8472 if (abfd->sections)
8473 bfd_map_over_sections (abfd,
8474 unrecord_section_via_map_over_sections, NULL);
8475
8476 return _bfd_free_cached_info (abfd);
8477 }
8478
8479 /* Create dynamic sections. This is different from the ARM backend in that
8480 the got, plt, gotplt and their relocation sections are all created in the
8481 standard part of the bfd elf backend. */
8482
8483 static bfd_boolean
8484 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
8485 struct bfd_link_info *info)
8486 {
8487 /* We need to create .got section. */
8488 if (!aarch64_elf_create_got_section (dynobj, info))
8489 return FALSE;
8490
8491 return _bfd_elf_create_dynamic_sections (dynobj, info);
8492 }
8493
8494
8495 /* Allocate space in .plt, .got and associated reloc sections for
8496 dynamic relocs. */
8497
8498 static bfd_boolean
8499 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8500 {
8501 struct bfd_link_info *info;
8502 struct elf_aarch64_link_hash_table *htab;
8503 struct elf_aarch64_link_hash_entry *eh;
8504 struct elf_dyn_relocs *p;
8505
8506 /* An example of a bfd_link_hash_indirect symbol is versioned
8507 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8508 -> __gxx_personality_v0(bfd_link_hash_defined)
8509
8510 There is no need to process bfd_link_hash_indirect symbols here
8511 because we will also be presented with the concrete instance of
8512 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8513 called to copy all relevant data from the generic to the concrete
8514 symbol instance. */
8515 if (h->root.type == bfd_link_hash_indirect)
8516 return TRUE;
8517
8518 if (h->root.type == bfd_link_hash_warning)
8519 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8520
8521 info = (struct bfd_link_info *) inf;
8522 htab = elf_aarch64_hash_table (info);
8523
8524 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8525 here if it is defined and referenced in a non-shared object. */
8526 if (h->type == STT_GNU_IFUNC
8527 && h->def_regular)
8528 return TRUE;
8529 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
8530 {
8531 /* Make sure this symbol is output as a dynamic symbol.
8532 Undefined weak syms won't yet be marked as dynamic. */
8533 if (h->dynindx == -1 && !h->forced_local
8534 && h->root.type == bfd_link_hash_undefweak)
8535 {
8536 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8537 return FALSE;
8538 }
8539
8540 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8541 {
8542 asection *s = htab->root.splt;
8543
8544 /* If this is the first .plt entry, make room for the special
8545 first entry. */
8546 if (s->size == 0)
8547 s->size += htab->plt_header_size;
8548
8549 h->plt.offset = s->size;
8550
8551 /* If this symbol is not defined in a regular file, and we are
8552 not generating a shared library, then set the symbol to this
8553 location in the .plt. This is required to make function
8554 pointers compare as equal between the normal executable and
8555 the shared library. */
8556 if (!bfd_link_pic (info) && !h->def_regular)
8557 {
8558 h->root.u.def.section = s;
8559 h->root.u.def.value = h->plt.offset;
8560 }
8561
8562 /* Make room for this entry. For now we only create the
8563 small model PLT entries. We later need to find a way
8564 of relaxing into these from the large model PLT entries. */
8565 s->size += htab->plt_entry_size;
8566
8567 /* We also need to make an entry in the .got.plt section, which
8568 will be placed in the .got section by the linker script. */
8569 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
8570
8571 /* We also need to make an entry in the .rela.plt section. */
8572 htab->root.srelplt->size += RELOC_SIZE (htab);
8573
8574 /* We need to ensure that all GOT entries that serve the PLT
8575 are consecutive with the special GOT slots [0] [1] and
8576 [2]. Any addtional relocations, such as
8577 R_AARCH64_TLSDESC, must be placed after the PLT related
8578 entries. We abuse the reloc_count such that during
8579 sizing we adjust reloc_count to indicate the number of
8580 PLT related reserved entries. In subsequent phases when
8581 filling in the contents of the reloc entries, PLT related
8582 entries are placed by computing their PLT index (0
8583 .. reloc_count). While other none PLT relocs are placed
8584 at the slot indicated by reloc_count and reloc_count is
8585 updated. */
8586
8587 htab->root.srelplt->reloc_count++;
8588
8589 /* Mark the DSO in case R_<CLS>_JUMP_SLOT relocs against
8590 variant PCS symbols are present. */
8591 if (h->other & STO_AARCH64_VARIANT_PCS)
8592 htab->variant_pcs = 1;
8593
8594 }
8595 else
8596 {
8597 h->plt.offset = (bfd_vma) - 1;
8598 h->needs_plt = 0;
8599 }
8600 }
8601 else
8602 {
8603 h->plt.offset = (bfd_vma) - 1;
8604 h->needs_plt = 0;
8605 }
8606
8607 eh = (struct elf_aarch64_link_hash_entry *) h;
8608 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8609
8610 if (h->got.refcount > 0)
8611 {
8612 bfd_boolean dyn;
8613 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
8614
8615 h->got.offset = (bfd_vma) - 1;
8616
8617 dyn = htab->root.dynamic_sections_created;
8618
8619 /* Make sure this symbol is output as a dynamic symbol.
8620 Undefined weak syms won't yet be marked as dynamic. */
8621 if (dyn && h->dynindx == -1 && !h->forced_local
8622 && h->root.type == bfd_link_hash_undefweak)
8623 {
8624 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8625 return FALSE;
8626 }
8627
8628 if (got_type == GOT_UNKNOWN)
8629 {
8630 }
8631 else if (got_type == GOT_NORMAL)
8632 {
8633 h->got.offset = htab->root.sgot->size;
8634 htab->root.sgot->size += GOT_ENTRY_SIZE;
8635 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8636 || h->root.type != bfd_link_hash_undefweak)
8637 && (bfd_link_pic (info)
8638 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8639 /* Undefined weak symbol in static PIE resolves to 0 without
8640 any dynamic relocations. */
8641 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8642 {
8643 htab->root.srelgot->size += RELOC_SIZE (htab);
8644 }
8645 }
8646 else
8647 {
8648 int indx;
8649 if (got_type & GOT_TLSDESC_GD)
8650 {
8651 eh->tlsdesc_got_jump_table_offset =
8652 (htab->root.sgotplt->size
8653 - aarch64_compute_jump_table_size (htab));
8654 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8655 h->got.offset = (bfd_vma) - 2;
8656 }
8657
8658 if (got_type & GOT_TLS_GD)
8659 {
8660 h->got.offset = htab->root.sgot->size;
8661 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8662 }
8663
8664 if (got_type & GOT_TLS_IE)
8665 {
8666 h->got.offset = htab->root.sgot->size;
8667 htab->root.sgot->size += GOT_ENTRY_SIZE;
8668 }
8669
8670 indx = h && h->dynindx != -1 ? h->dynindx : 0;
8671 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8672 || h->root.type != bfd_link_hash_undefweak)
8673 && (!bfd_link_executable (info)
8674 || indx != 0
8675 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8676 {
8677 if (got_type & GOT_TLSDESC_GD)
8678 {
8679 htab->root.srelplt->size += RELOC_SIZE (htab);
8680 /* Note reloc_count not incremented here! We have
8681 already adjusted reloc_count for this relocation
8682 type. */
8683
8684 /* TLSDESC PLT is now needed, but not yet determined. */
8685 htab->tlsdesc_plt = (bfd_vma) - 1;
8686 }
8687
8688 if (got_type & GOT_TLS_GD)
8689 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8690
8691 if (got_type & GOT_TLS_IE)
8692 htab->root.srelgot->size += RELOC_SIZE (htab);
8693 }
8694 }
8695 }
8696 else
8697 {
8698 h->got.offset = (bfd_vma) - 1;
8699 }
8700
8701 if (h->dyn_relocs == NULL)
8702 return TRUE;
8703
8704 /* In the shared -Bsymbolic case, discard space allocated for
8705 dynamic pc-relative relocs against symbols which turn out to be
8706 defined in regular objects. For the normal shared case, discard
8707 space for pc-relative relocs that have become local due to symbol
8708 visibility changes. */
8709
8710 if (bfd_link_pic (info))
8711 {
8712 /* Relocs that use pc_count are those that appear on a call
8713 insn, or certain REL relocs that can generated via assembly.
8714 We want calls to protected symbols to resolve directly to the
8715 function rather than going via the plt. If people want
8716 function pointer comparisons to work as expected then they
8717 should avoid writing weird assembly. */
8718 if (SYMBOL_CALLS_LOCAL (info, h))
8719 {
8720 struct elf_dyn_relocs **pp;
8721
8722 for (pp = &h->dyn_relocs; (p = *pp) != NULL;)
8723 {
8724 p->count -= p->pc_count;
8725 p->pc_count = 0;
8726 if (p->count == 0)
8727 *pp = p->next;
8728 else
8729 pp = &p->next;
8730 }
8731 }
8732
8733 /* Also discard relocs on undefined weak syms with non-default
8734 visibility. */
8735 if (h->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8736 {
8737 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8738 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8739 h->dyn_relocs = NULL;
8740
8741 /* Make sure undefined weak symbols are output as a dynamic
8742 symbol in PIEs. */
8743 else if (h->dynindx == -1
8744 && !h->forced_local
8745 && h->root.type == bfd_link_hash_undefweak
8746 && !bfd_elf_link_record_dynamic_symbol (info, h))
8747 return FALSE;
8748 }
8749
8750 }
8751 else if (ELIMINATE_COPY_RELOCS)
8752 {
8753 /* For the non-shared case, discard space for relocs against
8754 symbols which turn out to need copy relocs or are not
8755 dynamic. */
8756
8757 if (!h->non_got_ref
8758 && ((h->def_dynamic
8759 && !h->def_regular)
8760 || (htab->root.dynamic_sections_created
8761 && (h->root.type == bfd_link_hash_undefweak
8762 || h->root.type == bfd_link_hash_undefined))))
8763 {
8764 /* Make sure this symbol is output as a dynamic symbol.
8765 Undefined weak syms won't yet be marked as dynamic. */
8766 if (h->dynindx == -1
8767 && !h->forced_local
8768 && h->root.type == bfd_link_hash_undefweak
8769 && !bfd_elf_link_record_dynamic_symbol (info, h))
8770 return FALSE;
8771
8772 /* If that succeeded, we know we'll be keeping all the
8773 relocs. */
8774 if (h->dynindx != -1)
8775 goto keep;
8776 }
8777
8778 h->dyn_relocs = NULL;
8779
8780 keep:;
8781 }
8782
8783 /* Finally, allocate space. */
8784 for (p = h->dyn_relocs; p != NULL; p = p->next)
8785 {
8786 asection *sreloc;
8787
8788 sreloc = elf_section_data (p->sec)->sreloc;
8789
8790 BFD_ASSERT (sreloc != NULL);
8791
8792 sreloc->size += p->count * RELOC_SIZE (htab);
8793 }
8794
8795 return TRUE;
8796 }
8797
8798 /* Allocate space in .plt, .got and associated reloc sections for
8799 ifunc dynamic relocs. */
8800
8801 static bfd_boolean
8802 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8803 void *inf)
8804 {
8805 struct bfd_link_info *info;
8806 struct elf_aarch64_link_hash_table *htab;
8807
8808 /* An example of a bfd_link_hash_indirect symbol is versioned
8809 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8810 -> __gxx_personality_v0(bfd_link_hash_defined)
8811
8812 There is no need to process bfd_link_hash_indirect symbols here
8813 because we will also be presented with the concrete instance of
8814 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8815 called to copy all relevant data from the generic to the concrete
8816 symbol instance. */
8817 if (h->root.type == bfd_link_hash_indirect)
8818 return TRUE;
8819
8820 if (h->root.type == bfd_link_hash_warning)
8821 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8822
8823 info = (struct bfd_link_info *) inf;
8824 htab = elf_aarch64_hash_table (info);
8825
8826 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8827 here if it is defined and referenced in a non-shared object. */
8828 if (h->type == STT_GNU_IFUNC
8829 && h->def_regular)
8830 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8831 &h->dyn_relocs,
8832 NULL,
8833 htab->plt_entry_size,
8834 htab->plt_header_size,
8835 GOT_ENTRY_SIZE,
8836 FALSE);
8837 return TRUE;
8838 }
8839
8840 /* Allocate space in .plt, .got and associated reloc sections for
8841 local ifunc dynamic relocs. */
8842
8843 static bfd_boolean
8844 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8845 {
8846 struct elf_link_hash_entry *h
8847 = (struct elf_link_hash_entry *) *slot;
8848
8849 if (h->type != STT_GNU_IFUNC
8850 || !h->def_regular
8851 || !h->ref_regular
8852 || !h->forced_local
8853 || h->root.type != bfd_link_hash_defined)
8854 abort ();
8855
8856 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8857 }
8858
8859 /* This is the most important function of all . Innocuosly named
8860 though ! */
8861
8862 static bfd_boolean
8863 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8864 struct bfd_link_info *info)
8865 {
8866 struct elf_aarch64_link_hash_table *htab;
8867 bfd *dynobj;
8868 asection *s;
8869 bfd_boolean relocs;
8870 bfd *ibfd;
8871
8872 htab = elf_aarch64_hash_table ((info));
8873 dynobj = htab->root.dynobj;
8874
8875 BFD_ASSERT (dynobj != NULL);
8876
8877 if (htab->root.dynamic_sections_created)
8878 {
8879 if (bfd_link_executable (info) && !info->nointerp)
8880 {
8881 s = bfd_get_linker_section (dynobj, ".interp");
8882 if (s == NULL)
8883 abort ();
8884 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8885 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8886 }
8887 }
8888
8889 /* Set up .got offsets for local syms, and space for local dynamic
8890 relocs. */
8891 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8892 {
8893 struct elf_aarch64_local_symbol *locals = NULL;
8894 Elf_Internal_Shdr *symtab_hdr;
8895 asection *srel;
8896 unsigned int i;
8897
8898 if (!is_aarch64_elf (ibfd))
8899 continue;
8900
8901 for (s = ibfd->sections; s != NULL; s = s->next)
8902 {
8903 struct elf_dyn_relocs *p;
8904
8905 for (p = (struct elf_dyn_relocs *)
8906 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8907 {
8908 if (!bfd_is_abs_section (p->sec)
8909 && bfd_is_abs_section (p->sec->output_section))
8910 {
8911 /* Input section has been discarded, either because
8912 it is a copy of a linkonce section or due to
8913 linker script /DISCARD/, so we'll be discarding
8914 the relocs too. */
8915 }
8916 else if (p->count != 0)
8917 {
8918 srel = elf_section_data (p->sec)->sreloc;
8919 srel->size += p->count * RELOC_SIZE (htab);
8920 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8921 info->flags |= DF_TEXTREL;
8922 }
8923 }
8924 }
8925
8926 locals = elf_aarch64_locals (ibfd);
8927 if (!locals)
8928 continue;
8929
8930 symtab_hdr = &elf_symtab_hdr (ibfd);
8931 srel = htab->root.srelgot;
8932 for (i = 0; i < symtab_hdr->sh_info; i++)
8933 {
8934 locals[i].got_offset = (bfd_vma) - 1;
8935 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8936 if (locals[i].got_refcount > 0)
8937 {
8938 unsigned got_type = locals[i].got_type;
8939 if (got_type & GOT_TLSDESC_GD)
8940 {
8941 locals[i].tlsdesc_got_jump_table_offset =
8942 (htab->root.sgotplt->size
8943 - aarch64_compute_jump_table_size (htab));
8944 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8945 locals[i].got_offset = (bfd_vma) - 2;
8946 }
8947
8948 if (got_type & GOT_TLS_GD)
8949 {
8950 locals[i].got_offset = htab->root.sgot->size;
8951 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8952 }
8953
8954 if (got_type & GOT_TLS_IE
8955 || got_type & GOT_NORMAL)
8956 {
8957 locals[i].got_offset = htab->root.sgot->size;
8958 htab->root.sgot->size += GOT_ENTRY_SIZE;
8959 }
8960
8961 if (got_type == GOT_UNKNOWN)
8962 {
8963 }
8964
8965 if (bfd_link_pic (info))
8966 {
8967 if (got_type & GOT_TLSDESC_GD)
8968 {
8969 htab->root.srelplt->size += RELOC_SIZE (htab);
8970 /* Note RELOC_COUNT not incremented here! */
8971 htab->tlsdesc_plt = (bfd_vma) - 1;
8972 }
8973
8974 if (got_type & GOT_TLS_GD)
8975 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8976
8977 if (got_type & GOT_TLS_IE
8978 || got_type & GOT_NORMAL)
8979 htab->root.srelgot->size += RELOC_SIZE (htab);
8980 }
8981 }
8982 else
8983 {
8984 locals[i].got_refcount = (bfd_vma) - 1;
8985 }
8986 }
8987 }
8988
8989
8990 /* Allocate global sym .plt and .got entries, and space for global
8991 sym dynamic relocs. */
8992 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
8993 info);
8994
8995 /* Allocate global ifunc sym .plt and .got entries, and space for global
8996 ifunc sym dynamic relocs. */
8997 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
8998 info);
8999
9000 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
9001 htab_traverse (htab->loc_hash_table,
9002 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
9003 info);
9004
9005 /* For every jump slot reserved in the sgotplt, reloc_count is
9006 incremented. However, when we reserve space for TLS descriptors,
9007 it's not incremented, so in order to compute the space reserved
9008 for them, it suffices to multiply the reloc count by the jump
9009 slot size. */
9010
9011 if (htab->root.srelplt)
9012 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
9013
9014 if (htab->tlsdesc_plt)
9015 {
9016 if (htab->root.splt->size == 0)
9017 htab->root.splt->size += htab->plt_header_size;
9018
9019 /* If we're not using lazy TLS relocations, don't generate the
9020 GOT and PLT entry required. */
9021 if (!(info->flags & DF_BIND_NOW))
9022 {
9023 htab->tlsdesc_plt = htab->root.splt->size;
9024 htab->root.splt->size += htab->tlsdesc_plt_entry_size;
9025
9026 htab->dt_tlsdesc_got = htab->root.sgot->size;
9027 htab->root.sgot->size += GOT_ENTRY_SIZE;
9028 }
9029 }
9030
9031 /* Init mapping symbols information to use later to distingush between
9032 code and data while scanning for errata. */
9033 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
9034 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9035 {
9036 if (!is_aarch64_elf (ibfd))
9037 continue;
9038 bfd_elfNN_aarch64_init_maps (ibfd);
9039 }
9040
9041 /* We now have determined the sizes of the various dynamic sections.
9042 Allocate memory for them. */
9043 relocs = FALSE;
9044 for (s = dynobj->sections; s != NULL; s = s->next)
9045 {
9046 if ((s->flags & SEC_LINKER_CREATED) == 0)
9047 continue;
9048
9049 if (s == htab->root.splt
9050 || s == htab->root.sgot
9051 || s == htab->root.sgotplt
9052 || s == htab->root.iplt
9053 || s == htab->root.igotplt
9054 || s == htab->root.sdynbss
9055 || s == htab->root.sdynrelro)
9056 {
9057 /* Strip this section if we don't need it; see the
9058 comment below. */
9059 }
9060 else if (CONST_STRNEQ (bfd_section_name (s), ".rela"))
9061 {
9062 if (s->size != 0 && s != htab->root.srelplt)
9063 relocs = TRUE;
9064
9065 /* We use the reloc_count field as a counter if we need
9066 to copy relocs into the output file. */
9067 if (s != htab->root.srelplt)
9068 s->reloc_count = 0;
9069 }
9070 else
9071 {
9072 /* It's not one of our sections, so don't allocate space. */
9073 continue;
9074 }
9075
9076 if (s->size == 0)
9077 {
9078 /* If we don't need this section, strip it from the
9079 output file. This is mostly to handle .rela.bss and
9080 .rela.plt. We must create both sections in
9081 create_dynamic_sections, because they must be created
9082 before the linker maps input sections to output
9083 sections. The linker does that before
9084 adjust_dynamic_symbol is called, and it is that
9085 function which decides whether anything needs to go
9086 into these sections. */
9087 s->flags |= SEC_EXCLUDE;
9088 continue;
9089 }
9090
9091 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9092 continue;
9093
9094 /* Allocate memory for the section contents. We use bfd_zalloc
9095 here in case unused entries are not reclaimed before the
9096 section's contents are written out. This should not happen,
9097 but this way if it does, we get a R_AARCH64_NONE reloc instead
9098 of garbage. */
9099 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
9100 if (s->contents == NULL)
9101 return FALSE;
9102 }
9103
9104 if (htab->root.dynamic_sections_created)
9105 {
9106 /* Add some entries to the .dynamic section. We fill in the
9107 values later, in elfNN_aarch64_finish_dynamic_sections, but we
9108 must add the entries now so that we get the correct size for
9109 the .dynamic section. The DT_DEBUG entry is filled in by the
9110 dynamic linker and used by the debugger. */
9111 #define add_dynamic_entry(TAG, VAL) \
9112 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9113
9114 if (bfd_link_executable (info))
9115 {
9116 if (!add_dynamic_entry (DT_DEBUG, 0))
9117 return FALSE;
9118 }
9119
9120 if (htab->root.splt->size != 0)
9121 {
9122 if (!add_dynamic_entry (DT_PLTGOT, 0)
9123 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9124 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9125 || !add_dynamic_entry (DT_JMPREL, 0))
9126 return FALSE;
9127
9128 if (htab->variant_pcs
9129 && !add_dynamic_entry (DT_AARCH64_VARIANT_PCS, 0))
9130 return FALSE;
9131
9132 if (htab->tlsdesc_plt
9133 && !(info->flags & DF_BIND_NOW)
9134 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
9135 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
9136 return FALSE;
9137
9138 if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI_PAC)
9139 && (!add_dynamic_entry (DT_AARCH64_BTI_PLT, 0)
9140 || !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0)))
9141 return FALSE;
9142
9143 else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI)
9144 && !add_dynamic_entry (DT_AARCH64_BTI_PLT, 0))
9145 return FALSE;
9146
9147 else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_PAC)
9148 && !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0))
9149 return FALSE;
9150 }
9151
9152 if (relocs)
9153 {
9154 if (!add_dynamic_entry (DT_RELA, 0)
9155 || !add_dynamic_entry (DT_RELASZ, 0)
9156 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
9157 return FALSE;
9158
9159 /* If any dynamic relocs apply to a read-only section,
9160 then we need a DT_TEXTREL entry. */
9161 if ((info->flags & DF_TEXTREL) == 0)
9162 elf_link_hash_traverse (&htab->root,
9163 _bfd_elf_maybe_set_textrel, info);
9164
9165 if ((info->flags & DF_TEXTREL) != 0)
9166 {
9167 if (!add_dynamic_entry (DT_TEXTREL, 0))
9168 return FALSE;
9169 }
9170 }
9171 }
9172 #undef add_dynamic_entry
9173
9174 return TRUE;
9175 }
9176
9177 static inline void
9178 elf_aarch64_update_plt_entry (bfd *output_bfd,
9179 bfd_reloc_code_real_type r_type,
9180 bfd_byte *plt_entry, bfd_vma value)
9181 {
9182 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
9183
9184 /* FIXME: We should check the return value from this function call. */
9185 (void) _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
9186 }
9187
9188 static void
9189 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
9190 struct elf_aarch64_link_hash_table
9191 *htab, bfd *output_bfd,
9192 struct bfd_link_info *info)
9193 {
9194 bfd_byte *plt_entry;
9195 bfd_vma plt_index;
9196 bfd_vma got_offset;
9197 bfd_vma gotplt_entry_address;
9198 bfd_vma plt_entry_address;
9199 Elf_Internal_Rela rela;
9200 bfd_byte *loc;
9201 asection *plt, *gotplt, *relplt;
9202
9203 /* When building a static executable, use .iplt, .igot.plt and
9204 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9205 if (htab->root.splt != NULL)
9206 {
9207 plt = htab->root.splt;
9208 gotplt = htab->root.sgotplt;
9209 relplt = htab->root.srelplt;
9210 }
9211 else
9212 {
9213 plt = htab->root.iplt;
9214 gotplt = htab->root.igotplt;
9215 relplt = htab->root.irelplt;
9216 }
9217
9218 /* Get the index in the procedure linkage table which
9219 corresponds to this symbol. This is the index of this symbol
9220 in all the symbols for which we are making plt entries. The
9221 first entry in the procedure linkage table is reserved.
9222
9223 Get the offset into the .got table of the entry that
9224 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
9225 bytes. The first three are reserved for the dynamic linker.
9226
9227 For static executables, we don't reserve anything. */
9228
9229 if (plt == htab->root.splt)
9230 {
9231 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
9232 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
9233 }
9234 else
9235 {
9236 plt_index = h->plt.offset / htab->plt_entry_size;
9237 got_offset = plt_index * GOT_ENTRY_SIZE;
9238 }
9239
9240 plt_entry = plt->contents + h->plt.offset;
9241 plt_entry_address = plt->output_section->vma
9242 + plt->output_offset + h->plt.offset;
9243 gotplt_entry_address = gotplt->output_section->vma +
9244 gotplt->output_offset + got_offset;
9245
9246 /* Copy in the boiler-plate for the PLTn entry. */
9247 memcpy (plt_entry, htab->plt_entry, htab->plt_entry_size);
9248
9249 /* First instruction in BTI enabled PLT stub is a BTI
9250 instruction so skip it. */
9251 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI
9252 && elf_elfheader (output_bfd)->e_type == ET_EXEC)
9253 plt_entry = plt_entry + 4;
9254
9255 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9256 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9257 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9258 plt_entry,
9259 PG (gotplt_entry_address) -
9260 PG (plt_entry_address));
9261
9262 /* Fill in the lo12 bits for the load from the pltgot. */
9263 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9264 plt_entry + 4,
9265 PG_OFFSET (gotplt_entry_address));
9266
9267 /* Fill in the lo12 bits for the add from the pltgot entry. */
9268 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9269 plt_entry + 8,
9270 PG_OFFSET (gotplt_entry_address));
9271
9272 /* All the GOTPLT Entries are essentially initialized to PLT0. */
9273 bfd_put_NN (output_bfd,
9274 plt->output_section->vma + plt->output_offset,
9275 gotplt->contents + got_offset);
9276
9277 rela.r_offset = gotplt_entry_address;
9278
9279 if (h->dynindx == -1
9280 || ((bfd_link_executable (info)
9281 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9282 && h->def_regular
9283 && h->type == STT_GNU_IFUNC))
9284 {
9285 /* If an STT_GNU_IFUNC symbol is locally defined, generate
9286 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
9287 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
9288 rela.r_addend = (h->root.u.def.value
9289 + h->root.u.def.section->output_section->vma
9290 + h->root.u.def.section->output_offset);
9291 }
9292 else
9293 {
9294 /* Fill in the entry in the .rela.plt section. */
9295 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
9296 rela.r_addend = 0;
9297 }
9298
9299 /* Compute the relocation entry to used based on PLT index and do
9300 not adjust reloc_count. The reloc_count has already been adjusted
9301 to account for this entry. */
9302 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
9303 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9304 }
9305
9306 /* Size sections even though they're not dynamic. We use it to setup
9307 _TLS_MODULE_BASE_, if needed. */
9308
9309 static bfd_boolean
9310 elfNN_aarch64_always_size_sections (bfd *output_bfd,
9311 struct bfd_link_info *info)
9312 {
9313 asection *tls_sec;
9314
9315 if (bfd_link_relocatable (info))
9316 return TRUE;
9317
9318 tls_sec = elf_hash_table (info)->tls_sec;
9319
9320 if (tls_sec)
9321 {
9322 struct elf_link_hash_entry *tlsbase;
9323
9324 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
9325 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
9326
9327 if (tlsbase)
9328 {
9329 struct bfd_link_hash_entry *h = NULL;
9330 const struct elf_backend_data *bed =
9331 get_elf_backend_data (output_bfd);
9332
9333 if (!(_bfd_generic_link_add_one_symbol
9334 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
9335 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
9336 return FALSE;
9337
9338 tlsbase->type = STT_TLS;
9339 tlsbase = (struct elf_link_hash_entry *) h;
9340 tlsbase->def_regular = 1;
9341 tlsbase->other = STV_HIDDEN;
9342 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
9343 }
9344 }
9345
9346 return TRUE;
9347 }
9348
9349 /* Finish up dynamic symbol handling. We set the contents of various
9350 dynamic sections here. */
9351
9352 static bfd_boolean
9353 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
9354 struct bfd_link_info *info,
9355 struct elf_link_hash_entry *h,
9356 Elf_Internal_Sym *sym)
9357 {
9358 struct elf_aarch64_link_hash_table *htab;
9359 htab = elf_aarch64_hash_table (info);
9360
9361 if (h->plt.offset != (bfd_vma) - 1)
9362 {
9363 asection *plt, *gotplt, *relplt;
9364
9365 /* This symbol has an entry in the procedure linkage table. Set
9366 it up. */
9367
9368 /* When building a static executable, use .iplt, .igot.plt and
9369 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9370 if (htab->root.splt != NULL)
9371 {
9372 plt = htab->root.splt;
9373 gotplt = htab->root.sgotplt;
9374 relplt = htab->root.srelplt;
9375 }
9376 else
9377 {
9378 plt = htab->root.iplt;
9379 gotplt = htab->root.igotplt;
9380 relplt = htab->root.irelplt;
9381 }
9382
9383 /* This symbol has an entry in the procedure linkage table. Set
9384 it up. */
9385 if ((h->dynindx == -1
9386 && !((h->forced_local || bfd_link_executable (info))
9387 && h->def_regular
9388 && h->type == STT_GNU_IFUNC))
9389 || plt == NULL
9390 || gotplt == NULL
9391 || relplt == NULL)
9392 return FALSE;
9393
9394 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
9395 if (!h->def_regular)
9396 {
9397 /* Mark the symbol as undefined, rather than as defined in
9398 the .plt section. */
9399 sym->st_shndx = SHN_UNDEF;
9400 /* If the symbol is weak we need to clear the value.
9401 Otherwise, the PLT entry would provide a definition for
9402 the symbol even if the symbol wasn't defined anywhere,
9403 and so the symbol would never be NULL. Leave the value if
9404 there were any relocations where pointer equality matters
9405 (this is a clue for the dynamic linker, to make function
9406 pointer comparisons work between an application and shared
9407 library). */
9408 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
9409 sym->st_value = 0;
9410 }
9411 }
9412
9413 if (h->got.offset != (bfd_vma) - 1
9414 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL
9415 /* Undefined weak symbol in static PIE resolves to 0 without
9416 any dynamic relocations. */
9417 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9418 {
9419 Elf_Internal_Rela rela;
9420 bfd_byte *loc;
9421
9422 /* This symbol has an entry in the global offset table. Set it
9423 up. */
9424 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
9425 abort ();
9426
9427 rela.r_offset = (htab->root.sgot->output_section->vma
9428 + htab->root.sgot->output_offset
9429 + (h->got.offset & ~(bfd_vma) 1));
9430
9431 if (h->def_regular
9432 && h->type == STT_GNU_IFUNC)
9433 {
9434 if (bfd_link_pic (info))
9435 {
9436 /* Generate R_AARCH64_GLOB_DAT. */
9437 goto do_glob_dat;
9438 }
9439 else
9440 {
9441 asection *plt;
9442
9443 if (!h->pointer_equality_needed)
9444 abort ();
9445
9446 /* For non-shared object, we can't use .got.plt, which
9447 contains the real function address if we need pointer
9448 equality. We load the GOT entry with the PLT entry. */
9449 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
9450 bfd_put_NN (output_bfd, (plt->output_section->vma
9451 + plt->output_offset
9452 + h->plt.offset),
9453 htab->root.sgot->contents
9454 + (h->got.offset & ~(bfd_vma) 1));
9455 return TRUE;
9456 }
9457 }
9458 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
9459 {
9460 if (!(h->def_regular || ELF_COMMON_DEF_P (h)))
9461 return FALSE;
9462
9463 BFD_ASSERT ((h->got.offset & 1) != 0);
9464 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
9465 rela.r_addend = (h->root.u.def.value
9466 + h->root.u.def.section->output_section->vma
9467 + h->root.u.def.section->output_offset);
9468 }
9469 else
9470 {
9471 do_glob_dat:
9472 BFD_ASSERT ((h->got.offset & 1) == 0);
9473 bfd_put_NN (output_bfd, (bfd_vma) 0,
9474 htab->root.sgot->contents + h->got.offset);
9475 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
9476 rela.r_addend = 0;
9477 }
9478
9479 loc = htab->root.srelgot->contents;
9480 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
9481 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9482 }
9483
9484 if (h->needs_copy)
9485 {
9486 Elf_Internal_Rela rela;
9487 asection *s;
9488 bfd_byte *loc;
9489
9490 /* This symbol needs a copy reloc. Set it up. */
9491 if (h->dynindx == -1
9492 || (h->root.type != bfd_link_hash_defined
9493 && h->root.type != bfd_link_hash_defweak)
9494 || htab->root.srelbss == NULL)
9495 abort ();
9496
9497 rela.r_offset = (h->root.u.def.value
9498 + h->root.u.def.section->output_section->vma
9499 + h->root.u.def.section->output_offset);
9500 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
9501 rela.r_addend = 0;
9502 if (h->root.u.def.section == htab->root.sdynrelro)
9503 s = htab->root.sreldynrelro;
9504 else
9505 s = htab->root.srelbss;
9506 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9507 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9508 }
9509
9510 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
9511 be NULL for local symbols. */
9512 if (sym != NULL
9513 && (h == elf_hash_table (info)->hdynamic
9514 || h == elf_hash_table (info)->hgot))
9515 sym->st_shndx = SHN_ABS;
9516
9517 return TRUE;
9518 }
9519
9520 /* Finish up local dynamic symbol handling. We set the contents of
9521 various dynamic sections here. */
9522
9523 static bfd_boolean
9524 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
9525 {
9526 struct elf_link_hash_entry *h
9527 = (struct elf_link_hash_entry *) *slot;
9528 struct bfd_link_info *info
9529 = (struct bfd_link_info *) inf;
9530
9531 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
9532 info, h, NULL);
9533 }
9534
9535 static void
9536 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
9537 struct elf_aarch64_link_hash_table
9538 *htab)
9539 {
9540 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
9541 small and large plts and at the minute just generates
9542 the small PLT. */
9543
9544 /* PLT0 of the small PLT looks like this in ELF64 -
9545 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
9546 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
9547 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
9548 // symbol resolver
9549 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
9550 // GOTPLT entry for this.
9551 br x17
9552 PLT0 will be slightly different in ELF32 due to different got entry
9553 size. */
9554 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
9555 bfd_vma plt_base;
9556
9557
9558 memcpy (htab->root.splt->contents, htab->plt0_entry,
9559 htab->plt_header_size);
9560 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
9561 htab->plt_header_size;
9562
9563 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
9564 + htab->root.sgotplt->output_offset
9565 + GOT_ENTRY_SIZE * 2);
9566
9567 plt_base = htab->root.splt->output_section->vma +
9568 htab->root.splt->output_offset;
9569
9570 /* First instruction in BTI enabled PLT stub is a BTI
9571 instruction so skip it. */
9572 bfd_byte *plt0_entry = htab->root.splt->contents;
9573 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI)
9574 plt0_entry = plt0_entry + 4;
9575
9576 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9577 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9578 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9579 plt0_entry + 4,
9580 PG (plt_got_2nd_ent) - PG (plt_base + 4));
9581
9582 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9583 plt0_entry + 8,
9584 PG_OFFSET (plt_got_2nd_ent));
9585
9586 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9587 plt0_entry + 12,
9588 PG_OFFSET (plt_got_2nd_ent));
9589 }
9590
9591 static bfd_boolean
9592 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
9593 struct bfd_link_info *info)
9594 {
9595 struct elf_aarch64_link_hash_table *htab;
9596 bfd *dynobj;
9597 asection *sdyn;
9598
9599 htab = elf_aarch64_hash_table (info);
9600 dynobj = htab->root.dynobj;
9601 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9602
9603 if (htab->root.dynamic_sections_created)
9604 {
9605 ElfNN_External_Dyn *dyncon, *dynconend;
9606
9607 if (sdyn == NULL || htab->root.sgot == NULL)
9608 abort ();
9609
9610 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9611 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
9612 for (; dyncon < dynconend; dyncon++)
9613 {
9614 Elf_Internal_Dyn dyn;
9615 asection *s;
9616
9617 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
9618
9619 switch (dyn.d_tag)
9620 {
9621 default:
9622 continue;
9623
9624 case DT_PLTGOT:
9625 s = htab->root.sgotplt;
9626 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9627 break;
9628
9629 case DT_JMPREL:
9630 s = htab->root.srelplt;
9631 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9632 break;
9633
9634 case DT_PLTRELSZ:
9635 s = htab->root.srelplt;
9636 dyn.d_un.d_val = s->size;
9637 break;
9638
9639 case DT_TLSDESC_PLT:
9640 s = htab->root.splt;
9641 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9642 + htab->tlsdesc_plt;
9643 break;
9644
9645 case DT_TLSDESC_GOT:
9646 s = htab->root.sgot;
9647 BFD_ASSERT (htab->dt_tlsdesc_got != (bfd_vma)-1);
9648 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9649 + htab->dt_tlsdesc_got;
9650 break;
9651 }
9652
9653 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
9654 }
9655
9656 }
9657
9658 /* Fill in the special first entry in the procedure linkage table. */
9659 if (htab->root.splt && htab->root.splt->size > 0)
9660 {
9661 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
9662
9663 elf_section_data (htab->root.splt->output_section)->
9664 this_hdr.sh_entsize = htab->plt_entry_size;
9665
9666
9667 if (htab->tlsdesc_plt && !(info->flags & DF_BIND_NOW))
9668 {
9669 BFD_ASSERT (htab->dt_tlsdesc_got != (bfd_vma)-1);
9670 bfd_put_NN (output_bfd, (bfd_vma) 0,
9671 htab->root.sgot->contents + htab->dt_tlsdesc_got);
9672
9673 const bfd_byte *entry = elfNN_aarch64_tlsdesc_small_plt_entry;
9674 htab->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
9675
9676 aarch64_plt_type type = elf_aarch64_tdata (output_bfd)->plt_type;
9677 if (type == PLT_BTI || type == PLT_BTI_PAC)
9678 {
9679 entry = elfNN_aarch64_tlsdesc_small_plt_bti_entry;
9680 }
9681
9682 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
9683 entry, htab->tlsdesc_plt_entry_size);
9684
9685 {
9686 bfd_vma adrp1_addr =
9687 htab->root.splt->output_section->vma
9688 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
9689
9690 bfd_vma adrp2_addr = adrp1_addr + 4;
9691
9692 bfd_vma got_addr =
9693 htab->root.sgot->output_section->vma
9694 + htab->root.sgot->output_offset;
9695
9696 bfd_vma pltgot_addr =
9697 htab->root.sgotplt->output_section->vma
9698 + htab->root.sgotplt->output_offset;
9699
9700 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
9701
9702 bfd_byte *plt_entry =
9703 htab->root.splt->contents + htab->tlsdesc_plt;
9704
9705 /* First instruction in BTI enabled PLT stub is a BTI
9706 instruction so skip it. */
9707 if (type & PLT_BTI)
9708 {
9709 plt_entry = plt_entry + 4;
9710 adrp1_addr = adrp1_addr + 4;
9711 adrp2_addr = adrp2_addr + 4;
9712 }
9713
9714 /* adrp x2, DT_TLSDESC_GOT */
9715 elf_aarch64_update_plt_entry (output_bfd,
9716 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9717 plt_entry + 4,
9718 (PG (dt_tlsdesc_got)
9719 - PG (adrp1_addr)));
9720
9721 /* adrp x3, 0 */
9722 elf_aarch64_update_plt_entry (output_bfd,
9723 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9724 plt_entry + 8,
9725 (PG (pltgot_addr)
9726 - PG (adrp2_addr)));
9727
9728 /* ldr x2, [x2, #0] */
9729 elf_aarch64_update_plt_entry (output_bfd,
9730 BFD_RELOC_AARCH64_LDSTNN_LO12,
9731 plt_entry + 12,
9732 PG_OFFSET (dt_tlsdesc_got));
9733
9734 /* add x3, x3, 0 */
9735 elf_aarch64_update_plt_entry (output_bfd,
9736 BFD_RELOC_AARCH64_ADD_LO12,
9737 plt_entry + 16,
9738 PG_OFFSET (pltgot_addr));
9739 }
9740 }
9741 }
9742
9743 if (htab->root.sgotplt)
9744 {
9745 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9746 {
9747 _bfd_error_handler
9748 (_("discarded output section: `%pA'"), htab->root.sgotplt);
9749 return FALSE;
9750 }
9751
9752 /* Fill in the first three entries in the global offset table. */
9753 if (htab->root.sgotplt->size > 0)
9754 {
9755 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9756
9757 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
9758 bfd_put_NN (output_bfd,
9759 (bfd_vma) 0,
9760 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
9761 bfd_put_NN (output_bfd,
9762 (bfd_vma) 0,
9763 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9764 }
9765
9766 if (htab->root.sgot)
9767 {
9768 if (htab->root.sgot->size > 0)
9769 {
9770 bfd_vma addr =
9771 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9772 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9773 }
9774 }
9775
9776 elf_section_data (htab->root.sgotplt->output_section)->
9777 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9778 }
9779
9780 if (htab->root.sgot && htab->root.sgot->size > 0)
9781 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9782 = GOT_ENTRY_SIZE;
9783
9784 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9785 htab_traverse (htab->loc_hash_table,
9786 elfNN_aarch64_finish_local_dynamic_symbol,
9787 info);
9788
9789 return TRUE;
9790 }
9791
9792 /* Check if BTI enabled PLTs are needed. Returns the type needed. */
9793 static aarch64_plt_type
9794 get_plt_type (bfd *abfd)
9795 {
9796 aarch64_plt_type ret = PLT_NORMAL;
9797 bfd_byte *contents, *extdyn, *extdynend;
9798 asection *sec = bfd_get_section_by_name (abfd, ".dynamic");
9799 if (!sec || !bfd_malloc_and_get_section (abfd, sec, &contents))
9800 return ret;
9801 extdyn = contents;
9802 extdynend = contents + sec->size;
9803 for (; extdyn < extdynend; extdyn += sizeof (ElfNN_External_Dyn))
9804 {
9805 Elf_Internal_Dyn dyn;
9806 bfd_elfNN_swap_dyn_in (abfd, extdyn, &dyn);
9807
9808 /* Let's check the processor specific dynamic array tags. */
9809 bfd_vma tag = dyn.d_tag;
9810 if (tag < DT_LOPROC || tag > DT_HIPROC)
9811 continue;
9812
9813 switch (tag)
9814 {
9815 case DT_AARCH64_BTI_PLT:
9816 ret |= PLT_BTI;
9817 break;
9818
9819 case DT_AARCH64_PAC_PLT:
9820 ret |= PLT_PAC;
9821 break;
9822
9823 default: break;
9824 }
9825 }
9826 free (contents);
9827 return ret;
9828 }
9829
9830 static long
9831 elfNN_aarch64_get_synthetic_symtab (bfd *abfd,
9832 long symcount,
9833 asymbol **syms,
9834 long dynsymcount,
9835 asymbol **dynsyms,
9836 asymbol **ret)
9837 {
9838 elf_aarch64_tdata (abfd)->plt_type = get_plt_type (abfd);
9839 return _bfd_elf_get_synthetic_symtab (abfd, symcount, syms,
9840 dynsymcount, dynsyms, ret);
9841 }
9842
9843 /* Return address for Ith PLT stub in section PLT, for relocation REL
9844 or (bfd_vma) -1 if it should not be included. */
9845
9846 static bfd_vma
9847 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9848 const arelent *rel ATTRIBUTE_UNUSED)
9849 {
9850 size_t plt0_size = PLT_ENTRY_SIZE;
9851 size_t pltn_size = PLT_SMALL_ENTRY_SIZE;
9852
9853 if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI_PAC)
9854 {
9855 if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9856 pltn_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
9857 else
9858 pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9859 }
9860 else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI)
9861 {
9862 if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9863 pltn_size = PLT_BTI_SMALL_ENTRY_SIZE;
9864 }
9865 else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_PAC)
9866 {
9867 pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9868 }
9869
9870 return plt->vma + plt0_size + i * pltn_size;
9871 }
9872
9873 /* Returns TRUE if NAME is an AArch64 mapping symbol.
9874 The ARM ELF standard defines $x (for A64 code) and $d (for data).
9875 It also allows a period initiated suffix to be added to the symbol, ie:
9876 "$[adtx]\.[:sym_char]+". */
9877
9878 static bfd_boolean
9879 is_aarch64_mapping_symbol (const char * name)
9880 {
9881 return name != NULL /* Paranoia. */
9882 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
9883 the mapping symbols could have acquired a prefix.
9884 We do not support this here, since such symbols no
9885 longer conform to the ARM ELF ABI. */
9886 && (name[1] == 'd' || name[1] == 'x')
9887 && (name[2] == 0 || name[2] == '.');
9888 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
9889 any characters that follow the period are legal characters for the body
9890 of a symbol's name. For now we just assume that this is the case. */
9891 }
9892
9893 /* Make sure that mapping symbols in object files are not removed via the
9894 "strip --strip-unneeded" tool. These symbols might needed in order to
9895 correctly generate linked files. Once an object file has been linked,
9896 it should be safe to remove them. */
9897
9898 static void
9899 elfNN_aarch64_backend_symbol_processing (bfd *abfd, asymbol *sym)
9900 {
9901 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
9902 && sym->section != bfd_abs_section_ptr
9903 && is_aarch64_mapping_symbol (sym->name))
9904 sym->flags |= BSF_KEEP;
9905 }
9906
9907 /* Implement elf_backend_setup_gnu_properties for AArch64. It serves as a
9908 wrapper function for _bfd_aarch64_elf_link_setup_gnu_properties to account
9909 for the effect of GNU properties of the output_bfd. */
9910 static bfd *
9911 elfNN_aarch64_link_setup_gnu_properties (struct bfd_link_info *info)
9912 {
9913 uint32_t prop = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
9914 bfd *pbfd = _bfd_aarch64_elf_link_setup_gnu_properties (info, &prop);
9915 elf_aarch64_tdata (info->output_bfd)->gnu_and_prop = prop;
9916 elf_aarch64_tdata (info->output_bfd)->plt_type
9917 |= (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) ? PLT_BTI : 0;
9918 setup_plt_values (info, elf_aarch64_tdata (info->output_bfd)->plt_type);
9919 return pbfd;
9920 }
9921
9922 /* Implement elf_backend_merge_gnu_properties for AArch64. It serves as a
9923 wrapper function for _bfd_aarch64_elf_merge_gnu_properties to account
9924 for the effect of GNU properties of the output_bfd. */
9925 static bfd_boolean
9926 elfNN_aarch64_merge_gnu_properties (struct bfd_link_info *info,
9927 bfd *abfd, bfd *bbfd,
9928 elf_property *aprop,
9929 elf_property *bprop)
9930 {
9931 uint32_t prop
9932 = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
9933
9934 /* If output has been marked with BTI using command line argument, give out
9935 warning if necessary. */
9936 /* Properties are merged per type, hence only check for warnings when merging
9937 GNU_PROPERTY_AARCH64_FEATURE_1_AND. */
9938 if (((aprop && aprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND)
9939 || (bprop && bprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND))
9940 && (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
9941 && (!elf_aarch64_tdata (info->output_bfd)->no_bti_warn))
9942 {
9943 if ((aprop && !(aprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
9944 || !aprop)
9945 {
9946 _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
9947 "all inputs do not have BTI in NOTE section."),
9948 abfd);
9949 }
9950 if ((bprop && !(bprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
9951 || !bprop)
9952 {
9953 _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
9954 "all inputs do not have BTI in NOTE section."),
9955 bbfd);
9956 }
9957 }
9958
9959 return _bfd_aarch64_elf_merge_gnu_properties (info, abfd, aprop,
9960 bprop, prop);
9961 }
9962
9963 /* We use this so we can override certain functions
9964 (though currently we don't). */
9965
9966 const struct elf_size_info elfNN_aarch64_size_info =
9967 {
9968 sizeof (ElfNN_External_Ehdr),
9969 sizeof (ElfNN_External_Phdr),
9970 sizeof (ElfNN_External_Shdr),
9971 sizeof (ElfNN_External_Rel),
9972 sizeof (ElfNN_External_Rela),
9973 sizeof (ElfNN_External_Sym),
9974 sizeof (ElfNN_External_Dyn),
9975 sizeof (Elf_External_Note),
9976 4, /* Hash table entry size. */
9977 1, /* Internal relocs per external relocs. */
9978 ARCH_SIZE, /* Arch size. */
9979 LOG_FILE_ALIGN, /* Log_file_align. */
9980 ELFCLASSNN, EV_CURRENT,
9981 bfd_elfNN_write_out_phdrs,
9982 bfd_elfNN_write_shdrs_and_ehdr,
9983 bfd_elfNN_checksum_contents,
9984 bfd_elfNN_write_relocs,
9985 bfd_elfNN_swap_symbol_in,
9986 bfd_elfNN_swap_symbol_out,
9987 bfd_elfNN_slurp_reloc_table,
9988 bfd_elfNN_slurp_symbol_table,
9989 bfd_elfNN_swap_dyn_in,
9990 bfd_elfNN_swap_dyn_out,
9991 bfd_elfNN_swap_reloc_in,
9992 bfd_elfNN_swap_reloc_out,
9993 bfd_elfNN_swap_reloca_in,
9994 bfd_elfNN_swap_reloca_out
9995 };
9996
9997 #define ELF_ARCH bfd_arch_aarch64
9998 #define ELF_MACHINE_CODE EM_AARCH64
9999 #define ELF_MAXPAGESIZE 0x10000
10000 #define ELF_MINPAGESIZE 0x1000
10001 #define ELF_COMMONPAGESIZE 0x1000
10002
10003 #define bfd_elfNN_close_and_cleanup \
10004 elfNN_aarch64_close_and_cleanup
10005
10006 #define bfd_elfNN_bfd_free_cached_info \
10007 elfNN_aarch64_bfd_free_cached_info
10008
10009 #define bfd_elfNN_bfd_is_target_special_symbol \
10010 elfNN_aarch64_is_target_special_symbol
10011
10012 #define bfd_elfNN_bfd_link_hash_table_create \
10013 elfNN_aarch64_link_hash_table_create
10014
10015 #define bfd_elfNN_bfd_merge_private_bfd_data \
10016 elfNN_aarch64_merge_private_bfd_data
10017
10018 #define bfd_elfNN_bfd_print_private_bfd_data \
10019 elfNN_aarch64_print_private_bfd_data
10020
10021 #define bfd_elfNN_bfd_reloc_type_lookup \
10022 elfNN_aarch64_reloc_type_lookup
10023
10024 #define bfd_elfNN_bfd_reloc_name_lookup \
10025 elfNN_aarch64_reloc_name_lookup
10026
10027 #define bfd_elfNN_bfd_set_private_flags \
10028 elfNN_aarch64_set_private_flags
10029
10030 #define bfd_elfNN_find_inliner_info \
10031 elfNN_aarch64_find_inliner_info
10032
10033 #define bfd_elfNN_get_synthetic_symtab \
10034 elfNN_aarch64_get_synthetic_symtab
10035
10036 #define bfd_elfNN_mkobject \
10037 elfNN_aarch64_mkobject
10038
10039 #define bfd_elfNN_new_section_hook \
10040 elfNN_aarch64_new_section_hook
10041
10042 #define elf_backend_adjust_dynamic_symbol \
10043 elfNN_aarch64_adjust_dynamic_symbol
10044
10045 #define elf_backend_always_size_sections \
10046 elfNN_aarch64_always_size_sections
10047
10048 #define elf_backend_check_relocs \
10049 elfNN_aarch64_check_relocs
10050
10051 #define elf_backend_copy_indirect_symbol \
10052 elfNN_aarch64_copy_indirect_symbol
10053
10054 #define elf_backend_merge_symbol_attribute \
10055 elfNN_aarch64_merge_symbol_attribute
10056
10057 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
10058 to them in our hash. */
10059 #define elf_backend_create_dynamic_sections \
10060 elfNN_aarch64_create_dynamic_sections
10061
10062 #define elf_backend_init_index_section \
10063 _bfd_elf_init_2_index_sections
10064
10065 #define elf_backend_finish_dynamic_sections \
10066 elfNN_aarch64_finish_dynamic_sections
10067
10068 #define elf_backend_finish_dynamic_symbol \
10069 elfNN_aarch64_finish_dynamic_symbol
10070
10071 #define elf_backend_object_p \
10072 elfNN_aarch64_object_p
10073
10074 #define elf_backend_output_arch_local_syms \
10075 elfNN_aarch64_output_arch_local_syms
10076
10077 #define elf_backend_maybe_function_sym \
10078 elfNN_aarch64_maybe_function_sym
10079
10080 #define elf_backend_plt_sym_val \
10081 elfNN_aarch64_plt_sym_val
10082
10083 #define elf_backend_init_file_header \
10084 elfNN_aarch64_init_file_header
10085
10086 #define elf_backend_relocate_section \
10087 elfNN_aarch64_relocate_section
10088
10089 #define elf_backend_reloc_type_class \
10090 elfNN_aarch64_reloc_type_class
10091
10092 #define elf_backend_section_from_shdr \
10093 elfNN_aarch64_section_from_shdr
10094
10095 #define elf_backend_size_dynamic_sections \
10096 elfNN_aarch64_size_dynamic_sections
10097
10098 #define elf_backend_size_info \
10099 elfNN_aarch64_size_info
10100
10101 #define elf_backend_write_section \
10102 elfNN_aarch64_write_section
10103
10104 #define elf_backend_symbol_processing \
10105 elfNN_aarch64_backend_symbol_processing
10106
10107 #define elf_backend_setup_gnu_properties \
10108 elfNN_aarch64_link_setup_gnu_properties
10109
10110 #define elf_backend_merge_gnu_properties \
10111 elfNN_aarch64_merge_gnu_properties
10112
10113 #define elf_backend_can_refcount 1
10114 #define elf_backend_can_gc_sections 1
10115 #define elf_backend_plt_readonly 1
10116 #define elf_backend_want_got_plt 1
10117 #define elf_backend_want_plt_sym 0
10118 #define elf_backend_want_dynrelro 1
10119 #define elf_backend_may_use_rel_p 0
10120 #define elf_backend_may_use_rela_p 1
10121 #define elf_backend_default_use_rela_p 1
10122 #define elf_backend_rela_normal 1
10123 #define elf_backend_dtrel_excludes_plt 1
10124 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
10125 #define elf_backend_default_execstack 0
10126 #define elf_backend_extern_protected_data 1
10127 #define elf_backend_hash_symbol elf_aarch64_hash_symbol
10128
10129 #undef elf_backend_obj_attrs_section
10130 #define elf_backend_obj_attrs_section ".ARM.attributes"
10131
10132 #include "elfNN-target.h"
10133
10134 /* CloudABI support. */
10135
10136 #undef TARGET_LITTLE_SYM
10137 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
10138 #undef TARGET_LITTLE_NAME
10139 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
10140 #undef TARGET_BIG_SYM
10141 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
10142 #undef TARGET_BIG_NAME
10143 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
10144
10145 #undef ELF_OSABI
10146 #define ELF_OSABI ELFOSABI_CLOUDABI
10147
10148 #undef elfNN_bed
10149 #define elfNN_bed elfNN_aarch64_cloudabi_bed
10150
10151 #include "elfNN-target.h"