]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elfnn-aarch64.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2019 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "elf-bfd.h"
143 #include "bfdlink.h"
144 #include "objalloc.h"
145 #include "elf/aarch64.h"
146 #include "elfxx-aarch64.h"
147
148 #define ARCH_SIZE NN
149
150 #if ARCH_SIZE == 64
151 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
152 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
153 #define HOWTO64(...) HOWTO (__VA_ARGS__)
154 #define HOWTO32(...) EMPTY_HOWTO (0)
155 #define LOG_FILE_ALIGN 3
156 #define BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
157 #endif
158
159 #if ARCH_SIZE == 32
160 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
161 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
162 #define HOWTO64(...) EMPTY_HOWTO (0)
163 #define HOWTO32(...) HOWTO (__VA_ARGS__)
164 #define LOG_FILE_ALIGN 2
165 #define BFD_RELOC_AARCH64_TLSDESC_LD32_LO12 BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
166 #define R_AARCH64_P32_TLSDESC_ADD_LO12 R_AARCH64_P32_TLSDESC_ADD_LO12_NC
167 #endif
168
169 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
170 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
171 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12 \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12 \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12 \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC \
209 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12 \
210 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
212 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
219 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
220
221 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
222 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
223 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
239 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
244
245 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
246 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
247 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
248 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
249 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
250 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
251 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
252 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
253 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12 \
254 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
255 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
256 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
257 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
258
259 #define ELIMINATE_COPY_RELOCS 1
260
261 /* Return size of a relocation entry. HTAB is the bfd's
262 elf_aarch64_link_hash_entry. */
263 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
264
265 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
266 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
267 #define PLT_ENTRY_SIZE (32)
268 #define PLT_SMALL_ENTRY_SIZE (16)
269 #define PLT_TLSDESC_ENTRY_SIZE (32)
270 /* PLT sizes with BTI insn. */
271 #define PLT_BTI_SMALL_ENTRY_SIZE (24)
272 /* PLT sizes with PAC insn. */
273 #define PLT_PAC_SMALL_ENTRY_SIZE (24)
274 /* PLT sizes with BTI and PAC insn. */
275 #define PLT_BTI_PAC_SMALL_ENTRY_SIZE (24)
276
277 /* Encoding of the nop instruction. */
278 #define INSN_NOP 0xd503201f
279
280 #define aarch64_compute_jump_table_size(htab) \
281 (((htab)->root.srelplt == NULL) ? 0 \
282 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
283
284 /* The first entry in a procedure linkage table looks like this
285 if the distance between the PLTGOT and the PLT is < 4GB use
286 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
287 in x16 and needs to work out PLTGOT[1] by using an address of
288 [x16,#-GOT_ENTRY_SIZE]. */
289 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
290 {
291 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
292 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
293 #if ARCH_SIZE == 64
294 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
295 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
296 #else
297 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
298 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
299 #endif
300 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
301 0x1f, 0x20, 0x03, 0xd5, /* nop */
302 0x1f, 0x20, 0x03, 0xd5, /* nop */
303 0x1f, 0x20, 0x03, 0xd5, /* nop */
304 };
305
306 static const bfd_byte elfNN_aarch64_small_plt0_bti_entry[PLT_ENTRY_SIZE] =
307 {
308 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
309 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
310 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
311 #if ARCH_SIZE == 64
312 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
313 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
314 #else
315 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
316 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
317 #endif
318 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
319 0x1f, 0x20, 0x03, 0xd5, /* nop */
320 0x1f, 0x20, 0x03, 0xd5, /* nop */
321 };
322
323 /* Per function entry in a procedure linkage table looks like this
324 if the distance between the PLTGOT and the PLT is < 4GB use
325 these PLT entries. Use BTI versions of the PLTs when enabled. */
326 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
327 {
328 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
329 #if ARCH_SIZE == 64
330 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
331 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
332 #else
333 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
334 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
335 #endif
336 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
337 };
338
339 static const bfd_byte
340 elfNN_aarch64_small_plt_bti_entry[PLT_BTI_SMALL_ENTRY_SIZE] =
341 {
342 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
343 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
344 #if ARCH_SIZE == 64
345 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
346 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
347 #else
348 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
349 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
350 #endif
351 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
352 0x1f, 0x20, 0x03, 0xd5, /* nop */
353 };
354
355 static const bfd_byte
356 elfNN_aarch64_small_plt_pac_entry[PLT_PAC_SMALL_ENTRY_SIZE] =
357 {
358 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
359 #if ARCH_SIZE == 64
360 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
361 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
362 #else
363 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
364 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
365 #endif
366 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
367 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
368 0x1f, 0x20, 0x03, 0xd5, /* nop */
369 };
370
371 static const bfd_byte
372 elfNN_aarch64_small_plt_bti_pac_entry[PLT_BTI_PAC_SMALL_ENTRY_SIZE] =
373 {
374 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
375 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
376 #if ARCH_SIZE == 64
377 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
378 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
379 #else
380 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
381 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
382 #endif
383 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
384 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
385 };
386
387 static const bfd_byte
388 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
389 {
390 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
391 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
392 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
393 #if ARCH_SIZE == 64
394 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
395 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
396 #else
397 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
398 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
399 #endif
400 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
401 0x1f, 0x20, 0x03, 0xd5, /* nop */
402 0x1f, 0x20, 0x03, 0xd5, /* nop */
403 };
404
405 static const bfd_byte
406 elfNN_aarch64_tlsdesc_small_plt_bti_entry[PLT_TLSDESC_ENTRY_SIZE] =
407 {
408 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
409 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
410 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
411 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
412 #if ARCH_SIZE == 64
413 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
414 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
415 #else
416 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
417 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
418 #endif
419 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
420 0x1f, 0x20, 0x03, 0xd5, /* nop */
421 };
422
423 #define elf_info_to_howto elfNN_aarch64_info_to_howto
424 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
425
426 #define AARCH64_ELF_ABI_VERSION 0
427
428 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
429 #define ALL_ONES (~ (bfd_vma) 0)
430
431 /* Indexed by the bfd interal reloc enumerators.
432 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
433 in reloc.c. */
434
435 static reloc_howto_type elfNN_aarch64_howto_table[] =
436 {
437 EMPTY_HOWTO (0),
438
439 /* Basic data relocations. */
440
441 /* Deprecated, but retained for backwards compatibility. */
442 HOWTO64 (R_AARCH64_NULL, /* type */
443 0, /* rightshift */
444 3, /* size (0 = byte, 1 = short, 2 = long) */
445 0, /* bitsize */
446 FALSE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_dont, /* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_AARCH64_NULL", /* name */
451 FALSE, /* partial_inplace */
452 0, /* src_mask */
453 0, /* dst_mask */
454 FALSE), /* pcrel_offset */
455 HOWTO (R_AARCH64_NONE, /* type */
456 0, /* rightshift */
457 3, /* size (0 = byte, 1 = short, 2 = long) */
458 0, /* bitsize */
459 FALSE, /* pc_relative */
460 0, /* bitpos */
461 complain_overflow_dont, /* complain_on_overflow */
462 bfd_elf_generic_reloc, /* special_function */
463 "R_AARCH64_NONE", /* name */
464 FALSE, /* partial_inplace */
465 0, /* src_mask */
466 0, /* dst_mask */
467 FALSE), /* pcrel_offset */
468
469 /* .xword: (S+A) */
470 HOWTO64 (AARCH64_R (ABS64), /* type */
471 0, /* rightshift */
472 4, /* size (4 = long long) */
473 64, /* bitsize */
474 FALSE, /* pc_relative */
475 0, /* bitpos */
476 complain_overflow_unsigned, /* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 AARCH64_R_STR (ABS64), /* name */
479 FALSE, /* partial_inplace */
480 ALL_ONES, /* src_mask */
481 ALL_ONES, /* dst_mask */
482 FALSE), /* pcrel_offset */
483
484 /* .word: (S+A) */
485 HOWTO (AARCH64_R (ABS32), /* type */
486 0, /* rightshift */
487 2, /* size (0 = byte, 1 = short, 2 = long) */
488 32, /* bitsize */
489 FALSE, /* pc_relative */
490 0, /* bitpos */
491 complain_overflow_unsigned, /* complain_on_overflow */
492 bfd_elf_generic_reloc, /* special_function */
493 AARCH64_R_STR (ABS32), /* name */
494 FALSE, /* partial_inplace */
495 0xffffffff, /* src_mask */
496 0xffffffff, /* dst_mask */
497 FALSE), /* pcrel_offset */
498
499 /* .half: (S+A) */
500 HOWTO (AARCH64_R (ABS16), /* type */
501 0, /* rightshift */
502 1, /* size (0 = byte, 1 = short, 2 = long) */
503 16, /* bitsize */
504 FALSE, /* pc_relative */
505 0, /* bitpos */
506 complain_overflow_unsigned, /* complain_on_overflow */
507 bfd_elf_generic_reloc, /* special_function */
508 AARCH64_R_STR (ABS16), /* name */
509 FALSE, /* partial_inplace */
510 0xffff, /* src_mask */
511 0xffff, /* dst_mask */
512 FALSE), /* pcrel_offset */
513
514 /* .xword: (S+A-P) */
515 HOWTO64 (AARCH64_R (PREL64), /* type */
516 0, /* rightshift */
517 4, /* size (4 = long long) */
518 64, /* bitsize */
519 TRUE, /* pc_relative */
520 0, /* bitpos */
521 complain_overflow_signed, /* complain_on_overflow */
522 bfd_elf_generic_reloc, /* special_function */
523 AARCH64_R_STR (PREL64), /* name */
524 FALSE, /* partial_inplace */
525 ALL_ONES, /* src_mask */
526 ALL_ONES, /* dst_mask */
527 TRUE), /* pcrel_offset */
528
529 /* .word: (S+A-P) */
530 HOWTO (AARCH64_R (PREL32), /* type */
531 0, /* rightshift */
532 2, /* size (0 = byte, 1 = short, 2 = long) */
533 32, /* bitsize */
534 TRUE, /* pc_relative */
535 0, /* bitpos */
536 complain_overflow_signed, /* complain_on_overflow */
537 bfd_elf_generic_reloc, /* special_function */
538 AARCH64_R_STR (PREL32), /* name */
539 FALSE, /* partial_inplace */
540 0xffffffff, /* src_mask */
541 0xffffffff, /* dst_mask */
542 TRUE), /* pcrel_offset */
543
544 /* .half: (S+A-P) */
545 HOWTO (AARCH64_R (PREL16), /* type */
546 0, /* rightshift */
547 1, /* size (0 = byte, 1 = short, 2 = long) */
548 16, /* bitsize */
549 TRUE, /* pc_relative */
550 0, /* bitpos */
551 complain_overflow_signed, /* complain_on_overflow */
552 bfd_elf_generic_reloc, /* special_function */
553 AARCH64_R_STR (PREL16), /* name */
554 FALSE, /* partial_inplace */
555 0xffff, /* src_mask */
556 0xffff, /* dst_mask */
557 TRUE), /* pcrel_offset */
558
559 /* Group relocations to create a 16, 32, 48 or 64 bit
560 unsigned data or abs address inline. */
561
562 /* MOVZ: ((S+A) >> 0) & 0xffff */
563 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
564 0, /* rightshift */
565 2, /* size (0 = byte, 1 = short, 2 = long) */
566 16, /* bitsize */
567 FALSE, /* pc_relative */
568 0, /* bitpos */
569 complain_overflow_unsigned, /* complain_on_overflow */
570 bfd_elf_generic_reloc, /* special_function */
571 AARCH64_R_STR (MOVW_UABS_G0), /* name */
572 FALSE, /* partial_inplace */
573 0xffff, /* src_mask */
574 0xffff, /* dst_mask */
575 FALSE), /* pcrel_offset */
576
577 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
578 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
579 0, /* rightshift */
580 2, /* size (0 = byte, 1 = short, 2 = long) */
581 16, /* bitsize */
582 FALSE, /* pc_relative */
583 0, /* bitpos */
584 complain_overflow_dont, /* complain_on_overflow */
585 bfd_elf_generic_reloc, /* special_function */
586 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
587 FALSE, /* partial_inplace */
588 0xffff, /* src_mask */
589 0xffff, /* dst_mask */
590 FALSE), /* pcrel_offset */
591
592 /* MOVZ: ((S+A) >> 16) & 0xffff */
593 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
594 16, /* rightshift */
595 2, /* size (0 = byte, 1 = short, 2 = long) */
596 16, /* bitsize */
597 FALSE, /* pc_relative */
598 0, /* bitpos */
599 complain_overflow_unsigned, /* complain_on_overflow */
600 bfd_elf_generic_reloc, /* special_function */
601 AARCH64_R_STR (MOVW_UABS_G1), /* name */
602 FALSE, /* partial_inplace */
603 0xffff, /* src_mask */
604 0xffff, /* dst_mask */
605 FALSE), /* pcrel_offset */
606
607 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
608 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
609 16, /* rightshift */
610 2, /* size (0 = byte, 1 = short, 2 = long) */
611 16, /* bitsize */
612 FALSE, /* pc_relative */
613 0, /* bitpos */
614 complain_overflow_dont, /* complain_on_overflow */
615 bfd_elf_generic_reloc, /* special_function */
616 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
617 FALSE, /* partial_inplace */
618 0xffff, /* src_mask */
619 0xffff, /* dst_mask */
620 FALSE), /* pcrel_offset */
621
622 /* MOVZ: ((S+A) >> 32) & 0xffff */
623 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
624 32, /* rightshift */
625 2, /* size (0 = byte, 1 = short, 2 = long) */
626 16, /* bitsize */
627 FALSE, /* pc_relative */
628 0, /* bitpos */
629 complain_overflow_unsigned, /* complain_on_overflow */
630 bfd_elf_generic_reloc, /* special_function */
631 AARCH64_R_STR (MOVW_UABS_G2), /* name */
632 FALSE, /* partial_inplace */
633 0xffff, /* src_mask */
634 0xffff, /* dst_mask */
635 FALSE), /* pcrel_offset */
636
637 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
638 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
639 32, /* rightshift */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
641 16, /* bitsize */
642 FALSE, /* pc_relative */
643 0, /* bitpos */
644 complain_overflow_dont, /* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
647 FALSE, /* partial_inplace */
648 0xffff, /* src_mask */
649 0xffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
651
652 /* MOVZ: ((S+A) >> 48) & 0xffff */
653 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
654 48, /* rightshift */
655 2, /* size (0 = byte, 1 = short, 2 = long) */
656 16, /* bitsize */
657 FALSE, /* pc_relative */
658 0, /* bitpos */
659 complain_overflow_unsigned, /* complain_on_overflow */
660 bfd_elf_generic_reloc, /* special_function */
661 AARCH64_R_STR (MOVW_UABS_G3), /* name */
662 FALSE, /* partial_inplace */
663 0xffff, /* src_mask */
664 0xffff, /* dst_mask */
665 FALSE), /* pcrel_offset */
666
667 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
668 signed data or abs address inline. Will change instruction
669 to MOVN or MOVZ depending on sign of calculated value. */
670
671 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
672 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
673 0, /* rightshift */
674 2, /* size (0 = byte, 1 = short, 2 = long) */
675 17, /* bitsize */
676 FALSE, /* pc_relative */
677 0, /* bitpos */
678 complain_overflow_signed, /* complain_on_overflow */
679 bfd_elf_generic_reloc, /* special_function */
680 AARCH64_R_STR (MOVW_SABS_G0), /* name */
681 FALSE, /* partial_inplace */
682 0xffff, /* src_mask */
683 0xffff, /* dst_mask */
684 FALSE), /* pcrel_offset */
685
686 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
687 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
688 16, /* rightshift */
689 2, /* size (0 = byte, 1 = short, 2 = long) */
690 17, /* bitsize */
691 FALSE, /* pc_relative */
692 0, /* bitpos */
693 complain_overflow_signed, /* complain_on_overflow */
694 bfd_elf_generic_reloc, /* special_function */
695 AARCH64_R_STR (MOVW_SABS_G1), /* name */
696 FALSE, /* partial_inplace */
697 0xffff, /* src_mask */
698 0xffff, /* dst_mask */
699 FALSE), /* pcrel_offset */
700
701 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
702 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
703 32, /* rightshift */
704 2, /* size (0 = byte, 1 = short, 2 = long) */
705 17, /* bitsize */
706 FALSE, /* pc_relative */
707 0, /* bitpos */
708 complain_overflow_signed, /* complain_on_overflow */
709 bfd_elf_generic_reloc, /* special_function */
710 AARCH64_R_STR (MOVW_SABS_G2), /* name */
711 FALSE, /* partial_inplace */
712 0xffff, /* src_mask */
713 0xffff, /* dst_mask */
714 FALSE), /* pcrel_offset */
715
716 /* Group relocations to create a 16, 32, 48 or 64 bit
717 PC relative address inline. */
718
719 /* MOV[NZ]: ((S+A-P) >> 0) & 0xffff */
720 HOWTO64 (AARCH64_R (MOVW_PREL_G0), /* type */
721 0, /* rightshift */
722 2, /* size (0 = byte, 1 = short, 2 = long) */
723 17, /* bitsize */
724 TRUE, /* pc_relative */
725 0, /* bitpos */
726 complain_overflow_signed, /* complain_on_overflow */
727 bfd_elf_generic_reloc, /* special_function */
728 AARCH64_R_STR (MOVW_PREL_G0), /* name */
729 FALSE, /* partial_inplace */
730 0xffff, /* src_mask */
731 0xffff, /* dst_mask */
732 TRUE), /* pcrel_offset */
733
734 /* MOVK: ((S+A-P) >> 0) & 0xffff [no overflow check] */
735 HOWTO64 (AARCH64_R (MOVW_PREL_G0_NC), /* type */
736 0, /* rightshift */
737 2, /* size (0 = byte, 1 = short, 2 = long) */
738 16, /* bitsize */
739 TRUE, /* pc_relative */
740 0, /* bitpos */
741 complain_overflow_dont, /* complain_on_overflow */
742 bfd_elf_generic_reloc, /* special_function */
743 AARCH64_R_STR (MOVW_PREL_G0_NC), /* name */
744 FALSE, /* partial_inplace */
745 0xffff, /* src_mask */
746 0xffff, /* dst_mask */
747 TRUE), /* pcrel_offset */
748
749 /* MOV[NZ]: ((S+A-P) >> 16) & 0xffff */
750 HOWTO64 (AARCH64_R (MOVW_PREL_G1), /* type */
751 16, /* rightshift */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
753 17, /* bitsize */
754 TRUE, /* pc_relative */
755 0, /* bitpos */
756 complain_overflow_signed, /* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 AARCH64_R_STR (MOVW_PREL_G1), /* name */
759 FALSE, /* partial_inplace */
760 0xffff, /* src_mask */
761 0xffff, /* dst_mask */
762 TRUE), /* pcrel_offset */
763
764 /* MOVK: ((S+A-P) >> 16) & 0xffff [no overflow check] */
765 HOWTO64 (AARCH64_R (MOVW_PREL_G1_NC), /* type */
766 16, /* rightshift */
767 2, /* size (0 = byte, 1 = short, 2 = long) */
768 16, /* bitsize */
769 TRUE, /* pc_relative */
770 0, /* bitpos */
771 complain_overflow_dont, /* complain_on_overflow */
772 bfd_elf_generic_reloc, /* special_function */
773 AARCH64_R_STR (MOVW_PREL_G1_NC), /* name */
774 FALSE, /* partial_inplace */
775 0xffff, /* src_mask */
776 0xffff, /* dst_mask */
777 TRUE), /* pcrel_offset */
778
779 /* MOV[NZ]: ((S+A-P) >> 32) & 0xffff */
780 HOWTO64 (AARCH64_R (MOVW_PREL_G2), /* type */
781 32, /* rightshift */
782 2, /* size (0 = byte, 1 = short, 2 = long) */
783 17, /* bitsize */
784 TRUE, /* pc_relative */
785 0, /* bitpos */
786 complain_overflow_signed, /* complain_on_overflow */
787 bfd_elf_generic_reloc, /* special_function */
788 AARCH64_R_STR (MOVW_PREL_G2), /* name */
789 FALSE, /* partial_inplace */
790 0xffff, /* src_mask */
791 0xffff, /* dst_mask */
792 TRUE), /* pcrel_offset */
793
794 /* MOVK: ((S+A-P) >> 32) & 0xffff [no overflow check] */
795 HOWTO64 (AARCH64_R (MOVW_PREL_G2_NC), /* type */
796 32, /* rightshift */
797 2, /* size (0 = byte, 1 = short, 2 = long) */
798 16, /* bitsize */
799 TRUE, /* pc_relative */
800 0, /* bitpos */
801 complain_overflow_dont, /* complain_on_overflow */
802 bfd_elf_generic_reloc, /* special_function */
803 AARCH64_R_STR (MOVW_PREL_G2_NC), /* name */
804 FALSE, /* partial_inplace */
805 0xffff, /* src_mask */
806 0xffff, /* dst_mask */
807 TRUE), /* pcrel_offset */
808
809 /* MOV[NZ]: ((S+A-P) >> 48) & 0xffff */
810 HOWTO64 (AARCH64_R (MOVW_PREL_G3), /* type */
811 48, /* rightshift */
812 2, /* size (0 = byte, 1 = short, 2 = long) */
813 16, /* bitsize */
814 TRUE, /* pc_relative */
815 0, /* bitpos */
816 complain_overflow_dont, /* complain_on_overflow */
817 bfd_elf_generic_reloc, /* special_function */
818 AARCH64_R_STR (MOVW_PREL_G3), /* name */
819 FALSE, /* partial_inplace */
820 0xffff, /* src_mask */
821 0xffff, /* dst_mask */
822 TRUE), /* pcrel_offset */
823
824 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
825 addresses: PG(x) is (x & ~0xfff). */
826
827 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
828 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
829 2, /* rightshift */
830 2, /* size (0 = byte, 1 = short, 2 = long) */
831 19, /* bitsize */
832 TRUE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_signed, /* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 AARCH64_R_STR (LD_PREL_LO19), /* name */
837 FALSE, /* partial_inplace */
838 0x7ffff, /* src_mask */
839 0x7ffff, /* dst_mask */
840 TRUE), /* pcrel_offset */
841
842 /* ADR: (S+A-P) & 0x1fffff */
843 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
844 0, /* rightshift */
845 2, /* size (0 = byte, 1 = short, 2 = long) */
846 21, /* bitsize */
847 TRUE, /* pc_relative */
848 0, /* bitpos */
849 complain_overflow_signed, /* complain_on_overflow */
850 bfd_elf_generic_reloc, /* special_function */
851 AARCH64_R_STR (ADR_PREL_LO21), /* name */
852 FALSE, /* partial_inplace */
853 0x1fffff, /* src_mask */
854 0x1fffff, /* dst_mask */
855 TRUE), /* pcrel_offset */
856
857 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
858 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
859 12, /* rightshift */
860 2, /* size (0 = byte, 1 = short, 2 = long) */
861 21, /* bitsize */
862 TRUE, /* pc_relative */
863 0, /* bitpos */
864 complain_overflow_signed, /* complain_on_overflow */
865 bfd_elf_generic_reloc, /* special_function */
866 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
867 FALSE, /* partial_inplace */
868 0x1fffff, /* src_mask */
869 0x1fffff, /* dst_mask */
870 TRUE), /* pcrel_offset */
871
872 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
873 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
874 12, /* rightshift */
875 2, /* size (0 = byte, 1 = short, 2 = long) */
876 21, /* bitsize */
877 TRUE, /* pc_relative */
878 0, /* bitpos */
879 complain_overflow_dont, /* complain_on_overflow */
880 bfd_elf_generic_reloc, /* special_function */
881 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
882 FALSE, /* partial_inplace */
883 0x1fffff, /* src_mask */
884 0x1fffff, /* dst_mask */
885 TRUE), /* pcrel_offset */
886
887 /* ADD: (S+A) & 0xfff [no overflow check] */
888 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
889 0, /* rightshift */
890 2, /* size (0 = byte, 1 = short, 2 = long) */
891 12, /* bitsize */
892 FALSE, /* pc_relative */
893 10, /* bitpos */
894 complain_overflow_dont, /* complain_on_overflow */
895 bfd_elf_generic_reloc, /* special_function */
896 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
897 FALSE, /* partial_inplace */
898 0x3ffc00, /* src_mask */
899 0x3ffc00, /* dst_mask */
900 FALSE), /* pcrel_offset */
901
902 /* LD/ST8: (S+A) & 0xfff */
903 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
904 0, /* rightshift */
905 2, /* size (0 = byte, 1 = short, 2 = long) */
906 12, /* bitsize */
907 FALSE, /* pc_relative */
908 0, /* bitpos */
909 complain_overflow_dont, /* complain_on_overflow */
910 bfd_elf_generic_reloc, /* special_function */
911 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
912 FALSE, /* partial_inplace */
913 0xfff, /* src_mask */
914 0xfff, /* dst_mask */
915 FALSE), /* pcrel_offset */
916
917 /* Relocations for control-flow instructions. */
918
919 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
920 HOWTO (AARCH64_R (TSTBR14), /* type */
921 2, /* rightshift */
922 2, /* size (0 = byte, 1 = short, 2 = long) */
923 14, /* bitsize */
924 TRUE, /* pc_relative */
925 0, /* bitpos */
926 complain_overflow_signed, /* complain_on_overflow */
927 bfd_elf_generic_reloc, /* special_function */
928 AARCH64_R_STR (TSTBR14), /* name */
929 FALSE, /* partial_inplace */
930 0x3fff, /* src_mask */
931 0x3fff, /* dst_mask */
932 TRUE), /* pcrel_offset */
933
934 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
935 HOWTO (AARCH64_R (CONDBR19), /* type */
936 2, /* rightshift */
937 2, /* size (0 = byte, 1 = short, 2 = long) */
938 19, /* bitsize */
939 TRUE, /* pc_relative */
940 0, /* bitpos */
941 complain_overflow_signed, /* complain_on_overflow */
942 bfd_elf_generic_reloc, /* special_function */
943 AARCH64_R_STR (CONDBR19), /* name */
944 FALSE, /* partial_inplace */
945 0x7ffff, /* src_mask */
946 0x7ffff, /* dst_mask */
947 TRUE), /* pcrel_offset */
948
949 /* B: ((S+A-P) >> 2) & 0x3ffffff */
950 HOWTO (AARCH64_R (JUMP26), /* type */
951 2, /* rightshift */
952 2, /* size (0 = byte, 1 = short, 2 = long) */
953 26, /* bitsize */
954 TRUE, /* pc_relative */
955 0, /* bitpos */
956 complain_overflow_signed, /* complain_on_overflow */
957 bfd_elf_generic_reloc, /* special_function */
958 AARCH64_R_STR (JUMP26), /* name */
959 FALSE, /* partial_inplace */
960 0x3ffffff, /* src_mask */
961 0x3ffffff, /* dst_mask */
962 TRUE), /* pcrel_offset */
963
964 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
965 HOWTO (AARCH64_R (CALL26), /* type */
966 2, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 26, /* bitsize */
969 TRUE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_signed, /* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 AARCH64_R_STR (CALL26), /* name */
974 FALSE, /* partial_inplace */
975 0x3ffffff, /* src_mask */
976 0x3ffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
978
979 /* LD/ST16: (S+A) & 0xffe */
980 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
981 1, /* rightshift */
982 2, /* size (0 = byte, 1 = short, 2 = long) */
983 12, /* bitsize */
984 FALSE, /* pc_relative */
985 0, /* bitpos */
986 complain_overflow_dont, /* complain_on_overflow */
987 bfd_elf_generic_reloc, /* special_function */
988 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
989 FALSE, /* partial_inplace */
990 0xffe, /* src_mask */
991 0xffe, /* dst_mask */
992 FALSE), /* pcrel_offset */
993
994 /* LD/ST32: (S+A) & 0xffc */
995 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
996 2, /* rightshift */
997 2, /* size (0 = byte, 1 = short, 2 = long) */
998 12, /* bitsize */
999 FALSE, /* pc_relative */
1000 0, /* bitpos */
1001 complain_overflow_dont, /* complain_on_overflow */
1002 bfd_elf_generic_reloc, /* special_function */
1003 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
1004 FALSE, /* partial_inplace */
1005 0xffc, /* src_mask */
1006 0xffc, /* dst_mask */
1007 FALSE), /* pcrel_offset */
1008
1009 /* LD/ST64: (S+A) & 0xff8 */
1010 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
1011 3, /* rightshift */
1012 2, /* size (0 = byte, 1 = short, 2 = long) */
1013 12, /* bitsize */
1014 FALSE, /* pc_relative */
1015 0, /* bitpos */
1016 complain_overflow_dont, /* complain_on_overflow */
1017 bfd_elf_generic_reloc, /* special_function */
1018 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
1019 FALSE, /* partial_inplace */
1020 0xff8, /* src_mask */
1021 0xff8, /* dst_mask */
1022 FALSE), /* pcrel_offset */
1023
1024 /* LD/ST128: (S+A) & 0xff0 */
1025 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
1026 4, /* rightshift */
1027 2, /* size (0 = byte, 1 = short, 2 = long) */
1028 12, /* bitsize */
1029 FALSE, /* pc_relative */
1030 0, /* bitpos */
1031 complain_overflow_dont, /* complain_on_overflow */
1032 bfd_elf_generic_reloc, /* special_function */
1033 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
1034 FALSE, /* partial_inplace */
1035 0xff0, /* src_mask */
1036 0xff0, /* dst_mask */
1037 FALSE), /* pcrel_offset */
1038
1039 /* Set a load-literal immediate field to bits
1040 0x1FFFFC of G(S)-P */
1041 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
1042 2, /* rightshift */
1043 2, /* size (0 = byte,1 = short,2 = long) */
1044 19, /* bitsize */
1045 TRUE, /* pc_relative */
1046 0, /* bitpos */
1047 complain_overflow_signed, /* complain_on_overflow */
1048 bfd_elf_generic_reloc, /* special_function */
1049 AARCH64_R_STR (GOT_LD_PREL19), /* name */
1050 FALSE, /* partial_inplace */
1051 0xffffe0, /* src_mask */
1052 0xffffe0, /* dst_mask */
1053 TRUE), /* pcrel_offset */
1054
1055 /* Get to the page for the GOT entry for the symbol
1056 (G(S) - P) using an ADRP instruction. */
1057 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
1058 12, /* rightshift */
1059 2, /* size (0 = byte, 1 = short, 2 = long) */
1060 21, /* bitsize */
1061 TRUE, /* pc_relative */
1062 0, /* bitpos */
1063 complain_overflow_dont, /* complain_on_overflow */
1064 bfd_elf_generic_reloc, /* special_function */
1065 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
1066 FALSE, /* partial_inplace */
1067 0x1fffff, /* src_mask */
1068 0x1fffff, /* dst_mask */
1069 TRUE), /* pcrel_offset */
1070
1071 /* LD64: GOT offset G(S) & 0xff8 */
1072 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
1073 3, /* rightshift */
1074 2, /* size (0 = byte, 1 = short, 2 = long) */
1075 12, /* bitsize */
1076 FALSE, /* pc_relative */
1077 0, /* bitpos */
1078 complain_overflow_dont, /* complain_on_overflow */
1079 bfd_elf_generic_reloc, /* special_function */
1080 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
1081 FALSE, /* partial_inplace */
1082 0xff8, /* src_mask */
1083 0xff8, /* dst_mask */
1084 FALSE), /* pcrel_offset */
1085
1086 /* LD32: GOT offset G(S) & 0xffc */
1087 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
1088 2, /* rightshift */
1089 2, /* size (0 = byte, 1 = short, 2 = long) */
1090 12, /* bitsize */
1091 FALSE, /* pc_relative */
1092 0, /* bitpos */
1093 complain_overflow_dont, /* complain_on_overflow */
1094 bfd_elf_generic_reloc, /* special_function */
1095 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
1096 FALSE, /* partial_inplace */
1097 0xffc, /* src_mask */
1098 0xffc, /* dst_mask */
1099 FALSE), /* pcrel_offset */
1100
1101 /* Lower 16 bits of GOT offset for the symbol. */
1102 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
1103 0, /* rightshift */
1104 2, /* size (0 = byte, 1 = short, 2 = long) */
1105 16, /* bitsize */
1106 FALSE, /* pc_relative */
1107 0, /* bitpos */
1108 complain_overflow_dont, /* complain_on_overflow */
1109 bfd_elf_generic_reloc, /* special_function */
1110 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
1111 FALSE, /* partial_inplace */
1112 0xffff, /* src_mask */
1113 0xffff, /* dst_mask */
1114 FALSE), /* pcrel_offset */
1115
1116 /* Higher 16 bits of GOT offset for the symbol. */
1117 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
1118 16, /* rightshift */
1119 2, /* size (0 = byte, 1 = short, 2 = long) */
1120 16, /* bitsize */
1121 FALSE, /* pc_relative */
1122 0, /* bitpos */
1123 complain_overflow_unsigned, /* complain_on_overflow */
1124 bfd_elf_generic_reloc, /* special_function */
1125 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
1126 FALSE, /* partial_inplace */
1127 0xffff, /* src_mask */
1128 0xffff, /* dst_mask */
1129 FALSE), /* pcrel_offset */
1130
1131 /* LD64: GOT offset for the symbol. */
1132 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
1133 3, /* rightshift */
1134 2, /* size (0 = byte, 1 = short, 2 = long) */
1135 12, /* bitsize */
1136 FALSE, /* pc_relative */
1137 0, /* bitpos */
1138 complain_overflow_unsigned, /* complain_on_overflow */
1139 bfd_elf_generic_reloc, /* special_function */
1140 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
1141 FALSE, /* partial_inplace */
1142 0x7ff8, /* src_mask */
1143 0x7ff8, /* dst_mask */
1144 FALSE), /* pcrel_offset */
1145
1146 /* LD32: GOT offset to the page address of GOT table.
1147 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
1148 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
1149 2, /* rightshift */
1150 2, /* size (0 = byte, 1 = short, 2 = long) */
1151 12, /* bitsize */
1152 FALSE, /* pc_relative */
1153 0, /* bitpos */
1154 complain_overflow_unsigned, /* complain_on_overflow */
1155 bfd_elf_generic_reloc, /* special_function */
1156 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
1157 FALSE, /* partial_inplace */
1158 0x5ffc, /* src_mask */
1159 0x5ffc, /* dst_mask */
1160 FALSE), /* pcrel_offset */
1161
1162 /* LD64: GOT offset to the page address of GOT table.
1163 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
1164 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
1165 3, /* rightshift */
1166 2, /* size (0 = byte, 1 = short, 2 = long) */
1167 12, /* bitsize */
1168 FALSE, /* pc_relative */
1169 0, /* bitpos */
1170 complain_overflow_unsigned, /* complain_on_overflow */
1171 bfd_elf_generic_reloc, /* special_function */
1172 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
1173 FALSE, /* partial_inplace */
1174 0x7ff8, /* src_mask */
1175 0x7ff8, /* dst_mask */
1176 FALSE), /* pcrel_offset */
1177
1178 /* Get to the page for the GOT entry for the symbol
1179 (G(S) - P) using an ADRP instruction. */
1180 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
1181 12, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 21, /* bitsize */
1184 TRUE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont, /* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
1188 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
1189 FALSE, /* partial_inplace */
1190 0x1fffff, /* src_mask */
1191 0x1fffff, /* dst_mask */
1192 TRUE), /* pcrel_offset */
1193
1194 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 21, /* bitsize */
1198 TRUE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont, /* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
1202 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
1203 FALSE, /* partial_inplace */
1204 0x1fffff, /* src_mask */
1205 0x1fffff, /* dst_mask */
1206 TRUE), /* pcrel_offset */
1207
1208 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1209 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
1210 0, /* rightshift */
1211 2, /* size (0 = byte, 1 = short, 2 = long) */
1212 12, /* bitsize */
1213 FALSE, /* pc_relative */
1214 0, /* bitpos */
1215 complain_overflow_dont, /* complain_on_overflow */
1216 bfd_elf_generic_reloc, /* special_function */
1217 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
1218 FALSE, /* partial_inplace */
1219 0xfff, /* src_mask */
1220 0xfff, /* dst_mask */
1221 FALSE), /* pcrel_offset */
1222
1223 /* Lower 16 bits of GOT offset to tls_index. */
1224 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1225 0, /* rightshift */
1226 2, /* size (0 = byte, 1 = short, 2 = long) */
1227 16, /* bitsize */
1228 FALSE, /* pc_relative */
1229 0, /* bitpos */
1230 complain_overflow_dont, /* complain_on_overflow */
1231 bfd_elf_generic_reloc, /* special_function */
1232 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1233 FALSE, /* partial_inplace */
1234 0xffff, /* src_mask */
1235 0xffff, /* dst_mask */
1236 FALSE), /* pcrel_offset */
1237
1238 /* Higher 16 bits of GOT offset to tls_index. */
1239 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1240 16, /* rightshift */
1241 2, /* size (0 = byte, 1 = short, 2 = long) */
1242 16, /* bitsize */
1243 FALSE, /* pc_relative */
1244 0, /* bitpos */
1245 complain_overflow_unsigned, /* complain_on_overflow */
1246 bfd_elf_generic_reloc, /* special_function */
1247 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1248 FALSE, /* partial_inplace */
1249 0xffff, /* src_mask */
1250 0xffff, /* dst_mask */
1251 FALSE), /* pcrel_offset */
1252
1253 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1254 12, /* rightshift */
1255 2, /* size (0 = byte, 1 = short, 2 = long) */
1256 21, /* bitsize */
1257 FALSE, /* pc_relative */
1258 0, /* bitpos */
1259 complain_overflow_dont, /* complain_on_overflow */
1260 bfd_elf_generic_reloc, /* special_function */
1261 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1262 FALSE, /* partial_inplace */
1263 0x1fffff, /* src_mask */
1264 0x1fffff, /* dst_mask */
1265 FALSE), /* pcrel_offset */
1266
1267 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1268 3, /* rightshift */
1269 2, /* size (0 = byte, 1 = short, 2 = long) */
1270 12, /* bitsize */
1271 FALSE, /* pc_relative */
1272 0, /* bitpos */
1273 complain_overflow_dont, /* complain_on_overflow */
1274 bfd_elf_generic_reloc, /* special_function */
1275 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1276 FALSE, /* partial_inplace */
1277 0xff8, /* src_mask */
1278 0xff8, /* dst_mask */
1279 FALSE), /* pcrel_offset */
1280
1281 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1282 2, /* rightshift */
1283 2, /* size (0 = byte, 1 = short, 2 = long) */
1284 12, /* bitsize */
1285 FALSE, /* pc_relative */
1286 0, /* bitpos */
1287 complain_overflow_dont, /* complain_on_overflow */
1288 bfd_elf_generic_reloc, /* special_function */
1289 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1290 FALSE, /* partial_inplace */
1291 0xffc, /* src_mask */
1292 0xffc, /* dst_mask */
1293 FALSE), /* pcrel_offset */
1294
1295 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1296 2, /* rightshift */
1297 2, /* size (0 = byte, 1 = short, 2 = long) */
1298 19, /* bitsize */
1299 FALSE, /* pc_relative */
1300 0, /* bitpos */
1301 complain_overflow_dont, /* complain_on_overflow */
1302 bfd_elf_generic_reloc, /* special_function */
1303 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1304 FALSE, /* partial_inplace */
1305 0x1ffffc, /* src_mask */
1306 0x1ffffc, /* dst_mask */
1307 FALSE), /* pcrel_offset */
1308
1309 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1310 0, /* rightshift */
1311 2, /* size (0 = byte, 1 = short, 2 = long) */
1312 16, /* bitsize */
1313 FALSE, /* pc_relative */
1314 0, /* bitpos */
1315 complain_overflow_dont, /* complain_on_overflow */
1316 bfd_elf_generic_reloc, /* special_function */
1317 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1318 FALSE, /* partial_inplace */
1319 0xffff, /* src_mask */
1320 0xffff, /* dst_mask */
1321 FALSE), /* pcrel_offset */
1322
1323 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1324 16, /* rightshift */
1325 2, /* size (0 = byte, 1 = short, 2 = long) */
1326 16, /* bitsize */
1327 FALSE, /* pc_relative */
1328 0, /* bitpos */
1329 complain_overflow_unsigned, /* complain_on_overflow */
1330 bfd_elf_generic_reloc, /* special_function */
1331 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1332 FALSE, /* partial_inplace */
1333 0xffff, /* src_mask */
1334 0xffff, /* dst_mask */
1335 FALSE), /* pcrel_offset */
1336
1337 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1338 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1339 12, /* rightshift */
1340 2, /* size (0 = byte, 1 = short, 2 = long) */
1341 12, /* bitsize */
1342 FALSE, /* pc_relative */
1343 0, /* bitpos */
1344 complain_overflow_unsigned, /* complain_on_overflow */
1345 bfd_elf_generic_reloc, /* special_function */
1346 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1347 FALSE, /* partial_inplace */
1348 0xfff, /* src_mask */
1349 0xfff, /* dst_mask */
1350 FALSE), /* pcrel_offset */
1351
1352 /* Unsigned 12 bit byte offset to module TLS base address. */
1353 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1354 0, /* rightshift */
1355 2, /* size (0 = byte, 1 = short, 2 = long) */
1356 12, /* bitsize */
1357 FALSE, /* pc_relative */
1358 0, /* bitpos */
1359 complain_overflow_unsigned, /* complain_on_overflow */
1360 bfd_elf_generic_reloc, /* special_function */
1361 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1362 FALSE, /* partial_inplace */
1363 0xfff, /* src_mask */
1364 0xfff, /* dst_mask */
1365 FALSE), /* pcrel_offset */
1366
1367 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1368 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1369 0, /* rightshift */
1370 2, /* size (0 = byte, 1 = short, 2 = long) */
1371 12, /* bitsize */
1372 FALSE, /* pc_relative */
1373 0, /* bitpos */
1374 complain_overflow_dont, /* complain_on_overflow */
1375 bfd_elf_generic_reloc, /* special_function */
1376 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1377 FALSE, /* partial_inplace */
1378 0xfff, /* src_mask */
1379 0xfff, /* dst_mask */
1380 FALSE), /* pcrel_offset */
1381
1382 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1383 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1384 0, /* rightshift */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1386 12, /* bitsize */
1387 FALSE, /* pc_relative */
1388 0, /* bitpos */
1389 complain_overflow_dont, /* complain_on_overflow */
1390 bfd_elf_generic_reloc, /* special_function */
1391 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1392 FALSE, /* partial_inplace */
1393 0xfff, /* src_mask */
1394 0xfff, /* dst_mask */
1395 FALSE), /* pcrel_offset */
1396
1397 /* Get to the page for the GOT entry for the symbol
1398 (G(S) - P) using an ADRP instruction. */
1399 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1400 12, /* rightshift */
1401 2, /* size (0 = byte, 1 = short, 2 = long) */
1402 21, /* bitsize */
1403 TRUE, /* pc_relative */
1404 0, /* bitpos */
1405 complain_overflow_signed, /* complain_on_overflow */
1406 bfd_elf_generic_reloc, /* special_function */
1407 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1408 FALSE, /* partial_inplace */
1409 0x1fffff, /* src_mask */
1410 0x1fffff, /* dst_mask */
1411 TRUE), /* pcrel_offset */
1412
1413 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1414 0, /* rightshift */
1415 2, /* size (0 = byte, 1 = short, 2 = long) */
1416 21, /* bitsize */
1417 TRUE, /* pc_relative */
1418 0, /* bitpos */
1419 complain_overflow_signed, /* complain_on_overflow */
1420 bfd_elf_generic_reloc, /* special_function */
1421 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1422 FALSE, /* partial_inplace */
1423 0x1fffff, /* src_mask */
1424 0x1fffff, /* dst_mask */
1425 TRUE), /* pcrel_offset */
1426
1427 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1428 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1429 1, /* rightshift */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1431 11, /* bitsize */
1432 FALSE, /* pc_relative */
1433 10, /* bitpos */
1434 complain_overflow_unsigned, /* complain_on_overflow */
1435 bfd_elf_generic_reloc, /* special_function */
1436 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1437 FALSE, /* partial_inplace */
1438 0x1ffc00, /* src_mask */
1439 0x1ffc00, /* dst_mask */
1440 FALSE), /* pcrel_offset */
1441
1442 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1443 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1444 1, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 11, /* bitsize */
1447 FALSE, /* pc_relative */
1448 10, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1452 FALSE, /* partial_inplace */
1453 0x1ffc00, /* src_mask */
1454 0x1ffc00, /* dst_mask */
1455 FALSE), /* pcrel_offset */
1456
1457 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1458 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1459 2, /* rightshift */
1460 2, /* size (0 = byte, 1 = short, 2 = long) */
1461 10, /* bitsize */
1462 FALSE, /* pc_relative */
1463 10, /* bitpos */
1464 complain_overflow_unsigned, /* complain_on_overflow */
1465 bfd_elf_generic_reloc, /* special_function */
1466 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1467 FALSE, /* partial_inplace */
1468 0x3ffc00, /* src_mask */
1469 0x3ffc00, /* dst_mask */
1470 FALSE), /* pcrel_offset */
1471
1472 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1473 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1474 2, /* rightshift */
1475 2, /* size (0 = byte, 1 = short, 2 = long) */
1476 10, /* bitsize */
1477 FALSE, /* pc_relative */
1478 10, /* bitpos */
1479 complain_overflow_dont, /* complain_on_overflow */
1480 bfd_elf_generic_reloc, /* special_function */
1481 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1482 FALSE, /* partial_inplace */
1483 0xffc00, /* src_mask */
1484 0xffc00, /* dst_mask */
1485 FALSE), /* pcrel_offset */
1486
1487 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1488 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1489 3, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 9, /* bitsize */
1492 FALSE, /* pc_relative */
1493 10, /* bitpos */
1494 complain_overflow_unsigned, /* complain_on_overflow */
1495 bfd_elf_generic_reloc, /* special_function */
1496 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1497 FALSE, /* partial_inplace */
1498 0x3ffc00, /* src_mask */
1499 0x3ffc00, /* dst_mask */
1500 FALSE), /* pcrel_offset */
1501
1502 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1503 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1504 3, /* rightshift */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 9, /* bitsize */
1507 FALSE, /* pc_relative */
1508 10, /* bitpos */
1509 complain_overflow_dont, /* complain_on_overflow */
1510 bfd_elf_generic_reloc, /* special_function */
1511 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1512 FALSE, /* partial_inplace */
1513 0x7fc00, /* src_mask */
1514 0x7fc00, /* dst_mask */
1515 FALSE), /* pcrel_offset */
1516
1517 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1518 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1519 0, /* rightshift */
1520 2, /* size (0 = byte, 1 = short, 2 = long) */
1521 12, /* bitsize */
1522 FALSE, /* pc_relative */
1523 10, /* bitpos */
1524 complain_overflow_unsigned, /* complain_on_overflow */
1525 bfd_elf_generic_reloc, /* special_function */
1526 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1527 FALSE, /* partial_inplace */
1528 0x3ffc00, /* src_mask */
1529 0x3ffc00, /* dst_mask */
1530 FALSE), /* pcrel_offset */
1531
1532 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1533 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1534 0, /* rightshift */
1535 2, /* size (0 = byte, 1 = short, 2 = long) */
1536 12, /* bitsize */
1537 FALSE, /* pc_relative */
1538 10, /* bitpos */
1539 complain_overflow_dont, /* complain_on_overflow */
1540 bfd_elf_generic_reloc, /* special_function */
1541 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1542 FALSE, /* partial_inplace */
1543 0x3ffc00, /* src_mask */
1544 0x3ffc00, /* dst_mask */
1545 FALSE), /* pcrel_offset */
1546
1547 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1548 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1549 0, /* rightshift */
1550 2, /* size (0 = byte, 1 = short, 2 = long) */
1551 16, /* bitsize */
1552 FALSE, /* pc_relative */
1553 0, /* bitpos */
1554 complain_overflow_unsigned, /* complain_on_overflow */
1555 bfd_elf_generic_reloc, /* special_function */
1556 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1557 FALSE, /* partial_inplace */
1558 0xffff, /* src_mask */
1559 0xffff, /* dst_mask */
1560 FALSE), /* pcrel_offset */
1561
1562 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1563 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1564 0, /* rightshift */
1565 2, /* size (0 = byte, 1 = short, 2 = long) */
1566 16, /* bitsize */
1567 FALSE, /* pc_relative */
1568 0, /* bitpos */
1569 complain_overflow_dont, /* complain_on_overflow */
1570 bfd_elf_generic_reloc, /* special_function */
1571 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1572 FALSE, /* partial_inplace */
1573 0xffff, /* src_mask */
1574 0xffff, /* dst_mask */
1575 FALSE), /* pcrel_offset */
1576
1577 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1578 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1579 16, /* rightshift */
1580 2, /* size (0 = byte, 1 = short, 2 = long) */
1581 16, /* bitsize */
1582 FALSE, /* pc_relative */
1583 0, /* bitpos */
1584 complain_overflow_unsigned, /* complain_on_overflow */
1585 bfd_elf_generic_reloc, /* special_function */
1586 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1587 FALSE, /* partial_inplace */
1588 0xffff, /* src_mask */
1589 0xffff, /* dst_mask */
1590 FALSE), /* pcrel_offset */
1591
1592 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1593 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1594 16, /* rightshift */
1595 2, /* size (0 = byte, 1 = short, 2 = long) */
1596 16, /* bitsize */
1597 FALSE, /* pc_relative */
1598 0, /* bitpos */
1599 complain_overflow_dont, /* complain_on_overflow */
1600 bfd_elf_generic_reloc, /* special_function */
1601 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1602 FALSE, /* partial_inplace */
1603 0xffff, /* src_mask */
1604 0xffff, /* dst_mask */
1605 FALSE), /* pcrel_offset */
1606
1607 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1608 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1609 32, /* rightshift */
1610 2, /* size (0 = byte, 1 = short, 2 = long) */
1611 16, /* bitsize */
1612 FALSE, /* pc_relative */
1613 0, /* bitpos */
1614 complain_overflow_unsigned, /* complain_on_overflow */
1615 bfd_elf_generic_reloc, /* special_function */
1616 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1617 FALSE, /* partial_inplace */
1618 0xffff, /* src_mask */
1619 0xffff, /* dst_mask */
1620 FALSE), /* pcrel_offset */
1621
1622 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1623 32, /* rightshift */
1624 2, /* size (0 = byte, 1 = short, 2 = long) */
1625 16, /* bitsize */
1626 FALSE, /* pc_relative */
1627 0, /* bitpos */
1628 complain_overflow_unsigned, /* complain_on_overflow */
1629 bfd_elf_generic_reloc, /* special_function */
1630 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1631 FALSE, /* partial_inplace */
1632 0xffff, /* src_mask */
1633 0xffff, /* dst_mask */
1634 FALSE), /* pcrel_offset */
1635
1636 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1637 16, /* rightshift */
1638 2, /* size (0 = byte, 1 = short, 2 = long) */
1639 16, /* bitsize */
1640 FALSE, /* pc_relative */
1641 0, /* bitpos */
1642 complain_overflow_dont, /* complain_on_overflow */
1643 bfd_elf_generic_reloc, /* special_function */
1644 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1645 FALSE, /* partial_inplace */
1646 0xffff, /* src_mask */
1647 0xffff, /* dst_mask */
1648 FALSE), /* pcrel_offset */
1649
1650 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1651 16, /* rightshift */
1652 2, /* size (0 = byte, 1 = short, 2 = long) */
1653 16, /* bitsize */
1654 FALSE, /* pc_relative */
1655 0, /* bitpos */
1656 complain_overflow_dont, /* complain_on_overflow */
1657 bfd_elf_generic_reloc, /* special_function */
1658 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1659 FALSE, /* partial_inplace */
1660 0xffff, /* src_mask */
1661 0xffff, /* dst_mask */
1662 FALSE), /* pcrel_offset */
1663
1664 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1665 0, /* rightshift */
1666 2, /* size (0 = byte, 1 = short, 2 = long) */
1667 16, /* bitsize */
1668 FALSE, /* pc_relative */
1669 0, /* bitpos */
1670 complain_overflow_dont, /* complain_on_overflow */
1671 bfd_elf_generic_reloc, /* special_function */
1672 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1673 FALSE, /* partial_inplace */
1674 0xffff, /* src_mask */
1675 0xffff, /* dst_mask */
1676 FALSE), /* pcrel_offset */
1677
1678 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1679 0, /* rightshift */
1680 2, /* size (0 = byte, 1 = short, 2 = long) */
1681 16, /* bitsize */
1682 FALSE, /* pc_relative */
1683 0, /* bitpos */
1684 complain_overflow_dont, /* complain_on_overflow */
1685 bfd_elf_generic_reloc, /* special_function */
1686 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1687 FALSE, /* partial_inplace */
1688 0xffff, /* src_mask */
1689 0xffff, /* dst_mask */
1690 FALSE), /* pcrel_offset */
1691
1692 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1693 12, /* rightshift */
1694 2, /* size (0 = byte, 1 = short, 2 = long) */
1695 12, /* bitsize */
1696 FALSE, /* pc_relative */
1697 0, /* bitpos */
1698 complain_overflow_unsigned, /* complain_on_overflow */
1699 bfd_elf_generic_reloc, /* special_function */
1700 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1701 FALSE, /* partial_inplace */
1702 0xfff, /* src_mask */
1703 0xfff, /* dst_mask */
1704 FALSE), /* pcrel_offset */
1705
1706 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1707 0, /* rightshift */
1708 2, /* size (0 = byte, 1 = short, 2 = long) */
1709 12, /* bitsize */
1710 FALSE, /* pc_relative */
1711 0, /* bitpos */
1712 complain_overflow_unsigned, /* complain_on_overflow */
1713 bfd_elf_generic_reloc, /* special_function */
1714 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1715 FALSE, /* partial_inplace */
1716 0xfff, /* src_mask */
1717 0xfff, /* dst_mask */
1718 FALSE), /* pcrel_offset */
1719
1720 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1721 0, /* rightshift */
1722 2, /* size (0 = byte, 1 = short, 2 = long) */
1723 12, /* bitsize */
1724 FALSE, /* pc_relative */
1725 0, /* bitpos */
1726 complain_overflow_dont, /* complain_on_overflow */
1727 bfd_elf_generic_reloc, /* special_function */
1728 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1729 FALSE, /* partial_inplace */
1730 0xfff, /* src_mask */
1731 0xfff, /* dst_mask */
1732 FALSE), /* pcrel_offset */
1733
1734 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1735 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12), /* type */
1736 1, /* rightshift */
1737 2, /* size (0 = byte, 1 = short, 2 = long) */
1738 11, /* bitsize */
1739 FALSE, /* pc_relative */
1740 10, /* bitpos */
1741 complain_overflow_unsigned, /* complain_on_overflow */
1742 bfd_elf_generic_reloc, /* special_function */
1743 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12), /* name */
1744 FALSE, /* partial_inplace */
1745 0x1ffc00, /* src_mask */
1746 0x1ffc00, /* dst_mask */
1747 FALSE), /* pcrel_offset */
1748
1749 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12, but no overflow check. */
1750 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12_NC), /* type */
1751 1, /* rightshift */
1752 2, /* size (0 = byte, 1 = short, 2 = long) */
1753 11, /* bitsize */
1754 FALSE, /* pc_relative */
1755 10, /* bitpos */
1756 complain_overflow_dont, /* complain_on_overflow */
1757 bfd_elf_generic_reloc, /* special_function */
1758 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12_NC), /* name */
1759 FALSE, /* partial_inplace */
1760 0x1ffc00, /* src_mask */
1761 0x1ffc00, /* dst_mask */
1762 FALSE), /* pcrel_offset */
1763
1764 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1765 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12), /* type */
1766 2, /* rightshift */
1767 2, /* size (0 = byte, 1 = short, 2 = long) */
1768 10, /* bitsize */
1769 FALSE, /* pc_relative */
1770 10, /* bitpos */
1771 complain_overflow_unsigned, /* complain_on_overflow */
1772 bfd_elf_generic_reloc, /* special_function */
1773 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12), /* name */
1774 FALSE, /* partial_inplace */
1775 0xffc00, /* src_mask */
1776 0xffc00, /* dst_mask */
1777 FALSE), /* pcrel_offset */
1778
1779 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12, but no overflow check. */
1780 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12_NC), /* type */
1781 2, /* rightshift */
1782 2, /* size (0 = byte, 1 = short, 2 = long) */
1783 10, /* bitsize */
1784 FALSE, /* pc_relative */
1785 10, /* bitpos */
1786 complain_overflow_dont, /* complain_on_overflow */
1787 bfd_elf_generic_reloc, /* special_function */
1788 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12_NC), /* name */
1789 FALSE, /* partial_inplace */
1790 0xffc00, /* src_mask */
1791 0xffc00, /* dst_mask */
1792 FALSE), /* pcrel_offset */
1793
1794 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1795 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12), /* type */
1796 3, /* rightshift */
1797 2, /* size (0 = byte, 1 = short, 2 = long) */
1798 9, /* bitsize */
1799 FALSE, /* pc_relative */
1800 10, /* bitpos */
1801 complain_overflow_unsigned, /* complain_on_overflow */
1802 bfd_elf_generic_reloc, /* special_function */
1803 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12), /* name */
1804 FALSE, /* partial_inplace */
1805 0x7fc00, /* src_mask */
1806 0x7fc00, /* dst_mask */
1807 FALSE), /* pcrel_offset */
1808
1809 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12, but no overflow check. */
1810 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12_NC), /* type */
1811 3, /* rightshift */
1812 2, /* size (0 = byte, 1 = short, 2 = long) */
1813 9, /* bitsize */
1814 FALSE, /* pc_relative */
1815 10, /* bitpos */
1816 complain_overflow_dont, /* complain_on_overflow */
1817 bfd_elf_generic_reloc, /* special_function */
1818 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12_NC), /* name */
1819 FALSE, /* partial_inplace */
1820 0x7fc00, /* src_mask */
1821 0x7fc00, /* dst_mask */
1822 FALSE), /* pcrel_offset */
1823
1824 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1825 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12), /* type */
1826 0, /* rightshift */
1827 2, /* size (0 = byte, 1 = short, 2 = long) */
1828 12, /* bitsize */
1829 FALSE, /* pc_relative */
1830 10, /* bitpos */
1831 complain_overflow_unsigned, /* complain_on_overflow */
1832 bfd_elf_generic_reloc, /* special_function */
1833 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12), /* name */
1834 FALSE, /* partial_inplace */
1835 0x3ffc00, /* src_mask */
1836 0x3ffc00, /* dst_mask */
1837 FALSE), /* pcrel_offset */
1838
1839 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12, but no overflow check. */
1840 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12_NC), /* type */
1841 0, /* rightshift */
1842 2, /* size (0 = byte, 1 = short, 2 = long) */
1843 12, /* bitsize */
1844 FALSE, /* pc_relative */
1845 10, /* bitpos */
1846 complain_overflow_dont, /* complain_on_overflow */
1847 bfd_elf_generic_reloc, /* special_function */
1848 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12_NC), /* name */
1849 FALSE, /* partial_inplace */
1850 0x3ffc00, /* src_mask */
1851 0x3ffc00, /* dst_mask */
1852 FALSE), /* pcrel_offset */
1853
1854 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1855 2, /* rightshift */
1856 2, /* size (0 = byte, 1 = short, 2 = long) */
1857 19, /* bitsize */
1858 TRUE, /* pc_relative */
1859 0, /* bitpos */
1860 complain_overflow_dont, /* complain_on_overflow */
1861 bfd_elf_generic_reloc, /* special_function */
1862 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1863 FALSE, /* partial_inplace */
1864 0x0ffffe0, /* src_mask */
1865 0x0ffffe0, /* dst_mask */
1866 TRUE), /* pcrel_offset */
1867
1868 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1869 0, /* rightshift */
1870 2, /* size (0 = byte, 1 = short, 2 = long) */
1871 21, /* bitsize */
1872 TRUE, /* pc_relative */
1873 0, /* bitpos */
1874 complain_overflow_dont, /* complain_on_overflow */
1875 bfd_elf_generic_reloc, /* special_function */
1876 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1877 FALSE, /* partial_inplace */
1878 0x1fffff, /* src_mask */
1879 0x1fffff, /* dst_mask */
1880 TRUE), /* pcrel_offset */
1881
1882 /* Get to the page for the GOT entry for the symbol
1883 (G(S) - P) using an ADRP instruction. */
1884 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1885 12, /* rightshift */
1886 2, /* size (0 = byte, 1 = short, 2 = long) */
1887 21, /* bitsize */
1888 TRUE, /* pc_relative */
1889 0, /* bitpos */
1890 complain_overflow_dont, /* complain_on_overflow */
1891 bfd_elf_generic_reloc, /* special_function */
1892 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1893 FALSE, /* partial_inplace */
1894 0x1fffff, /* src_mask */
1895 0x1fffff, /* dst_mask */
1896 TRUE), /* pcrel_offset */
1897
1898 /* LD64: GOT offset G(S) & 0xff8. */
1899 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12), /* type */
1900 3, /* rightshift */
1901 2, /* size (0 = byte, 1 = short, 2 = long) */
1902 12, /* bitsize */
1903 FALSE, /* pc_relative */
1904 0, /* bitpos */
1905 complain_overflow_dont, /* complain_on_overflow */
1906 bfd_elf_generic_reloc, /* special_function */
1907 AARCH64_R_STR (TLSDESC_LD64_LO12), /* name */
1908 FALSE, /* partial_inplace */
1909 0xff8, /* src_mask */
1910 0xff8, /* dst_mask */
1911 FALSE), /* pcrel_offset */
1912
1913 /* LD32: GOT offset G(S) & 0xffc. */
1914 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1915 2, /* rightshift */
1916 2, /* size (0 = byte, 1 = short, 2 = long) */
1917 12, /* bitsize */
1918 FALSE, /* pc_relative */
1919 0, /* bitpos */
1920 complain_overflow_dont, /* complain_on_overflow */
1921 bfd_elf_generic_reloc, /* special_function */
1922 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1923 FALSE, /* partial_inplace */
1924 0xffc, /* src_mask */
1925 0xffc, /* dst_mask */
1926 FALSE), /* pcrel_offset */
1927
1928 /* ADD: GOT offset G(S) & 0xfff. */
1929 HOWTO (AARCH64_R (TLSDESC_ADD_LO12), /* type */
1930 0, /* rightshift */
1931 2, /* size (0 = byte, 1 = short, 2 = long) */
1932 12, /* bitsize */
1933 FALSE, /* pc_relative */
1934 0, /* bitpos */
1935 complain_overflow_dont,/* complain_on_overflow */
1936 bfd_elf_generic_reloc, /* special_function */
1937 AARCH64_R_STR (TLSDESC_ADD_LO12), /* name */
1938 FALSE, /* partial_inplace */
1939 0xfff, /* src_mask */
1940 0xfff, /* dst_mask */
1941 FALSE), /* pcrel_offset */
1942
1943 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1944 16, /* rightshift */
1945 2, /* size (0 = byte, 1 = short, 2 = long) */
1946 12, /* bitsize */
1947 FALSE, /* pc_relative */
1948 0, /* bitpos */
1949 complain_overflow_unsigned, /* complain_on_overflow */
1950 bfd_elf_generic_reloc, /* special_function */
1951 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1952 FALSE, /* partial_inplace */
1953 0xffff, /* src_mask */
1954 0xffff, /* dst_mask */
1955 FALSE), /* pcrel_offset */
1956
1957 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1958 0, /* rightshift */
1959 2, /* size (0 = byte, 1 = short, 2 = long) */
1960 12, /* bitsize */
1961 FALSE, /* pc_relative */
1962 0, /* bitpos */
1963 complain_overflow_dont, /* complain_on_overflow */
1964 bfd_elf_generic_reloc, /* special_function */
1965 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1966 FALSE, /* partial_inplace */
1967 0xffff, /* src_mask */
1968 0xffff, /* dst_mask */
1969 FALSE), /* pcrel_offset */
1970
1971 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1972 0, /* rightshift */
1973 2, /* size (0 = byte, 1 = short, 2 = long) */
1974 12, /* bitsize */
1975 FALSE, /* pc_relative */
1976 0, /* bitpos */
1977 complain_overflow_dont, /* complain_on_overflow */
1978 bfd_elf_generic_reloc, /* special_function */
1979 AARCH64_R_STR (TLSDESC_LDR), /* name */
1980 FALSE, /* partial_inplace */
1981 0x0, /* src_mask */
1982 0x0, /* dst_mask */
1983 FALSE), /* pcrel_offset */
1984
1985 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1986 0, /* rightshift */
1987 2, /* size (0 = byte, 1 = short, 2 = long) */
1988 12, /* bitsize */
1989 FALSE, /* pc_relative */
1990 0, /* bitpos */
1991 complain_overflow_dont, /* complain_on_overflow */
1992 bfd_elf_generic_reloc, /* special_function */
1993 AARCH64_R_STR (TLSDESC_ADD), /* name */
1994 FALSE, /* partial_inplace */
1995 0x0, /* src_mask */
1996 0x0, /* dst_mask */
1997 FALSE), /* pcrel_offset */
1998
1999 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
2000 0, /* rightshift */
2001 2, /* size (0 = byte, 1 = short, 2 = long) */
2002 0, /* bitsize */
2003 FALSE, /* pc_relative */
2004 0, /* bitpos */
2005 complain_overflow_dont, /* complain_on_overflow */
2006 bfd_elf_generic_reloc, /* special_function */
2007 AARCH64_R_STR (TLSDESC_CALL), /* name */
2008 FALSE, /* partial_inplace */
2009 0x0, /* src_mask */
2010 0x0, /* dst_mask */
2011 FALSE), /* pcrel_offset */
2012
2013 HOWTO (AARCH64_R (COPY), /* type */
2014 0, /* rightshift */
2015 2, /* size (0 = byte, 1 = short, 2 = long) */
2016 64, /* bitsize */
2017 FALSE, /* pc_relative */
2018 0, /* bitpos */
2019 complain_overflow_bitfield, /* complain_on_overflow */
2020 bfd_elf_generic_reloc, /* special_function */
2021 AARCH64_R_STR (COPY), /* name */
2022 TRUE, /* partial_inplace */
2023 0xffffffff, /* src_mask */
2024 0xffffffff, /* dst_mask */
2025 FALSE), /* pcrel_offset */
2026
2027 HOWTO (AARCH64_R (GLOB_DAT), /* type */
2028 0, /* rightshift */
2029 2, /* size (0 = byte, 1 = short, 2 = long) */
2030 64, /* bitsize */
2031 FALSE, /* pc_relative */
2032 0, /* bitpos */
2033 complain_overflow_bitfield, /* complain_on_overflow */
2034 bfd_elf_generic_reloc, /* special_function */
2035 AARCH64_R_STR (GLOB_DAT), /* name */
2036 TRUE, /* partial_inplace */
2037 0xffffffff, /* src_mask */
2038 0xffffffff, /* dst_mask */
2039 FALSE), /* pcrel_offset */
2040
2041 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
2042 0, /* rightshift */
2043 2, /* size (0 = byte, 1 = short, 2 = long) */
2044 64, /* bitsize */
2045 FALSE, /* pc_relative */
2046 0, /* bitpos */
2047 complain_overflow_bitfield, /* complain_on_overflow */
2048 bfd_elf_generic_reloc, /* special_function */
2049 AARCH64_R_STR (JUMP_SLOT), /* name */
2050 TRUE, /* partial_inplace */
2051 0xffffffff, /* src_mask */
2052 0xffffffff, /* dst_mask */
2053 FALSE), /* pcrel_offset */
2054
2055 HOWTO (AARCH64_R (RELATIVE), /* type */
2056 0, /* rightshift */
2057 2, /* size (0 = byte, 1 = short, 2 = long) */
2058 64, /* bitsize */
2059 FALSE, /* pc_relative */
2060 0, /* bitpos */
2061 complain_overflow_bitfield, /* complain_on_overflow */
2062 bfd_elf_generic_reloc, /* special_function */
2063 AARCH64_R_STR (RELATIVE), /* name */
2064 TRUE, /* partial_inplace */
2065 ALL_ONES, /* src_mask */
2066 ALL_ONES, /* dst_mask */
2067 FALSE), /* pcrel_offset */
2068
2069 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
2070 0, /* rightshift */
2071 2, /* size (0 = byte, 1 = short, 2 = long) */
2072 64, /* bitsize */
2073 FALSE, /* pc_relative */
2074 0, /* bitpos */
2075 complain_overflow_dont, /* complain_on_overflow */
2076 bfd_elf_generic_reloc, /* special_function */
2077 #if ARCH_SIZE == 64
2078 AARCH64_R_STR (TLS_DTPMOD64), /* name */
2079 #else
2080 AARCH64_R_STR (TLS_DTPMOD), /* name */
2081 #endif
2082 FALSE, /* partial_inplace */
2083 0, /* src_mask */
2084 ALL_ONES, /* dst_mask */
2085 FALSE), /* pc_reloffset */
2086
2087 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
2088 0, /* rightshift */
2089 2, /* size (0 = byte, 1 = short, 2 = long) */
2090 64, /* bitsize */
2091 FALSE, /* pc_relative */
2092 0, /* bitpos */
2093 complain_overflow_dont, /* complain_on_overflow */
2094 bfd_elf_generic_reloc, /* special_function */
2095 #if ARCH_SIZE == 64
2096 AARCH64_R_STR (TLS_DTPREL64), /* name */
2097 #else
2098 AARCH64_R_STR (TLS_DTPREL), /* name */
2099 #endif
2100 FALSE, /* partial_inplace */
2101 0, /* src_mask */
2102 ALL_ONES, /* dst_mask */
2103 FALSE), /* pcrel_offset */
2104
2105 HOWTO (AARCH64_R (TLS_TPREL), /* type */
2106 0, /* rightshift */
2107 2, /* size (0 = byte, 1 = short, 2 = long) */
2108 64, /* bitsize */
2109 FALSE, /* pc_relative */
2110 0, /* bitpos */
2111 complain_overflow_dont, /* complain_on_overflow */
2112 bfd_elf_generic_reloc, /* special_function */
2113 #if ARCH_SIZE == 64
2114 AARCH64_R_STR (TLS_TPREL64), /* name */
2115 #else
2116 AARCH64_R_STR (TLS_TPREL), /* name */
2117 #endif
2118 FALSE, /* partial_inplace */
2119 0, /* src_mask */
2120 ALL_ONES, /* dst_mask */
2121 FALSE), /* pcrel_offset */
2122
2123 HOWTO (AARCH64_R (TLSDESC), /* type */
2124 0, /* rightshift */
2125 2, /* size (0 = byte, 1 = short, 2 = long) */
2126 64, /* bitsize */
2127 FALSE, /* pc_relative */
2128 0, /* bitpos */
2129 complain_overflow_dont, /* complain_on_overflow */
2130 bfd_elf_generic_reloc, /* special_function */
2131 AARCH64_R_STR (TLSDESC), /* name */
2132 FALSE, /* partial_inplace */
2133 0, /* src_mask */
2134 ALL_ONES, /* dst_mask */
2135 FALSE), /* pcrel_offset */
2136
2137 HOWTO (AARCH64_R (IRELATIVE), /* type */
2138 0, /* rightshift */
2139 2, /* size (0 = byte, 1 = short, 2 = long) */
2140 64, /* bitsize */
2141 FALSE, /* pc_relative */
2142 0, /* bitpos */
2143 complain_overflow_bitfield, /* complain_on_overflow */
2144 bfd_elf_generic_reloc, /* special_function */
2145 AARCH64_R_STR (IRELATIVE), /* name */
2146 FALSE, /* partial_inplace */
2147 0, /* src_mask */
2148 ALL_ONES, /* dst_mask */
2149 FALSE), /* pcrel_offset */
2150
2151 EMPTY_HOWTO (0),
2152 };
2153
2154 static reloc_howto_type elfNN_aarch64_howto_none =
2155 HOWTO (R_AARCH64_NONE, /* type */
2156 0, /* rightshift */
2157 3, /* size (0 = byte, 1 = short, 2 = long) */
2158 0, /* bitsize */
2159 FALSE, /* pc_relative */
2160 0, /* bitpos */
2161 complain_overflow_dont,/* complain_on_overflow */
2162 bfd_elf_generic_reloc, /* special_function */
2163 "R_AARCH64_NONE", /* name */
2164 FALSE, /* partial_inplace */
2165 0, /* src_mask */
2166 0, /* dst_mask */
2167 FALSE); /* pcrel_offset */
2168
2169 /* Given HOWTO, return the bfd internal relocation enumerator. */
2170
2171 static bfd_reloc_code_real_type
2172 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
2173 {
2174 const int size
2175 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
2176 const ptrdiff_t offset
2177 = howto - elfNN_aarch64_howto_table;
2178
2179 if (offset > 0 && offset < size - 1)
2180 return BFD_RELOC_AARCH64_RELOC_START + offset;
2181
2182 if (howto == &elfNN_aarch64_howto_none)
2183 return BFD_RELOC_AARCH64_NONE;
2184
2185 return BFD_RELOC_AARCH64_RELOC_START;
2186 }
2187
2188 /* Given R_TYPE, return the bfd internal relocation enumerator. */
2189
2190 static bfd_reloc_code_real_type
2191 elfNN_aarch64_bfd_reloc_from_type (bfd *abfd, unsigned int r_type)
2192 {
2193 static bfd_boolean initialized_p = FALSE;
2194 /* Indexed by R_TYPE, values are offsets in the howto_table. */
2195 static unsigned int offsets[R_AARCH64_end];
2196
2197 if (!initialized_p)
2198 {
2199 unsigned int i;
2200
2201 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2202 if (elfNN_aarch64_howto_table[i].type != 0)
2203 offsets[elfNN_aarch64_howto_table[i].type] = i;
2204
2205 initialized_p = TRUE;
2206 }
2207
2208 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
2209 return BFD_RELOC_AARCH64_NONE;
2210
2211 /* PR 17512: file: b371e70a. */
2212 if (r_type >= R_AARCH64_end)
2213 {
2214 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
2215 abfd, r_type);
2216 bfd_set_error (bfd_error_bad_value);
2217 return BFD_RELOC_AARCH64_NONE;
2218 }
2219
2220 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
2221 }
2222
2223 struct elf_aarch64_reloc_map
2224 {
2225 bfd_reloc_code_real_type from;
2226 bfd_reloc_code_real_type to;
2227 };
2228
2229 /* Map bfd generic reloc to AArch64-specific reloc. */
2230 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
2231 {
2232 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
2233
2234 /* Basic data relocations. */
2235 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
2236 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
2237 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
2238 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
2239 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
2240 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
2241 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
2242 };
2243
2244 /* Given the bfd internal relocation enumerator in CODE, return the
2245 corresponding howto entry. */
2246
2247 static reloc_howto_type *
2248 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
2249 {
2250 unsigned int i;
2251
2252 /* Convert bfd generic reloc to AArch64-specific reloc. */
2253 if (code < BFD_RELOC_AARCH64_RELOC_START
2254 || code > BFD_RELOC_AARCH64_RELOC_END)
2255 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
2256 if (elf_aarch64_reloc_map[i].from == code)
2257 {
2258 code = elf_aarch64_reloc_map[i].to;
2259 break;
2260 }
2261
2262 if (code > BFD_RELOC_AARCH64_RELOC_START
2263 && code < BFD_RELOC_AARCH64_RELOC_END)
2264 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
2265 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
2266
2267 if (code == BFD_RELOC_AARCH64_NONE)
2268 return &elfNN_aarch64_howto_none;
2269
2270 return NULL;
2271 }
2272
2273 static reloc_howto_type *
2274 elfNN_aarch64_howto_from_type (bfd *abfd, unsigned int r_type)
2275 {
2276 bfd_reloc_code_real_type val;
2277 reloc_howto_type *howto;
2278
2279 #if ARCH_SIZE == 32
2280 if (r_type > 256)
2281 {
2282 bfd_set_error (bfd_error_bad_value);
2283 return NULL;
2284 }
2285 #endif
2286
2287 if (r_type == R_AARCH64_NONE)
2288 return &elfNN_aarch64_howto_none;
2289
2290 val = elfNN_aarch64_bfd_reloc_from_type (abfd, r_type);
2291 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
2292
2293 if (howto != NULL)
2294 return howto;
2295
2296 bfd_set_error (bfd_error_bad_value);
2297 return NULL;
2298 }
2299
2300 static bfd_boolean
2301 elfNN_aarch64_info_to_howto (bfd *abfd, arelent *bfd_reloc,
2302 Elf_Internal_Rela *elf_reloc)
2303 {
2304 unsigned int r_type;
2305
2306 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
2307 bfd_reloc->howto = elfNN_aarch64_howto_from_type (abfd, r_type);
2308
2309 if (bfd_reloc->howto == NULL)
2310 {
2311 /* xgettext:c-format */
2312 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, r_type);
2313 return FALSE;
2314 }
2315 return TRUE;
2316 }
2317
2318 static reloc_howto_type *
2319 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2320 bfd_reloc_code_real_type code)
2321 {
2322 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
2323
2324 if (howto != NULL)
2325 return howto;
2326
2327 bfd_set_error (bfd_error_bad_value);
2328 return NULL;
2329 }
2330
2331 static reloc_howto_type *
2332 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2333 const char *r_name)
2334 {
2335 unsigned int i;
2336
2337 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2338 if (elfNN_aarch64_howto_table[i].name != NULL
2339 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2340 return &elfNN_aarch64_howto_table[i];
2341
2342 return NULL;
2343 }
2344
2345 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2346 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2347 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2348 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2349
2350 /* The linker script knows the section names for placement.
2351 The entry_names are used to do simple name mangling on the stubs.
2352 Given a function name, and its type, the stub can be found. The
2353 name can be changed. The only requirement is the %s be present. */
2354 #define STUB_ENTRY_NAME "__%s_veneer"
2355
2356 /* The name of the dynamic interpreter. This is put in the .interp
2357 section. */
2358 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2359
2360 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2361 (((1 << 25) - 1) << 2)
2362 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2363 (-((1 << 25) << 2))
2364
2365 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2366 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2367
2368 static int
2369 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2370 {
2371 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2372 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2373 }
2374
2375 static int
2376 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2377 {
2378 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2379 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2380 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2381 }
2382
2383 static const uint32_t aarch64_adrp_branch_stub [] =
2384 {
2385 0x90000010, /* adrp ip0, X */
2386 /* R_AARCH64_ADR_HI21_PCREL(X) */
2387 0x91000210, /* add ip0, ip0, :lo12:X */
2388 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2389 0xd61f0200, /* br ip0 */
2390 };
2391
2392 static const uint32_t aarch64_long_branch_stub[] =
2393 {
2394 #if ARCH_SIZE == 64
2395 0x58000090, /* ldr ip0, 1f */
2396 #else
2397 0x18000090, /* ldr wip0, 1f */
2398 #endif
2399 0x10000011, /* adr ip1, #0 */
2400 0x8b110210, /* add ip0, ip0, ip1 */
2401 0xd61f0200, /* br ip0 */
2402 0x00000000, /* 1: .xword or .word
2403 R_AARCH64_PRELNN(X) + 12
2404 */
2405 0x00000000,
2406 };
2407
2408 static const uint32_t aarch64_erratum_835769_stub[] =
2409 {
2410 0x00000000, /* Placeholder for multiply accumulate. */
2411 0x14000000, /* b <label> */
2412 };
2413
2414 static const uint32_t aarch64_erratum_843419_stub[] =
2415 {
2416 0x00000000, /* Placeholder for LDR instruction. */
2417 0x14000000, /* b <label> */
2418 };
2419
2420 /* Section name for stubs is the associated section name plus this
2421 string. */
2422 #define STUB_SUFFIX ".stub"
2423
2424 enum elf_aarch64_stub_type
2425 {
2426 aarch64_stub_none,
2427 aarch64_stub_adrp_branch,
2428 aarch64_stub_long_branch,
2429 aarch64_stub_erratum_835769_veneer,
2430 aarch64_stub_erratum_843419_veneer,
2431 };
2432
2433 struct elf_aarch64_stub_hash_entry
2434 {
2435 /* Base hash table entry structure. */
2436 struct bfd_hash_entry root;
2437
2438 /* The stub section. */
2439 asection *stub_sec;
2440
2441 /* Offset within stub_sec of the beginning of this stub. */
2442 bfd_vma stub_offset;
2443
2444 /* Given the symbol's value and its section we can determine its final
2445 value when building the stubs (so the stub knows where to jump). */
2446 bfd_vma target_value;
2447 asection *target_section;
2448
2449 enum elf_aarch64_stub_type stub_type;
2450
2451 /* The symbol table entry, if any, that this was derived from. */
2452 struct elf_aarch64_link_hash_entry *h;
2453
2454 /* Destination symbol type */
2455 unsigned char st_type;
2456
2457 /* Where this stub is being called from, or, in the case of combined
2458 stub sections, the first input section in the group. */
2459 asection *id_sec;
2460
2461 /* The name for the local symbol at the start of this stub. The
2462 stub name in the hash table has to be unique; this does not, so
2463 it can be friendlier. */
2464 char *output_name;
2465
2466 /* The instruction which caused this stub to be generated (only valid for
2467 erratum 835769 workaround stubs at present). */
2468 uint32_t veneered_insn;
2469
2470 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2471 bfd_vma adrp_offset;
2472 };
2473
2474 /* Used to build a map of a section. This is required for mixed-endian
2475 code/data. */
2476
2477 typedef struct elf_elf_section_map
2478 {
2479 bfd_vma vma;
2480 char type;
2481 }
2482 elf_aarch64_section_map;
2483
2484
2485 typedef struct _aarch64_elf_section_data
2486 {
2487 struct bfd_elf_section_data elf;
2488 unsigned int mapcount;
2489 unsigned int mapsize;
2490 elf_aarch64_section_map *map;
2491 }
2492 _aarch64_elf_section_data;
2493
2494 #define elf_aarch64_section_data(sec) \
2495 ((_aarch64_elf_section_data *) elf_section_data (sec))
2496
2497 /* The size of the thread control block which is defined to be two pointers. */
2498 #define TCB_SIZE (ARCH_SIZE/8)*2
2499
2500 struct elf_aarch64_local_symbol
2501 {
2502 unsigned int got_type;
2503 bfd_signed_vma got_refcount;
2504 bfd_vma got_offset;
2505
2506 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2507 offset is from the end of the jump table and reserved entries
2508 within the PLTGOT.
2509
2510 The magic value (bfd_vma) -1 indicates that an offset has not be
2511 allocated. */
2512 bfd_vma tlsdesc_got_jump_table_offset;
2513 };
2514
2515 struct elf_aarch64_obj_tdata
2516 {
2517 struct elf_obj_tdata root;
2518
2519 /* local symbol descriptors */
2520 struct elf_aarch64_local_symbol *locals;
2521
2522 /* Zero to warn when linking objects with incompatible enum sizes. */
2523 int no_enum_size_warning;
2524
2525 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2526 int no_wchar_size_warning;
2527
2528 /* All GNU_PROPERTY_AARCH64_FEATURE_1_AND properties. */
2529 uint32_t gnu_and_prop;
2530
2531 /* Zero to warn when linking objects with incompatible
2532 GNU_PROPERTY_AARCH64_FEATURE_1_BTI. */
2533 int no_bti_warn;
2534
2535 /* PLT type based on security. */
2536 aarch64_plt_type plt_type;
2537 };
2538
2539 #define elf_aarch64_tdata(bfd) \
2540 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2541
2542 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2543
2544 #define is_aarch64_elf(bfd) \
2545 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2546 && elf_tdata (bfd) != NULL \
2547 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2548
2549 static bfd_boolean
2550 elfNN_aarch64_mkobject (bfd *abfd)
2551 {
2552 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2553 AARCH64_ELF_DATA);
2554 }
2555
2556 #define elf_aarch64_hash_entry(ent) \
2557 ((struct elf_aarch64_link_hash_entry *)(ent))
2558
2559 #define GOT_UNKNOWN 0
2560 #define GOT_NORMAL 1
2561 #define GOT_TLS_GD 2
2562 #define GOT_TLS_IE 4
2563 #define GOT_TLSDESC_GD 8
2564
2565 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2566
2567 /* AArch64 ELF linker hash entry. */
2568 struct elf_aarch64_link_hash_entry
2569 {
2570 struct elf_link_hash_entry root;
2571
2572 /* Track dynamic relocs copied for this symbol. */
2573 struct elf_dyn_relocs *dyn_relocs;
2574
2575 /* Since PLT entries have variable size, we need to record the
2576 index into .got.plt instead of recomputing it from the PLT
2577 offset. */
2578 bfd_signed_vma plt_got_offset;
2579
2580 /* Bit mask representing the type of GOT entry(s) if any required by
2581 this symbol. */
2582 unsigned int got_type;
2583
2584 /* A pointer to the most recently used stub hash entry against this
2585 symbol. */
2586 struct elf_aarch64_stub_hash_entry *stub_cache;
2587
2588 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2589 is from the end of the jump table and reserved entries within the PLTGOT.
2590
2591 The magic value (bfd_vma) -1 indicates that an offset has not
2592 be allocated. */
2593 bfd_vma tlsdesc_got_jump_table_offset;
2594 };
2595
2596 static unsigned int
2597 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2598 bfd *abfd,
2599 unsigned long r_symndx)
2600 {
2601 if (h)
2602 return elf_aarch64_hash_entry (h)->got_type;
2603
2604 if (! elf_aarch64_locals (abfd))
2605 return GOT_UNKNOWN;
2606
2607 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2608 }
2609
2610 /* Get the AArch64 elf linker hash table from a link_info structure. */
2611 #define elf_aarch64_hash_table(info) \
2612 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2613
2614 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2615 ((struct elf_aarch64_stub_hash_entry *) \
2616 bfd_hash_lookup ((table), (string), (create), (copy)))
2617
2618 /* AArch64 ELF linker hash table. */
2619 struct elf_aarch64_link_hash_table
2620 {
2621 /* The main hash table. */
2622 struct elf_link_hash_table root;
2623
2624 /* Nonzero to force PIC branch veneers. */
2625 int pic_veneer;
2626
2627 /* Fix erratum 835769. */
2628 int fix_erratum_835769;
2629
2630 /* Fix erratum 843419. */
2631 int fix_erratum_843419;
2632
2633 /* Enable ADRP->ADR rewrite for erratum 843419 workaround. */
2634 int fix_erratum_843419_adr;
2635
2636 /* Don't apply link-time values for dynamic relocations. */
2637 int no_apply_dynamic_relocs;
2638
2639 /* The number of bytes in the initial entry in the PLT. */
2640 bfd_size_type plt_header_size;
2641
2642 /* The bytes of the initial PLT entry. */
2643 const bfd_byte *plt0_entry;
2644
2645 /* The number of bytes in the subsequent PLT entries. */
2646 bfd_size_type plt_entry_size;
2647
2648 /* The bytes of the subsequent PLT entry. */
2649 const bfd_byte *plt_entry;
2650
2651 /* Small local sym cache. */
2652 struct sym_cache sym_cache;
2653
2654 /* For convenience in allocate_dynrelocs. */
2655 bfd *obfd;
2656
2657 /* The amount of space used by the reserved portion of the sgotplt
2658 section, plus whatever space is used by the jump slots. */
2659 bfd_vma sgotplt_jump_table_size;
2660
2661 /* The stub hash table. */
2662 struct bfd_hash_table stub_hash_table;
2663
2664 /* Linker stub bfd. */
2665 bfd *stub_bfd;
2666
2667 /* Linker call-backs. */
2668 asection *(*add_stub_section) (const char *, asection *);
2669 void (*layout_sections_again) (void);
2670
2671 /* Array to keep track of which stub sections have been created, and
2672 information on stub grouping. */
2673 struct map_stub
2674 {
2675 /* This is the section to which stubs in the group will be
2676 attached. */
2677 asection *link_sec;
2678 /* The stub section. */
2679 asection *stub_sec;
2680 } *stub_group;
2681
2682 /* Assorted information used by elfNN_aarch64_size_stubs. */
2683 unsigned int bfd_count;
2684 unsigned int top_index;
2685 asection **input_list;
2686
2687 /* The offset into splt of the PLT entry for the TLS descriptor
2688 resolver. Special values are 0, if not necessary (or not found
2689 to be necessary yet), and -1 if needed but not determined
2690 yet. */
2691 bfd_vma tlsdesc_plt;
2692
2693 /* The number of bytes in the PLT enty for the TLS descriptor. */
2694 bfd_size_type tlsdesc_plt_entry_size;
2695
2696 /* The GOT offset for the lazy trampoline. Communicated to the
2697 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2698 indicates an offset is not allocated. */
2699 bfd_vma dt_tlsdesc_got;
2700
2701 /* Used by local STT_GNU_IFUNC symbols. */
2702 htab_t loc_hash_table;
2703 void * loc_hash_memory;
2704 };
2705
2706 /* Create an entry in an AArch64 ELF linker hash table. */
2707
2708 static struct bfd_hash_entry *
2709 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2710 struct bfd_hash_table *table,
2711 const char *string)
2712 {
2713 struct elf_aarch64_link_hash_entry *ret =
2714 (struct elf_aarch64_link_hash_entry *) entry;
2715
2716 /* Allocate the structure if it has not already been allocated by a
2717 subclass. */
2718 if (ret == NULL)
2719 ret = bfd_hash_allocate (table,
2720 sizeof (struct elf_aarch64_link_hash_entry));
2721 if (ret == NULL)
2722 return (struct bfd_hash_entry *) ret;
2723
2724 /* Call the allocation method of the superclass. */
2725 ret = ((struct elf_aarch64_link_hash_entry *)
2726 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2727 table, string));
2728 if (ret != NULL)
2729 {
2730 ret->dyn_relocs = NULL;
2731 ret->got_type = GOT_UNKNOWN;
2732 ret->plt_got_offset = (bfd_vma) - 1;
2733 ret->stub_cache = NULL;
2734 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2735 }
2736
2737 return (struct bfd_hash_entry *) ret;
2738 }
2739
2740 /* Initialize an entry in the stub hash table. */
2741
2742 static struct bfd_hash_entry *
2743 stub_hash_newfunc (struct bfd_hash_entry *entry,
2744 struct bfd_hash_table *table, const char *string)
2745 {
2746 /* Allocate the structure if it has not already been allocated by a
2747 subclass. */
2748 if (entry == NULL)
2749 {
2750 entry = bfd_hash_allocate (table,
2751 sizeof (struct
2752 elf_aarch64_stub_hash_entry));
2753 if (entry == NULL)
2754 return entry;
2755 }
2756
2757 /* Call the allocation method of the superclass. */
2758 entry = bfd_hash_newfunc (entry, table, string);
2759 if (entry != NULL)
2760 {
2761 struct elf_aarch64_stub_hash_entry *eh;
2762
2763 /* Initialize the local fields. */
2764 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2765 eh->adrp_offset = 0;
2766 eh->stub_sec = NULL;
2767 eh->stub_offset = 0;
2768 eh->target_value = 0;
2769 eh->target_section = NULL;
2770 eh->stub_type = aarch64_stub_none;
2771 eh->h = NULL;
2772 eh->id_sec = NULL;
2773 }
2774
2775 return entry;
2776 }
2777
2778 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2779 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2780 as global symbol. We reuse indx and dynstr_index for local symbol
2781 hash since they aren't used by global symbols in this backend. */
2782
2783 static hashval_t
2784 elfNN_aarch64_local_htab_hash (const void *ptr)
2785 {
2786 struct elf_link_hash_entry *h
2787 = (struct elf_link_hash_entry *) ptr;
2788 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2789 }
2790
2791 /* Compare local hash entries. */
2792
2793 static int
2794 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2795 {
2796 struct elf_link_hash_entry *h1
2797 = (struct elf_link_hash_entry *) ptr1;
2798 struct elf_link_hash_entry *h2
2799 = (struct elf_link_hash_entry *) ptr2;
2800
2801 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2802 }
2803
2804 /* Find and/or create a hash entry for local symbol. */
2805
2806 static struct elf_link_hash_entry *
2807 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2808 bfd *abfd, const Elf_Internal_Rela *rel,
2809 bfd_boolean create)
2810 {
2811 struct elf_aarch64_link_hash_entry e, *ret;
2812 asection *sec = abfd->sections;
2813 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2814 ELFNN_R_SYM (rel->r_info));
2815 void **slot;
2816
2817 e.root.indx = sec->id;
2818 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2819 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2820 create ? INSERT : NO_INSERT);
2821
2822 if (!slot)
2823 return NULL;
2824
2825 if (*slot)
2826 {
2827 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2828 return &ret->root;
2829 }
2830
2831 ret = (struct elf_aarch64_link_hash_entry *)
2832 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2833 sizeof (struct elf_aarch64_link_hash_entry));
2834 if (ret)
2835 {
2836 memset (ret, 0, sizeof (*ret));
2837 ret->root.indx = sec->id;
2838 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2839 ret->root.dynindx = -1;
2840 *slot = ret;
2841 }
2842 return &ret->root;
2843 }
2844
2845 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2846
2847 static void
2848 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2849 struct elf_link_hash_entry *dir,
2850 struct elf_link_hash_entry *ind)
2851 {
2852 struct elf_aarch64_link_hash_entry *edir, *eind;
2853
2854 edir = (struct elf_aarch64_link_hash_entry *) dir;
2855 eind = (struct elf_aarch64_link_hash_entry *) ind;
2856
2857 if (eind->dyn_relocs != NULL)
2858 {
2859 if (edir->dyn_relocs != NULL)
2860 {
2861 struct elf_dyn_relocs **pp;
2862 struct elf_dyn_relocs *p;
2863
2864 /* Add reloc counts against the indirect sym to the direct sym
2865 list. Merge any entries against the same section. */
2866 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2867 {
2868 struct elf_dyn_relocs *q;
2869
2870 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2871 if (q->sec == p->sec)
2872 {
2873 q->pc_count += p->pc_count;
2874 q->count += p->count;
2875 *pp = p->next;
2876 break;
2877 }
2878 if (q == NULL)
2879 pp = &p->next;
2880 }
2881 *pp = edir->dyn_relocs;
2882 }
2883
2884 edir->dyn_relocs = eind->dyn_relocs;
2885 eind->dyn_relocs = NULL;
2886 }
2887
2888 if (ind->root.type == bfd_link_hash_indirect)
2889 {
2890 /* Copy over PLT info. */
2891 if (dir->got.refcount <= 0)
2892 {
2893 edir->got_type = eind->got_type;
2894 eind->got_type = GOT_UNKNOWN;
2895 }
2896 }
2897
2898 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2899 }
2900
2901 /* Destroy an AArch64 elf linker hash table. */
2902
2903 static void
2904 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2905 {
2906 struct elf_aarch64_link_hash_table *ret
2907 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2908
2909 if (ret->loc_hash_table)
2910 htab_delete (ret->loc_hash_table);
2911 if (ret->loc_hash_memory)
2912 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2913
2914 bfd_hash_table_free (&ret->stub_hash_table);
2915 _bfd_elf_link_hash_table_free (obfd);
2916 }
2917
2918 /* Create an AArch64 elf linker hash table. */
2919
2920 static struct bfd_link_hash_table *
2921 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2922 {
2923 struct elf_aarch64_link_hash_table *ret;
2924 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
2925
2926 ret = bfd_zmalloc (amt);
2927 if (ret == NULL)
2928 return NULL;
2929
2930 if (!_bfd_elf_link_hash_table_init
2931 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2932 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2933 {
2934 free (ret);
2935 return NULL;
2936 }
2937
2938 ret->plt_header_size = PLT_ENTRY_SIZE;
2939 ret->plt0_entry = elfNN_aarch64_small_plt0_entry;
2940 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2941 ret->plt_entry = elfNN_aarch64_small_plt_entry;
2942 ret->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
2943 ret->obfd = abfd;
2944 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2945
2946 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2947 sizeof (struct elf_aarch64_stub_hash_entry)))
2948 {
2949 _bfd_elf_link_hash_table_free (abfd);
2950 return NULL;
2951 }
2952
2953 ret->loc_hash_table = htab_try_create (1024,
2954 elfNN_aarch64_local_htab_hash,
2955 elfNN_aarch64_local_htab_eq,
2956 NULL);
2957 ret->loc_hash_memory = objalloc_create ();
2958 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2959 {
2960 elfNN_aarch64_link_hash_table_free (abfd);
2961 return NULL;
2962 }
2963 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2964
2965 return &ret->root.root;
2966 }
2967
2968 /* Perform relocation R_TYPE. Returns TRUE upon success, FALSE otherwise. */
2969
2970 static bfd_boolean
2971 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2972 bfd_vma offset, bfd_vma value)
2973 {
2974 reloc_howto_type *howto;
2975 bfd_vma place;
2976
2977 howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
2978 place = (input_section->output_section->vma + input_section->output_offset
2979 + offset);
2980
2981 r_type = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
2982 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2983 return _bfd_aarch64_elf_put_addend (input_bfd,
2984 input_section->contents + offset, r_type,
2985 howto, value) == bfd_reloc_ok;
2986 }
2987
2988 static enum elf_aarch64_stub_type
2989 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2990 {
2991 if (aarch64_valid_for_adrp_p (value, place))
2992 return aarch64_stub_adrp_branch;
2993 return aarch64_stub_long_branch;
2994 }
2995
2996 /* Determine the type of stub needed, if any, for a call. */
2997
2998 static enum elf_aarch64_stub_type
2999 aarch64_type_of_stub (asection *input_sec,
3000 const Elf_Internal_Rela *rel,
3001 asection *sym_sec,
3002 unsigned char st_type,
3003 bfd_vma destination)
3004 {
3005 bfd_vma location;
3006 bfd_signed_vma branch_offset;
3007 unsigned int r_type;
3008 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
3009
3010 if (st_type != STT_FUNC
3011 && (sym_sec == input_sec))
3012 return stub_type;
3013
3014 /* Determine where the call point is. */
3015 location = (input_sec->output_offset
3016 + input_sec->output_section->vma + rel->r_offset);
3017
3018 branch_offset = (bfd_signed_vma) (destination - location);
3019
3020 r_type = ELFNN_R_TYPE (rel->r_info);
3021
3022 /* We don't want to redirect any old unconditional jump in this way,
3023 only one which is being used for a sibcall, where it is
3024 acceptable for the IP0 and IP1 registers to be clobbered. */
3025 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
3026 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
3027 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
3028 {
3029 stub_type = aarch64_stub_long_branch;
3030 }
3031
3032 return stub_type;
3033 }
3034
3035 /* Build a name for an entry in the stub hash table. */
3036
3037 static char *
3038 elfNN_aarch64_stub_name (const asection *input_section,
3039 const asection *sym_sec,
3040 const struct elf_aarch64_link_hash_entry *hash,
3041 const Elf_Internal_Rela *rel)
3042 {
3043 char *stub_name;
3044 bfd_size_type len;
3045
3046 if (hash)
3047 {
3048 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
3049 stub_name = bfd_malloc (len);
3050 if (stub_name != NULL)
3051 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
3052 (unsigned int) input_section->id,
3053 hash->root.root.root.string,
3054 rel->r_addend);
3055 }
3056 else
3057 {
3058 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
3059 stub_name = bfd_malloc (len);
3060 if (stub_name != NULL)
3061 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
3062 (unsigned int) input_section->id,
3063 (unsigned int) sym_sec->id,
3064 (unsigned int) ELFNN_R_SYM (rel->r_info),
3065 rel->r_addend);
3066 }
3067
3068 return stub_name;
3069 }
3070
3071 /* Return TRUE if symbol H should be hashed in the `.gnu.hash' section. For
3072 executable PLT slots where the executable never takes the address of those
3073 functions, the function symbols are not added to the hash table. */
3074
3075 static bfd_boolean
3076 elf_aarch64_hash_symbol (struct elf_link_hash_entry *h)
3077 {
3078 if (h->plt.offset != (bfd_vma) -1
3079 && !h->def_regular
3080 && !h->pointer_equality_needed)
3081 return FALSE;
3082
3083 return _bfd_elf_hash_symbol (h);
3084 }
3085
3086
3087 /* Look up an entry in the stub hash. Stub entries are cached because
3088 creating the stub name takes a bit of time. */
3089
3090 static struct elf_aarch64_stub_hash_entry *
3091 elfNN_aarch64_get_stub_entry (const asection *input_section,
3092 const asection *sym_sec,
3093 struct elf_link_hash_entry *hash,
3094 const Elf_Internal_Rela *rel,
3095 struct elf_aarch64_link_hash_table *htab)
3096 {
3097 struct elf_aarch64_stub_hash_entry *stub_entry;
3098 struct elf_aarch64_link_hash_entry *h =
3099 (struct elf_aarch64_link_hash_entry *) hash;
3100 const asection *id_sec;
3101
3102 if ((input_section->flags & SEC_CODE) == 0)
3103 return NULL;
3104
3105 /* If this input section is part of a group of sections sharing one
3106 stub section, then use the id of the first section in the group.
3107 Stub names need to include a section id, as there may well be
3108 more than one stub used to reach say, printf, and we need to
3109 distinguish between them. */
3110 id_sec = htab->stub_group[input_section->id].link_sec;
3111
3112 if (h != NULL && h->stub_cache != NULL
3113 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
3114 {
3115 stub_entry = h->stub_cache;
3116 }
3117 else
3118 {
3119 char *stub_name;
3120
3121 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
3122 if (stub_name == NULL)
3123 return NULL;
3124
3125 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
3126 stub_name, FALSE, FALSE);
3127 if (h != NULL)
3128 h->stub_cache = stub_entry;
3129
3130 free (stub_name);
3131 }
3132
3133 return stub_entry;
3134 }
3135
3136
3137 /* Create a stub section. */
3138
3139 static asection *
3140 _bfd_aarch64_create_stub_section (asection *section,
3141 struct elf_aarch64_link_hash_table *htab)
3142 {
3143 size_t namelen;
3144 bfd_size_type len;
3145 char *s_name;
3146
3147 namelen = strlen (section->name);
3148 len = namelen + sizeof (STUB_SUFFIX);
3149 s_name = bfd_alloc (htab->stub_bfd, len);
3150 if (s_name == NULL)
3151 return NULL;
3152
3153 memcpy (s_name, section->name, namelen);
3154 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3155 return (*htab->add_stub_section) (s_name, section);
3156 }
3157
3158
3159 /* Find or create a stub section for a link section.
3160
3161 Fix or create the stub section used to collect stubs attached to
3162 the specified link section. */
3163
3164 static asection *
3165 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
3166 struct elf_aarch64_link_hash_table *htab)
3167 {
3168 if (htab->stub_group[link_section->id].stub_sec == NULL)
3169 htab->stub_group[link_section->id].stub_sec
3170 = _bfd_aarch64_create_stub_section (link_section, htab);
3171 return htab->stub_group[link_section->id].stub_sec;
3172 }
3173
3174
3175 /* Find or create a stub section in the stub group for an input
3176 section. */
3177
3178 static asection *
3179 _bfd_aarch64_create_or_find_stub_sec (asection *section,
3180 struct elf_aarch64_link_hash_table *htab)
3181 {
3182 asection *link_sec = htab->stub_group[section->id].link_sec;
3183 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
3184 }
3185
3186
3187 /* Add a new stub entry in the stub group associated with an input
3188 section to the stub hash. Not all fields of the new stub entry are
3189 initialised. */
3190
3191 static struct elf_aarch64_stub_hash_entry *
3192 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
3193 asection *section,
3194 struct elf_aarch64_link_hash_table *htab)
3195 {
3196 asection *link_sec;
3197 asection *stub_sec;
3198 struct elf_aarch64_stub_hash_entry *stub_entry;
3199
3200 link_sec = htab->stub_group[section->id].link_sec;
3201 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
3202
3203 /* Enter this entry into the linker stub hash table. */
3204 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3205 TRUE, FALSE);
3206 if (stub_entry == NULL)
3207 {
3208 /* xgettext:c-format */
3209 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3210 section->owner, stub_name);
3211 return NULL;
3212 }
3213
3214 stub_entry->stub_sec = stub_sec;
3215 stub_entry->stub_offset = 0;
3216 stub_entry->id_sec = link_sec;
3217
3218 return stub_entry;
3219 }
3220
3221 /* Add a new stub entry in the final stub section to the stub hash.
3222 Not all fields of the new stub entry are initialised. */
3223
3224 static struct elf_aarch64_stub_hash_entry *
3225 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
3226 asection *link_section,
3227 struct elf_aarch64_link_hash_table *htab)
3228 {
3229 asection *stub_sec;
3230 struct elf_aarch64_stub_hash_entry *stub_entry;
3231
3232 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
3233 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3234 TRUE, FALSE);
3235 if (stub_entry == NULL)
3236 {
3237 _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
3238 return NULL;
3239 }
3240
3241 stub_entry->stub_sec = stub_sec;
3242 stub_entry->stub_offset = 0;
3243 stub_entry->id_sec = link_section;
3244
3245 return stub_entry;
3246 }
3247
3248
3249 static bfd_boolean
3250 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
3251 void *in_arg ATTRIBUTE_UNUSED)
3252 {
3253 struct elf_aarch64_stub_hash_entry *stub_entry;
3254 asection *stub_sec;
3255 bfd *stub_bfd;
3256 bfd_byte *loc;
3257 bfd_vma sym_value;
3258 bfd_vma veneered_insn_loc;
3259 bfd_vma veneer_entry_loc;
3260 bfd_signed_vma branch_offset = 0;
3261 unsigned int template_size;
3262 const uint32_t *template;
3263 unsigned int i;
3264
3265 /* Massage our args to the form they really have. */
3266 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3267
3268 stub_sec = stub_entry->stub_sec;
3269
3270 /* Make a note of the offset within the stubs for this entry. */
3271 stub_entry->stub_offset = stub_sec->size;
3272 loc = stub_sec->contents + stub_entry->stub_offset;
3273
3274 stub_bfd = stub_sec->owner;
3275
3276 /* This is the address of the stub destination. */
3277 sym_value = (stub_entry->target_value
3278 + stub_entry->target_section->output_offset
3279 + stub_entry->target_section->output_section->vma);
3280
3281 if (stub_entry->stub_type == aarch64_stub_long_branch)
3282 {
3283 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
3284 + stub_sec->output_offset);
3285
3286 /* See if we can relax the stub. */
3287 if (aarch64_valid_for_adrp_p (sym_value, place))
3288 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
3289 }
3290
3291 switch (stub_entry->stub_type)
3292 {
3293 case aarch64_stub_adrp_branch:
3294 template = aarch64_adrp_branch_stub;
3295 template_size = sizeof (aarch64_adrp_branch_stub);
3296 break;
3297 case aarch64_stub_long_branch:
3298 template = aarch64_long_branch_stub;
3299 template_size = sizeof (aarch64_long_branch_stub);
3300 break;
3301 case aarch64_stub_erratum_835769_veneer:
3302 template = aarch64_erratum_835769_stub;
3303 template_size = sizeof (aarch64_erratum_835769_stub);
3304 break;
3305 case aarch64_stub_erratum_843419_veneer:
3306 template = aarch64_erratum_843419_stub;
3307 template_size = sizeof (aarch64_erratum_843419_stub);
3308 break;
3309 default:
3310 abort ();
3311 }
3312
3313 for (i = 0; i < (template_size / sizeof template[0]); i++)
3314 {
3315 bfd_putl32 (template[i], loc);
3316 loc += 4;
3317 }
3318
3319 template_size = (template_size + 7) & ~7;
3320 stub_sec->size += template_size;
3321
3322 switch (stub_entry->stub_type)
3323 {
3324 case aarch64_stub_adrp_branch:
3325 if (!aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
3326 stub_entry->stub_offset, sym_value))
3327 /* The stub would not have been relaxed if the offset was out
3328 of range. */
3329 BFD_FAIL ();
3330
3331 if (!aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
3332 stub_entry->stub_offset + 4, sym_value))
3333 BFD_FAIL ();
3334 break;
3335
3336 case aarch64_stub_long_branch:
3337 /* We want the value relative to the address 12 bytes back from the
3338 value itself. */
3339 if (!aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
3340 stub_entry->stub_offset + 16, sym_value + 12))
3341 BFD_FAIL ();
3342 break;
3343
3344 case aarch64_stub_erratum_835769_veneer:
3345 veneered_insn_loc = stub_entry->target_section->output_section->vma
3346 + stub_entry->target_section->output_offset
3347 + stub_entry->target_value;
3348 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
3349 + stub_entry->stub_sec->output_offset
3350 + stub_entry->stub_offset;
3351 branch_offset = veneered_insn_loc - veneer_entry_loc;
3352 branch_offset >>= 2;
3353 branch_offset &= 0x3ffffff;
3354 bfd_putl32 (stub_entry->veneered_insn,
3355 stub_sec->contents + stub_entry->stub_offset);
3356 bfd_putl32 (template[1] | branch_offset,
3357 stub_sec->contents + stub_entry->stub_offset + 4);
3358 break;
3359
3360 case aarch64_stub_erratum_843419_veneer:
3361 if (!aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
3362 stub_entry->stub_offset + 4, sym_value + 4))
3363 BFD_FAIL ();
3364 break;
3365
3366 default:
3367 abort ();
3368 }
3369
3370 return TRUE;
3371 }
3372
3373 /* As above, but don't actually build the stub. Just bump offset so
3374 we know stub section sizes. */
3375
3376 static bfd_boolean
3377 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
3378 void *in_arg ATTRIBUTE_UNUSED)
3379 {
3380 struct elf_aarch64_stub_hash_entry *stub_entry;
3381 int size;
3382
3383 /* Massage our args to the form they really have. */
3384 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3385
3386 switch (stub_entry->stub_type)
3387 {
3388 case aarch64_stub_adrp_branch:
3389 size = sizeof (aarch64_adrp_branch_stub);
3390 break;
3391 case aarch64_stub_long_branch:
3392 size = sizeof (aarch64_long_branch_stub);
3393 break;
3394 case aarch64_stub_erratum_835769_veneer:
3395 size = sizeof (aarch64_erratum_835769_stub);
3396 break;
3397 case aarch64_stub_erratum_843419_veneer:
3398 size = sizeof (aarch64_erratum_843419_stub);
3399 break;
3400 default:
3401 abort ();
3402 }
3403
3404 size = (size + 7) & ~7;
3405 stub_entry->stub_sec->size += size;
3406 return TRUE;
3407 }
3408
3409 /* External entry points for sizing and building linker stubs. */
3410
3411 /* Set up various things so that we can make a list of input sections
3412 for each output section included in the link. Returns -1 on error,
3413 0 when no stubs will be needed, and 1 on success. */
3414
3415 int
3416 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3417 struct bfd_link_info *info)
3418 {
3419 bfd *input_bfd;
3420 unsigned int bfd_count;
3421 unsigned int top_id, top_index;
3422 asection *section;
3423 asection **input_list, **list;
3424 bfd_size_type amt;
3425 struct elf_aarch64_link_hash_table *htab =
3426 elf_aarch64_hash_table (info);
3427
3428 if (!is_elf_hash_table (htab))
3429 return 0;
3430
3431 /* Count the number of input BFDs and find the top input section id. */
3432 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3433 input_bfd != NULL; input_bfd = input_bfd->link.next)
3434 {
3435 bfd_count += 1;
3436 for (section = input_bfd->sections;
3437 section != NULL; section = section->next)
3438 {
3439 if (top_id < section->id)
3440 top_id = section->id;
3441 }
3442 }
3443 htab->bfd_count = bfd_count;
3444
3445 amt = sizeof (struct map_stub) * (top_id + 1);
3446 htab->stub_group = bfd_zmalloc (amt);
3447 if (htab->stub_group == NULL)
3448 return -1;
3449
3450 /* We can't use output_bfd->section_count here to find the top output
3451 section index as some sections may have been removed, and
3452 _bfd_strip_section_from_output doesn't renumber the indices. */
3453 for (section = output_bfd->sections, top_index = 0;
3454 section != NULL; section = section->next)
3455 {
3456 if (top_index < section->index)
3457 top_index = section->index;
3458 }
3459
3460 htab->top_index = top_index;
3461 amt = sizeof (asection *) * (top_index + 1);
3462 input_list = bfd_malloc (amt);
3463 htab->input_list = input_list;
3464 if (input_list == NULL)
3465 return -1;
3466
3467 /* For sections we aren't interested in, mark their entries with a
3468 value we can check later. */
3469 list = input_list + top_index;
3470 do
3471 *list = bfd_abs_section_ptr;
3472 while (list-- != input_list);
3473
3474 for (section = output_bfd->sections;
3475 section != NULL; section = section->next)
3476 {
3477 if ((section->flags & SEC_CODE) != 0)
3478 input_list[section->index] = NULL;
3479 }
3480
3481 return 1;
3482 }
3483
3484 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3485 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3486
3487 /* The linker repeatedly calls this function for each input section,
3488 in the order that input sections are linked into output sections.
3489 Build lists of input sections to determine groupings between which
3490 we may insert linker stubs. */
3491
3492 void
3493 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3494 {
3495 struct elf_aarch64_link_hash_table *htab =
3496 elf_aarch64_hash_table (info);
3497
3498 if (isec->output_section->index <= htab->top_index)
3499 {
3500 asection **list = htab->input_list + isec->output_section->index;
3501
3502 if (*list != bfd_abs_section_ptr)
3503 {
3504 /* Steal the link_sec pointer for our list. */
3505 /* This happens to make the list in reverse order,
3506 which is what we want. */
3507 PREV_SEC (isec) = *list;
3508 *list = isec;
3509 }
3510 }
3511 }
3512
3513 /* See whether we can group stub sections together. Grouping stub
3514 sections may result in fewer stubs. More importantly, we need to
3515 put all .init* and .fini* stubs at the beginning of the .init or
3516 .fini output sections respectively, because glibc splits the
3517 _init and _fini functions into multiple parts. Putting a stub in
3518 the middle of a function is not a good idea. */
3519
3520 static void
3521 group_sections (struct elf_aarch64_link_hash_table *htab,
3522 bfd_size_type stub_group_size,
3523 bfd_boolean stubs_always_before_branch)
3524 {
3525 asection **list = htab->input_list + htab->top_index;
3526
3527 do
3528 {
3529 asection *tail = *list;
3530
3531 if (tail == bfd_abs_section_ptr)
3532 continue;
3533
3534 while (tail != NULL)
3535 {
3536 asection *curr;
3537 asection *prev;
3538 bfd_size_type total;
3539
3540 curr = tail;
3541 total = tail->size;
3542 while ((prev = PREV_SEC (curr)) != NULL
3543 && ((total += curr->output_offset - prev->output_offset)
3544 < stub_group_size))
3545 curr = prev;
3546
3547 /* OK, the size from the start of CURR to the end is less
3548 than stub_group_size and thus can be handled by one stub
3549 section. (Or the tail section is itself larger than
3550 stub_group_size, in which case we may be toast.)
3551 We should really be keeping track of the total size of
3552 stubs added here, as stubs contribute to the final output
3553 section size. */
3554 do
3555 {
3556 prev = PREV_SEC (tail);
3557 /* Set up this stub group. */
3558 htab->stub_group[tail->id].link_sec = curr;
3559 }
3560 while (tail != curr && (tail = prev) != NULL);
3561
3562 /* But wait, there's more! Input sections up to stub_group_size
3563 bytes before the stub section can be handled by it too. */
3564 if (!stubs_always_before_branch)
3565 {
3566 total = 0;
3567 while (prev != NULL
3568 && ((total += tail->output_offset - prev->output_offset)
3569 < stub_group_size))
3570 {
3571 tail = prev;
3572 prev = PREV_SEC (tail);
3573 htab->stub_group[tail->id].link_sec = curr;
3574 }
3575 }
3576 tail = prev;
3577 }
3578 }
3579 while (list-- != htab->input_list);
3580
3581 free (htab->input_list);
3582 }
3583
3584 #undef PREV_SEC
3585
3586 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3587
3588 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3589 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3590 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3591 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3592 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3593 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3594
3595 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3596 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3597 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3598 #define AARCH64_ZR 0x1f
3599
3600 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3601 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3602
3603 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3604 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3605 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3606 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3607 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3608 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3609 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3610 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3611 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3612 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3613 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3614 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3615 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3616 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3617 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3618 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3619 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3620 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3621
3622 /* Classify an INSN if it is indeed a load/store.
3623
3624 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3625
3626 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3627 is set equal to RT.
3628
3629 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned. */
3630
3631 static bfd_boolean
3632 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3633 bfd_boolean *pair, bfd_boolean *load)
3634 {
3635 uint32_t opcode;
3636 unsigned int r;
3637 uint32_t opc = 0;
3638 uint32_t v = 0;
3639 uint32_t opc_v = 0;
3640
3641 /* Bail out quickly if INSN doesn't fall into the load-store
3642 encoding space. */
3643 if (!AARCH64_LDST (insn))
3644 return FALSE;
3645
3646 *pair = FALSE;
3647 *load = FALSE;
3648 if (AARCH64_LDST_EX (insn))
3649 {
3650 *rt = AARCH64_RT (insn);
3651 *rt2 = *rt;
3652 if (AARCH64_BIT (insn, 21) == 1)
3653 {
3654 *pair = TRUE;
3655 *rt2 = AARCH64_RT2 (insn);
3656 }
3657 *load = AARCH64_LD (insn);
3658 return TRUE;
3659 }
3660 else if (AARCH64_LDST_NAP (insn)
3661 || AARCH64_LDSTP_PI (insn)
3662 || AARCH64_LDSTP_O (insn)
3663 || AARCH64_LDSTP_PRE (insn))
3664 {
3665 *pair = TRUE;
3666 *rt = AARCH64_RT (insn);
3667 *rt2 = AARCH64_RT2 (insn);
3668 *load = AARCH64_LD (insn);
3669 return TRUE;
3670 }
3671 else if (AARCH64_LDST_PCREL (insn)
3672 || AARCH64_LDST_UI (insn)
3673 || AARCH64_LDST_PIIMM (insn)
3674 || AARCH64_LDST_U (insn)
3675 || AARCH64_LDST_PREIMM (insn)
3676 || AARCH64_LDST_RO (insn)
3677 || AARCH64_LDST_UIMM (insn))
3678 {
3679 *rt = AARCH64_RT (insn);
3680 *rt2 = *rt;
3681 if (AARCH64_LDST_PCREL (insn))
3682 *load = TRUE;
3683 opc = AARCH64_BITS (insn, 22, 2);
3684 v = AARCH64_BIT (insn, 26);
3685 opc_v = opc | (v << 2);
3686 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3687 || opc_v == 5 || opc_v == 7);
3688 return TRUE;
3689 }
3690 else if (AARCH64_LDST_SIMD_M (insn)
3691 || AARCH64_LDST_SIMD_M_PI (insn))
3692 {
3693 *rt = AARCH64_RT (insn);
3694 *load = AARCH64_BIT (insn, 22);
3695 opcode = (insn >> 12) & 0xf;
3696 switch (opcode)
3697 {
3698 case 0:
3699 case 2:
3700 *rt2 = *rt + 3;
3701 break;
3702
3703 case 4:
3704 case 6:
3705 *rt2 = *rt + 2;
3706 break;
3707
3708 case 7:
3709 *rt2 = *rt;
3710 break;
3711
3712 case 8:
3713 case 10:
3714 *rt2 = *rt + 1;
3715 break;
3716
3717 default:
3718 return FALSE;
3719 }
3720 return TRUE;
3721 }
3722 else if (AARCH64_LDST_SIMD_S (insn)
3723 || AARCH64_LDST_SIMD_S_PI (insn))
3724 {
3725 *rt = AARCH64_RT (insn);
3726 r = (insn >> 21) & 1;
3727 *load = AARCH64_BIT (insn, 22);
3728 opcode = (insn >> 13) & 0x7;
3729 switch (opcode)
3730 {
3731 case 0:
3732 case 2:
3733 case 4:
3734 *rt2 = *rt + r;
3735 break;
3736
3737 case 1:
3738 case 3:
3739 case 5:
3740 *rt2 = *rt + (r == 0 ? 2 : 3);
3741 break;
3742
3743 case 6:
3744 *rt2 = *rt + r;
3745 break;
3746
3747 case 7:
3748 *rt2 = *rt + (r == 0 ? 2 : 3);
3749 break;
3750
3751 default:
3752 return FALSE;
3753 }
3754 return TRUE;
3755 }
3756
3757 return FALSE;
3758 }
3759
3760 /* Return TRUE if INSN is multiply-accumulate. */
3761
3762 static bfd_boolean
3763 aarch64_mlxl_p (uint32_t insn)
3764 {
3765 uint32_t op31 = AARCH64_OP31 (insn);
3766
3767 if (AARCH64_MAC (insn)
3768 && (op31 == 0 || op31 == 1 || op31 == 5)
3769 /* Exclude MUL instructions which are encoded as a multiple accumulate
3770 with RA = XZR. */
3771 && AARCH64_RA (insn) != AARCH64_ZR)
3772 return TRUE;
3773
3774 return FALSE;
3775 }
3776
3777 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3778 it is possible for a 64-bit multiply-accumulate instruction to generate an
3779 incorrect result. The details are quite complex and hard to
3780 determine statically, since branches in the code may exist in some
3781 circumstances, but all cases end with a memory (load, store, or
3782 prefetch) instruction followed immediately by the multiply-accumulate
3783 operation. We employ a linker patching technique, by moving the potentially
3784 affected multiply-accumulate instruction into a patch region and replacing
3785 the original instruction with a branch to the patch. This function checks
3786 if INSN_1 is the memory operation followed by a multiply-accumulate
3787 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3788 if INSN_1 and INSN_2 are safe. */
3789
3790 static bfd_boolean
3791 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3792 {
3793 uint32_t rt;
3794 uint32_t rt2;
3795 uint32_t rn;
3796 uint32_t rm;
3797 uint32_t ra;
3798 bfd_boolean pair;
3799 bfd_boolean load;
3800
3801 if (aarch64_mlxl_p (insn_2)
3802 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3803 {
3804 /* Any SIMD memory op is independent of the subsequent MLA
3805 by definition of the erratum. */
3806 if (AARCH64_BIT (insn_1, 26))
3807 return TRUE;
3808
3809 /* If not SIMD, check for integer memory ops and MLA relationship. */
3810 rn = AARCH64_RN (insn_2);
3811 ra = AARCH64_RA (insn_2);
3812 rm = AARCH64_RM (insn_2);
3813
3814 /* If this is a load and there's a true(RAW) dependency, we are safe
3815 and this is not an erratum sequence. */
3816 if (load &&
3817 (rt == rn || rt == rm || rt == ra
3818 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3819 return FALSE;
3820
3821 /* We conservatively put out stubs for all other cases (including
3822 writebacks). */
3823 return TRUE;
3824 }
3825
3826 return FALSE;
3827 }
3828
3829 /* Used to order a list of mapping symbols by address. */
3830
3831 static int
3832 elf_aarch64_compare_mapping (const void *a, const void *b)
3833 {
3834 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3835 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3836
3837 if (amap->vma > bmap->vma)
3838 return 1;
3839 else if (amap->vma < bmap->vma)
3840 return -1;
3841 else if (amap->type > bmap->type)
3842 /* Ensure results do not depend on the host qsort for objects with
3843 multiple mapping symbols at the same address by sorting on type
3844 after vma. */
3845 return 1;
3846 else if (amap->type < bmap->type)
3847 return -1;
3848 else
3849 return 0;
3850 }
3851
3852
3853 static char *
3854 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3855 {
3856 char *stub_name = (char *) bfd_malloc
3857 (strlen ("__erratum_835769_veneer_") + 16);
3858 if (stub_name != NULL)
3859 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3860 return stub_name;
3861 }
3862
3863 /* Scan for Cortex-A53 erratum 835769 sequence.
3864
3865 Return TRUE else FALSE on abnormal termination. */
3866
3867 static bfd_boolean
3868 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3869 struct bfd_link_info *info,
3870 unsigned int *num_fixes_p)
3871 {
3872 asection *section;
3873 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3874 unsigned int num_fixes = *num_fixes_p;
3875
3876 if (htab == NULL)
3877 return TRUE;
3878
3879 for (section = input_bfd->sections;
3880 section != NULL;
3881 section = section->next)
3882 {
3883 bfd_byte *contents = NULL;
3884 struct _aarch64_elf_section_data *sec_data;
3885 unsigned int span;
3886
3887 if (elf_section_type (section) != SHT_PROGBITS
3888 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3889 || (section->flags & SEC_EXCLUDE) != 0
3890 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3891 || (section->output_section == bfd_abs_section_ptr))
3892 continue;
3893
3894 if (elf_section_data (section)->this_hdr.contents != NULL)
3895 contents = elf_section_data (section)->this_hdr.contents;
3896 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3897 return FALSE;
3898
3899 sec_data = elf_aarch64_section_data (section);
3900
3901 qsort (sec_data->map, sec_data->mapcount,
3902 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3903
3904 for (span = 0; span < sec_data->mapcount; span++)
3905 {
3906 unsigned int span_start = sec_data->map[span].vma;
3907 unsigned int span_end = ((span == sec_data->mapcount - 1)
3908 ? sec_data->map[0].vma + section->size
3909 : sec_data->map[span + 1].vma);
3910 unsigned int i;
3911 char span_type = sec_data->map[span].type;
3912
3913 if (span_type == 'd')
3914 continue;
3915
3916 for (i = span_start; i + 4 < span_end; i += 4)
3917 {
3918 uint32_t insn_1 = bfd_getl32 (contents + i);
3919 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3920
3921 if (aarch64_erratum_sequence (insn_1, insn_2))
3922 {
3923 struct elf_aarch64_stub_hash_entry *stub_entry;
3924 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3925 if (! stub_name)
3926 return FALSE;
3927
3928 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3929 section,
3930 htab);
3931 if (! stub_entry)
3932 return FALSE;
3933
3934 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3935 stub_entry->target_section = section;
3936 stub_entry->target_value = i + 4;
3937 stub_entry->veneered_insn = insn_2;
3938 stub_entry->output_name = stub_name;
3939 num_fixes++;
3940 }
3941 }
3942 }
3943 if (elf_section_data (section)->this_hdr.contents == NULL)
3944 free (contents);
3945 }
3946
3947 *num_fixes_p = num_fixes;
3948
3949 return TRUE;
3950 }
3951
3952
3953 /* Test if instruction INSN is ADRP. */
3954
3955 static bfd_boolean
3956 _bfd_aarch64_adrp_p (uint32_t insn)
3957 {
3958 return ((insn & AARCH64_ADRP_OP_MASK) == AARCH64_ADRP_OP);
3959 }
3960
3961
3962 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
3963
3964 static bfd_boolean
3965 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
3966 uint32_t insn_3)
3967 {
3968 uint32_t rt;
3969 uint32_t rt2;
3970 bfd_boolean pair;
3971 bfd_boolean load;
3972
3973 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
3974 && (!pair
3975 || (pair && !load))
3976 && AARCH64_LDST_UIMM (insn_3)
3977 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
3978 }
3979
3980
3981 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
3982
3983 Return TRUE if section CONTENTS at offset I contains one of the
3984 erratum 843419 sequences, otherwise return FALSE. If a sequence is
3985 seen set P_VENEER_I to the offset of the final LOAD/STORE
3986 instruction in the sequence.
3987 */
3988
3989 static bfd_boolean
3990 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
3991 bfd_vma i, bfd_vma span_end,
3992 bfd_vma *p_veneer_i)
3993 {
3994 uint32_t insn_1 = bfd_getl32 (contents + i);
3995
3996 if (!_bfd_aarch64_adrp_p (insn_1))
3997 return FALSE;
3998
3999 if (span_end < i + 12)
4000 return FALSE;
4001
4002 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
4003 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
4004
4005 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
4006 return FALSE;
4007
4008 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
4009 {
4010 *p_veneer_i = i + 8;
4011 return TRUE;
4012 }
4013
4014 if (span_end < i + 16)
4015 return FALSE;
4016
4017 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
4018
4019 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
4020 {
4021 *p_veneer_i = i + 12;
4022 return TRUE;
4023 }
4024
4025 return FALSE;
4026 }
4027
4028
4029 /* Resize all stub sections. */
4030
4031 static void
4032 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
4033 {
4034 asection *section;
4035
4036 /* OK, we've added some stubs. Find out the new size of the
4037 stub sections. */
4038 for (section = htab->stub_bfd->sections;
4039 section != NULL; section = section->next)
4040 {
4041 /* Ignore non-stub sections. */
4042 if (!strstr (section->name, STUB_SUFFIX))
4043 continue;
4044 section->size = 0;
4045 }
4046
4047 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
4048
4049 for (section = htab->stub_bfd->sections;
4050 section != NULL; section = section->next)
4051 {
4052 if (!strstr (section->name, STUB_SUFFIX))
4053 continue;
4054
4055 /* Add space for a branch. Add 8 bytes to keep section 8 byte aligned,
4056 as long branch stubs contain a 64-bit address. */
4057 if (section->size)
4058 section->size += 8;
4059
4060 /* Ensure all stub sections have a size which is a multiple of
4061 4096. This is important in order to ensure that the insertion
4062 of stub sections does not in itself move existing code around
4063 in such a way that new errata sequences are created. */
4064 if (htab->fix_erratum_843419)
4065 if (section->size)
4066 section->size = BFD_ALIGN (section->size, 0x1000);
4067 }
4068 }
4069
4070 /* Construct an erratum 843419 workaround stub name. */
4071
4072 static char *
4073 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
4074 bfd_vma offset)
4075 {
4076 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
4077 char *stub_name = bfd_malloc (len);
4078
4079 if (stub_name != NULL)
4080 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
4081 input_section->owner->id,
4082 input_section->id,
4083 offset);
4084 return stub_name;
4085 }
4086
4087 /* Build a stub_entry structure describing an 843419 fixup.
4088
4089 The stub_entry constructed is populated with the bit pattern INSN
4090 of the instruction located at OFFSET within input SECTION.
4091
4092 Returns TRUE on success. */
4093
4094 static bfd_boolean
4095 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
4096 bfd_vma adrp_offset,
4097 bfd_vma ldst_offset,
4098 asection *section,
4099 struct bfd_link_info *info)
4100 {
4101 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4102 char *stub_name;
4103 struct elf_aarch64_stub_hash_entry *stub_entry;
4104
4105 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
4106 if (stub_name == NULL)
4107 return FALSE;
4108 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4109 FALSE, FALSE);
4110 if (stub_entry)
4111 {
4112 free (stub_name);
4113 return TRUE;
4114 }
4115
4116 /* We always place an 843419 workaround veneer in the stub section
4117 attached to the input section in which an erratum sequence has
4118 been found. This ensures that later in the link process (in
4119 elfNN_aarch64_write_section) when we copy the veneered
4120 instruction from the input section into the stub section the
4121 copied instruction will have had any relocations applied to it.
4122 If we placed workaround veneers in any other stub section then we
4123 could not assume that all relocations have been processed on the
4124 corresponding input section at the point we output the stub
4125 section. */
4126
4127 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
4128 if (stub_entry == NULL)
4129 {
4130 free (stub_name);
4131 return FALSE;
4132 }
4133
4134 stub_entry->adrp_offset = adrp_offset;
4135 stub_entry->target_value = ldst_offset;
4136 stub_entry->target_section = section;
4137 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
4138 stub_entry->veneered_insn = insn;
4139 stub_entry->output_name = stub_name;
4140
4141 return TRUE;
4142 }
4143
4144
4145 /* Scan an input section looking for the signature of erratum 843419.
4146
4147 Scans input SECTION in INPUT_BFD looking for erratum 843419
4148 signatures, for each signature found a stub_entry is created
4149 describing the location of the erratum for subsequent fixup.
4150
4151 Return TRUE on successful scan, FALSE on failure to scan.
4152 */
4153
4154 static bfd_boolean
4155 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
4156 struct bfd_link_info *info)
4157 {
4158 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4159
4160 if (htab == NULL)
4161 return TRUE;
4162
4163 if (elf_section_type (section) != SHT_PROGBITS
4164 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4165 || (section->flags & SEC_EXCLUDE) != 0
4166 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4167 || (section->output_section == bfd_abs_section_ptr))
4168 return TRUE;
4169
4170 do
4171 {
4172 bfd_byte *contents = NULL;
4173 struct _aarch64_elf_section_data *sec_data;
4174 unsigned int span;
4175
4176 if (elf_section_data (section)->this_hdr.contents != NULL)
4177 contents = elf_section_data (section)->this_hdr.contents;
4178 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4179 return FALSE;
4180
4181 sec_data = elf_aarch64_section_data (section);
4182
4183 qsort (sec_data->map, sec_data->mapcount,
4184 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
4185
4186 for (span = 0; span < sec_data->mapcount; span++)
4187 {
4188 unsigned int span_start = sec_data->map[span].vma;
4189 unsigned int span_end = ((span == sec_data->mapcount - 1)
4190 ? sec_data->map[0].vma + section->size
4191 : sec_data->map[span + 1].vma);
4192 unsigned int i;
4193 char span_type = sec_data->map[span].type;
4194
4195 if (span_type == 'd')
4196 continue;
4197
4198 for (i = span_start; i + 8 < span_end; i += 4)
4199 {
4200 bfd_vma vma = (section->output_section->vma
4201 + section->output_offset
4202 + i);
4203 bfd_vma veneer_i;
4204
4205 if (_bfd_aarch64_erratum_843419_p
4206 (contents, vma, i, span_end, &veneer_i))
4207 {
4208 uint32_t insn = bfd_getl32 (contents + veneer_i);
4209
4210 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
4211 section, info))
4212 return FALSE;
4213 }
4214 }
4215 }
4216
4217 if (elf_section_data (section)->this_hdr.contents == NULL)
4218 free (contents);
4219 }
4220 while (0);
4221
4222 return TRUE;
4223 }
4224
4225
4226 /* Determine and set the size of the stub section for a final link.
4227
4228 The basic idea here is to examine all the relocations looking for
4229 PC-relative calls to a target that is unreachable with a "bl"
4230 instruction. */
4231
4232 bfd_boolean
4233 elfNN_aarch64_size_stubs (bfd *output_bfd,
4234 bfd *stub_bfd,
4235 struct bfd_link_info *info,
4236 bfd_signed_vma group_size,
4237 asection * (*add_stub_section) (const char *,
4238 asection *),
4239 void (*layout_sections_again) (void))
4240 {
4241 bfd_size_type stub_group_size;
4242 bfd_boolean stubs_always_before_branch;
4243 bfd_boolean stub_changed = FALSE;
4244 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4245 unsigned int num_erratum_835769_fixes = 0;
4246
4247 /* Propagate mach to stub bfd, because it may not have been
4248 finalized when we created stub_bfd. */
4249 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4250 bfd_get_mach (output_bfd));
4251
4252 /* Stash our params away. */
4253 htab->stub_bfd = stub_bfd;
4254 htab->add_stub_section = add_stub_section;
4255 htab->layout_sections_again = layout_sections_again;
4256 stubs_always_before_branch = group_size < 0;
4257 if (group_size < 0)
4258 stub_group_size = -group_size;
4259 else
4260 stub_group_size = group_size;
4261
4262 if (stub_group_size == 1)
4263 {
4264 /* Default values. */
4265 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
4266 stub_group_size = 127 * 1024 * 1024;
4267 }
4268
4269 group_sections (htab, stub_group_size, stubs_always_before_branch);
4270
4271 (*htab->layout_sections_again) ();
4272
4273 if (htab->fix_erratum_835769)
4274 {
4275 bfd *input_bfd;
4276
4277 for (input_bfd = info->input_bfds;
4278 input_bfd != NULL; input_bfd = input_bfd->link.next)
4279 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
4280 &num_erratum_835769_fixes))
4281 return FALSE;
4282
4283 _bfd_aarch64_resize_stubs (htab);
4284 (*htab->layout_sections_again) ();
4285 }
4286
4287 if (htab->fix_erratum_843419)
4288 {
4289 bfd *input_bfd;
4290
4291 for (input_bfd = info->input_bfds;
4292 input_bfd != NULL;
4293 input_bfd = input_bfd->link.next)
4294 {
4295 asection *section;
4296
4297 for (section = input_bfd->sections;
4298 section != NULL;
4299 section = section->next)
4300 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
4301 return FALSE;
4302 }
4303
4304 _bfd_aarch64_resize_stubs (htab);
4305 (*htab->layout_sections_again) ();
4306 }
4307
4308 while (1)
4309 {
4310 bfd *input_bfd;
4311
4312 for (input_bfd = info->input_bfds;
4313 input_bfd != NULL; input_bfd = input_bfd->link.next)
4314 {
4315 Elf_Internal_Shdr *symtab_hdr;
4316 asection *section;
4317 Elf_Internal_Sym *local_syms = NULL;
4318
4319 /* We'll need the symbol table in a second. */
4320 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4321 if (symtab_hdr->sh_info == 0)
4322 continue;
4323
4324 /* Walk over each section attached to the input bfd. */
4325 for (section = input_bfd->sections;
4326 section != NULL; section = section->next)
4327 {
4328 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4329
4330 /* If there aren't any relocs, then there's nothing more
4331 to do. */
4332 if ((section->flags & SEC_RELOC) == 0
4333 || section->reloc_count == 0
4334 || (section->flags & SEC_CODE) == 0)
4335 continue;
4336
4337 /* If this section is a link-once section that will be
4338 discarded, then don't create any stubs. */
4339 if (section->output_section == NULL
4340 || section->output_section->owner != output_bfd)
4341 continue;
4342
4343 /* Get the relocs. */
4344 internal_relocs
4345 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4346 NULL, info->keep_memory);
4347 if (internal_relocs == NULL)
4348 goto error_ret_free_local;
4349
4350 /* Now examine each relocation. */
4351 irela = internal_relocs;
4352 irelaend = irela + section->reloc_count;
4353 for (; irela < irelaend; irela++)
4354 {
4355 unsigned int r_type, r_indx;
4356 enum elf_aarch64_stub_type stub_type;
4357 struct elf_aarch64_stub_hash_entry *stub_entry;
4358 asection *sym_sec;
4359 bfd_vma sym_value;
4360 bfd_vma destination;
4361 struct elf_aarch64_link_hash_entry *hash;
4362 const char *sym_name;
4363 char *stub_name;
4364 const asection *id_sec;
4365 unsigned char st_type;
4366 bfd_size_type len;
4367
4368 r_type = ELFNN_R_TYPE (irela->r_info);
4369 r_indx = ELFNN_R_SYM (irela->r_info);
4370
4371 if (r_type >= (unsigned int) R_AARCH64_end)
4372 {
4373 bfd_set_error (bfd_error_bad_value);
4374 error_ret_free_internal:
4375 if (elf_section_data (section)->relocs == NULL)
4376 free (internal_relocs);
4377 goto error_ret_free_local;
4378 }
4379
4380 /* Only look for stubs on unconditional branch and
4381 branch and link instructions. */
4382 if (r_type != (unsigned int) AARCH64_R (CALL26)
4383 && r_type != (unsigned int) AARCH64_R (JUMP26))
4384 continue;
4385
4386 /* Now determine the call target, its name, value,
4387 section. */
4388 sym_sec = NULL;
4389 sym_value = 0;
4390 destination = 0;
4391 hash = NULL;
4392 sym_name = NULL;
4393 if (r_indx < symtab_hdr->sh_info)
4394 {
4395 /* It's a local symbol. */
4396 Elf_Internal_Sym *sym;
4397 Elf_Internal_Shdr *hdr;
4398
4399 if (local_syms == NULL)
4400 {
4401 local_syms
4402 = (Elf_Internal_Sym *) symtab_hdr->contents;
4403 if (local_syms == NULL)
4404 local_syms
4405 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4406 symtab_hdr->sh_info, 0,
4407 NULL, NULL, NULL);
4408 if (local_syms == NULL)
4409 goto error_ret_free_internal;
4410 }
4411
4412 sym = local_syms + r_indx;
4413 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4414 sym_sec = hdr->bfd_section;
4415 if (!sym_sec)
4416 /* This is an undefined symbol. It can never
4417 be resolved. */
4418 continue;
4419
4420 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4421 sym_value = sym->st_value;
4422 destination = (sym_value + irela->r_addend
4423 + sym_sec->output_offset
4424 + sym_sec->output_section->vma);
4425 st_type = ELF_ST_TYPE (sym->st_info);
4426 sym_name
4427 = bfd_elf_string_from_elf_section (input_bfd,
4428 symtab_hdr->sh_link,
4429 sym->st_name);
4430 }
4431 else
4432 {
4433 int e_indx;
4434
4435 e_indx = r_indx - symtab_hdr->sh_info;
4436 hash = ((struct elf_aarch64_link_hash_entry *)
4437 elf_sym_hashes (input_bfd)[e_indx]);
4438
4439 while (hash->root.root.type == bfd_link_hash_indirect
4440 || hash->root.root.type == bfd_link_hash_warning)
4441 hash = ((struct elf_aarch64_link_hash_entry *)
4442 hash->root.root.u.i.link);
4443
4444 if (hash->root.root.type == bfd_link_hash_defined
4445 || hash->root.root.type == bfd_link_hash_defweak)
4446 {
4447 struct elf_aarch64_link_hash_table *globals =
4448 elf_aarch64_hash_table (info);
4449 sym_sec = hash->root.root.u.def.section;
4450 sym_value = hash->root.root.u.def.value;
4451 /* For a destination in a shared library,
4452 use the PLT stub as target address to
4453 decide whether a branch stub is
4454 needed. */
4455 if (globals->root.splt != NULL && hash != NULL
4456 && hash->root.plt.offset != (bfd_vma) - 1)
4457 {
4458 sym_sec = globals->root.splt;
4459 sym_value = hash->root.plt.offset;
4460 if (sym_sec->output_section != NULL)
4461 destination = (sym_value
4462 + sym_sec->output_offset
4463 +
4464 sym_sec->output_section->vma);
4465 }
4466 else if (sym_sec->output_section != NULL)
4467 destination = (sym_value + irela->r_addend
4468 + sym_sec->output_offset
4469 + sym_sec->output_section->vma);
4470 }
4471 else if (hash->root.root.type == bfd_link_hash_undefined
4472 || (hash->root.root.type
4473 == bfd_link_hash_undefweak))
4474 {
4475 /* For a shared library, use the PLT stub as
4476 target address to decide whether a long
4477 branch stub is needed.
4478 For absolute code, they cannot be handled. */
4479 struct elf_aarch64_link_hash_table *globals =
4480 elf_aarch64_hash_table (info);
4481
4482 if (globals->root.splt != NULL && hash != NULL
4483 && hash->root.plt.offset != (bfd_vma) - 1)
4484 {
4485 sym_sec = globals->root.splt;
4486 sym_value = hash->root.plt.offset;
4487 if (sym_sec->output_section != NULL)
4488 destination = (sym_value
4489 + sym_sec->output_offset
4490 +
4491 sym_sec->output_section->vma);
4492 }
4493 else
4494 continue;
4495 }
4496 else
4497 {
4498 bfd_set_error (bfd_error_bad_value);
4499 goto error_ret_free_internal;
4500 }
4501 st_type = ELF_ST_TYPE (hash->root.type);
4502 sym_name = hash->root.root.root.string;
4503 }
4504
4505 /* Determine what (if any) linker stub is needed. */
4506 stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4507 st_type, destination);
4508 if (stub_type == aarch64_stub_none)
4509 continue;
4510
4511 /* Support for grouping stub sections. */
4512 id_sec = htab->stub_group[section->id].link_sec;
4513
4514 /* Get the name of this stub. */
4515 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4516 irela);
4517 if (!stub_name)
4518 goto error_ret_free_internal;
4519
4520 stub_entry =
4521 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4522 stub_name, FALSE, FALSE);
4523 if (stub_entry != NULL)
4524 {
4525 /* The proper stub has already been created. */
4526 free (stub_name);
4527 /* Always update this stub's target since it may have
4528 changed after layout. */
4529 stub_entry->target_value = sym_value + irela->r_addend;
4530 continue;
4531 }
4532
4533 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4534 (stub_name, section, htab);
4535 if (stub_entry == NULL)
4536 {
4537 free (stub_name);
4538 goto error_ret_free_internal;
4539 }
4540
4541 stub_entry->target_value = sym_value + irela->r_addend;
4542 stub_entry->target_section = sym_sec;
4543 stub_entry->stub_type = stub_type;
4544 stub_entry->h = hash;
4545 stub_entry->st_type = st_type;
4546
4547 if (sym_name == NULL)
4548 sym_name = "unnamed";
4549 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4550 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4551 if (stub_entry->output_name == NULL)
4552 {
4553 free (stub_name);
4554 goto error_ret_free_internal;
4555 }
4556
4557 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4558 sym_name);
4559
4560 stub_changed = TRUE;
4561 }
4562
4563 /* We're done with the internal relocs, free them. */
4564 if (elf_section_data (section)->relocs == NULL)
4565 free (internal_relocs);
4566 }
4567 }
4568
4569 if (!stub_changed)
4570 break;
4571
4572 _bfd_aarch64_resize_stubs (htab);
4573
4574 /* Ask the linker to do its stuff. */
4575 (*htab->layout_sections_again) ();
4576 stub_changed = FALSE;
4577 }
4578
4579 return TRUE;
4580
4581 error_ret_free_local:
4582 return FALSE;
4583 }
4584
4585 /* Build all the stubs associated with the current output file. The
4586 stubs are kept in a hash table attached to the main linker hash
4587 table. We also set up the .plt entries for statically linked PIC
4588 functions here. This function is called via aarch64_elf_finish in the
4589 linker. */
4590
4591 bfd_boolean
4592 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4593 {
4594 asection *stub_sec;
4595 struct bfd_hash_table *table;
4596 struct elf_aarch64_link_hash_table *htab;
4597
4598 htab = elf_aarch64_hash_table (info);
4599
4600 for (stub_sec = htab->stub_bfd->sections;
4601 stub_sec != NULL; stub_sec = stub_sec->next)
4602 {
4603 bfd_size_type size;
4604
4605 /* Ignore non-stub sections. */
4606 if (!strstr (stub_sec->name, STUB_SUFFIX))
4607 continue;
4608
4609 /* Allocate memory to hold the linker stubs. */
4610 size = stub_sec->size;
4611 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4612 if (stub_sec->contents == NULL && size != 0)
4613 return FALSE;
4614 stub_sec->size = 0;
4615
4616 /* Add a branch around the stub section, and a nop, to keep it 8 byte
4617 aligned, as long branch stubs contain a 64-bit address. */
4618 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4619 bfd_putl32 (INSN_NOP, stub_sec->contents + 4);
4620 stub_sec->size += 8;
4621 }
4622
4623 /* Build the stubs as directed by the stub hash table. */
4624 table = &htab->stub_hash_table;
4625 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4626
4627 return TRUE;
4628 }
4629
4630
4631 /* Add an entry to the code/data map for section SEC. */
4632
4633 static void
4634 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4635 {
4636 struct _aarch64_elf_section_data *sec_data =
4637 elf_aarch64_section_data (sec);
4638 unsigned int newidx;
4639
4640 if (sec_data->map == NULL)
4641 {
4642 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4643 sec_data->mapcount = 0;
4644 sec_data->mapsize = 1;
4645 }
4646
4647 newidx = sec_data->mapcount++;
4648
4649 if (sec_data->mapcount > sec_data->mapsize)
4650 {
4651 sec_data->mapsize *= 2;
4652 sec_data->map = bfd_realloc_or_free
4653 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4654 }
4655
4656 if (sec_data->map)
4657 {
4658 sec_data->map[newidx].vma = vma;
4659 sec_data->map[newidx].type = type;
4660 }
4661 }
4662
4663
4664 /* Initialise maps of insn/data for input BFDs. */
4665 void
4666 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4667 {
4668 Elf_Internal_Sym *isymbuf;
4669 Elf_Internal_Shdr *hdr;
4670 unsigned int i, localsyms;
4671
4672 /* Make sure that we are dealing with an AArch64 elf binary. */
4673 if (!is_aarch64_elf (abfd))
4674 return;
4675
4676 if ((abfd->flags & DYNAMIC) != 0)
4677 return;
4678
4679 hdr = &elf_symtab_hdr (abfd);
4680 localsyms = hdr->sh_info;
4681
4682 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4683 should contain the number of local symbols, which should come before any
4684 global symbols. Mapping symbols are always local. */
4685 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4686
4687 /* No internal symbols read? Skip this BFD. */
4688 if (isymbuf == NULL)
4689 return;
4690
4691 for (i = 0; i < localsyms; i++)
4692 {
4693 Elf_Internal_Sym *isym = &isymbuf[i];
4694 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4695 const char *name;
4696
4697 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4698 {
4699 name = bfd_elf_string_from_elf_section (abfd,
4700 hdr->sh_link,
4701 isym->st_name);
4702
4703 if (bfd_is_aarch64_special_symbol_name
4704 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4705 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4706 }
4707 }
4708 }
4709
4710 static void
4711 setup_plt_values (struct bfd_link_info *link_info,
4712 aarch64_plt_type plt_type)
4713 {
4714 struct elf_aarch64_link_hash_table *globals;
4715 globals = elf_aarch64_hash_table (link_info);
4716
4717 if (plt_type == PLT_BTI_PAC)
4718 {
4719 globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4720
4721 /* Only in ET_EXEC we need PLTn with BTI. */
4722 if (bfd_link_pde (link_info))
4723 {
4724 globals->plt_entry_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
4725 globals->plt_entry = elfNN_aarch64_small_plt_bti_pac_entry;
4726 }
4727 else
4728 {
4729 globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4730 globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4731 }
4732 }
4733 else if (plt_type == PLT_BTI)
4734 {
4735 globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4736
4737 /* Only in ET_EXEC we need PLTn with BTI. */
4738 if (bfd_link_pde (link_info))
4739 {
4740 globals->plt_entry_size = PLT_BTI_SMALL_ENTRY_SIZE;
4741 globals->plt_entry = elfNN_aarch64_small_plt_bti_entry;
4742 }
4743 }
4744 else if (plt_type == PLT_PAC)
4745 {
4746 globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4747 globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4748 }
4749 }
4750
4751 /* Set option values needed during linking. */
4752 void
4753 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4754 struct bfd_link_info *link_info,
4755 int no_enum_warn,
4756 int no_wchar_warn, int pic_veneer,
4757 int fix_erratum_835769,
4758 int fix_erratum_843419,
4759 int no_apply_dynamic_relocs,
4760 aarch64_bti_pac_info bp_info)
4761 {
4762 struct elf_aarch64_link_hash_table *globals;
4763
4764 globals = elf_aarch64_hash_table (link_info);
4765 globals->pic_veneer = pic_veneer;
4766 globals->fix_erratum_835769 = fix_erratum_835769;
4767 globals->fix_erratum_843419 = fix_erratum_843419;
4768 globals->fix_erratum_843419_adr = TRUE;
4769 globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
4770
4771 BFD_ASSERT (is_aarch64_elf (output_bfd));
4772 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4773 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4774
4775 switch (bp_info.bti_type)
4776 {
4777 case BTI_WARN:
4778 elf_aarch64_tdata (output_bfd)->no_bti_warn = 0;
4779 elf_aarch64_tdata (output_bfd)->gnu_and_prop
4780 |= GNU_PROPERTY_AARCH64_FEATURE_1_BTI;
4781 break;
4782
4783 default:
4784 break;
4785 }
4786 elf_aarch64_tdata (output_bfd)->plt_type = bp_info.plt_type;
4787 setup_plt_values (link_info, bp_info.plt_type);
4788 }
4789
4790 static bfd_vma
4791 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4792 struct elf_aarch64_link_hash_table
4793 *globals, struct bfd_link_info *info,
4794 bfd_vma value, bfd *output_bfd,
4795 bfd_boolean *unresolved_reloc_p)
4796 {
4797 bfd_vma off = (bfd_vma) - 1;
4798 asection *basegot = globals->root.sgot;
4799 bfd_boolean dyn = globals->root.dynamic_sections_created;
4800
4801 if (h != NULL)
4802 {
4803 BFD_ASSERT (basegot != NULL);
4804 off = h->got.offset;
4805 BFD_ASSERT (off != (bfd_vma) - 1);
4806 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4807 || (bfd_link_pic (info)
4808 && SYMBOL_REFERENCES_LOCAL (info, h))
4809 || (ELF_ST_VISIBILITY (h->other)
4810 && h->root.type == bfd_link_hash_undefweak))
4811 {
4812 /* This is actually a static link, or it is a -Bsymbolic link
4813 and the symbol is defined locally. We must initialize this
4814 entry in the global offset table. Since the offset must
4815 always be a multiple of 8 (4 in the case of ILP32), we use
4816 the least significant bit to record whether we have
4817 initialized it already.
4818 When doing a dynamic link, we create a .rel(a).got relocation
4819 entry to initialize the value. This is done in the
4820 finish_dynamic_symbol routine. */
4821 if ((off & 1) != 0)
4822 off &= ~1;
4823 else
4824 {
4825 bfd_put_NN (output_bfd, value, basegot->contents + off);
4826 h->got.offset |= 1;
4827 }
4828 }
4829 else
4830 *unresolved_reloc_p = FALSE;
4831
4832 off = off + basegot->output_section->vma + basegot->output_offset;
4833 }
4834
4835 return off;
4836 }
4837
4838 /* Change R_TYPE to a more efficient access model where possible,
4839 return the new reloc type. */
4840
4841 static bfd_reloc_code_real_type
4842 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4843 struct elf_link_hash_entry *h)
4844 {
4845 bfd_boolean is_local = h == NULL;
4846
4847 switch (r_type)
4848 {
4849 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4850 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4851 return (is_local
4852 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4853 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4854
4855 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4856 return (is_local
4857 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4858 : r_type);
4859
4860 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4861 return (is_local
4862 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4863 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4864
4865 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4866 return (is_local
4867 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4868 : BFD_RELOC_AARCH64_NONE);
4869
4870 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4871 return (is_local
4872 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4873 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4874
4875 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4876 return (is_local
4877 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4878 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4879
4880 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4881 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4882 return (is_local
4883 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4884 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4885
4886 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4887 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4888
4889 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4890 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4891
4892 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4893 return r_type;
4894
4895 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4896 return (is_local
4897 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4898 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4899
4900 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4901 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4902 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4903 /* Instructions with these relocations will become NOPs. */
4904 return BFD_RELOC_AARCH64_NONE;
4905
4906 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4907 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4908 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4909 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4910
4911 #if ARCH_SIZE == 64
4912 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4913 return is_local
4914 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4915 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
4916
4917 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4918 return is_local
4919 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4920 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
4921 #endif
4922
4923 default:
4924 break;
4925 }
4926
4927 return r_type;
4928 }
4929
4930 static unsigned int
4931 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4932 {
4933 switch (r_type)
4934 {
4935 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4936 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4937 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4938 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4939 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
4940 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4941 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4942 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
4943 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
4944 return GOT_NORMAL;
4945
4946 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4947 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4948 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4949 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4950 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4951 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4952 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4953 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4954 return GOT_TLS_GD;
4955
4956 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4957 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4958 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4959 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4960 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4961 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4962 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
4963 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4964 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4965 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4966 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4967 return GOT_TLSDESC_GD;
4968
4969 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4970 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
4971 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4972 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4973 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
4974 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
4975 return GOT_TLS_IE;
4976
4977 default:
4978 break;
4979 }
4980 return GOT_UNKNOWN;
4981 }
4982
4983 static bfd_boolean
4984 aarch64_can_relax_tls (bfd *input_bfd,
4985 struct bfd_link_info *info,
4986 bfd_reloc_code_real_type r_type,
4987 struct elf_link_hash_entry *h,
4988 unsigned long r_symndx)
4989 {
4990 unsigned int symbol_got_type;
4991 unsigned int reloc_got_type;
4992
4993 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
4994 return FALSE;
4995
4996 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
4997 reloc_got_type = aarch64_reloc_got_type (r_type);
4998
4999 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
5000 return TRUE;
5001
5002 if (!bfd_link_executable (info))
5003 return FALSE;
5004
5005 if (h && h->root.type == bfd_link_hash_undefweak)
5006 return FALSE;
5007
5008 return TRUE;
5009 }
5010
5011 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
5012 enumerator. */
5013
5014 static bfd_reloc_code_real_type
5015 aarch64_tls_transition (bfd *input_bfd,
5016 struct bfd_link_info *info,
5017 unsigned int r_type,
5018 struct elf_link_hash_entry *h,
5019 unsigned long r_symndx)
5020 {
5021 bfd_reloc_code_real_type bfd_r_type
5022 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
5023
5024 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
5025 return bfd_r_type;
5026
5027 return aarch64_tls_transition_without_check (bfd_r_type, h);
5028 }
5029
5030 /* Return the base VMA address which should be subtracted from real addresses
5031 when resolving R_AARCH64_TLS_DTPREL relocation. */
5032
5033 static bfd_vma
5034 dtpoff_base (struct bfd_link_info *info)
5035 {
5036 /* If tls_sec is NULL, we should have signalled an error already. */
5037 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
5038 return elf_hash_table (info)->tls_sec->vma;
5039 }
5040
5041 /* Return the base VMA address which should be subtracted from real addresses
5042 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
5043
5044 static bfd_vma
5045 tpoff_base (struct bfd_link_info *info)
5046 {
5047 struct elf_link_hash_table *htab = elf_hash_table (info);
5048
5049 /* If tls_sec is NULL, we should have signalled an error already. */
5050 BFD_ASSERT (htab->tls_sec != NULL);
5051
5052 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
5053 htab->tls_sec->alignment_power);
5054 return htab->tls_sec->vma - base;
5055 }
5056
5057 static bfd_vma *
5058 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5059 unsigned long r_symndx)
5060 {
5061 /* Calculate the address of the GOT entry for symbol
5062 referred to in h. */
5063 if (h != NULL)
5064 return &h->got.offset;
5065 else
5066 {
5067 /* local symbol */
5068 struct elf_aarch64_local_symbol *l;
5069
5070 l = elf_aarch64_locals (input_bfd);
5071 return &l[r_symndx].got_offset;
5072 }
5073 }
5074
5075 static void
5076 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5077 unsigned long r_symndx)
5078 {
5079 bfd_vma *p;
5080 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
5081 *p |= 1;
5082 }
5083
5084 static int
5085 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
5086 unsigned long r_symndx)
5087 {
5088 bfd_vma value;
5089 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5090 return value & 1;
5091 }
5092
5093 static bfd_vma
5094 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5095 unsigned long r_symndx)
5096 {
5097 bfd_vma value;
5098 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5099 value &= ~1;
5100 return value;
5101 }
5102
5103 static bfd_vma *
5104 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5105 unsigned long r_symndx)
5106 {
5107 /* Calculate the address of the GOT entry for symbol
5108 referred to in h. */
5109 if (h != NULL)
5110 {
5111 struct elf_aarch64_link_hash_entry *eh;
5112 eh = (struct elf_aarch64_link_hash_entry *) h;
5113 return &eh->tlsdesc_got_jump_table_offset;
5114 }
5115 else
5116 {
5117 /* local symbol */
5118 struct elf_aarch64_local_symbol *l;
5119
5120 l = elf_aarch64_locals (input_bfd);
5121 return &l[r_symndx].tlsdesc_got_jump_table_offset;
5122 }
5123 }
5124
5125 static void
5126 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5127 unsigned long r_symndx)
5128 {
5129 bfd_vma *p;
5130 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5131 *p |= 1;
5132 }
5133
5134 static int
5135 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
5136 struct elf_link_hash_entry *h,
5137 unsigned long r_symndx)
5138 {
5139 bfd_vma value;
5140 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5141 return value & 1;
5142 }
5143
5144 static bfd_vma
5145 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5146 unsigned long r_symndx)
5147 {
5148 bfd_vma value;
5149 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5150 value &= ~1;
5151 return value;
5152 }
5153
5154 /* Data for make_branch_to_erratum_835769_stub(). */
5155
5156 struct erratum_835769_branch_to_stub_data
5157 {
5158 struct bfd_link_info *info;
5159 asection *output_section;
5160 bfd_byte *contents;
5161 };
5162
5163 /* Helper to insert branches to erratum 835769 stubs in the right
5164 places for a particular section. */
5165
5166 static bfd_boolean
5167 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
5168 void *in_arg)
5169 {
5170 struct elf_aarch64_stub_hash_entry *stub_entry;
5171 struct erratum_835769_branch_to_stub_data *data;
5172 bfd_byte *contents;
5173 unsigned long branch_insn = 0;
5174 bfd_vma veneered_insn_loc, veneer_entry_loc;
5175 bfd_signed_vma branch_offset;
5176 unsigned int target;
5177 bfd *abfd;
5178
5179 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5180 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
5181
5182 if (stub_entry->target_section != data->output_section
5183 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
5184 return TRUE;
5185
5186 contents = data->contents;
5187 veneered_insn_loc = stub_entry->target_section->output_section->vma
5188 + stub_entry->target_section->output_offset
5189 + stub_entry->target_value;
5190 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5191 + stub_entry->stub_sec->output_offset
5192 + stub_entry->stub_offset;
5193 branch_offset = veneer_entry_loc - veneered_insn_loc;
5194
5195 abfd = stub_entry->target_section->owner;
5196 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5197 _bfd_error_handler
5198 (_("%pB: error: erratum 835769 stub out "
5199 "of range (input file too large)"), abfd);
5200
5201 target = stub_entry->target_value;
5202 branch_insn = 0x14000000;
5203 branch_offset >>= 2;
5204 branch_offset &= 0x3ffffff;
5205 branch_insn |= branch_offset;
5206 bfd_putl32 (branch_insn, &contents[target]);
5207
5208 return TRUE;
5209 }
5210
5211
5212 static bfd_boolean
5213 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
5214 void *in_arg)
5215 {
5216 struct elf_aarch64_stub_hash_entry *stub_entry
5217 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5218 struct erratum_835769_branch_to_stub_data *data
5219 = (struct erratum_835769_branch_to_stub_data *) in_arg;
5220 struct bfd_link_info *info;
5221 struct elf_aarch64_link_hash_table *htab;
5222 bfd_byte *contents;
5223 asection *section;
5224 bfd *abfd;
5225 bfd_vma place;
5226 uint32_t insn;
5227
5228 info = data->info;
5229 contents = data->contents;
5230 section = data->output_section;
5231
5232 htab = elf_aarch64_hash_table (info);
5233
5234 if (stub_entry->target_section != section
5235 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
5236 return TRUE;
5237
5238 insn = bfd_getl32 (contents + stub_entry->target_value);
5239 bfd_putl32 (insn,
5240 stub_entry->stub_sec->contents + stub_entry->stub_offset);
5241
5242 place = (section->output_section->vma + section->output_offset
5243 + stub_entry->adrp_offset);
5244 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
5245
5246 if (!_bfd_aarch64_adrp_p (insn))
5247 abort ();
5248
5249 bfd_signed_vma imm =
5250 (_bfd_aarch64_sign_extend
5251 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
5252 - (place & 0xfff));
5253
5254 if (htab->fix_erratum_843419_adr
5255 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
5256 {
5257 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
5258 | AARCH64_RT (insn));
5259 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
5260 }
5261 else
5262 {
5263 bfd_vma veneered_insn_loc;
5264 bfd_vma veneer_entry_loc;
5265 bfd_signed_vma branch_offset;
5266 uint32_t branch_insn;
5267
5268 veneered_insn_loc = stub_entry->target_section->output_section->vma
5269 + stub_entry->target_section->output_offset
5270 + stub_entry->target_value;
5271 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5272 + stub_entry->stub_sec->output_offset
5273 + stub_entry->stub_offset;
5274 branch_offset = veneer_entry_loc - veneered_insn_loc;
5275
5276 abfd = stub_entry->target_section->owner;
5277 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5278 _bfd_error_handler
5279 (_("%pB: error: erratum 843419 stub out "
5280 "of range (input file too large)"), abfd);
5281
5282 branch_insn = 0x14000000;
5283 branch_offset >>= 2;
5284 branch_offset &= 0x3ffffff;
5285 branch_insn |= branch_offset;
5286 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
5287 }
5288 return TRUE;
5289 }
5290
5291
5292 static bfd_boolean
5293 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
5294 struct bfd_link_info *link_info,
5295 asection *sec,
5296 bfd_byte *contents)
5297
5298 {
5299 struct elf_aarch64_link_hash_table *globals =
5300 elf_aarch64_hash_table (link_info);
5301
5302 if (globals == NULL)
5303 return FALSE;
5304
5305 /* Fix code to point to erratum 835769 stubs. */
5306 if (globals->fix_erratum_835769)
5307 {
5308 struct erratum_835769_branch_to_stub_data data;
5309
5310 data.info = link_info;
5311 data.output_section = sec;
5312 data.contents = contents;
5313 bfd_hash_traverse (&globals->stub_hash_table,
5314 make_branch_to_erratum_835769_stub, &data);
5315 }
5316
5317 if (globals->fix_erratum_843419)
5318 {
5319 struct erratum_835769_branch_to_stub_data data;
5320
5321 data.info = link_info;
5322 data.output_section = sec;
5323 data.contents = contents;
5324 bfd_hash_traverse (&globals->stub_hash_table,
5325 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
5326 }
5327
5328 return FALSE;
5329 }
5330
5331 /* Return TRUE if RELOC is a relocation against the base of GOT table. */
5332
5333 static bfd_boolean
5334 aarch64_relocation_aginst_gp_p (bfd_reloc_code_real_type reloc)
5335 {
5336 return (reloc == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
5337 || reloc == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5338 || reloc == BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
5339 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
5340 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G1);
5341 }
5342
5343 /* Perform a relocation as part of a final link. The input relocation type
5344 should be TLS relaxed. */
5345
5346 static bfd_reloc_status_type
5347 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
5348 bfd *input_bfd,
5349 bfd *output_bfd,
5350 asection *input_section,
5351 bfd_byte *contents,
5352 Elf_Internal_Rela *rel,
5353 bfd_vma value,
5354 struct bfd_link_info *info,
5355 asection *sym_sec,
5356 struct elf_link_hash_entry *h,
5357 bfd_boolean *unresolved_reloc_p,
5358 bfd_boolean save_addend,
5359 bfd_vma *saved_addend,
5360 Elf_Internal_Sym *sym)
5361 {
5362 Elf_Internal_Shdr *symtab_hdr;
5363 unsigned int r_type = howto->type;
5364 bfd_reloc_code_real_type bfd_r_type
5365 = elfNN_aarch64_bfd_reloc_from_howto (howto);
5366 unsigned long r_symndx;
5367 bfd_byte *hit_data = contents + rel->r_offset;
5368 bfd_vma place, off, got_entry_addr = 0;
5369 bfd_signed_vma signed_addend;
5370 struct elf_aarch64_link_hash_table *globals;
5371 bfd_boolean weak_undef_p;
5372 bfd_boolean relative_reloc;
5373 asection *base_got;
5374 bfd_vma orig_value = value;
5375 bfd_boolean resolved_to_zero;
5376 bfd_boolean abs_symbol_p;
5377
5378 globals = elf_aarch64_hash_table (info);
5379
5380 symtab_hdr = &elf_symtab_hdr (input_bfd);
5381
5382 BFD_ASSERT (is_aarch64_elf (input_bfd));
5383
5384 r_symndx = ELFNN_R_SYM (rel->r_info);
5385
5386 place = input_section->output_section->vma
5387 + input_section->output_offset + rel->r_offset;
5388
5389 /* Get addend, accumulating the addend for consecutive relocs
5390 which refer to the same offset. */
5391 signed_addend = saved_addend ? *saved_addend : 0;
5392 signed_addend += rel->r_addend;
5393
5394 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
5395 : bfd_is_und_section (sym_sec));
5396 abs_symbol_p = h != NULL && bfd_is_abs_symbol (&h->root);
5397
5398
5399 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
5400 it here if it is defined in a non-shared object. */
5401 if (h != NULL
5402 && h->type == STT_GNU_IFUNC
5403 && h->def_regular)
5404 {
5405 asection *plt;
5406 const char *name;
5407 bfd_vma addend = 0;
5408
5409 if ((input_section->flags & SEC_ALLOC) == 0)
5410 {
5411 /* If this is a SHT_NOTE section without SHF_ALLOC, treat
5412 STT_GNU_IFUNC symbol as STT_FUNC. */
5413 if (elf_section_type (input_section) == SHT_NOTE)
5414 goto skip_ifunc;
5415
5416 /* Dynamic relocs are not propagated for SEC_DEBUGGING
5417 sections because such sections are not SEC_ALLOC and
5418 thus ld.so will not process them. */
5419 if ((input_section->flags & SEC_DEBUGGING) != 0)
5420 return bfd_reloc_ok;
5421
5422 if (h->root.root.string)
5423 name = h->root.root.string;
5424 else
5425 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL);
5426 _bfd_error_handler
5427 /* xgettext:c-format */
5428 (_("%pB(%pA+%#" PRIx64 "): "
5429 "unresolvable %s relocation against symbol `%s'"),
5430 input_bfd, input_section, (uint64_t) rel->r_offset,
5431 howto->name, name);
5432 bfd_set_error (bfd_error_bad_value);
5433 return bfd_reloc_notsupported;
5434 }
5435 else if (h->plt.offset == (bfd_vma) -1)
5436 goto bad_ifunc_reloc;
5437
5438 /* STT_GNU_IFUNC symbol must go through PLT. */
5439 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
5440 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
5441
5442 switch (bfd_r_type)
5443 {
5444 default:
5445 bad_ifunc_reloc:
5446 if (h->root.root.string)
5447 name = h->root.root.string;
5448 else
5449 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5450 NULL);
5451 _bfd_error_handler
5452 /* xgettext:c-format */
5453 (_("%pB: relocation %s against STT_GNU_IFUNC "
5454 "symbol `%s' isn't handled by %s"), input_bfd,
5455 howto->name, name, __FUNCTION__);
5456 bfd_set_error (bfd_error_bad_value);
5457 return bfd_reloc_notsupported;
5458
5459 case BFD_RELOC_AARCH64_NN:
5460 if (rel->r_addend != 0)
5461 {
5462 if (h->root.root.string)
5463 name = h->root.root.string;
5464 else
5465 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
5466 sym, NULL);
5467 _bfd_error_handler
5468 /* xgettext:c-format */
5469 (_("%pB: relocation %s against STT_GNU_IFUNC "
5470 "symbol `%s' has non-zero addend: %" PRId64),
5471 input_bfd, howto->name, name, (int64_t) rel->r_addend);
5472 bfd_set_error (bfd_error_bad_value);
5473 return bfd_reloc_notsupported;
5474 }
5475
5476 /* Generate dynamic relocation only when there is a
5477 non-GOT reference in a shared object. */
5478 if (bfd_link_pic (info) && h->non_got_ref)
5479 {
5480 Elf_Internal_Rela outrel;
5481 asection *sreloc;
5482
5483 /* Need a dynamic relocation to get the real function
5484 address. */
5485 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5486 info,
5487 input_section,
5488 rel->r_offset);
5489 if (outrel.r_offset == (bfd_vma) -1
5490 || outrel.r_offset == (bfd_vma) -2)
5491 abort ();
5492
5493 outrel.r_offset += (input_section->output_section->vma
5494 + input_section->output_offset);
5495
5496 if (h->dynindx == -1
5497 || h->forced_local
5498 || bfd_link_executable (info))
5499 {
5500 /* This symbol is resolved locally. */
5501 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5502 outrel.r_addend = (h->root.u.def.value
5503 + h->root.u.def.section->output_section->vma
5504 + h->root.u.def.section->output_offset);
5505 }
5506 else
5507 {
5508 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5509 outrel.r_addend = 0;
5510 }
5511
5512 sreloc = globals->root.irelifunc;
5513 elf_append_rela (output_bfd, sreloc, &outrel);
5514
5515 /* If this reloc is against an external symbol, we
5516 do not want to fiddle with the addend. Otherwise,
5517 we need to include the symbol value so that it
5518 becomes an addend for the dynamic reloc. For an
5519 internal symbol, we have updated addend. */
5520 return bfd_reloc_ok;
5521 }
5522 /* FALLTHROUGH */
5523 case BFD_RELOC_AARCH64_CALL26:
5524 case BFD_RELOC_AARCH64_JUMP26:
5525 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5526 signed_addend,
5527 weak_undef_p);
5528 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5529 howto, value);
5530 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5531 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5532 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5533 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5534 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5535 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5536 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5537 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5538 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5539 base_got = globals->root.sgot;
5540 off = h->got.offset;
5541
5542 if (base_got == NULL)
5543 abort ();
5544
5545 if (off == (bfd_vma) -1)
5546 {
5547 bfd_vma plt_index;
5548
5549 /* We can't use h->got.offset here to save state, or
5550 even just remember the offset, as finish_dynamic_symbol
5551 would use that as offset into .got. */
5552
5553 if (globals->root.splt != NULL)
5554 {
5555 plt_index = ((h->plt.offset - globals->plt_header_size) /
5556 globals->plt_entry_size);
5557 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5558 base_got = globals->root.sgotplt;
5559 }
5560 else
5561 {
5562 plt_index = h->plt.offset / globals->plt_entry_size;
5563 off = plt_index * GOT_ENTRY_SIZE;
5564 base_got = globals->root.igotplt;
5565 }
5566
5567 if (h->dynindx == -1
5568 || h->forced_local
5569 || info->symbolic)
5570 {
5571 /* This references the local definition. We must
5572 initialize this entry in the global offset table.
5573 Since the offset must always be a multiple of 8,
5574 we use the least significant bit to record
5575 whether we have initialized it already.
5576
5577 When doing a dynamic link, we create a .rela.got
5578 relocation entry to initialize the value. This
5579 is done in the finish_dynamic_symbol routine. */
5580 if ((off & 1) != 0)
5581 off &= ~1;
5582 else
5583 {
5584 bfd_put_NN (output_bfd, value,
5585 base_got->contents + off);
5586 /* Note that this is harmless as -1 | 1 still is -1. */
5587 h->got.offset |= 1;
5588 }
5589 }
5590 value = (base_got->output_section->vma
5591 + base_got->output_offset + off);
5592 }
5593 else
5594 value = aarch64_calculate_got_entry_vma (h, globals, info,
5595 value, output_bfd,
5596 unresolved_reloc_p);
5597
5598 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5599 addend = (globals->root.sgot->output_section->vma
5600 + globals->root.sgot->output_offset);
5601
5602 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5603 addend, weak_undef_p);
5604 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5605 case BFD_RELOC_AARCH64_ADD_LO12:
5606 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5607 break;
5608 }
5609 }
5610
5611 skip_ifunc:
5612 resolved_to_zero = (h != NULL
5613 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
5614
5615 switch (bfd_r_type)
5616 {
5617 case BFD_RELOC_AARCH64_NONE:
5618 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5619 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5620 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5621 *unresolved_reloc_p = FALSE;
5622 return bfd_reloc_ok;
5623
5624 case BFD_RELOC_AARCH64_NN:
5625
5626 /* When generating a shared object or relocatable executable, these
5627 relocations are copied into the output file to be resolved at
5628 run time. */
5629 if (((bfd_link_pic (info)
5630 || globals->root.is_relocatable_executable)
5631 && (input_section->flags & SEC_ALLOC)
5632 && (h == NULL
5633 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5634 && !resolved_to_zero)
5635 || h->root.type != bfd_link_hash_undefweak))
5636 /* Or we are creating an executable, we may need to keep relocations
5637 for symbols satisfied by a dynamic library if we manage to avoid
5638 copy relocs for the symbol. */
5639 || (ELIMINATE_COPY_RELOCS
5640 && !bfd_link_pic (info)
5641 && h != NULL
5642 && (input_section->flags & SEC_ALLOC)
5643 && h->dynindx != -1
5644 && !h->non_got_ref
5645 && ((h->def_dynamic
5646 && !h->def_regular)
5647 || h->root.type == bfd_link_hash_undefweak
5648 || h->root.type == bfd_link_hash_undefined)))
5649 {
5650 Elf_Internal_Rela outrel;
5651 bfd_byte *loc;
5652 bfd_boolean skip, relocate;
5653 asection *sreloc;
5654
5655 *unresolved_reloc_p = FALSE;
5656
5657 skip = FALSE;
5658 relocate = FALSE;
5659
5660 outrel.r_addend = signed_addend;
5661 outrel.r_offset =
5662 _bfd_elf_section_offset (output_bfd, info, input_section,
5663 rel->r_offset);
5664 if (outrel.r_offset == (bfd_vma) - 1)
5665 skip = TRUE;
5666 else if (outrel.r_offset == (bfd_vma) - 2)
5667 {
5668 skip = TRUE;
5669 relocate = TRUE;
5670 }
5671 else if (abs_symbol_p)
5672 {
5673 /* Local absolute symbol. */
5674 skip = (h->forced_local || (h->dynindx == -1));
5675 relocate = skip;
5676 }
5677
5678 outrel.r_offset += (input_section->output_section->vma
5679 + input_section->output_offset);
5680
5681 if (skip)
5682 memset (&outrel, 0, sizeof outrel);
5683 else if (h != NULL
5684 && h->dynindx != -1
5685 && (!bfd_link_pic (info)
5686 || !(bfd_link_pie (info) || SYMBOLIC_BIND (info, h))
5687 || !h->def_regular))
5688 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5689 else
5690 {
5691 int symbol;
5692
5693 /* On SVR4-ish systems, the dynamic loader cannot
5694 relocate the text and data segments independently,
5695 so the symbol does not matter. */
5696 symbol = 0;
5697 relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
5698 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5699 outrel.r_addend += value;
5700 }
5701
5702 sreloc = elf_section_data (input_section)->sreloc;
5703 if (sreloc == NULL || sreloc->contents == NULL)
5704 return bfd_reloc_notsupported;
5705
5706 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5707 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5708
5709 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5710 {
5711 /* Sanity to check that we have previously allocated
5712 sufficient space in the relocation section for the
5713 number of relocations we actually want to emit. */
5714 abort ();
5715 }
5716
5717 /* If this reloc is against an external symbol, we do not want to
5718 fiddle with the addend. Otherwise, we need to include the symbol
5719 value so that it becomes an addend for the dynamic reloc. */
5720 if (!relocate)
5721 return bfd_reloc_ok;
5722
5723 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5724 contents, rel->r_offset, value,
5725 signed_addend);
5726 }
5727 else
5728 value += signed_addend;
5729 break;
5730
5731 case BFD_RELOC_AARCH64_CALL26:
5732 case BFD_RELOC_AARCH64_JUMP26:
5733 {
5734 asection *splt = globals->root.splt;
5735 bfd_boolean via_plt_p =
5736 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5737
5738 /* A call to an undefined weak symbol is converted to a jump to
5739 the next instruction unless a PLT entry will be created.
5740 The jump to the next instruction is optimized as a NOP.
5741 Do the same for local undefined symbols. */
5742 if (weak_undef_p && ! via_plt_p)
5743 {
5744 bfd_putl32 (INSN_NOP, hit_data);
5745 return bfd_reloc_ok;
5746 }
5747
5748 /* If the call goes through a PLT entry, make sure to
5749 check distance to the right destination address. */
5750 if (via_plt_p)
5751 value = (splt->output_section->vma
5752 + splt->output_offset + h->plt.offset);
5753
5754 /* Check if a stub has to be inserted because the destination
5755 is too far away. */
5756 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5757
5758 /* If the branch destination is directed to plt stub, "value" will be
5759 the final destination, otherwise we should plus signed_addend, it may
5760 contain non-zero value, for example call to local function symbol
5761 which are turned into "sec_sym + sec_off", and sec_off is kept in
5762 signed_addend. */
5763 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5764 place))
5765 /* The target is out of reach, so redirect the branch to
5766 the local stub for this function. */
5767 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5768 rel, globals);
5769 if (stub_entry != NULL)
5770 {
5771 value = (stub_entry->stub_offset
5772 + stub_entry->stub_sec->output_offset
5773 + stub_entry->stub_sec->output_section->vma);
5774
5775 /* We have redirected the destination to stub entry address,
5776 so ignore any addend record in the original rela entry. */
5777 signed_addend = 0;
5778 }
5779 }
5780 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5781 signed_addend, weak_undef_p);
5782 *unresolved_reloc_p = FALSE;
5783 break;
5784
5785 case BFD_RELOC_AARCH64_16_PCREL:
5786 case BFD_RELOC_AARCH64_32_PCREL:
5787 case BFD_RELOC_AARCH64_64_PCREL:
5788 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5789 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5790 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5791 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5792 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5793 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
5794 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5795 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
5796 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5797 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
5798 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
5799 if (bfd_link_pic (info)
5800 && (input_section->flags & SEC_ALLOC) != 0
5801 && (input_section->flags & SEC_READONLY) != 0
5802 && !SYMBOL_REFERENCES_LOCAL (info, h))
5803 {
5804 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5805
5806 _bfd_error_handler
5807 /* xgettext:c-format */
5808 (_("%pB: relocation %s against symbol `%s' which may bind "
5809 "externally can not be used when making a shared object; "
5810 "recompile with -fPIC"),
5811 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5812 h->root.root.string);
5813 bfd_set_error (bfd_error_bad_value);
5814 return bfd_reloc_notsupported;
5815 }
5816 /* Fall through. */
5817
5818 case BFD_RELOC_AARCH64_16:
5819 #if ARCH_SIZE == 64
5820 case BFD_RELOC_AARCH64_32:
5821 #endif
5822 case BFD_RELOC_AARCH64_ADD_LO12:
5823 case BFD_RELOC_AARCH64_BRANCH19:
5824 case BFD_RELOC_AARCH64_LDST128_LO12:
5825 case BFD_RELOC_AARCH64_LDST16_LO12:
5826 case BFD_RELOC_AARCH64_LDST32_LO12:
5827 case BFD_RELOC_AARCH64_LDST64_LO12:
5828 case BFD_RELOC_AARCH64_LDST8_LO12:
5829 case BFD_RELOC_AARCH64_MOVW_G0:
5830 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5831 case BFD_RELOC_AARCH64_MOVW_G0_S:
5832 case BFD_RELOC_AARCH64_MOVW_G1:
5833 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5834 case BFD_RELOC_AARCH64_MOVW_G1_S:
5835 case BFD_RELOC_AARCH64_MOVW_G2:
5836 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5837 case BFD_RELOC_AARCH64_MOVW_G2_S:
5838 case BFD_RELOC_AARCH64_MOVW_G3:
5839 case BFD_RELOC_AARCH64_TSTBR14:
5840 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5841 signed_addend, weak_undef_p);
5842 break;
5843
5844 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5845 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5846 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5847 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5848 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5849 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5850 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5851 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5852 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5853 if (globals->root.sgot == NULL)
5854 BFD_ASSERT (h != NULL);
5855
5856 relative_reloc = FALSE;
5857 if (h != NULL)
5858 {
5859 bfd_vma addend = 0;
5860
5861 /* If a symbol is not dynamic and is not undefined weak, bind it
5862 locally and generate a RELATIVE relocation under PIC mode.
5863
5864 NOTE: one symbol may be referenced by several relocations, we
5865 should only generate one RELATIVE relocation for that symbol.
5866 Therefore, check GOT offset mark first. */
5867 if (h->dynindx == -1
5868 && !h->forced_local
5869 && h->root.type != bfd_link_hash_undefweak
5870 && bfd_link_pic (info)
5871 && !symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5872 relative_reloc = TRUE;
5873
5874 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5875 output_bfd,
5876 unresolved_reloc_p);
5877 /* Record the GOT entry address which will be used when generating
5878 RELATIVE relocation. */
5879 if (relative_reloc)
5880 got_entry_addr = value;
5881
5882 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5883 addend = (globals->root.sgot->output_section->vma
5884 + globals->root.sgot->output_offset);
5885 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5886 addend, weak_undef_p);
5887 }
5888 else
5889 {
5890 bfd_vma addend = 0;
5891 struct elf_aarch64_local_symbol *locals
5892 = elf_aarch64_locals (input_bfd);
5893
5894 if (locals == NULL)
5895 {
5896 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5897 _bfd_error_handler
5898 /* xgettext:c-format */
5899 (_("%pB: local symbol descriptor table be NULL when applying "
5900 "relocation %s against local symbol"),
5901 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5902 abort ();
5903 }
5904
5905 off = symbol_got_offset (input_bfd, h, r_symndx);
5906 base_got = globals->root.sgot;
5907 got_entry_addr = (base_got->output_section->vma
5908 + base_got->output_offset + off);
5909
5910 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5911 {
5912 bfd_put_64 (output_bfd, value, base_got->contents + off);
5913
5914 /* For local symbol, we have done absolute relocation in static
5915 linking stage. While for shared library, we need to update the
5916 content of GOT entry according to the shared object's runtime
5917 base address. So, we need to generate a R_AARCH64_RELATIVE reloc
5918 for dynamic linker. */
5919 if (bfd_link_pic (info))
5920 relative_reloc = TRUE;
5921
5922 symbol_got_offset_mark (input_bfd, h, r_symndx);
5923 }
5924
5925 /* Update the relocation value to GOT entry addr as we have transformed
5926 the direct data access into indirect data access through GOT. */
5927 value = got_entry_addr;
5928
5929 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5930 addend = base_got->output_section->vma + base_got->output_offset;
5931
5932 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5933 addend, weak_undef_p);
5934 }
5935
5936 if (relative_reloc)
5937 {
5938 asection *s;
5939 Elf_Internal_Rela outrel;
5940
5941 s = globals->root.srelgot;
5942 if (s == NULL)
5943 abort ();
5944
5945 outrel.r_offset = got_entry_addr;
5946 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5947 outrel.r_addend = orig_value;
5948 elf_append_rela (output_bfd, s, &outrel);
5949 }
5950 break;
5951
5952 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5953 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5954 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5955 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5956 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5957 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5958 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5959 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5960 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5961 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5962 if (globals->root.sgot == NULL)
5963 return bfd_reloc_notsupported;
5964
5965 value = (symbol_got_offset (input_bfd, h, r_symndx)
5966 + globals->root.sgot->output_section->vma
5967 + globals->root.sgot->output_offset);
5968
5969 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5970 0, weak_undef_p);
5971 *unresolved_reloc_p = FALSE;
5972 break;
5973
5974 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5975 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5976 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5977 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5978 if (globals->root.sgot == NULL)
5979 return bfd_reloc_notsupported;
5980
5981 value = symbol_got_offset (input_bfd, h, r_symndx);
5982 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5983 0, weak_undef_p);
5984 *unresolved_reloc_p = FALSE;
5985 break;
5986
5987 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
5988 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
5989 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5990 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
5991 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
5992 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
5993 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
5994 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
5995 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
5996 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
5997 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
5998 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5999 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6000 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
6001 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
6002 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
6003 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
6004 signed_addend - dtpoff_base (info),
6005 weak_undef_p);
6006 break;
6007
6008 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
6009 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
6010 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6011 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
6012 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
6013 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
6014 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
6015 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
6016 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
6017 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
6018 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
6019 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6020 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6021 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6022 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6023 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
6024 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
6025 signed_addend - tpoff_base (info),
6026 weak_undef_p);
6027 *unresolved_reloc_p = FALSE;
6028 break;
6029
6030 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6031 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6032 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6033 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6034 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
6035 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6036 if (globals->root.sgot == NULL)
6037 return bfd_reloc_notsupported;
6038 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6039 + globals->root.sgotplt->output_section->vma
6040 + globals->root.sgotplt->output_offset
6041 + globals->sgotplt_jump_table_size);
6042
6043 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
6044 0, weak_undef_p);
6045 *unresolved_reloc_p = FALSE;
6046 break;
6047
6048 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6049 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6050 if (globals->root.sgot == NULL)
6051 return bfd_reloc_notsupported;
6052
6053 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6054 + globals->root.sgotplt->output_section->vma
6055 + globals->root.sgotplt->output_offset
6056 + globals->sgotplt_jump_table_size);
6057
6058 value -= (globals->root.sgot->output_section->vma
6059 + globals->root.sgot->output_offset);
6060
6061 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
6062 0, weak_undef_p);
6063 *unresolved_reloc_p = FALSE;
6064 break;
6065
6066 default:
6067 return bfd_reloc_notsupported;
6068 }
6069
6070 if (saved_addend)
6071 *saved_addend = value;
6072
6073 /* Only apply the final relocation in a sequence. */
6074 if (save_addend)
6075 return bfd_reloc_continue;
6076
6077 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
6078 howto, value);
6079 }
6080
6081 /* LP64 and ILP32 operates on x- and w-registers respectively.
6082 Next definitions take into account the difference between
6083 corresponding machine codes. R means x-register if the target
6084 arch is LP64, and w-register if the target is ILP32. */
6085
6086 #if ARCH_SIZE == 64
6087 # define add_R0_R0 (0x91000000)
6088 # define add_R0_R0_R1 (0x8b000020)
6089 # define add_R0_R1 (0x91400020)
6090 # define ldr_R0 (0x58000000)
6091 # define ldr_R0_mask(i) (i & 0xffffffe0)
6092 # define ldr_R0_x0 (0xf9400000)
6093 # define ldr_hw_R0 (0xf2a00000)
6094 # define movk_R0 (0xf2800000)
6095 # define movz_R0 (0xd2a00000)
6096 # define movz_hw_R0 (0xd2c00000)
6097 #else /*ARCH_SIZE == 32 */
6098 # define add_R0_R0 (0x11000000)
6099 # define add_R0_R0_R1 (0x0b000020)
6100 # define add_R0_R1 (0x11400020)
6101 # define ldr_R0 (0x18000000)
6102 # define ldr_R0_mask(i) (i & 0xbfffffe0)
6103 # define ldr_R0_x0 (0xb9400000)
6104 # define ldr_hw_R0 (0x72a00000)
6105 # define movk_R0 (0x72800000)
6106 # define movz_R0 (0x52a00000)
6107 # define movz_hw_R0 (0x52c00000)
6108 #endif
6109
6110 /* Structure to hold payload for _bfd_aarch64_erratum_843419_clear_stub,
6111 it is used to identify the stub information to reset. */
6112
6113 struct erratum_843419_branch_to_stub_clear_data
6114 {
6115 bfd_vma adrp_offset;
6116 asection *output_section;
6117 };
6118
6119 /* Clear the erratum information for GEN_ENTRY if the ADRP_OFFSET and
6120 section inside IN_ARG matches. The clearing is done by setting the
6121 stub_type to none. */
6122
6123 static bfd_boolean
6124 _bfd_aarch64_erratum_843419_clear_stub (struct bfd_hash_entry *gen_entry,
6125 void *in_arg)
6126 {
6127 struct elf_aarch64_stub_hash_entry *stub_entry
6128 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
6129 struct erratum_843419_branch_to_stub_clear_data *data
6130 = (struct erratum_843419_branch_to_stub_clear_data *) in_arg;
6131
6132 if (stub_entry->target_section != data->output_section
6133 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer
6134 || stub_entry->adrp_offset != data->adrp_offset)
6135 return TRUE;
6136
6137 /* Change the stub type instead of removing the entry, removing from the hash
6138 table would be slower and we have already reserved the memory for the entry
6139 so there wouldn't be much gain. Changing the stub also keeps around a
6140 record of what was there before. */
6141 stub_entry->stub_type = aarch64_stub_none;
6142
6143 /* We're done and there could have been only one matching stub at that
6144 particular offset, so abort further traversal. */
6145 return FALSE;
6146 }
6147
6148 /* TLS Relaxations may relax an adrp sequence that matches the erratum 843419
6149 sequence. In this case the erratum no longer applies and we need to remove
6150 the entry from the pending stub generation. This clears matching adrp insn
6151 at ADRP_OFFSET in INPUT_SECTION in the stub table defined in GLOBALS. */
6152
6153 static void
6154 clear_erratum_843419_entry (struct elf_aarch64_link_hash_table *globals,
6155 bfd_vma adrp_offset, asection *input_section)
6156 {
6157 if (globals->fix_erratum_843419)
6158 {
6159 struct erratum_843419_branch_to_stub_clear_data data;
6160 data.adrp_offset = adrp_offset;
6161 data.output_section = input_section;
6162
6163 bfd_hash_traverse (&globals->stub_hash_table,
6164 _bfd_aarch64_erratum_843419_clear_stub, &data);
6165 }
6166 }
6167
6168 /* Handle TLS relaxations. Relaxing is possible for symbols that use
6169 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
6170 link.
6171
6172 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
6173 is to then call final_link_relocate. Return other values in the
6174 case of error. */
6175
6176 static bfd_reloc_status_type
6177 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
6178 bfd *input_bfd, asection *input_section,
6179 bfd_byte *contents, Elf_Internal_Rela *rel,
6180 struct elf_link_hash_entry *h)
6181 {
6182 bfd_boolean is_local = h == NULL;
6183 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
6184 unsigned long insn;
6185
6186 BFD_ASSERT (globals && input_bfd && contents && rel);
6187
6188 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6189 {
6190 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6191 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6192 if (is_local)
6193 {
6194 /* GD->LE relaxation:
6195 adrp x0, :tlsgd:var => movz R0, :tprel_g1:var
6196 or
6197 adrp x0, :tlsdesc:var => movz R0, :tprel_g1:var
6198
6199 Where R is x for LP64, and w for ILP32. */
6200 bfd_putl32 (movz_R0, contents + rel->r_offset);
6201 /* We have relaxed the adrp into a mov, we may have to clear any
6202 pending erratum fixes. */
6203 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6204 return bfd_reloc_continue;
6205 }
6206 else
6207 {
6208 /* GD->IE relaxation:
6209 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
6210 or
6211 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
6212 */
6213 return bfd_reloc_continue;
6214 }
6215
6216 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6217 BFD_ASSERT (0);
6218 break;
6219
6220 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6221 if (is_local)
6222 {
6223 /* Tiny TLSDESC->LE relaxation:
6224 ldr x1, :tlsdesc:var => movz R0, #:tprel_g1:var
6225 adr x0, :tlsdesc:var => movk R0, #:tprel_g0_nc:var
6226 .tlsdesccall var
6227 blr x1 => nop
6228
6229 Where R is x for LP64, and w for ILP32. */
6230 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6231 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6232
6233 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6234 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6235 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6236
6237 bfd_putl32 (movz_R0, contents + rel->r_offset);
6238 bfd_putl32 (movk_R0, contents + rel->r_offset + 4);
6239 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6240 return bfd_reloc_continue;
6241 }
6242 else
6243 {
6244 /* Tiny TLSDESC->IE relaxation:
6245 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
6246 adr x0, :tlsdesc:var => nop
6247 .tlsdesccall var
6248 blr x1 => nop
6249 */
6250 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6251 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6252
6253 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6254 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6255
6256 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6257 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6258 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6259 return bfd_reloc_continue;
6260 }
6261
6262 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6263 if (is_local)
6264 {
6265 /* Tiny GD->LE relaxation:
6266 adr x0, :tlsgd:var => mrs x1, tpidr_el0
6267 bl __tls_get_addr => add R0, R1, #:tprel_hi12:x, lsl #12
6268 nop => add R0, R0, #:tprel_lo12_nc:x
6269
6270 Where R is x for LP64, and x for Ilp32. */
6271
6272 /* First kill the tls_get_addr reloc on the bl instruction. */
6273 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6274
6275 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
6276 bfd_putl32 (add_R0_R1, contents + rel->r_offset + 4);
6277 bfd_putl32 (add_R0_R0, contents + rel->r_offset + 8);
6278
6279 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6280 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
6281 rel[1].r_offset = rel->r_offset + 8;
6282
6283 /* Move the current relocation to the second instruction in
6284 the sequence. */
6285 rel->r_offset += 4;
6286 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6287 AARCH64_R (TLSLE_ADD_TPREL_HI12));
6288 return bfd_reloc_continue;
6289 }
6290 else
6291 {
6292 /* Tiny GD->IE relaxation:
6293 adr x0, :tlsgd:var => ldr R0, :gottprel:var
6294 bl __tls_get_addr => mrs x1, tpidr_el0
6295 nop => add R0, R0, R1
6296
6297 Where R is x for LP64, and w for Ilp32. */
6298
6299 /* First kill the tls_get_addr reloc on the bl instruction. */
6300 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6301 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6302
6303 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6304 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6305 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6306 return bfd_reloc_continue;
6307 }
6308
6309 #if ARCH_SIZE == 64
6310 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6311 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
6312 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
6313 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
6314
6315 if (is_local)
6316 {
6317 /* Large GD->LE relaxation:
6318 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
6319 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
6320 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
6321 bl __tls_get_addr => mrs x1, tpidr_el0
6322 nop => add x0, x0, x1
6323 */
6324 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6325 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6326 rel[2].r_offset = rel->r_offset + 8;
6327
6328 bfd_putl32 (movz_hw_R0, contents + rel->r_offset + 0);
6329 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset + 4);
6330 bfd_putl32 (movk_R0, contents + rel->r_offset + 8);
6331 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6332 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6333 }
6334 else
6335 {
6336 /* Large GD->IE relaxation:
6337 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
6338 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
6339 add x0, gp, x0 => ldr x0, [gp, x0]
6340 bl __tls_get_addr => mrs x1, tpidr_el0
6341 nop => add x0, x0, x1
6342 */
6343 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6344 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
6345 bfd_putl32 (ldr_R0, contents + rel->r_offset + 8);
6346 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6347 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6348 }
6349 return bfd_reloc_continue;
6350
6351 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6352 return bfd_reloc_continue;
6353 #endif
6354
6355 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6356 return bfd_reloc_continue;
6357
6358 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6359 if (is_local)
6360 {
6361 /* GD->LE relaxation:
6362 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
6363
6364 Where R is x for lp64 mode, and w for ILP32 mode. */
6365 bfd_putl32 (movk_R0, contents + rel->r_offset);
6366 return bfd_reloc_continue;
6367 }
6368 else
6369 {
6370 /* GD->IE relaxation:
6371 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr R0, [x0, #:gottprel_lo12:var]
6372
6373 Where R is x for lp64 mode, and w for ILP32 mode. */
6374 insn = bfd_getl32 (contents + rel->r_offset);
6375 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6376 return bfd_reloc_continue;
6377 }
6378
6379 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6380 if (is_local)
6381 {
6382 /* GD->LE relaxation
6383 add x0, #:tlsgd_lo12:var => movk R0, :tprel_g0_nc:var
6384 bl __tls_get_addr => mrs x1, tpidr_el0
6385 nop => add R0, R1, R0
6386
6387 Where R is x for lp64 mode, and w for ILP32 mode. */
6388
6389 /* First kill the tls_get_addr reloc on the bl instruction. */
6390 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6391 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6392
6393 bfd_putl32 (movk_R0, contents + rel->r_offset);
6394 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6395 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6396 return bfd_reloc_continue;
6397 }
6398 else
6399 {
6400 /* GD->IE relaxation
6401 ADD x0, #:tlsgd_lo12:var => ldr R0, [x0, #:gottprel_lo12:var]
6402 BL __tls_get_addr => mrs x1, tpidr_el0
6403 R_AARCH64_CALL26
6404 NOP => add R0, R1, R0
6405
6406 Where R is x for lp64 mode, and w for ilp32 mode. */
6407
6408 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6409
6410 /* Remove the relocation on the BL instruction. */
6411 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6412
6413 /* We choose to fixup the BL and NOP instructions using the
6414 offset from the second relocation to allow flexibility in
6415 scheduling instructions between the ADD and BL. */
6416 bfd_putl32 (ldr_R0_x0, contents + rel->r_offset);
6417 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
6418 bfd_putl32 (add_R0_R0_R1, contents + rel[1].r_offset + 4);
6419 return bfd_reloc_continue;
6420 }
6421
6422 case BFD_RELOC_AARCH64_TLSDESC_ADD:
6423 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6424 case BFD_RELOC_AARCH64_TLSDESC_CALL:
6425 /* GD->IE/LE relaxation:
6426 add x0, x0, #:tlsdesc_lo12:var => nop
6427 blr xd => nop
6428 */
6429 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
6430 return bfd_reloc_ok;
6431
6432 case BFD_RELOC_AARCH64_TLSDESC_LDR:
6433 if (is_local)
6434 {
6435 /* GD->LE relaxation:
6436 ldr xd, [gp, xn] => movk R0, #:tprel_g0_nc:var
6437
6438 Where R is x for lp64 mode, and w for ILP32 mode. */
6439 bfd_putl32 (movk_R0, contents + rel->r_offset);
6440 return bfd_reloc_continue;
6441 }
6442 else
6443 {
6444 /* GD->IE relaxation:
6445 ldr xd, [gp, xn] => ldr R0, [gp, xn]
6446
6447 Where R is x for lp64 mode, and w for ILP32 mode. */
6448 insn = bfd_getl32 (contents + rel->r_offset);
6449 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6450 return bfd_reloc_ok;
6451 }
6452
6453 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6454 /* GD->LE relaxation:
6455 movk xd, #:tlsdesc_off_g0_nc:var => movk R0, #:tprel_g1_nc:var, lsl #16
6456 GD->IE relaxation:
6457 movk xd, #:tlsdesc_off_g0_nc:var => movk Rd, #:gottprel_g0_nc:var
6458
6459 Where R is x for lp64 mode, and w for ILP32 mode. */
6460 if (is_local)
6461 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset);
6462 return bfd_reloc_continue;
6463
6464 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6465 if (is_local)
6466 {
6467 /* GD->LE relaxation:
6468 movz xd, #:tlsdesc_off_g1:var => movz R0, #:tprel_g2:var, lsl #32
6469
6470 Where R is x for lp64 mode, and w for ILP32 mode. */
6471 bfd_putl32 (movz_hw_R0, contents + rel->r_offset);
6472 return bfd_reloc_continue;
6473 }
6474 else
6475 {
6476 /* GD->IE relaxation:
6477 movz xd, #:tlsdesc_off_g1:var => movz Rd, #:gottprel_g1:var, lsl #16
6478
6479 Where R is x for lp64 mode, and w for ILP32 mode. */
6480 insn = bfd_getl32 (contents + rel->r_offset);
6481 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6482 return bfd_reloc_continue;
6483 }
6484
6485 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6486 /* IE->LE relaxation:
6487 adrp xd, :gottprel:var => movz Rd, :tprel_g1:var
6488
6489 Where R is x for lp64 mode, and w for ILP32 mode. */
6490 if (is_local)
6491 {
6492 insn = bfd_getl32 (contents + rel->r_offset);
6493 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6494 /* We have relaxed the adrp into a mov, we may have to clear any
6495 pending erratum fixes. */
6496 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6497 }
6498 return bfd_reloc_continue;
6499
6500 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6501 /* IE->LE relaxation:
6502 ldr xd, [xm, #:gottprel_lo12:var] => movk Rd, :tprel_g0_nc:var
6503
6504 Where R is x for lp64 mode, and w for ILP32 mode. */
6505 if (is_local)
6506 {
6507 insn = bfd_getl32 (contents + rel->r_offset);
6508 bfd_putl32 (movk_R0 | (insn & 0x1f), contents + rel->r_offset);
6509 }
6510 return bfd_reloc_continue;
6511
6512 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6513 /* LD->LE relaxation (tiny):
6514 adr x0, :tlsldm:x => mrs x0, tpidr_el0
6515 bl __tls_get_addr => add R0, R0, TCB_SIZE
6516
6517 Where R is x for lp64 mode, and w for ilp32 mode. */
6518 if (is_local)
6519 {
6520 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6521 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6522 /* No need of CALL26 relocation for tls_get_addr. */
6523 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6524 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
6525 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6526 contents + rel->r_offset + 4);
6527 return bfd_reloc_ok;
6528 }
6529 return bfd_reloc_continue;
6530
6531 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6532 /* LD->LE relaxation (small):
6533 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
6534 */
6535 if (is_local)
6536 {
6537 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
6538 return bfd_reloc_ok;
6539 }
6540 return bfd_reloc_continue;
6541
6542 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6543 /* LD->LE relaxation (small):
6544 add x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE
6545 bl __tls_get_addr => nop
6546
6547 Where R is x for lp64 mode, and w for ilp32 mode. */
6548 if (is_local)
6549 {
6550 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6551 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6552 /* No need of CALL26 relocation for tls_get_addr. */
6553 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6554 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6555 contents + rel->r_offset + 0);
6556 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6557 return bfd_reloc_ok;
6558 }
6559 return bfd_reloc_continue;
6560
6561 default:
6562 return bfd_reloc_continue;
6563 }
6564
6565 return bfd_reloc_ok;
6566 }
6567
6568 /* Relocate an AArch64 ELF section. */
6569
6570 static bfd_boolean
6571 elfNN_aarch64_relocate_section (bfd *output_bfd,
6572 struct bfd_link_info *info,
6573 bfd *input_bfd,
6574 asection *input_section,
6575 bfd_byte *contents,
6576 Elf_Internal_Rela *relocs,
6577 Elf_Internal_Sym *local_syms,
6578 asection **local_sections)
6579 {
6580 Elf_Internal_Shdr *symtab_hdr;
6581 struct elf_link_hash_entry **sym_hashes;
6582 Elf_Internal_Rela *rel;
6583 Elf_Internal_Rela *relend;
6584 const char *name;
6585 struct elf_aarch64_link_hash_table *globals;
6586 bfd_boolean save_addend = FALSE;
6587 bfd_vma addend = 0;
6588
6589 globals = elf_aarch64_hash_table (info);
6590
6591 symtab_hdr = &elf_symtab_hdr (input_bfd);
6592 sym_hashes = elf_sym_hashes (input_bfd);
6593
6594 rel = relocs;
6595 relend = relocs + input_section->reloc_count;
6596 for (; rel < relend; rel++)
6597 {
6598 unsigned int r_type;
6599 bfd_reloc_code_real_type bfd_r_type;
6600 bfd_reloc_code_real_type relaxed_bfd_r_type;
6601 reloc_howto_type *howto;
6602 unsigned long r_symndx;
6603 Elf_Internal_Sym *sym;
6604 asection *sec;
6605 struct elf_link_hash_entry *h;
6606 bfd_vma relocation;
6607 bfd_reloc_status_type r;
6608 arelent bfd_reloc;
6609 char sym_type;
6610 bfd_boolean unresolved_reloc = FALSE;
6611 char *error_message = NULL;
6612
6613 r_symndx = ELFNN_R_SYM (rel->r_info);
6614 r_type = ELFNN_R_TYPE (rel->r_info);
6615
6616 bfd_reloc.howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
6617 howto = bfd_reloc.howto;
6618
6619 if (howto == NULL)
6620 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
6621
6622 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
6623
6624 h = NULL;
6625 sym = NULL;
6626 sec = NULL;
6627
6628 if (r_symndx < symtab_hdr->sh_info)
6629 {
6630 sym = local_syms + r_symndx;
6631 sym_type = ELFNN_ST_TYPE (sym->st_info);
6632 sec = local_sections[r_symndx];
6633
6634 /* An object file might have a reference to a local
6635 undefined symbol. This is a daft object file, but we
6636 should at least do something about it. */
6637 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6638 && bfd_is_und_section (sec)
6639 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6640 (*info->callbacks->undefined_symbol)
6641 (info, bfd_elf_string_from_elf_section
6642 (input_bfd, symtab_hdr->sh_link, sym->st_name),
6643 input_bfd, input_section, rel->r_offset, TRUE);
6644
6645 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6646
6647 /* Relocate against local STT_GNU_IFUNC symbol. */
6648 if (!bfd_link_relocatable (info)
6649 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6650 {
6651 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6652 rel, FALSE);
6653 if (h == NULL)
6654 abort ();
6655
6656 /* Set STT_GNU_IFUNC symbol value. */
6657 h->root.u.def.value = sym->st_value;
6658 h->root.u.def.section = sec;
6659 }
6660 }
6661 else
6662 {
6663 bfd_boolean warned, ignored;
6664
6665 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6666 r_symndx, symtab_hdr, sym_hashes,
6667 h, sec, relocation,
6668 unresolved_reloc, warned, ignored);
6669
6670 sym_type = h->type;
6671 }
6672
6673 if (sec != NULL && discarded_section (sec))
6674 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6675 rel, 1, relend, howto, 0, contents);
6676
6677 if (bfd_link_relocatable (info))
6678 continue;
6679
6680 if (h != NULL)
6681 name = h->root.root.string;
6682 else
6683 {
6684 name = (bfd_elf_string_from_elf_section
6685 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6686 if (name == NULL || *name == '\0')
6687 name = bfd_section_name (input_bfd, sec);
6688 }
6689
6690 if (r_symndx != 0
6691 && r_type != R_AARCH64_NONE
6692 && r_type != R_AARCH64_NULL
6693 && (h == NULL
6694 || h->root.type == bfd_link_hash_defined
6695 || h->root.type == bfd_link_hash_defweak)
6696 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
6697 {
6698 _bfd_error_handler
6699 ((sym_type == STT_TLS
6700 /* xgettext:c-format */
6701 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
6702 /* xgettext:c-format */
6703 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
6704 input_bfd,
6705 input_section, (uint64_t) rel->r_offset, howto->name, name);
6706 }
6707
6708 /* We relax only if we can see that there can be a valid transition
6709 from a reloc type to another.
6710 We call elfNN_aarch64_final_link_relocate unless we're completely
6711 done, i.e., the relaxation produced the final output we want. */
6712
6713 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6714 h, r_symndx);
6715 if (relaxed_bfd_r_type != bfd_r_type)
6716 {
6717 bfd_r_type = relaxed_bfd_r_type;
6718 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6719 BFD_ASSERT (howto != NULL);
6720 r_type = howto->type;
6721 r = elfNN_aarch64_tls_relax (globals, input_bfd, input_section,
6722 contents, rel, h);
6723 unresolved_reloc = 0;
6724 }
6725 else
6726 r = bfd_reloc_continue;
6727
6728 /* There may be multiple consecutive relocations for the
6729 same offset. In that case we are supposed to treat the
6730 output of each relocation as the addend for the next. */
6731 if (rel + 1 < relend
6732 && rel->r_offset == rel[1].r_offset
6733 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6734 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6735 save_addend = TRUE;
6736 else
6737 save_addend = FALSE;
6738
6739 if (r == bfd_reloc_continue)
6740 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6741 input_section, contents, rel,
6742 relocation, info, sec,
6743 h, &unresolved_reloc,
6744 save_addend, &addend, sym);
6745
6746 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6747 {
6748 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6749 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6750 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6751 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6752 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6753 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6754 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6755 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6756 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6757 {
6758 bfd_boolean need_relocs = FALSE;
6759 bfd_byte *loc;
6760 int indx;
6761 bfd_vma off;
6762
6763 off = symbol_got_offset (input_bfd, h, r_symndx);
6764 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6765
6766 need_relocs =
6767 (!bfd_link_executable (info) || indx != 0) &&
6768 (h == NULL
6769 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6770 || h->root.type != bfd_link_hash_undefweak);
6771
6772 BFD_ASSERT (globals->root.srelgot != NULL);
6773
6774 if (need_relocs)
6775 {
6776 Elf_Internal_Rela rela;
6777 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6778 rela.r_addend = 0;
6779 rela.r_offset = globals->root.sgot->output_section->vma +
6780 globals->root.sgot->output_offset + off;
6781
6782
6783 loc = globals->root.srelgot->contents;
6784 loc += globals->root.srelgot->reloc_count++
6785 * RELOC_SIZE (htab);
6786 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6787
6788 bfd_reloc_code_real_type real_type =
6789 elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
6790
6791 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6792 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6793 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6794 {
6795 /* For local dynamic, don't generate DTPREL in any case.
6796 Initialize the DTPREL slot into zero, so we get module
6797 base address when invoke runtime TLS resolver. */
6798 bfd_put_NN (output_bfd, 0,
6799 globals->root.sgot->contents + off
6800 + GOT_ENTRY_SIZE);
6801 }
6802 else if (indx == 0)
6803 {
6804 bfd_put_NN (output_bfd,
6805 relocation - dtpoff_base (info),
6806 globals->root.sgot->contents + off
6807 + GOT_ENTRY_SIZE);
6808 }
6809 else
6810 {
6811 /* This TLS symbol is global. We emit a
6812 relocation to fixup the tls offset at load
6813 time. */
6814 rela.r_info =
6815 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6816 rela.r_addend = 0;
6817 rela.r_offset =
6818 (globals->root.sgot->output_section->vma
6819 + globals->root.sgot->output_offset + off
6820 + GOT_ENTRY_SIZE);
6821
6822 loc = globals->root.srelgot->contents;
6823 loc += globals->root.srelgot->reloc_count++
6824 * RELOC_SIZE (globals);
6825 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6826 bfd_put_NN (output_bfd, (bfd_vma) 0,
6827 globals->root.sgot->contents + off
6828 + GOT_ENTRY_SIZE);
6829 }
6830 }
6831 else
6832 {
6833 bfd_put_NN (output_bfd, (bfd_vma) 1,
6834 globals->root.sgot->contents + off);
6835 bfd_put_NN (output_bfd,
6836 relocation - dtpoff_base (info),
6837 globals->root.sgot->contents + off
6838 + GOT_ENTRY_SIZE);
6839 }
6840
6841 symbol_got_offset_mark (input_bfd, h, r_symndx);
6842 }
6843 break;
6844
6845 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6846 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6847 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6848 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6849 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6850 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6851 {
6852 bfd_boolean need_relocs = FALSE;
6853 bfd_byte *loc;
6854 int indx;
6855 bfd_vma off;
6856
6857 off = symbol_got_offset (input_bfd, h, r_symndx);
6858
6859 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6860
6861 need_relocs =
6862 (!bfd_link_executable (info) || indx != 0) &&
6863 (h == NULL
6864 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6865 || h->root.type != bfd_link_hash_undefweak);
6866
6867 BFD_ASSERT (globals->root.srelgot != NULL);
6868
6869 if (need_relocs)
6870 {
6871 Elf_Internal_Rela rela;
6872
6873 if (indx == 0)
6874 rela.r_addend = relocation - dtpoff_base (info);
6875 else
6876 rela.r_addend = 0;
6877
6878 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
6879 rela.r_offset = globals->root.sgot->output_section->vma +
6880 globals->root.sgot->output_offset + off;
6881
6882 loc = globals->root.srelgot->contents;
6883 loc += globals->root.srelgot->reloc_count++
6884 * RELOC_SIZE (htab);
6885
6886 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6887
6888 bfd_put_NN (output_bfd, rela.r_addend,
6889 globals->root.sgot->contents + off);
6890 }
6891 else
6892 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
6893 globals->root.sgot->contents + off);
6894
6895 symbol_got_offset_mark (input_bfd, h, r_symndx);
6896 }
6897 break;
6898
6899 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6900 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6901 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6902 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6903 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6904 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6905 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6906 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
6907 {
6908 bfd_boolean need_relocs = FALSE;
6909 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
6910 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
6911
6912 need_relocs = (h == NULL
6913 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6914 || h->root.type != bfd_link_hash_undefweak);
6915
6916 BFD_ASSERT (globals->root.srelgot != NULL);
6917 BFD_ASSERT (globals->root.sgot != NULL);
6918
6919 if (need_relocs)
6920 {
6921 bfd_byte *loc;
6922 Elf_Internal_Rela rela;
6923 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
6924
6925 rela.r_addend = 0;
6926 rela.r_offset = (globals->root.sgotplt->output_section->vma
6927 + globals->root.sgotplt->output_offset
6928 + off + globals->sgotplt_jump_table_size);
6929
6930 if (indx == 0)
6931 rela.r_addend = relocation - dtpoff_base (info);
6932
6933 /* Allocate the next available slot in the PLT reloc
6934 section to hold our R_AARCH64_TLSDESC, the next
6935 available slot is determined from reloc_count,
6936 which we step. But note, reloc_count was
6937 artifically moved down while allocating slots for
6938 real PLT relocs such that all of the PLT relocs
6939 will fit above the initial reloc_count and the
6940 extra stuff will fit below. */
6941 loc = globals->root.srelplt->contents;
6942 loc += globals->root.srelplt->reloc_count++
6943 * RELOC_SIZE (globals);
6944
6945 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6946
6947 bfd_put_NN (output_bfd, (bfd_vma) 0,
6948 globals->root.sgotplt->contents + off +
6949 globals->sgotplt_jump_table_size);
6950 bfd_put_NN (output_bfd, (bfd_vma) 0,
6951 globals->root.sgotplt->contents + off +
6952 globals->sgotplt_jump_table_size +
6953 GOT_ENTRY_SIZE);
6954 }
6955
6956 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
6957 }
6958 break;
6959 default:
6960 break;
6961 }
6962
6963 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6964 because such sections are not SEC_ALLOC and thus ld.so will
6965 not process them. */
6966 if (unresolved_reloc
6967 && !((input_section->flags & SEC_DEBUGGING) != 0
6968 && h->def_dynamic)
6969 && _bfd_elf_section_offset (output_bfd, info, input_section,
6970 +rel->r_offset) != (bfd_vma) - 1)
6971 {
6972 _bfd_error_handler
6973 /* xgettext:c-format */
6974 (_("%pB(%pA+%#" PRIx64 "): "
6975 "unresolvable %s relocation against symbol `%s'"),
6976 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name,
6977 h->root.root.string);
6978 return FALSE;
6979 }
6980
6981 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
6982 {
6983 bfd_reloc_code_real_type real_r_type
6984 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
6985
6986 switch (r)
6987 {
6988 case bfd_reloc_overflow:
6989 (*info->callbacks->reloc_overflow)
6990 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
6991 input_bfd, input_section, rel->r_offset);
6992 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
6993 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
6994 {
6995 (*info->callbacks->warning)
6996 (info,
6997 _("too many GOT entries for -fpic, "
6998 "please recompile with -fPIC"),
6999 name, input_bfd, input_section, rel->r_offset);
7000 return FALSE;
7001 }
7002 /* Overflow can occur when a variable is referenced with a type
7003 that has a larger alignment than the type with which it was
7004 declared. eg:
7005 file1.c: extern int foo; int a (void) { return foo; }
7006 file2.c: char bar, foo, baz;
7007 If the variable is placed into a data section at an offset
7008 that is incompatible with the larger alignment requirement
7009 overflow will occur. (Strictly speaking this is not overflow
7010 but rather an alignment problem, but the bfd_reloc_ error
7011 enum does not have a value to cover that situation).
7012
7013 Try to catch this situation here and provide a more helpful
7014 error message to the user. */
7015 if (addend & ((1 << howto->rightshift) - 1)
7016 /* FIXME: Are we testing all of the appropriate reloc
7017 types here ? */
7018 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
7019 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
7020 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
7021 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
7022 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
7023 {
7024 info->callbacks->warning
7025 (info, _("one possible cause of this error is that the \
7026 symbol is being referenced in the indicated code as if it had a larger \
7027 alignment than was declared where it was defined"),
7028 name, input_bfd, input_section, rel->r_offset);
7029 }
7030 break;
7031
7032 case bfd_reloc_undefined:
7033 (*info->callbacks->undefined_symbol)
7034 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
7035 break;
7036
7037 case bfd_reloc_outofrange:
7038 error_message = _("out of range");
7039 goto common_error;
7040
7041 case bfd_reloc_notsupported:
7042 error_message = _("unsupported relocation");
7043 goto common_error;
7044
7045 case bfd_reloc_dangerous:
7046 /* error_message should already be set. */
7047 goto common_error;
7048
7049 default:
7050 error_message = _("unknown error");
7051 /* Fall through. */
7052
7053 common_error:
7054 BFD_ASSERT (error_message != NULL);
7055 (*info->callbacks->reloc_dangerous)
7056 (info, error_message, input_bfd, input_section, rel->r_offset);
7057 break;
7058 }
7059 }
7060
7061 if (!save_addend)
7062 addend = 0;
7063 }
7064
7065 return TRUE;
7066 }
7067
7068 /* Set the right machine number. */
7069
7070 static bfd_boolean
7071 elfNN_aarch64_object_p (bfd *abfd)
7072 {
7073 #if ARCH_SIZE == 32
7074 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
7075 #else
7076 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
7077 #endif
7078 return TRUE;
7079 }
7080
7081 /* Function to keep AArch64 specific flags in the ELF header. */
7082
7083 static bfd_boolean
7084 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
7085 {
7086 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
7087 {
7088 }
7089 else
7090 {
7091 elf_elfheader (abfd)->e_flags = flags;
7092 elf_flags_init (abfd) = TRUE;
7093 }
7094
7095 return TRUE;
7096 }
7097
7098 /* Merge backend specific data from an object file to the output
7099 object file when linking. */
7100
7101 static bfd_boolean
7102 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
7103 {
7104 bfd *obfd = info->output_bfd;
7105 flagword out_flags;
7106 flagword in_flags;
7107 bfd_boolean flags_compatible = TRUE;
7108 asection *sec;
7109
7110 /* Check if we have the same endianess. */
7111 if (!_bfd_generic_verify_endian_match (ibfd, info))
7112 return FALSE;
7113
7114 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
7115 return TRUE;
7116
7117 /* The input BFD must have had its flags initialised. */
7118 /* The following seems bogus to me -- The flags are initialized in
7119 the assembler but I don't think an elf_flags_init field is
7120 written into the object. */
7121 /* BFD_ASSERT (elf_flags_init (ibfd)); */
7122
7123 in_flags = elf_elfheader (ibfd)->e_flags;
7124 out_flags = elf_elfheader (obfd)->e_flags;
7125
7126 if (!elf_flags_init (obfd))
7127 {
7128 /* If the input is the default architecture and had the default
7129 flags then do not bother setting the flags for the output
7130 architecture, instead allow future merges to do this. If no
7131 future merges ever set these flags then they will retain their
7132 uninitialised values, which surprise surprise, correspond
7133 to the default values. */
7134 if (bfd_get_arch_info (ibfd)->the_default
7135 && elf_elfheader (ibfd)->e_flags == 0)
7136 return TRUE;
7137
7138 elf_flags_init (obfd) = TRUE;
7139 elf_elfheader (obfd)->e_flags = in_flags;
7140
7141 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
7142 && bfd_get_arch_info (obfd)->the_default)
7143 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
7144 bfd_get_mach (ibfd));
7145
7146 return TRUE;
7147 }
7148
7149 /* Identical flags must be compatible. */
7150 if (in_flags == out_flags)
7151 return TRUE;
7152
7153 /* Check to see if the input BFD actually contains any sections. If
7154 not, its flags may not have been initialised either, but it
7155 cannot actually cause any incompatiblity. Do not short-circuit
7156 dynamic objects; their section list may be emptied by
7157 elf_link_add_object_symbols.
7158
7159 Also check to see if there are no code sections in the input.
7160 In this case there is no need to check for code specific flags.
7161 XXX - do we need to worry about floating-point format compatability
7162 in data sections ? */
7163 if (!(ibfd->flags & DYNAMIC))
7164 {
7165 bfd_boolean null_input_bfd = TRUE;
7166 bfd_boolean only_data_sections = TRUE;
7167
7168 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7169 {
7170 if ((bfd_get_section_flags (ibfd, sec)
7171 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7172 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7173 only_data_sections = FALSE;
7174
7175 null_input_bfd = FALSE;
7176 break;
7177 }
7178
7179 if (null_input_bfd || only_data_sections)
7180 return TRUE;
7181 }
7182
7183 return flags_compatible;
7184 }
7185
7186 /* Display the flags field. */
7187
7188 static bfd_boolean
7189 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
7190 {
7191 FILE *file = (FILE *) ptr;
7192 unsigned long flags;
7193
7194 BFD_ASSERT (abfd != NULL && ptr != NULL);
7195
7196 /* Print normal ELF private data. */
7197 _bfd_elf_print_private_bfd_data (abfd, ptr);
7198
7199 flags = elf_elfheader (abfd)->e_flags;
7200 /* Ignore init flag - it may not be set, despite the flags field
7201 containing valid data. */
7202
7203 /* xgettext:c-format */
7204 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
7205
7206 if (flags)
7207 fprintf (file, _("<Unrecognised flag bits set>"));
7208
7209 fputc ('\n', file);
7210
7211 return TRUE;
7212 }
7213
7214 /* Find dynamic relocs for H that apply to read-only sections. */
7215
7216 static asection *
7217 readonly_dynrelocs (struct elf_link_hash_entry *h)
7218 {
7219 struct elf_dyn_relocs *p;
7220
7221 for (p = elf_aarch64_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
7222 {
7223 asection *s = p->sec->output_section;
7224
7225 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7226 return p->sec;
7227 }
7228 return NULL;
7229 }
7230
7231 /* Return true if we need copy relocation against EH. */
7232
7233 static bfd_boolean
7234 need_copy_relocation_p (struct elf_aarch64_link_hash_entry *eh)
7235 {
7236 struct elf_dyn_relocs *p;
7237 asection *s;
7238
7239 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7240 {
7241 /* If there is any pc-relative reference, we need to keep copy relocation
7242 to avoid propagating the relocation into runtime that current glibc
7243 does not support. */
7244 if (p->pc_count)
7245 return TRUE;
7246
7247 s = p->sec->output_section;
7248 /* Need copy relocation if it's against read-only section. */
7249 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7250 return TRUE;
7251 }
7252
7253 return FALSE;
7254 }
7255
7256 /* Adjust a symbol defined by a dynamic object and referenced by a
7257 regular object. The current definition is in some section of the
7258 dynamic object, but we're not including those sections. We have to
7259 change the definition to something the rest of the link can
7260 understand. */
7261
7262 static bfd_boolean
7263 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
7264 struct elf_link_hash_entry *h)
7265 {
7266 struct elf_aarch64_link_hash_table *htab;
7267 asection *s, *srel;
7268
7269 /* If this is a function, put it in the procedure linkage table. We
7270 will fill in the contents of the procedure linkage table later,
7271 when we know the address of the .got section. */
7272 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
7273 {
7274 if (h->plt.refcount <= 0
7275 || (h->type != STT_GNU_IFUNC
7276 && (SYMBOL_CALLS_LOCAL (info, h)
7277 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7278 && h->root.type == bfd_link_hash_undefweak))))
7279 {
7280 /* This case can occur if we saw a CALL26 reloc in
7281 an input file, but the symbol wasn't referred to
7282 by a dynamic object or all references were
7283 garbage collected. In which case we can end up
7284 resolving. */
7285 h->plt.offset = (bfd_vma) - 1;
7286 h->needs_plt = 0;
7287 }
7288
7289 return TRUE;
7290 }
7291 else
7292 /* Otherwise, reset to -1. */
7293 h->plt.offset = (bfd_vma) - 1;
7294
7295
7296 /* If this is a weak symbol, and there is a real definition, the
7297 processor independent code will have arranged for us to see the
7298 real definition first, and we can just use the same value. */
7299 if (h->is_weakalias)
7300 {
7301 struct elf_link_hash_entry *def = weakdef (h);
7302 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
7303 h->root.u.def.section = def->root.u.def.section;
7304 h->root.u.def.value = def->root.u.def.value;
7305 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
7306 h->non_got_ref = def->non_got_ref;
7307 return TRUE;
7308 }
7309
7310 /* If we are creating a shared library, we must presume that the
7311 only references to the symbol are via the global offset table.
7312 For such cases we need not do anything here; the relocations will
7313 be handled correctly by relocate_section. */
7314 if (bfd_link_pic (info))
7315 return TRUE;
7316
7317 /* If there are no references to this symbol that do not use the
7318 GOT, we don't need to generate a copy reloc. */
7319 if (!h->non_got_ref)
7320 return TRUE;
7321
7322 /* If -z nocopyreloc was given, we won't generate them either. */
7323 if (info->nocopyreloc)
7324 {
7325 h->non_got_ref = 0;
7326 return TRUE;
7327 }
7328
7329 if (ELIMINATE_COPY_RELOCS)
7330 {
7331 struct elf_aarch64_link_hash_entry *eh;
7332 /* If we don't find any dynamic relocs in read-only sections, then
7333 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7334 eh = (struct elf_aarch64_link_hash_entry *) h;
7335 if (!need_copy_relocation_p (eh))
7336 {
7337 h->non_got_ref = 0;
7338 return TRUE;
7339 }
7340 }
7341
7342 /* We must allocate the symbol in our .dynbss section, which will
7343 become part of the .bss section of the executable. There will be
7344 an entry for this symbol in the .dynsym section. The dynamic
7345 object will contain position independent code, so all references
7346 from the dynamic object to this symbol will go through the global
7347 offset table. The dynamic linker will use the .dynsym entry to
7348 determine the address it must put in the global offset table, so
7349 both the dynamic object and the regular object will refer to the
7350 same memory location for the variable. */
7351
7352 htab = elf_aarch64_hash_table (info);
7353
7354 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
7355 to copy the initial value out of the dynamic object and into the
7356 runtime process image. */
7357 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
7358 {
7359 s = htab->root.sdynrelro;
7360 srel = htab->root.sreldynrelro;
7361 }
7362 else
7363 {
7364 s = htab->root.sdynbss;
7365 srel = htab->root.srelbss;
7366 }
7367 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7368 {
7369 srel->size += RELOC_SIZE (htab);
7370 h->needs_copy = 1;
7371 }
7372
7373 return _bfd_elf_adjust_dynamic_copy (info, h, s);
7374
7375 }
7376
7377 static bfd_boolean
7378 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
7379 {
7380 struct elf_aarch64_local_symbol *locals;
7381 locals = elf_aarch64_locals (abfd);
7382 if (locals == NULL)
7383 {
7384 locals = (struct elf_aarch64_local_symbol *)
7385 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
7386 if (locals == NULL)
7387 return FALSE;
7388 elf_aarch64_locals (abfd) = locals;
7389 }
7390 return TRUE;
7391 }
7392
7393 /* Create the .got section to hold the global offset table. */
7394
7395 static bfd_boolean
7396 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
7397 {
7398 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7399 flagword flags;
7400 asection *s;
7401 struct elf_link_hash_entry *h;
7402 struct elf_link_hash_table *htab = elf_hash_table (info);
7403
7404 /* This function may be called more than once. */
7405 if (htab->sgot != NULL)
7406 return TRUE;
7407
7408 flags = bed->dynamic_sec_flags;
7409
7410 s = bfd_make_section_anyway_with_flags (abfd,
7411 (bed->rela_plts_and_copies_p
7412 ? ".rela.got" : ".rel.got"),
7413 (bed->dynamic_sec_flags
7414 | SEC_READONLY));
7415 if (s == NULL
7416 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
7417 return FALSE;
7418 htab->srelgot = s;
7419
7420 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
7421 if (s == NULL
7422 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
7423 return FALSE;
7424 htab->sgot = s;
7425 htab->sgot->size += GOT_ENTRY_SIZE;
7426
7427 if (bed->want_got_sym)
7428 {
7429 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
7430 (or .got.plt) section. We don't do this in the linker script
7431 because we don't want to define the symbol if we are not creating
7432 a global offset table. */
7433 h = _bfd_elf_define_linkage_sym (abfd, info, s,
7434 "_GLOBAL_OFFSET_TABLE_");
7435 elf_hash_table (info)->hgot = h;
7436 if (h == NULL)
7437 return FALSE;
7438 }
7439
7440 if (bed->want_got_plt)
7441 {
7442 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
7443 if (s == NULL
7444 || !bfd_set_section_alignment (abfd, s,
7445 bed->s->log_file_align))
7446 return FALSE;
7447 htab->sgotplt = s;
7448 }
7449
7450 /* The first bit of the global offset table is the header. */
7451 s->size += bed->got_header_size;
7452
7453 return TRUE;
7454 }
7455
7456 /* Look through the relocs for a section during the first phase. */
7457
7458 static bfd_boolean
7459 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
7460 asection *sec, const Elf_Internal_Rela *relocs)
7461 {
7462 Elf_Internal_Shdr *symtab_hdr;
7463 struct elf_link_hash_entry **sym_hashes;
7464 const Elf_Internal_Rela *rel;
7465 const Elf_Internal_Rela *rel_end;
7466 asection *sreloc;
7467
7468 struct elf_aarch64_link_hash_table *htab;
7469
7470 if (bfd_link_relocatable (info))
7471 return TRUE;
7472
7473 BFD_ASSERT (is_aarch64_elf (abfd));
7474
7475 htab = elf_aarch64_hash_table (info);
7476 sreloc = NULL;
7477
7478 symtab_hdr = &elf_symtab_hdr (abfd);
7479 sym_hashes = elf_sym_hashes (abfd);
7480
7481 rel_end = relocs + sec->reloc_count;
7482 for (rel = relocs; rel < rel_end; rel++)
7483 {
7484 struct elf_link_hash_entry *h;
7485 unsigned int r_symndx;
7486 unsigned int r_type;
7487 bfd_reloc_code_real_type bfd_r_type;
7488 Elf_Internal_Sym *isym;
7489
7490 r_symndx = ELFNN_R_SYM (rel->r_info);
7491 r_type = ELFNN_R_TYPE (rel->r_info);
7492
7493 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7494 {
7495 /* xgettext:c-format */
7496 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd, r_symndx);
7497 return FALSE;
7498 }
7499
7500 if (r_symndx < symtab_hdr->sh_info)
7501 {
7502 /* A local symbol. */
7503 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7504 abfd, r_symndx);
7505 if (isym == NULL)
7506 return FALSE;
7507
7508 /* Check relocation against local STT_GNU_IFUNC symbol. */
7509 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7510 {
7511 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7512 TRUE);
7513 if (h == NULL)
7514 return FALSE;
7515
7516 /* Fake a STT_GNU_IFUNC symbol. */
7517 h->type = STT_GNU_IFUNC;
7518 h->def_regular = 1;
7519 h->ref_regular = 1;
7520 h->forced_local = 1;
7521 h->root.type = bfd_link_hash_defined;
7522 }
7523 else
7524 h = NULL;
7525 }
7526 else
7527 {
7528 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7529 while (h->root.type == bfd_link_hash_indirect
7530 || h->root.type == bfd_link_hash_warning)
7531 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7532 }
7533
7534 /* Could be done earlier, if h were already available. */
7535 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
7536
7537 if (h != NULL)
7538 {
7539 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7540 This shows up in particular in an R_AARCH64_PREL64 in large model
7541 when calculating the pc-relative address to .got section which is
7542 used to initialize the gp register. */
7543 if (h->root.root.string
7544 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7545 {
7546 if (htab->root.dynobj == NULL)
7547 htab->root.dynobj = abfd;
7548
7549 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7550 return FALSE;
7551
7552 BFD_ASSERT (h == htab->root.hgot);
7553 }
7554
7555 /* Create the ifunc sections for static executables. If we
7556 never see an indirect function symbol nor we are building
7557 a static executable, those sections will be empty and
7558 won't appear in output. */
7559 switch (bfd_r_type)
7560 {
7561 default:
7562 break;
7563
7564 case BFD_RELOC_AARCH64_ADD_LO12:
7565 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7566 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7567 case BFD_RELOC_AARCH64_CALL26:
7568 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7569 case BFD_RELOC_AARCH64_JUMP26:
7570 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7571 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7572 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7573 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7574 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7575 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7576 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7577 case BFD_RELOC_AARCH64_NN:
7578 if (htab->root.dynobj == NULL)
7579 htab->root.dynobj = abfd;
7580 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7581 return FALSE;
7582 break;
7583 }
7584
7585 /* It is referenced by a non-shared object. */
7586 h->ref_regular = 1;
7587 }
7588
7589 switch (bfd_r_type)
7590 {
7591 case BFD_RELOC_AARCH64_16:
7592 #if ARCH_SIZE == 64
7593 case BFD_RELOC_AARCH64_32:
7594 #endif
7595 if (bfd_link_pic (info) && (sec->flags & SEC_ALLOC) != 0)
7596 {
7597 if (h != NULL
7598 /* This is an absolute symbol. It represents a value instead
7599 of an address. */
7600 && (bfd_is_abs_symbol (&h->root)
7601 /* This is an undefined symbol. */
7602 || h->root.type == bfd_link_hash_undefined))
7603 break;
7604
7605 /* For local symbols, defined global symbols in a non-ABS section,
7606 it is assumed that the value is an address. */
7607 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7608 _bfd_error_handler
7609 /* xgettext:c-format */
7610 (_("%pB: relocation %s against `%s' can not be used when making "
7611 "a shared object"),
7612 abfd, elfNN_aarch64_howto_table[howto_index].name,
7613 (h) ? h->root.root.string : "a local symbol");
7614 bfd_set_error (bfd_error_bad_value);
7615 return FALSE;
7616 }
7617 else
7618 break;
7619
7620 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7621 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7622 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7623 case BFD_RELOC_AARCH64_MOVW_G3:
7624 if (bfd_link_pic (info))
7625 {
7626 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7627 _bfd_error_handler
7628 /* xgettext:c-format */
7629 (_("%pB: relocation %s against `%s' can not be used when making "
7630 "a shared object; recompile with -fPIC"),
7631 abfd, elfNN_aarch64_howto_table[howto_index].name,
7632 (h) ? h->root.root.string : "a local symbol");
7633 bfd_set_error (bfd_error_bad_value);
7634 return FALSE;
7635 }
7636 /* Fall through. */
7637
7638 case BFD_RELOC_AARCH64_16_PCREL:
7639 case BFD_RELOC_AARCH64_32_PCREL:
7640 case BFD_RELOC_AARCH64_64_PCREL:
7641 case BFD_RELOC_AARCH64_ADD_LO12:
7642 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7643 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7644 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7645 case BFD_RELOC_AARCH64_LDST128_LO12:
7646 case BFD_RELOC_AARCH64_LDST16_LO12:
7647 case BFD_RELOC_AARCH64_LDST32_LO12:
7648 case BFD_RELOC_AARCH64_LDST64_LO12:
7649 case BFD_RELOC_AARCH64_LDST8_LO12:
7650 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7651 if (h == NULL || bfd_link_pic (info))
7652 break;
7653 /* Fall through. */
7654
7655 case BFD_RELOC_AARCH64_NN:
7656
7657 /* We don't need to handle relocs into sections not going into
7658 the "real" output. */
7659 if ((sec->flags & SEC_ALLOC) == 0)
7660 break;
7661
7662 if (h != NULL)
7663 {
7664 if (!bfd_link_pic (info))
7665 h->non_got_ref = 1;
7666
7667 h->plt.refcount += 1;
7668 h->pointer_equality_needed = 1;
7669 }
7670
7671 /* No need to do anything if we're not creating a shared
7672 object. */
7673 if (!(bfd_link_pic (info)
7674 /* If on the other hand, we are creating an executable, we
7675 may need to keep relocations for symbols satisfied by a
7676 dynamic library if we manage to avoid copy relocs for the
7677 symbol.
7678
7679 NOTE: Currently, there is no support of copy relocs
7680 elimination on pc-relative relocation types, because there is
7681 no dynamic relocation support for them in glibc. We still
7682 record the dynamic symbol reference for them. This is
7683 because one symbol may be referenced by both absolute
7684 relocation (for example, BFD_RELOC_AARCH64_NN) and
7685 pc-relative relocation. We need full symbol reference
7686 information to make correct decision later in
7687 elfNN_aarch64_adjust_dynamic_symbol. */
7688 || (ELIMINATE_COPY_RELOCS
7689 && !bfd_link_pic (info)
7690 && h != NULL
7691 && (h->root.type == bfd_link_hash_defweak
7692 || !h->def_regular))))
7693 break;
7694
7695 {
7696 struct elf_dyn_relocs *p;
7697 struct elf_dyn_relocs **head;
7698 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7699
7700 /* We must copy these reloc types into the output file.
7701 Create a reloc section in dynobj and make room for
7702 this reloc. */
7703 if (sreloc == NULL)
7704 {
7705 if (htab->root.dynobj == NULL)
7706 htab->root.dynobj = abfd;
7707
7708 sreloc = _bfd_elf_make_dynamic_reloc_section
7709 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
7710
7711 if (sreloc == NULL)
7712 return FALSE;
7713 }
7714
7715 /* If this is a global symbol, we count the number of
7716 relocations we need for this symbol. */
7717 if (h != NULL)
7718 {
7719 struct elf_aarch64_link_hash_entry *eh;
7720 eh = (struct elf_aarch64_link_hash_entry *) h;
7721 head = &eh->dyn_relocs;
7722 }
7723 else
7724 {
7725 /* Track dynamic relocs needed for local syms too.
7726 We really need local syms available to do this
7727 easily. Oh well. */
7728
7729 asection *s;
7730 void **vpp;
7731
7732 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7733 abfd, r_symndx);
7734 if (isym == NULL)
7735 return FALSE;
7736
7737 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7738 if (s == NULL)
7739 s = sec;
7740
7741 /* Beware of type punned pointers vs strict aliasing
7742 rules. */
7743 vpp = &(elf_section_data (s)->local_dynrel);
7744 head = (struct elf_dyn_relocs **) vpp;
7745 }
7746
7747 p = *head;
7748 if (p == NULL || p->sec != sec)
7749 {
7750 bfd_size_type amt = sizeof *p;
7751 p = ((struct elf_dyn_relocs *)
7752 bfd_zalloc (htab->root.dynobj, amt));
7753 if (p == NULL)
7754 return FALSE;
7755 p->next = *head;
7756 *head = p;
7757 p->sec = sec;
7758 }
7759
7760 p->count += 1;
7761
7762 if (elfNN_aarch64_howto_table[howto_index].pc_relative)
7763 p->pc_count += 1;
7764 }
7765 break;
7766
7767 /* RR: We probably want to keep a consistency check that
7768 there are no dangling GOT_PAGE relocs. */
7769 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7770 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7771 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7772 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7773 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7774 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7775 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7776 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7777 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7778 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7779 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7780 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7781 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7782 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7783 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7784 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7785 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7786 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7787 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7788 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7789 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7790 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7791 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7792 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7793 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7794 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7795 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7796 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7797 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7798 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7799 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7800 {
7801 unsigned got_type;
7802 unsigned old_got_type;
7803
7804 got_type = aarch64_reloc_got_type (bfd_r_type);
7805
7806 if (h)
7807 {
7808 h->got.refcount += 1;
7809 old_got_type = elf_aarch64_hash_entry (h)->got_type;
7810 }
7811 else
7812 {
7813 struct elf_aarch64_local_symbol *locals;
7814
7815 if (!elfNN_aarch64_allocate_local_symbols
7816 (abfd, symtab_hdr->sh_info))
7817 return FALSE;
7818
7819 locals = elf_aarch64_locals (abfd);
7820 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7821 locals[r_symndx].got_refcount += 1;
7822 old_got_type = locals[r_symndx].got_type;
7823 }
7824
7825 /* If a variable is accessed with both general dynamic TLS
7826 methods, two slots may be created. */
7827 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7828 got_type |= old_got_type;
7829
7830 /* We will already have issued an error message if there
7831 is a TLS/non-TLS mismatch, based on the symbol type.
7832 So just combine any TLS types needed. */
7833 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7834 && got_type != GOT_NORMAL)
7835 got_type |= old_got_type;
7836
7837 /* If the symbol is accessed by both IE and GD methods, we
7838 are able to relax. Turn off the GD flag, without
7839 messing up with any other kind of TLS types that may be
7840 involved. */
7841 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7842 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7843
7844 if (old_got_type != got_type)
7845 {
7846 if (h != NULL)
7847 elf_aarch64_hash_entry (h)->got_type = got_type;
7848 else
7849 {
7850 struct elf_aarch64_local_symbol *locals;
7851 locals = elf_aarch64_locals (abfd);
7852 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7853 locals[r_symndx].got_type = got_type;
7854 }
7855 }
7856
7857 if (htab->root.dynobj == NULL)
7858 htab->root.dynobj = abfd;
7859 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7860 return FALSE;
7861 break;
7862 }
7863
7864 case BFD_RELOC_AARCH64_CALL26:
7865 case BFD_RELOC_AARCH64_JUMP26:
7866 /* If this is a local symbol then we resolve it
7867 directly without creating a PLT entry. */
7868 if (h == NULL)
7869 continue;
7870
7871 h->needs_plt = 1;
7872 if (h->plt.refcount <= 0)
7873 h->plt.refcount = 1;
7874 else
7875 h->plt.refcount += 1;
7876 break;
7877
7878 default:
7879 break;
7880 }
7881 }
7882
7883 return TRUE;
7884 }
7885
7886 /* Treat mapping symbols as special target symbols. */
7887
7888 static bfd_boolean
7889 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7890 asymbol *sym)
7891 {
7892 return bfd_is_aarch64_special_symbol_name (sym->name,
7893 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
7894 }
7895
7896 /* This is a copy of elf_find_function () from elf.c except that
7897 AArch64 mapping symbols are ignored when looking for function names. */
7898
7899 static bfd_boolean
7900 aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7901 asymbol **symbols,
7902 asection *section,
7903 bfd_vma offset,
7904 const char **filename_ptr,
7905 const char **functionname_ptr)
7906 {
7907 const char *filename = NULL;
7908 asymbol *func = NULL;
7909 bfd_vma low_func = 0;
7910 asymbol **p;
7911
7912 for (p = symbols; *p != NULL; p++)
7913 {
7914 elf_symbol_type *q;
7915
7916 q = (elf_symbol_type *) * p;
7917
7918 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7919 {
7920 default:
7921 break;
7922 case STT_FILE:
7923 filename = bfd_asymbol_name (&q->symbol);
7924 break;
7925 case STT_FUNC:
7926 case STT_NOTYPE:
7927 /* Skip mapping symbols. */
7928 if ((q->symbol.flags & BSF_LOCAL)
7929 && (bfd_is_aarch64_special_symbol_name
7930 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
7931 continue;
7932 /* Fall through. */
7933 if (bfd_get_section (&q->symbol) == section
7934 && q->symbol.value >= low_func && q->symbol.value <= offset)
7935 {
7936 func = (asymbol *) q;
7937 low_func = q->symbol.value;
7938 }
7939 break;
7940 }
7941 }
7942
7943 if (func == NULL)
7944 return FALSE;
7945
7946 if (filename_ptr)
7947 *filename_ptr = filename;
7948 if (functionname_ptr)
7949 *functionname_ptr = bfd_asymbol_name (func);
7950
7951 return TRUE;
7952 }
7953
7954
7955 /* Find the nearest line to a particular section and offset, for error
7956 reporting. This code is a duplicate of the code in elf.c, except
7957 that it uses aarch64_elf_find_function. */
7958
7959 static bfd_boolean
7960 elfNN_aarch64_find_nearest_line (bfd *abfd,
7961 asymbol **symbols,
7962 asection *section,
7963 bfd_vma offset,
7964 const char **filename_ptr,
7965 const char **functionname_ptr,
7966 unsigned int *line_ptr,
7967 unsigned int *discriminator_ptr)
7968 {
7969 bfd_boolean found = FALSE;
7970
7971 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
7972 filename_ptr, functionname_ptr,
7973 line_ptr, discriminator_ptr,
7974 dwarf_debug_sections, 0,
7975 &elf_tdata (abfd)->dwarf2_find_line_info))
7976 {
7977 if (!*functionname_ptr)
7978 aarch64_elf_find_function (abfd, symbols, section, offset,
7979 *filename_ptr ? NULL : filename_ptr,
7980 functionname_ptr);
7981
7982 return TRUE;
7983 }
7984
7985 /* Skip _bfd_dwarf1_find_nearest_line since no known AArch64
7986 toolchain uses DWARF1. */
7987
7988 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7989 &found, filename_ptr,
7990 functionname_ptr, line_ptr,
7991 &elf_tdata (abfd)->line_info))
7992 return FALSE;
7993
7994 if (found && (*functionname_ptr || *line_ptr))
7995 return TRUE;
7996
7997 if (symbols == NULL)
7998 return FALSE;
7999
8000 if (!aarch64_elf_find_function (abfd, symbols, section, offset,
8001 filename_ptr, functionname_ptr))
8002 return FALSE;
8003
8004 *line_ptr = 0;
8005 return TRUE;
8006 }
8007
8008 static bfd_boolean
8009 elfNN_aarch64_find_inliner_info (bfd *abfd,
8010 const char **filename_ptr,
8011 const char **functionname_ptr,
8012 unsigned int *line_ptr)
8013 {
8014 bfd_boolean found;
8015 found = _bfd_dwarf2_find_inliner_info
8016 (abfd, filename_ptr,
8017 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
8018 return found;
8019 }
8020
8021
8022 static void
8023 elfNN_aarch64_post_process_headers (bfd *abfd,
8024 struct bfd_link_info *link_info)
8025 {
8026 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
8027
8028 i_ehdrp = elf_elfheader (abfd);
8029 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
8030
8031 _bfd_elf_post_process_headers (abfd, link_info);
8032 }
8033
8034 static enum elf_reloc_type_class
8035 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
8036 const asection *rel_sec ATTRIBUTE_UNUSED,
8037 const Elf_Internal_Rela *rela)
8038 {
8039 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
8040
8041 if (htab->root.dynsym != NULL
8042 && htab->root.dynsym->contents != NULL)
8043 {
8044 /* Check relocation against STT_GNU_IFUNC symbol if there are
8045 dynamic symbols. */
8046 bfd *abfd = info->output_bfd;
8047 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8048 unsigned long r_symndx = ELFNN_R_SYM (rela->r_info);
8049 if (r_symndx != STN_UNDEF)
8050 {
8051 Elf_Internal_Sym sym;
8052 if (!bed->s->swap_symbol_in (abfd,
8053 (htab->root.dynsym->contents
8054 + r_symndx * bed->s->sizeof_sym),
8055 0, &sym))
8056 {
8057 /* xgettext:c-format */
8058 _bfd_error_handler (_("%pB symbol number %lu references"
8059 " nonexistent SHT_SYMTAB_SHNDX section"),
8060 abfd, r_symndx);
8061 /* Ideally an error class should be returned here. */
8062 }
8063 else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
8064 return reloc_class_ifunc;
8065 }
8066 }
8067
8068 switch ((int) ELFNN_R_TYPE (rela->r_info))
8069 {
8070 case AARCH64_R (IRELATIVE):
8071 return reloc_class_ifunc;
8072 case AARCH64_R (RELATIVE):
8073 return reloc_class_relative;
8074 case AARCH64_R (JUMP_SLOT):
8075 return reloc_class_plt;
8076 case AARCH64_R (COPY):
8077 return reloc_class_copy;
8078 default:
8079 return reloc_class_normal;
8080 }
8081 }
8082
8083 /* Handle an AArch64 specific section when reading an object file. This is
8084 called when bfd_section_from_shdr finds a section with an unknown
8085 type. */
8086
8087 static bfd_boolean
8088 elfNN_aarch64_section_from_shdr (bfd *abfd,
8089 Elf_Internal_Shdr *hdr,
8090 const char *name, int shindex)
8091 {
8092 /* There ought to be a place to keep ELF backend specific flags, but
8093 at the moment there isn't one. We just keep track of the
8094 sections by their name, instead. Fortunately, the ABI gives
8095 names for all the AArch64 specific sections, so we will probably get
8096 away with this. */
8097 switch (hdr->sh_type)
8098 {
8099 case SHT_AARCH64_ATTRIBUTES:
8100 break;
8101
8102 default:
8103 return FALSE;
8104 }
8105
8106 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
8107 return FALSE;
8108
8109 return TRUE;
8110 }
8111
8112 /* A structure used to record a list of sections, independently
8113 of the next and prev fields in the asection structure. */
8114 typedef struct section_list
8115 {
8116 asection *sec;
8117 struct section_list *next;
8118 struct section_list *prev;
8119 }
8120 section_list;
8121
8122 /* Unfortunately we need to keep a list of sections for which
8123 an _aarch64_elf_section_data structure has been allocated. This
8124 is because it is possible for functions like elfNN_aarch64_write_section
8125 to be called on a section which has had an elf_data_structure
8126 allocated for it (and so the used_by_bfd field is valid) but
8127 for which the AArch64 extended version of this structure - the
8128 _aarch64_elf_section_data structure - has not been allocated. */
8129 static section_list *sections_with_aarch64_elf_section_data = NULL;
8130
8131 static void
8132 record_section_with_aarch64_elf_section_data (asection *sec)
8133 {
8134 struct section_list *entry;
8135
8136 entry = bfd_malloc (sizeof (*entry));
8137 if (entry == NULL)
8138 return;
8139 entry->sec = sec;
8140 entry->next = sections_with_aarch64_elf_section_data;
8141 entry->prev = NULL;
8142 if (entry->next != NULL)
8143 entry->next->prev = entry;
8144 sections_with_aarch64_elf_section_data = entry;
8145 }
8146
8147 static struct section_list *
8148 find_aarch64_elf_section_entry (asection *sec)
8149 {
8150 struct section_list *entry;
8151 static struct section_list *last_entry = NULL;
8152
8153 /* This is a short cut for the typical case where the sections are added
8154 to the sections_with_aarch64_elf_section_data list in forward order and
8155 then looked up here in backwards order. This makes a real difference
8156 to the ld-srec/sec64k.exp linker test. */
8157 entry = sections_with_aarch64_elf_section_data;
8158 if (last_entry != NULL)
8159 {
8160 if (last_entry->sec == sec)
8161 entry = last_entry;
8162 else if (last_entry->next != NULL && last_entry->next->sec == sec)
8163 entry = last_entry->next;
8164 }
8165
8166 for (; entry; entry = entry->next)
8167 if (entry->sec == sec)
8168 break;
8169
8170 if (entry)
8171 /* Record the entry prior to this one - it is the entry we are
8172 most likely to want to locate next time. Also this way if we
8173 have been called from
8174 unrecord_section_with_aarch64_elf_section_data () we will not
8175 be caching a pointer that is about to be freed. */
8176 last_entry = entry->prev;
8177
8178 return entry;
8179 }
8180
8181 static void
8182 unrecord_section_with_aarch64_elf_section_data (asection *sec)
8183 {
8184 struct section_list *entry;
8185
8186 entry = find_aarch64_elf_section_entry (sec);
8187
8188 if (entry)
8189 {
8190 if (entry->prev != NULL)
8191 entry->prev->next = entry->next;
8192 if (entry->next != NULL)
8193 entry->next->prev = entry->prev;
8194 if (entry == sections_with_aarch64_elf_section_data)
8195 sections_with_aarch64_elf_section_data = entry->next;
8196 free (entry);
8197 }
8198 }
8199
8200
8201 typedef struct
8202 {
8203 void *finfo;
8204 struct bfd_link_info *info;
8205 asection *sec;
8206 int sec_shndx;
8207 int (*func) (void *, const char *, Elf_Internal_Sym *,
8208 asection *, struct elf_link_hash_entry *);
8209 } output_arch_syminfo;
8210
8211 enum map_symbol_type
8212 {
8213 AARCH64_MAP_INSN,
8214 AARCH64_MAP_DATA
8215 };
8216
8217
8218 /* Output a single mapping symbol. */
8219
8220 static bfd_boolean
8221 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
8222 enum map_symbol_type type, bfd_vma offset)
8223 {
8224 static const char *names[2] = { "$x", "$d" };
8225 Elf_Internal_Sym sym;
8226
8227 sym.st_value = (osi->sec->output_section->vma
8228 + osi->sec->output_offset + offset);
8229 sym.st_size = 0;
8230 sym.st_other = 0;
8231 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
8232 sym.st_shndx = osi->sec_shndx;
8233 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
8234 }
8235
8236 /* Output a single local symbol for a generated stub. */
8237
8238 static bfd_boolean
8239 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
8240 bfd_vma offset, bfd_vma size)
8241 {
8242 Elf_Internal_Sym sym;
8243
8244 sym.st_value = (osi->sec->output_section->vma
8245 + osi->sec->output_offset + offset);
8246 sym.st_size = size;
8247 sym.st_other = 0;
8248 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
8249 sym.st_shndx = osi->sec_shndx;
8250 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
8251 }
8252
8253 static bfd_boolean
8254 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8255 {
8256 struct elf_aarch64_stub_hash_entry *stub_entry;
8257 asection *stub_sec;
8258 bfd_vma addr;
8259 char *stub_name;
8260 output_arch_syminfo *osi;
8261
8262 /* Massage our args to the form they really have. */
8263 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
8264 osi = (output_arch_syminfo *) in_arg;
8265
8266 stub_sec = stub_entry->stub_sec;
8267
8268 /* Ensure this stub is attached to the current section being
8269 processed. */
8270 if (stub_sec != osi->sec)
8271 return TRUE;
8272
8273 addr = (bfd_vma) stub_entry->stub_offset;
8274
8275 stub_name = stub_entry->output_name;
8276
8277 switch (stub_entry->stub_type)
8278 {
8279 case aarch64_stub_adrp_branch:
8280 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8281 sizeof (aarch64_adrp_branch_stub)))
8282 return FALSE;
8283 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8284 return FALSE;
8285 break;
8286 case aarch64_stub_long_branch:
8287 if (!elfNN_aarch64_output_stub_sym
8288 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
8289 return FALSE;
8290 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8291 return FALSE;
8292 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
8293 return FALSE;
8294 break;
8295 case aarch64_stub_erratum_835769_veneer:
8296 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8297 sizeof (aarch64_erratum_835769_stub)))
8298 return FALSE;
8299 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8300 return FALSE;
8301 break;
8302 case aarch64_stub_erratum_843419_veneer:
8303 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8304 sizeof (aarch64_erratum_843419_stub)))
8305 return FALSE;
8306 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8307 return FALSE;
8308 break;
8309 case aarch64_stub_none:
8310 break;
8311
8312 default:
8313 abort ();
8314 }
8315
8316 return TRUE;
8317 }
8318
8319 /* Output mapping symbols for linker generated sections. */
8320
8321 static bfd_boolean
8322 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
8323 struct bfd_link_info *info,
8324 void *finfo,
8325 int (*func) (void *, const char *,
8326 Elf_Internal_Sym *,
8327 asection *,
8328 struct elf_link_hash_entry
8329 *))
8330 {
8331 output_arch_syminfo osi;
8332 struct elf_aarch64_link_hash_table *htab;
8333
8334 htab = elf_aarch64_hash_table (info);
8335
8336 osi.finfo = finfo;
8337 osi.info = info;
8338 osi.func = func;
8339
8340 /* Long calls stubs. */
8341 if (htab->stub_bfd && htab->stub_bfd->sections)
8342 {
8343 asection *stub_sec;
8344
8345 for (stub_sec = htab->stub_bfd->sections;
8346 stub_sec != NULL; stub_sec = stub_sec->next)
8347 {
8348 /* Ignore non-stub sections. */
8349 if (!strstr (stub_sec->name, STUB_SUFFIX))
8350 continue;
8351
8352 osi.sec = stub_sec;
8353
8354 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8355 (output_bfd, osi.sec->output_section);
8356
8357 /* The first instruction in a stub is always a branch. */
8358 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
8359 return FALSE;
8360
8361 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
8362 &osi);
8363 }
8364 }
8365
8366 /* Finally, output mapping symbols for the PLT. */
8367 if (!htab->root.splt || htab->root.splt->size == 0)
8368 return TRUE;
8369
8370 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8371 (output_bfd, htab->root.splt->output_section);
8372 osi.sec = htab->root.splt;
8373
8374 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
8375
8376 return TRUE;
8377
8378 }
8379
8380 /* Allocate target specific section data. */
8381
8382 static bfd_boolean
8383 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
8384 {
8385 if (!sec->used_by_bfd)
8386 {
8387 _aarch64_elf_section_data *sdata;
8388 bfd_size_type amt = sizeof (*sdata);
8389
8390 sdata = bfd_zalloc (abfd, amt);
8391 if (sdata == NULL)
8392 return FALSE;
8393 sec->used_by_bfd = sdata;
8394 }
8395
8396 record_section_with_aarch64_elf_section_data (sec);
8397
8398 return _bfd_elf_new_section_hook (abfd, sec);
8399 }
8400
8401
8402 static void
8403 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
8404 asection *sec,
8405 void *ignore ATTRIBUTE_UNUSED)
8406 {
8407 unrecord_section_with_aarch64_elf_section_data (sec);
8408 }
8409
8410 static bfd_boolean
8411 elfNN_aarch64_close_and_cleanup (bfd *abfd)
8412 {
8413 if (abfd->sections)
8414 bfd_map_over_sections (abfd,
8415 unrecord_section_via_map_over_sections, NULL);
8416
8417 return _bfd_elf_close_and_cleanup (abfd);
8418 }
8419
8420 static bfd_boolean
8421 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
8422 {
8423 if (abfd->sections)
8424 bfd_map_over_sections (abfd,
8425 unrecord_section_via_map_over_sections, NULL);
8426
8427 return _bfd_free_cached_info (abfd);
8428 }
8429
8430 /* Create dynamic sections. This is different from the ARM backend in that
8431 the got, plt, gotplt and their relocation sections are all created in the
8432 standard part of the bfd elf backend. */
8433
8434 static bfd_boolean
8435 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
8436 struct bfd_link_info *info)
8437 {
8438 /* We need to create .got section. */
8439 if (!aarch64_elf_create_got_section (dynobj, info))
8440 return FALSE;
8441
8442 return _bfd_elf_create_dynamic_sections (dynobj, info);
8443 }
8444
8445
8446 /* Allocate space in .plt, .got and associated reloc sections for
8447 dynamic relocs. */
8448
8449 static bfd_boolean
8450 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8451 {
8452 struct bfd_link_info *info;
8453 struct elf_aarch64_link_hash_table *htab;
8454 struct elf_aarch64_link_hash_entry *eh;
8455 struct elf_dyn_relocs *p;
8456
8457 /* An example of a bfd_link_hash_indirect symbol is versioned
8458 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8459 -> __gxx_personality_v0(bfd_link_hash_defined)
8460
8461 There is no need to process bfd_link_hash_indirect symbols here
8462 because we will also be presented with the concrete instance of
8463 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8464 called to copy all relevant data from the generic to the concrete
8465 symbol instance. */
8466 if (h->root.type == bfd_link_hash_indirect)
8467 return TRUE;
8468
8469 if (h->root.type == bfd_link_hash_warning)
8470 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8471
8472 info = (struct bfd_link_info *) inf;
8473 htab = elf_aarch64_hash_table (info);
8474
8475 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8476 here if it is defined and referenced in a non-shared object. */
8477 if (h->type == STT_GNU_IFUNC
8478 && h->def_regular)
8479 return TRUE;
8480 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
8481 {
8482 /* Make sure this symbol is output as a dynamic symbol.
8483 Undefined weak syms won't yet be marked as dynamic. */
8484 if (h->dynindx == -1 && !h->forced_local
8485 && h->root.type == bfd_link_hash_undefweak)
8486 {
8487 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8488 return FALSE;
8489 }
8490
8491 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8492 {
8493 asection *s = htab->root.splt;
8494
8495 /* If this is the first .plt entry, make room for the special
8496 first entry. */
8497 if (s->size == 0)
8498 s->size += htab->plt_header_size;
8499
8500 h->plt.offset = s->size;
8501
8502 /* If this symbol is not defined in a regular file, and we are
8503 not generating a shared library, then set the symbol to this
8504 location in the .plt. This is required to make function
8505 pointers compare as equal between the normal executable and
8506 the shared library. */
8507 if (!bfd_link_pic (info) && !h->def_regular)
8508 {
8509 h->root.u.def.section = s;
8510 h->root.u.def.value = h->plt.offset;
8511 }
8512
8513 /* Make room for this entry. For now we only create the
8514 small model PLT entries. We later need to find a way
8515 of relaxing into these from the large model PLT entries. */
8516 s->size += htab->plt_entry_size;
8517
8518 /* We also need to make an entry in the .got.plt section, which
8519 will be placed in the .got section by the linker script. */
8520 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
8521
8522 /* We also need to make an entry in the .rela.plt section. */
8523 htab->root.srelplt->size += RELOC_SIZE (htab);
8524
8525 /* We need to ensure that all GOT entries that serve the PLT
8526 are consecutive with the special GOT slots [0] [1] and
8527 [2]. Any addtional relocations, such as
8528 R_AARCH64_TLSDESC, must be placed after the PLT related
8529 entries. We abuse the reloc_count such that during
8530 sizing we adjust reloc_count to indicate the number of
8531 PLT related reserved entries. In subsequent phases when
8532 filling in the contents of the reloc entries, PLT related
8533 entries are placed by computing their PLT index (0
8534 .. reloc_count). While other none PLT relocs are placed
8535 at the slot indicated by reloc_count and reloc_count is
8536 updated. */
8537
8538 htab->root.srelplt->reloc_count++;
8539 }
8540 else
8541 {
8542 h->plt.offset = (bfd_vma) - 1;
8543 h->needs_plt = 0;
8544 }
8545 }
8546 else
8547 {
8548 h->plt.offset = (bfd_vma) - 1;
8549 h->needs_plt = 0;
8550 }
8551
8552 eh = (struct elf_aarch64_link_hash_entry *) h;
8553 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8554
8555 if (h->got.refcount > 0)
8556 {
8557 bfd_boolean dyn;
8558 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
8559
8560 h->got.offset = (bfd_vma) - 1;
8561
8562 dyn = htab->root.dynamic_sections_created;
8563
8564 /* Make sure this symbol is output as a dynamic symbol.
8565 Undefined weak syms won't yet be marked as dynamic. */
8566 if (dyn && h->dynindx == -1 && !h->forced_local
8567 && h->root.type == bfd_link_hash_undefweak)
8568 {
8569 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8570 return FALSE;
8571 }
8572
8573 if (got_type == GOT_UNKNOWN)
8574 {
8575 }
8576 else if (got_type == GOT_NORMAL)
8577 {
8578 h->got.offset = htab->root.sgot->size;
8579 htab->root.sgot->size += GOT_ENTRY_SIZE;
8580 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8581 || h->root.type != bfd_link_hash_undefweak)
8582 && (bfd_link_pic (info)
8583 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8584 /* Undefined weak symbol in static PIE resolves to 0 without
8585 any dynamic relocations. */
8586 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8587 {
8588 htab->root.srelgot->size += RELOC_SIZE (htab);
8589 }
8590 }
8591 else
8592 {
8593 int indx;
8594 if (got_type & GOT_TLSDESC_GD)
8595 {
8596 eh->tlsdesc_got_jump_table_offset =
8597 (htab->root.sgotplt->size
8598 - aarch64_compute_jump_table_size (htab));
8599 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8600 h->got.offset = (bfd_vma) - 2;
8601 }
8602
8603 if (got_type & GOT_TLS_GD)
8604 {
8605 h->got.offset = htab->root.sgot->size;
8606 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8607 }
8608
8609 if (got_type & GOT_TLS_IE)
8610 {
8611 h->got.offset = htab->root.sgot->size;
8612 htab->root.sgot->size += GOT_ENTRY_SIZE;
8613 }
8614
8615 indx = h && h->dynindx != -1 ? h->dynindx : 0;
8616 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8617 || h->root.type != bfd_link_hash_undefweak)
8618 && (!bfd_link_executable (info)
8619 || indx != 0
8620 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8621 {
8622 if (got_type & GOT_TLSDESC_GD)
8623 {
8624 htab->root.srelplt->size += RELOC_SIZE (htab);
8625 /* Note reloc_count not incremented here! We have
8626 already adjusted reloc_count for this relocation
8627 type. */
8628
8629 /* TLSDESC PLT is now needed, but not yet determined. */
8630 htab->tlsdesc_plt = (bfd_vma) - 1;
8631 }
8632
8633 if (got_type & GOT_TLS_GD)
8634 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8635
8636 if (got_type & GOT_TLS_IE)
8637 htab->root.srelgot->size += RELOC_SIZE (htab);
8638 }
8639 }
8640 }
8641 else
8642 {
8643 h->got.offset = (bfd_vma) - 1;
8644 }
8645
8646 if (eh->dyn_relocs == NULL)
8647 return TRUE;
8648
8649 /* In the shared -Bsymbolic case, discard space allocated for
8650 dynamic pc-relative relocs against symbols which turn out to be
8651 defined in regular objects. For the normal shared case, discard
8652 space for pc-relative relocs that have become local due to symbol
8653 visibility changes. */
8654
8655 if (bfd_link_pic (info))
8656 {
8657 /* Relocs that use pc_count are those that appear on a call
8658 insn, or certain REL relocs that can generated via assembly.
8659 We want calls to protected symbols to resolve directly to the
8660 function rather than going via the plt. If people want
8661 function pointer comparisons to work as expected then they
8662 should avoid writing weird assembly. */
8663 if (SYMBOL_CALLS_LOCAL (info, h))
8664 {
8665 struct elf_dyn_relocs **pp;
8666
8667 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
8668 {
8669 p->count -= p->pc_count;
8670 p->pc_count = 0;
8671 if (p->count == 0)
8672 *pp = p->next;
8673 else
8674 pp = &p->next;
8675 }
8676 }
8677
8678 /* Also discard relocs on undefined weak syms with non-default
8679 visibility. */
8680 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8681 {
8682 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8683 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8684 eh->dyn_relocs = NULL;
8685
8686 /* Make sure undefined weak symbols are output as a dynamic
8687 symbol in PIEs. */
8688 else if (h->dynindx == -1
8689 && !h->forced_local
8690 && h->root.type == bfd_link_hash_undefweak
8691 && !bfd_elf_link_record_dynamic_symbol (info, h))
8692 return FALSE;
8693 }
8694
8695 }
8696 else if (ELIMINATE_COPY_RELOCS)
8697 {
8698 /* For the non-shared case, discard space for relocs against
8699 symbols which turn out to need copy relocs or are not
8700 dynamic. */
8701
8702 if (!h->non_got_ref
8703 && ((h->def_dynamic
8704 && !h->def_regular)
8705 || (htab->root.dynamic_sections_created
8706 && (h->root.type == bfd_link_hash_undefweak
8707 || h->root.type == bfd_link_hash_undefined))))
8708 {
8709 /* Make sure this symbol is output as a dynamic symbol.
8710 Undefined weak syms won't yet be marked as dynamic. */
8711 if (h->dynindx == -1
8712 && !h->forced_local
8713 && h->root.type == bfd_link_hash_undefweak
8714 && !bfd_elf_link_record_dynamic_symbol (info, h))
8715 return FALSE;
8716
8717 /* If that succeeded, we know we'll be keeping all the
8718 relocs. */
8719 if (h->dynindx != -1)
8720 goto keep;
8721 }
8722
8723 eh->dyn_relocs = NULL;
8724
8725 keep:;
8726 }
8727
8728 /* Finally, allocate space. */
8729 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8730 {
8731 asection *sreloc;
8732
8733 sreloc = elf_section_data (p->sec)->sreloc;
8734
8735 BFD_ASSERT (sreloc != NULL);
8736
8737 sreloc->size += p->count * RELOC_SIZE (htab);
8738 }
8739
8740 return TRUE;
8741 }
8742
8743 /* Allocate space in .plt, .got and associated reloc sections for
8744 ifunc dynamic relocs. */
8745
8746 static bfd_boolean
8747 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8748 void *inf)
8749 {
8750 struct bfd_link_info *info;
8751 struct elf_aarch64_link_hash_table *htab;
8752 struct elf_aarch64_link_hash_entry *eh;
8753
8754 /* An example of a bfd_link_hash_indirect symbol is versioned
8755 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8756 -> __gxx_personality_v0(bfd_link_hash_defined)
8757
8758 There is no need to process bfd_link_hash_indirect symbols here
8759 because we will also be presented with the concrete instance of
8760 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8761 called to copy all relevant data from the generic to the concrete
8762 symbol instance. */
8763 if (h->root.type == bfd_link_hash_indirect)
8764 return TRUE;
8765
8766 if (h->root.type == bfd_link_hash_warning)
8767 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8768
8769 info = (struct bfd_link_info *) inf;
8770 htab = elf_aarch64_hash_table (info);
8771
8772 eh = (struct elf_aarch64_link_hash_entry *) h;
8773
8774 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8775 here if it is defined and referenced in a non-shared object. */
8776 if (h->type == STT_GNU_IFUNC
8777 && h->def_regular)
8778 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8779 &eh->dyn_relocs,
8780 NULL,
8781 htab->plt_entry_size,
8782 htab->plt_header_size,
8783 GOT_ENTRY_SIZE,
8784 FALSE);
8785 return TRUE;
8786 }
8787
8788 /* Allocate space in .plt, .got and associated reloc sections for
8789 local dynamic relocs. */
8790
8791 static bfd_boolean
8792 elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
8793 {
8794 struct elf_link_hash_entry *h
8795 = (struct elf_link_hash_entry *) *slot;
8796
8797 if (h->type != STT_GNU_IFUNC
8798 || !h->def_regular
8799 || !h->ref_regular
8800 || !h->forced_local
8801 || h->root.type != bfd_link_hash_defined)
8802 abort ();
8803
8804 return elfNN_aarch64_allocate_dynrelocs (h, inf);
8805 }
8806
8807 /* Allocate space in .plt, .got and associated reloc sections for
8808 local ifunc dynamic relocs. */
8809
8810 static bfd_boolean
8811 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8812 {
8813 struct elf_link_hash_entry *h
8814 = (struct elf_link_hash_entry *) *slot;
8815
8816 if (h->type != STT_GNU_IFUNC
8817 || !h->def_regular
8818 || !h->ref_regular
8819 || !h->forced_local
8820 || h->root.type != bfd_link_hash_defined)
8821 abort ();
8822
8823 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8824 }
8825
8826 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
8827 read-only sections. */
8828
8829 static bfd_boolean
8830 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
8831 {
8832 asection *sec;
8833
8834 if (h->root.type == bfd_link_hash_indirect)
8835 return TRUE;
8836
8837 sec = readonly_dynrelocs (h);
8838 if (sec != NULL)
8839 {
8840 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
8841
8842 info->flags |= DF_TEXTREL;
8843 info->callbacks->minfo
8844 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
8845 sec->owner, h->root.root.string, sec);
8846
8847 /* Not an error, just cut short the traversal. */
8848 return FALSE;
8849 }
8850 return TRUE;
8851 }
8852
8853 /* This is the most important function of all . Innocuosly named
8854 though ! */
8855
8856 static bfd_boolean
8857 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8858 struct bfd_link_info *info)
8859 {
8860 struct elf_aarch64_link_hash_table *htab;
8861 bfd *dynobj;
8862 asection *s;
8863 bfd_boolean relocs;
8864 bfd *ibfd;
8865
8866 htab = elf_aarch64_hash_table ((info));
8867 dynobj = htab->root.dynobj;
8868
8869 BFD_ASSERT (dynobj != NULL);
8870
8871 if (htab->root.dynamic_sections_created)
8872 {
8873 if (bfd_link_executable (info) && !info->nointerp)
8874 {
8875 s = bfd_get_linker_section (dynobj, ".interp");
8876 if (s == NULL)
8877 abort ();
8878 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8879 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8880 }
8881 }
8882
8883 /* Set up .got offsets for local syms, and space for local dynamic
8884 relocs. */
8885 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8886 {
8887 struct elf_aarch64_local_symbol *locals = NULL;
8888 Elf_Internal_Shdr *symtab_hdr;
8889 asection *srel;
8890 unsigned int i;
8891
8892 if (!is_aarch64_elf (ibfd))
8893 continue;
8894
8895 for (s = ibfd->sections; s != NULL; s = s->next)
8896 {
8897 struct elf_dyn_relocs *p;
8898
8899 for (p = (struct elf_dyn_relocs *)
8900 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8901 {
8902 if (!bfd_is_abs_section (p->sec)
8903 && bfd_is_abs_section (p->sec->output_section))
8904 {
8905 /* Input section has been discarded, either because
8906 it is a copy of a linkonce section or due to
8907 linker script /DISCARD/, so we'll be discarding
8908 the relocs too. */
8909 }
8910 else if (p->count != 0)
8911 {
8912 srel = elf_section_data (p->sec)->sreloc;
8913 srel->size += p->count * RELOC_SIZE (htab);
8914 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8915 info->flags |= DF_TEXTREL;
8916 }
8917 }
8918 }
8919
8920 locals = elf_aarch64_locals (ibfd);
8921 if (!locals)
8922 continue;
8923
8924 symtab_hdr = &elf_symtab_hdr (ibfd);
8925 srel = htab->root.srelgot;
8926 for (i = 0; i < symtab_hdr->sh_info; i++)
8927 {
8928 locals[i].got_offset = (bfd_vma) - 1;
8929 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8930 if (locals[i].got_refcount > 0)
8931 {
8932 unsigned got_type = locals[i].got_type;
8933 if (got_type & GOT_TLSDESC_GD)
8934 {
8935 locals[i].tlsdesc_got_jump_table_offset =
8936 (htab->root.sgotplt->size
8937 - aarch64_compute_jump_table_size (htab));
8938 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8939 locals[i].got_offset = (bfd_vma) - 2;
8940 }
8941
8942 if (got_type & GOT_TLS_GD)
8943 {
8944 locals[i].got_offset = htab->root.sgot->size;
8945 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8946 }
8947
8948 if (got_type & GOT_TLS_IE
8949 || got_type & GOT_NORMAL)
8950 {
8951 locals[i].got_offset = htab->root.sgot->size;
8952 htab->root.sgot->size += GOT_ENTRY_SIZE;
8953 }
8954
8955 if (got_type == GOT_UNKNOWN)
8956 {
8957 }
8958
8959 if (bfd_link_pic (info))
8960 {
8961 if (got_type & GOT_TLSDESC_GD)
8962 {
8963 htab->root.srelplt->size += RELOC_SIZE (htab);
8964 /* Note RELOC_COUNT not incremented here! */
8965 htab->tlsdesc_plt = (bfd_vma) - 1;
8966 }
8967
8968 if (got_type & GOT_TLS_GD)
8969 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8970
8971 if (got_type & GOT_TLS_IE
8972 || got_type & GOT_NORMAL)
8973 htab->root.srelgot->size += RELOC_SIZE (htab);
8974 }
8975 }
8976 else
8977 {
8978 locals[i].got_refcount = (bfd_vma) - 1;
8979 }
8980 }
8981 }
8982
8983
8984 /* Allocate global sym .plt and .got entries, and space for global
8985 sym dynamic relocs. */
8986 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
8987 info);
8988
8989 /* Allocate global ifunc sym .plt and .got entries, and space for global
8990 ifunc sym dynamic relocs. */
8991 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
8992 info);
8993
8994 /* Allocate .plt and .got entries, and space for local symbols. */
8995 htab_traverse (htab->loc_hash_table,
8996 elfNN_aarch64_allocate_local_dynrelocs,
8997 info);
8998
8999 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
9000 htab_traverse (htab->loc_hash_table,
9001 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
9002 info);
9003
9004 /* For every jump slot reserved in the sgotplt, reloc_count is
9005 incremented. However, when we reserve space for TLS descriptors,
9006 it's not incremented, so in order to compute the space reserved
9007 for them, it suffices to multiply the reloc count by the jump
9008 slot size. */
9009
9010 if (htab->root.srelplt)
9011 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
9012
9013 if (htab->tlsdesc_plt)
9014 {
9015 if (htab->root.splt->size == 0)
9016 htab->root.splt->size += htab->plt_header_size;
9017
9018 /* If we're not using lazy TLS relocations, don't generate the
9019 GOT and PLT entry required. */
9020 if (!(info->flags & DF_BIND_NOW))
9021 {
9022 htab->tlsdesc_plt = htab->root.splt->size;
9023 htab->root.splt->size += htab->tlsdesc_plt_entry_size;
9024
9025 htab->dt_tlsdesc_got = htab->root.sgot->size;
9026 htab->root.sgot->size += GOT_ENTRY_SIZE;
9027 }
9028 }
9029
9030 /* Init mapping symbols information to use later to distingush between
9031 code and data while scanning for errata. */
9032 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
9033 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9034 {
9035 if (!is_aarch64_elf (ibfd))
9036 continue;
9037 bfd_elfNN_aarch64_init_maps (ibfd);
9038 }
9039
9040 /* We now have determined the sizes of the various dynamic sections.
9041 Allocate memory for them. */
9042 relocs = FALSE;
9043 for (s = dynobj->sections; s != NULL; s = s->next)
9044 {
9045 if ((s->flags & SEC_LINKER_CREATED) == 0)
9046 continue;
9047
9048 if (s == htab->root.splt
9049 || s == htab->root.sgot
9050 || s == htab->root.sgotplt
9051 || s == htab->root.iplt
9052 || s == htab->root.igotplt
9053 || s == htab->root.sdynbss
9054 || s == htab->root.sdynrelro)
9055 {
9056 /* Strip this section if we don't need it; see the
9057 comment below. */
9058 }
9059 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
9060 {
9061 if (s->size != 0 && s != htab->root.srelplt)
9062 relocs = TRUE;
9063
9064 /* We use the reloc_count field as a counter if we need
9065 to copy relocs into the output file. */
9066 if (s != htab->root.srelplt)
9067 s->reloc_count = 0;
9068 }
9069 else
9070 {
9071 /* It's not one of our sections, so don't allocate space. */
9072 continue;
9073 }
9074
9075 if (s->size == 0)
9076 {
9077 /* If we don't need this section, strip it from the
9078 output file. This is mostly to handle .rela.bss and
9079 .rela.plt. We must create both sections in
9080 create_dynamic_sections, because they must be created
9081 before the linker maps input sections to output
9082 sections. The linker does that before
9083 adjust_dynamic_symbol is called, and it is that
9084 function which decides whether anything needs to go
9085 into these sections. */
9086 s->flags |= SEC_EXCLUDE;
9087 continue;
9088 }
9089
9090 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9091 continue;
9092
9093 /* Allocate memory for the section contents. We use bfd_zalloc
9094 here in case unused entries are not reclaimed before the
9095 section's contents are written out. This should not happen,
9096 but this way if it does, we get a R_AARCH64_NONE reloc instead
9097 of garbage. */
9098 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
9099 if (s->contents == NULL)
9100 return FALSE;
9101 }
9102
9103 if (htab->root.dynamic_sections_created)
9104 {
9105 /* Add some entries to the .dynamic section. We fill in the
9106 values later, in elfNN_aarch64_finish_dynamic_sections, but we
9107 must add the entries now so that we get the correct size for
9108 the .dynamic section. The DT_DEBUG entry is filled in by the
9109 dynamic linker and used by the debugger. */
9110 #define add_dynamic_entry(TAG, VAL) \
9111 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9112
9113 if (bfd_link_executable (info))
9114 {
9115 if (!add_dynamic_entry (DT_DEBUG, 0))
9116 return FALSE;
9117 }
9118
9119 if (htab->root.splt->size != 0)
9120 {
9121 if (!add_dynamic_entry (DT_PLTGOT, 0)
9122 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9123 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9124 || !add_dynamic_entry (DT_JMPREL, 0))
9125 return FALSE;
9126
9127 if (htab->tlsdesc_plt
9128 && !(info->flags & DF_BIND_NOW)
9129 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
9130 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
9131 return FALSE;
9132
9133 if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI_PAC)
9134 && (!add_dynamic_entry (DT_AARCH64_BTI_PLT, 0)
9135 || !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0)))
9136 return FALSE;
9137
9138 else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI)
9139 && !add_dynamic_entry (DT_AARCH64_BTI_PLT, 0))
9140 return FALSE;
9141
9142 else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_PAC)
9143 && !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0))
9144 return FALSE;
9145 }
9146
9147 if (relocs)
9148 {
9149 if (!add_dynamic_entry (DT_RELA, 0)
9150 || !add_dynamic_entry (DT_RELASZ, 0)
9151 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
9152 return FALSE;
9153
9154 /* If any dynamic relocs apply to a read-only section,
9155 then we need a DT_TEXTREL entry. */
9156 if ((info->flags & DF_TEXTREL) == 0)
9157 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
9158
9159 if ((info->flags & DF_TEXTREL) != 0)
9160 {
9161 if (!add_dynamic_entry (DT_TEXTREL, 0))
9162 return FALSE;
9163 }
9164 }
9165 }
9166 #undef add_dynamic_entry
9167
9168 return TRUE;
9169 }
9170
9171 static inline void
9172 elf_aarch64_update_plt_entry (bfd *output_bfd,
9173 bfd_reloc_code_real_type r_type,
9174 bfd_byte *plt_entry, bfd_vma value)
9175 {
9176 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
9177
9178 /* FIXME: We should check the return value from this function call. */
9179 (void) _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
9180 }
9181
9182 static void
9183 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
9184 struct elf_aarch64_link_hash_table
9185 *htab, bfd *output_bfd,
9186 struct bfd_link_info *info)
9187 {
9188 bfd_byte *plt_entry;
9189 bfd_vma plt_index;
9190 bfd_vma got_offset;
9191 bfd_vma gotplt_entry_address;
9192 bfd_vma plt_entry_address;
9193 Elf_Internal_Rela rela;
9194 bfd_byte *loc;
9195 asection *plt, *gotplt, *relplt;
9196
9197 /* When building a static executable, use .iplt, .igot.plt and
9198 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9199 if (htab->root.splt != NULL)
9200 {
9201 plt = htab->root.splt;
9202 gotplt = htab->root.sgotplt;
9203 relplt = htab->root.srelplt;
9204 }
9205 else
9206 {
9207 plt = htab->root.iplt;
9208 gotplt = htab->root.igotplt;
9209 relplt = htab->root.irelplt;
9210 }
9211
9212 /* Get the index in the procedure linkage table which
9213 corresponds to this symbol. This is the index of this symbol
9214 in all the symbols for which we are making plt entries. The
9215 first entry in the procedure linkage table is reserved.
9216
9217 Get the offset into the .got table of the entry that
9218 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
9219 bytes. The first three are reserved for the dynamic linker.
9220
9221 For static executables, we don't reserve anything. */
9222
9223 if (plt == htab->root.splt)
9224 {
9225 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
9226 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
9227 }
9228 else
9229 {
9230 plt_index = h->plt.offset / htab->plt_entry_size;
9231 got_offset = plt_index * GOT_ENTRY_SIZE;
9232 }
9233
9234 plt_entry = plt->contents + h->plt.offset;
9235 plt_entry_address = plt->output_section->vma
9236 + plt->output_offset + h->plt.offset;
9237 gotplt_entry_address = gotplt->output_section->vma +
9238 gotplt->output_offset + got_offset;
9239
9240 /* Copy in the boiler-plate for the PLTn entry. */
9241 memcpy (plt_entry, htab->plt_entry, htab->plt_entry_size);
9242
9243 /* First instruction in BTI enabled PLT stub is a BTI
9244 instruction so skip it. */
9245 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI
9246 && elf_elfheader (output_bfd)->e_type == ET_EXEC)
9247 plt_entry = plt_entry + 4;
9248
9249 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9250 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9251 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9252 plt_entry,
9253 PG (gotplt_entry_address) -
9254 PG (plt_entry_address));
9255
9256 /* Fill in the lo12 bits for the load from the pltgot. */
9257 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9258 plt_entry + 4,
9259 PG_OFFSET (gotplt_entry_address));
9260
9261 /* Fill in the lo12 bits for the add from the pltgot entry. */
9262 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9263 plt_entry + 8,
9264 PG_OFFSET (gotplt_entry_address));
9265
9266 /* All the GOTPLT Entries are essentially initialized to PLT0. */
9267 bfd_put_NN (output_bfd,
9268 plt->output_section->vma + plt->output_offset,
9269 gotplt->contents + got_offset);
9270
9271 rela.r_offset = gotplt_entry_address;
9272
9273 if (h->dynindx == -1
9274 || ((bfd_link_executable (info)
9275 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9276 && h->def_regular
9277 && h->type == STT_GNU_IFUNC))
9278 {
9279 /* If an STT_GNU_IFUNC symbol is locally defined, generate
9280 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
9281 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
9282 rela.r_addend = (h->root.u.def.value
9283 + h->root.u.def.section->output_section->vma
9284 + h->root.u.def.section->output_offset);
9285 }
9286 else
9287 {
9288 /* Fill in the entry in the .rela.plt section. */
9289 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
9290 rela.r_addend = 0;
9291 }
9292
9293 /* Compute the relocation entry to used based on PLT index and do
9294 not adjust reloc_count. The reloc_count has already been adjusted
9295 to account for this entry. */
9296 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
9297 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9298 }
9299
9300 /* Size sections even though they're not dynamic. We use it to setup
9301 _TLS_MODULE_BASE_, if needed. */
9302
9303 static bfd_boolean
9304 elfNN_aarch64_always_size_sections (bfd *output_bfd,
9305 struct bfd_link_info *info)
9306 {
9307 asection *tls_sec;
9308
9309 if (bfd_link_relocatable (info))
9310 return TRUE;
9311
9312 tls_sec = elf_hash_table (info)->tls_sec;
9313
9314 if (tls_sec)
9315 {
9316 struct elf_link_hash_entry *tlsbase;
9317
9318 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
9319 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
9320
9321 if (tlsbase)
9322 {
9323 struct bfd_link_hash_entry *h = NULL;
9324 const struct elf_backend_data *bed =
9325 get_elf_backend_data (output_bfd);
9326
9327 if (!(_bfd_generic_link_add_one_symbol
9328 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
9329 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
9330 return FALSE;
9331
9332 tlsbase->type = STT_TLS;
9333 tlsbase = (struct elf_link_hash_entry *) h;
9334 tlsbase->def_regular = 1;
9335 tlsbase->other = STV_HIDDEN;
9336 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
9337 }
9338 }
9339
9340 return TRUE;
9341 }
9342
9343 /* Finish up dynamic symbol handling. We set the contents of various
9344 dynamic sections here. */
9345
9346 static bfd_boolean
9347 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
9348 struct bfd_link_info *info,
9349 struct elf_link_hash_entry *h,
9350 Elf_Internal_Sym *sym)
9351 {
9352 struct elf_aarch64_link_hash_table *htab;
9353 htab = elf_aarch64_hash_table (info);
9354
9355 if (h->plt.offset != (bfd_vma) - 1)
9356 {
9357 asection *plt, *gotplt, *relplt;
9358
9359 /* This symbol has an entry in the procedure linkage table. Set
9360 it up. */
9361
9362 /* When building a static executable, use .iplt, .igot.plt and
9363 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9364 if (htab->root.splt != NULL)
9365 {
9366 plt = htab->root.splt;
9367 gotplt = htab->root.sgotplt;
9368 relplt = htab->root.srelplt;
9369 }
9370 else
9371 {
9372 plt = htab->root.iplt;
9373 gotplt = htab->root.igotplt;
9374 relplt = htab->root.irelplt;
9375 }
9376
9377 /* This symbol has an entry in the procedure linkage table. Set
9378 it up. */
9379 if ((h->dynindx == -1
9380 && !((h->forced_local || bfd_link_executable (info))
9381 && h->def_regular
9382 && h->type == STT_GNU_IFUNC))
9383 || plt == NULL
9384 || gotplt == NULL
9385 || relplt == NULL)
9386 return FALSE;
9387
9388 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
9389 if (!h->def_regular)
9390 {
9391 /* Mark the symbol as undefined, rather than as defined in
9392 the .plt section. */
9393 sym->st_shndx = SHN_UNDEF;
9394 /* If the symbol is weak we need to clear the value.
9395 Otherwise, the PLT entry would provide a definition for
9396 the symbol even if the symbol wasn't defined anywhere,
9397 and so the symbol would never be NULL. Leave the value if
9398 there were any relocations where pointer equality matters
9399 (this is a clue for the dynamic linker, to make function
9400 pointer comparisons work between an application and shared
9401 library). */
9402 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
9403 sym->st_value = 0;
9404 }
9405 }
9406
9407 if (h->got.offset != (bfd_vma) - 1
9408 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL
9409 /* Undefined weak symbol in static PIE resolves to 0 without
9410 any dynamic relocations. */
9411 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9412 {
9413 Elf_Internal_Rela rela;
9414 bfd_byte *loc;
9415
9416 /* This symbol has an entry in the global offset table. Set it
9417 up. */
9418 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
9419 abort ();
9420
9421 rela.r_offset = (htab->root.sgot->output_section->vma
9422 + htab->root.sgot->output_offset
9423 + (h->got.offset & ~(bfd_vma) 1));
9424
9425 if (h->def_regular
9426 && h->type == STT_GNU_IFUNC)
9427 {
9428 if (bfd_link_pic (info))
9429 {
9430 /* Generate R_AARCH64_GLOB_DAT. */
9431 goto do_glob_dat;
9432 }
9433 else
9434 {
9435 asection *plt;
9436
9437 if (!h->pointer_equality_needed)
9438 abort ();
9439
9440 /* For non-shared object, we can't use .got.plt, which
9441 contains the real function address if we need pointer
9442 equality. We load the GOT entry with the PLT entry. */
9443 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
9444 bfd_put_NN (output_bfd, (plt->output_section->vma
9445 + plt->output_offset
9446 + h->plt.offset),
9447 htab->root.sgot->contents
9448 + (h->got.offset & ~(bfd_vma) 1));
9449 return TRUE;
9450 }
9451 }
9452 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
9453 {
9454 if (!(h->def_regular || ELF_COMMON_DEF_P (h)))
9455 return FALSE;
9456
9457 BFD_ASSERT ((h->got.offset & 1) != 0);
9458 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
9459 rela.r_addend = (h->root.u.def.value
9460 + h->root.u.def.section->output_section->vma
9461 + h->root.u.def.section->output_offset);
9462 }
9463 else
9464 {
9465 do_glob_dat:
9466 BFD_ASSERT ((h->got.offset & 1) == 0);
9467 bfd_put_NN (output_bfd, (bfd_vma) 0,
9468 htab->root.sgot->contents + h->got.offset);
9469 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
9470 rela.r_addend = 0;
9471 }
9472
9473 loc = htab->root.srelgot->contents;
9474 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
9475 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9476 }
9477
9478 if (h->needs_copy)
9479 {
9480 Elf_Internal_Rela rela;
9481 asection *s;
9482 bfd_byte *loc;
9483
9484 /* This symbol needs a copy reloc. Set it up. */
9485 if (h->dynindx == -1
9486 || (h->root.type != bfd_link_hash_defined
9487 && h->root.type != bfd_link_hash_defweak)
9488 || htab->root.srelbss == NULL)
9489 abort ();
9490
9491 rela.r_offset = (h->root.u.def.value
9492 + h->root.u.def.section->output_section->vma
9493 + h->root.u.def.section->output_offset);
9494 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
9495 rela.r_addend = 0;
9496 if (h->root.u.def.section == htab->root.sdynrelro)
9497 s = htab->root.sreldynrelro;
9498 else
9499 s = htab->root.srelbss;
9500 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9501 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9502 }
9503
9504 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
9505 be NULL for local symbols. */
9506 if (sym != NULL
9507 && (h == elf_hash_table (info)->hdynamic
9508 || h == elf_hash_table (info)->hgot))
9509 sym->st_shndx = SHN_ABS;
9510
9511 return TRUE;
9512 }
9513
9514 /* Finish up local dynamic symbol handling. We set the contents of
9515 various dynamic sections here. */
9516
9517 static bfd_boolean
9518 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
9519 {
9520 struct elf_link_hash_entry *h
9521 = (struct elf_link_hash_entry *) *slot;
9522 struct bfd_link_info *info
9523 = (struct bfd_link_info *) inf;
9524
9525 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
9526 info, h, NULL);
9527 }
9528
9529 static void
9530 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
9531 struct elf_aarch64_link_hash_table
9532 *htab)
9533 {
9534 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
9535 small and large plts and at the minute just generates
9536 the small PLT. */
9537
9538 /* PLT0 of the small PLT looks like this in ELF64 -
9539 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
9540 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
9541 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
9542 // symbol resolver
9543 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
9544 // GOTPLT entry for this.
9545 br x17
9546 PLT0 will be slightly different in ELF32 due to different got entry
9547 size. */
9548 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
9549 bfd_vma plt_base;
9550
9551
9552 memcpy (htab->root.splt->contents, htab->plt0_entry,
9553 htab->plt_header_size);
9554 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
9555 htab->plt_header_size;
9556
9557 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
9558 + htab->root.sgotplt->output_offset
9559 + GOT_ENTRY_SIZE * 2);
9560
9561 plt_base = htab->root.splt->output_section->vma +
9562 htab->root.splt->output_offset;
9563
9564 /* First instruction in BTI enabled PLT stub is a BTI
9565 instruction so skip it. */
9566 bfd_byte *plt0_entry = htab->root.splt->contents;
9567 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI)
9568 plt0_entry = plt0_entry + 4;
9569
9570 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9571 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9572 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9573 plt0_entry + 4,
9574 PG (plt_got_2nd_ent) - PG (plt_base + 4));
9575
9576 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9577 plt0_entry + 8,
9578 PG_OFFSET (plt_got_2nd_ent));
9579
9580 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9581 plt0_entry + 12,
9582 PG_OFFSET (plt_got_2nd_ent));
9583 }
9584
9585 static bfd_boolean
9586 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
9587 struct bfd_link_info *info)
9588 {
9589 struct elf_aarch64_link_hash_table *htab;
9590 bfd *dynobj;
9591 asection *sdyn;
9592
9593 htab = elf_aarch64_hash_table (info);
9594 dynobj = htab->root.dynobj;
9595 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9596
9597 if (htab->root.dynamic_sections_created)
9598 {
9599 ElfNN_External_Dyn *dyncon, *dynconend;
9600
9601 if (sdyn == NULL || htab->root.sgot == NULL)
9602 abort ();
9603
9604 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9605 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
9606 for (; dyncon < dynconend; dyncon++)
9607 {
9608 Elf_Internal_Dyn dyn;
9609 asection *s;
9610
9611 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
9612
9613 switch (dyn.d_tag)
9614 {
9615 default:
9616 continue;
9617
9618 case DT_PLTGOT:
9619 s = htab->root.sgotplt;
9620 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9621 break;
9622
9623 case DT_JMPREL:
9624 s = htab->root.srelplt;
9625 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9626 break;
9627
9628 case DT_PLTRELSZ:
9629 s = htab->root.srelplt;
9630 dyn.d_un.d_val = s->size;
9631 break;
9632
9633 case DT_TLSDESC_PLT:
9634 s = htab->root.splt;
9635 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9636 + htab->tlsdesc_plt;
9637 break;
9638
9639 case DT_TLSDESC_GOT:
9640 s = htab->root.sgot;
9641 BFD_ASSERT (htab->dt_tlsdesc_got != (bfd_vma)-1);
9642 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9643 + htab->dt_tlsdesc_got;
9644 break;
9645 }
9646
9647 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
9648 }
9649
9650 }
9651
9652 /* Fill in the special first entry in the procedure linkage table. */
9653 if (htab->root.splt && htab->root.splt->size > 0)
9654 {
9655 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
9656
9657 elf_section_data (htab->root.splt->output_section)->
9658 this_hdr.sh_entsize = htab->plt_entry_size;
9659
9660
9661 if (htab->tlsdesc_plt && !(info->flags & DF_BIND_NOW))
9662 {
9663 BFD_ASSERT (htab->dt_tlsdesc_got != (bfd_vma)-1);
9664 bfd_put_NN (output_bfd, (bfd_vma) 0,
9665 htab->root.sgot->contents + htab->dt_tlsdesc_got);
9666
9667 const bfd_byte *entry = elfNN_aarch64_tlsdesc_small_plt_entry;
9668 htab->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
9669
9670 aarch64_plt_type type = elf_aarch64_tdata (output_bfd)->plt_type;
9671 if (type == PLT_BTI || type == PLT_BTI_PAC)
9672 {
9673 entry = elfNN_aarch64_tlsdesc_small_plt_bti_entry;
9674 }
9675
9676 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
9677 entry, htab->tlsdesc_plt_entry_size);
9678
9679 {
9680 bfd_vma adrp1_addr =
9681 htab->root.splt->output_section->vma
9682 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
9683
9684 bfd_vma adrp2_addr = adrp1_addr + 4;
9685
9686 bfd_vma got_addr =
9687 htab->root.sgot->output_section->vma
9688 + htab->root.sgot->output_offset;
9689
9690 bfd_vma pltgot_addr =
9691 htab->root.sgotplt->output_section->vma
9692 + htab->root.sgotplt->output_offset;
9693
9694 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
9695
9696 bfd_byte *plt_entry =
9697 htab->root.splt->contents + htab->tlsdesc_plt;
9698
9699 /* First instruction in BTI enabled PLT stub is a BTI
9700 instruction so skip it. */
9701 if (type & PLT_BTI)
9702 {
9703 plt_entry = plt_entry + 4;
9704 adrp1_addr = adrp1_addr + 4;
9705 adrp2_addr = adrp2_addr + 4;
9706 }
9707
9708 /* adrp x2, DT_TLSDESC_GOT */
9709 elf_aarch64_update_plt_entry (output_bfd,
9710 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9711 plt_entry + 4,
9712 (PG (dt_tlsdesc_got)
9713 - PG (adrp1_addr)));
9714
9715 /* adrp x3, 0 */
9716 elf_aarch64_update_plt_entry (output_bfd,
9717 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9718 plt_entry + 8,
9719 (PG (pltgot_addr)
9720 - PG (adrp2_addr)));
9721
9722 /* ldr x2, [x2, #0] */
9723 elf_aarch64_update_plt_entry (output_bfd,
9724 BFD_RELOC_AARCH64_LDSTNN_LO12,
9725 plt_entry + 12,
9726 PG_OFFSET (dt_tlsdesc_got));
9727
9728 /* add x3, x3, 0 */
9729 elf_aarch64_update_plt_entry (output_bfd,
9730 BFD_RELOC_AARCH64_ADD_LO12,
9731 plt_entry + 16,
9732 PG_OFFSET (pltgot_addr));
9733 }
9734 }
9735 }
9736
9737 if (htab->root.sgotplt)
9738 {
9739 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9740 {
9741 _bfd_error_handler
9742 (_("discarded output section: `%pA'"), htab->root.sgotplt);
9743 return FALSE;
9744 }
9745
9746 /* Fill in the first three entries in the global offset table. */
9747 if (htab->root.sgotplt->size > 0)
9748 {
9749 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9750
9751 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
9752 bfd_put_NN (output_bfd,
9753 (bfd_vma) 0,
9754 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
9755 bfd_put_NN (output_bfd,
9756 (bfd_vma) 0,
9757 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9758 }
9759
9760 if (htab->root.sgot)
9761 {
9762 if (htab->root.sgot->size > 0)
9763 {
9764 bfd_vma addr =
9765 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9766 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9767 }
9768 }
9769
9770 elf_section_data (htab->root.sgotplt->output_section)->
9771 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9772 }
9773
9774 if (htab->root.sgot && htab->root.sgot->size > 0)
9775 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9776 = GOT_ENTRY_SIZE;
9777
9778 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9779 htab_traverse (htab->loc_hash_table,
9780 elfNN_aarch64_finish_local_dynamic_symbol,
9781 info);
9782
9783 return TRUE;
9784 }
9785
9786 /* Check if BTI enabled PLTs are needed. Returns the type needed. */
9787 static aarch64_plt_type
9788 get_plt_type (bfd *abfd)
9789 {
9790 aarch64_plt_type ret = PLT_NORMAL;
9791 bfd_byte *contents, *extdyn, *extdynend;
9792 asection *sec = bfd_get_section_by_name (abfd, ".dynamic");
9793 if (!sec || !bfd_malloc_and_get_section (abfd, sec, &contents))
9794 return ret;
9795 extdyn = contents;
9796 extdynend = contents + sec->size;
9797 for (; extdyn < extdynend; extdyn += sizeof (ElfNN_External_Dyn))
9798 {
9799 Elf_Internal_Dyn dyn;
9800 bfd_elfNN_swap_dyn_in (abfd, extdyn, &dyn);
9801
9802 /* Let's check the processor specific dynamic array tags. */
9803 bfd_vma tag = dyn.d_tag;
9804 if (tag < DT_LOPROC || tag > DT_HIPROC)
9805 continue;
9806
9807 switch (tag)
9808 {
9809 case DT_AARCH64_BTI_PLT:
9810 ret |= PLT_BTI;
9811 break;
9812
9813 case DT_AARCH64_PAC_PLT:
9814 ret |= PLT_PAC;
9815 break;
9816
9817 default: break;
9818 }
9819 }
9820 free (contents);
9821 return ret;
9822 }
9823
9824 static long
9825 elfNN_aarch64_get_synthetic_symtab (bfd *abfd,
9826 long symcount,
9827 asymbol **syms,
9828 long dynsymcount,
9829 asymbol **dynsyms,
9830 asymbol **ret)
9831 {
9832 elf_aarch64_tdata (abfd)->plt_type = get_plt_type (abfd);
9833 return _bfd_elf_get_synthetic_symtab (abfd, symcount, syms,
9834 dynsymcount, dynsyms, ret);
9835 }
9836
9837 /* Return address for Ith PLT stub in section PLT, for relocation REL
9838 or (bfd_vma) -1 if it should not be included. */
9839
9840 static bfd_vma
9841 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9842 const arelent *rel ATTRIBUTE_UNUSED)
9843 {
9844 size_t plt0_size = PLT_ENTRY_SIZE;
9845 size_t pltn_size = PLT_SMALL_ENTRY_SIZE;
9846
9847 if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI_PAC)
9848 {
9849 if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9850 pltn_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
9851 else
9852 pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9853 }
9854 else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI)
9855 {
9856 if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9857 pltn_size = PLT_BTI_SMALL_ENTRY_SIZE;
9858 }
9859 else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_PAC)
9860 {
9861 pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9862 }
9863
9864 return plt->vma + plt0_size + i * pltn_size;
9865 }
9866
9867 /* Returns TRUE if NAME is an AArch64 mapping symbol.
9868 The ARM ELF standard defines $x (for A64 code) and $d (for data).
9869 It also allows a period initiated suffix to be added to the symbol, ie:
9870 "$[adtx]\.[:sym_char]+". */
9871
9872 static bfd_boolean
9873 is_aarch64_mapping_symbol (const char * name)
9874 {
9875 return name != NULL /* Paranoia. */
9876 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
9877 the mapping symbols could have acquired a prefix.
9878 We do not support this here, since such symbols no
9879 longer conform to the ARM ELF ABI. */
9880 && (name[1] == 'd' || name[1] == 'x')
9881 && (name[2] == 0 || name[2] == '.');
9882 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
9883 any characters that follow the period are legal characters for the body
9884 of a symbol's name. For now we just assume that this is the case. */
9885 }
9886
9887 /* Make sure that mapping symbols in object files are not removed via the
9888 "strip --strip-unneeded" tool. These symbols might needed in order to
9889 correctly generate linked files. Once an object file has been linked,
9890 it should be safe to remove them. */
9891
9892 static void
9893 elfNN_aarch64_backend_symbol_processing (bfd *abfd, asymbol *sym)
9894 {
9895 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
9896 && sym->section != bfd_abs_section_ptr
9897 && is_aarch64_mapping_symbol (sym->name))
9898 sym->flags |= BSF_KEEP;
9899 }
9900
9901 /* Implement elf_backend_setup_gnu_properties for AArch64. It serves as a
9902 wrapper function for _bfd_aarch64_elf_link_setup_gnu_properties to account
9903 for the effect of GNU properties of the output_bfd. */
9904 static bfd *
9905 elfNN_aarch64_link_setup_gnu_properties (struct bfd_link_info *info)
9906 {
9907 uint32_t prop = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
9908 bfd *pbfd = _bfd_aarch64_elf_link_setup_gnu_properties (info, &prop);
9909 elf_aarch64_tdata (info->output_bfd)->gnu_and_prop = prop;
9910 elf_aarch64_tdata (info->output_bfd)->plt_type
9911 |= (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) ? PLT_BTI : 0;
9912 setup_plt_values (info, elf_aarch64_tdata (info->output_bfd)->plt_type);
9913 return pbfd;
9914 }
9915
9916 /* Implement elf_backend_merge_gnu_properties for AArch64. It serves as a
9917 wrapper function for _bfd_aarch64_elf_merge_gnu_properties to account
9918 for the effect of GNU properties of the output_bfd. */
9919 static bfd_boolean
9920 elfNN_aarch64_merge_gnu_properties (struct bfd_link_info *info,
9921 bfd *abfd, bfd *bbfd,
9922 elf_property *aprop,
9923 elf_property *bprop)
9924 {
9925 uint32_t prop
9926 = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
9927
9928 /* If output has been marked with BTI using command line argument, give out
9929 warning if necessary. */
9930 /* Properties are merged per type, hence only check for warnings when merging
9931 GNU_PROPERTY_AARCH64_FEATURE_1_AND. */
9932 if (((aprop && aprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND)
9933 || (bprop && bprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND))
9934 && (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
9935 && (!elf_aarch64_tdata (info->output_bfd)->no_bti_warn))
9936 {
9937 if ((aprop && !(aprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
9938 || !aprop)
9939 {
9940 _bfd_error_handler (_("%pB: warning: BTI turned on by --force-bti when "
9941 "all inputs do not have BTI in NOTE section."),
9942 abfd);
9943 }
9944 if ((bprop && !(bprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
9945 || !bprop)
9946 {
9947 _bfd_error_handler (_("%pB: warning: BTI turned on by --force-bti when "
9948 "all inputs do not have BTI in NOTE section."),
9949 bbfd);
9950 }
9951 }
9952
9953 return _bfd_aarch64_elf_merge_gnu_properties (info, abfd, aprop,
9954 bprop, prop);
9955 }
9956
9957 /* We use this so we can override certain functions
9958 (though currently we don't). */
9959
9960 const struct elf_size_info elfNN_aarch64_size_info =
9961 {
9962 sizeof (ElfNN_External_Ehdr),
9963 sizeof (ElfNN_External_Phdr),
9964 sizeof (ElfNN_External_Shdr),
9965 sizeof (ElfNN_External_Rel),
9966 sizeof (ElfNN_External_Rela),
9967 sizeof (ElfNN_External_Sym),
9968 sizeof (ElfNN_External_Dyn),
9969 sizeof (Elf_External_Note),
9970 4, /* Hash table entry size. */
9971 1, /* Internal relocs per external relocs. */
9972 ARCH_SIZE, /* Arch size. */
9973 LOG_FILE_ALIGN, /* Log_file_align. */
9974 ELFCLASSNN, EV_CURRENT,
9975 bfd_elfNN_write_out_phdrs,
9976 bfd_elfNN_write_shdrs_and_ehdr,
9977 bfd_elfNN_checksum_contents,
9978 bfd_elfNN_write_relocs,
9979 bfd_elfNN_swap_symbol_in,
9980 bfd_elfNN_swap_symbol_out,
9981 bfd_elfNN_slurp_reloc_table,
9982 bfd_elfNN_slurp_symbol_table,
9983 bfd_elfNN_swap_dyn_in,
9984 bfd_elfNN_swap_dyn_out,
9985 bfd_elfNN_swap_reloc_in,
9986 bfd_elfNN_swap_reloc_out,
9987 bfd_elfNN_swap_reloca_in,
9988 bfd_elfNN_swap_reloca_out
9989 };
9990
9991 #define ELF_ARCH bfd_arch_aarch64
9992 #define ELF_MACHINE_CODE EM_AARCH64
9993 #define ELF_MAXPAGESIZE 0x10000
9994 #define ELF_MINPAGESIZE 0x1000
9995 #define ELF_COMMONPAGESIZE 0x1000
9996
9997 #define bfd_elfNN_close_and_cleanup \
9998 elfNN_aarch64_close_and_cleanup
9999
10000 #define bfd_elfNN_bfd_free_cached_info \
10001 elfNN_aarch64_bfd_free_cached_info
10002
10003 #define bfd_elfNN_bfd_is_target_special_symbol \
10004 elfNN_aarch64_is_target_special_symbol
10005
10006 #define bfd_elfNN_bfd_link_hash_table_create \
10007 elfNN_aarch64_link_hash_table_create
10008
10009 #define bfd_elfNN_bfd_merge_private_bfd_data \
10010 elfNN_aarch64_merge_private_bfd_data
10011
10012 #define bfd_elfNN_bfd_print_private_bfd_data \
10013 elfNN_aarch64_print_private_bfd_data
10014
10015 #define bfd_elfNN_bfd_reloc_type_lookup \
10016 elfNN_aarch64_reloc_type_lookup
10017
10018 #define bfd_elfNN_bfd_reloc_name_lookup \
10019 elfNN_aarch64_reloc_name_lookup
10020
10021 #define bfd_elfNN_bfd_set_private_flags \
10022 elfNN_aarch64_set_private_flags
10023
10024 #define bfd_elfNN_find_inliner_info \
10025 elfNN_aarch64_find_inliner_info
10026
10027 #define bfd_elfNN_find_nearest_line \
10028 elfNN_aarch64_find_nearest_line
10029
10030 #define bfd_elfNN_get_synthetic_symtab \
10031 elfNN_aarch64_get_synthetic_symtab
10032
10033 #define bfd_elfNN_mkobject \
10034 elfNN_aarch64_mkobject
10035
10036 #define bfd_elfNN_new_section_hook \
10037 elfNN_aarch64_new_section_hook
10038
10039 #define elf_backend_adjust_dynamic_symbol \
10040 elfNN_aarch64_adjust_dynamic_symbol
10041
10042 #define elf_backend_always_size_sections \
10043 elfNN_aarch64_always_size_sections
10044
10045 #define elf_backend_check_relocs \
10046 elfNN_aarch64_check_relocs
10047
10048 #define elf_backend_copy_indirect_symbol \
10049 elfNN_aarch64_copy_indirect_symbol
10050
10051 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
10052 to them in our hash. */
10053 #define elf_backend_create_dynamic_sections \
10054 elfNN_aarch64_create_dynamic_sections
10055
10056 #define elf_backend_init_index_section \
10057 _bfd_elf_init_2_index_sections
10058
10059 #define elf_backend_finish_dynamic_sections \
10060 elfNN_aarch64_finish_dynamic_sections
10061
10062 #define elf_backend_finish_dynamic_symbol \
10063 elfNN_aarch64_finish_dynamic_symbol
10064
10065 #define elf_backend_object_p \
10066 elfNN_aarch64_object_p
10067
10068 #define elf_backend_output_arch_local_syms \
10069 elfNN_aarch64_output_arch_local_syms
10070
10071 #define elf_backend_plt_sym_val \
10072 elfNN_aarch64_plt_sym_val
10073
10074 #define elf_backend_post_process_headers \
10075 elfNN_aarch64_post_process_headers
10076
10077 #define elf_backend_relocate_section \
10078 elfNN_aarch64_relocate_section
10079
10080 #define elf_backend_reloc_type_class \
10081 elfNN_aarch64_reloc_type_class
10082
10083 #define elf_backend_section_from_shdr \
10084 elfNN_aarch64_section_from_shdr
10085
10086 #define elf_backend_size_dynamic_sections \
10087 elfNN_aarch64_size_dynamic_sections
10088
10089 #define elf_backend_size_info \
10090 elfNN_aarch64_size_info
10091
10092 #define elf_backend_write_section \
10093 elfNN_aarch64_write_section
10094
10095 #define elf_backend_symbol_processing \
10096 elfNN_aarch64_backend_symbol_processing
10097
10098 #define elf_backend_setup_gnu_properties \
10099 elfNN_aarch64_link_setup_gnu_properties
10100
10101 #define elf_backend_merge_gnu_properties \
10102 elfNN_aarch64_merge_gnu_properties
10103
10104 #define elf_backend_can_refcount 1
10105 #define elf_backend_can_gc_sections 1
10106 #define elf_backend_plt_readonly 1
10107 #define elf_backend_want_got_plt 1
10108 #define elf_backend_want_plt_sym 0
10109 #define elf_backend_want_dynrelro 1
10110 #define elf_backend_may_use_rel_p 0
10111 #define elf_backend_may_use_rela_p 1
10112 #define elf_backend_default_use_rela_p 1
10113 #define elf_backend_rela_normal 1
10114 #define elf_backend_dtrel_excludes_plt 1
10115 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
10116 #define elf_backend_default_execstack 0
10117 #define elf_backend_extern_protected_data 1
10118 #define elf_backend_hash_symbol elf_aarch64_hash_symbol
10119
10120 #undef elf_backend_obj_attrs_section
10121 #define elf_backend_obj_attrs_section ".ARM.attributes"
10122
10123 #include "elfNN-target.h"
10124
10125 /* CloudABI support. */
10126
10127 #undef TARGET_LITTLE_SYM
10128 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
10129 #undef TARGET_LITTLE_NAME
10130 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
10131 #undef TARGET_BIG_SYM
10132 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
10133 #undef TARGET_BIG_NAME
10134 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
10135
10136 #undef ELF_OSABI
10137 #define ELF_OSABI ELFOSABI_CLOUDABI
10138
10139 #undef elfNN_bed
10140 #define elfNN_bed elfNN_aarch64_cloudabi_bed
10141
10142 #include "elfNN-target.h"