]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elfnn-riscv.c
PR31692, objdump fails .debug_info size check
[thirdparty/binutils-gdb.git] / bfd / elfnn-riscv.c
1 /* RISC-V-specific support for NN-bit ELF.
2 Copyright (C) 2011-2019 Free Software Foundation, Inc.
3
4 Contributed by Andrew Waterman (andrew@sifive.com).
5 Based on TILE-Gx and MIPS targets.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING3. If not,
21 see <http://www.gnu.org/licenses/>. */
22
23 /* This file handles RISC-V ELF targets. */
24
25 #include "sysdep.h"
26 #include "bfd.h"
27 #include "libbfd.h"
28 #include "bfdlink.h"
29 #include "genlink.h"
30 #include "elf-bfd.h"
31 #include "elfxx-riscv.h"
32 #include "elf/riscv.h"
33 #include "opcode/riscv.h"
34
35 /* Internal relocations used exclusively by the relaxation pass. */
36 #define R_RISCV_DELETE (R_RISCV_max + 1)
37
38 #define ARCH_SIZE NN
39
40 #define MINUS_ONE ((bfd_vma)0 - 1)
41
42 #define RISCV_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3)
43
44 #define RISCV_ELF_WORD_BYTES (1 << RISCV_ELF_LOG_WORD_BYTES)
45
46 /* The name of the dynamic interpreter. This is put in the .interp
47 section. */
48
49 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1"
50 #define ELF32_DYNAMIC_INTERPRETER "/lib32/ld.so.1"
51
52 #define ELF_ARCH bfd_arch_riscv
53 #define ELF_TARGET_ID RISCV_ELF_DATA
54 #define ELF_MACHINE_CODE EM_RISCV
55 #define ELF_MAXPAGESIZE 0x1000
56 #define ELF_COMMONPAGESIZE 0x1000
57
58 /* RISC-V ELF linker hash entry. */
59
60 struct riscv_elf_link_hash_entry
61 {
62 struct elf_link_hash_entry elf;
63
64 /* Track dynamic relocs copied for this symbol. */
65 struct elf_dyn_relocs *dyn_relocs;
66
67 #define GOT_UNKNOWN 0
68 #define GOT_NORMAL 1
69 #define GOT_TLS_GD 2
70 #define GOT_TLS_IE 4
71 #define GOT_TLS_LE 8
72 char tls_type;
73 };
74
75 #define riscv_elf_hash_entry(ent) \
76 ((struct riscv_elf_link_hash_entry *)(ent))
77
78 struct _bfd_riscv_elf_obj_tdata
79 {
80 struct elf_obj_tdata root;
81
82 /* tls_type for each local got entry. */
83 char *local_got_tls_type;
84 };
85
86 #define _bfd_riscv_elf_tdata(abfd) \
87 ((struct _bfd_riscv_elf_obj_tdata *) (abfd)->tdata.any)
88
89 #define _bfd_riscv_elf_local_got_tls_type(abfd) \
90 (_bfd_riscv_elf_tdata (abfd)->local_got_tls_type)
91
92 #define _bfd_riscv_elf_tls_type(abfd, h, symndx) \
93 (*((h) != NULL ? &riscv_elf_hash_entry (h)->tls_type \
94 : &_bfd_riscv_elf_local_got_tls_type (abfd) [symndx]))
95
96 #define is_riscv_elf(bfd) \
97 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
98 && elf_tdata (bfd) != NULL \
99 && elf_object_id (bfd) == RISCV_ELF_DATA)
100
101 #include "elf/common.h"
102 #include "elf/internal.h"
103
104 struct riscv_elf_link_hash_table
105 {
106 struct elf_link_hash_table elf;
107
108 /* Short-cuts to get to dynamic linker sections. */
109 asection *sdyntdata;
110
111 /* Small local sym to section mapping cache. */
112 struct sym_cache sym_cache;
113
114 /* The max alignment of output sections. */
115 bfd_vma max_alignment;
116 };
117
118
119 /* Get the RISC-V ELF linker hash table from a link_info structure. */
120 #define riscv_elf_hash_table(p) \
121 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
122 == RISCV_ELF_DATA ? ((struct riscv_elf_link_hash_table *) ((p)->hash)) : NULL)
123
124 static bfd_boolean
125 riscv_info_to_howto_rela (bfd *abfd,
126 arelent *cache_ptr,
127 Elf_Internal_Rela *dst)
128 {
129 cache_ptr->howto = riscv_elf_rtype_to_howto (abfd, ELFNN_R_TYPE (dst->r_info));
130 return cache_ptr->howto != NULL;
131 }
132
133 static void
134 riscv_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
135 {
136 const struct elf_backend_data *bed;
137 bfd_byte *loc;
138
139 bed = get_elf_backend_data (abfd);
140 loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
141 bed->s->swap_reloca_out (abfd, rel, loc);
142 }
143
144 /* PLT/GOT stuff. */
145
146 #define PLT_HEADER_INSNS 8
147 #define PLT_ENTRY_INSNS 4
148 #define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4)
149 #define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4)
150
151 #define GOT_ENTRY_SIZE RISCV_ELF_WORD_BYTES
152
153 #define GOTPLT_HEADER_SIZE (2 * GOT_ENTRY_SIZE)
154
155 #define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset)
156
157 static bfd_vma
158 riscv_elf_got_plt_val (bfd_vma plt_index, struct bfd_link_info *info)
159 {
160 return sec_addr (riscv_elf_hash_table (info)->elf.sgotplt)
161 + GOTPLT_HEADER_SIZE + (plt_index * GOT_ENTRY_SIZE);
162 }
163
164 #if ARCH_SIZE == 32
165 # define MATCH_LREG MATCH_LW
166 #else
167 # define MATCH_LREG MATCH_LD
168 #endif
169
170 /* Generate a PLT header. */
171
172 static bfd_boolean
173 riscv_make_plt_header (bfd *output_bfd, bfd_vma gotplt_addr, bfd_vma addr,
174 uint32_t *entry)
175 {
176 bfd_vma gotplt_offset_high = RISCV_PCREL_HIGH_PART (gotplt_addr, addr);
177 bfd_vma gotplt_offset_low = RISCV_PCREL_LOW_PART (gotplt_addr, addr);
178
179 /* RVE has no t3 register, so this won't work, and is not supported. */
180 if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE)
181 {
182 _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"),
183 output_bfd);
184 return FALSE;
185 }
186
187 /* auipc t2, %hi(.got.plt)
188 sub t1, t1, t3 # shifted .got.plt offset + hdr size + 12
189 l[w|d] t3, %lo(.got.plt)(t2) # _dl_runtime_resolve
190 addi t1, t1, -(hdr size + 12) # shifted .got.plt offset
191 addi t0, t2, %lo(.got.plt) # &.got.plt
192 srli t1, t1, log2(16/PTRSIZE) # .got.plt offset
193 l[w|d] t0, PTRSIZE(t0) # link map
194 jr t3 */
195
196 entry[0] = RISCV_UTYPE (AUIPC, X_T2, gotplt_offset_high);
197 entry[1] = RISCV_RTYPE (SUB, X_T1, X_T1, X_T3);
198 entry[2] = RISCV_ITYPE (LREG, X_T3, X_T2, gotplt_offset_low);
199 entry[3] = RISCV_ITYPE (ADDI, X_T1, X_T1, -(PLT_HEADER_SIZE + 12));
200 entry[4] = RISCV_ITYPE (ADDI, X_T0, X_T2, gotplt_offset_low);
201 entry[5] = RISCV_ITYPE (SRLI, X_T1, X_T1, 4 - RISCV_ELF_LOG_WORD_BYTES);
202 entry[6] = RISCV_ITYPE (LREG, X_T0, X_T0, RISCV_ELF_WORD_BYTES);
203 entry[7] = RISCV_ITYPE (JALR, 0, X_T3, 0);
204
205 return TRUE;
206 }
207
208 /* Generate a PLT entry. */
209
210 static bfd_boolean
211 riscv_make_plt_entry (bfd *output_bfd, bfd_vma got, bfd_vma addr,
212 uint32_t *entry)
213 {
214 /* RVE has no t3 register, so this won't work, and is not supported. */
215 if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE)
216 {
217 _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"),
218 output_bfd);
219 return FALSE;
220 }
221
222 /* auipc t3, %hi(.got.plt entry)
223 l[w|d] t3, %lo(.got.plt entry)(t3)
224 jalr t1, t3
225 nop */
226
227 entry[0] = RISCV_UTYPE (AUIPC, X_T3, RISCV_PCREL_HIGH_PART (got, addr));
228 entry[1] = RISCV_ITYPE (LREG, X_T3, X_T3, RISCV_PCREL_LOW_PART (got, addr));
229 entry[2] = RISCV_ITYPE (JALR, X_T1, X_T3, 0);
230 entry[3] = RISCV_NOP;
231
232 return TRUE;
233 }
234
235 /* Create an entry in an RISC-V ELF linker hash table. */
236
237 static struct bfd_hash_entry *
238 link_hash_newfunc (struct bfd_hash_entry *entry,
239 struct bfd_hash_table *table, const char *string)
240 {
241 /* Allocate the structure if it has not already been allocated by a
242 subclass. */
243 if (entry == NULL)
244 {
245 entry =
246 bfd_hash_allocate (table,
247 sizeof (struct riscv_elf_link_hash_entry));
248 if (entry == NULL)
249 return entry;
250 }
251
252 /* Call the allocation method of the superclass. */
253 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
254 if (entry != NULL)
255 {
256 struct riscv_elf_link_hash_entry *eh;
257
258 eh = (struct riscv_elf_link_hash_entry *) entry;
259 eh->dyn_relocs = NULL;
260 eh->tls_type = GOT_UNKNOWN;
261 }
262
263 return entry;
264 }
265
266 /* Create a RISC-V ELF linker hash table. */
267
268 static struct bfd_link_hash_table *
269 riscv_elf_link_hash_table_create (bfd *abfd)
270 {
271 struct riscv_elf_link_hash_table *ret;
272 bfd_size_type amt = sizeof (struct riscv_elf_link_hash_table);
273
274 ret = (struct riscv_elf_link_hash_table *) bfd_zmalloc (amt);
275 if (ret == NULL)
276 return NULL;
277
278 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
279 sizeof (struct riscv_elf_link_hash_entry),
280 RISCV_ELF_DATA))
281 {
282 free (ret);
283 return NULL;
284 }
285
286 ret->max_alignment = (bfd_vma) -1;
287 return &ret->elf.root;
288 }
289
290 /* Create the .got section. */
291
292 static bfd_boolean
293 riscv_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
294 {
295 flagword flags;
296 asection *s, *s_got;
297 struct elf_link_hash_entry *h;
298 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
299 struct elf_link_hash_table *htab = elf_hash_table (info);
300
301 /* This function may be called more than once. */
302 if (htab->sgot != NULL)
303 return TRUE;
304
305 flags = bed->dynamic_sec_flags;
306
307 s = bfd_make_section_anyway_with_flags (abfd,
308 (bed->rela_plts_and_copies_p
309 ? ".rela.got" : ".rel.got"),
310 (bed->dynamic_sec_flags
311 | SEC_READONLY));
312 if (s == NULL
313 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
314 return FALSE;
315 htab->srelgot = s;
316
317 s = s_got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
318 if (s == NULL
319 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
320 return FALSE;
321 htab->sgot = s;
322
323 /* The first bit of the global offset table is the header. */
324 s->size += bed->got_header_size;
325
326 if (bed->want_got_plt)
327 {
328 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
329 if (s == NULL
330 || !bfd_set_section_alignment (abfd, s,
331 bed->s->log_file_align))
332 return FALSE;
333 htab->sgotplt = s;
334
335 /* Reserve room for the header. */
336 s->size += GOTPLT_HEADER_SIZE;
337 }
338
339 if (bed->want_got_sym)
340 {
341 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
342 section. We don't do this in the linker script because we don't want
343 to define the symbol if we are not creating a global offset
344 table. */
345 h = _bfd_elf_define_linkage_sym (abfd, info, s_got,
346 "_GLOBAL_OFFSET_TABLE_");
347 elf_hash_table (info)->hgot = h;
348 if (h == NULL)
349 return FALSE;
350 }
351
352 return TRUE;
353 }
354
355 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
356 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
357 hash table. */
358
359 static bfd_boolean
360 riscv_elf_create_dynamic_sections (bfd *dynobj,
361 struct bfd_link_info *info)
362 {
363 struct riscv_elf_link_hash_table *htab;
364
365 htab = riscv_elf_hash_table (info);
366 BFD_ASSERT (htab != NULL);
367
368 if (!riscv_elf_create_got_section (dynobj, info))
369 return FALSE;
370
371 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
372 return FALSE;
373
374 if (!bfd_link_pic (info))
375 {
376 htab->sdyntdata =
377 bfd_make_section_anyway_with_flags (dynobj, ".tdata.dyn",
378 (SEC_ALLOC | SEC_THREAD_LOCAL
379 | SEC_LINKER_CREATED));
380 }
381
382 if (!htab->elf.splt || !htab->elf.srelplt || !htab->elf.sdynbss
383 || (!bfd_link_pic (info) && (!htab->elf.srelbss || !htab->sdyntdata)))
384 abort ();
385
386 return TRUE;
387 }
388
389 /* Copy the extra info we tack onto an elf_link_hash_entry. */
390
391 static void
392 riscv_elf_copy_indirect_symbol (struct bfd_link_info *info,
393 struct elf_link_hash_entry *dir,
394 struct elf_link_hash_entry *ind)
395 {
396 struct riscv_elf_link_hash_entry *edir, *eind;
397
398 edir = (struct riscv_elf_link_hash_entry *) dir;
399 eind = (struct riscv_elf_link_hash_entry *) ind;
400
401 if (eind->dyn_relocs != NULL)
402 {
403 if (edir->dyn_relocs != NULL)
404 {
405 struct elf_dyn_relocs **pp;
406 struct elf_dyn_relocs *p;
407
408 /* Add reloc counts against the indirect sym to the direct sym
409 list. Merge any entries against the same section. */
410 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
411 {
412 struct elf_dyn_relocs *q;
413
414 for (q = edir->dyn_relocs; q != NULL; q = q->next)
415 if (q->sec == p->sec)
416 {
417 q->pc_count += p->pc_count;
418 q->count += p->count;
419 *pp = p->next;
420 break;
421 }
422 if (q == NULL)
423 pp = &p->next;
424 }
425 *pp = edir->dyn_relocs;
426 }
427
428 edir->dyn_relocs = eind->dyn_relocs;
429 eind->dyn_relocs = NULL;
430 }
431
432 if (ind->root.type == bfd_link_hash_indirect
433 && dir->got.refcount <= 0)
434 {
435 edir->tls_type = eind->tls_type;
436 eind->tls_type = GOT_UNKNOWN;
437 }
438 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
439 }
440
441 static bfd_boolean
442 riscv_elf_record_tls_type (bfd *abfd, struct elf_link_hash_entry *h,
443 unsigned long symndx, char tls_type)
444 {
445 char *new_tls_type = &_bfd_riscv_elf_tls_type (abfd, h, symndx);
446
447 *new_tls_type |= tls_type;
448 if ((*new_tls_type & GOT_NORMAL) && (*new_tls_type & ~GOT_NORMAL))
449 {
450 (*_bfd_error_handler)
451 (_("%pB: `%s' accessed both as normal and thread local symbol"),
452 abfd, h ? h->root.root.string : "<local>");
453 return FALSE;
454 }
455 return TRUE;
456 }
457
458 static bfd_boolean
459 riscv_elf_record_got_reference (bfd *abfd, struct bfd_link_info *info,
460 struct elf_link_hash_entry *h, long symndx)
461 {
462 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
463 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
464
465 if (htab->elf.sgot == NULL)
466 {
467 if (!riscv_elf_create_got_section (htab->elf.dynobj, info))
468 return FALSE;
469 }
470
471 if (h != NULL)
472 {
473 h->got.refcount += 1;
474 return TRUE;
475 }
476
477 /* This is a global offset table entry for a local symbol. */
478 if (elf_local_got_refcounts (abfd) == NULL)
479 {
480 bfd_size_type size = symtab_hdr->sh_info * (sizeof (bfd_vma) + 1);
481 if (!(elf_local_got_refcounts (abfd) = bfd_zalloc (abfd, size)))
482 return FALSE;
483 _bfd_riscv_elf_local_got_tls_type (abfd)
484 = (char *) (elf_local_got_refcounts (abfd) + symtab_hdr->sh_info);
485 }
486 elf_local_got_refcounts (abfd) [symndx] += 1;
487
488 return TRUE;
489 }
490
491 static bfd_boolean
492 bad_static_reloc (bfd *abfd, unsigned r_type, struct elf_link_hash_entry *h)
493 {
494 reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type);
495
496 (*_bfd_error_handler)
497 (_("%pB: relocation %s against `%s' can not be used when making a shared "
498 "object; recompile with -fPIC"),
499 abfd, r ? r->name : _("<unknown>"),
500 h != NULL ? h->root.root.string : "a local symbol");
501 bfd_set_error (bfd_error_bad_value);
502 return FALSE;
503 }
504 /* Look through the relocs for a section during the first phase, and
505 allocate space in the global offset table or procedure linkage
506 table. */
507
508 static bfd_boolean
509 riscv_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
510 asection *sec, const Elf_Internal_Rela *relocs)
511 {
512 struct riscv_elf_link_hash_table *htab;
513 Elf_Internal_Shdr *symtab_hdr;
514 struct elf_link_hash_entry **sym_hashes;
515 const Elf_Internal_Rela *rel;
516 asection *sreloc = NULL;
517
518 if (bfd_link_relocatable (info))
519 return TRUE;
520
521 htab = riscv_elf_hash_table (info);
522 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
523 sym_hashes = elf_sym_hashes (abfd);
524
525 if (htab->elf.dynobj == NULL)
526 htab->elf.dynobj = abfd;
527
528 for (rel = relocs; rel < relocs + sec->reloc_count; rel++)
529 {
530 unsigned int r_type;
531 unsigned int r_symndx;
532 struct elf_link_hash_entry *h;
533
534 r_symndx = ELFNN_R_SYM (rel->r_info);
535 r_type = ELFNN_R_TYPE (rel->r_info);
536
537 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
538 {
539 (*_bfd_error_handler) (_("%pB: bad symbol index: %d"),
540 abfd, r_symndx);
541 return FALSE;
542 }
543
544 if (r_symndx < symtab_hdr->sh_info)
545 h = NULL;
546 else
547 {
548 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
549 while (h->root.type == bfd_link_hash_indirect
550 || h->root.type == bfd_link_hash_warning)
551 h = (struct elf_link_hash_entry *) h->root.u.i.link;
552 }
553
554 switch (r_type)
555 {
556 case R_RISCV_TLS_GD_HI20:
557 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
558 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_GD))
559 return FALSE;
560 break;
561
562 case R_RISCV_TLS_GOT_HI20:
563 if (bfd_link_pic (info))
564 info->flags |= DF_STATIC_TLS;
565 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
566 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_IE))
567 return FALSE;
568 break;
569
570 case R_RISCV_GOT_HI20:
571 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
572 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_NORMAL))
573 return FALSE;
574 break;
575
576 case R_RISCV_CALL_PLT:
577 /* This symbol requires a procedure linkage table entry. We
578 actually build the entry in adjust_dynamic_symbol,
579 because this might be a case of linking PIC code without
580 linking in any dynamic objects, in which case we don't
581 need to generate a procedure linkage table after all. */
582
583 if (h != NULL)
584 {
585 h->needs_plt = 1;
586 h->plt.refcount += 1;
587 }
588 break;
589
590 case R_RISCV_CALL:
591 case R_RISCV_JAL:
592 case R_RISCV_BRANCH:
593 case R_RISCV_RVC_BRANCH:
594 case R_RISCV_RVC_JUMP:
595 case R_RISCV_PCREL_HI20:
596 /* In shared libraries, these relocs are known to bind locally. */
597 if (bfd_link_pic (info))
598 break;
599 goto static_reloc;
600
601 case R_RISCV_TPREL_HI20:
602 if (!bfd_link_executable (info))
603 return bad_static_reloc (abfd, r_type, h);
604 if (h != NULL)
605 riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_LE);
606 goto static_reloc;
607
608 case R_RISCV_HI20:
609 if (bfd_link_pic (info))
610 return bad_static_reloc (abfd, r_type, h);
611 /* Fall through. */
612
613 case R_RISCV_COPY:
614 case R_RISCV_JUMP_SLOT:
615 case R_RISCV_RELATIVE:
616 case R_RISCV_64:
617 case R_RISCV_32:
618 /* Fall through. */
619
620 static_reloc:
621 /* This reloc might not bind locally. */
622 if (h != NULL)
623 h->non_got_ref = 1;
624
625 if (h != NULL && !bfd_link_pic (info))
626 {
627 /* We may need a .plt entry if the function this reloc
628 refers to is in a shared lib. */
629 h->plt.refcount += 1;
630 }
631
632 /* If we are creating a shared library, and this is a reloc
633 against a global symbol, or a non PC relative reloc
634 against a local symbol, then we need to copy the reloc
635 into the shared library. However, if we are linking with
636 -Bsymbolic, we do not need to copy a reloc against a
637 global symbol which is defined in an object we are
638 including in the link (i.e., DEF_REGULAR is set). At
639 this point we have not seen all the input files, so it is
640 possible that DEF_REGULAR is not set now but will be set
641 later (it is never cleared). In case of a weak definition,
642 DEF_REGULAR may be cleared later by a strong definition in
643 a shared library. We account for that possibility below by
644 storing information in the relocs_copied field of the hash
645 table entry. A similar situation occurs when creating
646 shared libraries and symbol visibility changes render the
647 symbol local.
648
649 If on the other hand, we are creating an executable, we
650 may need to keep relocations for symbols satisfied by a
651 dynamic library if we manage to avoid copy relocs for the
652 symbol. */
653 reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type);
654
655 if ((bfd_link_pic (info)
656 && (sec->flags & SEC_ALLOC) != 0
657 && ((r != NULL && ! r->pc_relative)
658 || (h != NULL
659 && (! info->symbolic
660 || h->root.type == bfd_link_hash_defweak
661 || !h->def_regular))))
662 || (!bfd_link_pic (info)
663 && (sec->flags & SEC_ALLOC) != 0
664 && h != NULL
665 && (h->root.type == bfd_link_hash_defweak
666 || !h->def_regular)))
667 {
668 struct elf_dyn_relocs *p;
669 struct elf_dyn_relocs **head;
670
671 /* When creating a shared object, we must copy these
672 relocs into the output file. We create a reloc
673 section in dynobj and make room for the reloc. */
674 if (sreloc == NULL)
675 {
676 sreloc = _bfd_elf_make_dynamic_reloc_section
677 (sec, htab->elf.dynobj, RISCV_ELF_LOG_WORD_BYTES,
678 abfd, /*rela?*/ TRUE);
679
680 if (sreloc == NULL)
681 return FALSE;
682 }
683
684 /* If this is a global symbol, we count the number of
685 relocations we need for this symbol. */
686 if (h != NULL)
687 head = &((struct riscv_elf_link_hash_entry *) h)->dyn_relocs;
688 else
689 {
690 /* Track dynamic relocs needed for local syms too.
691 We really need local syms available to do this
692 easily. Oh well. */
693
694 asection *s;
695 void *vpp;
696 Elf_Internal_Sym *isym;
697
698 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
699 abfd, r_symndx);
700 if (isym == NULL)
701 return FALSE;
702
703 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
704 if (s == NULL)
705 s = sec;
706
707 vpp = &elf_section_data (s)->local_dynrel;
708 head = (struct elf_dyn_relocs **) vpp;
709 }
710
711 p = *head;
712 if (p == NULL || p->sec != sec)
713 {
714 bfd_size_type amt = sizeof *p;
715 p = ((struct elf_dyn_relocs *)
716 bfd_alloc (htab->elf.dynobj, amt));
717 if (p == NULL)
718 return FALSE;
719 p->next = *head;
720 *head = p;
721 p->sec = sec;
722 p->count = 0;
723 p->pc_count = 0;
724 }
725
726 p->count += 1;
727 p->pc_count += r == NULL ? 0 : r->pc_relative;
728 }
729
730 break;
731
732 case R_RISCV_GNU_VTINHERIT:
733 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
734 return FALSE;
735 break;
736
737 case R_RISCV_GNU_VTENTRY:
738 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
739 return FALSE;
740 break;
741
742 default:
743 break;
744 }
745 }
746
747 return TRUE;
748 }
749
750 static asection *
751 riscv_elf_gc_mark_hook (asection *sec,
752 struct bfd_link_info *info,
753 Elf_Internal_Rela *rel,
754 struct elf_link_hash_entry *h,
755 Elf_Internal_Sym *sym)
756 {
757 if (h != NULL)
758 switch (ELFNN_R_TYPE (rel->r_info))
759 {
760 case R_RISCV_GNU_VTINHERIT:
761 case R_RISCV_GNU_VTENTRY:
762 return NULL;
763 }
764
765 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
766 }
767
768 /* Find dynamic relocs for H that apply to read-only sections. */
769
770 static asection *
771 readonly_dynrelocs (struct elf_link_hash_entry *h)
772 {
773 struct elf_dyn_relocs *p;
774
775 for (p = riscv_elf_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
776 {
777 asection *s = p->sec->output_section;
778
779 if (s != NULL && (s->flags & SEC_READONLY) != 0)
780 return p->sec;
781 }
782 return NULL;
783 }
784
785 /* Adjust a symbol defined by a dynamic object and referenced by a
786 regular object. The current definition is in some section of the
787 dynamic object, but we're not including those sections. We have to
788 change the definition to something the rest of the link can
789 understand. */
790
791 static bfd_boolean
792 riscv_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
793 struct elf_link_hash_entry *h)
794 {
795 struct riscv_elf_link_hash_table *htab;
796 struct riscv_elf_link_hash_entry * eh;
797 bfd *dynobj;
798 asection *s, *srel;
799
800 htab = riscv_elf_hash_table (info);
801 BFD_ASSERT (htab != NULL);
802
803 dynobj = htab->elf.dynobj;
804
805 /* Make sure we know what is going on here. */
806 BFD_ASSERT (dynobj != NULL
807 && (h->needs_plt
808 || h->type == STT_GNU_IFUNC
809 || h->is_weakalias
810 || (h->def_dynamic
811 && h->ref_regular
812 && !h->def_regular)));
813
814 /* If this is a function, put it in the procedure linkage table. We
815 will fill in the contents of the procedure linkage table later
816 (although we could actually do it here). */
817 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
818 {
819 if (h->plt.refcount <= 0
820 || SYMBOL_CALLS_LOCAL (info, h)
821 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
822 && h->root.type == bfd_link_hash_undefweak))
823 {
824 /* This case can occur if we saw a R_RISCV_CALL_PLT reloc in an
825 input file, but the symbol was never referred to by a dynamic
826 object, or if all references were garbage collected. In such
827 a case, we don't actually need to build a PLT entry. */
828 h->plt.offset = (bfd_vma) -1;
829 h->needs_plt = 0;
830 }
831
832 return TRUE;
833 }
834 else
835 h->plt.offset = (bfd_vma) -1;
836
837 /* If this is a weak symbol, and there is a real definition, the
838 processor independent code will have arranged for us to see the
839 real definition first, and we can just use the same value. */
840 if (h->is_weakalias)
841 {
842 struct elf_link_hash_entry *def = weakdef (h);
843 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
844 h->root.u.def.section = def->root.u.def.section;
845 h->root.u.def.value = def->root.u.def.value;
846 return TRUE;
847 }
848
849 /* This is a reference to a symbol defined by a dynamic object which
850 is not a function. */
851
852 /* If we are creating a shared library, we must presume that the
853 only references to the symbol are via the global offset table.
854 For such cases we need not do anything here; the relocations will
855 be handled correctly by relocate_section. */
856 if (bfd_link_pic (info))
857 return TRUE;
858
859 /* If there are no references to this symbol that do not use the
860 GOT, we don't need to generate a copy reloc. */
861 if (!h->non_got_ref)
862 return TRUE;
863
864 /* If -z nocopyreloc was given, we won't generate them either. */
865 if (info->nocopyreloc)
866 {
867 h->non_got_ref = 0;
868 return TRUE;
869 }
870
871 /* If we don't find any dynamic relocs in read-only sections, then
872 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
873 if (!readonly_dynrelocs (h))
874 {
875 h->non_got_ref = 0;
876 return TRUE;
877 }
878
879 /* We must allocate the symbol in our .dynbss section, which will
880 become part of the .bss section of the executable. There will be
881 an entry for this symbol in the .dynsym section. The dynamic
882 object will contain position independent code, so all references
883 from the dynamic object to this symbol will go through the global
884 offset table. The dynamic linker will use the .dynsym entry to
885 determine the address it must put in the global offset table, so
886 both the dynamic object and the regular object will refer to the
887 same memory location for the variable. */
888
889 /* We must generate a R_RISCV_COPY reloc to tell the dynamic linker
890 to copy the initial value out of the dynamic object and into the
891 runtime process image. We need to remember the offset into the
892 .rel.bss section we are going to use. */
893 eh = (struct riscv_elf_link_hash_entry *) h;
894 if (eh->tls_type & ~GOT_NORMAL)
895 {
896 s = htab->sdyntdata;
897 srel = htab->elf.srelbss;
898 }
899 else if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
900 {
901 s = htab->elf.sdynrelro;
902 srel = htab->elf.sreldynrelro;
903 }
904 else
905 {
906 s = htab->elf.sdynbss;
907 srel = htab->elf.srelbss;
908 }
909 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
910 {
911 srel->size += sizeof (ElfNN_External_Rela);
912 h->needs_copy = 1;
913 }
914
915 return _bfd_elf_adjust_dynamic_copy (info, h, s);
916 }
917
918 /* Allocate space in .plt, .got and associated reloc sections for
919 dynamic relocs. */
920
921 static bfd_boolean
922 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
923 {
924 struct bfd_link_info *info;
925 struct riscv_elf_link_hash_table *htab;
926 struct riscv_elf_link_hash_entry *eh;
927 struct elf_dyn_relocs *p;
928
929 if (h->root.type == bfd_link_hash_indirect)
930 return TRUE;
931
932 info = (struct bfd_link_info *) inf;
933 htab = riscv_elf_hash_table (info);
934 BFD_ASSERT (htab != NULL);
935
936 if (htab->elf.dynamic_sections_created
937 && h->plt.refcount > 0)
938 {
939 /* Make sure this symbol is output as a dynamic symbol.
940 Undefined weak syms won't yet be marked as dynamic. */
941 if (h->dynindx == -1
942 && !h->forced_local)
943 {
944 if (! bfd_elf_link_record_dynamic_symbol (info, h))
945 return FALSE;
946 }
947
948 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h))
949 {
950 asection *s = htab->elf.splt;
951
952 if (s->size == 0)
953 s->size = PLT_HEADER_SIZE;
954
955 h->plt.offset = s->size;
956
957 /* Make room for this entry. */
958 s->size += PLT_ENTRY_SIZE;
959
960 /* We also need to make an entry in the .got.plt section. */
961 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
962
963 /* We also need to make an entry in the .rela.plt section. */
964 htab->elf.srelplt->size += sizeof (ElfNN_External_Rela);
965
966 /* If this symbol is not defined in a regular file, and we are
967 not generating a shared library, then set the symbol to this
968 location in the .plt. This is required to make function
969 pointers compare as equal between the normal executable and
970 the shared library. */
971 if (! bfd_link_pic (info)
972 && !h->def_regular)
973 {
974 h->root.u.def.section = s;
975 h->root.u.def.value = h->plt.offset;
976 }
977 }
978 else
979 {
980 h->plt.offset = (bfd_vma) -1;
981 h->needs_plt = 0;
982 }
983 }
984 else
985 {
986 h->plt.offset = (bfd_vma) -1;
987 h->needs_plt = 0;
988 }
989
990 if (h->got.refcount > 0)
991 {
992 asection *s;
993 bfd_boolean dyn;
994 int tls_type = riscv_elf_hash_entry (h)->tls_type;
995
996 /* Make sure this symbol is output as a dynamic symbol.
997 Undefined weak syms won't yet be marked as dynamic. */
998 if (h->dynindx == -1
999 && !h->forced_local)
1000 {
1001 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1002 return FALSE;
1003 }
1004
1005 s = htab->elf.sgot;
1006 h->got.offset = s->size;
1007 dyn = htab->elf.dynamic_sections_created;
1008 if (tls_type & (GOT_TLS_GD | GOT_TLS_IE))
1009 {
1010 /* TLS_GD needs two dynamic relocs and two GOT slots. */
1011 if (tls_type & GOT_TLS_GD)
1012 {
1013 s->size += 2 * RISCV_ELF_WORD_BYTES;
1014 htab->elf.srelgot->size += 2 * sizeof (ElfNN_External_Rela);
1015 }
1016
1017 /* TLS_IE needs one dynamic reloc and one GOT slot. */
1018 if (tls_type & GOT_TLS_IE)
1019 {
1020 s->size += RISCV_ELF_WORD_BYTES;
1021 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1022 }
1023 }
1024 else
1025 {
1026 s->size += RISCV_ELF_WORD_BYTES;
1027 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
1028 && ! UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
1029 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1030 }
1031 }
1032 else
1033 h->got.offset = (bfd_vma) -1;
1034
1035 eh = (struct riscv_elf_link_hash_entry *) h;
1036 if (eh->dyn_relocs == NULL)
1037 return TRUE;
1038
1039 /* In the shared -Bsymbolic case, discard space allocated for
1040 dynamic pc-relative relocs against symbols which turn out to be
1041 defined in regular objects. For the normal shared case, discard
1042 space for pc-relative relocs that have become local due to symbol
1043 visibility changes. */
1044
1045 if (bfd_link_pic (info))
1046 {
1047 if (SYMBOL_CALLS_LOCAL (info, h))
1048 {
1049 struct elf_dyn_relocs **pp;
1050
1051 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1052 {
1053 p->count -= p->pc_count;
1054 p->pc_count = 0;
1055 if (p->count == 0)
1056 *pp = p->next;
1057 else
1058 pp = &p->next;
1059 }
1060 }
1061
1062 /* Also discard relocs on undefined weak syms with non-default
1063 visibility. */
1064 if (eh->dyn_relocs != NULL
1065 && h->root.type == bfd_link_hash_undefweak)
1066 {
1067 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1068 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
1069 eh->dyn_relocs = NULL;
1070
1071 /* Make sure undefined weak symbols are output as a dynamic
1072 symbol in PIEs. */
1073 else if (h->dynindx == -1
1074 && !h->forced_local)
1075 {
1076 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1077 return FALSE;
1078 }
1079 }
1080 }
1081 else
1082 {
1083 /* For the non-shared case, discard space for relocs against
1084 symbols which turn out to need copy relocs or are not
1085 dynamic. */
1086
1087 if (!h->non_got_ref
1088 && ((h->def_dynamic
1089 && !h->def_regular)
1090 || (htab->elf.dynamic_sections_created
1091 && (h->root.type == bfd_link_hash_undefweak
1092 || h->root.type == bfd_link_hash_undefined))))
1093 {
1094 /* Make sure this symbol is output as a dynamic symbol.
1095 Undefined weak syms won't yet be marked as dynamic. */
1096 if (h->dynindx == -1
1097 && !h->forced_local)
1098 {
1099 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1100 return FALSE;
1101 }
1102
1103 /* If that succeeded, we know we'll be keeping all the
1104 relocs. */
1105 if (h->dynindx != -1)
1106 goto keep;
1107 }
1108
1109 eh->dyn_relocs = NULL;
1110
1111 keep: ;
1112 }
1113
1114 /* Finally, allocate space. */
1115 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1116 {
1117 asection *sreloc = elf_section_data (p->sec)->sreloc;
1118 sreloc->size += p->count * sizeof (ElfNN_External_Rela);
1119 }
1120
1121 return TRUE;
1122 }
1123
1124 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
1125 read-only sections. */
1126
1127 static bfd_boolean
1128 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
1129 {
1130 asection *sec;
1131
1132 if (h->root.type == bfd_link_hash_indirect)
1133 return TRUE;
1134
1135 sec = readonly_dynrelocs (h);
1136 if (sec != NULL)
1137 {
1138 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
1139
1140 info->flags |= DF_TEXTREL;
1141 info->callbacks->minfo
1142 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
1143 sec->owner, h->root.root.string, sec);
1144
1145 /* Not an error, just cut short the traversal. */
1146 return FALSE;
1147 }
1148 return TRUE;
1149 }
1150
1151 static bfd_boolean
1152 riscv_elf_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1153 {
1154 struct riscv_elf_link_hash_table *htab;
1155 bfd *dynobj;
1156 asection *s;
1157 bfd *ibfd;
1158
1159 htab = riscv_elf_hash_table (info);
1160 BFD_ASSERT (htab != NULL);
1161 dynobj = htab->elf.dynobj;
1162 BFD_ASSERT (dynobj != NULL);
1163
1164 if (elf_hash_table (info)->dynamic_sections_created)
1165 {
1166 /* Set the contents of the .interp section to the interpreter. */
1167 if (bfd_link_executable (info) && !info->nointerp)
1168 {
1169 s = bfd_get_linker_section (dynobj, ".interp");
1170 BFD_ASSERT (s != NULL);
1171 s->size = strlen (ELFNN_DYNAMIC_INTERPRETER) + 1;
1172 s->contents = (unsigned char *) ELFNN_DYNAMIC_INTERPRETER;
1173 }
1174 }
1175
1176 /* Set up .got offsets for local syms, and space for local dynamic
1177 relocs. */
1178 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1179 {
1180 bfd_signed_vma *local_got;
1181 bfd_signed_vma *end_local_got;
1182 char *local_tls_type;
1183 bfd_size_type locsymcount;
1184 Elf_Internal_Shdr *symtab_hdr;
1185 asection *srel;
1186
1187 if (! is_riscv_elf (ibfd))
1188 continue;
1189
1190 for (s = ibfd->sections; s != NULL; s = s->next)
1191 {
1192 struct elf_dyn_relocs *p;
1193
1194 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
1195 {
1196 if (!bfd_is_abs_section (p->sec)
1197 && bfd_is_abs_section (p->sec->output_section))
1198 {
1199 /* Input section has been discarded, either because
1200 it is a copy of a linkonce section or due to
1201 linker script /DISCARD/, so we'll be discarding
1202 the relocs too. */
1203 }
1204 else if (p->count != 0)
1205 {
1206 srel = elf_section_data (p->sec)->sreloc;
1207 srel->size += p->count * sizeof (ElfNN_External_Rela);
1208 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1209 info->flags |= DF_TEXTREL;
1210 }
1211 }
1212 }
1213
1214 local_got = elf_local_got_refcounts (ibfd);
1215 if (!local_got)
1216 continue;
1217
1218 symtab_hdr = &elf_symtab_hdr (ibfd);
1219 locsymcount = symtab_hdr->sh_info;
1220 end_local_got = local_got + locsymcount;
1221 local_tls_type = _bfd_riscv_elf_local_got_tls_type (ibfd);
1222 s = htab->elf.sgot;
1223 srel = htab->elf.srelgot;
1224 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1225 {
1226 if (*local_got > 0)
1227 {
1228 *local_got = s->size;
1229 s->size += RISCV_ELF_WORD_BYTES;
1230 if (*local_tls_type & GOT_TLS_GD)
1231 s->size += RISCV_ELF_WORD_BYTES;
1232 if (bfd_link_pic (info)
1233 || (*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)))
1234 srel->size += sizeof (ElfNN_External_Rela);
1235 }
1236 else
1237 *local_got = (bfd_vma) -1;
1238 }
1239 }
1240
1241 /* Allocate global sym .plt and .got entries, and space for global
1242 sym dynamic relocs. */
1243 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
1244
1245 if (htab->elf.sgotplt)
1246 {
1247 struct elf_link_hash_entry *got;
1248 got = elf_link_hash_lookup (elf_hash_table (info),
1249 "_GLOBAL_OFFSET_TABLE_",
1250 FALSE, FALSE, FALSE);
1251
1252 /* Don't allocate .got.plt section if there are no GOT nor PLT
1253 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
1254 if ((got == NULL
1255 || !got->ref_regular_nonweak)
1256 && (htab->elf.sgotplt->size == GOTPLT_HEADER_SIZE)
1257 && (htab->elf.splt == NULL
1258 || htab->elf.splt->size == 0)
1259 && (htab->elf.sgot == NULL
1260 || (htab->elf.sgot->size
1261 == get_elf_backend_data (output_bfd)->got_header_size)))
1262 htab->elf.sgotplt->size = 0;
1263 }
1264
1265 /* The check_relocs and adjust_dynamic_symbol entry points have
1266 determined the sizes of the various dynamic sections. Allocate
1267 memory for them. */
1268 for (s = dynobj->sections; s != NULL; s = s->next)
1269 {
1270 if ((s->flags & SEC_LINKER_CREATED) == 0)
1271 continue;
1272
1273 if (s == htab->elf.splt
1274 || s == htab->elf.sgot
1275 || s == htab->elf.sgotplt
1276 || s == htab->elf.sdynbss
1277 || s == htab->elf.sdynrelro
1278 || s == htab->sdyntdata)
1279 {
1280 /* Strip this section if we don't need it; see the
1281 comment below. */
1282 }
1283 else if (strncmp (s->name, ".rela", 5) == 0)
1284 {
1285 if (s->size != 0)
1286 {
1287 /* We use the reloc_count field as a counter if we need
1288 to copy relocs into the output file. */
1289 s->reloc_count = 0;
1290 }
1291 }
1292 else
1293 {
1294 /* It's not one of our sections. */
1295 continue;
1296 }
1297
1298 if (s->size == 0)
1299 {
1300 /* If we don't need this section, strip it from the
1301 output file. This is mostly to handle .rela.bss and
1302 .rela.plt. We must create both sections in
1303 create_dynamic_sections, because they must be created
1304 before the linker maps input sections to output
1305 sections. The linker does that before
1306 adjust_dynamic_symbol is called, and it is that
1307 function which decides whether anything needs to go
1308 into these sections. */
1309 s->flags |= SEC_EXCLUDE;
1310 continue;
1311 }
1312
1313 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1314 continue;
1315
1316 /* Allocate memory for the section contents. Zero the memory
1317 for the benefit of .rela.plt, which has 4 unused entries
1318 at the beginning, and we don't want garbage. */
1319 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1320 if (s->contents == NULL)
1321 return FALSE;
1322 }
1323
1324 if (elf_hash_table (info)->dynamic_sections_created)
1325 {
1326 /* Add some entries to the .dynamic section. We fill in the
1327 values later, in riscv_elf_finish_dynamic_sections, but we
1328 must add the entries now so that we get the correct size for
1329 the .dynamic section. The DT_DEBUG entry is filled in by the
1330 dynamic linker and used by the debugger. */
1331 #define add_dynamic_entry(TAG, VAL) \
1332 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1333
1334 if (bfd_link_executable (info))
1335 {
1336 if (!add_dynamic_entry (DT_DEBUG, 0))
1337 return FALSE;
1338 }
1339
1340 if (htab->elf.srelplt->size != 0)
1341 {
1342 if (!add_dynamic_entry (DT_PLTGOT, 0)
1343 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1344 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1345 || !add_dynamic_entry (DT_JMPREL, 0))
1346 return FALSE;
1347 }
1348
1349 if (!add_dynamic_entry (DT_RELA, 0)
1350 || !add_dynamic_entry (DT_RELASZ, 0)
1351 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
1352 return FALSE;
1353
1354 /* If any dynamic relocs apply to a read-only section,
1355 then we need a DT_TEXTREL entry. */
1356 if ((info->flags & DF_TEXTREL) == 0)
1357 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
1358
1359 if (info->flags & DF_TEXTREL)
1360 {
1361 if (!add_dynamic_entry (DT_TEXTREL, 0))
1362 return FALSE;
1363 }
1364 }
1365 #undef add_dynamic_entry
1366
1367 return TRUE;
1368 }
1369
1370 #define TP_OFFSET 0
1371 #define DTP_OFFSET 0x800
1372
1373 /* Return the relocation value for a TLS dtp-relative reloc. */
1374
1375 static bfd_vma
1376 dtpoff (struct bfd_link_info *info, bfd_vma address)
1377 {
1378 /* If tls_sec is NULL, we should have signalled an error already. */
1379 if (elf_hash_table (info)->tls_sec == NULL)
1380 return 0;
1381 return address - elf_hash_table (info)->tls_sec->vma - DTP_OFFSET;
1382 }
1383
1384 /* Return the relocation value for a static TLS tp-relative relocation. */
1385
1386 static bfd_vma
1387 tpoff (struct bfd_link_info *info, bfd_vma address)
1388 {
1389 /* If tls_sec is NULL, we should have signalled an error already. */
1390 if (elf_hash_table (info)->tls_sec == NULL)
1391 return 0;
1392 return address - elf_hash_table (info)->tls_sec->vma - TP_OFFSET;
1393 }
1394
1395 /* Return the global pointer's value, or 0 if it is not in use. */
1396
1397 static bfd_vma
1398 riscv_global_pointer_value (struct bfd_link_info *info)
1399 {
1400 struct bfd_link_hash_entry *h;
1401
1402 h = bfd_link_hash_lookup (info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE);
1403 if (h == NULL || h->type != bfd_link_hash_defined)
1404 return 0;
1405
1406 return h->u.def.value + sec_addr (h->u.def.section);
1407 }
1408
1409 /* Emplace a static relocation. */
1410
1411 static bfd_reloc_status_type
1412 perform_relocation (const reloc_howto_type *howto,
1413 const Elf_Internal_Rela *rel,
1414 bfd_vma value,
1415 asection *input_section,
1416 bfd *input_bfd,
1417 bfd_byte *contents)
1418 {
1419 if (howto->pc_relative)
1420 value -= sec_addr (input_section) + rel->r_offset;
1421 value += rel->r_addend;
1422
1423 switch (ELFNN_R_TYPE (rel->r_info))
1424 {
1425 case R_RISCV_HI20:
1426 case R_RISCV_TPREL_HI20:
1427 case R_RISCV_PCREL_HI20:
1428 case R_RISCV_GOT_HI20:
1429 case R_RISCV_TLS_GOT_HI20:
1430 case R_RISCV_TLS_GD_HI20:
1431 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1432 return bfd_reloc_overflow;
1433 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value));
1434 break;
1435
1436 case R_RISCV_LO12_I:
1437 case R_RISCV_GPREL_I:
1438 case R_RISCV_TPREL_LO12_I:
1439 case R_RISCV_TPREL_I:
1440 case R_RISCV_PCREL_LO12_I:
1441 value = ENCODE_ITYPE_IMM (value);
1442 break;
1443
1444 case R_RISCV_LO12_S:
1445 case R_RISCV_GPREL_S:
1446 case R_RISCV_TPREL_LO12_S:
1447 case R_RISCV_TPREL_S:
1448 case R_RISCV_PCREL_LO12_S:
1449 value = ENCODE_STYPE_IMM (value);
1450 break;
1451
1452 case R_RISCV_CALL:
1453 case R_RISCV_CALL_PLT:
1454 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1455 return bfd_reloc_overflow;
1456 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))
1457 | (ENCODE_ITYPE_IMM (value) << 32);
1458 break;
1459
1460 case R_RISCV_JAL:
1461 if (!VALID_UJTYPE_IMM (value))
1462 return bfd_reloc_overflow;
1463 value = ENCODE_UJTYPE_IMM (value);
1464 break;
1465
1466 case R_RISCV_BRANCH:
1467 if (!VALID_SBTYPE_IMM (value))
1468 return bfd_reloc_overflow;
1469 value = ENCODE_SBTYPE_IMM (value);
1470 break;
1471
1472 case R_RISCV_RVC_BRANCH:
1473 if (!VALID_RVC_B_IMM (value))
1474 return bfd_reloc_overflow;
1475 value = ENCODE_RVC_B_IMM (value);
1476 break;
1477
1478 case R_RISCV_RVC_JUMP:
1479 if (!VALID_RVC_J_IMM (value))
1480 return bfd_reloc_overflow;
1481 value = ENCODE_RVC_J_IMM (value);
1482 break;
1483
1484 case R_RISCV_RVC_LUI:
1485 if (!VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value)))
1486 return bfd_reloc_overflow;
1487 value = ENCODE_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value));
1488 break;
1489
1490 case R_RISCV_32:
1491 case R_RISCV_64:
1492 case R_RISCV_ADD8:
1493 case R_RISCV_ADD16:
1494 case R_RISCV_ADD32:
1495 case R_RISCV_ADD64:
1496 case R_RISCV_SUB6:
1497 case R_RISCV_SUB8:
1498 case R_RISCV_SUB16:
1499 case R_RISCV_SUB32:
1500 case R_RISCV_SUB64:
1501 case R_RISCV_SET6:
1502 case R_RISCV_SET8:
1503 case R_RISCV_SET16:
1504 case R_RISCV_SET32:
1505 case R_RISCV_32_PCREL:
1506 case R_RISCV_TLS_DTPREL32:
1507 case R_RISCV_TLS_DTPREL64:
1508 break;
1509
1510 case R_RISCV_DELETE:
1511 return bfd_reloc_ok;
1512
1513 default:
1514 return bfd_reloc_notsupported;
1515 }
1516
1517 bfd_vma word = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset);
1518 word = (word & ~howto->dst_mask) | (value & howto->dst_mask);
1519 bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset);
1520
1521 return bfd_reloc_ok;
1522 }
1523
1524 /* Remember all PC-relative high-part relocs we've encountered to help us
1525 later resolve the corresponding low-part relocs. */
1526
1527 typedef struct
1528 {
1529 bfd_vma address;
1530 bfd_vma value;
1531 } riscv_pcrel_hi_reloc;
1532
1533 typedef struct riscv_pcrel_lo_reloc
1534 {
1535 asection * input_section;
1536 struct bfd_link_info * info;
1537 reloc_howto_type * howto;
1538 const Elf_Internal_Rela * reloc;
1539 bfd_vma addr;
1540 const char * name;
1541 bfd_byte * contents;
1542 struct riscv_pcrel_lo_reloc * next;
1543 } riscv_pcrel_lo_reloc;
1544
1545 typedef struct
1546 {
1547 htab_t hi_relocs;
1548 riscv_pcrel_lo_reloc *lo_relocs;
1549 } riscv_pcrel_relocs;
1550
1551 static hashval_t
1552 riscv_pcrel_reloc_hash (const void *entry)
1553 {
1554 const riscv_pcrel_hi_reloc *e = entry;
1555 return (hashval_t)(e->address >> 2);
1556 }
1557
1558 static bfd_boolean
1559 riscv_pcrel_reloc_eq (const void *entry1, const void *entry2)
1560 {
1561 const riscv_pcrel_hi_reloc *e1 = entry1, *e2 = entry2;
1562 return e1->address == e2->address;
1563 }
1564
1565 static bfd_boolean
1566 riscv_init_pcrel_relocs (riscv_pcrel_relocs *p)
1567 {
1568
1569 p->lo_relocs = NULL;
1570 p->hi_relocs = htab_create (1024, riscv_pcrel_reloc_hash,
1571 riscv_pcrel_reloc_eq, free);
1572 return p->hi_relocs != NULL;
1573 }
1574
1575 static void
1576 riscv_free_pcrel_relocs (riscv_pcrel_relocs *p)
1577 {
1578 riscv_pcrel_lo_reloc *cur = p->lo_relocs;
1579
1580 while (cur != NULL)
1581 {
1582 riscv_pcrel_lo_reloc *next = cur->next;
1583 free (cur);
1584 cur = next;
1585 }
1586
1587 htab_delete (p->hi_relocs);
1588 }
1589
1590 static bfd_boolean
1591 riscv_zero_pcrel_hi_reloc (Elf_Internal_Rela *rel,
1592 struct bfd_link_info *info,
1593 bfd_vma pc,
1594 bfd_vma addr,
1595 bfd_byte *contents,
1596 const reloc_howto_type *howto,
1597 bfd *input_bfd)
1598 {
1599 /* We may need to reference low addreses in PC-relative modes even when the
1600 * PC is far away from these addresses. For example, undefweak references
1601 * need to produce the address 0 when linked. As 0 is far from the arbitrary
1602 * addresses that we can link PC-relative programs at, the linker can't
1603 * actually relocate references to those symbols. In order to allow these
1604 * programs to work we simply convert the PC-relative auipc sequences to
1605 * 0-relative lui sequences. */
1606 if (bfd_link_pic (info))
1607 return FALSE;
1608
1609 /* If it's possible to reference the symbol using auipc we do so, as that's
1610 * more in the spirit of the PC-relative relocations we're processing. */
1611 bfd_vma offset = addr - pc;
1612 if (ARCH_SIZE == 32 || VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (offset)))
1613 return FALSE;
1614
1615 /* If it's impossible to reference this with a LUI-based offset then don't
1616 * bother to convert it at all so users still see the PC-relative relocation
1617 * in the truncation message. */
1618 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (addr)))
1619 return FALSE;
1620
1621 rel->r_info = ELFNN_R_INFO(addr, R_RISCV_HI20);
1622
1623 bfd_vma insn = bfd_get(howto->bitsize, input_bfd, contents + rel->r_offset);
1624 insn = (insn & ~MASK_AUIPC) | MATCH_LUI;
1625 bfd_put(howto->bitsize, input_bfd, insn, contents + rel->r_offset);
1626 return TRUE;
1627 }
1628
1629 static bfd_boolean
1630 riscv_record_pcrel_hi_reloc (riscv_pcrel_relocs *p, bfd_vma addr,
1631 bfd_vma value, bfd_boolean absolute)
1632 {
1633 bfd_vma offset = absolute ? value : value - addr;
1634 riscv_pcrel_hi_reloc entry = {addr, offset};
1635 riscv_pcrel_hi_reloc **slot =
1636 (riscv_pcrel_hi_reloc **) htab_find_slot (p->hi_relocs, &entry, INSERT);
1637
1638 BFD_ASSERT (*slot == NULL);
1639 *slot = (riscv_pcrel_hi_reloc *) bfd_malloc (sizeof (riscv_pcrel_hi_reloc));
1640 if (*slot == NULL)
1641 return FALSE;
1642 **slot = entry;
1643 return TRUE;
1644 }
1645
1646 static bfd_boolean
1647 riscv_record_pcrel_lo_reloc (riscv_pcrel_relocs *p,
1648 asection *input_section,
1649 struct bfd_link_info *info,
1650 reloc_howto_type *howto,
1651 const Elf_Internal_Rela *reloc,
1652 bfd_vma addr,
1653 const char *name,
1654 bfd_byte *contents)
1655 {
1656 riscv_pcrel_lo_reloc *entry;
1657 entry = (riscv_pcrel_lo_reloc *) bfd_malloc (sizeof (riscv_pcrel_lo_reloc));
1658 if (entry == NULL)
1659 return FALSE;
1660 *entry = (riscv_pcrel_lo_reloc) {input_section, info, howto, reloc, addr,
1661 name, contents, p->lo_relocs};
1662 p->lo_relocs = entry;
1663 return TRUE;
1664 }
1665
1666 static bfd_boolean
1667 riscv_resolve_pcrel_lo_relocs (riscv_pcrel_relocs *p)
1668 {
1669 riscv_pcrel_lo_reloc *r;
1670
1671 for (r = p->lo_relocs; r != NULL; r = r->next)
1672 {
1673 bfd *input_bfd = r->input_section->owner;
1674
1675 riscv_pcrel_hi_reloc search = {r->addr, 0};
1676 riscv_pcrel_hi_reloc *entry = htab_find (p->hi_relocs, &search);
1677 if (entry == NULL
1678 /* Check for overflow into bit 11 when adding reloc addend. */
1679 || (! (entry->value & 0x800)
1680 && ((entry->value + r->reloc->r_addend) & 0x800)))
1681 {
1682 char *string = (entry == NULL
1683 ? "%pcrel_lo missing matching %pcrel_hi"
1684 : "%pcrel_lo overflow with an addend");
1685 (*r->info->callbacks->reloc_dangerous)
1686 (r->info, string, input_bfd, r->input_section, r->reloc->r_offset);
1687 return TRUE;
1688 }
1689
1690 perform_relocation (r->howto, r->reloc, entry->value, r->input_section,
1691 input_bfd, r->contents);
1692 }
1693
1694 return TRUE;
1695 }
1696
1697 /* Relocate a RISC-V ELF section.
1698
1699 The RELOCATE_SECTION function is called by the new ELF backend linker
1700 to handle the relocations for a section.
1701
1702 The relocs are always passed as Rela structures.
1703
1704 This function is responsible for adjusting the section contents as
1705 necessary, and (if generating a relocatable output file) adjusting
1706 the reloc addend as necessary.
1707
1708 This function does not have to worry about setting the reloc
1709 address or the reloc symbol index.
1710
1711 LOCAL_SYMS is a pointer to the swapped in local symbols.
1712
1713 LOCAL_SECTIONS is an array giving the section in the input file
1714 corresponding to the st_shndx field of each local symbol.
1715
1716 The global hash table entry for the global symbols can be found
1717 via elf_sym_hashes (input_bfd).
1718
1719 When generating relocatable output, this function must handle
1720 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
1721 going to be the section symbol corresponding to the output
1722 section, which means that the addend must be adjusted
1723 accordingly. */
1724
1725 static bfd_boolean
1726 riscv_elf_relocate_section (bfd *output_bfd,
1727 struct bfd_link_info *info,
1728 bfd *input_bfd,
1729 asection *input_section,
1730 bfd_byte *contents,
1731 Elf_Internal_Rela *relocs,
1732 Elf_Internal_Sym *local_syms,
1733 asection **local_sections)
1734 {
1735 Elf_Internal_Rela *rel;
1736 Elf_Internal_Rela *relend;
1737 riscv_pcrel_relocs pcrel_relocs;
1738 bfd_boolean ret = FALSE;
1739 asection *sreloc = elf_section_data (input_section)->sreloc;
1740 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
1741 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_bfd);
1742 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
1743 bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd);
1744 bfd_boolean absolute;
1745
1746 if (!riscv_init_pcrel_relocs (&pcrel_relocs))
1747 return FALSE;
1748
1749 relend = relocs + input_section->reloc_count;
1750 for (rel = relocs; rel < relend; rel++)
1751 {
1752 unsigned long r_symndx;
1753 struct elf_link_hash_entry *h;
1754 Elf_Internal_Sym *sym;
1755 asection *sec;
1756 bfd_vma relocation;
1757 bfd_reloc_status_type r = bfd_reloc_ok;
1758 const char *name;
1759 bfd_vma off, ie_off;
1760 bfd_boolean unresolved_reloc, is_ie = FALSE;
1761 bfd_vma pc = sec_addr (input_section) + rel->r_offset;
1762 int r_type = ELFNN_R_TYPE (rel->r_info), tls_type;
1763 reloc_howto_type *howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
1764 const char *msg = NULL;
1765 bfd_boolean resolved_to_zero;
1766
1767 if (howto == NULL
1768 || r_type == R_RISCV_GNU_VTINHERIT || r_type == R_RISCV_GNU_VTENTRY)
1769 continue;
1770
1771 /* This is a final link. */
1772 r_symndx = ELFNN_R_SYM (rel->r_info);
1773 h = NULL;
1774 sym = NULL;
1775 sec = NULL;
1776 unresolved_reloc = FALSE;
1777 if (r_symndx < symtab_hdr->sh_info)
1778 {
1779 sym = local_syms + r_symndx;
1780 sec = local_sections[r_symndx];
1781 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1782 }
1783 else
1784 {
1785 bfd_boolean warned, ignored;
1786
1787 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1788 r_symndx, symtab_hdr, sym_hashes,
1789 h, sec, relocation,
1790 unresolved_reloc, warned, ignored);
1791 if (warned)
1792 {
1793 /* To avoid generating warning messages about truncated
1794 relocations, set the relocation's address to be the same as
1795 the start of this section. */
1796 if (input_section->output_section != NULL)
1797 relocation = input_section->output_section->vma;
1798 else
1799 relocation = 0;
1800 }
1801 }
1802
1803 if (sec != NULL && discarded_section (sec))
1804 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1805 rel, 1, relend, howto, 0, contents);
1806
1807 if (bfd_link_relocatable (info))
1808 continue;
1809
1810 if (h != NULL)
1811 name = h->root.root.string;
1812 else
1813 {
1814 name = (bfd_elf_string_from_elf_section
1815 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1816 if (name == NULL || *name == '\0')
1817 name = bfd_section_name (input_bfd, sec);
1818 }
1819
1820 resolved_to_zero = (h != NULL
1821 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
1822
1823 switch (r_type)
1824 {
1825 case R_RISCV_NONE:
1826 case R_RISCV_RELAX:
1827 case R_RISCV_TPREL_ADD:
1828 case R_RISCV_COPY:
1829 case R_RISCV_JUMP_SLOT:
1830 case R_RISCV_RELATIVE:
1831 /* These require nothing of us at all. */
1832 continue;
1833
1834 case R_RISCV_HI20:
1835 case R_RISCV_BRANCH:
1836 case R_RISCV_RVC_BRANCH:
1837 case R_RISCV_RVC_LUI:
1838 case R_RISCV_LO12_I:
1839 case R_RISCV_LO12_S:
1840 case R_RISCV_SET6:
1841 case R_RISCV_SET8:
1842 case R_RISCV_SET16:
1843 case R_RISCV_SET32:
1844 case R_RISCV_32_PCREL:
1845 case R_RISCV_DELETE:
1846 /* These require no special handling beyond perform_relocation. */
1847 break;
1848
1849 case R_RISCV_GOT_HI20:
1850 if (h != NULL)
1851 {
1852 bfd_boolean dyn, pic;
1853
1854 off = h->got.offset;
1855 BFD_ASSERT (off != (bfd_vma) -1);
1856 dyn = elf_hash_table (info)->dynamic_sections_created;
1857 pic = bfd_link_pic (info);
1858
1859 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
1860 || (pic && SYMBOL_REFERENCES_LOCAL (info, h)))
1861 {
1862 /* This is actually a static link, or it is a
1863 -Bsymbolic link and the symbol is defined
1864 locally, or the symbol was forced to be local
1865 because of a version file. We must initialize
1866 this entry in the global offset table. Since the
1867 offset must always be a multiple of the word size,
1868 we use the least significant bit to record whether
1869 we have initialized it already.
1870
1871 When doing a dynamic link, we create a .rela.got
1872 relocation entry to initialize the value. This
1873 is done in the finish_dynamic_symbol routine. */
1874 if ((off & 1) != 0)
1875 off &= ~1;
1876 else
1877 {
1878 bfd_put_NN (output_bfd, relocation,
1879 htab->elf.sgot->contents + off);
1880 h->got.offset |= 1;
1881 }
1882 }
1883 else
1884 unresolved_reloc = FALSE;
1885 }
1886 else
1887 {
1888 BFD_ASSERT (local_got_offsets != NULL
1889 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1890
1891 off = local_got_offsets[r_symndx];
1892
1893 /* The offset must always be a multiple of the word size.
1894 So, we can use the least significant bit to record
1895 whether we have already processed this entry. */
1896 if ((off & 1) != 0)
1897 off &= ~1;
1898 else
1899 {
1900 if (bfd_link_pic (info))
1901 {
1902 asection *s;
1903 Elf_Internal_Rela outrel;
1904
1905 /* We need to generate a R_RISCV_RELATIVE reloc
1906 for the dynamic linker. */
1907 s = htab->elf.srelgot;
1908 BFD_ASSERT (s != NULL);
1909
1910 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
1911 outrel.r_info =
1912 ELFNN_R_INFO (0, R_RISCV_RELATIVE);
1913 outrel.r_addend = relocation;
1914 relocation = 0;
1915 riscv_elf_append_rela (output_bfd, s, &outrel);
1916 }
1917
1918 bfd_put_NN (output_bfd, relocation,
1919 htab->elf.sgot->contents + off);
1920 local_got_offsets[r_symndx] |= 1;
1921 }
1922 }
1923 relocation = sec_addr (htab->elf.sgot) + off;
1924 absolute = riscv_zero_pcrel_hi_reloc (rel,
1925 info,
1926 pc,
1927 relocation,
1928 contents,
1929 howto,
1930 input_bfd);
1931 r_type = ELFNN_R_TYPE (rel->r_info);
1932 howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
1933 if (howto == NULL)
1934 r = bfd_reloc_notsupported;
1935 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
1936 relocation, absolute))
1937 r = bfd_reloc_overflow;
1938 break;
1939
1940 case R_RISCV_ADD8:
1941 case R_RISCV_ADD16:
1942 case R_RISCV_ADD32:
1943 case R_RISCV_ADD64:
1944 {
1945 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1946 contents + rel->r_offset);
1947 relocation = old_value + relocation;
1948 }
1949 break;
1950
1951 case R_RISCV_SUB6:
1952 case R_RISCV_SUB8:
1953 case R_RISCV_SUB16:
1954 case R_RISCV_SUB32:
1955 case R_RISCV_SUB64:
1956 {
1957 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1958 contents + rel->r_offset);
1959 relocation = old_value - relocation;
1960 }
1961 break;
1962
1963 case R_RISCV_CALL:
1964 /* Handle a call to an undefined weak function. This won't be
1965 relaxed, so we have to handle it here. */
1966 if (h != NULL && h->root.type == bfd_link_hash_undefweak
1967 && h->plt.offset == MINUS_ONE)
1968 {
1969 /* We can use x0 as the base register. */
1970 bfd_vma insn = bfd_get_32 (input_bfd,
1971 contents + rel->r_offset + 4);
1972 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
1973 bfd_put_32 (input_bfd, insn, contents + rel->r_offset + 4);
1974 /* Set the relocation value so that we get 0 after the pc
1975 relative adjustment. */
1976 relocation = sec_addr (input_section) + rel->r_offset;
1977 }
1978 /* Fall through. */
1979
1980 case R_RISCV_CALL_PLT:
1981 case R_RISCV_JAL:
1982 case R_RISCV_RVC_JUMP:
1983 if (bfd_link_pic (info) && h != NULL && h->plt.offset != MINUS_ONE)
1984 {
1985 /* Refer to the PLT entry. */
1986 relocation = sec_addr (htab->elf.splt) + h->plt.offset;
1987 unresolved_reloc = FALSE;
1988 }
1989 break;
1990
1991 case R_RISCV_TPREL_HI20:
1992 relocation = tpoff (info, relocation);
1993 break;
1994
1995 case R_RISCV_TPREL_LO12_I:
1996 case R_RISCV_TPREL_LO12_S:
1997 relocation = tpoff (info, relocation);
1998 break;
1999
2000 case R_RISCV_TPREL_I:
2001 case R_RISCV_TPREL_S:
2002 relocation = tpoff (info, relocation);
2003 if (VALID_ITYPE_IMM (relocation + rel->r_addend))
2004 {
2005 /* We can use tp as the base register. */
2006 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
2007 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
2008 insn |= X_TP << OP_SH_RS1;
2009 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
2010 }
2011 else
2012 r = bfd_reloc_overflow;
2013 break;
2014
2015 case R_RISCV_GPREL_I:
2016 case R_RISCV_GPREL_S:
2017 {
2018 bfd_vma gp = riscv_global_pointer_value (info);
2019 bfd_boolean x0_base = VALID_ITYPE_IMM (relocation + rel->r_addend);
2020 if (x0_base || VALID_ITYPE_IMM (relocation + rel->r_addend - gp))
2021 {
2022 /* We can use x0 or gp as the base register. */
2023 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
2024 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
2025 if (!x0_base)
2026 {
2027 rel->r_addend -= gp;
2028 insn |= X_GP << OP_SH_RS1;
2029 }
2030 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
2031 }
2032 else
2033 r = bfd_reloc_overflow;
2034 break;
2035 }
2036
2037 case R_RISCV_PCREL_HI20:
2038 absolute = riscv_zero_pcrel_hi_reloc (rel,
2039 info,
2040 pc,
2041 relocation,
2042 contents,
2043 howto,
2044 input_bfd);
2045 r_type = ELFNN_R_TYPE (rel->r_info);
2046 howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
2047 if (howto == NULL)
2048 r = bfd_reloc_notsupported;
2049 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2050 relocation + rel->r_addend,
2051 absolute))
2052 r = bfd_reloc_overflow;
2053 break;
2054
2055 case R_RISCV_PCREL_LO12_I:
2056 case R_RISCV_PCREL_LO12_S:
2057 /* We don't allow section symbols plus addends as the auipc address,
2058 because then riscv_relax_delete_bytes would have to search through
2059 all relocs to update these addends. This is also ambiguous, as
2060 we do allow offsets to be added to the target address, which are
2061 not to be used to find the auipc address. */
2062 if (((sym != NULL && (ELF_ST_TYPE (sym->st_info) == STT_SECTION))
2063 || (h != NULL && h->type == STT_SECTION))
2064 && rel->r_addend)
2065 {
2066 r = bfd_reloc_dangerous;
2067 break;
2068 }
2069
2070 if (riscv_record_pcrel_lo_reloc (&pcrel_relocs, input_section, info,
2071 howto, rel, relocation, name,
2072 contents))
2073 continue;
2074 r = bfd_reloc_overflow;
2075 break;
2076
2077 case R_RISCV_TLS_DTPREL32:
2078 case R_RISCV_TLS_DTPREL64:
2079 relocation = dtpoff (info, relocation);
2080 break;
2081
2082 case R_RISCV_32:
2083 case R_RISCV_64:
2084 if ((input_section->flags & SEC_ALLOC) == 0)
2085 break;
2086
2087 if ((bfd_link_pic (info)
2088 && (h == NULL
2089 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2090 && !resolved_to_zero)
2091 || h->root.type != bfd_link_hash_undefweak)
2092 && (! howto->pc_relative
2093 || !SYMBOL_CALLS_LOCAL (info, h)))
2094 || (!bfd_link_pic (info)
2095 && h != NULL
2096 && h->dynindx != -1
2097 && !h->non_got_ref
2098 && ((h->def_dynamic
2099 && !h->def_regular)
2100 || h->root.type == bfd_link_hash_undefweak
2101 || h->root.type == bfd_link_hash_undefined)))
2102 {
2103 Elf_Internal_Rela outrel;
2104 bfd_boolean skip_static_relocation, skip_dynamic_relocation;
2105
2106 /* When generating a shared object, these relocations
2107 are copied into the output file to be resolved at run
2108 time. */
2109
2110 outrel.r_offset =
2111 _bfd_elf_section_offset (output_bfd, info, input_section,
2112 rel->r_offset);
2113 skip_static_relocation = outrel.r_offset != (bfd_vma) -2;
2114 skip_dynamic_relocation = outrel.r_offset >= (bfd_vma) -2;
2115 outrel.r_offset += sec_addr (input_section);
2116
2117 if (skip_dynamic_relocation)
2118 memset (&outrel, 0, sizeof outrel);
2119 else if (h != NULL && h->dynindx != -1
2120 && !(bfd_link_pic (info)
2121 && SYMBOLIC_BIND (info, h)
2122 && h->def_regular))
2123 {
2124 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
2125 outrel.r_addend = rel->r_addend;
2126 }
2127 else
2128 {
2129 outrel.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2130 outrel.r_addend = relocation + rel->r_addend;
2131 }
2132
2133 riscv_elf_append_rela (output_bfd, sreloc, &outrel);
2134 if (skip_static_relocation)
2135 continue;
2136 }
2137 break;
2138
2139 case R_RISCV_TLS_GOT_HI20:
2140 is_ie = TRUE;
2141 /* Fall through. */
2142
2143 case R_RISCV_TLS_GD_HI20:
2144 if (h != NULL)
2145 {
2146 off = h->got.offset;
2147 h->got.offset |= 1;
2148 }
2149 else
2150 {
2151 off = local_got_offsets[r_symndx];
2152 local_got_offsets[r_symndx] |= 1;
2153 }
2154
2155 tls_type = _bfd_riscv_elf_tls_type (input_bfd, h, r_symndx);
2156 BFD_ASSERT (tls_type & (GOT_TLS_IE | GOT_TLS_GD));
2157 /* If this symbol is referenced by both GD and IE TLS, the IE
2158 reference's GOT slot follows the GD reference's slots. */
2159 ie_off = 0;
2160 if ((tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_IE))
2161 ie_off = 2 * GOT_ENTRY_SIZE;
2162
2163 if ((off & 1) != 0)
2164 off &= ~1;
2165 else
2166 {
2167 Elf_Internal_Rela outrel;
2168 int indx = 0;
2169 bfd_boolean need_relocs = FALSE;
2170
2171 if (htab->elf.srelgot == NULL)
2172 abort ();
2173
2174 if (h != NULL)
2175 {
2176 bfd_boolean dyn, pic;
2177 dyn = htab->elf.dynamic_sections_created;
2178 pic = bfd_link_pic (info);
2179
2180 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
2181 && (!pic || !SYMBOL_REFERENCES_LOCAL (info, h)))
2182 indx = h->dynindx;
2183 }
2184
2185 /* The GOT entries have not been initialized yet. Do it
2186 now, and emit any relocations. */
2187 if ((bfd_link_pic (info) || indx != 0)
2188 && (h == NULL
2189 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2190 || h->root.type != bfd_link_hash_undefweak))
2191 need_relocs = TRUE;
2192
2193 if (tls_type & GOT_TLS_GD)
2194 {
2195 if (need_relocs)
2196 {
2197 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
2198 outrel.r_addend = 0;
2199 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPMODNN);
2200 bfd_put_NN (output_bfd, 0,
2201 htab->elf.sgot->contents + off);
2202 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2203 if (indx == 0)
2204 {
2205 BFD_ASSERT (! unresolved_reloc);
2206 bfd_put_NN (output_bfd,
2207 dtpoff (info, relocation),
2208 (htab->elf.sgot->contents + off +
2209 RISCV_ELF_WORD_BYTES));
2210 }
2211 else
2212 {
2213 bfd_put_NN (output_bfd, 0,
2214 (htab->elf.sgot->contents + off +
2215 RISCV_ELF_WORD_BYTES));
2216 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPRELNN);
2217 outrel.r_offset += RISCV_ELF_WORD_BYTES;
2218 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2219 }
2220 }
2221 else
2222 {
2223 /* If we are not emitting relocations for a
2224 general dynamic reference, then we must be in a
2225 static link or an executable link with the
2226 symbol binding locally. Mark it as belonging
2227 to module 1, the executable. */
2228 bfd_put_NN (output_bfd, 1,
2229 htab->elf.sgot->contents + off);
2230 bfd_put_NN (output_bfd,
2231 dtpoff (info, relocation),
2232 (htab->elf.sgot->contents + off +
2233 RISCV_ELF_WORD_BYTES));
2234 }
2235 }
2236
2237 if (tls_type & GOT_TLS_IE)
2238 {
2239 if (need_relocs)
2240 {
2241 bfd_put_NN (output_bfd, 0,
2242 htab->elf.sgot->contents + off + ie_off);
2243 outrel.r_offset = sec_addr (htab->elf.sgot)
2244 + off + ie_off;
2245 outrel.r_addend = 0;
2246 if (indx == 0)
2247 outrel.r_addend = tpoff (info, relocation);
2248 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_TPRELNN);
2249 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2250 }
2251 else
2252 {
2253 bfd_put_NN (output_bfd, tpoff (info, relocation),
2254 htab->elf.sgot->contents + off + ie_off);
2255 }
2256 }
2257 }
2258
2259 BFD_ASSERT (off < (bfd_vma) -2);
2260 relocation = sec_addr (htab->elf.sgot) + off + (is_ie ? ie_off : 0);
2261 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2262 relocation, FALSE))
2263 r = bfd_reloc_overflow;
2264 unresolved_reloc = FALSE;
2265 break;
2266
2267 default:
2268 r = bfd_reloc_notsupported;
2269 }
2270
2271 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2272 because such sections are not SEC_ALLOC and thus ld.so will
2273 not process them. */
2274 if (unresolved_reloc
2275 && !((input_section->flags & SEC_DEBUGGING) != 0
2276 && h->def_dynamic)
2277 && _bfd_elf_section_offset (output_bfd, info, input_section,
2278 rel->r_offset) != (bfd_vma) -1)
2279 {
2280 (*_bfd_error_handler)
2281 (_("%pB(%pA+%#" PRIx64 "): "
2282 "unresolvable %s relocation against symbol `%s'"),
2283 input_bfd,
2284 input_section,
2285 (uint64_t) rel->r_offset,
2286 howto->name,
2287 h->root.root.string);
2288 continue;
2289 }
2290
2291 if (r == bfd_reloc_ok)
2292 r = perform_relocation (howto, rel, relocation, input_section,
2293 input_bfd, contents);
2294
2295 switch (r)
2296 {
2297 case bfd_reloc_ok:
2298 continue;
2299
2300 case bfd_reloc_overflow:
2301 info->callbacks->reloc_overflow
2302 (info, (h ? &h->root : NULL), name, howto->name,
2303 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
2304 break;
2305
2306 case bfd_reloc_undefined:
2307 info->callbacks->undefined_symbol
2308 (info, name, input_bfd, input_section, rel->r_offset,
2309 TRUE);
2310 break;
2311
2312 case bfd_reloc_outofrange:
2313 msg = _("%X%P: internal error: out of range error\n");
2314 break;
2315
2316 case bfd_reloc_notsupported:
2317 msg = _("%X%P: internal error: unsupported relocation error\n");
2318 break;
2319
2320 case bfd_reloc_dangerous:
2321 info->callbacks->reloc_dangerous
2322 (info, "%pcrel_lo section symbol with an addend", input_bfd,
2323 input_section, rel->r_offset);
2324 break;
2325
2326 default:
2327 msg = _("%X%P: internal error: unknown error\n");
2328 break;
2329 }
2330
2331 if (msg)
2332 info->callbacks->einfo (msg);
2333
2334 /* We already reported the error via a callback, so don't try to report
2335 it again by returning false. That leads to spurious errors. */
2336 ret = TRUE;
2337 goto out;
2338 }
2339
2340 ret = riscv_resolve_pcrel_lo_relocs (&pcrel_relocs);
2341 out:
2342 riscv_free_pcrel_relocs (&pcrel_relocs);
2343 return ret;
2344 }
2345
2346 /* Finish up dynamic symbol handling. We set the contents of various
2347 dynamic sections here. */
2348
2349 static bfd_boolean
2350 riscv_elf_finish_dynamic_symbol (bfd *output_bfd,
2351 struct bfd_link_info *info,
2352 struct elf_link_hash_entry *h,
2353 Elf_Internal_Sym *sym)
2354 {
2355 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2356 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2357
2358 if (h->plt.offset != (bfd_vma) -1)
2359 {
2360 /* We've decided to create a PLT entry for this symbol. */
2361 bfd_byte *loc;
2362 bfd_vma i, header_address, plt_idx, got_address;
2363 uint32_t plt_entry[PLT_ENTRY_INSNS];
2364 Elf_Internal_Rela rela;
2365
2366 BFD_ASSERT (h->dynindx != -1);
2367
2368 /* Calculate the address of the PLT header. */
2369 header_address = sec_addr (htab->elf.splt);
2370
2371 /* Calculate the index of the entry. */
2372 plt_idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
2373
2374 /* Calculate the address of the .got.plt entry. */
2375 got_address = riscv_elf_got_plt_val (plt_idx, info);
2376
2377 /* Find out where the .plt entry should go. */
2378 loc = htab->elf.splt->contents + h->plt.offset;
2379
2380 /* Fill in the PLT entry itself. */
2381 if (! riscv_make_plt_entry (output_bfd, got_address,
2382 header_address + h->plt.offset,
2383 plt_entry))
2384 return FALSE;
2385
2386 for (i = 0; i < PLT_ENTRY_INSNS; i++)
2387 bfd_put_32 (output_bfd, plt_entry[i], loc + 4*i);
2388
2389 /* Fill in the initial value of the .got.plt entry. */
2390 loc = htab->elf.sgotplt->contents
2391 + (got_address - sec_addr (htab->elf.sgotplt));
2392 bfd_put_NN (output_bfd, sec_addr (htab->elf.splt), loc);
2393
2394 /* Fill in the entry in the .rela.plt section. */
2395 rela.r_offset = got_address;
2396 rela.r_addend = 0;
2397 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_JUMP_SLOT);
2398
2399 loc = htab->elf.srelplt->contents + plt_idx * sizeof (ElfNN_External_Rela);
2400 bed->s->swap_reloca_out (output_bfd, &rela, loc);
2401
2402 if (!h->def_regular)
2403 {
2404 /* Mark the symbol as undefined, rather than as defined in
2405 the .plt section. Leave the value alone. */
2406 sym->st_shndx = SHN_UNDEF;
2407 /* If the symbol is weak, we do need to clear the value.
2408 Otherwise, the PLT entry would provide a definition for
2409 the symbol even if the symbol wasn't defined anywhere,
2410 and so the symbol would never be NULL. */
2411 if (!h->ref_regular_nonweak)
2412 sym->st_value = 0;
2413 }
2414 }
2415
2416 if (h->got.offset != (bfd_vma) -1
2417 && !(riscv_elf_hash_entry (h)->tls_type & (GOT_TLS_GD | GOT_TLS_IE))
2418 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
2419 {
2420 asection *sgot;
2421 asection *srela;
2422 Elf_Internal_Rela rela;
2423
2424 /* This symbol has an entry in the GOT. Set it up. */
2425
2426 sgot = htab->elf.sgot;
2427 srela = htab->elf.srelgot;
2428 BFD_ASSERT (sgot != NULL && srela != NULL);
2429
2430 rela.r_offset = sec_addr (sgot) + (h->got.offset &~ (bfd_vma) 1);
2431
2432 /* If this is a local symbol reference, we just want to emit a RELATIVE
2433 reloc. This can happen if it is a -Bsymbolic link, or a pie link, or
2434 the symbol was forced to be local because of a version file.
2435 The entry in the global offset table will already have been
2436 initialized in the relocate_section function. */
2437 if (bfd_link_pic (info)
2438 && SYMBOL_REFERENCES_LOCAL (info, h))
2439 {
2440 BFD_ASSERT((h->got.offset & 1) != 0);
2441 asection *sec = h->root.u.def.section;
2442 rela.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2443 rela.r_addend = (h->root.u.def.value
2444 + sec->output_section->vma
2445 + sec->output_offset);
2446 }
2447 else
2448 {
2449 BFD_ASSERT((h->got.offset & 1) == 0);
2450 BFD_ASSERT (h->dynindx != -1);
2451 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN);
2452 rela.r_addend = 0;
2453 }
2454
2455 bfd_put_NN (output_bfd, 0,
2456 sgot->contents + (h->got.offset & ~(bfd_vma) 1));
2457 riscv_elf_append_rela (output_bfd, srela, &rela);
2458 }
2459
2460 if (h->needs_copy)
2461 {
2462 Elf_Internal_Rela rela;
2463 asection *s;
2464
2465 /* This symbols needs a copy reloc. Set it up. */
2466 BFD_ASSERT (h->dynindx != -1);
2467
2468 rela.r_offset = sec_addr (h->root.u.def.section) + h->root.u.def.value;
2469 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_COPY);
2470 rela.r_addend = 0;
2471 if (h->root.u.def.section == htab->elf.sdynrelro)
2472 s = htab->elf.sreldynrelro;
2473 else
2474 s = htab->elf.srelbss;
2475 riscv_elf_append_rela (output_bfd, s, &rela);
2476 }
2477
2478 /* Mark some specially defined symbols as absolute. */
2479 if (h == htab->elf.hdynamic
2480 || (h == htab->elf.hgot || h == htab->elf.hplt))
2481 sym->st_shndx = SHN_ABS;
2482
2483 return TRUE;
2484 }
2485
2486 /* Finish up the dynamic sections. */
2487
2488 static bfd_boolean
2489 riscv_finish_dyn (bfd *output_bfd, struct bfd_link_info *info,
2490 bfd *dynobj, asection *sdyn)
2491 {
2492 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2493 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2494 size_t dynsize = bed->s->sizeof_dyn;
2495 bfd_byte *dyncon, *dynconend;
2496
2497 dynconend = sdyn->contents + sdyn->size;
2498 for (dyncon = sdyn->contents; dyncon < dynconend; dyncon += dynsize)
2499 {
2500 Elf_Internal_Dyn dyn;
2501 asection *s;
2502
2503 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
2504
2505 switch (dyn.d_tag)
2506 {
2507 case DT_PLTGOT:
2508 s = htab->elf.sgotplt;
2509 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2510 break;
2511 case DT_JMPREL:
2512 s = htab->elf.srelplt;
2513 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2514 break;
2515 case DT_PLTRELSZ:
2516 s = htab->elf.srelplt;
2517 dyn.d_un.d_val = s->size;
2518 break;
2519 default:
2520 continue;
2521 }
2522
2523 bed->s->swap_dyn_out (output_bfd, &dyn, dyncon);
2524 }
2525 return TRUE;
2526 }
2527
2528 static bfd_boolean
2529 riscv_elf_finish_dynamic_sections (bfd *output_bfd,
2530 struct bfd_link_info *info)
2531 {
2532 bfd *dynobj;
2533 asection *sdyn;
2534 struct riscv_elf_link_hash_table *htab;
2535
2536 htab = riscv_elf_hash_table (info);
2537 BFD_ASSERT (htab != NULL);
2538 dynobj = htab->elf.dynobj;
2539
2540 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2541
2542 if (elf_hash_table (info)->dynamic_sections_created)
2543 {
2544 asection *splt;
2545 bfd_boolean ret;
2546
2547 splt = htab->elf.splt;
2548 BFD_ASSERT (splt != NULL && sdyn != NULL);
2549
2550 ret = riscv_finish_dyn (output_bfd, info, dynobj, sdyn);
2551
2552 if (!ret)
2553 return ret;
2554
2555 /* Fill in the head and tail entries in the procedure linkage table. */
2556 if (splt->size > 0)
2557 {
2558 int i;
2559 uint32_t plt_header[PLT_HEADER_INSNS];
2560 ret = riscv_make_plt_header (output_bfd,
2561 sec_addr (htab->elf.sgotplt),
2562 sec_addr (splt), plt_header);
2563 if (!ret)
2564 return ret;
2565
2566 for (i = 0; i < PLT_HEADER_INSNS; i++)
2567 bfd_put_32 (output_bfd, plt_header[i], splt->contents + 4*i);
2568
2569 elf_section_data (splt->output_section)->this_hdr.sh_entsize
2570 = PLT_ENTRY_SIZE;
2571 }
2572 }
2573
2574 if (htab->elf.sgotplt)
2575 {
2576 asection *output_section = htab->elf.sgotplt->output_section;
2577
2578 if (bfd_is_abs_section (output_section))
2579 {
2580 (*_bfd_error_handler)
2581 (_("discarded output section: `%pA'"), htab->elf.sgotplt);
2582 return FALSE;
2583 }
2584
2585 if (htab->elf.sgotplt->size > 0)
2586 {
2587 /* Write the first two entries in .got.plt, needed for the dynamic
2588 linker. */
2589 bfd_put_NN (output_bfd, (bfd_vma) -1, htab->elf.sgotplt->contents);
2590 bfd_put_NN (output_bfd, (bfd_vma) 0,
2591 htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
2592 }
2593
2594 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2595 }
2596
2597 if (htab->elf.sgot)
2598 {
2599 asection *output_section = htab->elf.sgot->output_section;
2600
2601 if (htab->elf.sgot->size > 0)
2602 {
2603 /* Set the first entry in the global offset table to the address of
2604 the dynamic section. */
2605 bfd_vma val = sdyn ? sec_addr (sdyn) : 0;
2606 bfd_put_NN (output_bfd, val, htab->elf.sgot->contents);
2607 }
2608
2609 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2610 }
2611
2612 return TRUE;
2613 }
2614
2615 /* Return address for Ith PLT stub in section PLT, for relocation REL
2616 or (bfd_vma) -1 if it should not be included. */
2617
2618 static bfd_vma
2619 riscv_elf_plt_sym_val (bfd_vma i, const asection *plt,
2620 const arelent *rel ATTRIBUTE_UNUSED)
2621 {
2622 return plt->vma + PLT_HEADER_SIZE + i * PLT_ENTRY_SIZE;
2623 }
2624
2625 static enum elf_reloc_type_class
2626 riscv_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2627 const asection *rel_sec ATTRIBUTE_UNUSED,
2628 const Elf_Internal_Rela *rela)
2629 {
2630 switch (ELFNN_R_TYPE (rela->r_info))
2631 {
2632 case R_RISCV_RELATIVE:
2633 return reloc_class_relative;
2634 case R_RISCV_JUMP_SLOT:
2635 return reloc_class_plt;
2636 case R_RISCV_COPY:
2637 return reloc_class_copy;
2638 default:
2639 return reloc_class_normal;
2640 }
2641 }
2642
2643 /* Given the ELF header flags in FLAGS, it returns a string that describes the
2644 float ABI. */
2645
2646 static const char *
2647 riscv_float_abi_string (flagword flags)
2648 {
2649 switch (flags & EF_RISCV_FLOAT_ABI)
2650 {
2651 case EF_RISCV_FLOAT_ABI_SOFT:
2652 return "soft-float";
2653 break;
2654 case EF_RISCV_FLOAT_ABI_SINGLE:
2655 return "single-float";
2656 break;
2657 case EF_RISCV_FLOAT_ABI_DOUBLE:
2658 return "double-float";
2659 break;
2660 case EF_RISCV_FLOAT_ABI_QUAD:
2661 return "quad-float";
2662 break;
2663 default:
2664 abort ();
2665 }
2666 }
2667
2668 /* The information of architecture attribute. */
2669 static riscv_subset_list_t in_subsets;
2670 static riscv_subset_list_t out_subsets;
2671 static riscv_subset_list_t merged_subsets;
2672
2673 /* Predicator for standard extension. */
2674
2675 static bfd_boolean
2676 riscv_std_ext_p (const char *name)
2677 {
2678 return (strlen (name) == 1) && (name[0] != 'x') && (name[0] != 's');
2679 }
2680
2681 /* Predicator for non-standard extension. */
2682
2683 static bfd_boolean
2684 riscv_non_std_ext_p (const char *name)
2685 {
2686 return (strlen (name) >= 2) && (name[0] == 'x');
2687 }
2688
2689 /* Predicator for standard supervisor extension. */
2690
2691 static bfd_boolean
2692 riscv_std_sv_ext_p (const char *name)
2693 {
2694 return (strlen (name) >= 2) && (name[0] == 's') && (name[1] != 'x');
2695 }
2696
2697 /* Predicator for non-standard supervisor extension. */
2698
2699 static bfd_boolean
2700 riscv_non_std_sv_ext_p (const char *name)
2701 {
2702 return (strlen (name) >= 3) && (name[0] == 's') && (name[1] == 'x');
2703 }
2704
2705 /* Error handler when version mis-match. */
2706
2707 static void
2708 riscv_version_mismatch (bfd *ibfd,
2709 struct riscv_subset_t *in,
2710 struct riscv_subset_t *out)
2711 {
2712 _bfd_error_handler
2713 (_("error: %pB: Mis-matched ISA version for '%s' extension. "
2714 "%d.%d vs %d.%d"),
2715 ibfd, in->name,
2716 in->major_version, in->minor_version,
2717 out->major_version, out->minor_version);
2718 }
2719
2720 /* Return true if subset is 'i' or 'e'. */
2721
2722 static bfd_boolean
2723 riscv_i_or_e_p (bfd *ibfd,
2724 const char *arch,
2725 struct riscv_subset_t *subset)
2726 {
2727 if ((strcasecmp (subset->name, "e") != 0)
2728 && (strcasecmp (subset->name, "i") != 0))
2729 {
2730 _bfd_error_handler
2731 (_("error: %pB: corrupted ISA string '%s'. "
2732 "First letter should be 'i' or 'e' but got '%s'."),
2733 ibfd, arch, subset->name);
2734 return FALSE;
2735 }
2736 return TRUE;
2737 }
2738
2739 /* Merge standard extensions.
2740
2741 Return Value:
2742 Return FALSE if failed to merge.
2743
2744 Arguments:
2745 `bfd`: bfd handler.
2746 `in_arch`: Raw arch string for input object.
2747 `out_arch`: Raw arch string for output object.
2748 `pin`: subset list for input object, and it'll skip all merged subset after
2749 merge.
2750 `pout`: Like `pin`, but for output object. */
2751
2752 static bfd_boolean
2753 riscv_merge_std_ext (bfd *ibfd,
2754 const char *in_arch,
2755 const char *out_arch,
2756 struct riscv_subset_t **pin,
2757 struct riscv_subset_t **pout)
2758 {
2759 const char *standard_exts = riscv_supported_std_ext ();
2760 const char *p;
2761 struct riscv_subset_t *in = *pin;
2762 struct riscv_subset_t *out = *pout;
2763
2764 /* First letter should be 'i' or 'e'. */
2765 if (!riscv_i_or_e_p (ibfd, in_arch, in))
2766 return FALSE;
2767
2768 if (!riscv_i_or_e_p (ibfd, out_arch, out))
2769 return FALSE;
2770
2771 if (in->name[0] != out->name[0])
2772 {
2773 /* TODO: We might allow merge 'i' with 'e'. */
2774 _bfd_error_handler
2775 (_("error: %pB: Mis-matched ISA string to merge '%s' and '%s'."),
2776 ibfd, in->name, out->name);
2777 return FALSE;
2778 }
2779 else if ((in->major_version != out->major_version) ||
2780 (in->minor_version != out->minor_version))
2781 {
2782 /* TODO: Allow different merge policy. */
2783 riscv_version_mismatch (ibfd, in, out);
2784 return FALSE;
2785 }
2786 else
2787 riscv_add_subset (&merged_subsets,
2788 in->name, in->major_version, in->minor_version);
2789
2790 in = in->next;
2791 out = out->next;
2792
2793 /* Handle standard extension first. */
2794 for (p = standard_exts; *p; ++p)
2795 {
2796 char find_ext[2] = {*p, '\0'};
2797 struct riscv_subset_t *find_in =
2798 riscv_lookup_subset (&in_subsets, find_ext);
2799 struct riscv_subset_t *find_out =
2800 riscv_lookup_subset (&out_subsets, find_ext);
2801
2802 if (find_in == NULL && find_out == NULL)
2803 continue;
2804
2805 /* Check version is same or not. */
2806 /* TODO: Allow different merge policy. */
2807 if ((find_in != NULL && find_out != NULL)
2808 && ((find_in->major_version != find_out->major_version)
2809 || (find_in->minor_version != find_out->minor_version)))
2810 {
2811 riscv_version_mismatch (ibfd, in, out);
2812 return FALSE;
2813 }
2814
2815 struct riscv_subset_t *merged = find_in ? find_in : find_out;
2816 riscv_add_subset (&merged_subsets, merged->name,
2817 merged->major_version, merged->minor_version);
2818 }
2819
2820 /* Skip all standard extensions. */
2821 while ((in != NULL) && riscv_std_ext_p (in->name)) in = in->next;
2822 while ((out != NULL) && riscv_std_ext_p (out->name)) out = out->next;
2823
2824 *pin = in;
2825 *pout = out;
2826
2827 return TRUE;
2828 }
2829
2830 /* Merge non-standard and supervisor extensions.
2831 Return Value:
2832 Return FALSE if failed to merge.
2833
2834 Arguments:
2835 `bfd`: bfd handler.
2836 `in_arch`: Raw arch string for input object.
2837 `out_arch`: Raw arch string for output object.
2838 `pin`: subset list for input object, and it'll skip all merged subset after
2839 merge.
2840 `pout`: Like `pin`, but for output object. */
2841
2842 static bfd_boolean
2843 riscv_merge_non_std_and_sv_ext (bfd *ibfd,
2844 riscv_subset_t **pin,
2845 riscv_subset_t **pout,
2846 bfd_boolean (*predicate_func) (const char *))
2847 {
2848 riscv_subset_t *in = *pin;
2849 riscv_subset_t *out = *pout;
2850
2851 for (in = *pin; in != NULL && predicate_func (in->name); in = in->next)
2852 riscv_add_subset (&merged_subsets, in->name, in->major_version,
2853 in->minor_version);
2854
2855 for (out = *pout; out != NULL && predicate_func (out->name); out = out->next)
2856 {
2857 riscv_subset_t *find_ext =
2858 riscv_lookup_subset (&merged_subsets, out->name);
2859 if (find_ext != NULL)
2860 {
2861 /* Check version is same or not. */
2862 /* TODO: Allow different merge policy. */
2863 if ((find_ext->major_version != out->major_version)
2864 || (find_ext->minor_version != out->minor_version))
2865 {
2866 riscv_version_mismatch (ibfd, find_ext, out);
2867 return FALSE;
2868 }
2869 }
2870 else
2871 riscv_add_subset (&merged_subsets, out->name,
2872 out->major_version, out->minor_version);
2873 }
2874
2875 *pin = in;
2876 *pout = out;
2877 return TRUE;
2878 }
2879
2880 /* Merge Tag_RISCV_arch attribute. */
2881
2882 static char *
2883 riscv_merge_arch_attr_info (bfd *ibfd, char *in_arch, char *out_arch)
2884 {
2885 riscv_subset_t *in, *out;
2886 char *merged_arch_str;
2887
2888 unsigned xlen_in, xlen_out;
2889 merged_subsets.head = NULL;
2890 merged_subsets.tail = NULL;
2891
2892 riscv_parse_subset_t rpe_in;
2893 riscv_parse_subset_t rpe_out;
2894
2895 rpe_in.subset_list = &in_subsets;
2896 rpe_in.error_handler = _bfd_error_handler;
2897 rpe_in.xlen = &xlen_in;
2898
2899 rpe_out.subset_list = &out_subsets;
2900 rpe_out.error_handler = _bfd_error_handler;
2901 rpe_out.xlen = &xlen_out;
2902
2903 if (in_arch == NULL && out_arch == NULL)
2904 return NULL;
2905
2906 if (in_arch == NULL && out_arch != NULL)
2907 return out_arch;
2908
2909 if (in_arch != NULL && out_arch == NULL)
2910 return in_arch;
2911
2912 /* Parse subset from arch string. */
2913 if (!riscv_parse_subset (&rpe_in, in_arch))
2914 return NULL;
2915
2916 if (!riscv_parse_subset (&rpe_out, out_arch))
2917 return NULL;
2918
2919 /* Checking XLEN. */
2920 if (xlen_out != xlen_in)
2921 {
2922 _bfd_error_handler
2923 (_("error: %pB: ISA string of input (%s) doesn't match "
2924 "output (%s)."), ibfd, in_arch, out_arch);
2925 return NULL;
2926 }
2927
2928 /* Merge subset list. */
2929 in = in_subsets.head;
2930 out = out_subsets.head;
2931
2932 /* Merge standard extension. */
2933 if (!riscv_merge_std_ext (ibfd, in_arch, out_arch, &in, &out))
2934 return NULL;
2935 /* Merge non-standard extension. */
2936 if (!riscv_merge_non_std_and_sv_ext (ibfd, &in, &out, riscv_non_std_ext_p))
2937 return NULL;
2938 /* Merge standard supervisor extension. */
2939 if (!riscv_merge_non_std_and_sv_ext (ibfd, &in, &out, riscv_std_sv_ext_p))
2940 return NULL;
2941 /* Merge non-standard supervisor extension. */
2942 if (!riscv_merge_non_std_and_sv_ext (ibfd, &in, &out, riscv_non_std_sv_ext_p))
2943 return NULL;
2944
2945 if (xlen_in != xlen_out)
2946 {
2947 _bfd_error_handler
2948 (_("error: %pB: XLEN of input (%u) doesn't match "
2949 "output (%u)."), ibfd, xlen_in, xlen_out);
2950 return NULL;
2951 }
2952
2953 if (xlen_in != ARCH_SIZE)
2954 {
2955 _bfd_error_handler
2956 (_("error: %pB: Unsupported XLEN (%u), you might be "
2957 "using wrong emulation."), ibfd, xlen_in);
2958 return NULL;
2959 }
2960
2961 merged_arch_str = riscv_arch_str (ARCH_SIZE, &merged_subsets);
2962
2963 /* Release the subset lists. */
2964 riscv_release_subset_list (&in_subsets);
2965 riscv_release_subset_list (&out_subsets);
2966 riscv_release_subset_list (&merged_subsets);
2967
2968 return merged_arch_str;
2969 }
2970
2971 /* Merge object attributes from IBFD into output_bfd of INFO.
2972 Raise an error if there are conflicting attributes. */
2973
2974 static bfd_boolean
2975 riscv_merge_attributes (bfd *ibfd, struct bfd_link_info *info)
2976 {
2977 bfd *obfd = info->output_bfd;
2978 obj_attribute *in_attr;
2979 obj_attribute *out_attr;
2980 bfd_boolean result = TRUE;
2981 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
2982 unsigned int i;
2983
2984 /* Skip linker created files. */
2985 if (ibfd->flags & BFD_LINKER_CREATED)
2986 return TRUE;
2987
2988 /* Skip any input that doesn't have an attribute section.
2989 This enables to link object files without attribute section with
2990 any others. */
2991 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
2992 return TRUE;
2993
2994 if (!elf_known_obj_attributes_proc (obfd)[0].i)
2995 {
2996 /* This is the first object. Copy the attributes. */
2997 _bfd_elf_copy_obj_attributes (ibfd, obfd);
2998
2999 out_attr = elf_known_obj_attributes_proc (obfd);
3000
3001 /* Use the Tag_null value to indicate the attributes have been
3002 initialized. */
3003 out_attr[0].i = 1;
3004
3005 return TRUE;
3006 }
3007
3008 in_attr = elf_known_obj_attributes_proc (ibfd);
3009 out_attr = elf_known_obj_attributes_proc (obfd);
3010
3011 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
3012 {
3013 switch (i)
3014 {
3015 case Tag_RISCV_arch:
3016 if (!out_attr[Tag_RISCV_arch].s)
3017 out_attr[Tag_RISCV_arch].s = in_attr[Tag_RISCV_arch].s;
3018 else if (in_attr[Tag_RISCV_arch].s
3019 && out_attr[Tag_RISCV_arch].s)
3020 {
3021 /* Check arch compatible. */
3022 char *merged_arch =
3023 riscv_merge_arch_attr_info (ibfd,
3024 in_attr[Tag_RISCV_arch].s,
3025 out_attr[Tag_RISCV_arch].s);
3026 if (merged_arch == NULL)
3027 {
3028 result = FALSE;
3029 out_attr[Tag_RISCV_arch].s = "";
3030 }
3031 else
3032 out_attr[Tag_RISCV_arch].s = merged_arch;
3033 }
3034 break;
3035 case Tag_RISCV_priv_spec:
3036 case Tag_RISCV_priv_spec_minor:
3037 case Tag_RISCV_priv_spec_revision:
3038 if (out_attr[i].i != in_attr[i].i)
3039 {
3040 _bfd_error_handler
3041 (_("error: %pB: conflicting priv spec version "
3042 "(major/minor/revision)."), ibfd);
3043 result = FALSE;
3044 }
3045 break;
3046 case Tag_RISCV_unaligned_access:
3047 out_attr[i].i |= in_attr[i].i;
3048 break;
3049 case Tag_RISCV_stack_align:
3050 if (out_attr[i].i == 0)
3051 out_attr[i].i = in_attr[i].i;
3052 else if (in_attr[i].i != 0
3053 && out_attr[i].i != 0
3054 && out_attr[i].i != in_attr[i].i)
3055 {
3056 _bfd_error_handler
3057 (_("error: %pB use %u-byte stack aligned but the output "
3058 "use %u-byte stack aligned."),
3059 ibfd, in_attr[i].i, out_attr[i].i);
3060 result = FALSE;
3061 }
3062 break;
3063 default:
3064 result &= _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
3065 }
3066
3067 /* If out_attr was copied from in_attr then it won't have a type yet. */
3068 if (in_attr[i].type && !out_attr[i].type)
3069 out_attr[i].type = in_attr[i].type;
3070 }
3071
3072 /* Merge Tag_compatibility attributes and any common GNU ones. */
3073 if (!_bfd_elf_merge_object_attributes (ibfd, info))
3074 return FALSE;
3075
3076 /* Check for any attributes not known on RISC-V. */
3077 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
3078
3079 return result;
3080 }
3081
3082 /* Merge backend specific data from an object file to the output
3083 object file when linking. */
3084
3085 static bfd_boolean
3086 _bfd_riscv_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
3087 {
3088 bfd *obfd = info->output_bfd;
3089 flagword new_flags, old_flags;
3090
3091 if (!is_riscv_elf (ibfd) || !is_riscv_elf (obfd))
3092 return TRUE;
3093
3094 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
3095 {
3096 (*_bfd_error_handler)
3097 (_("%pB: ABI is incompatible with that of the selected emulation:\n"
3098 " target emulation `%s' does not match `%s'"),
3099 ibfd, bfd_get_target (ibfd), bfd_get_target (obfd));
3100 return FALSE;
3101 }
3102
3103 if (!_bfd_elf_merge_object_attributes (ibfd, info))
3104 return FALSE;
3105
3106 if (!riscv_merge_attributes (ibfd, info))
3107 return FALSE;
3108
3109 new_flags = elf_elfheader (ibfd)->e_flags;
3110 old_flags = elf_elfheader (obfd)->e_flags;
3111
3112 if (! elf_flags_init (obfd))
3113 {
3114 elf_flags_init (obfd) = TRUE;
3115 elf_elfheader (obfd)->e_flags = new_flags;
3116 return TRUE;
3117 }
3118
3119 /* Check to see if the input BFD actually contains any sections. If not,
3120 its flags may not have been initialized either, but it cannot actually
3121 cause any incompatibility. Do not short-circuit dynamic objects; their
3122 section list may be emptied by elf_link_add_object_symbols.
3123
3124 Also check to see if there are no code sections in the input. In this
3125 case, there is no need to check for code specific flags. */
3126 if (!(ibfd->flags & DYNAMIC))
3127 {
3128 bfd_boolean null_input_bfd = TRUE;
3129 bfd_boolean only_data_sections = TRUE;
3130 asection *sec;
3131
3132 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
3133 {
3134 if ((bfd_get_section_flags (ibfd, sec)
3135 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
3136 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
3137 only_data_sections = FALSE;
3138
3139 null_input_bfd = FALSE;
3140 break;
3141 }
3142
3143 if (null_input_bfd || only_data_sections)
3144 return TRUE;
3145 }
3146
3147 /* Disallow linking different float ABIs. */
3148 if ((old_flags ^ new_flags) & EF_RISCV_FLOAT_ABI)
3149 {
3150 (*_bfd_error_handler)
3151 (_("%pB: can't link %s modules with %s modules"), ibfd,
3152 riscv_float_abi_string (new_flags),
3153 riscv_float_abi_string (old_flags));
3154 goto fail;
3155 }
3156
3157 /* Disallow linking RVE and non-RVE. */
3158 if ((old_flags ^ new_flags) & EF_RISCV_RVE)
3159 {
3160 (*_bfd_error_handler)
3161 (_("%pB: can't link RVE with other target"), ibfd);
3162 goto fail;
3163 }
3164
3165 /* Allow linking RVC and non-RVC, and keep the RVC flag. */
3166 elf_elfheader (obfd)->e_flags |= new_flags & EF_RISCV_RVC;
3167
3168 return TRUE;
3169
3170 fail:
3171 bfd_set_error (bfd_error_bad_value);
3172 return FALSE;
3173 }
3174
3175 /* Delete some bytes from a section while relaxing. */
3176
3177 static bfd_boolean
3178 riscv_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, size_t count,
3179 struct bfd_link_info *link_info)
3180 {
3181 unsigned int i, symcount;
3182 bfd_vma toaddr = sec->size;
3183 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd);
3184 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
3185 unsigned int sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
3186 struct bfd_elf_section_data *data = elf_section_data (sec);
3187 bfd_byte *contents = data->this_hdr.contents;
3188
3189 /* Actually delete the bytes. */
3190 sec->size -= count;
3191 memmove (contents + addr, contents + addr + count, toaddr - addr - count);
3192
3193 /* Adjust the location of all of the relocs. Note that we need not
3194 adjust the addends, since all PC-relative references must be against
3195 symbols, which we will adjust below. */
3196 for (i = 0; i < sec->reloc_count; i++)
3197 if (data->relocs[i].r_offset > addr && data->relocs[i].r_offset < toaddr)
3198 data->relocs[i].r_offset -= count;
3199
3200 /* Adjust the local symbols defined in this section. */
3201 for (i = 0; i < symtab_hdr->sh_info; i++)
3202 {
3203 Elf_Internal_Sym *sym = (Elf_Internal_Sym *) symtab_hdr->contents + i;
3204 if (sym->st_shndx == sec_shndx)
3205 {
3206 /* If the symbol is in the range of memory we just moved, we
3207 have to adjust its value. */
3208 if (sym->st_value > addr && sym->st_value <= toaddr)
3209 sym->st_value -= count;
3210
3211 /* If the symbol *spans* the bytes we just deleted (i.e. its
3212 *end* is in the moved bytes but its *start* isn't), then we
3213 must adjust its size.
3214
3215 This test needs to use the original value of st_value, otherwise
3216 we might accidentally decrease size when deleting bytes right
3217 before the symbol. But since deleted relocs can't span across
3218 symbols, we can't have both a st_value and a st_size decrease,
3219 so it is simpler to just use an else. */
3220 else if (sym->st_value <= addr
3221 && sym->st_value + sym->st_size > addr
3222 && sym->st_value + sym->st_size <= toaddr)
3223 sym->st_size -= count;
3224 }
3225 }
3226
3227 /* Now adjust the global symbols defined in this section. */
3228 symcount = ((symtab_hdr->sh_size / sizeof (ElfNN_External_Sym))
3229 - symtab_hdr->sh_info);
3230
3231 for (i = 0; i < symcount; i++)
3232 {
3233 struct elf_link_hash_entry *sym_hash = sym_hashes[i];
3234
3235 /* The '--wrap SYMBOL' option is causing a pain when the object file,
3236 containing the definition of __wrap_SYMBOL, includes a direct
3237 call to SYMBOL as well. Since both __wrap_SYMBOL and SYMBOL reference
3238 the same symbol (which is __wrap_SYMBOL), but still exist as two
3239 different symbols in 'sym_hashes', we don't want to adjust
3240 the global symbol __wrap_SYMBOL twice. */
3241 /* The same problem occurs with symbols that are versioned_hidden, as
3242 foo becomes an alias for foo@BAR, and hence they need the same
3243 treatment. */
3244 if (link_info->wrap_hash != NULL
3245 || sym_hash->versioned == versioned_hidden)
3246 {
3247 struct elf_link_hash_entry **cur_sym_hashes;
3248
3249 /* Loop only over the symbols which have already been checked. */
3250 for (cur_sym_hashes = sym_hashes; cur_sym_hashes < &sym_hashes[i];
3251 cur_sym_hashes++)
3252 {
3253 /* If the current symbol is identical to 'sym_hash', that means
3254 the symbol was already adjusted (or at least checked). */
3255 if (*cur_sym_hashes == sym_hash)
3256 break;
3257 }
3258 /* Don't adjust the symbol again. */
3259 if (cur_sym_hashes < &sym_hashes[i])
3260 continue;
3261 }
3262
3263 if ((sym_hash->root.type == bfd_link_hash_defined
3264 || sym_hash->root.type == bfd_link_hash_defweak)
3265 && sym_hash->root.u.def.section == sec)
3266 {
3267 /* As above, adjust the value if needed. */
3268 if (sym_hash->root.u.def.value > addr
3269 && sym_hash->root.u.def.value <= toaddr)
3270 sym_hash->root.u.def.value -= count;
3271
3272 /* As above, adjust the size if needed. */
3273 else if (sym_hash->root.u.def.value <= addr
3274 && sym_hash->root.u.def.value + sym_hash->size > addr
3275 && sym_hash->root.u.def.value + sym_hash->size <= toaddr)
3276 sym_hash->size -= count;
3277 }
3278 }
3279
3280 return TRUE;
3281 }
3282
3283 /* A second format for recording PC-relative hi relocations. This stores the
3284 information required to relax them to GP-relative addresses. */
3285
3286 typedef struct riscv_pcgp_hi_reloc riscv_pcgp_hi_reloc;
3287 struct riscv_pcgp_hi_reloc
3288 {
3289 bfd_vma hi_sec_off;
3290 bfd_vma hi_addend;
3291 bfd_vma hi_addr;
3292 unsigned hi_sym;
3293 asection *sym_sec;
3294 riscv_pcgp_hi_reloc *next;
3295 };
3296
3297 typedef struct riscv_pcgp_lo_reloc riscv_pcgp_lo_reloc;
3298 struct riscv_pcgp_lo_reloc
3299 {
3300 bfd_vma hi_sec_off;
3301 riscv_pcgp_lo_reloc *next;
3302 };
3303
3304 typedef struct
3305 {
3306 riscv_pcgp_hi_reloc *hi;
3307 riscv_pcgp_lo_reloc *lo;
3308 } riscv_pcgp_relocs;
3309
3310 /* Initialize the pcgp reloc info in P. */
3311
3312 static bfd_boolean
3313 riscv_init_pcgp_relocs (riscv_pcgp_relocs *p)
3314 {
3315 p->hi = NULL;
3316 p->lo = NULL;
3317 return TRUE;
3318 }
3319
3320 /* Free the pcgp reloc info in P. */
3321
3322 static void
3323 riscv_free_pcgp_relocs (riscv_pcgp_relocs *p,
3324 bfd *abfd ATTRIBUTE_UNUSED,
3325 asection *sec ATTRIBUTE_UNUSED)
3326 {
3327 riscv_pcgp_hi_reloc *c;
3328 riscv_pcgp_lo_reloc *l;
3329
3330 for (c = p->hi; c != NULL;)
3331 {
3332 riscv_pcgp_hi_reloc *next = c->next;
3333 free (c);
3334 c = next;
3335 }
3336
3337 for (l = p->lo; l != NULL;)
3338 {
3339 riscv_pcgp_lo_reloc *next = l->next;
3340 free (l);
3341 l = next;
3342 }
3343 }
3344
3345 /* Record pcgp hi part reloc info in P, using HI_SEC_OFF as the lookup index.
3346 The HI_ADDEND, HI_ADDR, HI_SYM, and SYM_SEC args contain info required to
3347 relax the corresponding lo part reloc. */
3348
3349 static bfd_boolean
3350 riscv_record_pcgp_hi_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off,
3351 bfd_vma hi_addend, bfd_vma hi_addr,
3352 unsigned hi_sym, asection *sym_sec)
3353 {
3354 riscv_pcgp_hi_reloc *new = bfd_malloc (sizeof(*new));
3355 if (!new)
3356 return FALSE;
3357 new->hi_sec_off = hi_sec_off;
3358 new->hi_addend = hi_addend;
3359 new->hi_addr = hi_addr;
3360 new->hi_sym = hi_sym;
3361 new->sym_sec = sym_sec;
3362 new->next = p->hi;
3363 p->hi = new;
3364 return TRUE;
3365 }
3366
3367 /* Look up hi part pcgp reloc info in P, using HI_SEC_OFF as the lookup index.
3368 This is used by a lo part reloc to find the corresponding hi part reloc. */
3369
3370 static riscv_pcgp_hi_reloc *
3371 riscv_find_pcgp_hi_reloc(riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
3372 {
3373 riscv_pcgp_hi_reloc *c;
3374
3375 for (c = p->hi; c != NULL; c = c->next)
3376 if (c->hi_sec_off == hi_sec_off)
3377 return c;
3378 return NULL;
3379 }
3380
3381 /* Record pcgp lo part reloc info in P, using HI_SEC_OFF as the lookup info.
3382 This is used to record relocs that can't be relaxed. */
3383
3384 static bfd_boolean
3385 riscv_record_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
3386 {
3387 riscv_pcgp_lo_reloc *new = bfd_malloc (sizeof(*new));
3388 if (!new)
3389 return FALSE;
3390 new->hi_sec_off = hi_sec_off;
3391 new->next = p->lo;
3392 p->lo = new;
3393 return TRUE;
3394 }
3395
3396 /* Look up lo part pcgp reloc info in P, using HI_SEC_OFF as the lookup index.
3397 This is used by a hi part reloc to find the corresponding lo part reloc. */
3398
3399 static bfd_boolean
3400 riscv_find_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
3401 {
3402 riscv_pcgp_lo_reloc *c;
3403
3404 for (c = p->lo; c != NULL; c = c->next)
3405 if (c->hi_sec_off == hi_sec_off)
3406 return TRUE;
3407 return FALSE;
3408 }
3409
3410 typedef bfd_boolean (*relax_func_t) (bfd *, asection *, asection *,
3411 struct bfd_link_info *,
3412 Elf_Internal_Rela *,
3413 bfd_vma, bfd_vma, bfd_vma, bfd_boolean *,
3414 riscv_pcgp_relocs *);
3415
3416 /* Relax AUIPC + JALR into JAL. */
3417
3418 static bfd_boolean
3419 _bfd_riscv_relax_call (bfd *abfd, asection *sec, asection *sym_sec,
3420 struct bfd_link_info *link_info,
3421 Elf_Internal_Rela *rel,
3422 bfd_vma symval,
3423 bfd_vma max_alignment,
3424 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3425 bfd_boolean *again,
3426 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
3427 {
3428 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3429 bfd_signed_vma foff = symval - (sec_addr (sec) + rel->r_offset);
3430 bfd_boolean near_zero = (symval + RISCV_IMM_REACH/2) < RISCV_IMM_REACH;
3431 bfd_vma auipc, jalr;
3432 int rd, r_type, len = 4, rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
3433
3434 /* If the call crosses section boundaries, an alignment directive could
3435 cause the PC-relative offset to later increase. */
3436 if (VALID_UJTYPE_IMM (foff) && sym_sec->output_section != sec->output_section)
3437 foff += (foff < 0 ? -max_alignment : max_alignment);
3438
3439 /* See if this function call can be shortened. */
3440 if (!VALID_UJTYPE_IMM (foff) && !(!bfd_link_pic (link_info) && near_zero))
3441 return TRUE;
3442
3443 /* Shorten the function call. */
3444 BFD_ASSERT (rel->r_offset + 8 <= sec->size);
3445
3446 auipc = bfd_get_32 (abfd, contents + rel->r_offset);
3447 jalr = bfd_get_32 (abfd, contents + rel->r_offset + 4);
3448 rd = (jalr >> OP_SH_RD) & OP_MASK_RD;
3449 rvc = rvc && VALID_RVC_J_IMM (foff);
3450
3451 /* C.J exists on RV32 and RV64, but C.JAL is RV32-only. */
3452 rvc = rvc && (rd == 0 || (rd == X_RA && ARCH_SIZE == 32));
3453
3454 if (rvc)
3455 {
3456 /* Relax to C.J[AL] rd, addr. */
3457 r_type = R_RISCV_RVC_JUMP;
3458 auipc = rd == 0 ? MATCH_C_J : MATCH_C_JAL;
3459 len = 2;
3460 }
3461 else if (VALID_UJTYPE_IMM (foff))
3462 {
3463 /* Relax to JAL rd, addr. */
3464 r_type = R_RISCV_JAL;
3465 auipc = MATCH_JAL | (rd << OP_SH_RD);
3466 }
3467 else /* near_zero */
3468 {
3469 /* Relax to JALR rd, x0, addr. */
3470 r_type = R_RISCV_LO12_I;
3471 auipc = MATCH_JALR | (rd << OP_SH_RD);
3472 }
3473
3474 /* Replace the R_RISCV_CALL reloc. */
3475 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), r_type);
3476 /* Replace the AUIPC. */
3477 bfd_put (8 * len, abfd, auipc, contents + rel->r_offset);
3478
3479 /* Delete unnecessary JALR. */
3480 *again = TRUE;
3481 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + len, 8 - len,
3482 link_info);
3483 }
3484
3485 /* Traverse all output sections and return the max alignment. */
3486
3487 static bfd_vma
3488 _bfd_riscv_get_max_alignment (asection *sec)
3489 {
3490 unsigned int max_alignment_power = 0;
3491 asection *o;
3492
3493 for (o = sec->output_section->owner->sections; o != NULL; o = o->next)
3494 {
3495 if (o->alignment_power > max_alignment_power)
3496 max_alignment_power = o->alignment_power;
3497 }
3498
3499 return (bfd_vma) 1 << max_alignment_power;
3500 }
3501
3502 /* Relax non-PIC global variable references. */
3503
3504 static bfd_boolean
3505 _bfd_riscv_relax_lui (bfd *abfd,
3506 asection *sec,
3507 asection *sym_sec,
3508 struct bfd_link_info *link_info,
3509 Elf_Internal_Rela *rel,
3510 bfd_vma symval,
3511 bfd_vma max_alignment,
3512 bfd_vma reserve_size,
3513 bfd_boolean *again,
3514 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
3515 {
3516 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3517 bfd_vma gp = riscv_global_pointer_value (link_info);
3518 int use_rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
3519
3520 /* Mergeable symbols and code might later move out of range. */
3521 if (sym_sec->flags & (SEC_MERGE | SEC_CODE))
3522 return TRUE;
3523
3524 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3525
3526 if (gp)
3527 {
3528 /* If gp and the symbol are in the same output section, then
3529 consider only that section's alignment. */
3530 struct bfd_link_hash_entry *h =
3531 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE,
3532 TRUE);
3533 if (h->u.def.section->output_section == sym_sec->output_section)
3534 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
3535 }
3536
3537 /* Is the reference in range of x0 or gp?
3538 Valid gp range conservatively because of alignment issue. */
3539 if (VALID_ITYPE_IMM (symval)
3540 || (symval >= gp
3541 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
3542 || (symval < gp
3543 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))
3544 {
3545 unsigned sym = ELFNN_R_SYM (rel->r_info);
3546 switch (ELFNN_R_TYPE (rel->r_info))
3547 {
3548 case R_RISCV_LO12_I:
3549 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
3550 return TRUE;
3551
3552 case R_RISCV_LO12_S:
3553 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
3554 return TRUE;
3555
3556 case R_RISCV_HI20:
3557 /* We can delete the unnecessary LUI and reloc. */
3558 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3559 *again = TRUE;
3560 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4,
3561 link_info);
3562
3563 default:
3564 abort ();
3565 }
3566 }
3567
3568 /* Can we relax LUI to C.LUI? Alignment might move the section forward;
3569 account for this assuming page alignment at worst. */
3570 if (use_rvc
3571 && ELFNN_R_TYPE (rel->r_info) == R_RISCV_HI20
3572 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval))
3573 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval + ELF_MAXPAGESIZE)))
3574 {
3575 /* Replace LUI with C.LUI if legal (i.e., rd != x0 and rd != x2/sp). */
3576 bfd_vma lui = bfd_get_32 (abfd, contents + rel->r_offset);
3577 unsigned rd = ((unsigned)lui >> OP_SH_RD) & OP_MASK_RD;
3578 if (rd == 0 || rd == X_SP)
3579 return TRUE;
3580
3581 lui = (lui & (OP_MASK_RD << OP_SH_RD)) | MATCH_C_LUI;
3582 bfd_put_32 (abfd, lui, contents + rel->r_offset);
3583
3584 /* Replace the R_RISCV_HI20 reloc. */
3585 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_RVC_LUI);
3586
3587 *again = TRUE;
3588 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + 2, 2,
3589 link_info);
3590 }
3591
3592 return TRUE;
3593 }
3594
3595 /* Relax non-PIC TLS references. */
3596
3597 static bfd_boolean
3598 _bfd_riscv_relax_tls_le (bfd *abfd,
3599 asection *sec,
3600 asection *sym_sec ATTRIBUTE_UNUSED,
3601 struct bfd_link_info *link_info,
3602 Elf_Internal_Rela *rel,
3603 bfd_vma symval,
3604 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3605 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3606 bfd_boolean *again,
3607 riscv_pcgp_relocs *prcel_relocs ATTRIBUTE_UNUSED)
3608 {
3609 /* See if this symbol is in range of tp. */
3610 if (RISCV_CONST_HIGH_PART (tpoff (link_info, symval)) != 0)
3611 return TRUE;
3612
3613 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3614 switch (ELFNN_R_TYPE (rel->r_info))
3615 {
3616 case R_RISCV_TPREL_LO12_I:
3617 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_I);
3618 return TRUE;
3619
3620 case R_RISCV_TPREL_LO12_S:
3621 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_S);
3622 return TRUE;
3623
3624 case R_RISCV_TPREL_HI20:
3625 case R_RISCV_TPREL_ADD:
3626 /* We can delete the unnecessary instruction and reloc. */
3627 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3628 *again = TRUE;
3629 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4, link_info);
3630
3631 default:
3632 abort ();
3633 }
3634 }
3635
3636 /* Implement R_RISCV_ALIGN by deleting excess alignment NOPs. */
3637
3638 static bfd_boolean
3639 _bfd_riscv_relax_align (bfd *abfd, asection *sec,
3640 asection *sym_sec,
3641 struct bfd_link_info *link_info,
3642 Elf_Internal_Rela *rel,
3643 bfd_vma symval,
3644 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3645 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3646 bfd_boolean *again ATTRIBUTE_UNUSED,
3647 riscv_pcgp_relocs *pcrel_relocs ATTRIBUTE_UNUSED)
3648 {
3649 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3650 bfd_vma alignment = 1, pos;
3651 while (alignment <= rel->r_addend)
3652 alignment *= 2;
3653
3654 symval -= rel->r_addend;
3655 bfd_vma aligned_addr = ((symval - 1) & ~(alignment - 1)) + alignment;
3656 bfd_vma nop_bytes = aligned_addr - symval;
3657
3658 /* Once we've handled an R_RISCV_ALIGN, we can't relax anything else. */
3659 sec->sec_flg0 = TRUE;
3660
3661 /* Make sure there are enough NOPs to actually achieve the alignment. */
3662 if (rel->r_addend < nop_bytes)
3663 {
3664 _bfd_error_handler
3665 (_("%pB(%pA+%#" PRIx64 "): %" PRId64 " bytes required for alignment "
3666 "to %" PRId64 "-byte boundary, but only %" PRId64 " present"),
3667 abfd, sym_sec, (uint64_t) rel->r_offset,
3668 (int64_t) nop_bytes, (int64_t) alignment, (int64_t) rel->r_addend);
3669 bfd_set_error (bfd_error_bad_value);
3670 return FALSE;
3671 }
3672
3673 /* Delete the reloc. */
3674 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3675
3676 /* If the number of NOPs is already correct, there's nothing to do. */
3677 if (nop_bytes == rel->r_addend)
3678 return TRUE;
3679
3680 /* Write as many RISC-V NOPs as we need. */
3681 for (pos = 0; pos < (nop_bytes & -4); pos += 4)
3682 bfd_put_32 (abfd, RISCV_NOP, contents + rel->r_offset + pos);
3683
3684 /* Write a final RVC NOP if need be. */
3685 if (nop_bytes % 4 != 0)
3686 bfd_put_16 (abfd, RVC_NOP, contents + rel->r_offset + pos);
3687
3688 /* Delete the excess bytes. */
3689 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + nop_bytes,
3690 rel->r_addend - nop_bytes, link_info);
3691 }
3692
3693 /* Relax PC-relative references to GP-relative references. */
3694
3695 static bfd_boolean
3696 _bfd_riscv_relax_pc (bfd *abfd ATTRIBUTE_UNUSED,
3697 asection *sec,
3698 asection *sym_sec,
3699 struct bfd_link_info *link_info,
3700 Elf_Internal_Rela *rel,
3701 bfd_vma symval,
3702 bfd_vma max_alignment,
3703 bfd_vma reserve_size,
3704 bfd_boolean *again ATTRIBUTE_UNUSED,
3705 riscv_pcgp_relocs *pcgp_relocs)
3706 {
3707 bfd_vma gp = riscv_global_pointer_value (link_info);
3708
3709 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3710
3711 /* Chain the _LO relocs to their cooresponding _HI reloc to compute the
3712 * actual target address. */
3713 riscv_pcgp_hi_reloc hi_reloc;
3714 memset (&hi_reloc, 0, sizeof (hi_reloc));
3715 switch (ELFNN_R_TYPE (rel->r_info))
3716 {
3717 case R_RISCV_PCREL_LO12_I:
3718 case R_RISCV_PCREL_LO12_S:
3719 {
3720 /* If the %lo has an addend, it isn't for the label pointing at the
3721 hi part instruction, but rather for the symbol pointed at by the
3722 hi part instruction. So we must subtract it here for the lookup.
3723 It is still used below in the final symbol address. */
3724 bfd_vma hi_sec_off = symval - sec_addr (sym_sec) - rel->r_addend;
3725 riscv_pcgp_hi_reloc *hi = riscv_find_pcgp_hi_reloc (pcgp_relocs,
3726 hi_sec_off);
3727 if (hi == NULL)
3728 {
3729 riscv_record_pcgp_lo_reloc (pcgp_relocs, hi_sec_off);
3730 return TRUE;
3731 }
3732
3733 hi_reloc = *hi;
3734 symval = hi_reloc.hi_addr;
3735 sym_sec = hi_reloc.sym_sec;
3736 }
3737 break;
3738
3739 case R_RISCV_PCREL_HI20:
3740 /* Mergeable symbols and code might later move out of range. */
3741 if (sym_sec->flags & (SEC_MERGE | SEC_CODE))
3742 return TRUE;
3743
3744 /* If the cooresponding lo relocation has already been seen then it's not
3745 * safe to relax this relocation. */
3746 if (riscv_find_pcgp_lo_reloc (pcgp_relocs, rel->r_offset))
3747 return TRUE;
3748
3749 break;
3750
3751 default:
3752 abort ();
3753 }
3754
3755 if (gp)
3756 {
3757 /* If gp and the symbol are in the same output section, then
3758 consider only that section's alignment. */
3759 struct bfd_link_hash_entry *h =
3760 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE);
3761 if (h->u.def.section->output_section == sym_sec->output_section)
3762 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
3763 }
3764
3765 /* Is the reference in range of x0 or gp?
3766 Valid gp range conservatively because of alignment issue. */
3767 if (VALID_ITYPE_IMM (symval)
3768 || (symval >= gp
3769 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
3770 || (symval < gp
3771 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))
3772 {
3773 unsigned sym = hi_reloc.hi_sym;
3774 switch (ELFNN_R_TYPE (rel->r_info))
3775 {
3776 case R_RISCV_PCREL_LO12_I:
3777 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
3778 rel->r_addend += hi_reloc.hi_addend;
3779 return TRUE;
3780
3781 case R_RISCV_PCREL_LO12_S:
3782 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
3783 rel->r_addend += hi_reloc.hi_addend;
3784 return TRUE;
3785
3786 case R_RISCV_PCREL_HI20:
3787 riscv_record_pcgp_hi_reloc (pcgp_relocs,
3788 rel->r_offset,
3789 rel->r_addend,
3790 symval,
3791 ELFNN_R_SYM(rel->r_info),
3792 sym_sec);
3793 /* We can delete the unnecessary AUIPC and reloc. */
3794 rel->r_info = ELFNN_R_INFO (0, R_RISCV_DELETE);
3795 rel->r_addend = 4;
3796 return TRUE;
3797
3798 default:
3799 abort ();
3800 }
3801 }
3802
3803 return TRUE;
3804 }
3805
3806 /* Relax PC-relative references to GP-relative references. */
3807
3808 static bfd_boolean
3809 _bfd_riscv_relax_delete (bfd *abfd,
3810 asection *sec,
3811 asection *sym_sec ATTRIBUTE_UNUSED,
3812 struct bfd_link_info *link_info,
3813 Elf_Internal_Rela *rel,
3814 bfd_vma symval ATTRIBUTE_UNUSED,
3815 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3816 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3817 bfd_boolean *again ATTRIBUTE_UNUSED,
3818 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
3819 {
3820 if (!riscv_relax_delete_bytes(abfd, sec, rel->r_offset, rel->r_addend,
3821 link_info))
3822 return FALSE;
3823 rel->r_info = ELFNN_R_INFO(0, R_RISCV_NONE);
3824 return TRUE;
3825 }
3826
3827 /* Relax a section. Pass 0 shortens code sequences unless disabled. Pass 1
3828 deletes the bytes that pass 0 made obselete. Pass 2, which cannot be
3829 disabled, handles code alignment directives. */
3830
3831 static bfd_boolean
3832 _bfd_riscv_relax_section (bfd *abfd, asection *sec,
3833 struct bfd_link_info *info,
3834 bfd_boolean *again)
3835 {
3836 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd);
3837 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
3838 struct bfd_elf_section_data *data = elf_section_data (sec);
3839 Elf_Internal_Rela *relocs;
3840 bfd_boolean ret = FALSE;
3841 unsigned int i;
3842 bfd_vma max_alignment, reserve_size = 0;
3843 riscv_pcgp_relocs pcgp_relocs;
3844
3845 *again = FALSE;
3846
3847 if (bfd_link_relocatable (info)
3848 || sec->sec_flg0
3849 || (sec->flags & SEC_RELOC) == 0
3850 || sec->reloc_count == 0
3851 || (info->disable_target_specific_optimizations
3852 && info->relax_pass == 0))
3853 return TRUE;
3854
3855 riscv_init_pcgp_relocs (&pcgp_relocs);
3856
3857 /* Read this BFD's relocs if we haven't done so already. */
3858 if (data->relocs)
3859 relocs = data->relocs;
3860 else if (!(relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
3861 info->keep_memory)))
3862 goto fail;
3863
3864 if (htab)
3865 {
3866 max_alignment = htab->max_alignment;
3867 if (max_alignment == (bfd_vma) -1)
3868 {
3869 max_alignment = _bfd_riscv_get_max_alignment (sec);
3870 htab->max_alignment = max_alignment;
3871 }
3872 }
3873 else
3874 max_alignment = _bfd_riscv_get_max_alignment (sec);
3875
3876 /* Examine and consider relaxing each reloc. */
3877 for (i = 0; i < sec->reloc_count; i++)
3878 {
3879 asection *sym_sec;
3880 Elf_Internal_Rela *rel = relocs + i;
3881 relax_func_t relax_func;
3882 int type = ELFNN_R_TYPE (rel->r_info);
3883 bfd_vma symval;
3884
3885 relax_func = NULL;
3886 if (info->relax_pass == 0)
3887 {
3888 if (type == R_RISCV_CALL || type == R_RISCV_CALL_PLT)
3889 relax_func = _bfd_riscv_relax_call;
3890 else if (type == R_RISCV_HI20
3891 || type == R_RISCV_LO12_I
3892 || type == R_RISCV_LO12_S)
3893 relax_func = _bfd_riscv_relax_lui;
3894 else if (!bfd_link_pic(info)
3895 && (type == R_RISCV_PCREL_HI20
3896 || type == R_RISCV_PCREL_LO12_I
3897 || type == R_RISCV_PCREL_LO12_S))
3898 relax_func = _bfd_riscv_relax_pc;
3899 else if (type == R_RISCV_TPREL_HI20
3900 || type == R_RISCV_TPREL_ADD
3901 || type == R_RISCV_TPREL_LO12_I
3902 || type == R_RISCV_TPREL_LO12_S)
3903 relax_func = _bfd_riscv_relax_tls_le;
3904 else
3905 continue;
3906
3907 /* Only relax this reloc if it is paired with R_RISCV_RELAX. */
3908 if (i == sec->reloc_count - 1
3909 || ELFNN_R_TYPE ((rel + 1)->r_info) != R_RISCV_RELAX
3910 || rel->r_offset != (rel + 1)->r_offset)
3911 continue;
3912
3913 /* Skip over the R_RISCV_RELAX. */
3914 i++;
3915 }
3916 else if (info->relax_pass == 1 && type == R_RISCV_DELETE)
3917 relax_func = _bfd_riscv_relax_delete;
3918 else if (info->relax_pass == 2 && type == R_RISCV_ALIGN)
3919 relax_func = _bfd_riscv_relax_align;
3920 else
3921 continue;
3922
3923 data->relocs = relocs;
3924
3925 /* Read this BFD's contents if we haven't done so already. */
3926 if (!data->this_hdr.contents
3927 && !bfd_malloc_and_get_section (abfd, sec, &data->this_hdr.contents))
3928 goto fail;
3929
3930 /* Read this BFD's symbols if we haven't done so already. */
3931 if (symtab_hdr->sh_info != 0
3932 && !symtab_hdr->contents
3933 && !(symtab_hdr->contents =
3934 (unsigned char *) bfd_elf_get_elf_syms (abfd, symtab_hdr,
3935 symtab_hdr->sh_info,
3936 0, NULL, NULL, NULL)))
3937 goto fail;
3938
3939 /* Get the value of the symbol referred to by the reloc. */
3940 if (ELFNN_R_SYM (rel->r_info) < symtab_hdr->sh_info)
3941 {
3942 /* A local symbol. */
3943 Elf_Internal_Sym *isym = ((Elf_Internal_Sym *) symtab_hdr->contents
3944 + ELFNN_R_SYM (rel->r_info));
3945 reserve_size = (isym->st_size - rel->r_addend) > isym->st_size
3946 ? 0 : isym->st_size - rel->r_addend;
3947
3948 if (isym->st_shndx == SHN_UNDEF)
3949 sym_sec = sec, symval = sec_addr (sec) + rel->r_offset;
3950 else
3951 {
3952 BFD_ASSERT (isym->st_shndx < elf_numsections (abfd));
3953 sym_sec = elf_elfsections (abfd)[isym->st_shndx]->bfd_section;
3954 #if 0
3955 /* The purpose of this code is unknown. It breaks linker scripts
3956 for embedded development that place sections at address zero.
3957 This code is believed to be unnecessary. Disabling it but not
3958 yet removing it, in case something breaks. */
3959 if (sec_addr (sym_sec) == 0)
3960 continue;
3961 #endif
3962 symval = sec_addr (sym_sec) + isym->st_value;
3963 }
3964 }
3965 else
3966 {
3967 unsigned long indx;
3968 struct elf_link_hash_entry *h;
3969
3970 indx = ELFNN_R_SYM (rel->r_info) - symtab_hdr->sh_info;
3971 h = elf_sym_hashes (abfd)[indx];
3972
3973 while (h->root.type == bfd_link_hash_indirect
3974 || h->root.type == bfd_link_hash_warning)
3975 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3976
3977 if (h->plt.offset != MINUS_ONE)
3978 symval = sec_addr (htab->elf.splt) + h->plt.offset;
3979 else if (h->root.u.def.section->output_section == NULL
3980 || (h->root.type != bfd_link_hash_defined
3981 && h->root.type != bfd_link_hash_defweak))
3982 continue;
3983 else
3984 symval = sec_addr (h->root.u.def.section) + h->root.u.def.value;
3985
3986 if (h->type != STT_FUNC)
3987 reserve_size =
3988 (h->size - rel->r_addend) > h->size ? 0 : h->size - rel->r_addend;
3989 sym_sec = h->root.u.def.section;
3990 }
3991
3992 symval += rel->r_addend;
3993
3994 if (!relax_func (abfd, sec, sym_sec, info, rel, symval,
3995 max_alignment, reserve_size, again,
3996 &pcgp_relocs))
3997 goto fail;
3998 }
3999
4000 ret = TRUE;
4001
4002 fail:
4003 if (relocs != data->relocs)
4004 free (relocs);
4005 riscv_free_pcgp_relocs(&pcgp_relocs, abfd, sec);
4006
4007 return ret;
4008 }
4009
4010 #if ARCH_SIZE == 32
4011 # define PRSTATUS_SIZE 204
4012 # define PRSTATUS_OFFSET_PR_CURSIG 12
4013 # define PRSTATUS_OFFSET_PR_PID 24
4014 # define PRSTATUS_OFFSET_PR_REG 72
4015 # define ELF_GREGSET_T_SIZE 128
4016 # define PRPSINFO_SIZE 128
4017 # define PRPSINFO_OFFSET_PR_PID 16
4018 # define PRPSINFO_OFFSET_PR_FNAME 32
4019 # define PRPSINFO_OFFSET_PR_PSARGS 48
4020 #else
4021 # define PRSTATUS_SIZE 376
4022 # define PRSTATUS_OFFSET_PR_CURSIG 12
4023 # define PRSTATUS_OFFSET_PR_PID 32
4024 # define PRSTATUS_OFFSET_PR_REG 112
4025 # define ELF_GREGSET_T_SIZE 256
4026 # define PRPSINFO_SIZE 136
4027 # define PRPSINFO_OFFSET_PR_PID 24
4028 # define PRPSINFO_OFFSET_PR_FNAME 40
4029 # define PRPSINFO_OFFSET_PR_PSARGS 56
4030 #endif
4031
4032 /* Support for core dump NOTE sections. */
4033
4034 static bfd_boolean
4035 riscv_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
4036 {
4037 switch (note->descsz)
4038 {
4039 default:
4040 return FALSE;
4041
4042 case PRSTATUS_SIZE: /* sizeof(struct elf_prstatus) on Linux/RISC-V. */
4043 /* pr_cursig */
4044 elf_tdata (abfd)->core->signal
4045 = bfd_get_16 (abfd, note->descdata + PRSTATUS_OFFSET_PR_CURSIG);
4046
4047 /* pr_pid */
4048 elf_tdata (abfd)->core->lwpid
4049 = bfd_get_32 (abfd, note->descdata + PRSTATUS_OFFSET_PR_PID);
4050 break;
4051 }
4052
4053 /* Make a ".reg/999" section. */
4054 return _bfd_elfcore_make_pseudosection (abfd, ".reg", ELF_GREGSET_T_SIZE,
4055 note->descpos + PRSTATUS_OFFSET_PR_REG);
4056 }
4057
4058 static bfd_boolean
4059 riscv_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
4060 {
4061 switch (note->descsz)
4062 {
4063 default:
4064 return FALSE;
4065
4066 case PRPSINFO_SIZE: /* sizeof(struct elf_prpsinfo) on Linux/RISC-V. */
4067 /* pr_pid */
4068 elf_tdata (abfd)->core->pid
4069 = bfd_get_32 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PID);
4070
4071 /* pr_fname */
4072 elf_tdata (abfd)->core->program = _bfd_elfcore_strndup
4073 (abfd, note->descdata + PRPSINFO_OFFSET_PR_FNAME, 16);
4074
4075 /* pr_psargs */
4076 elf_tdata (abfd)->core->command = _bfd_elfcore_strndup
4077 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PSARGS, 80);
4078 break;
4079 }
4080
4081 /* Note that for some reason, a spurious space is tacked
4082 onto the end of the args in some (at least one anyway)
4083 implementations, so strip it off if it exists. */
4084
4085 {
4086 char *command = elf_tdata (abfd)->core->command;
4087 int n = strlen (command);
4088
4089 if (0 < n && command[n - 1] == ' ')
4090 command[n - 1] = '\0';
4091 }
4092
4093 return TRUE;
4094 }
4095
4096 /* Set the right mach type. */
4097 static bfd_boolean
4098 riscv_elf_object_p (bfd *abfd)
4099 {
4100 /* There are only two mach types in RISCV currently. */
4101 if (strcmp (abfd->xvec->name, "elf32-littleriscv") == 0)
4102 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv32);
4103 else
4104 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv64);
4105
4106 return TRUE;
4107 }
4108
4109 /* Determine whether an object attribute tag takes an integer, a
4110 string or both. */
4111
4112 static int
4113 riscv_elf_obj_attrs_arg_type (int tag)
4114 {
4115 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
4116 }
4117
4118 #define TARGET_LITTLE_SYM riscv_elfNN_vec
4119 #define TARGET_LITTLE_NAME "elfNN-littleriscv"
4120
4121 #define elf_backend_reloc_type_class riscv_reloc_type_class
4122
4123 #define bfd_elfNN_bfd_reloc_name_lookup riscv_reloc_name_lookup
4124 #define bfd_elfNN_bfd_link_hash_table_create riscv_elf_link_hash_table_create
4125 #define bfd_elfNN_bfd_reloc_type_lookup riscv_reloc_type_lookup
4126 #define bfd_elfNN_bfd_merge_private_bfd_data \
4127 _bfd_riscv_elf_merge_private_bfd_data
4128
4129 #define elf_backend_copy_indirect_symbol riscv_elf_copy_indirect_symbol
4130 #define elf_backend_create_dynamic_sections riscv_elf_create_dynamic_sections
4131 #define elf_backend_check_relocs riscv_elf_check_relocs
4132 #define elf_backend_adjust_dynamic_symbol riscv_elf_adjust_dynamic_symbol
4133 #define elf_backend_size_dynamic_sections riscv_elf_size_dynamic_sections
4134 #define elf_backend_relocate_section riscv_elf_relocate_section
4135 #define elf_backend_finish_dynamic_symbol riscv_elf_finish_dynamic_symbol
4136 #define elf_backend_finish_dynamic_sections riscv_elf_finish_dynamic_sections
4137 #define elf_backend_gc_mark_hook riscv_elf_gc_mark_hook
4138 #define elf_backend_plt_sym_val riscv_elf_plt_sym_val
4139 #define elf_backend_grok_prstatus riscv_elf_grok_prstatus
4140 #define elf_backend_grok_psinfo riscv_elf_grok_psinfo
4141 #define elf_backend_object_p riscv_elf_object_p
4142 #define elf_info_to_howto_rel NULL
4143 #define elf_info_to_howto riscv_info_to_howto_rela
4144 #define bfd_elfNN_bfd_relax_section _bfd_riscv_relax_section
4145
4146 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4147
4148 #define elf_backend_can_gc_sections 1
4149 #define elf_backend_can_refcount 1
4150 #define elf_backend_want_got_plt 1
4151 #define elf_backend_plt_readonly 1
4152 #define elf_backend_plt_alignment 4
4153 #define elf_backend_want_plt_sym 1
4154 #define elf_backend_got_header_size (ARCH_SIZE / 8)
4155 #define elf_backend_want_dynrelro 1
4156 #define elf_backend_rela_normal 1
4157 #define elf_backend_default_execstack 0
4158
4159 #undef elf_backend_obj_attrs_vendor
4160 #define elf_backend_obj_attrs_vendor "riscv"
4161 #undef elf_backend_obj_attrs_arg_type
4162 #define elf_backend_obj_attrs_arg_type riscv_elf_obj_attrs_arg_type
4163 #undef elf_backend_obj_attrs_section_type
4164 #define elf_backend_obj_attrs_section_type SHT_RISCV_ATTRIBUTES
4165 #undef elf_backend_obj_attrs_section
4166 #define elf_backend_obj_attrs_section ".riscv.attributes"
4167
4168 #include "elfNN-target.h"