]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elfxx-mips.c
PR31692, objdump fails .debug_info size check
[thirdparty/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */
296 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
297 #define LA25_LUI_MICROMIPS(VAL) \
298 (0x41b90000 | (VAL)) /* lui t9,VAL */
299 #define LA25_J_MICROMIPS(VAL) \
300 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
301 #define LA25_ADDIU_MICROMIPS(VAL) \
302 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
303
304 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
305 the dynamic symbols. */
306
307 struct mips_elf_hash_sort_data
308 {
309 /* The symbol in the global GOT with the lowest dynamic symbol table
310 index. */
311 struct elf_link_hash_entry *low;
312 /* The least dynamic symbol table index corresponding to a non-TLS
313 symbol with a GOT entry. */
314 bfd_size_type min_got_dynindx;
315 /* The greatest dynamic symbol table index corresponding to a symbol
316 with a GOT entry that is not referenced (e.g., a dynamic symbol
317 with dynamic relocations pointing to it from non-primary GOTs). */
318 bfd_size_type max_unref_got_dynindx;
319 /* The greatest dynamic symbol table index corresponding to a local
320 symbol. */
321 bfd_size_type max_local_dynindx;
322 /* The greatest dynamic symbol table index corresponding to an external
323 symbol without a GOT entry. */
324 bfd_size_type max_non_got_dynindx;
325 };
326
327 /* We make up to two PLT entries if needed, one for standard MIPS code
328 and one for compressed code, either a MIPS16 or microMIPS one. We
329 keep a separate record of traditional lazy-binding stubs, for easier
330 processing. */
331
332 struct plt_entry
333 {
334 /* Traditional SVR4 stub offset, or -1 if none. */
335 bfd_vma stub_offset;
336
337 /* Standard PLT entry offset, or -1 if none. */
338 bfd_vma mips_offset;
339
340 /* Compressed PLT entry offset, or -1 if none. */
341 bfd_vma comp_offset;
342
343 /* The corresponding .got.plt index, or -1 if none. */
344 bfd_vma gotplt_index;
345
346 /* Whether we need a standard PLT entry. */
347 unsigned int need_mips : 1;
348
349 /* Whether we need a compressed PLT entry. */
350 unsigned int need_comp : 1;
351 };
352
353 /* The MIPS ELF linker needs additional information for each symbol in
354 the global hash table. */
355
356 struct mips_elf_link_hash_entry
357 {
358 struct elf_link_hash_entry root;
359
360 /* External symbol information. */
361 EXTR esym;
362
363 /* The la25 stub we have created for ths symbol, if any. */
364 struct mips_elf_la25_stub *la25_stub;
365
366 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
367 this symbol. */
368 unsigned int possibly_dynamic_relocs;
369
370 /* If there is a stub that 32 bit functions should use to call this
371 16 bit function, this points to the section containing the stub. */
372 asection *fn_stub;
373
374 /* If there is a stub that 16 bit functions should use to call this
375 32 bit function, this points to the section containing the stub. */
376 asection *call_stub;
377
378 /* This is like the call_stub field, but it is used if the function
379 being called returns a floating point value. */
380 asection *call_fp_stub;
381
382 /* The highest GGA_* value that satisfies all references to this symbol. */
383 unsigned int global_got_area : 2;
384
385 /* True if all GOT relocations against this symbol are for calls. This is
386 a looser condition than no_fn_stub below, because there may be other
387 non-call non-GOT relocations against the symbol. */
388 unsigned int got_only_for_calls : 1;
389
390 /* True if one of the relocations described by possibly_dynamic_relocs
391 is against a readonly section. */
392 unsigned int readonly_reloc : 1;
393
394 /* True if there is a relocation against this symbol that must be
395 resolved by the static linker (in other words, if the relocation
396 cannot possibly be made dynamic). */
397 unsigned int has_static_relocs : 1;
398
399 /* True if we must not create a .MIPS.stubs entry for this symbol.
400 This is set, for example, if there are relocations related to
401 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
402 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
403 unsigned int no_fn_stub : 1;
404
405 /* Whether we need the fn_stub; this is true if this symbol appears
406 in any relocs other than a 16 bit call. */
407 unsigned int need_fn_stub : 1;
408
409 /* True if this symbol is referenced by branch relocations from
410 any non-PIC input file. This is used to determine whether an
411 la25 stub is required. */
412 unsigned int has_nonpic_branches : 1;
413
414 /* Does this symbol need a traditional MIPS lazy-binding stub
415 (as opposed to a PLT entry)? */
416 unsigned int needs_lazy_stub : 1;
417
418 /* Does this symbol resolve to a PLT entry? */
419 unsigned int use_plt_entry : 1;
420 };
421
422 /* MIPS ELF linker hash table. */
423
424 struct mips_elf_link_hash_table
425 {
426 struct elf_link_hash_table root;
427
428 /* The number of .rtproc entries. */
429 bfd_size_type procedure_count;
430
431 /* The size of the .compact_rel section (if SGI_COMPAT). */
432 bfd_size_type compact_rel_size;
433
434 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
435 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
436 bfd_boolean use_rld_obj_head;
437
438 /* The __rld_map or __rld_obj_head symbol. */
439 struct elf_link_hash_entry *rld_symbol;
440
441 /* This is set if we see any mips16 stub sections. */
442 bfd_boolean mips16_stubs_seen;
443
444 /* True if we can generate copy relocs and PLTs. */
445 bfd_boolean use_plts_and_copy_relocs;
446
447 /* True if we can only use 32-bit microMIPS instructions. */
448 bfd_boolean insn32;
449
450 /* True if we suppress checks for invalid branches between ISA modes. */
451 bfd_boolean ignore_branch_isa;
452
453 /* True if we are targetting R6 compact branches. */
454 bfd_boolean compact_branches;
455
456 /* True if we're generating code for VxWorks. */
457 bfd_boolean is_vxworks;
458
459 /* True if we already reported the small-data section overflow. */
460 bfd_boolean small_data_overflow_reported;
461
462 /* True if we use the special `__gnu_absolute_zero' symbol. */
463 bfd_boolean use_absolute_zero;
464
465 /* True if we have been configured for a GNU target. */
466 bfd_boolean gnu_target;
467
468 /* Shortcuts to some dynamic sections, or NULL if they are not
469 being used. */
470 asection *srelplt2;
471 asection *sstubs;
472
473 /* The master GOT information. */
474 struct mips_got_info *got_info;
475
476 /* The global symbol in the GOT with the lowest index in the dynamic
477 symbol table. */
478 struct elf_link_hash_entry *global_gotsym;
479
480 /* The size of the PLT header in bytes. */
481 bfd_vma plt_header_size;
482
483 /* The size of a standard PLT entry in bytes. */
484 bfd_vma plt_mips_entry_size;
485
486 /* The size of a compressed PLT entry in bytes. */
487 bfd_vma plt_comp_entry_size;
488
489 /* The offset of the next standard PLT entry to create. */
490 bfd_vma plt_mips_offset;
491
492 /* The offset of the next compressed PLT entry to create. */
493 bfd_vma plt_comp_offset;
494
495 /* The index of the next .got.plt entry to create. */
496 bfd_vma plt_got_index;
497
498 /* The number of functions that need a lazy-binding stub. */
499 bfd_vma lazy_stub_count;
500
501 /* The size of a function stub entry in bytes. */
502 bfd_vma function_stub_size;
503
504 /* The number of reserved entries at the beginning of the GOT. */
505 unsigned int reserved_gotno;
506
507 /* The section used for mips_elf_la25_stub trampolines.
508 See the comment above that structure for details. */
509 asection *strampoline;
510
511 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
512 pairs. */
513 htab_t la25_stubs;
514
515 /* A function FN (NAME, IS, OS) that creates a new input section
516 called NAME and links it to output section OS. If IS is nonnull,
517 the new section should go immediately before it, otherwise it
518 should go at the (current) beginning of OS.
519
520 The function returns the new section on success, otherwise it
521 returns null. */
522 asection *(*add_stub_section) (const char *, asection *, asection *);
523
524 /* Small local sym cache. */
525 struct sym_cache sym_cache;
526
527 /* Is the PLT header compressed? */
528 unsigned int plt_header_is_comp : 1;
529 };
530
531 /* Get the MIPS ELF linker hash table from a link_info structure. */
532
533 #define mips_elf_hash_table(p) \
534 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
535 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
536
537 /* A structure used to communicate with htab_traverse callbacks. */
538 struct mips_htab_traverse_info
539 {
540 /* The usual link-wide information. */
541 struct bfd_link_info *info;
542 bfd *output_bfd;
543
544 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
545 bfd_boolean error;
546 };
547
548 /* MIPS ELF private object data. */
549
550 struct mips_elf_obj_tdata
551 {
552 /* Generic ELF private object data. */
553 struct elf_obj_tdata root;
554
555 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
556 bfd *abi_fp_bfd;
557
558 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
559 bfd *abi_msa_bfd;
560
561 /* The abiflags for this object. */
562 Elf_Internal_ABIFlags_v0 abiflags;
563 bfd_boolean abiflags_valid;
564
565 /* The GOT requirements of input bfds. */
566 struct mips_got_info *got;
567
568 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
569 included directly in this one, but there's no point to wasting
570 the memory just for the infrequently called find_nearest_line. */
571 struct mips_elf_find_line *find_line_info;
572
573 /* An array of stub sections indexed by symbol number. */
574 asection **local_stubs;
575 asection **local_call_stubs;
576
577 /* The Irix 5 support uses two virtual sections, which represent
578 text/data symbols defined in dynamic objects. */
579 asymbol *elf_data_symbol;
580 asymbol *elf_text_symbol;
581 asection *elf_data_section;
582 asection *elf_text_section;
583 };
584
585 /* Get MIPS ELF private object data from BFD's tdata. */
586
587 #define mips_elf_tdata(bfd) \
588 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
589
590 #define TLS_RELOC_P(r_type) \
591 (r_type == R_MIPS_TLS_DTPMOD32 \
592 || r_type == R_MIPS_TLS_DTPMOD64 \
593 || r_type == R_MIPS_TLS_DTPREL32 \
594 || r_type == R_MIPS_TLS_DTPREL64 \
595 || r_type == R_MIPS_TLS_GD \
596 || r_type == R_MIPS_TLS_LDM \
597 || r_type == R_MIPS_TLS_DTPREL_HI16 \
598 || r_type == R_MIPS_TLS_DTPREL_LO16 \
599 || r_type == R_MIPS_TLS_GOTTPREL \
600 || r_type == R_MIPS_TLS_TPREL32 \
601 || r_type == R_MIPS_TLS_TPREL64 \
602 || r_type == R_MIPS_TLS_TPREL_HI16 \
603 || r_type == R_MIPS_TLS_TPREL_LO16 \
604 || r_type == R_MIPS16_TLS_GD \
605 || r_type == R_MIPS16_TLS_LDM \
606 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
607 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
608 || r_type == R_MIPS16_TLS_GOTTPREL \
609 || r_type == R_MIPS16_TLS_TPREL_HI16 \
610 || r_type == R_MIPS16_TLS_TPREL_LO16 \
611 || r_type == R_MICROMIPS_TLS_GD \
612 || r_type == R_MICROMIPS_TLS_LDM \
613 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
614 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
615 || r_type == R_MICROMIPS_TLS_GOTTPREL \
616 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
617 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
618
619 /* Structure used to pass information to mips_elf_output_extsym. */
620
621 struct extsym_info
622 {
623 bfd *abfd;
624 struct bfd_link_info *info;
625 struct ecoff_debug_info *debug;
626 const struct ecoff_debug_swap *swap;
627 bfd_boolean failed;
628 };
629
630 /* The names of the runtime procedure table symbols used on IRIX5. */
631
632 static const char * const mips_elf_dynsym_rtproc_names[] =
633 {
634 "_procedure_table",
635 "_procedure_string_table",
636 "_procedure_table_size",
637 NULL
638 };
639
640 /* These structures are used to generate the .compact_rel section on
641 IRIX5. */
642
643 typedef struct
644 {
645 unsigned long id1; /* Always one? */
646 unsigned long num; /* Number of compact relocation entries. */
647 unsigned long id2; /* Always two? */
648 unsigned long offset; /* The file offset of the first relocation. */
649 unsigned long reserved0; /* Zero? */
650 unsigned long reserved1; /* Zero? */
651 } Elf32_compact_rel;
652
653 typedef struct
654 {
655 bfd_byte id1[4];
656 bfd_byte num[4];
657 bfd_byte id2[4];
658 bfd_byte offset[4];
659 bfd_byte reserved0[4];
660 bfd_byte reserved1[4];
661 } Elf32_External_compact_rel;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 unsigned long vaddr; /* VADDR to be relocated. */
671 } Elf32_crinfo;
672
673 typedef struct
674 {
675 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
676 unsigned int rtype : 4; /* Relocation types. See below. */
677 unsigned int dist2to : 8;
678 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
679 unsigned long konst; /* KONST field. See below. */
680 } Elf32_crinfo2;
681
682 typedef struct
683 {
684 bfd_byte info[4];
685 bfd_byte konst[4];
686 bfd_byte vaddr[4];
687 } Elf32_External_crinfo;
688
689 typedef struct
690 {
691 bfd_byte info[4];
692 bfd_byte konst[4];
693 } Elf32_External_crinfo2;
694
695 /* These are the constants used to swap the bitfields in a crinfo. */
696
697 #define CRINFO_CTYPE (0x1)
698 #define CRINFO_CTYPE_SH (31)
699 #define CRINFO_RTYPE (0xf)
700 #define CRINFO_RTYPE_SH (27)
701 #define CRINFO_DIST2TO (0xff)
702 #define CRINFO_DIST2TO_SH (19)
703 #define CRINFO_RELVADDR (0x7ffff)
704 #define CRINFO_RELVADDR_SH (0)
705
706 /* A compact relocation info has long (3 words) or short (2 words)
707 formats. A short format doesn't have VADDR field and relvaddr
708 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
709 #define CRF_MIPS_LONG 1
710 #define CRF_MIPS_SHORT 0
711
712 /* There are 4 types of compact relocation at least. The value KONST
713 has different meaning for each type:
714
715 (type) (konst)
716 CT_MIPS_REL32 Address in data
717 CT_MIPS_WORD Address in word (XXX)
718 CT_MIPS_GPHI_LO GP - vaddr
719 CT_MIPS_JMPAD Address to jump
720 */
721
722 #define CRT_MIPS_REL32 0xa
723 #define CRT_MIPS_WORD 0xb
724 #define CRT_MIPS_GPHI_LO 0xc
725 #define CRT_MIPS_JMPAD 0xd
726
727 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
728 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
729 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
730 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
731 \f
732 /* The structure of the runtime procedure descriptor created by the
733 loader for use by the static exception system. */
734
735 typedef struct runtime_pdr {
736 bfd_vma adr; /* Memory address of start of procedure. */
737 long regmask; /* Save register mask. */
738 long regoffset; /* Save register offset. */
739 long fregmask; /* Save floating point register mask. */
740 long fregoffset; /* Save floating point register offset. */
741 long frameoffset; /* Frame size. */
742 short framereg; /* Frame pointer register. */
743 short pcreg; /* Offset or reg of return pc. */
744 long irpss; /* Index into the runtime string table. */
745 long reserved;
746 struct exception_info *exception_info;/* Pointer to exception array. */
747 } RPDR, *pRPDR;
748 #define cbRPDR sizeof (RPDR)
749 #define rpdNil ((pRPDR) 0)
750 \f
751 static struct mips_got_entry *mips_elf_create_local_got_entry
752 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
753 struct mips_elf_link_hash_entry *, int);
754 static bfd_boolean mips_elf_sort_hash_table_f
755 (struct mips_elf_link_hash_entry *, void *);
756 static bfd_vma mips_elf_high
757 (bfd_vma);
758 static bfd_boolean mips_elf_create_dynamic_relocation
759 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
760 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
761 bfd_vma *, asection *);
762 static bfd_vma mips_elf_adjust_gp
763 (bfd *, struct mips_got_info *, bfd *);
764
765 /* This will be used when we sort the dynamic relocation records. */
766 static bfd *reldyn_sorting_bfd;
767
768 /* True if ABFD is for CPUs with load interlocking that include
769 non-MIPS1 CPUs and R3900. */
770 #define LOAD_INTERLOCKS_P(abfd) \
771 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
772 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
773
774 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
775 This should be safe for all architectures. We enable this predicate
776 for RM9000 for now. */
777 #define JAL_TO_BAL_P(abfd) \
778 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
779
780 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
781 This should be safe for all architectures. We enable this predicate for
782 all CPUs. */
783 #define JALR_TO_BAL_P(abfd) 1
784
785 /* True if ABFD is for CPUs that are faster if JR is converted to B.
786 This should be safe for all architectures. We enable this predicate for
787 all CPUs. */
788 #define JR_TO_B_P(abfd) 1
789
790 /* True if ABFD is a PIC object. */
791 #define PIC_OBJECT_P(abfd) \
792 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
793
794 /* Nonzero if ABFD is using the O32 ABI. */
795 #define ABI_O32_P(abfd) \
796 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
797
798 /* Nonzero if ABFD is using the N32 ABI. */
799 #define ABI_N32_P(abfd) \
800 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
801
802 /* Nonzero if ABFD is using the N64 ABI. */
803 #define ABI_64_P(abfd) \
804 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
805
806 /* Nonzero if ABFD is using NewABI conventions. */
807 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
808
809 /* Nonzero if ABFD has microMIPS code. */
810 #define MICROMIPS_P(abfd) \
811 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
812
813 /* Nonzero if ABFD is MIPS R6. */
814 #define MIPSR6_P(abfd) \
815 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
816 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
817
818 /* The IRIX compatibility level we are striving for. */
819 #define IRIX_COMPAT(abfd) \
820 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
821
822 /* Whether we are trying to be compatible with IRIX at all. */
823 #define SGI_COMPAT(abfd) \
824 (IRIX_COMPAT (abfd) != ict_none)
825
826 /* The name of the options section. */
827 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
828 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
829
830 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
831 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
832 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
833 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
834
835 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
836 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
837 (strcmp (NAME, ".MIPS.abiflags") == 0)
838
839 /* Whether the section is readonly. */
840 #define MIPS_ELF_READONLY_SECTION(sec) \
841 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
842 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
843
844 /* The name of the stub section. */
845 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
846
847 /* The size of an external REL relocation. */
848 #define MIPS_ELF_REL_SIZE(abfd) \
849 (get_elf_backend_data (abfd)->s->sizeof_rel)
850
851 /* The size of an external RELA relocation. */
852 #define MIPS_ELF_RELA_SIZE(abfd) \
853 (get_elf_backend_data (abfd)->s->sizeof_rela)
854
855 /* The size of an external dynamic table entry. */
856 #define MIPS_ELF_DYN_SIZE(abfd) \
857 (get_elf_backend_data (abfd)->s->sizeof_dyn)
858
859 /* The size of a GOT entry. */
860 #define MIPS_ELF_GOT_SIZE(abfd) \
861 (get_elf_backend_data (abfd)->s->arch_size / 8)
862
863 /* The size of the .rld_map section. */
864 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
865 (get_elf_backend_data (abfd)->s->arch_size / 8)
866
867 /* The size of a symbol-table entry. */
868 #define MIPS_ELF_SYM_SIZE(abfd) \
869 (get_elf_backend_data (abfd)->s->sizeof_sym)
870
871 /* The default alignment for sections, as a power of two. */
872 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
873 (get_elf_backend_data (abfd)->s->log_file_align)
874
875 /* Get word-sized data. */
876 #define MIPS_ELF_GET_WORD(abfd, ptr) \
877 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
878
879 /* Put out word-sized data. */
880 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
881 (ABI_64_P (abfd) \
882 ? bfd_put_64 (abfd, val, ptr) \
883 : bfd_put_32 (abfd, val, ptr))
884
885 /* The opcode for word-sized loads (LW or LD). */
886 #define MIPS_ELF_LOAD_WORD(abfd) \
887 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
888
889 /* Add a dynamic symbol table-entry. */
890 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
891 _bfd_elf_add_dynamic_entry (info, tag, val)
892
893 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
894 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
895
896 /* The name of the dynamic relocation section. */
897 #define MIPS_ELF_REL_DYN_NAME(INFO) \
898 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
899
900 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
901 from smaller values. Start with zero, widen, *then* decrement. */
902 #define MINUS_ONE (((bfd_vma)0) - 1)
903 #define MINUS_TWO (((bfd_vma)0) - 2)
904
905 /* The value to write into got[1] for SVR4 targets, to identify it is
906 a GNU object. The dynamic linker can then use got[1] to store the
907 module pointer. */
908 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
909 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
910
911 /* The offset of $gp from the beginning of the .got section. */
912 #define ELF_MIPS_GP_OFFSET(INFO) \
913 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
914
915 /* The maximum size of the GOT for it to be addressable using 16-bit
916 offsets from $gp. */
917 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
918
919 /* Instructions which appear in a stub. */
920 #define STUB_LW(abfd) \
921 ((ABI_64_P (abfd) \
922 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
923 : 0x8f998010)) /* lw t9,0x8010(gp) */
924 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
925 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
926 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
927 #define STUB_JALRC 0xf8190000 /* jalrc ra,t9 */
928 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
929 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
930 #define STUB_LI16S(abfd, VAL) \
931 ((ABI_64_P (abfd) \
932 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
933 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
934
935 /* Likewise for the microMIPS ASE. */
936 #define STUB_LW_MICROMIPS(abfd) \
937 (ABI_64_P (abfd) \
938 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
939 : 0xff3c8010) /* lw t9,0x8010(gp) */
940 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
941 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
942 #define STUB_LUI_MICROMIPS(VAL) \
943 (0x41b80000 + (VAL)) /* lui t8,VAL */
944 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
945 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
946 #define STUB_ORI_MICROMIPS(VAL) \
947 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
948 #define STUB_LI16U_MICROMIPS(VAL) \
949 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
950 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
951 (ABI_64_P (abfd) \
952 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
953 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
954
955 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
956 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
957 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
958 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
959 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
960 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
961
962 /* The name of the dynamic interpreter. This is put in the .interp
963 section. */
964
965 #define ELF_DYNAMIC_INTERPRETER(abfd) \
966 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
967 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
968 : "/usr/lib/libc.so.1")
969
970 #ifdef BFD64
971 #define MNAME(bfd,pre,pos) \
972 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
973 #define ELF_R_SYM(bfd, i) \
974 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
975 #define ELF_R_TYPE(bfd, i) \
976 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
977 #define ELF_R_INFO(bfd, s, t) \
978 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
979 #else
980 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
981 #define ELF_R_SYM(bfd, i) \
982 (ELF32_R_SYM (i))
983 #define ELF_R_TYPE(bfd, i) \
984 (ELF32_R_TYPE (i))
985 #define ELF_R_INFO(bfd, s, t) \
986 (ELF32_R_INFO (s, t))
987 #endif
988 \f
989 /* The mips16 compiler uses a couple of special sections to handle
990 floating point arguments.
991
992 Section names that look like .mips16.fn.FNNAME contain stubs that
993 copy floating point arguments from the fp regs to the gp regs and
994 then jump to FNNAME. If any 32 bit function calls FNNAME, the
995 call should be redirected to the stub instead. If no 32 bit
996 function calls FNNAME, the stub should be discarded. We need to
997 consider any reference to the function, not just a call, because
998 if the address of the function is taken we will need the stub,
999 since the address might be passed to a 32 bit function.
1000
1001 Section names that look like .mips16.call.FNNAME contain stubs
1002 that copy floating point arguments from the gp regs to the fp
1003 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1004 then any 16 bit function that calls FNNAME should be redirected
1005 to the stub instead. If FNNAME is not a 32 bit function, the
1006 stub should be discarded.
1007
1008 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1009 which call FNNAME and then copy the return value from the fp regs
1010 to the gp regs. These stubs store the return value in $18 while
1011 calling FNNAME; any function which might call one of these stubs
1012 must arrange to save $18 around the call. (This case is not
1013 needed for 32 bit functions that call 16 bit functions, because
1014 16 bit functions always return floating point values in both
1015 $f0/$f1 and $2/$3.)
1016
1017 Note that in all cases FNNAME might be defined statically.
1018 Therefore, FNNAME is not used literally. Instead, the relocation
1019 information will indicate which symbol the section is for.
1020
1021 We record any stubs that we find in the symbol table. */
1022
1023 #define FN_STUB ".mips16.fn."
1024 #define CALL_STUB ".mips16.call."
1025 #define CALL_FP_STUB ".mips16.call.fp."
1026
1027 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1028 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1029 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1030 \f
1031 /* The format of the first PLT entry in an O32 executable. */
1032 static const bfd_vma mips_o32_exec_plt0_entry[] =
1033 {
1034 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1035 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1036 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1037 0x031cc023, /* subu $24, $24, $28 */
1038 0x03e07825, /* or t7, ra, zero */
1039 0x0018c082, /* srl $24, $24, 2 */
1040 0x0320f809, /* jalr $25 */
1041 0x2718fffe /* subu $24, $24, 2 */
1042 };
1043
1044 /* The format of the first PLT entry in an O32 executable using compact
1045 jumps. */
1046 static const bfd_vma mipsr6_o32_exec_plt0_entry_compact[] =
1047 {
1048 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1049 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1050 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1051 0x031cc023, /* subu $24, $24, $28 */
1052 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1053 0x0018c082, /* srl $24, $24, 2 */
1054 0x2718fffe, /* subu $24, $24, 2 */
1055 0xf8190000 /* jalrc $25 */
1056 };
1057
1058 /* The format of the first PLT entry in an N32 executable. Different
1059 because gp ($28) is not available; we use t2 ($14) instead. */
1060 static const bfd_vma mips_n32_exec_plt0_entry[] =
1061 {
1062 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1063 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1064 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1065 0x030ec023, /* subu $24, $24, $14 */
1066 0x03e07825, /* or t7, ra, zero */
1067 0x0018c082, /* srl $24, $24, 2 */
1068 0x0320f809, /* jalr $25 */
1069 0x2718fffe /* subu $24, $24, 2 */
1070 };
1071
1072 /* The format of the first PLT entry in an N32 executable using compact
1073 jumps. Different because gp ($28) is not available; we use t2 ($14)
1074 instead. */
1075 static const bfd_vma mipsr6_n32_exec_plt0_entry_compact[] =
1076 {
1077 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1078 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1079 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1080 0x030ec023, /* subu $24, $24, $14 */
1081 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1082 0x0018c082, /* srl $24, $24, 2 */
1083 0x2718fffe, /* subu $24, $24, 2 */
1084 0xf8190000 /* jalrc $25 */
1085 };
1086
1087 /* The format of the first PLT entry in an N64 executable. Different
1088 from N32 because of the increased size of GOT entries. */
1089 static const bfd_vma mips_n64_exec_plt0_entry[] =
1090 {
1091 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1092 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1093 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1094 0x030ec023, /* subu $24, $24, $14 */
1095 0x03e07825, /* or t7, ra, zero */
1096 0x0018c0c2, /* srl $24, $24, 3 */
1097 0x0320f809, /* jalr $25 */
1098 0x2718fffe /* subu $24, $24, 2 */
1099 };
1100
1101 /* The format of the first PLT entry in an N64 executable using compact
1102 jumps. Different from N32 because of the increased size of GOT
1103 entries. */
1104 static const bfd_vma mipsr6_n64_exec_plt0_entry_compact[] =
1105 {
1106 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1107 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1108 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1109 0x030ec023, /* subu $24, $24, $14 */
1110 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1111 0x0018c0c2, /* srl $24, $24, 3 */
1112 0x2718fffe, /* subu $24, $24, 2 */
1113 0xf8190000 /* jalrc $25 */
1114 };
1115
1116
1117 /* The format of the microMIPS first PLT entry in an O32 executable.
1118 We rely on v0 ($2) rather than t8 ($24) to contain the address
1119 of the GOTPLT entry handled, so this stub may only be used when
1120 all the subsequent PLT entries are microMIPS code too.
1121
1122 The trailing NOP is for alignment and correct disassembly only. */
1123 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1124 {
1125 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1126 0xff23, 0x0000, /* lw $25, 0($3) */
1127 0x0535, /* subu $2, $2, $3 */
1128 0x2525, /* srl $2, $2, 2 */
1129 0x3302, 0xfffe, /* subu $24, $2, 2 */
1130 0x0dff, /* move $15, $31 */
1131 0x45f9, /* jalrs $25 */
1132 0x0f83, /* move $28, $3 */
1133 0x0c00 /* nop */
1134 };
1135
1136 /* The format of the microMIPS first PLT entry in an O32 executable
1137 in the insn32 mode. */
1138 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1139 {
1140 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1141 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1142 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1143 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1144 0x001f, 0x7a90, /* or $15, $31, zero */
1145 0x0318, 0x1040, /* srl $24, $24, 2 */
1146 0x03f9, 0x0f3c, /* jalr $25 */
1147 0x3318, 0xfffe /* subu $24, $24, 2 */
1148 };
1149
1150 /* The format of subsequent standard PLT entries. */
1151 static const bfd_vma mips_exec_plt_entry[] =
1152 {
1153 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1154 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1155 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1156 0x03200008 /* jr $25 */
1157 };
1158
1159 static const bfd_vma mipsr6_exec_plt_entry[] =
1160 {
1161 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1162 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1163 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1164 0x03200009 /* jr $25 */
1165 };
1166
1167 static const bfd_vma mipsr6_exec_plt_entry_compact[] =
1168 {
1169 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1170 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1171 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1172 0xd8190000 /* jic $25, 0 */
1173 };
1174
1175 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1176 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1177 directly addressable. */
1178 static const bfd_vma mips16_o32_exec_plt_entry[] =
1179 {
1180 0xb203, /* lw $2, 12($pc) */
1181 0x9a60, /* lw $3, 0($2) */
1182 0x651a, /* move $24, $2 */
1183 0xeb00, /* jr $3 */
1184 0x653b, /* move $25, $3 */
1185 0x6500, /* nop */
1186 0x0000, 0x0000 /* .word (.got.plt entry) */
1187 };
1188
1189 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1190 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1191 static const bfd_vma micromips_o32_exec_plt_entry[] =
1192 {
1193 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1194 0xff22, 0x0000, /* lw $25, 0($2) */
1195 0x4599, /* jr $25 */
1196 0x0f02 /* move $24, $2 */
1197 };
1198
1199 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1200 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1201 {
1202 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1203 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1204 0x0019, 0x0f3c, /* jr $25 */
1205 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1206 };
1207
1208 /* The format of the first PLT entry in a VxWorks executable. */
1209 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1210 {
1211 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1212 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1213 0x8f390008, /* lw t9, 8(t9) */
1214 0x00000000, /* nop */
1215 0x03200008, /* jr t9 */
1216 0x00000000 /* nop */
1217 };
1218
1219 /* The format of subsequent PLT entries. */
1220 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1221 {
1222 0x10000000, /* b .PLT_resolver */
1223 0x24180000, /* li t8, <pltindex> */
1224 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1225 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1226 0x8f390000, /* lw t9, 0(t9) */
1227 0x00000000, /* nop */
1228 0x03200008, /* jr t9 */
1229 0x00000000 /* nop */
1230 };
1231
1232 /* The format of the first PLT entry in a VxWorks shared object. */
1233 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1234 {
1235 0x8f990008, /* lw t9, 8(gp) */
1236 0x00000000, /* nop */
1237 0x03200008, /* jr t9 */
1238 0x00000000, /* nop */
1239 0x00000000, /* nop */
1240 0x00000000 /* nop */
1241 };
1242
1243 /* The format of subsequent PLT entries. */
1244 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1245 {
1246 0x10000000, /* b .PLT_resolver */
1247 0x24180000 /* li t8, <pltindex> */
1248 };
1249 \f
1250 /* microMIPS 32-bit opcode helper installer. */
1251
1252 static void
1253 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1254 {
1255 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1256 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1257 }
1258
1259 /* microMIPS 32-bit opcode helper retriever. */
1260
1261 static bfd_vma
1262 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1263 {
1264 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1265 }
1266 \f
1267 /* Look up an entry in a MIPS ELF linker hash table. */
1268
1269 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1270 ((struct mips_elf_link_hash_entry *) \
1271 elf_link_hash_lookup (&(table)->root, (string), (create), \
1272 (copy), (follow)))
1273
1274 /* Traverse a MIPS ELF linker hash table. */
1275
1276 #define mips_elf_link_hash_traverse(table, func, info) \
1277 (elf_link_hash_traverse \
1278 (&(table)->root, \
1279 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1280 (info)))
1281
1282 /* Find the base offsets for thread-local storage in this object,
1283 for GD/LD and IE/LE respectively. */
1284
1285 #define TP_OFFSET 0x7000
1286 #define DTP_OFFSET 0x8000
1287
1288 static bfd_vma
1289 dtprel_base (struct bfd_link_info *info)
1290 {
1291 /* If tls_sec is NULL, we should have signalled an error already. */
1292 if (elf_hash_table (info)->tls_sec == NULL)
1293 return 0;
1294 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1295 }
1296
1297 static bfd_vma
1298 tprel_base (struct bfd_link_info *info)
1299 {
1300 /* If tls_sec is NULL, we should have signalled an error already. */
1301 if (elf_hash_table (info)->tls_sec == NULL)
1302 return 0;
1303 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1304 }
1305
1306 /* Create an entry in a MIPS ELF linker hash table. */
1307
1308 static struct bfd_hash_entry *
1309 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1310 struct bfd_hash_table *table, const char *string)
1311 {
1312 struct mips_elf_link_hash_entry *ret =
1313 (struct mips_elf_link_hash_entry *) entry;
1314
1315 /* Allocate the structure if it has not already been allocated by a
1316 subclass. */
1317 if (ret == NULL)
1318 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1319 if (ret == NULL)
1320 return (struct bfd_hash_entry *) ret;
1321
1322 /* Call the allocation method of the superclass. */
1323 ret = ((struct mips_elf_link_hash_entry *)
1324 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1325 table, string));
1326 if (ret != NULL)
1327 {
1328 /* Set local fields. */
1329 memset (&ret->esym, 0, sizeof (EXTR));
1330 /* We use -2 as a marker to indicate that the information has
1331 not been set. -1 means there is no associated ifd. */
1332 ret->esym.ifd = -2;
1333 ret->la25_stub = 0;
1334 ret->possibly_dynamic_relocs = 0;
1335 ret->fn_stub = NULL;
1336 ret->call_stub = NULL;
1337 ret->call_fp_stub = NULL;
1338 ret->global_got_area = GGA_NONE;
1339 ret->got_only_for_calls = TRUE;
1340 ret->readonly_reloc = FALSE;
1341 ret->has_static_relocs = FALSE;
1342 ret->no_fn_stub = FALSE;
1343 ret->need_fn_stub = FALSE;
1344 ret->has_nonpic_branches = FALSE;
1345 ret->needs_lazy_stub = FALSE;
1346 ret->use_plt_entry = FALSE;
1347 }
1348
1349 return (struct bfd_hash_entry *) ret;
1350 }
1351
1352 /* Allocate MIPS ELF private object data. */
1353
1354 bfd_boolean
1355 _bfd_mips_elf_mkobject (bfd *abfd)
1356 {
1357 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1358 MIPS_ELF_DATA);
1359 }
1360
1361 bfd_boolean
1362 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1363 {
1364 if (!sec->used_by_bfd)
1365 {
1366 struct _mips_elf_section_data *sdata;
1367 bfd_size_type amt = sizeof (*sdata);
1368
1369 sdata = bfd_zalloc (abfd, amt);
1370 if (sdata == NULL)
1371 return FALSE;
1372 sec->used_by_bfd = sdata;
1373 }
1374
1375 return _bfd_elf_new_section_hook (abfd, sec);
1376 }
1377 \f
1378 /* Read ECOFF debugging information from a .mdebug section into a
1379 ecoff_debug_info structure. */
1380
1381 bfd_boolean
1382 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1383 struct ecoff_debug_info *debug)
1384 {
1385 HDRR *symhdr;
1386 const struct ecoff_debug_swap *swap;
1387 char *ext_hdr;
1388
1389 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1390 memset (debug, 0, sizeof (*debug));
1391
1392 ext_hdr = bfd_malloc (swap->external_hdr_size);
1393 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1394 goto error_return;
1395
1396 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1397 swap->external_hdr_size))
1398 goto error_return;
1399
1400 symhdr = &debug->symbolic_header;
1401 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1402
1403 /* The symbolic header contains absolute file offsets and sizes to
1404 read. */
1405 #define READ(ptr, offset, count, size, type) \
1406 if (symhdr->count == 0) \
1407 debug->ptr = NULL; \
1408 else \
1409 { \
1410 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1411 debug->ptr = bfd_malloc (amt); \
1412 if (debug->ptr == NULL) \
1413 goto error_return; \
1414 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1415 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1416 goto error_return; \
1417 }
1418
1419 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1420 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1421 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1422 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1423 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1424 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1425 union aux_ext *);
1426 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1427 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1428 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1429 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1430 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1431 #undef READ
1432
1433 debug->fdr = NULL;
1434
1435 return TRUE;
1436
1437 error_return:
1438 if (ext_hdr != NULL)
1439 free (ext_hdr);
1440 if (debug->line != NULL)
1441 free (debug->line);
1442 if (debug->external_dnr != NULL)
1443 free (debug->external_dnr);
1444 if (debug->external_pdr != NULL)
1445 free (debug->external_pdr);
1446 if (debug->external_sym != NULL)
1447 free (debug->external_sym);
1448 if (debug->external_opt != NULL)
1449 free (debug->external_opt);
1450 if (debug->external_aux != NULL)
1451 free (debug->external_aux);
1452 if (debug->ss != NULL)
1453 free (debug->ss);
1454 if (debug->ssext != NULL)
1455 free (debug->ssext);
1456 if (debug->external_fdr != NULL)
1457 free (debug->external_fdr);
1458 if (debug->external_rfd != NULL)
1459 free (debug->external_rfd);
1460 if (debug->external_ext != NULL)
1461 free (debug->external_ext);
1462 return FALSE;
1463 }
1464 \f
1465 /* Swap RPDR (runtime procedure table entry) for output. */
1466
1467 static void
1468 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1469 {
1470 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1471 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1472 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1473 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1474 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1475 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1476
1477 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1478 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1479
1480 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1481 }
1482
1483 /* Create a runtime procedure table from the .mdebug section. */
1484
1485 static bfd_boolean
1486 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1487 struct bfd_link_info *info, asection *s,
1488 struct ecoff_debug_info *debug)
1489 {
1490 const struct ecoff_debug_swap *swap;
1491 HDRR *hdr = &debug->symbolic_header;
1492 RPDR *rpdr, *rp;
1493 struct rpdr_ext *erp;
1494 void *rtproc;
1495 struct pdr_ext *epdr;
1496 struct sym_ext *esym;
1497 char *ss, **sv;
1498 char *str;
1499 bfd_size_type size;
1500 bfd_size_type count;
1501 unsigned long sindex;
1502 unsigned long i;
1503 PDR pdr;
1504 SYMR sym;
1505 const char *no_name_func = _("static procedure (no name)");
1506
1507 epdr = NULL;
1508 rpdr = NULL;
1509 esym = NULL;
1510 ss = NULL;
1511 sv = NULL;
1512
1513 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1514
1515 sindex = strlen (no_name_func) + 1;
1516 count = hdr->ipdMax;
1517 if (count > 0)
1518 {
1519 size = swap->external_pdr_size;
1520
1521 epdr = bfd_malloc (size * count);
1522 if (epdr == NULL)
1523 goto error_return;
1524
1525 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1526 goto error_return;
1527
1528 size = sizeof (RPDR);
1529 rp = rpdr = bfd_malloc (size * count);
1530 if (rpdr == NULL)
1531 goto error_return;
1532
1533 size = sizeof (char *);
1534 sv = bfd_malloc (size * count);
1535 if (sv == NULL)
1536 goto error_return;
1537
1538 count = hdr->isymMax;
1539 size = swap->external_sym_size;
1540 esym = bfd_malloc (size * count);
1541 if (esym == NULL)
1542 goto error_return;
1543
1544 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1545 goto error_return;
1546
1547 count = hdr->issMax;
1548 ss = bfd_malloc (count);
1549 if (ss == NULL)
1550 goto error_return;
1551 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1552 goto error_return;
1553
1554 count = hdr->ipdMax;
1555 for (i = 0; i < (unsigned long) count; i++, rp++)
1556 {
1557 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1558 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1559 rp->adr = sym.value;
1560 rp->regmask = pdr.regmask;
1561 rp->regoffset = pdr.regoffset;
1562 rp->fregmask = pdr.fregmask;
1563 rp->fregoffset = pdr.fregoffset;
1564 rp->frameoffset = pdr.frameoffset;
1565 rp->framereg = pdr.framereg;
1566 rp->pcreg = pdr.pcreg;
1567 rp->irpss = sindex;
1568 sv[i] = ss + sym.iss;
1569 sindex += strlen (sv[i]) + 1;
1570 }
1571 }
1572
1573 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1574 size = BFD_ALIGN (size, 16);
1575 rtproc = bfd_alloc (abfd, size);
1576 if (rtproc == NULL)
1577 {
1578 mips_elf_hash_table (info)->procedure_count = 0;
1579 goto error_return;
1580 }
1581
1582 mips_elf_hash_table (info)->procedure_count = count + 2;
1583
1584 erp = rtproc;
1585 memset (erp, 0, sizeof (struct rpdr_ext));
1586 erp++;
1587 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1588 strcpy (str, no_name_func);
1589 str += strlen (no_name_func) + 1;
1590 for (i = 0; i < count; i++)
1591 {
1592 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1593 strcpy (str, sv[i]);
1594 str += strlen (sv[i]) + 1;
1595 }
1596 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1597
1598 /* Set the size and contents of .rtproc section. */
1599 s->size = size;
1600 s->contents = rtproc;
1601
1602 /* Skip this section later on (I don't think this currently
1603 matters, but someday it might). */
1604 s->map_head.link_order = NULL;
1605
1606 if (epdr != NULL)
1607 free (epdr);
1608 if (rpdr != NULL)
1609 free (rpdr);
1610 if (esym != NULL)
1611 free (esym);
1612 if (ss != NULL)
1613 free (ss);
1614 if (sv != NULL)
1615 free (sv);
1616
1617 return TRUE;
1618
1619 error_return:
1620 if (epdr != NULL)
1621 free (epdr);
1622 if (rpdr != NULL)
1623 free (rpdr);
1624 if (esym != NULL)
1625 free (esym);
1626 if (ss != NULL)
1627 free (ss);
1628 if (sv != NULL)
1629 free (sv);
1630 return FALSE;
1631 }
1632 \f
1633 /* We're going to create a stub for H. Create a symbol for the stub's
1634 value and size, to help make the disassembly easier to read. */
1635
1636 static bfd_boolean
1637 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1638 struct mips_elf_link_hash_entry *h,
1639 const char *prefix, asection *s, bfd_vma value,
1640 bfd_vma size)
1641 {
1642 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1643 struct bfd_link_hash_entry *bh;
1644 struct elf_link_hash_entry *elfh;
1645 char *name;
1646 bfd_boolean res;
1647
1648 if (micromips_p)
1649 value |= 1;
1650
1651 /* Create a new symbol. */
1652 name = concat (prefix, h->root.root.root.string, NULL);
1653 bh = NULL;
1654 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1655 BSF_LOCAL, s, value, NULL,
1656 TRUE, FALSE, &bh);
1657 free (name);
1658 if (! res)
1659 return FALSE;
1660
1661 /* Make it a local function. */
1662 elfh = (struct elf_link_hash_entry *) bh;
1663 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1664 elfh->size = size;
1665 elfh->forced_local = 1;
1666 if (micromips_p)
1667 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1668 return TRUE;
1669 }
1670
1671 /* We're about to redefine H. Create a symbol to represent H's
1672 current value and size, to help make the disassembly easier
1673 to read. */
1674
1675 static bfd_boolean
1676 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1677 struct mips_elf_link_hash_entry *h,
1678 const char *prefix)
1679 {
1680 struct bfd_link_hash_entry *bh;
1681 struct elf_link_hash_entry *elfh;
1682 char *name;
1683 asection *s;
1684 bfd_vma value;
1685 bfd_boolean res;
1686
1687 /* Read the symbol's value. */
1688 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1689 || h->root.root.type == bfd_link_hash_defweak);
1690 s = h->root.root.u.def.section;
1691 value = h->root.root.u.def.value;
1692
1693 /* Create a new symbol. */
1694 name = concat (prefix, h->root.root.root.string, NULL);
1695 bh = NULL;
1696 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1697 BSF_LOCAL, s, value, NULL,
1698 TRUE, FALSE, &bh);
1699 free (name);
1700 if (! res)
1701 return FALSE;
1702
1703 /* Make it local and copy the other attributes from H. */
1704 elfh = (struct elf_link_hash_entry *) bh;
1705 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1706 elfh->other = h->root.other;
1707 elfh->size = h->root.size;
1708 elfh->forced_local = 1;
1709 return TRUE;
1710 }
1711
1712 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1713 function rather than to a hard-float stub. */
1714
1715 static bfd_boolean
1716 section_allows_mips16_refs_p (asection *section)
1717 {
1718 const char *name;
1719
1720 name = bfd_get_section_name (section->owner, section);
1721 return (FN_STUB_P (name)
1722 || CALL_STUB_P (name)
1723 || CALL_FP_STUB_P (name)
1724 || strcmp (name, ".pdr") == 0);
1725 }
1726
1727 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1728 stub section of some kind. Return the R_SYMNDX of the target
1729 function, or 0 if we can't decide which function that is. */
1730
1731 static unsigned long
1732 mips16_stub_symndx (const struct elf_backend_data *bed,
1733 asection *sec ATTRIBUTE_UNUSED,
1734 const Elf_Internal_Rela *relocs,
1735 const Elf_Internal_Rela *relend)
1736 {
1737 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1738 const Elf_Internal_Rela *rel;
1739
1740 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1741 one in a compound relocation. */
1742 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1743 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1744 return ELF_R_SYM (sec->owner, rel->r_info);
1745
1746 /* Otherwise trust the first relocation, whatever its kind. This is
1747 the traditional behavior. */
1748 if (relocs < relend)
1749 return ELF_R_SYM (sec->owner, relocs->r_info);
1750
1751 return 0;
1752 }
1753
1754 /* Check the mips16 stubs for a particular symbol, and see if we can
1755 discard them. */
1756
1757 static void
1758 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1759 struct mips_elf_link_hash_entry *h)
1760 {
1761 /* Dynamic symbols must use the standard call interface, in case other
1762 objects try to call them. */
1763 if (h->fn_stub != NULL
1764 && h->root.dynindx != -1)
1765 {
1766 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1767 h->need_fn_stub = TRUE;
1768 }
1769
1770 if (h->fn_stub != NULL
1771 && ! h->need_fn_stub)
1772 {
1773 /* We don't need the fn_stub; the only references to this symbol
1774 are 16 bit calls. Clobber the size to 0 to prevent it from
1775 being included in the link. */
1776 h->fn_stub->size = 0;
1777 h->fn_stub->flags &= ~SEC_RELOC;
1778 h->fn_stub->reloc_count = 0;
1779 h->fn_stub->flags |= SEC_EXCLUDE;
1780 h->fn_stub->output_section = bfd_abs_section_ptr;
1781 }
1782
1783 if (h->call_stub != NULL
1784 && ELF_ST_IS_MIPS16 (h->root.other))
1785 {
1786 /* We don't need the call_stub; this is a 16 bit function, so
1787 calls from other 16 bit functions are OK. Clobber the size
1788 to 0 to prevent it from being included in the link. */
1789 h->call_stub->size = 0;
1790 h->call_stub->flags &= ~SEC_RELOC;
1791 h->call_stub->reloc_count = 0;
1792 h->call_stub->flags |= SEC_EXCLUDE;
1793 h->call_stub->output_section = bfd_abs_section_ptr;
1794 }
1795
1796 if (h->call_fp_stub != NULL
1797 && ELF_ST_IS_MIPS16 (h->root.other))
1798 {
1799 /* We don't need the call_stub; this is a 16 bit function, so
1800 calls from other 16 bit functions are OK. Clobber the size
1801 to 0 to prevent it from being included in the link. */
1802 h->call_fp_stub->size = 0;
1803 h->call_fp_stub->flags &= ~SEC_RELOC;
1804 h->call_fp_stub->reloc_count = 0;
1805 h->call_fp_stub->flags |= SEC_EXCLUDE;
1806 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1807 }
1808 }
1809
1810 /* Hashtable callbacks for mips_elf_la25_stubs. */
1811
1812 static hashval_t
1813 mips_elf_la25_stub_hash (const void *entry_)
1814 {
1815 const struct mips_elf_la25_stub *entry;
1816
1817 entry = (struct mips_elf_la25_stub *) entry_;
1818 return entry->h->root.root.u.def.section->id
1819 + entry->h->root.root.u.def.value;
1820 }
1821
1822 static int
1823 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1824 {
1825 const struct mips_elf_la25_stub *entry1, *entry2;
1826
1827 entry1 = (struct mips_elf_la25_stub *) entry1_;
1828 entry2 = (struct mips_elf_la25_stub *) entry2_;
1829 return ((entry1->h->root.root.u.def.section
1830 == entry2->h->root.root.u.def.section)
1831 && (entry1->h->root.root.u.def.value
1832 == entry2->h->root.root.u.def.value));
1833 }
1834
1835 /* Called by the linker to set up the la25 stub-creation code. FN is
1836 the linker's implementation of add_stub_function. Return true on
1837 success. */
1838
1839 bfd_boolean
1840 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1841 asection *(*fn) (const char *, asection *,
1842 asection *))
1843 {
1844 struct mips_elf_link_hash_table *htab;
1845
1846 htab = mips_elf_hash_table (info);
1847 if (htab == NULL)
1848 return FALSE;
1849
1850 htab->add_stub_section = fn;
1851 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1852 mips_elf_la25_stub_eq, NULL);
1853 if (htab->la25_stubs == NULL)
1854 return FALSE;
1855
1856 return TRUE;
1857 }
1858
1859 /* Return true if H is a locally-defined PIC function, in the sense
1860 that it or its fn_stub might need $25 to be valid on entry.
1861 Note that MIPS16 functions set up $gp using PC-relative instructions,
1862 so they themselves never need $25 to be valid. Only non-MIPS16
1863 entry points are of interest here. */
1864
1865 static bfd_boolean
1866 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1867 {
1868 return ((h->root.root.type == bfd_link_hash_defined
1869 || h->root.root.type == bfd_link_hash_defweak)
1870 && h->root.def_regular
1871 && !bfd_is_abs_section (h->root.root.u.def.section)
1872 && !bfd_is_und_section (h->root.root.u.def.section)
1873 && (!ELF_ST_IS_MIPS16 (h->root.other)
1874 || (h->fn_stub && h->need_fn_stub))
1875 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1876 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1877 }
1878
1879 /* Set *SEC to the input section that contains the target of STUB.
1880 Return the offset of the target from the start of that section. */
1881
1882 static bfd_vma
1883 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1884 asection **sec)
1885 {
1886 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1887 {
1888 BFD_ASSERT (stub->h->need_fn_stub);
1889 *sec = stub->h->fn_stub;
1890 return 0;
1891 }
1892 else
1893 {
1894 *sec = stub->h->root.root.u.def.section;
1895 return stub->h->root.root.u.def.value;
1896 }
1897 }
1898
1899 /* STUB describes an la25 stub that we have decided to implement
1900 by inserting an LUI/ADDIU pair before the target function.
1901 Create the section and redirect the function symbol to it. */
1902
1903 static bfd_boolean
1904 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1905 struct bfd_link_info *info)
1906 {
1907 struct mips_elf_link_hash_table *htab;
1908 char *name;
1909 asection *s, *input_section;
1910 unsigned int align;
1911
1912 htab = mips_elf_hash_table (info);
1913 if (htab == NULL)
1914 return FALSE;
1915
1916 /* Create a unique name for the new section. */
1917 name = bfd_malloc (11 + sizeof (".text.stub."));
1918 if (name == NULL)
1919 return FALSE;
1920 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1921
1922 /* Create the section. */
1923 mips_elf_get_la25_target (stub, &input_section);
1924 s = htab->add_stub_section (name, input_section,
1925 input_section->output_section);
1926 if (s == NULL)
1927 return FALSE;
1928
1929 /* Make sure that any padding goes before the stub. */
1930 align = input_section->alignment_power;
1931 if (!bfd_set_section_alignment (s->owner, s, align))
1932 return FALSE;
1933 if (align > 3)
1934 s->size = (1 << align) - 8;
1935
1936 /* Create a symbol for the stub. */
1937 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1938 stub->stub_section = s;
1939 stub->offset = s->size;
1940
1941 /* Allocate room for it. */
1942 s->size += 8;
1943 return TRUE;
1944 }
1945
1946 /* STUB describes an la25 stub that we have decided to implement
1947 with a separate trampoline. Allocate room for it and redirect
1948 the function symbol to it. */
1949
1950 static bfd_boolean
1951 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1952 struct bfd_link_info *info)
1953 {
1954 struct mips_elf_link_hash_table *htab;
1955 asection *s;
1956
1957 htab = mips_elf_hash_table (info);
1958 if (htab == NULL)
1959 return FALSE;
1960
1961 /* Create a trampoline section, if we haven't already. */
1962 s = htab->strampoline;
1963 if (s == NULL)
1964 {
1965 asection *input_section = stub->h->root.root.u.def.section;
1966 s = htab->add_stub_section (".text", NULL,
1967 input_section->output_section);
1968 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1969 return FALSE;
1970 htab->strampoline = s;
1971 }
1972
1973 /* Create a symbol for the stub. */
1974 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1975 stub->stub_section = s;
1976 stub->offset = s->size;
1977
1978 /* Allocate room for it. */
1979 s->size += 16;
1980 return TRUE;
1981 }
1982
1983 /* H describes a symbol that needs an la25 stub. Make sure that an
1984 appropriate stub exists and point H at it. */
1985
1986 static bfd_boolean
1987 mips_elf_add_la25_stub (struct bfd_link_info *info,
1988 struct mips_elf_link_hash_entry *h)
1989 {
1990 struct mips_elf_link_hash_table *htab;
1991 struct mips_elf_la25_stub search, *stub;
1992 bfd_boolean use_trampoline_p;
1993 asection *s;
1994 bfd_vma value;
1995 void **slot;
1996
1997 /* Describe the stub we want. */
1998 search.stub_section = NULL;
1999 search.offset = 0;
2000 search.h = h;
2001
2002 /* See if we've already created an equivalent stub. */
2003 htab = mips_elf_hash_table (info);
2004 if (htab == NULL)
2005 return FALSE;
2006
2007 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
2008 if (slot == NULL)
2009 return FALSE;
2010
2011 stub = (struct mips_elf_la25_stub *) *slot;
2012 if (stub != NULL)
2013 {
2014 /* We can reuse the existing stub. */
2015 h->la25_stub = stub;
2016 return TRUE;
2017 }
2018
2019 /* Create a permanent copy of ENTRY and add it to the hash table. */
2020 stub = bfd_malloc (sizeof (search));
2021 if (stub == NULL)
2022 return FALSE;
2023 *stub = search;
2024 *slot = stub;
2025
2026 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
2027 of the section and if we would need no more than 2 nops. */
2028 value = mips_elf_get_la25_target (stub, &s);
2029 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
2030 value &= ~1;
2031 use_trampoline_p = (value != 0 || s->alignment_power > 4);
2032
2033 h->la25_stub = stub;
2034 return (use_trampoline_p
2035 ? mips_elf_add_la25_trampoline (stub, info)
2036 : mips_elf_add_la25_intro (stub, info));
2037 }
2038
2039 /* A mips_elf_link_hash_traverse callback that is called before sizing
2040 sections. DATA points to a mips_htab_traverse_info structure. */
2041
2042 static bfd_boolean
2043 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
2044 {
2045 struct mips_htab_traverse_info *hti;
2046
2047 hti = (struct mips_htab_traverse_info *) data;
2048 if (!bfd_link_relocatable (hti->info))
2049 mips_elf_check_mips16_stubs (hti->info, h);
2050
2051 if (mips_elf_local_pic_function_p (h))
2052 {
2053 /* PR 12845: If H is in a section that has been garbage
2054 collected it will have its output section set to *ABS*. */
2055 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
2056 return TRUE;
2057
2058 /* H is a function that might need $25 to be valid on entry.
2059 If we're creating a non-PIC relocatable object, mark H as
2060 being PIC. If we're creating a non-relocatable object with
2061 non-PIC branches and jumps to H, make sure that H has an la25
2062 stub. */
2063 if (bfd_link_relocatable (hti->info))
2064 {
2065 if (!PIC_OBJECT_P (hti->output_bfd))
2066 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2067 }
2068 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2069 {
2070 hti->error = TRUE;
2071 return FALSE;
2072 }
2073 }
2074 return TRUE;
2075 }
2076 \f
2077 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2078 Most mips16 instructions are 16 bits, but these instructions
2079 are 32 bits.
2080
2081 The format of these instructions is:
2082
2083 +--------------+--------------------------------+
2084 | JALX | X| Imm 20:16 | Imm 25:21 |
2085 +--------------+--------------------------------+
2086 | Immediate 15:0 |
2087 +-----------------------------------------------+
2088
2089 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2090 Note that the immediate value in the first word is swapped.
2091
2092 When producing a relocatable object file, R_MIPS16_26 is
2093 handled mostly like R_MIPS_26. In particular, the addend is
2094 stored as a straight 26-bit value in a 32-bit instruction.
2095 (gas makes life simpler for itself by never adjusting a
2096 R_MIPS16_26 reloc to be against a section, so the addend is
2097 always zero). However, the 32 bit instruction is stored as 2
2098 16-bit values, rather than a single 32-bit value. In a
2099 big-endian file, the result is the same; in a little-endian
2100 file, the two 16-bit halves of the 32 bit value are swapped.
2101 This is so that a disassembler can recognize the jal
2102 instruction.
2103
2104 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2105 instruction stored as two 16-bit values. The addend A is the
2106 contents of the targ26 field. The calculation is the same as
2107 R_MIPS_26. When storing the calculated value, reorder the
2108 immediate value as shown above, and don't forget to store the
2109 value as two 16-bit values.
2110
2111 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2112 defined as
2113
2114 big-endian:
2115 +--------+----------------------+
2116 | | |
2117 | | targ26-16 |
2118 |31 26|25 0|
2119 +--------+----------------------+
2120
2121 little-endian:
2122 +----------+------+-------------+
2123 | | | |
2124 | sub1 | | sub2 |
2125 |0 9|10 15|16 31|
2126 +----------+--------------------+
2127 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2128 ((sub1 << 16) | sub2)).
2129
2130 When producing a relocatable object file, the calculation is
2131 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2132 When producing a fully linked file, the calculation is
2133 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2134 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2135
2136 The table below lists the other MIPS16 instruction relocations.
2137 Each one is calculated in the same way as the non-MIPS16 relocation
2138 given on the right, but using the extended MIPS16 layout of 16-bit
2139 immediate fields:
2140
2141 R_MIPS16_GPREL R_MIPS_GPREL16
2142 R_MIPS16_GOT16 R_MIPS_GOT16
2143 R_MIPS16_CALL16 R_MIPS_CALL16
2144 R_MIPS16_HI16 R_MIPS_HI16
2145 R_MIPS16_LO16 R_MIPS_LO16
2146
2147 A typical instruction will have a format like this:
2148
2149 +--------------+--------------------------------+
2150 | EXTEND | Imm 10:5 | Imm 15:11 |
2151 +--------------+--------------------------------+
2152 | Major | rx | ry | Imm 4:0 |
2153 +--------------+--------------------------------+
2154
2155 EXTEND is the five bit value 11110. Major is the instruction
2156 opcode.
2157
2158 All we need to do here is shuffle the bits appropriately.
2159 As above, the two 16-bit halves must be swapped on a
2160 little-endian system.
2161
2162 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2163 relocatable field is shifted by 1 rather than 2 and the same bit
2164 shuffling is done as with the relocations above. */
2165
2166 static inline bfd_boolean
2167 mips16_reloc_p (int r_type)
2168 {
2169 switch (r_type)
2170 {
2171 case R_MIPS16_26:
2172 case R_MIPS16_GPREL:
2173 case R_MIPS16_GOT16:
2174 case R_MIPS16_CALL16:
2175 case R_MIPS16_HI16:
2176 case R_MIPS16_LO16:
2177 case R_MIPS16_TLS_GD:
2178 case R_MIPS16_TLS_LDM:
2179 case R_MIPS16_TLS_DTPREL_HI16:
2180 case R_MIPS16_TLS_DTPREL_LO16:
2181 case R_MIPS16_TLS_GOTTPREL:
2182 case R_MIPS16_TLS_TPREL_HI16:
2183 case R_MIPS16_TLS_TPREL_LO16:
2184 case R_MIPS16_PC16_S1:
2185 return TRUE;
2186
2187 default:
2188 return FALSE;
2189 }
2190 }
2191
2192 /* Check if a microMIPS reloc. */
2193
2194 static inline bfd_boolean
2195 micromips_reloc_p (unsigned int r_type)
2196 {
2197 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2198 }
2199
2200 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2201 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2202 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2203
2204 static inline bfd_boolean
2205 micromips_reloc_shuffle_p (unsigned int r_type)
2206 {
2207 return (micromips_reloc_p (r_type)
2208 && r_type != R_MICROMIPS_PC7_S1
2209 && r_type != R_MICROMIPS_PC10_S1);
2210 }
2211
2212 static inline bfd_boolean
2213 got16_reloc_p (int r_type)
2214 {
2215 return (r_type == R_MIPS_GOT16
2216 || r_type == R_MIPS16_GOT16
2217 || r_type == R_MICROMIPS_GOT16);
2218 }
2219
2220 static inline bfd_boolean
2221 call16_reloc_p (int r_type)
2222 {
2223 return (r_type == R_MIPS_CALL16
2224 || r_type == R_MIPS16_CALL16
2225 || r_type == R_MICROMIPS_CALL16);
2226 }
2227
2228 static inline bfd_boolean
2229 got_disp_reloc_p (unsigned int r_type)
2230 {
2231 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2232 }
2233
2234 static inline bfd_boolean
2235 got_page_reloc_p (unsigned int r_type)
2236 {
2237 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2238 }
2239
2240 static inline bfd_boolean
2241 got_lo16_reloc_p (unsigned int r_type)
2242 {
2243 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2244 }
2245
2246 static inline bfd_boolean
2247 call_hi16_reloc_p (unsigned int r_type)
2248 {
2249 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2250 }
2251
2252 static inline bfd_boolean
2253 call_lo16_reloc_p (unsigned int r_type)
2254 {
2255 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2256 }
2257
2258 static inline bfd_boolean
2259 hi16_reloc_p (int r_type)
2260 {
2261 return (r_type == R_MIPS_HI16
2262 || r_type == R_MIPS16_HI16
2263 || r_type == R_MICROMIPS_HI16
2264 || r_type == R_MIPS_PCHI16);
2265 }
2266
2267 static inline bfd_boolean
2268 lo16_reloc_p (int r_type)
2269 {
2270 return (r_type == R_MIPS_LO16
2271 || r_type == R_MIPS16_LO16
2272 || r_type == R_MICROMIPS_LO16
2273 || r_type == R_MIPS_PCLO16);
2274 }
2275
2276 static inline bfd_boolean
2277 mips16_call_reloc_p (int r_type)
2278 {
2279 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2280 }
2281
2282 static inline bfd_boolean
2283 jal_reloc_p (int r_type)
2284 {
2285 return (r_type == R_MIPS_26
2286 || r_type == R_MIPS16_26
2287 || r_type == R_MICROMIPS_26_S1);
2288 }
2289
2290 static inline bfd_boolean
2291 b_reloc_p (int r_type)
2292 {
2293 return (r_type == R_MIPS_PC26_S2
2294 || r_type == R_MIPS_PC21_S2
2295 || r_type == R_MIPS_PC16
2296 || r_type == R_MIPS_GNU_REL16_S2
2297 || r_type == R_MIPS16_PC16_S1
2298 || r_type == R_MICROMIPS_PC16_S1
2299 || r_type == R_MICROMIPS_PC10_S1
2300 || r_type == R_MICROMIPS_PC7_S1);
2301 }
2302
2303 static inline bfd_boolean
2304 aligned_pcrel_reloc_p (int r_type)
2305 {
2306 return (r_type == R_MIPS_PC18_S3
2307 || r_type == R_MIPS_PC19_S2);
2308 }
2309
2310 static inline bfd_boolean
2311 branch_reloc_p (int r_type)
2312 {
2313 return (r_type == R_MIPS_26
2314 || r_type == R_MIPS_PC26_S2
2315 || r_type == R_MIPS_PC21_S2
2316 || r_type == R_MIPS_PC16
2317 || r_type == R_MIPS_GNU_REL16_S2);
2318 }
2319
2320 static inline bfd_boolean
2321 mips16_branch_reloc_p (int r_type)
2322 {
2323 return (r_type == R_MIPS16_26
2324 || r_type == R_MIPS16_PC16_S1);
2325 }
2326
2327 static inline bfd_boolean
2328 micromips_branch_reloc_p (int r_type)
2329 {
2330 return (r_type == R_MICROMIPS_26_S1
2331 || r_type == R_MICROMIPS_PC16_S1
2332 || r_type == R_MICROMIPS_PC10_S1
2333 || r_type == R_MICROMIPS_PC7_S1);
2334 }
2335
2336 static inline bfd_boolean
2337 tls_gd_reloc_p (unsigned int r_type)
2338 {
2339 return (r_type == R_MIPS_TLS_GD
2340 || r_type == R_MIPS16_TLS_GD
2341 || r_type == R_MICROMIPS_TLS_GD);
2342 }
2343
2344 static inline bfd_boolean
2345 tls_ldm_reloc_p (unsigned int r_type)
2346 {
2347 return (r_type == R_MIPS_TLS_LDM
2348 || r_type == R_MIPS16_TLS_LDM
2349 || r_type == R_MICROMIPS_TLS_LDM);
2350 }
2351
2352 static inline bfd_boolean
2353 tls_gottprel_reloc_p (unsigned int r_type)
2354 {
2355 return (r_type == R_MIPS_TLS_GOTTPREL
2356 || r_type == R_MIPS16_TLS_GOTTPREL
2357 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2358 }
2359
2360 void
2361 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2362 bfd_boolean jal_shuffle, bfd_byte *data)
2363 {
2364 bfd_vma first, second, val;
2365
2366 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2367 return;
2368
2369 /* Pick up the first and second halfwords of the instruction. */
2370 first = bfd_get_16 (abfd, data);
2371 second = bfd_get_16 (abfd, data + 2);
2372 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2373 val = first << 16 | second;
2374 else if (r_type != R_MIPS16_26)
2375 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2376 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2377 else
2378 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2379 | ((first & 0x1f) << 21) | second);
2380 bfd_put_32 (abfd, val, data);
2381 }
2382
2383 void
2384 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2385 bfd_boolean jal_shuffle, bfd_byte *data)
2386 {
2387 bfd_vma first, second, val;
2388
2389 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2390 return;
2391
2392 val = bfd_get_32 (abfd, data);
2393 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2394 {
2395 second = val & 0xffff;
2396 first = val >> 16;
2397 }
2398 else if (r_type != R_MIPS16_26)
2399 {
2400 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2401 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2402 }
2403 else
2404 {
2405 second = val & 0xffff;
2406 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2407 | ((val >> 21) & 0x1f);
2408 }
2409 bfd_put_16 (abfd, second, data + 2);
2410 bfd_put_16 (abfd, first, data);
2411 }
2412
2413 bfd_reloc_status_type
2414 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2415 arelent *reloc_entry, asection *input_section,
2416 bfd_boolean relocatable, void *data, bfd_vma gp)
2417 {
2418 bfd_vma relocation;
2419 bfd_signed_vma val;
2420 bfd_reloc_status_type status;
2421
2422 if (bfd_is_com_section (symbol->section))
2423 relocation = 0;
2424 else
2425 relocation = symbol->value;
2426
2427 relocation += symbol->section->output_section->vma;
2428 relocation += symbol->section->output_offset;
2429
2430 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2431 return bfd_reloc_outofrange;
2432
2433 /* Set val to the offset into the section or symbol. */
2434 val = reloc_entry->addend;
2435
2436 _bfd_mips_elf_sign_extend (val, 16);
2437
2438 /* Adjust val for the final section location and GP value. If we
2439 are producing relocatable output, we don't want to do this for
2440 an external symbol. */
2441 if (! relocatable
2442 || (symbol->flags & BSF_SECTION_SYM) != 0)
2443 val += relocation - gp;
2444
2445 if (reloc_entry->howto->partial_inplace)
2446 {
2447 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2448 (bfd_byte *) data
2449 + reloc_entry->address);
2450 if (status != bfd_reloc_ok)
2451 return status;
2452 }
2453 else
2454 reloc_entry->addend = val;
2455
2456 if (relocatable)
2457 reloc_entry->address += input_section->output_offset;
2458
2459 return bfd_reloc_ok;
2460 }
2461
2462 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2463 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2464 that contains the relocation field and DATA points to the start of
2465 INPUT_SECTION. */
2466
2467 struct mips_hi16
2468 {
2469 struct mips_hi16 *next;
2470 bfd_byte *data;
2471 asection *input_section;
2472 arelent rel;
2473 };
2474
2475 /* FIXME: This should not be a static variable. */
2476
2477 static struct mips_hi16 *mips_hi16_list;
2478
2479 /* A howto special_function for REL *HI16 relocations. We can only
2480 calculate the correct value once we've seen the partnering
2481 *LO16 relocation, so just save the information for later.
2482
2483 The ABI requires that the *LO16 immediately follow the *HI16.
2484 However, as a GNU extension, we permit an arbitrary number of
2485 *HI16s to be associated with a single *LO16. This significantly
2486 simplies the relocation handling in gcc. */
2487
2488 bfd_reloc_status_type
2489 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2490 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2491 asection *input_section, bfd *output_bfd,
2492 char **error_message ATTRIBUTE_UNUSED)
2493 {
2494 struct mips_hi16 *n;
2495
2496 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2497 return bfd_reloc_outofrange;
2498
2499 n = bfd_malloc (sizeof *n);
2500 if (n == NULL)
2501 return bfd_reloc_outofrange;
2502
2503 n->next = mips_hi16_list;
2504 n->data = data;
2505 n->input_section = input_section;
2506 n->rel = *reloc_entry;
2507 mips_hi16_list = n;
2508
2509 if (output_bfd != NULL)
2510 reloc_entry->address += input_section->output_offset;
2511
2512 return bfd_reloc_ok;
2513 }
2514
2515 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2516 like any other 16-bit relocation when applied to global symbols, but is
2517 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2518
2519 bfd_reloc_status_type
2520 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2521 void *data, asection *input_section,
2522 bfd *output_bfd, char **error_message)
2523 {
2524 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2525 || bfd_is_und_section (bfd_get_section (symbol))
2526 || bfd_is_com_section (bfd_get_section (symbol)))
2527 /* The relocation is against a global symbol. */
2528 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2529 input_section, output_bfd,
2530 error_message);
2531
2532 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2533 input_section, output_bfd, error_message);
2534 }
2535
2536 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2537 is a straightforward 16 bit inplace relocation, but we must deal with
2538 any partnering high-part relocations as well. */
2539
2540 bfd_reloc_status_type
2541 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2542 void *data, asection *input_section,
2543 bfd *output_bfd, char **error_message)
2544 {
2545 bfd_vma vallo;
2546 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2547
2548 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2549 return bfd_reloc_outofrange;
2550
2551 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2552 location);
2553 vallo = bfd_get_32 (abfd, location);
2554 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2555 location);
2556
2557 while (mips_hi16_list != NULL)
2558 {
2559 bfd_reloc_status_type ret;
2560 struct mips_hi16 *hi;
2561
2562 hi = mips_hi16_list;
2563
2564 /* R_MIPS*_GOT16 relocations are something of a special case. We
2565 want to install the addend in the same way as for a R_MIPS*_HI16
2566 relocation (with a rightshift of 16). However, since GOT16
2567 relocations can also be used with global symbols, their howto
2568 has a rightshift of 0. */
2569 if (hi->rel.howto->type == R_MIPS_GOT16)
2570 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2571 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2572 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2573 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2574 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2575
2576 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2577 carry or borrow will induce a change of +1 or -1 in the high part. */
2578 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2579
2580 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2581 hi->input_section, output_bfd,
2582 error_message);
2583 if (ret != bfd_reloc_ok)
2584 return ret;
2585
2586 mips_hi16_list = hi->next;
2587 free (hi);
2588 }
2589
2590 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2591 input_section, output_bfd,
2592 error_message);
2593 }
2594
2595 /* A generic howto special_function. This calculates and installs the
2596 relocation itself, thus avoiding the oft-discussed problems in
2597 bfd_perform_relocation and bfd_install_relocation. */
2598
2599 bfd_reloc_status_type
2600 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2601 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2602 asection *input_section, bfd *output_bfd,
2603 char **error_message ATTRIBUTE_UNUSED)
2604 {
2605 bfd_signed_vma val;
2606 bfd_reloc_status_type status;
2607 bfd_boolean relocatable;
2608
2609 relocatable = (output_bfd != NULL);
2610
2611 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2612 return bfd_reloc_outofrange;
2613
2614 /* Build up the field adjustment in VAL. */
2615 val = 0;
2616 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2617 {
2618 /* Either we're calculating the final field value or we have a
2619 relocation against a section symbol. Add in the section's
2620 offset or address. */
2621 val += symbol->section->output_section->vma;
2622 val += symbol->section->output_offset;
2623 }
2624
2625 if (!relocatable)
2626 {
2627 /* We're calculating the final field value. Add in the symbol's value
2628 and, if pc-relative, subtract the address of the field itself. */
2629 val += symbol->value;
2630 if (reloc_entry->howto->pc_relative)
2631 {
2632 val -= input_section->output_section->vma;
2633 val -= input_section->output_offset;
2634 val -= reloc_entry->address;
2635 }
2636 }
2637
2638 /* VAL is now the final adjustment. If we're keeping this relocation
2639 in the output file, and if the relocation uses a separate addend,
2640 we just need to add VAL to that addend. Otherwise we need to add
2641 VAL to the relocation field itself. */
2642 if (relocatable && !reloc_entry->howto->partial_inplace)
2643 reloc_entry->addend += val;
2644 else
2645 {
2646 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2647
2648 /* Add in the separate addend, if any. */
2649 val += reloc_entry->addend;
2650
2651 /* Add VAL to the relocation field. */
2652 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2653 location);
2654 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2655 location);
2656 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2657 location);
2658
2659 if (status != bfd_reloc_ok)
2660 return status;
2661 }
2662
2663 if (relocatable)
2664 reloc_entry->address += input_section->output_offset;
2665
2666 return bfd_reloc_ok;
2667 }
2668 \f
2669 /* Swap an entry in a .gptab section. Note that these routines rely
2670 on the equivalence of the two elements of the union. */
2671
2672 static void
2673 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2674 Elf32_gptab *in)
2675 {
2676 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2677 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2678 }
2679
2680 static void
2681 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2682 Elf32_External_gptab *ex)
2683 {
2684 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2685 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2686 }
2687
2688 static void
2689 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2690 Elf32_External_compact_rel *ex)
2691 {
2692 H_PUT_32 (abfd, in->id1, ex->id1);
2693 H_PUT_32 (abfd, in->num, ex->num);
2694 H_PUT_32 (abfd, in->id2, ex->id2);
2695 H_PUT_32 (abfd, in->offset, ex->offset);
2696 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2697 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2698 }
2699
2700 static void
2701 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2702 Elf32_External_crinfo *ex)
2703 {
2704 unsigned long l;
2705
2706 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2707 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2708 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2709 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2710 H_PUT_32 (abfd, l, ex->info);
2711 H_PUT_32 (abfd, in->konst, ex->konst);
2712 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2713 }
2714 \f
2715 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2716 routines swap this structure in and out. They are used outside of
2717 BFD, so they are globally visible. */
2718
2719 void
2720 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2721 Elf32_RegInfo *in)
2722 {
2723 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2724 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2725 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2726 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2727 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2728 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2729 }
2730
2731 void
2732 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2733 Elf32_External_RegInfo *ex)
2734 {
2735 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2736 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2737 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2738 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2739 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2740 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2741 }
2742
2743 /* In the 64 bit ABI, the .MIPS.options section holds register
2744 information in an Elf64_Reginfo structure. These routines swap
2745 them in and out. They are globally visible because they are used
2746 outside of BFD. These routines are here so that gas can call them
2747 without worrying about whether the 64 bit ABI has been included. */
2748
2749 void
2750 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2751 Elf64_Internal_RegInfo *in)
2752 {
2753 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2754 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2755 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2756 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2757 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2758 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2759 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2760 }
2761
2762 void
2763 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2764 Elf64_External_RegInfo *ex)
2765 {
2766 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2767 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2768 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2769 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2770 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2771 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2772 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2773 }
2774
2775 /* Swap in an options header. */
2776
2777 void
2778 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2779 Elf_Internal_Options *in)
2780 {
2781 in->kind = H_GET_8 (abfd, ex->kind);
2782 in->size = H_GET_8 (abfd, ex->size);
2783 in->section = H_GET_16 (abfd, ex->section);
2784 in->info = H_GET_32 (abfd, ex->info);
2785 }
2786
2787 /* Swap out an options header. */
2788
2789 void
2790 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2791 Elf_External_Options *ex)
2792 {
2793 H_PUT_8 (abfd, in->kind, ex->kind);
2794 H_PUT_8 (abfd, in->size, ex->size);
2795 H_PUT_16 (abfd, in->section, ex->section);
2796 H_PUT_32 (abfd, in->info, ex->info);
2797 }
2798
2799 /* Swap in an abiflags structure. */
2800
2801 void
2802 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2803 const Elf_External_ABIFlags_v0 *ex,
2804 Elf_Internal_ABIFlags_v0 *in)
2805 {
2806 in->version = H_GET_16 (abfd, ex->version);
2807 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2808 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2809 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2810 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2811 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2812 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2813 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2814 in->ases = H_GET_32 (abfd, ex->ases);
2815 in->flags1 = H_GET_32 (abfd, ex->flags1);
2816 in->flags2 = H_GET_32 (abfd, ex->flags2);
2817 }
2818
2819 /* Swap out an abiflags structure. */
2820
2821 void
2822 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2823 const Elf_Internal_ABIFlags_v0 *in,
2824 Elf_External_ABIFlags_v0 *ex)
2825 {
2826 H_PUT_16 (abfd, in->version, ex->version);
2827 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2828 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2829 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2830 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2831 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2832 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2833 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2834 H_PUT_32 (abfd, in->ases, ex->ases);
2835 H_PUT_32 (abfd, in->flags1, ex->flags1);
2836 H_PUT_32 (abfd, in->flags2, ex->flags2);
2837 }
2838 \f
2839 /* This function is called via qsort() to sort the dynamic relocation
2840 entries by increasing r_symndx value. */
2841
2842 static int
2843 sort_dynamic_relocs (const void *arg1, const void *arg2)
2844 {
2845 Elf_Internal_Rela int_reloc1;
2846 Elf_Internal_Rela int_reloc2;
2847 int diff;
2848
2849 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2850 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2851
2852 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2853 if (diff != 0)
2854 return diff;
2855
2856 if (int_reloc1.r_offset < int_reloc2.r_offset)
2857 return -1;
2858 if (int_reloc1.r_offset > int_reloc2.r_offset)
2859 return 1;
2860 return 0;
2861 }
2862
2863 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2864
2865 static int
2866 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2867 const void *arg2 ATTRIBUTE_UNUSED)
2868 {
2869 #ifdef BFD64
2870 Elf_Internal_Rela int_reloc1[3];
2871 Elf_Internal_Rela int_reloc2[3];
2872
2873 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2874 (reldyn_sorting_bfd, arg1, int_reloc1);
2875 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2876 (reldyn_sorting_bfd, arg2, int_reloc2);
2877
2878 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2879 return -1;
2880 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2881 return 1;
2882
2883 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2884 return -1;
2885 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2886 return 1;
2887 return 0;
2888 #else
2889 abort ();
2890 #endif
2891 }
2892
2893
2894 /* This routine is used to write out ECOFF debugging external symbol
2895 information. It is called via mips_elf_link_hash_traverse. The
2896 ECOFF external symbol information must match the ELF external
2897 symbol information. Unfortunately, at this point we don't know
2898 whether a symbol is required by reloc information, so the two
2899 tables may wind up being different. We must sort out the external
2900 symbol information before we can set the final size of the .mdebug
2901 section, and we must set the size of the .mdebug section before we
2902 can relocate any sections, and we can't know which symbols are
2903 required by relocation until we relocate the sections.
2904 Fortunately, it is relatively unlikely that any symbol will be
2905 stripped but required by a reloc. In particular, it can not happen
2906 when generating a final executable. */
2907
2908 static bfd_boolean
2909 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2910 {
2911 struct extsym_info *einfo = data;
2912 bfd_boolean strip;
2913 asection *sec, *output_section;
2914
2915 if (h->root.indx == -2)
2916 strip = FALSE;
2917 else if ((h->root.def_dynamic
2918 || h->root.ref_dynamic
2919 || h->root.type == bfd_link_hash_new)
2920 && !h->root.def_regular
2921 && !h->root.ref_regular)
2922 strip = TRUE;
2923 else if (einfo->info->strip == strip_all
2924 || (einfo->info->strip == strip_some
2925 && bfd_hash_lookup (einfo->info->keep_hash,
2926 h->root.root.root.string,
2927 FALSE, FALSE) == NULL))
2928 strip = TRUE;
2929 else
2930 strip = FALSE;
2931
2932 if (strip)
2933 return TRUE;
2934
2935 if (h->esym.ifd == -2)
2936 {
2937 h->esym.jmptbl = 0;
2938 h->esym.cobol_main = 0;
2939 h->esym.weakext = 0;
2940 h->esym.reserved = 0;
2941 h->esym.ifd = ifdNil;
2942 h->esym.asym.value = 0;
2943 h->esym.asym.st = stGlobal;
2944
2945 if (h->root.root.type == bfd_link_hash_undefined
2946 || h->root.root.type == bfd_link_hash_undefweak)
2947 {
2948 const char *name;
2949
2950 /* Use undefined class. Also, set class and type for some
2951 special symbols. */
2952 name = h->root.root.root.string;
2953 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2954 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2955 {
2956 h->esym.asym.sc = scData;
2957 h->esym.asym.st = stLabel;
2958 h->esym.asym.value = 0;
2959 }
2960 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2961 {
2962 h->esym.asym.sc = scAbs;
2963 h->esym.asym.st = stLabel;
2964 h->esym.asym.value =
2965 mips_elf_hash_table (einfo->info)->procedure_count;
2966 }
2967 else
2968 h->esym.asym.sc = scUndefined;
2969 }
2970 else if (h->root.root.type != bfd_link_hash_defined
2971 && h->root.root.type != bfd_link_hash_defweak)
2972 h->esym.asym.sc = scAbs;
2973 else
2974 {
2975 const char *name;
2976
2977 sec = h->root.root.u.def.section;
2978 output_section = sec->output_section;
2979
2980 /* When making a shared library and symbol h is the one from
2981 the another shared library, OUTPUT_SECTION may be null. */
2982 if (output_section == NULL)
2983 h->esym.asym.sc = scUndefined;
2984 else
2985 {
2986 name = bfd_section_name (output_section->owner, output_section);
2987
2988 if (strcmp (name, ".text") == 0)
2989 h->esym.asym.sc = scText;
2990 else if (strcmp (name, ".data") == 0)
2991 h->esym.asym.sc = scData;
2992 else if (strcmp (name, ".sdata") == 0)
2993 h->esym.asym.sc = scSData;
2994 else if (strcmp (name, ".rodata") == 0
2995 || strcmp (name, ".rdata") == 0)
2996 h->esym.asym.sc = scRData;
2997 else if (strcmp (name, ".bss") == 0)
2998 h->esym.asym.sc = scBss;
2999 else if (strcmp (name, ".sbss") == 0)
3000 h->esym.asym.sc = scSBss;
3001 else if (strcmp (name, ".init") == 0)
3002 h->esym.asym.sc = scInit;
3003 else if (strcmp (name, ".fini") == 0)
3004 h->esym.asym.sc = scFini;
3005 else
3006 h->esym.asym.sc = scAbs;
3007 }
3008 }
3009
3010 h->esym.asym.reserved = 0;
3011 h->esym.asym.index = indexNil;
3012 }
3013
3014 if (h->root.root.type == bfd_link_hash_common)
3015 h->esym.asym.value = h->root.root.u.c.size;
3016 else if (h->root.root.type == bfd_link_hash_defined
3017 || h->root.root.type == bfd_link_hash_defweak)
3018 {
3019 if (h->esym.asym.sc == scCommon)
3020 h->esym.asym.sc = scBss;
3021 else if (h->esym.asym.sc == scSCommon)
3022 h->esym.asym.sc = scSBss;
3023
3024 sec = h->root.root.u.def.section;
3025 output_section = sec->output_section;
3026 if (output_section != NULL)
3027 h->esym.asym.value = (h->root.root.u.def.value
3028 + sec->output_offset
3029 + output_section->vma);
3030 else
3031 h->esym.asym.value = 0;
3032 }
3033 else
3034 {
3035 struct mips_elf_link_hash_entry *hd = h;
3036
3037 while (hd->root.root.type == bfd_link_hash_indirect)
3038 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
3039
3040 if (hd->needs_lazy_stub)
3041 {
3042 BFD_ASSERT (hd->root.plt.plist != NULL);
3043 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
3044 /* Set type and value for a symbol with a function stub. */
3045 h->esym.asym.st = stProc;
3046 sec = hd->root.root.u.def.section;
3047 if (sec == NULL)
3048 h->esym.asym.value = 0;
3049 else
3050 {
3051 output_section = sec->output_section;
3052 if (output_section != NULL)
3053 h->esym.asym.value = (hd->root.plt.plist->stub_offset
3054 + sec->output_offset
3055 + output_section->vma);
3056 else
3057 h->esym.asym.value = 0;
3058 }
3059 }
3060 }
3061
3062 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3063 h->root.root.root.string,
3064 &h->esym))
3065 {
3066 einfo->failed = TRUE;
3067 return FALSE;
3068 }
3069
3070 return TRUE;
3071 }
3072
3073 /* A comparison routine used to sort .gptab entries. */
3074
3075 static int
3076 gptab_compare (const void *p1, const void *p2)
3077 {
3078 const Elf32_gptab *a1 = p1;
3079 const Elf32_gptab *a2 = p2;
3080
3081 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3082 }
3083 \f
3084 /* Functions to manage the got entry hash table. */
3085
3086 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3087 hash number. */
3088
3089 static INLINE hashval_t
3090 mips_elf_hash_bfd_vma (bfd_vma addr)
3091 {
3092 #ifdef BFD64
3093 return addr + (addr >> 32);
3094 #else
3095 return addr;
3096 #endif
3097 }
3098
3099 static hashval_t
3100 mips_elf_got_entry_hash (const void *entry_)
3101 {
3102 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3103
3104 return (entry->symndx
3105 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3106 + (entry->tls_type == GOT_TLS_LDM ? 0
3107 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3108 : entry->symndx >= 0 ? (entry->abfd->id
3109 + mips_elf_hash_bfd_vma (entry->d.addend))
3110 : entry->d.h->root.root.root.hash));
3111 }
3112
3113 static int
3114 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3115 {
3116 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3117 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3118
3119 return (e1->symndx == e2->symndx
3120 && e1->tls_type == e2->tls_type
3121 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3122 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3123 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3124 && e1->d.addend == e2->d.addend)
3125 : e2->abfd && e1->d.h == e2->d.h));
3126 }
3127
3128 static hashval_t
3129 mips_got_page_ref_hash (const void *ref_)
3130 {
3131 const struct mips_got_page_ref *ref;
3132
3133 ref = (const struct mips_got_page_ref *) ref_;
3134 return ((ref->symndx >= 0
3135 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3136 : ref->u.h->root.root.root.hash)
3137 + mips_elf_hash_bfd_vma (ref->addend));
3138 }
3139
3140 static int
3141 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3142 {
3143 const struct mips_got_page_ref *ref1, *ref2;
3144
3145 ref1 = (const struct mips_got_page_ref *) ref1_;
3146 ref2 = (const struct mips_got_page_ref *) ref2_;
3147 return (ref1->symndx == ref2->symndx
3148 && (ref1->symndx < 0
3149 ? ref1->u.h == ref2->u.h
3150 : ref1->u.abfd == ref2->u.abfd)
3151 && ref1->addend == ref2->addend);
3152 }
3153
3154 static hashval_t
3155 mips_got_page_entry_hash (const void *entry_)
3156 {
3157 const struct mips_got_page_entry *entry;
3158
3159 entry = (const struct mips_got_page_entry *) entry_;
3160 return entry->sec->id;
3161 }
3162
3163 static int
3164 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3165 {
3166 const struct mips_got_page_entry *entry1, *entry2;
3167
3168 entry1 = (const struct mips_got_page_entry *) entry1_;
3169 entry2 = (const struct mips_got_page_entry *) entry2_;
3170 return entry1->sec == entry2->sec;
3171 }
3172 \f
3173 /* Create and return a new mips_got_info structure. */
3174
3175 static struct mips_got_info *
3176 mips_elf_create_got_info (bfd *abfd)
3177 {
3178 struct mips_got_info *g;
3179
3180 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3181 if (g == NULL)
3182 return NULL;
3183
3184 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3185 mips_elf_got_entry_eq, NULL);
3186 if (g->got_entries == NULL)
3187 return NULL;
3188
3189 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3190 mips_got_page_ref_eq, NULL);
3191 if (g->got_page_refs == NULL)
3192 return NULL;
3193
3194 return g;
3195 }
3196
3197 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3198 CREATE_P and if ABFD doesn't already have a GOT. */
3199
3200 static struct mips_got_info *
3201 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3202 {
3203 struct mips_elf_obj_tdata *tdata;
3204
3205 if (!is_mips_elf (abfd))
3206 return NULL;
3207
3208 tdata = mips_elf_tdata (abfd);
3209 if (!tdata->got && create_p)
3210 tdata->got = mips_elf_create_got_info (abfd);
3211 return tdata->got;
3212 }
3213
3214 /* Record that ABFD should use output GOT G. */
3215
3216 static void
3217 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3218 {
3219 struct mips_elf_obj_tdata *tdata;
3220
3221 BFD_ASSERT (is_mips_elf (abfd));
3222 tdata = mips_elf_tdata (abfd);
3223 if (tdata->got)
3224 {
3225 /* The GOT structure itself and the hash table entries are
3226 allocated to a bfd, but the hash tables aren't. */
3227 htab_delete (tdata->got->got_entries);
3228 htab_delete (tdata->got->got_page_refs);
3229 if (tdata->got->got_page_entries)
3230 htab_delete (tdata->got->got_page_entries);
3231 }
3232 tdata->got = g;
3233 }
3234
3235 /* Return the dynamic relocation section. If it doesn't exist, try to
3236 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3237 if creation fails. */
3238
3239 static asection *
3240 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3241 {
3242 const char *dname;
3243 asection *sreloc;
3244 bfd *dynobj;
3245
3246 dname = MIPS_ELF_REL_DYN_NAME (info);
3247 dynobj = elf_hash_table (info)->dynobj;
3248 sreloc = bfd_get_linker_section (dynobj, dname);
3249 if (sreloc == NULL && create_p)
3250 {
3251 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3252 (SEC_ALLOC
3253 | SEC_LOAD
3254 | SEC_HAS_CONTENTS
3255 | SEC_IN_MEMORY
3256 | SEC_LINKER_CREATED
3257 | SEC_READONLY));
3258 if (sreloc == NULL
3259 || ! bfd_set_section_alignment (dynobj, sreloc,
3260 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3261 return NULL;
3262 }
3263 return sreloc;
3264 }
3265
3266 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3267
3268 static int
3269 mips_elf_reloc_tls_type (unsigned int r_type)
3270 {
3271 if (tls_gd_reloc_p (r_type))
3272 return GOT_TLS_GD;
3273
3274 if (tls_ldm_reloc_p (r_type))
3275 return GOT_TLS_LDM;
3276
3277 if (tls_gottprel_reloc_p (r_type))
3278 return GOT_TLS_IE;
3279
3280 return GOT_TLS_NONE;
3281 }
3282
3283 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3284
3285 static int
3286 mips_tls_got_entries (unsigned int type)
3287 {
3288 switch (type)
3289 {
3290 case GOT_TLS_GD:
3291 case GOT_TLS_LDM:
3292 return 2;
3293
3294 case GOT_TLS_IE:
3295 return 1;
3296
3297 case GOT_TLS_NONE:
3298 return 0;
3299 }
3300 abort ();
3301 }
3302
3303 /* Count the number of relocations needed for a TLS GOT entry, with
3304 access types from TLS_TYPE, and symbol H (or a local symbol if H
3305 is NULL). */
3306
3307 static int
3308 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3309 struct elf_link_hash_entry *h)
3310 {
3311 int indx = 0;
3312 bfd_boolean need_relocs = FALSE;
3313 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3314
3315 if (h != NULL
3316 && h->dynindx != -1
3317 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3318 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3319 indx = h->dynindx;
3320
3321 if ((bfd_link_dll (info) || indx != 0)
3322 && (h == NULL
3323 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3324 || h->root.type != bfd_link_hash_undefweak))
3325 need_relocs = TRUE;
3326
3327 if (!need_relocs)
3328 return 0;
3329
3330 switch (tls_type)
3331 {
3332 case GOT_TLS_GD:
3333 return indx != 0 ? 2 : 1;
3334
3335 case GOT_TLS_IE:
3336 return 1;
3337
3338 case GOT_TLS_LDM:
3339 return bfd_link_dll (info) ? 1 : 0;
3340
3341 default:
3342 return 0;
3343 }
3344 }
3345
3346 /* Add the number of GOT entries and TLS relocations required by ENTRY
3347 to G. */
3348
3349 static void
3350 mips_elf_count_got_entry (struct bfd_link_info *info,
3351 struct mips_got_info *g,
3352 struct mips_got_entry *entry)
3353 {
3354 if (entry->tls_type)
3355 {
3356 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3357 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3358 entry->symndx < 0
3359 ? &entry->d.h->root : NULL);
3360 }
3361 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3362 g->local_gotno += 1;
3363 else
3364 g->global_gotno += 1;
3365 }
3366
3367 /* Output a simple dynamic relocation into SRELOC. */
3368
3369 static void
3370 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3371 asection *sreloc,
3372 unsigned long reloc_index,
3373 unsigned long indx,
3374 int r_type,
3375 bfd_vma offset)
3376 {
3377 Elf_Internal_Rela rel[3];
3378
3379 memset (rel, 0, sizeof (rel));
3380
3381 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3382 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3383
3384 if (ABI_64_P (output_bfd))
3385 {
3386 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3387 (output_bfd, &rel[0],
3388 (sreloc->contents
3389 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3390 }
3391 else
3392 bfd_elf32_swap_reloc_out
3393 (output_bfd, &rel[0],
3394 (sreloc->contents
3395 + reloc_index * sizeof (Elf32_External_Rel)));
3396 }
3397
3398 /* Initialize a set of TLS GOT entries for one symbol. */
3399
3400 static void
3401 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3402 struct mips_got_entry *entry,
3403 struct mips_elf_link_hash_entry *h,
3404 bfd_vma value)
3405 {
3406 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3407 struct mips_elf_link_hash_table *htab;
3408 int indx;
3409 asection *sreloc, *sgot;
3410 bfd_vma got_offset, got_offset2;
3411 bfd_boolean need_relocs = FALSE;
3412
3413 htab = mips_elf_hash_table (info);
3414 if (htab == NULL)
3415 return;
3416
3417 sgot = htab->root.sgot;
3418
3419 indx = 0;
3420 if (h != NULL
3421 && h->root.dynindx != -1
3422 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3423 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3424 indx = h->root.dynindx;
3425
3426 if (entry->tls_initialized)
3427 return;
3428
3429 if ((bfd_link_dll (info) || indx != 0)
3430 && (h == NULL
3431 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3432 || h->root.type != bfd_link_hash_undefweak))
3433 need_relocs = TRUE;
3434
3435 /* MINUS_ONE means the symbol is not defined in this object. It may not
3436 be defined at all; assume that the value doesn't matter in that
3437 case. Otherwise complain if we would use the value. */
3438 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3439 || h->root.root.type == bfd_link_hash_undefweak);
3440
3441 /* Emit necessary relocations. */
3442 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3443 got_offset = entry->gotidx;
3444
3445 switch (entry->tls_type)
3446 {
3447 case GOT_TLS_GD:
3448 /* General Dynamic. */
3449 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3450
3451 if (need_relocs)
3452 {
3453 mips_elf_output_dynamic_relocation
3454 (abfd, sreloc, sreloc->reloc_count++, indx,
3455 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3456 sgot->output_offset + sgot->output_section->vma + got_offset);
3457
3458 if (indx)
3459 mips_elf_output_dynamic_relocation
3460 (abfd, sreloc, sreloc->reloc_count++, indx,
3461 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3462 sgot->output_offset + sgot->output_section->vma + got_offset2);
3463 else
3464 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3465 sgot->contents + got_offset2);
3466 }
3467 else
3468 {
3469 MIPS_ELF_PUT_WORD (abfd, 1,
3470 sgot->contents + got_offset);
3471 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3472 sgot->contents + got_offset2);
3473 }
3474 break;
3475
3476 case GOT_TLS_IE:
3477 /* Initial Exec model. */
3478 if (need_relocs)
3479 {
3480 if (indx == 0)
3481 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3482 sgot->contents + got_offset);
3483 else
3484 MIPS_ELF_PUT_WORD (abfd, 0,
3485 sgot->contents + got_offset);
3486
3487 mips_elf_output_dynamic_relocation
3488 (abfd, sreloc, sreloc->reloc_count++, indx,
3489 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3490 sgot->output_offset + sgot->output_section->vma + got_offset);
3491 }
3492 else
3493 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3494 sgot->contents + got_offset);
3495 break;
3496
3497 case GOT_TLS_LDM:
3498 /* The initial offset is zero, and the LD offsets will include the
3499 bias by DTP_OFFSET. */
3500 MIPS_ELF_PUT_WORD (abfd, 0,
3501 sgot->contents + got_offset
3502 + MIPS_ELF_GOT_SIZE (abfd));
3503
3504 if (!bfd_link_dll (info))
3505 MIPS_ELF_PUT_WORD (abfd, 1,
3506 sgot->contents + got_offset);
3507 else
3508 mips_elf_output_dynamic_relocation
3509 (abfd, sreloc, sreloc->reloc_count++, indx,
3510 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3511 sgot->output_offset + sgot->output_section->vma + got_offset);
3512 break;
3513
3514 default:
3515 abort ();
3516 }
3517
3518 entry->tls_initialized = TRUE;
3519 }
3520
3521 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3522 for global symbol H. .got.plt comes before the GOT, so the offset
3523 will be negative. */
3524
3525 static bfd_vma
3526 mips_elf_gotplt_index (struct bfd_link_info *info,
3527 struct elf_link_hash_entry *h)
3528 {
3529 bfd_vma got_address, got_value;
3530 struct mips_elf_link_hash_table *htab;
3531
3532 htab = mips_elf_hash_table (info);
3533 BFD_ASSERT (htab != NULL);
3534
3535 BFD_ASSERT (h->plt.plist != NULL);
3536 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3537
3538 /* Calculate the address of the associated .got.plt entry. */
3539 got_address = (htab->root.sgotplt->output_section->vma
3540 + htab->root.sgotplt->output_offset
3541 + (h->plt.plist->gotplt_index
3542 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3543
3544 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3545 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3546 + htab->root.hgot->root.u.def.section->output_offset
3547 + htab->root.hgot->root.u.def.value);
3548
3549 return got_address - got_value;
3550 }
3551
3552 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3553 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3554 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3555 offset can be found. */
3556
3557 static bfd_vma
3558 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3559 bfd_vma value, unsigned long r_symndx,
3560 struct mips_elf_link_hash_entry *h, int r_type)
3561 {
3562 struct mips_elf_link_hash_table *htab;
3563 struct mips_got_entry *entry;
3564
3565 htab = mips_elf_hash_table (info);
3566 BFD_ASSERT (htab != NULL);
3567
3568 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3569 r_symndx, h, r_type);
3570 if (!entry)
3571 return MINUS_ONE;
3572
3573 if (entry->tls_type)
3574 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3575 return entry->gotidx;
3576 }
3577
3578 /* Return the GOT index of global symbol H in the primary GOT. */
3579
3580 static bfd_vma
3581 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3582 struct elf_link_hash_entry *h)
3583 {
3584 struct mips_elf_link_hash_table *htab;
3585 long global_got_dynindx;
3586 struct mips_got_info *g;
3587 bfd_vma got_index;
3588
3589 htab = mips_elf_hash_table (info);
3590 BFD_ASSERT (htab != NULL);
3591
3592 global_got_dynindx = 0;
3593 if (htab->global_gotsym != NULL)
3594 global_got_dynindx = htab->global_gotsym->dynindx;
3595
3596 /* Once we determine the global GOT entry with the lowest dynamic
3597 symbol table index, we must put all dynamic symbols with greater
3598 indices into the primary GOT. That makes it easy to calculate the
3599 GOT offset. */
3600 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3601 g = mips_elf_bfd_got (obfd, FALSE);
3602 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3603 * MIPS_ELF_GOT_SIZE (obfd));
3604 BFD_ASSERT (got_index < htab->root.sgot->size);
3605
3606 return got_index;
3607 }
3608
3609 /* Return the GOT index for the global symbol indicated by H, which is
3610 referenced by a relocation of type R_TYPE in IBFD. */
3611
3612 static bfd_vma
3613 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3614 struct elf_link_hash_entry *h, int r_type)
3615 {
3616 struct mips_elf_link_hash_table *htab;
3617 struct mips_got_info *g;
3618 struct mips_got_entry lookup, *entry;
3619 bfd_vma gotidx;
3620
3621 htab = mips_elf_hash_table (info);
3622 BFD_ASSERT (htab != NULL);
3623
3624 g = mips_elf_bfd_got (ibfd, FALSE);
3625 BFD_ASSERT (g);
3626
3627 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3628 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3629 return mips_elf_primary_global_got_index (obfd, info, h);
3630
3631 lookup.abfd = ibfd;
3632 lookup.symndx = -1;
3633 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3634 entry = htab_find (g->got_entries, &lookup);
3635 BFD_ASSERT (entry);
3636
3637 gotidx = entry->gotidx;
3638 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3639
3640 if (lookup.tls_type)
3641 {
3642 bfd_vma value = MINUS_ONE;
3643
3644 if ((h->root.type == bfd_link_hash_defined
3645 || h->root.type == bfd_link_hash_defweak)
3646 && h->root.u.def.section->output_section)
3647 value = (h->root.u.def.value
3648 + h->root.u.def.section->output_offset
3649 + h->root.u.def.section->output_section->vma);
3650
3651 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3652 }
3653 return gotidx;
3654 }
3655
3656 /* Find a GOT page entry that points to within 32KB of VALUE. These
3657 entries are supposed to be placed at small offsets in the GOT, i.e.,
3658 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3659 entry could be created. If OFFSETP is nonnull, use it to return the
3660 offset of the GOT entry from VALUE. */
3661
3662 static bfd_vma
3663 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3664 bfd_vma value, bfd_vma *offsetp)
3665 {
3666 bfd_vma page, got_index;
3667 struct mips_got_entry *entry;
3668
3669 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3670 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3671 NULL, R_MIPS_GOT_PAGE);
3672
3673 if (!entry)
3674 return MINUS_ONE;
3675
3676 got_index = entry->gotidx;
3677
3678 if (offsetp)
3679 *offsetp = value - entry->d.address;
3680
3681 return got_index;
3682 }
3683
3684 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3685 EXTERNAL is true if the relocation was originally against a global
3686 symbol that binds locally. */
3687
3688 static bfd_vma
3689 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3690 bfd_vma value, bfd_boolean external)
3691 {
3692 struct mips_got_entry *entry;
3693
3694 /* GOT16 relocations against local symbols are followed by a LO16
3695 relocation; those against global symbols are not. Thus if the
3696 symbol was originally local, the GOT16 relocation should load the
3697 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3698 if (! external)
3699 value = mips_elf_high (value) << 16;
3700
3701 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3702 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3703 same in all cases. */
3704 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3705 NULL, R_MIPS_GOT16);
3706 if (entry)
3707 return entry->gotidx;
3708 else
3709 return MINUS_ONE;
3710 }
3711
3712 /* Returns the offset for the entry at the INDEXth position
3713 in the GOT. */
3714
3715 static bfd_vma
3716 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3717 bfd *input_bfd, bfd_vma got_index)
3718 {
3719 struct mips_elf_link_hash_table *htab;
3720 asection *sgot;
3721 bfd_vma gp;
3722
3723 htab = mips_elf_hash_table (info);
3724 BFD_ASSERT (htab != NULL);
3725
3726 sgot = htab->root.sgot;
3727 gp = _bfd_get_gp_value (output_bfd)
3728 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3729
3730 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3731 }
3732
3733 /* Create and return a local GOT entry for VALUE, which was calculated
3734 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3735 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3736 instead. */
3737
3738 static struct mips_got_entry *
3739 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3740 bfd *ibfd, bfd_vma value,
3741 unsigned long r_symndx,
3742 struct mips_elf_link_hash_entry *h,
3743 int r_type)
3744 {
3745 struct mips_got_entry lookup, *entry;
3746 void **loc;
3747 struct mips_got_info *g;
3748 struct mips_elf_link_hash_table *htab;
3749 bfd_vma gotidx;
3750
3751 htab = mips_elf_hash_table (info);
3752 BFD_ASSERT (htab != NULL);
3753
3754 g = mips_elf_bfd_got (ibfd, FALSE);
3755 if (g == NULL)
3756 {
3757 g = mips_elf_bfd_got (abfd, FALSE);
3758 BFD_ASSERT (g != NULL);
3759 }
3760
3761 /* This function shouldn't be called for symbols that live in the global
3762 area of the GOT. */
3763 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3764
3765 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3766 if (lookup.tls_type)
3767 {
3768 lookup.abfd = ibfd;
3769 if (tls_ldm_reloc_p (r_type))
3770 {
3771 lookup.symndx = 0;
3772 lookup.d.addend = 0;
3773 }
3774 else if (h == NULL)
3775 {
3776 lookup.symndx = r_symndx;
3777 lookup.d.addend = 0;
3778 }
3779 else
3780 {
3781 lookup.symndx = -1;
3782 lookup.d.h = h;
3783 }
3784
3785 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3786 BFD_ASSERT (entry);
3787
3788 gotidx = entry->gotidx;
3789 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3790
3791 return entry;
3792 }
3793
3794 lookup.abfd = NULL;
3795 lookup.symndx = -1;
3796 lookup.d.address = value;
3797 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3798 if (!loc)
3799 return NULL;
3800
3801 entry = (struct mips_got_entry *) *loc;
3802 if (entry)
3803 return entry;
3804
3805 if (g->assigned_low_gotno > g->assigned_high_gotno)
3806 {
3807 /* We didn't allocate enough space in the GOT. */
3808 _bfd_error_handler
3809 (_("not enough GOT space for local GOT entries"));
3810 bfd_set_error (bfd_error_bad_value);
3811 return NULL;
3812 }
3813
3814 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3815 if (!entry)
3816 return NULL;
3817
3818 if (got16_reloc_p (r_type)
3819 || call16_reloc_p (r_type)
3820 || got_page_reloc_p (r_type)
3821 || got_disp_reloc_p (r_type))
3822 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3823 else
3824 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3825
3826 *entry = lookup;
3827 *loc = entry;
3828
3829 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3830
3831 /* These GOT entries need a dynamic relocation on VxWorks. */
3832 if (htab->is_vxworks)
3833 {
3834 Elf_Internal_Rela outrel;
3835 asection *s;
3836 bfd_byte *rloc;
3837 bfd_vma got_address;
3838
3839 s = mips_elf_rel_dyn_section (info, FALSE);
3840 got_address = (htab->root.sgot->output_section->vma
3841 + htab->root.sgot->output_offset
3842 + entry->gotidx);
3843
3844 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3845 outrel.r_offset = got_address;
3846 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3847 outrel.r_addend = value;
3848 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3849 }
3850
3851 return entry;
3852 }
3853
3854 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3855 The number might be exact or a worst-case estimate, depending on how
3856 much information is available to elf_backend_omit_section_dynsym at
3857 the current linking stage. */
3858
3859 static bfd_size_type
3860 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3861 {
3862 bfd_size_type count;
3863
3864 count = 0;
3865 if (bfd_link_pic (info)
3866 || elf_hash_table (info)->is_relocatable_executable)
3867 {
3868 asection *p;
3869 const struct elf_backend_data *bed;
3870
3871 bed = get_elf_backend_data (output_bfd);
3872 for (p = output_bfd->sections; p ; p = p->next)
3873 if ((p->flags & SEC_EXCLUDE) == 0
3874 && (p->flags & SEC_ALLOC) != 0
3875 && elf_hash_table (info)->dynamic_relocs
3876 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3877 ++count;
3878 }
3879 return count;
3880 }
3881
3882 /* Sort the dynamic symbol table so that symbols that need GOT entries
3883 appear towards the end. */
3884
3885 static bfd_boolean
3886 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3887 {
3888 struct mips_elf_link_hash_table *htab;
3889 struct mips_elf_hash_sort_data hsd;
3890 struct mips_got_info *g;
3891
3892 htab = mips_elf_hash_table (info);
3893 BFD_ASSERT (htab != NULL);
3894
3895 if (htab->root.dynsymcount == 0)
3896 return TRUE;
3897
3898 g = htab->got_info;
3899 if (g == NULL)
3900 return TRUE;
3901
3902 hsd.low = NULL;
3903 hsd.max_unref_got_dynindx
3904 = hsd.min_got_dynindx
3905 = (htab->root.dynsymcount - g->reloc_only_gotno);
3906 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3907 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3908 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3909 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3910 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3911
3912 /* There should have been enough room in the symbol table to
3913 accommodate both the GOT and non-GOT symbols. */
3914 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3915 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3916 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3917 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3918
3919 /* Now we know which dynamic symbol has the lowest dynamic symbol
3920 table index in the GOT. */
3921 htab->global_gotsym = hsd.low;
3922
3923 return TRUE;
3924 }
3925
3926 /* If H needs a GOT entry, assign it the highest available dynamic
3927 index. Otherwise, assign it the lowest available dynamic
3928 index. */
3929
3930 static bfd_boolean
3931 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3932 {
3933 struct mips_elf_hash_sort_data *hsd = data;
3934
3935 /* Symbols without dynamic symbol table entries aren't interesting
3936 at all. */
3937 if (h->root.dynindx == -1)
3938 return TRUE;
3939
3940 switch (h->global_got_area)
3941 {
3942 case GGA_NONE:
3943 if (h->root.forced_local)
3944 h->root.dynindx = hsd->max_local_dynindx++;
3945 else
3946 h->root.dynindx = hsd->max_non_got_dynindx++;
3947 break;
3948
3949 case GGA_NORMAL:
3950 h->root.dynindx = --hsd->min_got_dynindx;
3951 hsd->low = (struct elf_link_hash_entry *) h;
3952 break;
3953
3954 case GGA_RELOC_ONLY:
3955 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3956 hsd->low = (struct elf_link_hash_entry *) h;
3957 h->root.dynindx = hsd->max_unref_got_dynindx++;
3958 break;
3959 }
3960
3961 return TRUE;
3962 }
3963
3964 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3965 (which is owned by the caller and shouldn't be added to the
3966 hash table directly). */
3967
3968 static bfd_boolean
3969 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3970 struct mips_got_entry *lookup)
3971 {
3972 struct mips_elf_link_hash_table *htab;
3973 struct mips_got_entry *entry;
3974 struct mips_got_info *g;
3975 void **loc, **bfd_loc;
3976
3977 /* Make sure there's a slot for this entry in the master GOT. */
3978 htab = mips_elf_hash_table (info);
3979 g = htab->got_info;
3980 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3981 if (!loc)
3982 return FALSE;
3983
3984 /* Populate the entry if it isn't already. */
3985 entry = (struct mips_got_entry *) *loc;
3986 if (!entry)
3987 {
3988 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3989 if (!entry)
3990 return FALSE;
3991
3992 lookup->tls_initialized = FALSE;
3993 lookup->gotidx = -1;
3994 *entry = *lookup;
3995 *loc = entry;
3996 }
3997
3998 /* Reuse the same GOT entry for the BFD's GOT. */
3999 g = mips_elf_bfd_got (abfd, TRUE);
4000 if (!g)
4001 return FALSE;
4002
4003 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
4004 if (!bfd_loc)
4005 return FALSE;
4006
4007 if (!*bfd_loc)
4008 *bfd_loc = entry;
4009 return TRUE;
4010 }
4011
4012 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
4013 entry for it. FOR_CALL is true if the caller is only interested in
4014 using the GOT entry for calls. */
4015
4016 static bfd_boolean
4017 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
4018 bfd *abfd, struct bfd_link_info *info,
4019 bfd_boolean for_call, int r_type)
4020 {
4021 struct mips_elf_link_hash_table *htab;
4022 struct mips_elf_link_hash_entry *hmips;
4023 struct mips_got_entry entry;
4024 unsigned char tls_type;
4025
4026 htab = mips_elf_hash_table (info);
4027 BFD_ASSERT (htab != NULL);
4028
4029 hmips = (struct mips_elf_link_hash_entry *) h;
4030 if (!for_call)
4031 hmips->got_only_for_calls = FALSE;
4032
4033 /* A global symbol in the GOT must also be in the dynamic symbol
4034 table. */
4035 if (h->dynindx == -1)
4036 {
4037 switch (ELF_ST_VISIBILITY (h->other))
4038 {
4039 case STV_INTERNAL:
4040 case STV_HIDDEN:
4041 _bfd_mips_elf_hide_symbol (info, h, TRUE);
4042 break;
4043 }
4044 if (!bfd_elf_link_record_dynamic_symbol (info, h))
4045 return FALSE;
4046 }
4047
4048 tls_type = mips_elf_reloc_tls_type (r_type);
4049 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
4050 hmips->global_got_area = GGA_NORMAL;
4051
4052 entry.abfd = abfd;
4053 entry.symndx = -1;
4054 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4055 entry.tls_type = tls_type;
4056 return mips_elf_record_got_entry (info, abfd, &entry);
4057 }
4058
4059 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4060 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4061
4062 static bfd_boolean
4063 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4064 struct bfd_link_info *info, int r_type)
4065 {
4066 struct mips_elf_link_hash_table *htab;
4067 struct mips_got_info *g;
4068 struct mips_got_entry entry;
4069
4070 htab = mips_elf_hash_table (info);
4071 BFD_ASSERT (htab != NULL);
4072
4073 g = htab->got_info;
4074 BFD_ASSERT (g != NULL);
4075
4076 entry.abfd = abfd;
4077 entry.symndx = symndx;
4078 entry.d.addend = addend;
4079 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4080 return mips_elf_record_got_entry (info, abfd, &entry);
4081 }
4082
4083 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4084 H is the symbol's hash table entry, or null if SYMNDX is local
4085 to ABFD. */
4086
4087 static bfd_boolean
4088 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4089 long symndx, struct elf_link_hash_entry *h,
4090 bfd_signed_vma addend)
4091 {
4092 struct mips_elf_link_hash_table *htab;
4093 struct mips_got_info *g1, *g2;
4094 struct mips_got_page_ref lookup, *entry;
4095 void **loc, **bfd_loc;
4096
4097 htab = mips_elf_hash_table (info);
4098 BFD_ASSERT (htab != NULL);
4099
4100 g1 = htab->got_info;
4101 BFD_ASSERT (g1 != NULL);
4102
4103 if (h)
4104 {
4105 lookup.symndx = -1;
4106 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4107 }
4108 else
4109 {
4110 lookup.symndx = symndx;
4111 lookup.u.abfd = abfd;
4112 }
4113 lookup.addend = addend;
4114 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4115 if (loc == NULL)
4116 return FALSE;
4117
4118 entry = (struct mips_got_page_ref *) *loc;
4119 if (!entry)
4120 {
4121 entry = bfd_alloc (abfd, sizeof (*entry));
4122 if (!entry)
4123 return FALSE;
4124
4125 *entry = lookup;
4126 *loc = entry;
4127 }
4128
4129 /* Add the same entry to the BFD's GOT. */
4130 g2 = mips_elf_bfd_got (abfd, TRUE);
4131 if (!g2)
4132 return FALSE;
4133
4134 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4135 if (!bfd_loc)
4136 return FALSE;
4137
4138 if (!*bfd_loc)
4139 *bfd_loc = entry;
4140
4141 return TRUE;
4142 }
4143
4144 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4145
4146 static void
4147 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4148 unsigned int n)
4149 {
4150 asection *s;
4151 struct mips_elf_link_hash_table *htab;
4152
4153 htab = mips_elf_hash_table (info);
4154 BFD_ASSERT (htab != NULL);
4155
4156 s = mips_elf_rel_dyn_section (info, FALSE);
4157 BFD_ASSERT (s != NULL);
4158
4159 if (htab->is_vxworks)
4160 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4161 else
4162 {
4163 if (s->size == 0)
4164 {
4165 /* Make room for a null element. */
4166 s->size += MIPS_ELF_REL_SIZE (abfd);
4167 ++s->reloc_count;
4168 }
4169 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4170 }
4171 }
4172 \f
4173 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4174 mips_elf_traverse_got_arg structure. Count the number of GOT
4175 entries and TLS relocs. Set DATA->value to true if we need
4176 to resolve indirect or warning symbols and then recreate the GOT. */
4177
4178 static int
4179 mips_elf_check_recreate_got (void **entryp, void *data)
4180 {
4181 struct mips_got_entry *entry;
4182 struct mips_elf_traverse_got_arg *arg;
4183
4184 entry = (struct mips_got_entry *) *entryp;
4185 arg = (struct mips_elf_traverse_got_arg *) data;
4186 if (entry->abfd != NULL && entry->symndx == -1)
4187 {
4188 struct mips_elf_link_hash_entry *h;
4189
4190 h = entry->d.h;
4191 if (h->root.root.type == bfd_link_hash_indirect
4192 || h->root.root.type == bfd_link_hash_warning)
4193 {
4194 arg->value = TRUE;
4195 return 0;
4196 }
4197 }
4198 mips_elf_count_got_entry (arg->info, arg->g, entry);
4199 return 1;
4200 }
4201
4202 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4203 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4204 converting entries for indirect and warning symbols into entries
4205 for the target symbol. Set DATA->g to null on error. */
4206
4207 static int
4208 mips_elf_recreate_got (void **entryp, void *data)
4209 {
4210 struct mips_got_entry new_entry, *entry;
4211 struct mips_elf_traverse_got_arg *arg;
4212 void **slot;
4213
4214 entry = (struct mips_got_entry *) *entryp;
4215 arg = (struct mips_elf_traverse_got_arg *) data;
4216 if (entry->abfd != NULL
4217 && entry->symndx == -1
4218 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4219 || entry->d.h->root.root.type == bfd_link_hash_warning))
4220 {
4221 struct mips_elf_link_hash_entry *h;
4222
4223 new_entry = *entry;
4224 entry = &new_entry;
4225 h = entry->d.h;
4226 do
4227 {
4228 BFD_ASSERT (h->global_got_area == GGA_NONE);
4229 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4230 }
4231 while (h->root.root.type == bfd_link_hash_indirect
4232 || h->root.root.type == bfd_link_hash_warning);
4233 entry->d.h = h;
4234 }
4235 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4236 if (slot == NULL)
4237 {
4238 arg->g = NULL;
4239 return 0;
4240 }
4241 if (*slot == NULL)
4242 {
4243 if (entry == &new_entry)
4244 {
4245 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4246 if (!entry)
4247 {
4248 arg->g = NULL;
4249 return 0;
4250 }
4251 *entry = new_entry;
4252 }
4253 *slot = entry;
4254 mips_elf_count_got_entry (arg->info, arg->g, entry);
4255 }
4256 return 1;
4257 }
4258
4259 /* Return the maximum number of GOT page entries required for RANGE. */
4260
4261 static bfd_vma
4262 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4263 {
4264 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4265 }
4266
4267 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4268
4269 static bfd_boolean
4270 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4271 asection *sec, bfd_signed_vma addend)
4272 {
4273 struct mips_got_info *g = arg->g;
4274 struct mips_got_page_entry lookup, *entry;
4275 struct mips_got_page_range **range_ptr, *range;
4276 bfd_vma old_pages, new_pages;
4277 void **loc;
4278
4279 /* Find the mips_got_page_entry hash table entry for this section. */
4280 lookup.sec = sec;
4281 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4282 if (loc == NULL)
4283 return FALSE;
4284
4285 /* Create a mips_got_page_entry if this is the first time we've
4286 seen the section. */
4287 entry = (struct mips_got_page_entry *) *loc;
4288 if (!entry)
4289 {
4290 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4291 if (!entry)
4292 return FALSE;
4293
4294 entry->sec = sec;
4295 *loc = entry;
4296 }
4297
4298 /* Skip over ranges whose maximum extent cannot share a page entry
4299 with ADDEND. */
4300 range_ptr = &entry->ranges;
4301 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4302 range_ptr = &(*range_ptr)->next;
4303
4304 /* If we scanned to the end of the list, or found a range whose
4305 minimum extent cannot share a page entry with ADDEND, create
4306 a new singleton range. */
4307 range = *range_ptr;
4308 if (!range || addend < range->min_addend - 0xffff)
4309 {
4310 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4311 if (!range)
4312 return FALSE;
4313
4314 range->next = *range_ptr;
4315 range->min_addend = addend;
4316 range->max_addend = addend;
4317
4318 *range_ptr = range;
4319 entry->num_pages++;
4320 g->page_gotno++;
4321 return TRUE;
4322 }
4323
4324 /* Remember how many pages the old range contributed. */
4325 old_pages = mips_elf_pages_for_range (range);
4326
4327 /* Update the ranges. */
4328 if (addend < range->min_addend)
4329 range->min_addend = addend;
4330 else if (addend > range->max_addend)
4331 {
4332 if (range->next && addend >= range->next->min_addend - 0xffff)
4333 {
4334 old_pages += mips_elf_pages_for_range (range->next);
4335 range->max_addend = range->next->max_addend;
4336 range->next = range->next->next;
4337 }
4338 else
4339 range->max_addend = addend;
4340 }
4341
4342 /* Record any change in the total estimate. */
4343 new_pages = mips_elf_pages_for_range (range);
4344 if (old_pages != new_pages)
4345 {
4346 entry->num_pages += new_pages - old_pages;
4347 g->page_gotno += new_pages - old_pages;
4348 }
4349
4350 return TRUE;
4351 }
4352
4353 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4354 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4355 whether the page reference described by *REFP needs a GOT page entry,
4356 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4357
4358 static bfd_boolean
4359 mips_elf_resolve_got_page_ref (void **refp, void *data)
4360 {
4361 struct mips_got_page_ref *ref;
4362 struct mips_elf_traverse_got_arg *arg;
4363 struct mips_elf_link_hash_table *htab;
4364 asection *sec;
4365 bfd_vma addend;
4366
4367 ref = (struct mips_got_page_ref *) *refp;
4368 arg = (struct mips_elf_traverse_got_arg *) data;
4369 htab = mips_elf_hash_table (arg->info);
4370
4371 if (ref->symndx < 0)
4372 {
4373 struct mips_elf_link_hash_entry *h;
4374
4375 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4376 h = ref->u.h;
4377 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4378 return 1;
4379
4380 /* Ignore undefined symbols; we'll issue an error later if
4381 appropriate. */
4382 if (!((h->root.root.type == bfd_link_hash_defined
4383 || h->root.root.type == bfd_link_hash_defweak)
4384 && h->root.root.u.def.section))
4385 return 1;
4386
4387 sec = h->root.root.u.def.section;
4388 addend = h->root.root.u.def.value + ref->addend;
4389 }
4390 else
4391 {
4392 Elf_Internal_Sym *isym;
4393
4394 /* Read in the symbol. */
4395 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4396 ref->symndx);
4397 if (isym == NULL)
4398 {
4399 arg->g = NULL;
4400 return 0;
4401 }
4402
4403 /* Get the associated input section. */
4404 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4405 if (sec == NULL)
4406 {
4407 arg->g = NULL;
4408 return 0;
4409 }
4410
4411 /* If this is a mergable section, work out the section and offset
4412 of the merged data. For section symbols, the addend specifies
4413 of the offset _of_ the first byte in the data, otherwise it
4414 specifies the offset _from_ the first byte. */
4415 if (sec->flags & SEC_MERGE)
4416 {
4417 void *secinfo;
4418
4419 secinfo = elf_section_data (sec)->sec_info;
4420 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4421 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4422 isym->st_value + ref->addend);
4423 else
4424 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4425 isym->st_value) + ref->addend;
4426 }
4427 else
4428 addend = isym->st_value + ref->addend;
4429 }
4430 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4431 {
4432 arg->g = NULL;
4433 return 0;
4434 }
4435 return 1;
4436 }
4437
4438 /* If any entries in G->got_entries are for indirect or warning symbols,
4439 replace them with entries for the target symbol. Convert g->got_page_refs
4440 into got_page_entry structures and estimate the number of page entries
4441 that they require. */
4442
4443 static bfd_boolean
4444 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4445 struct mips_got_info *g)
4446 {
4447 struct mips_elf_traverse_got_arg tga;
4448 struct mips_got_info oldg;
4449
4450 oldg = *g;
4451
4452 tga.info = info;
4453 tga.g = g;
4454 tga.value = FALSE;
4455 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4456 if (tga.value)
4457 {
4458 *g = oldg;
4459 g->got_entries = htab_create (htab_size (oldg.got_entries),
4460 mips_elf_got_entry_hash,
4461 mips_elf_got_entry_eq, NULL);
4462 if (!g->got_entries)
4463 return FALSE;
4464
4465 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4466 if (!tga.g)
4467 return FALSE;
4468
4469 htab_delete (oldg.got_entries);
4470 }
4471
4472 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4473 mips_got_page_entry_eq, NULL);
4474 if (g->got_page_entries == NULL)
4475 return FALSE;
4476
4477 tga.info = info;
4478 tga.g = g;
4479 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4480
4481 return TRUE;
4482 }
4483
4484 /* Return true if a GOT entry for H should live in the local rather than
4485 global GOT area. */
4486
4487 static bfd_boolean
4488 mips_use_local_got_p (struct bfd_link_info *info,
4489 struct mips_elf_link_hash_entry *h)
4490 {
4491 /* Symbols that aren't in the dynamic symbol table must live in the
4492 local GOT. This includes symbols that are completely undefined
4493 and which therefore don't bind locally. We'll report undefined
4494 symbols later if appropriate. */
4495 if (h->root.dynindx == -1)
4496 return TRUE;
4497
4498 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4499 to the local GOT, as they would be implicitly relocated by the
4500 base address by the dynamic loader. */
4501 if (bfd_is_abs_symbol (&h->root.root))
4502 return FALSE;
4503
4504 /* Symbols that bind locally can (and in the case of forced-local
4505 symbols, must) live in the local GOT. */
4506 if (h->got_only_for_calls
4507 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4508 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4509 return TRUE;
4510
4511 /* If this is an executable that must provide a definition of the symbol,
4512 either though PLTs or copy relocations, then that address should go in
4513 the local rather than global GOT. */
4514 if (bfd_link_executable (info) && h->has_static_relocs)
4515 return TRUE;
4516
4517 return FALSE;
4518 }
4519
4520 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4521 link_info structure. Decide whether the hash entry needs an entry in
4522 the global part of the primary GOT, setting global_got_area accordingly.
4523 Count the number of global symbols that are in the primary GOT only
4524 because they have relocations against them (reloc_only_gotno). */
4525
4526 static int
4527 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4528 {
4529 struct bfd_link_info *info;
4530 struct mips_elf_link_hash_table *htab;
4531 struct mips_got_info *g;
4532
4533 info = (struct bfd_link_info *) data;
4534 htab = mips_elf_hash_table (info);
4535 g = htab->got_info;
4536 if (h->global_got_area != GGA_NONE)
4537 {
4538 /* Make a final decision about whether the symbol belongs in the
4539 local or global GOT. */
4540 if (mips_use_local_got_p (info, h))
4541 /* The symbol belongs in the local GOT. We no longer need this
4542 entry if it was only used for relocations; those relocations
4543 will be against the null or section symbol instead of H. */
4544 h->global_got_area = GGA_NONE;
4545 else if (htab->is_vxworks
4546 && h->got_only_for_calls
4547 && h->root.plt.plist->mips_offset != MINUS_ONE)
4548 /* On VxWorks, calls can refer directly to the .got.plt entry;
4549 they don't need entries in the regular GOT. .got.plt entries
4550 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4551 h->global_got_area = GGA_NONE;
4552 else if (h->global_got_area == GGA_RELOC_ONLY)
4553 {
4554 g->reloc_only_gotno++;
4555 g->global_gotno++;
4556 }
4557 }
4558 return 1;
4559 }
4560 \f
4561 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4562 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4563
4564 static int
4565 mips_elf_add_got_entry (void **entryp, void *data)
4566 {
4567 struct mips_got_entry *entry;
4568 struct mips_elf_traverse_got_arg *arg;
4569 void **slot;
4570
4571 entry = (struct mips_got_entry *) *entryp;
4572 arg = (struct mips_elf_traverse_got_arg *) data;
4573 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4574 if (!slot)
4575 {
4576 arg->g = NULL;
4577 return 0;
4578 }
4579 if (!*slot)
4580 {
4581 *slot = entry;
4582 mips_elf_count_got_entry (arg->info, arg->g, entry);
4583 }
4584 return 1;
4585 }
4586
4587 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4588 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4589
4590 static int
4591 mips_elf_add_got_page_entry (void **entryp, void *data)
4592 {
4593 struct mips_got_page_entry *entry;
4594 struct mips_elf_traverse_got_arg *arg;
4595 void **slot;
4596
4597 entry = (struct mips_got_page_entry *) *entryp;
4598 arg = (struct mips_elf_traverse_got_arg *) data;
4599 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4600 if (!slot)
4601 {
4602 arg->g = NULL;
4603 return 0;
4604 }
4605 if (!*slot)
4606 {
4607 *slot = entry;
4608 arg->g->page_gotno += entry->num_pages;
4609 }
4610 return 1;
4611 }
4612
4613 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4614 this would lead to overflow, 1 if they were merged successfully,
4615 and 0 if a merge failed due to lack of memory. (These values are chosen
4616 so that nonnegative return values can be returned by a htab_traverse
4617 callback.) */
4618
4619 static int
4620 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4621 struct mips_got_info *to,
4622 struct mips_elf_got_per_bfd_arg *arg)
4623 {
4624 struct mips_elf_traverse_got_arg tga;
4625 unsigned int estimate;
4626
4627 /* Work out how many page entries we would need for the combined GOT. */
4628 estimate = arg->max_pages;
4629 if (estimate >= from->page_gotno + to->page_gotno)
4630 estimate = from->page_gotno + to->page_gotno;
4631
4632 /* And conservatively estimate how many local and TLS entries
4633 would be needed. */
4634 estimate += from->local_gotno + to->local_gotno;
4635 estimate += from->tls_gotno + to->tls_gotno;
4636
4637 /* If we're merging with the primary got, any TLS relocations will
4638 come after the full set of global entries. Otherwise estimate those
4639 conservatively as well. */
4640 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4641 estimate += arg->global_count;
4642 else
4643 estimate += from->global_gotno + to->global_gotno;
4644
4645 /* Bail out if the combined GOT might be too big. */
4646 if (estimate > arg->max_count)
4647 return -1;
4648
4649 /* Transfer the bfd's got information from FROM to TO. */
4650 tga.info = arg->info;
4651 tga.g = to;
4652 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4653 if (!tga.g)
4654 return 0;
4655
4656 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4657 if (!tga.g)
4658 return 0;
4659
4660 mips_elf_replace_bfd_got (abfd, to);
4661 return 1;
4662 }
4663
4664 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4665 as possible of the primary got, since it doesn't require explicit
4666 dynamic relocations, but don't use bfds that would reference global
4667 symbols out of the addressable range. Failing the primary got,
4668 attempt to merge with the current got, or finish the current got
4669 and then make make the new got current. */
4670
4671 static bfd_boolean
4672 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4673 struct mips_elf_got_per_bfd_arg *arg)
4674 {
4675 unsigned int estimate;
4676 int result;
4677
4678 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4679 return FALSE;
4680
4681 /* Work out the number of page, local and TLS entries. */
4682 estimate = arg->max_pages;
4683 if (estimate > g->page_gotno)
4684 estimate = g->page_gotno;
4685 estimate += g->local_gotno + g->tls_gotno;
4686
4687 /* We place TLS GOT entries after both locals and globals. The globals
4688 for the primary GOT may overflow the normal GOT size limit, so be
4689 sure not to merge a GOT which requires TLS with the primary GOT in that
4690 case. This doesn't affect non-primary GOTs. */
4691 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4692
4693 if (estimate <= arg->max_count)
4694 {
4695 /* If we don't have a primary GOT, use it as
4696 a starting point for the primary GOT. */
4697 if (!arg->primary)
4698 {
4699 arg->primary = g;
4700 return TRUE;
4701 }
4702
4703 /* Try merging with the primary GOT. */
4704 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4705 if (result >= 0)
4706 return result;
4707 }
4708
4709 /* If we can merge with the last-created got, do it. */
4710 if (arg->current)
4711 {
4712 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4713 if (result >= 0)
4714 return result;
4715 }
4716
4717 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4718 fits; if it turns out that it doesn't, we'll get relocation
4719 overflows anyway. */
4720 g->next = arg->current;
4721 arg->current = g;
4722
4723 return TRUE;
4724 }
4725
4726 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4727 to GOTIDX, duplicating the entry if it has already been assigned
4728 an index in a different GOT. */
4729
4730 static bfd_boolean
4731 mips_elf_set_gotidx (void **entryp, long gotidx)
4732 {
4733 struct mips_got_entry *entry;
4734
4735 entry = (struct mips_got_entry *) *entryp;
4736 if (entry->gotidx > 0)
4737 {
4738 struct mips_got_entry *new_entry;
4739
4740 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4741 if (!new_entry)
4742 return FALSE;
4743
4744 *new_entry = *entry;
4745 *entryp = new_entry;
4746 entry = new_entry;
4747 }
4748 entry->gotidx = gotidx;
4749 return TRUE;
4750 }
4751
4752 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4753 mips_elf_traverse_got_arg in which DATA->value is the size of one
4754 GOT entry. Set DATA->g to null on failure. */
4755
4756 static int
4757 mips_elf_initialize_tls_index (void **entryp, void *data)
4758 {
4759 struct mips_got_entry *entry;
4760 struct mips_elf_traverse_got_arg *arg;
4761
4762 /* We're only interested in TLS symbols. */
4763 entry = (struct mips_got_entry *) *entryp;
4764 if (entry->tls_type == GOT_TLS_NONE)
4765 return 1;
4766
4767 arg = (struct mips_elf_traverse_got_arg *) data;
4768 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4769 {
4770 arg->g = NULL;
4771 return 0;
4772 }
4773
4774 /* Account for the entries we've just allocated. */
4775 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4776 return 1;
4777 }
4778
4779 /* A htab_traverse callback for GOT entries, where DATA points to a
4780 mips_elf_traverse_got_arg. Set the global_got_area of each global
4781 symbol to DATA->value. */
4782
4783 static int
4784 mips_elf_set_global_got_area (void **entryp, void *data)
4785 {
4786 struct mips_got_entry *entry;
4787 struct mips_elf_traverse_got_arg *arg;
4788
4789 entry = (struct mips_got_entry *) *entryp;
4790 arg = (struct mips_elf_traverse_got_arg *) data;
4791 if (entry->abfd != NULL
4792 && entry->symndx == -1
4793 && entry->d.h->global_got_area != GGA_NONE)
4794 entry->d.h->global_got_area = arg->value;
4795 return 1;
4796 }
4797
4798 /* A htab_traverse callback for secondary GOT entries, where DATA points
4799 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4800 and record the number of relocations they require. DATA->value is
4801 the size of one GOT entry. Set DATA->g to null on failure. */
4802
4803 static int
4804 mips_elf_set_global_gotidx (void **entryp, void *data)
4805 {
4806 struct mips_got_entry *entry;
4807 struct mips_elf_traverse_got_arg *arg;
4808
4809 entry = (struct mips_got_entry *) *entryp;
4810 arg = (struct mips_elf_traverse_got_arg *) data;
4811 if (entry->abfd != NULL
4812 && entry->symndx == -1
4813 && entry->d.h->global_got_area != GGA_NONE)
4814 {
4815 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4816 {
4817 arg->g = NULL;
4818 return 0;
4819 }
4820 arg->g->assigned_low_gotno += 1;
4821
4822 if (bfd_link_pic (arg->info)
4823 || (elf_hash_table (arg->info)->dynamic_sections_created
4824 && entry->d.h->root.def_dynamic
4825 && !entry->d.h->root.def_regular))
4826 arg->g->relocs += 1;
4827 }
4828
4829 return 1;
4830 }
4831
4832 /* A htab_traverse callback for GOT entries for which DATA is the
4833 bfd_link_info. Forbid any global symbols from having traditional
4834 lazy-binding stubs. */
4835
4836 static int
4837 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4838 {
4839 struct bfd_link_info *info;
4840 struct mips_elf_link_hash_table *htab;
4841 struct mips_got_entry *entry;
4842
4843 entry = (struct mips_got_entry *) *entryp;
4844 info = (struct bfd_link_info *) data;
4845 htab = mips_elf_hash_table (info);
4846 BFD_ASSERT (htab != NULL);
4847
4848 if (entry->abfd != NULL
4849 && entry->symndx == -1
4850 && entry->d.h->needs_lazy_stub)
4851 {
4852 entry->d.h->needs_lazy_stub = FALSE;
4853 htab->lazy_stub_count--;
4854 }
4855
4856 return 1;
4857 }
4858
4859 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4860 the primary GOT. */
4861 static bfd_vma
4862 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4863 {
4864 if (!g->next)
4865 return 0;
4866
4867 g = mips_elf_bfd_got (ibfd, FALSE);
4868 if (! g)
4869 return 0;
4870
4871 BFD_ASSERT (g->next);
4872
4873 g = g->next;
4874
4875 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4876 * MIPS_ELF_GOT_SIZE (abfd);
4877 }
4878
4879 /* Turn a single GOT that is too big for 16-bit addressing into
4880 a sequence of GOTs, each one 16-bit addressable. */
4881
4882 static bfd_boolean
4883 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4884 asection *got, bfd_size_type pages)
4885 {
4886 struct mips_elf_link_hash_table *htab;
4887 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4888 struct mips_elf_traverse_got_arg tga;
4889 struct mips_got_info *g, *gg;
4890 unsigned int assign, needed_relocs;
4891 bfd *dynobj, *ibfd;
4892
4893 dynobj = elf_hash_table (info)->dynobj;
4894 htab = mips_elf_hash_table (info);
4895 BFD_ASSERT (htab != NULL);
4896
4897 g = htab->got_info;
4898
4899 got_per_bfd_arg.obfd = abfd;
4900 got_per_bfd_arg.info = info;
4901 got_per_bfd_arg.current = NULL;
4902 got_per_bfd_arg.primary = NULL;
4903 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4904 / MIPS_ELF_GOT_SIZE (abfd))
4905 - htab->reserved_gotno);
4906 got_per_bfd_arg.max_pages = pages;
4907 /* The number of globals that will be included in the primary GOT.
4908 See the calls to mips_elf_set_global_got_area below for more
4909 information. */
4910 got_per_bfd_arg.global_count = g->global_gotno;
4911
4912 /* Try to merge the GOTs of input bfds together, as long as they
4913 don't seem to exceed the maximum GOT size, choosing one of them
4914 to be the primary GOT. */
4915 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4916 {
4917 gg = mips_elf_bfd_got (ibfd, FALSE);
4918 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4919 return FALSE;
4920 }
4921
4922 /* If we do not find any suitable primary GOT, create an empty one. */
4923 if (got_per_bfd_arg.primary == NULL)
4924 g->next = mips_elf_create_got_info (abfd);
4925 else
4926 g->next = got_per_bfd_arg.primary;
4927 g->next->next = got_per_bfd_arg.current;
4928
4929 /* GG is now the master GOT, and G is the primary GOT. */
4930 gg = g;
4931 g = g->next;
4932
4933 /* Map the output bfd to the primary got. That's what we're going
4934 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4935 didn't mark in check_relocs, and we want a quick way to find it.
4936 We can't just use gg->next because we're going to reverse the
4937 list. */
4938 mips_elf_replace_bfd_got (abfd, g);
4939
4940 /* Every symbol that is referenced in a dynamic relocation must be
4941 present in the primary GOT, so arrange for them to appear after
4942 those that are actually referenced. */
4943 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4944 g->global_gotno = gg->global_gotno;
4945
4946 tga.info = info;
4947 tga.value = GGA_RELOC_ONLY;
4948 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4949 tga.value = GGA_NORMAL;
4950 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4951
4952 /* Now go through the GOTs assigning them offset ranges.
4953 [assigned_low_gotno, local_gotno[ will be set to the range of local
4954 entries in each GOT. We can then compute the end of a GOT by
4955 adding local_gotno to global_gotno. We reverse the list and make
4956 it circular since then we'll be able to quickly compute the
4957 beginning of a GOT, by computing the end of its predecessor. To
4958 avoid special cases for the primary GOT, while still preserving
4959 assertions that are valid for both single- and multi-got links,
4960 we arrange for the main got struct to have the right number of
4961 global entries, but set its local_gotno such that the initial
4962 offset of the primary GOT is zero. Remember that the primary GOT
4963 will become the last item in the circular linked list, so it
4964 points back to the master GOT. */
4965 gg->local_gotno = -g->global_gotno;
4966 gg->global_gotno = g->global_gotno;
4967 gg->tls_gotno = 0;
4968 assign = 0;
4969 gg->next = gg;
4970
4971 do
4972 {
4973 struct mips_got_info *gn;
4974
4975 assign += htab->reserved_gotno;
4976 g->assigned_low_gotno = assign;
4977 g->local_gotno += assign;
4978 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4979 g->assigned_high_gotno = g->local_gotno - 1;
4980 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4981
4982 /* Take g out of the direct list, and push it onto the reversed
4983 list that gg points to. g->next is guaranteed to be nonnull after
4984 this operation, as required by mips_elf_initialize_tls_index. */
4985 gn = g->next;
4986 g->next = gg->next;
4987 gg->next = g;
4988
4989 /* Set up any TLS entries. We always place the TLS entries after
4990 all non-TLS entries. */
4991 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4992 tga.g = g;
4993 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4994 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4995 if (!tga.g)
4996 return FALSE;
4997 BFD_ASSERT (g->tls_assigned_gotno == assign);
4998
4999 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
5000 g = gn;
5001
5002 /* Forbid global symbols in every non-primary GOT from having
5003 lazy-binding stubs. */
5004 if (g)
5005 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
5006 }
5007 while (g);
5008
5009 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
5010
5011 needed_relocs = 0;
5012 for (g = gg->next; g && g->next != gg; g = g->next)
5013 {
5014 unsigned int save_assign;
5015
5016 /* Assign offsets to global GOT entries and count how many
5017 relocations they need. */
5018 save_assign = g->assigned_low_gotno;
5019 g->assigned_low_gotno = g->local_gotno;
5020 tga.info = info;
5021 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5022 tga.g = g;
5023 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
5024 if (!tga.g)
5025 return FALSE;
5026 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
5027 g->assigned_low_gotno = save_assign;
5028
5029 if (bfd_link_pic (info))
5030 {
5031 g->relocs += g->local_gotno - g->assigned_low_gotno;
5032 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
5033 + g->next->global_gotno
5034 + g->next->tls_gotno
5035 + htab->reserved_gotno);
5036 }
5037 needed_relocs += g->relocs;
5038 }
5039 needed_relocs += g->relocs;
5040
5041 if (needed_relocs)
5042 mips_elf_allocate_dynamic_relocations (dynobj, info,
5043 needed_relocs);
5044
5045 return TRUE;
5046 }
5047
5048 \f
5049 /* Returns the first relocation of type r_type found, beginning with
5050 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5051
5052 static const Elf_Internal_Rela *
5053 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
5054 const Elf_Internal_Rela *relocation,
5055 const Elf_Internal_Rela *relend)
5056 {
5057 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
5058
5059 while (relocation < relend)
5060 {
5061 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5062 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5063 return relocation;
5064
5065 ++relocation;
5066 }
5067
5068 /* We didn't find it. */
5069 return NULL;
5070 }
5071
5072 /* Return whether an input relocation is against a local symbol. */
5073
5074 static bfd_boolean
5075 mips_elf_local_relocation_p (bfd *input_bfd,
5076 const Elf_Internal_Rela *relocation,
5077 asection **local_sections)
5078 {
5079 unsigned long r_symndx;
5080 Elf_Internal_Shdr *symtab_hdr;
5081 size_t extsymoff;
5082
5083 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5084 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5085 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5086
5087 if (r_symndx < extsymoff)
5088 return TRUE;
5089 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5090 return TRUE;
5091
5092 return FALSE;
5093 }
5094 \f
5095 /* Sign-extend VALUE, which has the indicated number of BITS. */
5096
5097 bfd_vma
5098 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5099 {
5100 if (value & ((bfd_vma) 1 << (bits - 1)))
5101 /* VALUE is negative. */
5102 value |= ((bfd_vma) - 1) << bits;
5103
5104 return value;
5105 }
5106
5107 /* Return non-zero if the indicated VALUE has overflowed the maximum
5108 range expressible by a signed number with the indicated number of
5109 BITS. */
5110
5111 static bfd_boolean
5112 mips_elf_overflow_p (bfd_vma value, int bits)
5113 {
5114 bfd_signed_vma svalue = (bfd_signed_vma) value;
5115
5116 if (svalue > (1 << (bits - 1)) - 1)
5117 /* The value is too big. */
5118 return TRUE;
5119 else if (svalue < -(1 << (bits - 1)))
5120 /* The value is too small. */
5121 return TRUE;
5122
5123 /* All is well. */
5124 return FALSE;
5125 }
5126
5127 /* Calculate the %high function. */
5128
5129 static bfd_vma
5130 mips_elf_high (bfd_vma value)
5131 {
5132 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5133 }
5134
5135 /* Calculate the %higher function. */
5136
5137 static bfd_vma
5138 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5139 {
5140 #ifdef BFD64
5141 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5142 #else
5143 abort ();
5144 return MINUS_ONE;
5145 #endif
5146 }
5147
5148 /* Calculate the %highest function. */
5149
5150 static bfd_vma
5151 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5152 {
5153 #ifdef BFD64
5154 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5155 #else
5156 abort ();
5157 return MINUS_ONE;
5158 #endif
5159 }
5160 \f
5161 /* Create the .compact_rel section. */
5162
5163 static bfd_boolean
5164 mips_elf_create_compact_rel_section
5165 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5166 {
5167 flagword flags;
5168 register asection *s;
5169
5170 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5171 {
5172 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5173 | SEC_READONLY);
5174
5175 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5176 if (s == NULL
5177 || ! bfd_set_section_alignment (abfd, s,
5178 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5179 return FALSE;
5180
5181 s->size = sizeof (Elf32_External_compact_rel);
5182 }
5183
5184 return TRUE;
5185 }
5186
5187 /* Create the .got section to hold the global offset table. */
5188
5189 static bfd_boolean
5190 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5191 {
5192 flagword flags;
5193 register asection *s;
5194 struct elf_link_hash_entry *h;
5195 struct bfd_link_hash_entry *bh;
5196 struct mips_elf_link_hash_table *htab;
5197
5198 htab = mips_elf_hash_table (info);
5199 BFD_ASSERT (htab != NULL);
5200
5201 /* This function may be called more than once. */
5202 if (htab->root.sgot)
5203 return TRUE;
5204
5205 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5206 | SEC_LINKER_CREATED);
5207
5208 /* We have to use an alignment of 2**4 here because this is hardcoded
5209 in the function stub generation and in the linker script. */
5210 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5211 if (s == NULL
5212 || ! bfd_set_section_alignment (abfd, s, 4))
5213 return FALSE;
5214 htab->root.sgot = s;
5215
5216 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5217 linker script because we don't want to define the symbol if we
5218 are not creating a global offset table. */
5219 bh = NULL;
5220 if (! (_bfd_generic_link_add_one_symbol
5221 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5222 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5223 return FALSE;
5224
5225 h = (struct elf_link_hash_entry *) bh;
5226 h->non_elf = 0;
5227 h->def_regular = 1;
5228 h->type = STT_OBJECT;
5229 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5230 elf_hash_table (info)->hgot = h;
5231
5232 if (bfd_link_pic (info)
5233 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5234 return FALSE;
5235
5236 htab->got_info = mips_elf_create_got_info (abfd);
5237 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5238 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5239
5240 /* We also need a .got.plt section when generating PLTs. */
5241 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5242 SEC_ALLOC | SEC_LOAD
5243 | SEC_HAS_CONTENTS
5244 | SEC_IN_MEMORY
5245 | SEC_LINKER_CREATED);
5246 if (s == NULL)
5247 return FALSE;
5248 htab->root.sgotplt = s;
5249
5250 return TRUE;
5251 }
5252 \f
5253 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5254 __GOTT_INDEX__ symbols. These symbols are only special for
5255 shared objects; they are not used in executables. */
5256
5257 static bfd_boolean
5258 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5259 {
5260 return (mips_elf_hash_table (info)->is_vxworks
5261 && bfd_link_pic (info)
5262 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5263 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5264 }
5265
5266 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5267 require an la25 stub. See also mips_elf_local_pic_function_p,
5268 which determines whether the destination function ever requires a
5269 stub. */
5270
5271 static bfd_boolean
5272 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5273 bfd_boolean target_is_16_bit_code_p)
5274 {
5275 /* We specifically ignore branches and jumps from EF_PIC objects,
5276 where the onus is on the compiler or programmer to perform any
5277 necessary initialization of $25. Sometimes such initialization
5278 is unnecessary; for example, -mno-shared functions do not use
5279 the incoming value of $25, and may therefore be called directly. */
5280 if (PIC_OBJECT_P (input_bfd))
5281 return FALSE;
5282
5283 switch (r_type)
5284 {
5285 case R_MIPS_26:
5286 case R_MIPS_PC16:
5287 case R_MIPS_PC21_S2:
5288 case R_MIPS_PC26_S2:
5289 case R_MICROMIPS_26_S1:
5290 case R_MICROMIPS_PC7_S1:
5291 case R_MICROMIPS_PC10_S1:
5292 case R_MICROMIPS_PC16_S1:
5293 case R_MICROMIPS_PC23_S2:
5294 return TRUE;
5295
5296 case R_MIPS16_26:
5297 return !target_is_16_bit_code_p;
5298
5299 default:
5300 return FALSE;
5301 }
5302 }
5303 \f
5304 /* Obtain the field relocated by RELOCATION. */
5305
5306 static bfd_vma
5307 mips_elf_obtain_contents (reloc_howto_type *howto,
5308 const Elf_Internal_Rela *relocation,
5309 bfd *input_bfd, bfd_byte *contents)
5310 {
5311 bfd_vma x = 0;
5312 bfd_byte *location = contents + relocation->r_offset;
5313 unsigned int size = bfd_get_reloc_size (howto);
5314
5315 /* Obtain the bytes. */
5316 if (size != 0)
5317 x = bfd_get (8 * size, input_bfd, location);
5318
5319 return x;
5320 }
5321
5322 /* Store the field relocated by RELOCATION. */
5323
5324 static void
5325 mips_elf_store_contents (reloc_howto_type *howto,
5326 const Elf_Internal_Rela *relocation,
5327 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5328 {
5329 bfd_byte *location = contents + relocation->r_offset;
5330 unsigned int size = bfd_get_reloc_size (howto);
5331
5332 /* Put the value into the output. */
5333 if (size != 0)
5334 bfd_put (8 * size, input_bfd, x, location);
5335 }
5336
5337 /* Try to patch a load from GOT instruction in CONTENTS pointed to by
5338 RELOCATION described by HOWTO, with a move of 0 to the load target
5339 register, returning TRUE if that is successful and FALSE otherwise.
5340 If DOIT is FALSE, then only determine it patching is possible and
5341 return status without actually changing CONTENTS.
5342 */
5343
5344 static bfd_boolean
5345 mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents,
5346 const Elf_Internal_Rela *relocation,
5347 reloc_howto_type *howto, bfd_boolean doit)
5348 {
5349 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5350 bfd_byte *location = contents + relocation->r_offset;
5351 bfd_boolean nullified = TRUE;
5352 bfd_vma x;
5353
5354 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5355
5356 /* Obtain the current value. */
5357 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5358
5359 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5360 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5361 if (mips16_reloc_p (r_type)
5362 && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */
5363 || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */
5364 x = (0x3cd << 22) | (x & (7 << 16)) << 3; /* LI */
5365 else if (micromips_reloc_p (r_type)
5366 && ((x >> 26) & 0x37) == 0x37) /* LW/LD */
5367 x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */
5368 else if (((x >> 26) & 0x3f) == 0x23 /* LW */
5369 || ((x >> 26) & 0x3f) == 0x37) /* LD */
5370 x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */
5371 else
5372 nullified = FALSE;
5373
5374 /* Put the value into the output. */
5375 if (doit && nullified)
5376 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
5377
5378 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, FALSE, location);
5379
5380 return nullified;
5381 }
5382
5383 /* Calculate the value produced by the RELOCATION (which comes from
5384 the INPUT_BFD). The ADDEND is the addend to use for this
5385 RELOCATION; RELOCATION->R_ADDEND is ignored.
5386
5387 The result of the relocation calculation is stored in VALUEP.
5388 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5389 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5390
5391 This function returns bfd_reloc_continue if the caller need take no
5392 further action regarding this relocation, bfd_reloc_notsupported if
5393 something goes dramatically wrong, bfd_reloc_overflow if an
5394 overflow occurs, and bfd_reloc_ok to indicate success. */
5395
5396 static bfd_reloc_status_type
5397 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5398 asection *input_section, bfd_byte *contents,
5399 struct bfd_link_info *info,
5400 const Elf_Internal_Rela *relocation,
5401 bfd_vma addend, reloc_howto_type *howto,
5402 Elf_Internal_Sym *local_syms,
5403 asection **local_sections, bfd_vma *valuep,
5404 const char **namep,
5405 bfd_boolean *cross_mode_jump_p,
5406 bfd_boolean save_addend)
5407 {
5408 /* The eventual value we will return. */
5409 bfd_vma value;
5410 /* The address of the symbol against which the relocation is
5411 occurring. */
5412 bfd_vma symbol = 0;
5413 /* The final GP value to be used for the relocatable, executable, or
5414 shared object file being produced. */
5415 bfd_vma gp;
5416 /* The place (section offset or address) of the storage unit being
5417 relocated. */
5418 bfd_vma p;
5419 /* The value of GP used to create the relocatable object. */
5420 bfd_vma gp0;
5421 /* The offset into the global offset table at which the address of
5422 the relocation entry symbol, adjusted by the addend, resides
5423 during execution. */
5424 bfd_vma g = MINUS_ONE;
5425 /* The section in which the symbol referenced by the relocation is
5426 located. */
5427 asection *sec = NULL;
5428 struct mips_elf_link_hash_entry *h = NULL;
5429 /* TRUE if the symbol referred to by this relocation is a local
5430 symbol. */
5431 bfd_boolean local_p, was_local_p;
5432 /* TRUE if the symbol referred to by this relocation is a section
5433 symbol. */
5434 bfd_boolean section_p = FALSE;
5435 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5436 bfd_boolean gp_disp_p = FALSE;
5437 /* TRUE if the symbol referred to by this relocation is
5438 "__gnu_local_gp". */
5439 bfd_boolean gnu_local_gp_p = FALSE;
5440 Elf_Internal_Shdr *symtab_hdr;
5441 size_t extsymoff;
5442 unsigned long r_symndx;
5443 int r_type;
5444 /* TRUE if overflow occurred during the calculation of the
5445 relocation value. */
5446 bfd_boolean overflowed_p;
5447 /* TRUE if this relocation refers to a MIPS16 function. */
5448 bfd_boolean target_is_16_bit_code_p = FALSE;
5449 bfd_boolean target_is_micromips_code_p = FALSE;
5450 struct mips_elf_link_hash_table *htab;
5451 bfd *dynobj;
5452 bfd_boolean resolved_to_zero;
5453
5454 dynobj = elf_hash_table (info)->dynobj;
5455 htab = mips_elf_hash_table (info);
5456 BFD_ASSERT (htab != NULL);
5457
5458 /* Parse the relocation. */
5459 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5460 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5461 p = (input_section->output_section->vma
5462 + input_section->output_offset
5463 + relocation->r_offset);
5464
5465 /* Assume that there will be no overflow. */
5466 overflowed_p = FALSE;
5467
5468 /* Figure out whether or not the symbol is local, and get the offset
5469 used in the array of hash table entries. */
5470 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5471 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5472 local_sections);
5473 was_local_p = local_p;
5474 if (! elf_bad_symtab (input_bfd))
5475 extsymoff = symtab_hdr->sh_info;
5476 else
5477 {
5478 /* The symbol table does not follow the rule that local symbols
5479 must come before globals. */
5480 extsymoff = 0;
5481 }
5482
5483 /* Figure out the value of the symbol. */
5484 if (local_p)
5485 {
5486 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5487 Elf_Internal_Sym *sym;
5488
5489 sym = local_syms + r_symndx;
5490 sec = local_sections[r_symndx];
5491
5492 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5493
5494 symbol = sec->output_section->vma + sec->output_offset;
5495 if (!section_p || (sec->flags & SEC_MERGE))
5496 symbol += sym->st_value;
5497 if ((sec->flags & SEC_MERGE) && section_p)
5498 {
5499 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5500 addend -= symbol;
5501 addend += sec->output_section->vma + sec->output_offset;
5502 }
5503
5504 /* MIPS16/microMIPS text labels should be treated as odd. */
5505 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5506 ++symbol;
5507
5508 /* Record the name of this symbol, for our caller. */
5509 *namep = bfd_elf_string_from_elf_section (input_bfd,
5510 symtab_hdr->sh_link,
5511 sym->st_name);
5512 if (*namep == NULL || **namep == '\0')
5513 *namep = bfd_section_name (input_bfd, sec);
5514
5515 /* For relocations against a section symbol and ones against no
5516 symbol (absolute relocations) infer the ISA mode from the addend. */
5517 if (section_p || r_symndx == STN_UNDEF)
5518 {
5519 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5520 target_is_micromips_code_p = (addend & 1) && micromips_p;
5521 }
5522 /* For relocations against an absolute symbol infer the ISA mode
5523 from the value of the symbol plus addend. */
5524 else if (bfd_is_abs_section (sec))
5525 {
5526 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5527 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5528 }
5529 /* Otherwise just use the regular symbol annotation available. */
5530 else
5531 {
5532 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5533 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5534 }
5535 }
5536 else
5537 {
5538 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5539
5540 /* For global symbols we look up the symbol in the hash-table. */
5541 h = ((struct mips_elf_link_hash_entry *)
5542 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5543 /* Find the real hash-table entry for this symbol. */
5544 while (h->root.root.type == bfd_link_hash_indirect
5545 || h->root.root.type == bfd_link_hash_warning)
5546 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5547
5548 /* Record the name of this symbol, for our caller. */
5549 *namep = h->root.root.root.string;
5550
5551 /* See if this is the special _gp_disp symbol. Note that such a
5552 symbol must always be a global symbol. */
5553 if (strcmp (*namep, "_gp_disp") == 0
5554 && ! NEWABI_P (input_bfd))
5555 {
5556 /* Relocations against _gp_disp are permitted only with
5557 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5558 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5559 return bfd_reloc_notsupported;
5560
5561 gp_disp_p = TRUE;
5562 }
5563 /* See if this is the special _gp symbol. Note that such a
5564 symbol must always be a global symbol. */
5565 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5566 gnu_local_gp_p = TRUE;
5567
5568
5569 /* If this symbol is defined, calculate its address. Note that
5570 _gp_disp is a magic symbol, always implicitly defined by the
5571 linker, so it's inappropriate to check to see whether or not
5572 its defined. */
5573 else if ((h->root.root.type == bfd_link_hash_defined
5574 || h->root.root.type == bfd_link_hash_defweak)
5575 && h->root.root.u.def.section)
5576 {
5577 sec = h->root.root.u.def.section;
5578 if (sec->output_section)
5579 symbol = (h->root.root.u.def.value
5580 + sec->output_section->vma
5581 + sec->output_offset);
5582 else
5583 symbol = h->root.root.u.def.value;
5584 }
5585 else if (h->root.root.type == bfd_link_hash_undefweak)
5586 /* We allow relocations against undefined weak symbols, giving
5587 it the value zero, so that you can undefined weak functions
5588 and check to see if they exist by looking at their
5589 addresses. */
5590 symbol = 0;
5591 else if (info->unresolved_syms_in_objects == RM_IGNORE
5592 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5593 symbol = 0;
5594 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5595 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5596 {
5597 /* If this is a dynamic link, we should have created a
5598 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5599 in _bfd_mips_elf_create_dynamic_sections.
5600 Otherwise, we should define the symbol with a value of 0.
5601 FIXME: It should probably get into the symbol table
5602 somehow as well. */
5603 BFD_ASSERT (! bfd_link_pic (info));
5604 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5605 symbol = 0;
5606 }
5607 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5608 {
5609 /* This is an optional symbol - an Irix specific extension to the
5610 ELF spec. Ignore it for now.
5611 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5612 than simply ignoring them, but we do not handle this for now.
5613 For information see the "64-bit ELF Object File Specification"
5614 which is available from here:
5615 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5616 symbol = 0;
5617 }
5618 else
5619 {
5620 bfd_boolean reject_undefined
5621 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5622 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5623
5624 (*info->callbacks->undefined_symbol)
5625 (info, h->root.root.root.string, input_bfd,
5626 input_section, relocation->r_offset, reject_undefined);
5627
5628 if (reject_undefined)
5629 return bfd_reloc_undefined;
5630
5631 symbol = 0;
5632 }
5633
5634 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5635 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5636 }
5637
5638 /* If this is a reference to a 16-bit function with a stub, we need
5639 to redirect the relocation to the stub unless:
5640
5641 (a) the relocation is for a MIPS16 JAL;
5642
5643 (b) the relocation is for a MIPS16 PIC call, and there are no
5644 non-MIPS16 uses of the GOT slot; or
5645
5646 (c) the section allows direct references to MIPS16 functions. */
5647 if (r_type != R_MIPS16_26
5648 && !bfd_link_relocatable (info)
5649 && ((h != NULL
5650 && h->fn_stub != NULL
5651 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5652 || (local_p
5653 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5654 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5655 && !section_allows_mips16_refs_p (input_section))
5656 {
5657 /* This is a 32- or 64-bit call to a 16-bit function. We should
5658 have already noticed that we were going to need the
5659 stub. */
5660 if (local_p)
5661 {
5662 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5663 value = 0;
5664 }
5665 else
5666 {
5667 BFD_ASSERT (h->need_fn_stub);
5668 if (h->la25_stub)
5669 {
5670 /* If a LA25 header for the stub itself exists, point to the
5671 prepended LUI/ADDIU sequence. */
5672 sec = h->la25_stub->stub_section;
5673 value = h->la25_stub->offset;
5674 }
5675 else
5676 {
5677 sec = h->fn_stub;
5678 value = 0;
5679 }
5680 }
5681
5682 symbol = sec->output_section->vma + sec->output_offset + value;
5683 /* The target is 16-bit, but the stub isn't. */
5684 target_is_16_bit_code_p = FALSE;
5685 }
5686 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5687 to a standard MIPS function, we need to redirect the call to the stub.
5688 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5689 indirect calls should use an indirect stub instead. */
5690 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5691 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5692 || (local_p
5693 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5694 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5695 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5696 {
5697 if (local_p)
5698 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5699 else
5700 {
5701 /* If both call_stub and call_fp_stub are defined, we can figure
5702 out which one to use by checking which one appears in the input
5703 file. */
5704 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5705 {
5706 asection *o;
5707
5708 sec = NULL;
5709 for (o = input_bfd->sections; o != NULL; o = o->next)
5710 {
5711 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5712 {
5713 sec = h->call_fp_stub;
5714 break;
5715 }
5716 }
5717 if (sec == NULL)
5718 sec = h->call_stub;
5719 }
5720 else if (h->call_stub != NULL)
5721 sec = h->call_stub;
5722 else
5723 sec = h->call_fp_stub;
5724 }
5725
5726 BFD_ASSERT (sec->size > 0);
5727 symbol = sec->output_section->vma + sec->output_offset;
5728 }
5729 /* If this is a direct call to a PIC function, redirect to the
5730 non-PIC stub. */
5731 else if (h != NULL && h->la25_stub
5732 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5733 target_is_16_bit_code_p))
5734 {
5735 symbol = (h->la25_stub->stub_section->output_section->vma
5736 + h->la25_stub->stub_section->output_offset
5737 + h->la25_stub->offset);
5738 if (ELF_ST_IS_MICROMIPS (h->root.other))
5739 symbol |= 1;
5740 }
5741 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5742 entry is used if a standard PLT entry has also been made. In this
5743 case the symbol will have been set by mips_elf_set_plt_sym_value
5744 to point to the standard PLT entry, so redirect to the compressed
5745 one. */
5746 else if ((mips16_branch_reloc_p (r_type)
5747 || micromips_branch_reloc_p (r_type))
5748 && !bfd_link_relocatable (info)
5749 && h != NULL
5750 && h->use_plt_entry
5751 && h->root.plt.plist->comp_offset != MINUS_ONE
5752 && h->root.plt.plist->mips_offset != MINUS_ONE)
5753 {
5754 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5755
5756 sec = htab->root.splt;
5757 symbol = (sec->output_section->vma
5758 + sec->output_offset
5759 + htab->plt_header_size
5760 + htab->plt_mips_offset
5761 + h->root.plt.plist->comp_offset
5762 + 1);
5763
5764 target_is_16_bit_code_p = !micromips_p;
5765 target_is_micromips_code_p = micromips_p;
5766 }
5767
5768 /* Make sure MIPS16 and microMIPS are not used together. */
5769 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5770 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5771 {
5772 _bfd_error_handler
5773 (_("MIPS16 and microMIPS functions cannot call each other"));
5774 return bfd_reloc_notsupported;
5775 }
5776
5777 /* Calls from 16-bit code to 32-bit code and vice versa require the
5778 mode change. However, we can ignore calls to undefined weak symbols,
5779 which should never be executed at runtime. This exception is important
5780 because the assembly writer may have "known" that any definition of the
5781 symbol would be 16-bit code, and that direct jumps were therefore
5782 acceptable. */
5783 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5784 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5785 && ((mips16_branch_reloc_p (r_type)
5786 && !target_is_16_bit_code_p)
5787 || (micromips_branch_reloc_p (r_type)
5788 && !target_is_micromips_code_p)
5789 || ((branch_reloc_p (r_type)
5790 || r_type == R_MIPS_JALR)
5791 && (target_is_16_bit_code_p
5792 || target_is_micromips_code_p))));
5793
5794 resolved_to_zero = (h != NULL
5795 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root));
5796
5797 switch (r_type)
5798 {
5799 case R_MIPS16_CALL16:
5800 case R_MIPS16_GOT16:
5801 case R_MIPS_CALL16:
5802 case R_MIPS_GOT16:
5803 case R_MIPS_GOT_PAGE:
5804 case R_MIPS_GOT_DISP:
5805 case R_MIPS_GOT_LO16:
5806 case R_MIPS_CALL_LO16:
5807 case R_MICROMIPS_CALL16:
5808 case R_MICROMIPS_GOT16:
5809 case R_MICROMIPS_GOT_PAGE:
5810 case R_MICROMIPS_GOT_DISP:
5811 case R_MICROMIPS_GOT_LO16:
5812 case R_MICROMIPS_CALL_LO16:
5813 if (resolved_to_zero
5814 && !bfd_link_relocatable (info)
5815 && mips_elf_nullify_got_load (input_bfd, contents,
5816 relocation, howto, TRUE))
5817 return bfd_reloc_continue;
5818
5819 /* Fall through. */
5820 case R_MIPS_GOT_HI16:
5821 case R_MIPS_CALL_HI16:
5822 case R_MICROMIPS_GOT_HI16:
5823 case R_MICROMIPS_CALL_HI16:
5824 if (resolved_to_zero
5825 && htab->use_absolute_zero
5826 && bfd_link_pic (info))
5827 {
5828 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5829 h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero",
5830 FALSE, FALSE, FALSE);
5831 BFD_ASSERT (h != NULL);
5832 }
5833 break;
5834 }
5835
5836 local_p = (h == NULL || mips_use_local_got_p (info, h));
5837
5838 gp0 = _bfd_get_gp_value (input_bfd);
5839 gp = _bfd_get_gp_value (abfd);
5840 if (htab->got_info)
5841 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5842
5843 if (gnu_local_gp_p)
5844 symbol = gp;
5845
5846 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5847 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5848 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5849 if (got_page_reloc_p (r_type) && !local_p)
5850 {
5851 r_type = (micromips_reloc_p (r_type)
5852 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5853 addend = 0;
5854 }
5855
5856 /* If we haven't already determined the GOT offset, and we're going
5857 to need it, get it now. */
5858 switch (r_type)
5859 {
5860 case R_MIPS16_CALL16:
5861 case R_MIPS16_GOT16:
5862 case R_MIPS_CALL16:
5863 case R_MIPS_GOT16:
5864 case R_MIPS_GOT_DISP:
5865 case R_MIPS_GOT_HI16:
5866 case R_MIPS_CALL_HI16:
5867 case R_MIPS_GOT_LO16:
5868 case R_MIPS_CALL_LO16:
5869 case R_MICROMIPS_CALL16:
5870 case R_MICROMIPS_GOT16:
5871 case R_MICROMIPS_GOT_DISP:
5872 case R_MICROMIPS_GOT_HI16:
5873 case R_MICROMIPS_CALL_HI16:
5874 case R_MICROMIPS_GOT_LO16:
5875 case R_MICROMIPS_CALL_LO16:
5876 case R_MIPS_TLS_GD:
5877 case R_MIPS_TLS_GOTTPREL:
5878 case R_MIPS_TLS_LDM:
5879 case R_MIPS16_TLS_GD:
5880 case R_MIPS16_TLS_GOTTPREL:
5881 case R_MIPS16_TLS_LDM:
5882 case R_MICROMIPS_TLS_GD:
5883 case R_MICROMIPS_TLS_GOTTPREL:
5884 case R_MICROMIPS_TLS_LDM:
5885 /* Find the index into the GOT where this value is located. */
5886 if (tls_ldm_reloc_p (r_type))
5887 {
5888 g = mips_elf_local_got_index (abfd, input_bfd, info,
5889 0, 0, NULL, r_type);
5890 if (g == MINUS_ONE)
5891 return bfd_reloc_outofrange;
5892 }
5893 else if (!local_p)
5894 {
5895 /* On VxWorks, CALL relocations should refer to the .got.plt
5896 entry, which is initialized to point at the PLT stub. */
5897 if (htab->is_vxworks
5898 && (call_hi16_reloc_p (r_type)
5899 || call_lo16_reloc_p (r_type)
5900 || call16_reloc_p (r_type)))
5901 {
5902 BFD_ASSERT (addend == 0);
5903 BFD_ASSERT (h->root.needs_plt);
5904 g = mips_elf_gotplt_index (info, &h->root);
5905 }
5906 else
5907 {
5908 BFD_ASSERT (addend == 0);
5909 g = mips_elf_global_got_index (abfd, info, input_bfd,
5910 &h->root, r_type);
5911 if (!TLS_RELOC_P (r_type)
5912 && !elf_hash_table (info)->dynamic_sections_created)
5913 /* This is a static link. We must initialize the GOT entry. */
5914 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5915 }
5916 }
5917 else if (!htab->is_vxworks
5918 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5919 /* The calculation below does not involve "g". */
5920 break;
5921 else
5922 {
5923 g = mips_elf_local_got_index (abfd, input_bfd, info,
5924 symbol + addend, r_symndx, h, r_type);
5925 if (g == MINUS_ONE)
5926 return bfd_reloc_outofrange;
5927 }
5928
5929 /* Convert GOT indices to actual offsets. */
5930 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5931 break;
5932 }
5933
5934 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5935 symbols are resolved by the loader. Add them to .rela.dyn. */
5936 if (h != NULL && is_gott_symbol (info, &h->root))
5937 {
5938 Elf_Internal_Rela outrel;
5939 bfd_byte *loc;
5940 asection *s;
5941
5942 s = mips_elf_rel_dyn_section (info, FALSE);
5943 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5944
5945 outrel.r_offset = (input_section->output_section->vma
5946 + input_section->output_offset
5947 + relocation->r_offset);
5948 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5949 outrel.r_addend = addend;
5950 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5951
5952 /* If we've written this relocation for a readonly section,
5953 we need to set DF_TEXTREL again, so that we do not delete the
5954 DT_TEXTREL tag. */
5955 if (MIPS_ELF_READONLY_SECTION (input_section))
5956 info->flags |= DF_TEXTREL;
5957
5958 *valuep = 0;
5959 return bfd_reloc_ok;
5960 }
5961
5962 /* Figure out what kind of relocation is being performed. */
5963 switch (r_type)
5964 {
5965 case R_MIPS_NONE:
5966 return bfd_reloc_continue;
5967
5968 case R_MIPS_16:
5969 if (howto->partial_inplace)
5970 addend = _bfd_mips_elf_sign_extend (addend, 16);
5971 value = symbol + addend;
5972 overflowed_p = mips_elf_overflow_p (value, 16);
5973 break;
5974
5975 case R_MIPS_32:
5976 case R_MIPS_REL32:
5977 case R_MIPS_64:
5978 if ((bfd_link_pic (info)
5979 || (htab->root.dynamic_sections_created
5980 && h != NULL
5981 && h->root.def_dynamic
5982 && !h->root.def_regular
5983 && !h->has_static_relocs))
5984 && r_symndx != STN_UNDEF
5985 && (h == NULL
5986 || h->root.root.type != bfd_link_hash_undefweak
5987 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5988 && !resolved_to_zero))
5989 && (input_section->flags & SEC_ALLOC) != 0)
5990 {
5991 /* If we're creating a shared library, then we can't know
5992 where the symbol will end up. So, we create a relocation
5993 record in the output, and leave the job up to the dynamic
5994 linker. We must do the same for executable references to
5995 shared library symbols, unless we've decided to use copy
5996 relocs or PLTs instead. */
5997 value = addend;
5998 if (!mips_elf_create_dynamic_relocation (abfd,
5999 info,
6000 relocation,
6001 h,
6002 sec,
6003 symbol,
6004 &value,
6005 input_section))
6006 return bfd_reloc_undefined;
6007 }
6008 else
6009 {
6010 if (r_type != R_MIPS_REL32)
6011 value = symbol + addend;
6012 else
6013 value = addend;
6014 }
6015 value &= howto->dst_mask;
6016 break;
6017
6018 case R_MIPS_PC32:
6019 value = symbol + addend - p;
6020 value &= howto->dst_mask;
6021 break;
6022
6023 case R_MIPS16_26:
6024 /* The calculation for R_MIPS16_26 is just the same as for an
6025 R_MIPS_26. It's only the storage of the relocated field into
6026 the output file that's different. That's handled in
6027 mips_elf_perform_relocation. So, we just fall through to the
6028 R_MIPS_26 case here. */
6029 case R_MIPS_26:
6030 case R_MICROMIPS_26_S1:
6031 {
6032 unsigned int shift;
6033
6034 /* Shift is 2, unusually, for microMIPS JALX. */
6035 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
6036
6037 if (howto->partial_inplace && !section_p)
6038 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
6039 else
6040 value = addend;
6041 value += symbol;
6042
6043 /* Make sure the target of a jump is suitably aligned. Bit 0 must
6044 be the correct ISA mode selector except for weak undefined
6045 symbols. */
6046 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6047 && (*cross_mode_jump_p
6048 ? (value & 3) != (r_type == R_MIPS_26)
6049 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
6050 return bfd_reloc_outofrange;
6051
6052 value >>= shift;
6053 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6054 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
6055 value &= howto->dst_mask;
6056 }
6057 break;
6058
6059 case R_MIPS_TLS_DTPREL_HI16:
6060 case R_MIPS16_TLS_DTPREL_HI16:
6061 case R_MICROMIPS_TLS_DTPREL_HI16:
6062 value = (mips_elf_high (addend + symbol - dtprel_base (info))
6063 & howto->dst_mask);
6064 break;
6065
6066 case R_MIPS_TLS_DTPREL_LO16:
6067 case R_MIPS_TLS_DTPREL32:
6068 case R_MIPS_TLS_DTPREL64:
6069 case R_MIPS16_TLS_DTPREL_LO16:
6070 case R_MICROMIPS_TLS_DTPREL_LO16:
6071 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
6072 break;
6073
6074 case R_MIPS_TLS_TPREL_HI16:
6075 case R_MIPS16_TLS_TPREL_HI16:
6076 case R_MICROMIPS_TLS_TPREL_HI16:
6077 value = (mips_elf_high (addend + symbol - tprel_base (info))
6078 & howto->dst_mask);
6079 break;
6080
6081 case R_MIPS_TLS_TPREL_LO16:
6082 case R_MIPS_TLS_TPREL32:
6083 case R_MIPS_TLS_TPREL64:
6084 case R_MIPS16_TLS_TPREL_LO16:
6085 case R_MICROMIPS_TLS_TPREL_LO16:
6086 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
6087 break;
6088
6089 case R_MIPS_HI16:
6090 case R_MIPS16_HI16:
6091 case R_MICROMIPS_HI16:
6092 if (!gp_disp_p)
6093 {
6094 value = mips_elf_high (addend + symbol);
6095 value &= howto->dst_mask;
6096 }
6097 else
6098 {
6099 /* For MIPS16 ABI code we generate this sequence
6100 0: li $v0,%hi(_gp_disp)
6101 4: addiupc $v1,%lo(_gp_disp)
6102 8: sll $v0,16
6103 12: addu $v0,$v1
6104 14: move $gp,$v0
6105 So the offsets of hi and lo relocs are the same, but the
6106 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6107 ADDIUPC clears the low two bits of the instruction address,
6108 so the base is ($t9 + 4) & ~3. */
6109 if (r_type == R_MIPS16_HI16)
6110 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
6111 /* The microMIPS .cpload sequence uses the same assembly
6112 instructions as the traditional psABI version, but the
6113 incoming $t9 has the low bit set. */
6114 else if (r_type == R_MICROMIPS_HI16)
6115 value = mips_elf_high (addend + gp - p - 1);
6116 else
6117 value = mips_elf_high (addend + gp - p);
6118 }
6119 break;
6120
6121 case R_MIPS_LO16:
6122 case R_MIPS16_LO16:
6123 case R_MICROMIPS_LO16:
6124 case R_MICROMIPS_HI0_LO16:
6125 if (!gp_disp_p)
6126 value = (symbol + addend) & howto->dst_mask;
6127 else
6128 {
6129 /* See the comment for R_MIPS16_HI16 above for the reason
6130 for this conditional. */
6131 if (r_type == R_MIPS16_LO16)
6132 value = addend + gp - (p & ~(bfd_vma) 0x3);
6133 else if (r_type == R_MICROMIPS_LO16
6134 || r_type == R_MICROMIPS_HI0_LO16)
6135 value = addend + gp - p + 3;
6136 else
6137 value = addend + gp - p + 4;
6138 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6139 for overflow. But, on, say, IRIX5, relocations against
6140 _gp_disp are normally generated from the .cpload
6141 pseudo-op. It generates code that normally looks like
6142 this:
6143
6144 lui $gp,%hi(_gp_disp)
6145 addiu $gp,$gp,%lo(_gp_disp)
6146 addu $gp,$gp,$t9
6147
6148 Here $t9 holds the address of the function being called,
6149 as required by the MIPS ELF ABI. The R_MIPS_LO16
6150 relocation can easily overflow in this situation, but the
6151 R_MIPS_HI16 relocation will handle the overflow.
6152 Therefore, we consider this a bug in the MIPS ABI, and do
6153 not check for overflow here. */
6154 }
6155 break;
6156
6157 case R_MIPS_LITERAL:
6158 case R_MICROMIPS_LITERAL:
6159 /* Because we don't merge literal sections, we can handle this
6160 just like R_MIPS_GPREL16. In the long run, we should merge
6161 shared literals, and then we will need to additional work
6162 here. */
6163
6164 /* Fall through. */
6165
6166 case R_MIPS16_GPREL:
6167 /* The R_MIPS16_GPREL performs the same calculation as
6168 R_MIPS_GPREL16, but stores the relocated bits in a different
6169 order. We don't need to do anything special here; the
6170 differences are handled in mips_elf_perform_relocation. */
6171 case R_MIPS_GPREL16:
6172 case R_MICROMIPS_GPREL7_S2:
6173 case R_MICROMIPS_GPREL16:
6174 /* Only sign-extend the addend if it was extracted from the
6175 instruction. If the addend was separate, leave it alone,
6176 otherwise we may lose significant bits. */
6177 if (howto->partial_inplace)
6178 addend = _bfd_mips_elf_sign_extend (addend, 16);
6179 value = symbol + addend - gp;
6180 /* If the symbol was local, any earlier relocatable links will
6181 have adjusted its addend with the gp offset, so compensate
6182 for that now. Don't do it for symbols forced local in this
6183 link, though, since they won't have had the gp offset applied
6184 to them before. */
6185 if (was_local_p)
6186 value += gp0;
6187 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6188 overflowed_p = mips_elf_overflow_p (value, 16);
6189 break;
6190
6191 case R_MIPS16_GOT16:
6192 case R_MIPS16_CALL16:
6193 case R_MIPS_GOT16:
6194 case R_MIPS_CALL16:
6195 case R_MICROMIPS_GOT16:
6196 case R_MICROMIPS_CALL16:
6197 /* VxWorks does not have separate local and global semantics for
6198 R_MIPS*_GOT16; every relocation evaluates to "G". */
6199 if (!htab->is_vxworks && local_p)
6200 {
6201 value = mips_elf_got16_entry (abfd, input_bfd, info,
6202 symbol + addend, !was_local_p);
6203 if (value == MINUS_ONE)
6204 return bfd_reloc_outofrange;
6205 value
6206 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6207 overflowed_p = mips_elf_overflow_p (value, 16);
6208 break;
6209 }
6210
6211 /* Fall through. */
6212
6213 case R_MIPS_TLS_GD:
6214 case R_MIPS_TLS_GOTTPREL:
6215 case R_MIPS_TLS_LDM:
6216 case R_MIPS_GOT_DISP:
6217 case R_MIPS16_TLS_GD:
6218 case R_MIPS16_TLS_GOTTPREL:
6219 case R_MIPS16_TLS_LDM:
6220 case R_MICROMIPS_TLS_GD:
6221 case R_MICROMIPS_TLS_GOTTPREL:
6222 case R_MICROMIPS_TLS_LDM:
6223 case R_MICROMIPS_GOT_DISP:
6224 value = g;
6225 overflowed_p = mips_elf_overflow_p (value, 16);
6226 break;
6227
6228 case R_MIPS_GPREL32:
6229 value = (addend + symbol + gp0 - gp);
6230 if (!save_addend)
6231 value &= howto->dst_mask;
6232 break;
6233
6234 case R_MIPS_PC16:
6235 case R_MIPS_GNU_REL16_S2:
6236 if (howto->partial_inplace)
6237 addend = _bfd_mips_elf_sign_extend (addend, 18);
6238
6239 /* No need to exclude weak undefined symbols here as they resolve
6240 to 0 and never set `*cross_mode_jump_p', so this alignment check
6241 will never trigger for them. */
6242 if (*cross_mode_jump_p
6243 ? ((symbol + addend) & 3) != 1
6244 : ((symbol + addend) & 3) != 0)
6245 return bfd_reloc_outofrange;
6246
6247 value = symbol + addend - p;
6248 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6249 overflowed_p = mips_elf_overflow_p (value, 18);
6250 value >>= howto->rightshift;
6251 value &= howto->dst_mask;
6252 break;
6253
6254 case R_MIPS16_PC16_S1:
6255 if (howto->partial_inplace)
6256 addend = _bfd_mips_elf_sign_extend (addend, 17);
6257
6258 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6259 && (*cross_mode_jump_p
6260 ? ((symbol + addend) & 3) != 0
6261 : ((symbol + addend) & 1) == 0))
6262 return bfd_reloc_outofrange;
6263
6264 value = symbol + addend - p;
6265 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6266 overflowed_p = mips_elf_overflow_p (value, 17);
6267 value >>= howto->rightshift;
6268 value &= howto->dst_mask;
6269 break;
6270
6271 case R_MIPS_PC21_S2:
6272 if (howto->partial_inplace)
6273 addend = _bfd_mips_elf_sign_extend (addend, 23);
6274
6275 if ((symbol + addend) & 3)
6276 return bfd_reloc_outofrange;
6277
6278 value = symbol + addend - p;
6279 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6280 overflowed_p = mips_elf_overflow_p (value, 23);
6281 value >>= howto->rightshift;
6282 value &= howto->dst_mask;
6283 break;
6284
6285 case R_MIPS_PC26_S2:
6286 if (howto->partial_inplace)
6287 addend = _bfd_mips_elf_sign_extend (addend, 28);
6288
6289 if ((symbol + addend) & 3)
6290 return bfd_reloc_outofrange;
6291
6292 value = symbol + addend - p;
6293 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6294 overflowed_p = mips_elf_overflow_p (value, 28);
6295 value >>= howto->rightshift;
6296 value &= howto->dst_mask;
6297 break;
6298
6299 case R_MIPS_PC18_S3:
6300 if (howto->partial_inplace)
6301 addend = _bfd_mips_elf_sign_extend (addend, 21);
6302
6303 if ((symbol + addend) & 7)
6304 return bfd_reloc_outofrange;
6305
6306 value = symbol + addend - ((p | 7) ^ 7);
6307 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6308 overflowed_p = mips_elf_overflow_p (value, 21);
6309 value >>= howto->rightshift;
6310 value &= howto->dst_mask;
6311 break;
6312
6313 case R_MIPS_PC19_S2:
6314 if (howto->partial_inplace)
6315 addend = _bfd_mips_elf_sign_extend (addend, 21);
6316
6317 if ((symbol + addend) & 3)
6318 return bfd_reloc_outofrange;
6319
6320 value = symbol + addend - p;
6321 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6322 overflowed_p = mips_elf_overflow_p (value, 21);
6323 value >>= howto->rightshift;
6324 value &= howto->dst_mask;
6325 break;
6326
6327 case R_MIPS_PCHI16:
6328 value = mips_elf_high (symbol + addend - p);
6329 value &= howto->dst_mask;
6330 break;
6331
6332 case R_MIPS_PCLO16:
6333 if (howto->partial_inplace)
6334 addend = _bfd_mips_elf_sign_extend (addend, 16);
6335 value = symbol + addend - p;
6336 value &= howto->dst_mask;
6337 break;
6338
6339 case R_MICROMIPS_PC7_S1:
6340 if (howto->partial_inplace)
6341 addend = _bfd_mips_elf_sign_extend (addend, 8);
6342
6343 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6344 && (*cross_mode_jump_p
6345 ? ((symbol + addend + 2) & 3) != 0
6346 : ((symbol + addend + 2) & 1) == 0))
6347 return bfd_reloc_outofrange;
6348
6349 value = symbol + addend - p;
6350 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6351 overflowed_p = mips_elf_overflow_p (value, 8);
6352 value >>= howto->rightshift;
6353 value &= howto->dst_mask;
6354 break;
6355
6356 case R_MICROMIPS_PC10_S1:
6357 if (howto->partial_inplace)
6358 addend = _bfd_mips_elf_sign_extend (addend, 11);
6359
6360 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6361 && (*cross_mode_jump_p
6362 ? ((symbol + addend + 2) & 3) != 0
6363 : ((symbol + addend + 2) & 1) == 0))
6364 return bfd_reloc_outofrange;
6365
6366 value = symbol + addend - p;
6367 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6368 overflowed_p = mips_elf_overflow_p (value, 11);
6369 value >>= howto->rightshift;
6370 value &= howto->dst_mask;
6371 break;
6372
6373 case R_MICROMIPS_PC16_S1:
6374 if (howto->partial_inplace)
6375 addend = _bfd_mips_elf_sign_extend (addend, 17);
6376
6377 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6378 && (*cross_mode_jump_p
6379 ? ((symbol + addend) & 3) != 0
6380 : ((symbol + addend) & 1) == 0))
6381 return bfd_reloc_outofrange;
6382
6383 value = symbol + addend - p;
6384 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6385 overflowed_p = mips_elf_overflow_p (value, 17);
6386 value >>= howto->rightshift;
6387 value &= howto->dst_mask;
6388 break;
6389
6390 case R_MICROMIPS_PC23_S2:
6391 if (howto->partial_inplace)
6392 addend = _bfd_mips_elf_sign_extend (addend, 25);
6393 value = symbol + addend - ((p | 3) ^ 3);
6394 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6395 overflowed_p = mips_elf_overflow_p (value, 25);
6396 value >>= howto->rightshift;
6397 value &= howto->dst_mask;
6398 break;
6399
6400 case R_MIPS_GOT_HI16:
6401 case R_MIPS_CALL_HI16:
6402 case R_MICROMIPS_GOT_HI16:
6403 case R_MICROMIPS_CALL_HI16:
6404 /* We're allowed to handle these two relocations identically.
6405 The dynamic linker is allowed to handle the CALL relocations
6406 differently by creating a lazy evaluation stub. */
6407 value = g;
6408 value = mips_elf_high (value);
6409 value &= howto->dst_mask;
6410 break;
6411
6412 case R_MIPS_GOT_LO16:
6413 case R_MIPS_CALL_LO16:
6414 case R_MICROMIPS_GOT_LO16:
6415 case R_MICROMIPS_CALL_LO16:
6416 value = g & howto->dst_mask;
6417 break;
6418
6419 case R_MIPS_GOT_PAGE:
6420 case R_MICROMIPS_GOT_PAGE:
6421 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6422 if (value == MINUS_ONE)
6423 return bfd_reloc_outofrange;
6424 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6425 overflowed_p = mips_elf_overflow_p (value, 16);
6426 break;
6427
6428 case R_MIPS_GOT_OFST:
6429 case R_MICROMIPS_GOT_OFST:
6430 if (local_p)
6431 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6432 else
6433 value = addend;
6434 overflowed_p = mips_elf_overflow_p (value, 16);
6435 break;
6436
6437 case R_MIPS_SUB:
6438 case R_MICROMIPS_SUB:
6439 value = symbol - addend;
6440 value &= howto->dst_mask;
6441 break;
6442
6443 case R_MIPS_HIGHER:
6444 case R_MICROMIPS_HIGHER:
6445 value = mips_elf_higher (addend + symbol);
6446 value &= howto->dst_mask;
6447 break;
6448
6449 case R_MIPS_HIGHEST:
6450 case R_MICROMIPS_HIGHEST:
6451 value = mips_elf_highest (addend + symbol);
6452 value &= howto->dst_mask;
6453 break;
6454
6455 case R_MIPS_SCN_DISP:
6456 case R_MICROMIPS_SCN_DISP:
6457 value = symbol + addend - sec->output_offset;
6458 value &= howto->dst_mask;
6459 break;
6460
6461 case R_MIPS_JALR:
6462 case R_MICROMIPS_JALR:
6463 /* This relocation is only a hint. In some cases, we optimize
6464 it into a bal instruction. But we don't try to optimize
6465 when the symbol does not resolve locally. */
6466 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6467 return bfd_reloc_continue;
6468 /* We can't optimize cross-mode jumps either. */
6469 if (*cross_mode_jump_p)
6470 return bfd_reloc_continue;
6471 value = symbol + addend;
6472 /* Neither we can non-instruction-aligned targets. */
6473 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6474 return bfd_reloc_continue;
6475 break;
6476
6477 case R_MIPS_PJUMP:
6478 case R_MIPS_GNU_VTINHERIT:
6479 case R_MIPS_GNU_VTENTRY:
6480 /* We don't do anything with these at present. */
6481 return bfd_reloc_continue;
6482
6483 default:
6484 /* An unrecognized relocation type. */
6485 return bfd_reloc_notsupported;
6486 }
6487
6488 /* Store the VALUE for our caller. */
6489 *valuep = value;
6490 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6491 }
6492
6493 /* It has been determined that the result of the RELOCATION is the
6494 VALUE. Use HOWTO to place VALUE into the output file at the
6495 appropriate position. The SECTION is the section to which the
6496 relocation applies.
6497 CROSS_MODE_JUMP_P is true if the relocation field
6498 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6499
6500 Returns FALSE if anything goes wrong. */
6501
6502 static bfd_boolean
6503 mips_elf_perform_relocation (struct bfd_link_info *info,
6504 reloc_howto_type *howto,
6505 const Elf_Internal_Rela *relocation,
6506 bfd_vma value, bfd *input_bfd,
6507 asection *input_section, bfd_byte *contents,
6508 bfd_boolean cross_mode_jump_p)
6509 {
6510 bfd_vma x;
6511 bfd_byte *location;
6512 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6513
6514 /* Figure out where the relocation is occurring. */
6515 location = contents + relocation->r_offset;
6516
6517 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6518
6519 /* Obtain the current value. */
6520 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6521
6522 /* Clear the field we are setting. */
6523 x &= ~howto->dst_mask;
6524
6525 /* Set the field. */
6526 x |= (value & howto->dst_mask);
6527
6528 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6529 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6530 {
6531 bfd_vma opcode = x >> 26;
6532
6533 if (r_type == R_MIPS16_26 ? opcode == 0x7
6534 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6535 : opcode == 0x1d)
6536 {
6537 info->callbacks->einfo
6538 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6539 input_bfd, input_section, relocation->r_offset);
6540 return TRUE;
6541 }
6542 }
6543 if (cross_mode_jump_p && jal_reloc_p (r_type))
6544 {
6545 bfd_boolean ok;
6546 bfd_vma opcode = x >> 26;
6547 bfd_vma jalx_opcode;
6548
6549 /* Check to see if the opcode is already JAL or JALX. */
6550 if (r_type == R_MIPS16_26)
6551 {
6552 ok = ((opcode == 0x6) || (opcode == 0x7));
6553 jalx_opcode = 0x7;
6554 }
6555 else if (r_type == R_MICROMIPS_26_S1)
6556 {
6557 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6558 jalx_opcode = 0x3c;
6559 }
6560 else
6561 {
6562 ok = ((opcode == 0x3) || (opcode == 0x1d));
6563 jalx_opcode = 0x1d;
6564 }
6565
6566 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6567 convert J or JALS to JALX. */
6568 if (!ok)
6569 {
6570 info->callbacks->einfo
6571 (_("%X%H: unsupported jump between ISA modes; "
6572 "consider recompiling with interlinking enabled\n"),
6573 input_bfd, input_section, relocation->r_offset);
6574 return TRUE;
6575 }
6576
6577 /* Make this the JALX opcode. */
6578 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6579 }
6580 else if (cross_mode_jump_p && b_reloc_p (r_type))
6581 {
6582 bfd_boolean ok = FALSE;
6583 bfd_vma opcode = x >> 16;
6584 bfd_vma jalx_opcode = 0;
6585 bfd_vma sign_bit = 0;
6586 bfd_vma addr;
6587 bfd_vma dest;
6588
6589 if (r_type == R_MICROMIPS_PC16_S1)
6590 {
6591 ok = opcode == 0x4060;
6592 jalx_opcode = 0x3c;
6593 sign_bit = 0x10000;
6594 value <<= 1;
6595 }
6596 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6597 {
6598 ok = opcode == 0x411;
6599 jalx_opcode = 0x1d;
6600 sign_bit = 0x20000;
6601 value <<= 2;
6602 }
6603
6604 if (ok && !bfd_link_pic (info))
6605 {
6606 addr = (input_section->output_section->vma
6607 + input_section->output_offset
6608 + relocation->r_offset
6609 + 4);
6610 dest = (addr
6611 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6612
6613 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6614 {
6615 info->callbacks->einfo
6616 (_("%X%H: cannot convert branch between ISA modes "
6617 "to JALX: relocation out of range\n"),
6618 input_bfd, input_section, relocation->r_offset);
6619 return TRUE;
6620 }
6621
6622 /* Make this the JALX opcode. */
6623 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6624 }
6625 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6626 {
6627 info->callbacks->einfo
6628 (_("%X%H: unsupported branch between ISA modes\n"),
6629 input_bfd, input_section, relocation->r_offset);
6630 return TRUE;
6631 }
6632 }
6633
6634 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6635 range. */
6636 if (!bfd_link_relocatable (info)
6637 && !cross_mode_jump_p
6638 && ((JAL_TO_BAL_P (input_bfd)
6639 && r_type == R_MIPS_26
6640 && (x >> 26) == 0x3) /* jal addr */
6641 || (JALR_TO_BAL_P (input_bfd)
6642 && r_type == R_MIPS_JALR
6643 && x == 0x0320f809) /* jalr t9 */
6644 || (JR_TO_B_P (input_bfd)
6645 && r_type == R_MIPS_JALR
6646 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6647 {
6648 bfd_vma addr;
6649 bfd_vma dest;
6650 bfd_signed_vma off;
6651
6652 addr = (input_section->output_section->vma
6653 + input_section->output_offset
6654 + relocation->r_offset
6655 + 4);
6656 if (r_type == R_MIPS_26)
6657 dest = (value << 2) | ((addr >> 28) << 28);
6658 else
6659 dest = value;
6660 off = dest - addr;
6661 if (off <= 0x1ffff && off >= -0x20000)
6662 {
6663 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6664 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6665 else
6666 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6667 }
6668 }
6669
6670 /* Put the value into the output. */
6671 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
6672
6673 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6674 location);
6675
6676 return TRUE;
6677 }
6678 \f
6679 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6680 is the original relocation, which is now being transformed into a
6681 dynamic relocation. The ADDENDP is adjusted if necessary; the
6682 caller should store the result in place of the original addend. */
6683
6684 static bfd_boolean
6685 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6686 struct bfd_link_info *info,
6687 const Elf_Internal_Rela *rel,
6688 struct mips_elf_link_hash_entry *h,
6689 asection *sec, bfd_vma symbol,
6690 bfd_vma *addendp, asection *input_section)
6691 {
6692 Elf_Internal_Rela outrel[3];
6693 asection *sreloc;
6694 bfd *dynobj;
6695 int r_type;
6696 long indx;
6697 bfd_boolean defined_p;
6698 struct mips_elf_link_hash_table *htab;
6699
6700 htab = mips_elf_hash_table (info);
6701 BFD_ASSERT (htab != NULL);
6702
6703 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6704 dynobj = elf_hash_table (info)->dynobj;
6705 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6706 BFD_ASSERT (sreloc != NULL);
6707 BFD_ASSERT (sreloc->contents != NULL);
6708 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6709 < sreloc->size);
6710
6711 outrel[0].r_offset =
6712 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6713 if (ABI_64_P (output_bfd))
6714 {
6715 outrel[1].r_offset =
6716 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6717 outrel[2].r_offset =
6718 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6719 }
6720
6721 if (outrel[0].r_offset == MINUS_ONE)
6722 /* The relocation field has been deleted. */
6723 return TRUE;
6724
6725 if (outrel[0].r_offset == MINUS_TWO)
6726 {
6727 /* The relocation field has been converted into a relative value of
6728 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6729 the field to be fully relocated, so add in the symbol's value. */
6730 *addendp += symbol;
6731 return TRUE;
6732 }
6733
6734 /* We must now calculate the dynamic symbol table index to use
6735 in the relocation. */
6736 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6737 {
6738 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6739 indx = h->root.dynindx;
6740 if (SGI_COMPAT (output_bfd))
6741 defined_p = h->root.def_regular;
6742 else
6743 /* ??? glibc's ld.so just adds the final GOT entry to the
6744 relocation field. It therefore treats relocs against
6745 defined symbols in the same way as relocs against
6746 undefined symbols. */
6747 defined_p = FALSE;
6748 }
6749 else
6750 {
6751 if (sec != NULL && bfd_is_abs_section (sec))
6752 indx = 0;
6753 else if (sec == NULL || sec->owner == NULL)
6754 {
6755 bfd_set_error (bfd_error_bad_value);
6756 return FALSE;
6757 }
6758 else
6759 {
6760 indx = elf_section_data (sec->output_section)->dynindx;
6761 if (indx == 0)
6762 {
6763 asection *osec = htab->root.text_index_section;
6764 indx = elf_section_data (osec)->dynindx;
6765 }
6766 if (indx == 0)
6767 abort ();
6768 }
6769
6770 /* Instead of generating a relocation using the section
6771 symbol, we may as well make it a fully relative
6772 relocation. We want to avoid generating relocations to
6773 local symbols because we used to generate them
6774 incorrectly, without adding the original symbol value,
6775 which is mandated by the ABI for section symbols. In
6776 order to give dynamic loaders and applications time to
6777 phase out the incorrect use, we refrain from emitting
6778 section-relative relocations. It's not like they're
6779 useful, after all. This should be a bit more efficient
6780 as well. */
6781 /* ??? Although this behavior is compatible with glibc's ld.so,
6782 the ABI says that relocations against STN_UNDEF should have
6783 a symbol value of 0. Irix rld honors this, so relocations
6784 against STN_UNDEF have no effect. */
6785 if (!SGI_COMPAT (output_bfd))
6786 indx = 0;
6787 defined_p = TRUE;
6788 }
6789
6790 /* If the relocation was previously an absolute relocation and
6791 this symbol will not be referred to by the relocation, we must
6792 adjust it by the value we give it in the dynamic symbol table.
6793 Otherwise leave the job up to the dynamic linker. */
6794 if (defined_p && r_type != R_MIPS_REL32)
6795 *addendp += symbol;
6796
6797 if (htab->is_vxworks)
6798 /* VxWorks uses non-relative relocations for this. */
6799 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6800 else
6801 /* The relocation is always an REL32 relocation because we don't
6802 know where the shared library will wind up at load-time. */
6803 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6804 R_MIPS_REL32);
6805
6806 /* For strict adherence to the ABI specification, we should
6807 generate a R_MIPS_64 relocation record by itself before the
6808 _REL32/_64 record as well, such that the addend is read in as
6809 a 64-bit value (REL32 is a 32-bit relocation, after all).
6810 However, since none of the existing ELF64 MIPS dynamic
6811 loaders seems to care, we don't waste space with these
6812 artificial relocations. If this turns out to not be true,
6813 mips_elf_allocate_dynamic_relocation() should be tweaked so
6814 as to make room for a pair of dynamic relocations per
6815 invocation if ABI_64_P, and here we should generate an
6816 additional relocation record with R_MIPS_64 by itself for a
6817 NULL symbol before this relocation record. */
6818 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6819 ABI_64_P (output_bfd)
6820 ? R_MIPS_64
6821 : R_MIPS_NONE);
6822 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6823
6824 /* Adjust the output offset of the relocation to reference the
6825 correct location in the output file. */
6826 outrel[0].r_offset += (input_section->output_section->vma
6827 + input_section->output_offset);
6828 outrel[1].r_offset += (input_section->output_section->vma
6829 + input_section->output_offset);
6830 outrel[2].r_offset += (input_section->output_section->vma
6831 + input_section->output_offset);
6832
6833 /* Put the relocation back out. We have to use the special
6834 relocation outputter in the 64-bit case since the 64-bit
6835 relocation format is non-standard. */
6836 if (ABI_64_P (output_bfd))
6837 {
6838 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6839 (output_bfd, &outrel[0],
6840 (sreloc->contents
6841 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6842 }
6843 else if (htab->is_vxworks)
6844 {
6845 /* VxWorks uses RELA rather than REL dynamic relocations. */
6846 outrel[0].r_addend = *addendp;
6847 bfd_elf32_swap_reloca_out
6848 (output_bfd, &outrel[0],
6849 (sreloc->contents
6850 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6851 }
6852 else
6853 bfd_elf32_swap_reloc_out
6854 (output_bfd, &outrel[0],
6855 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6856
6857 /* We've now added another relocation. */
6858 ++sreloc->reloc_count;
6859
6860 /* Make sure the output section is writable. The dynamic linker
6861 will be writing to it. */
6862 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6863 |= SHF_WRITE;
6864
6865 /* On IRIX5, make an entry of compact relocation info. */
6866 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6867 {
6868 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6869 bfd_byte *cr;
6870
6871 if (scpt)
6872 {
6873 Elf32_crinfo cptrel;
6874
6875 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6876 cptrel.vaddr = (rel->r_offset
6877 + input_section->output_section->vma
6878 + input_section->output_offset);
6879 if (r_type == R_MIPS_REL32)
6880 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6881 else
6882 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6883 mips_elf_set_cr_dist2to (cptrel, 0);
6884 cptrel.konst = *addendp;
6885
6886 cr = (scpt->contents
6887 + sizeof (Elf32_External_compact_rel));
6888 mips_elf_set_cr_relvaddr (cptrel, 0);
6889 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6890 ((Elf32_External_crinfo *) cr
6891 + scpt->reloc_count));
6892 ++scpt->reloc_count;
6893 }
6894 }
6895
6896 /* If we've written this relocation for a readonly section,
6897 we need to set DF_TEXTREL again, so that we do not delete the
6898 DT_TEXTREL tag. */
6899 if (MIPS_ELF_READONLY_SECTION (input_section))
6900 info->flags |= DF_TEXTREL;
6901
6902 return TRUE;
6903 }
6904 \f
6905 /* Return the MACH for a MIPS e_flags value. */
6906
6907 unsigned long
6908 _bfd_elf_mips_mach (flagword flags)
6909 {
6910 switch (flags & EF_MIPS_MACH)
6911 {
6912 case E_MIPS_MACH_3900:
6913 return bfd_mach_mips3900;
6914
6915 case E_MIPS_MACH_4010:
6916 return bfd_mach_mips4010;
6917
6918 case E_MIPS_MACH_4100:
6919 return bfd_mach_mips4100;
6920
6921 case E_MIPS_MACH_4111:
6922 return bfd_mach_mips4111;
6923
6924 case E_MIPS_MACH_4120:
6925 return bfd_mach_mips4120;
6926
6927 case E_MIPS_MACH_4650:
6928 return bfd_mach_mips4650;
6929
6930 case E_MIPS_MACH_5400:
6931 return bfd_mach_mips5400;
6932
6933 case E_MIPS_MACH_5500:
6934 return bfd_mach_mips5500;
6935
6936 case E_MIPS_MACH_5900:
6937 return bfd_mach_mips5900;
6938
6939 case E_MIPS_MACH_9000:
6940 return bfd_mach_mips9000;
6941
6942 case E_MIPS_MACH_SB1:
6943 return bfd_mach_mips_sb1;
6944
6945 case E_MIPS_MACH_LS2E:
6946 return bfd_mach_mips_loongson_2e;
6947
6948 case E_MIPS_MACH_LS2F:
6949 return bfd_mach_mips_loongson_2f;
6950
6951 case E_MIPS_MACH_GS464:
6952 return bfd_mach_mips_gs464;
6953
6954 case E_MIPS_MACH_GS464E:
6955 return bfd_mach_mips_gs464e;
6956
6957 case E_MIPS_MACH_GS264E:
6958 return bfd_mach_mips_gs264e;
6959
6960 case E_MIPS_MACH_OCTEON3:
6961 return bfd_mach_mips_octeon3;
6962
6963 case E_MIPS_MACH_OCTEON2:
6964 return bfd_mach_mips_octeon2;
6965
6966 case E_MIPS_MACH_OCTEON:
6967 return bfd_mach_mips_octeon;
6968
6969 case E_MIPS_MACH_XLR:
6970 return bfd_mach_mips_xlr;
6971
6972 case E_MIPS_MACH_IAMR2:
6973 return bfd_mach_mips_interaptiv_mr2;
6974
6975 default:
6976 switch (flags & EF_MIPS_ARCH)
6977 {
6978 default:
6979 case E_MIPS_ARCH_1:
6980 return bfd_mach_mips3000;
6981
6982 case E_MIPS_ARCH_2:
6983 return bfd_mach_mips6000;
6984
6985 case E_MIPS_ARCH_3:
6986 return bfd_mach_mips4000;
6987
6988 case E_MIPS_ARCH_4:
6989 return bfd_mach_mips8000;
6990
6991 case E_MIPS_ARCH_5:
6992 return bfd_mach_mips5;
6993
6994 case E_MIPS_ARCH_32:
6995 return bfd_mach_mipsisa32;
6996
6997 case E_MIPS_ARCH_64:
6998 return bfd_mach_mipsisa64;
6999
7000 case E_MIPS_ARCH_32R2:
7001 return bfd_mach_mipsisa32r2;
7002
7003 case E_MIPS_ARCH_64R2:
7004 return bfd_mach_mipsisa64r2;
7005
7006 case E_MIPS_ARCH_32R6:
7007 return bfd_mach_mipsisa32r6;
7008
7009 case E_MIPS_ARCH_64R6:
7010 return bfd_mach_mipsisa64r6;
7011 }
7012 }
7013
7014 return 0;
7015 }
7016
7017 /* Return printable name for ABI. */
7018
7019 static INLINE char *
7020 elf_mips_abi_name (bfd *abfd)
7021 {
7022 flagword flags;
7023
7024 flags = elf_elfheader (abfd)->e_flags;
7025 switch (flags & EF_MIPS_ABI)
7026 {
7027 case 0:
7028 if (ABI_N32_P (abfd))
7029 return "N32";
7030 else if (ABI_64_P (abfd))
7031 return "64";
7032 else
7033 return "none";
7034 case E_MIPS_ABI_O32:
7035 return "O32";
7036 case E_MIPS_ABI_O64:
7037 return "O64";
7038 case E_MIPS_ABI_EABI32:
7039 return "EABI32";
7040 case E_MIPS_ABI_EABI64:
7041 return "EABI64";
7042 default:
7043 return "unknown abi";
7044 }
7045 }
7046 \f
7047 /* MIPS ELF uses two common sections. One is the usual one, and the
7048 other is for small objects. All the small objects are kept
7049 together, and then referenced via the gp pointer, which yields
7050 faster assembler code. This is what we use for the small common
7051 section. This approach is copied from ecoff.c. */
7052 static asection mips_elf_scom_section;
7053 static asymbol mips_elf_scom_symbol;
7054 static asymbol *mips_elf_scom_symbol_ptr;
7055
7056 /* MIPS ELF also uses an acommon section, which represents an
7057 allocated common symbol which may be overridden by a
7058 definition in a shared library. */
7059 static asection mips_elf_acom_section;
7060 static asymbol mips_elf_acom_symbol;
7061 static asymbol *mips_elf_acom_symbol_ptr;
7062
7063 /* This is used for both the 32-bit and the 64-bit ABI. */
7064
7065 void
7066 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
7067 {
7068 elf_symbol_type *elfsym;
7069
7070 /* Handle the special MIPS section numbers that a symbol may use. */
7071 elfsym = (elf_symbol_type *) asym;
7072 switch (elfsym->internal_elf_sym.st_shndx)
7073 {
7074 case SHN_MIPS_ACOMMON:
7075 /* This section is used in a dynamically linked executable file.
7076 It is an allocated common section. The dynamic linker can
7077 either resolve these symbols to something in a shared
7078 library, or it can just leave them here. For our purposes,
7079 we can consider these symbols to be in a new section. */
7080 if (mips_elf_acom_section.name == NULL)
7081 {
7082 /* Initialize the acommon section. */
7083 mips_elf_acom_section.name = ".acommon";
7084 mips_elf_acom_section.flags = SEC_ALLOC;
7085 mips_elf_acom_section.output_section = &mips_elf_acom_section;
7086 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
7087 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
7088 mips_elf_acom_symbol.name = ".acommon";
7089 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
7090 mips_elf_acom_symbol.section = &mips_elf_acom_section;
7091 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
7092 }
7093 asym->section = &mips_elf_acom_section;
7094 break;
7095
7096 case SHN_COMMON:
7097 /* Common symbols less than the GP size are automatically
7098 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7099 if (asym->value > elf_gp_size (abfd)
7100 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
7101 || IRIX_COMPAT (abfd) == ict_irix6)
7102 break;
7103 /* Fall through. */
7104 case SHN_MIPS_SCOMMON:
7105 if (mips_elf_scom_section.name == NULL)
7106 {
7107 /* Initialize the small common section. */
7108 mips_elf_scom_section.name = ".scommon";
7109 mips_elf_scom_section.flags = SEC_IS_COMMON;
7110 mips_elf_scom_section.output_section = &mips_elf_scom_section;
7111 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
7112 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
7113 mips_elf_scom_symbol.name = ".scommon";
7114 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
7115 mips_elf_scom_symbol.section = &mips_elf_scom_section;
7116 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
7117 }
7118 asym->section = &mips_elf_scom_section;
7119 asym->value = elfsym->internal_elf_sym.st_size;
7120 break;
7121
7122 case SHN_MIPS_SUNDEFINED:
7123 asym->section = bfd_und_section_ptr;
7124 break;
7125
7126 case SHN_MIPS_TEXT:
7127 {
7128 asection *section = bfd_get_section_by_name (abfd, ".text");
7129
7130 if (section != NULL)
7131 {
7132 asym->section = section;
7133 /* MIPS_TEXT is a bit special, the address is not an offset
7134 to the base of the .text section. So subtract the section
7135 base address to make it an offset. */
7136 asym->value -= section->vma;
7137 }
7138 }
7139 break;
7140
7141 case SHN_MIPS_DATA:
7142 {
7143 asection *section = bfd_get_section_by_name (abfd, ".data");
7144
7145 if (section != NULL)
7146 {
7147 asym->section = section;
7148 /* MIPS_DATA is a bit special, the address is not an offset
7149 to the base of the .data section. So subtract the section
7150 base address to make it an offset. */
7151 asym->value -= section->vma;
7152 }
7153 }
7154 break;
7155 }
7156
7157 /* If this is an odd-valued function symbol, assume it's a MIPS16
7158 or microMIPS one. */
7159 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7160 && (asym->value & 1) != 0)
7161 {
7162 asym->value--;
7163 if (MICROMIPS_P (abfd))
7164 elfsym->internal_elf_sym.st_other
7165 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7166 else
7167 elfsym->internal_elf_sym.st_other
7168 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7169 }
7170 }
7171 \f
7172 /* Implement elf_backend_eh_frame_address_size. This differs from
7173 the default in the way it handles EABI64.
7174
7175 EABI64 was originally specified as an LP64 ABI, and that is what
7176 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7177 historically accepted the combination of -mabi=eabi and -mlong32,
7178 and this ILP32 variation has become semi-official over time.
7179 Both forms use elf32 and have pointer-sized FDE addresses.
7180
7181 If an EABI object was generated by GCC 4.0 or above, it will have
7182 an empty .gcc_compiled_longXX section, where XX is the size of longs
7183 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7184 have no special marking to distinguish them from LP64 objects.
7185
7186 We don't want users of the official LP64 ABI to be punished for the
7187 existence of the ILP32 variant, but at the same time, we don't want
7188 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7189 We therefore take the following approach:
7190
7191 - If ABFD contains a .gcc_compiled_longXX section, use it to
7192 determine the pointer size.
7193
7194 - Otherwise check the type of the first relocation. Assume that
7195 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7196
7197 - Otherwise punt.
7198
7199 The second check is enough to detect LP64 objects generated by pre-4.0
7200 compilers because, in the kind of output generated by those compilers,
7201 the first relocation will be associated with either a CIE personality
7202 routine or an FDE start address. Furthermore, the compilers never
7203 used a special (non-pointer) encoding for this ABI.
7204
7205 Checking the relocation type should also be safe because there is no
7206 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7207 did so. */
7208
7209 unsigned int
7210 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7211 {
7212 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7213 return 8;
7214 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7215 {
7216 bfd_boolean long32_p, long64_p;
7217
7218 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7219 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7220 if (long32_p && long64_p)
7221 return 0;
7222 if (long32_p)
7223 return 4;
7224 if (long64_p)
7225 return 8;
7226
7227 if (sec->reloc_count > 0
7228 && elf_section_data (sec)->relocs != NULL
7229 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7230 == R_MIPS_64))
7231 return 8;
7232
7233 return 0;
7234 }
7235 return 4;
7236 }
7237 \f
7238 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7239 relocations against two unnamed section symbols to resolve to the
7240 same address. For example, if we have code like:
7241
7242 lw $4,%got_disp(.data)($gp)
7243 lw $25,%got_disp(.text)($gp)
7244 jalr $25
7245
7246 then the linker will resolve both relocations to .data and the program
7247 will jump there rather than to .text.
7248
7249 We can work around this problem by giving names to local section symbols.
7250 This is also what the MIPSpro tools do. */
7251
7252 bfd_boolean
7253 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7254 {
7255 return SGI_COMPAT (abfd);
7256 }
7257 \f
7258 /* Work over a section just before writing it out. This routine is
7259 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7260 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7261 a better way. */
7262
7263 bfd_boolean
7264 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7265 {
7266 if (hdr->sh_type == SHT_MIPS_REGINFO
7267 && hdr->sh_size > 0)
7268 {
7269 bfd_byte buf[4];
7270
7271 BFD_ASSERT (hdr->contents == NULL);
7272
7273 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7274 {
7275 _bfd_error_handler
7276 (_("%pB: incorrect `.reginfo' section size; "
7277 "expected %" PRIu64 ", got %" PRIu64),
7278 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7279 (uint64_t) hdr->sh_size);
7280 bfd_set_error (bfd_error_bad_value);
7281 return FALSE;
7282 }
7283
7284 if (bfd_seek (abfd,
7285 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7286 SEEK_SET) != 0)
7287 return FALSE;
7288 H_PUT_32 (abfd, elf_gp (abfd), buf);
7289 if (bfd_bwrite (buf, 4, abfd) != 4)
7290 return FALSE;
7291 }
7292
7293 if (hdr->sh_type == SHT_MIPS_OPTIONS
7294 && hdr->bfd_section != NULL
7295 && mips_elf_section_data (hdr->bfd_section) != NULL
7296 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7297 {
7298 bfd_byte *contents, *l, *lend;
7299
7300 /* We stored the section contents in the tdata field in the
7301 set_section_contents routine. We save the section contents
7302 so that we don't have to read them again.
7303 At this point we know that elf_gp is set, so we can look
7304 through the section contents to see if there is an
7305 ODK_REGINFO structure. */
7306
7307 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7308 l = contents;
7309 lend = contents + hdr->sh_size;
7310 while (l + sizeof (Elf_External_Options) <= lend)
7311 {
7312 Elf_Internal_Options intopt;
7313
7314 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7315 &intopt);
7316 if (intopt.size < sizeof (Elf_External_Options))
7317 {
7318 _bfd_error_handler
7319 /* xgettext:c-format */
7320 (_("%pB: warning: bad `%s' option size %u smaller than"
7321 " its header"),
7322 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7323 break;
7324 }
7325 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7326 {
7327 bfd_byte buf[8];
7328
7329 if (bfd_seek (abfd,
7330 (hdr->sh_offset
7331 + (l - contents)
7332 + sizeof (Elf_External_Options)
7333 + (sizeof (Elf64_External_RegInfo) - 8)),
7334 SEEK_SET) != 0)
7335 return FALSE;
7336 H_PUT_64 (abfd, elf_gp (abfd), buf);
7337 if (bfd_bwrite (buf, 8, abfd) != 8)
7338 return FALSE;
7339 }
7340 else if (intopt.kind == ODK_REGINFO)
7341 {
7342 bfd_byte buf[4];
7343
7344 if (bfd_seek (abfd,
7345 (hdr->sh_offset
7346 + (l - contents)
7347 + sizeof (Elf_External_Options)
7348 + (sizeof (Elf32_External_RegInfo) - 4)),
7349 SEEK_SET) != 0)
7350 return FALSE;
7351 H_PUT_32 (abfd, elf_gp (abfd), buf);
7352 if (bfd_bwrite (buf, 4, abfd) != 4)
7353 return FALSE;
7354 }
7355 l += intopt.size;
7356 }
7357 }
7358
7359 if (hdr->bfd_section != NULL)
7360 {
7361 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7362
7363 /* .sbss is not handled specially here because the GNU/Linux
7364 prelinker can convert .sbss from NOBITS to PROGBITS and
7365 changing it back to NOBITS breaks the binary. The entry in
7366 _bfd_mips_elf_special_sections will ensure the correct flags
7367 are set on .sbss if BFD creates it without reading it from an
7368 input file, and without special handling here the flags set
7369 on it in an input file will be followed. */
7370 if (strcmp (name, ".sdata") == 0
7371 || strcmp (name, ".lit8") == 0
7372 || strcmp (name, ".lit4") == 0)
7373 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7374 else if (strcmp (name, ".srdata") == 0)
7375 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7376 else if (strcmp (name, ".compact_rel") == 0)
7377 hdr->sh_flags = 0;
7378 else if (strcmp (name, ".rtproc") == 0)
7379 {
7380 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7381 {
7382 unsigned int adjust;
7383
7384 adjust = hdr->sh_size % hdr->sh_addralign;
7385 if (adjust != 0)
7386 hdr->sh_size += hdr->sh_addralign - adjust;
7387 }
7388 }
7389 }
7390
7391 return TRUE;
7392 }
7393
7394 /* Handle a MIPS specific section when reading an object file. This
7395 is called when elfcode.h finds a section with an unknown type.
7396 This routine supports both the 32-bit and 64-bit ELF ABI.
7397
7398 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7399 how to. */
7400
7401 bfd_boolean
7402 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7403 Elf_Internal_Shdr *hdr,
7404 const char *name,
7405 int shindex)
7406 {
7407 flagword flags = 0;
7408
7409 /* There ought to be a place to keep ELF backend specific flags, but
7410 at the moment there isn't one. We just keep track of the
7411 sections by their name, instead. Fortunately, the ABI gives
7412 suggested names for all the MIPS specific sections, so we will
7413 probably get away with this. */
7414 switch (hdr->sh_type)
7415 {
7416 case SHT_MIPS_LIBLIST:
7417 if (strcmp (name, ".liblist") != 0)
7418 return FALSE;
7419 break;
7420 case SHT_MIPS_MSYM:
7421 if (strcmp (name, ".msym") != 0)
7422 return FALSE;
7423 break;
7424 case SHT_MIPS_CONFLICT:
7425 if (strcmp (name, ".conflict") != 0)
7426 return FALSE;
7427 break;
7428 case SHT_MIPS_GPTAB:
7429 if (! CONST_STRNEQ (name, ".gptab."))
7430 return FALSE;
7431 break;
7432 case SHT_MIPS_UCODE:
7433 if (strcmp (name, ".ucode") != 0)
7434 return FALSE;
7435 break;
7436 case SHT_MIPS_DEBUG:
7437 if (strcmp (name, ".mdebug") != 0)
7438 return FALSE;
7439 flags = SEC_DEBUGGING;
7440 break;
7441 case SHT_MIPS_REGINFO:
7442 if (strcmp (name, ".reginfo") != 0
7443 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7444 return FALSE;
7445 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7446 break;
7447 case SHT_MIPS_IFACE:
7448 if (strcmp (name, ".MIPS.interfaces") != 0)
7449 return FALSE;
7450 break;
7451 case SHT_MIPS_CONTENT:
7452 if (! CONST_STRNEQ (name, ".MIPS.content"))
7453 return FALSE;
7454 break;
7455 case SHT_MIPS_OPTIONS:
7456 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7457 return FALSE;
7458 break;
7459 case SHT_MIPS_ABIFLAGS:
7460 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7461 return FALSE;
7462 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7463 break;
7464 case SHT_MIPS_DWARF:
7465 if (! CONST_STRNEQ (name, ".debug_")
7466 && ! CONST_STRNEQ (name, ".zdebug_"))
7467 return FALSE;
7468 break;
7469 case SHT_MIPS_SYMBOL_LIB:
7470 if (strcmp (name, ".MIPS.symlib") != 0)
7471 return FALSE;
7472 break;
7473 case SHT_MIPS_EVENTS:
7474 if (! CONST_STRNEQ (name, ".MIPS.events")
7475 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7476 return FALSE;
7477 break;
7478 default:
7479 break;
7480 }
7481
7482 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7483 return FALSE;
7484
7485 if (flags)
7486 {
7487 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7488 (bfd_get_section_flags (abfd,
7489 hdr->bfd_section)
7490 | flags)))
7491 return FALSE;
7492 }
7493
7494 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7495 {
7496 Elf_External_ABIFlags_v0 ext;
7497
7498 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7499 &ext, 0, sizeof ext))
7500 return FALSE;
7501 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7502 &mips_elf_tdata (abfd)->abiflags);
7503 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7504 return FALSE;
7505 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7506 }
7507
7508 /* FIXME: We should record sh_info for a .gptab section. */
7509
7510 /* For a .reginfo section, set the gp value in the tdata information
7511 from the contents of this section. We need the gp value while
7512 processing relocs, so we just get it now. The .reginfo section
7513 is not used in the 64-bit MIPS ELF ABI. */
7514 if (hdr->sh_type == SHT_MIPS_REGINFO)
7515 {
7516 Elf32_External_RegInfo ext;
7517 Elf32_RegInfo s;
7518
7519 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7520 &ext, 0, sizeof ext))
7521 return FALSE;
7522 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7523 elf_gp (abfd) = s.ri_gp_value;
7524 }
7525
7526 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7527 set the gp value based on what we find. We may see both
7528 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7529 they should agree. */
7530 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7531 {
7532 bfd_byte *contents, *l, *lend;
7533
7534 contents = bfd_malloc (hdr->sh_size);
7535 if (contents == NULL)
7536 return FALSE;
7537 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7538 0, hdr->sh_size))
7539 {
7540 free (contents);
7541 return FALSE;
7542 }
7543 l = contents;
7544 lend = contents + hdr->sh_size;
7545 while (l + sizeof (Elf_External_Options) <= lend)
7546 {
7547 Elf_Internal_Options intopt;
7548
7549 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7550 &intopt);
7551 if (intopt.size < sizeof (Elf_External_Options))
7552 {
7553 _bfd_error_handler
7554 /* xgettext:c-format */
7555 (_("%pB: warning: bad `%s' option size %u smaller than"
7556 " its header"),
7557 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7558 break;
7559 }
7560 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7561 {
7562 Elf64_Internal_RegInfo intreg;
7563
7564 bfd_mips_elf64_swap_reginfo_in
7565 (abfd,
7566 ((Elf64_External_RegInfo *)
7567 (l + sizeof (Elf_External_Options))),
7568 &intreg);
7569 elf_gp (abfd) = intreg.ri_gp_value;
7570 }
7571 else if (intopt.kind == ODK_REGINFO)
7572 {
7573 Elf32_RegInfo intreg;
7574
7575 bfd_mips_elf32_swap_reginfo_in
7576 (abfd,
7577 ((Elf32_External_RegInfo *)
7578 (l + sizeof (Elf_External_Options))),
7579 &intreg);
7580 elf_gp (abfd) = intreg.ri_gp_value;
7581 }
7582 l += intopt.size;
7583 }
7584 free (contents);
7585 }
7586
7587 return TRUE;
7588 }
7589
7590 /* Set the correct type for a MIPS ELF section. We do this by the
7591 section name, which is a hack, but ought to work. This routine is
7592 used by both the 32-bit and the 64-bit ABI. */
7593
7594 bfd_boolean
7595 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7596 {
7597 const char *name = bfd_get_section_name (abfd, sec);
7598
7599 if (strcmp (name, ".liblist") == 0)
7600 {
7601 hdr->sh_type = SHT_MIPS_LIBLIST;
7602 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7603 /* The sh_link field is set in final_write_processing. */
7604 }
7605 else if (strcmp (name, ".conflict") == 0)
7606 hdr->sh_type = SHT_MIPS_CONFLICT;
7607 else if (CONST_STRNEQ (name, ".gptab."))
7608 {
7609 hdr->sh_type = SHT_MIPS_GPTAB;
7610 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7611 /* The sh_info field is set in final_write_processing. */
7612 }
7613 else if (strcmp (name, ".ucode") == 0)
7614 hdr->sh_type = SHT_MIPS_UCODE;
7615 else if (strcmp (name, ".mdebug") == 0)
7616 {
7617 hdr->sh_type = SHT_MIPS_DEBUG;
7618 /* In a shared object on IRIX 5.3, the .mdebug section has an
7619 entsize of 0. FIXME: Does this matter? */
7620 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7621 hdr->sh_entsize = 0;
7622 else
7623 hdr->sh_entsize = 1;
7624 }
7625 else if (strcmp (name, ".reginfo") == 0)
7626 {
7627 hdr->sh_type = SHT_MIPS_REGINFO;
7628 /* In a shared object on IRIX 5.3, the .reginfo section has an
7629 entsize of 0x18. FIXME: Does this matter? */
7630 if (SGI_COMPAT (abfd))
7631 {
7632 if ((abfd->flags & DYNAMIC) != 0)
7633 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7634 else
7635 hdr->sh_entsize = 1;
7636 }
7637 else
7638 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7639 }
7640 else if (SGI_COMPAT (abfd)
7641 && (strcmp (name, ".hash") == 0
7642 || strcmp (name, ".dynamic") == 0
7643 || strcmp (name, ".dynstr") == 0))
7644 {
7645 if (SGI_COMPAT (abfd))
7646 hdr->sh_entsize = 0;
7647 #if 0
7648 /* This isn't how the IRIX6 linker behaves. */
7649 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7650 #endif
7651 }
7652 else if (strcmp (name, ".got") == 0
7653 || strcmp (name, ".srdata") == 0
7654 || strcmp (name, ".sdata") == 0
7655 || strcmp (name, ".sbss") == 0
7656 || strcmp (name, ".lit4") == 0
7657 || strcmp (name, ".lit8") == 0)
7658 hdr->sh_flags |= SHF_MIPS_GPREL;
7659 else if (strcmp (name, ".MIPS.interfaces") == 0)
7660 {
7661 hdr->sh_type = SHT_MIPS_IFACE;
7662 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7663 }
7664 else if (CONST_STRNEQ (name, ".MIPS.content"))
7665 {
7666 hdr->sh_type = SHT_MIPS_CONTENT;
7667 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7668 /* The sh_info field is set in final_write_processing. */
7669 }
7670 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7671 {
7672 hdr->sh_type = SHT_MIPS_OPTIONS;
7673 hdr->sh_entsize = 1;
7674 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7675 }
7676 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7677 {
7678 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7679 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7680 }
7681 else if (CONST_STRNEQ (name, ".debug_")
7682 || CONST_STRNEQ (name, ".zdebug_"))
7683 {
7684 hdr->sh_type = SHT_MIPS_DWARF;
7685
7686 /* Irix facilities such as libexc expect a single .debug_frame
7687 per executable, the system ones have NOSTRIP set and the linker
7688 doesn't merge sections with different flags so ... */
7689 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7690 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7691 }
7692 else if (strcmp (name, ".MIPS.symlib") == 0)
7693 {
7694 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7695 /* The sh_link and sh_info fields are set in
7696 final_write_processing. */
7697 }
7698 else if (CONST_STRNEQ (name, ".MIPS.events")
7699 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7700 {
7701 hdr->sh_type = SHT_MIPS_EVENTS;
7702 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7703 /* The sh_link field is set in final_write_processing. */
7704 }
7705 else if (strcmp (name, ".msym") == 0)
7706 {
7707 hdr->sh_type = SHT_MIPS_MSYM;
7708 hdr->sh_flags |= SHF_ALLOC;
7709 hdr->sh_entsize = 8;
7710 }
7711
7712 /* The generic elf_fake_sections will set up REL_HDR using the default
7713 kind of relocations. We used to set up a second header for the
7714 non-default kind of relocations here, but only NewABI would use
7715 these, and the IRIX ld doesn't like resulting empty RELA sections.
7716 Thus we create those header only on demand now. */
7717
7718 return TRUE;
7719 }
7720
7721 /* Given a BFD section, try to locate the corresponding ELF section
7722 index. This is used by both the 32-bit and the 64-bit ABI.
7723 Actually, it's not clear to me that the 64-bit ABI supports these,
7724 but for non-PIC objects we will certainly want support for at least
7725 the .scommon section. */
7726
7727 bfd_boolean
7728 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7729 asection *sec, int *retval)
7730 {
7731 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7732 {
7733 *retval = SHN_MIPS_SCOMMON;
7734 return TRUE;
7735 }
7736 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7737 {
7738 *retval = SHN_MIPS_ACOMMON;
7739 return TRUE;
7740 }
7741 return FALSE;
7742 }
7743 \f
7744 /* Hook called by the linker routine which adds symbols from an object
7745 file. We must handle the special MIPS section numbers here. */
7746
7747 bfd_boolean
7748 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7749 Elf_Internal_Sym *sym, const char **namep,
7750 flagword *flagsp ATTRIBUTE_UNUSED,
7751 asection **secp, bfd_vma *valp)
7752 {
7753 if (SGI_COMPAT (abfd)
7754 && (abfd->flags & DYNAMIC) != 0
7755 && strcmp (*namep, "_rld_new_interface") == 0)
7756 {
7757 /* Skip IRIX5 rld entry name. */
7758 *namep = NULL;
7759 return TRUE;
7760 }
7761
7762 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7763 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7764 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7765 a magic symbol resolved by the linker, we ignore this bogus definition
7766 of _gp_disp. New ABI objects do not suffer from this problem so this
7767 is not done for them. */
7768 if (!NEWABI_P(abfd)
7769 && (sym->st_shndx == SHN_ABS)
7770 && (strcmp (*namep, "_gp_disp") == 0))
7771 {
7772 *namep = NULL;
7773 return TRUE;
7774 }
7775
7776 switch (sym->st_shndx)
7777 {
7778 case SHN_COMMON:
7779 /* Common symbols less than the GP size are automatically
7780 treated as SHN_MIPS_SCOMMON symbols. */
7781 if (sym->st_size > elf_gp_size (abfd)
7782 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7783 || IRIX_COMPAT (abfd) == ict_irix6)
7784 break;
7785 /* Fall through. */
7786 case SHN_MIPS_SCOMMON:
7787 *secp = bfd_make_section_old_way (abfd, ".scommon");
7788 (*secp)->flags |= SEC_IS_COMMON;
7789 *valp = sym->st_size;
7790 break;
7791
7792 case SHN_MIPS_TEXT:
7793 /* This section is used in a shared object. */
7794 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7795 {
7796 asymbol *elf_text_symbol;
7797 asection *elf_text_section;
7798 bfd_size_type amt = sizeof (asection);
7799
7800 elf_text_section = bfd_zalloc (abfd, amt);
7801 if (elf_text_section == NULL)
7802 return FALSE;
7803
7804 amt = sizeof (asymbol);
7805 elf_text_symbol = bfd_zalloc (abfd, amt);
7806 if (elf_text_symbol == NULL)
7807 return FALSE;
7808
7809 /* Initialize the section. */
7810
7811 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7812 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7813
7814 elf_text_section->symbol = elf_text_symbol;
7815 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7816
7817 elf_text_section->name = ".text";
7818 elf_text_section->flags = SEC_NO_FLAGS;
7819 elf_text_section->output_section = NULL;
7820 elf_text_section->owner = abfd;
7821 elf_text_symbol->name = ".text";
7822 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7823 elf_text_symbol->section = elf_text_section;
7824 }
7825 /* This code used to do *secp = bfd_und_section_ptr if
7826 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7827 so I took it out. */
7828 *secp = mips_elf_tdata (abfd)->elf_text_section;
7829 break;
7830
7831 case SHN_MIPS_ACOMMON:
7832 /* Fall through. XXX Can we treat this as allocated data? */
7833 case SHN_MIPS_DATA:
7834 /* This section is used in a shared object. */
7835 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7836 {
7837 asymbol *elf_data_symbol;
7838 asection *elf_data_section;
7839 bfd_size_type amt = sizeof (asection);
7840
7841 elf_data_section = bfd_zalloc (abfd, amt);
7842 if (elf_data_section == NULL)
7843 return FALSE;
7844
7845 amt = sizeof (asymbol);
7846 elf_data_symbol = bfd_zalloc (abfd, amt);
7847 if (elf_data_symbol == NULL)
7848 return FALSE;
7849
7850 /* Initialize the section. */
7851
7852 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7853 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7854
7855 elf_data_section->symbol = elf_data_symbol;
7856 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7857
7858 elf_data_section->name = ".data";
7859 elf_data_section->flags = SEC_NO_FLAGS;
7860 elf_data_section->output_section = NULL;
7861 elf_data_section->owner = abfd;
7862 elf_data_symbol->name = ".data";
7863 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7864 elf_data_symbol->section = elf_data_section;
7865 }
7866 /* This code used to do *secp = bfd_und_section_ptr if
7867 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7868 so I took it out. */
7869 *secp = mips_elf_tdata (abfd)->elf_data_section;
7870 break;
7871
7872 case SHN_MIPS_SUNDEFINED:
7873 *secp = bfd_und_section_ptr;
7874 break;
7875 }
7876
7877 if (SGI_COMPAT (abfd)
7878 && ! bfd_link_pic (info)
7879 && info->output_bfd->xvec == abfd->xvec
7880 && strcmp (*namep, "__rld_obj_head") == 0)
7881 {
7882 struct elf_link_hash_entry *h;
7883 struct bfd_link_hash_entry *bh;
7884
7885 /* Mark __rld_obj_head as dynamic. */
7886 bh = NULL;
7887 if (! (_bfd_generic_link_add_one_symbol
7888 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7889 get_elf_backend_data (abfd)->collect, &bh)))
7890 return FALSE;
7891
7892 h = (struct elf_link_hash_entry *) bh;
7893 h->non_elf = 0;
7894 h->def_regular = 1;
7895 h->type = STT_OBJECT;
7896
7897 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7898 return FALSE;
7899
7900 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7901 mips_elf_hash_table (info)->rld_symbol = h;
7902 }
7903
7904 /* If this is a mips16 text symbol, add 1 to the value to make it
7905 odd. This will cause something like .word SYM to come up with
7906 the right value when it is loaded into the PC. */
7907 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7908 ++*valp;
7909
7910 return TRUE;
7911 }
7912
7913 /* This hook function is called before the linker writes out a global
7914 symbol. We mark symbols as small common if appropriate. This is
7915 also where we undo the increment of the value for a mips16 symbol. */
7916
7917 int
7918 _bfd_mips_elf_link_output_symbol_hook
7919 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7920 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7921 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7922 {
7923 /* If we see a common symbol, which implies a relocatable link, then
7924 if a symbol was small common in an input file, mark it as small
7925 common in the output file. */
7926 if (sym->st_shndx == SHN_COMMON
7927 && strcmp (input_sec->name, ".scommon") == 0)
7928 sym->st_shndx = SHN_MIPS_SCOMMON;
7929
7930 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7931 sym->st_value &= ~1;
7932
7933 return 1;
7934 }
7935 \f
7936 /* Functions for the dynamic linker. */
7937
7938 /* Create dynamic sections when linking against a dynamic object. */
7939
7940 bfd_boolean
7941 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7942 {
7943 struct elf_link_hash_entry *h;
7944 struct bfd_link_hash_entry *bh;
7945 flagword flags;
7946 register asection *s;
7947 const char * const *namep;
7948 struct mips_elf_link_hash_table *htab;
7949
7950 htab = mips_elf_hash_table (info);
7951 BFD_ASSERT (htab != NULL);
7952
7953 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7954 | SEC_LINKER_CREATED | SEC_READONLY);
7955
7956 /* The psABI requires a read-only .dynamic section, but the VxWorks
7957 EABI doesn't. */
7958 if (!htab->is_vxworks)
7959 {
7960 s = bfd_get_linker_section (abfd, ".dynamic");
7961 if (s != NULL)
7962 {
7963 if (! bfd_set_section_flags (abfd, s, flags))
7964 return FALSE;
7965 }
7966 }
7967
7968 /* We need to create .got section. */
7969 if (!mips_elf_create_got_section (abfd, info))
7970 return FALSE;
7971
7972 if (! mips_elf_rel_dyn_section (info, TRUE))
7973 return FALSE;
7974
7975 /* Create .stub section. */
7976 s = bfd_make_section_anyway_with_flags (abfd,
7977 MIPS_ELF_STUB_SECTION_NAME (abfd),
7978 flags | SEC_CODE);
7979 if (s == NULL
7980 || ! bfd_set_section_alignment (abfd, s,
7981 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7982 return FALSE;
7983 htab->sstubs = s;
7984
7985 if (!mips_elf_hash_table (info)->use_rld_obj_head
7986 && bfd_link_executable (info)
7987 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7988 {
7989 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7990 flags &~ (flagword) SEC_READONLY);
7991 if (s == NULL
7992 || ! bfd_set_section_alignment (abfd, s,
7993 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7994 return FALSE;
7995 }
7996
7997 /* On IRIX5, we adjust add some additional symbols and change the
7998 alignments of several sections. There is no ABI documentation
7999 indicating that this is necessary on IRIX6, nor any evidence that
8000 the linker takes such action. */
8001 if (IRIX_COMPAT (abfd) == ict_irix5)
8002 {
8003 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
8004 {
8005 bh = NULL;
8006 if (! (_bfd_generic_link_add_one_symbol
8007 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
8008 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
8009 return FALSE;
8010
8011 h = (struct elf_link_hash_entry *) bh;
8012 h->mark = 1;
8013 h->non_elf = 0;
8014 h->def_regular = 1;
8015 h->type = STT_SECTION;
8016
8017 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8018 return FALSE;
8019 }
8020
8021 /* We need to create a .compact_rel section. */
8022 if (SGI_COMPAT (abfd))
8023 {
8024 if (!mips_elf_create_compact_rel_section (abfd, info))
8025 return FALSE;
8026 }
8027
8028 /* Change alignments of some sections. */
8029 s = bfd_get_linker_section (abfd, ".hash");
8030 if (s != NULL)
8031 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8032
8033 s = bfd_get_linker_section (abfd, ".dynsym");
8034 if (s != NULL)
8035 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8036
8037 s = bfd_get_linker_section (abfd, ".dynstr");
8038 if (s != NULL)
8039 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8040
8041 /* ??? */
8042 s = bfd_get_section_by_name (abfd, ".reginfo");
8043 if (s != NULL)
8044 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8045
8046 s = bfd_get_linker_section (abfd, ".dynamic");
8047 if (s != NULL)
8048 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8049 }
8050
8051 if (bfd_link_executable (info))
8052 {
8053 const char *name;
8054
8055 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8056 bh = NULL;
8057 if (!(_bfd_generic_link_add_one_symbol
8058 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
8059 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
8060 return FALSE;
8061
8062 h = (struct elf_link_hash_entry *) bh;
8063 h->non_elf = 0;
8064 h->def_regular = 1;
8065 h->type = STT_SECTION;
8066
8067 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8068 return FALSE;
8069
8070 if (! mips_elf_hash_table (info)->use_rld_obj_head)
8071 {
8072 /* __rld_map is a four byte word located in the .data section
8073 and is filled in by the rtld to contain a pointer to
8074 the _r_debug structure. Its symbol value will be set in
8075 _bfd_mips_elf_finish_dynamic_symbol. */
8076 s = bfd_get_linker_section (abfd, ".rld_map");
8077 BFD_ASSERT (s != NULL);
8078
8079 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
8080 bh = NULL;
8081 if (!(_bfd_generic_link_add_one_symbol
8082 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
8083 get_elf_backend_data (abfd)->collect, &bh)))
8084 return FALSE;
8085
8086 h = (struct elf_link_hash_entry *) bh;
8087 h->non_elf = 0;
8088 h->def_regular = 1;
8089 h->type = STT_OBJECT;
8090
8091 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8092 return FALSE;
8093 mips_elf_hash_table (info)->rld_symbol = h;
8094 }
8095 }
8096
8097 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
8098 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
8099 if (!_bfd_elf_create_dynamic_sections (abfd, info))
8100 return FALSE;
8101
8102 /* Do the usual VxWorks handling. */
8103 if (htab->is_vxworks
8104 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
8105 return FALSE;
8106
8107 return TRUE;
8108 }
8109 \f
8110 /* Return true if relocation REL against section SEC is a REL rather than
8111 RELA relocation. RELOCS is the first relocation in the section and
8112 ABFD is the bfd that contains SEC. */
8113
8114 static bfd_boolean
8115 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
8116 const Elf_Internal_Rela *relocs,
8117 const Elf_Internal_Rela *rel)
8118 {
8119 Elf_Internal_Shdr *rel_hdr;
8120 const struct elf_backend_data *bed;
8121
8122 /* To determine which flavor of relocation this is, we depend on the
8123 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8124 rel_hdr = elf_section_data (sec)->rel.hdr;
8125 if (rel_hdr == NULL)
8126 return FALSE;
8127 bed = get_elf_backend_data (abfd);
8128 return ((size_t) (rel - relocs)
8129 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
8130 }
8131
8132 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8133 HOWTO is the relocation's howto and CONTENTS points to the contents
8134 of the section that REL is against. */
8135
8136 static bfd_vma
8137 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
8138 reloc_howto_type *howto, bfd_byte *contents)
8139 {
8140 bfd_byte *location;
8141 unsigned int r_type;
8142 bfd_vma addend;
8143 bfd_vma bytes;
8144
8145 r_type = ELF_R_TYPE (abfd, rel->r_info);
8146 location = contents + rel->r_offset;
8147
8148 /* Get the addend, which is stored in the input file. */
8149 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
8150 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
8151 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
8152
8153 addend = bytes & howto->src_mask;
8154
8155 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8156 accordingly. */
8157 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8158 addend <<= 1;
8159
8160 return addend;
8161 }
8162
8163 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
8164 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8165 and update *ADDEND with the final addend. Return true on success
8166 or false if the LO16 could not be found. RELEND is the exclusive
8167 upper bound on the relocations for REL's section. */
8168
8169 static bfd_boolean
8170 mips_elf_add_lo16_rel_addend (bfd *abfd,
8171 const Elf_Internal_Rela *rel,
8172 const Elf_Internal_Rela *relend,
8173 bfd_byte *contents, bfd_vma *addend)
8174 {
8175 unsigned int r_type, lo16_type;
8176 const Elf_Internal_Rela *lo16_relocation;
8177 reloc_howto_type *lo16_howto;
8178 bfd_vma l;
8179
8180 r_type = ELF_R_TYPE (abfd, rel->r_info);
8181 if (mips16_reloc_p (r_type))
8182 lo16_type = R_MIPS16_LO16;
8183 else if (micromips_reloc_p (r_type))
8184 lo16_type = R_MICROMIPS_LO16;
8185 else if (r_type == R_MIPS_PCHI16)
8186 lo16_type = R_MIPS_PCLO16;
8187 else
8188 lo16_type = R_MIPS_LO16;
8189
8190 /* The combined value is the sum of the HI16 addend, left-shifted by
8191 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8192 code does a `lui' of the HI16 value, and then an `addiu' of the
8193 LO16 value.)
8194
8195 Scan ahead to find a matching LO16 relocation.
8196
8197 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8198 be immediately following. However, for the IRIX6 ABI, the next
8199 relocation may be a composed relocation consisting of several
8200 relocations for the same address. In that case, the R_MIPS_LO16
8201 relocation may occur as one of these. We permit a similar
8202 extension in general, as that is useful for GCC.
8203
8204 In some cases GCC dead code elimination removes the LO16 but keeps
8205 the corresponding HI16. This is strictly speaking a violation of
8206 the ABI but not immediately harmful. */
8207 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8208 if (lo16_relocation == NULL)
8209 return FALSE;
8210
8211 /* Obtain the addend kept there. */
8212 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8213 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8214
8215 l <<= lo16_howto->rightshift;
8216 l = _bfd_mips_elf_sign_extend (l, 16);
8217
8218 *addend <<= 16;
8219 *addend += l;
8220 return TRUE;
8221 }
8222
8223 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8224 store the contents in *CONTENTS on success. Assume that *CONTENTS
8225 already holds the contents if it is nonull on entry. */
8226
8227 static bfd_boolean
8228 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8229 {
8230 if (*contents)
8231 return TRUE;
8232
8233 /* Get cached copy if it exists. */
8234 if (elf_section_data (sec)->this_hdr.contents != NULL)
8235 {
8236 *contents = elf_section_data (sec)->this_hdr.contents;
8237 return TRUE;
8238 }
8239
8240 return bfd_malloc_and_get_section (abfd, sec, contents);
8241 }
8242
8243 /* Make a new PLT record to keep internal data. */
8244
8245 static struct plt_entry *
8246 mips_elf_make_plt_record (bfd *abfd)
8247 {
8248 struct plt_entry *entry;
8249
8250 entry = bfd_zalloc (abfd, sizeof (*entry));
8251 if (entry == NULL)
8252 return NULL;
8253
8254 entry->stub_offset = MINUS_ONE;
8255 entry->mips_offset = MINUS_ONE;
8256 entry->comp_offset = MINUS_ONE;
8257 entry->gotplt_index = MINUS_ONE;
8258 return entry;
8259 }
8260
8261 /* Define the special `__gnu_absolute_zero' symbol. We only need this
8262 for PIC code, as otherwise there is no load-time relocation involved
8263 and local GOT entries whose value is zero at static link time will
8264 retain their value at load time. */
8265
8266 static bfd_boolean
8267 mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info,
8268 struct mips_elf_link_hash_table *htab,
8269 unsigned int r_type)
8270 {
8271 union
8272 {
8273 struct elf_link_hash_entry *eh;
8274 struct bfd_link_hash_entry *bh;
8275 }
8276 hzero;
8277
8278 BFD_ASSERT (!htab->use_absolute_zero);
8279 BFD_ASSERT (bfd_link_pic (info));
8280
8281 hzero.bh = NULL;
8282 if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero",
8283 BSF_GLOBAL, bfd_abs_section_ptr, 0,
8284 NULL, FALSE, FALSE, &hzero.bh))
8285 return FALSE;
8286
8287 BFD_ASSERT (hzero.bh != NULL);
8288 hzero.eh->size = 0;
8289 hzero.eh->type = STT_NOTYPE;
8290 hzero.eh->other = STV_PROTECTED;
8291 hzero.eh->def_regular = 1;
8292 hzero.eh->non_elf = 0;
8293
8294 if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, TRUE, r_type))
8295 return FALSE;
8296
8297 htab->use_absolute_zero = TRUE;
8298
8299 return TRUE;
8300 }
8301
8302 /* Look through the relocs for a section during the first phase, and
8303 allocate space in the global offset table and record the need for
8304 standard MIPS and compressed procedure linkage table entries. */
8305
8306 bfd_boolean
8307 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8308 asection *sec, const Elf_Internal_Rela *relocs)
8309 {
8310 const char *name;
8311 bfd *dynobj;
8312 Elf_Internal_Shdr *symtab_hdr;
8313 struct elf_link_hash_entry **sym_hashes;
8314 size_t extsymoff;
8315 const Elf_Internal_Rela *rel;
8316 const Elf_Internal_Rela *rel_end;
8317 asection *sreloc;
8318 const struct elf_backend_data *bed;
8319 struct mips_elf_link_hash_table *htab;
8320 bfd_byte *contents;
8321 bfd_vma addend;
8322 reloc_howto_type *howto;
8323
8324 if (bfd_link_relocatable (info))
8325 return TRUE;
8326
8327 htab = mips_elf_hash_table (info);
8328 BFD_ASSERT (htab != NULL);
8329
8330 dynobj = elf_hash_table (info)->dynobj;
8331 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8332 sym_hashes = elf_sym_hashes (abfd);
8333 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8334
8335 bed = get_elf_backend_data (abfd);
8336 rel_end = relocs + sec->reloc_count;
8337
8338 /* Check for the mips16 stub sections. */
8339
8340 name = bfd_get_section_name (abfd, sec);
8341 if (FN_STUB_P (name))
8342 {
8343 unsigned long r_symndx;
8344
8345 /* Look at the relocation information to figure out which symbol
8346 this is for. */
8347
8348 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8349 if (r_symndx == 0)
8350 {
8351 _bfd_error_handler
8352 /* xgettext:c-format */
8353 (_("%pB: warning: cannot determine the target function for"
8354 " stub section `%s'"),
8355 abfd, name);
8356 bfd_set_error (bfd_error_bad_value);
8357 return FALSE;
8358 }
8359
8360 if (r_symndx < extsymoff
8361 || sym_hashes[r_symndx - extsymoff] == NULL)
8362 {
8363 asection *o;
8364
8365 /* This stub is for a local symbol. This stub will only be
8366 needed if there is some relocation in this BFD, other
8367 than a 16 bit function call, which refers to this symbol. */
8368 for (o = abfd->sections; o != NULL; o = o->next)
8369 {
8370 Elf_Internal_Rela *sec_relocs;
8371 const Elf_Internal_Rela *r, *rend;
8372
8373 /* We can ignore stub sections when looking for relocs. */
8374 if ((o->flags & SEC_RELOC) == 0
8375 || o->reloc_count == 0
8376 || section_allows_mips16_refs_p (o))
8377 continue;
8378
8379 sec_relocs
8380 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8381 info->keep_memory);
8382 if (sec_relocs == NULL)
8383 return FALSE;
8384
8385 rend = sec_relocs + o->reloc_count;
8386 for (r = sec_relocs; r < rend; r++)
8387 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8388 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8389 break;
8390
8391 if (elf_section_data (o)->relocs != sec_relocs)
8392 free (sec_relocs);
8393
8394 if (r < rend)
8395 break;
8396 }
8397
8398 if (o == NULL)
8399 {
8400 /* There is no non-call reloc for this stub, so we do
8401 not need it. Since this function is called before
8402 the linker maps input sections to output sections, we
8403 can easily discard it by setting the SEC_EXCLUDE
8404 flag. */
8405 sec->flags |= SEC_EXCLUDE;
8406 return TRUE;
8407 }
8408
8409 /* Record this stub in an array of local symbol stubs for
8410 this BFD. */
8411 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8412 {
8413 unsigned long symcount;
8414 asection **n;
8415 bfd_size_type amt;
8416
8417 if (elf_bad_symtab (abfd))
8418 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8419 else
8420 symcount = symtab_hdr->sh_info;
8421 amt = symcount * sizeof (asection *);
8422 n = bfd_zalloc (abfd, amt);
8423 if (n == NULL)
8424 return FALSE;
8425 mips_elf_tdata (abfd)->local_stubs = n;
8426 }
8427
8428 sec->flags |= SEC_KEEP;
8429 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8430
8431 /* We don't need to set mips16_stubs_seen in this case.
8432 That flag is used to see whether we need to look through
8433 the global symbol table for stubs. We don't need to set
8434 it here, because we just have a local stub. */
8435 }
8436 else
8437 {
8438 struct mips_elf_link_hash_entry *h;
8439
8440 h = ((struct mips_elf_link_hash_entry *)
8441 sym_hashes[r_symndx - extsymoff]);
8442
8443 while (h->root.root.type == bfd_link_hash_indirect
8444 || h->root.root.type == bfd_link_hash_warning)
8445 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8446
8447 /* H is the symbol this stub is for. */
8448
8449 /* If we already have an appropriate stub for this function, we
8450 don't need another one, so we can discard this one. Since
8451 this function is called before the linker maps input sections
8452 to output sections, we can easily discard it by setting the
8453 SEC_EXCLUDE flag. */
8454 if (h->fn_stub != NULL)
8455 {
8456 sec->flags |= SEC_EXCLUDE;
8457 return TRUE;
8458 }
8459
8460 sec->flags |= SEC_KEEP;
8461 h->fn_stub = sec;
8462 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8463 }
8464 }
8465 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8466 {
8467 unsigned long r_symndx;
8468 struct mips_elf_link_hash_entry *h;
8469 asection **loc;
8470
8471 /* Look at the relocation information to figure out which symbol
8472 this is for. */
8473
8474 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8475 if (r_symndx == 0)
8476 {
8477 _bfd_error_handler
8478 /* xgettext:c-format */
8479 (_("%pB: warning: cannot determine the target function for"
8480 " stub section `%s'"),
8481 abfd, name);
8482 bfd_set_error (bfd_error_bad_value);
8483 return FALSE;
8484 }
8485
8486 if (r_symndx < extsymoff
8487 || sym_hashes[r_symndx - extsymoff] == NULL)
8488 {
8489 asection *o;
8490
8491 /* This stub is for a local symbol. This stub will only be
8492 needed if there is some relocation (R_MIPS16_26) in this BFD
8493 that refers to this symbol. */
8494 for (o = abfd->sections; o != NULL; o = o->next)
8495 {
8496 Elf_Internal_Rela *sec_relocs;
8497 const Elf_Internal_Rela *r, *rend;
8498
8499 /* We can ignore stub sections when looking for relocs. */
8500 if ((o->flags & SEC_RELOC) == 0
8501 || o->reloc_count == 0
8502 || section_allows_mips16_refs_p (o))
8503 continue;
8504
8505 sec_relocs
8506 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8507 info->keep_memory);
8508 if (sec_relocs == NULL)
8509 return FALSE;
8510
8511 rend = sec_relocs + o->reloc_count;
8512 for (r = sec_relocs; r < rend; r++)
8513 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8514 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8515 break;
8516
8517 if (elf_section_data (o)->relocs != sec_relocs)
8518 free (sec_relocs);
8519
8520 if (r < rend)
8521 break;
8522 }
8523
8524 if (o == NULL)
8525 {
8526 /* There is no non-call reloc for this stub, so we do
8527 not need it. Since this function is called before
8528 the linker maps input sections to output sections, we
8529 can easily discard it by setting the SEC_EXCLUDE
8530 flag. */
8531 sec->flags |= SEC_EXCLUDE;
8532 return TRUE;
8533 }
8534
8535 /* Record this stub in an array of local symbol call_stubs for
8536 this BFD. */
8537 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8538 {
8539 unsigned long symcount;
8540 asection **n;
8541 bfd_size_type amt;
8542
8543 if (elf_bad_symtab (abfd))
8544 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8545 else
8546 symcount = symtab_hdr->sh_info;
8547 amt = symcount * sizeof (asection *);
8548 n = bfd_zalloc (abfd, amt);
8549 if (n == NULL)
8550 return FALSE;
8551 mips_elf_tdata (abfd)->local_call_stubs = n;
8552 }
8553
8554 sec->flags |= SEC_KEEP;
8555 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8556
8557 /* We don't need to set mips16_stubs_seen in this case.
8558 That flag is used to see whether we need to look through
8559 the global symbol table for stubs. We don't need to set
8560 it here, because we just have a local stub. */
8561 }
8562 else
8563 {
8564 h = ((struct mips_elf_link_hash_entry *)
8565 sym_hashes[r_symndx - extsymoff]);
8566
8567 /* H is the symbol this stub is for. */
8568
8569 if (CALL_FP_STUB_P (name))
8570 loc = &h->call_fp_stub;
8571 else
8572 loc = &h->call_stub;
8573
8574 /* If we already have an appropriate stub for this function, we
8575 don't need another one, so we can discard this one. Since
8576 this function is called before the linker maps input sections
8577 to output sections, we can easily discard it by setting the
8578 SEC_EXCLUDE flag. */
8579 if (*loc != NULL)
8580 {
8581 sec->flags |= SEC_EXCLUDE;
8582 return TRUE;
8583 }
8584
8585 sec->flags |= SEC_KEEP;
8586 *loc = sec;
8587 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8588 }
8589 }
8590
8591 sreloc = NULL;
8592 contents = NULL;
8593 for (rel = relocs; rel < rel_end; ++rel)
8594 {
8595 unsigned long r_symndx;
8596 unsigned int r_type;
8597 struct elf_link_hash_entry *h;
8598 bfd_boolean can_make_dynamic_p;
8599 bfd_boolean call_reloc_p;
8600 bfd_boolean constrain_symbol_p;
8601
8602 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8603 r_type = ELF_R_TYPE (abfd, rel->r_info);
8604
8605 if (r_symndx < extsymoff)
8606 h = NULL;
8607 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8608 {
8609 _bfd_error_handler
8610 /* xgettext:c-format */
8611 (_("%pB: malformed reloc detected for section %s"),
8612 abfd, name);
8613 bfd_set_error (bfd_error_bad_value);
8614 return FALSE;
8615 }
8616 else
8617 {
8618 h = sym_hashes[r_symndx - extsymoff];
8619 if (h != NULL)
8620 {
8621 while (h->root.type == bfd_link_hash_indirect
8622 || h->root.type == bfd_link_hash_warning)
8623 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8624 }
8625 }
8626
8627 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8628 relocation into a dynamic one. */
8629 can_make_dynamic_p = FALSE;
8630
8631 /* Set CALL_RELOC_P to true if the relocation is for a call,
8632 and if pointer equality therefore doesn't matter. */
8633 call_reloc_p = FALSE;
8634
8635 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8636 into account when deciding how to define the symbol.
8637 Relocations in nonallocatable sections such as .pdr and
8638 .debug* should have no effect. */
8639 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8640
8641 switch (r_type)
8642 {
8643 case R_MIPS_CALL16:
8644 case R_MIPS_CALL_HI16:
8645 case R_MIPS_CALL_LO16:
8646 case R_MIPS16_CALL16:
8647 case R_MICROMIPS_CALL16:
8648 case R_MICROMIPS_CALL_HI16:
8649 case R_MICROMIPS_CALL_LO16:
8650 call_reloc_p = TRUE;
8651 /* Fall through. */
8652
8653 case R_MIPS_GOT16:
8654 case R_MIPS_GOT_LO16:
8655 case R_MIPS_GOT_PAGE:
8656 case R_MIPS_GOT_DISP:
8657 case R_MIPS16_GOT16:
8658 case R_MICROMIPS_GOT16:
8659 case R_MICROMIPS_GOT_LO16:
8660 case R_MICROMIPS_GOT_PAGE:
8661 case R_MICROMIPS_GOT_DISP:
8662 /* If we have a symbol that will resolve to zero at static link
8663 time and it is used by a GOT relocation applied to code we
8664 cannot relax to an immediate zero load, then we will be using
8665 the special `__gnu_absolute_zero' symbol whose value is zero
8666 at dynamic load time. We ignore HI16-type GOT relocations at
8667 this stage, because their handling will depend entirely on
8668 the corresponding LO16-type GOT relocation. */
8669 if (!call_hi16_reloc_p (r_type)
8670 && h != NULL
8671 && bfd_link_pic (info)
8672 && !htab->use_absolute_zero
8673 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8674 {
8675 bfd_boolean rel_reloc;
8676
8677 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8678 return FALSE;
8679
8680 rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel);
8681 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc);
8682
8683 if (!mips_elf_nullify_got_load (abfd, contents, rel, howto,
8684 FALSE))
8685 if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type))
8686 return FALSE;
8687 }
8688
8689 /* Fall through. */
8690 case R_MIPS_GOT_HI16:
8691 case R_MIPS_GOT_OFST:
8692 case R_MIPS_TLS_GOTTPREL:
8693 case R_MIPS_TLS_GD:
8694 case R_MIPS_TLS_LDM:
8695 case R_MIPS16_TLS_GOTTPREL:
8696 case R_MIPS16_TLS_GD:
8697 case R_MIPS16_TLS_LDM:
8698 case R_MICROMIPS_GOT_HI16:
8699 case R_MICROMIPS_GOT_OFST:
8700 case R_MICROMIPS_TLS_GOTTPREL:
8701 case R_MICROMIPS_TLS_GD:
8702 case R_MICROMIPS_TLS_LDM:
8703 if (dynobj == NULL)
8704 elf_hash_table (info)->dynobj = dynobj = abfd;
8705 if (!mips_elf_create_got_section (dynobj, info))
8706 return FALSE;
8707 if (htab->is_vxworks && !bfd_link_pic (info))
8708 {
8709 _bfd_error_handler
8710 /* xgettext:c-format */
8711 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8712 abfd, (uint64_t) rel->r_offset);
8713 bfd_set_error (bfd_error_bad_value);
8714 return FALSE;
8715 }
8716 can_make_dynamic_p = TRUE;
8717 break;
8718
8719 case R_MIPS_NONE:
8720 case R_MIPS_JALR:
8721 case R_MICROMIPS_JALR:
8722 /* These relocations have empty fields and are purely there to
8723 provide link information. The symbol value doesn't matter. */
8724 constrain_symbol_p = FALSE;
8725 break;
8726
8727 case R_MIPS_GPREL16:
8728 case R_MIPS_GPREL32:
8729 case R_MIPS16_GPREL:
8730 case R_MICROMIPS_GPREL16:
8731 /* GP-relative relocations always resolve to a definition in a
8732 regular input file, ignoring the one-definition rule. This is
8733 important for the GP setup sequence in NewABI code, which
8734 always resolves to a local function even if other relocations
8735 against the symbol wouldn't. */
8736 constrain_symbol_p = FALSE;
8737 break;
8738
8739 case R_MIPS_32:
8740 case R_MIPS_REL32:
8741 case R_MIPS_64:
8742 /* In VxWorks executables, references to external symbols
8743 must be handled using copy relocs or PLT entries; it is not
8744 possible to convert this relocation into a dynamic one.
8745
8746 For executables that use PLTs and copy-relocs, we have a
8747 choice between converting the relocation into a dynamic
8748 one or using copy relocations or PLT entries. It is
8749 usually better to do the former, unless the relocation is
8750 against a read-only section. */
8751 if ((bfd_link_pic (info)
8752 || (h != NULL
8753 && !htab->is_vxworks
8754 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8755 && !(!info->nocopyreloc
8756 && !PIC_OBJECT_P (abfd)
8757 && MIPS_ELF_READONLY_SECTION (sec))))
8758 && (sec->flags & SEC_ALLOC) != 0)
8759 {
8760 can_make_dynamic_p = TRUE;
8761 if (dynobj == NULL)
8762 elf_hash_table (info)->dynobj = dynobj = abfd;
8763 }
8764 break;
8765
8766 case R_MIPS_26:
8767 case R_MIPS_PC16:
8768 case R_MIPS_PC21_S2:
8769 case R_MIPS_PC26_S2:
8770 case R_MIPS16_26:
8771 case R_MIPS16_PC16_S1:
8772 case R_MICROMIPS_26_S1:
8773 case R_MICROMIPS_PC7_S1:
8774 case R_MICROMIPS_PC10_S1:
8775 case R_MICROMIPS_PC16_S1:
8776 case R_MICROMIPS_PC23_S2:
8777 call_reloc_p = TRUE;
8778 break;
8779 }
8780
8781 if (h)
8782 {
8783 if (constrain_symbol_p)
8784 {
8785 if (!can_make_dynamic_p)
8786 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8787
8788 if (!call_reloc_p)
8789 h->pointer_equality_needed = 1;
8790
8791 /* We must not create a stub for a symbol that has
8792 relocations related to taking the function's address.
8793 This doesn't apply to VxWorks, where CALL relocs refer
8794 to a .got.plt entry instead of a normal .got entry. */
8795 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8796 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8797 }
8798
8799 /* Relocations against the special VxWorks __GOTT_BASE__ and
8800 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8801 room for them in .rela.dyn. */
8802 if (is_gott_symbol (info, h))
8803 {
8804 if (sreloc == NULL)
8805 {
8806 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8807 if (sreloc == NULL)
8808 return FALSE;
8809 }
8810 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8811 if (MIPS_ELF_READONLY_SECTION (sec))
8812 /* We tell the dynamic linker that there are
8813 relocations against the text segment. */
8814 info->flags |= DF_TEXTREL;
8815 }
8816 }
8817 else if (call_lo16_reloc_p (r_type)
8818 || got_lo16_reloc_p (r_type)
8819 || got_disp_reloc_p (r_type)
8820 || (got16_reloc_p (r_type) && htab->is_vxworks))
8821 {
8822 /* We may need a local GOT entry for this relocation. We
8823 don't count R_MIPS_GOT_PAGE because we can estimate the
8824 maximum number of pages needed by looking at the size of
8825 the segment. Similar comments apply to R_MIPS*_GOT16 and
8826 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8827 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8828 R_MIPS_CALL_HI16 because these are always followed by an
8829 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8830 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8831 rel->r_addend, info, r_type))
8832 return FALSE;
8833 }
8834
8835 if (h != NULL
8836 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8837 ELF_ST_IS_MIPS16 (h->other)))
8838 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8839
8840 switch (r_type)
8841 {
8842 case R_MIPS_CALL16:
8843 case R_MIPS16_CALL16:
8844 case R_MICROMIPS_CALL16:
8845 if (h == NULL)
8846 {
8847 _bfd_error_handler
8848 /* xgettext:c-format */
8849 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8850 abfd, (uint64_t) rel->r_offset);
8851 bfd_set_error (bfd_error_bad_value);
8852 return FALSE;
8853 }
8854 /* Fall through. */
8855
8856 case R_MIPS_CALL_HI16:
8857 case R_MIPS_CALL_LO16:
8858 case R_MICROMIPS_CALL_HI16:
8859 case R_MICROMIPS_CALL_LO16:
8860 if (h != NULL)
8861 {
8862 /* Make sure there is room in the regular GOT to hold the
8863 function's address. We may eliminate it in favour of
8864 a .got.plt entry later; see mips_elf_count_got_symbols. */
8865 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8866 r_type))
8867 return FALSE;
8868
8869 /* We need a stub, not a plt entry for the undefined
8870 function. But we record it as if it needs plt. See
8871 _bfd_elf_adjust_dynamic_symbol. */
8872 h->needs_plt = 1;
8873 h->type = STT_FUNC;
8874 }
8875 break;
8876
8877 case R_MIPS_GOT_PAGE:
8878 case R_MICROMIPS_GOT_PAGE:
8879 case R_MIPS16_GOT16:
8880 case R_MIPS_GOT16:
8881 case R_MIPS_GOT_HI16:
8882 case R_MIPS_GOT_LO16:
8883 case R_MICROMIPS_GOT16:
8884 case R_MICROMIPS_GOT_HI16:
8885 case R_MICROMIPS_GOT_LO16:
8886 if (!h || got_page_reloc_p (r_type))
8887 {
8888 /* This relocation needs (or may need, if h != NULL) a
8889 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8890 know for sure until we know whether the symbol is
8891 preemptible. */
8892 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8893 {
8894 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8895 return FALSE;
8896 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8897 addend = mips_elf_read_rel_addend (abfd, rel,
8898 howto, contents);
8899 if (got16_reloc_p (r_type))
8900 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8901 contents, &addend);
8902 else
8903 addend <<= howto->rightshift;
8904 }
8905 else
8906 addend = rel->r_addend;
8907 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8908 h, addend))
8909 return FALSE;
8910
8911 if (h)
8912 {
8913 struct mips_elf_link_hash_entry *hmips =
8914 (struct mips_elf_link_hash_entry *) h;
8915
8916 /* This symbol is definitely not overridable. */
8917 if (hmips->root.def_regular
8918 && ! (bfd_link_pic (info) && ! info->symbolic
8919 && ! hmips->root.forced_local))
8920 h = NULL;
8921 }
8922 }
8923 /* If this is a global, overridable symbol, GOT_PAGE will
8924 decay to GOT_DISP, so we'll need a GOT entry for it. */
8925 /* Fall through. */
8926
8927 case R_MIPS_GOT_DISP:
8928 case R_MICROMIPS_GOT_DISP:
8929 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8930 FALSE, r_type))
8931 return FALSE;
8932 break;
8933
8934 case R_MIPS_TLS_GOTTPREL:
8935 case R_MIPS16_TLS_GOTTPREL:
8936 case R_MICROMIPS_TLS_GOTTPREL:
8937 if (bfd_link_pic (info))
8938 info->flags |= DF_STATIC_TLS;
8939 /* Fall through */
8940
8941 case R_MIPS_TLS_LDM:
8942 case R_MIPS16_TLS_LDM:
8943 case R_MICROMIPS_TLS_LDM:
8944 if (tls_ldm_reloc_p (r_type))
8945 {
8946 r_symndx = STN_UNDEF;
8947 h = NULL;
8948 }
8949 /* Fall through */
8950
8951 case R_MIPS_TLS_GD:
8952 case R_MIPS16_TLS_GD:
8953 case R_MICROMIPS_TLS_GD:
8954 /* This symbol requires a global offset table entry, or two
8955 for TLS GD relocations. */
8956 if (h != NULL)
8957 {
8958 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8959 FALSE, r_type))
8960 return FALSE;
8961 }
8962 else
8963 {
8964 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8965 rel->r_addend,
8966 info, r_type))
8967 return FALSE;
8968 }
8969 break;
8970
8971 case R_MIPS_32:
8972 case R_MIPS_REL32:
8973 case R_MIPS_64:
8974 /* In VxWorks executables, references to external symbols
8975 are handled using copy relocs or PLT stubs, so there's
8976 no need to add a .rela.dyn entry for this relocation. */
8977 if (can_make_dynamic_p)
8978 {
8979 if (sreloc == NULL)
8980 {
8981 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8982 if (sreloc == NULL)
8983 return FALSE;
8984 }
8985 if (bfd_link_pic (info) && h == NULL)
8986 {
8987 /* When creating a shared object, we must copy these
8988 reloc types into the output file as R_MIPS_REL32
8989 relocs. Make room for this reloc in .rel(a).dyn. */
8990 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8991 if (MIPS_ELF_READONLY_SECTION (sec))
8992 /* We tell the dynamic linker that there are
8993 relocations against the text segment. */
8994 info->flags |= DF_TEXTREL;
8995 }
8996 else
8997 {
8998 struct mips_elf_link_hash_entry *hmips;
8999
9000 /* For a shared object, we must copy this relocation
9001 unless the symbol turns out to be undefined and
9002 weak with non-default visibility, in which case
9003 it will be left as zero.
9004
9005 We could elide R_MIPS_REL32 for locally binding symbols
9006 in shared libraries, but do not yet do so.
9007
9008 For an executable, we only need to copy this
9009 reloc if the symbol is defined in a dynamic
9010 object. */
9011 hmips = (struct mips_elf_link_hash_entry *) h;
9012 ++hmips->possibly_dynamic_relocs;
9013 if (MIPS_ELF_READONLY_SECTION (sec))
9014 /* We need it to tell the dynamic linker if there
9015 are relocations against the text segment. */
9016 hmips->readonly_reloc = TRUE;
9017 }
9018 }
9019
9020 if (SGI_COMPAT (abfd))
9021 mips_elf_hash_table (info)->compact_rel_size +=
9022 sizeof (Elf32_External_crinfo);
9023 break;
9024
9025 case R_MIPS_26:
9026 case R_MIPS_GPREL16:
9027 case R_MIPS_LITERAL:
9028 case R_MIPS_GPREL32:
9029 case R_MICROMIPS_26_S1:
9030 case R_MICROMIPS_GPREL16:
9031 case R_MICROMIPS_LITERAL:
9032 case R_MICROMIPS_GPREL7_S2:
9033 if (SGI_COMPAT (abfd))
9034 mips_elf_hash_table (info)->compact_rel_size +=
9035 sizeof (Elf32_External_crinfo);
9036 break;
9037
9038 /* This relocation describes the C++ object vtable hierarchy.
9039 Reconstruct it for later use during GC. */
9040 case R_MIPS_GNU_VTINHERIT:
9041 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9042 return FALSE;
9043 break;
9044
9045 /* This relocation describes which C++ vtable entries are actually
9046 used. Record for later use during GC. */
9047 case R_MIPS_GNU_VTENTRY:
9048 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9049 return FALSE;
9050 break;
9051
9052 default:
9053 break;
9054 }
9055
9056 /* Record the need for a PLT entry. At this point we don't know
9057 yet if we are going to create a PLT in the first place, but
9058 we only record whether the relocation requires a standard MIPS
9059 or a compressed code entry anyway. If we don't make a PLT after
9060 all, then we'll just ignore these arrangements. Likewise if
9061 a PLT entry is not created because the symbol is satisfied
9062 locally. */
9063 if (h != NULL
9064 && (branch_reloc_p (r_type)
9065 || mips16_branch_reloc_p (r_type)
9066 || micromips_branch_reloc_p (r_type))
9067 && !SYMBOL_CALLS_LOCAL (info, h))
9068 {
9069 if (h->plt.plist == NULL)
9070 h->plt.plist = mips_elf_make_plt_record (abfd);
9071 if (h->plt.plist == NULL)
9072 return FALSE;
9073
9074 if (branch_reloc_p (r_type))
9075 h->plt.plist->need_mips = TRUE;
9076 else
9077 h->plt.plist->need_comp = TRUE;
9078 }
9079
9080 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9081 if there is one. We only need to handle global symbols here;
9082 we decide whether to keep or delete stubs for local symbols
9083 when processing the stub's relocations. */
9084 if (h != NULL
9085 && !mips16_call_reloc_p (r_type)
9086 && !section_allows_mips16_refs_p (sec))
9087 {
9088 struct mips_elf_link_hash_entry *mh;
9089
9090 mh = (struct mips_elf_link_hash_entry *) h;
9091 mh->need_fn_stub = TRUE;
9092 }
9093
9094 /* Refuse some position-dependent relocations when creating a
9095 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9096 not PIC, but we can create dynamic relocations and the result
9097 will be fine. Also do not refuse R_MIPS_LO16, which can be
9098 combined with R_MIPS_GOT16. */
9099 if (bfd_link_pic (info))
9100 {
9101 switch (r_type)
9102 {
9103 case R_MIPS_TLS_TPREL_HI16:
9104 case R_MIPS16_TLS_TPREL_HI16:
9105 case R_MICROMIPS_TLS_TPREL_HI16:
9106 case R_MIPS_TLS_TPREL_LO16:
9107 case R_MIPS16_TLS_TPREL_LO16:
9108 case R_MICROMIPS_TLS_TPREL_LO16:
9109 /* These are okay in PIE, but not in a shared library. */
9110 if (bfd_link_executable (info))
9111 break;
9112
9113 /* FALLTHROUGH */
9114
9115 case R_MIPS16_HI16:
9116 case R_MIPS_HI16:
9117 case R_MIPS_HIGHER:
9118 case R_MIPS_HIGHEST:
9119 case R_MICROMIPS_HI16:
9120 case R_MICROMIPS_HIGHER:
9121 case R_MICROMIPS_HIGHEST:
9122 /* Don't refuse a high part relocation if it's against
9123 no symbol (e.g. part of a compound relocation). */
9124 if (r_symndx == STN_UNDEF)
9125 break;
9126
9127 /* Likewise an absolute symbol. */
9128 if (h != NULL && bfd_is_abs_symbol (&h->root))
9129 break;
9130
9131 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9132 and has a special meaning. */
9133 if (!NEWABI_P (abfd) && h != NULL
9134 && strcmp (h->root.root.string, "_gp_disp") == 0)
9135 break;
9136
9137 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9138 if (is_gott_symbol (info, h))
9139 break;
9140
9141 /* FALLTHROUGH */
9142
9143 case R_MIPS16_26:
9144 case R_MIPS_26:
9145 case R_MICROMIPS_26_S1:
9146 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, NEWABI_P (abfd));
9147 /* An error for unsupported relocations is raised as part
9148 of the above search, so we can skip the following. */
9149 if (howto != NULL)
9150 info->callbacks->einfo
9151 /* xgettext:c-format */
9152 (_("%X%H: relocation %s against `%s' cannot be used"
9153 " when making a shared object; recompile with -fPIC\n"),
9154 abfd, sec, rel->r_offset, howto->name,
9155 (h) ? h->root.root.string : "a local symbol");
9156 break;
9157 default:
9158 break;
9159 }
9160 }
9161 }
9162
9163 return TRUE;
9164 }
9165 \f
9166 /* Allocate space for global sym dynamic relocs. */
9167
9168 static bfd_boolean
9169 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9170 {
9171 struct bfd_link_info *info = inf;
9172 bfd *dynobj;
9173 struct mips_elf_link_hash_entry *hmips;
9174 struct mips_elf_link_hash_table *htab;
9175
9176 htab = mips_elf_hash_table (info);
9177 BFD_ASSERT (htab != NULL);
9178
9179 dynobj = elf_hash_table (info)->dynobj;
9180 hmips = (struct mips_elf_link_hash_entry *) h;
9181
9182 /* VxWorks executables are handled elsewhere; we only need to
9183 allocate relocations in shared objects. */
9184 if (htab->is_vxworks && !bfd_link_pic (info))
9185 return TRUE;
9186
9187 /* Ignore indirect symbols. All relocations against such symbols
9188 will be redirected to the target symbol. */
9189 if (h->root.type == bfd_link_hash_indirect)
9190 return TRUE;
9191
9192 /* If this symbol is defined in a dynamic object, or we are creating
9193 a shared library, we will need to copy any R_MIPS_32 or
9194 R_MIPS_REL32 relocs against it into the output file. */
9195 if (! bfd_link_relocatable (info)
9196 && hmips->possibly_dynamic_relocs != 0
9197 && (h->root.type == bfd_link_hash_defweak
9198 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9199 || bfd_link_pic (info)))
9200 {
9201 bfd_boolean do_copy = TRUE;
9202
9203 if (h->root.type == bfd_link_hash_undefweak)
9204 {
9205 /* Do not copy relocations for undefined weak symbols that
9206 we are not going to export. */
9207 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9208 do_copy = FALSE;
9209
9210 /* Make sure undefined weak symbols are output as a dynamic
9211 symbol in PIEs. */
9212 else if (h->dynindx == -1 && !h->forced_local)
9213 {
9214 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9215 return FALSE;
9216 }
9217 }
9218
9219 if (do_copy)
9220 {
9221 /* Even though we don't directly need a GOT entry for this symbol,
9222 the SVR4 psABI requires it to have a dynamic symbol table
9223 index greater that DT_MIPS_GOTSYM if there are dynamic
9224 relocations against it.
9225
9226 VxWorks does not enforce the same mapping between the GOT
9227 and the symbol table, so the same requirement does not
9228 apply there. */
9229 if (!htab->is_vxworks)
9230 {
9231 if (hmips->global_got_area > GGA_RELOC_ONLY)
9232 hmips->global_got_area = GGA_RELOC_ONLY;
9233 hmips->got_only_for_calls = FALSE;
9234 }
9235
9236 mips_elf_allocate_dynamic_relocations
9237 (dynobj, info, hmips->possibly_dynamic_relocs);
9238 if (hmips->readonly_reloc)
9239 /* We tell the dynamic linker that there are relocations
9240 against the text segment. */
9241 info->flags |= DF_TEXTREL;
9242 }
9243 }
9244
9245 return TRUE;
9246 }
9247
9248 /* Adjust a symbol defined by a dynamic object and referenced by a
9249 regular object. The current definition is in some section of the
9250 dynamic object, but we're not including those sections. We have to
9251 change the definition to something the rest of the link can
9252 understand. */
9253
9254 bfd_boolean
9255 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9256 struct elf_link_hash_entry *h)
9257 {
9258 bfd *dynobj;
9259 struct mips_elf_link_hash_entry *hmips;
9260 struct mips_elf_link_hash_table *htab;
9261 asection *s, *srel;
9262
9263 htab = mips_elf_hash_table (info);
9264 BFD_ASSERT (htab != NULL);
9265
9266 dynobj = elf_hash_table (info)->dynobj;
9267 hmips = (struct mips_elf_link_hash_entry *) h;
9268
9269 /* Make sure we know what is going on here. */
9270 BFD_ASSERT (dynobj != NULL
9271 && (h->needs_plt
9272 || h->is_weakalias
9273 || (h->def_dynamic
9274 && h->ref_regular
9275 && !h->def_regular)));
9276
9277 hmips = (struct mips_elf_link_hash_entry *) h;
9278
9279 /* If there are call relocations against an externally-defined symbol,
9280 see whether we can create a MIPS lazy-binding stub for it. We can
9281 only do this if all references to the function are through call
9282 relocations, and in that case, the traditional lazy-binding stubs
9283 are much more efficient than PLT entries.
9284
9285 Traditional stubs are only available on SVR4 psABI-based systems;
9286 VxWorks always uses PLTs instead. */
9287 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9288 {
9289 if (! elf_hash_table (info)->dynamic_sections_created)
9290 return TRUE;
9291
9292 /* If this symbol is not defined in a regular file, then set
9293 the symbol to the stub location. This is required to make
9294 function pointers compare as equal between the normal
9295 executable and the shared library. */
9296 if (!h->def_regular
9297 && !bfd_is_abs_section (htab->sstubs->output_section))
9298 {
9299 hmips->needs_lazy_stub = TRUE;
9300 htab->lazy_stub_count++;
9301 return TRUE;
9302 }
9303 }
9304 /* As above, VxWorks requires PLT entries for externally-defined
9305 functions that are only accessed through call relocations.
9306
9307 Both VxWorks and non-VxWorks targets also need PLT entries if there
9308 are static-only relocations against an externally-defined function.
9309 This can technically occur for shared libraries if there are
9310 branches to the symbol, although it is unlikely that this will be
9311 used in practice due to the short ranges involved. It can occur
9312 for any relative or absolute relocation in executables; in that
9313 case, the PLT entry becomes the function's canonical address. */
9314 else if (((h->needs_plt && !hmips->no_fn_stub)
9315 || (h->type == STT_FUNC && hmips->has_static_relocs))
9316 && htab->use_plts_and_copy_relocs
9317 && !SYMBOL_CALLS_LOCAL (info, h)
9318 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9319 && h->root.type == bfd_link_hash_undefweak))
9320 {
9321 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9322 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9323
9324 /* If this is the first symbol to need a PLT entry, then make some
9325 basic setup. Also work out PLT entry sizes. We'll need them
9326 for PLT offset calculations. */
9327 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9328 {
9329 BFD_ASSERT (htab->root.sgotplt->size == 0);
9330 BFD_ASSERT (htab->plt_got_index == 0);
9331
9332 /* If we're using the PLT additions to the psABI, each PLT
9333 entry is 16 bytes and the PLT0 entry is 32 bytes.
9334 Encourage better cache usage by aligning. We do this
9335 lazily to avoid pessimizing traditional objects. */
9336 if (!htab->is_vxworks
9337 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9338 return FALSE;
9339
9340 /* Make sure that .got.plt is word-aligned. We do this lazily
9341 for the same reason as above. */
9342 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9343 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9344 return FALSE;
9345
9346 /* On non-VxWorks targets, the first two entries in .got.plt
9347 are reserved. */
9348 if (!htab->is_vxworks)
9349 htab->plt_got_index
9350 += (get_elf_backend_data (dynobj)->got_header_size
9351 / MIPS_ELF_GOT_SIZE (dynobj));
9352
9353 /* On VxWorks, also allocate room for the header's
9354 .rela.plt.unloaded entries. */
9355 if (htab->is_vxworks && !bfd_link_pic (info))
9356 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9357
9358 /* Now work out the sizes of individual PLT entries. */
9359 if (htab->is_vxworks && bfd_link_pic (info))
9360 htab->plt_mips_entry_size
9361 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9362 else if (htab->is_vxworks)
9363 htab->plt_mips_entry_size
9364 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9365 else if (newabi_p)
9366 htab->plt_mips_entry_size
9367 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9368 else if (!micromips_p)
9369 {
9370 htab->plt_mips_entry_size
9371 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9372 htab->plt_comp_entry_size
9373 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9374 }
9375 else if (htab->insn32)
9376 {
9377 htab->plt_mips_entry_size
9378 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9379 htab->plt_comp_entry_size
9380 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9381 }
9382 else
9383 {
9384 htab->plt_mips_entry_size
9385 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9386 htab->plt_comp_entry_size
9387 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9388 }
9389 }
9390
9391 if (h->plt.plist == NULL)
9392 h->plt.plist = mips_elf_make_plt_record (dynobj);
9393 if (h->plt.plist == NULL)
9394 return FALSE;
9395
9396 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9397 n32 or n64, so always use a standard entry there.
9398
9399 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9400 all MIPS16 calls will go via that stub, and there is no benefit
9401 to having a MIPS16 entry. And in the case of call_stub a
9402 standard entry actually has to be used as the stub ends with a J
9403 instruction. */
9404 if (newabi_p
9405 || htab->is_vxworks
9406 || hmips->call_stub
9407 || hmips->call_fp_stub)
9408 {
9409 h->plt.plist->need_mips = TRUE;
9410 h->plt.plist->need_comp = FALSE;
9411 }
9412
9413 /* Otherwise, if there are no direct calls to the function, we
9414 have a free choice of whether to use standard or compressed
9415 entries. Prefer microMIPS entries if the object is known to
9416 contain microMIPS code, so that it becomes possible to create
9417 pure microMIPS binaries. Prefer standard entries otherwise,
9418 because MIPS16 ones are no smaller and are usually slower. */
9419 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9420 {
9421 if (micromips_p)
9422 h->plt.plist->need_comp = TRUE;
9423 else
9424 h->plt.plist->need_mips = TRUE;
9425 }
9426
9427 if (h->plt.plist->need_mips)
9428 {
9429 h->plt.plist->mips_offset = htab->plt_mips_offset;
9430 htab->plt_mips_offset += htab->plt_mips_entry_size;
9431 }
9432 if (h->plt.plist->need_comp)
9433 {
9434 h->plt.plist->comp_offset = htab->plt_comp_offset;
9435 htab->plt_comp_offset += htab->plt_comp_entry_size;
9436 }
9437
9438 /* Reserve the corresponding .got.plt entry now too. */
9439 h->plt.plist->gotplt_index = htab->plt_got_index++;
9440
9441 /* If the output file has no definition of the symbol, set the
9442 symbol's value to the address of the stub. */
9443 if (!bfd_link_pic (info) && !h->def_regular)
9444 hmips->use_plt_entry = TRUE;
9445
9446 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9447 htab->root.srelplt->size += (htab->is_vxworks
9448 ? MIPS_ELF_RELA_SIZE (dynobj)
9449 : MIPS_ELF_REL_SIZE (dynobj));
9450
9451 /* Make room for the .rela.plt.unloaded relocations. */
9452 if (htab->is_vxworks && !bfd_link_pic (info))
9453 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9454
9455 /* All relocations against this symbol that could have been made
9456 dynamic will now refer to the PLT entry instead. */
9457 hmips->possibly_dynamic_relocs = 0;
9458
9459 return TRUE;
9460 }
9461
9462 /* If this is a weak symbol, and there is a real definition, the
9463 processor independent code will have arranged for us to see the
9464 real definition first, and we can just use the same value. */
9465 if (h->is_weakalias)
9466 {
9467 struct elf_link_hash_entry *def = weakdef (h);
9468 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9469 h->root.u.def.section = def->root.u.def.section;
9470 h->root.u.def.value = def->root.u.def.value;
9471 return TRUE;
9472 }
9473
9474 /* Otherwise, there is nothing further to do for symbols defined
9475 in regular objects. */
9476 if (h->def_regular)
9477 return TRUE;
9478
9479 /* There's also nothing more to do if we'll convert all relocations
9480 against this symbol into dynamic relocations. */
9481 if (!hmips->has_static_relocs)
9482 return TRUE;
9483
9484 /* We're now relying on copy relocations. Complain if we have
9485 some that we can't convert. */
9486 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9487 {
9488 _bfd_error_handler (_("non-dynamic relocations refer to "
9489 "dynamic symbol %s"),
9490 h->root.root.string);
9491 bfd_set_error (bfd_error_bad_value);
9492 return FALSE;
9493 }
9494
9495 /* We must allocate the symbol in our .dynbss section, which will
9496 become part of the .bss section of the executable. There will be
9497 an entry for this symbol in the .dynsym section. The dynamic
9498 object will contain position independent code, so all references
9499 from the dynamic object to this symbol will go through the global
9500 offset table. The dynamic linker will use the .dynsym entry to
9501 determine the address it must put in the global offset table, so
9502 both the dynamic object and the regular object will refer to the
9503 same memory location for the variable. */
9504
9505 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9506 {
9507 s = htab->root.sdynrelro;
9508 srel = htab->root.sreldynrelro;
9509 }
9510 else
9511 {
9512 s = htab->root.sdynbss;
9513 srel = htab->root.srelbss;
9514 }
9515 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9516 {
9517 if (htab->is_vxworks)
9518 srel->size += sizeof (Elf32_External_Rela);
9519 else
9520 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9521 h->needs_copy = 1;
9522 }
9523
9524 /* All relocations against this symbol that could have been made
9525 dynamic will now refer to the local copy instead. */
9526 hmips->possibly_dynamic_relocs = 0;
9527
9528 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9529 }
9530 \f
9531 /* This function is called after all the input files have been read,
9532 and the input sections have been assigned to output sections. We
9533 check for any mips16 stub sections that we can discard. */
9534
9535 bfd_boolean
9536 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9537 struct bfd_link_info *info)
9538 {
9539 asection *sect;
9540 struct mips_elf_link_hash_table *htab;
9541 struct mips_htab_traverse_info hti;
9542
9543 htab = mips_elf_hash_table (info);
9544 BFD_ASSERT (htab != NULL);
9545
9546 /* The .reginfo section has a fixed size. */
9547 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9548 if (sect != NULL)
9549 {
9550 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9551 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9552 }
9553
9554 /* The .MIPS.abiflags section has a fixed size. */
9555 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9556 if (sect != NULL)
9557 {
9558 bfd_set_section_size (output_bfd, sect,
9559 sizeof (Elf_External_ABIFlags_v0));
9560 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9561 }
9562
9563 hti.info = info;
9564 hti.output_bfd = output_bfd;
9565 hti.error = FALSE;
9566 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9567 mips_elf_check_symbols, &hti);
9568 if (hti.error)
9569 return FALSE;
9570
9571 return TRUE;
9572 }
9573
9574 /* If the link uses a GOT, lay it out and work out its size. */
9575
9576 static bfd_boolean
9577 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9578 {
9579 bfd *dynobj;
9580 asection *s;
9581 struct mips_got_info *g;
9582 bfd_size_type loadable_size = 0;
9583 bfd_size_type page_gotno;
9584 bfd *ibfd;
9585 struct mips_elf_traverse_got_arg tga;
9586 struct mips_elf_link_hash_table *htab;
9587
9588 htab = mips_elf_hash_table (info);
9589 BFD_ASSERT (htab != NULL);
9590
9591 s = htab->root.sgot;
9592 if (s == NULL)
9593 return TRUE;
9594
9595 dynobj = elf_hash_table (info)->dynobj;
9596 g = htab->got_info;
9597
9598 /* Allocate room for the reserved entries. VxWorks always reserves
9599 3 entries; other objects only reserve 2 entries. */
9600 BFD_ASSERT (g->assigned_low_gotno == 0);
9601 if (htab->is_vxworks)
9602 htab->reserved_gotno = 3;
9603 else
9604 htab->reserved_gotno = 2;
9605 g->local_gotno += htab->reserved_gotno;
9606 g->assigned_low_gotno = htab->reserved_gotno;
9607
9608 /* Decide which symbols need to go in the global part of the GOT and
9609 count the number of reloc-only GOT symbols. */
9610 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9611
9612 if (!mips_elf_resolve_final_got_entries (info, g))
9613 return FALSE;
9614
9615 /* Calculate the total loadable size of the output. That
9616 will give us the maximum number of GOT_PAGE entries
9617 required. */
9618 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9619 {
9620 asection *subsection;
9621
9622 for (subsection = ibfd->sections;
9623 subsection;
9624 subsection = subsection->next)
9625 {
9626 if ((subsection->flags & SEC_ALLOC) == 0)
9627 continue;
9628 loadable_size += ((subsection->size + 0xf)
9629 &~ (bfd_size_type) 0xf);
9630 }
9631 }
9632
9633 if (htab->is_vxworks)
9634 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9635 relocations against local symbols evaluate to "G", and the EABI does
9636 not include R_MIPS_GOT_PAGE. */
9637 page_gotno = 0;
9638 else
9639 /* Assume there are two loadable segments consisting of contiguous
9640 sections. Is 5 enough? */
9641 page_gotno = (loadable_size >> 16) + 5;
9642
9643 /* Choose the smaller of the two page estimates; both are intended to be
9644 conservative. */
9645 if (page_gotno > g->page_gotno)
9646 page_gotno = g->page_gotno;
9647
9648 g->local_gotno += page_gotno;
9649 g->assigned_high_gotno = g->local_gotno - 1;
9650
9651 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9652 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9653 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9654
9655 /* VxWorks does not support multiple GOTs. It initializes $gp to
9656 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9657 dynamic loader. */
9658 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9659 {
9660 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9661 return FALSE;
9662 }
9663 else
9664 {
9665 /* Record that all bfds use G. This also has the effect of freeing
9666 the per-bfd GOTs, which we no longer need. */
9667 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9668 if (mips_elf_bfd_got (ibfd, FALSE))
9669 mips_elf_replace_bfd_got (ibfd, g);
9670 mips_elf_replace_bfd_got (output_bfd, g);
9671
9672 /* Set up TLS entries. */
9673 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9674 tga.info = info;
9675 tga.g = g;
9676 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9677 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9678 if (!tga.g)
9679 return FALSE;
9680 BFD_ASSERT (g->tls_assigned_gotno
9681 == g->global_gotno + g->local_gotno + g->tls_gotno);
9682
9683 /* Each VxWorks GOT entry needs an explicit relocation. */
9684 if (htab->is_vxworks && bfd_link_pic (info))
9685 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9686
9687 /* Allocate room for the TLS relocations. */
9688 if (g->relocs)
9689 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9690 }
9691
9692 return TRUE;
9693 }
9694
9695 /* Estimate the size of the .MIPS.stubs section. */
9696
9697 static void
9698 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9699 {
9700 struct mips_elf_link_hash_table *htab;
9701 bfd_size_type dynsymcount;
9702
9703 htab = mips_elf_hash_table (info);
9704 BFD_ASSERT (htab != NULL);
9705
9706 if (htab->lazy_stub_count == 0)
9707 return;
9708
9709 /* IRIX rld assumes that a function stub isn't at the end of the .text
9710 section, so add a dummy entry to the end. */
9711 htab->lazy_stub_count++;
9712
9713 /* Get a worst-case estimate of the number of dynamic symbols needed.
9714 At this point, dynsymcount does not account for section symbols
9715 and count_section_dynsyms may overestimate the number that will
9716 be needed. */
9717 dynsymcount = (elf_hash_table (info)->dynsymcount
9718 + count_section_dynsyms (output_bfd, info));
9719
9720 /* Determine the size of one stub entry. There's no disadvantage
9721 from using microMIPS code here, so for the sake of pure-microMIPS
9722 binaries we prefer it whenever there's any microMIPS code in
9723 output produced at all. This has a benefit of stubs being
9724 shorter by 4 bytes each too, unless in the insn32 mode. */
9725 if (!MICROMIPS_P (output_bfd))
9726 htab->function_stub_size = (dynsymcount > 0x10000
9727 ? MIPS_FUNCTION_STUB_BIG_SIZE
9728 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9729 else if (htab->insn32)
9730 htab->function_stub_size = (dynsymcount > 0x10000
9731 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9732 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9733 else
9734 htab->function_stub_size = (dynsymcount > 0x10000
9735 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9736 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9737
9738 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9739 }
9740
9741 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9742 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9743 stub, allocate an entry in the stubs section. */
9744
9745 static bfd_boolean
9746 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9747 {
9748 struct mips_htab_traverse_info *hti = data;
9749 struct mips_elf_link_hash_table *htab;
9750 struct bfd_link_info *info;
9751 bfd *output_bfd;
9752
9753 info = hti->info;
9754 output_bfd = hti->output_bfd;
9755 htab = mips_elf_hash_table (info);
9756 BFD_ASSERT (htab != NULL);
9757
9758 if (h->needs_lazy_stub)
9759 {
9760 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9761 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9762 bfd_vma isa_bit = micromips_p;
9763
9764 BFD_ASSERT (htab->root.dynobj != NULL);
9765 if (h->root.plt.plist == NULL)
9766 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9767 if (h->root.plt.plist == NULL)
9768 {
9769 hti->error = TRUE;
9770 return FALSE;
9771 }
9772 h->root.root.u.def.section = htab->sstubs;
9773 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9774 h->root.plt.plist->stub_offset = htab->sstubs->size;
9775 h->root.other = other;
9776 htab->sstubs->size += htab->function_stub_size;
9777 }
9778 return TRUE;
9779 }
9780
9781 /* Allocate offsets in the stubs section to each symbol that needs one.
9782 Set the final size of the .MIPS.stub section. */
9783
9784 static bfd_boolean
9785 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9786 {
9787 bfd *output_bfd = info->output_bfd;
9788 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9789 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9790 bfd_vma isa_bit = micromips_p;
9791 struct mips_elf_link_hash_table *htab;
9792 struct mips_htab_traverse_info hti;
9793 struct elf_link_hash_entry *h;
9794 bfd *dynobj;
9795
9796 htab = mips_elf_hash_table (info);
9797 BFD_ASSERT (htab != NULL);
9798
9799 if (htab->lazy_stub_count == 0)
9800 return TRUE;
9801
9802 htab->sstubs->size = 0;
9803 hti.info = info;
9804 hti.output_bfd = output_bfd;
9805 hti.error = FALSE;
9806 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9807 if (hti.error)
9808 return FALSE;
9809 htab->sstubs->size += htab->function_stub_size;
9810 BFD_ASSERT (htab->sstubs->size
9811 == htab->lazy_stub_count * htab->function_stub_size);
9812
9813 dynobj = elf_hash_table (info)->dynobj;
9814 BFD_ASSERT (dynobj != NULL);
9815 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9816 if (h == NULL)
9817 return FALSE;
9818 h->root.u.def.value = isa_bit;
9819 h->other = other;
9820 h->type = STT_FUNC;
9821
9822 return TRUE;
9823 }
9824
9825 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9826 bfd_link_info. If H uses the address of a PLT entry as the value
9827 of the symbol, then set the entry in the symbol table now. Prefer
9828 a standard MIPS PLT entry. */
9829
9830 static bfd_boolean
9831 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9832 {
9833 struct bfd_link_info *info = data;
9834 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9835 struct mips_elf_link_hash_table *htab;
9836 unsigned int other;
9837 bfd_vma isa_bit;
9838 bfd_vma val;
9839
9840 htab = mips_elf_hash_table (info);
9841 BFD_ASSERT (htab != NULL);
9842
9843 if (h->use_plt_entry)
9844 {
9845 BFD_ASSERT (h->root.plt.plist != NULL);
9846 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9847 || h->root.plt.plist->comp_offset != MINUS_ONE);
9848
9849 val = htab->plt_header_size;
9850 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9851 {
9852 isa_bit = 0;
9853 val += h->root.plt.plist->mips_offset;
9854 other = 0;
9855 }
9856 else
9857 {
9858 isa_bit = 1;
9859 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9860 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9861 }
9862 val += isa_bit;
9863 /* For VxWorks, point at the PLT load stub rather than the lazy
9864 resolution stub; this stub will become the canonical function
9865 address. */
9866 if (htab->is_vxworks)
9867 val += 8;
9868
9869 h->root.root.u.def.section = htab->root.splt;
9870 h->root.root.u.def.value = val;
9871 h->root.other = other;
9872 }
9873
9874 return TRUE;
9875 }
9876
9877 /* Set the sizes of the dynamic sections. */
9878
9879 bfd_boolean
9880 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9881 struct bfd_link_info *info)
9882 {
9883 bfd *dynobj;
9884 asection *s, *sreldyn;
9885 bfd_boolean reltext;
9886 struct mips_elf_link_hash_table *htab;
9887
9888 htab = mips_elf_hash_table (info);
9889 BFD_ASSERT (htab != NULL);
9890 dynobj = elf_hash_table (info)->dynobj;
9891 BFD_ASSERT (dynobj != NULL);
9892
9893 if (elf_hash_table (info)->dynamic_sections_created)
9894 {
9895 /* Set the contents of the .interp section to the interpreter. */
9896 if (bfd_link_executable (info) && !info->nointerp)
9897 {
9898 s = bfd_get_linker_section (dynobj, ".interp");
9899 BFD_ASSERT (s != NULL);
9900 s->size
9901 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9902 s->contents
9903 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9904 }
9905
9906 /* Figure out the size of the PLT header if we know that we
9907 are using it. For the sake of cache alignment always use
9908 a standard header whenever any standard entries are present
9909 even if microMIPS entries are present as well. This also
9910 lets the microMIPS header rely on the value of $v0 only set
9911 by microMIPS entries, for a small size reduction.
9912
9913 Set symbol table entry values for symbols that use the
9914 address of their PLT entry now that we can calculate it.
9915
9916 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9917 haven't already in _bfd_elf_create_dynamic_sections. */
9918 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9919 {
9920 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9921 && !htab->plt_mips_offset);
9922 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9923 bfd_vma isa_bit = micromips_p;
9924 struct elf_link_hash_entry *h;
9925 bfd_vma size;
9926
9927 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9928 BFD_ASSERT (htab->root.sgotplt->size == 0);
9929 BFD_ASSERT (htab->root.splt->size == 0);
9930
9931 if (htab->is_vxworks && bfd_link_pic (info))
9932 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9933 else if (htab->is_vxworks)
9934 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9935 else if (ABI_64_P (output_bfd))
9936 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9937 else if (ABI_N32_P (output_bfd))
9938 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9939 else if (!micromips_p)
9940 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9941 else if (htab->insn32)
9942 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9943 else
9944 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9945
9946 htab->plt_header_is_comp = micromips_p;
9947 htab->plt_header_size = size;
9948 htab->root.splt->size = (size
9949 + htab->plt_mips_offset
9950 + htab->plt_comp_offset);
9951 htab->root.sgotplt->size = (htab->plt_got_index
9952 * MIPS_ELF_GOT_SIZE (dynobj));
9953
9954 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9955
9956 if (htab->root.hplt == NULL)
9957 {
9958 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9959 "_PROCEDURE_LINKAGE_TABLE_");
9960 htab->root.hplt = h;
9961 if (h == NULL)
9962 return FALSE;
9963 }
9964
9965 h = htab->root.hplt;
9966 h->root.u.def.value = isa_bit;
9967 h->other = other;
9968 h->type = STT_FUNC;
9969 }
9970 }
9971
9972 /* Allocate space for global sym dynamic relocs. */
9973 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9974
9975 mips_elf_estimate_stub_size (output_bfd, info);
9976
9977 if (!mips_elf_lay_out_got (output_bfd, info))
9978 return FALSE;
9979
9980 mips_elf_lay_out_lazy_stubs (info);
9981
9982 /* The check_relocs and adjust_dynamic_symbol entry points have
9983 determined the sizes of the various dynamic sections. Allocate
9984 memory for them. */
9985 reltext = FALSE;
9986 for (s = dynobj->sections; s != NULL; s = s->next)
9987 {
9988 const char *name;
9989
9990 /* It's OK to base decisions on the section name, because none
9991 of the dynobj section names depend upon the input files. */
9992 name = bfd_get_section_name (dynobj, s);
9993
9994 if ((s->flags & SEC_LINKER_CREATED) == 0)
9995 continue;
9996
9997 if (CONST_STRNEQ (name, ".rel"))
9998 {
9999 if (s->size != 0)
10000 {
10001 const char *outname;
10002 asection *target;
10003
10004 /* If this relocation section applies to a read only
10005 section, then we probably need a DT_TEXTREL entry.
10006 If the relocation section is .rel(a).dyn, we always
10007 assert a DT_TEXTREL entry rather than testing whether
10008 there exists a relocation to a read only section or
10009 not. */
10010 outname = bfd_get_section_name (output_bfd,
10011 s->output_section);
10012 target = bfd_get_section_by_name (output_bfd, outname + 4);
10013 if ((target != NULL
10014 && (target->flags & SEC_READONLY) != 0
10015 && (target->flags & SEC_ALLOC) != 0)
10016 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
10017 reltext = TRUE;
10018
10019 /* We use the reloc_count field as a counter if we need
10020 to copy relocs into the output file. */
10021 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
10022 s->reloc_count = 0;
10023
10024 /* If combreloc is enabled, elf_link_sort_relocs() will
10025 sort relocations, but in a different way than we do,
10026 and before we're done creating relocations. Also, it
10027 will move them around between input sections'
10028 relocation's contents, so our sorting would be
10029 broken, so don't let it run. */
10030 info->combreloc = 0;
10031 }
10032 }
10033 else if (bfd_link_executable (info)
10034 && ! mips_elf_hash_table (info)->use_rld_obj_head
10035 && CONST_STRNEQ (name, ".rld_map"))
10036 {
10037 /* We add a room for __rld_map. It will be filled in by the
10038 rtld to contain a pointer to the _r_debug structure. */
10039 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
10040 }
10041 else if (SGI_COMPAT (output_bfd)
10042 && CONST_STRNEQ (name, ".compact_rel"))
10043 s->size += mips_elf_hash_table (info)->compact_rel_size;
10044 else if (s == htab->root.splt)
10045 {
10046 /* If the last PLT entry has a branch delay slot, allocate
10047 room for an extra nop to fill the delay slot. This is
10048 for CPUs without load interlocking. */
10049 if (! LOAD_INTERLOCKS_P (output_bfd)
10050 && ! htab->is_vxworks && s->size > 0)
10051 s->size += 4;
10052 }
10053 else if (! CONST_STRNEQ (name, ".init")
10054 && s != htab->root.sgot
10055 && s != htab->root.sgotplt
10056 && s != htab->sstubs
10057 && s != htab->root.sdynbss
10058 && s != htab->root.sdynrelro)
10059 {
10060 /* It's not one of our sections, so don't allocate space. */
10061 continue;
10062 }
10063
10064 if (s->size == 0)
10065 {
10066 s->flags |= SEC_EXCLUDE;
10067 continue;
10068 }
10069
10070 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10071 continue;
10072
10073 /* Allocate memory for the section contents. */
10074 s->contents = bfd_zalloc (dynobj, s->size);
10075 if (s->contents == NULL)
10076 {
10077 bfd_set_error (bfd_error_no_memory);
10078 return FALSE;
10079 }
10080 }
10081
10082 if (elf_hash_table (info)->dynamic_sections_created)
10083 {
10084 /* Add some entries to the .dynamic section. We fill in the
10085 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10086 must add the entries now so that we get the correct size for
10087 the .dynamic section. */
10088
10089 /* SGI object has the equivalence of DT_DEBUG in the
10090 DT_MIPS_RLD_MAP entry. This must come first because glibc
10091 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10092 may only look at the first one they see. */
10093 if (!bfd_link_pic (info)
10094 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
10095 return FALSE;
10096
10097 if (bfd_link_executable (info)
10098 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
10099 return FALSE;
10100
10101 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10102 used by the debugger. */
10103 if (bfd_link_executable (info)
10104 && !SGI_COMPAT (output_bfd)
10105 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
10106 return FALSE;
10107
10108 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
10109 info->flags |= DF_TEXTREL;
10110
10111 if ((info->flags & DF_TEXTREL) != 0)
10112 {
10113 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
10114 return FALSE;
10115
10116 /* Clear the DF_TEXTREL flag. It will be set again if we
10117 write out an actual text relocation; we may not, because
10118 at this point we do not know whether e.g. any .eh_frame
10119 absolute relocations have been converted to PC-relative. */
10120 info->flags &= ~DF_TEXTREL;
10121 }
10122
10123 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
10124 return FALSE;
10125
10126 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
10127 if (htab->is_vxworks)
10128 {
10129 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10130 use any of the DT_MIPS_* tags. */
10131 if (sreldyn && sreldyn->size > 0)
10132 {
10133 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10134 return FALSE;
10135
10136 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10137 return FALSE;
10138
10139 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10140 return FALSE;
10141 }
10142 }
10143 else
10144 {
10145 if (sreldyn && sreldyn->size > 0
10146 && !bfd_is_abs_section (sreldyn->output_section))
10147 {
10148 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10149 return FALSE;
10150
10151 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10152 return FALSE;
10153
10154 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10155 return FALSE;
10156 }
10157
10158 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10159 return FALSE;
10160
10161 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10162 return FALSE;
10163
10164 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10165 return FALSE;
10166
10167 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10168 return FALSE;
10169
10170 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10171 return FALSE;
10172
10173 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10174 return FALSE;
10175
10176 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10177 return FALSE;
10178
10179 if (IRIX_COMPAT (dynobj) == ict_irix5
10180 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10181 return FALSE;
10182
10183 if (IRIX_COMPAT (dynobj) == ict_irix6
10184 && (bfd_get_section_by_name
10185 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10186 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10187 return FALSE;
10188 }
10189 if (htab->root.splt->size > 0)
10190 {
10191 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10192 return FALSE;
10193
10194 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10195 return FALSE;
10196
10197 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10198 return FALSE;
10199
10200 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10201 return FALSE;
10202 }
10203 if (htab->is_vxworks
10204 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10205 return FALSE;
10206 }
10207
10208 return TRUE;
10209 }
10210 \f
10211 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10212 Adjust its R_ADDEND field so that it is correct for the output file.
10213 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10214 and sections respectively; both use symbol indexes. */
10215
10216 static void
10217 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10218 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10219 asection **local_sections, Elf_Internal_Rela *rel)
10220 {
10221 unsigned int r_type, r_symndx;
10222 Elf_Internal_Sym *sym;
10223 asection *sec;
10224
10225 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10226 {
10227 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10228 if (gprel16_reloc_p (r_type)
10229 || r_type == R_MIPS_GPREL32
10230 || literal_reloc_p (r_type))
10231 {
10232 rel->r_addend += _bfd_get_gp_value (input_bfd);
10233 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10234 }
10235
10236 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10237 sym = local_syms + r_symndx;
10238
10239 /* Adjust REL's addend to account for section merging. */
10240 if (!bfd_link_relocatable (info))
10241 {
10242 sec = local_sections[r_symndx];
10243 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10244 }
10245
10246 /* This would normally be done by the rela_normal code in elflink.c. */
10247 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10248 rel->r_addend += local_sections[r_symndx]->output_offset;
10249 }
10250 }
10251
10252 /* Handle relocations against symbols from removed linkonce sections,
10253 or sections discarded by a linker script. We use this wrapper around
10254 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10255 on 64-bit ELF targets. In this case for any relocation handled, which
10256 always be the first in a triplet, the remaining two have to be processed
10257 together with the first, even if they are R_MIPS_NONE. It is the symbol
10258 index referred by the first reloc that applies to all the three and the
10259 remaining two never refer to an object symbol. And it is the final
10260 relocation (the last non-null one) that determines the output field of
10261 the whole relocation so retrieve the corresponding howto structure for
10262 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10263
10264 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10265 and therefore requires to be pasted in a loop. It also defines a block
10266 and does not protect any of its arguments, hence the extra brackets. */
10267
10268 static void
10269 mips_reloc_against_discarded_section (bfd *output_bfd,
10270 struct bfd_link_info *info,
10271 bfd *input_bfd, asection *input_section,
10272 Elf_Internal_Rela **rel,
10273 const Elf_Internal_Rela **relend,
10274 bfd_boolean rel_reloc,
10275 reloc_howto_type *howto,
10276 bfd_byte *contents)
10277 {
10278 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10279 int count = bed->s->int_rels_per_ext_rel;
10280 unsigned int r_type;
10281 int i;
10282
10283 for (i = count - 1; i > 0; i--)
10284 {
10285 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10286 if (r_type != R_MIPS_NONE)
10287 {
10288 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10289 break;
10290 }
10291 }
10292 do
10293 {
10294 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10295 (*rel), count, (*relend),
10296 howto, i, contents);
10297 }
10298 while (0);
10299 }
10300
10301 /* Relocate a MIPS ELF section. */
10302
10303 bfd_boolean
10304 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10305 bfd *input_bfd, asection *input_section,
10306 bfd_byte *contents, Elf_Internal_Rela *relocs,
10307 Elf_Internal_Sym *local_syms,
10308 asection **local_sections)
10309 {
10310 Elf_Internal_Rela *rel;
10311 const Elf_Internal_Rela *relend;
10312 bfd_vma addend = 0;
10313 bfd_boolean use_saved_addend_p = FALSE;
10314
10315 relend = relocs + input_section->reloc_count;
10316 for (rel = relocs; rel < relend; ++rel)
10317 {
10318 const char *name;
10319 bfd_vma value = 0;
10320 reloc_howto_type *howto;
10321 bfd_boolean cross_mode_jump_p = FALSE;
10322 /* TRUE if the relocation is a RELA relocation, rather than a
10323 REL relocation. */
10324 bfd_boolean rela_relocation_p = TRUE;
10325 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10326 const char *msg;
10327 unsigned long r_symndx;
10328 asection *sec;
10329 Elf_Internal_Shdr *symtab_hdr;
10330 struct elf_link_hash_entry *h;
10331 bfd_boolean rel_reloc;
10332
10333 rel_reloc = (NEWABI_P (input_bfd)
10334 && mips_elf_rel_relocation_p (input_bfd, input_section,
10335 relocs, rel));
10336 /* Find the relocation howto for this relocation. */
10337 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10338
10339 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10340 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10341 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10342 {
10343 sec = local_sections[r_symndx];
10344 h = NULL;
10345 }
10346 else
10347 {
10348 unsigned long extsymoff;
10349
10350 extsymoff = 0;
10351 if (!elf_bad_symtab (input_bfd))
10352 extsymoff = symtab_hdr->sh_info;
10353 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10354 while (h->root.type == bfd_link_hash_indirect
10355 || h->root.type == bfd_link_hash_warning)
10356 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10357
10358 sec = NULL;
10359 if (h->root.type == bfd_link_hash_defined
10360 || h->root.type == bfd_link_hash_defweak)
10361 sec = h->root.u.def.section;
10362 }
10363
10364 if (sec != NULL && discarded_section (sec))
10365 {
10366 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10367 input_section, &rel, &relend,
10368 rel_reloc, howto, contents);
10369 continue;
10370 }
10371
10372 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10373 {
10374 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10375 64-bit code, but make sure all their addresses are in the
10376 lowermost or uppermost 32-bit section of the 64-bit address
10377 space. Thus, when they use an R_MIPS_64 they mean what is
10378 usually meant by R_MIPS_32, with the exception that the
10379 stored value is sign-extended to 64 bits. */
10380 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10381
10382 /* On big-endian systems, we need to lie about the position
10383 of the reloc. */
10384 if (bfd_big_endian (input_bfd))
10385 rel->r_offset += 4;
10386 }
10387
10388 if (!use_saved_addend_p)
10389 {
10390 /* If these relocations were originally of the REL variety,
10391 we must pull the addend out of the field that will be
10392 relocated. Otherwise, we simply use the contents of the
10393 RELA relocation. */
10394 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10395 relocs, rel))
10396 {
10397 rela_relocation_p = FALSE;
10398 addend = mips_elf_read_rel_addend (input_bfd, rel,
10399 howto, contents);
10400 if (hi16_reloc_p (r_type)
10401 || (got16_reloc_p (r_type)
10402 && mips_elf_local_relocation_p (input_bfd, rel,
10403 local_sections)))
10404 {
10405 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10406 contents, &addend))
10407 {
10408 if (h)
10409 name = h->root.root.string;
10410 else
10411 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10412 local_syms + r_symndx,
10413 sec);
10414 _bfd_error_handler
10415 /* xgettext:c-format */
10416 (_("%pB: can't find matching LO16 reloc against `%s'"
10417 " for %s at %#" PRIx64 " in section `%pA'"),
10418 input_bfd, name,
10419 howto->name, (uint64_t) rel->r_offset, input_section);
10420 }
10421 }
10422 else
10423 addend <<= howto->rightshift;
10424 }
10425 else
10426 addend = rel->r_addend;
10427 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10428 local_syms, local_sections, rel);
10429 }
10430
10431 if (bfd_link_relocatable (info))
10432 {
10433 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10434 && bfd_big_endian (input_bfd))
10435 rel->r_offset -= 4;
10436
10437 if (!rela_relocation_p && rel->r_addend)
10438 {
10439 addend += rel->r_addend;
10440 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10441 addend = mips_elf_high (addend);
10442 else if (r_type == R_MIPS_HIGHER)
10443 addend = mips_elf_higher (addend);
10444 else if (r_type == R_MIPS_HIGHEST)
10445 addend = mips_elf_highest (addend);
10446 else
10447 addend >>= howto->rightshift;
10448
10449 /* We use the source mask, rather than the destination
10450 mask because the place to which we are writing will be
10451 source of the addend in the final link. */
10452 addend &= howto->src_mask;
10453
10454 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10455 /* See the comment above about using R_MIPS_64 in the 32-bit
10456 ABI. Here, we need to update the addend. It would be
10457 possible to get away with just using the R_MIPS_32 reloc
10458 but for endianness. */
10459 {
10460 bfd_vma sign_bits;
10461 bfd_vma low_bits;
10462 bfd_vma high_bits;
10463
10464 if (addend & ((bfd_vma) 1 << 31))
10465 #ifdef BFD64
10466 sign_bits = ((bfd_vma) 1 << 32) - 1;
10467 #else
10468 sign_bits = -1;
10469 #endif
10470 else
10471 sign_bits = 0;
10472
10473 /* If we don't know that we have a 64-bit type,
10474 do two separate stores. */
10475 if (bfd_big_endian (input_bfd))
10476 {
10477 /* Store the sign-bits (which are most significant)
10478 first. */
10479 low_bits = sign_bits;
10480 high_bits = addend;
10481 }
10482 else
10483 {
10484 low_bits = addend;
10485 high_bits = sign_bits;
10486 }
10487 bfd_put_32 (input_bfd, low_bits,
10488 contents + rel->r_offset);
10489 bfd_put_32 (input_bfd, high_bits,
10490 contents + rel->r_offset + 4);
10491 continue;
10492 }
10493
10494 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10495 input_bfd, input_section,
10496 contents, FALSE))
10497 return FALSE;
10498 }
10499
10500 /* Go on to the next relocation. */
10501 continue;
10502 }
10503
10504 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10505 relocations for the same offset. In that case we are
10506 supposed to treat the output of each relocation as the addend
10507 for the next. */
10508 if (rel + 1 < relend
10509 && rel->r_offset == rel[1].r_offset
10510 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10511 use_saved_addend_p = TRUE;
10512 else
10513 use_saved_addend_p = FALSE;
10514
10515 /* Figure out what value we are supposed to relocate. */
10516 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10517 input_section, contents,
10518 info, rel, addend, howto,
10519 local_syms, local_sections,
10520 &value, &name, &cross_mode_jump_p,
10521 use_saved_addend_p))
10522 {
10523 case bfd_reloc_continue:
10524 /* There's nothing to do. */
10525 continue;
10526
10527 case bfd_reloc_undefined:
10528 /* mips_elf_calculate_relocation already called the
10529 undefined_symbol callback. There's no real point in
10530 trying to perform the relocation at this point, so we
10531 just skip ahead to the next relocation. */
10532 continue;
10533
10534 case bfd_reloc_notsupported:
10535 msg = _("internal error: unsupported relocation error");
10536 info->callbacks->warning
10537 (info, msg, name, input_bfd, input_section, rel->r_offset);
10538 return FALSE;
10539
10540 case bfd_reloc_overflow:
10541 if (use_saved_addend_p)
10542 /* Ignore overflow until we reach the last relocation for
10543 a given location. */
10544 ;
10545 else
10546 {
10547 struct mips_elf_link_hash_table *htab;
10548
10549 htab = mips_elf_hash_table (info);
10550 BFD_ASSERT (htab != NULL);
10551 BFD_ASSERT (name != NULL);
10552 if (!htab->small_data_overflow_reported
10553 && (gprel16_reloc_p (howto->type)
10554 || literal_reloc_p (howto->type)))
10555 {
10556 msg = _("small-data section exceeds 64KB;"
10557 " lower small-data size limit (see option -G)");
10558
10559 htab->small_data_overflow_reported = TRUE;
10560 (*info->callbacks->einfo) ("%P: %s\n", msg);
10561 }
10562 (*info->callbacks->reloc_overflow)
10563 (info, NULL, name, howto->name, (bfd_vma) 0,
10564 input_bfd, input_section, rel->r_offset);
10565 }
10566 break;
10567
10568 case bfd_reloc_ok:
10569 break;
10570
10571 case bfd_reloc_outofrange:
10572 msg = NULL;
10573 if (jal_reloc_p (howto->type))
10574 msg = (cross_mode_jump_p
10575 ? _("cannot convert a jump to JALX "
10576 "for a non-word-aligned address")
10577 : (howto->type == R_MIPS16_26
10578 ? _("jump to a non-word-aligned address")
10579 : _("jump to a non-instruction-aligned address")));
10580 else if (b_reloc_p (howto->type))
10581 msg = (cross_mode_jump_p
10582 ? _("cannot convert a branch to JALX "
10583 "for a non-word-aligned address")
10584 : _("branch to a non-instruction-aligned address"));
10585 else if (aligned_pcrel_reloc_p (howto->type))
10586 msg = _("PC-relative load from unaligned address");
10587 if (msg)
10588 {
10589 info->callbacks->einfo
10590 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10591 break;
10592 }
10593 /* Fall through. */
10594
10595 default:
10596 abort ();
10597 break;
10598 }
10599
10600 /* If we've got another relocation for the address, keep going
10601 until we reach the last one. */
10602 if (use_saved_addend_p)
10603 {
10604 addend = value;
10605 continue;
10606 }
10607
10608 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10609 /* See the comment above about using R_MIPS_64 in the 32-bit
10610 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10611 that calculated the right value. Now, however, we
10612 sign-extend the 32-bit result to 64-bits, and store it as a
10613 64-bit value. We are especially generous here in that we
10614 go to extreme lengths to support this usage on systems with
10615 only a 32-bit VMA. */
10616 {
10617 bfd_vma sign_bits;
10618 bfd_vma low_bits;
10619 bfd_vma high_bits;
10620
10621 if (value & ((bfd_vma) 1 << 31))
10622 #ifdef BFD64
10623 sign_bits = ((bfd_vma) 1 << 32) - 1;
10624 #else
10625 sign_bits = -1;
10626 #endif
10627 else
10628 sign_bits = 0;
10629
10630 /* If we don't know that we have a 64-bit type,
10631 do two separate stores. */
10632 if (bfd_big_endian (input_bfd))
10633 {
10634 /* Undo what we did above. */
10635 rel->r_offset -= 4;
10636 /* Store the sign-bits (which are most significant)
10637 first. */
10638 low_bits = sign_bits;
10639 high_bits = value;
10640 }
10641 else
10642 {
10643 low_bits = value;
10644 high_bits = sign_bits;
10645 }
10646 bfd_put_32 (input_bfd, low_bits,
10647 contents + rel->r_offset);
10648 bfd_put_32 (input_bfd, high_bits,
10649 contents + rel->r_offset + 4);
10650 continue;
10651 }
10652
10653 /* Actually perform the relocation. */
10654 if (! mips_elf_perform_relocation (info, howto, rel, value,
10655 input_bfd, input_section,
10656 contents, cross_mode_jump_p))
10657 return FALSE;
10658 }
10659
10660 return TRUE;
10661 }
10662 \f
10663 /* A function that iterates over each entry in la25_stubs and fills
10664 in the code for each one. DATA points to a mips_htab_traverse_info. */
10665
10666 static int
10667 mips_elf_create_la25_stub (void **slot, void *data)
10668 {
10669 struct mips_htab_traverse_info *hti;
10670 struct mips_elf_link_hash_table *htab;
10671 struct mips_elf_la25_stub *stub;
10672 asection *s;
10673 bfd_byte *loc;
10674 bfd_vma offset, target, target_high, target_low;
10675 bfd_vma branch_pc;
10676 bfd_signed_vma pcrel_offset = 0;
10677
10678 stub = (struct mips_elf_la25_stub *) *slot;
10679 hti = (struct mips_htab_traverse_info *) data;
10680 htab = mips_elf_hash_table (hti->info);
10681 BFD_ASSERT (htab != NULL);
10682
10683 /* Create the section contents, if we haven't already. */
10684 s = stub->stub_section;
10685 loc = s->contents;
10686 if (loc == NULL)
10687 {
10688 loc = bfd_malloc (s->size);
10689 if (loc == NULL)
10690 {
10691 hti->error = TRUE;
10692 return FALSE;
10693 }
10694 s->contents = loc;
10695 }
10696
10697 /* Work out where in the section this stub should go. */
10698 offset = stub->offset;
10699
10700 /* We add 8 here to account for the LUI/ADDIU instructions
10701 before the branch instruction. This cannot be moved down to
10702 where pcrel_offset is calculated as 's' is updated in
10703 mips_elf_get_la25_target. */
10704 branch_pc = s->output_section->vma + s->output_offset + offset + 8;
10705
10706 /* Work out the target address. */
10707 target = mips_elf_get_la25_target (stub, &s);
10708 target += s->output_section->vma + s->output_offset;
10709
10710 target_high = ((target + 0x8000) >> 16) & 0xffff;
10711 target_low = (target & 0xffff);
10712
10713 /* Calculate the PC of the compact branch instruction (for the case where
10714 compact branches are used for either microMIPSR6 or MIPSR6 with
10715 compact branches. Add 4-bytes to account for BC using the PC of the
10716 next instruction as the base. */
10717 pcrel_offset = target - (branch_pc + 4);
10718
10719 if (stub->stub_section != htab->strampoline)
10720 {
10721 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10722 of the section and write the two instructions at the end. */
10723 memset (loc, 0, offset);
10724 loc += offset;
10725 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10726 {
10727 bfd_put_micromips_32 (hti->output_bfd,
10728 LA25_LUI_MICROMIPS (target_high),
10729 loc);
10730 bfd_put_micromips_32 (hti->output_bfd,
10731 LA25_ADDIU_MICROMIPS (target_low),
10732 loc + 4);
10733 }
10734 else
10735 {
10736 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10737 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10738 }
10739 }
10740 else
10741 {
10742 /* This is trampoline. */
10743 loc += offset;
10744 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10745 {
10746 bfd_put_micromips_32 (hti->output_bfd,
10747 LA25_LUI_MICROMIPS (target_high), loc);
10748 bfd_put_micromips_32 (hti->output_bfd,
10749 LA25_J_MICROMIPS (target), loc + 4);
10750 bfd_put_micromips_32 (hti->output_bfd,
10751 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10752 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10753 }
10754 else
10755 {
10756 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10757 if (MIPSR6_P (hti->output_bfd) && htab->compact_branches)
10758 {
10759 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10760 bfd_put_32 (hti->output_bfd, LA25_BC (pcrel_offset), loc + 8);
10761 }
10762 else
10763 {
10764 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10765 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10766 }
10767 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10768 }
10769 }
10770 return TRUE;
10771 }
10772
10773 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10774 adjust it appropriately now. */
10775
10776 static void
10777 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10778 const char *name, Elf_Internal_Sym *sym)
10779 {
10780 /* The linker script takes care of providing names and values for
10781 these, but we must place them into the right sections. */
10782 static const char* const text_section_symbols[] = {
10783 "_ftext",
10784 "_etext",
10785 "__dso_displacement",
10786 "__elf_header",
10787 "__program_header_table",
10788 NULL
10789 };
10790
10791 static const char* const data_section_symbols[] = {
10792 "_fdata",
10793 "_edata",
10794 "_end",
10795 "_fbss",
10796 NULL
10797 };
10798
10799 const char* const *p;
10800 int i;
10801
10802 for (i = 0; i < 2; ++i)
10803 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10804 *p;
10805 ++p)
10806 if (strcmp (*p, name) == 0)
10807 {
10808 /* All of these symbols are given type STT_SECTION by the
10809 IRIX6 linker. */
10810 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10811 sym->st_other = STO_PROTECTED;
10812
10813 /* The IRIX linker puts these symbols in special sections. */
10814 if (i == 0)
10815 sym->st_shndx = SHN_MIPS_TEXT;
10816 else
10817 sym->st_shndx = SHN_MIPS_DATA;
10818
10819 break;
10820 }
10821 }
10822
10823 /* Finish up dynamic symbol handling. We set the contents of various
10824 dynamic sections here. */
10825
10826 bfd_boolean
10827 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10828 struct bfd_link_info *info,
10829 struct elf_link_hash_entry *h,
10830 Elf_Internal_Sym *sym)
10831 {
10832 bfd *dynobj;
10833 asection *sgot;
10834 struct mips_got_info *g, *gg;
10835 const char *name;
10836 int idx;
10837 struct mips_elf_link_hash_table *htab;
10838 struct mips_elf_link_hash_entry *hmips;
10839
10840 htab = mips_elf_hash_table (info);
10841 BFD_ASSERT (htab != NULL);
10842 dynobj = elf_hash_table (info)->dynobj;
10843 hmips = (struct mips_elf_link_hash_entry *) h;
10844
10845 BFD_ASSERT (!htab->is_vxworks);
10846
10847 if (h->plt.plist != NULL
10848 && (h->plt.plist->mips_offset != MINUS_ONE
10849 || h->plt.plist->comp_offset != MINUS_ONE))
10850 {
10851 /* We've decided to create a PLT entry for this symbol. */
10852 bfd_byte *loc;
10853 bfd_vma header_address, got_address;
10854 bfd_vma got_address_high, got_address_low, load;
10855 bfd_vma got_index;
10856 bfd_vma isa_bit;
10857
10858 got_index = h->plt.plist->gotplt_index;
10859
10860 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10861 BFD_ASSERT (h->dynindx != -1);
10862 BFD_ASSERT (htab->root.splt != NULL);
10863 BFD_ASSERT (got_index != MINUS_ONE);
10864 BFD_ASSERT (!h->def_regular);
10865
10866 /* Calculate the address of the PLT header. */
10867 isa_bit = htab->plt_header_is_comp;
10868 header_address = (htab->root.splt->output_section->vma
10869 + htab->root.splt->output_offset + isa_bit);
10870
10871 /* Calculate the address of the .got.plt entry. */
10872 got_address = (htab->root.sgotplt->output_section->vma
10873 + htab->root.sgotplt->output_offset
10874 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10875
10876 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10877 got_address_low = got_address & 0xffff;
10878
10879 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10880 cannot be loaded in two instructions. */
10881 if (ABI_64_P (output_bfd)
10882 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10883 {
10884 _bfd_error_handler
10885 /* xgettext:c-format */
10886 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10887 "supported; consider using `-Ttext-segment=...'"),
10888 output_bfd,
10889 htab->root.sgotplt->output_section,
10890 (int64_t) got_address);
10891 bfd_set_error (bfd_error_no_error);
10892 return FALSE;
10893 }
10894
10895 /* Initially point the .got.plt entry at the PLT header. */
10896 loc = (htab->root.sgotplt->contents
10897 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10898 if (ABI_64_P (output_bfd))
10899 bfd_put_64 (output_bfd, header_address, loc);
10900 else
10901 bfd_put_32 (output_bfd, header_address, loc);
10902
10903 /* Now handle the PLT itself. First the standard entry (the order
10904 does not matter, we just have to pick one). */
10905 if (h->plt.plist->mips_offset != MINUS_ONE)
10906 {
10907 const bfd_vma *plt_entry;
10908 bfd_vma plt_offset;
10909
10910 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10911
10912 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10913
10914 /* Find out where the .plt entry should go. */
10915 loc = htab->root.splt->contents + plt_offset;
10916
10917 /* Pick the load opcode. */
10918 load = MIPS_ELF_LOAD_WORD (output_bfd);
10919
10920 /* Fill in the PLT entry itself. */
10921
10922 if (MIPSR6_P (output_bfd))
10923 plt_entry = htab->compact_branches ? mipsr6_exec_plt_entry_compact
10924 : mipsr6_exec_plt_entry;
10925 else
10926 plt_entry = mips_exec_plt_entry;
10927 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10928 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10929 loc + 4);
10930
10931 if (! LOAD_INTERLOCKS_P (output_bfd)
10932 || (MIPSR6_P (output_bfd) && htab->compact_branches))
10933 {
10934 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10935 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10936 }
10937 else
10938 {
10939 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10940 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10941 loc + 12);
10942 }
10943 }
10944
10945 /* Now the compressed entry. They come after any standard ones. */
10946 if (h->plt.plist->comp_offset != MINUS_ONE)
10947 {
10948 bfd_vma plt_offset;
10949
10950 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10951 + h->plt.plist->comp_offset);
10952
10953 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10954
10955 /* Find out where the .plt entry should go. */
10956 loc = htab->root.splt->contents + plt_offset;
10957
10958 /* Fill in the PLT entry itself. */
10959 if (!MICROMIPS_P (output_bfd))
10960 {
10961 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10962
10963 bfd_put_16 (output_bfd, plt_entry[0], loc);
10964 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10965 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10966 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10967 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10968 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10969 bfd_put_32 (output_bfd, got_address, loc + 12);
10970 }
10971 else if (htab->insn32)
10972 {
10973 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10974
10975 bfd_put_16 (output_bfd, plt_entry[0], loc);
10976 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10977 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10978 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10979 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10980 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10981 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10982 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10983 }
10984 else
10985 {
10986 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10987 bfd_signed_vma gotpc_offset;
10988 bfd_vma loc_address;
10989
10990 BFD_ASSERT (got_address % 4 == 0);
10991
10992 loc_address = (htab->root.splt->output_section->vma
10993 + htab->root.splt->output_offset + plt_offset);
10994 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10995
10996 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10997 if (gotpc_offset + 0x1000000 >= 0x2000000)
10998 {
10999 _bfd_error_handler
11000 /* xgettext:c-format */
11001 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11002 "beyond the range of ADDIUPC"),
11003 output_bfd,
11004 htab->root.sgotplt->output_section,
11005 (int64_t) gotpc_offset,
11006 htab->root.splt->output_section);
11007 bfd_set_error (bfd_error_no_error);
11008 return FALSE;
11009 }
11010 bfd_put_16 (output_bfd,
11011 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11012 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11013 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11014 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11015 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11016 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11017 }
11018 }
11019
11020 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11021 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
11022 got_index - 2, h->dynindx,
11023 R_MIPS_JUMP_SLOT, got_address);
11024
11025 /* We distinguish between PLT entries and lazy-binding stubs by
11026 giving the former an st_other value of STO_MIPS_PLT. Set the
11027 flag and leave the value if there are any relocations in the
11028 binary where pointer equality matters. */
11029 sym->st_shndx = SHN_UNDEF;
11030 if (h->pointer_equality_needed)
11031 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
11032 else
11033 {
11034 sym->st_value = 0;
11035 sym->st_other = 0;
11036 }
11037 }
11038
11039 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
11040 {
11041 /* We've decided to create a lazy-binding stub. */
11042 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
11043 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
11044 bfd_vma stub_size = htab->function_stub_size;
11045 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
11046 bfd_vma isa_bit = micromips_p;
11047 bfd_vma stub_big_size;
11048
11049 if (!micromips_p)
11050 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
11051 else if (htab->insn32)
11052 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
11053 else
11054 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
11055
11056 /* This symbol has a stub. Set it up. */
11057
11058 BFD_ASSERT (h->dynindx != -1);
11059
11060 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
11061
11062 /* Values up to 2^31 - 1 are allowed. Larger values would cause
11063 sign extension at runtime in the stub, resulting in a negative
11064 index value. */
11065 if (h->dynindx & ~0x7fffffff)
11066 return FALSE;
11067
11068 /* Fill the stub. */
11069 if (micromips_p)
11070 {
11071 idx = 0;
11072 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
11073 stub + idx);
11074 idx += 4;
11075 if (htab->insn32)
11076 {
11077 bfd_put_micromips_32 (output_bfd,
11078 STUB_MOVE32_MICROMIPS, stub + idx);
11079 idx += 4;
11080 }
11081 else
11082 {
11083 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
11084 idx += 2;
11085 }
11086 if (stub_size == stub_big_size)
11087 {
11088 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
11089
11090 bfd_put_micromips_32 (output_bfd,
11091 STUB_LUI_MICROMIPS (dynindx_hi),
11092 stub + idx);
11093 idx += 4;
11094 }
11095 if (htab->insn32)
11096 {
11097 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
11098 stub + idx);
11099 idx += 4;
11100 }
11101 else
11102 {
11103 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
11104 idx += 2;
11105 }
11106
11107 /* If a large stub is not required and sign extension is not a
11108 problem, then use legacy code in the stub. */
11109 if (stub_size == stub_big_size)
11110 bfd_put_micromips_32 (output_bfd,
11111 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
11112 stub + idx);
11113 else if (h->dynindx & ~0x7fff)
11114 bfd_put_micromips_32 (output_bfd,
11115 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
11116 stub + idx);
11117 else
11118 bfd_put_micromips_32 (output_bfd,
11119 STUB_LI16S_MICROMIPS (output_bfd,
11120 h->dynindx),
11121 stub + idx);
11122 }
11123 else
11124 {
11125 idx = 0;
11126 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
11127 idx += 4;
11128 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
11129 idx += 4;
11130 if (stub_size == stub_big_size)
11131 {
11132 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
11133 stub + idx);
11134 idx += 4;
11135 }
11136
11137 if (!(MIPSR6_P (output_bfd) && htab->compact_branches))
11138 {
11139 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
11140 idx += 4;
11141 }
11142
11143 /* If a large stub is not required and sign extension is not a
11144 problem, then use legacy code in the stub. */
11145 if (stub_size == stub_big_size)
11146 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
11147 stub + idx);
11148 else if (h->dynindx & ~0x7fff)
11149 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
11150 stub + idx);
11151 else
11152 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
11153 stub + idx);
11154 idx += 4;
11155
11156 if (MIPSR6_P (output_bfd) && htab->compact_branches)
11157 bfd_put_32 (output_bfd, STUB_JALRC, stub + idx);
11158 }
11159
11160 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
11161 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
11162 stub, stub_size);
11163
11164 /* Mark the symbol as undefined. stub_offset != -1 occurs
11165 only for the referenced symbol. */
11166 sym->st_shndx = SHN_UNDEF;
11167
11168 /* The run-time linker uses the st_value field of the symbol
11169 to reset the global offset table entry for this external
11170 to its stub address when unlinking a shared object. */
11171 sym->st_value = (htab->sstubs->output_section->vma
11172 + htab->sstubs->output_offset
11173 + h->plt.plist->stub_offset
11174 + isa_bit);
11175 sym->st_other = other;
11176 }
11177
11178 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11179 refer to the stub, since only the stub uses the standard calling
11180 conventions. */
11181 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11182 {
11183 BFD_ASSERT (hmips->need_fn_stub);
11184 sym->st_value = (hmips->fn_stub->output_section->vma
11185 + hmips->fn_stub->output_offset);
11186 sym->st_size = hmips->fn_stub->size;
11187 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11188 }
11189
11190 BFD_ASSERT (h->dynindx != -1
11191 || h->forced_local);
11192
11193 sgot = htab->root.sgot;
11194 g = htab->got_info;
11195 BFD_ASSERT (g != NULL);
11196
11197 /* Run through the global symbol table, creating GOT entries for all
11198 the symbols that need them. */
11199 if (hmips->global_got_area != GGA_NONE)
11200 {
11201 bfd_vma offset;
11202 bfd_vma value;
11203
11204 value = sym->st_value;
11205 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11206 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11207 }
11208
11209 if (hmips->global_got_area != GGA_NONE && g->next)
11210 {
11211 struct mips_got_entry e, *p;
11212 bfd_vma entry;
11213 bfd_vma offset;
11214
11215 gg = g;
11216
11217 e.abfd = output_bfd;
11218 e.symndx = -1;
11219 e.d.h = hmips;
11220 e.tls_type = GOT_TLS_NONE;
11221
11222 for (g = g->next; g->next != gg; g = g->next)
11223 {
11224 if (g->got_entries
11225 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11226 &e)))
11227 {
11228 offset = p->gotidx;
11229 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11230 if (bfd_link_pic (info)
11231 || (elf_hash_table (info)->dynamic_sections_created
11232 && p->d.h != NULL
11233 && p->d.h->root.def_dynamic
11234 && !p->d.h->root.def_regular))
11235 {
11236 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11237 the various compatibility problems, it's easier to mock
11238 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11239 mips_elf_create_dynamic_relocation to calculate the
11240 appropriate addend. */
11241 Elf_Internal_Rela rel[3];
11242
11243 memset (rel, 0, sizeof (rel));
11244 if (ABI_64_P (output_bfd))
11245 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11246 else
11247 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11248 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11249
11250 entry = 0;
11251 if (! (mips_elf_create_dynamic_relocation
11252 (output_bfd, info, rel,
11253 e.d.h, NULL, sym->st_value, &entry, sgot)))
11254 return FALSE;
11255 }
11256 else
11257 entry = sym->st_value;
11258 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11259 }
11260 }
11261 }
11262
11263 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11264 name = h->root.root.string;
11265 if (h == elf_hash_table (info)->hdynamic
11266 || h == elf_hash_table (info)->hgot)
11267 sym->st_shndx = SHN_ABS;
11268 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11269 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11270 {
11271 sym->st_shndx = SHN_ABS;
11272 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11273 sym->st_value = 1;
11274 }
11275 else if (SGI_COMPAT (output_bfd))
11276 {
11277 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11278 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11279 {
11280 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11281 sym->st_other = STO_PROTECTED;
11282 sym->st_value = 0;
11283 sym->st_shndx = SHN_MIPS_DATA;
11284 }
11285 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11286 {
11287 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11288 sym->st_other = STO_PROTECTED;
11289 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11290 sym->st_shndx = SHN_ABS;
11291 }
11292 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11293 {
11294 if (h->type == STT_FUNC)
11295 sym->st_shndx = SHN_MIPS_TEXT;
11296 else if (h->type == STT_OBJECT)
11297 sym->st_shndx = SHN_MIPS_DATA;
11298 }
11299 }
11300
11301 /* Emit a copy reloc, if needed. */
11302 if (h->needs_copy)
11303 {
11304 asection *s;
11305 bfd_vma symval;
11306
11307 BFD_ASSERT (h->dynindx != -1);
11308 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11309
11310 s = mips_elf_rel_dyn_section (info, FALSE);
11311 symval = (h->root.u.def.section->output_section->vma
11312 + h->root.u.def.section->output_offset
11313 + h->root.u.def.value);
11314 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11315 h->dynindx, R_MIPS_COPY, symval);
11316 }
11317
11318 /* Handle the IRIX6-specific symbols. */
11319 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11320 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11321
11322 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11323 to treat compressed symbols like any other. */
11324 if (ELF_ST_IS_MIPS16 (sym->st_other))
11325 {
11326 BFD_ASSERT (sym->st_value & 1);
11327 sym->st_other -= STO_MIPS16;
11328 }
11329 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11330 {
11331 BFD_ASSERT (sym->st_value & 1);
11332 sym->st_other -= STO_MICROMIPS;
11333 }
11334
11335 return TRUE;
11336 }
11337
11338 /* Likewise, for VxWorks. */
11339
11340 bfd_boolean
11341 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11342 struct bfd_link_info *info,
11343 struct elf_link_hash_entry *h,
11344 Elf_Internal_Sym *sym)
11345 {
11346 bfd *dynobj;
11347 asection *sgot;
11348 struct mips_got_info *g;
11349 struct mips_elf_link_hash_table *htab;
11350 struct mips_elf_link_hash_entry *hmips;
11351
11352 htab = mips_elf_hash_table (info);
11353 BFD_ASSERT (htab != NULL);
11354 dynobj = elf_hash_table (info)->dynobj;
11355 hmips = (struct mips_elf_link_hash_entry *) h;
11356
11357 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11358 {
11359 bfd_byte *loc;
11360 bfd_vma plt_address, got_address, got_offset, branch_offset;
11361 Elf_Internal_Rela rel;
11362 static const bfd_vma *plt_entry;
11363 bfd_vma gotplt_index;
11364 bfd_vma plt_offset;
11365
11366 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11367 gotplt_index = h->plt.plist->gotplt_index;
11368
11369 BFD_ASSERT (h->dynindx != -1);
11370 BFD_ASSERT (htab->root.splt != NULL);
11371 BFD_ASSERT (gotplt_index != MINUS_ONE);
11372 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11373
11374 /* Calculate the address of the .plt entry. */
11375 plt_address = (htab->root.splt->output_section->vma
11376 + htab->root.splt->output_offset
11377 + plt_offset);
11378
11379 /* Calculate the address of the .got.plt entry. */
11380 got_address = (htab->root.sgotplt->output_section->vma
11381 + htab->root.sgotplt->output_offset
11382 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11383
11384 /* Calculate the offset of the .got.plt entry from
11385 _GLOBAL_OFFSET_TABLE_. */
11386 got_offset = mips_elf_gotplt_index (info, h);
11387
11388 /* Calculate the offset for the branch at the start of the PLT
11389 entry. The branch jumps to the beginning of .plt. */
11390 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11391
11392 /* Fill in the initial value of the .got.plt entry. */
11393 bfd_put_32 (output_bfd, plt_address,
11394 (htab->root.sgotplt->contents
11395 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11396
11397 /* Find out where the .plt entry should go. */
11398 loc = htab->root.splt->contents + plt_offset;
11399
11400 if (bfd_link_pic (info))
11401 {
11402 plt_entry = mips_vxworks_shared_plt_entry;
11403 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11404 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11405 }
11406 else
11407 {
11408 bfd_vma got_address_high, got_address_low;
11409
11410 plt_entry = mips_vxworks_exec_plt_entry;
11411 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11412 got_address_low = got_address & 0xffff;
11413
11414 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11415 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11416 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11417 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11418 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11419 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11420 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11421 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11422
11423 loc = (htab->srelplt2->contents
11424 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11425
11426 /* Emit a relocation for the .got.plt entry. */
11427 rel.r_offset = got_address;
11428 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11429 rel.r_addend = plt_offset;
11430 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11431
11432 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11433 loc += sizeof (Elf32_External_Rela);
11434 rel.r_offset = plt_address + 8;
11435 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11436 rel.r_addend = got_offset;
11437 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11438
11439 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11440 loc += sizeof (Elf32_External_Rela);
11441 rel.r_offset += 4;
11442 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11443 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11444 }
11445
11446 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11447 loc = (htab->root.srelplt->contents
11448 + gotplt_index * sizeof (Elf32_External_Rela));
11449 rel.r_offset = got_address;
11450 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11451 rel.r_addend = 0;
11452 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11453
11454 if (!h->def_regular)
11455 sym->st_shndx = SHN_UNDEF;
11456 }
11457
11458 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11459
11460 sgot = htab->root.sgot;
11461 g = htab->got_info;
11462 BFD_ASSERT (g != NULL);
11463
11464 /* See if this symbol has an entry in the GOT. */
11465 if (hmips->global_got_area != GGA_NONE)
11466 {
11467 bfd_vma offset;
11468 Elf_Internal_Rela outrel;
11469 bfd_byte *loc;
11470 asection *s;
11471
11472 /* Install the symbol value in the GOT. */
11473 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11474 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11475
11476 /* Add a dynamic relocation for it. */
11477 s = mips_elf_rel_dyn_section (info, FALSE);
11478 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11479 outrel.r_offset = (sgot->output_section->vma
11480 + sgot->output_offset
11481 + offset);
11482 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11483 outrel.r_addend = 0;
11484 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11485 }
11486
11487 /* Emit a copy reloc, if needed. */
11488 if (h->needs_copy)
11489 {
11490 Elf_Internal_Rela rel;
11491 asection *srel;
11492 bfd_byte *loc;
11493
11494 BFD_ASSERT (h->dynindx != -1);
11495
11496 rel.r_offset = (h->root.u.def.section->output_section->vma
11497 + h->root.u.def.section->output_offset
11498 + h->root.u.def.value);
11499 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11500 rel.r_addend = 0;
11501 if (h->root.u.def.section == htab->root.sdynrelro)
11502 srel = htab->root.sreldynrelro;
11503 else
11504 srel = htab->root.srelbss;
11505 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11506 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11507 ++srel->reloc_count;
11508 }
11509
11510 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11511 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11512 sym->st_value &= ~1;
11513
11514 return TRUE;
11515 }
11516
11517 /* Write out a plt0 entry to the beginning of .plt. */
11518
11519 static bfd_boolean
11520 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11521 {
11522 bfd_byte *loc;
11523 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11524 static const bfd_vma *plt_entry;
11525 struct mips_elf_link_hash_table *htab;
11526
11527 htab = mips_elf_hash_table (info);
11528 BFD_ASSERT (htab != NULL);
11529
11530 if (ABI_64_P (output_bfd))
11531 plt_entry = (htab->compact_branches
11532 ? mipsr6_n64_exec_plt0_entry_compact
11533 : mips_n64_exec_plt0_entry);
11534 else if (ABI_N32_P (output_bfd))
11535 plt_entry = (htab->compact_branches
11536 ? mipsr6_n32_exec_plt0_entry_compact
11537 : mips_n32_exec_plt0_entry);
11538 else if (!htab->plt_header_is_comp)
11539 plt_entry = (htab->compact_branches
11540 ? mipsr6_o32_exec_plt0_entry_compact
11541 : mips_o32_exec_plt0_entry);
11542 else if (htab->insn32)
11543 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11544 else
11545 plt_entry = micromips_o32_exec_plt0_entry;
11546
11547 /* Calculate the value of .got.plt. */
11548 gotplt_value = (htab->root.sgotplt->output_section->vma
11549 + htab->root.sgotplt->output_offset);
11550 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11551 gotplt_value_low = gotplt_value & 0xffff;
11552
11553 /* The PLT sequence is not safe for N64 if .got.plt's address can
11554 not be loaded in two instructions. */
11555 if (ABI_64_P (output_bfd)
11556 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11557 {
11558 _bfd_error_handler
11559 /* xgettext:c-format */
11560 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11561 "supported; consider using `-Ttext-segment=...'"),
11562 output_bfd,
11563 htab->root.sgotplt->output_section,
11564 (int64_t) gotplt_value);
11565 bfd_set_error (bfd_error_no_error);
11566 return FALSE;
11567 }
11568
11569 /* Install the PLT header. */
11570 loc = htab->root.splt->contents;
11571 if (plt_entry == micromips_o32_exec_plt0_entry)
11572 {
11573 bfd_vma gotpc_offset;
11574 bfd_vma loc_address;
11575 size_t i;
11576
11577 BFD_ASSERT (gotplt_value % 4 == 0);
11578
11579 loc_address = (htab->root.splt->output_section->vma
11580 + htab->root.splt->output_offset);
11581 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11582
11583 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11584 if (gotpc_offset + 0x1000000 >= 0x2000000)
11585 {
11586 _bfd_error_handler
11587 /* xgettext:c-format */
11588 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11589 "beyond the range of ADDIUPC"),
11590 output_bfd,
11591 htab->root.sgotplt->output_section,
11592 (int64_t) gotpc_offset,
11593 htab->root.splt->output_section);
11594 bfd_set_error (bfd_error_no_error);
11595 return FALSE;
11596 }
11597 bfd_put_16 (output_bfd,
11598 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11599 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11600 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11601 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11602 }
11603 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11604 {
11605 size_t i;
11606
11607 bfd_put_16 (output_bfd, plt_entry[0], loc);
11608 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11609 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11610 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11611 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11612 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11613 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11614 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11615 }
11616 else
11617 {
11618 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11619 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11620 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11621 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11622 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11623 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11624 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11625 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11626 }
11627
11628 return TRUE;
11629 }
11630
11631 /* Install the PLT header for a VxWorks executable and finalize the
11632 contents of .rela.plt.unloaded. */
11633
11634 static void
11635 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11636 {
11637 Elf_Internal_Rela rela;
11638 bfd_byte *loc;
11639 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11640 static const bfd_vma *plt_entry;
11641 struct mips_elf_link_hash_table *htab;
11642
11643 htab = mips_elf_hash_table (info);
11644 BFD_ASSERT (htab != NULL);
11645
11646 plt_entry = mips_vxworks_exec_plt0_entry;
11647
11648 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11649 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11650 + htab->root.hgot->root.u.def.section->output_offset
11651 + htab->root.hgot->root.u.def.value);
11652
11653 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11654 got_value_low = got_value & 0xffff;
11655
11656 /* Calculate the address of the PLT header. */
11657 plt_address = (htab->root.splt->output_section->vma
11658 + htab->root.splt->output_offset);
11659
11660 /* Install the PLT header. */
11661 loc = htab->root.splt->contents;
11662 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11663 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11664 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11665 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11666 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11667 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11668
11669 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11670 loc = htab->srelplt2->contents;
11671 rela.r_offset = plt_address;
11672 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11673 rela.r_addend = 0;
11674 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11675 loc += sizeof (Elf32_External_Rela);
11676
11677 /* Output the relocation for the following addiu of
11678 %lo(_GLOBAL_OFFSET_TABLE_). */
11679 rela.r_offset += 4;
11680 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11681 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11682 loc += sizeof (Elf32_External_Rela);
11683
11684 /* Fix up the remaining relocations. They may have the wrong
11685 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11686 in which symbols were output. */
11687 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11688 {
11689 Elf_Internal_Rela rel;
11690
11691 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11692 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11693 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11694 loc += sizeof (Elf32_External_Rela);
11695
11696 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11697 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11698 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11699 loc += sizeof (Elf32_External_Rela);
11700
11701 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11702 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11703 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11704 loc += sizeof (Elf32_External_Rela);
11705 }
11706 }
11707
11708 /* Install the PLT header for a VxWorks shared library. */
11709
11710 static void
11711 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11712 {
11713 unsigned int i;
11714 struct mips_elf_link_hash_table *htab;
11715
11716 htab = mips_elf_hash_table (info);
11717 BFD_ASSERT (htab != NULL);
11718
11719 /* We just need to copy the entry byte-by-byte. */
11720 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11721 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11722 htab->root.splt->contents + i * 4);
11723 }
11724
11725 /* Finish up the dynamic sections. */
11726
11727 bfd_boolean
11728 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11729 struct bfd_link_info *info)
11730 {
11731 bfd *dynobj;
11732 asection *sdyn;
11733 asection *sgot;
11734 struct mips_got_info *gg, *g;
11735 struct mips_elf_link_hash_table *htab;
11736
11737 htab = mips_elf_hash_table (info);
11738 BFD_ASSERT (htab != NULL);
11739
11740 dynobj = elf_hash_table (info)->dynobj;
11741
11742 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11743
11744 sgot = htab->root.sgot;
11745 gg = htab->got_info;
11746
11747 if (elf_hash_table (info)->dynamic_sections_created)
11748 {
11749 bfd_byte *b;
11750 int dyn_to_skip = 0, dyn_skipped = 0;
11751
11752 BFD_ASSERT (sdyn != NULL);
11753 BFD_ASSERT (gg != NULL);
11754
11755 g = mips_elf_bfd_got (output_bfd, FALSE);
11756 BFD_ASSERT (g != NULL);
11757
11758 for (b = sdyn->contents;
11759 b < sdyn->contents + sdyn->size;
11760 b += MIPS_ELF_DYN_SIZE (dynobj))
11761 {
11762 Elf_Internal_Dyn dyn;
11763 const char *name;
11764 size_t elemsize;
11765 asection *s;
11766 bfd_boolean swap_out_p;
11767
11768 /* Read in the current dynamic entry. */
11769 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11770
11771 /* Assume that we're going to modify it and write it out. */
11772 swap_out_p = TRUE;
11773
11774 switch (dyn.d_tag)
11775 {
11776 case DT_RELENT:
11777 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11778 break;
11779
11780 case DT_RELAENT:
11781 BFD_ASSERT (htab->is_vxworks);
11782 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11783 break;
11784
11785 case DT_STRSZ:
11786 /* Rewrite DT_STRSZ. */
11787 dyn.d_un.d_val =
11788 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11789 break;
11790
11791 case DT_PLTGOT:
11792 s = htab->root.sgot;
11793 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11794 break;
11795
11796 case DT_MIPS_PLTGOT:
11797 s = htab->root.sgotplt;
11798 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11799 break;
11800
11801 case DT_MIPS_RLD_VERSION:
11802 dyn.d_un.d_val = 1; /* XXX */
11803 break;
11804
11805 case DT_MIPS_FLAGS:
11806 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11807 break;
11808
11809 case DT_MIPS_TIME_STAMP:
11810 {
11811 time_t t;
11812 time (&t);
11813 dyn.d_un.d_val = t;
11814 }
11815 break;
11816
11817 case DT_MIPS_ICHECKSUM:
11818 /* XXX FIXME: */
11819 swap_out_p = FALSE;
11820 break;
11821
11822 case DT_MIPS_IVERSION:
11823 /* XXX FIXME: */
11824 swap_out_p = FALSE;
11825 break;
11826
11827 case DT_MIPS_BASE_ADDRESS:
11828 s = output_bfd->sections;
11829 BFD_ASSERT (s != NULL);
11830 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11831 break;
11832
11833 case DT_MIPS_LOCAL_GOTNO:
11834 dyn.d_un.d_val = g->local_gotno;
11835 break;
11836
11837 case DT_MIPS_UNREFEXTNO:
11838 /* The index into the dynamic symbol table which is the
11839 entry of the first external symbol that is not
11840 referenced within the same object. */
11841 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11842 break;
11843
11844 case DT_MIPS_GOTSYM:
11845 if (htab->global_gotsym)
11846 {
11847 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11848 break;
11849 }
11850 /* In case if we don't have global got symbols we default
11851 to setting DT_MIPS_GOTSYM to the same value as
11852 DT_MIPS_SYMTABNO. */
11853 /* Fall through. */
11854
11855 case DT_MIPS_SYMTABNO:
11856 name = ".dynsym";
11857 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11858 s = bfd_get_linker_section (dynobj, name);
11859
11860 if (s != NULL)
11861 dyn.d_un.d_val = s->size / elemsize;
11862 else
11863 dyn.d_un.d_val = 0;
11864 break;
11865
11866 case DT_MIPS_HIPAGENO:
11867 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11868 break;
11869
11870 case DT_MIPS_RLD_MAP:
11871 {
11872 struct elf_link_hash_entry *h;
11873 h = mips_elf_hash_table (info)->rld_symbol;
11874 if (!h)
11875 {
11876 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11877 swap_out_p = FALSE;
11878 break;
11879 }
11880 s = h->root.u.def.section;
11881
11882 /* The MIPS_RLD_MAP tag stores the absolute address of the
11883 debug pointer. */
11884 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11885 + h->root.u.def.value);
11886 }
11887 break;
11888
11889 case DT_MIPS_RLD_MAP_REL:
11890 {
11891 struct elf_link_hash_entry *h;
11892 bfd_vma dt_addr, rld_addr;
11893 h = mips_elf_hash_table (info)->rld_symbol;
11894 if (!h)
11895 {
11896 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11897 swap_out_p = FALSE;
11898 break;
11899 }
11900 s = h->root.u.def.section;
11901
11902 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11903 pointer, relative to the address of the tag. */
11904 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11905 + (b - sdyn->contents));
11906 rld_addr = (s->output_section->vma + s->output_offset
11907 + h->root.u.def.value);
11908 dyn.d_un.d_ptr = rld_addr - dt_addr;
11909 }
11910 break;
11911
11912 case DT_MIPS_OPTIONS:
11913 s = (bfd_get_section_by_name
11914 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11915 dyn.d_un.d_ptr = s->vma;
11916 break;
11917
11918 case DT_PLTREL:
11919 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11920 if (htab->is_vxworks)
11921 dyn.d_un.d_val = DT_RELA;
11922 else
11923 dyn.d_un.d_val = DT_REL;
11924 break;
11925
11926 case DT_PLTRELSZ:
11927 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11928 dyn.d_un.d_val = htab->root.srelplt->size;
11929 break;
11930
11931 case DT_JMPREL:
11932 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11933 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11934 + htab->root.srelplt->output_offset);
11935 break;
11936
11937 case DT_TEXTREL:
11938 /* If we didn't need any text relocations after all, delete
11939 the dynamic tag. */
11940 if (!(info->flags & DF_TEXTREL))
11941 {
11942 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11943 swap_out_p = FALSE;
11944 }
11945 break;
11946
11947 case DT_FLAGS:
11948 /* If we didn't need any text relocations after all, clear
11949 DF_TEXTREL from DT_FLAGS. */
11950 if (!(info->flags & DF_TEXTREL))
11951 dyn.d_un.d_val &= ~DF_TEXTREL;
11952 else
11953 swap_out_p = FALSE;
11954 break;
11955
11956 default:
11957 swap_out_p = FALSE;
11958 if (htab->is_vxworks
11959 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11960 swap_out_p = TRUE;
11961 break;
11962 }
11963
11964 if (swap_out_p || dyn_skipped)
11965 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11966 (dynobj, &dyn, b - dyn_skipped);
11967
11968 if (dyn_to_skip)
11969 {
11970 dyn_skipped += dyn_to_skip;
11971 dyn_to_skip = 0;
11972 }
11973 }
11974
11975 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11976 if (dyn_skipped > 0)
11977 memset (b - dyn_skipped, 0, dyn_skipped);
11978 }
11979
11980 if (sgot != NULL && sgot->size > 0
11981 && !bfd_is_abs_section (sgot->output_section))
11982 {
11983 if (htab->is_vxworks)
11984 {
11985 /* The first entry of the global offset table points to the
11986 ".dynamic" section. The second is initialized by the
11987 loader and contains the shared library identifier.
11988 The third is also initialized by the loader and points
11989 to the lazy resolution stub. */
11990 MIPS_ELF_PUT_WORD (output_bfd,
11991 sdyn->output_offset + sdyn->output_section->vma,
11992 sgot->contents);
11993 MIPS_ELF_PUT_WORD (output_bfd, 0,
11994 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11995 MIPS_ELF_PUT_WORD (output_bfd, 0,
11996 sgot->contents
11997 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11998 }
11999 else
12000 {
12001 /* The first entry of the global offset table will be filled at
12002 runtime. The second entry will be used by some runtime loaders.
12003 This isn't the case of IRIX rld. */
12004 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
12005 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12006 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12007 }
12008
12009 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
12010 = MIPS_ELF_GOT_SIZE (output_bfd);
12011 }
12012
12013 /* Generate dynamic relocations for the non-primary gots. */
12014 if (gg != NULL && gg->next)
12015 {
12016 Elf_Internal_Rela rel[3];
12017 bfd_vma addend = 0;
12018
12019 memset (rel, 0, sizeof (rel));
12020 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
12021
12022 for (g = gg->next; g->next != gg; g = g->next)
12023 {
12024 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
12025 + g->next->tls_gotno;
12026
12027 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
12028 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12029 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12030 sgot->contents
12031 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12032
12033 if (! bfd_link_pic (info))
12034 continue;
12035
12036 for (; got_index < g->local_gotno; got_index++)
12037 {
12038 if (got_index >= g->assigned_low_gotno
12039 && got_index <= g->assigned_high_gotno)
12040 continue;
12041
12042 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
12043 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
12044 if (!(mips_elf_create_dynamic_relocation
12045 (output_bfd, info, rel, NULL,
12046 bfd_abs_section_ptr,
12047 0, &addend, sgot)))
12048 return FALSE;
12049 BFD_ASSERT (addend == 0);
12050 }
12051 }
12052 }
12053
12054 /* The generation of dynamic relocations for the non-primary gots
12055 adds more dynamic relocations. We cannot count them until
12056 here. */
12057
12058 if (elf_hash_table (info)->dynamic_sections_created)
12059 {
12060 bfd_byte *b;
12061 bfd_boolean swap_out_p;
12062
12063 BFD_ASSERT (sdyn != NULL);
12064
12065 for (b = sdyn->contents;
12066 b < sdyn->contents + sdyn->size;
12067 b += MIPS_ELF_DYN_SIZE (dynobj))
12068 {
12069 Elf_Internal_Dyn dyn;
12070 asection *s;
12071
12072 /* Read in the current dynamic entry. */
12073 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
12074
12075 /* Assume that we're going to modify it and write it out. */
12076 swap_out_p = TRUE;
12077
12078 switch (dyn.d_tag)
12079 {
12080 case DT_RELSZ:
12081 /* Reduce DT_RELSZ to account for any relocations we
12082 decided not to make. This is for the n64 irix rld,
12083 which doesn't seem to apply any relocations if there
12084 are trailing null entries. */
12085 s = mips_elf_rel_dyn_section (info, FALSE);
12086 dyn.d_un.d_val = (s->reloc_count
12087 * (ABI_64_P (output_bfd)
12088 ? sizeof (Elf64_Mips_External_Rel)
12089 : sizeof (Elf32_External_Rel)));
12090 /* Adjust the section size too. Tools like the prelinker
12091 can reasonably expect the values to the same. */
12092 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
12093 elf_section_data (s->output_section)->this_hdr.sh_size
12094 = dyn.d_un.d_val;
12095 break;
12096
12097 default:
12098 swap_out_p = FALSE;
12099 break;
12100 }
12101
12102 if (swap_out_p)
12103 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12104 (dynobj, &dyn, b);
12105 }
12106 }
12107
12108 {
12109 asection *s;
12110 Elf32_compact_rel cpt;
12111
12112 if (SGI_COMPAT (output_bfd))
12113 {
12114 /* Write .compact_rel section out. */
12115 s = bfd_get_linker_section (dynobj, ".compact_rel");
12116 if (s != NULL)
12117 {
12118 cpt.id1 = 1;
12119 cpt.num = s->reloc_count;
12120 cpt.id2 = 2;
12121 cpt.offset = (s->output_section->filepos
12122 + sizeof (Elf32_External_compact_rel));
12123 cpt.reserved0 = 0;
12124 cpt.reserved1 = 0;
12125 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
12126 ((Elf32_External_compact_rel *)
12127 s->contents));
12128
12129 /* Clean up a dummy stub function entry in .text. */
12130 if (htab->sstubs != NULL)
12131 {
12132 file_ptr dummy_offset;
12133
12134 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
12135 dummy_offset = htab->sstubs->size - htab->function_stub_size;
12136 memset (htab->sstubs->contents + dummy_offset, 0,
12137 htab->function_stub_size);
12138 }
12139 }
12140 }
12141
12142 /* The psABI says that the dynamic relocations must be sorted in
12143 increasing order of r_symndx. The VxWorks EABI doesn't require
12144 this, and because the code below handles REL rather than RELA
12145 relocations, using it for VxWorks would be outright harmful. */
12146 if (!htab->is_vxworks)
12147 {
12148 s = mips_elf_rel_dyn_section (info, FALSE);
12149 if (s != NULL
12150 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
12151 {
12152 reldyn_sorting_bfd = output_bfd;
12153
12154 if (ABI_64_P (output_bfd))
12155 qsort ((Elf64_External_Rel *) s->contents + 1,
12156 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
12157 sort_dynamic_relocs_64);
12158 else
12159 qsort ((Elf32_External_Rel *) s->contents + 1,
12160 s->reloc_count - 1, sizeof (Elf32_External_Rel),
12161 sort_dynamic_relocs);
12162 }
12163 }
12164 }
12165
12166 if (htab->root.splt && htab->root.splt->size > 0)
12167 {
12168 if (htab->is_vxworks)
12169 {
12170 if (bfd_link_pic (info))
12171 mips_vxworks_finish_shared_plt (output_bfd, info);
12172 else
12173 mips_vxworks_finish_exec_plt (output_bfd, info);
12174 }
12175 else
12176 {
12177 BFD_ASSERT (!bfd_link_pic (info));
12178 if (!mips_finish_exec_plt (output_bfd, info))
12179 return FALSE;
12180 }
12181 }
12182 return TRUE;
12183 }
12184
12185
12186 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12187
12188 static void
12189 mips_set_isa_flags (bfd *abfd)
12190 {
12191 flagword val;
12192
12193 switch (bfd_get_mach (abfd))
12194 {
12195 default:
12196 case bfd_mach_mips3000:
12197 val = E_MIPS_ARCH_1;
12198 break;
12199
12200 case bfd_mach_mips3900:
12201 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12202 break;
12203
12204 case bfd_mach_mips6000:
12205 val = E_MIPS_ARCH_2;
12206 break;
12207
12208 case bfd_mach_mips4010:
12209 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
12210 break;
12211
12212 case bfd_mach_mips4000:
12213 case bfd_mach_mips4300:
12214 case bfd_mach_mips4400:
12215 case bfd_mach_mips4600:
12216 val = E_MIPS_ARCH_3;
12217 break;
12218
12219 case bfd_mach_mips4100:
12220 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12221 break;
12222
12223 case bfd_mach_mips4111:
12224 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12225 break;
12226
12227 case bfd_mach_mips4120:
12228 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12229 break;
12230
12231 case bfd_mach_mips4650:
12232 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12233 break;
12234
12235 case bfd_mach_mips5400:
12236 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12237 break;
12238
12239 case bfd_mach_mips5500:
12240 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12241 break;
12242
12243 case bfd_mach_mips5900:
12244 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12245 break;
12246
12247 case bfd_mach_mips9000:
12248 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12249 break;
12250
12251 case bfd_mach_mips5000:
12252 case bfd_mach_mips7000:
12253 case bfd_mach_mips8000:
12254 case bfd_mach_mips10000:
12255 case bfd_mach_mips12000:
12256 case bfd_mach_mips14000:
12257 case bfd_mach_mips16000:
12258 val = E_MIPS_ARCH_4;
12259 break;
12260
12261 case bfd_mach_mips5:
12262 val = E_MIPS_ARCH_5;
12263 break;
12264
12265 case bfd_mach_mips_loongson_2e:
12266 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12267 break;
12268
12269 case bfd_mach_mips_loongson_2f:
12270 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12271 break;
12272
12273 case bfd_mach_mips_sb1:
12274 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12275 break;
12276
12277 case bfd_mach_mips_gs464:
12278 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
12279 break;
12280
12281 case bfd_mach_mips_gs464e:
12282 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12283 break;
12284
12285 case bfd_mach_mips_gs264e:
12286 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12287 break;
12288
12289 case bfd_mach_mips_octeon:
12290 case bfd_mach_mips_octeonp:
12291 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12292 break;
12293
12294 case bfd_mach_mips_octeon3:
12295 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12296 break;
12297
12298 case bfd_mach_mips_xlr:
12299 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12300 break;
12301
12302 case bfd_mach_mips_octeon2:
12303 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12304 break;
12305
12306 case bfd_mach_mipsisa32:
12307 val = E_MIPS_ARCH_32;
12308 break;
12309
12310 case bfd_mach_mipsisa64:
12311 val = E_MIPS_ARCH_64;
12312 break;
12313
12314 case bfd_mach_mipsisa32r2:
12315 case bfd_mach_mipsisa32r3:
12316 case bfd_mach_mipsisa32r5:
12317 val = E_MIPS_ARCH_32R2;
12318 break;
12319
12320 case bfd_mach_mips_interaptiv_mr2:
12321 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12322 break;
12323
12324 case bfd_mach_mipsisa64r2:
12325 case bfd_mach_mipsisa64r3:
12326 case bfd_mach_mipsisa64r5:
12327 val = E_MIPS_ARCH_64R2;
12328 break;
12329
12330 case bfd_mach_mipsisa32r6:
12331 val = E_MIPS_ARCH_32R6;
12332 break;
12333
12334 case bfd_mach_mipsisa64r6:
12335 val = E_MIPS_ARCH_64R6;
12336 break;
12337 }
12338 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12339 elf_elfheader (abfd)->e_flags |= val;
12340
12341 }
12342
12343
12344 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12345 Don't do so for code sections. We want to keep ordering of HI16/LO16
12346 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12347 relocs to be sorted. */
12348
12349 bfd_boolean
12350 _bfd_mips_elf_sort_relocs_p (asection *sec)
12351 {
12352 return (sec->flags & SEC_CODE) == 0;
12353 }
12354
12355
12356 /* The final processing done just before writing out a MIPS ELF object
12357 file. This gets the MIPS architecture right based on the machine
12358 number. This is used by both the 32-bit and the 64-bit ABI. */
12359
12360 void
12361 _bfd_mips_elf_final_write_processing (bfd *abfd,
12362 bfd_boolean linker ATTRIBUTE_UNUSED)
12363 {
12364 unsigned int i;
12365 Elf_Internal_Shdr **hdrpp;
12366 const char *name;
12367 asection *sec;
12368
12369 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12370 is nonzero. This is for compatibility with old objects, which used
12371 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12372 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12373 mips_set_isa_flags (abfd);
12374
12375 /* Set the sh_info field for .gptab sections and other appropriate
12376 info for each special section. */
12377 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12378 i < elf_numsections (abfd);
12379 i++, hdrpp++)
12380 {
12381 switch ((*hdrpp)->sh_type)
12382 {
12383 case SHT_MIPS_MSYM:
12384 case SHT_MIPS_LIBLIST:
12385 sec = bfd_get_section_by_name (abfd, ".dynstr");
12386 if (sec != NULL)
12387 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12388 break;
12389
12390 case SHT_MIPS_GPTAB:
12391 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12392 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12393 BFD_ASSERT (name != NULL
12394 && CONST_STRNEQ (name, ".gptab."));
12395 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12396 BFD_ASSERT (sec != NULL);
12397 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12398 break;
12399
12400 case SHT_MIPS_CONTENT:
12401 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12402 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12403 BFD_ASSERT (name != NULL
12404 && CONST_STRNEQ (name, ".MIPS.content"));
12405 sec = bfd_get_section_by_name (abfd,
12406 name + sizeof ".MIPS.content" - 1);
12407 BFD_ASSERT (sec != NULL);
12408 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12409 break;
12410
12411 case SHT_MIPS_SYMBOL_LIB:
12412 sec = bfd_get_section_by_name (abfd, ".dynsym");
12413 if (sec != NULL)
12414 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12415 sec = bfd_get_section_by_name (abfd, ".liblist");
12416 if (sec != NULL)
12417 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12418 break;
12419
12420 case SHT_MIPS_EVENTS:
12421 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12422 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12423 BFD_ASSERT (name != NULL);
12424 if (CONST_STRNEQ (name, ".MIPS.events"))
12425 sec = bfd_get_section_by_name (abfd,
12426 name + sizeof ".MIPS.events" - 1);
12427 else
12428 {
12429 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12430 sec = bfd_get_section_by_name (abfd,
12431 (name
12432 + sizeof ".MIPS.post_rel" - 1));
12433 }
12434 BFD_ASSERT (sec != NULL);
12435 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12436 break;
12437
12438 }
12439 }
12440 }
12441 \f
12442 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12443 segments. */
12444
12445 int
12446 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12447 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12448 {
12449 asection *s;
12450 int ret = 0;
12451
12452 /* See if we need a PT_MIPS_REGINFO segment. */
12453 s = bfd_get_section_by_name (abfd, ".reginfo");
12454 if (s && (s->flags & SEC_LOAD))
12455 ++ret;
12456
12457 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12458 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12459 ++ret;
12460
12461 /* See if we need a PT_MIPS_OPTIONS segment. */
12462 if (IRIX_COMPAT (abfd) == ict_irix6
12463 && bfd_get_section_by_name (abfd,
12464 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12465 ++ret;
12466
12467 /* See if we need a PT_MIPS_RTPROC segment. */
12468 if (IRIX_COMPAT (abfd) == ict_irix5
12469 && bfd_get_section_by_name (abfd, ".dynamic")
12470 && bfd_get_section_by_name (abfd, ".mdebug"))
12471 ++ret;
12472
12473 /* Allocate a PT_NULL header in dynamic objects. See
12474 _bfd_mips_elf_modify_segment_map for details. */
12475 if (!SGI_COMPAT (abfd)
12476 && bfd_get_section_by_name (abfd, ".dynamic"))
12477 ++ret;
12478
12479 return ret;
12480 }
12481
12482 /* Modify the segment map for an IRIX5 executable. */
12483
12484 bfd_boolean
12485 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12486 struct bfd_link_info *info)
12487 {
12488 asection *s;
12489 struct elf_segment_map *m, **pm;
12490 bfd_size_type amt;
12491
12492 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12493 segment. */
12494 s = bfd_get_section_by_name (abfd, ".reginfo");
12495 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12496 {
12497 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12498 if (m->p_type == PT_MIPS_REGINFO)
12499 break;
12500 if (m == NULL)
12501 {
12502 amt = sizeof *m;
12503 m = bfd_zalloc (abfd, amt);
12504 if (m == NULL)
12505 return FALSE;
12506
12507 m->p_type = PT_MIPS_REGINFO;
12508 m->count = 1;
12509 m->sections[0] = s;
12510
12511 /* We want to put it after the PHDR and INTERP segments. */
12512 pm = &elf_seg_map (abfd);
12513 while (*pm != NULL
12514 && ((*pm)->p_type == PT_PHDR
12515 || (*pm)->p_type == PT_INTERP))
12516 pm = &(*pm)->next;
12517
12518 m->next = *pm;
12519 *pm = m;
12520 }
12521 }
12522
12523 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12524 segment. */
12525 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12526 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12527 {
12528 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12529 if (m->p_type == PT_MIPS_ABIFLAGS)
12530 break;
12531 if (m == NULL)
12532 {
12533 amt = sizeof *m;
12534 m = bfd_zalloc (abfd, amt);
12535 if (m == NULL)
12536 return FALSE;
12537
12538 m->p_type = PT_MIPS_ABIFLAGS;
12539 m->count = 1;
12540 m->sections[0] = s;
12541
12542 /* We want to put it after the PHDR and INTERP segments. */
12543 pm = &elf_seg_map (abfd);
12544 while (*pm != NULL
12545 && ((*pm)->p_type == PT_PHDR
12546 || (*pm)->p_type == PT_INTERP))
12547 pm = &(*pm)->next;
12548
12549 m->next = *pm;
12550 *pm = m;
12551 }
12552 }
12553
12554 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12555 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12556 PT_MIPS_OPTIONS segment immediately following the program header
12557 table. */
12558 if (NEWABI_P (abfd)
12559 /* On non-IRIX6 new abi, we'll have already created a segment
12560 for this section, so don't create another. I'm not sure this
12561 is not also the case for IRIX 6, but I can't test it right
12562 now. */
12563 && IRIX_COMPAT (abfd) == ict_irix6)
12564 {
12565 for (s = abfd->sections; s; s = s->next)
12566 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12567 break;
12568
12569 if (s)
12570 {
12571 struct elf_segment_map *options_segment;
12572
12573 pm = &elf_seg_map (abfd);
12574 while (*pm != NULL
12575 && ((*pm)->p_type == PT_PHDR
12576 || (*pm)->p_type == PT_INTERP))
12577 pm = &(*pm)->next;
12578
12579 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12580 {
12581 amt = sizeof (struct elf_segment_map);
12582 options_segment = bfd_zalloc (abfd, amt);
12583 options_segment->next = *pm;
12584 options_segment->p_type = PT_MIPS_OPTIONS;
12585 options_segment->p_flags = PF_R;
12586 options_segment->p_flags_valid = TRUE;
12587 options_segment->count = 1;
12588 options_segment->sections[0] = s;
12589 *pm = options_segment;
12590 }
12591 }
12592 }
12593 else
12594 {
12595 if (IRIX_COMPAT (abfd) == ict_irix5)
12596 {
12597 /* If there are .dynamic and .mdebug sections, we make a room
12598 for the RTPROC header. FIXME: Rewrite without section names. */
12599 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12600 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12601 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12602 {
12603 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12604 if (m->p_type == PT_MIPS_RTPROC)
12605 break;
12606 if (m == NULL)
12607 {
12608 amt = sizeof *m;
12609 m = bfd_zalloc (abfd, amt);
12610 if (m == NULL)
12611 return FALSE;
12612
12613 m->p_type = PT_MIPS_RTPROC;
12614
12615 s = bfd_get_section_by_name (abfd, ".rtproc");
12616 if (s == NULL)
12617 {
12618 m->count = 0;
12619 m->p_flags = 0;
12620 m->p_flags_valid = 1;
12621 }
12622 else
12623 {
12624 m->count = 1;
12625 m->sections[0] = s;
12626 }
12627
12628 /* We want to put it after the DYNAMIC segment. */
12629 pm = &elf_seg_map (abfd);
12630 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12631 pm = &(*pm)->next;
12632 if (*pm != NULL)
12633 pm = &(*pm)->next;
12634
12635 m->next = *pm;
12636 *pm = m;
12637 }
12638 }
12639 }
12640 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12641 .dynstr, .dynsym, and .hash sections, and everything in
12642 between. */
12643 for (pm = &elf_seg_map (abfd); *pm != NULL;
12644 pm = &(*pm)->next)
12645 if ((*pm)->p_type == PT_DYNAMIC)
12646 break;
12647 m = *pm;
12648 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12649 glibc's dynamic linker has traditionally derived the number of
12650 tags from the p_filesz field, and sometimes allocates stack
12651 arrays of that size. An overly-big PT_DYNAMIC segment can
12652 be actively harmful in such cases. Making PT_DYNAMIC contain
12653 other sections can also make life hard for the prelinker,
12654 which might move one of the other sections to a different
12655 PT_LOAD segment. */
12656 if (SGI_COMPAT (abfd)
12657 && m != NULL
12658 && m->count == 1
12659 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12660 {
12661 static const char *sec_names[] =
12662 {
12663 ".dynamic", ".dynstr", ".dynsym", ".hash"
12664 };
12665 bfd_vma low, high;
12666 unsigned int i, c;
12667 struct elf_segment_map *n;
12668
12669 low = ~(bfd_vma) 0;
12670 high = 0;
12671 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12672 {
12673 s = bfd_get_section_by_name (abfd, sec_names[i]);
12674 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12675 {
12676 bfd_size_type sz;
12677
12678 if (low > s->vma)
12679 low = s->vma;
12680 sz = s->size;
12681 if (high < s->vma + sz)
12682 high = s->vma + sz;
12683 }
12684 }
12685
12686 c = 0;
12687 for (s = abfd->sections; s != NULL; s = s->next)
12688 if ((s->flags & SEC_LOAD) != 0
12689 && s->vma >= low
12690 && s->vma + s->size <= high)
12691 ++c;
12692
12693 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12694 n = bfd_zalloc (abfd, amt);
12695 if (n == NULL)
12696 return FALSE;
12697 *n = *m;
12698 n->count = c;
12699
12700 i = 0;
12701 for (s = abfd->sections; s != NULL; s = s->next)
12702 {
12703 if ((s->flags & SEC_LOAD) != 0
12704 && s->vma >= low
12705 && s->vma + s->size <= high)
12706 {
12707 n->sections[i] = s;
12708 ++i;
12709 }
12710 }
12711
12712 *pm = n;
12713 }
12714 }
12715
12716 /* Allocate a spare program header in dynamic objects so that tools
12717 like the prelinker can add an extra PT_LOAD entry.
12718
12719 If the prelinker needs to make room for a new PT_LOAD entry, its
12720 standard procedure is to move the first (read-only) sections into
12721 the new (writable) segment. However, the MIPS ABI requires
12722 .dynamic to be in a read-only segment, and the section will often
12723 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12724
12725 Although the prelinker could in principle move .dynamic to a
12726 writable segment, it seems better to allocate a spare program
12727 header instead, and avoid the need to move any sections.
12728 There is a long tradition of allocating spare dynamic tags,
12729 so allocating a spare program header seems like a natural
12730 extension.
12731
12732 If INFO is NULL, we may be copying an already prelinked binary
12733 with objcopy or strip, so do not add this header. */
12734 if (info != NULL
12735 && !SGI_COMPAT (abfd)
12736 && bfd_get_section_by_name (abfd, ".dynamic"))
12737 {
12738 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12739 if ((*pm)->p_type == PT_NULL)
12740 break;
12741 if (*pm == NULL)
12742 {
12743 m = bfd_zalloc (abfd, sizeof (*m));
12744 if (m == NULL)
12745 return FALSE;
12746
12747 m->p_type = PT_NULL;
12748 *pm = m;
12749 }
12750 }
12751
12752 return TRUE;
12753 }
12754 \f
12755 /* Return the section that should be marked against GC for a given
12756 relocation. */
12757
12758 asection *
12759 _bfd_mips_elf_gc_mark_hook (asection *sec,
12760 struct bfd_link_info *info,
12761 Elf_Internal_Rela *rel,
12762 struct elf_link_hash_entry *h,
12763 Elf_Internal_Sym *sym)
12764 {
12765 /* ??? Do mips16 stub sections need to be handled special? */
12766
12767 if (h != NULL)
12768 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12769 {
12770 case R_MIPS_GNU_VTINHERIT:
12771 case R_MIPS_GNU_VTENTRY:
12772 return NULL;
12773 }
12774
12775 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12776 }
12777
12778 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12779
12780 bfd_boolean
12781 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12782 elf_gc_mark_hook_fn gc_mark_hook)
12783 {
12784 bfd *sub;
12785
12786 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12787
12788 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12789 {
12790 asection *o;
12791
12792 if (! is_mips_elf (sub))
12793 continue;
12794
12795 for (o = sub->sections; o != NULL; o = o->next)
12796 if (!o->gc_mark
12797 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12798 (bfd_get_section_name (sub, o)))
12799 {
12800 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12801 return FALSE;
12802 }
12803 }
12804
12805 return TRUE;
12806 }
12807 \f
12808 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12809 hiding the old indirect symbol. Process additional relocation
12810 information. Also called for weakdefs, in which case we just let
12811 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12812
12813 void
12814 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12815 struct elf_link_hash_entry *dir,
12816 struct elf_link_hash_entry *ind)
12817 {
12818 struct mips_elf_link_hash_entry *dirmips, *indmips;
12819
12820 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12821
12822 dirmips = (struct mips_elf_link_hash_entry *) dir;
12823 indmips = (struct mips_elf_link_hash_entry *) ind;
12824 /* Any absolute non-dynamic relocations against an indirect or weak
12825 definition will be against the target symbol. */
12826 if (indmips->has_static_relocs)
12827 dirmips->has_static_relocs = TRUE;
12828
12829 if (ind->root.type != bfd_link_hash_indirect)
12830 return;
12831
12832 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12833 if (indmips->readonly_reloc)
12834 dirmips->readonly_reloc = TRUE;
12835 if (indmips->no_fn_stub)
12836 dirmips->no_fn_stub = TRUE;
12837 if (indmips->fn_stub)
12838 {
12839 dirmips->fn_stub = indmips->fn_stub;
12840 indmips->fn_stub = NULL;
12841 }
12842 if (indmips->need_fn_stub)
12843 {
12844 dirmips->need_fn_stub = TRUE;
12845 indmips->need_fn_stub = FALSE;
12846 }
12847 if (indmips->call_stub)
12848 {
12849 dirmips->call_stub = indmips->call_stub;
12850 indmips->call_stub = NULL;
12851 }
12852 if (indmips->call_fp_stub)
12853 {
12854 dirmips->call_fp_stub = indmips->call_fp_stub;
12855 indmips->call_fp_stub = NULL;
12856 }
12857 if (indmips->global_got_area < dirmips->global_got_area)
12858 dirmips->global_got_area = indmips->global_got_area;
12859 if (indmips->global_got_area < GGA_NONE)
12860 indmips->global_got_area = GGA_NONE;
12861 if (indmips->has_nonpic_branches)
12862 dirmips->has_nonpic_branches = TRUE;
12863 }
12864
12865 /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12866 to hide it. It has to remain global (it will also be protected) so as to
12867 be assigned a global GOT entry, which will then remain unchanged at load
12868 time. */
12869
12870 void
12871 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
12872 struct elf_link_hash_entry *entry,
12873 bfd_boolean force_local)
12874 {
12875 struct mips_elf_link_hash_table *htab;
12876
12877 htab = mips_elf_hash_table (info);
12878 BFD_ASSERT (htab != NULL);
12879 if (htab->use_absolute_zero
12880 && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0)
12881 return;
12882
12883 _bfd_elf_link_hash_hide_symbol (info, entry, force_local);
12884 }
12885 \f
12886 #define PDR_SIZE 32
12887
12888 bfd_boolean
12889 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12890 struct bfd_link_info *info)
12891 {
12892 asection *o;
12893 bfd_boolean ret = FALSE;
12894 unsigned char *tdata;
12895 size_t i, skip;
12896
12897 o = bfd_get_section_by_name (abfd, ".pdr");
12898 if (! o)
12899 return FALSE;
12900 if (o->size == 0)
12901 return FALSE;
12902 if (o->size % PDR_SIZE != 0)
12903 return FALSE;
12904 if (o->output_section != NULL
12905 && bfd_is_abs_section (o->output_section))
12906 return FALSE;
12907
12908 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12909 if (! tdata)
12910 return FALSE;
12911
12912 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12913 info->keep_memory);
12914 if (!cookie->rels)
12915 {
12916 free (tdata);
12917 return FALSE;
12918 }
12919
12920 cookie->rel = cookie->rels;
12921 cookie->relend = cookie->rels + o->reloc_count;
12922
12923 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12924 {
12925 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12926 {
12927 tdata[i] = 1;
12928 skip ++;
12929 }
12930 }
12931
12932 if (skip != 0)
12933 {
12934 mips_elf_section_data (o)->u.tdata = tdata;
12935 if (o->rawsize == 0)
12936 o->rawsize = o->size;
12937 o->size -= skip * PDR_SIZE;
12938 ret = TRUE;
12939 }
12940 else
12941 free (tdata);
12942
12943 if (! info->keep_memory)
12944 free (cookie->rels);
12945
12946 return ret;
12947 }
12948
12949 bfd_boolean
12950 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12951 {
12952 if (strcmp (sec->name, ".pdr") == 0)
12953 return TRUE;
12954 return FALSE;
12955 }
12956
12957 bfd_boolean
12958 _bfd_mips_elf_write_section (bfd *output_bfd,
12959 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12960 asection *sec, bfd_byte *contents)
12961 {
12962 bfd_byte *to, *from, *end;
12963 int i;
12964
12965 if (strcmp (sec->name, ".pdr") != 0)
12966 return FALSE;
12967
12968 if (mips_elf_section_data (sec)->u.tdata == NULL)
12969 return FALSE;
12970
12971 to = contents;
12972 end = contents + sec->size;
12973 for (from = contents, i = 0;
12974 from < end;
12975 from += PDR_SIZE, i++)
12976 {
12977 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12978 continue;
12979 if (to != from)
12980 memcpy (to, from, PDR_SIZE);
12981 to += PDR_SIZE;
12982 }
12983 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12984 sec->output_offset, sec->size);
12985 return TRUE;
12986 }
12987 \f
12988 /* microMIPS code retains local labels for linker relaxation. Omit them
12989 from output by default for clarity. */
12990
12991 bfd_boolean
12992 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12993 {
12994 return _bfd_elf_is_local_label_name (abfd, sym->name);
12995 }
12996
12997 /* MIPS ELF uses a special find_nearest_line routine in order the
12998 handle the ECOFF debugging information. */
12999
13000 struct mips_elf_find_line
13001 {
13002 struct ecoff_debug_info d;
13003 struct ecoff_find_line i;
13004 };
13005
13006 bfd_boolean
13007 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
13008 asection *section, bfd_vma offset,
13009 const char **filename_ptr,
13010 const char **functionname_ptr,
13011 unsigned int *line_ptr,
13012 unsigned int *discriminator_ptr)
13013 {
13014 asection *msec;
13015
13016 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
13017 filename_ptr, functionname_ptr,
13018 line_ptr, discriminator_ptr,
13019 dwarf_debug_sections,
13020 ABI_64_P (abfd) ? 8 : 0,
13021 &elf_tdata (abfd)->dwarf2_find_line_info)
13022 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
13023 filename_ptr, functionname_ptr,
13024 line_ptr))
13025 {
13026 /* PR 22789: If the function name or filename was not found through
13027 the debug information, then try an ordinary lookup instead. */
13028 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
13029 || (filename_ptr != NULL && *filename_ptr == NULL))
13030 {
13031 /* Do not override already discovered names. */
13032 if (functionname_ptr != NULL && *functionname_ptr != NULL)
13033 functionname_ptr = NULL;
13034
13035 if (filename_ptr != NULL && *filename_ptr != NULL)
13036 filename_ptr = NULL;
13037
13038 _bfd_elf_find_function (abfd, symbols, section, offset,
13039 filename_ptr, functionname_ptr);
13040 }
13041
13042 return TRUE;
13043 }
13044
13045 msec = bfd_get_section_by_name (abfd, ".mdebug");
13046 if (msec != NULL)
13047 {
13048 flagword origflags;
13049 struct mips_elf_find_line *fi;
13050 const struct ecoff_debug_swap * const swap =
13051 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
13052
13053 /* If we are called during a link, mips_elf_final_link may have
13054 cleared the SEC_HAS_CONTENTS field. We force it back on here
13055 if appropriate (which it normally will be). */
13056 origflags = msec->flags;
13057 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
13058 msec->flags |= SEC_HAS_CONTENTS;
13059
13060 fi = mips_elf_tdata (abfd)->find_line_info;
13061 if (fi == NULL)
13062 {
13063 bfd_size_type external_fdr_size;
13064 char *fraw_src;
13065 char *fraw_end;
13066 struct fdr *fdr_ptr;
13067 bfd_size_type amt = sizeof (struct mips_elf_find_line);
13068
13069 fi = bfd_zalloc (abfd, amt);
13070 if (fi == NULL)
13071 {
13072 msec->flags = origflags;
13073 return FALSE;
13074 }
13075
13076 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
13077 {
13078 msec->flags = origflags;
13079 return FALSE;
13080 }
13081
13082 /* Swap in the FDR information. */
13083 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
13084 fi->d.fdr = bfd_alloc (abfd, amt);
13085 if (fi->d.fdr == NULL)
13086 {
13087 msec->flags = origflags;
13088 return FALSE;
13089 }
13090 external_fdr_size = swap->external_fdr_size;
13091 fdr_ptr = fi->d.fdr;
13092 fraw_src = (char *) fi->d.external_fdr;
13093 fraw_end = (fraw_src
13094 + fi->d.symbolic_header.ifdMax * external_fdr_size);
13095 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
13096 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
13097
13098 mips_elf_tdata (abfd)->find_line_info = fi;
13099
13100 /* Note that we don't bother to ever free this information.
13101 find_nearest_line is either called all the time, as in
13102 objdump -l, so the information should be saved, or it is
13103 rarely called, as in ld error messages, so the memory
13104 wasted is unimportant. Still, it would probably be a
13105 good idea for free_cached_info to throw it away. */
13106 }
13107
13108 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
13109 &fi->i, filename_ptr, functionname_ptr,
13110 line_ptr))
13111 {
13112 msec->flags = origflags;
13113 return TRUE;
13114 }
13115
13116 msec->flags = origflags;
13117 }
13118
13119 /* Fall back on the generic ELF find_nearest_line routine. */
13120
13121 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
13122 filename_ptr, functionname_ptr,
13123 line_ptr, discriminator_ptr);
13124 }
13125
13126 bfd_boolean
13127 _bfd_mips_elf_find_inliner_info (bfd *abfd,
13128 const char **filename_ptr,
13129 const char **functionname_ptr,
13130 unsigned int *line_ptr)
13131 {
13132 bfd_boolean found;
13133 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13134 functionname_ptr, line_ptr,
13135 & elf_tdata (abfd)->dwarf2_find_line_info);
13136 return found;
13137 }
13138
13139 \f
13140 /* When are writing out the .options or .MIPS.options section,
13141 remember the bytes we are writing out, so that we can install the
13142 GP value in the section_processing routine. */
13143
13144 bfd_boolean
13145 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
13146 const void *location,
13147 file_ptr offset, bfd_size_type count)
13148 {
13149 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
13150 {
13151 bfd_byte *c;
13152
13153 if (elf_section_data (section) == NULL)
13154 {
13155 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
13156 section->used_by_bfd = bfd_zalloc (abfd, amt);
13157 if (elf_section_data (section) == NULL)
13158 return FALSE;
13159 }
13160 c = mips_elf_section_data (section)->u.tdata;
13161 if (c == NULL)
13162 {
13163 c = bfd_zalloc (abfd, section->size);
13164 if (c == NULL)
13165 return FALSE;
13166 mips_elf_section_data (section)->u.tdata = c;
13167 }
13168
13169 memcpy (c + offset, location, count);
13170 }
13171
13172 return _bfd_elf_set_section_contents (abfd, section, location, offset,
13173 count);
13174 }
13175
13176 /* This is almost identical to bfd_generic_get_... except that some
13177 MIPS relocations need to be handled specially. Sigh. */
13178
13179 bfd_byte *
13180 _bfd_elf_mips_get_relocated_section_contents
13181 (bfd *abfd,
13182 struct bfd_link_info *link_info,
13183 struct bfd_link_order *link_order,
13184 bfd_byte *data,
13185 bfd_boolean relocatable,
13186 asymbol **symbols)
13187 {
13188 /* Get enough memory to hold the stuff */
13189 bfd *input_bfd = link_order->u.indirect.section->owner;
13190 asection *input_section = link_order->u.indirect.section;
13191 bfd_size_type sz;
13192
13193 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13194 arelent **reloc_vector = NULL;
13195 long reloc_count;
13196
13197 if (reloc_size < 0)
13198 goto error_return;
13199
13200 reloc_vector = bfd_malloc (reloc_size);
13201 if (reloc_vector == NULL && reloc_size != 0)
13202 goto error_return;
13203
13204 /* read in the section */
13205 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13206 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
13207 goto error_return;
13208
13209 reloc_count = bfd_canonicalize_reloc (input_bfd,
13210 input_section,
13211 reloc_vector,
13212 symbols);
13213 if (reloc_count < 0)
13214 goto error_return;
13215
13216 if (reloc_count > 0)
13217 {
13218 arelent **parent;
13219 /* for mips */
13220 int gp_found;
13221 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13222
13223 {
13224 struct bfd_hash_entry *h;
13225 struct bfd_link_hash_entry *lh;
13226 /* Skip all this stuff if we aren't mixing formats. */
13227 if (abfd && input_bfd
13228 && abfd->xvec == input_bfd->xvec)
13229 lh = 0;
13230 else
13231 {
13232 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
13233 lh = (struct bfd_link_hash_entry *) h;
13234 }
13235 lookup:
13236 if (lh)
13237 {
13238 switch (lh->type)
13239 {
13240 case bfd_link_hash_undefined:
13241 case bfd_link_hash_undefweak:
13242 case bfd_link_hash_common:
13243 gp_found = 0;
13244 break;
13245 case bfd_link_hash_defined:
13246 case bfd_link_hash_defweak:
13247 gp_found = 1;
13248 gp = lh->u.def.value;
13249 break;
13250 case bfd_link_hash_indirect:
13251 case bfd_link_hash_warning:
13252 lh = lh->u.i.link;
13253 /* @@FIXME ignoring warning for now */
13254 goto lookup;
13255 case bfd_link_hash_new:
13256 default:
13257 abort ();
13258 }
13259 }
13260 else
13261 gp_found = 0;
13262 }
13263 /* end mips */
13264 for (parent = reloc_vector; *parent != NULL; parent++)
13265 {
13266 char *error_message = NULL;
13267 bfd_reloc_status_type r;
13268
13269 /* Specific to MIPS: Deal with relocation types that require
13270 knowing the gp of the output bfd. */
13271 asymbol *sym = *(*parent)->sym_ptr_ptr;
13272
13273 /* If we've managed to find the gp and have a special
13274 function for the relocation then go ahead, else default
13275 to the generic handling. */
13276 if (gp_found
13277 && (*parent)->howto->special_function
13278 == _bfd_mips_elf32_gprel16_reloc)
13279 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13280 input_section, relocatable,
13281 data, gp);
13282 else
13283 r = bfd_perform_relocation (input_bfd, *parent, data,
13284 input_section,
13285 relocatable ? abfd : NULL,
13286 &error_message);
13287
13288 if (relocatable)
13289 {
13290 asection *os = input_section->output_section;
13291
13292 /* A partial link, so keep the relocs */
13293 os->orelocation[os->reloc_count] = *parent;
13294 os->reloc_count++;
13295 }
13296
13297 if (r != bfd_reloc_ok)
13298 {
13299 switch (r)
13300 {
13301 case bfd_reloc_undefined:
13302 (*link_info->callbacks->undefined_symbol)
13303 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13304 input_bfd, input_section, (*parent)->address, TRUE);
13305 break;
13306 case bfd_reloc_dangerous:
13307 BFD_ASSERT (error_message != NULL);
13308 (*link_info->callbacks->reloc_dangerous)
13309 (link_info, error_message,
13310 input_bfd, input_section, (*parent)->address);
13311 break;
13312 case bfd_reloc_overflow:
13313 (*link_info->callbacks->reloc_overflow)
13314 (link_info, NULL,
13315 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13316 (*parent)->howto->name, (*parent)->addend,
13317 input_bfd, input_section, (*parent)->address);
13318 break;
13319 case bfd_reloc_outofrange:
13320 default:
13321 abort ();
13322 break;
13323 }
13324
13325 }
13326 }
13327 }
13328 if (reloc_vector != NULL)
13329 free (reloc_vector);
13330 return data;
13331
13332 error_return:
13333 if (reloc_vector != NULL)
13334 free (reloc_vector);
13335 return NULL;
13336 }
13337 \f
13338 static bfd_boolean
13339 mips_elf_relax_delete_bytes (bfd *abfd,
13340 asection *sec, bfd_vma addr, int count)
13341 {
13342 Elf_Internal_Shdr *symtab_hdr;
13343 unsigned int sec_shndx;
13344 bfd_byte *contents;
13345 Elf_Internal_Rela *irel, *irelend;
13346 Elf_Internal_Sym *isym;
13347 Elf_Internal_Sym *isymend;
13348 struct elf_link_hash_entry **sym_hashes;
13349 struct elf_link_hash_entry **end_hashes;
13350 struct elf_link_hash_entry **start_hashes;
13351 unsigned int symcount;
13352
13353 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13354 contents = elf_section_data (sec)->this_hdr.contents;
13355
13356 irel = elf_section_data (sec)->relocs;
13357 irelend = irel + sec->reloc_count;
13358
13359 /* Actually delete the bytes. */
13360 memmove (contents + addr, contents + addr + count,
13361 (size_t) (sec->size - addr - count));
13362 sec->size -= count;
13363
13364 /* Adjust all the relocs. */
13365 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13366 {
13367 /* Get the new reloc address. */
13368 if (irel->r_offset > addr)
13369 irel->r_offset -= count;
13370 }
13371
13372 BFD_ASSERT (addr % 2 == 0);
13373 BFD_ASSERT (count % 2 == 0);
13374
13375 /* Adjust the local symbols defined in this section. */
13376 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13377 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13378 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13379 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13380 isym->st_value -= count;
13381
13382 /* Now adjust the global symbols defined in this section. */
13383 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13384 - symtab_hdr->sh_info);
13385 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13386 end_hashes = sym_hashes + symcount;
13387
13388 for (; sym_hashes < end_hashes; sym_hashes++)
13389 {
13390 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13391
13392 if ((sym_hash->root.type == bfd_link_hash_defined
13393 || sym_hash->root.type == bfd_link_hash_defweak)
13394 && sym_hash->root.u.def.section == sec)
13395 {
13396 bfd_vma value = sym_hash->root.u.def.value;
13397
13398 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13399 value &= MINUS_TWO;
13400 if (value > addr)
13401 sym_hash->root.u.def.value -= count;
13402 }
13403 }
13404
13405 return TRUE;
13406 }
13407
13408
13409 /* Opcodes needed for microMIPS relaxation as found in
13410 opcodes/micromips-opc.c. */
13411
13412 struct opcode_descriptor {
13413 unsigned long match;
13414 unsigned long mask;
13415 };
13416
13417 /* The $ra register aka $31. */
13418
13419 #define RA 31
13420
13421 /* 32-bit instruction format register fields. */
13422
13423 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13424 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13425
13426 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13427
13428 #define OP16_VALID_REG(r) \
13429 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13430
13431
13432 /* 32-bit and 16-bit branches. */
13433
13434 static const struct opcode_descriptor b_insns_32[] = {
13435 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13436 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13437 { 0, 0 } /* End marker for find_match(). */
13438 };
13439
13440 static const struct opcode_descriptor bc_insn_32 =
13441 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13442
13443 static const struct opcode_descriptor bz_insn_32 =
13444 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13445
13446 static const struct opcode_descriptor bzal_insn_32 =
13447 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13448
13449 static const struct opcode_descriptor beq_insn_32 =
13450 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13451
13452 static const struct opcode_descriptor b_insn_16 =
13453 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13454
13455 static const struct opcode_descriptor bz_insn_16 =
13456 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13457
13458
13459 /* 32-bit and 16-bit branch EQ and NE zero. */
13460
13461 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13462 eq and second the ne. This convention is used when replacing a
13463 32-bit BEQ/BNE with the 16-bit version. */
13464
13465 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13466
13467 static const struct opcode_descriptor bz_rs_insns_32[] = {
13468 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13469 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13470 { 0, 0 } /* End marker for find_match(). */
13471 };
13472
13473 static const struct opcode_descriptor bz_rt_insns_32[] = {
13474 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13475 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13476 { 0, 0 } /* End marker for find_match(). */
13477 };
13478
13479 static const struct opcode_descriptor bzc_insns_32[] = {
13480 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13481 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13482 { 0, 0 } /* End marker for find_match(). */
13483 };
13484
13485 static const struct opcode_descriptor bz_insns_16[] = {
13486 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13487 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13488 { 0, 0 } /* End marker for find_match(). */
13489 };
13490
13491 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13492
13493 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13494 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13495
13496
13497 /* 32-bit instructions with a delay slot. */
13498
13499 static const struct opcode_descriptor jal_insn_32_bd16 =
13500 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13501
13502 static const struct opcode_descriptor jal_insn_32_bd32 =
13503 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13504
13505 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13506 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13507
13508 static const struct opcode_descriptor j_insn_32 =
13509 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13510
13511 static const struct opcode_descriptor jalr_insn_32 =
13512 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13513
13514 /* This table can be compacted, because no opcode replacement is made. */
13515
13516 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13517 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13518
13519 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13520 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13521
13522 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13523 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13524 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13525 { 0, 0 } /* End marker for find_match(). */
13526 };
13527
13528 /* This table can be compacted, because no opcode replacement is made. */
13529
13530 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13531 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13532
13533 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13534 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13535 { 0, 0 } /* End marker for find_match(). */
13536 };
13537
13538
13539 /* 16-bit instructions with a delay slot. */
13540
13541 static const struct opcode_descriptor jalr_insn_16_bd16 =
13542 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13543
13544 static const struct opcode_descriptor jalr_insn_16_bd32 =
13545 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13546
13547 static const struct opcode_descriptor jr_insn_16 =
13548 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13549
13550 #define JR16_REG(opcode) ((opcode) & 0x1f)
13551
13552 /* This table can be compacted, because no opcode replacement is made. */
13553
13554 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13555 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13556
13557 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13558 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13559 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13560 { 0, 0 } /* End marker for find_match(). */
13561 };
13562
13563
13564 /* LUI instruction. */
13565
13566 static const struct opcode_descriptor lui_insn =
13567 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13568
13569
13570 /* ADDIU instruction. */
13571
13572 static const struct opcode_descriptor addiu_insn =
13573 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13574
13575 static const struct opcode_descriptor addiupc_insn =
13576 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13577
13578 #define ADDIUPC_REG_FIELD(r) \
13579 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13580
13581
13582 /* Relaxable instructions in a JAL delay slot: MOVE. */
13583
13584 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13585 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13586 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13587 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13588
13589 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13590 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13591
13592 static const struct opcode_descriptor move_insns_32[] = {
13593 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13594 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13595 { 0, 0 } /* End marker for find_match(). */
13596 };
13597
13598 static const struct opcode_descriptor move_insn_16 =
13599 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13600
13601
13602 /* NOP instructions. */
13603
13604 static const struct opcode_descriptor nop_insn_32 =
13605 { /* "nop", "", */ 0x00000000, 0xffffffff };
13606
13607 static const struct opcode_descriptor nop_insn_16 =
13608 { /* "nop", "", */ 0x0c00, 0xffff };
13609
13610
13611 /* Instruction match support. */
13612
13613 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13614
13615 static int
13616 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13617 {
13618 unsigned long indx;
13619
13620 for (indx = 0; insn[indx].mask != 0; indx++)
13621 if (MATCH (opcode, insn[indx]))
13622 return indx;
13623
13624 return -1;
13625 }
13626
13627
13628 /* Branch and delay slot decoding support. */
13629
13630 /* If PTR points to what *might* be a 16-bit branch or jump, then
13631 return the minimum length of its delay slot, otherwise return 0.
13632 Non-zero results are not definitive as we might be checking against
13633 the second half of another instruction. */
13634
13635 static int
13636 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13637 {
13638 unsigned long opcode;
13639 int bdsize;
13640
13641 opcode = bfd_get_16 (abfd, ptr);
13642 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13643 /* 16-bit branch/jump with a 32-bit delay slot. */
13644 bdsize = 4;
13645 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13646 || find_match (opcode, ds_insns_16_bd16) >= 0)
13647 /* 16-bit branch/jump with a 16-bit delay slot. */
13648 bdsize = 2;
13649 else
13650 /* No delay slot. */
13651 bdsize = 0;
13652
13653 return bdsize;
13654 }
13655
13656 /* If PTR points to what *might* be a 32-bit branch or jump, then
13657 return the minimum length of its delay slot, otherwise return 0.
13658 Non-zero results are not definitive as we might be checking against
13659 the second half of another instruction. */
13660
13661 static int
13662 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13663 {
13664 unsigned long opcode;
13665 int bdsize;
13666
13667 opcode = bfd_get_micromips_32 (abfd, ptr);
13668 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13669 /* 32-bit branch/jump with a 32-bit delay slot. */
13670 bdsize = 4;
13671 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13672 /* 32-bit branch/jump with a 16-bit delay slot. */
13673 bdsize = 2;
13674 else
13675 /* No delay slot. */
13676 bdsize = 0;
13677
13678 return bdsize;
13679 }
13680
13681 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13682 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13683
13684 static bfd_boolean
13685 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13686 {
13687 unsigned long opcode;
13688
13689 opcode = bfd_get_16 (abfd, ptr);
13690 if (MATCH (opcode, b_insn_16)
13691 /* B16 */
13692 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13693 /* JR16 */
13694 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13695 /* BEQZ16, BNEZ16 */
13696 || (MATCH (opcode, jalr_insn_16_bd32)
13697 /* JALR16 */
13698 && reg != JR16_REG (opcode) && reg != RA))
13699 return TRUE;
13700
13701 return FALSE;
13702 }
13703
13704 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13705 then return TRUE, otherwise FALSE. */
13706
13707 static bfd_boolean
13708 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13709 {
13710 unsigned long opcode;
13711
13712 opcode = bfd_get_micromips_32 (abfd, ptr);
13713 if (MATCH (opcode, j_insn_32)
13714 /* J */
13715 || MATCH (opcode, bc_insn_32)
13716 /* BC1F, BC1T, BC2F, BC2T */
13717 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13718 /* JAL, JALX */
13719 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13720 /* BGEZ, BGTZ, BLEZ, BLTZ */
13721 || (MATCH (opcode, bzal_insn_32)
13722 /* BGEZAL, BLTZAL */
13723 && reg != OP32_SREG (opcode) && reg != RA)
13724 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13725 /* JALR, JALR.HB, BEQ, BNE */
13726 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13727 return TRUE;
13728
13729 return FALSE;
13730 }
13731
13732 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13733 IRELEND) at OFFSET indicate that there must be a compact branch there,
13734 then return TRUE, otherwise FALSE. */
13735
13736 static bfd_boolean
13737 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13738 const Elf_Internal_Rela *internal_relocs,
13739 const Elf_Internal_Rela *irelend)
13740 {
13741 const Elf_Internal_Rela *irel;
13742 unsigned long opcode;
13743
13744 opcode = bfd_get_micromips_32 (abfd, ptr);
13745 if (find_match (opcode, bzc_insns_32) < 0)
13746 return FALSE;
13747
13748 for (irel = internal_relocs; irel < irelend; irel++)
13749 if (irel->r_offset == offset
13750 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13751 return TRUE;
13752
13753 return FALSE;
13754 }
13755
13756 /* Bitsize checking. */
13757 #define IS_BITSIZE(val, N) \
13758 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13759 - (1ULL << ((N) - 1))) == (val))
13760
13761 \f
13762 bfd_boolean
13763 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13764 struct bfd_link_info *link_info,
13765 bfd_boolean *again)
13766 {
13767 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13768 Elf_Internal_Shdr *symtab_hdr;
13769 Elf_Internal_Rela *internal_relocs;
13770 Elf_Internal_Rela *irel, *irelend;
13771 bfd_byte *contents = NULL;
13772 Elf_Internal_Sym *isymbuf = NULL;
13773
13774 /* Assume nothing changes. */
13775 *again = FALSE;
13776
13777 /* We don't have to do anything for a relocatable link, if
13778 this section does not have relocs, or if this is not a
13779 code section. */
13780
13781 if (bfd_link_relocatable (link_info)
13782 || (sec->flags & SEC_RELOC) == 0
13783 || sec->reloc_count == 0
13784 || (sec->flags & SEC_CODE) == 0)
13785 return TRUE;
13786
13787 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13788
13789 /* Get a copy of the native relocations. */
13790 internal_relocs = (_bfd_elf_link_read_relocs
13791 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13792 link_info->keep_memory));
13793 if (internal_relocs == NULL)
13794 goto error_return;
13795
13796 /* Walk through them looking for relaxing opportunities. */
13797 irelend = internal_relocs + sec->reloc_count;
13798 for (irel = internal_relocs; irel < irelend; irel++)
13799 {
13800 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13801 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13802 bfd_boolean target_is_micromips_code_p;
13803 unsigned long opcode;
13804 bfd_vma symval;
13805 bfd_vma pcrval;
13806 bfd_byte *ptr;
13807 int fndopc;
13808
13809 /* The number of bytes to delete for relaxation and from where
13810 to delete these bytes starting at irel->r_offset. */
13811 int delcnt = 0;
13812 int deloff = 0;
13813
13814 /* If this isn't something that can be relaxed, then ignore
13815 this reloc. */
13816 if (r_type != R_MICROMIPS_HI16
13817 && r_type != R_MICROMIPS_PC16_S1
13818 && r_type != R_MICROMIPS_26_S1)
13819 continue;
13820
13821 /* Get the section contents if we haven't done so already. */
13822 if (contents == NULL)
13823 {
13824 /* Get cached copy if it exists. */
13825 if (elf_section_data (sec)->this_hdr.contents != NULL)
13826 contents = elf_section_data (sec)->this_hdr.contents;
13827 /* Go get them off disk. */
13828 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13829 goto error_return;
13830 }
13831 ptr = contents + irel->r_offset;
13832
13833 /* Read this BFD's local symbols if we haven't done so already. */
13834 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13835 {
13836 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13837 if (isymbuf == NULL)
13838 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13839 symtab_hdr->sh_info, 0,
13840 NULL, NULL, NULL);
13841 if (isymbuf == NULL)
13842 goto error_return;
13843 }
13844
13845 /* Get the value of the symbol referred to by the reloc. */
13846 if (r_symndx < symtab_hdr->sh_info)
13847 {
13848 /* A local symbol. */
13849 Elf_Internal_Sym *isym;
13850 asection *sym_sec;
13851
13852 isym = isymbuf + r_symndx;
13853 if (isym->st_shndx == SHN_UNDEF)
13854 sym_sec = bfd_und_section_ptr;
13855 else if (isym->st_shndx == SHN_ABS)
13856 sym_sec = bfd_abs_section_ptr;
13857 else if (isym->st_shndx == SHN_COMMON)
13858 sym_sec = bfd_com_section_ptr;
13859 else
13860 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13861 symval = (isym->st_value
13862 + sym_sec->output_section->vma
13863 + sym_sec->output_offset);
13864 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13865 }
13866 else
13867 {
13868 unsigned long indx;
13869 struct elf_link_hash_entry *h;
13870
13871 /* An external symbol. */
13872 indx = r_symndx - symtab_hdr->sh_info;
13873 h = elf_sym_hashes (abfd)[indx];
13874 BFD_ASSERT (h != NULL);
13875
13876 if (h->root.type != bfd_link_hash_defined
13877 && h->root.type != bfd_link_hash_defweak)
13878 /* This appears to be a reference to an undefined
13879 symbol. Just ignore it -- it will be caught by the
13880 regular reloc processing. */
13881 continue;
13882
13883 symval = (h->root.u.def.value
13884 + h->root.u.def.section->output_section->vma
13885 + h->root.u.def.section->output_offset);
13886 target_is_micromips_code_p = (!h->needs_plt
13887 && ELF_ST_IS_MICROMIPS (h->other));
13888 }
13889
13890
13891 /* For simplicity of coding, we are going to modify the
13892 section contents, the section relocs, and the BFD symbol
13893 table. We must tell the rest of the code not to free up this
13894 information. It would be possible to instead create a table
13895 of changes which have to be made, as is done in coff-mips.c;
13896 that would be more work, but would require less memory when
13897 the linker is run. */
13898
13899 /* Only 32-bit instructions relaxed. */
13900 if (irel->r_offset + 4 > sec->size)
13901 continue;
13902
13903 opcode = bfd_get_micromips_32 (abfd, ptr);
13904
13905 /* This is the pc-relative distance from the instruction the
13906 relocation is applied to, to the symbol referred. */
13907 pcrval = (symval
13908 - (sec->output_section->vma + sec->output_offset)
13909 - irel->r_offset);
13910
13911 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13912 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13913 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13914
13915 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13916
13917 where pcrval has first to be adjusted to apply against the LO16
13918 location (we make the adjustment later on, when we have figured
13919 out the offset). */
13920 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13921 {
13922 bfd_boolean bzc = FALSE;
13923 unsigned long nextopc;
13924 unsigned long reg;
13925 bfd_vma offset;
13926
13927 /* Give up if the previous reloc was a HI16 against this symbol
13928 too. */
13929 if (irel > internal_relocs
13930 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13931 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13932 continue;
13933
13934 /* Or if the next reloc is not a LO16 against this symbol. */
13935 if (irel + 1 >= irelend
13936 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13937 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13938 continue;
13939
13940 /* Or if the second next reloc is a LO16 against this symbol too. */
13941 if (irel + 2 >= irelend
13942 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13943 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13944 continue;
13945
13946 /* See if the LUI instruction *might* be in a branch delay slot.
13947 We check whether what looks like a 16-bit branch or jump is
13948 actually an immediate argument to a compact branch, and let
13949 it through if so. */
13950 if (irel->r_offset >= 2
13951 && check_br16_dslot (abfd, ptr - 2)
13952 && !(irel->r_offset >= 4
13953 && (bzc = check_relocated_bzc (abfd,
13954 ptr - 4, irel->r_offset - 4,
13955 internal_relocs, irelend))))
13956 continue;
13957 if (irel->r_offset >= 4
13958 && !bzc
13959 && check_br32_dslot (abfd, ptr - 4))
13960 continue;
13961
13962 reg = OP32_SREG (opcode);
13963
13964 /* We only relax adjacent instructions or ones separated with
13965 a branch or jump that has a delay slot. The branch or jump
13966 must not fiddle with the register used to hold the address.
13967 Subtract 4 for the LUI itself. */
13968 offset = irel[1].r_offset - irel[0].r_offset;
13969 switch (offset - 4)
13970 {
13971 case 0:
13972 break;
13973 case 2:
13974 if (check_br16 (abfd, ptr + 4, reg))
13975 break;
13976 continue;
13977 case 4:
13978 if (check_br32 (abfd, ptr + 4, reg))
13979 break;
13980 continue;
13981 default:
13982 continue;
13983 }
13984
13985 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13986
13987 /* Give up unless the same register is used with both
13988 relocations. */
13989 if (OP32_SREG (nextopc) != reg)
13990 continue;
13991
13992 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13993 and rounding up to take masking of the two LSBs into account. */
13994 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13995
13996 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13997 if (IS_BITSIZE (symval, 16))
13998 {
13999 /* Fix the relocation's type. */
14000 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
14001
14002 /* Instructions using R_MICROMIPS_LO16 have the base or
14003 source register in bits 20:16. This register becomes $0
14004 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
14005 nextopc &= ~0x001f0000;
14006 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
14007 contents + irel[1].r_offset);
14008 }
14009
14010 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
14011 We add 4 to take LUI deletion into account while checking
14012 the PC-relative distance. */
14013 else if (symval % 4 == 0
14014 && IS_BITSIZE (pcrval + 4, 25)
14015 && MATCH (nextopc, addiu_insn)
14016 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
14017 && OP16_VALID_REG (OP32_TREG (nextopc)))
14018 {
14019 /* Fix the relocation's type. */
14020 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
14021
14022 /* Replace ADDIU with the ADDIUPC version. */
14023 nextopc = (addiupc_insn.match
14024 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
14025
14026 bfd_put_micromips_32 (abfd, nextopc,
14027 contents + irel[1].r_offset);
14028 }
14029
14030 /* Can't do anything, give up, sigh... */
14031 else
14032 continue;
14033
14034 /* Fix the relocation's type. */
14035 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
14036
14037 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
14038 delcnt = 4;
14039 deloff = 0;
14040 }
14041
14042 /* Compact branch relaxation -- due to the multitude of macros
14043 employed by the compiler/assembler, compact branches are not
14044 always generated. Obviously, this can/will be fixed elsewhere,
14045 but there is no drawback in double checking it here. */
14046 else if (r_type == R_MICROMIPS_PC16_S1
14047 && irel->r_offset + 5 < sec->size
14048 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14049 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
14050 && ((!insn32
14051 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
14052 nop_insn_16) ? 2 : 0))
14053 || (irel->r_offset + 7 < sec->size
14054 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
14055 ptr + 4),
14056 nop_insn_32) ? 4 : 0))))
14057 {
14058 unsigned long reg;
14059
14060 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14061
14062 /* Replace BEQZ/BNEZ with the compact version. */
14063 opcode = (bzc_insns_32[fndopc].match
14064 | BZC32_REG_FIELD (reg)
14065 | (opcode & 0xffff)); /* Addend value. */
14066
14067 bfd_put_micromips_32 (abfd, opcode, ptr);
14068
14069 /* Delete the delay slot NOP: two or four bytes from
14070 irel->offset + 4; delcnt has already been set above. */
14071 deloff = 4;
14072 }
14073
14074 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
14075 to check the distance from the next instruction, so subtract 2. */
14076 else if (!insn32
14077 && r_type == R_MICROMIPS_PC16_S1
14078 && IS_BITSIZE (pcrval - 2, 11)
14079 && find_match (opcode, b_insns_32) >= 0)
14080 {
14081 /* Fix the relocation's type. */
14082 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
14083
14084 /* Replace the 32-bit opcode with a 16-bit opcode. */
14085 bfd_put_16 (abfd,
14086 (b_insn_16.match
14087 | (opcode & 0x3ff)), /* Addend value. */
14088 ptr);
14089
14090 /* Delete 2 bytes from irel->r_offset + 2. */
14091 delcnt = 2;
14092 deloff = 2;
14093 }
14094
14095 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
14096 to check the distance from the next instruction, so subtract 2. */
14097 else if (!insn32
14098 && r_type == R_MICROMIPS_PC16_S1
14099 && IS_BITSIZE (pcrval - 2, 8)
14100 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14101 && OP16_VALID_REG (OP32_SREG (opcode)))
14102 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
14103 && OP16_VALID_REG (OP32_TREG (opcode)))))
14104 {
14105 unsigned long reg;
14106
14107 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14108
14109 /* Fix the relocation's type. */
14110 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
14111
14112 /* Replace the 32-bit opcode with a 16-bit opcode. */
14113 bfd_put_16 (abfd,
14114 (bz_insns_16[fndopc].match
14115 | BZ16_REG_FIELD (reg)
14116 | (opcode & 0x7f)), /* Addend value. */
14117 ptr);
14118
14119 /* Delete 2 bytes from irel->r_offset + 2. */
14120 delcnt = 2;
14121 deloff = 2;
14122 }
14123
14124 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
14125 else if (!insn32
14126 && r_type == R_MICROMIPS_26_S1
14127 && target_is_micromips_code_p
14128 && irel->r_offset + 7 < sec->size
14129 && MATCH (opcode, jal_insn_32_bd32))
14130 {
14131 unsigned long n32opc;
14132 bfd_boolean relaxed = FALSE;
14133
14134 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
14135
14136 if (MATCH (n32opc, nop_insn_32))
14137 {
14138 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
14139 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
14140
14141 relaxed = TRUE;
14142 }
14143 else if (find_match (n32opc, move_insns_32) >= 0)
14144 {
14145 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14146 bfd_put_16 (abfd,
14147 (move_insn_16.match
14148 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
14149 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
14150 ptr + 4);
14151
14152 relaxed = TRUE;
14153 }
14154 /* Other 32-bit instructions relaxable to 16-bit
14155 instructions will be handled here later. */
14156
14157 if (relaxed)
14158 {
14159 /* JAL with 32-bit delay slot that is changed to a JALS
14160 with 16-bit delay slot. */
14161 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
14162
14163 /* Delete 2 bytes from irel->r_offset + 6. */
14164 delcnt = 2;
14165 deloff = 6;
14166 }
14167 }
14168
14169 if (delcnt != 0)
14170 {
14171 /* Note that we've changed the relocs, section contents, etc. */
14172 elf_section_data (sec)->relocs = internal_relocs;
14173 elf_section_data (sec)->this_hdr.contents = contents;
14174 symtab_hdr->contents = (unsigned char *) isymbuf;
14175
14176 /* Delete bytes depending on the delcnt and deloff. */
14177 if (!mips_elf_relax_delete_bytes (abfd, sec,
14178 irel->r_offset + deloff, delcnt))
14179 goto error_return;
14180
14181 /* That will change things, so we should relax again.
14182 Note that this is not required, and it may be slow. */
14183 *again = TRUE;
14184 }
14185 }
14186
14187 if (isymbuf != NULL
14188 && symtab_hdr->contents != (unsigned char *) isymbuf)
14189 {
14190 if (! link_info->keep_memory)
14191 free (isymbuf);
14192 else
14193 {
14194 /* Cache the symbols for elf_link_input_bfd. */
14195 symtab_hdr->contents = (unsigned char *) isymbuf;
14196 }
14197 }
14198
14199 if (contents != NULL
14200 && elf_section_data (sec)->this_hdr.contents != contents)
14201 {
14202 if (! link_info->keep_memory)
14203 free (contents);
14204 else
14205 {
14206 /* Cache the section contents for elf_link_input_bfd. */
14207 elf_section_data (sec)->this_hdr.contents = contents;
14208 }
14209 }
14210
14211 if (internal_relocs != NULL
14212 && elf_section_data (sec)->relocs != internal_relocs)
14213 free (internal_relocs);
14214
14215 return TRUE;
14216
14217 error_return:
14218 if (isymbuf != NULL
14219 && symtab_hdr->contents != (unsigned char *) isymbuf)
14220 free (isymbuf);
14221 if (contents != NULL
14222 && elf_section_data (sec)->this_hdr.contents != contents)
14223 free (contents);
14224 if (internal_relocs != NULL
14225 && elf_section_data (sec)->relocs != internal_relocs)
14226 free (internal_relocs);
14227
14228 return FALSE;
14229 }
14230 \f
14231 /* Create a MIPS ELF linker hash table. */
14232
14233 struct bfd_link_hash_table *
14234 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14235 {
14236 struct mips_elf_link_hash_table *ret;
14237 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14238
14239 ret = bfd_zmalloc (amt);
14240 if (ret == NULL)
14241 return NULL;
14242
14243 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14244 mips_elf_link_hash_newfunc,
14245 sizeof (struct mips_elf_link_hash_entry),
14246 MIPS_ELF_DATA))
14247 {
14248 free (ret);
14249 return NULL;
14250 }
14251 ret->root.init_plt_refcount.plist = NULL;
14252 ret->root.init_plt_offset.plist = NULL;
14253
14254 return &ret->root.root;
14255 }
14256
14257 /* Likewise, but indicate that the target is VxWorks. */
14258
14259 struct bfd_link_hash_table *
14260 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14261 {
14262 struct bfd_link_hash_table *ret;
14263
14264 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14265 if (ret)
14266 {
14267 struct mips_elf_link_hash_table *htab;
14268
14269 htab = (struct mips_elf_link_hash_table *) ret;
14270 htab->use_plts_and_copy_relocs = TRUE;
14271 htab->is_vxworks = TRUE;
14272 }
14273 return ret;
14274 }
14275
14276 /* A function that the linker calls if we are allowed to use PLTs
14277 and copy relocs. */
14278
14279 void
14280 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14281 {
14282 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14283 }
14284
14285 /* A function that the linker calls to select between all or only
14286 32-bit microMIPS instructions, and between making or ignoring
14287 branch relocation checks for invalid transitions between ISA modes.
14288 Also record whether we have been configured for a GNU target. */
14289
14290 void
14291 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
14292 bfd_boolean ignore_branch_isa,
14293 bfd_boolean gnu_target)
14294 {
14295 mips_elf_hash_table (info)->insn32 = insn32;
14296 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
14297 mips_elf_hash_table (info)->gnu_target = gnu_target;
14298 }
14299
14300 /* A function that the linker calls to enable use of compact branches in
14301 linker generated code for MIPSR6. */
14302
14303 void
14304 _bfd_mips_elf_compact_branches (struct bfd_link_info *info, bfd_boolean on)
14305 {
14306 mips_elf_hash_table (info)->compact_branches = on;
14307 }
14308
14309 \f
14310 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14311
14312 struct mips_mach_extension
14313 {
14314 unsigned long extension, base;
14315 };
14316
14317
14318 /* An array describing how BFD machines relate to one another. The entries
14319 are ordered topologically with MIPS I extensions listed last. */
14320
14321 static const struct mips_mach_extension mips_mach_extensions[] =
14322 {
14323 /* MIPS64r2 extensions. */
14324 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14325 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14326 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14327 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14328 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
14329 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
14330 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
14331
14332 /* MIPS64 extensions. */
14333 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14334 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14335 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14336
14337 /* MIPS V extensions. */
14338 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14339
14340 /* R10000 extensions. */
14341 { bfd_mach_mips12000, bfd_mach_mips10000 },
14342 { bfd_mach_mips14000, bfd_mach_mips10000 },
14343 { bfd_mach_mips16000, bfd_mach_mips10000 },
14344
14345 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14346 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14347 better to allow vr5400 and vr5500 code to be merged anyway, since
14348 many libraries will just use the core ISA. Perhaps we could add
14349 some sort of ASE flag if this ever proves a problem. */
14350 { bfd_mach_mips5500, bfd_mach_mips5400 },
14351 { bfd_mach_mips5400, bfd_mach_mips5000 },
14352
14353 /* MIPS IV extensions. */
14354 { bfd_mach_mips5, bfd_mach_mips8000 },
14355 { bfd_mach_mips10000, bfd_mach_mips8000 },
14356 { bfd_mach_mips5000, bfd_mach_mips8000 },
14357 { bfd_mach_mips7000, bfd_mach_mips8000 },
14358 { bfd_mach_mips9000, bfd_mach_mips8000 },
14359
14360 /* VR4100 extensions. */
14361 { bfd_mach_mips4120, bfd_mach_mips4100 },
14362 { bfd_mach_mips4111, bfd_mach_mips4100 },
14363
14364 /* MIPS III extensions. */
14365 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14366 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14367 { bfd_mach_mips8000, bfd_mach_mips4000 },
14368 { bfd_mach_mips4650, bfd_mach_mips4000 },
14369 { bfd_mach_mips4600, bfd_mach_mips4000 },
14370 { bfd_mach_mips4400, bfd_mach_mips4000 },
14371 { bfd_mach_mips4300, bfd_mach_mips4000 },
14372 { bfd_mach_mips4100, bfd_mach_mips4000 },
14373 { bfd_mach_mips5900, bfd_mach_mips4000 },
14374
14375 /* MIPS32r3 extensions. */
14376 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14377
14378 /* MIPS32r2 extensions. */
14379 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14380
14381 /* MIPS32 extensions. */
14382 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14383
14384 /* MIPS II extensions. */
14385 { bfd_mach_mips4000, bfd_mach_mips6000 },
14386 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14387 { bfd_mach_mips4010, bfd_mach_mips6000 },
14388
14389 /* MIPS I extensions. */
14390 { bfd_mach_mips6000, bfd_mach_mips3000 },
14391 { bfd_mach_mips3900, bfd_mach_mips3000 }
14392 };
14393
14394 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14395
14396 static bfd_boolean
14397 mips_mach_extends_p (unsigned long base, unsigned long extension)
14398 {
14399 size_t i;
14400
14401 if (extension == base)
14402 return TRUE;
14403
14404 if (base == bfd_mach_mipsisa32
14405 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14406 return TRUE;
14407
14408 if (base == bfd_mach_mipsisa32r2
14409 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14410 return TRUE;
14411
14412 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14413 if (extension == mips_mach_extensions[i].extension)
14414 {
14415 extension = mips_mach_extensions[i].base;
14416 if (extension == base)
14417 return TRUE;
14418 }
14419
14420 return FALSE;
14421 }
14422
14423 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14424
14425 static unsigned long
14426 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14427 {
14428 switch (isa_ext)
14429 {
14430 case AFL_EXT_3900: return bfd_mach_mips3900;
14431 case AFL_EXT_4010: return bfd_mach_mips4010;
14432 case AFL_EXT_4100: return bfd_mach_mips4100;
14433 case AFL_EXT_4111: return bfd_mach_mips4111;
14434 case AFL_EXT_4120: return bfd_mach_mips4120;
14435 case AFL_EXT_4650: return bfd_mach_mips4650;
14436 case AFL_EXT_5400: return bfd_mach_mips5400;
14437 case AFL_EXT_5500: return bfd_mach_mips5500;
14438 case AFL_EXT_5900: return bfd_mach_mips5900;
14439 case AFL_EXT_10000: return bfd_mach_mips10000;
14440 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14441 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14442 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14443 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14444 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14445 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14446 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14447 default: return bfd_mach_mips3000;
14448 }
14449 }
14450
14451 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14452
14453 unsigned int
14454 bfd_mips_isa_ext (bfd *abfd)
14455 {
14456 switch (bfd_get_mach (abfd))
14457 {
14458 case bfd_mach_mips3900: return AFL_EXT_3900;
14459 case bfd_mach_mips4010: return AFL_EXT_4010;
14460 case bfd_mach_mips4100: return AFL_EXT_4100;
14461 case bfd_mach_mips4111: return AFL_EXT_4111;
14462 case bfd_mach_mips4120: return AFL_EXT_4120;
14463 case bfd_mach_mips4650: return AFL_EXT_4650;
14464 case bfd_mach_mips5400: return AFL_EXT_5400;
14465 case bfd_mach_mips5500: return AFL_EXT_5500;
14466 case bfd_mach_mips5900: return AFL_EXT_5900;
14467 case bfd_mach_mips10000: return AFL_EXT_10000;
14468 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14469 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14470 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14471 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14472 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14473 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14474 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14475 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14476 case bfd_mach_mips_interaptiv_mr2:
14477 return AFL_EXT_INTERAPTIV_MR2;
14478 default: return 0;
14479 }
14480 }
14481
14482 /* Encode ISA level and revision as a single value. */
14483 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14484
14485 /* Decode a single value into level and revision. */
14486 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14487 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14488
14489 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14490
14491 static void
14492 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14493 {
14494 int new_isa = 0;
14495 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14496 {
14497 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14498 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14499 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14500 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14501 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14502 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14503 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14504 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14505 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14506 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14507 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14508 default:
14509 _bfd_error_handler
14510 /* xgettext:c-format */
14511 (_("%pB: unknown architecture %s"),
14512 abfd, bfd_printable_name (abfd));
14513 }
14514
14515 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14516 {
14517 abiflags->isa_level = ISA_LEVEL (new_isa);
14518 abiflags->isa_rev = ISA_REV (new_isa);
14519 }
14520
14521 /* Update the isa_ext if ABFD describes a further extension. */
14522 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14523 bfd_get_mach (abfd)))
14524 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14525 }
14526
14527 /* Return true if the given ELF header flags describe a 32-bit binary. */
14528
14529 static bfd_boolean
14530 mips_32bit_flags_p (flagword flags)
14531 {
14532 return ((flags & EF_MIPS_32BITMODE) != 0
14533 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14534 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14535 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14536 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14537 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14538 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14539 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14540 }
14541
14542 /* Infer the content of the ABI flags based on the elf header. */
14543
14544 static void
14545 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14546 {
14547 obj_attribute *in_attr;
14548
14549 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14550 update_mips_abiflags_isa (abfd, abiflags);
14551
14552 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14553 abiflags->gpr_size = AFL_REG_32;
14554 else
14555 abiflags->gpr_size = AFL_REG_64;
14556
14557 abiflags->cpr1_size = AFL_REG_NONE;
14558
14559 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14560 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14561
14562 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14563 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14564 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14565 && abiflags->gpr_size == AFL_REG_32))
14566 abiflags->cpr1_size = AFL_REG_32;
14567 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14568 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14569 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14570 abiflags->cpr1_size = AFL_REG_64;
14571
14572 abiflags->cpr2_size = AFL_REG_NONE;
14573
14574 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14575 abiflags->ases |= AFL_ASE_MDMX;
14576 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14577 abiflags->ases |= AFL_ASE_MIPS16;
14578 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14579 abiflags->ases |= AFL_ASE_MICROMIPS;
14580
14581 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14582 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14583 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14584 && abiflags->isa_level >= 32
14585 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
14586 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14587 }
14588
14589 /* We need to use a special link routine to handle the .reginfo and
14590 the .mdebug sections. We need to merge all instances of these
14591 sections together, not write them all out sequentially. */
14592
14593 bfd_boolean
14594 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14595 {
14596 asection *o;
14597 struct bfd_link_order *p;
14598 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14599 asection *rtproc_sec, *abiflags_sec;
14600 Elf32_RegInfo reginfo;
14601 struct ecoff_debug_info debug;
14602 struct mips_htab_traverse_info hti;
14603 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14604 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14605 HDRR *symhdr = &debug.symbolic_header;
14606 void *mdebug_handle = NULL;
14607 asection *s;
14608 EXTR esym;
14609 unsigned int i;
14610 bfd_size_type amt;
14611 struct mips_elf_link_hash_table *htab;
14612
14613 static const char * const secname[] =
14614 {
14615 ".text", ".init", ".fini", ".data",
14616 ".rodata", ".sdata", ".sbss", ".bss"
14617 };
14618 static const int sc[] =
14619 {
14620 scText, scInit, scFini, scData,
14621 scRData, scSData, scSBss, scBss
14622 };
14623
14624 htab = mips_elf_hash_table (info);
14625 BFD_ASSERT (htab != NULL);
14626
14627 /* Sort the dynamic symbols so that those with GOT entries come after
14628 those without. */
14629 if (!mips_elf_sort_hash_table (abfd, info))
14630 return FALSE;
14631
14632 /* Create any scheduled LA25 stubs. */
14633 hti.info = info;
14634 hti.output_bfd = abfd;
14635 hti.error = FALSE;
14636 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14637 if (hti.error)
14638 return FALSE;
14639
14640 /* Get a value for the GP register. */
14641 if (elf_gp (abfd) == 0)
14642 {
14643 struct bfd_link_hash_entry *h;
14644
14645 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14646 if (h != NULL && h->type == bfd_link_hash_defined)
14647 elf_gp (abfd) = (h->u.def.value
14648 + h->u.def.section->output_section->vma
14649 + h->u.def.section->output_offset);
14650 else if (htab->is_vxworks
14651 && (h = bfd_link_hash_lookup (info->hash,
14652 "_GLOBAL_OFFSET_TABLE_",
14653 FALSE, FALSE, TRUE))
14654 && h->type == bfd_link_hash_defined)
14655 elf_gp (abfd) = (h->u.def.section->output_section->vma
14656 + h->u.def.section->output_offset
14657 + h->u.def.value);
14658 else if (bfd_link_relocatable (info))
14659 {
14660 bfd_vma lo = MINUS_ONE;
14661
14662 /* Find the GP-relative section with the lowest offset. */
14663 for (o = abfd->sections; o != NULL; o = o->next)
14664 if (o->vma < lo
14665 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14666 lo = o->vma;
14667
14668 /* And calculate GP relative to that. */
14669 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14670 }
14671 else
14672 {
14673 /* If the relocate_section function needs to do a reloc
14674 involving the GP value, it should make a reloc_dangerous
14675 callback to warn that GP is not defined. */
14676 }
14677 }
14678
14679 /* Go through the sections and collect the .reginfo and .mdebug
14680 information. */
14681 abiflags_sec = NULL;
14682 reginfo_sec = NULL;
14683 mdebug_sec = NULL;
14684 gptab_data_sec = NULL;
14685 gptab_bss_sec = NULL;
14686 for (o = abfd->sections; o != NULL; o = o->next)
14687 {
14688 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14689 {
14690 /* We have found the .MIPS.abiflags section in the output file.
14691 Look through all the link_orders comprising it and remove them.
14692 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14693 for (p = o->map_head.link_order; p != NULL; p = p->next)
14694 {
14695 asection *input_section;
14696
14697 if (p->type != bfd_indirect_link_order)
14698 {
14699 if (p->type == bfd_data_link_order)
14700 continue;
14701 abort ();
14702 }
14703
14704 input_section = p->u.indirect.section;
14705
14706 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14707 elf_link_input_bfd ignores this section. */
14708 input_section->flags &= ~SEC_HAS_CONTENTS;
14709 }
14710
14711 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14712 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14713
14714 /* Skip this section later on (I don't think this currently
14715 matters, but someday it might). */
14716 o->map_head.link_order = NULL;
14717
14718 abiflags_sec = o;
14719 }
14720
14721 if (strcmp (o->name, ".reginfo") == 0)
14722 {
14723 memset (&reginfo, 0, sizeof reginfo);
14724
14725 /* We have found the .reginfo section in the output file.
14726 Look through all the link_orders comprising it and merge
14727 the information together. */
14728 for (p = o->map_head.link_order; p != NULL; p = p->next)
14729 {
14730 asection *input_section;
14731 bfd *input_bfd;
14732 Elf32_External_RegInfo ext;
14733 Elf32_RegInfo sub;
14734 bfd_size_type sz;
14735
14736 if (p->type != bfd_indirect_link_order)
14737 {
14738 if (p->type == bfd_data_link_order)
14739 continue;
14740 abort ();
14741 }
14742
14743 input_section = p->u.indirect.section;
14744 input_bfd = input_section->owner;
14745
14746 sz = (input_section->size < sizeof (ext)
14747 ? input_section->size : sizeof (ext));
14748 memset (&ext, 0, sizeof (ext));
14749 if (! bfd_get_section_contents (input_bfd, input_section,
14750 &ext, 0, sz))
14751 return FALSE;
14752
14753 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14754
14755 reginfo.ri_gprmask |= sub.ri_gprmask;
14756 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14757 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14758 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14759 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14760
14761 /* ri_gp_value is set by the function
14762 `_bfd_mips_elf_section_processing' when the section is
14763 finally written out. */
14764
14765 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14766 elf_link_input_bfd ignores this section. */
14767 input_section->flags &= ~SEC_HAS_CONTENTS;
14768 }
14769
14770 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14771 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14772
14773 /* Skip this section later on (I don't think this currently
14774 matters, but someday it might). */
14775 o->map_head.link_order = NULL;
14776
14777 reginfo_sec = o;
14778 }
14779
14780 if (strcmp (o->name, ".mdebug") == 0)
14781 {
14782 struct extsym_info einfo;
14783 bfd_vma last;
14784
14785 /* We have found the .mdebug section in the output file.
14786 Look through all the link_orders comprising it and merge
14787 the information together. */
14788 symhdr->magic = swap->sym_magic;
14789 /* FIXME: What should the version stamp be? */
14790 symhdr->vstamp = 0;
14791 symhdr->ilineMax = 0;
14792 symhdr->cbLine = 0;
14793 symhdr->idnMax = 0;
14794 symhdr->ipdMax = 0;
14795 symhdr->isymMax = 0;
14796 symhdr->ioptMax = 0;
14797 symhdr->iauxMax = 0;
14798 symhdr->issMax = 0;
14799 symhdr->issExtMax = 0;
14800 symhdr->ifdMax = 0;
14801 symhdr->crfd = 0;
14802 symhdr->iextMax = 0;
14803
14804 /* We accumulate the debugging information itself in the
14805 debug_info structure. */
14806 debug.line = NULL;
14807 debug.external_dnr = NULL;
14808 debug.external_pdr = NULL;
14809 debug.external_sym = NULL;
14810 debug.external_opt = NULL;
14811 debug.external_aux = NULL;
14812 debug.ss = NULL;
14813 debug.ssext = debug.ssext_end = NULL;
14814 debug.external_fdr = NULL;
14815 debug.external_rfd = NULL;
14816 debug.external_ext = debug.external_ext_end = NULL;
14817
14818 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14819 if (mdebug_handle == NULL)
14820 return FALSE;
14821
14822 esym.jmptbl = 0;
14823 esym.cobol_main = 0;
14824 esym.weakext = 0;
14825 esym.reserved = 0;
14826 esym.ifd = ifdNil;
14827 esym.asym.iss = issNil;
14828 esym.asym.st = stLocal;
14829 esym.asym.reserved = 0;
14830 esym.asym.index = indexNil;
14831 last = 0;
14832 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14833 {
14834 esym.asym.sc = sc[i];
14835 s = bfd_get_section_by_name (abfd, secname[i]);
14836 if (s != NULL)
14837 {
14838 esym.asym.value = s->vma;
14839 last = s->vma + s->size;
14840 }
14841 else
14842 esym.asym.value = last;
14843 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14844 secname[i], &esym))
14845 return FALSE;
14846 }
14847
14848 for (p = o->map_head.link_order; p != NULL; p = p->next)
14849 {
14850 asection *input_section;
14851 bfd *input_bfd;
14852 const struct ecoff_debug_swap *input_swap;
14853 struct ecoff_debug_info input_debug;
14854 char *eraw_src;
14855 char *eraw_end;
14856
14857 if (p->type != bfd_indirect_link_order)
14858 {
14859 if (p->type == bfd_data_link_order)
14860 continue;
14861 abort ();
14862 }
14863
14864 input_section = p->u.indirect.section;
14865 input_bfd = input_section->owner;
14866
14867 if (!is_mips_elf (input_bfd))
14868 {
14869 /* I don't know what a non MIPS ELF bfd would be
14870 doing with a .mdebug section, but I don't really
14871 want to deal with it. */
14872 continue;
14873 }
14874
14875 input_swap = (get_elf_backend_data (input_bfd)
14876 ->elf_backend_ecoff_debug_swap);
14877
14878 BFD_ASSERT (p->size == input_section->size);
14879
14880 /* The ECOFF linking code expects that we have already
14881 read in the debugging information and set up an
14882 ecoff_debug_info structure, so we do that now. */
14883 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14884 &input_debug))
14885 return FALSE;
14886
14887 if (! (bfd_ecoff_debug_accumulate
14888 (mdebug_handle, abfd, &debug, swap, input_bfd,
14889 &input_debug, input_swap, info)))
14890 return FALSE;
14891
14892 /* Loop through the external symbols. For each one with
14893 interesting information, try to find the symbol in
14894 the linker global hash table and save the information
14895 for the output external symbols. */
14896 eraw_src = input_debug.external_ext;
14897 eraw_end = (eraw_src
14898 + (input_debug.symbolic_header.iextMax
14899 * input_swap->external_ext_size));
14900 for (;
14901 eraw_src < eraw_end;
14902 eraw_src += input_swap->external_ext_size)
14903 {
14904 EXTR ext;
14905 const char *name;
14906 struct mips_elf_link_hash_entry *h;
14907
14908 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14909 if (ext.asym.sc == scNil
14910 || ext.asym.sc == scUndefined
14911 || ext.asym.sc == scSUndefined)
14912 continue;
14913
14914 name = input_debug.ssext + ext.asym.iss;
14915 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14916 name, FALSE, FALSE, TRUE);
14917 if (h == NULL || h->esym.ifd != -2)
14918 continue;
14919
14920 if (ext.ifd != -1)
14921 {
14922 BFD_ASSERT (ext.ifd
14923 < input_debug.symbolic_header.ifdMax);
14924 ext.ifd = input_debug.ifdmap[ext.ifd];
14925 }
14926
14927 h->esym = ext;
14928 }
14929
14930 /* Free up the information we just read. */
14931 free (input_debug.line);
14932 free (input_debug.external_dnr);
14933 free (input_debug.external_pdr);
14934 free (input_debug.external_sym);
14935 free (input_debug.external_opt);
14936 free (input_debug.external_aux);
14937 free (input_debug.ss);
14938 free (input_debug.ssext);
14939 free (input_debug.external_fdr);
14940 free (input_debug.external_rfd);
14941 free (input_debug.external_ext);
14942
14943 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14944 elf_link_input_bfd ignores this section. */
14945 input_section->flags &= ~SEC_HAS_CONTENTS;
14946 }
14947
14948 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14949 {
14950 /* Create .rtproc section. */
14951 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14952 if (rtproc_sec == NULL)
14953 {
14954 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14955 | SEC_LINKER_CREATED | SEC_READONLY);
14956
14957 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14958 ".rtproc",
14959 flags);
14960 if (rtproc_sec == NULL
14961 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14962 return FALSE;
14963 }
14964
14965 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14966 info, rtproc_sec,
14967 &debug))
14968 return FALSE;
14969 }
14970
14971 /* Build the external symbol information. */
14972 einfo.abfd = abfd;
14973 einfo.info = info;
14974 einfo.debug = &debug;
14975 einfo.swap = swap;
14976 einfo.failed = FALSE;
14977 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14978 mips_elf_output_extsym, &einfo);
14979 if (einfo.failed)
14980 return FALSE;
14981
14982 /* Set the size of the .mdebug section. */
14983 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14984
14985 /* Skip this section later on (I don't think this currently
14986 matters, but someday it might). */
14987 o->map_head.link_order = NULL;
14988
14989 mdebug_sec = o;
14990 }
14991
14992 if (CONST_STRNEQ (o->name, ".gptab."))
14993 {
14994 const char *subname;
14995 unsigned int c;
14996 Elf32_gptab *tab;
14997 Elf32_External_gptab *ext_tab;
14998 unsigned int j;
14999
15000 /* The .gptab.sdata and .gptab.sbss sections hold
15001 information describing how the small data area would
15002 change depending upon the -G switch. These sections
15003 not used in executables files. */
15004 if (! bfd_link_relocatable (info))
15005 {
15006 for (p = o->map_head.link_order; p != NULL; p = p->next)
15007 {
15008 asection *input_section;
15009
15010 if (p->type != bfd_indirect_link_order)
15011 {
15012 if (p->type == bfd_data_link_order)
15013 continue;
15014 abort ();
15015 }
15016
15017 input_section = p->u.indirect.section;
15018
15019 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15020 elf_link_input_bfd ignores this section. */
15021 input_section->flags &= ~SEC_HAS_CONTENTS;
15022 }
15023
15024 /* Skip this section later on (I don't think this
15025 currently matters, but someday it might). */
15026 o->map_head.link_order = NULL;
15027
15028 /* Really remove the section. */
15029 bfd_section_list_remove (abfd, o);
15030 --abfd->section_count;
15031
15032 continue;
15033 }
15034
15035 /* There is one gptab for initialized data, and one for
15036 uninitialized data. */
15037 if (strcmp (o->name, ".gptab.sdata") == 0)
15038 gptab_data_sec = o;
15039 else if (strcmp (o->name, ".gptab.sbss") == 0)
15040 gptab_bss_sec = o;
15041 else
15042 {
15043 _bfd_error_handler
15044 /* xgettext:c-format */
15045 (_("%pB: illegal section name `%pA'"), abfd, o);
15046 bfd_set_error (bfd_error_nonrepresentable_section);
15047 return FALSE;
15048 }
15049
15050 /* The linker script always combines .gptab.data and
15051 .gptab.sdata into .gptab.sdata, and likewise for
15052 .gptab.bss and .gptab.sbss. It is possible that there is
15053 no .sdata or .sbss section in the output file, in which
15054 case we must change the name of the output section. */
15055 subname = o->name + sizeof ".gptab" - 1;
15056 if (bfd_get_section_by_name (abfd, subname) == NULL)
15057 {
15058 if (o == gptab_data_sec)
15059 o->name = ".gptab.data";
15060 else
15061 o->name = ".gptab.bss";
15062 subname = o->name + sizeof ".gptab" - 1;
15063 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
15064 }
15065
15066 /* Set up the first entry. */
15067 c = 1;
15068 amt = c * sizeof (Elf32_gptab);
15069 tab = bfd_malloc (amt);
15070 if (tab == NULL)
15071 return FALSE;
15072 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
15073 tab[0].gt_header.gt_unused = 0;
15074
15075 /* Combine the input sections. */
15076 for (p = o->map_head.link_order; p != NULL; p = p->next)
15077 {
15078 asection *input_section;
15079 bfd *input_bfd;
15080 bfd_size_type size;
15081 unsigned long last;
15082 bfd_size_type gpentry;
15083
15084 if (p->type != bfd_indirect_link_order)
15085 {
15086 if (p->type == bfd_data_link_order)
15087 continue;
15088 abort ();
15089 }
15090
15091 input_section = p->u.indirect.section;
15092 input_bfd = input_section->owner;
15093
15094 /* Combine the gptab entries for this input section one
15095 by one. We know that the input gptab entries are
15096 sorted by ascending -G value. */
15097 size = input_section->size;
15098 last = 0;
15099 for (gpentry = sizeof (Elf32_External_gptab);
15100 gpentry < size;
15101 gpentry += sizeof (Elf32_External_gptab))
15102 {
15103 Elf32_External_gptab ext_gptab;
15104 Elf32_gptab int_gptab;
15105 unsigned long val;
15106 unsigned long add;
15107 bfd_boolean exact;
15108 unsigned int look;
15109
15110 if (! (bfd_get_section_contents
15111 (input_bfd, input_section, &ext_gptab, gpentry,
15112 sizeof (Elf32_External_gptab))))
15113 {
15114 free (tab);
15115 return FALSE;
15116 }
15117
15118 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
15119 &int_gptab);
15120 val = int_gptab.gt_entry.gt_g_value;
15121 add = int_gptab.gt_entry.gt_bytes - last;
15122
15123 exact = FALSE;
15124 for (look = 1; look < c; look++)
15125 {
15126 if (tab[look].gt_entry.gt_g_value >= val)
15127 tab[look].gt_entry.gt_bytes += add;
15128
15129 if (tab[look].gt_entry.gt_g_value == val)
15130 exact = TRUE;
15131 }
15132
15133 if (! exact)
15134 {
15135 Elf32_gptab *new_tab;
15136 unsigned int max;
15137
15138 /* We need a new table entry. */
15139 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
15140 new_tab = bfd_realloc (tab, amt);
15141 if (new_tab == NULL)
15142 {
15143 free (tab);
15144 return FALSE;
15145 }
15146 tab = new_tab;
15147 tab[c].gt_entry.gt_g_value = val;
15148 tab[c].gt_entry.gt_bytes = add;
15149
15150 /* Merge in the size for the next smallest -G
15151 value, since that will be implied by this new
15152 value. */
15153 max = 0;
15154 for (look = 1; look < c; look++)
15155 {
15156 if (tab[look].gt_entry.gt_g_value < val
15157 && (max == 0
15158 || (tab[look].gt_entry.gt_g_value
15159 > tab[max].gt_entry.gt_g_value)))
15160 max = look;
15161 }
15162 if (max != 0)
15163 tab[c].gt_entry.gt_bytes +=
15164 tab[max].gt_entry.gt_bytes;
15165
15166 ++c;
15167 }
15168
15169 last = int_gptab.gt_entry.gt_bytes;
15170 }
15171
15172 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15173 elf_link_input_bfd ignores this section. */
15174 input_section->flags &= ~SEC_HAS_CONTENTS;
15175 }
15176
15177 /* The table must be sorted by -G value. */
15178 if (c > 2)
15179 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
15180
15181 /* Swap out the table. */
15182 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
15183 ext_tab = bfd_alloc (abfd, amt);
15184 if (ext_tab == NULL)
15185 {
15186 free (tab);
15187 return FALSE;
15188 }
15189
15190 for (j = 0; j < c; j++)
15191 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
15192 free (tab);
15193
15194 o->size = c * sizeof (Elf32_External_gptab);
15195 o->contents = (bfd_byte *) ext_tab;
15196
15197 /* Skip this section later on (I don't think this currently
15198 matters, but someday it might). */
15199 o->map_head.link_order = NULL;
15200 }
15201 }
15202
15203 /* Invoke the regular ELF backend linker to do all the work. */
15204 if (!bfd_elf_final_link (abfd, info))
15205 return FALSE;
15206
15207 /* Now write out the computed sections. */
15208
15209 if (abiflags_sec != NULL)
15210 {
15211 Elf_External_ABIFlags_v0 ext;
15212 Elf_Internal_ABIFlags_v0 *abiflags;
15213
15214 abiflags = &mips_elf_tdata (abfd)->abiflags;
15215
15216 /* Set up the abiflags if no valid input sections were found. */
15217 if (!mips_elf_tdata (abfd)->abiflags_valid)
15218 {
15219 infer_mips_abiflags (abfd, abiflags);
15220 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15221 }
15222 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15223 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15224 return FALSE;
15225 }
15226
15227 if (reginfo_sec != NULL)
15228 {
15229 Elf32_External_RegInfo ext;
15230
15231 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15232 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15233 return FALSE;
15234 }
15235
15236 if (mdebug_sec != NULL)
15237 {
15238 BFD_ASSERT (abfd->output_has_begun);
15239 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15240 swap, info,
15241 mdebug_sec->filepos))
15242 return FALSE;
15243
15244 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15245 }
15246
15247 if (gptab_data_sec != NULL)
15248 {
15249 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15250 gptab_data_sec->contents,
15251 0, gptab_data_sec->size))
15252 return FALSE;
15253 }
15254
15255 if (gptab_bss_sec != NULL)
15256 {
15257 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15258 gptab_bss_sec->contents,
15259 0, gptab_bss_sec->size))
15260 return FALSE;
15261 }
15262
15263 if (SGI_COMPAT (abfd))
15264 {
15265 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15266 if (rtproc_sec != NULL)
15267 {
15268 if (! bfd_set_section_contents (abfd, rtproc_sec,
15269 rtproc_sec->contents,
15270 0, rtproc_sec->size))
15271 return FALSE;
15272 }
15273 }
15274
15275 return TRUE;
15276 }
15277 \f
15278 /* Merge object file header flags from IBFD into OBFD. Raise an error
15279 if there are conflicting settings. */
15280
15281 static bfd_boolean
15282 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15283 {
15284 bfd *obfd = info->output_bfd;
15285 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15286 flagword old_flags;
15287 flagword new_flags;
15288 bfd_boolean ok;
15289
15290 new_flags = elf_elfheader (ibfd)->e_flags;
15291 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15292 old_flags = elf_elfheader (obfd)->e_flags;
15293
15294 /* Check flag compatibility. */
15295
15296 new_flags &= ~EF_MIPS_NOREORDER;
15297 old_flags &= ~EF_MIPS_NOREORDER;
15298
15299 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15300 doesn't seem to matter. */
15301 new_flags &= ~EF_MIPS_XGOT;
15302 old_flags &= ~EF_MIPS_XGOT;
15303
15304 /* MIPSpro generates ucode info in n64 objects. Again, we should
15305 just be able to ignore this. */
15306 new_flags &= ~EF_MIPS_UCODE;
15307 old_flags &= ~EF_MIPS_UCODE;
15308
15309 /* DSOs should only be linked with CPIC code. */
15310 if ((ibfd->flags & DYNAMIC) != 0)
15311 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15312
15313 if (new_flags == old_flags)
15314 return TRUE;
15315
15316 ok = TRUE;
15317
15318 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15319 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15320 {
15321 _bfd_error_handler
15322 (_("%pB: warning: linking abicalls files with non-abicalls files"),
15323 ibfd);
15324 ok = TRUE;
15325 }
15326
15327 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15328 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15329 if (! (new_flags & EF_MIPS_PIC))
15330 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15331
15332 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15333 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15334
15335 /* Compare the ISAs. */
15336 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15337 {
15338 _bfd_error_handler
15339 (_("%pB: linking 32-bit code with 64-bit code"),
15340 ibfd);
15341 ok = FALSE;
15342 }
15343 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15344 {
15345 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15346 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15347 {
15348 /* Copy the architecture info from IBFD to OBFD. Also copy
15349 the 32-bit flag (if set) so that we continue to recognise
15350 OBFD as a 32-bit binary. */
15351 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15352 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15353 elf_elfheader (obfd)->e_flags
15354 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15355
15356 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15357 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15358
15359 /* Copy across the ABI flags if OBFD doesn't use them
15360 and if that was what caused us to treat IBFD as 32-bit. */
15361 if ((old_flags & EF_MIPS_ABI) == 0
15362 && mips_32bit_flags_p (new_flags)
15363 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15364 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15365 }
15366 else
15367 {
15368 /* The ISAs aren't compatible. */
15369 _bfd_error_handler
15370 /* xgettext:c-format */
15371 (_("%pB: linking %s module with previous %s modules"),
15372 ibfd,
15373 bfd_printable_name (ibfd),
15374 bfd_printable_name (obfd));
15375 ok = FALSE;
15376 }
15377 }
15378
15379 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15380 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15381
15382 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15383 does set EI_CLASS differently from any 32-bit ABI. */
15384 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15385 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15386 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15387 {
15388 /* Only error if both are set (to different values). */
15389 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15390 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15391 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15392 {
15393 _bfd_error_handler
15394 /* xgettext:c-format */
15395 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15396 ibfd,
15397 elf_mips_abi_name (ibfd),
15398 elf_mips_abi_name (obfd));
15399 ok = FALSE;
15400 }
15401 new_flags &= ~EF_MIPS_ABI;
15402 old_flags &= ~EF_MIPS_ABI;
15403 }
15404
15405 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15406 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15407 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15408 {
15409 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15410 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15411 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15412 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15413 int micro_mis = old_m16 && new_micro;
15414 int m16_mis = old_micro && new_m16;
15415
15416 if (m16_mis || micro_mis)
15417 {
15418 _bfd_error_handler
15419 /* xgettext:c-format */
15420 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15421 ibfd,
15422 m16_mis ? "MIPS16" : "microMIPS",
15423 m16_mis ? "microMIPS" : "MIPS16");
15424 ok = FALSE;
15425 }
15426
15427 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15428
15429 new_flags &= ~ EF_MIPS_ARCH_ASE;
15430 old_flags &= ~ EF_MIPS_ARCH_ASE;
15431 }
15432
15433 /* Compare NaN encodings. */
15434 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15435 {
15436 /* xgettext:c-format */
15437 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15438 ibfd,
15439 (new_flags & EF_MIPS_NAN2008
15440 ? "-mnan=2008" : "-mnan=legacy"),
15441 (old_flags & EF_MIPS_NAN2008
15442 ? "-mnan=2008" : "-mnan=legacy"));
15443 ok = FALSE;
15444 new_flags &= ~EF_MIPS_NAN2008;
15445 old_flags &= ~EF_MIPS_NAN2008;
15446 }
15447
15448 /* Compare FP64 state. */
15449 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15450 {
15451 /* xgettext:c-format */
15452 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15453 ibfd,
15454 (new_flags & EF_MIPS_FP64
15455 ? "-mfp64" : "-mfp32"),
15456 (old_flags & EF_MIPS_FP64
15457 ? "-mfp64" : "-mfp32"));
15458 ok = FALSE;
15459 new_flags &= ~EF_MIPS_FP64;
15460 old_flags &= ~EF_MIPS_FP64;
15461 }
15462
15463 /* Warn about any other mismatches */
15464 if (new_flags != old_flags)
15465 {
15466 /* xgettext:c-format */
15467 _bfd_error_handler
15468 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15469 "(%#x)"),
15470 ibfd, new_flags, old_flags);
15471 ok = FALSE;
15472 }
15473
15474 return ok;
15475 }
15476
15477 /* Merge object attributes from IBFD into OBFD. Raise an error if
15478 there are conflicting attributes. */
15479 static bfd_boolean
15480 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15481 {
15482 bfd *obfd = info->output_bfd;
15483 obj_attribute *in_attr;
15484 obj_attribute *out_attr;
15485 bfd *abi_fp_bfd;
15486 bfd *abi_msa_bfd;
15487
15488 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15489 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15490 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15491 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15492
15493 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15494 if (!abi_msa_bfd
15495 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15496 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15497
15498 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15499 {
15500 /* This is the first object. Copy the attributes. */
15501 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15502
15503 /* Use the Tag_null value to indicate the attributes have been
15504 initialized. */
15505 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15506
15507 return TRUE;
15508 }
15509
15510 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15511 non-conflicting ones. */
15512 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15513 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15514 {
15515 int out_fp, in_fp;
15516
15517 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15518 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15519 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15520 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15521 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15522 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15523 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15524 || in_fp == Val_GNU_MIPS_ABI_FP_64
15525 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15526 {
15527 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15528 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15529 }
15530 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15531 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15532 || out_fp == Val_GNU_MIPS_ABI_FP_64
15533 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15534 /* Keep the current setting. */;
15535 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15536 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15537 {
15538 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15539 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15540 }
15541 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15542 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15543 /* Keep the current setting. */;
15544 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15545 {
15546 const char *out_string, *in_string;
15547
15548 out_string = _bfd_mips_fp_abi_string (out_fp);
15549 in_string = _bfd_mips_fp_abi_string (in_fp);
15550 /* First warn about cases involving unrecognised ABIs. */
15551 if (!out_string && !in_string)
15552 /* xgettext:c-format */
15553 _bfd_error_handler
15554 (_("warning: %pB uses unknown floating point ABI %d "
15555 "(set by %pB), %pB uses unknown floating point ABI %d"),
15556 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15557 else if (!out_string)
15558 _bfd_error_handler
15559 /* xgettext:c-format */
15560 (_("warning: %pB uses unknown floating point ABI %d "
15561 "(set by %pB), %pB uses %s"),
15562 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15563 else if (!in_string)
15564 _bfd_error_handler
15565 /* xgettext:c-format */
15566 (_("warning: %pB uses %s (set by %pB), "
15567 "%pB uses unknown floating point ABI %d"),
15568 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15569 else
15570 {
15571 /* If one of the bfds is soft-float, the other must be
15572 hard-float. The exact choice of hard-float ABI isn't
15573 really relevant to the error message. */
15574 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15575 out_string = "-mhard-float";
15576 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15577 in_string = "-mhard-float";
15578 _bfd_error_handler
15579 /* xgettext:c-format */
15580 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15581 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15582 }
15583 }
15584 }
15585
15586 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15587 non-conflicting ones. */
15588 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15589 {
15590 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15591 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15592 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15593 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15594 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15595 {
15596 case Val_GNU_MIPS_ABI_MSA_128:
15597 _bfd_error_handler
15598 /* xgettext:c-format */
15599 (_("warning: %pB uses %s (set by %pB), "
15600 "%pB uses unknown MSA ABI %d"),
15601 obfd, "-mmsa", abi_msa_bfd,
15602 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15603 break;
15604
15605 default:
15606 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15607 {
15608 case Val_GNU_MIPS_ABI_MSA_128:
15609 _bfd_error_handler
15610 /* xgettext:c-format */
15611 (_("warning: %pB uses unknown MSA ABI %d "
15612 "(set by %pB), %pB uses %s"),
15613 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15614 abi_msa_bfd, ibfd, "-mmsa");
15615 break;
15616
15617 default:
15618 _bfd_error_handler
15619 /* xgettext:c-format */
15620 (_("warning: %pB uses unknown MSA ABI %d "
15621 "(set by %pB), %pB uses unknown MSA ABI %d"),
15622 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15623 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15624 break;
15625 }
15626 }
15627 }
15628
15629 /* Merge Tag_compatibility attributes and any common GNU ones. */
15630 return _bfd_elf_merge_object_attributes (ibfd, info);
15631 }
15632
15633 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15634 there are conflicting settings. */
15635
15636 static bfd_boolean
15637 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15638 {
15639 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15640 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15641 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15642
15643 /* Update the output abiflags fp_abi using the computed fp_abi. */
15644 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15645
15646 #define max(a, b) ((a) > (b) ? (a) : (b))
15647 /* Merge abiflags. */
15648 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15649 in_tdata->abiflags.isa_level);
15650 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15651 in_tdata->abiflags.isa_rev);
15652 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15653 in_tdata->abiflags.gpr_size);
15654 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15655 in_tdata->abiflags.cpr1_size);
15656 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15657 in_tdata->abiflags.cpr2_size);
15658 #undef max
15659 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15660 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15661
15662 return TRUE;
15663 }
15664
15665 /* Merge backend specific data from an object file to the output
15666 object file when linking. */
15667
15668 bfd_boolean
15669 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15670 {
15671 bfd *obfd = info->output_bfd;
15672 struct mips_elf_obj_tdata *out_tdata;
15673 struct mips_elf_obj_tdata *in_tdata;
15674 bfd_boolean null_input_bfd = TRUE;
15675 asection *sec;
15676 bfd_boolean ok;
15677
15678 /* Check if we have the same endianness. */
15679 if (! _bfd_generic_verify_endian_match (ibfd, info))
15680 {
15681 _bfd_error_handler
15682 (_("%pB: endianness incompatible with that of the selected emulation"),
15683 ibfd);
15684 return FALSE;
15685 }
15686
15687 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15688 return TRUE;
15689
15690 in_tdata = mips_elf_tdata (ibfd);
15691 out_tdata = mips_elf_tdata (obfd);
15692
15693 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15694 {
15695 _bfd_error_handler
15696 (_("%pB: ABI is incompatible with that of the selected emulation"),
15697 ibfd);
15698 return FALSE;
15699 }
15700
15701 /* Check to see if the input BFD actually contains any sections. If not,
15702 then it has no attributes, and its flags may not have been initialized
15703 either, but it cannot actually cause any incompatibility. */
15704 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15705 {
15706 /* Ignore synthetic sections and empty .text, .data and .bss sections
15707 which are automatically generated by gas. Also ignore fake
15708 (s)common sections, since merely defining a common symbol does
15709 not affect compatibility. */
15710 if ((sec->flags & SEC_IS_COMMON) == 0
15711 && strcmp (sec->name, ".reginfo")
15712 && strcmp (sec->name, ".mdebug")
15713 && (sec->size != 0
15714 || (strcmp (sec->name, ".text")
15715 && strcmp (sec->name, ".data")
15716 && strcmp (sec->name, ".bss"))))
15717 {
15718 null_input_bfd = FALSE;
15719 break;
15720 }
15721 }
15722 if (null_input_bfd)
15723 return TRUE;
15724
15725 /* Populate abiflags using existing information. */
15726 if (in_tdata->abiflags_valid)
15727 {
15728 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15729 Elf_Internal_ABIFlags_v0 in_abiflags;
15730 Elf_Internal_ABIFlags_v0 abiflags;
15731
15732 /* Set up the FP ABI attribute from the abiflags if it is not already
15733 set. */
15734 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15735 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15736
15737 infer_mips_abiflags (ibfd, &abiflags);
15738 in_abiflags = in_tdata->abiflags;
15739
15740 /* It is not possible to infer the correct ISA revision
15741 for R3 or R5 so drop down to R2 for the checks. */
15742 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15743 in_abiflags.isa_rev = 2;
15744
15745 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15746 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15747 _bfd_error_handler
15748 (_("%pB: warning: inconsistent ISA between e_flags and "
15749 ".MIPS.abiflags"), ibfd);
15750 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15751 && in_abiflags.fp_abi != abiflags.fp_abi)
15752 _bfd_error_handler
15753 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15754 ".MIPS.abiflags"), ibfd);
15755 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15756 _bfd_error_handler
15757 (_("%pB: warning: inconsistent ASEs between e_flags and "
15758 ".MIPS.abiflags"), ibfd);
15759 /* The isa_ext is allowed to be an extension of what can be inferred
15760 from e_flags. */
15761 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15762 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15763 _bfd_error_handler
15764 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15765 ".MIPS.abiflags"), ibfd);
15766 if (in_abiflags.flags2 != 0)
15767 _bfd_error_handler
15768 (_("%pB: warning: unexpected flag in the flags2 field of "
15769 ".MIPS.abiflags (0x%lx)"), ibfd,
15770 in_abiflags.flags2);
15771 }
15772 else
15773 {
15774 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15775 in_tdata->abiflags_valid = TRUE;
15776 }
15777
15778 if (!out_tdata->abiflags_valid)
15779 {
15780 /* Copy input abiflags if output abiflags are not already valid. */
15781 out_tdata->abiflags = in_tdata->abiflags;
15782 out_tdata->abiflags_valid = TRUE;
15783 }
15784
15785 if (! elf_flags_init (obfd))
15786 {
15787 elf_flags_init (obfd) = TRUE;
15788 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15789 elf_elfheader (obfd)->e_ident[EI_CLASS]
15790 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15791
15792 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15793 && (bfd_get_arch_info (obfd)->the_default
15794 || mips_mach_extends_p (bfd_get_mach (obfd),
15795 bfd_get_mach (ibfd))))
15796 {
15797 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15798 bfd_get_mach (ibfd)))
15799 return FALSE;
15800
15801 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15802 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15803 }
15804
15805 ok = TRUE;
15806 }
15807 else
15808 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15809
15810 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15811
15812 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15813
15814 if (!ok)
15815 {
15816 bfd_set_error (bfd_error_bad_value);
15817 return FALSE;
15818 }
15819
15820 return TRUE;
15821 }
15822
15823 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15824
15825 bfd_boolean
15826 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15827 {
15828 BFD_ASSERT (!elf_flags_init (abfd)
15829 || elf_elfheader (abfd)->e_flags == flags);
15830
15831 elf_elfheader (abfd)->e_flags = flags;
15832 elf_flags_init (abfd) = TRUE;
15833 return TRUE;
15834 }
15835
15836 char *
15837 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15838 {
15839 switch (dtag)
15840 {
15841 default: return "";
15842 case DT_MIPS_RLD_VERSION:
15843 return "MIPS_RLD_VERSION";
15844 case DT_MIPS_TIME_STAMP:
15845 return "MIPS_TIME_STAMP";
15846 case DT_MIPS_ICHECKSUM:
15847 return "MIPS_ICHECKSUM";
15848 case DT_MIPS_IVERSION:
15849 return "MIPS_IVERSION";
15850 case DT_MIPS_FLAGS:
15851 return "MIPS_FLAGS";
15852 case DT_MIPS_BASE_ADDRESS:
15853 return "MIPS_BASE_ADDRESS";
15854 case DT_MIPS_MSYM:
15855 return "MIPS_MSYM";
15856 case DT_MIPS_CONFLICT:
15857 return "MIPS_CONFLICT";
15858 case DT_MIPS_LIBLIST:
15859 return "MIPS_LIBLIST";
15860 case DT_MIPS_LOCAL_GOTNO:
15861 return "MIPS_LOCAL_GOTNO";
15862 case DT_MIPS_CONFLICTNO:
15863 return "MIPS_CONFLICTNO";
15864 case DT_MIPS_LIBLISTNO:
15865 return "MIPS_LIBLISTNO";
15866 case DT_MIPS_SYMTABNO:
15867 return "MIPS_SYMTABNO";
15868 case DT_MIPS_UNREFEXTNO:
15869 return "MIPS_UNREFEXTNO";
15870 case DT_MIPS_GOTSYM:
15871 return "MIPS_GOTSYM";
15872 case DT_MIPS_HIPAGENO:
15873 return "MIPS_HIPAGENO";
15874 case DT_MIPS_RLD_MAP:
15875 return "MIPS_RLD_MAP";
15876 case DT_MIPS_RLD_MAP_REL:
15877 return "MIPS_RLD_MAP_REL";
15878 case DT_MIPS_DELTA_CLASS:
15879 return "MIPS_DELTA_CLASS";
15880 case DT_MIPS_DELTA_CLASS_NO:
15881 return "MIPS_DELTA_CLASS_NO";
15882 case DT_MIPS_DELTA_INSTANCE:
15883 return "MIPS_DELTA_INSTANCE";
15884 case DT_MIPS_DELTA_INSTANCE_NO:
15885 return "MIPS_DELTA_INSTANCE_NO";
15886 case DT_MIPS_DELTA_RELOC:
15887 return "MIPS_DELTA_RELOC";
15888 case DT_MIPS_DELTA_RELOC_NO:
15889 return "MIPS_DELTA_RELOC_NO";
15890 case DT_MIPS_DELTA_SYM:
15891 return "MIPS_DELTA_SYM";
15892 case DT_MIPS_DELTA_SYM_NO:
15893 return "MIPS_DELTA_SYM_NO";
15894 case DT_MIPS_DELTA_CLASSSYM:
15895 return "MIPS_DELTA_CLASSSYM";
15896 case DT_MIPS_DELTA_CLASSSYM_NO:
15897 return "MIPS_DELTA_CLASSSYM_NO";
15898 case DT_MIPS_CXX_FLAGS:
15899 return "MIPS_CXX_FLAGS";
15900 case DT_MIPS_PIXIE_INIT:
15901 return "MIPS_PIXIE_INIT";
15902 case DT_MIPS_SYMBOL_LIB:
15903 return "MIPS_SYMBOL_LIB";
15904 case DT_MIPS_LOCALPAGE_GOTIDX:
15905 return "MIPS_LOCALPAGE_GOTIDX";
15906 case DT_MIPS_LOCAL_GOTIDX:
15907 return "MIPS_LOCAL_GOTIDX";
15908 case DT_MIPS_HIDDEN_GOTIDX:
15909 return "MIPS_HIDDEN_GOTIDX";
15910 case DT_MIPS_PROTECTED_GOTIDX:
15911 return "MIPS_PROTECTED_GOT_IDX";
15912 case DT_MIPS_OPTIONS:
15913 return "MIPS_OPTIONS";
15914 case DT_MIPS_INTERFACE:
15915 return "MIPS_INTERFACE";
15916 case DT_MIPS_DYNSTR_ALIGN:
15917 return "DT_MIPS_DYNSTR_ALIGN";
15918 case DT_MIPS_INTERFACE_SIZE:
15919 return "DT_MIPS_INTERFACE_SIZE";
15920 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15921 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15922 case DT_MIPS_PERF_SUFFIX:
15923 return "DT_MIPS_PERF_SUFFIX";
15924 case DT_MIPS_COMPACT_SIZE:
15925 return "DT_MIPS_COMPACT_SIZE";
15926 case DT_MIPS_GP_VALUE:
15927 return "DT_MIPS_GP_VALUE";
15928 case DT_MIPS_AUX_DYNAMIC:
15929 return "DT_MIPS_AUX_DYNAMIC";
15930 case DT_MIPS_PLTGOT:
15931 return "DT_MIPS_PLTGOT";
15932 case DT_MIPS_RWPLT:
15933 return "DT_MIPS_RWPLT";
15934 }
15935 }
15936
15937 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15938 not known. */
15939
15940 const char *
15941 _bfd_mips_fp_abi_string (int fp)
15942 {
15943 switch (fp)
15944 {
15945 /* These strings aren't translated because they're simply
15946 option lists. */
15947 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15948 return "-mdouble-float";
15949
15950 case Val_GNU_MIPS_ABI_FP_SINGLE:
15951 return "-msingle-float";
15952
15953 case Val_GNU_MIPS_ABI_FP_SOFT:
15954 return "-msoft-float";
15955
15956 case Val_GNU_MIPS_ABI_FP_OLD_64:
15957 return _("-mips32r2 -mfp64 (12 callee-saved)");
15958
15959 case Val_GNU_MIPS_ABI_FP_XX:
15960 return "-mfpxx";
15961
15962 case Val_GNU_MIPS_ABI_FP_64:
15963 return "-mgp32 -mfp64";
15964
15965 case Val_GNU_MIPS_ABI_FP_64A:
15966 return "-mgp32 -mfp64 -mno-odd-spreg";
15967
15968 default:
15969 return 0;
15970 }
15971 }
15972
15973 static void
15974 print_mips_ases (FILE *file, unsigned int mask)
15975 {
15976 if (mask & AFL_ASE_DSP)
15977 fputs ("\n\tDSP ASE", file);
15978 if (mask & AFL_ASE_DSPR2)
15979 fputs ("\n\tDSP R2 ASE", file);
15980 if (mask & AFL_ASE_DSPR3)
15981 fputs ("\n\tDSP R3 ASE", file);
15982 if (mask & AFL_ASE_EVA)
15983 fputs ("\n\tEnhanced VA Scheme", file);
15984 if (mask & AFL_ASE_MCU)
15985 fputs ("\n\tMCU (MicroController) ASE", file);
15986 if (mask & AFL_ASE_MDMX)
15987 fputs ("\n\tMDMX ASE", file);
15988 if (mask & AFL_ASE_MIPS3D)
15989 fputs ("\n\tMIPS-3D ASE", file);
15990 if (mask & AFL_ASE_MT)
15991 fputs ("\n\tMT ASE", file);
15992 if (mask & AFL_ASE_SMARTMIPS)
15993 fputs ("\n\tSmartMIPS ASE", file);
15994 if (mask & AFL_ASE_VIRT)
15995 fputs ("\n\tVZ ASE", file);
15996 if (mask & AFL_ASE_MSA)
15997 fputs ("\n\tMSA ASE", file);
15998 if (mask & AFL_ASE_MIPS16)
15999 fputs ("\n\tMIPS16 ASE", file);
16000 if (mask & AFL_ASE_MICROMIPS)
16001 fputs ("\n\tMICROMIPS ASE", file);
16002 if (mask & AFL_ASE_XPA)
16003 fputs ("\n\tXPA ASE", file);
16004 if (mask & AFL_ASE_MIPS16E2)
16005 fputs ("\n\tMIPS16e2 ASE", file);
16006 if (mask & AFL_ASE_CRC)
16007 fputs ("\n\tCRC ASE", file);
16008 if (mask & AFL_ASE_GINV)
16009 fputs ("\n\tGINV ASE", file);
16010 if (mask & AFL_ASE_LOONGSON_MMI)
16011 fputs ("\n\tLoongson MMI ASE", file);
16012 if (mask & AFL_ASE_LOONGSON_CAM)
16013 fputs ("\n\tLoongson CAM ASE", file);
16014 if (mask & AFL_ASE_LOONGSON_EXT)
16015 fputs ("\n\tLoongson EXT ASE", file);
16016 if (mask & AFL_ASE_LOONGSON_EXT2)
16017 fputs ("\n\tLoongson EXT2 ASE", file);
16018 if (mask == 0)
16019 fprintf (file, "\n\t%s", _("None"));
16020 else if ((mask & ~AFL_ASE_MASK) != 0)
16021 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
16022 }
16023
16024 static void
16025 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
16026 {
16027 switch (isa_ext)
16028 {
16029 case 0:
16030 fputs (_("None"), file);
16031 break;
16032 case AFL_EXT_XLR:
16033 fputs ("RMI XLR", file);
16034 break;
16035 case AFL_EXT_OCTEON3:
16036 fputs ("Cavium Networks Octeon3", file);
16037 break;
16038 case AFL_EXT_OCTEON2:
16039 fputs ("Cavium Networks Octeon2", file);
16040 break;
16041 case AFL_EXT_OCTEONP:
16042 fputs ("Cavium Networks OcteonP", file);
16043 break;
16044 case AFL_EXT_OCTEON:
16045 fputs ("Cavium Networks Octeon", file);
16046 break;
16047 case AFL_EXT_5900:
16048 fputs ("Toshiba R5900", file);
16049 break;
16050 case AFL_EXT_4650:
16051 fputs ("MIPS R4650", file);
16052 break;
16053 case AFL_EXT_4010:
16054 fputs ("LSI R4010", file);
16055 break;
16056 case AFL_EXT_4100:
16057 fputs ("NEC VR4100", file);
16058 break;
16059 case AFL_EXT_3900:
16060 fputs ("Toshiba R3900", file);
16061 break;
16062 case AFL_EXT_10000:
16063 fputs ("MIPS R10000", file);
16064 break;
16065 case AFL_EXT_SB1:
16066 fputs ("Broadcom SB-1", file);
16067 break;
16068 case AFL_EXT_4111:
16069 fputs ("NEC VR4111/VR4181", file);
16070 break;
16071 case AFL_EXT_4120:
16072 fputs ("NEC VR4120", file);
16073 break;
16074 case AFL_EXT_5400:
16075 fputs ("NEC VR5400", file);
16076 break;
16077 case AFL_EXT_5500:
16078 fputs ("NEC VR5500", file);
16079 break;
16080 case AFL_EXT_LOONGSON_2E:
16081 fputs ("ST Microelectronics Loongson 2E", file);
16082 break;
16083 case AFL_EXT_LOONGSON_2F:
16084 fputs ("ST Microelectronics Loongson 2F", file);
16085 break;
16086 case AFL_EXT_INTERAPTIV_MR2:
16087 fputs ("Imagination interAptiv MR2", file);
16088 break;
16089 default:
16090 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
16091 break;
16092 }
16093 }
16094
16095 static void
16096 print_mips_fp_abi_value (FILE *file, int val)
16097 {
16098 switch (val)
16099 {
16100 case Val_GNU_MIPS_ABI_FP_ANY:
16101 fprintf (file, _("Hard or soft float\n"));
16102 break;
16103 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16104 fprintf (file, _("Hard float (double precision)\n"));
16105 break;
16106 case Val_GNU_MIPS_ABI_FP_SINGLE:
16107 fprintf (file, _("Hard float (single precision)\n"));
16108 break;
16109 case Val_GNU_MIPS_ABI_FP_SOFT:
16110 fprintf (file, _("Soft float\n"));
16111 break;
16112 case Val_GNU_MIPS_ABI_FP_OLD_64:
16113 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
16114 break;
16115 case Val_GNU_MIPS_ABI_FP_XX:
16116 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
16117 break;
16118 case Val_GNU_MIPS_ABI_FP_64:
16119 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16120 break;
16121 case Val_GNU_MIPS_ABI_FP_64A:
16122 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16123 break;
16124 default:
16125 fprintf (file, "??? (%d)\n", val);
16126 break;
16127 }
16128 }
16129
16130 static int
16131 get_mips_reg_size (int reg_size)
16132 {
16133 return (reg_size == AFL_REG_NONE) ? 0
16134 : (reg_size == AFL_REG_32) ? 32
16135 : (reg_size == AFL_REG_64) ? 64
16136 : (reg_size == AFL_REG_128) ? 128
16137 : -1;
16138 }
16139
16140 bfd_boolean
16141 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
16142 {
16143 FILE *file = ptr;
16144
16145 BFD_ASSERT (abfd != NULL && ptr != NULL);
16146
16147 /* Print normal ELF private data. */
16148 _bfd_elf_print_private_bfd_data (abfd, ptr);
16149
16150 /* xgettext:c-format */
16151 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
16152
16153 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
16154 fprintf (file, _(" [abi=O32]"));
16155 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
16156 fprintf (file, _(" [abi=O64]"));
16157 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
16158 fprintf (file, _(" [abi=EABI32]"));
16159 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
16160 fprintf (file, _(" [abi=EABI64]"));
16161 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
16162 fprintf (file, _(" [abi unknown]"));
16163 else if (ABI_N32_P (abfd))
16164 fprintf (file, _(" [abi=N32]"));
16165 else if (ABI_64_P (abfd))
16166 fprintf (file, _(" [abi=64]"));
16167 else
16168 fprintf (file, _(" [no abi set]"));
16169
16170 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
16171 fprintf (file, " [mips1]");
16172 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
16173 fprintf (file, " [mips2]");
16174 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
16175 fprintf (file, " [mips3]");
16176 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
16177 fprintf (file, " [mips4]");
16178 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
16179 fprintf (file, " [mips5]");
16180 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
16181 fprintf (file, " [mips32]");
16182 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
16183 fprintf (file, " [mips64]");
16184 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
16185 fprintf (file, " [mips32r2]");
16186 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
16187 fprintf (file, " [mips64r2]");
16188 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
16189 fprintf (file, " [mips32r6]");
16190 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
16191 fprintf (file, " [mips64r6]");
16192 else
16193 fprintf (file, _(" [unknown ISA]"));
16194
16195 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
16196 fprintf (file, " [mdmx]");
16197
16198 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
16199 fprintf (file, " [mips16]");
16200
16201 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
16202 fprintf (file, " [micromips]");
16203
16204 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
16205 fprintf (file, " [nan2008]");
16206
16207 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
16208 fprintf (file, " [old fp64]");
16209
16210 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
16211 fprintf (file, " [32bitmode]");
16212 else
16213 fprintf (file, _(" [not 32bitmode]"));
16214
16215 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
16216 fprintf (file, " [noreorder]");
16217
16218 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
16219 fprintf (file, " [PIC]");
16220
16221 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
16222 fprintf (file, " [CPIC]");
16223
16224 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
16225 fprintf (file, " [XGOT]");
16226
16227 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
16228 fprintf (file, " [UCODE]");
16229
16230 fputc ('\n', file);
16231
16232 if (mips_elf_tdata (abfd)->abiflags_valid)
16233 {
16234 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16235 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16236 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16237 if (abiflags->isa_rev > 1)
16238 fprintf (file, "r%d", abiflags->isa_rev);
16239 fprintf (file, "\nGPR size: %d",
16240 get_mips_reg_size (abiflags->gpr_size));
16241 fprintf (file, "\nCPR1 size: %d",
16242 get_mips_reg_size (abiflags->cpr1_size));
16243 fprintf (file, "\nCPR2 size: %d",
16244 get_mips_reg_size (abiflags->cpr2_size));
16245 fputs ("\nFP ABI: ", file);
16246 print_mips_fp_abi_value (file, abiflags->fp_abi);
16247 fputs ("ISA Extension: ", file);
16248 print_mips_isa_ext (file, abiflags->isa_ext);
16249 fputs ("\nASEs:", file);
16250 print_mips_ases (file, abiflags->ases);
16251 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16252 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16253 fputc ('\n', file);
16254 }
16255
16256 return TRUE;
16257 }
16258
16259 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16260 {
16261 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16262 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16263 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16264 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16265 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16266 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16267 { NULL, 0, 0, 0, 0 }
16268 };
16269
16270 /* Merge non visibility st_other attributes. Ensure that the
16271 STO_OPTIONAL flag is copied into h->other, even if this is not a
16272 definiton of the symbol. */
16273 void
16274 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16275 const Elf_Internal_Sym *isym,
16276 bfd_boolean definition,
16277 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16278 {
16279 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16280 {
16281 unsigned char other;
16282
16283 other = (definition ? isym->st_other : h->other);
16284 other &= ~ELF_ST_VISIBILITY (-1);
16285 h->other = other | ELF_ST_VISIBILITY (h->other);
16286 }
16287
16288 if (!definition
16289 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16290 h->other |= STO_OPTIONAL;
16291 }
16292
16293 /* Decide whether an undefined symbol is special and can be ignored.
16294 This is the case for OPTIONAL symbols on IRIX. */
16295 bfd_boolean
16296 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16297 {
16298 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16299 }
16300
16301 bfd_boolean
16302 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16303 {
16304 return (sym->st_shndx == SHN_COMMON
16305 || sym->st_shndx == SHN_MIPS_ACOMMON
16306 || sym->st_shndx == SHN_MIPS_SCOMMON);
16307 }
16308
16309 /* Return address for Ith PLT stub in section PLT, for relocation REL
16310 or (bfd_vma) -1 if it should not be included. */
16311
16312 bfd_vma
16313 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16314 const arelent *rel ATTRIBUTE_UNUSED)
16315 {
16316 return (plt->vma
16317 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16318 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16319 }
16320
16321 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16322 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16323 and .got.plt and also the slots may be of a different size each we walk
16324 the PLT manually fetching instructions and matching them against known
16325 patterns. To make things easier standard MIPS slots, if any, always come
16326 first. As we don't create proper ELF symbols we use the UDATA.I member
16327 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16328 with the ST_OTHER member of the ELF symbol. */
16329
16330 long
16331 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16332 long symcount ATTRIBUTE_UNUSED,
16333 asymbol **syms ATTRIBUTE_UNUSED,
16334 long dynsymcount, asymbol **dynsyms,
16335 asymbol **ret)
16336 {
16337 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16338 static const char microsuffix[] = "@micromipsplt";
16339 static const char m16suffix[] = "@mips16plt";
16340 static const char mipssuffix[] = "@plt";
16341
16342 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16343 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16344 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16345 Elf_Internal_Shdr *hdr;
16346 bfd_byte *plt_data;
16347 bfd_vma plt_offset;
16348 unsigned int other;
16349 bfd_vma entry_size;
16350 bfd_vma plt0_size;
16351 asection *relplt;
16352 bfd_vma opcode;
16353 asection *plt;
16354 asymbol *send;
16355 size_t size;
16356 char *names;
16357 long counti;
16358 arelent *p;
16359 asymbol *s;
16360 char *nend;
16361 long count;
16362 long pi;
16363 long i;
16364 long n;
16365
16366 *ret = NULL;
16367
16368 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16369 return 0;
16370
16371 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16372 if (relplt == NULL)
16373 return 0;
16374
16375 hdr = &elf_section_data (relplt)->this_hdr;
16376 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16377 return 0;
16378
16379 plt = bfd_get_section_by_name (abfd, ".plt");
16380 if (plt == NULL)
16381 return 0;
16382
16383 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16384 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16385 return -1;
16386 p = relplt->relocation;
16387
16388 /* Calculating the exact amount of space required for symbols would
16389 require two passes over the PLT, so just pessimise assuming two
16390 PLT slots per relocation. */
16391 count = relplt->size / hdr->sh_entsize;
16392 counti = count * bed->s->int_rels_per_ext_rel;
16393 size = 2 * count * sizeof (asymbol);
16394 size += count * (sizeof (mipssuffix) +
16395 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16396 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16397 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16398
16399 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16400 size += sizeof (asymbol) + sizeof (pltname);
16401
16402 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16403 return -1;
16404
16405 if (plt->size < 16)
16406 return -1;
16407
16408 s = *ret = bfd_malloc (size);
16409 if (s == NULL)
16410 return -1;
16411 send = s + 2 * count + 1;
16412
16413 names = (char *) send;
16414 nend = (char *) s + size;
16415 n = 0;
16416
16417 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16418 if (opcode == 0x3302fffe)
16419 {
16420 if (!micromips_p)
16421 return -1;
16422 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16423 other = STO_MICROMIPS;
16424 }
16425 else if (opcode == 0x0398c1d0)
16426 {
16427 if (!micromips_p)
16428 return -1;
16429 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16430 other = STO_MICROMIPS;
16431 }
16432 else
16433 {
16434 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16435 other = 0;
16436 }
16437
16438 s->the_bfd = abfd;
16439 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16440 s->section = plt;
16441 s->value = 0;
16442 s->name = names;
16443 s->udata.i = other;
16444 memcpy (names, pltname, sizeof (pltname));
16445 names += sizeof (pltname);
16446 ++s, ++n;
16447
16448 pi = 0;
16449 for (plt_offset = plt0_size;
16450 plt_offset + 8 <= plt->size && s < send;
16451 plt_offset += entry_size)
16452 {
16453 bfd_vma gotplt_addr;
16454 const char *suffix;
16455 bfd_vma gotplt_hi;
16456 bfd_vma gotplt_lo;
16457 size_t suffixlen;
16458
16459 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16460
16461 /* Check if the second word matches the expected MIPS16 instruction. */
16462 if (opcode == 0x651aeb00)
16463 {
16464 if (micromips_p)
16465 return -1;
16466 /* Truncated table??? */
16467 if (plt_offset + 16 > plt->size)
16468 break;
16469 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16470 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16471 suffixlen = sizeof (m16suffix);
16472 suffix = m16suffix;
16473 other = STO_MIPS16;
16474 }
16475 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16476 else if (opcode == 0xff220000)
16477 {
16478 if (!micromips_p)
16479 return -1;
16480 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16481 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16482 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16483 gotplt_lo <<= 2;
16484 gotplt_addr = gotplt_hi + gotplt_lo;
16485 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16486 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16487 suffixlen = sizeof (microsuffix);
16488 suffix = microsuffix;
16489 other = STO_MICROMIPS;
16490 }
16491 /* Likewise the expected microMIPS instruction (insn32 mode). */
16492 else if ((opcode & 0xffff0000) == 0xff2f0000)
16493 {
16494 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16495 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16496 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16497 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16498 gotplt_addr = gotplt_hi + gotplt_lo;
16499 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16500 suffixlen = sizeof (microsuffix);
16501 suffix = microsuffix;
16502 other = STO_MICROMIPS;
16503 }
16504 /* Otherwise assume standard MIPS code. */
16505 else
16506 {
16507 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16508 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16509 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16510 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16511 gotplt_addr = gotplt_hi + gotplt_lo;
16512 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16513 suffixlen = sizeof (mipssuffix);
16514 suffix = mipssuffix;
16515 other = 0;
16516 }
16517 /* Truncated table??? */
16518 if (plt_offset + entry_size > plt->size)
16519 break;
16520
16521 for (i = 0;
16522 i < count && p[pi].address != gotplt_addr;
16523 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16524
16525 if (i < count)
16526 {
16527 size_t namelen;
16528 size_t len;
16529
16530 *s = **p[pi].sym_ptr_ptr;
16531 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16532 we are defining a symbol, ensure one of them is set. */
16533 if ((s->flags & BSF_LOCAL) == 0)
16534 s->flags |= BSF_GLOBAL;
16535 s->flags |= BSF_SYNTHETIC;
16536 s->section = plt;
16537 s->value = plt_offset;
16538 s->name = names;
16539 s->udata.i = other;
16540
16541 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16542 namelen = len + suffixlen;
16543 if (names + namelen > nend)
16544 break;
16545
16546 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16547 names += len;
16548 memcpy (names, suffix, suffixlen);
16549 names += suffixlen;
16550
16551 ++s, ++n;
16552 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16553 }
16554 }
16555
16556 free (plt_data);
16557
16558 return n;
16559 }
16560
16561 /* Return the ABI flags associated with ABFD if available. */
16562
16563 Elf_Internal_ABIFlags_v0 *
16564 bfd_mips_elf_get_abiflags (bfd *abfd)
16565 {
16566 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16567
16568 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16569 }
16570
16571 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16572 field. Taken from `libc-abis.h' generated at GNU libc build time.
16573 Using a MIPS_ prefix as other libc targets use different values. */
16574 enum
16575 {
16576 MIPS_LIBC_ABI_DEFAULT = 0,
16577 MIPS_LIBC_ABI_MIPS_PLT,
16578 MIPS_LIBC_ABI_UNIQUE,
16579 MIPS_LIBC_ABI_MIPS_O32_FP64,
16580 MIPS_LIBC_ABI_ABSOLUTE,
16581 MIPS_LIBC_ABI_MAX
16582 };
16583
16584 void
16585 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16586 {
16587 struct mips_elf_link_hash_table *htab = NULL;
16588 Elf_Internal_Ehdr *i_ehdrp;
16589
16590 i_ehdrp = elf_elfheader (abfd);
16591 if (link_info)
16592 {
16593 htab = mips_elf_hash_table (link_info);
16594 BFD_ASSERT (htab != NULL);
16595 }
16596
16597 if (htab != NULL && htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16598 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16599
16600 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16601 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16602 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
16603
16604 /* Mark that we need support for absolute symbols in the dynamic loader. */
16605 if (htab != NULL && htab->use_absolute_zero && htab->gnu_target)
16606 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE;
16607
16608 _bfd_elf_post_process_headers (abfd, link_info);
16609 }
16610
16611 int
16612 _bfd_mips_elf_compact_eh_encoding
16613 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16614 {
16615 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16616 }
16617
16618 /* Return the opcode for can't unwind. */
16619
16620 int
16621 _bfd_mips_elf_cant_unwind_opcode
16622 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16623 {
16624 return COMPACT_EH_CANT_UNWIND_OPCODE;
16625 }