]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/hash.c
[PATCH] fix windmc typedef bug
[thirdparty/binutils-gdb.git] / bfd / hash.c
1 /* hash.c -- hash table routines for BFD
2 Copyright (C) 1993-2020 Free Software Foundation, Inc.
3 Written by Steve Chamberlain <sac@cygnus.com>
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "objalloc.h"
26 #include "libiberty.h"
27
28 /*
29 SECTION
30 Hash Tables
31
32 @cindex Hash tables
33 BFD provides a simple set of hash table functions. Routines
34 are provided to initialize a hash table, to free a hash table,
35 to look up a string in a hash table and optionally create an
36 entry for it, and to traverse a hash table. There is
37 currently no routine to delete an string from a hash table.
38
39 The basic hash table does not permit any data to be stored
40 with a string. However, a hash table is designed to present a
41 base class from which other types of hash tables may be
42 derived. These derived types may store additional information
43 with the string. Hash tables were implemented in this way,
44 rather than simply providing a data pointer in a hash table
45 entry, because they were designed for use by the linker back
46 ends. The linker may create thousands of hash table entries,
47 and the overhead of allocating private data and storing and
48 following pointers becomes noticeable.
49
50 The basic hash table code is in <<hash.c>>.
51
52 @menu
53 @* Creating and Freeing a Hash Table::
54 @* Looking Up or Entering a String::
55 @* Traversing a Hash Table::
56 @* Deriving a New Hash Table Type::
57 @end menu
58
59 INODE
60 Creating and Freeing a Hash Table, Looking Up or Entering a String, Hash Tables, Hash Tables
61 SUBSECTION
62 Creating and freeing a hash table
63
64 @findex bfd_hash_table_init
65 @findex bfd_hash_table_init_n
66 To create a hash table, create an instance of a <<struct
67 bfd_hash_table>> (defined in <<bfd.h>>) and call
68 <<bfd_hash_table_init>> (if you know approximately how many
69 entries you will need, the function <<bfd_hash_table_init_n>>,
70 which takes a @var{size} argument, may be used).
71 <<bfd_hash_table_init>> returns <<FALSE>> if some sort of
72 error occurs.
73
74 @findex bfd_hash_newfunc
75 The function <<bfd_hash_table_init>> take as an argument a
76 function to use to create new entries. For a basic hash
77 table, use the function <<bfd_hash_newfunc>>. @xref{Deriving
78 a New Hash Table Type}, for why you would want to use a
79 different value for this argument.
80
81 @findex bfd_hash_allocate
82 <<bfd_hash_table_init>> will create an objalloc which will be
83 used to allocate new entries. You may allocate memory on this
84 objalloc using <<bfd_hash_allocate>>.
85
86 @findex bfd_hash_table_free
87 Use <<bfd_hash_table_free>> to free up all the memory that has
88 been allocated for a hash table. This will not free up the
89 <<struct bfd_hash_table>> itself, which you must provide.
90
91 @findex bfd_hash_set_default_size
92 Use <<bfd_hash_set_default_size>> to set the default size of
93 hash table to use.
94
95 INODE
96 Looking Up or Entering a String, Traversing a Hash Table, Creating and Freeing a Hash Table, Hash Tables
97 SUBSECTION
98 Looking up or entering a string
99
100 @findex bfd_hash_lookup
101 The function <<bfd_hash_lookup>> is used both to look up a
102 string in the hash table and to create a new entry.
103
104 If the @var{create} argument is <<FALSE>>, <<bfd_hash_lookup>>
105 will look up a string. If the string is found, it will
106 returns a pointer to a <<struct bfd_hash_entry>>. If the
107 string is not found in the table <<bfd_hash_lookup>> will
108 return <<NULL>>. You should not modify any of the fields in
109 the returns <<struct bfd_hash_entry>>.
110
111 If the @var{create} argument is <<TRUE>>, the string will be
112 entered into the hash table if it is not already there.
113 Either way a pointer to a <<struct bfd_hash_entry>> will be
114 returned, either to the existing structure or to a newly
115 created one. In this case, a <<NULL>> return means that an
116 error occurred.
117
118 If the @var{create} argument is <<TRUE>>, and a new entry is
119 created, the @var{copy} argument is used to decide whether to
120 copy the string onto the hash table objalloc or not. If
121 @var{copy} is passed as <<FALSE>>, you must be careful not to
122 deallocate or modify the string as long as the hash table
123 exists.
124
125 INODE
126 Traversing a Hash Table, Deriving a New Hash Table Type, Looking Up or Entering a String, Hash Tables
127 SUBSECTION
128 Traversing a hash table
129
130 @findex bfd_hash_traverse
131 The function <<bfd_hash_traverse>> may be used to traverse a
132 hash table, calling a function on each element. The traversal
133 is done in a random order.
134
135 <<bfd_hash_traverse>> takes as arguments a function and a
136 generic <<void *>> pointer. The function is called with a
137 hash table entry (a <<struct bfd_hash_entry *>>) and the
138 generic pointer passed to <<bfd_hash_traverse>>. The function
139 must return a <<boolean>> value, which indicates whether to
140 continue traversing the hash table. If the function returns
141 <<FALSE>>, <<bfd_hash_traverse>> will stop the traversal and
142 return immediately.
143
144 INODE
145 Deriving a New Hash Table Type, , Traversing a Hash Table, Hash Tables
146 SUBSECTION
147 Deriving a new hash table type
148
149 Many uses of hash tables want to store additional information
150 which each entry in the hash table. Some also find it
151 convenient to store additional information with the hash table
152 itself. This may be done using a derived hash table.
153
154 Since C is not an object oriented language, creating a derived
155 hash table requires sticking together some boilerplate
156 routines with a few differences specific to the type of hash
157 table you want to create.
158
159 An example of a derived hash table is the linker hash table.
160 The structures for this are defined in <<bfdlink.h>>. The
161 functions are in <<linker.c>>.
162
163 You may also derive a hash table from an already derived hash
164 table. For example, the a.out linker backend code uses a hash
165 table derived from the linker hash table.
166
167 @menu
168 @* Define the Derived Structures::
169 @* Write the Derived Creation Routine::
170 @* Write Other Derived Routines::
171 @end menu
172
173 INODE
174 Define the Derived Structures, Write the Derived Creation Routine, Deriving a New Hash Table Type, Deriving a New Hash Table Type
175 SUBSUBSECTION
176 Define the derived structures
177
178 You must define a structure for an entry in the hash table,
179 and a structure for the hash table itself.
180
181 The first field in the structure for an entry in the hash
182 table must be of the type used for an entry in the hash table
183 you are deriving from. If you are deriving from a basic hash
184 table this is <<struct bfd_hash_entry>>, which is defined in
185 <<bfd.h>>. The first field in the structure for the hash
186 table itself must be of the type of the hash table you are
187 deriving from itself. If you are deriving from a basic hash
188 table, this is <<struct bfd_hash_table>>.
189
190 For example, the linker hash table defines <<struct
191 bfd_link_hash_entry>> (in <<bfdlink.h>>). The first field,
192 <<root>>, is of type <<struct bfd_hash_entry>>. Similarly,
193 the first field in <<struct bfd_link_hash_table>>, <<table>>,
194 is of type <<struct bfd_hash_table>>.
195
196 INODE
197 Write the Derived Creation Routine, Write Other Derived Routines, Define the Derived Structures, Deriving a New Hash Table Type
198 SUBSUBSECTION
199 Write the derived creation routine
200
201 You must write a routine which will create and initialize an
202 entry in the hash table. This routine is passed as the
203 function argument to <<bfd_hash_table_init>>.
204
205 In order to permit other hash tables to be derived from the
206 hash table you are creating, this routine must be written in a
207 standard way.
208
209 The first argument to the creation routine is a pointer to a
210 hash table entry. This may be <<NULL>>, in which case the
211 routine should allocate the right amount of space. Otherwise
212 the space has already been allocated by a hash table type
213 derived from this one.
214
215 After allocating space, the creation routine must call the
216 creation routine of the hash table type it is derived from,
217 passing in a pointer to the space it just allocated. This
218 will initialize any fields used by the base hash table.
219
220 Finally the creation routine must initialize any local fields
221 for the new hash table type.
222
223 Here is a boilerplate example of a creation routine.
224 @var{function_name} is the name of the routine.
225 @var{entry_type} is the type of an entry in the hash table you
226 are creating. @var{base_newfunc} is the name of the creation
227 routine of the hash table type your hash table is derived
228 from.
229
230 EXAMPLE
231
232 .struct bfd_hash_entry *
233 .@var{function_name} (struct bfd_hash_entry *entry,
234 . struct bfd_hash_table *table,
235 . const char *string)
236 .{
237 . struct @var{entry_type} *ret = (@var{entry_type} *) entry;
238 .
239 . {* Allocate the structure if it has not already been allocated by a
240 . derived class. *}
241 . if (ret == NULL)
242 . {
243 . ret = bfd_hash_allocate (table, sizeof (* ret));
244 . if (ret == NULL)
245 . return NULL;
246 . }
247 .
248 . {* Call the allocation method of the base class. *}
249 . ret = ((@var{entry_type} *)
250 . @var{base_newfunc} ((struct bfd_hash_entry *) ret, table, string));
251 .
252 . {* Initialize the local fields here. *}
253 .
254 . return (struct bfd_hash_entry *) ret;
255 .}
256
257 DESCRIPTION
258 The creation routine for the linker hash table, which is in
259 <<linker.c>>, looks just like this example.
260 @var{function_name} is <<_bfd_link_hash_newfunc>>.
261 @var{entry_type} is <<struct bfd_link_hash_entry>>.
262 @var{base_newfunc} is <<bfd_hash_newfunc>>, the creation
263 routine for a basic hash table.
264
265 <<_bfd_link_hash_newfunc>> also initializes the local fields
266 in a linker hash table entry: <<type>>, <<written>> and
267 <<next>>.
268
269 INODE
270 Write Other Derived Routines, , Write the Derived Creation Routine, Deriving a New Hash Table Type
271 SUBSUBSECTION
272 Write other derived routines
273
274 You will want to write other routines for your new hash table,
275 as well.
276
277 You will want an initialization routine which calls the
278 initialization routine of the hash table you are deriving from
279 and initializes any other local fields. For the linker hash
280 table, this is <<_bfd_link_hash_table_init>> in <<linker.c>>.
281
282 You will want a lookup routine which calls the lookup routine
283 of the hash table you are deriving from and casts the result.
284 The linker hash table uses <<bfd_link_hash_lookup>> in
285 <<linker.c>> (this actually takes an additional argument which
286 it uses to decide how to return the looked up value).
287
288 You may want a traversal routine. This should just call the
289 traversal routine of the hash table you are deriving from with
290 appropriate casts. The linker hash table uses
291 <<bfd_link_hash_traverse>> in <<linker.c>>.
292
293 These routines may simply be defined as macros. For example,
294 the a.out backend linker hash table, which is derived from the
295 linker hash table, uses macros for the lookup and traversal
296 routines. These are <<aout_link_hash_lookup>> and
297 <<aout_link_hash_traverse>> in aoutx.h.
298 */
299
300 /* The default number of entries to use when creating a hash table. */
301 #define DEFAULT_SIZE 4051
302
303 /* The following function returns a nearest prime number which is
304 greater than N, and near a power of two. Copied from libiberty.
305 Returns zero for ridiculously large N to signify an error. */
306
307 static unsigned long
308 higher_prime_number (unsigned long n)
309 {
310 /* These are primes that are near, but slightly smaller than, a
311 power of two. */
312 static const unsigned long primes[] =
313 {
314 (unsigned long) 31,
315 (unsigned long) 61,
316 (unsigned long) 127,
317 (unsigned long) 251,
318 (unsigned long) 509,
319 (unsigned long) 1021,
320 (unsigned long) 2039,
321 (unsigned long) 4093,
322 (unsigned long) 8191,
323 (unsigned long) 16381,
324 (unsigned long) 32749,
325 (unsigned long) 65521,
326 (unsigned long) 131071,
327 (unsigned long) 262139,
328 (unsigned long) 524287,
329 (unsigned long) 1048573,
330 (unsigned long) 2097143,
331 (unsigned long) 4194301,
332 (unsigned long) 8388593,
333 (unsigned long) 16777213,
334 (unsigned long) 33554393,
335 (unsigned long) 67108859,
336 (unsigned long) 134217689,
337 (unsigned long) 268435399,
338 (unsigned long) 536870909,
339 (unsigned long) 1073741789,
340 (unsigned long) 2147483647,
341 /* 4294967291L */
342 ((unsigned long) 2147483647) + ((unsigned long) 2147483644),
343 };
344
345 const unsigned long *low = &primes[0];
346 const unsigned long *high = &primes[sizeof (primes) / sizeof (primes[0])];
347
348 while (low != high)
349 {
350 const unsigned long *mid = low + (high - low) / 2;
351 if (n >= *mid)
352 low = mid + 1;
353 else
354 high = mid;
355 }
356
357 if (n >= *low)
358 return 0;
359
360 return *low;
361 }
362
363 static unsigned long bfd_default_hash_table_size = DEFAULT_SIZE;
364
365 /* Create a new hash table, given a number of entries. */
366
367 bfd_boolean
368 bfd_hash_table_init_n (struct bfd_hash_table *table,
369 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
370 struct bfd_hash_table *,
371 const char *),
372 unsigned int entsize,
373 unsigned int size)
374 {
375 unsigned long alloc;
376
377 alloc = size;
378 alloc *= sizeof (struct bfd_hash_entry *);
379 if (alloc / sizeof (struct bfd_hash_entry *) != size)
380 {
381 bfd_set_error (bfd_error_no_memory);
382 return FALSE;
383 }
384
385 table->memory = (void *) objalloc_create ();
386 if (table->memory == NULL)
387 {
388 bfd_set_error (bfd_error_no_memory);
389 return FALSE;
390 }
391 table->table = (struct bfd_hash_entry **)
392 objalloc_alloc ((struct objalloc *) table->memory, alloc);
393 if (table->table == NULL)
394 {
395 bfd_hash_table_free (table);
396 bfd_set_error (bfd_error_no_memory);
397 return FALSE;
398 }
399 memset ((void *) table->table, 0, alloc);
400 table->size = size;
401 table->entsize = entsize;
402 table->count = 0;
403 table->frozen = 0;
404 table->newfunc = newfunc;
405 return TRUE;
406 }
407
408 /* Create a new hash table with the default number of entries. */
409
410 bfd_boolean
411 bfd_hash_table_init (struct bfd_hash_table *table,
412 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
413 struct bfd_hash_table *,
414 const char *),
415 unsigned int entsize)
416 {
417 return bfd_hash_table_init_n (table, newfunc, entsize,
418 bfd_default_hash_table_size);
419 }
420
421 /* Free a hash table. */
422
423 void
424 bfd_hash_table_free (struct bfd_hash_table *table)
425 {
426 objalloc_free ((struct objalloc *) table->memory);
427 table->memory = NULL;
428 }
429
430 static inline unsigned long
431 bfd_hash_hash (const char *string, unsigned int *lenp)
432 {
433 const unsigned char *s;
434 unsigned long hash;
435 unsigned int len;
436 unsigned int c;
437
438 BFD_ASSERT (string != NULL);
439 hash = 0;
440 len = 0;
441 s = (const unsigned char *) string;
442 while ((c = *s++) != '\0')
443 {
444 hash += c + (c << 17);
445 hash ^= hash >> 2;
446 }
447 len = (s - (const unsigned char *) string) - 1;
448 hash += len + (len << 17);
449 hash ^= hash >> 2;
450 if (lenp != NULL)
451 *lenp = len;
452 return hash;
453 }
454
455 /* Look up a string in a hash table. */
456
457 struct bfd_hash_entry *
458 bfd_hash_lookup (struct bfd_hash_table *table,
459 const char *string,
460 bfd_boolean create,
461 bfd_boolean copy)
462 {
463 unsigned long hash;
464 struct bfd_hash_entry *hashp;
465 unsigned int len;
466 unsigned int _index;
467
468 hash = bfd_hash_hash (string, &len);
469 _index = hash % table->size;
470 for (hashp = table->table[_index];
471 hashp != NULL;
472 hashp = hashp->next)
473 {
474 if (hashp->hash == hash
475 && strcmp (hashp->string, string) == 0)
476 return hashp;
477 }
478
479 if (! create)
480 return NULL;
481
482 if (copy)
483 {
484 char *new_string;
485
486 new_string = (char *) objalloc_alloc ((struct objalloc *) table->memory,
487 len + 1);
488 if (!new_string)
489 {
490 bfd_set_error (bfd_error_no_memory);
491 return NULL;
492 }
493 memcpy (new_string, string, len + 1);
494 string = new_string;
495 }
496
497 return bfd_hash_insert (table, string, hash);
498 }
499
500 /* Insert an entry in a hash table. */
501
502 struct bfd_hash_entry *
503 bfd_hash_insert (struct bfd_hash_table *table,
504 const char *string,
505 unsigned long hash)
506 {
507 struct bfd_hash_entry *hashp;
508 unsigned int _index;
509
510 hashp = (*table->newfunc) (NULL, table, string);
511 if (hashp == NULL)
512 return NULL;
513 hashp->string = string;
514 hashp->hash = hash;
515 _index = hash % table->size;
516 hashp->next = table->table[_index];
517 table->table[_index] = hashp;
518 table->count++;
519
520 if (!table->frozen && table->count > table->size * 3 / 4)
521 {
522 unsigned long newsize = higher_prime_number (table->size);
523 struct bfd_hash_entry **newtable;
524 unsigned int hi;
525 unsigned long alloc = newsize * sizeof (struct bfd_hash_entry *);
526
527 /* If we can't find a higher prime, or we can't possibly alloc
528 that much memory, don't try to grow the table. */
529 if (newsize == 0 || alloc / sizeof (struct bfd_hash_entry *) != newsize)
530 {
531 table->frozen = 1;
532 return hashp;
533 }
534
535 newtable = ((struct bfd_hash_entry **)
536 objalloc_alloc ((struct objalloc *) table->memory, alloc));
537 if (newtable == NULL)
538 {
539 table->frozen = 1;
540 return hashp;
541 }
542 memset (newtable, 0, alloc);
543
544 for (hi = 0; hi < table->size; hi ++)
545 while (table->table[hi])
546 {
547 struct bfd_hash_entry *chain = table->table[hi];
548 struct bfd_hash_entry *chain_end = chain;
549
550 while (chain_end->next && chain_end->next->hash == chain->hash)
551 chain_end = chain_end->next;
552
553 table->table[hi] = chain_end->next;
554 _index = chain->hash % newsize;
555 chain_end->next = newtable[_index];
556 newtable[_index] = chain;
557 }
558 table->table = newtable;
559 table->size = newsize;
560 }
561
562 return hashp;
563 }
564
565 /* Rename an entry in a hash table. */
566
567 void
568 bfd_hash_rename (struct bfd_hash_table *table,
569 const char *string,
570 struct bfd_hash_entry *ent)
571 {
572 unsigned int _index;
573 struct bfd_hash_entry **pph;
574
575 _index = ent->hash % table->size;
576 for (pph = &table->table[_index]; *pph != NULL; pph = &(*pph)->next)
577 if (*pph == ent)
578 break;
579 if (*pph == NULL)
580 abort ();
581
582 *pph = ent->next;
583 ent->string = string;
584 ent->hash = bfd_hash_hash (string, NULL);
585 _index = ent->hash % table->size;
586 ent->next = table->table[_index];
587 table->table[_index] = ent;
588 }
589
590 /* Replace an entry in a hash table. */
591
592 void
593 bfd_hash_replace (struct bfd_hash_table *table,
594 struct bfd_hash_entry *old,
595 struct bfd_hash_entry *nw)
596 {
597 unsigned int _index;
598 struct bfd_hash_entry **pph;
599
600 _index = old->hash % table->size;
601 for (pph = &table->table[_index];
602 (*pph) != NULL;
603 pph = &(*pph)->next)
604 {
605 if (*pph == old)
606 {
607 *pph = nw;
608 return;
609 }
610 }
611
612 abort ();
613 }
614
615 /* Allocate space in a hash table. */
616
617 void *
618 bfd_hash_allocate (struct bfd_hash_table *table,
619 unsigned int size)
620 {
621 void * ret;
622
623 ret = objalloc_alloc ((struct objalloc *) table->memory, size);
624 if (ret == NULL && size != 0)
625 bfd_set_error (bfd_error_no_memory);
626 return ret;
627 }
628
629 /* Base method for creating a new hash table entry. */
630
631 struct bfd_hash_entry *
632 bfd_hash_newfunc (struct bfd_hash_entry *entry,
633 struct bfd_hash_table *table,
634 const char *string ATTRIBUTE_UNUSED)
635 {
636 if (entry == NULL)
637 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
638 sizeof (* entry));
639 return entry;
640 }
641
642 /* Traverse a hash table. */
643
644 void
645 bfd_hash_traverse (struct bfd_hash_table *table,
646 bfd_boolean (*func) (struct bfd_hash_entry *, void *),
647 void * info)
648 {
649 unsigned int i;
650
651 table->frozen = 1;
652 for (i = 0; i < table->size; i++)
653 {
654 struct bfd_hash_entry *p;
655
656 for (p = table->table[i]; p != NULL; p = p->next)
657 if (! (*func) (p, info))
658 goto out;
659 }
660 out:
661 table->frozen = 0;
662 }
663 \f
664 unsigned long
665 bfd_hash_set_default_size (unsigned long hash_size)
666 {
667 /* Extend this prime list if you want more granularity of hash table size. */
668 static const unsigned long hash_size_primes[] =
669 {
670 31, 61, 127, 251, 509, 1021, 2039, 4091, 8191, 16381, 32749, 65537
671 };
672 unsigned int _index;
673
674 /* Work out best prime number near the hash_size. */
675 for (_index = 0; _index < ARRAY_SIZE (hash_size_primes) - 1; ++_index)
676 if (hash_size <= hash_size_primes[_index])
677 break;
678
679 bfd_default_hash_table_size = hash_size_primes[_index];
680 return bfd_default_hash_table_size;
681 }
682 \f
683 /* A few different object file formats (a.out, COFF, ELF) use a string
684 table. These functions support adding strings to a string table,
685 returning the byte offset, and writing out the table.
686
687 Possible improvements:
688 + look for strings matching trailing substrings of other strings
689 + better data structures? balanced trees?
690 + look at reducing memory use elsewhere -- maybe if we didn't have
691 to construct the entire symbol table at once, we could get by
692 with smaller amounts of VM? (What effect does that have on the
693 string table reductions?) */
694
695 /* An entry in the strtab hash table. */
696
697 struct strtab_hash_entry
698 {
699 struct bfd_hash_entry root;
700 /* Index in string table. */
701 bfd_size_type index;
702 /* Next string in strtab. */
703 struct strtab_hash_entry *next;
704 };
705
706 /* The strtab hash table. */
707
708 struct bfd_strtab_hash
709 {
710 struct bfd_hash_table table;
711 /* Size of strtab--also next available index. */
712 bfd_size_type size;
713 /* First string in strtab. */
714 struct strtab_hash_entry *first;
715 /* Last string in strtab. */
716 struct strtab_hash_entry *last;
717 /* Whether to precede strings with a two byte length, as in the
718 XCOFF .debug section. */
719 bfd_boolean xcoff;
720 };
721
722 /* Routine to create an entry in a strtab. */
723
724 static struct bfd_hash_entry *
725 strtab_hash_newfunc (struct bfd_hash_entry *entry,
726 struct bfd_hash_table *table,
727 const char *string)
728 {
729 struct strtab_hash_entry *ret = (struct strtab_hash_entry *) entry;
730
731 /* Allocate the structure if it has not already been allocated by a
732 subclass. */
733 if (ret == NULL)
734 ret = (struct strtab_hash_entry *) bfd_hash_allocate (table,
735 sizeof (* ret));
736 if (ret == NULL)
737 return NULL;
738
739 /* Call the allocation method of the superclass. */
740 ret = (struct strtab_hash_entry *)
741 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string);
742
743 if (ret)
744 {
745 /* Initialize the local fields. */
746 ret->index = (bfd_size_type) -1;
747 ret->next = NULL;
748 }
749
750 return (struct bfd_hash_entry *) ret;
751 }
752
753 /* Look up an entry in an strtab. */
754
755 #define strtab_hash_lookup(t, string, create, copy) \
756 ((struct strtab_hash_entry *) \
757 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
758
759 /* Create a new strtab. */
760
761 struct bfd_strtab_hash *
762 _bfd_stringtab_init (void)
763 {
764 struct bfd_strtab_hash *table;
765 size_t amt = sizeof (* table);
766
767 table = (struct bfd_strtab_hash *) bfd_malloc (amt);
768 if (table == NULL)
769 return NULL;
770
771 if (!bfd_hash_table_init (&table->table, strtab_hash_newfunc,
772 sizeof (struct strtab_hash_entry)))
773 {
774 free (table);
775 return NULL;
776 }
777
778 table->size = 0;
779 table->first = NULL;
780 table->last = NULL;
781 table->xcoff = FALSE;
782
783 return table;
784 }
785
786 /* Create a new strtab in which the strings are output in the format
787 used in the XCOFF .debug section: a two byte length precedes each
788 string. */
789
790 struct bfd_strtab_hash *
791 _bfd_xcoff_stringtab_init (void)
792 {
793 struct bfd_strtab_hash *ret;
794
795 ret = _bfd_stringtab_init ();
796 if (ret != NULL)
797 ret->xcoff = TRUE;
798 return ret;
799 }
800
801 /* Free a strtab. */
802
803 void
804 _bfd_stringtab_free (struct bfd_strtab_hash *table)
805 {
806 bfd_hash_table_free (&table->table);
807 free (table);
808 }
809
810 /* Get the index of a string in a strtab, adding it if it is not
811 already present. If HASH is FALSE, we don't really use the hash
812 table, and we don't eliminate duplicate strings. If COPY is true
813 then store a copy of STR if creating a new entry. */
814
815 bfd_size_type
816 _bfd_stringtab_add (struct bfd_strtab_hash *tab,
817 const char *str,
818 bfd_boolean hash,
819 bfd_boolean copy)
820 {
821 struct strtab_hash_entry *entry;
822
823 if (hash)
824 {
825 entry = strtab_hash_lookup (tab, str, TRUE, copy);
826 if (entry == NULL)
827 return (bfd_size_type) -1;
828 }
829 else
830 {
831 entry = (struct strtab_hash_entry *) bfd_hash_allocate (&tab->table,
832 sizeof (* entry));
833 if (entry == NULL)
834 return (bfd_size_type) -1;
835 if (! copy)
836 entry->root.string = str;
837 else
838 {
839 size_t len = strlen (str) + 1;
840 char *n;
841
842 n = (char *) bfd_hash_allocate (&tab->table, len);
843 if (n == NULL)
844 return (bfd_size_type) -1;
845 memcpy (n, str, len);
846 entry->root.string = n;
847 }
848 entry->index = (bfd_size_type) -1;
849 entry->next = NULL;
850 }
851
852 if (entry->index == (bfd_size_type) -1)
853 {
854 entry->index = tab->size;
855 tab->size += strlen (str) + 1;
856 if (tab->xcoff)
857 {
858 entry->index += 2;
859 tab->size += 2;
860 }
861 if (tab->first == NULL)
862 tab->first = entry;
863 else
864 tab->last->next = entry;
865 tab->last = entry;
866 }
867
868 return entry->index;
869 }
870
871 /* Get the number of bytes in a strtab. */
872
873 bfd_size_type
874 _bfd_stringtab_size (struct bfd_strtab_hash *tab)
875 {
876 return tab->size;
877 }
878
879 /* Write out a strtab. ABFD must already be at the right location in
880 the file. */
881
882 bfd_boolean
883 _bfd_stringtab_emit (bfd *abfd, struct bfd_strtab_hash *tab)
884 {
885 bfd_boolean xcoff;
886 struct strtab_hash_entry *entry;
887
888 xcoff = tab->xcoff;
889
890 for (entry = tab->first; entry != NULL; entry = entry->next)
891 {
892 const char *str;
893 size_t len;
894
895 str = entry->root.string;
896 len = strlen (str) + 1;
897
898 if (xcoff)
899 {
900 bfd_byte buf[2];
901
902 /* The output length includes the null byte. */
903 bfd_put_16 (abfd, (bfd_vma) len, buf);
904 if (bfd_bwrite ((void *) buf, (bfd_size_type) 2, abfd) != 2)
905 return FALSE;
906 }
907
908 if (bfd_bwrite ((void *) str, (bfd_size_type) len, abfd) != len)
909 return FALSE;
910 }
911
912 return TRUE;
913 }