]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/section.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / bfd / section.c
1 /* Object file "section" support for the BFD library.
2 Copyright (C) 1990-2020 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 Sections
25
26 The raw data contained within a BFD is maintained through the
27 section abstraction. A single BFD may have any number of
28 sections. It keeps hold of them by pointing to the first;
29 each one points to the next in the list.
30
31 Sections are supported in BFD in <<section.c>>.
32
33 @menu
34 @* Section Input::
35 @* Section Output::
36 @* typedef asection::
37 @* section prototypes::
38 @end menu
39
40 INODE
41 Section Input, Section Output, Sections, Sections
42 SUBSECTION
43 Section input
44
45 When a BFD is opened for reading, the section structures are
46 created and attached to the BFD.
47
48 Each section has a name which describes the section in the
49 outside world---for example, <<a.out>> would contain at least
50 three sections, called <<.text>>, <<.data>> and <<.bss>>.
51
52 Names need not be unique; for example a COFF file may have several
53 sections named <<.data>>.
54
55 Sometimes a BFD will contain more than the ``natural'' number of
56 sections. A back end may attach other sections containing
57 constructor data, or an application may add a section (using
58 <<bfd_make_section>>) to the sections attached to an already open
59 BFD. For example, the linker creates an extra section
60 <<COMMON>> for each input file's BFD to hold information about
61 common storage.
62
63 The raw data is not necessarily read in when
64 the section descriptor is created. Some targets may leave the
65 data in place until a <<bfd_get_section_contents>> call is
66 made. Other back ends may read in all the data at once. For
67 example, an S-record file has to be read once to determine the
68 size of the data.
69
70 INODE
71 Section Output, typedef asection, Section Input, Sections
72
73 SUBSECTION
74 Section output
75
76 To write a new object style BFD, the various sections to be
77 written have to be created. They are attached to the BFD in
78 the same way as input sections; data is written to the
79 sections using <<bfd_set_section_contents>>.
80
81 Any program that creates or combines sections (e.g., the assembler
82 and linker) must use the <<asection>> fields <<output_section>> and
83 <<output_offset>> to indicate the file sections to which each
84 section must be written. (If the section is being created from
85 scratch, <<output_section>> should probably point to the section
86 itself and <<output_offset>> should probably be zero.)
87
88 The data to be written comes from input sections attached
89 (via <<output_section>> pointers) to
90 the output sections. The output section structure can be
91 considered a filter for the input section: the output section
92 determines the vma of the output data and the name, but the
93 input section determines the offset into the output section of
94 the data to be written.
95
96 E.g., to create a section "O", starting at 0x100, 0x123 long,
97 containing two subsections, "A" at offset 0x0 (i.e., at vma
98 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
99 structures would look like:
100
101 | section name "A"
102 | output_offset 0x00
103 | size 0x20
104 | output_section -----------> section name "O"
105 | | vma 0x100
106 | section name "B" | size 0x123
107 | output_offset 0x20 |
108 | size 0x103 |
109 | output_section --------|
110
111 SUBSECTION
112 Link orders
113
114 The data within a section is stored in a @dfn{link_order}.
115 These are much like the fixups in <<gas>>. The link_order
116 abstraction allows a section to grow and shrink within itself.
117
118 A link_order knows how big it is, and which is the next
119 link_order and where the raw data for it is; it also points to
120 a list of relocations which apply to it.
121
122 The link_order is used by the linker to perform relaxing on
123 final code. The compiler creates code which is as big as
124 necessary to make it work without relaxing, and the user can
125 select whether to relax. Sometimes relaxing takes a lot of
126 time. The linker runs around the relocations to see if any
127 are attached to data which can be shrunk, if so it does it on
128 a link_order by link_order basis.
129
130 */
131
132 #include "sysdep.h"
133 #include "bfd.h"
134 #include "libbfd.h"
135 #include "bfdlink.h"
136
137 /*
138 DOCDD
139 INODE
140 typedef asection, section prototypes, Section Output, Sections
141 SUBSECTION
142 typedef asection
143
144 Here is the section structure:
145
146 CODE_FRAGMENT
147 .
148 .typedef struct bfd_section
149 .{
150 . {* The name of the section; the name isn't a copy, the pointer is
151 . the same as that passed to bfd_make_section. *}
152 . const char *name;
153 .
154 . {* A unique sequence number. *}
155 . unsigned int id;
156 .
157 . {* A unique section number which can be used by assembler to
158 . distinguish different sections with the same section name. *}
159 . unsigned int section_id;
160 .
161 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
162 . unsigned int index;
163 .
164 . {* The next section in the list belonging to the BFD, or NULL. *}
165 . struct bfd_section *next;
166 .
167 . {* The previous section in the list belonging to the BFD, or NULL. *}
168 . struct bfd_section *prev;
169 .
170 . {* The field flags contains attributes of the section. Some
171 . flags are read in from the object file, and some are
172 . synthesized from other information. *}
173 . flagword flags;
174 .
175 .#define SEC_NO_FLAGS 0x0
176 .
177 . {* Tells the OS to allocate space for this section when loading.
178 . This is clear for a section containing debug information only. *}
179 .#define SEC_ALLOC 0x1
180 .
181 . {* Tells the OS to load the section from the file when loading.
182 . This is clear for a .bss section. *}
183 .#define SEC_LOAD 0x2
184 .
185 . {* The section contains data still to be relocated, so there is
186 . some relocation information too. *}
187 .#define SEC_RELOC 0x4
188 .
189 . {* A signal to the OS that the section contains read only data. *}
190 .#define SEC_READONLY 0x8
191 .
192 . {* The section contains code only. *}
193 .#define SEC_CODE 0x10
194 .
195 . {* The section contains data only. *}
196 .#define SEC_DATA 0x20
197 .
198 . {* The section will reside in ROM. *}
199 .#define SEC_ROM 0x40
200 .
201 . {* The section contains constructor information. This section
202 . type is used by the linker to create lists of constructors and
203 . destructors used by <<g++>>. When a back end sees a symbol
204 . which should be used in a constructor list, it creates a new
205 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
206 . the symbol to it, and builds a relocation. To build the lists
207 . of constructors, all the linker has to do is catenate all the
208 . sections called <<__CTOR_LIST__>> and relocate the data
209 . contained within - exactly the operations it would peform on
210 . standard data. *}
211 .#define SEC_CONSTRUCTOR 0x80
212 .
213 . {* The section has contents - a data section could be
214 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
215 . <<SEC_HAS_CONTENTS>> *}
216 .#define SEC_HAS_CONTENTS 0x100
217 .
218 . {* An instruction to the linker to not output the section
219 . even if it has information which would normally be written. *}
220 .#define SEC_NEVER_LOAD 0x200
221 .
222 . {* The section contains thread local data. *}
223 .#define SEC_THREAD_LOCAL 0x400
224 .
225 . {* The section's size is fixed. Generic linker code will not
226 . recalculate it and it is up to whoever has set this flag to
227 . get the size right. *}
228 .#define SEC_FIXED_SIZE 0x800
229 .
230 . {* The section contains common symbols (symbols may be defined
231 . multiple times, the value of a symbol is the amount of
232 . space it requires, and the largest symbol value is the one
233 . used). Most targets have exactly one of these (which we
234 . translate to bfd_com_section_ptr), but ECOFF has two. *}
235 .#define SEC_IS_COMMON 0x1000
236 .
237 . {* The section contains only debugging information. For
238 . example, this is set for ELF .debug and .stab sections.
239 . strip tests this flag to see if a section can be
240 . discarded. *}
241 .#define SEC_DEBUGGING 0x2000
242 .
243 . {* The contents of this section are held in memory pointed to
244 . by the contents field. This is checked by bfd_get_section_contents,
245 . and the data is retrieved from memory if appropriate. *}
246 .#define SEC_IN_MEMORY 0x4000
247 .
248 . {* The contents of this section are to be excluded by the
249 . linker for executable and shared objects unless those
250 . objects are to be further relocated. *}
251 .#define SEC_EXCLUDE 0x8000
252 .
253 . {* The contents of this section are to be sorted based on the sum of
254 . the symbol and addend values specified by the associated relocation
255 . entries. Entries without associated relocation entries will be
256 . appended to the end of the section in an unspecified order. *}
257 .#define SEC_SORT_ENTRIES 0x10000
258 .
259 . {* When linking, duplicate sections of the same name should be
260 . discarded, rather than being combined into a single section as
261 . is usually done. This is similar to how common symbols are
262 . handled. See SEC_LINK_DUPLICATES below. *}
263 .#define SEC_LINK_ONCE 0x20000
264 .
265 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
266 . should handle duplicate sections. *}
267 .#define SEC_LINK_DUPLICATES 0xc0000
268 .
269 . {* This value for SEC_LINK_DUPLICATES means that duplicate
270 . sections with the same name should simply be discarded. *}
271 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
272 .
273 . {* This value for SEC_LINK_DUPLICATES means that the linker
274 . should warn if there are any duplicate sections, although
275 . it should still only link one copy. *}
276 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
277 .
278 . {* This value for SEC_LINK_DUPLICATES means that the linker
279 . should warn if any duplicate sections are a different size. *}
280 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
281 .
282 . {* This value for SEC_LINK_DUPLICATES means that the linker
283 . should warn if any duplicate sections contain different
284 . contents. *}
285 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
286 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
287 .
288 . {* This section was created by the linker as part of dynamic
289 . relocation or other arcane processing. It is skipped when
290 . going through the first-pass output, trusting that someone
291 . else up the line will take care of it later. *}
292 .#define SEC_LINKER_CREATED 0x100000
293 .
294 . {* This section contains a section ID to distinguish different
295 . sections with the same section name. *}
296 .#define SEC_ASSEMBLER_SECTION_ID 0x100000
297 .
298 . {* This section should not be subject to garbage collection.
299 . Also set to inform the linker that this section should not be
300 . listed in the link map as discarded. *}
301 .#define SEC_KEEP 0x200000
302 .
303 . {* This section contains "short" data, and should be placed
304 . "near" the GP. *}
305 .#define SEC_SMALL_DATA 0x400000
306 .
307 . {* Attempt to merge identical entities in the section.
308 . Entity size is given in the entsize field. *}
309 .#define SEC_MERGE 0x800000
310 .
311 . {* If given with SEC_MERGE, entities to merge are zero terminated
312 . strings where entsize specifies character size instead of fixed
313 . size entries. *}
314 .#define SEC_STRINGS 0x1000000
315 .
316 . {* This section contains data about section groups. *}
317 .#define SEC_GROUP 0x2000000
318 .
319 . {* The section is a COFF shared library section. This flag is
320 . only for the linker. If this type of section appears in
321 . the input file, the linker must copy it to the output file
322 . without changing the vma or size. FIXME: Although this
323 . was originally intended to be general, it really is COFF
324 . specific (and the flag was renamed to indicate this). It
325 . might be cleaner to have some more general mechanism to
326 . allow the back end to control what the linker does with
327 . sections. *}
328 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
329 .
330 . {* This input section should be copied to output in reverse order
331 . as an array of pointers. This is for ELF linker internal use
332 . only. *}
333 .#define SEC_ELF_REVERSE_COPY 0x4000000
334 .
335 . {* This section contains data which may be shared with other
336 . executables or shared objects. This is for COFF only. *}
337 .#define SEC_COFF_SHARED 0x8000000
338 .
339 . {* This section should be compressed. This is for ELF linker
340 . internal use only. *}
341 .#define SEC_ELF_COMPRESS 0x8000000
342 .
343 . {* When a section with this flag is being linked, then if the size of
344 . the input section is less than a page, it should not cross a page
345 . boundary. If the size of the input section is one page or more,
346 . it should be aligned on a page boundary. This is for TI
347 . TMS320C54X only. *}
348 .#define SEC_TIC54X_BLOCK 0x10000000
349 .
350 . {* This section should be renamed. This is for ELF linker
351 . internal use only. *}
352 .#define SEC_ELF_RENAME 0x10000000
353 .
354 . {* Conditionally link this section; do not link if there are no
355 . references found to any symbol in the section. This is for TI
356 . TMS320C54X only. *}
357 .#define SEC_TIC54X_CLINK 0x20000000
358 .
359 . {* This section contains vliw code. This is for Toshiba MeP only. *}
360 .#define SEC_MEP_VLIW 0x20000000
361 .
362 . {* All symbols, sizes and relocations in this section are octets
363 . instead of bytes. Required for DWARF debug sections as DWARF
364 . information is organized in octets, not bytes. *}
365 .#define SEC_ELF_OCTETS 0x40000000
366 .
367 . {* Indicate that section has the no read flag set. This happens
368 . when memory read flag isn't set. *}
369 .#define SEC_COFF_NOREAD 0x40000000
370 .
371 . {* Indicate that section has the purecode flag set. *}
372 .#define SEC_ELF_PURECODE 0x80000000
373 .
374 . {* End of section flags. *}
375 .
376 . {* Some internal packed boolean fields. *}
377 .
378 . {* See the vma field. *}
379 . unsigned int user_set_vma : 1;
380 .
381 . {* A mark flag used by some of the linker backends. *}
382 . unsigned int linker_mark : 1;
383 .
384 . {* Another mark flag used by some of the linker backends. Set for
385 . output sections that have an input section. *}
386 . unsigned int linker_has_input : 1;
387 .
388 . {* Mark flag used by some linker backends for garbage collection. *}
389 . unsigned int gc_mark : 1;
390 .
391 . {* Section compression status. *}
392 . unsigned int compress_status : 2;
393 .#define COMPRESS_SECTION_NONE 0
394 .#define COMPRESS_SECTION_DONE 1
395 .#define DECOMPRESS_SECTION_SIZED 2
396 .
397 . {* The following flags are used by the ELF linker. *}
398 .
399 . {* Mark sections which have been allocated to segments. *}
400 . unsigned int segment_mark : 1;
401 .
402 . {* Type of sec_info information. *}
403 . unsigned int sec_info_type:3;
404 .#define SEC_INFO_TYPE_NONE 0
405 .#define SEC_INFO_TYPE_STABS 1
406 .#define SEC_INFO_TYPE_MERGE 2
407 .#define SEC_INFO_TYPE_EH_FRAME 3
408 .#define SEC_INFO_TYPE_JUST_SYMS 4
409 .#define SEC_INFO_TYPE_TARGET 5
410 .#define SEC_INFO_TYPE_EH_FRAME_ENTRY 6
411 .
412 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
413 . unsigned int use_rela_p:1;
414 .
415 . {* Bits used by various backends. The generic code doesn't touch
416 . these fields. *}
417 .
418 . unsigned int sec_flg0:1;
419 . unsigned int sec_flg1:1;
420 . unsigned int sec_flg2:1;
421 . unsigned int sec_flg3:1;
422 . unsigned int sec_flg4:1;
423 . unsigned int sec_flg5:1;
424 .
425 . {* End of internal packed boolean fields. *}
426 .
427 . {* The virtual memory address of the section - where it will be
428 . at run time. The symbols are relocated against this. The
429 . user_set_vma flag is maintained by bfd; if it's not set, the
430 . backend can assign addresses (for example, in <<a.out>>, where
431 . the default address for <<.data>> is dependent on the specific
432 . target and various flags). *}
433 . bfd_vma vma;
434 .
435 . {* The load address of the section - where it would be in a
436 . rom image; really only used for writing section header
437 . information. *}
438 . bfd_vma lma;
439 .
440 . {* The size of the section in *octets*, as it will be output.
441 . Contains a value even if the section has no contents (e.g., the
442 . size of <<.bss>>). *}
443 . bfd_size_type size;
444 .
445 . {* For input sections, the original size on disk of the section, in
446 . octets. This field should be set for any section whose size is
447 . changed by linker relaxation. It is required for sections where
448 . the linker relaxation scheme doesn't cache altered section and
449 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
450 . targets), and thus the original size needs to be kept to read the
451 . section multiple times. For output sections, rawsize holds the
452 . section size calculated on a previous linker relaxation pass. *}
453 . bfd_size_type rawsize;
454 .
455 . {* The compressed size of the section in octets. *}
456 . bfd_size_type compressed_size;
457 .
458 . {* Relaxation table. *}
459 . struct relax_table *relax;
460 .
461 . {* Count of used relaxation table entries. *}
462 . int relax_count;
463 .
464 .
465 . {* If this section is going to be output, then this value is the
466 . offset in *bytes* into the output section of the first byte in the
467 . input section (byte ==> smallest addressable unit on the
468 . target). In most cases, if this was going to start at the
469 . 100th octet (8-bit quantity) in the output section, this value
470 . would be 100. However, if the target byte size is 16 bits
471 . (bfd_octets_per_byte is "2"), this value would be 50. *}
472 . bfd_vma output_offset;
473 .
474 . {* The output section through which to map on output. *}
475 . struct bfd_section *output_section;
476 .
477 . {* The alignment requirement of the section, as an exponent of 2 -
478 . e.g., 3 aligns to 2^3 (or 8). *}
479 . unsigned int alignment_power;
480 .
481 . {* If an input section, a pointer to a vector of relocation
482 . records for the data in this section. *}
483 . struct reloc_cache_entry *relocation;
484 .
485 . {* If an output section, a pointer to a vector of pointers to
486 . relocation records for the data in this section. *}
487 . struct reloc_cache_entry **orelocation;
488 .
489 . {* The number of relocation records in one of the above. *}
490 . unsigned reloc_count;
491 .
492 . {* Information below is back end specific - and not always used
493 . or updated. *}
494 .
495 . {* File position of section data. *}
496 . file_ptr filepos;
497 .
498 . {* File position of relocation info. *}
499 . file_ptr rel_filepos;
500 .
501 . {* File position of line data. *}
502 . file_ptr line_filepos;
503 .
504 . {* Pointer to data for applications. *}
505 . void *userdata;
506 .
507 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
508 . contents. *}
509 . unsigned char *contents;
510 .
511 . {* Attached line number information. *}
512 . alent *lineno;
513 .
514 . {* Number of line number records. *}
515 . unsigned int lineno_count;
516 .
517 . {* Entity size for merging purposes. *}
518 . unsigned int entsize;
519 .
520 . {* Points to the kept section if this section is a link-once section,
521 . and is discarded. *}
522 . struct bfd_section *kept_section;
523 .
524 . {* When a section is being output, this value changes as more
525 . linenumbers are written out. *}
526 . file_ptr moving_line_filepos;
527 .
528 . {* What the section number is in the target world. *}
529 . int target_index;
530 .
531 . void *used_by_bfd;
532 .
533 . {* If this is a constructor section then here is a list of the
534 . relocations created to relocate items within it. *}
535 . struct relent_chain *constructor_chain;
536 .
537 . {* The BFD which owns the section. *}
538 . bfd *owner;
539 .
540 . {* A symbol which points at this section only. *}
541 . struct bfd_symbol *symbol;
542 . struct bfd_symbol **symbol_ptr_ptr;
543 .
544 . {* Early in the link process, map_head and map_tail are used to build
545 . a list of input sections attached to an output section. Later,
546 . output sections use these fields for a list of bfd_link_order
547 . structs. The linked_to_symbol_name field is for ELF assembler
548 . internal use. *}
549 . union {
550 . struct bfd_link_order *link_order;
551 . struct bfd_section *s;
552 . const char *linked_to_symbol_name;
553 . } map_head, map_tail;
554 . {* Points to the output section this section is already assigned to, if any.
555 . This is used when support for non-contiguous memory regions is enabled. *}
556 . struct bfd_section *already_assigned;
557 .
558 .} asection;
559 .
560 .{* Relax table contains information about instructions which can
561 . be removed by relaxation -- replacing a long address with a
562 . short address. *}
563 .struct relax_table {
564 . {* Address where bytes may be deleted. *}
565 . bfd_vma addr;
566 .
567 . {* Number of bytes to be deleted. *}
568 . int size;
569 .};
570 .
571 .static inline const char *
572 .bfd_section_name (const asection *sec)
573 .{
574 . return sec->name;
575 .}
576 .
577 .static inline bfd_size_type
578 .bfd_section_size (const asection *sec)
579 .{
580 . return sec->size;
581 .}
582 .
583 .static inline bfd_vma
584 .bfd_section_vma (const asection *sec)
585 .{
586 . return sec->vma;
587 .}
588 .
589 .static inline bfd_vma
590 .bfd_section_lma (const asection *sec)
591 .{
592 . return sec->lma;
593 .}
594 .
595 .static inline unsigned int
596 .bfd_section_alignment (const asection *sec)
597 .{
598 . return sec->alignment_power;
599 .}
600 .
601 .static inline flagword
602 .bfd_section_flags (const asection *sec)
603 .{
604 . return sec->flags;
605 .}
606 .
607 .static inline void *
608 .bfd_section_userdata (const asection *sec)
609 .{
610 . return sec->userdata;
611 .}
612 .static inline bfd_boolean
613 .bfd_is_com_section (const asection *sec)
614 .{
615 . return (sec->flags & SEC_IS_COMMON) != 0;
616 .}
617 .
618 .{* Note: the following are provided as inline functions rather than macros
619 . because not all callers use the return value. A macro implementation
620 . would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some
621 . compilers will complain about comma expressions that have no effect. *}
622 .static inline bfd_boolean
623 .bfd_set_section_userdata (asection *sec, void *val)
624 .{
625 . sec->userdata = val;
626 . return TRUE;
627 .}
628 .
629 .static inline bfd_boolean
630 .bfd_set_section_vma (asection *sec, bfd_vma val)
631 .{
632 . sec->vma = sec->lma = val;
633 . sec->user_set_vma = TRUE;
634 . return TRUE;
635 .}
636 .
637 .static inline bfd_boolean
638 .bfd_set_section_lma (asection *sec, bfd_vma val)
639 .{
640 . sec->lma = val;
641 . return TRUE;
642 .}
643 .
644 .static inline bfd_boolean
645 .bfd_set_section_alignment (asection *sec, unsigned int val)
646 .{
647 . sec->alignment_power = val;
648 . return TRUE;
649 .}
650 .
651 .{* These sections are global, and are managed by BFD. The application
652 . and target back end are not permitted to change the values in
653 . these sections. *}
654 .extern asection _bfd_std_section[4];
655 .
656 .#define BFD_ABS_SECTION_NAME "*ABS*"
657 .#define BFD_UND_SECTION_NAME "*UND*"
658 .#define BFD_COM_SECTION_NAME "*COM*"
659 .#define BFD_IND_SECTION_NAME "*IND*"
660 .
661 .{* Pointer to the common section. *}
662 .#define bfd_com_section_ptr (&_bfd_std_section[0])
663 .{* Pointer to the undefined section. *}
664 .#define bfd_und_section_ptr (&_bfd_std_section[1])
665 .{* Pointer to the absolute section. *}
666 .#define bfd_abs_section_ptr (&_bfd_std_section[2])
667 .{* Pointer to the indirect section. *}
668 .#define bfd_ind_section_ptr (&_bfd_std_section[3])
669 .
670 .static inline bfd_boolean
671 .bfd_is_und_section (const asection *sec)
672 .{
673 . return sec == bfd_und_section_ptr;
674 .}
675 .
676 .static inline bfd_boolean
677 .bfd_is_abs_section (const asection *sec)
678 .{
679 . return sec == bfd_abs_section_ptr;
680 .}
681 .
682 .static inline bfd_boolean
683 .bfd_is_ind_section (const asection *sec)
684 .{
685 . return sec == bfd_ind_section_ptr;
686 .}
687 .
688 .static inline bfd_boolean
689 .bfd_is_const_section (const asection *sec)
690 .{
691 . return (sec >= _bfd_std_section
692 . && sec < _bfd_std_section + (sizeof (_bfd_std_section)
693 . / sizeof (_bfd_std_section[0])));
694 .}
695 .
696 .{* Return TRUE if input section SEC has been discarded. *}
697 .static inline bfd_boolean
698 .discarded_section (const asection *sec)
699 .{
700 . return (!bfd_is_abs_section (sec)
701 . && bfd_is_abs_section (sec->output_section)
702 . && sec->sec_info_type != SEC_INFO_TYPE_MERGE
703 . && sec->sec_info_type != SEC_INFO_TYPE_JUST_SYMS);
704 .}
705 .
706 .#define BFD_FAKE_SECTION(SEC, SYM, NAME, IDX, FLAGS) \
707 . {* name, id, section_id, index, next, prev, flags, user_set_vma, *} \
708 . { NAME, IDX, 0, 0, NULL, NULL, FLAGS, 0, \
709 . \
710 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \
711 . 0, 0, 1, 0, \
712 . \
713 . {* segment_mark, sec_info_type, use_rela_p, *} \
714 . 0, 0, 0, \
715 . \
716 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \
717 . 0, 0, 0, 0, 0, 0, \
718 . \
719 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \
720 . 0, 0, 0, 0, 0, 0, 0, \
721 . \
722 . {* output_offset, output_section, alignment_power, *} \
723 . 0, &SEC, 0, \
724 . \
725 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
726 . NULL, NULL, 0, 0, 0, \
727 . \
728 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
729 . 0, NULL, NULL, NULL, 0, \
730 . \
731 . {* entsize, kept_section, moving_line_filepos, *} \
732 . 0, NULL, 0, \
733 . \
734 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
735 . 0, NULL, NULL, NULL, \
736 . \
737 . {* symbol, symbol_ptr_ptr, *} \
738 . (struct bfd_symbol *) SYM, &SEC.symbol, \
739 . \
740 . {* map_head, map_tail, already_assigned *} \
741 . { NULL }, { NULL }, NULL \
742 . \
743 . }
744 .
745 .{* We use a macro to initialize the static asymbol structures because
746 . traditional C does not permit us to initialize a union member while
747 . gcc warns if we don't initialize it.
748 . the_bfd, name, value, attr, section [, udata] *}
749 .#ifdef __STDC__
750 .#define GLOBAL_SYM_INIT(NAME, SECTION) \
751 . { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }}
752 .#else
753 .#define GLOBAL_SYM_INIT(NAME, SECTION) \
754 . { 0, NAME, 0, BSF_SECTION_SYM, SECTION }
755 .#endif
756 .
757 */
758
759 /* These symbols are global, not specific to any BFD. Therefore, anything
760 that tries to change them is broken, and should be repaired. */
761
762 static const asymbol global_syms[] =
763 {
764 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr),
765 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr),
766 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr),
767 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr)
768 };
769
770 #define STD_SECTION(NAME, IDX, FLAGS) \
771 BFD_FAKE_SECTION(_bfd_std_section[IDX], &global_syms[IDX], NAME, IDX, FLAGS)
772
773 asection _bfd_std_section[] = {
774 STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON),
775 STD_SECTION (BFD_UND_SECTION_NAME, 1, 0),
776 STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0),
777 STD_SECTION (BFD_IND_SECTION_NAME, 3, 0)
778 };
779 #undef STD_SECTION
780
781 /* Initialize an entry in the section hash table. */
782
783 struct bfd_hash_entry *
784 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
785 struct bfd_hash_table *table,
786 const char *string)
787 {
788 /* Allocate the structure if it has not already been allocated by a
789 subclass. */
790 if (entry == NULL)
791 {
792 entry = (struct bfd_hash_entry *)
793 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
794 if (entry == NULL)
795 return entry;
796 }
797
798 /* Call the allocation method of the superclass. */
799 entry = bfd_hash_newfunc (entry, table, string);
800 if (entry != NULL)
801 memset (&((struct section_hash_entry *) entry)->section, 0,
802 sizeof (asection));
803
804 return entry;
805 }
806
807 #define section_hash_lookup(table, string, create, copy) \
808 ((struct section_hash_entry *) \
809 bfd_hash_lookup ((table), (string), (create), (copy)))
810
811 /* Create a symbol whose only job is to point to this section. This
812 is useful for things like relocs which are relative to the base
813 of a section. */
814
815 bfd_boolean
816 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
817 {
818 newsect->symbol = bfd_make_empty_symbol (abfd);
819 if (newsect->symbol == NULL)
820 return FALSE;
821
822 newsect->symbol->name = newsect->name;
823 newsect->symbol->value = 0;
824 newsect->symbol->section = newsect;
825 newsect->symbol->flags = BSF_SECTION_SYM;
826
827 newsect->symbol_ptr_ptr = &newsect->symbol;
828 return TRUE;
829 }
830
831 unsigned int _bfd_section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
832
833 /* Initializes a new section. NEWSECT->NAME is already set. */
834
835 static asection *
836 bfd_section_init (bfd *abfd, asection *newsect)
837 {
838 newsect->id = _bfd_section_id;
839 newsect->index = abfd->section_count;
840 newsect->owner = abfd;
841
842 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
843 return NULL;
844
845 _bfd_section_id++;
846 abfd->section_count++;
847 bfd_section_list_append (abfd, newsect);
848 return newsect;
849 }
850
851 /*
852 DOCDD
853 INODE
854 section prototypes, , typedef asection, Sections
855 SUBSECTION
856 Section prototypes
857
858 These are the functions exported by the section handling part of BFD.
859 */
860
861 /*
862 FUNCTION
863 bfd_section_list_clear
864
865 SYNOPSIS
866 void bfd_section_list_clear (bfd *);
867
868 DESCRIPTION
869 Clears the section list, and also resets the section count and
870 hash table entries.
871 */
872
873 void
874 bfd_section_list_clear (bfd *abfd)
875 {
876 abfd->sections = NULL;
877 abfd->section_last = NULL;
878 abfd->section_count = 0;
879 memset (abfd->section_htab.table, 0,
880 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
881 abfd->section_htab.count = 0;
882 }
883
884 /*
885 FUNCTION
886 bfd_get_section_by_name
887
888 SYNOPSIS
889 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
890
891 DESCRIPTION
892 Return the most recently created section attached to @var{abfd}
893 named @var{name}. Return NULL if no such section exists.
894 */
895
896 asection *
897 bfd_get_section_by_name (bfd *abfd, const char *name)
898 {
899 struct section_hash_entry *sh;
900
901 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
902 if (sh != NULL)
903 return &sh->section;
904
905 return NULL;
906 }
907
908 /*
909 FUNCTION
910 bfd_get_next_section_by_name
911
912 SYNOPSIS
913 asection *bfd_get_next_section_by_name (bfd *ibfd, asection *sec);
914
915 DESCRIPTION
916 Given @var{sec} is a section returned by @code{bfd_get_section_by_name},
917 return the next most recently created section attached to the same
918 BFD with the same name, or if no such section exists in the same BFD and
919 IBFD is non-NULL, the next section with the same name in any input
920 BFD following IBFD. Return NULL on finding no section.
921 */
922
923 asection *
924 bfd_get_next_section_by_name (bfd *ibfd, asection *sec)
925 {
926 struct section_hash_entry *sh;
927 const char *name;
928 unsigned long hash;
929
930 sh = ((struct section_hash_entry *)
931 ((char *) sec - offsetof (struct section_hash_entry, section)));
932
933 hash = sh->root.hash;
934 name = sec->name;
935 for (sh = (struct section_hash_entry *) sh->root.next;
936 sh != NULL;
937 sh = (struct section_hash_entry *) sh->root.next)
938 if (sh->root.hash == hash
939 && strcmp (sh->root.string, name) == 0)
940 return &sh->section;
941
942 if (ibfd != NULL)
943 {
944 while ((ibfd = ibfd->link.next) != NULL)
945 {
946 asection *s = bfd_get_section_by_name (ibfd, name);
947 if (s != NULL)
948 return s;
949 }
950 }
951
952 return NULL;
953 }
954
955 /*
956 FUNCTION
957 bfd_get_linker_section
958
959 SYNOPSIS
960 asection *bfd_get_linker_section (bfd *abfd, const char *name);
961
962 DESCRIPTION
963 Return the linker created section attached to @var{abfd}
964 named @var{name}. Return NULL if no such section exists.
965 */
966
967 asection *
968 bfd_get_linker_section (bfd *abfd, const char *name)
969 {
970 asection *sec = bfd_get_section_by_name (abfd, name);
971
972 while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0)
973 sec = bfd_get_next_section_by_name (NULL, sec);
974 return sec;
975 }
976
977 /*
978 FUNCTION
979 bfd_get_section_by_name_if
980
981 SYNOPSIS
982 asection *bfd_get_section_by_name_if
983 (bfd *abfd,
984 const char *name,
985 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
986 void *obj);
987
988 DESCRIPTION
989 Call the provided function @var{func} for each section
990 attached to the BFD @var{abfd} whose name matches @var{name},
991 passing @var{obj} as an argument. The function will be called
992 as if by
993
994 | func (abfd, the_section, obj);
995
996 It returns the first section for which @var{func} returns true,
997 otherwise <<NULL>>.
998
999 */
1000
1001 asection *
1002 bfd_get_section_by_name_if (bfd *abfd, const char *name,
1003 bfd_boolean (*operation) (bfd *,
1004 asection *,
1005 void *),
1006 void *user_storage)
1007 {
1008 struct section_hash_entry *sh;
1009 unsigned long hash;
1010
1011 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
1012 if (sh == NULL)
1013 return NULL;
1014
1015 hash = sh->root.hash;
1016 for (; sh != NULL; sh = (struct section_hash_entry *) sh->root.next)
1017 if (sh->root.hash == hash
1018 && strcmp (sh->root.string, name) == 0
1019 && (*operation) (abfd, &sh->section, user_storage))
1020 return &sh->section;
1021
1022 return NULL;
1023 }
1024
1025 /*
1026 FUNCTION
1027 bfd_get_unique_section_name
1028
1029 SYNOPSIS
1030 char *bfd_get_unique_section_name
1031 (bfd *abfd, const char *templat, int *count);
1032
1033 DESCRIPTION
1034 Invent a section name that is unique in @var{abfd} by tacking
1035 a dot and a digit suffix onto the original @var{templat}. If
1036 @var{count} is non-NULL, then it specifies the first number
1037 tried as a suffix to generate a unique name. The value
1038 pointed to by @var{count} will be incremented in this case.
1039 */
1040
1041 char *
1042 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
1043 {
1044 int num;
1045 unsigned int len;
1046 char *sname;
1047
1048 len = strlen (templat);
1049 sname = (char *) bfd_malloc (len + 8);
1050 if (sname == NULL)
1051 return NULL;
1052 memcpy (sname, templat, len);
1053 num = 1;
1054 if (count != NULL)
1055 num = *count;
1056
1057 do
1058 {
1059 /* If we have a million sections, something is badly wrong. */
1060 if (num > 999999)
1061 abort ();
1062 sprintf (sname + len, ".%d", num++);
1063 }
1064 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
1065
1066 if (count != NULL)
1067 *count = num;
1068 return sname;
1069 }
1070
1071 /*
1072 FUNCTION
1073 bfd_make_section_old_way
1074
1075 SYNOPSIS
1076 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1077
1078 DESCRIPTION
1079 Create a new empty section called @var{name}
1080 and attach it to the end of the chain of sections for the
1081 BFD @var{abfd}. An attempt to create a section with a name which
1082 is already in use returns its pointer without changing the
1083 section chain.
1084
1085 It has the funny name since this is the way it used to be
1086 before it was rewritten....
1087
1088 Possible errors are:
1089 o <<bfd_error_invalid_operation>> -
1090 If output has already started for this BFD.
1091 o <<bfd_error_no_memory>> -
1092 If memory allocation fails.
1093
1094 */
1095
1096 asection *
1097 bfd_make_section_old_way (bfd *abfd, const char *name)
1098 {
1099 asection *newsect;
1100
1101 if (abfd->output_has_begun)
1102 {
1103 bfd_set_error (bfd_error_invalid_operation);
1104 return NULL;
1105 }
1106
1107 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
1108 newsect = bfd_abs_section_ptr;
1109 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
1110 newsect = bfd_com_section_ptr;
1111 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
1112 newsect = bfd_und_section_ptr;
1113 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
1114 newsect = bfd_ind_section_ptr;
1115 else
1116 {
1117 struct section_hash_entry *sh;
1118
1119 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1120 if (sh == NULL)
1121 return NULL;
1122
1123 newsect = &sh->section;
1124 if (newsect->name != NULL)
1125 {
1126 /* Section already exists. */
1127 return newsect;
1128 }
1129
1130 newsect->name = name;
1131 return bfd_section_init (abfd, newsect);
1132 }
1133
1134 /* Call new_section_hook when "creating" the standard abs, com, und
1135 and ind sections to tack on format specific section data.
1136 Also, create a proper section symbol. */
1137 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1138 return NULL;
1139 return newsect;
1140 }
1141
1142 /*
1143 FUNCTION
1144 bfd_make_section_anyway_with_flags
1145
1146 SYNOPSIS
1147 asection *bfd_make_section_anyway_with_flags
1148 (bfd *abfd, const char *name, flagword flags);
1149
1150 DESCRIPTION
1151 Create a new empty section called @var{name} and attach it to the end of
1152 the chain of sections for @var{abfd}. Create a new section even if there
1153 is already a section with that name. Also set the attributes of the
1154 new section to the value @var{flags}.
1155
1156 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1157 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1158 o <<bfd_error_no_memory>> - If memory allocation fails.
1159 */
1160
1161 sec_ptr
1162 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1163 flagword flags)
1164 {
1165 struct section_hash_entry *sh;
1166 asection *newsect;
1167
1168 if (abfd->output_has_begun)
1169 {
1170 bfd_set_error (bfd_error_invalid_operation);
1171 return NULL;
1172 }
1173
1174 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1175 if (sh == NULL)
1176 return NULL;
1177
1178 newsect = &sh->section;
1179 if (newsect->name != NULL)
1180 {
1181 /* We are making a section of the same name. Put it in the
1182 section hash table. Even though we can't find it directly by a
1183 hash lookup, we'll be able to find the section by traversing
1184 sh->root.next quicker than looking at all the bfd sections. */
1185 struct section_hash_entry *new_sh;
1186 new_sh = (struct section_hash_entry *)
1187 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1188 if (new_sh == NULL)
1189 return NULL;
1190
1191 new_sh->root = sh->root;
1192 sh->root.next = &new_sh->root;
1193 newsect = &new_sh->section;
1194 }
1195
1196 newsect->flags = flags;
1197 newsect->name = name;
1198 return bfd_section_init (abfd, newsect);
1199 }
1200
1201 /*
1202 FUNCTION
1203 bfd_make_section_anyway
1204
1205 SYNOPSIS
1206 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1207
1208 DESCRIPTION
1209 Create a new empty section called @var{name} and attach it to the end of
1210 the chain of sections for @var{abfd}. Create a new section even if there
1211 is already a section with that name.
1212
1213 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1214 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1215 o <<bfd_error_no_memory>> - If memory allocation fails.
1216 */
1217
1218 sec_ptr
1219 bfd_make_section_anyway (bfd *abfd, const char *name)
1220 {
1221 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1222 }
1223
1224 /*
1225 FUNCTION
1226 bfd_make_section_with_flags
1227
1228 SYNOPSIS
1229 asection *bfd_make_section_with_flags
1230 (bfd *, const char *name, flagword flags);
1231
1232 DESCRIPTION
1233 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1234 bfd_set_error ()) without changing the section chain if there is already a
1235 section named @var{name}. Also set the attributes of the new section to
1236 the value @var{flags}. If there is an error, return <<NULL>> and set
1237 <<bfd_error>>.
1238 */
1239
1240 asection *
1241 bfd_make_section_with_flags (bfd *abfd, const char *name,
1242 flagword flags)
1243 {
1244 struct section_hash_entry *sh;
1245 asection *newsect;
1246
1247 if (abfd == NULL || name == NULL || abfd->output_has_begun)
1248 {
1249 bfd_set_error (bfd_error_invalid_operation);
1250 return NULL;
1251 }
1252
1253 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1254 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1255 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1256 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1257 return NULL;
1258
1259 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1260 if (sh == NULL)
1261 return NULL;
1262
1263 newsect = &sh->section;
1264 if (newsect->name != NULL)
1265 {
1266 /* Section already exists. */
1267 return NULL;
1268 }
1269
1270 newsect->name = name;
1271 newsect->flags = flags;
1272 return bfd_section_init (abfd, newsect);
1273 }
1274
1275 /*
1276 FUNCTION
1277 bfd_make_section
1278
1279 SYNOPSIS
1280 asection *bfd_make_section (bfd *, const char *name);
1281
1282 DESCRIPTION
1283 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1284 bfd_set_error ()) without changing the section chain if there is already a
1285 section named @var{name}. If there is an error, return <<NULL>> and set
1286 <<bfd_error>>.
1287 */
1288
1289 asection *
1290 bfd_make_section (bfd *abfd, const char *name)
1291 {
1292 return bfd_make_section_with_flags (abfd, name, 0);
1293 }
1294
1295 /*
1296 FUNCTION
1297 bfd_set_section_flags
1298
1299 SYNOPSIS
1300 bfd_boolean bfd_set_section_flags (asection *sec, flagword flags);
1301
1302 DESCRIPTION
1303 Set the attributes of the section @var{sec} to the value @var{flags}.
1304 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1305 returns are:
1306
1307 o <<bfd_error_invalid_operation>> -
1308 The section cannot have one or more of the attributes
1309 requested. For example, a .bss section in <<a.out>> may not
1310 have the <<SEC_HAS_CONTENTS>> field set.
1311
1312 */
1313
1314 bfd_boolean
1315 bfd_set_section_flags (asection *section, flagword flags)
1316 {
1317 section->flags = flags;
1318 return TRUE;
1319 }
1320
1321 /*
1322 FUNCTION
1323 bfd_rename_section
1324
1325 SYNOPSIS
1326 void bfd_rename_section
1327 (asection *sec, const char *newname);
1328
1329 DESCRIPTION
1330 Rename section @var{sec} to @var{newname}.
1331 */
1332
1333 void
1334 bfd_rename_section (asection *sec, const char *newname)
1335 {
1336 struct section_hash_entry *sh;
1337
1338 sh = (struct section_hash_entry *)
1339 ((char *) sec - offsetof (struct section_hash_entry, section));
1340 sh->section.name = newname;
1341 bfd_hash_rename (&sec->owner->section_htab, newname, &sh->root);
1342 }
1343
1344 /*
1345 FUNCTION
1346 bfd_map_over_sections
1347
1348 SYNOPSIS
1349 void bfd_map_over_sections
1350 (bfd *abfd,
1351 void (*func) (bfd *abfd, asection *sect, void *obj),
1352 void *obj);
1353
1354 DESCRIPTION
1355 Call the provided function @var{func} for each section
1356 attached to the BFD @var{abfd}, passing @var{obj} as an
1357 argument. The function will be called as if by
1358
1359 | func (abfd, the_section, obj);
1360
1361 This is the preferred method for iterating over sections; an
1362 alternative would be to use a loop:
1363
1364 | asection *p;
1365 | for (p = abfd->sections; p != NULL; p = p->next)
1366 | func (abfd, p, ...)
1367
1368 */
1369
1370 void
1371 bfd_map_over_sections (bfd *abfd,
1372 void (*operation) (bfd *, asection *, void *),
1373 void *user_storage)
1374 {
1375 asection *sect;
1376 unsigned int i = 0;
1377
1378 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1379 (*operation) (abfd, sect, user_storage);
1380
1381 if (i != abfd->section_count) /* Debugging */
1382 abort ();
1383 }
1384
1385 /*
1386 FUNCTION
1387 bfd_sections_find_if
1388
1389 SYNOPSIS
1390 asection *bfd_sections_find_if
1391 (bfd *abfd,
1392 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1393 void *obj);
1394
1395 DESCRIPTION
1396 Call the provided function @var{operation} for each section
1397 attached to the BFD @var{abfd}, passing @var{obj} as an
1398 argument. The function will be called as if by
1399
1400 | operation (abfd, the_section, obj);
1401
1402 It returns the first section for which @var{operation} returns true.
1403
1404 */
1405
1406 asection *
1407 bfd_sections_find_if (bfd *abfd,
1408 bfd_boolean (*operation) (bfd *, asection *, void *),
1409 void *user_storage)
1410 {
1411 asection *sect;
1412
1413 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1414 if ((*operation) (abfd, sect, user_storage))
1415 break;
1416
1417 return sect;
1418 }
1419
1420 /*
1421 FUNCTION
1422 bfd_set_section_size
1423
1424 SYNOPSIS
1425 bfd_boolean bfd_set_section_size (asection *sec, bfd_size_type val);
1426
1427 DESCRIPTION
1428 Set @var{sec} to the size @var{val}. If the operation is
1429 ok, then <<TRUE>> is returned, else <<FALSE>>.
1430
1431 Possible error returns:
1432 o <<bfd_error_invalid_operation>> -
1433 Writing has started to the BFD, so setting the size is invalid.
1434
1435 */
1436
1437 bfd_boolean
1438 bfd_set_section_size (asection *sec, bfd_size_type val)
1439 {
1440 /* Once you've started writing to any section you cannot create or change
1441 the size of any others. */
1442
1443 if (sec->owner == NULL || sec->owner->output_has_begun)
1444 {
1445 bfd_set_error (bfd_error_invalid_operation);
1446 return FALSE;
1447 }
1448
1449 sec->size = val;
1450 return TRUE;
1451 }
1452
1453 /*
1454 FUNCTION
1455 bfd_set_section_contents
1456
1457 SYNOPSIS
1458 bfd_boolean bfd_set_section_contents
1459 (bfd *abfd, asection *section, const void *data,
1460 file_ptr offset, bfd_size_type count);
1461
1462 DESCRIPTION
1463 Sets the contents of the section @var{section} in BFD
1464 @var{abfd} to the data starting in memory at @var{location}.
1465 The data is written to the output section starting at offset
1466 @var{offset} for @var{count} octets.
1467
1468 Normally <<TRUE>> is returned, but <<FALSE>> is returned if
1469 there was an error. Possible error returns are:
1470 o <<bfd_error_no_contents>> -
1471 The output section does not have the <<SEC_HAS_CONTENTS>>
1472 attribute, so nothing can be written to it.
1473 o <<bfd_error_bad_value>> -
1474 The section is unable to contain all of the data.
1475 o <<bfd_error_invalid_operation>> -
1476 The BFD is not writeable.
1477 o and some more too.
1478
1479 This routine is front end to the back end function
1480 <<_bfd_set_section_contents>>.
1481
1482 */
1483
1484 bfd_boolean
1485 bfd_set_section_contents (bfd *abfd,
1486 sec_ptr section,
1487 const void *location,
1488 file_ptr offset,
1489 bfd_size_type count)
1490 {
1491 bfd_size_type sz;
1492
1493 if (!(bfd_section_flags (section) & SEC_HAS_CONTENTS))
1494 {
1495 bfd_set_error (bfd_error_no_contents);
1496 return FALSE;
1497 }
1498
1499 sz = section->size;
1500 if ((bfd_size_type) offset > sz
1501 || count > sz
1502 || offset + count > sz
1503 || count != (size_t) count)
1504 {
1505 bfd_set_error (bfd_error_bad_value);
1506 return FALSE;
1507 }
1508
1509 if (!bfd_write_p (abfd))
1510 {
1511 bfd_set_error (bfd_error_invalid_operation);
1512 return FALSE;
1513 }
1514
1515 /* Record a copy of the data in memory if desired. */
1516 if (section->contents
1517 && location != section->contents + offset)
1518 memcpy (section->contents + offset, location, (size_t) count);
1519
1520 if (BFD_SEND (abfd, _bfd_set_section_contents,
1521 (abfd, section, location, offset, count)))
1522 {
1523 abfd->output_has_begun = TRUE;
1524 return TRUE;
1525 }
1526
1527 return FALSE;
1528 }
1529
1530 /*
1531 FUNCTION
1532 bfd_get_section_contents
1533
1534 SYNOPSIS
1535 bfd_boolean bfd_get_section_contents
1536 (bfd *abfd, asection *section, void *location, file_ptr offset,
1537 bfd_size_type count);
1538
1539 DESCRIPTION
1540 Read data from @var{section} in BFD @var{abfd}
1541 into memory starting at @var{location}. The data is read at an
1542 offset of @var{offset} from the start of the input section,
1543 and is read for @var{count} bytes.
1544
1545 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1546 flag set are requested or if the section does not have the
1547 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1548 with zeroes. If no errors occur, <<TRUE>> is returned, else
1549 <<FALSE>>.
1550
1551 */
1552 bfd_boolean
1553 bfd_get_section_contents (bfd *abfd,
1554 sec_ptr section,
1555 void *location,
1556 file_ptr offset,
1557 bfd_size_type count)
1558 {
1559 bfd_size_type sz;
1560
1561 if (section->flags & SEC_CONSTRUCTOR)
1562 {
1563 memset (location, 0, (size_t) count);
1564 return TRUE;
1565 }
1566
1567 if (abfd->direction != write_direction && section->rawsize != 0)
1568 sz = section->rawsize;
1569 else
1570 sz = section->size;
1571 if ((bfd_size_type) offset > sz
1572 || count > sz
1573 || offset + count > sz
1574 || count != (size_t) count)
1575 {
1576 bfd_set_error (bfd_error_bad_value);
1577 return FALSE;
1578 }
1579
1580 if (count == 0)
1581 /* Don't bother. */
1582 return TRUE;
1583
1584 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1585 {
1586 memset (location, 0, (size_t) count);
1587 return TRUE;
1588 }
1589
1590 if ((section->flags & SEC_IN_MEMORY) != 0)
1591 {
1592 if (section->contents == NULL)
1593 {
1594 /* This can happen because of errors earlier on in the linking process.
1595 We do not want to seg-fault here, so clear the flag and return an
1596 error code. */
1597 section->flags &= ~ SEC_IN_MEMORY;
1598 bfd_set_error (bfd_error_invalid_operation);
1599 return FALSE;
1600 }
1601
1602 memmove (location, section->contents + offset, (size_t) count);
1603 return TRUE;
1604 }
1605
1606 return BFD_SEND (abfd, _bfd_get_section_contents,
1607 (abfd, section, location, offset, count));
1608 }
1609
1610 /*
1611 FUNCTION
1612 bfd_malloc_and_get_section
1613
1614 SYNOPSIS
1615 bfd_boolean bfd_malloc_and_get_section
1616 (bfd *abfd, asection *section, bfd_byte **buf);
1617
1618 DESCRIPTION
1619 Read all data from @var{section} in BFD @var{abfd}
1620 into a buffer, *@var{buf}, malloc'd by this function.
1621 */
1622
1623 bfd_boolean
1624 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1625 {
1626 *buf = NULL;
1627 return bfd_get_full_section_contents (abfd, sec, buf);
1628 }
1629 /*
1630 FUNCTION
1631 bfd_copy_private_section_data
1632
1633 SYNOPSIS
1634 bfd_boolean bfd_copy_private_section_data
1635 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1636
1637 DESCRIPTION
1638 Copy private section information from @var{isec} in the BFD
1639 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1640 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1641 returns are:
1642
1643 o <<bfd_error_no_memory>> -
1644 Not enough memory exists to create private data for @var{osec}.
1645
1646 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1647 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1648 . (ibfd, isection, obfd, osection))
1649 */
1650
1651 /*
1652 FUNCTION
1653 bfd_generic_is_group_section
1654
1655 SYNOPSIS
1656 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1657
1658 DESCRIPTION
1659 Returns TRUE if @var{sec} is a member of a group.
1660 */
1661
1662 bfd_boolean
1663 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1664 const asection *sec ATTRIBUTE_UNUSED)
1665 {
1666 return FALSE;
1667 }
1668
1669 /*
1670 FUNCTION
1671 bfd_generic_group_name
1672
1673 SYNOPSIS
1674 const char *bfd_generic_group_name (bfd *, const asection *sec);
1675
1676 DESCRIPTION
1677 Returns group name if @var{sec} is a member of a group.
1678 */
1679
1680 const char *
1681 bfd_generic_group_name (bfd *abfd ATTRIBUTE_UNUSED,
1682 const asection *sec ATTRIBUTE_UNUSED)
1683 {
1684 return NULL;
1685 }
1686
1687 /*
1688 FUNCTION
1689 bfd_generic_discard_group
1690
1691 SYNOPSIS
1692 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1693
1694 DESCRIPTION
1695 Remove all members of @var{group} from the output.
1696 */
1697
1698 bfd_boolean
1699 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1700 asection *group ATTRIBUTE_UNUSED)
1701 {
1702 return TRUE;
1703 }
1704
1705 bfd_boolean
1706 _bfd_nowrite_set_section_contents (bfd *abfd,
1707 sec_ptr section ATTRIBUTE_UNUSED,
1708 const void *location ATTRIBUTE_UNUSED,
1709 file_ptr offset ATTRIBUTE_UNUSED,
1710 bfd_size_type count ATTRIBUTE_UNUSED)
1711 {
1712 return _bfd_bool_bfd_false_error (abfd);
1713 }