]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/section.c
* section.c (bfd_section_list_remove): Don't clear s->next.
[thirdparty/binutils-gdb.git] / bfd / section.c
1 /* Object file "section" support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 /*
24 SECTION
25 Sections
26
27 The raw data contained within a BFD is maintained through the
28 section abstraction. A single BFD may have any number of
29 sections. It keeps hold of them by pointing to the first;
30 each one points to the next in the list.
31
32 Sections are supported in BFD in <<section.c>>.
33
34 @menu
35 @* Section Input::
36 @* Section Output::
37 @* typedef asection::
38 @* section prototypes::
39 @end menu
40
41 INODE
42 Section Input, Section Output, Sections, Sections
43 SUBSECTION
44 Section input
45
46 When a BFD is opened for reading, the section structures are
47 created and attached to the BFD.
48
49 Each section has a name which describes the section in the
50 outside world---for example, <<a.out>> would contain at least
51 three sections, called <<.text>>, <<.data>> and <<.bss>>.
52
53 Names need not be unique; for example a COFF file may have several
54 sections named <<.data>>.
55
56 Sometimes a BFD will contain more than the ``natural'' number of
57 sections. A back end may attach other sections containing
58 constructor data, or an application may add a section (using
59 <<bfd_make_section>>) to the sections attached to an already open
60 BFD. For example, the linker creates an extra section
61 <<COMMON>> for each input file's BFD to hold information about
62 common storage.
63
64 The raw data is not necessarily read in when
65 the section descriptor is created. Some targets may leave the
66 data in place until a <<bfd_get_section_contents>> call is
67 made. Other back ends may read in all the data at once. For
68 example, an S-record file has to be read once to determine the
69 size of the data. An IEEE-695 file doesn't contain raw data in
70 sections, but data and relocation expressions intermixed, so
71 the data area has to be parsed to get out the data and
72 relocations.
73
74 INODE
75 Section Output, typedef asection, Section Input, Sections
76
77 SUBSECTION
78 Section output
79
80 To write a new object style BFD, the various sections to be
81 written have to be created. They are attached to the BFD in
82 the same way as input sections; data is written to the
83 sections using <<bfd_set_section_contents>>.
84
85 Any program that creates or combines sections (e.g., the assembler
86 and linker) must use the <<asection>> fields <<output_section>> and
87 <<output_offset>> to indicate the file sections to which each
88 section must be written. (If the section is being created from
89 scratch, <<output_section>> should probably point to the section
90 itself and <<output_offset>> should probably be zero.)
91
92 The data to be written comes from input sections attached
93 (via <<output_section>> pointers) to
94 the output sections. The output section structure can be
95 considered a filter for the input section: the output section
96 determines the vma of the output data and the name, but the
97 input section determines the offset into the output section of
98 the data to be written.
99
100 E.g., to create a section "O", starting at 0x100, 0x123 long,
101 containing two subsections, "A" at offset 0x0 (i.e., at vma
102 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
103 structures would look like:
104
105 | section name "A"
106 | output_offset 0x00
107 | size 0x20
108 | output_section -----------> section name "O"
109 | | vma 0x100
110 | section name "B" | size 0x123
111 | output_offset 0x20 |
112 | size 0x103 |
113 | output_section --------|
114
115 SUBSECTION
116 Link orders
117
118 The data within a section is stored in a @dfn{link_order}.
119 These are much like the fixups in <<gas>>. The link_order
120 abstraction allows a section to grow and shrink within itself.
121
122 A link_order knows how big it is, and which is the next
123 link_order and where the raw data for it is; it also points to
124 a list of relocations which apply to it.
125
126 The link_order is used by the linker to perform relaxing on
127 final code. The compiler creates code which is as big as
128 necessary to make it work without relaxing, and the user can
129 select whether to relax. Sometimes relaxing takes a lot of
130 time. The linker runs around the relocations to see if any
131 are attached to data which can be shrunk, if so it does it on
132 a link_order by link_order basis.
133
134 */
135
136 #include "bfd.h"
137 #include "sysdep.h"
138 #include "libbfd.h"
139 #include "bfdlink.h"
140
141 /*
142 DOCDD
143 INODE
144 typedef asection, section prototypes, Section Output, Sections
145 SUBSECTION
146 typedef asection
147
148 Here is the section structure:
149
150 CODE_FRAGMENT
151 .
152 .typedef struct bfd_section
153 .{
154 . {* The name of the section; the name isn't a copy, the pointer is
155 . the same as that passed to bfd_make_section. *}
156 . const char *name;
157 .
158 . {* A unique sequence number. *}
159 . int id;
160 .
161 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
162 . int index;
163 .
164 . {* The next section in the list belonging to the BFD, or NULL. *}
165 . struct bfd_section *next;
166 .
167 . {* The previous section in the list belonging to the BFD, or NULL. *}
168 . struct bfd_section *prev;
169 .
170 . {* The field flags contains attributes of the section. Some
171 . flags are read in from the object file, and some are
172 . synthesized from other information. *}
173 . flagword flags;
174 .
175 .#define SEC_NO_FLAGS 0x000
176 .
177 . {* Tells the OS to allocate space for this section when loading.
178 . This is clear for a section containing debug information only. *}
179 .#define SEC_ALLOC 0x001
180 .
181 . {* Tells the OS to load the section from the file when loading.
182 . This is clear for a .bss section. *}
183 .#define SEC_LOAD 0x002
184 .
185 . {* The section contains data still to be relocated, so there is
186 . some relocation information too. *}
187 .#define SEC_RELOC 0x004
188 .
189 . {* A signal to the OS that the section contains read only data. *}
190 .#define SEC_READONLY 0x008
191 .
192 . {* The section contains code only. *}
193 .#define SEC_CODE 0x010
194 .
195 . {* The section contains data only. *}
196 .#define SEC_DATA 0x020
197 .
198 . {* The section will reside in ROM. *}
199 .#define SEC_ROM 0x040
200 .
201 . {* The section contains constructor information. This section
202 . type is used by the linker to create lists of constructors and
203 . destructors used by <<g++>>. When a back end sees a symbol
204 . which should be used in a constructor list, it creates a new
205 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
206 . the symbol to it, and builds a relocation. To build the lists
207 . of constructors, all the linker has to do is catenate all the
208 . sections called <<__CTOR_LIST__>> and relocate the data
209 . contained within - exactly the operations it would peform on
210 . standard data. *}
211 .#define SEC_CONSTRUCTOR 0x080
212 .
213 . {* The section has contents - a data section could be
214 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
215 . <<SEC_HAS_CONTENTS>> *}
216 .#define SEC_HAS_CONTENTS 0x100
217 .
218 . {* An instruction to the linker to not output the section
219 . even if it has information which would normally be written. *}
220 .#define SEC_NEVER_LOAD 0x200
221 .
222 . {* The section contains thread local data. *}
223 .#define SEC_THREAD_LOCAL 0x400
224 .
225 . {* The section has GOT references. This flag is only for the
226 . linker, and is currently only used by the elf32-hppa back end.
227 . It will be set if global offset table references were detected
228 . in this section, which indicate to the linker that the section
229 . contains PIC code, and must be handled specially when doing a
230 . static link. *}
231 .#define SEC_HAS_GOT_REF 0x800
232 .
233 . {* The section contains common symbols (symbols may be defined
234 . multiple times, the value of a symbol is the amount of
235 . space it requires, and the largest symbol value is the one
236 . used). Most targets have exactly one of these (which we
237 . translate to bfd_com_section_ptr), but ECOFF has two. *}
238 .#define SEC_IS_COMMON 0x1000
239 .
240 . {* The section contains only debugging information. For
241 . example, this is set for ELF .debug and .stab sections.
242 . strip tests this flag to see if a section can be
243 . discarded. *}
244 .#define SEC_DEBUGGING 0x2000
245 .
246 . {* The contents of this section are held in memory pointed to
247 . by the contents field. This is checked by bfd_get_section_contents,
248 . and the data is retrieved from memory if appropriate. *}
249 .#define SEC_IN_MEMORY 0x4000
250 .
251 . {* The contents of this section are to be excluded by the
252 . linker for executable and shared objects unless those
253 . objects are to be further relocated. *}
254 .#define SEC_EXCLUDE 0x8000
255 .
256 . {* The contents of this section are to be sorted based on the sum of
257 . the symbol and addend values specified by the associated relocation
258 . entries. Entries without associated relocation entries will be
259 . appended to the end of the section in an unspecified order. *}
260 .#define SEC_SORT_ENTRIES 0x10000
261 .
262 . {* When linking, duplicate sections of the same name should be
263 . discarded, rather than being combined into a single section as
264 . is usually done. This is similar to how common symbols are
265 . handled. See SEC_LINK_DUPLICATES below. *}
266 .#define SEC_LINK_ONCE 0x20000
267 .
268 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
269 . should handle duplicate sections. *}
270 .#define SEC_LINK_DUPLICATES 0x40000
271 .
272 . {* This value for SEC_LINK_DUPLICATES means that duplicate
273 . sections with the same name should simply be discarded. *}
274 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
275 .
276 . {* This value for SEC_LINK_DUPLICATES means that the linker
277 . should warn if there are any duplicate sections, although
278 . it should still only link one copy. *}
279 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x80000
280 .
281 . {* This value for SEC_LINK_DUPLICATES means that the linker
282 . should warn if any duplicate sections are a different size. *}
283 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x100000
284 .
285 . {* This value for SEC_LINK_DUPLICATES means that the linker
286 . should warn if any duplicate sections contain different
287 . contents. *}
288 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
289 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
290 .
291 . {* This section was created by the linker as part of dynamic
292 . relocation or other arcane processing. It is skipped when
293 . going through the first-pass output, trusting that someone
294 . else up the line will take care of it later. *}
295 .#define SEC_LINKER_CREATED 0x200000
296 .
297 . {* This section should not be subject to garbage collection. *}
298 .#define SEC_KEEP 0x400000
299 .
300 . {* This section contains "short" data, and should be placed
301 . "near" the GP. *}
302 .#define SEC_SMALL_DATA 0x800000
303 .
304 . {* Attempt to merge identical entities in the section.
305 . Entity size is given in the entsize field. *}
306 .#define SEC_MERGE 0x1000000
307 .
308 . {* If given with SEC_MERGE, entities to merge are zero terminated
309 . strings where entsize specifies character size instead of fixed
310 . size entries. *}
311 .#define SEC_STRINGS 0x2000000
312 .
313 . {* This section contains data about section groups. *}
314 .#define SEC_GROUP 0x4000000
315 .
316 . {* The section is a COFF shared library section. This flag is
317 . only for the linker. If this type of section appears in
318 . the input file, the linker must copy it to the output file
319 . without changing the vma or size. FIXME: Although this
320 . was originally intended to be general, it really is COFF
321 . specific (and the flag was renamed to indicate this). It
322 . might be cleaner to have some more general mechanism to
323 . allow the back end to control what the linker does with
324 . sections. *}
325 .#define SEC_COFF_SHARED_LIBRARY 0x10000000
326 .
327 . {* This section contains data which may be shared with other
328 . executables or shared objects. This is for COFF only. *}
329 .#define SEC_COFF_SHARED 0x20000000
330 .
331 . {* When a section with this flag is being linked, then if the size of
332 . the input section is less than a page, it should not cross a page
333 . boundary. If the size of the input section is one page or more,
334 . it should be aligned on a page boundary. This is for TI
335 . TMS320C54X only. *}
336 .#define SEC_TIC54X_BLOCK 0x40000000
337 .
338 . {* Conditionally link this section; do not link if there are no
339 . references found to any symbol in the section. This is for TI
340 . TMS320C54X only. *}
341 .#define SEC_TIC54X_CLINK 0x80000000
342 .
343 . {* End of section flags. *}
344 .
345 . {* Some internal packed boolean fields. *}
346 .
347 . {* See the vma field. *}
348 . unsigned int user_set_vma : 1;
349 .
350 . {* A mark flag used by some of the linker backends. *}
351 . unsigned int linker_mark : 1;
352 .
353 . {* Another mark flag used by some of the linker backends. Set for
354 . output sections that have an input section. *}
355 . unsigned int linker_has_input : 1;
356 .
357 . {* A mark flag used by some linker backends for garbage collection. *}
358 . unsigned int gc_mark : 1;
359 .
360 . {* The following flags are used by the ELF linker. *}
361 .
362 . {* Mark sections which have been allocated to segments. *}
363 . unsigned int segment_mark : 1;
364 .
365 . {* Type of sec_info information. *}
366 . unsigned int sec_info_type:3;
367 .#define ELF_INFO_TYPE_NONE 0
368 .#define ELF_INFO_TYPE_STABS 1
369 .#define ELF_INFO_TYPE_MERGE 2
370 .#define ELF_INFO_TYPE_EH_FRAME 3
371 .#define ELF_INFO_TYPE_JUST_SYMS 4
372 .
373 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
374 . unsigned int use_rela_p:1;
375 .
376 . {* Bits used by various backends. The generic code doesn't touch
377 . these fields. *}
378 .
379 . {* Nonzero if this section has TLS related relocations. *}
380 . unsigned int has_tls_reloc:1;
381 .
382 . {* Nonzero if this section has a gp reloc. *}
383 . unsigned int has_gp_reloc:1;
384 .
385 . {* Nonzero if this section needs the relax finalize pass. *}
386 . unsigned int need_finalize_relax:1;
387 .
388 . {* Whether relocations have been processed. *}
389 . unsigned int reloc_done : 1;
390 .
391 . {* End of internal packed boolean fields. *}
392 .
393 . {* The virtual memory address of the section - where it will be
394 . at run time. The symbols are relocated against this. The
395 . user_set_vma flag is maintained by bfd; if it's not set, the
396 . backend can assign addresses (for example, in <<a.out>>, where
397 . the default address for <<.data>> is dependent on the specific
398 . target and various flags). *}
399 . bfd_vma vma;
400 .
401 . {* The load address of the section - where it would be in a
402 . rom image; really only used for writing section header
403 . information. *}
404 . bfd_vma lma;
405 .
406 . {* The size of the section in octets, as it will be output.
407 . Contains a value even if the section has no contents (e.g., the
408 . size of <<.bss>>). *}
409 . bfd_size_type size;
410 .
411 . {* For input sections, the original size on disk of the section, in
412 . octets. This field is used by the linker relaxation code. It is
413 . currently only set for sections where the linker relaxation scheme
414 . doesn't cache altered section and reloc contents (stabs, eh_frame,
415 . SEC_MERGE, some coff relaxing targets), and thus the original size
416 . needs to be kept to read the section multiple times.
417 . For output sections, rawsize holds the section size calculated on
418 . a previous linker relaxation pass. *}
419 . bfd_size_type rawsize;
420 .
421 . {* If this section is going to be output, then this value is the
422 . offset in *bytes* into the output section of the first byte in the
423 . input section (byte ==> smallest addressable unit on the
424 . target). In most cases, if this was going to start at the
425 . 100th octet (8-bit quantity) in the output section, this value
426 . would be 100. However, if the target byte size is 16 bits
427 . (bfd_octets_per_byte is "2"), this value would be 50. *}
428 . bfd_vma output_offset;
429 .
430 . {* The output section through which to map on output. *}
431 . struct bfd_section *output_section;
432 .
433 . {* The alignment requirement of the section, as an exponent of 2 -
434 . e.g., 3 aligns to 2^3 (or 8). *}
435 . unsigned int alignment_power;
436 .
437 . {* If an input section, a pointer to a vector of relocation
438 . records for the data in this section. *}
439 . struct reloc_cache_entry *relocation;
440 .
441 . {* If an output section, a pointer to a vector of pointers to
442 . relocation records for the data in this section. *}
443 . struct reloc_cache_entry **orelocation;
444 .
445 . {* The number of relocation records in one of the above. *}
446 . unsigned reloc_count;
447 .
448 . {* Information below is back end specific - and not always used
449 . or updated. *}
450 .
451 . {* File position of section data. *}
452 . file_ptr filepos;
453 .
454 . {* File position of relocation info. *}
455 . file_ptr rel_filepos;
456 .
457 . {* File position of line data. *}
458 . file_ptr line_filepos;
459 .
460 . {* Pointer to data for applications. *}
461 . void *userdata;
462 .
463 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
464 . contents. *}
465 . unsigned char *contents;
466 .
467 . {* Attached line number information. *}
468 . alent *lineno;
469 .
470 . {* Number of line number records. *}
471 . unsigned int lineno_count;
472 .
473 . {* Entity size for merging purposes. *}
474 . unsigned int entsize;
475 .
476 . {* Points to the kept section if this section is a link-once section,
477 . and is discarded. *}
478 . struct bfd_section *kept_section;
479 .
480 . {* When a section is being output, this value changes as more
481 . linenumbers are written out. *}
482 . file_ptr moving_line_filepos;
483 .
484 . {* What the section number is in the target world. *}
485 . int target_index;
486 .
487 . void *used_by_bfd;
488 .
489 . {* If this is a constructor section then here is a list of the
490 . relocations created to relocate items within it. *}
491 . struct relent_chain *constructor_chain;
492 .
493 . {* The BFD which owns the section. *}
494 . bfd *owner;
495 .
496 . {* A symbol which points at this section only. *}
497 . struct bfd_symbol *symbol;
498 . struct bfd_symbol **symbol_ptr_ptr;
499 .
500 . struct bfd_link_order *link_order_head;
501 . struct bfd_link_order *link_order_tail;
502 .} asection;
503 .
504 .{* These sections are global, and are managed by BFD. The application
505 . and target back end are not permitted to change the values in
506 . these sections. New code should use the section_ptr macros rather
507 . than referring directly to the const sections. The const sections
508 . may eventually vanish. *}
509 .#define BFD_ABS_SECTION_NAME "*ABS*"
510 .#define BFD_UND_SECTION_NAME "*UND*"
511 .#define BFD_COM_SECTION_NAME "*COM*"
512 .#define BFD_IND_SECTION_NAME "*IND*"
513 .
514 .{* The absolute section. *}
515 .extern asection bfd_abs_section;
516 .#define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
517 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
518 .{* Pointer to the undefined section. *}
519 .extern asection bfd_und_section;
520 .#define bfd_und_section_ptr ((asection *) &bfd_und_section)
521 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
522 .{* Pointer to the common section. *}
523 .extern asection bfd_com_section;
524 .#define bfd_com_section_ptr ((asection *) &bfd_com_section)
525 .{* Pointer to the indirect section. *}
526 .extern asection bfd_ind_section;
527 .#define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
528 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
529 .
530 .#define bfd_is_const_section(SEC) \
531 . ( ((SEC) == bfd_abs_section_ptr) \
532 . || ((SEC) == bfd_und_section_ptr) \
533 . || ((SEC) == bfd_com_section_ptr) \
534 . || ((SEC) == bfd_ind_section_ptr))
535 .
536 .extern const struct bfd_symbol * const bfd_abs_symbol;
537 .extern const struct bfd_symbol * const bfd_com_symbol;
538 .extern const struct bfd_symbol * const bfd_und_symbol;
539 .extern const struct bfd_symbol * const bfd_ind_symbol;
540 .
541 .{* Macros to handle insertion and deletion of a bfd's sections. These
542 . only handle the list pointers, ie. do not adjust section_count,
543 . target_index etc. *}
544 .#define bfd_section_list_remove(ABFD, S) \
545 . do \
546 . { \
547 . asection *_s = S; \
548 . asection *_next = _s->next; \
549 . asection *_prev = _s->prev; \
550 . if (_prev) \
551 . _prev->next = _next; \
552 . else \
553 . (ABFD)->sections = _next; \
554 . if (_next) \
555 . _next->prev = _prev; \
556 . else \
557 . (ABFD)->section_last = _prev; \
558 . } \
559 . while (0)
560 .#define bfd_section_list_append(ABFD, S) \
561 . do \
562 . { \
563 . asection *_s = S; \
564 . bfd *_abfd = ABFD; \
565 . _s->next = NULL; \
566 . if (_abfd->section_last) \
567 . { \
568 . _s->prev = _abfd->section_last; \
569 . _abfd->section_last->next = _s; \
570 . } \
571 . else \
572 . { \
573 . _s->prev = NULL; \
574 . _abfd->sections = _s; \
575 . } \
576 . _abfd->section_last = _s; \
577 . } \
578 . while (0)
579 .#define bfd_section_list_prepend(ABFD, S) \
580 . do \
581 . { \
582 . asection *_s = S; \
583 . bfd *_abfd = ABFD; \
584 . _s->prev = NULL; \
585 . if (_abfd->sections) \
586 . { \
587 . _s->next = _abfd->sections; \
588 . _abfd->sections->prev = _s; \
589 . } \
590 . else \
591 . { \
592 . _s->next = NULL; \
593 . _abfd->section_last = _s; \
594 . } \
595 . _abfd->sections = _s; \
596 . } \
597 . while (0)
598 .#define bfd_section_list_insert_after(ABFD, A, S) \
599 . do \
600 . { \
601 . asection *_a = A; \
602 . asection *_s = S; \
603 . asection *_next = _a->next; \
604 . _s->next = _next; \
605 . _s->prev = _a; \
606 . _a->next = _s; \
607 . if (_next) \
608 . _next->prev = _s; \
609 . else \
610 . (ABFD)->section_last = _s; \
611 . } \
612 . while (0)
613 .#define bfd_section_list_insert_before(ABFD, B, S) \
614 . do \
615 . { \
616 . asection *_b = B; \
617 . asection *_s = S; \
618 . asection *_prev = _b->prev; \
619 . _s->prev = _prev; \
620 . _s->next = _b; \
621 . _b->prev = _s; \
622 . if (_prev) \
623 . _prev->next = _s; \
624 . else \
625 . (ABFD)->sections = _s; \
626 . } \
627 . while (0)
628 .#define bfd_section_removed_from_list(ABFD, S) \
629 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
630 .
631 */
632
633 /* We use a macro to initialize the static asymbol structures because
634 traditional C does not permit us to initialize a union member while
635 gcc warns if we don't initialize it. */
636 /* the_bfd, name, value, attr, section [, udata] */
637 #ifdef __STDC__
638 #define GLOBAL_SYM_INIT(NAME, SECTION) \
639 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION, { 0 }}
640 #else
641 #define GLOBAL_SYM_INIT(NAME, SECTION) \
642 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION }
643 #endif
644
645 /* These symbols are global, not specific to any BFD. Therefore, anything
646 that tries to change them is broken, and should be repaired. */
647
648 static const asymbol global_syms[] =
649 {
650 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, &bfd_com_section),
651 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, &bfd_und_section),
652 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, &bfd_abs_section),
653 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, &bfd_ind_section)
654 };
655
656 #define STD_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
657 const asymbol * const SYM = (asymbol *) &global_syms[IDX]; \
658 asection SEC = \
659 /* name, id, index, next, prev, flags, user_set_vma, */ \
660 { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
661 \
662 /* linker_mark, linker_has_input, gc_mark, segment_mark, */ \
663 0, 0, 1, 0, \
664 \
665 /* sec_info_type, use_rela_p, has_tls_reloc, has_gp_reloc, */ \
666 0, 0, 0, 0, \
667 \
668 /* need_finalize_relax, reloc_done, */ \
669 0, 0, \
670 \
671 /* vma, lma, size, rawsize */ \
672 0, 0, 0, 0, \
673 \
674 /* output_offset, output_section, alignment_power, */ \
675 0, (struct bfd_section *) &SEC, 0, \
676 \
677 /* relocation, orelocation, reloc_count, filepos, rel_filepos, */ \
678 NULL, NULL, 0, 0, 0, \
679 \
680 /* line_filepos, userdata, contents, lineno, lineno_count, */ \
681 0, NULL, NULL, NULL, 0, \
682 \
683 /* entsize, kept_section, moving_line_filepos, */ \
684 0, NULL, 0, \
685 \
686 /* target_index, used_by_bfd, constructor_chain, owner, */ \
687 0, NULL, NULL, NULL, \
688 \
689 /* symbol, */ \
690 (struct bfd_symbol *) &global_syms[IDX], \
691 \
692 /* symbol_ptr_ptr, */ \
693 (struct bfd_symbol **) &SYM, \
694 \
695 /* link_order_head, link_order_tail */ \
696 NULL, NULL \
697 }
698
699 STD_SECTION (bfd_com_section, SEC_IS_COMMON, bfd_com_symbol,
700 BFD_COM_SECTION_NAME, 0);
701 STD_SECTION (bfd_und_section, 0, bfd_und_symbol, BFD_UND_SECTION_NAME, 1);
702 STD_SECTION (bfd_abs_section, 0, bfd_abs_symbol, BFD_ABS_SECTION_NAME, 2);
703 STD_SECTION (bfd_ind_section, 0, bfd_ind_symbol, BFD_IND_SECTION_NAME, 3);
704 #undef STD_SECTION
705
706 struct section_hash_entry
707 {
708 struct bfd_hash_entry root;
709 asection section;
710 };
711
712 /* Initialize an entry in the section hash table. */
713
714 struct bfd_hash_entry *
715 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
716 struct bfd_hash_table *table,
717 const char *string)
718 {
719 /* Allocate the structure if it has not already been allocated by a
720 subclass. */
721 if (entry == NULL)
722 {
723 entry = (struct bfd_hash_entry *)
724 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
725 if (entry == NULL)
726 return entry;
727 }
728
729 /* Call the allocation method of the superclass. */
730 entry = bfd_hash_newfunc (entry, table, string);
731 if (entry != NULL)
732 memset (&((struct section_hash_entry *) entry)->section, 0,
733 sizeof (asection));
734
735 return entry;
736 }
737
738 #define section_hash_lookup(table, string, create, copy) \
739 ((struct section_hash_entry *) \
740 bfd_hash_lookup ((table), (string), (create), (copy)))
741
742 /* Initializes a new section. NEWSECT->NAME is already set. */
743
744 static asection *
745 bfd_section_init (bfd *abfd, asection *newsect)
746 {
747 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
748
749 newsect->id = section_id;
750 newsect->index = abfd->section_count;
751 newsect->owner = abfd;
752
753 /* Create a symbol whose only job is to point to this section. This
754 is useful for things like relocs which are relative to the base
755 of a section. */
756 newsect->symbol = bfd_make_empty_symbol (abfd);
757 if (newsect->symbol == NULL)
758 return NULL;
759
760 newsect->symbol->name = newsect->name;
761 newsect->symbol->value = 0;
762 newsect->symbol->section = newsect;
763 newsect->symbol->flags = BSF_SECTION_SYM;
764
765 newsect->symbol_ptr_ptr = &newsect->symbol;
766
767 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
768 return NULL;
769
770 section_id++;
771 abfd->section_count++;
772 bfd_section_list_append (abfd, newsect);
773 return newsect;
774 }
775
776 /*
777 DOCDD
778 INODE
779 section prototypes, , typedef asection, Sections
780 SUBSECTION
781 Section prototypes
782
783 These are the functions exported by the section handling part of BFD.
784 */
785
786 /*
787 FUNCTION
788 bfd_section_list_clear
789
790 SYNOPSIS
791 void bfd_section_list_clear (bfd *);
792
793 DESCRIPTION
794 Clears the section list, and also resets the section count and
795 hash table entries.
796 */
797
798 void
799 bfd_section_list_clear (bfd *abfd)
800 {
801 abfd->sections = NULL;
802 abfd->section_last = NULL;
803 abfd->section_count = 0;
804 memset (abfd->section_htab.table, 0,
805 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
806 }
807
808 /*
809 FUNCTION
810 bfd_get_section_by_name
811
812 SYNOPSIS
813 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
814
815 DESCRIPTION
816 Run through @var{abfd} and return the one of the
817 <<asection>>s whose name matches @var{name}, otherwise <<NULL>>.
818 @xref{Sections}, for more information.
819
820 This should only be used in special cases; the normal way to process
821 all sections of a given name is to use <<bfd_map_over_sections>> and
822 <<strcmp>> on the name (or better yet, base it on the section flags
823 or something else) for each section.
824 */
825
826 asection *
827 bfd_get_section_by_name (bfd *abfd, const char *name)
828 {
829 struct section_hash_entry *sh;
830
831 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
832 if (sh != NULL)
833 return &sh->section;
834
835 return NULL;
836 }
837
838 /*
839 FUNCTION
840 bfd_get_section_by_name_if
841
842 SYNOPSIS
843 asection *bfd_get_section_by_name_if
844 (bfd *abfd,
845 const char *name,
846 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
847 void *obj);
848
849 DESCRIPTION
850 Call the provided function @var{func} for each section
851 attached to the BFD @var{abfd} whose name matches @var{name},
852 passing @var{obj} as an argument. The function will be called
853 as if by
854
855 | func (abfd, the_section, obj);
856
857 It returns the first section for which @var{func} returns true,
858 otherwise <<NULL>>.
859
860 */
861
862 asection *
863 bfd_get_section_by_name_if (bfd *abfd, const char *name,
864 bfd_boolean (*operation) (bfd *,
865 asection *,
866 void *),
867 void *user_storage)
868 {
869 struct section_hash_entry *sh;
870 unsigned long hash;
871
872 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
873 if (sh == NULL)
874 return NULL;
875
876 hash = sh->root.hash;
877 do
878 {
879 if ((*operation) (abfd, &sh->section, user_storage))
880 return &sh->section;
881 sh = (struct section_hash_entry *) sh->root.next;
882 }
883 while (sh != NULL && sh->root.hash == hash
884 && strcmp (sh->root.string, name) == 0);
885
886 return NULL;
887 }
888
889 /*
890 FUNCTION
891 bfd_get_unique_section_name
892
893 SYNOPSIS
894 char *bfd_get_unique_section_name
895 (bfd *abfd, const char *templat, int *count);
896
897 DESCRIPTION
898 Invent a section name that is unique in @var{abfd} by tacking
899 a dot and a digit suffix onto the original @var{templat}. If
900 @var{count} is non-NULL, then it specifies the first number
901 tried as a suffix to generate a unique name. The value
902 pointed to by @var{count} will be incremented in this case.
903 */
904
905 char *
906 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
907 {
908 int num;
909 unsigned int len;
910 char *sname;
911
912 len = strlen (templat);
913 sname = bfd_malloc (len + 8);
914 if (sname == NULL)
915 return NULL;
916 memcpy (sname, templat, len);
917 num = 1;
918 if (count != NULL)
919 num = *count;
920
921 do
922 {
923 /* If we have a million sections, something is badly wrong. */
924 if (num > 999999)
925 abort ();
926 sprintf (sname + len, ".%d", num++);
927 }
928 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
929
930 if (count != NULL)
931 *count = num;
932 return sname;
933 }
934
935 /*
936 FUNCTION
937 bfd_make_section_old_way
938
939 SYNOPSIS
940 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
941
942 DESCRIPTION
943 Create a new empty section called @var{name}
944 and attach it to the end of the chain of sections for the
945 BFD @var{abfd}. An attempt to create a section with a name which
946 is already in use returns its pointer without changing the
947 section chain.
948
949 It has the funny name since this is the way it used to be
950 before it was rewritten....
951
952 Possible errors are:
953 o <<bfd_error_invalid_operation>> -
954 If output has already started for this BFD.
955 o <<bfd_error_no_memory>> -
956 If memory allocation fails.
957
958 */
959
960 asection *
961 bfd_make_section_old_way (bfd *abfd, const char *name)
962 {
963 struct section_hash_entry *sh;
964 asection *newsect;
965
966 if (abfd->output_has_begun)
967 {
968 bfd_set_error (bfd_error_invalid_operation);
969 return NULL;
970 }
971
972 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
973 return bfd_abs_section_ptr;
974
975 if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
976 return bfd_com_section_ptr;
977
978 if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
979 return bfd_und_section_ptr;
980
981 if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
982 return bfd_ind_section_ptr;
983
984 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
985 if (sh == NULL)
986 return NULL;
987
988 newsect = &sh->section;
989 if (newsect->name != NULL)
990 {
991 /* Section already exists. */
992 return newsect;
993 }
994
995 newsect->name = name;
996 return bfd_section_init (abfd, newsect);
997 }
998
999 /*
1000 FUNCTION
1001 bfd_make_section_anyway
1002
1003 SYNOPSIS
1004 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1005
1006 DESCRIPTION
1007 Create a new empty section called @var{name} and attach it to the end of
1008 the chain of sections for @var{abfd}. Create a new section even if there
1009 is already a section with that name.
1010
1011 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1012 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1013 o <<bfd_error_no_memory>> - If memory allocation fails.
1014 */
1015
1016 sec_ptr
1017 bfd_make_section_anyway (bfd *abfd, const char *name)
1018 {
1019 struct section_hash_entry *sh;
1020 asection *newsect;
1021
1022 if (abfd->output_has_begun)
1023 {
1024 bfd_set_error (bfd_error_invalid_operation);
1025 return NULL;
1026 }
1027
1028 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1029 if (sh == NULL)
1030 return NULL;
1031
1032 newsect = &sh->section;
1033 if (newsect->name != NULL)
1034 {
1035 /* We are making a section of the same name. Put it in the
1036 section hash table. Even though we can't find it directly by a
1037 hash lookup, we'll be able to find the section by traversing
1038 sh->root.next quicker than looking at all the bfd sections. */
1039 struct section_hash_entry *new_sh;
1040 new_sh = (struct section_hash_entry *)
1041 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1042 if (new_sh == NULL)
1043 return NULL;
1044
1045 new_sh->root = sh->root;
1046 sh->root.next = &new_sh->root;
1047 newsect = &new_sh->section;
1048 }
1049
1050 newsect->name = name;
1051 return bfd_section_init (abfd, newsect);
1052 }
1053
1054 /*
1055 FUNCTION
1056 bfd_make_section
1057
1058 SYNOPSIS
1059 asection *bfd_make_section (bfd *, const char *name);
1060
1061 DESCRIPTION
1062 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1063 bfd_set_error ()) without changing the section chain if there is already a
1064 section named @var{name}. If there is an error, return <<NULL>> and set
1065 <<bfd_error>>.
1066 */
1067
1068 asection *
1069 bfd_make_section (bfd *abfd, const char *name)
1070 {
1071 struct section_hash_entry *sh;
1072 asection *newsect;
1073
1074 if (abfd->output_has_begun)
1075 {
1076 bfd_set_error (bfd_error_invalid_operation);
1077 return NULL;
1078 }
1079
1080 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1081 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1082 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1083 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1084 return NULL;
1085
1086 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1087 if (sh == NULL)
1088 return NULL;
1089
1090 newsect = &sh->section;
1091 if (newsect->name != NULL)
1092 {
1093 /* Section already exists. */
1094 return NULL;
1095 }
1096
1097 newsect->name = name;
1098 return bfd_section_init (abfd, newsect);
1099 }
1100
1101 /*
1102 FUNCTION
1103 bfd_set_section_flags
1104
1105 SYNOPSIS
1106 bfd_boolean bfd_set_section_flags
1107 (bfd *abfd, asection *sec, flagword flags);
1108
1109 DESCRIPTION
1110 Set the attributes of the section @var{sec} in the BFD
1111 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1112 <<FALSE>> on error. Possible error returns are:
1113
1114 o <<bfd_error_invalid_operation>> -
1115 The section cannot have one or more of the attributes
1116 requested. For example, a .bss section in <<a.out>> may not
1117 have the <<SEC_HAS_CONTENTS>> field set.
1118
1119 */
1120
1121 bfd_boolean
1122 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1123 sec_ptr section,
1124 flagword flags)
1125 {
1126 section->flags = flags;
1127 return TRUE;
1128 }
1129
1130 /*
1131 FUNCTION
1132 bfd_map_over_sections
1133
1134 SYNOPSIS
1135 void bfd_map_over_sections
1136 (bfd *abfd,
1137 void (*func) (bfd *abfd, asection *sect, void *obj),
1138 void *obj);
1139
1140 DESCRIPTION
1141 Call the provided function @var{func} for each section
1142 attached to the BFD @var{abfd}, passing @var{obj} as an
1143 argument. The function will be called as if by
1144
1145 | func (abfd, the_section, obj);
1146
1147 This is the preferred method for iterating over sections; an
1148 alternative would be to use a loop:
1149
1150 | section *p;
1151 | for (p = abfd->sections; p != NULL; p = p->next)
1152 | func (abfd, p, ...)
1153
1154 */
1155
1156 void
1157 bfd_map_over_sections (bfd *abfd,
1158 void (*operation) (bfd *, asection *, void *),
1159 void *user_storage)
1160 {
1161 asection *sect;
1162 unsigned int i = 0;
1163
1164 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1165 (*operation) (abfd, sect, user_storage);
1166
1167 if (i != abfd->section_count) /* Debugging */
1168 abort ();
1169 }
1170
1171 /*
1172 FUNCTION
1173 bfd_sections_find_if
1174
1175 SYNOPSIS
1176 asection *bfd_sections_find_if
1177 (bfd *abfd,
1178 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1179 void *obj);
1180
1181 DESCRIPTION
1182 Call the provided function @var{operation} for each section
1183 attached to the BFD @var{abfd}, passing @var{obj} as an
1184 argument. The function will be called as if by
1185
1186 | operation (abfd, the_section, obj);
1187
1188 It returns the first section for which @var{operation} returns true.
1189
1190 */
1191
1192 asection *
1193 bfd_sections_find_if (bfd *abfd,
1194 bfd_boolean (*operation) (bfd *, asection *, void *),
1195 void *user_storage)
1196 {
1197 asection *sect;
1198
1199 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1200 if ((*operation) (abfd, sect, user_storage))
1201 break;
1202
1203 return sect;
1204 }
1205
1206 /*
1207 FUNCTION
1208 bfd_set_section_size
1209
1210 SYNOPSIS
1211 bfd_boolean bfd_set_section_size
1212 (bfd *abfd, asection *sec, bfd_size_type val);
1213
1214 DESCRIPTION
1215 Set @var{sec} to the size @var{val}. If the operation is
1216 ok, then <<TRUE>> is returned, else <<FALSE>>.
1217
1218 Possible error returns:
1219 o <<bfd_error_invalid_operation>> -
1220 Writing has started to the BFD, so setting the size is invalid.
1221
1222 */
1223
1224 bfd_boolean
1225 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1226 {
1227 /* Once you've started writing to any section you cannot create or change
1228 the size of any others. */
1229
1230 if (abfd->output_has_begun)
1231 {
1232 bfd_set_error (bfd_error_invalid_operation);
1233 return FALSE;
1234 }
1235
1236 ptr->size = val;
1237 return TRUE;
1238 }
1239
1240 /*
1241 FUNCTION
1242 bfd_set_section_contents
1243
1244 SYNOPSIS
1245 bfd_boolean bfd_set_section_contents
1246 (bfd *abfd, asection *section, const void *data,
1247 file_ptr offset, bfd_size_type count);
1248
1249 DESCRIPTION
1250 Sets the contents of the section @var{section} in BFD
1251 @var{abfd} to the data starting in memory at @var{data}. The
1252 data is written to the output section starting at offset
1253 @var{offset} for @var{count} octets.
1254
1255 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1256 returns are:
1257 o <<bfd_error_no_contents>> -
1258 The output section does not have the <<SEC_HAS_CONTENTS>>
1259 attribute, so nothing can be written to it.
1260 o and some more too
1261
1262 This routine is front end to the back end function
1263 <<_bfd_set_section_contents>>.
1264
1265 */
1266
1267 bfd_boolean
1268 bfd_set_section_contents (bfd *abfd,
1269 sec_ptr section,
1270 const void *location,
1271 file_ptr offset,
1272 bfd_size_type count)
1273 {
1274 bfd_size_type sz;
1275
1276 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1277 {
1278 bfd_set_error (bfd_error_no_contents);
1279 return FALSE;
1280 }
1281
1282 sz = section->size;
1283 if ((bfd_size_type) offset > sz
1284 || count > sz
1285 || offset + count > sz
1286 || count != (size_t) count)
1287 {
1288 bfd_set_error (bfd_error_bad_value);
1289 return FALSE;
1290 }
1291
1292 switch (abfd->direction)
1293 {
1294 case read_direction:
1295 case no_direction:
1296 bfd_set_error (bfd_error_invalid_operation);
1297 return FALSE;
1298
1299 case write_direction:
1300 break;
1301
1302 case both_direction:
1303 /* File is opened for update. `output_has_begun' some time ago when
1304 the file was created. Do not recompute sections sizes or alignments
1305 in _bfd_set_section_content. */
1306 abfd->output_has_begun = TRUE;
1307 break;
1308 }
1309
1310 /* Record a copy of the data in memory if desired. */
1311 if (section->contents
1312 && location != section->contents + offset)
1313 memcpy (section->contents + offset, location, (size_t) count);
1314
1315 if (BFD_SEND (abfd, _bfd_set_section_contents,
1316 (abfd, section, location, offset, count)))
1317 {
1318 abfd->output_has_begun = TRUE;
1319 return TRUE;
1320 }
1321
1322 return FALSE;
1323 }
1324
1325 /*
1326 FUNCTION
1327 bfd_get_section_contents
1328
1329 SYNOPSIS
1330 bfd_boolean bfd_get_section_contents
1331 (bfd *abfd, asection *section, void *location, file_ptr offset,
1332 bfd_size_type count);
1333
1334 DESCRIPTION
1335 Read data from @var{section} in BFD @var{abfd}
1336 into memory starting at @var{location}. The data is read at an
1337 offset of @var{offset} from the start of the input section,
1338 and is read for @var{count} bytes.
1339
1340 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1341 flag set are requested or if the section does not have the
1342 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1343 with zeroes. If no errors occur, <<TRUE>> is returned, else
1344 <<FALSE>>.
1345
1346 */
1347 bfd_boolean
1348 bfd_get_section_contents (bfd *abfd,
1349 sec_ptr section,
1350 void *location,
1351 file_ptr offset,
1352 bfd_size_type count)
1353 {
1354 bfd_size_type sz;
1355
1356 if (section->flags & SEC_CONSTRUCTOR)
1357 {
1358 memset (location, 0, (size_t) count);
1359 return TRUE;
1360 }
1361
1362 sz = section->rawsize ? section->rawsize : section->size;
1363 if ((bfd_size_type) offset > sz
1364 || count > sz
1365 || offset + count > sz
1366 || count != (size_t) count)
1367 {
1368 bfd_set_error (bfd_error_bad_value);
1369 return FALSE;
1370 }
1371
1372 if (count == 0)
1373 /* Don't bother. */
1374 return TRUE;
1375
1376 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1377 {
1378 memset (location, 0, (size_t) count);
1379 return TRUE;
1380 }
1381
1382 if ((section->flags & SEC_IN_MEMORY) != 0)
1383 {
1384 memcpy (location, section->contents + offset, (size_t) count);
1385 return TRUE;
1386 }
1387
1388 return BFD_SEND (abfd, _bfd_get_section_contents,
1389 (abfd, section, location, offset, count));
1390 }
1391
1392 /*
1393 FUNCTION
1394 bfd_malloc_and_get_section
1395
1396 SYNOPSIS
1397 bfd_boolean bfd_malloc_and_get_section
1398 (bfd *abfd, asection *section, bfd_byte **buf);
1399
1400 DESCRIPTION
1401 Read all data from @var{section} in BFD @var{abfd}
1402 into a buffer, *@var{buf}, malloc'd by this function.
1403 */
1404
1405 bfd_boolean
1406 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1407 {
1408 bfd_size_type sz = sec->rawsize ? sec->rawsize : sec->size;
1409 bfd_byte *p = NULL;
1410
1411 *buf = p;
1412 if (sz == 0)
1413 return TRUE;
1414
1415 p = bfd_malloc (sec->rawsize > sec->size ? sec->rawsize : sec->size);
1416 if (p == NULL)
1417 return FALSE;
1418 *buf = p;
1419
1420 return bfd_get_section_contents (abfd, sec, p, 0, sz);
1421 }
1422 /*
1423 FUNCTION
1424 bfd_copy_private_section_data
1425
1426 SYNOPSIS
1427 bfd_boolean bfd_copy_private_section_data
1428 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1429
1430 DESCRIPTION
1431 Copy private section information from @var{isec} in the BFD
1432 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1433 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1434 returns are:
1435
1436 o <<bfd_error_no_memory>> -
1437 Not enough memory exists to create private data for @var{osec}.
1438
1439 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1440 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1441 . (ibfd, isection, obfd, osection))
1442 */
1443
1444 /*
1445 FUNCTION
1446 _bfd_strip_section_from_output
1447
1448 SYNOPSIS
1449 void _bfd_strip_section_from_output
1450 (struct bfd_link_info *info, asection *section);
1451
1452 DESCRIPTION
1453 Remove @var{section} from the output. If the output section
1454 becomes empty, remove it from the output bfd.
1455
1456 This function won't actually do anything except twiddle flags
1457 if called too late in the linking process, when it's not safe
1458 to remove sections.
1459 */
1460 void
1461 _bfd_strip_section_from_output (struct bfd_link_info *info, asection *s)
1462 {
1463 asection *os;
1464 asection *is;
1465 bfd *abfd;
1466
1467 s->flags |= SEC_EXCLUDE;
1468
1469 /* If the section wasn't assigned to an output section, or the
1470 section has been discarded by the linker script, there's nothing
1471 more to do. */
1472 os = s->output_section;
1473 if (os == NULL || os->owner == NULL)
1474 return;
1475
1476 /* If the output section has other (non-excluded) input sections, we
1477 can't remove it. */
1478 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1479 for (is = abfd->sections; is != NULL; is = is->next)
1480 if (is->output_section == os && (is->flags & SEC_EXCLUDE) == 0)
1481 return;
1482
1483 /* If the output section is empty, flag it for removal too.
1484 See ldlang.c:strip_excluded_output_sections for the action. */
1485 os->flags |= SEC_EXCLUDE;
1486 }
1487
1488 /*
1489 FUNCTION
1490 bfd_generic_is_group_section
1491
1492 SYNOPSIS
1493 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1494
1495 DESCRIPTION
1496 Returns TRUE if @var{sec} is a member of a group.
1497 */
1498
1499 bfd_boolean
1500 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1501 const asection *sec ATTRIBUTE_UNUSED)
1502 {
1503 return FALSE;
1504 }
1505
1506 /*
1507 FUNCTION
1508 bfd_generic_discard_group
1509
1510 SYNOPSIS
1511 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1512
1513 DESCRIPTION
1514 Remove all members of @var{group} from the output.
1515 */
1516
1517 bfd_boolean
1518 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1519 asection *group ATTRIBUTE_UNUSED)
1520 {
1521 return TRUE;
1522 }