]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/section.c
bfd_get_section_by_name_if hash chain traversal
[thirdparty/binutils-gdb.git] / bfd / section.c
1 /* Object file "section" support for the BFD library.
2 Copyright (C) 1990-2015 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 Sections
25
26 The raw data contained within a BFD is maintained through the
27 section abstraction. A single BFD may have any number of
28 sections. It keeps hold of them by pointing to the first;
29 each one points to the next in the list.
30
31 Sections are supported in BFD in <<section.c>>.
32
33 @menu
34 @* Section Input::
35 @* Section Output::
36 @* typedef asection::
37 @* section prototypes::
38 @end menu
39
40 INODE
41 Section Input, Section Output, Sections, Sections
42 SUBSECTION
43 Section input
44
45 When a BFD is opened for reading, the section structures are
46 created and attached to the BFD.
47
48 Each section has a name which describes the section in the
49 outside world---for example, <<a.out>> would contain at least
50 three sections, called <<.text>>, <<.data>> and <<.bss>>.
51
52 Names need not be unique; for example a COFF file may have several
53 sections named <<.data>>.
54
55 Sometimes a BFD will contain more than the ``natural'' number of
56 sections. A back end may attach other sections containing
57 constructor data, or an application may add a section (using
58 <<bfd_make_section>>) to the sections attached to an already open
59 BFD. For example, the linker creates an extra section
60 <<COMMON>> for each input file's BFD to hold information about
61 common storage.
62
63 The raw data is not necessarily read in when
64 the section descriptor is created. Some targets may leave the
65 data in place until a <<bfd_get_section_contents>> call is
66 made. Other back ends may read in all the data at once. For
67 example, an S-record file has to be read once to determine the
68 size of the data. An IEEE-695 file doesn't contain raw data in
69 sections, but data and relocation expressions intermixed, so
70 the data area has to be parsed to get out the data and
71 relocations.
72
73 INODE
74 Section Output, typedef asection, Section Input, Sections
75
76 SUBSECTION
77 Section output
78
79 To write a new object style BFD, the various sections to be
80 written have to be created. They are attached to the BFD in
81 the same way as input sections; data is written to the
82 sections using <<bfd_set_section_contents>>.
83
84 Any program that creates or combines sections (e.g., the assembler
85 and linker) must use the <<asection>> fields <<output_section>> and
86 <<output_offset>> to indicate the file sections to which each
87 section must be written. (If the section is being created from
88 scratch, <<output_section>> should probably point to the section
89 itself and <<output_offset>> should probably be zero.)
90
91 The data to be written comes from input sections attached
92 (via <<output_section>> pointers) to
93 the output sections. The output section structure can be
94 considered a filter for the input section: the output section
95 determines the vma of the output data and the name, but the
96 input section determines the offset into the output section of
97 the data to be written.
98
99 E.g., to create a section "O", starting at 0x100, 0x123 long,
100 containing two subsections, "A" at offset 0x0 (i.e., at vma
101 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
102 structures would look like:
103
104 | section name "A"
105 | output_offset 0x00
106 | size 0x20
107 | output_section -----------> section name "O"
108 | | vma 0x100
109 | section name "B" | size 0x123
110 | output_offset 0x20 |
111 | size 0x103 |
112 | output_section --------|
113
114 SUBSECTION
115 Link orders
116
117 The data within a section is stored in a @dfn{link_order}.
118 These are much like the fixups in <<gas>>. The link_order
119 abstraction allows a section to grow and shrink within itself.
120
121 A link_order knows how big it is, and which is the next
122 link_order and where the raw data for it is; it also points to
123 a list of relocations which apply to it.
124
125 The link_order is used by the linker to perform relaxing on
126 final code. The compiler creates code which is as big as
127 necessary to make it work without relaxing, and the user can
128 select whether to relax. Sometimes relaxing takes a lot of
129 time. The linker runs around the relocations to see if any
130 are attached to data which can be shrunk, if so it does it on
131 a link_order by link_order basis.
132
133 */
134
135 #include "sysdep.h"
136 #include "bfd.h"
137 #include "libbfd.h"
138 #include "bfdlink.h"
139
140 /*
141 DOCDD
142 INODE
143 typedef asection, section prototypes, Section Output, Sections
144 SUBSECTION
145 typedef asection
146
147 Here is the section structure:
148
149 CODE_FRAGMENT
150 .
151 .typedef struct bfd_section
152 .{
153 . {* The name of the section; the name isn't a copy, the pointer is
154 . the same as that passed to bfd_make_section. *}
155 . const char *name;
156 .
157 . {* A unique sequence number. *}
158 . int id;
159 .
160 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
161 . int index;
162 .
163 . {* The next section in the list belonging to the BFD, or NULL. *}
164 . struct bfd_section *next;
165 .
166 . {* The previous section in the list belonging to the BFD, or NULL. *}
167 . struct bfd_section *prev;
168 .
169 . {* The field flags contains attributes of the section. Some
170 . flags are read in from the object file, and some are
171 . synthesized from other information. *}
172 . flagword flags;
173 .
174 .#define SEC_NO_FLAGS 0x000
175 .
176 . {* Tells the OS to allocate space for this section when loading.
177 . This is clear for a section containing debug information only. *}
178 .#define SEC_ALLOC 0x001
179 .
180 . {* Tells the OS to load the section from the file when loading.
181 . This is clear for a .bss section. *}
182 .#define SEC_LOAD 0x002
183 .
184 . {* The section contains data still to be relocated, so there is
185 . some relocation information too. *}
186 .#define SEC_RELOC 0x004
187 .
188 . {* A signal to the OS that the section contains read only data. *}
189 .#define SEC_READONLY 0x008
190 .
191 . {* The section contains code only. *}
192 .#define SEC_CODE 0x010
193 .
194 . {* The section contains data only. *}
195 .#define SEC_DATA 0x020
196 .
197 . {* The section will reside in ROM. *}
198 .#define SEC_ROM 0x040
199 .
200 . {* The section contains constructor information. This section
201 . type is used by the linker to create lists of constructors and
202 . destructors used by <<g++>>. When a back end sees a symbol
203 . which should be used in a constructor list, it creates a new
204 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
205 . the symbol to it, and builds a relocation. To build the lists
206 . of constructors, all the linker has to do is catenate all the
207 . sections called <<__CTOR_LIST__>> and relocate the data
208 . contained within - exactly the operations it would peform on
209 . standard data. *}
210 .#define SEC_CONSTRUCTOR 0x080
211 .
212 . {* The section has contents - a data section could be
213 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
214 . <<SEC_HAS_CONTENTS>> *}
215 .#define SEC_HAS_CONTENTS 0x100
216 .
217 . {* An instruction to the linker to not output the section
218 . even if it has information which would normally be written. *}
219 .#define SEC_NEVER_LOAD 0x200
220 .
221 . {* The section contains thread local data. *}
222 .#define SEC_THREAD_LOCAL 0x400
223 .
224 . {* The section has GOT references. This flag is only for the
225 . linker, and is currently only used by the elf32-hppa back end.
226 . It will be set if global offset table references were detected
227 . in this section, which indicate to the linker that the section
228 . contains PIC code, and must be handled specially when doing a
229 . static link. *}
230 .#define SEC_HAS_GOT_REF 0x800
231 .
232 . {* The section contains common symbols (symbols may be defined
233 . multiple times, the value of a symbol is the amount of
234 . space it requires, and the largest symbol value is the one
235 . used). Most targets have exactly one of these (which we
236 . translate to bfd_com_section_ptr), but ECOFF has two. *}
237 .#define SEC_IS_COMMON 0x1000
238 .
239 . {* The section contains only debugging information. For
240 . example, this is set for ELF .debug and .stab sections.
241 . strip tests this flag to see if a section can be
242 . discarded. *}
243 .#define SEC_DEBUGGING 0x2000
244 .
245 . {* The contents of this section are held in memory pointed to
246 . by the contents field. This is checked by bfd_get_section_contents,
247 . and the data is retrieved from memory if appropriate. *}
248 .#define SEC_IN_MEMORY 0x4000
249 .
250 . {* The contents of this section are to be excluded by the
251 . linker for executable and shared objects unless those
252 . objects are to be further relocated. *}
253 .#define SEC_EXCLUDE 0x8000
254 .
255 . {* The contents of this section are to be sorted based on the sum of
256 . the symbol and addend values specified by the associated relocation
257 . entries. Entries without associated relocation entries will be
258 . appended to the end of the section in an unspecified order. *}
259 .#define SEC_SORT_ENTRIES 0x10000
260 .
261 . {* When linking, duplicate sections of the same name should be
262 . discarded, rather than being combined into a single section as
263 . is usually done. This is similar to how common symbols are
264 . handled. See SEC_LINK_DUPLICATES below. *}
265 .#define SEC_LINK_ONCE 0x20000
266 .
267 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
268 . should handle duplicate sections. *}
269 .#define SEC_LINK_DUPLICATES 0xc0000
270 .
271 . {* This value for SEC_LINK_DUPLICATES means that duplicate
272 . sections with the same name should simply be discarded. *}
273 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
274 .
275 . {* This value for SEC_LINK_DUPLICATES means that the linker
276 . should warn if there are any duplicate sections, although
277 . it should still only link one copy. *}
278 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
279 .
280 . {* This value for SEC_LINK_DUPLICATES means that the linker
281 . should warn if any duplicate sections are a different size. *}
282 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
283 .
284 . {* This value for SEC_LINK_DUPLICATES means that the linker
285 . should warn if any duplicate sections contain different
286 . contents. *}
287 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
288 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
289 .
290 . {* This section was created by the linker as part of dynamic
291 . relocation or other arcane processing. It is skipped when
292 . going through the first-pass output, trusting that someone
293 . else up the line will take care of it later. *}
294 .#define SEC_LINKER_CREATED 0x100000
295 .
296 . {* This section should not be subject to garbage collection.
297 . Also set to inform the linker that this section should not be
298 . listed in the link map as discarded. *}
299 .#define SEC_KEEP 0x200000
300 .
301 . {* This section contains "short" data, and should be placed
302 . "near" the GP. *}
303 .#define SEC_SMALL_DATA 0x400000
304 .
305 . {* Attempt to merge identical entities in the section.
306 . Entity size is given in the entsize field. *}
307 .#define SEC_MERGE 0x800000
308 .
309 . {* If given with SEC_MERGE, entities to merge are zero terminated
310 . strings where entsize specifies character size instead of fixed
311 . size entries. *}
312 .#define SEC_STRINGS 0x1000000
313 .
314 . {* This section contains data about section groups. *}
315 .#define SEC_GROUP 0x2000000
316 .
317 . {* The section is a COFF shared library section. This flag is
318 . only for the linker. If this type of section appears in
319 . the input file, the linker must copy it to the output file
320 . without changing the vma or size. FIXME: Although this
321 . was originally intended to be general, it really is COFF
322 . specific (and the flag was renamed to indicate this). It
323 . might be cleaner to have some more general mechanism to
324 . allow the back end to control what the linker does with
325 . sections. *}
326 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
327 .
328 . {* This input section should be copied to output in reverse order
329 . as an array of pointers. This is for ELF linker internal use
330 . only. *}
331 .#define SEC_ELF_REVERSE_COPY 0x4000000
332 .
333 . {* This section contains data which may be shared with other
334 . executables or shared objects. This is for COFF only. *}
335 .#define SEC_COFF_SHARED 0x8000000
336 .
337 . {* This section should be compressed. This is for ELF linker
338 . internal use only. *}
339 .#define SEC_ELF_COMPRESS 0x8000000
340 .
341 . {* When a section with this flag is being linked, then if the size of
342 . the input section is less than a page, it should not cross a page
343 . boundary. If the size of the input section is one page or more,
344 . it should be aligned on a page boundary. This is for TI
345 . TMS320C54X only. *}
346 .#define SEC_TIC54X_BLOCK 0x10000000
347 .
348 . {* This section should be renamed. This is for ELF linker
349 . internal use only. *}
350 .#define SEC_ELF_RENAME 0x10000000
351 .
352 . {* Conditionally link this section; do not link if there are no
353 . references found to any symbol in the section. This is for TI
354 . TMS320C54X only. *}
355 .#define SEC_TIC54X_CLINK 0x20000000
356 .
357 . {* This section contains vliw code. This is for Toshiba MeP only. *}
358 .#define SEC_MEP_VLIW 0x20000000
359 .
360 . {* Indicate that section has the no read flag set. This happens
361 . when memory read flag isn't set. *}
362 .#define SEC_COFF_NOREAD 0x40000000
363 .
364 . {* End of section flags. *}
365 .
366 . {* Some internal packed boolean fields. *}
367 .
368 . {* See the vma field. *}
369 . unsigned int user_set_vma : 1;
370 .
371 . {* A mark flag used by some of the linker backends. *}
372 . unsigned int linker_mark : 1;
373 .
374 . {* Another mark flag used by some of the linker backends. Set for
375 . output sections that have an input section. *}
376 . unsigned int linker_has_input : 1;
377 .
378 . {* Mark flag used by some linker backends for garbage collection. *}
379 . unsigned int gc_mark : 1;
380 .
381 . {* Section compression status. *}
382 . unsigned int compress_status : 2;
383 .#define COMPRESS_SECTION_NONE 0
384 .#define COMPRESS_SECTION_DONE 1
385 .#define DECOMPRESS_SECTION_SIZED 2
386 .
387 . {* The following flags are used by the ELF linker. *}
388 .
389 . {* Mark sections which have been allocated to segments. *}
390 . unsigned int segment_mark : 1;
391 .
392 . {* Type of sec_info information. *}
393 . unsigned int sec_info_type:3;
394 .#define SEC_INFO_TYPE_NONE 0
395 .#define SEC_INFO_TYPE_STABS 1
396 .#define SEC_INFO_TYPE_MERGE 2
397 .#define SEC_INFO_TYPE_EH_FRAME 3
398 .#define SEC_INFO_TYPE_JUST_SYMS 4
399 .#define SEC_INFO_TYPE_TARGET 5
400 .#define SEC_INFO_TYPE_EH_FRAME_ENTRY 6
401 .
402 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
403 . unsigned int use_rela_p:1;
404 .
405 . {* Bits used by various backends. The generic code doesn't touch
406 . these fields. *}
407 .
408 . unsigned int sec_flg0:1;
409 . unsigned int sec_flg1:1;
410 . unsigned int sec_flg2:1;
411 . unsigned int sec_flg3:1;
412 . unsigned int sec_flg4:1;
413 . unsigned int sec_flg5:1;
414 .
415 . {* End of internal packed boolean fields. *}
416 .
417 . {* The virtual memory address of the section - where it will be
418 . at run time. The symbols are relocated against this. The
419 . user_set_vma flag is maintained by bfd; if it's not set, the
420 . backend can assign addresses (for example, in <<a.out>>, where
421 . the default address for <<.data>> is dependent on the specific
422 . target and various flags). *}
423 . bfd_vma vma;
424 .
425 . {* The load address of the section - where it would be in a
426 . rom image; really only used for writing section header
427 . information. *}
428 . bfd_vma lma;
429 .
430 . {* The size of the section in octets, as it will be output.
431 . Contains a value even if the section has no contents (e.g., the
432 . size of <<.bss>>). *}
433 . bfd_size_type size;
434 .
435 . {* For input sections, the original size on disk of the section, in
436 . octets. This field should be set for any section whose size is
437 . changed by linker relaxation. It is required for sections where
438 . the linker relaxation scheme doesn't cache altered section and
439 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
440 . targets), and thus the original size needs to be kept to read the
441 . section multiple times. For output sections, rawsize holds the
442 . section size calculated on a previous linker relaxation pass. *}
443 . bfd_size_type rawsize;
444 .
445 . {* The compressed size of the section in octets. *}
446 . bfd_size_type compressed_size;
447 .
448 . {* Relaxation table. *}
449 . struct relax_table *relax;
450 .
451 . {* Count of used relaxation table entries. *}
452 . int relax_count;
453 .
454 .
455 . {* If this section is going to be output, then this value is the
456 . offset in *bytes* into the output section of the first byte in the
457 . input section (byte ==> smallest addressable unit on the
458 . target). In most cases, if this was going to start at the
459 . 100th octet (8-bit quantity) in the output section, this value
460 . would be 100. However, if the target byte size is 16 bits
461 . (bfd_octets_per_byte is "2"), this value would be 50. *}
462 . bfd_vma output_offset;
463 .
464 . {* The output section through which to map on output. *}
465 . struct bfd_section *output_section;
466 .
467 . {* The alignment requirement of the section, as an exponent of 2 -
468 . e.g., 3 aligns to 2^3 (or 8). *}
469 . unsigned int alignment_power;
470 .
471 . {* If an input section, a pointer to a vector of relocation
472 . records for the data in this section. *}
473 . struct reloc_cache_entry *relocation;
474 .
475 . {* If an output section, a pointer to a vector of pointers to
476 . relocation records for the data in this section. *}
477 . struct reloc_cache_entry **orelocation;
478 .
479 . {* The number of relocation records in one of the above. *}
480 . unsigned reloc_count;
481 .
482 . {* Information below is back end specific - and not always used
483 . or updated. *}
484 .
485 . {* File position of section data. *}
486 . file_ptr filepos;
487 .
488 . {* File position of relocation info. *}
489 . file_ptr rel_filepos;
490 .
491 . {* File position of line data. *}
492 . file_ptr line_filepos;
493 .
494 . {* Pointer to data for applications. *}
495 . void *userdata;
496 .
497 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
498 . contents. *}
499 . unsigned char *contents;
500 .
501 . {* Attached line number information. *}
502 . alent *lineno;
503 .
504 . {* Number of line number records. *}
505 . unsigned int lineno_count;
506 .
507 . {* Entity size for merging purposes. *}
508 . unsigned int entsize;
509 .
510 . {* Points to the kept section if this section is a link-once section,
511 . and is discarded. *}
512 . struct bfd_section *kept_section;
513 .
514 . {* When a section is being output, this value changes as more
515 . linenumbers are written out. *}
516 . file_ptr moving_line_filepos;
517 .
518 . {* What the section number is in the target world. *}
519 . int target_index;
520 .
521 . void *used_by_bfd;
522 .
523 . {* If this is a constructor section then here is a list of the
524 . relocations created to relocate items within it. *}
525 . struct relent_chain *constructor_chain;
526 .
527 . {* The BFD which owns the section. *}
528 . bfd *owner;
529 .
530 . {* A symbol which points at this section only. *}
531 . struct bfd_symbol *symbol;
532 . struct bfd_symbol **symbol_ptr_ptr;
533 .
534 . {* Early in the link process, map_head and map_tail are used to build
535 . a list of input sections attached to an output section. Later,
536 . output sections use these fields for a list of bfd_link_order
537 . structs. *}
538 . union {
539 . struct bfd_link_order *link_order;
540 . struct bfd_section *s;
541 . } map_head, map_tail;
542 .} asection;
543 .
544 .{* Relax table contains information about instructions which can
545 . be removed by relaxation -- replacing a long address with a
546 . short address. *}
547 .struct relax_table {
548 . {* Address where bytes may be deleted. *}
549 . bfd_vma addr;
550 .
551 . {* Number of bytes to be deleted. *}
552 . int size;
553 .};
554 .
555 .{* Note: the following are provided as inline functions rather than macros
556 . because not all callers use the return value. A macro implementation
557 . would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some
558 . compilers will complain about comma expressions that have no effect. *}
559 .static inline bfd_boolean
560 .bfd_set_section_userdata (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, void * val)
561 .{
562 . ptr->userdata = val;
563 . return TRUE;
564 .}
565 .
566 .static inline bfd_boolean
567 .bfd_set_section_vma (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, bfd_vma val)
568 .{
569 . ptr->vma = ptr->lma = val;
570 . ptr->user_set_vma = TRUE;
571 . return TRUE;
572 .}
573 .
574 .static inline bfd_boolean
575 .bfd_set_section_alignment (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, unsigned int val)
576 .{
577 . ptr->alignment_power = val;
578 . return TRUE;
579 .}
580 .
581 .{* These sections are global, and are managed by BFD. The application
582 . and target back end are not permitted to change the values in
583 . these sections. *}
584 .extern asection _bfd_std_section[4];
585 .
586 .#define BFD_ABS_SECTION_NAME "*ABS*"
587 .#define BFD_UND_SECTION_NAME "*UND*"
588 .#define BFD_COM_SECTION_NAME "*COM*"
589 .#define BFD_IND_SECTION_NAME "*IND*"
590 .
591 .{* Pointer to the common section. *}
592 .#define bfd_com_section_ptr (&_bfd_std_section[0])
593 .{* Pointer to the undefined section. *}
594 .#define bfd_und_section_ptr (&_bfd_std_section[1])
595 .{* Pointer to the absolute section. *}
596 .#define bfd_abs_section_ptr (&_bfd_std_section[2])
597 .{* Pointer to the indirect section. *}
598 .#define bfd_ind_section_ptr (&_bfd_std_section[3])
599 .
600 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
601 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
602 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
603 .
604 .#define bfd_is_const_section(SEC) \
605 . ( ((SEC) == bfd_abs_section_ptr) \
606 . || ((SEC) == bfd_und_section_ptr) \
607 . || ((SEC) == bfd_com_section_ptr) \
608 . || ((SEC) == bfd_ind_section_ptr))
609 .
610 .{* Macros to handle insertion and deletion of a bfd's sections. These
611 . only handle the list pointers, ie. do not adjust section_count,
612 . target_index etc. *}
613 .#define bfd_section_list_remove(ABFD, S) \
614 . do \
615 . { \
616 . asection *_s = S; \
617 . asection *_next = _s->next; \
618 . asection *_prev = _s->prev; \
619 . if (_prev) \
620 . _prev->next = _next; \
621 . else \
622 . (ABFD)->sections = _next; \
623 . if (_next) \
624 . _next->prev = _prev; \
625 . else \
626 . (ABFD)->section_last = _prev; \
627 . } \
628 . while (0)
629 .#define bfd_section_list_append(ABFD, S) \
630 . do \
631 . { \
632 . asection *_s = S; \
633 . bfd *_abfd = ABFD; \
634 . _s->next = NULL; \
635 . if (_abfd->section_last) \
636 . { \
637 . _s->prev = _abfd->section_last; \
638 . _abfd->section_last->next = _s; \
639 . } \
640 . else \
641 . { \
642 . _s->prev = NULL; \
643 . _abfd->sections = _s; \
644 . } \
645 . _abfd->section_last = _s; \
646 . } \
647 . while (0)
648 .#define bfd_section_list_prepend(ABFD, S) \
649 . do \
650 . { \
651 . asection *_s = S; \
652 . bfd *_abfd = ABFD; \
653 . _s->prev = NULL; \
654 . if (_abfd->sections) \
655 . { \
656 . _s->next = _abfd->sections; \
657 . _abfd->sections->prev = _s; \
658 . } \
659 . else \
660 . { \
661 . _s->next = NULL; \
662 . _abfd->section_last = _s; \
663 . } \
664 . _abfd->sections = _s; \
665 . } \
666 . while (0)
667 .#define bfd_section_list_insert_after(ABFD, A, S) \
668 . do \
669 . { \
670 . asection *_a = A; \
671 . asection *_s = S; \
672 . asection *_next = _a->next; \
673 . _s->next = _next; \
674 . _s->prev = _a; \
675 . _a->next = _s; \
676 . if (_next) \
677 . _next->prev = _s; \
678 . else \
679 . (ABFD)->section_last = _s; \
680 . } \
681 . while (0)
682 .#define bfd_section_list_insert_before(ABFD, B, S) \
683 . do \
684 . { \
685 . asection *_b = B; \
686 . asection *_s = S; \
687 . asection *_prev = _b->prev; \
688 . _s->prev = _prev; \
689 . _s->next = _b; \
690 . _b->prev = _s; \
691 . if (_prev) \
692 . _prev->next = _s; \
693 . else \
694 . (ABFD)->sections = _s; \
695 . } \
696 . while (0)
697 .#define bfd_section_removed_from_list(ABFD, S) \
698 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
699 .
700 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
701 . {* name, id, index, next, prev, flags, user_set_vma, *} \
702 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
703 . \
704 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \
705 . 0, 0, 1, 0, \
706 . \
707 . {* segment_mark, sec_info_type, use_rela_p, *} \
708 . 0, 0, 0, \
709 . \
710 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \
711 . 0, 0, 0, 0, 0, 0, \
712 . \
713 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \
714 . 0, 0, 0, 0, 0, 0, 0, \
715 . \
716 . {* output_offset, output_section, alignment_power, *} \
717 . 0, &SEC, 0, \
718 . \
719 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
720 . NULL, NULL, 0, 0, 0, \
721 . \
722 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
723 . 0, NULL, NULL, NULL, 0, \
724 . \
725 . {* entsize, kept_section, moving_line_filepos, *} \
726 . 0, NULL, 0, \
727 . \
728 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
729 . 0, NULL, NULL, NULL, \
730 . \
731 . {* symbol, symbol_ptr_ptr, *} \
732 . (struct bfd_symbol *) SYM, &SEC.symbol, \
733 . \
734 . {* map_head, map_tail *} \
735 . { NULL }, { NULL } \
736 . }
737 .
738 */
739
740 /* We use a macro to initialize the static asymbol structures because
741 traditional C does not permit us to initialize a union member while
742 gcc warns if we don't initialize it. */
743 /* the_bfd, name, value, attr, section [, udata] */
744 #ifdef __STDC__
745 #define GLOBAL_SYM_INIT(NAME, SECTION) \
746 { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }}
747 #else
748 #define GLOBAL_SYM_INIT(NAME, SECTION) \
749 { 0, NAME, 0, BSF_SECTION_SYM, SECTION }
750 #endif
751
752 /* These symbols are global, not specific to any BFD. Therefore, anything
753 that tries to change them is broken, and should be repaired. */
754
755 static const asymbol global_syms[] =
756 {
757 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr),
758 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr),
759 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr),
760 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr)
761 };
762
763 #define STD_SECTION(NAME, IDX, FLAGS) \
764 BFD_FAKE_SECTION(_bfd_std_section[IDX], FLAGS, &global_syms[IDX], NAME, IDX)
765
766 asection _bfd_std_section[] = {
767 STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON),
768 STD_SECTION (BFD_UND_SECTION_NAME, 1, 0),
769 STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0),
770 STD_SECTION (BFD_IND_SECTION_NAME, 3, 0)
771 };
772 #undef STD_SECTION
773
774 /* Initialize an entry in the section hash table. */
775
776 struct bfd_hash_entry *
777 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
778 struct bfd_hash_table *table,
779 const char *string)
780 {
781 /* Allocate the structure if it has not already been allocated by a
782 subclass. */
783 if (entry == NULL)
784 {
785 entry = (struct bfd_hash_entry *)
786 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
787 if (entry == NULL)
788 return entry;
789 }
790
791 /* Call the allocation method of the superclass. */
792 entry = bfd_hash_newfunc (entry, table, string);
793 if (entry != NULL)
794 memset (&((struct section_hash_entry *) entry)->section, 0,
795 sizeof (asection));
796
797 return entry;
798 }
799
800 #define section_hash_lookup(table, string, create, copy) \
801 ((struct section_hash_entry *) \
802 bfd_hash_lookup ((table), (string), (create), (copy)))
803
804 /* Create a symbol whose only job is to point to this section. This
805 is useful for things like relocs which are relative to the base
806 of a section. */
807
808 bfd_boolean
809 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
810 {
811 newsect->symbol = bfd_make_empty_symbol (abfd);
812 if (newsect->symbol == NULL)
813 return FALSE;
814
815 newsect->symbol->name = newsect->name;
816 newsect->symbol->value = 0;
817 newsect->symbol->section = newsect;
818 newsect->symbol->flags = BSF_SECTION_SYM;
819
820 newsect->symbol_ptr_ptr = &newsect->symbol;
821 return TRUE;
822 }
823
824 /* Initializes a new section. NEWSECT->NAME is already set. */
825
826 static asection *
827 bfd_section_init (bfd *abfd, asection *newsect)
828 {
829 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
830
831 newsect->id = section_id;
832 newsect->index = abfd->section_count;
833 newsect->owner = abfd;
834
835 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
836 return NULL;
837
838 section_id++;
839 abfd->section_count++;
840 bfd_section_list_append (abfd, newsect);
841 return newsect;
842 }
843
844 /*
845 DOCDD
846 INODE
847 section prototypes, , typedef asection, Sections
848 SUBSECTION
849 Section prototypes
850
851 These are the functions exported by the section handling part of BFD.
852 */
853
854 /*
855 FUNCTION
856 bfd_section_list_clear
857
858 SYNOPSIS
859 void bfd_section_list_clear (bfd *);
860
861 DESCRIPTION
862 Clears the section list, and also resets the section count and
863 hash table entries.
864 */
865
866 void
867 bfd_section_list_clear (bfd *abfd)
868 {
869 abfd->sections = NULL;
870 abfd->section_last = NULL;
871 abfd->section_count = 0;
872 memset (abfd->section_htab.table, 0,
873 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
874 abfd->section_htab.count = 0;
875 }
876
877 /*
878 FUNCTION
879 bfd_get_section_by_name
880
881 SYNOPSIS
882 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
883
884 DESCRIPTION
885 Return the most recently created section attached to @var{abfd}
886 named @var{name}. Return NULL if no such section exists.
887 */
888
889 asection *
890 bfd_get_section_by_name (bfd *abfd, const char *name)
891 {
892 struct section_hash_entry *sh;
893
894 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
895 if (sh != NULL)
896 return &sh->section;
897
898 return NULL;
899 }
900
901 /*
902 FUNCTION
903 bfd_get_next_section_by_name
904
905 SYNOPSIS
906 asection *bfd_get_next_section_by_name (asection *sec);
907
908 DESCRIPTION
909 Given @var{sec} is a section returned by @code{bfd_get_section_by_name},
910 return the next most recently created section attached to the same
911 BFD with the same name. Return NULL if no such section exists.
912 */
913
914 asection *
915 bfd_get_next_section_by_name (asection *sec)
916 {
917 struct section_hash_entry *sh;
918 const char *name;
919 unsigned long hash;
920
921 sh = ((struct section_hash_entry *)
922 ((char *) sec - offsetof (struct section_hash_entry, section)));
923
924 hash = sh->root.hash;
925 name = sec->name;
926 for (sh = (struct section_hash_entry *) sh->root.next;
927 sh != NULL;
928 sh = (struct section_hash_entry *) sh->root.next)
929 if (sh->root.hash == hash
930 && strcmp (sh->root.string, name) == 0)
931 return &sh->section;
932
933 return NULL;
934 }
935
936 /*
937 FUNCTION
938 bfd_get_linker_section
939
940 SYNOPSIS
941 asection *bfd_get_linker_section (bfd *abfd, const char *name);
942
943 DESCRIPTION
944 Return the linker created section attached to @var{abfd}
945 named @var{name}. Return NULL if no such section exists.
946 */
947
948 asection *
949 bfd_get_linker_section (bfd *abfd, const char *name)
950 {
951 asection *sec = bfd_get_section_by_name (abfd, name);
952
953 while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0)
954 sec = bfd_get_next_section_by_name (sec);
955 return sec;
956 }
957
958 /*
959 FUNCTION
960 bfd_get_section_by_name_if
961
962 SYNOPSIS
963 asection *bfd_get_section_by_name_if
964 (bfd *abfd,
965 const char *name,
966 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
967 void *obj);
968
969 DESCRIPTION
970 Call the provided function @var{func} for each section
971 attached to the BFD @var{abfd} whose name matches @var{name},
972 passing @var{obj} as an argument. The function will be called
973 as if by
974
975 | func (abfd, the_section, obj);
976
977 It returns the first section for which @var{func} returns true,
978 otherwise <<NULL>>.
979
980 */
981
982 asection *
983 bfd_get_section_by_name_if (bfd *abfd, const char *name,
984 bfd_boolean (*operation) (bfd *,
985 asection *,
986 void *),
987 void *user_storage)
988 {
989 struct section_hash_entry *sh;
990 unsigned long hash;
991
992 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
993 if (sh == NULL)
994 return NULL;
995
996 hash = sh->root.hash;
997 for (; sh != NULL; sh = (struct section_hash_entry *) sh->root.next)
998 if (sh->root.hash == hash
999 && strcmp (sh->root.string, name) == 0
1000 && (*operation) (abfd, &sh->section, user_storage))
1001 return &sh->section;
1002
1003 return NULL;
1004 }
1005
1006 /*
1007 FUNCTION
1008 bfd_get_unique_section_name
1009
1010 SYNOPSIS
1011 char *bfd_get_unique_section_name
1012 (bfd *abfd, const char *templat, int *count);
1013
1014 DESCRIPTION
1015 Invent a section name that is unique in @var{abfd} by tacking
1016 a dot and a digit suffix onto the original @var{templat}. If
1017 @var{count} is non-NULL, then it specifies the first number
1018 tried as a suffix to generate a unique name. The value
1019 pointed to by @var{count} will be incremented in this case.
1020 */
1021
1022 char *
1023 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
1024 {
1025 int num;
1026 unsigned int len;
1027 char *sname;
1028
1029 len = strlen (templat);
1030 sname = (char *) bfd_malloc (len + 8);
1031 if (sname == NULL)
1032 return NULL;
1033 memcpy (sname, templat, len);
1034 num = 1;
1035 if (count != NULL)
1036 num = *count;
1037
1038 do
1039 {
1040 /* If we have a million sections, something is badly wrong. */
1041 if (num > 999999)
1042 abort ();
1043 sprintf (sname + len, ".%d", num++);
1044 }
1045 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
1046
1047 if (count != NULL)
1048 *count = num;
1049 return sname;
1050 }
1051
1052 /*
1053 FUNCTION
1054 bfd_make_section_old_way
1055
1056 SYNOPSIS
1057 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1058
1059 DESCRIPTION
1060 Create a new empty section called @var{name}
1061 and attach it to the end of the chain of sections for the
1062 BFD @var{abfd}. An attempt to create a section with a name which
1063 is already in use returns its pointer without changing the
1064 section chain.
1065
1066 It has the funny name since this is the way it used to be
1067 before it was rewritten....
1068
1069 Possible errors are:
1070 o <<bfd_error_invalid_operation>> -
1071 If output has already started for this BFD.
1072 o <<bfd_error_no_memory>> -
1073 If memory allocation fails.
1074
1075 */
1076
1077 asection *
1078 bfd_make_section_old_way (bfd *abfd, const char *name)
1079 {
1080 asection *newsect;
1081
1082 if (abfd->output_has_begun)
1083 {
1084 bfd_set_error (bfd_error_invalid_operation);
1085 return NULL;
1086 }
1087
1088 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
1089 newsect = bfd_abs_section_ptr;
1090 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
1091 newsect = bfd_com_section_ptr;
1092 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
1093 newsect = bfd_und_section_ptr;
1094 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
1095 newsect = bfd_ind_section_ptr;
1096 else
1097 {
1098 struct section_hash_entry *sh;
1099
1100 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1101 if (sh == NULL)
1102 return NULL;
1103
1104 newsect = &sh->section;
1105 if (newsect->name != NULL)
1106 {
1107 /* Section already exists. */
1108 return newsect;
1109 }
1110
1111 newsect->name = name;
1112 return bfd_section_init (abfd, newsect);
1113 }
1114
1115 /* Call new_section_hook when "creating" the standard abs, com, und
1116 and ind sections to tack on format specific section data.
1117 Also, create a proper section symbol. */
1118 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1119 return NULL;
1120 return newsect;
1121 }
1122
1123 /*
1124 FUNCTION
1125 bfd_make_section_anyway_with_flags
1126
1127 SYNOPSIS
1128 asection *bfd_make_section_anyway_with_flags
1129 (bfd *abfd, const char *name, flagword flags);
1130
1131 DESCRIPTION
1132 Create a new empty section called @var{name} and attach it to the end of
1133 the chain of sections for @var{abfd}. Create a new section even if there
1134 is already a section with that name. Also set the attributes of the
1135 new section to the value @var{flags}.
1136
1137 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1138 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1139 o <<bfd_error_no_memory>> - If memory allocation fails.
1140 */
1141
1142 sec_ptr
1143 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1144 flagword flags)
1145 {
1146 struct section_hash_entry *sh;
1147 asection *newsect;
1148
1149 if (abfd->output_has_begun)
1150 {
1151 bfd_set_error (bfd_error_invalid_operation);
1152 return NULL;
1153 }
1154
1155 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1156 if (sh == NULL)
1157 return NULL;
1158
1159 newsect = &sh->section;
1160 if (newsect->name != NULL)
1161 {
1162 /* We are making a section of the same name. Put it in the
1163 section hash table. Even though we can't find it directly by a
1164 hash lookup, we'll be able to find the section by traversing
1165 sh->root.next quicker than looking at all the bfd sections. */
1166 struct section_hash_entry *new_sh;
1167 new_sh = (struct section_hash_entry *)
1168 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1169 if (new_sh == NULL)
1170 return NULL;
1171
1172 new_sh->root = sh->root;
1173 sh->root.next = &new_sh->root;
1174 newsect = &new_sh->section;
1175 }
1176
1177 newsect->flags = flags;
1178 newsect->name = name;
1179 return bfd_section_init (abfd, newsect);
1180 }
1181
1182 /*
1183 FUNCTION
1184 bfd_make_section_anyway
1185
1186 SYNOPSIS
1187 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1188
1189 DESCRIPTION
1190 Create a new empty section called @var{name} and attach it to the end of
1191 the chain of sections for @var{abfd}. Create a new section even if there
1192 is already a section with that name.
1193
1194 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1195 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1196 o <<bfd_error_no_memory>> - If memory allocation fails.
1197 */
1198
1199 sec_ptr
1200 bfd_make_section_anyway (bfd *abfd, const char *name)
1201 {
1202 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1203 }
1204
1205 /*
1206 FUNCTION
1207 bfd_make_section_with_flags
1208
1209 SYNOPSIS
1210 asection *bfd_make_section_with_flags
1211 (bfd *, const char *name, flagword flags);
1212
1213 DESCRIPTION
1214 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1215 bfd_set_error ()) without changing the section chain if there is already a
1216 section named @var{name}. Also set the attributes of the new section to
1217 the value @var{flags}. If there is an error, return <<NULL>> and set
1218 <<bfd_error>>.
1219 */
1220
1221 asection *
1222 bfd_make_section_with_flags (bfd *abfd, const char *name,
1223 flagword flags)
1224 {
1225 struct section_hash_entry *sh;
1226 asection *newsect;
1227
1228 if (abfd->output_has_begun)
1229 {
1230 bfd_set_error (bfd_error_invalid_operation);
1231 return NULL;
1232 }
1233
1234 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1235 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1236 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1237 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1238 return NULL;
1239
1240 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1241 if (sh == NULL)
1242 return NULL;
1243
1244 newsect = &sh->section;
1245 if (newsect->name != NULL)
1246 {
1247 /* Section already exists. */
1248 return NULL;
1249 }
1250
1251 newsect->name = name;
1252 newsect->flags = flags;
1253 return bfd_section_init (abfd, newsect);
1254 }
1255
1256 /*
1257 FUNCTION
1258 bfd_make_section
1259
1260 SYNOPSIS
1261 asection *bfd_make_section (bfd *, const char *name);
1262
1263 DESCRIPTION
1264 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1265 bfd_set_error ()) without changing the section chain if there is already a
1266 section named @var{name}. If there is an error, return <<NULL>> and set
1267 <<bfd_error>>.
1268 */
1269
1270 asection *
1271 bfd_make_section (bfd *abfd, const char *name)
1272 {
1273 return bfd_make_section_with_flags (abfd, name, 0);
1274 }
1275
1276 /*
1277 FUNCTION
1278 bfd_set_section_flags
1279
1280 SYNOPSIS
1281 bfd_boolean bfd_set_section_flags
1282 (bfd *abfd, asection *sec, flagword flags);
1283
1284 DESCRIPTION
1285 Set the attributes of the section @var{sec} in the BFD
1286 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1287 <<FALSE>> on error. Possible error returns are:
1288
1289 o <<bfd_error_invalid_operation>> -
1290 The section cannot have one or more of the attributes
1291 requested. For example, a .bss section in <<a.out>> may not
1292 have the <<SEC_HAS_CONTENTS>> field set.
1293
1294 */
1295
1296 bfd_boolean
1297 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1298 sec_ptr section,
1299 flagword flags)
1300 {
1301 section->flags = flags;
1302 return TRUE;
1303 }
1304
1305 /*
1306 FUNCTION
1307 bfd_rename_section
1308
1309 SYNOPSIS
1310 void bfd_rename_section
1311 (bfd *abfd, asection *sec, const char *newname);
1312
1313 DESCRIPTION
1314 Rename section @var{sec} in @var{abfd} to @var{newname}.
1315 */
1316
1317 void
1318 bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname)
1319 {
1320 struct section_hash_entry *sh;
1321
1322 sh = (struct section_hash_entry *)
1323 ((char *) sec - offsetof (struct section_hash_entry, section));
1324 sh->section.name = newname;
1325 bfd_hash_rename (&abfd->section_htab, newname, &sh->root);
1326 }
1327
1328 /*
1329 FUNCTION
1330 bfd_map_over_sections
1331
1332 SYNOPSIS
1333 void bfd_map_over_sections
1334 (bfd *abfd,
1335 void (*func) (bfd *abfd, asection *sect, void *obj),
1336 void *obj);
1337
1338 DESCRIPTION
1339 Call the provided function @var{func} for each section
1340 attached to the BFD @var{abfd}, passing @var{obj} as an
1341 argument. The function will be called as if by
1342
1343 | func (abfd, the_section, obj);
1344
1345 This is the preferred method for iterating over sections; an
1346 alternative would be to use a loop:
1347
1348 | asection *p;
1349 | for (p = abfd->sections; p != NULL; p = p->next)
1350 | func (abfd, p, ...)
1351
1352 */
1353
1354 void
1355 bfd_map_over_sections (bfd *abfd,
1356 void (*operation) (bfd *, asection *, void *),
1357 void *user_storage)
1358 {
1359 asection *sect;
1360 unsigned int i = 0;
1361
1362 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1363 (*operation) (abfd, sect, user_storage);
1364
1365 if (i != abfd->section_count) /* Debugging */
1366 abort ();
1367 }
1368
1369 /*
1370 FUNCTION
1371 bfd_sections_find_if
1372
1373 SYNOPSIS
1374 asection *bfd_sections_find_if
1375 (bfd *abfd,
1376 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1377 void *obj);
1378
1379 DESCRIPTION
1380 Call the provided function @var{operation} for each section
1381 attached to the BFD @var{abfd}, passing @var{obj} as an
1382 argument. The function will be called as if by
1383
1384 | operation (abfd, the_section, obj);
1385
1386 It returns the first section for which @var{operation} returns true.
1387
1388 */
1389
1390 asection *
1391 bfd_sections_find_if (bfd *abfd,
1392 bfd_boolean (*operation) (bfd *, asection *, void *),
1393 void *user_storage)
1394 {
1395 asection *sect;
1396
1397 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1398 if ((*operation) (abfd, sect, user_storage))
1399 break;
1400
1401 return sect;
1402 }
1403
1404 /*
1405 FUNCTION
1406 bfd_set_section_size
1407
1408 SYNOPSIS
1409 bfd_boolean bfd_set_section_size
1410 (bfd *abfd, asection *sec, bfd_size_type val);
1411
1412 DESCRIPTION
1413 Set @var{sec} to the size @var{val}. If the operation is
1414 ok, then <<TRUE>> is returned, else <<FALSE>>.
1415
1416 Possible error returns:
1417 o <<bfd_error_invalid_operation>> -
1418 Writing has started to the BFD, so setting the size is invalid.
1419
1420 */
1421
1422 bfd_boolean
1423 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1424 {
1425 /* Once you've started writing to any section you cannot create or change
1426 the size of any others. */
1427
1428 if (abfd->output_has_begun)
1429 {
1430 bfd_set_error (bfd_error_invalid_operation);
1431 return FALSE;
1432 }
1433
1434 ptr->size = val;
1435 return TRUE;
1436 }
1437
1438 /*
1439 FUNCTION
1440 bfd_set_section_contents
1441
1442 SYNOPSIS
1443 bfd_boolean bfd_set_section_contents
1444 (bfd *abfd, asection *section, const void *data,
1445 file_ptr offset, bfd_size_type count);
1446
1447 DESCRIPTION
1448 Sets the contents of the section @var{section} in BFD
1449 @var{abfd} to the data starting in memory at @var{data}. The
1450 data is written to the output section starting at offset
1451 @var{offset} for @var{count} octets.
1452
1453 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1454 returns are:
1455 o <<bfd_error_no_contents>> -
1456 The output section does not have the <<SEC_HAS_CONTENTS>>
1457 attribute, so nothing can be written to it.
1458 o and some more too
1459
1460 This routine is front end to the back end function
1461 <<_bfd_set_section_contents>>.
1462
1463 */
1464
1465 bfd_boolean
1466 bfd_set_section_contents (bfd *abfd,
1467 sec_ptr section,
1468 const void *location,
1469 file_ptr offset,
1470 bfd_size_type count)
1471 {
1472 bfd_size_type sz;
1473
1474 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1475 {
1476 bfd_set_error (bfd_error_no_contents);
1477 return FALSE;
1478 }
1479
1480 sz = section->size;
1481 if ((bfd_size_type) offset > sz
1482 || count > sz
1483 || offset + count > sz
1484 || count != (size_t) count)
1485 {
1486 bfd_set_error (bfd_error_bad_value);
1487 return FALSE;
1488 }
1489
1490 if (!bfd_write_p (abfd))
1491 {
1492 bfd_set_error (bfd_error_invalid_operation);
1493 return FALSE;
1494 }
1495
1496 /* Record a copy of the data in memory if desired. */
1497 if (section->contents
1498 && location != section->contents + offset)
1499 memcpy (section->contents + offset, location, (size_t) count);
1500
1501 if (BFD_SEND (abfd, _bfd_set_section_contents,
1502 (abfd, section, location, offset, count)))
1503 {
1504 abfd->output_has_begun = TRUE;
1505 return TRUE;
1506 }
1507
1508 return FALSE;
1509 }
1510
1511 /*
1512 FUNCTION
1513 bfd_get_section_contents
1514
1515 SYNOPSIS
1516 bfd_boolean bfd_get_section_contents
1517 (bfd *abfd, asection *section, void *location, file_ptr offset,
1518 bfd_size_type count);
1519
1520 DESCRIPTION
1521 Read data from @var{section} in BFD @var{abfd}
1522 into memory starting at @var{location}. The data is read at an
1523 offset of @var{offset} from the start of the input section,
1524 and is read for @var{count} bytes.
1525
1526 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1527 flag set are requested or if the section does not have the
1528 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1529 with zeroes. If no errors occur, <<TRUE>> is returned, else
1530 <<FALSE>>.
1531
1532 */
1533 bfd_boolean
1534 bfd_get_section_contents (bfd *abfd,
1535 sec_ptr section,
1536 void *location,
1537 file_ptr offset,
1538 bfd_size_type count)
1539 {
1540 bfd_size_type sz;
1541
1542 if (section->flags & SEC_CONSTRUCTOR)
1543 {
1544 memset (location, 0, (size_t) count);
1545 return TRUE;
1546 }
1547
1548 if (abfd->direction != write_direction && section->rawsize != 0)
1549 sz = section->rawsize;
1550 else
1551 sz = section->size;
1552 if ((bfd_size_type) offset > sz
1553 || count > sz
1554 || offset + count > sz
1555 || count != (size_t) count)
1556 {
1557 bfd_set_error (bfd_error_bad_value);
1558 return FALSE;
1559 }
1560
1561 if (count == 0)
1562 /* Don't bother. */
1563 return TRUE;
1564
1565 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1566 {
1567 memset (location, 0, (size_t) count);
1568 return TRUE;
1569 }
1570
1571 if ((section->flags & SEC_IN_MEMORY) != 0)
1572 {
1573 if (section->contents == NULL)
1574 {
1575 /* This can happen because of errors earlier on in the linking process.
1576 We do not want to seg-fault here, so clear the flag and return an
1577 error code. */
1578 section->flags &= ~ SEC_IN_MEMORY;
1579 bfd_set_error (bfd_error_invalid_operation);
1580 return FALSE;
1581 }
1582
1583 memmove (location, section->contents + offset, (size_t) count);
1584 return TRUE;
1585 }
1586
1587 return BFD_SEND (abfd, _bfd_get_section_contents,
1588 (abfd, section, location, offset, count));
1589 }
1590
1591 /*
1592 FUNCTION
1593 bfd_malloc_and_get_section
1594
1595 SYNOPSIS
1596 bfd_boolean bfd_malloc_and_get_section
1597 (bfd *abfd, asection *section, bfd_byte **buf);
1598
1599 DESCRIPTION
1600 Read all data from @var{section} in BFD @var{abfd}
1601 into a buffer, *@var{buf}, malloc'd by this function.
1602 */
1603
1604 bfd_boolean
1605 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1606 {
1607 *buf = NULL;
1608 return bfd_get_full_section_contents (abfd, sec, buf);
1609 }
1610 /*
1611 FUNCTION
1612 bfd_copy_private_section_data
1613
1614 SYNOPSIS
1615 bfd_boolean bfd_copy_private_section_data
1616 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1617
1618 DESCRIPTION
1619 Copy private section information from @var{isec} in the BFD
1620 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1621 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1622 returns are:
1623
1624 o <<bfd_error_no_memory>> -
1625 Not enough memory exists to create private data for @var{osec}.
1626
1627 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1628 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1629 . (ibfd, isection, obfd, osection))
1630 */
1631
1632 /*
1633 FUNCTION
1634 bfd_generic_is_group_section
1635
1636 SYNOPSIS
1637 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1638
1639 DESCRIPTION
1640 Returns TRUE if @var{sec} is a member of a group.
1641 */
1642
1643 bfd_boolean
1644 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1645 const asection *sec ATTRIBUTE_UNUSED)
1646 {
1647 return FALSE;
1648 }
1649
1650 /*
1651 FUNCTION
1652 bfd_generic_discard_group
1653
1654 SYNOPSIS
1655 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1656
1657 DESCRIPTION
1658 Remove all members of @var{group} from the output.
1659 */
1660
1661 bfd_boolean
1662 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1663 asection *group ATTRIBUTE_UNUSED)
1664 {
1665 return TRUE;
1666 }