]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/syms.c
PowerPC64 GOT reloc reserving PLT entry for ifunc
[thirdparty/binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright (C) 1990-2020 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 Symbols
25
26 BFD tries to maintain as much symbol information as it can when
27 it moves information from file to file. BFD passes information
28 to applications though the <<asymbol>> structure. When the
29 application requests the symbol table, BFD reads the table in
30 the native form and translates parts of it into the internal
31 format. To maintain more than the information passed to
32 applications, some targets keep some information ``behind the
33 scenes'' in a structure only the particular back end knows
34 about. For example, the coff back end keeps the original
35 symbol table structure as well as the canonical structure when
36 a BFD is read in. On output, the coff back end can reconstruct
37 the output symbol table so that no information is lost, even
38 information unique to coff which BFD doesn't know or
39 understand. If a coff symbol table were read, but were written
40 through an a.out back end, all the coff specific information
41 would be lost. The symbol table of a BFD
42 is not necessarily read in until a canonicalize request is
43 made. Then the BFD back end fills in a table provided by the
44 application with pointers to the canonical information. To
45 output symbols, the application provides BFD with a table of
46 pointers to pointers to <<asymbol>>s. This allows applications
47 like the linker to output a symbol as it was read, since the ``behind
48 the scenes'' information will be still available.
49 @menu
50 @* Reading Symbols::
51 @* Writing Symbols::
52 @* Mini Symbols::
53 @* typedef asymbol::
54 @* symbol handling functions::
55 @end menu
56
57 INODE
58 Reading Symbols, Writing Symbols, Symbols, Symbols
59 SUBSECTION
60 Reading symbols
61
62 There are two stages to reading a symbol table from a BFD:
63 allocating storage, and the actual reading process. This is an
64 excerpt from an application which reads the symbol table:
65
66 | long storage_needed;
67 | asymbol **symbol_table;
68 | long number_of_symbols;
69 | long i;
70 |
71 | storage_needed = bfd_get_symtab_upper_bound (abfd);
72 |
73 | if (storage_needed < 0)
74 | FAIL
75 |
76 | if (storage_needed == 0)
77 | return;
78 |
79 | symbol_table = xmalloc (storage_needed);
80 | ...
81 | number_of_symbols =
82 | bfd_canonicalize_symtab (abfd, symbol_table);
83 |
84 | if (number_of_symbols < 0)
85 | FAIL
86 |
87 | for (i = 0; i < number_of_symbols; i++)
88 | process_symbol (symbol_table[i]);
89
90 All storage for the symbols themselves is in an objalloc
91 connected to the BFD; it is freed when the BFD is closed.
92
93 INODE
94 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
95 SUBSECTION
96 Writing symbols
97
98 Writing of a symbol table is automatic when a BFD open for
99 writing is closed. The application attaches a vector of
100 pointers to pointers to symbols to the BFD being written, and
101 fills in the symbol count. The close and cleanup code reads
102 through the table provided and performs all the necessary
103 operations. The BFD output code must always be provided with an
104 ``owned'' symbol: one which has come from another BFD, or one
105 which has been created using <<bfd_make_empty_symbol>>. Here is an
106 example showing the creation of a symbol table with only one element:
107
108 | #include "sysdep.h"
109 | #include "bfd.h"
110 | int main (void)
111 | {
112 | bfd *abfd;
113 | asymbol *ptrs[2];
114 | asymbol *new;
115 |
116 | abfd = bfd_openw ("foo","a.out-sunos-big");
117 | bfd_set_format (abfd, bfd_object);
118 | new = bfd_make_empty_symbol (abfd);
119 | new->name = "dummy_symbol";
120 | new->section = bfd_make_section_old_way (abfd, ".text");
121 | new->flags = BSF_GLOBAL;
122 | new->value = 0x12345;
123 |
124 | ptrs[0] = new;
125 | ptrs[1] = 0;
126 |
127 | bfd_set_symtab (abfd, ptrs, 1);
128 | bfd_close (abfd);
129 | return 0;
130 | }
131 |
132 | ./makesym
133 | nm foo
134 | 00012345 A dummy_symbol
135
136 Many formats cannot represent arbitrary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitrary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
141
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 Mini Symbols
146
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
151
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
157
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
163
164 */
165
166 /*
167 DOCDD
168 INODE
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170
171 */
172 /*
173 SUBSECTION
174 typedef asymbol
175
176 An <<asymbol>> has the form:
177
178 */
179
180 /*
181 CODE_FRAGMENT
182
183 .
184 .typedef struct bfd_symbol
185 .{
186 . {* A pointer to the BFD which owns the symbol. This information
187 . is necessary so that a back end can work out what additional
188 . information (invisible to the application writer) is carried
189 . with the symbol.
190 .
191 . This field is *almost* redundant, since you can use section->owner
192 . instead, except that some symbols point to the global sections
193 . bfd_{abs,com,und}_section. This could be fixed by making
194 . these globals be per-bfd (or per-target-flavor). FIXME. *}
195 . struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
196 .
197 . {* The text of the symbol. The name is left alone, and not copied; the
198 . application may not alter it. *}
199 . const char *name;
200 .
201 . {* The value of the symbol. This really should be a union of a
202 . numeric value with a pointer, since some flags indicate that
203 . a pointer to another symbol is stored here. *}
204 . symvalue value;
205 .
206 . {* Attributes of a symbol. *}
207 .#define BSF_NO_FLAGS 0
208 .
209 . {* The symbol has local scope; <<static>> in <<C>>. The value
210 . is the offset into the section of the data. *}
211 .#define BSF_LOCAL (1 << 0)
212 .
213 . {* The symbol has global scope; initialized data in <<C>>. The
214 . value is the offset into the section of the data. *}
215 .#define BSF_GLOBAL (1 << 1)
216 .
217 . {* The symbol has global scope and is exported. The value is
218 . the offset into the section of the data. *}
219 .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *}
220 .
221 . {* A normal C symbol would be one of:
222 . <<BSF_LOCAL>>, <<BSF_UNDEFINED>> or <<BSF_GLOBAL>>. *}
223 .
224 . {* The symbol is a debugging record. The value has an arbitrary
225 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
226 .#define BSF_DEBUGGING (1 << 2)
227 .
228 . {* The symbol denotes a function entry point. Used in ELF,
229 . perhaps others someday. *}
230 .#define BSF_FUNCTION (1 << 3)
231 .
232 . {* Used by the linker. *}
233 .#define BSF_KEEP (1 << 5)
234 .
235 . {* An ELF common symbol. *}
236 .#define BSF_ELF_COMMON (1 << 6)
237 .
238 . {* A weak global symbol, overridable without warnings by
239 . a regular global symbol of the same name. *}
240 .#define BSF_WEAK (1 << 7)
241 .
242 . {* This symbol was created to point to a section, e.g. ELF's
243 . STT_SECTION symbols. *}
244 .#define BSF_SECTION_SYM (1 << 8)
245 .
246 . {* The symbol used to be a common symbol, but now it is
247 . allocated. *}
248 .#define BSF_OLD_COMMON (1 << 9)
249 .
250 . {* In some files the type of a symbol sometimes alters its
251 . location in an output file - ie in coff a <<ISFCN>> symbol
252 . which is also <<C_EXT>> symbol appears where it was
253 . declared and not at the end of a section. This bit is set
254 . by the target BFD part to convey this information. *}
255 .#define BSF_NOT_AT_END (1 << 10)
256 .
257 . {* Signal that the symbol is the label of constructor section. *}
258 .#define BSF_CONSTRUCTOR (1 << 11)
259 .
260 . {* Signal that the symbol is a warning symbol. The name is a
261 . warning. The name of the next symbol is the one to warn about;
262 . if a reference is made to a symbol with the same name as the next
263 . symbol, a warning is issued by the linker. *}
264 .#define BSF_WARNING (1 << 12)
265 .
266 . {* Signal that the symbol is indirect. This symbol is an indirect
267 . pointer to the symbol with the same name as the next symbol. *}
268 .#define BSF_INDIRECT (1 << 13)
269 .
270 . {* BSF_FILE marks symbols that contain a file name. This is used
271 . for ELF STT_FILE symbols. *}
272 .#define BSF_FILE (1 << 14)
273 .
274 . {* Symbol is from dynamic linking information. *}
275 .#define BSF_DYNAMIC (1 << 15)
276 .
277 . {* The symbol denotes a data object. Used in ELF, and perhaps
278 . others someday. *}
279 .#define BSF_OBJECT (1 << 16)
280 .
281 . {* This symbol is a debugging symbol. The value is the offset
282 . into the section of the data. BSF_DEBUGGING should be set
283 . as well. *}
284 .#define BSF_DEBUGGING_RELOC (1 << 17)
285 .
286 . {* This symbol is thread local. Used in ELF. *}
287 .#define BSF_THREAD_LOCAL (1 << 18)
288 .
289 . {* This symbol represents a complex relocation expression,
290 . with the expression tree serialized in the symbol name. *}
291 .#define BSF_RELC (1 << 19)
292 .
293 . {* This symbol represents a signed complex relocation expression,
294 . with the expression tree serialized in the symbol name. *}
295 .#define BSF_SRELC (1 << 20)
296 .
297 . {* This symbol was created by bfd_get_synthetic_symtab. *}
298 .#define BSF_SYNTHETIC (1 << 21)
299 .
300 . {* This symbol is an indirect code object. Unrelated to BSF_INDIRECT.
301 . The dynamic linker will compute the value of this symbol by
302 . calling the function that it points to. BSF_FUNCTION must
303 . also be also set. *}
304 .#define BSF_GNU_INDIRECT_FUNCTION (1 << 22)
305 . {* This symbol is a globally unique data object. The dynamic linker
306 . will make sure that in the entire process there is just one symbol
307 . with this name and type in use. BSF_OBJECT must also be set. *}
308 .#define BSF_GNU_UNIQUE (1 << 23)
309 .
310 . flagword flags;
311 .
312 . {* A pointer to the section to which this symbol is
313 . relative. This will always be non NULL, there are special
314 . sections for undefined and absolute symbols. *}
315 . struct bfd_section *section;
316 .
317 . {* Back end special data. *}
318 . union
319 . {
320 . void *p;
321 . bfd_vma i;
322 . }
323 . udata;
324 .}
325 .asymbol;
326 .
327 */
328
329 #include "sysdep.h"
330 #include "bfd.h"
331 #include "libbfd.h"
332 #include "safe-ctype.h"
333 #include "bfdlink.h"
334 #include "aout/stab_gnu.h"
335
336 /*
337 DOCDD
338 INODE
339 symbol handling functions, , typedef asymbol, Symbols
340 SUBSECTION
341 Symbol handling functions
342 */
343
344 /*
345 FUNCTION
346 bfd_get_symtab_upper_bound
347
348 DESCRIPTION
349 Return the number of bytes required to store a vector of pointers
350 to <<asymbols>> for all the symbols in the BFD @var{abfd},
351 including a terminal NULL pointer. If there are no symbols in
352 the BFD, then return 0. If an error occurs, return -1.
353
354 .#define bfd_get_symtab_upper_bound(abfd) \
355 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
356 .
357 */
358
359 /*
360 FUNCTION
361 bfd_is_local_label
362
363 SYNOPSIS
364 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
365
366 DESCRIPTION
367 Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
368 a compiler generated local label, else return FALSE.
369 */
370
371 bfd_boolean
372 bfd_is_local_label (bfd *abfd, asymbol *sym)
373 {
374 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
375 starts with '.' is local. This would accidentally catch section names
376 if we didn't reject them here. */
377 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
378 return FALSE;
379 if (sym->name == NULL)
380 return FALSE;
381 return bfd_is_local_label_name (abfd, sym->name);
382 }
383
384 /*
385 FUNCTION
386 bfd_is_local_label_name
387
388 SYNOPSIS
389 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
390
391 DESCRIPTION
392 Return TRUE if a symbol with the name @var{name} in the BFD
393 @var{abfd} is a compiler generated local label, else return
394 FALSE. This just checks whether the name has the form of a
395 local label.
396
397 .#define bfd_is_local_label_name(abfd, name) \
398 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
399 .
400 */
401
402 /*
403 FUNCTION
404 bfd_is_target_special_symbol
405
406 SYNOPSIS
407 bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
408
409 DESCRIPTION
410 Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
411 special to the particular target represented by the BFD. Such symbols
412 should normally not be mentioned to the user.
413
414 .#define bfd_is_target_special_symbol(abfd, sym) \
415 . BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
416 .
417 */
418
419 /*
420 FUNCTION
421 bfd_canonicalize_symtab
422
423 DESCRIPTION
424 Read the symbols from the BFD @var{abfd}, and fills in
425 the vector @var{location} with pointers to the symbols and
426 a trailing NULL.
427 Return the actual number of symbol pointers, not
428 including the NULL.
429
430 .#define bfd_canonicalize_symtab(abfd, location) \
431 . BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
432 .
433 */
434
435 /*
436 FUNCTION
437 bfd_set_symtab
438
439 SYNOPSIS
440 bfd_boolean bfd_set_symtab
441 (bfd *abfd, asymbol **location, unsigned int count);
442
443 DESCRIPTION
444 Arrange that when the output BFD @var{abfd} is closed,
445 the table @var{location} of @var{count} pointers to symbols
446 will be written.
447 */
448
449 bfd_boolean
450 bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
451 {
452 if (abfd->format != bfd_object || bfd_read_p (abfd))
453 {
454 bfd_set_error (bfd_error_invalid_operation);
455 return FALSE;
456 }
457
458 abfd->outsymbols = location;
459 abfd->symcount = symcount;
460 return TRUE;
461 }
462
463 /*
464 FUNCTION
465 bfd_print_symbol_vandf
466
467 SYNOPSIS
468 void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
469
470 DESCRIPTION
471 Print the value and flags of the @var{symbol} supplied to the
472 stream @var{file}.
473 */
474 void
475 bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
476 {
477 FILE *file = (FILE *) arg;
478
479 flagword type = symbol->flags;
480
481 if (symbol->section != NULL)
482 bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
483 else
484 bfd_fprintf_vma (abfd, file, symbol->value);
485
486 /* This presumes that a symbol can not be both BSF_DEBUGGING and
487 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
488 BSF_OBJECT. */
489 fprintf (file, " %c%c%c%c%c%c%c",
490 ((type & BSF_LOCAL)
491 ? (type & BSF_GLOBAL) ? '!' : 'l'
492 : (type & BSF_GLOBAL) ? 'g'
493 : (type & BSF_GNU_UNIQUE) ? 'u' : ' '),
494 (type & BSF_WEAK) ? 'w' : ' ',
495 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
496 (type & BSF_WARNING) ? 'W' : ' ',
497 (type & BSF_INDIRECT) ? 'I' : (type & BSF_GNU_INDIRECT_FUNCTION) ? 'i' : ' ',
498 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
499 ((type & BSF_FUNCTION)
500 ? 'F'
501 : ((type & BSF_FILE)
502 ? 'f'
503 : ((type & BSF_OBJECT) ? 'O' : ' '))));
504 }
505
506 /*
507 FUNCTION
508 bfd_make_empty_symbol
509
510 DESCRIPTION
511 Create a new <<asymbol>> structure for the BFD @var{abfd}
512 and return a pointer to it.
513
514 This routine is necessary because each back end has private
515 information surrounding the <<asymbol>>. Building your own
516 <<asymbol>> and pointing to it will not create the private
517 information, and will cause problems later on.
518
519 .#define bfd_make_empty_symbol(abfd) \
520 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
521 .
522 */
523
524 /*
525 FUNCTION
526 _bfd_generic_make_empty_symbol
527
528 SYNOPSIS
529 asymbol *_bfd_generic_make_empty_symbol (bfd *);
530
531 DESCRIPTION
532 Create a new <<asymbol>> structure for the BFD @var{abfd}
533 and return a pointer to it. Used by core file routines,
534 binary back-end and anywhere else where no private info
535 is needed.
536 */
537
538 asymbol *
539 _bfd_generic_make_empty_symbol (bfd *abfd)
540 {
541 size_t amt = sizeof (asymbol);
542 asymbol *new_symbol = (asymbol *) bfd_zalloc (abfd, amt);
543 if (new_symbol)
544 new_symbol->the_bfd = abfd;
545 return new_symbol;
546 }
547
548 /*
549 FUNCTION
550 bfd_make_debug_symbol
551
552 DESCRIPTION
553 Create a new <<asymbol>> structure for the BFD @var{abfd},
554 to be used as a debugging symbol. Further details of its use have
555 yet to be worked out.
556
557 .#define bfd_make_debug_symbol(abfd,ptr,size) \
558 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
559 .
560 */
561
562 struct section_to_type
563 {
564 const char *section;
565 char type;
566 };
567
568 /* Map special section names to POSIX/BSD single-character symbol types.
569 This table is probably incomplete. It is sorted for convenience of
570 adding entries. Since it is so short, a linear search is used. */
571 static const struct section_to_type stt[] =
572 {
573 {".drectve", 'i'}, /* MSVC's .drective section */
574 {".edata", 'e'}, /* MSVC's .edata (export) section */
575 {".idata", 'i'}, /* MSVC's .idata (import) section */
576 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
577 {0, 0}
578 };
579
580 /* Return the single-character symbol type corresponding to
581 section S, or '?' for an unknown COFF section.
582
583 Check for leading strings which match, followed by a number, '.',
584 or '$' so .idata5 matches the .idata entry. */
585
586 static char
587 coff_section_type (const char *s)
588 {
589 const struct section_to_type *t;
590
591 for (t = &stt[0]; t->section; t++)
592 {
593 size_t len = strlen (t->section);
594 if (strncmp (s, t->section, len) == 0
595 && memchr (".$0123456789", s[len], 13) != 0)
596 return t->type;
597 }
598
599 return '?';
600 }
601
602 /* Return the single-character symbol type corresponding to section
603 SECTION, or '?' for an unknown section. This uses section flags to
604 identify sections.
605
606 FIXME These types are unhandled: e, i, p. If we handled these also,
607 we could perhaps obsolete coff_section_type. */
608
609 static char
610 decode_section_type (const struct bfd_section *section)
611 {
612 if (section->flags & SEC_CODE)
613 return 't';
614 if (section->flags & SEC_DATA)
615 {
616 if (section->flags & SEC_READONLY)
617 return 'r';
618 else if (section->flags & SEC_SMALL_DATA)
619 return 'g';
620 else
621 return 'd';
622 }
623 if ((section->flags & SEC_HAS_CONTENTS) == 0)
624 {
625 if (section->flags & SEC_SMALL_DATA)
626 return 's';
627 else
628 return 'b';
629 }
630 if (section->flags & SEC_DEBUGGING)
631 return 'N';
632 if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
633 return 'n';
634
635 return '?';
636 }
637
638 /*
639 FUNCTION
640 bfd_decode_symclass
641
642 DESCRIPTION
643 Return a character corresponding to the symbol
644 class of @var{symbol}, or '?' for an unknown class.
645
646 SYNOPSIS
647 int bfd_decode_symclass (asymbol *symbol);
648 */
649 int
650 bfd_decode_symclass (asymbol *symbol)
651 {
652 char c;
653
654 if (symbol->section && bfd_is_com_section (symbol->section))
655 {
656 if (symbol->section == bfd_com_section_ptr)
657 return 'C';
658 else
659 return 'c';
660 }
661 if (bfd_is_und_section (symbol->section))
662 {
663 if (symbol->flags & BSF_WEAK)
664 {
665 /* If weak, determine if it's specifically an object
666 or non-object weak. */
667 if (symbol->flags & BSF_OBJECT)
668 return 'v';
669 else
670 return 'w';
671 }
672 else
673 return 'U';
674 }
675 if (bfd_is_ind_section (symbol->section))
676 return 'I';
677 if (symbol->flags & BSF_GNU_INDIRECT_FUNCTION)
678 return 'i';
679 if (symbol->flags & BSF_WEAK)
680 {
681 /* If weak, determine if it's specifically an object
682 or non-object weak. */
683 if (symbol->flags & BSF_OBJECT)
684 return 'V';
685 else
686 return 'W';
687 }
688 if (symbol->flags & BSF_GNU_UNIQUE)
689 return 'u';
690 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
691 return '?';
692
693 if (bfd_is_abs_section (symbol->section))
694 c = 'a';
695 else if (symbol->section)
696 {
697 c = coff_section_type (symbol->section->name);
698 if (c == '?')
699 c = decode_section_type (symbol->section);
700 }
701 else
702 return '?';
703 if (symbol->flags & BSF_GLOBAL)
704 c = TOUPPER (c);
705 return c;
706
707 /* We don't have to handle these cases just yet, but we will soon:
708 N_SETV: 'v';
709 N_SETA: 'l';
710 N_SETT: 'x';
711 N_SETD: 'z';
712 N_SETB: 's';
713 N_INDR: 'i';
714 */
715 }
716
717 /*
718 FUNCTION
719 bfd_is_undefined_symclass
720
721 DESCRIPTION
722 Returns non-zero if the class symbol returned by
723 bfd_decode_symclass represents an undefined symbol.
724 Returns zero otherwise.
725
726 SYNOPSIS
727 bfd_boolean bfd_is_undefined_symclass (int symclass);
728 */
729
730 bfd_boolean
731 bfd_is_undefined_symclass (int symclass)
732 {
733 return symclass == 'U' || symclass == 'w' || symclass == 'v';
734 }
735
736 /*
737 FUNCTION
738 bfd_symbol_info
739
740 DESCRIPTION
741 Fill in the basic info about symbol that nm needs.
742 Additional info may be added by the back-ends after
743 calling this function.
744
745 SYNOPSIS
746 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
747 */
748
749 void
750 bfd_symbol_info (asymbol *symbol, symbol_info *ret)
751 {
752 ret->type = bfd_decode_symclass (symbol);
753
754 if (bfd_is_undefined_symclass (ret->type))
755 ret->value = 0;
756 else
757 ret->value = symbol->value + symbol->section->vma;
758
759 ret->name = symbol->name;
760 }
761
762 /*
763 FUNCTION
764 bfd_copy_private_symbol_data
765
766 SYNOPSIS
767 bfd_boolean bfd_copy_private_symbol_data
768 (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
769
770 DESCRIPTION
771 Copy private symbol information from @var{isym} in the BFD
772 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
773 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
774 returns are:
775
776 o <<bfd_error_no_memory>> -
777 Not enough memory exists to create private data for @var{osec}.
778
779 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
780 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
781 . (ibfd, isymbol, obfd, osymbol))
782 .
783 */
784
785 /* The generic version of the function which returns mini symbols.
786 This is used when the backend does not provide a more efficient
787 version. It just uses BFD asymbol structures as mini symbols. */
788
789 long
790 _bfd_generic_read_minisymbols (bfd *abfd,
791 bfd_boolean dynamic,
792 void **minisymsp,
793 unsigned int *sizep)
794 {
795 long storage;
796 asymbol **syms = NULL;
797 long symcount;
798
799 if (dynamic)
800 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
801 else
802 storage = bfd_get_symtab_upper_bound (abfd);
803 if (storage < 0)
804 goto error_return;
805 if (storage == 0)
806 return 0;
807
808 syms = (asymbol **) bfd_malloc (storage);
809 if (syms == NULL)
810 goto error_return;
811
812 if (dynamic)
813 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
814 else
815 symcount = bfd_canonicalize_symtab (abfd, syms);
816 if (symcount < 0)
817 goto error_return;
818
819 if (symcount == 0)
820 /* We return 0 above when storage is 0. Exit in the same state
821 here, so as to not complicate callers with having to deal with
822 freeing memory for zero symcount. */
823 free (syms);
824 else
825 {
826 *minisymsp = syms;
827 *sizep = sizeof (asymbol *);
828 }
829 return symcount;
830
831 error_return:
832 bfd_set_error (bfd_error_no_symbols);
833 if (syms != NULL)
834 free (syms);
835 return -1;
836 }
837
838 /* The generic version of the function which converts a minisymbol to
839 an asymbol. We don't worry about the sym argument we are passed;
840 we just return the asymbol the minisymbol points to. */
841
842 asymbol *
843 _bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
844 bfd_boolean dynamic ATTRIBUTE_UNUSED,
845 const void *minisym,
846 asymbol *sym ATTRIBUTE_UNUSED)
847 {
848 return *(asymbol **) minisym;
849 }
850
851 /* Look through stabs debugging information in .stab and .stabstr
852 sections to find the source file and line closest to a desired
853 location. This is used by COFF and ELF targets. It sets *pfound
854 to TRUE if it finds some information. The *pinfo field is used to
855 pass cached information in and out of this routine; this first time
856 the routine is called for a BFD, *pinfo should be NULL. The value
857 placed in *pinfo should be saved with the BFD, and passed back each
858 time this function is called. */
859
860 /* We use a cache by default. */
861
862 #define ENABLE_CACHING
863
864 /* We keep an array of indexentry structures to record where in the
865 stabs section we should look to find line number information for a
866 particular address. */
867
868 struct indexentry
869 {
870 bfd_vma val;
871 bfd_byte *stab;
872 bfd_byte *str;
873 char *directory_name;
874 char *file_name;
875 char *function_name;
876 int idx;
877 };
878
879 /* Compare two indexentry structures. This is called via qsort. */
880
881 static int
882 cmpindexentry (const void *a, const void *b)
883 {
884 const struct indexentry *contestantA = (const struct indexentry *) a;
885 const struct indexentry *contestantB = (const struct indexentry *) b;
886
887 if (contestantA->val < contestantB->val)
888 return -1;
889 if (contestantA->val > contestantB->val)
890 return 1;
891 return contestantA->idx - contestantB->idx;
892 }
893
894 /* A pointer to this structure is stored in *pinfo. */
895
896 struct stab_find_info
897 {
898 /* The .stab section. */
899 asection *stabsec;
900 /* The .stabstr section. */
901 asection *strsec;
902 /* The contents of the .stab section. */
903 bfd_byte *stabs;
904 /* The contents of the .stabstr section. */
905 bfd_byte *strs;
906
907 /* A table that indexes stabs by memory address. */
908 struct indexentry *indextable;
909 /* The number of entries in indextable. */
910 int indextablesize;
911
912 #ifdef ENABLE_CACHING
913 /* Cached values to restart quickly. */
914 struct indexentry *cached_indexentry;
915 bfd_vma cached_offset;
916 bfd_byte *cached_stab;
917 char *cached_file_name;
918 #endif
919
920 /* Saved ptr to malloc'ed filename. */
921 char *filename;
922 };
923
924 bfd_boolean
925 _bfd_stab_section_find_nearest_line (bfd *abfd,
926 asymbol **symbols,
927 asection *section,
928 bfd_vma offset,
929 bfd_boolean *pfound,
930 const char **pfilename,
931 const char **pfnname,
932 unsigned int *pline,
933 void **pinfo)
934 {
935 struct stab_find_info *info;
936 bfd_size_type stabsize, strsize;
937 bfd_byte *stab, *str;
938 bfd_byte *nul_fun, *nul_str;
939 bfd_size_type stroff;
940 struct indexentry *indexentry;
941 char *file_name;
942 char *directory_name;
943 bfd_boolean saw_line, saw_func;
944
945 *pfound = FALSE;
946 *pfilename = bfd_get_filename (abfd);
947 *pfnname = NULL;
948 *pline = 0;
949
950 /* Stabs entries use a 12 byte format:
951 4 byte string table index
952 1 byte stab type
953 1 byte stab other field
954 2 byte stab desc field
955 4 byte stab value
956 FIXME: This will have to change for a 64 bit object format.
957
958 The stabs symbols are divided into compilation units. For the
959 first entry in each unit, the type of 0, the value is the length
960 of the string table for this unit, and the desc field is the
961 number of stabs symbols for this unit. */
962
963 #define STRDXOFF (0)
964 #define TYPEOFF (4)
965 #define OTHEROFF (5)
966 #define DESCOFF (6)
967 #define VALOFF (8)
968 #define STABSIZE (12)
969
970 info = (struct stab_find_info *) *pinfo;
971 if (info != NULL)
972 {
973 if (info->stabsec == NULL || info->strsec == NULL)
974 {
975 /* No stabs debugging information. */
976 return TRUE;
977 }
978
979 stabsize = (info->stabsec->rawsize
980 ? info->stabsec->rawsize
981 : info->stabsec->size);
982 strsize = (info->strsec->rawsize
983 ? info->strsec->rawsize
984 : info->strsec->size);
985 }
986 else
987 {
988 long reloc_size, reloc_count;
989 arelent **reloc_vector;
990 int i;
991 char *function_name;
992 bfd_size_type amt = sizeof *info;
993
994 info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
995 if (info == NULL)
996 return FALSE;
997
998 /* FIXME: When using the linker --split-by-file or
999 --split-by-reloc options, it is possible for the .stab and
1000 .stabstr sections to be split. We should handle that. */
1001
1002 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
1003 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
1004
1005 if (info->stabsec == NULL || info->strsec == NULL)
1006 {
1007 /* Try SOM section names. */
1008 info->stabsec = bfd_get_section_by_name (abfd, "$GDB_SYMBOLS$");
1009 info->strsec = bfd_get_section_by_name (abfd, "$GDB_STRINGS$");
1010
1011 if (info->stabsec == NULL || info->strsec == NULL)
1012 {
1013 /* No stabs debugging information. Set *pinfo so that we
1014 can return quickly in the info != NULL case above. */
1015 *pinfo = info;
1016 return TRUE;
1017 }
1018 }
1019
1020 stabsize = (info->stabsec->rawsize
1021 ? info->stabsec->rawsize
1022 : info->stabsec->size);
1023 stabsize = (stabsize / STABSIZE) * STABSIZE;
1024 strsize = (info->strsec->rawsize
1025 ? info->strsec->rawsize
1026 : info->strsec->size);
1027
1028 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
1029 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
1030 if (info->stabs == NULL || info->strs == NULL)
1031 return FALSE;
1032
1033 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1034 0, stabsize)
1035 || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1036 0, strsize))
1037 return FALSE;
1038
1039 /* Stab strings ought to be nul terminated. Ensure the last one
1040 is, to prevent running off the end of the buffer. */
1041 info->strs[strsize - 1] = 0;
1042
1043 /* If this is a relocatable object file, we have to relocate
1044 the entries in .stab. This should always be simple 32 bit
1045 relocations against symbols defined in this object file, so
1046 this should be no big deal. */
1047 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1048 if (reloc_size < 0)
1049 return FALSE;
1050 reloc_vector = (arelent **) bfd_malloc (reloc_size);
1051 if (reloc_vector == NULL && reloc_size != 0)
1052 return FALSE;
1053 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1054 symbols);
1055 if (reloc_count < 0)
1056 {
1057 if (reloc_vector != NULL)
1058 free (reloc_vector);
1059 return FALSE;
1060 }
1061 if (reloc_count > 0)
1062 {
1063 arelent **pr;
1064
1065 for (pr = reloc_vector; *pr != NULL; pr++)
1066 {
1067 arelent *r;
1068 unsigned long val;
1069 asymbol *sym;
1070 bfd_size_type octets;
1071
1072 r = *pr;
1073 /* Ignore R_*_NONE relocs. */
1074 if (r->howto->dst_mask == 0)
1075 continue;
1076
1077 octets = r->address * bfd_octets_per_byte (abfd, NULL);
1078 if (r->howto->rightshift != 0
1079 || r->howto->size != 2
1080 || r->howto->bitsize != 32
1081 || r->howto->pc_relative
1082 || r->howto->bitpos != 0
1083 || r->howto->dst_mask != 0xffffffff
1084 || octets + 4 > stabsize)
1085 {
1086 _bfd_error_handler
1087 (_("unsupported .stab relocation"));
1088 bfd_set_error (bfd_error_invalid_operation);
1089 if (reloc_vector != NULL)
1090 free (reloc_vector);
1091 return FALSE;
1092 }
1093
1094 val = bfd_get_32 (abfd, info->stabs + octets);
1095 val &= r->howto->src_mask;
1096 sym = *r->sym_ptr_ptr;
1097 val += sym->value + sym->section->vma + r->addend;
1098 bfd_put_32 (abfd, (bfd_vma) val, info->stabs + octets);
1099 }
1100 }
1101
1102 if (reloc_vector != NULL)
1103 free (reloc_vector);
1104
1105 /* First time through this function, build a table matching
1106 function VM addresses to stabs, then sort based on starting
1107 VM address. Do this in two passes: once to count how many
1108 table entries we'll need, and a second to actually build the
1109 table. */
1110
1111 info->indextablesize = 0;
1112 nul_fun = NULL;
1113 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1114 {
1115 if (stab[TYPEOFF] == (bfd_byte) N_SO)
1116 {
1117 /* if we did not see a function def, leave space for one. */
1118 if (nul_fun != NULL)
1119 ++info->indextablesize;
1120
1121 /* N_SO with null name indicates EOF */
1122 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1123 nul_fun = NULL;
1124 else
1125 {
1126 nul_fun = stab;
1127
1128 /* two N_SO's in a row is a filename and directory. Skip */
1129 if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1130 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1131 stab += STABSIZE;
1132 }
1133 }
1134 else if (stab[TYPEOFF] == (bfd_byte) N_FUN
1135 && bfd_get_32 (abfd, stab + STRDXOFF) != 0)
1136 {
1137 nul_fun = NULL;
1138 ++info->indextablesize;
1139 }
1140 }
1141
1142 if (nul_fun != NULL)
1143 ++info->indextablesize;
1144
1145 if (info->indextablesize == 0)
1146 return TRUE;
1147 ++info->indextablesize;
1148
1149 amt = info->indextablesize;
1150 amt *= sizeof (struct indexentry);
1151 info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1152 if (info->indextable == NULL)
1153 return FALSE;
1154
1155 file_name = NULL;
1156 directory_name = NULL;
1157 nul_fun = NULL;
1158 stroff = 0;
1159
1160 for (i = 0, stab = info->stabs, nul_str = str = info->strs;
1161 i < info->indextablesize && stab < info->stabs + stabsize;
1162 stab += STABSIZE)
1163 {
1164 switch (stab[TYPEOFF])
1165 {
1166 case 0:
1167 /* This is the first entry in a compilation unit. */
1168 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1169 break;
1170 str += stroff;
1171 stroff = bfd_get_32 (abfd, stab + VALOFF);
1172 break;
1173
1174 case N_SO:
1175 /* The main file name. */
1176
1177 /* The following code creates a new indextable entry with
1178 a NULL function name if there were no N_FUNs in a file.
1179 Note that a N_SO without a file name is an EOF and
1180 there could be 2 N_SO following it with the new filename
1181 and directory. */
1182 if (nul_fun != NULL)
1183 {
1184 info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1185 info->indextable[i].stab = nul_fun;
1186 info->indextable[i].str = nul_str;
1187 info->indextable[i].directory_name = directory_name;
1188 info->indextable[i].file_name = file_name;
1189 info->indextable[i].function_name = NULL;
1190 info->indextable[i].idx = i;
1191 ++i;
1192 }
1193
1194 directory_name = NULL;
1195 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1196 if (file_name == (char *) str)
1197 {
1198 file_name = NULL;
1199 nul_fun = NULL;
1200 }
1201 else
1202 {
1203 nul_fun = stab;
1204 nul_str = str;
1205 if (file_name >= (char *) info->strs + strsize
1206 || file_name < (char *) str)
1207 file_name = NULL;
1208 if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1209 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1210 {
1211 /* Two consecutive N_SOs are a directory and a
1212 file name. */
1213 stab += STABSIZE;
1214 directory_name = file_name;
1215 file_name = ((char *) str
1216 + bfd_get_32 (abfd, stab + STRDXOFF));
1217 if (file_name >= (char *) info->strs + strsize
1218 || file_name < (char *) str)
1219 file_name = NULL;
1220 }
1221 }
1222 break;
1223
1224 case N_SOL:
1225 /* The name of an include file. */
1226 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1227 /* PR 17512: file: 0c680a1f. */
1228 /* PR 17512: file: 5da8aec4. */
1229 if (file_name >= (char *) info->strs + strsize
1230 || file_name < (char *) str)
1231 file_name = NULL;
1232 break;
1233
1234 case N_FUN:
1235 /* A function name. */
1236 function_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1237 if (function_name == (char *) str)
1238 continue;
1239 if (function_name >= (char *) info->strs + strsize
1240 || function_name < (char *) str)
1241 function_name = NULL;
1242
1243 nul_fun = NULL;
1244 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1245 info->indextable[i].stab = stab;
1246 info->indextable[i].str = str;
1247 info->indextable[i].directory_name = directory_name;
1248 info->indextable[i].file_name = file_name;
1249 info->indextable[i].function_name = function_name;
1250 info->indextable[i].idx = i;
1251 ++i;
1252 break;
1253 }
1254 }
1255
1256 if (nul_fun != NULL)
1257 {
1258 info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1259 info->indextable[i].stab = nul_fun;
1260 info->indextable[i].str = nul_str;
1261 info->indextable[i].directory_name = directory_name;
1262 info->indextable[i].file_name = file_name;
1263 info->indextable[i].function_name = NULL;
1264 info->indextable[i].idx = i;
1265 ++i;
1266 }
1267
1268 info->indextable[i].val = (bfd_vma) -1;
1269 info->indextable[i].stab = info->stabs + stabsize;
1270 info->indextable[i].str = str;
1271 info->indextable[i].directory_name = NULL;
1272 info->indextable[i].file_name = NULL;
1273 info->indextable[i].function_name = NULL;
1274 info->indextable[i].idx = i;
1275 ++i;
1276
1277 info->indextablesize = i;
1278 qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1279 cmpindexentry);
1280
1281 *pinfo = info;
1282 }
1283
1284 /* We are passed a section relative offset. The offsets in the
1285 stabs information are absolute. */
1286 offset += bfd_section_vma (section);
1287
1288 #ifdef ENABLE_CACHING
1289 if (info->cached_indexentry != NULL
1290 && offset >= info->cached_offset
1291 && offset < (info->cached_indexentry + 1)->val)
1292 {
1293 stab = info->cached_stab;
1294 indexentry = info->cached_indexentry;
1295 file_name = info->cached_file_name;
1296 }
1297 else
1298 #endif
1299 {
1300 long low, high;
1301 long mid = -1;
1302
1303 /* Cache non-existent or invalid. Do binary search on
1304 indextable. */
1305 indexentry = NULL;
1306
1307 low = 0;
1308 high = info->indextablesize - 1;
1309 while (low != high)
1310 {
1311 mid = (high + low) / 2;
1312 if (offset >= info->indextable[mid].val
1313 && offset < info->indextable[mid + 1].val)
1314 {
1315 indexentry = &info->indextable[mid];
1316 break;
1317 }
1318
1319 if (info->indextable[mid].val > offset)
1320 high = mid;
1321 else
1322 low = mid + 1;
1323 }
1324
1325 if (indexentry == NULL)
1326 return TRUE;
1327
1328 stab = indexentry->stab + STABSIZE;
1329 file_name = indexentry->file_name;
1330 }
1331
1332 directory_name = indexentry->directory_name;
1333 str = indexentry->str;
1334
1335 saw_line = FALSE;
1336 saw_func = FALSE;
1337 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1338 {
1339 bfd_boolean done;
1340 bfd_vma val;
1341
1342 done = FALSE;
1343
1344 switch (stab[TYPEOFF])
1345 {
1346 case N_SOL:
1347 /* The name of an include file. */
1348 val = bfd_get_32 (abfd, stab + VALOFF);
1349 if (val <= offset)
1350 {
1351 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1352 if (file_name >= (char *) info->strs + strsize
1353 || file_name < (char *) str)
1354 file_name = NULL;
1355 *pline = 0;
1356 }
1357 break;
1358
1359 case N_SLINE:
1360 case N_DSLINE:
1361 case N_BSLINE:
1362 /* A line number. If the function was specified, then the value
1363 is relative to the start of the function. Otherwise, the
1364 value is an absolute address. */
1365 val = ((indexentry->function_name ? indexentry->val : 0)
1366 + bfd_get_32 (abfd, stab + VALOFF));
1367 /* If this line starts before our desired offset, or if it's
1368 the first line we've been able to find, use it. The
1369 !saw_line check works around a bug in GCC 2.95.3, which emits
1370 the first N_SLINE late. */
1371 if (!saw_line || val <= offset)
1372 {
1373 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1374
1375 #ifdef ENABLE_CACHING
1376 info->cached_stab = stab;
1377 info->cached_offset = val;
1378 info->cached_file_name = file_name;
1379 info->cached_indexentry = indexentry;
1380 #endif
1381 }
1382 if (val > offset)
1383 done = TRUE;
1384 saw_line = TRUE;
1385 break;
1386
1387 case N_FUN:
1388 case N_SO:
1389 if (saw_func || saw_line)
1390 done = TRUE;
1391 saw_func = TRUE;
1392 break;
1393 }
1394
1395 if (done)
1396 break;
1397 }
1398
1399 *pfound = TRUE;
1400
1401 if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1402 || directory_name == NULL)
1403 *pfilename = file_name;
1404 else
1405 {
1406 size_t dirlen;
1407
1408 dirlen = strlen (directory_name);
1409 if (info->filename == NULL
1410 || filename_ncmp (info->filename, directory_name, dirlen) != 0
1411 || filename_cmp (info->filename + dirlen, file_name) != 0)
1412 {
1413 size_t len;
1414
1415 /* Don't free info->filename here. objdump and other
1416 apps keep a copy of a previously returned file name
1417 pointer. */
1418 len = strlen (file_name) + 1;
1419 info->filename = (char *) bfd_alloc (abfd, dirlen + len);
1420 if (info->filename == NULL)
1421 return FALSE;
1422 memcpy (info->filename, directory_name, dirlen);
1423 memcpy (info->filename + dirlen, file_name, len);
1424 }
1425
1426 *pfilename = info->filename;
1427 }
1428
1429 if (indexentry->function_name != NULL)
1430 {
1431 char *s;
1432
1433 /* This will typically be something like main:F(0,1), so we want
1434 to clobber the colon. It's OK to change the name, since the
1435 string is in our own local storage anyhow. */
1436 s = strchr (indexentry->function_name, ':');
1437 if (s != NULL)
1438 *s = '\0';
1439
1440 *pfnname = indexentry->function_name;
1441 }
1442
1443 return TRUE;
1444 }
1445
1446 long
1447 _bfd_nosymbols_canonicalize_symtab (bfd *abfd ATTRIBUTE_UNUSED,
1448 asymbol **location ATTRIBUTE_UNUSED)
1449 {
1450 return 0;
1451 }
1452
1453 void
1454 _bfd_nosymbols_print_symbol (bfd *abfd ATTRIBUTE_UNUSED,
1455 void *afile ATTRIBUTE_UNUSED,
1456 asymbol *symbol ATTRIBUTE_UNUSED,
1457 bfd_print_symbol_type how ATTRIBUTE_UNUSED)
1458 {
1459 }
1460
1461 void
1462 _bfd_nosymbols_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
1463 asymbol *sym ATTRIBUTE_UNUSED,
1464 symbol_info *ret ATTRIBUTE_UNUSED)
1465 {
1466 }
1467
1468 const char *
1469 _bfd_nosymbols_get_symbol_version_string (bfd *abfd,
1470 asymbol *symbol ATTRIBUTE_UNUSED,
1471 bfd_boolean base_p ATTRIBUTE_UNUSED,
1472 bfd_boolean *hidden ATTRIBUTE_UNUSED)
1473 {
1474 return (const char *) _bfd_ptr_bfd_null_error (abfd);
1475 }
1476
1477 bfd_boolean
1478 _bfd_nosymbols_bfd_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
1479 const char *name ATTRIBUTE_UNUSED)
1480 {
1481 return FALSE;
1482 }
1483
1484 alent *
1485 _bfd_nosymbols_get_lineno (bfd *abfd, asymbol *sym ATTRIBUTE_UNUSED)
1486 {
1487 return (alent *) _bfd_ptr_bfd_null_error (abfd);
1488 }
1489
1490 bfd_boolean
1491 _bfd_nosymbols_find_nearest_line
1492 (bfd *abfd,
1493 asymbol **symbols ATTRIBUTE_UNUSED,
1494 asection *section ATTRIBUTE_UNUSED,
1495 bfd_vma offset ATTRIBUTE_UNUSED,
1496 const char **filename_ptr ATTRIBUTE_UNUSED,
1497 const char **functionname_ptr ATTRIBUTE_UNUSED,
1498 unsigned int *line_ptr ATTRIBUTE_UNUSED,
1499 unsigned int *discriminator_ptr ATTRIBUTE_UNUSED)
1500 {
1501 return _bfd_bool_bfd_false_error (abfd);
1502 }
1503
1504 bfd_boolean
1505 _bfd_nosymbols_find_line (bfd *abfd,
1506 asymbol **symbols ATTRIBUTE_UNUSED,
1507 asymbol *symbol ATTRIBUTE_UNUSED,
1508 const char **filename_ptr ATTRIBUTE_UNUSED,
1509 unsigned int *line_ptr ATTRIBUTE_UNUSED)
1510 {
1511 return _bfd_bool_bfd_false_error (abfd);
1512 }
1513
1514 bfd_boolean
1515 _bfd_nosymbols_find_inliner_info
1516 (bfd *abfd,
1517 const char **filename_ptr ATTRIBUTE_UNUSED,
1518 const char **functionname_ptr ATTRIBUTE_UNUSED,
1519 unsigned int *line_ptr ATTRIBUTE_UNUSED)
1520 {
1521 return _bfd_bool_bfd_false_error (abfd);
1522 }
1523
1524 asymbol *
1525 _bfd_nosymbols_bfd_make_debug_symbol (bfd *abfd,
1526 void *ptr ATTRIBUTE_UNUSED,
1527 unsigned long sz ATTRIBUTE_UNUSED)
1528 {
1529 return (asymbol *) _bfd_ptr_bfd_null_error (abfd);
1530 }
1531
1532 long
1533 _bfd_nosymbols_read_minisymbols (bfd *abfd,
1534 bfd_boolean dynamic ATTRIBUTE_UNUSED,
1535 void **minisymsp ATTRIBUTE_UNUSED,
1536 unsigned int *sizep ATTRIBUTE_UNUSED)
1537 {
1538 return _bfd_long_bfd_n1_error (abfd);
1539 }
1540
1541 asymbol *
1542 _bfd_nosymbols_minisymbol_to_symbol (bfd *abfd,
1543 bfd_boolean dynamic ATTRIBUTE_UNUSED,
1544 const void *minisym ATTRIBUTE_UNUSED,
1545 asymbol *sym ATTRIBUTE_UNUSED)
1546 {
1547 return (asymbol *) _bfd_ptr_bfd_null_error (abfd);
1548 }
1549
1550 long
1551 _bfd_nodynamic_get_synthetic_symtab (bfd *abfd,
1552 long symcount ATTRIBUTE_UNUSED,
1553 asymbol **syms ATTRIBUTE_UNUSED,
1554 long dynsymcount ATTRIBUTE_UNUSED,
1555 asymbol **dynsyms ATTRIBUTE_UNUSED,
1556 asymbol **ret ATTRIBUTE_UNUSED)
1557 {
1558 return _bfd_long_bfd_n1_error (abfd);
1559 }