]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/syms.c
[PATCH] fix windmc typedef bug
[thirdparty/binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright (C) 1990-2020 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 Symbols
25
26 BFD tries to maintain as much symbol information as it can when
27 it moves information from file to file. BFD passes information
28 to applications though the <<asymbol>> structure. When the
29 application requests the symbol table, BFD reads the table in
30 the native form and translates parts of it into the internal
31 format. To maintain more than the information passed to
32 applications, some targets keep some information ``behind the
33 scenes'' in a structure only the particular back end knows
34 about. For example, the coff back end keeps the original
35 symbol table structure as well as the canonical structure when
36 a BFD is read in. On output, the coff back end can reconstruct
37 the output symbol table so that no information is lost, even
38 information unique to coff which BFD doesn't know or
39 understand. If a coff symbol table were read, but were written
40 through an a.out back end, all the coff specific information
41 would be lost. The symbol table of a BFD
42 is not necessarily read in until a canonicalize request is
43 made. Then the BFD back end fills in a table provided by the
44 application with pointers to the canonical information. To
45 output symbols, the application provides BFD with a table of
46 pointers to pointers to <<asymbol>>s. This allows applications
47 like the linker to output a symbol as it was read, since the ``behind
48 the scenes'' information will be still available.
49 @menu
50 @* Reading Symbols::
51 @* Writing Symbols::
52 @* Mini Symbols::
53 @* typedef asymbol::
54 @* symbol handling functions::
55 @end menu
56
57 INODE
58 Reading Symbols, Writing Symbols, Symbols, Symbols
59 SUBSECTION
60 Reading symbols
61
62 There are two stages to reading a symbol table from a BFD:
63 allocating storage, and the actual reading process. This is an
64 excerpt from an application which reads the symbol table:
65
66 | long storage_needed;
67 | asymbol **symbol_table;
68 | long number_of_symbols;
69 | long i;
70 |
71 | storage_needed = bfd_get_symtab_upper_bound (abfd);
72 |
73 | if (storage_needed < 0)
74 | FAIL
75 |
76 | if (storage_needed == 0)
77 | return;
78 |
79 | symbol_table = xmalloc (storage_needed);
80 | ...
81 | number_of_symbols =
82 | bfd_canonicalize_symtab (abfd, symbol_table);
83 |
84 | if (number_of_symbols < 0)
85 | FAIL
86 |
87 | for (i = 0; i < number_of_symbols; i++)
88 | process_symbol (symbol_table[i]);
89
90 All storage for the symbols themselves is in an objalloc
91 connected to the BFD; it is freed when the BFD is closed.
92
93 INODE
94 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
95 SUBSECTION
96 Writing symbols
97
98 Writing of a symbol table is automatic when a BFD open for
99 writing is closed. The application attaches a vector of
100 pointers to pointers to symbols to the BFD being written, and
101 fills in the symbol count. The close and cleanup code reads
102 through the table provided and performs all the necessary
103 operations. The BFD output code must always be provided with an
104 ``owned'' symbol: one which has come from another BFD, or one
105 which has been created using <<bfd_make_empty_symbol>>. Here is an
106 example showing the creation of a symbol table with only one element:
107
108 | #include "sysdep.h"
109 | #include "bfd.h"
110 | int main (void)
111 | {
112 | bfd *abfd;
113 | asymbol *ptrs[2];
114 | asymbol *new;
115 |
116 | abfd = bfd_openw ("foo","a.out-sunos-big");
117 | bfd_set_format (abfd, bfd_object);
118 | new = bfd_make_empty_symbol (abfd);
119 | new->name = "dummy_symbol";
120 | new->section = bfd_make_section_old_way (abfd, ".text");
121 | new->flags = BSF_GLOBAL;
122 | new->value = 0x12345;
123 |
124 | ptrs[0] = new;
125 | ptrs[1] = 0;
126 |
127 | bfd_set_symtab (abfd, ptrs, 1);
128 | bfd_close (abfd);
129 | return 0;
130 | }
131 |
132 | ./makesym
133 | nm foo
134 | 00012345 A dummy_symbol
135
136 Many formats cannot represent arbitrary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitrary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
141
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 Mini Symbols
146
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
151
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
157
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
163
164 */
165
166 /*
167 DOCDD
168 INODE
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170
171 */
172 /*
173 SUBSECTION
174 typedef asymbol
175
176 An <<asymbol>> has the form:
177
178 */
179
180 /*
181 CODE_FRAGMENT
182
183 .
184 .typedef struct bfd_symbol
185 .{
186 . {* A pointer to the BFD which owns the symbol. This information
187 . is necessary so that a back end can work out what additional
188 . information (invisible to the application writer) is carried
189 . with the symbol.
190 .
191 . This field is *almost* redundant, since you can use section->owner
192 . instead, except that some symbols point to the global sections
193 . bfd_{abs,com,und}_section. This could be fixed by making
194 . these globals be per-bfd (or per-target-flavor). FIXME. *}
195 . struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
196 .
197 . {* The text of the symbol. The name is left alone, and not copied; the
198 . application may not alter it. *}
199 . const char *name;
200 .
201 . {* The value of the symbol. This really should be a union of a
202 . numeric value with a pointer, since some flags indicate that
203 . a pointer to another symbol is stored here. *}
204 . symvalue value;
205 .
206 . {* Attributes of a symbol. *}
207 .#define BSF_NO_FLAGS 0
208 .
209 . {* The symbol has local scope; <<static>> in <<C>>. The value
210 . is the offset into the section of the data. *}
211 .#define BSF_LOCAL (1 << 0)
212 .
213 . {* The symbol has global scope; initialized data in <<C>>. The
214 . value is the offset into the section of the data. *}
215 .#define BSF_GLOBAL (1 << 1)
216 .
217 . {* The symbol has global scope and is exported. The value is
218 . the offset into the section of the data. *}
219 .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *}
220 .
221 . {* A normal C symbol would be one of:
222 . <<BSF_LOCAL>>, <<BSF_UNDEFINED>> or <<BSF_GLOBAL>>. *}
223 .
224 . {* The symbol is a debugging record. The value has an arbitrary
225 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
226 .#define BSF_DEBUGGING (1 << 2)
227 .
228 . {* The symbol denotes a function entry point. Used in ELF,
229 . perhaps others someday. *}
230 .#define BSF_FUNCTION (1 << 3)
231 .
232 . {* Used by the linker. *}
233 .#define BSF_KEEP (1 << 5)
234 .
235 . {* An ELF common symbol. *}
236 .#define BSF_ELF_COMMON (1 << 6)
237 .
238 . {* A weak global symbol, overridable without warnings by
239 . a regular global symbol of the same name. *}
240 .#define BSF_WEAK (1 << 7)
241 .
242 . {* This symbol was created to point to a section, e.g. ELF's
243 . STT_SECTION symbols. *}
244 .#define BSF_SECTION_SYM (1 << 8)
245 .
246 . {* The symbol used to be a common symbol, but now it is
247 . allocated. *}
248 .#define BSF_OLD_COMMON (1 << 9)
249 .
250 . {* In some files the type of a symbol sometimes alters its
251 . location in an output file - ie in coff a <<ISFCN>> symbol
252 . which is also <<C_EXT>> symbol appears where it was
253 . declared and not at the end of a section. This bit is set
254 . by the target BFD part to convey this information. *}
255 .#define BSF_NOT_AT_END (1 << 10)
256 .
257 . {* Signal that the symbol is the label of constructor section. *}
258 .#define BSF_CONSTRUCTOR (1 << 11)
259 .
260 . {* Signal that the symbol is a warning symbol. The name is a
261 . warning. The name of the next symbol is the one to warn about;
262 . if a reference is made to a symbol with the same name as the next
263 . symbol, a warning is issued by the linker. *}
264 .#define BSF_WARNING (1 << 12)
265 .
266 . {* Signal that the symbol is indirect. This symbol is an indirect
267 . pointer to the symbol with the same name as the next symbol. *}
268 .#define BSF_INDIRECT (1 << 13)
269 .
270 . {* BSF_FILE marks symbols that contain a file name. This is used
271 . for ELF STT_FILE symbols. *}
272 .#define BSF_FILE (1 << 14)
273 .
274 . {* Symbol is from dynamic linking information. *}
275 .#define BSF_DYNAMIC (1 << 15)
276 .
277 . {* The symbol denotes a data object. Used in ELF, and perhaps
278 . others someday. *}
279 .#define BSF_OBJECT (1 << 16)
280 .
281 . {* This symbol is a debugging symbol. The value is the offset
282 . into the section of the data. BSF_DEBUGGING should be set
283 . as well. *}
284 .#define BSF_DEBUGGING_RELOC (1 << 17)
285 .
286 . {* This symbol is thread local. Used in ELF. *}
287 .#define BSF_THREAD_LOCAL (1 << 18)
288 .
289 . {* This symbol represents a complex relocation expression,
290 . with the expression tree serialized in the symbol name. *}
291 .#define BSF_RELC (1 << 19)
292 .
293 . {* This symbol represents a signed complex relocation expression,
294 . with the expression tree serialized in the symbol name. *}
295 .#define BSF_SRELC (1 << 20)
296 .
297 . {* This symbol was created by bfd_get_synthetic_symtab. *}
298 .#define BSF_SYNTHETIC (1 << 21)
299 .
300 . {* This symbol is an indirect code object. Unrelated to BSF_INDIRECT.
301 . The dynamic linker will compute the value of this symbol by
302 . calling the function that it points to. BSF_FUNCTION must
303 . also be also set. *}
304 .#define BSF_GNU_INDIRECT_FUNCTION (1 << 22)
305 . {* This symbol is a globally unique data object. The dynamic linker
306 . will make sure that in the entire process there is just one symbol
307 . with this name and type in use. BSF_OBJECT must also be set. *}
308 .#define BSF_GNU_UNIQUE (1 << 23)
309 .
310 . flagword flags;
311 .
312 . {* A pointer to the section to which this symbol is
313 . relative. This will always be non NULL, there are special
314 . sections for undefined and absolute symbols. *}
315 . struct bfd_section *section;
316 .
317 . {* Back end special data. *}
318 . union
319 . {
320 . void *p;
321 . bfd_vma i;
322 . }
323 . udata;
324 .}
325 .asymbol;
326 .
327 */
328
329 #include "sysdep.h"
330 #include "bfd.h"
331 #include "libbfd.h"
332 #include "safe-ctype.h"
333 #include "bfdlink.h"
334 #include "aout/stab_gnu.h"
335
336 /*
337 DOCDD
338 INODE
339 symbol handling functions, , typedef asymbol, Symbols
340 SUBSECTION
341 Symbol handling functions
342 */
343
344 /*
345 FUNCTION
346 bfd_get_symtab_upper_bound
347
348 DESCRIPTION
349 Return the number of bytes required to store a vector of pointers
350 to <<asymbols>> for all the symbols in the BFD @var{abfd},
351 including a terminal NULL pointer. If there are no symbols in
352 the BFD, then return 0. If an error occurs, return -1.
353
354 .#define bfd_get_symtab_upper_bound(abfd) \
355 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
356 .
357 */
358
359 /*
360 FUNCTION
361 bfd_is_local_label
362
363 SYNOPSIS
364 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
365
366 DESCRIPTION
367 Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
368 a compiler generated local label, else return FALSE.
369 */
370
371 bfd_boolean
372 bfd_is_local_label (bfd *abfd, asymbol *sym)
373 {
374 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
375 starts with '.' is local. This would accidentally catch section names
376 if we didn't reject them here. */
377 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
378 return FALSE;
379 if (sym->name == NULL)
380 return FALSE;
381 return bfd_is_local_label_name (abfd, sym->name);
382 }
383
384 /*
385 FUNCTION
386 bfd_is_local_label_name
387
388 SYNOPSIS
389 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
390
391 DESCRIPTION
392 Return TRUE if a symbol with the name @var{name} in the BFD
393 @var{abfd} is a compiler generated local label, else return
394 FALSE. This just checks whether the name has the form of a
395 local label.
396
397 .#define bfd_is_local_label_name(abfd, name) \
398 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
399 .
400 */
401
402 /*
403 FUNCTION
404 bfd_is_target_special_symbol
405
406 SYNOPSIS
407 bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
408
409 DESCRIPTION
410 Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
411 special to the particular target represented by the BFD. Such symbols
412 should normally not be mentioned to the user.
413
414 .#define bfd_is_target_special_symbol(abfd, sym) \
415 . BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
416 .
417 */
418
419 /*
420 FUNCTION
421 bfd_canonicalize_symtab
422
423 DESCRIPTION
424 Read the symbols from the BFD @var{abfd}, and fills in
425 the vector @var{location} with pointers to the symbols and
426 a trailing NULL.
427 Return the actual number of symbol pointers, not
428 including the NULL.
429
430 .#define bfd_canonicalize_symtab(abfd, location) \
431 . BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
432 .
433 */
434
435 /*
436 FUNCTION
437 bfd_set_symtab
438
439 SYNOPSIS
440 bfd_boolean bfd_set_symtab
441 (bfd *abfd, asymbol **location, unsigned int count);
442
443 DESCRIPTION
444 Arrange that when the output BFD @var{abfd} is closed,
445 the table @var{location} of @var{count} pointers to symbols
446 will be written.
447 */
448
449 bfd_boolean
450 bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
451 {
452 if (abfd->format != bfd_object || bfd_read_p (abfd))
453 {
454 bfd_set_error (bfd_error_invalid_operation);
455 return FALSE;
456 }
457
458 abfd->outsymbols = location;
459 abfd->symcount = symcount;
460 return TRUE;
461 }
462
463 /*
464 FUNCTION
465 bfd_print_symbol_vandf
466
467 SYNOPSIS
468 void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
469
470 DESCRIPTION
471 Print the value and flags of the @var{symbol} supplied to the
472 stream @var{file}.
473 */
474 void
475 bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
476 {
477 FILE *file = (FILE *) arg;
478
479 flagword type = symbol->flags;
480
481 if (symbol->section != NULL)
482 bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
483 else
484 bfd_fprintf_vma (abfd, file, symbol->value);
485
486 /* This presumes that a symbol can not be both BSF_DEBUGGING and
487 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
488 BSF_OBJECT. */
489 fprintf (file, " %c%c%c%c%c%c%c",
490 ((type & BSF_LOCAL)
491 ? (type & BSF_GLOBAL) ? '!' : 'l'
492 : (type & BSF_GLOBAL) ? 'g'
493 : (type & BSF_GNU_UNIQUE) ? 'u' : ' '),
494 (type & BSF_WEAK) ? 'w' : ' ',
495 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
496 (type & BSF_WARNING) ? 'W' : ' ',
497 (type & BSF_INDIRECT) ? 'I' : (type & BSF_GNU_INDIRECT_FUNCTION) ? 'i' : ' ',
498 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
499 ((type & BSF_FUNCTION)
500 ? 'F'
501 : ((type & BSF_FILE)
502 ? 'f'
503 : ((type & BSF_OBJECT) ? 'O' : ' '))));
504 }
505
506 /*
507 FUNCTION
508 bfd_make_empty_symbol
509
510 DESCRIPTION
511 Create a new <<asymbol>> structure for the BFD @var{abfd}
512 and return a pointer to it.
513
514 This routine is necessary because each back end has private
515 information surrounding the <<asymbol>>. Building your own
516 <<asymbol>> and pointing to it will not create the private
517 information, and will cause problems later on.
518
519 .#define bfd_make_empty_symbol(abfd) \
520 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
521 .
522 */
523
524 /*
525 FUNCTION
526 _bfd_generic_make_empty_symbol
527
528 SYNOPSIS
529 asymbol *_bfd_generic_make_empty_symbol (bfd *);
530
531 DESCRIPTION
532 Create a new <<asymbol>> structure for the BFD @var{abfd}
533 and return a pointer to it. Used by core file routines,
534 binary back-end and anywhere else where no private info
535 is needed.
536 */
537
538 asymbol *
539 _bfd_generic_make_empty_symbol (bfd *abfd)
540 {
541 size_t amt = sizeof (asymbol);
542 asymbol *new_symbol = (asymbol *) bfd_zalloc (abfd, amt);
543 if (new_symbol)
544 new_symbol->the_bfd = abfd;
545 return new_symbol;
546 }
547
548 /*
549 FUNCTION
550 bfd_make_debug_symbol
551
552 DESCRIPTION
553 Create a new <<asymbol>> structure for the BFD @var{abfd},
554 to be used as a debugging symbol. Further details of its use have
555 yet to be worked out.
556
557 .#define bfd_make_debug_symbol(abfd,ptr,size) \
558 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
559 .
560 */
561
562 struct section_to_type
563 {
564 const char *section;
565 char type;
566 };
567
568 /* Map special section names to POSIX/BSD single-character symbol types.
569 This table is probably incomplete. It is sorted for convenience of
570 adding entries. Since it is so short, a linear search is used. */
571 static const struct section_to_type stt[] =
572 {
573 {".drectve", 'i'}, /* MSVC's .drective section */
574 {".edata", 'e'}, /* MSVC's .edata (export) section */
575 {".idata", 'i'}, /* MSVC's .idata (import) section */
576 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
577 {0, 0}
578 };
579
580 /* Return the single-character symbol type corresponding to
581 section S, or '?' for an unknown COFF section.
582
583 Check for leading strings which match, followed by a number, '.',
584 or '$' so .idata5 matches the .idata entry. */
585
586 static char
587 coff_section_type (const char *s)
588 {
589 const struct section_to_type *t;
590
591 for (t = &stt[0]; t->section; t++)
592 {
593 size_t len = strlen (t->section);
594 if (strncmp (s, t->section, len) == 0
595 && memchr (".$0123456789", s[len], 13) != 0)
596 return t->type;
597 }
598
599 return '?';
600 }
601
602 /* Return the single-character symbol type corresponding to section
603 SECTION, or '?' for an unknown section. This uses section flags to
604 identify sections.
605
606 FIXME These types are unhandled: e, i, p. If we handled these also,
607 we could perhaps obsolete coff_section_type. */
608
609 static char
610 decode_section_type (const struct bfd_section *section)
611 {
612 if (section->flags & SEC_CODE)
613 return 't';
614 if (section->flags & SEC_DATA)
615 {
616 if (section->flags & SEC_READONLY)
617 return 'r';
618 else if (section->flags & SEC_SMALL_DATA)
619 return 'g';
620 else
621 return 'd';
622 }
623 if ((section->flags & SEC_HAS_CONTENTS) == 0)
624 {
625 if (section->flags & SEC_SMALL_DATA)
626 return 's';
627 else
628 return 'b';
629 }
630 if (section->flags & SEC_DEBUGGING)
631 return 'N';
632 if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
633 return 'n';
634
635 return '?';
636 }
637
638 /*
639 FUNCTION
640 bfd_decode_symclass
641
642 DESCRIPTION
643 Return a character corresponding to the symbol
644 class of @var{symbol}, or '?' for an unknown class.
645
646 SYNOPSIS
647 int bfd_decode_symclass (asymbol *symbol);
648 */
649 int
650 bfd_decode_symclass (asymbol *symbol)
651 {
652 char c;
653
654 if (symbol->section && bfd_is_com_section (symbol->section))
655 {
656 if (symbol->section == bfd_com_section_ptr)
657 return 'C';
658 else
659 return 'c';
660 }
661 if (bfd_is_und_section (symbol->section))
662 {
663 if (symbol->flags & BSF_WEAK)
664 {
665 /* If weak, determine if it's specifically an object
666 or non-object weak. */
667 if (symbol->flags & BSF_OBJECT)
668 return 'v';
669 else
670 return 'w';
671 }
672 else
673 return 'U';
674 }
675 if (bfd_is_ind_section (symbol->section))
676 return 'I';
677 if (symbol->flags & BSF_GNU_INDIRECT_FUNCTION)
678 return 'i';
679 if (symbol->flags & BSF_WEAK)
680 {
681 /* If weak, determine if it's specifically an object
682 or non-object weak. */
683 if (symbol->flags & BSF_OBJECT)
684 return 'V';
685 else
686 return 'W';
687 }
688 if (symbol->flags & BSF_GNU_UNIQUE)
689 return 'u';
690 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
691 return '?';
692
693 if (bfd_is_abs_section (symbol->section))
694 c = 'a';
695 else if (symbol->section)
696 {
697 c = coff_section_type (symbol->section->name);
698 if (c == '?')
699 c = decode_section_type (symbol->section);
700 }
701 else
702 return '?';
703 if (symbol->flags & BSF_GLOBAL)
704 c = TOUPPER (c);
705 return c;
706
707 /* We don't have to handle these cases just yet, but we will soon:
708 N_SETV: 'v';
709 N_SETA: 'l';
710 N_SETT: 'x';
711 N_SETD: 'z';
712 N_SETB: 's';
713 N_INDR: 'i';
714 */
715 }
716
717 /*
718 FUNCTION
719 bfd_is_undefined_symclass
720
721 DESCRIPTION
722 Returns non-zero if the class symbol returned by
723 bfd_decode_symclass represents an undefined symbol.
724 Returns zero otherwise.
725
726 SYNOPSIS
727 bfd_boolean bfd_is_undefined_symclass (int symclass);
728 */
729
730 bfd_boolean
731 bfd_is_undefined_symclass (int symclass)
732 {
733 return symclass == 'U' || symclass == 'w' || symclass == 'v';
734 }
735
736 /*
737 FUNCTION
738 bfd_symbol_info
739
740 DESCRIPTION
741 Fill in the basic info about symbol that nm needs.
742 Additional info may be added by the back-ends after
743 calling this function.
744
745 SYNOPSIS
746 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
747 */
748
749 void
750 bfd_symbol_info (asymbol *symbol, symbol_info *ret)
751 {
752 ret->type = bfd_decode_symclass (symbol);
753
754 if (bfd_is_undefined_symclass (ret->type))
755 ret->value = 0;
756 else
757 ret->value = symbol->value + symbol->section->vma;
758
759 ret->name = symbol->name;
760 }
761
762 /*
763 FUNCTION
764 bfd_copy_private_symbol_data
765
766 SYNOPSIS
767 bfd_boolean bfd_copy_private_symbol_data
768 (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
769
770 DESCRIPTION
771 Copy private symbol information from @var{isym} in the BFD
772 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
773 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
774 returns are:
775
776 o <<bfd_error_no_memory>> -
777 Not enough memory exists to create private data for @var{osec}.
778
779 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
780 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
781 . (ibfd, isymbol, obfd, osymbol))
782 .
783 */
784
785 /* The generic version of the function which returns mini symbols.
786 This is used when the backend does not provide a more efficient
787 version. It just uses BFD asymbol structures as mini symbols. */
788
789 long
790 _bfd_generic_read_minisymbols (bfd *abfd,
791 bfd_boolean dynamic,
792 void **minisymsp,
793 unsigned int *sizep)
794 {
795 long storage;
796 asymbol **syms = NULL;
797 long symcount;
798
799 if (dynamic)
800 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
801 else
802 storage = bfd_get_symtab_upper_bound (abfd);
803 if (storage < 0)
804 goto error_return;
805 if (storage == 0)
806 return 0;
807
808 syms = (asymbol **) bfd_malloc (storage);
809 if (syms == NULL)
810 goto error_return;
811
812 if (dynamic)
813 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
814 else
815 symcount = bfd_canonicalize_symtab (abfd, syms);
816 if (symcount < 0)
817 goto error_return;
818
819 if (symcount == 0)
820 /* We return 0 above when storage is 0. Exit in the same state
821 here, so as to not complicate callers with having to deal with
822 freeing memory for zero symcount. */
823 free (syms);
824 else
825 {
826 *minisymsp = syms;
827 *sizep = sizeof (asymbol *);
828 }
829 return symcount;
830
831 error_return:
832 bfd_set_error (bfd_error_no_symbols);
833 free (syms);
834 return -1;
835 }
836
837 /* The generic version of the function which converts a minisymbol to
838 an asymbol. We don't worry about the sym argument we are passed;
839 we just return the asymbol the minisymbol points to. */
840
841 asymbol *
842 _bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
843 bfd_boolean dynamic ATTRIBUTE_UNUSED,
844 const void *minisym,
845 asymbol *sym ATTRIBUTE_UNUSED)
846 {
847 return *(asymbol **) minisym;
848 }
849
850 /* Look through stabs debugging information in .stab and .stabstr
851 sections to find the source file and line closest to a desired
852 location. This is used by COFF and ELF targets. It sets *pfound
853 to TRUE if it finds some information. The *pinfo field is used to
854 pass cached information in and out of this routine; this first time
855 the routine is called for a BFD, *pinfo should be NULL. The value
856 placed in *pinfo should be saved with the BFD, and passed back each
857 time this function is called. */
858
859 /* We use a cache by default. */
860
861 #define ENABLE_CACHING
862
863 /* We keep an array of indexentry structures to record where in the
864 stabs section we should look to find line number information for a
865 particular address. */
866
867 struct indexentry
868 {
869 bfd_vma val;
870 bfd_byte *stab;
871 bfd_byte *str;
872 char *directory_name;
873 char *file_name;
874 char *function_name;
875 int idx;
876 };
877
878 /* Compare two indexentry structures. This is called via qsort. */
879
880 static int
881 cmpindexentry (const void *a, const void *b)
882 {
883 const struct indexentry *contestantA = (const struct indexentry *) a;
884 const struct indexentry *contestantB = (const struct indexentry *) b;
885
886 if (contestantA->val < contestantB->val)
887 return -1;
888 if (contestantA->val > contestantB->val)
889 return 1;
890 return contestantA->idx - contestantB->idx;
891 }
892
893 /* A pointer to this structure is stored in *pinfo. */
894
895 struct stab_find_info
896 {
897 /* The .stab section. */
898 asection *stabsec;
899 /* The .stabstr section. */
900 asection *strsec;
901 /* The contents of the .stab section. */
902 bfd_byte *stabs;
903 /* The contents of the .stabstr section. */
904 bfd_byte *strs;
905
906 /* A table that indexes stabs by memory address. */
907 struct indexentry *indextable;
908 /* The number of entries in indextable. */
909 int indextablesize;
910
911 #ifdef ENABLE_CACHING
912 /* Cached values to restart quickly. */
913 struct indexentry *cached_indexentry;
914 bfd_vma cached_offset;
915 bfd_byte *cached_stab;
916 char *cached_file_name;
917 #endif
918
919 /* Saved ptr to malloc'ed filename. */
920 char *filename;
921 };
922
923 bfd_boolean
924 _bfd_stab_section_find_nearest_line (bfd *abfd,
925 asymbol **symbols,
926 asection *section,
927 bfd_vma offset,
928 bfd_boolean *pfound,
929 const char **pfilename,
930 const char **pfnname,
931 unsigned int *pline,
932 void **pinfo)
933 {
934 struct stab_find_info *info;
935 bfd_size_type stabsize, strsize;
936 bfd_byte *stab, *str;
937 bfd_byte *nul_fun, *nul_str;
938 bfd_size_type stroff;
939 struct indexentry *indexentry;
940 char *file_name;
941 char *directory_name;
942 bfd_boolean saw_line, saw_func;
943
944 *pfound = FALSE;
945 *pfilename = bfd_get_filename (abfd);
946 *pfnname = NULL;
947 *pline = 0;
948
949 /* Stabs entries use a 12 byte format:
950 4 byte string table index
951 1 byte stab type
952 1 byte stab other field
953 2 byte stab desc field
954 4 byte stab value
955 FIXME: This will have to change for a 64 bit object format.
956
957 The stabs symbols are divided into compilation units. For the
958 first entry in each unit, the type of 0, the value is the length
959 of the string table for this unit, and the desc field is the
960 number of stabs symbols for this unit. */
961
962 #define STRDXOFF (0)
963 #define TYPEOFF (4)
964 #define OTHEROFF (5)
965 #define DESCOFF (6)
966 #define VALOFF (8)
967 #define STABSIZE (12)
968
969 info = (struct stab_find_info *) *pinfo;
970 if (info != NULL)
971 {
972 if (info->stabsec == NULL || info->strsec == NULL)
973 {
974 /* No stabs debugging information. */
975 return TRUE;
976 }
977
978 stabsize = (info->stabsec->rawsize
979 ? info->stabsec->rawsize
980 : info->stabsec->size);
981 strsize = (info->strsec->rawsize
982 ? info->strsec->rawsize
983 : info->strsec->size);
984 }
985 else
986 {
987 long reloc_size, reloc_count;
988 arelent **reloc_vector;
989 int i;
990 char *function_name;
991 bfd_size_type amt = sizeof *info;
992
993 info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
994 if (info == NULL)
995 return FALSE;
996
997 /* FIXME: When using the linker --split-by-file or
998 --split-by-reloc options, it is possible for the .stab and
999 .stabstr sections to be split. We should handle that. */
1000
1001 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
1002 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
1003
1004 if (info->stabsec == NULL || info->strsec == NULL)
1005 {
1006 /* Try SOM section names. */
1007 info->stabsec = bfd_get_section_by_name (abfd, "$GDB_SYMBOLS$");
1008 info->strsec = bfd_get_section_by_name (abfd, "$GDB_STRINGS$");
1009
1010 if (info->stabsec == NULL || info->strsec == NULL)
1011 {
1012 /* No stabs debugging information. Set *pinfo so that we
1013 can return quickly in the info != NULL case above. */
1014 *pinfo = info;
1015 return TRUE;
1016 }
1017 }
1018
1019 stabsize = (info->stabsec->rawsize
1020 ? info->stabsec->rawsize
1021 : info->stabsec->size);
1022 stabsize = (stabsize / STABSIZE) * STABSIZE;
1023 strsize = (info->strsec->rawsize
1024 ? info->strsec->rawsize
1025 : info->strsec->size);
1026
1027 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
1028 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
1029 if (info->stabs == NULL || info->strs == NULL)
1030 return FALSE;
1031
1032 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1033 0, stabsize)
1034 || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1035 0, strsize))
1036 return FALSE;
1037
1038 /* Stab strings ought to be nul terminated. Ensure the last one
1039 is, to prevent running off the end of the buffer. */
1040 info->strs[strsize - 1] = 0;
1041
1042 /* If this is a relocatable object file, we have to relocate
1043 the entries in .stab. This should always be simple 32 bit
1044 relocations against symbols defined in this object file, so
1045 this should be no big deal. */
1046 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1047 if (reloc_size < 0)
1048 return FALSE;
1049 reloc_vector = (arelent **) bfd_malloc (reloc_size);
1050 if (reloc_vector == NULL && reloc_size != 0)
1051 return FALSE;
1052 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1053 symbols);
1054 if (reloc_count < 0)
1055 {
1056 free (reloc_vector);
1057 return FALSE;
1058 }
1059 if (reloc_count > 0)
1060 {
1061 arelent **pr;
1062
1063 for (pr = reloc_vector; *pr != NULL; pr++)
1064 {
1065 arelent *r;
1066 unsigned long val;
1067 asymbol *sym;
1068 bfd_size_type octets;
1069
1070 r = *pr;
1071 /* Ignore R_*_NONE relocs. */
1072 if (r->howto->dst_mask == 0)
1073 continue;
1074
1075 octets = r->address * bfd_octets_per_byte (abfd, NULL);
1076 if (r->howto->rightshift != 0
1077 || r->howto->size != 2
1078 || r->howto->bitsize != 32
1079 || r->howto->pc_relative
1080 || r->howto->bitpos != 0
1081 || r->howto->dst_mask != 0xffffffff
1082 || octets + 4 > stabsize)
1083 {
1084 _bfd_error_handler
1085 (_("unsupported .stab relocation"));
1086 bfd_set_error (bfd_error_invalid_operation);
1087 free (reloc_vector);
1088 return FALSE;
1089 }
1090
1091 val = bfd_get_32 (abfd, info->stabs + octets);
1092 val &= r->howto->src_mask;
1093 sym = *r->sym_ptr_ptr;
1094 val += sym->value + sym->section->vma + r->addend;
1095 bfd_put_32 (abfd, (bfd_vma) val, info->stabs + octets);
1096 }
1097 }
1098
1099 free (reloc_vector);
1100
1101 /* First time through this function, build a table matching
1102 function VM addresses to stabs, then sort based on starting
1103 VM address. Do this in two passes: once to count how many
1104 table entries we'll need, and a second to actually build the
1105 table. */
1106
1107 info->indextablesize = 0;
1108 nul_fun = NULL;
1109 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1110 {
1111 if (stab[TYPEOFF] == (bfd_byte) N_SO)
1112 {
1113 /* if we did not see a function def, leave space for one. */
1114 if (nul_fun != NULL)
1115 ++info->indextablesize;
1116
1117 /* N_SO with null name indicates EOF */
1118 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1119 nul_fun = NULL;
1120 else
1121 {
1122 nul_fun = stab;
1123
1124 /* two N_SO's in a row is a filename and directory. Skip */
1125 if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1126 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1127 stab += STABSIZE;
1128 }
1129 }
1130 else if (stab[TYPEOFF] == (bfd_byte) N_FUN
1131 && bfd_get_32 (abfd, stab + STRDXOFF) != 0)
1132 {
1133 nul_fun = NULL;
1134 ++info->indextablesize;
1135 }
1136 }
1137
1138 if (nul_fun != NULL)
1139 ++info->indextablesize;
1140
1141 if (info->indextablesize == 0)
1142 return TRUE;
1143 ++info->indextablesize;
1144
1145 amt = info->indextablesize;
1146 amt *= sizeof (struct indexentry);
1147 info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1148 if (info->indextable == NULL)
1149 return FALSE;
1150
1151 file_name = NULL;
1152 directory_name = NULL;
1153 nul_fun = NULL;
1154 stroff = 0;
1155
1156 for (i = 0, stab = info->stabs, nul_str = str = info->strs;
1157 i < info->indextablesize && stab < info->stabs + stabsize;
1158 stab += STABSIZE)
1159 {
1160 switch (stab[TYPEOFF])
1161 {
1162 case 0:
1163 /* This is the first entry in a compilation unit. */
1164 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1165 break;
1166 str += stroff;
1167 stroff = bfd_get_32 (abfd, stab + VALOFF);
1168 break;
1169
1170 case N_SO:
1171 /* The main file name. */
1172
1173 /* The following code creates a new indextable entry with
1174 a NULL function name if there were no N_FUNs in a file.
1175 Note that a N_SO without a file name is an EOF and
1176 there could be 2 N_SO following it with the new filename
1177 and directory. */
1178 if (nul_fun != NULL)
1179 {
1180 info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1181 info->indextable[i].stab = nul_fun;
1182 info->indextable[i].str = nul_str;
1183 info->indextable[i].directory_name = directory_name;
1184 info->indextable[i].file_name = file_name;
1185 info->indextable[i].function_name = NULL;
1186 info->indextable[i].idx = i;
1187 ++i;
1188 }
1189
1190 directory_name = NULL;
1191 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1192 if (file_name == (char *) str)
1193 {
1194 file_name = NULL;
1195 nul_fun = NULL;
1196 }
1197 else
1198 {
1199 nul_fun = stab;
1200 nul_str = str;
1201 if (file_name >= (char *) info->strs + strsize
1202 || file_name < (char *) str)
1203 file_name = NULL;
1204 if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1205 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1206 {
1207 /* Two consecutive N_SOs are a directory and a
1208 file name. */
1209 stab += STABSIZE;
1210 directory_name = file_name;
1211 file_name = ((char *) str
1212 + bfd_get_32 (abfd, stab + STRDXOFF));
1213 if (file_name >= (char *) info->strs + strsize
1214 || file_name < (char *) str)
1215 file_name = NULL;
1216 }
1217 }
1218 break;
1219
1220 case N_SOL:
1221 /* The name of an include file. */
1222 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1223 /* PR 17512: file: 0c680a1f. */
1224 /* PR 17512: file: 5da8aec4. */
1225 if (file_name >= (char *) info->strs + strsize
1226 || file_name < (char *) str)
1227 file_name = NULL;
1228 break;
1229
1230 case N_FUN:
1231 /* A function name. */
1232 function_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1233 if (function_name == (char *) str)
1234 continue;
1235 if (function_name >= (char *) info->strs + strsize
1236 || function_name < (char *) str)
1237 function_name = NULL;
1238
1239 nul_fun = NULL;
1240 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1241 info->indextable[i].stab = stab;
1242 info->indextable[i].str = str;
1243 info->indextable[i].directory_name = directory_name;
1244 info->indextable[i].file_name = file_name;
1245 info->indextable[i].function_name = function_name;
1246 info->indextable[i].idx = i;
1247 ++i;
1248 break;
1249 }
1250 }
1251
1252 if (nul_fun != NULL)
1253 {
1254 info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1255 info->indextable[i].stab = nul_fun;
1256 info->indextable[i].str = nul_str;
1257 info->indextable[i].directory_name = directory_name;
1258 info->indextable[i].file_name = file_name;
1259 info->indextable[i].function_name = NULL;
1260 info->indextable[i].idx = i;
1261 ++i;
1262 }
1263
1264 info->indextable[i].val = (bfd_vma) -1;
1265 info->indextable[i].stab = info->stabs + stabsize;
1266 info->indextable[i].str = str;
1267 info->indextable[i].directory_name = NULL;
1268 info->indextable[i].file_name = NULL;
1269 info->indextable[i].function_name = NULL;
1270 info->indextable[i].idx = i;
1271 ++i;
1272
1273 info->indextablesize = i;
1274 qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1275 cmpindexentry);
1276
1277 *pinfo = info;
1278 }
1279
1280 /* We are passed a section relative offset. The offsets in the
1281 stabs information are absolute. */
1282 offset += bfd_section_vma (section);
1283
1284 #ifdef ENABLE_CACHING
1285 if (info->cached_indexentry != NULL
1286 && offset >= info->cached_offset
1287 && offset < (info->cached_indexentry + 1)->val)
1288 {
1289 stab = info->cached_stab;
1290 indexentry = info->cached_indexentry;
1291 file_name = info->cached_file_name;
1292 }
1293 else
1294 #endif
1295 {
1296 long low, high;
1297 long mid = -1;
1298
1299 /* Cache non-existent or invalid. Do binary search on
1300 indextable. */
1301 indexentry = NULL;
1302
1303 low = 0;
1304 high = info->indextablesize - 1;
1305 while (low != high)
1306 {
1307 mid = (high + low) / 2;
1308 if (offset >= info->indextable[mid].val
1309 && offset < info->indextable[mid + 1].val)
1310 {
1311 indexentry = &info->indextable[mid];
1312 break;
1313 }
1314
1315 if (info->indextable[mid].val > offset)
1316 high = mid;
1317 else
1318 low = mid + 1;
1319 }
1320
1321 if (indexentry == NULL)
1322 return TRUE;
1323
1324 stab = indexentry->stab + STABSIZE;
1325 file_name = indexentry->file_name;
1326 }
1327
1328 directory_name = indexentry->directory_name;
1329 str = indexentry->str;
1330
1331 saw_line = FALSE;
1332 saw_func = FALSE;
1333 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1334 {
1335 bfd_boolean done;
1336 bfd_vma val;
1337
1338 done = FALSE;
1339
1340 switch (stab[TYPEOFF])
1341 {
1342 case N_SOL:
1343 /* The name of an include file. */
1344 val = bfd_get_32 (abfd, stab + VALOFF);
1345 if (val <= offset)
1346 {
1347 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1348 if (file_name >= (char *) info->strs + strsize
1349 || file_name < (char *) str)
1350 file_name = NULL;
1351 *pline = 0;
1352 }
1353 break;
1354
1355 case N_SLINE:
1356 case N_DSLINE:
1357 case N_BSLINE:
1358 /* A line number. If the function was specified, then the value
1359 is relative to the start of the function. Otherwise, the
1360 value is an absolute address. */
1361 val = ((indexentry->function_name ? indexentry->val : 0)
1362 + bfd_get_32 (abfd, stab + VALOFF));
1363 /* If this line starts before our desired offset, or if it's
1364 the first line we've been able to find, use it. The
1365 !saw_line check works around a bug in GCC 2.95.3, which emits
1366 the first N_SLINE late. */
1367 if (!saw_line || val <= offset)
1368 {
1369 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1370
1371 #ifdef ENABLE_CACHING
1372 info->cached_stab = stab;
1373 info->cached_offset = val;
1374 info->cached_file_name = file_name;
1375 info->cached_indexentry = indexentry;
1376 #endif
1377 }
1378 if (val > offset)
1379 done = TRUE;
1380 saw_line = TRUE;
1381 break;
1382
1383 case N_FUN:
1384 case N_SO:
1385 if (saw_func || saw_line)
1386 done = TRUE;
1387 saw_func = TRUE;
1388 break;
1389 }
1390
1391 if (done)
1392 break;
1393 }
1394
1395 *pfound = TRUE;
1396
1397 if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1398 || directory_name == NULL)
1399 *pfilename = file_name;
1400 else
1401 {
1402 size_t dirlen;
1403
1404 dirlen = strlen (directory_name);
1405 if (info->filename == NULL
1406 || filename_ncmp (info->filename, directory_name, dirlen) != 0
1407 || filename_cmp (info->filename + dirlen, file_name) != 0)
1408 {
1409 size_t len;
1410
1411 /* Don't free info->filename here. objdump and other
1412 apps keep a copy of a previously returned file name
1413 pointer. */
1414 len = strlen (file_name) + 1;
1415 info->filename = (char *) bfd_alloc (abfd, dirlen + len);
1416 if (info->filename == NULL)
1417 return FALSE;
1418 memcpy (info->filename, directory_name, dirlen);
1419 memcpy (info->filename + dirlen, file_name, len);
1420 }
1421
1422 *pfilename = info->filename;
1423 }
1424
1425 if (indexentry->function_name != NULL)
1426 {
1427 char *s;
1428
1429 /* This will typically be something like main:F(0,1), so we want
1430 to clobber the colon. It's OK to change the name, since the
1431 string is in our own local storage anyhow. */
1432 s = strchr (indexentry->function_name, ':');
1433 if (s != NULL)
1434 *s = '\0';
1435
1436 *pfnname = indexentry->function_name;
1437 }
1438
1439 return TRUE;
1440 }
1441
1442 long
1443 _bfd_nosymbols_canonicalize_symtab (bfd *abfd ATTRIBUTE_UNUSED,
1444 asymbol **location ATTRIBUTE_UNUSED)
1445 {
1446 return 0;
1447 }
1448
1449 void
1450 _bfd_nosymbols_print_symbol (bfd *abfd ATTRIBUTE_UNUSED,
1451 void *afile ATTRIBUTE_UNUSED,
1452 asymbol *symbol ATTRIBUTE_UNUSED,
1453 bfd_print_symbol_type how ATTRIBUTE_UNUSED)
1454 {
1455 }
1456
1457 void
1458 _bfd_nosymbols_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
1459 asymbol *sym ATTRIBUTE_UNUSED,
1460 symbol_info *ret ATTRIBUTE_UNUSED)
1461 {
1462 }
1463
1464 const char *
1465 _bfd_nosymbols_get_symbol_version_string (bfd *abfd,
1466 asymbol *symbol ATTRIBUTE_UNUSED,
1467 bfd_boolean base_p ATTRIBUTE_UNUSED,
1468 bfd_boolean *hidden ATTRIBUTE_UNUSED)
1469 {
1470 return (const char *) _bfd_ptr_bfd_null_error (abfd);
1471 }
1472
1473 bfd_boolean
1474 _bfd_nosymbols_bfd_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
1475 const char *name ATTRIBUTE_UNUSED)
1476 {
1477 return FALSE;
1478 }
1479
1480 alent *
1481 _bfd_nosymbols_get_lineno (bfd *abfd, asymbol *sym ATTRIBUTE_UNUSED)
1482 {
1483 return (alent *) _bfd_ptr_bfd_null_error (abfd);
1484 }
1485
1486 bfd_boolean
1487 _bfd_nosymbols_find_nearest_line
1488 (bfd *abfd,
1489 asymbol **symbols ATTRIBUTE_UNUSED,
1490 asection *section ATTRIBUTE_UNUSED,
1491 bfd_vma offset ATTRIBUTE_UNUSED,
1492 const char **filename_ptr ATTRIBUTE_UNUSED,
1493 const char **functionname_ptr ATTRIBUTE_UNUSED,
1494 unsigned int *line_ptr ATTRIBUTE_UNUSED,
1495 unsigned int *discriminator_ptr ATTRIBUTE_UNUSED)
1496 {
1497 return _bfd_bool_bfd_false_error (abfd);
1498 }
1499
1500 bfd_boolean
1501 _bfd_nosymbols_find_line (bfd *abfd,
1502 asymbol **symbols ATTRIBUTE_UNUSED,
1503 asymbol *symbol ATTRIBUTE_UNUSED,
1504 const char **filename_ptr ATTRIBUTE_UNUSED,
1505 unsigned int *line_ptr ATTRIBUTE_UNUSED)
1506 {
1507 return _bfd_bool_bfd_false_error (abfd);
1508 }
1509
1510 bfd_boolean
1511 _bfd_nosymbols_find_inliner_info
1512 (bfd *abfd,
1513 const char **filename_ptr ATTRIBUTE_UNUSED,
1514 const char **functionname_ptr ATTRIBUTE_UNUSED,
1515 unsigned int *line_ptr ATTRIBUTE_UNUSED)
1516 {
1517 return _bfd_bool_bfd_false_error (abfd);
1518 }
1519
1520 asymbol *
1521 _bfd_nosymbols_bfd_make_debug_symbol (bfd *abfd,
1522 void *ptr ATTRIBUTE_UNUSED,
1523 unsigned long sz ATTRIBUTE_UNUSED)
1524 {
1525 return (asymbol *) _bfd_ptr_bfd_null_error (abfd);
1526 }
1527
1528 long
1529 _bfd_nosymbols_read_minisymbols (bfd *abfd,
1530 bfd_boolean dynamic ATTRIBUTE_UNUSED,
1531 void **minisymsp ATTRIBUTE_UNUSED,
1532 unsigned int *sizep ATTRIBUTE_UNUSED)
1533 {
1534 return _bfd_long_bfd_n1_error (abfd);
1535 }
1536
1537 asymbol *
1538 _bfd_nosymbols_minisymbol_to_symbol (bfd *abfd,
1539 bfd_boolean dynamic ATTRIBUTE_UNUSED,
1540 const void *minisym ATTRIBUTE_UNUSED,
1541 asymbol *sym ATTRIBUTE_UNUSED)
1542 {
1543 return (asymbol *) _bfd_ptr_bfd_null_error (abfd);
1544 }
1545
1546 long
1547 _bfd_nodynamic_get_synthetic_symtab (bfd *abfd,
1548 long symcount ATTRIBUTE_UNUSED,
1549 asymbol **syms ATTRIBUTE_UNUSED,
1550 long dynsymcount ATTRIBUTE_UNUSED,
1551 asymbol **dynsyms ATTRIBUTE_UNUSED,
1552 asymbol **ret ATTRIBUTE_UNUSED)
1553 {
1554 return _bfd_long_bfd_n1_error (abfd);
1555 }