]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/syms.c
* coff-rs6000.c: Add missing prototypes.
[thirdparty/binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 /*
24 SECTION
25 Symbols
26
27 BFD tries to maintain as much symbol information as it can when
28 it moves information from file to file. BFD passes information
29 to applications though the <<asymbol>> structure. When the
30 application requests the symbol table, BFD reads the table in
31 the native form and translates parts of it into the internal
32 format. To maintain more than the information passed to
33 applications, some targets keep some information ``behind the
34 scenes'' in a structure only the particular back end knows
35 about. For example, the coff back end keeps the original
36 symbol table structure as well as the canonical structure when
37 a BFD is read in. On output, the coff back end can reconstruct
38 the output symbol table so that no information is lost, even
39 information unique to coff which BFD doesn't know or
40 understand. If a coff symbol table were read, but were written
41 through an a.out back end, all the coff specific information
42 would be lost. The symbol table of a BFD
43 is not necessarily read in until a canonicalize request is
44 made. Then the BFD back end fills in a table provided by the
45 application with pointers to the canonical information. To
46 output symbols, the application provides BFD with a table of
47 pointers to pointers to <<asymbol>>s. This allows applications
48 like the linker to output a symbol as it was read, since the ``behind
49 the scenes'' information will be still available.
50 @menu
51 @* Reading Symbols::
52 @* Writing Symbols::
53 @* Mini Symbols::
54 @* typedef asymbol::
55 @* symbol handling functions::
56 @end menu
57
58 INODE
59 Reading Symbols, Writing Symbols, Symbols, Symbols
60 SUBSECTION
61 Reading symbols
62
63 There are two stages to reading a symbol table from a BFD:
64 allocating storage, and the actual reading process. This is an
65 excerpt from an application which reads the symbol table:
66
67 | long storage_needed;
68 | asymbol **symbol_table;
69 | long number_of_symbols;
70 | long i;
71 |
72 | storage_needed = bfd_get_symtab_upper_bound (abfd);
73 |
74 | if (storage_needed < 0)
75 | FAIL
76 |
77 | if (storage_needed == 0) {
78 | return ;
79 | }
80 | symbol_table = (asymbol **) xmalloc (storage_needed);
81 | ...
82 | number_of_symbols =
83 | bfd_canonicalize_symtab (abfd, symbol_table);
84 |
85 | if (number_of_symbols < 0)
86 | FAIL
87 |
88 | for (i = 0; i < number_of_symbols; i++) {
89 | process_symbol (symbol_table[i]);
90 | }
91
92 All storage for the symbols themselves is in an objalloc
93 connected to the BFD; it is freed when the BFD is closed.
94
95 INODE
96 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
97 SUBSECTION
98 Writing symbols
99
100 Writing of a symbol table is automatic when a BFD open for
101 writing is closed. The application attaches a vector of
102 pointers to pointers to symbols to the BFD being written, and
103 fills in the symbol count. The close and cleanup code reads
104 through the table provided and performs all the necessary
105 operations. The BFD output code must always be provided with an
106 ``owned'' symbol: one which has come from another BFD, or one
107 which has been created using <<bfd_make_empty_symbol>>. Here is an
108 example showing the creation of a symbol table with only one element:
109
110 | #include "bfd.h"
111 | main()
112 | {
113 | bfd *abfd;
114 | asymbol *ptrs[2];
115 | asymbol *new;
116 |
117 | abfd = bfd_openw("foo","a.out-sunos-big");
118 | bfd_set_format(abfd, bfd_object);
119 | new = bfd_make_empty_symbol(abfd);
120 | new->name = "dummy_symbol";
121 | new->section = bfd_make_section_old_way(abfd, ".text");
122 | new->flags = BSF_GLOBAL;
123 | new->value = 0x12345;
124 |
125 | ptrs[0] = new;
126 | ptrs[1] = (asymbol *)0;
127 |
128 | bfd_set_symtab(abfd, ptrs, 1);
129 | bfd_close(abfd);
130 | }
131 |
132 | ./makesym
133 | nm foo
134 | 00012345 A dummy_symbol
135
136 Many formats cannot represent arbitary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
141
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 Mini Symbols
146
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
151
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
157
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
163
164 */
165
166 /*
167 DOCDD
168 INODE
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170
171 */
172 /*
173 SUBSECTION
174 typedef asymbol
175
176 An <<asymbol>> has the form:
177
178 */
179
180 /*
181 CODE_FRAGMENT
182
183 .
184 .typedef struct symbol_cache_entry
185 .{
186 . {* A pointer to the BFD which owns the symbol. This information
187 . is necessary so that a back end can work out what additional
188 . information (invisible to the application writer) is carried
189 . with the symbol.
190 .
191 . This field is *almost* redundant, since you can use section->owner
192 . instead, except that some symbols point to the global sections
193 . bfd_{abs,com,und}_section. This could be fixed by making
194 . these globals be per-bfd (or per-target-flavor). FIXME. *}
195 .
196 . struct _bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
197 .
198 . {* The text of the symbol. The name is left alone, and not copied; the
199 . application may not alter it. *}
200 . CONST char *name;
201 .
202 . {* The value of the symbol. This really should be a union of a
203 . numeric value with a pointer, since some flags indicate that
204 . a pointer to another symbol is stored here. *}
205 . symvalue value;
206 .
207 . {* Attributes of a symbol: *}
208 .
209 .#define BSF_NO_FLAGS 0x00
210 .
211 . {* The symbol has local scope; <<static>> in <<C>>. The value
212 . is the offset into the section of the data. *}
213 .#define BSF_LOCAL 0x01
214 .
215 . {* The symbol has global scope; initialized data in <<C>>. The
216 . value is the offset into the section of the data. *}
217 .#define BSF_GLOBAL 0x02
218 .
219 . {* The symbol has global scope and is exported. The value is
220 . the offset into the section of the data. *}
221 .#define BSF_EXPORT BSF_GLOBAL {* no real difference *}
222 .
223 . {* A normal C symbol would be one of:
224 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
225 . <<BSF_GLOBAL>> *}
226 .
227 . {* The symbol is a debugging record. The value has an arbitary
228 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
229 .#define BSF_DEBUGGING 0x08
230 .
231 . {* The symbol denotes a function entry point. Used in ELF,
232 . perhaps others someday. *}
233 .#define BSF_FUNCTION 0x10
234 .
235 . {* Used by the linker. *}
236 .#define BSF_KEEP 0x20
237 .#define BSF_KEEP_G 0x40
238 .
239 . {* A weak global symbol, overridable without warnings by
240 . a regular global symbol of the same name. *}
241 .#define BSF_WEAK 0x80
242 .
243 . {* This symbol was created to point to a section, e.g. ELF's
244 . STT_SECTION symbols. *}
245 .#define BSF_SECTION_SYM 0x100
246 .
247 . {* The symbol used to be a common symbol, but now it is
248 . allocated. *}
249 .#define BSF_OLD_COMMON 0x200
250 .
251 . {* The default value for common data. *}
252 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
253 .
254 . {* In some files the type of a symbol sometimes alters its
255 . location in an output file - ie in coff a <<ISFCN>> symbol
256 . which is also <<C_EXT>> symbol appears where it was
257 . declared and not at the end of a section. This bit is set
258 . by the target BFD part to convey this information. *}
259 .
260 .#define BSF_NOT_AT_END 0x400
261 .
262 . {* Signal that the symbol is the label of constructor section. *}
263 .#define BSF_CONSTRUCTOR 0x800
264 .
265 . {* Signal that the symbol is a warning symbol. The name is a
266 . warning. The name of the next symbol is the one to warn about;
267 . if a reference is made to a symbol with the same name as the next
268 . symbol, a warning is issued by the linker. *}
269 .#define BSF_WARNING 0x1000
270 .
271 . {* Signal that the symbol is indirect. This symbol is an indirect
272 . pointer to the symbol with the same name as the next symbol. *}
273 .#define BSF_INDIRECT 0x2000
274 .
275 . {* BSF_FILE marks symbols that contain a file name. This is used
276 . for ELF STT_FILE symbols. *}
277 .#define BSF_FILE 0x4000
278 .
279 . {* Symbol is from dynamic linking information. *}
280 .#define BSF_DYNAMIC 0x8000
281 .
282 . {* The symbol denotes a data object. Used in ELF, and perhaps
283 . others someday. *}
284 .#define BSF_OBJECT 0x10000
285 .
286 . {* This symbol is a debugging symbol. The value is the offset
287 . into the section of the data. BSF_DEBUGGING should be set
288 . as well. *}
289 .#define BSF_DEBUGGING_RELOC 0x20000
290 .
291 . flagword flags;
292 .
293 . {* A pointer to the section to which this symbol is
294 . relative. This will always be non NULL, there are special
295 . sections for undefined and absolute symbols. *}
296 . struct sec *section;
297 .
298 . {* Back end special data. *}
299 . union
300 . {
301 . PTR p;
302 . bfd_vma i;
303 . } udata;
304 .
305 .} asymbol;
306 */
307
308 #include "bfd.h"
309 #include "sysdep.h"
310 #include "libbfd.h"
311 #include "bfdlink.h"
312 #include "aout/stab_gnu.h"
313
314 static char coff_section_type PARAMS ((const char *));
315 static int cmpindexentry PARAMS ((const PTR, const PTR));
316
317 /*
318 DOCDD
319 INODE
320 symbol handling functions, , typedef asymbol, Symbols
321 SUBSECTION
322 Symbol handling functions
323 */
324
325 /*
326 FUNCTION
327 bfd_get_symtab_upper_bound
328
329 DESCRIPTION
330 Return the number of bytes required to store a vector of pointers
331 to <<asymbols>> for all the symbols in the BFD @var{abfd},
332 including a terminal NULL pointer. If there are no symbols in
333 the BFD, then return 0. If an error occurs, return -1.
334
335 .#define bfd_get_symtab_upper_bound(abfd) \
336 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
337
338 */
339
340 /*
341 FUNCTION
342 bfd_is_local_label
343
344 SYNOPSIS
345 boolean bfd_is_local_label(bfd *abfd, asymbol *sym);
346
347 DESCRIPTION
348 Return true if the given symbol @var{sym} in the BFD @var{abfd} is
349 a compiler generated local label, else return false.
350 */
351
352 boolean
353 bfd_is_local_label (abfd, sym)
354 bfd *abfd;
355 asymbol *sym;
356 {
357 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
358 starts with '.' is local. This would accidentally catch section names
359 if we didn't reject them here. */
360 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_SECTION_SYM)) != 0)
361 return false;
362 if (sym->name == NULL)
363 return false;
364 return bfd_is_local_label_name (abfd, sym->name);
365 }
366
367 /*
368 FUNCTION
369 bfd_is_local_label_name
370
371 SYNOPSIS
372 boolean bfd_is_local_label_name(bfd *abfd, const char *name);
373
374 DESCRIPTION
375 Return true if a symbol with the name @var{name} in the BFD
376 @var{abfd} is a compiler generated local label, else return
377 false. This just checks whether the name has the form of a
378 local label.
379
380 .#define bfd_is_local_label_name(abfd, name) \
381 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
382 */
383
384 /*
385 FUNCTION
386 bfd_canonicalize_symtab
387
388 DESCRIPTION
389 Read the symbols from the BFD @var{abfd}, and fills in
390 the vector @var{location} with pointers to the symbols and
391 a trailing NULL.
392 Return the actual number of symbol pointers, not
393 including the NULL.
394
395 .#define bfd_canonicalize_symtab(abfd, location) \
396 . BFD_SEND (abfd, _bfd_canonicalize_symtab,\
397 . (abfd, location))
398
399 */
400
401 /*
402 FUNCTION
403 bfd_set_symtab
404
405 SYNOPSIS
406 boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count);
407
408 DESCRIPTION
409 Arrange that when the output BFD @var{abfd} is closed,
410 the table @var{location} of @var{count} pointers to symbols
411 will be written.
412 */
413
414 boolean
415 bfd_set_symtab (abfd, location, symcount)
416 bfd *abfd;
417 asymbol **location;
418 unsigned int symcount;
419 {
420 if ((abfd->format != bfd_object) || (bfd_read_p (abfd)))
421 {
422 bfd_set_error (bfd_error_invalid_operation);
423 return false;
424 }
425
426 bfd_get_outsymbols (abfd) = location;
427 bfd_get_symcount (abfd) = symcount;
428 return true;
429 }
430
431 /*
432 FUNCTION
433 bfd_print_symbol_vandf
434
435 SYNOPSIS
436 void bfd_print_symbol_vandf(PTR file, asymbol *symbol);
437
438 DESCRIPTION
439 Print the value and flags of the @var{symbol} supplied to the
440 stream @var{file}.
441 */
442 void
443 bfd_print_symbol_vandf (arg, symbol)
444 PTR arg;
445 asymbol *symbol;
446 {
447 FILE *file = (FILE *) arg;
448 flagword type = symbol->flags;
449 if (symbol->section != (asection *) NULL)
450 {
451 fprintf_vma (file, symbol->value + symbol->section->vma);
452 }
453 else
454 {
455 fprintf_vma (file, symbol->value);
456 }
457
458 /* This presumes that a symbol can not be both BSF_DEBUGGING and
459 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
460 BSF_OBJECT. */
461 fprintf (file, " %c%c%c%c%c%c%c",
462 ((type & BSF_LOCAL)
463 ? (type & BSF_GLOBAL) ? '!' : 'l'
464 : (type & BSF_GLOBAL) ? 'g' : ' '),
465 (type & BSF_WEAK) ? 'w' : ' ',
466 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
467 (type & BSF_WARNING) ? 'W' : ' ',
468 (type & BSF_INDIRECT) ? 'I' : ' ',
469 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
470 ((type & BSF_FUNCTION)
471 ? 'F'
472 : ((type & BSF_FILE)
473 ? 'f'
474 : ((type & BSF_OBJECT) ? 'O' : ' '))));
475 }
476
477 /*
478 FUNCTION
479 bfd_make_empty_symbol
480
481 DESCRIPTION
482 Create a new <<asymbol>> structure for the BFD @var{abfd}
483 and return a pointer to it.
484
485 This routine is necessary because each back end has private
486 information surrounding the <<asymbol>>. Building your own
487 <<asymbol>> and pointing to it will not create the private
488 information, and will cause problems later on.
489
490 .#define bfd_make_empty_symbol(abfd) \
491 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
492 */
493
494 /*
495 FUNCTION
496 bfd_make_debug_symbol
497
498 DESCRIPTION
499 Create a new <<asymbol>> structure for the BFD @var{abfd},
500 to be used as a debugging symbol. Further details of its use have
501 yet to be worked out.
502
503 .#define bfd_make_debug_symbol(abfd,ptr,size) \
504 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
505 */
506
507 struct section_to_type
508 {
509 CONST char *section;
510 char type;
511 };
512
513 /* Map section names to POSIX/BSD single-character symbol types.
514 This table is probably incomplete. It is sorted for convenience of
515 adding entries. Since it is so short, a linear search is used. */
516 static CONST struct section_to_type stt[] =
517 {
518 {"*DEBUG*", 'N'},
519 {".bss", 'b'},
520 {"zerovars", 'b'}, /* MRI .bss */
521 {".data", 'd'},
522 {"vars", 'd'}, /* MRI .data */
523 {".rdata", 'r'}, /* Read only data. */
524 {".rodata", 'r'}, /* Read only data. */
525 {".sbss", 's'}, /* Small BSS (uninitialized data). */
526 {".scommon", 'c'}, /* Small common. */
527 {".sdata", 'g'}, /* Small initialized data. */
528 {".text", 't'},
529 {"code", 't'}, /* MRI .text */
530 {".drectve", 'i'}, /* MSVC's .drective section */
531 {".idata", 'i'}, /* MSVC's .idata (import) section */
532 {".edata", 'e'}, /* MSVC's .edata (export) section */
533 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
534 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
535 {0, 0}
536 };
537
538 /* Return the single-character symbol type corresponding to
539 section S, or '?' for an unknown COFF section.
540
541 Check for any leading string which matches, so .text5 returns
542 't' as well as .text */
543
544 static char
545 coff_section_type (s)
546 const char *s;
547 {
548 CONST struct section_to_type *t;
549
550 for (t = &stt[0]; t->section; t++)
551 if (!strncmp (s, t->section, strlen (t->section)))
552 return t->type;
553
554 return '?';
555 }
556
557 #ifndef islower
558 #define islower(c) ((c) >= 'a' && (c) <= 'z')
559 #endif
560 #ifndef toupper
561 #define toupper(c) (islower(c) ? ((c) & ~0x20) : (c))
562 #endif
563
564 /*
565 FUNCTION
566 bfd_decode_symclass
567
568 DESCRIPTION
569 Return a character corresponding to the symbol
570 class of @var{symbol}, or '?' for an unknown class.
571
572 SYNOPSIS
573 int bfd_decode_symclass(asymbol *symbol);
574 */
575 int
576 bfd_decode_symclass (symbol)
577 asymbol *symbol;
578 {
579 char c;
580
581 if (bfd_is_com_section (symbol->section))
582 return 'C';
583 if (bfd_is_und_section (symbol->section))
584 {
585 if (symbol->flags & BSF_WEAK)
586 {
587 /* If weak, determine if it's specifically an object
588 or non-object weak. */
589 if (symbol->flags & BSF_OBJECT)
590 return 'v';
591 else
592 return 'w';
593 }
594 else
595 return 'U';
596 }
597 if (bfd_is_ind_section (symbol->section))
598 return 'I';
599 if (symbol->flags & BSF_WEAK)
600 {
601 /* If weak, determine if it's specifically an object
602 or non-object weak. */
603 if (symbol->flags & BSF_OBJECT)
604 return 'V';
605 else
606 return 'W';
607 }
608 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
609 return '?';
610
611 if (bfd_is_abs_section (symbol->section))
612 c = 'a';
613 else if (symbol->section)
614 c = coff_section_type (symbol->section->name);
615 else
616 return '?';
617 if (symbol->flags & BSF_GLOBAL)
618 c = toupper (c);
619 return c;
620
621 /* We don't have to handle these cases just yet, but we will soon:
622 N_SETV: 'v';
623 N_SETA: 'l';
624 N_SETT: 'x';
625 N_SETD: 'z';
626 N_SETB: 's';
627 N_INDR: 'i';
628 */
629 }
630
631 /*
632 FUNCTION
633 bfd_is_undefined_symclass
634
635 DESCRIPTION
636 Returns non-zero if the class symbol returned by
637 bfd_decode_symclass represents an undefined symbol.
638 Returns zero otherwise.
639
640 SYNOPSIS
641 boolean bfd_is_undefined_symclass (int symclass);
642 */
643
644 boolean
645 bfd_is_undefined_symclass (symclass)
646 int symclass;
647 {
648 return symclass == 'U' || symclass == 'w' || symclass == 'v';
649 }
650
651 /*
652 FUNCTION
653 bfd_symbol_info
654
655 DESCRIPTION
656 Fill in the basic info about symbol that nm needs.
657 Additional info may be added by the back-ends after
658 calling this function.
659
660 SYNOPSIS
661 void bfd_symbol_info(asymbol *symbol, symbol_info *ret);
662 */
663
664 void
665 bfd_symbol_info (symbol, ret)
666 asymbol *symbol;
667 symbol_info *ret;
668 {
669 ret->type = bfd_decode_symclass (symbol);
670
671 if (bfd_is_undefined_symclass (ret->type))
672 ret->value = 0;
673 else
674 ret->value = symbol->value + symbol->section->vma;
675
676 ret->name = symbol->name;
677 }
678
679 /*
680 FUNCTION
681 bfd_copy_private_symbol_data
682
683 SYNOPSIS
684 boolean bfd_copy_private_symbol_data(bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
685
686 DESCRIPTION
687 Copy private symbol information from @var{isym} in the BFD
688 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
689 Return <<true>> on success, <<false>> on error. Possible error
690 returns are:
691
692 o <<bfd_error_no_memory>> -
693 Not enough memory exists to create private data for @var{osec}.
694
695 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
696 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
697 . (ibfd, isymbol, obfd, osymbol))
698
699 */
700
701 /* The generic version of the function which returns mini symbols.
702 This is used when the backend does not provide a more efficient
703 version. It just uses BFD asymbol structures as mini symbols. */
704
705 long
706 _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep)
707 bfd *abfd;
708 boolean dynamic;
709 PTR *minisymsp;
710 unsigned int *sizep;
711 {
712 long storage;
713 asymbol **syms = NULL;
714 long symcount;
715
716 if (dynamic)
717 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
718 else
719 storage = bfd_get_symtab_upper_bound (abfd);
720 if (storage < 0)
721 goto error_return;
722
723 syms = (asymbol **) bfd_malloc ((size_t) storage);
724 if (syms == NULL)
725 goto error_return;
726
727 if (dynamic)
728 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
729 else
730 symcount = bfd_canonicalize_symtab (abfd, syms);
731 if (symcount < 0)
732 goto error_return;
733
734 *minisymsp = (PTR) syms;
735 *sizep = sizeof (asymbol *);
736 return symcount;
737
738 error_return:
739 if (syms != NULL)
740 free (syms);
741 return -1;
742 }
743
744 /* The generic version of the function which converts a minisymbol to
745 an asymbol. We don't worry about the sym argument we are passed;
746 we just return the asymbol the minisymbol points to. */
747
748 /*ARGSUSED*/
749 asymbol *
750 _bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym)
751 bfd *abfd ATTRIBUTE_UNUSED;
752 boolean dynamic ATTRIBUTE_UNUSED;
753 const PTR minisym;
754 asymbol *sym ATTRIBUTE_UNUSED;
755 {
756 return *(asymbol **) minisym;
757 }
758
759 /* Look through stabs debugging information in .stab and .stabstr
760 sections to find the source file and line closest to a desired
761 location. This is used by COFF and ELF targets. It sets *pfound
762 to true if it finds some information. The *pinfo field is used to
763 pass cached information in and out of this routine; this first time
764 the routine is called for a BFD, *pinfo should be NULL. The value
765 placed in *pinfo should be saved with the BFD, and passed back each
766 time this function is called. */
767
768 /* We use a cache by default. */
769
770 #define ENABLE_CACHING
771
772 /* We keep an array of indexentry structures to record where in the
773 stabs section we should look to find line number information for a
774 particular address. */
775
776 struct indexentry
777 {
778 bfd_vma val;
779 bfd_byte *stab;
780 bfd_byte *str;
781 char *directory_name;
782 char *file_name;
783 char *function_name;
784 };
785
786 /* Compare two indexentry structures. This is called via qsort. */
787
788 static int
789 cmpindexentry (a, b)
790 const PTR a;
791 const PTR b;
792 {
793 const struct indexentry *contestantA = (const struct indexentry *) a;
794 const struct indexentry *contestantB = (const struct indexentry *) b;
795
796 if (contestantA->val < contestantB->val)
797 return -1;
798 else if (contestantA->val > contestantB->val)
799 return 1;
800 else
801 return 0;
802 }
803
804 /* A pointer to this structure is stored in *pinfo. */
805
806 struct stab_find_info
807 {
808 /* The .stab section. */
809 asection *stabsec;
810 /* The .stabstr section. */
811 asection *strsec;
812 /* The contents of the .stab section. */
813 bfd_byte *stabs;
814 /* The contents of the .stabstr section. */
815 bfd_byte *strs;
816
817 /* A table that indexes stabs by memory address. */
818 struct indexentry *indextable;
819 /* The number of entries in indextable. */
820 int indextablesize;
821
822 #ifdef ENABLE_CACHING
823 /* Cached values to restart quickly. */
824 struct indexentry *cached_indexentry;
825 bfd_vma cached_offset;
826 bfd_byte *cached_stab;
827 char *cached_file_name;
828 #endif
829
830 /* Saved ptr to malloc'ed filename. */
831 char *filename;
832 };
833
834 boolean
835 _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, pfound,
836 pfilename, pfnname, pline, pinfo)
837 bfd *abfd;
838 asymbol **symbols;
839 asection *section;
840 bfd_vma offset;
841 boolean *pfound;
842 const char **pfilename;
843 const char **pfnname;
844 unsigned int *pline;
845 PTR *pinfo;
846 {
847 struct stab_find_info *info;
848 bfd_size_type stabsize, strsize;
849 bfd_byte *stab, *str;
850 bfd_byte *last_stab = NULL;
851 bfd_size_type stroff;
852 struct indexentry *indexentry;
853 char *directory_name, *file_name;
854 int saw_fun;
855
856 *pfound = false;
857 *pfilename = bfd_get_filename (abfd);
858 *pfnname = NULL;
859 *pline = 0;
860
861 /* Stabs entries use a 12 byte format:
862 4 byte string table index
863 1 byte stab type
864 1 byte stab other field
865 2 byte stab desc field
866 4 byte stab value
867 FIXME: This will have to change for a 64 bit object format.
868
869 The stabs symbols are divided into compilation units. For the
870 first entry in each unit, the type of 0, the value is the length
871 of the string table for this unit, and the desc field is the
872 number of stabs symbols for this unit. */
873
874 #define STRDXOFF (0)
875 #define TYPEOFF (4)
876 #define OTHEROFF (5)
877 #define DESCOFF (6)
878 #define VALOFF (8)
879 #define STABSIZE (12)
880
881 info = (struct stab_find_info *) *pinfo;
882 if (info != NULL)
883 {
884 if (info->stabsec == NULL || info->strsec == NULL)
885 {
886 /* No stabs debugging information. */
887 return true;
888 }
889
890 stabsize = info->stabsec->_raw_size;
891 strsize = info->strsec->_raw_size;
892 }
893 else
894 {
895 long reloc_size, reloc_count;
896 arelent **reloc_vector;
897 int i;
898 char *name;
899 char *file_name;
900 char *directory_name;
901 char *function_name;
902
903 info = (struct stab_find_info *) bfd_zalloc (abfd, sizeof *info);
904 if (info == NULL)
905 return false;
906
907 /* FIXME: When using the linker --split-by-file or
908 --split-by-reloc options, it is possible for the .stab and
909 .stabstr sections to be split. We should handle that. */
910
911 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
912 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
913
914 if (info->stabsec == NULL || info->strsec == NULL)
915 {
916 /* No stabs debugging information. Set *pinfo so that we
917 can return quickly in the info != NULL case above. */
918 *pinfo = (PTR) info;
919 return true;
920 }
921
922 stabsize = info->stabsec->_raw_size;
923 strsize = info->strsec->_raw_size;
924
925 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
926 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
927 if (info->stabs == NULL || info->strs == NULL)
928 return false;
929
930 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs, 0,
931 stabsize)
932 || ! bfd_get_section_contents (abfd, info->strsec, info->strs, 0,
933 strsize))
934 return false;
935
936 /* If this is a relocateable object file, we have to relocate
937 the entries in .stab. This should always be simple 32 bit
938 relocations against symbols defined in this object file, so
939 this should be no big deal. */
940 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
941 if (reloc_size < 0)
942 return false;
943 reloc_vector = (arelent **) bfd_malloc (reloc_size);
944 if (reloc_vector == NULL && reloc_size != 0)
945 return false;
946 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
947 symbols);
948 if (reloc_count < 0)
949 {
950 if (reloc_vector != NULL)
951 free (reloc_vector);
952 return false;
953 }
954 if (reloc_count > 0)
955 {
956 arelent **pr;
957
958 for (pr = reloc_vector; *pr != NULL; pr++)
959 {
960 arelent *r;
961 unsigned long val;
962 asymbol *sym;
963
964 r = *pr;
965 if (r->howto->rightshift != 0
966 || r->howto->size != 2
967 || r->howto->bitsize != 32
968 || r->howto->pc_relative
969 || r->howto->bitpos != 0
970 || r->howto->dst_mask != 0xffffffff)
971 {
972 (*_bfd_error_handler)
973 (_("Unsupported .stab relocation"));
974 bfd_set_error (bfd_error_invalid_operation);
975 if (reloc_vector != NULL)
976 free (reloc_vector);
977 return false;
978 }
979
980 val = bfd_get_32 (abfd, info->stabs + r->address);
981 val &= r->howto->src_mask;
982 sym = *r->sym_ptr_ptr;
983 val += sym->value + sym->section->vma + r->addend;
984 bfd_put_32 (abfd, val, info->stabs + r->address);
985 }
986 }
987
988 if (reloc_vector != NULL)
989 free (reloc_vector);
990
991 /* First time through this function, build a table matching
992 function VM addresses to stabs, then sort based on starting
993 VM address. Do this in two passes: once to count how many
994 table entries we'll need, and a second to actually build the
995 table. */
996
997 info->indextablesize = 0;
998 saw_fun = 1;
999 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1000 {
1001 if (stab[TYPEOFF] == N_SO)
1002 {
1003 /* N_SO with null name indicates EOF */
1004 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1005 continue;
1006
1007 /* if we did not see a function def, leave space for one. */
1008 if (saw_fun == 0)
1009 ++info->indextablesize;
1010
1011 saw_fun = 0;
1012
1013 /* two N_SO's in a row is a filename and directory. Skip */
1014 if (stab + STABSIZE < info->stabs + stabsize
1015 && *(stab + STABSIZE + TYPEOFF) == N_SO)
1016 {
1017 stab += STABSIZE;
1018 }
1019 }
1020 else if (stab[TYPEOFF] == N_FUN)
1021 {
1022 saw_fun = 1;
1023 ++info->indextablesize;
1024 }
1025 }
1026
1027 if (saw_fun == 0)
1028 ++info->indextablesize;
1029
1030 if (info->indextablesize == 0)
1031 return true;
1032 ++info->indextablesize;
1033
1034 info->indextable = ((struct indexentry *)
1035 bfd_alloc (abfd,
1036 (sizeof (struct indexentry)
1037 * info->indextablesize)));
1038 if (info->indextable == NULL)
1039 return false;
1040
1041 file_name = NULL;
1042 directory_name = NULL;
1043 saw_fun = 1;
1044
1045 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1046 i < info->indextablesize && stab < info->stabs + stabsize;
1047 stab += STABSIZE)
1048 {
1049 switch (stab[TYPEOFF])
1050 {
1051 case 0:
1052 /* This is the first entry in a compilation unit. */
1053 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1054 break;
1055 str += stroff;
1056 stroff = bfd_get_32 (abfd, stab + VALOFF);
1057 break;
1058
1059 case N_SO:
1060 /* The main file name. */
1061
1062 /* The following code creates a new indextable entry with
1063 a NULL function name if there were no N_FUNs in a file.
1064 Note that a N_SO without a file name is an EOF and
1065 there could be 2 N_SO following it with the new filename
1066 and directory. */
1067 if (saw_fun == 0)
1068 {
1069 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1070 info->indextable[i].stab = last_stab;
1071 info->indextable[i].str = str;
1072 info->indextable[i].directory_name = directory_name;
1073 info->indextable[i].file_name = file_name;
1074 info->indextable[i].function_name = NULL;
1075 ++i;
1076 }
1077 saw_fun = 0;
1078
1079 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1080 if (*file_name == '\0')
1081 {
1082 directory_name = NULL;
1083 file_name = NULL;
1084 saw_fun = 1;
1085 }
1086 else
1087 {
1088 last_stab = stab;
1089 if (stab + STABSIZE >= info->stabs + stabsize
1090 || *(stab + STABSIZE + TYPEOFF) != N_SO)
1091 {
1092 directory_name = NULL;
1093 }
1094 else
1095 {
1096 /* Two consecutive N_SOs are a directory and a
1097 file name. */
1098 stab += STABSIZE;
1099 directory_name = file_name;
1100 file_name = ((char *) str
1101 + bfd_get_32 (abfd, stab + STRDXOFF));
1102 }
1103 }
1104 break;
1105
1106 case N_SOL:
1107 /* The name of an include file. */
1108 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1109 break;
1110
1111 case N_FUN:
1112 /* A function name. */
1113 saw_fun = 1;
1114 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1115
1116 if (*name == '\0')
1117 name = NULL;
1118
1119 function_name = name;
1120
1121 if (name == NULL)
1122 continue;
1123
1124 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1125 info->indextable[i].stab = stab;
1126 info->indextable[i].str = str;
1127 info->indextable[i].directory_name = directory_name;
1128 info->indextable[i].file_name = file_name;
1129 info->indextable[i].function_name = function_name;
1130 ++i;
1131 break;
1132 }
1133 }
1134
1135 if (saw_fun == 0)
1136 {
1137 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1138 info->indextable[i].stab = last_stab;
1139 info->indextable[i].str = str;
1140 info->indextable[i].directory_name = directory_name;
1141 info->indextable[i].file_name = file_name;
1142 info->indextable[i].function_name = NULL;
1143 ++i;
1144 }
1145
1146 info->indextable[i].val = (bfd_vma) -1;
1147 info->indextable[i].stab = info->stabs + stabsize;
1148 info->indextable[i].str = str;
1149 info->indextable[i].directory_name = NULL;
1150 info->indextable[i].file_name = NULL;
1151 info->indextable[i].function_name = NULL;
1152 ++i;
1153
1154 info->indextablesize = i;
1155 qsort (info->indextable, i, sizeof (struct indexentry), cmpindexentry);
1156
1157 *pinfo = (PTR) info;
1158 }
1159
1160 /* We are passed a section relative offset. The offsets in the
1161 stabs information are absolute. */
1162 offset += bfd_get_section_vma (abfd, section);
1163
1164 #ifdef ENABLE_CACHING
1165 if (info->cached_indexentry != NULL
1166 && offset >= info->cached_offset
1167 && offset < (info->cached_indexentry + 1)->val)
1168 {
1169 stab = info->cached_stab;
1170 indexentry = info->cached_indexentry;
1171 file_name = info->cached_file_name;
1172 }
1173 else
1174 #endif
1175 {
1176 /* Cache non-existant or invalid. Do binary search on
1177 indextable. */
1178
1179 long low, high;
1180 long mid = -1;
1181
1182 indexentry = NULL;
1183
1184 low = 0;
1185 high = info->indextablesize - 1;
1186 while (low != high)
1187 {
1188 mid = (high + low) / 2;
1189 if (offset >= info->indextable[mid].val
1190 && offset < info->indextable[mid + 1].val)
1191 {
1192 indexentry = &info->indextable[mid];
1193 break;
1194 }
1195
1196 if (info->indextable[mid].val > offset)
1197 high = mid;
1198 else
1199 low = mid + 1;
1200 }
1201
1202 if (indexentry == NULL)
1203 return true;
1204
1205 stab = indexentry->stab + STABSIZE;
1206 file_name = indexentry->file_name;
1207 }
1208
1209 directory_name = indexentry->directory_name;
1210 str = indexentry->str;
1211
1212 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1213 {
1214 boolean done;
1215 bfd_vma val;
1216
1217 done = false;
1218
1219 switch (stab[TYPEOFF])
1220 {
1221 case N_SOL:
1222 /* The name of an include file. */
1223 val = bfd_get_32 (abfd, stab + VALOFF);
1224 if (val <= offset)
1225 {
1226 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1227 *pline = 0;
1228 }
1229 break;
1230
1231 case N_SLINE:
1232 case N_DSLINE:
1233 case N_BSLINE:
1234 /* A line number. The value is relative to the start of the
1235 current function. */
1236 val = indexentry->val + bfd_get_32 (abfd, stab + VALOFF);
1237 if (val <= offset)
1238 {
1239 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1240
1241 #ifdef ENABLE_CACHING
1242 info->cached_stab = stab;
1243 info->cached_offset = val;
1244 info->cached_file_name = file_name;
1245 info->cached_indexentry = indexentry;
1246 #endif
1247 }
1248 if (val > offset)
1249 done = true;
1250 break;
1251
1252 case N_FUN:
1253 case N_SO:
1254 done = true;
1255 break;
1256 }
1257
1258 if (done)
1259 break;
1260 }
1261
1262 *pfound = true;
1263
1264 if (IS_ABSOLUTE_PATH(file_name) || directory_name == NULL)
1265 *pfilename = file_name;
1266 else
1267 {
1268 size_t dirlen;
1269
1270 dirlen = strlen (directory_name);
1271 if (info->filename == NULL
1272 || strncmp (info->filename, directory_name, dirlen) != 0
1273 || strcmp (info->filename + dirlen, file_name) != 0)
1274 {
1275 if (info->filename != NULL)
1276 free (info->filename);
1277 info->filename = (char *) bfd_malloc (dirlen +
1278 strlen (file_name)
1279 + 1);
1280 if (info->filename == NULL)
1281 return false;
1282 strcpy (info->filename, directory_name);
1283 strcpy (info->filename + dirlen, file_name);
1284 }
1285
1286 *pfilename = info->filename;
1287 }
1288
1289 if (indexentry->function_name != NULL)
1290 {
1291 char *s;
1292
1293 /* This will typically be something like main:F(0,1), so we want
1294 to clobber the colon. It's OK to change the name, since the
1295 string is in our own local storage anyhow. */
1296
1297 s = strchr (indexentry->function_name, ':');
1298 if (s != NULL)
1299 *s = '\0';
1300
1301 *pfnname = indexentry->function_name;
1302 }
1303
1304 return true;
1305 }