]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-mips.c
MIPS: Fix XPA base and Virtualization ASE instruction handling
[thirdparty/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168 };
169
170 /* The ABI to use. */
171 enum mips_abi_level
172 {
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179 };
180
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
183
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
186
187 /* Whether or not we have code which can be put into a shared
188 library. */
189 static bfd_boolean mips_in_shared = TRUE;
190
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195 struct mips_set_options
196 {
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265 };
266
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
269
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
275
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280 static struct mips_set_options file_mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287 };
288
289 /* This is similar to file_mips_opts, but for the current set of options. */
290
291 static struct mips_set_options mips_opts =
292 {
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298 };
299
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
311
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
323
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
325 #ifdef TE_IRIX
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327 #else
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334 #endif
335
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
338
339 /* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
343
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
346
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
426
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
454
455 #define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
459
460 #define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
464
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
466
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
468
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
476
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
482
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
488
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
491
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
502
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
505
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
515
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
518
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
555 )
556
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
567 )
568
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
584 )
585
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
596
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
610
611 /* MIPS PIC level. */
612
613 enum mips_pic_level mips_pic;
614
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
618
619 /* 1 if trap instructions should used for overflow rather than break
620 instructions. */
621 static int mips_trap = 0;
622
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
630
631 /* Non-zero if any .set noreorder directives were used. */
632
633 static int mips_any_noreorder;
634
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
638
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
643
644 #define N_RMASK 0xc4
645 #define N_VFP 0xd4
646
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
660
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
663
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
666
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
669
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
673
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
682
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
685
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
688
689 /* Chars that mean this number is a floating point constant */
690 /* As in 0f12.456 */
691 /* or 0d1.2345e12 */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705 };
706
707 /* Information about an error that was found while assembling the current
708 instruction. */
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732 };
733
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
736
737 static int auto_align = 1;
738
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743 static offsetT mips_cprestore_offset = -1;
744
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
752
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
756
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
760
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
764
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772 static int mips_optimize = 2;
773
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
777
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
780
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
783
784 /* The maximum number of NOPs needed for any purpose. */
785 #define MAX_NOPS 4
786
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
793
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798 };
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
802
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
808
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
817
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
822
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827 static fragS *prev_nop_frag;
828
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
831
832 /* The number of nop instructions that we know we need in
833 prev_nop_frag. */
834 static int prev_nop_frag_required;
835
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
838
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
849
850 struct mips_hi_fixup
851 {
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858 };
859
860 /* The list of unmatched HI relocs. */
861
862 static struct mips_hi_fixup *mips_hi_fixup_list;
863
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867 static fragS *prev_reloc_op_frag;
868
869 /* Map mips16 register numbers to normal MIPS register numbers. */
870
871 static const unsigned int mips16_to_32_reg_map[] =
872 {
873 16, 17, 2, 3, 4, 5, 6, 7
874 };
875
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
877
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
879
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
882 {
883 5, 5, 6, 4, 4, 4, 4, 4
884 };
885 static const unsigned int micromips_to_32_reg_h_map2[] =
886 {
887 6, 7, 7, 21, 22, 5, 6, 7
888 };
889
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
892 {
893 0, 17, 2, 3, 16, 18, 19, 20
894 };
895
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
901 {
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909 };
910
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
913
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
916
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
919
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
927
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
930
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
933
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
936
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
939
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945 static int mips_relax_branch;
946
947 /* TRUE if checks are suppressed for invalid branches between ISA modes.
948 Needed for broken assembly produced by some GCC versions and some
949 sloppy code out there, where branches to data labels are present. */
950 static bfd_boolean mips_ignore_branch_isa;
951 \f
952 /* The expansion of many macros depends on the type of symbol that
953 they refer to. For example, when generating position-dependent code,
954 a macro that refers to a symbol may have two different expansions,
955 one which uses GP-relative addresses and one which uses absolute
956 addresses. When generating SVR4-style PIC, a macro may have
957 different expansions for local and global symbols.
958
959 We handle these situations by generating both sequences and putting
960 them in variant frags. In position-dependent code, the first sequence
961 will be the GP-relative one and the second sequence will be the
962 absolute one. In SVR4 PIC, the first sequence will be for global
963 symbols and the second will be for local symbols.
964
965 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
966 SECOND are the lengths of the two sequences in bytes. These fields
967 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
968 the subtype has the following flags:
969
970 RELAX_PIC
971 Set if generating PIC code.
972
973 RELAX_USE_SECOND
974 Set if it has been decided that we should use the second
975 sequence instead of the first.
976
977 RELAX_SECOND_LONGER
978 Set in the first variant frag if the macro's second implementation
979 is longer than its first. This refers to the macro as a whole,
980 not an individual relaxation.
981
982 RELAX_NOMACRO
983 Set in the first variant frag if the macro appeared in a .set nomacro
984 block and if one alternative requires a warning but the other does not.
985
986 RELAX_DELAY_SLOT
987 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
988 delay slot.
989
990 RELAX_DELAY_SLOT_16BIT
991 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
992 16-bit instruction.
993
994 RELAX_DELAY_SLOT_SIZE_FIRST
995 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
996 the macro is of the wrong size for the branch delay slot.
997
998 RELAX_DELAY_SLOT_SIZE_SECOND
999 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
1000 the macro is of the wrong size for the branch delay slot.
1001
1002 The frag's "opcode" points to the first fixup for relaxable code.
1003
1004 Relaxable macros are generated using a sequence such as:
1005
1006 relax_start (SYMBOL);
1007 ... generate first expansion ...
1008 relax_switch ();
1009 ... generate second expansion ...
1010 relax_end ();
1011
1012 The code and fixups for the unwanted alternative are discarded
1013 by md_convert_frag. */
1014 #define RELAX_ENCODE(FIRST, SECOND, PIC) \
1015 (((FIRST) << 8) | (SECOND) | ((PIC) ? 0x10000 : 0))
1016
1017 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1018 #define RELAX_SECOND(X) ((X) & 0xff)
1019 #define RELAX_PIC(X) (((X) & 0x10000) != 0)
1020 #define RELAX_USE_SECOND 0x20000
1021 #define RELAX_SECOND_LONGER 0x40000
1022 #define RELAX_NOMACRO 0x80000
1023 #define RELAX_DELAY_SLOT 0x100000
1024 #define RELAX_DELAY_SLOT_16BIT 0x200000
1025 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x400000
1026 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x800000
1027
1028 /* Branch without likely bit. If label is out of range, we turn:
1029
1030 beq reg1, reg2, label
1031 delay slot
1032
1033 into
1034
1035 bne reg1, reg2, 0f
1036 nop
1037 j label
1038 0: delay slot
1039
1040 with the following opcode replacements:
1041
1042 beq <-> bne
1043 blez <-> bgtz
1044 bltz <-> bgez
1045 bc1f <-> bc1t
1046
1047 bltzal <-> bgezal (with jal label instead of j label)
1048
1049 Even though keeping the delay slot instruction in the delay slot of
1050 the branch would be more efficient, it would be very tricky to do
1051 correctly, because we'd have to introduce a variable frag *after*
1052 the delay slot instruction, and expand that instead. Let's do it
1053 the easy way for now, even if the branch-not-taken case now costs
1054 one additional instruction. Out-of-range branches are not supposed
1055 to be common, anyway.
1056
1057 Branch likely. If label is out of range, we turn:
1058
1059 beql reg1, reg2, label
1060 delay slot (annulled if branch not taken)
1061
1062 into
1063
1064 beql reg1, reg2, 1f
1065 nop
1066 beql $0, $0, 2f
1067 nop
1068 1: j[al] label
1069 delay slot (executed only if branch taken)
1070 2:
1071
1072 It would be possible to generate a shorter sequence by losing the
1073 likely bit, generating something like:
1074
1075 bne reg1, reg2, 0f
1076 nop
1077 j[al] label
1078 delay slot (executed only if branch taken)
1079 0:
1080
1081 beql -> bne
1082 bnel -> beq
1083 blezl -> bgtz
1084 bgtzl -> blez
1085 bltzl -> bgez
1086 bgezl -> bltz
1087 bc1fl -> bc1t
1088 bc1tl -> bc1f
1089
1090 bltzall -> bgezal (with jal label instead of j label)
1091 bgezall -> bltzal (ditto)
1092
1093
1094 but it's not clear that it would actually improve performance. */
1095 #define RELAX_BRANCH_ENCODE(at, pic, \
1096 uncond, likely, link, toofar) \
1097 ((relax_substateT) \
1098 (0xc0000000 \
1099 | ((at) & 0x1f) \
1100 | ((pic) ? 0x20 : 0) \
1101 | ((toofar) ? 0x40 : 0) \
1102 | ((link) ? 0x80 : 0) \
1103 | ((likely) ? 0x100 : 0) \
1104 | ((uncond) ? 0x200 : 0)))
1105 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1106 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x200) != 0)
1107 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x100) != 0)
1108 #define RELAX_BRANCH_LINK(i) (((i) & 0x80) != 0)
1109 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x40) != 0)
1110 #define RELAX_BRANCH_PIC(i) (((i) & 0x20) != 0)
1111 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1112
1113 /* For mips16 code, we use an entirely different form of relaxation.
1114 mips16 supports two versions of most instructions which take
1115 immediate values: a small one which takes some small value, and a
1116 larger one which takes a 16 bit value. Since branches also follow
1117 this pattern, relaxing these values is required.
1118
1119 We can assemble both mips16 and normal MIPS code in a single
1120 object. Therefore, we need to support this type of relaxation at
1121 the same time that we support the relaxation described above. We
1122 use the high bit of the subtype field to distinguish these cases.
1123
1124 The information we store for this type of relaxation is the
1125 argument code found in the opcode file for this relocation, whether
1126 the user explicitly requested a small or extended form, and whether
1127 the relocation is in a jump or jal delay slot. That tells us the
1128 size of the value, and how it should be stored. We also store
1129 whether the fragment is considered to be extended or not. We also
1130 store whether this is known to be a branch to a different section,
1131 whether we have tried to relax this frag yet, and whether we have
1132 ever extended a PC relative fragment because of a shift count. */
1133 #define RELAX_MIPS16_ENCODE(type, e2, pic, sym32, nomacro, \
1134 small, ext, \
1135 dslot, jal_dslot) \
1136 (0x80000000 \
1137 | ((type) & 0xff) \
1138 | ((e2) ? 0x100 : 0) \
1139 | ((pic) ? 0x200 : 0) \
1140 | ((sym32) ? 0x400 : 0) \
1141 | ((nomacro) ? 0x800 : 0) \
1142 | ((small) ? 0x1000 : 0) \
1143 | ((ext) ? 0x2000 : 0) \
1144 | ((dslot) ? 0x4000 : 0) \
1145 | ((jal_dslot) ? 0x8000 : 0))
1146
1147 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1148 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1149 #define RELAX_MIPS16_E2(i) (((i) & 0x100) != 0)
1150 #define RELAX_MIPS16_PIC(i) (((i) & 0x200) != 0)
1151 #define RELAX_MIPS16_SYM32(i) (((i) & 0x400) != 0)
1152 #define RELAX_MIPS16_NOMACRO(i) (((i) & 0x800) != 0)
1153 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x1000) != 0)
1154 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x2000) != 0)
1155 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x4000) != 0)
1156 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x8000) != 0)
1157
1158 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x10000) != 0)
1159 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x10000)
1160 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) & ~0x10000)
1161 #define RELAX_MIPS16_ALWAYS_EXTENDED(i) (((i) & 0x20000) != 0)
1162 #define RELAX_MIPS16_MARK_ALWAYS_EXTENDED(i) ((i) | 0x20000)
1163 #define RELAX_MIPS16_CLEAR_ALWAYS_EXTENDED(i) ((i) & ~0x20000)
1164 #define RELAX_MIPS16_MACRO(i) (((i) & 0x40000) != 0)
1165 #define RELAX_MIPS16_MARK_MACRO(i) ((i) | 0x40000)
1166 #define RELAX_MIPS16_CLEAR_MACRO(i) ((i) & ~0x40000)
1167
1168 /* For microMIPS code, we use relaxation similar to one we use for
1169 MIPS16 code. Some instructions that take immediate values support
1170 two encodings: a small one which takes some small value, and a
1171 larger one which takes a 16 bit value. As some branches also follow
1172 this pattern, relaxing these values is required.
1173
1174 We can assemble both microMIPS and normal MIPS code in a single
1175 object. Therefore, we need to support this type of relaxation at
1176 the same time that we support the relaxation described above. We
1177 use one of the high bits of the subtype field to distinguish these
1178 cases.
1179
1180 The information we store for this type of relaxation is the argument
1181 code found in the opcode file for this relocation, the register
1182 selected as the assembler temporary, whether in the 32-bit
1183 instruction mode, whether the branch is unconditional, whether it is
1184 compact, whether there is no delay-slot instruction available to fill
1185 in, whether it stores the link address implicitly in $ra, whether
1186 relaxation of out-of-range 32-bit branches to a sequence of
1187 instructions is enabled, and whether the displacement of a branch is
1188 too large to fit as an immediate argument of a 16-bit and a 32-bit
1189 branch, respectively. */
1190 #define RELAX_MICROMIPS_ENCODE(type, at, insn32, pic, \
1191 uncond, compact, link, nods, \
1192 relax32, toofar16, toofar32) \
1193 (0x40000000 \
1194 | ((type) & 0xff) \
1195 | (((at) & 0x1f) << 8) \
1196 | ((insn32) ? 0x2000 : 0) \
1197 | ((pic) ? 0x4000 : 0) \
1198 | ((uncond) ? 0x8000 : 0) \
1199 | ((compact) ? 0x10000 : 0) \
1200 | ((link) ? 0x20000 : 0) \
1201 | ((nods) ? 0x40000 : 0) \
1202 | ((relax32) ? 0x80000 : 0) \
1203 | ((toofar16) ? 0x100000 : 0) \
1204 | ((toofar32) ? 0x200000 : 0))
1205 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1206 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1207 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1208 #define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
1209 #define RELAX_MICROMIPS_PIC(i) (((i) & 0x4000) != 0)
1210 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x8000) != 0)
1211 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x10000) != 0)
1212 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x20000) != 0)
1213 #define RELAX_MICROMIPS_NODS(i) (((i) & 0x40000) != 0)
1214 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x80000) != 0)
1215
1216 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x100000) != 0)
1217 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x100000)
1218 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x100000)
1219 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x200000) != 0)
1220 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x200000)
1221 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x200000)
1222
1223 /* Sign-extend 16-bit value X. */
1224 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1225
1226 /* Is the given value a sign-extended 32-bit value? */
1227 #define IS_SEXT_32BIT_NUM(x) \
1228 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1229 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1230
1231 /* Is the given value a sign-extended 16-bit value? */
1232 #define IS_SEXT_16BIT_NUM(x) \
1233 (((x) &~ (offsetT) 0x7fff) == 0 \
1234 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1235
1236 /* Is the given value a sign-extended 12-bit value? */
1237 #define IS_SEXT_12BIT_NUM(x) \
1238 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1239
1240 /* Is the given value a sign-extended 9-bit value? */
1241 #define IS_SEXT_9BIT_NUM(x) \
1242 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1243
1244 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1245 #define IS_ZEXT_32BIT_NUM(x) \
1246 (((x) &~ (offsetT) 0xffffffff) == 0 \
1247 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1248
1249 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1250 SHIFT places. */
1251 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1252 (((STRUCT) >> (SHIFT)) & (MASK))
1253
1254 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1255 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1256 (!(MICROMIPS) \
1257 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1258 : EXTRACT_BITS ((INSN).insn_opcode, \
1259 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1260 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1261 EXTRACT_BITS ((INSN).insn_opcode, \
1262 MIPS16OP_MASK_##FIELD, \
1263 MIPS16OP_SH_##FIELD)
1264
1265 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1266 #define MIPS16_EXTEND (0xf000U << 16)
1267 \f
1268 /* Whether or not we are emitting a branch-likely macro. */
1269 static bfd_boolean emit_branch_likely_macro = FALSE;
1270
1271 /* Global variables used when generating relaxable macros. See the
1272 comment above RELAX_ENCODE for more details about how relaxation
1273 is used. */
1274 static struct {
1275 /* 0 if we're not emitting a relaxable macro.
1276 1 if we're emitting the first of the two relaxation alternatives.
1277 2 if we're emitting the second alternative. */
1278 int sequence;
1279
1280 /* The first relaxable fixup in the current frag. (In other words,
1281 the first fixup that refers to relaxable code.) */
1282 fixS *first_fixup;
1283
1284 /* sizes[0] says how many bytes of the first alternative are stored in
1285 the current frag. Likewise sizes[1] for the second alternative. */
1286 unsigned int sizes[2];
1287
1288 /* The symbol on which the choice of sequence depends. */
1289 symbolS *symbol;
1290 } mips_relax;
1291 \f
1292 /* Global variables used to decide whether a macro needs a warning. */
1293 static struct {
1294 /* True if the macro is in a branch delay slot. */
1295 bfd_boolean delay_slot_p;
1296
1297 /* Set to the length in bytes required if the macro is in a delay slot
1298 that requires a specific length of instruction, otherwise zero. */
1299 unsigned int delay_slot_length;
1300
1301 /* For relaxable macros, sizes[0] is the length of the first alternative
1302 in bytes and sizes[1] is the length of the second alternative.
1303 For non-relaxable macros, both elements give the length of the
1304 macro in bytes. */
1305 unsigned int sizes[2];
1306
1307 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1308 instruction of the first alternative in bytes and first_insn_sizes[1]
1309 is the length of the first instruction of the second alternative.
1310 For non-relaxable macros, both elements give the length of the first
1311 instruction in bytes.
1312
1313 Set to zero if we haven't yet seen the first instruction. */
1314 unsigned int first_insn_sizes[2];
1315
1316 /* For relaxable macros, insns[0] is the number of instructions for the
1317 first alternative and insns[1] is the number of instructions for the
1318 second alternative.
1319
1320 For non-relaxable macros, both elements give the number of
1321 instructions for the macro. */
1322 unsigned int insns[2];
1323
1324 /* The first variant frag for this macro. */
1325 fragS *first_frag;
1326 } mips_macro_warning;
1327 \f
1328 /* Prototypes for static functions. */
1329
1330 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1331
1332 static void append_insn
1333 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1334 bfd_boolean expansionp);
1335 static void mips_no_prev_insn (void);
1336 static void macro_build (expressionS *, const char *, const char *, ...);
1337 static void mips16_macro_build
1338 (expressionS *, const char *, const char *, va_list *);
1339 static void load_register (int, expressionS *, int);
1340 static void macro_start (void);
1341 static void macro_end (void);
1342 static void macro (struct mips_cl_insn *ip, char *str);
1343 static void mips16_macro (struct mips_cl_insn * ip);
1344 static void mips_ip (char *str, struct mips_cl_insn * ip);
1345 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1346 static unsigned long mips16_immed_extend (offsetT, unsigned int);
1347 static void mips16_immed
1348 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1349 unsigned int, unsigned long *);
1350 static size_t my_getSmallExpression
1351 (expressionS *, bfd_reloc_code_real_type *, char *);
1352 static void my_getExpression (expressionS *, char *);
1353 static void s_align (int);
1354 static void s_change_sec (int);
1355 static void s_change_section (int);
1356 static void s_cons (int);
1357 static void s_float_cons (int);
1358 static void s_mips_globl (int);
1359 static void s_option (int);
1360 static void s_mipsset (int);
1361 static void s_abicalls (int);
1362 static void s_cpload (int);
1363 static void s_cpsetup (int);
1364 static void s_cplocal (int);
1365 static void s_cprestore (int);
1366 static void s_cpreturn (int);
1367 static void s_dtprelword (int);
1368 static void s_dtpreldword (int);
1369 static void s_tprelword (int);
1370 static void s_tpreldword (int);
1371 static void s_gpvalue (int);
1372 static void s_gpword (int);
1373 static void s_gpdword (int);
1374 static void s_ehword (int);
1375 static void s_cpadd (int);
1376 static void s_insn (int);
1377 static void s_nan (int);
1378 static void s_module (int);
1379 static void s_mips_ent (int);
1380 static void s_mips_end (int);
1381 static void s_mips_frame (int);
1382 static void s_mips_mask (int reg_type);
1383 static void s_mips_stab (int);
1384 static void s_mips_weakext (int);
1385 static void s_mips_file (int);
1386 static void s_mips_loc (int);
1387 static bfd_boolean pic_need_relax (symbolS *);
1388 static int relaxed_branch_length (fragS *, asection *, int);
1389 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1390 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1391 static void file_mips_check_options (void);
1392
1393 /* Table and functions used to map between CPU/ISA names, and
1394 ISA levels, and CPU numbers. */
1395
1396 struct mips_cpu_info
1397 {
1398 const char *name; /* CPU or ISA name. */
1399 int flags; /* MIPS_CPU_* flags. */
1400 int ase; /* Set of ASEs implemented by the CPU. */
1401 int isa; /* ISA level. */
1402 int cpu; /* CPU number (default CPU if ISA). */
1403 };
1404
1405 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1406
1407 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1408 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1409 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1410 \f
1411 /* Command-line options. */
1412 const char *md_shortopts = "O::g::G:";
1413
1414 enum options
1415 {
1416 OPTION_MARCH = OPTION_MD_BASE,
1417 OPTION_MTUNE,
1418 OPTION_MIPS1,
1419 OPTION_MIPS2,
1420 OPTION_MIPS3,
1421 OPTION_MIPS4,
1422 OPTION_MIPS5,
1423 OPTION_MIPS32,
1424 OPTION_MIPS64,
1425 OPTION_MIPS32R2,
1426 OPTION_MIPS32R3,
1427 OPTION_MIPS32R5,
1428 OPTION_MIPS32R6,
1429 OPTION_MIPS64R2,
1430 OPTION_MIPS64R3,
1431 OPTION_MIPS64R5,
1432 OPTION_MIPS64R6,
1433 OPTION_MIPS16,
1434 OPTION_NO_MIPS16,
1435 OPTION_MIPS3D,
1436 OPTION_NO_MIPS3D,
1437 OPTION_MDMX,
1438 OPTION_NO_MDMX,
1439 OPTION_DSP,
1440 OPTION_NO_DSP,
1441 OPTION_MT,
1442 OPTION_NO_MT,
1443 OPTION_VIRT,
1444 OPTION_NO_VIRT,
1445 OPTION_MSA,
1446 OPTION_NO_MSA,
1447 OPTION_SMARTMIPS,
1448 OPTION_NO_SMARTMIPS,
1449 OPTION_DSPR2,
1450 OPTION_NO_DSPR2,
1451 OPTION_DSPR3,
1452 OPTION_NO_DSPR3,
1453 OPTION_EVA,
1454 OPTION_NO_EVA,
1455 OPTION_XPA,
1456 OPTION_NO_XPA,
1457 OPTION_MICROMIPS,
1458 OPTION_NO_MICROMIPS,
1459 OPTION_MCU,
1460 OPTION_NO_MCU,
1461 OPTION_MIPS16E2,
1462 OPTION_NO_MIPS16E2,
1463 OPTION_COMPAT_ARCH_BASE,
1464 OPTION_M4650,
1465 OPTION_NO_M4650,
1466 OPTION_M4010,
1467 OPTION_NO_M4010,
1468 OPTION_M4100,
1469 OPTION_NO_M4100,
1470 OPTION_M3900,
1471 OPTION_NO_M3900,
1472 OPTION_M7000_HILO_FIX,
1473 OPTION_MNO_7000_HILO_FIX,
1474 OPTION_FIX_24K,
1475 OPTION_NO_FIX_24K,
1476 OPTION_FIX_RM7000,
1477 OPTION_NO_FIX_RM7000,
1478 OPTION_FIX_LOONGSON2F_JUMP,
1479 OPTION_NO_FIX_LOONGSON2F_JUMP,
1480 OPTION_FIX_LOONGSON2F_NOP,
1481 OPTION_NO_FIX_LOONGSON2F_NOP,
1482 OPTION_FIX_VR4120,
1483 OPTION_NO_FIX_VR4120,
1484 OPTION_FIX_VR4130,
1485 OPTION_NO_FIX_VR4130,
1486 OPTION_FIX_CN63XXP1,
1487 OPTION_NO_FIX_CN63XXP1,
1488 OPTION_TRAP,
1489 OPTION_BREAK,
1490 OPTION_EB,
1491 OPTION_EL,
1492 OPTION_FP32,
1493 OPTION_GP32,
1494 OPTION_CONSTRUCT_FLOATS,
1495 OPTION_NO_CONSTRUCT_FLOATS,
1496 OPTION_FP64,
1497 OPTION_FPXX,
1498 OPTION_GP64,
1499 OPTION_RELAX_BRANCH,
1500 OPTION_NO_RELAX_BRANCH,
1501 OPTION_IGNORE_BRANCH_ISA,
1502 OPTION_NO_IGNORE_BRANCH_ISA,
1503 OPTION_INSN32,
1504 OPTION_NO_INSN32,
1505 OPTION_MSHARED,
1506 OPTION_MNO_SHARED,
1507 OPTION_MSYM32,
1508 OPTION_MNO_SYM32,
1509 OPTION_SOFT_FLOAT,
1510 OPTION_HARD_FLOAT,
1511 OPTION_SINGLE_FLOAT,
1512 OPTION_DOUBLE_FLOAT,
1513 OPTION_32,
1514 OPTION_CALL_SHARED,
1515 OPTION_CALL_NONPIC,
1516 OPTION_NON_SHARED,
1517 OPTION_XGOT,
1518 OPTION_MABI,
1519 OPTION_N32,
1520 OPTION_64,
1521 OPTION_MDEBUG,
1522 OPTION_NO_MDEBUG,
1523 OPTION_PDR,
1524 OPTION_NO_PDR,
1525 OPTION_MVXWORKS_PIC,
1526 OPTION_NAN,
1527 OPTION_ODD_SPREG,
1528 OPTION_NO_ODD_SPREG,
1529 OPTION_END_OF_ENUM
1530 };
1531
1532 struct option md_longopts[] =
1533 {
1534 /* Options which specify architecture. */
1535 {"march", required_argument, NULL, OPTION_MARCH},
1536 {"mtune", required_argument, NULL, OPTION_MTUNE},
1537 {"mips0", no_argument, NULL, OPTION_MIPS1},
1538 {"mips1", no_argument, NULL, OPTION_MIPS1},
1539 {"mips2", no_argument, NULL, OPTION_MIPS2},
1540 {"mips3", no_argument, NULL, OPTION_MIPS3},
1541 {"mips4", no_argument, NULL, OPTION_MIPS4},
1542 {"mips5", no_argument, NULL, OPTION_MIPS5},
1543 {"mips32", no_argument, NULL, OPTION_MIPS32},
1544 {"mips64", no_argument, NULL, OPTION_MIPS64},
1545 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1546 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1547 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1548 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1549 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1550 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1551 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1552 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1553
1554 /* Options which specify Application Specific Extensions (ASEs). */
1555 {"mips16", no_argument, NULL, OPTION_MIPS16},
1556 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1557 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1558 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1559 {"mdmx", no_argument, NULL, OPTION_MDMX},
1560 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1561 {"mdsp", no_argument, NULL, OPTION_DSP},
1562 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1563 {"mmt", no_argument, NULL, OPTION_MT},
1564 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1565 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1566 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1567 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1568 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1569 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1570 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
1571 {"meva", no_argument, NULL, OPTION_EVA},
1572 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1573 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1574 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1575 {"mmcu", no_argument, NULL, OPTION_MCU},
1576 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1577 {"mvirt", no_argument, NULL, OPTION_VIRT},
1578 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1579 {"mmsa", no_argument, NULL, OPTION_MSA},
1580 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1581 {"mxpa", no_argument, NULL, OPTION_XPA},
1582 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1583 {"mmips16e2", no_argument, NULL, OPTION_MIPS16E2},
1584 {"mno-mips16e2", no_argument, NULL, OPTION_NO_MIPS16E2},
1585
1586 /* Old-style architecture options. Don't add more of these. */
1587 {"m4650", no_argument, NULL, OPTION_M4650},
1588 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1589 {"m4010", no_argument, NULL, OPTION_M4010},
1590 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1591 {"m4100", no_argument, NULL, OPTION_M4100},
1592 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1593 {"m3900", no_argument, NULL, OPTION_M3900},
1594 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1595
1596 /* Options which enable bug fixes. */
1597 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1598 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1599 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1600 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1601 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1602 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1603 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1604 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1605 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1606 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1607 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1608 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1609 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1610 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1611 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1612 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1613 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1614
1615 /* Miscellaneous options. */
1616 {"trap", no_argument, NULL, OPTION_TRAP},
1617 {"no-break", no_argument, NULL, OPTION_TRAP},
1618 {"break", no_argument, NULL, OPTION_BREAK},
1619 {"no-trap", no_argument, NULL, OPTION_BREAK},
1620 {"EB", no_argument, NULL, OPTION_EB},
1621 {"EL", no_argument, NULL, OPTION_EL},
1622 {"mfp32", no_argument, NULL, OPTION_FP32},
1623 {"mgp32", no_argument, NULL, OPTION_GP32},
1624 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1625 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1626 {"mfp64", no_argument, NULL, OPTION_FP64},
1627 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1628 {"mgp64", no_argument, NULL, OPTION_GP64},
1629 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1630 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1631 {"mignore-branch-isa", no_argument, NULL, OPTION_IGNORE_BRANCH_ISA},
1632 {"mno-ignore-branch-isa", no_argument, NULL, OPTION_NO_IGNORE_BRANCH_ISA},
1633 {"minsn32", no_argument, NULL, OPTION_INSN32},
1634 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1635 {"mshared", no_argument, NULL, OPTION_MSHARED},
1636 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1637 {"msym32", no_argument, NULL, OPTION_MSYM32},
1638 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1639 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1640 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1641 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1642 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1643 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1644 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1645
1646 /* Strictly speaking this next option is ELF specific,
1647 but we allow it for other ports as well in order to
1648 make testing easier. */
1649 {"32", no_argument, NULL, OPTION_32},
1650
1651 /* ELF-specific options. */
1652 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1653 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1654 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1655 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1656 {"xgot", no_argument, NULL, OPTION_XGOT},
1657 {"mabi", required_argument, NULL, OPTION_MABI},
1658 {"n32", no_argument, NULL, OPTION_N32},
1659 {"64", no_argument, NULL, OPTION_64},
1660 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1661 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1662 {"mpdr", no_argument, NULL, OPTION_PDR},
1663 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1664 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1665 {"mnan", required_argument, NULL, OPTION_NAN},
1666
1667 {NULL, no_argument, NULL, 0}
1668 };
1669 size_t md_longopts_size = sizeof (md_longopts);
1670 \f
1671 /* Information about either an Application Specific Extension or an
1672 optional architecture feature that, for simplicity, we treat in the
1673 same way as an ASE. */
1674 struct mips_ase
1675 {
1676 /* The name of the ASE, used in both the command-line and .set options. */
1677 const char *name;
1678
1679 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1680 and 64-bit architectures, the flags here refer to the subset that
1681 is available on both. */
1682 unsigned int flags;
1683
1684 /* The ASE_* flag used for instructions that are available on 64-bit
1685 architectures but that are not included in FLAGS. */
1686 unsigned int flags64;
1687
1688 /* The command-line options that turn the ASE on and off. */
1689 int option_on;
1690 int option_off;
1691
1692 /* The minimum required architecture revisions for MIPS32, MIPS64,
1693 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1694 int mips32_rev;
1695 int mips64_rev;
1696 int micromips32_rev;
1697 int micromips64_rev;
1698
1699 /* The architecture where the ASE was removed or -1 if the extension has not
1700 been removed. */
1701 int rem_rev;
1702 };
1703
1704 /* A table of all supported ASEs. */
1705 static const struct mips_ase mips_ases[] = {
1706 { "dsp", ASE_DSP, ASE_DSP64,
1707 OPTION_DSP, OPTION_NO_DSP,
1708 2, 2, 2, 2,
1709 -1 },
1710
1711 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1712 OPTION_DSPR2, OPTION_NO_DSPR2,
1713 2, 2, 2, 2,
1714 -1 },
1715
1716 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1717 OPTION_DSPR3, OPTION_NO_DSPR3,
1718 6, 6, -1, -1,
1719 -1 },
1720
1721 { "eva", ASE_EVA, 0,
1722 OPTION_EVA, OPTION_NO_EVA,
1723 2, 2, 2, 2,
1724 -1 },
1725
1726 { "mcu", ASE_MCU, 0,
1727 OPTION_MCU, OPTION_NO_MCU,
1728 2, 2, 2, 2,
1729 -1 },
1730
1731 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1732 { "mdmx", ASE_MDMX, 0,
1733 OPTION_MDMX, OPTION_NO_MDMX,
1734 -1, 1, -1, -1,
1735 6 },
1736
1737 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1738 { "mips3d", ASE_MIPS3D, 0,
1739 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1740 2, 1, -1, -1,
1741 6 },
1742
1743 { "mt", ASE_MT, 0,
1744 OPTION_MT, OPTION_NO_MT,
1745 2, 2, -1, -1,
1746 -1 },
1747
1748 { "smartmips", ASE_SMARTMIPS, 0,
1749 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1750 1, -1, -1, -1,
1751 6 },
1752
1753 { "virt", ASE_VIRT, ASE_VIRT64,
1754 OPTION_VIRT, OPTION_NO_VIRT,
1755 2, 2, 2, 2,
1756 -1 },
1757
1758 { "msa", ASE_MSA, ASE_MSA64,
1759 OPTION_MSA, OPTION_NO_MSA,
1760 2, 2, 2, 2,
1761 -1 },
1762
1763 { "xpa", ASE_XPA, 0,
1764 OPTION_XPA, OPTION_NO_XPA,
1765 2, 2, -1, -1,
1766 -1 },
1767
1768 { "mips16e2", ASE_MIPS16E2, 0,
1769 OPTION_MIPS16E2, OPTION_NO_MIPS16E2,
1770 2, 2, -1, -1,
1771 6 },
1772 };
1773
1774 /* The set of ASEs that require -mfp64. */
1775 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1776
1777 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1778 static const unsigned int mips_ase_groups[] = {
1779 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
1780 };
1781 \f
1782 /* Pseudo-op table.
1783
1784 The following pseudo-ops from the Kane and Heinrich MIPS book
1785 should be defined here, but are currently unsupported: .alias,
1786 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1787
1788 The following pseudo-ops from the Kane and Heinrich MIPS book are
1789 specific to the type of debugging information being generated, and
1790 should be defined by the object format: .aent, .begin, .bend,
1791 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1792 .vreg.
1793
1794 The following pseudo-ops from the Kane and Heinrich MIPS book are
1795 not MIPS CPU specific, but are also not specific to the object file
1796 format. This file is probably the best place to define them, but
1797 they are not currently supported: .asm0, .endr, .lab, .struct. */
1798
1799 static const pseudo_typeS mips_pseudo_table[] =
1800 {
1801 /* MIPS specific pseudo-ops. */
1802 {"option", s_option, 0},
1803 {"set", s_mipsset, 0},
1804 {"rdata", s_change_sec, 'r'},
1805 {"sdata", s_change_sec, 's'},
1806 {"livereg", s_ignore, 0},
1807 {"abicalls", s_abicalls, 0},
1808 {"cpload", s_cpload, 0},
1809 {"cpsetup", s_cpsetup, 0},
1810 {"cplocal", s_cplocal, 0},
1811 {"cprestore", s_cprestore, 0},
1812 {"cpreturn", s_cpreturn, 0},
1813 {"dtprelword", s_dtprelword, 0},
1814 {"dtpreldword", s_dtpreldword, 0},
1815 {"tprelword", s_tprelword, 0},
1816 {"tpreldword", s_tpreldword, 0},
1817 {"gpvalue", s_gpvalue, 0},
1818 {"gpword", s_gpword, 0},
1819 {"gpdword", s_gpdword, 0},
1820 {"ehword", s_ehword, 0},
1821 {"cpadd", s_cpadd, 0},
1822 {"insn", s_insn, 0},
1823 {"nan", s_nan, 0},
1824 {"module", s_module, 0},
1825
1826 /* Relatively generic pseudo-ops that happen to be used on MIPS
1827 chips. */
1828 {"asciiz", stringer, 8 + 1},
1829 {"bss", s_change_sec, 'b'},
1830 {"err", s_err, 0},
1831 {"half", s_cons, 1},
1832 {"dword", s_cons, 3},
1833 {"weakext", s_mips_weakext, 0},
1834 {"origin", s_org, 0},
1835 {"repeat", s_rept, 0},
1836
1837 /* For MIPS this is non-standard, but we define it for consistency. */
1838 {"sbss", s_change_sec, 'B'},
1839
1840 /* These pseudo-ops are defined in read.c, but must be overridden
1841 here for one reason or another. */
1842 {"align", s_align, 0},
1843 {"byte", s_cons, 0},
1844 {"data", s_change_sec, 'd'},
1845 {"double", s_float_cons, 'd'},
1846 {"float", s_float_cons, 'f'},
1847 {"globl", s_mips_globl, 0},
1848 {"global", s_mips_globl, 0},
1849 {"hword", s_cons, 1},
1850 {"int", s_cons, 2},
1851 {"long", s_cons, 2},
1852 {"octa", s_cons, 4},
1853 {"quad", s_cons, 3},
1854 {"section", s_change_section, 0},
1855 {"short", s_cons, 1},
1856 {"single", s_float_cons, 'f'},
1857 {"stabd", s_mips_stab, 'd'},
1858 {"stabn", s_mips_stab, 'n'},
1859 {"stabs", s_mips_stab, 's'},
1860 {"text", s_change_sec, 't'},
1861 {"word", s_cons, 2},
1862
1863 { "extern", ecoff_directive_extern, 0},
1864
1865 { NULL, NULL, 0 },
1866 };
1867
1868 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1869 {
1870 /* These pseudo-ops should be defined by the object file format.
1871 However, a.out doesn't support them, so we have versions here. */
1872 {"aent", s_mips_ent, 1},
1873 {"bgnb", s_ignore, 0},
1874 {"end", s_mips_end, 0},
1875 {"endb", s_ignore, 0},
1876 {"ent", s_mips_ent, 0},
1877 {"file", s_mips_file, 0},
1878 {"fmask", s_mips_mask, 'F'},
1879 {"frame", s_mips_frame, 0},
1880 {"loc", s_mips_loc, 0},
1881 {"mask", s_mips_mask, 'R'},
1882 {"verstamp", s_ignore, 0},
1883 { NULL, NULL, 0 },
1884 };
1885
1886 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1887 purpose of the `.dc.a' internal pseudo-op. */
1888
1889 int
1890 mips_address_bytes (void)
1891 {
1892 file_mips_check_options ();
1893 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1894 }
1895
1896 extern void pop_insert (const pseudo_typeS *);
1897
1898 void
1899 mips_pop_insert (void)
1900 {
1901 pop_insert (mips_pseudo_table);
1902 if (! ECOFF_DEBUGGING)
1903 pop_insert (mips_nonecoff_pseudo_table);
1904 }
1905 \f
1906 /* Symbols labelling the current insn. */
1907
1908 struct insn_label_list
1909 {
1910 struct insn_label_list *next;
1911 symbolS *label;
1912 };
1913
1914 static struct insn_label_list *free_insn_labels;
1915 #define label_list tc_segment_info_data.labels
1916
1917 static void mips_clear_insn_labels (void);
1918 static void mips_mark_labels (void);
1919 static void mips_compressed_mark_labels (void);
1920
1921 static inline void
1922 mips_clear_insn_labels (void)
1923 {
1924 struct insn_label_list **pl;
1925 segment_info_type *si;
1926
1927 if (now_seg)
1928 {
1929 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1930 ;
1931
1932 si = seg_info (now_seg);
1933 *pl = si->label_list;
1934 si->label_list = NULL;
1935 }
1936 }
1937
1938 /* Mark instruction labels in MIPS16/microMIPS mode. */
1939
1940 static inline void
1941 mips_mark_labels (void)
1942 {
1943 if (HAVE_CODE_COMPRESSION)
1944 mips_compressed_mark_labels ();
1945 }
1946 \f
1947 static char *expr_end;
1948
1949 /* An expression in a macro instruction. This is set by mips_ip and
1950 mips16_ip and when populated is always an O_constant. */
1951
1952 static expressionS imm_expr;
1953
1954 /* The relocatable field in an instruction and the relocs associated
1955 with it. These variables are used for instructions like LUI and
1956 JAL as well as true offsets. They are also used for address
1957 operands in macros. */
1958
1959 static expressionS offset_expr;
1960 static bfd_reloc_code_real_type offset_reloc[3]
1961 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1962
1963 /* This is set to the resulting size of the instruction to be produced
1964 by mips16_ip if an explicit extension is used or by mips_ip if an
1965 explicit size is supplied. */
1966
1967 static unsigned int forced_insn_length;
1968
1969 /* True if we are assembling an instruction. All dot symbols defined during
1970 this time should be treated as code labels. */
1971
1972 static bfd_boolean mips_assembling_insn;
1973
1974 /* The pdr segment for per procedure frame/regmask info. Not used for
1975 ECOFF debugging. */
1976
1977 static segT pdr_seg;
1978
1979 /* The default target format to use. */
1980
1981 #if defined (TE_FreeBSD)
1982 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1983 #elif defined (TE_TMIPS)
1984 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1985 #else
1986 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1987 #endif
1988
1989 const char *
1990 mips_target_format (void)
1991 {
1992 switch (OUTPUT_FLAVOR)
1993 {
1994 case bfd_target_elf_flavour:
1995 #ifdef TE_VXWORKS
1996 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1997 return (target_big_endian
1998 ? "elf32-bigmips-vxworks"
1999 : "elf32-littlemips-vxworks");
2000 #endif
2001 return (target_big_endian
2002 ? (HAVE_64BIT_OBJECTS
2003 ? ELF_TARGET ("elf64-", "big")
2004 : (HAVE_NEWABI
2005 ? ELF_TARGET ("elf32-n", "big")
2006 : ELF_TARGET ("elf32-", "big")))
2007 : (HAVE_64BIT_OBJECTS
2008 ? ELF_TARGET ("elf64-", "little")
2009 : (HAVE_NEWABI
2010 ? ELF_TARGET ("elf32-n", "little")
2011 : ELF_TARGET ("elf32-", "little"))));
2012 default:
2013 abort ();
2014 return NULL;
2015 }
2016 }
2017
2018 /* Return the ISA revision that is currently in use, or 0 if we are
2019 generating code for MIPS V or below. */
2020
2021 static int
2022 mips_isa_rev (void)
2023 {
2024 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
2025 return 2;
2026
2027 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
2028 return 3;
2029
2030 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
2031 return 5;
2032
2033 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
2034 return 6;
2035
2036 /* microMIPS implies revision 2 or above. */
2037 if (mips_opts.micromips)
2038 return 2;
2039
2040 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
2041 return 1;
2042
2043 return 0;
2044 }
2045
2046 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
2047
2048 static unsigned int
2049 mips_ase_mask (unsigned int flags)
2050 {
2051 unsigned int i;
2052
2053 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2054 if (flags & mips_ase_groups[i])
2055 flags |= mips_ase_groups[i];
2056 return flags;
2057 }
2058
2059 /* Check whether the current ISA supports ASE. Issue a warning if
2060 appropriate. */
2061
2062 static void
2063 mips_check_isa_supports_ase (const struct mips_ase *ase)
2064 {
2065 const char *base;
2066 int min_rev, size;
2067 static unsigned int warned_isa;
2068 static unsigned int warned_fp32;
2069
2070 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2071 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2072 else
2073 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2074 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2075 && (warned_isa & ase->flags) != ase->flags)
2076 {
2077 warned_isa |= ase->flags;
2078 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2079 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2080 if (min_rev < 0)
2081 as_warn (_("the %d-bit %s architecture does not support the"
2082 " `%s' extension"), size, base, ase->name);
2083 else
2084 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2085 ase->name, base, size, min_rev);
2086 }
2087 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2088 && (warned_isa & ase->flags) != ase->flags)
2089 {
2090 warned_isa |= ase->flags;
2091 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2092 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2093 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2094 ase->name, base, size, ase->rem_rev);
2095 }
2096
2097 if ((ase->flags & FP64_ASES)
2098 && mips_opts.fp != 64
2099 && (warned_fp32 & ase->flags) != ase->flags)
2100 {
2101 warned_fp32 |= ase->flags;
2102 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2103 }
2104 }
2105
2106 /* Check all enabled ASEs to see whether they are supported by the
2107 chosen architecture. */
2108
2109 static void
2110 mips_check_isa_supports_ases (void)
2111 {
2112 unsigned int i, mask;
2113
2114 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2115 {
2116 mask = mips_ase_mask (mips_ases[i].flags);
2117 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2118 mips_check_isa_supports_ase (&mips_ases[i]);
2119 }
2120 }
2121
2122 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2123 that were affected. */
2124
2125 static unsigned int
2126 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2127 bfd_boolean enabled_p)
2128 {
2129 unsigned int mask;
2130
2131 mask = mips_ase_mask (ase->flags);
2132 opts->ase &= ~mask;
2133
2134 /* Clear combination ASE flags, which need to be recalculated based on
2135 updated regular ASE settings. */
2136 opts->ase &= ~(ASE_MIPS16E2_MT | ASE_XPA_VIRT);
2137
2138 if (enabled_p)
2139 opts->ase |= ase->flags;
2140
2141 /* The Virtualization ASE has eXtended Physical Addressing (XPA)
2142 instructions which are only valid when both ASEs are enabled.
2143 This sets the ASE_XPA_VIRT flag when both ASEs are present. */
2144 if ((opts->ase & (ASE_XPA | ASE_VIRT)) == (ASE_XPA | ASE_VIRT))
2145 {
2146 opts->ase |= ASE_XPA_VIRT;
2147 mask |= ASE_XPA_VIRT;
2148 }
2149 if ((opts->ase & (ASE_MIPS16E2 | ASE_MT)) == (ASE_MIPS16E2 | ASE_MT))
2150 {
2151 opts->ase |= ASE_MIPS16E2_MT;
2152 mask |= ASE_MIPS16E2_MT;
2153 }
2154
2155 return mask;
2156 }
2157
2158 /* Return the ASE called NAME, or null if none. */
2159
2160 static const struct mips_ase *
2161 mips_lookup_ase (const char *name)
2162 {
2163 unsigned int i;
2164
2165 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2166 if (strcmp (name, mips_ases[i].name) == 0)
2167 return &mips_ases[i];
2168 return NULL;
2169 }
2170
2171 /* Return the length of a microMIPS instruction in bytes. If bits of
2172 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2173 otherwise it is a 32-bit instruction. */
2174
2175 static inline unsigned int
2176 micromips_insn_length (const struct mips_opcode *mo)
2177 {
2178 return mips_opcode_32bit_p (mo) ? 4 : 2;
2179 }
2180
2181 /* Return the length of MIPS16 instruction OPCODE. */
2182
2183 static inline unsigned int
2184 mips16_opcode_length (unsigned long opcode)
2185 {
2186 return (opcode >> 16) == 0 ? 2 : 4;
2187 }
2188
2189 /* Return the length of instruction INSN. */
2190
2191 static inline unsigned int
2192 insn_length (const struct mips_cl_insn *insn)
2193 {
2194 if (mips_opts.micromips)
2195 return micromips_insn_length (insn->insn_mo);
2196 else if (mips_opts.mips16)
2197 return mips16_opcode_length (insn->insn_opcode);
2198 else
2199 return 4;
2200 }
2201
2202 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2203
2204 static void
2205 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2206 {
2207 size_t i;
2208
2209 insn->insn_mo = mo;
2210 insn->insn_opcode = mo->match;
2211 insn->frag = NULL;
2212 insn->where = 0;
2213 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2214 insn->fixp[i] = NULL;
2215 insn->fixed_p = (mips_opts.noreorder > 0);
2216 insn->noreorder_p = (mips_opts.noreorder > 0);
2217 insn->mips16_absolute_jump_p = 0;
2218 insn->complete_p = 0;
2219 insn->cleared_p = 0;
2220 }
2221
2222 /* Get a list of all the operands in INSN. */
2223
2224 static const struct mips_operand_array *
2225 insn_operands (const struct mips_cl_insn *insn)
2226 {
2227 if (insn->insn_mo >= &mips_opcodes[0]
2228 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2229 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2230
2231 if (insn->insn_mo >= &mips16_opcodes[0]
2232 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2233 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2234
2235 if (insn->insn_mo >= &micromips_opcodes[0]
2236 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2237 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2238
2239 abort ();
2240 }
2241
2242 /* Get a description of operand OPNO of INSN. */
2243
2244 static const struct mips_operand *
2245 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2246 {
2247 const struct mips_operand_array *operands;
2248
2249 operands = insn_operands (insn);
2250 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2251 abort ();
2252 return operands->operand[opno];
2253 }
2254
2255 /* Install UVAL as the value of OPERAND in INSN. */
2256
2257 static inline void
2258 insn_insert_operand (struct mips_cl_insn *insn,
2259 const struct mips_operand *operand, unsigned int uval)
2260 {
2261 if (mips_opts.mips16
2262 && operand->type == OP_INT && operand->lsb == 0
2263 && mips_opcode_32bit_p (insn->insn_mo))
2264 insn->insn_opcode |= mips16_immed_extend (uval, operand->size);
2265 else
2266 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2267 }
2268
2269 /* Extract the value of OPERAND from INSN. */
2270
2271 static inline unsigned
2272 insn_extract_operand (const struct mips_cl_insn *insn,
2273 const struct mips_operand *operand)
2274 {
2275 return mips_extract_operand (operand, insn->insn_opcode);
2276 }
2277
2278 /* Record the current MIPS16/microMIPS mode in now_seg. */
2279
2280 static void
2281 mips_record_compressed_mode (void)
2282 {
2283 segment_info_type *si;
2284
2285 si = seg_info (now_seg);
2286 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2287 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2288 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2289 si->tc_segment_info_data.micromips = mips_opts.micromips;
2290 }
2291
2292 /* Read a standard MIPS instruction from BUF. */
2293
2294 static unsigned long
2295 read_insn (char *buf)
2296 {
2297 if (target_big_endian)
2298 return bfd_getb32 ((bfd_byte *) buf);
2299 else
2300 return bfd_getl32 ((bfd_byte *) buf);
2301 }
2302
2303 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2304 the next byte. */
2305
2306 static char *
2307 write_insn (char *buf, unsigned int insn)
2308 {
2309 md_number_to_chars (buf, insn, 4);
2310 return buf + 4;
2311 }
2312
2313 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2314 has length LENGTH. */
2315
2316 static unsigned long
2317 read_compressed_insn (char *buf, unsigned int length)
2318 {
2319 unsigned long insn;
2320 unsigned int i;
2321
2322 insn = 0;
2323 for (i = 0; i < length; i += 2)
2324 {
2325 insn <<= 16;
2326 if (target_big_endian)
2327 insn |= bfd_getb16 ((char *) buf);
2328 else
2329 insn |= bfd_getl16 ((char *) buf);
2330 buf += 2;
2331 }
2332 return insn;
2333 }
2334
2335 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2336 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2337
2338 static char *
2339 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2340 {
2341 unsigned int i;
2342
2343 for (i = 0; i < length; i += 2)
2344 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2345 return buf + length;
2346 }
2347
2348 /* Install INSN at the location specified by its "frag" and "where" fields. */
2349
2350 static void
2351 install_insn (const struct mips_cl_insn *insn)
2352 {
2353 char *f = insn->frag->fr_literal + insn->where;
2354 if (HAVE_CODE_COMPRESSION)
2355 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2356 else
2357 write_insn (f, insn->insn_opcode);
2358 mips_record_compressed_mode ();
2359 }
2360
2361 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2362 and install the opcode in the new location. */
2363
2364 static void
2365 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2366 {
2367 size_t i;
2368
2369 insn->frag = frag;
2370 insn->where = where;
2371 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2372 if (insn->fixp[i] != NULL)
2373 {
2374 insn->fixp[i]->fx_frag = frag;
2375 insn->fixp[i]->fx_where = where;
2376 }
2377 install_insn (insn);
2378 }
2379
2380 /* Add INSN to the end of the output. */
2381
2382 static void
2383 add_fixed_insn (struct mips_cl_insn *insn)
2384 {
2385 char *f = frag_more (insn_length (insn));
2386 move_insn (insn, frag_now, f - frag_now->fr_literal);
2387 }
2388
2389 /* Start a variant frag and move INSN to the start of the variant part,
2390 marking it as fixed. The other arguments are as for frag_var. */
2391
2392 static void
2393 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2394 relax_substateT subtype, symbolS *symbol, offsetT offset)
2395 {
2396 frag_grow (max_chars);
2397 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2398 insn->fixed_p = 1;
2399 frag_var (rs_machine_dependent, max_chars, var,
2400 subtype, symbol, offset, NULL);
2401 }
2402
2403 /* Insert N copies of INSN into the history buffer, starting at
2404 position FIRST. Neither FIRST nor N need to be clipped. */
2405
2406 static void
2407 insert_into_history (unsigned int first, unsigned int n,
2408 const struct mips_cl_insn *insn)
2409 {
2410 if (mips_relax.sequence != 2)
2411 {
2412 unsigned int i;
2413
2414 for (i = ARRAY_SIZE (history); i-- > first;)
2415 if (i >= first + n)
2416 history[i] = history[i - n];
2417 else
2418 history[i] = *insn;
2419 }
2420 }
2421
2422 /* Clear the error in insn_error. */
2423
2424 static void
2425 clear_insn_error (void)
2426 {
2427 memset (&insn_error, 0, sizeof (insn_error));
2428 }
2429
2430 /* Possibly record error message MSG for the current instruction.
2431 If the error is about a particular argument, ARGNUM is the 1-based
2432 number of that argument, otherwise it is 0. FORMAT is the format
2433 of MSG. Return true if MSG was used, false if the current message
2434 was kept. */
2435
2436 static bfd_boolean
2437 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2438 const char *msg)
2439 {
2440 if (argnum == 0)
2441 {
2442 /* Give priority to errors against specific arguments, and to
2443 the first whole-instruction message. */
2444 if (insn_error.msg)
2445 return FALSE;
2446 }
2447 else
2448 {
2449 /* Keep insn_error if it is against a later argument. */
2450 if (argnum < insn_error.min_argnum)
2451 return FALSE;
2452
2453 /* If both errors are against the same argument but are different,
2454 give up on reporting a specific error for this argument.
2455 See the comment about mips_insn_error for details. */
2456 if (argnum == insn_error.min_argnum
2457 && insn_error.msg
2458 && strcmp (insn_error.msg, msg) != 0)
2459 {
2460 insn_error.msg = 0;
2461 insn_error.min_argnum += 1;
2462 return FALSE;
2463 }
2464 }
2465 insn_error.min_argnum = argnum;
2466 insn_error.format = format;
2467 insn_error.msg = msg;
2468 return TRUE;
2469 }
2470
2471 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2472 as for set_insn_error_format. */
2473
2474 static void
2475 set_insn_error (int argnum, const char *msg)
2476 {
2477 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2478 }
2479
2480 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2481 as for set_insn_error_format. */
2482
2483 static void
2484 set_insn_error_i (int argnum, const char *msg, int i)
2485 {
2486 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2487 insn_error.u.i = i;
2488 }
2489
2490 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2491 are as for set_insn_error_format. */
2492
2493 static void
2494 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2495 {
2496 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2497 {
2498 insn_error.u.ss[0] = s1;
2499 insn_error.u.ss[1] = s2;
2500 }
2501 }
2502
2503 /* Report the error in insn_error, which is against assembly code STR. */
2504
2505 static void
2506 report_insn_error (const char *str)
2507 {
2508 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2509
2510 switch (insn_error.format)
2511 {
2512 case ERR_FMT_PLAIN:
2513 as_bad (msg, str);
2514 break;
2515
2516 case ERR_FMT_I:
2517 as_bad (msg, insn_error.u.i, str);
2518 break;
2519
2520 case ERR_FMT_SS:
2521 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2522 break;
2523 }
2524
2525 free ((char *) msg);
2526 }
2527
2528 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2529 the idea is to make it obvious at a glance that each errata is
2530 included. */
2531
2532 static void
2533 init_vr4120_conflicts (void)
2534 {
2535 #define CONFLICT(FIRST, SECOND) \
2536 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2537
2538 /* Errata 21 - [D]DIV[U] after [D]MACC */
2539 CONFLICT (MACC, DIV);
2540 CONFLICT (DMACC, DIV);
2541
2542 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2543 CONFLICT (DMULT, DMULT);
2544 CONFLICT (DMULT, DMACC);
2545 CONFLICT (DMACC, DMULT);
2546 CONFLICT (DMACC, DMACC);
2547
2548 /* Errata 24 - MT{LO,HI} after [D]MACC */
2549 CONFLICT (MACC, MTHILO);
2550 CONFLICT (DMACC, MTHILO);
2551
2552 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2553 instruction is executed immediately after a MACC or DMACC
2554 instruction, the result of [either instruction] is incorrect." */
2555 CONFLICT (MACC, MULT);
2556 CONFLICT (MACC, DMULT);
2557 CONFLICT (DMACC, MULT);
2558 CONFLICT (DMACC, DMULT);
2559
2560 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2561 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2562 DDIV or DDIVU instruction, the result of the MACC or
2563 DMACC instruction is incorrect.". */
2564 CONFLICT (DMULT, MACC);
2565 CONFLICT (DMULT, DMACC);
2566 CONFLICT (DIV, MACC);
2567 CONFLICT (DIV, DMACC);
2568
2569 #undef CONFLICT
2570 }
2571
2572 struct regname {
2573 const char *name;
2574 unsigned int num;
2575 };
2576
2577 #define RNUM_MASK 0x00000ff
2578 #define RTYPE_MASK 0x0ffff00
2579 #define RTYPE_NUM 0x0000100
2580 #define RTYPE_FPU 0x0000200
2581 #define RTYPE_FCC 0x0000400
2582 #define RTYPE_VEC 0x0000800
2583 #define RTYPE_GP 0x0001000
2584 #define RTYPE_CP0 0x0002000
2585 #define RTYPE_PC 0x0004000
2586 #define RTYPE_ACC 0x0008000
2587 #define RTYPE_CCC 0x0010000
2588 #define RTYPE_VI 0x0020000
2589 #define RTYPE_VF 0x0040000
2590 #define RTYPE_R5900_I 0x0080000
2591 #define RTYPE_R5900_Q 0x0100000
2592 #define RTYPE_R5900_R 0x0200000
2593 #define RTYPE_R5900_ACC 0x0400000
2594 #define RTYPE_MSA 0x0800000
2595 #define RWARN 0x8000000
2596
2597 #define GENERIC_REGISTER_NUMBERS \
2598 {"$0", RTYPE_NUM | 0}, \
2599 {"$1", RTYPE_NUM | 1}, \
2600 {"$2", RTYPE_NUM | 2}, \
2601 {"$3", RTYPE_NUM | 3}, \
2602 {"$4", RTYPE_NUM | 4}, \
2603 {"$5", RTYPE_NUM | 5}, \
2604 {"$6", RTYPE_NUM | 6}, \
2605 {"$7", RTYPE_NUM | 7}, \
2606 {"$8", RTYPE_NUM | 8}, \
2607 {"$9", RTYPE_NUM | 9}, \
2608 {"$10", RTYPE_NUM | 10}, \
2609 {"$11", RTYPE_NUM | 11}, \
2610 {"$12", RTYPE_NUM | 12}, \
2611 {"$13", RTYPE_NUM | 13}, \
2612 {"$14", RTYPE_NUM | 14}, \
2613 {"$15", RTYPE_NUM | 15}, \
2614 {"$16", RTYPE_NUM | 16}, \
2615 {"$17", RTYPE_NUM | 17}, \
2616 {"$18", RTYPE_NUM | 18}, \
2617 {"$19", RTYPE_NUM | 19}, \
2618 {"$20", RTYPE_NUM | 20}, \
2619 {"$21", RTYPE_NUM | 21}, \
2620 {"$22", RTYPE_NUM | 22}, \
2621 {"$23", RTYPE_NUM | 23}, \
2622 {"$24", RTYPE_NUM | 24}, \
2623 {"$25", RTYPE_NUM | 25}, \
2624 {"$26", RTYPE_NUM | 26}, \
2625 {"$27", RTYPE_NUM | 27}, \
2626 {"$28", RTYPE_NUM | 28}, \
2627 {"$29", RTYPE_NUM | 29}, \
2628 {"$30", RTYPE_NUM | 30}, \
2629 {"$31", RTYPE_NUM | 31}
2630
2631 #define FPU_REGISTER_NAMES \
2632 {"$f0", RTYPE_FPU | 0}, \
2633 {"$f1", RTYPE_FPU | 1}, \
2634 {"$f2", RTYPE_FPU | 2}, \
2635 {"$f3", RTYPE_FPU | 3}, \
2636 {"$f4", RTYPE_FPU | 4}, \
2637 {"$f5", RTYPE_FPU | 5}, \
2638 {"$f6", RTYPE_FPU | 6}, \
2639 {"$f7", RTYPE_FPU | 7}, \
2640 {"$f8", RTYPE_FPU | 8}, \
2641 {"$f9", RTYPE_FPU | 9}, \
2642 {"$f10", RTYPE_FPU | 10}, \
2643 {"$f11", RTYPE_FPU | 11}, \
2644 {"$f12", RTYPE_FPU | 12}, \
2645 {"$f13", RTYPE_FPU | 13}, \
2646 {"$f14", RTYPE_FPU | 14}, \
2647 {"$f15", RTYPE_FPU | 15}, \
2648 {"$f16", RTYPE_FPU | 16}, \
2649 {"$f17", RTYPE_FPU | 17}, \
2650 {"$f18", RTYPE_FPU | 18}, \
2651 {"$f19", RTYPE_FPU | 19}, \
2652 {"$f20", RTYPE_FPU | 20}, \
2653 {"$f21", RTYPE_FPU | 21}, \
2654 {"$f22", RTYPE_FPU | 22}, \
2655 {"$f23", RTYPE_FPU | 23}, \
2656 {"$f24", RTYPE_FPU | 24}, \
2657 {"$f25", RTYPE_FPU | 25}, \
2658 {"$f26", RTYPE_FPU | 26}, \
2659 {"$f27", RTYPE_FPU | 27}, \
2660 {"$f28", RTYPE_FPU | 28}, \
2661 {"$f29", RTYPE_FPU | 29}, \
2662 {"$f30", RTYPE_FPU | 30}, \
2663 {"$f31", RTYPE_FPU | 31}
2664
2665 #define FPU_CONDITION_CODE_NAMES \
2666 {"$fcc0", RTYPE_FCC | 0}, \
2667 {"$fcc1", RTYPE_FCC | 1}, \
2668 {"$fcc2", RTYPE_FCC | 2}, \
2669 {"$fcc3", RTYPE_FCC | 3}, \
2670 {"$fcc4", RTYPE_FCC | 4}, \
2671 {"$fcc5", RTYPE_FCC | 5}, \
2672 {"$fcc6", RTYPE_FCC | 6}, \
2673 {"$fcc7", RTYPE_FCC | 7}
2674
2675 #define COPROC_CONDITION_CODE_NAMES \
2676 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2677 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2678 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2679 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2680 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2681 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2682 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2683 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2684
2685 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2686 {"$a4", RTYPE_GP | 8}, \
2687 {"$a5", RTYPE_GP | 9}, \
2688 {"$a6", RTYPE_GP | 10}, \
2689 {"$a7", RTYPE_GP | 11}, \
2690 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2691 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2692 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2693 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2694 {"$t0", RTYPE_GP | 12}, \
2695 {"$t1", RTYPE_GP | 13}, \
2696 {"$t2", RTYPE_GP | 14}, \
2697 {"$t3", RTYPE_GP | 15}
2698
2699 #define O32_SYMBOLIC_REGISTER_NAMES \
2700 {"$t0", RTYPE_GP | 8}, \
2701 {"$t1", RTYPE_GP | 9}, \
2702 {"$t2", RTYPE_GP | 10}, \
2703 {"$t3", RTYPE_GP | 11}, \
2704 {"$t4", RTYPE_GP | 12}, \
2705 {"$t5", RTYPE_GP | 13}, \
2706 {"$t6", RTYPE_GP | 14}, \
2707 {"$t7", RTYPE_GP | 15}, \
2708 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2709 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2710 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2711 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2712
2713 /* Remaining symbolic register names */
2714 #define SYMBOLIC_REGISTER_NAMES \
2715 {"$zero", RTYPE_GP | 0}, \
2716 {"$at", RTYPE_GP | 1}, \
2717 {"$AT", RTYPE_GP | 1}, \
2718 {"$v0", RTYPE_GP | 2}, \
2719 {"$v1", RTYPE_GP | 3}, \
2720 {"$a0", RTYPE_GP | 4}, \
2721 {"$a1", RTYPE_GP | 5}, \
2722 {"$a2", RTYPE_GP | 6}, \
2723 {"$a3", RTYPE_GP | 7}, \
2724 {"$s0", RTYPE_GP | 16}, \
2725 {"$s1", RTYPE_GP | 17}, \
2726 {"$s2", RTYPE_GP | 18}, \
2727 {"$s3", RTYPE_GP | 19}, \
2728 {"$s4", RTYPE_GP | 20}, \
2729 {"$s5", RTYPE_GP | 21}, \
2730 {"$s6", RTYPE_GP | 22}, \
2731 {"$s7", RTYPE_GP | 23}, \
2732 {"$t8", RTYPE_GP | 24}, \
2733 {"$t9", RTYPE_GP | 25}, \
2734 {"$k0", RTYPE_GP | 26}, \
2735 {"$kt0", RTYPE_GP | 26}, \
2736 {"$k1", RTYPE_GP | 27}, \
2737 {"$kt1", RTYPE_GP | 27}, \
2738 {"$gp", RTYPE_GP | 28}, \
2739 {"$sp", RTYPE_GP | 29}, \
2740 {"$s8", RTYPE_GP | 30}, \
2741 {"$fp", RTYPE_GP | 30}, \
2742 {"$ra", RTYPE_GP | 31}
2743
2744 #define MIPS16_SPECIAL_REGISTER_NAMES \
2745 {"$pc", RTYPE_PC | 0}
2746
2747 #define MDMX_VECTOR_REGISTER_NAMES \
2748 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2749 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2750 {"$v2", RTYPE_VEC | 2}, \
2751 {"$v3", RTYPE_VEC | 3}, \
2752 {"$v4", RTYPE_VEC | 4}, \
2753 {"$v5", RTYPE_VEC | 5}, \
2754 {"$v6", RTYPE_VEC | 6}, \
2755 {"$v7", RTYPE_VEC | 7}, \
2756 {"$v8", RTYPE_VEC | 8}, \
2757 {"$v9", RTYPE_VEC | 9}, \
2758 {"$v10", RTYPE_VEC | 10}, \
2759 {"$v11", RTYPE_VEC | 11}, \
2760 {"$v12", RTYPE_VEC | 12}, \
2761 {"$v13", RTYPE_VEC | 13}, \
2762 {"$v14", RTYPE_VEC | 14}, \
2763 {"$v15", RTYPE_VEC | 15}, \
2764 {"$v16", RTYPE_VEC | 16}, \
2765 {"$v17", RTYPE_VEC | 17}, \
2766 {"$v18", RTYPE_VEC | 18}, \
2767 {"$v19", RTYPE_VEC | 19}, \
2768 {"$v20", RTYPE_VEC | 20}, \
2769 {"$v21", RTYPE_VEC | 21}, \
2770 {"$v22", RTYPE_VEC | 22}, \
2771 {"$v23", RTYPE_VEC | 23}, \
2772 {"$v24", RTYPE_VEC | 24}, \
2773 {"$v25", RTYPE_VEC | 25}, \
2774 {"$v26", RTYPE_VEC | 26}, \
2775 {"$v27", RTYPE_VEC | 27}, \
2776 {"$v28", RTYPE_VEC | 28}, \
2777 {"$v29", RTYPE_VEC | 29}, \
2778 {"$v30", RTYPE_VEC | 30}, \
2779 {"$v31", RTYPE_VEC | 31}
2780
2781 #define R5900_I_NAMES \
2782 {"$I", RTYPE_R5900_I | 0}
2783
2784 #define R5900_Q_NAMES \
2785 {"$Q", RTYPE_R5900_Q | 0}
2786
2787 #define R5900_R_NAMES \
2788 {"$R", RTYPE_R5900_R | 0}
2789
2790 #define R5900_ACC_NAMES \
2791 {"$ACC", RTYPE_R5900_ACC | 0 }
2792
2793 #define MIPS_DSP_ACCUMULATOR_NAMES \
2794 {"$ac0", RTYPE_ACC | 0}, \
2795 {"$ac1", RTYPE_ACC | 1}, \
2796 {"$ac2", RTYPE_ACC | 2}, \
2797 {"$ac3", RTYPE_ACC | 3}
2798
2799 static const struct regname reg_names[] = {
2800 GENERIC_REGISTER_NUMBERS,
2801 FPU_REGISTER_NAMES,
2802 FPU_CONDITION_CODE_NAMES,
2803 COPROC_CONDITION_CODE_NAMES,
2804
2805 /* The $txx registers depends on the abi,
2806 these will be added later into the symbol table from
2807 one of the tables below once mips_abi is set after
2808 parsing of arguments from the command line. */
2809 SYMBOLIC_REGISTER_NAMES,
2810
2811 MIPS16_SPECIAL_REGISTER_NAMES,
2812 MDMX_VECTOR_REGISTER_NAMES,
2813 R5900_I_NAMES,
2814 R5900_Q_NAMES,
2815 R5900_R_NAMES,
2816 R5900_ACC_NAMES,
2817 MIPS_DSP_ACCUMULATOR_NAMES,
2818 {0, 0}
2819 };
2820
2821 static const struct regname reg_names_o32[] = {
2822 O32_SYMBOLIC_REGISTER_NAMES,
2823 {0, 0}
2824 };
2825
2826 static const struct regname reg_names_n32n64[] = {
2827 N32N64_SYMBOLIC_REGISTER_NAMES,
2828 {0, 0}
2829 };
2830
2831 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2832 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2833 of these register symbols, return the associated vector register,
2834 otherwise return SYMVAL itself. */
2835
2836 static unsigned int
2837 mips_prefer_vec_regno (unsigned int symval)
2838 {
2839 if ((symval & -2) == (RTYPE_GP | 2))
2840 return RTYPE_VEC | (symval & 1);
2841 return symval;
2842 }
2843
2844 /* Return true if string [S, E) is a valid register name, storing its
2845 symbol value in *SYMVAL_PTR if so. */
2846
2847 static bfd_boolean
2848 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2849 {
2850 char save_c;
2851 symbolS *symbol;
2852
2853 /* Terminate name. */
2854 save_c = *e;
2855 *e = '\0';
2856
2857 /* Look up the name. */
2858 symbol = symbol_find (s);
2859 *e = save_c;
2860
2861 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2862 return FALSE;
2863
2864 *symval_ptr = S_GET_VALUE (symbol);
2865 return TRUE;
2866 }
2867
2868 /* Return true if the string at *SPTR is a valid register name. Allow it
2869 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2870 is nonnull.
2871
2872 When returning true, move *SPTR past the register, store the
2873 register's symbol value in *SYMVAL_PTR and the channel mask in
2874 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2875 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2876 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2877
2878 static bfd_boolean
2879 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2880 unsigned int *channels_ptr)
2881 {
2882 char *s, *e, *m;
2883 const char *q;
2884 unsigned int channels, symval, bit;
2885
2886 /* Find end of name. */
2887 s = e = *sptr;
2888 if (is_name_beginner (*e))
2889 ++e;
2890 while (is_part_of_name (*e))
2891 ++e;
2892
2893 channels = 0;
2894 if (!mips_parse_register_1 (s, e, &symval))
2895 {
2896 if (!channels_ptr)
2897 return FALSE;
2898
2899 /* Eat characters from the end of the string that are valid
2900 channel suffixes. The preceding register must be $ACC or
2901 end with a digit, so there is no ambiguity. */
2902 bit = 1;
2903 m = e;
2904 for (q = "wzyx"; *q; q++, bit <<= 1)
2905 if (m > s && m[-1] == *q)
2906 {
2907 --m;
2908 channels |= bit;
2909 }
2910
2911 if (channels == 0
2912 || !mips_parse_register_1 (s, m, &symval)
2913 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2914 return FALSE;
2915 }
2916
2917 *sptr = e;
2918 *symval_ptr = symval;
2919 if (channels_ptr)
2920 *channels_ptr = channels;
2921 return TRUE;
2922 }
2923
2924 /* Check if SPTR points at a valid register specifier according to TYPES.
2925 If so, then return 1, advance S to consume the specifier and store
2926 the register's number in REGNOP, otherwise return 0. */
2927
2928 static int
2929 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2930 {
2931 unsigned int regno;
2932
2933 if (mips_parse_register (s, &regno, NULL))
2934 {
2935 if (types & RTYPE_VEC)
2936 regno = mips_prefer_vec_regno (regno);
2937 if (regno & types)
2938 regno &= RNUM_MASK;
2939 else
2940 regno = ~0;
2941 }
2942 else
2943 {
2944 if (types & RWARN)
2945 as_warn (_("unrecognized register name `%s'"), *s);
2946 regno = ~0;
2947 }
2948 if (regnop)
2949 *regnop = regno;
2950 return regno <= RNUM_MASK;
2951 }
2952
2953 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2954 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2955
2956 static char *
2957 mips_parse_vu0_channels (char *s, unsigned int *channels)
2958 {
2959 unsigned int i;
2960
2961 *channels = 0;
2962 for (i = 0; i < 4; i++)
2963 if (*s == "xyzw"[i])
2964 {
2965 *channels |= 1 << (3 - i);
2966 ++s;
2967 }
2968 return s;
2969 }
2970
2971 /* Token types for parsed operand lists. */
2972 enum mips_operand_token_type {
2973 /* A plain register, e.g. $f2. */
2974 OT_REG,
2975
2976 /* A 4-bit XYZW channel mask. */
2977 OT_CHANNELS,
2978
2979 /* A constant vector index, e.g. [1]. */
2980 OT_INTEGER_INDEX,
2981
2982 /* A register vector index, e.g. [$2]. */
2983 OT_REG_INDEX,
2984
2985 /* A continuous range of registers, e.g. $s0-$s4. */
2986 OT_REG_RANGE,
2987
2988 /* A (possibly relocated) expression. */
2989 OT_INTEGER,
2990
2991 /* A floating-point value. */
2992 OT_FLOAT,
2993
2994 /* A single character. This can be '(', ')' or ',', but '(' only appears
2995 before OT_REGs. */
2996 OT_CHAR,
2997
2998 /* A doubled character, either "--" or "++". */
2999 OT_DOUBLE_CHAR,
3000
3001 /* The end of the operand list. */
3002 OT_END
3003 };
3004
3005 /* A parsed operand token. */
3006 struct mips_operand_token
3007 {
3008 /* The type of token. */
3009 enum mips_operand_token_type type;
3010 union
3011 {
3012 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
3013 unsigned int regno;
3014
3015 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
3016 unsigned int channels;
3017
3018 /* The integer value of an OT_INTEGER_INDEX. */
3019 addressT index;
3020
3021 /* The two register symbol values involved in an OT_REG_RANGE. */
3022 struct {
3023 unsigned int regno1;
3024 unsigned int regno2;
3025 } reg_range;
3026
3027 /* The value of an OT_INTEGER. The value is represented as an
3028 expression and the relocation operators that were applied to
3029 that expression. The reloc entries are BFD_RELOC_UNUSED if no
3030 relocation operators were used. */
3031 struct {
3032 expressionS value;
3033 bfd_reloc_code_real_type relocs[3];
3034 } integer;
3035
3036 /* The binary data for an OT_FLOAT constant, and the number of bytes
3037 in the constant. */
3038 struct {
3039 unsigned char data[8];
3040 int length;
3041 } flt;
3042
3043 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
3044 char ch;
3045 } u;
3046 };
3047
3048 /* An obstack used to construct lists of mips_operand_tokens. */
3049 static struct obstack mips_operand_tokens;
3050
3051 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
3052
3053 static void
3054 mips_add_token (struct mips_operand_token *token,
3055 enum mips_operand_token_type type)
3056 {
3057 token->type = type;
3058 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
3059 }
3060
3061 /* Check whether S is '(' followed by a register name. Add OT_CHAR
3062 and OT_REG tokens for them if so, and return a pointer to the first
3063 unconsumed character. Return null otherwise. */
3064
3065 static char *
3066 mips_parse_base_start (char *s)
3067 {
3068 struct mips_operand_token token;
3069 unsigned int regno, channels;
3070 bfd_boolean decrement_p;
3071
3072 if (*s != '(')
3073 return 0;
3074
3075 ++s;
3076 SKIP_SPACE_TABS (s);
3077
3078 /* Only match "--" as part of a base expression. In other contexts "--X"
3079 is a double negative. */
3080 decrement_p = (s[0] == '-' && s[1] == '-');
3081 if (decrement_p)
3082 {
3083 s += 2;
3084 SKIP_SPACE_TABS (s);
3085 }
3086
3087 /* Allow a channel specifier because that leads to better error messages
3088 than treating something like "$vf0x++" as an expression. */
3089 if (!mips_parse_register (&s, &regno, &channels))
3090 return 0;
3091
3092 token.u.ch = '(';
3093 mips_add_token (&token, OT_CHAR);
3094
3095 if (decrement_p)
3096 {
3097 token.u.ch = '-';
3098 mips_add_token (&token, OT_DOUBLE_CHAR);
3099 }
3100
3101 token.u.regno = regno;
3102 mips_add_token (&token, OT_REG);
3103
3104 if (channels)
3105 {
3106 token.u.channels = channels;
3107 mips_add_token (&token, OT_CHANNELS);
3108 }
3109
3110 /* For consistency, only match "++" as part of base expressions too. */
3111 SKIP_SPACE_TABS (s);
3112 if (s[0] == '+' && s[1] == '+')
3113 {
3114 s += 2;
3115 token.u.ch = '+';
3116 mips_add_token (&token, OT_DOUBLE_CHAR);
3117 }
3118
3119 return s;
3120 }
3121
3122 /* Parse one or more tokens from S. Return a pointer to the first
3123 unconsumed character on success. Return null if an error was found
3124 and store the error text in insn_error. FLOAT_FORMAT is as for
3125 mips_parse_arguments. */
3126
3127 static char *
3128 mips_parse_argument_token (char *s, char float_format)
3129 {
3130 char *end, *save_in;
3131 const char *err;
3132 unsigned int regno1, regno2, channels;
3133 struct mips_operand_token token;
3134
3135 /* First look for "($reg", since we want to treat that as an
3136 OT_CHAR and OT_REG rather than an expression. */
3137 end = mips_parse_base_start (s);
3138 if (end)
3139 return end;
3140
3141 /* Handle other characters that end up as OT_CHARs. */
3142 if (*s == ')' || *s == ',')
3143 {
3144 token.u.ch = *s;
3145 mips_add_token (&token, OT_CHAR);
3146 ++s;
3147 return s;
3148 }
3149
3150 /* Handle tokens that start with a register. */
3151 if (mips_parse_register (&s, &regno1, &channels))
3152 {
3153 if (channels)
3154 {
3155 /* A register and a VU0 channel suffix. */
3156 token.u.regno = regno1;
3157 mips_add_token (&token, OT_REG);
3158
3159 token.u.channels = channels;
3160 mips_add_token (&token, OT_CHANNELS);
3161 return s;
3162 }
3163
3164 SKIP_SPACE_TABS (s);
3165 if (*s == '-')
3166 {
3167 /* A register range. */
3168 ++s;
3169 SKIP_SPACE_TABS (s);
3170 if (!mips_parse_register (&s, &regno2, NULL))
3171 {
3172 set_insn_error (0, _("invalid register range"));
3173 return 0;
3174 }
3175
3176 token.u.reg_range.regno1 = regno1;
3177 token.u.reg_range.regno2 = regno2;
3178 mips_add_token (&token, OT_REG_RANGE);
3179 return s;
3180 }
3181
3182 /* Add the register itself. */
3183 token.u.regno = regno1;
3184 mips_add_token (&token, OT_REG);
3185
3186 /* Check for a vector index. */
3187 if (*s == '[')
3188 {
3189 ++s;
3190 SKIP_SPACE_TABS (s);
3191 if (mips_parse_register (&s, &token.u.regno, NULL))
3192 mips_add_token (&token, OT_REG_INDEX);
3193 else
3194 {
3195 expressionS element;
3196
3197 my_getExpression (&element, s);
3198 if (element.X_op != O_constant)
3199 {
3200 set_insn_error (0, _("vector element must be constant"));
3201 return 0;
3202 }
3203 s = expr_end;
3204 token.u.index = element.X_add_number;
3205 mips_add_token (&token, OT_INTEGER_INDEX);
3206 }
3207 SKIP_SPACE_TABS (s);
3208 if (*s != ']')
3209 {
3210 set_insn_error (0, _("missing `]'"));
3211 return 0;
3212 }
3213 ++s;
3214 }
3215 return s;
3216 }
3217
3218 if (float_format)
3219 {
3220 /* First try to treat expressions as floats. */
3221 save_in = input_line_pointer;
3222 input_line_pointer = s;
3223 err = md_atof (float_format, (char *) token.u.flt.data,
3224 &token.u.flt.length);
3225 end = input_line_pointer;
3226 input_line_pointer = save_in;
3227 if (err && *err)
3228 {
3229 set_insn_error (0, err);
3230 return 0;
3231 }
3232 if (s != end)
3233 {
3234 mips_add_token (&token, OT_FLOAT);
3235 return end;
3236 }
3237 }
3238
3239 /* Treat everything else as an integer expression. */
3240 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3241 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3242 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3243 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3244 s = expr_end;
3245 mips_add_token (&token, OT_INTEGER);
3246 return s;
3247 }
3248
3249 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3250 if expressions should be treated as 32-bit floating-point constants,
3251 'd' if they should be treated as 64-bit floating-point constants,
3252 or 0 if they should be treated as integer expressions (the usual case).
3253
3254 Return a list of tokens on success, otherwise return 0. The caller
3255 must obstack_free the list after use. */
3256
3257 static struct mips_operand_token *
3258 mips_parse_arguments (char *s, char float_format)
3259 {
3260 struct mips_operand_token token;
3261
3262 SKIP_SPACE_TABS (s);
3263 while (*s)
3264 {
3265 s = mips_parse_argument_token (s, float_format);
3266 if (!s)
3267 {
3268 obstack_free (&mips_operand_tokens,
3269 obstack_finish (&mips_operand_tokens));
3270 return 0;
3271 }
3272 SKIP_SPACE_TABS (s);
3273 }
3274 mips_add_token (&token, OT_END);
3275 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3276 }
3277
3278 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3279 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3280
3281 static bfd_boolean
3282 is_opcode_valid (const struct mips_opcode *mo)
3283 {
3284 int isa = mips_opts.isa;
3285 int ase = mips_opts.ase;
3286 int fp_s, fp_d;
3287 unsigned int i;
3288
3289 if (ISA_HAS_64BIT_REGS (isa))
3290 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3291 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3292 ase |= mips_ases[i].flags64;
3293
3294 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3295 return FALSE;
3296
3297 /* Check whether the instruction or macro requires single-precision or
3298 double-precision floating-point support. Note that this information is
3299 stored differently in the opcode table for insns and macros. */
3300 if (mo->pinfo == INSN_MACRO)
3301 {
3302 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3303 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3304 }
3305 else
3306 {
3307 fp_s = mo->pinfo & FP_S;
3308 fp_d = mo->pinfo & FP_D;
3309 }
3310
3311 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3312 return FALSE;
3313
3314 if (fp_s && mips_opts.soft_float)
3315 return FALSE;
3316
3317 return TRUE;
3318 }
3319
3320 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3321 selected ISA and architecture. */
3322
3323 static bfd_boolean
3324 is_opcode_valid_16 (const struct mips_opcode *mo)
3325 {
3326 int isa = mips_opts.isa;
3327 int ase = mips_opts.ase;
3328 unsigned int i;
3329
3330 if (ISA_HAS_64BIT_REGS (isa))
3331 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3332 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3333 ase |= mips_ases[i].flags64;
3334
3335 return opcode_is_member (mo, isa, ase, mips_opts.arch);
3336 }
3337
3338 /* Return TRUE if the size of the microMIPS opcode MO matches one
3339 explicitly requested. Always TRUE in the standard MIPS mode.
3340 Use is_size_valid_16 for MIPS16 opcodes. */
3341
3342 static bfd_boolean
3343 is_size_valid (const struct mips_opcode *mo)
3344 {
3345 if (!mips_opts.micromips)
3346 return TRUE;
3347
3348 if (mips_opts.insn32)
3349 {
3350 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3351 return FALSE;
3352 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3353 return FALSE;
3354 }
3355 if (!forced_insn_length)
3356 return TRUE;
3357 if (mo->pinfo == INSN_MACRO)
3358 return FALSE;
3359 return forced_insn_length == micromips_insn_length (mo);
3360 }
3361
3362 /* Return TRUE if the size of the MIPS16 opcode MO matches one
3363 explicitly requested. */
3364
3365 static bfd_boolean
3366 is_size_valid_16 (const struct mips_opcode *mo)
3367 {
3368 if (!forced_insn_length)
3369 return TRUE;
3370 if (mo->pinfo == INSN_MACRO)
3371 return FALSE;
3372 if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
3373 return FALSE;
3374 if (forced_insn_length == 4 && (mo->pinfo2 & INSN2_SHORT_ONLY))
3375 return FALSE;
3376 return TRUE;
3377 }
3378
3379 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3380 of the preceding instruction. Always TRUE in the standard MIPS mode.
3381
3382 We don't accept macros in 16-bit delay slots to avoid a case where
3383 a macro expansion fails because it relies on a preceding 32-bit real
3384 instruction to have matched and does not handle the operands correctly.
3385 The only macros that may expand to 16-bit instructions are JAL that
3386 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3387 and BGT (that likewise cannot be placed in a delay slot) that decay to
3388 a NOP. In all these cases the macros precede any corresponding real
3389 instruction definitions in the opcode table, so they will match in the
3390 second pass where the size of the delay slot is ignored and therefore
3391 produce correct code. */
3392
3393 static bfd_boolean
3394 is_delay_slot_valid (const struct mips_opcode *mo)
3395 {
3396 if (!mips_opts.micromips)
3397 return TRUE;
3398
3399 if (mo->pinfo == INSN_MACRO)
3400 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3401 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3402 && micromips_insn_length (mo) != 4)
3403 return FALSE;
3404 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3405 && micromips_insn_length (mo) != 2)
3406 return FALSE;
3407
3408 return TRUE;
3409 }
3410
3411 /* For consistency checking, verify that all bits of OPCODE are specified
3412 either by the match/mask part of the instruction definition, or by the
3413 operand list. Also build up a list of operands in OPERANDS.
3414
3415 INSN_BITS says which bits of the instruction are significant.
3416 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3417 provides the mips_operand description of each operand. DECODE_OPERAND
3418 is null for MIPS16 instructions. */
3419
3420 static int
3421 validate_mips_insn (const struct mips_opcode *opcode,
3422 unsigned long insn_bits,
3423 const struct mips_operand *(*decode_operand) (const char *),
3424 struct mips_operand_array *operands)
3425 {
3426 const char *s;
3427 unsigned long used_bits, doubled, undefined, opno, mask;
3428 const struct mips_operand *operand;
3429
3430 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3431 if ((mask & opcode->match) != opcode->match)
3432 {
3433 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3434 opcode->name, opcode->args);
3435 return 0;
3436 }
3437 used_bits = 0;
3438 opno = 0;
3439 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3440 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3441 for (s = opcode->args; *s; ++s)
3442 switch (*s)
3443 {
3444 case ',':
3445 case '(':
3446 case ')':
3447 break;
3448
3449 case '#':
3450 s++;
3451 break;
3452
3453 default:
3454 if (!decode_operand)
3455 operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
3456 else
3457 operand = decode_operand (s);
3458 if (!operand && opcode->pinfo != INSN_MACRO)
3459 {
3460 as_bad (_("internal: unknown operand type: %s %s"),
3461 opcode->name, opcode->args);
3462 return 0;
3463 }
3464 gas_assert (opno < MAX_OPERANDS);
3465 operands->operand[opno] = operand;
3466 if (!decode_operand && operand
3467 && operand->type == OP_INT && operand->lsb == 0
3468 && mips_opcode_32bit_p (opcode))
3469 used_bits |= mips16_immed_extend (-1, operand->size);
3470 else if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3471 {
3472 used_bits = mips_insert_operand (operand, used_bits, -1);
3473 if (operand->type == OP_MDMX_IMM_REG)
3474 /* Bit 5 is the format selector (OB vs QH). The opcode table
3475 has separate entries for each format. */
3476 used_bits &= ~(1 << (operand->lsb + 5));
3477 if (operand->type == OP_ENTRY_EXIT_LIST)
3478 used_bits &= ~(mask & 0x700);
3479 /* interAptiv MR2 SAVE/RESTORE instructions have a discontiguous
3480 operand field that cannot be fully described with LSB/SIZE. */
3481 if (operand->type == OP_SAVE_RESTORE_LIST && operand->lsb == 6)
3482 used_bits &= ~0x6000;
3483 }
3484 /* Skip prefix characters. */
3485 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3486 ++s;
3487 opno += 1;
3488 break;
3489 }
3490 doubled = used_bits & mask & insn_bits;
3491 if (doubled)
3492 {
3493 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3494 " %s %s"), doubled, opcode->name, opcode->args);
3495 return 0;
3496 }
3497 used_bits |= mask;
3498 undefined = ~used_bits & insn_bits;
3499 if (opcode->pinfo != INSN_MACRO && undefined)
3500 {
3501 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3502 undefined, opcode->name, opcode->args);
3503 return 0;
3504 }
3505 used_bits &= ~insn_bits;
3506 if (used_bits)
3507 {
3508 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3509 used_bits, opcode->name, opcode->args);
3510 return 0;
3511 }
3512 return 1;
3513 }
3514
3515 /* The MIPS16 version of validate_mips_insn. */
3516
3517 static int
3518 validate_mips16_insn (const struct mips_opcode *opcode,
3519 struct mips_operand_array *operands)
3520 {
3521 unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
3522
3523 return validate_mips_insn (opcode, insn_bits, 0, operands);
3524 }
3525
3526 /* The microMIPS version of validate_mips_insn. */
3527
3528 static int
3529 validate_micromips_insn (const struct mips_opcode *opc,
3530 struct mips_operand_array *operands)
3531 {
3532 unsigned long insn_bits;
3533 unsigned long major;
3534 unsigned int length;
3535
3536 if (opc->pinfo == INSN_MACRO)
3537 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3538 operands);
3539
3540 length = micromips_insn_length (opc);
3541 if (length != 2 && length != 4)
3542 {
3543 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3544 "%s %s"), length, opc->name, opc->args);
3545 return 0;
3546 }
3547 major = opc->match >> (10 + 8 * (length - 2));
3548 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3549 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3550 {
3551 as_bad (_("internal error: bad microMIPS opcode "
3552 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3553 return 0;
3554 }
3555
3556 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3557 insn_bits = 1 << 4 * length;
3558 insn_bits <<= 4 * length;
3559 insn_bits -= 1;
3560 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3561 operands);
3562 }
3563
3564 /* This function is called once, at assembler startup time. It should set up
3565 all the tables, etc. that the MD part of the assembler will need. */
3566
3567 void
3568 md_begin (void)
3569 {
3570 const char *retval = NULL;
3571 int i = 0;
3572 int broken = 0;
3573
3574 if (mips_pic != NO_PIC)
3575 {
3576 if (g_switch_seen && g_switch_value != 0)
3577 as_bad (_("-G may not be used in position-independent code"));
3578 g_switch_value = 0;
3579 }
3580 else if (mips_abicalls)
3581 {
3582 if (g_switch_seen && g_switch_value != 0)
3583 as_bad (_("-G may not be used with abicalls"));
3584 g_switch_value = 0;
3585 }
3586
3587 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3588 as_warn (_("could not set architecture and machine"));
3589
3590 op_hash = hash_new ();
3591
3592 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3593 for (i = 0; i < NUMOPCODES;)
3594 {
3595 const char *name = mips_opcodes[i].name;
3596
3597 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3598 if (retval != NULL)
3599 {
3600 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3601 mips_opcodes[i].name, retval);
3602 /* Probably a memory allocation problem? Give up now. */
3603 as_fatal (_("broken assembler, no assembly attempted"));
3604 }
3605 do
3606 {
3607 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3608 decode_mips_operand, &mips_operands[i]))
3609 broken = 1;
3610 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3611 {
3612 create_insn (&nop_insn, mips_opcodes + i);
3613 if (mips_fix_loongson2f_nop)
3614 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3615 nop_insn.fixed_p = 1;
3616 }
3617 ++i;
3618 }
3619 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3620 }
3621
3622 mips16_op_hash = hash_new ();
3623 mips16_operands = XCNEWVEC (struct mips_operand_array,
3624 bfd_mips16_num_opcodes);
3625
3626 i = 0;
3627 while (i < bfd_mips16_num_opcodes)
3628 {
3629 const char *name = mips16_opcodes[i].name;
3630
3631 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3632 if (retval != NULL)
3633 as_fatal (_("internal: can't hash `%s': %s"),
3634 mips16_opcodes[i].name, retval);
3635 do
3636 {
3637 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3638 broken = 1;
3639 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3640 {
3641 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3642 mips16_nop_insn.fixed_p = 1;
3643 }
3644 ++i;
3645 }
3646 while (i < bfd_mips16_num_opcodes
3647 && strcmp (mips16_opcodes[i].name, name) == 0);
3648 }
3649
3650 micromips_op_hash = hash_new ();
3651 micromips_operands = XCNEWVEC (struct mips_operand_array,
3652 bfd_micromips_num_opcodes);
3653
3654 i = 0;
3655 while (i < bfd_micromips_num_opcodes)
3656 {
3657 const char *name = micromips_opcodes[i].name;
3658
3659 retval = hash_insert (micromips_op_hash, name,
3660 (void *) &micromips_opcodes[i]);
3661 if (retval != NULL)
3662 as_fatal (_("internal: can't hash `%s': %s"),
3663 micromips_opcodes[i].name, retval);
3664 do
3665 {
3666 struct mips_cl_insn *micromips_nop_insn;
3667
3668 if (!validate_micromips_insn (&micromips_opcodes[i],
3669 &micromips_operands[i]))
3670 broken = 1;
3671
3672 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3673 {
3674 if (micromips_insn_length (micromips_opcodes + i) == 2)
3675 micromips_nop_insn = &micromips_nop16_insn;
3676 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3677 micromips_nop_insn = &micromips_nop32_insn;
3678 else
3679 continue;
3680
3681 if (micromips_nop_insn->insn_mo == NULL
3682 && strcmp (name, "nop") == 0)
3683 {
3684 create_insn (micromips_nop_insn, micromips_opcodes + i);
3685 micromips_nop_insn->fixed_p = 1;
3686 }
3687 }
3688 }
3689 while (++i < bfd_micromips_num_opcodes
3690 && strcmp (micromips_opcodes[i].name, name) == 0);
3691 }
3692
3693 if (broken)
3694 as_fatal (_("broken assembler, no assembly attempted"));
3695
3696 /* We add all the general register names to the symbol table. This
3697 helps us detect invalid uses of them. */
3698 for (i = 0; reg_names[i].name; i++)
3699 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3700 reg_names[i].num, /* & RNUM_MASK, */
3701 &zero_address_frag));
3702 if (HAVE_NEWABI)
3703 for (i = 0; reg_names_n32n64[i].name; i++)
3704 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3705 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3706 &zero_address_frag));
3707 else
3708 for (i = 0; reg_names_o32[i].name; i++)
3709 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3710 reg_names_o32[i].num, /* & RNUM_MASK, */
3711 &zero_address_frag));
3712
3713 for (i = 0; i < 32; i++)
3714 {
3715 char regname[6];
3716
3717 /* R5900 VU0 floating-point register. */
3718 sprintf (regname, "$vf%d", i);
3719 symbol_table_insert (symbol_new (regname, reg_section,
3720 RTYPE_VF | i, &zero_address_frag));
3721
3722 /* R5900 VU0 integer register. */
3723 sprintf (regname, "$vi%d", i);
3724 symbol_table_insert (symbol_new (regname, reg_section,
3725 RTYPE_VI | i, &zero_address_frag));
3726
3727 /* MSA register. */
3728 sprintf (regname, "$w%d", i);
3729 symbol_table_insert (symbol_new (regname, reg_section,
3730 RTYPE_MSA | i, &zero_address_frag));
3731 }
3732
3733 obstack_init (&mips_operand_tokens);
3734
3735 mips_no_prev_insn ();
3736
3737 mips_gprmask = 0;
3738 mips_cprmask[0] = 0;
3739 mips_cprmask[1] = 0;
3740 mips_cprmask[2] = 0;
3741 mips_cprmask[3] = 0;
3742
3743 /* set the default alignment for the text section (2**2) */
3744 record_alignment (text_section, 2);
3745
3746 bfd_set_gp_size (stdoutput, g_switch_value);
3747
3748 /* On a native system other than VxWorks, sections must be aligned
3749 to 16 byte boundaries. When configured for an embedded ELF
3750 target, we don't bother. */
3751 if (strncmp (TARGET_OS, "elf", 3) != 0
3752 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3753 {
3754 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3755 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3756 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3757 }
3758
3759 /* Create a .reginfo section for register masks and a .mdebug
3760 section for debugging information. */
3761 {
3762 segT seg;
3763 subsegT subseg;
3764 flagword flags;
3765 segT sec;
3766
3767 seg = now_seg;
3768 subseg = now_subseg;
3769
3770 /* The ABI says this section should be loaded so that the
3771 running program can access it. However, we don't load it
3772 if we are configured for an embedded target */
3773 flags = SEC_READONLY | SEC_DATA;
3774 if (strncmp (TARGET_OS, "elf", 3) != 0)
3775 flags |= SEC_ALLOC | SEC_LOAD;
3776
3777 if (mips_abi != N64_ABI)
3778 {
3779 sec = subseg_new (".reginfo", (subsegT) 0);
3780
3781 bfd_set_section_flags (stdoutput, sec, flags);
3782 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3783
3784 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3785 }
3786 else
3787 {
3788 /* The 64-bit ABI uses a .MIPS.options section rather than
3789 .reginfo section. */
3790 sec = subseg_new (".MIPS.options", (subsegT) 0);
3791 bfd_set_section_flags (stdoutput, sec, flags);
3792 bfd_set_section_alignment (stdoutput, sec, 3);
3793
3794 /* Set up the option header. */
3795 {
3796 Elf_Internal_Options opthdr;
3797 char *f;
3798
3799 opthdr.kind = ODK_REGINFO;
3800 opthdr.size = (sizeof (Elf_External_Options)
3801 + sizeof (Elf64_External_RegInfo));
3802 opthdr.section = 0;
3803 opthdr.info = 0;
3804 f = frag_more (sizeof (Elf_External_Options));
3805 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3806 (Elf_External_Options *) f);
3807
3808 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3809 }
3810 }
3811
3812 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3813 bfd_set_section_flags (stdoutput, sec,
3814 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3815 bfd_set_section_alignment (stdoutput, sec, 3);
3816 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3817
3818 if (ECOFF_DEBUGGING)
3819 {
3820 sec = subseg_new (".mdebug", (subsegT) 0);
3821 (void) bfd_set_section_flags (stdoutput, sec,
3822 SEC_HAS_CONTENTS | SEC_READONLY);
3823 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3824 }
3825 else if (mips_flag_pdr)
3826 {
3827 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3828 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3829 SEC_READONLY | SEC_RELOC
3830 | SEC_DEBUGGING);
3831 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3832 }
3833
3834 subseg_set (seg, subseg);
3835 }
3836
3837 if (mips_fix_vr4120)
3838 init_vr4120_conflicts ();
3839 }
3840
3841 static inline void
3842 fpabi_incompatible_with (int fpabi, const char *what)
3843 {
3844 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3845 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3846 }
3847
3848 static inline void
3849 fpabi_requires (int fpabi, const char *what)
3850 {
3851 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3852 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3853 }
3854
3855 /* Check -mabi and register sizes against the specified FP ABI. */
3856 static void
3857 check_fpabi (int fpabi)
3858 {
3859 switch (fpabi)
3860 {
3861 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3862 if (file_mips_opts.soft_float)
3863 fpabi_incompatible_with (fpabi, "softfloat");
3864 else if (file_mips_opts.single_float)
3865 fpabi_incompatible_with (fpabi, "singlefloat");
3866 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3867 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3868 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3869 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3870 break;
3871
3872 case Val_GNU_MIPS_ABI_FP_XX:
3873 if (mips_abi != O32_ABI)
3874 fpabi_requires (fpabi, "-mabi=32");
3875 else if (file_mips_opts.soft_float)
3876 fpabi_incompatible_with (fpabi, "softfloat");
3877 else if (file_mips_opts.single_float)
3878 fpabi_incompatible_with (fpabi, "singlefloat");
3879 else if (file_mips_opts.fp != 0)
3880 fpabi_requires (fpabi, "fp=xx");
3881 break;
3882
3883 case Val_GNU_MIPS_ABI_FP_64A:
3884 case Val_GNU_MIPS_ABI_FP_64:
3885 if (mips_abi != O32_ABI)
3886 fpabi_requires (fpabi, "-mabi=32");
3887 else if (file_mips_opts.soft_float)
3888 fpabi_incompatible_with (fpabi, "softfloat");
3889 else if (file_mips_opts.single_float)
3890 fpabi_incompatible_with (fpabi, "singlefloat");
3891 else if (file_mips_opts.fp != 64)
3892 fpabi_requires (fpabi, "fp=64");
3893 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3894 fpabi_incompatible_with (fpabi, "nooddspreg");
3895 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3896 fpabi_requires (fpabi, "nooddspreg");
3897 break;
3898
3899 case Val_GNU_MIPS_ABI_FP_SINGLE:
3900 if (file_mips_opts.soft_float)
3901 fpabi_incompatible_with (fpabi, "softfloat");
3902 else if (!file_mips_opts.single_float)
3903 fpabi_requires (fpabi, "singlefloat");
3904 break;
3905
3906 case Val_GNU_MIPS_ABI_FP_SOFT:
3907 if (!file_mips_opts.soft_float)
3908 fpabi_requires (fpabi, "softfloat");
3909 break;
3910
3911 case Val_GNU_MIPS_ABI_FP_OLD_64:
3912 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3913 Tag_GNU_MIPS_ABI_FP, fpabi);
3914 break;
3915
3916 case Val_GNU_MIPS_ABI_FP_NAN2008:
3917 /* Silently ignore compatibility value. */
3918 break;
3919
3920 default:
3921 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3922 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3923 break;
3924 }
3925 }
3926
3927 /* Perform consistency checks on the current options. */
3928
3929 static void
3930 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3931 {
3932 /* Check the size of integer registers agrees with the ABI and ISA. */
3933 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3934 as_bad (_("`gp=64' used with a 32-bit processor"));
3935 else if (abi_checks
3936 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3937 as_bad (_("`gp=32' used with a 64-bit ABI"));
3938 else if (abi_checks
3939 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3940 as_bad (_("`gp=64' used with a 32-bit ABI"));
3941
3942 /* Check the size of the float registers agrees with the ABI and ISA. */
3943 switch (opts->fp)
3944 {
3945 case 0:
3946 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3947 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3948 else if (opts->single_float == 1)
3949 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3950 break;
3951 case 64:
3952 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3953 as_bad (_("`fp=64' used with a 32-bit fpu"));
3954 else if (abi_checks
3955 && ABI_NEEDS_32BIT_REGS (mips_abi)
3956 && !ISA_HAS_MXHC1 (opts->isa))
3957 as_warn (_("`fp=64' used with a 32-bit ABI"));
3958 break;
3959 case 32:
3960 if (abi_checks
3961 && ABI_NEEDS_64BIT_REGS (mips_abi))
3962 as_warn (_("`fp=32' used with a 64-bit ABI"));
3963 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
3964 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3965 break;
3966 default:
3967 as_bad (_("Unknown size of floating point registers"));
3968 break;
3969 }
3970
3971 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3972 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3973
3974 if (opts->micromips == 1 && opts->mips16 == 1)
3975 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
3976 else if (ISA_IS_R6 (opts->isa)
3977 && (opts->micromips == 1
3978 || opts->mips16 == 1))
3979 as_fatal (_("`%s' cannot be used with `%s'"),
3980 opts->micromips ? "micromips" : "mips16",
3981 mips_cpu_info_from_isa (opts->isa)->name);
3982
3983 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3984 as_fatal (_("branch relaxation is not supported in `%s'"),
3985 mips_cpu_info_from_isa (opts->isa)->name);
3986 }
3987
3988 /* Perform consistency checks on the module level options exactly once.
3989 This is a deferred check that happens:
3990 at the first .set directive
3991 or, at the first pseudo op that generates code (inc .dc.a)
3992 or, at the first instruction
3993 or, at the end. */
3994
3995 static void
3996 file_mips_check_options (void)
3997 {
3998 const struct mips_cpu_info *arch_info = 0;
3999
4000 if (file_mips_opts_checked)
4001 return;
4002
4003 /* The following code determines the register size.
4004 Similar code was added to GCC 3.3 (see override_options() in
4005 config/mips/mips.c). The GAS and GCC code should be kept in sync
4006 as much as possible. */
4007
4008 if (file_mips_opts.gp < 0)
4009 {
4010 /* Infer the integer register size from the ABI and processor.
4011 Restrict ourselves to 32-bit registers if that's all the
4012 processor has, or if the ABI cannot handle 64-bit registers. */
4013 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
4014 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
4015 ? 32 : 64;
4016 }
4017
4018 if (file_mips_opts.fp < 0)
4019 {
4020 /* No user specified float register size.
4021 ??? GAS treats single-float processors as though they had 64-bit
4022 float registers (although it complains when double-precision
4023 instructions are used). As things stand, saying they have 32-bit
4024 registers would lead to spurious "register must be even" messages.
4025 So here we assume float registers are never smaller than the
4026 integer ones. */
4027 if (file_mips_opts.gp == 64)
4028 /* 64-bit integer registers implies 64-bit float registers. */
4029 file_mips_opts.fp = 64;
4030 else if ((file_mips_opts.ase & FP64_ASES)
4031 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
4032 /* Handle ASEs that require 64-bit float registers, if possible. */
4033 file_mips_opts.fp = 64;
4034 else if (ISA_IS_R6 (mips_opts.isa))
4035 /* R6 implies 64-bit float registers. */
4036 file_mips_opts.fp = 64;
4037 else
4038 /* 32-bit float registers. */
4039 file_mips_opts.fp = 32;
4040 }
4041
4042 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
4043
4044 /* Disable operations on odd-numbered floating-point registers by default
4045 when using the FPXX ABI. */
4046 if (file_mips_opts.oddspreg < 0)
4047 {
4048 if (file_mips_opts.fp == 0)
4049 file_mips_opts.oddspreg = 0;
4050 else
4051 file_mips_opts.oddspreg = 1;
4052 }
4053
4054 /* End of GCC-shared inference code. */
4055
4056 /* This flag is set when we have a 64-bit capable CPU but use only
4057 32-bit wide registers. Note that EABI does not use it. */
4058 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
4059 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
4060 || mips_abi == O32_ABI))
4061 mips_32bitmode = 1;
4062
4063 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
4064 as_bad (_("trap exception not supported at ISA 1"));
4065
4066 /* If the selected architecture includes support for ASEs, enable
4067 generation of code for them. */
4068 if (file_mips_opts.mips16 == -1)
4069 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
4070 if (file_mips_opts.micromips == -1)
4071 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
4072 ? 1 : 0;
4073
4074 if (mips_nan2008 == -1)
4075 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
4076 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
4077 as_fatal (_("`%s' does not support legacy NaN"),
4078 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
4079
4080 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
4081 being selected implicitly. */
4082 if (file_mips_opts.fp != 64)
4083 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
4084
4085 /* If the user didn't explicitly select or deselect a particular ASE,
4086 use the default setting for the CPU. */
4087 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
4088
4089 /* Set up the current options. These may change throughout assembly. */
4090 mips_opts = file_mips_opts;
4091
4092 mips_check_isa_supports_ases ();
4093 mips_check_options (&file_mips_opts, TRUE);
4094 file_mips_opts_checked = TRUE;
4095
4096 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4097 as_warn (_("could not set architecture and machine"));
4098 }
4099
4100 void
4101 md_assemble (char *str)
4102 {
4103 struct mips_cl_insn insn;
4104 bfd_reloc_code_real_type unused_reloc[3]
4105 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4106
4107 file_mips_check_options ();
4108
4109 imm_expr.X_op = O_absent;
4110 offset_expr.X_op = O_absent;
4111 offset_reloc[0] = BFD_RELOC_UNUSED;
4112 offset_reloc[1] = BFD_RELOC_UNUSED;
4113 offset_reloc[2] = BFD_RELOC_UNUSED;
4114
4115 mips_mark_labels ();
4116 mips_assembling_insn = TRUE;
4117 clear_insn_error ();
4118
4119 if (mips_opts.mips16)
4120 mips16_ip (str, &insn);
4121 else
4122 {
4123 mips_ip (str, &insn);
4124 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4125 str, insn.insn_opcode));
4126 }
4127
4128 if (insn_error.msg)
4129 report_insn_error (str);
4130 else if (insn.insn_mo->pinfo == INSN_MACRO)
4131 {
4132 macro_start ();
4133 if (mips_opts.mips16)
4134 mips16_macro (&insn);
4135 else
4136 macro (&insn, str);
4137 macro_end ();
4138 }
4139 else
4140 {
4141 if (offset_expr.X_op != O_absent)
4142 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4143 else
4144 append_insn (&insn, NULL, unused_reloc, FALSE);
4145 }
4146
4147 mips_assembling_insn = FALSE;
4148 }
4149
4150 /* Convenience functions for abstracting away the differences between
4151 MIPS16 and non-MIPS16 relocations. */
4152
4153 static inline bfd_boolean
4154 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4155 {
4156 switch (reloc)
4157 {
4158 case BFD_RELOC_MIPS16_JMP:
4159 case BFD_RELOC_MIPS16_GPREL:
4160 case BFD_RELOC_MIPS16_GOT16:
4161 case BFD_RELOC_MIPS16_CALL16:
4162 case BFD_RELOC_MIPS16_HI16_S:
4163 case BFD_RELOC_MIPS16_HI16:
4164 case BFD_RELOC_MIPS16_LO16:
4165 case BFD_RELOC_MIPS16_16_PCREL_S1:
4166 return TRUE;
4167
4168 default:
4169 return FALSE;
4170 }
4171 }
4172
4173 static inline bfd_boolean
4174 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4175 {
4176 switch (reloc)
4177 {
4178 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4179 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4180 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4181 case BFD_RELOC_MICROMIPS_GPREL16:
4182 case BFD_RELOC_MICROMIPS_JMP:
4183 case BFD_RELOC_MICROMIPS_HI16:
4184 case BFD_RELOC_MICROMIPS_HI16_S:
4185 case BFD_RELOC_MICROMIPS_LO16:
4186 case BFD_RELOC_MICROMIPS_LITERAL:
4187 case BFD_RELOC_MICROMIPS_GOT16:
4188 case BFD_RELOC_MICROMIPS_CALL16:
4189 case BFD_RELOC_MICROMIPS_GOT_HI16:
4190 case BFD_RELOC_MICROMIPS_GOT_LO16:
4191 case BFD_RELOC_MICROMIPS_CALL_HI16:
4192 case BFD_RELOC_MICROMIPS_CALL_LO16:
4193 case BFD_RELOC_MICROMIPS_SUB:
4194 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4195 case BFD_RELOC_MICROMIPS_GOT_OFST:
4196 case BFD_RELOC_MICROMIPS_GOT_DISP:
4197 case BFD_RELOC_MICROMIPS_HIGHEST:
4198 case BFD_RELOC_MICROMIPS_HIGHER:
4199 case BFD_RELOC_MICROMIPS_SCN_DISP:
4200 case BFD_RELOC_MICROMIPS_JALR:
4201 return TRUE;
4202
4203 default:
4204 return FALSE;
4205 }
4206 }
4207
4208 static inline bfd_boolean
4209 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4210 {
4211 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4212 }
4213
4214 static inline bfd_boolean
4215 b_reloc_p (bfd_reloc_code_real_type reloc)
4216 {
4217 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4218 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4219 || reloc == BFD_RELOC_16_PCREL_S2
4220 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
4221 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4222 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4223 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4224 }
4225
4226 static inline bfd_boolean
4227 got16_reloc_p (bfd_reloc_code_real_type reloc)
4228 {
4229 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4230 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4231 }
4232
4233 static inline bfd_boolean
4234 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4235 {
4236 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4237 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4238 }
4239
4240 static inline bfd_boolean
4241 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4242 {
4243 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4244 || reloc == BFD_RELOC_MICROMIPS_LO16);
4245 }
4246
4247 static inline bfd_boolean
4248 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4249 {
4250 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4251 }
4252
4253 static inline bfd_boolean
4254 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4255 {
4256 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4257 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4258 }
4259
4260 /* Return true if RELOC is a PC-relative relocation that does not have
4261 full address range. */
4262
4263 static inline bfd_boolean
4264 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4265 {
4266 switch (reloc)
4267 {
4268 case BFD_RELOC_16_PCREL_S2:
4269 case BFD_RELOC_MIPS16_16_PCREL_S1:
4270 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4271 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4272 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4273 case BFD_RELOC_MIPS_21_PCREL_S2:
4274 case BFD_RELOC_MIPS_26_PCREL_S2:
4275 case BFD_RELOC_MIPS_18_PCREL_S3:
4276 case BFD_RELOC_MIPS_19_PCREL_S2:
4277 return TRUE;
4278
4279 case BFD_RELOC_32_PCREL:
4280 case BFD_RELOC_HI16_S_PCREL:
4281 case BFD_RELOC_LO16_PCREL:
4282 return HAVE_64BIT_ADDRESSES;
4283
4284 default:
4285 return FALSE;
4286 }
4287 }
4288
4289 /* Return true if the given relocation might need a matching %lo().
4290 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4291 need a matching %lo() when applied to local symbols. */
4292
4293 static inline bfd_boolean
4294 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4295 {
4296 return (HAVE_IN_PLACE_ADDENDS
4297 && (hi16_reloc_p (reloc)
4298 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4299 all GOT16 relocations evaluate to "G". */
4300 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4301 }
4302
4303 /* Return the type of %lo() reloc needed by RELOC, given that
4304 reloc_needs_lo_p. */
4305
4306 static inline bfd_reloc_code_real_type
4307 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4308 {
4309 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4310 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4311 : BFD_RELOC_LO16));
4312 }
4313
4314 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4315 relocation. */
4316
4317 static inline bfd_boolean
4318 fixup_has_matching_lo_p (fixS *fixp)
4319 {
4320 return (fixp->fx_next != NULL
4321 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4322 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4323 && fixp->fx_offset == fixp->fx_next->fx_offset);
4324 }
4325
4326 /* Move all labels in LABELS to the current insertion point. TEXT_P
4327 says whether the labels refer to text or data. */
4328
4329 static void
4330 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4331 {
4332 struct insn_label_list *l;
4333 valueT val;
4334
4335 for (l = labels; l != NULL; l = l->next)
4336 {
4337 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4338 symbol_set_frag (l->label, frag_now);
4339 val = (valueT) frag_now_fix ();
4340 /* MIPS16/microMIPS text labels are stored as odd. */
4341 if (text_p && HAVE_CODE_COMPRESSION)
4342 ++val;
4343 S_SET_VALUE (l->label, val);
4344 }
4345 }
4346
4347 /* Move all labels in insn_labels to the current insertion point
4348 and treat them as text labels. */
4349
4350 static void
4351 mips_move_text_labels (void)
4352 {
4353 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4354 }
4355
4356 /* Duplicate the test for LINK_ONCE sections as in `adjust_reloc_syms'. */
4357
4358 static bfd_boolean
4359 s_is_linkonce (symbolS *sym, segT from_seg)
4360 {
4361 bfd_boolean linkonce = FALSE;
4362 segT symseg = S_GET_SEGMENT (sym);
4363
4364 if (symseg != from_seg && !S_IS_LOCAL (sym))
4365 {
4366 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4367 linkonce = TRUE;
4368 /* The GNU toolchain uses an extension for ELF: a section
4369 beginning with the magic string .gnu.linkonce is a
4370 linkonce section. */
4371 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4372 sizeof ".gnu.linkonce" - 1) == 0)
4373 linkonce = TRUE;
4374 }
4375 return linkonce;
4376 }
4377
4378 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4379 linker to handle them specially, such as generating jalx instructions
4380 when needed. We also make them odd for the duration of the assembly,
4381 in order to generate the right sort of code. We will make them even
4382 in the adjust_symtab routine, while leaving them marked. This is
4383 convenient for the debugger and the disassembler. The linker knows
4384 to make them odd again. */
4385
4386 static void
4387 mips_compressed_mark_label (symbolS *label)
4388 {
4389 gas_assert (HAVE_CODE_COMPRESSION);
4390
4391 if (mips_opts.mips16)
4392 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4393 else
4394 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4395 if ((S_GET_VALUE (label) & 1) == 0
4396 /* Don't adjust the address if the label is global or weak, or
4397 in a link-once section, since we'll be emitting symbol reloc
4398 references to it which will be patched up by the linker, and
4399 the final value of the symbol may or may not be MIPS16/microMIPS. */
4400 && !S_IS_WEAK (label)
4401 && !S_IS_EXTERNAL (label)
4402 && !s_is_linkonce (label, now_seg))
4403 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4404 }
4405
4406 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4407
4408 static void
4409 mips_compressed_mark_labels (void)
4410 {
4411 struct insn_label_list *l;
4412
4413 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4414 mips_compressed_mark_label (l->label);
4415 }
4416
4417 /* End the current frag. Make it a variant frag and record the
4418 relaxation info. */
4419
4420 static void
4421 relax_close_frag (void)
4422 {
4423 mips_macro_warning.first_frag = frag_now;
4424 frag_var (rs_machine_dependent, 0, 0,
4425 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1],
4426 mips_pic != NO_PIC),
4427 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4428
4429 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4430 mips_relax.first_fixup = 0;
4431 }
4432
4433 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4434 See the comment above RELAX_ENCODE for more details. */
4435
4436 static void
4437 relax_start (symbolS *symbol)
4438 {
4439 gas_assert (mips_relax.sequence == 0);
4440 mips_relax.sequence = 1;
4441 mips_relax.symbol = symbol;
4442 }
4443
4444 /* Start generating the second version of a relaxable sequence.
4445 See the comment above RELAX_ENCODE for more details. */
4446
4447 static void
4448 relax_switch (void)
4449 {
4450 gas_assert (mips_relax.sequence == 1);
4451 mips_relax.sequence = 2;
4452 }
4453
4454 /* End the current relaxable sequence. */
4455
4456 static void
4457 relax_end (void)
4458 {
4459 gas_assert (mips_relax.sequence == 2);
4460 relax_close_frag ();
4461 mips_relax.sequence = 0;
4462 }
4463
4464 /* Return true if IP is a delayed branch or jump. */
4465
4466 static inline bfd_boolean
4467 delayed_branch_p (const struct mips_cl_insn *ip)
4468 {
4469 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4470 | INSN_COND_BRANCH_DELAY
4471 | INSN_COND_BRANCH_LIKELY)) != 0;
4472 }
4473
4474 /* Return true if IP is a compact branch or jump. */
4475
4476 static inline bfd_boolean
4477 compact_branch_p (const struct mips_cl_insn *ip)
4478 {
4479 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4480 | INSN2_COND_BRANCH)) != 0;
4481 }
4482
4483 /* Return true if IP is an unconditional branch or jump. */
4484
4485 static inline bfd_boolean
4486 uncond_branch_p (const struct mips_cl_insn *ip)
4487 {
4488 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4489 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4490 }
4491
4492 /* Return true if IP is a branch-likely instruction. */
4493
4494 static inline bfd_boolean
4495 branch_likely_p (const struct mips_cl_insn *ip)
4496 {
4497 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4498 }
4499
4500 /* Return the type of nop that should be used to fill the delay slot
4501 of delayed branch IP. */
4502
4503 static struct mips_cl_insn *
4504 get_delay_slot_nop (const struct mips_cl_insn *ip)
4505 {
4506 if (mips_opts.micromips
4507 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4508 return &micromips_nop32_insn;
4509 return NOP_INSN;
4510 }
4511
4512 /* Return a mask that has bit N set if OPCODE reads the register(s)
4513 in operand N. */
4514
4515 static unsigned int
4516 insn_read_mask (const struct mips_opcode *opcode)
4517 {
4518 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4519 }
4520
4521 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4522 in operand N. */
4523
4524 static unsigned int
4525 insn_write_mask (const struct mips_opcode *opcode)
4526 {
4527 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4528 }
4529
4530 /* Return a mask of the registers specified by operand OPERAND of INSN.
4531 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4532 is set. */
4533
4534 static unsigned int
4535 operand_reg_mask (const struct mips_cl_insn *insn,
4536 const struct mips_operand *operand,
4537 unsigned int type_mask)
4538 {
4539 unsigned int uval, vsel;
4540
4541 switch (operand->type)
4542 {
4543 case OP_INT:
4544 case OP_MAPPED_INT:
4545 case OP_MSB:
4546 case OP_PCREL:
4547 case OP_PERF_REG:
4548 case OP_ADDIUSP_INT:
4549 case OP_ENTRY_EXIT_LIST:
4550 case OP_REPEAT_DEST_REG:
4551 case OP_REPEAT_PREV_REG:
4552 case OP_PC:
4553 case OP_VU0_SUFFIX:
4554 case OP_VU0_MATCH_SUFFIX:
4555 case OP_IMM_INDEX:
4556 abort ();
4557
4558 case OP_REG28:
4559 return 1 << 28;
4560
4561 case OP_REG:
4562 case OP_OPTIONAL_REG:
4563 {
4564 const struct mips_reg_operand *reg_op;
4565
4566 reg_op = (const struct mips_reg_operand *) operand;
4567 if (!(type_mask & (1 << reg_op->reg_type)))
4568 return 0;
4569 uval = insn_extract_operand (insn, operand);
4570 return 1 << mips_decode_reg_operand (reg_op, uval);
4571 }
4572
4573 case OP_REG_PAIR:
4574 {
4575 const struct mips_reg_pair_operand *pair_op;
4576
4577 pair_op = (const struct mips_reg_pair_operand *) operand;
4578 if (!(type_mask & (1 << pair_op->reg_type)))
4579 return 0;
4580 uval = insn_extract_operand (insn, operand);
4581 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4582 }
4583
4584 case OP_CLO_CLZ_DEST:
4585 if (!(type_mask & (1 << OP_REG_GP)))
4586 return 0;
4587 uval = insn_extract_operand (insn, operand);
4588 return (1 << (uval & 31)) | (1 << (uval >> 5));
4589
4590 case OP_SAME_RS_RT:
4591 if (!(type_mask & (1 << OP_REG_GP)))
4592 return 0;
4593 uval = insn_extract_operand (insn, operand);
4594 gas_assert ((uval & 31) == (uval >> 5));
4595 return 1 << (uval & 31);
4596
4597 case OP_CHECK_PREV:
4598 case OP_NON_ZERO_REG:
4599 if (!(type_mask & (1 << OP_REG_GP)))
4600 return 0;
4601 uval = insn_extract_operand (insn, operand);
4602 return 1 << (uval & 31);
4603
4604 case OP_LWM_SWM_LIST:
4605 abort ();
4606
4607 case OP_SAVE_RESTORE_LIST:
4608 abort ();
4609
4610 case OP_MDMX_IMM_REG:
4611 if (!(type_mask & (1 << OP_REG_VEC)))
4612 return 0;
4613 uval = insn_extract_operand (insn, operand);
4614 vsel = uval >> 5;
4615 if ((vsel & 0x18) == 0x18)
4616 return 0;
4617 return 1 << (uval & 31);
4618
4619 case OP_REG_INDEX:
4620 if (!(type_mask & (1 << OP_REG_GP)))
4621 return 0;
4622 return 1 << insn_extract_operand (insn, operand);
4623 }
4624 abort ();
4625 }
4626
4627 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4628 where bit N of OPNO_MASK is set if operand N should be included.
4629 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4630 is set. */
4631
4632 static unsigned int
4633 insn_reg_mask (const struct mips_cl_insn *insn,
4634 unsigned int type_mask, unsigned int opno_mask)
4635 {
4636 unsigned int opno, reg_mask;
4637
4638 opno = 0;
4639 reg_mask = 0;
4640 while (opno_mask != 0)
4641 {
4642 if (opno_mask & 1)
4643 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4644 opno_mask >>= 1;
4645 opno += 1;
4646 }
4647 return reg_mask;
4648 }
4649
4650 /* Return the mask of core registers that IP reads. */
4651
4652 static unsigned int
4653 gpr_read_mask (const struct mips_cl_insn *ip)
4654 {
4655 unsigned long pinfo, pinfo2;
4656 unsigned int mask;
4657
4658 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4659 pinfo = ip->insn_mo->pinfo;
4660 pinfo2 = ip->insn_mo->pinfo2;
4661 if (pinfo & INSN_UDI)
4662 {
4663 /* UDI instructions have traditionally been assumed to read RS
4664 and RT. */
4665 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4666 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4667 }
4668 if (pinfo & INSN_READ_GPR_24)
4669 mask |= 1 << 24;
4670 if (pinfo2 & INSN2_READ_GPR_16)
4671 mask |= 1 << 16;
4672 if (pinfo2 & INSN2_READ_SP)
4673 mask |= 1 << SP;
4674 if (pinfo2 & INSN2_READ_GPR_31)
4675 mask |= 1 << 31;
4676 /* Don't include register 0. */
4677 return mask & ~1;
4678 }
4679
4680 /* Return the mask of core registers that IP writes. */
4681
4682 static unsigned int
4683 gpr_write_mask (const struct mips_cl_insn *ip)
4684 {
4685 unsigned long pinfo, pinfo2;
4686 unsigned int mask;
4687
4688 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4689 pinfo = ip->insn_mo->pinfo;
4690 pinfo2 = ip->insn_mo->pinfo2;
4691 if (pinfo & INSN_WRITE_GPR_24)
4692 mask |= 1 << 24;
4693 if (pinfo & INSN_WRITE_GPR_31)
4694 mask |= 1 << 31;
4695 if (pinfo & INSN_UDI)
4696 /* UDI instructions have traditionally been assumed to write to RD. */
4697 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4698 if (pinfo2 & INSN2_WRITE_SP)
4699 mask |= 1 << SP;
4700 /* Don't include register 0. */
4701 return mask & ~1;
4702 }
4703
4704 /* Return the mask of floating-point registers that IP reads. */
4705
4706 static unsigned int
4707 fpr_read_mask (const struct mips_cl_insn *ip)
4708 {
4709 unsigned long pinfo;
4710 unsigned int mask;
4711
4712 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4713 | (1 << OP_REG_MSA)),
4714 insn_read_mask (ip->insn_mo));
4715 pinfo = ip->insn_mo->pinfo;
4716 /* Conservatively treat all operands to an FP_D instruction are doubles.
4717 (This is overly pessimistic for things like cvt.d.s.) */
4718 if (FPR_SIZE != 64 && (pinfo & FP_D))
4719 mask |= mask << 1;
4720 return mask;
4721 }
4722
4723 /* Return the mask of floating-point registers that IP writes. */
4724
4725 static unsigned int
4726 fpr_write_mask (const struct mips_cl_insn *ip)
4727 {
4728 unsigned long pinfo;
4729 unsigned int mask;
4730
4731 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4732 | (1 << OP_REG_MSA)),
4733 insn_write_mask (ip->insn_mo));
4734 pinfo = ip->insn_mo->pinfo;
4735 /* Conservatively treat all operands to an FP_D instruction are doubles.
4736 (This is overly pessimistic for things like cvt.s.d.) */
4737 if (FPR_SIZE != 64 && (pinfo & FP_D))
4738 mask |= mask << 1;
4739 return mask;
4740 }
4741
4742 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4743 Check whether that is allowed. */
4744
4745 static bfd_boolean
4746 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4747 {
4748 const char *s = insn->name;
4749 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4750 || FPR_SIZE == 64)
4751 && mips_opts.oddspreg;
4752
4753 if (insn->pinfo == INSN_MACRO)
4754 /* Let a macro pass, we'll catch it later when it is expanded. */
4755 return TRUE;
4756
4757 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4758 otherwise it depends on oddspreg. */
4759 if ((insn->pinfo & FP_S)
4760 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4761 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4762 return FPR_SIZE == 32 || oddspreg;
4763
4764 /* Allow odd registers for single-precision ops and double-precision if the
4765 floating-point registers are 64-bit wide. */
4766 switch (insn->pinfo & (FP_S | FP_D))
4767 {
4768 case FP_S:
4769 case 0:
4770 return oddspreg;
4771 case FP_D:
4772 return FPR_SIZE == 64;
4773 default:
4774 break;
4775 }
4776
4777 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4778 s = strchr (insn->name, '.');
4779 if (s != NULL && opnum == 2)
4780 s = strchr (s + 1, '.');
4781 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4782 return oddspreg;
4783
4784 return FPR_SIZE == 64;
4785 }
4786
4787 /* Information about an instruction argument that we're trying to match. */
4788 struct mips_arg_info
4789 {
4790 /* The instruction so far. */
4791 struct mips_cl_insn *insn;
4792
4793 /* The first unconsumed operand token. */
4794 struct mips_operand_token *token;
4795
4796 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4797 int opnum;
4798
4799 /* The 1-based argument number, for error reporting. This does not
4800 count elided optional registers, etc.. */
4801 int argnum;
4802
4803 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4804 unsigned int last_regno;
4805
4806 /* If the first operand was an OP_REG, this is the register that it
4807 specified, otherwise it is ILLEGAL_REG. */
4808 unsigned int dest_regno;
4809
4810 /* The value of the last OP_INT operand. Only used for OP_MSB,
4811 where it gives the lsb position. */
4812 unsigned int last_op_int;
4813
4814 /* If true, match routines should assume that no later instruction
4815 alternative matches and should therefore be as accommodating as
4816 possible. Match routines should not report errors if something
4817 is only invalid for !LAX_MATCH. */
4818 bfd_boolean lax_match;
4819
4820 /* True if a reference to the current AT register was seen. */
4821 bfd_boolean seen_at;
4822 };
4823
4824 /* Record that the argument is out of range. */
4825
4826 static void
4827 match_out_of_range (struct mips_arg_info *arg)
4828 {
4829 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4830 }
4831
4832 /* Record that the argument isn't constant but needs to be. */
4833
4834 static void
4835 match_not_constant (struct mips_arg_info *arg)
4836 {
4837 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4838 arg->argnum);
4839 }
4840
4841 /* Try to match an OT_CHAR token for character CH. Consume the token
4842 and return true on success, otherwise return false. */
4843
4844 static bfd_boolean
4845 match_char (struct mips_arg_info *arg, char ch)
4846 {
4847 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4848 {
4849 ++arg->token;
4850 if (ch == ',')
4851 arg->argnum += 1;
4852 return TRUE;
4853 }
4854 return FALSE;
4855 }
4856
4857 /* Try to get an expression from the next tokens in ARG. Consume the
4858 tokens and return true on success, storing the expression value in
4859 VALUE and relocation types in R. */
4860
4861 static bfd_boolean
4862 match_expression (struct mips_arg_info *arg, expressionS *value,
4863 bfd_reloc_code_real_type *r)
4864 {
4865 /* If the next token is a '(' that was parsed as being part of a base
4866 expression, assume we have an elided offset. The later match will fail
4867 if this turns out to be wrong. */
4868 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4869 {
4870 value->X_op = O_constant;
4871 value->X_add_number = 0;
4872 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4873 return TRUE;
4874 }
4875
4876 /* Reject register-based expressions such as "0+$2" and "(($2))".
4877 For plain registers the default error seems more appropriate. */
4878 if (arg->token->type == OT_INTEGER
4879 && arg->token->u.integer.value.X_op == O_register)
4880 {
4881 set_insn_error (arg->argnum, _("register value used as expression"));
4882 return FALSE;
4883 }
4884
4885 if (arg->token->type == OT_INTEGER)
4886 {
4887 *value = arg->token->u.integer.value;
4888 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4889 ++arg->token;
4890 return TRUE;
4891 }
4892
4893 set_insn_error_i
4894 (arg->argnum, _("operand %d must be an immediate expression"),
4895 arg->argnum);
4896 return FALSE;
4897 }
4898
4899 /* Try to get a constant expression from the next tokens in ARG. Consume
4900 the tokens and return return true on success, storing the constant value
4901 in *VALUE. */
4902
4903 static bfd_boolean
4904 match_const_int (struct mips_arg_info *arg, offsetT *value)
4905 {
4906 expressionS ex;
4907 bfd_reloc_code_real_type r[3];
4908
4909 if (!match_expression (arg, &ex, r))
4910 return FALSE;
4911
4912 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4913 *value = ex.X_add_number;
4914 else
4915 {
4916 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_big)
4917 match_out_of_range (arg);
4918 else
4919 match_not_constant (arg);
4920 return FALSE;
4921 }
4922 return TRUE;
4923 }
4924
4925 /* Return the RTYPE_* flags for a register operand of type TYPE that
4926 appears in instruction OPCODE. */
4927
4928 static unsigned int
4929 convert_reg_type (const struct mips_opcode *opcode,
4930 enum mips_reg_operand_type type)
4931 {
4932 switch (type)
4933 {
4934 case OP_REG_GP:
4935 return RTYPE_NUM | RTYPE_GP;
4936
4937 case OP_REG_FP:
4938 /* Allow vector register names for MDMX if the instruction is a 64-bit
4939 FPR load, store or move (including moves to and from GPRs). */
4940 if ((mips_opts.ase & ASE_MDMX)
4941 && (opcode->pinfo & FP_D)
4942 && (opcode->pinfo & (INSN_COPROC_MOVE
4943 | INSN_COPROC_MEMORY_DELAY
4944 | INSN_LOAD_COPROC
4945 | INSN_LOAD_MEMORY
4946 | INSN_STORE_MEMORY)))
4947 return RTYPE_FPU | RTYPE_VEC;
4948 return RTYPE_FPU;
4949
4950 case OP_REG_CCC:
4951 if (opcode->pinfo & (FP_D | FP_S))
4952 return RTYPE_CCC | RTYPE_FCC;
4953 return RTYPE_CCC;
4954
4955 case OP_REG_VEC:
4956 if (opcode->membership & INSN_5400)
4957 return RTYPE_FPU;
4958 return RTYPE_FPU | RTYPE_VEC;
4959
4960 case OP_REG_ACC:
4961 return RTYPE_ACC;
4962
4963 case OP_REG_COPRO:
4964 if (opcode->name[strlen (opcode->name) - 1] == '0')
4965 return RTYPE_NUM | RTYPE_CP0;
4966 return RTYPE_NUM;
4967
4968 case OP_REG_HW:
4969 return RTYPE_NUM;
4970
4971 case OP_REG_VI:
4972 return RTYPE_NUM | RTYPE_VI;
4973
4974 case OP_REG_VF:
4975 return RTYPE_NUM | RTYPE_VF;
4976
4977 case OP_REG_R5900_I:
4978 return RTYPE_R5900_I;
4979
4980 case OP_REG_R5900_Q:
4981 return RTYPE_R5900_Q;
4982
4983 case OP_REG_R5900_R:
4984 return RTYPE_R5900_R;
4985
4986 case OP_REG_R5900_ACC:
4987 return RTYPE_R5900_ACC;
4988
4989 case OP_REG_MSA:
4990 return RTYPE_MSA;
4991
4992 case OP_REG_MSA_CTRL:
4993 return RTYPE_NUM;
4994 }
4995 abort ();
4996 }
4997
4998 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4999
5000 static void
5001 check_regno (struct mips_arg_info *arg,
5002 enum mips_reg_operand_type type, unsigned int regno)
5003 {
5004 if (AT && type == OP_REG_GP && regno == AT)
5005 arg->seen_at = TRUE;
5006
5007 if (type == OP_REG_FP
5008 && (regno & 1) != 0
5009 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
5010 {
5011 /* This was a warning prior to introducing O32 FPXX and FP64 support
5012 so maintain a warning for FP32 but raise an error for the new
5013 cases. */
5014 if (FPR_SIZE == 32)
5015 as_warn (_("float register should be even, was %d"), regno);
5016 else
5017 as_bad (_("float register should be even, was %d"), regno);
5018 }
5019
5020 if (type == OP_REG_CCC)
5021 {
5022 const char *name;
5023 size_t length;
5024
5025 name = arg->insn->insn_mo->name;
5026 length = strlen (name);
5027 if ((regno & 1) != 0
5028 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
5029 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
5030 as_warn (_("condition code register should be even for %s, was %d"),
5031 name, regno);
5032
5033 if ((regno & 3) != 0
5034 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
5035 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
5036 name, regno);
5037 }
5038 }
5039
5040 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
5041 a register of type TYPE. Return true on success, storing the register
5042 number in *REGNO and warning about any dubious uses. */
5043
5044 static bfd_boolean
5045 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5046 unsigned int symval, unsigned int *regno)
5047 {
5048 if (type == OP_REG_VEC)
5049 symval = mips_prefer_vec_regno (symval);
5050 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
5051 return FALSE;
5052
5053 *regno = symval & RNUM_MASK;
5054 check_regno (arg, type, *regno);
5055 return TRUE;
5056 }
5057
5058 /* Try to interpret the next token in ARG as a register of type TYPE.
5059 Consume the token and return true on success, storing the register
5060 number in *REGNO. Return false on failure. */
5061
5062 static bfd_boolean
5063 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5064 unsigned int *regno)
5065 {
5066 if (arg->token->type == OT_REG
5067 && match_regno (arg, type, arg->token->u.regno, regno))
5068 {
5069 ++arg->token;
5070 return TRUE;
5071 }
5072 return FALSE;
5073 }
5074
5075 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
5076 Consume the token and return true on success, storing the register numbers
5077 in *REGNO1 and *REGNO2. Return false on failure. */
5078
5079 static bfd_boolean
5080 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5081 unsigned int *regno1, unsigned int *regno2)
5082 {
5083 if (match_reg (arg, type, regno1))
5084 {
5085 *regno2 = *regno1;
5086 return TRUE;
5087 }
5088 if (arg->token->type == OT_REG_RANGE
5089 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
5090 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
5091 && *regno1 <= *regno2)
5092 {
5093 ++arg->token;
5094 return TRUE;
5095 }
5096 return FALSE;
5097 }
5098
5099 /* OP_INT matcher. */
5100
5101 static bfd_boolean
5102 match_int_operand (struct mips_arg_info *arg,
5103 const struct mips_operand *operand_base)
5104 {
5105 const struct mips_int_operand *operand;
5106 unsigned int uval;
5107 int min_val, max_val, factor;
5108 offsetT sval;
5109
5110 operand = (const struct mips_int_operand *) operand_base;
5111 factor = 1 << operand->shift;
5112 min_val = mips_int_operand_min (operand);
5113 max_val = mips_int_operand_max (operand);
5114
5115 if (operand_base->lsb == 0
5116 && operand_base->size == 16
5117 && operand->shift == 0
5118 && operand->bias == 0
5119 && (operand->max_val == 32767 || operand->max_val == 65535))
5120 {
5121 /* The operand can be relocated. */
5122 if (!match_expression (arg, &offset_expr, offset_reloc))
5123 return FALSE;
5124
5125 if (offset_expr.X_op == O_big)
5126 {
5127 match_out_of_range (arg);
5128 return FALSE;
5129 }
5130
5131 if (offset_reloc[0] != BFD_RELOC_UNUSED)
5132 /* Relocation operators were used. Accept the argument and
5133 leave the relocation value in offset_expr and offset_relocs
5134 for the caller to process. */
5135 return TRUE;
5136
5137 if (offset_expr.X_op != O_constant)
5138 {
5139 /* Accept non-constant operands if no later alternative matches,
5140 leaving it for the caller to process. */
5141 if (!arg->lax_match)
5142 {
5143 match_not_constant (arg);
5144 return FALSE;
5145 }
5146 offset_reloc[0] = BFD_RELOC_LO16;
5147 return TRUE;
5148 }
5149
5150 /* Clear the global state; we're going to install the operand
5151 ourselves. */
5152 sval = offset_expr.X_add_number;
5153 offset_expr.X_op = O_absent;
5154
5155 /* For compatibility with older assemblers, we accept
5156 0x8000-0xffff as signed 16-bit numbers when only
5157 signed numbers are allowed. */
5158 if (sval > max_val)
5159 {
5160 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5161 if (!arg->lax_match && sval <= max_val)
5162 {
5163 match_out_of_range (arg);
5164 return FALSE;
5165 }
5166 }
5167 }
5168 else
5169 {
5170 if (!match_const_int (arg, &sval))
5171 return FALSE;
5172 }
5173
5174 arg->last_op_int = sval;
5175
5176 if (sval < min_val || sval > max_val || sval % factor)
5177 {
5178 match_out_of_range (arg);
5179 return FALSE;
5180 }
5181
5182 uval = (unsigned int) sval >> operand->shift;
5183 uval -= operand->bias;
5184
5185 /* Handle -mfix-cn63xxp1. */
5186 if (arg->opnum == 1
5187 && mips_fix_cn63xxp1
5188 && !mips_opts.micromips
5189 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5190 switch (uval)
5191 {
5192 case 5:
5193 case 25:
5194 case 26:
5195 case 27:
5196 case 28:
5197 case 29:
5198 case 30:
5199 case 31:
5200 /* These are ok. */
5201 break;
5202
5203 default:
5204 /* The rest must be changed to 28. */
5205 uval = 28;
5206 break;
5207 }
5208
5209 insn_insert_operand (arg->insn, operand_base, uval);
5210 return TRUE;
5211 }
5212
5213 /* OP_MAPPED_INT matcher. */
5214
5215 static bfd_boolean
5216 match_mapped_int_operand (struct mips_arg_info *arg,
5217 const struct mips_operand *operand_base)
5218 {
5219 const struct mips_mapped_int_operand *operand;
5220 unsigned int uval, num_vals;
5221 offsetT sval;
5222
5223 operand = (const struct mips_mapped_int_operand *) operand_base;
5224 if (!match_const_int (arg, &sval))
5225 return FALSE;
5226
5227 num_vals = 1 << operand_base->size;
5228 for (uval = 0; uval < num_vals; uval++)
5229 if (operand->int_map[uval] == sval)
5230 break;
5231 if (uval == num_vals)
5232 {
5233 match_out_of_range (arg);
5234 return FALSE;
5235 }
5236
5237 insn_insert_operand (arg->insn, operand_base, uval);
5238 return TRUE;
5239 }
5240
5241 /* OP_MSB matcher. */
5242
5243 static bfd_boolean
5244 match_msb_operand (struct mips_arg_info *arg,
5245 const struct mips_operand *operand_base)
5246 {
5247 const struct mips_msb_operand *operand;
5248 int min_val, max_val, max_high;
5249 offsetT size, sval, high;
5250
5251 operand = (const struct mips_msb_operand *) operand_base;
5252 min_val = operand->bias;
5253 max_val = min_val + (1 << operand_base->size) - 1;
5254 max_high = operand->opsize;
5255
5256 if (!match_const_int (arg, &size))
5257 return FALSE;
5258
5259 high = size + arg->last_op_int;
5260 sval = operand->add_lsb ? high : size;
5261
5262 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5263 {
5264 match_out_of_range (arg);
5265 return FALSE;
5266 }
5267 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5268 return TRUE;
5269 }
5270
5271 /* OP_REG matcher. */
5272
5273 static bfd_boolean
5274 match_reg_operand (struct mips_arg_info *arg,
5275 const struct mips_operand *operand_base)
5276 {
5277 const struct mips_reg_operand *operand;
5278 unsigned int regno, uval, num_vals;
5279
5280 operand = (const struct mips_reg_operand *) operand_base;
5281 if (!match_reg (arg, operand->reg_type, &regno))
5282 return FALSE;
5283
5284 if (operand->reg_map)
5285 {
5286 num_vals = 1 << operand->root.size;
5287 for (uval = 0; uval < num_vals; uval++)
5288 if (operand->reg_map[uval] == regno)
5289 break;
5290 if (num_vals == uval)
5291 return FALSE;
5292 }
5293 else
5294 uval = regno;
5295
5296 arg->last_regno = regno;
5297 if (arg->opnum == 1)
5298 arg->dest_regno = regno;
5299 insn_insert_operand (arg->insn, operand_base, uval);
5300 return TRUE;
5301 }
5302
5303 /* OP_REG_PAIR matcher. */
5304
5305 static bfd_boolean
5306 match_reg_pair_operand (struct mips_arg_info *arg,
5307 const struct mips_operand *operand_base)
5308 {
5309 const struct mips_reg_pair_operand *operand;
5310 unsigned int regno1, regno2, uval, num_vals;
5311
5312 operand = (const struct mips_reg_pair_operand *) operand_base;
5313 if (!match_reg (arg, operand->reg_type, &regno1)
5314 || !match_char (arg, ',')
5315 || !match_reg (arg, operand->reg_type, &regno2))
5316 return FALSE;
5317
5318 num_vals = 1 << operand_base->size;
5319 for (uval = 0; uval < num_vals; uval++)
5320 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5321 break;
5322 if (uval == num_vals)
5323 return FALSE;
5324
5325 insn_insert_operand (arg->insn, operand_base, uval);
5326 return TRUE;
5327 }
5328
5329 /* OP_PCREL matcher. The caller chooses the relocation type. */
5330
5331 static bfd_boolean
5332 match_pcrel_operand (struct mips_arg_info *arg)
5333 {
5334 bfd_reloc_code_real_type r[3];
5335
5336 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5337 }
5338
5339 /* OP_PERF_REG matcher. */
5340
5341 static bfd_boolean
5342 match_perf_reg_operand (struct mips_arg_info *arg,
5343 const struct mips_operand *operand)
5344 {
5345 offsetT sval;
5346
5347 if (!match_const_int (arg, &sval))
5348 return FALSE;
5349
5350 if (sval != 0
5351 && (sval != 1
5352 || (mips_opts.arch == CPU_R5900
5353 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5354 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5355 {
5356 set_insn_error (arg->argnum, _("invalid performance register"));
5357 return FALSE;
5358 }
5359
5360 insn_insert_operand (arg->insn, operand, sval);
5361 return TRUE;
5362 }
5363
5364 /* OP_ADDIUSP matcher. */
5365
5366 static bfd_boolean
5367 match_addiusp_operand (struct mips_arg_info *arg,
5368 const struct mips_operand *operand)
5369 {
5370 offsetT sval;
5371 unsigned int uval;
5372
5373 if (!match_const_int (arg, &sval))
5374 return FALSE;
5375
5376 if (sval % 4)
5377 {
5378 match_out_of_range (arg);
5379 return FALSE;
5380 }
5381
5382 sval /= 4;
5383 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5384 {
5385 match_out_of_range (arg);
5386 return FALSE;
5387 }
5388
5389 uval = (unsigned int) sval;
5390 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5391 insn_insert_operand (arg->insn, operand, uval);
5392 return TRUE;
5393 }
5394
5395 /* OP_CLO_CLZ_DEST matcher. */
5396
5397 static bfd_boolean
5398 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5399 const struct mips_operand *operand)
5400 {
5401 unsigned int regno;
5402
5403 if (!match_reg (arg, OP_REG_GP, &regno))
5404 return FALSE;
5405
5406 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5407 return TRUE;
5408 }
5409
5410 /* OP_CHECK_PREV matcher. */
5411
5412 static bfd_boolean
5413 match_check_prev_operand (struct mips_arg_info *arg,
5414 const struct mips_operand *operand_base)
5415 {
5416 const struct mips_check_prev_operand *operand;
5417 unsigned int regno;
5418
5419 operand = (const struct mips_check_prev_operand *) operand_base;
5420
5421 if (!match_reg (arg, OP_REG_GP, &regno))
5422 return FALSE;
5423
5424 if (!operand->zero_ok && regno == 0)
5425 return FALSE;
5426
5427 if ((operand->less_than_ok && regno < arg->last_regno)
5428 || (operand->greater_than_ok && regno > arg->last_regno)
5429 || (operand->equal_ok && regno == arg->last_regno))
5430 {
5431 arg->last_regno = regno;
5432 insn_insert_operand (arg->insn, operand_base, regno);
5433 return TRUE;
5434 }
5435
5436 return FALSE;
5437 }
5438
5439 /* OP_SAME_RS_RT matcher. */
5440
5441 static bfd_boolean
5442 match_same_rs_rt_operand (struct mips_arg_info *arg,
5443 const struct mips_operand *operand)
5444 {
5445 unsigned int regno;
5446
5447 if (!match_reg (arg, OP_REG_GP, &regno))
5448 return FALSE;
5449
5450 if (regno == 0)
5451 {
5452 set_insn_error (arg->argnum, _("the source register must not be $0"));
5453 return FALSE;
5454 }
5455
5456 arg->last_regno = regno;
5457
5458 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5459 return TRUE;
5460 }
5461
5462 /* OP_LWM_SWM_LIST matcher. */
5463
5464 static bfd_boolean
5465 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5466 const struct mips_operand *operand)
5467 {
5468 unsigned int reglist, sregs, ra, regno1, regno2;
5469 struct mips_arg_info reset;
5470
5471 reglist = 0;
5472 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5473 return FALSE;
5474 do
5475 {
5476 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5477 {
5478 reglist |= 1 << FP;
5479 regno2 = S7;
5480 }
5481 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5482 reset = *arg;
5483 }
5484 while (match_char (arg, ',')
5485 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5486 *arg = reset;
5487
5488 if (operand->size == 2)
5489 {
5490 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5491
5492 s0, ra
5493 s0, s1, ra, s2, s3
5494 s0-s2, ra
5495
5496 and any permutations of these. */
5497 if ((reglist & 0xfff1ffff) != 0x80010000)
5498 return FALSE;
5499
5500 sregs = (reglist >> 17) & 7;
5501 ra = 0;
5502 }
5503 else
5504 {
5505 /* The list must include at least one of ra and s0-sN,
5506 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5507 which are $23 and $30 respectively.) E.g.:
5508
5509 ra
5510 s0
5511 ra, s0, s1, s2
5512 s0-s8
5513 s0-s5, ra
5514
5515 and any permutations of these. */
5516 if ((reglist & 0x3f00ffff) != 0)
5517 return FALSE;
5518
5519 ra = (reglist >> 27) & 0x10;
5520 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5521 }
5522 sregs += 1;
5523 if ((sregs & -sregs) != sregs)
5524 return FALSE;
5525
5526 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5527 return TRUE;
5528 }
5529
5530 /* OP_ENTRY_EXIT_LIST matcher. */
5531
5532 static unsigned int
5533 match_entry_exit_operand (struct mips_arg_info *arg,
5534 const struct mips_operand *operand)
5535 {
5536 unsigned int mask;
5537 bfd_boolean is_exit;
5538
5539 /* The format is the same for both ENTRY and EXIT, but the constraints
5540 are different. */
5541 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5542 mask = (is_exit ? 7 << 3 : 0);
5543 do
5544 {
5545 unsigned int regno1, regno2;
5546 bfd_boolean is_freg;
5547
5548 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5549 is_freg = FALSE;
5550 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5551 is_freg = TRUE;
5552 else
5553 return FALSE;
5554
5555 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5556 {
5557 mask &= ~(7 << 3);
5558 mask |= (5 + regno2) << 3;
5559 }
5560 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5561 mask |= (regno2 - 3) << 3;
5562 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5563 mask |= (regno2 - 15) << 1;
5564 else if (regno1 == RA && regno2 == RA)
5565 mask |= 1;
5566 else
5567 return FALSE;
5568 }
5569 while (match_char (arg, ','));
5570
5571 insn_insert_operand (arg->insn, operand, mask);
5572 return TRUE;
5573 }
5574
5575 /* Encode regular MIPS SAVE/RESTORE instruction operands according to
5576 the argument register mask AMASK, the number of static registers
5577 saved NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
5578 respectively, and the frame size FRAME_SIZE. */
5579
5580 static unsigned int
5581 mips_encode_save_restore (unsigned int amask, unsigned int nsreg,
5582 unsigned int ra, unsigned int s0, unsigned int s1,
5583 unsigned int frame_size)
5584 {
5585 return ((nsreg << 23) | ((frame_size & 0xf0) << 15) | (amask << 15)
5586 | (ra << 12) | (s0 << 11) | (s1 << 10) | ((frame_size & 0xf) << 6));
5587 }
5588
5589 /* Encode MIPS16 SAVE/RESTORE instruction operands according to the
5590 argument register mask AMASK, the number of static registers saved
5591 NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
5592 respectively, and the frame size FRAME_SIZE. */
5593
5594 static unsigned int
5595 mips16_encode_save_restore (unsigned int amask, unsigned int nsreg,
5596 unsigned int ra, unsigned int s0, unsigned int s1,
5597 unsigned int frame_size)
5598 {
5599 unsigned int args;
5600
5601 args = (ra << 6) | (s0 << 5) | (s1 << 4) | (frame_size & 0xf);
5602 if (nsreg || amask || frame_size == 0 || frame_size > 16)
5603 args |= (MIPS16_EXTEND | (nsreg << 24) | (amask << 16)
5604 | ((frame_size & 0xf0) << 16));
5605 return args;
5606 }
5607
5608 /* OP_SAVE_RESTORE_LIST matcher. */
5609
5610 static bfd_boolean
5611 match_save_restore_list_operand (struct mips_arg_info *arg)
5612 {
5613 unsigned int opcode, args, statics, sregs;
5614 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5615 unsigned int arg_mask, ra, s0, s1;
5616 offsetT frame_size;
5617
5618 opcode = arg->insn->insn_opcode;
5619 frame_size = 0;
5620 num_frame_sizes = 0;
5621 args = 0;
5622 statics = 0;
5623 sregs = 0;
5624 ra = 0;
5625 s0 = 0;
5626 s1 = 0;
5627 do
5628 {
5629 unsigned int regno1, regno2;
5630
5631 if (arg->token->type == OT_INTEGER)
5632 {
5633 /* Handle the frame size. */
5634 if (!match_const_int (arg, &frame_size))
5635 return FALSE;
5636 num_frame_sizes += 1;
5637 }
5638 else
5639 {
5640 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5641 return FALSE;
5642
5643 while (regno1 <= regno2)
5644 {
5645 if (regno1 >= 4 && regno1 <= 7)
5646 {
5647 if (num_frame_sizes == 0)
5648 /* args $a0-$a3 */
5649 args |= 1 << (regno1 - 4);
5650 else
5651 /* statics $a0-$a3 */
5652 statics |= 1 << (regno1 - 4);
5653 }
5654 else if (regno1 >= 16 && regno1 <= 23)
5655 /* $s0-$s7 */
5656 sregs |= 1 << (regno1 - 16);
5657 else if (regno1 == 30)
5658 /* $s8 */
5659 sregs |= 1 << 8;
5660 else if (regno1 == 31)
5661 /* Add $ra to insn. */
5662 ra = 1;
5663 else
5664 return FALSE;
5665 regno1 += 1;
5666 if (regno1 == 24)
5667 regno1 = 30;
5668 }
5669 }
5670 }
5671 while (match_char (arg, ','));
5672
5673 /* Encode args/statics combination. */
5674 if (args & statics)
5675 return FALSE;
5676 else if (args == 0xf)
5677 /* All $a0-$a3 are args. */
5678 arg_mask = MIPS_SVRS_ALL_ARGS;
5679 else if (statics == 0xf)
5680 /* All $a0-$a3 are statics. */
5681 arg_mask = MIPS_SVRS_ALL_STATICS;
5682 else
5683 {
5684 /* Count arg registers. */
5685 num_args = 0;
5686 while (args & 0x1)
5687 {
5688 args >>= 1;
5689 num_args += 1;
5690 }
5691 if (args != 0)
5692 return FALSE;
5693
5694 /* Count static registers. */
5695 num_statics = 0;
5696 while (statics & 0x8)
5697 {
5698 statics = (statics << 1) & 0xf;
5699 num_statics += 1;
5700 }
5701 if (statics != 0)
5702 return FALSE;
5703
5704 /* Encode args/statics. */
5705 arg_mask = (num_args << 2) | num_statics;
5706 }
5707
5708 /* Encode $s0/$s1. */
5709 if (sregs & (1 << 0)) /* $s0 */
5710 s0 = 1;
5711 if (sregs & (1 << 1)) /* $s1 */
5712 s1 = 1;
5713 sregs >>= 2;
5714
5715 /* Encode $s2-$s8. */
5716 num_sregs = 0;
5717 while (sregs & 1)
5718 {
5719 sregs >>= 1;
5720 num_sregs += 1;
5721 }
5722 if (sregs != 0)
5723 return FALSE;
5724
5725 /* Encode frame size. */
5726 if (num_frame_sizes == 0)
5727 {
5728 set_insn_error (arg->argnum, _("missing frame size"));
5729 return FALSE;
5730 }
5731 if (num_frame_sizes > 1)
5732 {
5733 set_insn_error (arg->argnum, _("frame size specified twice"));
5734 return FALSE;
5735 }
5736 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5737 {
5738 set_insn_error (arg->argnum, _("invalid frame size"));
5739 return FALSE;
5740 }
5741 frame_size /= 8;
5742
5743 /* Finally build the instruction. */
5744 if (mips_opts.mips16)
5745 opcode |= mips16_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
5746 frame_size);
5747 else if (!mips_opts.micromips)
5748 opcode |= mips_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
5749 frame_size);
5750 else
5751 abort ();
5752
5753 arg->insn->insn_opcode = opcode;
5754 return TRUE;
5755 }
5756
5757 /* OP_MDMX_IMM_REG matcher. */
5758
5759 static bfd_boolean
5760 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5761 const struct mips_operand *operand)
5762 {
5763 unsigned int regno, uval;
5764 bfd_boolean is_qh;
5765 const struct mips_opcode *opcode;
5766
5767 /* The mips_opcode records whether this is an octobyte or quadhalf
5768 instruction. Start out with that bit in place. */
5769 opcode = arg->insn->insn_mo;
5770 uval = mips_extract_operand (operand, opcode->match);
5771 is_qh = (uval != 0);
5772
5773 if (arg->token->type == OT_REG)
5774 {
5775 if ((opcode->membership & INSN_5400)
5776 && strcmp (opcode->name, "rzu.ob") == 0)
5777 {
5778 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5779 arg->argnum);
5780 return FALSE;
5781 }
5782
5783 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5784 return FALSE;
5785 ++arg->token;
5786
5787 /* Check whether this is a vector register or a broadcast of
5788 a single element. */
5789 if (arg->token->type == OT_INTEGER_INDEX)
5790 {
5791 if (arg->token->u.index > (is_qh ? 3 : 7))
5792 {
5793 set_insn_error (arg->argnum, _("invalid element selector"));
5794 return FALSE;
5795 }
5796 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5797 ++arg->token;
5798 }
5799 else
5800 {
5801 /* A full vector. */
5802 if ((opcode->membership & INSN_5400)
5803 && (strcmp (opcode->name, "sll.ob") == 0
5804 || strcmp (opcode->name, "srl.ob") == 0))
5805 {
5806 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5807 arg->argnum);
5808 return FALSE;
5809 }
5810
5811 if (is_qh)
5812 uval |= MDMX_FMTSEL_VEC_QH << 5;
5813 else
5814 uval |= MDMX_FMTSEL_VEC_OB << 5;
5815 }
5816 uval |= regno;
5817 }
5818 else
5819 {
5820 offsetT sval;
5821
5822 if (!match_const_int (arg, &sval))
5823 return FALSE;
5824 if (sval < 0 || sval > 31)
5825 {
5826 match_out_of_range (arg);
5827 return FALSE;
5828 }
5829 uval |= (sval & 31);
5830 if (is_qh)
5831 uval |= MDMX_FMTSEL_IMM_QH << 5;
5832 else
5833 uval |= MDMX_FMTSEL_IMM_OB << 5;
5834 }
5835 insn_insert_operand (arg->insn, operand, uval);
5836 return TRUE;
5837 }
5838
5839 /* OP_IMM_INDEX matcher. */
5840
5841 static bfd_boolean
5842 match_imm_index_operand (struct mips_arg_info *arg,
5843 const struct mips_operand *operand)
5844 {
5845 unsigned int max_val;
5846
5847 if (arg->token->type != OT_INTEGER_INDEX)
5848 return FALSE;
5849
5850 max_val = (1 << operand->size) - 1;
5851 if (arg->token->u.index > max_val)
5852 {
5853 match_out_of_range (arg);
5854 return FALSE;
5855 }
5856 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5857 ++arg->token;
5858 return TRUE;
5859 }
5860
5861 /* OP_REG_INDEX matcher. */
5862
5863 static bfd_boolean
5864 match_reg_index_operand (struct mips_arg_info *arg,
5865 const struct mips_operand *operand)
5866 {
5867 unsigned int regno;
5868
5869 if (arg->token->type != OT_REG_INDEX)
5870 return FALSE;
5871
5872 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5873 return FALSE;
5874
5875 insn_insert_operand (arg->insn, operand, regno);
5876 ++arg->token;
5877 return TRUE;
5878 }
5879
5880 /* OP_PC matcher. */
5881
5882 static bfd_boolean
5883 match_pc_operand (struct mips_arg_info *arg)
5884 {
5885 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5886 {
5887 ++arg->token;
5888 return TRUE;
5889 }
5890 return FALSE;
5891 }
5892
5893 /* OP_REG28 matcher. */
5894
5895 static bfd_boolean
5896 match_reg28_operand (struct mips_arg_info *arg)
5897 {
5898 unsigned int regno;
5899
5900 if (arg->token->type == OT_REG
5901 && match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno)
5902 && regno == GP)
5903 {
5904 ++arg->token;
5905 return TRUE;
5906 }
5907 return FALSE;
5908 }
5909
5910 /* OP_NON_ZERO_REG matcher. */
5911
5912 static bfd_boolean
5913 match_non_zero_reg_operand (struct mips_arg_info *arg,
5914 const struct mips_operand *operand)
5915 {
5916 unsigned int regno;
5917
5918 if (!match_reg (arg, OP_REG_GP, &regno))
5919 return FALSE;
5920
5921 if (regno == 0)
5922 return FALSE;
5923
5924 arg->last_regno = regno;
5925 insn_insert_operand (arg->insn, operand, regno);
5926 return TRUE;
5927 }
5928
5929 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5930 register that we need to match. */
5931
5932 static bfd_boolean
5933 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5934 {
5935 unsigned int regno;
5936
5937 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5938 }
5939
5940 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5941 the length of the value in bytes (4 for float, 8 for double) and
5942 USING_GPRS says whether the destination is a GPR rather than an FPR.
5943
5944 Return the constant in IMM and OFFSET as follows:
5945
5946 - If the constant should be loaded via memory, set IMM to O_absent and
5947 OFFSET to the memory address.
5948
5949 - Otherwise, if the constant should be loaded into two 32-bit registers,
5950 set IMM to the O_constant to load into the high register and OFFSET
5951 to the corresponding value for the low register.
5952
5953 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5954
5955 These constants only appear as the last operand in an instruction,
5956 and every instruction that accepts them in any variant accepts them
5957 in all variants. This means we don't have to worry about backing out
5958 any changes if the instruction does not match. We just match
5959 unconditionally and report an error if the constant is invalid. */
5960
5961 static bfd_boolean
5962 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5963 expressionS *offset, int length, bfd_boolean using_gprs)
5964 {
5965 char *p;
5966 segT seg, new_seg;
5967 subsegT subseg;
5968 const char *newname;
5969 unsigned char *data;
5970
5971 /* Where the constant is placed is based on how the MIPS assembler
5972 does things:
5973
5974 length == 4 && using_gprs -- immediate value only
5975 length == 8 && using_gprs -- .rdata or immediate value
5976 length == 4 && !using_gprs -- .lit4 or immediate value
5977 length == 8 && !using_gprs -- .lit8 or immediate value
5978
5979 The .lit4 and .lit8 sections are only used if permitted by the
5980 -G argument. */
5981 if (arg->token->type != OT_FLOAT)
5982 {
5983 set_insn_error (arg->argnum, _("floating-point expression required"));
5984 return FALSE;
5985 }
5986
5987 gas_assert (arg->token->u.flt.length == length);
5988 data = arg->token->u.flt.data;
5989 ++arg->token;
5990
5991 /* Handle 32-bit constants for which an immediate value is best. */
5992 if (length == 4
5993 && (using_gprs
5994 || g_switch_value < 4
5995 || (data[0] == 0 && data[1] == 0)
5996 || (data[2] == 0 && data[3] == 0)))
5997 {
5998 imm->X_op = O_constant;
5999 if (!target_big_endian)
6000 imm->X_add_number = bfd_getl32 (data);
6001 else
6002 imm->X_add_number = bfd_getb32 (data);
6003 offset->X_op = O_absent;
6004 return TRUE;
6005 }
6006
6007 /* Handle 64-bit constants for which an immediate value is best. */
6008 if (length == 8
6009 && !mips_disable_float_construction
6010 /* Constants can only be constructed in GPRs and copied to FPRs if the
6011 GPRs are at least as wide as the FPRs or MTHC1 is available.
6012 Unlike most tests for 32-bit floating-point registers this check
6013 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
6014 permit 64-bit moves without MXHC1.
6015 Force the constant into memory otherwise. */
6016 && (using_gprs
6017 || GPR_SIZE == 64
6018 || ISA_HAS_MXHC1 (mips_opts.isa)
6019 || FPR_SIZE == 32)
6020 && ((data[0] == 0 && data[1] == 0)
6021 || (data[2] == 0 && data[3] == 0))
6022 && ((data[4] == 0 && data[5] == 0)
6023 || (data[6] == 0 && data[7] == 0)))
6024 {
6025 /* The value is simple enough to load with a couple of instructions.
6026 If using 32-bit registers, set IMM to the high order 32 bits and
6027 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
6028 64 bit constant. */
6029 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
6030 {
6031 imm->X_op = O_constant;
6032 offset->X_op = O_constant;
6033 if (!target_big_endian)
6034 {
6035 imm->X_add_number = bfd_getl32 (data + 4);
6036 offset->X_add_number = bfd_getl32 (data);
6037 }
6038 else
6039 {
6040 imm->X_add_number = bfd_getb32 (data);
6041 offset->X_add_number = bfd_getb32 (data + 4);
6042 }
6043 if (offset->X_add_number == 0)
6044 offset->X_op = O_absent;
6045 }
6046 else
6047 {
6048 imm->X_op = O_constant;
6049 if (!target_big_endian)
6050 imm->X_add_number = bfd_getl64 (data);
6051 else
6052 imm->X_add_number = bfd_getb64 (data);
6053 offset->X_op = O_absent;
6054 }
6055 return TRUE;
6056 }
6057
6058 /* Switch to the right section. */
6059 seg = now_seg;
6060 subseg = now_subseg;
6061 if (length == 4)
6062 {
6063 gas_assert (!using_gprs && g_switch_value >= 4);
6064 newname = ".lit4";
6065 }
6066 else
6067 {
6068 if (using_gprs || g_switch_value < 8)
6069 newname = RDATA_SECTION_NAME;
6070 else
6071 newname = ".lit8";
6072 }
6073
6074 new_seg = subseg_new (newname, (subsegT) 0);
6075 bfd_set_section_flags (stdoutput, new_seg,
6076 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
6077 frag_align (length == 4 ? 2 : 3, 0, 0);
6078 if (strncmp (TARGET_OS, "elf", 3) != 0)
6079 record_alignment (new_seg, 4);
6080 else
6081 record_alignment (new_seg, length == 4 ? 2 : 3);
6082 if (seg == now_seg)
6083 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
6084
6085 /* Set the argument to the current address in the section. */
6086 imm->X_op = O_absent;
6087 offset->X_op = O_symbol;
6088 offset->X_add_symbol = symbol_temp_new_now ();
6089 offset->X_add_number = 0;
6090
6091 /* Put the floating point number into the section. */
6092 p = frag_more (length);
6093 memcpy (p, data, length);
6094
6095 /* Switch back to the original section. */
6096 subseg_set (seg, subseg);
6097 return TRUE;
6098 }
6099
6100 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
6101 them. */
6102
6103 static bfd_boolean
6104 match_vu0_suffix_operand (struct mips_arg_info *arg,
6105 const struct mips_operand *operand,
6106 bfd_boolean match_p)
6107 {
6108 unsigned int uval;
6109
6110 /* The operand can be an XYZW mask or a single 2-bit channel index
6111 (with X being 0). */
6112 gas_assert (operand->size == 2 || operand->size == 4);
6113
6114 /* The suffix can be omitted when it is already part of the opcode. */
6115 if (arg->token->type != OT_CHANNELS)
6116 return match_p;
6117
6118 uval = arg->token->u.channels;
6119 if (operand->size == 2)
6120 {
6121 /* Check that a single bit is set and convert it into a 2-bit index. */
6122 if ((uval & -uval) != uval)
6123 return FALSE;
6124 uval = 4 - ffs (uval);
6125 }
6126
6127 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
6128 return FALSE;
6129
6130 ++arg->token;
6131 if (!match_p)
6132 insn_insert_operand (arg->insn, operand, uval);
6133 return TRUE;
6134 }
6135
6136 /* S is the text seen for ARG. Match it against OPERAND. Return the end
6137 of the argument text if the match is successful, otherwise return null. */
6138
6139 static bfd_boolean
6140 match_operand (struct mips_arg_info *arg,
6141 const struct mips_operand *operand)
6142 {
6143 switch (operand->type)
6144 {
6145 case OP_INT:
6146 return match_int_operand (arg, operand);
6147
6148 case OP_MAPPED_INT:
6149 return match_mapped_int_operand (arg, operand);
6150
6151 case OP_MSB:
6152 return match_msb_operand (arg, operand);
6153
6154 case OP_REG:
6155 case OP_OPTIONAL_REG:
6156 return match_reg_operand (arg, operand);
6157
6158 case OP_REG_PAIR:
6159 return match_reg_pair_operand (arg, operand);
6160
6161 case OP_PCREL:
6162 return match_pcrel_operand (arg);
6163
6164 case OP_PERF_REG:
6165 return match_perf_reg_operand (arg, operand);
6166
6167 case OP_ADDIUSP_INT:
6168 return match_addiusp_operand (arg, operand);
6169
6170 case OP_CLO_CLZ_DEST:
6171 return match_clo_clz_dest_operand (arg, operand);
6172
6173 case OP_LWM_SWM_LIST:
6174 return match_lwm_swm_list_operand (arg, operand);
6175
6176 case OP_ENTRY_EXIT_LIST:
6177 return match_entry_exit_operand (arg, operand);
6178
6179 case OP_SAVE_RESTORE_LIST:
6180 return match_save_restore_list_operand (arg);
6181
6182 case OP_MDMX_IMM_REG:
6183 return match_mdmx_imm_reg_operand (arg, operand);
6184
6185 case OP_REPEAT_DEST_REG:
6186 return match_tied_reg_operand (arg, arg->dest_regno);
6187
6188 case OP_REPEAT_PREV_REG:
6189 return match_tied_reg_operand (arg, arg->last_regno);
6190
6191 case OP_PC:
6192 return match_pc_operand (arg);
6193
6194 case OP_REG28:
6195 return match_reg28_operand (arg);
6196
6197 case OP_VU0_SUFFIX:
6198 return match_vu0_suffix_operand (arg, operand, FALSE);
6199
6200 case OP_VU0_MATCH_SUFFIX:
6201 return match_vu0_suffix_operand (arg, operand, TRUE);
6202
6203 case OP_IMM_INDEX:
6204 return match_imm_index_operand (arg, operand);
6205
6206 case OP_REG_INDEX:
6207 return match_reg_index_operand (arg, operand);
6208
6209 case OP_SAME_RS_RT:
6210 return match_same_rs_rt_operand (arg, operand);
6211
6212 case OP_CHECK_PREV:
6213 return match_check_prev_operand (arg, operand);
6214
6215 case OP_NON_ZERO_REG:
6216 return match_non_zero_reg_operand (arg, operand);
6217 }
6218 abort ();
6219 }
6220
6221 /* ARG is the state after successfully matching an instruction.
6222 Issue any queued-up warnings. */
6223
6224 static void
6225 check_completed_insn (struct mips_arg_info *arg)
6226 {
6227 if (arg->seen_at)
6228 {
6229 if (AT == ATREG)
6230 as_warn (_("used $at without \".set noat\""));
6231 else
6232 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6233 }
6234 }
6235
6236 /* Return true if modifying general-purpose register REG needs a delay. */
6237
6238 static bfd_boolean
6239 reg_needs_delay (unsigned int reg)
6240 {
6241 unsigned long prev_pinfo;
6242
6243 prev_pinfo = history[0].insn_mo->pinfo;
6244 if (!mips_opts.noreorder
6245 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6246 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6247 && (gpr_write_mask (&history[0]) & (1 << reg)))
6248 return TRUE;
6249
6250 return FALSE;
6251 }
6252
6253 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6254 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6255 by VR4120 errata. */
6256
6257 static unsigned int
6258 classify_vr4120_insn (const char *name)
6259 {
6260 if (strncmp (name, "macc", 4) == 0)
6261 return FIX_VR4120_MACC;
6262 if (strncmp (name, "dmacc", 5) == 0)
6263 return FIX_VR4120_DMACC;
6264 if (strncmp (name, "mult", 4) == 0)
6265 return FIX_VR4120_MULT;
6266 if (strncmp (name, "dmult", 5) == 0)
6267 return FIX_VR4120_DMULT;
6268 if (strstr (name, "div"))
6269 return FIX_VR4120_DIV;
6270 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6271 return FIX_VR4120_MTHILO;
6272 return NUM_FIX_VR4120_CLASSES;
6273 }
6274
6275 #define INSN_ERET 0x42000018
6276 #define INSN_DERET 0x4200001f
6277 #define INSN_DMULT 0x1c
6278 #define INSN_DMULTU 0x1d
6279
6280 /* Return the number of instructions that must separate INSN1 and INSN2,
6281 where INSN1 is the earlier instruction. Return the worst-case value
6282 for any INSN2 if INSN2 is null. */
6283
6284 static unsigned int
6285 insns_between (const struct mips_cl_insn *insn1,
6286 const struct mips_cl_insn *insn2)
6287 {
6288 unsigned long pinfo1, pinfo2;
6289 unsigned int mask;
6290
6291 /* If INFO2 is null, pessimistically assume that all flags are set for
6292 the second instruction. */
6293 pinfo1 = insn1->insn_mo->pinfo;
6294 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6295
6296 /* For most targets, write-after-read dependencies on the HI and LO
6297 registers must be separated by at least two instructions. */
6298 if (!hilo_interlocks)
6299 {
6300 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6301 return 2;
6302 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6303 return 2;
6304 }
6305
6306 /* If we're working around r7000 errata, there must be two instructions
6307 between an mfhi or mflo and any instruction that uses the result. */
6308 if (mips_7000_hilo_fix
6309 && !mips_opts.micromips
6310 && MF_HILO_INSN (pinfo1)
6311 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6312 return 2;
6313
6314 /* If we're working around 24K errata, one instruction is required
6315 if an ERET or DERET is followed by a branch instruction. */
6316 if (mips_fix_24k && !mips_opts.micromips)
6317 {
6318 if (insn1->insn_opcode == INSN_ERET
6319 || insn1->insn_opcode == INSN_DERET)
6320 {
6321 if (insn2 == NULL
6322 || insn2->insn_opcode == INSN_ERET
6323 || insn2->insn_opcode == INSN_DERET
6324 || delayed_branch_p (insn2))
6325 return 1;
6326 }
6327 }
6328
6329 /* If we're working around PMC RM7000 errata, there must be three
6330 nops between a dmult and a load instruction. */
6331 if (mips_fix_rm7000 && !mips_opts.micromips)
6332 {
6333 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6334 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6335 {
6336 if (pinfo2 & INSN_LOAD_MEMORY)
6337 return 3;
6338 }
6339 }
6340
6341 /* If working around VR4120 errata, check for combinations that need
6342 a single intervening instruction. */
6343 if (mips_fix_vr4120 && !mips_opts.micromips)
6344 {
6345 unsigned int class1, class2;
6346
6347 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6348 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6349 {
6350 if (insn2 == NULL)
6351 return 1;
6352 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6353 if (vr4120_conflicts[class1] & (1 << class2))
6354 return 1;
6355 }
6356 }
6357
6358 if (!HAVE_CODE_COMPRESSION)
6359 {
6360 /* Check for GPR or coprocessor load delays. All such delays
6361 are on the RT register. */
6362 /* Itbl support may require additional care here. */
6363 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6364 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6365 {
6366 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6367 return 1;
6368 }
6369
6370 /* Check for generic coprocessor hazards.
6371
6372 This case is not handled very well. There is no special
6373 knowledge of CP0 handling, and the coprocessors other than
6374 the floating point unit are not distinguished at all. */
6375 /* Itbl support may require additional care here. FIXME!
6376 Need to modify this to include knowledge about
6377 user specified delays! */
6378 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6379 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6380 {
6381 /* Handle cases where INSN1 writes to a known general coprocessor
6382 register. There must be a one instruction delay before INSN2
6383 if INSN2 reads that register, otherwise no delay is needed. */
6384 mask = fpr_write_mask (insn1);
6385 if (mask != 0)
6386 {
6387 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6388 return 1;
6389 }
6390 else
6391 {
6392 /* Read-after-write dependencies on the control registers
6393 require a two-instruction gap. */
6394 if ((pinfo1 & INSN_WRITE_COND_CODE)
6395 && (pinfo2 & INSN_READ_COND_CODE))
6396 return 2;
6397
6398 /* We don't know exactly what INSN1 does. If INSN2 is
6399 also a coprocessor instruction, assume there must be
6400 a one instruction gap. */
6401 if (pinfo2 & INSN_COP)
6402 return 1;
6403 }
6404 }
6405
6406 /* Check for read-after-write dependencies on the coprocessor
6407 control registers in cases where INSN1 does not need a general
6408 coprocessor delay. This means that INSN1 is a floating point
6409 comparison instruction. */
6410 /* Itbl support may require additional care here. */
6411 else if (!cop_interlocks
6412 && (pinfo1 & INSN_WRITE_COND_CODE)
6413 && (pinfo2 & INSN_READ_COND_CODE))
6414 return 1;
6415 }
6416
6417 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6418 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6419 and pause. */
6420 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6421 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6422 || (insn2 && delayed_branch_p (insn2))))
6423 return 1;
6424
6425 return 0;
6426 }
6427
6428 /* Return the number of nops that would be needed to work around the
6429 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6430 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6431 that are contained within the first IGNORE instructions of HIST. */
6432
6433 static int
6434 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6435 const struct mips_cl_insn *insn)
6436 {
6437 int i, j;
6438 unsigned int mask;
6439
6440 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6441 are not affected by the errata. */
6442 if (insn != 0
6443 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6444 || strcmp (insn->insn_mo->name, "mtlo") == 0
6445 || strcmp (insn->insn_mo->name, "mthi") == 0))
6446 return 0;
6447
6448 /* Search for the first MFLO or MFHI. */
6449 for (i = 0; i < MAX_VR4130_NOPS; i++)
6450 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6451 {
6452 /* Extract the destination register. */
6453 mask = gpr_write_mask (&hist[i]);
6454
6455 /* No nops are needed if INSN reads that register. */
6456 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6457 return 0;
6458
6459 /* ...or if any of the intervening instructions do. */
6460 for (j = 0; j < i; j++)
6461 if (gpr_read_mask (&hist[j]) & mask)
6462 return 0;
6463
6464 if (i >= ignore)
6465 return MAX_VR4130_NOPS - i;
6466 }
6467 return 0;
6468 }
6469
6470 #define BASE_REG_EQ(INSN1, INSN2) \
6471 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6472 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6473
6474 /* Return the minimum alignment for this store instruction. */
6475
6476 static int
6477 fix_24k_align_to (const struct mips_opcode *mo)
6478 {
6479 if (strcmp (mo->name, "sh") == 0)
6480 return 2;
6481
6482 if (strcmp (mo->name, "swc1") == 0
6483 || strcmp (mo->name, "swc2") == 0
6484 || strcmp (mo->name, "sw") == 0
6485 || strcmp (mo->name, "sc") == 0
6486 || strcmp (mo->name, "s.s") == 0)
6487 return 4;
6488
6489 if (strcmp (mo->name, "sdc1") == 0
6490 || strcmp (mo->name, "sdc2") == 0
6491 || strcmp (mo->name, "s.d") == 0)
6492 return 8;
6493
6494 /* sb, swl, swr */
6495 return 1;
6496 }
6497
6498 struct fix_24k_store_info
6499 {
6500 /* Immediate offset, if any, for this store instruction. */
6501 short off;
6502 /* Alignment required by this store instruction. */
6503 int align_to;
6504 /* True for register offsets. */
6505 int register_offset;
6506 };
6507
6508 /* Comparison function used by qsort. */
6509
6510 static int
6511 fix_24k_sort (const void *a, const void *b)
6512 {
6513 const struct fix_24k_store_info *pos1 = a;
6514 const struct fix_24k_store_info *pos2 = b;
6515
6516 return (pos1->off - pos2->off);
6517 }
6518
6519 /* INSN is a store instruction. Try to record the store information
6520 in STINFO. Return false if the information isn't known. */
6521
6522 static bfd_boolean
6523 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6524 const struct mips_cl_insn *insn)
6525 {
6526 /* The instruction must have a known offset. */
6527 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6528 return FALSE;
6529
6530 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6531 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6532 return TRUE;
6533 }
6534
6535 /* Return the number of nops that would be needed to work around the 24k
6536 "lost data on stores during refill" errata if instruction INSN
6537 immediately followed the 2 instructions described by HIST.
6538 Ignore hazards that are contained within the first IGNORE
6539 instructions of HIST.
6540
6541 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6542 for the data cache refills and store data. The following describes
6543 the scenario where the store data could be lost.
6544
6545 * A data cache miss, due to either a load or a store, causing fill
6546 data to be supplied by the memory subsystem
6547 * The first three doublewords of fill data are returned and written
6548 into the cache
6549 * A sequence of four stores occurs in consecutive cycles around the
6550 final doubleword of the fill:
6551 * Store A
6552 * Store B
6553 * Store C
6554 * Zero, One or more instructions
6555 * Store D
6556
6557 The four stores A-D must be to different doublewords of the line that
6558 is being filled. The fourth instruction in the sequence above permits
6559 the fill of the final doubleword to be transferred from the FSB into
6560 the cache. In the sequence above, the stores may be either integer
6561 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6562 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6563 different doublewords on the line. If the floating point unit is
6564 running in 1:2 mode, it is not possible to create the sequence above
6565 using only floating point store instructions.
6566
6567 In this case, the cache line being filled is incorrectly marked
6568 invalid, thereby losing the data from any store to the line that
6569 occurs between the original miss and the completion of the five
6570 cycle sequence shown above.
6571
6572 The workarounds are:
6573
6574 * Run the data cache in write-through mode.
6575 * Insert a non-store instruction between
6576 Store A and Store B or Store B and Store C. */
6577
6578 static int
6579 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6580 const struct mips_cl_insn *insn)
6581 {
6582 struct fix_24k_store_info pos[3];
6583 int align, i, base_offset;
6584
6585 if (ignore >= 2)
6586 return 0;
6587
6588 /* If the previous instruction wasn't a store, there's nothing to
6589 worry about. */
6590 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6591 return 0;
6592
6593 /* If the instructions after the previous one are unknown, we have
6594 to assume the worst. */
6595 if (!insn)
6596 return 1;
6597
6598 /* Check whether we are dealing with three consecutive stores. */
6599 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6600 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6601 return 0;
6602
6603 /* If we don't know the relationship between the store addresses,
6604 assume the worst. */
6605 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6606 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6607 return 1;
6608
6609 if (!fix_24k_record_store_info (&pos[0], insn)
6610 || !fix_24k_record_store_info (&pos[1], &hist[0])
6611 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6612 return 1;
6613
6614 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6615
6616 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6617 X bytes and such that the base register + X is known to be aligned
6618 to align bytes. */
6619
6620 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6621 align = 8;
6622 else
6623 {
6624 align = pos[0].align_to;
6625 base_offset = pos[0].off;
6626 for (i = 1; i < 3; i++)
6627 if (align < pos[i].align_to)
6628 {
6629 align = pos[i].align_to;
6630 base_offset = pos[i].off;
6631 }
6632 for (i = 0; i < 3; i++)
6633 pos[i].off -= base_offset;
6634 }
6635
6636 pos[0].off &= ~align + 1;
6637 pos[1].off &= ~align + 1;
6638 pos[2].off &= ~align + 1;
6639
6640 /* If any two stores write to the same chunk, they also write to the
6641 same doubleword. The offsets are still sorted at this point. */
6642 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6643 return 0;
6644
6645 /* A range of at least 9 bytes is needed for the stores to be in
6646 non-overlapping doublewords. */
6647 if (pos[2].off - pos[0].off <= 8)
6648 return 0;
6649
6650 if (pos[2].off - pos[1].off >= 24
6651 || pos[1].off - pos[0].off >= 24
6652 || pos[2].off - pos[0].off >= 32)
6653 return 0;
6654
6655 return 1;
6656 }
6657
6658 /* Return the number of nops that would be needed if instruction INSN
6659 immediately followed the MAX_NOPS instructions given by HIST,
6660 where HIST[0] is the most recent instruction. Ignore hazards
6661 between INSN and the first IGNORE instructions in HIST.
6662
6663 If INSN is null, return the worse-case number of nops for any
6664 instruction. */
6665
6666 static int
6667 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6668 const struct mips_cl_insn *insn)
6669 {
6670 int i, nops, tmp_nops;
6671
6672 nops = 0;
6673 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6674 {
6675 tmp_nops = insns_between (hist + i, insn) - i;
6676 if (tmp_nops > nops)
6677 nops = tmp_nops;
6678 }
6679
6680 if (mips_fix_vr4130 && !mips_opts.micromips)
6681 {
6682 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6683 if (tmp_nops > nops)
6684 nops = tmp_nops;
6685 }
6686
6687 if (mips_fix_24k && !mips_opts.micromips)
6688 {
6689 tmp_nops = nops_for_24k (ignore, hist, insn);
6690 if (tmp_nops > nops)
6691 nops = tmp_nops;
6692 }
6693
6694 return nops;
6695 }
6696
6697 /* The variable arguments provide NUM_INSNS extra instructions that
6698 might be added to HIST. Return the largest number of nops that
6699 would be needed after the extended sequence, ignoring hazards
6700 in the first IGNORE instructions. */
6701
6702 static int
6703 nops_for_sequence (int num_insns, int ignore,
6704 const struct mips_cl_insn *hist, ...)
6705 {
6706 va_list args;
6707 struct mips_cl_insn buffer[MAX_NOPS];
6708 struct mips_cl_insn *cursor;
6709 int nops;
6710
6711 va_start (args, hist);
6712 cursor = buffer + num_insns;
6713 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6714 while (cursor > buffer)
6715 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6716
6717 nops = nops_for_insn (ignore, buffer, NULL);
6718 va_end (args);
6719 return nops;
6720 }
6721
6722 /* Like nops_for_insn, but if INSN is a branch, take into account the
6723 worst-case delay for the branch target. */
6724
6725 static int
6726 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6727 const struct mips_cl_insn *insn)
6728 {
6729 int nops, tmp_nops;
6730
6731 nops = nops_for_insn (ignore, hist, insn);
6732 if (delayed_branch_p (insn))
6733 {
6734 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6735 hist, insn, get_delay_slot_nop (insn));
6736 if (tmp_nops > nops)
6737 nops = tmp_nops;
6738 }
6739 else if (compact_branch_p (insn))
6740 {
6741 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6742 if (tmp_nops > nops)
6743 nops = tmp_nops;
6744 }
6745 return nops;
6746 }
6747
6748 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6749
6750 static void
6751 fix_loongson2f_nop (struct mips_cl_insn * ip)
6752 {
6753 gas_assert (!HAVE_CODE_COMPRESSION);
6754 if (strcmp (ip->insn_mo->name, "nop") == 0)
6755 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6756 }
6757
6758 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6759 jr target pc &= 'hffff_ffff_cfff_ffff. */
6760
6761 static void
6762 fix_loongson2f_jump (struct mips_cl_insn * ip)
6763 {
6764 gas_assert (!HAVE_CODE_COMPRESSION);
6765 if (strcmp (ip->insn_mo->name, "j") == 0
6766 || strcmp (ip->insn_mo->name, "jr") == 0
6767 || strcmp (ip->insn_mo->name, "jalr") == 0)
6768 {
6769 int sreg;
6770 expressionS ep;
6771
6772 if (! mips_opts.at)
6773 return;
6774
6775 sreg = EXTRACT_OPERAND (0, RS, *ip);
6776 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6777 return;
6778
6779 ep.X_op = O_constant;
6780 ep.X_add_number = 0xcfff0000;
6781 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6782 ep.X_add_number = 0xffff;
6783 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6784 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6785 }
6786 }
6787
6788 static void
6789 fix_loongson2f (struct mips_cl_insn * ip)
6790 {
6791 if (mips_fix_loongson2f_nop)
6792 fix_loongson2f_nop (ip);
6793
6794 if (mips_fix_loongson2f_jump)
6795 fix_loongson2f_jump (ip);
6796 }
6797
6798 /* IP is a branch that has a delay slot, and we need to fill it
6799 automatically. Return true if we can do that by swapping IP
6800 with the previous instruction.
6801 ADDRESS_EXPR is an operand of the instruction to be used with
6802 RELOC_TYPE. */
6803
6804 static bfd_boolean
6805 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6806 bfd_reloc_code_real_type *reloc_type)
6807 {
6808 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6809 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6810 unsigned int fpr_read, prev_fpr_write;
6811
6812 /* -O2 and above is required for this optimization. */
6813 if (mips_optimize < 2)
6814 return FALSE;
6815
6816 /* If we have seen .set volatile or .set nomove, don't optimize. */
6817 if (mips_opts.nomove)
6818 return FALSE;
6819
6820 /* We can't swap if the previous instruction's position is fixed. */
6821 if (history[0].fixed_p)
6822 return FALSE;
6823
6824 /* If the previous previous insn was in a .set noreorder, we can't
6825 swap. Actually, the MIPS assembler will swap in this situation.
6826 However, gcc configured -with-gnu-as will generate code like
6827
6828 .set noreorder
6829 lw $4,XXX
6830 .set reorder
6831 INSN
6832 bne $4,$0,foo
6833
6834 in which we can not swap the bne and INSN. If gcc is not configured
6835 -with-gnu-as, it does not output the .set pseudo-ops. */
6836 if (history[1].noreorder_p)
6837 return FALSE;
6838
6839 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6840 This means that the previous instruction was a 4-byte one anyhow. */
6841 if (mips_opts.mips16 && history[0].fixp[0])
6842 return FALSE;
6843
6844 /* If the branch is itself the target of a branch, we can not swap.
6845 We cheat on this; all we check for is whether there is a label on
6846 this instruction. If there are any branches to anything other than
6847 a label, users must use .set noreorder. */
6848 if (seg_info (now_seg)->label_list)
6849 return FALSE;
6850
6851 /* If the previous instruction is in a variant frag other than this
6852 branch's one, we cannot do the swap. This does not apply to
6853 MIPS16 code, which uses variant frags for different purposes. */
6854 if (!mips_opts.mips16
6855 && history[0].frag
6856 && history[0].frag->fr_type == rs_machine_dependent)
6857 return FALSE;
6858
6859 /* We do not swap with instructions that cannot architecturally
6860 be placed in a branch delay slot, such as SYNC or ERET. We
6861 also refrain from swapping with a trap instruction, since it
6862 complicates trap handlers to have the trap instruction be in
6863 a delay slot. */
6864 prev_pinfo = history[0].insn_mo->pinfo;
6865 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6866 return FALSE;
6867
6868 /* Check for conflicts between the branch and the instructions
6869 before the candidate delay slot. */
6870 if (nops_for_insn (0, history + 1, ip) > 0)
6871 return FALSE;
6872
6873 /* Check for conflicts between the swapped sequence and the
6874 target of the branch. */
6875 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6876 return FALSE;
6877
6878 /* If the branch reads a register that the previous
6879 instruction sets, we can not swap. */
6880 gpr_read = gpr_read_mask (ip);
6881 prev_gpr_write = gpr_write_mask (&history[0]);
6882 if (gpr_read & prev_gpr_write)
6883 return FALSE;
6884
6885 fpr_read = fpr_read_mask (ip);
6886 prev_fpr_write = fpr_write_mask (&history[0]);
6887 if (fpr_read & prev_fpr_write)
6888 return FALSE;
6889
6890 /* If the branch writes a register that the previous
6891 instruction sets, we can not swap. */
6892 gpr_write = gpr_write_mask (ip);
6893 if (gpr_write & prev_gpr_write)
6894 return FALSE;
6895
6896 /* If the branch writes a register that the previous
6897 instruction reads, we can not swap. */
6898 prev_gpr_read = gpr_read_mask (&history[0]);
6899 if (gpr_write & prev_gpr_read)
6900 return FALSE;
6901
6902 /* If one instruction sets a condition code and the
6903 other one uses a condition code, we can not swap. */
6904 pinfo = ip->insn_mo->pinfo;
6905 if ((pinfo & INSN_READ_COND_CODE)
6906 && (prev_pinfo & INSN_WRITE_COND_CODE))
6907 return FALSE;
6908 if ((pinfo & INSN_WRITE_COND_CODE)
6909 && (prev_pinfo & INSN_READ_COND_CODE))
6910 return FALSE;
6911
6912 /* If the previous instruction uses the PC, we can not swap. */
6913 prev_pinfo2 = history[0].insn_mo->pinfo2;
6914 if (prev_pinfo2 & INSN2_READ_PC)
6915 return FALSE;
6916
6917 /* If the previous instruction has an incorrect size for a fixed
6918 branch delay slot in microMIPS mode, we cannot swap. */
6919 pinfo2 = ip->insn_mo->pinfo2;
6920 if (mips_opts.micromips
6921 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6922 && insn_length (history) != 2)
6923 return FALSE;
6924 if (mips_opts.micromips
6925 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6926 && insn_length (history) != 4)
6927 return FALSE;
6928
6929 /* On R5900 short loops need to be fixed by inserting a nop in
6930 the branch delay slots.
6931 A short loop can be terminated too early. */
6932 if (mips_opts.arch == CPU_R5900
6933 /* Check if instruction has a parameter, ignore "j $31". */
6934 && (address_expr != NULL)
6935 /* Parameter must be 16 bit. */
6936 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6937 /* Branch to same segment. */
6938 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
6939 /* Branch to same code fragment. */
6940 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
6941 /* Can only calculate branch offset if value is known. */
6942 && symbol_constant_p (address_expr->X_add_symbol)
6943 /* Check if branch is really conditional. */
6944 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6945 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6946 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6947 {
6948 int distance;
6949 /* Check if loop is shorter than 6 instructions including
6950 branch and delay slot. */
6951 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
6952 if (distance <= 20)
6953 {
6954 int i;
6955 int rv;
6956
6957 rv = FALSE;
6958 /* When the loop includes branches or jumps,
6959 it is not a short loop. */
6960 for (i = 0; i < (distance / 4); i++)
6961 {
6962 if ((history[i].cleared_p)
6963 || delayed_branch_p (&history[i]))
6964 {
6965 rv = TRUE;
6966 break;
6967 }
6968 }
6969 if (!rv)
6970 {
6971 /* Insert nop after branch to fix short loop. */
6972 return FALSE;
6973 }
6974 }
6975 }
6976
6977 return TRUE;
6978 }
6979
6980 /* Decide how we should add IP to the instruction stream.
6981 ADDRESS_EXPR is an operand of the instruction to be used with
6982 RELOC_TYPE. */
6983
6984 static enum append_method
6985 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6986 bfd_reloc_code_real_type *reloc_type)
6987 {
6988 /* The relaxed version of a macro sequence must be inherently
6989 hazard-free. */
6990 if (mips_relax.sequence == 2)
6991 return APPEND_ADD;
6992
6993 /* We must not dabble with instructions in a ".set noreorder" block. */
6994 if (mips_opts.noreorder)
6995 return APPEND_ADD;
6996
6997 /* Otherwise, it's our responsibility to fill branch delay slots. */
6998 if (delayed_branch_p (ip))
6999 {
7000 if (!branch_likely_p (ip)
7001 && can_swap_branch_p (ip, address_expr, reloc_type))
7002 return APPEND_SWAP;
7003
7004 if (mips_opts.mips16
7005 && ISA_SUPPORTS_MIPS16E
7006 && gpr_read_mask (ip) != 0)
7007 return APPEND_ADD_COMPACT;
7008
7009 if (mips_opts.micromips
7010 && ((ip->insn_opcode & 0xffe0) == 0x4580
7011 || (!forced_insn_length
7012 && ((ip->insn_opcode & 0xfc00) == 0xcc00
7013 || (ip->insn_opcode & 0xdc00) == 0x8c00))
7014 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
7015 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
7016 return APPEND_ADD_COMPACT;
7017
7018 return APPEND_ADD_WITH_NOP;
7019 }
7020
7021 return APPEND_ADD;
7022 }
7023
7024 /* IP is an instruction whose opcode we have just changed, END points
7025 to the end of the opcode table processed. Point IP->insn_mo to the
7026 new opcode's definition. */
7027
7028 static void
7029 find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
7030 {
7031 const struct mips_opcode *mo;
7032
7033 for (mo = ip->insn_mo; mo < end; mo++)
7034 if (mo->pinfo != INSN_MACRO
7035 && (ip->insn_opcode & mo->mask) == mo->match)
7036 {
7037 ip->insn_mo = mo;
7038 return;
7039 }
7040 abort ();
7041 }
7042
7043 /* IP is a MIPS16 instruction whose opcode we have just changed.
7044 Point IP->insn_mo to the new opcode's definition. */
7045
7046 static void
7047 find_altered_mips16_opcode (struct mips_cl_insn *ip)
7048 {
7049 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
7050 }
7051
7052 /* IP is a microMIPS instruction whose opcode we have just changed.
7053 Point IP->insn_mo to the new opcode's definition. */
7054
7055 static void
7056 find_altered_micromips_opcode (struct mips_cl_insn *ip)
7057 {
7058 find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
7059 }
7060
7061 /* For microMIPS macros, we need to generate a local number label
7062 as the target of branches. */
7063 #define MICROMIPS_LABEL_CHAR '\037'
7064 static unsigned long micromips_target_label;
7065 static char micromips_target_name[32];
7066
7067 static char *
7068 micromips_label_name (void)
7069 {
7070 char *p = micromips_target_name;
7071 char symbol_name_temporary[24];
7072 unsigned long l;
7073 int i;
7074
7075 if (*p)
7076 return p;
7077
7078 i = 0;
7079 l = micromips_target_label;
7080 #ifdef LOCAL_LABEL_PREFIX
7081 *p++ = LOCAL_LABEL_PREFIX;
7082 #endif
7083 *p++ = 'L';
7084 *p++ = MICROMIPS_LABEL_CHAR;
7085 do
7086 {
7087 symbol_name_temporary[i++] = l % 10 + '0';
7088 l /= 10;
7089 }
7090 while (l != 0);
7091 while (i > 0)
7092 *p++ = symbol_name_temporary[--i];
7093 *p = '\0';
7094
7095 return micromips_target_name;
7096 }
7097
7098 static void
7099 micromips_label_expr (expressionS *label_expr)
7100 {
7101 label_expr->X_op = O_symbol;
7102 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
7103 label_expr->X_add_number = 0;
7104 }
7105
7106 static void
7107 micromips_label_inc (void)
7108 {
7109 micromips_target_label++;
7110 *micromips_target_name = '\0';
7111 }
7112
7113 static void
7114 micromips_add_label (void)
7115 {
7116 symbolS *s;
7117
7118 s = colon (micromips_label_name ());
7119 micromips_label_inc ();
7120 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
7121 }
7122
7123 /* If assembling microMIPS code, then return the microMIPS reloc
7124 corresponding to the requested one if any. Otherwise return
7125 the reloc unchanged. */
7126
7127 static bfd_reloc_code_real_type
7128 micromips_map_reloc (bfd_reloc_code_real_type reloc)
7129 {
7130 static const bfd_reloc_code_real_type relocs[][2] =
7131 {
7132 /* Keep sorted incrementally by the left-hand key. */
7133 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
7134 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
7135 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
7136 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
7137 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
7138 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
7139 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
7140 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
7141 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
7142 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
7143 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
7144 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
7145 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
7146 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
7147 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
7148 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
7149 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
7150 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
7151 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
7152 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
7153 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
7154 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
7155 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
7156 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
7157 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
7158 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
7159 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
7160 };
7161 bfd_reloc_code_real_type r;
7162 size_t i;
7163
7164 if (!mips_opts.micromips)
7165 return reloc;
7166 for (i = 0; i < ARRAY_SIZE (relocs); i++)
7167 {
7168 r = relocs[i][0];
7169 if (r > reloc)
7170 return reloc;
7171 if (r == reloc)
7172 return relocs[i][1];
7173 }
7174 return reloc;
7175 }
7176
7177 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7178 Return true on success, storing the resolved value in RESULT. */
7179
7180 static bfd_boolean
7181 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7182 offsetT *result)
7183 {
7184 switch (reloc)
7185 {
7186 case BFD_RELOC_MIPS_HIGHEST:
7187 case BFD_RELOC_MICROMIPS_HIGHEST:
7188 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7189 return TRUE;
7190
7191 case BFD_RELOC_MIPS_HIGHER:
7192 case BFD_RELOC_MICROMIPS_HIGHER:
7193 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7194 return TRUE;
7195
7196 case BFD_RELOC_HI16_S:
7197 case BFD_RELOC_HI16_S_PCREL:
7198 case BFD_RELOC_MICROMIPS_HI16_S:
7199 case BFD_RELOC_MIPS16_HI16_S:
7200 *result = ((operand + 0x8000) >> 16) & 0xffff;
7201 return TRUE;
7202
7203 case BFD_RELOC_HI16:
7204 case BFD_RELOC_MICROMIPS_HI16:
7205 case BFD_RELOC_MIPS16_HI16:
7206 *result = (operand >> 16) & 0xffff;
7207 return TRUE;
7208
7209 case BFD_RELOC_LO16:
7210 case BFD_RELOC_LO16_PCREL:
7211 case BFD_RELOC_MICROMIPS_LO16:
7212 case BFD_RELOC_MIPS16_LO16:
7213 *result = operand & 0xffff;
7214 return TRUE;
7215
7216 case BFD_RELOC_UNUSED:
7217 *result = operand;
7218 return TRUE;
7219
7220 default:
7221 return FALSE;
7222 }
7223 }
7224
7225 /* Output an instruction. IP is the instruction information.
7226 ADDRESS_EXPR is an operand of the instruction to be used with
7227 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7228 a macro expansion. */
7229
7230 static void
7231 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7232 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7233 {
7234 unsigned long prev_pinfo2, pinfo;
7235 bfd_boolean relaxed_branch = FALSE;
7236 enum append_method method;
7237 bfd_boolean relax32;
7238 int branch_disp;
7239
7240 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7241 fix_loongson2f (ip);
7242
7243 file_ase_mips16 |= mips_opts.mips16;
7244 file_ase_micromips |= mips_opts.micromips;
7245
7246 prev_pinfo2 = history[0].insn_mo->pinfo2;
7247 pinfo = ip->insn_mo->pinfo;
7248
7249 /* Don't raise alarm about `nods' frags as they'll fill in the right
7250 kind of nop in relaxation if required. */
7251 if (mips_opts.micromips
7252 && !expansionp
7253 && !(history[0].frag
7254 && history[0].frag->fr_type == rs_machine_dependent
7255 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7256 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
7257 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7258 && micromips_insn_length (ip->insn_mo) != 2)
7259 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7260 && micromips_insn_length (ip->insn_mo) != 4)))
7261 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7262 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7263
7264 if (address_expr == NULL)
7265 ip->complete_p = 1;
7266 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7267 && reloc_type[1] == BFD_RELOC_UNUSED
7268 && reloc_type[2] == BFD_RELOC_UNUSED
7269 && address_expr->X_op == O_constant)
7270 {
7271 switch (*reloc_type)
7272 {
7273 case BFD_RELOC_MIPS_JMP:
7274 {
7275 int shift;
7276
7277 /* Shift is 2, unusually, for microMIPS JALX. */
7278 shift = (mips_opts.micromips
7279 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
7280 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7281 as_bad (_("jump to misaligned address (0x%lx)"),
7282 (unsigned long) address_expr->X_add_number);
7283 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7284 & 0x3ffffff);
7285 ip->complete_p = 1;
7286 }
7287 break;
7288
7289 case BFD_RELOC_MIPS16_JMP:
7290 if ((address_expr->X_add_number & 3) != 0)
7291 as_bad (_("jump to misaligned address (0x%lx)"),
7292 (unsigned long) address_expr->X_add_number);
7293 ip->insn_opcode |=
7294 (((address_expr->X_add_number & 0x7c0000) << 3)
7295 | ((address_expr->X_add_number & 0xf800000) >> 7)
7296 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7297 ip->complete_p = 1;
7298 break;
7299
7300 case BFD_RELOC_16_PCREL_S2:
7301 {
7302 int shift;
7303
7304 shift = mips_opts.micromips ? 1 : 2;
7305 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7306 as_bad (_("branch to misaligned address (0x%lx)"),
7307 (unsigned long) address_expr->X_add_number);
7308 if (!mips_relax_branch)
7309 {
7310 if ((address_expr->X_add_number + (1 << (shift + 15)))
7311 & ~((1 << (shift + 16)) - 1))
7312 as_bad (_("branch address range overflow (0x%lx)"),
7313 (unsigned long) address_expr->X_add_number);
7314 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7315 & 0xffff);
7316 }
7317 }
7318 break;
7319
7320 case BFD_RELOC_MIPS_21_PCREL_S2:
7321 {
7322 int shift;
7323
7324 shift = 2;
7325 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7326 as_bad (_("branch to misaligned address (0x%lx)"),
7327 (unsigned long) address_expr->X_add_number);
7328 if ((address_expr->X_add_number + (1 << (shift + 20)))
7329 & ~((1 << (shift + 21)) - 1))
7330 as_bad (_("branch address range overflow (0x%lx)"),
7331 (unsigned long) address_expr->X_add_number);
7332 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7333 & 0x1fffff);
7334 }
7335 break;
7336
7337 case BFD_RELOC_MIPS_26_PCREL_S2:
7338 {
7339 int shift;
7340
7341 shift = 2;
7342 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7343 as_bad (_("branch to misaligned address (0x%lx)"),
7344 (unsigned long) address_expr->X_add_number);
7345 if ((address_expr->X_add_number + (1 << (shift + 25)))
7346 & ~((1 << (shift + 26)) - 1))
7347 as_bad (_("branch address range overflow (0x%lx)"),
7348 (unsigned long) address_expr->X_add_number);
7349 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7350 & 0x3ffffff);
7351 }
7352 break;
7353
7354 default:
7355 {
7356 offsetT value;
7357
7358 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7359 &value))
7360 {
7361 ip->insn_opcode |= value & 0xffff;
7362 ip->complete_p = 1;
7363 }
7364 }
7365 break;
7366 }
7367 }
7368
7369 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7370 {
7371 /* There are a lot of optimizations we could do that we don't.
7372 In particular, we do not, in general, reorder instructions.
7373 If you use gcc with optimization, it will reorder
7374 instructions and generally do much more optimization then we
7375 do here; repeating all that work in the assembler would only
7376 benefit hand written assembly code, and does not seem worth
7377 it. */
7378 int nops = (mips_optimize == 0
7379 ? nops_for_insn (0, history, NULL)
7380 : nops_for_insn_or_target (0, history, ip));
7381 if (nops > 0)
7382 {
7383 fragS *old_frag;
7384 unsigned long old_frag_offset;
7385 int i;
7386
7387 old_frag = frag_now;
7388 old_frag_offset = frag_now_fix ();
7389
7390 for (i = 0; i < nops; i++)
7391 add_fixed_insn (NOP_INSN);
7392 insert_into_history (0, nops, NOP_INSN);
7393
7394 if (listing)
7395 {
7396 listing_prev_line ();
7397 /* We may be at the start of a variant frag. In case we
7398 are, make sure there is enough space for the frag
7399 after the frags created by listing_prev_line. The
7400 argument to frag_grow here must be at least as large
7401 as the argument to all other calls to frag_grow in
7402 this file. We don't have to worry about being in the
7403 middle of a variant frag, because the variants insert
7404 all needed nop instructions themselves. */
7405 frag_grow (40);
7406 }
7407
7408 mips_move_text_labels ();
7409
7410 #ifndef NO_ECOFF_DEBUGGING
7411 if (ECOFF_DEBUGGING)
7412 ecoff_fix_loc (old_frag, old_frag_offset);
7413 #endif
7414 }
7415 }
7416 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7417 {
7418 int nops;
7419
7420 /* Work out how many nops in prev_nop_frag are needed by IP,
7421 ignoring hazards generated by the first prev_nop_frag_since
7422 instructions. */
7423 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7424 gas_assert (nops <= prev_nop_frag_holds);
7425
7426 /* Enforce NOPS as a minimum. */
7427 if (nops > prev_nop_frag_required)
7428 prev_nop_frag_required = nops;
7429
7430 if (prev_nop_frag_holds == prev_nop_frag_required)
7431 {
7432 /* Settle for the current number of nops. Update the history
7433 accordingly (for the benefit of any future .set reorder code). */
7434 prev_nop_frag = NULL;
7435 insert_into_history (prev_nop_frag_since,
7436 prev_nop_frag_holds, NOP_INSN);
7437 }
7438 else
7439 {
7440 /* Allow this instruction to replace one of the nops that was
7441 tentatively added to prev_nop_frag. */
7442 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7443 prev_nop_frag_holds--;
7444 prev_nop_frag_since++;
7445 }
7446 }
7447
7448 method = get_append_method (ip, address_expr, reloc_type);
7449 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7450
7451 dwarf2_emit_insn (0);
7452 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7453 so "move" the instruction address accordingly.
7454
7455 Also, it doesn't seem appropriate for the assembler to reorder .loc
7456 entries. If this instruction is a branch that we are going to swap
7457 with the previous instruction, the two instructions should be
7458 treated as a unit, and the debug information for both instructions
7459 should refer to the start of the branch sequence. Using the
7460 current position is certainly wrong when swapping a 32-bit branch
7461 and a 16-bit delay slot, since the current position would then be
7462 in the middle of a branch. */
7463 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7464
7465 relax32 = (mips_relax_branch
7466 /* Don't try branch relaxation within .set nomacro, or within
7467 .set noat if we use $at for PIC computations. If it turns
7468 out that the branch was out-of-range, we'll get an error. */
7469 && !mips_opts.warn_about_macros
7470 && (mips_opts.at || mips_pic == NO_PIC)
7471 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7472 as they have no complementing branches. */
7473 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7474
7475 if (!HAVE_CODE_COMPRESSION
7476 && address_expr
7477 && relax32
7478 && *reloc_type == BFD_RELOC_16_PCREL_S2
7479 && delayed_branch_p (ip))
7480 {
7481 relaxed_branch = TRUE;
7482 add_relaxed_insn (ip, (relaxed_branch_length
7483 (NULL, NULL,
7484 uncond_branch_p (ip) ? -1
7485 : branch_likely_p (ip) ? 1
7486 : 0)), 4,
7487 RELAX_BRANCH_ENCODE
7488 (AT, mips_pic != NO_PIC,
7489 uncond_branch_p (ip),
7490 branch_likely_p (ip),
7491 pinfo & INSN_WRITE_GPR_31,
7492 0),
7493 address_expr->X_add_symbol,
7494 address_expr->X_add_number);
7495 *reloc_type = BFD_RELOC_UNUSED;
7496 }
7497 else if (mips_opts.micromips
7498 && address_expr
7499 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7500 || *reloc_type > BFD_RELOC_UNUSED)
7501 && (delayed_branch_p (ip) || compact_branch_p (ip))
7502 /* Don't try branch relaxation when users specify
7503 16-bit/32-bit instructions. */
7504 && !forced_insn_length)
7505 {
7506 bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
7507 && *reloc_type > BFD_RELOC_UNUSED);
7508 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7509 int uncond = uncond_branch_p (ip) ? -1 : 0;
7510 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7511 int nods = method == APPEND_ADD_WITH_NOP;
7512 int al = pinfo & INSN_WRITE_GPR_31;
7513 int length32 = nods ? 8 : 4;
7514
7515 gas_assert (address_expr != NULL);
7516 gas_assert (!mips_relax.sequence);
7517
7518 relaxed_branch = TRUE;
7519 if (nods)
7520 method = APPEND_ADD;
7521 if (relax32)
7522 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7523 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
7524 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
7525 mips_pic != NO_PIC,
7526 uncond, compact, al, nods,
7527 relax32, 0, 0),
7528 address_expr->X_add_symbol,
7529 address_expr->X_add_number);
7530 *reloc_type = BFD_RELOC_UNUSED;
7531 }
7532 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7533 {
7534 bfd_boolean require_unextended;
7535 bfd_boolean require_extended;
7536 symbolS *symbol;
7537 offsetT offset;
7538
7539 if (forced_insn_length != 0)
7540 {
7541 require_unextended = forced_insn_length == 2;
7542 require_extended = forced_insn_length == 4;
7543 }
7544 else
7545 {
7546 require_unextended = (mips_opts.noautoextend
7547 && !mips_opcode_32bit_p (ip->insn_mo));
7548 require_extended = 0;
7549 }
7550
7551 /* We need to set up a variant frag. */
7552 gas_assert (address_expr != NULL);
7553 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7554 symbol created by `make_expr_symbol' may not get a necessary
7555 external relocation produced. */
7556 if (address_expr->X_op == O_symbol)
7557 {
7558 symbol = address_expr->X_add_symbol;
7559 offset = address_expr->X_add_number;
7560 }
7561 else
7562 {
7563 symbol = make_expr_symbol (address_expr);
7564 symbol_append (symbol, symbol_lastP, &symbol_rootP, &symbol_lastP);
7565 offset = 0;
7566 }
7567 add_relaxed_insn (ip, 12, 0,
7568 RELAX_MIPS16_ENCODE
7569 (*reloc_type - BFD_RELOC_UNUSED,
7570 mips_opts.ase & ASE_MIPS16E2,
7571 mips_pic != NO_PIC,
7572 HAVE_32BIT_SYMBOLS,
7573 mips_opts.warn_about_macros,
7574 require_unextended, require_extended,
7575 delayed_branch_p (&history[0]),
7576 history[0].mips16_absolute_jump_p),
7577 symbol, offset);
7578 }
7579 else if (mips_opts.mips16 && insn_length (ip) == 2)
7580 {
7581 if (!delayed_branch_p (ip))
7582 /* Make sure there is enough room to swap this instruction with
7583 a following jump instruction. */
7584 frag_grow (6);
7585 add_fixed_insn (ip);
7586 }
7587 else
7588 {
7589 if (mips_opts.mips16
7590 && mips_opts.noreorder
7591 && delayed_branch_p (&history[0]))
7592 as_warn (_("extended instruction in delay slot"));
7593
7594 if (mips_relax.sequence)
7595 {
7596 /* If we've reached the end of this frag, turn it into a variant
7597 frag and record the information for the instructions we've
7598 written so far. */
7599 if (frag_room () < 4)
7600 relax_close_frag ();
7601 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7602 }
7603
7604 if (mips_relax.sequence != 2)
7605 {
7606 if (mips_macro_warning.first_insn_sizes[0] == 0)
7607 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7608 mips_macro_warning.sizes[0] += insn_length (ip);
7609 mips_macro_warning.insns[0]++;
7610 }
7611 if (mips_relax.sequence != 1)
7612 {
7613 if (mips_macro_warning.first_insn_sizes[1] == 0)
7614 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7615 mips_macro_warning.sizes[1] += insn_length (ip);
7616 mips_macro_warning.insns[1]++;
7617 }
7618
7619 if (mips_opts.mips16)
7620 {
7621 ip->fixed_p = 1;
7622 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7623 }
7624 add_fixed_insn (ip);
7625 }
7626
7627 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7628 {
7629 bfd_reloc_code_real_type final_type[3];
7630 reloc_howto_type *howto0;
7631 reloc_howto_type *howto;
7632 int i;
7633
7634 /* Perform any necessary conversion to microMIPS relocations
7635 and find out how many relocations there actually are. */
7636 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7637 final_type[i] = micromips_map_reloc (reloc_type[i]);
7638
7639 /* In a compound relocation, it is the final (outermost)
7640 operator that determines the relocated field. */
7641 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7642 if (!howto)
7643 abort ();
7644
7645 if (i > 1)
7646 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7647 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7648 bfd_get_reloc_size (howto),
7649 address_expr,
7650 howto0 && howto0->pc_relative,
7651 final_type[0]);
7652 /* Record non-PIC mode in `fx_tcbit2' for `md_apply_fix'. */
7653 ip->fixp[0]->fx_tcbit2 = mips_pic == NO_PIC;
7654
7655 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7656 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7657 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7658
7659 /* These relocations can have an addend that won't fit in
7660 4 octets for 64bit assembly. */
7661 if (GPR_SIZE == 64
7662 && ! howto->partial_inplace
7663 && (reloc_type[0] == BFD_RELOC_16
7664 || reloc_type[0] == BFD_RELOC_32
7665 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7666 || reloc_type[0] == BFD_RELOC_GPREL16
7667 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7668 || reloc_type[0] == BFD_RELOC_GPREL32
7669 || reloc_type[0] == BFD_RELOC_64
7670 || reloc_type[0] == BFD_RELOC_CTOR
7671 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7672 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7673 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7674 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7675 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7676 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7677 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7678 || hi16_reloc_p (reloc_type[0])
7679 || lo16_reloc_p (reloc_type[0])))
7680 ip->fixp[0]->fx_no_overflow = 1;
7681
7682 /* These relocations can have an addend that won't fit in 2 octets. */
7683 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7684 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7685 ip->fixp[0]->fx_no_overflow = 1;
7686
7687 if (mips_relax.sequence)
7688 {
7689 if (mips_relax.first_fixup == 0)
7690 mips_relax.first_fixup = ip->fixp[0];
7691 }
7692 else if (reloc_needs_lo_p (*reloc_type))
7693 {
7694 struct mips_hi_fixup *hi_fixup;
7695
7696 /* Reuse the last entry if it already has a matching %lo. */
7697 hi_fixup = mips_hi_fixup_list;
7698 if (hi_fixup == 0
7699 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7700 {
7701 hi_fixup = XNEW (struct mips_hi_fixup);
7702 hi_fixup->next = mips_hi_fixup_list;
7703 mips_hi_fixup_list = hi_fixup;
7704 }
7705 hi_fixup->fixp = ip->fixp[0];
7706 hi_fixup->seg = now_seg;
7707 }
7708
7709 /* Add fixups for the second and third relocations, if given.
7710 Note that the ABI allows the second relocation to be
7711 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7712 moment we only use RSS_UNDEF, but we could add support
7713 for the others if it ever becomes necessary. */
7714 for (i = 1; i < 3; i++)
7715 if (reloc_type[i] != BFD_RELOC_UNUSED)
7716 {
7717 ip->fixp[i] = fix_new (ip->frag, ip->where,
7718 ip->fixp[0]->fx_size, NULL, 0,
7719 FALSE, final_type[i]);
7720
7721 /* Use fx_tcbit to mark compound relocs. */
7722 ip->fixp[0]->fx_tcbit = 1;
7723 ip->fixp[i]->fx_tcbit = 1;
7724 }
7725 }
7726
7727 /* Update the register mask information. */
7728 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7729 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7730
7731 switch (method)
7732 {
7733 case APPEND_ADD:
7734 insert_into_history (0, 1, ip);
7735 break;
7736
7737 case APPEND_ADD_WITH_NOP:
7738 {
7739 struct mips_cl_insn *nop;
7740
7741 insert_into_history (0, 1, ip);
7742 nop = get_delay_slot_nop (ip);
7743 add_fixed_insn (nop);
7744 insert_into_history (0, 1, nop);
7745 if (mips_relax.sequence)
7746 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7747 }
7748 break;
7749
7750 case APPEND_ADD_COMPACT:
7751 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7752 if (mips_opts.mips16)
7753 {
7754 ip->insn_opcode |= 0x0080;
7755 find_altered_mips16_opcode (ip);
7756 }
7757 /* Convert microMIPS instructions. */
7758 else if (mips_opts.micromips)
7759 {
7760 /* jr16->jrc */
7761 if ((ip->insn_opcode & 0xffe0) == 0x4580)
7762 ip->insn_opcode |= 0x0020;
7763 /* b16->bc */
7764 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
7765 ip->insn_opcode = 0x40e00000;
7766 /* beqz16->beqzc, bnez16->bnezc */
7767 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
7768 {
7769 unsigned long regno;
7770
7771 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
7772 regno &= MICROMIPSOP_MASK_MD;
7773 regno = micromips_to_32_reg_d_map[regno];
7774 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
7775 | (regno << MICROMIPSOP_SH_RS)
7776 | 0x40a00000) ^ 0x00400000;
7777 }
7778 /* beqz->beqzc, bnez->bnezc */
7779 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
7780 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
7781 | ((ip->insn_opcode >> 7) & 0x00400000)
7782 | 0x40a00000) ^ 0x00400000;
7783 /* beq $0->beqzc, bne $0->bnezc */
7784 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
7785 ip->insn_opcode = (((ip->insn_opcode >>
7786 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
7787 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
7788 | ((ip->insn_opcode >> 7) & 0x00400000)
7789 | 0x40a00000) ^ 0x00400000;
7790 else
7791 abort ();
7792 find_altered_micromips_opcode (ip);
7793 }
7794 else
7795 abort ();
7796 install_insn (ip);
7797 insert_into_history (0, 1, ip);
7798 break;
7799
7800 case APPEND_SWAP:
7801 {
7802 struct mips_cl_insn delay = history[0];
7803
7804 if (relaxed_branch || delay.frag != ip->frag)
7805 {
7806 /* Add the delay slot instruction to the end of the
7807 current frag and shrink the fixed part of the
7808 original frag. If the branch occupies the tail of
7809 the latter, move it backwards to cover the gap. */
7810 delay.frag->fr_fix -= branch_disp;
7811 if (delay.frag == ip->frag)
7812 move_insn (ip, ip->frag, ip->where - branch_disp);
7813 add_fixed_insn (&delay);
7814 }
7815 else
7816 {
7817 /* If this is not a relaxed branch and we are in the
7818 same frag, then just swap the instructions. */
7819 move_insn (ip, delay.frag, delay.where);
7820 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7821 }
7822 history[0] = *ip;
7823 delay.fixed_p = 1;
7824 insert_into_history (0, 1, &delay);
7825 }
7826 break;
7827 }
7828
7829 /* If we have just completed an unconditional branch, clear the history. */
7830 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7831 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7832 {
7833 unsigned int i;
7834
7835 mips_no_prev_insn ();
7836
7837 for (i = 0; i < ARRAY_SIZE (history); i++)
7838 history[i].cleared_p = 1;
7839 }
7840
7841 /* We need to emit a label at the end of branch-likely macros. */
7842 if (emit_branch_likely_macro)
7843 {
7844 emit_branch_likely_macro = FALSE;
7845 micromips_add_label ();
7846 }
7847
7848 /* We just output an insn, so the next one doesn't have a label. */
7849 mips_clear_insn_labels ();
7850 }
7851
7852 /* Forget that there was any previous instruction or label.
7853 When BRANCH is true, the branch history is also flushed. */
7854
7855 static void
7856 mips_no_prev_insn (void)
7857 {
7858 prev_nop_frag = NULL;
7859 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7860 mips_clear_insn_labels ();
7861 }
7862
7863 /* This function must be called before we emit something other than
7864 instructions. It is like mips_no_prev_insn except that it inserts
7865 any NOPS that might be needed by previous instructions. */
7866
7867 void
7868 mips_emit_delays (void)
7869 {
7870 if (! mips_opts.noreorder)
7871 {
7872 int nops = nops_for_insn (0, history, NULL);
7873 if (nops > 0)
7874 {
7875 while (nops-- > 0)
7876 add_fixed_insn (NOP_INSN);
7877 mips_move_text_labels ();
7878 }
7879 }
7880 mips_no_prev_insn ();
7881 }
7882
7883 /* Start a (possibly nested) noreorder block. */
7884
7885 static void
7886 start_noreorder (void)
7887 {
7888 if (mips_opts.noreorder == 0)
7889 {
7890 unsigned int i;
7891 int nops;
7892
7893 /* None of the instructions before the .set noreorder can be moved. */
7894 for (i = 0; i < ARRAY_SIZE (history); i++)
7895 history[i].fixed_p = 1;
7896
7897 /* Insert any nops that might be needed between the .set noreorder
7898 block and the previous instructions. We will later remove any
7899 nops that turn out not to be needed. */
7900 nops = nops_for_insn (0, history, NULL);
7901 if (nops > 0)
7902 {
7903 if (mips_optimize != 0)
7904 {
7905 /* Record the frag which holds the nop instructions, so
7906 that we can remove them if we don't need them. */
7907 frag_grow (nops * NOP_INSN_SIZE);
7908 prev_nop_frag = frag_now;
7909 prev_nop_frag_holds = nops;
7910 prev_nop_frag_required = 0;
7911 prev_nop_frag_since = 0;
7912 }
7913
7914 for (; nops > 0; --nops)
7915 add_fixed_insn (NOP_INSN);
7916
7917 /* Move on to a new frag, so that it is safe to simply
7918 decrease the size of prev_nop_frag. */
7919 frag_wane (frag_now);
7920 frag_new (0);
7921 mips_move_text_labels ();
7922 }
7923 mips_mark_labels ();
7924 mips_clear_insn_labels ();
7925 }
7926 mips_opts.noreorder++;
7927 mips_any_noreorder = 1;
7928 }
7929
7930 /* End a nested noreorder block. */
7931
7932 static void
7933 end_noreorder (void)
7934 {
7935 mips_opts.noreorder--;
7936 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7937 {
7938 /* Commit to inserting prev_nop_frag_required nops and go back to
7939 handling nop insertion the .set reorder way. */
7940 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7941 * NOP_INSN_SIZE);
7942 insert_into_history (prev_nop_frag_since,
7943 prev_nop_frag_required, NOP_INSN);
7944 prev_nop_frag = NULL;
7945 }
7946 }
7947
7948 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7949 higher bits unset. */
7950
7951 static void
7952 normalize_constant_expr (expressionS *ex)
7953 {
7954 if (ex->X_op == O_constant
7955 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7956 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7957 - 0x80000000);
7958 }
7959
7960 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7961 all higher bits unset. */
7962
7963 static void
7964 normalize_address_expr (expressionS *ex)
7965 {
7966 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7967 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7968 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7969 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7970 - 0x80000000);
7971 }
7972
7973 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7974 Return true if the match was successful.
7975
7976 OPCODE_EXTRA is a value that should be ORed into the opcode
7977 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7978 there are more alternatives after OPCODE and SOFT_MATCH is
7979 as for mips_arg_info. */
7980
7981 static bfd_boolean
7982 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7983 struct mips_operand_token *tokens, unsigned int opcode_extra,
7984 bfd_boolean lax_match, bfd_boolean complete_p)
7985 {
7986 const char *args;
7987 struct mips_arg_info arg;
7988 const struct mips_operand *operand;
7989 char c;
7990
7991 imm_expr.X_op = O_absent;
7992 offset_expr.X_op = O_absent;
7993 offset_reloc[0] = BFD_RELOC_UNUSED;
7994 offset_reloc[1] = BFD_RELOC_UNUSED;
7995 offset_reloc[2] = BFD_RELOC_UNUSED;
7996
7997 create_insn (insn, opcode);
7998 /* When no opcode suffix is specified, assume ".xyzw". */
7999 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
8000 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
8001 else
8002 insn->insn_opcode |= opcode_extra;
8003 memset (&arg, 0, sizeof (arg));
8004 arg.insn = insn;
8005 arg.token = tokens;
8006 arg.argnum = 1;
8007 arg.last_regno = ILLEGAL_REG;
8008 arg.dest_regno = ILLEGAL_REG;
8009 arg.lax_match = lax_match;
8010 for (args = opcode->args;; ++args)
8011 {
8012 if (arg.token->type == OT_END)
8013 {
8014 /* Handle unary instructions in which only one operand is given.
8015 The source is then the same as the destination. */
8016 if (arg.opnum == 1 && *args == ',')
8017 {
8018 operand = (mips_opts.micromips
8019 ? decode_micromips_operand (args + 1)
8020 : decode_mips_operand (args + 1));
8021 if (operand && mips_optional_operand_p (operand))
8022 {
8023 arg.token = tokens;
8024 arg.argnum = 1;
8025 continue;
8026 }
8027 }
8028
8029 /* Treat elided base registers as $0. */
8030 if (strcmp (args, "(b)") == 0)
8031 args += 3;
8032
8033 if (args[0] == '+')
8034 switch (args[1])
8035 {
8036 case 'K':
8037 case 'N':
8038 /* The register suffix is optional. */
8039 args += 2;
8040 break;
8041 }
8042
8043 /* Fail the match if there were too few operands. */
8044 if (*args)
8045 return FALSE;
8046
8047 /* Successful match. */
8048 if (!complete_p)
8049 return TRUE;
8050 clear_insn_error ();
8051 if (arg.dest_regno == arg.last_regno
8052 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
8053 {
8054 if (arg.opnum == 2)
8055 set_insn_error
8056 (0, _("source and destination must be different"));
8057 else if (arg.last_regno == 31)
8058 set_insn_error
8059 (0, _("a destination register must be supplied"));
8060 }
8061 else if (arg.last_regno == 31
8062 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
8063 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
8064 set_insn_error (0, _("the source register must not be $31"));
8065 check_completed_insn (&arg);
8066 return TRUE;
8067 }
8068
8069 /* Fail the match if the line has too many operands. */
8070 if (*args == 0)
8071 return FALSE;
8072
8073 /* Handle characters that need to match exactly. */
8074 if (*args == '(' || *args == ')' || *args == ',')
8075 {
8076 if (match_char (&arg, *args))
8077 continue;
8078 return FALSE;
8079 }
8080 if (*args == '#')
8081 {
8082 ++args;
8083 if (arg.token->type == OT_DOUBLE_CHAR
8084 && arg.token->u.ch == *args)
8085 {
8086 ++arg.token;
8087 continue;
8088 }
8089 return FALSE;
8090 }
8091
8092 /* Handle special macro operands. Work out the properties of
8093 other operands. */
8094 arg.opnum += 1;
8095 switch (*args)
8096 {
8097 case '-':
8098 switch (args[1])
8099 {
8100 case 'A':
8101 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
8102 break;
8103
8104 case 'B':
8105 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
8106 break;
8107 }
8108 break;
8109
8110 case '+':
8111 switch (args[1])
8112 {
8113 case 'i':
8114 *offset_reloc = BFD_RELOC_MIPS_JMP;
8115 break;
8116
8117 case '\'':
8118 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
8119 break;
8120
8121 case '\"':
8122 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
8123 break;
8124 }
8125 break;
8126
8127 case 'I':
8128 if (!match_const_int (&arg, &imm_expr.X_add_number))
8129 return FALSE;
8130 imm_expr.X_op = O_constant;
8131 if (GPR_SIZE == 32)
8132 normalize_constant_expr (&imm_expr);
8133 continue;
8134
8135 case 'A':
8136 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8137 {
8138 /* Assume that the offset has been elided and that what
8139 we saw was a base register. The match will fail later
8140 if that assumption turns out to be wrong. */
8141 offset_expr.X_op = O_constant;
8142 offset_expr.X_add_number = 0;
8143 }
8144 else
8145 {
8146 if (!match_expression (&arg, &offset_expr, offset_reloc))
8147 return FALSE;
8148 normalize_address_expr (&offset_expr);
8149 }
8150 continue;
8151
8152 case 'F':
8153 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8154 8, TRUE))
8155 return FALSE;
8156 continue;
8157
8158 case 'L':
8159 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8160 8, FALSE))
8161 return FALSE;
8162 continue;
8163
8164 case 'f':
8165 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8166 4, TRUE))
8167 return FALSE;
8168 continue;
8169
8170 case 'l':
8171 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8172 4, FALSE))
8173 return FALSE;
8174 continue;
8175
8176 case 'p':
8177 *offset_reloc = BFD_RELOC_16_PCREL_S2;
8178 break;
8179
8180 case 'a':
8181 *offset_reloc = BFD_RELOC_MIPS_JMP;
8182 break;
8183
8184 case 'm':
8185 gas_assert (mips_opts.micromips);
8186 c = args[1];
8187 switch (c)
8188 {
8189 case 'D':
8190 case 'E':
8191 if (!forced_insn_length)
8192 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
8193 else if (c == 'D')
8194 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8195 else
8196 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8197 break;
8198 }
8199 break;
8200 }
8201
8202 operand = (mips_opts.micromips
8203 ? decode_micromips_operand (args)
8204 : decode_mips_operand (args));
8205 if (!operand)
8206 abort ();
8207
8208 /* Skip prefixes. */
8209 if (*args == '+' || *args == 'm' || *args == '-')
8210 args++;
8211
8212 if (mips_optional_operand_p (operand)
8213 && args[1] == ','
8214 && (arg.token[0].type != OT_REG
8215 || arg.token[1].type == OT_END))
8216 {
8217 /* Assume that the register has been elided and is the
8218 same as the first operand. */
8219 arg.token = tokens;
8220 arg.argnum = 1;
8221 }
8222
8223 if (!match_operand (&arg, operand))
8224 return FALSE;
8225 }
8226 }
8227
8228 /* Like match_insn, but for MIPS16. */
8229
8230 static bfd_boolean
8231 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8232 struct mips_operand_token *tokens)
8233 {
8234 const char *args;
8235 const struct mips_operand *operand;
8236 const struct mips_operand *ext_operand;
8237 bfd_boolean pcrel = FALSE;
8238 int required_insn_length;
8239 struct mips_arg_info arg;
8240 int relax_char;
8241
8242 if (forced_insn_length)
8243 required_insn_length = forced_insn_length;
8244 else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
8245 required_insn_length = 2;
8246 else
8247 required_insn_length = 0;
8248
8249 create_insn (insn, opcode);
8250 imm_expr.X_op = O_absent;
8251 offset_expr.X_op = O_absent;
8252 offset_reloc[0] = BFD_RELOC_UNUSED;
8253 offset_reloc[1] = BFD_RELOC_UNUSED;
8254 offset_reloc[2] = BFD_RELOC_UNUSED;
8255 relax_char = 0;
8256
8257 memset (&arg, 0, sizeof (arg));
8258 arg.insn = insn;
8259 arg.token = tokens;
8260 arg.argnum = 1;
8261 arg.last_regno = ILLEGAL_REG;
8262 arg.dest_regno = ILLEGAL_REG;
8263 relax_char = 0;
8264 for (args = opcode->args;; ++args)
8265 {
8266 int c;
8267
8268 if (arg.token->type == OT_END)
8269 {
8270 offsetT value;
8271
8272 /* Handle unary instructions in which only one operand is given.
8273 The source is then the same as the destination. */
8274 if (arg.opnum == 1 && *args == ',')
8275 {
8276 operand = decode_mips16_operand (args[1], FALSE);
8277 if (operand && mips_optional_operand_p (operand))
8278 {
8279 arg.token = tokens;
8280 arg.argnum = 1;
8281 continue;
8282 }
8283 }
8284
8285 /* Fail the match if there were too few operands. */
8286 if (*args)
8287 return FALSE;
8288
8289 /* Successful match. Stuff the immediate value in now, if
8290 we can. */
8291 clear_insn_error ();
8292 if (opcode->pinfo == INSN_MACRO)
8293 {
8294 gas_assert (relax_char == 0 || relax_char == 'p');
8295 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8296 }
8297 else if (relax_char
8298 && offset_expr.X_op == O_constant
8299 && !pcrel
8300 && calculate_reloc (*offset_reloc,
8301 offset_expr.X_add_number,
8302 &value))
8303 {
8304 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
8305 required_insn_length, &insn->insn_opcode);
8306 offset_expr.X_op = O_absent;
8307 *offset_reloc = BFD_RELOC_UNUSED;
8308 }
8309 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8310 {
8311 if (required_insn_length == 2)
8312 set_insn_error (0, _("invalid unextended operand value"));
8313 else if (!mips_opcode_32bit_p (opcode))
8314 {
8315 forced_insn_length = 4;
8316 insn->insn_opcode |= MIPS16_EXTEND;
8317 }
8318 }
8319 else if (relax_char)
8320 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8321
8322 check_completed_insn (&arg);
8323 return TRUE;
8324 }
8325
8326 /* Fail the match if the line has too many operands. */
8327 if (*args == 0)
8328 return FALSE;
8329
8330 /* Handle characters that need to match exactly. */
8331 if (*args == '(' || *args == ')' || *args == ',')
8332 {
8333 if (match_char (&arg, *args))
8334 continue;
8335 return FALSE;
8336 }
8337
8338 arg.opnum += 1;
8339 c = *args;
8340 switch (c)
8341 {
8342 case 'p':
8343 case 'q':
8344 case 'A':
8345 case 'B':
8346 case 'E':
8347 case 'V':
8348 case 'u':
8349 relax_char = c;
8350 break;
8351
8352 case 'I':
8353 if (!match_const_int (&arg, &imm_expr.X_add_number))
8354 return FALSE;
8355 imm_expr.X_op = O_constant;
8356 if (GPR_SIZE == 32)
8357 normalize_constant_expr (&imm_expr);
8358 continue;
8359
8360 case 'a':
8361 case 'i':
8362 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8363 break;
8364 }
8365
8366 operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
8367 if (!operand)
8368 abort ();
8369
8370 if (operand->type == OP_PCREL)
8371 pcrel = TRUE;
8372 else
8373 {
8374 ext_operand = decode_mips16_operand (c, TRUE);
8375 if (operand != ext_operand)
8376 {
8377 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8378 {
8379 offset_expr.X_op = O_constant;
8380 offset_expr.X_add_number = 0;
8381 relax_char = c;
8382 continue;
8383 }
8384
8385 if (!match_expression (&arg, &offset_expr, offset_reloc))
8386 return FALSE;
8387
8388 /* '8' is used for SLTI(U) and has traditionally not
8389 been allowed to take relocation operators. */
8390 if (offset_reloc[0] != BFD_RELOC_UNUSED
8391 && (ext_operand->size != 16 || c == '8'))
8392 {
8393 match_not_constant (&arg);
8394 return FALSE;
8395 }
8396
8397 if (offset_expr.X_op == O_big)
8398 {
8399 match_out_of_range (&arg);
8400 return FALSE;
8401 }
8402
8403 relax_char = c;
8404 continue;
8405 }
8406 }
8407
8408 if (mips_optional_operand_p (operand)
8409 && args[1] == ','
8410 && (arg.token[0].type != OT_REG
8411 || arg.token[1].type == OT_END))
8412 {
8413 /* Assume that the register has been elided and is the
8414 same as the first operand. */
8415 arg.token = tokens;
8416 arg.argnum = 1;
8417 }
8418
8419 if (!match_operand (&arg, operand))
8420 return FALSE;
8421 }
8422 }
8423
8424 /* Record that the current instruction is invalid for the current ISA. */
8425
8426 static void
8427 match_invalid_for_isa (void)
8428 {
8429 set_insn_error_ss
8430 (0, _("opcode not supported on this processor: %s (%s)"),
8431 mips_cpu_info_from_arch (mips_opts.arch)->name,
8432 mips_cpu_info_from_isa (mips_opts.isa)->name);
8433 }
8434
8435 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8436 Return true if a definite match or failure was found, storing any match
8437 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8438 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8439 tried and failed to match under normal conditions and now want to try a
8440 more relaxed match. */
8441
8442 static bfd_boolean
8443 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8444 const struct mips_opcode *past, struct mips_operand_token *tokens,
8445 int opcode_extra, bfd_boolean lax_match)
8446 {
8447 const struct mips_opcode *opcode;
8448 const struct mips_opcode *invalid_delay_slot;
8449 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8450
8451 /* Search for a match, ignoring alternatives that don't satisfy the
8452 current ISA or forced_length. */
8453 invalid_delay_slot = 0;
8454 seen_valid_for_isa = FALSE;
8455 seen_valid_for_size = FALSE;
8456 opcode = first;
8457 do
8458 {
8459 gas_assert (strcmp (opcode->name, first->name) == 0);
8460 if (is_opcode_valid (opcode))
8461 {
8462 seen_valid_for_isa = TRUE;
8463 if (is_size_valid (opcode))
8464 {
8465 bfd_boolean delay_slot_ok;
8466
8467 seen_valid_for_size = TRUE;
8468 delay_slot_ok = is_delay_slot_valid (opcode);
8469 if (match_insn (insn, opcode, tokens, opcode_extra,
8470 lax_match, delay_slot_ok))
8471 {
8472 if (!delay_slot_ok)
8473 {
8474 if (!invalid_delay_slot)
8475 invalid_delay_slot = opcode;
8476 }
8477 else
8478 return TRUE;
8479 }
8480 }
8481 }
8482 ++opcode;
8483 }
8484 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8485
8486 /* If the only matches we found had the wrong length for the delay slot,
8487 pick the first such match. We'll issue an appropriate warning later. */
8488 if (invalid_delay_slot)
8489 {
8490 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8491 lax_match, TRUE))
8492 return TRUE;
8493 abort ();
8494 }
8495
8496 /* Handle the case where we didn't try to match an instruction because
8497 all the alternatives were incompatible with the current ISA. */
8498 if (!seen_valid_for_isa)
8499 {
8500 match_invalid_for_isa ();
8501 return TRUE;
8502 }
8503
8504 /* Handle the case where we didn't try to match an instruction because
8505 all the alternatives were of the wrong size. */
8506 if (!seen_valid_for_size)
8507 {
8508 if (mips_opts.insn32)
8509 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8510 else
8511 set_insn_error_i
8512 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8513 8 * forced_insn_length);
8514 return TRUE;
8515 }
8516
8517 return FALSE;
8518 }
8519
8520 /* Like match_insns, but for MIPS16. */
8521
8522 static bfd_boolean
8523 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8524 struct mips_operand_token *tokens)
8525 {
8526 const struct mips_opcode *opcode;
8527 bfd_boolean seen_valid_for_isa;
8528 bfd_boolean seen_valid_for_size;
8529
8530 /* Search for a match, ignoring alternatives that don't satisfy the
8531 current ISA. There are no separate entries for extended forms so
8532 we deal with forced_length later. */
8533 seen_valid_for_isa = FALSE;
8534 seen_valid_for_size = FALSE;
8535 opcode = first;
8536 do
8537 {
8538 gas_assert (strcmp (opcode->name, first->name) == 0);
8539 if (is_opcode_valid_16 (opcode))
8540 {
8541 seen_valid_for_isa = TRUE;
8542 if (is_size_valid_16 (opcode))
8543 {
8544 seen_valid_for_size = TRUE;
8545 if (match_mips16_insn (insn, opcode, tokens))
8546 return TRUE;
8547 }
8548 }
8549 ++opcode;
8550 }
8551 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8552 && strcmp (opcode->name, first->name) == 0);
8553
8554 /* Handle the case where we didn't try to match an instruction because
8555 all the alternatives were incompatible with the current ISA. */
8556 if (!seen_valid_for_isa)
8557 {
8558 match_invalid_for_isa ();
8559 return TRUE;
8560 }
8561
8562 /* Handle the case where we didn't try to match an instruction because
8563 all the alternatives were of the wrong size. */
8564 if (!seen_valid_for_size)
8565 {
8566 if (forced_insn_length == 2)
8567 set_insn_error
8568 (0, _("unrecognized unextended version of MIPS16 opcode"));
8569 else
8570 set_insn_error
8571 (0, _("unrecognized extended version of MIPS16 opcode"));
8572 return TRUE;
8573 }
8574
8575 return FALSE;
8576 }
8577
8578 /* Set up global variables for the start of a new macro. */
8579
8580 static void
8581 macro_start (void)
8582 {
8583 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8584 memset (&mips_macro_warning.first_insn_sizes, 0,
8585 sizeof (mips_macro_warning.first_insn_sizes));
8586 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8587 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8588 && delayed_branch_p (&history[0]));
8589 if (history[0].frag
8590 && history[0].frag->fr_type == rs_machine_dependent
8591 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8592 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8593 mips_macro_warning.delay_slot_length = 0;
8594 else
8595 switch (history[0].insn_mo->pinfo2
8596 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8597 {
8598 case INSN2_BRANCH_DELAY_32BIT:
8599 mips_macro_warning.delay_slot_length = 4;
8600 break;
8601 case INSN2_BRANCH_DELAY_16BIT:
8602 mips_macro_warning.delay_slot_length = 2;
8603 break;
8604 default:
8605 mips_macro_warning.delay_slot_length = 0;
8606 break;
8607 }
8608 mips_macro_warning.first_frag = NULL;
8609 }
8610
8611 /* Given that a macro is longer than one instruction or of the wrong size,
8612 return the appropriate warning for it. Return null if no warning is
8613 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8614 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8615 and RELAX_NOMACRO. */
8616
8617 static const char *
8618 macro_warning (relax_substateT subtype)
8619 {
8620 if (subtype & RELAX_DELAY_SLOT)
8621 return _("macro instruction expanded into multiple instructions"
8622 " in a branch delay slot");
8623 else if (subtype & RELAX_NOMACRO)
8624 return _("macro instruction expanded into multiple instructions");
8625 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8626 | RELAX_DELAY_SLOT_SIZE_SECOND))
8627 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8628 ? _("macro instruction expanded into a wrong size instruction"
8629 " in a 16-bit branch delay slot")
8630 : _("macro instruction expanded into a wrong size instruction"
8631 " in a 32-bit branch delay slot"));
8632 else
8633 return 0;
8634 }
8635
8636 /* Finish up a macro. Emit warnings as appropriate. */
8637
8638 static void
8639 macro_end (void)
8640 {
8641 /* Relaxation warning flags. */
8642 relax_substateT subtype = 0;
8643
8644 /* Check delay slot size requirements. */
8645 if (mips_macro_warning.delay_slot_length == 2)
8646 subtype |= RELAX_DELAY_SLOT_16BIT;
8647 if (mips_macro_warning.delay_slot_length != 0)
8648 {
8649 if (mips_macro_warning.delay_slot_length
8650 != mips_macro_warning.first_insn_sizes[0])
8651 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8652 if (mips_macro_warning.delay_slot_length
8653 != mips_macro_warning.first_insn_sizes[1])
8654 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8655 }
8656
8657 /* Check instruction count requirements. */
8658 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8659 {
8660 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8661 subtype |= RELAX_SECOND_LONGER;
8662 if (mips_opts.warn_about_macros)
8663 subtype |= RELAX_NOMACRO;
8664 if (mips_macro_warning.delay_slot_p)
8665 subtype |= RELAX_DELAY_SLOT;
8666 }
8667
8668 /* If both alternatives fail to fill a delay slot correctly,
8669 emit the warning now. */
8670 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8671 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8672 {
8673 relax_substateT s;
8674 const char *msg;
8675
8676 s = subtype & (RELAX_DELAY_SLOT_16BIT
8677 | RELAX_DELAY_SLOT_SIZE_FIRST
8678 | RELAX_DELAY_SLOT_SIZE_SECOND);
8679 msg = macro_warning (s);
8680 if (msg != NULL)
8681 as_warn ("%s", msg);
8682 subtype &= ~s;
8683 }
8684
8685 /* If both implementations are longer than 1 instruction, then emit the
8686 warning now. */
8687 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8688 {
8689 relax_substateT s;
8690 const char *msg;
8691
8692 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8693 msg = macro_warning (s);
8694 if (msg != NULL)
8695 as_warn ("%s", msg);
8696 subtype &= ~s;
8697 }
8698
8699 /* If any flags still set, then one implementation might need a warning
8700 and the other either will need one of a different kind or none at all.
8701 Pass any remaining flags over to relaxation. */
8702 if (mips_macro_warning.first_frag != NULL)
8703 mips_macro_warning.first_frag->fr_subtype |= subtype;
8704 }
8705
8706 /* Instruction operand formats used in macros that vary between
8707 standard MIPS and microMIPS code. */
8708
8709 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8710 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8711 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8712 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8713 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8714 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8715 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8716 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8717
8718 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8719 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8720 : cop12_fmt[mips_opts.micromips])
8721 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8722 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8723 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8724 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8725 : mem12_fmt[mips_opts.micromips])
8726 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8727 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8728 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8729
8730 /* Read a macro's relocation codes from *ARGS and store them in *R.
8731 The first argument in *ARGS will be either the code for a single
8732 relocation or -1 followed by the three codes that make up a
8733 composite relocation. */
8734
8735 static void
8736 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8737 {
8738 int i, next;
8739
8740 next = va_arg (*args, int);
8741 if (next >= 0)
8742 r[0] = (bfd_reloc_code_real_type) next;
8743 else
8744 {
8745 for (i = 0; i < 3; i++)
8746 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8747 /* This function is only used for 16-bit relocation fields.
8748 To make the macro code simpler, treat an unrelocated value
8749 in the same way as BFD_RELOC_LO16. */
8750 if (r[0] == BFD_RELOC_UNUSED)
8751 r[0] = BFD_RELOC_LO16;
8752 }
8753 }
8754
8755 /* Build an instruction created by a macro expansion. This is passed
8756 a pointer to the count of instructions created so far, an
8757 expression, the name of the instruction to build, an operand format
8758 string, and corresponding arguments. */
8759
8760 static void
8761 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8762 {
8763 const struct mips_opcode *mo = NULL;
8764 bfd_reloc_code_real_type r[3];
8765 const struct mips_opcode *amo;
8766 const struct mips_operand *operand;
8767 struct hash_control *hash;
8768 struct mips_cl_insn insn;
8769 va_list args;
8770 unsigned int uval;
8771
8772 va_start (args, fmt);
8773
8774 if (mips_opts.mips16)
8775 {
8776 mips16_macro_build (ep, name, fmt, &args);
8777 va_end (args);
8778 return;
8779 }
8780
8781 r[0] = BFD_RELOC_UNUSED;
8782 r[1] = BFD_RELOC_UNUSED;
8783 r[2] = BFD_RELOC_UNUSED;
8784 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8785 amo = (struct mips_opcode *) hash_find (hash, name);
8786 gas_assert (amo);
8787 gas_assert (strcmp (name, amo->name) == 0);
8788
8789 do
8790 {
8791 /* Search until we get a match for NAME. It is assumed here that
8792 macros will never generate MDMX, MIPS-3D, or MT instructions.
8793 We try to match an instruction that fulfills the branch delay
8794 slot instruction length requirement (if any) of the previous
8795 instruction. While doing this we record the first instruction
8796 seen that matches all the other conditions and use it anyway
8797 if the requirement cannot be met; we will issue an appropriate
8798 warning later on. */
8799 if (strcmp (fmt, amo->args) == 0
8800 && amo->pinfo != INSN_MACRO
8801 && is_opcode_valid (amo)
8802 && is_size_valid (amo))
8803 {
8804 if (is_delay_slot_valid (amo))
8805 {
8806 mo = amo;
8807 break;
8808 }
8809 else if (!mo)
8810 mo = amo;
8811 }
8812
8813 ++amo;
8814 gas_assert (amo->name);
8815 }
8816 while (strcmp (name, amo->name) == 0);
8817
8818 gas_assert (mo);
8819 create_insn (&insn, mo);
8820 for (; *fmt; ++fmt)
8821 {
8822 switch (*fmt)
8823 {
8824 case ',':
8825 case '(':
8826 case ')':
8827 case 'z':
8828 break;
8829
8830 case 'i':
8831 case 'j':
8832 macro_read_relocs (&args, r);
8833 gas_assert (*r == BFD_RELOC_GPREL16
8834 || *r == BFD_RELOC_MIPS_HIGHER
8835 || *r == BFD_RELOC_HI16_S
8836 || *r == BFD_RELOC_LO16
8837 || *r == BFD_RELOC_MIPS_GOT_OFST);
8838 break;
8839
8840 case 'o':
8841 macro_read_relocs (&args, r);
8842 break;
8843
8844 case 'u':
8845 macro_read_relocs (&args, r);
8846 gas_assert (ep != NULL
8847 && (ep->X_op == O_constant
8848 || (ep->X_op == O_symbol
8849 && (*r == BFD_RELOC_MIPS_HIGHEST
8850 || *r == BFD_RELOC_HI16_S
8851 || *r == BFD_RELOC_HI16
8852 || *r == BFD_RELOC_GPREL16
8853 || *r == BFD_RELOC_MIPS_GOT_HI16
8854 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8855 break;
8856
8857 case 'p':
8858 gas_assert (ep != NULL);
8859
8860 /*
8861 * This allows macro() to pass an immediate expression for
8862 * creating short branches without creating a symbol.
8863 *
8864 * We don't allow branch relaxation for these branches, as
8865 * they should only appear in ".set nomacro" anyway.
8866 */
8867 if (ep->X_op == O_constant)
8868 {
8869 /* For microMIPS we always use relocations for branches.
8870 So we should not resolve immediate values. */
8871 gas_assert (!mips_opts.micromips);
8872
8873 if ((ep->X_add_number & 3) != 0)
8874 as_bad (_("branch to misaligned address (0x%lx)"),
8875 (unsigned long) ep->X_add_number);
8876 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8877 as_bad (_("branch address range overflow (0x%lx)"),
8878 (unsigned long) ep->X_add_number);
8879 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8880 ep = NULL;
8881 }
8882 else
8883 *r = BFD_RELOC_16_PCREL_S2;
8884 break;
8885
8886 case 'a':
8887 gas_assert (ep != NULL);
8888 *r = BFD_RELOC_MIPS_JMP;
8889 break;
8890
8891 default:
8892 operand = (mips_opts.micromips
8893 ? decode_micromips_operand (fmt)
8894 : decode_mips_operand (fmt));
8895 if (!operand)
8896 abort ();
8897
8898 uval = va_arg (args, int);
8899 if (operand->type == OP_CLO_CLZ_DEST)
8900 uval |= (uval << 5);
8901 insn_insert_operand (&insn, operand, uval);
8902
8903 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8904 ++fmt;
8905 break;
8906 }
8907 }
8908 va_end (args);
8909 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8910
8911 append_insn (&insn, ep, r, TRUE);
8912 }
8913
8914 static void
8915 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8916 va_list *args)
8917 {
8918 struct mips_opcode *mo;
8919 struct mips_cl_insn insn;
8920 const struct mips_operand *operand;
8921 bfd_reloc_code_real_type r[3]
8922 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8923
8924 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8925 gas_assert (mo);
8926 gas_assert (strcmp (name, mo->name) == 0);
8927
8928 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8929 {
8930 ++mo;
8931 gas_assert (mo->name);
8932 gas_assert (strcmp (name, mo->name) == 0);
8933 }
8934
8935 create_insn (&insn, mo);
8936 for (; *fmt; ++fmt)
8937 {
8938 int c;
8939
8940 c = *fmt;
8941 switch (c)
8942 {
8943 case ',':
8944 case '(':
8945 case ')':
8946 break;
8947
8948 case '.':
8949 case 'S':
8950 case 'P':
8951 case 'R':
8952 break;
8953
8954 case '<':
8955 case '5':
8956 case 'F':
8957 case 'H':
8958 case 'W':
8959 case 'D':
8960 case 'j':
8961 case '8':
8962 case 'V':
8963 case 'C':
8964 case 'U':
8965 case 'k':
8966 case 'K':
8967 case 'p':
8968 case 'q':
8969 {
8970 offsetT value;
8971
8972 gas_assert (ep != NULL);
8973
8974 if (ep->X_op != O_constant)
8975 *r = (int) BFD_RELOC_UNUSED + c;
8976 else if (calculate_reloc (*r, ep->X_add_number, &value))
8977 {
8978 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8979 ep = NULL;
8980 *r = BFD_RELOC_UNUSED;
8981 }
8982 }
8983 break;
8984
8985 default:
8986 operand = decode_mips16_operand (c, FALSE);
8987 if (!operand)
8988 abort ();
8989
8990 insn_insert_operand (&insn, operand, va_arg (*args, int));
8991 break;
8992 }
8993 }
8994
8995 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8996
8997 append_insn (&insn, ep, r, TRUE);
8998 }
8999
9000 /*
9001 * Generate a "jalr" instruction with a relocation hint to the called
9002 * function. This occurs in NewABI PIC code.
9003 */
9004 static void
9005 macro_build_jalr (expressionS *ep, int cprestore)
9006 {
9007 static const bfd_reloc_code_real_type jalr_relocs[2]
9008 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
9009 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
9010 const char *jalr;
9011 char *f = NULL;
9012
9013 if (MIPS_JALR_HINT_P (ep))
9014 {
9015 frag_grow (8);
9016 f = frag_more (0);
9017 }
9018 if (mips_opts.micromips)
9019 {
9020 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
9021 ? "jalr" : "jalrs");
9022 if (MIPS_JALR_HINT_P (ep)
9023 || mips_opts.insn32
9024 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9025 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
9026 else
9027 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
9028 }
9029 else
9030 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
9031 if (MIPS_JALR_HINT_P (ep))
9032 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
9033 }
9034
9035 /*
9036 * Generate a "lui" instruction.
9037 */
9038 static void
9039 macro_build_lui (expressionS *ep, int regnum)
9040 {
9041 gas_assert (! mips_opts.mips16);
9042
9043 if (ep->X_op != O_constant)
9044 {
9045 gas_assert (ep->X_op == O_symbol);
9046 /* _gp_disp is a special case, used from s_cpload.
9047 __gnu_local_gp is used if mips_no_shared. */
9048 gas_assert (mips_pic == NO_PIC
9049 || (! HAVE_NEWABI
9050 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
9051 || (! mips_in_shared
9052 && strcmp (S_GET_NAME (ep->X_add_symbol),
9053 "__gnu_local_gp") == 0));
9054 }
9055
9056 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
9057 }
9058
9059 /* Generate a sequence of instructions to do a load or store from a constant
9060 offset off of a base register (breg) into/from a target register (treg),
9061 using AT if necessary. */
9062 static void
9063 macro_build_ldst_constoffset (expressionS *ep, const char *op,
9064 int treg, int breg, int dbl)
9065 {
9066 gas_assert (ep->X_op == O_constant);
9067
9068 /* Sign-extending 32-bit constants makes their handling easier. */
9069 if (!dbl)
9070 normalize_constant_expr (ep);
9071
9072 /* Right now, this routine can only handle signed 32-bit constants. */
9073 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
9074 as_warn (_("operand overflow"));
9075
9076 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
9077 {
9078 /* Signed 16-bit offset will fit in the op. Easy! */
9079 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
9080 }
9081 else
9082 {
9083 /* 32-bit offset, need multiple instructions and AT, like:
9084 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
9085 addu $tempreg,$tempreg,$breg
9086 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
9087 to handle the complete offset. */
9088 macro_build_lui (ep, AT);
9089 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
9090 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
9091
9092 if (!mips_opts.at)
9093 as_bad (_("macro used $at after \".set noat\""));
9094 }
9095 }
9096
9097 /* set_at()
9098 * Generates code to set the $at register to true (one)
9099 * if reg is less than the immediate expression.
9100 */
9101 static void
9102 set_at (int reg, int unsignedp)
9103 {
9104 if (imm_expr.X_add_number >= -0x8000
9105 && imm_expr.X_add_number < 0x8000)
9106 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
9107 AT, reg, BFD_RELOC_LO16);
9108 else
9109 {
9110 load_register (AT, &imm_expr, GPR_SIZE == 64);
9111 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
9112 }
9113 }
9114
9115 /* Count the leading zeroes by performing a binary chop. This is a
9116 bulky bit of source, but performance is a LOT better for the
9117 majority of values than a simple loop to count the bits:
9118 for (lcnt = 0; (lcnt < 32); lcnt++)
9119 if ((v) & (1 << (31 - lcnt)))
9120 break;
9121 However it is not code size friendly, and the gain will drop a bit
9122 on certain cached systems.
9123 */
9124 #define COUNT_TOP_ZEROES(v) \
9125 (((v) & ~0xffff) == 0 \
9126 ? ((v) & ~0xff) == 0 \
9127 ? ((v) & ~0xf) == 0 \
9128 ? ((v) & ~0x3) == 0 \
9129 ? ((v) & ~0x1) == 0 \
9130 ? !(v) \
9131 ? 32 \
9132 : 31 \
9133 : 30 \
9134 : ((v) & ~0x7) == 0 \
9135 ? 29 \
9136 : 28 \
9137 : ((v) & ~0x3f) == 0 \
9138 ? ((v) & ~0x1f) == 0 \
9139 ? 27 \
9140 : 26 \
9141 : ((v) & ~0x7f) == 0 \
9142 ? 25 \
9143 : 24 \
9144 : ((v) & ~0xfff) == 0 \
9145 ? ((v) & ~0x3ff) == 0 \
9146 ? ((v) & ~0x1ff) == 0 \
9147 ? 23 \
9148 : 22 \
9149 : ((v) & ~0x7ff) == 0 \
9150 ? 21 \
9151 : 20 \
9152 : ((v) & ~0x3fff) == 0 \
9153 ? ((v) & ~0x1fff) == 0 \
9154 ? 19 \
9155 : 18 \
9156 : ((v) & ~0x7fff) == 0 \
9157 ? 17 \
9158 : 16 \
9159 : ((v) & ~0xffffff) == 0 \
9160 ? ((v) & ~0xfffff) == 0 \
9161 ? ((v) & ~0x3ffff) == 0 \
9162 ? ((v) & ~0x1ffff) == 0 \
9163 ? 15 \
9164 : 14 \
9165 : ((v) & ~0x7ffff) == 0 \
9166 ? 13 \
9167 : 12 \
9168 : ((v) & ~0x3fffff) == 0 \
9169 ? ((v) & ~0x1fffff) == 0 \
9170 ? 11 \
9171 : 10 \
9172 : ((v) & ~0x7fffff) == 0 \
9173 ? 9 \
9174 : 8 \
9175 : ((v) & ~0xfffffff) == 0 \
9176 ? ((v) & ~0x3ffffff) == 0 \
9177 ? ((v) & ~0x1ffffff) == 0 \
9178 ? 7 \
9179 : 6 \
9180 : ((v) & ~0x7ffffff) == 0 \
9181 ? 5 \
9182 : 4 \
9183 : ((v) & ~0x3fffffff) == 0 \
9184 ? ((v) & ~0x1fffffff) == 0 \
9185 ? 3 \
9186 : 2 \
9187 : ((v) & ~0x7fffffff) == 0 \
9188 ? 1 \
9189 : 0)
9190
9191 /* load_register()
9192 * This routine generates the least number of instructions necessary to load
9193 * an absolute expression value into a register.
9194 */
9195 static void
9196 load_register (int reg, expressionS *ep, int dbl)
9197 {
9198 int freg;
9199 expressionS hi32, lo32;
9200
9201 if (ep->X_op != O_big)
9202 {
9203 gas_assert (ep->X_op == O_constant);
9204
9205 /* Sign-extending 32-bit constants makes their handling easier. */
9206 if (!dbl)
9207 normalize_constant_expr (ep);
9208
9209 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
9210 {
9211 /* We can handle 16 bit signed values with an addiu to
9212 $zero. No need to ever use daddiu here, since $zero and
9213 the result are always correct in 32 bit mode. */
9214 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9215 return;
9216 }
9217 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
9218 {
9219 /* We can handle 16 bit unsigned values with an ori to
9220 $zero. */
9221 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9222 return;
9223 }
9224 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
9225 {
9226 /* 32 bit values require an lui. */
9227 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9228 if ((ep->X_add_number & 0xffff) != 0)
9229 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9230 return;
9231 }
9232 }
9233
9234 /* The value is larger than 32 bits. */
9235
9236 if (!dbl || GPR_SIZE == 32)
9237 {
9238 char value[32];
9239
9240 sprintf_vma (value, ep->X_add_number);
9241 as_bad (_("number (0x%s) larger than 32 bits"), value);
9242 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9243 return;
9244 }
9245
9246 if (ep->X_op != O_big)
9247 {
9248 hi32 = *ep;
9249 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9250 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9251 hi32.X_add_number &= 0xffffffff;
9252 lo32 = *ep;
9253 lo32.X_add_number &= 0xffffffff;
9254 }
9255 else
9256 {
9257 gas_assert (ep->X_add_number > 2);
9258 if (ep->X_add_number == 3)
9259 generic_bignum[3] = 0;
9260 else if (ep->X_add_number > 4)
9261 as_bad (_("number larger than 64 bits"));
9262 lo32.X_op = O_constant;
9263 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9264 hi32.X_op = O_constant;
9265 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9266 }
9267
9268 if (hi32.X_add_number == 0)
9269 freg = 0;
9270 else
9271 {
9272 int shift, bit;
9273 unsigned long hi, lo;
9274
9275 if (hi32.X_add_number == (offsetT) 0xffffffff)
9276 {
9277 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9278 {
9279 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9280 return;
9281 }
9282 if (lo32.X_add_number & 0x80000000)
9283 {
9284 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9285 if (lo32.X_add_number & 0xffff)
9286 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9287 return;
9288 }
9289 }
9290
9291 /* Check for 16bit shifted constant. We know that hi32 is
9292 non-zero, so start the mask on the first bit of the hi32
9293 value. */
9294 shift = 17;
9295 do
9296 {
9297 unsigned long himask, lomask;
9298
9299 if (shift < 32)
9300 {
9301 himask = 0xffff >> (32 - shift);
9302 lomask = (0xffff << shift) & 0xffffffff;
9303 }
9304 else
9305 {
9306 himask = 0xffff << (shift - 32);
9307 lomask = 0;
9308 }
9309 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9310 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9311 {
9312 expressionS tmp;
9313
9314 tmp.X_op = O_constant;
9315 if (shift < 32)
9316 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9317 | (lo32.X_add_number >> shift));
9318 else
9319 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
9320 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9321 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9322 reg, reg, (shift >= 32) ? shift - 32 : shift);
9323 return;
9324 }
9325 ++shift;
9326 }
9327 while (shift <= (64 - 16));
9328
9329 /* Find the bit number of the lowest one bit, and store the
9330 shifted value in hi/lo. */
9331 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9332 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9333 if (lo != 0)
9334 {
9335 bit = 0;
9336 while ((lo & 1) == 0)
9337 {
9338 lo >>= 1;
9339 ++bit;
9340 }
9341 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9342 hi >>= bit;
9343 }
9344 else
9345 {
9346 bit = 32;
9347 while ((hi & 1) == 0)
9348 {
9349 hi >>= 1;
9350 ++bit;
9351 }
9352 lo = hi;
9353 hi = 0;
9354 }
9355
9356 /* Optimize if the shifted value is a (power of 2) - 1. */
9357 if ((hi == 0 && ((lo + 1) & lo) == 0)
9358 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9359 {
9360 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9361 if (shift != 0)
9362 {
9363 expressionS tmp;
9364
9365 /* This instruction will set the register to be all
9366 ones. */
9367 tmp.X_op = O_constant;
9368 tmp.X_add_number = (offsetT) -1;
9369 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9370 if (bit != 0)
9371 {
9372 bit += shift;
9373 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9374 reg, reg, (bit >= 32) ? bit - 32 : bit);
9375 }
9376 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9377 reg, reg, (shift >= 32) ? shift - 32 : shift);
9378 return;
9379 }
9380 }
9381
9382 /* Sign extend hi32 before calling load_register, because we can
9383 generally get better code when we load a sign extended value. */
9384 if ((hi32.X_add_number & 0x80000000) != 0)
9385 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9386 load_register (reg, &hi32, 0);
9387 freg = reg;
9388 }
9389 if ((lo32.X_add_number & 0xffff0000) == 0)
9390 {
9391 if (freg != 0)
9392 {
9393 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9394 freg = reg;
9395 }
9396 }
9397 else
9398 {
9399 expressionS mid16;
9400
9401 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9402 {
9403 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9404 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9405 return;
9406 }
9407
9408 if (freg != 0)
9409 {
9410 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9411 freg = reg;
9412 }
9413 mid16 = lo32;
9414 mid16.X_add_number >>= 16;
9415 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9416 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9417 freg = reg;
9418 }
9419 if ((lo32.X_add_number & 0xffff) != 0)
9420 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9421 }
9422
9423 static inline void
9424 load_delay_nop (void)
9425 {
9426 if (!gpr_interlocks)
9427 macro_build (NULL, "nop", "");
9428 }
9429
9430 /* Load an address into a register. */
9431
9432 static void
9433 load_address (int reg, expressionS *ep, int *used_at)
9434 {
9435 if (ep->X_op != O_constant
9436 && ep->X_op != O_symbol)
9437 {
9438 as_bad (_("expression too complex"));
9439 ep->X_op = O_constant;
9440 }
9441
9442 if (ep->X_op == O_constant)
9443 {
9444 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9445 return;
9446 }
9447
9448 if (mips_pic == NO_PIC)
9449 {
9450 /* If this is a reference to a GP relative symbol, we want
9451 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9452 Otherwise we want
9453 lui $reg,<sym> (BFD_RELOC_HI16_S)
9454 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9455 If we have an addend, we always use the latter form.
9456
9457 With 64bit address space and a usable $at we want
9458 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9459 lui $at,<sym> (BFD_RELOC_HI16_S)
9460 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9461 daddiu $at,<sym> (BFD_RELOC_LO16)
9462 dsll32 $reg,0
9463 daddu $reg,$reg,$at
9464
9465 If $at is already in use, we use a path which is suboptimal
9466 on superscalar processors.
9467 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9468 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9469 dsll $reg,16
9470 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9471 dsll $reg,16
9472 daddiu $reg,<sym> (BFD_RELOC_LO16)
9473
9474 For GP relative symbols in 64bit address space we can use
9475 the same sequence as in 32bit address space. */
9476 if (HAVE_64BIT_SYMBOLS)
9477 {
9478 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9479 && !nopic_need_relax (ep->X_add_symbol, 1))
9480 {
9481 relax_start (ep->X_add_symbol);
9482 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9483 mips_gp_register, BFD_RELOC_GPREL16);
9484 relax_switch ();
9485 }
9486
9487 if (*used_at == 0 && mips_opts.at)
9488 {
9489 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9490 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9491 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9492 BFD_RELOC_MIPS_HIGHER);
9493 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9494 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9495 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9496 *used_at = 1;
9497 }
9498 else
9499 {
9500 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9501 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9502 BFD_RELOC_MIPS_HIGHER);
9503 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9504 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9505 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9506 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9507 }
9508
9509 if (mips_relax.sequence)
9510 relax_end ();
9511 }
9512 else
9513 {
9514 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9515 && !nopic_need_relax (ep->X_add_symbol, 1))
9516 {
9517 relax_start (ep->X_add_symbol);
9518 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9519 mips_gp_register, BFD_RELOC_GPREL16);
9520 relax_switch ();
9521 }
9522 macro_build_lui (ep, reg);
9523 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9524 reg, reg, BFD_RELOC_LO16);
9525 if (mips_relax.sequence)
9526 relax_end ();
9527 }
9528 }
9529 else if (!mips_big_got)
9530 {
9531 expressionS ex;
9532
9533 /* If this is a reference to an external symbol, we want
9534 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9535 Otherwise we want
9536 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9537 nop
9538 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9539 If there is a constant, it must be added in after.
9540
9541 If we have NewABI, we want
9542 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9543 unless we're referencing a global symbol with a non-zero
9544 offset, in which case cst must be added separately. */
9545 if (HAVE_NEWABI)
9546 {
9547 if (ep->X_add_number)
9548 {
9549 ex.X_add_number = ep->X_add_number;
9550 ep->X_add_number = 0;
9551 relax_start (ep->X_add_symbol);
9552 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9553 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9554 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9555 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9556 ex.X_op = O_constant;
9557 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9558 reg, reg, BFD_RELOC_LO16);
9559 ep->X_add_number = ex.X_add_number;
9560 relax_switch ();
9561 }
9562 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9563 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9564 if (mips_relax.sequence)
9565 relax_end ();
9566 }
9567 else
9568 {
9569 ex.X_add_number = ep->X_add_number;
9570 ep->X_add_number = 0;
9571 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9572 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9573 load_delay_nop ();
9574 relax_start (ep->X_add_symbol);
9575 relax_switch ();
9576 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9577 BFD_RELOC_LO16);
9578 relax_end ();
9579
9580 if (ex.X_add_number != 0)
9581 {
9582 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9583 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9584 ex.X_op = O_constant;
9585 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9586 reg, reg, BFD_RELOC_LO16);
9587 }
9588 }
9589 }
9590 else if (mips_big_got)
9591 {
9592 expressionS ex;
9593
9594 /* This is the large GOT case. If this is a reference to an
9595 external symbol, we want
9596 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9597 addu $reg,$reg,$gp
9598 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9599
9600 Otherwise, for a reference to a local symbol in old ABI, we want
9601 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9602 nop
9603 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9604 If there is a constant, it must be added in after.
9605
9606 In the NewABI, for local symbols, with or without offsets, we want:
9607 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9608 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9609 */
9610 if (HAVE_NEWABI)
9611 {
9612 ex.X_add_number = ep->X_add_number;
9613 ep->X_add_number = 0;
9614 relax_start (ep->X_add_symbol);
9615 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9616 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9617 reg, reg, mips_gp_register);
9618 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9619 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9620 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9621 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9622 else if (ex.X_add_number)
9623 {
9624 ex.X_op = O_constant;
9625 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9626 BFD_RELOC_LO16);
9627 }
9628
9629 ep->X_add_number = ex.X_add_number;
9630 relax_switch ();
9631 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9632 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9633 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9634 BFD_RELOC_MIPS_GOT_OFST);
9635 relax_end ();
9636 }
9637 else
9638 {
9639 ex.X_add_number = ep->X_add_number;
9640 ep->X_add_number = 0;
9641 relax_start (ep->X_add_symbol);
9642 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9643 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9644 reg, reg, mips_gp_register);
9645 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9646 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9647 relax_switch ();
9648 if (reg_needs_delay (mips_gp_register))
9649 {
9650 /* We need a nop before loading from $gp. This special
9651 check is required because the lui which starts the main
9652 instruction stream does not refer to $gp, and so will not
9653 insert the nop which may be required. */
9654 macro_build (NULL, "nop", "");
9655 }
9656 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9657 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9658 load_delay_nop ();
9659 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9660 BFD_RELOC_LO16);
9661 relax_end ();
9662
9663 if (ex.X_add_number != 0)
9664 {
9665 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9666 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9667 ex.X_op = O_constant;
9668 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9669 BFD_RELOC_LO16);
9670 }
9671 }
9672 }
9673 else
9674 abort ();
9675
9676 if (!mips_opts.at && *used_at == 1)
9677 as_bad (_("macro used $at after \".set noat\""));
9678 }
9679
9680 /* Move the contents of register SOURCE into register DEST. */
9681
9682 static void
9683 move_register (int dest, int source)
9684 {
9685 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9686 instruction specifically requires a 32-bit one. */
9687 if (mips_opts.micromips
9688 && !mips_opts.insn32
9689 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9690 macro_build (NULL, "move", "mp,mj", dest, source);
9691 else
9692 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9693 }
9694
9695 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9696 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9697 The two alternatives are:
9698
9699 Global symbol Local symbol
9700 ------------- ------------
9701 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9702 ... ...
9703 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9704
9705 load_got_offset emits the first instruction and add_got_offset
9706 emits the second for a 16-bit offset or add_got_offset_hilo emits
9707 a sequence to add a 32-bit offset using a scratch register. */
9708
9709 static void
9710 load_got_offset (int dest, expressionS *local)
9711 {
9712 expressionS global;
9713
9714 global = *local;
9715 global.X_add_number = 0;
9716
9717 relax_start (local->X_add_symbol);
9718 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9719 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9720 relax_switch ();
9721 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9722 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9723 relax_end ();
9724 }
9725
9726 static void
9727 add_got_offset (int dest, expressionS *local)
9728 {
9729 expressionS global;
9730
9731 global.X_op = O_constant;
9732 global.X_op_symbol = NULL;
9733 global.X_add_symbol = NULL;
9734 global.X_add_number = local->X_add_number;
9735
9736 relax_start (local->X_add_symbol);
9737 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9738 dest, dest, BFD_RELOC_LO16);
9739 relax_switch ();
9740 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9741 relax_end ();
9742 }
9743
9744 static void
9745 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9746 {
9747 expressionS global;
9748 int hold_mips_optimize;
9749
9750 global.X_op = O_constant;
9751 global.X_op_symbol = NULL;
9752 global.X_add_symbol = NULL;
9753 global.X_add_number = local->X_add_number;
9754
9755 relax_start (local->X_add_symbol);
9756 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9757 relax_switch ();
9758 /* Set mips_optimize around the lui instruction to avoid
9759 inserting an unnecessary nop after the lw. */
9760 hold_mips_optimize = mips_optimize;
9761 mips_optimize = 2;
9762 macro_build_lui (&global, tmp);
9763 mips_optimize = hold_mips_optimize;
9764 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9765 relax_end ();
9766
9767 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9768 }
9769
9770 /* Emit a sequence of instructions to emulate a branch likely operation.
9771 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9772 is its complementing branch with the original condition negated.
9773 CALL is set if the original branch specified the link operation.
9774 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9775
9776 Code like this is produced in the noreorder mode:
9777
9778 BRNEG <args>, 1f
9779 nop
9780 b <sym>
9781 delay slot (executed only if branch taken)
9782 1:
9783
9784 or, if CALL is set:
9785
9786 BRNEG <args>, 1f
9787 nop
9788 bal <sym>
9789 delay slot (executed only if branch taken)
9790 1:
9791
9792 In the reorder mode the delay slot would be filled with a nop anyway,
9793 so code produced is simply:
9794
9795 BR <args>, <sym>
9796 nop
9797
9798 This function is used when producing code for the microMIPS ASE that
9799 does not implement branch likely instructions in hardware. */
9800
9801 static void
9802 macro_build_branch_likely (const char *br, const char *brneg,
9803 int call, expressionS *ep, const char *fmt,
9804 unsigned int sreg, unsigned int treg)
9805 {
9806 int noreorder = mips_opts.noreorder;
9807 expressionS expr1;
9808
9809 gas_assert (mips_opts.micromips);
9810 start_noreorder ();
9811 if (noreorder)
9812 {
9813 micromips_label_expr (&expr1);
9814 macro_build (&expr1, brneg, fmt, sreg, treg);
9815 macro_build (NULL, "nop", "");
9816 macro_build (ep, call ? "bal" : "b", "p");
9817
9818 /* Set to true so that append_insn adds a label. */
9819 emit_branch_likely_macro = TRUE;
9820 }
9821 else
9822 {
9823 macro_build (ep, br, fmt, sreg, treg);
9824 macro_build (NULL, "nop", "");
9825 }
9826 end_noreorder ();
9827 }
9828
9829 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9830 the condition code tested. EP specifies the branch target. */
9831
9832 static void
9833 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9834 {
9835 const int call = 0;
9836 const char *brneg;
9837 const char *br;
9838
9839 switch (type)
9840 {
9841 case M_BC1FL:
9842 br = "bc1f";
9843 brneg = "bc1t";
9844 break;
9845 case M_BC1TL:
9846 br = "bc1t";
9847 brneg = "bc1f";
9848 break;
9849 case M_BC2FL:
9850 br = "bc2f";
9851 brneg = "bc2t";
9852 break;
9853 case M_BC2TL:
9854 br = "bc2t";
9855 brneg = "bc2f";
9856 break;
9857 default:
9858 abort ();
9859 }
9860 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9861 }
9862
9863 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9864 the register tested. EP specifies the branch target. */
9865
9866 static void
9867 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9868 {
9869 const char *brneg = NULL;
9870 const char *br;
9871 int call = 0;
9872
9873 switch (type)
9874 {
9875 case M_BGEZ:
9876 br = "bgez";
9877 break;
9878 case M_BGEZL:
9879 br = mips_opts.micromips ? "bgez" : "bgezl";
9880 brneg = "bltz";
9881 break;
9882 case M_BGEZALL:
9883 gas_assert (mips_opts.micromips);
9884 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9885 brneg = "bltz";
9886 call = 1;
9887 break;
9888 case M_BGTZ:
9889 br = "bgtz";
9890 break;
9891 case M_BGTZL:
9892 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9893 brneg = "blez";
9894 break;
9895 case M_BLEZ:
9896 br = "blez";
9897 break;
9898 case M_BLEZL:
9899 br = mips_opts.micromips ? "blez" : "blezl";
9900 brneg = "bgtz";
9901 break;
9902 case M_BLTZ:
9903 br = "bltz";
9904 break;
9905 case M_BLTZL:
9906 br = mips_opts.micromips ? "bltz" : "bltzl";
9907 brneg = "bgez";
9908 break;
9909 case M_BLTZALL:
9910 gas_assert (mips_opts.micromips);
9911 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9912 brneg = "bgez";
9913 call = 1;
9914 break;
9915 default:
9916 abort ();
9917 }
9918 if (mips_opts.micromips && brneg)
9919 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9920 else
9921 macro_build (ep, br, "s,p", sreg);
9922 }
9923
9924 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9925 TREG as the registers tested. EP specifies the branch target. */
9926
9927 static void
9928 macro_build_branch_rsrt (int type, expressionS *ep,
9929 unsigned int sreg, unsigned int treg)
9930 {
9931 const char *brneg = NULL;
9932 const int call = 0;
9933 const char *br;
9934
9935 switch (type)
9936 {
9937 case M_BEQ:
9938 case M_BEQ_I:
9939 br = "beq";
9940 break;
9941 case M_BEQL:
9942 case M_BEQL_I:
9943 br = mips_opts.micromips ? "beq" : "beql";
9944 brneg = "bne";
9945 break;
9946 case M_BNE:
9947 case M_BNE_I:
9948 br = "bne";
9949 break;
9950 case M_BNEL:
9951 case M_BNEL_I:
9952 br = mips_opts.micromips ? "bne" : "bnel";
9953 brneg = "beq";
9954 break;
9955 default:
9956 abort ();
9957 }
9958 if (mips_opts.micromips && brneg)
9959 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9960 else
9961 macro_build (ep, br, "s,t,p", sreg, treg);
9962 }
9963
9964 /* Return the high part that should be loaded in order to make the low
9965 part of VALUE accessible using an offset of OFFBITS bits. */
9966
9967 static offsetT
9968 offset_high_part (offsetT value, unsigned int offbits)
9969 {
9970 offsetT bias;
9971 addressT low_mask;
9972
9973 if (offbits == 0)
9974 return value;
9975 bias = 1 << (offbits - 1);
9976 low_mask = bias * 2 - 1;
9977 return (value + bias) & ~low_mask;
9978 }
9979
9980 /* Return true if the value stored in offset_expr and offset_reloc
9981 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9982 amount that the caller wants to add without inducing overflow
9983 and ALIGN is the known alignment of the value in bytes. */
9984
9985 static bfd_boolean
9986 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9987 {
9988 if (offbits == 16)
9989 {
9990 /* Accept any relocation operator if overflow isn't a concern. */
9991 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9992 return TRUE;
9993
9994 /* These relocations are guaranteed not to overflow in correct links. */
9995 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9996 || gprel16_reloc_p (*offset_reloc))
9997 return TRUE;
9998 }
9999 if (offset_expr.X_op == O_constant
10000 && offset_high_part (offset_expr.X_add_number, offbits) == 0
10001 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
10002 return TRUE;
10003 return FALSE;
10004 }
10005
10006 /*
10007 * Build macros
10008 * This routine implements the seemingly endless macro or synthesized
10009 * instructions and addressing modes in the mips assembly language. Many
10010 * of these macros are simple and are similar to each other. These could
10011 * probably be handled by some kind of table or grammar approach instead of
10012 * this verbose method. Others are not simple macros but are more like
10013 * optimizing code generation.
10014 * One interesting optimization is when several store macros appear
10015 * consecutively that would load AT with the upper half of the same address.
10016 * The ensuing load upper instructions are omitted. This implies some kind
10017 * of global optimization. We currently only optimize within a single macro.
10018 * For many of the load and store macros if the address is specified as a
10019 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
10020 * first load register 'at' with zero and use it as the base register. The
10021 * mips assembler simply uses register $zero. Just one tiny optimization
10022 * we're missing.
10023 */
10024 static void
10025 macro (struct mips_cl_insn *ip, char *str)
10026 {
10027 const struct mips_operand_array *operands;
10028 unsigned int breg, i;
10029 unsigned int tempreg;
10030 int mask;
10031 int used_at = 0;
10032 expressionS label_expr;
10033 expressionS expr1;
10034 expressionS *ep;
10035 const char *s;
10036 const char *s2;
10037 const char *fmt;
10038 int likely = 0;
10039 int coproc = 0;
10040 int offbits = 16;
10041 int call = 0;
10042 int jals = 0;
10043 int dbl = 0;
10044 int imm = 0;
10045 int ust = 0;
10046 int lp = 0;
10047 bfd_boolean large_offset;
10048 int off;
10049 int hold_mips_optimize;
10050 unsigned int align;
10051 unsigned int op[MAX_OPERANDS];
10052
10053 gas_assert (! mips_opts.mips16);
10054
10055 operands = insn_operands (ip);
10056 for (i = 0; i < MAX_OPERANDS; i++)
10057 if (operands->operand[i])
10058 op[i] = insn_extract_operand (ip, operands->operand[i]);
10059 else
10060 op[i] = -1;
10061
10062 mask = ip->insn_mo->mask;
10063
10064 label_expr.X_op = O_constant;
10065 label_expr.X_op_symbol = NULL;
10066 label_expr.X_add_symbol = NULL;
10067 label_expr.X_add_number = 0;
10068
10069 expr1.X_op = O_constant;
10070 expr1.X_op_symbol = NULL;
10071 expr1.X_add_symbol = NULL;
10072 expr1.X_add_number = 1;
10073 align = 1;
10074
10075 switch (mask)
10076 {
10077 case M_DABS:
10078 dbl = 1;
10079 /* Fall through. */
10080 case M_ABS:
10081 /* bgez $a0,1f
10082 move v0,$a0
10083 sub v0,$zero,$a0
10084 1:
10085 */
10086
10087 start_noreorder ();
10088
10089 if (mips_opts.micromips)
10090 micromips_label_expr (&label_expr);
10091 else
10092 label_expr.X_add_number = 8;
10093 macro_build (&label_expr, "bgez", "s,p", op[1]);
10094 if (op[0] == op[1])
10095 macro_build (NULL, "nop", "");
10096 else
10097 move_register (op[0], op[1]);
10098 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
10099 if (mips_opts.micromips)
10100 micromips_add_label ();
10101
10102 end_noreorder ();
10103 break;
10104
10105 case M_ADD_I:
10106 s = "addi";
10107 s2 = "add";
10108 goto do_addi;
10109 case M_ADDU_I:
10110 s = "addiu";
10111 s2 = "addu";
10112 goto do_addi;
10113 case M_DADD_I:
10114 dbl = 1;
10115 s = "daddi";
10116 s2 = "dadd";
10117 if (!mips_opts.micromips)
10118 goto do_addi;
10119 if (imm_expr.X_add_number >= -0x200
10120 && imm_expr.X_add_number < 0x200)
10121 {
10122 macro_build (NULL, s, "t,r,.", op[0], op[1],
10123 (int) imm_expr.X_add_number);
10124 break;
10125 }
10126 goto do_addi_i;
10127 case M_DADDU_I:
10128 dbl = 1;
10129 s = "daddiu";
10130 s2 = "daddu";
10131 do_addi:
10132 if (imm_expr.X_add_number >= -0x8000
10133 && imm_expr.X_add_number < 0x8000)
10134 {
10135 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
10136 break;
10137 }
10138 do_addi_i:
10139 used_at = 1;
10140 load_register (AT, &imm_expr, dbl);
10141 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
10142 break;
10143
10144 case M_AND_I:
10145 s = "andi";
10146 s2 = "and";
10147 goto do_bit;
10148 case M_OR_I:
10149 s = "ori";
10150 s2 = "or";
10151 goto do_bit;
10152 case M_NOR_I:
10153 s = "";
10154 s2 = "nor";
10155 goto do_bit;
10156 case M_XOR_I:
10157 s = "xori";
10158 s2 = "xor";
10159 do_bit:
10160 if (imm_expr.X_add_number >= 0
10161 && imm_expr.X_add_number < 0x10000)
10162 {
10163 if (mask != M_NOR_I)
10164 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
10165 else
10166 {
10167 macro_build (&imm_expr, "ori", "t,r,i",
10168 op[0], op[1], BFD_RELOC_LO16);
10169 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
10170 }
10171 break;
10172 }
10173
10174 used_at = 1;
10175 load_register (AT, &imm_expr, GPR_SIZE == 64);
10176 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
10177 break;
10178
10179 case M_BALIGN:
10180 switch (imm_expr.X_add_number)
10181 {
10182 case 0:
10183 macro_build (NULL, "nop", "");
10184 break;
10185 case 2:
10186 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
10187 break;
10188 case 1:
10189 case 3:
10190 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
10191 (int) imm_expr.X_add_number);
10192 break;
10193 default:
10194 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
10195 (unsigned long) imm_expr.X_add_number);
10196 break;
10197 }
10198 break;
10199
10200 case M_BC1FL:
10201 case M_BC1TL:
10202 case M_BC2FL:
10203 case M_BC2TL:
10204 gas_assert (mips_opts.micromips);
10205 macro_build_branch_ccl (mask, &offset_expr,
10206 EXTRACT_OPERAND (1, BCC, *ip));
10207 break;
10208
10209 case M_BEQ_I:
10210 case M_BEQL_I:
10211 case M_BNE_I:
10212 case M_BNEL_I:
10213 if (imm_expr.X_add_number == 0)
10214 op[1] = 0;
10215 else
10216 {
10217 op[1] = AT;
10218 used_at = 1;
10219 load_register (op[1], &imm_expr, GPR_SIZE == 64);
10220 }
10221 /* Fall through. */
10222 case M_BEQL:
10223 case M_BNEL:
10224 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
10225 break;
10226
10227 case M_BGEL:
10228 likely = 1;
10229 /* Fall through. */
10230 case M_BGE:
10231 if (op[1] == 0)
10232 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10233 else if (op[0] == 0)
10234 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
10235 else
10236 {
10237 used_at = 1;
10238 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10239 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10240 &offset_expr, AT, ZERO);
10241 }
10242 break;
10243
10244 case M_BGEZL:
10245 case M_BGEZALL:
10246 case M_BGTZL:
10247 case M_BLEZL:
10248 case M_BLTZL:
10249 case M_BLTZALL:
10250 macro_build_branch_rs (mask, &offset_expr, op[0]);
10251 break;
10252
10253 case M_BGTL_I:
10254 likely = 1;
10255 /* Fall through. */
10256 case M_BGT_I:
10257 /* Check for > max integer. */
10258 if (imm_expr.X_add_number >= GPR_SMAX)
10259 {
10260 do_false:
10261 /* Result is always false. */
10262 if (! likely)
10263 macro_build (NULL, "nop", "");
10264 else
10265 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
10266 break;
10267 }
10268 ++imm_expr.X_add_number;
10269 /* FALLTHROUGH */
10270 case M_BGE_I:
10271 case M_BGEL_I:
10272 if (mask == M_BGEL_I)
10273 likely = 1;
10274 if (imm_expr.X_add_number == 0)
10275 {
10276 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
10277 &offset_expr, op[0]);
10278 break;
10279 }
10280 if (imm_expr.X_add_number == 1)
10281 {
10282 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
10283 &offset_expr, op[0]);
10284 break;
10285 }
10286 if (imm_expr.X_add_number <= GPR_SMIN)
10287 {
10288 do_true:
10289 /* result is always true */
10290 as_warn (_("branch %s is always true"), ip->insn_mo->name);
10291 macro_build (&offset_expr, "b", "p");
10292 break;
10293 }
10294 used_at = 1;
10295 set_at (op[0], 0);
10296 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10297 &offset_expr, AT, ZERO);
10298 break;
10299
10300 case M_BGEUL:
10301 likely = 1;
10302 /* Fall through. */
10303 case M_BGEU:
10304 if (op[1] == 0)
10305 goto do_true;
10306 else if (op[0] == 0)
10307 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10308 &offset_expr, ZERO, op[1]);
10309 else
10310 {
10311 used_at = 1;
10312 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10313 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10314 &offset_expr, AT, ZERO);
10315 }
10316 break;
10317
10318 case M_BGTUL_I:
10319 likely = 1;
10320 /* Fall through. */
10321 case M_BGTU_I:
10322 if (op[0] == 0
10323 || (GPR_SIZE == 32
10324 && imm_expr.X_add_number == -1))
10325 goto do_false;
10326 ++imm_expr.X_add_number;
10327 /* FALLTHROUGH */
10328 case M_BGEU_I:
10329 case M_BGEUL_I:
10330 if (mask == M_BGEUL_I)
10331 likely = 1;
10332 if (imm_expr.X_add_number == 0)
10333 goto do_true;
10334 else if (imm_expr.X_add_number == 1)
10335 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10336 &offset_expr, op[0], ZERO);
10337 else
10338 {
10339 used_at = 1;
10340 set_at (op[0], 1);
10341 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10342 &offset_expr, AT, ZERO);
10343 }
10344 break;
10345
10346 case M_BGTL:
10347 likely = 1;
10348 /* Fall through. */
10349 case M_BGT:
10350 if (op[1] == 0)
10351 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10352 else if (op[0] == 0)
10353 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
10354 else
10355 {
10356 used_at = 1;
10357 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10358 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10359 &offset_expr, AT, ZERO);
10360 }
10361 break;
10362
10363 case M_BGTUL:
10364 likely = 1;
10365 /* Fall through. */
10366 case M_BGTU:
10367 if (op[1] == 0)
10368 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10369 &offset_expr, op[0], ZERO);
10370 else if (op[0] == 0)
10371 goto do_false;
10372 else
10373 {
10374 used_at = 1;
10375 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10376 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10377 &offset_expr, AT, ZERO);
10378 }
10379 break;
10380
10381 case M_BLEL:
10382 likely = 1;
10383 /* Fall through. */
10384 case M_BLE:
10385 if (op[1] == 0)
10386 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10387 else if (op[0] == 0)
10388 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10389 else
10390 {
10391 used_at = 1;
10392 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10393 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10394 &offset_expr, AT, ZERO);
10395 }
10396 break;
10397
10398 case M_BLEL_I:
10399 likely = 1;
10400 /* Fall through. */
10401 case M_BLE_I:
10402 if (imm_expr.X_add_number >= GPR_SMAX)
10403 goto do_true;
10404 ++imm_expr.X_add_number;
10405 /* FALLTHROUGH */
10406 case M_BLT_I:
10407 case M_BLTL_I:
10408 if (mask == M_BLTL_I)
10409 likely = 1;
10410 if (imm_expr.X_add_number == 0)
10411 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10412 else if (imm_expr.X_add_number == 1)
10413 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10414 else
10415 {
10416 used_at = 1;
10417 set_at (op[0], 0);
10418 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10419 &offset_expr, AT, ZERO);
10420 }
10421 break;
10422
10423 case M_BLEUL:
10424 likely = 1;
10425 /* Fall through. */
10426 case M_BLEU:
10427 if (op[1] == 0)
10428 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10429 &offset_expr, op[0], ZERO);
10430 else if (op[0] == 0)
10431 goto do_true;
10432 else
10433 {
10434 used_at = 1;
10435 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10436 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10437 &offset_expr, AT, ZERO);
10438 }
10439 break;
10440
10441 case M_BLEUL_I:
10442 likely = 1;
10443 /* Fall through. */
10444 case M_BLEU_I:
10445 if (op[0] == 0
10446 || (GPR_SIZE == 32
10447 && imm_expr.X_add_number == -1))
10448 goto do_true;
10449 ++imm_expr.X_add_number;
10450 /* FALLTHROUGH */
10451 case M_BLTU_I:
10452 case M_BLTUL_I:
10453 if (mask == M_BLTUL_I)
10454 likely = 1;
10455 if (imm_expr.X_add_number == 0)
10456 goto do_false;
10457 else if (imm_expr.X_add_number == 1)
10458 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10459 &offset_expr, op[0], ZERO);
10460 else
10461 {
10462 used_at = 1;
10463 set_at (op[0], 1);
10464 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10465 &offset_expr, AT, ZERO);
10466 }
10467 break;
10468
10469 case M_BLTL:
10470 likely = 1;
10471 /* Fall through. */
10472 case M_BLT:
10473 if (op[1] == 0)
10474 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10475 else if (op[0] == 0)
10476 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10477 else
10478 {
10479 used_at = 1;
10480 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10481 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10482 &offset_expr, AT, ZERO);
10483 }
10484 break;
10485
10486 case M_BLTUL:
10487 likely = 1;
10488 /* Fall through. */
10489 case M_BLTU:
10490 if (op[1] == 0)
10491 goto do_false;
10492 else if (op[0] == 0)
10493 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10494 &offset_expr, ZERO, op[1]);
10495 else
10496 {
10497 used_at = 1;
10498 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10499 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10500 &offset_expr, AT, ZERO);
10501 }
10502 break;
10503
10504 case M_DDIV_3:
10505 dbl = 1;
10506 /* Fall through. */
10507 case M_DIV_3:
10508 s = "mflo";
10509 goto do_div3;
10510 case M_DREM_3:
10511 dbl = 1;
10512 /* Fall through. */
10513 case M_REM_3:
10514 s = "mfhi";
10515 do_div3:
10516 if (op[2] == 0)
10517 {
10518 as_warn (_("divide by zero"));
10519 if (mips_trap)
10520 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10521 else
10522 macro_build (NULL, "break", BRK_FMT, 7);
10523 break;
10524 }
10525
10526 start_noreorder ();
10527 if (mips_trap)
10528 {
10529 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10530 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10531 }
10532 else
10533 {
10534 if (mips_opts.micromips)
10535 micromips_label_expr (&label_expr);
10536 else
10537 label_expr.X_add_number = 8;
10538 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10539 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10540 macro_build (NULL, "break", BRK_FMT, 7);
10541 if (mips_opts.micromips)
10542 micromips_add_label ();
10543 }
10544 expr1.X_add_number = -1;
10545 used_at = 1;
10546 load_register (AT, &expr1, dbl);
10547 if (mips_opts.micromips)
10548 micromips_label_expr (&label_expr);
10549 else
10550 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10551 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10552 if (dbl)
10553 {
10554 expr1.X_add_number = 1;
10555 load_register (AT, &expr1, dbl);
10556 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10557 }
10558 else
10559 {
10560 expr1.X_add_number = 0x80000000;
10561 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10562 }
10563 if (mips_trap)
10564 {
10565 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10566 /* We want to close the noreorder block as soon as possible, so
10567 that later insns are available for delay slot filling. */
10568 end_noreorder ();
10569 }
10570 else
10571 {
10572 if (mips_opts.micromips)
10573 micromips_label_expr (&label_expr);
10574 else
10575 label_expr.X_add_number = 8;
10576 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10577 macro_build (NULL, "nop", "");
10578
10579 /* We want to close the noreorder block as soon as possible, so
10580 that later insns are available for delay slot filling. */
10581 end_noreorder ();
10582
10583 macro_build (NULL, "break", BRK_FMT, 6);
10584 }
10585 if (mips_opts.micromips)
10586 micromips_add_label ();
10587 macro_build (NULL, s, MFHL_FMT, op[0]);
10588 break;
10589
10590 case M_DIV_3I:
10591 s = "div";
10592 s2 = "mflo";
10593 goto do_divi;
10594 case M_DIVU_3I:
10595 s = "divu";
10596 s2 = "mflo";
10597 goto do_divi;
10598 case M_REM_3I:
10599 s = "div";
10600 s2 = "mfhi";
10601 goto do_divi;
10602 case M_REMU_3I:
10603 s = "divu";
10604 s2 = "mfhi";
10605 goto do_divi;
10606 case M_DDIV_3I:
10607 dbl = 1;
10608 s = "ddiv";
10609 s2 = "mflo";
10610 goto do_divi;
10611 case M_DDIVU_3I:
10612 dbl = 1;
10613 s = "ddivu";
10614 s2 = "mflo";
10615 goto do_divi;
10616 case M_DREM_3I:
10617 dbl = 1;
10618 s = "ddiv";
10619 s2 = "mfhi";
10620 goto do_divi;
10621 case M_DREMU_3I:
10622 dbl = 1;
10623 s = "ddivu";
10624 s2 = "mfhi";
10625 do_divi:
10626 if (imm_expr.X_add_number == 0)
10627 {
10628 as_warn (_("divide by zero"));
10629 if (mips_trap)
10630 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10631 else
10632 macro_build (NULL, "break", BRK_FMT, 7);
10633 break;
10634 }
10635 if (imm_expr.X_add_number == 1)
10636 {
10637 if (strcmp (s2, "mflo") == 0)
10638 move_register (op[0], op[1]);
10639 else
10640 move_register (op[0], ZERO);
10641 break;
10642 }
10643 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10644 {
10645 if (strcmp (s2, "mflo") == 0)
10646 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10647 else
10648 move_register (op[0], ZERO);
10649 break;
10650 }
10651
10652 used_at = 1;
10653 load_register (AT, &imm_expr, dbl);
10654 macro_build (NULL, s, "z,s,t", op[1], AT);
10655 macro_build (NULL, s2, MFHL_FMT, op[0]);
10656 break;
10657
10658 case M_DIVU_3:
10659 s = "divu";
10660 s2 = "mflo";
10661 goto do_divu3;
10662 case M_REMU_3:
10663 s = "divu";
10664 s2 = "mfhi";
10665 goto do_divu3;
10666 case M_DDIVU_3:
10667 s = "ddivu";
10668 s2 = "mflo";
10669 goto do_divu3;
10670 case M_DREMU_3:
10671 s = "ddivu";
10672 s2 = "mfhi";
10673 do_divu3:
10674 start_noreorder ();
10675 if (mips_trap)
10676 {
10677 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10678 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10679 /* We want to close the noreorder block as soon as possible, so
10680 that later insns are available for delay slot filling. */
10681 end_noreorder ();
10682 }
10683 else
10684 {
10685 if (mips_opts.micromips)
10686 micromips_label_expr (&label_expr);
10687 else
10688 label_expr.X_add_number = 8;
10689 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10690 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10691
10692 /* We want to close the noreorder block as soon as possible, so
10693 that later insns are available for delay slot filling. */
10694 end_noreorder ();
10695 macro_build (NULL, "break", BRK_FMT, 7);
10696 if (mips_opts.micromips)
10697 micromips_add_label ();
10698 }
10699 macro_build (NULL, s2, MFHL_FMT, op[0]);
10700 break;
10701
10702 case M_DLCA_AB:
10703 dbl = 1;
10704 /* Fall through. */
10705 case M_LCA_AB:
10706 call = 1;
10707 goto do_la;
10708 case M_DLA_AB:
10709 dbl = 1;
10710 /* Fall through. */
10711 case M_LA_AB:
10712 do_la:
10713 /* Load the address of a symbol into a register. If breg is not
10714 zero, we then add a base register to it. */
10715
10716 breg = op[2];
10717 if (dbl && GPR_SIZE == 32)
10718 as_warn (_("dla used to load 32-bit register; recommend using la "
10719 "instead"));
10720
10721 if (!dbl && HAVE_64BIT_OBJECTS)
10722 as_warn (_("la used to load 64-bit address; recommend using dla "
10723 "instead"));
10724
10725 if (small_offset_p (0, align, 16))
10726 {
10727 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10728 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10729 break;
10730 }
10731
10732 if (mips_opts.at && (op[0] == breg))
10733 {
10734 tempreg = AT;
10735 used_at = 1;
10736 }
10737 else
10738 tempreg = op[0];
10739
10740 if (offset_expr.X_op != O_symbol
10741 && offset_expr.X_op != O_constant)
10742 {
10743 as_bad (_("expression too complex"));
10744 offset_expr.X_op = O_constant;
10745 }
10746
10747 if (offset_expr.X_op == O_constant)
10748 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10749 else if (mips_pic == NO_PIC)
10750 {
10751 /* If this is a reference to a GP relative symbol, we want
10752 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10753 Otherwise we want
10754 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10755 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10756 If we have a constant, we need two instructions anyhow,
10757 so we may as well always use the latter form.
10758
10759 With 64bit address space and a usable $at we want
10760 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10761 lui $at,<sym> (BFD_RELOC_HI16_S)
10762 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10763 daddiu $at,<sym> (BFD_RELOC_LO16)
10764 dsll32 $tempreg,0
10765 daddu $tempreg,$tempreg,$at
10766
10767 If $at is already in use, we use a path which is suboptimal
10768 on superscalar processors.
10769 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10770 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10771 dsll $tempreg,16
10772 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10773 dsll $tempreg,16
10774 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10775
10776 For GP relative symbols in 64bit address space we can use
10777 the same sequence as in 32bit address space. */
10778 if (HAVE_64BIT_SYMBOLS)
10779 {
10780 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10781 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10782 {
10783 relax_start (offset_expr.X_add_symbol);
10784 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10785 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10786 relax_switch ();
10787 }
10788
10789 if (used_at == 0 && mips_opts.at)
10790 {
10791 macro_build (&offset_expr, "lui", LUI_FMT,
10792 tempreg, BFD_RELOC_MIPS_HIGHEST);
10793 macro_build (&offset_expr, "lui", LUI_FMT,
10794 AT, BFD_RELOC_HI16_S);
10795 macro_build (&offset_expr, "daddiu", "t,r,j",
10796 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10797 macro_build (&offset_expr, "daddiu", "t,r,j",
10798 AT, AT, BFD_RELOC_LO16);
10799 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10800 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10801 used_at = 1;
10802 }
10803 else
10804 {
10805 macro_build (&offset_expr, "lui", LUI_FMT,
10806 tempreg, BFD_RELOC_MIPS_HIGHEST);
10807 macro_build (&offset_expr, "daddiu", "t,r,j",
10808 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10809 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10810 macro_build (&offset_expr, "daddiu", "t,r,j",
10811 tempreg, tempreg, BFD_RELOC_HI16_S);
10812 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10813 macro_build (&offset_expr, "daddiu", "t,r,j",
10814 tempreg, tempreg, BFD_RELOC_LO16);
10815 }
10816
10817 if (mips_relax.sequence)
10818 relax_end ();
10819 }
10820 else
10821 {
10822 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10823 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10824 {
10825 relax_start (offset_expr.X_add_symbol);
10826 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10827 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10828 relax_switch ();
10829 }
10830 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10831 as_bad (_("offset too large"));
10832 macro_build_lui (&offset_expr, tempreg);
10833 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10834 tempreg, tempreg, BFD_RELOC_LO16);
10835 if (mips_relax.sequence)
10836 relax_end ();
10837 }
10838 }
10839 else if (!mips_big_got && !HAVE_NEWABI)
10840 {
10841 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10842
10843 /* If this is a reference to an external symbol, and there
10844 is no constant, we want
10845 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10846 or for lca or if tempreg is PIC_CALL_REG
10847 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10848 For a local symbol, we want
10849 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10850 nop
10851 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10852
10853 If we have a small constant, and this is a reference to
10854 an external symbol, we want
10855 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10856 nop
10857 addiu $tempreg,$tempreg,<constant>
10858 For a local symbol, we want the same instruction
10859 sequence, but we output a BFD_RELOC_LO16 reloc on the
10860 addiu instruction.
10861
10862 If we have a large constant, and this is a reference to
10863 an external symbol, we want
10864 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10865 lui $at,<hiconstant>
10866 addiu $at,$at,<loconstant>
10867 addu $tempreg,$tempreg,$at
10868 For a local symbol, we want the same instruction
10869 sequence, but we output a BFD_RELOC_LO16 reloc on the
10870 addiu instruction.
10871 */
10872
10873 if (offset_expr.X_add_number == 0)
10874 {
10875 if (mips_pic == SVR4_PIC
10876 && breg == 0
10877 && (call || tempreg == PIC_CALL_REG))
10878 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10879
10880 relax_start (offset_expr.X_add_symbol);
10881 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10882 lw_reloc_type, mips_gp_register);
10883 if (breg != 0)
10884 {
10885 /* We're going to put in an addu instruction using
10886 tempreg, so we may as well insert the nop right
10887 now. */
10888 load_delay_nop ();
10889 }
10890 relax_switch ();
10891 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10892 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10893 load_delay_nop ();
10894 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10895 tempreg, tempreg, BFD_RELOC_LO16);
10896 relax_end ();
10897 /* FIXME: If breg == 0, and the next instruction uses
10898 $tempreg, then if this variant case is used an extra
10899 nop will be generated. */
10900 }
10901 else if (offset_expr.X_add_number >= -0x8000
10902 && offset_expr.X_add_number < 0x8000)
10903 {
10904 load_got_offset (tempreg, &offset_expr);
10905 load_delay_nop ();
10906 add_got_offset (tempreg, &offset_expr);
10907 }
10908 else
10909 {
10910 expr1.X_add_number = offset_expr.X_add_number;
10911 offset_expr.X_add_number =
10912 SEXT_16BIT (offset_expr.X_add_number);
10913 load_got_offset (tempreg, &offset_expr);
10914 offset_expr.X_add_number = expr1.X_add_number;
10915 /* If we are going to add in a base register, and the
10916 target register and the base register are the same,
10917 then we are using AT as a temporary register. Since
10918 we want to load the constant into AT, we add our
10919 current AT (from the global offset table) and the
10920 register into the register now, and pretend we were
10921 not using a base register. */
10922 if (breg == op[0])
10923 {
10924 load_delay_nop ();
10925 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10926 op[0], AT, breg);
10927 breg = 0;
10928 tempreg = op[0];
10929 }
10930 add_got_offset_hilo (tempreg, &offset_expr, AT);
10931 used_at = 1;
10932 }
10933 }
10934 else if (!mips_big_got && HAVE_NEWABI)
10935 {
10936 int add_breg_early = 0;
10937
10938 /* If this is a reference to an external, and there is no
10939 constant, or local symbol (*), with or without a
10940 constant, we want
10941 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10942 or for lca or if tempreg is PIC_CALL_REG
10943 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10944
10945 If we have a small constant, and this is a reference to
10946 an external symbol, we want
10947 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10948 addiu $tempreg,$tempreg,<constant>
10949
10950 If we have a large constant, and this is a reference to
10951 an external symbol, we want
10952 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10953 lui $at,<hiconstant>
10954 addiu $at,$at,<loconstant>
10955 addu $tempreg,$tempreg,$at
10956
10957 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10958 local symbols, even though it introduces an additional
10959 instruction. */
10960
10961 if (offset_expr.X_add_number)
10962 {
10963 expr1.X_add_number = offset_expr.X_add_number;
10964 offset_expr.X_add_number = 0;
10965
10966 relax_start (offset_expr.X_add_symbol);
10967 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10968 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10969
10970 if (expr1.X_add_number >= -0x8000
10971 && expr1.X_add_number < 0x8000)
10972 {
10973 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10974 tempreg, tempreg, BFD_RELOC_LO16);
10975 }
10976 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10977 {
10978 unsigned int dreg;
10979
10980 /* If we are going to add in a base register, and the
10981 target register and the base register are the same,
10982 then we are using AT as a temporary register. Since
10983 we want to load the constant into AT, we add our
10984 current AT (from the global offset table) and the
10985 register into the register now, and pretend we were
10986 not using a base register. */
10987 if (breg != op[0])
10988 dreg = tempreg;
10989 else
10990 {
10991 gas_assert (tempreg == AT);
10992 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10993 op[0], AT, breg);
10994 dreg = op[0];
10995 add_breg_early = 1;
10996 }
10997
10998 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10999 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11000 dreg, dreg, AT);
11001
11002 used_at = 1;
11003 }
11004 else
11005 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11006
11007 relax_switch ();
11008 offset_expr.X_add_number = expr1.X_add_number;
11009
11010 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11011 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11012 if (add_breg_early)
11013 {
11014 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11015 op[0], tempreg, breg);
11016 breg = 0;
11017 tempreg = op[0];
11018 }
11019 relax_end ();
11020 }
11021 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
11022 {
11023 relax_start (offset_expr.X_add_symbol);
11024 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11025 BFD_RELOC_MIPS_CALL16, mips_gp_register);
11026 relax_switch ();
11027 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11028 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11029 relax_end ();
11030 }
11031 else
11032 {
11033 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11034 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11035 }
11036 }
11037 else if (mips_big_got && !HAVE_NEWABI)
11038 {
11039 int gpdelay;
11040 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11041 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
11042 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11043
11044 /* This is the large GOT case. If this is a reference to an
11045 external symbol, and there is no constant, we want
11046 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11047 addu $tempreg,$tempreg,$gp
11048 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11049 or for lca or if tempreg is PIC_CALL_REG
11050 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11051 addu $tempreg,$tempreg,$gp
11052 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11053 For a local symbol, we want
11054 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11055 nop
11056 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11057
11058 If we have a small constant, and this is a reference to
11059 an external symbol, we want
11060 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11061 addu $tempreg,$tempreg,$gp
11062 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11063 nop
11064 addiu $tempreg,$tempreg,<constant>
11065 For a local symbol, we want
11066 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11067 nop
11068 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
11069
11070 If we have a large constant, and this is a reference to
11071 an external symbol, we want
11072 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11073 addu $tempreg,$tempreg,$gp
11074 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11075 lui $at,<hiconstant>
11076 addiu $at,$at,<loconstant>
11077 addu $tempreg,$tempreg,$at
11078 For a local symbol, we want
11079 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11080 lui $at,<hiconstant>
11081 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
11082 addu $tempreg,$tempreg,$at
11083 */
11084
11085 expr1.X_add_number = offset_expr.X_add_number;
11086 offset_expr.X_add_number = 0;
11087 relax_start (offset_expr.X_add_symbol);
11088 gpdelay = reg_needs_delay (mips_gp_register);
11089 if (expr1.X_add_number == 0 && breg == 0
11090 && (call || tempreg == PIC_CALL_REG))
11091 {
11092 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11093 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11094 }
11095 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11096 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11097 tempreg, tempreg, mips_gp_register);
11098 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11099 tempreg, lw_reloc_type, tempreg);
11100 if (expr1.X_add_number == 0)
11101 {
11102 if (breg != 0)
11103 {
11104 /* We're going to put in an addu instruction using
11105 tempreg, so we may as well insert the nop right
11106 now. */
11107 load_delay_nop ();
11108 }
11109 }
11110 else if (expr1.X_add_number >= -0x8000
11111 && expr1.X_add_number < 0x8000)
11112 {
11113 load_delay_nop ();
11114 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11115 tempreg, tempreg, BFD_RELOC_LO16);
11116 }
11117 else
11118 {
11119 unsigned int dreg;
11120
11121 /* If we are going to add in a base register, and the
11122 target register and the base register are the same,
11123 then we are using AT as a temporary register. Since
11124 we want to load the constant into AT, we add our
11125 current AT (from the global offset table) and the
11126 register into the register now, and pretend we were
11127 not using a base register. */
11128 if (breg != op[0])
11129 dreg = tempreg;
11130 else
11131 {
11132 gas_assert (tempreg == AT);
11133 load_delay_nop ();
11134 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11135 op[0], AT, breg);
11136 dreg = op[0];
11137 }
11138
11139 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11140 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11141
11142 used_at = 1;
11143 }
11144 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
11145 relax_switch ();
11146
11147 if (gpdelay)
11148 {
11149 /* This is needed because this instruction uses $gp, but
11150 the first instruction on the main stream does not. */
11151 macro_build (NULL, "nop", "");
11152 }
11153
11154 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11155 local_reloc_type, mips_gp_register);
11156 if (expr1.X_add_number >= -0x8000
11157 && expr1.X_add_number < 0x8000)
11158 {
11159 load_delay_nop ();
11160 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11161 tempreg, tempreg, BFD_RELOC_LO16);
11162 /* FIXME: If add_number is 0, and there was no base
11163 register, the external symbol case ended with a load,
11164 so if the symbol turns out to not be external, and
11165 the next instruction uses tempreg, an unnecessary nop
11166 will be inserted. */
11167 }
11168 else
11169 {
11170 if (breg == op[0])
11171 {
11172 /* We must add in the base register now, as in the
11173 external symbol case. */
11174 gas_assert (tempreg == AT);
11175 load_delay_nop ();
11176 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11177 op[0], AT, breg);
11178 tempreg = op[0];
11179 /* We set breg to 0 because we have arranged to add
11180 it in in both cases. */
11181 breg = 0;
11182 }
11183
11184 macro_build_lui (&expr1, AT);
11185 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11186 AT, AT, BFD_RELOC_LO16);
11187 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11188 tempreg, tempreg, AT);
11189 used_at = 1;
11190 }
11191 relax_end ();
11192 }
11193 else if (mips_big_got && HAVE_NEWABI)
11194 {
11195 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11196 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
11197 int add_breg_early = 0;
11198
11199 /* This is the large GOT case. If this is a reference to an
11200 external symbol, and there is no constant, we want
11201 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11202 add $tempreg,$tempreg,$gp
11203 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11204 or for lca or if tempreg is PIC_CALL_REG
11205 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11206 add $tempreg,$tempreg,$gp
11207 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11208
11209 If we have a small constant, and this is a reference to
11210 an external symbol, we want
11211 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11212 add $tempreg,$tempreg,$gp
11213 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11214 addi $tempreg,$tempreg,<constant>
11215
11216 If we have a large constant, and this is a reference to
11217 an external symbol, we want
11218 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11219 addu $tempreg,$tempreg,$gp
11220 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11221 lui $at,<hiconstant>
11222 addi $at,$at,<loconstant>
11223 add $tempreg,$tempreg,$at
11224
11225 If we have NewABI, and we know it's a local symbol, we want
11226 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11227 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11228 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11229
11230 relax_start (offset_expr.X_add_symbol);
11231
11232 expr1.X_add_number = offset_expr.X_add_number;
11233 offset_expr.X_add_number = 0;
11234
11235 if (expr1.X_add_number == 0 && breg == 0
11236 && (call || tempreg == PIC_CALL_REG))
11237 {
11238 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11239 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11240 }
11241 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11242 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11243 tempreg, tempreg, mips_gp_register);
11244 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11245 tempreg, lw_reloc_type, tempreg);
11246
11247 if (expr1.X_add_number == 0)
11248 ;
11249 else if (expr1.X_add_number >= -0x8000
11250 && expr1.X_add_number < 0x8000)
11251 {
11252 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11253 tempreg, tempreg, BFD_RELOC_LO16);
11254 }
11255 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
11256 {
11257 unsigned int dreg;
11258
11259 /* If we are going to add in a base register, and the
11260 target register and the base register are the same,
11261 then we are using AT as a temporary register. Since
11262 we want to load the constant into AT, we add our
11263 current AT (from the global offset table) and the
11264 register into the register now, and pretend we were
11265 not using a base register. */
11266 if (breg != op[0])
11267 dreg = tempreg;
11268 else
11269 {
11270 gas_assert (tempreg == AT);
11271 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11272 op[0], AT, breg);
11273 dreg = op[0];
11274 add_breg_early = 1;
11275 }
11276
11277 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11278 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11279
11280 used_at = 1;
11281 }
11282 else
11283 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11284
11285 relax_switch ();
11286 offset_expr.X_add_number = expr1.X_add_number;
11287 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11288 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11289 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11290 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11291 if (add_breg_early)
11292 {
11293 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11294 op[0], tempreg, breg);
11295 breg = 0;
11296 tempreg = op[0];
11297 }
11298 relax_end ();
11299 }
11300 else
11301 abort ();
11302
11303 if (breg != 0)
11304 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
11305 break;
11306
11307 case M_MSGSND:
11308 gas_assert (!mips_opts.micromips);
11309 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
11310 break;
11311
11312 case M_MSGLD:
11313 gas_assert (!mips_opts.micromips);
11314 macro_build (NULL, "c2", "C", 0x02);
11315 break;
11316
11317 case M_MSGLD_T:
11318 gas_assert (!mips_opts.micromips);
11319 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
11320 break;
11321
11322 case M_MSGWAIT:
11323 gas_assert (!mips_opts.micromips);
11324 macro_build (NULL, "c2", "C", 3);
11325 break;
11326
11327 case M_MSGWAIT_T:
11328 gas_assert (!mips_opts.micromips);
11329 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
11330 break;
11331
11332 case M_J_A:
11333 /* The j instruction may not be used in PIC code, since it
11334 requires an absolute address. We convert it to a b
11335 instruction. */
11336 if (mips_pic == NO_PIC)
11337 macro_build (&offset_expr, "j", "a");
11338 else
11339 macro_build (&offset_expr, "b", "p");
11340 break;
11341
11342 /* The jal instructions must be handled as macros because when
11343 generating PIC code they expand to multi-instruction
11344 sequences. Normally they are simple instructions. */
11345 case M_JALS_1:
11346 op[1] = op[0];
11347 op[0] = RA;
11348 /* Fall through. */
11349 case M_JALS_2:
11350 gas_assert (mips_opts.micromips);
11351 if (mips_opts.insn32)
11352 {
11353 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11354 break;
11355 }
11356 jals = 1;
11357 goto jal;
11358 case M_JAL_1:
11359 op[1] = op[0];
11360 op[0] = RA;
11361 /* Fall through. */
11362 case M_JAL_2:
11363 jal:
11364 if (mips_pic == NO_PIC)
11365 {
11366 s = jals ? "jalrs" : "jalr";
11367 if (mips_opts.micromips
11368 && !mips_opts.insn32
11369 && op[0] == RA
11370 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11371 macro_build (NULL, s, "mj", op[1]);
11372 else
11373 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11374 }
11375 else
11376 {
11377 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11378 && mips_cprestore_offset >= 0);
11379
11380 if (op[1] != PIC_CALL_REG)
11381 as_warn (_("MIPS PIC call to register other than $25"));
11382
11383 s = ((mips_opts.micromips
11384 && !mips_opts.insn32
11385 && (!mips_opts.noreorder || cprestore))
11386 ? "jalrs" : "jalr");
11387 if (mips_opts.micromips
11388 && !mips_opts.insn32
11389 && op[0] == RA
11390 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11391 macro_build (NULL, s, "mj", op[1]);
11392 else
11393 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11394 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11395 {
11396 if (mips_cprestore_offset < 0)
11397 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11398 else
11399 {
11400 if (!mips_frame_reg_valid)
11401 {
11402 as_warn (_("no .frame pseudo-op used in PIC code"));
11403 /* Quiet this warning. */
11404 mips_frame_reg_valid = 1;
11405 }
11406 if (!mips_cprestore_valid)
11407 {
11408 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11409 /* Quiet this warning. */
11410 mips_cprestore_valid = 1;
11411 }
11412 if (mips_opts.noreorder)
11413 macro_build (NULL, "nop", "");
11414 expr1.X_add_number = mips_cprestore_offset;
11415 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11416 mips_gp_register,
11417 mips_frame_reg,
11418 HAVE_64BIT_ADDRESSES);
11419 }
11420 }
11421 }
11422
11423 break;
11424
11425 case M_JALS_A:
11426 gas_assert (mips_opts.micromips);
11427 if (mips_opts.insn32)
11428 {
11429 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11430 break;
11431 }
11432 jals = 1;
11433 /* Fall through. */
11434 case M_JAL_A:
11435 if (mips_pic == NO_PIC)
11436 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11437 else if (mips_pic == SVR4_PIC)
11438 {
11439 /* If this is a reference to an external symbol, and we are
11440 using a small GOT, we want
11441 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11442 nop
11443 jalr $ra,$25
11444 nop
11445 lw $gp,cprestore($sp)
11446 The cprestore value is set using the .cprestore
11447 pseudo-op. If we are using a big GOT, we want
11448 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11449 addu $25,$25,$gp
11450 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11451 nop
11452 jalr $ra,$25
11453 nop
11454 lw $gp,cprestore($sp)
11455 If the symbol is not external, we want
11456 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11457 nop
11458 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11459 jalr $ra,$25
11460 nop
11461 lw $gp,cprestore($sp)
11462
11463 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11464 sequences above, minus nops, unless the symbol is local,
11465 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11466 GOT_DISP. */
11467 if (HAVE_NEWABI)
11468 {
11469 if (!mips_big_got)
11470 {
11471 relax_start (offset_expr.X_add_symbol);
11472 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11473 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11474 mips_gp_register);
11475 relax_switch ();
11476 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11477 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11478 mips_gp_register);
11479 relax_end ();
11480 }
11481 else
11482 {
11483 relax_start (offset_expr.X_add_symbol);
11484 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11485 BFD_RELOC_MIPS_CALL_HI16);
11486 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11487 PIC_CALL_REG, mips_gp_register);
11488 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11489 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11490 PIC_CALL_REG);
11491 relax_switch ();
11492 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11493 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11494 mips_gp_register);
11495 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11496 PIC_CALL_REG, PIC_CALL_REG,
11497 BFD_RELOC_MIPS_GOT_OFST);
11498 relax_end ();
11499 }
11500
11501 macro_build_jalr (&offset_expr, 0);
11502 }
11503 else
11504 {
11505 relax_start (offset_expr.X_add_symbol);
11506 if (!mips_big_got)
11507 {
11508 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11509 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11510 mips_gp_register);
11511 load_delay_nop ();
11512 relax_switch ();
11513 }
11514 else
11515 {
11516 int gpdelay;
11517
11518 gpdelay = reg_needs_delay (mips_gp_register);
11519 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11520 BFD_RELOC_MIPS_CALL_HI16);
11521 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11522 PIC_CALL_REG, mips_gp_register);
11523 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11524 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11525 PIC_CALL_REG);
11526 load_delay_nop ();
11527 relax_switch ();
11528 if (gpdelay)
11529 macro_build (NULL, "nop", "");
11530 }
11531 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11532 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11533 mips_gp_register);
11534 load_delay_nop ();
11535 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11536 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11537 relax_end ();
11538 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11539
11540 if (mips_cprestore_offset < 0)
11541 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11542 else
11543 {
11544 if (!mips_frame_reg_valid)
11545 {
11546 as_warn (_("no .frame pseudo-op used in PIC code"));
11547 /* Quiet this warning. */
11548 mips_frame_reg_valid = 1;
11549 }
11550 if (!mips_cprestore_valid)
11551 {
11552 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11553 /* Quiet this warning. */
11554 mips_cprestore_valid = 1;
11555 }
11556 if (mips_opts.noreorder)
11557 macro_build (NULL, "nop", "");
11558 expr1.X_add_number = mips_cprestore_offset;
11559 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11560 mips_gp_register,
11561 mips_frame_reg,
11562 HAVE_64BIT_ADDRESSES);
11563 }
11564 }
11565 }
11566 else if (mips_pic == VXWORKS_PIC)
11567 as_bad (_("non-PIC jump used in PIC library"));
11568 else
11569 abort ();
11570
11571 break;
11572
11573 case M_LBUE_AB:
11574 s = "lbue";
11575 fmt = "t,+j(b)";
11576 offbits = 9;
11577 goto ld_st;
11578 case M_LHUE_AB:
11579 s = "lhue";
11580 fmt = "t,+j(b)";
11581 offbits = 9;
11582 goto ld_st;
11583 case M_LBE_AB:
11584 s = "lbe";
11585 fmt = "t,+j(b)";
11586 offbits = 9;
11587 goto ld_st;
11588 case M_LHE_AB:
11589 s = "lhe";
11590 fmt = "t,+j(b)";
11591 offbits = 9;
11592 goto ld_st;
11593 case M_LLE_AB:
11594 s = "lle";
11595 fmt = "t,+j(b)";
11596 offbits = 9;
11597 goto ld_st;
11598 case M_LWE_AB:
11599 s = "lwe";
11600 fmt = "t,+j(b)";
11601 offbits = 9;
11602 goto ld_st;
11603 case M_LWLE_AB:
11604 s = "lwle";
11605 fmt = "t,+j(b)";
11606 offbits = 9;
11607 goto ld_st;
11608 case M_LWRE_AB:
11609 s = "lwre";
11610 fmt = "t,+j(b)";
11611 offbits = 9;
11612 goto ld_st;
11613 case M_SBE_AB:
11614 s = "sbe";
11615 fmt = "t,+j(b)";
11616 offbits = 9;
11617 goto ld_st;
11618 case M_SCE_AB:
11619 s = "sce";
11620 fmt = "t,+j(b)";
11621 offbits = 9;
11622 goto ld_st;
11623 case M_SHE_AB:
11624 s = "she";
11625 fmt = "t,+j(b)";
11626 offbits = 9;
11627 goto ld_st;
11628 case M_SWE_AB:
11629 s = "swe";
11630 fmt = "t,+j(b)";
11631 offbits = 9;
11632 goto ld_st;
11633 case M_SWLE_AB:
11634 s = "swle";
11635 fmt = "t,+j(b)";
11636 offbits = 9;
11637 goto ld_st;
11638 case M_SWRE_AB:
11639 s = "swre";
11640 fmt = "t,+j(b)";
11641 offbits = 9;
11642 goto ld_st;
11643 case M_ACLR_AB:
11644 s = "aclr";
11645 fmt = "\\,~(b)";
11646 offbits = 12;
11647 goto ld_st;
11648 case M_ASET_AB:
11649 s = "aset";
11650 fmt = "\\,~(b)";
11651 offbits = 12;
11652 goto ld_st;
11653 case M_LB_AB:
11654 s = "lb";
11655 fmt = "t,o(b)";
11656 goto ld;
11657 case M_LBU_AB:
11658 s = "lbu";
11659 fmt = "t,o(b)";
11660 goto ld;
11661 case M_LH_AB:
11662 s = "lh";
11663 fmt = "t,o(b)";
11664 goto ld;
11665 case M_LHU_AB:
11666 s = "lhu";
11667 fmt = "t,o(b)";
11668 goto ld;
11669 case M_LW_AB:
11670 s = "lw";
11671 fmt = "t,o(b)";
11672 goto ld;
11673 case M_LWC0_AB:
11674 gas_assert (!mips_opts.micromips);
11675 s = "lwc0";
11676 fmt = "E,o(b)";
11677 /* Itbl support may require additional care here. */
11678 coproc = 1;
11679 goto ld_st;
11680 case M_LWC1_AB:
11681 s = "lwc1";
11682 fmt = "T,o(b)";
11683 /* Itbl support may require additional care here. */
11684 coproc = 1;
11685 goto ld_st;
11686 case M_LWC2_AB:
11687 s = "lwc2";
11688 fmt = COP12_FMT;
11689 offbits = (mips_opts.micromips ? 12
11690 : ISA_IS_R6 (mips_opts.isa) ? 11
11691 : 16);
11692 /* Itbl support may require additional care here. */
11693 coproc = 1;
11694 goto ld_st;
11695 case M_LWC3_AB:
11696 gas_assert (!mips_opts.micromips);
11697 s = "lwc3";
11698 fmt = "E,o(b)";
11699 /* Itbl support may require additional care here. */
11700 coproc = 1;
11701 goto ld_st;
11702 case M_LWL_AB:
11703 s = "lwl";
11704 fmt = MEM12_FMT;
11705 offbits = (mips_opts.micromips ? 12 : 16);
11706 goto ld_st;
11707 case M_LWR_AB:
11708 s = "lwr";
11709 fmt = MEM12_FMT;
11710 offbits = (mips_opts.micromips ? 12 : 16);
11711 goto ld_st;
11712 case M_LDC1_AB:
11713 s = "ldc1";
11714 fmt = "T,o(b)";
11715 /* Itbl support may require additional care here. */
11716 coproc = 1;
11717 goto ld_st;
11718 case M_LDC2_AB:
11719 s = "ldc2";
11720 fmt = COP12_FMT;
11721 offbits = (mips_opts.micromips ? 12
11722 : ISA_IS_R6 (mips_opts.isa) ? 11
11723 : 16);
11724 /* Itbl support may require additional care here. */
11725 coproc = 1;
11726 goto ld_st;
11727 case M_LQC2_AB:
11728 s = "lqc2";
11729 fmt = "+7,o(b)";
11730 /* Itbl support may require additional care here. */
11731 coproc = 1;
11732 goto ld_st;
11733 case M_LDC3_AB:
11734 s = "ldc3";
11735 fmt = "E,o(b)";
11736 /* Itbl support may require additional care here. */
11737 coproc = 1;
11738 goto ld_st;
11739 case M_LDL_AB:
11740 s = "ldl";
11741 fmt = MEM12_FMT;
11742 offbits = (mips_opts.micromips ? 12 : 16);
11743 goto ld_st;
11744 case M_LDR_AB:
11745 s = "ldr";
11746 fmt = MEM12_FMT;
11747 offbits = (mips_opts.micromips ? 12 : 16);
11748 goto ld_st;
11749 case M_LL_AB:
11750 s = "ll";
11751 fmt = LL_SC_FMT;
11752 offbits = (mips_opts.micromips ? 12
11753 : ISA_IS_R6 (mips_opts.isa) ? 9
11754 : 16);
11755 goto ld;
11756 case M_LLD_AB:
11757 s = "lld";
11758 fmt = LL_SC_FMT;
11759 offbits = (mips_opts.micromips ? 12
11760 : ISA_IS_R6 (mips_opts.isa) ? 9
11761 : 16);
11762 goto ld;
11763 case M_LWU_AB:
11764 s = "lwu";
11765 fmt = MEM12_FMT;
11766 offbits = (mips_opts.micromips ? 12 : 16);
11767 goto ld;
11768 case M_LWP_AB:
11769 gas_assert (mips_opts.micromips);
11770 s = "lwp";
11771 fmt = "t,~(b)";
11772 offbits = 12;
11773 lp = 1;
11774 goto ld;
11775 case M_LDP_AB:
11776 gas_assert (mips_opts.micromips);
11777 s = "ldp";
11778 fmt = "t,~(b)";
11779 offbits = 12;
11780 lp = 1;
11781 goto ld;
11782 case M_LWM_AB:
11783 gas_assert (mips_opts.micromips);
11784 s = "lwm";
11785 fmt = "n,~(b)";
11786 offbits = 12;
11787 goto ld_st;
11788 case M_LDM_AB:
11789 gas_assert (mips_opts.micromips);
11790 s = "ldm";
11791 fmt = "n,~(b)";
11792 offbits = 12;
11793 goto ld_st;
11794
11795 ld:
11796 /* We don't want to use $0 as tempreg. */
11797 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11798 goto ld_st;
11799 else
11800 tempreg = op[0] + lp;
11801 goto ld_noat;
11802
11803 case M_SB_AB:
11804 s = "sb";
11805 fmt = "t,o(b)";
11806 goto ld_st;
11807 case M_SH_AB:
11808 s = "sh";
11809 fmt = "t,o(b)";
11810 goto ld_st;
11811 case M_SW_AB:
11812 s = "sw";
11813 fmt = "t,o(b)";
11814 goto ld_st;
11815 case M_SWC0_AB:
11816 gas_assert (!mips_opts.micromips);
11817 s = "swc0";
11818 fmt = "E,o(b)";
11819 /* Itbl support may require additional care here. */
11820 coproc = 1;
11821 goto ld_st;
11822 case M_SWC1_AB:
11823 s = "swc1";
11824 fmt = "T,o(b)";
11825 /* Itbl support may require additional care here. */
11826 coproc = 1;
11827 goto ld_st;
11828 case M_SWC2_AB:
11829 s = "swc2";
11830 fmt = COP12_FMT;
11831 offbits = (mips_opts.micromips ? 12
11832 : ISA_IS_R6 (mips_opts.isa) ? 11
11833 : 16);
11834 /* Itbl support may require additional care here. */
11835 coproc = 1;
11836 goto ld_st;
11837 case M_SWC3_AB:
11838 gas_assert (!mips_opts.micromips);
11839 s = "swc3";
11840 fmt = "E,o(b)";
11841 /* Itbl support may require additional care here. */
11842 coproc = 1;
11843 goto ld_st;
11844 case M_SWL_AB:
11845 s = "swl";
11846 fmt = MEM12_FMT;
11847 offbits = (mips_opts.micromips ? 12 : 16);
11848 goto ld_st;
11849 case M_SWR_AB:
11850 s = "swr";
11851 fmt = MEM12_FMT;
11852 offbits = (mips_opts.micromips ? 12 : 16);
11853 goto ld_st;
11854 case M_SC_AB:
11855 s = "sc";
11856 fmt = LL_SC_FMT;
11857 offbits = (mips_opts.micromips ? 12
11858 : ISA_IS_R6 (mips_opts.isa) ? 9
11859 : 16);
11860 goto ld_st;
11861 case M_SCD_AB:
11862 s = "scd";
11863 fmt = LL_SC_FMT;
11864 offbits = (mips_opts.micromips ? 12
11865 : ISA_IS_R6 (mips_opts.isa) ? 9
11866 : 16);
11867 goto ld_st;
11868 case M_CACHE_AB:
11869 s = "cache";
11870 fmt = (mips_opts.micromips ? "k,~(b)"
11871 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11872 : "k,o(b)");
11873 offbits = (mips_opts.micromips ? 12
11874 : ISA_IS_R6 (mips_opts.isa) ? 9
11875 : 16);
11876 goto ld_st;
11877 case M_CACHEE_AB:
11878 s = "cachee";
11879 fmt = "k,+j(b)";
11880 offbits = 9;
11881 goto ld_st;
11882 case M_PREF_AB:
11883 s = "pref";
11884 fmt = (mips_opts.micromips ? "k,~(b)"
11885 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11886 : "k,o(b)");
11887 offbits = (mips_opts.micromips ? 12
11888 : ISA_IS_R6 (mips_opts.isa) ? 9
11889 : 16);
11890 goto ld_st;
11891 case M_PREFE_AB:
11892 s = "prefe";
11893 fmt = "k,+j(b)";
11894 offbits = 9;
11895 goto ld_st;
11896 case M_SDC1_AB:
11897 s = "sdc1";
11898 fmt = "T,o(b)";
11899 coproc = 1;
11900 /* Itbl support may require additional care here. */
11901 goto ld_st;
11902 case M_SDC2_AB:
11903 s = "sdc2";
11904 fmt = COP12_FMT;
11905 offbits = (mips_opts.micromips ? 12
11906 : ISA_IS_R6 (mips_opts.isa) ? 11
11907 : 16);
11908 /* Itbl support may require additional care here. */
11909 coproc = 1;
11910 goto ld_st;
11911 case M_SQC2_AB:
11912 s = "sqc2";
11913 fmt = "+7,o(b)";
11914 /* Itbl support may require additional care here. */
11915 coproc = 1;
11916 goto ld_st;
11917 case M_SDC3_AB:
11918 gas_assert (!mips_opts.micromips);
11919 s = "sdc3";
11920 fmt = "E,o(b)";
11921 /* Itbl support may require additional care here. */
11922 coproc = 1;
11923 goto ld_st;
11924 case M_SDL_AB:
11925 s = "sdl";
11926 fmt = MEM12_FMT;
11927 offbits = (mips_opts.micromips ? 12 : 16);
11928 goto ld_st;
11929 case M_SDR_AB:
11930 s = "sdr";
11931 fmt = MEM12_FMT;
11932 offbits = (mips_opts.micromips ? 12 : 16);
11933 goto ld_st;
11934 case M_SWP_AB:
11935 gas_assert (mips_opts.micromips);
11936 s = "swp";
11937 fmt = "t,~(b)";
11938 offbits = 12;
11939 goto ld_st;
11940 case M_SDP_AB:
11941 gas_assert (mips_opts.micromips);
11942 s = "sdp";
11943 fmt = "t,~(b)";
11944 offbits = 12;
11945 goto ld_st;
11946 case M_SWM_AB:
11947 gas_assert (mips_opts.micromips);
11948 s = "swm";
11949 fmt = "n,~(b)";
11950 offbits = 12;
11951 goto ld_st;
11952 case M_SDM_AB:
11953 gas_assert (mips_opts.micromips);
11954 s = "sdm";
11955 fmt = "n,~(b)";
11956 offbits = 12;
11957
11958 ld_st:
11959 tempreg = AT;
11960 ld_noat:
11961 breg = op[2];
11962 if (small_offset_p (0, align, 16))
11963 {
11964 /* The first case exists for M_LD_AB and M_SD_AB, which are
11965 macros for o32 but which should act like normal instructions
11966 otherwise. */
11967 if (offbits == 16)
11968 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11969 offset_reloc[1], offset_reloc[2], breg);
11970 else if (small_offset_p (0, align, offbits))
11971 {
11972 if (offbits == 0)
11973 macro_build (NULL, s, fmt, op[0], breg);
11974 else
11975 macro_build (NULL, s, fmt, op[0],
11976 (int) offset_expr.X_add_number, breg);
11977 }
11978 else
11979 {
11980 if (tempreg == AT)
11981 used_at = 1;
11982 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11983 tempreg, breg, -1, offset_reloc[0],
11984 offset_reloc[1], offset_reloc[2]);
11985 if (offbits == 0)
11986 macro_build (NULL, s, fmt, op[0], tempreg);
11987 else
11988 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11989 }
11990 break;
11991 }
11992
11993 if (tempreg == AT)
11994 used_at = 1;
11995
11996 if (offset_expr.X_op != O_constant
11997 && offset_expr.X_op != O_symbol)
11998 {
11999 as_bad (_("expression too complex"));
12000 offset_expr.X_op = O_constant;
12001 }
12002
12003 if (HAVE_32BIT_ADDRESSES
12004 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12005 {
12006 char value [32];
12007
12008 sprintf_vma (value, offset_expr.X_add_number);
12009 as_bad (_("number (0x%s) larger than 32 bits"), value);
12010 }
12011
12012 /* A constant expression in PIC code can be handled just as it
12013 is in non PIC code. */
12014 if (offset_expr.X_op == O_constant)
12015 {
12016 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
12017 offbits == 0 ? 16 : offbits);
12018 offset_expr.X_add_number -= expr1.X_add_number;
12019
12020 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
12021 if (breg != 0)
12022 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12023 tempreg, tempreg, breg);
12024 if (offbits == 0)
12025 {
12026 if (offset_expr.X_add_number != 0)
12027 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
12028 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
12029 macro_build (NULL, s, fmt, op[0], tempreg);
12030 }
12031 else if (offbits == 16)
12032 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12033 else
12034 macro_build (NULL, s, fmt, op[0],
12035 (int) offset_expr.X_add_number, tempreg);
12036 }
12037 else if (offbits != 16)
12038 {
12039 /* The offset field is too narrow to be used for a low-part
12040 relocation, so load the whole address into the auxiliary
12041 register. */
12042 load_address (tempreg, &offset_expr, &used_at);
12043 if (breg != 0)
12044 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12045 tempreg, tempreg, breg);
12046 if (offbits == 0)
12047 macro_build (NULL, s, fmt, op[0], tempreg);
12048 else
12049 macro_build (NULL, s, fmt, op[0], 0, tempreg);
12050 }
12051 else if (mips_pic == NO_PIC)
12052 {
12053 /* If this is a reference to a GP relative symbol, and there
12054 is no base register, we want
12055 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12056 Otherwise, if there is no base register, we want
12057 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
12058 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12059 If we have a constant, we need two instructions anyhow,
12060 so we always use the latter form.
12061
12062 If we have a base register, and this is a reference to a
12063 GP relative symbol, we want
12064 addu $tempreg,$breg,$gp
12065 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
12066 Otherwise we want
12067 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
12068 addu $tempreg,$tempreg,$breg
12069 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12070 With a constant we always use the latter case.
12071
12072 With 64bit address space and no base register and $at usable,
12073 we want
12074 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12075 lui $at,<sym> (BFD_RELOC_HI16_S)
12076 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12077 dsll32 $tempreg,0
12078 daddu $tempreg,$at
12079 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12080 If we have a base register, we want
12081 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12082 lui $at,<sym> (BFD_RELOC_HI16_S)
12083 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12084 daddu $at,$breg
12085 dsll32 $tempreg,0
12086 daddu $tempreg,$at
12087 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12088
12089 Without $at we can't generate the optimal path for superscalar
12090 processors here since this would require two temporary registers.
12091 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12092 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12093 dsll $tempreg,16
12094 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12095 dsll $tempreg,16
12096 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12097 If we have a base register, we want
12098 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12099 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12100 dsll $tempreg,16
12101 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12102 dsll $tempreg,16
12103 daddu $tempreg,$tempreg,$breg
12104 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12105
12106 For GP relative symbols in 64bit address space we can use
12107 the same sequence as in 32bit address space. */
12108 if (HAVE_64BIT_SYMBOLS)
12109 {
12110 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12111 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12112 {
12113 relax_start (offset_expr.X_add_symbol);
12114 if (breg == 0)
12115 {
12116 macro_build (&offset_expr, s, fmt, op[0],
12117 BFD_RELOC_GPREL16, mips_gp_register);
12118 }
12119 else
12120 {
12121 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12122 tempreg, breg, mips_gp_register);
12123 macro_build (&offset_expr, s, fmt, op[0],
12124 BFD_RELOC_GPREL16, tempreg);
12125 }
12126 relax_switch ();
12127 }
12128
12129 if (used_at == 0 && mips_opts.at)
12130 {
12131 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12132 BFD_RELOC_MIPS_HIGHEST);
12133 macro_build (&offset_expr, "lui", LUI_FMT, AT,
12134 BFD_RELOC_HI16_S);
12135 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12136 tempreg, BFD_RELOC_MIPS_HIGHER);
12137 if (breg != 0)
12138 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
12139 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
12140 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
12141 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
12142 tempreg);
12143 used_at = 1;
12144 }
12145 else
12146 {
12147 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12148 BFD_RELOC_MIPS_HIGHEST);
12149 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12150 tempreg, BFD_RELOC_MIPS_HIGHER);
12151 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
12152 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12153 tempreg, BFD_RELOC_HI16_S);
12154 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
12155 if (breg != 0)
12156 macro_build (NULL, "daddu", "d,v,t",
12157 tempreg, tempreg, breg);
12158 macro_build (&offset_expr, s, fmt, op[0],
12159 BFD_RELOC_LO16, tempreg);
12160 }
12161
12162 if (mips_relax.sequence)
12163 relax_end ();
12164 break;
12165 }
12166
12167 if (breg == 0)
12168 {
12169 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12170 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12171 {
12172 relax_start (offset_expr.X_add_symbol);
12173 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
12174 mips_gp_register);
12175 relax_switch ();
12176 }
12177 macro_build_lui (&offset_expr, tempreg);
12178 macro_build (&offset_expr, s, fmt, op[0],
12179 BFD_RELOC_LO16, tempreg);
12180 if (mips_relax.sequence)
12181 relax_end ();
12182 }
12183 else
12184 {
12185 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12186 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12187 {
12188 relax_start (offset_expr.X_add_symbol);
12189 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12190 tempreg, breg, mips_gp_register);
12191 macro_build (&offset_expr, s, fmt, op[0],
12192 BFD_RELOC_GPREL16, tempreg);
12193 relax_switch ();
12194 }
12195 macro_build_lui (&offset_expr, tempreg);
12196 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12197 tempreg, tempreg, breg);
12198 macro_build (&offset_expr, s, fmt, op[0],
12199 BFD_RELOC_LO16, tempreg);
12200 if (mips_relax.sequence)
12201 relax_end ();
12202 }
12203 }
12204 else if (!mips_big_got)
12205 {
12206 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
12207
12208 /* If this is a reference to an external symbol, we want
12209 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12210 nop
12211 <op> op[0],0($tempreg)
12212 Otherwise we want
12213 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12214 nop
12215 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12216 <op> op[0],0($tempreg)
12217
12218 For NewABI, we want
12219 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12220 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
12221
12222 If there is a base register, we add it to $tempreg before
12223 the <op>. If there is a constant, we stick it in the
12224 <op> instruction. We don't handle constants larger than
12225 16 bits, because we have no way to load the upper 16 bits
12226 (actually, we could handle them for the subset of cases
12227 in which we are not using $at). */
12228 gas_assert (offset_expr.X_op == O_symbol);
12229 if (HAVE_NEWABI)
12230 {
12231 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12232 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12233 if (breg != 0)
12234 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12235 tempreg, tempreg, breg);
12236 macro_build (&offset_expr, s, fmt, op[0],
12237 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12238 break;
12239 }
12240 expr1.X_add_number = offset_expr.X_add_number;
12241 offset_expr.X_add_number = 0;
12242 if (expr1.X_add_number < -0x8000
12243 || expr1.X_add_number >= 0x8000)
12244 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12245 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12246 lw_reloc_type, mips_gp_register);
12247 load_delay_nop ();
12248 relax_start (offset_expr.X_add_symbol);
12249 relax_switch ();
12250 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12251 tempreg, BFD_RELOC_LO16);
12252 relax_end ();
12253 if (breg != 0)
12254 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12255 tempreg, tempreg, breg);
12256 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12257 }
12258 else if (mips_big_got && !HAVE_NEWABI)
12259 {
12260 int gpdelay;
12261
12262 /* If this is a reference to an external symbol, we want
12263 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12264 addu $tempreg,$tempreg,$gp
12265 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12266 <op> op[0],0($tempreg)
12267 Otherwise we want
12268 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12269 nop
12270 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12271 <op> op[0],0($tempreg)
12272 If there is a base register, we add it to $tempreg before
12273 the <op>. If there is a constant, we stick it in the
12274 <op> instruction. We don't handle constants larger than
12275 16 bits, because we have no way to load the upper 16 bits
12276 (actually, we could handle them for the subset of cases
12277 in which we are not using $at). */
12278 gas_assert (offset_expr.X_op == O_symbol);
12279 expr1.X_add_number = offset_expr.X_add_number;
12280 offset_expr.X_add_number = 0;
12281 if (expr1.X_add_number < -0x8000
12282 || expr1.X_add_number >= 0x8000)
12283 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12284 gpdelay = reg_needs_delay (mips_gp_register);
12285 relax_start (offset_expr.X_add_symbol);
12286 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12287 BFD_RELOC_MIPS_GOT_HI16);
12288 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12289 mips_gp_register);
12290 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12291 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12292 relax_switch ();
12293 if (gpdelay)
12294 macro_build (NULL, "nop", "");
12295 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12296 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12297 load_delay_nop ();
12298 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12299 tempreg, BFD_RELOC_LO16);
12300 relax_end ();
12301
12302 if (breg != 0)
12303 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12304 tempreg, tempreg, breg);
12305 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12306 }
12307 else if (mips_big_got && HAVE_NEWABI)
12308 {
12309 /* If this is a reference to an external symbol, we want
12310 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12311 add $tempreg,$tempreg,$gp
12312 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12313 <op> op[0],<ofst>($tempreg)
12314 Otherwise, for local symbols, we want:
12315 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12316 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
12317 gas_assert (offset_expr.X_op == O_symbol);
12318 expr1.X_add_number = offset_expr.X_add_number;
12319 offset_expr.X_add_number = 0;
12320 if (expr1.X_add_number < -0x8000
12321 || expr1.X_add_number >= 0x8000)
12322 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12323 relax_start (offset_expr.X_add_symbol);
12324 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12325 BFD_RELOC_MIPS_GOT_HI16);
12326 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12327 mips_gp_register);
12328 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12329 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12330 if (breg != 0)
12331 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12332 tempreg, tempreg, breg);
12333 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12334
12335 relax_switch ();
12336 offset_expr.X_add_number = expr1.X_add_number;
12337 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12338 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12339 if (breg != 0)
12340 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12341 tempreg, tempreg, breg);
12342 macro_build (&offset_expr, s, fmt, op[0],
12343 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12344 relax_end ();
12345 }
12346 else
12347 abort ();
12348
12349 break;
12350
12351 case M_JRADDIUSP:
12352 gas_assert (mips_opts.micromips);
12353 gas_assert (mips_opts.insn32);
12354 start_noreorder ();
12355 macro_build (NULL, "jr", "s", RA);
12356 expr1.X_add_number = op[0] << 2;
12357 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12358 end_noreorder ();
12359 break;
12360
12361 case M_JRC:
12362 gas_assert (mips_opts.micromips);
12363 gas_assert (mips_opts.insn32);
12364 macro_build (NULL, "jr", "s", op[0]);
12365 if (mips_opts.noreorder)
12366 macro_build (NULL, "nop", "");
12367 break;
12368
12369 case M_LI:
12370 case M_LI_S:
12371 load_register (op[0], &imm_expr, 0);
12372 break;
12373
12374 case M_DLI:
12375 load_register (op[0], &imm_expr, 1);
12376 break;
12377
12378 case M_LI_SS:
12379 if (imm_expr.X_op == O_constant)
12380 {
12381 used_at = 1;
12382 load_register (AT, &imm_expr, 0);
12383 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12384 break;
12385 }
12386 else
12387 {
12388 gas_assert (imm_expr.X_op == O_absent
12389 && offset_expr.X_op == O_symbol
12390 && strcmp (segment_name (S_GET_SEGMENT
12391 (offset_expr.X_add_symbol)),
12392 ".lit4") == 0
12393 && offset_expr.X_add_number == 0);
12394 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12395 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12396 break;
12397 }
12398
12399 case M_LI_D:
12400 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12401 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12402 order 32 bits of the value and the low order 32 bits are either
12403 zero or in OFFSET_EXPR. */
12404 if (imm_expr.X_op == O_constant)
12405 {
12406 if (GPR_SIZE == 64)
12407 load_register (op[0], &imm_expr, 1);
12408 else
12409 {
12410 int hreg, lreg;
12411
12412 if (target_big_endian)
12413 {
12414 hreg = op[0];
12415 lreg = op[0] + 1;
12416 }
12417 else
12418 {
12419 hreg = op[0] + 1;
12420 lreg = op[0];
12421 }
12422
12423 if (hreg <= 31)
12424 load_register (hreg, &imm_expr, 0);
12425 if (lreg <= 31)
12426 {
12427 if (offset_expr.X_op == O_absent)
12428 move_register (lreg, 0);
12429 else
12430 {
12431 gas_assert (offset_expr.X_op == O_constant);
12432 load_register (lreg, &offset_expr, 0);
12433 }
12434 }
12435 }
12436 break;
12437 }
12438 gas_assert (imm_expr.X_op == O_absent);
12439
12440 /* We know that sym is in the .rdata section. First we get the
12441 upper 16 bits of the address. */
12442 if (mips_pic == NO_PIC)
12443 {
12444 macro_build_lui (&offset_expr, AT);
12445 used_at = 1;
12446 }
12447 else
12448 {
12449 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12450 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12451 used_at = 1;
12452 }
12453
12454 /* Now we load the register(s). */
12455 if (GPR_SIZE == 64)
12456 {
12457 used_at = 1;
12458 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12459 BFD_RELOC_LO16, AT);
12460 }
12461 else
12462 {
12463 used_at = 1;
12464 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12465 BFD_RELOC_LO16, AT);
12466 if (op[0] != RA)
12467 {
12468 /* FIXME: How in the world do we deal with the possible
12469 overflow here? */
12470 offset_expr.X_add_number += 4;
12471 macro_build (&offset_expr, "lw", "t,o(b)",
12472 op[0] + 1, BFD_RELOC_LO16, AT);
12473 }
12474 }
12475 break;
12476
12477 case M_LI_DD:
12478 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12479 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12480 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12481 the value and the low order 32 bits are either zero or in
12482 OFFSET_EXPR. */
12483 if (imm_expr.X_op == O_constant)
12484 {
12485 used_at = 1;
12486 load_register (AT, &imm_expr, FPR_SIZE == 64);
12487 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12488 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12489 else
12490 {
12491 if (ISA_HAS_MXHC1 (mips_opts.isa))
12492 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12493 else if (FPR_SIZE != 32)
12494 as_bad (_("Unable to generate `%s' compliant code "
12495 "without mthc1"),
12496 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12497 else
12498 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12499 if (offset_expr.X_op == O_absent)
12500 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12501 else
12502 {
12503 gas_assert (offset_expr.X_op == O_constant);
12504 load_register (AT, &offset_expr, 0);
12505 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12506 }
12507 }
12508 break;
12509 }
12510
12511 gas_assert (imm_expr.X_op == O_absent
12512 && offset_expr.X_op == O_symbol
12513 && offset_expr.X_add_number == 0);
12514 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12515 if (strcmp (s, ".lit8") == 0)
12516 {
12517 op[2] = mips_gp_register;
12518 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12519 offset_reloc[1] = BFD_RELOC_UNUSED;
12520 offset_reloc[2] = BFD_RELOC_UNUSED;
12521 }
12522 else
12523 {
12524 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12525 used_at = 1;
12526 if (mips_pic != NO_PIC)
12527 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12528 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12529 else
12530 {
12531 /* FIXME: This won't work for a 64 bit address. */
12532 macro_build_lui (&offset_expr, AT);
12533 }
12534
12535 op[2] = AT;
12536 offset_reloc[0] = BFD_RELOC_LO16;
12537 offset_reloc[1] = BFD_RELOC_UNUSED;
12538 offset_reloc[2] = BFD_RELOC_UNUSED;
12539 }
12540 align = 8;
12541 /* Fall through */
12542
12543 case M_L_DAB:
12544 /*
12545 * The MIPS assembler seems to check for X_add_number not
12546 * being double aligned and generating:
12547 * lui at,%hi(foo+1)
12548 * addu at,at,v1
12549 * addiu at,at,%lo(foo+1)
12550 * lwc1 f2,0(at)
12551 * lwc1 f3,4(at)
12552 * But, the resulting address is the same after relocation so why
12553 * generate the extra instruction?
12554 */
12555 /* Itbl support may require additional care here. */
12556 coproc = 1;
12557 fmt = "T,o(b)";
12558 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12559 {
12560 s = "ldc1";
12561 goto ld_st;
12562 }
12563 s = "lwc1";
12564 goto ldd_std;
12565
12566 case M_S_DAB:
12567 gas_assert (!mips_opts.micromips);
12568 /* Itbl support may require additional care here. */
12569 coproc = 1;
12570 fmt = "T,o(b)";
12571 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12572 {
12573 s = "sdc1";
12574 goto ld_st;
12575 }
12576 s = "swc1";
12577 goto ldd_std;
12578
12579 case M_LQ_AB:
12580 fmt = "t,o(b)";
12581 s = "lq";
12582 goto ld;
12583
12584 case M_SQ_AB:
12585 fmt = "t,o(b)";
12586 s = "sq";
12587 goto ld_st;
12588
12589 case M_LD_AB:
12590 fmt = "t,o(b)";
12591 if (GPR_SIZE == 64)
12592 {
12593 s = "ld";
12594 goto ld;
12595 }
12596 s = "lw";
12597 goto ldd_std;
12598
12599 case M_SD_AB:
12600 fmt = "t,o(b)";
12601 if (GPR_SIZE == 64)
12602 {
12603 s = "sd";
12604 goto ld_st;
12605 }
12606 s = "sw";
12607
12608 ldd_std:
12609 /* Even on a big endian machine $fn comes before $fn+1. We have
12610 to adjust when loading from memory. We set coproc if we must
12611 load $fn+1 first. */
12612 /* Itbl support may require additional care here. */
12613 if (!target_big_endian)
12614 coproc = 0;
12615
12616 breg = op[2];
12617 if (small_offset_p (0, align, 16))
12618 {
12619 ep = &offset_expr;
12620 if (!small_offset_p (4, align, 16))
12621 {
12622 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12623 -1, offset_reloc[0], offset_reloc[1],
12624 offset_reloc[2]);
12625 expr1.X_add_number = 0;
12626 ep = &expr1;
12627 breg = AT;
12628 used_at = 1;
12629 offset_reloc[0] = BFD_RELOC_LO16;
12630 offset_reloc[1] = BFD_RELOC_UNUSED;
12631 offset_reloc[2] = BFD_RELOC_UNUSED;
12632 }
12633 if (strcmp (s, "lw") == 0 && op[0] == breg)
12634 {
12635 ep->X_add_number += 4;
12636 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12637 offset_reloc[1], offset_reloc[2], breg);
12638 ep->X_add_number -= 4;
12639 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12640 offset_reloc[1], offset_reloc[2], breg);
12641 }
12642 else
12643 {
12644 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12645 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12646 breg);
12647 ep->X_add_number += 4;
12648 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12649 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12650 breg);
12651 }
12652 break;
12653 }
12654
12655 if (offset_expr.X_op != O_symbol
12656 && offset_expr.X_op != O_constant)
12657 {
12658 as_bad (_("expression too complex"));
12659 offset_expr.X_op = O_constant;
12660 }
12661
12662 if (HAVE_32BIT_ADDRESSES
12663 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12664 {
12665 char value [32];
12666
12667 sprintf_vma (value, offset_expr.X_add_number);
12668 as_bad (_("number (0x%s) larger than 32 bits"), value);
12669 }
12670
12671 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12672 {
12673 /* If this is a reference to a GP relative symbol, we want
12674 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12675 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12676 If we have a base register, we use this
12677 addu $at,$breg,$gp
12678 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12679 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12680 If this is not a GP relative symbol, we want
12681 lui $at,<sym> (BFD_RELOC_HI16_S)
12682 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12683 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12684 If there is a base register, we add it to $at after the
12685 lui instruction. If there is a constant, we always use
12686 the last case. */
12687 if (offset_expr.X_op == O_symbol
12688 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12689 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12690 {
12691 relax_start (offset_expr.X_add_symbol);
12692 if (breg == 0)
12693 {
12694 tempreg = mips_gp_register;
12695 }
12696 else
12697 {
12698 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12699 AT, breg, mips_gp_register);
12700 tempreg = AT;
12701 used_at = 1;
12702 }
12703
12704 /* Itbl support may require additional care here. */
12705 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12706 BFD_RELOC_GPREL16, tempreg);
12707 offset_expr.X_add_number += 4;
12708
12709 /* Set mips_optimize to 2 to avoid inserting an
12710 undesired nop. */
12711 hold_mips_optimize = mips_optimize;
12712 mips_optimize = 2;
12713 /* Itbl support may require additional care here. */
12714 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12715 BFD_RELOC_GPREL16, tempreg);
12716 mips_optimize = hold_mips_optimize;
12717
12718 relax_switch ();
12719
12720 offset_expr.X_add_number -= 4;
12721 }
12722 used_at = 1;
12723 if (offset_high_part (offset_expr.X_add_number, 16)
12724 != offset_high_part (offset_expr.X_add_number + 4, 16))
12725 {
12726 load_address (AT, &offset_expr, &used_at);
12727 offset_expr.X_op = O_constant;
12728 offset_expr.X_add_number = 0;
12729 }
12730 else
12731 macro_build_lui (&offset_expr, AT);
12732 if (breg != 0)
12733 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12734 /* Itbl support may require additional care here. */
12735 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12736 BFD_RELOC_LO16, AT);
12737 /* FIXME: How do we handle overflow here? */
12738 offset_expr.X_add_number += 4;
12739 /* Itbl support may require additional care here. */
12740 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12741 BFD_RELOC_LO16, AT);
12742 if (mips_relax.sequence)
12743 relax_end ();
12744 }
12745 else if (!mips_big_got)
12746 {
12747 /* If this is a reference to an external symbol, we want
12748 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12749 nop
12750 <op> op[0],0($at)
12751 <op> op[0]+1,4($at)
12752 Otherwise we want
12753 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12754 nop
12755 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12756 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12757 If there is a base register we add it to $at before the
12758 lwc1 instructions. If there is a constant we include it
12759 in the lwc1 instructions. */
12760 used_at = 1;
12761 expr1.X_add_number = offset_expr.X_add_number;
12762 if (expr1.X_add_number < -0x8000
12763 || expr1.X_add_number >= 0x8000 - 4)
12764 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12765 load_got_offset (AT, &offset_expr);
12766 load_delay_nop ();
12767 if (breg != 0)
12768 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12769
12770 /* Set mips_optimize to 2 to avoid inserting an undesired
12771 nop. */
12772 hold_mips_optimize = mips_optimize;
12773 mips_optimize = 2;
12774
12775 /* Itbl support may require additional care here. */
12776 relax_start (offset_expr.X_add_symbol);
12777 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12778 BFD_RELOC_LO16, AT);
12779 expr1.X_add_number += 4;
12780 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12781 BFD_RELOC_LO16, AT);
12782 relax_switch ();
12783 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12784 BFD_RELOC_LO16, AT);
12785 offset_expr.X_add_number += 4;
12786 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12787 BFD_RELOC_LO16, AT);
12788 relax_end ();
12789
12790 mips_optimize = hold_mips_optimize;
12791 }
12792 else if (mips_big_got)
12793 {
12794 int gpdelay;
12795
12796 /* If this is a reference to an external symbol, we want
12797 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12798 addu $at,$at,$gp
12799 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12800 nop
12801 <op> op[0],0($at)
12802 <op> op[0]+1,4($at)
12803 Otherwise we want
12804 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12805 nop
12806 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12807 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12808 If there is a base register we add it to $at before the
12809 lwc1 instructions. If there is a constant we include it
12810 in the lwc1 instructions. */
12811 used_at = 1;
12812 expr1.X_add_number = offset_expr.X_add_number;
12813 offset_expr.X_add_number = 0;
12814 if (expr1.X_add_number < -0x8000
12815 || expr1.X_add_number >= 0x8000 - 4)
12816 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12817 gpdelay = reg_needs_delay (mips_gp_register);
12818 relax_start (offset_expr.X_add_symbol);
12819 macro_build (&offset_expr, "lui", LUI_FMT,
12820 AT, BFD_RELOC_MIPS_GOT_HI16);
12821 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12822 AT, AT, mips_gp_register);
12823 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12824 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12825 load_delay_nop ();
12826 if (breg != 0)
12827 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12828 /* Itbl support may require additional care here. */
12829 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12830 BFD_RELOC_LO16, AT);
12831 expr1.X_add_number += 4;
12832
12833 /* Set mips_optimize to 2 to avoid inserting an undesired
12834 nop. */
12835 hold_mips_optimize = mips_optimize;
12836 mips_optimize = 2;
12837 /* Itbl support may require additional care here. */
12838 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12839 BFD_RELOC_LO16, AT);
12840 mips_optimize = hold_mips_optimize;
12841 expr1.X_add_number -= 4;
12842
12843 relax_switch ();
12844 offset_expr.X_add_number = expr1.X_add_number;
12845 if (gpdelay)
12846 macro_build (NULL, "nop", "");
12847 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12848 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12849 load_delay_nop ();
12850 if (breg != 0)
12851 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12852 /* Itbl support may require additional care here. */
12853 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12854 BFD_RELOC_LO16, AT);
12855 offset_expr.X_add_number += 4;
12856
12857 /* Set mips_optimize to 2 to avoid inserting an undesired
12858 nop. */
12859 hold_mips_optimize = mips_optimize;
12860 mips_optimize = 2;
12861 /* Itbl support may require additional care here. */
12862 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12863 BFD_RELOC_LO16, AT);
12864 mips_optimize = hold_mips_optimize;
12865 relax_end ();
12866 }
12867 else
12868 abort ();
12869
12870 break;
12871
12872 case M_SAA_AB:
12873 s = "saa";
12874 goto saa_saad;
12875 case M_SAAD_AB:
12876 s = "saad";
12877 saa_saad:
12878 gas_assert (!mips_opts.micromips);
12879 offbits = 0;
12880 fmt = "t,(b)";
12881 goto ld_st;
12882
12883 /* New code added to support COPZ instructions.
12884 This code builds table entries out of the macros in mip_opcodes.
12885 R4000 uses interlocks to handle coproc delays.
12886 Other chips (like the R3000) require nops to be inserted for delays.
12887
12888 FIXME: Currently, we require that the user handle delays.
12889 In order to fill delay slots for non-interlocked chips,
12890 we must have a way to specify delays based on the coprocessor.
12891 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12892 What are the side-effects of the cop instruction?
12893 What cache support might we have and what are its effects?
12894 Both coprocessor & memory require delays. how long???
12895 What registers are read/set/modified?
12896
12897 If an itbl is provided to interpret cop instructions,
12898 this knowledge can be encoded in the itbl spec. */
12899
12900 case M_COP0:
12901 s = "c0";
12902 goto copz;
12903 case M_COP1:
12904 s = "c1";
12905 goto copz;
12906 case M_COP2:
12907 s = "c2";
12908 goto copz;
12909 case M_COP3:
12910 s = "c3";
12911 copz:
12912 gas_assert (!mips_opts.micromips);
12913 /* For now we just do C (same as Cz). The parameter will be
12914 stored in insn_opcode by mips_ip. */
12915 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12916 break;
12917
12918 case M_MOVE:
12919 move_register (op[0], op[1]);
12920 break;
12921
12922 case M_MOVEP:
12923 gas_assert (mips_opts.micromips);
12924 gas_assert (mips_opts.insn32);
12925 move_register (micromips_to_32_reg_h_map1[op[0]],
12926 micromips_to_32_reg_m_map[op[1]]);
12927 move_register (micromips_to_32_reg_h_map2[op[0]],
12928 micromips_to_32_reg_n_map[op[2]]);
12929 break;
12930
12931 case M_DMUL:
12932 dbl = 1;
12933 /* Fall through. */
12934 case M_MUL:
12935 if (mips_opts.arch == CPU_R5900)
12936 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12937 op[2]);
12938 else
12939 {
12940 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12941 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12942 }
12943 break;
12944
12945 case M_DMUL_I:
12946 dbl = 1;
12947 /* Fall through. */
12948 case M_MUL_I:
12949 /* The MIPS assembler some times generates shifts and adds. I'm
12950 not trying to be that fancy. GCC should do this for us
12951 anyway. */
12952 used_at = 1;
12953 load_register (AT, &imm_expr, dbl);
12954 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12955 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12956 break;
12957
12958 case M_DMULO_I:
12959 dbl = 1;
12960 /* Fall through. */
12961 case M_MULO_I:
12962 imm = 1;
12963 goto do_mulo;
12964
12965 case M_DMULO:
12966 dbl = 1;
12967 /* Fall through. */
12968 case M_MULO:
12969 do_mulo:
12970 start_noreorder ();
12971 used_at = 1;
12972 if (imm)
12973 load_register (AT, &imm_expr, dbl);
12974 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12975 op[1], imm ? AT : op[2]);
12976 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12977 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12978 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12979 if (mips_trap)
12980 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12981 else
12982 {
12983 if (mips_opts.micromips)
12984 micromips_label_expr (&label_expr);
12985 else
12986 label_expr.X_add_number = 8;
12987 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12988 macro_build (NULL, "nop", "");
12989 macro_build (NULL, "break", BRK_FMT, 6);
12990 if (mips_opts.micromips)
12991 micromips_add_label ();
12992 }
12993 end_noreorder ();
12994 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12995 break;
12996
12997 case M_DMULOU_I:
12998 dbl = 1;
12999 /* Fall through. */
13000 case M_MULOU_I:
13001 imm = 1;
13002 goto do_mulou;
13003
13004 case M_DMULOU:
13005 dbl = 1;
13006 /* Fall through. */
13007 case M_MULOU:
13008 do_mulou:
13009 start_noreorder ();
13010 used_at = 1;
13011 if (imm)
13012 load_register (AT, &imm_expr, dbl);
13013 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
13014 op[1], imm ? AT : op[2]);
13015 macro_build (NULL, "mfhi", MFHL_FMT, AT);
13016 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13017 if (mips_trap)
13018 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
13019 else
13020 {
13021 if (mips_opts.micromips)
13022 micromips_label_expr (&label_expr);
13023 else
13024 label_expr.X_add_number = 8;
13025 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
13026 macro_build (NULL, "nop", "");
13027 macro_build (NULL, "break", BRK_FMT, 6);
13028 if (mips_opts.micromips)
13029 micromips_add_label ();
13030 }
13031 end_noreorder ();
13032 break;
13033
13034 case M_DROL:
13035 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13036 {
13037 if (op[0] == op[1])
13038 {
13039 tempreg = AT;
13040 used_at = 1;
13041 }
13042 else
13043 tempreg = op[0];
13044 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
13045 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
13046 break;
13047 }
13048 used_at = 1;
13049 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
13050 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
13051 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
13052 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13053 break;
13054
13055 case M_ROL:
13056 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13057 {
13058 if (op[0] == op[1])
13059 {
13060 tempreg = AT;
13061 used_at = 1;
13062 }
13063 else
13064 tempreg = op[0];
13065 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
13066 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
13067 break;
13068 }
13069 used_at = 1;
13070 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13071 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
13072 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
13073 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13074 break;
13075
13076 case M_DROL_I:
13077 {
13078 unsigned int rot;
13079 const char *l;
13080 const char *rr;
13081
13082 rot = imm_expr.X_add_number & 0x3f;
13083 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13084 {
13085 rot = (64 - rot) & 0x3f;
13086 if (rot >= 32)
13087 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
13088 else
13089 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
13090 break;
13091 }
13092 if (rot == 0)
13093 {
13094 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
13095 break;
13096 }
13097 l = (rot < 0x20) ? "dsll" : "dsll32";
13098 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
13099 rot &= 0x1f;
13100 used_at = 1;
13101 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
13102 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13103 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13104 }
13105 break;
13106
13107 case M_ROL_I:
13108 {
13109 unsigned int rot;
13110
13111 rot = imm_expr.X_add_number & 0x1f;
13112 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13113 {
13114 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
13115 (32 - rot) & 0x1f);
13116 break;
13117 }
13118 if (rot == 0)
13119 {
13120 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
13121 break;
13122 }
13123 used_at = 1;
13124 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
13125 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13126 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13127 }
13128 break;
13129
13130 case M_DROR:
13131 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13132 {
13133 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
13134 break;
13135 }
13136 used_at = 1;
13137 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
13138 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
13139 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
13140 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13141 break;
13142
13143 case M_ROR:
13144 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13145 {
13146 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
13147 break;
13148 }
13149 used_at = 1;
13150 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13151 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
13152 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
13153 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13154 break;
13155
13156 case M_DROR_I:
13157 {
13158 unsigned int rot;
13159 const char *l;
13160 const char *rr;
13161
13162 rot = imm_expr.X_add_number & 0x3f;
13163 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13164 {
13165 if (rot >= 32)
13166 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
13167 else
13168 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
13169 break;
13170 }
13171 if (rot == 0)
13172 {
13173 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
13174 break;
13175 }
13176 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
13177 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
13178 rot &= 0x1f;
13179 used_at = 1;
13180 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
13181 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13182 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13183 }
13184 break;
13185
13186 case M_ROR_I:
13187 {
13188 unsigned int rot;
13189
13190 rot = imm_expr.X_add_number & 0x1f;
13191 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13192 {
13193 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
13194 break;
13195 }
13196 if (rot == 0)
13197 {
13198 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
13199 break;
13200 }
13201 used_at = 1;
13202 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
13203 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13204 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13205 }
13206 break;
13207
13208 case M_SEQ:
13209 if (op[1] == 0)
13210 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
13211 else if (op[2] == 0)
13212 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13213 else
13214 {
13215 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13216 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13217 }
13218 break;
13219
13220 case M_SEQ_I:
13221 if (imm_expr.X_add_number == 0)
13222 {
13223 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13224 break;
13225 }
13226 if (op[1] == 0)
13227 {
13228 as_warn (_("instruction %s: result is always false"),
13229 ip->insn_mo->name);
13230 move_register (op[0], 0);
13231 break;
13232 }
13233 if (CPU_HAS_SEQ (mips_opts.arch)
13234 && -512 <= imm_expr.X_add_number
13235 && imm_expr.X_add_number < 512)
13236 {
13237 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
13238 (int) imm_expr.X_add_number);
13239 break;
13240 }
13241 if (imm_expr.X_add_number >= 0
13242 && imm_expr.X_add_number < 0x10000)
13243 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
13244 else if (imm_expr.X_add_number > -0x8000
13245 && imm_expr.X_add_number < 0)
13246 {
13247 imm_expr.X_add_number = -imm_expr.X_add_number;
13248 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13249 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13250 }
13251 else if (CPU_HAS_SEQ (mips_opts.arch))
13252 {
13253 used_at = 1;
13254 load_register (AT, &imm_expr, GPR_SIZE == 64);
13255 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
13256 break;
13257 }
13258 else
13259 {
13260 load_register (AT, &imm_expr, GPR_SIZE == 64);
13261 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13262 used_at = 1;
13263 }
13264 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13265 break;
13266
13267 case M_SGE: /* X >= Y <==> not (X < Y) */
13268 s = "slt";
13269 goto sge;
13270 case M_SGEU:
13271 s = "sltu";
13272 sge:
13273 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13274 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13275 break;
13276
13277 case M_SGE_I: /* X >= I <==> not (X < I) */
13278 case M_SGEU_I:
13279 if (imm_expr.X_add_number >= -0x8000
13280 && imm_expr.X_add_number < 0x8000)
13281 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13282 op[0], op[1], BFD_RELOC_LO16);
13283 else
13284 {
13285 load_register (AT, &imm_expr, GPR_SIZE == 64);
13286 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
13287 op[0], op[1], AT);
13288 used_at = 1;
13289 }
13290 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13291 break;
13292
13293 case M_SGT: /* X > Y <==> Y < X */
13294 s = "slt";
13295 goto sgt;
13296 case M_SGTU:
13297 s = "sltu";
13298 sgt:
13299 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13300 break;
13301
13302 case M_SGT_I: /* X > I <==> I < X */
13303 s = "slt";
13304 goto sgti;
13305 case M_SGTU_I:
13306 s = "sltu";
13307 sgti:
13308 used_at = 1;
13309 load_register (AT, &imm_expr, GPR_SIZE == 64);
13310 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13311 break;
13312
13313 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
13314 s = "slt";
13315 goto sle;
13316 case M_SLEU:
13317 s = "sltu";
13318 sle:
13319 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13320 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13321 break;
13322
13323 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
13324 s = "slt";
13325 goto slei;
13326 case M_SLEU_I:
13327 s = "sltu";
13328 slei:
13329 used_at = 1;
13330 load_register (AT, &imm_expr, GPR_SIZE == 64);
13331 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13332 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13333 break;
13334
13335 case M_SLT_I:
13336 if (imm_expr.X_add_number >= -0x8000
13337 && imm_expr.X_add_number < 0x8000)
13338 {
13339 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13340 BFD_RELOC_LO16);
13341 break;
13342 }
13343 used_at = 1;
13344 load_register (AT, &imm_expr, GPR_SIZE == 64);
13345 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
13346 break;
13347
13348 case M_SLTU_I:
13349 if (imm_expr.X_add_number >= -0x8000
13350 && imm_expr.X_add_number < 0x8000)
13351 {
13352 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
13353 BFD_RELOC_LO16);
13354 break;
13355 }
13356 used_at = 1;
13357 load_register (AT, &imm_expr, GPR_SIZE == 64);
13358 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
13359 break;
13360
13361 case M_SNE:
13362 if (op[1] == 0)
13363 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13364 else if (op[2] == 0)
13365 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13366 else
13367 {
13368 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13369 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13370 }
13371 break;
13372
13373 case M_SNE_I:
13374 if (imm_expr.X_add_number == 0)
13375 {
13376 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13377 break;
13378 }
13379 if (op[1] == 0)
13380 {
13381 as_warn (_("instruction %s: result is always true"),
13382 ip->insn_mo->name);
13383 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13384 op[0], 0, BFD_RELOC_LO16);
13385 break;
13386 }
13387 if (CPU_HAS_SEQ (mips_opts.arch)
13388 && -512 <= imm_expr.X_add_number
13389 && imm_expr.X_add_number < 512)
13390 {
13391 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13392 (int) imm_expr.X_add_number);
13393 break;
13394 }
13395 if (imm_expr.X_add_number >= 0
13396 && imm_expr.X_add_number < 0x10000)
13397 {
13398 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13399 BFD_RELOC_LO16);
13400 }
13401 else if (imm_expr.X_add_number > -0x8000
13402 && imm_expr.X_add_number < 0)
13403 {
13404 imm_expr.X_add_number = -imm_expr.X_add_number;
13405 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13406 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13407 }
13408 else if (CPU_HAS_SEQ (mips_opts.arch))
13409 {
13410 used_at = 1;
13411 load_register (AT, &imm_expr, GPR_SIZE == 64);
13412 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13413 break;
13414 }
13415 else
13416 {
13417 load_register (AT, &imm_expr, GPR_SIZE == 64);
13418 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13419 used_at = 1;
13420 }
13421 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13422 break;
13423
13424 case M_SUB_I:
13425 s = "addi";
13426 s2 = "sub";
13427 goto do_subi;
13428 case M_SUBU_I:
13429 s = "addiu";
13430 s2 = "subu";
13431 goto do_subi;
13432 case M_DSUB_I:
13433 dbl = 1;
13434 s = "daddi";
13435 s2 = "dsub";
13436 if (!mips_opts.micromips)
13437 goto do_subi;
13438 if (imm_expr.X_add_number > -0x200
13439 && imm_expr.X_add_number <= 0x200)
13440 {
13441 macro_build (NULL, s, "t,r,.", op[0], op[1],
13442 (int) -imm_expr.X_add_number);
13443 break;
13444 }
13445 goto do_subi_i;
13446 case M_DSUBU_I:
13447 dbl = 1;
13448 s = "daddiu";
13449 s2 = "dsubu";
13450 do_subi:
13451 if (imm_expr.X_add_number > -0x8000
13452 && imm_expr.X_add_number <= 0x8000)
13453 {
13454 imm_expr.X_add_number = -imm_expr.X_add_number;
13455 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13456 break;
13457 }
13458 do_subi_i:
13459 used_at = 1;
13460 load_register (AT, &imm_expr, dbl);
13461 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13462 break;
13463
13464 case M_TEQ_I:
13465 s = "teq";
13466 goto trap;
13467 case M_TGE_I:
13468 s = "tge";
13469 goto trap;
13470 case M_TGEU_I:
13471 s = "tgeu";
13472 goto trap;
13473 case M_TLT_I:
13474 s = "tlt";
13475 goto trap;
13476 case M_TLTU_I:
13477 s = "tltu";
13478 goto trap;
13479 case M_TNE_I:
13480 s = "tne";
13481 trap:
13482 used_at = 1;
13483 load_register (AT, &imm_expr, GPR_SIZE == 64);
13484 macro_build (NULL, s, "s,t", op[0], AT);
13485 break;
13486
13487 case M_TRUNCWS:
13488 case M_TRUNCWD:
13489 gas_assert (!mips_opts.micromips);
13490 gas_assert (mips_opts.isa == ISA_MIPS1);
13491 used_at = 1;
13492
13493 /*
13494 * Is the double cfc1 instruction a bug in the mips assembler;
13495 * or is there a reason for it?
13496 */
13497 start_noreorder ();
13498 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13499 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13500 macro_build (NULL, "nop", "");
13501 expr1.X_add_number = 3;
13502 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13503 expr1.X_add_number = 2;
13504 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13505 macro_build (NULL, "ctc1", "t,G", AT, RA);
13506 macro_build (NULL, "nop", "");
13507 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13508 op[0], op[1]);
13509 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13510 macro_build (NULL, "nop", "");
13511 end_noreorder ();
13512 break;
13513
13514 case M_ULH_AB:
13515 s = "lb";
13516 s2 = "lbu";
13517 off = 1;
13518 goto uld_st;
13519 case M_ULHU_AB:
13520 s = "lbu";
13521 s2 = "lbu";
13522 off = 1;
13523 goto uld_st;
13524 case M_ULW_AB:
13525 s = "lwl";
13526 s2 = "lwr";
13527 offbits = (mips_opts.micromips ? 12 : 16);
13528 off = 3;
13529 goto uld_st;
13530 case M_ULD_AB:
13531 s = "ldl";
13532 s2 = "ldr";
13533 offbits = (mips_opts.micromips ? 12 : 16);
13534 off = 7;
13535 goto uld_st;
13536 case M_USH_AB:
13537 s = "sb";
13538 s2 = "sb";
13539 off = 1;
13540 ust = 1;
13541 goto uld_st;
13542 case M_USW_AB:
13543 s = "swl";
13544 s2 = "swr";
13545 offbits = (mips_opts.micromips ? 12 : 16);
13546 off = 3;
13547 ust = 1;
13548 goto uld_st;
13549 case M_USD_AB:
13550 s = "sdl";
13551 s2 = "sdr";
13552 offbits = (mips_opts.micromips ? 12 : 16);
13553 off = 7;
13554 ust = 1;
13555
13556 uld_st:
13557 breg = op[2];
13558 large_offset = !small_offset_p (off, align, offbits);
13559 ep = &offset_expr;
13560 expr1.X_add_number = 0;
13561 if (large_offset)
13562 {
13563 used_at = 1;
13564 tempreg = AT;
13565 if (small_offset_p (0, align, 16))
13566 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13567 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13568 else
13569 {
13570 load_address (tempreg, ep, &used_at);
13571 if (breg != 0)
13572 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13573 tempreg, tempreg, breg);
13574 }
13575 offset_reloc[0] = BFD_RELOC_LO16;
13576 offset_reloc[1] = BFD_RELOC_UNUSED;
13577 offset_reloc[2] = BFD_RELOC_UNUSED;
13578 breg = tempreg;
13579 tempreg = op[0];
13580 ep = &expr1;
13581 }
13582 else if (!ust && op[0] == breg)
13583 {
13584 used_at = 1;
13585 tempreg = AT;
13586 }
13587 else
13588 tempreg = op[0];
13589
13590 if (off == 1)
13591 goto ulh_sh;
13592
13593 if (!target_big_endian)
13594 ep->X_add_number += off;
13595 if (offbits == 12)
13596 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13597 else
13598 macro_build (ep, s, "t,o(b)", tempreg, -1,
13599 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13600
13601 if (!target_big_endian)
13602 ep->X_add_number -= off;
13603 else
13604 ep->X_add_number += off;
13605 if (offbits == 12)
13606 macro_build (NULL, s2, "t,~(b)",
13607 tempreg, (int) ep->X_add_number, breg);
13608 else
13609 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13610 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13611
13612 /* If necessary, move the result in tempreg to the final destination. */
13613 if (!ust && op[0] != tempreg)
13614 {
13615 /* Protect second load's delay slot. */
13616 load_delay_nop ();
13617 move_register (op[0], tempreg);
13618 }
13619 break;
13620
13621 ulh_sh:
13622 used_at = 1;
13623 if (target_big_endian == ust)
13624 ep->X_add_number += off;
13625 tempreg = ust || large_offset ? op[0] : AT;
13626 macro_build (ep, s, "t,o(b)", tempreg, -1,
13627 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13628
13629 /* For halfword transfers we need a temporary register to shuffle
13630 bytes. Unfortunately for M_USH_A we have none available before
13631 the next store as AT holds the base address. We deal with this
13632 case by clobbering TREG and then restoring it as with ULH. */
13633 tempreg = ust == large_offset ? op[0] : AT;
13634 if (ust)
13635 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13636
13637 if (target_big_endian == ust)
13638 ep->X_add_number -= off;
13639 else
13640 ep->X_add_number += off;
13641 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13642 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13643
13644 /* For M_USH_A re-retrieve the LSB. */
13645 if (ust && large_offset)
13646 {
13647 if (target_big_endian)
13648 ep->X_add_number += off;
13649 else
13650 ep->X_add_number -= off;
13651 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13652 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13653 }
13654 /* For ULH and M_USH_A OR the LSB in. */
13655 if (!ust || large_offset)
13656 {
13657 tempreg = !large_offset ? AT : op[0];
13658 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13659 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13660 }
13661 break;
13662
13663 default:
13664 /* FIXME: Check if this is one of the itbl macros, since they
13665 are added dynamically. */
13666 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13667 break;
13668 }
13669 if (!mips_opts.at && used_at)
13670 as_bad (_("macro used $at after \".set noat\""));
13671 }
13672
13673 /* Implement macros in mips16 mode. */
13674
13675 static void
13676 mips16_macro (struct mips_cl_insn *ip)
13677 {
13678 const struct mips_operand_array *operands;
13679 int mask;
13680 int tmp;
13681 expressionS expr1;
13682 int dbl;
13683 const char *s, *s2, *s3;
13684 unsigned int op[MAX_OPERANDS];
13685 unsigned int i;
13686
13687 mask = ip->insn_mo->mask;
13688
13689 operands = insn_operands (ip);
13690 for (i = 0; i < MAX_OPERANDS; i++)
13691 if (operands->operand[i])
13692 op[i] = insn_extract_operand (ip, operands->operand[i]);
13693 else
13694 op[i] = -1;
13695
13696 expr1.X_op = O_constant;
13697 expr1.X_op_symbol = NULL;
13698 expr1.X_add_symbol = NULL;
13699 expr1.X_add_number = 1;
13700
13701 dbl = 0;
13702
13703 switch (mask)
13704 {
13705 default:
13706 abort ();
13707
13708 case M_DDIV_3:
13709 dbl = 1;
13710 /* Fall through. */
13711 case M_DIV_3:
13712 s = "mflo";
13713 goto do_div3;
13714 case M_DREM_3:
13715 dbl = 1;
13716 /* Fall through. */
13717 case M_REM_3:
13718 s = "mfhi";
13719 do_div3:
13720 start_noreorder ();
13721 macro_build (NULL, dbl ? "ddiv" : "div", ".,x,y", op[1], op[2]);
13722 expr1.X_add_number = 2;
13723 macro_build (&expr1, "bnez", "x,p", op[2]);
13724 macro_build (NULL, "break", "6", 7);
13725
13726 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13727 since that causes an overflow. We should do that as well,
13728 but I don't see how to do the comparisons without a temporary
13729 register. */
13730 end_noreorder ();
13731 macro_build (NULL, s, "x", op[0]);
13732 break;
13733
13734 case M_DIVU_3:
13735 s = "divu";
13736 s2 = "mflo";
13737 goto do_divu3;
13738 case M_REMU_3:
13739 s = "divu";
13740 s2 = "mfhi";
13741 goto do_divu3;
13742 case M_DDIVU_3:
13743 s = "ddivu";
13744 s2 = "mflo";
13745 goto do_divu3;
13746 case M_DREMU_3:
13747 s = "ddivu";
13748 s2 = "mfhi";
13749 do_divu3:
13750 start_noreorder ();
13751 macro_build (NULL, s, ".,x,y", op[1], op[2]);
13752 expr1.X_add_number = 2;
13753 macro_build (&expr1, "bnez", "x,p", op[2]);
13754 macro_build (NULL, "break", "6", 7);
13755 end_noreorder ();
13756 macro_build (NULL, s2, "x", op[0]);
13757 break;
13758
13759 case M_DMUL:
13760 dbl = 1;
13761 /* Fall through. */
13762 case M_MUL:
13763 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13764 macro_build (NULL, "mflo", "x", op[0]);
13765 break;
13766
13767 case M_DSUBU_I:
13768 dbl = 1;
13769 goto do_subu;
13770 case M_SUBU_I:
13771 do_subu:
13772 imm_expr.X_add_number = -imm_expr.X_add_number;
13773 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,F", op[0], op[1]);
13774 break;
13775
13776 case M_SUBU_I_2:
13777 imm_expr.X_add_number = -imm_expr.X_add_number;
13778 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13779 break;
13780
13781 case M_DSUBU_I_2:
13782 imm_expr.X_add_number = -imm_expr.X_add_number;
13783 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13784 break;
13785
13786 case M_BEQ:
13787 s = "cmp";
13788 s2 = "bteqz";
13789 goto do_branch;
13790 case M_BNE:
13791 s = "cmp";
13792 s2 = "btnez";
13793 goto do_branch;
13794 case M_BLT:
13795 s = "slt";
13796 s2 = "btnez";
13797 goto do_branch;
13798 case M_BLTU:
13799 s = "sltu";
13800 s2 = "btnez";
13801 goto do_branch;
13802 case M_BLE:
13803 s = "slt";
13804 s2 = "bteqz";
13805 goto do_reverse_branch;
13806 case M_BLEU:
13807 s = "sltu";
13808 s2 = "bteqz";
13809 goto do_reverse_branch;
13810 case M_BGE:
13811 s = "slt";
13812 s2 = "bteqz";
13813 goto do_branch;
13814 case M_BGEU:
13815 s = "sltu";
13816 s2 = "bteqz";
13817 goto do_branch;
13818 case M_BGT:
13819 s = "slt";
13820 s2 = "btnez";
13821 goto do_reverse_branch;
13822 case M_BGTU:
13823 s = "sltu";
13824 s2 = "btnez";
13825
13826 do_reverse_branch:
13827 tmp = op[1];
13828 op[1] = op[0];
13829 op[0] = tmp;
13830
13831 do_branch:
13832 macro_build (NULL, s, "x,y", op[0], op[1]);
13833 macro_build (&offset_expr, s2, "p");
13834 break;
13835
13836 case M_BEQ_I:
13837 s = "cmpi";
13838 s2 = "bteqz";
13839 s3 = "x,U";
13840 goto do_branch_i;
13841 case M_BNE_I:
13842 s = "cmpi";
13843 s2 = "btnez";
13844 s3 = "x,U";
13845 goto do_branch_i;
13846 case M_BLT_I:
13847 s = "slti";
13848 s2 = "btnez";
13849 s3 = "x,8";
13850 goto do_branch_i;
13851 case M_BLTU_I:
13852 s = "sltiu";
13853 s2 = "btnez";
13854 s3 = "x,8";
13855 goto do_branch_i;
13856 case M_BLE_I:
13857 s = "slti";
13858 s2 = "btnez";
13859 s3 = "x,8";
13860 goto do_addone_branch_i;
13861 case M_BLEU_I:
13862 s = "sltiu";
13863 s2 = "btnez";
13864 s3 = "x,8";
13865 goto do_addone_branch_i;
13866 case M_BGE_I:
13867 s = "slti";
13868 s2 = "bteqz";
13869 s3 = "x,8";
13870 goto do_branch_i;
13871 case M_BGEU_I:
13872 s = "sltiu";
13873 s2 = "bteqz";
13874 s3 = "x,8";
13875 goto do_branch_i;
13876 case M_BGT_I:
13877 s = "slti";
13878 s2 = "bteqz";
13879 s3 = "x,8";
13880 goto do_addone_branch_i;
13881 case M_BGTU_I:
13882 s = "sltiu";
13883 s2 = "bteqz";
13884 s3 = "x,8";
13885
13886 do_addone_branch_i:
13887 ++imm_expr.X_add_number;
13888
13889 do_branch_i:
13890 macro_build (&imm_expr, s, s3, op[0]);
13891 macro_build (&offset_expr, s2, "p");
13892 break;
13893
13894 case M_ABS:
13895 expr1.X_add_number = 0;
13896 macro_build (&expr1, "slti", "x,8", op[1]);
13897 if (op[0] != op[1])
13898 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13899 expr1.X_add_number = 2;
13900 macro_build (&expr1, "bteqz", "p");
13901 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13902 break;
13903 }
13904 }
13905
13906 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13907 opcode bits in *OPCODE_EXTRA. */
13908
13909 static struct mips_opcode *
13910 mips_lookup_insn (struct hash_control *hash, const char *start,
13911 ssize_t length, unsigned int *opcode_extra)
13912 {
13913 char *name, *dot, *p;
13914 unsigned int mask, suffix;
13915 ssize_t opend;
13916 struct mips_opcode *insn;
13917
13918 /* Make a copy of the instruction so that we can fiddle with it. */
13919 name = xstrndup (start, length);
13920
13921 /* Look up the instruction as-is. */
13922 insn = (struct mips_opcode *) hash_find (hash, name);
13923 if (insn)
13924 goto end;
13925
13926 dot = strchr (name, '.');
13927 if (dot && dot[1])
13928 {
13929 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13930 p = mips_parse_vu0_channels (dot + 1, &mask);
13931 if (*p == 0 && mask != 0)
13932 {
13933 *dot = 0;
13934 insn = (struct mips_opcode *) hash_find (hash, name);
13935 *dot = '.';
13936 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13937 {
13938 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13939 goto end;
13940 }
13941 }
13942 }
13943
13944 if (mips_opts.micromips)
13945 {
13946 /* See if there's an instruction size override suffix,
13947 either `16' or `32', at the end of the mnemonic proper,
13948 that defines the operation, i.e. before the first `.'
13949 character if any. Strip it and retry. */
13950 opend = dot != NULL ? dot - name : length;
13951 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13952 suffix = 2;
13953 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13954 suffix = 4;
13955 else
13956 suffix = 0;
13957 if (suffix)
13958 {
13959 memcpy (name + opend - 2, name + opend, length - opend + 1);
13960 insn = (struct mips_opcode *) hash_find (hash, name);
13961 if (insn)
13962 {
13963 forced_insn_length = suffix;
13964 goto end;
13965 }
13966 }
13967 }
13968
13969 insn = NULL;
13970 end:
13971 free (name);
13972 return insn;
13973 }
13974
13975 /* Assemble an instruction into its binary format. If the instruction
13976 is a macro, set imm_expr and offset_expr to the values associated
13977 with "I" and "A" operands respectively. Otherwise store the value
13978 of the relocatable field (if any) in offset_expr. In both cases
13979 set offset_reloc to the relocation operators applied to offset_expr. */
13980
13981 static void
13982 mips_ip (char *str, struct mips_cl_insn *insn)
13983 {
13984 const struct mips_opcode *first, *past;
13985 struct hash_control *hash;
13986 char format;
13987 size_t end;
13988 struct mips_operand_token *tokens;
13989 unsigned int opcode_extra;
13990
13991 if (mips_opts.micromips)
13992 {
13993 hash = micromips_op_hash;
13994 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13995 }
13996 else
13997 {
13998 hash = op_hash;
13999 past = &mips_opcodes[NUMOPCODES];
14000 }
14001 forced_insn_length = 0;
14002 opcode_extra = 0;
14003
14004 /* We first try to match an instruction up to a space or to the end. */
14005 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
14006 continue;
14007
14008 first = mips_lookup_insn (hash, str, end, &opcode_extra);
14009 if (first == NULL)
14010 {
14011 set_insn_error (0, _("unrecognized opcode"));
14012 return;
14013 }
14014
14015 if (strcmp (first->name, "li.s") == 0)
14016 format = 'f';
14017 else if (strcmp (first->name, "li.d") == 0)
14018 format = 'd';
14019 else
14020 format = 0;
14021 tokens = mips_parse_arguments (str + end, format);
14022 if (!tokens)
14023 return;
14024
14025 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
14026 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
14027 set_insn_error (0, _("invalid operands"));
14028
14029 obstack_free (&mips_operand_tokens, tokens);
14030 }
14031
14032 /* As for mips_ip, but used when assembling MIPS16 code.
14033 Also set forced_insn_length to the resulting instruction size in
14034 bytes if the user explicitly requested a small or extended instruction. */
14035
14036 static void
14037 mips16_ip (char *str, struct mips_cl_insn *insn)
14038 {
14039 char *end, *s, c;
14040 struct mips_opcode *first;
14041 struct mips_operand_token *tokens;
14042 unsigned int l;
14043
14044 for (s = str; *s != '\0' && *s != '.' && *s != ' '; ++s)
14045 ;
14046 end = s;
14047 c = *end;
14048
14049 l = 0;
14050 switch (c)
14051 {
14052 case '\0':
14053 break;
14054
14055 case ' ':
14056 s++;
14057 break;
14058
14059 case '.':
14060 s++;
14061 if (*s == 't')
14062 {
14063 l = 2;
14064 s++;
14065 }
14066 else if (*s == 'e')
14067 {
14068 l = 4;
14069 s++;
14070 }
14071 if (*s == '\0')
14072 break;
14073 else if (*s++ == ' ')
14074 break;
14075 set_insn_error (0, _("unrecognized opcode"));
14076 return;
14077 }
14078 forced_insn_length = l;
14079
14080 *end = 0;
14081 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
14082 *end = c;
14083
14084 if (!first)
14085 {
14086 set_insn_error (0, _("unrecognized opcode"));
14087 return;
14088 }
14089
14090 tokens = mips_parse_arguments (s, 0);
14091 if (!tokens)
14092 return;
14093
14094 if (!match_mips16_insns (insn, first, tokens))
14095 set_insn_error (0, _("invalid operands"));
14096
14097 obstack_free (&mips_operand_tokens, tokens);
14098 }
14099
14100 /* Marshal immediate value VAL for an extended MIPS16 instruction.
14101 NBITS is the number of significant bits in VAL. */
14102
14103 static unsigned long
14104 mips16_immed_extend (offsetT val, unsigned int nbits)
14105 {
14106 int extval;
14107
14108 extval = 0;
14109 val &= (1U << nbits) - 1;
14110 if (nbits == 16 || nbits == 9)
14111 {
14112 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
14113 val &= 0x1f;
14114 }
14115 else if (nbits == 15)
14116 {
14117 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
14118 val &= 0xf;
14119 }
14120 else if (nbits == 6)
14121 {
14122 extval = ((val & 0x1f) << 6) | (val & 0x20);
14123 val = 0;
14124 }
14125 return (extval << 16) | val;
14126 }
14127
14128 /* Like decode_mips16_operand, but require the operand to be defined and
14129 require it to be an integer. */
14130
14131 static const struct mips_int_operand *
14132 mips16_immed_operand (int type, bfd_boolean extended_p)
14133 {
14134 const struct mips_operand *operand;
14135
14136 operand = decode_mips16_operand (type, extended_p);
14137 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
14138 abort ();
14139 return (const struct mips_int_operand *) operand;
14140 }
14141
14142 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
14143
14144 static bfd_boolean
14145 mips16_immed_in_range_p (const struct mips_int_operand *operand,
14146 bfd_reloc_code_real_type reloc, offsetT sval)
14147 {
14148 int min_val, max_val;
14149
14150 min_val = mips_int_operand_min (operand);
14151 max_val = mips_int_operand_max (operand);
14152 if (reloc != BFD_RELOC_UNUSED)
14153 {
14154 if (min_val < 0)
14155 sval = SEXT_16BIT (sval);
14156 else
14157 sval &= 0xffff;
14158 }
14159
14160 return (sval >= min_val
14161 && sval <= max_val
14162 && (sval & ((1 << operand->shift) - 1)) == 0);
14163 }
14164
14165 /* Install immediate value VAL into MIPS16 instruction *INSN,
14166 extending it if necessary. The instruction in *INSN may
14167 already be extended.
14168
14169 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
14170 if none. In the former case, VAL is a 16-bit number with no
14171 defined signedness.
14172
14173 TYPE is the type of the immediate field. USER_INSN_LENGTH
14174 is the length that the user requested, or 0 if none. */
14175
14176 static void
14177 mips16_immed (const char *file, unsigned int line, int type,
14178 bfd_reloc_code_real_type reloc, offsetT val,
14179 unsigned int user_insn_length, unsigned long *insn)
14180 {
14181 const struct mips_int_operand *operand;
14182 unsigned int uval, length;
14183
14184 operand = mips16_immed_operand (type, FALSE);
14185 if (!mips16_immed_in_range_p (operand, reloc, val))
14186 {
14187 /* We need an extended instruction. */
14188 if (user_insn_length == 2)
14189 as_bad_where (file, line, _("invalid unextended operand value"));
14190 else
14191 *insn |= MIPS16_EXTEND;
14192 }
14193 else if (user_insn_length == 4)
14194 {
14195 /* The operand doesn't force an unextended instruction to be extended.
14196 Warn if the user wanted an extended instruction anyway. */
14197 *insn |= MIPS16_EXTEND;
14198 as_warn_where (file, line,
14199 _("extended operand requested but not required"));
14200 }
14201
14202 length = mips16_opcode_length (*insn);
14203 if (length == 4)
14204 {
14205 operand = mips16_immed_operand (type, TRUE);
14206 if (!mips16_immed_in_range_p (operand, reloc, val))
14207 as_bad_where (file, line,
14208 _("operand value out of range for instruction"));
14209 }
14210 uval = ((unsigned int) val >> operand->shift) - operand->bias;
14211 if (length == 2 || operand->root.lsb != 0)
14212 *insn = mips_insert_operand (&operand->root, *insn, uval);
14213 else
14214 *insn |= mips16_immed_extend (uval, operand->root.size);
14215 }
14216 \f
14217 struct percent_op_match
14218 {
14219 const char *str;
14220 bfd_reloc_code_real_type reloc;
14221 };
14222
14223 static const struct percent_op_match mips_percent_op[] =
14224 {
14225 {"%lo", BFD_RELOC_LO16},
14226 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14227 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14228 {"%call16", BFD_RELOC_MIPS_CALL16},
14229 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14230 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14231 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14232 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14233 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14234 {"%got", BFD_RELOC_MIPS_GOT16},
14235 {"%gp_rel", BFD_RELOC_GPREL16},
14236 {"%gprel", BFD_RELOC_GPREL16},
14237 {"%half", BFD_RELOC_16},
14238 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14239 {"%higher", BFD_RELOC_MIPS_HIGHER},
14240 {"%neg", BFD_RELOC_MIPS_SUB},
14241 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14242 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14243 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14244 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14245 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14246 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14247 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
14248 {"%hi", BFD_RELOC_HI16_S},
14249 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14250 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
14251 };
14252
14253 static const struct percent_op_match mips16_percent_op[] =
14254 {
14255 {"%lo", BFD_RELOC_MIPS16_LO16},
14256 {"%gp_rel", BFD_RELOC_MIPS16_GPREL},
14257 {"%gprel", BFD_RELOC_MIPS16_GPREL},
14258 {"%got", BFD_RELOC_MIPS16_GOT16},
14259 {"%call16", BFD_RELOC_MIPS16_CALL16},
14260 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14261 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14262 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14263 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14264 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14265 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14266 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14267 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
14268 };
14269
14270
14271 /* Return true if *STR points to a relocation operator. When returning true,
14272 move *STR over the operator and store its relocation code in *RELOC.
14273 Leave both *STR and *RELOC alone when returning false. */
14274
14275 static bfd_boolean
14276 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
14277 {
14278 const struct percent_op_match *percent_op;
14279 size_t limit, i;
14280
14281 if (mips_opts.mips16)
14282 {
14283 percent_op = mips16_percent_op;
14284 limit = ARRAY_SIZE (mips16_percent_op);
14285 }
14286 else
14287 {
14288 percent_op = mips_percent_op;
14289 limit = ARRAY_SIZE (mips_percent_op);
14290 }
14291
14292 for (i = 0; i < limit; i++)
14293 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
14294 {
14295 int len = strlen (percent_op[i].str);
14296
14297 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14298 continue;
14299
14300 *str += strlen (percent_op[i].str);
14301 *reloc = percent_op[i].reloc;
14302
14303 /* Check whether the output BFD supports this relocation.
14304 If not, issue an error and fall back on something safe. */
14305 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
14306 {
14307 as_bad (_("relocation %s isn't supported by the current ABI"),
14308 percent_op[i].str);
14309 *reloc = BFD_RELOC_UNUSED;
14310 }
14311 return TRUE;
14312 }
14313 return FALSE;
14314 }
14315
14316
14317 /* Parse string STR as a 16-bit relocatable operand. Store the
14318 expression in *EP and the relocations in the array starting
14319 at RELOC. Return the number of relocation operators used.
14320
14321 On exit, EXPR_END points to the first character after the expression. */
14322
14323 static size_t
14324 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14325 char *str)
14326 {
14327 bfd_reloc_code_real_type reversed_reloc[3];
14328 size_t reloc_index, i;
14329 int crux_depth, str_depth;
14330 char *crux;
14331
14332 /* Search for the start of the main expression, recoding relocations
14333 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14334 of the main expression and with CRUX_DEPTH containing the number
14335 of open brackets at that point. */
14336 reloc_index = -1;
14337 str_depth = 0;
14338 do
14339 {
14340 reloc_index++;
14341 crux = str;
14342 crux_depth = str_depth;
14343
14344 /* Skip over whitespace and brackets, keeping count of the number
14345 of brackets. */
14346 while (*str == ' ' || *str == '\t' || *str == '(')
14347 if (*str++ == '(')
14348 str_depth++;
14349 }
14350 while (*str == '%'
14351 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14352 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14353
14354 my_getExpression (ep, crux);
14355 str = expr_end;
14356
14357 /* Match every open bracket. */
14358 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14359 if (*str++ == ')')
14360 crux_depth--;
14361
14362 if (crux_depth > 0)
14363 as_bad (_("unclosed '('"));
14364
14365 expr_end = str;
14366
14367 if (reloc_index != 0)
14368 {
14369 prev_reloc_op_frag = frag_now;
14370 for (i = 0; i < reloc_index; i++)
14371 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14372 }
14373
14374 return reloc_index;
14375 }
14376
14377 static void
14378 my_getExpression (expressionS *ep, char *str)
14379 {
14380 char *save_in;
14381
14382 save_in = input_line_pointer;
14383 input_line_pointer = str;
14384 expression (ep);
14385 expr_end = input_line_pointer;
14386 input_line_pointer = save_in;
14387 }
14388
14389 const char *
14390 md_atof (int type, char *litP, int *sizeP)
14391 {
14392 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14393 }
14394
14395 void
14396 md_number_to_chars (char *buf, valueT val, int n)
14397 {
14398 if (target_big_endian)
14399 number_to_chars_bigendian (buf, val, n);
14400 else
14401 number_to_chars_littleendian (buf, val, n);
14402 }
14403 \f
14404 static int support_64bit_objects(void)
14405 {
14406 const char **list, **l;
14407 int yes;
14408
14409 list = bfd_target_list ();
14410 for (l = list; *l != NULL; l++)
14411 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14412 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14413 break;
14414 yes = (*l != NULL);
14415 free (list);
14416 return yes;
14417 }
14418
14419 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14420 NEW_VALUE. Warn if another value was already specified. Note:
14421 we have to defer parsing the -march and -mtune arguments in order
14422 to handle 'from-abi' correctly, since the ABI might be specified
14423 in a later argument. */
14424
14425 static void
14426 mips_set_option_string (const char **string_ptr, const char *new_value)
14427 {
14428 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14429 as_warn (_("a different %s was already specified, is now %s"),
14430 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14431 new_value);
14432
14433 *string_ptr = new_value;
14434 }
14435
14436 int
14437 md_parse_option (int c, const char *arg)
14438 {
14439 unsigned int i;
14440
14441 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14442 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14443 {
14444 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14445 c == mips_ases[i].option_on);
14446 return 1;
14447 }
14448
14449 switch (c)
14450 {
14451 case OPTION_CONSTRUCT_FLOATS:
14452 mips_disable_float_construction = 0;
14453 break;
14454
14455 case OPTION_NO_CONSTRUCT_FLOATS:
14456 mips_disable_float_construction = 1;
14457 break;
14458
14459 case OPTION_TRAP:
14460 mips_trap = 1;
14461 break;
14462
14463 case OPTION_BREAK:
14464 mips_trap = 0;
14465 break;
14466
14467 case OPTION_EB:
14468 target_big_endian = 1;
14469 break;
14470
14471 case OPTION_EL:
14472 target_big_endian = 0;
14473 break;
14474
14475 case 'O':
14476 if (arg == NULL)
14477 mips_optimize = 1;
14478 else if (arg[0] == '0')
14479 mips_optimize = 0;
14480 else if (arg[0] == '1')
14481 mips_optimize = 1;
14482 else
14483 mips_optimize = 2;
14484 break;
14485
14486 case 'g':
14487 if (arg == NULL)
14488 mips_debug = 2;
14489 else
14490 mips_debug = atoi (arg);
14491 break;
14492
14493 case OPTION_MIPS1:
14494 file_mips_opts.isa = ISA_MIPS1;
14495 break;
14496
14497 case OPTION_MIPS2:
14498 file_mips_opts.isa = ISA_MIPS2;
14499 break;
14500
14501 case OPTION_MIPS3:
14502 file_mips_opts.isa = ISA_MIPS3;
14503 break;
14504
14505 case OPTION_MIPS4:
14506 file_mips_opts.isa = ISA_MIPS4;
14507 break;
14508
14509 case OPTION_MIPS5:
14510 file_mips_opts.isa = ISA_MIPS5;
14511 break;
14512
14513 case OPTION_MIPS32:
14514 file_mips_opts.isa = ISA_MIPS32;
14515 break;
14516
14517 case OPTION_MIPS32R2:
14518 file_mips_opts.isa = ISA_MIPS32R2;
14519 break;
14520
14521 case OPTION_MIPS32R3:
14522 file_mips_opts.isa = ISA_MIPS32R3;
14523 break;
14524
14525 case OPTION_MIPS32R5:
14526 file_mips_opts.isa = ISA_MIPS32R5;
14527 break;
14528
14529 case OPTION_MIPS32R6:
14530 file_mips_opts.isa = ISA_MIPS32R6;
14531 break;
14532
14533 case OPTION_MIPS64R2:
14534 file_mips_opts.isa = ISA_MIPS64R2;
14535 break;
14536
14537 case OPTION_MIPS64R3:
14538 file_mips_opts.isa = ISA_MIPS64R3;
14539 break;
14540
14541 case OPTION_MIPS64R5:
14542 file_mips_opts.isa = ISA_MIPS64R5;
14543 break;
14544
14545 case OPTION_MIPS64R6:
14546 file_mips_opts.isa = ISA_MIPS64R6;
14547 break;
14548
14549 case OPTION_MIPS64:
14550 file_mips_opts.isa = ISA_MIPS64;
14551 break;
14552
14553 case OPTION_MTUNE:
14554 mips_set_option_string (&mips_tune_string, arg);
14555 break;
14556
14557 case OPTION_MARCH:
14558 mips_set_option_string (&mips_arch_string, arg);
14559 break;
14560
14561 case OPTION_M4650:
14562 mips_set_option_string (&mips_arch_string, "4650");
14563 mips_set_option_string (&mips_tune_string, "4650");
14564 break;
14565
14566 case OPTION_NO_M4650:
14567 break;
14568
14569 case OPTION_M4010:
14570 mips_set_option_string (&mips_arch_string, "4010");
14571 mips_set_option_string (&mips_tune_string, "4010");
14572 break;
14573
14574 case OPTION_NO_M4010:
14575 break;
14576
14577 case OPTION_M4100:
14578 mips_set_option_string (&mips_arch_string, "4100");
14579 mips_set_option_string (&mips_tune_string, "4100");
14580 break;
14581
14582 case OPTION_NO_M4100:
14583 break;
14584
14585 case OPTION_M3900:
14586 mips_set_option_string (&mips_arch_string, "3900");
14587 mips_set_option_string (&mips_tune_string, "3900");
14588 break;
14589
14590 case OPTION_NO_M3900:
14591 break;
14592
14593 case OPTION_MICROMIPS:
14594 if (file_mips_opts.mips16 == 1)
14595 {
14596 as_bad (_("-mmicromips cannot be used with -mips16"));
14597 return 0;
14598 }
14599 file_mips_opts.micromips = 1;
14600 mips_no_prev_insn ();
14601 break;
14602
14603 case OPTION_NO_MICROMIPS:
14604 file_mips_opts.micromips = 0;
14605 mips_no_prev_insn ();
14606 break;
14607
14608 case OPTION_MIPS16:
14609 if (file_mips_opts.micromips == 1)
14610 {
14611 as_bad (_("-mips16 cannot be used with -micromips"));
14612 return 0;
14613 }
14614 file_mips_opts.mips16 = 1;
14615 mips_no_prev_insn ();
14616 break;
14617
14618 case OPTION_NO_MIPS16:
14619 file_mips_opts.mips16 = 0;
14620 mips_no_prev_insn ();
14621 break;
14622
14623 case OPTION_FIX_24K:
14624 mips_fix_24k = 1;
14625 break;
14626
14627 case OPTION_NO_FIX_24K:
14628 mips_fix_24k = 0;
14629 break;
14630
14631 case OPTION_FIX_RM7000:
14632 mips_fix_rm7000 = 1;
14633 break;
14634
14635 case OPTION_NO_FIX_RM7000:
14636 mips_fix_rm7000 = 0;
14637 break;
14638
14639 case OPTION_FIX_LOONGSON2F_JUMP:
14640 mips_fix_loongson2f_jump = TRUE;
14641 break;
14642
14643 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14644 mips_fix_loongson2f_jump = FALSE;
14645 break;
14646
14647 case OPTION_FIX_LOONGSON2F_NOP:
14648 mips_fix_loongson2f_nop = TRUE;
14649 break;
14650
14651 case OPTION_NO_FIX_LOONGSON2F_NOP:
14652 mips_fix_loongson2f_nop = FALSE;
14653 break;
14654
14655 case OPTION_FIX_VR4120:
14656 mips_fix_vr4120 = 1;
14657 break;
14658
14659 case OPTION_NO_FIX_VR4120:
14660 mips_fix_vr4120 = 0;
14661 break;
14662
14663 case OPTION_FIX_VR4130:
14664 mips_fix_vr4130 = 1;
14665 break;
14666
14667 case OPTION_NO_FIX_VR4130:
14668 mips_fix_vr4130 = 0;
14669 break;
14670
14671 case OPTION_FIX_CN63XXP1:
14672 mips_fix_cn63xxp1 = TRUE;
14673 break;
14674
14675 case OPTION_NO_FIX_CN63XXP1:
14676 mips_fix_cn63xxp1 = FALSE;
14677 break;
14678
14679 case OPTION_RELAX_BRANCH:
14680 mips_relax_branch = 1;
14681 break;
14682
14683 case OPTION_NO_RELAX_BRANCH:
14684 mips_relax_branch = 0;
14685 break;
14686
14687 case OPTION_IGNORE_BRANCH_ISA:
14688 mips_ignore_branch_isa = TRUE;
14689 break;
14690
14691 case OPTION_NO_IGNORE_BRANCH_ISA:
14692 mips_ignore_branch_isa = FALSE;
14693 break;
14694
14695 case OPTION_INSN32:
14696 file_mips_opts.insn32 = TRUE;
14697 break;
14698
14699 case OPTION_NO_INSN32:
14700 file_mips_opts.insn32 = FALSE;
14701 break;
14702
14703 case OPTION_MSHARED:
14704 mips_in_shared = TRUE;
14705 break;
14706
14707 case OPTION_MNO_SHARED:
14708 mips_in_shared = FALSE;
14709 break;
14710
14711 case OPTION_MSYM32:
14712 file_mips_opts.sym32 = TRUE;
14713 break;
14714
14715 case OPTION_MNO_SYM32:
14716 file_mips_opts.sym32 = FALSE;
14717 break;
14718
14719 /* When generating ELF code, we permit -KPIC and -call_shared to
14720 select SVR4_PIC, and -non_shared to select no PIC. This is
14721 intended to be compatible with Irix 5. */
14722 case OPTION_CALL_SHARED:
14723 mips_pic = SVR4_PIC;
14724 mips_abicalls = TRUE;
14725 break;
14726
14727 case OPTION_CALL_NONPIC:
14728 mips_pic = NO_PIC;
14729 mips_abicalls = TRUE;
14730 break;
14731
14732 case OPTION_NON_SHARED:
14733 mips_pic = NO_PIC;
14734 mips_abicalls = FALSE;
14735 break;
14736
14737 /* The -xgot option tells the assembler to use 32 bit offsets
14738 when accessing the got in SVR4_PIC mode. It is for Irix
14739 compatibility. */
14740 case OPTION_XGOT:
14741 mips_big_got = 1;
14742 break;
14743
14744 case 'G':
14745 g_switch_value = atoi (arg);
14746 g_switch_seen = 1;
14747 break;
14748
14749 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14750 and -mabi=64. */
14751 case OPTION_32:
14752 mips_abi = O32_ABI;
14753 break;
14754
14755 case OPTION_N32:
14756 mips_abi = N32_ABI;
14757 break;
14758
14759 case OPTION_64:
14760 mips_abi = N64_ABI;
14761 if (!support_64bit_objects())
14762 as_fatal (_("no compiled in support for 64 bit object file format"));
14763 break;
14764
14765 case OPTION_GP32:
14766 file_mips_opts.gp = 32;
14767 break;
14768
14769 case OPTION_GP64:
14770 file_mips_opts.gp = 64;
14771 break;
14772
14773 case OPTION_FP32:
14774 file_mips_opts.fp = 32;
14775 break;
14776
14777 case OPTION_FPXX:
14778 file_mips_opts.fp = 0;
14779 break;
14780
14781 case OPTION_FP64:
14782 file_mips_opts.fp = 64;
14783 break;
14784
14785 case OPTION_ODD_SPREG:
14786 file_mips_opts.oddspreg = 1;
14787 break;
14788
14789 case OPTION_NO_ODD_SPREG:
14790 file_mips_opts.oddspreg = 0;
14791 break;
14792
14793 case OPTION_SINGLE_FLOAT:
14794 file_mips_opts.single_float = 1;
14795 break;
14796
14797 case OPTION_DOUBLE_FLOAT:
14798 file_mips_opts.single_float = 0;
14799 break;
14800
14801 case OPTION_SOFT_FLOAT:
14802 file_mips_opts.soft_float = 1;
14803 break;
14804
14805 case OPTION_HARD_FLOAT:
14806 file_mips_opts.soft_float = 0;
14807 break;
14808
14809 case OPTION_MABI:
14810 if (strcmp (arg, "32") == 0)
14811 mips_abi = O32_ABI;
14812 else if (strcmp (arg, "o64") == 0)
14813 mips_abi = O64_ABI;
14814 else if (strcmp (arg, "n32") == 0)
14815 mips_abi = N32_ABI;
14816 else if (strcmp (arg, "64") == 0)
14817 {
14818 mips_abi = N64_ABI;
14819 if (! support_64bit_objects())
14820 as_fatal (_("no compiled in support for 64 bit object file "
14821 "format"));
14822 }
14823 else if (strcmp (arg, "eabi") == 0)
14824 mips_abi = EABI_ABI;
14825 else
14826 {
14827 as_fatal (_("invalid abi -mabi=%s"), arg);
14828 return 0;
14829 }
14830 break;
14831
14832 case OPTION_M7000_HILO_FIX:
14833 mips_7000_hilo_fix = TRUE;
14834 break;
14835
14836 case OPTION_MNO_7000_HILO_FIX:
14837 mips_7000_hilo_fix = FALSE;
14838 break;
14839
14840 case OPTION_MDEBUG:
14841 mips_flag_mdebug = TRUE;
14842 break;
14843
14844 case OPTION_NO_MDEBUG:
14845 mips_flag_mdebug = FALSE;
14846 break;
14847
14848 case OPTION_PDR:
14849 mips_flag_pdr = TRUE;
14850 break;
14851
14852 case OPTION_NO_PDR:
14853 mips_flag_pdr = FALSE;
14854 break;
14855
14856 case OPTION_MVXWORKS_PIC:
14857 mips_pic = VXWORKS_PIC;
14858 break;
14859
14860 case OPTION_NAN:
14861 if (strcmp (arg, "2008") == 0)
14862 mips_nan2008 = 1;
14863 else if (strcmp (arg, "legacy") == 0)
14864 mips_nan2008 = 0;
14865 else
14866 {
14867 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14868 return 0;
14869 }
14870 break;
14871
14872 default:
14873 return 0;
14874 }
14875
14876 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14877
14878 return 1;
14879 }
14880 \f
14881 /* Set up globals to tune for the ISA or processor described by INFO. */
14882
14883 static void
14884 mips_set_tune (const struct mips_cpu_info *info)
14885 {
14886 if (info != 0)
14887 mips_tune = info->cpu;
14888 }
14889
14890
14891 void
14892 mips_after_parse_args (void)
14893 {
14894 const struct mips_cpu_info *arch_info = 0;
14895 const struct mips_cpu_info *tune_info = 0;
14896
14897 /* GP relative stuff not working for PE */
14898 if (strncmp (TARGET_OS, "pe", 2) == 0)
14899 {
14900 if (g_switch_seen && g_switch_value != 0)
14901 as_bad (_("-G not supported in this configuration"));
14902 g_switch_value = 0;
14903 }
14904
14905 if (mips_abi == NO_ABI)
14906 mips_abi = MIPS_DEFAULT_ABI;
14907
14908 /* The following code determines the architecture.
14909 Similar code was added to GCC 3.3 (see override_options() in
14910 config/mips/mips.c). The GAS and GCC code should be kept in sync
14911 as much as possible. */
14912
14913 if (mips_arch_string != 0)
14914 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14915
14916 if (file_mips_opts.isa != ISA_UNKNOWN)
14917 {
14918 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14919 ISA level specified by -mipsN, while arch_info->isa contains
14920 the -march selection (if any). */
14921 if (arch_info != 0)
14922 {
14923 /* -march takes precedence over -mipsN, since it is more descriptive.
14924 There's no harm in specifying both as long as the ISA levels
14925 are the same. */
14926 if (file_mips_opts.isa != arch_info->isa)
14927 as_bad (_("-%s conflicts with the other architecture options,"
14928 " which imply -%s"),
14929 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14930 mips_cpu_info_from_isa (arch_info->isa)->name);
14931 }
14932 else
14933 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14934 }
14935
14936 if (arch_info == 0)
14937 {
14938 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14939 gas_assert (arch_info);
14940 }
14941
14942 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14943 as_bad (_("-march=%s is not compatible with the selected ABI"),
14944 arch_info->name);
14945
14946 file_mips_opts.arch = arch_info->cpu;
14947 file_mips_opts.isa = arch_info->isa;
14948
14949 /* Set up initial mips_opts state. */
14950 mips_opts = file_mips_opts;
14951
14952 /* The register size inference code is now placed in
14953 file_mips_check_options. */
14954
14955 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14956 processor. */
14957 if (mips_tune_string != 0)
14958 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14959
14960 if (tune_info == 0)
14961 mips_set_tune (arch_info);
14962 else
14963 mips_set_tune (tune_info);
14964
14965 if (mips_flag_mdebug < 0)
14966 mips_flag_mdebug = 0;
14967 }
14968 \f
14969 void
14970 mips_init_after_args (void)
14971 {
14972 /* initialize opcodes */
14973 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14974 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14975 }
14976
14977 long
14978 md_pcrel_from (fixS *fixP)
14979 {
14980 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14981 switch (fixP->fx_r_type)
14982 {
14983 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14984 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14985 /* Return the address of the delay slot. */
14986 return addr + 2;
14987
14988 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14989 case BFD_RELOC_MICROMIPS_JMP:
14990 case BFD_RELOC_MIPS16_16_PCREL_S1:
14991 case BFD_RELOC_16_PCREL_S2:
14992 case BFD_RELOC_MIPS_21_PCREL_S2:
14993 case BFD_RELOC_MIPS_26_PCREL_S2:
14994 case BFD_RELOC_MIPS_JMP:
14995 /* Return the address of the delay slot. */
14996 return addr + 4;
14997
14998 case BFD_RELOC_MIPS_18_PCREL_S3:
14999 /* Return the aligned address of the doubleword containing
15000 the instruction. */
15001 return addr & ~7;
15002
15003 default:
15004 return addr;
15005 }
15006 }
15007
15008 /* This is called before the symbol table is processed. In order to
15009 work with gcc when using mips-tfile, we must keep all local labels.
15010 However, in other cases, we want to discard them. If we were
15011 called with -g, but we didn't see any debugging information, it may
15012 mean that gcc is smuggling debugging information through to
15013 mips-tfile, in which case we must generate all local labels. */
15014
15015 void
15016 mips_frob_file_before_adjust (void)
15017 {
15018 #ifndef NO_ECOFF_DEBUGGING
15019 if (ECOFF_DEBUGGING
15020 && mips_debug != 0
15021 && ! ecoff_debugging_seen)
15022 flag_keep_locals = 1;
15023 #endif
15024 }
15025
15026 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
15027 the corresponding LO16 reloc. This is called before md_apply_fix and
15028 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
15029 relocation operators.
15030
15031 For our purposes, a %lo() expression matches a %got() or %hi()
15032 expression if:
15033
15034 (a) it refers to the same symbol; and
15035 (b) the offset applied in the %lo() expression is no lower than
15036 the offset applied in the %got() or %hi().
15037
15038 (b) allows us to cope with code like:
15039
15040 lui $4,%hi(foo)
15041 lh $4,%lo(foo+2)($4)
15042
15043 ...which is legal on RELA targets, and has a well-defined behaviour
15044 if the user knows that adding 2 to "foo" will not induce a carry to
15045 the high 16 bits.
15046
15047 When several %lo()s match a particular %got() or %hi(), we use the
15048 following rules to distinguish them:
15049
15050 (1) %lo()s with smaller offsets are a better match than %lo()s with
15051 higher offsets.
15052
15053 (2) %lo()s with no matching %got() or %hi() are better than those
15054 that already have a matching %got() or %hi().
15055
15056 (3) later %lo()s are better than earlier %lo()s.
15057
15058 These rules are applied in order.
15059
15060 (1) means, among other things, that %lo()s with identical offsets are
15061 chosen if they exist.
15062
15063 (2) means that we won't associate several high-part relocations with
15064 the same low-part relocation unless there's no alternative. Having
15065 several high parts for the same low part is a GNU extension; this rule
15066 allows careful users to avoid it.
15067
15068 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
15069 with the last high-part relocation being at the front of the list.
15070 It therefore makes sense to choose the last matching low-part
15071 relocation, all other things being equal. It's also easier
15072 to code that way. */
15073
15074 void
15075 mips_frob_file (void)
15076 {
15077 struct mips_hi_fixup *l;
15078 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
15079
15080 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
15081 {
15082 segment_info_type *seginfo;
15083 bfd_boolean matched_lo_p;
15084 fixS **hi_pos, **lo_pos, **pos;
15085
15086 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
15087
15088 /* If a GOT16 relocation turns out to be against a global symbol,
15089 there isn't supposed to be a matching LO. Ignore %gots against
15090 constants; we'll report an error for those later. */
15091 if (got16_reloc_p (l->fixp->fx_r_type)
15092 && !(l->fixp->fx_addsy
15093 && pic_need_relax (l->fixp->fx_addsy)))
15094 continue;
15095
15096 /* Check quickly whether the next fixup happens to be a matching %lo. */
15097 if (fixup_has_matching_lo_p (l->fixp))
15098 continue;
15099
15100 seginfo = seg_info (l->seg);
15101
15102 /* Set HI_POS to the position of this relocation in the chain.
15103 Set LO_POS to the position of the chosen low-part relocation.
15104 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
15105 relocation that matches an immediately-preceding high-part
15106 relocation. */
15107 hi_pos = NULL;
15108 lo_pos = NULL;
15109 matched_lo_p = FALSE;
15110 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
15111
15112 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
15113 {
15114 if (*pos == l->fixp)
15115 hi_pos = pos;
15116
15117 if ((*pos)->fx_r_type == looking_for_rtype
15118 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
15119 && (*pos)->fx_offset >= l->fixp->fx_offset
15120 && (lo_pos == NULL
15121 || (*pos)->fx_offset < (*lo_pos)->fx_offset
15122 || (!matched_lo_p
15123 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
15124 lo_pos = pos;
15125
15126 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
15127 && fixup_has_matching_lo_p (*pos));
15128 }
15129
15130 /* If we found a match, remove the high-part relocation from its
15131 current position and insert it before the low-part relocation.
15132 Make the offsets match so that fixup_has_matching_lo_p()
15133 will return true.
15134
15135 We don't warn about unmatched high-part relocations since some
15136 versions of gcc have been known to emit dead "lui ...%hi(...)"
15137 instructions. */
15138 if (lo_pos != NULL)
15139 {
15140 l->fixp->fx_offset = (*lo_pos)->fx_offset;
15141 if (l->fixp->fx_next != *lo_pos)
15142 {
15143 *hi_pos = l->fixp->fx_next;
15144 l->fixp->fx_next = *lo_pos;
15145 *lo_pos = l->fixp;
15146 }
15147 }
15148 }
15149 }
15150
15151 int
15152 mips_force_relocation (fixS *fixp)
15153 {
15154 if (generic_force_reloc (fixp))
15155 return 1;
15156
15157 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
15158 so that the linker relaxation can update targets. */
15159 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15160 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15161 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
15162 return 1;
15163
15164 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
15165 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
15166 microMIPS symbols so that we can do cross-mode branch diagnostics
15167 and BAL to JALX conversion by the linker. */
15168 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15169 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15170 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
15171 && fixp->fx_addsy
15172 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
15173 return 1;
15174
15175 /* We want all PC-relative relocations to be kept for R6 relaxation. */
15176 if (ISA_IS_R6 (file_mips_opts.isa)
15177 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15178 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15179 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
15180 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
15181 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
15182 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
15183 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
15184 return 1;
15185
15186 return 0;
15187 }
15188
15189 /* Implement TC_FORCE_RELOCATION_ABS. */
15190
15191 bfd_boolean
15192 mips_force_relocation_abs (fixS *fixp)
15193 {
15194 if (generic_force_reloc (fixp))
15195 return TRUE;
15196
15197 /* These relocations do not have enough bits in the in-place addend
15198 to hold an arbitrary absolute section's offset. */
15199 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
15200 return TRUE;
15201
15202 return FALSE;
15203 }
15204
15205 /* Read the instruction associated with RELOC from BUF. */
15206
15207 static unsigned int
15208 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15209 {
15210 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15211 return read_compressed_insn (buf, 4);
15212 else
15213 return read_insn (buf);
15214 }
15215
15216 /* Write instruction INSN to BUF, given that it has been relocated
15217 by RELOC. */
15218
15219 static void
15220 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15221 unsigned long insn)
15222 {
15223 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15224 write_compressed_insn (buf, insn, 4);
15225 else
15226 write_insn (buf, insn);
15227 }
15228
15229 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15230 to a symbol in another ISA mode, which cannot be converted to JALX. */
15231
15232 static bfd_boolean
15233 fix_bad_cross_mode_jump_p (fixS *fixP)
15234 {
15235 unsigned long opcode;
15236 int other;
15237 char *buf;
15238
15239 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15240 return FALSE;
15241
15242 other = S_GET_OTHER (fixP->fx_addsy);
15243 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15244 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15245 switch (fixP->fx_r_type)
15246 {
15247 case BFD_RELOC_MIPS_JMP:
15248 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15249 case BFD_RELOC_MICROMIPS_JMP:
15250 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15251 default:
15252 return FALSE;
15253 }
15254 }
15255
15256 /* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15257 jump to a symbol in the same ISA mode. */
15258
15259 static bfd_boolean
15260 fix_bad_same_mode_jalx_p (fixS *fixP)
15261 {
15262 unsigned long opcode;
15263 int other;
15264 char *buf;
15265
15266 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15267 return FALSE;
15268
15269 other = S_GET_OTHER (fixP->fx_addsy);
15270 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15271 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15272 switch (fixP->fx_r_type)
15273 {
15274 case BFD_RELOC_MIPS_JMP:
15275 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15276 case BFD_RELOC_MIPS16_JMP:
15277 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15278 case BFD_RELOC_MICROMIPS_JMP:
15279 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15280 default:
15281 return FALSE;
15282 }
15283 }
15284
15285 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15286 to a symbol whose value plus addend is not aligned according to the
15287 ultimate (after linker relaxation) jump instruction's immediate field
15288 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15289 regular MIPS code, to (1 << 2). */
15290
15291 static bfd_boolean
15292 fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15293 {
15294 bfd_boolean micro_to_mips_p;
15295 valueT val;
15296 int other;
15297
15298 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15299 return FALSE;
15300
15301 other = S_GET_OTHER (fixP->fx_addsy);
15302 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15303 val += fixP->fx_offset;
15304 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15305 && !ELF_ST_IS_MICROMIPS (other));
15306 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15307 != ELF_ST_IS_COMPRESSED (other));
15308 }
15309
15310 /* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15311 to a symbol whose annotation indicates another ISA mode. For absolute
15312 symbols check the ISA bit instead.
15313
15314 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15315 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15316 MIPS symbols and associated with BAL instructions as these instructions
15317 may be be converted to JALX by the linker. */
15318
15319 static bfd_boolean
15320 fix_bad_cross_mode_branch_p (fixS *fixP)
15321 {
15322 bfd_boolean absolute_p;
15323 unsigned long opcode;
15324 asection *symsec;
15325 valueT val;
15326 int other;
15327 char *buf;
15328
15329 if (mips_ignore_branch_isa)
15330 return FALSE;
15331
15332 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15333 return FALSE;
15334
15335 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15336 absolute_p = bfd_is_abs_section (symsec);
15337
15338 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15339 other = S_GET_OTHER (fixP->fx_addsy);
15340
15341 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15342 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15343 switch (fixP->fx_r_type)
15344 {
15345 case BFD_RELOC_16_PCREL_S2:
15346 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15347 && opcode != 0x0411);
15348 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15349 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15350 && opcode != 0x4060);
15351 case BFD_RELOC_MIPS_21_PCREL_S2:
15352 case BFD_RELOC_MIPS_26_PCREL_S2:
15353 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15354 case BFD_RELOC_MIPS16_16_PCREL_S1:
15355 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15356 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15357 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15358 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15359 default:
15360 abort ();
15361 }
15362 }
15363
15364 /* Return TRUE if the symbol plus addend associated with a regular MIPS
15365 branch instruction pointed to by FIXP is not aligned according to the
15366 branch instruction's immediate field requirement. We need the addend
15367 to preserve the ISA bit and also the sum must not have bit 2 set. We
15368 must explicitly OR in the ISA bit from symbol annotation as the bit
15369 won't be set in the symbol's value then. */
15370
15371 static bfd_boolean
15372 fix_bad_misaligned_branch_p (fixS *fixP)
15373 {
15374 bfd_boolean absolute_p;
15375 asection *symsec;
15376 valueT isa_bit;
15377 valueT val;
15378 valueT off;
15379 int other;
15380
15381 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15382 return FALSE;
15383
15384 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15385 absolute_p = bfd_is_abs_section (symsec);
15386
15387 val = S_GET_VALUE (fixP->fx_addsy);
15388 other = S_GET_OTHER (fixP->fx_addsy);
15389 off = fixP->fx_offset;
15390
15391 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15392 val |= ELF_ST_IS_COMPRESSED (other);
15393 val += off;
15394 return (val & 0x3) != isa_bit;
15395 }
15396
15397 /* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15398 and its calculated value VAL. */
15399
15400 static void
15401 fix_validate_branch (fixS *fixP, valueT val)
15402 {
15403 if (fixP->fx_done && (val & 0x3) != 0)
15404 as_bad_where (fixP->fx_file, fixP->fx_line,
15405 _("branch to misaligned address (0x%lx)"),
15406 (long) (val + md_pcrel_from (fixP)));
15407 else if (fix_bad_cross_mode_branch_p (fixP))
15408 as_bad_where (fixP->fx_file, fixP->fx_line,
15409 _("branch to a symbol in another ISA mode"));
15410 else if (fix_bad_misaligned_branch_p (fixP))
15411 as_bad_where (fixP->fx_file, fixP->fx_line,
15412 _("branch to misaligned address (0x%lx)"),
15413 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15414 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15415 as_bad_where (fixP->fx_file, fixP->fx_line,
15416 _("cannot encode misaligned addend "
15417 "in the relocatable field (0x%lx)"),
15418 (long) fixP->fx_offset);
15419 }
15420
15421 /* Apply a fixup to the object file. */
15422
15423 void
15424 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
15425 {
15426 char *buf;
15427 unsigned long insn;
15428 reloc_howto_type *howto;
15429
15430 if (fixP->fx_pcrel)
15431 switch (fixP->fx_r_type)
15432 {
15433 case BFD_RELOC_16_PCREL_S2:
15434 case BFD_RELOC_MIPS16_16_PCREL_S1:
15435 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15436 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15437 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15438 case BFD_RELOC_32_PCREL:
15439 case BFD_RELOC_MIPS_21_PCREL_S2:
15440 case BFD_RELOC_MIPS_26_PCREL_S2:
15441 case BFD_RELOC_MIPS_18_PCREL_S3:
15442 case BFD_RELOC_MIPS_19_PCREL_S2:
15443 case BFD_RELOC_HI16_S_PCREL:
15444 case BFD_RELOC_LO16_PCREL:
15445 break;
15446
15447 case BFD_RELOC_32:
15448 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15449 break;
15450
15451 default:
15452 as_bad_where (fixP->fx_file, fixP->fx_line,
15453 _("PC-relative reference to a different section"));
15454 break;
15455 }
15456
15457 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15458 that have no MIPS ELF equivalent. */
15459 if (fixP->fx_r_type != BFD_RELOC_8)
15460 {
15461 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15462 if (!howto)
15463 return;
15464 }
15465
15466 gas_assert (fixP->fx_size == 2
15467 || fixP->fx_size == 4
15468 || fixP->fx_r_type == BFD_RELOC_8
15469 || fixP->fx_r_type == BFD_RELOC_16
15470 || fixP->fx_r_type == BFD_RELOC_64
15471 || fixP->fx_r_type == BFD_RELOC_CTOR
15472 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
15473 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
15474 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15475 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
15476 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15477 || fixP->fx_r_type == BFD_RELOC_NONE);
15478
15479 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15480
15481 /* Don't treat parts of a composite relocation as done. There are two
15482 reasons for this:
15483
15484 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15485 should nevertheless be emitted if the first part is.
15486
15487 (2) In normal usage, composite relocations are never assembly-time
15488 constants. The easiest way of dealing with the pathological
15489 exceptions is to generate a relocation against STN_UNDEF and
15490 leave everything up to the linker. */
15491 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
15492 fixP->fx_done = 1;
15493
15494 switch (fixP->fx_r_type)
15495 {
15496 case BFD_RELOC_MIPS_TLS_GD:
15497 case BFD_RELOC_MIPS_TLS_LDM:
15498 case BFD_RELOC_MIPS_TLS_DTPREL32:
15499 case BFD_RELOC_MIPS_TLS_DTPREL64:
15500 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15501 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15502 case BFD_RELOC_MIPS_TLS_GOTTPREL:
15503 case BFD_RELOC_MIPS_TLS_TPREL32:
15504 case BFD_RELOC_MIPS_TLS_TPREL64:
15505 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15506 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
15507 case BFD_RELOC_MICROMIPS_TLS_GD:
15508 case BFD_RELOC_MICROMIPS_TLS_LDM:
15509 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15510 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15511 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15512 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15513 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
15514 case BFD_RELOC_MIPS16_TLS_GD:
15515 case BFD_RELOC_MIPS16_TLS_LDM:
15516 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15517 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15518 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15519 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15520 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
15521 if (fixP->fx_addsy)
15522 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15523 else
15524 as_bad_where (fixP->fx_file, fixP->fx_line,
15525 _("TLS relocation against a constant"));
15526 break;
15527
15528 case BFD_RELOC_MIPS_JMP:
15529 case BFD_RELOC_MIPS16_JMP:
15530 case BFD_RELOC_MICROMIPS_JMP:
15531 {
15532 int shift;
15533
15534 gas_assert (!fixP->fx_done);
15535
15536 /* Shift is 2, unusually, for microMIPS JALX. */
15537 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15538 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15539 shift = 1;
15540 else
15541 shift = 2;
15542
15543 if (fix_bad_cross_mode_jump_p (fixP))
15544 as_bad_where (fixP->fx_file, fixP->fx_line,
15545 _("jump to a symbol in another ISA mode"));
15546 else if (fix_bad_same_mode_jalx_p (fixP))
15547 as_bad_where (fixP->fx_file, fixP->fx_line,
15548 _("JALX to a symbol in the same ISA mode"));
15549 else if (fix_bad_misaligned_jump_p (fixP, shift))
15550 as_bad_where (fixP->fx_file, fixP->fx_line,
15551 _("jump to misaligned address (0x%lx)"),
15552 (long) (S_GET_VALUE (fixP->fx_addsy)
15553 + fixP->fx_offset));
15554 else if (HAVE_IN_PLACE_ADDENDS
15555 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15556 as_bad_where (fixP->fx_file, fixP->fx_line,
15557 _("cannot encode misaligned addend "
15558 "in the relocatable field (0x%lx)"),
15559 (long) fixP->fx_offset);
15560 }
15561 /* Fall through. */
15562
15563 case BFD_RELOC_MIPS_SHIFT5:
15564 case BFD_RELOC_MIPS_SHIFT6:
15565 case BFD_RELOC_MIPS_GOT_DISP:
15566 case BFD_RELOC_MIPS_GOT_PAGE:
15567 case BFD_RELOC_MIPS_GOT_OFST:
15568 case BFD_RELOC_MIPS_SUB:
15569 case BFD_RELOC_MIPS_INSERT_A:
15570 case BFD_RELOC_MIPS_INSERT_B:
15571 case BFD_RELOC_MIPS_DELETE:
15572 case BFD_RELOC_MIPS_HIGHEST:
15573 case BFD_RELOC_MIPS_HIGHER:
15574 case BFD_RELOC_MIPS_SCN_DISP:
15575 case BFD_RELOC_MIPS_REL16:
15576 case BFD_RELOC_MIPS_RELGOT:
15577 case BFD_RELOC_MIPS_JALR:
15578 case BFD_RELOC_HI16:
15579 case BFD_RELOC_HI16_S:
15580 case BFD_RELOC_LO16:
15581 case BFD_RELOC_GPREL16:
15582 case BFD_RELOC_MIPS_LITERAL:
15583 case BFD_RELOC_MIPS_CALL16:
15584 case BFD_RELOC_MIPS_GOT16:
15585 case BFD_RELOC_GPREL32:
15586 case BFD_RELOC_MIPS_GOT_HI16:
15587 case BFD_RELOC_MIPS_GOT_LO16:
15588 case BFD_RELOC_MIPS_CALL_HI16:
15589 case BFD_RELOC_MIPS_CALL_LO16:
15590 case BFD_RELOC_HI16_S_PCREL:
15591 case BFD_RELOC_LO16_PCREL:
15592 case BFD_RELOC_MIPS16_GPREL:
15593 case BFD_RELOC_MIPS16_GOT16:
15594 case BFD_RELOC_MIPS16_CALL16:
15595 case BFD_RELOC_MIPS16_HI16:
15596 case BFD_RELOC_MIPS16_HI16_S:
15597 case BFD_RELOC_MIPS16_LO16:
15598 case BFD_RELOC_MICROMIPS_GOT_DISP:
15599 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15600 case BFD_RELOC_MICROMIPS_GOT_OFST:
15601 case BFD_RELOC_MICROMIPS_SUB:
15602 case BFD_RELOC_MICROMIPS_HIGHEST:
15603 case BFD_RELOC_MICROMIPS_HIGHER:
15604 case BFD_RELOC_MICROMIPS_SCN_DISP:
15605 case BFD_RELOC_MICROMIPS_JALR:
15606 case BFD_RELOC_MICROMIPS_HI16:
15607 case BFD_RELOC_MICROMIPS_HI16_S:
15608 case BFD_RELOC_MICROMIPS_LO16:
15609 case BFD_RELOC_MICROMIPS_GPREL16:
15610 case BFD_RELOC_MICROMIPS_LITERAL:
15611 case BFD_RELOC_MICROMIPS_CALL16:
15612 case BFD_RELOC_MICROMIPS_GOT16:
15613 case BFD_RELOC_MICROMIPS_GOT_HI16:
15614 case BFD_RELOC_MICROMIPS_GOT_LO16:
15615 case BFD_RELOC_MICROMIPS_CALL_HI16:
15616 case BFD_RELOC_MICROMIPS_CALL_LO16:
15617 case BFD_RELOC_MIPS_EH:
15618 if (fixP->fx_done)
15619 {
15620 offsetT value;
15621
15622 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15623 {
15624 insn = read_reloc_insn (buf, fixP->fx_r_type);
15625 if (mips16_reloc_p (fixP->fx_r_type))
15626 insn |= mips16_immed_extend (value, 16);
15627 else
15628 insn |= (value & 0xffff);
15629 write_reloc_insn (buf, fixP->fx_r_type, insn);
15630 }
15631 else
15632 as_bad_where (fixP->fx_file, fixP->fx_line,
15633 _("unsupported constant in relocation"));
15634 }
15635 break;
15636
15637 case BFD_RELOC_64:
15638 /* This is handled like BFD_RELOC_32, but we output a sign
15639 extended value if we are only 32 bits. */
15640 if (fixP->fx_done)
15641 {
15642 if (8 <= sizeof (valueT))
15643 md_number_to_chars (buf, *valP, 8);
15644 else
15645 {
15646 valueT hiv;
15647
15648 if ((*valP & 0x80000000) != 0)
15649 hiv = 0xffffffff;
15650 else
15651 hiv = 0;
15652 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15653 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15654 }
15655 }
15656 break;
15657
15658 case BFD_RELOC_RVA:
15659 case BFD_RELOC_32:
15660 case BFD_RELOC_32_PCREL:
15661 case BFD_RELOC_16:
15662 case BFD_RELOC_8:
15663 /* If we are deleting this reloc entry, we must fill in the
15664 value now. This can happen if we have a .word which is not
15665 resolved when it appears but is later defined. */
15666 if (fixP->fx_done)
15667 md_number_to_chars (buf, *valP, fixP->fx_size);
15668 break;
15669
15670 case BFD_RELOC_MIPS_21_PCREL_S2:
15671 fix_validate_branch (fixP, *valP);
15672 if (!fixP->fx_done)
15673 break;
15674
15675 if (*valP + 0x400000 <= 0x7fffff)
15676 {
15677 insn = read_insn (buf);
15678 insn |= (*valP >> 2) & 0x1fffff;
15679 write_insn (buf, insn);
15680 }
15681 else
15682 as_bad_where (fixP->fx_file, fixP->fx_line,
15683 _("branch out of range"));
15684 break;
15685
15686 case BFD_RELOC_MIPS_26_PCREL_S2:
15687 fix_validate_branch (fixP, *valP);
15688 if (!fixP->fx_done)
15689 break;
15690
15691 if (*valP + 0x8000000 <= 0xfffffff)
15692 {
15693 insn = read_insn (buf);
15694 insn |= (*valP >> 2) & 0x3ffffff;
15695 write_insn (buf, insn);
15696 }
15697 else
15698 as_bad_where (fixP->fx_file, fixP->fx_line,
15699 _("branch out of range"));
15700 break;
15701
15702 case BFD_RELOC_MIPS_18_PCREL_S3:
15703 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15704 as_bad_where (fixP->fx_file, fixP->fx_line,
15705 _("PC-relative access using misaligned symbol (%lx)"),
15706 (long) S_GET_VALUE (fixP->fx_addsy));
15707 if ((fixP->fx_offset & 0x7) != 0)
15708 as_bad_where (fixP->fx_file, fixP->fx_line,
15709 _("PC-relative access using misaligned offset (%lx)"),
15710 (long) fixP->fx_offset);
15711 if (!fixP->fx_done)
15712 break;
15713
15714 if (*valP + 0x100000 <= 0x1fffff)
15715 {
15716 insn = read_insn (buf);
15717 insn |= (*valP >> 3) & 0x3ffff;
15718 write_insn (buf, insn);
15719 }
15720 else
15721 as_bad_where (fixP->fx_file, fixP->fx_line,
15722 _("PC-relative access out of range"));
15723 break;
15724
15725 case BFD_RELOC_MIPS_19_PCREL_S2:
15726 if ((*valP & 0x3) != 0)
15727 as_bad_where (fixP->fx_file, fixP->fx_line,
15728 _("PC-relative access to misaligned address (%lx)"),
15729 (long) *valP);
15730 if (!fixP->fx_done)
15731 break;
15732
15733 if (*valP + 0x100000 <= 0x1fffff)
15734 {
15735 insn = read_insn (buf);
15736 insn |= (*valP >> 2) & 0x7ffff;
15737 write_insn (buf, insn);
15738 }
15739 else
15740 as_bad_where (fixP->fx_file, fixP->fx_line,
15741 _("PC-relative access out of range"));
15742 break;
15743
15744 case BFD_RELOC_16_PCREL_S2:
15745 fix_validate_branch (fixP, *valP);
15746
15747 /* We need to save the bits in the instruction since fixup_segment()
15748 might be deleting the relocation entry (i.e., a branch within
15749 the current segment). */
15750 if (! fixP->fx_done)
15751 break;
15752
15753 /* Update old instruction data. */
15754 insn = read_insn (buf);
15755
15756 if (*valP + 0x20000 <= 0x3ffff)
15757 {
15758 insn |= (*valP >> 2) & 0xffff;
15759 write_insn (buf, insn);
15760 }
15761 else if (fixP->fx_tcbit2
15762 && fixP->fx_done
15763 && fixP->fx_frag->fr_address >= text_section->vma
15764 && (fixP->fx_frag->fr_address
15765 < text_section->vma + bfd_get_section_size (text_section))
15766 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15767 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15768 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15769 {
15770 /* The branch offset is too large. If this is an
15771 unconditional branch, and we are not generating PIC code,
15772 we can convert it to an absolute jump instruction. */
15773 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15774 insn = 0x0c000000; /* jal */
15775 else
15776 insn = 0x08000000; /* j */
15777 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15778 fixP->fx_done = 0;
15779 fixP->fx_addsy = section_symbol (text_section);
15780 *valP += md_pcrel_from (fixP);
15781 write_insn (buf, insn);
15782 }
15783 else
15784 {
15785 /* If we got here, we have branch-relaxation disabled,
15786 and there's nothing we can do to fix this instruction
15787 without turning it into a longer sequence. */
15788 as_bad_where (fixP->fx_file, fixP->fx_line,
15789 _("branch out of range"));
15790 }
15791 break;
15792
15793 case BFD_RELOC_MIPS16_16_PCREL_S1:
15794 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15795 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15796 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15797 gas_assert (!fixP->fx_done);
15798 if (fix_bad_cross_mode_branch_p (fixP))
15799 as_bad_where (fixP->fx_file, fixP->fx_line,
15800 _("branch to a symbol in another ISA mode"));
15801 else if (fixP->fx_addsy
15802 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
15803 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
15804 && (fixP->fx_offset & 0x1) != 0)
15805 as_bad_where (fixP->fx_file, fixP->fx_line,
15806 _("branch to misaligned address (0x%lx)"),
15807 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15808 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
15809 as_bad_where (fixP->fx_file, fixP->fx_line,
15810 _("cannot encode misaligned addend "
15811 "in the relocatable field (0x%lx)"),
15812 (long) fixP->fx_offset);
15813 break;
15814
15815 case BFD_RELOC_VTABLE_INHERIT:
15816 fixP->fx_done = 0;
15817 if (fixP->fx_addsy
15818 && !S_IS_DEFINED (fixP->fx_addsy)
15819 && !S_IS_WEAK (fixP->fx_addsy))
15820 S_SET_WEAK (fixP->fx_addsy);
15821 break;
15822
15823 case BFD_RELOC_NONE:
15824 case BFD_RELOC_VTABLE_ENTRY:
15825 fixP->fx_done = 0;
15826 break;
15827
15828 default:
15829 abort ();
15830 }
15831
15832 /* Remember value for tc_gen_reloc. */
15833 fixP->fx_addnumber = *valP;
15834 }
15835
15836 static symbolS *
15837 get_symbol (void)
15838 {
15839 int c;
15840 char *name;
15841 symbolS *p;
15842
15843 c = get_symbol_name (&name);
15844 p = (symbolS *) symbol_find_or_make (name);
15845 (void) restore_line_pointer (c);
15846 return p;
15847 }
15848
15849 /* Align the current frag to a given power of two. If a particular
15850 fill byte should be used, FILL points to an integer that contains
15851 that byte, otherwise FILL is null.
15852
15853 This function used to have the comment:
15854
15855 The MIPS assembler also automatically adjusts any preceding label.
15856
15857 The implementation therefore applied the adjustment to a maximum of
15858 one label. However, other label adjustments are applied to batches
15859 of labels, and adjusting just one caused problems when new labels
15860 were added for the sake of debugging or unwind information.
15861 We therefore adjust all preceding labels (given as LABELS) instead. */
15862
15863 static void
15864 mips_align (int to, int *fill, struct insn_label_list *labels)
15865 {
15866 mips_emit_delays ();
15867 mips_record_compressed_mode ();
15868 if (fill == NULL && subseg_text_p (now_seg))
15869 frag_align_code (to, 0);
15870 else
15871 frag_align (to, fill ? *fill : 0, 0);
15872 record_alignment (now_seg, to);
15873 mips_move_labels (labels, FALSE);
15874 }
15875
15876 /* Align to a given power of two. .align 0 turns off the automatic
15877 alignment used by the data creating pseudo-ops. */
15878
15879 static void
15880 s_align (int x ATTRIBUTE_UNUSED)
15881 {
15882 int temp, fill_value, *fill_ptr;
15883 long max_alignment = 28;
15884
15885 /* o Note that the assembler pulls down any immediately preceding label
15886 to the aligned address.
15887 o It's not documented but auto alignment is reinstated by
15888 a .align pseudo instruction.
15889 o Note also that after auto alignment is turned off the mips assembler
15890 issues an error on attempt to assemble an improperly aligned data item.
15891 We don't. */
15892
15893 temp = get_absolute_expression ();
15894 if (temp > max_alignment)
15895 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15896 else if (temp < 0)
15897 {
15898 as_warn (_("alignment negative, 0 assumed"));
15899 temp = 0;
15900 }
15901 if (*input_line_pointer == ',')
15902 {
15903 ++input_line_pointer;
15904 fill_value = get_absolute_expression ();
15905 fill_ptr = &fill_value;
15906 }
15907 else
15908 fill_ptr = 0;
15909 if (temp)
15910 {
15911 segment_info_type *si = seg_info (now_seg);
15912 struct insn_label_list *l = si->label_list;
15913 /* Auto alignment should be switched on by next section change. */
15914 auto_align = 1;
15915 mips_align (temp, fill_ptr, l);
15916 }
15917 else
15918 {
15919 auto_align = 0;
15920 }
15921
15922 demand_empty_rest_of_line ();
15923 }
15924
15925 static void
15926 s_change_sec (int sec)
15927 {
15928 segT seg;
15929
15930 /* The ELF backend needs to know that we are changing sections, so
15931 that .previous works correctly. We could do something like check
15932 for an obj_section_change_hook macro, but that might be confusing
15933 as it would not be appropriate to use it in the section changing
15934 functions in read.c, since obj-elf.c intercepts those. FIXME:
15935 This should be cleaner, somehow. */
15936 obj_elf_section_change_hook ();
15937
15938 mips_emit_delays ();
15939
15940 switch (sec)
15941 {
15942 case 't':
15943 s_text (0);
15944 break;
15945 case 'd':
15946 s_data (0);
15947 break;
15948 case 'b':
15949 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15950 demand_empty_rest_of_line ();
15951 break;
15952
15953 case 'r':
15954 seg = subseg_new (RDATA_SECTION_NAME,
15955 (subsegT) get_absolute_expression ());
15956 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15957 | SEC_READONLY | SEC_RELOC
15958 | SEC_DATA));
15959 if (strncmp (TARGET_OS, "elf", 3) != 0)
15960 record_alignment (seg, 4);
15961 demand_empty_rest_of_line ();
15962 break;
15963
15964 case 's':
15965 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15966 bfd_set_section_flags (stdoutput, seg,
15967 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15968 if (strncmp (TARGET_OS, "elf", 3) != 0)
15969 record_alignment (seg, 4);
15970 demand_empty_rest_of_line ();
15971 break;
15972
15973 case 'B':
15974 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15975 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15976 if (strncmp (TARGET_OS, "elf", 3) != 0)
15977 record_alignment (seg, 4);
15978 demand_empty_rest_of_line ();
15979 break;
15980 }
15981
15982 auto_align = 1;
15983 }
15984
15985 void
15986 s_change_section (int ignore ATTRIBUTE_UNUSED)
15987 {
15988 char *saved_ilp;
15989 char *section_name;
15990 char c, endc;
15991 char next_c = 0;
15992 int section_type;
15993 int section_flag;
15994 int section_entry_size;
15995 int section_alignment;
15996
15997 saved_ilp = input_line_pointer;
15998 endc = get_symbol_name (&section_name);
15999 c = (endc == '"' ? input_line_pointer[1] : endc);
16000 if (c)
16001 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
16002
16003 /* Do we have .section Name<,"flags">? */
16004 if (c != ',' || (c == ',' && next_c == '"'))
16005 {
16006 /* Just after name is now '\0'. */
16007 (void) restore_line_pointer (endc);
16008 input_line_pointer = saved_ilp;
16009 obj_elf_section (ignore);
16010 return;
16011 }
16012
16013 section_name = xstrdup (section_name);
16014 c = restore_line_pointer (endc);
16015
16016 input_line_pointer++;
16017
16018 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
16019 if (c == ',')
16020 section_type = get_absolute_expression ();
16021 else
16022 section_type = 0;
16023
16024 if (*input_line_pointer++ == ',')
16025 section_flag = get_absolute_expression ();
16026 else
16027 section_flag = 0;
16028
16029 if (*input_line_pointer++ == ',')
16030 section_entry_size = get_absolute_expression ();
16031 else
16032 section_entry_size = 0;
16033
16034 if (*input_line_pointer++ == ',')
16035 section_alignment = get_absolute_expression ();
16036 else
16037 section_alignment = 0;
16038
16039 /* FIXME: really ignore? */
16040 (void) section_alignment;
16041
16042 /* When using the generic form of .section (as implemented by obj-elf.c),
16043 there's no way to set the section type to SHT_MIPS_DWARF. Users have
16044 traditionally had to fall back on the more common @progbits instead.
16045
16046 There's nothing really harmful in this, since bfd will correct
16047 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
16048 means that, for backwards compatibility, the special_section entries
16049 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
16050
16051 Even so, we shouldn't force users of the MIPS .section syntax to
16052 incorrectly label the sections as SHT_PROGBITS. The best compromise
16053 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
16054 generic type-checking code. */
16055 if (section_type == SHT_MIPS_DWARF)
16056 section_type = SHT_PROGBITS;
16057
16058 obj_elf_change_section (section_name, section_type, 0, section_flag,
16059 section_entry_size, 0, 0, 0);
16060
16061 if (now_seg->name != section_name)
16062 free (section_name);
16063 }
16064
16065 void
16066 mips_enable_auto_align (void)
16067 {
16068 auto_align = 1;
16069 }
16070
16071 static void
16072 s_cons (int log_size)
16073 {
16074 segment_info_type *si = seg_info (now_seg);
16075 struct insn_label_list *l = si->label_list;
16076
16077 mips_emit_delays ();
16078 if (log_size > 0 && auto_align)
16079 mips_align (log_size, 0, l);
16080 cons (1 << log_size);
16081 mips_clear_insn_labels ();
16082 }
16083
16084 static void
16085 s_float_cons (int type)
16086 {
16087 segment_info_type *si = seg_info (now_seg);
16088 struct insn_label_list *l = si->label_list;
16089
16090 mips_emit_delays ();
16091
16092 if (auto_align)
16093 {
16094 if (type == 'd')
16095 mips_align (3, 0, l);
16096 else
16097 mips_align (2, 0, l);
16098 }
16099
16100 float_cons (type);
16101 mips_clear_insn_labels ();
16102 }
16103
16104 /* Handle .globl. We need to override it because on Irix 5 you are
16105 permitted to say
16106 .globl foo .text
16107 where foo is an undefined symbol, to mean that foo should be
16108 considered to be the address of a function. */
16109
16110 static void
16111 s_mips_globl (int x ATTRIBUTE_UNUSED)
16112 {
16113 char *name;
16114 int c;
16115 symbolS *symbolP;
16116 flagword flag;
16117
16118 do
16119 {
16120 c = get_symbol_name (&name);
16121 symbolP = symbol_find_or_make (name);
16122 S_SET_EXTERNAL (symbolP);
16123
16124 *input_line_pointer = c;
16125 SKIP_WHITESPACE_AFTER_NAME ();
16126
16127 /* On Irix 5, every global symbol that is not explicitly labelled as
16128 being a function is apparently labelled as being an object. */
16129 flag = BSF_OBJECT;
16130
16131 if (!is_end_of_line[(unsigned char) *input_line_pointer]
16132 && (*input_line_pointer != ','))
16133 {
16134 char *secname;
16135 asection *sec;
16136
16137 c = get_symbol_name (&secname);
16138 sec = bfd_get_section_by_name (stdoutput, secname);
16139 if (sec == NULL)
16140 as_bad (_("%s: no such section"), secname);
16141 (void) restore_line_pointer (c);
16142
16143 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
16144 flag = BSF_FUNCTION;
16145 }
16146
16147 symbol_get_bfdsym (symbolP)->flags |= flag;
16148
16149 c = *input_line_pointer;
16150 if (c == ',')
16151 {
16152 input_line_pointer++;
16153 SKIP_WHITESPACE ();
16154 if (is_end_of_line[(unsigned char) *input_line_pointer])
16155 c = '\n';
16156 }
16157 }
16158 while (c == ',');
16159
16160 demand_empty_rest_of_line ();
16161 }
16162
16163 static void
16164 s_option (int x ATTRIBUTE_UNUSED)
16165 {
16166 char *opt;
16167 char c;
16168
16169 c = get_symbol_name (&opt);
16170
16171 if (*opt == 'O')
16172 {
16173 /* FIXME: What does this mean? */
16174 }
16175 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
16176 {
16177 int i;
16178
16179 i = atoi (opt + 3);
16180 if (i != 0 && i != 2)
16181 as_bad (_(".option pic%d not supported"), i);
16182 else if (mips_pic == VXWORKS_PIC)
16183 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
16184 else if (i == 0)
16185 mips_pic = NO_PIC;
16186 else if (i == 2)
16187 {
16188 mips_pic = SVR4_PIC;
16189 mips_abicalls = TRUE;
16190 }
16191
16192 if (mips_pic == SVR4_PIC)
16193 {
16194 if (g_switch_seen && g_switch_value != 0)
16195 as_warn (_("-G may not be used with SVR4 PIC code"));
16196 g_switch_value = 0;
16197 bfd_set_gp_size (stdoutput, 0);
16198 }
16199 }
16200 else
16201 as_warn (_("unrecognized option \"%s\""), opt);
16202
16203 (void) restore_line_pointer (c);
16204 demand_empty_rest_of_line ();
16205 }
16206
16207 /* This structure is used to hold a stack of .set values. */
16208
16209 struct mips_option_stack
16210 {
16211 struct mips_option_stack *next;
16212 struct mips_set_options options;
16213 };
16214
16215 static struct mips_option_stack *mips_opts_stack;
16216
16217 /* Return status for .set/.module option handling. */
16218
16219 enum code_option_type
16220 {
16221 /* Unrecognized option. */
16222 OPTION_TYPE_BAD = -1,
16223
16224 /* Ordinary option. */
16225 OPTION_TYPE_NORMAL,
16226
16227 /* ISA changing option. */
16228 OPTION_TYPE_ISA
16229 };
16230
16231 /* Handle common .set/.module options. Return status indicating option
16232 type. */
16233
16234 static enum code_option_type
16235 parse_code_option (char * name)
16236 {
16237 bfd_boolean isa_set = FALSE;
16238 const struct mips_ase *ase;
16239
16240 if (strncmp (name, "at=", 3) == 0)
16241 {
16242 char *s = name + 3;
16243
16244 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
16245 as_bad (_("unrecognized register name `%s'"), s);
16246 }
16247 else if (strcmp (name, "at") == 0)
16248 mips_opts.at = ATREG;
16249 else if (strcmp (name, "noat") == 0)
16250 mips_opts.at = ZERO;
16251 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
16252 mips_opts.nomove = 0;
16253 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
16254 mips_opts.nomove = 1;
16255 else if (strcmp (name, "bopt") == 0)
16256 mips_opts.nobopt = 0;
16257 else if (strcmp (name, "nobopt") == 0)
16258 mips_opts.nobopt = 1;
16259 else if (strcmp (name, "gp=32") == 0)
16260 mips_opts.gp = 32;
16261 else if (strcmp (name, "gp=64") == 0)
16262 mips_opts.gp = 64;
16263 else if (strcmp (name, "fp=32") == 0)
16264 mips_opts.fp = 32;
16265 else if (strcmp (name, "fp=xx") == 0)
16266 mips_opts.fp = 0;
16267 else if (strcmp (name, "fp=64") == 0)
16268 mips_opts.fp = 64;
16269 else if (strcmp (name, "softfloat") == 0)
16270 mips_opts.soft_float = 1;
16271 else if (strcmp (name, "hardfloat") == 0)
16272 mips_opts.soft_float = 0;
16273 else if (strcmp (name, "singlefloat") == 0)
16274 mips_opts.single_float = 1;
16275 else if (strcmp (name, "doublefloat") == 0)
16276 mips_opts.single_float = 0;
16277 else if (strcmp (name, "nooddspreg") == 0)
16278 mips_opts.oddspreg = 0;
16279 else if (strcmp (name, "oddspreg") == 0)
16280 mips_opts.oddspreg = 1;
16281 else if (strcmp (name, "mips16") == 0
16282 || strcmp (name, "MIPS-16") == 0)
16283 mips_opts.mips16 = 1;
16284 else if (strcmp (name, "nomips16") == 0
16285 || strcmp (name, "noMIPS-16") == 0)
16286 mips_opts.mips16 = 0;
16287 else if (strcmp (name, "micromips") == 0)
16288 mips_opts.micromips = 1;
16289 else if (strcmp (name, "nomicromips") == 0)
16290 mips_opts.micromips = 0;
16291 else if (name[0] == 'n'
16292 && name[1] == 'o'
16293 && (ase = mips_lookup_ase (name + 2)))
16294 mips_set_ase (ase, &mips_opts, FALSE);
16295 else if ((ase = mips_lookup_ase (name)))
16296 mips_set_ase (ase, &mips_opts, TRUE);
16297 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
16298 {
16299 /* Permit the user to change the ISA and architecture on the fly.
16300 Needless to say, misuse can cause serious problems. */
16301 if (strncmp (name, "arch=", 5) == 0)
16302 {
16303 const struct mips_cpu_info *p;
16304
16305 p = mips_parse_cpu ("internal use", name + 5);
16306 if (!p)
16307 as_bad (_("unknown architecture %s"), name + 5);
16308 else
16309 {
16310 mips_opts.arch = p->cpu;
16311 mips_opts.isa = p->isa;
16312 isa_set = TRUE;
16313 }
16314 }
16315 else if (strncmp (name, "mips", 4) == 0)
16316 {
16317 const struct mips_cpu_info *p;
16318
16319 p = mips_parse_cpu ("internal use", name);
16320 if (!p)
16321 as_bad (_("unknown ISA level %s"), name + 4);
16322 else
16323 {
16324 mips_opts.arch = p->cpu;
16325 mips_opts.isa = p->isa;
16326 isa_set = TRUE;
16327 }
16328 }
16329 else
16330 as_bad (_("unknown ISA or architecture %s"), name);
16331 }
16332 else if (strcmp (name, "autoextend") == 0)
16333 mips_opts.noautoextend = 0;
16334 else if (strcmp (name, "noautoextend") == 0)
16335 mips_opts.noautoextend = 1;
16336 else if (strcmp (name, "insn32") == 0)
16337 mips_opts.insn32 = TRUE;
16338 else if (strcmp (name, "noinsn32") == 0)
16339 mips_opts.insn32 = FALSE;
16340 else if (strcmp (name, "sym32") == 0)
16341 mips_opts.sym32 = TRUE;
16342 else if (strcmp (name, "nosym32") == 0)
16343 mips_opts.sym32 = FALSE;
16344 else
16345 return OPTION_TYPE_BAD;
16346
16347 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
16348 }
16349
16350 /* Handle the .set pseudo-op. */
16351
16352 static void
16353 s_mipsset (int x ATTRIBUTE_UNUSED)
16354 {
16355 enum code_option_type type = OPTION_TYPE_NORMAL;
16356 char *name = input_line_pointer, ch;
16357
16358 file_mips_check_options ();
16359
16360 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16361 ++input_line_pointer;
16362 ch = *input_line_pointer;
16363 *input_line_pointer = '\0';
16364
16365 if (strchr (name, ','))
16366 {
16367 /* Generic ".set" directive; use the generic handler. */
16368 *input_line_pointer = ch;
16369 input_line_pointer = name;
16370 s_set (0);
16371 return;
16372 }
16373
16374 if (strcmp (name, "reorder") == 0)
16375 {
16376 if (mips_opts.noreorder)
16377 end_noreorder ();
16378 }
16379 else if (strcmp (name, "noreorder") == 0)
16380 {
16381 if (!mips_opts.noreorder)
16382 start_noreorder ();
16383 }
16384 else if (strcmp (name, "macro") == 0)
16385 mips_opts.warn_about_macros = 0;
16386 else if (strcmp (name, "nomacro") == 0)
16387 {
16388 if (mips_opts.noreorder == 0)
16389 as_bad (_("`noreorder' must be set before `nomacro'"));
16390 mips_opts.warn_about_macros = 1;
16391 }
16392 else if (strcmp (name, "gp=default") == 0)
16393 mips_opts.gp = file_mips_opts.gp;
16394 else if (strcmp (name, "fp=default") == 0)
16395 mips_opts.fp = file_mips_opts.fp;
16396 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16397 {
16398 mips_opts.isa = file_mips_opts.isa;
16399 mips_opts.arch = file_mips_opts.arch;
16400 mips_opts.gp = file_mips_opts.gp;
16401 mips_opts.fp = file_mips_opts.fp;
16402 }
16403 else if (strcmp (name, "push") == 0)
16404 {
16405 struct mips_option_stack *s;
16406
16407 s = XNEW (struct mips_option_stack);
16408 s->next = mips_opts_stack;
16409 s->options = mips_opts;
16410 mips_opts_stack = s;
16411 }
16412 else if (strcmp (name, "pop") == 0)
16413 {
16414 struct mips_option_stack *s;
16415
16416 s = mips_opts_stack;
16417 if (s == NULL)
16418 as_bad (_(".set pop with no .set push"));
16419 else
16420 {
16421 /* If we're changing the reorder mode we need to handle
16422 delay slots correctly. */
16423 if (s->options.noreorder && ! mips_opts.noreorder)
16424 start_noreorder ();
16425 else if (! s->options.noreorder && mips_opts.noreorder)
16426 end_noreorder ();
16427
16428 mips_opts = s->options;
16429 mips_opts_stack = s->next;
16430 free (s);
16431 }
16432 }
16433 else
16434 {
16435 type = parse_code_option (name);
16436 if (type == OPTION_TYPE_BAD)
16437 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16438 }
16439
16440 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16441 registers based on what is supported by the arch/cpu. */
16442 if (type == OPTION_TYPE_ISA)
16443 {
16444 switch (mips_opts.isa)
16445 {
16446 case 0:
16447 break;
16448 case ISA_MIPS1:
16449 /* MIPS I cannot support FPXX. */
16450 mips_opts.fp = 32;
16451 /* fall-through. */
16452 case ISA_MIPS2:
16453 case ISA_MIPS32:
16454 case ISA_MIPS32R2:
16455 case ISA_MIPS32R3:
16456 case ISA_MIPS32R5:
16457 mips_opts.gp = 32;
16458 if (mips_opts.fp != 0)
16459 mips_opts.fp = 32;
16460 break;
16461 case ISA_MIPS32R6:
16462 mips_opts.gp = 32;
16463 mips_opts.fp = 64;
16464 break;
16465 case ISA_MIPS3:
16466 case ISA_MIPS4:
16467 case ISA_MIPS5:
16468 case ISA_MIPS64:
16469 case ISA_MIPS64R2:
16470 case ISA_MIPS64R3:
16471 case ISA_MIPS64R5:
16472 case ISA_MIPS64R6:
16473 mips_opts.gp = 64;
16474 if (mips_opts.fp != 0)
16475 {
16476 if (mips_opts.arch == CPU_R5900)
16477 mips_opts.fp = 32;
16478 else
16479 mips_opts.fp = 64;
16480 }
16481 break;
16482 default:
16483 as_bad (_("unknown ISA level %s"), name + 4);
16484 break;
16485 }
16486 }
16487
16488 mips_check_options (&mips_opts, FALSE);
16489
16490 mips_check_isa_supports_ases ();
16491 *input_line_pointer = ch;
16492 demand_empty_rest_of_line ();
16493 }
16494
16495 /* Handle the .module pseudo-op. */
16496
16497 static void
16498 s_module (int ignore ATTRIBUTE_UNUSED)
16499 {
16500 char *name = input_line_pointer, ch;
16501
16502 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16503 ++input_line_pointer;
16504 ch = *input_line_pointer;
16505 *input_line_pointer = '\0';
16506
16507 if (!file_mips_opts_checked)
16508 {
16509 if (parse_code_option (name) == OPTION_TYPE_BAD)
16510 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16511
16512 /* Update module level settings from mips_opts. */
16513 file_mips_opts = mips_opts;
16514 }
16515 else
16516 as_bad (_(".module is not permitted after generating code"));
16517
16518 *input_line_pointer = ch;
16519 demand_empty_rest_of_line ();
16520 }
16521
16522 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
16523 .option pic2. It means to generate SVR4 PIC calls. */
16524
16525 static void
16526 s_abicalls (int ignore ATTRIBUTE_UNUSED)
16527 {
16528 mips_pic = SVR4_PIC;
16529 mips_abicalls = TRUE;
16530
16531 if (g_switch_seen && g_switch_value != 0)
16532 as_warn (_("-G may not be used with SVR4 PIC code"));
16533 g_switch_value = 0;
16534
16535 bfd_set_gp_size (stdoutput, 0);
16536 demand_empty_rest_of_line ();
16537 }
16538
16539 /* Handle the .cpload pseudo-op. This is used when generating SVR4
16540 PIC code. It sets the $gp register for the function based on the
16541 function address, which is in the register named in the argument.
16542 This uses a relocation against _gp_disp, which is handled specially
16543 by the linker. The result is:
16544 lui $gp,%hi(_gp_disp)
16545 addiu $gp,$gp,%lo(_gp_disp)
16546 addu $gp,$gp,.cpload argument
16547 The .cpload argument is normally $25 == $t9.
16548
16549 The -mno-shared option changes this to:
16550 lui $gp,%hi(__gnu_local_gp)
16551 addiu $gp,$gp,%lo(__gnu_local_gp)
16552 and the argument is ignored. This saves an instruction, but the
16553 resulting code is not position independent; it uses an absolute
16554 address for __gnu_local_gp. Thus code assembled with -mno-shared
16555 can go into an ordinary executable, but not into a shared library. */
16556
16557 static void
16558 s_cpload (int ignore ATTRIBUTE_UNUSED)
16559 {
16560 expressionS ex;
16561 int reg;
16562 int in_shared;
16563
16564 file_mips_check_options ();
16565
16566 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16567 .cpload is ignored. */
16568 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16569 {
16570 s_ignore (0);
16571 return;
16572 }
16573
16574 if (mips_opts.mips16)
16575 {
16576 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16577 ignore_rest_of_line ();
16578 return;
16579 }
16580
16581 /* .cpload should be in a .set noreorder section. */
16582 if (mips_opts.noreorder == 0)
16583 as_warn (_(".cpload not in noreorder section"));
16584
16585 reg = tc_get_register (0);
16586
16587 /* If we need to produce a 64-bit address, we are better off using
16588 the default instruction sequence. */
16589 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
16590
16591 ex.X_op = O_symbol;
16592 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16593 "__gnu_local_gp");
16594 ex.X_op_symbol = NULL;
16595 ex.X_add_number = 0;
16596
16597 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16598 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16599
16600 mips_mark_labels ();
16601 mips_assembling_insn = TRUE;
16602
16603 macro_start ();
16604 macro_build_lui (&ex, mips_gp_register);
16605 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16606 mips_gp_register, BFD_RELOC_LO16);
16607 if (in_shared)
16608 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16609 mips_gp_register, reg);
16610 macro_end ();
16611
16612 mips_assembling_insn = FALSE;
16613 demand_empty_rest_of_line ();
16614 }
16615
16616 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16617 .cpsetup $reg1, offset|$reg2, label
16618
16619 If offset is given, this results in:
16620 sd $gp, offset($sp)
16621 lui $gp, %hi(%neg(%gp_rel(label)))
16622 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16623 daddu $gp, $gp, $reg1
16624
16625 If $reg2 is given, this results in:
16626 or $reg2, $gp, $0
16627 lui $gp, %hi(%neg(%gp_rel(label)))
16628 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16629 daddu $gp, $gp, $reg1
16630 $reg1 is normally $25 == $t9.
16631
16632 The -mno-shared option replaces the last three instructions with
16633 lui $gp,%hi(_gp)
16634 addiu $gp,$gp,%lo(_gp) */
16635
16636 static void
16637 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16638 {
16639 expressionS ex_off;
16640 expressionS ex_sym;
16641 int reg1;
16642
16643 file_mips_check_options ();
16644
16645 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16646 We also need NewABI support. */
16647 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16648 {
16649 s_ignore (0);
16650 return;
16651 }
16652
16653 if (mips_opts.mips16)
16654 {
16655 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16656 ignore_rest_of_line ();
16657 return;
16658 }
16659
16660 reg1 = tc_get_register (0);
16661 SKIP_WHITESPACE ();
16662 if (*input_line_pointer != ',')
16663 {
16664 as_bad (_("missing argument separator ',' for .cpsetup"));
16665 return;
16666 }
16667 else
16668 ++input_line_pointer;
16669 SKIP_WHITESPACE ();
16670 if (*input_line_pointer == '$')
16671 {
16672 mips_cpreturn_register = tc_get_register (0);
16673 mips_cpreturn_offset = -1;
16674 }
16675 else
16676 {
16677 mips_cpreturn_offset = get_absolute_expression ();
16678 mips_cpreturn_register = -1;
16679 }
16680 SKIP_WHITESPACE ();
16681 if (*input_line_pointer != ',')
16682 {
16683 as_bad (_("missing argument separator ',' for .cpsetup"));
16684 return;
16685 }
16686 else
16687 ++input_line_pointer;
16688 SKIP_WHITESPACE ();
16689 expression (&ex_sym);
16690
16691 mips_mark_labels ();
16692 mips_assembling_insn = TRUE;
16693
16694 macro_start ();
16695 if (mips_cpreturn_register == -1)
16696 {
16697 ex_off.X_op = O_constant;
16698 ex_off.X_add_symbol = NULL;
16699 ex_off.X_op_symbol = NULL;
16700 ex_off.X_add_number = mips_cpreturn_offset;
16701
16702 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16703 BFD_RELOC_LO16, SP);
16704 }
16705 else
16706 move_register (mips_cpreturn_register, mips_gp_register);
16707
16708 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16709 {
16710 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16711 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16712 BFD_RELOC_HI16_S);
16713
16714 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16715 mips_gp_register, -1, BFD_RELOC_GPREL16,
16716 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16717
16718 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16719 mips_gp_register, reg1);
16720 }
16721 else
16722 {
16723 expressionS ex;
16724
16725 ex.X_op = O_symbol;
16726 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16727 ex.X_op_symbol = NULL;
16728 ex.X_add_number = 0;
16729
16730 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16731 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16732
16733 macro_build_lui (&ex, mips_gp_register);
16734 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16735 mips_gp_register, BFD_RELOC_LO16);
16736 }
16737
16738 macro_end ();
16739
16740 mips_assembling_insn = FALSE;
16741 demand_empty_rest_of_line ();
16742 }
16743
16744 static void
16745 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16746 {
16747 file_mips_check_options ();
16748
16749 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16750 .cplocal is ignored. */
16751 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16752 {
16753 s_ignore (0);
16754 return;
16755 }
16756
16757 if (mips_opts.mips16)
16758 {
16759 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16760 ignore_rest_of_line ();
16761 return;
16762 }
16763
16764 mips_gp_register = tc_get_register (0);
16765 demand_empty_rest_of_line ();
16766 }
16767
16768 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16769 offset from $sp. The offset is remembered, and after making a PIC
16770 call $gp is restored from that location. */
16771
16772 static void
16773 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16774 {
16775 expressionS ex;
16776
16777 file_mips_check_options ();
16778
16779 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16780 .cprestore is ignored. */
16781 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16782 {
16783 s_ignore (0);
16784 return;
16785 }
16786
16787 if (mips_opts.mips16)
16788 {
16789 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16790 ignore_rest_of_line ();
16791 return;
16792 }
16793
16794 mips_cprestore_offset = get_absolute_expression ();
16795 mips_cprestore_valid = 1;
16796
16797 ex.X_op = O_constant;
16798 ex.X_add_symbol = NULL;
16799 ex.X_op_symbol = NULL;
16800 ex.X_add_number = mips_cprestore_offset;
16801
16802 mips_mark_labels ();
16803 mips_assembling_insn = TRUE;
16804
16805 macro_start ();
16806 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16807 SP, HAVE_64BIT_ADDRESSES);
16808 macro_end ();
16809
16810 mips_assembling_insn = FALSE;
16811 demand_empty_rest_of_line ();
16812 }
16813
16814 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16815 was given in the preceding .cpsetup, it results in:
16816 ld $gp, offset($sp)
16817
16818 If a register $reg2 was given there, it results in:
16819 or $gp, $reg2, $0 */
16820
16821 static void
16822 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16823 {
16824 expressionS ex;
16825
16826 file_mips_check_options ();
16827
16828 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16829 We also need NewABI support. */
16830 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16831 {
16832 s_ignore (0);
16833 return;
16834 }
16835
16836 if (mips_opts.mips16)
16837 {
16838 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16839 ignore_rest_of_line ();
16840 return;
16841 }
16842
16843 mips_mark_labels ();
16844 mips_assembling_insn = TRUE;
16845
16846 macro_start ();
16847 if (mips_cpreturn_register == -1)
16848 {
16849 ex.X_op = O_constant;
16850 ex.X_add_symbol = NULL;
16851 ex.X_op_symbol = NULL;
16852 ex.X_add_number = mips_cpreturn_offset;
16853
16854 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16855 }
16856 else
16857 move_register (mips_gp_register, mips_cpreturn_register);
16858
16859 macro_end ();
16860
16861 mips_assembling_insn = FALSE;
16862 demand_empty_rest_of_line ();
16863 }
16864
16865 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16866 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16867 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16868 debug information or MIPS16 TLS. */
16869
16870 static void
16871 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16872 bfd_reloc_code_real_type rtype)
16873 {
16874 expressionS ex;
16875 char *p;
16876
16877 expression (&ex);
16878
16879 if (ex.X_op != O_symbol)
16880 {
16881 as_bad (_("unsupported use of %s"), dirstr);
16882 ignore_rest_of_line ();
16883 }
16884
16885 p = frag_more (bytes);
16886 md_number_to_chars (p, 0, bytes);
16887 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16888 demand_empty_rest_of_line ();
16889 mips_clear_insn_labels ();
16890 }
16891
16892 /* Handle .dtprelword. */
16893
16894 static void
16895 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16896 {
16897 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16898 }
16899
16900 /* Handle .dtpreldword. */
16901
16902 static void
16903 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16904 {
16905 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16906 }
16907
16908 /* Handle .tprelword. */
16909
16910 static void
16911 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16912 {
16913 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16914 }
16915
16916 /* Handle .tpreldword. */
16917
16918 static void
16919 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16920 {
16921 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16922 }
16923
16924 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16925 code. It sets the offset to use in gp_rel relocations. */
16926
16927 static void
16928 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16929 {
16930 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16931 We also need NewABI support. */
16932 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16933 {
16934 s_ignore (0);
16935 return;
16936 }
16937
16938 mips_gprel_offset = get_absolute_expression ();
16939
16940 demand_empty_rest_of_line ();
16941 }
16942
16943 /* Handle the .gpword pseudo-op. This is used when generating PIC
16944 code. It generates a 32 bit GP relative reloc. */
16945
16946 static void
16947 s_gpword (int ignore ATTRIBUTE_UNUSED)
16948 {
16949 segment_info_type *si;
16950 struct insn_label_list *l;
16951 expressionS ex;
16952 char *p;
16953
16954 /* When not generating PIC code, this is treated as .word. */
16955 if (mips_pic != SVR4_PIC)
16956 {
16957 s_cons (2);
16958 return;
16959 }
16960
16961 si = seg_info (now_seg);
16962 l = si->label_list;
16963 mips_emit_delays ();
16964 if (auto_align)
16965 mips_align (2, 0, l);
16966
16967 expression (&ex);
16968 mips_clear_insn_labels ();
16969
16970 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16971 {
16972 as_bad (_("unsupported use of .gpword"));
16973 ignore_rest_of_line ();
16974 }
16975
16976 p = frag_more (4);
16977 md_number_to_chars (p, 0, 4);
16978 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16979 BFD_RELOC_GPREL32);
16980
16981 demand_empty_rest_of_line ();
16982 }
16983
16984 static void
16985 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16986 {
16987 segment_info_type *si;
16988 struct insn_label_list *l;
16989 expressionS ex;
16990 char *p;
16991
16992 /* When not generating PIC code, this is treated as .dword. */
16993 if (mips_pic != SVR4_PIC)
16994 {
16995 s_cons (3);
16996 return;
16997 }
16998
16999 si = seg_info (now_seg);
17000 l = si->label_list;
17001 mips_emit_delays ();
17002 if (auto_align)
17003 mips_align (3, 0, l);
17004
17005 expression (&ex);
17006 mips_clear_insn_labels ();
17007
17008 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17009 {
17010 as_bad (_("unsupported use of .gpdword"));
17011 ignore_rest_of_line ();
17012 }
17013
17014 p = frag_more (8);
17015 md_number_to_chars (p, 0, 8);
17016 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17017 BFD_RELOC_GPREL32)->fx_tcbit = 1;
17018
17019 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
17020 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
17021 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
17022
17023 demand_empty_rest_of_line ();
17024 }
17025
17026 /* Handle the .ehword pseudo-op. This is used when generating unwinding
17027 tables. It generates a R_MIPS_EH reloc. */
17028
17029 static void
17030 s_ehword (int ignore ATTRIBUTE_UNUSED)
17031 {
17032 expressionS ex;
17033 char *p;
17034
17035 mips_emit_delays ();
17036
17037 expression (&ex);
17038 mips_clear_insn_labels ();
17039
17040 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17041 {
17042 as_bad (_("unsupported use of .ehword"));
17043 ignore_rest_of_line ();
17044 }
17045
17046 p = frag_more (4);
17047 md_number_to_chars (p, 0, 4);
17048 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17049 BFD_RELOC_32_PCREL);
17050
17051 demand_empty_rest_of_line ();
17052 }
17053
17054 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
17055 tables in SVR4 PIC code. */
17056
17057 static void
17058 s_cpadd (int ignore ATTRIBUTE_UNUSED)
17059 {
17060 int reg;
17061
17062 file_mips_check_options ();
17063
17064 /* This is ignored when not generating SVR4 PIC code. */
17065 if (mips_pic != SVR4_PIC)
17066 {
17067 s_ignore (0);
17068 return;
17069 }
17070
17071 mips_mark_labels ();
17072 mips_assembling_insn = TRUE;
17073
17074 /* Add $gp to the register named as an argument. */
17075 macro_start ();
17076 reg = tc_get_register (0);
17077 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
17078 macro_end ();
17079
17080 mips_assembling_insn = FALSE;
17081 demand_empty_rest_of_line ();
17082 }
17083
17084 /* Handle the .insn pseudo-op. This marks instruction labels in
17085 mips16/micromips mode. This permits the linker to handle them specially,
17086 such as generating jalx instructions when needed. We also make
17087 them odd for the duration of the assembly, in order to generate the
17088 right sort of code. We will make them even in the adjust_symtab
17089 routine, while leaving them marked. This is convenient for the
17090 debugger and the disassembler. The linker knows to make them odd
17091 again. */
17092
17093 static void
17094 s_insn (int ignore ATTRIBUTE_UNUSED)
17095 {
17096 file_mips_check_options ();
17097 file_ase_mips16 |= mips_opts.mips16;
17098 file_ase_micromips |= mips_opts.micromips;
17099
17100 mips_mark_labels ();
17101
17102 demand_empty_rest_of_line ();
17103 }
17104
17105 /* Handle the .nan pseudo-op. */
17106
17107 static void
17108 s_nan (int ignore ATTRIBUTE_UNUSED)
17109 {
17110 static const char str_legacy[] = "legacy";
17111 static const char str_2008[] = "2008";
17112 size_t i;
17113
17114 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
17115
17116 if (i == sizeof (str_2008) - 1
17117 && memcmp (input_line_pointer, str_2008, i) == 0)
17118 mips_nan2008 = 1;
17119 else if (i == sizeof (str_legacy) - 1
17120 && memcmp (input_line_pointer, str_legacy, i) == 0)
17121 {
17122 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
17123 mips_nan2008 = 0;
17124 else
17125 as_bad (_("`%s' does not support legacy NaN"),
17126 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
17127 }
17128 else
17129 as_bad (_("bad .nan directive"));
17130
17131 input_line_pointer += i;
17132 demand_empty_rest_of_line ();
17133 }
17134
17135 /* Handle a .stab[snd] directive. Ideally these directives would be
17136 implemented in a transparent way, so that removing them would not
17137 have any effect on the generated instructions. However, s_stab
17138 internally changes the section, so in practice we need to decide
17139 now whether the preceding label marks compressed code. We do not
17140 support changing the compression mode of a label after a .stab*
17141 directive, such as in:
17142
17143 foo:
17144 .stabs ...
17145 .set mips16
17146
17147 so the current mode wins. */
17148
17149 static void
17150 s_mips_stab (int type)
17151 {
17152 mips_mark_labels ();
17153 s_stab (type);
17154 }
17155
17156 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
17157
17158 static void
17159 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
17160 {
17161 char *name;
17162 int c;
17163 symbolS *symbolP;
17164 expressionS exp;
17165
17166 c = get_symbol_name (&name);
17167 symbolP = symbol_find_or_make (name);
17168 S_SET_WEAK (symbolP);
17169 *input_line_pointer = c;
17170
17171 SKIP_WHITESPACE_AFTER_NAME ();
17172
17173 if (! is_end_of_line[(unsigned char) *input_line_pointer])
17174 {
17175 if (S_IS_DEFINED (symbolP))
17176 {
17177 as_bad (_("ignoring attempt to redefine symbol %s"),
17178 S_GET_NAME (symbolP));
17179 ignore_rest_of_line ();
17180 return;
17181 }
17182
17183 if (*input_line_pointer == ',')
17184 {
17185 ++input_line_pointer;
17186 SKIP_WHITESPACE ();
17187 }
17188
17189 expression (&exp);
17190 if (exp.X_op != O_symbol)
17191 {
17192 as_bad (_("bad .weakext directive"));
17193 ignore_rest_of_line ();
17194 return;
17195 }
17196 symbol_set_value_expression (symbolP, &exp);
17197 }
17198
17199 demand_empty_rest_of_line ();
17200 }
17201
17202 /* Parse a register string into a number. Called from the ECOFF code
17203 to parse .frame. The argument is non-zero if this is the frame
17204 register, so that we can record it in mips_frame_reg. */
17205
17206 int
17207 tc_get_register (int frame)
17208 {
17209 unsigned int reg;
17210
17211 SKIP_WHITESPACE ();
17212 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
17213 reg = 0;
17214 if (frame)
17215 {
17216 mips_frame_reg = reg != 0 ? reg : SP;
17217 mips_frame_reg_valid = 1;
17218 mips_cprestore_valid = 0;
17219 }
17220 return reg;
17221 }
17222
17223 valueT
17224 md_section_align (asection *seg, valueT addr)
17225 {
17226 int align = bfd_get_section_alignment (stdoutput, seg);
17227
17228 /* We don't need to align ELF sections to the full alignment.
17229 However, Irix 5 may prefer that we align them at least to a 16
17230 byte boundary. We don't bother to align the sections if we
17231 are targeted for an embedded system. */
17232 if (strncmp (TARGET_OS, "elf", 3) == 0)
17233 return addr;
17234 if (align > 4)
17235 align = 4;
17236
17237 return ((addr + (1 << align) - 1) & -(1 << align));
17238 }
17239
17240 /* Utility routine, called from above as well. If called while the
17241 input file is still being read, it's only an approximation. (For
17242 example, a symbol may later become defined which appeared to be
17243 undefined earlier.) */
17244
17245 static int
17246 nopic_need_relax (symbolS *sym, int before_relaxing)
17247 {
17248 if (sym == 0)
17249 return 0;
17250
17251 if (g_switch_value > 0)
17252 {
17253 const char *symname;
17254 int change;
17255
17256 /* Find out whether this symbol can be referenced off the $gp
17257 register. It can be if it is smaller than the -G size or if
17258 it is in the .sdata or .sbss section. Certain symbols can
17259 not be referenced off the $gp, although it appears as though
17260 they can. */
17261 symname = S_GET_NAME (sym);
17262 if (symname != (const char *) NULL
17263 && (strcmp (symname, "eprol") == 0
17264 || strcmp (symname, "etext") == 0
17265 || strcmp (symname, "_gp") == 0
17266 || strcmp (symname, "edata") == 0
17267 || strcmp (symname, "_fbss") == 0
17268 || strcmp (symname, "_fdata") == 0
17269 || strcmp (symname, "_ftext") == 0
17270 || strcmp (symname, "end") == 0
17271 || strcmp (symname, "_gp_disp") == 0))
17272 change = 1;
17273 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17274 && (0
17275 #ifndef NO_ECOFF_DEBUGGING
17276 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17277 && (symbol_get_obj (sym)->ecoff_extern_size
17278 <= g_switch_value))
17279 #endif
17280 /* We must defer this decision until after the whole
17281 file has been read, since there might be a .extern
17282 after the first use of this symbol. */
17283 || (before_relaxing
17284 #ifndef NO_ECOFF_DEBUGGING
17285 && symbol_get_obj (sym)->ecoff_extern_size == 0
17286 #endif
17287 && S_GET_VALUE (sym) == 0)
17288 || (S_GET_VALUE (sym) != 0
17289 && S_GET_VALUE (sym) <= g_switch_value)))
17290 change = 0;
17291 else
17292 {
17293 const char *segname;
17294
17295 segname = segment_name (S_GET_SEGMENT (sym));
17296 gas_assert (strcmp (segname, ".lit8") != 0
17297 && strcmp (segname, ".lit4") != 0);
17298 change = (strcmp (segname, ".sdata") != 0
17299 && strcmp (segname, ".sbss") != 0
17300 && strncmp (segname, ".sdata.", 7) != 0
17301 && strncmp (segname, ".sbss.", 6) != 0
17302 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
17303 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
17304 }
17305 return change;
17306 }
17307 else
17308 /* We are not optimizing for the $gp register. */
17309 return 1;
17310 }
17311
17312
17313 /* Return true if the given symbol should be considered local for SVR4 PIC. */
17314
17315 static bfd_boolean
17316 pic_need_relax (symbolS *sym)
17317 {
17318 asection *symsec;
17319
17320 /* Handle the case of a symbol equated to another symbol. */
17321 while (symbol_equated_reloc_p (sym))
17322 {
17323 symbolS *n;
17324
17325 /* It's possible to get a loop here in a badly written program. */
17326 n = symbol_get_value_expression (sym)->X_add_symbol;
17327 if (n == sym)
17328 break;
17329 sym = n;
17330 }
17331
17332 if (symbol_section_p (sym))
17333 return TRUE;
17334
17335 symsec = S_GET_SEGMENT (sym);
17336
17337 /* This must duplicate the test in adjust_reloc_syms. */
17338 return (!bfd_is_und_section (symsec)
17339 && !bfd_is_abs_section (symsec)
17340 && !bfd_is_com_section (symsec)
17341 /* A global or weak symbol is treated as external. */
17342 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
17343 }
17344 \f
17345 /* Given a MIPS16 variant frag FRAGP and PC-relative operand PCREL_OP
17346 convert a section-relative value VAL to the equivalent PC-relative
17347 value. */
17348
17349 static offsetT
17350 mips16_pcrel_val (fragS *fragp, const struct mips_pcrel_operand *pcrel_op,
17351 offsetT val, long stretch)
17352 {
17353 fragS *sym_frag;
17354 addressT addr;
17355
17356 gas_assert (pcrel_op->root.root.type == OP_PCREL);
17357
17358 sym_frag = symbol_get_frag (fragp->fr_symbol);
17359
17360 /* If the relax_marker of the symbol fragment differs from the
17361 relax_marker of this fragment, we have not yet adjusted the
17362 symbol fragment fr_address. We want to add in STRETCH in
17363 order to get a better estimate of the address. This
17364 particularly matters because of the shift bits. */
17365 if (stretch != 0 && sym_frag->relax_marker != fragp->relax_marker)
17366 {
17367 fragS *f;
17368
17369 /* Adjust stretch for any alignment frag. Note that if have
17370 been expanding the earlier code, the symbol may be
17371 defined in what appears to be an earlier frag. FIXME:
17372 This doesn't handle the fr_subtype field, which specifies
17373 a maximum number of bytes to skip when doing an
17374 alignment. */
17375 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17376 {
17377 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17378 {
17379 if (stretch < 0)
17380 stretch = -(-stretch & ~((1 << (int) f->fr_offset) - 1));
17381 else
17382 stretch &= ~((1 << (int) f->fr_offset) - 1);
17383 if (stretch == 0)
17384 break;
17385 }
17386 }
17387 if (f != NULL)
17388 val += stretch;
17389 }
17390
17391 addr = fragp->fr_address + fragp->fr_fix;
17392
17393 /* The base address rules are complicated. The base address of
17394 a branch is the following instruction. The base address of a
17395 PC relative load or add is the instruction itself, but if it
17396 is in a delay slot (in which case it can not be extended) use
17397 the address of the instruction whose delay slot it is in. */
17398 if (pcrel_op->include_isa_bit)
17399 {
17400 addr += 2;
17401
17402 /* If we are currently assuming that this frag should be
17403 extended, then the current address is two bytes higher. */
17404 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17405 addr += 2;
17406
17407 /* Ignore the low bit in the target, since it will be set
17408 for a text label. */
17409 val &= -2;
17410 }
17411 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17412 addr -= 4;
17413 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17414 addr -= 2;
17415
17416 val -= addr & -(1 << pcrel_op->align_log2);
17417
17418 return val;
17419 }
17420
17421 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17422 extended opcode. SEC is the section the frag is in. */
17423
17424 static int
17425 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
17426 {
17427 const struct mips_int_operand *operand;
17428 offsetT val;
17429 segT symsec;
17430 int type;
17431
17432 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17433 return 0;
17434 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17435 return 1;
17436
17437 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17438 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17439 operand = mips16_immed_operand (type, FALSE);
17440 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17441 || (operand->root.type == OP_PCREL
17442 ? sec != symsec
17443 : !bfd_is_abs_section (symsec)))
17444 return 1;
17445
17446 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17447
17448 if (operand->root.type == OP_PCREL)
17449 {
17450 const struct mips_pcrel_operand *pcrel_op;
17451 offsetT maxtiny;
17452
17453 if (RELAX_MIPS16_ALWAYS_EXTENDED (fragp->fr_subtype))
17454 return 1;
17455
17456 pcrel_op = (const struct mips_pcrel_operand *) operand;
17457 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17458
17459 /* If any of the shifted bits are set, we must use an extended
17460 opcode. If the address depends on the size of this
17461 instruction, this can lead to a loop, so we arrange to always
17462 use an extended opcode. */
17463 if ((val & ((1 << operand->shift) - 1)) != 0)
17464 {
17465 fragp->fr_subtype =
17466 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
17467 return 1;
17468 }
17469
17470 /* If we are about to mark a frag as extended because the value
17471 is precisely the next value above maxtiny, then there is a
17472 chance of an infinite loop as in the following code:
17473 la $4,foo
17474 .skip 1020
17475 .align 2
17476 foo:
17477 In this case when the la is extended, foo is 0x3fc bytes
17478 away, so the la can be shrunk, but then foo is 0x400 away, so
17479 the la must be extended. To avoid this loop, we mark the
17480 frag as extended if it was small, and is about to become
17481 extended with the next value above maxtiny. */
17482 maxtiny = mips_int_operand_max (operand);
17483 if (val == maxtiny + (1 << operand->shift)
17484 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17485 {
17486 fragp->fr_subtype =
17487 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
17488 return 1;
17489 }
17490 }
17491
17492 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17493 }
17494
17495 /* Given a MIPS16 variant frag FRAGP, return non-zero if it needs
17496 macro expansion. SEC is the section the frag is in. We only
17497 support PC-relative instructions (LA, DLA, LW, LD) here, in
17498 non-PIC code using 32-bit addressing. */
17499
17500 static int
17501 mips16_macro_frag (fragS *fragp, asection *sec, long stretch)
17502 {
17503 const struct mips_pcrel_operand *pcrel_op;
17504 const struct mips_int_operand *operand;
17505 offsetT val;
17506 segT symsec;
17507 int type;
17508
17509 gas_assert (!RELAX_MIPS16_USER_SMALL (fragp->fr_subtype));
17510
17511 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17512 return 0;
17513 if (!RELAX_MIPS16_SYM32 (fragp->fr_subtype))
17514 return 0;
17515
17516 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17517 switch (type)
17518 {
17519 case 'A':
17520 case 'B':
17521 case 'E':
17522 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17523 if (bfd_is_abs_section (symsec))
17524 return 1;
17525 if (RELAX_MIPS16_PIC (fragp->fr_subtype))
17526 return 0;
17527 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE) || sec != symsec)
17528 return 1;
17529
17530 operand = mips16_immed_operand (type, TRUE);
17531 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17532 pcrel_op = (const struct mips_pcrel_operand *) operand;
17533 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17534
17535 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17536
17537 default:
17538 return 0;
17539 }
17540 }
17541
17542 /* Compute the length of a branch sequence, and adjust the
17543 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17544 worst-case length is computed, with UPDATE being used to indicate
17545 whether an unconditional (-1), branch-likely (+1) or regular (0)
17546 branch is to be computed. */
17547 static int
17548 relaxed_branch_length (fragS *fragp, asection *sec, int update)
17549 {
17550 bfd_boolean toofar;
17551 int length;
17552
17553 if (fragp
17554 && S_IS_DEFINED (fragp->fr_symbol)
17555 && !S_IS_WEAK (fragp->fr_symbol)
17556 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17557 {
17558 addressT addr;
17559 offsetT val;
17560
17561 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17562
17563 addr = fragp->fr_address + fragp->fr_fix + 4;
17564
17565 val -= addr;
17566
17567 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17568 }
17569 else
17570 /* If the symbol is not defined or it's in a different segment,
17571 we emit the long sequence. */
17572 toofar = TRUE;
17573
17574 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17575 fragp->fr_subtype
17576 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17577 RELAX_BRANCH_PIC (fragp->fr_subtype),
17578 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
17579 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17580 RELAX_BRANCH_LINK (fragp->fr_subtype),
17581 toofar);
17582
17583 length = 4;
17584 if (toofar)
17585 {
17586 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17587 length += 8;
17588
17589 if (!fragp || RELAX_BRANCH_PIC (fragp->fr_subtype))
17590 {
17591 /* Additional space for PIC loading of target address. */
17592 length += 8;
17593 if (mips_opts.isa == ISA_MIPS1)
17594 /* Additional space for $at-stabilizing nop. */
17595 length += 4;
17596 }
17597
17598 /* If branch is conditional. */
17599 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17600 length += 8;
17601 }
17602
17603 return length;
17604 }
17605
17606 /* Get a FRAG's branch instruction delay slot size, either from the
17607 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
17608 or SHORT_INSN_SIZE otherwise. */
17609
17610 static int
17611 frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
17612 {
17613 char *buf = fragp->fr_literal + fragp->fr_fix;
17614
17615 if (al)
17616 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
17617 else
17618 return short_insn_size;
17619 }
17620
17621 /* Compute the length of a branch sequence, and adjust the
17622 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17623 worst-case length is computed, with UPDATE being used to indicate
17624 whether an unconditional (-1), or regular (0) branch is to be
17625 computed. */
17626
17627 static int
17628 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17629 {
17630 bfd_boolean insn32 = TRUE;
17631 bfd_boolean nods = TRUE;
17632 bfd_boolean pic = TRUE;
17633 bfd_boolean al = TRUE;
17634 int short_insn_size;
17635 bfd_boolean toofar;
17636 int length;
17637
17638 if (fragp)
17639 {
17640 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17641 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
17642 pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
17643 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17644 }
17645 short_insn_size = insn32 ? 4 : 2;
17646
17647 if (fragp
17648 && S_IS_DEFINED (fragp->fr_symbol)
17649 && !S_IS_WEAK (fragp->fr_symbol)
17650 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17651 {
17652 addressT addr;
17653 offsetT val;
17654
17655 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17656 /* Ignore the low bit in the target, since it will be set
17657 for a text label. */
17658 if ((val & 1) != 0)
17659 --val;
17660
17661 addr = fragp->fr_address + fragp->fr_fix + 4;
17662
17663 val -= addr;
17664
17665 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17666 }
17667 else
17668 /* If the symbol is not defined or it's in a different segment,
17669 we emit the long sequence. */
17670 toofar = TRUE;
17671
17672 if (fragp && update
17673 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17674 fragp->fr_subtype = (toofar
17675 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17676 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17677
17678 length = 4;
17679 if (toofar)
17680 {
17681 bfd_boolean compact_known = fragp != NULL;
17682 bfd_boolean compact = FALSE;
17683 bfd_boolean uncond;
17684
17685 if (fragp)
17686 {
17687 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17688 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
17689 }
17690 else
17691 uncond = update < 0;
17692
17693 /* If label is out of range, we turn branch <br>:
17694
17695 <br> label # 4 bytes
17696 0:
17697
17698 into:
17699
17700 j label # 4 bytes
17701 nop # 2/4 bytes if
17702 # compact && (!PIC || insn32)
17703 0:
17704 */
17705 if ((!pic || insn32) && (!compact_known || compact))
17706 length += short_insn_size;
17707
17708 /* If assembling PIC code, we further turn:
17709
17710 j label # 4 bytes
17711
17712 into:
17713
17714 lw/ld at, %got(label)(gp) # 4 bytes
17715 d/addiu at, %lo(label) # 4 bytes
17716 jr/c at # 2/4 bytes
17717 */
17718 if (pic)
17719 length += 4 + short_insn_size;
17720
17721 /* Add an extra nop if the jump has no compact form and we need
17722 to fill the delay slot. */
17723 if ((!pic || al) && nods)
17724 length += (fragp
17725 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
17726 : short_insn_size);
17727
17728 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17729
17730 <brneg> 0f # 4 bytes
17731 nop # 2/4 bytes if !compact
17732 */
17733 if (!uncond)
17734 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
17735 }
17736 else if (nods)
17737 {
17738 /* Add an extra nop to fill the delay slot. */
17739 gas_assert (fragp);
17740 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
17741 }
17742
17743 return length;
17744 }
17745
17746 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17747 bit accordingly. */
17748
17749 static int
17750 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17751 {
17752 bfd_boolean toofar;
17753
17754 if (fragp
17755 && S_IS_DEFINED (fragp->fr_symbol)
17756 && !S_IS_WEAK (fragp->fr_symbol)
17757 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17758 {
17759 addressT addr;
17760 offsetT val;
17761 int type;
17762
17763 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17764 /* Ignore the low bit in the target, since it will be set
17765 for a text label. */
17766 if ((val & 1) != 0)
17767 --val;
17768
17769 /* Assume this is a 2-byte branch. */
17770 addr = fragp->fr_address + fragp->fr_fix + 2;
17771
17772 /* We try to avoid the infinite loop by not adding 2 more bytes for
17773 long branches. */
17774
17775 val -= addr;
17776
17777 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17778 if (type == 'D')
17779 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17780 else if (type == 'E')
17781 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17782 else
17783 abort ();
17784 }
17785 else
17786 /* If the symbol is not defined or it's in a different segment,
17787 we emit a normal 32-bit branch. */
17788 toofar = TRUE;
17789
17790 if (fragp && update
17791 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17792 fragp->fr_subtype
17793 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17794 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17795
17796 if (toofar)
17797 return 4;
17798
17799 return 2;
17800 }
17801
17802 /* Estimate the size of a frag before relaxing. Unless this is the
17803 mips16, we are not really relaxing here, and the final size is
17804 encoded in the subtype information. For the mips16, we have to
17805 decide whether we are using an extended opcode or not. */
17806
17807 int
17808 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17809 {
17810 int change;
17811
17812 if (RELAX_BRANCH_P (fragp->fr_subtype))
17813 {
17814
17815 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17816
17817 return fragp->fr_var;
17818 }
17819
17820 if (RELAX_MIPS16_P (fragp->fr_subtype))
17821 {
17822 /* We don't want to modify the EXTENDED bit here; it might get us
17823 into infinite loops. We change it only in mips_relax_frag(). */
17824 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
17825 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 8 : 12;
17826 else
17827 return RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2;
17828 }
17829
17830 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17831 {
17832 int length = 4;
17833
17834 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17835 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17836 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17837 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17838 fragp->fr_var = length;
17839
17840 return length;
17841 }
17842
17843 if (mips_pic == VXWORKS_PIC)
17844 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17845 change = 0;
17846 else if (RELAX_PIC (fragp->fr_subtype))
17847 change = pic_need_relax (fragp->fr_symbol);
17848 else
17849 change = nopic_need_relax (fragp->fr_symbol, 0);
17850
17851 if (change)
17852 {
17853 fragp->fr_subtype |= RELAX_USE_SECOND;
17854 return -RELAX_FIRST (fragp->fr_subtype);
17855 }
17856 else
17857 return -RELAX_SECOND (fragp->fr_subtype);
17858 }
17859
17860 /* This is called to see whether a reloc against a defined symbol
17861 should be converted into a reloc against a section. */
17862
17863 int
17864 mips_fix_adjustable (fixS *fixp)
17865 {
17866 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17867 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17868 return 0;
17869
17870 if (fixp->fx_addsy == NULL)
17871 return 1;
17872
17873 /* Allow relocs used for EH tables. */
17874 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17875 return 1;
17876
17877 /* If symbol SYM is in a mergeable section, relocations of the form
17878 SYM + 0 can usually be made section-relative. The mergeable data
17879 is then identified by the section offset rather than by the symbol.
17880
17881 However, if we're generating REL LO16 relocations, the offset is split
17882 between the LO16 and partnering high part relocation. The linker will
17883 need to recalculate the complete offset in order to correctly identify
17884 the merge data.
17885
17886 The linker has traditionally not looked for the partnering high part
17887 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17888 placed anywhere. Rather than break backwards compatibility by changing
17889 this, it seems better not to force the issue, and instead keep the
17890 original symbol. This will work with either linker behavior. */
17891 if ((lo16_reloc_p (fixp->fx_r_type)
17892 || reloc_needs_lo_p (fixp->fx_r_type))
17893 && HAVE_IN_PLACE_ADDENDS
17894 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17895 return 0;
17896
17897 /* There is no place to store an in-place offset for JALR relocations. */
17898 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17899 return 0;
17900
17901 /* Likewise an in-range offset of limited PC-relative relocations may
17902 overflow the in-place relocatable field if recalculated against the
17903 start address of the symbol's containing section.
17904
17905 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17906 section relative to allow linker relaxations to be performed later on. */
17907 if (limited_pcrel_reloc_p (fixp->fx_r_type)
17908 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
17909 return 0;
17910
17911 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17912 to a floating-point stub. The same is true for non-R_MIPS16_26
17913 relocations against MIPS16 functions; in this case, the stub becomes
17914 the function's canonical address.
17915
17916 Floating-point stubs are stored in unique .mips16.call.* or
17917 .mips16.fn.* sections. If a stub T for function F is in section S,
17918 the first relocation in section S must be against F; this is how the
17919 linker determines the target function. All relocations that might
17920 resolve to T must also be against F. We therefore have the following
17921 restrictions, which are given in an intentionally-redundant way:
17922
17923 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17924 symbols.
17925
17926 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17927 if that stub might be used.
17928
17929 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17930 symbols.
17931
17932 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17933 that stub might be used.
17934
17935 There is a further restriction:
17936
17937 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17938 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
17939 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
17940 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
17941 against MIPS16 or microMIPS symbols because we need to keep the
17942 MIPS16 or microMIPS symbol for the purpose of mode mismatch
17943 detection and JAL or BAL to JALX instruction conversion in the
17944 linker.
17945
17946 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17947 against a MIPS16 symbol. We deal with (5) by additionally leaving
17948 alone any jump and branch relocations against a microMIPS symbol.
17949
17950 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17951 relocation against some symbol R, no relocation against R may be
17952 reduced. (Note that this deals with (2) as well as (1) because
17953 relocations against global symbols will never be reduced on ELF
17954 targets.) This approach is a little simpler than trying to detect
17955 stub sections, and gives the "all or nothing" per-symbol consistency
17956 that we have for MIPS16 symbols. */
17957 if (fixp->fx_subsy == NULL
17958 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17959 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17960 && (jmp_reloc_p (fixp->fx_r_type)
17961 || b_reloc_p (fixp->fx_r_type)))
17962 || *symbol_get_tc (fixp->fx_addsy)))
17963 return 0;
17964
17965 return 1;
17966 }
17967
17968 /* Translate internal representation of relocation info to BFD target
17969 format. */
17970
17971 arelent **
17972 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17973 {
17974 static arelent *retval[4];
17975 arelent *reloc;
17976 bfd_reloc_code_real_type code;
17977
17978 memset (retval, 0, sizeof(retval));
17979 reloc = retval[0] = XCNEW (arelent);
17980 reloc->sym_ptr_ptr = XNEW (asymbol *);
17981 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17982 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17983
17984 if (fixp->fx_pcrel)
17985 {
17986 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17987 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
17988 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17989 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17990 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17991 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17992 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17993 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17994 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17995 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17996 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17997 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17998
17999 /* At this point, fx_addnumber is "symbol offset - pcrel address".
18000 Relocations want only the symbol offset. */
18001 switch (fixp->fx_r_type)
18002 {
18003 case BFD_RELOC_MIPS_18_PCREL_S3:
18004 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
18005 break;
18006 default:
18007 reloc->addend = fixp->fx_addnumber + reloc->address;
18008 break;
18009 }
18010 }
18011 else if (HAVE_IN_PLACE_ADDENDS
18012 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
18013 && (read_compressed_insn (fixp->fx_frag->fr_literal
18014 + fixp->fx_where, 4) >> 26) == 0x3c)
18015 {
18016 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
18017 addend accordingly. */
18018 reloc->addend = fixp->fx_addnumber >> 1;
18019 }
18020 else
18021 reloc->addend = fixp->fx_addnumber;
18022
18023 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
18024 entry to be used in the relocation's section offset. */
18025 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
18026 {
18027 reloc->address = reloc->addend;
18028 reloc->addend = 0;
18029 }
18030
18031 code = fixp->fx_r_type;
18032
18033 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
18034 if (reloc->howto == NULL)
18035 {
18036 as_bad_where (fixp->fx_file, fixp->fx_line,
18037 _("cannot represent %s relocation in this object file"
18038 " format"),
18039 bfd_get_reloc_code_name (code));
18040 retval[0] = NULL;
18041 }
18042
18043 return retval;
18044 }
18045
18046 /* Relax a machine dependent frag. This returns the amount by which
18047 the current size of the frag should change. */
18048
18049 int
18050 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
18051 {
18052 if (RELAX_BRANCH_P (fragp->fr_subtype))
18053 {
18054 offsetT old_var = fragp->fr_var;
18055
18056 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
18057
18058 return fragp->fr_var - old_var;
18059 }
18060
18061 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18062 {
18063 offsetT old_var = fragp->fr_var;
18064 offsetT new_var = 4;
18065
18066 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
18067 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
18068 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
18069 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
18070 fragp->fr_var = new_var;
18071
18072 return new_var - old_var;
18073 }
18074
18075 if (! RELAX_MIPS16_P (fragp->fr_subtype))
18076 return 0;
18077
18078 if (!mips16_extended_frag (fragp, sec, stretch))
18079 {
18080 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18081 {
18082 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
18083 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -6 : -10;
18084 }
18085 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18086 {
18087 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18088 return -2;
18089 }
18090 else
18091 return 0;
18092 }
18093 else if (!mips16_macro_frag (fragp, sec, stretch))
18094 {
18095 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18096 {
18097 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
18098 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
18099 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -4 : -8;
18100 }
18101 else if (!RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18102 {
18103 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
18104 return 2;
18105 }
18106 else
18107 return 0;
18108 }
18109 else
18110 {
18111 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18112 return 0;
18113 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18114 {
18115 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18116 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
18117 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 4 : 8;
18118 }
18119 else
18120 {
18121 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
18122 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 6 : 10;
18123 }
18124 }
18125
18126 return 0;
18127 }
18128
18129 /* Convert a machine dependent frag. */
18130
18131 void
18132 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
18133 {
18134 if (RELAX_BRANCH_P (fragp->fr_subtype))
18135 {
18136 char *buf;
18137 unsigned long insn;
18138 expressionS exp;
18139 fixS *fixp;
18140
18141 buf = fragp->fr_literal + fragp->fr_fix;
18142 insn = read_insn (buf);
18143
18144 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
18145 {
18146 /* We generate a fixup instead of applying it right now
18147 because, if there are linker relaxations, we're going to
18148 need the relocations. */
18149 exp.X_op = O_symbol;
18150 exp.X_add_symbol = fragp->fr_symbol;
18151 exp.X_add_number = fragp->fr_offset;
18152
18153 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18154 BFD_RELOC_16_PCREL_S2);
18155 fixp->fx_file = fragp->fr_file;
18156 fixp->fx_line = fragp->fr_line;
18157
18158 buf = write_insn (buf, insn);
18159 }
18160 else
18161 {
18162 int i;
18163
18164 as_warn_where (fragp->fr_file, fragp->fr_line,
18165 _("relaxed out-of-range branch into a jump"));
18166
18167 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
18168 goto uncond;
18169
18170 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18171 {
18172 /* Reverse the branch. */
18173 switch ((insn >> 28) & 0xf)
18174 {
18175 case 4:
18176 if ((insn & 0xff000000) == 0x47000000
18177 || (insn & 0xff600000) == 0x45600000)
18178 {
18179 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
18180 reversed by tweaking bit 23. */
18181 insn ^= 0x00800000;
18182 }
18183 else
18184 {
18185 /* bc[0-3][tf]l? instructions can have the condition
18186 reversed by tweaking a single TF bit, and their
18187 opcodes all have 0x4???????. */
18188 gas_assert ((insn & 0xf3e00000) == 0x41000000);
18189 insn ^= 0x00010000;
18190 }
18191 break;
18192
18193 case 0:
18194 /* bltz 0x04000000 bgez 0x04010000
18195 bltzal 0x04100000 bgezal 0x04110000 */
18196 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
18197 insn ^= 0x00010000;
18198 break;
18199
18200 case 1:
18201 /* beq 0x10000000 bne 0x14000000
18202 blez 0x18000000 bgtz 0x1c000000 */
18203 insn ^= 0x04000000;
18204 break;
18205
18206 default:
18207 abort ();
18208 }
18209 }
18210
18211 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18212 {
18213 /* Clear the and-link bit. */
18214 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
18215
18216 /* bltzal 0x04100000 bgezal 0x04110000
18217 bltzall 0x04120000 bgezall 0x04130000 */
18218 insn &= ~0x00100000;
18219 }
18220
18221 /* Branch over the branch (if the branch was likely) or the
18222 full jump (not likely case). Compute the offset from the
18223 current instruction to branch to. */
18224 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18225 i = 16;
18226 else
18227 {
18228 /* How many bytes in instructions we've already emitted? */
18229 i = buf - fragp->fr_literal - fragp->fr_fix;
18230 /* How many bytes in instructions from here to the end? */
18231 i = fragp->fr_var - i;
18232 }
18233 /* Convert to instruction count. */
18234 i >>= 2;
18235 /* Branch counts from the next instruction. */
18236 i--;
18237 insn |= i;
18238 /* Branch over the jump. */
18239 buf = write_insn (buf, insn);
18240
18241 /* nop */
18242 buf = write_insn (buf, 0);
18243
18244 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18245 {
18246 /* beql $0, $0, 2f */
18247 insn = 0x50000000;
18248 /* Compute the PC offset from the current instruction to
18249 the end of the variable frag. */
18250 /* How many bytes in instructions we've already emitted? */
18251 i = buf - fragp->fr_literal - fragp->fr_fix;
18252 /* How many bytes in instructions from here to the end? */
18253 i = fragp->fr_var - i;
18254 /* Convert to instruction count. */
18255 i >>= 2;
18256 /* Don't decrement i, because we want to branch over the
18257 delay slot. */
18258 insn |= i;
18259
18260 buf = write_insn (buf, insn);
18261 buf = write_insn (buf, 0);
18262 }
18263
18264 uncond:
18265 if (!RELAX_BRANCH_PIC (fragp->fr_subtype))
18266 {
18267 /* j or jal. */
18268 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
18269 ? 0x0c000000 : 0x08000000);
18270 exp.X_op = O_symbol;
18271 exp.X_add_symbol = fragp->fr_symbol;
18272 exp.X_add_number = fragp->fr_offset;
18273
18274 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18275 FALSE, BFD_RELOC_MIPS_JMP);
18276 fixp->fx_file = fragp->fr_file;
18277 fixp->fx_line = fragp->fr_line;
18278
18279 buf = write_insn (buf, insn);
18280 }
18281 else
18282 {
18283 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
18284
18285 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
18286 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
18287 insn |= at << OP_SH_RT;
18288 exp.X_op = O_symbol;
18289 exp.X_add_symbol = fragp->fr_symbol;
18290 exp.X_add_number = fragp->fr_offset;
18291
18292 if (fragp->fr_offset)
18293 {
18294 exp.X_add_symbol = make_expr_symbol (&exp);
18295 exp.X_add_number = 0;
18296 }
18297
18298 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18299 FALSE, BFD_RELOC_MIPS_GOT16);
18300 fixp->fx_file = fragp->fr_file;
18301 fixp->fx_line = fragp->fr_line;
18302
18303 buf = write_insn (buf, insn);
18304
18305 if (mips_opts.isa == ISA_MIPS1)
18306 /* nop */
18307 buf = write_insn (buf, 0);
18308
18309 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
18310 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18311 insn |= at << OP_SH_RS | at << OP_SH_RT;
18312
18313 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18314 FALSE, BFD_RELOC_LO16);
18315 fixp->fx_file = fragp->fr_file;
18316 fixp->fx_line = fragp->fr_line;
18317
18318 buf = write_insn (buf, insn);
18319
18320 /* j(al)r $at. */
18321 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18322 insn = 0x0000f809;
18323 else
18324 insn = 0x00000008;
18325 insn |= at << OP_SH_RS;
18326
18327 buf = write_insn (buf, insn);
18328 }
18329 }
18330
18331 fragp->fr_fix += fragp->fr_var;
18332 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18333 return;
18334 }
18335
18336 /* Relax microMIPS branches. */
18337 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18338 {
18339 char *buf = fragp->fr_literal + fragp->fr_fix;
18340 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18341 bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
18342 bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
18343 bfd_boolean pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
18344 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18345 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18346 bfd_boolean short_ds;
18347 unsigned long insn;
18348 expressionS exp;
18349 fixS *fixp;
18350
18351 exp.X_op = O_symbol;
18352 exp.X_add_symbol = fragp->fr_symbol;
18353 exp.X_add_number = fragp->fr_offset;
18354
18355 fragp->fr_fix += fragp->fr_var;
18356
18357 /* Handle 16-bit branches that fit or are forced to fit. */
18358 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18359 {
18360 /* We generate a fixup instead of applying it right now,
18361 because if there is linker relaxation, we're going to
18362 need the relocations. */
18363 if (type == 'D')
18364 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18365 BFD_RELOC_MICROMIPS_10_PCREL_S1);
18366 else if (type == 'E')
18367 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18368 BFD_RELOC_MICROMIPS_7_PCREL_S1);
18369 else
18370 abort ();
18371
18372 fixp->fx_file = fragp->fr_file;
18373 fixp->fx_line = fragp->fr_line;
18374
18375 /* These relocations can have an addend that won't fit in
18376 2 octets. */
18377 fixp->fx_no_overflow = 1;
18378
18379 return;
18380 }
18381
18382 /* Handle 32-bit branches that fit or are forced to fit. */
18383 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18384 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18385 {
18386 /* We generate a fixup instead of applying it right now,
18387 because if there is linker relaxation, we're going to
18388 need the relocations. */
18389 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18390 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18391 fixp->fx_file = fragp->fr_file;
18392 fixp->fx_line = fragp->fr_line;
18393
18394 if (type == 0)
18395 {
18396 insn = read_compressed_insn (buf, 4);
18397 buf += 4;
18398
18399 if (nods)
18400 {
18401 /* Check the short-delay-slot bit. */
18402 if (!al || (insn & 0x02000000) != 0)
18403 buf = write_compressed_insn (buf, 0x0c00, 2);
18404 else
18405 buf = write_compressed_insn (buf, 0x00000000, 4);
18406 }
18407
18408 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18409 return;
18410 }
18411 }
18412
18413 /* Relax 16-bit branches to 32-bit branches. */
18414 if (type != 0)
18415 {
18416 insn = read_compressed_insn (buf, 2);
18417
18418 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18419 insn = 0x94000000; /* beq */
18420 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18421 {
18422 unsigned long regno;
18423
18424 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18425 regno = micromips_to_32_reg_d_map [regno];
18426 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18427 insn |= regno << MICROMIPSOP_SH_RS;
18428 }
18429 else
18430 abort ();
18431
18432 /* Nothing else to do, just write it out. */
18433 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18434 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18435 {
18436 buf = write_compressed_insn (buf, insn, 4);
18437 if (nods)
18438 buf = write_compressed_insn (buf, 0x0c00, 2);
18439 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18440 return;
18441 }
18442 }
18443 else
18444 insn = read_compressed_insn (buf, 4);
18445
18446 /* Relax 32-bit branches to a sequence of instructions. */
18447 as_warn_where (fragp->fr_file, fragp->fr_line,
18448 _("relaxed out-of-range branch into a jump"));
18449
18450 /* Set the short-delay-slot bit. */
18451 short_ds = !al || (insn & 0x02000000) != 0;
18452
18453 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18454 {
18455 symbolS *l;
18456
18457 /* Reverse the branch. */
18458 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18459 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18460 insn ^= 0x20000000;
18461 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18462 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18463 || (insn & 0xffe00000) == 0x40800000 /* blez */
18464 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18465 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18466 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18467 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18468 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18469 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18470 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18471 insn ^= 0x00400000;
18472 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18473 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18474 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18475 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18476 insn ^= 0x00200000;
18477 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18478 BNZ.df */
18479 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18480 BNZ.V */
18481 insn ^= 0x00800000;
18482 else
18483 abort ();
18484
18485 if (al)
18486 {
18487 /* Clear the and-link and short-delay-slot bits. */
18488 gas_assert ((insn & 0xfda00000) == 0x40200000);
18489
18490 /* bltzal 0x40200000 bgezal 0x40600000 */
18491 /* bltzals 0x42200000 bgezals 0x42600000 */
18492 insn &= ~0x02200000;
18493 }
18494
18495 /* Make a label at the end for use with the branch. */
18496 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18497 micromips_label_inc ();
18498 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
18499
18500 /* Refer to it. */
18501 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18502 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18503 fixp->fx_file = fragp->fr_file;
18504 fixp->fx_line = fragp->fr_line;
18505
18506 /* Branch over the jump. */
18507 buf = write_compressed_insn (buf, insn, 4);
18508
18509 if (!compact)
18510 {
18511 /* nop */
18512 if (insn32)
18513 buf = write_compressed_insn (buf, 0x00000000, 4);
18514 else
18515 buf = write_compressed_insn (buf, 0x0c00, 2);
18516 }
18517 }
18518
18519 if (!pic)
18520 {
18521 unsigned long jal = (short_ds || nods
18522 ? 0x74000000 : 0xf4000000); /* jal/s */
18523
18524 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18525 insn = al ? jal : 0xd4000000;
18526
18527 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18528 BFD_RELOC_MICROMIPS_JMP);
18529 fixp->fx_file = fragp->fr_file;
18530 fixp->fx_line = fragp->fr_line;
18531
18532 buf = write_compressed_insn (buf, insn, 4);
18533
18534 if (compact || nods)
18535 {
18536 /* nop */
18537 if (insn32)
18538 buf = write_compressed_insn (buf, 0x00000000, 4);
18539 else
18540 buf = write_compressed_insn (buf, 0x0c00, 2);
18541 }
18542 }
18543 else
18544 {
18545 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18546
18547 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18548 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18549 insn |= at << MICROMIPSOP_SH_RT;
18550
18551 if (exp.X_add_number)
18552 {
18553 exp.X_add_symbol = make_expr_symbol (&exp);
18554 exp.X_add_number = 0;
18555 }
18556
18557 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18558 BFD_RELOC_MICROMIPS_GOT16);
18559 fixp->fx_file = fragp->fr_file;
18560 fixp->fx_line = fragp->fr_line;
18561
18562 buf = write_compressed_insn (buf, insn, 4);
18563
18564 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18565 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18566 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18567
18568 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18569 BFD_RELOC_MICROMIPS_LO16);
18570 fixp->fx_file = fragp->fr_file;
18571 fixp->fx_line = fragp->fr_line;
18572
18573 buf = write_compressed_insn (buf, insn, 4);
18574
18575 if (insn32)
18576 {
18577 /* jr/jalr $at */
18578 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18579 insn |= at << MICROMIPSOP_SH_RS;
18580
18581 buf = write_compressed_insn (buf, insn, 4);
18582
18583 if (compact || nods)
18584 /* nop */
18585 buf = write_compressed_insn (buf, 0x00000000, 4);
18586 }
18587 else
18588 {
18589 /* jr/jrc/jalr/jalrs $at */
18590 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
18591 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
18592
18593 insn = al ? jalr : jr;
18594 insn |= at << MICROMIPSOP_SH_MJ;
18595
18596 buf = write_compressed_insn (buf, insn, 2);
18597 if (al && nods)
18598 {
18599 /* nop */
18600 if (short_ds)
18601 buf = write_compressed_insn (buf, 0x0c00, 2);
18602 else
18603 buf = write_compressed_insn (buf, 0x00000000, 4);
18604 }
18605 }
18606 }
18607
18608 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18609 return;
18610 }
18611
18612 if (RELAX_MIPS16_P (fragp->fr_subtype))
18613 {
18614 int type;
18615 const struct mips_int_operand *operand;
18616 offsetT val;
18617 char *buf;
18618 unsigned int user_length;
18619 bfd_boolean need_reloc;
18620 unsigned long insn;
18621 bfd_boolean mac;
18622 bfd_boolean ext;
18623 segT symsec;
18624
18625 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
18626 operand = mips16_immed_operand (type, FALSE);
18627
18628 mac = RELAX_MIPS16_MACRO (fragp->fr_subtype);
18629 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
18630 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
18631
18632 symsec = S_GET_SEGMENT (fragp->fr_symbol);
18633 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
18634 || (operand->root.type == OP_PCREL && !mac
18635 ? asec != symsec
18636 : !bfd_is_abs_section (symsec)));
18637
18638 if (operand->root.type == OP_PCREL && !mac)
18639 {
18640 const struct mips_pcrel_operand *pcrel_op;
18641
18642 pcrel_op = (const struct mips_pcrel_operand *) operand;
18643
18644 if (pcrel_op->include_isa_bit && !need_reloc)
18645 {
18646 if (!ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
18647 as_bad_where (fragp->fr_file, fragp->fr_line,
18648 _("branch to a symbol in another ISA mode"));
18649 else if ((fragp->fr_offset & 0x1) != 0)
18650 as_bad_where (fragp->fr_file, fragp->fr_line,
18651 _("branch to misaligned address (0x%lx)"),
18652 (long) val);
18653 }
18654
18655 val = mips16_pcrel_val (fragp, pcrel_op, val, 0);
18656
18657 /* Make sure the section winds up with the alignment we have
18658 assumed. */
18659 if (operand->shift > 0)
18660 record_alignment (asec, operand->shift);
18661 }
18662
18663 if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18664 || RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18665 {
18666 if (mac)
18667 as_warn_where (fragp->fr_file, fragp->fr_line,
18668 _("macro instruction expanded into multiple "
18669 "instructions in a branch delay slot"));
18670 else if (ext)
18671 as_warn_where (fragp->fr_file, fragp->fr_line,
18672 _("extended instruction in a branch delay slot"));
18673 }
18674 else if (RELAX_MIPS16_NOMACRO (fragp->fr_subtype) && mac)
18675 as_warn_where (fragp->fr_file, fragp->fr_line,
18676 _("macro instruction expanded into multiple "
18677 "instructions"));
18678
18679 buf = fragp->fr_literal + fragp->fr_fix;
18680
18681 insn = read_compressed_insn (buf, 2);
18682 if (ext)
18683 insn |= MIPS16_EXTEND;
18684
18685 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18686 user_length = 4;
18687 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18688 user_length = 2;
18689 else
18690 user_length = 0;
18691
18692 if (mac)
18693 {
18694 unsigned long reg;
18695 unsigned long new;
18696 unsigned long op;
18697 bfd_boolean e2;
18698
18699 gas_assert (type == 'A' || type == 'B' || type == 'E');
18700 gas_assert (RELAX_MIPS16_SYM32 (fragp->fr_subtype));
18701
18702 e2 = RELAX_MIPS16_E2 (fragp->fr_subtype);
18703
18704 if (need_reloc)
18705 {
18706 fixS *fixp;
18707
18708 gas_assert (!RELAX_MIPS16_PIC (fragp->fr_subtype));
18709
18710 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18711 fragp->fr_symbol, fragp->fr_offset,
18712 FALSE, BFD_RELOC_MIPS16_HI16_S);
18713 fixp->fx_file = fragp->fr_file;
18714 fixp->fx_line = fragp->fr_line;
18715
18716 fixp = fix_new (fragp, buf - fragp->fr_literal + (e2 ? 4 : 8), 4,
18717 fragp->fr_symbol, fragp->fr_offset,
18718 FALSE, BFD_RELOC_MIPS16_LO16);
18719 fixp->fx_file = fragp->fr_file;
18720 fixp->fx_line = fragp->fr_line;
18721
18722 val = 0;
18723 }
18724
18725 switch (insn & 0xf800)
18726 {
18727 case 0x0800: /* ADDIU */
18728 reg = (insn >> 8) & 0x7;
18729 op = 0xf0004800 | (reg << 8);
18730 break;
18731 case 0xb000: /* LW */
18732 reg = (insn >> 8) & 0x7;
18733 op = 0xf0009800 | (reg << 8) | (reg << 5);
18734 break;
18735 case 0xf800: /* I64 */
18736 reg = (insn >> 5) & 0x7;
18737 switch (insn & 0x0700)
18738 {
18739 case 0x0400: /* LD */
18740 op = 0xf0003800 | (reg << 8) | (reg << 5);
18741 break;
18742 case 0x0600: /* DADDIU */
18743 op = 0xf000fd00 | (reg << 5);
18744 break;
18745 default:
18746 abort ();
18747 }
18748 break;
18749 default:
18750 abort ();
18751 }
18752
18753 new = (e2 ? 0xf0006820 : 0xf0006800) | (reg << 8); /* LUI/LI */
18754 new |= mips16_immed_extend ((val + 0x8000) >> 16, 16);
18755 buf = write_compressed_insn (buf, new, 4);
18756 if (!e2)
18757 {
18758 new = 0xf4003000 | (reg << 8) | (reg << 5); /* SLL */
18759 buf = write_compressed_insn (buf, new, 4);
18760 }
18761 op |= mips16_immed_extend (val, 16);
18762 buf = write_compressed_insn (buf, op, 4);
18763
18764 fragp->fr_fix += e2 ? 8 : 12;
18765 }
18766 else
18767 {
18768 unsigned int length = ext ? 4 : 2;
18769
18770 if (need_reloc)
18771 {
18772 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
18773 expressionS exp;
18774 fixS *fixp;
18775
18776 switch (type)
18777 {
18778 case 'p':
18779 case 'q':
18780 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
18781 break;
18782 default:
18783 break;
18784 }
18785 if (mac || reloc == BFD_RELOC_NONE)
18786 as_bad_where (fragp->fr_file, fragp->fr_line,
18787 _("unsupported relocation"));
18788 else if (ext)
18789 {
18790 exp.X_op = O_symbol;
18791 exp.X_add_symbol = fragp->fr_symbol;
18792 exp.X_add_number = fragp->fr_offset;
18793
18794 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18795 TRUE, reloc);
18796
18797 fixp->fx_file = fragp->fr_file;
18798 fixp->fx_line = fragp->fr_line;
18799 }
18800 else
18801 as_bad_where (fragp->fr_file, fragp->fr_line,
18802 _("invalid unextended operand value"));
18803 }
18804 else
18805 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18806 BFD_RELOC_UNUSED, val, user_length, &insn);
18807
18808 gas_assert (mips16_opcode_length (insn) == length);
18809 write_compressed_insn (buf, insn, length);
18810 fragp->fr_fix += length;
18811 }
18812 }
18813 else
18814 {
18815 relax_substateT subtype = fragp->fr_subtype;
18816 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18817 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
18818 int first, second;
18819 fixS *fixp;
18820
18821 first = RELAX_FIRST (subtype);
18822 second = RELAX_SECOND (subtype);
18823 fixp = (fixS *) fragp->fr_opcode;
18824
18825 /* If the delay slot chosen does not match the size of the instruction,
18826 then emit a warning. */
18827 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18828 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18829 {
18830 relax_substateT s;
18831 const char *msg;
18832
18833 s = subtype & (RELAX_DELAY_SLOT_16BIT
18834 | RELAX_DELAY_SLOT_SIZE_FIRST
18835 | RELAX_DELAY_SLOT_SIZE_SECOND);
18836 msg = macro_warning (s);
18837 if (msg != NULL)
18838 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18839 subtype &= ~s;
18840 }
18841
18842 /* Possibly emit a warning if we've chosen the longer option. */
18843 if (use_second == second_longer)
18844 {
18845 relax_substateT s;
18846 const char *msg;
18847
18848 s = (subtype
18849 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18850 msg = macro_warning (s);
18851 if (msg != NULL)
18852 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18853 subtype &= ~s;
18854 }
18855
18856 /* Go through all the fixups for the first sequence. Disable them
18857 (by marking them as done) if we're going to use the second
18858 sequence instead. */
18859 while (fixp
18860 && fixp->fx_frag == fragp
18861 && fixp->fx_where < fragp->fr_fix - second)
18862 {
18863 if (subtype & RELAX_USE_SECOND)
18864 fixp->fx_done = 1;
18865 fixp = fixp->fx_next;
18866 }
18867
18868 /* Go through the fixups for the second sequence. Disable them if
18869 we're going to use the first sequence, otherwise adjust their
18870 addresses to account for the relaxation. */
18871 while (fixp && fixp->fx_frag == fragp)
18872 {
18873 if (subtype & RELAX_USE_SECOND)
18874 fixp->fx_where -= first;
18875 else
18876 fixp->fx_done = 1;
18877 fixp = fixp->fx_next;
18878 }
18879
18880 /* Now modify the frag contents. */
18881 if (subtype & RELAX_USE_SECOND)
18882 {
18883 char *start;
18884
18885 start = fragp->fr_literal + fragp->fr_fix - first - second;
18886 memmove (start, start + first, second);
18887 fragp->fr_fix -= first;
18888 }
18889 else
18890 fragp->fr_fix -= second;
18891 }
18892 }
18893
18894 /* This function is called after the relocs have been generated.
18895 We've been storing mips16 text labels as odd. Here we convert them
18896 back to even for the convenience of the debugger. */
18897
18898 void
18899 mips_frob_file_after_relocs (void)
18900 {
18901 asymbol **syms;
18902 unsigned int count, i;
18903
18904 syms = bfd_get_outsymbols (stdoutput);
18905 count = bfd_get_symcount (stdoutput);
18906 for (i = 0; i < count; i++, syms++)
18907 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18908 && ((*syms)->value & 1) != 0)
18909 {
18910 (*syms)->value &= ~1;
18911 /* If the symbol has an odd size, it was probably computed
18912 incorrectly, so adjust that as well. */
18913 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18914 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18915 }
18916 }
18917
18918 /* This function is called whenever a label is defined, including fake
18919 labels instantiated off the dot special symbol. It is used when
18920 handling branch delays; if a branch has a label, we assume we cannot
18921 move it. This also bumps the value of the symbol by 1 in compressed
18922 code. */
18923
18924 static void
18925 mips_record_label (symbolS *sym)
18926 {
18927 segment_info_type *si = seg_info (now_seg);
18928 struct insn_label_list *l;
18929
18930 if (free_insn_labels == NULL)
18931 l = XNEW (struct insn_label_list);
18932 else
18933 {
18934 l = free_insn_labels;
18935 free_insn_labels = l->next;
18936 }
18937
18938 l->label = sym;
18939 l->next = si->label_list;
18940 si->label_list = l;
18941 }
18942
18943 /* This function is called as tc_frob_label() whenever a label is defined
18944 and adds a DWARF-2 record we only want for true labels. */
18945
18946 void
18947 mips_define_label (symbolS *sym)
18948 {
18949 mips_record_label (sym);
18950 dwarf2_emit_label (sym);
18951 }
18952
18953 /* This function is called by tc_new_dot_label whenever a new dot symbol
18954 is defined. */
18955
18956 void
18957 mips_add_dot_label (symbolS *sym)
18958 {
18959 mips_record_label (sym);
18960 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18961 mips_compressed_mark_label (sym);
18962 }
18963 \f
18964 /* Converting ASE flags from internal to .MIPS.abiflags values. */
18965 static unsigned int
18966 mips_convert_ase_flags (int ase)
18967 {
18968 unsigned int ext_ases = 0;
18969
18970 if (ase & ASE_DSP)
18971 ext_ases |= AFL_ASE_DSP;
18972 if (ase & ASE_DSPR2)
18973 ext_ases |= AFL_ASE_DSPR2;
18974 if (ase & ASE_DSPR3)
18975 ext_ases |= AFL_ASE_DSPR3;
18976 if (ase & ASE_EVA)
18977 ext_ases |= AFL_ASE_EVA;
18978 if (ase & ASE_MCU)
18979 ext_ases |= AFL_ASE_MCU;
18980 if (ase & ASE_MDMX)
18981 ext_ases |= AFL_ASE_MDMX;
18982 if (ase & ASE_MIPS3D)
18983 ext_ases |= AFL_ASE_MIPS3D;
18984 if (ase & ASE_MT)
18985 ext_ases |= AFL_ASE_MT;
18986 if (ase & ASE_SMARTMIPS)
18987 ext_ases |= AFL_ASE_SMARTMIPS;
18988 if (ase & ASE_VIRT)
18989 ext_ases |= AFL_ASE_VIRT;
18990 if (ase & ASE_MSA)
18991 ext_ases |= AFL_ASE_MSA;
18992 if (ase & ASE_XPA)
18993 ext_ases |= AFL_ASE_XPA;
18994 if (ase & ASE_MIPS16E2)
18995 ext_ases |= file_ase_mips16 ? AFL_ASE_MIPS16E2 : 0;
18996
18997 return ext_ases;
18998 }
18999 /* Some special processing for a MIPS ELF file. */
19000
19001 void
19002 mips_elf_final_processing (void)
19003 {
19004 int fpabi;
19005 Elf_Internal_ABIFlags_v0 flags;
19006
19007 flags.version = 0;
19008 flags.isa_rev = 0;
19009 switch (file_mips_opts.isa)
19010 {
19011 case INSN_ISA1:
19012 flags.isa_level = 1;
19013 break;
19014 case INSN_ISA2:
19015 flags.isa_level = 2;
19016 break;
19017 case INSN_ISA3:
19018 flags.isa_level = 3;
19019 break;
19020 case INSN_ISA4:
19021 flags.isa_level = 4;
19022 break;
19023 case INSN_ISA5:
19024 flags.isa_level = 5;
19025 break;
19026 case INSN_ISA32:
19027 flags.isa_level = 32;
19028 flags.isa_rev = 1;
19029 break;
19030 case INSN_ISA32R2:
19031 flags.isa_level = 32;
19032 flags.isa_rev = 2;
19033 break;
19034 case INSN_ISA32R3:
19035 flags.isa_level = 32;
19036 flags.isa_rev = 3;
19037 break;
19038 case INSN_ISA32R5:
19039 flags.isa_level = 32;
19040 flags.isa_rev = 5;
19041 break;
19042 case INSN_ISA32R6:
19043 flags.isa_level = 32;
19044 flags.isa_rev = 6;
19045 break;
19046 case INSN_ISA64:
19047 flags.isa_level = 64;
19048 flags.isa_rev = 1;
19049 break;
19050 case INSN_ISA64R2:
19051 flags.isa_level = 64;
19052 flags.isa_rev = 2;
19053 break;
19054 case INSN_ISA64R3:
19055 flags.isa_level = 64;
19056 flags.isa_rev = 3;
19057 break;
19058 case INSN_ISA64R5:
19059 flags.isa_level = 64;
19060 flags.isa_rev = 5;
19061 break;
19062 case INSN_ISA64R6:
19063 flags.isa_level = 64;
19064 flags.isa_rev = 6;
19065 break;
19066 }
19067
19068 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
19069 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
19070 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
19071 : (file_mips_opts.fp == 64) ? AFL_REG_64
19072 : AFL_REG_32;
19073 flags.cpr2_size = AFL_REG_NONE;
19074 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19075 Tag_GNU_MIPS_ABI_FP);
19076 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
19077 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
19078 if (file_ase_mips16)
19079 flags.ases |= AFL_ASE_MIPS16;
19080 if (file_ase_micromips)
19081 flags.ases |= AFL_ASE_MICROMIPS;
19082 flags.flags1 = 0;
19083 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
19084 || file_mips_opts.fp == 64)
19085 && file_mips_opts.oddspreg)
19086 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
19087 flags.flags2 = 0;
19088
19089 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
19090 ((Elf_External_ABIFlags_v0 *)
19091 mips_flags_frag));
19092
19093 /* Write out the register information. */
19094 if (mips_abi != N64_ABI)
19095 {
19096 Elf32_RegInfo s;
19097
19098 s.ri_gprmask = mips_gprmask;
19099 s.ri_cprmask[0] = mips_cprmask[0];
19100 s.ri_cprmask[1] = mips_cprmask[1];
19101 s.ri_cprmask[2] = mips_cprmask[2];
19102 s.ri_cprmask[3] = mips_cprmask[3];
19103 /* The gp_value field is set by the MIPS ELF backend. */
19104
19105 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
19106 ((Elf32_External_RegInfo *)
19107 mips_regmask_frag));
19108 }
19109 else
19110 {
19111 Elf64_Internal_RegInfo s;
19112
19113 s.ri_gprmask = mips_gprmask;
19114 s.ri_pad = 0;
19115 s.ri_cprmask[0] = mips_cprmask[0];
19116 s.ri_cprmask[1] = mips_cprmask[1];
19117 s.ri_cprmask[2] = mips_cprmask[2];
19118 s.ri_cprmask[3] = mips_cprmask[3];
19119 /* The gp_value field is set by the MIPS ELF backend. */
19120
19121 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
19122 ((Elf64_External_RegInfo *)
19123 mips_regmask_frag));
19124 }
19125
19126 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
19127 sort of BFD interface for this. */
19128 if (mips_any_noreorder)
19129 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
19130 if (mips_pic != NO_PIC)
19131 {
19132 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
19133 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
19134 }
19135 if (mips_abicalls)
19136 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
19137
19138 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
19139 defined at present; this might need to change in future. */
19140 if (file_ase_mips16)
19141 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
19142 if (file_ase_micromips)
19143 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
19144 if (file_mips_opts.ase & ASE_MDMX)
19145 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
19146
19147 /* Set the MIPS ELF ABI flags. */
19148 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
19149 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
19150 else if (mips_abi == O64_ABI)
19151 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
19152 else if (mips_abi == EABI_ABI)
19153 {
19154 if (file_mips_opts.gp == 64)
19155 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
19156 else
19157 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
19158 }
19159 else if (mips_abi == N32_ABI)
19160 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
19161
19162 /* Nothing to do for N64_ABI. */
19163
19164 if (mips_32bitmode)
19165 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
19166
19167 if (mips_nan2008 == 1)
19168 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
19169
19170 /* 32 bit code with 64 bit FP registers. */
19171 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19172 Tag_GNU_MIPS_ABI_FP);
19173 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
19174 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
19175 }
19176 \f
19177 typedef struct proc {
19178 symbolS *func_sym;
19179 symbolS *func_end_sym;
19180 unsigned long reg_mask;
19181 unsigned long reg_offset;
19182 unsigned long fpreg_mask;
19183 unsigned long fpreg_offset;
19184 unsigned long frame_offset;
19185 unsigned long frame_reg;
19186 unsigned long pc_reg;
19187 } procS;
19188
19189 static procS cur_proc;
19190 static procS *cur_proc_ptr;
19191 static int numprocs;
19192
19193 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
19194 as "2", and a normal nop as "0". */
19195
19196 #define NOP_OPCODE_MIPS 0
19197 #define NOP_OPCODE_MIPS16 1
19198 #define NOP_OPCODE_MICROMIPS 2
19199
19200 char
19201 mips_nop_opcode (void)
19202 {
19203 if (seg_info (now_seg)->tc_segment_info_data.micromips)
19204 return NOP_OPCODE_MICROMIPS;
19205 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
19206 return NOP_OPCODE_MIPS16;
19207 else
19208 return NOP_OPCODE_MIPS;
19209 }
19210
19211 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
19212 32-bit microMIPS NOPs here (if applicable). */
19213
19214 void
19215 mips_handle_align (fragS *fragp)
19216 {
19217 char nop_opcode;
19218 char *p;
19219 int bytes, size, excess;
19220 valueT opcode;
19221
19222 if (fragp->fr_type != rs_align_code)
19223 return;
19224
19225 p = fragp->fr_literal + fragp->fr_fix;
19226 nop_opcode = *p;
19227 switch (nop_opcode)
19228 {
19229 case NOP_OPCODE_MICROMIPS:
19230 opcode = micromips_nop32_insn.insn_opcode;
19231 size = 4;
19232 break;
19233 case NOP_OPCODE_MIPS16:
19234 opcode = mips16_nop_insn.insn_opcode;
19235 size = 2;
19236 break;
19237 case NOP_OPCODE_MIPS:
19238 default:
19239 opcode = nop_insn.insn_opcode;
19240 size = 4;
19241 break;
19242 }
19243
19244 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
19245 excess = bytes % size;
19246
19247 /* Handle the leading part if we're not inserting a whole number of
19248 instructions, and make it the end of the fixed part of the frag.
19249 Try to fit in a short microMIPS NOP if applicable and possible,
19250 and use zeroes otherwise. */
19251 gas_assert (excess < 4);
19252 fragp->fr_fix += excess;
19253 switch (excess)
19254 {
19255 case 3:
19256 *p++ = '\0';
19257 /* Fall through. */
19258 case 2:
19259 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
19260 {
19261 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
19262 break;
19263 }
19264 *p++ = '\0';
19265 /* Fall through. */
19266 case 1:
19267 *p++ = '\0';
19268 /* Fall through. */
19269 case 0:
19270 break;
19271 }
19272
19273 md_number_to_chars (p, opcode, size);
19274 fragp->fr_var = size;
19275 }
19276
19277 static long
19278 get_number (void)
19279 {
19280 int negative = 0;
19281 long val = 0;
19282
19283 if (*input_line_pointer == '-')
19284 {
19285 ++input_line_pointer;
19286 negative = 1;
19287 }
19288 if (!ISDIGIT (*input_line_pointer))
19289 as_bad (_("expected simple number"));
19290 if (input_line_pointer[0] == '0')
19291 {
19292 if (input_line_pointer[1] == 'x')
19293 {
19294 input_line_pointer += 2;
19295 while (ISXDIGIT (*input_line_pointer))
19296 {
19297 val <<= 4;
19298 val |= hex_value (*input_line_pointer++);
19299 }
19300 return negative ? -val : val;
19301 }
19302 else
19303 {
19304 ++input_line_pointer;
19305 while (ISDIGIT (*input_line_pointer))
19306 {
19307 val <<= 3;
19308 val |= *input_line_pointer++ - '0';
19309 }
19310 return negative ? -val : val;
19311 }
19312 }
19313 if (!ISDIGIT (*input_line_pointer))
19314 {
19315 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
19316 *input_line_pointer, *input_line_pointer);
19317 as_warn (_("invalid number"));
19318 return -1;
19319 }
19320 while (ISDIGIT (*input_line_pointer))
19321 {
19322 val *= 10;
19323 val += *input_line_pointer++ - '0';
19324 }
19325 return negative ? -val : val;
19326 }
19327
19328 /* The .file directive; just like the usual .file directive, but there
19329 is an initial number which is the ECOFF file index. In the non-ECOFF
19330 case .file implies DWARF-2. */
19331
19332 static void
19333 s_mips_file (int x ATTRIBUTE_UNUSED)
19334 {
19335 static int first_file_directive = 0;
19336
19337 if (ECOFF_DEBUGGING)
19338 {
19339 get_number ();
19340 s_app_file (0);
19341 }
19342 else
19343 {
19344 char *filename;
19345
19346 filename = dwarf2_directive_file (0);
19347
19348 /* Versions of GCC up to 3.1 start files with a ".file"
19349 directive even for stabs output. Make sure that this
19350 ".file" is handled. Note that you need a version of GCC
19351 after 3.1 in order to support DWARF-2 on MIPS. */
19352 if (filename != NULL && ! first_file_directive)
19353 {
19354 (void) new_logical_line (filename, -1);
19355 s_app_file_string (filename, 0);
19356 }
19357 first_file_directive = 1;
19358 }
19359 }
19360
19361 /* The .loc directive, implying DWARF-2. */
19362
19363 static void
19364 s_mips_loc (int x ATTRIBUTE_UNUSED)
19365 {
19366 if (!ECOFF_DEBUGGING)
19367 dwarf2_directive_loc (0);
19368 }
19369
19370 /* The .end directive. */
19371
19372 static void
19373 s_mips_end (int x ATTRIBUTE_UNUSED)
19374 {
19375 symbolS *p;
19376
19377 /* Following functions need their own .frame and .cprestore directives. */
19378 mips_frame_reg_valid = 0;
19379 mips_cprestore_valid = 0;
19380
19381 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19382 {
19383 p = get_symbol ();
19384 demand_empty_rest_of_line ();
19385 }
19386 else
19387 p = NULL;
19388
19389 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19390 as_warn (_(".end not in text section"));
19391
19392 if (!cur_proc_ptr)
19393 {
19394 as_warn (_(".end directive without a preceding .ent directive"));
19395 demand_empty_rest_of_line ();
19396 return;
19397 }
19398
19399 if (p != NULL)
19400 {
19401 gas_assert (S_GET_NAME (p));
19402 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
19403 as_warn (_(".end symbol does not match .ent symbol"));
19404
19405 if (debug_type == DEBUG_STABS)
19406 stabs_generate_asm_endfunc (S_GET_NAME (p),
19407 S_GET_NAME (p));
19408 }
19409 else
19410 as_warn (_(".end directive missing or unknown symbol"));
19411
19412 /* Create an expression to calculate the size of the function. */
19413 if (p && cur_proc_ptr)
19414 {
19415 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
19416 expressionS *exp = XNEW (expressionS);
19417
19418 obj->size = exp;
19419 exp->X_op = O_subtract;
19420 exp->X_add_symbol = symbol_temp_new_now ();
19421 exp->X_op_symbol = p;
19422 exp->X_add_number = 0;
19423
19424 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19425 }
19426
19427 #ifdef md_flush_pending_output
19428 md_flush_pending_output ();
19429 #endif
19430
19431 /* Generate a .pdr section. */
19432 if (!ECOFF_DEBUGGING && mips_flag_pdr)
19433 {
19434 segT saved_seg = now_seg;
19435 subsegT saved_subseg = now_subseg;
19436 expressionS exp;
19437 char *fragp;
19438
19439 gas_assert (pdr_seg);
19440 subseg_set (pdr_seg, 0);
19441
19442 /* Write the symbol. */
19443 exp.X_op = O_symbol;
19444 exp.X_add_symbol = p;
19445 exp.X_add_number = 0;
19446 emit_expr (&exp, 4);
19447
19448 fragp = frag_more (7 * 4);
19449
19450 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19451 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19452 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19453 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19454 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19455 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19456 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
19457
19458 subseg_set (saved_seg, saved_subseg);
19459 }
19460
19461 cur_proc_ptr = NULL;
19462 }
19463
19464 /* The .aent and .ent directives. */
19465
19466 static void
19467 s_mips_ent (int aent)
19468 {
19469 symbolS *symbolP;
19470
19471 symbolP = get_symbol ();
19472 if (*input_line_pointer == ',')
19473 ++input_line_pointer;
19474 SKIP_WHITESPACE ();
19475 if (ISDIGIT (*input_line_pointer)
19476 || *input_line_pointer == '-')
19477 get_number ();
19478
19479 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19480 as_warn (_(".ent or .aent not in text section"));
19481
19482 if (!aent && cur_proc_ptr)
19483 as_warn (_("missing .end"));
19484
19485 if (!aent)
19486 {
19487 /* This function needs its own .frame and .cprestore directives. */
19488 mips_frame_reg_valid = 0;
19489 mips_cprestore_valid = 0;
19490
19491 cur_proc_ptr = &cur_proc;
19492 memset (cur_proc_ptr, '\0', sizeof (procS));
19493
19494 cur_proc_ptr->func_sym = symbolP;
19495
19496 ++numprocs;
19497
19498 if (debug_type == DEBUG_STABS)
19499 stabs_generate_asm_func (S_GET_NAME (symbolP),
19500 S_GET_NAME (symbolP));
19501 }
19502
19503 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19504
19505 demand_empty_rest_of_line ();
19506 }
19507
19508 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
19509 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
19510 s_mips_frame is used so that we can set the PDR information correctly.
19511 We can't use the ecoff routines because they make reference to the ecoff
19512 symbol table (in the mdebug section). */
19513
19514 static void
19515 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
19516 {
19517 if (ECOFF_DEBUGGING)
19518 s_ignore (ignore);
19519 else
19520 {
19521 long val;
19522
19523 if (cur_proc_ptr == (procS *) NULL)
19524 {
19525 as_warn (_(".frame outside of .ent"));
19526 demand_empty_rest_of_line ();
19527 return;
19528 }
19529
19530 cur_proc_ptr->frame_reg = tc_get_register (1);
19531
19532 SKIP_WHITESPACE ();
19533 if (*input_line_pointer++ != ','
19534 || get_absolute_expression_and_terminator (&val) != ',')
19535 {
19536 as_warn (_("bad .frame directive"));
19537 --input_line_pointer;
19538 demand_empty_rest_of_line ();
19539 return;
19540 }
19541
19542 cur_proc_ptr->frame_offset = val;
19543 cur_proc_ptr->pc_reg = tc_get_register (0);
19544
19545 demand_empty_rest_of_line ();
19546 }
19547 }
19548
19549 /* The .fmask and .mask directives. If the mdebug section is present
19550 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
19551 embedded targets, s_mips_mask is used so that we can set the PDR
19552 information correctly. We can't use the ecoff routines because they
19553 make reference to the ecoff symbol table (in the mdebug section). */
19554
19555 static void
19556 s_mips_mask (int reg_type)
19557 {
19558 if (ECOFF_DEBUGGING)
19559 s_ignore (reg_type);
19560 else
19561 {
19562 long mask, off;
19563
19564 if (cur_proc_ptr == (procS *) NULL)
19565 {
19566 as_warn (_(".mask/.fmask outside of .ent"));
19567 demand_empty_rest_of_line ();
19568 return;
19569 }
19570
19571 if (get_absolute_expression_and_terminator (&mask) != ',')
19572 {
19573 as_warn (_("bad .mask/.fmask directive"));
19574 --input_line_pointer;
19575 demand_empty_rest_of_line ();
19576 return;
19577 }
19578
19579 off = get_absolute_expression ();
19580
19581 if (reg_type == 'F')
19582 {
19583 cur_proc_ptr->fpreg_mask = mask;
19584 cur_proc_ptr->fpreg_offset = off;
19585 }
19586 else
19587 {
19588 cur_proc_ptr->reg_mask = mask;
19589 cur_proc_ptr->reg_offset = off;
19590 }
19591
19592 demand_empty_rest_of_line ();
19593 }
19594 }
19595
19596 /* A table describing all the processors gas knows about. Names are
19597 matched in the order listed.
19598
19599 To ease comparison, please keep this table in the same order as
19600 gcc's mips_cpu_info_table[]. */
19601 static const struct mips_cpu_info mips_cpu_info_table[] =
19602 {
19603 /* Entries for generic ISAs */
19604 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19605 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19606 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19607 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19608 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19609 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19610 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19611 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19612 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
19613 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
19614 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19615 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
19616 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
19617 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
19618 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
19619
19620 /* MIPS I */
19621 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19622 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19623 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
19624
19625 /* MIPS II */
19626 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
19627
19628 /* MIPS III */
19629 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19630 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19631 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19632 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19633 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19634 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19635 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19636 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19637 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19638 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19639 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19640 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19641 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
19642 /* ST Microelectronics Loongson 2E and 2F cores */
19643 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
19644 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
19645
19646 /* MIPS IV */
19647 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19648 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19649 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19650 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19651 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19652 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19653 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19654 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19655 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19656 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19657 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19658 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19659 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19660 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19661 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
19662
19663 /* MIPS 32 */
19664 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19665 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19666 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19667 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
19668
19669 /* MIPS 32 Release 2 */
19670 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19671 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19672 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19673 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19674 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19675 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19676 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19677 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19678 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19679 ISA_MIPS32R2, CPU_MIPS32R2 },
19680 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19681 ISA_MIPS32R2, CPU_MIPS32R2 },
19682 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19683 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19684 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19685 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19686 /* Deprecated forms of the above. */
19687 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19688 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19689 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
19690 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19691 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19692 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19693 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19694 /* Deprecated forms of the above. */
19695 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19696 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19697 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
19698 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19699 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19700 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19701 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19702 /* Deprecated forms of the above. */
19703 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19704 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19705 /* 34Kn is a 34kc without DSP. */
19706 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19707 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
19708 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19709 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19710 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19711 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19712 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19713 /* Deprecated forms of the above. */
19714 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19715 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19716 /* 1004K cores are multiprocessor versions of the 34K. */
19717 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19718 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19719 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19720 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19721 /* interaptiv is the new name for 1004kf */
19722 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19723 { "interaptiv-mr2", 0,
19724 ASE_DSP | ASE_EVA | ASE_MT | ASE_MIPS16E2 | ASE_MIPS16E2_MT,
19725 ISA_MIPS32R3, CPU_INTERAPTIV_MR2 },
19726 /* M5100 family */
19727 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19728 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19729 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
19730 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
19731
19732 /* MIPS 64 */
19733 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19734 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19735 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19736 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19737
19738 /* Broadcom SB-1 CPU core */
19739 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19740 /* Broadcom SB-1A CPU core */
19741 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19742
19743 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
19744
19745 /* MIPS 64 Release 2 */
19746
19747 /* Cavium Networks Octeon CPU core */
19748 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
19749 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
19750 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
19751 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
19752
19753 /* RMI Xlr */
19754 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
19755
19756 /* Broadcom XLP.
19757 XLP is mostly like XLR, with the prominent exception that it is
19758 MIPS64R2 rather than MIPS64. */
19759 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
19760
19761 /* MIPS 64 Release 6 */
19762 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19763 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19764
19765 /* End marker */
19766 { NULL, 0, 0, 0, 0 }
19767 };
19768
19769
19770 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19771 with a final "000" replaced by "k". Ignore case.
19772
19773 Note: this function is shared between GCC and GAS. */
19774
19775 static bfd_boolean
19776 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
19777 {
19778 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19779 given++, canonical++;
19780
19781 return ((*given == 0 && *canonical == 0)
19782 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19783 }
19784
19785
19786 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19787 CPU name. We've traditionally allowed a lot of variation here.
19788
19789 Note: this function is shared between GCC and GAS. */
19790
19791 static bfd_boolean
19792 mips_matching_cpu_name_p (const char *canonical, const char *given)
19793 {
19794 /* First see if the name matches exactly, or with a final "000"
19795 turned into "k". */
19796 if (mips_strict_matching_cpu_name_p (canonical, given))
19797 return TRUE;
19798
19799 /* If not, try comparing based on numerical designation alone.
19800 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19801 if (TOLOWER (*given) == 'r')
19802 given++;
19803 if (!ISDIGIT (*given))
19804 return FALSE;
19805
19806 /* Skip over some well-known prefixes in the canonical name,
19807 hoping to find a number there too. */
19808 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19809 canonical += 2;
19810 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19811 canonical += 2;
19812 else if (TOLOWER (canonical[0]) == 'r')
19813 canonical += 1;
19814
19815 return mips_strict_matching_cpu_name_p (canonical, given);
19816 }
19817
19818
19819 /* Parse an option that takes the name of a processor as its argument.
19820 OPTION is the name of the option and CPU_STRING is the argument.
19821 Return the corresponding processor enumeration if the CPU_STRING is
19822 recognized, otherwise report an error and return null.
19823
19824 A similar function exists in GCC. */
19825
19826 static const struct mips_cpu_info *
19827 mips_parse_cpu (const char *option, const char *cpu_string)
19828 {
19829 const struct mips_cpu_info *p;
19830
19831 /* 'from-abi' selects the most compatible architecture for the given
19832 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19833 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19834 version. Look first at the -mgp options, if given, otherwise base
19835 the choice on MIPS_DEFAULT_64BIT.
19836
19837 Treat NO_ABI like the EABIs. One reason to do this is that the
19838 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19839 architecture. This code picks MIPS I for 'mips' and MIPS III for
19840 'mips64', just as we did in the days before 'from-abi'. */
19841 if (strcasecmp (cpu_string, "from-abi") == 0)
19842 {
19843 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19844 return mips_cpu_info_from_isa (ISA_MIPS1);
19845
19846 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19847 return mips_cpu_info_from_isa (ISA_MIPS3);
19848
19849 if (file_mips_opts.gp >= 0)
19850 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
19851 ? ISA_MIPS1 : ISA_MIPS3);
19852
19853 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19854 ? ISA_MIPS3
19855 : ISA_MIPS1);
19856 }
19857
19858 /* 'default' has traditionally been a no-op. Probably not very useful. */
19859 if (strcasecmp (cpu_string, "default") == 0)
19860 return 0;
19861
19862 for (p = mips_cpu_info_table; p->name != 0; p++)
19863 if (mips_matching_cpu_name_p (p->name, cpu_string))
19864 return p;
19865
19866 as_bad (_("bad value (%s) for %s"), cpu_string, option);
19867 return 0;
19868 }
19869
19870 /* Return the canonical processor information for ISA (a member of the
19871 ISA_MIPS* enumeration). */
19872
19873 static const struct mips_cpu_info *
19874 mips_cpu_info_from_isa (int isa)
19875 {
19876 int i;
19877
19878 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19879 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
19880 && isa == mips_cpu_info_table[i].isa)
19881 return (&mips_cpu_info_table[i]);
19882
19883 return NULL;
19884 }
19885
19886 static const struct mips_cpu_info *
19887 mips_cpu_info_from_arch (int arch)
19888 {
19889 int i;
19890
19891 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19892 if (arch == mips_cpu_info_table[i].cpu)
19893 return (&mips_cpu_info_table[i]);
19894
19895 return NULL;
19896 }
19897 \f
19898 static void
19899 show (FILE *stream, const char *string, int *col_p, int *first_p)
19900 {
19901 if (*first_p)
19902 {
19903 fprintf (stream, "%24s", "");
19904 *col_p = 24;
19905 }
19906 else
19907 {
19908 fprintf (stream, ", ");
19909 *col_p += 2;
19910 }
19911
19912 if (*col_p + strlen (string) > 72)
19913 {
19914 fprintf (stream, "\n%24s", "");
19915 *col_p = 24;
19916 }
19917
19918 fprintf (stream, "%s", string);
19919 *col_p += strlen (string);
19920
19921 *first_p = 0;
19922 }
19923
19924 void
19925 md_show_usage (FILE *stream)
19926 {
19927 int column, first;
19928 size_t i;
19929
19930 fprintf (stream, _("\
19931 MIPS options:\n\
19932 -EB generate big endian output\n\
19933 -EL generate little endian output\n\
19934 -g, -g2 do not remove unneeded NOPs or swap branches\n\
19935 -G NUM allow referencing objects up to NUM bytes\n\
19936 implicitly with the gp register [default 8]\n"));
19937 fprintf (stream, _("\
19938 -mips1 generate MIPS ISA I instructions\n\
19939 -mips2 generate MIPS ISA II instructions\n\
19940 -mips3 generate MIPS ISA III instructions\n\
19941 -mips4 generate MIPS ISA IV instructions\n\
19942 -mips5 generate MIPS ISA V instructions\n\
19943 -mips32 generate MIPS32 ISA instructions\n\
19944 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
19945 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
19946 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
19947 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
19948 -mips64 generate MIPS64 ISA instructions\n\
19949 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
19950 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
19951 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
19952 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
19953 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19954
19955 first = 1;
19956
19957 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19958 show (stream, mips_cpu_info_table[i].name, &column, &first);
19959 show (stream, "from-abi", &column, &first);
19960 fputc ('\n', stream);
19961
19962 fprintf (stream, _("\
19963 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19964 -no-mCPU don't generate code specific to CPU.\n\
19965 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19966
19967 first = 1;
19968
19969 show (stream, "3900", &column, &first);
19970 show (stream, "4010", &column, &first);
19971 show (stream, "4100", &column, &first);
19972 show (stream, "4650", &column, &first);
19973 fputc ('\n', stream);
19974
19975 fprintf (stream, _("\
19976 -mips16 generate mips16 instructions\n\
19977 -no-mips16 do not generate mips16 instructions\n"));
19978 fprintf (stream, _("\
19979 -mmicromips generate microMIPS instructions\n\
19980 -mno-micromips do not generate microMIPS instructions\n"));
19981 fprintf (stream, _("\
19982 -msmartmips generate smartmips instructions\n\
19983 -mno-smartmips do not generate smartmips instructions\n"));
19984 fprintf (stream, _("\
19985 -mdsp generate DSP instructions\n\
19986 -mno-dsp do not generate DSP instructions\n"));
19987 fprintf (stream, _("\
19988 -mdspr2 generate DSP R2 instructions\n\
19989 -mno-dspr2 do not generate DSP R2 instructions\n"));
19990 fprintf (stream, _("\
19991 -mdspr3 generate DSP R3 instructions\n\
19992 -mno-dspr3 do not generate DSP R3 instructions\n"));
19993 fprintf (stream, _("\
19994 -mmt generate MT instructions\n\
19995 -mno-mt do not generate MT instructions\n"));
19996 fprintf (stream, _("\
19997 -mmcu generate MCU instructions\n\
19998 -mno-mcu do not generate MCU instructions\n"));
19999 fprintf (stream, _("\
20000 -mmsa generate MSA instructions\n\
20001 -mno-msa do not generate MSA instructions\n"));
20002 fprintf (stream, _("\
20003 -mxpa generate eXtended Physical Address (XPA) instructions\n\
20004 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
20005 fprintf (stream, _("\
20006 -mvirt generate Virtualization instructions\n\
20007 -mno-virt do not generate Virtualization instructions\n"));
20008 fprintf (stream, _("\
20009 -minsn32 only generate 32-bit microMIPS instructions\n\
20010 -mno-insn32 generate all microMIPS instructions\n"));
20011 fprintf (stream, _("\
20012 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
20013 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
20014 -mfix-vr4120 work around certain VR4120 errata\n\
20015 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
20016 -mfix-24k insert a nop after ERET and DERET instructions\n\
20017 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
20018 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
20019 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
20020 -msym32 assume all symbols have 32-bit values\n\
20021 -O0 remove unneeded NOPs, do not swap branches\n\
20022 -O remove unneeded NOPs and swap branches\n\
20023 --trap, --no-break trap exception on div by 0 and mult overflow\n\
20024 --break, --no-trap break exception on div by 0 and mult overflow\n"));
20025 fprintf (stream, _("\
20026 -mhard-float allow floating-point instructions\n\
20027 -msoft-float do not allow floating-point instructions\n\
20028 -msingle-float only allow 32-bit floating-point operations\n\
20029 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
20030 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
20031 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
20032 -mignore-branch-isa accept invalid branches requiring an ISA mode switch\n\
20033 -mno-ignore-branch-isa reject invalid branches requiring an ISA mode switch\n\
20034 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
20035
20036 first = 1;
20037
20038 show (stream, "legacy", &column, &first);
20039 show (stream, "2008", &column, &first);
20040
20041 fputc ('\n', stream);
20042
20043 fprintf (stream, _("\
20044 -KPIC, -call_shared generate SVR4 position independent code\n\
20045 -call_nonpic generate non-PIC code that can operate with DSOs\n\
20046 -mvxworks-pic generate VxWorks position independent code\n\
20047 -non_shared do not generate code that can operate with DSOs\n\
20048 -xgot assume a 32 bit GOT\n\
20049 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
20050 -mshared, -mno-shared disable/enable .cpload optimization for\n\
20051 position dependent (non shared) code\n\
20052 -mabi=ABI create ABI conformant object file for:\n"));
20053
20054 first = 1;
20055
20056 show (stream, "32", &column, &first);
20057 show (stream, "o64", &column, &first);
20058 show (stream, "n32", &column, &first);
20059 show (stream, "64", &column, &first);
20060 show (stream, "eabi", &column, &first);
20061
20062 fputc ('\n', stream);
20063
20064 fprintf (stream, _("\
20065 -32 create o32 ABI object file (default)\n\
20066 -n32 create n32 ABI object file\n\
20067 -64 create 64 ABI object file\n"));
20068 }
20069
20070 #ifdef TE_IRIX
20071 enum dwarf2_format
20072 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
20073 {
20074 if (HAVE_64BIT_SYMBOLS)
20075 return dwarf2_format_64bit_irix;
20076 else
20077 return dwarf2_format_32bit;
20078 }
20079 #endif
20080
20081 int
20082 mips_dwarf2_addr_size (void)
20083 {
20084 if (HAVE_64BIT_OBJECTS)
20085 return 8;
20086 else
20087 return 4;
20088 }
20089
20090 /* Standard calling conventions leave the CFA at SP on entry. */
20091 void
20092 mips_cfi_frame_initial_instructions (void)
20093 {
20094 cfi_add_CFA_def_cfa_register (SP);
20095 }
20096
20097 int
20098 tc_mips_regname_to_dw2regnum (char *regname)
20099 {
20100 unsigned int regnum = -1;
20101 unsigned int reg;
20102
20103 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
20104 regnum = reg;
20105
20106 return regnum;
20107 }
20108
20109 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
20110 Given a symbolic attribute NAME, return the proper integer value.
20111 Returns -1 if the attribute is not known. */
20112
20113 int
20114 mips_convert_symbolic_attribute (const char *name)
20115 {
20116 static const struct
20117 {
20118 const char * name;
20119 const int tag;
20120 }
20121 attribute_table[] =
20122 {
20123 #define T(tag) {#tag, tag}
20124 T (Tag_GNU_MIPS_ABI_FP),
20125 T (Tag_GNU_MIPS_ABI_MSA),
20126 #undef T
20127 };
20128 unsigned int i;
20129
20130 if (name == NULL)
20131 return -1;
20132
20133 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
20134 if (streq (name, attribute_table[i].name))
20135 return attribute_table[i].tag;
20136
20137 return -1;
20138 }
20139
20140 void
20141 md_mips_end (void)
20142 {
20143 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
20144
20145 mips_emit_delays ();
20146 if (cur_proc_ptr)
20147 as_warn (_("missing .end at end of assembly"));
20148
20149 /* Just in case no code was emitted, do the consistency check. */
20150 file_mips_check_options ();
20151
20152 /* Set a floating-point ABI if the user did not. */
20153 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
20154 {
20155 /* Perform consistency checks on the floating-point ABI. */
20156 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20157 Tag_GNU_MIPS_ABI_FP);
20158 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
20159 check_fpabi (fpabi);
20160 }
20161 else
20162 {
20163 /* Soft-float gets precedence over single-float, the two options should
20164 not be used together so this should not matter. */
20165 if (file_mips_opts.soft_float == 1)
20166 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
20167 /* Single-float gets precedence over all double_float cases. */
20168 else if (file_mips_opts.single_float == 1)
20169 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
20170 else
20171 {
20172 switch (file_mips_opts.fp)
20173 {
20174 case 32:
20175 if (file_mips_opts.gp == 32)
20176 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20177 break;
20178 case 0:
20179 fpabi = Val_GNU_MIPS_ABI_FP_XX;
20180 break;
20181 case 64:
20182 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
20183 fpabi = Val_GNU_MIPS_ABI_FP_64A;
20184 else if (file_mips_opts.gp == 32)
20185 fpabi = Val_GNU_MIPS_ABI_FP_64;
20186 else
20187 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20188 break;
20189 }
20190 }
20191
20192 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20193 Tag_GNU_MIPS_ABI_FP, fpabi);
20194 }
20195 }
20196
20197 /* Returns the relocation type required for a particular CFI encoding. */
20198
20199 bfd_reloc_code_real_type
20200 mips_cfi_reloc_for_encoding (int encoding)
20201 {
20202 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
20203 return BFD_RELOC_32_PCREL;
20204 else return BFD_RELOC_NONE;
20205 }