]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/aarch64-linux-nat.c
AArch64 SVE: Check for vector length change when getting gdbarch
[thirdparty/binutils-gdb.git] / gdb / aarch64-linux-nat.c
1 /* Native-dependent code for GNU/Linux AArch64.
2
3 Copyright (C) 2011-2019 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "regcache.h"
26 #include "linux-nat.h"
27 #include "target-descriptions.h"
28 #include "auxv.h"
29 #include "gdbcmd.h"
30 #include "aarch64-tdep.h"
31 #include "aarch64-linux-tdep.h"
32 #include "aarch32-linux-nat.h"
33 #include "nat/aarch64-linux.h"
34 #include "nat/aarch64-linux-hw-point.h"
35 #include "nat/aarch64-sve-linux-ptrace.h"
36
37 #include "elf/external.h"
38 #include "elf/common.h"
39
40 #include "nat/gdb_ptrace.h"
41 #include <sys/utsname.h>
42 #include <asm/ptrace.h>
43
44 #include "gregset.h"
45 #include "linux-tdep.h"
46
47 /* Defines ps_err_e, struct ps_prochandle. */
48 #include "gdb_proc_service.h"
49 #include "arch-utils.h"
50
51 #ifndef TRAP_HWBKPT
52 #define TRAP_HWBKPT 0x0004
53 #endif
54
55 class aarch64_linux_nat_target final : public linux_nat_target
56 {
57 public:
58 /* Add our register access methods. */
59 void fetch_registers (struct regcache *, int) override;
60 void store_registers (struct regcache *, int) override;
61
62 const struct target_desc *read_description () override;
63
64 /* Add our hardware breakpoint and watchpoint implementation. */
65 int can_use_hw_breakpoint (enum bptype, int, int) override;
66 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
67 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
68 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
69 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
70 struct expression *) override;
71 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
72 struct expression *) override;
73 bool stopped_by_watchpoint () override;
74 bool stopped_data_address (CORE_ADDR *) override;
75 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
76
77 int can_do_single_step () override;
78
79 /* Override the GNU/Linux inferior startup hook. */
80 void post_startup_inferior (ptid_t) override;
81
82 /* Override the GNU/Linux post attach hook. */
83 void post_attach (int pid) override;
84
85 /* These three defer to common nat/ code. */
86 void low_new_thread (struct lwp_info *lp) override
87 { aarch64_linux_new_thread (lp); }
88 void low_delete_thread (struct arch_lwp_info *lp) override
89 { aarch64_linux_delete_thread (lp); }
90 void low_prepare_to_resume (struct lwp_info *lp) override
91 { aarch64_linux_prepare_to_resume (lp); }
92
93 void low_new_fork (struct lwp_info *parent, pid_t child_pid) override;
94 void low_forget_process (pid_t pid) override;
95
96 /* Add our siginfo layout converter. */
97 bool low_siginfo_fixup (siginfo_t *ptrace, gdb_byte *inf, int direction)
98 override;
99
100 struct gdbarch *thread_architecture (ptid_t) override;
101 };
102
103 static aarch64_linux_nat_target the_aarch64_linux_nat_target;
104
105 /* Per-process data. We don't bind this to a per-inferior registry
106 because of targets like x86 GNU/Linux that need to keep track of
107 processes that aren't bound to any inferior (e.g., fork children,
108 checkpoints). */
109
110 struct aarch64_process_info
111 {
112 /* Linked list. */
113 struct aarch64_process_info *next;
114
115 /* The process identifier. */
116 pid_t pid;
117
118 /* Copy of aarch64 hardware debug registers. */
119 struct aarch64_debug_reg_state state;
120 };
121
122 static struct aarch64_process_info *aarch64_process_list = NULL;
123
124 /* Find process data for process PID. */
125
126 static struct aarch64_process_info *
127 aarch64_find_process_pid (pid_t pid)
128 {
129 struct aarch64_process_info *proc;
130
131 for (proc = aarch64_process_list; proc; proc = proc->next)
132 if (proc->pid == pid)
133 return proc;
134
135 return NULL;
136 }
137
138 /* Add process data for process PID. Returns newly allocated info
139 object. */
140
141 static struct aarch64_process_info *
142 aarch64_add_process (pid_t pid)
143 {
144 struct aarch64_process_info *proc;
145
146 proc = XCNEW (struct aarch64_process_info);
147 proc->pid = pid;
148
149 proc->next = aarch64_process_list;
150 aarch64_process_list = proc;
151
152 return proc;
153 }
154
155 /* Get data specific info for process PID, creating it if necessary.
156 Never returns NULL. */
157
158 static struct aarch64_process_info *
159 aarch64_process_info_get (pid_t pid)
160 {
161 struct aarch64_process_info *proc;
162
163 proc = aarch64_find_process_pid (pid);
164 if (proc == NULL)
165 proc = aarch64_add_process (pid);
166
167 return proc;
168 }
169
170 /* Called whenever GDB is no longer debugging process PID. It deletes
171 data structures that keep track of debug register state. */
172
173 void
174 aarch64_linux_nat_target::low_forget_process (pid_t pid)
175 {
176 struct aarch64_process_info *proc, **proc_link;
177
178 proc = aarch64_process_list;
179 proc_link = &aarch64_process_list;
180
181 while (proc != NULL)
182 {
183 if (proc->pid == pid)
184 {
185 *proc_link = proc->next;
186
187 xfree (proc);
188 return;
189 }
190
191 proc_link = &proc->next;
192 proc = *proc_link;
193 }
194 }
195
196 /* Get debug registers state for process PID. */
197
198 struct aarch64_debug_reg_state *
199 aarch64_get_debug_reg_state (pid_t pid)
200 {
201 return &aarch64_process_info_get (pid)->state;
202 }
203
204 /* Fill GDB's register array with the general-purpose register values
205 from the current thread. */
206
207 static void
208 fetch_gregs_from_thread (struct regcache *regcache)
209 {
210 int ret, tid;
211 struct gdbarch *gdbarch = regcache->arch ();
212 elf_gregset_t regs;
213 struct iovec iovec;
214
215 /* Make sure REGS can hold all registers contents on both aarch64
216 and arm. */
217 gdb_static_assert (sizeof (regs) >= 18 * 4);
218
219 tid = regcache->ptid ().lwp ();
220
221 iovec.iov_base = &regs;
222 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
223 iovec.iov_len = 18 * 4;
224 else
225 iovec.iov_len = sizeof (regs);
226
227 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
228 if (ret < 0)
229 perror_with_name (_("Unable to fetch general registers."));
230
231 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
232 aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, 1);
233 else
234 {
235 int regno;
236
237 for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
238 regcache->raw_supply (regno, &regs[regno - AARCH64_X0_REGNUM]);
239 }
240 }
241
242 /* Store to the current thread the valid general-purpose register
243 values in the GDB's register array. */
244
245 static void
246 store_gregs_to_thread (const struct regcache *regcache)
247 {
248 int ret, tid;
249 elf_gregset_t regs;
250 struct iovec iovec;
251 struct gdbarch *gdbarch = regcache->arch ();
252
253 /* Make sure REGS can hold all registers contents on both aarch64
254 and arm. */
255 gdb_static_assert (sizeof (regs) >= 18 * 4);
256 tid = regcache->ptid ().lwp ();
257
258 iovec.iov_base = &regs;
259 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
260 iovec.iov_len = 18 * 4;
261 else
262 iovec.iov_len = sizeof (regs);
263
264 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
265 if (ret < 0)
266 perror_with_name (_("Unable to fetch general registers."));
267
268 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
269 aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, 1);
270 else
271 {
272 int regno;
273
274 for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
275 if (REG_VALID == regcache->get_register_status (regno))
276 regcache->raw_collect (regno, &regs[regno - AARCH64_X0_REGNUM]);
277 }
278
279 ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iovec);
280 if (ret < 0)
281 perror_with_name (_("Unable to store general registers."));
282 }
283
284 /* Fill GDB's register array with the fp/simd register values
285 from the current thread. */
286
287 static void
288 fetch_fpregs_from_thread (struct regcache *regcache)
289 {
290 int ret, tid;
291 elf_fpregset_t regs;
292 struct iovec iovec;
293 struct gdbarch *gdbarch = regcache->arch ();
294
295 /* Make sure REGS can hold all VFP registers contents on both aarch64
296 and arm. */
297 gdb_static_assert (sizeof regs >= VFP_REGS_SIZE);
298
299 tid = regcache->ptid ().lwp ();
300
301 iovec.iov_base = &regs;
302
303 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
304 {
305 iovec.iov_len = VFP_REGS_SIZE;
306
307 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
308 if (ret < 0)
309 perror_with_name (_("Unable to fetch VFP registers."));
310
311 aarch32_vfp_regcache_supply (regcache, (gdb_byte *) &regs, 32);
312 }
313 else
314 {
315 int regno;
316
317 iovec.iov_len = sizeof (regs);
318
319 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
320 if (ret < 0)
321 perror_with_name (_("Unable to fetch vFP/SIMD registers."));
322
323 for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
324 regcache->raw_supply (regno, &regs.vregs[regno - AARCH64_V0_REGNUM]);
325
326 regcache->raw_supply (AARCH64_FPSR_REGNUM, &regs.fpsr);
327 regcache->raw_supply (AARCH64_FPCR_REGNUM, &regs.fpcr);
328 }
329 }
330
331 /* Store to the current thread the valid fp/simd register
332 values in the GDB's register array. */
333
334 static void
335 store_fpregs_to_thread (const struct regcache *regcache)
336 {
337 int ret, tid;
338 elf_fpregset_t regs;
339 struct iovec iovec;
340 struct gdbarch *gdbarch = regcache->arch ();
341
342 /* Make sure REGS can hold all VFP registers contents on both aarch64
343 and arm. */
344 gdb_static_assert (sizeof regs >= VFP_REGS_SIZE);
345 tid = regcache->ptid ().lwp ();
346
347 iovec.iov_base = &regs;
348
349 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
350 {
351 iovec.iov_len = VFP_REGS_SIZE;
352
353 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
354 if (ret < 0)
355 perror_with_name (_("Unable to fetch VFP registers."));
356
357 aarch32_vfp_regcache_collect (regcache, (gdb_byte *) &regs, 32);
358 }
359 else
360 {
361 int regno;
362
363 iovec.iov_len = sizeof (regs);
364
365 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
366 if (ret < 0)
367 perror_with_name (_("Unable to fetch FP/SIMD registers."));
368
369 for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
370 if (REG_VALID == regcache->get_register_status (regno))
371 regcache->raw_collect
372 (regno, (char *) &regs.vregs[regno - AARCH64_V0_REGNUM]);
373
374 if (REG_VALID == regcache->get_register_status (AARCH64_FPSR_REGNUM))
375 regcache->raw_collect (AARCH64_FPSR_REGNUM, (char *) &regs.fpsr);
376 if (REG_VALID == regcache->get_register_status (AARCH64_FPCR_REGNUM))
377 regcache->raw_collect (AARCH64_FPCR_REGNUM, (char *) &regs.fpcr);
378 }
379
380 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
381 {
382 ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iovec);
383 if (ret < 0)
384 perror_with_name (_("Unable to store VFP registers."));
385 }
386 else
387 {
388 ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iovec);
389 if (ret < 0)
390 perror_with_name (_("Unable to store FP/SIMD registers."));
391 }
392 }
393
394 /* Fill GDB's register array with the sve register values
395 from the current thread. */
396
397 static void
398 fetch_sveregs_from_thread (struct regcache *regcache)
399 {
400 std::unique_ptr<gdb_byte[]> base
401 = aarch64_sve_get_sveregs (regcache->ptid ().lwp ());
402 aarch64_sve_regs_copy_to_reg_buf (regcache, base.get ());
403 }
404
405 /* Store to the current thread the valid sve register
406 values in the GDB's register array. */
407
408 static void
409 store_sveregs_to_thread (struct regcache *regcache)
410 {
411 int ret;
412 struct iovec iovec;
413 int tid = regcache->ptid ().lwp ();
414
415 /* Obtain a dump of SVE registers from ptrace. */
416 std::unique_ptr<gdb_byte[]> base = aarch64_sve_get_sveregs (tid);
417
418 /* Overwrite with regcache state. */
419 aarch64_sve_regs_copy_from_reg_buf (regcache, base.get ());
420
421 /* Write back to the kernel. */
422 iovec.iov_base = base.get ();
423 iovec.iov_len = ((struct user_sve_header *) base.get ())->size;
424 ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_SVE, &iovec);
425
426 if (ret < 0)
427 perror_with_name (_("Unable to store sve registers"));
428 }
429
430 /* Fill GDB's register array with the pointer authentication mask values from
431 the current thread. */
432
433 static void
434 fetch_pauth_masks_from_thread (struct regcache *regcache)
435 {
436 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
437 int ret;
438 struct iovec iovec;
439 uint64_t pauth_regset[2] = {0, 0};
440 int tid = regcache->ptid ().lwp ();
441
442 iovec.iov_base = &pauth_regset;
443 iovec.iov_len = sizeof (pauth_regset);
444
445 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_PAC_MASK, &iovec);
446 if (ret != 0)
447 perror_with_name (_("unable to fetch pauth registers."));
448
449 regcache->raw_supply (AARCH64_PAUTH_DMASK_REGNUM (tdep->pauth_reg_base),
450 &pauth_regset[0]);
451 regcache->raw_supply (AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base),
452 &pauth_regset[1]);
453 }
454
455 /* Implement the "fetch_registers" target_ops method. */
456
457 void
458 aarch64_linux_nat_target::fetch_registers (struct regcache *regcache,
459 int regno)
460 {
461 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
462
463 if (regno == -1)
464 {
465 fetch_gregs_from_thread (regcache);
466 if (tdep->has_sve ())
467 fetch_sveregs_from_thread (regcache);
468 else
469 fetch_fpregs_from_thread (regcache);
470
471 if (tdep->has_pauth ())
472 fetch_pauth_masks_from_thread (regcache);
473 }
474 else if (regno < AARCH64_V0_REGNUM)
475 fetch_gregs_from_thread (regcache);
476 else if (tdep->has_sve ())
477 fetch_sveregs_from_thread (regcache);
478 else
479 fetch_fpregs_from_thread (regcache);
480
481 if (tdep->has_pauth ())
482 {
483 if (regno == AARCH64_PAUTH_DMASK_REGNUM (tdep->pauth_reg_base)
484 || regno == AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base))
485 fetch_pauth_masks_from_thread (regcache);
486 }
487 }
488
489 /* Implement the "store_registers" target_ops method. */
490
491 void
492 aarch64_linux_nat_target::store_registers (struct regcache *regcache,
493 int regno)
494 {
495 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
496
497 if (regno == -1)
498 {
499 store_gregs_to_thread (regcache);
500 if (tdep->has_sve ())
501 store_sveregs_to_thread (regcache);
502 else
503 store_fpregs_to_thread (regcache);
504 }
505 else if (regno < AARCH64_V0_REGNUM)
506 store_gregs_to_thread (regcache);
507 else if (tdep->has_sve ())
508 store_sveregs_to_thread (regcache);
509 else
510 store_fpregs_to_thread (regcache);
511 }
512
513 /* Fill register REGNO (if it is a general-purpose register) in
514 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
515 do this for all registers. */
516
517 void
518 fill_gregset (const struct regcache *regcache,
519 gdb_gregset_t *gregsetp, int regno)
520 {
521 regcache_collect_regset (&aarch64_linux_gregset, regcache,
522 regno, (gdb_byte *) gregsetp,
523 AARCH64_LINUX_SIZEOF_GREGSET);
524 }
525
526 /* Fill GDB's register array with the general-purpose register values
527 in *GREGSETP. */
528
529 void
530 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
531 {
532 regcache_supply_regset (&aarch64_linux_gregset, regcache, -1,
533 (const gdb_byte *) gregsetp,
534 AARCH64_LINUX_SIZEOF_GREGSET);
535 }
536
537 /* Fill register REGNO (if it is a floating-point register) in
538 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
539 do this for all registers. */
540
541 void
542 fill_fpregset (const struct regcache *regcache,
543 gdb_fpregset_t *fpregsetp, int regno)
544 {
545 regcache_collect_regset (&aarch64_linux_fpregset, regcache,
546 regno, (gdb_byte *) fpregsetp,
547 AARCH64_LINUX_SIZEOF_FPREGSET);
548 }
549
550 /* Fill GDB's register array with the floating-point register values
551 in *FPREGSETP. */
552
553 void
554 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
555 {
556 regcache_supply_regset (&aarch64_linux_fpregset, regcache, -1,
557 (const gdb_byte *) fpregsetp,
558 AARCH64_LINUX_SIZEOF_FPREGSET);
559 }
560
561 /* linux_nat_new_fork hook. */
562
563 void
564 aarch64_linux_nat_target::low_new_fork (struct lwp_info *parent,
565 pid_t child_pid)
566 {
567 pid_t parent_pid;
568 struct aarch64_debug_reg_state *parent_state;
569 struct aarch64_debug_reg_state *child_state;
570
571 /* NULL means no watchpoint has ever been set in the parent. In
572 that case, there's nothing to do. */
573 if (parent->arch_private == NULL)
574 return;
575
576 /* GDB core assumes the child inherits the watchpoints/hw
577 breakpoints of the parent, and will remove them all from the
578 forked off process. Copy the debug registers mirrors into the
579 new process so that all breakpoints and watchpoints can be
580 removed together. */
581
582 parent_pid = parent->ptid.pid ();
583 parent_state = aarch64_get_debug_reg_state (parent_pid);
584 child_state = aarch64_get_debug_reg_state (child_pid);
585 *child_state = *parent_state;
586 }
587 \f
588
589 /* Called by libthread_db. Returns a pointer to the thread local
590 storage (or its descriptor). */
591
592 ps_err_e
593 ps_get_thread_area (struct ps_prochandle *ph,
594 lwpid_t lwpid, int idx, void **base)
595 {
596 int is_64bit_p
597 = (gdbarch_bfd_arch_info (target_gdbarch ())->bits_per_word == 64);
598
599 return aarch64_ps_get_thread_area (ph, lwpid, idx, base, is_64bit_p);
600 }
601 \f
602
603 /* Implement the "post_startup_inferior" target_ops method. */
604
605 void
606 aarch64_linux_nat_target::post_startup_inferior (ptid_t ptid)
607 {
608 low_forget_process (ptid.pid ());
609 aarch64_linux_get_debug_reg_capacity (ptid.pid ());
610 linux_nat_target::post_startup_inferior (ptid);
611 }
612
613 /* Implement the "post_attach" target_ops method. */
614
615 void
616 aarch64_linux_nat_target::post_attach (int pid)
617 {
618 low_forget_process (pid);
619 /* Set the hardware debug register capacity. If
620 aarch64_linux_get_debug_reg_capacity is not called
621 (as it is in aarch64_linux_child_post_startup_inferior) then
622 software watchpoints will be used instead of hardware
623 watchpoints when attaching to a target. */
624 aarch64_linux_get_debug_reg_capacity (pid);
625 linux_nat_target::post_attach (pid);
626 }
627
628 extern struct target_desc *tdesc_arm_with_neon;
629
630 /* Implement the "read_description" target_ops method. */
631
632 const struct target_desc *
633 aarch64_linux_nat_target::read_description ()
634 {
635 int ret, tid;
636 gdb_byte regbuf[VFP_REGS_SIZE];
637 struct iovec iovec;
638
639 tid = inferior_ptid.lwp ();
640
641 iovec.iov_base = regbuf;
642 iovec.iov_len = VFP_REGS_SIZE;
643
644 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
645 if (ret == 0)
646 return tdesc_arm_with_neon;
647
648 CORE_ADDR hwcap = linux_get_hwcap (this);
649
650 return aarch64_read_description (aarch64_sve_get_vq (tid),
651 hwcap & AARCH64_HWCAP_PACA);
652 }
653
654 /* Convert a native/host siginfo object, into/from the siginfo in the
655 layout of the inferiors' architecture. Returns true if any
656 conversion was done; false otherwise. If DIRECTION is 1, then copy
657 from INF to NATIVE. If DIRECTION is 0, copy from NATIVE to
658 INF. */
659
660 bool
661 aarch64_linux_nat_target::low_siginfo_fixup (siginfo_t *native, gdb_byte *inf,
662 int direction)
663 {
664 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
665
666 /* Is the inferior 32-bit? If so, then do fixup the siginfo
667 object. */
668 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
669 {
670 if (direction == 0)
671 aarch64_compat_siginfo_from_siginfo ((struct compat_siginfo *) inf,
672 native);
673 else
674 aarch64_siginfo_from_compat_siginfo (native,
675 (struct compat_siginfo *) inf);
676
677 return true;
678 }
679
680 return false;
681 }
682
683 /* Returns the number of hardware watchpoints of type TYPE that we can
684 set. Value is positive if we can set CNT watchpoints, zero if
685 setting watchpoints of type TYPE is not supported, and negative if
686 CNT is more than the maximum number of watchpoints of type TYPE
687 that we can support. TYPE is one of bp_hardware_watchpoint,
688 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
689 CNT is the number of such watchpoints used so far (including this
690 one). OTHERTYPE is non-zero if other types of watchpoints are
691 currently enabled. */
692
693 int
694 aarch64_linux_nat_target::can_use_hw_breakpoint (enum bptype type,
695 int cnt, int othertype)
696 {
697 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
698 || type == bp_access_watchpoint || type == bp_watchpoint)
699 {
700 if (aarch64_num_wp_regs == 0)
701 return 0;
702 }
703 else if (type == bp_hardware_breakpoint)
704 {
705 if (aarch64_num_bp_regs == 0)
706 return 0;
707 }
708 else
709 gdb_assert_not_reached ("unexpected breakpoint type");
710
711 /* We always return 1 here because we don't have enough information
712 about possible overlap of addresses that they want to watch. As an
713 extreme example, consider the case where all the watchpoints watch
714 the same address and the same region length: then we can handle a
715 virtually unlimited number of watchpoints, due to debug register
716 sharing implemented via reference counts. */
717 return 1;
718 }
719
720 /* Insert a hardware-assisted breakpoint at BP_TGT->reqstd_address.
721 Return 0 on success, -1 on failure. */
722
723 int
724 aarch64_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
725 struct bp_target_info *bp_tgt)
726 {
727 int ret;
728 CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address;
729 int len;
730 const enum target_hw_bp_type type = hw_execute;
731 struct aarch64_debug_reg_state *state
732 = aarch64_get_debug_reg_state (inferior_ptid.pid ());
733
734 gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
735
736 if (show_debug_regs)
737 fprintf_unfiltered
738 (gdb_stdlog,
739 "insert_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
740 (unsigned long) addr, len);
741
742 ret = aarch64_handle_breakpoint (type, addr, len, 1 /* is_insert */, state);
743
744 if (show_debug_regs)
745 {
746 aarch64_show_debug_reg_state (state,
747 "insert_hw_breakpoint", addr, len, type);
748 }
749
750 return ret;
751 }
752
753 /* Remove a hardware-assisted breakpoint at BP_TGT->placed_address.
754 Return 0 on success, -1 on failure. */
755
756 int
757 aarch64_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
758 struct bp_target_info *bp_tgt)
759 {
760 int ret;
761 CORE_ADDR addr = bp_tgt->placed_address;
762 int len = 4;
763 const enum target_hw_bp_type type = hw_execute;
764 struct aarch64_debug_reg_state *state
765 = aarch64_get_debug_reg_state (inferior_ptid.pid ());
766
767 gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
768
769 if (show_debug_regs)
770 fprintf_unfiltered
771 (gdb_stdlog, "remove_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
772 (unsigned long) addr, len);
773
774 ret = aarch64_handle_breakpoint (type, addr, len, 0 /* is_insert */, state);
775
776 if (show_debug_regs)
777 {
778 aarch64_show_debug_reg_state (state,
779 "remove_hw_watchpoint", addr, len, type);
780 }
781
782 return ret;
783 }
784
785 /* Implement the "insert_watchpoint" target_ops method.
786
787 Insert a watchpoint to watch a memory region which starts at
788 address ADDR and whose length is LEN bytes. Watch memory accesses
789 of the type TYPE. Return 0 on success, -1 on failure. */
790
791 int
792 aarch64_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
793 enum target_hw_bp_type type,
794 struct expression *cond)
795 {
796 int ret;
797 struct aarch64_debug_reg_state *state
798 = aarch64_get_debug_reg_state (inferior_ptid.pid ());
799
800 if (show_debug_regs)
801 fprintf_unfiltered (gdb_stdlog,
802 "insert_watchpoint on entry (addr=0x%08lx, len=%d)\n",
803 (unsigned long) addr, len);
804
805 gdb_assert (type != hw_execute);
806
807 ret = aarch64_handle_watchpoint (type, addr, len, 1 /* is_insert */, state);
808
809 if (show_debug_regs)
810 {
811 aarch64_show_debug_reg_state (state,
812 "insert_watchpoint", addr, len, type);
813 }
814
815 return ret;
816 }
817
818 /* Implement the "remove_watchpoint" target_ops method.
819 Remove a watchpoint that watched the memory region which starts at
820 address ADDR, whose length is LEN bytes, and for accesses of the
821 type TYPE. Return 0 on success, -1 on failure. */
822
823 int
824 aarch64_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
825 enum target_hw_bp_type type,
826 struct expression *cond)
827 {
828 int ret;
829 struct aarch64_debug_reg_state *state
830 = aarch64_get_debug_reg_state (inferior_ptid.pid ());
831
832 if (show_debug_regs)
833 fprintf_unfiltered (gdb_stdlog,
834 "remove_watchpoint on entry (addr=0x%08lx, len=%d)\n",
835 (unsigned long) addr, len);
836
837 gdb_assert (type != hw_execute);
838
839 ret = aarch64_handle_watchpoint (type, addr, len, 0 /* is_insert */, state);
840
841 if (show_debug_regs)
842 {
843 aarch64_show_debug_reg_state (state,
844 "remove_watchpoint", addr, len, type);
845 }
846
847 return ret;
848 }
849
850 /* Implement the "region_ok_for_hw_watchpoint" target_ops method. */
851
852 int
853 aarch64_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
854 {
855 return aarch64_linux_region_ok_for_watchpoint (addr, len);
856 }
857
858 /* Implement the "stopped_data_address" target_ops method. */
859
860 bool
861 aarch64_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
862 {
863 siginfo_t siginfo;
864 int i;
865 struct aarch64_debug_reg_state *state;
866
867 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
868 return false;
869
870 /* This must be a hardware breakpoint. */
871 if (siginfo.si_signo != SIGTRAP
872 || (siginfo.si_code & 0xffff) != TRAP_HWBKPT)
873 return false;
874
875 /* Check if the address matches any watched address. */
876 state = aarch64_get_debug_reg_state (inferior_ptid.pid ());
877 for (i = aarch64_num_wp_regs - 1; i >= 0; --i)
878 {
879 const unsigned int offset
880 = aarch64_watchpoint_offset (state->dr_ctrl_wp[i]);
881 const unsigned int len = aarch64_watchpoint_length (state->dr_ctrl_wp[i]);
882 const CORE_ADDR addr_trap = (CORE_ADDR) siginfo.si_addr;
883 const CORE_ADDR addr_watch = state->dr_addr_wp[i] + offset;
884 const CORE_ADDR addr_watch_aligned = align_down (state->dr_addr_wp[i], 8);
885 const CORE_ADDR addr_orig = state->dr_addr_orig_wp[i];
886
887 if (state->dr_ref_count_wp[i]
888 && DR_CONTROL_ENABLED (state->dr_ctrl_wp[i])
889 && addr_trap >= addr_watch_aligned
890 && addr_trap < addr_watch + len)
891 {
892 /* ADDR_TRAP reports the first address of the memory range
893 accessed by the CPU, regardless of what was the memory
894 range watched. Thus, a large CPU access that straddles
895 the ADDR_WATCH..ADDR_WATCH+LEN range may result in an
896 ADDR_TRAP that is lower than the
897 ADDR_WATCH..ADDR_WATCH+LEN range. E.g.:
898
899 addr: | 4 | 5 | 6 | 7 | 8 |
900 |---- range watched ----|
901 |----------- range accessed ------------|
902
903 In this case, ADDR_TRAP will be 4.
904
905 To match a watchpoint known to GDB core, we must never
906 report *ADDR_P outside of any ADDR_WATCH..ADDR_WATCH+LEN
907 range. ADDR_WATCH <= ADDR_TRAP < ADDR_ORIG is a false
908 positive on kernels older than 4.10. See PR
909 external/20207. */
910 *addr_p = addr_orig;
911 return true;
912 }
913 }
914
915 return false;
916 }
917
918 /* Implement the "stopped_by_watchpoint" target_ops method. */
919
920 bool
921 aarch64_linux_nat_target::stopped_by_watchpoint ()
922 {
923 CORE_ADDR addr;
924
925 return stopped_data_address (&addr);
926 }
927
928 /* Implement the "watchpoint_addr_within_range" target_ops method. */
929
930 bool
931 aarch64_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr,
932 CORE_ADDR start, int length)
933 {
934 return start <= addr && start + length - 1 >= addr;
935 }
936
937 /* Implement the "can_do_single_step" target_ops method. */
938
939 int
940 aarch64_linux_nat_target::can_do_single_step ()
941 {
942 return 1;
943 }
944
945 /* Implement the "thread_architecture" target_ops method. */
946
947 struct gdbarch *
948 aarch64_linux_nat_target::thread_architecture (ptid_t ptid)
949 {
950 /* Return the gdbarch for the current thread. If the vector length has
951 changed since the last time this was called, then do a further lookup. */
952
953 uint64_t vq = aarch64_sve_get_vq (ptid.lwp ());
954
955 /* Find the current gdbarch the same way as process_stratum_target. Only
956 return it if the current vector length matches the one in the tdep. */
957 inferior *inf = find_inferior_ptid (ptid);
958 gdb_assert (inf != NULL);
959 if (vq == gdbarch_tdep (inf->gdbarch)->vq)
960 return inf->gdbarch;
961
962 /* We reach here if the vector length for the thread is different from its
963 value at process start. Lookup gdbarch via info (potentially creating a
964 new one), stashing the vector length inside id. Use -1 for when SVE
965 unavailable, to distinguish from an unset value of 0. */
966 struct gdbarch_info info;
967 gdbarch_info_init (&info);
968 info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
969 info.id = (int *) (vq == 0 ? -1 : vq);
970 return gdbarch_find_by_info (info);
971 }
972
973 /* Define AArch64 maintenance commands. */
974
975 static void
976 add_show_debug_regs_command (void)
977 {
978 /* A maintenance command to enable printing the internal DRi mirror
979 variables. */
980 add_setshow_boolean_cmd ("show-debug-regs", class_maintenance,
981 &show_debug_regs, _("\
982 Set whether to show variables that mirror the AArch64 debug registers."), _("\
983 Show whether to show variables that mirror the AArch64 debug registers."), _("\
984 Use \"on\" to enable, \"off\" to disable.\n\
985 If enabled, the debug registers values are shown when GDB inserts\n\
986 or removes a hardware breakpoint or watchpoint, and when the inferior\n\
987 triggers a breakpoint or watchpoint."),
988 NULL,
989 NULL,
990 &maintenance_set_cmdlist,
991 &maintenance_show_cmdlist);
992 }
993
994 void
995 _initialize_aarch64_linux_nat (void)
996 {
997 add_show_debug_regs_command ();
998
999 /* Register the target. */
1000 linux_target = &the_aarch64_linux_nat_target;
1001 add_inf_child_target (&the_aarch64_linux_nat_target);
1002 }