]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/aarch64-tdep.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gdb / aarch64-tdep.c
1 /* Common target dependent code for GDB on AArch64 systems.
2
3 Copyright (C) 2009-2020 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22
23 #include "frame.h"
24 #include "gdbcmd.h"
25 #include "gdbcore.h"
26 #include "dis-asm.h"
27 #include "regcache.h"
28 #include "reggroups.h"
29 #include "value.h"
30 #include "arch-utils.h"
31 #include "osabi.h"
32 #include "frame-unwind.h"
33 #include "frame-base.h"
34 #include "trad-frame.h"
35 #include "objfiles.h"
36 #include "dwarf2.h"
37 #include "dwarf2/frame.h"
38 #include "gdbtypes.h"
39 #include "prologue-value.h"
40 #include "target-descriptions.h"
41 #include "user-regs.h"
42 #include "ax-gdb.h"
43 #include "gdbsupport/selftest.h"
44
45 #include "aarch64-tdep.h"
46 #include "aarch64-ravenscar-thread.h"
47
48 #include "record.h"
49 #include "record-full.h"
50 #include "arch/aarch64-insn.h"
51 #include "gdbarch.h"
52
53 #include "opcode/aarch64.h"
54 #include <algorithm>
55
56 #define submask(x) ((1L << ((x) + 1)) - 1)
57 #define bit(obj,st) (((obj) >> (st)) & 1)
58 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
59
60 /* A Homogeneous Floating-Point or Short-Vector Aggregate may have at most
61 four members. */
62 #define HA_MAX_NUM_FLDS 4
63
64 /* All possible aarch64 target descriptors. */
65 struct target_desc *tdesc_aarch64_list[AARCH64_MAX_SVE_VQ + 1][2/*pauth*/];
66
67 /* The standard register names, and all the valid aliases for them. */
68 static const struct
69 {
70 const char *const name;
71 int regnum;
72 } aarch64_register_aliases[] =
73 {
74 /* 64-bit register names. */
75 {"fp", AARCH64_FP_REGNUM},
76 {"lr", AARCH64_LR_REGNUM},
77 {"sp", AARCH64_SP_REGNUM},
78
79 /* 32-bit register names. */
80 {"w0", AARCH64_X0_REGNUM + 0},
81 {"w1", AARCH64_X0_REGNUM + 1},
82 {"w2", AARCH64_X0_REGNUM + 2},
83 {"w3", AARCH64_X0_REGNUM + 3},
84 {"w4", AARCH64_X0_REGNUM + 4},
85 {"w5", AARCH64_X0_REGNUM + 5},
86 {"w6", AARCH64_X0_REGNUM + 6},
87 {"w7", AARCH64_X0_REGNUM + 7},
88 {"w8", AARCH64_X0_REGNUM + 8},
89 {"w9", AARCH64_X0_REGNUM + 9},
90 {"w10", AARCH64_X0_REGNUM + 10},
91 {"w11", AARCH64_X0_REGNUM + 11},
92 {"w12", AARCH64_X0_REGNUM + 12},
93 {"w13", AARCH64_X0_REGNUM + 13},
94 {"w14", AARCH64_X0_REGNUM + 14},
95 {"w15", AARCH64_X0_REGNUM + 15},
96 {"w16", AARCH64_X0_REGNUM + 16},
97 {"w17", AARCH64_X0_REGNUM + 17},
98 {"w18", AARCH64_X0_REGNUM + 18},
99 {"w19", AARCH64_X0_REGNUM + 19},
100 {"w20", AARCH64_X0_REGNUM + 20},
101 {"w21", AARCH64_X0_REGNUM + 21},
102 {"w22", AARCH64_X0_REGNUM + 22},
103 {"w23", AARCH64_X0_REGNUM + 23},
104 {"w24", AARCH64_X0_REGNUM + 24},
105 {"w25", AARCH64_X0_REGNUM + 25},
106 {"w26", AARCH64_X0_REGNUM + 26},
107 {"w27", AARCH64_X0_REGNUM + 27},
108 {"w28", AARCH64_X0_REGNUM + 28},
109 {"w29", AARCH64_X0_REGNUM + 29},
110 {"w30", AARCH64_X0_REGNUM + 30},
111
112 /* specials */
113 {"ip0", AARCH64_X0_REGNUM + 16},
114 {"ip1", AARCH64_X0_REGNUM + 17}
115 };
116
117 /* The required core 'R' registers. */
118 static const char *const aarch64_r_register_names[] =
119 {
120 /* These registers must appear in consecutive RAW register number
121 order and they must begin with AARCH64_X0_REGNUM! */
122 "x0", "x1", "x2", "x3",
123 "x4", "x5", "x6", "x7",
124 "x8", "x9", "x10", "x11",
125 "x12", "x13", "x14", "x15",
126 "x16", "x17", "x18", "x19",
127 "x20", "x21", "x22", "x23",
128 "x24", "x25", "x26", "x27",
129 "x28", "x29", "x30", "sp",
130 "pc", "cpsr"
131 };
132
133 /* The FP/SIMD 'V' registers. */
134 static const char *const aarch64_v_register_names[] =
135 {
136 /* These registers must appear in consecutive RAW register number
137 order and they must begin with AARCH64_V0_REGNUM! */
138 "v0", "v1", "v2", "v3",
139 "v4", "v5", "v6", "v7",
140 "v8", "v9", "v10", "v11",
141 "v12", "v13", "v14", "v15",
142 "v16", "v17", "v18", "v19",
143 "v20", "v21", "v22", "v23",
144 "v24", "v25", "v26", "v27",
145 "v28", "v29", "v30", "v31",
146 "fpsr",
147 "fpcr"
148 };
149
150 /* The SVE 'Z' and 'P' registers. */
151 static const char *const aarch64_sve_register_names[] =
152 {
153 /* These registers must appear in consecutive RAW register number
154 order and they must begin with AARCH64_SVE_Z0_REGNUM! */
155 "z0", "z1", "z2", "z3",
156 "z4", "z5", "z6", "z7",
157 "z8", "z9", "z10", "z11",
158 "z12", "z13", "z14", "z15",
159 "z16", "z17", "z18", "z19",
160 "z20", "z21", "z22", "z23",
161 "z24", "z25", "z26", "z27",
162 "z28", "z29", "z30", "z31",
163 "fpsr", "fpcr",
164 "p0", "p1", "p2", "p3",
165 "p4", "p5", "p6", "p7",
166 "p8", "p9", "p10", "p11",
167 "p12", "p13", "p14", "p15",
168 "ffr", "vg"
169 };
170
171 static const char *const aarch64_pauth_register_names[] =
172 {
173 /* Authentication mask for data pointer. */
174 "pauth_dmask",
175 /* Authentication mask for code pointer. */
176 "pauth_cmask"
177 };
178
179 /* AArch64 prologue cache structure. */
180 struct aarch64_prologue_cache
181 {
182 /* The program counter at the start of the function. It is used to
183 identify this frame as a prologue frame. */
184 CORE_ADDR func;
185
186 /* The program counter at the time this frame was created; i.e. where
187 this function was called from. It is used to identify this frame as a
188 stub frame. */
189 CORE_ADDR prev_pc;
190
191 /* The stack pointer at the time this frame was created; i.e. the
192 caller's stack pointer when this function was called. It is used
193 to identify this frame. */
194 CORE_ADDR prev_sp;
195
196 /* Is the target available to read from? */
197 int available_p;
198
199 /* The frame base for this frame is just prev_sp - frame size.
200 FRAMESIZE is the distance from the frame pointer to the
201 initial stack pointer. */
202 int framesize;
203
204 /* The register used to hold the frame pointer for this frame. */
205 int framereg;
206
207 /* Saved register offsets. */
208 struct trad_frame_saved_reg *saved_regs;
209 };
210
211 static void
212 show_aarch64_debug (struct ui_file *file, int from_tty,
213 struct cmd_list_element *c, const char *value)
214 {
215 fprintf_filtered (file, _("AArch64 debugging is %s.\n"), value);
216 }
217
218 namespace {
219
220 /* Abstract instruction reader. */
221
222 class abstract_instruction_reader
223 {
224 public:
225 /* Read in one instruction. */
226 virtual ULONGEST read (CORE_ADDR memaddr, int len,
227 enum bfd_endian byte_order) = 0;
228 };
229
230 /* Instruction reader from real target. */
231
232 class instruction_reader : public abstract_instruction_reader
233 {
234 public:
235 ULONGEST read (CORE_ADDR memaddr, int len, enum bfd_endian byte_order)
236 override
237 {
238 return read_code_unsigned_integer (memaddr, len, byte_order);
239 }
240 };
241
242 } // namespace
243
244 /* If address signing is enabled, mask off the signature bits from the link
245 register, which is passed by value in ADDR, using the register values in
246 THIS_FRAME. */
247
248 static CORE_ADDR
249 aarch64_frame_unmask_lr (struct gdbarch_tdep *tdep,
250 struct frame_info *this_frame, CORE_ADDR addr)
251 {
252 if (tdep->has_pauth ()
253 && frame_unwind_register_unsigned (this_frame,
254 tdep->pauth_ra_state_regnum))
255 {
256 int cmask_num = AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base);
257 CORE_ADDR cmask = frame_unwind_register_unsigned (this_frame, cmask_num);
258 addr = addr & ~cmask;
259
260 /* Record in the frame that the link register required unmasking. */
261 set_frame_previous_pc_masked (this_frame);
262 }
263
264 return addr;
265 }
266
267 /* Implement the "get_pc_address_flags" gdbarch method. */
268
269 static std::string
270 aarch64_get_pc_address_flags (frame_info *frame, CORE_ADDR pc)
271 {
272 if (pc != 0 && get_frame_pc_masked (frame))
273 return "PAC";
274
275 return "";
276 }
277
278 /* Analyze a prologue, looking for a recognizable stack frame
279 and frame pointer. Scan until we encounter a store that could
280 clobber the stack frame unexpectedly, or an unknown instruction. */
281
282 static CORE_ADDR
283 aarch64_analyze_prologue (struct gdbarch *gdbarch,
284 CORE_ADDR start, CORE_ADDR limit,
285 struct aarch64_prologue_cache *cache,
286 abstract_instruction_reader& reader)
287 {
288 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
289 int i;
290 /* Track X registers and D registers in prologue. */
291 pv_t regs[AARCH64_X_REGISTER_COUNT + AARCH64_D_REGISTER_COUNT];
292
293 for (i = 0; i < AARCH64_X_REGISTER_COUNT + AARCH64_D_REGISTER_COUNT; i++)
294 regs[i] = pv_register (i, 0);
295 pv_area stack (AARCH64_SP_REGNUM, gdbarch_addr_bit (gdbarch));
296
297 for (; start < limit; start += 4)
298 {
299 uint32_t insn;
300 aarch64_inst inst;
301
302 insn = reader.read (start, 4, byte_order_for_code);
303
304 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
305 break;
306
307 if (inst.opcode->iclass == addsub_imm
308 && (inst.opcode->op == OP_ADD
309 || strcmp ("sub", inst.opcode->name) == 0))
310 {
311 unsigned rd = inst.operands[0].reg.regno;
312 unsigned rn = inst.operands[1].reg.regno;
313
314 gdb_assert (aarch64_num_of_operands (inst.opcode) == 3);
315 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd_SP);
316 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rn_SP);
317 gdb_assert (inst.operands[2].type == AARCH64_OPND_AIMM);
318
319 if (inst.opcode->op == OP_ADD)
320 {
321 regs[rd] = pv_add_constant (regs[rn],
322 inst.operands[2].imm.value);
323 }
324 else
325 {
326 regs[rd] = pv_add_constant (regs[rn],
327 -inst.operands[2].imm.value);
328 }
329 }
330 else if (inst.opcode->iclass == pcreladdr
331 && inst.operands[1].type == AARCH64_OPND_ADDR_ADRP)
332 {
333 gdb_assert (aarch64_num_of_operands (inst.opcode) == 2);
334 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
335
336 regs[inst.operands[0].reg.regno] = pv_unknown ();
337 }
338 else if (inst.opcode->iclass == branch_imm)
339 {
340 /* Stop analysis on branch. */
341 break;
342 }
343 else if (inst.opcode->iclass == condbranch)
344 {
345 /* Stop analysis on branch. */
346 break;
347 }
348 else if (inst.opcode->iclass == branch_reg)
349 {
350 /* Stop analysis on branch. */
351 break;
352 }
353 else if (inst.opcode->iclass == compbranch)
354 {
355 /* Stop analysis on branch. */
356 break;
357 }
358 else if (inst.opcode->op == OP_MOVZ)
359 {
360 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
361 regs[inst.operands[0].reg.regno] = pv_unknown ();
362 }
363 else if (inst.opcode->iclass == log_shift
364 && strcmp (inst.opcode->name, "orr") == 0)
365 {
366 unsigned rd = inst.operands[0].reg.regno;
367 unsigned rn = inst.operands[1].reg.regno;
368 unsigned rm = inst.operands[2].reg.regno;
369
370 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
371 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rn);
372 gdb_assert (inst.operands[2].type == AARCH64_OPND_Rm_SFT);
373
374 if (inst.operands[2].shifter.amount == 0
375 && rn == AARCH64_SP_REGNUM)
376 regs[rd] = regs[rm];
377 else
378 {
379 if (aarch64_debug)
380 {
381 debug_printf ("aarch64: prologue analysis gave up "
382 "addr=%s opcode=0x%x (orr x register)\n",
383 core_addr_to_string_nz (start), insn);
384 }
385 break;
386 }
387 }
388 else if (inst.opcode->op == OP_STUR)
389 {
390 unsigned rt = inst.operands[0].reg.regno;
391 unsigned rn = inst.operands[1].addr.base_regno;
392 int size = aarch64_get_qualifier_esize (inst.operands[0].qualifier);
393
394 gdb_assert (aarch64_num_of_operands (inst.opcode) == 2);
395 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt);
396 gdb_assert (inst.operands[1].type == AARCH64_OPND_ADDR_SIMM9);
397 gdb_assert (!inst.operands[1].addr.offset.is_reg);
398
399 stack.store
400 (pv_add_constant (regs[rn], inst.operands[1].addr.offset.imm),
401 size, regs[rt]);
402 }
403 else if ((inst.opcode->iclass == ldstpair_off
404 || (inst.opcode->iclass == ldstpair_indexed
405 && inst.operands[2].addr.preind))
406 && strcmp ("stp", inst.opcode->name) == 0)
407 {
408 /* STP with addressing mode Pre-indexed and Base register. */
409 unsigned rt1;
410 unsigned rt2;
411 unsigned rn = inst.operands[2].addr.base_regno;
412 int32_t imm = inst.operands[2].addr.offset.imm;
413 int size = aarch64_get_qualifier_esize (inst.operands[0].qualifier);
414
415 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt
416 || inst.operands[0].type == AARCH64_OPND_Ft);
417 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rt2
418 || inst.operands[1].type == AARCH64_OPND_Ft2);
419 gdb_assert (inst.operands[2].type == AARCH64_OPND_ADDR_SIMM7);
420 gdb_assert (!inst.operands[2].addr.offset.is_reg);
421
422 /* If recording this store would invalidate the store area
423 (perhaps because rn is not known) then we should abandon
424 further prologue analysis. */
425 if (stack.store_would_trash (pv_add_constant (regs[rn], imm)))
426 break;
427
428 if (stack.store_would_trash (pv_add_constant (regs[rn], imm + 8)))
429 break;
430
431 rt1 = inst.operands[0].reg.regno;
432 rt2 = inst.operands[1].reg.regno;
433 if (inst.operands[0].type == AARCH64_OPND_Ft)
434 {
435 rt1 += AARCH64_X_REGISTER_COUNT;
436 rt2 += AARCH64_X_REGISTER_COUNT;
437 }
438
439 stack.store (pv_add_constant (regs[rn], imm), size, regs[rt1]);
440 stack.store (pv_add_constant (regs[rn], imm + size), size, regs[rt2]);
441
442 if (inst.operands[2].addr.writeback)
443 regs[rn] = pv_add_constant (regs[rn], imm);
444
445 }
446 else if ((inst.opcode->iclass == ldst_imm9 /* Signed immediate. */
447 || (inst.opcode->iclass == ldst_pos /* Unsigned immediate. */
448 && (inst.opcode->op == OP_STR_POS
449 || inst.opcode->op == OP_STRF_POS)))
450 && inst.operands[1].addr.base_regno == AARCH64_SP_REGNUM
451 && strcmp ("str", inst.opcode->name) == 0)
452 {
453 /* STR (immediate) */
454 unsigned int rt = inst.operands[0].reg.regno;
455 int32_t imm = inst.operands[1].addr.offset.imm;
456 unsigned int rn = inst.operands[1].addr.base_regno;
457 int size = aarch64_get_qualifier_esize (inst.operands[0].qualifier);
458 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt
459 || inst.operands[0].type == AARCH64_OPND_Ft);
460
461 if (inst.operands[0].type == AARCH64_OPND_Ft)
462 rt += AARCH64_X_REGISTER_COUNT;
463
464 stack.store (pv_add_constant (regs[rn], imm), size, regs[rt]);
465 if (inst.operands[1].addr.writeback)
466 regs[rn] = pv_add_constant (regs[rn], imm);
467 }
468 else if (inst.opcode->iclass == testbranch)
469 {
470 /* Stop analysis on branch. */
471 break;
472 }
473 else if (inst.opcode->iclass == ic_system)
474 {
475 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
476 int ra_state_val = 0;
477
478 if (insn == 0xd503233f /* paciasp. */
479 || insn == 0xd503237f /* pacibsp. */)
480 {
481 /* Return addresses are mangled. */
482 ra_state_val = 1;
483 }
484 else if (insn == 0xd50323bf /* autiasp. */
485 || insn == 0xd50323ff /* autibsp. */)
486 {
487 /* Return addresses are not mangled. */
488 ra_state_val = 0;
489 }
490 else
491 {
492 if (aarch64_debug)
493 debug_printf ("aarch64: prologue analysis gave up addr=%s"
494 " opcode=0x%x (iclass)\n",
495 core_addr_to_string_nz (start), insn);
496 break;
497 }
498
499 if (tdep->has_pauth () && cache != nullptr)
500 trad_frame_set_value (cache->saved_regs,
501 tdep->pauth_ra_state_regnum,
502 ra_state_val);
503 }
504 else
505 {
506 if (aarch64_debug)
507 {
508 debug_printf ("aarch64: prologue analysis gave up addr=%s"
509 " opcode=0x%x\n",
510 core_addr_to_string_nz (start), insn);
511 }
512 break;
513 }
514 }
515
516 if (cache == NULL)
517 return start;
518
519 if (pv_is_register (regs[AARCH64_FP_REGNUM], AARCH64_SP_REGNUM))
520 {
521 /* Frame pointer is fp. Frame size is constant. */
522 cache->framereg = AARCH64_FP_REGNUM;
523 cache->framesize = -regs[AARCH64_FP_REGNUM].k;
524 }
525 else if (pv_is_register (regs[AARCH64_SP_REGNUM], AARCH64_SP_REGNUM))
526 {
527 /* Try the stack pointer. */
528 cache->framesize = -regs[AARCH64_SP_REGNUM].k;
529 cache->framereg = AARCH64_SP_REGNUM;
530 }
531 else
532 {
533 /* We're just out of luck. We don't know where the frame is. */
534 cache->framereg = -1;
535 cache->framesize = 0;
536 }
537
538 for (i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
539 {
540 CORE_ADDR offset;
541
542 if (stack.find_reg (gdbarch, i, &offset))
543 cache->saved_regs[i].addr = offset;
544 }
545
546 for (i = 0; i < AARCH64_D_REGISTER_COUNT; i++)
547 {
548 int regnum = gdbarch_num_regs (gdbarch);
549 CORE_ADDR offset;
550
551 if (stack.find_reg (gdbarch, i + AARCH64_X_REGISTER_COUNT,
552 &offset))
553 cache->saved_regs[i + regnum + AARCH64_D0_REGNUM].addr = offset;
554 }
555
556 return start;
557 }
558
559 static CORE_ADDR
560 aarch64_analyze_prologue (struct gdbarch *gdbarch,
561 CORE_ADDR start, CORE_ADDR limit,
562 struct aarch64_prologue_cache *cache)
563 {
564 instruction_reader reader;
565
566 return aarch64_analyze_prologue (gdbarch, start, limit, cache,
567 reader);
568 }
569
570 #if GDB_SELF_TEST
571
572 namespace selftests {
573
574 /* Instruction reader from manually cooked instruction sequences. */
575
576 class instruction_reader_test : public abstract_instruction_reader
577 {
578 public:
579 template<size_t SIZE>
580 explicit instruction_reader_test (const uint32_t (&insns)[SIZE])
581 : m_insns (insns), m_insns_size (SIZE)
582 {}
583
584 ULONGEST read (CORE_ADDR memaddr, int len, enum bfd_endian byte_order)
585 override
586 {
587 SELF_CHECK (len == 4);
588 SELF_CHECK (memaddr % 4 == 0);
589 SELF_CHECK (memaddr / 4 < m_insns_size);
590
591 return m_insns[memaddr / 4];
592 }
593
594 private:
595 const uint32_t *m_insns;
596 size_t m_insns_size;
597 };
598
599 static void
600 aarch64_analyze_prologue_test (void)
601 {
602 struct gdbarch_info info;
603
604 gdbarch_info_init (&info);
605 info.bfd_arch_info = bfd_scan_arch ("aarch64");
606
607 struct gdbarch *gdbarch = gdbarch_find_by_info (info);
608 SELF_CHECK (gdbarch != NULL);
609
610 struct aarch64_prologue_cache cache;
611 cache.saved_regs = trad_frame_alloc_saved_regs (gdbarch);
612
613 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
614
615 /* Test the simple prologue in which frame pointer is used. */
616 {
617 static const uint32_t insns[] = {
618 0xa9af7bfd, /* stp x29, x30, [sp,#-272]! */
619 0x910003fd, /* mov x29, sp */
620 0x97ffffe6, /* bl 0x400580 */
621 };
622 instruction_reader_test reader (insns);
623
624 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader);
625 SELF_CHECK (end == 4 * 2);
626
627 SELF_CHECK (cache.framereg == AARCH64_FP_REGNUM);
628 SELF_CHECK (cache.framesize == 272);
629
630 for (int i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
631 {
632 if (i == AARCH64_FP_REGNUM)
633 SELF_CHECK (cache.saved_regs[i].addr == -272);
634 else if (i == AARCH64_LR_REGNUM)
635 SELF_CHECK (cache.saved_regs[i].addr == -264);
636 else
637 SELF_CHECK (cache.saved_regs[i].addr == -1);
638 }
639
640 for (int i = 0; i < AARCH64_D_REGISTER_COUNT; i++)
641 {
642 int regnum = gdbarch_num_regs (gdbarch);
643
644 SELF_CHECK (cache.saved_regs[i + regnum + AARCH64_D0_REGNUM].addr
645 == -1);
646 }
647 }
648
649 /* Test a prologue in which STR is used and frame pointer is not
650 used. */
651 {
652 static const uint32_t insns[] = {
653 0xf81d0ff3, /* str x19, [sp, #-48]! */
654 0xb9002fe0, /* str w0, [sp, #44] */
655 0xf90013e1, /* str x1, [sp, #32]*/
656 0xfd000fe0, /* str d0, [sp, #24] */
657 0xaa0203f3, /* mov x19, x2 */
658 0xf94013e0, /* ldr x0, [sp, #32] */
659 };
660 instruction_reader_test reader (insns);
661
662 trad_frame_reset_saved_regs (gdbarch, cache.saved_regs);
663 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader);
664
665 SELF_CHECK (end == 4 * 5);
666
667 SELF_CHECK (cache.framereg == AARCH64_SP_REGNUM);
668 SELF_CHECK (cache.framesize == 48);
669
670 for (int i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
671 {
672 if (i == 1)
673 SELF_CHECK (cache.saved_regs[i].addr == -16);
674 else if (i == 19)
675 SELF_CHECK (cache.saved_regs[i].addr == -48);
676 else
677 SELF_CHECK (cache.saved_regs[i].addr == -1);
678 }
679
680 for (int i = 0; i < AARCH64_D_REGISTER_COUNT; i++)
681 {
682 int regnum = gdbarch_num_regs (gdbarch);
683
684 if (i == 0)
685 SELF_CHECK (cache.saved_regs[i + regnum + AARCH64_D0_REGNUM].addr
686 == -24);
687 else
688 SELF_CHECK (cache.saved_regs[i + regnum + AARCH64_D0_REGNUM].addr
689 == -1);
690 }
691 }
692
693 /* Test a prologue in which there is a return address signing instruction. */
694 if (tdep->has_pauth ())
695 {
696 static const uint32_t insns[] = {
697 0xd503233f, /* paciasp */
698 0xa9bd7bfd, /* stp x29, x30, [sp, #-48]! */
699 0x910003fd, /* mov x29, sp */
700 0xf801c3f3, /* str x19, [sp, #28] */
701 0xb9401fa0, /* ldr x19, [x29, #28] */
702 };
703 instruction_reader_test reader (insns);
704
705 trad_frame_reset_saved_regs (gdbarch, cache.saved_regs);
706 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache,
707 reader);
708
709 SELF_CHECK (end == 4 * 4);
710 SELF_CHECK (cache.framereg == AARCH64_FP_REGNUM);
711 SELF_CHECK (cache.framesize == 48);
712
713 for (int i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
714 {
715 if (i == 19)
716 SELF_CHECK (cache.saved_regs[i].addr == -20);
717 else if (i == AARCH64_FP_REGNUM)
718 SELF_CHECK (cache.saved_regs[i].addr == -48);
719 else if (i == AARCH64_LR_REGNUM)
720 SELF_CHECK (cache.saved_regs[i].addr == -40);
721 else
722 SELF_CHECK (cache.saved_regs[i].addr == -1);
723 }
724
725 if (tdep->has_pauth ())
726 {
727 SELF_CHECK (trad_frame_value_p (cache.saved_regs,
728 tdep->pauth_ra_state_regnum));
729 SELF_CHECK (cache.saved_regs[tdep->pauth_ra_state_regnum].addr == 1);
730 }
731 }
732 }
733 } // namespace selftests
734 #endif /* GDB_SELF_TEST */
735
736 /* Implement the "skip_prologue" gdbarch method. */
737
738 static CORE_ADDR
739 aarch64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
740 {
741 CORE_ADDR func_addr, limit_pc;
742
743 /* See if we can determine the end of the prologue via the symbol
744 table. If so, then return either PC, or the PC after the
745 prologue, whichever is greater. */
746 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
747 {
748 CORE_ADDR post_prologue_pc
749 = skip_prologue_using_sal (gdbarch, func_addr);
750
751 if (post_prologue_pc != 0)
752 return std::max (pc, post_prologue_pc);
753 }
754
755 /* Can't determine prologue from the symbol table, need to examine
756 instructions. */
757
758 /* Find an upper limit on the function prologue using the debug
759 information. If the debug information could not be used to
760 provide that bound, then use an arbitrary large number as the
761 upper bound. */
762 limit_pc = skip_prologue_using_sal (gdbarch, pc);
763 if (limit_pc == 0)
764 limit_pc = pc + 128; /* Magic. */
765
766 /* Try disassembling prologue. */
767 return aarch64_analyze_prologue (gdbarch, pc, limit_pc, NULL);
768 }
769
770 /* Scan the function prologue for THIS_FRAME and populate the prologue
771 cache CACHE. */
772
773 static void
774 aarch64_scan_prologue (struct frame_info *this_frame,
775 struct aarch64_prologue_cache *cache)
776 {
777 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
778 CORE_ADDR prologue_start;
779 CORE_ADDR prologue_end;
780 CORE_ADDR prev_pc = get_frame_pc (this_frame);
781 struct gdbarch *gdbarch = get_frame_arch (this_frame);
782
783 cache->prev_pc = prev_pc;
784
785 /* Assume we do not find a frame. */
786 cache->framereg = -1;
787 cache->framesize = 0;
788
789 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
790 &prologue_end))
791 {
792 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
793
794 if (sal.line == 0)
795 {
796 /* No line info so use the current PC. */
797 prologue_end = prev_pc;
798 }
799 else if (sal.end < prologue_end)
800 {
801 /* The next line begins after the function end. */
802 prologue_end = sal.end;
803 }
804
805 prologue_end = std::min (prologue_end, prev_pc);
806 aarch64_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
807 }
808 else
809 {
810 CORE_ADDR frame_loc;
811
812 frame_loc = get_frame_register_unsigned (this_frame, AARCH64_FP_REGNUM);
813 if (frame_loc == 0)
814 return;
815
816 cache->framereg = AARCH64_FP_REGNUM;
817 cache->framesize = 16;
818 cache->saved_regs[29].addr = 0;
819 cache->saved_regs[30].addr = 8;
820 }
821 }
822
823 /* Fill in *CACHE with information about the prologue of *THIS_FRAME. This
824 function may throw an exception if the inferior's registers or memory is
825 not available. */
826
827 static void
828 aarch64_make_prologue_cache_1 (struct frame_info *this_frame,
829 struct aarch64_prologue_cache *cache)
830 {
831 CORE_ADDR unwound_fp;
832 int reg;
833
834 aarch64_scan_prologue (this_frame, cache);
835
836 if (cache->framereg == -1)
837 return;
838
839 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
840 if (unwound_fp == 0)
841 return;
842
843 cache->prev_sp = unwound_fp + cache->framesize;
844
845 /* Calculate actual addresses of saved registers using offsets
846 determined by aarch64_analyze_prologue. */
847 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
848 if (trad_frame_addr_p (cache->saved_regs, reg))
849 cache->saved_regs[reg].addr += cache->prev_sp;
850
851 cache->func = get_frame_func (this_frame);
852
853 cache->available_p = 1;
854 }
855
856 /* Allocate and fill in *THIS_CACHE with information about the prologue of
857 *THIS_FRAME. Do not do this is if *THIS_CACHE was already allocated.
858 Return a pointer to the current aarch64_prologue_cache in
859 *THIS_CACHE. */
860
861 static struct aarch64_prologue_cache *
862 aarch64_make_prologue_cache (struct frame_info *this_frame, void **this_cache)
863 {
864 struct aarch64_prologue_cache *cache;
865
866 if (*this_cache != NULL)
867 return (struct aarch64_prologue_cache *) *this_cache;
868
869 cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
870 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
871 *this_cache = cache;
872
873 try
874 {
875 aarch64_make_prologue_cache_1 (this_frame, cache);
876 }
877 catch (const gdb_exception_error &ex)
878 {
879 if (ex.error != NOT_AVAILABLE_ERROR)
880 throw;
881 }
882
883 return cache;
884 }
885
886 /* Implement the "stop_reason" frame_unwind method. */
887
888 static enum unwind_stop_reason
889 aarch64_prologue_frame_unwind_stop_reason (struct frame_info *this_frame,
890 void **this_cache)
891 {
892 struct aarch64_prologue_cache *cache
893 = aarch64_make_prologue_cache (this_frame, this_cache);
894
895 if (!cache->available_p)
896 return UNWIND_UNAVAILABLE;
897
898 /* Halt the backtrace at "_start". */
899 if (cache->prev_pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
900 return UNWIND_OUTERMOST;
901
902 /* We've hit a wall, stop. */
903 if (cache->prev_sp == 0)
904 return UNWIND_OUTERMOST;
905
906 return UNWIND_NO_REASON;
907 }
908
909 /* Our frame ID for a normal frame is the current function's starting
910 PC and the caller's SP when we were called. */
911
912 static void
913 aarch64_prologue_this_id (struct frame_info *this_frame,
914 void **this_cache, struct frame_id *this_id)
915 {
916 struct aarch64_prologue_cache *cache
917 = aarch64_make_prologue_cache (this_frame, this_cache);
918
919 if (!cache->available_p)
920 *this_id = frame_id_build_unavailable_stack (cache->func);
921 else
922 *this_id = frame_id_build (cache->prev_sp, cache->func);
923 }
924
925 /* Implement the "prev_register" frame_unwind method. */
926
927 static struct value *
928 aarch64_prologue_prev_register (struct frame_info *this_frame,
929 void **this_cache, int prev_regnum)
930 {
931 struct aarch64_prologue_cache *cache
932 = aarch64_make_prologue_cache (this_frame, this_cache);
933
934 /* If we are asked to unwind the PC, then we need to return the LR
935 instead. The prologue may save PC, but it will point into this
936 frame's prologue, not the next frame's resume location. */
937 if (prev_regnum == AARCH64_PC_REGNUM)
938 {
939 CORE_ADDR lr;
940 struct gdbarch *gdbarch = get_frame_arch (this_frame);
941 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
942
943 lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
944
945 if (tdep->has_pauth ()
946 && trad_frame_value_p (cache->saved_regs,
947 tdep->pauth_ra_state_regnum))
948 lr = aarch64_frame_unmask_lr (tdep, this_frame, lr);
949
950 return frame_unwind_got_constant (this_frame, prev_regnum, lr);
951 }
952
953 /* SP is generally not saved to the stack, but this frame is
954 identified by the next frame's stack pointer at the time of the
955 call. The value was already reconstructed into PREV_SP. */
956 /*
957 +----------+ ^
958 | saved lr | |
959 +->| saved fp |--+
960 | | |
961 | | | <- Previous SP
962 | +----------+
963 | | saved lr |
964 +--| saved fp |<- FP
965 | |
966 | |<- SP
967 +----------+ */
968 if (prev_regnum == AARCH64_SP_REGNUM)
969 return frame_unwind_got_constant (this_frame, prev_regnum,
970 cache->prev_sp);
971
972 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
973 prev_regnum);
974 }
975
976 /* AArch64 prologue unwinder. */
977 struct frame_unwind aarch64_prologue_unwind =
978 {
979 NORMAL_FRAME,
980 aarch64_prologue_frame_unwind_stop_reason,
981 aarch64_prologue_this_id,
982 aarch64_prologue_prev_register,
983 NULL,
984 default_frame_sniffer
985 };
986
987 /* Allocate and fill in *THIS_CACHE with information about the prologue of
988 *THIS_FRAME. Do not do this is if *THIS_CACHE was already allocated.
989 Return a pointer to the current aarch64_prologue_cache in
990 *THIS_CACHE. */
991
992 static struct aarch64_prologue_cache *
993 aarch64_make_stub_cache (struct frame_info *this_frame, void **this_cache)
994 {
995 struct aarch64_prologue_cache *cache;
996
997 if (*this_cache != NULL)
998 return (struct aarch64_prologue_cache *) *this_cache;
999
1000 cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
1001 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1002 *this_cache = cache;
1003
1004 try
1005 {
1006 cache->prev_sp = get_frame_register_unsigned (this_frame,
1007 AARCH64_SP_REGNUM);
1008 cache->prev_pc = get_frame_pc (this_frame);
1009 cache->available_p = 1;
1010 }
1011 catch (const gdb_exception_error &ex)
1012 {
1013 if (ex.error != NOT_AVAILABLE_ERROR)
1014 throw;
1015 }
1016
1017 return cache;
1018 }
1019
1020 /* Implement the "stop_reason" frame_unwind method. */
1021
1022 static enum unwind_stop_reason
1023 aarch64_stub_frame_unwind_stop_reason (struct frame_info *this_frame,
1024 void **this_cache)
1025 {
1026 struct aarch64_prologue_cache *cache
1027 = aarch64_make_stub_cache (this_frame, this_cache);
1028
1029 if (!cache->available_p)
1030 return UNWIND_UNAVAILABLE;
1031
1032 return UNWIND_NO_REASON;
1033 }
1034
1035 /* Our frame ID for a stub frame is the current SP and LR. */
1036
1037 static void
1038 aarch64_stub_this_id (struct frame_info *this_frame,
1039 void **this_cache, struct frame_id *this_id)
1040 {
1041 struct aarch64_prologue_cache *cache
1042 = aarch64_make_stub_cache (this_frame, this_cache);
1043
1044 if (cache->available_p)
1045 *this_id = frame_id_build (cache->prev_sp, cache->prev_pc);
1046 else
1047 *this_id = frame_id_build_unavailable_stack (cache->prev_pc);
1048 }
1049
1050 /* Implement the "sniffer" frame_unwind method. */
1051
1052 static int
1053 aarch64_stub_unwind_sniffer (const struct frame_unwind *self,
1054 struct frame_info *this_frame,
1055 void **this_prologue_cache)
1056 {
1057 CORE_ADDR addr_in_block;
1058 gdb_byte dummy[4];
1059
1060 addr_in_block = get_frame_address_in_block (this_frame);
1061 if (in_plt_section (addr_in_block)
1062 /* We also use the stub winder if the target memory is unreadable
1063 to avoid having the prologue unwinder trying to read it. */
1064 || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
1065 return 1;
1066
1067 return 0;
1068 }
1069
1070 /* AArch64 stub unwinder. */
1071 struct frame_unwind aarch64_stub_unwind =
1072 {
1073 NORMAL_FRAME,
1074 aarch64_stub_frame_unwind_stop_reason,
1075 aarch64_stub_this_id,
1076 aarch64_prologue_prev_register,
1077 NULL,
1078 aarch64_stub_unwind_sniffer
1079 };
1080
1081 /* Return the frame base address of *THIS_FRAME. */
1082
1083 static CORE_ADDR
1084 aarch64_normal_frame_base (struct frame_info *this_frame, void **this_cache)
1085 {
1086 struct aarch64_prologue_cache *cache
1087 = aarch64_make_prologue_cache (this_frame, this_cache);
1088
1089 return cache->prev_sp - cache->framesize;
1090 }
1091
1092 /* AArch64 default frame base information. */
1093 struct frame_base aarch64_normal_base =
1094 {
1095 &aarch64_prologue_unwind,
1096 aarch64_normal_frame_base,
1097 aarch64_normal_frame_base,
1098 aarch64_normal_frame_base
1099 };
1100
1101 /* Return the value of the REGNUM register in the previous frame of
1102 *THIS_FRAME. */
1103
1104 static struct value *
1105 aarch64_dwarf2_prev_register (struct frame_info *this_frame,
1106 void **this_cache, int regnum)
1107 {
1108 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1109 CORE_ADDR lr;
1110
1111 switch (regnum)
1112 {
1113 case AARCH64_PC_REGNUM:
1114 lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
1115 lr = aarch64_frame_unmask_lr (tdep, this_frame, lr);
1116 return frame_unwind_got_constant (this_frame, regnum, lr);
1117
1118 default:
1119 internal_error (__FILE__, __LINE__,
1120 _("Unexpected register %d"), regnum);
1121 }
1122 }
1123
1124 static const unsigned char op_lit0 = DW_OP_lit0;
1125 static const unsigned char op_lit1 = DW_OP_lit1;
1126
1127 /* Implement the "init_reg" dwarf2_frame_ops method. */
1128
1129 static void
1130 aarch64_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1131 struct dwarf2_frame_state_reg *reg,
1132 struct frame_info *this_frame)
1133 {
1134 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1135
1136 switch (regnum)
1137 {
1138 case AARCH64_PC_REGNUM:
1139 reg->how = DWARF2_FRAME_REG_FN;
1140 reg->loc.fn = aarch64_dwarf2_prev_register;
1141 return;
1142
1143 case AARCH64_SP_REGNUM:
1144 reg->how = DWARF2_FRAME_REG_CFA;
1145 return;
1146 }
1147
1148 /* Init pauth registers. */
1149 if (tdep->has_pauth ())
1150 {
1151 if (regnum == tdep->pauth_ra_state_regnum)
1152 {
1153 /* Initialize RA_STATE to zero. */
1154 reg->how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
1155 reg->loc.exp.start = &op_lit0;
1156 reg->loc.exp.len = 1;
1157 return;
1158 }
1159 else if (regnum == AARCH64_PAUTH_DMASK_REGNUM (tdep->pauth_reg_base)
1160 || regnum == AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base))
1161 {
1162 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1163 return;
1164 }
1165 }
1166 }
1167
1168 /* Implement the execute_dwarf_cfa_vendor_op method. */
1169
1170 static bool
1171 aarch64_execute_dwarf_cfa_vendor_op (struct gdbarch *gdbarch, gdb_byte op,
1172 struct dwarf2_frame_state *fs)
1173 {
1174 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1175 struct dwarf2_frame_state_reg *ra_state;
1176
1177 if (op == DW_CFA_AARCH64_negate_ra_state)
1178 {
1179 /* On systems without pauth, treat as a nop. */
1180 if (!tdep->has_pauth ())
1181 return true;
1182
1183 /* Allocate RA_STATE column if it's not allocated yet. */
1184 fs->regs.alloc_regs (AARCH64_DWARF_PAUTH_RA_STATE + 1);
1185
1186 /* Toggle the status of RA_STATE between 0 and 1. */
1187 ra_state = &(fs->regs.reg[AARCH64_DWARF_PAUTH_RA_STATE]);
1188 ra_state->how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
1189
1190 if (ra_state->loc.exp.start == nullptr
1191 || ra_state->loc.exp.start == &op_lit0)
1192 ra_state->loc.exp.start = &op_lit1;
1193 else
1194 ra_state->loc.exp.start = &op_lit0;
1195
1196 ra_state->loc.exp.len = 1;
1197
1198 return true;
1199 }
1200
1201 return false;
1202 }
1203
1204 /* Used for matching BRK instructions for AArch64. */
1205 static constexpr uint32_t BRK_INSN_MASK = 0xffe0001f;
1206 static constexpr uint32_t BRK_INSN_BASE = 0xd4200000;
1207
1208 /* Implementation of gdbarch_program_breakpoint_here_p for aarch64. */
1209
1210 static bool
1211 aarch64_program_breakpoint_here_p (gdbarch *gdbarch, CORE_ADDR address)
1212 {
1213 const uint32_t insn_len = 4;
1214 gdb_byte target_mem[4];
1215
1216 /* Enable the automatic memory restoration from breakpoints while
1217 we read the memory. Otherwise we may find temporary breakpoints, ones
1218 inserted by GDB, and flag them as permanent breakpoints. */
1219 scoped_restore restore_memory
1220 = make_scoped_restore_show_memory_breakpoints (0);
1221
1222 if (target_read_memory (address, target_mem, insn_len) == 0)
1223 {
1224 uint32_t insn =
1225 (uint32_t) extract_unsigned_integer (target_mem, insn_len,
1226 gdbarch_byte_order_for_code (gdbarch));
1227
1228 /* Check if INSN is a BRK instruction pattern. There are multiple choices
1229 of such instructions with different immediate values. Different OS'
1230 may use a different variation, but they have the same outcome. */
1231 return ((insn & BRK_INSN_MASK) == BRK_INSN_BASE);
1232 }
1233
1234 return false;
1235 }
1236
1237 /* When arguments must be pushed onto the stack, they go on in reverse
1238 order. The code below implements a FILO (stack) to do this. */
1239
1240 struct stack_item_t
1241 {
1242 /* Value to pass on stack. It can be NULL if this item is for stack
1243 padding. */
1244 const gdb_byte *data;
1245
1246 /* Size in bytes of value to pass on stack. */
1247 int len;
1248 };
1249
1250 /* Implement the gdbarch type alignment method, overrides the generic
1251 alignment algorithm for anything that is aarch64 specific. */
1252
1253 static ULONGEST
1254 aarch64_type_align (gdbarch *gdbarch, struct type *t)
1255 {
1256 t = check_typedef (t);
1257 if (t->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (t))
1258 {
1259 /* Use the natural alignment for vector types (the same for
1260 scalar type), but the maximum alignment is 128-bit. */
1261 if (TYPE_LENGTH (t) > 16)
1262 return 16;
1263 else
1264 return TYPE_LENGTH (t);
1265 }
1266
1267 /* Allow the common code to calculate the alignment. */
1268 return 0;
1269 }
1270
1271 /* Worker function for aapcs_is_vfp_call_or_return_candidate.
1272
1273 Return the number of register required, or -1 on failure.
1274
1275 When encountering a base element, if FUNDAMENTAL_TYPE is not set then set it
1276 to the element, else fail if the type of this element does not match the
1277 existing value. */
1278
1279 static int
1280 aapcs_is_vfp_call_or_return_candidate_1 (struct type *type,
1281 struct type **fundamental_type)
1282 {
1283 if (type == nullptr)
1284 return -1;
1285
1286 switch (type->code ())
1287 {
1288 case TYPE_CODE_FLT:
1289 if (TYPE_LENGTH (type) > 16)
1290 return -1;
1291
1292 if (*fundamental_type == nullptr)
1293 *fundamental_type = type;
1294 else if (TYPE_LENGTH (type) != TYPE_LENGTH (*fundamental_type)
1295 || type->code () != (*fundamental_type)->code ())
1296 return -1;
1297
1298 return 1;
1299
1300 case TYPE_CODE_COMPLEX:
1301 {
1302 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1303 if (TYPE_LENGTH (target_type) > 16)
1304 return -1;
1305
1306 if (*fundamental_type == nullptr)
1307 *fundamental_type = target_type;
1308 else if (TYPE_LENGTH (target_type) != TYPE_LENGTH (*fundamental_type)
1309 || target_type->code () != (*fundamental_type)->code ())
1310 return -1;
1311
1312 return 2;
1313 }
1314
1315 case TYPE_CODE_ARRAY:
1316 {
1317 if (TYPE_VECTOR (type))
1318 {
1319 if (TYPE_LENGTH (type) != 8 && TYPE_LENGTH (type) != 16)
1320 return -1;
1321
1322 if (*fundamental_type == nullptr)
1323 *fundamental_type = type;
1324 else if (TYPE_LENGTH (type) != TYPE_LENGTH (*fundamental_type)
1325 || type->code () != (*fundamental_type)->code ())
1326 return -1;
1327
1328 return 1;
1329 }
1330 else
1331 {
1332 struct type *target_type = TYPE_TARGET_TYPE (type);
1333 int count = aapcs_is_vfp_call_or_return_candidate_1
1334 (target_type, fundamental_type);
1335
1336 if (count == -1)
1337 return count;
1338
1339 count *= (TYPE_LENGTH (type) / TYPE_LENGTH (target_type));
1340 return count;
1341 }
1342 }
1343
1344 case TYPE_CODE_STRUCT:
1345 case TYPE_CODE_UNION:
1346 {
1347 int count = 0;
1348
1349 for (int i = 0; i < type->num_fields (); i++)
1350 {
1351 /* Ignore any static fields. */
1352 if (field_is_static (&type->field (i)))
1353 continue;
1354
1355 struct type *member = check_typedef (TYPE_FIELD_TYPE (type, i));
1356
1357 int sub_count = aapcs_is_vfp_call_or_return_candidate_1
1358 (member, fundamental_type);
1359 if (sub_count == -1)
1360 return -1;
1361 count += sub_count;
1362 }
1363
1364 /* Ensure there is no padding between the fields (allowing for empty
1365 zero length structs) */
1366 int ftype_length = (*fundamental_type == nullptr)
1367 ? 0 : TYPE_LENGTH (*fundamental_type);
1368 if (count * ftype_length != TYPE_LENGTH (type))
1369 return -1;
1370
1371 return count;
1372 }
1373
1374 default:
1375 break;
1376 }
1377
1378 return -1;
1379 }
1380
1381 /* Return true if an argument, whose type is described by TYPE, can be passed or
1382 returned in simd/fp registers, providing enough parameter passing registers
1383 are available. This is as described in the AAPCS64.
1384
1385 Upon successful return, *COUNT returns the number of needed registers,
1386 *FUNDAMENTAL_TYPE contains the type of those registers.
1387
1388 Candidate as per the AAPCS64 5.4.2.C is either a:
1389 - float.
1390 - short-vector.
1391 - HFA (Homogeneous Floating-point Aggregate, 4.3.5.1). A Composite type where
1392 all the members are floats and has at most 4 members.
1393 - HVA (Homogeneous Short-vector Aggregate, 4.3.5.2). A Composite type where
1394 all the members are short vectors and has at most 4 members.
1395 - Complex (7.1.1)
1396
1397 Note that HFAs and HVAs can include nested structures and arrays. */
1398
1399 static bool
1400 aapcs_is_vfp_call_or_return_candidate (struct type *type, int *count,
1401 struct type **fundamental_type)
1402 {
1403 if (type == nullptr)
1404 return false;
1405
1406 *fundamental_type = nullptr;
1407
1408 int ag_count = aapcs_is_vfp_call_or_return_candidate_1 (type,
1409 fundamental_type);
1410
1411 if (ag_count > 0 && ag_count <= HA_MAX_NUM_FLDS)
1412 {
1413 *count = ag_count;
1414 return true;
1415 }
1416 else
1417 return false;
1418 }
1419
1420 /* AArch64 function call information structure. */
1421 struct aarch64_call_info
1422 {
1423 /* the current argument number. */
1424 unsigned argnum = 0;
1425
1426 /* The next general purpose register number, equivalent to NGRN as
1427 described in the AArch64 Procedure Call Standard. */
1428 unsigned ngrn = 0;
1429
1430 /* The next SIMD and floating point register number, equivalent to
1431 NSRN as described in the AArch64 Procedure Call Standard. */
1432 unsigned nsrn = 0;
1433
1434 /* The next stacked argument address, equivalent to NSAA as
1435 described in the AArch64 Procedure Call Standard. */
1436 unsigned nsaa = 0;
1437
1438 /* Stack item vector. */
1439 std::vector<stack_item_t> si;
1440 };
1441
1442 /* Pass a value in a sequence of consecutive X registers. The caller
1443 is responsible for ensuring sufficient registers are available. */
1444
1445 static void
1446 pass_in_x (struct gdbarch *gdbarch, struct regcache *regcache,
1447 struct aarch64_call_info *info, struct type *type,
1448 struct value *arg)
1449 {
1450 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1451 int len = TYPE_LENGTH (type);
1452 enum type_code typecode = type->code ();
1453 int regnum = AARCH64_X0_REGNUM + info->ngrn;
1454 const bfd_byte *buf = value_contents (arg);
1455
1456 info->argnum++;
1457
1458 while (len > 0)
1459 {
1460 int partial_len = len < X_REGISTER_SIZE ? len : X_REGISTER_SIZE;
1461 CORE_ADDR regval = extract_unsigned_integer (buf, partial_len,
1462 byte_order);
1463
1464
1465 /* Adjust sub-word struct/union args when big-endian. */
1466 if (byte_order == BFD_ENDIAN_BIG
1467 && partial_len < X_REGISTER_SIZE
1468 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
1469 regval <<= ((X_REGISTER_SIZE - partial_len) * TARGET_CHAR_BIT);
1470
1471 if (aarch64_debug)
1472 {
1473 debug_printf ("arg %d in %s = 0x%s\n", info->argnum,
1474 gdbarch_register_name (gdbarch, regnum),
1475 phex (regval, X_REGISTER_SIZE));
1476 }
1477 regcache_cooked_write_unsigned (regcache, regnum, regval);
1478 len -= partial_len;
1479 buf += partial_len;
1480 regnum++;
1481 }
1482 }
1483
1484 /* Attempt to marshall a value in a V register. Return 1 if
1485 successful, or 0 if insufficient registers are available. This
1486 function, unlike the equivalent pass_in_x() function does not
1487 handle arguments spread across multiple registers. */
1488
1489 static int
1490 pass_in_v (struct gdbarch *gdbarch,
1491 struct regcache *regcache,
1492 struct aarch64_call_info *info,
1493 int len, const bfd_byte *buf)
1494 {
1495 if (info->nsrn < 8)
1496 {
1497 int regnum = AARCH64_V0_REGNUM + info->nsrn;
1498 /* Enough space for a full vector register. */
1499 gdb_byte reg[register_size (gdbarch, regnum)];
1500 gdb_assert (len <= sizeof (reg));
1501
1502 info->argnum++;
1503 info->nsrn++;
1504
1505 memset (reg, 0, sizeof (reg));
1506 /* PCS C.1, the argument is allocated to the least significant
1507 bits of V register. */
1508 memcpy (reg, buf, len);
1509 regcache->cooked_write (regnum, reg);
1510
1511 if (aarch64_debug)
1512 {
1513 debug_printf ("arg %d in %s\n", info->argnum,
1514 gdbarch_register_name (gdbarch, regnum));
1515 }
1516 return 1;
1517 }
1518 info->nsrn = 8;
1519 return 0;
1520 }
1521
1522 /* Marshall an argument onto the stack. */
1523
1524 static void
1525 pass_on_stack (struct aarch64_call_info *info, struct type *type,
1526 struct value *arg)
1527 {
1528 const bfd_byte *buf = value_contents (arg);
1529 int len = TYPE_LENGTH (type);
1530 int align;
1531 stack_item_t item;
1532
1533 info->argnum++;
1534
1535 align = type_align (type);
1536
1537 /* PCS C.17 Stack should be aligned to the larger of 8 bytes or the
1538 Natural alignment of the argument's type. */
1539 align = align_up (align, 8);
1540
1541 /* The AArch64 PCS requires at most doubleword alignment. */
1542 if (align > 16)
1543 align = 16;
1544
1545 if (aarch64_debug)
1546 {
1547 debug_printf ("arg %d len=%d @ sp + %d\n", info->argnum, len,
1548 info->nsaa);
1549 }
1550
1551 item.len = len;
1552 item.data = buf;
1553 info->si.push_back (item);
1554
1555 info->nsaa += len;
1556 if (info->nsaa & (align - 1))
1557 {
1558 /* Push stack alignment padding. */
1559 int pad = align - (info->nsaa & (align - 1));
1560
1561 item.len = pad;
1562 item.data = NULL;
1563
1564 info->si.push_back (item);
1565 info->nsaa += pad;
1566 }
1567 }
1568
1569 /* Marshall an argument into a sequence of one or more consecutive X
1570 registers or, if insufficient X registers are available then onto
1571 the stack. */
1572
1573 static void
1574 pass_in_x_or_stack (struct gdbarch *gdbarch, struct regcache *regcache,
1575 struct aarch64_call_info *info, struct type *type,
1576 struct value *arg)
1577 {
1578 int len = TYPE_LENGTH (type);
1579 int nregs = (len + X_REGISTER_SIZE - 1) / X_REGISTER_SIZE;
1580
1581 /* PCS C.13 - Pass in registers if we have enough spare */
1582 if (info->ngrn + nregs <= 8)
1583 {
1584 pass_in_x (gdbarch, regcache, info, type, arg);
1585 info->ngrn += nregs;
1586 }
1587 else
1588 {
1589 info->ngrn = 8;
1590 pass_on_stack (info, type, arg);
1591 }
1592 }
1593
1594 /* Pass a value, which is of type arg_type, in a V register. Assumes value is a
1595 aapcs_is_vfp_call_or_return_candidate and there are enough spare V
1596 registers. A return value of false is an error state as the value will have
1597 been partially passed to the stack. */
1598 static bool
1599 pass_in_v_vfp_candidate (struct gdbarch *gdbarch, struct regcache *regcache,
1600 struct aarch64_call_info *info, struct type *arg_type,
1601 struct value *arg)
1602 {
1603 switch (arg_type->code ())
1604 {
1605 case TYPE_CODE_FLT:
1606 return pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (arg_type),
1607 value_contents (arg));
1608 break;
1609
1610 case TYPE_CODE_COMPLEX:
1611 {
1612 const bfd_byte *buf = value_contents (arg);
1613 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
1614
1615 if (!pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (target_type),
1616 buf))
1617 return false;
1618
1619 return pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (target_type),
1620 buf + TYPE_LENGTH (target_type));
1621 }
1622
1623 case TYPE_CODE_ARRAY:
1624 if (TYPE_VECTOR (arg_type))
1625 return pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (arg_type),
1626 value_contents (arg));
1627 /* fall through. */
1628
1629 case TYPE_CODE_STRUCT:
1630 case TYPE_CODE_UNION:
1631 for (int i = 0; i < arg_type->num_fields (); i++)
1632 {
1633 /* Don't include static fields. */
1634 if (field_is_static (&arg_type->field (i)))
1635 continue;
1636
1637 struct value *field = value_primitive_field (arg, 0, i, arg_type);
1638 struct type *field_type = check_typedef (value_type (field));
1639
1640 if (!pass_in_v_vfp_candidate (gdbarch, regcache, info, field_type,
1641 field))
1642 return false;
1643 }
1644 return true;
1645
1646 default:
1647 return false;
1648 }
1649 }
1650
1651 /* Implement the "push_dummy_call" gdbarch method. */
1652
1653 static CORE_ADDR
1654 aarch64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1655 struct regcache *regcache, CORE_ADDR bp_addr,
1656 int nargs,
1657 struct value **args, CORE_ADDR sp,
1658 function_call_return_method return_method,
1659 CORE_ADDR struct_addr)
1660 {
1661 int argnum;
1662 struct aarch64_call_info info;
1663
1664 /* We need to know what the type of the called function is in order
1665 to determine the number of named/anonymous arguments for the
1666 actual argument placement, and the return type in order to handle
1667 return value correctly.
1668
1669 The generic code above us views the decision of return in memory
1670 or return in registers as a two stage processes. The language
1671 handler is consulted first and may decide to return in memory (eg
1672 class with copy constructor returned by value), this will cause
1673 the generic code to allocate space AND insert an initial leading
1674 argument.
1675
1676 If the language code does not decide to pass in memory then the
1677 target code is consulted.
1678
1679 If the language code decides to pass in memory we want to move
1680 the pointer inserted as the initial argument from the argument
1681 list and into X8, the conventional AArch64 struct return pointer
1682 register. */
1683
1684 /* Set the return address. For the AArch64, the return breakpoint
1685 is always at BP_ADDR. */
1686 regcache_cooked_write_unsigned (regcache, AARCH64_LR_REGNUM, bp_addr);
1687
1688 /* If we were given an initial argument for the return slot, lose it. */
1689 if (return_method == return_method_hidden_param)
1690 {
1691 args++;
1692 nargs--;
1693 }
1694
1695 /* The struct_return pointer occupies X8. */
1696 if (return_method != return_method_normal)
1697 {
1698 if (aarch64_debug)
1699 {
1700 debug_printf ("struct return in %s = 0x%s\n",
1701 gdbarch_register_name (gdbarch,
1702 AARCH64_STRUCT_RETURN_REGNUM),
1703 paddress (gdbarch, struct_addr));
1704 }
1705 regcache_cooked_write_unsigned (regcache, AARCH64_STRUCT_RETURN_REGNUM,
1706 struct_addr);
1707 }
1708
1709 for (argnum = 0; argnum < nargs; argnum++)
1710 {
1711 struct value *arg = args[argnum];
1712 struct type *arg_type, *fundamental_type;
1713 int len, elements;
1714
1715 arg_type = check_typedef (value_type (arg));
1716 len = TYPE_LENGTH (arg_type);
1717
1718 /* If arg can be passed in v registers as per the AAPCS64, then do so if
1719 if there are enough spare registers. */
1720 if (aapcs_is_vfp_call_or_return_candidate (arg_type, &elements,
1721 &fundamental_type))
1722 {
1723 if (info.nsrn + elements <= 8)
1724 {
1725 /* We know that we have sufficient registers available therefore
1726 this will never need to fallback to the stack. */
1727 if (!pass_in_v_vfp_candidate (gdbarch, regcache, &info, arg_type,
1728 arg))
1729 gdb_assert_not_reached ("Failed to push args");
1730 }
1731 else
1732 {
1733 info.nsrn = 8;
1734 pass_on_stack (&info, arg_type, arg);
1735 }
1736 continue;
1737 }
1738
1739 switch (arg_type->code ())
1740 {
1741 case TYPE_CODE_INT:
1742 case TYPE_CODE_BOOL:
1743 case TYPE_CODE_CHAR:
1744 case TYPE_CODE_RANGE:
1745 case TYPE_CODE_ENUM:
1746 if (len < 4)
1747 {
1748 /* Promote to 32 bit integer. */
1749 if (TYPE_UNSIGNED (arg_type))
1750 arg_type = builtin_type (gdbarch)->builtin_uint32;
1751 else
1752 arg_type = builtin_type (gdbarch)->builtin_int32;
1753 arg = value_cast (arg_type, arg);
1754 }
1755 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1756 break;
1757
1758 case TYPE_CODE_STRUCT:
1759 case TYPE_CODE_ARRAY:
1760 case TYPE_CODE_UNION:
1761 if (len > 16)
1762 {
1763 /* PCS B.7 Aggregates larger than 16 bytes are passed by
1764 invisible reference. */
1765
1766 /* Allocate aligned storage. */
1767 sp = align_down (sp - len, 16);
1768
1769 /* Write the real data into the stack. */
1770 write_memory (sp, value_contents (arg), len);
1771
1772 /* Construct the indirection. */
1773 arg_type = lookup_pointer_type (arg_type);
1774 arg = value_from_pointer (arg_type, sp);
1775 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1776 }
1777 else
1778 /* PCS C.15 / C.18 multiple values pass. */
1779 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1780 break;
1781
1782 default:
1783 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1784 break;
1785 }
1786 }
1787
1788 /* Make sure stack retains 16 byte alignment. */
1789 if (info.nsaa & 15)
1790 sp -= 16 - (info.nsaa & 15);
1791
1792 while (!info.si.empty ())
1793 {
1794 const stack_item_t &si = info.si.back ();
1795
1796 sp -= si.len;
1797 if (si.data != NULL)
1798 write_memory (sp, si.data, si.len);
1799 info.si.pop_back ();
1800 }
1801
1802 /* Finally, update the SP register. */
1803 regcache_cooked_write_unsigned (regcache, AARCH64_SP_REGNUM, sp);
1804
1805 return sp;
1806 }
1807
1808 /* Implement the "frame_align" gdbarch method. */
1809
1810 static CORE_ADDR
1811 aarch64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1812 {
1813 /* Align the stack to sixteen bytes. */
1814 return sp & ~(CORE_ADDR) 15;
1815 }
1816
1817 /* Return the type for an AdvSISD Q register. */
1818
1819 static struct type *
1820 aarch64_vnq_type (struct gdbarch *gdbarch)
1821 {
1822 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1823
1824 if (tdep->vnq_type == NULL)
1825 {
1826 struct type *t;
1827 struct type *elem;
1828
1829 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnq",
1830 TYPE_CODE_UNION);
1831
1832 elem = builtin_type (gdbarch)->builtin_uint128;
1833 append_composite_type_field (t, "u", elem);
1834
1835 elem = builtin_type (gdbarch)->builtin_int128;
1836 append_composite_type_field (t, "s", elem);
1837
1838 tdep->vnq_type = t;
1839 }
1840
1841 return tdep->vnq_type;
1842 }
1843
1844 /* Return the type for an AdvSISD D register. */
1845
1846 static struct type *
1847 aarch64_vnd_type (struct gdbarch *gdbarch)
1848 {
1849 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1850
1851 if (tdep->vnd_type == NULL)
1852 {
1853 struct type *t;
1854 struct type *elem;
1855
1856 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnd",
1857 TYPE_CODE_UNION);
1858
1859 elem = builtin_type (gdbarch)->builtin_double;
1860 append_composite_type_field (t, "f", elem);
1861
1862 elem = builtin_type (gdbarch)->builtin_uint64;
1863 append_composite_type_field (t, "u", elem);
1864
1865 elem = builtin_type (gdbarch)->builtin_int64;
1866 append_composite_type_field (t, "s", elem);
1867
1868 tdep->vnd_type = t;
1869 }
1870
1871 return tdep->vnd_type;
1872 }
1873
1874 /* Return the type for an AdvSISD S register. */
1875
1876 static struct type *
1877 aarch64_vns_type (struct gdbarch *gdbarch)
1878 {
1879 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1880
1881 if (tdep->vns_type == NULL)
1882 {
1883 struct type *t;
1884 struct type *elem;
1885
1886 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vns",
1887 TYPE_CODE_UNION);
1888
1889 elem = builtin_type (gdbarch)->builtin_float;
1890 append_composite_type_field (t, "f", elem);
1891
1892 elem = builtin_type (gdbarch)->builtin_uint32;
1893 append_composite_type_field (t, "u", elem);
1894
1895 elem = builtin_type (gdbarch)->builtin_int32;
1896 append_composite_type_field (t, "s", elem);
1897
1898 tdep->vns_type = t;
1899 }
1900
1901 return tdep->vns_type;
1902 }
1903
1904 /* Return the type for an AdvSISD H register. */
1905
1906 static struct type *
1907 aarch64_vnh_type (struct gdbarch *gdbarch)
1908 {
1909 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1910
1911 if (tdep->vnh_type == NULL)
1912 {
1913 struct type *t;
1914 struct type *elem;
1915
1916 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnh",
1917 TYPE_CODE_UNION);
1918
1919 elem = builtin_type (gdbarch)->builtin_half;
1920 append_composite_type_field (t, "f", elem);
1921
1922 elem = builtin_type (gdbarch)->builtin_uint16;
1923 append_composite_type_field (t, "u", elem);
1924
1925 elem = builtin_type (gdbarch)->builtin_int16;
1926 append_composite_type_field (t, "s", elem);
1927
1928 tdep->vnh_type = t;
1929 }
1930
1931 return tdep->vnh_type;
1932 }
1933
1934 /* Return the type for an AdvSISD B register. */
1935
1936 static struct type *
1937 aarch64_vnb_type (struct gdbarch *gdbarch)
1938 {
1939 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1940
1941 if (tdep->vnb_type == NULL)
1942 {
1943 struct type *t;
1944 struct type *elem;
1945
1946 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnb",
1947 TYPE_CODE_UNION);
1948
1949 elem = builtin_type (gdbarch)->builtin_uint8;
1950 append_composite_type_field (t, "u", elem);
1951
1952 elem = builtin_type (gdbarch)->builtin_int8;
1953 append_composite_type_field (t, "s", elem);
1954
1955 tdep->vnb_type = t;
1956 }
1957
1958 return tdep->vnb_type;
1959 }
1960
1961 /* Return the type for an AdvSISD V register. */
1962
1963 static struct type *
1964 aarch64_vnv_type (struct gdbarch *gdbarch)
1965 {
1966 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1967
1968 if (tdep->vnv_type == NULL)
1969 {
1970 /* The other AArch64 pseudo registers (Q,D,H,S,B) refer to a single value
1971 slice from the non-pseudo vector registers. However NEON V registers
1972 are always vector registers, and need constructing as such. */
1973 const struct builtin_type *bt = builtin_type (gdbarch);
1974
1975 struct type *t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnv",
1976 TYPE_CODE_UNION);
1977
1978 struct type *sub = arch_composite_type (gdbarch, "__gdb_builtin_type_vnd",
1979 TYPE_CODE_UNION);
1980 append_composite_type_field (sub, "f",
1981 init_vector_type (bt->builtin_double, 2));
1982 append_composite_type_field (sub, "u",
1983 init_vector_type (bt->builtin_uint64, 2));
1984 append_composite_type_field (sub, "s",
1985 init_vector_type (bt->builtin_int64, 2));
1986 append_composite_type_field (t, "d", sub);
1987
1988 sub = arch_composite_type (gdbarch, "__gdb_builtin_type_vns",
1989 TYPE_CODE_UNION);
1990 append_composite_type_field (sub, "f",
1991 init_vector_type (bt->builtin_float, 4));
1992 append_composite_type_field (sub, "u",
1993 init_vector_type (bt->builtin_uint32, 4));
1994 append_composite_type_field (sub, "s",
1995 init_vector_type (bt->builtin_int32, 4));
1996 append_composite_type_field (t, "s", sub);
1997
1998 sub = arch_composite_type (gdbarch, "__gdb_builtin_type_vnh",
1999 TYPE_CODE_UNION);
2000 append_composite_type_field (sub, "f",
2001 init_vector_type (bt->builtin_half, 8));
2002 append_composite_type_field (sub, "u",
2003 init_vector_type (bt->builtin_uint16, 8));
2004 append_composite_type_field (sub, "s",
2005 init_vector_type (bt->builtin_int16, 8));
2006 append_composite_type_field (t, "h", sub);
2007
2008 sub = arch_composite_type (gdbarch, "__gdb_builtin_type_vnb",
2009 TYPE_CODE_UNION);
2010 append_composite_type_field (sub, "u",
2011 init_vector_type (bt->builtin_uint8, 16));
2012 append_composite_type_field (sub, "s",
2013 init_vector_type (bt->builtin_int8, 16));
2014 append_composite_type_field (t, "b", sub);
2015
2016 sub = arch_composite_type (gdbarch, "__gdb_builtin_type_vnq",
2017 TYPE_CODE_UNION);
2018 append_composite_type_field (sub, "u",
2019 init_vector_type (bt->builtin_uint128, 1));
2020 append_composite_type_field (sub, "s",
2021 init_vector_type (bt->builtin_int128, 1));
2022 append_composite_type_field (t, "q", sub);
2023
2024 tdep->vnv_type = t;
2025 }
2026
2027 return tdep->vnv_type;
2028 }
2029
2030 /* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
2031
2032 static int
2033 aarch64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
2034 {
2035 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2036
2037 if (reg >= AARCH64_DWARF_X0 && reg <= AARCH64_DWARF_X0 + 30)
2038 return AARCH64_X0_REGNUM + reg - AARCH64_DWARF_X0;
2039
2040 if (reg == AARCH64_DWARF_SP)
2041 return AARCH64_SP_REGNUM;
2042
2043 if (reg >= AARCH64_DWARF_V0 && reg <= AARCH64_DWARF_V0 + 31)
2044 return AARCH64_V0_REGNUM + reg - AARCH64_DWARF_V0;
2045
2046 if (reg == AARCH64_DWARF_SVE_VG)
2047 return AARCH64_SVE_VG_REGNUM;
2048
2049 if (reg == AARCH64_DWARF_SVE_FFR)
2050 return AARCH64_SVE_FFR_REGNUM;
2051
2052 if (reg >= AARCH64_DWARF_SVE_P0 && reg <= AARCH64_DWARF_SVE_P0 + 15)
2053 return AARCH64_SVE_P0_REGNUM + reg - AARCH64_DWARF_SVE_P0;
2054
2055 if (reg >= AARCH64_DWARF_SVE_Z0 && reg <= AARCH64_DWARF_SVE_Z0 + 15)
2056 return AARCH64_SVE_Z0_REGNUM + reg - AARCH64_DWARF_SVE_Z0;
2057
2058 if (tdep->has_pauth ())
2059 {
2060 if (reg >= AARCH64_DWARF_PAUTH_DMASK && reg <= AARCH64_DWARF_PAUTH_CMASK)
2061 return tdep->pauth_reg_base + reg - AARCH64_DWARF_PAUTH_DMASK;
2062
2063 if (reg == AARCH64_DWARF_PAUTH_RA_STATE)
2064 return tdep->pauth_ra_state_regnum;
2065 }
2066
2067 return -1;
2068 }
2069
2070 /* Implement the "print_insn" gdbarch method. */
2071
2072 static int
2073 aarch64_gdb_print_insn (bfd_vma memaddr, disassemble_info *info)
2074 {
2075 info->symbols = NULL;
2076 return default_print_insn (memaddr, info);
2077 }
2078
2079 /* AArch64 BRK software debug mode instruction.
2080 Note that AArch64 code is always little-endian.
2081 1101.0100.0010.0000.0000.0000.0000.0000 = 0xd4200000. */
2082 constexpr gdb_byte aarch64_default_breakpoint[] = {0x00, 0x00, 0x20, 0xd4};
2083
2084 typedef BP_MANIPULATION (aarch64_default_breakpoint) aarch64_breakpoint;
2085
2086 /* Extract from an array REGS containing the (raw) register state a
2087 function return value of type TYPE, and copy that, in virtual
2088 format, into VALBUF. */
2089
2090 static void
2091 aarch64_extract_return_value (struct type *type, struct regcache *regs,
2092 gdb_byte *valbuf)
2093 {
2094 struct gdbarch *gdbarch = regs->arch ();
2095 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2096 int elements;
2097 struct type *fundamental_type;
2098
2099 if (aapcs_is_vfp_call_or_return_candidate (type, &elements,
2100 &fundamental_type))
2101 {
2102 int len = TYPE_LENGTH (fundamental_type);
2103
2104 for (int i = 0; i < elements; i++)
2105 {
2106 int regno = AARCH64_V0_REGNUM + i;
2107 /* Enough space for a full vector register. */
2108 gdb_byte buf[register_size (gdbarch, regno)];
2109 gdb_assert (len <= sizeof (buf));
2110
2111 if (aarch64_debug)
2112 {
2113 debug_printf ("read HFA or HVA return value element %d from %s\n",
2114 i + 1,
2115 gdbarch_register_name (gdbarch, regno));
2116 }
2117 regs->cooked_read (regno, buf);
2118
2119 memcpy (valbuf, buf, len);
2120 valbuf += len;
2121 }
2122 }
2123 else if (type->code () == TYPE_CODE_INT
2124 || type->code () == TYPE_CODE_CHAR
2125 || type->code () == TYPE_CODE_BOOL
2126 || type->code () == TYPE_CODE_PTR
2127 || TYPE_IS_REFERENCE (type)
2128 || type->code () == TYPE_CODE_ENUM)
2129 {
2130 /* If the type is a plain integer, then the access is
2131 straight-forward. Otherwise we have to play around a bit
2132 more. */
2133 int len = TYPE_LENGTH (type);
2134 int regno = AARCH64_X0_REGNUM;
2135 ULONGEST tmp;
2136
2137 while (len > 0)
2138 {
2139 /* By using store_unsigned_integer we avoid having to do
2140 anything special for small big-endian values. */
2141 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2142 store_unsigned_integer (valbuf,
2143 (len > X_REGISTER_SIZE
2144 ? X_REGISTER_SIZE : len), byte_order, tmp);
2145 len -= X_REGISTER_SIZE;
2146 valbuf += X_REGISTER_SIZE;
2147 }
2148 }
2149 else
2150 {
2151 /* For a structure or union the behaviour is as if the value had
2152 been stored to word-aligned memory and then loaded into
2153 registers with 64-bit load instruction(s). */
2154 int len = TYPE_LENGTH (type);
2155 int regno = AARCH64_X0_REGNUM;
2156 bfd_byte buf[X_REGISTER_SIZE];
2157
2158 while (len > 0)
2159 {
2160 regs->cooked_read (regno++, buf);
2161 memcpy (valbuf, buf, len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
2162 len -= X_REGISTER_SIZE;
2163 valbuf += X_REGISTER_SIZE;
2164 }
2165 }
2166 }
2167
2168
2169 /* Will a function return an aggregate type in memory or in a
2170 register? Return 0 if an aggregate type can be returned in a
2171 register, 1 if it must be returned in memory. */
2172
2173 static int
2174 aarch64_return_in_memory (struct gdbarch *gdbarch, struct type *type)
2175 {
2176 type = check_typedef (type);
2177 int elements;
2178 struct type *fundamental_type;
2179
2180 if (aapcs_is_vfp_call_or_return_candidate (type, &elements,
2181 &fundamental_type))
2182 {
2183 /* v0-v7 are used to return values and one register is allocated
2184 for one member. However, HFA or HVA has at most four members. */
2185 return 0;
2186 }
2187
2188 if (TYPE_LENGTH (type) > 16)
2189 {
2190 /* PCS B.6 Aggregates larger than 16 bytes are passed by
2191 invisible reference. */
2192
2193 return 1;
2194 }
2195
2196 return 0;
2197 }
2198
2199 /* Write into appropriate registers a function return value of type
2200 TYPE, given in virtual format. */
2201
2202 static void
2203 aarch64_store_return_value (struct type *type, struct regcache *regs,
2204 const gdb_byte *valbuf)
2205 {
2206 struct gdbarch *gdbarch = regs->arch ();
2207 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2208 int elements;
2209 struct type *fundamental_type;
2210
2211 if (aapcs_is_vfp_call_or_return_candidate (type, &elements,
2212 &fundamental_type))
2213 {
2214 int len = TYPE_LENGTH (fundamental_type);
2215
2216 for (int i = 0; i < elements; i++)
2217 {
2218 int regno = AARCH64_V0_REGNUM + i;
2219 /* Enough space for a full vector register. */
2220 gdb_byte tmpbuf[register_size (gdbarch, regno)];
2221 gdb_assert (len <= sizeof (tmpbuf));
2222
2223 if (aarch64_debug)
2224 {
2225 debug_printf ("write HFA or HVA return value element %d to %s\n",
2226 i + 1,
2227 gdbarch_register_name (gdbarch, regno));
2228 }
2229
2230 memcpy (tmpbuf, valbuf,
2231 len > V_REGISTER_SIZE ? V_REGISTER_SIZE : len);
2232 regs->cooked_write (regno, tmpbuf);
2233 valbuf += len;
2234 }
2235 }
2236 else if (type->code () == TYPE_CODE_INT
2237 || type->code () == TYPE_CODE_CHAR
2238 || type->code () == TYPE_CODE_BOOL
2239 || type->code () == TYPE_CODE_PTR
2240 || TYPE_IS_REFERENCE (type)
2241 || type->code () == TYPE_CODE_ENUM)
2242 {
2243 if (TYPE_LENGTH (type) <= X_REGISTER_SIZE)
2244 {
2245 /* Values of one word or less are zero/sign-extended and
2246 returned in r0. */
2247 bfd_byte tmpbuf[X_REGISTER_SIZE];
2248 LONGEST val = unpack_long (type, valbuf);
2249
2250 store_signed_integer (tmpbuf, X_REGISTER_SIZE, byte_order, val);
2251 regs->cooked_write (AARCH64_X0_REGNUM, tmpbuf);
2252 }
2253 else
2254 {
2255 /* Integral values greater than one word are stored in
2256 consecutive registers starting with r0. This will always
2257 be a multiple of the regiser size. */
2258 int len = TYPE_LENGTH (type);
2259 int regno = AARCH64_X0_REGNUM;
2260
2261 while (len > 0)
2262 {
2263 regs->cooked_write (regno++, valbuf);
2264 len -= X_REGISTER_SIZE;
2265 valbuf += X_REGISTER_SIZE;
2266 }
2267 }
2268 }
2269 else
2270 {
2271 /* For a structure or union the behaviour is as if the value had
2272 been stored to word-aligned memory and then loaded into
2273 registers with 64-bit load instruction(s). */
2274 int len = TYPE_LENGTH (type);
2275 int regno = AARCH64_X0_REGNUM;
2276 bfd_byte tmpbuf[X_REGISTER_SIZE];
2277
2278 while (len > 0)
2279 {
2280 memcpy (tmpbuf, valbuf,
2281 len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
2282 regs->cooked_write (regno++, tmpbuf);
2283 len -= X_REGISTER_SIZE;
2284 valbuf += X_REGISTER_SIZE;
2285 }
2286 }
2287 }
2288
2289 /* Implement the "return_value" gdbarch method. */
2290
2291 static enum return_value_convention
2292 aarch64_return_value (struct gdbarch *gdbarch, struct value *func_value,
2293 struct type *valtype, struct regcache *regcache,
2294 gdb_byte *readbuf, const gdb_byte *writebuf)
2295 {
2296
2297 if (valtype->code () == TYPE_CODE_STRUCT
2298 || valtype->code () == TYPE_CODE_UNION
2299 || valtype->code () == TYPE_CODE_ARRAY)
2300 {
2301 if (aarch64_return_in_memory (gdbarch, valtype))
2302 {
2303 if (aarch64_debug)
2304 debug_printf ("return value in memory\n");
2305 return RETURN_VALUE_STRUCT_CONVENTION;
2306 }
2307 }
2308
2309 if (writebuf)
2310 aarch64_store_return_value (valtype, regcache, writebuf);
2311
2312 if (readbuf)
2313 aarch64_extract_return_value (valtype, regcache, readbuf);
2314
2315 if (aarch64_debug)
2316 debug_printf ("return value in registers\n");
2317
2318 return RETURN_VALUE_REGISTER_CONVENTION;
2319 }
2320
2321 /* Implement the "get_longjmp_target" gdbarch method. */
2322
2323 static int
2324 aarch64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2325 {
2326 CORE_ADDR jb_addr;
2327 gdb_byte buf[X_REGISTER_SIZE];
2328 struct gdbarch *gdbarch = get_frame_arch (frame);
2329 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2330 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2331
2332 jb_addr = get_frame_register_unsigned (frame, AARCH64_X0_REGNUM);
2333
2334 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2335 X_REGISTER_SIZE))
2336 return 0;
2337
2338 *pc = extract_unsigned_integer (buf, X_REGISTER_SIZE, byte_order);
2339 return 1;
2340 }
2341
2342 /* Implement the "gen_return_address" gdbarch method. */
2343
2344 static void
2345 aarch64_gen_return_address (struct gdbarch *gdbarch,
2346 struct agent_expr *ax, struct axs_value *value,
2347 CORE_ADDR scope)
2348 {
2349 value->type = register_type (gdbarch, AARCH64_LR_REGNUM);
2350 value->kind = axs_lvalue_register;
2351 value->u.reg = AARCH64_LR_REGNUM;
2352 }
2353 \f
2354
2355 /* Return the pseudo register name corresponding to register regnum. */
2356
2357 static const char *
2358 aarch64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
2359 {
2360 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2361
2362 static const char *const q_name[] =
2363 {
2364 "q0", "q1", "q2", "q3",
2365 "q4", "q5", "q6", "q7",
2366 "q8", "q9", "q10", "q11",
2367 "q12", "q13", "q14", "q15",
2368 "q16", "q17", "q18", "q19",
2369 "q20", "q21", "q22", "q23",
2370 "q24", "q25", "q26", "q27",
2371 "q28", "q29", "q30", "q31",
2372 };
2373
2374 static const char *const d_name[] =
2375 {
2376 "d0", "d1", "d2", "d3",
2377 "d4", "d5", "d6", "d7",
2378 "d8", "d9", "d10", "d11",
2379 "d12", "d13", "d14", "d15",
2380 "d16", "d17", "d18", "d19",
2381 "d20", "d21", "d22", "d23",
2382 "d24", "d25", "d26", "d27",
2383 "d28", "d29", "d30", "d31",
2384 };
2385
2386 static const char *const s_name[] =
2387 {
2388 "s0", "s1", "s2", "s3",
2389 "s4", "s5", "s6", "s7",
2390 "s8", "s9", "s10", "s11",
2391 "s12", "s13", "s14", "s15",
2392 "s16", "s17", "s18", "s19",
2393 "s20", "s21", "s22", "s23",
2394 "s24", "s25", "s26", "s27",
2395 "s28", "s29", "s30", "s31",
2396 };
2397
2398 static const char *const h_name[] =
2399 {
2400 "h0", "h1", "h2", "h3",
2401 "h4", "h5", "h6", "h7",
2402 "h8", "h9", "h10", "h11",
2403 "h12", "h13", "h14", "h15",
2404 "h16", "h17", "h18", "h19",
2405 "h20", "h21", "h22", "h23",
2406 "h24", "h25", "h26", "h27",
2407 "h28", "h29", "h30", "h31",
2408 };
2409
2410 static const char *const b_name[] =
2411 {
2412 "b0", "b1", "b2", "b3",
2413 "b4", "b5", "b6", "b7",
2414 "b8", "b9", "b10", "b11",
2415 "b12", "b13", "b14", "b15",
2416 "b16", "b17", "b18", "b19",
2417 "b20", "b21", "b22", "b23",
2418 "b24", "b25", "b26", "b27",
2419 "b28", "b29", "b30", "b31",
2420 };
2421
2422 int p_regnum = regnum - gdbarch_num_regs (gdbarch);
2423
2424 if (p_regnum >= AARCH64_Q0_REGNUM && p_regnum < AARCH64_Q0_REGNUM + 32)
2425 return q_name[p_regnum - AARCH64_Q0_REGNUM];
2426
2427 if (p_regnum >= AARCH64_D0_REGNUM && p_regnum < AARCH64_D0_REGNUM + 32)
2428 return d_name[p_regnum - AARCH64_D0_REGNUM];
2429
2430 if (p_regnum >= AARCH64_S0_REGNUM && p_regnum < AARCH64_S0_REGNUM + 32)
2431 return s_name[p_regnum - AARCH64_S0_REGNUM];
2432
2433 if (p_regnum >= AARCH64_H0_REGNUM && p_regnum < AARCH64_H0_REGNUM + 32)
2434 return h_name[p_regnum - AARCH64_H0_REGNUM];
2435
2436 if (p_regnum >= AARCH64_B0_REGNUM && p_regnum < AARCH64_B0_REGNUM + 32)
2437 return b_name[p_regnum - AARCH64_B0_REGNUM];
2438
2439 if (tdep->has_sve ())
2440 {
2441 static const char *const sve_v_name[] =
2442 {
2443 "v0", "v1", "v2", "v3",
2444 "v4", "v5", "v6", "v7",
2445 "v8", "v9", "v10", "v11",
2446 "v12", "v13", "v14", "v15",
2447 "v16", "v17", "v18", "v19",
2448 "v20", "v21", "v22", "v23",
2449 "v24", "v25", "v26", "v27",
2450 "v28", "v29", "v30", "v31",
2451 };
2452
2453 if (p_regnum >= AARCH64_SVE_V0_REGNUM
2454 && p_regnum < AARCH64_SVE_V0_REGNUM + AARCH64_V_REGS_NUM)
2455 return sve_v_name[p_regnum - AARCH64_SVE_V0_REGNUM];
2456 }
2457
2458 /* RA_STATE is used for unwinding only. Do not assign it a name - this
2459 prevents it from being read by methods such as
2460 mi_cmd_trace_frame_collected. */
2461 if (tdep->has_pauth () && regnum == tdep->pauth_ra_state_regnum)
2462 return "";
2463
2464 internal_error (__FILE__, __LINE__,
2465 _("aarch64_pseudo_register_name: bad register number %d"),
2466 p_regnum);
2467 }
2468
2469 /* Implement the "pseudo_register_type" tdesc_arch_data method. */
2470
2471 static struct type *
2472 aarch64_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2473 {
2474 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2475
2476 int p_regnum = regnum - gdbarch_num_regs (gdbarch);
2477
2478 if (p_regnum >= AARCH64_Q0_REGNUM && p_regnum < AARCH64_Q0_REGNUM + 32)
2479 return aarch64_vnq_type (gdbarch);
2480
2481 if (p_regnum >= AARCH64_D0_REGNUM && p_regnum < AARCH64_D0_REGNUM + 32)
2482 return aarch64_vnd_type (gdbarch);
2483
2484 if (p_regnum >= AARCH64_S0_REGNUM && p_regnum < AARCH64_S0_REGNUM + 32)
2485 return aarch64_vns_type (gdbarch);
2486
2487 if (p_regnum >= AARCH64_H0_REGNUM && p_regnum < AARCH64_H0_REGNUM + 32)
2488 return aarch64_vnh_type (gdbarch);
2489
2490 if (p_regnum >= AARCH64_B0_REGNUM && p_regnum < AARCH64_B0_REGNUM + 32)
2491 return aarch64_vnb_type (gdbarch);
2492
2493 if (tdep->has_sve () && p_regnum >= AARCH64_SVE_V0_REGNUM
2494 && p_regnum < AARCH64_SVE_V0_REGNUM + AARCH64_V_REGS_NUM)
2495 return aarch64_vnv_type (gdbarch);
2496
2497 if (tdep->has_pauth () && regnum == tdep->pauth_ra_state_regnum)
2498 return builtin_type (gdbarch)->builtin_uint64;
2499
2500 internal_error (__FILE__, __LINE__,
2501 _("aarch64_pseudo_register_type: bad register number %d"),
2502 p_regnum);
2503 }
2504
2505 /* Implement the "pseudo_register_reggroup_p" tdesc_arch_data method. */
2506
2507 static int
2508 aarch64_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2509 struct reggroup *group)
2510 {
2511 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2512
2513 int p_regnum = regnum - gdbarch_num_regs (gdbarch);
2514
2515 if (p_regnum >= AARCH64_Q0_REGNUM && p_regnum < AARCH64_Q0_REGNUM + 32)
2516 return group == all_reggroup || group == vector_reggroup;
2517 else if (p_regnum >= AARCH64_D0_REGNUM && p_regnum < AARCH64_D0_REGNUM + 32)
2518 return (group == all_reggroup || group == vector_reggroup
2519 || group == float_reggroup);
2520 else if (p_regnum >= AARCH64_S0_REGNUM && p_regnum < AARCH64_S0_REGNUM + 32)
2521 return (group == all_reggroup || group == vector_reggroup
2522 || group == float_reggroup);
2523 else if (p_regnum >= AARCH64_H0_REGNUM && p_regnum < AARCH64_H0_REGNUM + 32)
2524 return group == all_reggroup || group == vector_reggroup;
2525 else if (p_regnum >= AARCH64_B0_REGNUM && p_regnum < AARCH64_B0_REGNUM + 32)
2526 return group == all_reggroup || group == vector_reggroup;
2527 else if (tdep->has_sve () && p_regnum >= AARCH64_SVE_V0_REGNUM
2528 && p_regnum < AARCH64_SVE_V0_REGNUM + AARCH64_V_REGS_NUM)
2529 return group == all_reggroup || group == vector_reggroup;
2530 /* RA_STATE is used for unwinding only. Do not assign it to any groups. */
2531 if (tdep->has_pauth () && regnum == tdep->pauth_ra_state_regnum)
2532 return 0;
2533
2534 return group == all_reggroup;
2535 }
2536
2537 /* Helper for aarch64_pseudo_read_value. */
2538
2539 static struct value *
2540 aarch64_pseudo_read_value_1 (struct gdbarch *gdbarch,
2541 readable_regcache *regcache, int regnum_offset,
2542 int regsize, struct value *result_value)
2543 {
2544 unsigned v_regnum = AARCH64_V0_REGNUM + regnum_offset;
2545
2546 /* Enough space for a full vector register. */
2547 gdb_byte reg_buf[register_size (gdbarch, AARCH64_V0_REGNUM)];
2548 gdb_static_assert (AARCH64_V0_REGNUM == AARCH64_SVE_Z0_REGNUM);
2549
2550 if (regcache->raw_read (v_regnum, reg_buf) != REG_VALID)
2551 mark_value_bytes_unavailable (result_value, 0,
2552 TYPE_LENGTH (value_type (result_value)));
2553 else
2554 memcpy (value_contents_raw (result_value), reg_buf, regsize);
2555
2556 return result_value;
2557 }
2558
2559 /* Implement the "pseudo_register_read_value" gdbarch method. */
2560
2561 static struct value *
2562 aarch64_pseudo_read_value (struct gdbarch *gdbarch, readable_regcache *regcache,
2563 int regnum)
2564 {
2565 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2566 struct value *result_value = allocate_value (register_type (gdbarch, regnum));
2567
2568 VALUE_LVAL (result_value) = lval_register;
2569 VALUE_REGNUM (result_value) = regnum;
2570
2571 regnum -= gdbarch_num_regs (gdbarch);
2572
2573 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2574 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2575 regnum - AARCH64_Q0_REGNUM,
2576 Q_REGISTER_SIZE, result_value);
2577
2578 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2579 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2580 regnum - AARCH64_D0_REGNUM,
2581 D_REGISTER_SIZE, result_value);
2582
2583 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2584 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2585 regnum - AARCH64_S0_REGNUM,
2586 S_REGISTER_SIZE, result_value);
2587
2588 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2589 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2590 regnum - AARCH64_H0_REGNUM,
2591 H_REGISTER_SIZE, result_value);
2592
2593 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2594 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2595 regnum - AARCH64_B0_REGNUM,
2596 B_REGISTER_SIZE, result_value);
2597
2598 if (tdep->has_sve () && regnum >= AARCH64_SVE_V0_REGNUM
2599 && regnum < AARCH64_SVE_V0_REGNUM + 32)
2600 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2601 regnum - AARCH64_SVE_V0_REGNUM,
2602 V_REGISTER_SIZE, result_value);
2603
2604 gdb_assert_not_reached ("regnum out of bound");
2605 }
2606
2607 /* Helper for aarch64_pseudo_write. */
2608
2609 static void
2610 aarch64_pseudo_write_1 (struct gdbarch *gdbarch, struct regcache *regcache,
2611 int regnum_offset, int regsize, const gdb_byte *buf)
2612 {
2613 unsigned v_regnum = AARCH64_V0_REGNUM + regnum_offset;
2614
2615 /* Enough space for a full vector register. */
2616 gdb_byte reg_buf[register_size (gdbarch, AARCH64_V0_REGNUM)];
2617 gdb_static_assert (AARCH64_V0_REGNUM == AARCH64_SVE_Z0_REGNUM);
2618
2619 /* Ensure the register buffer is zero, we want gdb writes of the
2620 various 'scalar' pseudo registers to behavior like architectural
2621 writes, register width bytes are written the remainder are set to
2622 zero. */
2623 memset (reg_buf, 0, register_size (gdbarch, AARCH64_V0_REGNUM));
2624
2625 memcpy (reg_buf, buf, regsize);
2626 regcache->raw_write (v_regnum, reg_buf);
2627 }
2628
2629 /* Implement the "pseudo_register_write" gdbarch method. */
2630
2631 static void
2632 aarch64_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
2633 int regnum, const gdb_byte *buf)
2634 {
2635 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2636 regnum -= gdbarch_num_regs (gdbarch);
2637
2638 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2639 return aarch64_pseudo_write_1 (gdbarch, regcache,
2640 regnum - AARCH64_Q0_REGNUM, Q_REGISTER_SIZE,
2641 buf);
2642
2643 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2644 return aarch64_pseudo_write_1 (gdbarch, regcache,
2645 regnum - AARCH64_D0_REGNUM, D_REGISTER_SIZE,
2646 buf);
2647
2648 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2649 return aarch64_pseudo_write_1 (gdbarch, regcache,
2650 regnum - AARCH64_S0_REGNUM, S_REGISTER_SIZE,
2651 buf);
2652
2653 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2654 return aarch64_pseudo_write_1 (gdbarch, regcache,
2655 regnum - AARCH64_H0_REGNUM, H_REGISTER_SIZE,
2656 buf);
2657
2658 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2659 return aarch64_pseudo_write_1 (gdbarch, regcache,
2660 regnum - AARCH64_B0_REGNUM, B_REGISTER_SIZE,
2661 buf);
2662
2663 if (tdep->has_sve () && regnum >= AARCH64_SVE_V0_REGNUM
2664 && regnum < AARCH64_SVE_V0_REGNUM + 32)
2665 return aarch64_pseudo_write_1 (gdbarch, regcache,
2666 regnum - AARCH64_SVE_V0_REGNUM,
2667 V_REGISTER_SIZE, buf);
2668
2669 gdb_assert_not_reached ("regnum out of bound");
2670 }
2671
2672 /* Callback function for user_reg_add. */
2673
2674 static struct value *
2675 value_of_aarch64_user_reg (struct frame_info *frame, const void *baton)
2676 {
2677 const int *reg_p = (const int *) baton;
2678
2679 return value_of_register (*reg_p, frame);
2680 }
2681 \f
2682
2683 /* Implement the "software_single_step" gdbarch method, needed to
2684 single step through atomic sequences on AArch64. */
2685
2686 static std::vector<CORE_ADDR>
2687 aarch64_software_single_step (struct regcache *regcache)
2688 {
2689 struct gdbarch *gdbarch = regcache->arch ();
2690 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2691 const int insn_size = 4;
2692 const int atomic_sequence_length = 16; /* Instruction sequence length. */
2693 CORE_ADDR pc = regcache_read_pc (regcache);
2694 CORE_ADDR breaks[2] = { CORE_ADDR_MAX, CORE_ADDR_MAX };
2695 CORE_ADDR loc = pc;
2696 CORE_ADDR closing_insn = 0;
2697 uint32_t insn = read_memory_unsigned_integer (loc, insn_size,
2698 byte_order_for_code);
2699 int index;
2700 int insn_count;
2701 int bc_insn_count = 0; /* Conditional branch instruction count. */
2702 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
2703 aarch64_inst inst;
2704
2705 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
2706 return {};
2707
2708 /* Look for a Load Exclusive instruction which begins the sequence. */
2709 if (inst.opcode->iclass != ldstexcl || bit (insn, 22) == 0)
2710 return {};
2711
2712 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
2713 {
2714 loc += insn_size;
2715 insn = read_memory_unsigned_integer (loc, insn_size,
2716 byte_order_for_code);
2717
2718 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
2719 return {};
2720 /* Check if the instruction is a conditional branch. */
2721 if (inst.opcode->iclass == condbranch)
2722 {
2723 gdb_assert (inst.operands[0].type == AARCH64_OPND_ADDR_PCREL19);
2724
2725 if (bc_insn_count >= 1)
2726 return {};
2727
2728 /* It is, so we'll try to set a breakpoint at the destination. */
2729 breaks[1] = loc + inst.operands[0].imm.value;
2730
2731 bc_insn_count++;
2732 last_breakpoint++;
2733 }
2734
2735 /* Look for the Store Exclusive which closes the atomic sequence. */
2736 if (inst.opcode->iclass == ldstexcl && bit (insn, 22) == 0)
2737 {
2738 closing_insn = loc;
2739 break;
2740 }
2741 }
2742
2743 /* We didn't find a closing Store Exclusive instruction, fall back. */
2744 if (!closing_insn)
2745 return {};
2746
2747 /* Insert breakpoint after the end of the atomic sequence. */
2748 breaks[0] = loc + insn_size;
2749
2750 /* Check for duplicated breakpoints, and also check that the second
2751 breakpoint is not within the atomic sequence. */
2752 if (last_breakpoint
2753 && (breaks[1] == breaks[0]
2754 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
2755 last_breakpoint = 0;
2756
2757 std::vector<CORE_ADDR> next_pcs;
2758
2759 /* Insert the breakpoint at the end of the sequence, and one at the
2760 destination of the conditional branch, if it exists. */
2761 for (index = 0; index <= last_breakpoint; index++)
2762 next_pcs.push_back (breaks[index]);
2763
2764 return next_pcs;
2765 }
2766
2767 struct aarch64_displaced_step_closure : public displaced_step_closure
2768 {
2769 /* It is true when condition instruction, such as B.CON, TBZ, etc,
2770 is being displaced stepping. */
2771 bool cond = false;
2772
2773 /* PC adjustment offset after displaced stepping. If 0, then we don't
2774 write the PC back, assuming the PC is already the right address. */
2775 int32_t pc_adjust = 0;
2776 };
2777
2778 /* Data when visiting instructions for displaced stepping. */
2779
2780 struct aarch64_displaced_step_data
2781 {
2782 struct aarch64_insn_data base;
2783
2784 /* The address where the instruction will be executed at. */
2785 CORE_ADDR new_addr;
2786 /* Buffer of instructions to be copied to NEW_ADDR to execute. */
2787 uint32_t insn_buf[AARCH64_DISPLACED_MODIFIED_INSNS];
2788 /* Number of instructions in INSN_BUF. */
2789 unsigned insn_count;
2790 /* Registers when doing displaced stepping. */
2791 struct regcache *regs;
2792
2793 aarch64_displaced_step_closure *dsc;
2794 };
2795
2796 /* Implementation of aarch64_insn_visitor method "b". */
2797
2798 static void
2799 aarch64_displaced_step_b (const int is_bl, const int32_t offset,
2800 struct aarch64_insn_data *data)
2801 {
2802 struct aarch64_displaced_step_data *dsd
2803 = (struct aarch64_displaced_step_data *) data;
2804 int64_t new_offset = data->insn_addr - dsd->new_addr + offset;
2805
2806 if (can_encode_int32 (new_offset, 28))
2807 {
2808 /* Emit B rather than BL, because executing BL on a new address
2809 will get the wrong address into LR. In order to avoid this,
2810 we emit B, and update LR if the instruction is BL. */
2811 emit_b (dsd->insn_buf, 0, new_offset);
2812 dsd->insn_count++;
2813 }
2814 else
2815 {
2816 /* Write NOP. */
2817 emit_nop (dsd->insn_buf);
2818 dsd->insn_count++;
2819 dsd->dsc->pc_adjust = offset;
2820 }
2821
2822 if (is_bl)
2823 {
2824 /* Update LR. */
2825 regcache_cooked_write_unsigned (dsd->regs, AARCH64_LR_REGNUM,
2826 data->insn_addr + 4);
2827 }
2828 }
2829
2830 /* Implementation of aarch64_insn_visitor method "b_cond". */
2831
2832 static void
2833 aarch64_displaced_step_b_cond (const unsigned cond, const int32_t offset,
2834 struct aarch64_insn_data *data)
2835 {
2836 struct aarch64_displaced_step_data *dsd
2837 = (struct aarch64_displaced_step_data *) data;
2838
2839 /* GDB has to fix up PC after displaced step this instruction
2840 differently according to the condition is true or false. Instead
2841 of checking COND against conditional flags, we can use
2842 the following instructions, and GDB can tell how to fix up PC
2843 according to the PC value.
2844
2845 B.COND TAKEN ; If cond is true, then jump to TAKEN.
2846 INSN1 ;
2847 TAKEN:
2848 INSN2
2849 */
2850
2851 emit_bcond (dsd->insn_buf, cond, 8);
2852 dsd->dsc->cond = true;
2853 dsd->dsc->pc_adjust = offset;
2854 dsd->insn_count = 1;
2855 }
2856
2857 /* Dynamically allocate a new register. If we know the register
2858 statically, we should make it a global as above instead of using this
2859 helper function. */
2860
2861 static struct aarch64_register
2862 aarch64_register (unsigned num, int is64)
2863 {
2864 return (struct aarch64_register) { num, is64 };
2865 }
2866
2867 /* Implementation of aarch64_insn_visitor method "cb". */
2868
2869 static void
2870 aarch64_displaced_step_cb (const int32_t offset, const int is_cbnz,
2871 const unsigned rn, int is64,
2872 struct aarch64_insn_data *data)
2873 {
2874 struct aarch64_displaced_step_data *dsd
2875 = (struct aarch64_displaced_step_data *) data;
2876
2877 /* The offset is out of range for a compare and branch
2878 instruction. We can use the following instructions instead:
2879
2880 CBZ xn, TAKEN ; xn == 0, then jump to TAKEN.
2881 INSN1 ;
2882 TAKEN:
2883 INSN2
2884 */
2885 emit_cb (dsd->insn_buf, is_cbnz, aarch64_register (rn, is64), 8);
2886 dsd->insn_count = 1;
2887 dsd->dsc->cond = true;
2888 dsd->dsc->pc_adjust = offset;
2889 }
2890
2891 /* Implementation of aarch64_insn_visitor method "tb". */
2892
2893 static void
2894 aarch64_displaced_step_tb (const int32_t offset, int is_tbnz,
2895 const unsigned rt, unsigned bit,
2896 struct aarch64_insn_data *data)
2897 {
2898 struct aarch64_displaced_step_data *dsd
2899 = (struct aarch64_displaced_step_data *) data;
2900
2901 /* The offset is out of range for a test bit and branch
2902 instruction We can use the following instructions instead:
2903
2904 TBZ xn, #bit, TAKEN ; xn[bit] == 0, then jump to TAKEN.
2905 INSN1 ;
2906 TAKEN:
2907 INSN2
2908
2909 */
2910 emit_tb (dsd->insn_buf, is_tbnz, bit, aarch64_register (rt, 1), 8);
2911 dsd->insn_count = 1;
2912 dsd->dsc->cond = true;
2913 dsd->dsc->pc_adjust = offset;
2914 }
2915
2916 /* Implementation of aarch64_insn_visitor method "adr". */
2917
2918 static void
2919 aarch64_displaced_step_adr (const int32_t offset, const unsigned rd,
2920 const int is_adrp, struct aarch64_insn_data *data)
2921 {
2922 struct aarch64_displaced_step_data *dsd
2923 = (struct aarch64_displaced_step_data *) data;
2924 /* We know exactly the address the ADR{P,} instruction will compute.
2925 We can just write it to the destination register. */
2926 CORE_ADDR address = data->insn_addr + offset;
2927
2928 if (is_adrp)
2929 {
2930 /* Clear the lower 12 bits of the offset to get the 4K page. */
2931 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rd,
2932 address & ~0xfff);
2933 }
2934 else
2935 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rd,
2936 address);
2937
2938 dsd->dsc->pc_adjust = 4;
2939 emit_nop (dsd->insn_buf);
2940 dsd->insn_count = 1;
2941 }
2942
2943 /* Implementation of aarch64_insn_visitor method "ldr_literal". */
2944
2945 static void
2946 aarch64_displaced_step_ldr_literal (const int32_t offset, const int is_sw,
2947 const unsigned rt, const int is64,
2948 struct aarch64_insn_data *data)
2949 {
2950 struct aarch64_displaced_step_data *dsd
2951 = (struct aarch64_displaced_step_data *) data;
2952 CORE_ADDR address = data->insn_addr + offset;
2953 struct aarch64_memory_operand zero = { MEMORY_OPERAND_OFFSET, 0 };
2954
2955 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rt,
2956 address);
2957
2958 if (is_sw)
2959 dsd->insn_count = emit_ldrsw (dsd->insn_buf, aarch64_register (rt, 1),
2960 aarch64_register (rt, 1), zero);
2961 else
2962 dsd->insn_count = emit_ldr (dsd->insn_buf, aarch64_register (rt, is64),
2963 aarch64_register (rt, 1), zero);
2964
2965 dsd->dsc->pc_adjust = 4;
2966 }
2967
2968 /* Implementation of aarch64_insn_visitor method "others". */
2969
2970 static void
2971 aarch64_displaced_step_others (const uint32_t insn,
2972 struct aarch64_insn_data *data)
2973 {
2974 struct aarch64_displaced_step_data *dsd
2975 = (struct aarch64_displaced_step_data *) data;
2976
2977 aarch64_emit_insn (dsd->insn_buf, insn);
2978 dsd->insn_count = 1;
2979
2980 if ((insn & 0xfffffc1f) == 0xd65f0000)
2981 {
2982 /* RET */
2983 dsd->dsc->pc_adjust = 0;
2984 }
2985 else
2986 dsd->dsc->pc_adjust = 4;
2987 }
2988
2989 static const struct aarch64_insn_visitor visitor =
2990 {
2991 aarch64_displaced_step_b,
2992 aarch64_displaced_step_b_cond,
2993 aarch64_displaced_step_cb,
2994 aarch64_displaced_step_tb,
2995 aarch64_displaced_step_adr,
2996 aarch64_displaced_step_ldr_literal,
2997 aarch64_displaced_step_others,
2998 };
2999
3000 /* Implement the "displaced_step_copy_insn" gdbarch method. */
3001
3002 displaced_step_closure_up
3003 aarch64_displaced_step_copy_insn (struct gdbarch *gdbarch,
3004 CORE_ADDR from, CORE_ADDR to,
3005 struct regcache *regs)
3006 {
3007 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3008 uint32_t insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
3009 struct aarch64_displaced_step_data dsd;
3010 aarch64_inst inst;
3011
3012 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
3013 return NULL;
3014
3015 /* Look for a Load Exclusive instruction which begins the sequence. */
3016 if (inst.opcode->iclass == ldstexcl && bit (insn, 22))
3017 {
3018 /* We can't displaced step atomic sequences. */
3019 return NULL;
3020 }
3021
3022 std::unique_ptr<aarch64_displaced_step_closure> dsc
3023 (new aarch64_displaced_step_closure);
3024 dsd.base.insn_addr = from;
3025 dsd.new_addr = to;
3026 dsd.regs = regs;
3027 dsd.dsc = dsc.get ();
3028 dsd.insn_count = 0;
3029 aarch64_relocate_instruction (insn, &visitor,
3030 (struct aarch64_insn_data *) &dsd);
3031 gdb_assert (dsd.insn_count <= AARCH64_DISPLACED_MODIFIED_INSNS);
3032
3033 if (dsd.insn_count != 0)
3034 {
3035 int i;
3036
3037 /* Instruction can be relocated to scratch pad. Copy
3038 relocated instruction(s) there. */
3039 for (i = 0; i < dsd.insn_count; i++)
3040 {
3041 if (debug_displaced)
3042 {
3043 debug_printf ("displaced: writing insn ");
3044 debug_printf ("%.8x", dsd.insn_buf[i]);
3045 debug_printf (" at %s\n", paddress (gdbarch, to + i * 4));
3046 }
3047 write_memory_unsigned_integer (to + i * 4, 4, byte_order_for_code,
3048 (ULONGEST) dsd.insn_buf[i]);
3049 }
3050 }
3051 else
3052 {
3053 dsc = NULL;
3054 }
3055
3056 /* This is a work around for a problem with g++ 4.8. */
3057 return displaced_step_closure_up (dsc.release ());
3058 }
3059
3060 /* Implement the "displaced_step_fixup" gdbarch method. */
3061
3062 void
3063 aarch64_displaced_step_fixup (struct gdbarch *gdbarch,
3064 struct displaced_step_closure *dsc_,
3065 CORE_ADDR from, CORE_ADDR to,
3066 struct regcache *regs)
3067 {
3068 aarch64_displaced_step_closure *dsc = (aarch64_displaced_step_closure *) dsc_;
3069
3070 ULONGEST pc;
3071
3072 regcache_cooked_read_unsigned (regs, AARCH64_PC_REGNUM, &pc);
3073
3074 if (debug_displaced)
3075 debug_printf ("Displaced: PC after stepping: %s (was %s).\n",
3076 paddress (gdbarch, pc), paddress (gdbarch, to));
3077
3078 if (dsc->cond)
3079 {
3080 if (debug_displaced)
3081 debug_printf ("Displaced: [Conditional] pc_adjust before: %d\n",
3082 dsc->pc_adjust);
3083
3084 if (pc - to == 8)
3085 {
3086 /* Condition is true. */
3087 }
3088 else if (pc - to == 4)
3089 {
3090 /* Condition is false. */
3091 dsc->pc_adjust = 4;
3092 }
3093 else
3094 gdb_assert_not_reached ("Unexpected PC value after displaced stepping");
3095
3096 if (debug_displaced)
3097 debug_printf ("Displaced: [Conditional] pc_adjust after: %d\n",
3098 dsc->pc_adjust);
3099 }
3100
3101 if (debug_displaced)
3102 debug_printf ("Displaced: %s PC by %d\n",
3103 dsc->pc_adjust? "adjusting" : "not adjusting",
3104 dsc->pc_adjust);
3105
3106
3107 if (dsc->pc_adjust != 0)
3108 {
3109 /* Make sure the previous instruction was executed (that is, the PC
3110 has changed). If the PC didn't change, then discard the adjustment
3111 offset. Otherwise we may skip an instruction before its execution
3112 took place. */
3113 if ((pc - to) == 0)
3114 {
3115 if (debug_displaced)
3116 debug_printf ("Displaced: PC did not move. Discarding PC "
3117 "adjustment.\n");
3118 dsc->pc_adjust = 0;
3119 }
3120
3121 if (debug_displaced)
3122 {
3123 debug_printf ("Displaced: fixup: set PC to %s:%d\n",
3124 paddress (gdbarch, from), dsc->pc_adjust);
3125 }
3126 regcache_cooked_write_unsigned (regs, AARCH64_PC_REGNUM,
3127 from + dsc->pc_adjust);
3128 }
3129 }
3130
3131 /* Implement the "displaced_step_hw_singlestep" gdbarch method. */
3132
3133 int
3134 aarch64_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
3135 struct displaced_step_closure *closure)
3136 {
3137 return 1;
3138 }
3139
3140 /* Get the correct target description for the given VQ value.
3141 If VQ is zero then it is assumed SVE is not supported.
3142 (It is not possible to set VQ to zero on an SVE system). */
3143
3144 const target_desc *
3145 aarch64_read_description (uint64_t vq, bool pauth_p)
3146 {
3147 if (vq > AARCH64_MAX_SVE_VQ)
3148 error (_("VQ is %" PRIu64 ", maximum supported value is %d"), vq,
3149 AARCH64_MAX_SVE_VQ);
3150
3151 struct target_desc *tdesc = tdesc_aarch64_list[vq][pauth_p];
3152
3153 if (tdesc == NULL)
3154 {
3155 tdesc = aarch64_create_target_description (vq, pauth_p);
3156 tdesc_aarch64_list[vq][pauth_p] = tdesc;
3157 }
3158
3159 return tdesc;
3160 }
3161
3162 /* Return the VQ used when creating the target description TDESC. */
3163
3164 static uint64_t
3165 aarch64_get_tdesc_vq (const struct target_desc *tdesc)
3166 {
3167 const struct tdesc_feature *feature_sve;
3168
3169 if (!tdesc_has_registers (tdesc))
3170 return 0;
3171
3172 feature_sve = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.sve");
3173
3174 if (feature_sve == nullptr)
3175 return 0;
3176
3177 uint64_t vl = tdesc_register_bitsize (feature_sve,
3178 aarch64_sve_register_names[0]) / 8;
3179 return sve_vq_from_vl (vl);
3180 }
3181
3182 /* Add all the expected register sets into GDBARCH. */
3183
3184 static void
3185 aarch64_add_reggroups (struct gdbarch *gdbarch)
3186 {
3187 reggroup_add (gdbarch, general_reggroup);
3188 reggroup_add (gdbarch, float_reggroup);
3189 reggroup_add (gdbarch, system_reggroup);
3190 reggroup_add (gdbarch, vector_reggroup);
3191 reggroup_add (gdbarch, all_reggroup);
3192 reggroup_add (gdbarch, save_reggroup);
3193 reggroup_add (gdbarch, restore_reggroup);
3194 }
3195
3196 /* Implement the "cannot_store_register" gdbarch method. */
3197
3198 static int
3199 aarch64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
3200 {
3201 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3202
3203 if (!tdep->has_pauth ())
3204 return 0;
3205
3206 /* Pointer authentication registers are read-only. */
3207 return (regnum == AARCH64_PAUTH_DMASK_REGNUM (tdep->pauth_reg_base)
3208 || regnum == AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base));
3209 }
3210
3211 /* Initialize the current architecture based on INFO. If possible,
3212 re-use an architecture from ARCHES, which is a list of
3213 architectures already created during this debugging session.
3214
3215 Called e.g. at program startup, when reading a core file, and when
3216 reading a binary file. */
3217
3218 static struct gdbarch *
3219 aarch64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3220 {
3221 const struct tdesc_feature *feature_core, *feature_fpu, *feature_sve;
3222 const struct tdesc_feature *feature_pauth;
3223 bool valid_p = true;
3224 int i, num_regs = 0, num_pseudo_regs = 0;
3225 int first_pauth_regnum = -1, pauth_ra_state_offset = -1;
3226
3227 /* Use the vector length passed via the target info. Here -1 is used for no
3228 SVE, and 0 is unset. If unset then use the vector length from the existing
3229 tdesc. */
3230 uint64_t vq = 0;
3231 if (info.id == (int *) -1)
3232 vq = 0;
3233 else if (info.id != 0)
3234 vq = (uint64_t) info.id;
3235 else
3236 vq = aarch64_get_tdesc_vq (info.target_desc);
3237
3238 if (vq > AARCH64_MAX_SVE_VQ)
3239 internal_error (__FILE__, __LINE__, _("VQ out of bounds: %s (max %d)"),
3240 pulongest (vq), AARCH64_MAX_SVE_VQ);
3241
3242 /* If there is already a candidate, use it. */
3243 for (gdbarch_list *best_arch = gdbarch_list_lookup_by_info (arches, &info);
3244 best_arch != nullptr;
3245 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
3246 {
3247 struct gdbarch_tdep *tdep = gdbarch_tdep (best_arch->gdbarch);
3248 if (tdep && tdep->vq == vq)
3249 return best_arch->gdbarch;
3250 }
3251
3252 /* Ensure we always have a target descriptor, and that it is for the given VQ
3253 value. */
3254 const struct target_desc *tdesc = info.target_desc;
3255 if (!tdesc_has_registers (tdesc) || vq != aarch64_get_tdesc_vq (tdesc))
3256 tdesc = aarch64_read_description (vq, false);
3257 gdb_assert (tdesc);
3258
3259 feature_core = tdesc_find_feature (tdesc,"org.gnu.gdb.aarch64.core");
3260 feature_fpu = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.fpu");
3261 feature_sve = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.sve");
3262 feature_pauth = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.pauth");
3263
3264 if (feature_core == nullptr)
3265 return nullptr;
3266
3267 struct tdesc_arch_data *tdesc_data = tdesc_data_alloc ();
3268
3269 /* Validate the description provides the mandatory core R registers
3270 and allocate their numbers. */
3271 for (i = 0; i < ARRAY_SIZE (aarch64_r_register_names); i++)
3272 valid_p &= tdesc_numbered_register (feature_core, tdesc_data,
3273 AARCH64_X0_REGNUM + i,
3274 aarch64_r_register_names[i]);
3275
3276 num_regs = AARCH64_X0_REGNUM + i;
3277
3278 /* Add the V registers. */
3279 if (feature_fpu != nullptr)
3280 {
3281 if (feature_sve != nullptr)
3282 error (_("Program contains both fpu and SVE features."));
3283
3284 /* Validate the description provides the mandatory V registers
3285 and allocate their numbers. */
3286 for (i = 0; i < ARRAY_SIZE (aarch64_v_register_names); i++)
3287 valid_p &= tdesc_numbered_register (feature_fpu, tdesc_data,
3288 AARCH64_V0_REGNUM + i,
3289 aarch64_v_register_names[i]);
3290
3291 num_regs = AARCH64_V0_REGNUM + i;
3292 }
3293
3294 /* Add the SVE registers. */
3295 if (feature_sve != nullptr)
3296 {
3297 /* Validate the description provides the mandatory SVE registers
3298 and allocate their numbers. */
3299 for (i = 0; i < ARRAY_SIZE (aarch64_sve_register_names); i++)
3300 valid_p &= tdesc_numbered_register (feature_sve, tdesc_data,
3301 AARCH64_SVE_Z0_REGNUM + i,
3302 aarch64_sve_register_names[i]);
3303
3304 num_regs = AARCH64_SVE_Z0_REGNUM + i;
3305 num_pseudo_regs += 32; /* add the Vn register pseudos. */
3306 }
3307
3308 if (feature_fpu != nullptr || feature_sve != nullptr)
3309 {
3310 num_pseudo_regs += 32; /* add the Qn scalar register pseudos */
3311 num_pseudo_regs += 32; /* add the Dn scalar register pseudos */
3312 num_pseudo_regs += 32; /* add the Sn scalar register pseudos */
3313 num_pseudo_regs += 32; /* add the Hn scalar register pseudos */
3314 num_pseudo_regs += 32; /* add the Bn scalar register pseudos */
3315 }
3316
3317 /* Add the pauth registers. */
3318 if (feature_pauth != NULL)
3319 {
3320 first_pauth_regnum = num_regs;
3321 pauth_ra_state_offset = num_pseudo_regs;
3322 /* Validate the descriptor provides the mandatory PAUTH registers and
3323 allocate their numbers. */
3324 for (i = 0; i < ARRAY_SIZE (aarch64_pauth_register_names); i++)
3325 valid_p &= tdesc_numbered_register (feature_pauth, tdesc_data,
3326 first_pauth_regnum + i,
3327 aarch64_pauth_register_names[i]);
3328
3329 num_regs += i;
3330 num_pseudo_regs += 1; /* Count RA_STATE pseudo register. */
3331 }
3332
3333 if (!valid_p)
3334 {
3335 tdesc_data_cleanup (tdesc_data);
3336 return nullptr;
3337 }
3338
3339 /* AArch64 code is always little-endian. */
3340 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
3341
3342 struct gdbarch_tdep *tdep = XCNEW (struct gdbarch_tdep);
3343 struct gdbarch *gdbarch = gdbarch_alloc (&info, tdep);
3344
3345 /* This should be low enough for everything. */
3346 tdep->lowest_pc = 0x20;
3347 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
3348 tdep->jb_elt_size = 8;
3349 tdep->vq = vq;
3350 tdep->pauth_reg_base = first_pauth_regnum;
3351 tdep->pauth_ra_state_regnum = (feature_pauth == NULL) ? -1
3352 : pauth_ra_state_offset + num_regs;
3353
3354 set_gdbarch_push_dummy_call (gdbarch, aarch64_push_dummy_call);
3355 set_gdbarch_frame_align (gdbarch, aarch64_frame_align);
3356
3357 /* Advance PC across function entry code. */
3358 set_gdbarch_skip_prologue (gdbarch, aarch64_skip_prologue);
3359
3360 /* The stack grows downward. */
3361 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3362
3363 /* Breakpoint manipulation. */
3364 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3365 aarch64_breakpoint::kind_from_pc);
3366 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3367 aarch64_breakpoint::bp_from_kind);
3368 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3369 set_gdbarch_software_single_step (gdbarch, aarch64_software_single_step);
3370
3371 /* Information about registers, etc. */
3372 set_gdbarch_sp_regnum (gdbarch, AARCH64_SP_REGNUM);
3373 set_gdbarch_pc_regnum (gdbarch, AARCH64_PC_REGNUM);
3374 set_gdbarch_num_regs (gdbarch, num_regs);
3375
3376 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudo_regs);
3377 set_gdbarch_pseudo_register_read_value (gdbarch, aarch64_pseudo_read_value);
3378 set_gdbarch_pseudo_register_write (gdbarch, aarch64_pseudo_write);
3379 set_tdesc_pseudo_register_name (gdbarch, aarch64_pseudo_register_name);
3380 set_tdesc_pseudo_register_type (gdbarch, aarch64_pseudo_register_type);
3381 set_tdesc_pseudo_register_reggroup_p (gdbarch,
3382 aarch64_pseudo_register_reggroup_p);
3383 set_gdbarch_cannot_store_register (gdbarch, aarch64_cannot_store_register);
3384
3385 /* ABI */
3386 set_gdbarch_short_bit (gdbarch, 16);
3387 set_gdbarch_int_bit (gdbarch, 32);
3388 set_gdbarch_float_bit (gdbarch, 32);
3389 set_gdbarch_double_bit (gdbarch, 64);
3390 set_gdbarch_long_double_bit (gdbarch, 128);
3391 set_gdbarch_long_bit (gdbarch, 64);
3392 set_gdbarch_long_long_bit (gdbarch, 64);
3393 set_gdbarch_ptr_bit (gdbarch, 64);
3394 set_gdbarch_char_signed (gdbarch, 0);
3395 set_gdbarch_wchar_signed (gdbarch, 0);
3396 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
3397 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3398 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3399 set_gdbarch_type_align (gdbarch, aarch64_type_align);
3400
3401 /* Internal <-> external register number maps. */
3402 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, aarch64_dwarf_reg_to_regnum);
3403
3404 /* Returning results. */
3405 set_gdbarch_return_value (gdbarch, aarch64_return_value);
3406
3407 /* Disassembly. */
3408 set_gdbarch_print_insn (gdbarch, aarch64_gdb_print_insn);
3409
3410 /* Virtual tables. */
3411 set_gdbarch_vbit_in_delta (gdbarch, 1);
3412
3413 /* Register architecture. */
3414 aarch64_add_reggroups (gdbarch);
3415
3416 /* Hook in the ABI-specific overrides, if they have been registered. */
3417 info.target_desc = tdesc;
3418 info.tdesc_data = tdesc_data;
3419 gdbarch_init_osabi (info, gdbarch);
3420
3421 dwarf2_frame_set_init_reg (gdbarch, aarch64_dwarf2_frame_init_reg);
3422 /* Register DWARF CFA vendor handler. */
3423 set_gdbarch_execute_dwarf_cfa_vendor_op (gdbarch,
3424 aarch64_execute_dwarf_cfa_vendor_op);
3425
3426 /* Permanent/Program breakpoint handling. */
3427 set_gdbarch_program_breakpoint_here_p (gdbarch,
3428 aarch64_program_breakpoint_here_p);
3429
3430 /* Add some default predicates. */
3431 frame_unwind_append_unwinder (gdbarch, &aarch64_stub_unwind);
3432 dwarf2_append_unwinders (gdbarch);
3433 frame_unwind_append_unwinder (gdbarch, &aarch64_prologue_unwind);
3434
3435 frame_base_set_default (gdbarch, &aarch64_normal_base);
3436
3437 /* Now we have tuned the configuration, set a few final things,
3438 based on what the OS ABI has told us. */
3439
3440 if (tdep->jb_pc >= 0)
3441 set_gdbarch_get_longjmp_target (gdbarch, aarch64_get_longjmp_target);
3442
3443 set_gdbarch_gen_return_address (gdbarch, aarch64_gen_return_address);
3444
3445 set_gdbarch_get_pc_address_flags (gdbarch, aarch64_get_pc_address_flags);
3446
3447 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
3448
3449 /* Add standard register aliases. */
3450 for (i = 0; i < ARRAY_SIZE (aarch64_register_aliases); i++)
3451 user_reg_add (gdbarch, aarch64_register_aliases[i].name,
3452 value_of_aarch64_user_reg,
3453 &aarch64_register_aliases[i].regnum);
3454
3455 register_aarch64_ravenscar_ops (gdbarch);
3456
3457 return gdbarch;
3458 }
3459
3460 static void
3461 aarch64_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3462 {
3463 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3464
3465 if (tdep == NULL)
3466 return;
3467
3468 fprintf_unfiltered (file, _("aarch64_dump_tdep: Lowest pc = 0x%s"),
3469 paddress (gdbarch, tdep->lowest_pc));
3470 }
3471
3472 #if GDB_SELF_TEST
3473 namespace selftests
3474 {
3475 static void aarch64_process_record_test (void);
3476 }
3477 #endif
3478
3479 void _initialize_aarch64_tdep ();
3480 void
3481 _initialize_aarch64_tdep ()
3482 {
3483 gdbarch_register (bfd_arch_aarch64, aarch64_gdbarch_init,
3484 aarch64_dump_tdep);
3485
3486 /* Debug this file's internals. */
3487 add_setshow_boolean_cmd ("aarch64", class_maintenance, &aarch64_debug, _("\
3488 Set AArch64 debugging."), _("\
3489 Show AArch64 debugging."), _("\
3490 When on, AArch64 specific debugging is enabled."),
3491 NULL,
3492 show_aarch64_debug,
3493 &setdebuglist, &showdebuglist);
3494
3495 #if GDB_SELF_TEST
3496 selftests::register_test ("aarch64-analyze-prologue",
3497 selftests::aarch64_analyze_prologue_test);
3498 selftests::register_test ("aarch64-process-record",
3499 selftests::aarch64_process_record_test);
3500 #endif
3501 }
3502
3503 /* AArch64 process record-replay related structures, defines etc. */
3504
3505 #define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \
3506 do \
3507 { \
3508 unsigned int reg_len = LENGTH; \
3509 if (reg_len) \
3510 { \
3511 REGS = XNEWVEC (uint32_t, reg_len); \
3512 memcpy(&REGS[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \
3513 } \
3514 } \
3515 while (0)
3516
3517 #define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \
3518 do \
3519 { \
3520 unsigned int mem_len = LENGTH; \
3521 if (mem_len) \
3522 { \
3523 MEMS = XNEWVEC (struct aarch64_mem_r, mem_len); \
3524 memcpy(&MEMS->len, &RECORD_BUF[0], \
3525 sizeof(struct aarch64_mem_r) * LENGTH); \
3526 } \
3527 } \
3528 while (0)
3529
3530 /* AArch64 record/replay structures and enumerations. */
3531
3532 struct aarch64_mem_r
3533 {
3534 uint64_t len; /* Record length. */
3535 uint64_t addr; /* Memory address. */
3536 };
3537
3538 enum aarch64_record_result
3539 {
3540 AARCH64_RECORD_SUCCESS,
3541 AARCH64_RECORD_UNSUPPORTED,
3542 AARCH64_RECORD_UNKNOWN
3543 };
3544
3545 typedef struct insn_decode_record_t
3546 {
3547 struct gdbarch *gdbarch;
3548 struct regcache *regcache;
3549 CORE_ADDR this_addr; /* Address of insn to be recorded. */
3550 uint32_t aarch64_insn; /* Insn to be recorded. */
3551 uint32_t mem_rec_count; /* Count of memory records. */
3552 uint32_t reg_rec_count; /* Count of register records. */
3553 uint32_t *aarch64_regs; /* Registers to be recorded. */
3554 struct aarch64_mem_r *aarch64_mems; /* Memory locations to be recorded. */
3555 } insn_decode_record;
3556
3557 /* Record handler for data processing - register instructions. */
3558
3559 static unsigned int
3560 aarch64_record_data_proc_reg (insn_decode_record *aarch64_insn_r)
3561 {
3562 uint8_t reg_rd, insn_bits24_27, insn_bits21_23;
3563 uint32_t record_buf[4];
3564
3565 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3566 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3567 insn_bits21_23 = bits (aarch64_insn_r->aarch64_insn, 21, 23);
3568
3569 if (!bit (aarch64_insn_r->aarch64_insn, 28))
3570 {
3571 uint8_t setflags;
3572
3573 /* Logical (shifted register). */
3574 if (insn_bits24_27 == 0x0a)
3575 setflags = (bits (aarch64_insn_r->aarch64_insn, 29, 30) == 0x03);
3576 /* Add/subtract. */
3577 else if (insn_bits24_27 == 0x0b)
3578 setflags = bit (aarch64_insn_r->aarch64_insn, 29);
3579 else
3580 return AARCH64_RECORD_UNKNOWN;
3581
3582 record_buf[0] = reg_rd;
3583 aarch64_insn_r->reg_rec_count = 1;
3584 if (setflags)
3585 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
3586 }
3587 else
3588 {
3589 if (insn_bits24_27 == 0x0b)
3590 {
3591 /* Data-processing (3 source). */
3592 record_buf[0] = reg_rd;
3593 aarch64_insn_r->reg_rec_count = 1;
3594 }
3595 else if (insn_bits24_27 == 0x0a)
3596 {
3597 if (insn_bits21_23 == 0x00)
3598 {
3599 /* Add/subtract (with carry). */
3600 record_buf[0] = reg_rd;
3601 aarch64_insn_r->reg_rec_count = 1;
3602 if (bit (aarch64_insn_r->aarch64_insn, 29))
3603 {
3604 record_buf[1] = AARCH64_CPSR_REGNUM;
3605 aarch64_insn_r->reg_rec_count = 2;
3606 }
3607 }
3608 else if (insn_bits21_23 == 0x02)
3609 {
3610 /* Conditional compare (register) and conditional compare
3611 (immediate) instructions. */
3612 record_buf[0] = AARCH64_CPSR_REGNUM;
3613 aarch64_insn_r->reg_rec_count = 1;
3614 }
3615 else if (insn_bits21_23 == 0x04 || insn_bits21_23 == 0x06)
3616 {
3617 /* Conditional select. */
3618 /* Data-processing (2 source). */
3619 /* Data-processing (1 source). */
3620 record_buf[0] = reg_rd;
3621 aarch64_insn_r->reg_rec_count = 1;
3622 }
3623 else
3624 return AARCH64_RECORD_UNKNOWN;
3625 }
3626 }
3627
3628 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3629 record_buf);
3630 return AARCH64_RECORD_SUCCESS;
3631 }
3632
3633 /* Record handler for data processing - immediate instructions. */
3634
3635 static unsigned int
3636 aarch64_record_data_proc_imm (insn_decode_record *aarch64_insn_r)
3637 {
3638 uint8_t reg_rd, insn_bit23, insn_bits24_27, setflags;
3639 uint32_t record_buf[4];
3640
3641 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3642 insn_bit23 = bit (aarch64_insn_r->aarch64_insn, 23);
3643 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3644
3645 if (insn_bits24_27 == 0x00 /* PC rel addressing. */
3646 || insn_bits24_27 == 0x03 /* Bitfield and Extract. */
3647 || (insn_bits24_27 == 0x02 && insn_bit23)) /* Move wide (immediate). */
3648 {
3649 record_buf[0] = reg_rd;
3650 aarch64_insn_r->reg_rec_count = 1;
3651 }
3652 else if (insn_bits24_27 == 0x01)
3653 {
3654 /* Add/Subtract (immediate). */
3655 setflags = bit (aarch64_insn_r->aarch64_insn, 29);
3656 record_buf[0] = reg_rd;
3657 aarch64_insn_r->reg_rec_count = 1;
3658 if (setflags)
3659 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
3660 }
3661 else if (insn_bits24_27 == 0x02 && !insn_bit23)
3662 {
3663 /* Logical (immediate). */
3664 setflags = bits (aarch64_insn_r->aarch64_insn, 29, 30) == 0x03;
3665 record_buf[0] = reg_rd;
3666 aarch64_insn_r->reg_rec_count = 1;
3667 if (setflags)
3668 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
3669 }
3670 else
3671 return AARCH64_RECORD_UNKNOWN;
3672
3673 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3674 record_buf);
3675 return AARCH64_RECORD_SUCCESS;
3676 }
3677
3678 /* Record handler for branch, exception generation and system instructions. */
3679
3680 static unsigned int
3681 aarch64_record_branch_except_sys (insn_decode_record *aarch64_insn_r)
3682 {
3683 struct gdbarch_tdep *tdep = gdbarch_tdep (aarch64_insn_r->gdbarch);
3684 uint8_t insn_bits24_27, insn_bits28_31, insn_bits22_23;
3685 uint32_t record_buf[4];
3686
3687 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3688 insn_bits28_31 = bits (aarch64_insn_r->aarch64_insn, 28, 31);
3689 insn_bits22_23 = bits (aarch64_insn_r->aarch64_insn, 22, 23);
3690
3691 if (insn_bits28_31 == 0x0d)
3692 {
3693 /* Exception generation instructions. */
3694 if (insn_bits24_27 == 0x04)
3695 {
3696 if (!bits (aarch64_insn_r->aarch64_insn, 2, 4)
3697 && !bits (aarch64_insn_r->aarch64_insn, 21, 23)
3698 && bits (aarch64_insn_r->aarch64_insn, 0, 1) == 0x01)
3699 {
3700 ULONGEST svc_number;
3701
3702 regcache_raw_read_unsigned (aarch64_insn_r->regcache, 8,
3703 &svc_number);
3704 return tdep->aarch64_syscall_record (aarch64_insn_r->regcache,
3705 svc_number);
3706 }
3707 else
3708 return AARCH64_RECORD_UNSUPPORTED;
3709 }
3710 /* System instructions. */
3711 else if (insn_bits24_27 == 0x05 && insn_bits22_23 == 0x00)
3712 {
3713 uint32_t reg_rt, reg_crn;
3714
3715 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3716 reg_crn = bits (aarch64_insn_r->aarch64_insn, 12, 15);
3717
3718 /* Record rt in case of sysl and mrs instructions. */
3719 if (bit (aarch64_insn_r->aarch64_insn, 21))
3720 {
3721 record_buf[0] = reg_rt;
3722 aarch64_insn_r->reg_rec_count = 1;
3723 }
3724 /* Record cpsr for hint and msr(immediate) instructions. */
3725 else if (reg_crn == 0x02 || reg_crn == 0x04)
3726 {
3727 record_buf[0] = AARCH64_CPSR_REGNUM;
3728 aarch64_insn_r->reg_rec_count = 1;
3729 }
3730 }
3731 /* Unconditional branch (register). */
3732 else if((insn_bits24_27 & 0x0e) == 0x06)
3733 {
3734 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3735 if (bits (aarch64_insn_r->aarch64_insn, 21, 22) == 0x01)
3736 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_LR_REGNUM;
3737 }
3738 else
3739 return AARCH64_RECORD_UNKNOWN;
3740 }
3741 /* Unconditional branch (immediate). */
3742 else if ((insn_bits28_31 & 0x07) == 0x01 && (insn_bits24_27 & 0x0c) == 0x04)
3743 {
3744 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3745 if (bit (aarch64_insn_r->aarch64_insn, 31))
3746 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_LR_REGNUM;
3747 }
3748 else
3749 /* Compare & branch (immediate), Test & branch (immediate) and
3750 Conditional branch (immediate). */
3751 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3752
3753 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3754 record_buf);
3755 return AARCH64_RECORD_SUCCESS;
3756 }
3757
3758 /* Record handler for advanced SIMD load and store instructions. */
3759
3760 static unsigned int
3761 aarch64_record_asimd_load_store (insn_decode_record *aarch64_insn_r)
3762 {
3763 CORE_ADDR address;
3764 uint64_t addr_offset = 0;
3765 uint32_t record_buf[24];
3766 uint64_t record_buf_mem[24];
3767 uint32_t reg_rn, reg_rt;
3768 uint32_t reg_index = 0, mem_index = 0;
3769 uint8_t opcode_bits, size_bits;
3770
3771 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3772 reg_rn = bits (aarch64_insn_r->aarch64_insn, 5, 9);
3773 size_bits = bits (aarch64_insn_r->aarch64_insn, 10, 11);
3774 opcode_bits = bits (aarch64_insn_r->aarch64_insn, 12, 15);
3775 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn, &address);
3776
3777 if (record_debug)
3778 debug_printf ("Process record: Advanced SIMD load/store\n");
3779
3780 /* Load/store single structure. */
3781 if (bit (aarch64_insn_r->aarch64_insn, 24))
3782 {
3783 uint8_t sindex, scale, selem, esize, replicate = 0;
3784 scale = opcode_bits >> 2;
3785 selem = ((opcode_bits & 0x02) |
3786 bit (aarch64_insn_r->aarch64_insn, 21)) + 1;
3787 switch (scale)
3788 {
3789 case 1:
3790 if (size_bits & 0x01)
3791 return AARCH64_RECORD_UNKNOWN;
3792 break;
3793 case 2:
3794 if ((size_bits >> 1) & 0x01)
3795 return AARCH64_RECORD_UNKNOWN;
3796 if (size_bits & 0x01)
3797 {
3798 if (!((opcode_bits >> 1) & 0x01))
3799 scale = 3;
3800 else
3801 return AARCH64_RECORD_UNKNOWN;
3802 }
3803 break;
3804 case 3:
3805 if (bit (aarch64_insn_r->aarch64_insn, 22) && !(opcode_bits & 0x01))
3806 {
3807 scale = size_bits;
3808 replicate = 1;
3809 break;
3810 }
3811 else
3812 return AARCH64_RECORD_UNKNOWN;
3813 default:
3814 break;
3815 }
3816 esize = 8 << scale;
3817 if (replicate)
3818 for (sindex = 0; sindex < selem; sindex++)
3819 {
3820 record_buf[reg_index++] = reg_rt + AARCH64_V0_REGNUM;
3821 reg_rt = (reg_rt + 1) % 32;
3822 }
3823 else
3824 {
3825 for (sindex = 0; sindex < selem; sindex++)
3826 {
3827 if (bit (aarch64_insn_r->aarch64_insn, 22))
3828 record_buf[reg_index++] = reg_rt + AARCH64_V0_REGNUM;
3829 else
3830 {
3831 record_buf_mem[mem_index++] = esize / 8;
3832 record_buf_mem[mem_index++] = address + addr_offset;
3833 }
3834 addr_offset = addr_offset + (esize / 8);
3835 reg_rt = (reg_rt + 1) % 32;
3836 }
3837 }
3838 }
3839 /* Load/store multiple structure. */
3840 else
3841 {
3842 uint8_t selem, esize, rpt, elements;
3843 uint8_t eindex, rindex;
3844
3845 esize = 8 << size_bits;
3846 if (bit (aarch64_insn_r->aarch64_insn, 30))
3847 elements = 128 / esize;
3848 else
3849 elements = 64 / esize;
3850
3851 switch (opcode_bits)
3852 {
3853 /*LD/ST4 (4 Registers). */
3854 case 0:
3855 rpt = 1;
3856 selem = 4;
3857 break;
3858 /*LD/ST1 (4 Registers). */
3859 case 2:
3860 rpt = 4;
3861 selem = 1;
3862 break;
3863 /*LD/ST3 (3 Registers). */
3864 case 4:
3865 rpt = 1;
3866 selem = 3;
3867 break;
3868 /*LD/ST1 (3 Registers). */
3869 case 6:
3870 rpt = 3;
3871 selem = 1;
3872 break;
3873 /*LD/ST1 (1 Register). */
3874 case 7:
3875 rpt = 1;
3876 selem = 1;
3877 break;
3878 /*LD/ST2 (2 Registers). */
3879 case 8:
3880 rpt = 1;
3881 selem = 2;
3882 break;
3883 /*LD/ST1 (2 Registers). */
3884 case 10:
3885 rpt = 2;
3886 selem = 1;
3887 break;
3888 default:
3889 return AARCH64_RECORD_UNSUPPORTED;
3890 break;
3891 }
3892 for (rindex = 0; rindex < rpt; rindex++)
3893 for (eindex = 0; eindex < elements; eindex++)
3894 {
3895 uint8_t reg_tt, sindex;
3896 reg_tt = (reg_rt + rindex) % 32;
3897 for (sindex = 0; sindex < selem; sindex++)
3898 {
3899 if (bit (aarch64_insn_r->aarch64_insn, 22))
3900 record_buf[reg_index++] = reg_tt + AARCH64_V0_REGNUM;
3901 else
3902 {
3903 record_buf_mem[mem_index++] = esize / 8;
3904 record_buf_mem[mem_index++] = address + addr_offset;
3905 }
3906 addr_offset = addr_offset + (esize / 8);
3907 reg_tt = (reg_tt + 1) % 32;
3908 }
3909 }
3910 }
3911
3912 if (bit (aarch64_insn_r->aarch64_insn, 23))
3913 record_buf[reg_index++] = reg_rn;
3914
3915 aarch64_insn_r->reg_rec_count = reg_index;
3916 aarch64_insn_r->mem_rec_count = mem_index / 2;
3917 MEM_ALLOC (aarch64_insn_r->aarch64_mems, aarch64_insn_r->mem_rec_count,
3918 record_buf_mem);
3919 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3920 record_buf);
3921 return AARCH64_RECORD_SUCCESS;
3922 }
3923
3924 /* Record handler for load and store instructions. */
3925
3926 static unsigned int
3927 aarch64_record_load_store (insn_decode_record *aarch64_insn_r)
3928 {
3929 uint8_t insn_bits24_27, insn_bits28_29, insn_bits10_11;
3930 uint8_t insn_bit23, insn_bit21;
3931 uint8_t opc, size_bits, ld_flag, vector_flag;
3932 uint32_t reg_rn, reg_rt, reg_rt2;
3933 uint64_t datasize, offset;
3934 uint32_t record_buf[8];
3935 uint64_t record_buf_mem[8];
3936 CORE_ADDR address;
3937
3938 insn_bits10_11 = bits (aarch64_insn_r->aarch64_insn, 10, 11);
3939 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3940 insn_bits28_29 = bits (aarch64_insn_r->aarch64_insn, 28, 29);
3941 insn_bit21 = bit (aarch64_insn_r->aarch64_insn, 21);
3942 insn_bit23 = bit (aarch64_insn_r->aarch64_insn, 23);
3943 ld_flag = bit (aarch64_insn_r->aarch64_insn, 22);
3944 vector_flag = bit (aarch64_insn_r->aarch64_insn, 26);
3945 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3946 reg_rn = bits (aarch64_insn_r->aarch64_insn, 5, 9);
3947 reg_rt2 = bits (aarch64_insn_r->aarch64_insn, 10, 14);
3948 size_bits = bits (aarch64_insn_r->aarch64_insn, 30, 31);
3949
3950 /* Load/store exclusive. */
3951 if (insn_bits24_27 == 0x08 && insn_bits28_29 == 0x00)
3952 {
3953 if (record_debug)
3954 debug_printf ("Process record: load/store exclusive\n");
3955
3956 if (ld_flag)
3957 {
3958 record_buf[0] = reg_rt;
3959 aarch64_insn_r->reg_rec_count = 1;
3960 if (insn_bit21)
3961 {
3962 record_buf[1] = reg_rt2;
3963 aarch64_insn_r->reg_rec_count = 2;
3964 }
3965 }
3966 else
3967 {
3968 if (insn_bit21)
3969 datasize = (8 << size_bits) * 2;
3970 else
3971 datasize = (8 << size_bits);
3972 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3973 &address);
3974 record_buf_mem[0] = datasize / 8;
3975 record_buf_mem[1] = address;
3976 aarch64_insn_r->mem_rec_count = 1;
3977 if (!insn_bit23)
3978 {
3979 /* Save register rs. */
3980 record_buf[0] = bits (aarch64_insn_r->aarch64_insn, 16, 20);
3981 aarch64_insn_r->reg_rec_count = 1;
3982 }
3983 }
3984 }
3985 /* Load register (literal) instructions decoding. */
3986 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x01)
3987 {
3988 if (record_debug)
3989 debug_printf ("Process record: load register (literal)\n");
3990 if (vector_flag)
3991 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3992 else
3993 record_buf[0] = reg_rt;
3994 aarch64_insn_r->reg_rec_count = 1;
3995 }
3996 /* All types of load/store pair instructions decoding. */
3997 else if ((insn_bits24_27 & 0x0a) == 0x08 && insn_bits28_29 == 0x02)
3998 {
3999 if (record_debug)
4000 debug_printf ("Process record: load/store pair\n");
4001
4002 if (ld_flag)
4003 {
4004 if (vector_flag)
4005 {
4006 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
4007 record_buf[1] = reg_rt2 + AARCH64_V0_REGNUM;
4008 }
4009 else
4010 {
4011 record_buf[0] = reg_rt;
4012 record_buf[1] = reg_rt2;
4013 }
4014 aarch64_insn_r->reg_rec_count = 2;
4015 }
4016 else
4017 {
4018 uint16_t imm7_off;
4019 imm7_off = bits (aarch64_insn_r->aarch64_insn, 15, 21);
4020 if (!vector_flag)
4021 size_bits = size_bits >> 1;
4022 datasize = 8 << (2 + size_bits);
4023 offset = (imm7_off & 0x40) ? (~imm7_off & 0x007f) + 1 : imm7_off;
4024 offset = offset << (2 + size_bits);
4025 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
4026 &address);
4027 if (!((insn_bits24_27 & 0x0b) == 0x08 && insn_bit23))
4028 {
4029 if (imm7_off & 0x40)
4030 address = address - offset;
4031 else
4032 address = address + offset;
4033 }
4034
4035 record_buf_mem[0] = datasize / 8;
4036 record_buf_mem[1] = address;
4037 record_buf_mem[2] = datasize / 8;
4038 record_buf_mem[3] = address + (datasize / 8);
4039 aarch64_insn_r->mem_rec_count = 2;
4040 }
4041 if (bit (aarch64_insn_r->aarch64_insn, 23))
4042 record_buf[aarch64_insn_r->reg_rec_count++] = reg_rn;
4043 }
4044 /* Load/store register (unsigned immediate) instructions. */
4045 else if ((insn_bits24_27 & 0x0b) == 0x09 && insn_bits28_29 == 0x03)
4046 {
4047 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
4048 if (!(opc >> 1))
4049 {
4050 if (opc & 0x01)
4051 ld_flag = 0x01;
4052 else
4053 ld_flag = 0x0;
4054 }
4055 else
4056 {
4057 if (size_bits == 0x3 && vector_flag == 0x0 && opc == 0x2)
4058 {
4059 /* PRFM (immediate) */
4060 return AARCH64_RECORD_SUCCESS;
4061 }
4062 else if (size_bits == 0x2 && vector_flag == 0x0 && opc == 0x2)
4063 {
4064 /* LDRSW (immediate) */
4065 ld_flag = 0x1;
4066 }
4067 else
4068 {
4069 if (opc & 0x01)
4070 ld_flag = 0x01;
4071 else
4072 ld_flag = 0x0;
4073 }
4074 }
4075
4076 if (record_debug)
4077 {
4078 debug_printf ("Process record: load/store (unsigned immediate):"
4079 " size %x V %d opc %x\n", size_bits, vector_flag,
4080 opc);
4081 }
4082
4083 if (!ld_flag)
4084 {
4085 offset = bits (aarch64_insn_r->aarch64_insn, 10, 21);
4086 datasize = 8 << size_bits;
4087 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
4088 &address);
4089 offset = offset << size_bits;
4090 address = address + offset;
4091
4092 record_buf_mem[0] = datasize >> 3;
4093 record_buf_mem[1] = address;
4094 aarch64_insn_r->mem_rec_count = 1;
4095 }
4096 else
4097 {
4098 if (vector_flag)
4099 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
4100 else
4101 record_buf[0] = reg_rt;
4102 aarch64_insn_r->reg_rec_count = 1;
4103 }
4104 }
4105 /* Load/store register (register offset) instructions. */
4106 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x03
4107 && insn_bits10_11 == 0x02 && insn_bit21)
4108 {
4109 if (record_debug)
4110 debug_printf ("Process record: load/store (register offset)\n");
4111 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
4112 if (!(opc >> 1))
4113 if (opc & 0x01)
4114 ld_flag = 0x01;
4115 else
4116 ld_flag = 0x0;
4117 else
4118 if (size_bits != 0x03)
4119 ld_flag = 0x01;
4120 else
4121 return AARCH64_RECORD_UNKNOWN;
4122
4123 if (!ld_flag)
4124 {
4125 ULONGEST reg_rm_val;
4126
4127 regcache_raw_read_unsigned (aarch64_insn_r->regcache,
4128 bits (aarch64_insn_r->aarch64_insn, 16, 20), &reg_rm_val);
4129 if (bit (aarch64_insn_r->aarch64_insn, 12))
4130 offset = reg_rm_val << size_bits;
4131 else
4132 offset = reg_rm_val;
4133 datasize = 8 << size_bits;
4134 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
4135 &address);
4136 address = address + offset;
4137 record_buf_mem[0] = datasize >> 3;
4138 record_buf_mem[1] = address;
4139 aarch64_insn_r->mem_rec_count = 1;
4140 }
4141 else
4142 {
4143 if (vector_flag)
4144 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
4145 else
4146 record_buf[0] = reg_rt;
4147 aarch64_insn_r->reg_rec_count = 1;
4148 }
4149 }
4150 /* Load/store register (immediate and unprivileged) instructions. */
4151 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x03
4152 && !insn_bit21)
4153 {
4154 if (record_debug)
4155 {
4156 debug_printf ("Process record: load/store "
4157 "(immediate and unprivileged)\n");
4158 }
4159 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
4160 if (!(opc >> 1))
4161 if (opc & 0x01)
4162 ld_flag = 0x01;
4163 else
4164 ld_flag = 0x0;
4165 else
4166 if (size_bits != 0x03)
4167 ld_flag = 0x01;
4168 else
4169 return AARCH64_RECORD_UNKNOWN;
4170
4171 if (!ld_flag)
4172 {
4173 uint16_t imm9_off;
4174 imm9_off = bits (aarch64_insn_r->aarch64_insn, 12, 20);
4175 offset = (imm9_off & 0x0100) ? (((~imm9_off) & 0x01ff) + 1) : imm9_off;
4176 datasize = 8 << size_bits;
4177 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
4178 &address);
4179 if (insn_bits10_11 != 0x01)
4180 {
4181 if (imm9_off & 0x0100)
4182 address = address - offset;
4183 else
4184 address = address + offset;
4185 }
4186 record_buf_mem[0] = datasize >> 3;
4187 record_buf_mem[1] = address;
4188 aarch64_insn_r->mem_rec_count = 1;
4189 }
4190 else
4191 {
4192 if (vector_flag)
4193 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
4194 else
4195 record_buf[0] = reg_rt;
4196 aarch64_insn_r->reg_rec_count = 1;
4197 }
4198 if (insn_bits10_11 == 0x01 || insn_bits10_11 == 0x03)
4199 record_buf[aarch64_insn_r->reg_rec_count++] = reg_rn;
4200 }
4201 /* Advanced SIMD load/store instructions. */
4202 else
4203 return aarch64_record_asimd_load_store (aarch64_insn_r);
4204
4205 MEM_ALLOC (aarch64_insn_r->aarch64_mems, aarch64_insn_r->mem_rec_count,
4206 record_buf_mem);
4207 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
4208 record_buf);
4209 return AARCH64_RECORD_SUCCESS;
4210 }
4211
4212 /* Record handler for data processing SIMD and floating point instructions. */
4213
4214 static unsigned int
4215 aarch64_record_data_proc_simd_fp (insn_decode_record *aarch64_insn_r)
4216 {
4217 uint8_t insn_bit21, opcode, rmode, reg_rd;
4218 uint8_t insn_bits24_27, insn_bits28_31, insn_bits10_11, insn_bits12_15;
4219 uint8_t insn_bits11_14;
4220 uint32_t record_buf[2];
4221
4222 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
4223 insn_bits28_31 = bits (aarch64_insn_r->aarch64_insn, 28, 31);
4224 insn_bits10_11 = bits (aarch64_insn_r->aarch64_insn, 10, 11);
4225 insn_bits12_15 = bits (aarch64_insn_r->aarch64_insn, 12, 15);
4226 insn_bits11_14 = bits (aarch64_insn_r->aarch64_insn, 11, 14);
4227 opcode = bits (aarch64_insn_r->aarch64_insn, 16, 18);
4228 rmode = bits (aarch64_insn_r->aarch64_insn, 19, 20);
4229 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
4230 insn_bit21 = bit (aarch64_insn_r->aarch64_insn, 21);
4231
4232 if (record_debug)
4233 debug_printf ("Process record: data processing SIMD/FP: ");
4234
4235 if ((insn_bits28_31 & 0x05) == 0x01 && insn_bits24_27 == 0x0e)
4236 {
4237 /* Floating point - fixed point conversion instructions. */
4238 if (!insn_bit21)
4239 {
4240 if (record_debug)
4241 debug_printf ("FP - fixed point conversion");
4242
4243 if ((opcode >> 1) == 0x0 && rmode == 0x03)
4244 record_buf[0] = reg_rd;
4245 else
4246 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4247 }
4248 /* Floating point - conditional compare instructions. */
4249 else if (insn_bits10_11 == 0x01)
4250 {
4251 if (record_debug)
4252 debug_printf ("FP - conditional compare");
4253
4254 record_buf[0] = AARCH64_CPSR_REGNUM;
4255 }
4256 /* Floating point - data processing (2-source) and
4257 conditional select instructions. */
4258 else if (insn_bits10_11 == 0x02 || insn_bits10_11 == 0x03)
4259 {
4260 if (record_debug)
4261 debug_printf ("FP - DP (2-source)");
4262
4263 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4264 }
4265 else if (insn_bits10_11 == 0x00)
4266 {
4267 /* Floating point - immediate instructions. */
4268 if ((insn_bits12_15 & 0x01) == 0x01
4269 || (insn_bits12_15 & 0x07) == 0x04)
4270 {
4271 if (record_debug)
4272 debug_printf ("FP - immediate");
4273 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4274 }
4275 /* Floating point - compare instructions. */
4276 else if ((insn_bits12_15 & 0x03) == 0x02)
4277 {
4278 if (record_debug)
4279 debug_printf ("FP - immediate");
4280 record_buf[0] = AARCH64_CPSR_REGNUM;
4281 }
4282 /* Floating point - integer conversions instructions. */
4283 else if (insn_bits12_15 == 0x00)
4284 {
4285 /* Convert float to integer instruction. */
4286 if (!(opcode >> 1) || ((opcode >> 1) == 0x02 && !rmode))
4287 {
4288 if (record_debug)
4289 debug_printf ("float to int conversion");
4290
4291 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
4292 }
4293 /* Convert integer to float instruction. */
4294 else if ((opcode >> 1) == 0x01 && !rmode)
4295 {
4296 if (record_debug)
4297 debug_printf ("int to float conversion");
4298
4299 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4300 }
4301 /* Move float to integer instruction. */
4302 else if ((opcode >> 1) == 0x03)
4303 {
4304 if (record_debug)
4305 debug_printf ("move float to int");
4306
4307 if (!(opcode & 0x01))
4308 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
4309 else
4310 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4311 }
4312 else
4313 return AARCH64_RECORD_UNKNOWN;
4314 }
4315 else
4316 return AARCH64_RECORD_UNKNOWN;
4317 }
4318 else
4319 return AARCH64_RECORD_UNKNOWN;
4320 }
4321 else if ((insn_bits28_31 & 0x09) == 0x00 && insn_bits24_27 == 0x0e)
4322 {
4323 if (record_debug)
4324 debug_printf ("SIMD copy");
4325
4326 /* Advanced SIMD copy instructions. */
4327 if (!bits (aarch64_insn_r->aarch64_insn, 21, 23)
4328 && !bit (aarch64_insn_r->aarch64_insn, 15)
4329 && bit (aarch64_insn_r->aarch64_insn, 10))
4330 {
4331 if (insn_bits11_14 == 0x05 || insn_bits11_14 == 0x07)
4332 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
4333 else
4334 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4335 }
4336 else
4337 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4338 }
4339 /* All remaining floating point or advanced SIMD instructions. */
4340 else
4341 {
4342 if (record_debug)
4343 debug_printf ("all remain");
4344
4345 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4346 }
4347
4348 if (record_debug)
4349 debug_printf ("\n");
4350
4351 aarch64_insn_r->reg_rec_count++;
4352 gdb_assert (aarch64_insn_r->reg_rec_count == 1);
4353 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
4354 record_buf);
4355 return AARCH64_RECORD_SUCCESS;
4356 }
4357
4358 /* Decodes insns type and invokes its record handler. */
4359
4360 static unsigned int
4361 aarch64_record_decode_insn_handler (insn_decode_record *aarch64_insn_r)
4362 {
4363 uint32_t ins_bit25, ins_bit26, ins_bit27, ins_bit28;
4364
4365 ins_bit25 = bit (aarch64_insn_r->aarch64_insn, 25);
4366 ins_bit26 = bit (aarch64_insn_r->aarch64_insn, 26);
4367 ins_bit27 = bit (aarch64_insn_r->aarch64_insn, 27);
4368 ins_bit28 = bit (aarch64_insn_r->aarch64_insn, 28);
4369
4370 /* Data processing - immediate instructions. */
4371 if (!ins_bit26 && !ins_bit27 && ins_bit28)
4372 return aarch64_record_data_proc_imm (aarch64_insn_r);
4373
4374 /* Branch, exception generation and system instructions. */
4375 if (ins_bit26 && !ins_bit27 && ins_bit28)
4376 return aarch64_record_branch_except_sys (aarch64_insn_r);
4377
4378 /* Load and store instructions. */
4379 if (!ins_bit25 && ins_bit27)
4380 return aarch64_record_load_store (aarch64_insn_r);
4381
4382 /* Data processing - register instructions. */
4383 if (ins_bit25 && !ins_bit26 && ins_bit27)
4384 return aarch64_record_data_proc_reg (aarch64_insn_r);
4385
4386 /* Data processing - SIMD and floating point instructions. */
4387 if (ins_bit25 && ins_bit26 && ins_bit27)
4388 return aarch64_record_data_proc_simd_fp (aarch64_insn_r);
4389
4390 return AARCH64_RECORD_UNSUPPORTED;
4391 }
4392
4393 /* Cleans up local record registers and memory allocations. */
4394
4395 static void
4396 deallocate_reg_mem (insn_decode_record *record)
4397 {
4398 xfree (record->aarch64_regs);
4399 xfree (record->aarch64_mems);
4400 }
4401
4402 #if GDB_SELF_TEST
4403 namespace selftests {
4404
4405 static void
4406 aarch64_process_record_test (void)
4407 {
4408 struct gdbarch_info info;
4409 uint32_t ret;
4410
4411 gdbarch_info_init (&info);
4412 info.bfd_arch_info = bfd_scan_arch ("aarch64");
4413
4414 struct gdbarch *gdbarch = gdbarch_find_by_info (info);
4415 SELF_CHECK (gdbarch != NULL);
4416
4417 insn_decode_record aarch64_record;
4418
4419 memset (&aarch64_record, 0, sizeof (insn_decode_record));
4420 aarch64_record.regcache = NULL;
4421 aarch64_record.this_addr = 0;
4422 aarch64_record.gdbarch = gdbarch;
4423
4424 /* 20 00 80 f9 prfm pldl1keep, [x1] */
4425 aarch64_record.aarch64_insn = 0xf9800020;
4426 ret = aarch64_record_decode_insn_handler (&aarch64_record);
4427 SELF_CHECK (ret == AARCH64_RECORD_SUCCESS);
4428 SELF_CHECK (aarch64_record.reg_rec_count == 0);
4429 SELF_CHECK (aarch64_record.mem_rec_count == 0);
4430
4431 deallocate_reg_mem (&aarch64_record);
4432 }
4433
4434 } // namespace selftests
4435 #endif /* GDB_SELF_TEST */
4436
4437 /* Parse the current instruction and record the values of the registers and
4438 memory that will be changed in current instruction to record_arch_list
4439 return -1 if something is wrong. */
4440
4441 int
4442 aarch64_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4443 CORE_ADDR insn_addr)
4444 {
4445 uint32_t rec_no = 0;
4446 uint8_t insn_size = 4;
4447 uint32_t ret = 0;
4448 gdb_byte buf[insn_size];
4449 insn_decode_record aarch64_record;
4450
4451 memset (&buf[0], 0, insn_size);
4452 memset (&aarch64_record, 0, sizeof (insn_decode_record));
4453 target_read_memory (insn_addr, &buf[0], insn_size);
4454 aarch64_record.aarch64_insn
4455 = (uint32_t) extract_unsigned_integer (&buf[0],
4456 insn_size,
4457 gdbarch_byte_order (gdbarch));
4458 aarch64_record.regcache = regcache;
4459 aarch64_record.this_addr = insn_addr;
4460 aarch64_record.gdbarch = gdbarch;
4461
4462 ret = aarch64_record_decode_insn_handler (&aarch64_record);
4463 if (ret == AARCH64_RECORD_UNSUPPORTED)
4464 {
4465 printf_unfiltered (_("Process record does not support instruction "
4466 "0x%0x at address %s.\n"),
4467 aarch64_record.aarch64_insn,
4468 paddress (gdbarch, insn_addr));
4469 ret = -1;
4470 }
4471
4472 if (0 == ret)
4473 {
4474 /* Record registers. */
4475 record_full_arch_list_add_reg (aarch64_record.regcache,
4476 AARCH64_PC_REGNUM);
4477 /* Always record register CPSR. */
4478 record_full_arch_list_add_reg (aarch64_record.regcache,
4479 AARCH64_CPSR_REGNUM);
4480 if (aarch64_record.aarch64_regs)
4481 for (rec_no = 0; rec_no < aarch64_record.reg_rec_count; rec_no++)
4482 if (record_full_arch_list_add_reg (aarch64_record.regcache,
4483 aarch64_record.aarch64_regs[rec_no]))
4484 ret = -1;
4485
4486 /* Record memories. */
4487 if (aarch64_record.aarch64_mems)
4488 for (rec_no = 0; rec_no < aarch64_record.mem_rec_count; rec_no++)
4489 if (record_full_arch_list_add_mem
4490 ((CORE_ADDR)aarch64_record.aarch64_mems[rec_no].addr,
4491 aarch64_record.aarch64_mems[rec_no].len))
4492 ret = -1;
4493
4494 if (record_full_arch_list_add_end ())
4495 ret = -1;
4496 }
4497
4498 deallocate_reg_mem (&aarch64_record);
4499 return ret;
4500 }