]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/aarch64-tdep.c
AArch64 SVE: Check for vector length change when getting gdbarch
[thirdparty/binutils-gdb.git] / gdb / aarch64-tdep.c
1 /* Common target dependent code for GDB on AArch64 systems.
2
3 Copyright (C) 2009-2019 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22
23 #include "frame.h"
24 #include "inferior.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "dis-asm.h"
28 #include "regcache.h"
29 #include "reggroups.h"
30 #include "value.h"
31 #include "arch-utils.h"
32 #include "osabi.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "trad-frame.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "dwarf2-frame.h"
39 #include "gdbtypes.h"
40 #include "prologue-value.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
43 #include "language.h"
44 #include "infcall.h"
45 #include "ax.h"
46 #include "ax-gdb.h"
47 #include "common/selftest.h"
48
49 #include "aarch64-tdep.h"
50 #include "aarch64-ravenscar-thread.h"
51
52 #include "elf-bfd.h"
53 #include "elf/aarch64.h"
54
55 #include "common/vec.h"
56
57 #include "record.h"
58 #include "record-full.h"
59 #include "arch/aarch64-insn.h"
60
61 #include "opcode/aarch64.h"
62 #include <algorithm>
63
64 #define submask(x) ((1L << ((x) + 1)) - 1)
65 #define bit(obj,st) (((obj) >> (st)) & 1)
66 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
67
68 /* A Homogeneous Floating-Point or Short-Vector Aggregate may have at most
69 four members. */
70 #define HA_MAX_NUM_FLDS 4
71
72 /* All possible aarch64 target descriptors. */
73 struct target_desc *tdesc_aarch64_list[AARCH64_MAX_SVE_VQ + 1][2/*pauth*/];
74
75 /* The standard register names, and all the valid aliases for them. */
76 static const struct
77 {
78 const char *const name;
79 int regnum;
80 } aarch64_register_aliases[] =
81 {
82 /* 64-bit register names. */
83 {"fp", AARCH64_FP_REGNUM},
84 {"lr", AARCH64_LR_REGNUM},
85 {"sp", AARCH64_SP_REGNUM},
86
87 /* 32-bit register names. */
88 {"w0", AARCH64_X0_REGNUM + 0},
89 {"w1", AARCH64_X0_REGNUM + 1},
90 {"w2", AARCH64_X0_REGNUM + 2},
91 {"w3", AARCH64_X0_REGNUM + 3},
92 {"w4", AARCH64_X0_REGNUM + 4},
93 {"w5", AARCH64_X0_REGNUM + 5},
94 {"w6", AARCH64_X0_REGNUM + 6},
95 {"w7", AARCH64_X0_REGNUM + 7},
96 {"w8", AARCH64_X0_REGNUM + 8},
97 {"w9", AARCH64_X0_REGNUM + 9},
98 {"w10", AARCH64_X0_REGNUM + 10},
99 {"w11", AARCH64_X0_REGNUM + 11},
100 {"w12", AARCH64_X0_REGNUM + 12},
101 {"w13", AARCH64_X0_REGNUM + 13},
102 {"w14", AARCH64_X0_REGNUM + 14},
103 {"w15", AARCH64_X0_REGNUM + 15},
104 {"w16", AARCH64_X0_REGNUM + 16},
105 {"w17", AARCH64_X0_REGNUM + 17},
106 {"w18", AARCH64_X0_REGNUM + 18},
107 {"w19", AARCH64_X0_REGNUM + 19},
108 {"w20", AARCH64_X0_REGNUM + 20},
109 {"w21", AARCH64_X0_REGNUM + 21},
110 {"w22", AARCH64_X0_REGNUM + 22},
111 {"w23", AARCH64_X0_REGNUM + 23},
112 {"w24", AARCH64_X0_REGNUM + 24},
113 {"w25", AARCH64_X0_REGNUM + 25},
114 {"w26", AARCH64_X0_REGNUM + 26},
115 {"w27", AARCH64_X0_REGNUM + 27},
116 {"w28", AARCH64_X0_REGNUM + 28},
117 {"w29", AARCH64_X0_REGNUM + 29},
118 {"w30", AARCH64_X0_REGNUM + 30},
119
120 /* specials */
121 {"ip0", AARCH64_X0_REGNUM + 16},
122 {"ip1", AARCH64_X0_REGNUM + 17}
123 };
124
125 /* The required core 'R' registers. */
126 static const char *const aarch64_r_register_names[] =
127 {
128 /* These registers must appear in consecutive RAW register number
129 order and they must begin with AARCH64_X0_REGNUM! */
130 "x0", "x1", "x2", "x3",
131 "x4", "x5", "x6", "x7",
132 "x8", "x9", "x10", "x11",
133 "x12", "x13", "x14", "x15",
134 "x16", "x17", "x18", "x19",
135 "x20", "x21", "x22", "x23",
136 "x24", "x25", "x26", "x27",
137 "x28", "x29", "x30", "sp",
138 "pc", "cpsr"
139 };
140
141 /* The FP/SIMD 'V' registers. */
142 static const char *const aarch64_v_register_names[] =
143 {
144 /* These registers must appear in consecutive RAW register number
145 order and they must begin with AARCH64_V0_REGNUM! */
146 "v0", "v1", "v2", "v3",
147 "v4", "v5", "v6", "v7",
148 "v8", "v9", "v10", "v11",
149 "v12", "v13", "v14", "v15",
150 "v16", "v17", "v18", "v19",
151 "v20", "v21", "v22", "v23",
152 "v24", "v25", "v26", "v27",
153 "v28", "v29", "v30", "v31",
154 "fpsr",
155 "fpcr"
156 };
157
158 /* The SVE 'Z' and 'P' registers. */
159 static const char *const aarch64_sve_register_names[] =
160 {
161 /* These registers must appear in consecutive RAW register number
162 order and they must begin with AARCH64_SVE_Z0_REGNUM! */
163 "z0", "z1", "z2", "z3",
164 "z4", "z5", "z6", "z7",
165 "z8", "z9", "z10", "z11",
166 "z12", "z13", "z14", "z15",
167 "z16", "z17", "z18", "z19",
168 "z20", "z21", "z22", "z23",
169 "z24", "z25", "z26", "z27",
170 "z28", "z29", "z30", "z31",
171 "fpsr", "fpcr",
172 "p0", "p1", "p2", "p3",
173 "p4", "p5", "p6", "p7",
174 "p8", "p9", "p10", "p11",
175 "p12", "p13", "p14", "p15",
176 "ffr", "vg"
177 };
178
179 static const char *const aarch64_pauth_register_names[] =
180 {
181 /* Authentication mask for data pointer. */
182 "pauth_dmask",
183 /* Authentication mask for code pointer. */
184 "pauth_cmask"
185 };
186
187 /* AArch64 prologue cache structure. */
188 struct aarch64_prologue_cache
189 {
190 /* The program counter at the start of the function. It is used to
191 identify this frame as a prologue frame. */
192 CORE_ADDR func;
193
194 /* The program counter at the time this frame was created; i.e. where
195 this function was called from. It is used to identify this frame as a
196 stub frame. */
197 CORE_ADDR prev_pc;
198
199 /* The stack pointer at the time this frame was created; i.e. the
200 caller's stack pointer when this function was called. It is used
201 to identify this frame. */
202 CORE_ADDR prev_sp;
203
204 /* Is the target available to read from? */
205 int available_p;
206
207 /* The frame base for this frame is just prev_sp - frame size.
208 FRAMESIZE is the distance from the frame pointer to the
209 initial stack pointer. */
210 int framesize;
211
212 /* The register used to hold the frame pointer for this frame. */
213 int framereg;
214
215 /* Saved register offsets. */
216 struct trad_frame_saved_reg *saved_regs;
217 };
218
219 static void
220 show_aarch64_debug (struct ui_file *file, int from_tty,
221 struct cmd_list_element *c, const char *value)
222 {
223 fprintf_filtered (file, _("AArch64 debugging is %s.\n"), value);
224 }
225
226 namespace {
227
228 /* Abstract instruction reader. */
229
230 class abstract_instruction_reader
231 {
232 public:
233 /* Read in one instruction. */
234 virtual ULONGEST read (CORE_ADDR memaddr, int len,
235 enum bfd_endian byte_order) = 0;
236 };
237
238 /* Instruction reader from real target. */
239
240 class instruction_reader : public abstract_instruction_reader
241 {
242 public:
243 ULONGEST read (CORE_ADDR memaddr, int len, enum bfd_endian byte_order)
244 override
245 {
246 return read_code_unsigned_integer (memaddr, len, byte_order);
247 }
248 };
249
250 } // namespace
251
252 /* If address signing is enabled, mask off the signature bits from ADDR, using
253 the register values in THIS_FRAME. */
254
255 static CORE_ADDR
256 aarch64_frame_unmask_address (struct gdbarch_tdep *tdep,
257 struct frame_info *this_frame,
258 CORE_ADDR addr)
259 {
260 if (tdep->has_pauth ()
261 && frame_unwind_register_unsigned (this_frame,
262 tdep->pauth_ra_state_regnum))
263 {
264 int cmask_num = AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base);
265 CORE_ADDR cmask = frame_unwind_register_unsigned (this_frame, cmask_num);
266 addr = addr & ~cmask;
267 }
268
269 return addr;
270 }
271
272 /* Analyze a prologue, looking for a recognizable stack frame
273 and frame pointer. Scan until we encounter a store that could
274 clobber the stack frame unexpectedly, or an unknown instruction. */
275
276 static CORE_ADDR
277 aarch64_analyze_prologue (struct gdbarch *gdbarch,
278 CORE_ADDR start, CORE_ADDR limit,
279 struct aarch64_prologue_cache *cache,
280 abstract_instruction_reader& reader)
281 {
282 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
283 int i;
284 /* Track X registers and D registers in prologue. */
285 pv_t regs[AARCH64_X_REGISTER_COUNT + AARCH64_D_REGISTER_COUNT];
286
287 for (i = 0; i < AARCH64_X_REGISTER_COUNT + AARCH64_D_REGISTER_COUNT; i++)
288 regs[i] = pv_register (i, 0);
289 pv_area stack (AARCH64_SP_REGNUM, gdbarch_addr_bit (gdbarch));
290
291 for (; start < limit; start += 4)
292 {
293 uint32_t insn;
294 aarch64_inst inst;
295
296 insn = reader.read (start, 4, byte_order_for_code);
297
298 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
299 break;
300
301 if (inst.opcode->iclass == addsub_imm
302 && (inst.opcode->op == OP_ADD
303 || strcmp ("sub", inst.opcode->name) == 0))
304 {
305 unsigned rd = inst.operands[0].reg.regno;
306 unsigned rn = inst.operands[1].reg.regno;
307
308 gdb_assert (aarch64_num_of_operands (inst.opcode) == 3);
309 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd_SP);
310 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rn_SP);
311 gdb_assert (inst.operands[2].type == AARCH64_OPND_AIMM);
312
313 if (inst.opcode->op == OP_ADD)
314 {
315 regs[rd] = pv_add_constant (regs[rn],
316 inst.operands[2].imm.value);
317 }
318 else
319 {
320 regs[rd] = pv_add_constant (regs[rn],
321 -inst.operands[2].imm.value);
322 }
323 }
324 else if (inst.opcode->iclass == pcreladdr
325 && inst.operands[1].type == AARCH64_OPND_ADDR_ADRP)
326 {
327 gdb_assert (aarch64_num_of_operands (inst.opcode) == 2);
328 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
329
330 regs[inst.operands[0].reg.regno] = pv_unknown ();
331 }
332 else if (inst.opcode->iclass == branch_imm)
333 {
334 /* Stop analysis on branch. */
335 break;
336 }
337 else if (inst.opcode->iclass == condbranch)
338 {
339 /* Stop analysis on branch. */
340 break;
341 }
342 else if (inst.opcode->iclass == branch_reg)
343 {
344 /* Stop analysis on branch. */
345 break;
346 }
347 else if (inst.opcode->iclass == compbranch)
348 {
349 /* Stop analysis on branch. */
350 break;
351 }
352 else if (inst.opcode->op == OP_MOVZ)
353 {
354 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
355 regs[inst.operands[0].reg.regno] = pv_unknown ();
356 }
357 else if (inst.opcode->iclass == log_shift
358 && strcmp (inst.opcode->name, "orr") == 0)
359 {
360 unsigned rd = inst.operands[0].reg.regno;
361 unsigned rn = inst.operands[1].reg.regno;
362 unsigned rm = inst.operands[2].reg.regno;
363
364 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
365 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rn);
366 gdb_assert (inst.operands[2].type == AARCH64_OPND_Rm_SFT);
367
368 if (inst.operands[2].shifter.amount == 0
369 && rn == AARCH64_SP_REGNUM)
370 regs[rd] = regs[rm];
371 else
372 {
373 if (aarch64_debug)
374 {
375 debug_printf ("aarch64: prologue analysis gave up "
376 "addr=%s opcode=0x%x (orr x register)\n",
377 core_addr_to_string_nz (start), insn);
378 }
379 break;
380 }
381 }
382 else if (inst.opcode->op == OP_STUR)
383 {
384 unsigned rt = inst.operands[0].reg.regno;
385 unsigned rn = inst.operands[1].addr.base_regno;
386 int is64
387 = (aarch64_get_qualifier_esize (inst.operands[0].qualifier) == 8);
388
389 gdb_assert (aarch64_num_of_operands (inst.opcode) == 2);
390 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt);
391 gdb_assert (inst.operands[1].type == AARCH64_OPND_ADDR_SIMM9);
392 gdb_assert (!inst.operands[1].addr.offset.is_reg);
393
394 stack.store (pv_add_constant (regs[rn],
395 inst.operands[1].addr.offset.imm),
396 is64 ? 8 : 4, regs[rt]);
397 }
398 else if ((inst.opcode->iclass == ldstpair_off
399 || (inst.opcode->iclass == ldstpair_indexed
400 && inst.operands[2].addr.preind))
401 && strcmp ("stp", inst.opcode->name) == 0)
402 {
403 /* STP with addressing mode Pre-indexed and Base register. */
404 unsigned rt1;
405 unsigned rt2;
406 unsigned rn = inst.operands[2].addr.base_regno;
407 int32_t imm = inst.operands[2].addr.offset.imm;
408
409 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt
410 || inst.operands[0].type == AARCH64_OPND_Ft);
411 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rt2
412 || inst.operands[1].type == AARCH64_OPND_Ft2);
413 gdb_assert (inst.operands[2].type == AARCH64_OPND_ADDR_SIMM7);
414 gdb_assert (!inst.operands[2].addr.offset.is_reg);
415
416 /* If recording this store would invalidate the store area
417 (perhaps because rn is not known) then we should abandon
418 further prologue analysis. */
419 if (stack.store_would_trash (pv_add_constant (regs[rn], imm)))
420 break;
421
422 if (stack.store_would_trash (pv_add_constant (regs[rn], imm + 8)))
423 break;
424
425 rt1 = inst.operands[0].reg.regno;
426 rt2 = inst.operands[1].reg.regno;
427 if (inst.operands[0].type == AARCH64_OPND_Ft)
428 {
429 /* Only bottom 64-bit of each V register (D register) need
430 to be preserved. */
431 gdb_assert (inst.operands[0].qualifier == AARCH64_OPND_QLF_S_D);
432 rt1 += AARCH64_X_REGISTER_COUNT;
433 rt2 += AARCH64_X_REGISTER_COUNT;
434 }
435
436 stack.store (pv_add_constant (regs[rn], imm), 8,
437 regs[rt1]);
438 stack.store (pv_add_constant (regs[rn], imm + 8), 8,
439 regs[rt2]);
440
441 if (inst.operands[2].addr.writeback)
442 regs[rn] = pv_add_constant (regs[rn], imm);
443
444 }
445 else if ((inst.opcode->iclass == ldst_imm9 /* Signed immediate. */
446 || (inst.opcode->iclass == ldst_pos /* Unsigned immediate. */
447 && (inst.opcode->op == OP_STR_POS
448 || inst.opcode->op == OP_STRF_POS)))
449 && inst.operands[1].addr.base_regno == AARCH64_SP_REGNUM
450 && strcmp ("str", inst.opcode->name) == 0)
451 {
452 /* STR (immediate) */
453 unsigned int rt = inst.operands[0].reg.regno;
454 int32_t imm = inst.operands[1].addr.offset.imm;
455 unsigned int rn = inst.operands[1].addr.base_regno;
456 bool is64
457 = (aarch64_get_qualifier_esize (inst.operands[0].qualifier) == 8);
458 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt
459 || inst.operands[0].type == AARCH64_OPND_Ft);
460
461 if (inst.operands[0].type == AARCH64_OPND_Ft)
462 {
463 /* Only bottom 64-bit of each V register (D register) need
464 to be preserved. */
465 gdb_assert (inst.operands[0].qualifier == AARCH64_OPND_QLF_S_D);
466 rt += AARCH64_X_REGISTER_COUNT;
467 }
468
469 stack.store (pv_add_constant (regs[rn], imm),
470 is64 ? 8 : 4, regs[rt]);
471 if (inst.operands[1].addr.writeback)
472 regs[rn] = pv_add_constant (regs[rn], imm);
473 }
474 else if (inst.opcode->iclass == testbranch)
475 {
476 /* Stop analysis on branch. */
477 break;
478 }
479 else if (inst.opcode->iclass == ic_system)
480 {
481 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
482 int ra_state_val = 0;
483
484 if (insn == 0xd503233f /* paciasp. */
485 || insn == 0xd503237f /* pacibsp. */)
486 {
487 /* Return addresses are mangled. */
488 ra_state_val = 1;
489 }
490 else if (insn == 0xd50323bf /* autiasp. */
491 || insn == 0xd50323ff /* autibsp. */)
492 {
493 /* Return addresses are not mangled. */
494 ra_state_val = 0;
495 }
496 else
497 {
498 if (aarch64_debug)
499 debug_printf ("aarch64: prologue analysis gave up addr=%s"
500 " opcode=0x%x (iclass)\n",
501 core_addr_to_string_nz (start), insn);
502 break;
503 }
504
505 if (tdep->has_pauth () && cache != nullptr)
506 trad_frame_set_value (cache->saved_regs,
507 tdep->pauth_ra_state_regnum,
508 ra_state_val);
509 }
510 else
511 {
512 if (aarch64_debug)
513 {
514 debug_printf ("aarch64: prologue analysis gave up addr=%s"
515 " opcode=0x%x\n",
516 core_addr_to_string_nz (start), insn);
517 }
518 break;
519 }
520 }
521
522 if (cache == NULL)
523 return start;
524
525 if (pv_is_register (regs[AARCH64_FP_REGNUM], AARCH64_SP_REGNUM))
526 {
527 /* Frame pointer is fp. Frame size is constant. */
528 cache->framereg = AARCH64_FP_REGNUM;
529 cache->framesize = -regs[AARCH64_FP_REGNUM].k;
530 }
531 else if (pv_is_register (regs[AARCH64_SP_REGNUM], AARCH64_SP_REGNUM))
532 {
533 /* Try the stack pointer. */
534 cache->framesize = -regs[AARCH64_SP_REGNUM].k;
535 cache->framereg = AARCH64_SP_REGNUM;
536 }
537 else
538 {
539 /* We're just out of luck. We don't know where the frame is. */
540 cache->framereg = -1;
541 cache->framesize = 0;
542 }
543
544 for (i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
545 {
546 CORE_ADDR offset;
547
548 if (stack.find_reg (gdbarch, i, &offset))
549 cache->saved_regs[i].addr = offset;
550 }
551
552 for (i = 0; i < AARCH64_D_REGISTER_COUNT; i++)
553 {
554 int regnum = gdbarch_num_regs (gdbarch);
555 CORE_ADDR offset;
556
557 if (stack.find_reg (gdbarch, i + AARCH64_X_REGISTER_COUNT,
558 &offset))
559 cache->saved_regs[i + regnum + AARCH64_D0_REGNUM].addr = offset;
560 }
561
562 return start;
563 }
564
565 static CORE_ADDR
566 aarch64_analyze_prologue (struct gdbarch *gdbarch,
567 CORE_ADDR start, CORE_ADDR limit,
568 struct aarch64_prologue_cache *cache)
569 {
570 instruction_reader reader;
571
572 return aarch64_analyze_prologue (gdbarch, start, limit, cache,
573 reader);
574 }
575
576 #if GDB_SELF_TEST
577
578 namespace selftests {
579
580 /* Instruction reader from manually cooked instruction sequences. */
581
582 class instruction_reader_test : public abstract_instruction_reader
583 {
584 public:
585 template<size_t SIZE>
586 explicit instruction_reader_test (const uint32_t (&insns)[SIZE])
587 : m_insns (insns), m_insns_size (SIZE)
588 {}
589
590 ULONGEST read (CORE_ADDR memaddr, int len, enum bfd_endian byte_order)
591 override
592 {
593 SELF_CHECK (len == 4);
594 SELF_CHECK (memaddr % 4 == 0);
595 SELF_CHECK (memaddr / 4 < m_insns_size);
596
597 return m_insns[memaddr / 4];
598 }
599
600 private:
601 const uint32_t *m_insns;
602 size_t m_insns_size;
603 };
604
605 static void
606 aarch64_analyze_prologue_test (void)
607 {
608 struct gdbarch_info info;
609
610 gdbarch_info_init (&info);
611 info.bfd_arch_info = bfd_scan_arch ("aarch64");
612
613 struct gdbarch *gdbarch = gdbarch_find_by_info (info);
614 SELF_CHECK (gdbarch != NULL);
615
616 struct aarch64_prologue_cache cache;
617 cache.saved_regs = trad_frame_alloc_saved_regs (gdbarch);
618
619 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
620
621 /* Test the simple prologue in which frame pointer is used. */
622 {
623 static const uint32_t insns[] = {
624 0xa9af7bfd, /* stp x29, x30, [sp,#-272]! */
625 0x910003fd, /* mov x29, sp */
626 0x97ffffe6, /* bl 0x400580 */
627 };
628 instruction_reader_test reader (insns);
629
630 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader);
631 SELF_CHECK (end == 4 * 2);
632
633 SELF_CHECK (cache.framereg == AARCH64_FP_REGNUM);
634 SELF_CHECK (cache.framesize == 272);
635
636 for (int i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
637 {
638 if (i == AARCH64_FP_REGNUM)
639 SELF_CHECK (cache.saved_regs[i].addr == -272);
640 else if (i == AARCH64_LR_REGNUM)
641 SELF_CHECK (cache.saved_regs[i].addr == -264);
642 else
643 SELF_CHECK (cache.saved_regs[i].addr == -1);
644 }
645
646 for (int i = 0; i < AARCH64_D_REGISTER_COUNT; i++)
647 {
648 int regnum = gdbarch_num_regs (gdbarch);
649
650 SELF_CHECK (cache.saved_regs[i + regnum + AARCH64_D0_REGNUM].addr
651 == -1);
652 }
653 }
654
655 /* Test a prologue in which STR is used and frame pointer is not
656 used. */
657 {
658 static const uint32_t insns[] = {
659 0xf81d0ff3, /* str x19, [sp, #-48]! */
660 0xb9002fe0, /* str w0, [sp, #44] */
661 0xf90013e1, /* str x1, [sp, #32]*/
662 0xfd000fe0, /* str d0, [sp, #24] */
663 0xaa0203f3, /* mov x19, x2 */
664 0xf94013e0, /* ldr x0, [sp, #32] */
665 };
666 instruction_reader_test reader (insns);
667
668 trad_frame_reset_saved_regs (gdbarch, cache.saved_regs);
669 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader);
670
671 SELF_CHECK (end == 4 * 5);
672
673 SELF_CHECK (cache.framereg == AARCH64_SP_REGNUM);
674 SELF_CHECK (cache.framesize == 48);
675
676 for (int i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
677 {
678 if (i == 1)
679 SELF_CHECK (cache.saved_regs[i].addr == -16);
680 else if (i == 19)
681 SELF_CHECK (cache.saved_regs[i].addr == -48);
682 else
683 SELF_CHECK (cache.saved_regs[i].addr == -1);
684 }
685
686 for (int i = 0; i < AARCH64_D_REGISTER_COUNT; i++)
687 {
688 int regnum = gdbarch_num_regs (gdbarch);
689
690 if (i == 0)
691 SELF_CHECK (cache.saved_regs[i + regnum + AARCH64_D0_REGNUM].addr
692 == -24);
693 else
694 SELF_CHECK (cache.saved_regs[i + regnum + AARCH64_D0_REGNUM].addr
695 == -1);
696 }
697 }
698
699 /* Test a prologue in which there is a return address signing instruction. */
700 if (tdep->has_pauth ())
701 {
702 static const uint32_t insns[] = {
703 0xd503233f, /* paciasp */
704 0xa9bd7bfd, /* stp x29, x30, [sp, #-48]! */
705 0x910003fd, /* mov x29, sp */
706 0xf801c3f3, /* str x19, [sp, #28] */
707 0xb9401fa0, /* ldr x19, [x29, #28] */
708 };
709 instruction_reader_test reader (insns);
710
711 trad_frame_reset_saved_regs (gdbarch, cache.saved_regs);
712 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache,
713 reader);
714
715 SELF_CHECK (end == 4 * 4);
716 SELF_CHECK (cache.framereg == AARCH64_FP_REGNUM);
717 SELF_CHECK (cache.framesize == 48);
718
719 for (int i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
720 {
721 if (i == 19)
722 SELF_CHECK (cache.saved_regs[i].addr == -20);
723 else if (i == AARCH64_FP_REGNUM)
724 SELF_CHECK (cache.saved_regs[i].addr == -48);
725 else if (i == AARCH64_LR_REGNUM)
726 SELF_CHECK (cache.saved_regs[i].addr == -40);
727 else
728 SELF_CHECK (cache.saved_regs[i].addr == -1);
729 }
730
731 if (tdep->has_pauth ())
732 {
733 SELF_CHECK (trad_frame_value_p (cache.saved_regs,
734 tdep->pauth_ra_state_regnum));
735 SELF_CHECK (cache.saved_regs[tdep->pauth_ra_state_regnum].addr == 1);
736 }
737 }
738 }
739 } // namespace selftests
740 #endif /* GDB_SELF_TEST */
741
742 /* Implement the "skip_prologue" gdbarch method. */
743
744 static CORE_ADDR
745 aarch64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
746 {
747 CORE_ADDR func_addr, limit_pc;
748
749 /* See if we can determine the end of the prologue via the symbol
750 table. If so, then return either PC, or the PC after the
751 prologue, whichever is greater. */
752 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
753 {
754 CORE_ADDR post_prologue_pc
755 = skip_prologue_using_sal (gdbarch, func_addr);
756
757 if (post_prologue_pc != 0)
758 return std::max (pc, post_prologue_pc);
759 }
760
761 /* Can't determine prologue from the symbol table, need to examine
762 instructions. */
763
764 /* Find an upper limit on the function prologue using the debug
765 information. If the debug information could not be used to
766 provide that bound, then use an arbitrary large number as the
767 upper bound. */
768 limit_pc = skip_prologue_using_sal (gdbarch, pc);
769 if (limit_pc == 0)
770 limit_pc = pc + 128; /* Magic. */
771
772 /* Try disassembling prologue. */
773 return aarch64_analyze_prologue (gdbarch, pc, limit_pc, NULL);
774 }
775
776 /* Scan the function prologue for THIS_FRAME and populate the prologue
777 cache CACHE. */
778
779 static void
780 aarch64_scan_prologue (struct frame_info *this_frame,
781 struct aarch64_prologue_cache *cache)
782 {
783 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
784 CORE_ADDR prologue_start;
785 CORE_ADDR prologue_end;
786 CORE_ADDR prev_pc = get_frame_pc (this_frame);
787 struct gdbarch *gdbarch = get_frame_arch (this_frame);
788
789 cache->prev_pc = prev_pc;
790
791 /* Assume we do not find a frame. */
792 cache->framereg = -1;
793 cache->framesize = 0;
794
795 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
796 &prologue_end))
797 {
798 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
799
800 if (sal.line == 0)
801 {
802 /* No line info so use the current PC. */
803 prologue_end = prev_pc;
804 }
805 else if (sal.end < prologue_end)
806 {
807 /* The next line begins after the function end. */
808 prologue_end = sal.end;
809 }
810
811 prologue_end = std::min (prologue_end, prev_pc);
812 aarch64_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
813 }
814 else
815 {
816 CORE_ADDR frame_loc;
817
818 frame_loc = get_frame_register_unsigned (this_frame, AARCH64_FP_REGNUM);
819 if (frame_loc == 0)
820 return;
821
822 cache->framereg = AARCH64_FP_REGNUM;
823 cache->framesize = 16;
824 cache->saved_regs[29].addr = 0;
825 cache->saved_regs[30].addr = 8;
826 }
827 }
828
829 /* Fill in *CACHE with information about the prologue of *THIS_FRAME. This
830 function may throw an exception if the inferior's registers or memory is
831 not available. */
832
833 static void
834 aarch64_make_prologue_cache_1 (struct frame_info *this_frame,
835 struct aarch64_prologue_cache *cache)
836 {
837 CORE_ADDR unwound_fp;
838 int reg;
839
840 aarch64_scan_prologue (this_frame, cache);
841
842 if (cache->framereg == -1)
843 return;
844
845 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
846 if (unwound_fp == 0)
847 return;
848
849 cache->prev_sp = unwound_fp + cache->framesize;
850
851 /* Calculate actual addresses of saved registers using offsets
852 determined by aarch64_analyze_prologue. */
853 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
854 if (trad_frame_addr_p (cache->saved_regs, reg))
855 cache->saved_regs[reg].addr += cache->prev_sp;
856
857 cache->func = get_frame_func (this_frame);
858
859 cache->available_p = 1;
860 }
861
862 /* Allocate and fill in *THIS_CACHE with information about the prologue of
863 *THIS_FRAME. Do not do this is if *THIS_CACHE was already allocated.
864 Return a pointer to the current aarch64_prologue_cache in
865 *THIS_CACHE. */
866
867 static struct aarch64_prologue_cache *
868 aarch64_make_prologue_cache (struct frame_info *this_frame, void **this_cache)
869 {
870 struct aarch64_prologue_cache *cache;
871
872 if (*this_cache != NULL)
873 return (struct aarch64_prologue_cache *) *this_cache;
874
875 cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
876 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
877 *this_cache = cache;
878
879 try
880 {
881 aarch64_make_prologue_cache_1 (this_frame, cache);
882 }
883 catch (const gdb_exception_error &ex)
884 {
885 if (ex.error != NOT_AVAILABLE_ERROR)
886 throw;
887 }
888
889 return cache;
890 }
891
892 /* Implement the "stop_reason" frame_unwind method. */
893
894 static enum unwind_stop_reason
895 aarch64_prologue_frame_unwind_stop_reason (struct frame_info *this_frame,
896 void **this_cache)
897 {
898 struct aarch64_prologue_cache *cache
899 = aarch64_make_prologue_cache (this_frame, this_cache);
900
901 if (!cache->available_p)
902 return UNWIND_UNAVAILABLE;
903
904 /* Halt the backtrace at "_start". */
905 if (cache->prev_pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
906 return UNWIND_OUTERMOST;
907
908 /* We've hit a wall, stop. */
909 if (cache->prev_sp == 0)
910 return UNWIND_OUTERMOST;
911
912 return UNWIND_NO_REASON;
913 }
914
915 /* Our frame ID for a normal frame is the current function's starting
916 PC and the caller's SP when we were called. */
917
918 static void
919 aarch64_prologue_this_id (struct frame_info *this_frame,
920 void **this_cache, struct frame_id *this_id)
921 {
922 struct aarch64_prologue_cache *cache
923 = aarch64_make_prologue_cache (this_frame, this_cache);
924
925 if (!cache->available_p)
926 *this_id = frame_id_build_unavailable_stack (cache->func);
927 else
928 *this_id = frame_id_build (cache->prev_sp, cache->func);
929 }
930
931 /* Implement the "prev_register" frame_unwind method. */
932
933 static struct value *
934 aarch64_prologue_prev_register (struct frame_info *this_frame,
935 void **this_cache, int prev_regnum)
936 {
937 struct aarch64_prologue_cache *cache
938 = aarch64_make_prologue_cache (this_frame, this_cache);
939
940 /* If we are asked to unwind the PC, then we need to return the LR
941 instead. The prologue may save PC, but it will point into this
942 frame's prologue, not the next frame's resume location. */
943 if (prev_regnum == AARCH64_PC_REGNUM)
944 {
945 CORE_ADDR lr;
946 struct gdbarch *gdbarch = get_frame_arch (this_frame);
947 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
948
949 lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
950
951 if (tdep->has_pauth ()
952 && trad_frame_value_p (cache->saved_regs,
953 tdep->pauth_ra_state_regnum))
954 lr = aarch64_frame_unmask_address (tdep, this_frame, lr);
955
956 return frame_unwind_got_constant (this_frame, prev_regnum, lr);
957 }
958
959 /* SP is generally not saved to the stack, but this frame is
960 identified by the next frame's stack pointer at the time of the
961 call. The value was already reconstructed into PREV_SP. */
962 /*
963 +----------+ ^
964 | saved lr | |
965 +->| saved fp |--+
966 | | |
967 | | | <- Previous SP
968 | +----------+
969 | | saved lr |
970 +--| saved fp |<- FP
971 | |
972 | |<- SP
973 +----------+ */
974 if (prev_regnum == AARCH64_SP_REGNUM)
975 return frame_unwind_got_constant (this_frame, prev_regnum,
976 cache->prev_sp);
977
978 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
979 prev_regnum);
980 }
981
982 /* AArch64 prologue unwinder. */
983 struct frame_unwind aarch64_prologue_unwind =
984 {
985 NORMAL_FRAME,
986 aarch64_prologue_frame_unwind_stop_reason,
987 aarch64_prologue_this_id,
988 aarch64_prologue_prev_register,
989 NULL,
990 default_frame_sniffer
991 };
992
993 /* Allocate and fill in *THIS_CACHE with information about the prologue of
994 *THIS_FRAME. Do not do this is if *THIS_CACHE was already allocated.
995 Return a pointer to the current aarch64_prologue_cache in
996 *THIS_CACHE. */
997
998 static struct aarch64_prologue_cache *
999 aarch64_make_stub_cache (struct frame_info *this_frame, void **this_cache)
1000 {
1001 struct aarch64_prologue_cache *cache;
1002
1003 if (*this_cache != NULL)
1004 return (struct aarch64_prologue_cache *) *this_cache;
1005
1006 cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
1007 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1008 *this_cache = cache;
1009
1010 try
1011 {
1012 cache->prev_sp = get_frame_register_unsigned (this_frame,
1013 AARCH64_SP_REGNUM);
1014 cache->prev_pc = get_frame_pc (this_frame);
1015 cache->available_p = 1;
1016 }
1017 catch (const gdb_exception_error &ex)
1018 {
1019 if (ex.error != NOT_AVAILABLE_ERROR)
1020 throw;
1021 }
1022
1023 return cache;
1024 }
1025
1026 /* Implement the "stop_reason" frame_unwind method. */
1027
1028 static enum unwind_stop_reason
1029 aarch64_stub_frame_unwind_stop_reason (struct frame_info *this_frame,
1030 void **this_cache)
1031 {
1032 struct aarch64_prologue_cache *cache
1033 = aarch64_make_stub_cache (this_frame, this_cache);
1034
1035 if (!cache->available_p)
1036 return UNWIND_UNAVAILABLE;
1037
1038 return UNWIND_NO_REASON;
1039 }
1040
1041 /* Our frame ID for a stub frame is the current SP and LR. */
1042
1043 static void
1044 aarch64_stub_this_id (struct frame_info *this_frame,
1045 void **this_cache, struct frame_id *this_id)
1046 {
1047 struct aarch64_prologue_cache *cache
1048 = aarch64_make_stub_cache (this_frame, this_cache);
1049
1050 if (cache->available_p)
1051 *this_id = frame_id_build (cache->prev_sp, cache->prev_pc);
1052 else
1053 *this_id = frame_id_build_unavailable_stack (cache->prev_pc);
1054 }
1055
1056 /* Implement the "sniffer" frame_unwind method. */
1057
1058 static int
1059 aarch64_stub_unwind_sniffer (const struct frame_unwind *self,
1060 struct frame_info *this_frame,
1061 void **this_prologue_cache)
1062 {
1063 CORE_ADDR addr_in_block;
1064 gdb_byte dummy[4];
1065
1066 addr_in_block = get_frame_address_in_block (this_frame);
1067 if (in_plt_section (addr_in_block)
1068 /* We also use the stub winder if the target memory is unreadable
1069 to avoid having the prologue unwinder trying to read it. */
1070 || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
1071 return 1;
1072
1073 return 0;
1074 }
1075
1076 /* AArch64 stub unwinder. */
1077 struct frame_unwind aarch64_stub_unwind =
1078 {
1079 NORMAL_FRAME,
1080 aarch64_stub_frame_unwind_stop_reason,
1081 aarch64_stub_this_id,
1082 aarch64_prologue_prev_register,
1083 NULL,
1084 aarch64_stub_unwind_sniffer
1085 };
1086
1087 /* Return the frame base address of *THIS_FRAME. */
1088
1089 static CORE_ADDR
1090 aarch64_normal_frame_base (struct frame_info *this_frame, void **this_cache)
1091 {
1092 struct aarch64_prologue_cache *cache
1093 = aarch64_make_prologue_cache (this_frame, this_cache);
1094
1095 return cache->prev_sp - cache->framesize;
1096 }
1097
1098 /* AArch64 default frame base information. */
1099 struct frame_base aarch64_normal_base =
1100 {
1101 &aarch64_prologue_unwind,
1102 aarch64_normal_frame_base,
1103 aarch64_normal_frame_base,
1104 aarch64_normal_frame_base
1105 };
1106
1107 /* Return the value of the REGNUM register in the previous frame of
1108 *THIS_FRAME. */
1109
1110 static struct value *
1111 aarch64_dwarf2_prev_register (struct frame_info *this_frame,
1112 void **this_cache, int regnum)
1113 {
1114 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1115 CORE_ADDR lr;
1116
1117 switch (regnum)
1118 {
1119 case AARCH64_PC_REGNUM:
1120 lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
1121 lr = aarch64_frame_unmask_address (tdep, this_frame, lr);
1122 return frame_unwind_got_constant (this_frame, regnum, lr);
1123
1124 default:
1125 internal_error (__FILE__, __LINE__,
1126 _("Unexpected register %d"), regnum);
1127 }
1128 }
1129
1130 static const unsigned char op_lit0 = DW_OP_lit0;
1131 static const unsigned char op_lit1 = DW_OP_lit1;
1132
1133 /* Implement the "init_reg" dwarf2_frame_ops method. */
1134
1135 static void
1136 aarch64_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1137 struct dwarf2_frame_state_reg *reg,
1138 struct frame_info *this_frame)
1139 {
1140 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1141
1142 switch (regnum)
1143 {
1144 case AARCH64_PC_REGNUM:
1145 reg->how = DWARF2_FRAME_REG_FN;
1146 reg->loc.fn = aarch64_dwarf2_prev_register;
1147 return;
1148
1149 case AARCH64_SP_REGNUM:
1150 reg->how = DWARF2_FRAME_REG_CFA;
1151 return;
1152 }
1153
1154 /* Init pauth registers. */
1155 if (tdep->has_pauth ())
1156 {
1157 if (regnum == tdep->pauth_ra_state_regnum)
1158 {
1159 /* Initialize RA_STATE to zero. */
1160 reg->how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
1161 reg->loc.exp.start = &op_lit0;
1162 reg->loc.exp.len = 1;
1163 return;
1164 }
1165 else if (regnum == AARCH64_PAUTH_DMASK_REGNUM (tdep->pauth_reg_base)
1166 || regnum == AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base))
1167 {
1168 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1169 return;
1170 }
1171 }
1172 }
1173
1174 /* Implement the execute_dwarf_cfa_vendor_op method. */
1175
1176 static bool
1177 aarch64_execute_dwarf_cfa_vendor_op (struct gdbarch *gdbarch, gdb_byte op,
1178 struct dwarf2_frame_state *fs)
1179 {
1180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1181 struct dwarf2_frame_state_reg *ra_state;
1182
1183 if (tdep->has_pauth () && op == DW_CFA_AARCH64_negate_ra_state)
1184 {
1185 /* Allocate RA_STATE column if it's not allocated yet. */
1186 fs->regs.alloc_regs (AARCH64_DWARF_PAUTH_RA_STATE + 1);
1187
1188 /* Toggle the status of RA_STATE between 0 and 1. */
1189 ra_state = &(fs->regs.reg[AARCH64_DWARF_PAUTH_RA_STATE]);
1190 ra_state->how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
1191
1192 if (ra_state->loc.exp.start == nullptr
1193 || ra_state->loc.exp.start == &op_lit0)
1194 ra_state->loc.exp.start = &op_lit1;
1195 else
1196 ra_state->loc.exp.start = &op_lit0;
1197
1198 ra_state->loc.exp.len = 1;
1199
1200 return true;
1201 }
1202
1203 return false;
1204 }
1205
1206 /* When arguments must be pushed onto the stack, they go on in reverse
1207 order. The code below implements a FILO (stack) to do this. */
1208
1209 typedef struct
1210 {
1211 /* Value to pass on stack. It can be NULL if this item is for stack
1212 padding. */
1213 const gdb_byte *data;
1214
1215 /* Size in bytes of value to pass on stack. */
1216 int len;
1217 } stack_item_t;
1218
1219 DEF_VEC_O (stack_item_t);
1220
1221 /* Return the alignment (in bytes) of the given type. */
1222
1223 static int
1224 aarch64_type_align (struct type *t)
1225 {
1226 int n;
1227 int align;
1228 int falign;
1229
1230 t = check_typedef (t);
1231 switch (TYPE_CODE (t))
1232 {
1233 default:
1234 /* Should never happen. */
1235 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1236 return 4;
1237
1238 case TYPE_CODE_PTR:
1239 case TYPE_CODE_ENUM:
1240 case TYPE_CODE_INT:
1241 case TYPE_CODE_FLT:
1242 case TYPE_CODE_SET:
1243 case TYPE_CODE_RANGE:
1244 case TYPE_CODE_BITSTRING:
1245 case TYPE_CODE_REF:
1246 case TYPE_CODE_RVALUE_REF:
1247 case TYPE_CODE_CHAR:
1248 case TYPE_CODE_BOOL:
1249 return TYPE_LENGTH (t);
1250
1251 case TYPE_CODE_ARRAY:
1252 if (TYPE_VECTOR (t))
1253 {
1254 /* Use the natural alignment for vector types (the same for
1255 scalar type), but the maximum alignment is 128-bit. */
1256 if (TYPE_LENGTH (t) > 16)
1257 return 16;
1258 else
1259 return TYPE_LENGTH (t);
1260 }
1261 else
1262 return aarch64_type_align (TYPE_TARGET_TYPE (t));
1263 case TYPE_CODE_COMPLEX:
1264 return aarch64_type_align (TYPE_TARGET_TYPE (t));
1265
1266 case TYPE_CODE_STRUCT:
1267 case TYPE_CODE_UNION:
1268 align = 1;
1269 for (n = 0; n < TYPE_NFIELDS (t); n++)
1270 {
1271 falign = aarch64_type_align (TYPE_FIELD_TYPE (t, n));
1272 if (falign > align)
1273 align = falign;
1274 }
1275 return align;
1276 }
1277 }
1278
1279 /* Worker function for aapcs_is_vfp_call_or_return_candidate.
1280
1281 Return the number of register required, or -1 on failure.
1282
1283 When encountering a base element, if FUNDAMENTAL_TYPE is not set then set it
1284 to the element, else fail if the type of this element does not match the
1285 existing value. */
1286
1287 static int
1288 aapcs_is_vfp_call_or_return_candidate_1 (struct type *type,
1289 struct type **fundamental_type)
1290 {
1291 if (type == nullptr)
1292 return -1;
1293
1294 switch (TYPE_CODE (type))
1295 {
1296 case TYPE_CODE_FLT:
1297 if (TYPE_LENGTH (type) > 16)
1298 return -1;
1299
1300 if (*fundamental_type == nullptr)
1301 *fundamental_type = type;
1302 else if (TYPE_LENGTH (type) != TYPE_LENGTH (*fundamental_type)
1303 || TYPE_CODE (type) != TYPE_CODE (*fundamental_type))
1304 return -1;
1305
1306 return 1;
1307
1308 case TYPE_CODE_COMPLEX:
1309 {
1310 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1311 if (TYPE_LENGTH (target_type) > 16)
1312 return -1;
1313
1314 if (*fundamental_type == nullptr)
1315 *fundamental_type = target_type;
1316 else if (TYPE_LENGTH (target_type) != TYPE_LENGTH (*fundamental_type)
1317 || TYPE_CODE (target_type) != TYPE_CODE (*fundamental_type))
1318 return -1;
1319
1320 return 2;
1321 }
1322
1323 case TYPE_CODE_ARRAY:
1324 {
1325 if (TYPE_VECTOR (type))
1326 {
1327 if (TYPE_LENGTH (type) != 8 && TYPE_LENGTH (type) != 16)
1328 return -1;
1329
1330 if (*fundamental_type == nullptr)
1331 *fundamental_type = type;
1332 else if (TYPE_LENGTH (type) != TYPE_LENGTH (*fundamental_type)
1333 || TYPE_CODE (type) != TYPE_CODE (*fundamental_type))
1334 return -1;
1335
1336 return 1;
1337 }
1338 else
1339 {
1340 struct type *target_type = TYPE_TARGET_TYPE (type);
1341 int count = aapcs_is_vfp_call_or_return_candidate_1
1342 (target_type, fundamental_type);
1343
1344 if (count == -1)
1345 return count;
1346
1347 count *= (TYPE_LENGTH (type) / TYPE_LENGTH (target_type));
1348 return count;
1349 }
1350 }
1351
1352 case TYPE_CODE_STRUCT:
1353 case TYPE_CODE_UNION:
1354 {
1355 int count = 0;
1356
1357 for (int i = 0; i < TYPE_NFIELDS (type); i++)
1358 {
1359 /* Ignore any static fields. */
1360 if (field_is_static (&TYPE_FIELD (type, i)))
1361 continue;
1362
1363 struct type *member = check_typedef (TYPE_FIELD_TYPE (type, i));
1364
1365 int sub_count = aapcs_is_vfp_call_or_return_candidate_1
1366 (member, fundamental_type);
1367 if (sub_count == -1)
1368 return -1;
1369 count += sub_count;
1370 }
1371
1372 /* Ensure there is no padding between the fields (allowing for empty
1373 zero length structs) */
1374 int ftype_length = (*fundamental_type == nullptr)
1375 ? 0 : TYPE_LENGTH (*fundamental_type);
1376 if (count * ftype_length != TYPE_LENGTH (type))
1377 return -1;
1378
1379 return count;
1380 }
1381
1382 default:
1383 break;
1384 }
1385
1386 return -1;
1387 }
1388
1389 /* Return true if an argument, whose type is described by TYPE, can be passed or
1390 returned in simd/fp registers, providing enough parameter passing registers
1391 are available. This is as described in the AAPCS64.
1392
1393 Upon successful return, *COUNT returns the number of needed registers,
1394 *FUNDAMENTAL_TYPE contains the type of those registers.
1395
1396 Candidate as per the AAPCS64 5.4.2.C is either a:
1397 - float.
1398 - short-vector.
1399 - HFA (Homogeneous Floating-point Aggregate, 4.3.5.1). A Composite type where
1400 all the members are floats and has at most 4 members.
1401 - HVA (Homogeneous Short-vector Aggregate, 4.3.5.2). A Composite type where
1402 all the members are short vectors and has at most 4 members.
1403 - Complex (7.1.1)
1404
1405 Note that HFAs and HVAs can include nested structures and arrays. */
1406
1407 static bool
1408 aapcs_is_vfp_call_or_return_candidate (struct type *type, int *count,
1409 struct type **fundamental_type)
1410 {
1411 if (type == nullptr)
1412 return false;
1413
1414 *fundamental_type = nullptr;
1415
1416 int ag_count = aapcs_is_vfp_call_or_return_candidate_1 (type,
1417 fundamental_type);
1418
1419 if (ag_count > 0 && ag_count <= HA_MAX_NUM_FLDS)
1420 {
1421 *count = ag_count;
1422 return true;
1423 }
1424 else
1425 return false;
1426 }
1427
1428 /* AArch64 function call information structure. */
1429 struct aarch64_call_info
1430 {
1431 /* the current argument number. */
1432 unsigned argnum;
1433
1434 /* The next general purpose register number, equivalent to NGRN as
1435 described in the AArch64 Procedure Call Standard. */
1436 unsigned ngrn;
1437
1438 /* The next SIMD and floating point register number, equivalent to
1439 NSRN as described in the AArch64 Procedure Call Standard. */
1440 unsigned nsrn;
1441
1442 /* The next stacked argument address, equivalent to NSAA as
1443 described in the AArch64 Procedure Call Standard. */
1444 unsigned nsaa;
1445
1446 /* Stack item vector. */
1447 VEC(stack_item_t) *si;
1448 };
1449
1450 /* Pass a value in a sequence of consecutive X registers. The caller
1451 is responsbile for ensuring sufficient registers are available. */
1452
1453 static void
1454 pass_in_x (struct gdbarch *gdbarch, struct regcache *regcache,
1455 struct aarch64_call_info *info, struct type *type,
1456 struct value *arg)
1457 {
1458 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1459 int len = TYPE_LENGTH (type);
1460 enum type_code typecode = TYPE_CODE (type);
1461 int regnum = AARCH64_X0_REGNUM + info->ngrn;
1462 const bfd_byte *buf = value_contents (arg);
1463
1464 info->argnum++;
1465
1466 while (len > 0)
1467 {
1468 int partial_len = len < X_REGISTER_SIZE ? len : X_REGISTER_SIZE;
1469 CORE_ADDR regval = extract_unsigned_integer (buf, partial_len,
1470 byte_order);
1471
1472
1473 /* Adjust sub-word struct/union args when big-endian. */
1474 if (byte_order == BFD_ENDIAN_BIG
1475 && partial_len < X_REGISTER_SIZE
1476 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
1477 regval <<= ((X_REGISTER_SIZE - partial_len) * TARGET_CHAR_BIT);
1478
1479 if (aarch64_debug)
1480 {
1481 debug_printf ("arg %d in %s = 0x%s\n", info->argnum,
1482 gdbarch_register_name (gdbarch, regnum),
1483 phex (regval, X_REGISTER_SIZE));
1484 }
1485 regcache_cooked_write_unsigned (regcache, regnum, regval);
1486 len -= partial_len;
1487 buf += partial_len;
1488 regnum++;
1489 }
1490 }
1491
1492 /* Attempt to marshall a value in a V register. Return 1 if
1493 successful, or 0 if insufficient registers are available. This
1494 function, unlike the equivalent pass_in_x() function does not
1495 handle arguments spread across multiple registers. */
1496
1497 static int
1498 pass_in_v (struct gdbarch *gdbarch,
1499 struct regcache *regcache,
1500 struct aarch64_call_info *info,
1501 int len, const bfd_byte *buf)
1502 {
1503 if (info->nsrn < 8)
1504 {
1505 int regnum = AARCH64_V0_REGNUM + info->nsrn;
1506 /* Enough space for a full vector register. */
1507 gdb_byte reg[register_size (gdbarch, regnum)];
1508 gdb_assert (len <= sizeof (reg));
1509
1510 info->argnum++;
1511 info->nsrn++;
1512
1513 memset (reg, 0, sizeof (reg));
1514 /* PCS C.1, the argument is allocated to the least significant
1515 bits of V register. */
1516 memcpy (reg, buf, len);
1517 regcache->cooked_write (regnum, reg);
1518
1519 if (aarch64_debug)
1520 {
1521 debug_printf ("arg %d in %s\n", info->argnum,
1522 gdbarch_register_name (gdbarch, regnum));
1523 }
1524 return 1;
1525 }
1526 info->nsrn = 8;
1527 return 0;
1528 }
1529
1530 /* Marshall an argument onto the stack. */
1531
1532 static void
1533 pass_on_stack (struct aarch64_call_info *info, struct type *type,
1534 struct value *arg)
1535 {
1536 const bfd_byte *buf = value_contents (arg);
1537 int len = TYPE_LENGTH (type);
1538 int align;
1539 stack_item_t item;
1540
1541 info->argnum++;
1542
1543 align = aarch64_type_align (type);
1544
1545 /* PCS C.17 Stack should be aligned to the larger of 8 bytes or the
1546 Natural alignment of the argument's type. */
1547 align = align_up (align, 8);
1548
1549 /* The AArch64 PCS requires at most doubleword alignment. */
1550 if (align > 16)
1551 align = 16;
1552
1553 if (aarch64_debug)
1554 {
1555 debug_printf ("arg %d len=%d @ sp + %d\n", info->argnum, len,
1556 info->nsaa);
1557 }
1558
1559 item.len = len;
1560 item.data = buf;
1561 VEC_safe_push (stack_item_t, info->si, &item);
1562
1563 info->nsaa += len;
1564 if (info->nsaa & (align - 1))
1565 {
1566 /* Push stack alignment padding. */
1567 int pad = align - (info->nsaa & (align - 1));
1568
1569 item.len = pad;
1570 item.data = NULL;
1571
1572 VEC_safe_push (stack_item_t, info->si, &item);
1573 info->nsaa += pad;
1574 }
1575 }
1576
1577 /* Marshall an argument into a sequence of one or more consecutive X
1578 registers or, if insufficient X registers are available then onto
1579 the stack. */
1580
1581 static void
1582 pass_in_x_or_stack (struct gdbarch *gdbarch, struct regcache *regcache,
1583 struct aarch64_call_info *info, struct type *type,
1584 struct value *arg)
1585 {
1586 int len = TYPE_LENGTH (type);
1587 int nregs = (len + X_REGISTER_SIZE - 1) / X_REGISTER_SIZE;
1588
1589 /* PCS C.13 - Pass in registers if we have enough spare */
1590 if (info->ngrn + nregs <= 8)
1591 {
1592 pass_in_x (gdbarch, regcache, info, type, arg);
1593 info->ngrn += nregs;
1594 }
1595 else
1596 {
1597 info->ngrn = 8;
1598 pass_on_stack (info, type, arg);
1599 }
1600 }
1601
1602 /* Pass a value, which is of type arg_type, in a V register. Assumes value is a
1603 aapcs_is_vfp_call_or_return_candidate and there are enough spare V
1604 registers. A return value of false is an error state as the value will have
1605 been partially passed to the stack. */
1606 static bool
1607 pass_in_v_vfp_candidate (struct gdbarch *gdbarch, struct regcache *regcache,
1608 struct aarch64_call_info *info, struct type *arg_type,
1609 struct value *arg)
1610 {
1611 switch (TYPE_CODE (arg_type))
1612 {
1613 case TYPE_CODE_FLT:
1614 return pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (arg_type),
1615 value_contents (arg));
1616 break;
1617
1618 case TYPE_CODE_COMPLEX:
1619 {
1620 const bfd_byte *buf = value_contents (arg);
1621 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
1622
1623 if (!pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (target_type),
1624 buf))
1625 return false;
1626
1627 return pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (target_type),
1628 buf + TYPE_LENGTH (target_type));
1629 }
1630
1631 case TYPE_CODE_ARRAY:
1632 if (TYPE_VECTOR (arg_type))
1633 return pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (arg_type),
1634 value_contents (arg));
1635 /* fall through. */
1636
1637 case TYPE_CODE_STRUCT:
1638 case TYPE_CODE_UNION:
1639 for (int i = 0; i < TYPE_NFIELDS (arg_type); i++)
1640 {
1641 /* Don't include static fields. */
1642 if (field_is_static (&TYPE_FIELD (arg_type, i)))
1643 continue;
1644
1645 struct value *field = value_primitive_field (arg, 0, i, arg_type);
1646 struct type *field_type = check_typedef (value_type (field));
1647
1648 if (!pass_in_v_vfp_candidate (gdbarch, regcache, info, field_type,
1649 field))
1650 return false;
1651 }
1652 return true;
1653
1654 default:
1655 return false;
1656 }
1657 }
1658
1659 /* Implement the "push_dummy_call" gdbarch method. */
1660
1661 static CORE_ADDR
1662 aarch64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1663 struct regcache *regcache, CORE_ADDR bp_addr,
1664 int nargs,
1665 struct value **args, CORE_ADDR sp,
1666 function_call_return_method return_method,
1667 CORE_ADDR struct_addr)
1668 {
1669 int argnum;
1670 struct aarch64_call_info info;
1671
1672 memset (&info, 0, sizeof (info));
1673
1674 /* We need to know what the type of the called function is in order
1675 to determine the number of named/anonymous arguments for the
1676 actual argument placement, and the return type in order to handle
1677 return value correctly.
1678
1679 The generic code above us views the decision of return in memory
1680 or return in registers as a two stage processes. The language
1681 handler is consulted first and may decide to return in memory (eg
1682 class with copy constructor returned by value), this will cause
1683 the generic code to allocate space AND insert an initial leading
1684 argument.
1685
1686 If the language code does not decide to pass in memory then the
1687 target code is consulted.
1688
1689 If the language code decides to pass in memory we want to move
1690 the pointer inserted as the initial argument from the argument
1691 list and into X8, the conventional AArch64 struct return pointer
1692 register. */
1693
1694 /* Set the return address. For the AArch64, the return breakpoint
1695 is always at BP_ADDR. */
1696 regcache_cooked_write_unsigned (regcache, AARCH64_LR_REGNUM, bp_addr);
1697
1698 /* If we were given an initial argument for the return slot, lose it. */
1699 if (return_method == return_method_hidden_param)
1700 {
1701 args++;
1702 nargs--;
1703 }
1704
1705 /* The struct_return pointer occupies X8. */
1706 if (return_method != return_method_normal)
1707 {
1708 if (aarch64_debug)
1709 {
1710 debug_printf ("struct return in %s = 0x%s\n",
1711 gdbarch_register_name (gdbarch,
1712 AARCH64_STRUCT_RETURN_REGNUM),
1713 paddress (gdbarch, struct_addr));
1714 }
1715 regcache_cooked_write_unsigned (regcache, AARCH64_STRUCT_RETURN_REGNUM,
1716 struct_addr);
1717 }
1718
1719 for (argnum = 0; argnum < nargs; argnum++)
1720 {
1721 struct value *arg = args[argnum];
1722 struct type *arg_type, *fundamental_type;
1723 int len, elements;
1724
1725 arg_type = check_typedef (value_type (arg));
1726 len = TYPE_LENGTH (arg_type);
1727
1728 /* If arg can be passed in v registers as per the AAPCS64, then do so if
1729 if there are enough spare registers. */
1730 if (aapcs_is_vfp_call_or_return_candidate (arg_type, &elements,
1731 &fundamental_type))
1732 {
1733 if (info.nsrn + elements <= 8)
1734 {
1735 /* We know that we have sufficient registers available therefore
1736 this will never need to fallback to the stack. */
1737 if (!pass_in_v_vfp_candidate (gdbarch, regcache, &info, arg_type,
1738 arg))
1739 gdb_assert_not_reached ("Failed to push args");
1740 }
1741 else
1742 {
1743 info.nsrn = 8;
1744 pass_on_stack (&info, arg_type, arg);
1745 }
1746 continue;
1747 }
1748
1749 switch (TYPE_CODE (arg_type))
1750 {
1751 case TYPE_CODE_INT:
1752 case TYPE_CODE_BOOL:
1753 case TYPE_CODE_CHAR:
1754 case TYPE_CODE_RANGE:
1755 case TYPE_CODE_ENUM:
1756 if (len < 4)
1757 {
1758 /* Promote to 32 bit integer. */
1759 if (TYPE_UNSIGNED (arg_type))
1760 arg_type = builtin_type (gdbarch)->builtin_uint32;
1761 else
1762 arg_type = builtin_type (gdbarch)->builtin_int32;
1763 arg = value_cast (arg_type, arg);
1764 }
1765 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1766 break;
1767
1768 case TYPE_CODE_STRUCT:
1769 case TYPE_CODE_ARRAY:
1770 case TYPE_CODE_UNION:
1771 if (len > 16)
1772 {
1773 /* PCS B.7 Aggregates larger than 16 bytes are passed by
1774 invisible reference. */
1775
1776 /* Allocate aligned storage. */
1777 sp = align_down (sp - len, 16);
1778
1779 /* Write the real data into the stack. */
1780 write_memory (sp, value_contents (arg), len);
1781
1782 /* Construct the indirection. */
1783 arg_type = lookup_pointer_type (arg_type);
1784 arg = value_from_pointer (arg_type, sp);
1785 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1786 }
1787 else
1788 /* PCS C.15 / C.18 multiple values pass. */
1789 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1790 break;
1791
1792 default:
1793 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1794 break;
1795 }
1796 }
1797
1798 /* Make sure stack retains 16 byte alignment. */
1799 if (info.nsaa & 15)
1800 sp -= 16 - (info.nsaa & 15);
1801
1802 while (!VEC_empty (stack_item_t, info.si))
1803 {
1804 stack_item_t *si = VEC_last (stack_item_t, info.si);
1805
1806 sp -= si->len;
1807 if (si->data != NULL)
1808 write_memory (sp, si->data, si->len);
1809 VEC_pop (stack_item_t, info.si);
1810 }
1811
1812 VEC_free (stack_item_t, info.si);
1813
1814 /* Finally, update the SP register. */
1815 regcache_cooked_write_unsigned (regcache, AARCH64_SP_REGNUM, sp);
1816
1817 return sp;
1818 }
1819
1820 /* Implement the "frame_align" gdbarch method. */
1821
1822 static CORE_ADDR
1823 aarch64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1824 {
1825 /* Align the stack to sixteen bytes. */
1826 return sp & ~(CORE_ADDR) 15;
1827 }
1828
1829 /* Return the type for an AdvSISD Q register. */
1830
1831 static struct type *
1832 aarch64_vnq_type (struct gdbarch *gdbarch)
1833 {
1834 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1835
1836 if (tdep->vnq_type == NULL)
1837 {
1838 struct type *t;
1839 struct type *elem;
1840
1841 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnq",
1842 TYPE_CODE_UNION);
1843
1844 elem = builtin_type (gdbarch)->builtin_uint128;
1845 append_composite_type_field (t, "u", elem);
1846
1847 elem = builtin_type (gdbarch)->builtin_int128;
1848 append_composite_type_field (t, "s", elem);
1849
1850 tdep->vnq_type = t;
1851 }
1852
1853 return tdep->vnq_type;
1854 }
1855
1856 /* Return the type for an AdvSISD D register. */
1857
1858 static struct type *
1859 aarch64_vnd_type (struct gdbarch *gdbarch)
1860 {
1861 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1862
1863 if (tdep->vnd_type == NULL)
1864 {
1865 struct type *t;
1866 struct type *elem;
1867
1868 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnd",
1869 TYPE_CODE_UNION);
1870
1871 elem = builtin_type (gdbarch)->builtin_double;
1872 append_composite_type_field (t, "f", elem);
1873
1874 elem = builtin_type (gdbarch)->builtin_uint64;
1875 append_composite_type_field (t, "u", elem);
1876
1877 elem = builtin_type (gdbarch)->builtin_int64;
1878 append_composite_type_field (t, "s", elem);
1879
1880 tdep->vnd_type = t;
1881 }
1882
1883 return tdep->vnd_type;
1884 }
1885
1886 /* Return the type for an AdvSISD S register. */
1887
1888 static struct type *
1889 aarch64_vns_type (struct gdbarch *gdbarch)
1890 {
1891 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1892
1893 if (tdep->vns_type == NULL)
1894 {
1895 struct type *t;
1896 struct type *elem;
1897
1898 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vns",
1899 TYPE_CODE_UNION);
1900
1901 elem = builtin_type (gdbarch)->builtin_float;
1902 append_composite_type_field (t, "f", elem);
1903
1904 elem = builtin_type (gdbarch)->builtin_uint32;
1905 append_composite_type_field (t, "u", elem);
1906
1907 elem = builtin_type (gdbarch)->builtin_int32;
1908 append_composite_type_field (t, "s", elem);
1909
1910 tdep->vns_type = t;
1911 }
1912
1913 return tdep->vns_type;
1914 }
1915
1916 /* Return the type for an AdvSISD H register. */
1917
1918 static struct type *
1919 aarch64_vnh_type (struct gdbarch *gdbarch)
1920 {
1921 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1922
1923 if (tdep->vnh_type == NULL)
1924 {
1925 struct type *t;
1926 struct type *elem;
1927
1928 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnh",
1929 TYPE_CODE_UNION);
1930
1931 elem = builtin_type (gdbarch)->builtin_uint16;
1932 append_composite_type_field (t, "u", elem);
1933
1934 elem = builtin_type (gdbarch)->builtin_int16;
1935 append_composite_type_field (t, "s", elem);
1936
1937 tdep->vnh_type = t;
1938 }
1939
1940 return tdep->vnh_type;
1941 }
1942
1943 /* Return the type for an AdvSISD B register. */
1944
1945 static struct type *
1946 aarch64_vnb_type (struct gdbarch *gdbarch)
1947 {
1948 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1949
1950 if (tdep->vnb_type == NULL)
1951 {
1952 struct type *t;
1953 struct type *elem;
1954
1955 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnb",
1956 TYPE_CODE_UNION);
1957
1958 elem = builtin_type (gdbarch)->builtin_uint8;
1959 append_composite_type_field (t, "u", elem);
1960
1961 elem = builtin_type (gdbarch)->builtin_int8;
1962 append_composite_type_field (t, "s", elem);
1963
1964 tdep->vnb_type = t;
1965 }
1966
1967 return tdep->vnb_type;
1968 }
1969
1970 /* Return the type for an AdvSISD V register. */
1971
1972 static struct type *
1973 aarch64_vnv_type (struct gdbarch *gdbarch)
1974 {
1975 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1976
1977 if (tdep->vnv_type == NULL)
1978 {
1979 /* The other AArch64 psuedo registers (Q,D,H,S,B) refer to a single value
1980 slice from the non-pseudo vector registers. However NEON V registers
1981 are always vector registers, and need constructing as such. */
1982 const struct builtin_type *bt = builtin_type (gdbarch);
1983
1984 struct type *t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnv",
1985 TYPE_CODE_UNION);
1986
1987 struct type *sub = arch_composite_type (gdbarch, "__gdb_builtin_type_vnd",
1988 TYPE_CODE_UNION);
1989 append_composite_type_field (sub, "f",
1990 init_vector_type (bt->builtin_double, 2));
1991 append_composite_type_field (sub, "u",
1992 init_vector_type (bt->builtin_uint64, 2));
1993 append_composite_type_field (sub, "s",
1994 init_vector_type (bt->builtin_int64, 2));
1995 append_composite_type_field (t, "d", sub);
1996
1997 sub = arch_composite_type (gdbarch, "__gdb_builtin_type_vns",
1998 TYPE_CODE_UNION);
1999 append_composite_type_field (sub, "f",
2000 init_vector_type (bt->builtin_float, 4));
2001 append_composite_type_field (sub, "u",
2002 init_vector_type (bt->builtin_uint32, 4));
2003 append_composite_type_field (sub, "s",
2004 init_vector_type (bt->builtin_int32, 4));
2005 append_composite_type_field (t, "s", sub);
2006
2007 sub = arch_composite_type (gdbarch, "__gdb_builtin_type_vnh",
2008 TYPE_CODE_UNION);
2009 append_composite_type_field (sub, "u",
2010 init_vector_type (bt->builtin_uint16, 8));
2011 append_composite_type_field (sub, "s",
2012 init_vector_type (bt->builtin_int16, 8));
2013 append_composite_type_field (t, "h", sub);
2014
2015 sub = arch_composite_type (gdbarch, "__gdb_builtin_type_vnb",
2016 TYPE_CODE_UNION);
2017 append_composite_type_field (sub, "u",
2018 init_vector_type (bt->builtin_uint8, 16));
2019 append_composite_type_field (sub, "s",
2020 init_vector_type (bt->builtin_int8, 16));
2021 append_composite_type_field (t, "b", sub);
2022
2023 sub = arch_composite_type (gdbarch, "__gdb_builtin_type_vnq",
2024 TYPE_CODE_UNION);
2025 append_composite_type_field (sub, "u",
2026 init_vector_type (bt->builtin_uint128, 1));
2027 append_composite_type_field (sub, "s",
2028 init_vector_type (bt->builtin_int128, 1));
2029 append_composite_type_field (t, "q", sub);
2030
2031 tdep->vnv_type = t;
2032 }
2033
2034 return tdep->vnv_type;
2035 }
2036
2037 /* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
2038
2039 static int
2040 aarch64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
2041 {
2042 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2043
2044 if (reg >= AARCH64_DWARF_X0 && reg <= AARCH64_DWARF_X0 + 30)
2045 return AARCH64_X0_REGNUM + reg - AARCH64_DWARF_X0;
2046
2047 if (reg == AARCH64_DWARF_SP)
2048 return AARCH64_SP_REGNUM;
2049
2050 if (reg >= AARCH64_DWARF_V0 && reg <= AARCH64_DWARF_V0 + 31)
2051 return AARCH64_V0_REGNUM + reg - AARCH64_DWARF_V0;
2052
2053 if (reg == AARCH64_DWARF_SVE_VG)
2054 return AARCH64_SVE_VG_REGNUM;
2055
2056 if (reg == AARCH64_DWARF_SVE_FFR)
2057 return AARCH64_SVE_FFR_REGNUM;
2058
2059 if (reg >= AARCH64_DWARF_SVE_P0 && reg <= AARCH64_DWARF_SVE_P0 + 15)
2060 return AARCH64_SVE_P0_REGNUM + reg - AARCH64_DWARF_SVE_P0;
2061
2062 if (reg >= AARCH64_DWARF_SVE_Z0 && reg <= AARCH64_DWARF_SVE_Z0 + 15)
2063 return AARCH64_SVE_Z0_REGNUM + reg - AARCH64_DWARF_SVE_Z0;
2064
2065 if (tdep->has_pauth ())
2066 {
2067 if (reg >= AARCH64_DWARF_PAUTH_DMASK && reg <= AARCH64_DWARF_PAUTH_CMASK)
2068 return tdep->pauth_reg_base + reg - AARCH64_DWARF_PAUTH_DMASK;
2069
2070 if (reg == AARCH64_DWARF_PAUTH_RA_STATE)
2071 return tdep->pauth_ra_state_regnum;
2072 }
2073
2074 return -1;
2075 }
2076
2077 /* Implement the "print_insn" gdbarch method. */
2078
2079 static int
2080 aarch64_gdb_print_insn (bfd_vma memaddr, disassemble_info *info)
2081 {
2082 info->symbols = NULL;
2083 return default_print_insn (memaddr, info);
2084 }
2085
2086 /* AArch64 BRK software debug mode instruction.
2087 Note that AArch64 code is always little-endian.
2088 1101.0100.0010.0000.0000.0000.0000.0000 = 0xd4200000. */
2089 constexpr gdb_byte aarch64_default_breakpoint[] = {0x00, 0x00, 0x20, 0xd4};
2090
2091 typedef BP_MANIPULATION (aarch64_default_breakpoint) aarch64_breakpoint;
2092
2093 /* Extract from an array REGS containing the (raw) register state a
2094 function return value of type TYPE, and copy that, in virtual
2095 format, into VALBUF. */
2096
2097 static void
2098 aarch64_extract_return_value (struct type *type, struct regcache *regs,
2099 gdb_byte *valbuf)
2100 {
2101 struct gdbarch *gdbarch = regs->arch ();
2102 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2103 int elements;
2104 struct type *fundamental_type;
2105
2106 if (aapcs_is_vfp_call_or_return_candidate (type, &elements,
2107 &fundamental_type))
2108 {
2109 int len = TYPE_LENGTH (fundamental_type);
2110
2111 for (int i = 0; i < elements; i++)
2112 {
2113 int regno = AARCH64_V0_REGNUM + i;
2114 /* Enough space for a full vector register. */
2115 gdb_byte buf[register_size (gdbarch, regno)];
2116 gdb_assert (len <= sizeof (buf));
2117
2118 if (aarch64_debug)
2119 {
2120 debug_printf ("read HFA or HVA return value element %d from %s\n",
2121 i + 1,
2122 gdbarch_register_name (gdbarch, regno));
2123 }
2124 regs->cooked_read (regno, buf);
2125
2126 memcpy (valbuf, buf, len);
2127 valbuf += len;
2128 }
2129 }
2130 else if (TYPE_CODE (type) == TYPE_CODE_INT
2131 || TYPE_CODE (type) == TYPE_CODE_CHAR
2132 || TYPE_CODE (type) == TYPE_CODE_BOOL
2133 || TYPE_CODE (type) == TYPE_CODE_PTR
2134 || TYPE_IS_REFERENCE (type)
2135 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2136 {
2137 /* If the type is a plain integer, then the access is
2138 straight-forward. Otherwise we have to play around a bit
2139 more. */
2140 int len = TYPE_LENGTH (type);
2141 int regno = AARCH64_X0_REGNUM;
2142 ULONGEST tmp;
2143
2144 while (len > 0)
2145 {
2146 /* By using store_unsigned_integer we avoid having to do
2147 anything special for small big-endian values. */
2148 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2149 store_unsigned_integer (valbuf,
2150 (len > X_REGISTER_SIZE
2151 ? X_REGISTER_SIZE : len), byte_order, tmp);
2152 len -= X_REGISTER_SIZE;
2153 valbuf += X_REGISTER_SIZE;
2154 }
2155 }
2156 else
2157 {
2158 /* For a structure or union the behaviour is as if the value had
2159 been stored to word-aligned memory and then loaded into
2160 registers with 64-bit load instruction(s). */
2161 int len = TYPE_LENGTH (type);
2162 int regno = AARCH64_X0_REGNUM;
2163 bfd_byte buf[X_REGISTER_SIZE];
2164
2165 while (len > 0)
2166 {
2167 regs->cooked_read (regno++, buf);
2168 memcpy (valbuf, buf, len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
2169 len -= X_REGISTER_SIZE;
2170 valbuf += X_REGISTER_SIZE;
2171 }
2172 }
2173 }
2174
2175
2176 /* Will a function return an aggregate type in memory or in a
2177 register? Return 0 if an aggregate type can be returned in a
2178 register, 1 if it must be returned in memory. */
2179
2180 static int
2181 aarch64_return_in_memory (struct gdbarch *gdbarch, struct type *type)
2182 {
2183 type = check_typedef (type);
2184 int elements;
2185 struct type *fundamental_type;
2186
2187 if (aapcs_is_vfp_call_or_return_candidate (type, &elements,
2188 &fundamental_type))
2189 {
2190 /* v0-v7 are used to return values and one register is allocated
2191 for one member. However, HFA or HVA has at most four members. */
2192 return 0;
2193 }
2194
2195 if (TYPE_LENGTH (type) > 16)
2196 {
2197 /* PCS B.6 Aggregates larger than 16 bytes are passed by
2198 invisible reference. */
2199
2200 return 1;
2201 }
2202
2203 return 0;
2204 }
2205
2206 /* Write into appropriate registers a function return value of type
2207 TYPE, given in virtual format. */
2208
2209 static void
2210 aarch64_store_return_value (struct type *type, struct regcache *regs,
2211 const gdb_byte *valbuf)
2212 {
2213 struct gdbarch *gdbarch = regs->arch ();
2214 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2215 int elements;
2216 struct type *fundamental_type;
2217
2218 if (aapcs_is_vfp_call_or_return_candidate (type, &elements,
2219 &fundamental_type))
2220 {
2221 int len = TYPE_LENGTH (fundamental_type);
2222
2223 for (int i = 0; i < elements; i++)
2224 {
2225 int regno = AARCH64_V0_REGNUM + i;
2226 /* Enough space for a full vector register. */
2227 gdb_byte tmpbuf[register_size (gdbarch, regno)];
2228 gdb_assert (len <= sizeof (tmpbuf));
2229
2230 if (aarch64_debug)
2231 {
2232 debug_printf ("write HFA or HVA return value element %d to %s\n",
2233 i + 1,
2234 gdbarch_register_name (gdbarch, regno));
2235 }
2236
2237 memcpy (tmpbuf, valbuf,
2238 len > V_REGISTER_SIZE ? V_REGISTER_SIZE : len);
2239 regs->cooked_write (regno, tmpbuf);
2240 valbuf += len;
2241 }
2242 }
2243 else if (TYPE_CODE (type) == TYPE_CODE_INT
2244 || TYPE_CODE (type) == TYPE_CODE_CHAR
2245 || TYPE_CODE (type) == TYPE_CODE_BOOL
2246 || TYPE_CODE (type) == TYPE_CODE_PTR
2247 || TYPE_IS_REFERENCE (type)
2248 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2249 {
2250 if (TYPE_LENGTH (type) <= X_REGISTER_SIZE)
2251 {
2252 /* Values of one word or less are zero/sign-extended and
2253 returned in r0. */
2254 bfd_byte tmpbuf[X_REGISTER_SIZE];
2255 LONGEST val = unpack_long (type, valbuf);
2256
2257 store_signed_integer (tmpbuf, X_REGISTER_SIZE, byte_order, val);
2258 regs->cooked_write (AARCH64_X0_REGNUM, tmpbuf);
2259 }
2260 else
2261 {
2262 /* Integral values greater than one word are stored in
2263 consecutive registers starting with r0. This will always
2264 be a multiple of the regiser size. */
2265 int len = TYPE_LENGTH (type);
2266 int regno = AARCH64_X0_REGNUM;
2267
2268 while (len > 0)
2269 {
2270 regs->cooked_write (regno++, valbuf);
2271 len -= X_REGISTER_SIZE;
2272 valbuf += X_REGISTER_SIZE;
2273 }
2274 }
2275 }
2276 else
2277 {
2278 /* For a structure or union the behaviour is as if the value had
2279 been stored to word-aligned memory and then loaded into
2280 registers with 64-bit load instruction(s). */
2281 int len = TYPE_LENGTH (type);
2282 int regno = AARCH64_X0_REGNUM;
2283 bfd_byte tmpbuf[X_REGISTER_SIZE];
2284
2285 while (len > 0)
2286 {
2287 memcpy (tmpbuf, valbuf,
2288 len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
2289 regs->cooked_write (regno++, tmpbuf);
2290 len -= X_REGISTER_SIZE;
2291 valbuf += X_REGISTER_SIZE;
2292 }
2293 }
2294 }
2295
2296 /* Implement the "return_value" gdbarch method. */
2297
2298 static enum return_value_convention
2299 aarch64_return_value (struct gdbarch *gdbarch, struct value *func_value,
2300 struct type *valtype, struct regcache *regcache,
2301 gdb_byte *readbuf, const gdb_byte *writebuf)
2302 {
2303
2304 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2305 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2306 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2307 {
2308 if (aarch64_return_in_memory (gdbarch, valtype))
2309 {
2310 if (aarch64_debug)
2311 debug_printf ("return value in memory\n");
2312 return RETURN_VALUE_STRUCT_CONVENTION;
2313 }
2314 }
2315
2316 if (writebuf)
2317 aarch64_store_return_value (valtype, regcache, writebuf);
2318
2319 if (readbuf)
2320 aarch64_extract_return_value (valtype, regcache, readbuf);
2321
2322 if (aarch64_debug)
2323 debug_printf ("return value in registers\n");
2324
2325 return RETURN_VALUE_REGISTER_CONVENTION;
2326 }
2327
2328 /* Implement the "get_longjmp_target" gdbarch method. */
2329
2330 static int
2331 aarch64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2332 {
2333 CORE_ADDR jb_addr;
2334 gdb_byte buf[X_REGISTER_SIZE];
2335 struct gdbarch *gdbarch = get_frame_arch (frame);
2336 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2337 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2338
2339 jb_addr = get_frame_register_unsigned (frame, AARCH64_X0_REGNUM);
2340
2341 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2342 X_REGISTER_SIZE))
2343 return 0;
2344
2345 *pc = extract_unsigned_integer (buf, X_REGISTER_SIZE, byte_order);
2346 return 1;
2347 }
2348
2349 /* Implement the "gen_return_address" gdbarch method. */
2350
2351 static void
2352 aarch64_gen_return_address (struct gdbarch *gdbarch,
2353 struct agent_expr *ax, struct axs_value *value,
2354 CORE_ADDR scope)
2355 {
2356 value->type = register_type (gdbarch, AARCH64_LR_REGNUM);
2357 value->kind = axs_lvalue_register;
2358 value->u.reg = AARCH64_LR_REGNUM;
2359 }
2360 \f
2361
2362 /* Return the pseudo register name corresponding to register regnum. */
2363
2364 static const char *
2365 aarch64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
2366 {
2367 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2368
2369 static const char *const q_name[] =
2370 {
2371 "q0", "q1", "q2", "q3",
2372 "q4", "q5", "q6", "q7",
2373 "q8", "q9", "q10", "q11",
2374 "q12", "q13", "q14", "q15",
2375 "q16", "q17", "q18", "q19",
2376 "q20", "q21", "q22", "q23",
2377 "q24", "q25", "q26", "q27",
2378 "q28", "q29", "q30", "q31",
2379 };
2380
2381 static const char *const d_name[] =
2382 {
2383 "d0", "d1", "d2", "d3",
2384 "d4", "d5", "d6", "d7",
2385 "d8", "d9", "d10", "d11",
2386 "d12", "d13", "d14", "d15",
2387 "d16", "d17", "d18", "d19",
2388 "d20", "d21", "d22", "d23",
2389 "d24", "d25", "d26", "d27",
2390 "d28", "d29", "d30", "d31",
2391 };
2392
2393 static const char *const s_name[] =
2394 {
2395 "s0", "s1", "s2", "s3",
2396 "s4", "s5", "s6", "s7",
2397 "s8", "s9", "s10", "s11",
2398 "s12", "s13", "s14", "s15",
2399 "s16", "s17", "s18", "s19",
2400 "s20", "s21", "s22", "s23",
2401 "s24", "s25", "s26", "s27",
2402 "s28", "s29", "s30", "s31",
2403 };
2404
2405 static const char *const h_name[] =
2406 {
2407 "h0", "h1", "h2", "h3",
2408 "h4", "h5", "h6", "h7",
2409 "h8", "h9", "h10", "h11",
2410 "h12", "h13", "h14", "h15",
2411 "h16", "h17", "h18", "h19",
2412 "h20", "h21", "h22", "h23",
2413 "h24", "h25", "h26", "h27",
2414 "h28", "h29", "h30", "h31",
2415 };
2416
2417 static const char *const b_name[] =
2418 {
2419 "b0", "b1", "b2", "b3",
2420 "b4", "b5", "b6", "b7",
2421 "b8", "b9", "b10", "b11",
2422 "b12", "b13", "b14", "b15",
2423 "b16", "b17", "b18", "b19",
2424 "b20", "b21", "b22", "b23",
2425 "b24", "b25", "b26", "b27",
2426 "b28", "b29", "b30", "b31",
2427 };
2428
2429 int p_regnum = regnum - gdbarch_num_regs (gdbarch);
2430
2431 if (p_regnum >= AARCH64_Q0_REGNUM && p_regnum < AARCH64_Q0_REGNUM + 32)
2432 return q_name[p_regnum - AARCH64_Q0_REGNUM];
2433
2434 if (p_regnum >= AARCH64_D0_REGNUM && p_regnum < AARCH64_D0_REGNUM + 32)
2435 return d_name[p_regnum - AARCH64_D0_REGNUM];
2436
2437 if (p_regnum >= AARCH64_S0_REGNUM && p_regnum < AARCH64_S0_REGNUM + 32)
2438 return s_name[p_regnum - AARCH64_S0_REGNUM];
2439
2440 if (p_regnum >= AARCH64_H0_REGNUM && p_regnum < AARCH64_H0_REGNUM + 32)
2441 return h_name[p_regnum - AARCH64_H0_REGNUM];
2442
2443 if (p_regnum >= AARCH64_B0_REGNUM && p_regnum < AARCH64_B0_REGNUM + 32)
2444 return b_name[p_regnum - AARCH64_B0_REGNUM];
2445
2446 if (tdep->has_sve ())
2447 {
2448 static const char *const sve_v_name[] =
2449 {
2450 "v0", "v1", "v2", "v3",
2451 "v4", "v5", "v6", "v7",
2452 "v8", "v9", "v10", "v11",
2453 "v12", "v13", "v14", "v15",
2454 "v16", "v17", "v18", "v19",
2455 "v20", "v21", "v22", "v23",
2456 "v24", "v25", "v26", "v27",
2457 "v28", "v29", "v30", "v31",
2458 };
2459
2460 if (p_regnum >= AARCH64_SVE_V0_REGNUM
2461 && p_regnum < AARCH64_SVE_V0_REGNUM + AARCH64_V_REGS_NUM)
2462 return sve_v_name[p_regnum - AARCH64_SVE_V0_REGNUM];
2463 }
2464
2465 /* RA_STATE is used for unwinding only. Do not assign it a name - this
2466 prevents it from being read by methods such as
2467 mi_cmd_trace_frame_collected. */
2468 if (tdep->has_pauth () && regnum == tdep->pauth_ra_state_regnum)
2469 return "";
2470
2471 internal_error (__FILE__, __LINE__,
2472 _("aarch64_pseudo_register_name: bad register number %d"),
2473 p_regnum);
2474 }
2475
2476 /* Implement the "pseudo_register_type" tdesc_arch_data method. */
2477
2478 static struct type *
2479 aarch64_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2480 {
2481 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2482
2483 int p_regnum = regnum - gdbarch_num_regs (gdbarch);
2484
2485 if (p_regnum >= AARCH64_Q0_REGNUM && p_regnum < AARCH64_Q0_REGNUM + 32)
2486 return aarch64_vnq_type (gdbarch);
2487
2488 if (p_regnum >= AARCH64_D0_REGNUM && p_regnum < AARCH64_D0_REGNUM + 32)
2489 return aarch64_vnd_type (gdbarch);
2490
2491 if (p_regnum >= AARCH64_S0_REGNUM && p_regnum < AARCH64_S0_REGNUM + 32)
2492 return aarch64_vns_type (gdbarch);
2493
2494 if (p_regnum >= AARCH64_H0_REGNUM && p_regnum < AARCH64_H0_REGNUM + 32)
2495 return aarch64_vnh_type (gdbarch);
2496
2497 if (p_regnum >= AARCH64_B0_REGNUM && p_regnum < AARCH64_B0_REGNUM + 32)
2498 return aarch64_vnb_type (gdbarch);
2499
2500 if (tdep->has_sve () && p_regnum >= AARCH64_SVE_V0_REGNUM
2501 && p_regnum < AARCH64_SVE_V0_REGNUM + AARCH64_V_REGS_NUM)
2502 return aarch64_vnv_type (gdbarch);
2503
2504 if (tdep->has_pauth () && regnum == tdep->pauth_ra_state_regnum)
2505 return builtin_type (gdbarch)->builtin_uint64;
2506
2507 internal_error (__FILE__, __LINE__,
2508 _("aarch64_pseudo_register_type: bad register number %d"),
2509 p_regnum);
2510 }
2511
2512 /* Implement the "pseudo_register_reggroup_p" tdesc_arch_data method. */
2513
2514 static int
2515 aarch64_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2516 struct reggroup *group)
2517 {
2518 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2519
2520 int p_regnum = regnum - gdbarch_num_regs (gdbarch);
2521
2522 if (p_regnum >= AARCH64_Q0_REGNUM && p_regnum < AARCH64_Q0_REGNUM + 32)
2523 return group == all_reggroup || group == vector_reggroup;
2524 else if (p_regnum >= AARCH64_D0_REGNUM && p_regnum < AARCH64_D0_REGNUM + 32)
2525 return (group == all_reggroup || group == vector_reggroup
2526 || group == float_reggroup);
2527 else if (p_regnum >= AARCH64_S0_REGNUM && p_regnum < AARCH64_S0_REGNUM + 32)
2528 return (group == all_reggroup || group == vector_reggroup
2529 || group == float_reggroup);
2530 else if (p_regnum >= AARCH64_H0_REGNUM && p_regnum < AARCH64_H0_REGNUM + 32)
2531 return group == all_reggroup || group == vector_reggroup;
2532 else if (p_regnum >= AARCH64_B0_REGNUM && p_regnum < AARCH64_B0_REGNUM + 32)
2533 return group == all_reggroup || group == vector_reggroup;
2534 else if (tdep->has_sve () && p_regnum >= AARCH64_SVE_V0_REGNUM
2535 && p_regnum < AARCH64_SVE_V0_REGNUM + AARCH64_V_REGS_NUM)
2536 return group == all_reggroup || group == vector_reggroup;
2537 /* RA_STATE is used for unwinding only. Do not assign it to any groups. */
2538 if (tdep->has_pauth () && regnum == tdep->pauth_ra_state_regnum)
2539 return 0;
2540
2541 return group == all_reggroup;
2542 }
2543
2544 /* Helper for aarch64_pseudo_read_value. */
2545
2546 static struct value *
2547 aarch64_pseudo_read_value_1 (struct gdbarch *gdbarch,
2548 readable_regcache *regcache, int regnum_offset,
2549 int regsize, struct value *result_value)
2550 {
2551 unsigned v_regnum = AARCH64_V0_REGNUM + regnum_offset;
2552
2553 /* Enough space for a full vector register. */
2554 gdb_byte reg_buf[register_size (gdbarch, AARCH64_V0_REGNUM)];
2555 gdb_static_assert (AARCH64_V0_REGNUM == AARCH64_SVE_Z0_REGNUM);
2556
2557 if (regcache->raw_read (v_regnum, reg_buf) != REG_VALID)
2558 mark_value_bytes_unavailable (result_value, 0,
2559 TYPE_LENGTH (value_type (result_value)));
2560 else
2561 memcpy (value_contents_raw (result_value), reg_buf, regsize);
2562
2563 return result_value;
2564 }
2565
2566 /* Implement the "pseudo_register_read_value" gdbarch method. */
2567
2568 static struct value *
2569 aarch64_pseudo_read_value (struct gdbarch *gdbarch, readable_regcache *regcache,
2570 int regnum)
2571 {
2572 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2573 struct value *result_value = allocate_value (register_type (gdbarch, regnum));
2574
2575 VALUE_LVAL (result_value) = lval_register;
2576 VALUE_REGNUM (result_value) = regnum;
2577
2578 regnum -= gdbarch_num_regs (gdbarch);
2579
2580 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2581 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2582 regnum - AARCH64_Q0_REGNUM,
2583 Q_REGISTER_SIZE, result_value);
2584
2585 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2586 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2587 regnum - AARCH64_D0_REGNUM,
2588 D_REGISTER_SIZE, result_value);
2589
2590 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2591 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2592 regnum - AARCH64_S0_REGNUM,
2593 S_REGISTER_SIZE, result_value);
2594
2595 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2596 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2597 regnum - AARCH64_H0_REGNUM,
2598 H_REGISTER_SIZE, result_value);
2599
2600 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2601 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2602 regnum - AARCH64_B0_REGNUM,
2603 B_REGISTER_SIZE, result_value);
2604
2605 if (tdep->has_sve () && regnum >= AARCH64_SVE_V0_REGNUM
2606 && regnum < AARCH64_SVE_V0_REGNUM + 32)
2607 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2608 regnum - AARCH64_SVE_V0_REGNUM,
2609 V_REGISTER_SIZE, result_value);
2610
2611 gdb_assert_not_reached ("regnum out of bound");
2612 }
2613
2614 /* Helper for aarch64_pseudo_write. */
2615
2616 static void
2617 aarch64_pseudo_write_1 (struct gdbarch *gdbarch, struct regcache *regcache,
2618 int regnum_offset, int regsize, const gdb_byte *buf)
2619 {
2620 unsigned v_regnum = AARCH64_V0_REGNUM + regnum_offset;
2621
2622 /* Enough space for a full vector register. */
2623 gdb_byte reg_buf[register_size (gdbarch, AARCH64_V0_REGNUM)];
2624 gdb_static_assert (AARCH64_V0_REGNUM == AARCH64_SVE_Z0_REGNUM);
2625
2626 /* Ensure the register buffer is zero, we want gdb writes of the
2627 various 'scalar' pseudo registers to behavior like architectural
2628 writes, register width bytes are written the remainder are set to
2629 zero. */
2630 memset (reg_buf, 0, register_size (gdbarch, AARCH64_V0_REGNUM));
2631
2632 memcpy (reg_buf, buf, regsize);
2633 regcache->raw_write (v_regnum, reg_buf);
2634 }
2635
2636 /* Implement the "pseudo_register_write" gdbarch method. */
2637
2638 static void
2639 aarch64_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
2640 int regnum, const gdb_byte *buf)
2641 {
2642 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2643 regnum -= gdbarch_num_regs (gdbarch);
2644
2645 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2646 return aarch64_pseudo_write_1 (gdbarch, regcache,
2647 regnum - AARCH64_Q0_REGNUM, Q_REGISTER_SIZE,
2648 buf);
2649
2650 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2651 return aarch64_pseudo_write_1 (gdbarch, regcache,
2652 regnum - AARCH64_D0_REGNUM, D_REGISTER_SIZE,
2653 buf);
2654
2655 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2656 return aarch64_pseudo_write_1 (gdbarch, regcache,
2657 regnum - AARCH64_S0_REGNUM, S_REGISTER_SIZE,
2658 buf);
2659
2660 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2661 return aarch64_pseudo_write_1 (gdbarch, regcache,
2662 regnum - AARCH64_H0_REGNUM, H_REGISTER_SIZE,
2663 buf);
2664
2665 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2666 return aarch64_pseudo_write_1 (gdbarch, regcache,
2667 regnum - AARCH64_B0_REGNUM, B_REGISTER_SIZE,
2668 buf);
2669
2670 if (tdep->has_sve () && regnum >= AARCH64_SVE_V0_REGNUM
2671 && regnum < AARCH64_SVE_V0_REGNUM + 32)
2672 return aarch64_pseudo_write_1 (gdbarch, regcache,
2673 regnum - AARCH64_SVE_V0_REGNUM,
2674 V_REGISTER_SIZE, buf);
2675
2676 gdb_assert_not_reached ("regnum out of bound");
2677 }
2678
2679 /* Callback function for user_reg_add. */
2680
2681 static struct value *
2682 value_of_aarch64_user_reg (struct frame_info *frame, const void *baton)
2683 {
2684 const int *reg_p = (const int *) baton;
2685
2686 return value_of_register (*reg_p, frame);
2687 }
2688 \f
2689
2690 /* Implement the "software_single_step" gdbarch method, needed to
2691 single step through atomic sequences on AArch64. */
2692
2693 static std::vector<CORE_ADDR>
2694 aarch64_software_single_step (struct regcache *regcache)
2695 {
2696 struct gdbarch *gdbarch = regcache->arch ();
2697 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2698 const int insn_size = 4;
2699 const int atomic_sequence_length = 16; /* Instruction sequence length. */
2700 CORE_ADDR pc = regcache_read_pc (regcache);
2701 CORE_ADDR breaks[2] = { CORE_ADDR_MAX, CORE_ADDR_MAX };
2702 CORE_ADDR loc = pc;
2703 CORE_ADDR closing_insn = 0;
2704 uint32_t insn = read_memory_unsigned_integer (loc, insn_size,
2705 byte_order_for_code);
2706 int index;
2707 int insn_count;
2708 int bc_insn_count = 0; /* Conditional branch instruction count. */
2709 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
2710 aarch64_inst inst;
2711
2712 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
2713 return {};
2714
2715 /* Look for a Load Exclusive instruction which begins the sequence. */
2716 if (inst.opcode->iclass != ldstexcl || bit (insn, 22) == 0)
2717 return {};
2718
2719 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
2720 {
2721 loc += insn_size;
2722 insn = read_memory_unsigned_integer (loc, insn_size,
2723 byte_order_for_code);
2724
2725 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
2726 return {};
2727 /* Check if the instruction is a conditional branch. */
2728 if (inst.opcode->iclass == condbranch)
2729 {
2730 gdb_assert (inst.operands[0].type == AARCH64_OPND_ADDR_PCREL19);
2731
2732 if (bc_insn_count >= 1)
2733 return {};
2734
2735 /* It is, so we'll try to set a breakpoint at the destination. */
2736 breaks[1] = loc + inst.operands[0].imm.value;
2737
2738 bc_insn_count++;
2739 last_breakpoint++;
2740 }
2741
2742 /* Look for the Store Exclusive which closes the atomic sequence. */
2743 if (inst.opcode->iclass == ldstexcl && bit (insn, 22) == 0)
2744 {
2745 closing_insn = loc;
2746 break;
2747 }
2748 }
2749
2750 /* We didn't find a closing Store Exclusive instruction, fall back. */
2751 if (!closing_insn)
2752 return {};
2753
2754 /* Insert breakpoint after the end of the atomic sequence. */
2755 breaks[0] = loc + insn_size;
2756
2757 /* Check for duplicated breakpoints, and also check that the second
2758 breakpoint is not within the atomic sequence. */
2759 if (last_breakpoint
2760 && (breaks[1] == breaks[0]
2761 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
2762 last_breakpoint = 0;
2763
2764 std::vector<CORE_ADDR> next_pcs;
2765
2766 /* Insert the breakpoint at the end of the sequence, and one at the
2767 destination of the conditional branch, if it exists. */
2768 for (index = 0; index <= last_breakpoint; index++)
2769 next_pcs.push_back (breaks[index]);
2770
2771 return next_pcs;
2772 }
2773
2774 struct aarch64_displaced_step_closure : public displaced_step_closure
2775 {
2776 /* It is true when condition instruction, such as B.CON, TBZ, etc,
2777 is being displaced stepping. */
2778 int cond = 0;
2779
2780 /* PC adjustment offset after displaced stepping. */
2781 int32_t pc_adjust = 0;
2782 };
2783
2784 /* Data when visiting instructions for displaced stepping. */
2785
2786 struct aarch64_displaced_step_data
2787 {
2788 struct aarch64_insn_data base;
2789
2790 /* The address where the instruction will be executed at. */
2791 CORE_ADDR new_addr;
2792 /* Buffer of instructions to be copied to NEW_ADDR to execute. */
2793 uint32_t insn_buf[DISPLACED_MODIFIED_INSNS];
2794 /* Number of instructions in INSN_BUF. */
2795 unsigned insn_count;
2796 /* Registers when doing displaced stepping. */
2797 struct regcache *regs;
2798
2799 aarch64_displaced_step_closure *dsc;
2800 };
2801
2802 /* Implementation of aarch64_insn_visitor method "b". */
2803
2804 static void
2805 aarch64_displaced_step_b (const int is_bl, const int32_t offset,
2806 struct aarch64_insn_data *data)
2807 {
2808 struct aarch64_displaced_step_data *dsd
2809 = (struct aarch64_displaced_step_data *) data;
2810 int64_t new_offset = data->insn_addr - dsd->new_addr + offset;
2811
2812 if (can_encode_int32 (new_offset, 28))
2813 {
2814 /* Emit B rather than BL, because executing BL on a new address
2815 will get the wrong address into LR. In order to avoid this,
2816 we emit B, and update LR if the instruction is BL. */
2817 emit_b (dsd->insn_buf, 0, new_offset);
2818 dsd->insn_count++;
2819 }
2820 else
2821 {
2822 /* Write NOP. */
2823 emit_nop (dsd->insn_buf);
2824 dsd->insn_count++;
2825 dsd->dsc->pc_adjust = offset;
2826 }
2827
2828 if (is_bl)
2829 {
2830 /* Update LR. */
2831 regcache_cooked_write_unsigned (dsd->regs, AARCH64_LR_REGNUM,
2832 data->insn_addr + 4);
2833 }
2834 }
2835
2836 /* Implementation of aarch64_insn_visitor method "b_cond". */
2837
2838 static void
2839 aarch64_displaced_step_b_cond (const unsigned cond, const int32_t offset,
2840 struct aarch64_insn_data *data)
2841 {
2842 struct aarch64_displaced_step_data *dsd
2843 = (struct aarch64_displaced_step_data *) data;
2844
2845 /* GDB has to fix up PC after displaced step this instruction
2846 differently according to the condition is true or false. Instead
2847 of checking COND against conditional flags, we can use
2848 the following instructions, and GDB can tell how to fix up PC
2849 according to the PC value.
2850
2851 B.COND TAKEN ; If cond is true, then jump to TAKEN.
2852 INSN1 ;
2853 TAKEN:
2854 INSN2
2855 */
2856
2857 emit_bcond (dsd->insn_buf, cond, 8);
2858 dsd->dsc->cond = 1;
2859 dsd->dsc->pc_adjust = offset;
2860 dsd->insn_count = 1;
2861 }
2862
2863 /* Dynamically allocate a new register. If we know the register
2864 statically, we should make it a global as above instead of using this
2865 helper function. */
2866
2867 static struct aarch64_register
2868 aarch64_register (unsigned num, int is64)
2869 {
2870 return (struct aarch64_register) { num, is64 };
2871 }
2872
2873 /* Implementation of aarch64_insn_visitor method "cb". */
2874
2875 static void
2876 aarch64_displaced_step_cb (const int32_t offset, const int is_cbnz,
2877 const unsigned rn, int is64,
2878 struct aarch64_insn_data *data)
2879 {
2880 struct aarch64_displaced_step_data *dsd
2881 = (struct aarch64_displaced_step_data *) data;
2882
2883 /* The offset is out of range for a compare and branch
2884 instruction. We can use the following instructions instead:
2885
2886 CBZ xn, TAKEN ; xn == 0, then jump to TAKEN.
2887 INSN1 ;
2888 TAKEN:
2889 INSN2
2890 */
2891 emit_cb (dsd->insn_buf, is_cbnz, aarch64_register (rn, is64), 8);
2892 dsd->insn_count = 1;
2893 dsd->dsc->cond = 1;
2894 dsd->dsc->pc_adjust = offset;
2895 }
2896
2897 /* Implementation of aarch64_insn_visitor method "tb". */
2898
2899 static void
2900 aarch64_displaced_step_tb (const int32_t offset, int is_tbnz,
2901 const unsigned rt, unsigned bit,
2902 struct aarch64_insn_data *data)
2903 {
2904 struct aarch64_displaced_step_data *dsd
2905 = (struct aarch64_displaced_step_data *) data;
2906
2907 /* The offset is out of range for a test bit and branch
2908 instruction We can use the following instructions instead:
2909
2910 TBZ xn, #bit, TAKEN ; xn[bit] == 0, then jump to TAKEN.
2911 INSN1 ;
2912 TAKEN:
2913 INSN2
2914
2915 */
2916 emit_tb (dsd->insn_buf, is_tbnz, bit, aarch64_register (rt, 1), 8);
2917 dsd->insn_count = 1;
2918 dsd->dsc->cond = 1;
2919 dsd->dsc->pc_adjust = offset;
2920 }
2921
2922 /* Implementation of aarch64_insn_visitor method "adr". */
2923
2924 static void
2925 aarch64_displaced_step_adr (const int32_t offset, const unsigned rd,
2926 const int is_adrp, struct aarch64_insn_data *data)
2927 {
2928 struct aarch64_displaced_step_data *dsd
2929 = (struct aarch64_displaced_step_data *) data;
2930 /* We know exactly the address the ADR{P,} instruction will compute.
2931 We can just write it to the destination register. */
2932 CORE_ADDR address = data->insn_addr + offset;
2933
2934 if (is_adrp)
2935 {
2936 /* Clear the lower 12 bits of the offset to get the 4K page. */
2937 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rd,
2938 address & ~0xfff);
2939 }
2940 else
2941 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rd,
2942 address);
2943
2944 dsd->dsc->pc_adjust = 4;
2945 emit_nop (dsd->insn_buf);
2946 dsd->insn_count = 1;
2947 }
2948
2949 /* Implementation of aarch64_insn_visitor method "ldr_literal". */
2950
2951 static void
2952 aarch64_displaced_step_ldr_literal (const int32_t offset, const int is_sw,
2953 const unsigned rt, const int is64,
2954 struct aarch64_insn_data *data)
2955 {
2956 struct aarch64_displaced_step_data *dsd
2957 = (struct aarch64_displaced_step_data *) data;
2958 CORE_ADDR address = data->insn_addr + offset;
2959 struct aarch64_memory_operand zero = { MEMORY_OPERAND_OFFSET, 0 };
2960
2961 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rt,
2962 address);
2963
2964 if (is_sw)
2965 dsd->insn_count = emit_ldrsw (dsd->insn_buf, aarch64_register (rt, 1),
2966 aarch64_register (rt, 1), zero);
2967 else
2968 dsd->insn_count = emit_ldr (dsd->insn_buf, aarch64_register (rt, is64),
2969 aarch64_register (rt, 1), zero);
2970
2971 dsd->dsc->pc_adjust = 4;
2972 }
2973
2974 /* Implementation of aarch64_insn_visitor method "others". */
2975
2976 static void
2977 aarch64_displaced_step_others (const uint32_t insn,
2978 struct aarch64_insn_data *data)
2979 {
2980 struct aarch64_displaced_step_data *dsd
2981 = (struct aarch64_displaced_step_data *) data;
2982
2983 aarch64_emit_insn (dsd->insn_buf, insn);
2984 dsd->insn_count = 1;
2985
2986 if ((insn & 0xfffffc1f) == 0xd65f0000)
2987 {
2988 /* RET */
2989 dsd->dsc->pc_adjust = 0;
2990 }
2991 else
2992 dsd->dsc->pc_adjust = 4;
2993 }
2994
2995 static const struct aarch64_insn_visitor visitor =
2996 {
2997 aarch64_displaced_step_b,
2998 aarch64_displaced_step_b_cond,
2999 aarch64_displaced_step_cb,
3000 aarch64_displaced_step_tb,
3001 aarch64_displaced_step_adr,
3002 aarch64_displaced_step_ldr_literal,
3003 aarch64_displaced_step_others,
3004 };
3005
3006 /* Implement the "displaced_step_copy_insn" gdbarch method. */
3007
3008 struct displaced_step_closure *
3009 aarch64_displaced_step_copy_insn (struct gdbarch *gdbarch,
3010 CORE_ADDR from, CORE_ADDR to,
3011 struct regcache *regs)
3012 {
3013 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3014 uint32_t insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
3015 struct aarch64_displaced_step_data dsd;
3016 aarch64_inst inst;
3017
3018 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
3019 return NULL;
3020
3021 /* Look for a Load Exclusive instruction which begins the sequence. */
3022 if (inst.opcode->iclass == ldstexcl && bit (insn, 22))
3023 {
3024 /* We can't displaced step atomic sequences. */
3025 return NULL;
3026 }
3027
3028 std::unique_ptr<aarch64_displaced_step_closure> dsc
3029 (new aarch64_displaced_step_closure);
3030 dsd.base.insn_addr = from;
3031 dsd.new_addr = to;
3032 dsd.regs = regs;
3033 dsd.dsc = dsc.get ();
3034 dsd.insn_count = 0;
3035 aarch64_relocate_instruction (insn, &visitor,
3036 (struct aarch64_insn_data *) &dsd);
3037 gdb_assert (dsd.insn_count <= DISPLACED_MODIFIED_INSNS);
3038
3039 if (dsd.insn_count != 0)
3040 {
3041 int i;
3042
3043 /* Instruction can be relocated to scratch pad. Copy
3044 relocated instruction(s) there. */
3045 for (i = 0; i < dsd.insn_count; i++)
3046 {
3047 if (debug_displaced)
3048 {
3049 debug_printf ("displaced: writing insn ");
3050 debug_printf ("%.8x", dsd.insn_buf[i]);
3051 debug_printf (" at %s\n", paddress (gdbarch, to + i * 4));
3052 }
3053 write_memory_unsigned_integer (to + i * 4, 4, byte_order_for_code,
3054 (ULONGEST) dsd.insn_buf[i]);
3055 }
3056 }
3057 else
3058 {
3059 dsc = NULL;
3060 }
3061
3062 return dsc.release ();
3063 }
3064
3065 /* Implement the "displaced_step_fixup" gdbarch method. */
3066
3067 void
3068 aarch64_displaced_step_fixup (struct gdbarch *gdbarch,
3069 struct displaced_step_closure *dsc_,
3070 CORE_ADDR from, CORE_ADDR to,
3071 struct regcache *regs)
3072 {
3073 aarch64_displaced_step_closure *dsc = (aarch64_displaced_step_closure *) dsc_;
3074
3075 if (dsc->cond)
3076 {
3077 ULONGEST pc;
3078
3079 regcache_cooked_read_unsigned (regs, AARCH64_PC_REGNUM, &pc);
3080 if (pc - to == 8)
3081 {
3082 /* Condition is true. */
3083 }
3084 else if (pc - to == 4)
3085 {
3086 /* Condition is false. */
3087 dsc->pc_adjust = 4;
3088 }
3089 else
3090 gdb_assert_not_reached ("Unexpected PC value after displaced stepping");
3091 }
3092
3093 if (dsc->pc_adjust != 0)
3094 {
3095 if (debug_displaced)
3096 {
3097 debug_printf ("displaced: fixup: set PC to %s:%d\n",
3098 paddress (gdbarch, from), dsc->pc_adjust);
3099 }
3100 regcache_cooked_write_unsigned (regs, AARCH64_PC_REGNUM,
3101 from + dsc->pc_adjust);
3102 }
3103 }
3104
3105 /* Implement the "displaced_step_hw_singlestep" gdbarch method. */
3106
3107 int
3108 aarch64_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
3109 struct displaced_step_closure *closure)
3110 {
3111 return 1;
3112 }
3113
3114 /* Get the correct target description for the given VQ value.
3115 If VQ is zero then it is assumed SVE is not supported.
3116 (It is not possible to set VQ to zero on an SVE system). */
3117
3118 const target_desc *
3119 aarch64_read_description (uint64_t vq, bool pauth_p)
3120 {
3121 if (vq > AARCH64_MAX_SVE_VQ)
3122 error (_("VQ is %" PRIu64 ", maximum supported value is %d"), vq,
3123 AARCH64_MAX_SVE_VQ);
3124
3125 struct target_desc *tdesc = tdesc_aarch64_list[vq][pauth_p];
3126
3127 if (tdesc == NULL)
3128 {
3129 tdesc = aarch64_create_target_description (vq, pauth_p);
3130 tdesc_aarch64_list[vq][pauth_p] = tdesc;
3131 }
3132
3133 return tdesc;
3134 }
3135
3136 /* Return the VQ used when creating the target description TDESC. */
3137
3138 static uint64_t
3139 aarch64_get_tdesc_vq (const struct target_desc *tdesc)
3140 {
3141 const struct tdesc_feature *feature_sve;
3142
3143 if (!tdesc_has_registers (tdesc))
3144 return 0;
3145
3146 feature_sve = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.sve");
3147
3148 if (feature_sve == nullptr)
3149 return 0;
3150
3151 uint64_t vl = tdesc_register_bitsize (feature_sve,
3152 aarch64_sve_register_names[0]) / 8;
3153 return sve_vq_from_vl (vl);
3154 }
3155
3156 /* Add all the expected register sets into GDBARCH. */
3157
3158 static void
3159 aarch64_add_reggroups (struct gdbarch *gdbarch)
3160 {
3161 reggroup_add (gdbarch, general_reggroup);
3162 reggroup_add (gdbarch, float_reggroup);
3163 reggroup_add (gdbarch, system_reggroup);
3164 reggroup_add (gdbarch, vector_reggroup);
3165 reggroup_add (gdbarch, all_reggroup);
3166 reggroup_add (gdbarch, save_reggroup);
3167 reggroup_add (gdbarch, restore_reggroup);
3168 }
3169
3170 /* Implement the "cannot_store_register" gdbarch method. */
3171
3172 static int
3173 aarch64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
3174 {
3175 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3176
3177 if (!tdep->has_pauth ())
3178 return 0;
3179
3180 /* Pointer authentication registers are read-only. */
3181 return (regnum == AARCH64_PAUTH_DMASK_REGNUM (tdep->pauth_reg_base)
3182 || regnum == AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base));
3183 }
3184
3185 /* Initialize the current architecture based on INFO. If possible,
3186 re-use an architecture from ARCHES, which is a list of
3187 architectures already created during this debugging session.
3188
3189 Called e.g. at program startup, when reading a core file, and when
3190 reading a binary file. */
3191
3192 static struct gdbarch *
3193 aarch64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3194 {
3195 const struct tdesc_feature *feature_core, *feature_fpu, *feature_sve;
3196 const struct tdesc_feature *feature_pauth;
3197 bool valid_p = true;
3198 int i, num_regs = 0, num_pseudo_regs = 0;
3199 int first_pauth_regnum = -1, pauth_ra_state_offset = -1;
3200
3201 /* Use the vector length passed via the target info. Here -1 is used for no
3202 SVE, and 0 is unset. If unset then use the vector length from the existing
3203 tdesc. */
3204 uint64_t vq = 0;
3205 if (info.id == (int *) -1)
3206 vq = 0;
3207 else if (info.id != 0)
3208 vq = (uint64_t) info.id;
3209 else
3210 vq = aarch64_get_tdesc_vq (info.target_desc);
3211
3212 if (vq > AARCH64_MAX_SVE_VQ)
3213 internal_error (__FILE__, __LINE__, _("VQ out of bounds: %ld (max %d)"),
3214 vq, AARCH64_MAX_SVE_VQ);
3215
3216 /* If there is already a candidate, use it. */
3217 for (gdbarch_list *best_arch = gdbarch_list_lookup_by_info (arches, &info);
3218 best_arch != nullptr;
3219 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
3220 {
3221 struct gdbarch_tdep *tdep = gdbarch_tdep (best_arch->gdbarch);
3222 if (tdep && tdep->vq == vq)
3223 return best_arch->gdbarch;
3224 }
3225
3226 /* Ensure we always have a target descriptor, and that it is for the given VQ
3227 value. */
3228 const struct target_desc *tdesc = info.target_desc;
3229 if (!tdesc_has_registers (tdesc) || vq != aarch64_get_tdesc_vq (tdesc))
3230 tdesc = aarch64_read_description (vq, false);
3231 gdb_assert (tdesc);
3232
3233 feature_core = tdesc_find_feature (tdesc,"org.gnu.gdb.aarch64.core");
3234 feature_fpu = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.fpu");
3235 feature_sve = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.sve");
3236 feature_pauth = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.pauth");
3237
3238 if (feature_core == nullptr)
3239 return nullptr;
3240
3241 struct tdesc_arch_data *tdesc_data = tdesc_data_alloc ();
3242
3243 /* Validate the description provides the mandatory core R registers
3244 and allocate their numbers. */
3245 for (i = 0; i < ARRAY_SIZE (aarch64_r_register_names); i++)
3246 valid_p &= tdesc_numbered_register (feature_core, tdesc_data,
3247 AARCH64_X0_REGNUM + i,
3248 aarch64_r_register_names[i]);
3249
3250 num_regs = AARCH64_X0_REGNUM + i;
3251
3252 /* Add the V registers. */
3253 if (feature_fpu != nullptr)
3254 {
3255 if (feature_sve != nullptr)
3256 error (_("Program contains both fpu and SVE features."));
3257
3258 /* Validate the description provides the mandatory V registers
3259 and allocate their numbers. */
3260 for (i = 0; i < ARRAY_SIZE (aarch64_v_register_names); i++)
3261 valid_p &= tdesc_numbered_register (feature_fpu, tdesc_data,
3262 AARCH64_V0_REGNUM + i,
3263 aarch64_v_register_names[i]);
3264
3265 num_regs = AARCH64_V0_REGNUM + i;
3266 }
3267
3268 /* Add the SVE registers. */
3269 if (feature_sve != nullptr)
3270 {
3271 /* Validate the description provides the mandatory SVE registers
3272 and allocate their numbers. */
3273 for (i = 0; i < ARRAY_SIZE (aarch64_sve_register_names); i++)
3274 valid_p &= tdesc_numbered_register (feature_sve, tdesc_data,
3275 AARCH64_SVE_Z0_REGNUM + i,
3276 aarch64_sve_register_names[i]);
3277
3278 num_regs = AARCH64_SVE_Z0_REGNUM + i;
3279 num_pseudo_regs += 32; /* add the Vn register pseudos. */
3280 }
3281
3282 if (feature_fpu != nullptr || feature_sve != nullptr)
3283 {
3284 num_pseudo_regs += 32; /* add the Qn scalar register pseudos */
3285 num_pseudo_regs += 32; /* add the Dn scalar register pseudos */
3286 num_pseudo_regs += 32; /* add the Sn scalar register pseudos */
3287 num_pseudo_regs += 32; /* add the Hn scalar register pseudos */
3288 num_pseudo_regs += 32; /* add the Bn scalar register pseudos */
3289 }
3290
3291 /* Add the pauth registers. */
3292 if (feature_pauth != NULL)
3293 {
3294 first_pauth_regnum = num_regs;
3295 pauth_ra_state_offset = num_pseudo_regs;
3296 /* Validate the descriptor provides the mandatory PAUTH registers and
3297 allocate their numbers. */
3298 for (i = 0; i < ARRAY_SIZE (aarch64_pauth_register_names); i++)
3299 valid_p &= tdesc_numbered_register (feature_pauth, tdesc_data,
3300 first_pauth_regnum + i,
3301 aarch64_pauth_register_names[i]);
3302
3303 num_regs += i;
3304 num_pseudo_regs += 1; /* Count RA_STATE pseudo register. */
3305 }
3306
3307 if (!valid_p)
3308 {
3309 tdesc_data_cleanup (tdesc_data);
3310 return nullptr;
3311 }
3312
3313 /* AArch64 code is always little-endian. */
3314 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
3315
3316 struct gdbarch_tdep *tdep = XCNEW (struct gdbarch_tdep);
3317 struct gdbarch *gdbarch = gdbarch_alloc (&info, tdep);
3318
3319 /* This should be low enough for everything. */
3320 tdep->lowest_pc = 0x20;
3321 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
3322 tdep->jb_elt_size = 8;
3323 tdep->vq = vq;
3324 tdep->pauth_reg_base = first_pauth_regnum;
3325 tdep->pauth_ra_state_regnum = (feature_pauth == NULL) ? -1
3326 : pauth_ra_state_offset + num_regs;
3327
3328 set_gdbarch_push_dummy_call (gdbarch, aarch64_push_dummy_call);
3329 set_gdbarch_frame_align (gdbarch, aarch64_frame_align);
3330
3331 /* Advance PC across function entry code. */
3332 set_gdbarch_skip_prologue (gdbarch, aarch64_skip_prologue);
3333
3334 /* The stack grows downward. */
3335 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3336
3337 /* Breakpoint manipulation. */
3338 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3339 aarch64_breakpoint::kind_from_pc);
3340 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3341 aarch64_breakpoint::bp_from_kind);
3342 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3343 set_gdbarch_software_single_step (gdbarch, aarch64_software_single_step);
3344
3345 /* Information about registers, etc. */
3346 set_gdbarch_sp_regnum (gdbarch, AARCH64_SP_REGNUM);
3347 set_gdbarch_pc_regnum (gdbarch, AARCH64_PC_REGNUM);
3348 set_gdbarch_num_regs (gdbarch, num_regs);
3349
3350 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudo_regs);
3351 set_gdbarch_pseudo_register_read_value (gdbarch, aarch64_pseudo_read_value);
3352 set_gdbarch_pseudo_register_write (gdbarch, aarch64_pseudo_write);
3353 set_tdesc_pseudo_register_name (gdbarch, aarch64_pseudo_register_name);
3354 set_tdesc_pseudo_register_type (gdbarch, aarch64_pseudo_register_type);
3355 set_tdesc_pseudo_register_reggroup_p (gdbarch,
3356 aarch64_pseudo_register_reggroup_p);
3357 set_gdbarch_cannot_store_register (gdbarch, aarch64_cannot_store_register);
3358
3359 /* ABI */
3360 set_gdbarch_short_bit (gdbarch, 16);
3361 set_gdbarch_int_bit (gdbarch, 32);
3362 set_gdbarch_float_bit (gdbarch, 32);
3363 set_gdbarch_double_bit (gdbarch, 64);
3364 set_gdbarch_long_double_bit (gdbarch, 128);
3365 set_gdbarch_long_bit (gdbarch, 64);
3366 set_gdbarch_long_long_bit (gdbarch, 64);
3367 set_gdbarch_ptr_bit (gdbarch, 64);
3368 set_gdbarch_char_signed (gdbarch, 0);
3369 set_gdbarch_wchar_signed (gdbarch, 0);
3370 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
3371 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3372 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3373
3374 /* Internal <-> external register number maps. */
3375 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, aarch64_dwarf_reg_to_regnum);
3376
3377 /* Returning results. */
3378 set_gdbarch_return_value (gdbarch, aarch64_return_value);
3379
3380 /* Disassembly. */
3381 set_gdbarch_print_insn (gdbarch, aarch64_gdb_print_insn);
3382
3383 /* Virtual tables. */
3384 set_gdbarch_vbit_in_delta (gdbarch, 1);
3385
3386 /* Register architecture. */
3387 aarch64_add_reggroups (gdbarch);
3388
3389 /* Hook in the ABI-specific overrides, if they have been registered. */
3390 info.target_desc = tdesc;
3391 info.tdesc_data = tdesc_data;
3392 gdbarch_init_osabi (info, gdbarch);
3393
3394 dwarf2_frame_set_init_reg (gdbarch, aarch64_dwarf2_frame_init_reg);
3395 /* Register DWARF CFA vendor handler. */
3396 set_gdbarch_execute_dwarf_cfa_vendor_op (gdbarch,
3397 aarch64_execute_dwarf_cfa_vendor_op);
3398
3399 /* Add some default predicates. */
3400 frame_unwind_append_unwinder (gdbarch, &aarch64_stub_unwind);
3401 dwarf2_append_unwinders (gdbarch);
3402 frame_unwind_append_unwinder (gdbarch, &aarch64_prologue_unwind);
3403
3404 frame_base_set_default (gdbarch, &aarch64_normal_base);
3405
3406 /* Now we have tuned the configuration, set a few final things,
3407 based on what the OS ABI has told us. */
3408
3409 if (tdep->jb_pc >= 0)
3410 set_gdbarch_get_longjmp_target (gdbarch, aarch64_get_longjmp_target);
3411
3412 set_gdbarch_gen_return_address (gdbarch, aarch64_gen_return_address);
3413
3414 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
3415
3416 /* Add standard register aliases. */
3417 for (i = 0; i < ARRAY_SIZE (aarch64_register_aliases); i++)
3418 user_reg_add (gdbarch, aarch64_register_aliases[i].name,
3419 value_of_aarch64_user_reg,
3420 &aarch64_register_aliases[i].regnum);
3421
3422 register_aarch64_ravenscar_ops (gdbarch);
3423
3424 return gdbarch;
3425 }
3426
3427 static void
3428 aarch64_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3429 {
3430 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3431
3432 if (tdep == NULL)
3433 return;
3434
3435 fprintf_unfiltered (file, _("aarch64_dump_tdep: Lowest pc = 0x%s"),
3436 paddress (gdbarch, tdep->lowest_pc));
3437 }
3438
3439 #if GDB_SELF_TEST
3440 namespace selftests
3441 {
3442 static void aarch64_process_record_test (void);
3443 }
3444 #endif
3445
3446 void
3447 _initialize_aarch64_tdep (void)
3448 {
3449 gdbarch_register (bfd_arch_aarch64, aarch64_gdbarch_init,
3450 aarch64_dump_tdep);
3451
3452 /* Debug this file's internals. */
3453 add_setshow_boolean_cmd ("aarch64", class_maintenance, &aarch64_debug, _("\
3454 Set AArch64 debugging."), _("\
3455 Show AArch64 debugging."), _("\
3456 When on, AArch64 specific debugging is enabled."),
3457 NULL,
3458 show_aarch64_debug,
3459 &setdebuglist, &showdebuglist);
3460
3461 #if GDB_SELF_TEST
3462 selftests::register_test ("aarch64-analyze-prologue",
3463 selftests::aarch64_analyze_prologue_test);
3464 selftests::register_test ("aarch64-process-record",
3465 selftests::aarch64_process_record_test);
3466 selftests::record_xml_tdesc ("aarch64.xml",
3467 aarch64_create_target_description (0, false));
3468 #endif
3469 }
3470
3471 /* AArch64 process record-replay related structures, defines etc. */
3472
3473 #define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \
3474 do \
3475 { \
3476 unsigned int reg_len = LENGTH; \
3477 if (reg_len) \
3478 { \
3479 REGS = XNEWVEC (uint32_t, reg_len); \
3480 memcpy(&REGS[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \
3481 } \
3482 } \
3483 while (0)
3484
3485 #define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \
3486 do \
3487 { \
3488 unsigned int mem_len = LENGTH; \
3489 if (mem_len) \
3490 { \
3491 MEMS = XNEWVEC (struct aarch64_mem_r, mem_len); \
3492 memcpy(&MEMS->len, &RECORD_BUF[0], \
3493 sizeof(struct aarch64_mem_r) * LENGTH); \
3494 } \
3495 } \
3496 while (0)
3497
3498 /* AArch64 record/replay structures and enumerations. */
3499
3500 struct aarch64_mem_r
3501 {
3502 uint64_t len; /* Record length. */
3503 uint64_t addr; /* Memory address. */
3504 };
3505
3506 enum aarch64_record_result
3507 {
3508 AARCH64_RECORD_SUCCESS,
3509 AARCH64_RECORD_UNSUPPORTED,
3510 AARCH64_RECORD_UNKNOWN
3511 };
3512
3513 typedef struct insn_decode_record_t
3514 {
3515 struct gdbarch *gdbarch;
3516 struct regcache *regcache;
3517 CORE_ADDR this_addr; /* Address of insn to be recorded. */
3518 uint32_t aarch64_insn; /* Insn to be recorded. */
3519 uint32_t mem_rec_count; /* Count of memory records. */
3520 uint32_t reg_rec_count; /* Count of register records. */
3521 uint32_t *aarch64_regs; /* Registers to be recorded. */
3522 struct aarch64_mem_r *aarch64_mems; /* Memory locations to be recorded. */
3523 } insn_decode_record;
3524
3525 /* Record handler for data processing - register instructions. */
3526
3527 static unsigned int
3528 aarch64_record_data_proc_reg (insn_decode_record *aarch64_insn_r)
3529 {
3530 uint8_t reg_rd, insn_bits24_27, insn_bits21_23;
3531 uint32_t record_buf[4];
3532
3533 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3534 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3535 insn_bits21_23 = bits (aarch64_insn_r->aarch64_insn, 21, 23);
3536
3537 if (!bit (aarch64_insn_r->aarch64_insn, 28))
3538 {
3539 uint8_t setflags;
3540
3541 /* Logical (shifted register). */
3542 if (insn_bits24_27 == 0x0a)
3543 setflags = (bits (aarch64_insn_r->aarch64_insn, 29, 30) == 0x03);
3544 /* Add/subtract. */
3545 else if (insn_bits24_27 == 0x0b)
3546 setflags = bit (aarch64_insn_r->aarch64_insn, 29);
3547 else
3548 return AARCH64_RECORD_UNKNOWN;
3549
3550 record_buf[0] = reg_rd;
3551 aarch64_insn_r->reg_rec_count = 1;
3552 if (setflags)
3553 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
3554 }
3555 else
3556 {
3557 if (insn_bits24_27 == 0x0b)
3558 {
3559 /* Data-processing (3 source). */
3560 record_buf[0] = reg_rd;
3561 aarch64_insn_r->reg_rec_count = 1;
3562 }
3563 else if (insn_bits24_27 == 0x0a)
3564 {
3565 if (insn_bits21_23 == 0x00)
3566 {
3567 /* Add/subtract (with carry). */
3568 record_buf[0] = reg_rd;
3569 aarch64_insn_r->reg_rec_count = 1;
3570 if (bit (aarch64_insn_r->aarch64_insn, 29))
3571 {
3572 record_buf[1] = AARCH64_CPSR_REGNUM;
3573 aarch64_insn_r->reg_rec_count = 2;
3574 }
3575 }
3576 else if (insn_bits21_23 == 0x02)
3577 {
3578 /* Conditional compare (register) and conditional compare
3579 (immediate) instructions. */
3580 record_buf[0] = AARCH64_CPSR_REGNUM;
3581 aarch64_insn_r->reg_rec_count = 1;
3582 }
3583 else if (insn_bits21_23 == 0x04 || insn_bits21_23 == 0x06)
3584 {
3585 /* CConditional select. */
3586 /* Data-processing (2 source). */
3587 /* Data-processing (1 source). */
3588 record_buf[0] = reg_rd;
3589 aarch64_insn_r->reg_rec_count = 1;
3590 }
3591 else
3592 return AARCH64_RECORD_UNKNOWN;
3593 }
3594 }
3595
3596 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3597 record_buf);
3598 return AARCH64_RECORD_SUCCESS;
3599 }
3600
3601 /* Record handler for data processing - immediate instructions. */
3602
3603 static unsigned int
3604 aarch64_record_data_proc_imm (insn_decode_record *aarch64_insn_r)
3605 {
3606 uint8_t reg_rd, insn_bit23, insn_bits24_27, setflags;
3607 uint32_t record_buf[4];
3608
3609 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3610 insn_bit23 = bit (aarch64_insn_r->aarch64_insn, 23);
3611 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3612
3613 if (insn_bits24_27 == 0x00 /* PC rel addressing. */
3614 || insn_bits24_27 == 0x03 /* Bitfield and Extract. */
3615 || (insn_bits24_27 == 0x02 && insn_bit23)) /* Move wide (immediate). */
3616 {
3617 record_buf[0] = reg_rd;
3618 aarch64_insn_r->reg_rec_count = 1;
3619 }
3620 else if (insn_bits24_27 == 0x01)
3621 {
3622 /* Add/Subtract (immediate). */
3623 setflags = bit (aarch64_insn_r->aarch64_insn, 29);
3624 record_buf[0] = reg_rd;
3625 aarch64_insn_r->reg_rec_count = 1;
3626 if (setflags)
3627 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
3628 }
3629 else if (insn_bits24_27 == 0x02 && !insn_bit23)
3630 {
3631 /* Logical (immediate). */
3632 setflags = bits (aarch64_insn_r->aarch64_insn, 29, 30) == 0x03;
3633 record_buf[0] = reg_rd;
3634 aarch64_insn_r->reg_rec_count = 1;
3635 if (setflags)
3636 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
3637 }
3638 else
3639 return AARCH64_RECORD_UNKNOWN;
3640
3641 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3642 record_buf);
3643 return AARCH64_RECORD_SUCCESS;
3644 }
3645
3646 /* Record handler for branch, exception generation and system instructions. */
3647
3648 static unsigned int
3649 aarch64_record_branch_except_sys (insn_decode_record *aarch64_insn_r)
3650 {
3651 struct gdbarch_tdep *tdep = gdbarch_tdep (aarch64_insn_r->gdbarch);
3652 uint8_t insn_bits24_27, insn_bits28_31, insn_bits22_23;
3653 uint32_t record_buf[4];
3654
3655 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3656 insn_bits28_31 = bits (aarch64_insn_r->aarch64_insn, 28, 31);
3657 insn_bits22_23 = bits (aarch64_insn_r->aarch64_insn, 22, 23);
3658
3659 if (insn_bits28_31 == 0x0d)
3660 {
3661 /* Exception generation instructions. */
3662 if (insn_bits24_27 == 0x04)
3663 {
3664 if (!bits (aarch64_insn_r->aarch64_insn, 2, 4)
3665 && !bits (aarch64_insn_r->aarch64_insn, 21, 23)
3666 && bits (aarch64_insn_r->aarch64_insn, 0, 1) == 0x01)
3667 {
3668 ULONGEST svc_number;
3669
3670 regcache_raw_read_unsigned (aarch64_insn_r->regcache, 8,
3671 &svc_number);
3672 return tdep->aarch64_syscall_record (aarch64_insn_r->regcache,
3673 svc_number);
3674 }
3675 else
3676 return AARCH64_RECORD_UNSUPPORTED;
3677 }
3678 /* System instructions. */
3679 else if (insn_bits24_27 == 0x05 && insn_bits22_23 == 0x00)
3680 {
3681 uint32_t reg_rt, reg_crn;
3682
3683 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3684 reg_crn = bits (aarch64_insn_r->aarch64_insn, 12, 15);
3685
3686 /* Record rt in case of sysl and mrs instructions. */
3687 if (bit (aarch64_insn_r->aarch64_insn, 21))
3688 {
3689 record_buf[0] = reg_rt;
3690 aarch64_insn_r->reg_rec_count = 1;
3691 }
3692 /* Record cpsr for hint and msr(immediate) instructions. */
3693 else if (reg_crn == 0x02 || reg_crn == 0x04)
3694 {
3695 record_buf[0] = AARCH64_CPSR_REGNUM;
3696 aarch64_insn_r->reg_rec_count = 1;
3697 }
3698 }
3699 /* Unconditional branch (register). */
3700 else if((insn_bits24_27 & 0x0e) == 0x06)
3701 {
3702 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3703 if (bits (aarch64_insn_r->aarch64_insn, 21, 22) == 0x01)
3704 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_LR_REGNUM;
3705 }
3706 else
3707 return AARCH64_RECORD_UNKNOWN;
3708 }
3709 /* Unconditional branch (immediate). */
3710 else if ((insn_bits28_31 & 0x07) == 0x01 && (insn_bits24_27 & 0x0c) == 0x04)
3711 {
3712 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3713 if (bit (aarch64_insn_r->aarch64_insn, 31))
3714 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_LR_REGNUM;
3715 }
3716 else
3717 /* Compare & branch (immediate), Test & branch (immediate) and
3718 Conditional branch (immediate). */
3719 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3720
3721 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3722 record_buf);
3723 return AARCH64_RECORD_SUCCESS;
3724 }
3725
3726 /* Record handler for advanced SIMD load and store instructions. */
3727
3728 static unsigned int
3729 aarch64_record_asimd_load_store (insn_decode_record *aarch64_insn_r)
3730 {
3731 CORE_ADDR address;
3732 uint64_t addr_offset = 0;
3733 uint32_t record_buf[24];
3734 uint64_t record_buf_mem[24];
3735 uint32_t reg_rn, reg_rt;
3736 uint32_t reg_index = 0, mem_index = 0;
3737 uint8_t opcode_bits, size_bits;
3738
3739 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3740 reg_rn = bits (aarch64_insn_r->aarch64_insn, 5, 9);
3741 size_bits = bits (aarch64_insn_r->aarch64_insn, 10, 11);
3742 opcode_bits = bits (aarch64_insn_r->aarch64_insn, 12, 15);
3743 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn, &address);
3744
3745 if (record_debug)
3746 debug_printf ("Process record: Advanced SIMD load/store\n");
3747
3748 /* Load/store single structure. */
3749 if (bit (aarch64_insn_r->aarch64_insn, 24))
3750 {
3751 uint8_t sindex, scale, selem, esize, replicate = 0;
3752 scale = opcode_bits >> 2;
3753 selem = ((opcode_bits & 0x02) |
3754 bit (aarch64_insn_r->aarch64_insn, 21)) + 1;
3755 switch (scale)
3756 {
3757 case 1:
3758 if (size_bits & 0x01)
3759 return AARCH64_RECORD_UNKNOWN;
3760 break;
3761 case 2:
3762 if ((size_bits >> 1) & 0x01)
3763 return AARCH64_RECORD_UNKNOWN;
3764 if (size_bits & 0x01)
3765 {
3766 if (!((opcode_bits >> 1) & 0x01))
3767 scale = 3;
3768 else
3769 return AARCH64_RECORD_UNKNOWN;
3770 }
3771 break;
3772 case 3:
3773 if (bit (aarch64_insn_r->aarch64_insn, 22) && !(opcode_bits & 0x01))
3774 {
3775 scale = size_bits;
3776 replicate = 1;
3777 break;
3778 }
3779 else
3780 return AARCH64_RECORD_UNKNOWN;
3781 default:
3782 break;
3783 }
3784 esize = 8 << scale;
3785 if (replicate)
3786 for (sindex = 0; sindex < selem; sindex++)
3787 {
3788 record_buf[reg_index++] = reg_rt + AARCH64_V0_REGNUM;
3789 reg_rt = (reg_rt + 1) % 32;
3790 }
3791 else
3792 {
3793 for (sindex = 0; sindex < selem; sindex++)
3794 {
3795 if (bit (aarch64_insn_r->aarch64_insn, 22))
3796 record_buf[reg_index++] = reg_rt + AARCH64_V0_REGNUM;
3797 else
3798 {
3799 record_buf_mem[mem_index++] = esize / 8;
3800 record_buf_mem[mem_index++] = address + addr_offset;
3801 }
3802 addr_offset = addr_offset + (esize / 8);
3803 reg_rt = (reg_rt + 1) % 32;
3804 }
3805 }
3806 }
3807 /* Load/store multiple structure. */
3808 else
3809 {
3810 uint8_t selem, esize, rpt, elements;
3811 uint8_t eindex, rindex;
3812
3813 esize = 8 << size_bits;
3814 if (bit (aarch64_insn_r->aarch64_insn, 30))
3815 elements = 128 / esize;
3816 else
3817 elements = 64 / esize;
3818
3819 switch (opcode_bits)
3820 {
3821 /*LD/ST4 (4 Registers). */
3822 case 0:
3823 rpt = 1;
3824 selem = 4;
3825 break;
3826 /*LD/ST1 (4 Registers). */
3827 case 2:
3828 rpt = 4;
3829 selem = 1;
3830 break;
3831 /*LD/ST3 (3 Registers). */
3832 case 4:
3833 rpt = 1;
3834 selem = 3;
3835 break;
3836 /*LD/ST1 (3 Registers). */
3837 case 6:
3838 rpt = 3;
3839 selem = 1;
3840 break;
3841 /*LD/ST1 (1 Register). */
3842 case 7:
3843 rpt = 1;
3844 selem = 1;
3845 break;
3846 /*LD/ST2 (2 Registers). */
3847 case 8:
3848 rpt = 1;
3849 selem = 2;
3850 break;
3851 /*LD/ST1 (2 Registers). */
3852 case 10:
3853 rpt = 2;
3854 selem = 1;
3855 break;
3856 default:
3857 return AARCH64_RECORD_UNSUPPORTED;
3858 break;
3859 }
3860 for (rindex = 0; rindex < rpt; rindex++)
3861 for (eindex = 0; eindex < elements; eindex++)
3862 {
3863 uint8_t reg_tt, sindex;
3864 reg_tt = (reg_rt + rindex) % 32;
3865 for (sindex = 0; sindex < selem; sindex++)
3866 {
3867 if (bit (aarch64_insn_r->aarch64_insn, 22))
3868 record_buf[reg_index++] = reg_tt + AARCH64_V0_REGNUM;
3869 else
3870 {
3871 record_buf_mem[mem_index++] = esize / 8;
3872 record_buf_mem[mem_index++] = address + addr_offset;
3873 }
3874 addr_offset = addr_offset + (esize / 8);
3875 reg_tt = (reg_tt + 1) % 32;
3876 }
3877 }
3878 }
3879
3880 if (bit (aarch64_insn_r->aarch64_insn, 23))
3881 record_buf[reg_index++] = reg_rn;
3882
3883 aarch64_insn_r->reg_rec_count = reg_index;
3884 aarch64_insn_r->mem_rec_count = mem_index / 2;
3885 MEM_ALLOC (aarch64_insn_r->aarch64_mems, aarch64_insn_r->mem_rec_count,
3886 record_buf_mem);
3887 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3888 record_buf);
3889 return AARCH64_RECORD_SUCCESS;
3890 }
3891
3892 /* Record handler for load and store instructions. */
3893
3894 static unsigned int
3895 aarch64_record_load_store (insn_decode_record *aarch64_insn_r)
3896 {
3897 uint8_t insn_bits24_27, insn_bits28_29, insn_bits10_11;
3898 uint8_t insn_bit23, insn_bit21;
3899 uint8_t opc, size_bits, ld_flag, vector_flag;
3900 uint32_t reg_rn, reg_rt, reg_rt2;
3901 uint64_t datasize, offset;
3902 uint32_t record_buf[8];
3903 uint64_t record_buf_mem[8];
3904 CORE_ADDR address;
3905
3906 insn_bits10_11 = bits (aarch64_insn_r->aarch64_insn, 10, 11);
3907 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3908 insn_bits28_29 = bits (aarch64_insn_r->aarch64_insn, 28, 29);
3909 insn_bit21 = bit (aarch64_insn_r->aarch64_insn, 21);
3910 insn_bit23 = bit (aarch64_insn_r->aarch64_insn, 23);
3911 ld_flag = bit (aarch64_insn_r->aarch64_insn, 22);
3912 vector_flag = bit (aarch64_insn_r->aarch64_insn, 26);
3913 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3914 reg_rn = bits (aarch64_insn_r->aarch64_insn, 5, 9);
3915 reg_rt2 = bits (aarch64_insn_r->aarch64_insn, 10, 14);
3916 size_bits = bits (aarch64_insn_r->aarch64_insn, 30, 31);
3917
3918 /* Load/store exclusive. */
3919 if (insn_bits24_27 == 0x08 && insn_bits28_29 == 0x00)
3920 {
3921 if (record_debug)
3922 debug_printf ("Process record: load/store exclusive\n");
3923
3924 if (ld_flag)
3925 {
3926 record_buf[0] = reg_rt;
3927 aarch64_insn_r->reg_rec_count = 1;
3928 if (insn_bit21)
3929 {
3930 record_buf[1] = reg_rt2;
3931 aarch64_insn_r->reg_rec_count = 2;
3932 }
3933 }
3934 else
3935 {
3936 if (insn_bit21)
3937 datasize = (8 << size_bits) * 2;
3938 else
3939 datasize = (8 << size_bits);
3940 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3941 &address);
3942 record_buf_mem[0] = datasize / 8;
3943 record_buf_mem[1] = address;
3944 aarch64_insn_r->mem_rec_count = 1;
3945 if (!insn_bit23)
3946 {
3947 /* Save register rs. */
3948 record_buf[0] = bits (aarch64_insn_r->aarch64_insn, 16, 20);
3949 aarch64_insn_r->reg_rec_count = 1;
3950 }
3951 }
3952 }
3953 /* Load register (literal) instructions decoding. */
3954 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x01)
3955 {
3956 if (record_debug)
3957 debug_printf ("Process record: load register (literal)\n");
3958 if (vector_flag)
3959 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3960 else
3961 record_buf[0] = reg_rt;
3962 aarch64_insn_r->reg_rec_count = 1;
3963 }
3964 /* All types of load/store pair instructions decoding. */
3965 else if ((insn_bits24_27 & 0x0a) == 0x08 && insn_bits28_29 == 0x02)
3966 {
3967 if (record_debug)
3968 debug_printf ("Process record: load/store pair\n");
3969
3970 if (ld_flag)
3971 {
3972 if (vector_flag)
3973 {
3974 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3975 record_buf[1] = reg_rt2 + AARCH64_V0_REGNUM;
3976 }
3977 else
3978 {
3979 record_buf[0] = reg_rt;
3980 record_buf[1] = reg_rt2;
3981 }
3982 aarch64_insn_r->reg_rec_count = 2;
3983 }
3984 else
3985 {
3986 uint16_t imm7_off;
3987 imm7_off = bits (aarch64_insn_r->aarch64_insn, 15, 21);
3988 if (!vector_flag)
3989 size_bits = size_bits >> 1;
3990 datasize = 8 << (2 + size_bits);
3991 offset = (imm7_off & 0x40) ? (~imm7_off & 0x007f) + 1 : imm7_off;
3992 offset = offset << (2 + size_bits);
3993 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3994 &address);
3995 if (!((insn_bits24_27 & 0x0b) == 0x08 && insn_bit23))
3996 {
3997 if (imm7_off & 0x40)
3998 address = address - offset;
3999 else
4000 address = address + offset;
4001 }
4002
4003 record_buf_mem[0] = datasize / 8;
4004 record_buf_mem[1] = address;
4005 record_buf_mem[2] = datasize / 8;
4006 record_buf_mem[3] = address + (datasize / 8);
4007 aarch64_insn_r->mem_rec_count = 2;
4008 }
4009 if (bit (aarch64_insn_r->aarch64_insn, 23))
4010 record_buf[aarch64_insn_r->reg_rec_count++] = reg_rn;
4011 }
4012 /* Load/store register (unsigned immediate) instructions. */
4013 else if ((insn_bits24_27 & 0x0b) == 0x09 && insn_bits28_29 == 0x03)
4014 {
4015 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
4016 if (!(opc >> 1))
4017 {
4018 if (opc & 0x01)
4019 ld_flag = 0x01;
4020 else
4021 ld_flag = 0x0;
4022 }
4023 else
4024 {
4025 if (size_bits == 0x3 && vector_flag == 0x0 && opc == 0x2)
4026 {
4027 /* PRFM (immediate) */
4028 return AARCH64_RECORD_SUCCESS;
4029 }
4030 else if (size_bits == 0x2 && vector_flag == 0x0 && opc == 0x2)
4031 {
4032 /* LDRSW (immediate) */
4033 ld_flag = 0x1;
4034 }
4035 else
4036 {
4037 if (opc & 0x01)
4038 ld_flag = 0x01;
4039 else
4040 ld_flag = 0x0;
4041 }
4042 }
4043
4044 if (record_debug)
4045 {
4046 debug_printf ("Process record: load/store (unsigned immediate):"
4047 " size %x V %d opc %x\n", size_bits, vector_flag,
4048 opc);
4049 }
4050
4051 if (!ld_flag)
4052 {
4053 offset = bits (aarch64_insn_r->aarch64_insn, 10, 21);
4054 datasize = 8 << size_bits;
4055 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
4056 &address);
4057 offset = offset << size_bits;
4058 address = address + offset;
4059
4060 record_buf_mem[0] = datasize >> 3;
4061 record_buf_mem[1] = address;
4062 aarch64_insn_r->mem_rec_count = 1;
4063 }
4064 else
4065 {
4066 if (vector_flag)
4067 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
4068 else
4069 record_buf[0] = reg_rt;
4070 aarch64_insn_r->reg_rec_count = 1;
4071 }
4072 }
4073 /* Load/store register (register offset) instructions. */
4074 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x03
4075 && insn_bits10_11 == 0x02 && insn_bit21)
4076 {
4077 if (record_debug)
4078 debug_printf ("Process record: load/store (register offset)\n");
4079 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
4080 if (!(opc >> 1))
4081 if (opc & 0x01)
4082 ld_flag = 0x01;
4083 else
4084 ld_flag = 0x0;
4085 else
4086 if (size_bits != 0x03)
4087 ld_flag = 0x01;
4088 else
4089 return AARCH64_RECORD_UNKNOWN;
4090
4091 if (!ld_flag)
4092 {
4093 ULONGEST reg_rm_val;
4094
4095 regcache_raw_read_unsigned (aarch64_insn_r->regcache,
4096 bits (aarch64_insn_r->aarch64_insn, 16, 20), &reg_rm_val);
4097 if (bit (aarch64_insn_r->aarch64_insn, 12))
4098 offset = reg_rm_val << size_bits;
4099 else
4100 offset = reg_rm_val;
4101 datasize = 8 << size_bits;
4102 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
4103 &address);
4104 address = address + offset;
4105 record_buf_mem[0] = datasize >> 3;
4106 record_buf_mem[1] = address;
4107 aarch64_insn_r->mem_rec_count = 1;
4108 }
4109 else
4110 {
4111 if (vector_flag)
4112 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
4113 else
4114 record_buf[0] = reg_rt;
4115 aarch64_insn_r->reg_rec_count = 1;
4116 }
4117 }
4118 /* Load/store register (immediate and unprivileged) instructions. */
4119 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x03
4120 && !insn_bit21)
4121 {
4122 if (record_debug)
4123 {
4124 debug_printf ("Process record: load/store "
4125 "(immediate and unprivileged)\n");
4126 }
4127 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
4128 if (!(opc >> 1))
4129 if (opc & 0x01)
4130 ld_flag = 0x01;
4131 else
4132 ld_flag = 0x0;
4133 else
4134 if (size_bits != 0x03)
4135 ld_flag = 0x01;
4136 else
4137 return AARCH64_RECORD_UNKNOWN;
4138
4139 if (!ld_flag)
4140 {
4141 uint16_t imm9_off;
4142 imm9_off = bits (aarch64_insn_r->aarch64_insn, 12, 20);
4143 offset = (imm9_off & 0x0100) ? (((~imm9_off) & 0x01ff) + 1) : imm9_off;
4144 datasize = 8 << size_bits;
4145 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
4146 &address);
4147 if (insn_bits10_11 != 0x01)
4148 {
4149 if (imm9_off & 0x0100)
4150 address = address - offset;
4151 else
4152 address = address + offset;
4153 }
4154 record_buf_mem[0] = datasize >> 3;
4155 record_buf_mem[1] = address;
4156 aarch64_insn_r->mem_rec_count = 1;
4157 }
4158 else
4159 {
4160 if (vector_flag)
4161 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
4162 else
4163 record_buf[0] = reg_rt;
4164 aarch64_insn_r->reg_rec_count = 1;
4165 }
4166 if (insn_bits10_11 == 0x01 || insn_bits10_11 == 0x03)
4167 record_buf[aarch64_insn_r->reg_rec_count++] = reg_rn;
4168 }
4169 /* Advanced SIMD load/store instructions. */
4170 else
4171 return aarch64_record_asimd_load_store (aarch64_insn_r);
4172
4173 MEM_ALLOC (aarch64_insn_r->aarch64_mems, aarch64_insn_r->mem_rec_count,
4174 record_buf_mem);
4175 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
4176 record_buf);
4177 return AARCH64_RECORD_SUCCESS;
4178 }
4179
4180 /* Record handler for data processing SIMD and floating point instructions. */
4181
4182 static unsigned int
4183 aarch64_record_data_proc_simd_fp (insn_decode_record *aarch64_insn_r)
4184 {
4185 uint8_t insn_bit21, opcode, rmode, reg_rd;
4186 uint8_t insn_bits24_27, insn_bits28_31, insn_bits10_11, insn_bits12_15;
4187 uint8_t insn_bits11_14;
4188 uint32_t record_buf[2];
4189
4190 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
4191 insn_bits28_31 = bits (aarch64_insn_r->aarch64_insn, 28, 31);
4192 insn_bits10_11 = bits (aarch64_insn_r->aarch64_insn, 10, 11);
4193 insn_bits12_15 = bits (aarch64_insn_r->aarch64_insn, 12, 15);
4194 insn_bits11_14 = bits (aarch64_insn_r->aarch64_insn, 11, 14);
4195 opcode = bits (aarch64_insn_r->aarch64_insn, 16, 18);
4196 rmode = bits (aarch64_insn_r->aarch64_insn, 19, 20);
4197 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
4198 insn_bit21 = bit (aarch64_insn_r->aarch64_insn, 21);
4199
4200 if (record_debug)
4201 debug_printf ("Process record: data processing SIMD/FP: ");
4202
4203 if ((insn_bits28_31 & 0x05) == 0x01 && insn_bits24_27 == 0x0e)
4204 {
4205 /* Floating point - fixed point conversion instructions. */
4206 if (!insn_bit21)
4207 {
4208 if (record_debug)
4209 debug_printf ("FP - fixed point conversion");
4210
4211 if ((opcode >> 1) == 0x0 && rmode == 0x03)
4212 record_buf[0] = reg_rd;
4213 else
4214 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4215 }
4216 /* Floating point - conditional compare instructions. */
4217 else if (insn_bits10_11 == 0x01)
4218 {
4219 if (record_debug)
4220 debug_printf ("FP - conditional compare");
4221
4222 record_buf[0] = AARCH64_CPSR_REGNUM;
4223 }
4224 /* Floating point - data processing (2-source) and
4225 conditional select instructions. */
4226 else if (insn_bits10_11 == 0x02 || insn_bits10_11 == 0x03)
4227 {
4228 if (record_debug)
4229 debug_printf ("FP - DP (2-source)");
4230
4231 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4232 }
4233 else if (insn_bits10_11 == 0x00)
4234 {
4235 /* Floating point - immediate instructions. */
4236 if ((insn_bits12_15 & 0x01) == 0x01
4237 || (insn_bits12_15 & 0x07) == 0x04)
4238 {
4239 if (record_debug)
4240 debug_printf ("FP - immediate");
4241 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4242 }
4243 /* Floating point - compare instructions. */
4244 else if ((insn_bits12_15 & 0x03) == 0x02)
4245 {
4246 if (record_debug)
4247 debug_printf ("FP - immediate");
4248 record_buf[0] = AARCH64_CPSR_REGNUM;
4249 }
4250 /* Floating point - integer conversions instructions. */
4251 else if (insn_bits12_15 == 0x00)
4252 {
4253 /* Convert float to integer instruction. */
4254 if (!(opcode >> 1) || ((opcode >> 1) == 0x02 && !rmode))
4255 {
4256 if (record_debug)
4257 debug_printf ("float to int conversion");
4258
4259 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
4260 }
4261 /* Convert integer to float instruction. */
4262 else if ((opcode >> 1) == 0x01 && !rmode)
4263 {
4264 if (record_debug)
4265 debug_printf ("int to float conversion");
4266
4267 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4268 }
4269 /* Move float to integer instruction. */
4270 else if ((opcode >> 1) == 0x03)
4271 {
4272 if (record_debug)
4273 debug_printf ("move float to int");
4274
4275 if (!(opcode & 0x01))
4276 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
4277 else
4278 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4279 }
4280 else
4281 return AARCH64_RECORD_UNKNOWN;
4282 }
4283 else
4284 return AARCH64_RECORD_UNKNOWN;
4285 }
4286 else
4287 return AARCH64_RECORD_UNKNOWN;
4288 }
4289 else if ((insn_bits28_31 & 0x09) == 0x00 && insn_bits24_27 == 0x0e)
4290 {
4291 if (record_debug)
4292 debug_printf ("SIMD copy");
4293
4294 /* Advanced SIMD copy instructions. */
4295 if (!bits (aarch64_insn_r->aarch64_insn, 21, 23)
4296 && !bit (aarch64_insn_r->aarch64_insn, 15)
4297 && bit (aarch64_insn_r->aarch64_insn, 10))
4298 {
4299 if (insn_bits11_14 == 0x05 || insn_bits11_14 == 0x07)
4300 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
4301 else
4302 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4303 }
4304 else
4305 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4306 }
4307 /* All remaining floating point or advanced SIMD instructions. */
4308 else
4309 {
4310 if (record_debug)
4311 debug_printf ("all remain");
4312
4313 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4314 }
4315
4316 if (record_debug)
4317 debug_printf ("\n");
4318
4319 aarch64_insn_r->reg_rec_count++;
4320 gdb_assert (aarch64_insn_r->reg_rec_count == 1);
4321 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
4322 record_buf);
4323 return AARCH64_RECORD_SUCCESS;
4324 }
4325
4326 /* Decodes insns type and invokes its record handler. */
4327
4328 static unsigned int
4329 aarch64_record_decode_insn_handler (insn_decode_record *aarch64_insn_r)
4330 {
4331 uint32_t ins_bit25, ins_bit26, ins_bit27, ins_bit28;
4332
4333 ins_bit25 = bit (aarch64_insn_r->aarch64_insn, 25);
4334 ins_bit26 = bit (aarch64_insn_r->aarch64_insn, 26);
4335 ins_bit27 = bit (aarch64_insn_r->aarch64_insn, 27);
4336 ins_bit28 = bit (aarch64_insn_r->aarch64_insn, 28);
4337
4338 /* Data processing - immediate instructions. */
4339 if (!ins_bit26 && !ins_bit27 && ins_bit28)
4340 return aarch64_record_data_proc_imm (aarch64_insn_r);
4341
4342 /* Branch, exception generation and system instructions. */
4343 if (ins_bit26 && !ins_bit27 && ins_bit28)
4344 return aarch64_record_branch_except_sys (aarch64_insn_r);
4345
4346 /* Load and store instructions. */
4347 if (!ins_bit25 && ins_bit27)
4348 return aarch64_record_load_store (aarch64_insn_r);
4349
4350 /* Data processing - register instructions. */
4351 if (ins_bit25 && !ins_bit26 && ins_bit27)
4352 return aarch64_record_data_proc_reg (aarch64_insn_r);
4353
4354 /* Data processing - SIMD and floating point instructions. */
4355 if (ins_bit25 && ins_bit26 && ins_bit27)
4356 return aarch64_record_data_proc_simd_fp (aarch64_insn_r);
4357
4358 return AARCH64_RECORD_UNSUPPORTED;
4359 }
4360
4361 /* Cleans up local record registers and memory allocations. */
4362
4363 static void
4364 deallocate_reg_mem (insn_decode_record *record)
4365 {
4366 xfree (record->aarch64_regs);
4367 xfree (record->aarch64_mems);
4368 }
4369
4370 #if GDB_SELF_TEST
4371 namespace selftests {
4372
4373 static void
4374 aarch64_process_record_test (void)
4375 {
4376 struct gdbarch_info info;
4377 uint32_t ret;
4378
4379 gdbarch_info_init (&info);
4380 info.bfd_arch_info = bfd_scan_arch ("aarch64");
4381
4382 struct gdbarch *gdbarch = gdbarch_find_by_info (info);
4383 SELF_CHECK (gdbarch != NULL);
4384
4385 insn_decode_record aarch64_record;
4386
4387 memset (&aarch64_record, 0, sizeof (insn_decode_record));
4388 aarch64_record.regcache = NULL;
4389 aarch64_record.this_addr = 0;
4390 aarch64_record.gdbarch = gdbarch;
4391
4392 /* 20 00 80 f9 prfm pldl1keep, [x1] */
4393 aarch64_record.aarch64_insn = 0xf9800020;
4394 ret = aarch64_record_decode_insn_handler (&aarch64_record);
4395 SELF_CHECK (ret == AARCH64_RECORD_SUCCESS);
4396 SELF_CHECK (aarch64_record.reg_rec_count == 0);
4397 SELF_CHECK (aarch64_record.mem_rec_count == 0);
4398
4399 deallocate_reg_mem (&aarch64_record);
4400 }
4401
4402 } // namespace selftests
4403 #endif /* GDB_SELF_TEST */
4404
4405 /* Parse the current instruction and record the values of the registers and
4406 memory that will be changed in current instruction to record_arch_list
4407 return -1 if something is wrong. */
4408
4409 int
4410 aarch64_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4411 CORE_ADDR insn_addr)
4412 {
4413 uint32_t rec_no = 0;
4414 uint8_t insn_size = 4;
4415 uint32_t ret = 0;
4416 gdb_byte buf[insn_size];
4417 insn_decode_record aarch64_record;
4418
4419 memset (&buf[0], 0, insn_size);
4420 memset (&aarch64_record, 0, sizeof (insn_decode_record));
4421 target_read_memory (insn_addr, &buf[0], insn_size);
4422 aarch64_record.aarch64_insn
4423 = (uint32_t) extract_unsigned_integer (&buf[0],
4424 insn_size,
4425 gdbarch_byte_order (gdbarch));
4426 aarch64_record.regcache = regcache;
4427 aarch64_record.this_addr = insn_addr;
4428 aarch64_record.gdbarch = gdbarch;
4429
4430 ret = aarch64_record_decode_insn_handler (&aarch64_record);
4431 if (ret == AARCH64_RECORD_UNSUPPORTED)
4432 {
4433 printf_unfiltered (_("Process record does not support instruction "
4434 "0x%0x at address %s.\n"),
4435 aarch64_record.aarch64_insn,
4436 paddress (gdbarch, insn_addr));
4437 ret = -1;
4438 }
4439
4440 if (0 == ret)
4441 {
4442 /* Record registers. */
4443 record_full_arch_list_add_reg (aarch64_record.regcache,
4444 AARCH64_PC_REGNUM);
4445 /* Always record register CPSR. */
4446 record_full_arch_list_add_reg (aarch64_record.regcache,
4447 AARCH64_CPSR_REGNUM);
4448 if (aarch64_record.aarch64_regs)
4449 for (rec_no = 0; rec_no < aarch64_record.reg_rec_count; rec_no++)
4450 if (record_full_arch_list_add_reg (aarch64_record.regcache,
4451 aarch64_record.aarch64_regs[rec_no]))
4452 ret = -1;
4453
4454 /* Record memories. */
4455 if (aarch64_record.aarch64_mems)
4456 for (rec_no = 0; rec_no < aarch64_record.mem_rec_count; rec_no++)
4457 if (record_full_arch_list_add_mem
4458 ((CORE_ADDR)aarch64_record.aarch64_mems[rec_no].addr,
4459 aarch64_record.aarch64_mems[rec_no].len))
4460 ret = -1;
4461
4462 if (record_full_arch_list_add_end ())
4463 ret = -1;
4464 }
4465
4466 deallocate_reg_mem (&aarch64_record);
4467 return ret;
4468 }