]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-lang.c
Generated files
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (expression_up *, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (expression_up *, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int advance_wild_match (const char **, const char *, int);
205
206 static bool wild_match (const char *name, const char *patn);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
220 struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228 static int ada_resolve_function (struct block_symbol *, int,
229 struct value **, int, const char *,
230 struct type *);
231
232 static int ada_is_direct_array_type (struct type *);
233
234 static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
236
237 static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240 static struct value *assign_aggregate (struct value *, struct value *,
241 struct expression *,
242 int *, enum noside);
243
244 static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249 static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255 static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266 static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
268
269 static struct type *ada_find_any_type (const char *name);
270
271 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
272 (const lookup_name_info &lookup_name);
273
274 \f
275
276 /* The result of a symbol lookup to be stored in our symbol cache. */
277
278 struct cache_entry
279 {
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
283 domain_enum domain;
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292 };
293
294 /* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303 #define HASH_SIZE 1009
304
305 struct ada_symbol_cache
306 {
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312 };
313
314 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
315
316 /* Maximum-sized dynamic type. */
317 static unsigned int varsize_limit;
318
319 static const char ada_completer_word_break_characters[] =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Maintenance-related settings for this module. */
346
347 static struct cmd_list_element *maint_set_ada_cmdlist;
348 static struct cmd_list_element *maint_show_ada_cmdlist;
349
350 /* Implement the "maintenance set ada" (prefix) command. */
351
352 static void
353 maint_set_ada_cmd (const char *args, int from_tty)
354 {
355 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
356 gdb_stdout);
357 }
358
359 /* Implement the "maintenance show ada" (prefix) command. */
360
361 static void
362 maint_show_ada_cmd (const char *args, int from_tty)
363 {
364 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
365 }
366
367 /* The "maintenance ada set/show ignore-descriptive-type" value. */
368
369 static int ada_ignore_descriptive_types_p = 0;
370
371 /* Inferior-specific data. */
372
373 /* Per-inferior data for this module. */
374
375 struct ada_inferior_data
376 {
377 /* The ada__tags__type_specific_data type, which is used when decoding
378 tagged types. With older versions of GNAT, this type was directly
379 accessible through a component ("tsd") in the object tag. But this
380 is no longer the case, so we cache it for each inferior. */
381 struct type *tsd_type;
382
383 /* The exception_support_info data. This data is used to determine
384 how to implement support for Ada exception catchpoints in a given
385 inferior. */
386 const struct exception_support_info *exception_info;
387 };
388
389 /* Our key to this module's inferior data. */
390 static const struct inferior_data *ada_inferior_data;
391
392 /* A cleanup routine for our inferior data. */
393 static void
394 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
395 {
396 struct ada_inferior_data *data;
397
398 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
399 if (data != NULL)
400 xfree (data);
401 }
402
403 /* Return our inferior data for the given inferior (INF).
404
405 This function always returns a valid pointer to an allocated
406 ada_inferior_data structure. If INF's inferior data has not
407 been previously set, this functions creates a new one with all
408 fields set to zero, sets INF's inferior to it, and then returns
409 a pointer to that newly allocated ada_inferior_data. */
410
411 static struct ada_inferior_data *
412 get_ada_inferior_data (struct inferior *inf)
413 {
414 struct ada_inferior_data *data;
415
416 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
417 if (data == NULL)
418 {
419 data = XCNEW (struct ada_inferior_data);
420 set_inferior_data (inf, ada_inferior_data, data);
421 }
422
423 return data;
424 }
425
426 /* Perform all necessary cleanups regarding our module's inferior data
427 that is required after the inferior INF just exited. */
428
429 static void
430 ada_inferior_exit (struct inferior *inf)
431 {
432 ada_inferior_data_cleanup (inf, NULL);
433 set_inferior_data (inf, ada_inferior_data, NULL);
434 }
435
436
437 /* program-space-specific data. */
438
439 /* This module's per-program-space data. */
440 struct ada_pspace_data
441 {
442 /* The Ada symbol cache. */
443 struct ada_symbol_cache *sym_cache;
444 };
445
446 /* Key to our per-program-space data. */
447 static const struct program_space_data *ada_pspace_data_handle;
448
449 /* Return this module's data for the given program space (PSPACE).
450 If not is found, add a zero'ed one now.
451
452 This function always returns a valid object. */
453
454 static struct ada_pspace_data *
455 get_ada_pspace_data (struct program_space *pspace)
456 {
457 struct ada_pspace_data *data;
458
459 data = ((struct ada_pspace_data *)
460 program_space_data (pspace, ada_pspace_data_handle));
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468 }
469
470 /* The cleanup callback for this module's per-program-space data. */
471
472 static void
473 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474 {
475 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480 }
481
482 /* Utilities */
483
484 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
485 all typedef layers have been peeled. Otherwise, return TYPE.
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511 static struct type *
512 ada_typedef_target_type (struct type *type)
513 {
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517 }
518
519 /* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523 static const char *
524 ada_unqualified_name (const char *decoded_name)
525 {
526 const char *result;
527
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
533 return decoded_name;
534
535 result = strrchr (decoded_name, '.');
536 if (result != NULL)
537 result++; /* Skip the dot... */
538 else
539 result = decoded_name;
540
541 return result;
542 }
543
544 /* Return a string starting with '<', followed by STR, and '>'.
545 The result is good until the next call. */
546
547 static char *
548 add_angle_brackets (const char *str)
549 {
550 static char *result = NULL;
551
552 xfree (result);
553 result = xstrprintf ("<%s>", str);
554 return result;
555 }
556
557 static const char *
558 ada_get_gdb_completer_word_break_characters (void)
559 {
560 return ada_completer_word_break_characters;
561 }
562
563 /* Print an array element index using the Ada syntax. */
564
565 static void
566 ada_print_array_index (struct value *index_value, struct ui_file *stream,
567 const struct value_print_options *options)
568 {
569 LA_VALUE_PRINT (index_value, stream, options);
570 fprintf_filtered (stream, " => ");
571 }
572
573 /* Assuming VECT points to an array of *SIZE objects of size
574 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
575 updating *SIZE as necessary and returning the (new) array. */
576
577 void *
578 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
579 {
580 if (*size < min_size)
581 {
582 *size *= 2;
583 if (*size < min_size)
584 *size = min_size;
585 vect = xrealloc (vect, *size * element_size);
586 }
587 return vect;
588 }
589
590 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
591 suffix of FIELD_NAME beginning "___". */
592
593 static int
594 field_name_match (const char *field_name, const char *target)
595 {
596 int len = strlen (target);
597
598 return
599 (strncmp (field_name, target, len) == 0
600 && (field_name[len] == '\0'
601 || (startswith (field_name + len, "___")
602 && strcmp (field_name + strlen (field_name) - 6,
603 "___XVN") != 0)));
604 }
605
606
607 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
608 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
609 and return its index. This function also handles fields whose name
610 have ___ suffixes because the compiler sometimes alters their name
611 by adding such a suffix to represent fields with certain constraints.
612 If the field could not be found, return a negative number if
613 MAYBE_MISSING is set. Otherwise raise an error. */
614
615 int
616 ada_get_field_index (const struct type *type, const char *field_name,
617 int maybe_missing)
618 {
619 int fieldno;
620 struct type *struct_type = check_typedef ((struct type *) type);
621
622 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
623 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
624 return fieldno;
625
626 if (!maybe_missing)
627 error (_("Unable to find field %s in struct %s. Aborting"),
628 field_name, TYPE_NAME (struct_type));
629
630 return -1;
631 }
632
633 /* The length of the prefix of NAME prior to any "___" suffix. */
634
635 int
636 ada_name_prefix_len (const char *name)
637 {
638 if (name == NULL)
639 return 0;
640 else
641 {
642 const char *p = strstr (name, "___");
643
644 if (p == NULL)
645 return strlen (name);
646 else
647 return p - name;
648 }
649 }
650
651 /* Return non-zero if SUFFIX is a suffix of STR.
652 Return zero if STR is null. */
653
654 static int
655 is_suffix (const char *str, const char *suffix)
656 {
657 int len1, len2;
658
659 if (str == NULL)
660 return 0;
661 len1 = strlen (str);
662 len2 = strlen (suffix);
663 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
664 }
665
666 /* The contents of value VAL, treated as a value of type TYPE. The
667 result is an lval in memory if VAL is. */
668
669 static struct value *
670 coerce_unspec_val_to_type (struct value *val, struct type *type)
671 {
672 type = ada_check_typedef (type);
673 if (value_type (val) == type)
674 return val;
675 else
676 {
677 struct value *result;
678
679 /* Make sure that the object size is not unreasonable before
680 trying to allocate some memory for it. */
681 ada_ensure_varsize_limit (type);
682
683 if (value_lazy (val)
684 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
685 result = allocate_value_lazy (type);
686 else
687 {
688 result = allocate_value (type);
689 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
690 }
691 set_value_component_location (result, val);
692 set_value_bitsize (result, value_bitsize (val));
693 set_value_bitpos (result, value_bitpos (val));
694 set_value_address (result, value_address (val));
695 return result;
696 }
697 }
698
699 static const gdb_byte *
700 cond_offset_host (const gdb_byte *valaddr, long offset)
701 {
702 if (valaddr == NULL)
703 return NULL;
704 else
705 return valaddr + offset;
706 }
707
708 static CORE_ADDR
709 cond_offset_target (CORE_ADDR address, long offset)
710 {
711 if (address == 0)
712 return 0;
713 else
714 return address + offset;
715 }
716
717 /* Issue a warning (as for the definition of warning in utils.c, but
718 with exactly one argument rather than ...), unless the limit on the
719 number of warnings has passed during the evaluation of the current
720 expression. */
721
722 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
723 provided by "complaint". */
724 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
725
726 static void
727 lim_warning (const char *format, ...)
728 {
729 va_list args;
730
731 va_start (args, format);
732 warnings_issued += 1;
733 if (warnings_issued <= warning_limit)
734 vwarning (format, args);
735
736 va_end (args);
737 }
738
739 /* Issue an error if the size of an object of type T is unreasonable,
740 i.e. if it would be a bad idea to allocate a value of this type in
741 GDB. */
742
743 void
744 ada_ensure_varsize_limit (const struct type *type)
745 {
746 if (TYPE_LENGTH (type) > varsize_limit)
747 error (_("object size is larger than varsize-limit"));
748 }
749
750 /* Maximum value of a SIZE-byte signed integer type. */
751 static LONGEST
752 max_of_size (int size)
753 {
754 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
755
756 return top_bit | (top_bit - 1);
757 }
758
759 /* Minimum value of a SIZE-byte signed integer type. */
760 static LONGEST
761 min_of_size (int size)
762 {
763 return -max_of_size (size) - 1;
764 }
765
766 /* Maximum value of a SIZE-byte unsigned integer type. */
767 static ULONGEST
768 umax_of_size (int size)
769 {
770 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
771
772 return top_bit | (top_bit - 1);
773 }
774
775 /* Maximum value of integral type T, as a signed quantity. */
776 static LONGEST
777 max_of_type (struct type *t)
778 {
779 if (TYPE_UNSIGNED (t))
780 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
781 else
782 return max_of_size (TYPE_LENGTH (t));
783 }
784
785 /* Minimum value of integral type T, as a signed quantity. */
786 static LONGEST
787 min_of_type (struct type *t)
788 {
789 if (TYPE_UNSIGNED (t))
790 return 0;
791 else
792 return min_of_size (TYPE_LENGTH (t));
793 }
794
795 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
796 LONGEST
797 ada_discrete_type_high_bound (struct type *type)
798 {
799 type = resolve_dynamic_type (type, NULL, 0);
800 switch (TYPE_CODE (type))
801 {
802 case TYPE_CODE_RANGE:
803 return TYPE_HIGH_BOUND (type);
804 case TYPE_CODE_ENUM:
805 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
806 case TYPE_CODE_BOOL:
807 return 1;
808 case TYPE_CODE_CHAR:
809 case TYPE_CODE_INT:
810 return max_of_type (type);
811 default:
812 error (_("Unexpected type in ada_discrete_type_high_bound."));
813 }
814 }
815
816 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
817 LONGEST
818 ada_discrete_type_low_bound (struct type *type)
819 {
820 type = resolve_dynamic_type (type, NULL, 0);
821 switch (TYPE_CODE (type))
822 {
823 case TYPE_CODE_RANGE:
824 return TYPE_LOW_BOUND (type);
825 case TYPE_CODE_ENUM:
826 return TYPE_FIELD_ENUMVAL (type, 0);
827 case TYPE_CODE_BOOL:
828 return 0;
829 case TYPE_CODE_CHAR:
830 case TYPE_CODE_INT:
831 return min_of_type (type);
832 default:
833 error (_("Unexpected type in ada_discrete_type_low_bound."));
834 }
835 }
836
837 /* The identity on non-range types. For range types, the underlying
838 non-range scalar type. */
839
840 static struct type *
841 get_base_type (struct type *type)
842 {
843 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
844 {
845 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
846 return type;
847 type = TYPE_TARGET_TYPE (type);
848 }
849 return type;
850 }
851
852 /* Return a decoded version of the given VALUE. This means returning
853 a value whose type is obtained by applying all the GNAT-specific
854 encondings, making the resulting type a static but standard description
855 of the initial type. */
856
857 struct value *
858 ada_get_decoded_value (struct value *value)
859 {
860 struct type *type = ada_check_typedef (value_type (value));
861
862 if (ada_is_array_descriptor_type (type)
863 || (ada_is_constrained_packed_array_type (type)
864 && TYPE_CODE (type) != TYPE_CODE_PTR))
865 {
866 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
867 value = ada_coerce_to_simple_array_ptr (value);
868 else
869 value = ada_coerce_to_simple_array (value);
870 }
871 else
872 value = ada_to_fixed_value (value);
873
874 return value;
875 }
876
877 /* Same as ada_get_decoded_value, but with the given TYPE.
878 Because there is no associated actual value for this type,
879 the resulting type might be a best-effort approximation in
880 the case of dynamic types. */
881
882 struct type *
883 ada_get_decoded_type (struct type *type)
884 {
885 type = to_static_fixed_type (type);
886 if (ada_is_constrained_packed_array_type (type))
887 type = ada_coerce_to_simple_array_type (type);
888 return type;
889 }
890
891 \f
892
893 /* Language Selection */
894
895 /* If the main program is in Ada, return language_ada, otherwise return LANG
896 (the main program is in Ada iif the adainit symbol is found). */
897
898 enum language
899 ada_update_initial_language (enum language lang)
900 {
901 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
902 (struct objfile *) NULL).minsym != NULL)
903 return language_ada;
904
905 return lang;
906 }
907
908 /* If the main procedure is written in Ada, then return its name.
909 The result is good until the next call. Return NULL if the main
910 procedure doesn't appear to be in Ada. */
911
912 char *
913 ada_main_name (void)
914 {
915 struct bound_minimal_symbol msym;
916 static gdb::unique_xmalloc_ptr<char> main_program_name;
917
918 /* For Ada, the name of the main procedure is stored in a specific
919 string constant, generated by the binder. Look for that symbol,
920 extract its address, and then read that string. If we didn't find
921 that string, then most probably the main procedure is not written
922 in Ada. */
923 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
924
925 if (msym.minsym != NULL)
926 {
927 CORE_ADDR main_program_name_addr;
928 int err_code;
929
930 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
931 if (main_program_name_addr == 0)
932 error (_("Invalid address for Ada main program name."));
933
934 target_read_string (main_program_name_addr, &main_program_name,
935 1024, &err_code);
936
937 if (err_code != 0)
938 return NULL;
939 return main_program_name.get ();
940 }
941
942 /* The main procedure doesn't seem to be in Ada. */
943 return NULL;
944 }
945 \f
946 /* Symbols */
947
948 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
949 of NULLs. */
950
951 const struct ada_opname_map ada_opname_table[] = {
952 {"Oadd", "\"+\"", BINOP_ADD},
953 {"Osubtract", "\"-\"", BINOP_SUB},
954 {"Omultiply", "\"*\"", BINOP_MUL},
955 {"Odivide", "\"/\"", BINOP_DIV},
956 {"Omod", "\"mod\"", BINOP_MOD},
957 {"Orem", "\"rem\"", BINOP_REM},
958 {"Oexpon", "\"**\"", BINOP_EXP},
959 {"Olt", "\"<\"", BINOP_LESS},
960 {"Ole", "\"<=\"", BINOP_LEQ},
961 {"Ogt", "\">\"", BINOP_GTR},
962 {"Oge", "\">=\"", BINOP_GEQ},
963 {"Oeq", "\"=\"", BINOP_EQUAL},
964 {"One", "\"/=\"", BINOP_NOTEQUAL},
965 {"Oand", "\"and\"", BINOP_BITWISE_AND},
966 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
967 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
968 {"Oconcat", "\"&\"", BINOP_CONCAT},
969 {"Oabs", "\"abs\"", UNOP_ABS},
970 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
971 {"Oadd", "\"+\"", UNOP_PLUS},
972 {"Osubtract", "\"-\"", UNOP_NEG},
973 {NULL, NULL}
974 };
975
976 /* The "encoded" form of DECODED, according to GNAT conventions. The
977 result is valid until the next call to ada_encode. If
978 THROW_ERRORS, throw an error if invalid operator name is found.
979 Otherwise, return NULL in that case. */
980
981 static char *
982 ada_encode_1 (const char *decoded, bool throw_errors)
983 {
984 static char *encoding_buffer = NULL;
985 static size_t encoding_buffer_size = 0;
986 const char *p;
987 int k;
988
989 if (decoded == NULL)
990 return NULL;
991
992 GROW_VECT (encoding_buffer, encoding_buffer_size,
993 2 * strlen (decoded) + 10);
994
995 k = 0;
996 for (p = decoded; *p != '\0'; p += 1)
997 {
998 if (*p == '.')
999 {
1000 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1001 k += 2;
1002 }
1003 else if (*p == '"')
1004 {
1005 const struct ada_opname_map *mapping;
1006
1007 for (mapping = ada_opname_table;
1008 mapping->encoded != NULL
1009 && !startswith (p, mapping->decoded); mapping += 1)
1010 ;
1011 if (mapping->encoded == NULL)
1012 {
1013 if (throw_errors)
1014 error (_("invalid Ada operator name: %s"), p);
1015 else
1016 return NULL;
1017 }
1018 strcpy (encoding_buffer + k, mapping->encoded);
1019 k += strlen (mapping->encoded);
1020 break;
1021 }
1022 else
1023 {
1024 encoding_buffer[k] = *p;
1025 k += 1;
1026 }
1027 }
1028
1029 encoding_buffer[k] = '\0';
1030 return encoding_buffer;
1031 }
1032
1033 /* The "encoded" form of DECODED, according to GNAT conventions.
1034 The result is valid until the next call to ada_encode. */
1035
1036 char *
1037 ada_encode (const char *decoded)
1038 {
1039 return ada_encode_1 (decoded, true);
1040 }
1041
1042 /* Return NAME folded to lower case, or, if surrounded by single
1043 quotes, unfolded, but with the quotes stripped away. Result good
1044 to next call. */
1045
1046 char *
1047 ada_fold_name (const char *name)
1048 {
1049 static char *fold_buffer = NULL;
1050 static size_t fold_buffer_size = 0;
1051
1052 int len = strlen (name);
1053 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1054
1055 if (name[0] == '\'')
1056 {
1057 strncpy (fold_buffer, name + 1, len - 2);
1058 fold_buffer[len - 2] = '\000';
1059 }
1060 else
1061 {
1062 int i;
1063
1064 for (i = 0; i <= len; i += 1)
1065 fold_buffer[i] = tolower (name[i]);
1066 }
1067
1068 return fold_buffer;
1069 }
1070
1071 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1072
1073 static int
1074 is_lower_alphanum (const char c)
1075 {
1076 return (isdigit (c) || (isalpha (c) && islower (c)));
1077 }
1078
1079 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1080 This function saves in LEN the length of that same symbol name but
1081 without either of these suffixes:
1082 . .{DIGIT}+
1083 . ${DIGIT}+
1084 . ___{DIGIT}+
1085 . __{DIGIT}+.
1086
1087 These are suffixes introduced by the compiler for entities such as
1088 nested subprogram for instance, in order to avoid name clashes.
1089 They do not serve any purpose for the debugger. */
1090
1091 static void
1092 ada_remove_trailing_digits (const char *encoded, int *len)
1093 {
1094 if (*len > 1 && isdigit (encoded[*len - 1]))
1095 {
1096 int i = *len - 2;
1097
1098 while (i > 0 && isdigit (encoded[i]))
1099 i--;
1100 if (i >= 0 && encoded[i] == '.')
1101 *len = i;
1102 else if (i >= 0 && encoded[i] == '$')
1103 *len = i;
1104 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1105 *len = i - 2;
1106 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1107 *len = i - 1;
1108 }
1109 }
1110
1111 /* Remove the suffix introduced by the compiler for protected object
1112 subprograms. */
1113
1114 static void
1115 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1116 {
1117 /* Remove trailing N. */
1118
1119 /* Protected entry subprograms are broken into two
1120 separate subprograms: The first one is unprotected, and has
1121 a 'N' suffix; the second is the protected version, and has
1122 the 'P' suffix. The second calls the first one after handling
1123 the protection. Since the P subprograms are internally generated,
1124 we leave these names undecoded, giving the user a clue that this
1125 entity is internal. */
1126
1127 if (*len > 1
1128 && encoded[*len - 1] == 'N'
1129 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1130 *len = *len - 1;
1131 }
1132
1133 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1134
1135 static void
1136 ada_remove_Xbn_suffix (const char *encoded, int *len)
1137 {
1138 int i = *len - 1;
1139
1140 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1141 i--;
1142
1143 if (encoded[i] != 'X')
1144 return;
1145
1146 if (i == 0)
1147 return;
1148
1149 if (isalnum (encoded[i-1]))
1150 *len = i;
1151 }
1152
1153 /* If ENCODED follows the GNAT entity encoding conventions, then return
1154 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1155 replaced by ENCODED.
1156
1157 The resulting string is valid until the next call of ada_decode.
1158 If the string is unchanged by decoding, the original string pointer
1159 is returned. */
1160
1161 const char *
1162 ada_decode (const char *encoded)
1163 {
1164 int i, j;
1165 int len0;
1166 const char *p;
1167 char *decoded;
1168 int at_start_name;
1169 static char *decoding_buffer = NULL;
1170 static size_t decoding_buffer_size = 0;
1171
1172 /* The name of the Ada main procedure starts with "_ada_".
1173 This prefix is not part of the decoded name, so skip this part
1174 if we see this prefix. */
1175 if (startswith (encoded, "_ada_"))
1176 encoded += 5;
1177
1178 /* If the name starts with '_', then it is not a properly encoded
1179 name, so do not attempt to decode it. Similarly, if the name
1180 starts with '<', the name should not be decoded. */
1181 if (encoded[0] == '_' || encoded[0] == '<')
1182 goto Suppress;
1183
1184 len0 = strlen (encoded);
1185
1186 ada_remove_trailing_digits (encoded, &len0);
1187 ada_remove_po_subprogram_suffix (encoded, &len0);
1188
1189 /* Remove the ___X.* suffix if present. Do not forget to verify that
1190 the suffix is located before the current "end" of ENCODED. We want
1191 to avoid re-matching parts of ENCODED that have previously been
1192 marked as discarded (by decrementing LEN0). */
1193 p = strstr (encoded, "___");
1194 if (p != NULL && p - encoded < len0 - 3)
1195 {
1196 if (p[3] == 'X')
1197 len0 = p - encoded;
1198 else
1199 goto Suppress;
1200 }
1201
1202 /* Remove any trailing TKB suffix. It tells us that this symbol
1203 is for the body of a task, but that information does not actually
1204 appear in the decoded name. */
1205
1206 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1207 len0 -= 3;
1208
1209 /* Remove any trailing TB suffix. The TB suffix is slightly different
1210 from the TKB suffix because it is used for non-anonymous task
1211 bodies. */
1212
1213 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1214 len0 -= 2;
1215
1216 /* Remove trailing "B" suffixes. */
1217 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1218
1219 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1220 len0 -= 1;
1221
1222 /* Make decoded big enough for possible expansion by operator name. */
1223
1224 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1225 decoded = decoding_buffer;
1226
1227 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1228
1229 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1230 {
1231 i = len0 - 2;
1232 while ((i >= 0 && isdigit (encoded[i]))
1233 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1234 i -= 1;
1235 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1236 len0 = i - 1;
1237 else if (encoded[i] == '$')
1238 len0 = i;
1239 }
1240
1241 /* The first few characters that are not alphabetic are not part
1242 of any encoding we use, so we can copy them over verbatim. */
1243
1244 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1245 decoded[j] = encoded[i];
1246
1247 at_start_name = 1;
1248 while (i < len0)
1249 {
1250 /* Is this a symbol function? */
1251 if (at_start_name && encoded[i] == 'O')
1252 {
1253 int k;
1254
1255 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1256 {
1257 int op_len = strlen (ada_opname_table[k].encoded);
1258 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1259 op_len - 1) == 0)
1260 && !isalnum (encoded[i + op_len]))
1261 {
1262 strcpy (decoded + j, ada_opname_table[k].decoded);
1263 at_start_name = 0;
1264 i += op_len;
1265 j += strlen (ada_opname_table[k].decoded);
1266 break;
1267 }
1268 }
1269 if (ada_opname_table[k].encoded != NULL)
1270 continue;
1271 }
1272 at_start_name = 0;
1273
1274 /* Replace "TK__" with "__", which will eventually be translated
1275 into "." (just below). */
1276
1277 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1278 i += 2;
1279
1280 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1281 be translated into "." (just below). These are internal names
1282 generated for anonymous blocks inside which our symbol is nested. */
1283
1284 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1285 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1286 && isdigit (encoded [i+4]))
1287 {
1288 int k = i + 5;
1289
1290 while (k < len0 && isdigit (encoded[k]))
1291 k++; /* Skip any extra digit. */
1292
1293 /* Double-check that the "__B_{DIGITS}+" sequence we found
1294 is indeed followed by "__". */
1295 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1296 i = k;
1297 }
1298
1299 /* Remove _E{DIGITS}+[sb] */
1300
1301 /* Just as for protected object subprograms, there are 2 categories
1302 of subprograms created by the compiler for each entry. The first
1303 one implements the actual entry code, and has a suffix following
1304 the convention above; the second one implements the barrier and
1305 uses the same convention as above, except that the 'E' is replaced
1306 by a 'B'.
1307
1308 Just as above, we do not decode the name of barrier functions
1309 to give the user a clue that the code he is debugging has been
1310 internally generated. */
1311
1312 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1313 && isdigit (encoded[i+2]))
1314 {
1315 int k = i + 3;
1316
1317 while (k < len0 && isdigit (encoded[k]))
1318 k++;
1319
1320 if (k < len0
1321 && (encoded[k] == 'b' || encoded[k] == 's'))
1322 {
1323 k++;
1324 /* Just as an extra precaution, make sure that if this
1325 suffix is followed by anything else, it is a '_'.
1326 Otherwise, we matched this sequence by accident. */
1327 if (k == len0
1328 || (k < len0 && encoded[k] == '_'))
1329 i = k;
1330 }
1331 }
1332
1333 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1334 the GNAT front-end in protected object subprograms. */
1335
1336 if (i < len0 + 3
1337 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1338 {
1339 /* Backtrack a bit up until we reach either the begining of
1340 the encoded name, or "__". Make sure that we only find
1341 digits or lowercase characters. */
1342 const char *ptr = encoded + i - 1;
1343
1344 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1345 ptr--;
1346 if (ptr < encoded
1347 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1348 i++;
1349 }
1350
1351 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1352 {
1353 /* This is a X[bn]* sequence not separated from the previous
1354 part of the name with a non-alpha-numeric character (in other
1355 words, immediately following an alpha-numeric character), then
1356 verify that it is placed at the end of the encoded name. If
1357 not, then the encoding is not valid and we should abort the
1358 decoding. Otherwise, just skip it, it is used in body-nested
1359 package names. */
1360 do
1361 i += 1;
1362 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1363 if (i < len0)
1364 goto Suppress;
1365 }
1366 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1367 {
1368 /* Replace '__' by '.'. */
1369 decoded[j] = '.';
1370 at_start_name = 1;
1371 i += 2;
1372 j += 1;
1373 }
1374 else
1375 {
1376 /* It's a character part of the decoded name, so just copy it
1377 over. */
1378 decoded[j] = encoded[i];
1379 i += 1;
1380 j += 1;
1381 }
1382 }
1383 decoded[j] = '\000';
1384
1385 /* Decoded names should never contain any uppercase character.
1386 Double-check this, and abort the decoding if we find one. */
1387
1388 for (i = 0; decoded[i] != '\0'; i += 1)
1389 if (isupper (decoded[i]) || decoded[i] == ' ')
1390 goto Suppress;
1391
1392 if (strcmp (decoded, encoded) == 0)
1393 return encoded;
1394 else
1395 return decoded;
1396
1397 Suppress:
1398 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1399 decoded = decoding_buffer;
1400 if (encoded[0] == '<')
1401 strcpy (decoded, encoded);
1402 else
1403 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1404 return decoded;
1405
1406 }
1407
1408 /* Table for keeping permanent unique copies of decoded names. Once
1409 allocated, names in this table are never released. While this is a
1410 storage leak, it should not be significant unless there are massive
1411 changes in the set of decoded names in successive versions of a
1412 symbol table loaded during a single session. */
1413 static struct htab *decoded_names_store;
1414
1415 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1416 in the language-specific part of GSYMBOL, if it has not been
1417 previously computed. Tries to save the decoded name in the same
1418 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1419 in any case, the decoded symbol has a lifetime at least that of
1420 GSYMBOL).
1421 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1422 const, but nevertheless modified to a semantically equivalent form
1423 when a decoded name is cached in it. */
1424
1425 const char *
1426 ada_decode_symbol (const struct general_symbol_info *arg)
1427 {
1428 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1429 const char **resultp =
1430 &gsymbol->language_specific.demangled_name;
1431
1432 if (!gsymbol->ada_mangled)
1433 {
1434 const char *decoded = ada_decode (gsymbol->name);
1435 struct obstack *obstack = gsymbol->language_specific.obstack;
1436
1437 gsymbol->ada_mangled = 1;
1438
1439 if (obstack != NULL)
1440 *resultp
1441 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1442 else
1443 {
1444 /* Sometimes, we can't find a corresponding objfile, in
1445 which case, we put the result on the heap. Since we only
1446 decode when needed, we hope this usually does not cause a
1447 significant memory leak (FIXME). */
1448
1449 char **slot = (char **) htab_find_slot (decoded_names_store,
1450 decoded, INSERT);
1451
1452 if (*slot == NULL)
1453 *slot = xstrdup (decoded);
1454 *resultp = *slot;
1455 }
1456 }
1457
1458 return *resultp;
1459 }
1460
1461 static char *
1462 ada_la_decode (const char *encoded, int options)
1463 {
1464 return xstrdup (ada_decode (encoded));
1465 }
1466
1467 /* Implement la_sniff_from_mangled_name for Ada. */
1468
1469 static int
1470 ada_sniff_from_mangled_name (const char *mangled, char **out)
1471 {
1472 const char *demangled = ada_decode (mangled);
1473
1474 *out = NULL;
1475
1476 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1477 {
1478 /* Set the gsymbol language to Ada, but still return 0.
1479 Two reasons for that:
1480
1481 1. For Ada, we prefer computing the symbol's decoded name
1482 on the fly rather than pre-compute it, in order to save
1483 memory (Ada projects are typically very large).
1484
1485 2. There are some areas in the definition of the GNAT
1486 encoding where, with a bit of bad luck, we might be able
1487 to decode a non-Ada symbol, generating an incorrect
1488 demangled name (Eg: names ending with "TB" for instance
1489 are identified as task bodies and so stripped from
1490 the decoded name returned).
1491
1492 Returning 1, here, but not setting *DEMANGLED, helps us get a
1493 little bit of the best of both worlds. Because we're last,
1494 we should not affect any of the other languages that were
1495 able to demangle the symbol before us; we get to correctly
1496 tag Ada symbols as such; and even if we incorrectly tagged a
1497 non-Ada symbol, which should be rare, any routing through the
1498 Ada language should be transparent (Ada tries to behave much
1499 like C/C++ with non-Ada symbols). */
1500 return 1;
1501 }
1502
1503 return 0;
1504 }
1505
1506 \f
1507
1508 /* Arrays */
1509
1510 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1511 generated by the GNAT compiler to describe the index type used
1512 for each dimension of an array, check whether it follows the latest
1513 known encoding. If not, fix it up to conform to the latest encoding.
1514 Otherwise, do nothing. This function also does nothing if
1515 INDEX_DESC_TYPE is NULL.
1516
1517 The GNAT encoding used to describle the array index type evolved a bit.
1518 Initially, the information would be provided through the name of each
1519 field of the structure type only, while the type of these fields was
1520 described as unspecified and irrelevant. The debugger was then expected
1521 to perform a global type lookup using the name of that field in order
1522 to get access to the full index type description. Because these global
1523 lookups can be very expensive, the encoding was later enhanced to make
1524 the global lookup unnecessary by defining the field type as being
1525 the full index type description.
1526
1527 The purpose of this routine is to allow us to support older versions
1528 of the compiler by detecting the use of the older encoding, and by
1529 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1530 we essentially replace each field's meaningless type by the associated
1531 index subtype). */
1532
1533 void
1534 ada_fixup_array_indexes_type (struct type *index_desc_type)
1535 {
1536 int i;
1537
1538 if (index_desc_type == NULL)
1539 return;
1540 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1541
1542 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1543 to check one field only, no need to check them all). If not, return
1544 now.
1545
1546 If our INDEX_DESC_TYPE was generated using the older encoding,
1547 the field type should be a meaningless integer type whose name
1548 is not equal to the field name. */
1549 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1550 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1551 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1552 return;
1553
1554 /* Fixup each field of INDEX_DESC_TYPE. */
1555 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1556 {
1557 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1558 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1559
1560 if (raw_type)
1561 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1562 }
1563 }
1564
1565 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1566
1567 static const char *bound_name[] = {
1568 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1569 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1570 };
1571
1572 /* Maximum number of array dimensions we are prepared to handle. */
1573
1574 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1575
1576
1577 /* The desc_* routines return primitive portions of array descriptors
1578 (fat pointers). */
1579
1580 /* The descriptor or array type, if any, indicated by TYPE; removes
1581 level of indirection, if needed. */
1582
1583 static struct type *
1584 desc_base_type (struct type *type)
1585 {
1586 if (type == NULL)
1587 return NULL;
1588 type = ada_check_typedef (type);
1589 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1590 type = ada_typedef_target_type (type);
1591
1592 if (type != NULL
1593 && (TYPE_CODE (type) == TYPE_CODE_PTR
1594 || TYPE_CODE (type) == TYPE_CODE_REF))
1595 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1596 else
1597 return type;
1598 }
1599
1600 /* True iff TYPE indicates a "thin" array pointer type. */
1601
1602 static int
1603 is_thin_pntr (struct type *type)
1604 {
1605 return
1606 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1607 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1608 }
1609
1610 /* The descriptor type for thin pointer type TYPE. */
1611
1612 static struct type *
1613 thin_descriptor_type (struct type *type)
1614 {
1615 struct type *base_type = desc_base_type (type);
1616
1617 if (base_type == NULL)
1618 return NULL;
1619 if (is_suffix (ada_type_name (base_type), "___XVE"))
1620 return base_type;
1621 else
1622 {
1623 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1624
1625 if (alt_type == NULL)
1626 return base_type;
1627 else
1628 return alt_type;
1629 }
1630 }
1631
1632 /* A pointer to the array data for thin-pointer value VAL. */
1633
1634 static struct value *
1635 thin_data_pntr (struct value *val)
1636 {
1637 struct type *type = ada_check_typedef (value_type (val));
1638 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1639
1640 data_type = lookup_pointer_type (data_type);
1641
1642 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1643 return value_cast (data_type, value_copy (val));
1644 else
1645 return value_from_longest (data_type, value_address (val));
1646 }
1647
1648 /* True iff TYPE indicates a "thick" array pointer type. */
1649
1650 static int
1651 is_thick_pntr (struct type *type)
1652 {
1653 type = desc_base_type (type);
1654 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1655 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1656 }
1657
1658 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1659 pointer to one, the type of its bounds data; otherwise, NULL. */
1660
1661 static struct type *
1662 desc_bounds_type (struct type *type)
1663 {
1664 struct type *r;
1665
1666 type = desc_base_type (type);
1667
1668 if (type == NULL)
1669 return NULL;
1670 else if (is_thin_pntr (type))
1671 {
1672 type = thin_descriptor_type (type);
1673 if (type == NULL)
1674 return NULL;
1675 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1676 if (r != NULL)
1677 return ada_check_typedef (r);
1678 }
1679 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1680 {
1681 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1682 if (r != NULL)
1683 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1684 }
1685 return NULL;
1686 }
1687
1688 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1689 one, a pointer to its bounds data. Otherwise NULL. */
1690
1691 static struct value *
1692 desc_bounds (struct value *arr)
1693 {
1694 struct type *type = ada_check_typedef (value_type (arr));
1695
1696 if (is_thin_pntr (type))
1697 {
1698 struct type *bounds_type =
1699 desc_bounds_type (thin_descriptor_type (type));
1700 LONGEST addr;
1701
1702 if (bounds_type == NULL)
1703 error (_("Bad GNAT array descriptor"));
1704
1705 /* NOTE: The following calculation is not really kosher, but
1706 since desc_type is an XVE-encoded type (and shouldn't be),
1707 the correct calculation is a real pain. FIXME (and fix GCC). */
1708 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1709 addr = value_as_long (arr);
1710 else
1711 addr = value_address (arr);
1712
1713 return
1714 value_from_longest (lookup_pointer_type (bounds_type),
1715 addr - TYPE_LENGTH (bounds_type));
1716 }
1717
1718 else if (is_thick_pntr (type))
1719 {
1720 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1721 _("Bad GNAT array descriptor"));
1722 struct type *p_bounds_type = value_type (p_bounds);
1723
1724 if (p_bounds_type
1725 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1726 {
1727 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1728
1729 if (TYPE_STUB (target_type))
1730 p_bounds = value_cast (lookup_pointer_type
1731 (ada_check_typedef (target_type)),
1732 p_bounds);
1733 }
1734 else
1735 error (_("Bad GNAT array descriptor"));
1736
1737 return p_bounds;
1738 }
1739 else
1740 return NULL;
1741 }
1742
1743 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1744 position of the field containing the address of the bounds data. */
1745
1746 static int
1747 fat_pntr_bounds_bitpos (struct type *type)
1748 {
1749 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1750 }
1751
1752 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1753 size of the field containing the address of the bounds data. */
1754
1755 static int
1756 fat_pntr_bounds_bitsize (struct type *type)
1757 {
1758 type = desc_base_type (type);
1759
1760 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1761 return TYPE_FIELD_BITSIZE (type, 1);
1762 else
1763 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1764 }
1765
1766 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1767 pointer to one, the type of its array data (a array-with-no-bounds type);
1768 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1769 data. */
1770
1771 static struct type *
1772 desc_data_target_type (struct type *type)
1773 {
1774 type = desc_base_type (type);
1775
1776 /* NOTE: The following is bogus; see comment in desc_bounds. */
1777 if (is_thin_pntr (type))
1778 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1779 else if (is_thick_pntr (type))
1780 {
1781 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1782
1783 if (data_type
1784 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1785 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1786 }
1787
1788 return NULL;
1789 }
1790
1791 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1792 its array data. */
1793
1794 static struct value *
1795 desc_data (struct value *arr)
1796 {
1797 struct type *type = value_type (arr);
1798
1799 if (is_thin_pntr (type))
1800 return thin_data_pntr (arr);
1801 else if (is_thick_pntr (type))
1802 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1803 _("Bad GNAT array descriptor"));
1804 else
1805 return NULL;
1806 }
1807
1808
1809 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1810 position of the field containing the address of the data. */
1811
1812 static int
1813 fat_pntr_data_bitpos (struct type *type)
1814 {
1815 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1816 }
1817
1818 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1819 size of the field containing the address of the data. */
1820
1821 static int
1822 fat_pntr_data_bitsize (struct type *type)
1823 {
1824 type = desc_base_type (type);
1825
1826 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1827 return TYPE_FIELD_BITSIZE (type, 0);
1828 else
1829 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1830 }
1831
1832 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1833 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1834 bound, if WHICH is 1. The first bound is I=1. */
1835
1836 static struct value *
1837 desc_one_bound (struct value *bounds, int i, int which)
1838 {
1839 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1840 _("Bad GNAT array descriptor bounds"));
1841 }
1842
1843 /* If BOUNDS is an array-bounds structure type, return the bit position
1844 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1845 bound, if WHICH is 1. The first bound is I=1. */
1846
1847 static int
1848 desc_bound_bitpos (struct type *type, int i, int which)
1849 {
1850 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1851 }
1852
1853 /* If BOUNDS is an array-bounds structure type, return the bit field size
1854 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1855 bound, if WHICH is 1. The first bound is I=1. */
1856
1857 static int
1858 desc_bound_bitsize (struct type *type, int i, int which)
1859 {
1860 type = desc_base_type (type);
1861
1862 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1863 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1864 else
1865 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1866 }
1867
1868 /* If TYPE is the type of an array-bounds structure, the type of its
1869 Ith bound (numbering from 1). Otherwise, NULL. */
1870
1871 static struct type *
1872 desc_index_type (struct type *type, int i)
1873 {
1874 type = desc_base_type (type);
1875
1876 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1877 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1878 else
1879 return NULL;
1880 }
1881
1882 /* The number of index positions in the array-bounds type TYPE.
1883 Return 0 if TYPE is NULL. */
1884
1885 static int
1886 desc_arity (struct type *type)
1887 {
1888 type = desc_base_type (type);
1889
1890 if (type != NULL)
1891 return TYPE_NFIELDS (type) / 2;
1892 return 0;
1893 }
1894
1895 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1896 an array descriptor type (representing an unconstrained array
1897 type). */
1898
1899 static int
1900 ada_is_direct_array_type (struct type *type)
1901 {
1902 if (type == NULL)
1903 return 0;
1904 type = ada_check_typedef (type);
1905 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1906 || ada_is_array_descriptor_type (type));
1907 }
1908
1909 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1910 * to one. */
1911
1912 static int
1913 ada_is_array_type (struct type *type)
1914 {
1915 while (type != NULL
1916 && (TYPE_CODE (type) == TYPE_CODE_PTR
1917 || TYPE_CODE (type) == TYPE_CODE_REF))
1918 type = TYPE_TARGET_TYPE (type);
1919 return ada_is_direct_array_type (type);
1920 }
1921
1922 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1923
1924 int
1925 ada_is_simple_array_type (struct type *type)
1926 {
1927 if (type == NULL)
1928 return 0;
1929 type = ada_check_typedef (type);
1930 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1931 || (TYPE_CODE (type) == TYPE_CODE_PTR
1932 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1933 == TYPE_CODE_ARRAY));
1934 }
1935
1936 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1937
1938 int
1939 ada_is_array_descriptor_type (struct type *type)
1940 {
1941 struct type *data_type = desc_data_target_type (type);
1942
1943 if (type == NULL)
1944 return 0;
1945 type = ada_check_typedef (type);
1946 return (data_type != NULL
1947 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1948 && desc_arity (desc_bounds_type (type)) > 0);
1949 }
1950
1951 /* Non-zero iff type is a partially mal-formed GNAT array
1952 descriptor. FIXME: This is to compensate for some problems with
1953 debugging output from GNAT. Re-examine periodically to see if it
1954 is still needed. */
1955
1956 int
1957 ada_is_bogus_array_descriptor (struct type *type)
1958 {
1959 return
1960 type != NULL
1961 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1962 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1963 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1964 && !ada_is_array_descriptor_type (type);
1965 }
1966
1967
1968 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1969 (fat pointer) returns the type of the array data described---specifically,
1970 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1971 in from the descriptor; otherwise, they are left unspecified. If
1972 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1973 returns NULL. The result is simply the type of ARR if ARR is not
1974 a descriptor. */
1975 struct type *
1976 ada_type_of_array (struct value *arr, int bounds)
1977 {
1978 if (ada_is_constrained_packed_array_type (value_type (arr)))
1979 return decode_constrained_packed_array_type (value_type (arr));
1980
1981 if (!ada_is_array_descriptor_type (value_type (arr)))
1982 return value_type (arr);
1983
1984 if (!bounds)
1985 {
1986 struct type *array_type =
1987 ada_check_typedef (desc_data_target_type (value_type (arr)));
1988
1989 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1990 TYPE_FIELD_BITSIZE (array_type, 0) =
1991 decode_packed_array_bitsize (value_type (arr));
1992
1993 return array_type;
1994 }
1995 else
1996 {
1997 struct type *elt_type;
1998 int arity;
1999 struct value *descriptor;
2000
2001 elt_type = ada_array_element_type (value_type (arr), -1);
2002 arity = ada_array_arity (value_type (arr));
2003
2004 if (elt_type == NULL || arity == 0)
2005 return ada_check_typedef (value_type (arr));
2006
2007 descriptor = desc_bounds (arr);
2008 if (value_as_long (descriptor) == 0)
2009 return NULL;
2010 while (arity > 0)
2011 {
2012 struct type *range_type = alloc_type_copy (value_type (arr));
2013 struct type *array_type = alloc_type_copy (value_type (arr));
2014 struct value *low = desc_one_bound (descriptor, arity, 0);
2015 struct value *high = desc_one_bound (descriptor, arity, 1);
2016
2017 arity -= 1;
2018 create_static_range_type (range_type, value_type (low),
2019 longest_to_int (value_as_long (low)),
2020 longest_to_int (value_as_long (high)));
2021 elt_type = create_array_type (array_type, elt_type, range_type);
2022
2023 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2024 {
2025 /* We need to store the element packed bitsize, as well as
2026 recompute the array size, because it was previously
2027 computed based on the unpacked element size. */
2028 LONGEST lo = value_as_long (low);
2029 LONGEST hi = value_as_long (high);
2030
2031 TYPE_FIELD_BITSIZE (elt_type, 0) =
2032 decode_packed_array_bitsize (value_type (arr));
2033 /* If the array has no element, then the size is already
2034 zero, and does not need to be recomputed. */
2035 if (lo < hi)
2036 {
2037 int array_bitsize =
2038 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2039
2040 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2041 }
2042 }
2043 }
2044
2045 return lookup_pointer_type (elt_type);
2046 }
2047 }
2048
2049 /* If ARR does not represent an array, returns ARR unchanged.
2050 Otherwise, returns either a standard GDB array with bounds set
2051 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2052 GDB array. Returns NULL if ARR is a null fat pointer. */
2053
2054 struct value *
2055 ada_coerce_to_simple_array_ptr (struct value *arr)
2056 {
2057 if (ada_is_array_descriptor_type (value_type (arr)))
2058 {
2059 struct type *arrType = ada_type_of_array (arr, 1);
2060
2061 if (arrType == NULL)
2062 return NULL;
2063 return value_cast (arrType, value_copy (desc_data (arr)));
2064 }
2065 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2066 return decode_constrained_packed_array (arr);
2067 else
2068 return arr;
2069 }
2070
2071 /* If ARR does not represent an array, returns ARR unchanged.
2072 Otherwise, returns a standard GDB array describing ARR (which may
2073 be ARR itself if it already is in the proper form). */
2074
2075 struct value *
2076 ada_coerce_to_simple_array (struct value *arr)
2077 {
2078 if (ada_is_array_descriptor_type (value_type (arr)))
2079 {
2080 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2081
2082 if (arrVal == NULL)
2083 error (_("Bounds unavailable for null array pointer."));
2084 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2085 return value_ind (arrVal);
2086 }
2087 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2088 return decode_constrained_packed_array (arr);
2089 else
2090 return arr;
2091 }
2092
2093 /* If TYPE represents a GNAT array type, return it translated to an
2094 ordinary GDB array type (possibly with BITSIZE fields indicating
2095 packing). For other types, is the identity. */
2096
2097 struct type *
2098 ada_coerce_to_simple_array_type (struct type *type)
2099 {
2100 if (ada_is_constrained_packed_array_type (type))
2101 return decode_constrained_packed_array_type (type);
2102
2103 if (ada_is_array_descriptor_type (type))
2104 return ada_check_typedef (desc_data_target_type (type));
2105
2106 return type;
2107 }
2108
2109 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2110
2111 static int
2112 ada_is_packed_array_type (struct type *type)
2113 {
2114 if (type == NULL)
2115 return 0;
2116 type = desc_base_type (type);
2117 type = ada_check_typedef (type);
2118 return
2119 ada_type_name (type) != NULL
2120 && strstr (ada_type_name (type), "___XP") != NULL;
2121 }
2122
2123 /* Non-zero iff TYPE represents a standard GNAT constrained
2124 packed-array type. */
2125
2126 int
2127 ada_is_constrained_packed_array_type (struct type *type)
2128 {
2129 return ada_is_packed_array_type (type)
2130 && !ada_is_array_descriptor_type (type);
2131 }
2132
2133 /* Non-zero iff TYPE represents an array descriptor for a
2134 unconstrained packed-array type. */
2135
2136 static int
2137 ada_is_unconstrained_packed_array_type (struct type *type)
2138 {
2139 return ada_is_packed_array_type (type)
2140 && ada_is_array_descriptor_type (type);
2141 }
2142
2143 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2144 return the size of its elements in bits. */
2145
2146 static long
2147 decode_packed_array_bitsize (struct type *type)
2148 {
2149 const char *raw_name;
2150 const char *tail;
2151 long bits;
2152
2153 /* Access to arrays implemented as fat pointers are encoded as a typedef
2154 of the fat pointer type. We need the name of the fat pointer type
2155 to do the decoding, so strip the typedef layer. */
2156 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2157 type = ada_typedef_target_type (type);
2158
2159 raw_name = ada_type_name (ada_check_typedef (type));
2160 if (!raw_name)
2161 raw_name = ada_type_name (desc_base_type (type));
2162
2163 if (!raw_name)
2164 return 0;
2165
2166 tail = strstr (raw_name, "___XP");
2167 gdb_assert (tail != NULL);
2168
2169 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2170 {
2171 lim_warning
2172 (_("could not understand bit size information on packed array"));
2173 return 0;
2174 }
2175
2176 return bits;
2177 }
2178
2179 /* Given that TYPE is a standard GDB array type with all bounds filled
2180 in, and that the element size of its ultimate scalar constituents
2181 (that is, either its elements, or, if it is an array of arrays, its
2182 elements' elements, etc.) is *ELT_BITS, return an identical type,
2183 but with the bit sizes of its elements (and those of any
2184 constituent arrays) recorded in the BITSIZE components of its
2185 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2186 in bits.
2187
2188 Note that, for arrays whose index type has an XA encoding where
2189 a bound references a record discriminant, getting that discriminant,
2190 and therefore the actual value of that bound, is not possible
2191 because none of the given parameters gives us access to the record.
2192 This function assumes that it is OK in the context where it is being
2193 used to return an array whose bounds are still dynamic and where
2194 the length is arbitrary. */
2195
2196 static struct type *
2197 constrained_packed_array_type (struct type *type, long *elt_bits)
2198 {
2199 struct type *new_elt_type;
2200 struct type *new_type;
2201 struct type *index_type_desc;
2202 struct type *index_type;
2203 LONGEST low_bound, high_bound;
2204
2205 type = ada_check_typedef (type);
2206 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2207 return type;
2208
2209 index_type_desc = ada_find_parallel_type (type, "___XA");
2210 if (index_type_desc)
2211 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2212 NULL);
2213 else
2214 index_type = TYPE_INDEX_TYPE (type);
2215
2216 new_type = alloc_type_copy (type);
2217 new_elt_type =
2218 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2219 elt_bits);
2220 create_array_type (new_type, new_elt_type, index_type);
2221 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2222 TYPE_NAME (new_type) = ada_type_name (type);
2223
2224 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2225 && is_dynamic_type (check_typedef (index_type)))
2226 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2227 low_bound = high_bound = 0;
2228 if (high_bound < low_bound)
2229 *elt_bits = TYPE_LENGTH (new_type) = 0;
2230 else
2231 {
2232 *elt_bits *= (high_bound - low_bound + 1);
2233 TYPE_LENGTH (new_type) =
2234 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2235 }
2236
2237 TYPE_FIXED_INSTANCE (new_type) = 1;
2238 return new_type;
2239 }
2240
2241 /* The array type encoded by TYPE, where
2242 ada_is_constrained_packed_array_type (TYPE). */
2243
2244 static struct type *
2245 decode_constrained_packed_array_type (struct type *type)
2246 {
2247 const char *raw_name = ada_type_name (ada_check_typedef (type));
2248 char *name;
2249 const char *tail;
2250 struct type *shadow_type;
2251 long bits;
2252
2253 if (!raw_name)
2254 raw_name = ada_type_name (desc_base_type (type));
2255
2256 if (!raw_name)
2257 return NULL;
2258
2259 name = (char *) alloca (strlen (raw_name) + 1);
2260 tail = strstr (raw_name, "___XP");
2261 type = desc_base_type (type);
2262
2263 memcpy (name, raw_name, tail - raw_name);
2264 name[tail - raw_name] = '\000';
2265
2266 shadow_type = ada_find_parallel_type_with_name (type, name);
2267
2268 if (shadow_type == NULL)
2269 {
2270 lim_warning (_("could not find bounds information on packed array"));
2271 return NULL;
2272 }
2273 shadow_type = check_typedef (shadow_type);
2274
2275 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2276 {
2277 lim_warning (_("could not understand bounds "
2278 "information on packed array"));
2279 return NULL;
2280 }
2281
2282 bits = decode_packed_array_bitsize (type);
2283 return constrained_packed_array_type (shadow_type, &bits);
2284 }
2285
2286 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2287 array, returns a simple array that denotes that array. Its type is a
2288 standard GDB array type except that the BITSIZEs of the array
2289 target types are set to the number of bits in each element, and the
2290 type length is set appropriately. */
2291
2292 static struct value *
2293 decode_constrained_packed_array (struct value *arr)
2294 {
2295 struct type *type;
2296
2297 /* If our value is a pointer, then dereference it. Likewise if
2298 the value is a reference. Make sure that this operation does not
2299 cause the target type to be fixed, as this would indirectly cause
2300 this array to be decoded. The rest of the routine assumes that
2301 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2302 and "value_ind" routines to perform the dereferencing, as opposed
2303 to using "ada_coerce_ref" or "ada_value_ind". */
2304 arr = coerce_ref (arr);
2305 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2306 arr = value_ind (arr);
2307
2308 type = decode_constrained_packed_array_type (value_type (arr));
2309 if (type == NULL)
2310 {
2311 error (_("can't unpack array"));
2312 return NULL;
2313 }
2314
2315 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2316 && ada_is_modular_type (value_type (arr)))
2317 {
2318 /* This is a (right-justified) modular type representing a packed
2319 array with no wrapper. In order to interpret the value through
2320 the (left-justified) packed array type we just built, we must
2321 first left-justify it. */
2322 int bit_size, bit_pos;
2323 ULONGEST mod;
2324
2325 mod = ada_modulus (value_type (arr)) - 1;
2326 bit_size = 0;
2327 while (mod > 0)
2328 {
2329 bit_size += 1;
2330 mod >>= 1;
2331 }
2332 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2333 arr = ada_value_primitive_packed_val (arr, NULL,
2334 bit_pos / HOST_CHAR_BIT,
2335 bit_pos % HOST_CHAR_BIT,
2336 bit_size,
2337 type);
2338 }
2339
2340 return coerce_unspec_val_to_type (arr, type);
2341 }
2342
2343
2344 /* The value of the element of packed array ARR at the ARITY indices
2345 given in IND. ARR must be a simple array. */
2346
2347 static struct value *
2348 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2349 {
2350 int i;
2351 int bits, elt_off, bit_off;
2352 long elt_total_bit_offset;
2353 struct type *elt_type;
2354 struct value *v;
2355
2356 bits = 0;
2357 elt_total_bit_offset = 0;
2358 elt_type = ada_check_typedef (value_type (arr));
2359 for (i = 0; i < arity; i += 1)
2360 {
2361 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2362 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2363 error
2364 (_("attempt to do packed indexing of "
2365 "something other than a packed array"));
2366 else
2367 {
2368 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2369 LONGEST lowerbound, upperbound;
2370 LONGEST idx;
2371
2372 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2373 {
2374 lim_warning (_("don't know bounds of array"));
2375 lowerbound = upperbound = 0;
2376 }
2377
2378 idx = pos_atr (ind[i]);
2379 if (idx < lowerbound || idx > upperbound)
2380 lim_warning (_("packed array index %ld out of bounds"),
2381 (long) idx);
2382 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2383 elt_total_bit_offset += (idx - lowerbound) * bits;
2384 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2385 }
2386 }
2387 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2388 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2389
2390 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2391 bits, elt_type);
2392 return v;
2393 }
2394
2395 /* Non-zero iff TYPE includes negative integer values. */
2396
2397 static int
2398 has_negatives (struct type *type)
2399 {
2400 switch (TYPE_CODE (type))
2401 {
2402 default:
2403 return 0;
2404 case TYPE_CODE_INT:
2405 return !TYPE_UNSIGNED (type);
2406 case TYPE_CODE_RANGE:
2407 return TYPE_LOW_BOUND (type) < 0;
2408 }
2409 }
2410
2411 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2412 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2413 the unpacked buffer.
2414
2415 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2416 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2417
2418 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2419 zero otherwise.
2420
2421 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2422
2423 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2424
2425 static void
2426 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2427 gdb_byte *unpacked, int unpacked_len,
2428 int is_big_endian, int is_signed_type,
2429 int is_scalar)
2430 {
2431 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2432 int src_idx; /* Index into the source area */
2433 int src_bytes_left; /* Number of source bytes left to process. */
2434 int srcBitsLeft; /* Number of source bits left to move */
2435 int unusedLS; /* Number of bits in next significant
2436 byte of source that are unused */
2437
2438 int unpacked_idx; /* Index into the unpacked buffer */
2439 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2440
2441 unsigned long accum; /* Staging area for bits being transferred */
2442 int accumSize; /* Number of meaningful bits in accum */
2443 unsigned char sign;
2444
2445 /* Transmit bytes from least to most significant; delta is the direction
2446 the indices move. */
2447 int delta = is_big_endian ? -1 : 1;
2448
2449 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2450 bits from SRC. .*/
2451 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2452 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2453 bit_size, unpacked_len);
2454
2455 srcBitsLeft = bit_size;
2456 src_bytes_left = src_len;
2457 unpacked_bytes_left = unpacked_len;
2458 sign = 0;
2459
2460 if (is_big_endian)
2461 {
2462 src_idx = src_len - 1;
2463 if (is_signed_type
2464 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2465 sign = ~0;
2466
2467 unusedLS =
2468 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2469 % HOST_CHAR_BIT;
2470
2471 if (is_scalar)
2472 {
2473 accumSize = 0;
2474 unpacked_idx = unpacked_len - 1;
2475 }
2476 else
2477 {
2478 /* Non-scalar values must be aligned at a byte boundary... */
2479 accumSize =
2480 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2481 /* ... And are placed at the beginning (most-significant) bytes
2482 of the target. */
2483 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2484 unpacked_bytes_left = unpacked_idx + 1;
2485 }
2486 }
2487 else
2488 {
2489 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2490
2491 src_idx = unpacked_idx = 0;
2492 unusedLS = bit_offset;
2493 accumSize = 0;
2494
2495 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2496 sign = ~0;
2497 }
2498
2499 accum = 0;
2500 while (src_bytes_left > 0)
2501 {
2502 /* Mask for removing bits of the next source byte that are not
2503 part of the value. */
2504 unsigned int unusedMSMask =
2505 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2506 1;
2507 /* Sign-extend bits for this byte. */
2508 unsigned int signMask = sign & ~unusedMSMask;
2509
2510 accum |=
2511 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2512 accumSize += HOST_CHAR_BIT - unusedLS;
2513 if (accumSize >= HOST_CHAR_BIT)
2514 {
2515 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2516 accumSize -= HOST_CHAR_BIT;
2517 accum >>= HOST_CHAR_BIT;
2518 unpacked_bytes_left -= 1;
2519 unpacked_idx += delta;
2520 }
2521 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2522 unusedLS = 0;
2523 src_bytes_left -= 1;
2524 src_idx += delta;
2525 }
2526 while (unpacked_bytes_left > 0)
2527 {
2528 accum |= sign << accumSize;
2529 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2530 accumSize -= HOST_CHAR_BIT;
2531 if (accumSize < 0)
2532 accumSize = 0;
2533 accum >>= HOST_CHAR_BIT;
2534 unpacked_bytes_left -= 1;
2535 unpacked_idx += delta;
2536 }
2537 }
2538
2539 /* Create a new value of type TYPE from the contents of OBJ starting
2540 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2541 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2542 assigning through the result will set the field fetched from.
2543 VALADDR is ignored unless OBJ is NULL, in which case,
2544 VALADDR+OFFSET must address the start of storage containing the
2545 packed value. The value returned in this case is never an lval.
2546 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2547
2548 struct value *
2549 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2550 long offset, int bit_offset, int bit_size,
2551 struct type *type)
2552 {
2553 struct value *v;
2554 const gdb_byte *src; /* First byte containing data to unpack */
2555 gdb_byte *unpacked;
2556 const int is_scalar = is_scalar_type (type);
2557 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2558 gdb::byte_vector staging;
2559
2560 type = ada_check_typedef (type);
2561
2562 if (obj == NULL)
2563 src = valaddr + offset;
2564 else
2565 src = value_contents (obj) + offset;
2566
2567 if (is_dynamic_type (type))
2568 {
2569 /* The length of TYPE might by dynamic, so we need to resolve
2570 TYPE in order to know its actual size, which we then use
2571 to create the contents buffer of the value we return.
2572 The difficulty is that the data containing our object is
2573 packed, and therefore maybe not at a byte boundary. So, what
2574 we do, is unpack the data into a byte-aligned buffer, and then
2575 use that buffer as our object's value for resolving the type. */
2576 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2577 staging.resize (staging_len);
2578
2579 ada_unpack_from_contents (src, bit_offset, bit_size,
2580 staging.data (), staging.size (),
2581 is_big_endian, has_negatives (type),
2582 is_scalar);
2583 type = resolve_dynamic_type (type, staging.data (), 0);
2584 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2585 {
2586 /* This happens when the length of the object is dynamic,
2587 and is actually smaller than the space reserved for it.
2588 For instance, in an array of variant records, the bit_size
2589 we're given is the array stride, which is constant and
2590 normally equal to the maximum size of its element.
2591 But, in reality, each element only actually spans a portion
2592 of that stride. */
2593 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2594 }
2595 }
2596
2597 if (obj == NULL)
2598 {
2599 v = allocate_value (type);
2600 src = valaddr + offset;
2601 }
2602 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2603 {
2604 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2605 gdb_byte *buf;
2606
2607 v = value_at (type, value_address (obj) + offset);
2608 buf = (gdb_byte *) alloca (src_len);
2609 read_memory (value_address (v), buf, src_len);
2610 src = buf;
2611 }
2612 else
2613 {
2614 v = allocate_value (type);
2615 src = value_contents (obj) + offset;
2616 }
2617
2618 if (obj != NULL)
2619 {
2620 long new_offset = offset;
2621
2622 set_value_component_location (v, obj);
2623 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2624 set_value_bitsize (v, bit_size);
2625 if (value_bitpos (v) >= HOST_CHAR_BIT)
2626 {
2627 ++new_offset;
2628 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2629 }
2630 set_value_offset (v, new_offset);
2631
2632 /* Also set the parent value. This is needed when trying to
2633 assign a new value (in inferior memory). */
2634 set_value_parent (v, obj);
2635 }
2636 else
2637 set_value_bitsize (v, bit_size);
2638 unpacked = value_contents_writeable (v);
2639
2640 if (bit_size == 0)
2641 {
2642 memset (unpacked, 0, TYPE_LENGTH (type));
2643 return v;
2644 }
2645
2646 if (staging.size () == TYPE_LENGTH (type))
2647 {
2648 /* Small short-cut: If we've unpacked the data into a buffer
2649 of the same size as TYPE's length, then we can reuse that,
2650 instead of doing the unpacking again. */
2651 memcpy (unpacked, staging.data (), staging.size ());
2652 }
2653 else
2654 ada_unpack_from_contents (src, bit_offset, bit_size,
2655 unpacked, TYPE_LENGTH (type),
2656 is_big_endian, has_negatives (type), is_scalar);
2657
2658 return v;
2659 }
2660
2661 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2662 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2663 not overlap. */
2664 static void
2665 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2666 int src_offset, int n, int bits_big_endian_p)
2667 {
2668 unsigned int accum, mask;
2669 int accum_bits, chunk_size;
2670
2671 target += targ_offset / HOST_CHAR_BIT;
2672 targ_offset %= HOST_CHAR_BIT;
2673 source += src_offset / HOST_CHAR_BIT;
2674 src_offset %= HOST_CHAR_BIT;
2675 if (bits_big_endian_p)
2676 {
2677 accum = (unsigned char) *source;
2678 source += 1;
2679 accum_bits = HOST_CHAR_BIT - src_offset;
2680
2681 while (n > 0)
2682 {
2683 int unused_right;
2684
2685 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2686 accum_bits += HOST_CHAR_BIT;
2687 source += 1;
2688 chunk_size = HOST_CHAR_BIT - targ_offset;
2689 if (chunk_size > n)
2690 chunk_size = n;
2691 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2692 mask = ((1 << chunk_size) - 1) << unused_right;
2693 *target =
2694 (*target & ~mask)
2695 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2696 n -= chunk_size;
2697 accum_bits -= chunk_size;
2698 target += 1;
2699 targ_offset = 0;
2700 }
2701 }
2702 else
2703 {
2704 accum = (unsigned char) *source >> src_offset;
2705 source += 1;
2706 accum_bits = HOST_CHAR_BIT - src_offset;
2707
2708 while (n > 0)
2709 {
2710 accum = accum + ((unsigned char) *source << accum_bits);
2711 accum_bits += HOST_CHAR_BIT;
2712 source += 1;
2713 chunk_size = HOST_CHAR_BIT - targ_offset;
2714 if (chunk_size > n)
2715 chunk_size = n;
2716 mask = ((1 << chunk_size) - 1) << targ_offset;
2717 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2718 n -= chunk_size;
2719 accum_bits -= chunk_size;
2720 accum >>= chunk_size;
2721 target += 1;
2722 targ_offset = 0;
2723 }
2724 }
2725 }
2726
2727 /* Store the contents of FROMVAL into the location of TOVAL.
2728 Return a new value with the location of TOVAL and contents of
2729 FROMVAL. Handles assignment into packed fields that have
2730 floating-point or non-scalar types. */
2731
2732 static struct value *
2733 ada_value_assign (struct value *toval, struct value *fromval)
2734 {
2735 struct type *type = value_type (toval);
2736 int bits = value_bitsize (toval);
2737
2738 toval = ada_coerce_ref (toval);
2739 fromval = ada_coerce_ref (fromval);
2740
2741 if (ada_is_direct_array_type (value_type (toval)))
2742 toval = ada_coerce_to_simple_array (toval);
2743 if (ada_is_direct_array_type (value_type (fromval)))
2744 fromval = ada_coerce_to_simple_array (fromval);
2745
2746 if (!deprecated_value_modifiable (toval))
2747 error (_("Left operand of assignment is not a modifiable lvalue."));
2748
2749 if (VALUE_LVAL (toval) == lval_memory
2750 && bits > 0
2751 && (TYPE_CODE (type) == TYPE_CODE_FLT
2752 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2753 {
2754 int len = (value_bitpos (toval)
2755 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2756 int from_size;
2757 gdb_byte *buffer = (gdb_byte *) alloca (len);
2758 struct value *val;
2759 CORE_ADDR to_addr = value_address (toval);
2760
2761 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2762 fromval = value_cast (type, fromval);
2763
2764 read_memory (to_addr, buffer, len);
2765 from_size = value_bitsize (fromval);
2766 if (from_size == 0)
2767 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2768 if (gdbarch_bits_big_endian (get_type_arch (type)))
2769 move_bits (buffer, value_bitpos (toval),
2770 value_contents (fromval), from_size - bits, bits, 1);
2771 else
2772 move_bits (buffer, value_bitpos (toval),
2773 value_contents (fromval), 0, bits, 0);
2774 write_memory_with_notification (to_addr, buffer, len);
2775
2776 val = value_copy (toval);
2777 memcpy (value_contents_raw (val), value_contents (fromval),
2778 TYPE_LENGTH (type));
2779 deprecated_set_value_type (val, type);
2780
2781 return val;
2782 }
2783
2784 return value_assign (toval, fromval);
2785 }
2786
2787
2788 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2789 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2790 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2791 COMPONENT, and not the inferior's memory. The current contents
2792 of COMPONENT are ignored.
2793
2794 Although not part of the initial design, this function also works
2795 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2796 had a null address, and COMPONENT had an address which is equal to
2797 its offset inside CONTAINER. */
2798
2799 static void
2800 value_assign_to_component (struct value *container, struct value *component,
2801 struct value *val)
2802 {
2803 LONGEST offset_in_container =
2804 (LONGEST) (value_address (component) - value_address (container));
2805 int bit_offset_in_container =
2806 value_bitpos (component) - value_bitpos (container);
2807 int bits;
2808
2809 val = value_cast (value_type (component), val);
2810
2811 if (value_bitsize (component) == 0)
2812 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2813 else
2814 bits = value_bitsize (component);
2815
2816 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2817 move_bits (value_contents_writeable (container) + offset_in_container,
2818 value_bitpos (container) + bit_offset_in_container,
2819 value_contents (val),
2820 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2821 bits, 1);
2822 else
2823 move_bits (value_contents_writeable (container) + offset_in_container,
2824 value_bitpos (container) + bit_offset_in_container,
2825 value_contents (val), 0, bits, 0);
2826 }
2827
2828 /* The value of the element of array ARR at the ARITY indices given in IND.
2829 ARR may be either a simple array, GNAT array descriptor, or pointer
2830 thereto. */
2831
2832 struct value *
2833 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2834 {
2835 int k;
2836 struct value *elt;
2837 struct type *elt_type;
2838
2839 elt = ada_coerce_to_simple_array (arr);
2840
2841 elt_type = ada_check_typedef (value_type (elt));
2842 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2843 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2844 return value_subscript_packed (elt, arity, ind);
2845
2846 for (k = 0; k < arity; k += 1)
2847 {
2848 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2849 error (_("too many subscripts (%d expected)"), k);
2850 elt = value_subscript (elt, pos_atr (ind[k]));
2851 }
2852 return elt;
2853 }
2854
2855 /* Assuming ARR is a pointer to a GDB array, the value of the element
2856 of *ARR at the ARITY indices given in IND.
2857 Does not read the entire array into memory.
2858
2859 Note: Unlike what one would expect, this function is used instead of
2860 ada_value_subscript for basically all non-packed array types. The reason
2861 for this is that a side effect of doing our own pointer arithmetics instead
2862 of relying on value_subscript is that there is no implicit typedef peeling.
2863 This is important for arrays of array accesses, where it allows us to
2864 preserve the fact that the array's element is an array access, where the
2865 access part os encoded in a typedef layer. */
2866
2867 static struct value *
2868 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2869 {
2870 int k;
2871 struct value *array_ind = ada_value_ind (arr);
2872 struct type *type
2873 = check_typedef (value_enclosing_type (array_ind));
2874
2875 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2876 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2877 return value_subscript_packed (array_ind, arity, ind);
2878
2879 for (k = 0; k < arity; k += 1)
2880 {
2881 LONGEST lwb, upb;
2882 struct value *lwb_value;
2883
2884 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2885 error (_("too many subscripts (%d expected)"), k);
2886 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2887 value_copy (arr));
2888 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2889 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2890 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2891 type = TYPE_TARGET_TYPE (type);
2892 }
2893
2894 return value_ind (arr);
2895 }
2896
2897 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2898 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2899 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2900 this array is LOW, as per Ada rules. */
2901 static struct value *
2902 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2903 int low, int high)
2904 {
2905 struct type *type0 = ada_check_typedef (type);
2906 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2907 struct type *index_type
2908 = create_static_range_type (NULL, base_index_type, low, high);
2909 struct type *slice_type = create_array_type_with_stride
2910 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2911 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2912 TYPE_FIELD_BITSIZE (type0, 0));
2913 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2914 LONGEST base_low_pos, low_pos;
2915 CORE_ADDR base;
2916
2917 if (!discrete_position (base_index_type, low, &low_pos)
2918 || !discrete_position (base_index_type, base_low, &base_low_pos))
2919 {
2920 warning (_("unable to get positions in slice, use bounds instead"));
2921 low_pos = low;
2922 base_low_pos = base_low;
2923 }
2924
2925 base = value_as_address (array_ptr)
2926 + ((low_pos - base_low_pos)
2927 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2928 return value_at_lazy (slice_type, base);
2929 }
2930
2931
2932 static struct value *
2933 ada_value_slice (struct value *array, int low, int high)
2934 {
2935 struct type *type = ada_check_typedef (value_type (array));
2936 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2937 struct type *index_type
2938 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2939 struct type *slice_type = create_array_type_with_stride
2940 (NULL, TYPE_TARGET_TYPE (type), index_type,
2941 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2942 TYPE_FIELD_BITSIZE (type, 0));
2943 LONGEST low_pos, high_pos;
2944
2945 if (!discrete_position (base_index_type, low, &low_pos)
2946 || !discrete_position (base_index_type, high, &high_pos))
2947 {
2948 warning (_("unable to get positions in slice, use bounds instead"));
2949 low_pos = low;
2950 high_pos = high;
2951 }
2952
2953 return value_cast (slice_type,
2954 value_slice (array, low, high_pos - low_pos + 1));
2955 }
2956
2957 /* If type is a record type in the form of a standard GNAT array
2958 descriptor, returns the number of dimensions for type. If arr is a
2959 simple array, returns the number of "array of"s that prefix its
2960 type designation. Otherwise, returns 0. */
2961
2962 int
2963 ada_array_arity (struct type *type)
2964 {
2965 int arity;
2966
2967 if (type == NULL)
2968 return 0;
2969
2970 type = desc_base_type (type);
2971
2972 arity = 0;
2973 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2974 return desc_arity (desc_bounds_type (type));
2975 else
2976 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2977 {
2978 arity += 1;
2979 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2980 }
2981
2982 return arity;
2983 }
2984
2985 /* If TYPE is a record type in the form of a standard GNAT array
2986 descriptor or a simple array type, returns the element type for
2987 TYPE after indexing by NINDICES indices, or by all indices if
2988 NINDICES is -1. Otherwise, returns NULL. */
2989
2990 struct type *
2991 ada_array_element_type (struct type *type, int nindices)
2992 {
2993 type = desc_base_type (type);
2994
2995 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2996 {
2997 int k;
2998 struct type *p_array_type;
2999
3000 p_array_type = desc_data_target_type (type);
3001
3002 k = ada_array_arity (type);
3003 if (k == 0)
3004 return NULL;
3005
3006 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3007 if (nindices >= 0 && k > nindices)
3008 k = nindices;
3009 while (k > 0 && p_array_type != NULL)
3010 {
3011 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3012 k -= 1;
3013 }
3014 return p_array_type;
3015 }
3016 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3017 {
3018 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3019 {
3020 type = TYPE_TARGET_TYPE (type);
3021 nindices -= 1;
3022 }
3023 return type;
3024 }
3025
3026 return NULL;
3027 }
3028
3029 /* The type of nth index in arrays of given type (n numbering from 1).
3030 Does not examine memory. Throws an error if N is invalid or TYPE
3031 is not an array type. NAME is the name of the Ada attribute being
3032 evaluated ('range, 'first, 'last, or 'length); it is used in building
3033 the error message. */
3034
3035 static struct type *
3036 ada_index_type (struct type *type, int n, const char *name)
3037 {
3038 struct type *result_type;
3039
3040 type = desc_base_type (type);
3041
3042 if (n < 0 || n > ada_array_arity (type))
3043 error (_("invalid dimension number to '%s"), name);
3044
3045 if (ada_is_simple_array_type (type))
3046 {
3047 int i;
3048
3049 for (i = 1; i < n; i += 1)
3050 type = TYPE_TARGET_TYPE (type);
3051 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3052 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3053 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3054 perhaps stabsread.c would make more sense. */
3055 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3056 result_type = NULL;
3057 }
3058 else
3059 {
3060 result_type = desc_index_type (desc_bounds_type (type), n);
3061 if (result_type == NULL)
3062 error (_("attempt to take bound of something that is not an array"));
3063 }
3064
3065 return result_type;
3066 }
3067
3068 /* Given that arr is an array type, returns the lower bound of the
3069 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3070 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3071 array-descriptor type. It works for other arrays with bounds supplied
3072 by run-time quantities other than discriminants. */
3073
3074 static LONGEST
3075 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3076 {
3077 struct type *type, *index_type_desc, *index_type;
3078 int i;
3079
3080 gdb_assert (which == 0 || which == 1);
3081
3082 if (ada_is_constrained_packed_array_type (arr_type))
3083 arr_type = decode_constrained_packed_array_type (arr_type);
3084
3085 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3086 return (LONGEST) - which;
3087
3088 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3089 type = TYPE_TARGET_TYPE (arr_type);
3090 else
3091 type = arr_type;
3092
3093 if (TYPE_FIXED_INSTANCE (type))
3094 {
3095 /* The array has already been fixed, so we do not need to
3096 check the parallel ___XA type again. That encoding has
3097 already been applied, so ignore it now. */
3098 index_type_desc = NULL;
3099 }
3100 else
3101 {
3102 index_type_desc = ada_find_parallel_type (type, "___XA");
3103 ada_fixup_array_indexes_type (index_type_desc);
3104 }
3105
3106 if (index_type_desc != NULL)
3107 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3108 NULL);
3109 else
3110 {
3111 struct type *elt_type = check_typedef (type);
3112
3113 for (i = 1; i < n; i++)
3114 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3115
3116 index_type = TYPE_INDEX_TYPE (elt_type);
3117 }
3118
3119 return
3120 (LONGEST) (which == 0
3121 ? ada_discrete_type_low_bound (index_type)
3122 : ada_discrete_type_high_bound (index_type));
3123 }
3124
3125 /* Given that arr is an array value, returns the lower bound of the
3126 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3127 WHICH is 1. This routine will also work for arrays with bounds
3128 supplied by run-time quantities other than discriminants. */
3129
3130 static LONGEST
3131 ada_array_bound (struct value *arr, int n, int which)
3132 {
3133 struct type *arr_type;
3134
3135 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3136 arr = value_ind (arr);
3137 arr_type = value_enclosing_type (arr);
3138
3139 if (ada_is_constrained_packed_array_type (arr_type))
3140 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3141 else if (ada_is_simple_array_type (arr_type))
3142 return ada_array_bound_from_type (arr_type, n, which);
3143 else
3144 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3145 }
3146
3147 /* Given that arr is an array value, returns the length of the
3148 nth index. This routine will also work for arrays with bounds
3149 supplied by run-time quantities other than discriminants.
3150 Does not work for arrays indexed by enumeration types with representation
3151 clauses at the moment. */
3152
3153 static LONGEST
3154 ada_array_length (struct value *arr, int n)
3155 {
3156 struct type *arr_type, *index_type;
3157 int low, high;
3158
3159 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3160 arr = value_ind (arr);
3161 arr_type = value_enclosing_type (arr);
3162
3163 if (ada_is_constrained_packed_array_type (arr_type))
3164 return ada_array_length (decode_constrained_packed_array (arr), n);
3165
3166 if (ada_is_simple_array_type (arr_type))
3167 {
3168 low = ada_array_bound_from_type (arr_type, n, 0);
3169 high = ada_array_bound_from_type (arr_type, n, 1);
3170 }
3171 else
3172 {
3173 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3174 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3175 }
3176
3177 arr_type = check_typedef (arr_type);
3178 index_type = ada_index_type (arr_type, n, "length");
3179 if (index_type != NULL)
3180 {
3181 struct type *base_type;
3182 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3183 base_type = TYPE_TARGET_TYPE (index_type);
3184 else
3185 base_type = index_type;
3186
3187 low = pos_atr (value_from_longest (base_type, low));
3188 high = pos_atr (value_from_longest (base_type, high));
3189 }
3190 return high - low + 1;
3191 }
3192
3193 /* An empty array whose type is that of ARR_TYPE (an array type),
3194 with bounds LOW to LOW-1. */
3195
3196 static struct value *
3197 empty_array (struct type *arr_type, int low)
3198 {
3199 struct type *arr_type0 = ada_check_typedef (arr_type);
3200 struct type *index_type
3201 = create_static_range_type
3202 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3203 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3204
3205 return allocate_value (create_array_type (NULL, elt_type, index_type));
3206 }
3207 \f
3208
3209 /* Name resolution */
3210
3211 /* The "decoded" name for the user-definable Ada operator corresponding
3212 to OP. */
3213
3214 static const char *
3215 ada_decoded_op_name (enum exp_opcode op)
3216 {
3217 int i;
3218
3219 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3220 {
3221 if (ada_opname_table[i].op == op)
3222 return ada_opname_table[i].decoded;
3223 }
3224 error (_("Could not find operator name for opcode"));
3225 }
3226
3227
3228 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3229 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3230 undefined namespace) and converts operators that are
3231 user-defined into appropriate function calls. If CONTEXT_TYPE is
3232 non-null, it provides a preferred result type [at the moment, only
3233 type void has any effect---causing procedures to be preferred over
3234 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3235 return type is preferred. May change (expand) *EXP. */
3236
3237 static void
3238 resolve (expression_up *expp, int void_context_p)
3239 {
3240 struct type *context_type = NULL;
3241 int pc = 0;
3242
3243 if (void_context_p)
3244 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3245
3246 resolve_subexp (expp, &pc, 1, context_type);
3247 }
3248
3249 /* Resolve the operator of the subexpression beginning at
3250 position *POS of *EXPP. "Resolving" consists of replacing
3251 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3252 with their resolutions, replacing built-in operators with
3253 function calls to user-defined operators, where appropriate, and,
3254 when DEPROCEDURE_P is non-zero, converting function-valued variables
3255 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3256 are as in ada_resolve, above. */
3257
3258 static struct value *
3259 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3260 struct type *context_type)
3261 {
3262 int pc = *pos;
3263 int i;
3264 struct expression *exp; /* Convenience: == *expp. */
3265 enum exp_opcode op = (*expp)->elts[pc].opcode;
3266 struct value **argvec; /* Vector of operand types (alloca'ed). */
3267 int nargs; /* Number of operands. */
3268 int oplen;
3269
3270 argvec = NULL;
3271 nargs = 0;
3272 exp = expp->get ();
3273
3274 /* Pass one: resolve operands, saving their types and updating *pos,
3275 if needed. */
3276 switch (op)
3277 {
3278 case OP_FUNCALL:
3279 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3280 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3281 *pos += 7;
3282 else
3283 {
3284 *pos += 3;
3285 resolve_subexp (expp, pos, 0, NULL);
3286 }
3287 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3288 break;
3289
3290 case UNOP_ADDR:
3291 *pos += 1;
3292 resolve_subexp (expp, pos, 0, NULL);
3293 break;
3294
3295 case UNOP_QUAL:
3296 *pos += 3;
3297 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3298 break;
3299
3300 case OP_ATR_MODULUS:
3301 case OP_ATR_SIZE:
3302 case OP_ATR_TAG:
3303 case OP_ATR_FIRST:
3304 case OP_ATR_LAST:
3305 case OP_ATR_LENGTH:
3306 case OP_ATR_POS:
3307 case OP_ATR_VAL:
3308 case OP_ATR_MIN:
3309 case OP_ATR_MAX:
3310 case TERNOP_IN_RANGE:
3311 case BINOP_IN_BOUNDS:
3312 case UNOP_IN_RANGE:
3313 case OP_AGGREGATE:
3314 case OP_OTHERS:
3315 case OP_CHOICES:
3316 case OP_POSITIONAL:
3317 case OP_DISCRETE_RANGE:
3318 case OP_NAME:
3319 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3320 *pos += oplen;
3321 break;
3322
3323 case BINOP_ASSIGN:
3324 {
3325 struct value *arg1;
3326
3327 *pos += 1;
3328 arg1 = resolve_subexp (expp, pos, 0, NULL);
3329 if (arg1 == NULL)
3330 resolve_subexp (expp, pos, 1, NULL);
3331 else
3332 resolve_subexp (expp, pos, 1, value_type (arg1));
3333 break;
3334 }
3335
3336 case UNOP_CAST:
3337 *pos += 3;
3338 nargs = 1;
3339 break;
3340
3341 case BINOP_ADD:
3342 case BINOP_SUB:
3343 case BINOP_MUL:
3344 case BINOP_DIV:
3345 case BINOP_REM:
3346 case BINOP_MOD:
3347 case BINOP_EXP:
3348 case BINOP_CONCAT:
3349 case BINOP_LOGICAL_AND:
3350 case BINOP_LOGICAL_OR:
3351 case BINOP_BITWISE_AND:
3352 case BINOP_BITWISE_IOR:
3353 case BINOP_BITWISE_XOR:
3354
3355 case BINOP_EQUAL:
3356 case BINOP_NOTEQUAL:
3357 case BINOP_LESS:
3358 case BINOP_GTR:
3359 case BINOP_LEQ:
3360 case BINOP_GEQ:
3361
3362 case BINOP_REPEAT:
3363 case BINOP_SUBSCRIPT:
3364 case BINOP_COMMA:
3365 *pos += 1;
3366 nargs = 2;
3367 break;
3368
3369 case UNOP_NEG:
3370 case UNOP_PLUS:
3371 case UNOP_LOGICAL_NOT:
3372 case UNOP_ABS:
3373 case UNOP_IND:
3374 *pos += 1;
3375 nargs = 1;
3376 break;
3377
3378 case OP_LONG:
3379 case OP_FLOAT:
3380 case OP_VAR_VALUE:
3381 case OP_VAR_MSYM_VALUE:
3382 *pos += 4;
3383 break;
3384
3385 case OP_TYPE:
3386 case OP_BOOL:
3387 case OP_LAST:
3388 case OP_INTERNALVAR:
3389 *pos += 3;
3390 break;
3391
3392 case UNOP_MEMVAL:
3393 *pos += 3;
3394 nargs = 1;
3395 break;
3396
3397 case OP_REGISTER:
3398 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3399 break;
3400
3401 case STRUCTOP_STRUCT:
3402 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3403 nargs = 1;
3404 break;
3405
3406 case TERNOP_SLICE:
3407 *pos += 1;
3408 nargs = 3;
3409 break;
3410
3411 case OP_STRING:
3412 break;
3413
3414 default:
3415 error (_("Unexpected operator during name resolution"));
3416 }
3417
3418 argvec = XALLOCAVEC (struct value *, nargs + 1);
3419 for (i = 0; i < nargs; i += 1)
3420 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3421 argvec[i] = NULL;
3422 exp = expp->get ();
3423
3424 /* Pass two: perform any resolution on principal operator. */
3425 switch (op)
3426 {
3427 default:
3428 break;
3429
3430 case OP_VAR_VALUE:
3431 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3432 {
3433 std::vector<struct block_symbol> candidates;
3434 int n_candidates;
3435
3436 n_candidates =
3437 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3438 (exp->elts[pc + 2].symbol),
3439 exp->elts[pc + 1].block, VAR_DOMAIN,
3440 &candidates);
3441
3442 if (n_candidates > 1)
3443 {
3444 /* Types tend to get re-introduced locally, so if there
3445 are any local symbols that are not types, first filter
3446 out all types. */
3447 int j;
3448 for (j = 0; j < n_candidates; j += 1)
3449 switch (SYMBOL_CLASS (candidates[j].symbol))
3450 {
3451 case LOC_REGISTER:
3452 case LOC_ARG:
3453 case LOC_REF_ARG:
3454 case LOC_REGPARM_ADDR:
3455 case LOC_LOCAL:
3456 case LOC_COMPUTED:
3457 goto FoundNonType;
3458 default:
3459 break;
3460 }
3461 FoundNonType:
3462 if (j < n_candidates)
3463 {
3464 j = 0;
3465 while (j < n_candidates)
3466 {
3467 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3468 {
3469 candidates[j] = candidates[n_candidates - 1];
3470 n_candidates -= 1;
3471 }
3472 else
3473 j += 1;
3474 }
3475 }
3476 }
3477
3478 if (n_candidates == 0)
3479 error (_("No definition found for %s"),
3480 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3481 else if (n_candidates == 1)
3482 i = 0;
3483 else if (deprocedure_p
3484 && !is_nonfunction (candidates.data (), n_candidates))
3485 {
3486 i = ada_resolve_function
3487 (candidates.data (), n_candidates, NULL, 0,
3488 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3489 context_type);
3490 if (i < 0)
3491 error (_("Could not find a match for %s"),
3492 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3493 }
3494 else
3495 {
3496 printf_filtered (_("Multiple matches for %s\n"),
3497 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3498 user_select_syms (candidates.data (), n_candidates, 1);
3499 i = 0;
3500 }
3501
3502 exp->elts[pc + 1].block = candidates[i].block;
3503 exp->elts[pc + 2].symbol = candidates[i].symbol;
3504 innermost_block.update (candidates[i]);
3505 }
3506
3507 if (deprocedure_p
3508 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3509 == TYPE_CODE_FUNC))
3510 {
3511 replace_operator_with_call (expp, pc, 0, 0,
3512 exp->elts[pc + 2].symbol,
3513 exp->elts[pc + 1].block);
3514 exp = expp->get ();
3515 }
3516 break;
3517
3518 case OP_FUNCALL:
3519 {
3520 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3521 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3522 {
3523 std::vector<struct block_symbol> candidates;
3524 int n_candidates;
3525
3526 n_candidates =
3527 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3528 (exp->elts[pc + 5].symbol),
3529 exp->elts[pc + 4].block, VAR_DOMAIN,
3530 &candidates);
3531
3532 if (n_candidates == 1)
3533 i = 0;
3534 else
3535 {
3536 i = ada_resolve_function
3537 (candidates.data (), n_candidates,
3538 argvec, nargs,
3539 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3540 context_type);
3541 if (i < 0)
3542 error (_("Could not find a match for %s"),
3543 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3544 }
3545
3546 exp->elts[pc + 4].block = candidates[i].block;
3547 exp->elts[pc + 5].symbol = candidates[i].symbol;
3548 innermost_block.update (candidates[i]);
3549 }
3550 }
3551 break;
3552 case BINOP_ADD:
3553 case BINOP_SUB:
3554 case BINOP_MUL:
3555 case BINOP_DIV:
3556 case BINOP_REM:
3557 case BINOP_MOD:
3558 case BINOP_CONCAT:
3559 case BINOP_BITWISE_AND:
3560 case BINOP_BITWISE_IOR:
3561 case BINOP_BITWISE_XOR:
3562 case BINOP_EQUAL:
3563 case BINOP_NOTEQUAL:
3564 case BINOP_LESS:
3565 case BINOP_GTR:
3566 case BINOP_LEQ:
3567 case BINOP_GEQ:
3568 case BINOP_EXP:
3569 case UNOP_NEG:
3570 case UNOP_PLUS:
3571 case UNOP_LOGICAL_NOT:
3572 case UNOP_ABS:
3573 if (possible_user_operator_p (op, argvec))
3574 {
3575 std::vector<struct block_symbol> candidates;
3576 int n_candidates;
3577
3578 n_candidates =
3579 ada_lookup_symbol_list (ada_decoded_op_name (op),
3580 (struct block *) NULL, VAR_DOMAIN,
3581 &candidates);
3582
3583 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3584 nargs, ada_decoded_op_name (op), NULL);
3585 if (i < 0)
3586 break;
3587
3588 replace_operator_with_call (expp, pc, nargs, 1,
3589 candidates[i].symbol,
3590 candidates[i].block);
3591 exp = expp->get ();
3592 }
3593 break;
3594
3595 case OP_TYPE:
3596 case OP_REGISTER:
3597 return NULL;
3598 }
3599
3600 *pos = pc;
3601 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3602 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3603 exp->elts[pc + 1].objfile,
3604 exp->elts[pc + 2].msymbol);
3605 else
3606 return evaluate_subexp_type (exp, pos);
3607 }
3608
3609 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3610 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3611 a non-pointer. */
3612 /* The term "match" here is rather loose. The match is heuristic and
3613 liberal. */
3614
3615 static int
3616 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3617 {
3618 ftype = ada_check_typedef (ftype);
3619 atype = ada_check_typedef (atype);
3620
3621 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3622 ftype = TYPE_TARGET_TYPE (ftype);
3623 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3624 atype = TYPE_TARGET_TYPE (atype);
3625
3626 switch (TYPE_CODE (ftype))
3627 {
3628 default:
3629 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3630 case TYPE_CODE_PTR:
3631 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3632 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3633 TYPE_TARGET_TYPE (atype), 0);
3634 else
3635 return (may_deref
3636 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3637 case TYPE_CODE_INT:
3638 case TYPE_CODE_ENUM:
3639 case TYPE_CODE_RANGE:
3640 switch (TYPE_CODE (atype))
3641 {
3642 case TYPE_CODE_INT:
3643 case TYPE_CODE_ENUM:
3644 case TYPE_CODE_RANGE:
3645 return 1;
3646 default:
3647 return 0;
3648 }
3649
3650 case TYPE_CODE_ARRAY:
3651 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3652 || ada_is_array_descriptor_type (atype));
3653
3654 case TYPE_CODE_STRUCT:
3655 if (ada_is_array_descriptor_type (ftype))
3656 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3657 || ada_is_array_descriptor_type (atype));
3658 else
3659 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3660 && !ada_is_array_descriptor_type (atype));
3661
3662 case TYPE_CODE_UNION:
3663 case TYPE_CODE_FLT:
3664 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3665 }
3666 }
3667
3668 /* Return non-zero if the formals of FUNC "sufficiently match" the
3669 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3670 may also be an enumeral, in which case it is treated as a 0-
3671 argument function. */
3672
3673 static int
3674 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3675 {
3676 int i;
3677 struct type *func_type = SYMBOL_TYPE (func);
3678
3679 if (SYMBOL_CLASS (func) == LOC_CONST
3680 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3681 return (n_actuals == 0);
3682 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3683 return 0;
3684
3685 if (TYPE_NFIELDS (func_type) != n_actuals)
3686 return 0;
3687
3688 for (i = 0; i < n_actuals; i += 1)
3689 {
3690 if (actuals[i] == NULL)
3691 return 0;
3692 else
3693 {
3694 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3695 i));
3696 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3697
3698 if (!ada_type_match (ftype, atype, 1))
3699 return 0;
3700 }
3701 }
3702 return 1;
3703 }
3704
3705 /* False iff function type FUNC_TYPE definitely does not produce a value
3706 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3707 FUNC_TYPE is not a valid function type with a non-null return type
3708 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3709
3710 static int
3711 return_match (struct type *func_type, struct type *context_type)
3712 {
3713 struct type *return_type;
3714
3715 if (func_type == NULL)
3716 return 1;
3717
3718 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3719 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3720 else
3721 return_type = get_base_type (func_type);
3722 if (return_type == NULL)
3723 return 1;
3724
3725 context_type = get_base_type (context_type);
3726
3727 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3728 return context_type == NULL || return_type == context_type;
3729 else if (context_type == NULL)
3730 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3731 else
3732 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3733 }
3734
3735
3736 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3737 function (if any) that matches the types of the NARGS arguments in
3738 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3739 that returns that type, then eliminate matches that don't. If
3740 CONTEXT_TYPE is void and there is at least one match that does not
3741 return void, eliminate all matches that do.
3742
3743 Asks the user if there is more than one match remaining. Returns -1
3744 if there is no such symbol or none is selected. NAME is used
3745 solely for messages. May re-arrange and modify SYMS in
3746 the process; the index returned is for the modified vector. */
3747
3748 static int
3749 ada_resolve_function (struct block_symbol syms[],
3750 int nsyms, struct value **args, int nargs,
3751 const char *name, struct type *context_type)
3752 {
3753 int fallback;
3754 int k;
3755 int m; /* Number of hits */
3756
3757 m = 0;
3758 /* In the first pass of the loop, we only accept functions matching
3759 context_type. If none are found, we add a second pass of the loop
3760 where every function is accepted. */
3761 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3762 {
3763 for (k = 0; k < nsyms; k += 1)
3764 {
3765 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3766
3767 if (ada_args_match (syms[k].symbol, args, nargs)
3768 && (fallback || return_match (type, context_type)))
3769 {
3770 syms[m] = syms[k];
3771 m += 1;
3772 }
3773 }
3774 }
3775
3776 /* If we got multiple matches, ask the user which one to use. Don't do this
3777 interactive thing during completion, though, as the purpose of the
3778 completion is providing a list of all possible matches. Prompting the
3779 user to filter it down would be completely unexpected in this case. */
3780 if (m == 0)
3781 return -1;
3782 else if (m > 1 && !parse_completion)
3783 {
3784 printf_filtered (_("Multiple matches for %s\n"), name);
3785 user_select_syms (syms, m, 1);
3786 return 0;
3787 }
3788 return 0;
3789 }
3790
3791 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3792 in a listing of choices during disambiguation (see sort_choices, below).
3793 The idea is that overloadings of a subprogram name from the
3794 same package should sort in their source order. We settle for ordering
3795 such symbols by their trailing number (__N or $N). */
3796
3797 static int
3798 encoded_ordered_before (const char *N0, const char *N1)
3799 {
3800 if (N1 == NULL)
3801 return 0;
3802 else if (N0 == NULL)
3803 return 1;
3804 else
3805 {
3806 int k0, k1;
3807
3808 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3809 ;
3810 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3811 ;
3812 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3813 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3814 {
3815 int n0, n1;
3816
3817 n0 = k0;
3818 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3819 n0 -= 1;
3820 n1 = k1;
3821 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3822 n1 -= 1;
3823 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3824 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3825 }
3826 return (strcmp (N0, N1) < 0);
3827 }
3828 }
3829
3830 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3831 encoded names. */
3832
3833 static void
3834 sort_choices (struct block_symbol syms[], int nsyms)
3835 {
3836 int i;
3837
3838 for (i = 1; i < nsyms; i += 1)
3839 {
3840 struct block_symbol sym = syms[i];
3841 int j;
3842
3843 for (j = i - 1; j >= 0; j -= 1)
3844 {
3845 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3846 SYMBOL_LINKAGE_NAME (sym.symbol)))
3847 break;
3848 syms[j + 1] = syms[j];
3849 }
3850 syms[j + 1] = sym;
3851 }
3852 }
3853
3854 /* Whether GDB should display formals and return types for functions in the
3855 overloads selection menu. */
3856 static int print_signatures = 1;
3857
3858 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3859 all but functions, the signature is just the name of the symbol. For
3860 functions, this is the name of the function, the list of types for formals
3861 and the return type (if any). */
3862
3863 static void
3864 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3865 const struct type_print_options *flags)
3866 {
3867 struct type *type = SYMBOL_TYPE (sym);
3868
3869 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3870 if (!print_signatures
3871 || type == NULL
3872 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3873 return;
3874
3875 if (TYPE_NFIELDS (type) > 0)
3876 {
3877 int i;
3878
3879 fprintf_filtered (stream, " (");
3880 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3881 {
3882 if (i > 0)
3883 fprintf_filtered (stream, "; ");
3884 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3885 flags);
3886 }
3887 fprintf_filtered (stream, ")");
3888 }
3889 if (TYPE_TARGET_TYPE (type) != NULL
3890 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3891 {
3892 fprintf_filtered (stream, " return ");
3893 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3894 }
3895 }
3896
3897 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3898 by asking the user (if necessary), returning the number selected,
3899 and setting the first elements of SYMS items. Error if no symbols
3900 selected. */
3901
3902 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3903 to be re-integrated one of these days. */
3904
3905 int
3906 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3907 {
3908 int i;
3909 int *chosen = XALLOCAVEC (int , nsyms);
3910 int n_chosen;
3911 int first_choice = (max_results == 1) ? 1 : 2;
3912 const char *select_mode = multiple_symbols_select_mode ();
3913
3914 if (max_results < 1)
3915 error (_("Request to select 0 symbols!"));
3916 if (nsyms <= 1)
3917 return nsyms;
3918
3919 if (select_mode == multiple_symbols_cancel)
3920 error (_("\
3921 canceled because the command is ambiguous\n\
3922 See set/show multiple-symbol."));
3923
3924 /* If select_mode is "all", then return all possible symbols.
3925 Only do that if more than one symbol can be selected, of course.
3926 Otherwise, display the menu as usual. */
3927 if (select_mode == multiple_symbols_all && max_results > 1)
3928 return nsyms;
3929
3930 printf_unfiltered (_("[0] cancel\n"));
3931 if (max_results > 1)
3932 printf_unfiltered (_("[1] all\n"));
3933
3934 sort_choices (syms, nsyms);
3935
3936 for (i = 0; i < nsyms; i += 1)
3937 {
3938 if (syms[i].symbol == NULL)
3939 continue;
3940
3941 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3942 {
3943 struct symtab_and_line sal =
3944 find_function_start_sal (syms[i].symbol, 1);
3945
3946 printf_unfiltered ("[%d] ", i + first_choice);
3947 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3948 &type_print_raw_options);
3949 if (sal.symtab == NULL)
3950 printf_unfiltered (_(" at <no source file available>:%d\n"),
3951 sal.line);
3952 else
3953 printf_unfiltered (_(" at %s:%d\n"),
3954 symtab_to_filename_for_display (sal.symtab),
3955 sal.line);
3956 continue;
3957 }
3958 else
3959 {
3960 int is_enumeral =
3961 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3962 && SYMBOL_TYPE (syms[i].symbol) != NULL
3963 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3964 struct symtab *symtab = NULL;
3965
3966 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3967 symtab = symbol_symtab (syms[i].symbol);
3968
3969 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3970 {
3971 printf_unfiltered ("[%d] ", i + first_choice);
3972 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3973 &type_print_raw_options);
3974 printf_unfiltered (_(" at %s:%d\n"),
3975 symtab_to_filename_for_display (symtab),
3976 SYMBOL_LINE (syms[i].symbol));
3977 }
3978 else if (is_enumeral
3979 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3980 {
3981 printf_unfiltered (("[%d] "), i + first_choice);
3982 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3983 gdb_stdout, -1, 0, &type_print_raw_options);
3984 printf_unfiltered (_("'(%s) (enumeral)\n"),
3985 SYMBOL_PRINT_NAME (syms[i].symbol));
3986 }
3987 else
3988 {
3989 printf_unfiltered ("[%d] ", i + first_choice);
3990 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3991 &type_print_raw_options);
3992
3993 if (symtab != NULL)
3994 printf_unfiltered (is_enumeral
3995 ? _(" in %s (enumeral)\n")
3996 : _(" at %s:?\n"),
3997 symtab_to_filename_for_display (symtab));
3998 else
3999 printf_unfiltered (is_enumeral
4000 ? _(" (enumeral)\n")
4001 : _(" at ?\n"));
4002 }
4003 }
4004 }
4005
4006 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4007 "overload-choice");
4008
4009 for (i = 0; i < n_chosen; i += 1)
4010 syms[i] = syms[chosen[i]];
4011
4012 return n_chosen;
4013 }
4014
4015 /* Read and validate a set of numeric choices from the user in the
4016 range 0 .. N_CHOICES-1. Place the results in increasing
4017 order in CHOICES[0 .. N-1], and return N.
4018
4019 The user types choices as a sequence of numbers on one line
4020 separated by blanks, encoding them as follows:
4021
4022 + A choice of 0 means to cancel the selection, throwing an error.
4023 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4024 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4025
4026 The user is not allowed to choose more than MAX_RESULTS values.
4027
4028 ANNOTATION_SUFFIX, if present, is used to annotate the input
4029 prompts (for use with the -f switch). */
4030
4031 int
4032 get_selections (int *choices, int n_choices, int max_results,
4033 int is_all_choice, const char *annotation_suffix)
4034 {
4035 char *args;
4036 const char *prompt;
4037 int n_chosen;
4038 int first_choice = is_all_choice ? 2 : 1;
4039
4040 prompt = getenv ("PS2");
4041 if (prompt == NULL)
4042 prompt = "> ";
4043
4044 args = command_line_input (prompt, 0, annotation_suffix);
4045
4046 if (args == NULL)
4047 error_no_arg (_("one or more choice numbers"));
4048
4049 n_chosen = 0;
4050
4051 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4052 order, as given in args. Choices are validated. */
4053 while (1)
4054 {
4055 char *args2;
4056 int choice, j;
4057
4058 args = skip_spaces (args);
4059 if (*args == '\0' && n_chosen == 0)
4060 error_no_arg (_("one or more choice numbers"));
4061 else if (*args == '\0')
4062 break;
4063
4064 choice = strtol (args, &args2, 10);
4065 if (args == args2 || choice < 0
4066 || choice > n_choices + first_choice - 1)
4067 error (_("Argument must be choice number"));
4068 args = args2;
4069
4070 if (choice == 0)
4071 error (_("cancelled"));
4072
4073 if (choice < first_choice)
4074 {
4075 n_chosen = n_choices;
4076 for (j = 0; j < n_choices; j += 1)
4077 choices[j] = j;
4078 break;
4079 }
4080 choice -= first_choice;
4081
4082 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4083 {
4084 }
4085
4086 if (j < 0 || choice != choices[j])
4087 {
4088 int k;
4089
4090 for (k = n_chosen - 1; k > j; k -= 1)
4091 choices[k + 1] = choices[k];
4092 choices[j + 1] = choice;
4093 n_chosen += 1;
4094 }
4095 }
4096
4097 if (n_chosen > max_results)
4098 error (_("Select no more than %d of the above"), max_results);
4099
4100 return n_chosen;
4101 }
4102
4103 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4104 on the function identified by SYM and BLOCK, and taking NARGS
4105 arguments. Update *EXPP as needed to hold more space. */
4106
4107 static void
4108 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4109 int oplen, struct symbol *sym,
4110 const struct block *block)
4111 {
4112 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4113 symbol, -oplen for operator being replaced). */
4114 struct expression *newexp = (struct expression *)
4115 xzalloc (sizeof (struct expression)
4116 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4117 struct expression *exp = expp->get ();
4118
4119 newexp->nelts = exp->nelts + 7 - oplen;
4120 newexp->language_defn = exp->language_defn;
4121 newexp->gdbarch = exp->gdbarch;
4122 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4123 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4124 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4125
4126 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4127 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4128
4129 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4130 newexp->elts[pc + 4].block = block;
4131 newexp->elts[pc + 5].symbol = sym;
4132
4133 expp->reset (newexp);
4134 }
4135
4136 /* Type-class predicates */
4137
4138 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4139 or FLOAT). */
4140
4141 static int
4142 numeric_type_p (struct type *type)
4143 {
4144 if (type == NULL)
4145 return 0;
4146 else
4147 {
4148 switch (TYPE_CODE (type))
4149 {
4150 case TYPE_CODE_INT:
4151 case TYPE_CODE_FLT:
4152 return 1;
4153 case TYPE_CODE_RANGE:
4154 return (type == TYPE_TARGET_TYPE (type)
4155 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4156 default:
4157 return 0;
4158 }
4159 }
4160 }
4161
4162 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4163
4164 static int
4165 integer_type_p (struct type *type)
4166 {
4167 if (type == NULL)
4168 return 0;
4169 else
4170 {
4171 switch (TYPE_CODE (type))
4172 {
4173 case TYPE_CODE_INT:
4174 return 1;
4175 case TYPE_CODE_RANGE:
4176 return (type == TYPE_TARGET_TYPE (type)
4177 || integer_type_p (TYPE_TARGET_TYPE (type)));
4178 default:
4179 return 0;
4180 }
4181 }
4182 }
4183
4184 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4185
4186 static int
4187 scalar_type_p (struct type *type)
4188 {
4189 if (type == NULL)
4190 return 0;
4191 else
4192 {
4193 switch (TYPE_CODE (type))
4194 {
4195 case TYPE_CODE_INT:
4196 case TYPE_CODE_RANGE:
4197 case TYPE_CODE_ENUM:
4198 case TYPE_CODE_FLT:
4199 return 1;
4200 default:
4201 return 0;
4202 }
4203 }
4204 }
4205
4206 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4207
4208 static int
4209 discrete_type_p (struct type *type)
4210 {
4211 if (type == NULL)
4212 return 0;
4213 else
4214 {
4215 switch (TYPE_CODE (type))
4216 {
4217 case TYPE_CODE_INT:
4218 case TYPE_CODE_RANGE:
4219 case TYPE_CODE_ENUM:
4220 case TYPE_CODE_BOOL:
4221 return 1;
4222 default:
4223 return 0;
4224 }
4225 }
4226 }
4227
4228 /* Returns non-zero if OP with operands in the vector ARGS could be
4229 a user-defined function. Errs on the side of pre-defined operators
4230 (i.e., result 0). */
4231
4232 static int
4233 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4234 {
4235 struct type *type0 =
4236 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4237 struct type *type1 =
4238 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4239
4240 if (type0 == NULL)
4241 return 0;
4242
4243 switch (op)
4244 {
4245 default:
4246 return 0;
4247
4248 case BINOP_ADD:
4249 case BINOP_SUB:
4250 case BINOP_MUL:
4251 case BINOP_DIV:
4252 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4253
4254 case BINOP_REM:
4255 case BINOP_MOD:
4256 case BINOP_BITWISE_AND:
4257 case BINOP_BITWISE_IOR:
4258 case BINOP_BITWISE_XOR:
4259 return (!(integer_type_p (type0) && integer_type_p (type1)));
4260
4261 case BINOP_EQUAL:
4262 case BINOP_NOTEQUAL:
4263 case BINOP_LESS:
4264 case BINOP_GTR:
4265 case BINOP_LEQ:
4266 case BINOP_GEQ:
4267 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4268
4269 case BINOP_CONCAT:
4270 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4271
4272 case BINOP_EXP:
4273 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4274
4275 case UNOP_NEG:
4276 case UNOP_PLUS:
4277 case UNOP_LOGICAL_NOT:
4278 case UNOP_ABS:
4279 return (!numeric_type_p (type0));
4280
4281 }
4282 }
4283 \f
4284 /* Renaming */
4285
4286 /* NOTES:
4287
4288 1. In the following, we assume that a renaming type's name may
4289 have an ___XD suffix. It would be nice if this went away at some
4290 point.
4291 2. We handle both the (old) purely type-based representation of
4292 renamings and the (new) variable-based encoding. At some point,
4293 it is devoutly to be hoped that the former goes away
4294 (FIXME: hilfinger-2007-07-09).
4295 3. Subprogram renamings are not implemented, although the XRS
4296 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4297
4298 /* If SYM encodes a renaming,
4299
4300 <renaming> renames <renamed entity>,
4301
4302 sets *LEN to the length of the renamed entity's name,
4303 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4304 the string describing the subcomponent selected from the renamed
4305 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4306 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4307 are undefined). Otherwise, returns a value indicating the category
4308 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4309 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4310 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4311 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4312 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4313 may be NULL, in which case they are not assigned.
4314
4315 [Currently, however, GCC does not generate subprogram renamings.] */
4316
4317 enum ada_renaming_category
4318 ada_parse_renaming (struct symbol *sym,
4319 const char **renamed_entity, int *len,
4320 const char **renaming_expr)
4321 {
4322 enum ada_renaming_category kind;
4323 const char *info;
4324 const char *suffix;
4325
4326 if (sym == NULL)
4327 return ADA_NOT_RENAMING;
4328 switch (SYMBOL_CLASS (sym))
4329 {
4330 default:
4331 return ADA_NOT_RENAMING;
4332 case LOC_TYPEDEF:
4333 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4334 renamed_entity, len, renaming_expr);
4335 case LOC_LOCAL:
4336 case LOC_STATIC:
4337 case LOC_COMPUTED:
4338 case LOC_OPTIMIZED_OUT:
4339 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4340 if (info == NULL)
4341 return ADA_NOT_RENAMING;
4342 switch (info[5])
4343 {
4344 case '_':
4345 kind = ADA_OBJECT_RENAMING;
4346 info += 6;
4347 break;
4348 case 'E':
4349 kind = ADA_EXCEPTION_RENAMING;
4350 info += 7;
4351 break;
4352 case 'P':
4353 kind = ADA_PACKAGE_RENAMING;
4354 info += 7;
4355 break;
4356 case 'S':
4357 kind = ADA_SUBPROGRAM_RENAMING;
4358 info += 7;
4359 break;
4360 default:
4361 return ADA_NOT_RENAMING;
4362 }
4363 }
4364
4365 if (renamed_entity != NULL)
4366 *renamed_entity = info;
4367 suffix = strstr (info, "___XE");
4368 if (suffix == NULL || suffix == info)
4369 return ADA_NOT_RENAMING;
4370 if (len != NULL)
4371 *len = strlen (info) - strlen (suffix);
4372 suffix += 5;
4373 if (renaming_expr != NULL)
4374 *renaming_expr = suffix;
4375 return kind;
4376 }
4377
4378 /* Assuming TYPE encodes a renaming according to the old encoding in
4379 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4380 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4381 ADA_NOT_RENAMING otherwise. */
4382 static enum ada_renaming_category
4383 parse_old_style_renaming (struct type *type,
4384 const char **renamed_entity, int *len,
4385 const char **renaming_expr)
4386 {
4387 enum ada_renaming_category kind;
4388 const char *name;
4389 const char *info;
4390 const char *suffix;
4391
4392 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4393 || TYPE_NFIELDS (type) != 1)
4394 return ADA_NOT_RENAMING;
4395
4396 name = TYPE_NAME (type);
4397 if (name == NULL)
4398 return ADA_NOT_RENAMING;
4399
4400 name = strstr (name, "___XR");
4401 if (name == NULL)
4402 return ADA_NOT_RENAMING;
4403 switch (name[5])
4404 {
4405 case '\0':
4406 case '_':
4407 kind = ADA_OBJECT_RENAMING;
4408 break;
4409 case 'E':
4410 kind = ADA_EXCEPTION_RENAMING;
4411 break;
4412 case 'P':
4413 kind = ADA_PACKAGE_RENAMING;
4414 break;
4415 case 'S':
4416 kind = ADA_SUBPROGRAM_RENAMING;
4417 break;
4418 default:
4419 return ADA_NOT_RENAMING;
4420 }
4421
4422 info = TYPE_FIELD_NAME (type, 0);
4423 if (info == NULL)
4424 return ADA_NOT_RENAMING;
4425 if (renamed_entity != NULL)
4426 *renamed_entity = info;
4427 suffix = strstr (info, "___XE");
4428 if (renaming_expr != NULL)
4429 *renaming_expr = suffix + 5;
4430 if (suffix == NULL || suffix == info)
4431 return ADA_NOT_RENAMING;
4432 if (len != NULL)
4433 *len = suffix - info;
4434 return kind;
4435 }
4436
4437 /* Compute the value of the given RENAMING_SYM, which is expected to
4438 be a symbol encoding a renaming expression. BLOCK is the block
4439 used to evaluate the renaming. */
4440
4441 static struct value *
4442 ada_read_renaming_var_value (struct symbol *renaming_sym,
4443 const struct block *block)
4444 {
4445 const char *sym_name;
4446
4447 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4448 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4449 return evaluate_expression (expr.get ());
4450 }
4451 \f
4452
4453 /* Evaluation: Function Calls */
4454
4455 /* Return an lvalue containing the value VAL. This is the identity on
4456 lvalues, and otherwise has the side-effect of allocating memory
4457 in the inferior where a copy of the value contents is copied. */
4458
4459 static struct value *
4460 ensure_lval (struct value *val)
4461 {
4462 if (VALUE_LVAL (val) == not_lval
4463 || VALUE_LVAL (val) == lval_internalvar)
4464 {
4465 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4466 const CORE_ADDR addr =
4467 value_as_long (value_allocate_space_in_inferior (len));
4468
4469 VALUE_LVAL (val) = lval_memory;
4470 set_value_address (val, addr);
4471 write_memory (addr, value_contents (val), len);
4472 }
4473
4474 return val;
4475 }
4476
4477 /* Return the value ACTUAL, converted to be an appropriate value for a
4478 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4479 allocating any necessary descriptors (fat pointers), or copies of
4480 values not residing in memory, updating it as needed. */
4481
4482 struct value *
4483 ada_convert_actual (struct value *actual, struct type *formal_type0)
4484 {
4485 struct type *actual_type = ada_check_typedef (value_type (actual));
4486 struct type *formal_type = ada_check_typedef (formal_type0);
4487 struct type *formal_target =
4488 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4489 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4490 struct type *actual_target =
4491 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4492 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4493
4494 if (ada_is_array_descriptor_type (formal_target)
4495 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4496 return make_array_descriptor (formal_type, actual);
4497 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4498 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4499 {
4500 struct value *result;
4501
4502 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4503 && ada_is_array_descriptor_type (actual_target))
4504 result = desc_data (actual);
4505 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4506 {
4507 if (VALUE_LVAL (actual) != lval_memory)
4508 {
4509 struct value *val;
4510
4511 actual_type = ada_check_typedef (value_type (actual));
4512 val = allocate_value (actual_type);
4513 memcpy ((char *) value_contents_raw (val),
4514 (char *) value_contents (actual),
4515 TYPE_LENGTH (actual_type));
4516 actual = ensure_lval (val);
4517 }
4518 result = value_addr (actual);
4519 }
4520 else
4521 return actual;
4522 return value_cast_pointers (formal_type, result, 0);
4523 }
4524 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4525 return ada_value_ind (actual);
4526 else if (ada_is_aligner_type (formal_type))
4527 {
4528 /* We need to turn this parameter into an aligner type
4529 as well. */
4530 struct value *aligner = allocate_value (formal_type);
4531 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4532
4533 value_assign_to_component (aligner, component, actual);
4534 return aligner;
4535 }
4536
4537 return actual;
4538 }
4539
4540 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4541 type TYPE. This is usually an inefficient no-op except on some targets
4542 (such as AVR) where the representation of a pointer and an address
4543 differs. */
4544
4545 static CORE_ADDR
4546 value_pointer (struct value *value, struct type *type)
4547 {
4548 struct gdbarch *gdbarch = get_type_arch (type);
4549 unsigned len = TYPE_LENGTH (type);
4550 gdb_byte *buf = (gdb_byte *) alloca (len);
4551 CORE_ADDR addr;
4552
4553 addr = value_address (value);
4554 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4555 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4556 return addr;
4557 }
4558
4559
4560 /* Push a descriptor of type TYPE for array value ARR on the stack at
4561 *SP, updating *SP to reflect the new descriptor. Return either
4562 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4563 to-descriptor type rather than a descriptor type), a struct value *
4564 representing a pointer to this descriptor. */
4565
4566 static struct value *
4567 make_array_descriptor (struct type *type, struct value *arr)
4568 {
4569 struct type *bounds_type = desc_bounds_type (type);
4570 struct type *desc_type = desc_base_type (type);
4571 struct value *descriptor = allocate_value (desc_type);
4572 struct value *bounds = allocate_value (bounds_type);
4573 int i;
4574
4575 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4576 i > 0; i -= 1)
4577 {
4578 modify_field (value_type (bounds), value_contents_writeable (bounds),
4579 ada_array_bound (arr, i, 0),
4580 desc_bound_bitpos (bounds_type, i, 0),
4581 desc_bound_bitsize (bounds_type, i, 0));
4582 modify_field (value_type (bounds), value_contents_writeable (bounds),
4583 ada_array_bound (arr, i, 1),
4584 desc_bound_bitpos (bounds_type, i, 1),
4585 desc_bound_bitsize (bounds_type, i, 1));
4586 }
4587
4588 bounds = ensure_lval (bounds);
4589
4590 modify_field (value_type (descriptor),
4591 value_contents_writeable (descriptor),
4592 value_pointer (ensure_lval (arr),
4593 TYPE_FIELD_TYPE (desc_type, 0)),
4594 fat_pntr_data_bitpos (desc_type),
4595 fat_pntr_data_bitsize (desc_type));
4596
4597 modify_field (value_type (descriptor),
4598 value_contents_writeable (descriptor),
4599 value_pointer (bounds,
4600 TYPE_FIELD_TYPE (desc_type, 1)),
4601 fat_pntr_bounds_bitpos (desc_type),
4602 fat_pntr_bounds_bitsize (desc_type));
4603
4604 descriptor = ensure_lval (descriptor);
4605
4606 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4607 return value_addr (descriptor);
4608 else
4609 return descriptor;
4610 }
4611 \f
4612 /* Symbol Cache Module */
4613
4614 /* Performance measurements made as of 2010-01-15 indicate that
4615 this cache does bring some noticeable improvements. Depending
4616 on the type of entity being printed, the cache can make it as much
4617 as an order of magnitude faster than without it.
4618
4619 The descriptive type DWARF extension has significantly reduced
4620 the need for this cache, at least when DWARF is being used. However,
4621 even in this case, some expensive name-based symbol searches are still
4622 sometimes necessary - to find an XVZ variable, mostly. */
4623
4624 /* Initialize the contents of SYM_CACHE. */
4625
4626 static void
4627 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4628 {
4629 obstack_init (&sym_cache->cache_space);
4630 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4631 }
4632
4633 /* Free the memory used by SYM_CACHE. */
4634
4635 static void
4636 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4637 {
4638 obstack_free (&sym_cache->cache_space, NULL);
4639 xfree (sym_cache);
4640 }
4641
4642 /* Return the symbol cache associated to the given program space PSPACE.
4643 If not allocated for this PSPACE yet, allocate and initialize one. */
4644
4645 static struct ada_symbol_cache *
4646 ada_get_symbol_cache (struct program_space *pspace)
4647 {
4648 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4649
4650 if (pspace_data->sym_cache == NULL)
4651 {
4652 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4653 ada_init_symbol_cache (pspace_data->sym_cache);
4654 }
4655
4656 return pspace_data->sym_cache;
4657 }
4658
4659 /* Clear all entries from the symbol cache. */
4660
4661 static void
4662 ada_clear_symbol_cache (void)
4663 {
4664 struct ada_symbol_cache *sym_cache
4665 = ada_get_symbol_cache (current_program_space);
4666
4667 obstack_free (&sym_cache->cache_space, NULL);
4668 ada_init_symbol_cache (sym_cache);
4669 }
4670
4671 /* Search our cache for an entry matching NAME and DOMAIN.
4672 Return it if found, or NULL otherwise. */
4673
4674 static struct cache_entry **
4675 find_entry (const char *name, domain_enum domain)
4676 {
4677 struct ada_symbol_cache *sym_cache
4678 = ada_get_symbol_cache (current_program_space);
4679 int h = msymbol_hash (name) % HASH_SIZE;
4680 struct cache_entry **e;
4681
4682 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4683 {
4684 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4685 return e;
4686 }
4687 return NULL;
4688 }
4689
4690 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4691 Return 1 if found, 0 otherwise.
4692
4693 If an entry was found and SYM is not NULL, set *SYM to the entry's
4694 SYM. Same principle for BLOCK if not NULL. */
4695
4696 static int
4697 lookup_cached_symbol (const char *name, domain_enum domain,
4698 struct symbol **sym, const struct block **block)
4699 {
4700 struct cache_entry **e = find_entry (name, domain);
4701
4702 if (e == NULL)
4703 return 0;
4704 if (sym != NULL)
4705 *sym = (*e)->sym;
4706 if (block != NULL)
4707 *block = (*e)->block;
4708 return 1;
4709 }
4710
4711 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4712 in domain DOMAIN, save this result in our symbol cache. */
4713
4714 static void
4715 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4716 const struct block *block)
4717 {
4718 struct ada_symbol_cache *sym_cache
4719 = ada_get_symbol_cache (current_program_space);
4720 int h;
4721 char *copy;
4722 struct cache_entry *e;
4723
4724 /* Symbols for builtin types don't have a block.
4725 For now don't cache such symbols. */
4726 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4727 return;
4728
4729 /* If the symbol is a local symbol, then do not cache it, as a search
4730 for that symbol depends on the context. To determine whether
4731 the symbol is local or not, we check the block where we found it
4732 against the global and static blocks of its associated symtab. */
4733 if (sym
4734 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4735 GLOBAL_BLOCK) != block
4736 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4737 STATIC_BLOCK) != block)
4738 return;
4739
4740 h = msymbol_hash (name) % HASH_SIZE;
4741 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4742 e->next = sym_cache->root[h];
4743 sym_cache->root[h] = e;
4744 e->name = copy
4745 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4746 strcpy (copy, name);
4747 e->sym = sym;
4748 e->domain = domain;
4749 e->block = block;
4750 }
4751 \f
4752 /* Symbol Lookup */
4753
4754 /* Return the symbol name match type that should be used used when
4755 searching for all symbols matching LOOKUP_NAME.
4756
4757 LOOKUP_NAME is expected to be a symbol name after transformation
4758 for Ada lookups. */
4759
4760 static symbol_name_match_type
4761 name_match_type_from_name (const char *lookup_name)
4762 {
4763 return (strstr (lookup_name, "__") == NULL
4764 ? symbol_name_match_type::WILD
4765 : symbol_name_match_type::FULL);
4766 }
4767
4768 /* Return the result of a standard (literal, C-like) lookup of NAME in
4769 given DOMAIN, visible from lexical block BLOCK. */
4770
4771 static struct symbol *
4772 standard_lookup (const char *name, const struct block *block,
4773 domain_enum domain)
4774 {
4775 /* Initialize it just to avoid a GCC false warning. */
4776 struct block_symbol sym = {NULL, NULL};
4777
4778 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4779 return sym.symbol;
4780 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4781 cache_symbol (name, domain, sym.symbol, sym.block);
4782 return sym.symbol;
4783 }
4784
4785
4786 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4787 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4788 since they contend in overloading in the same way. */
4789 static int
4790 is_nonfunction (struct block_symbol syms[], int n)
4791 {
4792 int i;
4793
4794 for (i = 0; i < n; i += 1)
4795 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4796 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4797 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4798 return 1;
4799
4800 return 0;
4801 }
4802
4803 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4804 struct types. Otherwise, they may not. */
4805
4806 static int
4807 equiv_types (struct type *type0, struct type *type1)
4808 {
4809 if (type0 == type1)
4810 return 1;
4811 if (type0 == NULL || type1 == NULL
4812 || TYPE_CODE (type0) != TYPE_CODE (type1))
4813 return 0;
4814 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4815 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4816 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4817 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4818 return 1;
4819
4820 return 0;
4821 }
4822
4823 /* True iff SYM0 represents the same entity as SYM1, or one that is
4824 no more defined than that of SYM1. */
4825
4826 static int
4827 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4828 {
4829 if (sym0 == sym1)
4830 return 1;
4831 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4832 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4833 return 0;
4834
4835 switch (SYMBOL_CLASS (sym0))
4836 {
4837 case LOC_UNDEF:
4838 return 1;
4839 case LOC_TYPEDEF:
4840 {
4841 struct type *type0 = SYMBOL_TYPE (sym0);
4842 struct type *type1 = SYMBOL_TYPE (sym1);
4843 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4844 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4845 int len0 = strlen (name0);
4846
4847 return
4848 TYPE_CODE (type0) == TYPE_CODE (type1)
4849 && (equiv_types (type0, type1)
4850 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4851 && startswith (name1 + len0, "___XV")));
4852 }
4853 case LOC_CONST:
4854 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4855 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4856 default:
4857 return 0;
4858 }
4859 }
4860
4861 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4862 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4863
4864 static void
4865 add_defn_to_vec (struct obstack *obstackp,
4866 struct symbol *sym,
4867 const struct block *block)
4868 {
4869 int i;
4870 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4871
4872 /* Do not try to complete stub types, as the debugger is probably
4873 already scanning all symbols matching a certain name at the
4874 time when this function is called. Trying to replace the stub
4875 type by its associated full type will cause us to restart a scan
4876 which may lead to an infinite recursion. Instead, the client
4877 collecting the matching symbols will end up collecting several
4878 matches, with at least one of them complete. It can then filter
4879 out the stub ones if needed. */
4880
4881 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4882 {
4883 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4884 return;
4885 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4886 {
4887 prevDefns[i].symbol = sym;
4888 prevDefns[i].block = block;
4889 return;
4890 }
4891 }
4892
4893 {
4894 struct block_symbol info;
4895
4896 info.symbol = sym;
4897 info.block = block;
4898 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4899 }
4900 }
4901
4902 /* Number of block_symbol structures currently collected in current vector in
4903 OBSTACKP. */
4904
4905 static int
4906 num_defns_collected (struct obstack *obstackp)
4907 {
4908 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4909 }
4910
4911 /* Vector of block_symbol structures currently collected in current vector in
4912 OBSTACKP. If FINISH, close off the vector and return its final address. */
4913
4914 static struct block_symbol *
4915 defns_collected (struct obstack *obstackp, int finish)
4916 {
4917 if (finish)
4918 return (struct block_symbol *) obstack_finish (obstackp);
4919 else
4920 return (struct block_symbol *) obstack_base (obstackp);
4921 }
4922
4923 /* Return a bound minimal symbol matching NAME according to Ada
4924 decoding rules. Returns an invalid symbol if there is no such
4925 minimal symbol. Names prefixed with "standard__" are handled
4926 specially: "standard__" is first stripped off, and only static and
4927 global symbols are searched. */
4928
4929 struct bound_minimal_symbol
4930 ada_lookup_simple_minsym (const char *name)
4931 {
4932 struct bound_minimal_symbol result;
4933 struct objfile *objfile;
4934 struct minimal_symbol *msymbol;
4935
4936 memset (&result, 0, sizeof (result));
4937
4938 symbol_name_match_type match_type = name_match_type_from_name (name);
4939 lookup_name_info lookup_name (name, match_type);
4940
4941 symbol_name_matcher_ftype *match_name
4942 = ada_get_symbol_name_matcher (lookup_name);
4943
4944 ALL_MSYMBOLS (objfile, msymbol)
4945 {
4946 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4947 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4948 {
4949 result.minsym = msymbol;
4950 result.objfile = objfile;
4951 break;
4952 }
4953 }
4954
4955 return result;
4956 }
4957
4958 /* For all subprograms that statically enclose the subprogram of the
4959 selected frame, add symbols matching identifier NAME in DOMAIN
4960 and their blocks to the list of data in OBSTACKP, as for
4961 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4962 with a wildcard prefix. */
4963
4964 static void
4965 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4966 const lookup_name_info &lookup_name,
4967 domain_enum domain)
4968 {
4969 }
4970
4971 /* True if TYPE is definitely an artificial type supplied to a symbol
4972 for which no debugging information was given in the symbol file. */
4973
4974 static int
4975 is_nondebugging_type (struct type *type)
4976 {
4977 const char *name = ada_type_name (type);
4978
4979 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4980 }
4981
4982 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4983 that are deemed "identical" for practical purposes.
4984
4985 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4986 types and that their number of enumerals is identical (in other
4987 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4988
4989 static int
4990 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4991 {
4992 int i;
4993
4994 /* The heuristic we use here is fairly conservative. We consider
4995 that 2 enumerate types are identical if they have the same
4996 number of enumerals and that all enumerals have the same
4997 underlying value and name. */
4998
4999 /* All enums in the type should have an identical underlying value. */
5000 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5001 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5002 return 0;
5003
5004 /* All enumerals should also have the same name (modulo any numerical
5005 suffix). */
5006 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5007 {
5008 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5009 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5010 int len_1 = strlen (name_1);
5011 int len_2 = strlen (name_2);
5012
5013 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5014 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5015 if (len_1 != len_2
5016 || strncmp (TYPE_FIELD_NAME (type1, i),
5017 TYPE_FIELD_NAME (type2, i),
5018 len_1) != 0)
5019 return 0;
5020 }
5021
5022 return 1;
5023 }
5024
5025 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5026 that are deemed "identical" for practical purposes. Sometimes,
5027 enumerals are not strictly identical, but their types are so similar
5028 that they can be considered identical.
5029
5030 For instance, consider the following code:
5031
5032 type Color is (Black, Red, Green, Blue, White);
5033 type RGB_Color is new Color range Red .. Blue;
5034
5035 Type RGB_Color is a subrange of an implicit type which is a copy
5036 of type Color. If we call that implicit type RGB_ColorB ("B" is
5037 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5038 As a result, when an expression references any of the enumeral
5039 by name (Eg. "print green"), the expression is technically
5040 ambiguous and the user should be asked to disambiguate. But
5041 doing so would only hinder the user, since it wouldn't matter
5042 what choice he makes, the outcome would always be the same.
5043 So, for practical purposes, we consider them as the same. */
5044
5045 static int
5046 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5047 {
5048 int i;
5049
5050 /* Before performing a thorough comparison check of each type,
5051 we perform a series of inexpensive checks. We expect that these
5052 checks will quickly fail in the vast majority of cases, and thus
5053 help prevent the unnecessary use of a more expensive comparison.
5054 Said comparison also expects us to make some of these checks
5055 (see ada_identical_enum_types_p). */
5056
5057 /* Quick check: All symbols should have an enum type. */
5058 for (i = 0; i < syms.size (); i++)
5059 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5060 return 0;
5061
5062 /* Quick check: They should all have the same value. */
5063 for (i = 1; i < syms.size (); i++)
5064 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5065 return 0;
5066
5067 /* Quick check: They should all have the same number of enumerals. */
5068 for (i = 1; i < syms.size (); i++)
5069 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5070 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5071 return 0;
5072
5073 /* All the sanity checks passed, so we might have a set of
5074 identical enumeration types. Perform a more complete
5075 comparison of the type of each symbol. */
5076 for (i = 1; i < syms.size (); i++)
5077 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5078 SYMBOL_TYPE (syms[0].symbol)))
5079 return 0;
5080
5081 return 1;
5082 }
5083
5084 /* Remove any non-debugging symbols in SYMS that definitely
5085 duplicate other symbols in the list (The only case I know of where
5086 this happens is when object files containing stabs-in-ecoff are
5087 linked with files containing ordinary ecoff debugging symbols (or no
5088 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5089 Returns the number of items in the modified list. */
5090
5091 static int
5092 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5093 {
5094 int i, j;
5095
5096 /* We should never be called with less than 2 symbols, as there
5097 cannot be any extra symbol in that case. But it's easy to
5098 handle, since we have nothing to do in that case. */
5099 if (syms->size () < 2)
5100 return syms->size ();
5101
5102 i = 0;
5103 while (i < syms->size ())
5104 {
5105 int remove_p = 0;
5106
5107 /* If two symbols have the same name and one of them is a stub type,
5108 the get rid of the stub. */
5109
5110 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5111 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5112 {
5113 for (j = 0; j < syms->size (); j++)
5114 {
5115 if (j != i
5116 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5117 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5118 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5119 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5120 remove_p = 1;
5121 }
5122 }
5123
5124 /* Two symbols with the same name, same class and same address
5125 should be identical. */
5126
5127 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5128 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5129 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5130 {
5131 for (j = 0; j < syms->size (); j += 1)
5132 {
5133 if (i != j
5134 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5135 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5136 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5137 && SYMBOL_CLASS ((*syms)[i].symbol)
5138 == SYMBOL_CLASS ((*syms)[j].symbol)
5139 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5140 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5141 remove_p = 1;
5142 }
5143 }
5144
5145 if (remove_p)
5146 syms->erase (syms->begin () + i);
5147
5148 i += 1;
5149 }
5150
5151 /* If all the remaining symbols are identical enumerals, then
5152 just keep the first one and discard the rest.
5153
5154 Unlike what we did previously, we do not discard any entry
5155 unless they are ALL identical. This is because the symbol
5156 comparison is not a strict comparison, but rather a practical
5157 comparison. If all symbols are considered identical, then
5158 we can just go ahead and use the first one and discard the rest.
5159 But if we cannot reduce the list to a single element, we have
5160 to ask the user to disambiguate anyways. And if we have to
5161 present a multiple-choice menu, it's less confusing if the list
5162 isn't missing some choices that were identical and yet distinct. */
5163 if (symbols_are_identical_enums (*syms))
5164 syms->resize (1);
5165
5166 return syms->size ();
5167 }
5168
5169 /* Given a type that corresponds to a renaming entity, use the type name
5170 to extract the scope (package name or function name, fully qualified,
5171 and following the GNAT encoding convention) where this renaming has been
5172 defined. */
5173
5174 static std::string
5175 xget_renaming_scope (struct type *renaming_type)
5176 {
5177 /* The renaming types adhere to the following convention:
5178 <scope>__<rename>___<XR extension>.
5179 So, to extract the scope, we search for the "___XR" extension,
5180 and then backtrack until we find the first "__". */
5181
5182 const char *name = TYPE_NAME (renaming_type);
5183 const char *suffix = strstr (name, "___XR");
5184 const char *last;
5185
5186 /* Now, backtrack a bit until we find the first "__". Start looking
5187 at suffix - 3, as the <rename> part is at least one character long. */
5188
5189 for (last = suffix - 3; last > name; last--)
5190 if (last[0] == '_' && last[1] == '_')
5191 break;
5192
5193 /* Make a copy of scope and return it. */
5194 return std::string (name, last);
5195 }
5196
5197 /* Return nonzero if NAME corresponds to a package name. */
5198
5199 static int
5200 is_package_name (const char *name)
5201 {
5202 /* Here, We take advantage of the fact that no symbols are generated
5203 for packages, while symbols are generated for each function.
5204 So the condition for NAME represent a package becomes equivalent
5205 to NAME not existing in our list of symbols. There is only one
5206 small complication with library-level functions (see below). */
5207
5208 char *fun_name;
5209
5210 /* If it is a function that has not been defined at library level,
5211 then we should be able to look it up in the symbols. */
5212 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5213 return 0;
5214
5215 /* Library-level function names start with "_ada_". See if function
5216 "_ada_" followed by NAME can be found. */
5217
5218 /* Do a quick check that NAME does not contain "__", since library-level
5219 functions names cannot contain "__" in them. */
5220 if (strstr (name, "__") != NULL)
5221 return 0;
5222
5223 fun_name = xstrprintf ("_ada_%s", name);
5224
5225 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5226 }
5227
5228 /* Return nonzero if SYM corresponds to a renaming entity that is
5229 not visible from FUNCTION_NAME. */
5230
5231 static int
5232 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5233 {
5234 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5235 return 0;
5236
5237 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5238
5239 /* If the rename has been defined in a package, then it is visible. */
5240 if (is_package_name (scope.c_str ()))
5241 return 0;
5242
5243 /* Check that the rename is in the current function scope by checking
5244 that its name starts with SCOPE. */
5245
5246 /* If the function name starts with "_ada_", it means that it is
5247 a library-level function. Strip this prefix before doing the
5248 comparison, as the encoding for the renaming does not contain
5249 this prefix. */
5250 if (startswith (function_name, "_ada_"))
5251 function_name += 5;
5252
5253 return !startswith (function_name, scope.c_str ());
5254 }
5255
5256 /* Remove entries from SYMS that corresponds to a renaming entity that
5257 is not visible from the function associated with CURRENT_BLOCK or
5258 that is superfluous due to the presence of more specific renaming
5259 information. Places surviving symbols in the initial entries of
5260 SYMS and returns the number of surviving symbols.
5261
5262 Rationale:
5263 First, in cases where an object renaming is implemented as a
5264 reference variable, GNAT may produce both the actual reference
5265 variable and the renaming encoding. In this case, we discard the
5266 latter.
5267
5268 Second, GNAT emits a type following a specified encoding for each renaming
5269 entity. Unfortunately, STABS currently does not support the definition
5270 of types that are local to a given lexical block, so all renamings types
5271 are emitted at library level. As a consequence, if an application
5272 contains two renaming entities using the same name, and a user tries to
5273 print the value of one of these entities, the result of the ada symbol
5274 lookup will also contain the wrong renaming type.
5275
5276 This function partially covers for this limitation by attempting to
5277 remove from the SYMS list renaming symbols that should be visible
5278 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5279 method with the current information available. The implementation
5280 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5281
5282 - When the user tries to print a rename in a function while there
5283 is another rename entity defined in a package: Normally, the
5284 rename in the function has precedence over the rename in the
5285 package, so the latter should be removed from the list. This is
5286 currently not the case.
5287
5288 - This function will incorrectly remove valid renames if
5289 the CURRENT_BLOCK corresponds to a function which symbol name
5290 has been changed by an "Export" pragma. As a consequence,
5291 the user will be unable to print such rename entities. */
5292
5293 static int
5294 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5295 const struct block *current_block)
5296 {
5297 struct symbol *current_function;
5298 const char *current_function_name;
5299 int i;
5300 int is_new_style_renaming;
5301
5302 /* If there is both a renaming foo___XR... encoded as a variable and
5303 a simple variable foo in the same block, discard the latter.
5304 First, zero out such symbols, then compress. */
5305 is_new_style_renaming = 0;
5306 for (i = 0; i < syms->size (); i += 1)
5307 {
5308 struct symbol *sym = (*syms)[i].symbol;
5309 const struct block *block = (*syms)[i].block;
5310 const char *name;
5311 const char *suffix;
5312
5313 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5314 continue;
5315 name = SYMBOL_LINKAGE_NAME (sym);
5316 suffix = strstr (name, "___XR");
5317
5318 if (suffix != NULL)
5319 {
5320 int name_len = suffix - name;
5321 int j;
5322
5323 is_new_style_renaming = 1;
5324 for (j = 0; j < syms->size (); j += 1)
5325 if (i != j && (*syms)[j].symbol != NULL
5326 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5327 name_len) == 0
5328 && block == (*syms)[j].block)
5329 (*syms)[j].symbol = NULL;
5330 }
5331 }
5332 if (is_new_style_renaming)
5333 {
5334 int j, k;
5335
5336 for (j = k = 0; j < syms->size (); j += 1)
5337 if ((*syms)[j].symbol != NULL)
5338 {
5339 (*syms)[k] = (*syms)[j];
5340 k += 1;
5341 }
5342 return k;
5343 }
5344
5345 /* Extract the function name associated to CURRENT_BLOCK.
5346 Abort if unable to do so. */
5347
5348 if (current_block == NULL)
5349 return syms->size ();
5350
5351 current_function = block_linkage_function (current_block);
5352 if (current_function == NULL)
5353 return syms->size ();
5354
5355 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5356 if (current_function_name == NULL)
5357 return syms->size ();
5358
5359 /* Check each of the symbols, and remove it from the list if it is
5360 a type corresponding to a renaming that is out of the scope of
5361 the current block. */
5362
5363 i = 0;
5364 while (i < syms->size ())
5365 {
5366 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5367 == ADA_OBJECT_RENAMING
5368 && old_renaming_is_invisible ((*syms)[i].symbol,
5369 current_function_name))
5370 syms->erase (syms->begin () + i);
5371 else
5372 i += 1;
5373 }
5374
5375 return syms->size ();
5376 }
5377
5378 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5379 whose name and domain match NAME and DOMAIN respectively.
5380 If no match was found, then extend the search to "enclosing"
5381 routines (in other words, if we're inside a nested function,
5382 search the symbols defined inside the enclosing functions).
5383 If WILD_MATCH_P is nonzero, perform the naming matching in
5384 "wild" mode (see function "wild_match" for more info).
5385
5386 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5387
5388 static void
5389 ada_add_local_symbols (struct obstack *obstackp,
5390 const lookup_name_info &lookup_name,
5391 const struct block *block, domain_enum domain)
5392 {
5393 int block_depth = 0;
5394
5395 while (block != NULL)
5396 {
5397 block_depth += 1;
5398 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5399
5400 /* If we found a non-function match, assume that's the one. */
5401 if (is_nonfunction (defns_collected (obstackp, 0),
5402 num_defns_collected (obstackp)))
5403 return;
5404
5405 block = BLOCK_SUPERBLOCK (block);
5406 }
5407
5408 /* If no luck so far, try to find NAME as a local symbol in some lexically
5409 enclosing subprogram. */
5410 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5411 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5412 }
5413
5414 /* An object of this type is used as the user_data argument when
5415 calling the map_matching_symbols method. */
5416
5417 struct match_data
5418 {
5419 struct objfile *objfile;
5420 struct obstack *obstackp;
5421 struct symbol *arg_sym;
5422 int found_sym;
5423 };
5424
5425 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5426 to a list of symbols. DATA0 is a pointer to a struct match_data *
5427 containing the obstack that collects the symbol list, the file that SYM
5428 must come from, a flag indicating whether a non-argument symbol has
5429 been found in the current block, and the last argument symbol
5430 passed in SYM within the current block (if any). When SYM is null,
5431 marking the end of a block, the argument symbol is added if no
5432 other has been found. */
5433
5434 static int
5435 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5436 {
5437 struct match_data *data = (struct match_data *) data0;
5438
5439 if (sym == NULL)
5440 {
5441 if (!data->found_sym && data->arg_sym != NULL)
5442 add_defn_to_vec (data->obstackp,
5443 fixup_symbol_section (data->arg_sym, data->objfile),
5444 block);
5445 data->found_sym = 0;
5446 data->arg_sym = NULL;
5447 }
5448 else
5449 {
5450 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5451 return 0;
5452 else if (SYMBOL_IS_ARGUMENT (sym))
5453 data->arg_sym = sym;
5454 else
5455 {
5456 data->found_sym = 1;
5457 add_defn_to_vec (data->obstackp,
5458 fixup_symbol_section (sym, data->objfile),
5459 block);
5460 }
5461 }
5462 return 0;
5463 }
5464
5465 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5466 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5467 symbols to OBSTACKP. Return whether we found such symbols. */
5468
5469 static int
5470 ada_add_block_renamings (struct obstack *obstackp,
5471 const struct block *block,
5472 const lookup_name_info &lookup_name,
5473 domain_enum domain)
5474 {
5475 struct using_direct *renaming;
5476 int defns_mark = num_defns_collected (obstackp);
5477
5478 symbol_name_matcher_ftype *name_match
5479 = ada_get_symbol_name_matcher (lookup_name);
5480
5481 for (renaming = block_using (block);
5482 renaming != NULL;
5483 renaming = renaming->next)
5484 {
5485 const char *r_name;
5486
5487 /* Avoid infinite recursions: skip this renaming if we are actually
5488 already traversing it.
5489
5490 Currently, symbol lookup in Ada don't use the namespace machinery from
5491 C++/Fortran support: skip namespace imports that use them. */
5492 if (renaming->searched
5493 || (renaming->import_src != NULL
5494 && renaming->import_src[0] != '\0')
5495 || (renaming->import_dest != NULL
5496 && renaming->import_dest[0] != '\0'))
5497 continue;
5498 renaming->searched = 1;
5499
5500 /* TODO: here, we perform another name-based symbol lookup, which can
5501 pull its own multiple overloads. In theory, we should be able to do
5502 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5503 not a simple name. But in order to do this, we would need to enhance
5504 the DWARF reader to associate a symbol to this renaming, instead of a
5505 name. So, for now, we do something simpler: re-use the C++/Fortran
5506 namespace machinery. */
5507 r_name = (renaming->alias != NULL
5508 ? renaming->alias
5509 : renaming->declaration);
5510 if (name_match (r_name, lookup_name, NULL))
5511 {
5512 lookup_name_info decl_lookup_name (renaming->declaration,
5513 lookup_name.match_type ());
5514 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5515 1, NULL);
5516 }
5517 renaming->searched = 0;
5518 }
5519 return num_defns_collected (obstackp) != defns_mark;
5520 }
5521
5522 /* Implements compare_names, but only applying the comparision using
5523 the given CASING. */
5524
5525 static int
5526 compare_names_with_case (const char *string1, const char *string2,
5527 enum case_sensitivity casing)
5528 {
5529 while (*string1 != '\0' && *string2 != '\0')
5530 {
5531 char c1, c2;
5532
5533 if (isspace (*string1) || isspace (*string2))
5534 return strcmp_iw_ordered (string1, string2);
5535
5536 if (casing == case_sensitive_off)
5537 {
5538 c1 = tolower (*string1);
5539 c2 = tolower (*string2);
5540 }
5541 else
5542 {
5543 c1 = *string1;
5544 c2 = *string2;
5545 }
5546 if (c1 != c2)
5547 break;
5548
5549 string1 += 1;
5550 string2 += 1;
5551 }
5552
5553 switch (*string1)
5554 {
5555 case '(':
5556 return strcmp_iw_ordered (string1, string2);
5557 case '_':
5558 if (*string2 == '\0')
5559 {
5560 if (is_name_suffix (string1))
5561 return 0;
5562 else
5563 return 1;
5564 }
5565 /* FALLTHROUGH */
5566 default:
5567 if (*string2 == '(')
5568 return strcmp_iw_ordered (string1, string2);
5569 else
5570 {
5571 if (casing == case_sensitive_off)
5572 return tolower (*string1) - tolower (*string2);
5573 else
5574 return *string1 - *string2;
5575 }
5576 }
5577 }
5578
5579 /* Compare STRING1 to STRING2, with results as for strcmp.
5580 Compatible with strcmp_iw_ordered in that...
5581
5582 strcmp_iw_ordered (STRING1, STRING2) <= 0
5583
5584 ... implies...
5585
5586 compare_names (STRING1, STRING2) <= 0
5587
5588 (they may differ as to what symbols compare equal). */
5589
5590 static int
5591 compare_names (const char *string1, const char *string2)
5592 {
5593 int result;
5594
5595 /* Similar to what strcmp_iw_ordered does, we need to perform
5596 a case-insensitive comparison first, and only resort to
5597 a second, case-sensitive, comparison if the first one was
5598 not sufficient to differentiate the two strings. */
5599
5600 result = compare_names_with_case (string1, string2, case_sensitive_off);
5601 if (result == 0)
5602 result = compare_names_with_case (string1, string2, case_sensitive_on);
5603
5604 return result;
5605 }
5606
5607 /* Convenience function to get at the Ada encoded lookup name for
5608 LOOKUP_NAME, as a C string. */
5609
5610 static const char *
5611 ada_lookup_name (const lookup_name_info &lookup_name)
5612 {
5613 return lookup_name.ada ().lookup_name ().c_str ();
5614 }
5615
5616 /* Add to OBSTACKP all non-local symbols whose name and domain match
5617 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5618 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5619 symbols otherwise. */
5620
5621 static void
5622 add_nonlocal_symbols (struct obstack *obstackp,
5623 const lookup_name_info &lookup_name,
5624 domain_enum domain, int global)
5625 {
5626 struct objfile *objfile;
5627 struct compunit_symtab *cu;
5628 struct match_data data;
5629
5630 memset (&data, 0, sizeof data);
5631 data.obstackp = obstackp;
5632
5633 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5634
5635 ALL_OBJFILES (objfile)
5636 {
5637 data.objfile = objfile;
5638
5639 if (is_wild_match)
5640 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5641 domain, global,
5642 aux_add_nonlocal_symbols, &data,
5643 symbol_name_match_type::WILD,
5644 NULL);
5645 else
5646 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5647 domain, global,
5648 aux_add_nonlocal_symbols, &data,
5649 symbol_name_match_type::FULL,
5650 compare_names);
5651
5652 ALL_OBJFILE_COMPUNITS (objfile, cu)
5653 {
5654 const struct block *global_block
5655 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5656
5657 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5658 domain))
5659 data.found_sym = 1;
5660 }
5661 }
5662
5663 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5664 {
5665 const char *name = ada_lookup_name (lookup_name);
5666 std::string name1 = std::string ("<_ada_") + name + '>';
5667
5668 ALL_OBJFILES (objfile)
5669 {
5670 data.objfile = objfile;
5671 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5672 domain, global,
5673 aux_add_nonlocal_symbols,
5674 &data,
5675 symbol_name_match_type::FULL,
5676 compare_names);
5677 }
5678 }
5679 }
5680
5681 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5682 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5683 returning the number of matches. Add these to OBSTACKP.
5684
5685 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5686 symbol match within the nest of blocks whose innermost member is BLOCK,
5687 is the one match returned (no other matches in that or
5688 enclosing blocks is returned). If there are any matches in or
5689 surrounding BLOCK, then these alone are returned.
5690
5691 Names prefixed with "standard__" are handled specially:
5692 "standard__" is first stripped off (by the lookup_name
5693 constructor), and only static and global symbols are searched.
5694
5695 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5696 to lookup global symbols. */
5697
5698 static void
5699 ada_add_all_symbols (struct obstack *obstackp,
5700 const struct block *block,
5701 const lookup_name_info &lookup_name,
5702 domain_enum domain,
5703 int full_search,
5704 int *made_global_lookup_p)
5705 {
5706 struct symbol *sym;
5707
5708 if (made_global_lookup_p)
5709 *made_global_lookup_p = 0;
5710
5711 /* Special case: If the user specifies a symbol name inside package
5712 Standard, do a non-wild matching of the symbol name without
5713 the "standard__" prefix. This was primarily introduced in order
5714 to allow the user to specifically access the standard exceptions
5715 using, for instance, Standard.Constraint_Error when Constraint_Error
5716 is ambiguous (due to the user defining its own Constraint_Error
5717 entity inside its program). */
5718 if (lookup_name.ada ().standard_p ())
5719 block = NULL;
5720
5721 /* Check the non-global symbols. If we have ANY match, then we're done. */
5722
5723 if (block != NULL)
5724 {
5725 if (full_search)
5726 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5727 else
5728 {
5729 /* In the !full_search case we're are being called by
5730 ada_iterate_over_symbols, and we don't want to search
5731 superblocks. */
5732 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5733 }
5734 if (num_defns_collected (obstackp) > 0 || !full_search)
5735 return;
5736 }
5737
5738 /* No non-global symbols found. Check our cache to see if we have
5739 already performed this search before. If we have, then return
5740 the same result. */
5741
5742 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5743 domain, &sym, &block))
5744 {
5745 if (sym != NULL)
5746 add_defn_to_vec (obstackp, sym, block);
5747 return;
5748 }
5749
5750 if (made_global_lookup_p)
5751 *made_global_lookup_p = 1;
5752
5753 /* Search symbols from all global blocks. */
5754
5755 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5756
5757 /* Now add symbols from all per-file blocks if we've gotten no hits
5758 (not strictly correct, but perhaps better than an error). */
5759
5760 if (num_defns_collected (obstackp) == 0)
5761 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5762 }
5763
5764 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5765 is non-zero, enclosing scope and in global scopes, returning the number of
5766 matches.
5767 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5768 found and the blocks and symbol tables (if any) in which they were
5769 found.
5770
5771 When full_search is non-zero, any non-function/non-enumeral
5772 symbol match within the nest of blocks whose innermost member is BLOCK,
5773 is the one match returned (no other matches in that or
5774 enclosing blocks is returned). If there are any matches in or
5775 surrounding BLOCK, then these alone are returned.
5776
5777 Names prefixed with "standard__" are handled specially: "standard__"
5778 is first stripped off, and only static and global symbols are searched. */
5779
5780 static int
5781 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5782 const struct block *block,
5783 domain_enum domain,
5784 std::vector<struct block_symbol> *results,
5785 int full_search)
5786 {
5787 int syms_from_global_search;
5788 int ndefns;
5789 int results_size;
5790 auto_obstack obstack;
5791
5792 ada_add_all_symbols (&obstack, block, lookup_name,
5793 domain, full_search, &syms_from_global_search);
5794
5795 ndefns = num_defns_collected (&obstack);
5796
5797 struct block_symbol *base = defns_collected (&obstack, 1);
5798 for (int i = 0; i < ndefns; ++i)
5799 results->push_back (base[i]);
5800
5801 ndefns = remove_extra_symbols (results);
5802
5803 if (ndefns == 0 && full_search && syms_from_global_search)
5804 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5805
5806 if (ndefns == 1 && full_search && syms_from_global_search)
5807 cache_symbol (ada_lookup_name (lookup_name), domain,
5808 (*results)[0].symbol, (*results)[0].block);
5809
5810 ndefns = remove_irrelevant_renamings (results, block);
5811
5812 return ndefns;
5813 }
5814
5815 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5816 in global scopes, returning the number of matches, and filling *RESULTS
5817 with (SYM,BLOCK) tuples.
5818
5819 See ada_lookup_symbol_list_worker for further details. */
5820
5821 int
5822 ada_lookup_symbol_list (const char *name, const struct block *block,
5823 domain_enum domain,
5824 std::vector<struct block_symbol> *results)
5825 {
5826 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5827 lookup_name_info lookup_name (name, name_match_type);
5828
5829 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5830 }
5831
5832 /* Implementation of the la_iterate_over_symbols method. */
5833
5834 static void
5835 ada_iterate_over_symbols
5836 (const struct block *block, const lookup_name_info &name,
5837 domain_enum domain,
5838 gdb::function_view<symbol_found_callback_ftype> callback)
5839 {
5840 int ndefs, i;
5841 std::vector<struct block_symbol> results;
5842
5843 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5844
5845 for (i = 0; i < ndefs; ++i)
5846 {
5847 if (!callback (results[i].symbol))
5848 break;
5849 }
5850 }
5851
5852 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5853 to 1, but choosing the first symbol found if there are multiple
5854 choices.
5855
5856 The result is stored in *INFO, which must be non-NULL.
5857 If no match is found, INFO->SYM is set to NULL. */
5858
5859 void
5860 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5861 domain_enum domain,
5862 struct block_symbol *info)
5863 {
5864 /* Since we already have an encoded name, wrap it in '<>' to force a
5865 verbatim match. Otherwise, if the name happens to not look like
5866 an encoded name (because it doesn't include a "__"),
5867 ada_lookup_name_info would re-encode/fold it again, and that
5868 would e.g., incorrectly lowercase object renaming names like
5869 "R28b" -> "r28b". */
5870 std::string verbatim = std::string ("<") + name + '>';
5871
5872 gdb_assert (info != NULL);
5873 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5874 }
5875
5876 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5877 scope and in global scopes, or NULL if none. NAME is folded and
5878 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5879 choosing the first symbol if there are multiple choices.
5880 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5881
5882 struct block_symbol
5883 ada_lookup_symbol (const char *name, const struct block *block0,
5884 domain_enum domain, int *is_a_field_of_this)
5885 {
5886 if (is_a_field_of_this != NULL)
5887 *is_a_field_of_this = 0;
5888
5889 std::vector<struct block_symbol> candidates;
5890 int n_candidates;
5891
5892 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5893
5894 if (n_candidates == 0)
5895 return {};
5896
5897 block_symbol info = candidates[0];
5898 info.symbol = fixup_symbol_section (info.symbol, NULL);
5899 return info;
5900 }
5901
5902 static struct block_symbol
5903 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5904 const char *name,
5905 const struct block *block,
5906 const domain_enum domain)
5907 {
5908 struct block_symbol sym;
5909
5910 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5911 if (sym.symbol != NULL)
5912 return sym;
5913
5914 /* If we haven't found a match at this point, try the primitive
5915 types. In other languages, this search is performed before
5916 searching for global symbols in order to short-circuit that
5917 global-symbol search if it happens that the name corresponds
5918 to a primitive type. But we cannot do the same in Ada, because
5919 it is perfectly legitimate for a program to declare a type which
5920 has the same name as a standard type. If looking up a type in
5921 that situation, we have traditionally ignored the primitive type
5922 in favor of user-defined types. This is why, unlike most other
5923 languages, we search the primitive types this late and only after
5924 having searched the global symbols without success. */
5925
5926 if (domain == VAR_DOMAIN)
5927 {
5928 struct gdbarch *gdbarch;
5929
5930 if (block == NULL)
5931 gdbarch = target_gdbarch ();
5932 else
5933 gdbarch = block_gdbarch (block);
5934 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5935 if (sym.symbol != NULL)
5936 return sym;
5937 }
5938
5939 return (struct block_symbol) {NULL, NULL};
5940 }
5941
5942
5943 /* True iff STR is a possible encoded suffix of a normal Ada name
5944 that is to be ignored for matching purposes. Suffixes of parallel
5945 names (e.g., XVE) are not included here. Currently, the possible suffixes
5946 are given by any of the regular expressions:
5947
5948 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5949 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5950 TKB [subprogram suffix for task bodies]
5951 _E[0-9]+[bs]$ [protected object entry suffixes]
5952 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5953
5954 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5955 match is performed. This sequence is used to differentiate homonyms,
5956 is an optional part of a valid name suffix. */
5957
5958 static int
5959 is_name_suffix (const char *str)
5960 {
5961 int k;
5962 const char *matching;
5963 const int len = strlen (str);
5964
5965 /* Skip optional leading __[0-9]+. */
5966
5967 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5968 {
5969 str += 3;
5970 while (isdigit (str[0]))
5971 str += 1;
5972 }
5973
5974 /* [.$][0-9]+ */
5975
5976 if (str[0] == '.' || str[0] == '$')
5977 {
5978 matching = str + 1;
5979 while (isdigit (matching[0]))
5980 matching += 1;
5981 if (matching[0] == '\0')
5982 return 1;
5983 }
5984
5985 /* ___[0-9]+ */
5986
5987 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5988 {
5989 matching = str + 3;
5990 while (isdigit (matching[0]))
5991 matching += 1;
5992 if (matching[0] == '\0')
5993 return 1;
5994 }
5995
5996 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5997
5998 if (strcmp (str, "TKB") == 0)
5999 return 1;
6000
6001 #if 0
6002 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6003 with a N at the end. Unfortunately, the compiler uses the same
6004 convention for other internal types it creates. So treating
6005 all entity names that end with an "N" as a name suffix causes
6006 some regressions. For instance, consider the case of an enumerated
6007 type. To support the 'Image attribute, it creates an array whose
6008 name ends with N.
6009 Having a single character like this as a suffix carrying some
6010 information is a bit risky. Perhaps we should change the encoding
6011 to be something like "_N" instead. In the meantime, do not do
6012 the following check. */
6013 /* Protected Object Subprograms */
6014 if (len == 1 && str [0] == 'N')
6015 return 1;
6016 #endif
6017
6018 /* _E[0-9]+[bs]$ */
6019 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6020 {
6021 matching = str + 3;
6022 while (isdigit (matching[0]))
6023 matching += 1;
6024 if ((matching[0] == 'b' || matching[0] == 's')
6025 && matching [1] == '\0')
6026 return 1;
6027 }
6028
6029 /* ??? We should not modify STR directly, as we are doing below. This
6030 is fine in this case, but may become problematic later if we find
6031 that this alternative did not work, and want to try matching
6032 another one from the begining of STR. Since we modified it, we
6033 won't be able to find the begining of the string anymore! */
6034 if (str[0] == 'X')
6035 {
6036 str += 1;
6037 while (str[0] != '_' && str[0] != '\0')
6038 {
6039 if (str[0] != 'n' && str[0] != 'b')
6040 return 0;
6041 str += 1;
6042 }
6043 }
6044
6045 if (str[0] == '\000')
6046 return 1;
6047
6048 if (str[0] == '_')
6049 {
6050 if (str[1] != '_' || str[2] == '\000')
6051 return 0;
6052 if (str[2] == '_')
6053 {
6054 if (strcmp (str + 3, "JM") == 0)
6055 return 1;
6056 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6057 the LJM suffix in favor of the JM one. But we will
6058 still accept LJM as a valid suffix for a reasonable
6059 amount of time, just to allow ourselves to debug programs
6060 compiled using an older version of GNAT. */
6061 if (strcmp (str + 3, "LJM") == 0)
6062 return 1;
6063 if (str[3] != 'X')
6064 return 0;
6065 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6066 || str[4] == 'U' || str[4] == 'P')
6067 return 1;
6068 if (str[4] == 'R' && str[5] != 'T')
6069 return 1;
6070 return 0;
6071 }
6072 if (!isdigit (str[2]))
6073 return 0;
6074 for (k = 3; str[k] != '\0'; k += 1)
6075 if (!isdigit (str[k]) && str[k] != '_')
6076 return 0;
6077 return 1;
6078 }
6079 if (str[0] == '$' && isdigit (str[1]))
6080 {
6081 for (k = 2; str[k] != '\0'; k += 1)
6082 if (!isdigit (str[k]) && str[k] != '_')
6083 return 0;
6084 return 1;
6085 }
6086 return 0;
6087 }
6088
6089 /* Return non-zero if the string starting at NAME and ending before
6090 NAME_END contains no capital letters. */
6091
6092 static int
6093 is_valid_name_for_wild_match (const char *name0)
6094 {
6095 const char *decoded_name = ada_decode (name0);
6096 int i;
6097
6098 /* If the decoded name starts with an angle bracket, it means that
6099 NAME0 does not follow the GNAT encoding format. It should then
6100 not be allowed as a possible wild match. */
6101 if (decoded_name[0] == '<')
6102 return 0;
6103
6104 for (i=0; decoded_name[i] != '\0'; i++)
6105 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6106 return 0;
6107
6108 return 1;
6109 }
6110
6111 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6112 that could start a simple name. Assumes that *NAMEP points into
6113 the string beginning at NAME0. */
6114
6115 static int
6116 advance_wild_match (const char **namep, const char *name0, int target0)
6117 {
6118 const char *name = *namep;
6119
6120 while (1)
6121 {
6122 int t0, t1;
6123
6124 t0 = *name;
6125 if (t0 == '_')
6126 {
6127 t1 = name[1];
6128 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6129 {
6130 name += 1;
6131 if (name == name0 + 5 && startswith (name0, "_ada"))
6132 break;
6133 else
6134 name += 1;
6135 }
6136 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6137 || name[2] == target0))
6138 {
6139 name += 2;
6140 break;
6141 }
6142 else
6143 return 0;
6144 }
6145 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6146 name += 1;
6147 else
6148 return 0;
6149 }
6150
6151 *namep = name;
6152 return 1;
6153 }
6154
6155 /* Return true iff NAME encodes a name of the form prefix.PATN.
6156 Ignores any informational suffixes of NAME (i.e., for which
6157 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6158 simple name. */
6159
6160 static bool
6161 wild_match (const char *name, const char *patn)
6162 {
6163 const char *p;
6164 const char *name0 = name;
6165
6166 while (1)
6167 {
6168 const char *match = name;
6169
6170 if (*name == *patn)
6171 {
6172 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6173 if (*p != *name)
6174 break;
6175 if (*p == '\0' && is_name_suffix (name))
6176 return match == name0 || is_valid_name_for_wild_match (name0);
6177
6178 if (name[-1] == '_')
6179 name -= 1;
6180 }
6181 if (!advance_wild_match (&name, name0, *patn))
6182 return false;
6183 }
6184 }
6185
6186 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6187 any trailing suffixes that encode debugging information or leading
6188 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6189 information that is ignored). */
6190
6191 static bool
6192 full_match (const char *sym_name, const char *search_name)
6193 {
6194 size_t search_name_len = strlen (search_name);
6195
6196 if (strncmp (sym_name, search_name, search_name_len) == 0
6197 && is_name_suffix (sym_name + search_name_len))
6198 return true;
6199
6200 if (startswith (sym_name, "_ada_")
6201 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6202 && is_name_suffix (sym_name + search_name_len + 5))
6203 return true;
6204
6205 return false;
6206 }
6207
6208 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6209 *defn_symbols, updating the list of symbols in OBSTACKP (if
6210 necessary). OBJFILE is the section containing BLOCK. */
6211
6212 static void
6213 ada_add_block_symbols (struct obstack *obstackp,
6214 const struct block *block,
6215 const lookup_name_info &lookup_name,
6216 domain_enum domain, struct objfile *objfile)
6217 {
6218 struct block_iterator iter;
6219 /* A matching argument symbol, if any. */
6220 struct symbol *arg_sym;
6221 /* Set true when we find a matching non-argument symbol. */
6222 int found_sym;
6223 struct symbol *sym;
6224
6225 arg_sym = NULL;
6226 found_sym = 0;
6227 for (sym = block_iter_match_first (block, lookup_name, &iter);
6228 sym != NULL;
6229 sym = block_iter_match_next (lookup_name, &iter))
6230 {
6231 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6232 SYMBOL_DOMAIN (sym), domain))
6233 {
6234 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6235 {
6236 if (SYMBOL_IS_ARGUMENT (sym))
6237 arg_sym = sym;
6238 else
6239 {
6240 found_sym = 1;
6241 add_defn_to_vec (obstackp,
6242 fixup_symbol_section (sym, objfile),
6243 block);
6244 }
6245 }
6246 }
6247 }
6248
6249 /* Handle renamings. */
6250
6251 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6252 found_sym = 1;
6253
6254 if (!found_sym && arg_sym != NULL)
6255 {
6256 add_defn_to_vec (obstackp,
6257 fixup_symbol_section (arg_sym, objfile),
6258 block);
6259 }
6260
6261 if (!lookup_name.ada ().wild_match_p ())
6262 {
6263 arg_sym = NULL;
6264 found_sym = 0;
6265 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6266 const char *name = ada_lookup_name.c_str ();
6267 size_t name_len = ada_lookup_name.size ();
6268
6269 ALL_BLOCK_SYMBOLS (block, iter, sym)
6270 {
6271 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6272 SYMBOL_DOMAIN (sym), domain))
6273 {
6274 int cmp;
6275
6276 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6277 if (cmp == 0)
6278 {
6279 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6280 if (cmp == 0)
6281 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6282 name_len);
6283 }
6284
6285 if (cmp == 0
6286 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6287 {
6288 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6289 {
6290 if (SYMBOL_IS_ARGUMENT (sym))
6291 arg_sym = sym;
6292 else
6293 {
6294 found_sym = 1;
6295 add_defn_to_vec (obstackp,
6296 fixup_symbol_section (sym, objfile),
6297 block);
6298 }
6299 }
6300 }
6301 }
6302 }
6303
6304 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6305 They aren't parameters, right? */
6306 if (!found_sym && arg_sym != NULL)
6307 {
6308 add_defn_to_vec (obstackp,
6309 fixup_symbol_section (arg_sym, objfile),
6310 block);
6311 }
6312 }
6313 }
6314 \f
6315
6316 /* Symbol Completion */
6317
6318 /* See symtab.h. */
6319
6320 bool
6321 ada_lookup_name_info::matches
6322 (const char *sym_name,
6323 symbol_name_match_type match_type,
6324 completion_match_result *comp_match_res) const
6325 {
6326 bool match = false;
6327 const char *text = m_encoded_name.c_str ();
6328 size_t text_len = m_encoded_name.size ();
6329
6330 /* First, test against the fully qualified name of the symbol. */
6331
6332 if (strncmp (sym_name, text, text_len) == 0)
6333 match = true;
6334
6335 if (match && !m_encoded_p)
6336 {
6337 /* One needed check before declaring a positive match is to verify
6338 that iff we are doing a verbatim match, the decoded version
6339 of the symbol name starts with '<'. Otherwise, this symbol name
6340 is not a suitable completion. */
6341 const char *sym_name_copy = sym_name;
6342 bool has_angle_bracket;
6343
6344 sym_name = ada_decode (sym_name);
6345 has_angle_bracket = (sym_name[0] == '<');
6346 match = (has_angle_bracket == m_verbatim_p);
6347 sym_name = sym_name_copy;
6348 }
6349
6350 if (match && !m_verbatim_p)
6351 {
6352 /* When doing non-verbatim match, another check that needs to
6353 be done is to verify that the potentially matching symbol name
6354 does not include capital letters, because the ada-mode would
6355 not be able to understand these symbol names without the
6356 angle bracket notation. */
6357 const char *tmp;
6358
6359 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6360 if (*tmp != '\0')
6361 match = false;
6362 }
6363
6364 /* Second: Try wild matching... */
6365
6366 if (!match && m_wild_match_p)
6367 {
6368 /* Since we are doing wild matching, this means that TEXT
6369 may represent an unqualified symbol name. We therefore must
6370 also compare TEXT against the unqualified name of the symbol. */
6371 sym_name = ada_unqualified_name (ada_decode (sym_name));
6372
6373 if (strncmp (sym_name, text, text_len) == 0)
6374 match = true;
6375 }
6376
6377 /* Finally: If we found a match, prepare the result to return. */
6378
6379 if (!match)
6380 return false;
6381
6382 if (comp_match_res != NULL)
6383 {
6384 std::string &match_str = comp_match_res->match.storage ();
6385
6386 if (!m_encoded_p)
6387 match_str = ada_decode (sym_name);
6388 else
6389 {
6390 if (m_verbatim_p)
6391 match_str = add_angle_brackets (sym_name);
6392 else
6393 match_str = sym_name;
6394
6395 }
6396
6397 comp_match_res->set_match (match_str.c_str ());
6398 }
6399
6400 return true;
6401 }
6402
6403 /* Add the list of possible symbol names completing TEXT to TRACKER.
6404 WORD is the entire command on which completion is made. */
6405
6406 static void
6407 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6408 complete_symbol_mode mode,
6409 symbol_name_match_type name_match_type,
6410 const char *text, const char *word,
6411 enum type_code code)
6412 {
6413 struct symbol *sym;
6414 struct compunit_symtab *s;
6415 struct minimal_symbol *msymbol;
6416 struct objfile *objfile;
6417 const struct block *b, *surrounding_static_block = 0;
6418 struct block_iterator iter;
6419
6420 gdb_assert (code == TYPE_CODE_UNDEF);
6421
6422 lookup_name_info lookup_name (text, name_match_type, true);
6423
6424 /* First, look at the partial symtab symbols. */
6425 expand_symtabs_matching (NULL,
6426 lookup_name,
6427 NULL,
6428 NULL,
6429 ALL_DOMAIN);
6430
6431 /* At this point scan through the misc symbol vectors and add each
6432 symbol you find to the list. Eventually we want to ignore
6433 anything that isn't a text symbol (everything else will be
6434 handled by the psymtab code above). */
6435
6436 ALL_MSYMBOLS (objfile, msymbol)
6437 {
6438 QUIT;
6439
6440 if (completion_skip_symbol (mode, msymbol))
6441 continue;
6442
6443 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6444
6445 /* Ada minimal symbols won't have their language set to Ada. If
6446 we let completion_list_add_name compare using the
6447 default/C-like matcher, then when completing e.g., symbols in a
6448 package named "pck", we'd match internal Ada symbols like
6449 "pckS", which are invalid in an Ada expression, unless you wrap
6450 them in '<' '>' to request a verbatim match.
6451
6452 Unfortunately, some Ada encoded names successfully demangle as
6453 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6454 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6455 with the wrong language set. Paper over that issue here. */
6456 if (symbol_language == language_auto
6457 || symbol_language == language_cplus)
6458 symbol_language = language_ada;
6459
6460 completion_list_add_name (tracker,
6461 symbol_language,
6462 MSYMBOL_LINKAGE_NAME (msymbol),
6463 lookup_name, text, word);
6464 }
6465
6466 /* Search upwards from currently selected frame (so that we can
6467 complete on local vars. */
6468
6469 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6470 {
6471 if (!BLOCK_SUPERBLOCK (b))
6472 surrounding_static_block = b; /* For elmin of dups */
6473
6474 ALL_BLOCK_SYMBOLS (b, iter, sym)
6475 {
6476 if (completion_skip_symbol (mode, sym))
6477 continue;
6478
6479 completion_list_add_name (tracker,
6480 SYMBOL_LANGUAGE (sym),
6481 SYMBOL_LINKAGE_NAME (sym),
6482 lookup_name, text, word);
6483 }
6484 }
6485
6486 /* Go through the symtabs and check the externs and statics for
6487 symbols which match. */
6488
6489 ALL_COMPUNITS (objfile, s)
6490 {
6491 QUIT;
6492 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6493 ALL_BLOCK_SYMBOLS (b, iter, sym)
6494 {
6495 if (completion_skip_symbol (mode, sym))
6496 continue;
6497
6498 completion_list_add_name (tracker,
6499 SYMBOL_LANGUAGE (sym),
6500 SYMBOL_LINKAGE_NAME (sym),
6501 lookup_name, text, word);
6502 }
6503 }
6504
6505 ALL_COMPUNITS (objfile, s)
6506 {
6507 QUIT;
6508 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6509 /* Don't do this block twice. */
6510 if (b == surrounding_static_block)
6511 continue;
6512 ALL_BLOCK_SYMBOLS (b, iter, sym)
6513 {
6514 if (completion_skip_symbol (mode, sym))
6515 continue;
6516
6517 completion_list_add_name (tracker,
6518 SYMBOL_LANGUAGE (sym),
6519 SYMBOL_LINKAGE_NAME (sym),
6520 lookup_name, text, word);
6521 }
6522 }
6523 }
6524
6525 /* Field Access */
6526
6527 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6528 for tagged types. */
6529
6530 static int
6531 ada_is_dispatch_table_ptr_type (struct type *type)
6532 {
6533 const char *name;
6534
6535 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6536 return 0;
6537
6538 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6539 if (name == NULL)
6540 return 0;
6541
6542 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6543 }
6544
6545 /* Return non-zero if TYPE is an interface tag. */
6546
6547 static int
6548 ada_is_interface_tag (struct type *type)
6549 {
6550 const char *name = TYPE_NAME (type);
6551
6552 if (name == NULL)
6553 return 0;
6554
6555 return (strcmp (name, "ada__tags__interface_tag") == 0);
6556 }
6557
6558 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6559 to be invisible to users. */
6560
6561 int
6562 ada_is_ignored_field (struct type *type, int field_num)
6563 {
6564 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6565 return 1;
6566
6567 /* Check the name of that field. */
6568 {
6569 const char *name = TYPE_FIELD_NAME (type, field_num);
6570
6571 /* Anonymous field names should not be printed.
6572 brobecker/2007-02-20: I don't think this can actually happen
6573 but we don't want to print the value of annonymous fields anyway. */
6574 if (name == NULL)
6575 return 1;
6576
6577 /* Normally, fields whose name start with an underscore ("_")
6578 are fields that have been internally generated by the compiler,
6579 and thus should not be printed. The "_parent" field is special,
6580 however: This is a field internally generated by the compiler
6581 for tagged types, and it contains the components inherited from
6582 the parent type. This field should not be printed as is, but
6583 should not be ignored either. */
6584 if (name[0] == '_' && !startswith (name, "_parent"))
6585 return 1;
6586 }
6587
6588 /* If this is the dispatch table of a tagged type or an interface tag,
6589 then ignore. */
6590 if (ada_is_tagged_type (type, 1)
6591 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6592 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6593 return 1;
6594
6595 /* Not a special field, so it should not be ignored. */
6596 return 0;
6597 }
6598
6599 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6600 pointer or reference type whose ultimate target has a tag field. */
6601
6602 int
6603 ada_is_tagged_type (struct type *type, int refok)
6604 {
6605 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6606 }
6607
6608 /* True iff TYPE represents the type of X'Tag */
6609
6610 int
6611 ada_is_tag_type (struct type *type)
6612 {
6613 type = ada_check_typedef (type);
6614
6615 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6616 return 0;
6617 else
6618 {
6619 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6620
6621 return (name != NULL
6622 && strcmp (name, "ada__tags__dispatch_table") == 0);
6623 }
6624 }
6625
6626 /* The type of the tag on VAL. */
6627
6628 struct type *
6629 ada_tag_type (struct value *val)
6630 {
6631 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6632 }
6633
6634 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6635 retired at Ada 05). */
6636
6637 static int
6638 is_ada95_tag (struct value *tag)
6639 {
6640 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6641 }
6642
6643 /* The value of the tag on VAL. */
6644
6645 struct value *
6646 ada_value_tag (struct value *val)
6647 {
6648 return ada_value_struct_elt (val, "_tag", 0);
6649 }
6650
6651 /* The value of the tag on the object of type TYPE whose contents are
6652 saved at VALADDR, if it is non-null, or is at memory address
6653 ADDRESS. */
6654
6655 static struct value *
6656 value_tag_from_contents_and_address (struct type *type,
6657 const gdb_byte *valaddr,
6658 CORE_ADDR address)
6659 {
6660 int tag_byte_offset;
6661 struct type *tag_type;
6662
6663 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6664 NULL, NULL, NULL))
6665 {
6666 const gdb_byte *valaddr1 = ((valaddr == NULL)
6667 ? NULL
6668 : valaddr + tag_byte_offset);
6669 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6670
6671 return value_from_contents_and_address (tag_type, valaddr1, address1);
6672 }
6673 return NULL;
6674 }
6675
6676 static struct type *
6677 type_from_tag (struct value *tag)
6678 {
6679 const char *type_name = ada_tag_name (tag);
6680
6681 if (type_name != NULL)
6682 return ada_find_any_type (ada_encode (type_name));
6683 return NULL;
6684 }
6685
6686 /* Given a value OBJ of a tagged type, return a value of this
6687 type at the base address of the object. The base address, as
6688 defined in Ada.Tags, it is the address of the primary tag of
6689 the object, and therefore where the field values of its full
6690 view can be fetched. */
6691
6692 struct value *
6693 ada_tag_value_at_base_address (struct value *obj)
6694 {
6695 struct value *val;
6696 LONGEST offset_to_top = 0;
6697 struct type *ptr_type, *obj_type;
6698 struct value *tag;
6699 CORE_ADDR base_address;
6700
6701 obj_type = value_type (obj);
6702
6703 /* It is the responsability of the caller to deref pointers. */
6704
6705 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6706 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6707 return obj;
6708
6709 tag = ada_value_tag (obj);
6710 if (!tag)
6711 return obj;
6712
6713 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6714
6715 if (is_ada95_tag (tag))
6716 return obj;
6717
6718 ptr_type = language_lookup_primitive_type
6719 (language_def (language_ada), target_gdbarch(), "storage_offset");
6720 ptr_type = lookup_pointer_type (ptr_type);
6721 val = value_cast (ptr_type, tag);
6722 if (!val)
6723 return obj;
6724
6725 /* It is perfectly possible that an exception be raised while
6726 trying to determine the base address, just like for the tag;
6727 see ada_tag_name for more details. We do not print the error
6728 message for the same reason. */
6729
6730 TRY
6731 {
6732 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6733 }
6734
6735 CATCH (e, RETURN_MASK_ERROR)
6736 {
6737 return obj;
6738 }
6739 END_CATCH
6740
6741 /* If offset is null, nothing to do. */
6742
6743 if (offset_to_top == 0)
6744 return obj;
6745
6746 /* -1 is a special case in Ada.Tags; however, what should be done
6747 is not quite clear from the documentation. So do nothing for
6748 now. */
6749
6750 if (offset_to_top == -1)
6751 return obj;
6752
6753 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6754 from the base address. This was however incompatible with
6755 C++ dispatch table: C++ uses a *negative* value to *add*
6756 to the base address. Ada's convention has therefore been
6757 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6758 use the same convention. Here, we support both cases by
6759 checking the sign of OFFSET_TO_TOP. */
6760
6761 if (offset_to_top > 0)
6762 offset_to_top = -offset_to_top;
6763
6764 base_address = value_address (obj) + offset_to_top;
6765 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6766
6767 /* Make sure that we have a proper tag at the new address.
6768 Otherwise, offset_to_top is bogus (which can happen when
6769 the object is not initialized yet). */
6770
6771 if (!tag)
6772 return obj;
6773
6774 obj_type = type_from_tag (tag);
6775
6776 if (!obj_type)
6777 return obj;
6778
6779 return value_from_contents_and_address (obj_type, NULL, base_address);
6780 }
6781
6782 /* Return the "ada__tags__type_specific_data" type. */
6783
6784 static struct type *
6785 ada_get_tsd_type (struct inferior *inf)
6786 {
6787 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6788
6789 if (data->tsd_type == 0)
6790 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6791 return data->tsd_type;
6792 }
6793
6794 /* Return the TSD (type-specific data) associated to the given TAG.
6795 TAG is assumed to be the tag of a tagged-type entity.
6796
6797 May return NULL if we are unable to get the TSD. */
6798
6799 static struct value *
6800 ada_get_tsd_from_tag (struct value *tag)
6801 {
6802 struct value *val;
6803 struct type *type;
6804
6805 /* First option: The TSD is simply stored as a field of our TAG.
6806 Only older versions of GNAT would use this format, but we have
6807 to test it first, because there are no visible markers for
6808 the current approach except the absence of that field. */
6809
6810 val = ada_value_struct_elt (tag, "tsd", 1);
6811 if (val)
6812 return val;
6813
6814 /* Try the second representation for the dispatch table (in which
6815 there is no explicit 'tsd' field in the referent of the tag pointer,
6816 and instead the tsd pointer is stored just before the dispatch
6817 table. */
6818
6819 type = ada_get_tsd_type (current_inferior());
6820 if (type == NULL)
6821 return NULL;
6822 type = lookup_pointer_type (lookup_pointer_type (type));
6823 val = value_cast (type, tag);
6824 if (val == NULL)
6825 return NULL;
6826 return value_ind (value_ptradd (val, -1));
6827 }
6828
6829 /* Given the TSD of a tag (type-specific data), return a string
6830 containing the name of the associated type.
6831
6832 The returned value is good until the next call. May return NULL
6833 if we are unable to determine the tag name. */
6834
6835 static char *
6836 ada_tag_name_from_tsd (struct value *tsd)
6837 {
6838 static char name[1024];
6839 char *p;
6840 struct value *val;
6841
6842 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6843 if (val == NULL)
6844 return NULL;
6845 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6846 for (p = name; *p != '\0'; p += 1)
6847 if (isalpha (*p))
6848 *p = tolower (*p);
6849 return name;
6850 }
6851
6852 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6853 a C string.
6854
6855 Return NULL if the TAG is not an Ada tag, or if we were unable to
6856 determine the name of that tag. The result is good until the next
6857 call. */
6858
6859 const char *
6860 ada_tag_name (struct value *tag)
6861 {
6862 char *name = NULL;
6863
6864 if (!ada_is_tag_type (value_type (tag)))
6865 return NULL;
6866
6867 /* It is perfectly possible that an exception be raised while trying
6868 to determine the TAG's name, even under normal circumstances:
6869 The associated variable may be uninitialized or corrupted, for
6870 instance. We do not let any exception propagate past this point.
6871 instead we return NULL.
6872
6873 We also do not print the error message either (which often is very
6874 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6875 the caller print a more meaningful message if necessary. */
6876 TRY
6877 {
6878 struct value *tsd = ada_get_tsd_from_tag (tag);
6879
6880 if (tsd != NULL)
6881 name = ada_tag_name_from_tsd (tsd);
6882 }
6883 CATCH (e, RETURN_MASK_ERROR)
6884 {
6885 }
6886 END_CATCH
6887
6888 return name;
6889 }
6890
6891 /* The parent type of TYPE, or NULL if none. */
6892
6893 struct type *
6894 ada_parent_type (struct type *type)
6895 {
6896 int i;
6897
6898 type = ada_check_typedef (type);
6899
6900 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6901 return NULL;
6902
6903 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6904 if (ada_is_parent_field (type, i))
6905 {
6906 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6907
6908 /* If the _parent field is a pointer, then dereference it. */
6909 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6910 parent_type = TYPE_TARGET_TYPE (parent_type);
6911 /* If there is a parallel XVS type, get the actual base type. */
6912 parent_type = ada_get_base_type (parent_type);
6913
6914 return ada_check_typedef (parent_type);
6915 }
6916
6917 return NULL;
6918 }
6919
6920 /* True iff field number FIELD_NUM of structure type TYPE contains the
6921 parent-type (inherited) fields of a derived type. Assumes TYPE is
6922 a structure type with at least FIELD_NUM+1 fields. */
6923
6924 int
6925 ada_is_parent_field (struct type *type, int field_num)
6926 {
6927 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6928
6929 return (name != NULL
6930 && (startswith (name, "PARENT")
6931 || startswith (name, "_parent")));
6932 }
6933
6934 /* True iff field number FIELD_NUM of structure type TYPE is a
6935 transparent wrapper field (which should be silently traversed when doing
6936 field selection and flattened when printing). Assumes TYPE is a
6937 structure type with at least FIELD_NUM+1 fields. Such fields are always
6938 structures. */
6939
6940 int
6941 ada_is_wrapper_field (struct type *type, int field_num)
6942 {
6943 const char *name = TYPE_FIELD_NAME (type, field_num);
6944
6945 if (name != NULL && strcmp (name, "RETVAL") == 0)
6946 {
6947 /* This happens in functions with "out" or "in out" parameters
6948 which are passed by copy. For such functions, GNAT describes
6949 the function's return type as being a struct where the return
6950 value is in a field called RETVAL, and where the other "out"
6951 or "in out" parameters are fields of that struct. This is not
6952 a wrapper. */
6953 return 0;
6954 }
6955
6956 return (name != NULL
6957 && (startswith (name, "PARENT")
6958 || strcmp (name, "REP") == 0
6959 || startswith (name, "_parent")
6960 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6961 }
6962
6963 /* True iff field number FIELD_NUM of structure or union type TYPE
6964 is a variant wrapper. Assumes TYPE is a structure type with at least
6965 FIELD_NUM+1 fields. */
6966
6967 int
6968 ada_is_variant_part (struct type *type, int field_num)
6969 {
6970 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6971
6972 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6973 || (is_dynamic_field (type, field_num)
6974 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6975 == TYPE_CODE_UNION)));
6976 }
6977
6978 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6979 whose discriminants are contained in the record type OUTER_TYPE,
6980 returns the type of the controlling discriminant for the variant.
6981 May return NULL if the type could not be found. */
6982
6983 struct type *
6984 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6985 {
6986 const char *name = ada_variant_discrim_name (var_type);
6987
6988 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6989 }
6990
6991 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6992 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6993 represents a 'when others' clause; otherwise 0. */
6994
6995 int
6996 ada_is_others_clause (struct type *type, int field_num)
6997 {
6998 const char *name = TYPE_FIELD_NAME (type, field_num);
6999
7000 return (name != NULL && name[0] == 'O');
7001 }
7002
7003 /* Assuming that TYPE0 is the type of the variant part of a record,
7004 returns the name of the discriminant controlling the variant.
7005 The value is valid until the next call to ada_variant_discrim_name. */
7006
7007 const char *
7008 ada_variant_discrim_name (struct type *type0)
7009 {
7010 static char *result = NULL;
7011 static size_t result_len = 0;
7012 struct type *type;
7013 const char *name;
7014 const char *discrim_end;
7015 const char *discrim_start;
7016
7017 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7018 type = TYPE_TARGET_TYPE (type0);
7019 else
7020 type = type0;
7021
7022 name = ada_type_name (type);
7023
7024 if (name == NULL || name[0] == '\000')
7025 return "";
7026
7027 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7028 discrim_end -= 1)
7029 {
7030 if (startswith (discrim_end, "___XVN"))
7031 break;
7032 }
7033 if (discrim_end == name)
7034 return "";
7035
7036 for (discrim_start = discrim_end; discrim_start != name + 3;
7037 discrim_start -= 1)
7038 {
7039 if (discrim_start == name + 1)
7040 return "";
7041 if ((discrim_start > name + 3
7042 && startswith (discrim_start - 3, "___"))
7043 || discrim_start[-1] == '.')
7044 break;
7045 }
7046
7047 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7048 strncpy (result, discrim_start, discrim_end - discrim_start);
7049 result[discrim_end - discrim_start] = '\0';
7050 return result;
7051 }
7052
7053 /* Scan STR for a subtype-encoded number, beginning at position K.
7054 Put the position of the character just past the number scanned in
7055 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7056 Return 1 if there was a valid number at the given position, and 0
7057 otherwise. A "subtype-encoded" number consists of the absolute value
7058 in decimal, followed by the letter 'm' to indicate a negative number.
7059 Assumes 0m does not occur. */
7060
7061 int
7062 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7063 {
7064 ULONGEST RU;
7065
7066 if (!isdigit (str[k]))
7067 return 0;
7068
7069 /* Do it the hard way so as not to make any assumption about
7070 the relationship of unsigned long (%lu scan format code) and
7071 LONGEST. */
7072 RU = 0;
7073 while (isdigit (str[k]))
7074 {
7075 RU = RU * 10 + (str[k] - '0');
7076 k += 1;
7077 }
7078
7079 if (str[k] == 'm')
7080 {
7081 if (R != NULL)
7082 *R = (-(LONGEST) (RU - 1)) - 1;
7083 k += 1;
7084 }
7085 else if (R != NULL)
7086 *R = (LONGEST) RU;
7087
7088 /* NOTE on the above: Technically, C does not say what the results of
7089 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7090 number representable as a LONGEST (although either would probably work
7091 in most implementations). When RU>0, the locution in the then branch
7092 above is always equivalent to the negative of RU. */
7093
7094 if (new_k != NULL)
7095 *new_k = k;
7096 return 1;
7097 }
7098
7099 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7100 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7101 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7102
7103 int
7104 ada_in_variant (LONGEST val, struct type *type, int field_num)
7105 {
7106 const char *name = TYPE_FIELD_NAME (type, field_num);
7107 int p;
7108
7109 p = 0;
7110 while (1)
7111 {
7112 switch (name[p])
7113 {
7114 case '\0':
7115 return 0;
7116 case 'S':
7117 {
7118 LONGEST W;
7119
7120 if (!ada_scan_number (name, p + 1, &W, &p))
7121 return 0;
7122 if (val == W)
7123 return 1;
7124 break;
7125 }
7126 case 'R':
7127 {
7128 LONGEST L, U;
7129
7130 if (!ada_scan_number (name, p + 1, &L, &p)
7131 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7132 return 0;
7133 if (val >= L && val <= U)
7134 return 1;
7135 break;
7136 }
7137 case 'O':
7138 return 1;
7139 default:
7140 return 0;
7141 }
7142 }
7143 }
7144
7145 /* FIXME: Lots of redundancy below. Try to consolidate. */
7146
7147 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7148 ARG_TYPE, extract and return the value of one of its (non-static)
7149 fields. FIELDNO says which field. Differs from value_primitive_field
7150 only in that it can handle packed values of arbitrary type. */
7151
7152 static struct value *
7153 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7154 struct type *arg_type)
7155 {
7156 struct type *type;
7157
7158 arg_type = ada_check_typedef (arg_type);
7159 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7160
7161 /* Handle packed fields. */
7162
7163 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7164 {
7165 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7166 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7167
7168 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7169 offset + bit_pos / 8,
7170 bit_pos % 8, bit_size, type);
7171 }
7172 else
7173 return value_primitive_field (arg1, offset, fieldno, arg_type);
7174 }
7175
7176 /* Find field with name NAME in object of type TYPE. If found,
7177 set the following for each argument that is non-null:
7178 - *FIELD_TYPE_P to the field's type;
7179 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7180 an object of that type;
7181 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7182 - *BIT_SIZE_P to its size in bits if the field is packed, and
7183 0 otherwise;
7184 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7185 fields up to but not including the desired field, or by the total
7186 number of fields if not found. A NULL value of NAME never
7187 matches; the function just counts visible fields in this case.
7188
7189 Notice that we need to handle when a tagged record hierarchy
7190 has some components with the same name, like in this scenario:
7191
7192 type Top_T is tagged record
7193 N : Integer := 1;
7194 U : Integer := 974;
7195 A : Integer := 48;
7196 end record;
7197
7198 type Middle_T is new Top.Top_T with record
7199 N : Character := 'a';
7200 C : Integer := 3;
7201 end record;
7202
7203 type Bottom_T is new Middle.Middle_T with record
7204 N : Float := 4.0;
7205 C : Character := '5';
7206 X : Integer := 6;
7207 A : Character := 'J';
7208 end record;
7209
7210 Let's say we now have a variable declared and initialized as follow:
7211
7212 TC : Top_A := new Bottom_T;
7213
7214 And then we use this variable to call this function
7215
7216 procedure Assign (Obj: in out Top_T; TV : Integer);
7217
7218 as follow:
7219
7220 Assign (Top_T (B), 12);
7221
7222 Now, we're in the debugger, and we're inside that procedure
7223 then and we want to print the value of obj.c:
7224
7225 Usually, the tagged record or one of the parent type owns the
7226 component to print and there's no issue but in this particular
7227 case, what does it mean to ask for Obj.C? Since the actual
7228 type for object is type Bottom_T, it could mean two things: type
7229 component C from the Middle_T view, but also component C from
7230 Bottom_T. So in that "undefined" case, when the component is
7231 not found in the non-resolved type (which includes all the
7232 components of the parent type), then resolve it and see if we
7233 get better luck once expanded.
7234
7235 In the case of homonyms in the derived tagged type, we don't
7236 guaranty anything, and pick the one that's easiest for us
7237 to program.
7238
7239 Returns 1 if found, 0 otherwise. */
7240
7241 static int
7242 find_struct_field (const char *name, struct type *type, int offset,
7243 struct type **field_type_p,
7244 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7245 int *index_p)
7246 {
7247 int i;
7248 int parent_offset = -1;
7249
7250 type = ada_check_typedef (type);
7251
7252 if (field_type_p != NULL)
7253 *field_type_p = NULL;
7254 if (byte_offset_p != NULL)
7255 *byte_offset_p = 0;
7256 if (bit_offset_p != NULL)
7257 *bit_offset_p = 0;
7258 if (bit_size_p != NULL)
7259 *bit_size_p = 0;
7260
7261 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7262 {
7263 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7264 int fld_offset = offset + bit_pos / 8;
7265 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7266
7267 if (t_field_name == NULL)
7268 continue;
7269
7270 else if (ada_is_parent_field (type, i))
7271 {
7272 /* This is a field pointing us to the parent type of a tagged
7273 type. As hinted in this function's documentation, we give
7274 preference to fields in the current record first, so what
7275 we do here is just record the index of this field before
7276 we skip it. If it turns out we couldn't find our field
7277 in the current record, then we'll get back to it and search
7278 inside it whether the field might exist in the parent. */
7279
7280 parent_offset = i;
7281 continue;
7282 }
7283
7284 else if (name != NULL && field_name_match (t_field_name, name))
7285 {
7286 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7287
7288 if (field_type_p != NULL)
7289 *field_type_p = TYPE_FIELD_TYPE (type, i);
7290 if (byte_offset_p != NULL)
7291 *byte_offset_p = fld_offset;
7292 if (bit_offset_p != NULL)
7293 *bit_offset_p = bit_pos % 8;
7294 if (bit_size_p != NULL)
7295 *bit_size_p = bit_size;
7296 return 1;
7297 }
7298 else if (ada_is_wrapper_field (type, i))
7299 {
7300 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7301 field_type_p, byte_offset_p, bit_offset_p,
7302 bit_size_p, index_p))
7303 return 1;
7304 }
7305 else if (ada_is_variant_part (type, i))
7306 {
7307 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7308 fixed type?? */
7309 int j;
7310 struct type *field_type
7311 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7312
7313 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7314 {
7315 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7316 fld_offset
7317 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7318 field_type_p, byte_offset_p,
7319 bit_offset_p, bit_size_p, index_p))
7320 return 1;
7321 }
7322 }
7323 else if (index_p != NULL)
7324 *index_p += 1;
7325 }
7326
7327 /* Field not found so far. If this is a tagged type which
7328 has a parent, try finding that field in the parent now. */
7329
7330 if (parent_offset != -1)
7331 {
7332 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7333 int fld_offset = offset + bit_pos / 8;
7334
7335 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7336 fld_offset, field_type_p, byte_offset_p,
7337 bit_offset_p, bit_size_p, index_p))
7338 return 1;
7339 }
7340
7341 return 0;
7342 }
7343
7344 /* Number of user-visible fields in record type TYPE. */
7345
7346 static int
7347 num_visible_fields (struct type *type)
7348 {
7349 int n;
7350
7351 n = 0;
7352 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7353 return n;
7354 }
7355
7356 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7357 and search in it assuming it has (class) type TYPE.
7358 If found, return value, else return NULL.
7359
7360 Searches recursively through wrapper fields (e.g., '_parent').
7361
7362 In the case of homonyms in the tagged types, please refer to the
7363 long explanation in find_struct_field's function documentation. */
7364
7365 static struct value *
7366 ada_search_struct_field (const char *name, struct value *arg, int offset,
7367 struct type *type)
7368 {
7369 int i;
7370 int parent_offset = -1;
7371
7372 type = ada_check_typedef (type);
7373 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7374 {
7375 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7376
7377 if (t_field_name == NULL)
7378 continue;
7379
7380 else if (ada_is_parent_field (type, i))
7381 {
7382 /* This is a field pointing us to the parent type of a tagged
7383 type. As hinted in this function's documentation, we give
7384 preference to fields in the current record first, so what
7385 we do here is just record the index of this field before
7386 we skip it. If it turns out we couldn't find our field
7387 in the current record, then we'll get back to it and search
7388 inside it whether the field might exist in the parent. */
7389
7390 parent_offset = i;
7391 continue;
7392 }
7393
7394 else if (field_name_match (t_field_name, name))
7395 return ada_value_primitive_field (arg, offset, i, type);
7396
7397 else if (ada_is_wrapper_field (type, i))
7398 {
7399 struct value *v = /* Do not let indent join lines here. */
7400 ada_search_struct_field (name, arg,
7401 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7402 TYPE_FIELD_TYPE (type, i));
7403
7404 if (v != NULL)
7405 return v;
7406 }
7407
7408 else if (ada_is_variant_part (type, i))
7409 {
7410 /* PNH: Do we ever get here? See find_struct_field. */
7411 int j;
7412 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7413 i));
7414 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7415
7416 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7417 {
7418 struct value *v = ada_search_struct_field /* Force line
7419 break. */
7420 (name, arg,
7421 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7422 TYPE_FIELD_TYPE (field_type, j));
7423
7424 if (v != NULL)
7425 return v;
7426 }
7427 }
7428 }
7429
7430 /* Field not found so far. If this is a tagged type which
7431 has a parent, try finding that field in the parent now. */
7432
7433 if (parent_offset != -1)
7434 {
7435 struct value *v = ada_search_struct_field (
7436 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7437 TYPE_FIELD_TYPE (type, parent_offset));
7438
7439 if (v != NULL)
7440 return v;
7441 }
7442
7443 return NULL;
7444 }
7445
7446 static struct value *ada_index_struct_field_1 (int *, struct value *,
7447 int, struct type *);
7448
7449
7450 /* Return field #INDEX in ARG, where the index is that returned by
7451 * find_struct_field through its INDEX_P argument. Adjust the address
7452 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7453 * If found, return value, else return NULL. */
7454
7455 static struct value *
7456 ada_index_struct_field (int index, struct value *arg, int offset,
7457 struct type *type)
7458 {
7459 return ada_index_struct_field_1 (&index, arg, offset, type);
7460 }
7461
7462
7463 /* Auxiliary function for ada_index_struct_field. Like
7464 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7465 * *INDEX_P. */
7466
7467 static struct value *
7468 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7469 struct type *type)
7470 {
7471 int i;
7472 type = ada_check_typedef (type);
7473
7474 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7475 {
7476 if (TYPE_FIELD_NAME (type, i) == NULL)
7477 continue;
7478 else if (ada_is_wrapper_field (type, i))
7479 {
7480 struct value *v = /* Do not let indent join lines here. */
7481 ada_index_struct_field_1 (index_p, arg,
7482 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7483 TYPE_FIELD_TYPE (type, i));
7484
7485 if (v != NULL)
7486 return v;
7487 }
7488
7489 else if (ada_is_variant_part (type, i))
7490 {
7491 /* PNH: Do we ever get here? See ada_search_struct_field,
7492 find_struct_field. */
7493 error (_("Cannot assign this kind of variant record"));
7494 }
7495 else if (*index_p == 0)
7496 return ada_value_primitive_field (arg, offset, i, type);
7497 else
7498 *index_p -= 1;
7499 }
7500 return NULL;
7501 }
7502
7503 /* Given ARG, a value of type (pointer or reference to a)*
7504 structure/union, extract the component named NAME from the ultimate
7505 target structure/union and return it as a value with its
7506 appropriate type.
7507
7508 The routine searches for NAME among all members of the structure itself
7509 and (recursively) among all members of any wrapper members
7510 (e.g., '_parent').
7511
7512 If NO_ERR, then simply return NULL in case of error, rather than
7513 calling error. */
7514
7515 struct value *
7516 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7517 {
7518 struct type *t, *t1;
7519 struct value *v;
7520
7521 v = NULL;
7522 t1 = t = ada_check_typedef (value_type (arg));
7523 if (TYPE_CODE (t) == TYPE_CODE_REF)
7524 {
7525 t1 = TYPE_TARGET_TYPE (t);
7526 if (t1 == NULL)
7527 goto BadValue;
7528 t1 = ada_check_typedef (t1);
7529 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7530 {
7531 arg = coerce_ref (arg);
7532 t = t1;
7533 }
7534 }
7535
7536 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7537 {
7538 t1 = TYPE_TARGET_TYPE (t);
7539 if (t1 == NULL)
7540 goto BadValue;
7541 t1 = ada_check_typedef (t1);
7542 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7543 {
7544 arg = value_ind (arg);
7545 t = t1;
7546 }
7547 else
7548 break;
7549 }
7550
7551 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7552 goto BadValue;
7553
7554 if (t1 == t)
7555 v = ada_search_struct_field (name, arg, 0, t);
7556 else
7557 {
7558 int bit_offset, bit_size, byte_offset;
7559 struct type *field_type;
7560 CORE_ADDR address;
7561
7562 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7563 address = value_address (ada_value_ind (arg));
7564 else
7565 address = value_address (ada_coerce_ref (arg));
7566
7567 /* Check to see if this is a tagged type. We also need to handle
7568 the case where the type is a reference to a tagged type, but
7569 we have to be careful to exclude pointers to tagged types.
7570 The latter should be shown as usual (as a pointer), whereas
7571 a reference should mostly be transparent to the user. */
7572
7573 if (ada_is_tagged_type (t1, 0)
7574 || (TYPE_CODE (t1) == TYPE_CODE_REF
7575 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7576 {
7577 /* We first try to find the searched field in the current type.
7578 If not found then let's look in the fixed type. */
7579
7580 if (!find_struct_field (name, t1, 0,
7581 &field_type, &byte_offset, &bit_offset,
7582 &bit_size, NULL))
7583 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7584 address, NULL, 1);
7585 }
7586 else
7587 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7588 address, NULL, 1);
7589
7590 if (find_struct_field (name, t1, 0,
7591 &field_type, &byte_offset, &bit_offset,
7592 &bit_size, NULL))
7593 {
7594 if (bit_size != 0)
7595 {
7596 if (TYPE_CODE (t) == TYPE_CODE_REF)
7597 arg = ada_coerce_ref (arg);
7598 else
7599 arg = ada_value_ind (arg);
7600 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7601 bit_offset, bit_size,
7602 field_type);
7603 }
7604 else
7605 v = value_at_lazy (field_type, address + byte_offset);
7606 }
7607 }
7608
7609 if (v != NULL || no_err)
7610 return v;
7611 else
7612 error (_("There is no member named %s."), name);
7613
7614 BadValue:
7615 if (no_err)
7616 return NULL;
7617 else
7618 error (_("Attempt to extract a component of "
7619 "a value that is not a record."));
7620 }
7621
7622 /* Return a string representation of type TYPE. */
7623
7624 static std::string
7625 type_as_string (struct type *type)
7626 {
7627 string_file tmp_stream;
7628
7629 type_print (type, "", &tmp_stream, -1);
7630
7631 return std::move (tmp_stream.string ());
7632 }
7633
7634 /* Given a type TYPE, look up the type of the component of type named NAME.
7635 If DISPP is non-null, add its byte displacement from the beginning of a
7636 structure (pointed to by a value) of type TYPE to *DISPP (does not
7637 work for packed fields).
7638
7639 Matches any field whose name has NAME as a prefix, possibly
7640 followed by "___".
7641
7642 TYPE can be either a struct or union. If REFOK, TYPE may also
7643 be a (pointer or reference)+ to a struct or union, and the
7644 ultimate target type will be searched.
7645
7646 Looks recursively into variant clauses and parent types.
7647
7648 In the case of homonyms in the tagged types, please refer to the
7649 long explanation in find_struct_field's function documentation.
7650
7651 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7652 TYPE is not a type of the right kind. */
7653
7654 static struct type *
7655 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7656 int noerr)
7657 {
7658 int i;
7659 int parent_offset = -1;
7660
7661 if (name == NULL)
7662 goto BadName;
7663
7664 if (refok && type != NULL)
7665 while (1)
7666 {
7667 type = ada_check_typedef (type);
7668 if (TYPE_CODE (type) != TYPE_CODE_PTR
7669 && TYPE_CODE (type) != TYPE_CODE_REF)
7670 break;
7671 type = TYPE_TARGET_TYPE (type);
7672 }
7673
7674 if (type == NULL
7675 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7676 && TYPE_CODE (type) != TYPE_CODE_UNION))
7677 {
7678 if (noerr)
7679 return NULL;
7680
7681 error (_("Type %s is not a structure or union type"),
7682 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7683 }
7684
7685 type = to_static_fixed_type (type);
7686
7687 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7688 {
7689 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7690 struct type *t;
7691
7692 if (t_field_name == NULL)
7693 continue;
7694
7695 else if (ada_is_parent_field (type, i))
7696 {
7697 /* This is a field pointing us to the parent type of a tagged
7698 type. As hinted in this function's documentation, we give
7699 preference to fields in the current record first, so what
7700 we do here is just record the index of this field before
7701 we skip it. If it turns out we couldn't find our field
7702 in the current record, then we'll get back to it and search
7703 inside it whether the field might exist in the parent. */
7704
7705 parent_offset = i;
7706 continue;
7707 }
7708
7709 else if (field_name_match (t_field_name, name))
7710 return TYPE_FIELD_TYPE (type, i);
7711
7712 else if (ada_is_wrapper_field (type, i))
7713 {
7714 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7715 0, 1);
7716 if (t != NULL)
7717 return t;
7718 }
7719
7720 else if (ada_is_variant_part (type, i))
7721 {
7722 int j;
7723 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7724 i));
7725
7726 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7727 {
7728 /* FIXME pnh 2008/01/26: We check for a field that is
7729 NOT wrapped in a struct, since the compiler sometimes
7730 generates these for unchecked variant types. Revisit
7731 if the compiler changes this practice. */
7732 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7733
7734 if (v_field_name != NULL
7735 && field_name_match (v_field_name, name))
7736 t = TYPE_FIELD_TYPE (field_type, j);
7737 else
7738 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7739 j),
7740 name, 0, 1);
7741
7742 if (t != NULL)
7743 return t;
7744 }
7745 }
7746
7747 }
7748
7749 /* Field not found so far. If this is a tagged type which
7750 has a parent, try finding that field in the parent now. */
7751
7752 if (parent_offset != -1)
7753 {
7754 struct type *t;
7755
7756 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7757 name, 0, 1);
7758 if (t != NULL)
7759 return t;
7760 }
7761
7762 BadName:
7763 if (!noerr)
7764 {
7765 const char *name_str = name != NULL ? name : _("<null>");
7766
7767 error (_("Type %s has no component named %s"),
7768 type_as_string (type).c_str (), name_str);
7769 }
7770
7771 return NULL;
7772 }
7773
7774 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7775 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7776 represents an unchecked union (that is, the variant part of a
7777 record that is named in an Unchecked_Union pragma). */
7778
7779 static int
7780 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7781 {
7782 const char *discrim_name = ada_variant_discrim_name (var_type);
7783
7784 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7785 }
7786
7787
7788 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7789 within a value of type OUTER_TYPE that is stored in GDB at
7790 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7791 numbering from 0) is applicable. Returns -1 if none are. */
7792
7793 int
7794 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7795 const gdb_byte *outer_valaddr)
7796 {
7797 int others_clause;
7798 int i;
7799 const char *discrim_name = ada_variant_discrim_name (var_type);
7800 struct value *outer;
7801 struct value *discrim;
7802 LONGEST discrim_val;
7803
7804 /* Using plain value_from_contents_and_address here causes problems
7805 because we will end up trying to resolve a type that is currently
7806 being constructed. */
7807 outer = value_from_contents_and_address_unresolved (outer_type,
7808 outer_valaddr, 0);
7809 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7810 if (discrim == NULL)
7811 return -1;
7812 discrim_val = value_as_long (discrim);
7813
7814 others_clause = -1;
7815 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7816 {
7817 if (ada_is_others_clause (var_type, i))
7818 others_clause = i;
7819 else if (ada_in_variant (discrim_val, var_type, i))
7820 return i;
7821 }
7822
7823 return others_clause;
7824 }
7825 \f
7826
7827
7828 /* Dynamic-Sized Records */
7829
7830 /* Strategy: The type ostensibly attached to a value with dynamic size
7831 (i.e., a size that is not statically recorded in the debugging
7832 data) does not accurately reflect the size or layout of the value.
7833 Our strategy is to convert these values to values with accurate,
7834 conventional types that are constructed on the fly. */
7835
7836 /* There is a subtle and tricky problem here. In general, we cannot
7837 determine the size of dynamic records without its data. However,
7838 the 'struct value' data structure, which GDB uses to represent
7839 quantities in the inferior process (the target), requires the size
7840 of the type at the time of its allocation in order to reserve space
7841 for GDB's internal copy of the data. That's why the
7842 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7843 rather than struct value*s.
7844
7845 However, GDB's internal history variables ($1, $2, etc.) are
7846 struct value*s containing internal copies of the data that are not, in
7847 general, the same as the data at their corresponding addresses in
7848 the target. Fortunately, the types we give to these values are all
7849 conventional, fixed-size types (as per the strategy described
7850 above), so that we don't usually have to perform the
7851 'to_fixed_xxx_type' conversions to look at their values.
7852 Unfortunately, there is one exception: if one of the internal
7853 history variables is an array whose elements are unconstrained
7854 records, then we will need to create distinct fixed types for each
7855 element selected. */
7856
7857 /* The upshot of all of this is that many routines take a (type, host
7858 address, target address) triple as arguments to represent a value.
7859 The host address, if non-null, is supposed to contain an internal
7860 copy of the relevant data; otherwise, the program is to consult the
7861 target at the target address. */
7862
7863 /* Assuming that VAL0 represents a pointer value, the result of
7864 dereferencing it. Differs from value_ind in its treatment of
7865 dynamic-sized types. */
7866
7867 struct value *
7868 ada_value_ind (struct value *val0)
7869 {
7870 struct value *val = value_ind (val0);
7871
7872 if (ada_is_tagged_type (value_type (val), 0))
7873 val = ada_tag_value_at_base_address (val);
7874
7875 return ada_to_fixed_value (val);
7876 }
7877
7878 /* The value resulting from dereferencing any "reference to"
7879 qualifiers on VAL0. */
7880
7881 static struct value *
7882 ada_coerce_ref (struct value *val0)
7883 {
7884 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7885 {
7886 struct value *val = val0;
7887
7888 val = coerce_ref (val);
7889
7890 if (ada_is_tagged_type (value_type (val), 0))
7891 val = ada_tag_value_at_base_address (val);
7892
7893 return ada_to_fixed_value (val);
7894 }
7895 else
7896 return val0;
7897 }
7898
7899 /* Return OFF rounded upward if necessary to a multiple of
7900 ALIGNMENT (a power of 2). */
7901
7902 static unsigned int
7903 align_value (unsigned int off, unsigned int alignment)
7904 {
7905 return (off + alignment - 1) & ~(alignment - 1);
7906 }
7907
7908 /* Return the bit alignment required for field #F of template type TYPE. */
7909
7910 static unsigned int
7911 field_alignment (struct type *type, int f)
7912 {
7913 const char *name = TYPE_FIELD_NAME (type, f);
7914 int len;
7915 int align_offset;
7916
7917 /* The field name should never be null, unless the debugging information
7918 is somehow malformed. In this case, we assume the field does not
7919 require any alignment. */
7920 if (name == NULL)
7921 return 1;
7922
7923 len = strlen (name);
7924
7925 if (!isdigit (name[len - 1]))
7926 return 1;
7927
7928 if (isdigit (name[len - 2]))
7929 align_offset = len - 2;
7930 else
7931 align_offset = len - 1;
7932
7933 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7934 return TARGET_CHAR_BIT;
7935
7936 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7937 }
7938
7939 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7940
7941 static struct symbol *
7942 ada_find_any_type_symbol (const char *name)
7943 {
7944 struct symbol *sym;
7945
7946 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7947 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7948 return sym;
7949
7950 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7951 return sym;
7952 }
7953
7954 /* Find a type named NAME. Ignores ambiguity. This routine will look
7955 solely for types defined by debug info, it will not search the GDB
7956 primitive types. */
7957
7958 static struct type *
7959 ada_find_any_type (const char *name)
7960 {
7961 struct symbol *sym = ada_find_any_type_symbol (name);
7962
7963 if (sym != NULL)
7964 return SYMBOL_TYPE (sym);
7965
7966 return NULL;
7967 }
7968
7969 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7970 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7971 symbol, in which case it is returned. Otherwise, this looks for
7972 symbols whose name is that of NAME_SYM suffixed with "___XR".
7973 Return symbol if found, and NULL otherwise. */
7974
7975 struct symbol *
7976 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7977 {
7978 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7979 struct symbol *sym;
7980
7981 if (strstr (name, "___XR") != NULL)
7982 return name_sym;
7983
7984 sym = find_old_style_renaming_symbol (name, block);
7985
7986 if (sym != NULL)
7987 return sym;
7988
7989 /* Not right yet. FIXME pnh 7/20/2007. */
7990 sym = ada_find_any_type_symbol (name);
7991 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7992 return sym;
7993 else
7994 return NULL;
7995 }
7996
7997 static struct symbol *
7998 find_old_style_renaming_symbol (const char *name, const struct block *block)
7999 {
8000 const struct symbol *function_sym = block_linkage_function (block);
8001 char *rename;
8002
8003 if (function_sym != NULL)
8004 {
8005 /* If the symbol is defined inside a function, NAME is not fully
8006 qualified. This means we need to prepend the function name
8007 as well as adding the ``___XR'' suffix to build the name of
8008 the associated renaming symbol. */
8009 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8010 /* Function names sometimes contain suffixes used
8011 for instance to qualify nested subprograms. When building
8012 the XR type name, we need to make sure that this suffix is
8013 not included. So do not include any suffix in the function
8014 name length below. */
8015 int function_name_len = ada_name_prefix_len (function_name);
8016 const int rename_len = function_name_len + 2 /* "__" */
8017 + strlen (name) + 6 /* "___XR\0" */ ;
8018
8019 /* Strip the suffix if necessary. */
8020 ada_remove_trailing_digits (function_name, &function_name_len);
8021 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8022 ada_remove_Xbn_suffix (function_name, &function_name_len);
8023
8024 /* Library-level functions are a special case, as GNAT adds
8025 a ``_ada_'' prefix to the function name to avoid namespace
8026 pollution. However, the renaming symbols themselves do not
8027 have this prefix, so we need to skip this prefix if present. */
8028 if (function_name_len > 5 /* "_ada_" */
8029 && strstr (function_name, "_ada_") == function_name)
8030 {
8031 function_name += 5;
8032 function_name_len -= 5;
8033 }
8034
8035 rename = (char *) alloca (rename_len * sizeof (char));
8036 strncpy (rename, function_name, function_name_len);
8037 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8038 "__%s___XR", name);
8039 }
8040 else
8041 {
8042 const int rename_len = strlen (name) + 6;
8043
8044 rename = (char *) alloca (rename_len * sizeof (char));
8045 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8046 }
8047
8048 return ada_find_any_type_symbol (rename);
8049 }
8050
8051 /* Because of GNAT encoding conventions, several GDB symbols may match a
8052 given type name. If the type denoted by TYPE0 is to be preferred to
8053 that of TYPE1 for purposes of type printing, return non-zero;
8054 otherwise return 0. */
8055
8056 int
8057 ada_prefer_type (struct type *type0, struct type *type1)
8058 {
8059 if (type1 == NULL)
8060 return 1;
8061 else if (type0 == NULL)
8062 return 0;
8063 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8064 return 1;
8065 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8066 return 0;
8067 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8068 return 1;
8069 else if (ada_is_constrained_packed_array_type (type0))
8070 return 1;
8071 else if (ada_is_array_descriptor_type (type0)
8072 && !ada_is_array_descriptor_type (type1))
8073 return 1;
8074 else
8075 {
8076 const char *type0_name = TYPE_NAME (type0);
8077 const char *type1_name = TYPE_NAME (type1);
8078
8079 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8080 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8081 return 1;
8082 }
8083 return 0;
8084 }
8085
8086 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8087 null. */
8088
8089 const char *
8090 ada_type_name (struct type *type)
8091 {
8092 if (type == NULL)
8093 return NULL;
8094 return TYPE_NAME (type);
8095 }
8096
8097 /* Search the list of "descriptive" types associated to TYPE for a type
8098 whose name is NAME. */
8099
8100 static struct type *
8101 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8102 {
8103 struct type *result, *tmp;
8104
8105 if (ada_ignore_descriptive_types_p)
8106 return NULL;
8107
8108 /* If there no descriptive-type info, then there is no parallel type
8109 to be found. */
8110 if (!HAVE_GNAT_AUX_INFO (type))
8111 return NULL;
8112
8113 result = TYPE_DESCRIPTIVE_TYPE (type);
8114 while (result != NULL)
8115 {
8116 const char *result_name = ada_type_name (result);
8117
8118 if (result_name == NULL)
8119 {
8120 warning (_("unexpected null name on descriptive type"));
8121 return NULL;
8122 }
8123
8124 /* If the names match, stop. */
8125 if (strcmp (result_name, name) == 0)
8126 break;
8127
8128 /* Otherwise, look at the next item on the list, if any. */
8129 if (HAVE_GNAT_AUX_INFO (result))
8130 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8131 else
8132 tmp = NULL;
8133
8134 /* If not found either, try after having resolved the typedef. */
8135 if (tmp != NULL)
8136 result = tmp;
8137 else
8138 {
8139 result = check_typedef (result);
8140 if (HAVE_GNAT_AUX_INFO (result))
8141 result = TYPE_DESCRIPTIVE_TYPE (result);
8142 else
8143 result = NULL;
8144 }
8145 }
8146
8147 /* If we didn't find a match, see whether this is a packed array. With
8148 older compilers, the descriptive type information is either absent or
8149 irrelevant when it comes to packed arrays so the above lookup fails.
8150 Fall back to using a parallel lookup by name in this case. */
8151 if (result == NULL && ada_is_constrained_packed_array_type (type))
8152 return ada_find_any_type (name);
8153
8154 return result;
8155 }
8156
8157 /* Find a parallel type to TYPE with the specified NAME, using the
8158 descriptive type taken from the debugging information, if available,
8159 and otherwise using the (slower) name-based method. */
8160
8161 static struct type *
8162 ada_find_parallel_type_with_name (struct type *type, const char *name)
8163 {
8164 struct type *result = NULL;
8165
8166 if (HAVE_GNAT_AUX_INFO (type))
8167 result = find_parallel_type_by_descriptive_type (type, name);
8168 else
8169 result = ada_find_any_type (name);
8170
8171 return result;
8172 }
8173
8174 /* Same as above, but specify the name of the parallel type by appending
8175 SUFFIX to the name of TYPE. */
8176
8177 struct type *
8178 ada_find_parallel_type (struct type *type, const char *suffix)
8179 {
8180 char *name;
8181 const char *type_name = ada_type_name (type);
8182 int len;
8183
8184 if (type_name == NULL)
8185 return NULL;
8186
8187 len = strlen (type_name);
8188
8189 name = (char *) alloca (len + strlen (suffix) + 1);
8190
8191 strcpy (name, type_name);
8192 strcpy (name + len, suffix);
8193
8194 return ada_find_parallel_type_with_name (type, name);
8195 }
8196
8197 /* If TYPE is a variable-size record type, return the corresponding template
8198 type describing its fields. Otherwise, return NULL. */
8199
8200 static struct type *
8201 dynamic_template_type (struct type *type)
8202 {
8203 type = ada_check_typedef (type);
8204
8205 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8206 || ada_type_name (type) == NULL)
8207 return NULL;
8208 else
8209 {
8210 int len = strlen (ada_type_name (type));
8211
8212 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8213 return type;
8214 else
8215 return ada_find_parallel_type (type, "___XVE");
8216 }
8217 }
8218
8219 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8220 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8221
8222 static int
8223 is_dynamic_field (struct type *templ_type, int field_num)
8224 {
8225 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8226
8227 return name != NULL
8228 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8229 && strstr (name, "___XVL") != NULL;
8230 }
8231
8232 /* The index of the variant field of TYPE, or -1 if TYPE does not
8233 represent a variant record type. */
8234
8235 static int
8236 variant_field_index (struct type *type)
8237 {
8238 int f;
8239
8240 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8241 return -1;
8242
8243 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8244 {
8245 if (ada_is_variant_part (type, f))
8246 return f;
8247 }
8248 return -1;
8249 }
8250
8251 /* A record type with no fields. */
8252
8253 static struct type *
8254 empty_record (struct type *templ)
8255 {
8256 struct type *type = alloc_type_copy (templ);
8257
8258 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8259 TYPE_NFIELDS (type) = 0;
8260 TYPE_FIELDS (type) = NULL;
8261 INIT_CPLUS_SPECIFIC (type);
8262 TYPE_NAME (type) = "<empty>";
8263 TYPE_LENGTH (type) = 0;
8264 return type;
8265 }
8266
8267 /* An ordinary record type (with fixed-length fields) that describes
8268 the value of type TYPE at VALADDR or ADDRESS (see comments at
8269 the beginning of this section) VAL according to GNAT conventions.
8270 DVAL0 should describe the (portion of a) record that contains any
8271 necessary discriminants. It should be NULL if value_type (VAL) is
8272 an outer-level type (i.e., as opposed to a branch of a variant.) A
8273 variant field (unless unchecked) is replaced by a particular branch
8274 of the variant.
8275
8276 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8277 length are not statically known are discarded. As a consequence,
8278 VALADDR, ADDRESS and DVAL0 are ignored.
8279
8280 NOTE: Limitations: For now, we assume that dynamic fields and
8281 variants occupy whole numbers of bytes. However, they need not be
8282 byte-aligned. */
8283
8284 struct type *
8285 ada_template_to_fixed_record_type_1 (struct type *type,
8286 const gdb_byte *valaddr,
8287 CORE_ADDR address, struct value *dval0,
8288 int keep_dynamic_fields)
8289 {
8290 struct value *mark = value_mark ();
8291 struct value *dval;
8292 struct type *rtype;
8293 int nfields, bit_len;
8294 int variant_field;
8295 long off;
8296 int fld_bit_len;
8297 int f;
8298
8299 /* Compute the number of fields in this record type that are going
8300 to be processed: unless keep_dynamic_fields, this includes only
8301 fields whose position and length are static will be processed. */
8302 if (keep_dynamic_fields)
8303 nfields = TYPE_NFIELDS (type);
8304 else
8305 {
8306 nfields = 0;
8307 while (nfields < TYPE_NFIELDS (type)
8308 && !ada_is_variant_part (type, nfields)
8309 && !is_dynamic_field (type, nfields))
8310 nfields++;
8311 }
8312
8313 rtype = alloc_type_copy (type);
8314 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8315 INIT_CPLUS_SPECIFIC (rtype);
8316 TYPE_NFIELDS (rtype) = nfields;
8317 TYPE_FIELDS (rtype) = (struct field *)
8318 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8319 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8320 TYPE_NAME (rtype) = ada_type_name (type);
8321 TYPE_FIXED_INSTANCE (rtype) = 1;
8322
8323 off = 0;
8324 bit_len = 0;
8325 variant_field = -1;
8326
8327 for (f = 0; f < nfields; f += 1)
8328 {
8329 off = align_value (off, field_alignment (type, f))
8330 + TYPE_FIELD_BITPOS (type, f);
8331 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8332 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8333
8334 if (ada_is_variant_part (type, f))
8335 {
8336 variant_field = f;
8337 fld_bit_len = 0;
8338 }
8339 else if (is_dynamic_field (type, f))
8340 {
8341 const gdb_byte *field_valaddr = valaddr;
8342 CORE_ADDR field_address = address;
8343 struct type *field_type =
8344 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8345
8346 if (dval0 == NULL)
8347 {
8348 /* rtype's length is computed based on the run-time
8349 value of discriminants. If the discriminants are not
8350 initialized, the type size may be completely bogus and
8351 GDB may fail to allocate a value for it. So check the
8352 size first before creating the value. */
8353 ada_ensure_varsize_limit (rtype);
8354 /* Using plain value_from_contents_and_address here
8355 causes problems because we will end up trying to
8356 resolve a type that is currently being
8357 constructed. */
8358 dval = value_from_contents_and_address_unresolved (rtype,
8359 valaddr,
8360 address);
8361 rtype = value_type (dval);
8362 }
8363 else
8364 dval = dval0;
8365
8366 /* If the type referenced by this field is an aligner type, we need
8367 to unwrap that aligner type, because its size might not be set.
8368 Keeping the aligner type would cause us to compute the wrong
8369 size for this field, impacting the offset of the all the fields
8370 that follow this one. */
8371 if (ada_is_aligner_type (field_type))
8372 {
8373 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8374
8375 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8376 field_address = cond_offset_target (field_address, field_offset);
8377 field_type = ada_aligned_type (field_type);
8378 }
8379
8380 field_valaddr = cond_offset_host (field_valaddr,
8381 off / TARGET_CHAR_BIT);
8382 field_address = cond_offset_target (field_address,
8383 off / TARGET_CHAR_BIT);
8384
8385 /* Get the fixed type of the field. Note that, in this case,
8386 we do not want to get the real type out of the tag: if
8387 the current field is the parent part of a tagged record,
8388 we will get the tag of the object. Clearly wrong: the real
8389 type of the parent is not the real type of the child. We
8390 would end up in an infinite loop. */
8391 field_type = ada_get_base_type (field_type);
8392 field_type = ada_to_fixed_type (field_type, field_valaddr,
8393 field_address, dval, 0);
8394 /* If the field size is already larger than the maximum
8395 object size, then the record itself will necessarily
8396 be larger than the maximum object size. We need to make
8397 this check now, because the size might be so ridiculously
8398 large (due to an uninitialized variable in the inferior)
8399 that it would cause an overflow when adding it to the
8400 record size. */
8401 ada_ensure_varsize_limit (field_type);
8402
8403 TYPE_FIELD_TYPE (rtype, f) = field_type;
8404 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8405 /* The multiplication can potentially overflow. But because
8406 the field length has been size-checked just above, and
8407 assuming that the maximum size is a reasonable value,
8408 an overflow should not happen in practice. So rather than
8409 adding overflow recovery code to this already complex code,
8410 we just assume that it's not going to happen. */
8411 fld_bit_len =
8412 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8413 }
8414 else
8415 {
8416 /* Note: If this field's type is a typedef, it is important
8417 to preserve the typedef layer.
8418
8419 Otherwise, we might be transforming a typedef to a fat
8420 pointer (encoding a pointer to an unconstrained array),
8421 into a basic fat pointer (encoding an unconstrained
8422 array). As both types are implemented using the same
8423 structure, the typedef is the only clue which allows us
8424 to distinguish between the two options. Stripping it
8425 would prevent us from printing this field appropriately. */
8426 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8427 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8428 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8429 fld_bit_len =
8430 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8431 else
8432 {
8433 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8434
8435 /* We need to be careful of typedefs when computing
8436 the length of our field. If this is a typedef,
8437 get the length of the target type, not the length
8438 of the typedef. */
8439 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8440 field_type = ada_typedef_target_type (field_type);
8441
8442 fld_bit_len =
8443 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8444 }
8445 }
8446 if (off + fld_bit_len > bit_len)
8447 bit_len = off + fld_bit_len;
8448 off += fld_bit_len;
8449 TYPE_LENGTH (rtype) =
8450 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8451 }
8452
8453 /* We handle the variant part, if any, at the end because of certain
8454 odd cases in which it is re-ordered so as NOT to be the last field of
8455 the record. This can happen in the presence of representation
8456 clauses. */
8457 if (variant_field >= 0)
8458 {
8459 struct type *branch_type;
8460
8461 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8462
8463 if (dval0 == NULL)
8464 {
8465 /* Using plain value_from_contents_and_address here causes
8466 problems because we will end up trying to resolve a type
8467 that is currently being constructed. */
8468 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8469 address);
8470 rtype = value_type (dval);
8471 }
8472 else
8473 dval = dval0;
8474
8475 branch_type =
8476 to_fixed_variant_branch_type
8477 (TYPE_FIELD_TYPE (type, variant_field),
8478 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8479 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8480 if (branch_type == NULL)
8481 {
8482 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8483 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8484 TYPE_NFIELDS (rtype) -= 1;
8485 }
8486 else
8487 {
8488 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8489 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8490 fld_bit_len =
8491 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8492 TARGET_CHAR_BIT;
8493 if (off + fld_bit_len > bit_len)
8494 bit_len = off + fld_bit_len;
8495 TYPE_LENGTH (rtype) =
8496 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8497 }
8498 }
8499
8500 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8501 should contain the alignment of that record, which should be a strictly
8502 positive value. If null or negative, then something is wrong, most
8503 probably in the debug info. In that case, we don't round up the size
8504 of the resulting type. If this record is not part of another structure,
8505 the current RTYPE length might be good enough for our purposes. */
8506 if (TYPE_LENGTH (type) <= 0)
8507 {
8508 if (TYPE_NAME (rtype))
8509 warning (_("Invalid type size for `%s' detected: %d."),
8510 TYPE_NAME (rtype), TYPE_LENGTH (type));
8511 else
8512 warning (_("Invalid type size for <unnamed> detected: %d."),
8513 TYPE_LENGTH (type));
8514 }
8515 else
8516 {
8517 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8518 TYPE_LENGTH (type));
8519 }
8520
8521 value_free_to_mark (mark);
8522 if (TYPE_LENGTH (rtype) > varsize_limit)
8523 error (_("record type with dynamic size is larger than varsize-limit"));
8524 return rtype;
8525 }
8526
8527 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8528 of 1. */
8529
8530 static struct type *
8531 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8532 CORE_ADDR address, struct value *dval0)
8533 {
8534 return ada_template_to_fixed_record_type_1 (type, valaddr,
8535 address, dval0, 1);
8536 }
8537
8538 /* An ordinary record type in which ___XVL-convention fields and
8539 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8540 static approximations, containing all possible fields. Uses
8541 no runtime values. Useless for use in values, but that's OK,
8542 since the results are used only for type determinations. Works on both
8543 structs and unions. Representation note: to save space, we memorize
8544 the result of this function in the TYPE_TARGET_TYPE of the
8545 template type. */
8546
8547 static struct type *
8548 template_to_static_fixed_type (struct type *type0)
8549 {
8550 struct type *type;
8551 int nfields;
8552 int f;
8553
8554 /* No need no do anything if the input type is already fixed. */
8555 if (TYPE_FIXED_INSTANCE (type0))
8556 return type0;
8557
8558 /* Likewise if we already have computed the static approximation. */
8559 if (TYPE_TARGET_TYPE (type0) != NULL)
8560 return TYPE_TARGET_TYPE (type0);
8561
8562 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8563 type = type0;
8564 nfields = TYPE_NFIELDS (type0);
8565
8566 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8567 recompute all over next time. */
8568 TYPE_TARGET_TYPE (type0) = type;
8569
8570 for (f = 0; f < nfields; f += 1)
8571 {
8572 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8573 struct type *new_type;
8574
8575 if (is_dynamic_field (type0, f))
8576 {
8577 field_type = ada_check_typedef (field_type);
8578 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8579 }
8580 else
8581 new_type = static_unwrap_type (field_type);
8582
8583 if (new_type != field_type)
8584 {
8585 /* Clone TYPE0 only the first time we get a new field type. */
8586 if (type == type0)
8587 {
8588 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8589 TYPE_CODE (type) = TYPE_CODE (type0);
8590 INIT_CPLUS_SPECIFIC (type);
8591 TYPE_NFIELDS (type) = nfields;
8592 TYPE_FIELDS (type) = (struct field *)
8593 TYPE_ALLOC (type, nfields * sizeof (struct field));
8594 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8595 sizeof (struct field) * nfields);
8596 TYPE_NAME (type) = ada_type_name (type0);
8597 TYPE_FIXED_INSTANCE (type) = 1;
8598 TYPE_LENGTH (type) = 0;
8599 }
8600 TYPE_FIELD_TYPE (type, f) = new_type;
8601 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8602 }
8603 }
8604
8605 return type;
8606 }
8607
8608 /* Given an object of type TYPE whose contents are at VALADDR and
8609 whose address in memory is ADDRESS, returns a revision of TYPE,
8610 which should be a non-dynamic-sized record, in which the variant
8611 part, if any, is replaced with the appropriate branch. Looks
8612 for discriminant values in DVAL0, which can be NULL if the record
8613 contains the necessary discriminant values. */
8614
8615 static struct type *
8616 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8617 CORE_ADDR address, struct value *dval0)
8618 {
8619 struct value *mark = value_mark ();
8620 struct value *dval;
8621 struct type *rtype;
8622 struct type *branch_type;
8623 int nfields = TYPE_NFIELDS (type);
8624 int variant_field = variant_field_index (type);
8625
8626 if (variant_field == -1)
8627 return type;
8628
8629 if (dval0 == NULL)
8630 {
8631 dval = value_from_contents_and_address (type, valaddr, address);
8632 type = value_type (dval);
8633 }
8634 else
8635 dval = dval0;
8636
8637 rtype = alloc_type_copy (type);
8638 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8639 INIT_CPLUS_SPECIFIC (rtype);
8640 TYPE_NFIELDS (rtype) = nfields;
8641 TYPE_FIELDS (rtype) =
8642 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8643 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8644 sizeof (struct field) * nfields);
8645 TYPE_NAME (rtype) = ada_type_name (type);
8646 TYPE_FIXED_INSTANCE (rtype) = 1;
8647 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8648
8649 branch_type = to_fixed_variant_branch_type
8650 (TYPE_FIELD_TYPE (type, variant_field),
8651 cond_offset_host (valaddr,
8652 TYPE_FIELD_BITPOS (type, variant_field)
8653 / TARGET_CHAR_BIT),
8654 cond_offset_target (address,
8655 TYPE_FIELD_BITPOS (type, variant_field)
8656 / TARGET_CHAR_BIT), dval);
8657 if (branch_type == NULL)
8658 {
8659 int f;
8660
8661 for (f = variant_field + 1; f < nfields; f += 1)
8662 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8663 TYPE_NFIELDS (rtype) -= 1;
8664 }
8665 else
8666 {
8667 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8668 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8669 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8670 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8671 }
8672 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8673
8674 value_free_to_mark (mark);
8675 return rtype;
8676 }
8677
8678 /* An ordinary record type (with fixed-length fields) that describes
8679 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8680 beginning of this section]. Any necessary discriminants' values
8681 should be in DVAL, a record value; it may be NULL if the object
8682 at ADDR itself contains any necessary discriminant values.
8683 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8684 values from the record are needed. Except in the case that DVAL,
8685 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8686 unchecked) is replaced by a particular branch of the variant.
8687
8688 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8689 is questionable and may be removed. It can arise during the
8690 processing of an unconstrained-array-of-record type where all the
8691 variant branches have exactly the same size. This is because in
8692 such cases, the compiler does not bother to use the XVS convention
8693 when encoding the record. I am currently dubious of this
8694 shortcut and suspect the compiler should be altered. FIXME. */
8695
8696 static struct type *
8697 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8698 CORE_ADDR address, struct value *dval)
8699 {
8700 struct type *templ_type;
8701
8702 if (TYPE_FIXED_INSTANCE (type0))
8703 return type0;
8704
8705 templ_type = dynamic_template_type (type0);
8706
8707 if (templ_type != NULL)
8708 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8709 else if (variant_field_index (type0) >= 0)
8710 {
8711 if (dval == NULL && valaddr == NULL && address == 0)
8712 return type0;
8713 return to_record_with_fixed_variant_part (type0, valaddr, address,
8714 dval);
8715 }
8716 else
8717 {
8718 TYPE_FIXED_INSTANCE (type0) = 1;
8719 return type0;
8720 }
8721
8722 }
8723
8724 /* An ordinary record type (with fixed-length fields) that describes
8725 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8726 union type. Any necessary discriminants' values should be in DVAL,
8727 a record value. That is, this routine selects the appropriate
8728 branch of the union at ADDR according to the discriminant value
8729 indicated in the union's type name. Returns VAR_TYPE0 itself if
8730 it represents a variant subject to a pragma Unchecked_Union. */
8731
8732 static struct type *
8733 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8734 CORE_ADDR address, struct value *dval)
8735 {
8736 int which;
8737 struct type *templ_type;
8738 struct type *var_type;
8739
8740 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8741 var_type = TYPE_TARGET_TYPE (var_type0);
8742 else
8743 var_type = var_type0;
8744
8745 templ_type = ada_find_parallel_type (var_type, "___XVU");
8746
8747 if (templ_type != NULL)
8748 var_type = templ_type;
8749
8750 if (is_unchecked_variant (var_type, value_type (dval)))
8751 return var_type0;
8752 which =
8753 ada_which_variant_applies (var_type,
8754 value_type (dval), value_contents (dval));
8755
8756 if (which < 0)
8757 return empty_record (var_type);
8758 else if (is_dynamic_field (var_type, which))
8759 return to_fixed_record_type
8760 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8761 valaddr, address, dval);
8762 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8763 return
8764 to_fixed_record_type
8765 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8766 else
8767 return TYPE_FIELD_TYPE (var_type, which);
8768 }
8769
8770 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8771 ENCODING_TYPE, a type following the GNAT conventions for discrete
8772 type encodings, only carries redundant information. */
8773
8774 static int
8775 ada_is_redundant_range_encoding (struct type *range_type,
8776 struct type *encoding_type)
8777 {
8778 const char *bounds_str;
8779 int n;
8780 LONGEST lo, hi;
8781
8782 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8783
8784 if (TYPE_CODE (get_base_type (range_type))
8785 != TYPE_CODE (get_base_type (encoding_type)))
8786 {
8787 /* The compiler probably used a simple base type to describe
8788 the range type instead of the range's actual base type,
8789 expecting us to get the real base type from the encoding
8790 anyway. In this situation, the encoding cannot be ignored
8791 as redundant. */
8792 return 0;
8793 }
8794
8795 if (is_dynamic_type (range_type))
8796 return 0;
8797
8798 if (TYPE_NAME (encoding_type) == NULL)
8799 return 0;
8800
8801 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8802 if (bounds_str == NULL)
8803 return 0;
8804
8805 n = 8; /* Skip "___XDLU_". */
8806 if (!ada_scan_number (bounds_str, n, &lo, &n))
8807 return 0;
8808 if (TYPE_LOW_BOUND (range_type) != lo)
8809 return 0;
8810
8811 n += 2; /* Skip the "__" separator between the two bounds. */
8812 if (!ada_scan_number (bounds_str, n, &hi, &n))
8813 return 0;
8814 if (TYPE_HIGH_BOUND (range_type) != hi)
8815 return 0;
8816
8817 return 1;
8818 }
8819
8820 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8821 a type following the GNAT encoding for describing array type
8822 indices, only carries redundant information. */
8823
8824 static int
8825 ada_is_redundant_index_type_desc (struct type *array_type,
8826 struct type *desc_type)
8827 {
8828 struct type *this_layer = check_typedef (array_type);
8829 int i;
8830
8831 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8832 {
8833 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8834 TYPE_FIELD_TYPE (desc_type, i)))
8835 return 0;
8836 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8837 }
8838
8839 return 1;
8840 }
8841
8842 /* Assuming that TYPE0 is an array type describing the type of a value
8843 at ADDR, and that DVAL describes a record containing any
8844 discriminants used in TYPE0, returns a type for the value that
8845 contains no dynamic components (that is, no components whose sizes
8846 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8847 true, gives an error message if the resulting type's size is over
8848 varsize_limit. */
8849
8850 static struct type *
8851 to_fixed_array_type (struct type *type0, struct value *dval,
8852 int ignore_too_big)
8853 {
8854 struct type *index_type_desc;
8855 struct type *result;
8856 int constrained_packed_array_p;
8857 static const char *xa_suffix = "___XA";
8858
8859 type0 = ada_check_typedef (type0);
8860 if (TYPE_FIXED_INSTANCE (type0))
8861 return type0;
8862
8863 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8864 if (constrained_packed_array_p)
8865 type0 = decode_constrained_packed_array_type (type0);
8866
8867 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8868
8869 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8870 encoding suffixed with 'P' may still be generated. If so,
8871 it should be used to find the XA type. */
8872
8873 if (index_type_desc == NULL)
8874 {
8875 const char *type_name = ada_type_name (type0);
8876
8877 if (type_name != NULL)
8878 {
8879 const int len = strlen (type_name);
8880 char *name = (char *) alloca (len + strlen (xa_suffix));
8881
8882 if (type_name[len - 1] == 'P')
8883 {
8884 strcpy (name, type_name);
8885 strcpy (name + len - 1, xa_suffix);
8886 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8887 }
8888 }
8889 }
8890
8891 ada_fixup_array_indexes_type (index_type_desc);
8892 if (index_type_desc != NULL
8893 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8894 {
8895 /* Ignore this ___XA parallel type, as it does not bring any
8896 useful information. This allows us to avoid creating fixed
8897 versions of the array's index types, which would be identical
8898 to the original ones. This, in turn, can also help avoid
8899 the creation of fixed versions of the array itself. */
8900 index_type_desc = NULL;
8901 }
8902
8903 if (index_type_desc == NULL)
8904 {
8905 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8906
8907 /* NOTE: elt_type---the fixed version of elt_type0---should never
8908 depend on the contents of the array in properly constructed
8909 debugging data. */
8910 /* Create a fixed version of the array element type.
8911 We're not providing the address of an element here,
8912 and thus the actual object value cannot be inspected to do
8913 the conversion. This should not be a problem, since arrays of
8914 unconstrained objects are not allowed. In particular, all
8915 the elements of an array of a tagged type should all be of
8916 the same type specified in the debugging info. No need to
8917 consult the object tag. */
8918 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8919
8920 /* Make sure we always create a new array type when dealing with
8921 packed array types, since we're going to fix-up the array
8922 type length and element bitsize a little further down. */
8923 if (elt_type0 == elt_type && !constrained_packed_array_p)
8924 result = type0;
8925 else
8926 result = create_array_type (alloc_type_copy (type0),
8927 elt_type, TYPE_INDEX_TYPE (type0));
8928 }
8929 else
8930 {
8931 int i;
8932 struct type *elt_type0;
8933
8934 elt_type0 = type0;
8935 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8936 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8937
8938 /* NOTE: result---the fixed version of elt_type0---should never
8939 depend on the contents of the array in properly constructed
8940 debugging data. */
8941 /* Create a fixed version of the array element type.
8942 We're not providing the address of an element here,
8943 and thus the actual object value cannot be inspected to do
8944 the conversion. This should not be a problem, since arrays of
8945 unconstrained objects are not allowed. In particular, all
8946 the elements of an array of a tagged type should all be of
8947 the same type specified in the debugging info. No need to
8948 consult the object tag. */
8949 result =
8950 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8951
8952 elt_type0 = type0;
8953 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8954 {
8955 struct type *range_type =
8956 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8957
8958 result = create_array_type (alloc_type_copy (elt_type0),
8959 result, range_type);
8960 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8961 }
8962 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8963 error (_("array type with dynamic size is larger than varsize-limit"));
8964 }
8965
8966 /* We want to preserve the type name. This can be useful when
8967 trying to get the type name of a value that has already been
8968 printed (for instance, if the user did "print VAR; whatis $". */
8969 TYPE_NAME (result) = TYPE_NAME (type0);
8970
8971 if (constrained_packed_array_p)
8972 {
8973 /* So far, the resulting type has been created as if the original
8974 type was a regular (non-packed) array type. As a result, the
8975 bitsize of the array elements needs to be set again, and the array
8976 length needs to be recomputed based on that bitsize. */
8977 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8978 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8979
8980 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8981 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8982 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8983 TYPE_LENGTH (result)++;
8984 }
8985
8986 TYPE_FIXED_INSTANCE (result) = 1;
8987 return result;
8988 }
8989
8990
8991 /* A standard type (containing no dynamically sized components)
8992 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8993 DVAL describes a record containing any discriminants used in TYPE0,
8994 and may be NULL if there are none, or if the object of type TYPE at
8995 ADDRESS or in VALADDR contains these discriminants.
8996
8997 If CHECK_TAG is not null, in the case of tagged types, this function
8998 attempts to locate the object's tag and use it to compute the actual
8999 type. However, when ADDRESS is null, we cannot use it to determine the
9000 location of the tag, and therefore compute the tagged type's actual type.
9001 So we return the tagged type without consulting the tag. */
9002
9003 static struct type *
9004 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9005 CORE_ADDR address, struct value *dval, int check_tag)
9006 {
9007 type = ada_check_typedef (type);
9008 switch (TYPE_CODE (type))
9009 {
9010 default:
9011 return type;
9012 case TYPE_CODE_STRUCT:
9013 {
9014 struct type *static_type = to_static_fixed_type (type);
9015 struct type *fixed_record_type =
9016 to_fixed_record_type (type, valaddr, address, NULL);
9017
9018 /* If STATIC_TYPE is a tagged type and we know the object's address,
9019 then we can determine its tag, and compute the object's actual
9020 type from there. Note that we have to use the fixed record
9021 type (the parent part of the record may have dynamic fields
9022 and the way the location of _tag is expressed may depend on
9023 them). */
9024
9025 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9026 {
9027 struct value *tag =
9028 value_tag_from_contents_and_address
9029 (fixed_record_type,
9030 valaddr,
9031 address);
9032 struct type *real_type = type_from_tag (tag);
9033 struct value *obj =
9034 value_from_contents_and_address (fixed_record_type,
9035 valaddr,
9036 address);
9037 fixed_record_type = value_type (obj);
9038 if (real_type != NULL)
9039 return to_fixed_record_type
9040 (real_type, NULL,
9041 value_address (ada_tag_value_at_base_address (obj)), NULL);
9042 }
9043
9044 /* Check to see if there is a parallel ___XVZ variable.
9045 If there is, then it provides the actual size of our type. */
9046 else if (ada_type_name (fixed_record_type) != NULL)
9047 {
9048 const char *name = ada_type_name (fixed_record_type);
9049 char *xvz_name
9050 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9051 bool xvz_found = false;
9052 LONGEST size;
9053
9054 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9055 TRY
9056 {
9057 xvz_found = get_int_var_value (xvz_name, size);
9058 }
9059 CATCH (except, RETURN_MASK_ERROR)
9060 {
9061 /* We found the variable, but somehow failed to read
9062 its value. Rethrow the same error, but with a little
9063 bit more information, to help the user understand
9064 what went wrong (Eg: the variable might have been
9065 optimized out). */
9066 throw_error (except.error,
9067 _("unable to read value of %s (%s)"),
9068 xvz_name, except.message);
9069 }
9070 END_CATCH
9071
9072 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9073 {
9074 fixed_record_type = copy_type (fixed_record_type);
9075 TYPE_LENGTH (fixed_record_type) = size;
9076
9077 /* The FIXED_RECORD_TYPE may have be a stub. We have
9078 observed this when the debugging info is STABS, and
9079 apparently it is something that is hard to fix.
9080
9081 In practice, we don't need the actual type definition
9082 at all, because the presence of the XVZ variable allows us
9083 to assume that there must be a XVS type as well, which we
9084 should be able to use later, when we need the actual type
9085 definition.
9086
9087 In the meantime, pretend that the "fixed" type we are
9088 returning is NOT a stub, because this can cause trouble
9089 when using this type to create new types targeting it.
9090 Indeed, the associated creation routines often check
9091 whether the target type is a stub and will try to replace
9092 it, thus using a type with the wrong size. This, in turn,
9093 might cause the new type to have the wrong size too.
9094 Consider the case of an array, for instance, where the size
9095 of the array is computed from the number of elements in
9096 our array multiplied by the size of its element. */
9097 TYPE_STUB (fixed_record_type) = 0;
9098 }
9099 }
9100 return fixed_record_type;
9101 }
9102 case TYPE_CODE_ARRAY:
9103 return to_fixed_array_type (type, dval, 1);
9104 case TYPE_CODE_UNION:
9105 if (dval == NULL)
9106 return type;
9107 else
9108 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9109 }
9110 }
9111
9112 /* The same as ada_to_fixed_type_1, except that it preserves the type
9113 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9114
9115 The typedef layer needs be preserved in order to differentiate between
9116 arrays and array pointers when both types are implemented using the same
9117 fat pointer. In the array pointer case, the pointer is encoded as
9118 a typedef of the pointer type. For instance, considering:
9119
9120 type String_Access is access String;
9121 S1 : String_Access := null;
9122
9123 To the debugger, S1 is defined as a typedef of type String. But
9124 to the user, it is a pointer. So if the user tries to print S1,
9125 we should not dereference the array, but print the array address
9126 instead.
9127
9128 If we didn't preserve the typedef layer, we would lose the fact that
9129 the type is to be presented as a pointer (needs de-reference before
9130 being printed). And we would also use the source-level type name. */
9131
9132 struct type *
9133 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9134 CORE_ADDR address, struct value *dval, int check_tag)
9135
9136 {
9137 struct type *fixed_type =
9138 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9139
9140 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9141 then preserve the typedef layer.
9142
9143 Implementation note: We can only check the main-type portion of
9144 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9145 from TYPE now returns a type that has the same instance flags
9146 as TYPE. For instance, if TYPE is a "typedef const", and its
9147 target type is a "struct", then the typedef elimination will return
9148 a "const" version of the target type. See check_typedef for more
9149 details about how the typedef layer elimination is done.
9150
9151 brobecker/2010-11-19: It seems to me that the only case where it is
9152 useful to preserve the typedef layer is when dealing with fat pointers.
9153 Perhaps, we could add a check for that and preserve the typedef layer
9154 only in that situation. But this seems unecessary so far, probably
9155 because we call check_typedef/ada_check_typedef pretty much everywhere.
9156 */
9157 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9158 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9159 == TYPE_MAIN_TYPE (fixed_type)))
9160 return type;
9161
9162 return fixed_type;
9163 }
9164
9165 /* A standard (static-sized) type corresponding as well as possible to
9166 TYPE0, but based on no runtime data. */
9167
9168 static struct type *
9169 to_static_fixed_type (struct type *type0)
9170 {
9171 struct type *type;
9172
9173 if (type0 == NULL)
9174 return NULL;
9175
9176 if (TYPE_FIXED_INSTANCE (type0))
9177 return type0;
9178
9179 type0 = ada_check_typedef (type0);
9180
9181 switch (TYPE_CODE (type0))
9182 {
9183 default:
9184 return type0;
9185 case TYPE_CODE_STRUCT:
9186 type = dynamic_template_type (type0);
9187 if (type != NULL)
9188 return template_to_static_fixed_type (type);
9189 else
9190 return template_to_static_fixed_type (type0);
9191 case TYPE_CODE_UNION:
9192 type = ada_find_parallel_type (type0, "___XVU");
9193 if (type != NULL)
9194 return template_to_static_fixed_type (type);
9195 else
9196 return template_to_static_fixed_type (type0);
9197 }
9198 }
9199
9200 /* A static approximation of TYPE with all type wrappers removed. */
9201
9202 static struct type *
9203 static_unwrap_type (struct type *type)
9204 {
9205 if (ada_is_aligner_type (type))
9206 {
9207 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9208 if (ada_type_name (type1) == NULL)
9209 TYPE_NAME (type1) = ada_type_name (type);
9210
9211 return static_unwrap_type (type1);
9212 }
9213 else
9214 {
9215 struct type *raw_real_type = ada_get_base_type (type);
9216
9217 if (raw_real_type == type)
9218 return type;
9219 else
9220 return to_static_fixed_type (raw_real_type);
9221 }
9222 }
9223
9224 /* In some cases, incomplete and private types require
9225 cross-references that are not resolved as records (for example,
9226 type Foo;
9227 type FooP is access Foo;
9228 V: FooP;
9229 type Foo is array ...;
9230 ). In these cases, since there is no mechanism for producing
9231 cross-references to such types, we instead substitute for FooP a
9232 stub enumeration type that is nowhere resolved, and whose tag is
9233 the name of the actual type. Call these types "non-record stubs". */
9234
9235 /* A type equivalent to TYPE that is not a non-record stub, if one
9236 exists, otherwise TYPE. */
9237
9238 struct type *
9239 ada_check_typedef (struct type *type)
9240 {
9241 if (type == NULL)
9242 return NULL;
9243
9244 /* If our type is a typedef type of a fat pointer, then we're done.
9245 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9246 what allows us to distinguish between fat pointers that represent
9247 array types, and fat pointers that represent array access types
9248 (in both cases, the compiler implements them as fat pointers). */
9249 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9250 && is_thick_pntr (ada_typedef_target_type (type)))
9251 return type;
9252
9253 type = check_typedef (type);
9254 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9255 || !TYPE_STUB (type)
9256 || TYPE_NAME (type) == NULL)
9257 return type;
9258 else
9259 {
9260 const char *name = TYPE_NAME (type);
9261 struct type *type1 = ada_find_any_type (name);
9262
9263 if (type1 == NULL)
9264 return type;
9265
9266 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9267 stubs pointing to arrays, as we don't create symbols for array
9268 types, only for the typedef-to-array types). If that's the case,
9269 strip the typedef layer. */
9270 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9271 type1 = ada_check_typedef (type1);
9272
9273 return type1;
9274 }
9275 }
9276
9277 /* A value representing the data at VALADDR/ADDRESS as described by
9278 type TYPE0, but with a standard (static-sized) type that correctly
9279 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9280 type, then return VAL0 [this feature is simply to avoid redundant
9281 creation of struct values]. */
9282
9283 static struct value *
9284 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9285 struct value *val0)
9286 {
9287 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9288
9289 if (type == type0 && val0 != NULL)
9290 return val0;
9291
9292 if (VALUE_LVAL (val0) != lval_memory)
9293 {
9294 /* Our value does not live in memory; it could be a convenience
9295 variable, for instance. Create a not_lval value using val0's
9296 contents. */
9297 return value_from_contents (type, value_contents (val0));
9298 }
9299
9300 return value_from_contents_and_address (type, 0, address);
9301 }
9302
9303 /* A value representing VAL, but with a standard (static-sized) type
9304 that correctly describes it. Does not necessarily create a new
9305 value. */
9306
9307 struct value *
9308 ada_to_fixed_value (struct value *val)
9309 {
9310 val = unwrap_value (val);
9311 val = ada_to_fixed_value_create (value_type (val),
9312 value_address (val),
9313 val);
9314 return val;
9315 }
9316 \f
9317
9318 /* Attributes */
9319
9320 /* Table mapping attribute numbers to names.
9321 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9322
9323 static const char *attribute_names[] = {
9324 "<?>",
9325
9326 "first",
9327 "last",
9328 "length",
9329 "image",
9330 "max",
9331 "min",
9332 "modulus",
9333 "pos",
9334 "size",
9335 "tag",
9336 "val",
9337 0
9338 };
9339
9340 const char *
9341 ada_attribute_name (enum exp_opcode n)
9342 {
9343 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9344 return attribute_names[n - OP_ATR_FIRST + 1];
9345 else
9346 return attribute_names[0];
9347 }
9348
9349 /* Evaluate the 'POS attribute applied to ARG. */
9350
9351 static LONGEST
9352 pos_atr (struct value *arg)
9353 {
9354 struct value *val = coerce_ref (arg);
9355 struct type *type = value_type (val);
9356 LONGEST result;
9357
9358 if (!discrete_type_p (type))
9359 error (_("'POS only defined on discrete types"));
9360
9361 if (!discrete_position (type, value_as_long (val), &result))
9362 error (_("enumeration value is invalid: can't find 'POS"));
9363
9364 return result;
9365 }
9366
9367 static struct value *
9368 value_pos_atr (struct type *type, struct value *arg)
9369 {
9370 return value_from_longest (type, pos_atr (arg));
9371 }
9372
9373 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9374
9375 static struct value *
9376 value_val_atr (struct type *type, struct value *arg)
9377 {
9378 if (!discrete_type_p (type))
9379 error (_("'VAL only defined on discrete types"));
9380 if (!integer_type_p (value_type (arg)))
9381 error (_("'VAL requires integral argument"));
9382
9383 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9384 {
9385 long pos = value_as_long (arg);
9386
9387 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9388 error (_("argument to 'VAL out of range"));
9389 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9390 }
9391 else
9392 return value_from_longest (type, value_as_long (arg));
9393 }
9394 \f
9395
9396 /* Evaluation */
9397
9398 /* True if TYPE appears to be an Ada character type.
9399 [At the moment, this is true only for Character and Wide_Character;
9400 It is a heuristic test that could stand improvement]. */
9401
9402 int
9403 ada_is_character_type (struct type *type)
9404 {
9405 const char *name;
9406
9407 /* If the type code says it's a character, then assume it really is,
9408 and don't check any further. */
9409 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9410 return 1;
9411
9412 /* Otherwise, assume it's a character type iff it is a discrete type
9413 with a known character type name. */
9414 name = ada_type_name (type);
9415 return (name != NULL
9416 && (TYPE_CODE (type) == TYPE_CODE_INT
9417 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9418 && (strcmp (name, "character") == 0
9419 || strcmp (name, "wide_character") == 0
9420 || strcmp (name, "wide_wide_character") == 0
9421 || strcmp (name, "unsigned char") == 0));
9422 }
9423
9424 /* True if TYPE appears to be an Ada string type. */
9425
9426 int
9427 ada_is_string_type (struct type *type)
9428 {
9429 type = ada_check_typedef (type);
9430 if (type != NULL
9431 && TYPE_CODE (type) != TYPE_CODE_PTR
9432 && (ada_is_simple_array_type (type)
9433 || ada_is_array_descriptor_type (type))
9434 && ada_array_arity (type) == 1)
9435 {
9436 struct type *elttype = ada_array_element_type (type, 1);
9437
9438 return ada_is_character_type (elttype);
9439 }
9440 else
9441 return 0;
9442 }
9443
9444 /* The compiler sometimes provides a parallel XVS type for a given
9445 PAD type. Normally, it is safe to follow the PAD type directly,
9446 but older versions of the compiler have a bug that causes the offset
9447 of its "F" field to be wrong. Following that field in that case
9448 would lead to incorrect results, but this can be worked around
9449 by ignoring the PAD type and using the associated XVS type instead.
9450
9451 Set to True if the debugger should trust the contents of PAD types.
9452 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9453 static int trust_pad_over_xvs = 1;
9454
9455 /* True if TYPE is a struct type introduced by the compiler to force the
9456 alignment of a value. Such types have a single field with a
9457 distinctive name. */
9458
9459 int
9460 ada_is_aligner_type (struct type *type)
9461 {
9462 type = ada_check_typedef (type);
9463
9464 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9465 return 0;
9466
9467 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9468 && TYPE_NFIELDS (type) == 1
9469 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9470 }
9471
9472 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9473 the parallel type. */
9474
9475 struct type *
9476 ada_get_base_type (struct type *raw_type)
9477 {
9478 struct type *real_type_namer;
9479 struct type *raw_real_type;
9480
9481 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9482 return raw_type;
9483
9484 if (ada_is_aligner_type (raw_type))
9485 /* The encoding specifies that we should always use the aligner type.
9486 So, even if this aligner type has an associated XVS type, we should
9487 simply ignore it.
9488
9489 According to the compiler gurus, an XVS type parallel to an aligner
9490 type may exist because of a stabs limitation. In stabs, aligner
9491 types are empty because the field has a variable-sized type, and
9492 thus cannot actually be used as an aligner type. As a result,
9493 we need the associated parallel XVS type to decode the type.
9494 Since the policy in the compiler is to not change the internal
9495 representation based on the debugging info format, we sometimes
9496 end up having a redundant XVS type parallel to the aligner type. */
9497 return raw_type;
9498
9499 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9500 if (real_type_namer == NULL
9501 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9502 || TYPE_NFIELDS (real_type_namer) != 1)
9503 return raw_type;
9504
9505 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9506 {
9507 /* This is an older encoding form where the base type needs to be
9508 looked up by name. We prefer the newer enconding because it is
9509 more efficient. */
9510 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9511 if (raw_real_type == NULL)
9512 return raw_type;
9513 else
9514 return raw_real_type;
9515 }
9516
9517 /* The field in our XVS type is a reference to the base type. */
9518 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9519 }
9520
9521 /* The type of value designated by TYPE, with all aligners removed. */
9522
9523 struct type *
9524 ada_aligned_type (struct type *type)
9525 {
9526 if (ada_is_aligner_type (type))
9527 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9528 else
9529 return ada_get_base_type (type);
9530 }
9531
9532
9533 /* The address of the aligned value in an object at address VALADDR
9534 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9535
9536 const gdb_byte *
9537 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9538 {
9539 if (ada_is_aligner_type (type))
9540 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9541 valaddr +
9542 TYPE_FIELD_BITPOS (type,
9543 0) / TARGET_CHAR_BIT);
9544 else
9545 return valaddr;
9546 }
9547
9548
9549
9550 /* The printed representation of an enumeration literal with encoded
9551 name NAME. The value is good to the next call of ada_enum_name. */
9552 const char *
9553 ada_enum_name (const char *name)
9554 {
9555 static char *result;
9556 static size_t result_len = 0;
9557 const char *tmp;
9558
9559 /* First, unqualify the enumeration name:
9560 1. Search for the last '.' character. If we find one, then skip
9561 all the preceding characters, the unqualified name starts
9562 right after that dot.
9563 2. Otherwise, we may be debugging on a target where the compiler
9564 translates dots into "__". Search forward for double underscores,
9565 but stop searching when we hit an overloading suffix, which is
9566 of the form "__" followed by digits. */
9567
9568 tmp = strrchr (name, '.');
9569 if (tmp != NULL)
9570 name = tmp + 1;
9571 else
9572 {
9573 while ((tmp = strstr (name, "__")) != NULL)
9574 {
9575 if (isdigit (tmp[2]))
9576 break;
9577 else
9578 name = tmp + 2;
9579 }
9580 }
9581
9582 if (name[0] == 'Q')
9583 {
9584 int v;
9585
9586 if (name[1] == 'U' || name[1] == 'W')
9587 {
9588 if (sscanf (name + 2, "%x", &v) != 1)
9589 return name;
9590 }
9591 else
9592 return name;
9593
9594 GROW_VECT (result, result_len, 16);
9595 if (isascii (v) && isprint (v))
9596 xsnprintf (result, result_len, "'%c'", v);
9597 else if (name[1] == 'U')
9598 xsnprintf (result, result_len, "[\"%02x\"]", v);
9599 else
9600 xsnprintf (result, result_len, "[\"%04x\"]", v);
9601
9602 return result;
9603 }
9604 else
9605 {
9606 tmp = strstr (name, "__");
9607 if (tmp == NULL)
9608 tmp = strstr (name, "$");
9609 if (tmp != NULL)
9610 {
9611 GROW_VECT (result, result_len, tmp - name + 1);
9612 strncpy (result, name, tmp - name);
9613 result[tmp - name] = '\0';
9614 return result;
9615 }
9616
9617 return name;
9618 }
9619 }
9620
9621 /* Evaluate the subexpression of EXP starting at *POS as for
9622 evaluate_type, updating *POS to point just past the evaluated
9623 expression. */
9624
9625 static struct value *
9626 evaluate_subexp_type (struct expression *exp, int *pos)
9627 {
9628 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9629 }
9630
9631 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9632 value it wraps. */
9633
9634 static struct value *
9635 unwrap_value (struct value *val)
9636 {
9637 struct type *type = ada_check_typedef (value_type (val));
9638
9639 if (ada_is_aligner_type (type))
9640 {
9641 struct value *v = ada_value_struct_elt (val, "F", 0);
9642 struct type *val_type = ada_check_typedef (value_type (v));
9643
9644 if (ada_type_name (val_type) == NULL)
9645 TYPE_NAME (val_type) = ada_type_name (type);
9646
9647 return unwrap_value (v);
9648 }
9649 else
9650 {
9651 struct type *raw_real_type =
9652 ada_check_typedef (ada_get_base_type (type));
9653
9654 /* If there is no parallel XVS or XVE type, then the value is
9655 already unwrapped. Return it without further modification. */
9656 if ((type == raw_real_type)
9657 && ada_find_parallel_type (type, "___XVE") == NULL)
9658 return val;
9659
9660 return
9661 coerce_unspec_val_to_type
9662 (val, ada_to_fixed_type (raw_real_type, 0,
9663 value_address (val),
9664 NULL, 1));
9665 }
9666 }
9667
9668 static struct value *
9669 cast_from_fixed (struct type *type, struct value *arg)
9670 {
9671 struct value *scale = ada_scaling_factor (value_type (arg));
9672 arg = value_cast (value_type (scale), arg);
9673
9674 arg = value_binop (arg, scale, BINOP_MUL);
9675 return value_cast (type, arg);
9676 }
9677
9678 static struct value *
9679 cast_to_fixed (struct type *type, struct value *arg)
9680 {
9681 if (type == value_type (arg))
9682 return arg;
9683
9684 struct value *scale = ada_scaling_factor (type);
9685 if (ada_is_fixed_point_type (value_type (arg)))
9686 arg = cast_from_fixed (value_type (scale), arg);
9687 else
9688 arg = value_cast (value_type (scale), arg);
9689
9690 arg = value_binop (arg, scale, BINOP_DIV);
9691 return value_cast (type, arg);
9692 }
9693
9694 /* Given two array types T1 and T2, return nonzero iff both arrays
9695 contain the same number of elements. */
9696
9697 static int
9698 ada_same_array_size_p (struct type *t1, struct type *t2)
9699 {
9700 LONGEST lo1, hi1, lo2, hi2;
9701
9702 /* Get the array bounds in order to verify that the size of
9703 the two arrays match. */
9704 if (!get_array_bounds (t1, &lo1, &hi1)
9705 || !get_array_bounds (t2, &lo2, &hi2))
9706 error (_("unable to determine array bounds"));
9707
9708 /* To make things easier for size comparison, normalize a bit
9709 the case of empty arrays by making sure that the difference
9710 between upper bound and lower bound is always -1. */
9711 if (lo1 > hi1)
9712 hi1 = lo1 - 1;
9713 if (lo2 > hi2)
9714 hi2 = lo2 - 1;
9715
9716 return (hi1 - lo1 == hi2 - lo2);
9717 }
9718
9719 /* Assuming that VAL is an array of integrals, and TYPE represents
9720 an array with the same number of elements, but with wider integral
9721 elements, return an array "casted" to TYPE. In practice, this
9722 means that the returned array is built by casting each element
9723 of the original array into TYPE's (wider) element type. */
9724
9725 static struct value *
9726 ada_promote_array_of_integrals (struct type *type, struct value *val)
9727 {
9728 struct type *elt_type = TYPE_TARGET_TYPE (type);
9729 LONGEST lo, hi;
9730 struct value *res;
9731 LONGEST i;
9732
9733 /* Verify that both val and type are arrays of scalars, and
9734 that the size of val's elements is smaller than the size
9735 of type's element. */
9736 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9737 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9738 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9739 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9740 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9741 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9742
9743 if (!get_array_bounds (type, &lo, &hi))
9744 error (_("unable to determine array bounds"));
9745
9746 res = allocate_value (type);
9747
9748 /* Promote each array element. */
9749 for (i = 0; i < hi - lo + 1; i++)
9750 {
9751 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9752
9753 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9754 value_contents_all (elt), TYPE_LENGTH (elt_type));
9755 }
9756
9757 return res;
9758 }
9759
9760 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9761 return the converted value. */
9762
9763 static struct value *
9764 coerce_for_assign (struct type *type, struct value *val)
9765 {
9766 struct type *type2 = value_type (val);
9767
9768 if (type == type2)
9769 return val;
9770
9771 type2 = ada_check_typedef (type2);
9772 type = ada_check_typedef (type);
9773
9774 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9775 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9776 {
9777 val = ada_value_ind (val);
9778 type2 = value_type (val);
9779 }
9780
9781 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9782 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9783 {
9784 if (!ada_same_array_size_p (type, type2))
9785 error (_("cannot assign arrays of different length"));
9786
9787 if (is_integral_type (TYPE_TARGET_TYPE (type))
9788 && is_integral_type (TYPE_TARGET_TYPE (type2))
9789 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9790 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9791 {
9792 /* Allow implicit promotion of the array elements to
9793 a wider type. */
9794 return ada_promote_array_of_integrals (type, val);
9795 }
9796
9797 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9798 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9799 error (_("Incompatible types in assignment"));
9800 deprecated_set_value_type (val, type);
9801 }
9802 return val;
9803 }
9804
9805 static struct value *
9806 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9807 {
9808 struct value *val;
9809 struct type *type1, *type2;
9810 LONGEST v, v1, v2;
9811
9812 arg1 = coerce_ref (arg1);
9813 arg2 = coerce_ref (arg2);
9814 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9815 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9816
9817 if (TYPE_CODE (type1) != TYPE_CODE_INT
9818 || TYPE_CODE (type2) != TYPE_CODE_INT)
9819 return value_binop (arg1, arg2, op);
9820
9821 switch (op)
9822 {
9823 case BINOP_MOD:
9824 case BINOP_DIV:
9825 case BINOP_REM:
9826 break;
9827 default:
9828 return value_binop (arg1, arg2, op);
9829 }
9830
9831 v2 = value_as_long (arg2);
9832 if (v2 == 0)
9833 error (_("second operand of %s must not be zero."), op_string (op));
9834
9835 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9836 return value_binop (arg1, arg2, op);
9837
9838 v1 = value_as_long (arg1);
9839 switch (op)
9840 {
9841 case BINOP_DIV:
9842 v = v1 / v2;
9843 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9844 v += v > 0 ? -1 : 1;
9845 break;
9846 case BINOP_REM:
9847 v = v1 % v2;
9848 if (v * v1 < 0)
9849 v -= v2;
9850 break;
9851 default:
9852 /* Should not reach this point. */
9853 v = 0;
9854 }
9855
9856 val = allocate_value (type1);
9857 store_unsigned_integer (value_contents_raw (val),
9858 TYPE_LENGTH (value_type (val)),
9859 gdbarch_byte_order (get_type_arch (type1)), v);
9860 return val;
9861 }
9862
9863 static int
9864 ada_value_equal (struct value *arg1, struct value *arg2)
9865 {
9866 if (ada_is_direct_array_type (value_type (arg1))
9867 || ada_is_direct_array_type (value_type (arg2)))
9868 {
9869 struct type *arg1_type, *arg2_type;
9870
9871 /* Automatically dereference any array reference before
9872 we attempt to perform the comparison. */
9873 arg1 = ada_coerce_ref (arg1);
9874 arg2 = ada_coerce_ref (arg2);
9875
9876 arg1 = ada_coerce_to_simple_array (arg1);
9877 arg2 = ada_coerce_to_simple_array (arg2);
9878
9879 arg1_type = ada_check_typedef (value_type (arg1));
9880 arg2_type = ada_check_typedef (value_type (arg2));
9881
9882 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9883 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9884 error (_("Attempt to compare array with non-array"));
9885 /* FIXME: The following works only for types whose
9886 representations use all bits (no padding or undefined bits)
9887 and do not have user-defined equality. */
9888 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9889 && memcmp (value_contents (arg1), value_contents (arg2),
9890 TYPE_LENGTH (arg1_type)) == 0);
9891 }
9892 return value_equal (arg1, arg2);
9893 }
9894
9895 /* Total number of component associations in the aggregate starting at
9896 index PC in EXP. Assumes that index PC is the start of an
9897 OP_AGGREGATE. */
9898
9899 static int
9900 num_component_specs (struct expression *exp, int pc)
9901 {
9902 int n, m, i;
9903
9904 m = exp->elts[pc + 1].longconst;
9905 pc += 3;
9906 n = 0;
9907 for (i = 0; i < m; i += 1)
9908 {
9909 switch (exp->elts[pc].opcode)
9910 {
9911 default:
9912 n += 1;
9913 break;
9914 case OP_CHOICES:
9915 n += exp->elts[pc + 1].longconst;
9916 break;
9917 }
9918 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9919 }
9920 return n;
9921 }
9922
9923 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9924 component of LHS (a simple array or a record), updating *POS past
9925 the expression, assuming that LHS is contained in CONTAINER. Does
9926 not modify the inferior's memory, nor does it modify LHS (unless
9927 LHS == CONTAINER). */
9928
9929 static void
9930 assign_component (struct value *container, struct value *lhs, LONGEST index,
9931 struct expression *exp, int *pos)
9932 {
9933 struct value *mark = value_mark ();
9934 struct value *elt;
9935 struct type *lhs_type = check_typedef (value_type (lhs));
9936
9937 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9938 {
9939 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9940 struct value *index_val = value_from_longest (index_type, index);
9941
9942 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9943 }
9944 else
9945 {
9946 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9947 elt = ada_to_fixed_value (elt);
9948 }
9949
9950 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9951 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9952 else
9953 value_assign_to_component (container, elt,
9954 ada_evaluate_subexp (NULL, exp, pos,
9955 EVAL_NORMAL));
9956
9957 value_free_to_mark (mark);
9958 }
9959
9960 /* Assuming that LHS represents an lvalue having a record or array
9961 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9962 of that aggregate's value to LHS, advancing *POS past the
9963 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9964 lvalue containing LHS (possibly LHS itself). Does not modify
9965 the inferior's memory, nor does it modify the contents of
9966 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9967
9968 static struct value *
9969 assign_aggregate (struct value *container,
9970 struct value *lhs, struct expression *exp,
9971 int *pos, enum noside noside)
9972 {
9973 struct type *lhs_type;
9974 int n = exp->elts[*pos+1].longconst;
9975 LONGEST low_index, high_index;
9976 int num_specs;
9977 LONGEST *indices;
9978 int max_indices, num_indices;
9979 int i;
9980
9981 *pos += 3;
9982 if (noside != EVAL_NORMAL)
9983 {
9984 for (i = 0; i < n; i += 1)
9985 ada_evaluate_subexp (NULL, exp, pos, noside);
9986 return container;
9987 }
9988
9989 container = ada_coerce_ref (container);
9990 if (ada_is_direct_array_type (value_type (container)))
9991 container = ada_coerce_to_simple_array (container);
9992 lhs = ada_coerce_ref (lhs);
9993 if (!deprecated_value_modifiable (lhs))
9994 error (_("Left operand of assignment is not a modifiable lvalue."));
9995
9996 lhs_type = check_typedef (value_type (lhs));
9997 if (ada_is_direct_array_type (lhs_type))
9998 {
9999 lhs = ada_coerce_to_simple_array (lhs);
10000 lhs_type = check_typedef (value_type (lhs));
10001 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10002 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
10003 }
10004 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10005 {
10006 low_index = 0;
10007 high_index = num_visible_fields (lhs_type) - 1;
10008 }
10009 else
10010 error (_("Left-hand side must be array or record."));
10011
10012 num_specs = num_component_specs (exp, *pos - 3);
10013 max_indices = 4 * num_specs + 4;
10014 indices = XALLOCAVEC (LONGEST, max_indices);
10015 indices[0] = indices[1] = low_index - 1;
10016 indices[2] = indices[3] = high_index + 1;
10017 num_indices = 4;
10018
10019 for (i = 0; i < n; i += 1)
10020 {
10021 switch (exp->elts[*pos].opcode)
10022 {
10023 case OP_CHOICES:
10024 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10025 &num_indices, max_indices,
10026 low_index, high_index);
10027 break;
10028 case OP_POSITIONAL:
10029 aggregate_assign_positional (container, lhs, exp, pos, indices,
10030 &num_indices, max_indices,
10031 low_index, high_index);
10032 break;
10033 case OP_OTHERS:
10034 if (i != n-1)
10035 error (_("Misplaced 'others' clause"));
10036 aggregate_assign_others (container, lhs, exp, pos, indices,
10037 num_indices, low_index, high_index);
10038 break;
10039 default:
10040 error (_("Internal error: bad aggregate clause"));
10041 }
10042 }
10043
10044 return container;
10045 }
10046
10047 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10048 construct at *POS, updating *POS past the construct, given that
10049 the positions are relative to lower bound LOW, where HIGH is the
10050 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10051 updating *NUM_INDICES as needed. CONTAINER is as for
10052 assign_aggregate. */
10053 static void
10054 aggregate_assign_positional (struct value *container,
10055 struct value *lhs, struct expression *exp,
10056 int *pos, LONGEST *indices, int *num_indices,
10057 int max_indices, LONGEST low, LONGEST high)
10058 {
10059 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10060
10061 if (ind - 1 == high)
10062 warning (_("Extra components in aggregate ignored."));
10063 if (ind <= high)
10064 {
10065 add_component_interval (ind, ind, indices, num_indices, max_indices);
10066 *pos += 3;
10067 assign_component (container, lhs, ind, exp, pos);
10068 }
10069 else
10070 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10071 }
10072
10073 /* Assign into the components of LHS indexed by the OP_CHOICES
10074 construct at *POS, updating *POS past the construct, given that
10075 the allowable indices are LOW..HIGH. Record the indices assigned
10076 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10077 needed. CONTAINER is as for assign_aggregate. */
10078 static void
10079 aggregate_assign_from_choices (struct value *container,
10080 struct value *lhs, struct expression *exp,
10081 int *pos, LONGEST *indices, int *num_indices,
10082 int max_indices, LONGEST low, LONGEST high)
10083 {
10084 int j;
10085 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10086 int choice_pos, expr_pc;
10087 int is_array = ada_is_direct_array_type (value_type (lhs));
10088
10089 choice_pos = *pos += 3;
10090
10091 for (j = 0; j < n_choices; j += 1)
10092 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10093 expr_pc = *pos;
10094 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10095
10096 for (j = 0; j < n_choices; j += 1)
10097 {
10098 LONGEST lower, upper;
10099 enum exp_opcode op = exp->elts[choice_pos].opcode;
10100
10101 if (op == OP_DISCRETE_RANGE)
10102 {
10103 choice_pos += 1;
10104 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10105 EVAL_NORMAL));
10106 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10107 EVAL_NORMAL));
10108 }
10109 else if (is_array)
10110 {
10111 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10112 EVAL_NORMAL));
10113 upper = lower;
10114 }
10115 else
10116 {
10117 int ind;
10118 const char *name;
10119
10120 switch (op)
10121 {
10122 case OP_NAME:
10123 name = &exp->elts[choice_pos + 2].string;
10124 break;
10125 case OP_VAR_VALUE:
10126 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10127 break;
10128 default:
10129 error (_("Invalid record component association."));
10130 }
10131 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10132 ind = 0;
10133 if (! find_struct_field (name, value_type (lhs), 0,
10134 NULL, NULL, NULL, NULL, &ind))
10135 error (_("Unknown component name: %s."), name);
10136 lower = upper = ind;
10137 }
10138
10139 if (lower <= upper && (lower < low || upper > high))
10140 error (_("Index in component association out of bounds."));
10141
10142 add_component_interval (lower, upper, indices, num_indices,
10143 max_indices);
10144 while (lower <= upper)
10145 {
10146 int pos1;
10147
10148 pos1 = expr_pc;
10149 assign_component (container, lhs, lower, exp, &pos1);
10150 lower += 1;
10151 }
10152 }
10153 }
10154
10155 /* Assign the value of the expression in the OP_OTHERS construct in
10156 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10157 have not been previously assigned. The index intervals already assigned
10158 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10159 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10160 static void
10161 aggregate_assign_others (struct value *container,
10162 struct value *lhs, struct expression *exp,
10163 int *pos, LONGEST *indices, int num_indices,
10164 LONGEST low, LONGEST high)
10165 {
10166 int i;
10167 int expr_pc = *pos + 1;
10168
10169 for (i = 0; i < num_indices - 2; i += 2)
10170 {
10171 LONGEST ind;
10172
10173 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10174 {
10175 int localpos;
10176
10177 localpos = expr_pc;
10178 assign_component (container, lhs, ind, exp, &localpos);
10179 }
10180 }
10181 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10182 }
10183
10184 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10185 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10186 modifying *SIZE as needed. It is an error if *SIZE exceeds
10187 MAX_SIZE. The resulting intervals do not overlap. */
10188 static void
10189 add_component_interval (LONGEST low, LONGEST high,
10190 LONGEST* indices, int *size, int max_size)
10191 {
10192 int i, j;
10193
10194 for (i = 0; i < *size; i += 2) {
10195 if (high >= indices[i] && low <= indices[i + 1])
10196 {
10197 int kh;
10198
10199 for (kh = i + 2; kh < *size; kh += 2)
10200 if (high < indices[kh])
10201 break;
10202 if (low < indices[i])
10203 indices[i] = low;
10204 indices[i + 1] = indices[kh - 1];
10205 if (high > indices[i + 1])
10206 indices[i + 1] = high;
10207 memcpy (indices + i + 2, indices + kh, *size - kh);
10208 *size -= kh - i - 2;
10209 return;
10210 }
10211 else if (high < indices[i])
10212 break;
10213 }
10214
10215 if (*size == max_size)
10216 error (_("Internal error: miscounted aggregate components."));
10217 *size += 2;
10218 for (j = *size-1; j >= i+2; j -= 1)
10219 indices[j] = indices[j - 2];
10220 indices[i] = low;
10221 indices[i + 1] = high;
10222 }
10223
10224 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10225 is different. */
10226
10227 static struct value *
10228 ada_value_cast (struct type *type, struct value *arg2)
10229 {
10230 if (type == ada_check_typedef (value_type (arg2)))
10231 return arg2;
10232
10233 if (ada_is_fixed_point_type (type))
10234 return (cast_to_fixed (type, arg2));
10235
10236 if (ada_is_fixed_point_type (value_type (arg2)))
10237 return cast_from_fixed (type, arg2);
10238
10239 return value_cast (type, arg2);
10240 }
10241
10242 /* Evaluating Ada expressions, and printing their result.
10243 ------------------------------------------------------
10244
10245 1. Introduction:
10246 ----------------
10247
10248 We usually evaluate an Ada expression in order to print its value.
10249 We also evaluate an expression in order to print its type, which
10250 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10251 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10252 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10253 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10254 similar.
10255
10256 Evaluating expressions is a little more complicated for Ada entities
10257 than it is for entities in languages such as C. The main reason for
10258 this is that Ada provides types whose definition might be dynamic.
10259 One example of such types is variant records. Or another example
10260 would be an array whose bounds can only be known at run time.
10261
10262 The following description is a general guide as to what should be
10263 done (and what should NOT be done) in order to evaluate an expression
10264 involving such types, and when. This does not cover how the semantic
10265 information is encoded by GNAT as this is covered separatly. For the
10266 document used as the reference for the GNAT encoding, see exp_dbug.ads
10267 in the GNAT sources.
10268
10269 Ideally, we should embed each part of this description next to its
10270 associated code. Unfortunately, the amount of code is so vast right
10271 now that it's hard to see whether the code handling a particular
10272 situation might be duplicated or not. One day, when the code is
10273 cleaned up, this guide might become redundant with the comments
10274 inserted in the code, and we might want to remove it.
10275
10276 2. ``Fixing'' an Entity, the Simple Case:
10277 -----------------------------------------
10278
10279 When evaluating Ada expressions, the tricky issue is that they may
10280 reference entities whose type contents and size are not statically
10281 known. Consider for instance a variant record:
10282
10283 type Rec (Empty : Boolean := True) is record
10284 case Empty is
10285 when True => null;
10286 when False => Value : Integer;
10287 end case;
10288 end record;
10289 Yes : Rec := (Empty => False, Value => 1);
10290 No : Rec := (empty => True);
10291
10292 The size and contents of that record depends on the value of the
10293 descriminant (Rec.Empty). At this point, neither the debugging
10294 information nor the associated type structure in GDB are able to
10295 express such dynamic types. So what the debugger does is to create
10296 "fixed" versions of the type that applies to the specific object.
10297 We also informally refer to this opperation as "fixing" an object,
10298 which means creating its associated fixed type.
10299
10300 Example: when printing the value of variable "Yes" above, its fixed
10301 type would look like this:
10302
10303 type Rec is record
10304 Empty : Boolean;
10305 Value : Integer;
10306 end record;
10307
10308 On the other hand, if we printed the value of "No", its fixed type
10309 would become:
10310
10311 type Rec is record
10312 Empty : Boolean;
10313 end record;
10314
10315 Things become a little more complicated when trying to fix an entity
10316 with a dynamic type that directly contains another dynamic type,
10317 such as an array of variant records, for instance. There are
10318 two possible cases: Arrays, and records.
10319
10320 3. ``Fixing'' Arrays:
10321 ---------------------
10322
10323 The type structure in GDB describes an array in terms of its bounds,
10324 and the type of its elements. By design, all elements in the array
10325 have the same type and we cannot represent an array of variant elements
10326 using the current type structure in GDB. When fixing an array,
10327 we cannot fix the array element, as we would potentially need one
10328 fixed type per element of the array. As a result, the best we can do
10329 when fixing an array is to produce an array whose bounds and size
10330 are correct (allowing us to read it from memory), but without having
10331 touched its element type. Fixing each element will be done later,
10332 when (if) necessary.
10333
10334 Arrays are a little simpler to handle than records, because the same
10335 amount of memory is allocated for each element of the array, even if
10336 the amount of space actually used by each element differs from element
10337 to element. Consider for instance the following array of type Rec:
10338
10339 type Rec_Array is array (1 .. 2) of Rec;
10340
10341 The actual amount of memory occupied by each element might be different
10342 from element to element, depending on the value of their discriminant.
10343 But the amount of space reserved for each element in the array remains
10344 fixed regardless. So we simply need to compute that size using
10345 the debugging information available, from which we can then determine
10346 the array size (we multiply the number of elements of the array by
10347 the size of each element).
10348
10349 The simplest case is when we have an array of a constrained element
10350 type. For instance, consider the following type declarations:
10351
10352 type Bounded_String (Max_Size : Integer) is
10353 Length : Integer;
10354 Buffer : String (1 .. Max_Size);
10355 end record;
10356 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10357
10358 In this case, the compiler describes the array as an array of
10359 variable-size elements (identified by its XVS suffix) for which
10360 the size can be read in the parallel XVZ variable.
10361
10362 In the case of an array of an unconstrained element type, the compiler
10363 wraps the array element inside a private PAD type. This type should not
10364 be shown to the user, and must be "unwrap"'ed before printing. Note
10365 that we also use the adjective "aligner" in our code to designate
10366 these wrapper types.
10367
10368 In some cases, the size allocated for each element is statically
10369 known. In that case, the PAD type already has the correct size,
10370 and the array element should remain unfixed.
10371
10372 But there are cases when this size is not statically known.
10373 For instance, assuming that "Five" is an integer variable:
10374
10375 type Dynamic is array (1 .. Five) of Integer;
10376 type Wrapper (Has_Length : Boolean := False) is record
10377 Data : Dynamic;
10378 case Has_Length is
10379 when True => Length : Integer;
10380 when False => null;
10381 end case;
10382 end record;
10383 type Wrapper_Array is array (1 .. 2) of Wrapper;
10384
10385 Hello : Wrapper_Array := (others => (Has_Length => True,
10386 Data => (others => 17),
10387 Length => 1));
10388
10389
10390 The debugging info would describe variable Hello as being an
10391 array of a PAD type. The size of that PAD type is not statically
10392 known, but can be determined using a parallel XVZ variable.
10393 In that case, a copy of the PAD type with the correct size should
10394 be used for the fixed array.
10395
10396 3. ``Fixing'' record type objects:
10397 ----------------------------------
10398
10399 Things are slightly different from arrays in the case of dynamic
10400 record types. In this case, in order to compute the associated
10401 fixed type, we need to determine the size and offset of each of
10402 its components. This, in turn, requires us to compute the fixed
10403 type of each of these components.
10404
10405 Consider for instance the example:
10406
10407 type Bounded_String (Max_Size : Natural) is record
10408 Str : String (1 .. Max_Size);
10409 Length : Natural;
10410 end record;
10411 My_String : Bounded_String (Max_Size => 10);
10412
10413 In that case, the position of field "Length" depends on the size
10414 of field Str, which itself depends on the value of the Max_Size
10415 discriminant. In order to fix the type of variable My_String,
10416 we need to fix the type of field Str. Therefore, fixing a variant
10417 record requires us to fix each of its components.
10418
10419 However, if a component does not have a dynamic size, the component
10420 should not be fixed. In particular, fields that use a PAD type
10421 should not fixed. Here is an example where this might happen
10422 (assuming type Rec above):
10423
10424 type Container (Big : Boolean) is record
10425 First : Rec;
10426 After : Integer;
10427 case Big is
10428 when True => Another : Integer;
10429 when False => null;
10430 end case;
10431 end record;
10432 My_Container : Container := (Big => False,
10433 First => (Empty => True),
10434 After => 42);
10435
10436 In that example, the compiler creates a PAD type for component First,
10437 whose size is constant, and then positions the component After just
10438 right after it. The offset of component After is therefore constant
10439 in this case.
10440
10441 The debugger computes the position of each field based on an algorithm
10442 that uses, among other things, the actual position and size of the field
10443 preceding it. Let's now imagine that the user is trying to print
10444 the value of My_Container. If the type fixing was recursive, we would
10445 end up computing the offset of field After based on the size of the
10446 fixed version of field First. And since in our example First has
10447 only one actual field, the size of the fixed type is actually smaller
10448 than the amount of space allocated to that field, and thus we would
10449 compute the wrong offset of field After.
10450
10451 To make things more complicated, we need to watch out for dynamic
10452 components of variant records (identified by the ___XVL suffix in
10453 the component name). Even if the target type is a PAD type, the size
10454 of that type might not be statically known. So the PAD type needs
10455 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10456 we might end up with the wrong size for our component. This can be
10457 observed with the following type declarations:
10458
10459 type Octal is new Integer range 0 .. 7;
10460 type Octal_Array is array (Positive range <>) of Octal;
10461 pragma Pack (Octal_Array);
10462
10463 type Octal_Buffer (Size : Positive) is record
10464 Buffer : Octal_Array (1 .. Size);
10465 Length : Integer;
10466 end record;
10467
10468 In that case, Buffer is a PAD type whose size is unset and needs
10469 to be computed by fixing the unwrapped type.
10470
10471 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10472 ----------------------------------------------------------
10473
10474 Lastly, when should the sub-elements of an entity that remained unfixed
10475 thus far, be actually fixed?
10476
10477 The answer is: Only when referencing that element. For instance
10478 when selecting one component of a record, this specific component
10479 should be fixed at that point in time. Or when printing the value
10480 of a record, each component should be fixed before its value gets
10481 printed. Similarly for arrays, the element of the array should be
10482 fixed when printing each element of the array, or when extracting
10483 one element out of that array. On the other hand, fixing should
10484 not be performed on the elements when taking a slice of an array!
10485
10486 Note that one of the side effects of miscomputing the offset and
10487 size of each field is that we end up also miscomputing the size
10488 of the containing type. This can have adverse results when computing
10489 the value of an entity. GDB fetches the value of an entity based
10490 on the size of its type, and thus a wrong size causes GDB to fetch
10491 the wrong amount of memory. In the case where the computed size is
10492 too small, GDB fetches too little data to print the value of our
10493 entity. Results in this case are unpredictable, as we usually read
10494 past the buffer containing the data =:-o. */
10495
10496 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10497 for that subexpression cast to TO_TYPE. Advance *POS over the
10498 subexpression. */
10499
10500 static value *
10501 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10502 enum noside noside, struct type *to_type)
10503 {
10504 int pc = *pos;
10505
10506 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10507 || exp->elts[pc].opcode == OP_VAR_VALUE)
10508 {
10509 (*pos) += 4;
10510
10511 value *val;
10512 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10513 {
10514 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10515 return value_zero (to_type, not_lval);
10516
10517 val = evaluate_var_msym_value (noside,
10518 exp->elts[pc + 1].objfile,
10519 exp->elts[pc + 2].msymbol);
10520 }
10521 else
10522 val = evaluate_var_value (noside,
10523 exp->elts[pc + 1].block,
10524 exp->elts[pc + 2].symbol);
10525
10526 if (noside == EVAL_SKIP)
10527 return eval_skip_value (exp);
10528
10529 val = ada_value_cast (to_type, val);
10530
10531 /* Follow the Ada language semantics that do not allow taking
10532 an address of the result of a cast (view conversion in Ada). */
10533 if (VALUE_LVAL (val) == lval_memory)
10534 {
10535 if (value_lazy (val))
10536 value_fetch_lazy (val);
10537 VALUE_LVAL (val) = not_lval;
10538 }
10539 return val;
10540 }
10541
10542 value *val = evaluate_subexp (to_type, exp, pos, noside);
10543 if (noside == EVAL_SKIP)
10544 return eval_skip_value (exp);
10545 return ada_value_cast (to_type, val);
10546 }
10547
10548 /* Implement the evaluate_exp routine in the exp_descriptor structure
10549 for the Ada language. */
10550
10551 static struct value *
10552 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10553 int *pos, enum noside noside)
10554 {
10555 enum exp_opcode op;
10556 int tem;
10557 int pc;
10558 int preeval_pos;
10559 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10560 struct type *type;
10561 int nargs, oplen;
10562 struct value **argvec;
10563
10564 pc = *pos;
10565 *pos += 1;
10566 op = exp->elts[pc].opcode;
10567
10568 switch (op)
10569 {
10570 default:
10571 *pos -= 1;
10572 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10573
10574 if (noside == EVAL_NORMAL)
10575 arg1 = unwrap_value (arg1);
10576
10577 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10578 then we need to perform the conversion manually, because
10579 evaluate_subexp_standard doesn't do it. This conversion is
10580 necessary in Ada because the different kinds of float/fixed
10581 types in Ada have different representations.
10582
10583 Similarly, we need to perform the conversion from OP_LONG
10584 ourselves. */
10585 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10586 arg1 = ada_value_cast (expect_type, arg1);
10587
10588 return arg1;
10589
10590 case OP_STRING:
10591 {
10592 struct value *result;
10593
10594 *pos -= 1;
10595 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10596 /* The result type will have code OP_STRING, bashed there from
10597 OP_ARRAY. Bash it back. */
10598 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10599 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10600 return result;
10601 }
10602
10603 case UNOP_CAST:
10604 (*pos) += 2;
10605 type = exp->elts[pc + 1].type;
10606 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10607
10608 case UNOP_QUAL:
10609 (*pos) += 2;
10610 type = exp->elts[pc + 1].type;
10611 return ada_evaluate_subexp (type, exp, pos, noside);
10612
10613 case BINOP_ASSIGN:
10614 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10615 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10616 {
10617 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10618 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10619 return arg1;
10620 return ada_value_assign (arg1, arg1);
10621 }
10622 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10623 except if the lhs of our assignment is a convenience variable.
10624 In the case of assigning to a convenience variable, the lhs
10625 should be exactly the result of the evaluation of the rhs. */
10626 type = value_type (arg1);
10627 if (VALUE_LVAL (arg1) == lval_internalvar)
10628 type = NULL;
10629 arg2 = evaluate_subexp (type, exp, pos, noside);
10630 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10631 return arg1;
10632 if (ada_is_fixed_point_type (value_type (arg1)))
10633 arg2 = cast_to_fixed (value_type (arg1), arg2);
10634 else if (ada_is_fixed_point_type (value_type (arg2)))
10635 error
10636 (_("Fixed-point values must be assigned to fixed-point variables"));
10637 else
10638 arg2 = coerce_for_assign (value_type (arg1), arg2);
10639 return ada_value_assign (arg1, arg2);
10640
10641 case BINOP_ADD:
10642 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10643 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10644 if (noside == EVAL_SKIP)
10645 goto nosideret;
10646 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10647 return (value_from_longest
10648 (value_type (arg1),
10649 value_as_long (arg1) + value_as_long (arg2)));
10650 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10651 return (value_from_longest
10652 (value_type (arg2),
10653 value_as_long (arg1) + value_as_long (arg2)));
10654 if ((ada_is_fixed_point_type (value_type (arg1))
10655 || ada_is_fixed_point_type (value_type (arg2)))
10656 && value_type (arg1) != value_type (arg2))
10657 error (_("Operands of fixed-point addition must have the same type"));
10658 /* Do the addition, and cast the result to the type of the first
10659 argument. We cannot cast the result to a reference type, so if
10660 ARG1 is a reference type, find its underlying type. */
10661 type = value_type (arg1);
10662 while (TYPE_CODE (type) == TYPE_CODE_REF)
10663 type = TYPE_TARGET_TYPE (type);
10664 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10665 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10666
10667 case BINOP_SUB:
10668 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10669 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10670 if (noside == EVAL_SKIP)
10671 goto nosideret;
10672 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10673 return (value_from_longest
10674 (value_type (arg1),
10675 value_as_long (arg1) - value_as_long (arg2)));
10676 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10677 return (value_from_longest
10678 (value_type (arg2),
10679 value_as_long (arg1) - value_as_long (arg2)));
10680 if ((ada_is_fixed_point_type (value_type (arg1))
10681 || ada_is_fixed_point_type (value_type (arg2)))
10682 && value_type (arg1) != value_type (arg2))
10683 error (_("Operands of fixed-point subtraction "
10684 "must have the same type"));
10685 /* Do the substraction, and cast the result to the type of the first
10686 argument. We cannot cast the result to a reference type, so if
10687 ARG1 is a reference type, find its underlying type. */
10688 type = value_type (arg1);
10689 while (TYPE_CODE (type) == TYPE_CODE_REF)
10690 type = TYPE_TARGET_TYPE (type);
10691 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10692 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10693
10694 case BINOP_MUL:
10695 case BINOP_DIV:
10696 case BINOP_REM:
10697 case BINOP_MOD:
10698 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10699 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10700 if (noside == EVAL_SKIP)
10701 goto nosideret;
10702 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10703 {
10704 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10705 return value_zero (value_type (arg1), not_lval);
10706 }
10707 else
10708 {
10709 type = builtin_type (exp->gdbarch)->builtin_double;
10710 if (ada_is_fixed_point_type (value_type (arg1)))
10711 arg1 = cast_from_fixed (type, arg1);
10712 if (ada_is_fixed_point_type (value_type (arg2)))
10713 arg2 = cast_from_fixed (type, arg2);
10714 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10715 return ada_value_binop (arg1, arg2, op);
10716 }
10717
10718 case BINOP_EQUAL:
10719 case BINOP_NOTEQUAL:
10720 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10721 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10722 if (noside == EVAL_SKIP)
10723 goto nosideret;
10724 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10725 tem = 0;
10726 else
10727 {
10728 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10729 tem = ada_value_equal (arg1, arg2);
10730 }
10731 if (op == BINOP_NOTEQUAL)
10732 tem = !tem;
10733 type = language_bool_type (exp->language_defn, exp->gdbarch);
10734 return value_from_longest (type, (LONGEST) tem);
10735
10736 case UNOP_NEG:
10737 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10738 if (noside == EVAL_SKIP)
10739 goto nosideret;
10740 else if (ada_is_fixed_point_type (value_type (arg1)))
10741 return value_cast (value_type (arg1), value_neg (arg1));
10742 else
10743 {
10744 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10745 return value_neg (arg1);
10746 }
10747
10748 case BINOP_LOGICAL_AND:
10749 case BINOP_LOGICAL_OR:
10750 case UNOP_LOGICAL_NOT:
10751 {
10752 struct value *val;
10753
10754 *pos -= 1;
10755 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10756 type = language_bool_type (exp->language_defn, exp->gdbarch);
10757 return value_cast (type, val);
10758 }
10759
10760 case BINOP_BITWISE_AND:
10761 case BINOP_BITWISE_IOR:
10762 case BINOP_BITWISE_XOR:
10763 {
10764 struct value *val;
10765
10766 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10767 *pos = pc;
10768 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10769
10770 return value_cast (value_type (arg1), val);
10771 }
10772
10773 case OP_VAR_VALUE:
10774 *pos -= 1;
10775
10776 if (noside == EVAL_SKIP)
10777 {
10778 *pos += 4;
10779 goto nosideret;
10780 }
10781
10782 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10783 /* Only encountered when an unresolved symbol occurs in a
10784 context other than a function call, in which case, it is
10785 invalid. */
10786 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10787 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10788
10789 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10790 {
10791 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10792 /* Check to see if this is a tagged type. We also need to handle
10793 the case where the type is a reference to a tagged type, but
10794 we have to be careful to exclude pointers to tagged types.
10795 The latter should be shown as usual (as a pointer), whereas
10796 a reference should mostly be transparent to the user. */
10797 if (ada_is_tagged_type (type, 0)
10798 || (TYPE_CODE (type) == TYPE_CODE_REF
10799 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10800 {
10801 /* Tagged types are a little special in the fact that the real
10802 type is dynamic and can only be determined by inspecting the
10803 object's tag. This means that we need to get the object's
10804 value first (EVAL_NORMAL) and then extract the actual object
10805 type from its tag.
10806
10807 Note that we cannot skip the final step where we extract
10808 the object type from its tag, because the EVAL_NORMAL phase
10809 results in dynamic components being resolved into fixed ones.
10810 This can cause problems when trying to print the type
10811 description of tagged types whose parent has a dynamic size:
10812 We use the type name of the "_parent" component in order
10813 to print the name of the ancestor type in the type description.
10814 If that component had a dynamic size, the resolution into
10815 a fixed type would result in the loss of that type name,
10816 thus preventing us from printing the name of the ancestor
10817 type in the type description. */
10818 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10819
10820 if (TYPE_CODE (type) != TYPE_CODE_REF)
10821 {
10822 struct type *actual_type;
10823
10824 actual_type = type_from_tag (ada_value_tag (arg1));
10825 if (actual_type == NULL)
10826 /* If, for some reason, we were unable to determine
10827 the actual type from the tag, then use the static
10828 approximation that we just computed as a fallback.
10829 This can happen if the debugging information is
10830 incomplete, for instance. */
10831 actual_type = type;
10832 return value_zero (actual_type, not_lval);
10833 }
10834 else
10835 {
10836 /* In the case of a ref, ada_coerce_ref takes care
10837 of determining the actual type. But the evaluation
10838 should return a ref as it should be valid to ask
10839 for its address; so rebuild a ref after coerce. */
10840 arg1 = ada_coerce_ref (arg1);
10841 return value_ref (arg1, TYPE_CODE_REF);
10842 }
10843 }
10844
10845 /* Records and unions for which GNAT encodings have been
10846 generated need to be statically fixed as well.
10847 Otherwise, non-static fixing produces a type where
10848 all dynamic properties are removed, which prevents "ptype"
10849 from being able to completely describe the type.
10850 For instance, a case statement in a variant record would be
10851 replaced by the relevant components based on the actual
10852 value of the discriminants. */
10853 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10854 && dynamic_template_type (type) != NULL)
10855 || (TYPE_CODE (type) == TYPE_CODE_UNION
10856 && ada_find_parallel_type (type, "___XVU") != NULL))
10857 {
10858 *pos += 4;
10859 return value_zero (to_static_fixed_type (type), not_lval);
10860 }
10861 }
10862
10863 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10864 return ada_to_fixed_value (arg1);
10865
10866 case OP_FUNCALL:
10867 (*pos) += 2;
10868
10869 /* Allocate arg vector, including space for the function to be
10870 called in argvec[0] and a terminating NULL. */
10871 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10872 argvec = XALLOCAVEC (struct value *, nargs + 2);
10873
10874 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10875 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10876 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10877 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10878 else
10879 {
10880 for (tem = 0; tem <= nargs; tem += 1)
10881 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10882 argvec[tem] = 0;
10883
10884 if (noside == EVAL_SKIP)
10885 goto nosideret;
10886 }
10887
10888 if (ada_is_constrained_packed_array_type
10889 (desc_base_type (value_type (argvec[0]))))
10890 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10891 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10892 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10893 /* This is a packed array that has already been fixed, and
10894 therefore already coerced to a simple array. Nothing further
10895 to do. */
10896 ;
10897 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10898 {
10899 /* Make sure we dereference references so that all the code below
10900 feels like it's really handling the referenced value. Wrapping
10901 types (for alignment) may be there, so make sure we strip them as
10902 well. */
10903 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10904 }
10905 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10906 && VALUE_LVAL (argvec[0]) == lval_memory)
10907 argvec[0] = value_addr (argvec[0]);
10908
10909 type = ada_check_typedef (value_type (argvec[0]));
10910
10911 /* Ada allows us to implicitly dereference arrays when subscripting
10912 them. So, if this is an array typedef (encoding use for array
10913 access types encoded as fat pointers), strip it now. */
10914 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10915 type = ada_typedef_target_type (type);
10916
10917 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10918 {
10919 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10920 {
10921 case TYPE_CODE_FUNC:
10922 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10923 break;
10924 case TYPE_CODE_ARRAY:
10925 break;
10926 case TYPE_CODE_STRUCT:
10927 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10928 argvec[0] = ada_value_ind (argvec[0]);
10929 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10930 break;
10931 default:
10932 error (_("cannot subscript or call something of type `%s'"),
10933 ada_type_name (value_type (argvec[0])));
10934 break;
10935 }
10936 }
10937
10938 switch (TYPE_CODE (type))
10939 {
10940 case TYPE_CODE_FUNC:
10941 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10942 {
10943 if (TYPE_TARGET_TYPE (type) == NULL)
10944 error_call_unknown_return_type (NULL);
10945 return allocate_value (TYPE_TARGET_TYPE (type));
10946 }
10947 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10948 case TYPE_CODE_INTERNAL_FUNCTION:
10949 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10950 /* We don't know anything about what the internal
10951 function might return, but we have to return
10952 something. */
10953 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10954 not_lval);
10955 else
10956 return call_internal_function (exp->gdbarch, exp->language_defn,
10957 argvec[0], nargs, argvec + 1);
10958
10959 case TYPE_CODE_STRUCT:
10960 {
10961 int arity;
10962
10963 arity = ada_array_arity (type);
10964 type = ada_array_element_type (type, nargs);
10965 if (type == NULL)
10966 error (_("cannot subscript or call a record"));
10967 if (arity != nargs)
10968 error (_("wrong number of subscripts; expecting %d"), arity);
10969 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10970 return value_zero (ada_aligned_type (type), lval_memory);
10971 return
10972 unwrap_value (ada_value_subscript
10973 (argvec[0], nargs, argvec + 1));
10974 }
10975 case TYPE_CODE_ARRAY:
10976 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10977 {
10978 type = ada_array_element_type (type, nargs);
10979 if (type == NULL)
10980 error (_("element type of array unknown"));
10981 else
10982 return value_zero (ada_aligned_type (type), lval_memory);
10983 }
10984 return
10985 unwrap_value (ada_value_subscript
10986 (ada_coerce_to_simple_array (argvec[0]),
10987 nargs, argvec + 1));
10988 case TYPE_CODE_PTR: /* Pointer to array */
10989 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10990 {
10991 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10992 type = ada_array_element_type (type, nargs);
10993 if (type == NULL)
10994 error (_("element type of array unknown"));
10995 else
10996 return value_zero (ada_aligned_type (type), lval_memory);
10997 }
10998 return
10999 unwrap_value (ada_value_ptr_subscript (argvec[0],
11000 nargs, argvec + 1));
11001
11002 default:
11003 error (_("Attempt to index or call something other than an "
11004 "array or function"));
11005 }
11006
11007 case TERNOP_SLICE:
11008 {
11009 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11010 struct value *low_bound_val =
11011 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11012 struct value *high_bound_val =
11013 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11014 LONGEST low_bound;
11015 LONGEST high_bound;
11016
11017 low_bound_val = coerce_ref (low_bound_val);
11018 high_bound_val = coerce_ref (high_bound_val);
11019 low_bound = value_as_long (low_bound_val);
11020 high_bound = value_as_long (high_bound_val);
11021
11022 if (noside == EVAL_SKIP)
11023 goto nosideret;
11024
11025 /* If this is a reference to an aligner type, then remove all
11026 the aligners. */
11027 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11028 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11029 TYPE_TARGET_TYPE (value_type (array)) =
11030 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11031
11032 if (ada_is_constrained_packed_array_type (value_type (array)))
11033 error (_("cannot slice a packed array"));
11034
11035 /* If this is a reference to an array or an array lvalue,
11036 convert to a pointer. */
11037 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11038 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11039 && VALUE_LVAL (array) == lval_memory))
11040 array = value_addr (array);
11041
11042 if (noside == EVAL_AVOID_SIDE_EFFECTS
11043 && ada_is_array_descriptor_type (ada_check_typedef
11044 (value_type (array))))
11045 return empty_array (ada_type_of_array (array, 0), low_bound);
11046
11047 array = ada_coerce_to_simple_array_ptr (array);
11048
11049 /* If we have more than one level of pointer indirection,
11050 dereference the value until we get only one level. */
11051 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11052 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11053 == TYPE_CODE_PTR))
11054 array = value_ind (array);
11055
11056 /* Make sure we really do have an array type before going further,
11057 to avoid a SEGV when trying to get the index type or the target
11058 type later down the road if the debug info generated by
11059 the compiler is incorrect or incomplete. */
11060 if (!ada_is_simple_array_type (value_type (array)))
11061 error (_("cannot take slice of non-array"));
11062
11063 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11064 == TYPE_CODE_PTR)
11065 {
11066 struct type *type0 = ada_check_typedef (value_type (array));
11067
11068 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11069 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11070 else
11071 {
11072 struct type *arr_type0 =
11073 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11074
11075 return ada_value_slice_from_ptr (array, arr_type0,
11076 longest_to_int (low_bound),
11077 longest_to_int (high_bound));
11078 }
11079 }
11080 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11081 return array;
11082 else if (high_bound < low_bound)
11083 return empty_array (value_type (array), low_bound);
11084 else
11085 return ada_value_slice (array, longest_to_int (low_bound),
11086 longest_to_int (high_bound));
11087 }
11088
11089 case UNOP_IN_RANGE:
11090 (*pos) += 2;
11091 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11092 type = check_typedef (exp->elts[pc + 1].type);
11093
11094 if (noside == EVAL_SKIP)
11095 goto nosideret;
11096
11097 switch (TYPE_CODE (type))
11098 {
11099 default:
11100 lim_warning (_("Membership test incompletely implemented; "
11101 "always returns true"));
11102 type = language_bool_type (exp->language_defn, exp->gdbarch);
11103 return value_from_longest (type, (LONGEST) 1);
11104
11105 case TYPE_CODE_RANGE:
11106 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11107 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11108 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11109 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11110 type = language_bool_type (exp->language_defn, exp->gdbarch);
11111 return
11112 value_from_longest (type,
11113 (value_less (arg1, arg3)
11114 || value_equal (arg1, arg3))
11115 && (value_less (arg2, arg1)
11116 || value_equal (arg2, arg1)));
11117 }
11118
11119 case BINOP_IN_BOUNDS:
11120 (*pos) += 2;
11121 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11122 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11123
11124 if (noside == EVAL_SKIP)
11125 goto nosideret;
11126
11127 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11128 {
11129 type = language_bool_type (exp->language_defn, exp->gdbarch);
11130 return value_zero (type, not_lval);
11131 }
11132
11133 tem = longest_to_int (exp->elts[pc + 1].longconst);
11134
11135 type = ada_index_type (value_type (arg2), tem, "range");
11136 if (!type)
11137 type = value_type (arg1);
11138
11139 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11140 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11141
11142 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11143 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11144 type = language_bool_type (exp->language_defn, exp->gdbarch);
11145 return
11146 value_from_longest (type,
11147 (value_less (arg1, arg3)
11148 || value_equal (arg1, arg3))
11149 && (value_less (arg2, arg1)
11150 || value_equal (arg2, arg1)));
11151
11152 case TERNOP_IN_RANGE:
11153 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11154 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11155 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11156
11157 if (noside == EVAL_SKIP)
11158 goto nosideret;
11159
11160 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11161 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11162 type = language_bool_type (exp->language_defn, exp->gdbarch);
11163 return
11164 value_from_longest (type,
11165 (value_less (arg1, arg3)
11166 || value_equal (arg1, arg3))
11167 && (value_less (arg2, arg1)
11168 || value_equal (arg2, arg1)));
11169
11170 case OP_ATR_FIRST:
11171 case OP_ATR_LAST:
11172 case OP_ATR_LENGTH:
11173 {
11174 struct type *type_arg;
11175
11176 if (exp->elts[*pos].opcode == OP_TYPE)
11177 {
11178 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11179 arg1 = NULL;
11180 type_arg = check_typedef (exp->elts[pc + 2].type);
11181 }
11182 else
11183 {
11184 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11185 type_arg = NULL;
11186 }
11187
11188 if (exp->elts[*pos].opcode != OP_LONG)
11189 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11190 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11191 *pos += 4;
11192
11193 if (noside == EVAL_SKIP)
11194 goto nosideret;
11195
11196 if (type_arg == NULL)
11197 {
11198 arg1 = ada_coerce_ref (arg1);
11199
11200 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11201 arg1 = ada_coerce_to_simple_array (arg1);
11202
11203 if (op == OP_ATR_LENGTH)
11204 type = builtin_type (exp->gdbarch)->builtin_int;
11205 else
11206 {
11207 type = ada_index_type (value_type (arg1), tem,
11208 ada_attribute_name (op));
11209 if (type == NULL)
11210 type = builtin_type (exp->gdbarch)->builtin_int;
11211 }
11212
11213 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11214 return allocate_value (type);
11215
11216 switch (op)
11217 {
11218 default: /* Should never happen. */
11219 error (_("unexpected attribute encountered"));
11220 case OP_ATR_FIRST:
11221 return value_from_longest
11222 (type, ada_array_bound (arg1, tem, 0));
11223 case OP_ATR_LAST:
11224 return value_from_longest
11225 (type, ada_array_bound (arg1, tem, 1));
11226 case OP_ATR_LENGTH:
11227 return value_from_longest
11228 (type, ada_array_length (arg1, tem));
11229 }
11230 }
11231 else if (discrete_type_p (type_arg))
11232 {
11233 struct type *range_type;
11234 const char *name = ada_type_name (type_arg);
11235
11236 range_type = NULL;
11237 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11238 range_type = to_fixed_range_type (type_arg, NULL);
11239 if (range_type == NULL)
11240 range_type = type_arg;
11241 switch (op)
11242 {
11243 default:
11244 error (_("unexpected attribute encountered"));
11245 case OP_ATR_FIRST:
11246 return value_from_longest
11247 (range_type, ada_discrete_type_low_bound (range_type));
11248 case OP_ATR_LAST:
11249 return value_from_longest
11250 (range_type, ada_discrete_type_high_bound (range_type));
11251 case OP_ATR_LENGTH:
11252 error (_("the 'length attribute applies only to array types"));
11253 }
11254 }
11255 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11256 error (_("unimplemented type attribute"));
11257 else
11258 {
11259 LONGEST low, high;
11260
11261 if (ada_is_constrained_packed_array_type (type_arg))
11262 type_arg = decode_constrained_packed_array_type (type_arg);
11263
11264 if (op == OP_ATR_LENGTH)
11265 type = builtin_type (exp->gdbarch)->builtin_int;
11266 else
11267 {
11268 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11269 if (type == NULL)
11270 type = builtin_type (exp->gdbarch)->builtin_int;
11271 }
11272
11273 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11274 return allocate_value (type);
11275
11276 switch (op)
11277 {
11278 default:
11279 error (_("unexpected attribute encountered"));
11280 case OP_ATR_FIRST:
11281 low = ada_array_bound_from_type (type_arg, tem, 0);
11282 return value_from_longest (type, low);
11283 case OP_ATR_LAST:
11284 high = ada_array_bound_from_type (type_arg, tem, 1);
11285 return value_from_longest (type, high);
11286 case OP_ATR_LENGTH:
11287 low = ada_array_bound_from_type (type_arg, tem, 0);
11288 high = ada_array_bound_from_type (type_arg, tem, 1);
11289 return value_from_longest (type, high - low + 1);
11290 }
11291 }
11292 }
11293
11294 case OP_ATR_TAG:
11295 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11296 if (noside == EVAL_SKIP)
11297 goto nosideret;
11298
11299 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11300 return value_zero (ada_tag_type (arg1), not_lval);
11301
11302 return ada_value_tag (arg1);
11303
11304 case OP_ATR_MIN:
11305 case OP_ATR_MAX:
11306 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11307 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11308 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11309 if (noside == EVAL_SKIP)
11310 goto nosideret;
11311 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11312 return value_zero (value_type (arg1), not_lval);
11313 else
11314 {
11315 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11316 return value_binop (arg1, arg2,
11317 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11318 }
11319
11320 case OP_ATR_MODULUS:
11321 {
11322 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11323
11324 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11325 if (noside == EVAL_SKIP)
11326 goto nosideret;
11327
11328 if (!ada_is_modular_type (type_arg))
11329 error (_("'modulus must be applied to modular type"));
11330
11331 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11332 ada_modulus (type_arg));
11333 }
11334
11335
11336 case OP_ATR_POS:
11337 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11338 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11339 if (noside == EVAL_SKIP)
11340 goto nosideret;
11341 type = builtin_type (exp->gdbarch)->builtin_int;
11342 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11343 return value_zero (type, not_lval);
11344 else
11345 return value_pos_atr (type, arg1);
11346
11347 case OP_ATR_SIZE:
11348 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11349 type = value_type (arg1);
11350
11351 /* If the argument is a reference, then dereference its type, since
11352 the user is really asking for the size of the actual object,
11353 not the size of the pointer. */
11354 if (TYPE_CODE (type) == TYPE_CODE_REF)
11355 type = TYPE_TARGET_TYPE (type);
11356
11357 if (noside == EVAL_SKIP)
11358 goto nosideret;
11359 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11360 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11361 else
11362 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11363 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11364
11365 case OP_ATR_VAL:
11366 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11367 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11368 type = exp->elts[pc + 2].type;
11369 if (noside == EVAL_SKIP)
11370 goto nosideret;
11371 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11372 return value_zero (type, not_lval);
11373 else
11374 return value_val_atr (type, arg1);
11375
11376 case BINOP_EXP:
11377 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11378 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11379 if (noside == EVAL_SKIP)
11380 goto nosideret;
11381 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11382 return value_zero (value_type (arg1), not_lval);
11383 else
11384 {
11385 /* For integer exponentiation operations,
11386 only promote the first argument. */
11387 if (is_integral_type (value_type (arg2)))
11388 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11389 else
11390 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11391
11392 return value_binop (arg1, arg2, op);
11393 }
11394
11395 case UNOP_PLUS:
11396 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11397 if (noside == EVAL_SKIP)
11398 goto nosideret;
11399 else
11400 return arg1;
11401
11402 case UNOP_ABS:
11403 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11404 if (noside == EVAL_SKIP)
11405 goto nosideret;
11406 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11407 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11408 return value_neg (arg1);
11409 else
11410 return arg1;
11411
11412 case UNOP_IND:
11413 preeval_pos = *pos;
11414 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11415 if (noside == EVAL_SKIP)
11416 goto nosideret;
11417 type = ada_check_typedef (value_type (arg1));
11418 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11419 {
11420 if (ada_is_array_descriptor_type (type))
11421 /* GDB allows dereferencing GNAT array descriptors. */
11422 {
11423 struct type *arrType = ada_type_of_array (arg1, 0);
11424
11425 if (arrType == NULL)
11426 error (_("Attempt to dereference null array pointer."));
11427 return value_at_lazy (arrType, 0);
11428 }
11429 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11430 || TYPE_CODE (type) == TYPE_CODE_REF
11431 /* In C you can dereference an array to get the 1st elt. */
11432 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11433 {
11434 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11435 only be determined by inspecting the object's tag.
11436 This means that we need to evaluate completely the
11437 expression in order to get its type. */
11438
11439 if ((TYPE_CODE (type) == TYPE_CODE_REF
11440 || TYPE_CODE (type) == TYPE_CODE_PTR)
11441 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11442 {
11443 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11444 EVAL_NORMAL);
11445 type = value_type (ada_value_ind (arg1));
11446 }
11447 else
11448 {
11449 type = to_static_fixed_type
11450 (ada_aligned_type
11451 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11452 }
11453 ada_ensure_varsize_limit (type);
11454 return value_zero (type, lval_memory);
11455 }
11456 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11457 {
11458 /* GDB allows dereferencing an int. */
11459 if (expect_type == NULL)
11460 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11461 lval_memory);
11462 else
11463 {
11464 expect_type =
11465 to_static_fixed_type (ada_aligned_type (expect_type));
11466 return value_zero (expect_type, lval_memory);
11467 }
11468 }
11469 else
11470 error (_("Attempt to take contents of a non-pointer value."));
11471 }
11472 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11473 type = ada_check_typedef (value_type (arg1));
11474
11475 if (TYPE_CODE (type) == TYPE_CODE_INT)
11476 /* GDB allows dereferencing an int. If we were given
11477 the expect_type, then use that as the target type.
11478 Otherwise, assume that the target type is an int. */
11479 {
11480 if (expect_type != NULL)
11481 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11482 arg1));
11483 else
11484 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11485 (CORE_ADDR) value_as_address (arg1));
11486 }
11487
11488 if (ada_is_array_descriptor_type (type))
11489 /* GDB allows dereferencing GNAT array descriptors. */
11490 return ada_coerce_to_simple_array (arg1);
11491 else
11492 return ada_value_ind (arg1);
11493
11494 case STRUCTOP_STRUCT:
11495 tem = longest_to_int (exp->elts[pc + 1].longconst);
11496 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11497 preeval_pos = *pos;
11498 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11499 if (noside == EVAL_SKIP)
11500 goto nosideret;
11501 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11502 {
11503 struct type *type1 = value_type (arg1);
11504
11505 if (ada_is_tagged_type (type1, 1))
11506 {
11507 type = ada_lookup_struct_elt_type (type1,
11508 &exp->elts[pc + 2].string,
11509 1, 1);
11510
11511 /* If the field is not found, check if it exists in the
11512 extension of this object's type. This means that we
11513 need to evaluate completely the expression. */
11514
11515 if (type == NULL)
11516 {
11517 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11518 EVAL_NORMAL);
11519 arg1 = ada_value_struct_elt (arg1,
11520 &exp->elts[pc + 2].string,
11521 0);
11522 arg1 = unwrap_value (arg1);
11523 type = value_type (ada_to_fixed_value (arg1));
11524 }
11525 }
11526 else
11527 type =
11528 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11529 0);
11530
11531 return value_zero (ada_aligned_type (type), lval_memory);
11532 }
11533 else
11534 {
11535 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11536 arg1 = unwrap_value (arg1);
11537 return ada_to_fixed_value (arg1);
11538 }
11539
11540 case OP_TYPE:
11541 /* The value is not supposed to be used. This is here to make it
11542 easier to accommodate expressions that contain types. */
11543 (*pos) += 2;
11544 if (noside == EVAL_SKIP)
11545 goto nosideret;
11546 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11547 return allocate_value (exp->elts[pc + 1].type);
11548 else
11549 error (_("Attempt to use a type name as an expression"));
11550
11551 case OP_AGGREGATE:
11552 case OP_CHOICES:
11553 case OP_OTHERS:
11554 case OP_DISCRETE_RANGE:
11555 case OP_POSITIONAL:
11556 case OP_NAME:
11557 if (noside == EVAL_NORMAL)
11558 switch (op)
11559 {
11560 case OP_NAME:
11561 error (_("Undefined name, ambiguous name, or renaming used in "
11562 "component association: %s."), &exp->elts[pc+2].string);
11563 case OP_AGGREGATE:
11564 error (_("Aggregates only allowed on the right of an assignment"));
11565 default:
11566 internal_error (__FILE__, __LINE__,
11567 _("aggregate apparently mangled"));
11568 }
11569
11570 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11571 *pos += oplen - 1;
11572 for (tem = 0; tem < nargs; tem += 1)
11573 ada_evaluate_subexp (NULL, exp, pos, noside);
11574 goto nosideret;
11575 }
11576
11577 nosideret:
11578 return eval_skip_value (exp);
11579 }
11580 \f
11581
11582 /* Fixed point */
11583
11584 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11585 type name that encodes the 'small and 'delta information.
11586 Otherwise, return NULL. */
11587
11588 static const char *
11589 fixed_type_info (struct type *type)
11590 {
11591 const char *name = ada_type_name (type);
11592 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11593
11594 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11595 {
11596 const char *tail = strstr (name, "___XF_");
11597
11598 if (tail == NULL)
11599 return NULL;
11600 else
11601 return tail + 5;
11602 }
11603 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11604 return fixed_type_info (TYPE_TARGET_TYPE (type));
11605 else
11606 return NULL;
11607 }
11608
11609 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11610
11611 int
11612 ada_is_fixed_point_type (struct type *type)
11613 {
11614 return fixed_type_info (type) != NULL;
11615 }
11616
11617 /* Return non-zero iff TYPE represents a System.Address type. */
11618
11619 int
11620 ada_is_system_address_type (struct type *type)
11621 {
11622 return (TYPE_NAME (type)
11623 && strcmp (TYPE_NAME (type), "system__address") == 0);
11624 }
11625
11626 /* Assuming that TYPE is the representation of an Ada fixed-point
11627 type, return the target floating-point type to be used to represent
11628 of this type during internal computation. */
11629
11630 static struct type *
11631 ada_scaling_type (struct type *type)
11632 {
11633 return builtin_type (get_type_arch (type))->builtin_long_double;
11634 }
11635
11636 /* Assuming that TYPE is the representation of an Ada fixed-point
11637 type, return its delta, or NULL if the type is malformed and the
11638 delta cannot be determined. */
11639
11640 struct value *
11641 ada_delta (struct type *type)
11642 {
11643 const char *encoding = fixed_type_info (type);
11644 struct type *scale_type = ada_scaling_type (type);
11645
11646 long long num, den;
11647
11648 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11649 return nullptr;
11650 else
11651 return value_binop (value_from_longest (scale_type, num),
11652 value_from_longest (scale_type, den), BINOP_DIV);
11653 }
11654
11655 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11656 factor ('SMALL value) associated with the type. */
11657
11658 struct value *
11659 ada_scaling_factor (struct type *type)
11660 {
11661 const char *encoding = fixed_type_info (type);
11662 struct type *scale_type = ada_scaling_type (type);
11663
11664 long long num0, den0, num1, den1;
11665 int n;
11666
11667 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11668 &num0, &den0, &num1, &den1);
11669
11670 if (n < 2)
11671 return value_from_longest (scale_type, 1);
11672 else if (n == 4)
11673 return value_binop (value_from_longest (scale_type, num1),
11674 value_from_longest (scale_type, den1), BINOP_DIV);
11675 else
11676 return value_binop (value_from_longest (scale_type, num0),
11677 value_from_longest (scale_type, den0), BINOP_DIV);
11678 }
11679
11680 \f
11681
11682 /* Range types */
11683
11684 /* Scan STR beginning at position K for a discriminant name, and
11685 return the value of that discriminant field of DVAL in *PX. If
11686 PNEW_K is not null, put the position of the character beyond the
11687 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11688 not alter *PX and *PNEW_K if unsuccessful. */
11689
11690 static int
11691 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11692 int *pnew_k)
11693 {
11694 static char *bound_buffer = NULL;
11695 static size_t bound_buffer_len = 0;
11696 const char *pstart, *pend, *bound;
11697 struct value *bound_val;
11698
11699 if (dval == NULL || str == NULL || str[k] == '\0')
11700 return 0;
11701
11702 pstart = str + k;
11703 pend = strstr (pstart, "__");
11704 if (pend == NULL)
11705 {
11706 bound = pstart;
11707 k += strlen (bound);
11708 }
11709 else
11710 {
11711 int len = pend - pstart;
11712
11713 /* Strip __ and beyond. */
11714 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11715 strncpy (bound_buffer, pstart, len);
11716 bound_buffer[len] = '\0';
11717
11718 bound = bound_buffer;
11719 k = pend - str;
11720 }
11721
11722 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11723 if (bound_val == NULL)
11724 return 0;
11725
11726 *px = value_as_long (bound_val);
11727 if (pnew_k != NULL)
11728 *pnew_k = k;
11729 return 1;
11730 }
11731
11732 /* Value of variable named NAME in the current environment. If
11733 no such variable found, then if ERR_MSG is null, returns 0, and
11734 otherwise causes an error with message ERR_MSG. */
11735
11736 static struct value *
11737 get_var_value (const char *name, const char *err_msg)
11738 {
11739 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11740
11741 std::vector<struct block_symbol> syms;
11742 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11743 get_selected_block (0),
11744 VAR_DOMAIN, &syms, 1);
11745
11746 if (nsyms != 1)
11747 {
11748 if (err_msg == NULL)
11749 return 0;
11750 else
11751 error (("%s"), err_msg);
11752 }
11753
11754 return value_of_variable (syms[0].symbol, syms[0].block);
11755 }
11756
11757 /* Value of integer variable named NAME in the current environment.
11758 If no such variable is found, returns false. Otherwise, sets VALUE
11759 to the variable's value and returns true. */
11760
11761 bool
11762 get_int_var_value (const char *name, LONGEST &value)
11763 {
11764 struct value *var_val = get_var_value (name, 0);
11765
11766 if (var_val == 0)
11767 return false;
11768
11769 value = value_as_long (var_val);
11770 return true;
11771 }
11772
11773
11774 /* Return a range type whose base type is that of the range type named
11775 NAME in the current environment, and whose bounds are calculated
11776 from NAME according to the GNAT range encoding conventions.
11777 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11778 corresponding range type from debug information; fall back to using it
11779 if symbol lookup fails. If a new type must be created, allocate it
11780 like ORIG_TYPE was. The bounds information, in general, is encoded
11781 in NAME, the base type given in the named range type. */
11782
11783 static struct type *
11784 to_fixed_range_type (struct type *raw_type, struct value *dval)
11785 {
11786 const char *name;
11787 struct type *base_type;
11788 const char *subtype_info;
11789
11790 gdb_assert (raw_type != NULL);
11791 gdb_assert (TYPE_NAME (raw_type) != NULL);
11792
11793 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11794 base_type = TYPE_TARGET_TYPE (raw_type);
11795 else
11796 base_type = raw_type;
11797
11798 name = TYPE_NAME (raw_type);
11799 subtype_info = strstr (name, "___XD");
11800 if (subtype_info == NULL)
11801 {
11802 LONGEST L = ada_discrete_type_low_bound (raw_type);
11803 LONGEST U = ada_discrete_type_high_bound (raw_type);
11804
11805 if (L < INT_MIN || U > INT_MAX)
11806 return raw_type;
11807 else
11808 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11809 L, U);
11810 }
11811 else
11812 {
11813 static char *name_buf = NULL;
11814 static size_t name_len = 0;
11815 int prefix_len = subtype_info - name;
11816 LONGEST L, U;
11817 struct type *type;
11818 const char *bounds_str;
11819 int n;
11820
11821 GROW_VECT (name_buf, name_len, prefix_len + 5);
11822 strncpy (name_buf, name, prefix_len);
11823 name_buf[prefix_len] = '\0';
11824
11825 subtype_info += 5;
11826 bounds_str = strchr (subtype_info, '_');
11827 n = 1;
11828
11829 if (*subtype_info == 'L')
11830 {
11831 if (!ada_scan_number (bounds_str, n, &L, &n)
11832 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11833 return raw_type;
11834 if (bounds_str[n] == '_')
11835 n += 2;
11836 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11837 n += 1;
11838 subtype_info += 1;
11839 }
11840 else
11841 {
11842 strcpy (name_buf + prefix_len, "___L");
11843 if (!get_int_var_value (name_buf, L))
11844 {
11845 lim_warning (_("Unknown lower bound, using 1."));
11846 L = 1;
11847 }
11848 }
11849
11850 if (*subtype_info == 'U')
11851 {
11852 if (!ada_scan_number (bounds_str, n, &U, &n)
11853 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11854 return raw_type;
11855 }
11856 else
11857 {
11858 strcpy (name_buf + prefix_len, "___U");
11859 if (!get_int_var_value (name_buf, U))
11860 {
11861 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11862 U = L;
11863 }
11864 }
11865
11866 type = create_static_range_type (alloc_type_copy (raw_type),
11867 base_type, L, U);
11868 /* create_static_range_type alters the resulting type's length
11869 to match the size of the base_type, which is not what we want.
11870 Set it back to the original range type's length. */
11871 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11872 TYPE_NAME (type) = name;
11873 return type;
11874 }
11875 }
11876
11877 /* True iff NAME is the name of a range type. */
11878
11879 int
11880 ada_is_range_type_name (const char *name)
11881 {
11882 return (name != NULL && strstr (name, "___XD"));
11883 }
11884 \f
11885
11886 /* Modular types */
11887
11888 /* True iff TYPE is an Ada modular type. */
11889
11890 int
11891 ada_is_modular_type (struct type *type)
11892 {
11893 struct type *subranged_type = get_base_type (type);
11894
11895 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11896 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11897 && TYPE_UNSIGNED (subranged_type));
11898 }
11899
11900 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11901
11902 ULONGEST
11903 ada_modulus (struct type *type)
11904 {
11905 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11906 }
11907 \f
11908
11909 /* Ada exception catchpoint support:
11910 ---------------------------------
11911
11912 We support 3 kinds of exception catchpoints:
11913 . catchpoints on Ada exceptions
11914 . catchpoints on unhandled Ada exceptions
11915 . catchpoints on failed assertions
11916
11917 Exceptions raised during failed assertions, or unhandled exceptions
11918 could perfectly be caught with the general catchpoint on Ada exceptions.
11919 However, we can easily differentiate these two special cases, and having
11920 the option to distinguish these two cases from the rest can be useful
11921 to zero-in on certain situations.
11922
11923 Exception catchpoints are a specialized form of breakpoint,
11924 since they rely on inserting breakpoints inside known routines
11925 of the GNAT runtime. The implementation therefore uses a standard
11926 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11927 of breakpoint_ops.
11928
11929 Support in the runtime for exception catchpoints have been changed
11930 a few times already, and these changes affect the implementation
11931 of these catchpoints. In order to be able to support several
11932 variants of the runtime, we use a sniffer that will determine
11933 the runtime variant used by the program being debugged. */
11934
11935 /* Ada's standard exceptions.
11936
11937 The Ada 83 standard also defined Numeric_Error. But there so many
11938 situations where it was unclear from the Ada 83 Reference Manual
11939 (RM) whether Constraint_Error or Numeric_Error should be raised,
11940 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11941 Interpretation saying that anytime the RM says that Numeric_Error
11942 should be raised, the implementation may raise Constraint_Error.
11943 Ada 95 went one step further and pretty much removed Numeric_Error
11944 from the list of standard exceptions (it made it a renaming of
11945 Constraint_Error, to help preserve compatibility when compiling
11946 an Ada83 compiler). As such, we do not include Numeric_Error from
11947 this list of standard exceptions. */
11948
11949 static const char *standard_exc[] = {
11950 "constraint_error",
11951 "program_error",
11952 "storage_error",
11953 "tasking_error"
11954 };
11955
11956 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11957
11958 /* A structure that describes how to support exception catchpoints
11959 for a given executable. */
11960
11961 struct exception_support_info
11962 {
11963 /* The name of the symbol to break on in order to insert
11964 a catchpoint on exceptions. */
11965 const char *catch_exception_sym;
11966
11967 /* The name of the symbol to break on in order to insert
11968 a catchpoint on unhandled exceptions. */
11969 const char *catch_exception_unhandled_sym;
11970
11971 /* The name of the symbol to break on in order to insert
11972 a catchpoint on failed assertions. */
11973 const char *catch_assert_sym;
11974
11975 /* The name of the symbol to break on in order to insert
11976 a catchpoint on exception handling. */
11977 const char *catch_handlers_sym;
11978
11979 /* Assuming that the inferior just triggered an unhandled exception
11980 catchpoint, this function is responsible for returning the address
11981 in inferior memory where the name of that exception is stored.
11982 Return zero if the address could not be computed. */
11983 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11984 };
11985
11986 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11987 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11988
11989 /* The following exception support info structure describes how to
11990 implement exception catchpoints with the latest version of the
11991 Ada runtime (as of 2007-03-06). */
11992
11993 static const struct exception_support_info default_exception_support_info =
11994 {
11995 "__gnat_debug_raise_exception", /* catch_exception_sym */
11996 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11997 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11998 "__gnat_begin_handler", /* catch_handlers_sym */
11999 ada_unhandled_exception_name_addr
12000 };
12001
12002 /* The following exception support info structure describes how to
12003 implement exception catchpoints with a slightly older version
12004 of the Ada runtime. */
12005
12006 static const struct exception_support_info exception_support_info_fallback =
12007 {
12008 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12009 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12010 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12011 "__gnat_begin_handler", /* catch_handlers_sym */
12012 ada_unhandled_exception_name_addr_from_raise
12013 };
12014
12015 /* Return nonzero if we can detect the exception support routines
12016 described in EINFO.
12017
12018 This function errors out if an abnormal situation is detected
12019 (for instance, if we find the exception support routines, but
12020 that support is found to be incomplete). */
12021
12022 static int
12023 ada_has_this_exception_support (const struct exception_support_info *einfo)
12024 {
12025 struct symbol *sym;
12026
12027 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12028 that should be compiled with debugging information. As a result, we
12029 expect to find that symbol in the symtabs. */
12030
12031 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12032 if (sym == NULL)
12033 {
12034 /* Perhaps we did not find our symbol because the Ada runtime was
12035 compiled without debugging info, or simply stripped of it.
12036 It happens on some GNU/Linux distributions for instance, where
12037 users have to install a separate debug package in order to get
12038 the runtime's debugging info. In that situation, let the user
12039 know why we cannot insert an Ada exception catchpoint.
12040
12041 Note: Just for the purpose of inserting our Ada exception
12042 catchpoint, we could rely purely on the associated minimal symbol.
12043 But we would be operating in degraded mode anyway, since we are
12044 still lacking the debugging info needed later on to extract
12045 the name of the exception being raised (this name is printed in
12046 the catchpoint message, and is also used when trying to catch
12047 a specific exception). We do not handle this case for now. */
12048 struct bound_minimal_symbol msym
12049 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12050
12051 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12052 error (_("Your Ada runtime appears to be missing some debugging "
12053 "information.\nCannot insert Ada exception catchpoint "
12054 "in this configuration."));
12055
12056 return 0;
12057 }
12058
12059 /* Make sure that the symbol we found corresponds to a function. */
12060
12061 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12062 error (_("Symbol \"%s\" is not a function (class = %d)"),
12063 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12064
12065 return 1;
12066 }
12067
12068 /* Inspect the Ada runtime and determine which exception info structure
12069 should be used to provide support for exception catchpoints.
12070
12071 This function will always set the per-inferior exception_info,
12072 or raise an error. */
12073
12074 static void
12075 ada_exception_support_info_sniffer (void)
12076 {
12077 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12078
12079 /* If the exception info is already known, then no need to recompute it. */
12080 if (data->exception_info != NULL)
12081 return;
12082
12083 /* Check the latest (default) exception support info. */
12084 if (ada_has_this_exception_support (&default_exception_support_info))
12085 {
12086 data->exception_info = &default_exception_support_info;
12087 return;
12088 }
12089
12090 /* Try our fallback exception suport info. */
12091 if (ada_has_this_exception_support (&exception_support_info_fallback))
12092 {
12093 data->exception_info = &exception_support_info_fallback;
12094 return;
12095 }
12096
12097 /* Sometimes, it is normal for us to not be able to find the routine
12098 we are looking for. This happens when the program is linked with
12099 the shared version of the GNAT runtime, and the program has not been
12100 started yet. Inform the user of these two possible causes if
12101 applicable. */
12102
12103 if (ada_update_initial_language (language_unknown) != language_ada)
12104 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12105
12106 /* If the symbol does not exist, then check that the program is
12107 already started, to make sure that shared libraries have been
12108 loaded. If it is not started, this may mean that the symbol is
12109 in a shared library. */
12110
12111 if (ptid_get_pid (inferior_ptid) == 0)
12112 error (_("Unable to insert catchpoint. Try to start the program first."));
12113
12114 /* At this point, we know that we are debugging an Ada program and
12115 that the inferior has been started, but we still are not able to
12116 find the run-time symbols. That can mean that we are in
12117 configurable run time mode, or that a-except as been optimized
12118 out by the linker... In any case, at this point it is not worth
12119 supporting this feature. */
12120
12121 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12122 }
12123
12124 /* True iff FRAME is very likely to be that of a function that is
12125 part of the runtime system. This is all very heuristic, but is
12126 intended to be used as advice as to what frames are uninteresting
12127 to most users. */
12128
12129 static int
12130 is_known_support_routine (struct frame_info *frame)
12131 {
12132 enum language func_lang;
12133 int i;
12134 const char *fullname;
12135
12136 /* If this code does not have any debugging information (no symtab),
12137 This cannot be any user code. */
12138
12139 symtab_and_line sal = find_frame_sal (frame);
12140 if (sal.symtab == NULL)
12141 return 1;
12142
12143 /* If there is a symtab, but the associated source file cannot be
12144 located, then assume this is not user code: Selecting a frame
12145 for which we cannot display the code would not be very helpful
12146 for the user. This should also take care of case such as VxWorks
12147 where the kernel has some debugging info provided for a few units. */
12148
12149 fullname = symtab_to_fullname (sal.symtab);
12150 if (access (fullname, R_OK) != 0)
12151 return 1;
12152
12153 /* Check the unit filename againt the Ada runtime file naming.
12154 We also check the name of the objfile against the name of some
12155 known system libraries that sometimes come with debugging info
12156 too. */
12157
12158 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12159 {
12160 re_comp (known_runtime_file_name_patterns[i]);
12161 if (re_exec (lbasename (sal.symtab->filename)))
12162 return 1;
12163 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12164 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12165 return 1;
12166 }
12167
12168 /* Check whether the function is a GNAT-generated entity. */
12169
12170 gdb::unique_xmalloc_ptr<char> func_name
12171 = find_frame_funname (frame, &func_lang, NULL);
12172 if (func_name == NULL)
12173 return 1;
12174
12175 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12176 {
12177 re_comp (known_auxiliary_function_name_patterns[i]);
12178 if (re_exec (func_name.get ()))
12179 return 1;
12180 }
12181
12182 return 0;
12183 }
12184
12185 /* Find the first frame that contains debugging information and that is not
12186 part of the Ada run-time, starting from FI and moving upward. */
12187
12188 void
12189 ada_find_printable_frame (struct frame_info *fi)
12190 {
12191 for (; fi != NULL; fi = get_prev_frame (fi))
12192 {
12193 if (!is_known_support_routine (fi))
12194 {
12195 select_frame (fi);
12196 break;
12197 }
12198 }
12199
12200 }
12201
12202 /* Assuming that the inferior just triggered an unhandled exception
12203 catchpoint, return the address in inferior memory where the name
12204 of the exception is stored.
12205
12206 Return zero if the address could not be computed. */
12207
12208 static CORE_ADDR
12209 ada_unhandled_exception_name_addr (void)
12210 {
12211 return parse_and_eval_address ("e.full_name");
12212 }
12213
12214 /* Same as ada_unhandled_exception_name_addr, except that this function
12215 should be used when the inferior uses an older version of the runtime,
12216 where the exception name needs to be extracted from a specific frame
12217 several frames up in the callstack. */
12218
12219 static CORE_ADDR
12220 ada_unhandled_exception_name_addr_from_raise (void)
12221 {
12222 int frame_level;
12223 struct frame_info *fi;
12224 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12225
12226 /* To determine the name of this exception, we need to select
12227 the frame corresponding to RAISE_SYM_NAME. This frame is
12228 at least 3 levels up, so we simply skip the first 3 frames
12229 without checking the name of their associated function. */
12230 fi = get_current_frame ();
12231 for (frame_level = 0; frame_level < 3; frame_level += 1)
12232 if (fi != NULL)
12233 fi = get_prev_frame (fi);
12234
12235 while (fi != NULL)
12236 {
12237 enum language func_lang;
12238
12239 gdb::unique_xmalloc_ptr<char> func_name
12240 = find_frame_funname (fi, &func_lang, NULL);
12241 if (func_name != NULL)
12242 {
12243 if (strcmp (func_name.get (),
12244 data->exception_info->catch_exception_sym) == 0)
12245 break; /* We found the frame we were looking for... */
12246 fi = get_prev_frame (fi);
12247 }
12248 }
12249
12250 if (fi == NULL)
12251 return 0;
12252
12253 select_frame (fi);
12254 return parse_and_eval_address ("id.full_name");
12255 }
12256
12257 /* Assuming the inferior just triggered an Ada exception catchpoint
12258 (of any type), return the address in inferior memory where the name
12259 of the exception is stored, if applicable.
12260
12261 Assumes the selected frame is the current frame.
12262
12263 Return zero if the address could not be computed, or if not relevant. */
12264
12265 static CORE_ADDR
12266 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12267 struct breakpoint *b)
12268 {
12269 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12270
12271 switch (ex)
12272 {
12273 case ada_catch_exception:
12274 return (parse_and_eval_address ("e.full_name"));
12275 break;
12276
12277 case ada_catch_exception_unhandled:
12278 return data->exception_info->unhandled_exception_name_addr ();
12279 break;
12280
12281 case ada_catch_handlers:
12282 return 0; /* The runtimes does not provide access to the exception
12283 name. */
12284 break;
12285
12286 case ada_catch_assert:
12287 return 0; /* Exception name is not relevant in this case. */
12288 break;
12289
12290 default:
12291 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12292 break;
12293 }
12294
12295 return 0; /* Should never be reached. */
12296 }
12297
12298 /* Assuming the inferior is stopped at an exception catchpoint,
12299 return the message which was associated to the exception, if
12300 available. Return NULL if the message could not be retrieved.
12301
12302 Note: The exception message can be associated to an exception
12303 either through the use of the Raise_Exception function, or
12304 more simply (Ada 2005 and later), via:
12305
12306 raise Exception_Name with "exception message";
12307
12308 */
12309
12310 static gdb::unique_xmalloc_ptr<char>
12311 ada_exception_message_1 (void)
12312 {
12313 struct value *e_msg_val;
12314 int e_msg_len;
12315
12316 /* For runtimes that support this feature, the exception message
12317 is passed as an unbounded string argument called "message". */
12318 e_msg_val = parse_and_eval ("message");
12319 if (e_msg_val == NULL)
12320 return NULL; /* Exception message not supported. */
12321
12322 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12323 gdb_assert (e_msg_val != NULL);
12324 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12325
12326 /* If the message string is empty, then treat it as if there was
12327 no exception message. */
12328 if (e_msg_len <= 0)
12329 return NULL;
12330
12331 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12332 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12333 e_msg.get ()[e_msg_len] = '\0';
12334
12335 return e_msg;
12336 }
12337
12338 /* Same as ada_exception_message_1, except that all exceptions are
12339 contained here (returning NULL instead). */
12340
12341 static gdb::unique_xmalloc_ptr<char>
12342 ada_exception_message (void)
12343 {
12344 gdb::unique_xmalloc_ptr<char> e_msg;
12345
12346 TRY
12347 {
12348 e_msg = ada_exception_message_1 ();
12349 }
12350 CATCH (e, RETURN_MASK_ERROR)
12351 {
12352 e_msg.reset (nullptr);
12353 }
12354 END_CATCH
12355
12356 return e_msg;
12357 }
12358
12359 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12360 any error that ada_exception_name_addr_1 might cause to be thrown.
12361 When an error is intercepted, a warning with the error message is printed,
12362 and zero is returned. */
12363
12364 static CORE_ADDR
12365 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12366 struct breakpoint *b)
12367 {
12368 CORE_ADDR result = 0;
12369
12370 TRY
12371 {
12372 result = ada_exception_name_addr_1 (ex, b);
12373 }
12374
12375 CATCH (e, RETURN_MASK_ERROR)
12376 {
12377 warning (_("failed to get exception name: %s"), e.message);
12378 return 0;
12379 }
12380 END_CATCH
12381
12382 return result;
12383 }
12384
12385 static std::string ada_exception_catchpoint_cond_string
12386 (const char *excep_string,
12387 enum ada_exception_catchpoint_kind ex);
12388
12389 /* Ada catchpoints.
12390
12391 In the case of catchpoints on Ada exceptions, the catchpoint will
12392 stop the target on every exception the program throws. When a user
12393 specifies the name of a specific exception, we translate this
12394 request into a condition expression (in text form), and then parse
12395 it into an expression stored in each of the catchpoint's locations.
12396 We then use this condition to check whether the exception that was
12397 raised is the one the user is interested in. If not, then the
12398 target is resumed again. We store the name of the requested
12399 exception, in order to be able to re-set the condition expression
12400 when symbols change. */
12401
12402 /* An instance of this type is used to represent an Ada catchpoint
12403 breakpoint location. */
12404
12405 class ada_catchpoint_location : public bp_location
12406 {
12407 public:
12408 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12409 : bp_location (ops, owner)
12410 {}
12411
12412 /* The condition that checks whether the exception that was raised
12413 is the specific exception the user specified on catchpoint
12414 creation. */
12415 expression_up excep_cond_expr;
12416 };
12417
12418 /* Implement the DTOR method in the bp_location_ops structure for all
12419 Ada exception catchpoint kinds. */
12420
12421 static void
12422 ada_catchpoint_location_dtor (struct bp_location *bl)
12423 {
12424 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12425
12426 al->excep_cond_expr.reset ();
12427 }
12428
12429 /* The vtable to be used in Ada catchpoint locations. */
12430
12431 static const struct bp_location_ops ada_catchpoint_location_ops =
12432 {
12433 ada_catchpoint_location_dtor
12434 };
12435
12436 /* An instance of this type is used to represent an Ada catchpoint. */
12437
12438 struct ada_catchpoint : public breakpoint
12439 {
12440 /* The name of the specific exception the user specified. */
12441 std::string excep_string;
12442 };
12443
12444 /* Parse the exception condition string in the context of each of the
12445 catchpoint's locations, and store them for later evaluation. */
12446
12447 static void
12448 create_excep_cond_exprs (struct ada_catchpoint *c,
12449 enum ada_exception_catchpoint_kind ex)
12450 {
12451 struct bp_location *bl;
12452
12453 /* Nothing to do if there's no specific exception to catch. */
12454 if (c->excep_string.empty ())
12455 return;
12456
12457 /* Same if there are no locations... */
12458 if (c->loc == NULL)
12459 return;
12460
12461 /* Compute the condition expression in text form, from the specific
12462 expection we want to catch. */
12463 std::string cond_string
12464 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12465
12466 /* Iterate over all the catchpoint's locations, and parse an
12467 expression for each. */
12468 for (bl = c->loc; bl != NULL; bl = bl->next)
12469 {
12470 struct ada_catchpoint_location *ada_loc
12471 = (struct ada_catchpoint_location *) bl;
12472 expression_up exp;
12473
12474 if (!bl->shlib_disabled)
12475 {
12476 const char *s;
12477
12478 s = cond_string.c_str ();
12479 TRY
12480 {
12481 exp = parse_exp_1 (&s, bl->address,
12482 block_for_pc (bl->address),
12483 0);
12484 }
12485 CATCH (e, RETURN_MASK_ERROR)
12486 {
12487 warning (_("failed to reevaluate internal exception condition "
12488 "for catchpoint %d: %s"),
12489 c->number, e.message);
12490 }
12491 END_CATCH
12492 }
12493
12494 ada_loc->excep_cond_expr = std::move (exp);
12495 }
12496 }
12497
12498 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12499 structure for all exception catchpoint kinds. */
12500
12501 static struct bp_location *
12502 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12503 struct breakpoint *self)
12504 {
12505 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12506 }
12507
12508 /* Implement the RE_SET method in the breakpoint_ops structure for all
12509 exception catchpoint kinds. */
12510
12511 static void
12512 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12513 {
12514 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12515
12516 /* Call the base class's method. This updates the catchpoint's
12517 locations. */
12518 bkpt_breakpoint_ops.re_set (b);
12519
12520 /* Reparse the exception conditional expressions. One for each
12521 location. */
12522 create_excep_cond_exprs (c, ex);
12523 }
12524
12525 /* Returns true if we should stop for this breakpoint hit. If the
12526 user specified a specific exception, we only want to cause a stop
12527 if the program thrown that exception. */
12528
12529 static int
12530 should_stop_exception (const struct bp_location *bl)
12531 {
12532 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12533 const struct ada_catchpoint_location *ada_loc
12534 = (const struct ada_catchpoint_location *) bl;
12535 int stop;
12536
12537 /* With no specific exception, should always stop. */
12538 if (c->excep_string.empty ())
12539 return 1;
12540
12541 if (ada_loc->excep_cond_expr == NULL)
12542 {
12543 /* We will have a NULL expression if back when we were creating
12544 the expressions, this location's had failed to parse. */
12545 return 1;
12546 }
12547
12548 stop = 1;
12549 TRY
12550 {
12551 struct value *mark;
12552
12553 mark = value_mark ();
12554 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12555 value_free_to_mark (mark);
12556 }
12557 CATCH (ex, RETURN_MASK_ALL)
12558 {
12559 exception_fprintf (gdb_stderr, ex,
12560 _("Error in testing exception condition:\n"));
12561 }
12562 END_CATCH
12563
12564 return stop;
12565 }
12566
12567 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12568 for all exception catchpoint kinds. */
12569
12570 static void
12571 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12572 {
12573 bs->stop = should_stop_exception (bs->bp_location_at);
12574 }
12575
12576 /* Implement the PRINT_IT method in the breakpoint_ops structure
12577 for all exception catchpoint kinds. */
12578
12579 static enum print_stop_action
12580 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12581 {
12582 struct ui_out *uiout = current_uiout;
12583 struct breakpoint *b = bs->breakpoint_at;
12584
12585 annotate_catchpoint (b->number);
12586
12587 if (uiout->is_mi_like_p ())
12588 {
12589 uiout->field_string ("reason",
12590 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12591 uiout->field_string ("disp", bpdisp_text (b->disposition));
12592 }
12593
12594 uiout->text (b->disposition == disp_del
12595 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12596 uiout->field_int ("bkptno", b->number);
12597 uiout->text (", ");
12598
12599 /* ada_exception_name_addr relies on the selected frame being the
12600 current frame. Need to do this here because this function may be
12601 called more than once when printing a stop, and below, we'll
12602 select the first frame past the Ada run-time (see
12603 ada_find_printable_frame). */
12604 select_frame (get_current_frame ());
12605
12606 switch (ex)
12607 {
12608 case ada_catch_exception:
12609 case ada_catch_exception_unhandled:
12610 case ada_catch_handlers:
12611 {
12612 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12613 char exception_name[256];
12614
12615 if (addr != 0)
12616 {
12617 read_memory (addr, (gdb_byte *) exception_name,
12618 sizeof (exception_name) - 1);
12619 exception_name [sizeof (exception_name) - 1] = '\0';
12620 }
12621 else
12622 {
12623 /* For some reason, we were unable to read the exception
12624 name. This could happen if the Runtime was compiled
12625 without debugging info, for instance. In that case,
12626 just replace the exception name by the generic string
12627 "exception" - it will read as "an exception" in the
12628 notification we are about to print. */
12629 memcpy (exception_name, "exception", sizeof ("exception"));
12630 }
12631 /* In the case of unhandled exception breakpoints, we print
12632 the exception name as "unhandled EXCEPTION_NAME", to make
12633 it clearer to the user which kind of catchpoint just got
12634 hit. We used ui_out_text to make sure that this extra
12635 info does not pollute the exception name in the MI case. */
12636 if (ex == ada_catch_exception_unhandled)
12637 uiout->text ("unhandled ");
12638 uiout->field_string ("exception-name", exception_name);
12639 }
12640 break;
12641 case ada_catch_assert:
12642 /* In this case, the name of the exception is not really
12643 important. Just print "failed assertion" to make it clearer
12644 that his program just hit an assertion-failure catchpoint.
12645 We used ui_out_text because this info does not belong in
12646 the MI output. */
12647 uiout->text ("failed assertion");
12648 break;
12649 }
12650
12651 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12652 if (exception_message != NULL)
12653 {
12654 uiout->text (" (");
12655 uiout->field_string ("exception-message", exception_message.get ());
12656 uiout->text (")");
12657 }
12658
12659 uiout->text (" at ");
12660 ada_find_printable_frame (get_current_frame ());
12661
12662 return PRINT_SRC_AND_LOC;
12663 }
12664
12665 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12666 for all exception catchpoint kinds. */
12667
12668 static void
12669 print_one_exception (enum ada_exception_catchpoint_kind ex,
12670 struct breakpoint *b, struct bp_location **last_loc)
12671 {
12672 struct ui_out *uiout = current_uiout;
12673 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12674 struct value_print_options opts;
12675
12676 get_user_print_options (&opts);
12677 if (opts.addressprint)
12678 {
12679 annotate_field (4);
12680 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12681 }
12682
12683 annotate_field (5);
12684 *last_loc = b->loc;
12685 switch (ex)
12686 {
12687 case ada_catch_exception:
12688 if (!c->excep_string.empty ())
12689 {
12690 std::string msg = string_printf (_("`%s' Ada exception"),
12691 c->excep_string.c_str ());
12692
12693 uiout->field_string ("what", msg);
12694 }
12695 else
12696 uiout->field_string ("what", "all Ada exceptions");
12697
12698 break;
12699
12700 case ada_catch_exception_unhandled:
12701 uiout->field_string ("what", "unhandled Ada exceptions");
12702 break;
12703
12704 case ada_catch_handlers:
12705 if (!c->excep_string.empty ())
12706 {
12707 uiout->field_fmt ("what",
12708 _("`%s' Ada exception handlers"),
12709 c->excep_string.c_str ());
12710 }
12711 else
12712 uiout->field_string ("what", "all Ada exceptions handlers");
12713 break;
12714
12715 case ada_catch_assert:
12716 uiout->field_string ("what", "failed Ada assertions");
12717 break;
12718
12719 default:
12720 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12721 break;
12722 }
12723 }
12724
12725 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12726 for all exception catchpoint kinds. */
12727
12728 static void
12729 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12730 struct breakpoint *b)
12731 {
12732 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12733 struct ui_out *uiout = current_uiout;
12734
12735 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12736 : _("Catchpoint "));
12737 uiout->field_int ("bkptno", b->number);
12738 uiout->text (": ");
12739
12740 switch (ex)
12741 {
12742 case ada_catch_exception:
12743 if (!c->excep_string.empty ())
12744 {
12745 std::string info = string_printf (_("`%s' Ada exception"),
12746 c->excep_string.c_str ());
12747 uiout->text (info.c_str ());
12748 }
12749 else
12750 uiout->text (_("all Ada exceptions"));
12751 break;
12752
12753 case ada_catch_exception_unhandled:
12754 uiout->text (_("unhandled Ada exceptions"));
12755 break;
12756
12757 case ada_catch_handlers:
12758 if (!c->excep_string.empty ())
12759 {
12760 std::string info
12761 = string_printf (_("`%s' Ada exception handlers"),
12762 c->excep_string.c_str ());
12763 uiout->text (info.c_str ());
12764 }
12765 else
12766 uiout->text (_("all Ada exceptions handlers"));
12767 break;
12768
12769 case ada_catch_assert:
12770 uiout->text (_("failed Ada assertions"));
12771 break;
12772
12773 default:
12774 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12775 break;
12776 }
12777 }
12778
12779 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12780 for all exception catchpoint kinds. */
12781
12782 static void
12783 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12784 struct breakpoint *b, struct ui_file *fp)
12785 {
12786 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12787
12788 switch (ex)
12789 {
12790 case ada_catch_exception:
12791 fprintf_filtered (fp, "catch exception");
12792 if (!c->excep_string.empty ())
12793 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12794 break;
12795
12796 case ada_catch_exception_unhandled:
12797 fprintf_filtered (fp, "catch exception unhandled");
12798 break;
12799
12800 case ada_catch_handlers:
12801 fprintf_filtered (fp, "catch handlers");
12802 break;
12803
12804 case ada_catch_assert:
12805 fprintf_filtered (fp, "catch assert");
12806 break;
12807
12808 default:
12809 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12810 }
12811 print_recreate_thread (b, fp);
12812 }
12813
12814 /* Virtual table for "catch exception" breakpoints. */
12815
12816 static struct bp_location *
12817 allocate_location_catch_exception (struct breakpoint *self)
12818 {
12819 return allocate_location_exception (ada_catch_exception, self);
12820 }
12821
12822 static void
12823 re_set_catch_exception (struct breakpoint *b)
12824 {
12825 re_set_exception (ada_catch_exception, b);
12826 }
12827
12828 static void
12829 check_status_catch_exception (bpstat bs)
12830 {
12831 check_status_exception (ada_catch_exception, bs);
12832 }
12833
12834 static enum print_stop_action
12835 print_it_catch_exception (bpstat bs)
12836 {
12837 return print_it_exception (ada_catch_exception, bs);
12838 }
12839
12840 static void
12841 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12842 {
12843 print_one_exception (ada_catch_exception, b, last_loc);
12844 }
12845
12846 static void
12847 print_mention_catch_exception (struct breakpoint *b)
12848 {
12849 print_mention_exception (ada_catch_exception, b);
12850 }
12851
12852 static void
12853 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12854 {
12855 print_recreate_exception (ada_catch_exception, b, fp);
12856 }
12857
12858 static struct breakpoint_ops catch_exception_breakpoint_ops;
12859
12860 /* Virtual table for "catch exception unhandled" breakpoints. */
12861
12862 static struct bp_location *
12863 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12864 {
12865 return allocate_location_exception (ada_catch_exception_unhandled, self);
12866 }
12867
12868 static void
12869 re_set_catch_exception_unhandled (struct breakpoint *b)
12870 {
12871 re_set_exception (ada_catch_exception_unhandled, b);
12872 }
12873
12874 static void
12875 check_status_catch_exception_unhandled (bpstat bs)
12876 {
12877 check_status_exception (ada_catch_exception_unhandled, bs);
12878 }
12879
12880 static enum print_stop_action
12881 print_it_catch_exception_unhandled (bpstat bs)
12882 {
12883 return print_it_exception (ada_catch_exception_unhandled, bs);
12884 }
12885
12886 static void
12887 print_one_catch_exception_unhandled (struct breakpoint *b,
12888 struct bp_location **last_loc)
12889 {
12890 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12891 }
12892
12893 static void
12894 print_mention_catch_exception_unhandled (struct breakpoint *b)
12895 {
12896 print_mention_exception (ada_catch_exception_unhandled, b);
12897 }
12898
12899 static void
12900 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12901 struct ui_file *fp)
12902 {
12903 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12904 }
12905
12906 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12907
12908 /* Virtual table for "catch assert" breakpoints. */
12909
12910 static struct bp_location *
12911 allocate_location_catch_assert (struct breakpoint *self)
12912 {
12913 return allocate_location_exception (ada_catch_assert, self);
12914 }
12915
12916 static void
12917 re_set_catch_assert (struct breakpoint *b)
12918 {
12919 re_set_exception (ada_catch_assert, b);
12920 }
12921
12922 static void
12923 check_status_catch_assert (bpstat bs)
12924 {
12925 check_status_exception (ada_catch_assert, bs);
12926 }
12927
12928 static enum print_stop_action
12929 print_it_catch_assert (bpstat bs)
12930 {
12931 return print_it_exception (ada_catch_assert, bs);
12932 }
12933
12934 static void
12935 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12936 {
12937 print_one_exception (ada_catch_assert, b, last_loc);
12938 }
12939
12940 static void
12941 print_mention_catch_assert (struct breakpoint *b)
12942 {
12943 print_mention_exception (ada_catch_assert, b);
12944 }
12945
12946 static void
12947 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12948 {
12949 print_recreate_exception (ada_catch_assert, b, fp);
12950 }
12951
12952 static struct breakpoint_ops catch_assert_breakpoint_ops;
12953
12954 /* Virtual table for "catch handlers" breakpoints. */
12955
12956 static struct bp_location *
12957 allocate_location_catch_handlers (struct breakpoint *self)
12958 {
12959 return allocate_location_exception (ada_catch_handlers, self);
12960 }
12961
12962 static void
12963 re_set_catch_handlers (struct breakpoint *b)
12964 {
12965 re_set_exception (ada_catch_handlers, b);
12966 }
12967
12968 static void
12969 check_status_catch_handlers (bpstat bs)
12970 {
12971 check_status_exception (ada_catch_handlers, bs);
12972 }
12973
12974 static enum print_stop_action
12975 print_it_catch_handlers (bpstat bs)
12976 {
12977 return print_it_exception (ada_catch_handlers, bs);
12978 }
12979
12980 static void
12981 print_one_catch_handlers (struct breakpoint *b,
12982 struct bp_location **last_loc)
12983 {
12984 print_one_exception (ada_catch_handlers, b, last_loc);
12985 }
12986
12987 static void
12988 print_mention_catch_handlers (struct breakpoint *b)
12989 {
12990 print_mention_exception (ada_catch_handlers, b);
12991 }
12992
12993 static void
12994 print_recreate_catch_handlers (struct breakpoint *b,
12995 struct ui_file *fp)
12996 {
12997 print_recreate_exception (ada_catch_handlers, b, fp);
12998 }
12999
13000 static struct breakpoint_ops catch_handlers_breakpoint_ops;
13001
13002 /* Split the arguments specified in a "catch exception" command.
13003 Set EX to the appropriate catchpoint type.
13004 Set EXCEP_STRING to the name of the specific exception if
13005 specified by the user.
13006 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13007 "catch handlers" command. False otherwise.
13008 If a condition is found at the end of the arguments, the condition
13009 expression is stored in COND_STRING (memory must be deallocated
13010 after use). Otherwise COND_STRING is set to NULL. */
13011
13012 static void
13013 catch_ada_exception_command_split (const char *args,
13014 bool is_catch_handlers_cmd,
13015 enum ada_exception_catchpoint_kind *ex,
13016 std::string *excep_string,
13017 std::string *cond_string)
13018 {
13019 std::string exception_name;
13020
13021 exception_name = extract_arg (&args);
13022 if (exception_name == "if")
13023 {
13024 /* This is not an exception name; this is the start of a condition
13025 expression for a catchpoint on all exceptions. So, "un-get"
13026 this token, and set exception_name to NULL. */
13027 exception_name.clear ();
13028 args -= 2;
13029 }
13030
13031 /* Check to see if we have a condition. */
13032
13033 args = skip_spaces (args);
13034 if (startswith (args, "if")
13035 && (isspace (args[2]) || args[2] == '\0'))
13036 {
13037 args += 2;
13038 args = skip_spaces (args);
13039
13040 if (args[0] == '\0')
13041 error (_("Condition missing after `if' keyword"));
13042 *cond_string = args;
13043
13044 args += strlen (args);
13045 }
13046
13047 /* Check that we do not have any more arguments. Anything else
13048 is unexpected. */
13049
13050 if (args[0] != '\0')
13051 error (_("Junk at end of expression"));
13052
13053 if (is_catch_handlers_cmd)
13054 {
13055 /* Catch handling of exceptions. */
13056 *ex = ada_catch_handlers;
13057 *excep_string = exception_name;
13058 }
13059 else if (exception_name.empty ())
13060 {
13061 /* Catch all exceptions. */
13062 *ex = ada_catch_exception;
13063 excep_string->clear ();
13064 }
13065 else if (exception_name == "unhandled")
13066 {
13067 /* Catch unhandled exceptions. */
13068 *ex = ada_catch_exception_unhandled;
13069 excep_string->clear ();
13070 }
13071 else
13072 {
13073 /* Catch a specific exception. */
13074 *ex = ada_catch_exception;
13075 *excep_string = exception_name;
13076 }
13077 }
13078
13079 /* Return the name of the symbol on which we should break in order to
13080 implement a catchpoint of the EX kind. */
13081
13082 static const char *
13083 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13084 {
13085 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13086
13087 gdb_assert (data->exception_info != NULL);
13088
13089 switch (ex)
13090 {
13091 case ada_catch_exception:
13092 return (data->exception_info->catch_exception_sym);
13093 break;
13094 case ada_catch_exception_unhandled:
13095 return (data->exception_info->catch_exception_unhandled_sym);
13096 break;
13097 case ada_catch_assert:
13098 return (data->exception_info->catch_assert_sym);
13099 break;
13100 case ada_catch_handlers:
13101 return (data->exception_info->catch_handlers_sym);
13102 break;
13103 default:
13104 internal_error (__FILE__, __LINE__,
13105 _("unexpected catchpoint kind (%d)"), ex);
13106 }
13107 }
13108
13109 /* Return the breakpoint ops "virtual table" used for catchpoints
13110 of the EX kind. */
13111
13112 static const struct breakpoint_ops *
13113 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13114 {
13115 switch (ex)
13116 {
13117 case ada_catch_exception:
13118 return (&catch_exception_breakpoint_ops);
13119 break;
13120 case ada_catch_exception_unhandled:
13121 return (&catch_exception_unhandled_breakpoint_ops);
13122 break;
13123 case ada_catch_assert:
13124 return (&catch_assert_breakpoint_ops);
13125 break;
13126 case ada_catch_handlers:
13127 return (&catch_handlers_breakpoint_ops);
13128 break;
13129 default:
13130 internal_error (__FILE__, __LINE__,
13131 _("unexpected catchpoint kind (%d)"), ex);
13132 }
13133 }
13134
13135 /* Return the condition that will be used to match the current exception
13136 being raised with the exception that the user wants to catch. This
13137 assumes that this condition is used when the inferior just triggered
13138 an exception catchpoint.
13139 EX: the type of catchpoints used for catching Ada exceptions. */
13140
13141 static std::string
13142 ada_exception_catchpoint_cond_string (const char *excep_string,
13143 enum ada_exception_catchpoint_kind ex)
13144 {
13145 int i;
13146 bool is_standard_exc = false;
13147 std::string result;
13148
13149 if (ex == ada_catch_handlers)
13150 {
13151 /* For exception handlers catchpoints, the condition string does
13152 not use the same parameter as for the other exceptions. */
13153 result = ("long_integer (GNAT_GCC_exception_Access"
13154 "(gcc_exception).all.occurrence.id)");
13155 }
13156 else
13157 result = "long_integer (e)";
13158
13159 /* The standard exceptions are a special case. They are defined in
13160 runtime units that have been compiled without debugging info; if
13161 EXCEP_STRING is the not-fully-qualified name of a standard
13162 exception (e.g. "constraint_error") then, during the evaluation
13163 of the condition expression, the symbol lookup on this name would
13164 *not* return this standard exception. The catchpoint condition
13165 may then be set only on user-defined exceptions which have the
13166 same not-fully-qualified name (e.g. my_package.constraint_error).
13167
13168 To avoid this unexcepted behavior, these standard exceptions are
13169 systematically prefixed by "standard". This means that "catch
13170 exception constraint_error" is rewritten into "catch exception
13171 standard.constraint_error".
13172
13173 If an exception named contraint_error is defined in another package of
13174 the inferior program, then the only way to specify this exception as a
13175 breakpoint condition is to use its fully-qualified named:
13176 e.g. my_package.constraint_error. */
13177
13178 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13179 {
13180 if (strcmp (standard_exc [i], excep_string) == 0)
13181 {
13182 is_standard_exc = true;
13183 break;
13184 }
13185 }
13186
13187 result += " = ";
13188
13189 if (is_standard_exc)
13190 string_appendf (result, "long_integer (&standard.%s)", excep_string);
13191 else
13192 string_appendf (result, "long_integer (&%s)", excep_string);
13193
13194 return result;
13195 }
13196
13197 /* Return the symtab_and_line that should be used to insert an exception
13198 catchpoint of the TYPE kind.
13199
13200 ADDR_STRING returns the name of the function where the real
13201 breakpoint that implements the catchpoints is set, depending on the
13202 type of catchpoint we need to create. */
13203
13204 static struct symtab_and_line
13205 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13206 const char **addr_string, const struct breakpoint_ops **ops)
13207 {
13208 const char *sym_name;
13209 struct symbol *sym;
13210
13211 /* First, find out which exception support info to use. */
13212 ada_exception_support_info_sniffer ();
13213
13214 /* Then lookup the function on which we will break in order to catch
13215 the Ada exceptions requested by the user. */
13216 sym_name = ada_exception_sym_name (ex);
13217 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13218
13219 /* We can assume that SYM is not NULL at this stage. If the symbol
13220 did not exist, ada_exception_support_info_sniffer would have
13221 raised an exception.
13222
13223 Also, ada_exception_support_info_sniffer should have already
13224 verified that SYM is a function symbol. */
13225 gdb_assert (sym != NULL);
13226 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13227
13228 /* Set ADDR_STRING. */
13229 *addr_string = xstrdup (sym_name);
13230
13231 /* Set OPS. */
13232 *ops = ada_exception_breakpoint_ops (ex);
13233
13234 return find_function_start_sal (sym, 1);
13235 }
13236
13237 /* Create an Ada exception catchpoint.
13238
13239 EX_KIND is the kind of exception catchpoint to be created.
13240
13241 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13242 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13243 of the exception to which this catchpoint applies.
13244
13245 COND_STRING, if not empty, is the catchpoint condition.
13246
13247 TEMPFLAG, if nonzero, means that the underlying breakpoint
13248 should be temporary.
13249
13250 FROM_TTY is the usual argument passed to all commands implementations. */
13251
13252 void
13253 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13254 enum ada_exception_catchpoint_kind ex_kind,
13255 const std::string &excep_string,
13256 const std::string &cond_string,
13257 int tempflag,
13258 int disabled,
13259 int from_tty)
13260 {
13261 const char *addr_string = NULL;
13262 const struct breakpoint_ops *ops = NULL;
13263 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13264
13265 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13266 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13267 ops, tempflag, disabled, from_tty);
13268 c->excep_string = excep_string;
13269 create_excep_cond_exprs (c.get (), ex_kind);
13270 if (!cond_string.empty ())
13271 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13272 install_breakpoint (0, std::move (c), 1);
13273 }
13274
13275 /* Implement the "catch exception" command. */
13276
13277 static void
13278 catch_ada_exception_command (const char *arg_entry, int from_tty,
13279 struct cmd_list_element *command)
13280 {
13281 const char *arg = arg_entry;
13282 struct gdbarch *gdbarch = get_current_arch ();
13283 int tempflag;
13284 enum ada_exception_catchpoint_kind ex_kind;
13285 std::string excep_string;
13286 std::string cond_string;
13287
13288 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13289
13290 if (!arg)
13291 arg = "";
13292 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13293 &cond_string);
13294 create_ada_exception_catchpoint (gdbarch, ex_kind,
13295 excep_string, cond_string,
13296 tempflag, 1 /* enabled */,
13297 from_tty);
13298 }
13299
13300 /* Implement the "catch handlers" command. */
13301
13302 static void
13303 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13304 struct cmd_list_element *command)
13305 {
13306 const char *arg = arg_entry;
13307 struct gdbarch *gdbarch = get_current_arch ();
13308 int tempflag;
13309 enum ada_exception_catchpoint_kind ex_kind;
13310 std::string excep_string;
13311 std::string cond_string;
13312
13313 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13314
13315 if (!arg)
13316 arg = "";
13317 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13318 &cond_string);
13319 create_ada_exception_catchpoint (gdbarch, ex_kind,
13320 excep_string, cond_string,
13321 tempflag, 1 /* enabled */,
13322 from_tty);
13323 }
13324
13325 /* Split the arguments specified in a "catch assert" command.
13326
13327 ARGS contains the command's arguments (or the empty string if
13328 no arguments were passed).
13329
13330 If ARGS contains a condition, set COND_STRING to that condition
13331 (the memory needs to be deallocated after use). */
13332
13333 static void
13334 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13335 {
13336 args = skip_spaces (args);
13337
13338 /* Check whether a condition was provided. */
13339 if (startswith (args, "if")
13340 && (isspace (args[2]) || args[2] == '\0'))
13341 {
13342 args += 2;
13343 args = skip_spaces (args);
13344 if (args[0] == '\0')
13345 error (_("condition missing after `if' keyword"));
13346 cond_string.assign (args);
13347 }
13348
13349 /* Otherwise, there should be no other argument at the end of
13350 the command. */
13351 else if (args[0] != '\0')
13352 error (_("Junk at end of arguments."));
13353 }
13354
13355 /* Implement the "catch assert" command. */
13356
13357 static void
13358 catch_assert_command (const char *arg_entry, int from_tty,
13359 struct cmd_list_element *command)
13360 {
13361 const char *arg = arg_entry;
13362 struct gdbarch *gdbarch = get_current_arch ();
13363 int tempflag;
13364 std::string cond_string;
13365
13366 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13367
13368 if (!arg)
13369 arg = "";
13370 catch_ada_assert_command_split (arg, cond_string);
13371 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13372 "", cond_string,
13373 tempflag, 1 /* enabled */,
13374 from_tty);
13375 }
13376
13377 /* Return non-zero if the symbol SYM is an Ada exception object. */
13378
13379 static int
13380 ada_is_exception_sym (struct symbol *sym)
13381 {
13382 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13383
13384 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13385 && SYMBOL_CLASS (sym) != LOC_BLOCK
13386 && SYMBOL_CLASS (sym) != LOC_CONST
13387 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13388 && type_name != NULL && strcmp (type_name, "exception") == 0);
13389 }
13390
13391 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13392 Ada exception object. This matches all exceptions except the ones
13393 defined by the Ada language. */
13394
13395 static int
13396 ada_is_non_standard_exception_sym (struct symbol *sym)
13397 {
13398 int i;
13399
13400 if (!ada_is_exception_sym (sym))
13401 return 0;
13402
13403 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13404 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13405 return 0; /* A standard exception. */
13406
13407 /* Numeric_Error is also a standard exception, so exclude it.
13408 See the STANDARD_EXC description for more details as to why
13409 this exception is not listed in that array. */
13410 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13411 return 0;
13412
13413 return 1;
13414 }
13415
13416 /* A helper function for std::sort, comparing two struct ada_exc_info
13417 objects.
13418
13419 The comparison is determined first by exception name, and then
13420 by exception address. */
13421
13422 bool
13423 ada_exc_info::operator< (const ada_exc_info &other) const
13424 {
13425 int result;
13426
13427 result = strcmp (name, other.name);
13428 if (result < 0)
13429 return true;
13430 if (result == 0 && addr < other.addr)
13431 return true;
13432 return false;
13433 }
13434
13435 bool
13436 ada_exc_info::operator== (const ada_exc_info &other) const
13437 {
13438 return addr == other.addr && strcmp (name, other.name) == 0;
13439 }
13440
13441 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13442 routine, but keeping the first SKIP elements untouched.
13443
13444 All duplicates are also removed. */
13445
13446 static void
13447 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13448 int skip)
13449 {
13450 std::sort (exceptions->begin () + skip, exceptions->end ());
13451 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13452 exceptions->end ());
13453 }
13454
13455 /* Add all exceptions defined by the Ada standard whose name match
13456 a regular expression.
13457
13458 If PREG is not NULL, then this regexp_t object is used to
13459 perform the symbol name matching. Otherwise, no name-based
13460 filtering is performed.
13461
13462 EXCEPTIONS is a vector of exceptions to which matching exceptions
13463 gets pushed. */
13464
13465 static void
13466 ada_add_standard_exceptions (compiled_regex *preg,
13467 std::vector<ada_exc_info> *exceptions)
13468 {
13469 int i;
13470
13471 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13472 {
13473 if (preg == NULL
13474 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13475 {
13476 struct bound_minimal_symbol msymbol
13477 = ada_lookup_simple_minsym (standard_exc[i]);
13478
13479 if (msymbol.minsym != NULL)
13480 {
13481 struct ada_exc_info info
13482 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13483
13484 exceptions->push_back (info);
13485 }
13486 }
13487 }
13488 }
13489
13490 /* Add all Ada exceptions defined locally and accessible from the given
13491 FRAME.
13492
13493 If PREG is not NULL, then this regexp_t object is used to
13494 perform the symbol name matching. Otherwise, no name-based
13495 filtering is performed.
13496
13497 EXCEPTIONS is a vector of exceptions to which matching exceptions
13498 gets pushed. */
13499
13500 static void
13501 ada_add_exceptions_from_frame (compiled_regex *preg,
13502 struct frame_info *frame,
13503 std::vector<ada_exc_info> *exceptions)
13504 {
13505 const struct block *block = get_frame_block (frame, 0);
13506
13507 while (block != 0)
13508 {
13509 struct block_iterator iter;
13510 struct symbol *sym;
13511
13512 ALL_BLOCK_SYMBOLS (block, iter, sym)
13513 {
13514 switch (SYMBOL_CLASS (sym))
13515 {
13516 case LOC_TYPEDEF:
13517 case LOC_BLOCK:
13518 case LOC_CONST:
13519 break;
13520 default:
13521 if (ada_is_exception_sym (sym))
13522 {
13523 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13524 SYMBOL_VALUE_ADDRESS (sym)};
13525
13526 exceptions->push_back (info);
13527 }
13528 }
13529 }
13530 if (BLOCK_FUNCTION (block) != NULL)
13531 break;
13532 block = BLOCK_SUPERBLOCK (block);
13533 }
13534 }
13535
13536 /* Return true if NAME matches PREG or if PREG is NULL. */
13537
13538 static bool
13539 name_matches_regex (const char *name, compiled_regex *preg)
13540 {
13541 return (preg == NULL
13542 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13543 }
13544
13545 /* Add all exceptions defined globally whose name name match
13546 a regular expression, excluding standard exceptions.
13547
13548 The reason we exclude standard exceptions is that they need
13549 to be handled separately: Standard exceptions are defined inside
13550 a runtime unit which is normally not compiled with debugging info,
13551 and thus usually do not show up in our symbol search. However,
13552 if the unit was in fact built with debugging info, we need to
13553 exclude them because they would duplicate the entry we found
13554 during the special loop that specifically searches for those
13555 standard exceptions.
13556
13557 If PREG is not NULL, then this regexp_t object is used to
13558 perform the symbol name matching. Otherwise, no name-based
13559 filtering is performed.
13560
13561 EXCEPTIONS is a vector of exceptions to which matching exceptions
13562 gets pushed. */
13563
13564 static void
13565 ada_add_global_exceptions (compiled_regex *preg,
13566 std::vector<ada_exc_info> *exceptions)
13567 {
13568 struct objfile *objfile;
13569 struct compunit_symtab *s;
13570
13571 /* In Ada, the symbol "search name" is a linkage name, whereas the
13572 regular expression used to do the matching refers to the natural
13573 name. So match against the decoded name. */
13574 expand_symtabs_matching (NULL,
13575 lookup_name_info::match_any (),
13576 [&] (const char *search_name)
13577 {
13578 const char *decoded = ada_decode (search_name);
13579 return name_matches_regex (decoded, preg);
13580 },
13581 NULL,
13582 VARIABLES_DOMAIN);
13583
13584 ALL_COMPUNITS (objfile, s)
13585 {
13586 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13587 int i;
13588
13589 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13590 {
13591 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13592 struct block_iterator iter;
13593 struct symbol *sym;
13594
13595 ALL_BLOCK_SYMBOLS (b, iter, sym)
13596 if (ada_is_non_standard_exception_sym (sym)
13597 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13598 {
13599 struct ada_exc_info info
13600 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13601
13602 exceptions->push_back (info);
13603 }
13604 }
13605 }
13606 }
13607
13608 /* Implements ada_exceptions_list with the regular expression passed
13609 as a regex_t, rather than a string.
13610
13611 If not NULL, PREG is used to filter out exceptions whose names
13612 do not match. Otherwise, all exceptions are listed. */
13613
13614 static std::vector<ada_exc_info>
13615 ada_exceptions_list_1 (compiled_regex *preg)
13616 {
13617 std::vector<ada_exc_info> result;
13618 int prev_len;
13619
13620 /* First, list the known standard exceptions. These exceptions
13621 need to be handled separately, as they are usually defined in
13622 runtime units that have been compiled without debugging info. */
13623
13624 ada_add_standard_exceptions (preg, &result);
13625
13626 /* Next, find all exceptions whose scope is local and accessible
13627 from the currently selected frame. */
13628
13629 if (has_stack_frames ())
13630 {
13631 prev_len = result.size ();
13632 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13633 &result);
13634 if (result.size () > prev_len)
13635 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13636 }
13637
13638 /* Add all exceptions whose scope is global. */
13639
13640 prev_len = result.size ();
13641 ada_add_global_exceptions (preg, &result);
13642 if (result.size () > prev_len)
13643 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13644
13645 return result;
13646 }
13647
13648 /* Return a vector of ada_exc_info.
13649
13650 If REGEXP is NULL, all exceptions are included in the result.
13651 Otherwise, it should contain a valid regular expression,
13652 and only the exceptions whose names match that regular expression
13653 are included in the result.
13654
13655 The exceptions are sorted in the following order:
13656 - Standard exceptions (defined by the Ada language), in
13657 alphabetical order;
13658 - Exceptions only visible from the current frame, in
13659 alphabetical order;
13660 - Exceptions whose scope is global, in alphabetical order. */
13661
13662 std::vector<ada_exc_info>
13663 ada_exceptions_list (const char *regexp)
13664 {
13665 if (regexp == NULL)
13666 return ada_exceptions_list_1 (NULL);
13667
13668 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13669 return ada_exceptions_list_1 (&reg);
13670 }
13671
13672 /* Implement the "info exceptions" command. */
13673
13674 static void
13675 info_exceptions_command (const char *regexp, int from_tty)
13676 {
13677 struct gdbarch *gdbarch = get_current_arch ();
13678
13679 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13680
13681 if (regexp != NULL)
13682 printf_filtered
13683 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13684 else
13685 printf_filtered (_("All defined Ada exceptions:\n"));
13686
13687 for (const ada_exc_info &info : exceptions)
13688 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13689 }
13690
13691 /* Operators */
13692 /* Information about operators given special treatment in functions
13693 below. */
13694 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13695
13696 #define ADA_OPERATORS \
13697 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13698 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13699 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13700 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13701 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13702 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13703 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13704 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13705 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13706 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13707 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13708 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13709 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13710 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13711 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13712 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13713 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13714 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13715 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13716
13717 static void
13718 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13719 int *argsp)
13720 {
13721 switch (exp->elts[pc - 1].opcode)
13722 {
13723 default:
13724 operator_length_standard (exp, pc, oplenp, argsp);
13725 break;
13726
13727 #define OP_DEFN(op, len, args, binop) \
13728 case op: *oplenp = len; *argsp = args; break;
13729 ADA_OPERATORS;
13730 #undef OP_DEFN
13731
13732 case OP_AGGREGATE:
13733 *oplenp = 3;
13734 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13735 break;
13736
13737 case OP_CHOICES:
13738 *oplenp = 3;
13739 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13740 break;
13741 }
13742 }
13743
13744 /* Implementation of the exp_descriptor method operator_check. */
13745
13746 static int
13747 ada_operator_check (struct expression *exp, int pos,
13748 int (*objfile_func) (struct objfile *objfile, void *data),
13749 void *data)
13750 {
13751 const union exp_element *const elts = exp->elts;
13752 struct type *type = NULL;
13753
13754 switch (elts[pos].opcode)
13755 {
13756 case UNOP_IN_RANGE:
13757 case UNOP_QUAL:
13758 type = elts[pos + 1].type;
13759 break;
13760
13761 default:
13762 return operator_check_standard (exp, pos, objfile_func, data);
13763 }
13764
13765 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13766
13767 if (type && TYPE_OBJFILE (type)
13768 && (*objfile_func) (TYPE_OBJFILE (type), data))
13769 return 1;
13770
13771 return 0;
13772 }
13773
13774 static const char *
13775 ada_op_name (enum exp_opcode opcode)
13776 {
13777 switch (opcode)
13778 {
13779 default:
13780 return op_name_standard (opcode);
13781
13782 #define OP_DEFN(op, len, args, binop) case op: return #op;
13783 ADA_OPERATORS;
13784 #undef OP_DEFN
13785
13786 case OP_AGGREGATE:
13787 return "OP_AGGREGATE";
13788 case OP_CHOICES:
13789 return "OP_CHOICES";
13790 case OP_NAME:
13791 return "OP_NAME";
13792 }
13793 }
13794
13795 /* As for operator_length, but assumes PC is pointing at the first
13796 element of the operator, and gives meaningful results only for the
13797 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13798
13799 static void
13800 ada_forward_operator_length (struct expression *exp, int pc,
13801 int *oplenp, int *argsp)
13802 {
13803 switch (exp->elts[pc].opcode)
13804 {
13805 default:
13806 *oplenp = *argsp = 0;
13807 break;
13808
13809 #define OP_DEFN(op, len, args, binop) \
13810 case op: *oplenp = len; *argsp = args; break;
13811 ADA_OPERATORS;
13812 #undef OP_DEFN
13813
13814 case OP_AGGREGATE:
13815 *oplenp = 3;
13816 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13817 break;
13818
13819 case OP_CHOICES:
13820 *oplenp = 3;
13821 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13822 break;
13823
13824 case OP_STRING:
13825 case OP_NAME:
13826 {
13827 int len = longest_to_int (exp->elts[pc + 1].longconst);
13828
13829 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13830 *argsp = 0;
13831 break;
13832 }
13833 }
13834 }
13835
13836 static int
13837 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13838 {
13839 enum exp_opcode op = exp->elts[elt].opcode;
13840 int oplen, nargs;
13841 int pc = elt;
13842 int i;
13843
13844 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13845
13846 switch (op)
13847 {
13848 /* Ada attributes ('Foo). */
13849 case OP_ATR_FIRST:
13850 case OP_ATR_LAST:
13851 case OP_ATR_LENGTH:
13852 case OP_ATR_IMAGE:
13853 case OP_ATR_MAX:
13854 case OP_ATR_MIN:
13855 case OP_ATR_MODULUS:
13856 case OP_ATR_POS:
13857 case OP_ATR_SIZE:
13858 case OP_ATR_TAG:
13859 case OP_ATR_VAL:
13860 break;
13861
13862 case UNOP_IN_RANGE:
13863 case UNOP_QUAL:
13864 /* XXX: gdb_sprint_host_address, type_sprint */
13865 fprintf_filtered (stream, _("Type @"));
13866 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13867 fprintf_filtered (stream, " (");
13868 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13869 fprintf_filtered (stream, ")");
13870 break;
13871 case BINOP_IN_BOUNDS:
13872 fprintf_filtered (stream, " (%d)",
13873 longest_to_int (exp->elts[pc + 2].longconst));
13874 break;
13875 case TERNOP_IN_RANGE:
13876 break;
13877
13878 case OP_AGGREGATE:
13879 case OP_OTHERS:
13880 case OP_DISCRETE_RANGE:
13881 case OP_POSITIONAL:
13882 case OP_CHOICES:
13883 break;
13884
13885 case OP_NAME:
13886 case OP_STRING:
13887 {
13888 char *name = &exp->elts[elt + 2].string;
13889 int len = longest_to_int (exp->elts[elt + 1].longconst);
13890
13891 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13892 break;
13893 }
13894
13895 default:
13896 return dump_subexp_body_standard (exp, stream, elt);
13897 }
13898
13899 elt += oplen;
13900 for (i = 0; i < nargs; i += 1)
13901 elt = dump_subexp (exp, stream, elt);
13902
13903 return elt;
13904 }
13905
13906 /* The Ada extension of print_subexp (q.v.). */
13907
13908 static void
13909 ada_print_subexp (struct expression *exp, int *pos,
13910 struct ui_file *stream, enum precedence prec)
13911 {
13912 int oplen, nargs, i;
13913 int pc = *pos;
13914 enum exp_opcode op = exp->elts[pc].opcode;
13915
13916 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13917
13918 *pos += oplen;
13919 switch (op)
13920 {
13921 default:
13922 *pos -= oplen;
13923 print_subexp_standard (exp, pos, stream, prec);
13924 return;
13925
13926 case OP_VAR_VALUE:
13927 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13928 return;
13929
13930 case BINOP_IN_BOUNDS:
13931 /* XXX: sprint_subexp */
13932 print_subexp (exp, pos, stream, PREC_SUFFIX);
13933 fputs_filtered (" in ", stream);
13934 print_subexp (exp, pos, stream, PREC_SUFFIX);
13935 fputs_filtered ("'range", stream);
13936 if (exp->elts[pc + 1].longconst > 1)
13937 fprintf_filtered (stream, "(%ld)",
13938 (long) exp->elts[pc + 1].longconst);
13939 return;
13940
13941 case TERNOP_IN_RANGE:
13942 if (prec >= PREC_EQUAL)
13943 fputs_filtered ("(", stream);
13944 /* XXX: sprint_subexp */
13945 print_subexp (exp, pos, stream, PREC_SUFFIX);
13946 fputs_filtered (" in ", stream);
13947 print_subexp (exp, pos, stream, PREC_EQUAL);
13948 fputs_filtered (" .. ", stream);
13949 print_subexp (exp, pos, stream, PREC_EQUAL);
13950 if (prec >= PREC_EQUAL)
13951 fputs_filtered (")", stream);
13952 return;
13953
13954 case OP_ATR_FIRST:
13955 case OP_ATR_LAST:
13956 case OP_ATR_LENGTH:
13957 case OP_ATR_IMAGE:
13958 case OP_ATR_MAX:
13959 case OP_ATR_MIN:
13960 case OP_ATR_MODULUS:
13961 case OP_ATR_POS:
13962 case OP_ATR_SIZE:
13963 case OP_ATR_TAG:
13964 case OP_ATR_VAL:
13965 if (exp->elts[*pos].opcode == OP_TYPE)
13966 {
13967 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13968 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13969 &type_print_raw_options);
13970 *pos += 3;
13971 }
13972 else
13973 print_subexp (exp, pos, stream, PREC_SUFFIX);
13974 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13975 if (nargs > 1)
13976 {
13977 int tem;
13978
13979 for (tem = 1; tem < nargs; tem += 1)
13980 {
13981 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13982 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13983 }
13984 fputs_filtered (")", stream);
13985 }
13986 return;
13987
13988 case UNOP_QUAL:
13989 type_print (exp->elts[pc + 1].type, "", stream, 0);
13990 fputs_filtered ("'(", stream);
13991 print_subexp (exp, pos, stream, PREC_PREFIX);
13992 fputs_filtered (")", stream);
13993 return;
13994
13995 case UNOP_IN_RANGE:
13996 /* XXX: sprint_subexp */
13997 print_subexp (exp, pos, stream, PREC_SUFFIX);
13998 fputs_filtered (" in ", stream);
13999 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14000 &type_print_raw_options);
14001 return;
14002
14003 case OP_DISCRETE_RANGE:
14004 print_subexp (exp, pos, stream, PREC_SUFFIX);
14005 fputs_filtered ("..", stream);
14006 print_subexp (exp, pos, stream, PREC_SUFFIX);
14007 return;
14008
14009 case OP_OTHERS:
14010 fputs_filtered ("others => ", stream);
14011 print_subexp (exp, pos, stream, PREC_SUFFIX);
14012 return;
14013
14014 case OP_CHOICES:
14015 for (i = 0; i < nargs-1; i += 1)
14016 {
14017 if (i > 0)
14018 fputs_filtered ("|", stream);
14019 print_subexp (exp, pos, stream, PREC_SUFFIX);
14020 }
14021 fputs_filtered (" => ", stream);
14022 print_subexp (exp, pos, stream, PREC_SUFFIX);
14023 return;
14024
14025 case OP_POSITIONAL:
14026 print_subexp (exp, pos, stream, PREC_SUFFIX);
14027 return;
14028
14029 case OP_AGGREGATE:
14030 fputs_filtered ("(", stream);
14031 for (i = 0; i < nargs; i += 1)
14032 {
14033 if (i > 0)
14034 fputs_filtered (", ", stream);
14035 print_subexp (exp, pos, stream, PREC_SUFFIX);
14036 }
14037 fputs_filtered (")", stream);
14038 return;
14039 }
14040 }
14041
14042 /* Table mapping opcodes into strings for printing operators
14043 and precedences of the operators. */
14044
14045 static const struct op_print ada_op_print_tab[] = {
14046 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14047 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14048 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14049 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14050 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14051 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14052 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14053 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14054 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14055 {">=", BINOP_GEQ, PREC_ORDER, 0},
14056 {">", BINOP_GTR, PREC_ORDER, 0},
14057 {"<", BINOP_LESS, PREC_ORDER, 0},
14058 {">>", BINOP_RSH, PREC_SHIFT, 0},
14059 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14060 {"+", BINOP_ADD, PREC_ADD, 0},
14061 {"-", BINOP_SUB, PREC_ADD, 0},
14062 {"&", BINOP_CONCAT, PREC_ADD, 0},
14063 {"*", BINOP_MUL, PREC_MUL, 0},
14064 {"/", BINOP_DIV, PREC_MUL, 0},
14065 {"rem", BINOP_REM, PREC_MUL, 0},
14066 {"mod", BINOP_MOD, PREC_MUL, 0},
14067 {"**", BINOP_EXP, PREC_REPEAT, 0},
14068 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14069 {"-", UNOP_NEG, PREC_PREFIX, 0},
14070 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14071 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14072 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14073 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14074 {".all", UNOP_IND, PREC_SUFFIX, 1},
14075 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14076 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14077 {NULL, OP_NULL, PREC_SUFFIX, 0}
14078 };
14079 \f
14080 enum ada_primitive_types {
14081 ada_primitive_type_int,
14082 ada_primitive_type_long,
14083 ada_primitive_type_short,
14084 ada_primitive_type_char,
14085 ada_primitive_type_float,
14086 ada_primitive_type_double,
14087 ada_primitive_type_void,
14088 ada_primitive_type_long_long,
14089 ada_primitive_type_long_double,
14090 ada_primitive_type_natural,
14091 ada_primitive_type_positive,
14092 ada_primitive_type_system_address,
14093 ada_primitive_type_storage_offset,
14094 nr_ada_primitive_types
14095 };
14096
14097 static void
14098 ada_language_arch_info (struct gdbarch *gdbarch,
14099 struct language_arch_info *lai)
14100 {
14101 const struct builtin_type *builtin = builtin_type (gdbarch);
14102
14103 lai->primitive_type_vector
14104 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14105 struct type *);
14106
14107 lai->primitive_type_vector [ada_primitive_type_int]
14108 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14109 0, "integer");
14110 lai->primitive_type_vector [ada_primitive_type_long]
14111 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14112 0, "long_integer");
14113 lai->primitive_type_vector [ada_primitive_type_short]
14114 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14115 0, "short_integer");
14116 lai->string_char_type
14117 = lai->primitive_type_vector [ada_primitive_type_char]
14118 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14119 lai->primitive_type_vector [ada_primitive_type_float]
14120 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14121 "float", gdbarch_float_format (gdbarch));
14122 lai->primitive_type_vector [ada_primitive_type_double]
14123 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14124 "long_float", gdbarch_double_format (gdbarch));
14125 lai->primitive_type_vector [ada_primitive_type_long_long]
14126 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14127 0, "long_long_integer");
14128 lai->primitive_type_vector [ada_primitive_type_long_double]
14129 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14130 "long_long_float", gdbarch_long_double_format (gdbarch));
14131 lai->primitive_type_vector [ada_primitive_type_natural]
14132 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14133 0, "natural");
14134 lai->primitive_type_vector [ada_primitive_type_positive]
14135 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14136 0, "positive");
14137 lai->primitive_type_vector [ada_primitive_type_void]
14138 = builtin->builtin_void;
14139
14140 lai->primitive_type_vector [ada_primitive_type_system_address]
14141 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14142 "void"));
14143 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14144 = "system__address";
14145
14146 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14147 type. This is a signed integral type whose size is the same as
14148 the size of addresses. */
14149 {
14150 unsigned int addr_length = TYPE_LENGTH
14151 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14152
14153 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14154 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14155 "storage_offset");
14156 }
14157
14158 lai->bool_type_symbol = NULL;
14159 lai->bool_type_default = builtin->builtin_bool;
14160 }
14161 \f
14162 /* Language vector */
14163
14164 /* Not really used, but needed in the ada_language_defn. */
14165
14166 static void
14167 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14168 {
14169 ada_emit_char (c, type, stream, quoter, 1);
14170 }
14171
14172 static int
14173 parse (struct parser_state *ps)
14174 {
14175 warnings_issued = 0;
14176 return ada_parse (ps);
14177 }
14178
14179 static const struct exp_descriptor ada_exp_descriptor = {
14180 ada_print_subexp,
14181 ada_operator_length,
14182 ada_operator_check,
14183 ada_op_name,
14184 ada_dump_subexp_body,
14185 ada_evaluate_subexp
14186 };
14187
14188 /* symbol_name_matcher_ftype adapter for wild_match. */
14189
14190 static bool
14191 do_wild_match (const char *symbol_search_name,
14192 const lookup_name_info &lookup_name,
14193 completion_match_result *comp_match_res)
14194 {
14195 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14196 }
14197
14198 /* symbol_name_matcher_ftype adapter for full_match. */
14199
14200 static bool
14201 do_full_match (const char *symbol_search_name,
14202 const lookup_name_info &lookup_name,
14203 completion_match_result *comp_match_res)
14204 {
14205 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14206 }
14207
14208 /* Build the Ada lookup name for LOOKUP_NAME. */
14209
14210 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14211 {
14212 const std::string &user_name = lookup_name.name ();
14213
14214 if (user_name[0] == '<')
14215 {
14216 if (user_name.back () == '>')
14217 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14218 else
14219 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14220 m_encoded_p = true;
14221 m_verbatim_p = true;
14222 m_wild_match_p = false;
14223 m_standard_p = false;
14224 }
14225 else
14226 {
14227 m_verbatim_p = false;
14228
14229 m_encoded_p = user_name.find ("__") != std::string::npos;
14230
14231 if (!m_encoded_p)
14232 {
14233 const char *folded = ada_fold_name (user_name.c_str ());
14234 const char *encoded = ada_encode_1 (folded, false);
14235 if (encoded != NULL)
14236 m_encoded_name = encoded;
14237 else
14238 m_encoded_name = user_name;
14239 }
14240 else
14241 m_encoded_name = user_name;
14242
14243 /* Handle the 'package Standard' special case. See description
14244 of m_standard_p. */
14245 if (startswith (m_encoded_name.c_str (), "standard__"))
14246 {
14247 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14248 m_standard_p = true;
14249 }
14250 else
14251 m_standard_p = false;
14252
14253 /* If the name contains a ".", then the user is entering a fully
14254 qualified entity name, and the match must not be done in wild
14255 mode. Similarly, if the user wants to complete what looks
14256 like an encoded name, the match must not be done in wild
14257 mode. Also, in the standard__ special case always do
14258 non-wild matching. */
14259 m_wild_match_p
14260 = (lookup_name.match_type () != symbol_name_match_type::FULL
14261 && !m_encoded_p
14262 && !m_standard_p
14263 && user_name.find ('.') == std::string::npos);
14264 }
14265 }
14266
14267 /* symbol_name_matcher_ftype method for Ada. This only handles
14268 completion mode. */
14269
14270 static bool
14271 ada_symbol_name_matches (const char *symbol_search_name,
14272 const lookup_name_info &lookup_name,
14273 completion_match_result *comp_match_res)
14274 {
14275 return lookup_name.ada ().matches (symbol_search_name,
14276 lookup_name.match_type (),
14277 comp_match_res);
14278 }
14279
14280 /* A name matcher that matches the symbol name exactly, with
14281 strcmp. */
14282
14283 static bool
14284 literal_symbol_name_matcher (const char *symbol_search_name,
14285 const lookup_name_info &lookup_name,
14286 completion_match_result *comp_match_res)
14287 {
14288 const std::string &name = lookup_name.name ();
14289
14290 int cmp = (lookup_name.completion_mode ()
14291 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14292 : strcmp (symbol_search_name, name.c_str ()));
14293 if (cmp == 0)
14294 {
14295 if (comp_match_res != NULL)
14296 comp_match_res->set_match (symbol_search_name);
14297 return true;
14298 }
14299 else
14300 return false;
14301 }
14302
14303 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14304 Ada. */
14305
14306 static symbol_name_matcher_ftype *
14307 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14308 {
14309 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14310 return literal_symbol_name_matcher;
14311
14312 if (lookup_name.completion_mode ())
14313 return ada_symbol_name_matches;
14314 else
14315 {
14316 if (lookup_name.ada ().wild_match_p ())
14317 return do_wild_match;
14318 else
14319 return do_full_match;
14320 }
14321 }
14322
14323 /* Implement the "la_read_var_value" language_defn method for Ada. */
14324
14325 static struct value *
14326 ada_read_var_value (struct symbol *var, const struct block *var_block,
14327 struct frame_info *frame)
14328 {
14329 const struct block *frame_block = NULL;
14330 struct symbol *renaming_sym = NULL;
14331
14332 /* The only case where default_read_var_value is not sufficient
14333 is when VAR is a renaming... */
14334 if (frame)
14335 frame_block = get_frame_block (frame, NULL);
14336 if (frame_block)
14337 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14338 if (renaming_sym != NULL)
14339 return ada_read_renaming_var_value (renaming_sym, frame_block);
14340
14341 /* This is a typical case where we expect the default_read_var_value
14342 function to work. */
14343 return default_read_var_value (var, var_block, frame);
14344 }
14345
14346 static const char *ada_extensions[] =
14347 {
14348 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14349 };
14350
14351 extern const struct language_defn ada_language_defn = {
14352 "ada", /* Language name */
14353 "Ada",
14354 language_ada,
14355 range_check_off,
14356 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14357 that's not quite what this means. */
14358 array_row_major,
14359 macro_expansion_no,
14360 ada_extensions,
14361 &ada_exp_descriptor,
14362 parse,
14363 ada_yyerror,
14364 resolve,
14365 ada_printchar, /* Print a character constant */
14366 ada_printstr, /* Function to print string constant */
14367 emit_char, /* Function to print single char (not used) */
14368 ada_print_type, /* Print a type using appropriate syntax */
14369 ada_print_typedef, /* Print a typedef using appropriate syntax */
14370 ada_val_print, /* Print a value using appropriate syntax */
14371 ada_value_print, /* Print a top-level value */
14372 ada_read_var_value, /* la_read_var_value */
14373 NULL, /* Language specific skip_trampoline */
14374 NULL, /* name_of_this */
14375 true, /* la_store_sym_names_in_linkage_form_p */
14376 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14377 basic_lookup_transparent_type, /* lookup_transparent_type */
14378 ada_la_decode, /* Language specific symbol demangler */
14379 ada_sniff_from_mangled_name,
14380 NULL, /* Language specific
14381 class_name_from_physname */
14382 ada_op_print_tab, /* expression operators for printing */
14383 0, /* c-style arrays */
14384 1, /* String lower bound */
14385 ada_get_gdb_completer_word_break_characters,
14386 ada_collect_symbol_completion_matches,
14387 ada_language_arch_info,
14388 ada_print_array_index,
14389 default_pass_by_reference,
14390 c_get_string,
14391 c_watch_location_expression,
14392 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14393 ada_iterate_over_symbols,
14394 default_search_name_hash,
14395 &ada_varobj_ops,
14396 NULL,
14397 NULL,
14398 LANG_MAGIC
14399 };
14400
14401 /* Command-list for the "set/show ada" prefix command. */
14402 static struct cmd_list_element *set_ada_list;
14403 static struct cmd_list_element *show_ada_list;
14404
14405 /* Implement the "set ada" prefix command. */
14406
14407 static void
14408 set_ada_command (const char *arg, int from_tty)
14409 {
14410 printf_unfiltered (_(\
14411 "\"set ada\" must be followed by the name of a setting.\n"));
14412 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14413 }
14414
14415 /* Implement the "show ada" prefix command. */
14416
14417 static void
14418 show_ada_command (const char *args, int from_tty)
14419 {
14420 cmd_show_list (show_ada_list, from_tty, "");
14421 }
14422
14423 static void
14424 initialize_ada_catchpoint_ops (void)
14425 {
14426 struct breakpoint_ops *ops;
14427
14428 initialize_breakpoint_ops ();
14429
14430 ops = &catch_exception_breakpoint_ops;
14431 *ops = bkpt_breakpoint_ops;
14432 ops->allocate_location = allocate_location_catch_exception;
14433 ops->re_set = re_set_catch_exception;
14434 ops->check_status = check_status_catch_exception;
14435 ops->print_it = print_it_catch_exception;
14436 ops->print_one = print_one_catch_exception;
14437 ops->print_mention = print_mention_catch_exception;
14438 ops->print_recreate = print_recreate_catch_exception;
14439
14440 ops = &catch_exception_unhandled_breakpoint_ops;
14441 *ops = bkpt_breakpoint_ops;
14442 ops->allocate_location = allocate_location_catch_exception_unhandled;
14443 ops->re_set = re_set_catch_exception_unhandled;
14444 ops->check_status = check_status_catch_exception_unhandled;
14445 ops->print_it = print_it_catch_exception_unhandled;
14446 ops->print_one = print_one_catch_exception_unhandled;
14447 ops->print_mention = print_mention_catch_exception_unhandled;
14448 ops->print_recreate = print_recreate_catch_exception_unhandled;
14449
14450 ops = &catch_assert_breakpoint_ops;
14451 *ops = bkpt_breakpoint_ops;
14452 ops->allocate_location = allocate_location_catch_assert;
14453 ops->re_set = re_set_catch_assert;
14454 ops->check_status = check_status_catch_assert;
14455 ops->print_it = print_it_catch_assert;
14456 ops->print_one = print_one_catch_assert;
14457 ops->print_mention = print_mention_catch_assert;
14458 ops->print_recreate = print_recreate_catch_assert;
14459
14460 ops = &catch_handlers_breakpoint_ops;
14461 *ops = bkpt_breakpoint_ops;
14462 ops->allocate_location = allocate_location_catch_handlers;
14463 ops->re_set = re_set_catch_handlers;
14464 ops->check_status = check_status_catch_handlers;
14465 ops->print_it = print_it_catch_handlers;
14466 ops->print_one = print_one_catch_handlers;
14467 ops->print_mention = print_mention_catch_handlers;
14468 ops->print_recreate = print_recreate_catch_handlers;
14469 }
14470
14471 /* This module's 'new_objfile' observer. */
14472
14473 static void
14474 ada_new_objfile_observer (struct objfile *objfile)
14475 {
14476 ada_clear_symbol_cache ();
14477 }
14478
14479 /* This module's 'free_objfile' observer. */
14480
14481 static void
14482 ada_free_objfile_observer (struct objfile *objfile)
14483 {
14484 ada_clear_symbol_cache ();
14485 }
14486
14487 void
14488 _initialize_ada_language (void)
14489 {
14490 initialize_ada_catchpoint_ops ();
14491
14492 add_prefix_cmd ("ada", no_class, set_ada_command,
14493 _("Prefix command for changing Ada-specfic settings"),
14494 &set_ada_list, "set ada ", 0, &setlist);
14495
14496 add_prefix_cmd ("ada", no_class, show_ada_command,
14497 _("Generic command for showing Ada-specific settings."),
14498 &show_ada_list, "show ada ", 0, &showlist);
14499
14500 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14501 &trust_pad_over_xvs, _("\
14502 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14503 Show whether an optimization trusting PAD types over XVS types is activated"),
14504 _("\
14505 This is related to the encoding used by the GNAT compiler. The debugger\n\
14506 should normally trust the contents of PAD types, but certain older versions\n\
14507 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14508 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14509 work around this bug. It is always safe to turn this option \"off\", but\n\
14510 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14511 this option to \"off\" unless necessary."),
14512 NULL, NULL, &set_ada_list, &show_ada_list);
14513
14514 add_setshow_boolean_cmd ("print-signatures", class_vars,
14515 &print_signatures, _("\
14516 Enable or disable the output of formal and return types for functions in the \
14517 overloads selection menu"), _("\
14518 Show whether the output of formal and return types for functions in the \
14519 overloads selection menu is activated"),
14520 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14521
14522 add_catch_command ("exception", _("\
14523 Catch Ada exceptions, when raised.\n\
14524 With an argument, catch only exceptions with the given name."),
14525 catch_ada_exception_command,
14526 NULL,
14527 CATCH_PERMANENT,
14528 CATCH_TEMPORARY);
14529
14530 add_catch_command ("handlers", _("\
14531 Catch Ada exceptions, when handled.\n\
14532 With an argument, catch only exceptions with the given name."),
14533 catch_ada_handlers_command,
14534 NULL,
14535 CATCH_PERMANENT,
14536 CATCH_TEMPORARY);
14537 add_catch_command ("assert", _("\
14538 Catch failed Ada assertions, when raised.\n\
14539 With an argument, catch only exceptions with the given name."),
14540 catch_assert_command,
14541 NULL,
14542 CATCH_PERMANENT,
14543 CATCH_TEMPORARY);
14544
14545 varsize_limit = 65536;
14546 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14547 &varsize_limit, _("\
14548 Set the maximum number of bytes allowed in a variable-size object."), _("\
14549 Show the maximum number of bytes allowed in a variable-size object."), _("\
14550 Attempts to access an object whose size is not a compile-time constant\n\
14551 and exceeds this limit will cause an error."),
14552 NULL, NULL, &setlist, &showlist);
14553
14554 add_info ("exceptions", info_exceptions_command,
14555 _("\
14556 List all Ada exception names.\n\
14557 If a regular expression is passed as an argument, only those matching\n\
14558 the regular expression are listed."));
14559
14560 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14561 _("Set Ada maintenance-related variables."),
14562 &maint_set_ada_cmdlist, "maintenance set ada ",
14563 0/*allow-unknown*/, &maintenance_set_cmdlist);
14564
14565 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14566 _("Show Ada maintenance-related variables"),
14567 &maint_show_ada_cmdlist, "maintenance show ada ",
14568 0/*allow-unknown*/, &maintenance_show_cmdlist);
14569
14570 add_setshow_boolean_cmd
14571 ("ignore-descriptive-types", class_maintenance,
14572 &ada_ignore_descriptive_types_p,
14573 _("Set whether descriptive types generated by GNAT should be ignored."),
14574 _("Show whether descriptive types generated by GNAT should be ignored."),
14575 _("\
14576 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14577 DWARF attribute."),
14578 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14579
14580 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14581 NULL, xcalloc, xfree);
14582
14583 /* The ada-lang observers. */
14584 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14585 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14586 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14587
14588 /* Setup various context-specific data. */
14589 ada_inferior_data
14590 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14591 ada_pspace_data_handle
14592 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14593 }